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Abstract 
 

Overflow ball mills have found popular application in the ore dressing process 

for post-primary grinding firstly owing to their ability to produce finer grinds, 

necessary for efficient mineral liberation and better flotation recovery and 

secondly due to lower initial capital outlay. However they are inefficient and 

intensive energy consumers. This trend has been exacerbated in the wake of 

increased installation of large diameter ball mills to benefit from economies of 

scale, coupled with diminishing ore quality currently being experienced by mines 

worldwide. To fully utilise the available mill capacity and achieve optimal 

performance whilst maintaining energy efficiency for these large devices, closer 

and more effective control is needed. Satisfaction of this need would result in 

stability of the entire mineral processing circuit, thereby reducing the overall cost 

in mineral extraction. Clear and deeper understanding of the in-mill behaviour is 

fundamental to the realisation of the above objective.  

 

This thesis explores several experimental and modelling techniques to obtain 

deeper understanding of the internal behaviour of an overflow ball mill. A direct 

load sensor comprising an inductive proximity probe and a conductivity probe 

installed through the mill shell has been utilised to collect information of the 

media and slurry dynamic positions inside a laboratory ball mill while a 

commercial on-line ball and pulp sensor was employed to collect similar 

information on an industrial overflow ball mill. Useful insights were acquired 

that can help the design of control strategies for optimal mill performance. Four 

feature variables, i.e. dynamic media angle, slurry pool angle, conductivity signal 

amplitude and the slurry pool depth, derived from the sensor signals data were 

characteristically influenced by changes in mill operational conditions. Therefore 

the possibility of using these features to predict the associated mill operational 

variables is feasible. In view of the findings, two multivariate models, one based 

on the concept of data projection to latent space (PLS) and the other combining 

PLS and radial basis functions neural networks (RBF) were built and applied to 

predict the in-mill slurry density and ball load volume. Both models yielded 

adequate predictions, albeit the hybrid PLS-RBF model displayed marginally 

better prediction performance. The results are indicative of the available potential 
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for mill on-line monitoring and control by multivariate techniques based on 

relevant features contained in the media and slurry sensor signals data. 

 

In another endeavour, a gamma camera was successfully employed to study the 

flow and mixing behaviour of slurry inside a laboratory mill using Technetium-

Tc
99m

 radiotracer as a flow follower. The effects of slurry viscosity and mill 

rotational speed on slurry mixing rate within the ball charge and slurry exchange 

rate between the pool and the ball charge were assessed, yielding insightful data. 

However, the results remain inconclusive as only qualitative information could 

be obtained owing to the radiation attenuation effects by the steel ball charge. 

 

In the quest to improve the understanding of material transport inside the mill, 

the data acquired on an industrial mill through salt tracer tests was adequately 

analysed to assess the variation of slurry residence time distribution (RTD) and 

volumetric holdup inside the mill as affected by changes in slurry concentration 

and ball load volume. A model based on the concept of serial stirred mixers with 

a plug flow component produced fairly accurate predictions of the RTD data. 

Also, equations derived from a mathematical description of the dynamic load 

profile produced good estimates of the in-mill slurry volumetric holdup.  

 

Further, an improved mixing-cell model was developed and applied to 

characterise the in-mill slurry hydrodynamic transport based on the measured 

RTD data. The model was able to account for the effects of non-ideal flow 

conditions such as slurry back-mixing, slurry exchange between the pool and ball 

charge and bypass flows on the main flow of slurry thus giving correct 

description of the inherent in-mill slurry transport dynamics. Note that failure to 

tune the mill appropriately to achieve desirable in-mill slurry transport behaviour 

may result in poor milling performance and corresponding high energy 

expenditure. 

 

Thus, the results obtained in this thesis clearly demonstrate that, a combination 

of experimental techniques and mathematical models is a viable route to enhance 

understanding of mill internal behaviour, which in turn enables development of 

better control schemes for optimal mill performance.  
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1.1     Background and motivation 

The increasing focus by industrialists in the mineral processing industry on 

expanding production capacities and minimising costs has steered a strong impetus 

to research on better and effective methods for monitoring, control and 

optimisation of mineral processing plants. Milling has been identified as a pivotal 

unit operation in the mineral processing circuit whose performance defines the 

performance of all the downstream processes and thus it has been accorded more 

research attention. Surprisingly, the researches into the milling process continue to 

lay emphasis on the acquisition of information that can help in understanding the 

mill power consumption pattern. This is on account of a widely held belief that the 

pattern of mill power draw correlates with mill capacity. However, with increasing 

installation of large diameter mills, which have to operate under characteristically 

multivariate milling environments, it is feared that this rule of thumb can present a 

control drawback where small changes in mill capacity cannot be detected through 

variation in a power draw pattern or the observed power draw pattern is due to 

changes in load behaviour associated with individual influences such as change in 

ore characteristics, ball loading or slurry properties. Therefore, it is imperative that 

the in-mill dynamics are properly understood and correctly characterised in order 

to successfully control and optimise the performance of milling circuits. 

 

Generally, the mill internal dynamics are dependent on design and operational 

factors such as the mill filling level, mill rotational speed, grinding media size, 

liner characteristics and slurry properties. Accordingly, by monitoring mill internal 

behaviour, the individual effect of these factors and their nature of interaction can 

be studied and clarified, leading to effective control and optimisation of the milling 

circuit. For instance, understanding the interactions of the ball media and slurry (by 

closely monitoring the media and slurry angular positions) would allow for just on-

time detection of the load expansion and appropriately tuning the mill to operate 

with grinding zones properly saturated with slurry. Equally, the degree of mill 

filling and the proportion of grinding media relative to the ore could be well 

controlled within the established desirable range to reduce the operating costs 
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while maintaining the grinding performance at optimum level. Also, the solids 

concentration in slurry could be set at a level that yields favourable conditions of 

slurry viscosity and density required to achieve optimal mill product size 

distribution and energy efficient grinding. Note that slurry viscosity and density are 

generally considered to have significant influence on the flow and entrainment of 

slurry within the grinding media and its discharge from the mill as well as the 

motion and behaviour of the grinding media. These events impact heavily on the 

mill power draw and grinding efficiency.  

   

Furthermore, having good knowledge of in-mill slurry transport behaviour, mixing 

pattern, holdup volume and residence time distribution (RTD) for any set of 

operating conditions enables better control of the milling process, which in turn 

leads to improved milling efficiency.  

 

While the advances in instrument technology and computer capabilities have 

enabled the development of special instruments and measuring techniques to 

monitor the in-mill dynamics, some challenges still remain posed. Firstly, the 

target data captured by the measuring instruments is more often presented to the 

mill operators in an ambiguous format which requires further interpretation before 

necessary mill control actions can be implemented. This creates a possible scenario 

for inadequate interpretation of data as well as data misinterpretation.  Secondly, in 

some cases the features which may carry information related to the process remain 

concealed in the raw measured data presumably due to lack of valid interpretation 

schemes. As one possible means to address the above shortfalls, the raw measured 

data could be linked to mathematical models which relate the measured parameters 

that define the in-mill dynamics to key variables involved to give an intelligent 

interpretation of the data. This approach, due to reduced interpretational 

uncertainties, would assist in easily identifying the sources of concerns, and allow 

confident implementation of mill control actions. 
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1.2 Research objectives 

This thesis seeks to obtain clear and deeper understanding of the dynamic 

behaviour of media and slurry inside an overflow-discharge ball mill and transform 

the data obtained into valuable information that would aid mill operators and 

process engineers in timely decision making with regard to mill control and 

performance optimisation. One way would be to use the experimental data 

generated to develop mathematical models that relate various measurable aspects 

of media and slurry behaviour inside the mill such as media and slurry dynamic 

positions or slurry residence time distribution to key operational variables such as 

mill load volume or slurry properties and performance indices such as mill energy 

efficiency. These models may serve as predictive tools for providing insights of the 

process and thus they would lay ground on which sound control schemes can be 

created for improved mill product quality and process performance.   

 

1.3 Thesis outline 

The work presented in this thesis is organised into 10 chapters based on both 

laboratory and industrial investigations. The current chapter has presented the 

background, motivation and scope for the research work to follow. 

 

Chapter 2 presents a review of literature on measurement and modelling of mill 

load behaviour. The progress made to date and the areas where information is still 

lacking are highlighted. Hence, this chapter provides a context for the research 

work to follow. 

 

Chapter 3 describes the experimental equipment and the measuring system 

components used in the work undertaken for this thesis as well as the programs 

involved and the methodology applied. 

 

Chapter 4 presents both the laboratory and the industrial data obtained from 

measurements of media and slurry dynamic behaviour using direct load sensors 
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and the subsequent analysis and discussion. Analysis of sensor response data 

revealed some useful information that is related to mill operational parameters and 

performance indices. As it shall be seen, this information can be potentially utilised 

for process control.  

 

Chapter 5 uses the characteristic features extracted from the media and slurry 

sensor signals data discussed in chapter 4 to predict the in-mill slurry density and 

load volume by multivariate modelling. Two multivariate modelling approaches 

are considered: the partial least squares (PLS) and a hybrid combining PLS and 

radial basis functions neural network (RBF). The results indicate adequate 

predictions of ball load volume and slurry density. This is a clear demonstration 

that the characteristic features contained in media and slurry sensor signals data in 

combination with multivariate modelling could provide a promising means to 

improve the mill control, through effective monitoring of changes in mill 

operational conditions.   

  

Chapter 6 is dedicated to the study of the in-mill slurry flow pattern and mixing 

rate in a laboratory ball mill using gamma emission imaging technique. 

Fundamental information relating to in-mill slurry transport behaviour is generated 

that might be resourceful in diagnosis and control of ball milling process. But 

despite this progress, some challenges still remain posed with regard to the 

extension of the technique to full scale mills.  

 

Chapter 7 deals with the analysis of slurry residence time distribution (RTD) data 

obtained on an industrial overflow ball mill through salt tracer tests. A novel 

method is proposed to estimate slurry feed rate and volumetric holdup inside the 

mill by tracer balance technique based on measured RTD data.  

 

Chapter 8 presents two models describing the data discussed in chapter 7. The first 

model describes the in-mill slurry residence time distribution (RTD) while the 

second describes the in-mill slurry volumetric holdup. Once accurately calibrated, 

the two models could provide a simple means of estimating slurry residence time 
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and holdup volume inside the mill without necessarily having to perform tracer 

tests providing the values of measurable variables in the models are known. This 

would save on both cost and time associated with experimentation. 

 

Chapter 9 presents an improved mixing-cell model that is able to account for the 

effects of non-ideal processes such as axial mixing, cross-flows and short-circuit 

flows on the main flow of slurry inside an overflow-discharge ball mill. The model 

is successfully applied to characterise the in-mill slurry hydrodynamic transport 

based on the RTD data discussed in chapter 7. Considering the strong influence of 

slurry hydrodynamic transport on milling efficiency of an overflow discharge mill, 

correct knowledge of in-mill slurry transport characteristics would allow the mill to 

be appropriately tuned to achieve desirable in-mill behaviour that corresponds to 

optimum mill performance. 

 
Chapter 10 presents the main conclusions drawn from the work described in this 

thesis and offers suggestions for future work, completing the thesis.  

 

This thesis thus provides invaluable information relating to media and slurry 

dynamic behaviour inside an overflow-discharge ball mill that has hitherto been 

veiled but which is critical towards developing best strategies for effective mill 

control and performance optimisation.  
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2.1    Introduction 
 

The work done in fracturing of mineral bearing ore particles in a grinding mill is 

proportional to the energy applied (Fuerstenau and Han, 2003). Thus, for 

maximum efficiency in ore breakage, the energy delivered to the mill should be 

efficiently transferred to the mill grinding zones. In general practice the liner 

characteristics, mill filling, media size and mill rotational speed are considered to 

be the most important variables in the quest to meet this objective. This is due to 

their strong influence on the load lifting capacity inside the mill which in turn 

defines the energy distribution within the mill load.  However, it should be borne 

in mind that for mills operated at constant speed and filling level typical of 

conventional ball mills, factors such as slurry properties and its complex 

hydrodynamic interaction with the grinding media are the principal sources of 

concern. Comprehensive understanding of these dynamics is vital for establishing 

an effective mill control scheme and optimising the milling process so as to 

achieve desired throughputs efficiently and economically.  

 

This chapter presents a review of some of the studies accomplished to date which 

make available information on the mill internal behaviour, both at laboratory and 

full scale levels. Also included is a brief discussion on the previous efforts by other 

researchers, aimed at modelling the mill load behaviour. Hence this chapter 

provides a priori knowledge and understanding on whose base the research work 

to follow is built.  

 

2.2 Description of mill load behaviour  

The mechanism of media and slurry motion inside a wet overflow ball mill and the 

subsequent behaviour of the mill have only been superficially explored in 

literature. This is owing to the various limitations ranging from experimental costs 

to technological difficulty. The focus has largely been on measuring the dynamics 

inside dry grinding mills. The use of direct and indirect measurement techniques 

has been reported with their various levels of success and shortfalls.  
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White (1905) was notably among the early researchers who reported some work on 

mill load motion. He studied the ball paths in a laboratory tube mill in an effort to 

establish the most efficient milling speed for any given case. Others include Rose 

and Sullivan (1958) who observed the load position inside a laboratory scale mill 

having transparent glass windows and attempted to develop a dynamic theory 

called surging. They described it as the pendulum-like oscillation of the whole 

charge about the mill centre. Although their work was confined to dry mills it laid 

a good foundation for further explorations in both dry and wet mills. 

 

Generally, the dynamic position of the load inside the mill at low speeds can be 

represented by the profile shown in Figure 2.1(a) that resembles a kidney. 

However at high mill speeds, the load dilates and part of the media starts to 

cataract (i.e. a portion of the load is thrown from the shoulder into free flight, clear 

of the en masse load) with the load assuming a different shape characterised by 

four distinct regions as illustrated in Figure 2.1(b), redrawn after Liddel and Moys 

(1988). In region 1, the balls are rising in circular paths; region 2, the balls are 

rising in non-circular paths and having relative motion to each other and to the 

mill; region 3, the balls are falling in parabolic (cataracting) or rolling (cascading) 

paths while region 4, is the bed toe position where balls are in random and 

turbulent motion. 

 

               

           

         (a)                     (b) 

Figure 2.1: (a) Load position at low mill speeds (b) Various regions within the 

load at high mill speeds. 
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With a continuous increase in mill speed, a point is reached when the cataracting 

load would start to impact directly on the descending side of the rotating mill shell 

away from the toe of the load. This behaviour causes excessive wear of liners and a 

reduction in mill power draw. With further increase in mill speed, beyond the 

critical speed, the load may start to centrifuge. This is a phenomenon where a layer 

of the balls adheres on the mill shell and continuously rotates with it thereby 

reducing the load effective mass and mill effective diameter. Premature 

centrifuging may also set in under mill overload conditions as reported by Van 

Nierop and Moys (1998).  

 

In the wet milling process, the slurry is normally entrained in the load taking up the 

voids volume and hence directly influences the motion of fine particles out of the 

mill and the distribution of coarse particles to the breakage fields. If the volume of 

slurry exceeds the voids volume (i.e. if the fractional voids filling exceeds unity) 

then a pool of slurry forms at the load toe position.  This tends to be located on the 

opposite side of the load as shown in Figure 1(a), thus aiding in the mill rotation, 

which consequently lowers the mill power draw. However, with correct knowledge 

of the load motion and behaviour under the given mill design and operating 

conditions, the mill can be tuned to operate with the correct level of slurry that 

would enhance efficient grinding. In overflow mills, a certain constant level of 

pool has to be maintained to facilitate the discharge of fine material from the mill. 

 

2.3 Factors influencing load behaviour in a wet ball mill 

2.3.1 Slurry properties  

Mineral slurry is a mixture of fine ore particles and water where the latter serves as 

a carrier fluid. The properties of slurry are crucial in achieving efficient flow and 

distribution of slurry within the load and subsequent transport out of the mill. 

Slurry viscosity and density are generally considered to be the main properties 

which significantly influence the flow behaviour of mineral slurry. 
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 2.3.1.1 Slurry Viscosity 

Viscosity of a fluid can be generally defined as a measure of its resistance to flow. 

Therefore it is a function of shear stress, which acts between two layers of fluid 

lying adjacent to each other. Mathematically, the gradient of the flow curve (i.e. 

shear stress versus shear rate), for “Newtonian” flows gives the viscosity of a fluid 

but where the flow curve is non-linear, the fluid can be regarded as “non-

Newtonian”. Mineral slurries generally display non-Newtonian behaviour due to 

heterogeneous nature of the slurry composition.  

 

Klimpel (1982) characterised the viscosity of mineral slurries into three regimes 

based on the rheological properties: Dilatent (low slurry density), Newtonian 

pseudo-plastic (slurry density near to maximum breakage rate) and pseudo-plastic 

with high yield stress (high slurry density), illustrated in Figure 2.2. 

 

 

                    

 

Figure 2.2: Rheological behaviour of slurry (Klimpel, R.R, 1982) 

 

They noted that slurry viscosity should be sufficiently high to give matching higher 

breakage rates. However, excessively high viscosity would result in very thick 

slurry, which cushions the impacts thus reducing the stressing force which is 
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necessary for breakage action. Similarly, highly viscous slurry would cause 

bridging of grinding media on mill liner wall which may assist the load to 

centrifuge prematurely. On the other hand, low viscosity (dilute slurry) implies that 

the cohesive particles behave like a fluid thus flowing away from the grinding 

zones and allowing direct contact between grinding media which results in media 

wear. Hence an optimum value of slurry viscosity that corresponds to maximum 

breakage rate must exist.  

 

Kawatra and Bakshi (1996) reported a decreased breakage of media sized ore and 

an increased production of critical sized material with increasing viscosity. 

However a decrease in grinding rate was observed after reaching a certain level, 

which was attributed to excessively thick slurry in the mill. Similar observations 

were reported by Tangsathitkulchai (1989) who noted a slowing down effect in a 

laboratory wet grinding mill with quartz slurry. In his conclusions, he pointed out 

that slowing down of grinding may occur at any particles size depending on the 

level of slurry viscosity.  

 

According to Smit (2000), slurry viscosity determines the interaction between 

slurry and media and has a significant effect on mill load behaviour. He observed 

that slurry entrainment and flow within the grinding media and its discharge 

heavily depends on its rheology and subsequent behaviour of the load. This is in-

line with the findings by Songfack (1996) who further observed an effect of slurry 

properties on the slurry build-up in the mill (i.e. slurry hold-up). Highly viscous 

slurry would offer greater resistance to flow in the pool and within the grinding 

media leading to a reduction in slurry discharge rate and subsequent build-up of 

slurry in the mill. The mill will then “go off the grind” (Austin et al, 1984). The 

mill ‘overload’ point is then reached which is characterised by excessive 

appearance of grinding media in discharge slurry, mill choking and slurry spillage 

from feed end (Moys 1986). Therefore, rheology may be the key to more effective 

mill control as reiterated by Moys (Op cit).  
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Slurry viscosity is a strong function of solids concentration and is affected by other 

properties such as particle size distribution and temperature inside the mill, which 

makes it a difficult property to measure. Presented in Table 2.1 are some of the 

models that have been proposed in literature which show an exponential 

dependence of slurry viscosity on solids concentration (% solids) in slurry. 

  

Table 2.1: Viscosity as a function of solids volume (Cv), (Nicholas, 1986). 
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in which µ/µf is the relative viscosity while Cv is the fraction of solids, by volume, 

which is related to % solids by weight in the feed as shown by equation 2.1: 
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+ −

   [2.1] 

 

Where 

ws :  Weight fraction of solids in the mixture. 

 ρs   :   Specific gravity or density of the solid. 

 ρl   :  Specific gravity or density of the liquid (dilution water). 

 

In essence, clear information about slurry viscosity and its influence on mill 

internal dynamics would help characterise and control the milling process for 

efficient operation. 

 

2.3.1.2 Slurry density  

Slurry density is closely related to slurry viscosity and hence it is an important 

parameter in ore grinding process. A change in slurry density might greatly 
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influence the movement pattern of the balls and the flowability of slurry within the 

ball charge during mill tumbling process. This would be accompanied by a change 

in grinding performance which should be traditionally reflected by a change in mill 

power. For a mixture of media and slurry, the slurry density is defined by the 

percentage by weight of solids in the mixture and hence is closely related to slurry 

viscosity.  Slurry density can be calculated using the following expression based on 

elementary physics. 

 

( )
1

/ (1 ) /
sl

s solids s waterw w
ρ

ρ ρ
=

+ −
     [2.2] 

 

Where  

ws : Weight fraction of solids in the mixture. 

 ρsolids   :   Specific gravity or density of the solid. 

 ρsl  :  Slurry density/specific gravity 

 ρwater   :  Specific gravity or density of the liquid (dilution water). 

 

Slurry density increases gradually with percent solids which directly effects the 

distribution and mass hold-up of slurry charge within the mill (Songfack and 

Rajamani, 1999; Nasr-EL-Din et al, 1992). This in turn affects the moving path of 

the balls and thus the interaction between the particles and the grinding media. The 

slurry density is related to its mass hold-up in the mill as follows: 

 

sl sl v L mM U J Vρ ε=    [2.3]   

 

Where  

 U    : Fractional filling of voids with slurry. 

 εV    :  Voidage in the load (voids volume fraction). 

 JL    : Load volume as a fraction of the mill volume. 

 Vm  :  Volume of the mill. 

 



 

 

Chapter 2                                             

Literature Review          

   

 

15 

Hogg and Rogovin (1982) found out that the level of solids concentration in slurry 

has a significant influence on the slurry flow and holdup inside the mill. They 

showed that the residence time of solids inside the mill is higher than that of the 

fluid. However, only low levels of solids concentration were tested (24 – 46%).  

Further, they proposed a mill model which predicts the optimum grinding at the 

interstitial filling of slurry (U) slightly higher than 1 (load with a small pool of 

slurry). Under this condition, the charge motion through the slurry pool is 

governed by the slurry density, which is directly affected by its viscosity. At high 

slurry viscosity and hence high slurry density, the media encounters some drag and 

buoyancy forces, which reduces the impact forces between the media and the ore 

rocks. This information is useful in determining the mill torque and power draw 

under the varying slurry properties.  

 

Tangsathitkulchai and Austin (1989) using quartz as the test material in a batch 

ball mill and with the aid of photographic techniques observed that slurry density 

(related to viscosity) affects the distribution of solid charge in the mill and the 

circulation paths of balls. Various grinding characteristics were noted which were 

attributed to the change in behaviour of the balls and slurry under changing levels 

of slurry levels. 

 

2.3.2 Mill liner and lifter design  

In tumbling mills, the load motion and power draft are largely influenced by the 

type of liners and the configuration of lifters where present. McIvor, (1984) 

revealed that for a given mill speed and filling, the trajectories of the ball charge 

depend on the lifter profile and leading line face angle which may have a profound 

effect on the mill performance. He noted that the point at which the balls depart for 

parabolic flight and the point where they impact on the mill shell at the end of their 

parabolic flight are sensitive to the leading angle. He further observed that an 

increase in height of lifters causes the balls to follow higher trajectories. His 

analysis is suggestive of the fact that the entire load motion is dependent on the 

behaviour of the outer layer of balls in contact with the mill liners. 
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The design of lifter profiles (height and face angle) goes in tandem with the mill 

operating conditions and performance requirements. It is well understood by mill 

operators that liners having lifter bars with gradual profiles would retain their 

profiles a bit longer compared to those with sharp edged profiles; but to achieve 

more cataracting, sharper edged profiles are preferred. However, other researchers 

(Powell and Vermeulen, 1994; Hlungwani et al, 2003) have acknowledged that no 

single liner design exists which would give optimum performance in all mill types. 

Different liner profiles give varying performance levels in different mills, which 

imply that any small change in operating parameters is bound to have a profound 

effect on the liner performance. Therefore, in milling practice an optimum design 

has to be sought or the existing one modified or optimised to yield the required 

results under given conditions.  

 

Fuerstenau and Abouzeid (1985) studied the effect of lifters on the grinding 

kinetics and energy consumption in a tube mill. They found out that the specific 

energy consumption (Kwh/t of product) was higher in a mill with smooth liners i.e. 

in absence of lifters. This was presumably due to the load slippage, which is in line 

with the experimental observations by McIvor (1984). 

 

Liddell and Moys (1988) using a laboratory mill with smooth liners established 

that slip was predominant for mill fillings below 30%. However, for mill filling 

beyond 30%, slip reduced with increase in mill speed. They concluded that, at high 

mill filling, the load exerts more dynamic pressure on the mill liner wall, which 

helps to ‘key in’ the load to the mill rotary motion thus reducing slip. Liddell’s 

observations further underscore the significance of the liner/lifter effect on the 

accuracy and consistency of the mill power models. 

 

Moys (1993), investigated the influence of four different liner designs on the mill 

load behaviour and power draw, in an effort to develop a semi-empirical mill 

power model. The effect of speed and mill filling was similarly assessed. The 

experimental work was accomplished on a laboratory mill of 530mm diameter 

(inside liners) and 300mm long using steel balls having size distribution of 12mm, 
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18mm and 25mm. The Grid and Shiplap liners exhibited excessive slippage at low 

mill fill levels (less than 20%) up to the speeds of 100% and 120% of the critical 

respectively. Above this range, the load assumed the behaviour similar to cases 

with liners having lifter bars. The smooth liner with half the number of lifter bars 

yielded more power at sub-critical speeds. This observation was similarly reported 

by Powell (1991). 

 

Moys (1993) further reported the occurrence of centrifuging at lower speed in a 

mill fitted with lifter bars than the one without the lifters. This behaviour serves to 

explain the ultimate reduction in mill power draw that follows the insertion of 

lifters in high-speed mills. The high lifter profile assists in locking the load to the 

rotary motion of the mill which may aid in centrifuging at higher mill speeds. This 

observation once more confirms the theory of ‘critical lifter height’ which is 

dependent on the mill operating speed. 

 

Powell and Nurick (1996 b, c) studied the load motion in a small Perspex mill 

(190mm diameter by 97mm long) using both X-ray and Gamma video cameras. 

They reported a phenomenon of radial segregation in the load, which was governed 

by the mass and size of the balls, radial location of the balls and the liner geometry. 

Larger balls concentrated progressively to the centre of charge at high mill speeds 

(above 82% of critical) but segregated to the periphery of the charge at low mill 

speeds. At speeds beyond 90% of critical, the effect of mass and size operated in 

opposite directions. The ratio of their distributions would determine the direction 

of segregation. They found that lifter height influenced the ball trajectories, and 

that the optimal lifter face angle was a strong function of mill speed. Their study 

gives a significant contribution to the knowledge of load dynamics and the 

influence of lifters. 

 

The radial segregation of the load has an influence on the mill grinding behaviour. 

Where the larger ore rocks are found at the periphery, breakage would 

predominantly be by impact while at the centre of the load attrition breakage would 
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dominate. The heaviest balls force their way down through the cascading load and 

concentrate near the centre of the mill to attain a low energy state in the load. 

 

Therefore clear understanding of the load motion and the interaction behaviour 

with the liners/lifters is of significance to mill operators and designers. With this 

information the mills can be tuned to achieve appropriate flow pattern of the 

charge that ensures effective grinding. 

 

2.3.3 Mill rotational speed and media filling level 

The load motion inside the mill is sensitive to mill rotational speed and level of 

ball filling inside the mill. Ball mills typically operate at a constant speed in the 

range of 70 – 80% of critical speed depending on the level of mill filling. At speeds 

above 80% of critical, the load motion would assume a predominantly cataracting 

regime. Some of the impact energy of the cataracting media is converted into a 

turning moment contributing to the mill rotation hence lowering the mill torque. At 

speeds above 100% of critical, the balls on the outer layers would start to 

centrifuge, reducing the mill active load, thus contributing to the loss of mill power 

(Moys, 1993). At higher mill fillings, this phenomenon may be experienced at 

speeds slightly below 100% of critical. Therefore the choice of mill operating 

speed and load filling should be optimized to ensure the mill operates with 

maximum throughput at minimum costs (i.e. decrease energy consumption and 

reduce wear of liners and grinding media). 

 

2.4  Overview of mill load behaviour measurements 

Literature presents several methods of load behaviour measurement that have been 

explored by researchers to date. The methods can be classified into two categories; 

non-intrusive and intrusive. Non-intrusive methods include the use of acoustics 

such as microphones mounted close to the mill shell to record the sound signal 

emanating from the mill. In this case, changes in load position inside the mill are 
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detected by relating the sound power of the microphone(s) with mill operational 

variables (Watson, 1985). Other examples of non-intrusive techniques which are 

progressively developing include Positron Emission Particle Tracking system 

(PEPT) and Gamma Emission Imaging technology both of which involve the use 

of radioisotope tracers. One merit of the radiotracer techniques is that they can be 

applied in harsh environments where conventional methods have been infeasible. 

This might help to unravel some hitherto veiled information about the internal 

flows in such systems. Following the establishment of International Atomic Energy 

Agency, 1945 to regulate the licensing and use of radioactive materials, a range of 

radiotracers have been developed that can be applied for research as well as 

diagnostic examination in various industrial processes.  

 

The PEPT technique involves irradiation of a particle within a system and as the 

particle decays, nuclear reactions cause a pair of coincident X-rays to be emitted 

which are detected by the PEPT camera. By using a reconstructive algorithm the 

position and hence trajectory of the particle can be computed (Conway-Baker et al, 

2002). This is demonstrated in the work presented by Barley et al (2004) which 

describes the motion of the grinding beads within the stirred mill under different 

operating conditions. While this approach appears feasible, the inability to track 

multiple particles simultaneously presents a major limitation to its accuracy 

especially in systems involving complex multiphase flow, typical of wet ball mills.  

 

Gamma emission imaging technique on the other hand can provide continuous 

tracking of the radiotracer in space and time (Ziock, 1995; Ivanov et al 2004). 

Although the technique was specifically developed to be used for medical 

tomography, increased interest from researchers and industrialists have led to the 

development of portable compact gamma imaging systems which can be applied to 

harsh industrial environments for process diagnosis and control,  (IAEA, 2008).  

The relatively high energies of γ-rays enable imaging of processes that are hidden 

behind thick vessel walls, which makes this technique preferable to other methods 

like positron emission tomography (PET), for industrial process tomography.  Also 
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it is suitable for multiphase flow systems where information on a specific phase 

needs to be obtained in time and space.  

 

Previous work by (Kantzas et al, 2000 and Jonkers et al, 1990) demonstrated that 

the application of gamma ray emission imaging technique could be extended to 

research in industrial processes such as fluidized beds where direct visual 

observation is infeasible. Separately, they applied γ-ray imaging technique to study 

multiphase flow in porous media with ascertainable level of success. Using 

radiotracers the dynamics of fluid distribution and saturation were recorded and 

analysed. However, due to inadequacy of their data acquisition and processing 

system, their results were only qualitative in nature. Surprisingly nothing has been 

reported with reference to the hydrodynamics of the wet ball mills, presumably due 

to lack of laboratory calibration and characterisation data related to ball mills. 

 

Residence time distribution (RTD) methods provide another non-intrusive 

approach to studying the in-mill slurry behaviour. Typically, measuring of RTD 

involves introduction of a tracer at the feed and continuously or discretely 

monitoring the response at the discharge in terms of conductivity or concentration 

(Gardner, et al, 1975). The shape of RTD curves depends on the combined effect 

of the flow behaviour and mixing performance inside the process equipment, 

which is usually related to the RTD function parameters i.e. mean residence time 

and variance. This information is important for diagnostics as well as control 

purposes. Process malfunctions such as bypassing, channelling or existence of 

dead volumes can easily be detected. Studies by Kelsall et al (1970), Hogg (1984), 

Kinneberg and Herbst (1983), Austin et al (1984) and King (2001) have shown 

that residence time distribution function is a key component of the breakage 

behaviour model for continuous mills. The residence time distribution function 

describes the flow through the mill while grinding equations describe the breakage 

behaviour as a function of time. Although the residence time distribution methods 

can be applicable to opaque systems they can only provide Eulerian type data 

(local instantaneous information on the flow field) which limits their applications. 
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Unlike non-intrusive methods, intrusive techniques involve the use of contact 

sensors to directly probe the load behaviour inside the mill. Direct interaction of 

the load with the sensor, instils some level of accuracy which certainly renders this 

approach appealing. One such technique that is quickly gathering popularity in 

mineral processing research industry is the use of electro-mechanical sensors. 

Nevertheless, its application remains confined to laboratory and pilot scale mills 

seemingly due to exceedingly rough conditions inside an industrial mill. However, 

with the current advances in instrumentation technology, improvements can be 

made on these sensors that would allow for direct measurement of the load 

behaviour inside industrial mills; a consideration that constituted part of the 

motivation for this research work. 

 

Moys (1985) and Vermeulen et al (1985) were notably the first ones to explore 

load behaviour inside a mill using direct contact sensors. Moys (op cit) used an 

electrical conductivity sensor installed on a pilot mill to measure the variables that 

characterise the load behaviour inside the mill. The effects of, mill speed, load 

volume and slurry properties on load behaviour were explored. The same 

measurement principle was applied by Vermeulen et al (op cit) on an industrial 

mill using both conductivity and piezo-electric sensors. Some useful information 

was obtained about the level of cataracting inside the mill and the angular 

distribution of the impacts. This information could be useful in establishing the 

regions or fields within the load where grinding is more effective so that mills can 

be appropriately tuned to achieve that flow pattern.  

 

Other similar studies reported in literature include Moys and Montini (1987) who 

used an electrical conductivity sensor to probe the load dynamic orientation in a 

pilot scale ball mill. They studied the effect of design and operating variables on 

load shoulder and toe positions and determined the height to which the charge was 

lifted with increase in mill filling. At the same time, they explored the effect of 

slurry % solids on load shoulder angle at fixed mill speed and filling. It was 

possible to estimate the slurry viscosity in the mill based on the slurry thickness on 

the probe and its rate of drainage from the probe at the shoulder position. Slurry 
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viscosity is a pertinent parameter in mill control process and the success of this 

technique though simple could be a great step towards realizing effective control of 

wet grinding mills, considering the complexities associated with direct 

measurement of slurry properties. 

 

Moys et al (1996) investigated the load behaviour in a wet pilot scale mill using 

both conductivity and force probes to acquire information of the load position 

inside the mill. The dynamic orientation of the load and slurry hold-up in the pilot 

mill were determined for both overflow and grate discharge arrangements. The 

presence of a slurry pool for overflow discharge arrangement as indicated by the 

conductivity probe data was in line with the expectations and is consistent with the 

observations by other researchers such as Morrell (1993). Their studies further 

indicated a strong effect of slurry viscosity on mill load behaviour and power draw. 

In further investigations, Van Nierop (2001) used conductivity and movement 

probes to measure the load behaviour of an industrial autogenous mill. The 

experimental variables were; mill rotational speed, load volume/mass, slurry 

viscosity and slurry density. He determined the load toe and shoulder positions 

which he used to calculate the load angle of repose (α), an important variable in 

mill power modelling. The load shoulder position was a strong function of mill 

speed, mill filling and percent solids while the toe position was invariant at low 

mill speeds and filling. From the conductivity data, it was possible to detect the 

onset of premature centrifuging of the load with highly viscous slurry. This 

observation was a clear indication that an optimum level of slurry viscosity exists 

where grinding would proceed efficiently. 

 

Tano et al (2005) used a strain-gauge sensor embedded in a rubber lifter to 

measure the flow resistance of slurry and the load inside the mill in response to 

change in slurry percent solids. The toe and shoulder positions of the load as 

recorded by the sensor, varied in a systematic way from which the load flow 

regime could easily be deduced. Nonetheless, the respective positions of slurry and 

media could not be distinguished which constitutes the main shortfall of this 

technique.  
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From the studies described in the foregoing, it is apparent that both electrical 

conductivity and strain-gauge sensors can give useful information about the media 

and slurry angular positions inside the mill. However information about the 

relative position of the grinding media and slurry cannot be accurately obtained; 

especially in cases where a substantial proportion of the grinding media is 

cataracting or the slurry is so thick that it saturates the probe. This surely indicates 

the challenge that faces a single sensor in an effort to detect all the phenomena 

occurring in a multivariate process typical of wet ball milling.  

 

Kiangi and Moys (2006) implemented a new technique for detecting the angular 

position of ball media inside the mill using an inductive proximity probe. A series 

of tests were performed on a dry pilot mill of diameter 0.54m and length 0.2m 

using steel balls as grinding media and dry quartz powder to simulate the ore. The 

probe data were used to calculate the toe and shoulder positions for the ball media. 

This technique could be adapted easily to a wet ball mill in combination with a 

conductivity probe to yield clear information about the media and slurry positions 

inside the mill, which forms part of the motivation for our research. 

 

In further quest for information on mill internal dynamics, Behera et al (2007) 

studied the mill vibration signals using an accelerometer mounted on the mill shaft. 

The vibration signals were analysed as a function of mill speed, load (media and 

ore) filling and grinding time using Fast Fourier Transform (FFT) technique and 

correlated with mill internal behaviour. Mill conditions such as overload and 

surging were reliably detected from the interpretation of the vibration signal peaks. 

However, other facets of load behaviour which are useful for mill control purpose 

such as the flow pattern of powder (or slurry for wet mill) within the media and the 

proportion of media to powder (or slurry) cannot be detected by this technique 

which poses a challenge. 

 

More recently, Clermont et al (2008) presented a new method of measuring the 

load position inside an industrial mill using the SENSOMAG
®

 sensor, which is 

basically a combination of an electrochemical probe and a proximity probe. They 
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obtained information about the angular positions of the ball media and slurry inside 

an industrial mill. They suggested that this information could be used together with 

mill power data to determine the level of mill filling and slurry loading via relevant 

mathematical models. However, further tests are required both at laboratory and 

industrial scale levels to assess the viability of the sensors and acquire more data 

for their calibration. 

 

In this study, new techniques for measuring the dynamic behaviour of the media 

and slurry inside an overflow ball mill are explored both at laboratory and full 

scale levels. On a laboratory scale, a hybrid sensor comprising of a conductivity 

probe and an inductive proximity probe has been used to measure the dynamic 

positions of the media and slurry while a non-contact technique that utilises a 

Gamma ray camera was employed to study the slurry flow path and mixing profile 

inside the mill. In the latter case, Technetium (
99m

 Tc) radioisotope in an aqueous 

form was used as a radiotracer. On industrial scale, an online ball and pulp sensor 

was employed to monitor the angular position of balls and slurry while salt tracer 

tests were applied to study the mill internal flows and residence time distribution. 

 

2.5   Load behaviour modelling 

While researchers and industrialists generally agree that accurate models of mill 

load behaviour could be the key to accurate design and effective control of 

grinding mills, it is surprising to note that the subject has only been moderately 

addressed over the past years. The focus has been on studying the effects of mill 

design and operating factors in efforts to obtain information that would help in 

calibration of mill power models. Developing models for load behaviour could be 

the way forward since mill power is derived from load behaviour. Upon 

recognizing this challenge, Mishra and Rajamani (1990, 1992, and 1994) adapted 

and applied a numerical scheme called Discrete Element Method (DEM) to study 

the in-mill behaviour. In 1996, they successfully implemented DEM to simulate a 

dry SAG mill and obtained information on load motion and power draw. Since 
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then, other researchers have come up with efforts to further validate and apply 

DEM in milling. Prominent among them include Cleary (1998), Hlungwani et al 

(2003) and Radziszewski (1999).  

 

One inherent success with DEM is that balls can be allowed to cascade, 

interpenetrate between layers, and also cataract. The balls can bounce off the lifters 

and mill shell and balls of different sizes can collide with each other obliquely. 

Therefore fairly accurate information of the load dynamics inside the mill can be 

generated by this numerical method as it allows the balls to take their paths 

depending on their collisions with other balls and the mill wall.  Hence, DEM 

becomes a potentially useful tool for mill control and optimisation. Cleary (op cit) 

used DEM to predict the charge motion and liner wear in tumbling mills with 

success. He maintains that the use of numerical techniques is the surest and 

cheapest way to study the in-mill dynamics considering the nature of mill internal 

environment which is hostile to electronic sensors.  

 

In modelling of wet mills, DEM suffers from one major shortfall in that it assumes 

a soft contact approach in a Lagrangian computational domain and models 

particles as distinct but interacting elements whose dynamics are determined by 

Newton’s equations of motion. This limits its ability to delineate the true effect of 

slurry in the load. Therefore information about the slurry position, its flow pattern 

within the load relative to the grinding media may not be clearly obtained.  

 

In an attempt to adapt DEM to wet milling, Cleary et al (2006) presented a 

sequential numerical scheme that combines DEM and SPH (Smoothed Particle 

Hydrodynamics) models to simulate the load behaviour in a SAG mill. Smoothed 

particle hydrodynamics (SPH) is a basically a computational method used for 

simulating fluid flows. It works by dividing the fluid into a set of discrete 

elements, referred to as particles. These particles have a spatial distance (known as 

the "smoothing length"), over which their properties are "smoothed" by a kernel 

function. This means that any physical quantity of any particle can be obtained by 



 

 

Chapter 2                                             

Literature Review          

   

 

26 

summing the relevant properties of all the particles which lie within the range of 

the kernel.  

 

In a combined DEM-SPH model, DEM simulation is first performed to 

characterise the load as a dynamic porous media through which the slurry can be 

able to flow. This information is then transferred into the SPH model through 

Darcy drag laws and Kozeny-Carmen permeability relationship to predict slurry 

motion within the media. In view of the challenges presented by this method as 

reported by Cleary (Op cit),  it is clear that more experimental data is required to 

correctly validate the model in order to reliably predict the behaviour of the 

grinding media and slurry inside the mill as a function of key mill operational 

variables. However, their efforts serve as a source of impetus and a good starting 

point for further investigations. 

 

2.6 Conclusions 

From the information presented in this chapter, it is apparent that a major 

impediment to successful control and optimisation of wet milling systems is lack 

of precise knowledge of media and slurry dynamics inside the mill. Therefore, it is 

expected that future research in the mineral processing industry will continue to 

focus on efforts aimed at filling the above knowledge gap. Simulation models such 

as Discrete Element Method and Computational Fluid Dynamics (DEM-CFD) are 

emerging strongly as useful tools that might provide some insight into this obscure 

phenomenon. However, this requires accurate calibration of the models against 

accurate experimental data; but unavailability of appropriate techniques and 

instrumentation for experimental tests remains a major setback to achieving this 

objective. As a contribution towards countering the aforementioned challenges, 

this thesis seeks to make available comprehensive information of media and slurry 

dynamic behaviour inside the mill by employing a combination of experimental 

techniques and mathematical modelling.  
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3.1 Introduction 

This chapter presents detailed description of the experimental work undertaken for 

this thesis. The experimental equipment and measuring system components 

including instrumentation system are described first followed by discussions of 

experimental programs, measuring techniques, materials and procedures. Both the 

industrial and the laboratory programs are considered. Difficulties and challenges 

encountered during the course of experimental planning and execution and the 

success achieved are also noted here. The data obtained from the experimental 

programs discussed in this chapter is analysed in subsequent chapters.  

 

3.2   Laboratory mill - 1  

3.2.1 Description of the mill rig 

Part of the experimental work carried out for this thesis was accomplished using a 

3 dimensional laboratory scale mill constructed from steel and mounted on a mill 

rig. The mill is driven by a 2.5KW motor via a chain drive. The motor speed is 

controlled electronically using a speed controller (tachometer), which regulates the 

power supply to the motor by varying the current frequency. The milling chamber 

measures 550 mm in diameter by 400 mm long (inside liners) and is fixed to the 

mill axle on which the load beams are connected for torque measurements. The 

mill is lined with 18 pieces lifters that were suitably scaled down from industrial 

size. A 10 mm thick PVC disc is used to close the front side of the mill with a 

provision for feeding and discharging the mill contents during batch tests. The 

torque yielded by the load beam as a result of the tumbling load is transmitted to 

the computer as a voltage signal for processing and storage. A desk top computer 

which is interfaced to the data acquisition system is utilised for real time data 

processing using the Waveview
©

 program from Eagles Technology. The signals 

from both the proximity and conductivity sensors are transmitted off the mill to the 

computer by means of slip rings mounted on the mill axle.  Schematics of the 

experimental set-up can be reviewed in Figure 3.1. 
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Figure 3.1: Schematic representation of the setup of the experimental equipment 

and measuring facilities. 

 

 

 

Table 3.1 Summary of the important features and test facilities in the experimental 

laboratory mill setup (mill-1) 

 

 

1        Front plate (PVC) 

 

9        Chain drive 

2        Milling chamber 

 

10        Motor and Gear box 

3        Conductivity sensor 

 

11        Support frame 

4        Inductive proximity sensor 

 

12        Slip rings 

5        Mill shell 

 

13        Axial load beam 

6        Pivot load beam 

 

14        Glass mirror 

7        Motor gage bearings  

 

15        Computer for data   

        acquisition 

8        Axle bearings 

 

16        Phototransistor (PT)  and  

       LED 
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3.2.2 Model Lifters 

The size of the lifters used in the laboratory experiments was appropriately scaled 

down from the industrial scale. The lifters were machined to a face angle of 20
0
,
 

tangent to the mill shell. They were installed at radial centre to centre distance of 

95mm with lifter spacing to height ratio of 2.91 which lies within the conventional 

range of 2.5 – 4.5 as reported in literature by Bigg and Raabe (1996). Steel bolts of 

8mm in diameter were used to secure the lifters onto the mill shell. 

 

3.2.3   Measurement system components 

3.2.3.1 Inductive proximity sensor 

The inductive proximity sensor (probe) installed on our laboratory mill measures 

30mm x 60mm (diameter x length). The probe is mounted through the mill shell in 

an inline configuration with the conductivity sensor and secured in position by a 

special housing. The probe is designed to detect the proximity or presence of any 

metal object that moves into the operating zone situated immediately in front of its 

sensing face. This sensing face comprises of a coil and the winding which is fed 

from an oscillator, the whole creating an alternating magnetic field in front of the 

coil. Whenever a metal target moves into this field, the resulting induced eddy 

currents form an additional load, which dampens the oscillations, triggering the 

output circuit response.  Figure 3.2 shows the sensor assembly and installation 

details while Figure 3.3 schematically illustrates the core features and operating 

principle of the inductive proximity sensor (probe). 

 

For the purpose of our investigations, the probe sensing surface was shielded from 

direct abrasive and impact contacts with the tumbling load using a 3 mm PVC 

plate. It should be noted that this did not hamper the functionality of the sensor 

since its sensitivity to the metal targets is within the range of 0 mm to 8 mm. The 

output signal from the sensor was calibrated and attenuated to the range of -5V to 

+5V for transmission to the computer. For each experimental run a threshold 

voltage value was established at which the load position could be determined. 

According to our analysis, the load toe position corresponds to the point where the 

signal begins to drop continuously to the lowest level while the shoulder position is 
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estimated at the point where the signal begins to rise steadily. This rule can 

however be modified on the basis of the observed load behaviour. Details of the 

analysis of proximity sensor data are discussed in the next

 

  (a)                 

    (b)        

Figure 3.2: (a) Inductive proximity sensor assembly and (b) installation details.

 

 

 

Figure 3.3: The schematic representation of the salient components and operating 

principle of the inductive 

 

Figure 3.4 illustrates the dynamic response analysis of the proximity sensor to the 

step test.  This analysis was deemed necessary and appropriate in understanding 

the rate of response of the sensor to the excitations, considering furthe

sensing surface had been embedded by a PVC plate. 
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sensing surface had been embedded by a PVC plate.  
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estimated at the point where the signal begins to rise steadily. This rule can 

however be modified on the basis of the observed load behaviour. Details of the 

(a) Inductive proximity sensor assembly and (b) installation details. 

The schematic representation of the salient components and operating 

Figure 3.4 illustrates the dynamic response analysis of the proximity sensor to the 

step test.  This analysis was deemed necessary and appropriate in understanding 

the rate of response of the sensor to the excitations, considering further that the 
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Figure 3.4: Response curve showing the sensitivity of the inductive proximity 

sensor to a step input. 

 

The test was accomplished by placing a target (piece of metal) on the surface of the 

sensor as an input or excitation then moving it away in the fastest way possible. 

The error incurred in the test is estimated to be less than 1% which is within the 

range of experimental error. The output signal from the sensor was recorded online 

by a computer, which runs the ‘Waveview’ program that facilitates the real time 

data recording and processing.   

 

From Figure 3.4, the response time (tp) refers to the time taken for the sensor to 

react to the input or excitation while the rise time (tr) refers to the delay or time 

taken before the output (voltage) rises from 10% to 90% of the peak value, as it 

responds to the instantaneous change in input. The settling time (ts) on the other 

hand is the time taken for the sensor output to reach 98% of the final value.  

 

3.2.3.2 Conductivity sensor 

The conductivity sensor used in our tests was constructed out of an ordinary mild 

steel bolt of diameter 6 mm and 20mm long with a flat face. The diameter is small 

enough to measure slurry position over a small volume in space. The sensor was 

mounted through the mill shell and secured in position using a locknut as 
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illustrated in Figure 3.5. The PVC bush and washer insulated the sensor from the 

mill shell. 

 

   

      

 

Figure 3.5: Illustration of the conductivity sensor installation details  

 

The conductivity sensor is designed to detect the position of slurry inside the mill 

relative to the grinding media. It was installed at the same angular position as the 

inductive proximity probe to allow for comparative analysis of the output signals. 

A comparison of the two signals would provide some information about the media 

and slurry interactions inside the mill.  

 

The operation of the conductivity sensor relies on slurry conductance of electrical 

current. Submersion of the conductivity sensor in slurry results in a lower 

resistance between the mill shell and the sensor. This in effect causes the shunt-

capacitor in the RC-filter circuit to charge leading to an instant rise in the voltage 

signal. On the other hand, when the conductivity sensor emerges from the slurry, it 

creates an open circuit with the mill shell causing an instant drop in the voltage 

signal as the capacitor begins to discharge. The magnitude of the change in voltage 

is dependent on slurry conductance. Higher solids concentration in slurry results in 

Conductivity electrode

PVC insulation bush

mill shell
mill shell

PVC insulation washer Locknut

Cable to RC- circuit
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higher resistance hence poor conductivity and vice versa. In this study, the 

conductivity sensor output signal ranges from 0 to -3V. This voltage level lies 

within the acceptable limit for direct recording to the computer.     

 

Figure 3.6 shows the dynamic response of the conductivity sensor to a step input. 

This was accomplished by connecting the conductivity sensor to an RC-filter 

circuit powered by 12V DC power supply. Two conductivity sensor electrodes, one 

connected to the circuit output and the other to the circuit ground, were placed in a 

container of tap water. This created a short circuit between the two electrodes 

hence charging up the shunt- capacitor. The sensor was then withdrawn quickly 

from the water to create an open circuit hence discharging the shunt-capacitor. The 

sequence was repeated several times to establish the margin of error (i.e. estimated 

in the margin of 0.1 – 0.5%).  The sensor response pattern is as shown in Figure 

3.6. During the discharging circle, it takes 0.012 seconds for the sensor output 

signal to decay by 98% while on the charging circle it takes only 0.008 seconds for 

the sensor output signal to reach 98% of its peak value. 

 

     

Figure 3.6: Conductivity response curve showing the sensitivity to a step input. 
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3.2.3.3 Reference probe 

This consisted of a phototransistor (PT), a light emitting diode (LED) and a glass 

mirror. In operation the LED emits light, which is reflected by the glass mirror 

mounted on the outer surface of the mill in-line with the LED. The reflected light 

is sensed by the PT which records a signal each time it gets energised. The PT 

signal indicates the start and end of a mill revolution; hence this serves as a 

reference point from which the proximity sensor position in the rotating mill can be 

tracked. The displacement of the proximity sensor signal from the reference signal 

is recorded at a time interval, which represents a given angular position of the 

proximity sensor in the mill.  The toe and shoulder positions are derived from the 

position of the proximity sensor relative to the reference signal. 

 

3.2.4  Mill Calibration 

3.2.4.1 Torque calibration 

 
The torque was calibrated using a series of known weights suspended vertically at 

one end of the steel rod. The other end of the rod was connected to the load beam 

that is mounted to the frame of the mill rig and connected to the mill axle. The 

value of torque was then obtained from the lever arm principle. According to the 

principle, the applied torque that counters the rotational motion of the mill 

maintains the steel rod horizontal. Therefore, the product of the weight of the load 

and the arm length of the steel rod gives the value of the torque. The exercise was 

repeated for different masses while the mill was rotated at a low speed of 40% of 

critical. The calibration curve was obtained by relating the mill torque to the output 

voltage (from the load beam) to obtain a functional relationship. The losses from 

the chain drive and bearings were eliminated by subtracting the zero-load torque 

from the total mill torque. The zero load torque was obtained by running the empty 

mill over the range of speeds tested. Details of the calibration results can be 

reviewed in appendix A. 

3.2.4.2 Mill speed calibration 

 
The mill used for our experimental studies utilises a tachometer (speed controller) 

that required calibration. The speed calibration was achieved by setting the 
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controller to a certain value then measuring the mill speed by taking the mill 

revolutions for a time period of 60 seconds. This process was accomplished using 

an online data acquisition system, which is interfaced to the mill rig. The 

measurements were taken repeatedly at various speed settings to obtain a fairly 

accurate and representative calibration curve. The mill rotational speed was 

represented as a percentage of the critical speed where the latter is derived from the 

balance between gravitational and centrifugal forces acting on the mill load as 

presented in equation 3.1. 

 

 

2

3600*

4* *
c

g
N

Rπ
=         [3.1] 

 

 

Where,  Nc :    the critical speed 

  g    :   the gravity constant 

  �� :    (R – rb) 

  R, rb :    radius of the mill, radius of the largest ball.   

 

Substituting for all the known constants in equation 3.1 and solving yields a more 

simplified equation which is a function of only the mill diameter and ball size. The 

resultant expression is presented as follows: 

 

4 2 . 3
( )

cN
D d

=
−

       [3.2] 

 

In which D is the mill diameter (m) and d is the ball diameter (m). The largest ball 

radius in our experiments was 5 mm while the mill radius was 275 mm (inside 

liners), which yields the critical speed of 57.6 revolutions per minute. Details of 

the speed calibration and the associated data can be reviewed in appendix A. Note 

that the 5 mm radius balls were scaled to mill diameter down from the industrial 

scale balls of 20 mm radius. However, it is understood that the motion of smaller 

balls in laboratory mills is more likely to be influenced by slurry viscosity than that 

of bigger balls in full scale mills; hence the grinding efficiency would be different. 
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3.3 Laboratory mill –2 

3.3.1 Description of the mill rig 

In order to investigate radial transport and mixing of slurry inside the mill, a model 

mill was constructed from Perspex. The mill drum had an inner diameter of 550 

mm and a length of 200 mm and was fitted with 18 equally spaced radial lifters 

(20
0
 face angle), made of Perspex. The lifters were fitted on the mill drum using 

special contact glue and reinforced with specially machined PVC plugs. The mill 

was appropriately designed to allow for slurry flow visualisation using a gamma 

camera as well as a video camera. It was mounted on two horizontal rubber rollers 

which are driven by a constant speed motor via the belt and pulley system; but the 

mill speed can simply be varied by adjusting the pulley diameter. The central 

opening on the mill front plate allows for loading and unloading of media while a 

small opening at the bottom of the front plate provides for draining the slurry from 

the mill at the end of each experimental run. Figure 3.7 shows the components of 

the mill rig and the setup. 

 

 

 

                   

 

Figure 3.7: Components of the experimental mill rig and the setup 
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3.3.2 Model lifters 

The model lifters installed in laboratory mill-2 were constructed from Perspex 

material. The lifters had the same height and profile as those in mill-1, and equally 

spaced around the mill circumference.  

 

3.4 Industrial ball mill   

The overflow ball mill utilised in the sampling survey has an inside diameter of 

7.312m and length of 9.6m and is run in open circuit. It is used in secondary 

grinding of UG2 Platinum ore at Anglo Platinum Waterval concentrator, situated 

in Rustenburg in the North West Province of South Africa. The mill is equipped 

with 44 rubber lifter bars with height 100mm. Forged Chromium steel balls of 

diameter 30-40mm are used as grinding media. Under normal operating conditions, 

the mill ball filling is 30% of total mill volume, mill speed is 75% of critical speed, 

solids concentration in slurry is 75%, solids feed rate is 330 tph and rated power 

draw is 9500 KW. The mill has an installed power of 11000kW.  

 

Figure 3.8 illustrates the on-line balls and slurry position sensor system 

components (SENSOMAG) mounted on the mill. The SENSOMAG system 

consists of a proximity switch and an electrochemical sensor both assembled into a 

single unit and installed on the mill through a liner referred to as sensor liner. The 

electrochemical sensor detects the slurry angular position while the proximity 

switch detects the angular position of the grinding media. Other system 

components are the CPU for digitizing the signals before storage and Zinc-air cells 

for DC power. The signals are conveyed off the mill to the control room via a radio 

system.  Details of the operating principle of the SENSOMAG can be reviewed in 

the work by Clermont et al, (2008) hence will not be discussed here.  
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Figure 3.8: The industrial mill with mounted SENSOMAG

©
 system components 

 

 

3.5 Experimental programs  

3.5.1 Laboratory scale experiments on mill-1 

3.5.1.1 Experimental design and materials 

The first experimental program was undertaken on mill-1 (see section 3.2 for 

description of mill rig and setup). The focus of this experimental program was to 

assess the effect of individual variables, ball load volume and slurry % solids on 

the load behaviour and mill product size distribution by isolating the effect of one 

on each other. This was accomplished by treating one variable as independent for 

different test runs as presented in Table 3.2. The mill speed was kept constant 

during the tests. 

 

Table 3.2: Summary of the experimental tests performed on mill-1 

Independent Variables (IVs) Parameters measured 

   Ball load  

 volume (%) 

Slurry  

Load (U) 
% Solids 

Mill speed 

(% critical) 

 

 

20 

25 

30 

35 

 

 

 

2.6 

2.1 

1.8 

1.5 

 

 

50 - 70 

 

 

75  

 

 

Sensor signal response,  

Product size distribution,  

Mill power draw,  

Media and slurry 

positions. 
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A sample from the underflow of the primary cyclones at Anglo-Platinum UG2 

Waterval Concentrator was used as feed material. The size distribution of the feed 

material is presented in Table 3.3. All experimental tests were performed at 

constant slurry holdup volume to simulate an overflow mill. The volume of slurry 

was measured as 20 litres, a level that was carefully chosen to ensure that the pool 

angles lie in the same range with those measured on the industrial mill. Steel balls 

measuring 10 mm in diameter were used as grinding media.  

 

Table 3.3: Size distribution of the feed material used in the laboratory experiments 

 

Size (µm) Cum. % passing Size (µm) Cum. % passing 

38 2.62 212 58.75 

53 4.77 300 76.76 

75 9.33 425 91.42 

106 19.57 600 97.11 

150 37.09 850 99.89 

 

 

3.5.1.2 Measuring techniques and procedures 

The dynamic positions of media and slurry inside the mill were measured using 

proximity and conductivity sensors respectively, installed through the mill walls. 

The data captured by the sensors was passed through the amplifying circuit to 

enhance their readability before being conveyed to the computer by means of slip 

rings. The ‘Waveview’ software installed on our laboratory computer was utilised 

in the continuous acquisition and processing of the data. The raw data from the 

mill was sampled at a frequency of 500 Hz which is sufficiently high to capture at 

least one data point per one degree of mill revolution. For each test run, a total of 

5000 data samples were generated over a sampling period of 30 seconds. The start 

and end of each mill revolution was indicated by a signal from the revolution 

reference probe.  By analysis of the load position signals, the variation in load 

behaviour with mill operating variables can be detected and linked to mill 

performance, thus enabling the mill to be properly controlled. 
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The mill torque was recorded during all the tests to assess its dependence on load 

behaviour. The power drawn by the mill was derived from the torque measured 

using the load beam as described in section (3.2). The net power which represents 

the true energy expended in tumbling the load was obtained by subtracting the 

zero-load power from the total mill power (Ptot). These can be mathematically 

presented as follows.  

 

(2 / 60)totP N Tπ=        [3.3] 

 

net tot no loadP P P −= −        [3.4] 

 

Samples were also collected from the mill after each test run for size distribution 

analysis. A small sample of about 400 g was removed from the mill and split to 

obtain a sample that is representative of the properties of both coarser and finer 

materials in the mill. A representative sample of about 80 g to 90 g was then wet 

washed on the screen size (-38µm) to remove the fines. The wet samples were 

dried in an oven for 20 minutes at a temperature setting of 110
0
. This was followed 

by the sieving of each sample in separate runs but using the same sieves on the 

shaker machine. The screens were nested (stacked) in decreasing order of size from 

850µm to 38µm at an interval of 2 .  The reason for maintaining the same sieves 

in all the test runs is to ensure consistency in the results. This is given the fact that 

different sieves have different reliabilities despite having same nominal aperture 

size. During the successive sieving intervals, the screens were cleaned with 

compressed air to avoid the ‘blinding’ effect that would lower the reliability of the 

sieves. The duration of sieving in all the tests was 20 minutes which was 

considered sufficient for all the undersize to be separated.  At the end of each 

sieving test, the material retained in each screen interval was weighed and its mass 

expressed as a percentage of the total mass after screening, including the mass 

washed out. Similar procedures were followed in all experimental runs. The data 

obtained here was utilised in assessing the mass specific energy consumption in 

production of particles finer than 75 microns for a set of operating conditions.  
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The results from the laboratory measurements performed in this program together 

with their analysis and discussions are presented in chapter 4. 

 

3.5.2  Laboratory scale experiments on mill-2 

3.5.2.1 Experimental design and materials 

The second experimental program was undertaken on mill-2 described in section 

3.3. The aim of this experimental program was to understand the slurry radial 

transport behaviour and mixing pattern inside the mill. A gamma camera was 

employed to monitor the flow of slurry as a function of time. Aqueous 
99m

Tc 

radioisotope that emits 140 keV photons with a short half-life of 6.02h was used as 

a flow follower while steel balls of 10 mm in diameter were used as grinding 

media. Glycerol-water mixture was used to mimic the motion of actual slurry as 

found in full scale systems. The choice of glycerol was motivated by the need to 

maintain a fairly constant level of viscosity inside the mill for each experimental 

run (glycerol displays Newtonian behaviour). The physical properties of the 

glycerol-water mixture used in this study are summarised in Table 3.4. 

 

Table 3.4: Physical properties of glycerol –water mixtures used in the batch tests 

 

       Percent glycerol                 Density at 20
0
C         Viscosity at 20

0
C 

                (%wt)           (kg/m
3
)                     (cp) 

70   1.181 x 10
3
   22.5 

75   1.194 x 10
3
   35.5 

80   1.208 x 10
3
   60.1 

85   1.221 x 10
3
   109 

90   1.235 x 10
3
   219 

 

The experiments were designed and performed in line with the objectives of this 

study. It was designed as a factorial of 2 x 2 independent factors and 3 variables to 

be assessed. The independent factors were 2 levels of slurry viscosity and 2 level 

of mill speed while the response variables were: slurry radial transport rate, the 

mixing behaviour within the ball charge and the volumetric rate of slurry transfer 

from the pool to the ball charge. Mill speed is varied because it results in different 

intensities. In real systems, a reduction in mill speed would be a proxy for 
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increasingly worn liners. The load volume was kept constant during the tests at 

25% of mill volume. Table 3.5 presents a summary of the experimental design.  

 

Table 3.5: Summary of experimental tests performed on Wits mill-2 

 

 

The first set of tests aimed at assessing the effect of viscosity while the second 

assessed the effect of mill speed. Generally, slurry viscosity for secondary ball mill 

discharge would range between 140 and 250 cp, due to a higher concentration of 

finer progenies (<25microns).  Therefore, in order to achieve a realistic motion of 

media relative to the slurry, the level of slurry viscosity in the laboratory mill had 

to be judiciously chosen. The governing rule was that the terminal settling velocity 

of balls in the laboratory mill has to match that in the full scale mill. In view of this 

consideration, only 2 viscosity levels, 10 and 70cp were investigated representing 

low and high viscosity respectively.  

 

3.5.2.2 Gamma camera system 

The General Electric gamma camera utilised in this study is located in the 

Department of Nuclear Medicine at Johannesburg General Hospital. The camera 

has the capability to operate both in static and dynamic modes. Figure 3.9 shows 

the gamma camera system in one of our experimental setups.  The main 

components of the gamma camera are a collimator, an array of electron multiplier 

phototubes (PMTs) and a detector crystal. A low energy (< 200 keV) parallel hole 

collimator, with a series of PMTs was employed in all our studies.  

 

Tests Viscosity of glycerol -

water mixture (cp) 
Mill speed 

(%Nc) 

Radiotracer 

activity 

 

Set 1 

 

10 

 

28 

 

10 mCi 

                70               28 10 mCi 

Set 2                70 60 10 mCi 
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Figure 3.9: View of experimental setup and schematics of the operating principle 

of the GE gamma camera system. 

 

 

In operation, the gamma rays emitted by the radioisotope are projected by a 

collimator onto the detector crystal. The collimator consists of a series of holes in a 

lead plate. The holes are normally parallel to suppress ray scatter by focusing only 

rays from a chosen direction onto the detector crystal, while the rest is attenuated 

by lead shield. The commonly used scintillating material for detecting gamma rays 

is Sodium iodide with thallium doping (NaI(Tl)). The detector crystal absorbs the 

radiations and converts the photon energy into light i.e. scintillates. The fluorescent 

flashes of light are detected by the PMTs located behind the detector crystal which 

determines the source of each radiation. The intensity of each flash is proportional 

to the energy of the incoming gamma rays. 

 

3.5.2.3 Measuring techniques and procedures 

For each experimental run, 2ml of aqueous 
99m

Tc, with 10 mCi of activity was 

premixed with 4ml of glycerol-water mixture to a uniform density then injected as 

a pulse into the slurry pool inside the mill while the mill was stationary. The mill 

drive was then switched on and the motion of the radiotracer was tracked using the 

gamma camera. The gamma radiations that originated from the radiotracer as it 

flowed inside the mill were detected by the gamma camera and the detected 

photons were projected by the collimator onto the detector crystal creating a 
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pattern of scintillations that correlate with the point of origin of the incident 

radiations. The data acquisition and recording was accomplished in real time where 

by the scintillation intensity distribution was recorded as frames over a period of 

time. During each test run, the Camera was programmed to continuously acquire 

the frames until the desired number of frames was reached. Images were separated 

in time frames of 0.1sec. The digitized images were recorded in size of either 64 x 

64 or 128 x 128 bit matrix and stored in DICOM format (Digital Imaging and 

Communication in Medicine) for analysis. For consistence, a similar procedure 

was followed for all the three batch tests. 

 

By studying the time history of the scintillation intensity (related to radiotracer 

concentration) within the pool, it may be possible to determine the volumetric rate 

of transfer of slurry between the pool and the ball charge region. Further, a study of 

the scintillation pattern at various regions of interest (ROIs) within the load would 

give an idea of the slurry distribution map (mixing). The results from the 

measurements undertaken in this program and subsequent analysis and discussions 

are presented in chapter 6. 

 

3.5.3 Industrial mill sampling survey 

3.5.3.1 Experimental design and materials 

Operational data was collected from an overflow ball mill at the Anglo Platinum 

UG2 Waterval plant in Rustenburg during normal operation at selected conditions 

for analysis and interpretation and for possible comparison with the laboratory 

data. The tests included sampling of the load position signals, measuring the 

residence time distribution (RTD) and mill power draw at different mill operating 

conditions as presented in Table 3.6. The literature (Kelsall et al, op cit; Gardner, 

1975) presents several types of tracers that have been used for RTD measurement 

in tumbling mills ranging from soluble salts to radioisotopes. After careful 

evaluation of possible tracers, common salt, sodium chloride was adopted for RTD 

measurements. 
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Table 3.6: Summary of the mill industrial sampling survey program 

           Independent Variables  Response variables 

Mill filling (%) Wt. % Solids   

 

25 

  

  

30 

  

  

33 

 

67.3 

75.6 

 

73.4 

75.1 

 

65.1 

72.1 

 

 

 

 

 

 

 

 

Residence time distribution (RTD), 

Product size distribution (PSD), Mill 

power draw, Media and slurry 

dynamic position  

 

 

3.5.3.2 Experimental methods and procedures 
 
Concurrent tests were performed to determine the media and slurry positions as 

well as the slurry residence time distribution (RTD) inside the mill. Six sets of salt 

tests were performed on the mill to determine the slurry residence time and the 

RTD. In each test run 250kg of salt (NaCl) was dumped into the cyclone underflow 

almost instantaneously (within 5sec) and the response was monitored at the 

discharge. Figure 3.10 is a schematic representation of the flowsheet of the 

secondary milling circuit illustrating the sampling points. Timed samples were 

collected manually into 250 ml plastic bottles over the duration of 90 minutes for 

conductivity analysis. The sampling period of 90 minutes was considered sufficient 

for the salt to completely disappear from the mill. The sampling process was 

accomplished using a specially designed sampling manifold installed at the mill 

discharge just before the discharge sump. It should be mentioned that the 

beginning of sample collection was synchronized with the salt impulse event and 

that prior to each test run, the mill was allowed to stabilize at a set feed flow rate 

and percent solids for about 1.5 hours. A summary of the experimental program 

can be reviewed in Table 3.6. 

 

Solids feed rate to the mill was measured at the densifier cyclone underflow as 

depicted in Figure 3.10. Samples were collected from each of the 5 densifier 

cyclones into sampling bags for a period of 2-3 seconds and then weighed to 
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determine the mass flow rate. The sampling process was repeated for 1 hour with a 

total of 3 runs per cyclone from which an average flow rate was determined. In 

order to obtain accurate time duration of each sampling sequence, the sampling 

process was videoed using a Panasonic NV-GS180 camera with a shutter rate of 25 

frames per second.  

 

 

 

Figure 3.10: Flow-sheet illustrating the sampling points during RTD and Flow rate 

measurement on the industrial overflow ball mill circuit. 

 

All the data measured by the on-line instruments around the mill circuit including 

mill power, media and slurry dynamic positions were recorded by the supervisory 

control and data acquisition (SCADA) system. The results from the industrial 

surveys and subsequent analysis and discussion are presented in chapter 7. 

 

3.6    Difficulties encountered 

The main problem encountered during laboratory experimental set-up was to get 

the milling chamber to be slurry ‘leak proof’. Substantial amount of time was spent 

on sealing the mill with an epoxy resin and silicone sealant before experiments 

could commence. Also, in line with the occupational safety and health act, it was 

required that the experimental rig attains the set safety standards, and in which 

respect, a significant amount of time and resources were expended to get the 

equipment rectified. 
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3.7    Conclusions 

Despite the minor challenges experienced during the laboratory experimental 

process, all the experimental tests were completed successfully using the 

equipment and techniques described in the foregoing.  Data on various aspects 

relating to mill dynamic load behaviour, power draw and energy efficiency was 

suitably collected and analysed.  

 

The industrial surveys were accomplished as planned with a wide range of plant 

data collected, both manually and by plant instruments.  The data collected during 

the test works was of good quality. The measurement of feed flow rates was 

identified as a potential source of errors and where inconsistencies were noted in 

the measured flow rates, such data was excluded from the analysis. 
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4.1     Introduction 

Sensors are extensively used in industrial processes to capture information that is 

required for real-time process control, monitoring and diagnosis. Currently, the 

mineral processing industry is witnessing a marked increase in utilization of direct 

load sensors in milling circuits for on-line monitoring of in-mill behaviour. This 

has been stimulated partly by the ongoing developments in computer and 

instrumentation technologies. Direct load sensors can aid in establishing regimes of 

mass motion inside the mill and detection of process changes during continuous 

state of mill operation on the basis of which mills can be appropriately tuned to 

maximize on energy and milling efficiencies as well as reduce liner and grinding 

media wear rates.  

 

Direct contact of the sensor with the load boosts reliability and accuracy of the 

measurements. In process control application, the significant features of the sensor 

output signals which are related to the process behaviour are continuously 

monitored. If undesirable characteristics are exhibited in the sensor signals, either 

it implies that the mill is operating improperly or the load sensors have failed; 

consequently, necessary control measures would be implemented to restore 

optimal conditions. But in order to avoid improper or untimely decisions, correct 

and adequate interpretation of sensor response signals is a prerequisite. This 

challenge necessitates the need for comprehensive studies, firstly to determine how 

well the load sensors can detect variations of in-mill dynamics and secondly to 

understand how the significant process parameters vary during the continuous state 

of mill operation and how these variations are reflected in the load sensor signals 

data.  

 

This chapter presents results, analysis and discussion of measurements of media 

and slurry behaviour inside a laboratory ball mill as well as an industrial ball mill 

based on signals obtained by conductivity and proximity sensors (direct load 

sensors) for different conditions of ball load volume and slurry concentration. The 

proximity sensor gives a response related to the dynamics of media while the 
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conductivity responds to slurry behaviour. Analysis of response signals from the 

two sensors corresponding to different in-mill process conditions is performed 

giving an idea of the continuous interaction and general behaviour of media and 

slurry inside the mill. This could unveil useful information that can be related to 

mill operational and performance indices and hence can be utilised for process 

control. Lastly, an analysis of the mill power draw and mass specific energy 

consumption in relation to measured load behaviour is also presented here. 

 

 

4.2 Description of Media and Slurry sensor signals  
 
The media and slurry sensor system employed in our study comprises two probes: 

a proximity probe for detecting ball media and a conductivity probe for sensing 

slurry. Details of the sensor system and the measurement process are given in 

Chapter 3 (c.f. section 3.2.3). The sensor signals possess specific features that are 

related to important dynamic events during the passage of the sensors underneath 

the load as well as distinct load parameters such as media and slurry dynamic 

position, slurry properties and ball load volume. Correct and adequate 

interpretation of the signals will lead to proper understanding of the mill internal 

dynamics which is paramount to effective control of the milling process.  

 

Figure 4.1(a) is an illustrative example of the output signals from the media and 

slurry sensor system for the laboratory mill as the sensors periodically enter and 

leave the load. The corresponding physical representation of the load behaviour 

within the mill is shown in Figure 4.1 (b). The denotations in Figures 4.1 (a, b) 

indicate important and clearly identifiable features that define the dynamic load 

behaviour. Interpretation of these features (see Table 4.1a, b) was guided by our 

knowledge of milling and by data inspection. It should be noted that the sensor 

signals presented here provide only measurements of the load at the mill axial 

centre. Therefore any load interactions at the mill front and back end are not fully 

represented. 



 

 

Chapter 4   

Media and Slurry Dynamic Behaviour Measured by Direct Load Sensors  

 

52 

 

 

  

           

Figure 4.1: (a) Typical signals by the sensor system at J=30% and N=75% (b) key 

positions of the load inside the mill corresponding to the sensor signals. 
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Table 4.1: Interpretation of sensor signal features 

(a) Conductivity sensor: 

 

Feature Description 

 

X 

 

The sensor is yet to reach the slurry pool but gets intermittently splashed 

with slurry from the pool due to pool turbulence. 

  

C1 The sensor strikes the slurry pool and starts to get submerged in slurry. 

  

C2 The sensor exits the slurry pool and enters the ball charge where 

conductivity increases gradually. This is due to the balls getting more 

closely packed as you move away from the toe towards the bulk load.  

 

C3 

 

 

 

C4 

The sensor is within the bulk load where the balls are in a fully locked-

in position. Conductivity is constant and high being a contribution of 

both the slurry and the balls. 

 

Slurry starts to drain away from the dilated ball shoulder region partly 

due to gravity as well as the effect of mill rotation. Conductivity drops 

gradually initially due to a layer of slurry adhered to its surface and then 

sharply as the adherent slurry layer gets stripped by the balls. 

  

 

 

(b) Proximity sensor: 

 

Feature Description 

 

P1 

 

A few balls bouncing off the ball bed and the liners at the toe region 

and falling on the sensor causing early onset in signal rise coupled with 

some noisy behaviour in the signal profile. 

  

P2 The sensor enters the ball charge at the toe region and the signal begins 

to rise steadily. The balls are not yet efficiently packed on the sensor 

surface instead they continuously rearrange themselves due to 

characteristic turbulence at the toe region.  

 

P3 

 

 

P4 

The sensor is within the bulk load where the balls are in a fully locked-

in position and the signal remains constant. 

 

The sensor begins to emerge from the ball charge at the shoulder 

region. The signal drops drastically to the lowest level as the balls fall 

off the sensor. 
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It should be mentioned that due to characteristic turbulence of the proximity sensor 

signal profile at the toe region, finding the exact location of the media toe position 

was not trivial. In recognition of this problem and on understanding that no explicit 

rule exists for analysis of load sensor signals, a simple policy was adopted to help 

determine the media toe and shoulder positions more consistently and realistically. 

The media toe was defined as the lowest turning point of the bulk load. This is the 

point where the descending balls in the cascading profile turn and re-enter the en 

masse load that is moving upwards along the mill shell. From the profiles of the 

proximity sensor data, the media toe is established at the point where the signal 

begins to rise steadily (denoted by P2 in Figure 4.1). This coincides closely to the 

point where the conductivity sensor exits the slurry pool (denoted by C2 in Figure 

4.1). But when there is an early onset in signal rise coupled with noisy behaviour in 

the signal profile, it would simply be interpreted as effect of cataracting balls at the 

toe region where some balls bounce off the ball bed or liner walls, colliding with 

other balls and falling onto the sensor surface. The media shoulder position on the 

other hand was defined at the point where the balls depart from the mill shell. 

Therefore, it is the highest point at which the balls on the outermost layer make the 

last contact with the mill shell (denoted by P4 in Figure 4.1). In effect the media 

shoulder position can be estimated more reliably than the toe position using the 

proximity sensor alone. 

 

The slurry toe and shoulder positions were derived from the conductivity sensor 

signature. It was relatively easy to obtain the slurry toe (slurry pool level) and 

slurry shoulder since the conductivity signal displayed some definite features that 

were repeated in every mill revolution.  This allowed for a threshold value to be set 

to discriminate between the ‘slurry only’, ‘slurry and balls’ and ‘balls only’ 

conductivities. Based on this rule, the slurry angular location inside the mill could 

easily be detected. The slurry toe corresponded to the point where the signal began 

to rise sharply and continuously while the slurry shoulder was detected at the point 

before a rapid drop in conductivity signal to its lowest level. To facilitate as well as 

simplify the analysis of the signals data, a MATLAB program was developed 

which automatically computed the media and slurry angles (cf. Appendix D). 
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Figure 4.2 presents a sample of the output signals recorded by the on-line media 

and slurry sensor system (SENSOMAG) on the industrial mill during the passage 

of sensors through the load. The data corresponds to the ball load volume of 30% 

and mill rotational speed of 75% of critical, for 3 mill revolutions. Unlike the 

laboratory case, notice here that the inductive proximity sensor operates in a switch 

mode registering a Boolean signal, 1 upon intercepting the ball charge and 0 on 

exit from the ball charge. However, the industrial conductivity sensor operates in a 

similar version to the laboratory scale sensor. The media and slurry positions are 

derived from the signal profiles as indicated in the figure using a computer 

program that is linked to the mill supervisory control and data acquisition system. 

 

 

 

Figure 4.2: Sample signals from the on-line media and slurry sensor system on 

industrial mill at J= 30%, N= 75% of critical and slurry wt. % solids = 75. 

 

4.3 Analysis of laboratory data 

4.3.1 Conductivity sensor signal profiles 
 
To get an idea of the variation of the conductivity sensor signal pattern with 

changes in slurry concentration and ball load volume inside the mill, average 

signals were obtained over ten mill revolutions as illustrated in Figures 4.3 and 4.4. 
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The key feature of our observation in Figure 4.3 is the distinctive pattern of the 

signal profiles when the sensor is fully out of the load. The magnitude of drop in 

conductivity (denoted by V) clearly appears to decrease with increase in slurry 

concentration. It was thought that this behaviour could be due to an adherent layer 

of slurry on the sensor surface providing a conducting medium. In this case the 

sensor does not fully de-energise to the no-load voltage (Vo) due to residual 

conductivity by the adhered slurry layer whose thickness tends to increase with 

increasing slurry concentration. This information can be useful in determining 

slurry density and subsequently slurry viscosity, which are vital control parameters 

in milling but whose on-line measurement remains a challenge. Early work by Van 

Nierop and Moys (2001) showed that slurry viscosity is related to the rate of slurry 

drainage from the conductivity sensor upon exiting the load. This trend is however 

dependent on design and installation configuration of the conductivity sensor. 

Indeed in the present work, no discernible signal pattern related to slurry drainage 

from the probe at the load shoulder region could be detected. 

 

 

Figure 4.3: Effect of slurry concentration on conductivity sensor signal profiles at 

mill speed of 75% of critical and ball load volume of J= 30%. 

 

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

-180 0 180 360 540 720

C
o

n
d

u
ct

iv
it

y
 s

e
n

so
r 

re
sp

o
n

se
 (V

o
lt

s)

Mill angles (deg)

V0V0 No-load voltage (open circuit)

VV

%wt 70

%wt 65

%wt 60

%wt 50



 

 

Chapter 4   

Media and Slurry Dynamic Behaviour Measured by Direct Load Sensors  

 

57 

Further notice the characteristic turbulence in the signal when the sensor is fully 

out of the load. This is believably due to ball collisions at the pool toe region which 

results in pool turbulence thereby causing slurry to splash intermittently onto the 

sensor surface. The noise-like features on the signal profiles when the sensor is 

fully submerged in the load could be attributed to the action of balls continuously 

interacting with the conductivity sensor surface during the mill tumbling process.  

 

Figure 4.4 shows the conductivity sensor output signals for different ball load 

volumes and constant slurry concentration of 60% solids by weight. The main 

feature in this result is the shift between the signal curves at the shoulder position. 

The signal associated with higher ball load volume (J=35%) begins to drop later 

than others while the signal associated with lower ball loading (J=20%) drops 

much earlier which is expected. An increased ball load volume would entrain a 

larger volume of slurry, consequently leading to higher slurry shoulder position. 

No distinguishable signal feature is observed at the toe position.  

 

 

Figure 4.4: Effect of ball load volume on conductivity sensor signal profiles at 

mill speed of 75% of critical and 60%wt solids 
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The extent of drop in out-of-load voltage (V) with change in ball load volume and 

slurry concentration was quantitatively analysed and the results are presented in a 

surface plot (Figure 4.5).  It is worthwhile to mention that since conductivity would 

generally vary with ore type, a prudent measure would be to express the out-of-

load voltage (V) relative to the open circuit voltage (V0) i.e. , in order to 

facilitate easier use of this data for mill control.  

 

 

 

Figure 4.5: Surface plot showing the effect of slurry concentration and ball load 

volume on the extent of drop in the out-of-load voltage as recorded by the 

conductivity sensor at mill speed of 75% of critical. 

 

 

4.3.2 Proximity sensor signal profiles 
 
Figures 4.6 and 4.7 are respective examples showing the effects of ball load 

volume and slurry concentration on the signal profiles of the proximity sensor 

output data. From the results in Figure 4.6, a marked shift between the signal 

curves is evident indicating a change in ball toe and shoulder positions. An earlier 
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rise and late drop in signal is experienced at higher ball load volume of 35% and 

vice versa at low ball load volume of 20%. Further, the signals at the toe region 

become notably noisier with increase in volume of the ball load, which could be 

related to the amount of cataracting inside the mill, which induces turbulence and 

ball collisions. Increased cataracting is expected at higher ball load volume owing 

to enhanced lifting action while at lower ball load volume, the load would flow in a 

largely cascading manner with less turbulence.  

 

 

Figure 4.6: Effect of ball load volume on proximity sensor signal profiles at mill 

speed of 75% of critical and 60%wt solids.  
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the action of a few balls getting shortly trapped in a layer of slurry formed on 

sensor protection plate thereby delaying the signal drop.  

 

Figure 4.7 presents averaged signals obtained over ten mill revolutions giving a 

qualitative idea of the effect of slurry concentration on proximity sensor signal 

pattern. A close examination of the results reveals no definitive pattern both at the 

toe position and the shoulder position as solids concentration in slurry changes 

between 50 and 65%. One intriguing observation though is the drastic shift of the 

signal towards the 9 o’clock position as slurry concentration is increased from 65 

to 75% solids. Without photographic evidence, no substantive explanation could be 

availed, but it is understood from literature (Liddel, 1988; Smit, 2000), that the 

presence of slurry inside the mill would induce some lubricating effect. This 

influences the internal friction coefficient within the ball charge and between the 

ball charge and the mill walls. Very dilute slurry would suppress the lifting effect 

causing the load to slump while very thick slurry would tend to coat the balls 

reducing their mobility and causing the load to expand. The unsystematic trend 

exhibited in the proximity signal in Figure 4.7 precluded any further analysis. 

  

The amplitude of the output signal when the proximity sensor is fully underneath 

the load is another interesting feature that was closely monitored. Considering that 

the strength of proximity sensor signal depends on the volume of metallic material 

presented to the sensing surface (Kiangi and Moys, 2006), it was expected that the 

signal level would vary commensurate with slurry concentration since slurry 

interferes with the balls packing pattern and packing efficiency. However, hardly 

any discernible difference was observed in the results presumably due to the fact 

that solid particles in slurry were significantly finer (80% below 300µm). This 

result reinforces the findings by Kiangi and Moys (2008) who used course silica 

particles (50% passing 1102µm) for one case and fine particles (50% passing 

173µm) for another case in a dry ball mill and found that the proximity signal level 

remains unvaried for finer particles but decreases in proportion to the amount of 

material for course particles. 
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Figure 4.7: Effect of slurry concentration on proximity sensor signal profiles at 

mill speed of 75% of critical and ball load volume of J= 30%. 

 

 

4.3.3 Media and slurry dynamic positions  
 
The focus of our analysis in this section is to assess how the compounded influence 

of ball load volume and slurry concentration (% solids) would affect the load 

dynamic position. The dynamic shape of the load inside an overflow ball mill and 

the associated load angles can be represented schematically as shown in Figure 4.8. 

From the figure, the angle subtended by the slurry pool is the difference between 
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slurry toe angle, (i.e.
( ) ( ) ( )D Slurry S Slurry T Slurryθ θ θ= − ). The total media angle on the 

other hand is the angle subtended at the mill centre by the ball charge when the 

mill is rotating. It is obtained as a difference between the shoulder and toe angles 

of the dynamic media, mathematically expressed as, ( ) ( ) ( )D Media S Media T Mediaθ θ θ= − . 

Analysis of the evolution of total media angle would provide an indication of the 

0 120 240 360
-6

-4

-2

0

2

Mill angles (deg)

P
ro

xi
m

it
y 

s
e
n

s
o
r 

re
s
p

o
n

s
e
 (

V
)

%wt 70

%wt 50

%wt 65

%wt 60

M M



 

 

Chapter 4   

Media and Slurry Dynamic Behaviour Measured by Direct Load Sensors  

 

62 

mill internal dynamics and ball charge level. This information might help the 

operator to adapt the mill accordingly so as to optimise the milling efficiency. 

Equally, the information would be valuable in planning for liner replacement and 

media replenishment.        

 

                         

Figure 4.8: Representation of important dynamic load angles in an overflow mill. 

 

 

 

Presented in Figures 4.9 and 4.10 are results showing the variation of media toe 

position and media shoulder position respectively, with slurry concentration and 

ball load volume. The mill speed was kept constant at 75% of critical during 

experimentation. From Figure 4.9, it is quite visible that over the range of slurry 

concentration between 50 and 65% solids, the media toe position is only 

marginally variable; a trend that was conserved at all levels of ball load volume 

investigated.  However, as the slurry concentration increases from 65 to 70% 

solids, a clear variation starts to emerge. The toe position begins to occur earlier 

which could be a pointer to the onset of centrifuging albeit the change is only by a 

margin of about 5
0
. Considering the fineness of our material, it is thought that at 

this high level of solids concentration in slurry, the viscosity of slurry is 

significantly higher (cf. Mooney viscosity equation, Table 2.1) thus dragging the 

media higher up the mill wall. Some of the media on the outermost layer rotate 
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with the mill only to drop further from the toe and piling up before re-entering the 

bulk load. This in effect shifts the toe position towards the 9 o’clock (90
0
) position, 

which consequently cancels out the ‘lift’ effect on the toe position. This 

observation is consistent with the findings from photographic data by 

Tangsathitkulchai (1989) who further reiterated that slurry properties affect the 

moving paths of balls and consequently the interaction between the particles and 

the balls. The general practice in the industry is to operate ball mills with some 

desirable proportion of cataracting so as to facilitate rapid reduction of coarse 

particles by impact breakage. However, while keeping in-line with this practice, 

care is always taken to ensure that the cataracting balls are not projected far away 

to intercept the mill liner wall. This behaviour would lead to excessive wear of 

liners and the grinding media with the resultant decrease in mill throughput and 

increase in operating costs.  

 

Figure 4.10 shows the trends in media shoulder position with slurry concentration 

for four cases of ball load volume tested. It is apparent that the level of solids 

concentration in slurry has an appreciable effect on media shoulder position. All 

cases display an increasing trend in media shoulder angle with increasing slurry 

concentration which conforms to our expectations. A closer inspection of the 

results further reveals that the increases in the shoulder positions are by higher 

magnitudes than the case of the toe positions. Another interesting observation is 

recorded at 50% solids in slurry and 20% ball load volume. Here the media 

shoulder position is significantly lower than all other cases. This is a clear 

indication that significant slippage was taking place inside the mill which 

prevented the load from ‘locking in’ to the rotary motion of the mill. The motion of 

the  load is largely in cascading mode with a few cataracting media which assume 

lower paths and fall just on the belly of the charge away from the slurry pool 

before rolling down to the toe. From 60 to 70% solids in slurry, the shoulder 

position rises steadily for all cases except 35% of ball load volume. It is speculated 

that at ball load volume of 35%, the centrifuging effects might have slowly ensued. 

Indeed one should bear in mind that at higher ball load volume, the balls are 
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closely packed and exert higher dynamic pressure on the mill wall which mitigates 

the slipping action.  

 

  
 

Figure 4.9: Variation of media toe angle with slurry concentration for four 

different levels of ball load volume at constant mill speed of 75% of critical. 

 

 
 

Figure 4.10: Variation of media shoulder angle with slurry concentration for four 

different levels of ball load volume at constant mill speed of 75% of critical. 
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The results showing the variation of total media angle with slurry concentration for 

four cases of ball load volume are presented Figure 4.11. As expected the total 

media angle increases with increase in ball load volume. Also the total media angle 

displays an increasing trend with slurry concentration. In a similar pattern to the 

media shoulder angle, the total media angle ascends drastically when slurry 

concentration is increased from 65 to 70% solids at ball load volume of 35% which 

is a clear indication of load expansion. This behaviour is reflected in the power 

draw pattern which is discussed later in section (4.3.4) and has a direct bearing on 

the mill energy efficiency. Based on the observed trends in the total media angle, a 

correlation must exist with ball load volume and slurry concentration. Accordingly, 

by monitoring the evolution of total media angle, it could be possible to obtain an 

indicative idea of the level of ball loading and slurry concentration inside the mill 

for purpose of milling process optimisation. 

 

 

 
 

Figure 4.11: Variation of total media angle with slurry concentration for four 

different levels of ball load volume at constant mill speed of 75% of critical. 
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The effects of slurry concentration and ball load volume on slurry toe, slurry 

shoulder and slurry pool angles are depicted in the results shown in Figures (4.12 - 

4.14). At ball load volume of 20%, the load continues to be lifted with increase in 

slurry concentration, shifting the media toe towards the 6 o’clock position, and 

since the slurry holdup volume is kept constant, the slurry toe will shift in tandem 

with the media toe. For the ball load volumes of 25, 30 and 35%, the slurry toe 

angle appears to be unvaried with slurry concentration over the range between 50 

and 65% solids but begins to drop steadily afterwards. The observed sudden drop 

(shift towards 9 o’clock position) in slurry toe angle after 65% solids could be 

associated with the stronger lift experienced by the load which causes the 

cataracting media to assume higher paths, falling far inside the slurry pool and 

displacing part of the pool thereby causing the slurry toe to shift towards 9 o’clock 

position. The situation with ball load volume of 35% consistently yields higher 

slurry toes (low pool level) and shoulder angles than the other cases over the entire 

range of slurry concentrations tested. 

 

On the other hand, the variation of slurry pool angle with slurry concentration and 

ball load volume appears to take a more definitive trend as described by the results 

in Figure 4.14. The slurry pool angle exhibits a decreasing trend with slurry 

concentration, registering a marginal decrease initially before dropping steadily 

after 65% solids for all cases of ball load volume assessed. This steady drop 

coincides with the point when a significant rise in total media angle is recorded. 

Obviously a stronger lift dilates the load substantially enabling more slurry to be 

entrained in and consequently lowering the pool angle.  Over the entire range of 

slurry concentration tested (50 to 70 wt% solids) the pool angles were observed to 

decrease with increase in ball load volume. The reason for this behaviour can be 

explained in twofold: The additional media introduce extra voids in which slurry 

gets entrained contributing to the reduction in slurry pool volume. It is also 

possible that the enhanced lift exerted on the load due to increased weight of the 

load causes the media to cataract further away inside the pool thereby shifting the 

media toe position and hence reducing the pool angle. 
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Figure 4.12: Variation of slurry toe angle with slurry concentration for four 

different levels of ball load volume at constant mill speed of 75% of critical. 

 

 
 

Figure 4.13: Variation of slurry shoulder angle with slurry concentration for four 

different levels of ball load volume at constant mill speed of 75% of critical. 
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Figure 4.14: Variation of slurry pool angle with slurry concentration for four 

different levels of ball load volume at constant mill speed of 75% of critical. 
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4.15). The media at the shoulder tend to provide support for slurry in contact with 

the liner until it drains away (Moys et al, 1996). The slurry pool angle would vary 

in tandem with the media toe position. Therefore with regard to mill control, slurry 

pool angle seems to be a better parameter whose on-line measurement may provide 

real-time information of the level of solids concentration in slurry.  
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volume have a marked effect on load dynamic position. In overall, higher slurry 

concentration gave a higher lifting capacity in the mill over the entire range of ball 
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laboratory scale batch mill with no consideration of the mass transport effects, 
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there is no guarantee that the same results can be achieved on a full scale mill, 

which depicts the intricate nature of load behaviour. But at the very least the results 

have given us some insight on the possible options for controlling and optimising 

the mill using load behaviour data. Indeed the load position signals can be used as 

indicators to detect whether the mill is running on undesirable level of slurry 

density or ball load volume. 

 

 

 
 

Figure 4.15: Surface plot showing a comparison of variation of media and slurry 

shoulder positions with slurry concentration (% solids) and ball load volume at a 

constant mill speed of 75% of critical. 

 

 
 
4.3.4 Effect of media and slurry behaviour on mill power draw 

and specific energy consumption  
 
 4.3.4.1Mill power    
 
It is generally accepted that the power required to grind material in a ball mill to 

the desired product size is an indication of the mill capacity and that mill power 
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varies intimately with load behaviour. In that respect any change in mill 

operational variables that directly impact on load behaviour would ultimately 

affect the mill power and subsequently the mill capacity. In this study, the mill 

power (excluding zero-load power) was obtained as a product of mill rotational 

speed and mill torque where the latter was measured using a load beam (cf. 

Chapter 3 for details). The measured torque relates to the energy required to 

maintain the load in its offset position as the mill rotates. It is derived from the 

product of the weight of the load and the horizontal distance between the load 

centre of gravity and the mill centre (i.e. torque-arm).  

 

Figure 4.16 shows the trends in mill power draw with varying concentration of 

solids in slurry for four levels of ball load volume. For cases with 20, 25 and 30% 

ball loading, the trend in power draw appears much the same, increasing steadily as 

slurry concentration is increased before peaking at 65% solids while for the case of 

35% ball loading, power starts to peak just after 60% solids.  The steady increase 

in power draw is believed to come about due to the continuous lift being 

experienced by the load as slurry concentration increases, an act that would result 

in the load centre of gravity shifting upwards and away from the mill centre 

thereby increasing the torque arm, which would in turn increase the mill torque. 

This phenomenon is illustrated schematically in Figure 4.17. With further increase 

in proportion of solids in slurry from 65 to 70% wt, the slurry viscosity and particle 

packing increase which enhances the friction within the load and between the load 

and the mill wall. As a result, the load moves higher up the mill wall to a point 

where part of the cataracting media impinge directly on the mill shell, as 

characterised by a gradual drop in mill power. Also it is possible that the observed 

drop in power on increasing slurry concentration from 65 to 75% solids is owed to 

entrapment of the media in a slurry layer formed around the mill wall that reduces 

the effective mill volume (Moys and Van Nierop, 2001). However, this 

phenomenon was not reflected in the pattern of load signals, hence it is postulated 

that a few balls may have temporarily been stuck in the slurry layer and falling off 

later under the effect of gravity as portrayed by the fluctuations in the load sensor 

signals at the media toe region.  
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Figure 4.16: Trends in power draw as ball load volume and slurry concentration 

change at constant mill speed of 75% of critical. 

 

         
Figure 4.17: Schematic illustration of the shift in the load centre of gravity (c.o.g) 

with increasing load lift and the effect on the length of the torque-arm. 

 

 

From the results, it is further noted that, the mill draws proportionally higher power 

at a higher ball loading, which is consistent with the experience in milling practice. 

It may sound logical that the additional media would tend to shift the centre of 

gravity of the now increased load volume towards the mill centre which reduces 
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the length of the torque-arm. However, the torque does not reduce since this effect 

is counteracted by the increased mass of the load. Equally, increased volume of the 

load results in high dynamic pressure exerted by the load on the mill walls. This 

helps to lock the load to the mill rotary motion subsequent to which a higher lifting 

action is experienced and the mill torque increases accordingly. But, it should be 

borne in mind that as further lifting continues a point is eventually reached when 

the cataracting balls start to fall directly on the mill wall introducing a counter 

torque to the mill rotation. This accounts for the decline in mill power and partly 

explains for the early witnessed peak at ball load volume of 35% as compared to 

other cases of lower ball loading.  

 

Based on the analysis presented in the foregoing, it can be deduced that at a 

constant mill speed, the maximum power drawn by the mill simply depends on 

those factors that influence the ‘lifting action’ on the load such as ball load volume 

and slurry properties. Similar conclusions were advanced by Clermont et al (2008) 

following a series of tests on a 4.8 m diameter, wet pilot mill using UG2 Platinum 

tailings as feed material. 

 

4.3.4.2 Specific energy consumption    
 
To understand the relationship between the load behaviour and energy utilisation 

inside the mill, it was essential to analyse the mass specific energy consumption in 

producing particles finer than 75 µm over a set period of grinding time. Since 

experimental tests were performed on a batch mill, then an index used to define 

specific energy consumption was calculated as in equation 4.1. 

 

( )
( )75 75 7560

o

m m m

t o w s

P P t
E

S S C m
µ µ µ< <

−
=

−
     [4.1] 

 

Where,  

           
75 mE µ    :           Specific energy consumption [kWh/t] 

 P : Mill power [kW] 

 Po : No-load power [kW] 



 

 

Chapter 4   

Media and Slurry Dynamic Behaviour Measured by Direct Load Sensors  

 

73 

 ms : mass of slurry inside the mill [tons] 

 Cw : weight fraction of solids in slurry 

 t : Grinding time [mins] 

 75 m

oS µ<  : Fraction of in-mill material < 75µm at time t = 0. 

75 m

tS µ<  : Fraction of in-mill material < 75µm after grinding time, t 

 

Figure 4.18 illustrates the observed trends in mass specific energy consumption in 

production of particles below 75µm for the milling conditions tested. The particle 

size distributions (PSD) were obtained by standard wet-dry sieving procedures 

using a vibratory sieve shaker. The PSD data can be reviewed in appendix B. 

 

  

 
 

Figure 4.18: Variation of mass specific mill energy consumption with slurry solids 

concentration for four levels of ball load at mill speed of 75% of critical. 

 
 

From Figure 4.18, the specific energy consumption appears to be greater at lower 

slurry concentration for the range of ball loading between 20 and 30%, but the 

converse becomes true as the ball load volume is increased from 30 to 35%. This 

trend partly agrees with the observations by Clermont et al (2008). Again, for the 
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range of slurry concentration between 60 and 70%, the results indicate first a 

gradual decline followed by a gradual rise in specific energy consumption as the 

ball load is increased. But for the situation of 50% solids, the specific energy 

consumption drops continuously with increase in ball loading. This unsteady trend 

in specific energy consumption clearly demonstrates the complex nature of the 

relationship between mill energy efficiency and operational factors whose 

understanding hitherto remains obscure. 

 
From the analysis, one can intuitively note that, both the ball load volume and the 

slurry concentration hold an appreciable influence on specific energy consumption 

by the mill. The observed non-linear trend in variation of specific energy 

consumption with ball load volume and slurry concentration attests to the fact that 

in a multivariable milling environment, better energy efficiency can only be 

attained with correct tuning of operational factors to the desired optimum point. 

The results in Figure 4.18 suggest that for a constant mill speed, grinding is likely 

to proceed more efficiently at lower ball loading of 25% and high slurry 

concentration of 70% solids or higher ball loading of 35% and lower slurry 

concentration of 50 to 60% solids. However, one would argue that the cost 

associated with capacity losses at lower ball load volume or media wear at lower 

slurry concentration will offset the potential gain in grinding efficiency. Premised 

on this result, it is expected that studies related to mill control and optimisation 

strategies will receive greater attention in future and this research work serves as 

an added impetus to such developments. 

 

4.4 Analysis of industrial data 

4.4.1 Media and slurry dynamic positions 

Presented in Figures 4.19 (a-d) are the results of the measured load position in an 

industrial mill using the on-line media and slurry sensor system (SENSOMAG
®

). 

Details of the experimental program are described in Chapter 3. Unlike the trend 

observed in laboratory data, the results in Figure 4.19a show that the media 

shoulder angle is insensitive to changes in slurry concentration. This unanticipated 
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trend was perhaps due to the fact that the motion of large balls used in the 

industrial mill was inappreciably influenced by the slurry behaviour contrary to the 

situation in the laboratory mill where the motion of the media, owing to their 

relatively smaller size may have been strongly influenced by slurry behaviour once 

the slurry got sufficiently viscous. The variation in media shoulder in relation to 

changes in ball load volume went in-line with our expectations being greater at 

higher ball load volume. 

 

 

 

 

Figure 4.19: Media and slurry dynamic positions as measured by on-line load 

sensor (SENSOMAG) on industrial mill (N = 75% critical). 

 

 

On the other hand, the slurry shoulder is typically above the media shoulder as 

depicted in the results shown in Figure 4.19b, which is counter-intuitive. This 

intriguing observation is probably a result of relatively slow drainage of the layer 

of slurry that will adhere to the sensor liner as it rises out of the load. Also, it is 

suspected that since the in-mill slurry concentration was regulated by varying the 

60 65 70 75 80
120

125

130

135

In-mill slurry % solids

M
e
d

ia
 t

o
e
 a

n
g

le
 (

0
)

P
o
o
l 
a
n

g
le

 (
o
)

60 65 70 75 80
292

296

300

304

308

312

In-mill slurry % solids

M
e
d

ia
 s

h
o
u

ld
e
r 

a
n
g

le
 (

o
)

60 65 70 75 80
292

296

300

304

308

312

In-mill slurry % solids

S
lu

rr
y 

s
h

o
u

ld
e
r 

a
n

g
le

 (
o
)

J33

J30

J25

J30

J33

J25

J25

J30

J33

(a) (b)

(c) (d)

65 70 75 80
15

20

25

30

35

40

45

In-mill slurry % solids

J30

J25

J33



 

 

Chapter 4   

Media and Slurry Dynamic Behaviour Measured by Direct Load Sensors  

 

 

76 

flow rate of mill dilution water, then at the same ball loading, the steady decline in 

slurry shoulder angle with increase in percentage of solids in slurry could very well 

have been caused by the combined effects of gravity and cohesive forces which set 

in as slurry becomes denser. 

 

The trends in media toe signal are given in Figure 4.19c. The results suggest that as 

slurry concentration increases, the media avalanching down the load’s free surface 

at a faster rate leading to a media toe which moves up the descending mill wall 

(towards 9 o’clock position). Presumably as slurry concentration increases, the 

slurry entrapped within the media begins to behave like a lubricant. Now as the 

media toe shifts towards the 9 o’clock position, part of the space that would have 

otherwise been occupied by the slurry pool is taken up by the media, thus reducing 

the pool angle as exhibited by the results in Figure 4.19d. Note that the size of 

slurry pool has an impact on slurry residence time and consequently on slurry 

holdup volume.  

 

 

4.4.2 Pool depth  

The depth of slurry pool from the pool free surface to the minimum overflow level 

at the discharge end is another useful parameter that is related to slurry density and 

which is easily measurable by the ‘SENSOMAG’ system. Figure 4.20 graphically 

illustrates the pool depth and the associated parameters. Depending on slurry 

properties and mill operational factors, two cases are possible in computation of 

the slurry pool depth: 

 

 

Case I: 

 

If   θT(Slurry) <  90
0
       then        �� � �� ���� ��� �����  Sin {90 - θT(Slurry)} 

 

 

Case II: 

 

If   θT(Slurry)  >  90
0
       then        � � ������ �	 �����  Sin {θT(Slurry) – 90} 
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The mill radius (Rm) and discharge opening radius (RT) were given as 3.636m and 

0.84m respectively. The slurry toe angle (θT(Slurry)) was measured by the 

‘SENSOMAG’ system and the values obtained can be reviewed in Appendix C. 

 

 

 
 

Figure 4.20:  Schematic illustration of slurry pool depth at the discharge opening 

and the associated measureable parameters. 

 

 

 

Presented in Figure 4.21 are the results obtained from 12 industrial surveys using 

the SENSOMAG system showing the variation of the normalized pool depth with 

slurry concentration and ball load volume. The values of the pool depth were 

normalized with respect to the volumetric feed flow rate (F), i.e.  to 

neutralize the effect of feed flow rate so that any variations in pool depth can only 

be associated with ball loadings and slurry % solids. At ball load volume of 30 and 

33%, the normalized pool depth increases steadily with increase in percentage of 

solids in slurry as shown by the results in Figure 4.21. The increasing trend of h
* 

with increase in slurry concentration could be attributed to the continuous 

reduction in slurry mobility as a result of increasing slurry viscosity. But notice 

that at ball load volume of 25%, the normalized pool depth stays unchanged up to 

74% solids before it starts to increase. This inconsistent pattern depicts the effect 

of load behaviour on in-mill slurry transport.  
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Figure 4.21: A plot of industrial data showing the variation of the normalized pool 

depth (viscosity factor) with slurry % solids for three different ball load volumes at 

a constant mill speed of 75% of critical. 

 

 

In overall, the data obtained from the SENSOMAG
®

 system indicate some 

possible correlation of dynamic media angle, slurry pool angle and normalized 

slurry pool depth with slurry % solids and ball load volume. This data if accurately 

measured and correctly processed could be utilised for mill online monitoring and 

control as well as characterising the changes in mill operating parameters. 

 
 
4.4.3 Mill load and power draw  
 
Analysis of the variation of the mill load and power draw with changes in mill 

operating conditions was performed to gain further understanding of the milling 

process. Figure 4.22a shows the variation of mill load with changes in slurry 

concentration for different cases of ball load volume.  The mill load increases as 

the percentage of solids in slurry increases in accordance with the increase in the 

mass of slurry in the mill. In Figure 4.22b, the mill power decreases systematically 

with increase in percentage of solids in slurry which is expected. This trend can be 
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explained in relation to the effect of pool weight on the torque that counters the 

mill rotation. At same conditions of ball load volume, high percentage of solids in 

slurry increases the slurry holdup weight in the pool. This in effect displaces the 

centre of mass of the mill load (media and slurry) towards the mill centre which 

consequently shortens the torque arm and hence reduces the component of torque 

that opposes the mill rotation. Accordingly, the mill power is expected to decrease. 

 

            

               

 

Figure 4.22: Industrial mill data showing the variation of mill load and power 

draw with slurry concentration for three different levels of ball load volume at 

constant mill speed, N = 75% of critical. 
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4.5 Conclusions 
 

The data obtained from both the laboratory mill and the industrial mill using direct 

load sensors was successfully analysed in this chapter. Through deep analysis of 

the laboratory sensor signals data, it was possible to characterise the mill internal 

load behaviour for the set of mill operating conditions tested. Further, the ability of 

the load sensors to detect changes in mill operating conditions has been clearly 

demonstrated. Different operating conditions were well distinguishable from each 

other and by that it would be possible to identify the desired mill operating region. 

The changes in slurry solids concentration were reflected in the variations of the 

pool angle for the industrial case and the conductivity signal amplitude for the 

laboratory case while the media shoulder and media toe angles exhibited 

observable responses to changes in ball load volume for both laboratory and 

industrial cases. On this basis, it is believed that by correctly measuring and 

interpreting the media and slurry sensor signals data, it should be possible to 

monitor the mill behaviour and characterise changes in mill operating conditions 

for better mill control and performance optimisation. This is an attractive option 

due to the simplicity of the data involved and the interpretational ease.  

 

In view of the findings of this chapter, an attempt is made in chapter 5 to explore 

the feasibility of using the characteristic features extracted from the load sensor 

signals data to predict the variation of two important mill operating parameters: 

slurry solids concentration and ball load volume, by multivariate analysis. 
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CHAPTER 5 
 

Using Media and Slurry Sensor 

Signals Data to Predict In-mill 

Slurry Density and Load Volume 

by Multivariate Modelling  
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5.1 Introduction 
 

On-line monitoring and control of mill load volume and slurry density is desirable 

for achieving stable operation of the milling circuit with optimum production 

capacity and energy efficiency. In this context, several techniques have been 

proposed by researchers in the drive towards real-time accurate estimation of mill 

load volume and slurry properties based on measurable mill parameters. 

Traditionally, the ball load volume was controlled by measuring mill power draw, 

but this method cannot reliably identify the optimum ball loading due to 

interactions arising from other factors such as changing liner profile, ore 

characteristics and feed size distribution on power draw.  

 

Kolacz (1997) proposed a method that uses piezoelectric strain traducers to study 

the variations in mill charge volume. The strain changes in the mill shell during 

mill rotation were related to the charge volume inside the mill.  Acoustics have 

also been utilised recently in measurement and control of mill load volume (Xing, 

2004, Sha et al, 2006a). The acoustic technique is however subject to disturbances 

from other noise around the mill.  

 

Analysis of vibration signals extracted from the bearing housing by accelerometers 

is another recent method that is quickly gaining popularity as a means to estimation 

of mill load volume. Behera et al (2007) found that the amplitude of the vibration 

signal in frequency domain picked up by accelerometers mounted directly on the 

mill shaft was correlated with mill load volume. Su et al (2008) analysed the 

vibrations picked up on the bearing house of a tubular ball mill and related them to 

the variations of mill load volume using a multivariate technique, non-linear partial 

least square (NLPLS). Huang et al (2009) established a relationship between the 

angular position of the maximum vibration point on the mill shell and the mill load 

volume. Si et al (2009) used a microphone and an accelerometer to pick up the mill 

noise and vibration signals of the inlet trunion respectively. They obtained the 

characteristic power spectra energy of both mill noise and vibration, the centroid 

frequency and frequency domain variance of mill noise which they reckon could 

be used in combination to estimate the mill load.   More recently, Tang et al 
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(2010a) analysed the differences in power spectral density of mill shell vibration 

signals under different wet grinding conditions. They developed a correlation of 

charge volume and pulp density with mill shell vibration signal using genetic 

algorithm- partial least squares (GA-PLS) method. As an extension of their work 

they developed a soft-sensor model based on principal component analysis (PCA), 

support vector machines (SVM) and fast Fourier transform (FFT) to predict mill 

load volume using the measured mill vibration signal. 

 

All these researches focus on measurement of mill load volume while attempts to 

measure slurry density remain scarce, possibly due to absence of a definitive 

relationship between slurry properties and vibration signals. Also it is appreciated 

that other factors around the mill circuit other than the mill load may affect the 

vibration signal resulting in false predictions. To overcome this challenge, Tano et 

al (2005), applied a direct contact technique to estimate both slurry viscosity and 

mill load volume. They measured the deflection characteristics of a rubber lifter 

embedded with a strain gauge sensor, as it passed through the charge.  A signal 

profile obtained was related to slurry viscosity and mill load volume by a 

multivariate method that combined wavelet analysis and linear partial least square 

(PLS) regression. The results showed good prediction of mill load volume but 

deviated significantly in estimation of slurry viscosity. The large prediction error 

for slurry viscosity is believed to be due to non-linear relationship between slurry 

viscosity and lifter deflection characteristics which could not be addressed by 

linear PLS approach. However, their approach lays the ground for further work. 

 

The interpretations of the media and slurry sensor signals data in Chapter 4 of this 

thesis have shown that the key features that define the dynamic behaviour of the 

media and slurry inside the mill are strongly influenced by both the slurry density 

and ball load volume. As such, it is strongly believed that if correctly measured, 

these direct features could provide the most reliable data for estimation of slurry 

density and mill load volume. As a contribution of this chapter, the data extracted 

from direct load sensor signals depicting the dynamic behaviour of media and 

slurry inside the mill is analysed using two multivariate methods: (i) Partial least 
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squares (PLS) and (ii) combination of PLS and radial basis functions neural 

networks (RBF-PLS), to predict in-mill slurry density and ball load volume. The 

RBF neural network is incorporated in the PLS model to handle any possible 

nonlinearity between the predictor and response datasets. 

 
 

5.2 Multivariate modelling  
 
Multivariate modelling techniques are increasingly gaining popularity in the 

mineral processing industry as appropriate tools for extracting from datasets 

information that may be useful for process monitoring, control and optimisation. 

One apparent advantage of multivariate based models is the ability to handle 

conditions in which there are many process variables controlled and uncontrolled, 

all correlated with one another to varying degrees. The common multivariate 

techniques that have been useful in building soft sensors in the mineral processing 

industry include, artificial neural nets (Stange, 1993), partial least squares (Tano et 

al, 2005), principal component analysis (Jemwa and Aldrich, 2006; McElroy et al, 

2008), support vector machines (Tang et al, 2010b), genetic algorithms (Karr and 

Yeager, 1995), canonical variable analysis (Kourti, 2005) and Fisher discriminant 

analysis (McElroy et al, op cit). Three such techniques considered in our study are 

principal component analysis (PCA), partial least squares (PLS) and radial basis 

functions neural networks (RBFNN). 

 
5.2.1 Principal component analysis (PCA) 
 
PCA is a method of transforming high dimensional data into low-dimensional 

subspace by replacing linear combinations of correlated variables with new 

uncorrelated variables while retaining most of the variations present in the original 

data (McElroy et al, 2008). Therefore, by summarising the pattern of inter-

correlation among variables, it reduces the large number of variables to a small 

number of clusters. The first principal component can thus be defined as an axis 

along which data is projected with maximum variance whilst the second principal 

component maximizes variance subject to first axis orthogonality and so forth, the 

last axis having the least variance of all possible ones. The number of principal 
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components can be determined based on the amount of variance in the loading 

vectors to which it is desired that the selected PCs should contribute. The 

maximum number of possible PCs should equal the rank of input data matrix, X. 

 

Given a data matrix, n x mX ∈ ℜ , scaled and centred to zero mean and unit variance 

with n rows (samples) and m columns (variables), PCA decomposes the data into 

outer products of scores, ti  and loadings, pi  plus a residual matrix, E, 

mathematically represented as, 

 

1

k
T T

i i k

i

X TP E t p E
=

= + ⇒ +∑       [5.1] 

 

Where T is n x k matrix representing the projections of sample points along the 

principal component direction (stores information on relationship between 

samples), while P is m x k matrix that represents the angle cosines of the direction 

of the principal component (stores information on relationship between variables). 

The main disadvantage of PCA technique is that sometimes those directions with 

maximum input data variance do not necessarily contain the most useful 

information. In essence, one might be analysing the noise signal and rejecting the 

valid data signal. 

 
 

5.2.2 Partial least squares method (PLS) 
 
PLS models are based on principal components of both the independent data 

(predictors) and the dependent data (responses). PLS transforms the predictor 

variables from high dimensionality to low dimensionality by extracting factors or 

latent variables which are correlated with responses while capturing a large amount 

of variation in the predictors (Lee et al, 2006). Therefore, PLS maximizes the 

covariance between input and output variables. The main advantage of PLS is the 

ability to handle the problem of multi-collinearity and sparse sample data set in 

regression (Li et al, 2007; Wold, et al, 2001; Geladi and Kowalski, 1986). Given 

standardized data matrices X and Y of predictors and responses respectively, PLS 
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decomposes X into score vectors, ti, loading vectors, pi and residuals matrix, E 

while Y is decomposed into score vectors, ui, loading vectors, qi and residuals 

matrix, F. This procedure is referred to as the “outer relations” mathematically 

expressed as, 

 

1

a
T T

i i

i

X TP E t p E
=

= + ⇒ +∑       [5.2] 

1

a
T T

i i

i

Y UQ F u q F
=

= + ⇒ +∑       [5.3] 

 

In which a is the number of latent variables determined by cross-validation. The 

common cross-validation method is the leave-out-one (LOO) method (Tinsley and 

Brown, 2000). X and Y are indirectly related through their scores by an “inner 

relation” which is a functional mapping model from T to U. If the relation is linear, 

then U = BT + H, where B is a diagonal matrix of regression coefficients, which is 

determined by minimizing the residual, H. Figure 5.1 shows the architecture of the 

PLS model. 

 

 

 
 
Figure 5.1: Architecture of the PLS model illustrating the outer and inner relations 

U = B*T + H

     or

U = f(T) + R

Inner relation Outer relations
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To handle non-linearity that characterises real industrial processes, the inner 

relation can be expressed as, U= f(T)+R, where f(.) is a mapping function between 

U and T that can take quadratic form (Tang and Li, 2003; Wold et al, 1989) or 

Neural Network based kernel functions (Baffi et al, 2000; Li et al, 2007; Su et al, 

2008).  

 

The often used algorithm for PLS regression is the non-linear iterative partial least 

squares (NIPALS), presented in a summary in Table 5.1. However, other modified 

NIPALS algorithms exist which include Kernels algorithms (Lindgren et al, 1994, 

Dayal and MacGregor, 1997, Baffi et at, 1999). The goal of PLS algorithm is to 

minimize the norm of F while keeping the correlation between X and Y by the 

inner relation between U and T.  

 

Table 5.1: NIPALS algorithm for linear PLS 

 
 
 
5.2.3 Radial basis functions neural networks (RBF) 
 
A radial basis function network can be considered as a 3-layer neural net 

comprising the input, hidden and output layers. The input layer is a set of source 

Step Summary of steps

0 Mean centre and scale X and Y

1 Set the output scores u equal to a column of Y

2 Compute input weights w by regressing X on u

3 Normalize w to unit length
 w w w=

Calculate input scores, t4

5 Compute the output loadings q by regressing Y on t

6

 ( . ) ( . )Tt X w w w=

Normalize q to unit length

7

 q q q=

Calculate new output scores u

8

 ( ) ( ). .
T

u Y q q q=

9

10

11

12

Check convergence on u: if YES goto 9 ELSE goto 2

13

Calculate the input loadings p by regressing X on t

Calculate inner model regression coefficient, b

Calculate input residual matrix

Calculate output residual matrix

 .
T

E X t p= −

 ( ) ( ). .T T Tq t Y t t=

 ( ) ( ). .
T T T

w u X u u=

 ( ) ( ). .T T Tp t X t t=

 ( ) ( ). .
T T

b t u t t=

If additional PLS dimensions are necessary, replace X and Y

by E and F respectively and repeat steps 1 to 13

 . . TF Y b t q= −
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nodes which basically serves as inputs distributer while the hidden layer contains 

radial functions each represented by a node and having same dimensionality as the 

input data. The hidden layer is connected to the output layer by connections of 

weights. Each node in the hidden layer operates by summing up all its input values, 

transforming the summed value using an activation function and transmitting the 

summed and transformed value to the output node.  The transformation from input 

space to the hidden–unit space is non-linear while transformation from hidden 

space to output space is linear. The typical non-linear transformation functions 

used in RBF networks are a set of Gaussian kernel (Zheng and Billings, 1996). But 

it is widely held that the choice of RBF centres and not nonlinearity function is 

critical to the performance of the RBF networks (Chen et al, 1991). The 

architecture of RBF network can be depicted as shown in Figure 5.2.  

 

 

       
 

Figure 5.2: Generalized radial basis function architecture for single output 

 
 

The response y(x) of the output layer node for the input objects x is calculated 

using an approximating function, *( )y x , equation 5.4 which represents a linear 

combination of multidimensional radial activation functions. 

 

*
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The norm, •  is the Euclidean distance, nc is the number of RBF centres, cj (j = 1, 

2,..nc) is the j
th

 centre chosen from the data sample x while wj represents the 

weights associated with j
th

 RBF centre which are found by minimizing the error 

between *( )y x  and unknown function y(x) during network training. The parameter 

wo (bias weight) is a constant that acts as a shift in output level. A set of multi-

dimensional Gaussian kernel, φ j is a popular choice for radial basis functions 

written as shown in equation 5.5 in which σj is the centre width for the j
th

 centre in 

the hidden layer . 

 

2

2
exp

j

j

j

c x
φ

σ

 −
 = −
 
 

       [5.5] 

 

Due to the capabilities of RBF neural networks to form predictive relationships 

between inputs (sources) and outputs (Targets), they have found applications in 

various fields such as image processing, (Sahin, 1997), process fault detection 

(Jemwa and Aldrich, 2006), predictive maintenance (Zemouri et al, 2010), and 

pattern recognition (Wan and Harrington, 1999).  The present study aims at 

assessing the possible extension of RBF application to estimation of key milling 

process variables that are hitherto difficult or expensive to measure. 

 
 
5.2.4 Combined RBF-PLS method 
 
The radial basis functions network is integrated into the regression framework of 

PLS to model nonlinearities in the process. Figure 5.3 illustrates the RBF-PLS 

network architecture for a single output. The RBF neural network is trained to 

capture nonlinearities between the input and output variables in the projected latent 

space. The RBF network inputs and outputs are the scores, t and u respectively. 
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Figure 5.3:  Graphical illustration of the RBF-PLS method 

 

 

Nonlinear mapping between t and u provided by the RBF model can be expressed 

in the form of equation 5.6 in which all symbols retain their previous definitions. 

 

*

2
1

.exp
cn

j

o j

j j

c x
u w w

σ=

 −
 = + −
 
 

∑      [5.6] 

 

For strongly nonlinear data, Baffi et al (1999) proposed a modified NIPALS 

algorithm that utilizes the error between u and u
*
 to update the outer input weight 

factor as an improvement to the earlier algorithms presented by Wilson et al, 

(1997) and Qin and McAvoy (1992). The algorithm by Baffi et al, (op cit), given 

summarily in Table 5.2 was considered in this study and was implemented in 

MATLAB environment. The associated MATLAB programs are presented in 

Appendix D. The theoretical equations illustrating the error based weight updating 

procedure, as indicated by steps 10 and 11 in Table 5.2 are presented in Appendix 

E together with other miscellaneous calculations. 

 
 
 

Y

X

n
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n
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outer
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Table 5.2: Modified NIPALS algorithm for RBF-PLS (Baffi et al, 2000). 

 

 
 
5.3 Application case study 1: Laboratory data 
 
5.3.1 Introduction 
 
The predictive performances by two multivariate models discussed in section 5.2; 

PLS and RBF-PLS were comparatively evaluated. The data obtained during 16 

laboratory experiments consisting of 96 samples was considered in the study. The 

data was divided into two parts: the first 48 samples were used for model training 

while the rest were utilised for model testing. The root mean square error (RMSE) 

and the cross-validation correlation coefficient (Q
2
) were applied to assess the 

performance of the two models. The RMSE is given as follows: 

 

* 2

1

( )
n

i i

i

RMSE y y n
=

= −∑        [5.7] 

Step Summary of steps

0 Mean centre and scale X and Y

1 Set the output scores u equal to a column of Y

2 Compute input weights w by regressing X on u

3 Normalize w to unit length  w w w=

Calculate input scores, t4

5 Train RBF neural network between t and u
 ( ), , ( , )j j jc t uσ ω ←

Calculate non-linear prediction of u6

 ( . ) ( . )Tt X w w w=

Compute output loadings q by regressing columns of Y on u*7

 ( )* 2

1
.exp

cn

j j j oj
u c tω σ ω

=
 = − − + ∑

Normalize q to unit length8
 q q q=

Calculate new output scores u9
 ( ) ( ). .Tu Y q q q=

Compute input weights updating parameter ∆ ∆ ∆ ∆ w10

 w w w= + ∆

 ( ). . .T Tw Z Z Z e
−

∆ =

Compute new input weights w11

Normalize w to unit length12
 w w w=

Calculate new input scores t13
 ( . ) ( . )Tt X w w w=

Check convergence on t: if YES goto 15 ELSE goto 514

Calculate the input loadings p by regressing X on t15

Repeat steps 5 and 6 and obtain non-linear prediction of u16

Calculate input residual matrix17

18 Calculate output residual matrix

 .
T

E X t p= −

 *. TF Y u q= −

 ( )* 2

1
.exp

cn

j j j oj
u c tω σ ω

=
 = − − + ∑

 ( ) ( ). .T T Tw u X u u=

If additional PLS dimensions are necessary, replace X and Y

by E and F respectively and repeat steps 1 to 19
19

 ( ) ( )* *. .T T Tq u Y u u=

 ( ) ( ). .T T Tp t X t t=
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Where y and y* represent the measured and predicted values respectively while n is 

the number of samples or observations. The RMSE can be evaluated for the 

training/calibration set (RMSE
C
) and for the test/validation set (RMSE

V
). The 

cross-validation correlation coefficient (Q
2
) which indicates the model prediction 

accuracy and the coefficient of determination (R
2
) which defines data fitting 

quality are obtained as follows: 

 

( )2 1 YQ PRESS ss= −  ; ( )2 1 R TR ss ss= −    [5.8] 

      

Where SSR and SST are the residual and total sum of squares respectively, SSY is 

the sum of squares of response variables while PRESS is the predicted residual 

sum of squares.  

 

 

5.3.2 Prediction of slurry density and ball load volume  

 
5.3.2.1 Selection of latent variables  
 

From the media and slurry sensor signals data described in Chapter 4, four factors: 

slurry pool angle (= media toe - slurry toe), dynamic media angle (= media 

shoulder - media toe), total slurry angle (= slurry shoulder - slurry toe) and 

conductivity signal amplitude, displayed characteristic responses to changes in ball 

load volume and slurry density as depicted in the patterns of the load sensor 

signals. Therefore, as a starting point for latent variables (LVs) search, all the four 

factors were considered as candidate feature variables from which the LVs or 

principal components (PCs) would be extracted. The ball load volume and in-mill 

slurry density (specific gravity) were treated as response variables.  

 

The cross-validation technique of leave-one-out (LOO-CV) also known as ‘jack-

knife’ was applied within the PLS model framework to extract the latent variables 

(LVs) out of the four factors. Three factors (slurry pool angle, dynamic media 

angle and conductivity voltage) cumulatively explained for > 99% of variance in 

the dataset with PRESS value of < 2 (See Figure 5.4). Therefore, the three factors 
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were considered as LVs as the benefit of the fourth variable was insignificant. 

Also, by examining the correlation matrix the three factors were found to be 

strongly related to the response variables. All programs utilised in the analysis 

were implemented in MATLAB. The conceptual PLS model is given as, 

 

( , , )Y f Media angle Pool angle Slurry conductivity residuals= +  [5.9] 

 

 

     

        

Figure 5.4: The plot of x-variance and PRESS values illustrating the cumulative 

contribution of the principal components (PCs) to the model performance.  

 

 

 

Table 5.3 presents a summary of the dataset used for training and testing the 

models. It is important to point out that, the mean values and standard deviations 

presented in Table 5.3 were computed over the entire data generated during each 

experimental run, simply to illustrate the quality of the data. But to facilitate 

training and testing of the models, an average sample was computed for every 3 

mill revolutions over 20 mill revolutions. This yielded a total of 96 samples for the 

16 experimental runs considered. The data recorded in the first and last 10 

revolutions were utilised for model training testing respectively. Note that prior to 

model training and testing, the data was standardised by centring to zero mean and 

scaling to unit variance to avoid parameter dimension effects on the model outputs.  
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Table 5.3: Mean values and standard deviations of the laboratory dataset 

 

 

Exp. 

# 

Predictor variables (X) Responses (Y) 

θ (Pool)   [deg] θD (media)   [deg] V/VO
    [-] 

J 

[%] 

S.G 

[-] 
�1            σ 
�2             σ 
�3           σ 

1   31.3       1.40   156.9      3.17  0.857     0.008 20 1.55 

2   29.3       2.06   165.7      3.72  0.813     0.013 20 1.73 

3   28.4       1.75   168.1      2.40  0.768     0.019 20 1.85 

4   24.3       1.94   172.8      2.86  0.717     0.024 20 1.98 

5   25.0       1.24   171.3      3.04  0.860     0.009 25 1.55 

6   23.4       1.19   170.5      1.01  0.829     0.020 25 1.73 

7   23.0       1.27   172.1      1.90  0.776     0.012 25 1.85 

8   20.1       1.31   175.8      1.94  0.728     0.021 25 1.98 

9   20.2       1.96   179.8      3.64  0.857     0.013 30 1.55 

10   19.4       1.24   178.4      2.16  0.809     0.020 30 1.73 

11   18.0       1.28   180.1      2.09  0.761     0.023 30 1.85 

12   17.9       1.65   182.2      1.74  0.735     0.009 30 1.98 

13   16.4       1.74   182.7      2.45  0.849     0.021 35 1.55 

14   15.8       1.78   182.3      1.93  0.805     0.008 35 1.73 

15   15.5       1.41   190.2      1.30  0.757     0.020 35 1.85 

16   12.3       1.40   192.9      3.29  0.721     0.028 35 1.98 

 
 
 
 
5.3.2.2 PLS Model training and testing 
 
A linear PLS model between the selected predictors and the responses was built 

aimed at assessing the predictive ability of the linear model in comparison with the 

non-linear model, RBF-PLS. Figures 5.5 and 5.6 present the training results by the 

PLS model over the load volume and slurry density (specific gravity) data 

respectively while Figures 5.7 and 5.8 depict the testing of the PLS model on the 

test dataset. The results indicate that the PLS model predicted both the load volume 

and the slurry density successfully. A closer inspection of the results in Figures 

(5.5 – 5.8) reveals that the PLS model gives better prediction of ball load volume 

than slurry density. This is thought to be due to the ability of PLS model to provide 

good approximation of the underlying linear structure between the ball load 

volume and the predictors than the non-linear structure between the slurry density 

and the predictors. As required from PLS theory, the model coefficients estimated 
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during model training were utilised in the prediction of the response variables 

during model testing. 

 

 
 
Figure 5.5: Plot of laboratory training data for mill load volume versus predictions 

by the PLS model 

 

 

   
 
Figure 5.6: Plot of laboratory training data of in-mill slurry density versus 

predictions by the PLS model. 
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Figure 5.7: Plot of PLS model predictions of mill load volume over laboratory 

testing data for each observation. 

 

 

 

Figure 5.8: Plot of PLS model predictions of in-mill slurry specific gravity over 

laboratory testing data for each observation 
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The scaled PLS regression coefficients, denoted as BPLS and the inner relation 

coefficients denoted as B are shown. 

 

 

  
 

 

The magnitudes of the regression coefficients, BPLS suggest that x1 (pool angle) 

reflects better the changes in mill load volume (Y1) than other predictors while x3 

(conductivity signal amplitude) reflects better the changes in slurry density (Y2). 

The two variables x1 and x3 can thus be considered as the principal feature 

variables in the model. The coefficients show that x1 and x3 have negative 

correlations with ball load volume and slurry density respectively. 

 

Given a new dataset of predictors (X-block) that has not been involved in the 

training process, the new values of response variables (Y-block) can be estimated 

from equation 5.10, providing the data is mean centred and variance scaled.  

 

* PLSY X B= + Residuals       [5.10] 

 

The amount of explained variance in the predictors, R
2
X and responses, R

2
Y using 

the PLS model are presented in Table 5.4. The testing results indicate that 99.08% 

variance of predictors matrix is required to explain 92.1 and 90.31% variation of 

Y1 and Y2 respectively. Notice that the first two LVs account for most variation of 

Y1 while most of the variation of Y2 can be explained by the third LV. 

Interestingly, the third LV only explains little variance of the X-block. This 

interesting observation is contrary to the generally held assumption in multivariate 

statistics that those variables which contribute maximum input data variance 

always afford most information. By further inspection of the data, one can observe 

 0.8112 0.2597

0.2357 0.2374

0.3129 0.9614

− 
 
 
 − 

BPLS  = 
X

1

X
2

X
3

Y
1

Y
2

B  = 

t
1

t
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t
3

u
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u
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 0.666 0.000 0.000

0.000 1.089 0.000
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that all the predictors display better ability to explain most of the variance in the 

training dataset than the testing dataset, though only by a marginal difference.  

 

 

Table 5.4:  Variance explained in the X and Y blocks for the PLS model 

(Laboratory case study) 

 

L Vs Predictors   

(X-Block) 
Responses (Y-Block) 

Cumulative % variance explained
 

 
X1 

 

X2 

 

X3 

 

X Y1 (Training) Y1 (Testing) Y2 (Training) Y2 (Testing) 

 
69.14 

 

96.53 

 

99.08 

 
53.06 

 

93.04 

 

93.28 

 
50.43 

 

90.99 

 

92.10 

 

 
7.45 

 

17.61 

 

92.08 

 
6.99 

 

16.52 

 

90.31 

 
 

Key:    Y1 – load volume;   Y2 -  Specific gravity  

 
 
 
 
5.3.2.3 RBF-PLS Model training and testing 
 

The RBF-PLS model was trained and tested on the same dataset as the PLS model. 

To help improve the RBF network performance and minimize possibilities of 

numerical ill-conditioning during parameter estimation, the number of RBF centres 

was simply set equal to the number of objects in the input data with equal width 

between the centres. This was made possible by the small size of the dataset. The 

results in Figures 5.9 and 5.10 demonstrate the ability of RBF-PLS model to 

predict the training data of load volume and in-mill slurry density. On the other 

hand, Figures 5.11 and 5.12 are the results of the RBF-PLS predictions of the 

testing data. One can quickly observe that the specific gravity is modelled with 

better accuracy than the load volume. This result confirms the ability of RBF inner 

mapping to capture non-linearity in the dataset. 
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Table 5.5 presents a summary of the explained variance of the predictors, R
2
X and 

responses, R
2
Y using the hybrid RBF-PLS model. In a similar version to the PLS 

model, the first LV accounts for most variation in Y1 while most of the variation in 

Y2 is explained by the third LV.  

 

 
 

Figure 5.9: Plot of laboratory training data of mill load volume versus predictions 

by RBF-PLS model. 

 

   
 

Figure 5.10: Plot of laboratory training data of in-mill slurry specific gravity 

versus predictions by RBF-PLS model. 
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Figure 5.11: Plot of RBF-PLS model predictions of mill load volume over 

laboratory testing data for each observation 

 

  
 
Figure 5.12: Plot of RBF-PLS model predictions of in-mill slurry specific gravity 

over laboratory testing data for each observation 
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Table 5.5: Variance explained in the X and Y blocks for the RBF-PLS model 

(Laboratory case study). 

 
L Vs Predictors   

(X-Block) 
Responses (Y-Block) 

Cumulative % variance explained
 

 

X1 

 

X2 

 

X3 

 

X Y1 (Training) Y1 (Testing) Y2 (Training) Y2 (Testing) 

 

72.35 

 

95.22 

 

99.33 

 

48.85 

 

94.79 

 

95.38 

 

47.23 

 

93.59 

 

94.15 

 

 

8.10 

 

17.95 

 

96.16 

 

7.81 

 

17.32 

 

94.77 

Key:    Y1 – load volume;   Y2 -  Specific gravity  

 
 
 
5.3.2.4 Comparison of PLS and RBF-PLS Models  

 
The values of root mean square error (RMSE), cross-validation correlation 

coefficient (Q
2
) and coefficient of determination (R

2
) for the two models are 

summarised in Table 5.6. Both the PLS model and the RBF-PLS model achieved 

good predictions of the testing data. However, the RBF-PLS model demonstrated 

slightly superior predictive ability as indicated by higher values of Q
2
 and lower 

values of RMSE. Further, notice that the RBF-PLS model displays better 

prediction accuracy on Y2 data than Y1 data while the converse is true for the PLS 

model. This result may point to the possible existence of only weak nonlinearity in 

the relation between the predictor variables and response variables. 

 

 
Table 5.6: Comparison of the prediction ability of the PLS and RBF-PLS models  

 

Model Y1 (Load volume) Y2 (Specific gravity) 

 
R

2 
Q

2 
RMSE

V 
R

2 
Q

2 
RMSE

V 

 

PLS  

 

RBF-PLS 

 

0.921 

 

0.942 

 

0.884 

 

0.911 

 

0.0475 

 

0.0438 

 

0.903 

 

0.947 

 

0.870 

 

0.923 

 

0.1907 

 

0.1118 
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5.4 Application case study 2: Industrial data 

5.4.1 Introduction 

In this case study, only the hybrid model (RBF-PLS) was considered for analysis. 

Based on the industrial data discussed in chapter 4, the dynamic media angle, the 

slurry pool angle and the depth of the slurry pool from the free surface to the 

minimum overflow level at the discharge end were selected as latent variables 

(LVs) to predict slurry density and ball load volume. The identification of LVs was 

accomplished in a similar manner to the laboratory case by two methods: Principal 

component analysis (PCA) and leave-out-one cross-validation (LOO-CV). The 

predictive ability of the model has been assessed through the values of cross-

validation correlation coefficient (Q
2
) and the root mean square error (RMSE). 

 

 

5.4.2 Prediction of slurry density and ball load volume 

5.4.2.1 Industrial dataset 
 
The industrial dataset consisted of only 36 averaged samples obtained from 12 

industrial experiments. The mean values of the predictors obtained for each 

experimental run and the corresponding standard deviations as well as the values 

of the response variables are presented in Table 5.7. Due to high costs associated 

with the industrial surveys, it was considered infeasible to perform repeat 

experiments to obtain the test data instead the dataset for model-testing was simply 

generated by adding random noise in the range of ±2σ to all the samples of each 

variable in the training dataset. In a similar version to the laboratory case, the data 

was first centred to zero mean and scaled to unit variance prior to model training 

and testing to avoid the parameter dimension effects on the model outputs. 
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Table 5.7: Mean values and standard deviations of the training dataset  

 
 

Exp. 

# 

Predictor variables (X) Responses (Y) 

θ (Pool)   [deg] θD (media)   [deg] h*    [s/m2] 
J 

[%] 

S.G 

[ ] 
�             σ 
�             σ 
�             σ 

1 35.9         0.692 162.7        0.591   5.75       0.0064 25 1.90 

2 34.8         0.645 162.8        0.615   5.58       0.0055 25 2.02 

3 33.0         0.597 164.3        0.687   5.62       0.0041 25 2.11 

4 33.2         0.616 163.7        0.606   6.05       0.0050 25 2.14 

5 33.0         0.537 172.3        0.632   5.03       0.0039 30 1.81 

6 31.7         0.631 172.7        0.578   5.35       0.0052 30 1.85 

7 30.5         0.693 173.7        0.708   6.47       0.0045 30 2.08 

8 29.2         0.658 175.4        0.599   6.90       0.0054 30 2.13 

9 29.6         0.559 178.8        0.493   4.84       0.0058 33 1.85 

10 28.7         0.617 179.5        0.698   5.10       0.0050 33 1.92 

11 27.5         0.569 180.2        0.555   6.06       0.0059 33 2.04 

12 25.7         0.525 181.3        0.552   6.19       0.0046 33 2.14 

 

 
 
 
5.4.2.2 Model training and testing 
 
Figures 5.13 and 5.14 are plots of model predictions of training data versus 

experimental observations for ball load volume and slurry density respectively 

while Figures 5.15 and 5.16 depict the model testing results. Table 5.8 is a 

summary of the percentage of explained variance of the X and Y blocks. Similar to 

the laboratory case, the first LV accounts for most variation in Y1 while most of 

the variation in Y2 is explained by the third LV. Also it can be seen in Table 5.9 

that the RBF-PLS model is able to predict the ball load volume with almost same 

accuracy as the laboratory case. However, the model predictions of slurry density 

both on the training and testing data have lower accuracy than the laboratory case. 

This result may imply that only part of the variation of the third LV (in the 

industrial case) is related to slurry density. Further, the result suggests that the 

conductivity signal amplitude (the third LV in the laboratory case) is a better 

feature variable than the pool depth (the third LV in the industrial case) in 

describing the slurry density.  
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Figure 5.13: Plot of industrial training data of mill load volume versus predictions 

by RBF-PLS model. 

 

 

 

Figure 5.14: Plot of industrial training data of in-mill slurry specific gravity versus 

predictions by RBF-PLS model. 
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Figure 5.15: Plot of RBF-PLS model predictions of mill load volume over 

industrial testing data for each observation 

 

 

 

Figure 5.16: Plot of RBF-PLS model predictions of in-mill slurry specific gravity 

over industrial testing data for each observation 
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Table 5.8: Variance explained in the X and Y blocks for the RBF-PLS model 

(Industrial case study). 

 

L Vs Predictors   

(X-Block) 
Responses (Y-Block) 

Cumulative % variance explained
 

 

X1 

 

X2 

 
X3 

 

X
 

Y1 (Training) Y1 (Testing)
 

Y2 (Training)
 

Y2 (Testing)
 

 

64.47 

 

97.69 

 
99.91 

 

43.67 

 

96.07 

 
96.19 

 

43.41 

 

95.50 

 
95.62 

 

 

19.44 

 

20.52 

 
78.51 

 

18.83 

 

19.87 

 
76.07 

 

Key:    Y1 – load volume;   Y2 -  Specific gravity  

 

 

 

 

Table 5.9: The prediction ability of the RBF-PLS model (Industrial case study) 

 

Model Y1 (Load volume) Y2 (Specific gravity) 

 
R

2 
Q

2 
RMSE

V 
R

2 
Q

2 
RMSE

V 

 

 

RBF-PLS 

 

 

0.951 

 

 

0.920 

 

 

 

0.674 

 

 

 

0.761 

 

 

 

0.752 

 

 

 

0.059 

 

 

 

5.5 Conclusions 
 
The partial least squares model (PLS) and a hybrid model combining PLS with 

radial basis functions neural networks (RBF-PLS) have been built to predict two 

important mill operational parameters i.e. in-mill slurry density and ball load 

volume. The models were trained and tested against both the laboratory and the 

industrial data extracted from the load sensor signals to establish possible 

relationships between the sensor signals data and the mill operational parameters. 

The dynamic media angle and the slurry pool angle were identified as 

characteristic features in the load signals data whose variances were largely related 

to the in-mill ball load volume while the conductivity signal amplitude was 
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established as the characteristic feature that best described the variation of the in-

mill slurry density. The variation of normalized slurry pool depth did not 

correspond well to the changes in slurry density, but this could partly be attributed 

to experimental errors in measurements. These observations point to the available 

possibilities for monitoring and characterising changes in mill operational 

parameters using information contained in the media and slurry sensor signals data. 

 

The cross-validation correlation coefficient (Q
2
) and the root mean square error 

(RMSE) were employed to assess the prediction performance of the proposed 

models.  For the two case studies considered, both models predicted the in-mill 

slurry density and the ball load volume with commendable accuracy. However, the 

hybrid model (RBF-PLS) showed better ability to capture the underlying non-

linearity between the slurry density and its predictors.  

 

The close matches between the estimated and measured mill operational 

parameters suffice to demonstrate the ability of multivariate modelling as a reliable 

means for on-line mill monitoring and control. Therefore, once accurately trained 

against mill historical data, the proposed multivariate models have a potential to 

serve as on-line shadows to provide inferential measurements of slurry density 

(related to viscosity) and ball load volume during continuous state of mill 

operation, which is helpful in milling circuit control, diagnosis as well as 

optimisation.  

 

Lastly, it is important to point out that, other measurement techniques should be 

explored in combination with direct load sensors to obtain further information on 

media and slurry behaviour that could be used to improve the mill performance 

through better control. In light of that consideration, the gamma emission imaging 

technique is applied in chapter 6 to study slurry transport behaviour in a laboratory 

ball mill while salt tracer tests are applied in chapter 7 to study the slurry residence 

time distribution and volumetric holdup in an industrial overflow ball mill.
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6.1 Introduction 

Size reduction in wet ball mills is a highly complex process which involves the 

dynamics of media and slurry transport inside the mill (Hogg, 1984, Rogovin, 

1987). The regime of media and slurry transport further affects the effectiveness of 

slurry flow and mixing within the ball charge which directly impacts on the 

grinding performance. Although considerable progress has been made in the recent 

past in understanding the dynamics of media motion (Morrell, 1993; Rajamani and 

Mishra, 1996; Van Nierop, 2001; Dong and Moys, 2003), knowledge of slurry 

flow and its interaction with the media is still far less advanced. An explicit 

understanding of slurry hydrodynamic transport and mixing is a vital element in 

the quest for efficient control and optimisation of wet milling circuits.  

 

This chapter presents results and discussions of the application of gamma emission 

imaging technique for determination of slurry radial flow pattern and mixing 

profile within the ball charge in a model overflow ball mill. To our knowledge this 

is the first reported application of gamma camera in ball milling research. The 

primary aim of the study is to obtain comprehensive understanding of slurry radial 

flow and mixing behaviour in an overflow ball mill so as to enable better mill 

control. Further, the information generated would serve as a fundamental resource 

for validation of particle and slurry flow simulation models such as CFD/DEM. 

 

 

6.2 Review of mass transport in overflow ball mills 
 

Transport of media and slurry inside the mill is driven by a combination of three 

factors: gravity, friction and mechanical energy of the rotating mill. The relative 

contribution of each factor depends on the mill discharge mechanism, the liner 

profile, the mill speed and the prevailing operating conditions. Basically, the 

rotating mill imparts mechanical energy into the load via frictional force at the 

interfacial surface of the load and mill wall, which results in radial flow of the 

media and slurry. This is accompanied by continuous exchange of slurry between 

the pool and ball charge region which promotes the transfer of ore particles into the 

breakage zones and the flow of fine progenies out of the ball charge into the pool 
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for discharge as illustrated in Figure 6.1. Also, the rate of slurry exchange defines 

the residence time of ore particles in the breakage zones which subsequently 

impacts on the effectiveness of the grinding process (Songfack and Rajamani, 

1999). High flow rates of slurry through the load would result in under-grinding 

while low flow rates would result in over-grinding. On the other hand, a poorly 

mixed load would lead to inefficient grinding and high media wear rate due to 

increased ball-ball interaction. In essence, the efficiency of material breakage 

inside the mill would undoubtedly be influenced both by the flow regime and the 

rate of transport of material through the mill besides other operational parameters. 

 

                                                                                                      

Figure 6.1: Illustration of the radial transport of slurry inside the mill 

 

Overflow ball mills are depicted by an intrinsic pool of slurry at the toe, which 

facilitates the discharge of fine progenies (finished product) from the mill. To 

ensure that adequate slurry removal capacity is achieved while keeping the load 

well saturated with slurry at all times (for efficient grinding), knowledge of slurry 

mixing behaviour within the ball charge and its rate of transfer from the pool is 

essential. Although a reasonable number of studies on slurry transport have been 

reported in literature (Kelsall et al, 1970; Fuerstenau et al, 1986; Klimpel et al, 

1989a  ), the focus has been largely on axial flow studies using black-box principle 

of residence time distributions, aimed at delineating the effect of important 

operating variables on slurry hold-up, breakage kinetics and discharge rate. 

Quantitative information on radial transport and mixing of slurry, which indeed 

influences both the grind quality and the mill discharge rate, is still deficient 

Slurry entrained with ore 

particles flow into grinding zones

Slurry circulation 

within the pool
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presumably due to inadequacy of the measurement techniques. This presents a 

need for special techniques to monitor the complex behaviour of slurry and 

grinding media inside the mill for purpose of mill control and optimisation. 

 

In this study, a gamma ray imaging technique has been applied to provide a 

detailed analysis of the radial transport of slurry in a laboratory overflow ball mill. 

The gamma camera detector and aqueous Technetium, 
99m

Tc radiotracer were 

utilised. Details of the experimental setup have been described in Chapter 3 

together with the measuring techniques and materials.  

 

 

6.3 Experimental results, analysis and discussion 

6.3.1 Data processing technique 

From literature (Perret et al, 2000; Huang et al, 2002; Tugrul and Altinsoy, 2002; 

Bridge et al, 2006), it is clear that, if a radiotracer is mixed with a soluble fluid, the 

intensity of the emitted radiations or count rate is directly proportional to the 

concentration of the radiotracer in the fluid. The general mathematical relationship 

is expressed in the form: 

m m

s s

C I

C I
λ= , where  

m

m

(max)
ln

(max)
1

s

s

I
I

I
I

λ

 −  
 =
 −  
 

    [6.1] 

In which, 

Im   :   intensity of the radiations (scintillation counts) as measured 

Is    :   standard intensity of the radiations (scintillation counts)  

Cm  :   concentration of the radiotracer as measured  

Cm  :   concentration of the radiotracer as measured    

              λ  :   calibration factor that accounts for intensity losses due to attenuation, 

 out-scattering and self absorption effects.  

 

Standard intensities are normally obtained via tests on standard phantoms using a 

pure tracer of known concentration.  
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In this study, both qualitative and quantitative analyses have been performed on the 

gamma camera data to determine the rate of slurry transfer between the pool and 

ball charge and the mixing behaviour within the ball charge. It should be 

emphasized that, due to the nature of configuration of our mill rig it was not 

possible to operate the camera in 360
0
 mode, instead only the front side of the mill 

was sampled by the camera (i.e. 2D, 1
st
 generation projection). In essence, some of 

the radiations out scattered. It is expected that this in effect would introduce a 

margin of error in the result. To minimize any possible errors and maintain 

consistence in analysis of gamma camera data, it was considered necessary to first 

perform a calibration of the scintillation intensity. This was accomplished by 

measuring the scintillation intensity at no-flow conditions for each test run shortly 

after injection of the radiotracer into the pool prior to mill rotation. The absolute 

value of intensity obtained in each calibration test serves as a reference value 

against which subsequent measurements are normalized. Once the mill is 

rotational, there would be a continuous flow of the radiotracer between the pool 

and ball charge region. Consequently, the intensity of the scintillations detected 

from the pool would drop commensurate with the slurry exchange rate. Relating 

the measured scintillation intensity to the reference intensity could give some 

indication of the rate of transfer of the radiotracer from the pool to the ball charge.  

It is worthwhile to note that the calibration described here is specific to the current 

experimental configuration. 

 

One potential demerit of the above criterion is that, the accuracy of the analysis is 

very dependent on the accuracy of the intensity calibration process. For the 

reference intensity value to be representative of the entire pool volume, the tracer 

must be uniformly dispersed in the slurry pool at the beginning of each test run. In 

that respect, injecting the radiotracer pulse while the mill is rotational would highly 

likely result in biased data, dependent on the location of tracer injection within the 

pool. To ascertain the reliability of the calibration, an assessment has been 

undertaken on our measured data to establish the quality of mixing of the 

radiotracer in the pool. The scintillation intensity profile defining the radiotracer 

dispersion in a region of interest within the pool was obtained during the first 5 

seconds while the mill was still stationary. An algorithm was developed in 
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MATLAB environment to facilitate the analysis of data. Presented in Figure 6.2 

are the results, showing the local scintillation intensity profiles of the radiotracer 

within the selected region of interest (ROI) in the pool.  

 

 

    (a)       (b)  

 

Figure 6.2: The local scintillation intensity map in the ROI within the slurry pool 

(prior to mill rotation), for slurry viscosity of (a) 10 cp and (b) 70 cp. 

 

 

The data presented in Figure 6.2 is 2D in nature since only one gamma camera was 

used in the experiment. The arbitrary selected region of interest within the pool, 

designated as ROI-1, spans 12 - 15 pixel elements horizontally and 4 pixels 

vertically. The x-y coordinates are expected to vary for different test runs 

depending on the orientation of the ball bed and the pool size at the beginning of 

the test. From the intensity profiles, a marginal variation in concentration of the 

radiotracer in the region of interest (ROI) within the slurry pool is expectedly 

evident. Therefore, to enhance the accuracy of our quantitative analysis, we apply 

spatial smoothing on intensity data over the region of interest (ROI) as follows: 

 

( )
1 1

*
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1 1
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Where,  

Io    : is the count rate at a local point within the ROI  
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x, y :   coordinates defining the ROI whose limits are n and m respectively.   

In the present case n and m lie in a domain of 64 x 64 or 128 x 128 

pixel elements 

 

Equation 6.2 can be rewritten in terms of concentration as defined in equation 6.3, 

in which Io is the average scintillation intensity while Css is the steady state 

radiotracer concentration. In the present case, Css is obtained as a ratio of the total 

volume of the radiotracer impulse to the total slurry holdup volume inside the mill.  

 

*
* o
o ss

ss

I
C C

I
λ

 
=  

 
        [6.3] 

 

The parameter Iss is the steady state scintillation intensity (count rate) that 

corresponds to Css. The steady state is assumed to have been attained once the 

scintillation intensity becomes invariable with time during mill rotation. 

 

6.3.2 Analysis of slurry flow path and distribution pattern  

Figures (6.3 - 6.5) present the gamma ray images of the slurry flow path and 

distribution profile within the ball charge for different levels of slurry viscosity and 

mill rotational speed. The results were obtained at regular time intervals over a 

span of 0 (mill stationary) to 20 seconds (when the dynamic steady state was 

assumed to have been reached). The data clearly indicates the variation of 

scintillation intensity detected from different positions within the mill regions. The 

scintillation intensity is described by the colour map where each colour represents 

a given level of intensity corresponding to a certain concentration of the 

radiotracer.  A similar procedure was applied in all the tests in order to allow a 

comparative analysis of the results. 

 

Figures 6.3(a), 6.4(a) and 6.5(a) illustrate the gamma camera imaging region 

during experimental test. Since the mill was slightly larger than the collimator (i.e. 

the collimator measures 60 x 40 cm) it was not possible to capture the events over 
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the entire mill diameter of 55cm. Thus it was ensured that the events in our main 

regions of interest were fully captured. 

 

 

 

 

Figures 6.3(a-h): Slurry flow path and distribution map at slurry viscosity, 10cp 

and mill speed, 28% of critical. 

 

 

 

 
 

Figures 6.4(a-h): Slurry flow path and distribution map at slurry viscosity, 70cp 

and mill speed, 28% of critical. 
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Figures 6.5(a-h): Slurry flow path and distribution map at slurry viscosity, 70cp 

and mill speed, 60% of critical. 

 

 

 

Case I: Viscosity of 10 cp, speed of 28% of critical 

The tracer is injected into the pool as a pulse as shown in Figure 6.3b. Once the 

mill is rotating, the tracer gets swept by the lifters into the ball charge and flows 

predominantly along the mill wall as depicted in Figure 6.3c. The portion of slurry 

entrained into the ball charge along the inner ball layers follows the balls’ 

circulation path and regurgitates into the pool without reaching the shoulder as 

shown by Figure 6.3d. The portion of slurry swept along the mill wall is dragged 

up to the shoulder before draining back into the pool. During flow back, a part of 

the slurry flows with avalanching ball layers along the free surface while the rest 

seeps through the porous ball charge under the effect of gravity. The slurry exhibits 

high mobility due to its lower viscosity and it is able to percolate easily through the 

pores of the ball charge. After 2 revolutions, the load starts to get saturated with 

slurry but still there is higher concentration of slurry within the peripheral ball 

layers and along the load free surface as compared to the inner regions of the ball 

charge. Between 3 and 5 revolutions, there is no discernible change in radiation 

intensity within the pool which indicates that a dynamic steady state would have 

been reached. Equally, the slurry appears to be well dispersed within the ball 

charge. At this point, the pool outflow is balanced by the inflow from the ball 

charge, keeping the pool volume constant.  
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Case II: Viscosity of 70cp, speed of 28% of critical 

In Figure 6.4b, the tracer is similarly introduced into the pool as a pulse. Some 

little splashing of slurry occurs as depicted in Figure 6.4c. Due to higher viscosity, 

the slurry has less mobility to move independently hence is dragged all the way to 

the shoulder and flows back into the pool along the free surface as shown in Figure 

6.4d.  The slurry takes longer to report back to the pool as compared to the case of 

dilute slurry (i.e. 10cp). This observation concurs with the findings from the DEM-

SPH simulation by Cleary et al (2006). It is interesting to observe that after 3 

revolutions, the inner region of the ball charge is yet to be fully saturated. In this 

region, the balls are densely packed which limits the ability of viscous slurry to 

entrain in. The slurry is relatively concentrated along the mill wall and along the 

load free surface. At 5 revolutions, the load appears to be saturated with slurry. At 

this point, a large proportion of slurry is trapped in the ball charge which causes 

the charge to expand as evidenced by a smaller pool at the toe.  

 

The foregoing observations may lead to the conclusion that increasingly dilute 

slurry could lead to under-grinding  since the slurry spends a shorter time within  

the ball charge while increased slurry viscosity could lead to over-grinding since 

the slurry takes longer to drain from the load. However, it is worthwhile to note 

that under excessively high viscosity conditions, the mill might go “off the grind” 

hence a desirable level of slurry viscosity must be established which optimizes 

both breakage and transport of ore progenies inside the mill. 

 

Case III: Viscosity of 70cp, speed of 60% of critical 

Figures 6.5(a-h) depict the slurry flow pattern and mixing behavior at mill speed of 

60% of critical and slurry viscosity of 70 cp. The radiotracer impulse is introduced 

into the pool of slurry as shown in Figure 6.5b. Immediately the mill is switched 

on, the slurry gets swept into the ball charge by the lifters and dragged higher up 

along the mill wall to the shoulder as shown in Figures 6.5(c, d).  Compared to 

case II, the slurry takes a shorter time to report back to the pool which is expected. 

It can be observed that after only 3 revolutions (Figure 6.5g) the slurry is already 

entrained into the inner region of the ball charge. After 4 revolutions, the ball 

charge appears to be well saturated with slurry.  
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6.3.3 Analysis of slurry radial mixing behaviour 

Mill performance is sensitive to internal mixing behaviour, hence there must exist 

mixing conditions that are beneficial to mill performance. In light of that, a 

quantitative analysis was performed here to determine the rate of slurry saturation 

in the inner region of the ball charge which is related to the mixing dynamics 

within the ball charge. The region of interest (ROI) was selected such that the 

vertices (also known as child points) form an irregular shaped polygon which 

closely describes the profile of the inner region around the load’s centre of 

circulation. Majority of the methods presented in literature for quantifying the 

extent of mixing are statistical due to stochastic nature of the mixing process and 

among them the mixing index and variance are commonly used. In this study, the 

variance method (Fan and Wang, 1975) was applied due to randomness of the 

process. The saturation index (S) which characterises the degree of mixing within 

the ball charge was obtained by comparing the tracer concentration in the ROI at 

any given time (t) to its initial value (t = 0).  The saturation index, S is defined 

mathematically as: 

 

 

( )2

1

1
( ) ( ) (0)

1

N

i

i

S t C t C
N =

= −
− ∑       [6.4] 

where,  

N     :  is the number of pixels in the ROI,  

Ci(t) :  is the normalised concentration in pixel cell i at time t  

���:  is the average normalised concentration in the ROI at time, t = 0.  

 

Higher values of S mean less variability in the slurry saturation pattern within the 

ball charge which implies better mixing. 

 

Figure 6.6 presents the profiles of the evolving tracer concentration distribution 

within the inner region of the ball load (related to the mixing pattern) for the two 

viscosity levels tested at a constant mill speed of 28% of critical.  Note that the 
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signals were pre-processed and filtered using MATLAB software for background 

noise correction and trended with a polynomial fit. From the results in Figure 6.6, 

one can quickly observe that the inner region of the ball charge wets faster for the 

case of lower viscosity slurry than for higher viscosity slurry and that it stays 

relatively wetter for the case of higher viscosity slurry. This result could be 

explained as follows: The reduced mobility of slurry at higher viscosity (low 

diffusivity) causes the slurry to remain trapped in the inner circulating layers for 

longer thereby keeping the region relatively laden with slurry (i.e. higher saturation 

index). At reduced viscosity, the slurry tends to drain from the ball charge much 

faster. The transients in our data might be due to constant displacement of slurry by 

balls and occasional migration of balls into and out of the inner ball charge region, 

a phenomena previously reported by Hogg and Fuerstenau (1972).  

 

 

 

         

 

Figure 6.6: Effect of slurry viscosity on the rate of mixing and saturation pattern 

of the inner region of the ball charge at constant mill speed of 28% of critical. 
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The effect of varying mill rotational speed on the mixing behaviour of slurry is 

demonstrated in the results presented in Figure 6.7. Two different mill speeds, 28 

and 60% of critical were assessed at a constant slurry viscosity of 70 centipoises.  

The results in Figure 6.7 reveal a noticeable influence of mill speed on the degree 

of slurry dispersion within the ball charge. The rate of convective flow of slurry 

into the ball charge is relatively faster at mill speed of 60% of critical. This is 

reflected in the signal profiles in Figure 6.7 during the first 10 seconds before 

diffusive mixing sets in.  Here, the signal profile for 60% of critical speed is 

steeper than that for 28% of critical speed. The partial drop in radiotracer 

concentration after the peak as portrayed in Figure 6.7 could be attributed to 

continuous dispersion of the tracer within the ball charge as the mill rotates. Note 

that at high rotational speed, the charge bed gets dilated (Mellmann, 2001), thereby 

presenting more voids for slurry entrainment. 

 

 

 

 

Figure 6.7: Effect of mill rotational speed on the rate of mixing and saturation 

pattern of the inner region of the ball charge at constant slurry viscosity of 70cp. 
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In order to establish the mixing time of slurry within the ball charge a comparison 

of the tracer concentration profiles in two regions of the ball charge, one near the 

mill wall and the other at the eye was undertaken. It can be observed in Figure 6.8 

that mixing time within the ball charge is markedly affected by mill speed. For mill 

speeds of 60 and 28% of critical, mixing appears to have reached a steady state 

after 10 and 16 seconds respectively. This result further implies that mixing is a 

rapid process which backs up the findings by Chibwana and Moys (2006). 

 

 

 

Figure 6.8: Comparison of slurry mixing time within the ball charge at a constant 

viscosity of 70cp. 
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assessed. From the results in Figures 6.9, it can be deduced that the volumetric 

interchange of slurry between the pool and ball charge is dependent both on mill 

speed and slurry viscosity.  In the duration designated as A, in Figure 6.9, slurry 

radial transport is dominated by convection due to the lifter effect while viscosity 

effect is largely unnoticeable. In the duration designated as B, a substantial amount 

of slurry has been swept into the ball charge. The slurry disperses continuously to 

fill up the voids within the ball charge (by diffusion and percolation) while part of 

slurry flows back into the pool due to gravity effect. Due to slurry recirculation 

between the pool and ball charge, the rate of change of pool tracer concentration in 

this duration is characteristically low. Here viscosity plays a significant role by 

influencing the rate of diffusion and percolation.   

 

 

 

        

 

Figure 6.9(a): Effect of slurry viscosity on the rate of slurry transfer from the pool 

to the ball charge.  
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Figure 6.9(b): Effect of mill rotational speed on the rate of slurry transfer from the 

pool to the ball charge.  

  

 

 

The slight variation of steady state pool tracer concentration between the two 

signals in Figures 6.9 (a, b) indicates the difference in the volume of slurry 

transported out of the pool into the ball charge while the periodic oscillation of 

signals (though not obvious) appears to correspond to the slurry turnover time. The 

superimposed transients on the signals may result from the pool turbulence upon 

interaction with lifters and with the avalanching balls. Further analysis of the signal 

features reveals that at low viscosity, the slurry has a shorter turnover time; a part 

of the slurry does not reach the shoulder instead it circulates along the inner ball 

layers. However, the reproducibility of this trend cannot be ascertained since only 

a limited number of tests were performed. 
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6.4.1 Relationship between tracer concentration and slurry flow 

Figure 6.10(a) physically describes the anticipated flow path of the radiotracer 
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exchange between the pool and ball charge region. The general assumption in 

tracer tests is that both the carrier fluid and the radiotracer flow in a similar pattern, 

which is the basis of the current model. 

 

 

            

         (a)     (b)  

Figure 6.10: (a) Physical model illustrating the flow path of the radiotracer inside 

the mill (b) an equivalent model illustrating the flow of slurry.  

 

 

 

As a criterion for adequate analysis of the data, two regions of interest (ROIs) 1 

and 2 were identified representing the pool and the ball charge respectively as 

illustrated in Figure 6.10. The slurry transport kinetics between the pool (region 1) 

and the ball charge (region 2) can be defined by equation 6.5 which describes the 

volumetric balance of the radiotracer in the slurry pool at any time instant.  

( ) ( )P
SP SB B SP P

dC
kV q C t q C t

dt
= −       [6.5] 

Where  

CP(t): the average concentration (vol/vol) of the radiotracer at the 

ROI within the pool region at time t, which is proportional to 

the intensity of the radiations detected from the ROI.  

CB(t): the average concentration (vol/vol) of the radiotracer at the 

ROI within the ball charge at time t, which is proportional to 

the intensity of the radiations detected from ROI.  
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  VSP:  the total volume of slurry in the pool (m
3
) 

  qSP:             flow rate of slurry from the pool into the ball charge (m
3
/s) 

  qSB:             flow rate of slurry out of the ball charge into the pool (m
3
/s) 

    k :             a proportionality constant (i.e. volume of ROI (1) = k*VSp) 

 

  

 

The decay factor for technetium, 
99m

Tc is 2.3 x 10
-5

 s
-1

, which is considered too 

small to have any significant impact on our results hence is ignored. Dividing 

equation 6.5 by qSP yields the following expression. 

 

1
( ) ( ) ( ) ( )

sp SBP P
B P B P

SP SP sp

kV qdC dC
C t C t AC t C t

q dt q dtδ
 

= − ⇒ = − 
 

[6.6] 

 

The parameter A is the cross-flow ratio while ��� [s
-1

] is a coefficient that indicates 

the rate of slurry transfer from the pool to the ball charge region. The parameter k 

is constant of proportionality which relates the volume of the ROI within the pool 

to the total volume of slurry in the pool. It is obtained as the ratio of the ROI area 

to the total pool area in pixel values. The values of k for cases I, II and III are 0.26, 

0.48 and 0.45 respectively. Equation 6.6 represents the change in tracer 

concentration with time within the pool as recorded by the gamma camera, 

corresponding to the difference of scintillation intensity between the pool and ball 

charge region.  

 

Due to gamma rays source intensity attenuation within the ball charge region 

(which vary with steel thickness and slurry saturation level), an attempt to measure 

( )BC t  would be challenging and error laden; Instead it would be appropriate to 

apply radiotracer balance method (RBM) (IAEA, 1975; Tugrul and Altinsoy, 

2002) which is based on the principle of conservation of radiotracer. In this case, 

( )PC t and ( )BC t are correlated through a proportionality constant such that, 

 

*( ) * ( )B o PC t C C tβ= −        [6.7] 
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in which *

oC  represents the ‘reference concentration’ (vol/vol). Substituting for 

CB(t) in equation 6.6 and simplifying yields an expression of the form: 

 

( )*1
( ) 1P

o P

sp

dC
AC C t A

dt
β

δ
= − +       [6.8]  

 

The solution to equation 6.8 for an input pulse *

oC  was obtained with initial 

conditions set as follows:  at t = 0, ( )PC t = *

oC , hence, 

 

( )
( )( )

* 1
( ) 1 1 exp 1

1

o
P SP

AC A
C t A t

A A

β
δ β

β
 +  = + − − +  +   

  [6.9] 

 

Since relative values and not absolute values of concentrations are of more interest 

here, equation 6.9 can be expressed in form of dimensionless pool radiotracer 

concentration, equation 6.10 in which������� � ��������. 
 

( )
( )( )* 1

( ) 1 1 exp 1
1

P SP

A A
C t A t

A A

β
δ β

β
 +  = + − − +  +   

  [6.10] 

 

Notice that only measurements of tracer concentration within the pool region 

would be sufficient to compute the values of����, A and β which are determined by 

fitting the model to the experimental data. If the mill holdup and the pool volume 

(VSP) are known, it would be possible to determine the value of qSP. In practice the 

approximate volume of the pool can be computed based on mill geometry and the 

measured slurry angles recorded by the mill instruments.  

 

6.4.2 Model fitting 

The simple model based on tracer balance is derived in section 6.4 to describe the 

slurry transport between the pool and ball charge. Fitting the model to 

experimental data presented in Figure 6.9 allows the quantitative estimation of the 

slurry volumetric transfer rate from the pool into the ball charge. Figure 6.11 
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shows how the model describes the experimental data at different slurry viscosities 

and mill speed. From the fitted data, the slurry radial transport coefficient defined 

by,  was determined for the three conditions as 0.1972s
-1

, 

0.1469s
-1

 and 0.2490s
-1

.  Accordingly, it may be concluded that slurry transfer rate 

between the pool and the ball charge is affected to a greater extent by mill speed 

than slurry viscosity. 

 

 

Figure 6.11: Tracer radial transport model fitted to experimental data for viscosity 

of 10 and 70cp at mill speeds of 28 and 60% of critical speed.  

 

 

 

6.5 Conclusions 

The work presented in this chapter demonstrates the effectiveness of a gamma 

camera as a non-invasive tool for probing the slurry flow behaviour inside a 

laboratory ball mill.  Technetium-99m radioisotope tracer revealed the slurry flow 

path from the pool into the ball charge, its distribution map within the ball charge 

and the mixing time. It further gave a qualitative description of the slurry exchange 

rate between the pool and the ball charge for two levels of slurry viscosity and mill 

speed tested. The influence of both viscosity and mill speed on the slurry flow 
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behaviour has been clearly discernible. The slurry mixing time in the ball charge 

varied inversely with mill rotational speed which is consistent with literature 

findings. The rate of slurry flow from the pool into the ball charge has been well 

described by the radial transport model.  The model coefficient that characterises 

the slurry transfer rate from the pool and ball charge displayed a strong dependence 

on mill speed than slurry viscosity.  

 

The success achieved so far from the experimental work described here is a clear 

pointer to the fact that, more useful insight of the slurry flow behaviour in an 

overflow mill can be reliably acquired in a laboratory scale mill using gamma 

emission imaging technology. But, it is important to point out that, due to stringent 

procedures and other challenges related to the handling and use of radioactive 

material, only a few experimental tests were done.  

 

The next chapter focuses on the analysis of slurry residence time distribution 

(RTD) and volumetric holdup data obtained on an industrial overflow ball mill by 

salt tracer tests. 
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7.1 Introduction 
 

The slurry residence time distribution (RTD) and the volumetric holdup inside the 

mill are mutually dependent and both have a leading influence on milling efficiency. 

The residence time distribution defines the mixing regime of material inside the mill 

while the holdup volume influences the effectiveness of material transport to the 

breakage zones and the rate of breakage. Therefore, it is imperative that the optimal 

slurry residence time and volumetric holdup that correspond to maximum milling 

efficiency be well established for any given mill operating conditions. This chapter 

presents the studies of slurry residence time distribution and volumetric holdup in a 

large industrial overflow ball mill using salt as a tracer. An overview of the 

fundamental theory of RTD is first presented followed by a discussion of the results 

of RTD tests. Lastly an analysis of the slurry volumetric holdup inside the mill is 

given for the set of operating conditions investigated. 

 

7.2  Fundamental theory of residence time distribution  
 
The residence time distribution (RTD) technique has been employed successfully for 

decades to characterise the transport of material in a wide range of engineering 

processes. The concept of RTD was first proposed by MacMullin and Weber in 1935 

(Fogler, 1992) for analysis of chemical reactors but later on Danckwerts (1953) 

developed it into a more definitive form by identifying and characterising various 

distribution profiles of interest. The tracer response is the method popularly used for 

RTD studies. Typically, measuring of RTD involves introduction of a tracer or salt at 

the feed and continuously or discretely monitoring the response at the discharge in 

terms of conductivity or concentration. If the tracer is injected as a pulse, then the 

fraction of tracer that remains in the system at any time (assuming constant flow rate 

through the mill) can be described by the distribution function E(t) mathematically 

defined as follows (Levenspiel, 1972): 

 

0

( )
( )

( )

C t
E t

C t dt

∞=

∫
        [7.1] 
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Where C(t) represents the concentration of the tracer in the discharge stream as a 

function of time while the integral of C(t)dt defines the area under the curve. 

Interpretation of the RTD curves is based on moment analysis which provides an 

indication of various aspects of flow in a reactor. The zero
th

 moment is related to the 

material holdup in the system which is represented by the area under the curve. For 

normalized RTD data, the area under the curve is equal to unity. 

 

0

0

( ) 1M E t dt

∞

= =∫        [7.2] 

 

The first and second moment of the RTD function around the origin give the mean 

residence time (τ) and the variance (σ2
) respectively, where the latter is a measure of 

spread of the RTD curves about the mean value. 

 

0

( )t E t dtτ
∞

= ∫         [7.3]

2 2

0

( ) ( )t E t dtσ τ
∞

= −∫        [7.4] 

 

The shape of RTD curves depends on the combined effect of the flow behaviour and 

mixing performance inside the process equipment, which is usually related to the 

RTD function parameters i.e. mean residence time and variance. This information is 

important for diagnostics as well as control purposes. Specific multivariate processes 

such as wet ball milling require accurate knowledge of the material residence time 

inside the process vessel in order to effectively control and optimize the process. 

Studies by Kelsall et al (1970), Hogg (1984), Kinneberg and Herbst (1983), Austin et 

al (1984) and King (2001) have shown that residence time distribution function is a 

key component of the breakage behaviour model for continuous mills. The residence 

time distribution function describes the flow through the mill while grinding 

equations describe the breakage behaviour as a function of time. 

 

In this study, salt tests have been performed on an industrial secondary ball mill at 

different operating conditions. The aim was first to establish the effect of changes in 
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key mill operating conditions such as slurry properties and volumetric ball filling on 

residence time distribution and the subsequent impact on milling efficiency. 

Secondly, to explore a possible means to estimate slurry holdup volume inside the 

mill based on the tracer response data. 

 

7.3   Experimental results, analysis and discussion 

7.3.1 Summary of measured data 

Experimental tests were performed on an industrial mill described in chapter 3, 

during normal plant operation. The aim of this program was to investigate the slurry 

residence time distribution and holdup volume with particular attention to the effects 

of mill filling level and solids concentration in slurry. Table 7.1 presents 

experimental results obtained for twelve surveys of which six involved tracer tests. 

The measured residence times were obtained from the RTD data using equation 7.3. 

Since the mill feed was relatively fine (d80 < 300µm), the settling velocity of particles 

in the turbulent, intensely-mixed slurry pool would be very slow hence it was 

assumed that the liquid phase of slurry closely approximated the behaviour of the 

solids phase.  

 

 

Table 7.1: Summary of the measured data of slurry flow rates and holdup volume 

 

Mill 

Filling 

(%) 

 

Slurry 

%Solids 

 

In-mill 

S.G 

τmean 

(mins) 

Mill feed flow rate 

�� �(t/h) 

Slurry 

flow rate 
(m3/hr) 

Slurry 

holdup 
(m3) 

Solids Water slurry   

25 

67.3 1.90 25.40 304.8 158.3 463.1 237.87 100.70 

71.4 2.02 - 331.8 130.2 462.0 229.12 - 

74.5 2.11 - 343.7 122.2 465.9 218.54 - 

75.6 2.14 29.45 330.1 111.8 441.9 206.05 101.14 

30 

63.5 1.81 - 361.8 177.7 539.5 297.65 - 

65.0 1.85 - 318.8 175.2 494.0 267.36 - 

73.4 2.08 27.14 336.5 126.9 463.4 220.89 99.92 

75.1 2.13 30.77 345.5 105.6 451.1 211.94 108.34 

33 

65.1 1.85 22.47 341.2 182.1 523.3 282.46 105.78 

67.7 1.92 - 332.9 148.4 481.3 251.35 - 

72.1 2.04 27.61 314.3 120.9 435.2 213.71 98.34 

75.6 2.14 - 321.8 98.3 420.1 195.96 - 
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7.3.2 Tracer response 

The tracer concentration in the discharge stream, corrected for the base (zero-tracer) 

concentration of slurry was determined from the conductivity measurements through 

a simple offline calibration procedure. This involved preparation of several slurry 

samples to different concentrations by dissolving a known mount of tracer (between 

0.3 and 1.5g) into each sample. The slurry samples were collected from the mill 

discharge stream prior to injection of the salt impulse. The volume of each slurry 

sample was determined through wet mass and dry mass analysis. The calibration 

equation was then obtained by mathematically relating the measured conductivity of 

the calibration samples to the tracer concentration. One should note that for validity 

of this calibration method, the calibration samples and tracer samples have to go 

through the same time history and that the conductivity measurement of tracer 

samples has to be conducted immediately after the calibration procedure. This would 

help to eliminate any possible errors that may arise from other ionic concentrations 

generated with time from continuous reactions occurring within the ore slurry.  

 

Figures 7.1(a-c), show the tracer concentration profiles for different mill operating 

conditions.  The effect of slurry % solids and load volume on tracer concentration 

distribution is easily seen in the Figures.  At same level of load volume, the data 

indicate a relatively broader concentration spectrum and a slower convergence of the 

tail towards zero for the cases with higher percentage of solids in slurry. This is 

related to the time spend by slurry in recirculation through the ball charge (rate of 

slurry influx and efflux in the ball charge).  
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Figure 7.1(a): Distribution of the tracer concentration in the mill discharge for ball 

load volume of J = 25%. 

 

   

 

Figure 7.1(b): Distribution of the tracer concentration in the mill discharge for ball 

load volume of J = 30%. 
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Figure 7.1(c): Distribution of the tracer concentration in the mill discharge for ball 

load volume of J = 33%. 

 

 

7.3.3 Slurry residence time 

The experimental results of the mean residence time of slurry inside the mill are 

summarized in Table 7.1. At same ball filling, the mean residence time shows an 

increasing trend with slurry % solids and load volume as depicted in the data 

presented in Table 7.1. This is because higher percentage of solids increases the 

viscosity of slurry thereby lowering its mobility. On the other hand, an increase in 

the ball loading from 25 to 30% and from 30 to 33% resulted in only small changes 

in mean residence time. The possible explanation for the observed marginal changes 

is that, an increase in the ball load tends to increase the slurry turnover time. It also 

reduces the slurry pool volume subsequently lowering the mill discharge capacity. 

But the combined effect of these two factors on slurry residence time is far less 

appreciable as compared to the effect of percentage of solids in slurry (related to 

slurry viscosity). 
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7.3.4 Feed flow rate  

At steady state, the volumetric flow rate of slurry through the mill is considered to be 

constant. So by assuming homogeneous mixing of salt and slurry inside the mill, the 

mean flow rate of pulp (solids and water) through the mill can be analytically 

determined based on the tracer concentration profile at the mill discharge which is 

related to the mass balance of the tracer. The area under the concentration-time curve 

represents the amount of tracing material in the mill discharge stream. This can be 

expressed by tracer balance equation as, 

0

( )tM F C t dt

∞

= ∫        [7.5] 

Where Mt is the mass of salt impulse (tracer) and F is the volumetric flow rate. The 

mass flow rate of solids (�� �), ore water (�� �) and pulp (�� �) can be calculated using 

the following expressions: 

 

�� � � ���� ���� �������� � ��� �� �  !
"##��$�� !

%�� � ���� �������� � ���� ��� � �� �� ��������  [7.6] 

 

in which the term ρl  refers to the density of water and xs is the weight percentage of 

solids in slurry. For a given level of slurry volumetric flow rate, F, the slurry hold-up 

mass (Msl) and hold-up volume (Vsl) can be obtained as: 

 

;sl p mean sl meanM m V Fτ τ= =ɺ      [7.7] 

 

Presented in Figure 7.2 is a comparison of the measured and calculated values of the 

slurry flow rate through the mill. A marginal variation between the measured and 

theoretical values of flow rates is evident. This could possibly be due to a mass 

balance error, attributed to unaccountable tracer losses inside the mill. The observed 

variation of slurry volumetric flow rate with changes in slurry solids concentration 

can be approximated by a linear relationship. 
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Figures 7.2: Comparison of measured and calculated values of volumetric flow of 

feed slurry at different levels of percent solids and ball fillings.  

 

 

 

7.3.5 Slurry volumetric holdup  

At a constant feed flow rate and solids concentration in slurry the steady state slurry 

holdup volume in an overflow mill should essentially be constant. But increasing the 

feed rate would lead to an increase in holdup volume and discharge rate due to the 

rise in the level of slurry above the lip of the overflow opening to accommodate the 

increased slurry volume inside the mill (Fuerstenau et al, 1986; Klimpel et al, 1989). 

 

A comparison of slurry holdup volume calculated from the experimental data at low 

and high flow rates of water to the mill, corresponding to high and low percent solids 

in the feed slurry respectively reveals a noticeable variation as depicted in the results 

presented in Table 7.1. It is postulated that the observed trends in slurry holdup 

volume could be attributed to the viscosity effect on the flow behaviour of slurry and 

balls. Indeed, according to Smit (2000), an exponential increase in slurry viscosity at 

relatively high solids concentration in slurry (i.e. above 72%) significantly influences 
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the motion of balls inside the mill. The high viscosity would lead to a drastic increase 

in resistance to the flow of slurry, which subsequently impacts on load behaviour. 

This in effect has a predominant influence on slurry holdup volume. On the flip side, 

optimum solids concentration in slurry tends to boost the internal load friction which 

in turn suppresses ball-ball slippage thereby enhancing the lift action in the load. 

This in effect dilates the ball charge (higher voids volume), allowing more slurry to 

be entrained into the voids of the ball charge and consequently increasing the slurry 

holdup volume. It must however be stressed that if solids concentration is too high, 

load expansion is likely to occur which would lead to loss of lift and mill power. 

 

At the same percent solids in slurry, one would intuitively expect the dynamic slurry 

holdup volume to increase as the ball filling is increased since the additional balls 

would provide more interstitial volume to be filled with slurry as the load dilates; and 

that a point is reached beyond which further increase in ball filling results in a 

decrease in holdup volume as the volume of the pool replaced by additional balls 

exceeds the interstitial volume presented by the additional ball filling. This pattern 

could not be established in our results due to variations in slurry solids concentration. 

 

At ball filling levels of 25 and 30% of mill volume, it was observed that with 

increase in solids concentration in slurry (within the range investigated), the holdup 

volume also increases (See Table 7.1). This could be explained in relation to the 

viscosity effects on load behaviour. For ball load volume of 33%, an opposite trend 

in the variation of holdup volume is noted. Again, this is suspected to be due to 

changes in load behaviour.  

 

In light of the trends observed in the measured data an attempt was made to estimate 

the slurry holdup volume based on calculated mill feed rates. Figure 7.3 shows a 

comparison of the slurry holdup volume as estimated from the measured and 

calculated feed rates at different mill fillings and solids concentration in slurry. In 

both cases, the variation of holdup volume assumes a similar trend. The 

comparatively large deviation observed between the measured and calculated values 

at lower levels of solids concentration in slurry i.e. 65.1 and 67.3% could likely be 

due to measurement error in the feed rates. 
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One interesting observation in Figure 7.3 is the sudden change in slurry holdup 

volume after 72% solids. A similar trend was reported by Songfack and Rajamani 

(1999) who observed a drastic increase in holdup volume after 75% solids in an 

overflow ball mill running at 80% of critical speed. They attributed the behaviour to 

the exponential increase in slurry viscosity. 

 

 

Figures 7.3: Slurry holdup volume inside the mill at different levels of percent solids 

and ball filling as estimated from the measured and calculated flow rate data. 

 

 

 

Considering that mill performance is quite sensitive to the steady state slurry holdup 

volume, it is important that the intriguing trends in the variation of slurry holdup 

volume with changing ball load and slurry solids concentration discussed in the 

foregoing are given critical attention. Nevertheless, further exploration would be 

recommendable since the range of data assessed here was not sufficient to ascertain 

the reproducibility of the trends. 
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7.4  Mathematical correlations 

Premised on the observed trends in the data, an effort was made to correlate the 

slurry holdup volume computed from equation 7.7 with the governing variables: ball 

load volume (J), and slurry solids concentration (xs). The data was subjected to 

statistical analysis using KYPLOT software and the two independent variables 

passed the significance test. The regression curve that best matched the data was 

obtained by: 

 

0.601 1.231 99.27sl sV x J= − +      [7.8] 

 

Equation 7.8 conforms to the physics of the system by which, the slurry holdup 

volume, Vsl  = f (J, xs)  + Vo , where the functional term accounts for the second order 

effects of J and xs on unsteady state holdup volume, Vo. The negative coefficient of J 

indicates an inverse relation between slurry holdup volume and load volume. Figure 

7.4 shows the goodness of fit of equation 7.8 to the data with mean relative error of 

0.9%. The observed deviations are suspected to have emanated from the tracer 

balance error in equation 7.5.  

             

Figure 7.4: Plot of observed versus model predictions of slurry holdup volume      
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7.5  Conclusions 
 
The residence time distribution (RTD) and holdup volume of an industrial overflow 

ball mill were successfully studied for different conditions of slurry solids 

concentration and ball load volume. The effects of the slurry solids concentration and 

the ball load volume on the mean residence time of slurry were clearly depicted in 

the results. Further, it was possible to estimate the slurry flow rate through the mill 

using RTD data and the calculated values compared reasonably with the measured 

ones within the limits of experimental error.  Equally, the slurry volumetric holdup 

inside the mill was estimated on the basis of the measured slurry feed rates and 

residence times. The effects of slurry solids concentration on slurry volumetric 

holdup were evaluated and it was learnt that viscosity effects become dominant when 

the solids concentration exceeds 72%, impacting on the volumetric holdup. 

However, this remains simply speculative since no duplicate results were obtained to 

ascertain the reproducibility of the trend.  Finally, the slurry volumetric holdup was 

correlated with slurry solids concentration and ball load volume yielding plausible 

results. 

 

The data presented in this chapter has been modelled in Chapter 8 to provide 

estimates of the slurry RTD and holdup volume inside the mill for different 

conditions of slurry concentration and ball load volume. 
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CHAPTER 8 
 

Modelling Slurry RTD and 

Volumetric Holdup as a Function of 

Solids Concentration and Ball Load 

Volume  
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8.1    Introduction 
 

Mathematical models are often utilised to approximate complex physical phenomena 

in process devices. Rather than ‘build and test’, models can be developed to produce 

accurate emulation of the existing systems and through simulation, prior insights into 

the behaviour of the real systems can be made available. Also, the complex 

interactions within the system can be explored and evaluated at the lowest cost. 

Changes can then be made to the system to realise high efficiency and throughput. In 

this chapter, two models are presented; the first one describes the in-mill slurry 

residence time distribution (RTD) while the second describes the slurry volumetric 

holdup. The RTD model is derived using the concept of serial stirred mixers with a 

dead time component to depict the true RTD characteristics inside the mill. The 

volumetric holdup model on the other hand is derived from the idealised dynamic 

load profile defined by the media and slurry angular positions. The model takes into 

account mill geometry, load volume and slurry concentration.  

 

8.2 Modelling slurry RTD 

8.2.1 Background 

RTD models serve as a useful means of studying the flow patterns and mixing 

characteristics of continuous flow reactors. The methods used by previous 

researchers (Austin et al, 1983; King, 2001; Van Nierop and Moys, 2002) to model 

the RTD of rotary mills include (a) Serial stirred interactive tanks with and without 

recycle, where the number of tanks is large enough to give the same response 

measured at the outlet of the continuous reactor and (b) axial dispersed flow model in 

which the flow of fluid elements is likened to molecular diffusion characterized by 

the diffusion coefficient. Both approaches provide adequate description of the flow 

and mixing process in general.  However, with regard to multivariate nature of the 

milling process, no quantitative relationship is given between model parameters and 

various important mill operating variables. Hence one of the objectives of this 

chapter is to develop a model that accurately describes the residence time distribution 

(RTD) of slurry inside the mill as function of two important mill variables - slurry 

concentration and load volume. 
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8.2.2 RTD model 

8.2.2.1 Model structure and derivation 

Residence time distribution functions for ball mills can be adequately described by 

perfectly mixed segments (King, 2001). Therefore the derivation of the RTD model 

proposed in this study is based on this fundamental structure. The model consists of 

two small perfect mixers with mean residence times, τs in series with a large perfect 

mixer with mean residence time τl plus a dead time τd, as physically described by 

Figure 8.1. The dead time is included to account for non-ideal flow delays due to 

system dynamics.  

 

 

      

   

Figure 8.1: Schematic representation of the proposed RTD model  

 
 
8.2.2.2 System dynamics 
 

The mass balance around the 3 mixers assuming constant flow through the mill is 

given by, 

 

1 1( ) ; 1, 2, 3i i
i i i i i i

dC dC
V Q C C C C i

dt dt
τ− −= − ⇒ = − =ɺ

 
[8.1] 

 

 

The dynamics for the dead zone can be described by the Dirac plug flow function

( ) ( )d dE t tδ τ= − . The differential equations have to be solved to obtain the RTD 

function E(t). The concept of transfer function (Hopkins et al, 1969; Lima and 

Hodouin, 2005; Plugatyr and Svishchev, 2008) is applied in which the equations are 
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transformed from time domain to Laplace s-domain. Basically, the transfer function 

is defined as the ratio of the transformed time domain response and input functions. 

In the present case the measured response y(t) at the slurry discharge is related to the 

impulse input x(t) as illustrated by the transfer function diagram, Figure 8.2. 

 

 

 

 

Figure 8.2: Representation of the slurry transfer function in time domain 

 

 

 

The Laplace transform of the residence time distribution function E(t) yields the 

process transfer function, G(s) as: 

 

( )
[ ( )] ( ) ( ). ( ). ( ). ( )

( )
d s m L

y s
L E t G s G s G s G s G s

x s
⇒ = =    [8.2] 

 

Where s is the Laplace space variable and G(s) is the overall transfer function for the 

3 tanks in series plus dead time, as represented by Figure 8.3. 

 

 

                                                    

Figure 8.3: Process transfer functions for the tanks in series model 

 

The respective transfer functions in Figure 8.3 are defined in a standard way as, 
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From equations 8.2 and 8.3, the overall transfer function G(s) becomes: 

 

 

( ) ( )2
( )

1 1

d s

s L

e
G s

s s

τ

τ τ

−

=
+ +

      [8.4] 

 

The inverse Laplace transform of G(s) gives the residence time distribution function 

E(t), which represents the RTD model, equation 8.5. 

 

 

( ) ( )

( )
1

exp exp

( ) [ ( )]

l l

l s l s

l s

E t L G s

τ τ
γ γ α

τ τ τ τ

τ τ
−

    
− − − + −    − −    = =

−
 [8.5] 

 

Where,    
( ) ( )

;
d d

l s

t tτ τ
α γ

τ τ
− −

= =  

 

The overall mean residence time is sum of the individual residence times for the 

mixers and the dead time, estimated by fitting the model to experimental data. The 

model parameters are estimated by least-square criterion, by minimizing equation 

8.6, using a MATLAB built-in optimization function, LSQNONLIN, which is 

generally used to solve non-linear least squares problems as well as nonlinear data 

fitting problems. Details of MATLAB optimization functions can be reviewed in 

Mathworks online documentation (http://www.mathworks.com/support/tech-notes) 

 

( )2

e x p m o d

1

( ) ( )
N

r r

i

e E t E t
=

= −∑       [8.6] 

 

where, E(t)exp and E(t)mod represent the measured and estimated values of RTD 

function respectively while N is the sample space. 
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8.2.3 Model fitting to experimental data 

Figures 8.4 (a-c) show comparisons of experimental and predicted RTD curves over 

the range of conditions investigated.  It can be seen that the model described the 

slurry residence time distribution adequately. The values of the model parameters 

that yielded the best fits are presented in Table 8.1 together with experimental 

conditions. A comparison of the measured and model values of mean residence times 

reveals a close match as shown in the tabulated results, Table 8.2. It is noteworthy 

that since the level of slurry concentration was varied between the test runs, it was 

not possible to distinctly assess the effect of load volume on mean residence time. 

 

 

 

 

Figure 8.4(a): Comparison of experimental and predicted RTD curves for ball load 

volume of, J = 25%. 
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Figure 8.4(b): Comparison of experimental and predicted RTD curves for ball load 

volume of, J = 30%. 

 

  

 

Figure 8.4(c): Comparison of experimental and predicted RTD curves ball load 

volume of, J = 33%. 
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Table 8.1: Summary of the experimental conditions and values of the parameters in 

the residence time distribution model 

 

 

 

 

 

 

 

 

 

Table 8.2: Comparison of experimental and model values of the mean residence 

time for different conditions of ball load volume and slurry concentration 

 

Load volume (%) Slurry % solids 
τ(mins)  

Experimental 
τ (mins)  

Model 
R. error (%) 

25 
67.3 25.40 27.74 9.2 

75.6 29.45 31.84 8.1 

30 
73.4 27.14 29.26 7.8 

75.1 30.67 31.58 2.9 

33 
65.1 22.47 23.11 2.8 

72.1 27.61 28.98 4.9 

 

 
 
8.2.4 Model fit quality assessment using F-statistics 
 
It was considered expedient to statistically evaluate the fit quality of the Tanks-in-

series model to the RTD data. A one way ANOVA using the F-distribution was 

employed to assess if the variability within and between the data for the two 

treatments are significantly different. In the analysis, all the twelve data sets, six each 

for the model and experimental were considered i.e. 2 treatments and 12 

observations. The F-statistics was computed from the data and the value obtained 

was compared to the critical (table) value at 5% significance level. The null 

hypothesis is that the variances within the samples for the two treatments 

(experimental and model) are equal. Thus, if the F-statistics < F-table, then the model 

would be considered to have good fit quality to the RTD data.   

 Feed flow 

(F) m^3/min

Load volume 

(%) % Solids ττττL ττττs ττττd ττττ (mins)

3.96 25 67.3 20.63 2.965 1.18 27.74

3.43 25 75.6 24.31 3.154 1.22 31.84

3.68 30 73.4 21.93 3.105 1.12 29.26

3.53 30 75.1 23.95 3.214 1.2 31.58

4.71 33 65.1 16.93 2.694 0.79 23.11

3.56 33 72.1 22.08 2.919 1.06 28.98



Chapter 8 

Modelling Slurry RTD and Volumetric Holdup as a Function of Solids 

Concentration and Load Volume                                                                   

 

 

150

The results of the F-statistics are presented in Table 8.3 where k is the number of 

treatments and n is the total number of observations. Note that the degrees of 

freedom (df) refer to the dimensions of the domain of a vector subspace holding a 

sample of n-independent observations while the sum of squares (SS) is the 

summation of the squares of the variance, which is divided into two components: 

between samples and within samples.   

 

 

 

Table 8.3: Assessment of the fit quality of RTD model to experimental data using 

ANOVA at 5% significance level (α = 0.05)   

 

Source of 

Variance  

Sum of 

squares 

(SS) 

Degree of 

Freedom 

(df) 

Mean 

square  

MS = && '()  

F-Statistics 

* � +&, +&-)  

 

Between 

samples 

(Explained) 

 

SSB  = 

1.0083E-07 

 

(k-1)  =  1 

 

  +&,� � � ../012 

 
 = 1.0083E-07 

              

 

 

*� � ���34�35 

 

        =   0.0321 

 

    Fcritical (table) 

 

        =  4.9646 

 

Within 

samples 

(Unexplained) 

 

SSE =  

3.1438E-05 

 

(n-k ) =  10 

 

+&-� � � 3356$7 

 
 = 3.1438E-06 

 

 

 

 

Clearly the value of F-statistics is substantially lower than the table value and on the 

basis of this, it can be admitted that the variances between the model and 

experimental RTD data are not significantly different. Further the F- statistics  <  F-

table which signifies a good fit of the model to the data.  

 

 
8.2.5 Correlations 
 
Based on the observed trends in the data presented in Tables 8.1 and 8.2, an attempt 

was made to correlate the mean residence time (τ) with the governing variables: Ball 

load volume (J), slurry concentration (xs) and feed flow rate (F). Before regression 

analysis, the data was first standardized by unit variance scaling so that all the 
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variables have a standard deviation of one. Variance scaling allows the analysis to be 

based on correlations and not covariance as is the case with centering. In this case the 

standardized value of J would be given by ˆ / JJ J σ= . Note that standardization leads 

to a corresponding change in the scale of the regression coefficients and standard 

errors but no change is expected in the statistical significance.  

 

The regression analysis was performed using KYPLOT software and the fit curve 

that best matched the data was obtained by equation 8.7, with mean relative error 

(8�9� of 1.7% and 98% of variance explained. Notice that equation 8.7 complies with 

the physics of the system by which /V Fτ ε= +  where V and F represent the slurry 

holdup volume inside the mill and the feed flow rate respectively while ε accounts 

for the second order effects of J and xs on residence time. 

 

ˆ ˆˆ0.278 0.072 40.501/sx J Fτ = − +      [8.7] 

 

A close inspection of the standardized regression coefficients in equation 8.7 reveals 

the dominant effect of feed flow rate on slurry residence time, which is expected. But 

comparing the relative impacts of ball load volume and slurry concentration as 

indicated by the regression coefficients, it is clear that the latter has a stronger effect 

on residence time. This result reinforces the findings by other researchers (Kelsall et 

al, 1970; Hogg, 1984; Songfack and Rajamani, 1999) that at constant feed flow rate 

the effects of slurry properties play a dominant role in defining the mass transport 

inside the mill.  

 

 

Using τ values from equation 8.5, the correlations for the RTD function parameters 

(τL, τS, τd) were also obtained and the resultant equations are given as follows: 

 

2

2

2

( ) 0.841 2.531 : 0.99; 0.55%

( ) 0.057 1.377 : 0.90; 1.45%

( ) 0.046 0.222 : 0.83; 4.14%

L rel

s rel

d rel

a R

b R

c R

τ τ ε

τ τ ε

τ τ ε

= − = =


= + = = 
= − = = 

  [8.8] 
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The values of the empirical coefficients were determined from regression analysis. 

Note that equations 8.8, provide a simple means to predict the RTD function E(t) 

without necessarily having to perform tracer tests providing the values of  

measurable variables, J, xs and F are known. The form of these equations easily 

allows for normalization by τL into dimensionless form that may allow for scaling to 

other mills. 

 

Presented in Figure 8.5a is a comparison of the experimental values of residence 

time, τ versus equation 8.7 values estimated by regression and equation 8.5 values, 

illustrating the ‘goodness of fit’. Notice that equation 8.5 tends to over-predict the 

residence time, a trend suspected to be related to the extended tails of the RTD 

curves. Figures 8.5(b-d) on the other hand show the comparisons of the empirical 

estimations of the parameters, τL, τS and τd using equation 8.8 versus equation 8.5 

predictions. Notice that the highest mean relative error (8�9 ��4.14%) is displayed in 

the values of dead time (τd); however, its contribution to the mean residence time is 

small due to typically low values of dead time. 
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Figures 8.5: (a) Experimental values of residence time versus predictions by 

equations 8.5 and 8.7, (b-d) Empirical values obtained by equation 8.8 versus 

equation 8.5 predictions.  

 

         

 

8.2.6 Conclusions 

The residence time distribution (RTD) of slurry in a large ball mill has been studied 

under different conditions of slurry concentration, ball load volume and feed rate 

based on tracer response data. Trends in the results revealed that mean residence time 

increases as slurry concentration is increased but decreases with increase in feed flow 

rate. The effect of ball load volume could not be clearly delineated owing to the 

nature of experimental design. The experimental RTD data was modelled using three 

perfect mixers (two small and one large) in series with dead time and the model 

adequately described the experimental data. The estimated model parameters 

compared well with those obtained by empirical correlations. The mean residence 

time (τ) correlated linearly with slurry concentration and ball load volume but 

inversely with feed flow rate. The correlation equation fitted fairly well to the 

experimental values of τ with mean relative error of 1.7% and 98% of variance 
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explained. Slurry concentration showed a greater influence than ball load volume on 

mean residence time as indicated by the values of the standardized correlation 

coefficients. Therefore it is admissible that the model proposed here can reliably 

account for the combined effects of load volume and slurry concentration on the mill 

RTD and subsequently the grinding behaviour. For now the model is only valid for 

the mill investigated but with availability of data, it can be reproduced elsewhere.  

 

 

8.3 Modelling of slurry volumetric holdup 

8.3.1 Background 

The sensitivity of slurry volumetric holdup to the performance of wet tumbling mills 

is well established in literature (Abouzeid and Fuerstenau, 1980; Hogg, 1982, 

Rogovin, 1987; Nasr-El-Din et al, 1992; Songfack and Rajamani, 1999). For 

instance, a mill overly filled with slurry (high holdup volume) would cushion the 

media impacts thereby lowering ore breakage rate whereas a mill depleted of slurry 

would experience direct ball impacts causing wear and breakage of balls. Hence, it is 

important that an optimum slurry holdup level is maintained during mill operation to 

maximise energy efficiency at desired rate of output. This is only achievable if there 

is an effective means to estimate slurry holdup volume inside the mill as a function 

of key operating conditions.  

 

Until now, estimation of slurry holdup volume inside the mill has popularly been 

accomplished based on residence time distribution (RTD) studies (Kelsall et al, 

1969; Abouzeid et al, 1974; Gardner et at, 1982; Afacan et al, 1990). This owes to 

the convenience and reliability associated with the technique. However, the 

technique suffers one major limitation in that measurements have to be done offline. 

This criterion might lead to delayed or untimely intervention by the operator where 

undesirable holdup conditions are detected. Thus, it is desirable to have a technique 

for real-time on-line monitoring of in-mill slurry holdup volume and its variation. 

 

Methods for on-line estimation of slurry holdup volume presented in literature are 

largely based on information about the load weight obtained from load cells or strain 
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transducers mounted underneath the mill. The assumption here is that the dynamic 

ball load and in-mill slurry density are kept constant which is a clear uncertainty. 

Indeed this explains why many combinations of balls and slurry could have the same 

weight but comprising different proportions of these components. To address this 

challenge, the slurry holdup volume may be inferred from measurable mill variables 

such as relative positions of media and pulp, mill filling level and the relevant mill 

geometric parameters. This information would be fed to a process model which 

returns a close estimation of the slurry holdup volume inside the mill. 

 

The positions of balls and slurry inside the mill can be measured as a function of key 

mill operating variables using direct sensors installed through the mill shell. 

Examples of direct sensors for load position measurement that have been reported in 

literature include (i) Conductivity probes (Moys, 1985; Vermeulen et al, 1985; Moys 

and Montini, 1987; Moys et al, 1996) (ii) Force probes (Skorupa and Moys, 1993); 

Van Nierop, 2001; Tano et al, 2005) (iii) Proximity sensors (Kiangi and Moys, 2006) 

and (iv) SENSOMAG
®

 (Clermont et al, 2008).  

 

Direct interaction of the sensors with the load provides fairly realistic and reliable 

information of the load dynamics inside the mill which can be mathematically related 

to the slurry holdup volume and linked to the mill monitoring system. Hence, our 

aim here is to develop a simple but reliable semi-empirical model for on-line 

estimation of slurry volumetric holdup inside the mill at different levels of slurry 

concentration and load volume based on load position signals as detected by the on-

line ball and pulp sensors  

 

8.3.2 Model structure and derivation 

8.3.2.1 Physical and mathematical descriptions 

To allow for mathematical analysis to be performed on the dynamic load, the 

dynamic shape of the load inside an overflow ball mill can be approximated to a 

profile shown in Figure 8.6 in which RM is the mill radius inside liners and RT is the 

radius of the discharge opening.  
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Figure 8.6: Representation of important dynamic load angles in an overflow mill. 

 

 

 

From Figure 8.6, the angle subtended by the slurry pool (φ) is the difference between 

the media toe angle and the slurry pool angle (i.e.
T P

φ θ θ= − ). The length of the 

chord C - C equates to the minimum overflow filling (Jo) where the mill operates 

with minimum discharge of slurry. This is evaluated based on the size of the 

discharge trunnion and the geometry of the stationary ball charge. Jo is subtended at 

the mill centre by an angle ( Sψ ), which is referred to as static media angle. The 

values of 
S

ψ  at various levels of J can be obtained using an empirical relation as 
S

ψ  

= 4.142J
0.415

 (see Appendix E). Alternatively, the static media angle can be estimated 

from a simple relationship involving the number of lifting bars around the mill 

circumference that are visible when the mill is stationary. The static media angle 

would be proportional to the number of invisible lifting bars covered by the media 

charge. 
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O

M
e
d
ia

 +
 S

lu
rr

y

(D
yn

a
m

ic
 lo

a
d
)

0°

270°

180°

90°

θ
S (Media)

θT

Slurry 

 pool

θ
p

θ
S (Slurry)

ΩΩΩΩ
θθθθ1111

RM

R T

φφφφ

L1
L2

c c



Chapter 8 

Modelling Slurry RTD and Volumetric Holdup as a Function of Solids 

Concentration and Load Volume                                                                   

 

 

157

where, nL is the number of visible lifting bars and nT is the total number of lifting 

bars around the mill circumference. Other load angles θ1and Ω depicted in Figure 8.6 

can be obtained through geometric relations in the form, 

 

1 ( ) / 2Sθ π ψ= −  ; 
1/ 2π θΩ = −     [8.10]  

                        

Our industrial data indicates that the average level of slurry necessary to give 

overflow is much higher than that necessary to fill the mill to the overflow level at 

rest. Hence, the angle 
1θ  is at maximum when the slurry level is just at the lip of the 

overflow opening. It reduces with increase in slurry level and becomes zero when the 

slurry level reaches the centre of the overflow opening.  

 

From the geometry of Figure 8.6, the length of the cord representing the pool free 

surface (i.e. from the mill shell to the free surface of the ball charge) is the sum of L1 

and L2 which is denoted as Lc. The values of L1 and L2 can be evaluated 

geometrically while L2 can be determined through a correlation with ball loading, J 

and mill radius, RM as follows: 

 

L1   = 
2 2

M TR R−     ;     L2  ≈  (0.711 1.404 ) MJ R−     [8.11] 

 

Lc    =    ( ){ }2 2 0.711 1.404M T MR R J R− + −        [8.12] 

The values of the coefficients of RM and J in equation 8.11 were established by 

regression analysis using DEM simulation data (for details see Appendix E). 

 

 

8.3.2.2 Determining slurry volume within the ball charge 

Generally it would be assumed that, when the load is fully saturated with slurry 

(optimum slurry loading), the media and slurry shoulder angles should coincide; in 

this case θS(media)   =   θS(slurry). Under this condition, the total volume of slurry within 

the ball charge can be calculated as follows: 
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( )S load B B millV K J Vε=
       [8.13] 

 

Where Vmill is the volume of the mill inside liners, εB is the static porosity in the ball 

charge, taken as 0.4 while KB is a correction factor that is related to the degree of load 

dilation. The general assumption here is that the cataracting media hold insignificant 

volume of slurry with them. So where the media flow regime is predominantly 

cascading, the parameter KB can be equated to the ratio of the static and dynamic 

media angles. Equation 8.13 may however result in minor errors considering the 

effects of gravity, cohesive forces and load porosity on slurry flow at the load 

shoulder position. On the basis of this argument, it would be prudent to introduce 

some modifications as follows: 

 

( )

( )

( )

S slurry

S load B B mill

S media

V K J V
θ

ε
θ

=       [8.14]  

 

Where θS(media)  and  θS(slurry)) refer to the shoulder angles (degrees) of the media and 

slurry respectively while J is the fractional filling of the mill with ball load.  

 

 

8.3.2.3 Determining the volume of slurry pool 

The volume of slurry in the pool could be geometrically estimated from the media 

toe angle and slurry pool angle both of which are measurable parameters. But in 

view of the undefinitive nature of the pool profile at the interface with the ball 

charge, it would be worthwhile to consider some simplifying assumptions in order to 

allow for mathematical analysis. Based on the pool geometry in Figure 8.6, it is 

assumed that: 

 

(i) The profile of the interfacial surface between the pool and the ball 

charge approximates to a half-parabolic arc and that the length of the 

arc would vary with pool volume. 
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(ii) The depth of the pool is defined by an arc that constitutes the outer 

boundary of the pool with the mill shell and which subtends an angle 

φ at the mill centre. 

 

Under normal operating conditions, the slurry toe angle would remain almost 

constant as the mill rotates. Therefore, the value of L1 (see Figure 8.6) is constant 

corresponding to the minimum overflow filling (Jo) while L2 would increase with a 

decrease in the level of media filling. The volume of slurry in the pool can thus be 

obtained using an expression which is derived from the equation for calculating the 

area of a parabolic segment (NCEES, 2008). The angle φ in equation 8.15 is 

presented in radians. Note that the parameter Kp is introduced here as a geometric 

correction factor. 

 

( )( )2 2

( )

0.711-1.404
M M T

c
S pool p mill p mill

M M

J R R R SinL
V K V Sin K V

R R

φ
φ

π π

+ +
= =    

…….. [8.15] 

 

8.3.2.4 Total slurry holdup volume 

The total volume of slurry in the mill (
( )S millV ) is given as the sum of the slurry 

volumes in the pool and within the load, equations 8.14 and 8.15, that is: 

 

 

( )( )2 2

( )

( )

( )

0.711 1.404 M M T
S slurry

S mill B B mill P mill

S media M

J R R R Sin
V J K V K V

R

φθ
ε

θ π

− + +
= +  

         ……... [8.16] 

 

The only parameters to be measured in equation 8.16 are the media and slurry angles. 

The constants Kp and KB are determined empirically by fitting the model to 

experimental data.  
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8.3.3  Model calibration 

8.3.3.1 Media and slurry position data  

The data presented in Table 8.4 represents the mean values of the media and slurry 

position recorded by the on-line media and slurry sensors during the 12 sampling 

surveys. It depicts the variation of ball and slurry positions inside the mill as the 

slurry concentration and load volume changes. Using this data the geometric 

parameters defined in equation 8.16 can be evaluated.  

 

Table 8.4: Summary of the load position data recorded by SENSOMAG sensors  

Ball load 

volume    

(%)   

Slurry 

solids 

(%) 

Slurry 

toe angle  

       (%) 

Slurry shoulder 

angle  

(
0
) 

Ball toe 

angle  

(
0
) 

Ball shoulder 

angle  

(
0
) 

 

25 

 

75.6 

 

98.0 

 

301.8 

 

131.2 

 

294.9 

71.4 97.8 302.8 132.7 295.5 

74.5 98.1 301.9 131.1 295.4 

67.3 97.4 303.7 133.3 296.0 

30 75.1 97.0 307.1 126.2 301.6 

73.4 97.1 308.0 127.7 301.4 

65.0 97.1 309.0 128.8 301.5 

63.5 96.8 310.0 129.8 302.2 

33 67.7 97.8 310.5 126.5 306.0 

65.1 97.4 310.8 127.0 305.8 

72.1 97.8 308.8 125.2 305.4 

75.6 98.1 307.1 123.8 305.3 

 

 

 
8.3.3.2 Model fitting to data  
 
Figure 8.7 shows the plot of measured versus fitted volumetric holdup, which 

illustrates the accuracy of the model derived here. The values of the model 

parameters that yielded the best fit to the data are given in Table 8.5. Currently, no 

other correlation exists in literature for mill holdup volume based on media and 

slurry position data to the best knowledge of the author; hence no comparison is 

given here regarding prediction capacity of equation 8.16 over others. 
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Table 8.5: Values of KB and KP parameters in the holdup model that gave the best fit 

to the data 

Load volume (%) Slurry % solids  KB KP 

25 
67.3 1.068 

0.658 
75.6 1.244 

30 
73.4 0.938 

0.734 
75.1 1.006 

33 
65.1 0.686 

0.791 
72.1 0.844 

 

 

    

Figure 8.7: Measured versus fitted values of slurry holdup volume 

 

 

 

Based on the data presented in Table 8.5, simple mathematical correlations were 

developed in the form:  

 

0.019 0.043 0.828 ; 1.188 13.31/B s pK x J K J= − + = −  [8.17]
  

 

Where xs is the weight fraction of solids in slurry and J is the fraction of the mill 

filled with ball charge. A regression method was applied to estimate the values of the 
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empirical coefficients.  Figures 8.8 (a, b) show how the values obtained from 

equations 8.17 compare with the data. A little disparity is evident in the predictions 

of Kp and KB which could be attributed to some errors in the measured data. 

 

        

Figure 8.8(a, b): Comparison of the observed and fitted values of Kp and KB 

 

 

Presented in Figure 8.9 is the variation of holdup volume with slurry concentration 

and load volume. Although the feed rates were slightly varied (within 20% margin) 

to achieve the required solids concentration level, the holdup volume clearly appears 

to be greater at higher slurry concentrations (because of viscosity effects) and lower 

level of load volume which is typical of an overflow mill. This observation is 
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conclusion that more than five

order to realize a notable change in volumetric holdup of slurry inside an overflow

discharge mill. 

 

 

    

Figure 8.9: Variation of slurry volumetric holdup with load volume and perce

of solids in slurry. 

 

 

Figure 8.10 shows the partitioning of slurry volumetric holdup between the pool and 

the ball charge regions as estimated from equation 8.15. At higher slurry 

concentration, the slurry holdup volume appears to be equally apporti

the pool and the ball charge. However, with decrease in slurry concentration, the 

volume fraction of the slurry holdup that constitutes the pool tends to increase 

steadily. The possible reason for this trend could be that the load experiences 

relatively reduced lift action and less expansion at lower levels slurry concentration 

which results in less voids volume available for slurry entrainment. The bulk of the 

slurry will thus remain in the pool.
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Figure 8.10: Partition of slurry holdup between the pool and ball load regions at 

different levels of slurry concentration and load volume  

 

 

 

8.3.4 Conclusions 
 
As part of the efforts to effectively control and optimize wet ball milling processes, a 

simple model has been developed that can predict the slurry holdup volume inside 

the mill as a function of ball load volume and slurry solids concentration. The model 

incorporates empirical coefficients to relate slurry holdup volume to load angles and 

mill geometry as the ball filling and slurry solids concentration change. The model 

adequately describes the trends in experimental data and hence it could be linked to 

the mill control system and utilised for continuous monitoring of the variation in 

slurry holdup volume inside the mill. This would provide operators with further 

information of mill behaviour leading to better and timely control actions which 

subsequently enhances mill performance.  
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9.1    Introduction 
 

The mixing cell models that have previously been applied in process design of ball 

mills do not sufficiently describe the slurry flow behaviour in overflow mills. They 

fail to provide a mechanism for characteristic exchange of slurry between the pool 

and the ball charge. Only by realistically accounting for effects of both axial mixing 

and radial convection processes as well as possible short-circuit flows on the main 

flow of slurry can accurate modelling of slurry transport in overflow mills be 

achieved.  

 

Under normal operating conditions, the slurry in an overflow ball mill is distributed 

into two distinct regions as follows:  a fraction of the slurry forms a pool at the toe of 

the ball bed while the rest is retained in the ball charge. However, there is a 

continuous mass exchange of slurry between the pool and the ball charge regions 

governed by the mill speed, load volume, slurry properties and the liner profile. Also 

a strong possibility exists that within the pool, there is continuous recirculation and 

back-mixing of slurry. Within the ball charge, the slurry flow pattern is defined by 

the motion of the balls and the mill drum. These complicated boundaries within 

which slurry flow takes place makes it practically difficult to characterise the 

hydrodynamic transport of slurry based on standard fluid flow equations. The goal of 

this chapter is develop an improved mixing cell model and apply it to examine and 

characterise slurry hydrodynamic transport in a large overflow ball mill with 

particular attention to the effects of two important mill operational variables: slurry 

concentration and load volume. The study serves as an initial step towards providing 

information that may help improve the accuracy of slurry flow models in overflow 

mill simulators. This would subsequently lead to better designs and performance 

optimisation of overflow ball mills. 

 

9.2 Improved mixing-cell model 

9.2.1 Model structure and derivation 

Figure 9.1a is a schematic illustration of the dynamic profile of the pool and the ball 

charge in an overflow ball mill while Figure 9.1b is a block diagram describing the 
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associated flow patterns. This structure forms a fundamental basis upon which the 

improved mixing cell model will be derived. This modelling approach has been 

previously applied by other researchers to study mixing in continuous flow systems 

such as rotary kilns and dryers. Cholette and Cloutier (1959) were among the early 

researchers to model the behavior of a continuous flow reactor using a series of 

mixers consisting of back-mix regions and inert dead zones with a bypass stream.  

Other researchers who have used this modeling technique include (Wen and Chung, 

1965; Levisch et al, 1967; Duchesne et al, 1996). To our best knowledge no work 

has been reported in relation to ball mills. The derivation of the improved mixing cell 

model envisaged in this paper shall be based on the following fundamental 

assumptions: 

 

� The tracer is introduced into the mill as a pulse and flows in a similar pattern 

with slurry 

� Non-flowing zone actively exchanges material with adjacent flowing zone. 

� The mill operates at steady state conditions 

� A portion of the feed slurry may simply short-circuit (bypass) to the outlet  

 

 

 

Figure 9.1: Physical representation of the improved mixing cell model  

 

 

In Figure 9.1b, the parameters f and q represent the rate of slurry exchange between 

the flowing and stagnant zones and the rate of recirculation between adjacent flowing 

zones respectively while p is the short-circuit flow. Hence, unlike the earlier models, 
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the non-flowing zone is not inert but contributes to the mixing in the cell. The total 

volume of slurry in a single cell is denoted by V and a part of this slurry volume 

equal to λV is within the ball charge (stagnant zone i.e. no axial transport) while the 

remaining volume equal to (1-λ)V  is in the pool (flowing zone). If the total slurry 

volumetric holdup inside the mill is known, then the parameter λ is obtained as, 

 

1
Volume of slurry pool

Total slurry volumetric holdup
λ = −  [9.1] 

 

The total slurry volumetric holdup inside the mill is dependent on various operating 

factors key among which are the mill speed, load volume and slurry properties. In the 

present case the slurry volumetric holdup is computed from the measured feed flow 

rate and the mean residence time while slurry pool volume has been estimated 

geometrically based on the dynamic profile of the slurry pool as obtained by discrete 

element method (DEM) simulation. It is the product of mill length and pool cross-

sectional area where the latter is calculated using the Simpson’s rule. The 

fundamental assumption here is that no significant variations occur in the depth of 

the slurry pool along the mill length between the feed and the discharge ends. The 

subsequent values of λ are presented later in Table 9.1.  The material balance in 

Figure 9.1 for both flowing and stagnant zones is given by 

 

 

Cell   1:  

*1
1 2 1(1 ) ( ) ( ) o

dc
V F p q f c F p c qc fc

dt
λ− + − + + = − + +

 
[9.2]  

*
*1
1 1

dc
V fc fc

dt
λ + =  [9.3]

 

 

Cell   i = 2 to N-1:  

*

1 1(1 ) ( 2 ) ( )i
i i i i

dc
V F p q f c F p q c qc fc

dt
λ − +− + − + + = − + + +  [9.4] 

*
*i
i i

dc
V fc fc

dt
λ + =  [9.5] 
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Cell   N:    

*

1(1 ) ( ) ( )N
N N N

dc
V F p q f c F p q c fc

dt
λ −− + − + + = − + +         [9.6] 

*
*N
N N

dc
V fc fc

dt
λ + =              [9.7] 

 

The following notation is introduced to represent the flow coefficients. 

 

; ; ; ;
1

L P P L

q f f p

V V V F

γ γ
α γ δ δ κ

λ λ λ− −= = ⇒ = = =
−

 [9.8] 

 

Now using the above designations, equations (9.2 – 9.7) can be rewritten as follows: 

 

Cell  1: 

*1
1 2 1

(1 )1

(1 ) (1 ) (1 ) (1 ) (1 )

o
cdc

c c c
dt

κκ α γ α γ
τ λ λ τ λ λ λ

  −− +
+ + = + + − − − − − 

 [9.9] 

*
*1
1 1

dc
c c

dt

γ γ
λ λ

+ =         [9.10] 

 
 

Cell  i = 2 to N-1: 

*

1 1

1 2 1

(1 ) (1 ) (1 ) (1 ) (1 ) (1 )

i
i i i i

dc
c c c c

dt

κ α γ κ α α γ
τ λ λ τ λ λ λ λ− +

   − + −
+ + = + + +   − − − − − −   

 

         ……. [9.11]  

*
*i
i i

dc
c c

dt

γ γ
λ λ

+ =         [9.12] 

             

Cell  N:  

*

1

1 1

(1 ) (1 ) (1 ) (1 ) (1 )

N
N N N

dc
c c c

dt

κ α γ κ α γ
τ λ λ τ λ λ λ−

   − + −
+ + = + +   − − − − −   

 [9.13] 

*
*N
N N

dc
c c

dt

γ γ
λ λ

+ =        [9.14] 
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The parameters�:, α, κ, δL-P and δP-L are flow coefficients defined in equation 9.8 

while λ represents the fraction of cell volume that constitutes a stagnant zone, which 

in practice corresponds to the fraction of slurry holdup volume within the ball 

charge. For instance, where λ = 0.5, the slurry holdup volume within the ball charge 

equals the pool volume, hence δL-P = δP-L. The mean residence time (;�) of slurry 

inside the mill is the sum of the mean residence times (<�) in N individual cells 

expressed in the form: 

 

1 1

(1 )N N

i

i i

V V NV
T

F F

λ λ
τ

= =

+ − ⇒ = = 
 

∑ ∑    [9.15] 

 

while the axial back-mixing coefficient (β) is expressed as: 

 

1

q

F p q

α τ
β

κτ α τ
⇒ =

− + − +
    [9.16] 

       

In order to establish the values of the model parameters, a serial solution to the mass 

balance differential equations (9.9 - 9.14) should be obtained. The analytical solution 

to this set of equations in time domain becomes complicated for N > 5. Therefore in 

this study a numerical solution was sought and the fourth order Runge-Kutta method 

was employed in SIMULINK. The initial conditions were that at t = 0, dci/dt = 0, Co 

= M/F∆t, where M is the mass of tracer impulse, F is the mill feed rate and ∆t is a 

small time step that simulates an impulse input. 

 

9.2.2 Determining the number of mixing cells  
 
The optimum number of mixing cells was established through a non-linear 

regression routine that minimizes the sum of squares of the errors (SSE) between the 

experimental and predicted exit concentrations as: 

 

( )
2

exp

0

( ) ( )predC t C t dt

∞

−∫        [9.17] 
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Where C(t) is the exit tracer concentration at time t. It is worth noting that only one 

experimental data set having the highest residence time was utilised in the 

calibration. As depicted in Figure 9.2, the objective function decreases with increase 

in number of cells up to 12 cells then the trend begins to plateau. Thus, the choice of 

N = 12 is considered to be optimal in terms of accuracy and computational time. 

 

 

Figure 9.2: Evolution of SSE with respect to number of mixing cells 

 

 

9.2.3 Sensitivity analysis of model parameters 
 
Sensitivity analysis helps to identify parameters which exert the most influence on 

model results. Such knowledge is important for determining parameters for which it 

is important to have more accurate values. Several methods of sensitivity analysis 

exist that are employed in various modelling situations. The simplified form of the 

Smirnov test statistics (Hamby, 1994; Drews, et al, 2003) was adopted in the current 

analysis to assess the sensitivity of the parameters, κ, α, γ and λ on the model 

accuracy. In this approach the model was run with parameter variation in a defined 

domain of plus and minus 35% of the reference value, where the reference value here 

refer to the average of the maximum and minimum values that define the domain 

bounds. Note that the choice of domain bounds of each parameter was guided by our 

laboratory experience. The Monte Carlo method was used to generate 6 random sets 
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of parameter values uniformly distributed within the defined domain to serve as 

sample points. Each parameter step change was performed separately while the other 

parameters were kept constant and the deviation of the response from that of the 

reference parameters combination was analysed. The mean residual deviation (RD) 

was evaluated for each parameter as a characteristic of the response. The objective 

function values for m perturbations and n observations (data points) were obtained by 

 

1 1

( )1 1
, 1

( )

m n
p

j j

j i r

c i
RD RD where by RD

m n c i= =

 
= = − 

 
∑ ∑   [9.18] 

 

in which cr(i) are the observed values of tracer concentration that correspond to the 

reference parameters combination while cp(i) are the perturbed values of tracer 

concentration for each parameter combination tested. The results of the analysis are 

presented in Figure 9.3 for m = 6 and n = 30. The parameters α and κ have less 

impact on the model accuracy compared to other two parameters. Therefore the 

choice of limits of γ and λ during model fitting to experimental data needs to be 

performed judiciously. 

 

 

 

Figure 9.3: The plot of sensitivity coefficients indicating the sensitivity of individual 

parameters to the fit quality of the RTD curve. 
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9.3 Model fitting and parameter estimation  

9.3.1 Model fitting to RTD data 

Figures 9.4a-c show the comparison between predicted and experimental RTD 

curves over the range of conditions investigated, using the improved mixing cell 

model discussed in section 9.2.  It can be seen that the RTD data was well fitted by 

the model. By inspecting the spread of the RTD curves, one can quickly notice that 

the shape of the curves remains essentially similar which may be interpreted to mean 

that the mill exhibited a similar state of mixing at all test conditions. The optimum 

values of the model parameters estimated from the fits are summarized in Table 9.1. 

Notice that at 65.1 and 67.3% solids the model predicts the existence of short-circuit 

flows. However, in relation to the total internal flow, the predicted short-circuit flows 

(< 1.5% of feed flow) are too small to have any visible effect on the RTD curves; on 

that account it can be silenced in the model which leaves only two parameters to be 

estimated. At higher solids concentration in slurry (>72% wt), the model predicts 

non-existence of short-circuit implying that every bit of feed slurry circulates 

through the ball charge before exiting the mill. 

 

 

Figure 9.4 (a): Comparison of experimental and predicted RTD curves for ball load 

volume of J = 25%.  
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Figure 9.4 (b): Comparison of experimental and predicted RTD curves for ball load 

volume of J = 30%. 

 

 

Figure 9.4 (c): Comparison of experimental and predicted RTD curves for ball load 

volume of J = 33%. 
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Table 9.1: Mill operational conditions and estimated parameters in the improved 

mixing-cell model. 

 

 

 

 

9.3.2 Slurry radial exchange and back-mixing 
 
Figure 9.5 shows the effect of load volume and slurry concentration on slurry 

exchange rate coefficients. From the trends in the data, it can be deduced that high 

slurry concentration tends to suppress slurry efflux from the ball charge. Equally, as 

slurry concentration is increased, the disparity in the rate of slurry efflux and influx 

in the ball charge (indicated by parameters δL-P and δP-L) becomes less distinctive 

This trend can be interpreted that the slurry holdup volume is getting to a more or 

less equal partitioning between the pool and ball charge regions. At steady state the 

volumetric slurry flow per unit time into and out of the pool should be constant and 

equal which satisfies the law of conservation of mass. Hence if λ < 0.5, it implies 

that δL-P > δP-L and this is supported by the results presented in Figure 9.5. Equally, if 

λ > 0.5, it follows that δL-P < δP-L. So by monitoring the profile of δL-P, it would be 

possible to detect any instance of slurry build-up inside the mill, an event that may 

result in load expansion and the mill will then “go off the grind”. The effect of load 

volume could not be clearly deduced here owing to the nature of the experimental 

design. It should be recognized that industrial experiments are generally expensive 

and labour intensive. 

Load volume 

(%) 

Wt. (vol.) % 

Solids 
( λ ) ( α ) min

-1 
( γ ) min

-1 
( κ) SSE 

Pre-determined variables Estimated model parameters  

25 67.3 (37.7) 0.4209 1.5810 0.1888 0.0122 0.0119 

25 75.6 (47.7) 0.4679 0.9520 0.156 0 0.0124 

30 73.4 (44.8) 0.4429 0.9865 0.1441 0 0.0289 

30 75.1 (47.0) 0.4766 0.8483 0.1252 0 0.0103 

33 65.1 (35.4) 0.4041 2.3381 0.2432 0.0146 0.0149 

33 72.1 (43.2) 0.4524 1.1124 0.1647 0 0.0122 
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Figure 9.5: Effect of load volume and slurry concentration on exchange coefficients 

 

 

 

Figure 9.6 shows the effect of load volume and slurry concentration on the extent of 

back-mixing. The dependence of back-mixing coefficient on slurry concentration and 

load volume is clearly evident. By inspection of the results, it appears that at the 

same load volume, the back-mixing increases as the slurry concentration decreases 

which suggests that less dense slurry inside the mill would tend to promote axial 

mixing. Indeed the slurry with lower solids concentration exhibits higher mobility 

and enhanced ability to circulate (Makokha and Moys, 2009). From Figure 9.6, all 

the values of back-mixing coefficient (β) lie between 0.68 and 0.82, which points 

towards a well mixed state attainable at β = 1. This result is consistent with the 

observation by Napier-Munn et al, (1996) who reckoned that for large diameter 

mills, the load tends towards perfect mixing. Earlier on, Kelly and Spottiswood 

(1982) were emphatic that ball mills show the behaviour between perfect mixing and 

plug flow. 
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Figure 9.6: Effect of load volume and slurry concentration on the axial back-mixing 

coefficient 

 

 

Generally, it is preferred to operate secondary ball mills (finish grinding) towards 

plug flow mode to achieve a narrow size distribution of mill product for better 

flotation recovery as opposed to a wide product size distribution that is characteristic 

of a well mixed mill. But it is noteworthy to mention that operating the mill towards 

plug flow mode would result in variations of mill properties in the flow direction 

which may pose control challenges. Hence a compromise would be to run the mill 

between the two limiting cases of plug flow and prefect mixing. 

 

 

9.4 Correlations 

9.4.1 Slurry radial exchange rate coefficient  

Based on the trends observed in the data presented in Figure 9.5, the slurry radial 

exchange rate coefficient was correlated with load volume and slurry solids 

concentration by equation 19.9a. The standardized version of this equation is also 

presented (equation 19.9b). Standardization was achieved by unit variance scaling in 

order to give equal weight to each data value.   
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L-P vδ 0.8236 0.6883J 0.4197 / x= − + +     [9.19a]  

L-P v
ˆ ˆ ˆδ 6.1897 0.1870J 62.731/ x= − + +     [9.19b] 

      

The variable J is the load volume (fraction) and xv is the slurry solids concentration 

(volume fraction). The values of the empirical coefficients were determined from 

regression analysis implemented in Excel 2007. The positive coefficients of J and xv 

imply that the in-mill slurry volumetric exchange would increase as J is increased 

but decrease with increase in xv. The magnitude of the standardized coefficient of xv 

is notably higher than that of J, which suggests that slurry concentration has a 

relatively stronger effect on slurry exchange rate than load volume. 

 

Figure 9.7 presents a comparison of the empirical estimations of the slurry exchange 

coefficient (δL-P) and the improved mixing cell model predictions illustrating the 

goodness of fit. The fit has a mean relative error of 3.13%. Figure 9.8 is a surface 

plot showing the variation of δL-P with slurry concentration and load volume.  

 

 

 

Figure 9.7: Empirical model values vs. improved mixing-cell model values of slurry 

exchange coefficient 
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Figure 9.8: Surface plot of the variation of slurry exchange coefficient with load 

volume and slurry concentration. 

 

 

9.4.2 Axial back-mixing coefficient  

An attempt was made to correlate axial back-mixing coefficient with slurry 

concentration and load volume and the relation given by equation 9.20a was 

achieved.  Equation 9.20b is the standardized version of equation 9.20a. 

 

β 0.3039 0.0042 / J 0.1735 / xv= + +     [9.20a] 

ˆ ˆ ˆβ 5.7735 2.1189 / J 65.538 / vx= + +     [9.20b] 

 

The values of empirical coefficients were obtained in a similar way to equations 9.19 

using regression techniques implemented in Excel 2007. Equations 9.20 suggest that 

back-mixing decreases with increase in load volume which conforms to the findings 

by Sherritt et al, (2003). A marked difference in the magnitudes of the standardized 

coefficients of J and xv is clearly evident which depicts the relative influence of load 

volume and slurry concentration on back-mixing process.  
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In order to assess the accuracy of the empirical equation for back-mixing coefficient, 

a plot of improved cell model values versus empirical values is shown in Figure 9.9. 

The fit has a mean relative error of 1.26%. The variation of back-mixing coefficient 

with slurry concentration and load volume is presented by a surface plot, Figure 9.10. 

 

     

Figure 9.9: Empirical values vs. model values of back-mixing coefficient    

  

         

 

Figure 9.10: Surface plot of the variation of back-mixing coefficient with load 

volume and slurry concentration. 
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9.4.3 Axial dispersion coefficient 
 

Axial dispersion coefficient is a parameter that is generally used to describe the axial 

mixing process. In axial mixing, particles or fluid elements are considered to flow in 

a direction perpendicular to the plane of circulation. The motion of particles/fluid 

elements is defined by the 1-dimensional diffusion equation (Levenspiel, 1972) as, 

 

2

2x x

C C C
D u

t x x

∂ ∂ ∂
= −

∂ ∂ ∂
       [9.21] 

 

in which Dx is the axial dispersion coefficient, C is the concentration while x = 0 at 

inlet and x = L at exit of the reactor.  The key assumption of this model is that the 

concentration of particles/fluid elements is uniform in each cross section of the 

reactor i.e. is only a function of time and axial position. 

 

Dean (1963) and Levich et al, (1967) have shown that for a cell model with a large 

number of cells and for sufficiently long porous medium described by the dispersion 

equation, the tracer response at the exit as a function of time would yield the same 

qualitative results. Other authors (Zhang et al, 2005; Steiner, et al, 1988) have 

pointed out the equivalence of the axial dispersion model with the mixing cells 

model under limiting cases in multistage columns. Work presented by Cho and 

Austin (2002) on ball mills also indicates qualitative equivalence between various 

RTD models. In view of these consistent observations, a correlation must exist 

between the parameters in the axial dispersion model and the cell model. An attempt 

has been made in this study to correlate the axial dispersion coefficient, Dx with the 

back-mixing coefficient with a view to providing an alternative equation for 

estimation of Dx in steady flow systems. 

 

Considering a tracing element flowing through a mixing cell at mean velocity u, after 

pulse injection of unit quantity at t = 0; If the tracer migration in the axial direction 

approximates diffusion in an infinite 1-dimensional medium, then the distribution of 

the tracer displacement in the axial direction is related to the axial dispersion 
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coefficient in the form of equation 9.21. Several approximate solutions to equation 

9.21 under different boundary conditions are found in literature. The analytical 

solution for open-open boundaries was published by Levenspiel (1972) which is 

reproduced here in dimensional form as equation 9.22 while the solution for closed-

closed boundaries is presented in the work by Xu et al (1991), which is stated here as 

equation 9.23 in non-dimensional form. The two solutions were evaluated by Xu and 

Finch (1991) in flotation column studies and it was found that for vessel dispersion 

number, Nd less than 0.25 and interstitial flow below 1 cm/s, both solutions were 

adequate.  

 

( )2

-1
( , ) exp -

4(4 ) xx

L uT
C x T

D TD Tπ

 
 =
 
 

     

[9.22] 

( )2 21 2

2 2
1

1 42( 1)1
( ) 4 exp exp -

2 4 4 1 4

n
n dn d

d

nd n d d d

NN
E N

N N N N

λλ
θ

λ

+∞

=

 +  −
 =    + +   

∑  [9.23] 

 

In which u = L/T is the mean velocity of the fluid particles (m/s), L is the length of 

the medium (m), T = Nτ  is the residence time of a random fluid particle at the exit of 

mixer N and the parameter Dx represents the axial dispersion coefficient (m
2
/s).  

 

For a rotary system consisting of a flowing and a stagnant zone characterized by 

continuous radial exchange of material between the two zones as found in overflow 

ball mills, the effect of lateral convection process on the axial dispersion cannot be 

ignored. In this case, the residence time of a random particle in mixing cell i (where i 

= 1 to N) would be dependent on the volume of the stagnant zone as well as the 

exchange rate between the flowing and stagnant zone. From the central limit theorem 

of probability statistics (Peebles, 2001) , if the time taken by a random particle to exit 

N cells is T, and where N is sufficiently large, then dispersion of T follows a normal 

distribution given by, 

 

( )2

22

1
( , ) exp

2(2 )

T N
C N T

NN ττ

τ
σπ σ

 −
= − 

 
 

    [9.24] 
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Where =>? is the variance of the residence time τ about its mean value; T is the time 

taken by an arbitrary fluid element to reach the exit of mixer N and <� is the mean 

residence time of the fluid elements in a single mixing cell. One can clearly notice 

the qualitative coincidence of equations 9.22 and 9.24. By relating the corresponding 

model parameters in the numerators of the exponential terms of the two equations, an 

expression for dispersion coefficient, Dx is obtained as, 

 

2

3

2
x

L
D

N u
τσ  =  

 
        [9.25] 

 

Also =>?�can be defined by the following equation derived from moment analysis, 

with details given in the paper by Levich et al (op cit).  

 

2
2 2 2(1 )
τ

λ α
σ τ

γ
−

= +        [9.26] 

 

By equating equations 9.25 and 9.26 then substituting for α with equation 9.16 

(assuming no bypass flows) and rearranging the terms yields a correlation equation 

for the effective axial dispersion coefficient, Dx which is hereafter denoted as De. 

 

2 2

2 3

(1 )
1

2 1
e

L
D

N

β λ
τ β γ τ

   −
= +  −  

      [9.27] 

 

It is easily noticeable that equation 9.27 accounts for the dispersion due to mixing in 

the flowing zone as well as the dispersion associated with the radial exchange of 

fluid particles between the flowing and stagnant zones. The equation alludes to the 

fact that increased back-mixing would boost the axial mixing process. On the other 

hand increased slurry load within the ball charge (indicated by λ) would lower the 

effective axial dispersion coefficient owing to reduced pool volume. Equally a higher 

rate of cross flow (indicated by γ) would tend to slow down the effective axial 

dispersion process. Table 9.2 shows the values of the effective axial dispersion 

coefficient computed from equation 9.27 for six mill conditions tested. Estimated 
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values of the vessel dispersion number, ( ) are also presented. Nd 

varies between 0.05 and 0.08, which is comparable to the values found by Van 

Nierop and Moys (2002) of between 0.03 and 0.34 for a 6m long and 4.3m diameter 

grate discharge mill; but much lower than those presented by Austin et al (1983) of 

0.5 and 0.3 for laboratory (0.3m diameter) and pilot (0.91m diameter) ball mills 

respectively. 

 

Table 9.2: Values of effective axial dispersion coefficient and vessel dispersion 

number derived from correlation equation, 9.27 

 

Load volume 

(%) 
Slurry % solids De    (m

2/s)  Nd 
95% confidence interval 

De (m
2
/s) 

25 
67.3 0.0041 0.07 0.0039 – 0.0043 

75.6 0.0030 0.06 0.0028 – 0.0031 

30 
73.4 0.0033 0.06 0.0032 – 0.0035 

75.1 0.0027 0.05 0.0026 – 0.0029 

33 
65.1 0.0057 0.08 0.0054 – 0.0060 

72.1 0.0032 0.06 0.0030 – 0.0034 

 

 

The variation of effective axial dispersion coefficient (De) with changes in slurry 

solids concentration has been graphically shown in Figure 9.11. The relation has 

been approximated by a linear trend with 87% of the variance explained. 

 

 

Figure 9.11: Variation of effective axial dispersion coefficient (De) with changes in 

slurry solids concentration at mill speed of 75% of critical (∼ 12 rpm). 
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9.5 Conclusions 
 
From the results obtained, it is undoubted that the slurry transport dynamics in an 

overflow ball mill can be reliably predicted using the improved cell model. The 

model has displayed an adequate fit to the experimental data. Using this model, it has 

been possible to quantitatively assess the effect of two important mill operating 

variables: load volume and slurry solids concentration, on in-mill slurry transport 

behaviour. Two flow parameters denoted as β and δL-P which respectively describe 

the rate of axial back-mixing and radial exchange of slurry between the pool and the 

ball charge have been evaluated in the model. The parameters correlate well with 

slurry concentration and load volume, where β displays an inverse relationship with 

both variables while δL-P varies linearly with load volume but inversely with slurry 

solids concentration. The standardized correlation coefficients indicate that the 

parameters β and δL-P are both influenced to a greater extent by slurry concentration 

than load volume. Also, it was possible to correlate β with the axial dispersion 

coefficient, yielding an inverse proportionality. Further, the model predicts the 

possible existence of short-circuit flows at low levels of slurry solids concentration. 

 

All these observations constitute critical information whose accuracy and availability 

would empower mill operators and process engineers to take correct and timely 

actions with regard to mill control. Failure to tune the mill appropriately to achieve 

desirable slurry flow may result in poor milling performance and corresponding high 

energy expenditure. 
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10.1 Introduction 
 
This thesis is a contribution to the improvement of methods for monitoring, control 

and optimisation of wet ball mills. The major results and observations arising from 

the studies undertaken for this thesis are summarised in this chapter. Also presented 

here are the overall conclusions and the suggestions for future research work. 

 

10.2 Summary of main findings 

Researchers and industrialists generally agree that better understanding of mill 

internal dynamics could be the key to accurate design, effective monitoring and 

better control of grinding mills, which subsequently lead to optimal mill 

performance. Apparently, to date not all is well-understood regarding the dynamics 

of media and slurry inside the mill and particularly in overflow-discharge ball mills.  

 

Substantial progress has been made in this thesis towards generating further 

information on the effects of ball load volume and slurry concentration on mill 

internal behaviour and hence the overall performance of the mill. Experimental 

investigations were performed at both laboratory and industrial levels where 

invaluable data was successfully collected and analysed. Useful insights were 

acquired which are fundamental to the enhancement of milling efficiency.  

 

It was possible to measure the load dynamic position inside the mill using media and 

slurry sensors on both the laboratory mill and the industrial mill. The sensors were 

mounted through the mill shell to achieve direct contact with the load. The data 

obtained was analysed both qualitatively and quantitatively firstly to assess any 

emerging trends in mill load behaviour, associated with changes in mill operating 

conditions and secondly to characterise these changes in terms of the features 

extracted from the sensor response data. This could make available new possibilities 

for effective control of the milling process. Further the mill specific energy 

consumption (kWh/ton of product) was determined for specific ball loadings and 

slurry concentration. However, these were determined under batch conditions. For 

the conditions tested, it was found that the optimum mill specific energy 
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consumption (kWh/ton of product) correspond to a specific ball loading and slurry 

solids concentration. For the cases with slurry concentration of 60, 65 and 70 wt. % 

solids, the respective levels of ball loading that corresponded to the optimum 

kWh/ton of product were 32, 28 and 26% of total mill volume.   

 

It has been demonstrated that the use of statistical multivariate modelling techniques 

in combination with direct load sensors is a promising approach for monitoring and 

characterising changes in mill internal operating conditions. Two multivariate 

models; (i) PLS (ii) RBF-PLS, have been built and applied to predict the variation of 

in-mill slurry density and ball load volume based on the characteristic features 

extracted from the load (media and slurry) sensor data. The models were tested 

against both the laboratory and the industrial data and in both cases the modelled and 

measured data compared well albeit the hybrid RBF-PLS model gave marginally 

better prediction accuracies. This is attributed to the ability of hybrid RBF-PLS 

model to capture any non-linearity in the relations between the variables.  The good 

prediction performance achieved is indicative of the ability of multivariate modelling 

as a reliable means for on-line mill monitoring and hence it can be applied 

effectively in mill control system. Also, it points to the available possibility to utilise 

the characteristic features contained in load behaviour parameters to predict changes 

in mill operational conditions for purpose of optimising the mill performance. 

 

Poor knowledge of slurry hydrodynamic transport inside the mill has been 

recognised for decades as one of the major bottlenecks in trying to improve the 

efficiency of wet overflow ball mills. Our investigations of slurry transport behaviour 

using a gamma emission imaging technique revealed the slurry flow path from the 

pool into the ball charge, its distribution map and mixing rate within the ball charge. 

It further gave a qualitative description of the slurry exchange rate between the pool 

and the ball charge. The influence of both viscosity and mill rotational speed on the 

slurry flow behaviour was clearly noticeable. An attempt was made to quantify the 

rate of slurry flow from the pool into the ball charge by tracer balance method but the 

results were inconclusive due to gamma ray intensity attenuation by the steel ball 

charge, which introduces a significant error in the tracer balance.  
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RTD studies were performed on an industrial overflow ball mill at different 

conditions of slurry solids concentration and ball load volume. The RTD data was 

adequately described by a model described by King (2001), comprising one large 

and two small mixers in series with dead time. Using this model, it was possible to 

assess the effect of two important mill operating variables: solids concentration and 

ball load volume, on slurry residence time distribution. Trends in the model results 

revealed that mean residence time increases as slurry concentration is increased but 

decreases with increase in feed flow rate. However, the effect of ball load volume 

could not be clearly delineated owing to the nature of the experimental design. On 

the other hand, correlation equations were developed that provided fairly accurate 

estimates of the mean residence time. Once accurately validated, the equations may 

offer an alternative means to estimate the mean residence time without having to 

perform tracer tests provided that information of slurry concentration and ball load 

volume is known. This would save on time and eliminate the costs associated with 

the process of tracer tests.  

 

Further, an improved mixing-cell model has been developed and applied to 

characterise the in-mill slurry hydrodynamic transport based on the measured RTD 

data. The model is able to account for the effects of non-ideal flow processes such as 

back-mixing, radial exchange and short-circuit flows which have often been ignored 

in most existing mill models leading to incorrect prediction of in-mill slurry transport 

behaviour and subsequently inaccurate mill simulation. The model displayed an 

adequate fit to the experimental data. The effects of slurry concentration and ball 

load volume on the model parameters were evaluated yielding important information 

that is critical to achieving effective control of the milling process. 

 

Finally, using the measured slurry feed rates and residence times the slurry 

volumetric holdup inside the mill was estimated. The effects of solids concentration 

on slurry volumetric holdup were assessed and it was observed that for cases of 

slurry solids concentration above 72 mass %, viscosity effects strongly set in, 

impacting on the volumetric holdup. A simple model was developed that can predict 

the slurry holdup volume inside the mill as a function of ball load volume and slurry 

concentration. The model fitted trends in the experimental data well and hence it 
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could be linked to the mill control system and utilised for continuous monitoring of 

the variation of in-mill slurry holdup volume. This would provide operators with 

further information of mill behaviour leading to better and timely control actions 

which subsequently enhances mill performance.  

 

In summary, the findings of this thesis are indicative of the benefits possible to the 

mineral processing plants by having clear and comprehensive information of in-mill 

dynamic behaviour. 

 

 

10.3 Overall conclusions 

The primary objective of the research work undertaken for this thesis is to utilise 

both experimental and mathematical techniques to advance information and 

understanding of the dynamic behaviour of media and slurry inside an overflow-

discharge ball mill and explore possibilities to transform this knowledge into a 

valuable tool that would aid mill operators and process engineers in timely decision 

making with regard to mill control and performance optimisation. The data collected 

in this project though quite useful, remains valid only to the mills investigated. 

However, it is hoped that the project has given some impetus for further research, 

and where the analysis is inconclusive, provokes further thinking for improvements. 

 
 
10.4 Suggestions for Future Work 

It has been shown that the use of direct load sensors in combination with multivariate 

models may serve to provide inferential estimates of in-mill slurry density and ball 

load volume. The next step would be to perform rigorous tests of the method against 

more historical data acquired on the industrial mill investigated. However, in order to 

reach better accuracy in model predictions of in-mill slurry density, more 

information that contains features related to slurry properties should be extracted 

from the industrial load sensor signals. This may require installation of a 

conductivity probe on the SENSOMAG system to capture a more realistic 

conductivity profile of slurry.  
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Also, while it has been demonstrated clearly that the improved mixing-cell model 

can be used for modelling slurry hydrodynamic transport in an overflow mill, there is 

need for gathering more data to justify whether the incorporation of this model in the 

overall mill breakage model would result in worthwhile improvement in the accuracy 

of milling simulations. A positive result would enhance the confidence required to 

extend the model to other mills 
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Calibration Data 
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A.1 Torque Calibration Data 
 

     

    
 

Figure A.1: Torque Calibration chart (N= 40% of critical speed) 

  

 

 

 
 

Figure A.2: Torque Calibration chart (Zero-load) 
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A.2 Speed Calibration Data 
 

 
 

Figure A.3: Speed Calibration chart at, J = 20% (%Critical vs Speed settings) 

 

     

 
Figure A.4: Speed Calibration chart at, J = 20% (RPM vs Speed settings) 
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A.3 Salt conductivity –concentration calibration data 
 

 
 

Figure A.5: Conductivity-Concentration calibration (J =25%, 67.3% solids) 

 

 

 

 
 

Figure A.6: Conductivity-Concentration calibration (J =30%, 75.1% solids) 
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APPENDIX B 

Laboratory Mill Data 
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B.1 Experimental mill power draws data 
 
Table B.1 Mill power draws 

 
J20 J25 J30 J35

%Solids Power (W) stdev Power (W) stdev Power (W) stdev Power (W) stdev

50 479.52 5.13 564.14 0.5 641.72 4.9 702.85 2.02

60 488.69 5.44 577.24 3.8 650.8 3.41 709.59 8.49

65 494.47 3.63 582.22 9.48 655.16 4.05 695.43 7.7

70 482.28 3.48 573.26 5.36 625.48 3.4 650.55 8.32

 

 

 
B.2 Experimental load position data 
 
Table B.2. Media shoulder angle (deg) 

 

J20 J25 J30 J35

%Solids Media 

shoulder

stdev Media 

shoulder

stdev Media 

shoulder

stdev Media 

shoulder

stdev

50 298.56 5.84 308.75 5.8 316.44 3.44 317.73 2.92

60 307.8 5.4 310.23 2.01 316.93 2.49 318.8 1.30

65 312.29 3.31 313 3.06 319.4 3.18 324.77 6.19

70 313.08 3.82 314.79 3.53 320.5 2.88 329.83 6.18  
 

 

Table B.3. Media toe angle (deg) 

 

J20 J25 J30 J35

%Solids Media toe stdev Media toe stdev Media toe stdev Medial toe stdev

50 144.68 4.49 142.5 4.27 140.6 7.83 138.04 3.97

60 145.08 6.12 142.71 4.01 141.5 5.82 140.5 4.55

65 146.18 5.49 142.95 4.73 142.29 5.00 139.59 4.41

70 143.26 5.9 142.00 4.34 141.28 4.59 135.92 4.39  
 

Table B.4. Slurry shoulder angle (deg)  

 

J20 J25 J30 J35

%Solids Slurry 

shoulder

stdev Slurry 

shoulder

stdev Slurry 

shoulder

stdev Slurry 

shoulder

stdev

50 288.79 8.63 300.11 5.38 303.94 2.28 304.73 3.65

60 292.21 4.91 301.32 2.86 304.4 9.18 305.28 5.92

65 296.53 3.2 303 3.54 305.06 2.79 308.64 8.25

70 296.08 3.21 304.67 3.15 306.64 2.72 310.09 6.92  
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Table B.5. Slurry toe angle (deg) 

 
J20 J25 J30 J35

%Solids Slurry toe stdev Slurry toe stdev Slurry toe stdev Slurry toe stdev

50 119.43 4.53 122.5 4.69 125.37 4.02 126.68 2.99

60 121.81 2.86 123.36 4.73 126.11 3.13 128.73 4.58

65 123.8 3.66 123.92 4.34 125.26 4.1 128.12 4.24

70 118.95 5.12 120.93 4.91 124.36 1.99 125.00 1.22

 
 
Table B.6. Pool angle (deg) 

 
J20 J25 J30 J35

%Solids Pool angle stdev Pool angle stdev Pool angle stdev Pool angle stdev

50 31.25 2.4 25.00 2.24 20.23 2.96 16.36 1.74

60 29.27 3.06 23.35 2.19 19.39 2.24 15.77 2.78

65 28.38 2.75 23.03 2.27 18.03 2.28 15.47 2.41

70 24.31 2.94 20.07 2.31 17.92 1.65 12.25 1.40

 
 
 
B.3  Experimental batch milling data  
 
Table B.7. Batch milling data for the case of 50% solids in slurry 

 

50% 

Solids 

Screen 

Size 

(µm) 

Mass % Retained Cumulative % passing 

  J20 J25 J30 J35 J20 J25 J30 J35 

         

850 0.19 0.13 0.10 0.21 99.86 99.89 99.90 99.78 

600 0.70 0.63 0.38 0.72 99.30 99.68 99.62 99.02 

425 1.08 1.01 0.47 0.89 98.22 97.81 99.16 97.48 

300 2.59 2.07 1.03 2.09 95.62 95.08 98.12 94.21 

212 6.93 9.50 3.06 4.61 88.69 85.70 93.15 86.38 

150 18.91 12.07 10.53 12.70 69.77 73.78 77.76 68.12 

106 25.92 29.07 22.62 21.16 43.83 45.08 53.83 43.30 

75 20.70 22.49 25.32 24.19 23.11 22.88 31.05 23.14 

53 10.74 12.97 15.32 13.85 12.36 10.08 17.37 12.49 

 38 4.70 4.20 10.15 10.04 7.66 5.94 8.82 6.21 

 Pan 7.54 5.87 11.01 9.54     
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Table B.8. Batch milling data for the case of 60% solids in slurry 

 

60% 

Solids 

Screen 

Size 

(µm) 

Mass % Retained Cumulative % passing 

  J20 J25 J30 J35 J20 J25 J30 J35 

         

850 0.27 0.23 0.16 0.27 99.89 99.88 99.84 99.72 

600 0.81 0.75 0.57 1.11 99.18 99.08 99.43 98.89 

425 1.15 1.14 0.98 1.30 98.04 97.72 98.45 97.58 

300 2.98 2.33 2.69 2.82 95.05 94.42 95.76 94.74 

212 8.01 7.70 6.62 6.07 87.04 86.45 89.13 88.64 

150 20.30 20.14 16.96 15.15 66.71 66.66 72.14 73.42 

106 25.53 26.25 24.79 23.47 41.14 40.87 47.30 49.82 

75 19.61 20.34 21.66 22.44 21.50 20.88 25.61 27.27 

53 10.48 13.73 10.73 14.32 11.00 7.39 14.86 12.87 

 38 5.14 3.30 7.36 5.83 5.85 4.15 7.49 7.01 

 Pan 5.73 4.10 7.48 6.97     

 

 

 
Table B.9. Batch milling data for the case of 65% solids in slurry 

 

65% 

Solids 

Screen 

Size 

(µm) 

Mass % Retained Cumulative % passing 

  J20 J25 J30 J35 J20 J25 J30 J35 

         

850 0.45 0.33 0.21 0.40 99.85 99.87 99.78 99.60 

600 0.87 0.83 0.77 1.22 99.13 99.08 99.02 98.78 

425 1.26 1.12 1.34 1.75 97.86 97.76 97.48 97.02 

300 3.35 2.97 3.75 3.97 94.50 94.59 94.21 93.03 

212 9.32 8.41 9.07 9.13 85.15 86.20 86.38 83.86 

150 21.86 20.10 19.85 18.61 63.23 66.17 68.12 65.16 

106 25.36 25.62 24.84 23.41 37.79 40.63 43.30 41.63 

75 18.06 19.69 19.47 18.82 19.67 21.01 23.14 22.72 

53 8.18 12.51 9.82 10.88 11.47 8.54 12.49 11.78 

 38 6.93 3.53 5.56 4.47 4.52 5.02 6.21 7.29 

 Pan 4.35 4.90 5.32 7.26     
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Table B.10. Batch milling data for the case of 70% solids in slurry 

 

70% 

Solids 

Screen 

Size 

(µm) 

Mass % Retained Cumulative % passing 

  J20 J25 J30 J35 J20 J25 J30 J35 

         

850 0.71 0.49 0.37 0.51 99.59 99.49 99.33 99.49 

600 1.12 1.13 0.96 1.45 98.87 98.84 99.03 98.55 

425 1.73 1.54 1.57 2.00 97.14 97.26 97.45 96.55 

300 4.61 3.95 3.94 4.75 92.51 93.22 93.49 91.80 

212 11.48 9.67 9.24 10.34 80.99 83.31 84.21 81.46 

150 23.34 20.86 19.88 20.54 57.58 61.93 64.24 60.92 

106 24.31 23.61 24.07 23.40 33.19 37.73 40.06 37.51 

75 16.42 17.05 18.57 18.00 16.72 20.25 21.41 19.51 

53 7.93 9.47 9.47 9.15 8.76 10.54 11.89 10.36 

 38 3.82 2.91 6.50 5.99 4.92 7.56 5.36 4.37 

 Pan 4.50 6.88 5.34 4.37     

 

 

 

 

 

Table B.11: Size distribution of the feed material used in the laboratory 

experiments 

 

Size (µm) Cum. % passing Size (µm) Cum. % passing 

38 2.62 212 58.75 

53 4.77 300 76.76 

75 9.33 425 91.42 

106 19.57 600 97.11 

150 37.09 850 99.89 
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C.1  Tracer response data 
 

Table C.1. Summary of tracer response data for J = 25% and 67.3% solids 

 

Time (t) Abs. Conductivity C(abs) - C(base) Concentration E(t) t E(t)

(Mins)      (mS/cm) (mS/cm) (kg/m^3)

0 6.96 0 0 0 0

1 6.96 0 0 0 0

2 7.46 0.5 0.27985 0.0030248 0.0060495

3 8.54 1.58 0.884326 0.0095582 0.0286746

4 9.48 2.52 1.410444 0.0152447 0.060979

5 10.27 3.31 1.852607 0.0200239 0.1001193

6 10.92 3.96 2.216412 0.023956 0.1437362

7 11.31 4.35 2.434695 0.0263153 0.1842074

8 11.72 4.76 2.664172 0.0287956 0.2303651

9 11.92 4.96 2.776112 0.0300055 0.2700498

10 12.07 5.11 2.860067 0.030913 0.3091296

11 12.25 5.29 2.960813 0.0320019 0.3520206

12 12.21 5.25 2.938425 0.0317599 0.3811187

13 12.19 5.23 2.927231 0.0316389 0.4113057

14 12.14 5.18 2.899246 0.0313364 0.4387099

15 12.09 5.13 2.871261 0.0310339 0.4655092

20 11.4 4.44 2.485068 0.0268598 0.5371958

25 10.58 3.62 2.026114 0.0218992 0.54748

30 9.78 2.82 1.578354 0.0170596 0.5117879

35 9.27 2.31 1.292907 0.0139744 0.4891023

40 8.67 1.71 0.957087 0.0103446 0.413786

45 8.26 1.3 0.72761 0.0078644 0.3538959

50 7.98 1.02 0.570894 0.0061705 0.3085246

55 7.73 0.77 0.430969 0.0046581 0.2561964

60 7.5 0.54 0.302238 0.0032667 0.1960039

65 7.36 0.4 0.22388 0.0024198 0.1572871

70 7.27 0.31 0.173507 0.0018753 0.1312742

75 7.17 0.21 0.117537 0.0012704 0.0952797

80 7.11 0.15 0.083955 0.0009074 0.072594

85 7.06 0.1 0.05597 0.000605 0.0514208

90 7.01 0.05 0.027985 0.0003025 0.0272228
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Table C.2. Summary of tracer response data for J = 25% and 75.6% solids 

 

Time (t) Abs. Conductivity C(abs) - C(base) Concentration E(t) t E(t)

(Mins)      (mS/cm) (mS/cm) (kg/m^3)

0 7.34 0 0 0 0

1 7.34 0 0 0 0

2 7.72 0.38 0.216752 0.001801 0.0036029

3 8.54 1.2 0.68448 0.005689 0.0170665

4 9.48 2.14 1.220656 0.010145 0.0405803

5 10.55 3.21 1.830984 0.015218 0.0760881

6 11.38 4.04 2.304416 0.019152 0.1149144

7 11.81 4.47 2.549688 0.021191 0.1483362

8 12.23 4.89 2.789256 0.023182 0.1854559

9 12.71 5.37 3.063048 0.025458 0.2291176

10 12.98 5.64 3.217056 0.026738 0.267375

11 13 5.66 3.228464 0.026832 0.2951555

12 13.16 5.82 3.319728 0.027591 0.3310899

13 13.08 5.74 3.274096 0.027212 0.3537504

14 13.08 5.74 3.274096 0.027212 0.380962

15 13.06 5.72 3.262688 0.027117 0.4067513

20 12.59 5.25 2.9946 0.024889 0.4977726

25 11.86 4.52 2.578208 0.021428 0.5356981

30 11.09 3.75 2.139 0.017778 0.5333278

35 10.44 3.1 1.76824 0.014696 0.514365

40 9.84 2.5 1.426 0.011852 0.4740691

45 9.34 2 1.1408 0.009481 0.4266622

50 9.04 1.7 0.96968 0.008059 0.4029588

55 8.73 1.39 0.792856 0.00659 0.3624259

60 8.41 1.07 0.610328 0.005073 0.3043524

65 8.17 0.83 0.473432 0.003935 0.2557603

70 7.97 0.63 0.359352 0.002987 0.2090645

75 7.84 0.5 0.2852 0.00237 0.1777759

80 7.74 0.4 0.22816 0.001896 0.1517021

85 7.63 0.29 0.165416 0.001375 0.116858

90 7.55 0.21 0.119784 0.000996 0.0895991  
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Table C.3. Summary of tracer response data for J = 30% and 73.4% solids 

 

Time (t) Abs. Conductivity C(abs) - C(base) Concentration E(t) t E(t)

(Mins)      (mS/cm) (mS/cm) (kg/m^3)

0 6.33 0 0 0 0

1 6.33 0 0 0 0

2 6.5 0.17 0.10455 0.000916 0.001833

3 6.98 0.65 0.39975 0.003504 0.010512

4 8.15 1.82 1.1193 0.009812 0.039246

5 9.08 2.75 1.69125 0.014825 0.074126

6 9.76 3.43 2.10945 0.018491 0.110946

7 10.21 3.88 2.3862 0.020917 0.146418

8 10.73 4.4 2.706 0.02372 0.189762

9 11.09 4.76 2.9274 0.025661 0.230948

10 11.3 4.97 3.05655 0.026793 0.26793

11 11.54 5.21 3.20415 0.028087 0.308956

12 11.64 5.31 3.26565 0.028626 0.343512

13 11.78 5.45 3.35175 0.029381 0.381949

14 11.82 5.49 3.37635 0.029596 0.414349

19 11.58 5.25 3.22875 0.028303 0.537748

23 10.98 4.65 2.85975 0.025068 0.576563

29 10.01 3.68 2.2632 0.019839 0.575323

34 9.26 2.93 1.80195 0.015795 0.537047

39 8.63 2.3 1.4145 0.012399 0.483569

44 8.09 1.76 1.0824 0.009488 0.417475

49 7.67 1.34 0.8241 0.007224 0.35397

54 7.34 1.01 0.62115 0.005445 0.294023

59 7.11 0.78 0.4797 0.004205 0.248092

64 6.95 0.62 0.3813 0.003342 0.213913

69 6.78 0.45 0.27675 0.002426 0.167389

74 6.64 0.31 0.19065 0.001671 0.123668

79 6.52 0.19 0.11685 0.001024 0.080918

84 6.43 0.1 0.0615 0.000539 0.045284

89 6.4 0.07 0.04305 0.000377 0.033586
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Table C.4. Summary of tracer response data for J = 30% and 75.1% solids 

 

Time (t) Abs. Conductivity C(abs) - C(base) Concentration E(t) t E(t)

(Mins)      (mS/cm) (mS/cm) (kg/m^3)

0 6.42 0 0 0 0

1 6.42 0 0 0 0

2 6.56 0.14 0.0917 0.0006864 0.0013728

3 7.15 0.73 0.47815 0.003579 0.0107369

4 7.82 1.4 0.917 0.0068638 0.0274551

5 8.83 2.41 1.57855 0.0118155 0.0590775

6 9.37 2.95 1.93225 0.0144629 0.0867777

7 9.84 3.42 2.2401 0.0167672 0.1173705

8 10.52 4.1 2.6855 0.020101 0.1608084

9 11.3 4.88 3.1964 0.0239251 0.2153263

10 11.67 5.25 3.43875 0.0257391 0.2573915

11 11.79 5.37 3.51735 0.0263275 0.2896022

12 11.97 5.55 3.63525 0.02721 0.3265195

13 12 5.58 3.6549 0.027357 0.3556415

14 12.05 5.63 3.68765 0.0276022 0.3864304

19 11.83 5.41 3.54355 0.0265236 0.503948

24 10.9 4.48 2.9344 0.0219641 0.5271377

29 10.12 3.7 2.4235 0.01814 0.5260591

34 9.55 3.13 2.05015 0.0153454 0.5217448

39 8.9 2.48 1.6244 0.0121587 0.4741886

44 8.5 2.08 1.3624 0.0101976 0.4486946

49 7.97 1.55 1.01525 0.0075992 0.3723597

54 7.75 1.33 0.87115 0.0065206 0.3521115

59 7.38 0.96 0.6288 0.0047066 0.2776886

64 7.19 0.77 0.50435 0.0037751 0.2416048

69 7.05 0.63 0.41265 0.0030887 0.2131201

74 6.94 0.52 0.3406 0.0025494 0.1886557

79 6.8 0.38 0.2489 0.001863 0.1471789
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Table C.5. Summary of tracer response data for J = 33% and 65.1% solids 

 

Time (t) Abs. Conductivity C(abs) - C(base) Concentration E(t) t E(t)

(Mins)      (mS/cm) (mS/cm) (kg/m^3)

0 5.34 0 0 0 0

1 5.34 0 0 0 0

2 6.61 1.27 0.74168 0.008229 0.01645801

3 8.18 2.84 1.65856 0.0184019 0.05520559

4 9.11 3.77 2.20168 0.0244278 0.09771131

5 9.58 4.24 2.47616 0.0274732 0.13736603

6 10 4.66 2.72144 0.0301946 0.18116765

7 10.3 4.96 2.89664 0.0321385 0.22496927

8 10.5 5.16 3.01344 0.0334344 0.26747498

9 11.05 5.71 3.33464 0.0369981 0.33298302

10 11.07 5.73 3.34632 0.0371277 0.37127704

11 11.09 5.75 3.358 0.0372573 0.40983025

12 10.83 5.49 3.20616 0.0355726 0.42687141

13 10.72 5.38 3.14192 0.0348599 0.4531783

14 10.45 5.11 2.98424 0.0331104 0.46354555

15 10.32 4.98 2.90832 0.0322681 0.48402086

20 9.3 3.96 2.31264 0.0256589 0.51317874

25 8.46 3.12 1.82208 0.0202161 0.50540331

30 7.62 2.28 1.33152 0.0147733 0.44319982

35 7.14 1.8 1.0512 0.0116632 0.40821036

40 6.62 1.28 0.74752 0.0082938 0.33175191

45 6.22 0.88 0.51392 0.005702 0.25658937

50 5.93 0.59 0.34456 0.0038229 0.19114612

55 5.82 0.48 0.28032 0.0031102 0.17105958

60 5.72 0.38 0.22192 0.0024622 0.14773327

65 5.61 0.27 0.15768 0.0017495 0.11371574

70 5.5 0.16 0.09344 0.0010367 0.07257073

75 5.45 0.11 0.06424 0.0007127 0.05345612

80 5.4 0.06 0.03504 0.0003888 0.03110174

85 5.36 0.02 0.01168 0.0001296 0.0110152

90 5.36 0.02 0.01168
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Table C.6. Summary of tracer response data for J = 33% and 72.1% solids 

 

Time (t) Abs. Conductivity C(abs) - C(base) Concentration E(t) t E(t)

(Mins)      (mS/cm) (mS/cm) (kg/m^3)

0 5.98 0 0 0 0

1 5.98 0 0 0 0

2 6.01 0.03 0.01674 0.0001462 0.0002924

3 7.05 1.07 0.59706 0.0052145 0.0156435

4

5

6

7

8

9

10

11

12 12.05 6.07 3.38706 0.0295813 0.3549757

13 12.1 6.12 3.41496 0.029825 0.3877247

14 12.08 6.1 3.4038 0.0297275 0.4161852

15 12.09 6.11 3.40938 0.0297762 0.4466437

20 11.47 5.49 3.06342 0.0267548 0.5350952

25 10.58 4.6 2.5668 0.0224175 0.5604367

30 9.8 3.82 2.13156 0.0186162 0.5584873

35 9.19 3.21 1.79118 0.0156435 0.5475223

40 8.44 2.46 1.37268 0.0119885 0.4795389

45 7.99 2.01 1.12158 0.0097955 0.4407956

50 7.49 1.51 0.84258 0.0073588 0.3679389

55 7.07 1.09 0.60822 0.005312 0.2921581

60 6.84 0.86 0.47988 0.0041911 0.2514655

65 6.61 0.63 0.35154 0.0030702 0.1995642

70 6.48 0.5 0.279 0.0024367 0.1705677

75 6.27 0.29 0.16182 0.0014133 0.1059956

80 6.19 0.21 0.11718 0.0010234 0.0818725

85 6.06 0.08 0.04464 0.0003899 0.0331389

90 6.01 0.03 0.01674 0.0001462 0.0131581
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C.2  SENSOMAG data 
 

Table C.7. Summary of SENSOMAG data for load position measurements 

 

%Solids
Ball 

load

Slurry 

toe
Stdev

Slurry 

shoulder
Stdev

Ball 

toe
Stdev

Ball 

shoulder
Stdev

75.1% 29.85 97.01 0.312 307.11 0.599 126.23 0.346 301.61 0.253

73.4% 30.23 97.15 0.255 308.00 0.647 127.69 0.438 301.40 0.270

65.0% 30.16 97.15 0.296 308.95 0.498 128.85 0.335 301.53 0.243

63.5% 30.16 96.84 0.221 309.96 0.533 129.83 0.316 302.16 0.317

75.6% 24.50 97.98 0.285 301.81 0.593 131.21 0.331 294.94 0.276

71.4% 24.65 97.84 0.316 302.77 0.530 132.66 0.329 295.51 0.287

74.5% 24.64 98.07 0.237 301.90 0.614 131.12 0.361 295.42 0.326

67.3% 24.86 97.42 0.366 303.73 0.610 133.33 0.325 296.00 0.266

67.7% 32.90 97.81 0.285 310.48 0.704 126.51 0.331 306.05 0.367

65.1% 32.77 97.43 0.332 310.83 1.005 127.02 0.228 305.82 0.265

72.1% 32.88 97.76 0.336 308.82 1.148 125.22 0.233 305.41 0.322

75.6% 32.87 85.23 0.266 294.21 1.451 110.91 0.259 292.39 0.293

 

 

 

Table C.8. Summary of mill load, power draws and slurry feed rate measurements 

 

%Solids
Ball 

load

Mill 

power
Stdev

Mill 

load
Stdev

Feed 

rate 

(tph)

Stdev RSD

75.1% 29.85 8538.19 22.182 807.85 3.984 451.05 0.997 0.002

73.4% 30.23 9013.19 35.986 779.00 40.703 443.40 19.988 0.045

65.0% 30.16 9157.26 3.213 779.78 10.378 449.03 15.794 0.035

63.5% 30.16 9323.43 15.905 771.79 6.529 464.46 19.792 0.043

75.6% 24.50 7481.89 1.024 702.32 13.880 441.83 4.270 0.010

71.4% 24.65 7800.27 6.856 712.04 11.475 435.94 8.790 0.020

74.5% 24.64 7496.97 13.556 714.31 18.938 455.95 2.362 0.005

67.3% 24.86 7994.26 34.062 610.10 20.040 408.14 51.044 0.125

67.7% 32.90 9757.93 5.699 696.08 5.308 436.39 4.771 0.011

65.1% 32.77 9793.09 7.003 717.34 7.869 457.62 43.785 0.096

72.1% 32.88 9522.49 0.393 712.76 5.014 409.21 22.383 0.055

75.6% 32.87 9281.35 5.559 704.28 5.754 420.18 13.779 0.033  
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D.1 SIMULINK block diagrams for the mixing cell model  
 
 

 
 

Figure D.1: SIMULINK block diagram (model) for cell 1 
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Figure D.2: SIMULINK block model for cell i 
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Figure D.3: SIMULINK block model for cell N 
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D.2 MATLAB program to compute load positions and 
power draw 

 

 
A = xlsread('file_name'); % read data file   

n = A(:,1);% sample index 

PP = A(:,2);% proximity probe signal data 

D = A(:,3);% torque signal 

CP = A(:,4); %conductivity signal 

pi = 3.14; 

t_sample = 0.006 % sampling rate in seconds per sample 

  

% Determine the index matrix of the pool, toe, shoulder and marker 

positions based on the set threshold voltages. 

  

indx_t = find(PP >= 0.8 & PP <= 1.2); % Ball toe index  

indx_bs = find(PP >= 1.6 & PP <= 2.0); % Ball shoulder index  

indx_m = find(PP>= 4); % marker index  

indx_p = find(CP >= 1.6 & CP <= 1.8); % Slurry pool index  

indx_ss = find(CP>= 0.2 & CP <= 0.6); % Slurry shoulder index  

  

% This part determines the marker position and counts revolutions 

  

l = length(indx_m); 

i = 1:l-1; 

step = indx_m(i+1)-indx_m(i);  

indx_step = find(step > 1); % to establish the last marker point 

valid_indx_m = indx_m(indx_step); % only the last marker point 

  

% Compute number of revolutions 

  

revcount = valid_indx_m;% Samples indexing starts at zero  

revs = length(revcount)-1; 

fprintf('The number of mill revolutions %4.0f\n',revs); 

n_marker = n(revcount); % based on samples index and not time index  

n_toe = n(indx_t); 

r = length(n_toe); 

n_ball_shoulder = n(indx_bs);  
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s = length(n_ball_shoulder); 

n_pool = n(indx_p); 

w = length(n_pool); 

n_slurry_shoulder = n(indx_ss); 

z = length(n_slurry_shoulder); 

  

% Compute the ball toe 

 

theta = zeros(r,revs); 

for j = 1:r 

    for k = 1:revs 

        if n_toe(j) > n_marker(k) & n_toe(j) < n_marker(k+1) 

            theta(j,k) = ((n_toe(j)- n_marker(k))/(n_marker(k+1)... 

   - n_marker(k)))*360; 

        end 

    end 

end 

valid_toe = find(theta>110 & theta<160); 

toe_angle = ceil(theta(valid_toe)); 

 

% compute the ball shoulder 

 

theta2 = zeros(s,revs); 

for j = 1:s  

    for k = 1:revs 

        if n_ball_shoulder(j)> n_marker(k) & ... 

           n_ball_shoulder(j) < n_marker(k+1) 

            theta2(j,k) = ((n_ball_shoulder(j)- n_marker(k))... 

            /(n_marker(k+1) - n_marker(k)))*360; 

        end 

    end 

end 

shoulder = find(theta2>240 & theta2<360); 

ball_shoulder_angle = ceil(theta2(shoulder));  

 

% Compute the slurry shoulder 

  

theta3 = zeros(z,revs); 
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for j = 1:z  

    for k = 1:revs 

        if n_slurry_shoulder(j) > n_marker(k) & ... 

           n_slurry_shoulder(j)< n_marker(k+1) 

            theta3(j,k) = ((n_slurry_shoulder(j)- n_marker(k))... 

            /(n_marker(k+1) - n_marker(k)))*360; 

        end 

    end 

end 

  

s_shoulder = find(theta3>240 & theta3<360); 

slurry_shoulder_angle =ceil(theta3(s_shoulder)); 

 

% compute slurry pool angle 

  

theta4 = zeros(w,revs); 

for j = 1:w  

    for k = 1:revs 

        if n_pool(j) > n_marker(k) & n_pool(j) < n_marker(k+1) 

            theta4(j,k) = ((n_pool(j)- n_marker(k))... 

           /(n_marker(k+1) - n_marker(k)))*360; 

        end 

    end 

end 

pool = find(theta4>110 & theta4<160); 

pool_angle = ceil(theta4(pool)); 

 

% Mill speed  

  

j = 1:revs; 

m = (n_marker(j+1) -n_marker(j))*t_sample; %  

if m <60 

    N = 60./m % mill speed in RPM 

else 

    N = m./60 

end 

N_mean = sum(N)/length(N); 
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%This part computes the mill torque and power 

 

T_tot = -10.78 *D + 105.42 - T0 ; % T0 = no-load torque  

T_avg = mean(T_tot)    % Average mill torque 

P = ((2*pi*N_mean*T_avg)/60);   % Mill Power 

P_avg = mean(P)  % Average mill power 

 

 
D.3 MATLAB program for RBF-PLS multivariate model 
 training and testing 
 

%This program performs non-linear partial least squares regression 

%(RBF-PLS) between the independent variables, X block and 

%dependents, Y-block  

  

clear 

EXP_DATA = xlsread('PLS_data.xlsx','data','2:49,2:6');% read data 

J = EXP_DATA(1:48,2); SG = EXP_DATA(1:48,3);PA = EXP_DATA(1:48,4); 

MA = EXP_DATA(1:48,5);VV = EXP_DATA(1:48,6); 

x = [PA MA VV];  y = [J SG]; 

  

% Cross validation by leave-out-one method(LOO) 

 

N=size(x,1); 

x1=x(1:N-1,:);XX1 = x(1:N,:); 

y1=y(1:N-1,:);YY1 = y(1:N,:); 

x2=x(N,:); 

y2=y(N,:); 

 

% normalization 

 

xmean=mean(x1); xxmean =mean(XX1); 

xstd=std(x1);   xxstd = std(XX1); 

ymean=mean(y1); yymean =mean(YY1); 

ystd=std(y1);    yystd=std(YY1); 

 

%mean centred and variance scaled 
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X=(x1-xmean(ones(N-1,1),:))./xstd(ones(N-1,1),:); 

XX=(XX1-xxmean(ones(N,1),:))./xxstd(ones(N,1),:); 

Y=(y1-ymean(ones(N-1,1),:))./ystd(ones(N-1,1),:); 

YY=(YY1-yymean(ones(N,1),:))./ystd(ones(N,1),:); 

yt = Y; xt = X; 

 

% Size of x and y 

 

[rX,cX]  =  size(X); 

[rY,cY]  =  size(Y); 

  

% Allocate memory to the maximum size  

n=max(cX,cY); 

T=zeros(rX,n); 

P=zeros(cX,n); 

U=zeros(rY,n); 

Q=zeros(cY,n); 

B=zeros(n,n); 

WW=P; k=0; 

tol2 = 1e-12; 

tol = 1e-10; 

N_dim=2; 

 

% iteration loop if residual is larger than specified 

  

while norm(Y)>tol2 && k<n 

    % choose the column of x has the largest square of sum as t. 

    % choose the column of y has the largest square of sum as u.  

    

    [dummy,tidx] =  max(sum(X.*X)); 

    [dummy,uidx] =  max(sum(Y.*Y)); 

    t1 = X(:,tidx);  

    u = Y(:,uidx); 

    t = zeros(rX,1); 

    

    % iteration for outer modeling until convergence 
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    while norm(t1-t) > tol 

        w = X'*u/(u'*u); 

        w = w/norm(w); 

        t = t1; 

        t1 = X*w; 

        X_t = t1; Y_t = u; % INPUTS/TARGETS 

        [N_t,M_dimx] = size(X_t); 

        [N_t,M_dimy] = size(Y_t); 

         

  basisfunction='gaussian'; 

 

        % Use the training data from RBF centres 

 

        X_c=X_t; 

        N_r=size(X_c,1);%number of RBF centres 

        k_i=1*ones(N_r,1);%this is a prescaler for Gaussian, 

                 

       [W phi]= train_rbf(X_t,Y_t,X_c,k_i,basisfunction); % train         

   uu = phi*W + k_i; 

         q = Y'*uu/(uu'*uu); 

         q = q/norm(q); 

         u = Y*q/(q'*q); 

         er = u - uu; 

 

        % calculate weight update parameter 

 

         [Z]=ZZ_rbf(X_c,X_t,W,k_i,basisfunction); 

         for i = 1:size(X,2) 

             ZZ = (Z*uu).*X(:,i); 

         end 

         dw = inv(ZZ'*ZZ)*(ZZ'*er); 

         w = w+dw; 

         w = w/norm(w); 

    end 

 

    t=X*w; 

    k=k+1; 
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% Update p based on t 

     

    p=X'*t/(t'*t); 

    pnorm=norm(p); 

    p=p/pnorm; 

   [W phi]=train_rbf(X_t,Y_t,X_c,k_i,basisfunction);%train weights 

    uu = phi*W + k_i; 

    

    % regression and residuals  

    

    X = X - t*p'; 

    Y = Y - uu*q'; 

     

    % Model testing 

 

    t2 = xt*p; 

    [phi2]=pred_rbf(X_c,t2,W,k_i,basisfunction); 

    uu2 = phi2*W + k_i; 

    % save iteration results to outputs: 

    T(:,k)=t; 

    T2(:,k)=t2; 

    P(:,k)=p; 

    U(:,k)=uu; 

    Q(:,k)=q; 

    WW(:,k)=w; 

    UU(:,k)= uu2;   

end 

 

%predicted values, mean centred and variance scaled 

  

T(:,k+1:end)=[]; 

T2(:,k+1:end)=[]; 

P(:,k+1:end)=[]; 

UU(:,k+1:end)=[]; 

U(:,k+1:end)=[]; 

Q(:,k+1:end)=[]; 

WW(:,k+1:end)=[]; 
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yp = UU*Q'; 

xp = T*P'; 

pred_y = yp.*ystd(ones(N-1,1),:)+ ymean(ones(N-1,1),:); 

pred_x1 = xp.*xstd(ones(N-1,1),:)+ xmean(ones(N-1,1),:); 

 

% Eigen decomposition 

 

[eigvec eigval] = eig(cov([xp])); 

eigval = diag(eigval); 

[junk rindices] = sort(-1*eigval); 

eig_vals = eigval(rindices) 

 

% fit quality 

% total sum of squares of deviations 

 

SSX = sum(sum((x1 -xmean(ones(N,1),:)).^2));  

SSY = sum(sum((y1 -ymean(ones(N,1),:)).^2)); 

 

%prediction error sum of squares (PRESS) 

 

PRESS_Y = (yp -yt).^2; 

PRESS = sum(PRESS_Y,1); 

PRESS1 = PRESS(1); PRESS2 = PRESS(2); 

 

fprintf('Sum of squares of predicted residuals: 

%g\n',PRESS1,PRESS2); 

 

SSR_X = sum((x1 - pred_x1).^2); % sum of squares of the residual 

SSR_Y = sum((y1 - pred_y).^2)% sum of squares of the residual 

Q1 = 1-(PRESS1/SSY)% cross-validation correlation coefficient 

Q2 = 1-(PRESS2/SSY) 

RY1 = 1-(SSR_Y(1)/SSY)  % Explained variance 

RY2 = 1-(SSR_Y(2)/SSY) 

RMSE_Y = sqrt(sum((y1-pred_y).^2)/(N)); % root mean square error 

RMSE_X = sqrt(sum((x1-pred_x1).^2)/(N)); 

 

function [W phi]=train_rbf(X,Y,Xc,k_i,basisfunction) 
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%trains a radial basis function 

if nargin<4 

    k_i=1; 

end 

if nargin<5 

    basisfunction='gaussian'; 

end 

  

N_r=size(Xc,1);%number of centres 

W=zeros(N_r,1);%weight matrix 

 

[z phi]=sim_rbf(Xc,X,W,k_i,basisfunction);%simulate rbf 

W=phi\(Y-k_i);%find weights 

 

function [z phi]=sim_rbf(Xc,X_t,W,k_i,basisfunction) 

 

%simulates a radial basis function 

 

if nargin<4 

    k_i=1; 

end 

if nargin<5 

    basisfunction='gaussian'; 

end 

  

N_r=size(Xc,1);%number of rbf centres 

N_p=size(X_t,1);%number of points 

 

if numel(k_i)==1 

    k_i=k_i*ones(N_r); 

end 

phi=zeros(N_p,N_r);%rbf outputs 

for i=1:N_r 

    if k_i(i)==0 

        phi(:,i)=1; 

    else 

        r=sqrt(sum((repmat(Xc(i,:),N_p,1)-X_t(:,:)).^2,2)); 

         %distance from point Xc to X_t 
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        sig = max(r)/(sqrt(2*N_r)); 

        phi(:,i)=exp((-r.^2)./(2*sig^2)) 

     end 

end 

 

function [phi2]=pred_rbf(Xc,t2,W,k_i,basisfunction) 

  

if nargin<4 

    k_i=1; 

end 

  

if nargin<5 

    basisfunction='gaussian'; 

end 

 

N_r=size(Xc,1);%number of rbf centres 

N_p=size(t2,1);%number of points 

  

if numel(k_i)==1 

    k_i=k_i*ones(N_r); 

end 

  

phi2=zeros(N_p,N_r);%rbf outputs 

for i=1:N_r 

    if k_i(i)==0 

        phi2(:,i)=1; 

    else 

        r=sqrt(sum((repmat(Xc(i,:),N_p,1)-t2(:,:)).^2,2)); 

        sig = max(r)/(sqrt(2*N_r)); 

        phi2(:,i)=exp((-r.^2)./(2*sig^2));       

    end 

end 

 

function [Z]=ZZ_rbf(Xc,X,W,k_i,basisfunction) 

  

if nargin<4 

    k_i=1; 

end 
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if nargin<5 

    basisfunction='gaussian'; 

end 

  

N_r=size(Xc,1);%number of rbf centres 

N_p=size(X,1);%number of points 

  

if numel(k_i)==1 

    k_i=k_i*ones(N_r); 

end 

 

Z=zeros(N_p,N_r);%rbf outputs 

for i=1:N_r 

    if k_i(i)==0 

        Z(:,i)=1; 

    else 

        r=sqrt(sum((repmat(Xc(i,:),N_p,1)-X(:,:)).^2,2)); 

        sig = max(r)/(sqrt(2*N_r)); 

        Z(:,i) = -2*r./sig^2;  

    end 

end 

 

 
D.4 MATLAB program for PLS multivariate model training 
 and testing  
 

% This program performs PLS regression between the independent 

%variables, X and dependents, Y as 

 

% X = T*P' + E; 

% Y = U*Q' + F = T*B*Q' + F1; 

% 

% Inputs: 

% X     data matrix of independent variables 

% Y     data matrix of dependent variables 

% tol   the tolerant of convergence (defaut 1e-10) 

%  

% Outputs: 
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% T     score matrix of X 

% P     loading matrix of X 

% U     score matrix of Y 

% Q     loading matrix of Y 

% B     matrix of regression coefficient 

% W     weight matrix of X 

% 

% Using the PLS model, for new X1, Y1 can be predicted as 

% Y1 = (X1*P)*B*Q' = X1*(P*B*Q') 

  

% Without Y provided, the function will return the principal 

components as 

% X = T*P' + E 

  

clear 

%read data 

 

EXP_DATA = xlsread('PLS_data.xlsx','data','2:49,2:6'); 

J = EXP_DATA(1:48,2); SG = EXP_DATA(1:48,3);PA = EXP_DATA(1:48,4); 

MA = EXP_DATA(1:48,5);VV = EXP_DATA(1:48,6); 

  

x = [PA MA VV];  y = [J SG]; 

  

% Cross validation by leave-out-one method (LOO) 

 

N=size(x,1); 

x1=x(1:N-1,:);XX1 = x(1:N,:); 

y1=y(1:N-1,:);YY1 = y(1:N,:); 

x2=x(N,:); 

y2=y(N,:); 

 

% normalization 

 

xmean=mean(x1); xxmean =mean(XX1); 

xstd=std(x1);   xxstd = std(XX1); 

ymean=mean(y1); yymean =mean(YY1); 

ystd=std(y); 
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%mean centred and variance scaled 

 

X=(x1-xmean(ones(N-1,1),:))./xstd(ones(N-1,1),:); 

XX=(XX1-xxmean(ones(N-1,1),:))./xxstd(ones(N-1,1),:); 

Y=(y1-ymean(ones(N-1,1),:))./ystd(ones(N-1,1),:); 

YY=(YY1-yymean(ones(N,1),:))./ystd(ones(N,1),:); 

yt = Y; yytrain = YY; 

xt = X; xxtrain = XX; 

 

% Size of x and y 

 

[rX,cX]  =  size(X); 

[rY,cY]  =  size(Y); 

 

% Allocate memory to the maximum size  

 

n=max(cX,cY); 

T=zeros(rX,n); 

P=zeros(cX,n); 

U=zeros(rY,n); 

Q=zeros(cY,n); 

B=zeros(n,n); 

W=P;  k=0; 

tol2 = 1e-10; 

tol = 1e-10; 

 

% iteration loop if residual is larger than specified 

 

while norm(Y)>tol2 && k<n 

 

    % choose the column of x has the largest square of sum as t. 

    % choose the column of y has the largest square of sum as u.  

    

    [dummy,tidx] =  max(sum(X.*X)); 

    [dummy,uidx] =  max(sum(Y.*Y)); 

    t1 = X(:,tidx); 

    u = Y(:,uidx); 

    t = zeros(rX,1); 
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    % iteration for outer modeling until convergence 

 

    while norm(t1-t) > tol 

        w1 = X'*u/(u'*u); 

        r = w1; 

        w = w1/(sqrt(sum(w1.^2))); 

        t = t1; 

        t1 = X*w; 

        q = Y'*t1/(t1'*t1); 

        q = q/norm(q); 

        u = Y*q/(q'*q); 

    end 

 

% update p based on t 

 

    t=t1; 

    p=X'*t/(t'*t); 

    pnorm=norm(p); 

    p=p/pnorm; 

    t=t*pnorm; 

    w=w*pnorm; 

     

    % regression and residuals  

 

    b = u'*t/(t'*t); 

    X = X - t*p'; 

    Y = Y - b*t*q';  

 

    % save iteration results to outputs: 

    k=k+1; 

    T(:,k)=t; 

    P(:,k)=p; 

    U(:,k)=u; 

    Q(:,k)=q; 

    W(:,k)=w; 

    B(k,k)=b;     

End 
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%predicted values, mean centred and variance scaled 

  

yp = ((x1-xmean(ones(N,1),:))./xstd(ones(N,1),:)) * (P*B*Q'); 

xp = T*P'; 

SSX = sum(sum((x1 -xmean(ones(N-1,1),:)).^2));  

SSx = sum(sum(x1.^2)); 

SSY = sum(sum((y1 -ymean(ones(N-1,1),:)).^2));  

SSy = sum(sum(y1.^2));  % total sum of squares of deviations 

pred_y1 = yp.*ystd(ones(N-1,1),:)+ ymean(ones(N-1,1),:); 

pred_x1 = xp.*xstd(ones(N-1,1),:)+ xmean(ones(N-1,1),:); 

 

%prediction error sum of squares (PRESS) 

 

PRESS_Y = (yp - yt).^2; 

PRESS = sum(PRESS_Y,1); 

PRESS1 = PRESS(1); PRESS2 = PRESS(2); 

fprintf('Sum of squares of predicted residuals: 

%g\n',PRESS1,PRESS2); 

 

SSR_X = sum((x1 - pred_x1).^2); % sum of squares of the residual 

SSR_Y = sum((y1 - pred_y1).^2) 

QY1 = 1-(PRESS1/SSY)% cross-validation correlation coefficient 

QY2 = 1-(PRESS2/SSY) 

RY1 = 1-(SSR_Y(1)/SSY)  % Coefficient Of determination 

RY2 = 1-(SSR_Y(2)/SSY) 

RMSE_Y = sqrt(sum((y1-pred_y1).^2)/(N)) % root mean square error 

RMSE_X = sqrt(sum((x1-pred_x1).^2)/(N)) 

T(:,k+1:end)=[]; 

P(:,k+1:end)=[]; 

U(:,k+1:end)=[]; 

Q(:,k+1:end)=[]; 

W(:,k+1:end)=[]; 

B=B(1:k,1:k); % regression coefficients for inner relation   

B_PLS = P*B*Q'; %OVERALL regression coefficient 

 

% eigen value decomposition 
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[eigvec eigval] = eig(cov([xp])); 

 eigval = diag(eigval); 

[junk rindices] = sort(-1*eigval); 

eig_vals = eigval(rindices); 

 

% variance explained in X-block 

 

rx1_x = eig_vals(1)/3 

rx2_x = eig_vals(2)/3 

rx3_x = eig_vals(3)/3 

 

% variance explained in Y-block 

 

[ix,jx]=size(xp); 

[iy,jy]=size(yp); 

rxy = corrcoef([xp,yp]); rxy_2 = rxy.*rxy; 

RY= (rxy(1:jx,jx+1:jx+jy)).^2; 

sum_RY = sum(RY,1); 

RY1X1 = (RY(1,1)/sum_RY(1))*RY1;  

RY1X2 = (RY(2,1)/sum_RY(1))*RY1;  

RY1X3 = (RY(3,1)/sum_RY(1))*RY1; 

RY2X1 = (RY(1,2)/sum_RY(2))*RY2;  

RY2X2 = (RY(2,2)/sum_RY(2))*RY2;  

RY2X3 = (RY(3,2)/sum_RY(2))*RY2;  



 

 

 

229
 

 
 
 

                          

APPENDIX E 

Miscellaneous Calculations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix E 

Miscellaneous calculations 

                                                               

                                                            

 

230

E1 Calculation of static and dynamic media angles 
 
E1.1 Introduction 
 

Studies of media and slurry dynamic behaviour inside ore grinding mills are 

generally aimed at establishing the prevailing regimes of mass motion on the basis of 

which mills can be appropriately tuned to maximize on energy and milling 

efficiencies as well as reduce liner wear rate. The motion and behaviour of media 

and slurry inside the mill are mathematically described in terms of mill operational 

parameters, mill geometry and measured load angles, giving useful equations that 

can be used alongside mill load sensors as on-line shadows to provide inferential 

measurements of desired load motion and behaviour under given mill operating 

conditions. 

 

 

E1.2 Load profile 
       
Generally, the mill load motion and behaviour are characterised by the dynamic 

positions of the grinding media and slurry inside the mill. Considering the load with 

just sufficient slurry to fill all the interstices within the grinding media bed without 

creating a pool of slurry, the static and dynamic load angles, physically described in 

Figure E.1 can be mathematically related by an expression in the form of equation 

E.1, which represents the basic structure of the theoretical model envisaged in this 

study.  

 

D S Lψ ψ ε= +         [E.1] 

 

The model parameters Dψ  and Sψ (in radians) represent the dynamic media angle 

defined by the toe and shoulder angles of the dynamic load, and the static media 

angle defined by the level of media filling respectively while Lε  is the qualitative 

description of the degree of load dilation and lift effects.  
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(a)                (b) 

Figure E.1: Representation of load profile and associated load angles in (a) 

stationary (b) dynamic mill with an overflow discharge mechanism. 

 

 

 

E1.3 Static media angle 

When the mill is stationary, the media forms a flat bed subtending an angle at the 

mill centre referred to as static media angle as illustrated in Figure E.1a. The size of 

the static media angle varies with the quantity of grinding media inside the mill and 

so is the angle θ1 where the latter is at its minimum when the level of media filling is 

tangent to the overflow trunion. 

 

In practice, the static media angle is utilised in estimation of the level of media filling 

(J) through a statistical relationship involving the mill radius and the load height 

measured vertically from the load level to the inside liner at the mill centre as 

demonstrated by Morrel (1993). Large errors may however be encountered with this 

approach at lower fill levels (<20%) notwithstanding the fact that the mill has to 

either grind out or be crash stopped for measurements to be taken which further 

renders the process cumbersome. This could be avoided through dynamic estimation 

of load filling which can be accomplished through a mathematical model that relates 

the dynamic load angles such as shoulder and toe angles with important and easily 

measurable mill operational and geometric parameters.   
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The static media angle can be estimated from the cross-sectional area of the ball 

charge region relative to the total cross-sectional area of the mill drum (Smit, 2000).  

This can be expressed mathematically as, 

 

( )

sec ( )

L
A

T

Area of the load segment A
J

Total cross tion area of the mill A
=     [E.2] 

 

Where the values of AL and AT are obtained from the following expressions:  

 

AL   = 2( )

2

S S
M

Sin
R

ψ ψ− 
 
 

     ; AT   =  2

MRπ     [E.3] 

 

 

Substituting for AT and AL in equation E.3 and simplifying then rearranging yields an 

expression of the form: 

   

( ) 2 0S S ASin Jψ ψ π− − =          [E.4] 

 

 

Equation E.4 can be solved numerically for Sψ
 

(in radians) and in our case a 

MATLAB function was applied to obtain solutions over a range of values of (JA) 

spanning from 0.1 to 0.5. To overcome mathematical complexities associated with 

numerical computations, it was deemed appropriate to obtain an equivalent empirical 

expression to equation E.4 and the following equation yielded the best fit to the 

numerical data. 

 

0.4154.142S Jψ =   (Valid for 0.1 ≤ J ≤ 0.5)   [E.5] 

 

 

Figure E.2 shows a comparison between the values of static media angles 
Sψ  as 

computed from equations E.4 and E.5. 
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Figure E.2: Comparison of the static media angles as obtained by two equations 

 

 

 

Alternatively, the static media angle can be estimated from a simple relationship 

involving the number of lifting bars around the mill circumference when the mill is 

stationary. The static media angle would be proportional to the number of invisible 

lifting bars covered by the media charge, that is: 

 

2 (1 )
S L T

n nψ π= −         [E.6] 

 

Where,   

nL : the number of visible lifting bars 

nT : total number of lifting bars around the mill circumference 
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E1.4 Dynamic media angle 

The dynamic load position inside an overflow mill can be physically described as 

shown earlier in Figure E.1b. The dynamic media angle is the angle subtended at the 

mill centre by the ball charge when the mill is rotational. The angle is obtained as a 

difference between the shoulder and toe angles of the dynamic media which is 

mathematically expressed as:  

 

( )( ) ( )D S media T mediaψ θ θ= −        [E.7]                          

 

Under normal mill operating conditions the dynamic media angle is expected to be 

larger than the static media angle. This is basically due to dilation of the ball charge 

as it gets lifted along the rotating mill drum. 

 

Analysis of the evolution of dynamic media angle would provide an indication of the 

mill internal dynamics. This information might help the operator to adapt the mill 

accordingly so as to optimise the milling efficiency. Equally, the information would 

be valuable in planning for liner replacement and media replenishment. 

 

 
 
 
E2 Estimating the length of the chord that defines the pool 
 free surface 
 
 

Assuming the dynamic load in an overflow mill takes the profile shown by Figure 

E.3, then the length of the chord defining the pool free surface would be given by, 

 

@A �� �� @" ���@?        [E.8] 

 

Where,  L1 = B��? 	 ��?    ;     L2 is dependent on J and RM 
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Figure E.3: Representation of important dynamic load angles in an overflow mill. 

 
 

Based on the graphical data obtained by DEM simulation, presented in Figure E.4, a 

correlation of L2 with J and RM was sought. The values of RL in Figure E.4 were 

measured physically in order to compute L2 (= RL*sinΩ) while the following were 

provided: RM = 3.636 m, RT = 0.84 m, Ω  = 1.343 radians. The Values of L2 obtained 

from measurements in Figure E.4, are presented in Table E.1 for the three levels of J. 

 

 
 

Figure E.4: DEM snap shots showing how L2 changes with the level of ball load 

inside the mill. 
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Table E.1: DEM simulation values of L2 for different levels of J 

 
J (fraction) RL (m) L2   =  RL *sin ΩΩΩΩ  (m) 

0.25 1.3469 1.3093 

0.30 1.0772 1.0495 

0.33 0.9657 0.9408 

 
 
 
By subjecting the data to linear regression analysis, a correlation of L2 with J and RM 

was obtained as,  

 

      [E.9] 

 

 
Figure E.5 is a plot of observed values (measured) versus estimated values 

(calculated using equation E.9), showing the goodness of fit. 

 

 
 

Figure E.5: Plot of observed values vs. model estimations of L2 
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E3 Computation of weight updating parameter in the 
 RBF-PLS multivariate model 
 

The non-linear mapping by the RBF-PLS multivariate model of the scores, u and t is 

described in Chapter 5.  

 

2
1

ˆ .exp
cn

j

o j

j j

c t
u w w

σ=

 −
 = + −
 
 

∑       [E.10] 

 

The input weight in the outer relation for the k
th

 variable, xk  on the input score t can 

be denoted as wk . The Taylor series expansion of non-linear function, equation E.10 

can be defined as,  

  

1

( )
.

m

oo k

k k

f t
u f w

w=

∂
= +

∂∑        [E.11] 

 

 

( )( )

( ) ( ) ( )

2
2

1

2
2 2

1

exp
( )

, .

. 2 .exp

nc j

j

jk k

nc
j

j j j

j k

c t
f t

where w
w w

c t
w c t c t

w

σ

σ σ
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Since   
k

k

t
x

w

∂
=

∂
  , where xk is a column vector containing the observations 

collected on the k
th

 input variable, the overall derivative can be written as follows: 

 

( ) ( )2
2 2

1

( . )
. 2 .exp .[ ]

nc

j j j k

jk

f x w
w c t c t x

w
σ σ

=

∂
= − − − − ±

∂ ∑   [E.12] 

 

The final non-linear mapping function is written as,  
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( ) ( )2
2 2

1 1

. 2 .exp .[ ] .
m nc

oo j j j k k

k j

u f w c t c t x wσ σ
= =

 
= + − − − − ± ∆ 

 
∑ ∑  [E.13] 

 

The error update procedure is applied by defining a matrix Z = [zk] where each 

column zk is set equal to: 

 

( ) ( )2
2 2

1

. 2 .exp .[ ]
nc

k j j j k

j

z w c t c t xσ σ
=

= − − − − ±∑    [E.14] 

 

Now by stacking the weight updating vector kw∆ into a column vector ∆W and the 

Taylor series expansion can be written as, 

 

.oou f Z W= + ∆         [E.15] 

 

The error between u and the value of RBF network model û is given by, 

 

 

ˆ .e u u Z W= − ⇒ ∆        [E.16] 

 

The outer input weight can be updated using the updating parameter given as, 

 

( ) 1

. . .T TW Z Z Z e
−

∆ =        [E.17] 
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E4 Correction for the SENSOMAG reference angle 
 

The SENSOMAG sensor used to measure the media and slurry positions inside the 

industrial mill was offset from the reference probe by 1.52m, measured vertically.  

The details of the SENSOMAG sensor and reference probe locations are 

schematically illustrated in Figure E6 including the measurement details.  

 

 

                   
 

 

Figure E6: Schematic illustration of the SENSOMAG liner position relative to the 

reference position 

 

 

 

The following parameters are given: R = 3.706m; Number of lifters, NL =  44 

 

The angle subtended at the mill centre by one lifter is obtained as, (360/44) = 8.2
0 

 

 

While, 2 2

1 ( 1.395 )L R= −       [E.18]   

 

Performing the geometric analysis on Figure E.6 yields the angle of displacement 

between the SENSOMAG sensor and reference probe as follows: 

 

11.395 / ( 0.3)Tan Lα = +        [E.19] 

 

Reference angle   =  (90  +  α)  -  8.2/2      =    106.4
0 
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