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ABSTRACT

The construction of conserved vectors using Noether’s theorem via a knowledge

of a Lagrangian (or via the recently developed concept of partial Lagrangians) is

well known. The formulae to determine these for higher-order flows is somewhat

cumbersome and becomes more so as the order increases. We carry out these for

a class of fourth, fifth and sixth order PDEs. In the latter case, we involve the

fifth-order KdV equation using the concept of ‘weak’ Lagrangians better known for

the third-order KdV case.

We then consider the case of a mixed ‘high-order’ equations working on the Shallow

Water Wave and Regularized Long Wave equations. These mixed type equations

have not been dealt with thus far using this technique. The construction of conserved

vectors using Noether’s theorem via a knowledge of a Lagrangian is well known.

In some of the examples, our focus is that the resultant conserved flows display some

previously unknown interesting ‘divergence properties’ owing to the presence of the

mixed derivatives.

We then analyse the conserved flows of some multi-variable equations that arise

in Relativity. In addition to a larger class of conservation laws than those given

by the isometries or Killing vectors, we may conclude what the isometries are and

that these form a Lie subalgebra of the Noether symmetry algebra. We perform

our analysis on versions of the Vaidya metric yielding some previously unknown

information regarding the corresponding manifold. Lastly, with particular reference

to this metric, we also show the variations that occur for the unknown functions.

We discuss symmetries of classes of wave equations that arise as a consequence

of the Vaidya metric. The objective of this study is to show how the respective

geometry is responsible for giving rise to a nonlinear inhomogeneous wave equation

as an alternative to assuming the existence of nonlinearities in the wave equation

due to physical considerations. We find Lie and Noether point symmetries of the

corresponding wave equations and give some reductions. Some interesting physical
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conclusions relating to conservation laws such as energy, linear and angular momenta

are also determined. We also present some interesting comparisons with the standard

wave equations (on a ‘flat geometry’).

Finally, we pursue the nature of the flow of a third grade fluid with regard to

its underlying conservation laws. In particular, the fluid occupying the space over

a wall is considered. At the surface of the wall, suction or blowing velocity is

applied. By introducing a velocity field, the governing equations are reduced to a

class of PDEs. A complete class of conservation laws for the resulting equations

are constructed and analysed using the invariance properties of the corresponding

multipliers/characteristics.

5



Contents

Introduction 7

1 Preliminaries 11

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Main Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Noether Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Noether Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Noether-Type Generators . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Conservation laws of Higher order nonlinear PDEs 22

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The fifth-order KdV equation . . . . . . . . . . . . . . . . . . . . . . 23

6



2.2.1 The sixth-order expansion of the KdV-5 equation . . . . . . . 24

2.2.2 Traveling Wave reduction of the KdV-5 Equation . . . . . . . 29

2.3 The fourth-order Boussinesq equation . . . . . . . . . . . . . . . . . . 32

2.4 A fourth-order non-linear equation . . . . . . . . . . . . . . . . . . . 34

2.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Conservation laws of Higher order PDEs with mixed derivative

term 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Camassa-Holms, Hunter-Saxton, Inviscid Burgers and KdV family of

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 The higher-order expansion of the Camassa-Holms, Hunter-

Saxton, Inviscid Burgers and KdV family of equations . . . . 39

3.3 The Shallow Water Wave equation . . . . . . . . . . . . . . . . . . . 43

3.3.1 Shallow Water Wave-1 . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Shallow Water Wave-2 . . . . . . . . . . . . . . . . . . . . . . 49

3.4 The Regularized Long Wave Equation . . . . . . . . . . . . . . . . . 52

3.4.1 Regularized Long Wave-1 . . . . . . . . . . . . . . . . . . . . 54

3.4.2 Regularized Long Wave-2 . . . . . . . . . . . . . . . . . . . . 59

3.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . 62

7



4 Conservation laws of some Vaidya metrics 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Lie point Symmetries of the Vaidya metric . . . . . . . . . . . . . . . 64

4.3 Noether Symmetries of the Vaidya metric . . . . . . . . . . . . . . . . 68

4.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Conservation laws of the Petrov III and Papapetrou metrics 74

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Lie point Symmetries of the Papapetrou model . . . . . . . . . . . . . 75

5.3 Noether Symmetries of the Papapetrou model . . . . . . . . . . . . . 76

5.4 Lie point Symmetries of the Petrov type III metric . . . . . . . . . . 77

5.5 Noether Symmetries of the Petrov type III metric . . . . . . . . . . . 81

5.6 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Conservation laws of the wave equation on Vaidya manifolds 85

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 The Vaidya metric and the wave equation in curved geometry . . . . 86

6.3 Lie Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 Reduction of order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8



6.5 Noether symmetries and conservation laws . . . . . . . . . . . . . . . 92

6.6 Higher-order symmetries and conserved densities . . . . . . . . . . . . 99

6.7 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Conservation laws of some third-grade fluids 105

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Preliminaries and basic equations . . . . . . . . . . . . . . . . . . . . 106

7.3 Conservation laws, multipliers and symmetries . . . . . . . . . . . . . 110

7.4 Conservation laws via partial Lagrangians . . . . . . . . . . . . . . . 114

7.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . 115

Conclusion 116

References 118

9



Introduction

Marius Sophus Lie was one of the first prominent Norwegian scientists and among

the last of the great 19th-century mathematicians. His main contribution was the

theory of continuous groups of transformations. Lie produced his finest work in

collaboration with Felix Klein and later Friedrich Engel.

Lie worked on transformation groups, which he called finite continuous groups.

These groups, later called Lie groups, possessed a fixed number of parameters but

could be differentiated in any desired order. Lie applied his theory of transformation

groups to show that a majority of the known methods of integration could be intro-

duced all together by means of group theory. He also used transformation groups to

help classify ordinary differential equations and to give a unified method of solution

using group-theoretic considerations.

In 1884, Lie teamed up with Friedrich Engel, a student recommended by Klein and

Mayer, and together they produced a three-volume work on transformation groups,

Theorie der Transformationsgruppen published between 1888 and 1893.

Lie’s influence continued well after his death, with mathematicians like Wilhelm

Killing who continued to work on Lie groups, which Elie Joseph Cartan later revised

and based much of his work on and Hermann Weyl contribution into Lie’s groups in

his papers from 1922 and 1923, and subsequent generalizations of Lie groups gave

them a greater role in new fields like quantum physics, particle physics and quantum

mechanics.

10



The notion of symmetries entered the area of conservation law in variational equa-

tions through the work of Emmy Noether. Noether was born on the 23 March 1882

in Erlangen, Germany.

Noether received a Ph.D. degree from the University of Erlangen in 1907, with

a dissertation on algebraic invariants, under the supervision of Paul Gordan. She

worked at the Mathematical Institute of Erlangen. In 1915 she was invited by David

Hilbert and Felix Klein to join the mathematics department at the University of

Gottingen. While in Gottingen, she was approached by David Hilbert to solve the

problem of failure of energy conservation in relativity.

In the paper, Invariante Varlationsprobleme, Noether proved two theorems, known

as Noether’s theorem [1], which revealed the fundamental connection between sym-

metries and conservation laws in physics. This led to a deeper understanding of

laws such as the principles of conservation of energy, angular momentum, etc. The

importance of Noether’s theorem in calculus of variations is that the differential

equations with variational structures are physical models and their variational sym-

metries generate conservation laws.

Noether’s theorem provides elegant formulae for the construction of conservation

laws for Euler-Lagrange equations once the Noether symmetries are known. A La-

grangian of the differential equation is required in order to use the theorem. The

central problem in calculus of variations is the determination of a Lagrangian, so

that the differential equation is then regarded as the Euler-Lagrange equation. This

is regarded as the inverse problem in the calculus of variations, [2, 3].

Applications of Noether’s theorem have yielded numerous results in literature, for

example, [4, 5, 6]. There are also methods which provide conserved vectors without

making use of a Lagrangian. The direct method by [7, 8], which is used to construct

conserved quantities. A recent method for constructing conserved vectors without

the use of a Lagrangian was provided by [9]. A more systematic way of constructing

conserved quantities without the existence of Lagrangians was introduced by [10].

The introduction of partial Lagrangians, partial Euler-Lagrange equations and a
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modified Noether theorem known as partial Noether theorem, was presented for dif-

ferential equations which has the same structure as Noether’s theorem. Conservation

laws are also constructed by utilization of the partial Noether approach.

We discuss the use of these variational techniques on higher-order PDEs. The im-

portance of investigating these sorts of equations, are due to their appearance in

different branches of science and engineering, like plasma physics, fluid dynamics,

quantum theory, nonlinear optics, solid state physics, relativity and financial math-

ematics.

Brief Outline of the Chapters

In the first chapter, we introduce the preliminary mathematics that is needed to

tackle our investigation. We introduce the concepts of Noether symmetries, Noether

operators, Euler-Lagrange operator, Euler-Lagrange equations and conserved quan-

tities.

In the second chapter, we discuss the role of this technique in attaining conservation

laws for the fifth-order KdV, and fourth-order Boussinesq equations. For these and

any high order PDEs, finding conservation laws by first principles can be extremely

tedious. The important point of consideration is the cumbersome formulae that are

required due to the order of the Lagrangians and related functions.

In the third chapter, we consider higher order mixed derivatives and their conser-

vation laws using this technique. The Shallow Water Wave and Regularized Long

Wave Equations are examined due to their highest derivative term being mixed.

These sorts of equations have not been studied before using this technique.

In the fourth chapter, we consider the Vaidya metric that is currently being re-

searched intensively in relativity and astrophysics. We show that a large amount

information can be extracted from a knowledge of the vector fields that leave the

action integral invariant, viz., Noether symmetries. In addition to a larger class of

conservation laws than those given by the isometries or Killing vectors, we may con-
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clude what the isometries are and that these form a Lie subalgebra of the Noether

symmetry algebra.

In the fifth chapter, a special case of the Vaidya metric known as the Papapetrou

model is discussed. A detailed symmetry analysis and invariance study associated

with the Petrov III metric is also carried out.

In the sixth chapter, we consider the classical wave equation in some Lorentzian

space-time backgrounds with the point in mind that the wave equation there may

naturally inherit nonlinearity from geometry. In this study we look at the wave

equation constructed from the Vaidya metric. The wave equation is constructed

by using the D’Alembertian operator on the metric tensor. A detailed symmetry

analysis is carried out on the wave equation leading to the construction of conserve

quantities and higher order symmetries. We construct higher order symmetries using

the recursion operators.

In the seventh chapter, the nature of the flow of a third grade fluid with regard

to its underlying conservation laws is studied. In particular, the fluid covering a

wall is considered. At the surface of the wall, suction or blowing velocity is applied.

By introducing a velocity field, the governing equations are reduced to a class of

partial differential equations (PDEs). A complete class of conservation laws for the

resulting equations are constructed and analyzed using invariance properties of the

corresponding multipliers/characteristics.
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Chapter 1

Preliminaries

1.1 Introduction

In this chapter, we introduce the preliminaries and results that are needed to tackle

our investigation for higher-order PDEs. We introduce the concepts of Noether

symmetries, Noether operators, Euler-Lagrange operator, Euler-Lagrange equations

and conserved quantities.

1.2 Main Operators

We first introduce the reader to, the universal space A of differential functions. A

locally analytic function 𝑓(𝑥, 𝑢, 𝑢(1), 𝑢(2), ⋅ ⋅ ⋅ , 𝑢(𝑘)) of a finite number of variables is

called a differential function of order 𝑘. The space A is the vector space of all

differential functions of all finite orders and forms an algebra.

A total derivative converts any differential function of order 𝑘 to a differential func-

tion of order 𝑘 + 1. Hence, the space A is closed under total derivations. There
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are other operators on A and some of the important ones which we will utilize are

explained below.

The summation convention is adopted throughout. Let 𝑥 = (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛) be the

independent variable with co-ordinates 𝑥𝑖, and 𝑢 = (𝑢𝛼, ⋅ ⋅ ⋅ , 𝑢𝑚) the dependent

variable with co-ordinates 𝑢𝛼. The derivatives of the 𝑢 with respect to 𝑥 are

𝑢𝑖
𝛼 = 𝐷𝑖(𝑢

𝛼), 𝑢𝛼
𝑖𝑗 = 𝐷𝑖𝑗(𝑢

𝛼), ⋅ ⋅ ⋅ , (1.1)

where

𝐷 =
∂

∂𝑥𝑖
+ 𝑢𝛼

𝑖

∂

∂𝑢𝛼
+ 𝑢𝛼

𝑖𝑗

∂

∂𝑢𝛼
𝑗

+ ⋅ ⋅ ⋅ , 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛 (1.2)

is the total differential operator. The collection of all first derivatives 𝑢𝑖
𝛼 is denoted

by 𝑢(1). Similarly, the collections of all higher-order derivatives are denoted by

𝑢(2), 𝑢(3), ⋅ ⋅ ⋅. Following Lie, in group analysis it is expedient to consider all variables

𝑥, 𝑢, 𝑢(1), 𝑢(2), 𝑢(3), ⋅ ⋅ ⋅ as functionally independent connected only by the differential

relations (1.1). Consequently, the 𝑢𝛼 are referred to as differential variables.

We denote by 𝑧 the sequence

𝑧 = (𝑥, 𝑢, 𝑢(1), 𝑢(2), ⋅ ⋅ ⋅) (1.3)

with elements 𝑧𝜈 ,𝜈 ≥ 1, for example,

𝑧𝑖 = 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛, 𝑧𝑛+𝛼 = 𝑢𝛼, 1 ≤ 𝛼 ≤ 𝑚,

with the remaining elements representing the derivatives of 𝑢. However, in applica-

tion one invariably utilizes only infinite subsequences of 𝑧 which are donated by [𝑧].

A locally analytic function 𝑓(𝑥, 𝑢, 𝑢(1), 𝑢(2), ⋅ ⋅ ⋅ , 𝑢(𝑘)) of a finite number of variables

is called a differential function of order 𝑘 and for brevity is written as 𝑓([𝑧]). The

space 𝐴 is the vector space of all differential function of all finite orders. A total
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derivative (1.2) converts any differential function of order 𝑘 to a differential function

of order 𝑘 + 1.

Hence, the space 𝐴 is closed under total derivations 𝐷𝑖. The main operators in-

troduced below are correctly defined in the space 𝐴. More concisely, this means

that the operators defined as formal sums truncate when they act on differential

functions.

Definition 1: The Euler-Lagrange operator is defined by

𝛿

𝛿𝑢𝛼
=

∂

∂𝑢𝛼
+

∑
𝑠≥1

(−1)𝑠𝐷𝑖1 ⋅ ⋅ ⋅𝐷𝑖𝑠

∂

∂𝑢𝛼
𝑖1⋅⋅⋅𝑖𝑠

, 𝛼 = 1, ⋅ ⋅ ⋅ ,𝑚. (1.4)

The operator (1.4) is sometimes referred to as the Euler operator, named after

Euler (1744) who first introduced it in a geometrical manner for the one-dimensional

case. Also, it is called the Lagrange operator, bearing the name of Lagrange (1762)

who considered the multidimensional case and established its use in a variational

sense (see for example, [11] for a history of the calculus of variations). Following

Lagrange, equation (1.4) is frequently referred to as a variational derivative. In the

modern literature, the terminology Euler-Lagrange and variational derivative are

used interchangeably as (1.4) usually arises in considering a variational problem.

Definition 2: The Lie-Bäcklund operator is given by

𝑋 = 𝜉𝑖
∂

∂𝑥𝑖
+ 𝜂𝛼

∂

∂𝑢𝛼
𝜉𝑖, 𝑢𝛼 ∈ A. (1.5)

This operator is in fact an abbreviated form of the following infinite formal sum,

𝑋 = 𝜉𝑖
∂

∂𝑥𝑖
+ 𝜂𝛼

∂

∂𝑢𝛼
+ 𝜁𝛼𝑖

∂

∂𝑢𝑖
𝛼
+ 𝜁𝛼𝑖𝑗

∂

∂𝑢𝛼
𝑖𝑗

+ ⋅ ⋅ ⋅ , (1.6)
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where the additional coefficients are determined uniquely by the prolongation for-

mulae

𝜁𝛼𝑖 = 𝐷𝑖(𝑊
𝛼) + 𝜉𝑗𝑢𝛼

𝑖𝑗

𝜁𝛼𝑖1𝑖2 = 𝐷𝑖1𝐷𝑖2(𝑊
𝛼) + 𝜉𝑗𝑢𝛼

𝑖1𝑖2𝑗

⋅ ⋅ ⋅
(1.7)

In (1.7), 𝑊 𝛼 is the Lie characteristic function given by

𝑊 𝛼 = 𝜂𝛼 − 𝜉𝑗𝑢𝛼
𝑗 . (1.8)

One can write the Lie-Bäcklund operator (1.6) in form

𝑋 = 𝜉𝑖𝐷𝑖 +𝑊𝛼 ∂

∂𝑢𝛼
+𝐷𝑖(𝑊

𝛼)
∂

∂𝑢𝑖
𝛼
+𝐷𝑖1𝐷𝑖2(𝑊

𝛼)
∂

∂𝑢𝛼
𝑖1𝑖2

+ ⋅ ⋅ ⋅ . (1.9)

Definition 3: The Noether operator associated with a Lie-Bäcklund operator X is

defined by

𝑁 𝑖 = 𝜉𝑖 +𝑊 𝛼 𝛿

𝛿𝑢𝑖
𝛼
+

∑
𝑠≥1

𝐷𝑖1 ⋅ ⋅ ⋅𝐷𝑖𝑠(𝑊
𝛼)

∂

∂𝑢𝛼
𝑖𝑖1⋅⋅⋅𝑖𝑠

, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛 (1.10)

where the Euler-Lagrange operator with respect to derivatives of 𝑢𝛼 are obtained

from (1.4) by replacing 𝑢𝛼 by the corresponding derivatives, for example,

𝛿

𝛿𝑢𝛼
𝑖

=
∂

∂𝑢𝛼
𝑖

+
∑
𝑠≥1

(−1)𝑠𝐷𝑗1 ⋅ ⋅ ⋅𝐷𝑗𝑠(𝑊
𝛼)

∂

∂𝑢𝛼
𝑖𝑗1⋅⋅⋅𝑗𝑠

, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, 𝛼 = 1, ⋅ ⋅ ⋅ ,𝑚.

(1.11)

The operator (1.10) is named the Noether operator. As a consequence of the operator

(1.10), the proof of Noether’s theorem becomes purely algebraic and independent of

variational calculus. The algebraic proof is based on the identity presented in the

next section.
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1.3 Noether Identity

Theorem 1: The Euler-Lagrange, Lie-Bäcklund and Noether operators are con-

nected by the operator identity

𝑋 +𝐷𝑖(𝜉
𝑖) = 𝑊 𝛼 𝛿

𝛿𝑢𝛼
+𝐷𝑖𝑁

𝑖. (1.12)

Here, 𝐷𝑖(𝜉
𝑖) is a differential function which is a sum of functions obtained by total

derivations 𝐷𝑖 of differential functions 𝜉𝑖. That is, 𝐷𝑖(𝜉
𝑖) is a divergence of the

vector 𝜉 = (𝜉1, ⋅ ⋅ ⋅ , 𝜉𝑛), in other words, 𝑑𝑖𝑣𝜉 whereas, 𝐷𝑖𝑁
𝑖 is an operator obtained

as a sum of products of operators 𝐷𝑖 on 𝑁 𝑖, that is, it is the scalar product of vector

operators 𝐷 = (𝐷1, ⋅ ⋅ ⋅ , 𝐷𝑛) and 𝑁 = (𝑁1, ⋅ ⋅ ⋅ , 𝑁𝑛). The identity (1.12) is called

the Noether identity because of its close relation to Noether’s theorem.

1.4 Noether Generators

Consider a 𝑘𝑡ℎ order differential equation

𝐸𝛼(𝑥, 𝑢, 𝑢(1), 𝑢(2), ⋅ ⋅ ⋅ , 𝑢(𝑘)) = 0, 𝛼 = 1, ⋅ ⋅ ⋅ ,𝑚. (1.13)

Definition 4: A conserved vector of (1.13) is tuple 𝑇 = (𝑇 1, ⋅ ⋅ ⋅ , 𝑇 𝑛),

𝑇 𝑗 = 𝑇 𝑗(𝑥, 𝑢, 𝑢(1), 𝑢(2), ⋅ ⋅ ⋅ , 𝑢(𝑘)) ∈ 𝐴, 𝑗 = 1, ...𝑛, such that

𝐷𝑖(𝑇
𝑖) = 0 (1.14)

is satisfied for all solutions of (1.13).

REMARK. When Definition 4 is satisfied, (1.14) is called a conservation law for

(1.13).
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We now discuss conservation laws of Euler-Lagrange equations. That is, differential

equations of the form
𝛿𝐿

𝛿𝑢𝛼
= 0, 𝛼 = 1, ⋅ ⋅ ⋅ ,𝑚, (1.15)

where 𝐿 = 𝐿(𝑥, 𝑢, 𝑢(1), 𝑢(2), ⋅ ⋅ ⋅ , 𝑢(𝑙)) ∈ 𝐴, 𝑙 ≤ 𝑘, 𝑘 being the order of (1.15), are

Lagrangians and 𝛿
𝛿𝑢𝛼 is the Euler-Lagrange operator defined by (1.4).

Definition 5: A Lie-Bäcklund operator 𝑋 of the form (1.6) is called a Noether

symmetry corresponding to a Lagrangian 𝐿 ∈ 𝐴 if there exists a vector 𝐵 =

(𝐵1, ⋅ ⋅ ⋅ , 𝐵𝑛), 𝐵𝑖 ∈ 𝐴, such that

𝑋(𝐿) + 𝐿𝐷𝑖(𝜉
𝑖) = 𝐷𝑖(𝐵

𝑖). (1.16)

If equation (1.16), 𝐵𝑖 = 0, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, then 𝑋 is referred to as a strict Noether

symmetry corresponding to a Lagrangian 𝐿 ∈ 𝐴.

Theorem 2: For a any Noether symmetry 𝑋 corresponding to a given Lagrangian

𝐿 ∈ 𝐴, there corresponds a vector 𝑇 = (𝑇 1, ⋅ ⋅ ⋅ , 𝑇 𝑛), 𝑇 𝑖 ∈ 𝐴, defined by

𝑇 𝑖 = 𝑁 𝑖(𝐿)−𝐵𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, (1.17)

which is a conserved vector of equation (1.15), that is, 𝐷𝑖(𝑇
𝑖) = 0 on the solutions

of (1.15).

1.5 Noether-Type Generators

Consider a 𝑘𝑡ℎ order differential system

𝐸𝛼(𝑥, 𝑢, 𝑢(1), 𝑢(2), ⋅ ⋅ ⋅ , 𝑢(𝑘)) = 0, 𝛼 = 1, ⋅ ⋅ ⋅ ,𝑚 (1.18)
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which is of maximal rank and locally solvable. The following definition is well-known.

REMARK. When Definition 4 is satisfied, (1.14) is called the local conservation law

of (1.18). Also 𝐷𝑖𝑇
𝑖 = 𝑄𝛼𝐸𝛼 is referred to as the characteristic form of conservation

law (1.18) and the function 𝑄 = (𝑄1, ⋅ ⋅ ⋅ , 𝑄𝑛) the associated characteristic form of

the conservation law.

Suppose that equations (1.18) are written as

𝐸𝛼 ≡ 𝐸0
𝛼 + 𝐸1

𝛼 = 0, 𝛼 = 1, ⋅ ⋅ ⋅ ,𝑚. (1.19)

We now introduce the definition of a Partial Lagrangian.

Definition 6: If there exists a function 𝐿 = 𝐿(𝑥, 𝑢, 𝑢(1), 𝑢(2), ⋅ ⋅ ⋅ , 𝑢(𝑙)) ∈ 𝐴, 𝑙 ≤ 𝑘 and

non-zero functions 𝑓𝛽
𝛼 ∈ 𝐴 such that (1.19) can be written as 𝛿𝐿/𝛿𝑢𝛼 = 𝑓𝛽

𝛼𝐸
1
𝛽 then,

provided 𝐸1
𝛽 ∕= 0, 𝐿 is called a partial Lagrangian of equation (1.19) otherwise it is

the standard Lagrangian. It is known that differential equations of the form 𝛿𝐿
𝛿𝑢𝛼 =

0, 𝛼 = 1, ⋅ ⋅ ⋅ ,𝑚, are Euler-Lagrange equations. We term differential equations of

the form
𝛿𝐿

𝛿𝑢𝛼
= 𝑓𝛽

𝛼𝐸
1
𝛽, (1.20)

as Euler-Lagrange-type equations.

Definition 7: A Lie-Bäcklund or generalized operator 𝑋 of the form (1.6) is called

a Noether-type symmetry operator corresponding to a partial Lagrangian 𝐿 ∈ 𝐴 if

there exists a vector 𝐵 = (𝐵1, ⋅ ⋅ ⋅ , 𝐵𝑛), 𝐵𝑖 ∈ 𝐴, 𝐵𝑖 ∕= 𝑁 𝑖𝐿 + 𝐶𝑖, 𝐶𝑖 constants,

such that

𝑋(𝐿) + 𝐿𝐷𝑖(𝜉
𝑖) = 𝑊𝛼 𝛿𝐿

𝛿𝑢𝛼
+𝐷𝑖(𝐵

𝑖), (1.21)

where 𝑊 = (𝑊 1, ⋅ ⋅ ⋅ ,𝑊𝑚),𝑊 𝛼 ∈ 𝐴 are characteristics of 𝑋.

If the 𝐵𝑖’s are identically zero , then the Lie-Bäcklund operator 𝑋 is called a strict

Noether-type symmetry operator.
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Note that for Euler-Lagrange equations 𝛿𝐿/𝛿𝑢𝛼 = 0, if (1.21) is satisfied, 𝑋 is a

Noether symmetry generator corresponding to a standard Lagrangian 𝐿.

Recall also that for a Noether symmetry generator 𝑋 corresponding to a standard

𝐿, 𝑋 is said to leave the functional invariant up to gauge 𝐵. It is easy to see from

(1.21) that if 𝑋 and 𝑌 are Noether-type operators, then so is a linear combination of

these operators. Indeed the Noether-type symmetry operators span a vector space.

Theorem 3: A Lie-Bäcklund symmetry operator 𝑋 of the form (1.9) is a Noether-

type symmetry operator of a partial Lagrangian 𝐿 corresponding to an Euler-Lagrange-

type system of the form (1.20) if and only if the characteristic𝑊 = (𝑊 1, ⋅ ⋅ ⋅ ,𝑊𝑚),𝑊 𝛼 ∈
𝐴, of 𝑋 is also the characteristic of the conservation law 𝐷𝑖𝑇

𝑖 = 0, where

𝑇 𝑖 = 𝑁 𝑖(𝐿)−𝐵𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, (1.22)

of the Euler-Lagrange-type Equations (1.20).

Proof : We use identity (1.12) and act with it on 𝐿 to obtain

𝑋𝐿+𝐷𝑖(𝜉
𝑖)𝐿 = 𝑊𝛼 𝛿𝐿

𝛿𝑢𝛼
+𝐷𝑖𝑁

𝑖𝐿 (1.23)

Since 𝑋 is a Noether-type symmetry operator of an 𝐿 corresponding to an Euler-

Lagrange system, we can through the use of (1.21) replace the left hand side of

the last equation (1.23) with 𝑊 𝛼𝛿𝐿/𝛿𝑢𝛼 +𝐷𝑖𝐵
𝑖 which in turn can be replaced by

𝑊 𝛼𝑓𝛽
𝛼𝐸

1
𝛽 +𝐷𝑖𝐵

𝑖 by utilizing (1.20). We immediately get

𝑊 𝛼𝑓𝛽
𝛼𝐸

1
𝛽 +𝐷𝑖𝐵

𝑖 = 𝑊 𝛼 𝛿𝐿

𝛿𝑢𝛼
+𝐷𝑖𝑁

𝑖𝐿. (1.24)

From this we have

𝐷𝑖(𝐵
𝑖 −𝑁 𝑖𝐿) = 𝑊 𝛼(

𝛿𝐿

𝛿𝑢𝛼
− 𝑓𝛽

𝛼𝐸
1
𝛽) (1.25)

and thus
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𝐷𝑖𝑇
𝑖 = 𝑊 𝛼(

𝛿𝐿

𝛿𝑢𝛼
− 𝑓𝛽

𝛼𝐸
1
𝛽) (1.26)

as a consequence of (1.21) is a conservation law with conserved components 𝑇 𝑖 =

𝐵𝑖 − 𝑁 𝑖(𝐿) of the system (1.20) with characteristic 𝑊 . The steps are reversible.

This proves the result. □

A further detailed analysis of the operators is completely given below for the scalar

case in two dimensions, viz., (𝑡, 𝑥). This discussion is peculiar to our work in the

sequel as the Lagrangian and conserved flows are of a high order (third-order).

The proofs and finer details of the results are obtainable in [12]. Suppose 𝑋 =

𝜏(𝑡, 𝑥, 𝑢)∂𝑡 + 𝜉(𝑡, 𝑥, 𝑢)∂𝑥 + 𝜙(𝑡, 𝑥, 𝑢)∂𝑢 is a Noether point symmetry generator with

gauge (𝑓, 𝑔). Then the conserved flow (𝑇 𝑡, 𝑇 𝑥) is given by

𝑇 𝑡 = 𝐿𝜏 +𝑊 𝛿𝐿
𝛿𝑢𝑡

+𝐷𝑡(𝑊 ) 𝛿𝐿
𝛿𝑢𝑡𝑡

+𝐷𝑥(𝑊 ) 𝛿𝐿
𝛿𝑢𝑡𝑥

+𝐷𝑡𝐷𝑡(𝑊 ) 𝛿𝐿
𝛿𝑢𝑡𝑡𝑡

+𝐷𝑡𝐷𝑥(𝑊 ) 𝛿𝐿
𝛿𝑢𝑡𝑥

+𝐷𝑥𝐷𝑥(𝑊 ) 𝛿𝐿
𝛿𝑢𝑡𝑥𝑥

− 𝑓

= 𝐿𝜏 +𝑊 ( ∂𝐿
∂𝑢𝑡

−𝐷𝑡
∂𝐿
∂𝑢𝑡𝑡

−𝐷𝑥
∂𝐿
∂𝑢𝑡𝑥

+𝐷2
𝑡

∂𝐿
∂𝑢𝑡𝑡𝑡

+𝐷2
𝑥

∂𝐿
∂𝑢𝑡𝑥𝑥

+𝐷𝑡𝐷𝑥
∂𝐿

∂𝑢𝑡𝑡𝑥
)

+𝐷𝑡(𝑊 ) 𝛿𝐿
𝛿𝑢𝑡𝑡

+𝐷𝑥(𝑊 ) 𝛿𝐿
𝛿𝑢𝑡𝑥

+𝐷𝑡𝐷𝑡(𝑊 ) 𝛿𝐿
𝛿𝑢𝑡𝑡𝑡

+𝐷𝑡𝐷𝑥(𝑊 ) 𝛿𝐿
𝛿𝑢𝑡𝑥

+𝐷𝑥𝐷𝑥(𝑊 ) 𝛿𝐿
𝛿𝑢𝑡𝑥𝑥

− 𝑓,

𝑇 𝑥 = 𝐿𝜉 +𝑊 𝛿𝐿
𝛿𝑢𝑥

+𝐷𝑡(𝑊 ) 𝛿𝐿
𝛿𝑢𝑥𝑡

+𝐷𝑥(𝑊 ) 𝛿𝐿
𝛿𝑢𝑥𝑥

+𝐷𝑡𝐷𝑡(𝑊 ) 𝛿𝐿
𝛿𝑢𝑥𝑡𝑡

+𝐷𝑡𝐷𝑥(𝑊 ) 𝛿𝐿
𝛿𝑢𝑥𝑥𝑡

+𝐷𝑥𝐷𝑥(𝑊 ) 𝛿𝐿
𝛿𝑢𝑥𝑥𝑥

− 𝑔

= 𝐿𝜉 +𝑊 ( ∂𝐿
∂𝑢𝑥

−𝐷𝑡
∂𝐿
∂𝑢𝑥𝑡

−𝐷𝑥
∂𝐿

∂𝑢𝑥𝑥
+𝐷2

𝑡
∂𝐿

∂𝑢𝑥𝑡𝑡
+𝐷2

𝑥
∂𝐿

∂𝑢𝑥𝑥𝑥
+𝐷𝑡𝐷𝑥

∂𝐿
∂𝑢𝑡𝑥𝑥

)

+𝐷𝑡(𝑊 ) 𝛿𝐿
𝛿𝑢𝑥𝑡

+𝐷𝑥(𝑊 ) 𝛿𝐿
𝛿𝑢𝑥𝑥

+𝐷𝑡𝐷𝑡(𝑊 ) 𝛿𝐿
𝛿𝑢𝑥𝑡𝑡

+𝐷𝑡𝐷𝑥(𝑊 ) 𝛿𝐿
𝛿𝑢𝑥𝑥𝑡

− 𝑔,

(1.27)

where

𝛿

𝛿𝑣
=

∂

∂𝑣
−𝐷𝑡

∂

∂𝑣𝑡
−𝐷𝑥

∂

∂𝑣𝑥
+𝐷2

𝑡

∂

∂𝑣𝑡𝑡
+𝐷2

𝑥

∂

∂𝑣𝑥𝑥
+𝐷𝑡𝐷𝑥

∂

∂𝑣𝑡𝑥
− . . . . (1.28)

A range of literature pertaining to conservation laws is now available mainly pre-

senting the various methods involved, see [13, 14, 15, 16, 17].
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1.6 Illustrative example

For simplicity we have looked at point type symmetry operators and we have re-

stricted the gauge terms to be independent of derivatives. One can equally well

try to obtain true Lie-Bäcklund type symmetry operators and our method still ap-

plies. However, the calculations in this case are quite tedious and best left for a

computer algebra package. The illustrative example in [12], is on the classical heat

equation. Although simple, it is considered a paradigm for evolution equations and

is frequently utilized as a benchmark for one’s approach.

Consider the (1+1) linear heat equation

𝑢𝑡 = 𝑢𝑥𝑥. (1.29)

If we invoke the partial Lagrangian 𝐿 = 𝑢2
𝑥/2, 𝛿𝐿/𝛿𝑢 = −𝑢𝑥𝑥 so that (1.29) can be

written as 𝑢𝑡 = −𝛿𝐿/𝛿𝑢 and, therefore, 𝛿𝐿/𝛿𝑢 can be replaced by −𝑢𝑡 in (1.29)

to determine the Noether-type operators, by Definition 7, 𝑋 = 𝜏 ∂
∂𝑡

+ 𝜉 ∂
∂𝑥

+ 𝜂 ∂
∂𝑢

corresponding to 𝐿. That is,

𝜁𝑥𝑢𝑥 + (𝐷𝑡𝜏 +𝐷𝑥𝜉)(
1

2
𝑢2
𝑥) = (𝜂 − 𝜏𝑢𝑡 − 𝜉𝑢𝑥)(−𝑢𝑡) +𝐷𝑡𝐵

1 +𝐷𝑥𝐵
2. (1.30)

Expansion of the total derivative operators as well as 𝜁𝑥 and then separation of the
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derivatives of 𝑢 yield the over-determined linear system

𝑢3
𝑥 : 𝜉𝑢 = 0,

𝑢2
𝑥 : 𝜂𝑢 = 0,

𝑢2
𝑥𝑢𝑡 : 𝜏𝑢 = 0,

𝑢𝑥𝑢𝑡 : 𝜉 = −𝜏𝑥,

𝑢2
𝑡 : 𝜏 = 0,

𝑢𝑥 : 𝜂𝑥 = 𝐵2
𝑢,

𝑢𝑡 : 𝜂 = 𝐵1
𝑢,

1 : 𝐵1
𝑡 +𝐵2

𝑥 = 0.

(1.31)

The calculations reveal that 𝑋 = 𝜂(𝑡, 𝑥) ∂
∂𝑢

where 𝜂 satisfies the equation

𝜂𝑡 + 𝜂𝑥𝑥 = 0 (1.32)

and 𝐵1 = 𝜂𝑢 + 𝑓(𝑡, 𝑥), 𝐵2 = 𝜂𝑥𝑢 + 𝑔(𝑡, 𝑥),where 𝑓𝑡 + 𝑔𝑥 = 0. We set 𝑓 = 𝑔 =

0. The corresponding conserved vector components, by Theorem 3, are 𝑇 1 = 𝜂𝑢

and 𝑇 2 = −𝜂𝑢𝑥 + 𝜂𝑥𝑢. The corresponding conservation law 𝐷𝑡𝑇
1 + 𝐷𝑥𝑇

2 = 0 is

𝜂(𝑢𝑡 − 𝑢𝑥𝑥) = 0 with characteristic 𝜂 which is the characteristic of the Noether-type

symmetry operator 𝑋.

Thus, if for example

(i)𝜂 = 1, 𝑇 1 = 𝑢, 𝑇 2 = −𝑢𝑥,

(ii)𝜂 = 𝑡− 1
2
𝑥2, 𝑇 1 = (𝑡− 1

2
𝑥2)𝑢, 𝑇 2 = −(𝑡− 1

2
𝑥)𝑢𝑥 − 𝑢𝑥.
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Chapter 2

Conservation laws of Higher order

nonlinear PDEs

2.1 Introduction

The fifth-order KdV, and fourth-order Boussinesq equations are well known exam-

ples from mathematical physics purported to be of ‘high’ order. For these and any

high order PDEs, finding conservation laws by first principles can be extremely te-

dious. Thus, one needs to resort to alternate methods appealing to the underlying

symmetry generators of the equations. If this means the variational route, then there

may be problems such as the existence and determination of a Lagrangian. For the

two cases cited here, we construct ‘weak’ or ‘partial’ Lagrangians and successfully

construct conservation laws. The points to be emphasised is how cumbersome the

formulae required in the determination of the conserved flows due to the order of

the Lagrangians and related functions [18].
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2.2 The fifth-order KdV equation

The particular case that we investigate is the well known generalized fifth-order

KdV, (also known as the KdV-5 equation)

𝑣𝑥𝑥𝑥𝑥𝑥 + 𝛼𝑣𝑥𝑣𝑥𝑥 +
𝛽

2
𝑣𝑣𝑥𝑥𝑥 + 𝛾𝑣2𝑣𝑥 + 𝑣𝑡 = 0, (2.1)

where 𝛼, 𝛽, 𝛾 are arbitrary non-zero constants.

For a variety of combinations of the parameters, (2.1) has been studied using a num-

ber of methods, analytical and numerical. Inc [19] and Abbasandy & Zakaria [20]

made a detailed numerical study using the Adomian decomposition and homotopy

analysis methods, respectively. Several works on the soliton solutions and various

analytical methods have been done, for e.g. Lax [21] (𝛽/2 = 10, 𝛼 = 20, 𝛾 = 30),

Sawada-Kotera [22] (𝛽/2 = 5, 𝛼 = 5, 𝛾 = 5), Ito [23] (𝛽/2 = 3, 𝛼 = 6, 𝛾 = 2).

The well known Kaup-Kuperschmidt equation is based on the case 𝛽/2 = −15, 𝛼 =

−15, 𝛾 = 45. It can be shown that the equation is Hamiltonian for 𝛽 = 2𝛼 on the

principle 𝑣𝑡 = 𝐷𝑥(𝛿ℋ), where ℋ = − ∫
(𝛼𝑢𝑢𝑥𝑥 + 𝛼/2𝑢2

𝑥 + 𝛾/(12)𝑢4 + 1/2𝑢2
𝑥𝑥)d𝑥.

In this section we determined the Lie algebra of point symmetries of equation (2.1)

is given by 𝛼𝛽𝛾 ∕= 0. This result can be compared to the results obtained in the

section that follows,

𝑋1 = ∂𝑡,

𝑋2 = ∂𝑥,

𝑋3 = −2∂𝑢 + 5𝑡∂𝑡 + 𝑥∂𝑥.

(2.2)

The commutator table for the symmetries of equation (2.1),
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[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3

𝑋1 0 0 5𝑋1

𝑋2 0 0 𝑋2

𝑋3 −5𝑋1 −𝑋2 0

(2.3)

The standard third-order KdV equation (KdV-3) is an evolution equation but its

differential consequence admits a Lagrangian [24] and, thus, the KdV equation itself

is construed as a variational equation. We show in section (2.2.1) that one can

do this for (2.1) by which some interesting results regarding conservation laws via

Noether’s theorem are obtained.

2.2.1 The sixth-order expansion of the KdV-5 equation

This analogous study of the KdV-5 equation has not, to the knowledge of the author,

been done before. This may be due to the cumbersome forms of the extended Euler-

Lagrange operators that need to be used.

If equation (2.1) is differentiated by 𝑥 or if 𝑣 = 𝑢𝑥 in (2.1), we get the sixth-order

equation

𝑢𝑥𝑥𝑥𝑥𝑥𝑥 + 𝛼𝑢𝑥𝑥𝑢𝑥𝑥𝑥 +
𝛽

2
𝑢𝑥𝑢𝑥𝑥𝑥𝑥 + 𝛾𝑢2

𝑥𝑢𝑥𝑥 + 𝑢𝑥𝑡 = 0 (2.4)

We firstly determined the Lie algebra of point symmetries of equation (2.4) for

𝛼𝛽𝛾 ∕= 0, which can be compared to the results obtained via the different methods

presented, viz.,

𝑋1 = ∂𝑡,

𝑋2 = 𝐹 (𝑡)∂𝑢, 𝑤ℎ𝑒𝑟𝑒𝐹 (𝑡)𝑖𝑠𝑎𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑜𝑓𝑡,

𝑋3 = ∂𝑥,

𝑋4 = 5𝑡∂𝑡 − 𝑢∂𝑢 + 𝑥∂𝑥.

(2.5)
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The commutator table for the symmetries of equation (2.4) is given by,

[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3 𝑋4

𝑋1 0 𝑋2 0 5𝑋1

𝑋2 −𝑋2 0 0 −(𝐹 [𝑡] + 5𝑡𝐹 ′[𝑡])∂𝑢
𝑋3 0 0 0 𝑋3

𝑋4 −5𝑋1 (𝐹 [𝑡] + 5𝑡𝐹 ′[𝑡])∂𝑢 −𝑋3 0

(2.6)

The equation in question has a partial Lagrangian

𝐿 = −[
1

2
𝑢2
𝑥𝑥𝑥 +

1

2
𝑢𝑥𝑢𝑡 +

𝛾

12
𝑢4
𝑥 +

𝛽

8
𝑢2
𝑥𝑢𝑥𝑥𝑥] (2.7)

so that
𝛿𝐿

𝛿𝑢
= 𝑢𝑥𝑡 +

𝛽

2
𝑢𝑥𝑢𝑥𝑥𝑥𝑥 + 𝛾𝑢2

𝑥𝑢𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥𝑥𝑥 = (𝛽 − 𝛼)𝑢𝑥𝑥𝑢𝑥𝑥𝑥. (2.8)

Now applying the partial Lagrangian to the Noether-type Identity (1.21), the fol-

lowing expression is obtained

𝑋 [3](𝐿) + 𝐿(𝐷𝑡𝜏 +𝐷𝑥𝜉) = (𝜙− 𝑢𝑡𝜏 − 𝑢𝑥𝜉)
𝛿𝐿

𝛿𝑢
+ (𝐷𝑡𝑓 +𝐷𝑥𝑔), (2.9)

where 𝑓 and 𝑔 are gauge functions. The governing equations are obtained from

(2.9), by separating the equations by coefficients. These coefficients are derivatives

of the dependent variable 𝑢.

28



The separation of monomials are listed as

𝑢𝑡𝑢
2
𝑥𝑢𝑥𝑥𝑥 : 𝜏𝑢,

𝑢𝑡𝑢
2
𝑥𝑢𝑥𝑥𝑢𝑥𝑥𝑥 : 𝜏𝑢𝑢,

𝑢2
𝑥𝑢𝑥𝑥𝑢𝑥𝑥𝑥 : 𝜉𝑢𝑢,

𝑢𝑥𝑢
2
𝑥𝑥𝑥 : 𝜉𝑢,

𝑢3
𝑥𝑢𝑥𝑥𝑥 : 𝜙𝑢𝑢𝑢,

𝑢𝑥𝑥𝑥𝑢𝑥𝑥𝑡 : 𝜏𝑥,

𝑢2
𝑥𝑥𝑥 : 5

2
𝜉𝑥 − 1

2
𝜏𝑡 − 𝜙𝑢,

𝑢2
𝑥𝑢𝑥𝑥𝑥 : 1

2
[5𝛽
4
𝜉𝑥 − 1

4
𝛽(𝜉𝑥 + 𝜏𝑡)− 3𝛽

4
𝜙𝑢 − 6𝜙𝑥𝑢𝑢],

𝑢𝑥𝑢𝑥𝑥𝑢𝑥𝑥𝑥 : (𝛽 − 𝛼)𝜉,

𝑢𝑡𝑢𝑥𝑥𝑢𝑥𝑥𝑥 : (𝛽 − 𝛼)𝜏,

𝑢𝑥𝑥𝑢𝑥𝑥𝑥 : (𝛽 − 𝛼)𝜙,

𝑢𝑥𝑢𝑥𝑥𝑥 : −3
4
𝛽𝜙𝑥𝜙+ 𝜉𝑥𝑥𝑥 − 3𝜙𝑥𝑥𝑢,

𝑢𝑥𝑥𝑥 : −𝜙𝑥𝑥𝑥,

𝑢3
𝑥𝑢𝑥𝑥 : −3

8
𝛽𝜙𝑢𝑢,

𝑢2
𝑥𝑢𝑥𝑥 : 1

2
(3
4
𝛽𝜉𝑥𝑥 − 3

4
𝛽𝜙𝑥𝑢),

𝑢4
𝑥 : 9

4
𝜉𝑥 − 9

12
𝜏𝑡 − 9

3
𝜙𝑢,

𝑢3
𝑥 : −9

3
𝜙𝑢 +

1
8
𝛽𝜉𝑥𝑥𝑥,

𝑢2
𝑥 : 𝜉𝑡,

𝑢𝑡𝑢𝑥 : 1
2
𝜉𝑥 +

1
2
(−𝜉𝑥 − 𝜏𝑡) +

1
2
𝜏𝑡 − 𝜙𝑢,

𝑢𝑡 : −𝑓𝑢 − 1
2
𝜙𝑥,

𝑢𝑥 : −𝑔𝑢 − 1
2
𝜙𝑡,

1 : −𝑓𝑡 − 𝑔𝑥.

(2.10)

From the governing equations (2.10), it can be observed that there are two cases

appearing (i) 𝛼 ∕= 𝛽 and (ii) 𝛼 = 𝛽.

In the case (i), we obtain no symmetry generators due to 𝜉, 𝜏 and 𝜙 being equal to

zero, therefore producing trivial solutions.

The case (ii), leads to a nontrivial solution. That is, the partial Lagrangian is, in

fact, a Lagrangian of (2.4) due to 𝛼 = 𝛽, where 𝛿𝐿
𝛿𝑢

= (𝛽 − 𝛼)𝑢𝑥𝑥𝑢𝑥𝑥𝑥 = 0, which
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therefore changes the Noether-type Identity to Noether Identity,

𝑋 [3](𝐿) + 𝐿(𝐷𝑡𝜏 +𝐷𝑥𝜉) = (𝐷𝑡𝑓 +𝐷𝑥𝑔). (2.11)

The generators are the corresponding Noether symmetries, viz.,

𝑋 = ∂𝑡 (𝑊 = −𝑢𝑡), 𝑋 = 𝜉∂𝑥 (𝑊 = −𝜉𝑢𝑥). (2.12)

We now list the corresponding conserved vectors which are obtained from the given

formula in the preliminaries.

(1) 𝑋 = ∂𝑡 (𝑊 = −𝑢𝑡)

𝑇 𝑡 = −(
1

2
𝑢2
𝑥𝑥𝑥 +

1

2
𝑢𝑥𝑢𝑡 +

𝛾

12
𝑢4
𝑥 +

𝛽

8
𝑢2
𝑥𝑢𝑥𝑥𝑥) + (−𝑢𝑡)(−1

2
𝑢𝑥),

= −1

2
𝑢2
𝑥𝑥𝑥 −

1

2
𝑢𝑥𝑢𝑡 − 𝛾

12
𝑢4
𝑥 −

𝛽

8
𝑢2
𝑥𝑢𝑥𝑥𝑥 +

1

2
𝑢𝑥𝑢𝑡,

= −1

2
𝑢2
𝑥𝑥𝑥 −

𝛾

12
𝑢4
𝑥 −

𝛽

8
𝑢2
𝑥𝑢𝑥𝑥𝑥,

𝑇 𝑥 = (−𝑢𝑡)(−1

2
𝑢𝑡 − 𝛾

3
𝑢3
𝑥 −

𝛽

4
𝑢𝑥𝑢𝑥𝑥𝑥 +D2

𝑥(−𝑢𝑥𝑥𝑥 − 𝛽

8
𝑢2
𝑥))

+ D𝑥(−𝑢𝑡)(−D𝑥(−𝑢𝑥𝑥𝑥 − 𝛽

8
𝑢2
𝑥)) + D2

𝑥(−𝑢𝑡)(−𝑢𝑥𝑥𝑥 − 𝛽

6
𝑢2
𝑥),

= (𝑢𝑡)(
1

2
𝑢𝑡 + 𝑢𝑥𝑥𝑥𝑥𝑥 +

𝛽

4
𝑢2
𝑥𝑥 +

𝛽

4
𝑢𝑥𝑢𝑥𝑥𝑥)

+ (−𝑢𝑡𝑥)(𝑢𝑥𝑥𝑥𝑥 +
𝛽

4
𝑢𝑥𝑢𝑥𝑥) + (𝑢𝑡𝑥𝑥)(𝑢𝑥𝑥𝑥 +

𝛽

8
𝑢2
𝑥),

=
1

2
𝑢2
𝑡 + 𝑢𝑡𝑢𝑥𝑥𝑥𝑥𝑥 +

𝛽

4
𝑢𝑡𝑢

2
𝑥𝑥 +

𝛽

4
𝑢𝑡𝑢𝑥𝑢𝑥𝑥𝑥 − 𝑢𝑡𝑥𝑢𝑥𝑥𝑥𝑥 − 𝛽

4
𝑢𝑡𝑥𝑢𝑥𝑢𝑥𝑥

+ 𝑢𝑡𝑥𝑥𝑢𝑥𝑥𝑥 +
𝛽

8
𝑢𝑡𝑥𝑥𝑢

2
𝑥.

Thus,

𝐷𝑡𝑇
𝑡 +𝐷𝑥𝑇

𝑥 = 𝐷𝑡(−1

2
𝑢2
𝑥𝑥𝑥 −

𝛾

12
𝑢4
𝑥 −

𝛽

8
𝑢2
𝑥𝑢𝑥𝑥𝑥)
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+ 𝐷𝑥(
1

2
𝑢2
𝑡 + 𝑢𝑡𝑢𝑥𝑥𝑥𝑥𝑥 +

𝛽

4
𝑢𝑡𝑢

2
𝑥𝑥 +

𝛽

4
𝑢𝑡𝑢𝑥𝑢𝑥𝑥𝑥)

+ 𝐷𝑥(−𝑢𝑡𝑥𝑢𝑥𝑥𝑥𝑥 − 𝛽

4
𝑢𝑡𝑥𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑡𝑥𝑥𝑢𝑥𝑥𝑥 +

𝛽

8
𝑢𝑡𝑥𝑥𝑢

2
𝑥),

= 𝑢𝑡(𝑢𝑥𝑡 + 𝛽/2𝑢𝑥𝑢𝑥𝑥𝑥𝑥 + 𝛽𝑢𝑥𝑥𝑢𝑥𝑥𝑥 + 𝛾𝑢2
𝑥𝑢𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥𝑥𝑥),

= 0.

(2) 𝑋 = 𝜉∂𝑥 (𝑊 = −𝜉𝑢𝑥)

𝑇 𝑡 = −𝜉𝑢𝑥(−1

2
𝑢𝑥),

=
1

2
𝜉𝑢2

𝑥,

𝑇 𝑥 = −𝜉(
1

2
𝑢2
𝑥𝑥𝑥 +

𝛾

12
𝑢4
𝑥 +

𝛽

8
𝑢2
𝑥𝑢𝑥𝑥𝑥) + 𝜉𝑢𝑥(𝑢𝑥𝑥𝑥𝑥𝑥 +

𝛽

4
𝑢2
𝑥𝑥 +

𝛽

4
𝑢𝑥𝑢𝑥𝑥𝑥)

− 𝜉𝑢𝑥𝑥(𝑢𝑥𝑥𝑥𝑥 +
𝛽

4
𝑢𝑥𝑢𝑥𝑥) + 𝜉𝑢𝑥𝑥𝑥(𝑢𝑥𝑥𝑥 +

𝛽

8
𝑢2
𝑥) + 𝜉𝑢𝑥(

𝛾

3
𝑢3
𝑥𝑥𝑥 +

𝛾

4
𝑢𝑥𝑢𝑥𝑥𝑥)

Thus,

𝐷𝑡𝑇
𝑡 +𝐷𝑥𝑇

𝑥 = 𝐷𝑡(
1

2
𝜉𝑢2

𝑥) +𝐷𝑥(−𝜉(
1

2
𝑢2
𝑥𝑥𝑥 +

𝛾

12
𝑢4
𝑥 +

𝛽

8
𝑢2
𝑥𝑢𝑥𝑥𝑥))

+ 𝐷𝑥(𝜉𝑢𝑥(𝑢𝑥𝑥𝑥𝑥𝑥 +
𝛽

4
𝑢2
𝑥𝑥 +

𝛽

4
𝑢𝑥𝑢𝑥𝑥𝑥)− 𝜉𝑢𝑥𝑥(𝑢𝑥𝑥𝑥𝑥 +

𝛽

4
𝑢𝑥𝑢𝑥𝑥))

+ 𝐷𝑥(𝜉𝑢𝑥𝑥𝑥(𝑢𝑥𝑥𝑥 +
𝛽

8
𝑢2
𝑥) + 𝜉𝑢𝑥(

𝛾

3
𝑢3
𝑥𝑥𝑥 +

𝛾

4
𝑢𝑥𝑢𝑥𝑥𝑥)),

= 𝜉𝑢𝑥(𝑢𝑥𝑡 + 𝛽/2𝑢𝑥𝑢𝑥𝑥𝑥𝑥 + 𝛽𝑢𝑥𝑥𝑢𝑥𝑥𝑥 + 𝛾𝑢2
𝑥𝑢𝑥𝑥 + 𝑢𝑥𝑥𝑥𝑥𝑥𝑥),

= 0.

REMARK. The conserved vector in (1) is of ’nonlocal’ type for the fifth-order KdV

equation (2.1) when we substitute back to 𝑣 since, if 𝑣 = 𝑢𝑥, 𝑢𝑡 =
∫
𝑣𝑡d𝑥.
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2.2.2 Traveling Wave reduction of the KdV-5 Equation

We now reduce the KdV-5 equation to a fourth-order equation by taking the sum of

the symmetries from the previous result (2.12). By using the characteristic method

of solving PDEs, we obtain 𝑦 = 𝑥− 𝑐𝑡, that is a traveling wave equation. By taking

𝑣 = 𝑤, we find that 𝑣𝑡 = −𝑐𝑤′ and 𝑣𝑥 = 𝑤′. Then substituting the derivatives into

the main equation we end up with

𝑤′′′′′ +
𝛽

2
𝑤𝑤′′′ + 𝛼𝑤′𝑤′′ + 𝛾𝑤2𝑤′ − 𝑐𝑤′ = 0. (2.13)

We then integrate Equation(2.13), which becomes

𝑤′′′′ +
𝛽

2
𝑤𝑤′′ − 𝛽

4
𝑤′2 +

𝛼

2
𝑤′2 +

𝛾

3
𝑤3𝑤′ − 𝑐𝑤 = 𝑘, (2.14)

which also can be written as

𝑤′′′′ +
𝛽

2
𝑤𝑤′′ + (

𝛼

2
− 𝛽

4
)𝑤′2 +

𝛾

3
𝑤3𝑤′ − 𝑐𝑤 = 𝑘, (2.15)

for the study of different cases, which has partial Lagrangian

𝐿 =
1

2
𝑤′′2 + (

𝛼

2
− 𝛽

4
)𝑤𝑤′2 +

𝛾

12
𝑤4 − 1

2
𝑐𝑤2 − 𝑘𝑤 (2.16)

which has
𝛿𝐿

𝛿𝑤
= (𝛼− 𝛽)𝑤𝑤′′. (2.17)

(i) For 𝛼 ∕= 𝛽, equation (2.15) has partial Lagrangian (2.16), applying the Noether-

type Identity which is

𝑋 [2](𝐿) + 𝐿(𝐷𝑦𝜎) = (𝜂 − 𝑤′𝜎)
𝛿𝐿

𝛿𝑤
+ (𝐷𝑡𝑓). (2.18)
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The separation of monomials are:

𝑤3
𝑦𝑤𝑦𝑦 : 𝜎𝑤𝑤,

𝑤2
𝑦𝑤𝑦𝑦 : 𝜂𝑤𝑤 − 2𝜎𝑦𝑤,

𝑤𝑦𝑤𝑦𝑦 : 2𝜂𝑦𝑤 − 𝜎𝑦𝑦 + 𝑤(𝛼− 𝛽),

𝑤𝑦𝑤
2
𝑦𝑦 : 𝜎𝑤,

𝑤2
𝑦𝑦 : 𝜂𝑤 − 3

2
𝜎𝑦,

𝑤𝑦𝑦 : 𝜂𝑦𝑦 − 𝑤𝜂(𝛼− 𝛽),

𝑤2
𝑦 : 𝜂(𝛼

2
− 𝛽

4
) + 𝑤𝜂𝑤(𝛼− 𝛽

2
)− 𝑤𝜎𝑦(

𝛼
2
− 𝛽

4
),

𝑤𝑦 : 𝑓𝑤 + (𝛼− 𝛽
2
)𝑤𝜂𝑦,

1 : −𝑐𝑤𝜂 + 1
3
𝑤3𝛾 + 𝛾

12
𝑤4𝜎𝑦 − 𝑐

2
𝑤2𝜎𝑦 − 𝑓𝑦.

(2.19)

We obtain no symmetry generators since 𝜎 and 𝜂 are equal to zero - this leads to a

trivial solution.

(ii) For 𝛼 = 𝛽, equation (2.15) transforms to

𝑤′′′′ +
𝛽

2
𝑤𝑤′′ +

𝛽

4
𝑤′2 +

𝛾

3
𝑤3𝑤′ − 𝑐𝑤 = 𝑘, (2.20)

which has the partial Lagrangian

𝐿 =
1

2
𝑤′′2 − 𝛽

4
𝑤𝑤′2 +

𝛾

12
𝑤4 − 1

2
𝑐𝑤2 − 𝑘𝑤. (2.21)

The separation of monomials are:

𝑤3
𝑦𝑤𝑦𝑦 : 𝜎𝑤𝑤,

𝑤2
𝑦𝑤𝑦𝑦 : 𝜂𝑤𝑤 − 2𝜎𝑦𝑤,

𝑤𝑦𝑤𝑦𝑦 : 2𝜂𝑦𝑤 − 𝜎𝑦𝑦,

𝑤𝑦𝑤
2
𝑦𝑦 : 𝜎𝑤,

𝑤2
𝑦𝑦 : 𝜂𝑤 − 3

2
𝜎𝑦,

𝑤𝑦𝑦 : 𝜂𝑦𝑦,

𝑤2
𝑦 : −𝛽

4
𝜂 − 1

2
𝑤𝛽𝜂𝑤 + 1

4
𝑤𝛽𝜎𝑦,

𝑤𝑦 : −𝑓𝑤 − 1
2
𝑤𝛽𝜂𝑦,

1 : −𝑐𝑤𝜂 + 1
3
𝑤3𝛾 + 𝛾

12
𝑤4𝜎𝑦 − 𝑐

2
𝑤2𝜎𝑦 − 𝑓𝑦.

(2.22)
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This leads to a nontrivial solution, that is, the partial Lagrangian is, in fact, a

Lagrangian of (2.14) and the generators are the corresponding Noether symmetries,

viz.,

∂𝑦 (𝑊 = 𝑤′) (2.23)

with the corresponding conserved vector,

𝑇 =
1

2
𝑤′′2 − 𝛽

4
𝑤𝑤′2 +

𝛾

12
𝑤4 − 1

2
𝑐𝑤2 +

𝛽

2
𝑤𝑤′2 + 𝑤′𝑤′′′ − 𝑤′′2,

= −1

2
𝑤′′2 +

𝛽

4
𝑤𝑤′2 +

𝛾

12
𝑤4 − 1

2
𝑐𝑤2 + 𝑤′𝑤′′′,

such that

𝐷(𝑇 ) = −𝑤′′𝑤′′′ +
𝛽

4
(𝑤′3 + 2𝑤𝑤′𝑤′′) +

𝛾

3
𝑤3𝑤′ − 𝑐𝑤𝑤′ + 𝑤′′𝑤′′′ + 𝑤′𝑤′′′′,

=
𝛽

4
(𝑤′3 + 2𝑤𝑤′𝑤′′) +

𝛾

3
𝑤3𝑤′ − 𝑐𝑤𝑤′ + 𝑤′𝑤′′′′,

= 𝑤′(𝑤′′′′ +
𝛽

4
𝑤′2 +

𝛽

2
𝑤𝑤′′ +

𝛾

3
𝑤3 − 𝑐𝑤),

= 0.
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2.3 The fourth-order Boussinesq equation

The Boussinesq equation which models the behaviour of long waves is sometimes

written as the fourth-order equation

𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑥𝑥 + 𝑢2
𝑥 + 𝑢𝑡𝑡 = 0. (2.24)

The highest derivative in the equation (2.24) is a singular independent variable

derivative term. Its Noether type symmetries, 𝑋 = 𝜏(𝑡, 𝑥, 𝑢)∂𝑡 + 𝜉(𝑡, 𝑥, 𝑢)∂𝑥 +

𝜙(𝑡, 𝑥, 𝑢)∂𝑢, via the partial Lagrangian

𝐿 =
1

2
𝑢2
𝑥𝑥 −

1

2
𝑢2
𝑡 −

1

2
𝑢𝑢2

𝑥, (2.25)

which has
𝛿𝐿

𝛿𝑢
= −1

2
𝑢2
𝑥 (2.26)

is determined by (1.20). In this case, 𝑋𝐿 is a second prolongation of 𝑋, viz.,

𝑋𝐿 = −1
2
𝜙𝑢2

𝑥 + 𝑢𝑡𝑢𝑥𝜉𝑡 + 𝑢2
𝑡𝑢𝑥𝜉𝑢 + 𝑢𝑢3

𝑥𝜉𝑢 + 𝑢𝑢2
𝑥𝜉𝑥+

𝑢2
𝑡 𝜏𝑡 + 𝑢3

𝑡 𝜏𝑢 + 𝑢𝑢𝑡𝑢
2
𝑥𝜏𝑢 + 𝑢𝑢𝑡𝑢𝑥𝜏𝑥 − 𝑢𝑡𝜙𝑡−

𝑢2
𝑡𝜙𝑢 − 𝑢𝑢2

𝑥𝜙𝑢 − 𝑢𝑢𝑥𝜙𝑥 − 2𝑢𝑥𝜏𝑢𝑢𝑥,𝑡𝑢𝑥,𝑥−
2𝜏𝑥𝑢𝑥,𝑡𝑢𝑥,𝑥 − 3𝑢𝑥𝜉𝑢𝑢

2
𝑥,𝑥 − 2𝜉𝑥𝑢

2
𝑥,𝑥−

𝑢𝑡𝜏𝑢𝑢
2
𝑥,𝑥 + 𝜙𝑢𝑢

2
𝑥,𝑥 − 𝑢3

𝑥𝑢𝑥,𝑥𝜉𝑢,𝑢 − 2𝑢2
𝑥𝑢𝑥,𝑥𝜉𝑥,𝑢−

𝑢𝑥𝑢𝑥,𝑥𝜉𝑥,𝑥 − 𝑢𝑡𝑢
2
𝑥𝑢𝑥,𝑥𝜏𝑢,𝑢 − 2𝑢𝑡𝑢𝑥𝑢𝑥,𝑥𝜏𝑥,𝑢−

𝑢𝑡𝑢𝑥,𝑥𝜏𝑥,𝑥 + 𝑢2
𝑥𝑢𝑥,𝑥𝜙𝑢,𝑢 + 2𝑢𝑥𝑢𝑥,𝑥𝜙𝑥,𝑢+

𝑢𝑥,𝑥𝜙𝑥,𝑥.

(2.27)
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The separation of monomials gives rise to

𝑢𝑡𝑢𝑥𝑥𝑢
2
𝑥 : −𝜏𝑢𝑢,

𝑢𝑡𝑢𝑥𝑥𝑢𝑥 : −2𝜏𝑥𝑢,

𝑢𝑥𝑥𝑢
3
𝑥 : −𝜉𝑢𝑢,

𝑢𝑥𝑥𝑢
2
𝑥 : −2𝜉𝑥𝑢 + 𝜙𝑢𝑢,

𝑢𝑥𝑥𝑢𝑥 : −𝜉𝑥𝑥 + 2𝜙𝑥𝑢,

𝑢𝑥𝑥𝑢𝑥𝑡 : 𝜏𝑥,

𝑢2
𝑥𝑥𝑢𝑥 : 𝜉𝑢,

𝑢2
𝑥𝑥 : −3

2
𝜉𝑥 +

1
2
𝜏𝑡 + 𝜙𝑢,

𝑢𝑥𝑥 : 𝜙𝑥𝑥,

𝑢𝑡𝑢
2
𝑥 : −1

2
𝜏 + 1

2
𝑢𝜏𝑢,

𝑢𝑡𝑢𝑥 : 𝜉𝑡,

𝑢3
𝑡 : 1

2
𝜏𝑢,

𝑢3
𝑥 : −1

2
𝜉 + 1

2
𝑢𝜉𝑢,

𝑢2
𝑥 : 1

2
𝑢𝜉𝑥 − 1

2
𝑢𝜏𝑡 − 𝑢𝜙𝑢,

𝑢𝑡 : −𝑓𝑢 − 𝜙𝑡,

𝑢𝑥 : −𝑔𝑢 − 𝑢𝜙𝑥,

1 : −𝑓𝑡 − 𝑔𝑥.

(2.28)

The over-determined system has solution

𝜏 = 0, 𝜉 = 0, 𝜙 = 𝐴+𝐵𝑡+ 𝐶𝑥+𝐷𝑥𝑡,

𝑓 = −(𝐵 +𝐷𝑥)𝑢+ 𝑎(𝑥, 𝑡), 𝑔 = −1
2
(𝐶 +𝐷𝑡)𝑢2 + 𝑏(𝑥, 𝑡)

(2.29)

where 𝑎𝑡 + 𝑏𝑥 = 0 and 𝐴, 𝐵, 𝐶 and 𝐷 are arbitrary constants.

If we choose, for example, 𝐴 = 𝐷 = 0 (Noether type symmetry 𝑋 = (𝐵𝑡 + 𝐶𝑥)∂𝑢,

𝑊 = (𝐵𝑡 + 𝐶𝑥), 𝑓 = −𝐵𝑢 and 𝑔 = −1
2
𝐶𝑢2), we obtain, via a truncated version of

(1.27), i.e.,

𝑇 𝑡 = 𝐿𝜏 +𝑊 ∂𝐿
∂𝑢𝑡

+ [𝐷𝑗𝑊 −𝑊𝐷𝑗]
∂𝐿
∂𝑢𝑡𝑗

− 𝑓,

𝑇 𝑥 = 𝐿𝜉 +𝑊 ∂𝐿
∂𝑢𝑥

+ [𝐷𝑗𝑊 −𝑊𝐷𝑗]
∂𝐿
∂𝑢𝑥𝑗

− 𝑔,
(2.30)

the conserved density and flux

𝑇 𝑡 = −(𝐵𝑡+ 𝐶𝑥)𝑢𝑡 +𝐵𝑢

𝑇 𝑥 = −(𝐵𝑡+ 𝐶𝑥)𝑢𝑢𝑥 + 𝐶𝑢𝑥𝑥 − (𝐵𝑡+ 𝐶𝑥)𝑢𝑥𝑥𝑥 +
1
2
𝐶𝑢2

(2.31)

36



so that 𝐷𝑡𝑇
𝑡 +𝐷𝑥𝑇

𝑥 = −(𝐵𝑡+ 𝐶𝑥)(𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑥𝑥 + 𝑢2
𝑥 + 𝑢𝑡𝑡).

2.4 A fourth-order non-linear equation

The Lagrangian, 𝐿 = 1
2
𝑢2
𝑥𝑥 − 𝑢𝑢2

𝑥, of

𝑢𝑥𝑥𝑥𝑥 + 2𝑢𝑢𝑥𝑥 + 𝑢2
𝑥 = 0, (2.32)

has been discussed in [17] constructed by the homotopy formula since the Frechet

derivative of 𝑢𝑥𝑥𝑥𝑥 + 2𝑢𝑢𝑥𝑥 + 𝑢2
𝑥, viz., 𝐷

4
𝑥 + 2𝑢𝐷2

𝑥 + 2𝑢𝑥𝐷𝑥 + 2𝑢𝑥𝑥 is self adjoint.

As before, (1.27) yields the Noether symmetries which are the translations ∂𝑡 and

∂𝑥. The symmetry 𝑥∂𝑥 − 2𝑢∂𝑢 is not variational with regard to this Lagrangian.

The conservation laws via translations, via (1.27) are with respect to ∂𝑡 and ∂𝑥,

𝑇 𝑡 = 1
2
𝑢2
𝑥𝑥 − 𝑢𝑢2

𝑥,

𝑇 𝑥 = 2𝑢𝑢𝑡𝑢𝑥 − 𝑢𝑥𝑡𝑢𝑥𝑥 + 𝑢𝑡𝑢𝑥𝑥𝑥

(2.33)

and
𝑇 𝑡 = 0,

𝑇 𝑥 = 1
2
𝑢2
𝑥𝑥 + 𝑢𝑢2

𝑥 − 𝑢𝑥𝑥𝑢𝑥𝑥𝑥 + 𝑢𝑥𝑢𝑥𝑥𝑥.
(2.34)

Note. If one uses 𝐿 as a partial Lagrangian for the evolution equation 𝑢𝑡 = 𝑢𝑥𝑥𝑥𝑥 +

2𝑢𝑢𝑥𝑥 + 𝑢2
𝑥, so that 𝛿𝐿

𝛿𝑢
= 𝑢𝑡, we obtain no Noether type symmetries. In fact, direct

calculations do not yield any either. The point symmetry generators of the equation

are, in addition to translations, 4𝑡∂𝑡 + 𝑥∂𝑥 − 2𝑢∂𝑢.

2.5 Discussion and conclusion

We see that the conserved flows for high-order equations (with Lagrangians and,

equivalently, partial Lagrangians of order greater than one in derivatives) support
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a formula similar to the well known Noether’s theorem with the proviso that the

higher-order cases have more terms giving rise to the appropriate order of the con-

served flow. Also, in the KdV-5 evolution equation, we resorted to variational tech-

niques usually adopted for the KdV-3 equation.

We used the new modified approach of the Noether identity to find symmetries and

then conservation laws for the high order equations. We know that when considering

the use of the partial Lagrangian, we have to take into account the highest derivative

of the equation, where the highest derivative of the equation must be derived from

the partial Lagrangian.
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Chapter 3

Conservation laws of Higher order

PDEs with mixed derivative term

3.1 Introduction

In the previous chapter we had observed the application of variational and ‘partial-

variational’ techniques on higher order equations where no derivatives were of mixed

type. When considering the partial Lagrangian formula, a special point of considera-

tion is the term of the highest derivative; the highest derivative term of the equation

must be derived from the partial Lagrangian.

In this chapter we consider the equations in which the highest derivative terms

are mixed. The equations we investigate are the Camassa-Holms, Hunter-Saxton,

Inviscid Burgers, KdV family of equations, the fourth-order ShallowWater Wave and

Regularized Long Wave equations which has been discussed in [25]. The importance

of the equations lie in many areas of physics, and real world applications, e.g.,

tsunamis are characterized with long periods and wave lengths and as a result they

behave as shallow-water waves, [26].
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3.2 Camassa-Holms, Hunter-Saxton, Inviscid Burg-

ers and KdV family of equations

We now consider the family of equations

𝛼(𝑣𝑡 + 3𝑣𝑣𝑥)− 𝛽(𝑣𝑡𝑥𝑥 + 2𝑣𝑥𝑣𝑥𝑥 + 𝑣𝑣𝑥𝑥𝑥)− 𝛾𝑣𝑥𝑥𝑥 = 0. (3.1)

Even though it represents a class of nonlinear evolution equations, it displays varia-

tional/Hamiltonian properties and would then be subject to, amongst other things,

Noether’s theorem [1]. This is well documented in the case of the KdV equation

[24]. Also, it displays interesting soliton or soliton like solutions. Equation (3.1)

represents a version of the KdV equation (𝛼 = 1, 𝛽 = 0, 𝛾 = 1), the Camassa-Holm

equation (𝛼 = 1, 𝛽 = 1, 𝛾 = 1), the Hunter-Saxton equation (𝛼 = 0, 𝛽 = 1, 𝛾 = 1)

and the inviscid Burgers equation (𝛼 = 1, 𝛽 = 1, 𝛾 = 0) [28, 29, 30].

We determine the Lie point symmetry generators for equation (3.1) which split into

various cases which are also symmetries for the different equations mentioned above.

For the case (𝑖) the commutator table is also included.

(𝑖) 𝛼𝛽𝛾 ∕= 0:

𝑋1 = ∂𝑡

𝑋2 = ∂𝑥

𝑋3 = (1− 2𝑢𝛽
𝛾
)∂𝑢 +

2𝑡𝛽
𝛾
∂𝑡 + 3𝑡∂𝑥

(3.2)

[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3

𝑋1 0 0 2𝛽𝑋1

𝛾
+ 3𝑋2

𝑋2 0 0 0

𝑋3 −2𝛽𝑋1

𝛾
− 3𝑋2 0 0

(3.3)
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(𝑖𝑖) 𝛼 = 0, 𝛽𝛾 ∕= 0:

𝑋1 = (𝑢+ 𝛾
𝛽
)∂𝑢 + 𝑥∂𝑥

𝑋2 = 𝐹 ′(𝑡)∂𝑢 + 𝐹 (𝑡)∂𝑥

𝑋3 = 𝐹 (𝑡)∂𝑡 + 𝑥𝐹 ′(𝑡)∂𝑥 + 𝑥𝐹 ′′(𝑡)∂𝑢

(3.4)

(𝑖𝑖𝑖) 𝛽 = 0, 𝛼𝛾 ∕= 0:

𝑋1 = 𝐹 (𝑡)∂𝑡,

𝑋2 = ∂𝑢

𝑋3 = 𝑢∂𝑢

𝑋4 = (3𝑡𝑢− 𝑥)∂𝑢

𝑋5 = 𝐹 (𝑡)∂𝑥

𝑋6 = 𝑥𝐹 (𝑡)∂𝑥

(3.5)

(𝑖𝑣) 𝛾 = 0, 𝛼𝛽 ∕= 0:

𝑋1 = ∂𝑡

𝑋2 = 𝑡∂𝑡 − 𝑢∂𝑢

𝑋3 = ∂𝑥

(3.6)

Note. F(t) is an arbitrary function of t.
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3.2.1 The higher-order expansion of the Camassa-Holms,

Hunter-Saxton, Inviscid Burgers and KdV family of

equations

The method of expansion is employed in this section due to the order of the equation.

The family of equations is of third order, due to this fact a standard Lagrangian

can not be obtained. We seek an alternative approach by modifying equation (3.1).

The order of the equation is thus increased by letting 𝑣 = 𝑢𝑥 to obtain

𝛼(𝑢𝑡𝑥 + 3𝑢𝑥𝑢𝑥𝑥)− 𝛽(𝑢𝑡𝑥𝑥𝑥 + 2𝑢𝑥𝑥𝑢𝑥𝑥𝑥 + 𝑢𝑥𝑢𝑥𝑥𝑥𝑥)− 𝛾𝑢𝑥𝑥𝑥𝑥 = 0. (3.7)

We determine the Lie point symmetry generators of the equation and split these

into various non-trivial cases.

(𝑖) 𝛼𝛽𝛾 ∕= 0:

𝑋1 = ∂𝑡

𝑋2 = ∂𝑢

𝑋3 = 𝐹 (𝑡)∂𝑢

𝑋4 = ∂𝑥

𝑋5 = 2𝑡𝛽
𝛾
∂𝑡 + 3𝑡∂𝑥 + (𝑥− 2𝑢𝛽

𝛾
)∂𝑢

(3.8)

[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

𝑋1 0 0 𝑋2 +𝑋3 0 2𝛽𝑋1

𝛾
+ 3𝑋4

𝑋2 0 0 0 0 −2𝛽𝑋2

𝛾

𝑋3 −𝑋2 −𝑋3 0 0 0 𝑋2 +𝑋3

𝑋4 0 0 0 0 𝑋2

𝑋5 −2𝛽𝑋1

𝛾
− 3𝑋4

2𝛽𝑋2

𝛾
−𝑋2 −𝑋3 −𝑋2 0

(3.9)

42



(𝑖𝑖) 𝛼 = 0, 𝛽𝛾 ∕= 0:

𝑋1 = ∂𝑢

𝑋2 = 𝐹 (𝑡)∂𝑢

𝑋3 = (2𝑢+ 𝑥𝛾
𝛽
)∂𝑢 + 𝑥∂𝑥

𝑋4 = 𝐹 (𝑡)∂𝑥 + 𝑥𝐹 ′(𝑡)∂𝑢
𝑋5 = 2𝐹 (𝑡)∂𝑡 + (2𝑢𝐹 ′(𝑡) + 𝑥2𝐹 ′′(𝑡))∂𝑢 + 2𝑥𝐹 (𝑡)∂𝑥

(3.10)

(𝑖𝑖𝑖) 𝛽 = 0, 𝛼𝛾 ∕= 0:

𝑋1 = 𝐹 (𝑡)∂𝑡

𝑋2 = 𝑢∂𝑢

𝑋3 = 𝐹 (𝑡)∂𝑢

𝑋4 = ∂𝑥

𝑋5 = 𝑥∂𝑥

𝑋6 = 3𝑡∂𝑥 + 𝑥∂𝑢

𝑋7 = 6𝑡𝑥∂𝑥 + 𝑥2∂𝑢

(3.11)

(𝑖𝑣) 𝛾 = 0, 𝛼𝛽 ∕= 0:

𝑋1 = ∂𝑡

𝑋2 = ∂𝑢

𝑋3 = 𝐹 (𝑡)∂𝑢

𝑋4 = 𝑢∂𝑢 − 𝑡∂𝑡

𝑋5 = ∂𝑥

(3.12)

The modified equation (3.7) displays variational properties with respect to the La-
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grangian

𝐿 = −𝛼

2
(𝑢𝑥𝑢𝑡 + 𝑢3

𝑥)−
𝛽

2
(𝑢𝑥𝑢

2
𝑥𝑥 + 𝑢𝑡𝑥𝑢𝑥𝑥)− 𝛾

2
𝑢2
𝑥𝑥. (3.13)

The symmetries and corresponding conserved vectors are

(i) 𝑋 = ∂𝑡, 𝑊 = −𝑢𝑡

The conserved quantities are

𝑇 1 = −𝛼
2
(𝑢𝑡𝑢𝑥 + 𝑢3

𝑥)− 𝛽
2
(𝑢𝑥𝑢

2
𝑥𝑥 + 𝑢𝑡𝑥𝑢𝑥𝑥)− 𝛾

2
𝑢2
𝑥𝑥

+(−𝑢𝑡)(−𝛼
2
𝑢𝑥 +

𝛽
2
𝑢𝑥𝑥𝑥) + (−𝑢𝑡𝑥)(−𝛽

2
𝑢𝑥𝑥),

𝑇 2 = (−𝑢𝑡)(−𝛼
2
𝑢𝑡 − 3𝛼

2
𝑢2
𝑥 +

𝛽
2
𝑢2
𝑥𝑥 + 𝛽𝑢𝑡𝑥𝑥 + 𝛽𝑢𝑥𝑢𝑥𝑥𝑥 + 𝛾𝑢𝑥𝑥𝑥)

+(−𝑢𝑡𝑡)(−𝛽
2
𝑢𝑥𝑥) + (−𝑢𝑥𝑥)(−𝛽𝑢𝑥𝑢𝑥𝑥 − 𝛽

2
𝑢𝑡𝑥 − 𝛾𝑢𝑥𝑥)

(3.14)

The total divergence is

𝐷𝑡(𝑇
1) +𝐷𝑥(𝑇

2) = 2𝛾𝑢𝑥𝑥𝑢𝑥𝑥𝑥 − 𝛾𝑢𝑡𝑥𝑢𝑥𝑥𝑥 − 𝛾𝑢𝑥𝑥𝑢𝑡𝑥𝑥 +
1
2
𝛽𝑢𝑥𝑥𝑢𝑡𝑥𝑥

+ 1
2
𝛽𝑢𝑡𝑥𝑢𝑥𝑥𝑥 − 𝛽𝑢𝑡𝑥𝑢𝑡𝑥𝑥 − 𝛽

2
𝑢𝑡𝑢𝑡𝑥𝑥𝑥 + 2𝛽𝑢𝑥𝑢𝑥𝑥𝑢𝑥𝑥𝑥

+ 𝛽𝑢3
𝑥𝑥 − 𝛽𝑢𝑥𝑢𝑥𝑥𝑢𝑡𝑥𝑥 − 𝛽𝑢𝑥𝑢𝑡𝑥𝑢𝑥𝑥𝑥

+ 𝛽
2
𝑢𝑥𝑥𝑢𝑡𝑡𝑥 − 𝛽

2
𝑢𝑡𝑥𝑢𝑡𝑥𝑥

(3.15)

Extra terms emerge that require further analysis. By making an adjustment to these

terms, they can be absorbed into the conservation law if we note that

𝐷𝑡(𝑇
1) +𝐷𝑥(𝑇

2) = 𝐷𝑥(𝛾𝑢
2
𝑥𝑥)−𝐷𝑥(𝛾𝑢𝑡𝑥𝑢𝑥𝑥) +𝐷𝑥(

𝛽
2
𝑢𝑡𝑥𝑢𝑥𝑥)

− 𝐷𝑥(
𝛽
2
𝑢𝑡𝑢𝑡𝑥𝑥) +𝐷𝑥(𝛽𝑢𝑥𝑢

2
𝑥𝑥)−𝐷𝑥(𝑢𝑥𝑢𝑡𝑥𝑢𝑥𝑥)

− 𝐷𝑥(
𝛽
2
𝑢2
𝑡𝑥) +𝐷𝑡(

𝛽
2
𝑢𝑡𝑥𝑢𝑥𝑥).

(3.16)

Then by taking these differentials across and adding them to the conserved flows,

this satisfies the conservation law. The modified conserved quantity are now labeled
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𝑇 𝑖, where 𝐷𝑡(𝑇 1) +𝐷𝑥(𝑇 2) = 0 along the equation, viz.,

𝑇 1 = 𝑇 1 − 𝛽
2
𝑢𝑡𝑥𝑢𝑥𝑥,

𝑇 2 = 𝑇 2 − 𝛾𝑢2
𝑥𝑥 + 𝛾𝑢𝑡𝑥𝑢𝑥𝑥 − 𝛽

2
𝑢𝑡𝑥𝑢𝑥𝑥

+ 𝛽
2
𝑢𝑡𝑢𝑡𝑥𝑥 − 𝛽𝑢𝑥𝑢

2
𝑥𝑥 − 𝑢𝑥𝑢𝑡𝑥𝑢𝑥𝑥 +

𝛽
2
𝑢2
𝑡𝑥

(3.17)

The same applies to the following cases below.

(ii) 𝑋 = ∂𝑥, 𝑊 = −𝑢𝑥

With 𝑇 1 = (−𝑢𝑥)(−𝛼
2
𝑢𝑥 + 𝛽

2
𝑢𝑥𝑥𝑥) + (−𝑢𝑥𝑥)(−𝛽

2
𝑢𝑥𝑥) and 𝑇 2 = −𝛼

2
(𝑢𝑥𝑢𝑡 + 𝑢3

𝑥) −
𝛽
2
(𝑢𝑥𝑢

2
𝑥𝑥+𝑢𝑡𝑥𝑢𝑥𝑥)− 𝛾

2
𝑢2
𝑥𝑥+(−𝑢𝑥)(−𝛼

2
𝑢𝑡− 3𝛼

2
𝑢2
𝑥+

𝛽
2
𝑢2
𝑥𝑥+𝛽𝑢𝑡𝑥𝑥+𝛽𝑢𝑥𝑢𝑥𝑥𝑥+ 𝛾𝑢𝑥𝑥𝑥)+

(−𝑢𝑡𝑥)(−𝛽
2
𝑢𝑥𝑥) + (−𝑢𝑥𝑥)(−𝛽𝑢𝑥𝑢𝑥𝑥 − 𝛽

2
𝑢𝑡𝑥 − 𝛾𝑢𝑥𝑥) we get

𝐷𝑡(𝑇
1) +𝐷𝑥(𝑇

2) = −1
2
𝛽(𝑢𝑥𝑢𝑡𝑥𝑥𝑥 − 𝑢𝑥𝑥𝑢𝑡𝑥𝑥),

(3.18)

so that, since −1
2
𝛽(𝑢𝑥𝑢𝑡𝑥𝑥𝑥 − 𝑢𝑥𝑥𝑢𝑡𝑥𝑥) has derivative consequences,

−1
2
𝛽(𝑢𝑥𝑢𝑡𝑥𝑥𝑥 − 𝑢𝑥𝑥𝑢𝑡𝑥𝑥) = −1

2
𝛽(𝐷𝑥(𝑢𝑥𝑢𝑥𝑥 −𝐷𝑡(𝑢

2
𝑥𝑥)), (3.19)

so that a redefinition leads to

𝑇 1 = 𝑇 1 − 1
2
𝛽𝑢2

𝑥𝑥,

𝑇 2 = 𝑇 2 + 1
2
𝛽𝑢𝑥𝑢𝑥𝑥,

(3.20)

(iii) 𝑋 = 𝑛(𝑡)∂𝑢, 𝑊 = 𝑛(𝑡)

Here, we get 𝑇 1 = (𝑛(𝑡))(−𝛼
2
𝑢𝑥+

𝛽
2
𝑢𝑥𝑥𝑥) and 𝑇 2 = (𝑛(𝑡))(−𝛼

2
(𝑢𝑥𝑢𝑡+𝑢3

𝑥)− 𝛽
2
(𝑢𝑥𝑢

2
𝑥𝑥+

𝑢𝑡𝑥𝑢𝑥𝑥)− 𝛾
2
𝑢2
𝑥𝑥) + (𝑛𝑡(𝑡))(−𝛽

2
𝑢𝑥𝑥) +

𝛼
2
𝑛𝑡(𝑡)𝑢. so that

𝐷𝑡(𝑇
1) +𝐷𝑥(𝑇

2) = −1
2
𝑛(𝑡)𝛽𝑢𝑡𝑥𝑥𝑥,

(3.21)
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and
𝑇 1
2 = 𝑇 1,

𝑇 2
2 = 𝑇 2 + 1

2
𝑛(𝑡)𝛽𝑢𝑡𝑥𝑥.

(3.22)

3.3 The Shallow Water Wave equation

The shallow water wave equation (SWW), models the simplest water waves which

reasonably approximate the behavior of real ocean waves,

𝑢𝑥𝑥𝑥𝑡 + 𝛼𝑢𝑥𝑢𝑡𝑥 + 𝛽𝑢𝑡𝑢𝑥𝑥 − 𝑢𝑡𝑥 − 𝑢𝑥𝑥 = 0, (3.23)

where 𝛼 and 𝛽 are arbitrary constants.

We determine the Lie point symmetry generators of the equation (3.23) and these

are split into various cases with each of their commutator tables.

(𝑖) 𝛼𝛽 ∕= 0:

𝑋1 = ∂𝑡,

𝑋2 = ∂𝑢,

𝑋3 = 𝐹 (𝑡)∂𝑢 + 𝛽𝐹 (𝑡)∂𝑡,

𝑋4 = ∂𝑥,

𝑋5 = (2𝑥− 𝑢𝛼)∂𝑢 − 𝑡𝛼∂𝑡 + 𝑥𝛼∂𝑥.
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[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

𝑋1 0 0 𝑋1 +𝑋2 +𝑋3 0 −𝛼𝑋1

𝑋2 0 0 0 0 −𝛼𝑋2

𝑋3 −𝑋1 −𝑋2 −𝑋3 0 0 0 𝑋1 +𝑋2 +𝑋3

𝑋4 0 0 0 0 2𝑋2 + 𝛼𝑋4

𝑋5 𝛼𝑋1 𝛼𝑋2 −𝑋1 −𝑋2 −𝑋3 −2𝑋2 − 𝛼𝑋4 0

(𝑖𝑖) 𝛼 ∕= 0, 𝛽 = 0:

𝑋1 = ∂𝑡,

𝑋2 = ∂𝑢,

𝑋3 = 𝐹 (𝑡)∂𝑢,

𝑋4 = ∂𝑥,

𝑋5 = (2𝑥− 𝑢𝛼)∂𝑢 − 𝑡𝛼∂𝑡 + 𝑥𝛼∂𝑥.

[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

𝑋1 0 0 𝑋2 +𝑋3 0 −𝛼𝑋1

𝑋2 0 0 0 0 −𝛼𝑋2

𝑋3 −𝑋2 −𝑋3 0 0 0 𝑋2 +𝑋3

𝑋4 0 0 0 0 2𝑋2 + 𝛼𝑋4

𝑋5 𝛼𝑋1 𝛼𝑋2 −𝑋2 −𝑋3 −2𝑋2 − 𝛼𝑋4 0

(𝑖𝑖𝑖) 𝛼 = 0, 𝛽 ∕= 0

𝑋1 = ∂𝑡,

𝑋2 = 𝑥∂𝑢,

𝑋3 = 𝐹 (𝑡)∂𝑢 + 𝛽𝐹 (𝑡)∂𝑡,

𝑋4 = ∂𝑥.
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[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3 𝑋4

𝑋1 0 0 𝑋1 +𝑋3 0

𝑋2 0 0 0 −∂𝑢

𝑋3 −𝑋1 −𝑋3 0 0 0

𝑋4 0 ∂𝑢 0 0

From the equation (3.23), there are two cases that emerge, viz., (i) 𝛼 ∕= 𝛽 and (ii)

𝛼 = 𝛽.

In case (i) 𝛼 ∕= 𝛽, we refer to this equation as shallow water wave-1 (SSW-1), and for

case(ii) 𝛼 = 𝛽, equation (3.23), 𝛼 is replaced by 𝛽, we refer to this case as shallow

water wave-2 (SSW-2), which becomes,

𝑢𝑥𝑥𝑥𝑡 + 𝛽𝑢𝑥𝑢𝑡𝑥 + 𝛽𝑢𝑡𝑢𝑥𝑥 − 𝑢𝑡𝑥 − 𝑢𝑥𝑥 = 0. (3.24)

3.3.1 Shallow Water Wave-1

Here, we use the partial Lagrangian

𝐿 =
1

2
𝑢𝑡𝑥𝑢𝑥𝑥 +

1

2
𝑢2
𝑥 +

1

2
𝑢𝑥𝑢𝑡 − 1

2
𝛽𝑢𝑡𝑢

2
𝑥, (3.25)

for which
𝛿𝐿

𝛿𝑢
= (2𝛽 − 𝛼)𝑢𝑡𝑥𝑢𝑥. (3.26)
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The separation of monomials gives rise to

𝑢𝑥𝑢
2
𝑡𝑥 : 𝜏𝑢,

𝑢2
𝑡𝑥 : 𝜏𝑥,

𝑢𝑥𝑢
2
𝑥𝑥 : 𝜉𝑢,

𝑢2
𝑥𝑥 : 𝜉𝑡,

𝑢𝑡𝑥𝑢𝑥𝑥 : 𝜂𝑢 − 𝜉𝑥,

𝑢𝑡𝑢𝑥𝑢𝑡𝑥 : (2𝛽 − 𝛼)𝜏,

𝑢2
𝑥𝑢𝑡𝑥 : (2𝛽 − 𝛼)𝜉,

𝑢𝑥𝑢𝑡𝑥 : (2𝛽 − 𝛼)𝜂,

𝑢𝑡𝑢
2
𝑥 : 𝜉𝑥 − 3𝜂𝑢,

𝑢𝑡𝑢𝑥 : 𝜂𝑢 − 𝛽𝜂𝑥,

𝑢2
𝑥 : 𝜂𝑢 − 1

2
𝛽𝜂𝑡 − 1

2
𝜉𝑥 +

1
2
𝜏𝑡,

𝑢𝑥 : −𝑔𝑢 +
1
2
𝜂𝑡 + 𝜂𝑥,

𝑢𝑡 : −𝑓𝑢 +
1
2
𝜂𝑥,

1 : 𝑓𝑡 + 𝑔𝑥.

(3.27)

From equation (3.27), we observe there are two cases that emerge, (a) 𝛼 = 2𝛽 and

(b) 𝛼 ∕= 2𝛽.

Case (a): 𝛼 = 2𝛽

(1) 𝑋 = ∂𝑡, 𝑊 = −𝑢𝑡

𝑇 1 = 1
2
𝑢2
𝑥 +

1
2
𝑢𝑡𝑢𝑥𝑥𝑥

𝑇 2 = −𝑢𝑡𝑢𝑥 − 1
2
𝑢2
𝑡 + 𝑢2

𝑡𝑢𝑥𝛽 + 𝑢𝑡𝑢𝑥𝑥𝑡 − 1
2
𝑢2
𝑥𝑡 − 1

2
𝑢𝑥𝑥𝑢𝑡𝑡
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The total divergence is given below.

𝐷𝑡(𝑇
1) +𝐷𝑥(𝑇

2) = 𝐷𝑡(
1
2
𝑢2
𝑥 +

1
2
𝑢𝑡𝑢𝑥𝑥𝑥)

+ 𝐷𝑥(−𝑢𝑡𝑢𝑥 − 1
2
𝑢2
𝑡 + 𝑢2

𝑡𝑢𝑥𝛽 + 𝑢𝑡𝑢𝑥𝑥𝑡 − 1
2
𝑢2
𝑥𝑡 − 1

2
𝑢𝑥𝑥𝑢𝑡𝑡),

= 𝑢𝑥𝑢𝑡𝑥 +
1
2
𝑢𝑥𝑥𝑥𝑢𝑡𝑡 +

1
2
𝑢𝑡𝑢𝑥𝑥𝑥𝑡 − 𝑢𝑥𝑢𝑡𝑥 − 𝑢𝑡𝑢𝑥𝑥 − 1

2
𝑢𝑥𝑥𝑢𝑡𝑡𝑥

− 𝑢𝑡𝑢𝑡𝑥 + 2𝛽𝑢𝑡𝑢𝑥𝑢𝑡𝑥 + 𝛽𝑢2
𝑡𝑢𝑥𝑥 + 𝑢𝑡𝑢𝑥𝑥𝑥𝑡 − 1

2
𝑢𝑥𝑥𝑥𝑢𝑡𝑡,

= 𝑢𝑡(𝑢𝑥𝑥𝑥𝑡 + 𝛼𝑢𝑥𝑢𝑡𝑥 + 𝛽𝑢𝑡𝑢𝑥𝑥 − 𝑢𝑡𝑥 − 𝑢𝑥𝑥) +
1
2
𝑢𝑡𝑢𝑥𝑥𝑥𝑡 − 1

2
𝑢𝑥𝑥𝑢𝑥𝑡𝑡,

= 1
2
𝑢𝑡𝑢𝑥𝑥𝑥𝑡 − 1

2
𝑢𝑥𝑥𝑢𝑥𝑡𝑡.

(3.28)

We observe that extra terms emerge. By making an adjustment, these terms can

be absorbed into the conservation law. The adjustment of these extra terms can be

done by finding differentiable functions that form the extra terms, when they are

differentiated,

𝐷𝑡(𝑇
1) +𝐷𝑥(𝑇

2) = 1
2
𝑢𝑡𝑢𝑥𝑥𝑥𝑡 − 1

2
𝑢𝑥𝑥𝑢𝑥𝑡𝑡,

= 1
2
𝐷𝑡(𝑢𝑡𝑢𝑥𝑥𝑥)− 1

2
𝐷𝑥(𝑢𝑥𝑥𝑢𝑡𝑡).

(3.29)

Then by taking these differentials across and adding them to the conserved flows,

this satisfies the conservation law

𝐷𝑡(𝑇
1 − 1

2
𝑢𝑡𝑢𝑥𝑥𝑥) +𝐷𝑥(𝑇

2 + 1
2
𝑢𝑥𝑥𝑢𝑡𝑡) = 0.

(3.30)

The modified conserved quantities are now labeled 𝑇 𝑖, where 𝐷𝑡(𝑇 1) +𝐷𝑥(𝑇 2) = 0.

𝑇 1 = 𝑇 1 − 1
2
𝑢𝑡𝑢𝑥𝑥𝑥

= 1
2
𝑢2
𝑥

𝑇 2 = 𝑇 2 + 1
2
𝑢𝑥𝑥𝑢𝑡𝑡

= −𝑢𝑡𝑢𝑥 − 1
2
𝑢2
𝑡 + 𝑢2

𝑡𝑢𝑥𝛽 + 𝑢𝑡𝑢𝑥𝑥𝑡 − 1
2
𝑢2
𝑥𝑡

(3.31)

The same consequences apply for the results below.
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(2) 𝑋 = ∂𝑥, 𝑊 = −𝑢𝑥

𝑇 1 = −1
2
𝑢2
𝑥 +

1
2
𝑢3
𝑥𝛽 − 1

2
𝑢2
𝑥𝑥 +

1
2
𝑢𝑥𝑢𝑥𝑥𝑥

𝑇 2 = −1
2
𝑢2
𝑥 +

1
2
𝑢𝑡𝑢

2
𝑥𝛽 + 𝑢𝑥𝑢𝑥𝑥𝑡 − 1

2
𝑢𝑥𝑥𝑢𝑥𝑡

𝑇 1 = 𝑇 1 − 1
2
𝑢2
𝑥𝑥

= −1
2
𝑢2
𝑥 +

1
2
𝑢3
𝑥𝛽 − 1

2
𝑢2
𝑥𝑥

𝑇 2 = 𝑇 2 − 1
2
𝑢𝑥𝑢𝑥𝑥𝑡

= −1
2
𝑢2
𝑥 +

1
2
𝑢𝑡𝑢

2
𝑥𝛽 + 𝑢𝑥𝑢𝑥𝑥𝑡

(3.32)

Case (b): 𝛼 ∕= 2𝛽

(1) 𝑋 = ∂𝑢, 𝐵1 = 1
2
𝑢2
𝑥(2𝛽 − 𝛼), 𝐵2 = 0, 𝑊 = 1

𝑇 1 = 1
2
𝑢𝑥 − 1

2
𝛽𝑢2

𝑥 − 1
2
𝑢𝑥𝑥𝑥 +

1
2
𝑢2
𝑥(2𝛽 − 𝛼)

𝑇 2 = 𝑢𝑥 +
1
2
𝑢𝑡 − 𝑢𝑡𝑢𝑥𝛽 − 𝑢𝑥𝑥𝑡

The total divergence is given by,

𝐷𝑡(𝑇
1) +𝐷𝑥(𝑇

2) = 𝐷𝑡(
1
2
𝑢𝑥 − 1

2
𝛽𝑢2

𝑥 − 1
2
𝑢𝑥𝑥𝑥 +

1
2
𝑢2
𝑥(2𝛽 − 𝛼))

+ 𝐷𝑥(𝑢𝑥 +
1
2
𝑢𝑡 − 𝑢𝑡𝑢𝑥𝛽 − 𝑢𝑥𝑥𝑡),

= 1
2
𝑢𝑡𝑥 − 𝑢𝑥𝑢𝑡𝑥𝛽 − 1

2
𝑢𝑥𝑥𝑥𝑡 + 𝑢𝑥𝑢𝑡𝑥(2𝛽 − 𝛼)

+ 𝑢𝑥𝑥 +
1
2
𝑢𝑡𝑥 − 𝑢𝑥𝑢𝑡𝑥𝛽 − 𝑢𝑡𝑢𝑥𝑥𝛽 − 𝑢𝑥𝑥𝑥𝑡,

= (𝑢𝑥𝑥𝑥𝑡 + 𝛼𝑢𝑥𝑢𝑡𝑥 + 𝛽𝑢𝑡𝑢𝑥𝑥 − 𝑢𝑡𝑥 − 𝑢𝑥𝑥)− 1
2
𝑢𝑥𝑥𝑥𝑡,

= −1
2
𝑢𝑥𝑥𝑥𝑡.

(3.33)

From the equation (3.33), 𝑢𝑥𝑥𝑥𝑡 has two derivative consequences,

𝑢𝑥𝑥𝑥𝑡 = 𝐷𝑡(𝑢𝑥𝑥𝑥)

= 𝐷𝑥(𝑢𝑥𝑥𝑡)
(3.34)
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which leads to two pairs of conserved quantities,

(i)

𝑇 1
1 = 𝑇 1 + 1

2
𝑢𝑥𝑥𝑥

= 1
2
𝑢𝑥 − 1

2
𝛽𝑢2

𝑥 +
1
2
𝑢2
𝑥(2𝛽 − 𝛼),

𝑇 2
1 = 𝑇 2

= 𝑢𝑥 +
1
2
𝑢𝑡 − 𝑢𝑡𝑢𝑥𝛽 − 𝑢𝑥𝑥𝑡,

(3.35)

(ii)

𝑇 1
2 = 𝑇 1

= 1
2
𝑢𝑥 − 1

2
𝛽𝑢2

𝑥 − 1
2
𝑢𝑥𝑥𝑥 +

1
2
𝑢2
𝑥(2𝛽 − 𝛼),

𝑇 2
2 = 𝑇 2 + 1

2
𝑢𝑥𝑥𝑡

= 𝑢𝑥 +
1
2
𝑢𝑡 − 𝑢𝑡𝑢𝑥𝛽 − 1

2
𝑢𝑥𝑥𝑡.

(3.36)

(2) 𝑋 = ∂𝑥, 𝐵1 = 1
3
𝑢3
𝑥(2𝛽 − 𝛼), 𝐵2 = 0, 𝑊 = −𝑢𝑥

𝑇 1 = 1
2
𝑢2
𝑥 +

1
2
𝑢3
𝑥𝛽 − 1

2
𝑢2
𝑥𝑥 − 1

3
𝑢3
𝑥(2𝛽 − 𝛼)− 1

2
𝑢𝑥𝑢𝑥𝑥𝑥

𝑇 2 = 1
2
𝑢2
𝑥 +

1
2
𝑢𝑡𝑢

2
𝑥𝛽 + 𝑢𝑥𝑢𝑥𝑥𝑡 − 1

2
𝑢𝑥𝑥𝑢𝑥𝑡

𝑇 1 = 𝑇 1 + 1
2
𝑢2
𝑥𝑥

= 1
2
𝑢2
𝑥 +

1
2
𝑢3
𝑥𝛽 − 1

2
𝑢2
𝑥𝑥 − 1

3
𝑢3
𝑥(2𝛽 − 𝛼),

𝑇 2 = 𝑇 2 − 1
2
𝑢𝑥𝑢𝑥𝑥𝑡

= 1
2
𝑢2
𝑥 +

1
2
𝑢𝑡𝑢

2
𝑥𝛽 + 𝑢𝑥𝑢𝑥𝑥𝑡.

(3.37)

3.3.2 Shallow Water Wave-2

For equation (3.24), we use the partial Lagrangian

𝐿 =
1

2
𝑢𝑡𝑥𝑢𝑥𝑥 +

1

2
𝑢2
𝑥 +

1

2
𝑢𝑥𝑢𝑡 − 1

2
𝛽𝑢𝑡𝑢

2
𝑥, (3.38)
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which has
𝛿𝐿

𝛿𝑢
= 𝛽𝑢𝑡𝑥𝑢𝑥. (3.39)

The separation of monomials gives rise to

𝑢𝑥𝑢
2
𝑡𝑥 : 𝜏𝑢,

𝑢2
𝑡𝑥 : 𝜏𝑥,

𝑢𝑥𝑢
2
𝑥𝑥 : 𝜉𝑢,

𝑢2
𝑥𝑥 : 𝜉𝑡,

𝑢𝑡𝑥𝑢𝑥𝑥 : 𝜂𝑢 − 𝜉𝑥,

𝑢𝑡𝑢𝑥𝑢𝑡𝑥 : 𝛽𝜏,

𝑢2
𝑥𝑢𝑡𝑥 : 𝛽𝜉,

𝑢𝑥𝑢𝑡𝑥 : 𝛽𝜂,

𝑢𝑡𝑢
2
𝑥 : 𝜉𝑥 − 3𝜂𝑢,

𝑢𝑡𝑢𝑥 : 𝜂𝑢 − 𝛽𝜂𝑥,

𝑢2
𝑥 : 𝜂𝑢 − 1

2
𝛽𝜂𝑡 − 1

2
𝜉𝑥 +

1
2
𝜏𝑡,

𝑢𝑥 : −𝑔𝑢 +
1
2
𝜂𝑡 + 𝜂𝑥,

𝑢𝑡 : −𝑓𝑢 +
1
2
𝜂𝑥,

1 : 𝑓𝑡 + 𝑔𝑥.

(3.40)

From equation (3.40), it is clear that 𝛽 ∕= 0 or 𝛽 = 0.

If 𝛽 ∕= 0 then it is a trivial solution, and if 𝛽 = 0, then equation (3.24) changes to

𝑢𝑥𝑥𝑥𝑡 − 𝑢𝑡𝑥 − 𝑢𝑥𝑥 = 0, (3.41)

and the partial lagrangian (3.38) becomes a standard Lagrangian

𝐿 =
1

2
𝑢𝑡𝑥𝑢𝑥𝑥 +

1

2
𝑢2
𝑥 +

1

2
𝑢𝑥𝑢𝑡, (3.42)

and the conserved quantities are as follows:

(i) 𝑋 = ∂𝑡, 𝑊 = −𝑢𝑡
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𝑇 1 = 1
2
𝑢2
𝑥 +

1
2
𝑢𝑡𝑢𝑥𝑥𝑥

𝑇 2 = −𝑢𝑡𝑢𝑥 − 1
2
𝑢2
𝑡 + 𝑢𝑡𝑢𝑥𝑥𝑡 − 1

2
𝑢2
𝑥𝑡 − 1

2
𝑢𝑥𝑥𝑢𝑡𝑡

𝑇 1 = 𝑇 1 − 1
2
𝑢𝑡𝑢𝑥𝑥𝑥

= 1
2
𝑢2
𝑥

𝑇 2 = 𝑇 2 + 1
2
𝑢𝑥𝑥𝑢𝑡𝑡

= −𝑢𝑡𝑢𝑥 − 1
2
𝑢2
𝑡 + 𝑢𝑡𝑢𝑥𝑥𝑡 − 1

2
𝑢2
𝑥𝑡,

(3.43)

(ii) 𝑋 = ∂𝑥, 𝑊 = −𝑢𝑥

𝑇 1 = −1
2
𝑢2
𝑥 − 1

2
𝑢2
𝑥𝑥 +

1
2
𝑢𝑥𝑢𝑥𝑥𝑥

𝑇 2 = −1
2
𝑢2
𝑥 + 𝑢𝑥𝑢𝑥𝑥𝑡 − 1

2
𝑢𝑥𝑥𝑢𝑥𝑡

𝑇 1 = 𝑇 1 − 1
2
𝑢2
𝑥𝑥

= −1
2
𝑢2
𝑥 − 1

2
𝑢2
𝑥𝑥

𝑇 2 = 𝑇 2 − 1
2
𝑢𝑥𝑢𝑥𝑥𝑡

= −1
2
𝑢2
𝑥 + 𝑢𝑥𝑢𝑥𝑥𝑡.

(3.44)

REMARK. From the conserved quantities attained, there are non-zero divergence

terms occur when the conservation law is applied. These extra terms are adjusted

by merely taking the extra terms into derivative functions that can be absorbed into

the conservation law, therefore producing new conserved quantities.
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3.4 The Regularized Long Wave Equation

The Regularized Long Wave Equation (RLW), models soliton waves and is some-

times referred to as the Benjamin-Bona-Mahoney Equation. The regularized long

wave (RLW) equation is an important nonlinear wave equation. Solitary waves are

wave packets or pulses, which propagate in nonlinear dispersive media. Due to dy-

namical balance between the nonlinear and dispersive effects these waves retain a

stable waveform. A soliton is a very special type of solitary wave, which also keeps

its waveform after collision with other solitons. RLW is an alternative description

of nonlinear dispersive waves to the more Korteweg de Vries (KdV) equation,

𝑣𝑡𝑥𝑥 + 𝛼𝑣2𝑣𝑥 + 𝑣𝑡 + 𝑣𝑥 = 0. (3.45)

The RLW equation is a third order equation and for our purposes of investigation

we modify this equation to be compared with the equations we have dealt with thus

far. We do this by differentiating the equation by a spatial variable, 𝑥 and a time

variable 𝑡.

We refer to the modified RLW equation which has either been differentiated by 𝑡 or

had 𝑣 replaced with 𝑢𝑡 as RLW-1,

𝑢𝑥𝑥𝑡𝑡 + 𝛼𝑢2
𝑡𝑢𝑡𝑥 + 𝑢𝑡𝑡 + 𝑢𝑡𝑥 = 0. (3.46)

The symmetry generators obtained for the RLW-1 equation are listed below with

two cases for 𝛼 and its corresponding commutator tables.

(𝑖) 𝛼 = 0

𝑋1 = ∂𝑡

𝑋2 = 𝑢∂𝑢

𝑋3 = 𝐹 (𝑡, 𝑥)∂𝑢, 𝐹𝑡𝑡𝑥𝑥 + 𝐹𝑡𝑥 + 𝐹𝑡𝑡 = 0

𝑋4 = ∂𝑥
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[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3 𝑋4

𝑋1 0 0 𝑋3 0

𝑋2 0 0 −𝑋3 0

𝑋3 −𝑋3 𝑋3 0 𝑋3

𝑋4 0 0 −𝑋3 0

(3.47)

(𝑖𝑖) 𝛼 ∕= 0

𝑋1 = ∂𝑡

𝑋2 = ∂𝑢

𝑋3 = 𝐹 (𝑥)∂𝑢

𝑋4 = ∂𝑥

[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3 𝑋4

𝑋1 0 0 0 0

𝑋2 0 0 0 0

𝑋3 0 0 0 𝑋2 +𝑋3

𝑋4 0 0 −𝑋2 −𝑋3 0

(3.48)

We refer to the modified RLW equation which has either been differentiated by 𝑥

or had 𝑣 replaced with 𝑢𝑥 as RLW-2,

𝑢𝑥𝑥𝑥𝑡 + 𝛼𝑢2
𝑥𝑢𝑥𝑥 + 𝑢𝑡𝑥 + 𝑢𝑥𝑥 = 0. (3.49)

The symmetry generators obtained for the RLW-2 equation are listed below with

two cases for 𝛼 and its corresponding commutator tables.

(𝑖) 𝛼 = 0
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𝑋1 = ∂𝑡

𝑋2 = 𝑢∂𝑢

𝑋3 = 𝐹 (𝑡, 𝑥)∂𝑢, 𝐹𝑡𝑥𝑥𝑥 + 𝐹𝑥𝑥 + 𝐹𝑡𝑥 = 0

𝑋4 = ∂𝑥

[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3 𝑋4

𝑋1 0 0 𝑋3 0

𝑋2 0 0 −𝑋3 0

𝑋3 −𝑋3 𝑋3 0 𝑋3

𝑋4 0 0 −𝑋3 0

(3.50)

(𝑖𝑖) 𝛼 ∕= 0

𝑋1 = ∂𝑡

𝑋2 = 𝐹 (𝑡)∂𝑢

𝑋3 = ∂𝑥

[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3

𝑋1 0 𝑋2 0

𝑋2 −𝑋2 0 0

𝑋3 0 0 0

(3.51)

3.4.1 Regularized Long Wave-1

Here, we use the partial Lagrangian

𝐿 =
1

2
𝑢2
𝑡𝑥 −

1

2
𝑢𝑡𝑢𝑥 − 1

2
𝑢2
𝑡 , (3.52)
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for which
𝛿𝐿

𝛿𝑢
= −𝛼𝑢2

𝑡𝑢𝑡𝑥. (3.53)

Using Noether’s Identity we substitute (3.52) and (3.53)into the expression below,

which we use to find our determining equations and then separate by monomials,

𝑋 [2]𝐿+ 𝐿(𝐷𝑡𝜉
1 +𝐷𝑥𝜉

2) = (𝜂 − 𝑢𝑡𝜉
1 − 𝑢𝑥𝜉

2)
𝛿𝐿

𝛿𝑢
+𝐷𝑡𝐵

1 +𝐷𝑥𝐵
2. (3.54)

The separation of monomials are:

𝑢𝑥𝑥𝑢𝑡𝑥 : 𝜉𝑡 + 𝑢𝑡𝜉𝑢,

𝑢𝑡𝑡𝑢𝑡𝑥 : 𝜏𝑥 + 𝑢𝑥𝜏𝑢,

𝑢2
𝑡𝑥 : 𝜂𝑢 − 1

2
𝜉𝑥 − 1

2
𝜏𝑡,

𝑢𝑥𝑢
2
𝑡𝑢𝑡𝑥 : 𝛼𝜉,

𝑢𝑡𝑢
2
𝑡𝑢𝑡𝑥 : 𝛼𝜏,

𝑢2
𝑡𝑢𝑡𝑥 : 𝛼𝜂,

𝑢𝑡𝑢𝑥𝑢𝑡𝑥 : 𝜂𝑢𝑢,

𝑢𝑡𝑢𝑡𝑥 : 𝜂𝑡𝑢,

𝑢𝑥𝑢𝑡𝑥 : 𝜂𝑥𝑢,

𝑢𝑡𝑥 : 𝜂𝑡𝑥,

𝑢𝑥𝑢𝑡 : 𝜂𝑢,

𝑢2
𝑡 : , 𝜂𝑢 +

1
2
𝜉𝑥 +

1
2
𝜏𝑡

𝑢𝑥 : −𝑔𝑢 − 1
2
𝜂𝑡,

𝑢𝑡 : −𝑓𝑢 − 𝜂𝑡 − 1
2
𝜂𝑥,

1 : 𝑓𝑡 + 𝑔𝑥.

(3.55)

From equation (3.55), it is clear that 𝛼 ∕= 0 or 𝛼 = 0.

If 𝛼 ∕= 0 then it is a trivial solution, and if 𝛼 = 0, then equation (3.46) changes to

𝑢𝑥𝑥𝑡𝑡 + 𝑢𝑡𝑡 + 𝑢𝑡𝑥 = 0 (3.56)
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and the partial Lagrangian becomes a standard Lagrangian. By solving the over-

determined system, we get the symmetries. From the symmetries we calculate the

conserved vectors,

Case (i) 𝑋 = ∂𝑡, 𝑊 = −𝑢𝑡

𝑇 1 = −1
2
𝑢2
𝑡𝑥 +

1
2
𝑢2
𝑡 + 𝑢𝑡𝑢𝑡𝑥𝑥

𝑇 2 = 1
2
𝑢2
𝑡 + 𝑢𝑡𝑢𝑡𝑡𝑥 − 𝑢𝑡𝑡𝑢𝑡𝑥.

Checking if the conservation law holds, i.e.,

𝐷𝑡(𝑇
1) +𝐷𝑥(𝑇

2) = 𝐷𝑡(−1
2
𝑢2
𝑡𝑥 +

1
2
𝑢2
𝑡 + 𝑢𝑡𝑢𝑡𝑥𝑥) +𝐷𝑥(

1
2
𝑢2
𝑡 + 𝑢𝑡𝑢𝑡𝑡𝑥 − 𝑢𝑡𝑡𝑢𝑡𝑥),

= −𝑢𝑡𝑥𝑢𝑡𝑡𝑥 + 𝑢𝑡𝑢𝑡𝑡 + 𝑢𝑡𝑡𝑢𝑡𝑥𝑥 + 𝑢𝑡𝑢𝑡𝑡𝑥𝑥 + 𝑢𝑡𝑢𝑡𝑥

+ 𝑢𝑡𝑥𝑢𝑡𝑡𝑥 + 𝑢𝑡𝑢𝑡𝑡𝑥𝑥 − 𝑢𝑡𝑥𝑢𝑡𝑡𝑥 + 𝑢𝑡𝑡𝑢𝑡𝑥𝑥,

= 𝑢𝑡𝑢𝑡𝑡𝑥𝑥 − 𝑢𝑡𝑥𝑢𝑡𝑡𝑥.

(3.57)

We observe that extra terms emerge. By making an adjustment, these terms can

be absorbed into the conservation law. The adjustment of these extra terms can be

done by finding differentiable functions that form the extra terms, when they are

differentiated.

Thus,

𝐷𝑡(𝑇
1) +𝐷𝑥(𝑇

2) = 𝑢𝑡𝑢𝑡𝑡𝑥𝑥 − 𝑢𝑡𝑥𝑢𝑡𝑡𝑥,

= 𝐷𝑡(𝑢𝑡𝑢𝑡𝑥𝑥)−𝐷𝑥(𝑢𝑡𝑡𝑢𝑡𝑥).

(3.58)

Then by taking these differentials across and adding them to the conserved flows,

this satisfies the conservation law,

𝐷𝑡(𝑇
1 − 𝑢𝑡𝑢𝑡𝑥𝑥) +𝐷𝑥(𝑇

2 + 𝑢𝑡𝑡𝑢𝑡𝑥) = 0.
(3.59)
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The modified conserved quantities are now labeled 𝑇 𝑖, where 𝐷𝑡(𝑇 1) +𝐷𝑥(𝑇 2) = 0.

𝑇 1 = 𝑇 1 − 𝑢𝑡𝑢𝑡𝑥𝑥

= −1
2
𝑢2
𝑡𝑥 +

1
2
𝑢2
𝑡

𝑇 2 = 𝑇 2 + 𝑢𝑡𝑡𝑢𝑡𝑥

= 1
2
𝑢2
𝑡 + 𝑢𝑡𝑢𝑡𝑡𝑥.

(3.60)

The same consequences apply for the results below.

Case (ii) 𝑋 = ∂𝑥, 𝑊 = −𝑢𝑥

𝑇 1 = 1
2
𝑢2
𝑥 + 𝑢𝑡𝑢𝑥 + 𝑢𝑥𝑢𝑡𝑥𝑥 − 𝑢2

𝑡𝑥

𝑇 2 = −1
2
𝑢2
𝑡𝑥 − 1

2
𝑢2
𝑡 + 𝑢𝑥𝑢𝑡𝑡𝑥

𝑇 1 = 𝑇 1 + 𝑢𝑡𝑡𝑢𝑡𝑥

= 1
2
𝑢2
𝑥 + 𝑢𝑡𝑢𝑥 + 𝑢𝑥𝑢𝑡𝑥𝑥 − 𝑢2

𝑡𝑥 + 𝑢𝑡𝑡𝑢𝑡𝑥

𝑇 2 = 𝑇 2 − 𝑢𝑥𝑢𝑡𝑡𝑥

= −1
2
𝑢2
𝑡𝑥 − 1

2
𝑢2
𝑡

(3.61)

Case (iii) 𝑋 = ∂𝑢, 𝑊 = 1

𝑇 1 = −1
2
𝑢𝑥 − 𝑢𝑡 − 𝑢𝑡𝑥𝑥

𝑇 2 = −1
2
𝑢𝑡 − 𝑢𝑡𝑡𝑥
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The divergence is,

𝐷𝑡(𝑇
1) +𝐷𝑥(𝑇

2) = 𝐷𝑡(−1
2
𝑢𝑥 − 𝑢𝑡 − 𝑢𝑡𝑥𝑥) +𝐷𝑥(−1

2
𝑢𝑡 − 𝑢𝑡𝑡𝑥),

= −1
2
𝑢𝑡𝑥 − 𝑢𝑡𝑡 − 𝑢𝑡𝑡𝑥𝑥 − 1

2
𝑢𝑡𝑥 − 𝑢𝑡𝑡𝑥𝑥,

= −𝑢𝑡𝑡𝑥𝑥.

(3.62)

From the equation (3.62), 𝑢𝑡𝑡𝑥𝑥 has two derivative consequences,

𝑢𝑡𝑡𝑥𝑥 = 𝐷𝑡(𝑢𝑡𝑥𝑥)

= 𝐷𝑥(𝑢𝑡𝑡𝑥)
(3.63)

which leads to two pairs of conserved quantities

𝑇 1
1 = 𝑇 1 + 𝑢𝑡𝑥𝑥

= −1
2
𝑢𝑥 − 𝑢𝑡

𝑇 2
1 = 𝑇 2

= −1
2
𝑢𝑡 − 𝑢𝑡𝑡𝑥

(3.64)

𝑇 1
2 = 𝑇 1

= −1
2
𝑢𝑥 − 𝑢𝑡 − 𝑢𝑡𝑥𝑥

𝑇 2
2 = 𝑇 2 + 𝑢𝑡𝑡𝑥

= −1
2
𝑢𝑡

(3.65)

Case (iv) 𝑋 = 𝑡∂𝑢, 𝑊 = 𝑡, 𝑓 = −𝑢, 𝑔 = −1
2
𝑢

𝑇 1 = −1
2
𝑡𝑢𝑥 − 𝑡𝑢𝑡 − 𝑡𝑢𝑡𝑥𝑥 − 𝑢

𝑇 2 = −1
2
𝑡𝑢𝑡 − 𝑡𝑢𝑡𝑡𝑥 + 𝑢𝑡𝑥 − 1

2
𝑢
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Checking if the conservation law holds we find that,

𝐷𝑡(𝑇
1) +𝐷𝑥(𝑇

2) = 𝐷𝑡(−1
2
𝑡𝑢𝑥 − 𝑡𝑢𝑡 − 𝑡𝑢𝑡𝑥𝑥 − 𝑢) +𝐷𝑥(−1

2
𝑡𝑢𝑡 − 𝑡𝑢𝑡𝑡𝑥 + 𝑢𝑡𝑥 − 1

2
𝑢)

= −𝑡𝑢𝑡𝑡𝑥𝑥.

(3.66)

From the equation (3.66), 𝑢𝑡𝑡𝑥𝑥 has two derivative consequences,

𝑡𝑢𝑡𝑡𝑥𝑥 = 𝐷𝑥(𝑡𝑢𝑡𝑡𝑥)

= 𝐷𝑡(𝑡𝑢𝑡𝑥𝑥)−𝐷𝑥(𝑢𝑡𝑥)
(3.67)

which leads to two pairs of conserved quantities,

𝑇 1
1 = 𝑇 1

= −1
2
𝑡𝑢𝑥 − 𝑡𝑢𝑡 − 𝑡𝑢𝑡𝑥𝑥 − 𝑢

𝑇 2
1 = 𝑇 2 + 𝑡𝑢𝑡𝑡𝑥

= −1
2
𝑡𝑢𝑡 + 𝑢𝑡𝑥 − 1

2
𝑢

(3.68)

𝑇 1
2 = 𝑇 1 + 𝑡𝑢𝑡𝑥𝑥

= −1
2
𝑡𝑢𝑥 − 𝑡𝑢𝑡 − 𝑢

𝑇 2
2 = 𝑇 2 − 𝑢𝑡𝑥

= −1
2
𝑡𝑢𝑡 − 𝑡𝑢𝑡𝑡𝑥 − 1

2
𝑢.

(3.69)

3.4.2 Regularized Long Wave-2

Here, we use the partial Lagrangian

𝐿 =
1

2
𝑢𝑥𝑥𝑢𝑡𝑥 − 1

2
𝑢𝑡𝑢𝑥 − 1

2
𝑢2
𝑥 (3.70)

for which
𝛿𝐿

𝛿𝑢
= −𝛼𝑢2

𝑥𝑢𝑡𝑥. (3.71)
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Using Noether’s Identity we substitute (3.70) and (3.71)into the expression below,

which we use to find our determining equations and then separate by monomials,

𝑋 [2]𝐿+ 𝐿(𝐷𝑡𝜉
1 +𝐷𝑥𝜉

2) = (𝜂 − 𝑢𝑡𝜉
1 − 𝑢𝑥𝜉

2)
𝛿𝐿

𝛿𝑢
+𝐷𝑡𝐵

1 +𝐷𝑥𝐵
2. (3.72)

The separation of monomials are:

𝑢𝑥𝑥𝑢𝑡𝑥 : 𝜉𝑡 − 𝑢𝑡𝜉𝑢,

𝑢𝑡𝑡𝑢𝑡𝑥 : 𝜏𝑥 − 𝑢𝑥𝜏𝑢,

𝑢𝑡𝑥𝑢𝑥𝑥 : 𝜂𝑢 − 𝜉𝑥,

𝑢3
𝑥𝑢𝑡𝑥 : 𝛼𝜉,

𝑢𝑡𝑢
2
𝑥𝑢𝑡𝑥 : 𝛼𝜏,

𝑢2
𝑥𝑢𝑡𝑥 : 𝛼𝜂,

𝑢𝑡𝑢𝑥𝑢𝑥𝑥 : 𝜂𝑢𝑢,

𝑢𝑥𝑢𝑥𝑥 : 𝜂𝑡𝑢,

𝑢𝑡𝑢𝑥𝑥 : 𝜂𝑥𝑢,

𝑢𝑥𝑥 : 𝜂𝑡𝑥,

𝑢𝑥𝑢𝑡𝑥 : 𝜂𝑥𝑢 − 1
2
𝜉𝑥𝑥,

𝑢𝑡𝑥 : 𝜂𝑥𝑥,

𝑢𝑥𝑢𝑡 : 𝜂𝑢,

𝑢2
𝑥 : −𝜂𝑢 +

1
2
𝜉𝑥 − 1

2
𝜏𝑡,

𝑢𝑥 : −𝑔𝑢 − 1
2
𝜂𝑡 − 𝜂𝑥,

𝑢𝑡 : −𝑓𝑢 − 𝜂𝑥,

1 : 𝑓𝑡 + 𝑔𝑥.

(3.73)

From equation (3.55), it is clear that 𝛼 ∕= 0 or 𝛼 = 0.

If 𝛼 ∕= 0 then it is a trivial solution, and if 𝛼 = 0, then equation (3.46) changes to

𝑢𝑥𝑥𝑡𝑡 + 𝑢𝑡𝑡 + 𝑢𝑡𝑥 = 0 (3.74)

and the partial Lagrangian becomes a standard Lagrangian. By solving the over-

determined system, these were the only Noether symmetries which were obtained.

From the symmetries we calculate the conserved vectors:
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Case (i) 𝑋 = ∂𝑡, 𝑊 = −𝑢𝑡

𝑇 1 = −1
2
𝑢2
𝑥 +

1
2
𝑢𝑡𝑢𝑥𝑥𝑥

𝑇 2 = 1
2
𝑢2
𝑡 + 𝑢𝑡𝑢𝑥 + 𝑢𝑡𝑢𝑡𝑥𝑥 − 1

2
𝑢2
𝑡𝑥 − 1

2
𝑢𝑡𝑡𝑢𝑥𝑥

𝑇 1 = 𝑇 1 − 1
2
𝑢𝑡𝑢𝑥𝑥𝑥

= −1
2
𝑢2
𝑥

𝑇 2 = 𝑇 2 + 1
2
𝑢𝑡𝑡𝑢𝑥𝑥

= 1
2
𝑢2
𝑡 + 𝑢𝑡𝑢𝑥 + 𝑢𝑡𝑢𝑡𝑥𝑥 − 1

2
𝑢2
𝑡𝑥.

(3.75)

Case (ii) 𝑋 = ∂𝑥, 𝑊 = −𝑢𝑥

𝑇 1 = 1
2
𝑢2
𝑥 +

1
2
𝑢𝑥𝑢𝑥𝑥𝑥 − 1

2
𝑢2
𝑥𝑥

𝑇 2 = 1
2
𝑢2
𝑥 + 𝑢𝑥𝑢𝑡𝑥𝑥 − 1

2
𝑢𝑡𝑥𝑢𝑥𝑥

𝑇 1 = 𝑇 1 + 1
2
𝑢2
𝑥𝑥

= 1
2
𝑢2
𝑥 +

1
2
𝑢𝑥𝑢𝑥𝑥𝑥

𝑇 2 = 𝑇 2 − 1
2
𝑢𝑥𝑢𝑡𝑥𝑥

= 1
2
𝑢2
𝑥 − 1

2
𝑢𝑡𝑥𝑢𝑥𝑥 +

1
2
𝑢𝑥𝑢𝑡𝑥𝑥

. (3.76)

Case (iii) 𝑋 = 𝑥∂𝑢, 𝑊 = 𝑥, 𝑓 = −1
2
𝑢, 𝑔 = −𝑢

𝑇 1 = −1
2
𝑥𝑢𝑥 − 1

2
𝑥𝑢𝑥𝑥𝑥 +

1
2
𝑢𝑥𝑥 +

1
2
𝑢

𝑇 2 = −1
2
𝑥𝑢𝑡 − 𝑥𝑢𝑥 − 𝑥𝑢𝑡𝑥𝑥 +

1
2
𝑢𝑡𝑥 + 𝑢
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𝑇 1 = 𝑇 1

= −1
2
𝑥𝑢𝑥 − 1

2
𝑥𝑢𝑥𝑥𝑥 +

1
2
𝑢𝑥𝑥 +

1
2
𝑢

𝑇 2 = 𝑇 2 − 1
2
𝑢𝑡𝑥 +

1
2
𝑥𝑢𝑡𝑥𝑥

= −1
2
𝑥𝑢𝑡 − 𝑥𝑢𝑥 − 1

2
𝑥𝑢𝑡𝑥𝑥 + 𝑢

. (3.77)

3.5 Discussion and conclusion

We used the Noether identity to find symmetry generators and then conservation

laws for high order equations containing mixed derivatives in the highest term. All

the conserved vectors in the equations with highest order possessing mixed deriva-

tives produce extra terms that become essential parts of the constructed conserved

vector for the equation in question.

Using the variational technique on the Shallow Water Wave equation, we get con-

served flows that produce extra terms when the conservation law is applied. These

extra terms are adjusted and then merged with the conservation law to form new

conserved quantities. These extra terms also occur in the second equation, the Reg-

ularized Long Wave equation. An interesting observation obtained from our results

in that the mixed derivative equations considered produce extra divergence terms.

These extra terms consisted of the product of the characteristic function and the

highest derivative term of the equation in question.

Note. We acknowledge the comments made by Sarlet [27] regarding the findings and

criticism of this chapter and [18]. Our results are not incorrect and the discussion

in [27], in fact, provides a necessary and much needed nontrivial explanation to the

findings. Thus, rather than being negative, we believe that [27] endorses our results.

What was missing, therefore, in our paper [18] was an explanation. Furthermore,

the examples discussed in the chapter are well known and are of interest to wide

audience.
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Chapter 4

Conservation laws of some Vaidya

metrics

4.1 Introduction

In this chapter we will look at the Vaidya metric that is currently being researched

intensively in relativity and astrophysics. In the paper by Lindquist et al [31], a

detailed description on why the Vaidya metric is the most convenient one for the

spherically symmetric solution of the Einstein’s field equations. The Vaidya metric

is given by [32]

d𝑠2 = −(1− 2𝑚(𝑢)

𝑟
)d𝑢2 − 2d𝑢d𝑟 + 𝑟2(d𝜃2 + sin2 𝜃d𝜙2), (4.1)

where 𝑚(𝑢) is the arbitrary function of the retarded time coordinate 𝑢. Following

the coordinates introduced by Finkelstein [33], the metric in (4.1) can be construed

as

d𝑠2 = −(1− 2𝑚(𝑢)

𝑟
)d𝑢2−4

𝑚(𝑢)

𝑟
d𝑢d𝑟+(1+

2𝑚(𝑢)

𝑟
)d𝑟2+𝑟2(d𝜃2+sin2 𝜃d𝜙2). (4.2)

Various studies relating to the Vaidya metric have been done, for e.g., the ‘nature
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of naked singularities’ [34], the ‘Carter constant and Petrov classification’ [35] and

references therein which include aspects of the nature of the Killing tensors and the

well known notion of the ‘isometries’ of the metric which are the diffeomorphisms

of the manifold onto itself which preserve the metric tensor [36].

4.2 Lie point Symmetries of the Vaidya metric

The Euler-Lagrange (geodesic) equations associated with the Lagrangian

𝐿 = −(1− 2𝑚(𝑢)

𝑟
)𝑢̇2 − 2𝑢̇𝑟̇ + 𝑟2𝜃2 + 𝑟2 sin2 𝜃𝜙̇2 (4.3)

corresponding to (4.1) are

𝑢̈ = −𝑟3𝜙̇2+cos 𝜃2𝑟3𝜙̇2−𝑟3𝜃2+𝑚𝑢̇2

𝑟2
,

𝑟 = −2𝑚𝑟̇𝑢̇+2𝑚𝑟𝑢̈−𝑟2𝑢̈
𝑟2

,

𝜃 = 𝑟𝜙̇2 cos 𝜃 sin 𝜃−2𝑟̇𝜃
𝑟

,

𝜙 = −2𝑟𝜙̇𝜃 csc 𝜃 cos 𝜃−2𝑟̇𝜙̇
𝑟 csc 𝜃 sin 𝜃

,

(4.4)

where 𝛼̇ is the derivative of 𝛼 with respect to the arclength parameter 𝑠. The

geodesic equations are constructed by applying the Euler-Lagrange operator onto

the Lagrangian for each variable (𝑡, 𝑟, 𝜃, 𝜙).

The algebra of Lie point symmetries of (4.4) separate into a number of classes based

on 𝑚(𝑢). The invariance of differential equations leading to Lie symmetries is now

well documented and can be found in, inter alia, [17]. We list the two cases𝑚(𝑢) = 0

and 𝑚(𝑢) = 𝑘, with k an arbitrary constant. We note the ‘large’ 35-dimensional Lie

algebra for the first case reduces radically when we consider the Noether symmetries.

Listed below are the Lie symmetries for the two cases.

(i) Case 𝑚 = 0
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𝑋1 = ∂𝜙

𝑋2 = ∂𝑠

𝑋3 = 𝑠∂𝑠

𝑋4 = (𝑟 + 𝑢)∂𝑠

𝑋5 = 𝑟 cos 𝜃∂𝑠

𝑋6 = 𝑟 cos𝜙 sin 𝜃∂𝑠

𝑋7 = 𝑟 sin𝜙 sin 𝜃∂𝑠

𝑋8 = cos𝜙∂𝜃 − cot 𝜃 sin𝜙∂𝜙

𝑋9 = sin𝜙∂𝜃 − cot 𝜃 cos𝜙∂𝜙

𝑋10 = ∂𝑢

𝑋11 = 𝑠∂𝑢

𝑋12 = (𝑟 + 𝑢)∂𝑢

𝑋13 = 𝑟 cos 𝜃∂𝑢

𝑋14 = 𝑟 cos𝜙 sin 𝜃∂𝑢

𝑋15 = 𝑟 sin𝜙 sin 𝜃∂𝑢

𝑋16 = 𝑢∂𝑢 + 𝑟∂𝑟

𝑋17 = 𝑠2∂𝑠 + 𝑠𝑢∂𝑢 + 𝑟𝑠∂𝑟

𝑋18 = 𝑠(𝑟 + 𝑢)∂𝑠 + 𝑢(𝑟 + 𝑢)∂𝑢 + 𝑟(𝑟 + 𝑢)∂𝑟
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𝑋19 = cos 𝜃∂𝑢 − cos 𝜃∂𝑟 +
1
𝑟
sin 𝜃∂𝜃

𝑋20 = 𝑠 cos 𝜃∂𝑢 − 𝑠 cos 𝜃∂𝑟 +
𝑠
𝑟
sin 𝜃∂𝜃

𝑋21 = 𝑢 cos 𝜃∂𝑢 − (𝑟 + 𝑢) cos 𝜃∂𝑟 +
(𝑟+𝑢)

𝑟
sin 𝜃∂𝜃

𝑋22 = 𝑟𝑠 cos 𝜃∂𝑠 + 𝑟𝑢 cos 𝜃∂𝑢 + 𝑟2 cos 𝜃∂𝑟

𝑋23 = 𝑢+ 𝑟 cos2 𝑡∂𝑢 + 𝑟 sin2 𝑡∂𝑟 + cos 𝜃 sin 𝜃∂𝜃

𝑋24 = 𝑠 cos𝜙 sin 𝜃∂𝑢 − 𝑠 cos𝜙 sin 𝜃∂𝑟 − 𝑠
𝑟
cos𝜙 cos 𝜃∂𝜃 +

𝑠
𝑟
csc 𝜃 sin 𝜃∂𝜙

𝑋25 = 𝑢 cos𝜙 sin 𝜃∂𝑢 − (𝑟 + 𝑢) cos𝜙 cos 𝜃∂𝑟 − (𝑟+𝑢)
𝑟

cos𝜙 cos 𝜃∂𝜃 +
(𝑟+𝑢)

𝑟
csc 𝜃 sin 𝜃∂𝜙

𝑋26 = 𝑟𝑠 cos𝜙 sin 𝜃∂𝑠 + 𝑟𝑢 cos𝜙 sin 𝜃∂𝑢 + 𝑟2 cos𝜙 sin 𝜃∂𝑟

𝑋27 = 𝑟 cos𝜙 sin 2𝜃∂𝑢 − 2𝑟 cos𝜙 cos 𝜃 sin 𝜃∂𝑟 − cos𝜙 cos 2𝜃∂𝜃 + cot 𝜃 sin𝜙∂𝜙

𝑋28 = 𝑠 sin𝜙 sin 𝜃∂𝑢 − 𝑠 sin𝜙 sin 𝜃∂𝑟 − 𝑠
𝑟
cos 𝜃 sin𝜙∂𝜃 − 𝑠

𝑟
cos𝜙 csc 𝜃∂𝜙

𝑋29 = 𝑢 sin𝜙 sin 𝜃∂𝑢 − (𝑟 + 𝑢) sin𝜙 sin 𝜃∂𝑟 − (𝑟+𝑢)
𝑟

cos 𝜃 sin𝜙∂𝜃 − (𝑟+𝑢)
𝑟

cos𝜙 csc 𝜃∂𝜙

𝑋30 = 𝑟𝑠 sin𝜙 sin 𝜃∂𝑠 + 𝑟𝑢 sin𝜙 sin 𝜃∂𝑢 + 𝑟2 sin𝜙 sin 𝜃∂𝑟

𝑋31 = 𝑟 sin𝜙 sin 2𝜃∂𝑢 − 𝑟 sin𝜙 sin 2𝜃∂𝑟 − cos 2𝜃 sin𝜙∂𝜃 − cos𝜙 cot 𝜃∂𝜙

𝑋32 = 2𝑟 cos 2𝜙 sin2 𝜃∂𝑢 − 2𝑟 cos 2𝜙 sin2 𝜃∂𝑟 − cos 2𝜙 sin 2𝜃∂𝜃 + 2 sin 2𝜙∂𝜙

𝑋33 = 4𝑟 cos𝜙 sin𝜙 sin2 𝜃∂𝑢 − 4𝑟 cos𝜙 sin𝜙 sin2 𝜃∂𝑟 − sin 2𝜙 sin 2𝜃∂𝜃 − 2 cos 2𝜙∂𝜙

𝑋34 = − cos𝜙 sin 𝜃∂𝑢 + cos𝜙 sin 𝜃∂𝑟 +
1
𝑟
cos𝜙 cos 𝜃∂𝜃 − 1

𝑟
sin𝜙 csc 𝜃∂𝜙

𝑋35 = − sin𝜙 sin 𝜃∂𝑢 + sin𝜙 sin 𝜃∂𝑟 +
1
𝑟
sin𝜙 cos 𝜃∂𝜃 − 1

𝑟
cos𝜙 csc 𝜃∂𝜙

(ii) Case 𝑚 = 𝑘, with 𝑘 an arbitrary constant
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𝑋1 = ∂𝜙

𝑋2 = ∂𝑠

𝑋3 = 𝑠∂𝑠

𝑋4 = ∂𝑢

𝑋5 = − cos𝜙∂𝜃 + cot 𝜃 sin𝜙∂𝜙

𝑋6 = − sin𝜙∂𝜃 − cot 𝜃 cos𝜙∂𝜙

which yields the following commutator table

[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6

𝑋1 0 0 0 −𝑋5 𝑋4 0

𝑋2 0 0 𝑋2 0 0 0

𝑋3 0 −𝑋2 0 0 0 0

𝑋4 𝑋5 0 0 0 −𝑋1 0

𝑋5 −𝑋4 0 0 𝑋1 0 0

𝑋6 0 0 0 0 0 0

(iii) Case 𝑚 = 𝑚(𝑢), for 𝑚(𝑢) an arbitrary function of 𝑢

𝑋1 = ∂𝑠

𝑋2 = ∂𝜙

𝑋3 = ∂𝑢

𝑋4 = − cos𝜙∂𝜃 + cot 𝜃 sin𝜙∂𝜙

𝑋5 = sin𝜙∂𝜃 + cot 𝜃 cos𝜙∂𝜙
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4.3 Noether Symmetries of the Vaidya metric

The Noether symmetries 𝑋 = 𝜎∂𝑠 + 𝜂∂𝑢 + 𝜌∂𝑟 + 𝜏∂𝜃 + 𝜅∂𝜙 are given by

𝑋𝐿+ 𝐿(𝜉𝑠 + 𝑢𝑠𝜉𝑢 + 𝑟𝑠𝜉𝑟 + 𝜃𝑠𝜉𝜃 + 𝜙𝑠𝜉𝜙) = (𝑔𝑠 + 𝑢𝑠𝑔𝑢 + 𝑟𝑠𝑔𝑟 + 𝜃𝑠𝑔𝜃 + 𝜙𝑠𝑔𝜙), (4.5)

where 𝑔 is the point dependent gauge term. For the Lagrangian,

𝐿 = −(1− 2𝑚(𝑢)

𝑟
)𝑢̇2 − 2𝑢̇𝑟̇ + 𝑟2𝜃2 + 𝑟2 sin2 𝜃𝜙̇2, (4.6)

using the formula (4.5) leads to Noether symmetries with variations on 𝑚(𝑢).

(i) Case 𝑚 = 0:

𝑋1 = −1
2
𝑠2∂𝑠 − 1

2
𝑠𝑢∂𝑢 − 1

2
𝑟𝑠∂𝑟, 𝑔 = 1

2
𝑢2

𝑋2 = −1
2
𝑠∂𝑢, 𝑔 = 1

2
𝑢+ 𝑟

𝑋3 = −1
2
sin 𝜃 sin𝜙∂𝑢+

1
2
(𝑠 csc 𝜃 sin𝜙−tan 𝜃 cos 𝜃 sin𝜙)∂𝑟+

1
2
𝑠
𝑟
cos 𝜃 sin𝜙∂𝜃+

1
2
𝑠
𝑟
csc 𝜃 cos𝜙∂𝜙,

𝑔 = 𝑟 sin 𝜃 sin𝜙

𝑋4 = −1
2
sin 𝜃 cos𝜙∂𝑢+

1
2
(𝑠 csc 𝜃 cos𝜙−tan 𝜃 cos 𝜃 cos𝜙)∂𝑟+

1
2
𝑠
𝑟
cos 𝜃 cos𝜙∂𝜃−1

2
𝑠
𝑟
csc 𝜃 sin𝜙∂𝜙,

𝑔 = 𝑟 sin 𝜃 cos𝜙

𝑋5 = −1
2
𝑠 cos 𝜃∂𝑢 +

1
2
𝑠 cos 𝜃∂𝑟 − 1

2
𝑠
𝑟
sin 𝜃∂𝜃, 𝑔 = 𝑟 cos 𝜃

𝑋6 = 𝑠∂𝑠 +
1
2
𝑢∂𝑢 +

1
2
𝑟∂𝑟, 𝑔 = 0

𝑋7 = ∂𝑠, 𝑔 = 0

𝑋8∗ = 𝑢 sin 𝜃 sin𝜙∂𝑢+csc 𝜃(−𝑢 sin𝜙−2𝑟 sin2 𝜃 sin𝜙+2𝑢 cos2 𝜃 sin𝜙)∂𝑟+(𝑢
𝑟
cos 𝜃 sin𝜙+

tan 𝜃 sin 𝜃 sin𝜙− sec 𝑡 sin𝜙)∂𝜃 − (𝑢
𝑟
+ 1) csc 𝜃 cos𝜙∂𝜙, 𝑔 = 0

𝑋9∗ = 𝑢 sin 𝜃 cos𝜙∂𝑢+(𝑢 tan 𝜃 cos 𝜃 cos𝜙−𝑟 sin 𝜃 cos𝜙−𝑢 csc 𝜃 cos𝜙)∂𝑟+(tan 𝜃 sin 𝜃 cos𝜙−
sec 𝜃 cos𝜙− 𝑢

𝑟
cos 𝜃 cos𝜙)∂𝜃 + (𝑢

𝑟
+ 1) csc 𝜃 sin𝜙∂𝜙, 𝑔 = 0
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𝑋10∗ = 𝑢 cos 𝜃∂𝑢 + (−𝑟 cos 𝜃 − 𝑢 cos 𝜃)∂𝑟 + (𝑢
𝑟
+ 1) sin 𝜃∂𝜃, 𝑔 = 0

𝑋11∗ = ∂𝑢, 𝑔 = 0

𝑋12∗ = cos 𝜃∂𝑢 − cos 𝜃∂𝑟 +
1
𝑟
sin 𝜃∂𝜃, 𝑔 = 0

𝑋13∗ = sin 𝜃 sin𝜙∂𝑢+(− csc 𝜃 cos𝜙+cos𝜙 tan 𝜃 cos 𝜃)∂𝑟−1
𝑟
cos 𝜃 sin𝜙∂𝜃−1

𝑟
csc 𝜃 cos𝜙∂𝜙,

𝑔 = 0

𝑋14∗ = sin 𝜃 cos𝜙∂𝑢−(csc 𝜃 cos𝜙+tan 𝜃 cos 𝜃 cos𝜙)∂𝑟− 1
𝑟
cos 𝜃 cos𝜙∂𝜃+

1
𝑟
csc 𝜃 sin𝜙∂𝜙,

𝑔 = 0

𝑋15∗ = cos𝜙∂𝜃 − cot 𝜃 sin𝜙∂𝜙, 𝑔 = 0

𝑋16∗ = − sin𝜙∂𝜃 − cot 𝜃 cos𝜙∂𝜙, 𝑔 = 0

𝑋17∗ = ∂𝜙, 𝑔 = 0

The isometries are selected from Noether symmetries which has no arclength pa-

rameter and has a zero gauge function. From this above list, we can easily conclude

that {𝑋𝑖 : 𝑖 = 8 . . . 17} form the 10-dimensional algebra of isometries which with

𝑛 = 4 corresponds to the maximal 1
2
𝑛(𝑛+1) = 10-dimensional algebra. That is, the

respective manifold is isometric to one of the following:

(a) the 4-dimensional Euclidean space,

(b) the 4-dimensional sphere,

(c) the 4-dimensional projective space,

(d) the 4-dimensional simply connected hyperbolic space (see [36]). This confirms

the known result that 𝑚 = 0 is equivalent to the Minkowski metric. Each lead to

conserved quantities from Noether’s theorem, [37]. As a sample case, from 𝑋15, we

get

𝑇 15 = 𝐿𝜎 + (𝜂 − 𝑢̇𝜎)∂𝐿
∂𝑢̇

+ (𝜌− 𝑟̇𝜎)∂𝐿
∂𝑟̇

+ (𝜏 − 𝜃𝜎)∂𝐿
∂𝜃

+ (𝜅− 𝜙̇𝜎)∂𝐿
∂𝜙̇

− 𝑔

= 2𝑟2𝜃 cos𝜙− 2𝑟2𝜙̇ cot 𝜃 sin3 𝜃
(4.7)

which, incidentally leads to two of the four Euler-Lagrange equations. The remaining
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symmetries {𝑋𝑖 : 𝑖 = 1 . . . 7}, lead to seven new (previously unknown) conserved

quantities. For example, from 𝑋6 we get

𝑇 6 = 𝑠(−𝑢̇2 − 2𝑢̇𝑟̇ + 𝑟2𝜃2 + 𝑟2 sin 𝜃2𝜙̇2) + (1
2
𝑢− 𝑠𝑢̇)(−2𝑢̇− 2𝑟̇)

− (𝑟 − 2𝑠𝑟̇)𝑢̇− 2𝑠𝜃2𝑟2 − 2𝑠𝜙̇2𝑟2 sin 𝜃2 (4.8)

whose total divergence lead to the complete system of Euler-Lagrange equations.

(ii) Case 𝑚 = 𝑘, with 𝑘 an arbitrary constant

𝑋1 = ∂𝑠, 𝑔 = 0

𝑋2 = ∂𝑢, 𝑔 = 0

𝑋3 = ∂𝜙, 𝑔 = 0

𝑋4 = − cos𝜙∂𝜃 + cot 𝜃 sin𝜙∂𝜙, 𝑔 = 0

𝑋5 = sin𝜙∂𝜃 + cot 𝜃 cos𝜙∂𝜙, 𝑔 = 0

Here, {𝑋𝑖 : 𝑖 = 2 . . . 5} is the algebra of isometries rendering the metric equivalent

to the Schwarzschild metric.

(iii) Case 𝑚 = 𝑚(𝑢), for 𝑚(𝑢) an arbitrary function of 𝑢

𝑋1 = ∂𝑠, 𝑔 = 0

𝑋2 = ∂𝜙, 𝑔 = 0

𝑋3 = − cos𝜙∂𝜃 + cot 𝜃 sin𝜙∂𝜙, 𝑔 = 0

𝑋4 = sin𝜙∂𝜃 + cot 𝜃 cos𝜙∂𝜙, 𝑔 = 0

Here, a similar conclusion regarding the algebra of isometries as in (iii).

73



For the Vaidya metric with Finkelstein coordinates given by (4.2), the Noether

symmetries are calculated which conclude the subalgebra of isometries. It will be

clear that Lie algebra of point symmetries of the geodesic equations will be as large

as above. Here the Lagrangian is

𝐿 = −(1− 2𝑚(𝑢)

𝑟
)𝑢̇2 − 4𝑚(𝑢)

𝑟
𝑢̇𝑟̇ + (1 +

2𝑚(𝑢)

𝑟
)𝑟̇2 + 𝑟2𝜃2 + 𝑟2 sin2 𝜃𝜙̇2 (4.9)

whose corresponding Noether symmetries separate into the same following cases.

(i) Case 𝑚 = 0:

𝑋1 =
1
2
𝑠2∂𝑠 +

1
2
𝑠𝑢∂𝑢 +

1
2
𝑟𝑠∂𝑟, 𝑔 = 1

2
𝑟2 − 1

2
𝑢2

𝑋2 = 𝑠∂𝑠 +
1
2
𝑢∂𝑢 +

1
2
𝑟∂𝑟, 𝑔 = 1

2
𝑢+ 𝑟

𝑋3 = ∂𝑠, 𝑔 = 0

𝑋4 = −1
2
𝑠∂𝑢, 𝑔 = 𝑢

𝑋5 =
1
2
𝑠(− cot 𝜃 cos 𝜃 sin𝜙 + csc 𝜃 sin𝜙)∂𝑟 +

1
2
𝑠
𝑟
cos 𝜃 sin𝜙∂𝜃 +

1
2
𝑠
𝑟
csc 𝜃 cos𝜙∂𝜙, 𝑔 =

𝑟 sin 𝜃 sin𝜙

𝑋6 =
1
2
𝑠(− cot 𝜃 cos 𝜃 cos𝜙+ csc 𝜃 cos𝜙)∂𝑟 +

1
2
𝑠
𝑟
cos 𝜃 cos𝜙∂𝜃 +

1
2
𝑠
𝑟
csc 𝜃 sin𝜙∂𝜙, 𝑔 =

𝑟 sin 𝜃 cos𝜙

𝑋7 =
1
2
𝑠 cos 𝜃∂𝑟 − 1

2
𝑠
𝑟
sin 𝜃∂𝜃, 𝑔 = 𝑟 cos 𝜃

𝑋8 = −𝑟 sin 𝜃 cos𝜙∂𝑢+𝑢 cot 𝜃 cos 𝜃 cos𝜙−𝑢 csc 𝜃 cos𝜙∂𝑟−𝑢
𝑟
cos 𝜃 cos𝜙∂𝜃+

𝑢
𝑟
csc 𝜃 sin𝜙∂𝜙,

𝑔 = 0

𝑋9 = 𝑟 sin 𝜃 sin𝜙∂𝑢−𝑢 cot 𝜃 cos 𝜃 sin𝜙+𝑢 csc 𝜃 sin𝜙∂𝑟−𝑢
𝑟
cos 𝜃 sin𝜙∂𝜃+

1
𝑟
csc 𝜃 cos𝜙∂𝜙,

𝑔 = 0

𝑋10 = − csc 𝜃 cos𝜙+ cot 𝜃 cos 𝜃 cos𝜙∂𝑟 − 𝑢
𝑟
cos 𝜃 cos𝜙∂𝜃 +

1
𝑟
csc 𝜃 sin𝜙∂𝜙, 𝑔 = 0

𝑋11 = − csc 𝜃 sin𝜙+ cot 𝜃 cos 𝜃 sin𝜙∂𝑟 +
𝑢
𝑟
cos 𝜃 sin𝜙∂𝜃 +

1
𝑟
csc 𝜃 cos𝜙∂𝜙, 𝑔 = 0
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𝑋12 = − cos𝜙∂𝜃 + cot 𝜃 sin𝜙∂𝜙, 𝑔 = 0

𝑋13 = sin𝜙∂𝜃 + cot 𝜃 cos𝜙∂𝜙, 𝑔 = 0

𝑋14 = ∂𝜙, 𝑔 = 0

𝑋15 = −𝑟 cos 𝜃∂𝑢 − 𝑢 cos 𝜃∂𝑟 +
𝑢
𝑟
sin 𝜃∂𝜃, 𝑔 = 0

𝑋16 = − cos 𝜃∂𝑟 +
1
𝑟
sin 𝜃∂𝜃, 𝑔 = 0

𝑋17 = ∂𝑢, 𝑔 = 0

(ii) Case 𝑚 = 𝑘, with 𝑘 an arbitrary constant

𝑋1 = ∂𝑠, 𝑔 = 0

𝑋2 = − cos𝜙∂𝜃 + cot 𝜃 sin𝜙∂𝜙, 𝑔 = 0

𝑋3 = sin𝜙∂𝜃 + cot 𝜃 cos𝜙∂𝜙, 𝑔 = 0

𝑋4 = ∂𝜙, 𝑔 = 0

𝑋5 = ∂𝑢, 𝑔 = 0

(iii) Case 𝑚 = 𝑚(𝑢), for 𝑚(𝑢) an arbitrary function of 𝑢

𝑋1 = ∂𝑠, 𝑔 = 0

𝑋2 = − cos𝜙∂𝜃 + cot 𝜃 sin𝜙∂𝜙, 𝑔 = 0

𝑋3 = sin𝜙∂𝜃 + cot 𝜃 cos𝜙∂𝜙, 𝑔 = 0

𝑋4 = ∂𝜙, 𝑔 = 0.
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4.4 Discussion and conclusion

We have shown that a large amount information can be extracted from a knowledge

of the vector fields that leave the action integral invariant. In addition to obtaining

a larger class of conservation laws than those given by the isometries or Killing

vectors, we can conclude by identifying the isometries and that these form a Lie

subalgebra of the Noether symmetry algebra. We have performed the calculations

on versions (4.1) and (4.2) of the Vaidya metric yielding some previously unknown

information regarding the corresponding manifold. Lastly, with particular reference

to this metric, we concluded that the only variations or classes on 𝑚(𝑢) that occur

are 𝑚 = 0, 𝑚 = constant and 𝑚 = 𝑚(𝑢).
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Chapter 5

Conservation laws of the Petrov

III and Papapetrou metrics

5.1 Introduction

The well known Vaidya metric representing a model for the spherically symmetric

solution of the Einstein equations with geometrical optics stress energy tensor of

radiation is widely discussed in the literature [31, 32, 33]. A special case of the

metric is the well known Papapetrou model [34].

The Petrov classification is a classification of Riemannian spaces according to the

algebraic properties of the Weyl tensor (conformal curvature tensor) and the study

involving the ‘Carter constant and Petrov classification’ is conducted in [35]. These

classifications are important in the physical interpretations of general relativity. For

a non-zero Weyl tensor the various Petrov types are represented by I, II, D, III, N

and O [38]. A Weyl tensor is said to be algebraically general if it is of Petrov type

I , otherwise it is algebraically special. Also, it is said to be non-degenerate if it is

of Petrov type I, II, and III [39].
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Physically the most important Petrov classification type is the algebraically spe-

cial Petrov types. Remembering that symmetries other than the conventional ones

(Killing vectors, conformal Killing vectors, symmetries of the Weyl tensor etc) may

be of interest to understand the physics of such spacetimes, we find Noether sym-

metries of the metric [40]. A detailed symmetry analysis and invariance study asso-

ciated with this particular Petrov III metric, Papapetrou model, will be carried out.

The results obtained are compared with other symmetries of the same spacetime

metric.

5.2 Lie point Symmetries of the Papapetrou model

In this section we summarize results dealing with the Papapetrou model [34] which

is a special case of the Vaidya metric [32], where the mass function is given by

𝑚(𝑢) = 𝑢,

d𝑠2 = −(1− 2𝑢

𝑟
)d𝑢2 − 2d𝑢d𝑟 + 𝑟2(d𝜃2 + sin2 𝜃d𝜙2). (5.1)

The Euler-Lagrange (geodesic) equations associated with the natural Lagrangian

𝐿 = −(1− 2𝑢

𝑟
)𝑢̇2 − 2𝑢̇𝑟̇ + 𝑟2𝜃2 + 𝑟2 sin2 𝜃𝜙̇2 (5.2)

corresponding to (5.1) are,

𝑢̈ = −𝑟3𝜙̇2+cos 𝜃2𝑟3𝜙̇2−𝑟3𝜃2+𝑢𝑢̇2

𝑟2
,

𝑟 = −2𝑢𝑟̇𝑢̇+2𝑢𝑟𝑢̈−𝑟2𝑢̈
𝑟2

,

𝜃 = 𝑟𝜙̇2 cos 𝜃 sin 𝜃−2𝑟̇𝜃
𝑟

,

𝜙 = −2𝑟𝜙̇𝜃 csc 𝜃 cos 𝜃−2𝑟̇𝜙̇
𝑟 csc 𝜃 sin 𝜃

,

(5.3)

where 𝛼̇ is the derivative of 𝛼 with respect to the arclength parameter 𝑠.
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The Papapetrou model leads to six Lie point symmetries given by,

𝑋1 = ∂𝑠,

𝑋2 = ∂𝜙,

𝑋3 = − cos𝜙∂𝜃 + cot 𝜃 sin𝜙∂𝜙

𝑋4 = sin𝜙∂𝜃 + cot 𝜃 cos𝜙∂𝜙,

𝑋5 = 𝑠∂𝑠,

𝑋6 = 𝑢∂𝑢 + 𝑟∂𝑟.

(5.4)

The algebra of commutators of above symmetries is listed in the table:

[X𝑖,X𝑗] X1 X2 X3 X4 X5 X6

X1 0 0 0 −X5 X4 0

X2 0 0 X2 0 0 0

X3 0 −X2 0 0 0 0

X4 X5 0 0 0 −X1 0

X5 −X4 0 0 X1 0 0

X6 0 0 0 0 0 0

(5.5)

5.3 Noether Symmetries of the Papapetrou model

In this section we show that we totally recover the information regarding the isome-

tries of the metric from a study of the Noether symmetries associated with the

corresponding natural Lagrangian, 𝐿, which preserves the action ℒ =
∫
𝐿 and more.

That is, a larger algebra of generators of symmetries is obtained and, hence, more

conservation laws classified. We also determine the Lie algebra of symmetry gen-

erators of the geodesic equations (Euler-Lagrange equations) which contains all the

above as subalgebras.

With the Lagrangian (5.2), the Noether symmetries for𝑚 = 0 are 17 (of which 10 are

isometries) rendering the manifold isomorphic to a Minkowski manifold. The case

𝑚 = 𝑘 leads to a metric equivalent to the Schwarzschild metric. The Papapetrou
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metric coming from 𝑚(𝑢) = 𝑢 admits five Noether symmetries (all gauge functions

equal to zero) given by,

𝑋1 = ∂𝑠,

𝑋2 = ∂𝜙,

𝑋3 = − cos𝜙∂𝜃 + cot 𝜃 sin𝜙∂𝜙,

𝑋4 = sin𝜙∂𝜃 + cot 𝜃 cos𝜙∂𝜙,

𝑋5 = 𝑠∂𝑠 +
1
2
𝑢∂𝑢 +

1
2
𝑟∂𝑟.

(5.6)

Here, {𝑋2, 𝑋3, 𝑋4} form the basis of a 3-dimensional algebra of isometries and 𝑋5

provides an extra nontrivial conservation law. Notice that𝑋5 is a linear combination

of 𝑋5 and 𝑋6 from the list of Lie symmetries. Separately, these are not Noether

symmetries. The extra conserved quantity obtained from this symmetry is given by

𝑇 5 = 𝑠(−(1− 2𝑢
𝑟
)𝑢̇2 − 2𝑢̇𝑟̇ + 𝑟2𝜃2 + 𝑟2 sin 𝜃2𝜙̇2) + (1

2
𝑢− 𝑠𝑢̇)(−2𝑢̇(1− 2𝑢

𝑟
)− 2𝑟̇)

− (𝑟 − 2𝑠𝑟̇)𝑢̇− 2𝑠𝜃2𝑟2 − 2𝑠𝜙̇2𝑟2 sin 𝜃2.

(5.7)

5.4 Lie point Symmetries of the Petrov type III

metric

In relativity algebraically special Petrov types have interesting interpretations. In

order to understand one of the Petrov type III metrics in more depth, we investigate

Noether conservation laws admitted by one of the Petrov type III metrics defined

by [38],

d𝑠2 = − 𝑧2

1 + 𝑡2
d𝑡2 + 𝑧2𝑓d𝑥2 +

𝑧2𝑡2(1 + 𝑡2)

𝑓
d𝑦2 + d𝑧2, (5.8)

where

𝑓 = 𝑡2𝑏(1 + 𝑡2)1−𝑏. (5.9)

This is a Ricci, Riemann and Weyl flat metric for both 𝑏 = 0 or 𝑏 = 1. For this

metric the Lagrangian is given by,

𝐿 = − 𝑧2

1 + 𝑡2
𝑡2 + 𝑧2𝑡2𝑏(1 + 𝑡2)1−𝑏𝑥̇2 + 𝑧2𝑡2(1−𝑏)(1 + 𝑡2)𝑏𝑦̇2 + 𝑧̇2 (5.10)
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which gives rise to the geodesic (Euler-Lagrange) equations:

−2𝑧𝑡′2
1+𝑡2

+ 2𝑧𝑡2𝑏(1 + 𝑡2)1−𝑏𝑥′2 + 2𝑧𝑡2(1−𝑏)(1 + 𝑡2)𝑏𝑦′2 − 2𝑧′′ = 0,

−(2𝑧
2𝑡2(1−𝑏)(2−2𝑏)(1+𝑡2)𝑏𝑦′

𝑡
+ 4𝑏𝑧2𝑡(2−2𝑏)(1+𝑡2)𝑏𝑡𝑦′

(1+𝑡2)
)𝑡′ − 2𝑧2𝑡2(1−𝑏)(1 + 𝑡2)𝑏𝑦′′

−4𝑧𝑡2(1−𝑏)(1 + 𝑡2)𝑏𝑦′𝑧′ = 0,

− 2𝑧2𝑡𝑡′2
(1+𝑡2)2

+ 2𝑧2𝑡2𝑏𝑏(1+𝑡2)1−𝑏𝑥′2
𝑡

+ 2𝑧2𝑡2𝑏+1(1−𝑏)(1+𝑡2)1−𝑏𝑥′2
(1+𝑡2)

+ 𝑧2𝑡2(1−𝑏)(2−2𝑏)(1+𝑡2)𝑏𝑦′2
𝑡

+2𝑧2𝑡2(1−𝑏)+1𝑏(1+𝑡2)𝑏𝑦′2

(1+𝑡2)
+ 2𝑧2𝑡′′

(1+𝑡2)
+ 4𝑧𝑡′𝑧′

(1+𝑡2)
= 0,

−(4𝑏𝑧
2𝑡2𝑏(1+𝑡2)1−𝑏𝑥′

𝑡
+ 4(1−𝑏)𝑧2𝑡2𝑏(1+𝑡2)1−𝑏𝑡𝑥′

(1+𝑡2)
)𝑡′ − 2𝑧2𝑡2𝑏(1 + 𝑡2)1−𝑏𝑥′′

−4𝑧𝑡2𝑏(1 + 𝑡2)1−𝑏𝑧′𝑥′ = 0.

(5.11)

The Lie point symmetries of the this system are enumerated below for some special

cases.

(i) Case 𝑏 = 0:

𝑋1 = ∂𝑠,

𝑋2 = 𝑠∂𝑠,

𝑋3 = 𝑒−𝑦𝑡𝑧∂𝑠,

𝑋4 = 𝑒𝑦𝑡𝑧∂𝑠,

𝑋5 =
√
1 + 𝑡2𝑧 cos𝑥∂𝑠, 𝑋6 =

√
1 + 𝑡2𝑧 sin 𝑥∂𝑠,

𝑋7 = ∂𝑥,

𝑋8 = ∂𝑦,

𝑋9 = 𝑒−𝑦
√
1 + 𝑡2 cos 𝑥∂𝑡 +

𝑒−𝑦
√
1+𝑡2 cos𝑥
𝑡

∂𝑦 − 𝑒−𝑦𝑡 sin𝑥√
1+𝑡2

∂𝑥,

𝑋10 = 𝑒𝑦
√
1 + 𝑡2 cos𝑥∂𝑡 − 𝑒𝑦

√
1+𝑡2 cos𝑥

𝑡
∂𝑦 − 𝑒𝑦𝑡 sin𝑥√

1+𝑡2
∂𝑥,

𝑋11 = 𝑒−𝑦
√
1 + 𝑡2 sin 𝑥∂𝑡 +

𝑒−𝑦
√
1+𝑡2 sin𝑥
𝑡

∂𝑦 +
𝑒−𝑦𝑡 cos𝑥√

1+𝑡2
∂𝑥,

𝑋12 = 𝑒𝑦
√
1 + 𝑡2 sin𝑥∂𝑡 − 𝑒𝑦

√
1+𝑡2 sin𝑥

𝑡
∂𝑦 +

𝑒𝑦𝑡 cos𝑥√
1+𝑡2

∂𝑥,

𝑋13 = 𝑧∂𝑧,

𝑋14 =
𝑒−𝑦(1+𝑡2)

𝑧
∂𝑡 − 𝑒−𝑦𝑡∂𝑧 +

𝑒−𝑦

𝑡𝑧
∂𝑦, 𝑋15 =

𝑒𝑦(1+𝑡2)
𝑧

∂𝑡 − 𝑒𝑦𝑡∂𝑧 − 𝑒𝑦

𝑡𝑧
∂𝑦,
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𝑋16 =
𝑒−𝑦𝑠(1+𝑡2)

𝑧
∂𝑡 − 𝑒−𝑦𝑠𝑡∂𝑧 +

𝑒−𝑦𝑠
𝑡𝑧

∂𝑦,

𝑋17 =
𝑒𝑦𝑠(1+𝑡2)

𝑧
∂𝑡 − 𝑒𝑦𝑠𝑡∂𝑧 − 𝑒𝑦𝑠

𝑡𝑧
∂𝑦,

𝑋18 = 𝑠2∂𝑠 + 𝑠𝑧∂𝑧,

𝑋19 = 𝑒−2𝑦∂𝑦 − 𝑒−2𝑦𝑡2𝑧∂𝑧 + 𝑒−2𝑦(𝑡+ 𝑡3)∂𝑡,

𝑋20 = 𝑒2𝑦∂𝑦 + 𝑒2𝑦𝑡2𝑧∂𝑧 − 𝑒2𝑦(𝑡+ 𝑡3)∂𝑡,

𝑋21 = 𝑒−𝑦𝑠𝑡𝑧∂𝑠 + 𝑒−𝑦𝑡𝑧2𝑡∂𝑧,

𝑋22 = 𝑒𝑦𝑠𝑡𝑧∂𝑠 + 𝑒𝑦𝑡𝑧2𝑡∂𝑧,

𝑋23 = −(1 + 𝑡2)𝑧∂𝑧 + (𝑡+ 𝑡3)∂𝑡, 𝑋24 =
√
1 + 𝑡2𝑧2 cos𝑥∂𝑧 + 𝑠

√
1 + 𝑡2𝑧 cos𝑥∂𝑠,

𝑋25 = −√
1 + 𝑡2 cos 𝑥∂𝑧 +

sin𝑥
𝑧
√
1+𝑡2

∂𝑥 +
𝑡
√
1+𝑡2 cos𝑥

𝑧
∂𝑡,

𝑋26 = −𝑠
√
1 + 𝑡2 cos 𝑥∂𝑧 +

𝑠 sin𝑥
𝑧
√
1+𝑡2

∂𝑥 +
𝑠𝑡
√
1+𝑡2 cos𝑥

𝑧
∂𝑡,

𝑋27 = −𝑒−𝑦𝑡
√
1 + 𝑡2𝑧 cos 𝑥∂𝑧 + 𝑒−𝑦𝑡2

√
1 + 𝑡2 cos𝑥∂𝑡 +

𝑒−𝑦𝑡 sin𝑥√
1+𝑡2

∂𝑥,

𝑋28 = −𝑒𝑦𝑡
√
1 + 𝑡2𝑧 cos 𝑥∂𝑧 + 𝑒𝑦𝑡2

√
1 + 𝑡2 cos 𝑥∂𝑡 +

𝑒𝑦𝑡 sin𝑥√
1+𝑡2

∂𝑥,

𝑋29 = (1 + 𝑡2)𝑧 cos 2𝑥∂𝑧 − sin 2𝑥∂𝑥 − 𝑡(1 + 𝑡2) cos 2𝑥∂𝑡,

𝑋30 =
√
1 + 𝑡2𝑧2 sin 𝑥∂𝑧 + 𝑠

√
1 + 𝑡2𝑧 sin 𝑥∂𝑠 𝑋31 = −√

1 + 𝑡2 sin 𝑥∂𝑧 − cos𝑥
𝑧
√
1+𝑡2

∂𝑥 +
𝑡
√
1+𝑡2 sin𝑥

𝑧
∂𝑡,

𝑋32 = −𝑠
√
1 + 𝑡2 sin 𝑥∂𝑧 − 𝑠 cos𝑥

𝑧
√
1+𝑡2

∂𝑥 +
𝑠𝑡
√
1+𝑡2 sin𝑥

𝑧
∂𝑡,

𝑋33 = −𝑒−𝑦𝑡
√
1 + 𝑡2𝑧 sin𝑥∂𝑧 + 𝑒−𝑦𝑡2

√
1 + 𝑡2 sin𝑥∂𝑡 − 𝑒−𝑦𝑡 cos𝑥√

1+𝑡2
∂𝑥,

𝑋34 = −𝑒𝑦𝑡
√
1 + 𝑡2𝑧 sin 𝑥∂𝑧 + 𝑒𝑦𝑡2

√
1 + 𝑡2 sin 𝑥∂𝑡 − 𝑒𝑦𝑡 cos𝑥√

1+𝑡2
∂𝑥,

𝑋35 = −(1 + 𝑡2)𝑧 sin 2𝑥∂𝑧 − cos 2𝑥∂𝑥 + 𝑡(1 + 𝑡2) sin 2𝑥∂𝑡.

(ii) Case 𝑏 = 1:

𝑋1 = ∂𝑠,

𝑋2 = 𝑠∂𝑠,

𝑋3 = 𝑒−𝑥𝑡𝑧∂𝑠,

𝑋4 = 𝑒𝑥𝑡𝑧∂𝑠,

𝑋5 =
√
1 + 𝑡2𝑧 cos 𝑦∂𝑠,

𝑋6 =
√
1 + 𝑡2𝑧 sin 𝑦∂𝑠,

𝑋7 = ∂𝑥,

𝑋8 = ∂𝑦,

𝑋9 = 𝑒−𝑥
√
1 + 𝑡2 cos 𝑦∂𝑡 +

𝑒−𝑥
√
1+𝑡2 cos 𝑦
𝑡

∂𝑦 − 𝑒−𝑥𝑡 sin 𝑦√
1+𝑡2

∂𝑥,
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𝑋10 = 𝑒𝑥
√
1 + 𝑡2 cos 𝑦∂𝑡 − 𝑒𝑥

√
1+𝑡2 cos 𝑦

𝑡
∂𝑦 − 𝑒𝑥𝑡 sin 𝑦√

1+𝑡2
∂𝑥,

𝑋11 = 𝑒−𝑥
√
1 + 𝑡2 sin 𝑦∂𝑡 +

𝑒−𝑥
√
1+𝑡2 sin 𝑦
𝑡

∂𝑦 +
𝑒−𝑥𝑡 cos 𝑦√

1+𝑡2
∂𝑥,

𝑋12 = 𝑒𝑥
√
1 + 𝑡2 sin 𝑦∂𝑡 − 𝑒𝑥

√
1+𝑡2 sin 𝑦

𝑡
∂𝑦 +

𝑒𝑥𝑡 cos 𝑦√
1+𝑡2

∂𝑥,

𝑋13 = 𝑧∂𝑧,

𝑋14 =
𝑒−𝑥(1+𝑡2)

𝑧
∂𝑡 − 𝑒−𝑥𝑡∂𝑧 +

𝑒−𝑥

𝑡𝑧
∂𝑥,

𝑋15 =
𝑒𝑥(1+𝑡2)

𝑧
∂𝑡 − 𝑒𝑥𝑡∂𝑧 − 𝑒𝑥

𝑡𝑧
∂𝑥,

𝑋16 =
𝑒−𝑥𝑠(1+𝑡2)

𝑧
∂𝑡 − 𝑒−𝑥𝑠𝑡∂𝑧 +

𝑒−𝑥𝑠
𝑡𝑧

∂𝑥,

𝑋17 =
𝑒𝑥𝑠(1+𝑡2)

𝑧
∂𝑡 − 𝑒𝑥𝑠𝑡∂𝑧 − 𝑒𝑥𝑠

𝑡𝑧
∂𝑦,

𝑋18 = 𝑠2∂𝑠 + 𝑠𝑧∂𝑧,

𝑋19 = 𝑒−2𝑥∂𝑥 − 𝑒−2𝑥𝑡2𝑧∂𝑧 + 𝑒−2𝑥(𝑡+ 𝑡3)∂𝑡,

𝑋20 = 𝑒2𝑥∂𝑥 + 𝑒2𝑥𝑡2𝑧∂𝑧 − 𝑒2𝑥(𝑡+ 𝑡3)∂𝑡,

𝑋21 = 𝑒−𝑥𝑠𝑡𝑧∂𝑠 + 𝑒−𝑥𝑡𝑧2𝑡∂𝑧,

𝑋22 = 𝑒𝑥𝑠𝑡𝑧∂𝑠 + 𝑒𝑥𝑡𝑧2𝑡∂𝑧,

𝑋23 = −(1 + 𝑡2)𝑧∂𝑧 + (𝑡+ 𝑡3)∂𝑡,

𝑋24 =
√
1 + 𝑡2𝑧2 cos 𝑦∂𝑧 + 𝑠

√
1 + 𝑡2𝑧 cos 𝑦∂𝑠,

𝑋25 = −√
1 + 𝑡2 cos 𝑦∂𝑧 +

sin 𝑦

𝑧
√
1+𝑡2

∂𝑦 +
𝑡
√
1+𝑡2 cos 𝑦

𝑧
∂𝑡,

𝑋26 = −𝑠
√
1 + 𝑡2 cos 𝑦∂𝑧 +

𝑠 sin 𝑦

𝑧
√
1+𝑡2

∂𝑦 +
𝑠𝑡
√
1+𝑡2 cos 𝑦

𝑧
∂𝑡,

𝑋27 = −𝑒−𝑥𝑡
√
1 + 𝑡2𝑧 cos 𝑦∂𝑧 + 𝑒−𝑥𝑡2

√
1 + 𝑡2 cos 𝑦∂𝑡 +

𝑒−𝑥𝑡 sin 𝑦√
1+𝑡2

∂𝑦,

𝑋28 = −𝑒𝑥𝑡
√
1 + 𝑡2𝑧 cos 𝑦∂𝑧 + 𝑒𝑥𝑡2

√
1 + 𝑡2 cos 𝑦∂𝑡 +

𝑒𝑥𝑡 sin 𝑦√
1+𝑡2

∂𝑦,

𝑋29 = (1 + 𝑡2)𝑧 cos 2𝑦∂𝑧 − sin 2𝑦∂𝑦 − 𝑡(1 + 𝑡2) cos 2𝑦∂𝑡,

𝑋30 =
√
1 + 𝑡2𝑧2 sin 𝑦∂𝑧 + 𝑠

√
1 + 𝑡2𝑧 sin 𝑦∂𝑠,

𝑋31 = −√
1 + 𝑡2 sin 𝑦∂𝑧 − cos 𝑦

𝑧
√
1+𝑡2

∂𝑦 +
𝑡
√
1+𝑡2 sin 𝑦

𝑧
∂𝑡,

𝑋32 = −𝑠
√
1 + 𝑡2 sin 𝑦∂𝑧 − 𝑠 cos𝑥

𝑧
√
1+𝑡2

∂𝑦 +
𝑠𝑡
√
1+𝑡2 sin 𝑦

𝑧
∂𝑡,

𝑋33 = −𝑒−𝑥𝑡
√
1 + 𝑡2𝑧 sin 𝑦∂𝑧 + 𝑒−𝑥𝑡2

√
1 + 𝑡2 sin 𝑦∂𝑡 − 𝑒−𝑥𝑡 cos 𝑦√

1+𝑡2
∂𝑦,

𝑋34 = −𝑒𝑥𝑡
√
1 + 𝑡2𝑧 sin 𝑦∂𝑧 + 𝑒𝑥𝑡2

√
1 + 𝑡2 sin 𝑦∂𝑡 − 𝑒𝑥𝑡 cos 𝑦√

1+𝑡2
∂𝑦,

𝑋35 = −(1 + 𝑡2)𝑧 sin 2𝑦∂𝑧 − cos 2𝑦∂𝑦 + 𝑡(1 + 𝑡2) sin 2𝑦∂𝑡.

(iii) Case 𝑏 = 1
2
:

𝑋1 = ∂𝑠,

𝑋2 = 𝑠∂𝑠,

𝑋3 = 𝑠2∂𝑠 + 𝑠𝑧∂𝑧,

𝑋4 = 𝑧∂𝑧,
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𝑋5 = −𝑦∂𝑥 + 𝑥∂𝑦,

𝑋6 = ∂𝑥, ,

𝑋7 = ∂𝑦.

5.5 Noether Symmetries of the Petrov type III

metric

From the Lagrangian defined by (5.10), we generate the Noether symmetries via the

defining equation

𝑋𝐿+ 𝐿(𝜉𝑠 + 𝑡𝑠𝜉𝑡 + 𝑥𝑠𝜉𝑥 + 𝑦𝑠𝜉𝑦 + 𝑧𝑠𝜉𝑧) = (𝑔𝑠 + 𝑡𝑠𝑔𝑡 + 𝑥𝑠𝑔𝑥 + 𝑦𝑠𝑔𝑦 + 𝑧𝑠𝑔𝑧), (5.12)

where 𝑔 is a gauge term. Moreover, in the list below, without the need for further

calculations involving the Lie derivative of the metric, the vector fields marked with

an asterisk (*) are identified as the isometries of the manifold. The isometries are

selected from Noether symmetries which has no arclength variable and has a zero

gauge function.

(i) Case 𝑏 = 0

𝑋1 = ∂𝑠, 𝑔 = 0,

𝑋2 = 𝑠∂𝑠 +
1
2
𝑧∂𝑧, 𝑔 = 0,

𝑋3 =
1
2
𝑠2∂𝑠 +

1
2
𝑠𝑧∂𝑧, 𝑔 = 1

2
𝑧2,

𝑋4 = −1
2
𝑠𝑒𝑦(1+𝑡2)

𝑧
∂𝑡 +

1
2
𝑠𝑒𝑦

𝑧𝑡
∂𝑦 +

1
2
𝑒𝑦𝑠𝑡∂𝑧, 𝑔 = 𝑒𝑦𝑧𝑡,

𝑋5 = −1
2
𝑠𝑒−𝑦(1+𝑡2)

𝑧
∂𝑡 − 1

2
𝑠𝑒−𝑦

𝑧𝑡
∂𝑦 +

1
2
𝑒−𝑦𝑠𝑡∂𝑧, 𝑔 = 𝑒−𝑦𝑧𝑡,

𝑋6 = −1
2
𝑡𝑠
√
1+𝑡2 sin𝑥

𝑧
∂𝑡 +

1
2

𝑠 cos𝑥
𝑧
√
1+𝑡2

∂𝑥 +
1
2
𝑠 sin 𝑥

√
1 + 𝑡2∂𝑧, 𝑔 = 𝑧

√
1 + 𝑡2 sin 𝑥,

𝑋7 = −1
2
𝑡𝑠
√
1+𝑡2 cos𝑥

𝑧
∂𝑡 +

1
2

𝑠 sin𝑥
𝑧
√
1+𝑡2

∂𝑥 +
1
2
𝑠 cos 𝑥

√
1 + 𝑡2∂𝑧, 𝑔 = 𝑧

√
1 + 𝑡2 cos 𝑥,

𝑋8∗ = − 𝑒−𝑦(1+𝑡2)
𝑧

∂𝑡 − 𝑒−𝑦

𝑧𝑡
∂𝑦 + 𝑒−𝑦𝑡∂𝑧, 𝑔 = 0,

𝑋9∗ = − 𝑒𝑦(1+𝑡2)
𝑧

∂𝑡 +
𝑒𝑦

𝑧𝑡
∂𝑦 + 𝑒𝑦𝑡∂𝑧, 𝑔 = 0,

𝑋10∗ = ∂𝑥, 𝑔 = 0,
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𝑋11∗ = −−𝑡
√
1+𝑡2 sin𝑥
𝑧

∂𝑡 +
cos𝑥

𝑧
√
1+𝑡2

∂𝑥 +
√
1 + 𝑡2 sin 𝑥∂𝑧, 𝑔 = 0,

𝑋12∗ = −−𝑡
√
1+𝑡2 cos𝑥

𝑧
∂𝑡 − sin𝑥

𝑧
√
1+𝑡2

∂𝑥 +
√
1 + 𝑡2 cos𝑥∂𝑧, 𝑔 = 0,

𝑋13∗ = −𝑒𝑦
√
1 + 𝑡2 cos 𝑥∂𝑡 +

𝑒𝑦𝑡 sin𝑥√
1+𝑡2

∂𝑥 +
𝑒𝑦

√
1+𝑡2 cos𝑥

𝑡
∂𝑦, 𝑔 = 0,

𝑋14∗ = 𝑒𝑦
√
1 + 𝑡2 sin 𝑥∂𝑡 +

𝑒𝑦𝑡 cos𝑥√
1+𝑡2

∂𝑥 − 𝑒𝑦
√
1+𝑡2 sin𝑥

𝑡
∂𝑦, 𝑔 = 0,

𝑋15∗ = ∂𝑦, 𝑔 = 0,

𝑋16∗ = −𝑒−𝑦
√
1 + 𝑡2 cos𝑥∂𝑡 +

𝑒−𝑦𝑡 sin𝑥√
1+𝑡2

∂𝑥 − 𝑒−𝑦
√
1+𝑡2 cos𝑥
𝑡

∂𝑦, 𝑔 = 0,

𝑋17∗ = 𝑒−𝑦
√
1 + 𝑡2 sin𝑥∂𝑡 +

𝑒−𝑦𝑡 cos𝑥√
1+𝑡2

∂𝑥 +
𝑒−𝑦

√
1+𝑡2 sin𝑥
𝑡

∂𝑦, 𝑔 = 0

From the above list, we can easily conclude that the symmetries form a 10-dimensional

algebra of isometries for which with 𝑛 = 4 corresponds to the maximal 1
2
𝑛(𝑛+1) =

10-dimensional algebra. That is, the respective manifold is isometric to one of the

(a) the 4-dimensional Euclidean space, (b) the 4-dimensional sphere, (c) the 4-

dimensional projective space or (d) the 4-dimensional simply connected hyperbolic

space (see [36]). This implies that for 𝑏 = 0, the Petrov III manifold is isomorphic

to the Minkowski manifold.

(ii) Case 𝑏 = 1

𝑋1 = ∂𝑠, 𝑔 = 0,

𝑋2 = 𝑠∂𝑠 +
1
2
𝑧∂𝑧, 𝑔 = 0,

𝑋3 =
1
2
𝑠2∂𝑠 +

1
2
𝑠𝑧∂𝑧, 𝑔 = 1

2
𝑧2

𝑋4 = −1
2
𝑠𝑡
√
1+𝑡2 sin 𝑦

𝑧
∂𝑡 +

1
2

𝑠 cos 𝑦

𝑧
√
1+𝑡2

∂𝑦 +
1
2
𝑠
√
1 + 𝑡2 sin 𝑦∂𝑧, 𝑔 = 𝑧

√
1 + 𝑡2 sin 𝑦,

𝑋5 = −1
2
𝑠𝑡
√
1+𝑡2 cos 𝑦

𝑧
∂𝑡 − 1

2
𝑠 sin 𝑦

𝑧
√
1+𝑡2

∂𝑦 +
1
2
𝑠
√
1 + 𝑡2 cos 𝑦∂𝑧, 𝑔 = 𝑧

√
1 + 𝑡2 cos 𝑦,

𝑋6 = −1
2
𝑠𝑒−𝑥(1+𝑡2)

𝑧
∂𝑡 − 1

2
𝑠𝑒−𝑥

𝑧𝑡
∂𝑥 +

1
2
𝑒−𝑥𝑠𝑡∂𝑧, 𝑔 = 𝑒−𝑥𝑧𝑡,

𝑋7 = −1
2
𝑠𝑒𝑥(1+𝑡2)

𝑧
∂𝑡 − 1

2
𝑠𝑒𝑥

𝑧𝑡
∂𝑥 +

1
2
𝑒𝑥𝑠𝑡∂𝑧, 𝑔 = 𝑒𝑥𝑧𝑡,

𝑋8∗ = − 𝑡
√
1+𝑡2 sin 𝑦

𝑧
∂𝑡 +

cos 𝑦

𝑧
√
1+𝑡2

∂𝑦 + sin 𝑦
√
1 + 𝑡2∂𝑧, 𝑔 = 0,

𝑋9∗ = − 𝑡
√
1+𝑡2 cos 𝑦

𝑧
∂𝑡 − sin 𝑦

𝑧
√
1+𝑡2

∂𝑦 + cos 𝑦
√
1 + 𝑡2∂𝑧, 𝑔 = 0,

𝑋10∗ = − 𝑒−𝑥(1+𝑡2)
𝑧

∂𝑡 − 𝑒−𝑥

𝑧𝑡
∂𝑥 + 𝑒−𝑥𝑡∂𝑧, 𝑔 = 0,

𝑋11∗ = − 𝑒𝑥(1+𝑡2)
𝑧

∂𝑡 +
𝑒𝑥

𝑧𝑡
∂𝑥 + 𝑒𝑥𝑡∂𝑧, 𝑔 = 0,

𝑋12∗ = ∂𝑦, 𝑔 = 0,

𝑋13∗ = −𝑒−𝑥
√
1 + 𝑡2 cos 𝑦∂𝑡 − 𝑒−𝑥

√
1+𝑡2 cos 𝑦
𝑡

∂𝑥 +
𝑒−𝑥𝑡 sin 𝑦√

1+𝑡2
∂𝑦, 𝑔 = 0,
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𝑋14∗ = 𝑒−𝑥
√
1 + 𝑡2 sin 𝑦∂𝑡 +

𝑒−𝑥
√
1+𝑡2 sin 𝑦
𝑡

∂𝑥 +
𝑒−𝑥𝑡 cos 𝑦√

1+𝑡2
∂𝑦, 𝑔 = 0,

𝑋15∗ = −𝑒𝑥
√
1 + 𝑡2 cos 𝑦∂𝑡 +

𝑒𝑥
√
1+𝑡2 cos 𝑦

𝑡
∂𝑥 +

𝑒𝑥𝑡 sin 𝑦√
1+𝑡2

∂𝑦, 𝑔 = 0,

𝑋16∗ = 𝑒𝑥
√
1 + 𝑡2 sin 𝑦∂𝑡 − 𝑒𝑥

√
1+𝑡2 sin 𝑦

𝑡
∂𝑥 +

𝑒𝑥𝑡 cos 𝑦√
1+𝑡2

∂𝑦, 𝑔 = 0,

𝑋17∗ = ∂𝑥, 𝑔 = 0,

From this list, we again conclude that the symmetries form a 10-dimensional algebra

of isometries so that the manifold is again equivalent to the Minkowski manifold (see

[36]).

(iii) Case 𝑏 = 1
2

𝑋1 = ∂𝑠, 𝑔 = 0,

𝑋2∗ = −𝑦∂𝑥 + 𝑥∂𝑦, 𝑔 = 0,

𝑋3∗ = ∂𝑥, 𝑔 = 0,

𝑋4∗ = ∂𝑦, 𝑔 = 0,

𝑋5 = 𝑠∂𝑠 +
1
2
𝑧∂𝑧, 𝑔 = 0,

𝑋6 =
1
2
𝑠2∂𝑠 +

1
2
𝑠𝑧∂𝑧, 𝑔 = 1

2
𝑧2

(iv) Case All 𝑏

𝑋1 = ∂𝑠, 𝑔 = 0,

𝑋2∗ = ∂𝑥, 𝑔 = 0,

𝑋3∗ = ∂𝑦, 𝑔 = 0

Thus, the most general case of the Petrov III metric admits the two-dimensional

algebra of isometries with the basis being translations in 𝑥 and 𝑦. The particular case

𝑏 = 1
2
has an additional isometry given by rotation in the 𝑥− 𝑦 plane corresponding

to angular momentum there and further conservation laws from 𝑋5 and 𝑋6.
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5.6 Discussion and conclusion

We have shown that a large amount of information can be extracted from a knowl-

edge of the vector fields (one parameter Lie group transformations) that leave the

action integral invariant. In addition, a larger class of conservation laws are found,

other than those given by the isometries or Killing vectors, implying that the isome-

tries form a Lie subalgebra of the Noether point symmetries. Particularly, the metric

(5.8) admits 10 Killing vectors for both 𝑏 = 0 and 1 respectively. Note that Ricci

curvature tensor, represents the amount by which the volume element of a geodesic

ball in a curved Riemannian manifold deviates from that of the standard ball in

Euclidean space. As such, it provides one way of measuring the degree to which

the geometry determined by a given Riemannian metric might differ from that of

ordinary Euclidean n-space. More generally, the Ricci tensor is defined on any

pseudo-Riemannian manifold. Like the metric itself, the Ricci tensor is a symmetric

bilinear form on the tangent space of the manifold. We observe that, (5.8) has all

the Ricci tensor components are equal to zero except 𝑅11 =
2𝑏(𝑏−1)
𝑡2(1+𝑡2)

and is Ricci flat

for both 𝑏 = 0 and 1. The case 𝑏 = 1/2 admits six Noether point symmetries of

which three are Killing vectors.
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Chapter 6

Conservation laws of the wave

equation on Vaidya manifolds

6.1 Introduction

The Lie and Noether symmetries of the geodesic equations have been discussed

in detail, in [40] - the more interesting case being the latter since these lead to

conservation laws via Noether’s theorem [1]. We recover the isometries of the metric

from a study of the Noether symmetries associated with the corresponding natural

Lagrangian, 𝐿.

The standard wave equation, in (1+3) dimensions, has been extensively studied in

the literature from the point of view of its Lie point symmetries. A detailed sym-

metry analysis of this equation is discussed by Ibragimov [41]. It is well known that

in three dimensional Euclidean space, the linear wave equation admits a maximal

16-dimensional Lie algebra of point symmetries excluding the infinite symmetry.

In this work, we use a purely geometric consideration to construct the wave equation

in a curved background geometry in such a way that the wave equation inherits
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nonlinearities of the respective geometry in a natural way. Keeping in mind that the

wave equation in four dimensional spacetime may be of more physical significance,

we use, for our purposes, the Vaidya manifold.

6.2 The Vaidya metric and the wave equation in

curved geometry

Firstly, we note that the Vaidya metric [32] is given by,

d𝑠2 = −(1− 2𝑚(𝑡)

𝑟
)d𝑡2 − 2d𝑡d𝑟 + 𝑟2(d𝜃2 + sin2 𝜃d𝜙2), (6.1)

for which a special case, 𝑚(𝑡) = 𝑡, is known as the Papapetrou model [34].

A wave equation on a Lorentzian manifold endowed with a metric 𝑔𝑖𝑗 is given by

the expression

□𝑢(𝑥̄, 𝑡) = 𝑔00∂2
00 +

1

2
𝑔𝑖𝑗[𝑔00(∂𝑖𝑔00)∂𝑗 + ∂𝑖𝑗Γ

𝑘
𝑖𝑗∂𝑘]𝑢(𝑥̄, 𝑡) = 0 (6.2)

where 𝑢(𝑥̄, 𝑡) is some given wave function,

Γ𝑘
𝑖𝑗 =

1

2
𝑔𝑘𝑚(∂𝑗𝑔𝑖𝑚 + ∂𝑖𝑔𝑗𝑚 − ∂𝑚𝑔𝑖𝑗) (6.3)

represents the Christoffel symbol, with 𝑔𝑖𝑗 is the inverse of the metric 𝑔𝑖𝑗 with polar

variables 𝑟, 𝜃, 𝜙, and

𝑔𝑖𝑗 =

⎛⎜⎜⎜⎜⎜⎝
−(1− 2𝑚(𝑡)

𝑟
) −1 0 0

−1 0 0 0

0 0 𝑟2 0

0 0 0 𝑟2 sin2 𝜃

⎞⎟⎟⎟⎟⎟⎠ .

Consequently, the wave equation in a ‘curved’ Vaidiya background takes the form

−𝑟2 sin 𝜃𝑢𝑟𝑡 − 2𝑟 sin 𝜃𝑢𝑡 + 2𝑟 sin 𝜃(1− 2𝑚(𝑡)
𝑟

)𝑢𝑟 + 2 sin 𝜃𝑚(𝑡)𝑢𝑟

+𝑟2 sin 𝜃(1− 2𝑚(𝑡)
𝑟

)𝑢𝑟𝑟 + cos 𝜃𝑢𝜃 + sin 𝜃𝑢𝜃𝜃 + 𝑢𝜙𝜙 = 0.
(6.4)
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We will classify the Lie and Noether point symmetries of this equation and show

the effect of the curved background on the respective symmetry algebras.

6.3 Lie Symmetries

We determine the Lie point symmetry generators of the wave equation (6.4) and

split these into various cases. The principle Lie algebra is stated in (v) below. The

most significant result we note is the reduction in the dimension of the algebra of

Lie point symmetries when compared with the algebra of the wave equation on a

Minkowski manifold. This, as will be seen later, also has consequences on the num-

ber of standard conservation laws (usually first-order) of (6.4). Furthermore, the

number of exact or invariant solutions are reduced drastically. For illustration, we

perform a reduction corresponding to some two-dimensional subalgebras.

(i) Case 𝑚 = 0

𝑋1 = ∂𝑡,

𝑋2 = 𝑡∂𝑡 + 𝑟∂𝑟,

𝑋3 = 𝑢∂𝑢,

𝑋4 = 𝐹 (𝑡, 𝑟, 𝜃, 𝜙)∂𝑢, where the function 𝐹 (𝑡, 𝑟, 𝜃, 𝜙) satisfies the equation,

𝐹𝜙𝜙 + cos 𝜃𝐹𝜃 + sin 𝜃𝐹𝜃𝜃 + 2𝑟 sin 𝜃𝐹𝑟 + 𝑟2 sin 𝜃𝐹𝑟𝑟 − 2𝑟 sin 𝜃𝐹𝑡 − 2𝑟2 sin 𝜃𝐹𝑡𝑟 = 0.

𝑋5 = 𝑡2∂𝑡 + 2𝑟(𝑟 + 𝑡)∂𝑟 − 2𝑢(𝑟 + 𝑡)∂𝑢,

𝑋6 = ∂𝜙.

which yields the following commutator table
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[X𝑖,X𝑗 ] 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6

𝑋1 0 𝑋1 0 𝑋4 2𝑋2 − 2𝑋3 0

𝑋2 −𝑋1 0 0 (𝑟𝐹𝑟 + 𝑡𝐹𝑡)∂𝑢 𝑋5 0

𝑋3 0 0 0 −𝑋4 0 0

𝑋4 −𝑋4 −(𝑟𝐹𝑟 + 𝑡𝐹𝑡)∂𝑢 𝑋4 0 (−2(𝑟 + 𝑡)𝐹 − 2𝑟(𝑟 + 𝑡)𝐹𝑟 − 𝑡2𝐹𝑡)∂𝑢 𝑋4

𝑋5 −2𝑋2 + 2𝑋3 −𝑋5 0 −((−2(𝑟 + 𝑡)𝐹 − 2𝑟(𝑟 + 𝑡)𝐹𝑟 − 𝑡2𝐹𝑡)∂𝑢) 0 0

𝑋6 0 0 0 −𝑋4 0 0

It is well known that the case 𝑚 = 0 is ‘isomorphic’ to a ‘flat’ manifold and one

would expect a maximal 16-dimensional algebra - it is clear that the wave equation

is somewhat ‘distorted’ even in this case and the number of conservation laws will

be reduced (see below for a confirmation of this).

(ii) Case 𝑚 = 𝑘, with 𝑘 an arbitrary constant

𝑋1 = ∂𝑡,

𝑋2 = 𝑢∂𝑢,

𝑋3 = 𝐹 (𝑡, 𝑟, 𝜃, 𝜙)∂𝑢, where the function 𝐹 (𝑡, 𝑟, 𝜃, 𝜙) satisfies the equation, 𝐹𝜙𝜙 +

cos 𝜃𝐹𝜃 + sin 𝜃𝐹𝜃𝜃 − 2𝑘 sin 𝜃𝐹𝑟 + 2𝑟 sin 𝜃𝐹𝑟 − 2𝑘𝑟 sin 𝜃𝐹𝑟𝑟 + 𝑟2 sin 𝜃𝐹𝑟𝑟 − 2𝑟 sin 𝜃𝐹𝑡 −
2𝑟2 sin 𝜃𝐹𝑡𝑟 = 0.

𝑋4 = ∂𝜙.

which yields the following commutator table

[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3 𝑋4

𝑋1 0 0 𝑋3 0

𝑋2 0 0 −𝑋3 0

𝑋3 −𝑋3 𝑋3 0 𝑋3

𝑋4 0 0 −𝑋3 0

(6.5)

(iii) Case 𝑚(𝑡) = 𝑡
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𝑋1 = 𝑡∂𝑡 + 𝑟∂𝑟,

𝑋2 = 𝑢∂𝑢,

𝑋3 = 𝐹 (𝑡, 𝑟, 𝜃, 𝜙)∂𝑢, where the function 𝐹 (𝑡, 𝑟, 𝜃, 𝜙) satisfies the equation, 𝐹𝜙𝜙 +

cos 𝜃𝐹𝜃 + sin 𝜃𝐹𝜃𝜃 + 2𝑟 sin 𝜃𝐹𝑟 − 2𝑡 sin 𝜃𝐹𝑟 + 𝑟2 sin 𝜃𝐹𝑟𝑟 − 2𝑟𝑡 sin 𝜃𝐹𝑟𝑟 − 2𝑟 sin 𝜃𝐹𝑡 −
2𝑟2 sin 𝜃𝐹𝑡𝑟 = 0.

𝑋4 = ∂𝜙.

which yields the following commutator table

[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3 𝑋4

𝑋1 0 0 (𝑟𝐹𝑟 + 𝑡𝐹𝑡)∂𝑢 0

𝑋2 0 0 −𝑋3 0

𝑋3 −(𝑟𝐹𝑟 + 𝑡𝐹𝑡)∂𝑢 𝑋3 0 𝑋3

𝑋4 0 0 −𝑋3 0

(6.6)

(iv) Case 𝑚 = 𝑒𝑡

𝑋1 = 𝑢∂𝑢,

𝑋2 = 𝐹 (𝑡, 𝑟, 𝜃, 𝜙)∂𝑢, where the function 𝐹 (𝑡, 𝑟, 𝜃, 𝜙) satisfies the equation,

𝐹𝜙𝜙+cos 𝜃𝐹𝜃+sin 𝜃𝐹𝜃𝜃−2𝑒𝑡 sin 𝜃𝐹𝑟+2𝑟 sin 𝜃𝐹𝑟−2𝑒𝑡𝑟 sin 𝜃𝐹𝑟𝑟+𝑟2 sin 𝜃𝐹𝑟𝑟−2𝑟 sin 𝜃𝐹𝑡−
2𝑟2 sin 𝜃𝐹𝑡𝑟 = 0.

𝑋3 = ∂𝜙.

92



which yields the following commutator table

[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3

𝑋1 0 −𝑋2 0

𝑋2 𝑋2 0 𝑋2

𝑋3 0 −𝑋2 0

(6.7)

(v) Case 𝑚 = 𝑚(𝑡), for 𝑚(𝑡) an arbitrary function of 𝑡

𝑋1 = 𝑢∂𝑢,

𝑋2 = 𝐹 (𝑡, 𝑟, 𝜃, 𝜙)∂𝑢, where the function 𝐹 (𝑡, 𝑟, 𝜃, 𝜙) satisfies the equation, 𝐹𝜙𝜙 +

cos 𝜃𝐹𝜃+sin 𝜃𝐹𝜃𝜃+2𝑟 sin 𝜃𝐹𝑟−2𝑚(𝑡) sin 𝜃𝐹𝑟+𝑟2 sin 𝜃𝐹𝑟𝑟−2𝑚(𝑡)𝑟 sin 𝜃𝐹𝑟𝑟−2𝑟 sin 𝜃𝐹𝑡−
2𝑟2 sin 𝜃𝐹𝑡𝑟 = 0,

𝑋3 = ∂𝜙.

which yields the following commutator table

[X𝑖,X𝑗] 𝑋1 𝑋2 𝑋3

𝑋1 0 −𝑋2 0

𝑋2 𝑋2 0 𝑋2

𝑋3 0 −𝑋2 0

(6.8)

6.4 Reduction of order

We demonstrate two reductions of the wave equation using two-dimensional subal-

gebras for the case 𝑚 = 𝑡. In both cases, this leads to a partial differential equation

in just two independent variables which can be further analysed using another Lie

symmetry reduction or an appropriate, alternative method.
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(i). If 𝑋̄1 = 𝑋2 + 𝑋4 = ∂𝜙 + 𝑢∂𝑢, [𝑋̄1, 𝑋1] = 0 so that reducing may begin with

either 𝑋̄1 or 𝑋1. The respective wave equation

−2𝑟2 sin 𝜃𝑢𝑟𝑡 − 2𝑟 sin 𝜃𝑢𝑡 + 2𝑟 sin 𝜃(1− 2𝑡
𝑟
)𝑢𝑟 + 2𝑡 sin 𝜃𝑢𝑟

+𝑟2 sin 𝜃(1− 2𝑡
𝑟
)𝑢𝑟𝑟 + cos 𝜃𝑢𝜃 + sin 𝜃𝑢𝜃𝜃 + 𝑢𝜙𝜙 = 0

(6.9)

becomes

−2𝑟2 sin 𝜃𝑤𝑟𝑡 − 2𝑟 sin 𝜃𝑤𝑡 + 2𝑟 sin 𝜃(1− 2𝑡
𝑟
)𝑤𝑟 + 2𝑡 sin 𝜃𝑤𝑟

+𝑟2 sin 𝜃(1− 2𝑡
𝑟
)𝑤𝑟𝑟 + cos 𝜃𝑤𝜃 + sin 𝜃𝑤𝜃𝜃 + 𝑤 = 0.

(6.10)

via the generator 𝑋̄1 since

𝑑𝑡

0
=

𝑑𝑟

0
=

𝑑𝜃

0
=

𝑑𝜙

1
=

𝑑𝑢

𝑢

leads to the new dependent variable 𝑤 defined by 𝑢 = 𝑤(𝑡, 𝑟, 𝜃)𝑒𝜙. From

𝑋1 = 𝑡∂𝑡 + 𝑟∂𝑟, we get
𝑑𝑡

𝑡
=

𝑑𝑟

𝑟
=

𝑑𝜃

0
=

𝑑𝑤

0
so that 𝑤 = 𝑊 (𝛼, 𝜃) leads to the partial differential equation

(2𝛼3 + 𝛼2 − 𝛼) sin 𝜃𝑊𝛼𝛼 + (4𝛼2 + 2𝛼− 2) sin 𝜃𝑊𝛼

+cos 𝜃𝑊𝜃 + sin 𝜃𝑊𝜃𝜃 +𝑊 = 0
(6.11)

where 𝛼 = 𝑟/𝑡.

(ii). If we first reduce using 𝑋4 = ∂𝜙 we get

−2𝑟2 sin 𝜃𝑢𝑟𝑡 − 2𝑟 sin 𝜃𝑢𝑡 + 2𝑟 sin 𝜃(1− 2𝑡
𝑟
)𝑢𝑟 + 2𝑡 sin 𝜃𝑢𝑟

+𝑟2 sin 𝜃(1− 2𝑡
𝑟
)𝑢𝑟𝑟 + cos 𝜃𝑢𝜃 + sin 𝜃𝑢𝜃𝜃 = 0

(6.12)

and then 𝑋̄2 = 𝑋1 +𝑋2 = 𝑢∂𝑢 + 𝑡∂𝑡 + 𝑟∂𝑟 leads to

𝑑𝑡

𝑡
=

𝑑𝑟

𝑟
=

𝑑𝜃

0
=

𝑑𝑢

𝑢

so that with invariants 𝛼 = 𝑟/𝑡 and 𝑤(𝜃, 𝛼) = 𝑡𝑢 we get the reduced partial

differential equation

(2𝛼3 + 𝛼2 − 2𝛼) sin 𝜃𝑤𝛼𝛼 + (2𝛼2 + 2𝛼− 2) sin 𝜃𝑤𝛼

−2𝛼 sin 𝜃𝑤 + cos 𝜃𝑤𝜃 + sin 𝜃𝑤𝜃𝜃 = 0.
(6.13)
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6.5 Noether symmetries and conservation laws

Since (6.4) is variational, we determine the Noether symmetries 𝑋 which are given

by a Killing-type equation

𝑋𝐿+ 𝐿𝐷𝑖𝜉𝑖 = 𝐷𝑖𝑔𝑖. (6.14)

and the corresponding conserved flows (𝑇 𝑡, 𝑇 𝑟, 𝑇 𝜃, 𝑇 𝜙) via Noether’s theorem. Firstly,

it can be shown that a Lagrangian of (6.4) is given by

𝐿 = −𝑟2 sin 𝜃𝑢𝑡𝑢𝑟 +
1

2
𝑟2 sin 𝜃(1− 2𝑚(𝑡)

𝑟
)𝑢2

𝑟 +
1

2
sin 𝜃𝑢2

𝜃 +
1

2
𝑢2
𝜙. (6.15)

(i). Case 𝑚 = 0.

(a) 𝑋1 = ∂𝑡

𝑇 𝑡 = 1
2
(𝑟2 sin 𝜃𝑢𝑟𝑢𝑡 − 𝑢(𝑢𝜙𝜙 + cos 𝜃𝑢𝜃 + sin 𝜃(𝑢𝜃𝜃 + 𝑟(2𝑢𝑟 + 𝑟𝑢𝑟𝑟

−2𝑢𝑡 − 𝑟𝑢𝑡𝑟)))),

𝑇 𝑟 = −1
2
𝑟2 sin 𝜃(𝑢𝑟𝑢𝑡 − 𝑢𝑡

2 + 𝑢(−𝑢𝑡𝑟 + 𝑢𝑡𝑡)),

𝑇 𝜃 = −1
2
sin 𝜃(𝑢𝜃𝑢𝑡 − 𝑢𝑢𝑡𝜃),

𝑇 𝜙 = 1
2
(−𝑢𝜙𝑢𝑡 + 𝑢𝑢𝑡𝜙).

(b) 𝑋2 = ∂𝜙
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𝑇 𝑡 = 1
2
𝑟2 sin 𝜃(𝑢𝜙𝑢𝑟 − 𝑢𝑢𝑟𝜙),

𝑇 𝑟 = −1
2
𝑟2 sin 𝜃(𝑢𝜙(𝑢𝑟 − 𝑢𝑡) + 𝑢(−𝑢𝑟𝜙 + 𝑢𝑡𝜙)),

𝑇 𝜃 = −1
2
sin 𝜃(𝑢𝜙𝑢𝜃 − 𝑢𝑢𝜃𝜙),

𝑇 𝜙 = 1
2
(−𝑢𝜙

2 − 𝑢(cos 𝜃𝑢𝜃 + sin 𝜃(𝑢𝜃𝜃 + 𝑟(2𝑢𝑟 + 𝑟𝑢𝑟𝑟

−2(𝑢𝑡 + 𝑟𝑢𝑡𝑟))))).

(c) 𝑋3 = 𝑢∂𝑢 + 𝑡∂𝑡 + 𝑟∂𝑟

𝑇 𝑡 = 1
2
(𝑟2 sin 𝜃𝑢𝑟(𝑟𝑢𝑟 + 𝑡𝑢𝑡)− 𝑢(𝑡𝑢𝜙𝜙 + 𝑡 cos 𝜃𝑢𝜃 + sin 𝜃(𝑡𝑢𝜃𝜃

+𝑟((𝑟 + 2𝑡)𝑢𝑟 + 𝑟(𝑟 + 𝑡)𝑢𝑟𝑟 − 𝑡(2𝑢𝑡 + 𝑟𝑢𝑡𝑟))))),

𝑇 𝑟 = −1
2
𝑟(𝑟 sin 𝜃(𝑢𝑟 − 𝑢𝑡)(𝑟𝑢𝑟 + 𝑡𝑢𝑡) + 𝑢(𝑢𝜙𝜙 + cos 𝜃𝑢𝜃

+sin 𝜃(𝑢𝜃𝜃 − 𝑟(−𝑢𝑟 + 𝑢𝑡 + 𝑟𝑢𝑡𝑟 + 𝑡𝑢𝑡𝑟 − 𝑡𝑢𝑡𝑡)))),

𝑇 𝜃 = −1
2
sin 𝜃(𝑢𝜃(𝑟𝑢𝑟 + 𝑡𝑢𝑡)− 𝑢(𝑟𝑢𝑟𝜃 + 𝑡𝑢𝑡𝜃)),

𝑇 𝜙 = 1
2
(−𝑢𝜙(𝑟𝑢𝑟 + 𝑡𝑢𝑡) + 𝑢(𝑟𝑢𝑟𝜙 + 𝑡𝑢𝑡𝜙)).

(d) 𝑋4 = 𝑡2∂𝑡 + 2𝑟(𝑟 + 𝑡)∂𝑟 − 2𝑢(𝑟 + 𝑡)∂𝑢
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𝑇 𝑡 = 1
2
(2𝑟2 sin 𝜃𝑢2 − 𝑟2 sin 𝜃𝑢𝑟(2𝑟(𝑟 + 𝑡)𝑢𝑟 + 𝑡2𝑢𝑡) + 𝑢(𝑡2𝑢𝜙𝜙

+𝑡2 cos 𝜃𝑢𝜃 + sin 𝜃(𝑡2𝑢𝜃𝜃 + 𝑟(2(2𝑟2 + 𝑟𝑡+ 𝑡2)𝑢𝑟 + 𝑟(2𝑟2

+2𝑟𝑡+ 𝑡2)𝑢𝑟𝑟 − 𝑡2(2𝑢𝑡 + 𝑟𝑢𝑡𝑟))))),

𝑇 𝑟 = 1
2
𝑟(𝑟 sin 𝜃(𝑢𝑟 − 𝑢𝑡)(2𝑟(𝑟 + 𝑡)𝑢𝑟 + 𝑡2𝑢𝑡) + 𝑢(2(𝑟 + 𝑡)𝑢𝜙𝜙

+2(𝑟 + 𝑡) cos 𝜃𝑢𝜃 + sin 𝜃(2(𝑟 + 𝑡)𝑢𝜃𝜃 − 𝑟(−2(𝑟 + 𝑡)𝑢𝑟

+2(2𝑟 + 𝑡)𝑢𝑡 + 2𝑟2𝑢𝑡𝑟 + 2𝑟𝑡𝑢𝑡𝑟 + 𝑡2𝑢𝑡𝑟 − 𝑡2𝑢𝑡𝑡)))),

𝑇 𝜃 = 1
2
sin 𝜃(𝑢𝜃(2𝑟(𝑟 + 𝑡)𝑢𝑟 + 𝑡2𝑢𝑡)− 𝑢(2𝑟(𝑟 + 𝑡)𝑢𝑟𝜃 + 𝑡2𝑢𝑡𝜃)),

𝑇 𝜙 = 1
2
(𝑢𝜙(2𝑟(𝑟 + 𝑡)𝑢𝑟 + 𝑡2𝑢𝑡)− 𝑢(2𝑟(𝑟 + 𝑡)𝑢𝑟𝜙 + 𝑡2𝑢𝑡𝜙)).

(e) 𝑋5 = 𝑔(𝑡, 𝑟, 𝜃, 𝜙)∂𝑢, where the function 𝑔(𝑡, 𝑟, 𝜃, 𝜙) satisfies the equation

𝑔𝜙𝜙 + cos 𝜃𝑔𝜃 + sin 𝜃(𝑔𝜃𝜃 + 𝑟(2𝑔𝑟 + 𝑟𝑔𝑟𝑟 − 2(𝑔𝑡 + 𝑟𝑔𝑡𝑟))).

𝑇 𝑡 = 𝑟2 sin 𝜃(𝑢𝑔𝑟 − 𝑔𝑢𝑟),

𝑇 𝑟 = 𝑟2 sin 𝜃(𝑢(−𝑔𝑟 + 𝑔𝑡) + 𝑔(𝑢𝑟 − 𝑢𝑡)),

𝑇 𝜃 = sin 𝜃(−𝑢𝑔𝜃 + 𝑔𝑢𝜃),

𝑇 𝜙 = −𝑢𝑔𝜙 + 𝑔𝑢𝜙.

(ii). Case 𝑚 = 𝑘, where 𝑘 is an arbitrary constant.

(a) 𝑋1 = ∂𝑡
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𝑇 𝑡 = 1
2
(𝑟2 sin 𝜃𝑢𝑟𝑢𝑡 − 𝑢(𝑢𝜙𝜙 + cos 𝜃𝑢𝜃 + sin 𝜃(𝑢𝜃𝜃 − 2(𝑘 − 𝑟)𝑢𝑟

+𝑟((−2𝑘 + 𝑟)𝑢𝑟𝑟 − 2𝑢𝑡 − 𝑟𝑢𝑡𝑟)))),

𝑇 𝑟 = −1
2
𝑟 sin 𝜃((−2𝑘 + 𝑟)𝑢𝑟𝑢𝑡 − 𝑟𝑢𝑡

2 + 𝑢((2𝑘 − 𝑟)𝑢𝑡𝑟 + 𝑟𝑢𝑡𝑡)),

𝑇 𝜃 = −1
2
sin 𝜃(𝑢𝜃𝑢𝑡 − 𝑢𝑢𝑡𝜃),

𝑇 𝜙 = 1
2
(−𝑢𝜙𝑢𝑡 + 𝑢𝑢𝑡𝜙).

(b) 𝑋2 = ∂𝜙

𝑇 𝑡 = 1
2
𝑟2 sin 𝜃(𝑢𝜙𝑢𝑟 − 𝑢𝑢𝑟𝜙),

𝑇 𝑟 = −1
2
𝑟 sin 𝜃(𝑢𝜙((−2𝑘 + 𝑟)𝑢𝑟 − 𝑟𝑢𝑡) + 𝑢((2𝑘 − 𝑟)𝑢𝑟𝜙 + 𝑟𝑢𝑡𝜙)),

𝑇 𝜃 = −1
2
sin 𝜃(𝑢𝜙𝑢𝜃 − 𝑢𝑢𝜃𝜙),

𝑇 𝜙 = 1
2
(−𝑢𝜙

2 − 𝑢(cos 𝜃𝑢𝜃 + sin 𝜃(𝑢𝜃𝜃 − 2(𝑘 − 𝑟)𝑢𝑟 + 𝑟((−2𝑘

+𝑟)𝑢𝑟𝑟 − 2(𝑢𝑡 + 𝑟𝑢𝑡𝑟))))).

(c) 𝑋3 = 𝑔(𝑡, 𝑟, 𝜃, 𝜙)∂𝑢, where the function 𝑔(𝑡, 𝑟, 𝜃, 𝜙) satisfies the equation

𝑔𝜙𝜙 + cos 𝜃𝑔𝜃 + sin 𝜃(𝑔𝜃𝜃 − 2(𝑘 − 𝑟)𝑔𝑟 + 𝑟((−2𝑘 + 𝑟)𝑔𝑟𝑟 − 2(𝑔𝑡 + 𝑟𝑔𝑡𝑟))).

𝑇 𝑡 = 𝑟2 sin 𝜃(𝑢𝑔𝑟 − 𝑔𝑢𝑟),

𝑇 𝑟 = 𝑟 sin 𝜃(𝑢((2𝑘 − 𝑟)𝑔𝑟 + 𝑟𝑔𝑡) + 𝑔((−2𝑘 + 𝑟)𝑢𝑟 − 𝑟𝑢𝑡)),

𝑇 𝜃 = sin 𝜃(−𝑢𝑔𝜃 + 𝑔𝑢𝜃),

𝑇 𝜙 = −𝑢𝑔𝜙 + 𝑔𝑢𝜙.
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(iii). Case 𝑚 = 𝑡.

(a) 𝑋1 = ∂𝜙

𝑇 𝑡 = 1
2
𝑟2 sin 𝜃(𝑢𝜙𝑢𝑟 − 𝑢𝑢𝑟𝜙),

𝑇 𝑟 = −1
2
𝑟 sin 𝜃(𝑢𝜙((𝑟 − 2𝑡)𝑢𝑟 − 𝑟𝑢𝑡) + 𝑢(−(𝑟 − 2𝑡)𝑢𝑟𝜙 + 𝑟𝑢𝑡𝜙)),

𝑇 𝜃 = −1
2
sin 𝜃(𝑢𝜙𝑢𝜃 − 𝑢𝑢𝜃𝜙),

𝑇 𝜙 = 1
2
(−𝑢𝜙

2 − 𝑢(cos 𝜃𝑢𝜃 + sin 𝜃(𝑢𝜃𝜃 + 2(𝑟 − 𝑡)𝑢𝑟 + 𝑟((𝑟 − 2𝑡)𝑢𝑟𝑟

−2(𝑢𝑡 + 𝑟𝑢𝑡𝑟))))).

(b) 𝑋2 = 𝑢∂𝑢 + 𝑡∂𝑡 + 𝑟∂𝑟

𝑇 𝑡 = 1
2
(𝑟2 sin 𝜃𝑢𝑟(𝑟𝑢𝑟 + 𝑡𝑢𝑡) + 𝑢(−𝑡𝑢𝜙𝜙 − 𝑡 cos 𝜃𝑢𝜃 + sin 𝜃(−𝑡𝑢𝜃𝜃

−(𝑟2 + 2𝑟𝑡− 2𝑡2)𝑢𝑟 + (2𝑟𝑡2 − 𝑟3 − 𝑟2𝑡)𝑢𝑟𝑟 + 𝑡(2𝑢𝑡 + 𝑟𝑢𝑡𝑟))))),

𝑇 𝑟 = 1
2
𝑟(sin 𝜃(𝑟(2𝑡− 𝑟)𝑢𝑟

2 + (𝑟2 − 𝑟𝑡+ 2𝑡2)𝑢𝑟𝑢𝑡 + 𝑟𝑡𝑢𝑡
2)

−𝑢(𝑢𝜙𝜙 + cos 𝜃𝑢𝜃 + sin 𝜃(𝑢𝜃𝜃 + 𝑟(𝑢𝑟 − 𝑢𝑡)

−𝑟2𝑢𝑡𝑟 − 𝑟𝑡𝑢𝑡𝑟 + 2𝑡2𝑢𝑡𝑟 + 𝑟𝑡𝑢𝑡𝑡))),

𝑇 𝜃 = −1
2
sin 𝜃(𝑢𝜃(𝑟𝑢𝑟 + 𝑡𝑢𝑡)− 𝑢(𝑟𝑢𝑟𝜃 + 𝑡𝑢𝑡𝜃)),

𝑇 𝜙 = 1
2
(−𝑢𝜙(𝑟𝑢𝑟 + 𝑡𝑢𝑡) + 𝑢(𝑟𝑢𝑟𝜙 + 𝑡𝑢𝑡𝜙)).

(c) 𝑋3 = 𝑔(𝑡, 𝑟, 𝜃, 𝜙)∂𝑢, where the function 𝑔(𝑡, 𝑟, 𝜃, 𝜙) satisfies the equation

𝑔𝜙𝜙 + cos 𝜃𝑔𝜃 + sin 𝜃(𝑔𝜃𝜃 + 2(𝑟 − 𝑡)𝑔𝑟 + 𝑟((𝑟 − 2𝑡)𝑔𝑟𝑟 − 2(𝑔𝑡 + 𝑟𝑔𝑡𝑟))).
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𝑇 𝑡 = 𝑟2 sin 𝜃(𝑢𝑔𝑟 − 𝑔𝑢𝑟),

𝑇 𝑟 = 𝑟 sin 𝜃(𝑢(−(𝑟 − 2𝑡)𝑔𝑟 + 𝑟𝑔𝑡) + 𝑔((𝑟 − 2𝑡)𝑢𝑟 − 𝑟𝑢𝑡)),

𝑇 𝜃 = sin 𝜃(−𝑢𝑔𝜃 + 𝑔𝑢𝜃),

𝑇 𝜙 = −𝑢𝑔𝜙 + 𝑔𝑢𝜙.

(iv). Case 𝑚 = 𝑒𝑡.

(a) 𝑋1 = ∂𝜙

𝑇 𝑡 = 1
2
𝑟2 sin 𝜃(𝑢𝜙𝑢𝑟 − 𝑢𝑢𝑟𝜙),

𝑇 𝑟 = −1
2
𝑟 sin 𝜃(𝑢𝜙((−2𝑒𝑡 + 𝑟)𝑢𝑟 − 𝑟𝑢𝑡) + 𝑢((2𝑒𝑡 − 𝑟)𝑢𝑟𝜙 + 𝑟𝑢𝑡𝜙)),

𝑇 𝜃 = −1
2
sin 𝜃(𝑢𝜙𝑢𝜃 − 𝑢𝑢𝜃𝜙),

𝑇 𝜙 = 1
2
(−𝑢𝜙

2 − 𝑢(cos 𝜃𝑢𝜃 + sin 𝜃(𝑢𝜃𝜃 − 2(𝑒𝑡 − 𝑟)𝑢𝑟

+𝑟((−2𝑒𝑡 + 𝑟)𝑢𝑟𝑟 − 2(𝑢𝑡 + 𝑟𝑢𝑡𝑟))))).

(b) 𝑋2 = 𝑔(𝑡, 𝑟, 𝜃, 𝜙)∂𝑢, where the function 𝑔(𝑡, 𝑟, 𝜃, 𝜙) satisfies the equation

𝑔𝜙𝜙 + cos 𝜃𝑔𝜃 + sin 𝜃(𝑔𝜃𝜃 − 2(𝑒𝑡 − 𝑟)𝑔𝑟 + 𝑟((−2𝑒𝑡 + 𝑟)𝑔𝑟𝑟 − 2(𝑔𝑡 + 𝑟𝑔𝑡𝑟))).
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𝑇 𝑡 = 𝑟2 sin 𝜃(𝑢𝑔𝑟 − 𝑔𝑢𝑟),

𝑇 𝑟 = 𝑟 sin 𝜃(𝑢((2𝑒𝑡 − 𝑟)𝑔𝑟 + 𝑟𝑔𝑡)− 𝑔((2𝑒𝑡 − 𝑟)𝑢𝑟 + 𝑟𝑢𝑡)),

𝑇 𝜃 = sin 𝜃(−𝑢𝑔𝜃 + 𝑔𝑢𝜃),

𝑇 𝜙 = −𝑢𝑔𝜙 + 𝑔𝑢𝜙.

(v). Case 𝑚 = 𝑚(𝑡), where m(t) is an arbitrary function of t.

(a) 𝑋1 = ∂𝜙

𝑇 𝑡 = 1
2
𝑟2 sin 𝜃(𝑢𝜙𝑢𝑟 − 𝑢𝑢𝑟𝜙),

𝑇 𝑟 = −1
2
𝑟 sin 𝜃(𝑢𝜙((𝑟 − 2𝑚(𝑡))𝑢𝑟 − 𝑟𝑢𝑡) + 𝑢((2𝑚(𝑡)− 𝑟)𝑢𝑟𝜙 + 𝑟𝑢𝑡𝜙)),

𝑇 𝜃 = −1
2
sin 𝜃(𝑢𝜙𝑢𝜃 − 𝑢𝑢𝜃𝜙),

𝑇 𝜙 = 1
2
(−𝑢𝜙

2 − 𝑢(cos 𝜃𝑢𝜃 + sin 𝜃(𝑢𝜃𝜃 + 2(𝑟 −𝑚(𝑡))𝑢𝑟

+𝑟((𝑟 − 2𝑚(𝑡))𝑢𝑟𝑟 − 2(𝑢𝑡 + 𝑟𝑢𝑡𝑟))))).

(b) 𝑋2 = 𝑔(𝑡, 𝑟, 𝜃, 𝜙)∂𝑢, where the function 𝑔(𝑡, 𝑟, 𝜃, 𝜙) satisfies the equation

𝑔𝜙𝜙+cos 𝜃𝑔𝜃+sin 𝜃(𝑔𝜃𝜃+2(𝑟−𝑚(𝑡))𝑔𝑟+ 𝑟((𝑟−2𝑚(𝑡))𝑔𝑟𝑟−2(𝑔𝑡+ 𝑟𝑔𝑡𝑟))).

𝑇 𝑡 = 𝑟2 sin 𝜃(𝑢𝑔𝑟 − 𝑔𝑢𝑟),

𝑇 𝑟 = 𝑟 sin 𝜃(𝑢(−(𝑟 − 2𝑚(𝑡))𝑔𝑟 + 𝑟𝑔𝑡) + 𝑔((𝑟 − 2𝑚(𝑡))𝑢𝑟 − 𝑟𝑢𝑡)),

𝑇 𝜃 = sin 𝜃(−𝑢𝑔𝜃 + 𝑔𝑢𝜃),

𝑇 𝜙 = −𝑢𝑔𝜙 + 𝑔𝑢𝜙.

101



6.6 Higher-order symmetries and conserved den-

sities

In the standard (1+3) wave equation, there exists higher-order variational symme-

tries which lead to nontrivial conserved flows. Thus, even though there is a radical

reduction in the number of variational point symmetries and conservation laws, one

could analyse the curved wave equation on a knowledge of the higher order symme-

tries and conservation laws. In this section, we list some of these variational sym-

metries 𝒳 = 𝜂(𝑥, 𝑢, 𝑢(1), 𝑢(2), 𝑢(3))∂𝑢 and nontrivial conserved flows (𝒯 𝑡, 𝒯 𝑟, 𝒯 𝜃, 𝒯 𝜙)

wherein the conserved density is given by 𝒯 𝑡 (see [17] on the discussion on recursion

operators and generalised symmetries).

(i). Case 𝑚 = 0.
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𝒳 1
1 = (2𝑢𝑡𝑡 + 𝑡𝑢𝑡𝑡𝑡 + 𝑟𝑢𝑟𝑡𝑡)∂𝑢,

𝒯 𝑡 = 1
6
(2 sin 𝜃𝑢𝜃𝜃𝑢𝑡 + 2𝑟 sin 𝜃𝑢𝑟𝑢𝑡 − 𝑟𝑢𝑟𝜙𝜙𝑢𝑡 − 𝑟 cos 𝜃𝑢𝑟𝜃𝑢𝑡 − 𝑟 sin 𝜃𝑢𝑟𝜃𝜃𝑢𝑡

−2𝑟2 sin 𝜃𝑢𝑟𝑟𝑢𝑡 − 𝑟3 sin 𝜃𝑢𝑟𝑟𝑟𝑢𝑡 − 2𝑟 sin 𝜃𝑢𝑡
2 + 2𝑢𝑢𝑡𝜙𝜙 − 𝑟𝑢𝑟𝑢𝑡𝜙𝜙

−3𝑡𝑢𝑡𝑢𝑡𝜙𝜙 + 2 cos 𝜃𝑢𝑢𝑡𝜃 − 𝑟 cos 𝜃𝑢𝑟𝑢𝑡𝜃 − 3𝑡 cos 𝜃𝑢𝑡𝑢𝑡𝜃 + 2 sin 𝜃𝑢𝑢𝑡𝜃𝜃

−𝑟 sin 𝜃𝑢𝑟𝑢𝑡𝜃𝜃 − 3𝑡 sin 𝜃𝑢𝑡𝑢𝑡𝜃𝜃 + 8𝑟 sin 𝜃𝑢𝑢𝑡𝑟 + 2𝑟 sin 𝜃𝑢𝜃𝜃𝑢𝑡𝑟

+2𝑟2 sin 𝜃𝑢𝑟𝑢𝑡𝑟 + 2𝑟3 sin 𝜃𝑢𝑟𝑟𝑢𝑡𝑟 − 2𝑟2 sin 𝜃𝑢𝑡𝑢𝑡𝑟 − 6𝑟𝑡 sin 𝜃𝑢𝑡𝑢𝑡𝑟

−4𝑟3 sin 𝜃𝑢𝑡𝑟
2 + 2𝑟𝑢𝑢𝑡𝑟𝜙𝜙 + 2𝑟 cos 𝜃𝑢𝑢𝑡𝑟𝜃 + 2𝑟 sin 𝜃𝑢𝑢𝑡𝑟𝜃𝜃

+10𝑟2 sin 𝜃𝑢𝑢𝑡𝑟𝑟 − 𝑟3 sin 𝜃𝑢𝑟𝑢𝑡𝑟𝑟 + 2𝑟3 sin 𝜃𝑢𝑡𝑢𝑡𝑟𝑟 − 3𝑟2𝑡 sin 𝜃𝑢𝑡𝑢𝑡𝑟𝑟

+2𝑟3 sin 𝜃𝑢𝑢𝑡𝑟𝑟𝑟 − 8𝑟 sin 𝜃𝑢𝑢𝑡𝑡 + 3𝑡 sin 𝜃𝑢𝜃𝜃𝑢𝑡𝑡 − 4𝑟2 sin 𝜃𝑢𝑟𝑢𝑡𝑡

+6𝑟𝑡 sin 𝜃𝑢𝑟𝑢𝑡𝑡 + 3𝑟2𝑡 sin 𝜃𝑢𝑟𝑟𝑢𝑡𝑡 − 6𝑟2𝑡 sin 𝜃𝑢𝑡𝑟𝑢𝑡𝑡 + 𝑢𝜙𝜙(2𝑢𝑡 + 2𝑟𝑢𝑡𝑟

+3𝑡𝑢𝑡𝑡) + cos 𝜃𝑢𝜃(2𝑢𝑡 + 2𝑟𝑢𝑡𝑟 + 3𝑡𝑢𝑡𝑡) + 3𝑡𝑢𝑢𝑡𝑡𝜙𝜙 + 3𝑡 cos 𝜃𝑢𝑢𝑡𝑡𝜃

+3𝑡 sin 𝜃𝑢𝑢𝑡𝑡𝜃𝜃 − 7𝑟2 sin 𝜃𝑢𝑢𝑡𝑡𝑟 + 6𝑟𝑡 sin 𝜃𝑢𝑢𝑡𝑡𝑟 − 𝑟3 sin 𝜃𝑢𝑟𝑢𝑡𝑡𝑟

+6𝑟2𝑡 sin 𝜃𝑢𝑡𝑢𝑡𝑡𝑟 − 𝑟3 sin 𝜃𝑢𝑢𝑡𝑡𝑟𝑟 + 3𝑟2𝑡 sin 𝜃𝑢𝑢𝑡𝑡𝑟𝑟 − 6𝑟𝑡 sin 𝜃𝑢𝑢𝑡𝑡𝑡

−3𝑟2𝑡 sin 𝜃𝑢𝑟𝑢𝑡𝑡𝑡 − 3𝑟2𝑡 sin 𝜃𝑢𝑢𝑡𝑡𝑡𝑟),

𝒯 𝑟 = 1
6
𝑟(𝑢𝜙𝜙𝑢𝑡𝑡 + cos 𝜃𝑢𝜃𝑢𝑡𝑡 + sin 𝜃𝑢𝜃𝜃𝑢𝑡𝑡 + 8𝑟 sin 𝜃𝑢𝑟𝑢𝑡𝑡 + 𝑟2 sin 𝜃𝑢𝑟𝑟𝑢𝑡𝑡

−2𝑟2 sin 𝜃𝑢𝑡𝑟𝑢𝑡𝑡 + 𝑢𝑢𝑡𝑡𝜙𝜙 + cos 𝜃𝑢𝑢𝑡𝑡𝜃 + sin 𝜃𝑢𝑢𝑡𝑡𝜃𝜃 − 7𝑟 sin 𝜃𝑢𝑢𝑡𝑡𝑟

+3𝑟2 sin 𝜃𝑢𝑟𝑢𝑡𝑡𝑟 − 2𝑟2 sin 𝜃𝑢𝑢𝑡𝑡𝑟𝑟 + 7𝑟 sin 𝜃𝑢𝑢𝑡𝑡𝑡 + 3𝑟𝑡 sin 𝜃𝑢𝑟𝑢𝑡𝑡𝑡

−𝑢𝑡(𝑢𝑡𝜙𝜙 + cos 𝜃𝑢𝑡𝜃 + sin 𝜃(𝑢𝑡𝜃𝜃 + 𝑟(2𝑢𝑡𝑟 + 𝑟𝑢𝑡𝑟𝑟 + 6𝑢𝑡𝑡 + 𝑟𝑢𝑡𝑡𝑟

+3𝑡𝑢𝑡𝑡𝑡))) + 𝑟2 sin 𝜃𝑢𝑢𝑡𝑡𝑡𝑟 − 3𝑟𝑡 sin 𝜃𝑢𝑢𝑡𝑡𝑡𝑟 + 3𝑟𝑡 sin 𝜃𝑢𝑢𝑡𝑡𝑡𝑡),

𝒯 𝜃 = 1
2
sin 𝜃(𝑢𝜃(2𝑢𝑡𝑡 + 𝑟𝑢𝑡𝑡𝑟 + 𝑡𝑢𝑡𝑡𝑡)− 𝑢(2𝑢𝑡𝑡𝜃 + 𝑟𝑢𝑡𝑡𝑟𝜃 + 𝑡𝑢𝑡𝑡𝑡𝜃)),

𝒯 𝜙 = 1
2
(𝑢𝜙(2𝑢𝑡𝑡 + 𝑟𝑢𝑡𝑡𝑟 + 𝑡𝑢𝑡𝑡𝑡)− 𝑢(2𝑢𝑡𝑡𝜙 + 𝑟𝑢𝑡𝑡𝑟𝜙 + 𝑡𝑢𝑡𝑡𝑡𝜙)).

(ii). Case 𝑚 = 𝑘, where 𝑘 is an arbitrary constant.

𝒳 2
1 = 𝑢𝜙𝑡𝑡∂𝑢,

103



𝒯 𝑡 = 1
6
(−𝑢𝜙𝜙𝜙𝑢𝑡 − cos 𝜃𝑢𝜃𝜙𝑢𝑡 − sin 𝜃𝑢𝜃𝜃𝜙𝑢𝑡 + 2𝑘 sin 𝜃𝑢𝑟𝜙𝑢𝑡 − 2𝑟 sin 𝜃𝑢𝑟𝜙

+2𝑘𝑟 sin 𝜃𝑢𝑟𝑟𝜙𝑢𝑡 − 𝑟2 sin 𝜃𝑢𝑟𝑟𝜙𝑢𝑡 + 2 cos 𝜃𝑢𝜃𝑢𝑡𝜙 + 2𝑟 sin 𝜃𝑢𝜙𝑢𝑡𝑡

+2 sin 𝜃𝑢𝜃𝜃𝑢𝑡𝜙 − 4𝑘 sin 𝜃𝑢𝑟𝑢𝑡𝜙 + 4𝑟 sin 𝜃𝑢𝑟𝑢𝑡𝜙 − 4𝑘𝑟 sin 𝜃𝑢𝑟𝑟𝑢𝑡𝜙

+2𝑟2 sin 𝜃𝑢𝑟𝑟𝑢𝑡𝜙 − 2𝑟 sin 𝜃𝑢𝑡𝑢𝑡𝜙 − 𝑢𝜙𝑢𝑡𝜙𝜙 + 2𝑢𝑢𝑡𝜙𝜙𝜙 − 2𝑟 sin 𝜃𝑢𝜙𝑢𝑡𝑟

+2 cos 𝜃𝑢𝑢𝑡𝜃𝜙 − sin 𝜃𝑢𝜙𝑢𝑡𝜃𝜃 + 2 sin 𝜃𝑢𝑢𝑡𝜃𝜃𝜙 + 2𝑘 sin 𝜃𝑢𝜙𝑢𝑡𝑟 − cos 𝜃𝑢𝜙

−4𝑟2 sin 𝜃𝑢𝑡𝜙𝑢𝑡𝑟 − 4𝑘 sin 𝜃𝑢𝑢𝑡𝑟𝜙 + 4𝑟 sin 𝜃𝑢𝑢𝑡𝑟𝜙 + 2𝑟2 sin 𝜃𝑢𝑡𝑢𝑡𝑟𝜙

+2𝑘𝑟 sin 𝜃𝑢𝜙𝑢𝑡𝑟𝑟 − 𝑟2 sin 𝜃𝑢𝜙𝑢𝑡𝑟𝑟 − 4𝑘𝑟 sin 𝜃𝑢𝑢𝑡𝑟𝑟𝜙 + 2𝑟2 sin 𝜃𝑢𝑢𝑡𝑟𝑟𝜙

−4𝑟 sin 𝜃𝑢𝑢𝑡𝑡𝜙 − 3𝑟2 sin 𝜃𝑢𝑟𝑢𝑡𝑡𝜙 + 2𝑟2 sin 𝜃𝑢𝜙𝑢𝑡𝑡𝑟 − 𝑟2 sin 𝜃𝑢𝑢𝑡𝑡𝑟𝜙),

𝒯 𝑟 = 1
2
𝑟 sin 𝜃((−2𝑘 + 𝑟)𝑢𝑟𝑢𝑡𝑡𝜙 − 𝑟𝑢𝑡𝑢𝑡𝑡𝜙 + 𝑢((2𝑘 − 𝑟)𝑢𝑡𝑡𝑟𝜙 + 𝑟𝑢𝑡𝑡𝑡𝜙)),

𝒯 𝜃 = 1
2
sin 𝜃(𝑢𝜃𝑢𝑡𝑡𝜙 − 𝑢𝑢𝑡𝑡𝜃𝜙),

𝒯 𝜙 = 1
6
(𝑢𝜙𝜙𝑢𝑡𝑡 + cos 𝜃𝑢𝜃𝑢𝑡𝑡 + sin 𝜃𝑢𝜃𝜃𝑢𝑡𝑡 − 2𝑘 sin 𝜃𝑢𝑟𝑢𝑡𝑡 + 2𝑟 sin 𝜃𝑢𝑟𝑢𝑡𝑡

−2𝑘𝑟 sin 𝜃𝑢𝑟𝑟𝑢𝑡𝑡 + 𝑟2 sin 𝜃𝑢𝑟𝑟𝑢𝑡𝑡 − 2𝑟2 sin 𝜃𝑢𝑡𝑟𝑢𝑡𝑡 + 3𝑢𝜙𝑢𝑡𝑡𝜙

+cos 𝜃𝑢𝑢𝑡𝑡𝜃 + sin 𝜃𝑢𝑢𝑡𝑡𝜃𝜃 − 2𝑘 sin 𝜃𝑢𝑢𝑡𝑡𝑟 + 2𝑟 sin 𝜃𝑢𝑢𝑡𝑡𝑟 − 𝑢𝑡(𝑢𝑡𝜙𝜙

+cos 𝜃𝑢𝑡𝜃 + sin 𝜃(𝑢𝑡𝜃𝜃 − 2(𝑘 − 𝑟)𝑢𝑡𝑟 + 𝑟((−2𝑘 + 𝑟)𝑢𝑡𝑟𝑟 − 2𝑟𝑢𝑡𝑡𝑟)))

−2𝑘𝑟 sin 𝜃𝑢𝑢𝑡𝑡𝑟𝑟 + 𝑟2 sin 𝜃𝑢𝑢𝑡𝑡𝑟𝑟 − 2𝑟 sin 𝜃𝑢𝑢𝑡𝑡𝑡 − 2𝑟2 sin 𝜃𝑢𝑢𝑡𝑡𝑡𝑟).

(iii). Case 𝑚 = 𝑡.

𝒳 3
1 = (𝑡𝑢𝑡𝜙𝜙 + 𝑟𝑢𝑟𝜙𝜙 + 𝑢𝜙𝜙)∂𝑢,

𝒯 𝑡 = 1
6
(𝑡𝑢𝜙𝜙

2 + 𝑡𝑢𝑢𝜙𝜙𝜙𝜙 + 𝑡 cos 𝜃𝑢𝑢𝜃𝜙𝜙 + 𝑡 sin 𝜃𝑢𝑢𝜃𝜃𝜙𝜙 + 6𝑟2 sin 𝜃𝑢𝑢𝑟𝜙𝜙

+2𝑟𝑡 sin 𝜃𝑢𝑢𝑟𝜙𝜙 − 2𝑡2 sin 𝜃𝑢𝑢𝑟𝜙𝜙 − 3𝑟3 sin 𝜃𝑢𝑟𝑢𝑟𝜙𝜙 + 3𝑟3 sin 𝜃𝑢𝑢𝑟𝑟𝜙𝜙

+𝑟2𝑡 sin 𝜃𝑢𝑢𝑟𝑟𝜙𝜙 − 2𝑟𝑡2 sin 𝜃𝑢𝑢𝑟𝑟𝜙𝜙 − 2𝑟𝑡 sin 𝜃𝑢𝑢𝑡𝜙𝜙 − 3𝑟2𝑡 sin 𝜃𝑢𝑡𝜙𝜙

+𝑢𝜙𝜙(𝑡 cos 𝜃𝑢𝜃 + sin 𝜃(𝑡𝑢𝜃𝜃 + (−3𝑟2 + 2𝑟𝑡− 2𝑡2)𝑢𝑟 + 𝑟𝑡((𝑟 − 2𝑡)𝑢𝑟𝑟

−2(𝑢𝑡 + 𝑟𝑢𝑡𝑟)))) + 𝑡𝑢𝜙(−𝑢𝜙𝜙𝜙 − cos 𝜃𝑢𝜃𝜙 − sin 𝜃(𝑢𝜃𝜃𝜙 + 2(𝑟 − 𝑡)𝑢𝑟𝜙

+𝑟((𝑟 − 2𝑡)𝑢𝑟𝑟𝜙 − 2(𝑢𝑡𝜙 + 𝑟𝑢𝑡𝑟𝜙)))) + 𝑟2𝑡 sin 𝜃𝑢𝑢𝑡𝑟𝜙𝜙),
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𝒯 𝑟 = 1
6
𝑟(𝑢𝜙𝜙

2 + 𝑢𝑢𝜙𝜙𝜙𝜙 + cos 𝜃𝑢𝑢𝜃𝜙𝜙 + sin 𝜃𝑢𝑢𝜃𝜃𝜙𝜙 − 4𝑟 sin 𝜃𝑢𝑢𝑟𝜙𝜙

+10𝑡 sin 𝜃𝑢𝑢𝑟𝜙𝜙 + 3𝑟2 sin 𝜃𝑢𝑟𝑢𝑟𝜙𝜙 − 6𝑟𝑡 sin 𝜃𝑢𝑟𝑢𝑟𝜙𝜙 − 2𝑟2 sin 𝜃𝑢𝑟𝜙𝜙

+4𝑟𝑡 sin 𝜃𝑢𝑢𝑟𝑟𝜙𝜙 − 3𝑟2 sin 𝜃𝑢𝑟𝜙𝜙𝑢𝑡 + 4𝑟 sin 𝜃𝑢𝑢𝑡𝜙𝜙 + 3𝑟𝑡 sin 𝜃𝑢𝑟𝑢𝑡𝜙𝜙

−6𝑡2 sin 𝜃𝑢𝑟𝑢𝑡𝜙𝜙 − 3𝑟𝑡 sin 𝜃𝑢𝑡𝑢𝑡𝜙𝜙 + 𝑢𝜙𝜙(cos 𝜃𝑢𝜃 + sin 𝜃(𝑢𝜃𝜃 + (5𝑟

−8𝑡)𝑢𝑟 + 𝑟((𝑟 − 2𝑡)𝑢𝑟𝑟 − 5𝑢𝑡 − 2𝑟𝑢𝑡𝑟)))− 𝑢𝜙(𝑢𝜙𝜙𝜙 + cos 𝜃𝑢𝜃𝜙

+sin 𝜃(𝑢𝜃𝜃𝜙 + 2(𝑟 − 𝑡)𝑢𝑟𝜙 + 𝑟((𝑟 − 2𝑡)𝑢𝑟𝑟𝜙 − 2(𝑢𝑡𝜙 + 𝑟𝑢𝑡𝑟𝜙))))

+𝑟2 sin 𝜃𝑢𝑢𝑡𝑟𝜙𝜙 − 3𝑟𝑡 sin 𝜃𝑢𝑢𝑡𝑟𝜙𝜙 + 6𝑡2 sin 𝜃𝑢𝑢𝑡𝑟𝜙𝜙 + 3𝑟𝑡 sin 𝜃𝑢𝑢𝑡𝑡𝜙𝜙),

𝒯 𝜃 = 1
2
sin 𝜃(𝑢𝜙𝜙𝑢𝜃 + 𝑢𝜃(𝑟𝑢𝑟𝜙𝜙 + 𝑡𝑢𝑡𝜙𝜙)− 𝑢(𝑢𝜃𝜙𝜙 + 𝑟𝑢𝑟𝜃𝜙𝜙 + 𝑡𝑢𝑡𝜃𝜙𝜙)),

𝒯 𝜙 = 1
6
(−𝑟𝑢𝜙𝜙𝜙𝑢𝑟 − 𝑟 cos 𝜃𝑢𝜃𝜙𝑢𝑟 − 𝑟 sin 𝜃𝑢𝜃𝜃𝜙𝑢𝑟 + 2𝑟𝑢𝜙𝜙𝑢𝑟𝜙 − 𝑡𝑢𝜙𝜙𝜙𝑢𝑡

+2𝑟 sin 𝜃𝑢𝜃𝜃𝑢𝑟𝜙 + 2𝑟2 sin 𝜃𝑢𝑟𝑢𝑟𝜙 − 2𝑟𝑡 sin 𝜃𝑢𝑟𝑢𝑟𝜙 + 2𝑟3 sin 𝜃𝑢𝑟𝜙𝑢𝑟𝑟

−4𝑟2𝑡 sin 𝜃𝑢𝑟𝜙𝑢𝑟𝑟 − 𝑟3 sin 𝜃𝑢𝑟𝑢𝑟𝑟𝜙 + 2𝑟2𝑡 sin 𝜃𝑢𝑟𝑢𝑟𝑟𝜙 + 2𝑡𝑢𝜙𝜙𝑢𝑡𝜙

−𝑡 cos 𝜃𝑢𝜃𝜙𝑢𝑡 − 𝑡 sin 𝜃𝑢𝜃𝜃𝜙𝑢𝑡 − 4𝑟2 sin 𝜃𝑢𝑟𝜙𝑢𝑡 − 2𝑟𝑡 sin 𝜃𝑢𝑟𝜙𝑢𝑡

+2𝑡2 sin 𝜃𝑢𝑟𝜙𝑢𝑡 − 𝑟2𝑡 sin 𝜃𝑢𝑟𝑟𝜙𝑢𝑡 + 2𝑟𝑡2 sin 𝜃𝑢𝑟𝑟𝜙𝑢𝑡 + 2𝑟 cos 𝜃𝑢𝜃𝑢𝑟𝜙

+2𝑡 cos 𝜃𝑢𝜃𝑢𝑡𝜙 + 2𝑡 sin 𝜃𝑢𝜃𝜃𝑢𝑡𝜙 + 2𝑟2 sin 𝜃𝑢𝑟𝑢𝑡𝜙 + 4𝑟𝑡 sin 𝜃𝑢𝑟𝑢𝑡𝜙

−4𝑡2 sin 𝜃𝑢𝑟𝑢𝑡𝜙 + 2𝑟2𝑡 sin 𝜃𝑢𝑟𝑟𝑢𝑡𝜙 − 4𝑟𝑡2 sin 𝜃𝑢𝑟𝑟𝑢𝑡𝜙 − 2𝑟𝑡 sin 𝜃𝑢𝑡𝑢𝑡𝜙

−4𝑟3 sin 𝜃𝑢𝑟𝜙𝑢𝑡𝑟 − 4𝑟2𝑡 sin 𝜃𝑢𝑡𝜙𝑢𝑡𝑟 + 2𝑟3 sin 𝜃𝑢𝑡𝑟𝜙 + 2𝑟2𝑡 sin 𝜃𝑢𝑡𝑢𝑡𝑟𝜙

+𝑢𝜙(4𝑢𝜙𝜙 + cos 𝜃𝑢𝜃 + sin 𝜃𝑢𝜃𝜃 + 2𝑟𝑢𝑟𝜙𝜙 − 𝑟 cos 𝜃𝑢𝑟𝜃 − 𝑟 sin 𝜃𝑢𝑟𝜃𝜃

−3𝑟2 sin 𝜃𝑢𝑟𝑟 + 4𝑟𝑡 sin 𝜃𝑢𝑟𝑟 − 𝑟3 sin 𝜃𝑢𝑟𝑟𝑟 + 2𝑟2𝑡 sin 𝜃𝑢𝑟𝑟𝑟 + 2𝑡𝑢𝑡𝜙𝜙

−𝑡 cos 𝜃𝑢𝑡𝜃 − 𝑡 sin 𝜃𝑢𝑡𝜃𝜃 + 4𝑟2 sin 𝜃𝑢𝑡𝑟 − 2𝑟𝑡 sin 𝜃𝑢𝑡𝑟 + 2𝑡2 sin 𝜃𝑢𝑡𝑟

+2𝑟3 sin 𝜃𝑢𝑡𝑟𝑟 + (2𝑟𝑡2 − 𝑟2𝑡) sin 𝜃𝑢𝑡𝑟𝑟 + 2𝑟𝑡 sin 𝜃𝑢𝑡𝑡 + 2𝑟2𝑡 sin 𝜃𝑢𝑡𝑡𝑟)

−𝑢(2𝑢𝜙𝜙𝜙 − cos 𝜃𝑢𝜃𝜙 − sin 𝜃𝑢𝜃𝜃𝜙 − 6𝑟 sin 𝜃𝑢𝑟𝜙 + 6𝑡 sin 𝜃𝑢𝑟𝜙 + 𝑟𝑢𝑟𝜙𝜙𝜙

−2𝑟 cos 𝜃𝑢𝑟𝜃𝜙 − 2𝑟 sin 𝜃𝑢𝑟𝜃𝜃𝜙 − 9𝑟2 sin 𝜃𝑢𝑟𝑟𝜙 + 14𝑟𝑡 sin 𝜃𝑢𝑟𝑟𝜙

−2𝑟3 sin 𝜃𝑢𝑟𝑟𝑟𝜙 + 4𝑟2𝑡 sin 𝜃𝑢𝑟𝑟𝑟𝜙 + 6𝑟 sin 𝜃𝑢𝑡𝜙 + 𝑡𝑢𝑡𝜙𝜙𝜙 − 2𝑡 cos 𝜃𝑢𝑡𝜃𝜙

−2𝑡 sin 𝜃𝑢𝑡𝜃𝜃𝜙 + 14𝑟2 sin 𝜃𝑢𝑡𝑟𝜙 + (4𝑡2 − 4𝑟𝑡) sin 𝜃𝑢𝑡𝑟𝜙 + 4𝑟3 sin 𝜃𝑢𝑡𝑟𝑟𝜙

−2𝑟2𝑡 sin 𝜃𝑢𝑡𝑟𝑟𝜙 + 4𝑟𝑡2 sin 𝜃𝑢𝑡𝑟𝑟𝜙 + 4𝑟𝑡 sin 𝜃𝑢𝑡𝑡𝜙 + 4𝑟2𝑡 sin 𝜃𝑢𝑡𝑡𝑟𝜙)).

(iv). Case 𝑚 = 𝑒𝑡.

𝒳 4
1 = 𝑢𝜙𝜙𝜙∂𝑢,
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𝒯 𝑡 = −1
2
𝑟2 sin 𝜃(𝑢𝜙𝜙𝜙𝑢𝑟 − 𝑢𝑢𝑟𝜙𝜙𝜙),

𝒯 𝑟 = 1
2
𝑟 sin 𝜃(𝑢𝜙𝜙𝜙((−2𝑒𝑡 + 𝑟)𝑢𝑟 − 𝑟𝑢𝑡) + 𝑢((2𝑒𝑡 − 𝑟)𝑢𝑟𝜙𝜙𝜙 + 𝑟𝑢𝑡𝜙𝜙𝜙)),

𝒯 𝜃 = 1
2
sin 𝜃(𝑢𝜙𝜙𝜙𝑢𝜃 − 𝑢𝑢𝜃𝜙𝜙𝜙),

𝒯 𝜙 = 1
2
(𝑢𝜙𝜙

2 + 𝑢𝜙𝜙(cos 𝜃𝑢𝜃 + sin 𝜃(𝑢𝜃𝜃 − 2(𝑒𝑡 − 𝑟)𝑢𝑟 + 𝑟((−2𝑒𝑡 + 𝑟)𝑢𝑟𝑟

−2(𝑢𝑡 + 𝑟𝑢𝑡𝑟))))− 𝑢𝜙(cos 𝜃𝑢𝜃𝜙 + sin 𝜃(𝑢𝜃𝜃𝜙 − 2(𝑒𝑡 − 𝑟)𝑢𝑟𝜙

+𝑟((−2𝑒𝑡 + 𝑟)𝑢𝑟𝑟𝜙 − 2(𝑢𝑡𝜙 + 𝑟𝑢𝑡𝑟𝜙)))) + 𝑢(cos 𝜃𝑢𝜃𝜙𝜙 + sin 𝜃(𝑢𝜃𝜃𝜙𝜙

−2(𝑒𝑡 − 𝑟)𝑢𝑟𝜙𝜙 + 𝑟((−2𝑒𝑡 + 𝑟)𝑢𝑟𝑟𝜙𝜙 − 2(𝑢𝑡𝜙𝜙 + 𝑟𝑢𝑡𝑟𝜙𝜙))))).

(v). Case 𝑚 = 𝑚(𝑡), where m(t) is an arbitrary function of t.

𝒳 5
1 = 𝑢𝜙𝜙𝜙∂𝑢 ,

𝒯 𝑡 = −1
2
𝑟2 sin 𝜃(𝑢𝜙𝜙𝜙𝑢𝑟 − 𝑢𝑢𝑟𝜙𝜙𝜙),

𝒯 𝑟 = 1
2
𝑟 sin 𝜃(𝑢𝜙𝜙𝜙((𝑟 − 2𝑚(𝑡))𝑢𝑟 − 𝑟𝑢𝑡) + (2𝑚(𝑡)− 𝑟)𝑢𝑢𝑟𝜙𝜙𝜙 + 𝑟𝑢𝑡𝜙𝜙𝜙)),

𝒯 𝜃 = 1
2
sin 𝜃(𝑢𝜙𝜙𝜙𝑢𝜃 − 𝑢𝑢𝜃𝜙𝜙𝜙),

𝒯 𝜙 = 1
2
(𝑢𝜙𝜙

2 + 𝑢𝜙𝜙(cos 𝜃𝑢𝜃 + sin 𝜃(𝑢𝜃𝜃 + 2(𝑟 −𝑚(𝑡))𝑢𝑟 + 𝑟((𝑟 − 2𝑚(𝑡))𝑢𝑟𝑟

−2(𝑢𝑡 + 𝑟𝑢𝑡𝑟))))− 𝑢𝜙(cos 𝜃𝑢𝜃𝜙 + sin 𝜃(𝑢𝜃𝜃𝜙 + 2(𝑟 −𝑚(𝑡))𝑢𝑟𝜙 + 𝑟((𝑟

−2𝑚(𝑡))𝑢𝑟𝑟𝜙 − 2(𝑢𝑡𝜙 + 𝑟𝑢𝑡𝑟𝜙)))) + 𝑢(cos 𝜃𝑢𝜃𝜙𝜙 + sin 𝜃(𝑢𝜃𝜃𝜙𝜙 + 2(𝑟

−𝑚(𝑡))𝑢𝑟𝜙𝜙 + 𝑟((𝑟 − 2𝑚(𝑡))𝑢𝑟𝑟𝜙𝜙 − 2(𝑢𝑡𝜙𝜙 + 𝑟𝑢𝑡𝑟𝜙𝜙))))).
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6.7 Discussion and conclusion

We have considered the classical wave equation in some Lorentzian spacetime back-

ground with the point in mind that the wave equation there may naturally inherit

nonlinearities from the geometry. In this context, we have considered the Vaidya

metric for which a special case is the Papapetrou metric. We have given some

symmetry reductions to show how the wave equation there can be either solved

or reduced to ordinary differential equations using the method of invariants. Also,

some conservation laws were constructed. In the book [41], Ibragimov suggests

that in three flat space dimensions the linear wave equation considered admit a 16-

dimensional Lie algebra of point symmetries excluding the infinite symmetry. In this

study, we show that the wave equations admits fewer symmetries when it is solved

on a curved manifold. A special case to note is 𝑚 = 0 when the Vaidya manifold

is supposedly ‘flat’. Manifolds that are ‘flat’ need not to lead to the wave equation

admitting the maximal 16-dimensional Lie algebra of point symmetries. Finally,

some higher-order symmetries and associated conservation laws were presented. We

conclude that solving or analysing the nonlinear wave equations in a curved space-

time background using the invariance approach may provide some insight into the

geometry or relativity for different manifolds.
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Chapter 7

Conservation laws of some

third-grade fluids

7.1 Introduction

The mechanics of non-linear fluids present a special challenge to engineers, physicists

and mathematicians since the non-linearity can manifest itself in a variety of ways.

One of the simplest ways in which the viscoelastic fluids have been classified is the

methodology given by Rivlin and Ericksen [42] and Truesdell and Noll [43], who

present constitutive relations for the stress tensor as a function of the symmetric

part of the velocity gradient and its higher (total) derivatives.

In recent years there has been several studies [44]-[51] on flows of non-Newtonian

fluids, not only because of their technological significance but also due to the inter-

esting mathematical features presented by the equations governing the flow.

A discussion of the various differential rate type and integral models can be found

in the books of Schowalter [52] and Huilgol [53] and in the survay by Rajagopal [54].
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The attraction in these models stems largely from the fact that the constitutive

relations, whether we consider second- or third-grade fluids, since these have been

studied most, are that they are derived on the basis of first principles and unlike

many other ’phenomenological’ models suggested in [55] by Reiner, there are no

curve fittings or parameters to adjust.

Although the second-grade fluid model is able to predict the normal stress differences

which are characteristic of non-Newtonian fluids - it does not take into account the

shear thinning and thickening phenomena that many show. The third-grade fluid

model represents a further, although inconclusive, attempt towards a comprehensive

description of of the properties of viscoelastic fluids. With this in mind, the model

in the present paper is a third-grade fluid.

In [56], exact analytical solution for the unsteady flow of a third-grade fluid on a

porous wall was obtained.

Generally, models in fluids are constructed under the assumption of certain conser-

vation laws. It may turn out that the resultant PDE or PDEs, whether linear or

nonlinear, give rise to a number of distinct conserved flows (like density and cur-

rent) and these may result in a number of different solutions. Thus, a knowledge of

the various conservation laws gives one a greater insight into the underlying model.

Also, a deeper understanding of the invariance properties are achieved like poten-

tial symmetries obtained from respective potential systems, [57]. So, aside from

some physical conservation laws, solutions should remain constant along the general

conserved flows (see [58]).

7.2 Preliminaries and basic equations

An incompressible simple fluid is defined as a material whose state of present stress is

determined by the history of the deformation gradient without a preferred reference
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configuration [59]. Its constitutive equation can be written in the form of a functional

T(𝑡) = −𝑝1I+
∞∑
𝑠=0

F𝑡
𝑡(𝑠), (7.1)

where 𝑝1I is the undetermined part of the stress tensor and F is the deformation

gradient.

Coleman and Noll [60] defined the incompressible fluid of differential type of grade

𝑛 as the simple fluid obeying the constitutive equation

T(𝑡) = −𝑝1I+
∞∑
𝑠=0

S𝑗, (7.2)

obtained by asymptotic expansion of the functional in (7.1) through a retardation

parameter 𝛼. If 𝑛 = 3, the first three tensors 𝑆𝑗 are given by

S1 = 𝜇A1,

S2 = 𝛼1A2 + 𝛼2A
2
1,

S3 = 𝛽1A3 + 𝛽2(A1A2 +A2A1) + 𝛽3(𝑡𝑟A
2
1)A1,

(7.3)

where 𝜇 is the coefficient of viscosity and 𝛼1, 𝛼2, 𝛽1, 𝛽2 and 𝛽3 are the material

moduli. A1,A2 and A3 are kinematical tensors defined by

A1 = gradV + (gradV)𝑇 ,

A𝑛 = 𝑑
𝑑𝑡
A𝑛−1 +A𝑛−1(grad V) + (gradV)𝑇A𝑛−1, 𝑛 = 2, 3, ⋅ ⋅ ⋅ (7.4)

where V denotes the velocity field, grad is the gradient operator and 𝑑
𝑑𝑡

is the

material time derivative which is defined by

𝑑

𝑑𝑡
(⋅) = ∂

∂𝑡
(⋅) + [grad(⋅)]V, (7.5)

where ∂
∂𝑡

is the partial derivative with respect to time. It was shown that if all the

motions of the fluids are to be compatible with thermodynamics in the sense that

these motions meet the Clausius-Duhem inequality and if it is assumed that the

specific Helmholtz free energy is a minimum when the fluid is locally at rest, then

𝜇 ≥ 0, 𝛼1 ≥ 0,

∣ 𝛼1 + 𝛼2 ∣ ≤ √
24𝜇𝛽3,

𝛽1 = 𝛽2 = 0, 𝛽3 ≥ 0.

(7.6)
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Therefore, the constitutive relation for a thermodynamically compatible fluid of

grade three becomes

T = −𝑝1I+ 𝜇A1 + 𝛼1A2 + 𝛼2A
2
1 + 𝛽3(𝑡𝑟A

2
1)A1. (7.7)

If the normal stress parameters 𝛼1 and 𝛼2 are zeros, then

T = −𝑝1I+ (𝜇+ 𝛽3(𝑡𝑟A
2
1))A1, (7.8)

where the quantity in parenthesis can be thought of as an effective shear-dependent

viscosity. The basic governing equations are the conservation of mass and linear

momentum. These are
∂𝜌

∂𝑡
+ div(𝜌V) = 0 (7.9)

and
𝑑𝜌

𝑑𝑡
= divT+ 𝜌b, (7.10)

where 𝜌 is the density and b is the body force. As we are assuming that the fluid

can undergo isochronic motion, (7.9) reduces to

div(V) = 0. (7.11)

On substituting (7.7) into (7.10) and neglecting the body forces, we have

𝜌
𝑑V

𝑑𝑡
+ grad𝑝 = 𝜇divA1 + 𝛼1divA2 + 𝛼2divA

2
1 + 𝛽3div[(𝑡𝑟A

2
1)A1]. (7.12)

We consider an incompressible fluid flow along an infinite plane porous wall. The

𝑥-axis is taken along the wall and the 𝑦-axis normal to the wall. Thus, for the flow

under consideration, we seek a velocity field of the form

V = [𝑢(𝑥, 𝑡), 𝜃, 0], (7.13)

where 𝜃 ≥ 0 indicates the blowing velocity. From (7.11) and (7.13)

∂𝜃

∂𝑥
= 0. (7.14)
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It is evident from (7.14) that 𝜃 is a function of time only. Following Kaloni [61] we

have

𝜃 = −𝑊0, (7.15)

where 𝑊0 ≥ 0 indicates the suction and 𝑊0 ≤ 0 gives blowing. Substituting (7.4),

(7.7), (7.13) and (7.15) into (7.12) and neglecting the modified pressure gradient we

have

𝜌[
∂𝑢

∂𝑡
−𝑊0

∂𝑢

∂𝑥
] = 𝜇

∂2𝑢

∂𝑥2
+ 𝛼1[

∂3𝑢

∂𝑥2∂𝑡
−𝑊0

∂3𝑢

∂𝑥3
] + 6𝛽3(

∂𝑢

∂𝑥
)2
∂2𝑢

∂𝑥2
. (7.16)

Consider an 𝑟th-order system of partial differential equations (PDEs) of 𝑛 indepen-

dent variables 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑚 dependent variables 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑚)

𝐺𝜇(𝑥, 𝑢, 𝑢(1), . . . , 𝑢(𝑟)) = 0, 𝜇 = 1, . . . , 𝑚̃, (7.17)

where 𝑢(1), 𝑢(2), . . . , 𝑢(𝑟) denote the collections of all first, second, . . ., 𝑟th-order par-

tial derivatives, that is, 𝑢𝛼
𝑖 = 𝐷𝑖(𝑢

𝛼), 𝑢𝛼
𝑖𝑗 = 𝐷𝑗𝐷𝑖(𝑢

𝛼), . . . respectively, with the total

differentiation operator with respect to 𝑥𝑖 given by

𝐷𝑖 =
∂

∂𝑥𝑖
+ 𝑢𝛼

𝑖

∂

∂𝑢𝛼
+ 𝑢𝛼

𝑖𝑗

∂

∂𝑢𝛼
𝑗

+ . . . , 𝑖 = 1, . . . , 𝑛, (7.18)

where the summation convention is used whenever appropriate. A current 𝑇 =

(𝑇 1, . . . , 𝑇 𝑛) is conserved if it satisfies

𝐷𝑖𝑇
𝑖 = 0 (7.19)

along the solutions of (7.17).

Every admitted conservation law arises from multipliers 𝑄𝜇(𝑥, 𝑢, 𝑢(1), . . .)

𝑄𝜇𝐺
𝜇 = 𝐷𝑖𝑇

𝑖 (7.20)

such that it holds identically for some current 𝑇 𝑖. There is a determining system

for finding multipliers (and hence conservation laws) for any given PDE system.

If in (7.17), 𝐺𝜇 = 𝐺𝜇
0 + 𝐺𝜇

1 such that 𝐺𝜇
0 = 𝛿𝐿

𝛿𝑢𝛼 for some function 𝐿, we say 𝐿 is a

partial Lagrangian for a partially variational system (7.17) - 𝛿𝐿
𝛿𝑢𝛼 is the Lie derivative
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or Euler operator. That is, for a scalar equation, 𝐺 = 𝛿𝐿 + 𝐺1, where 𝐿 =
∫
𝐿.

Noether type symmetries can then be determined by

𝑋(𝐿) + 𝐿𝐷𝑖(𝜉
𝑖) = 𝑊𝛼 𝛿𝐿

𝛿𝑢𝛼
+𝐷𝑖(𝑔

𝑖) . (7.21)

for some gauge vector 𝑔𝑖 and conserved vectors for (7.17) may then be determined

by a formula, viz.,

𝑇 𝑖 = 𝑔𝑖 −𝑁 𝑖(𝐿) , 𝑖 = 1, . . . , 𝑛 , (7.22)

where 𝑁 𝑖 is the Noether operator (see [16]).

7.3 Conservation laws, multipliers and symme-

tries

In this section we derive the conservation laws of (7.16) using the notions of the

invariance of the multipliers under symmetries of the equation. We separate (7.16)

into three cases.

(i) In the first case we suppose that 𝜌 = 1, 𝛽3 = 𝑊0 = 0 so that (7.16) becomes

𝑢𝑡 = 𝛼𝑢𝑥𝑥𝑡 + 𝛽𝑢𝑥𝑥, (7.23)

wherein we have replaced 𝛼1 by 𝛼 and 𝜇 by 𝛽. Its algebra of Lie symmetries is

spanned by 𝑋 = ∂
∂𝑡
, 𝑌 = ∂

∂𝑥
, 𝑍 = 𝑢 ∂

∂𝑢
excluding the ‘infinite’ symmetries. The

conserved flow (𝑇 𝑡, 𝑇 𝑥) of (7.23) satisfies the divergence relation

𝐷𝑡𝑇
𝑡 +𝐷𝑥𝑇

𝑥 = 𝑄(𝑡, 𝑥, [𝑢])(𝑢𝑡 − 𝛼𝑢𝑥𝑥𝑡 − 𝛽𝑢𝑥𝑥), (7.24)

so that
𝛿

𝛿𝑢
𝑄(𝑢𝑡 − 𝛼𝑢𝑥𝑥𝑡 − 𝛽𝑢𝑥𝑥) = 0, (7.25)

since the Euler operator annihilates a total divergence. If we suppose that the highest

derivative of 𝑄 is the second derivative, viz., 𝑄 = 𝑄(𝑡, 𝑥, 𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑡𝑡, 𝑢𝑡𝑥, 𝑢𝑥𝑥), the

cumbersome and detailed calculations which cannot be presented here, reveal that
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there are no multipliers of order one and two. What we do obtain are the following

forms of 𝑄 = 𝑄𝑖,

𝑄1 = 1,

𝑄2 = 𝑒
𝑡− 𝑥√

𝛼−𝛽 , (𝛼 ∕= 𝛽)

𝑄3 = 𝑒
𝛽𝑡−𝛼𝑥−𝑥

𝛼−1 (𝑒
2𝛼𝑥
𝛼−1 + 𝑒

2𝑥
𝛼−1 ), (𝛼 ∕= 1)

(7.26)

The next step is to construct the actual and corresponding conserved density 𝑇 𝑡 and

flux 𝑇 𝑥. This may be done by substituting back into (7.24) which again requires

detailed calculations of which the results are presented here. The first one, 𝑄1, is

the obvious one giving rise to the conserved vector (𝑇 𝑡, 𝑇 𝑥)

𝑇 𝑡
1 = 𝑢,

𝑇 𝑥
1 = −𝛼𝑢𝑥𝑡 − 𝛽𝑢𝑥

(7.27)

or
𝑇 𝑡
1 = 𝑢− 𝛼𝑢𝑥𝑥,

𝑇 𝑥
1 = −𝛽𝑢𝑥.

(7.28)

The not-so-obvious conserved vectors are obtained via the remaining multipliers.

Corresponding to 𝑄2, we get

𝑇 𝑡
2 = (− 𝛼𝑢

𝛼−𝛽
− 𝛼𝑢𝑥√

𝛼−𝛽
− 𝛼𝑢𝑥𝑥 + 3𝑢)𝑒

𝑡− 𝑥√
𝛼−𝛽 ,

𝑇 𝑥
2 = ( 2𝛼𝑢√

𝛼−𝛽
+ 𝛼𝑢𝑥 − 𝛼𝑢𝑡√

𝛼−𝛽
− 3𝛽𝑢√

𝛼−𝛽
− 2𝛼𝑢𝑡𝑥 − 3𝛽𝑢𝑥)𝑒

𝑡− 𝑥√
𝛼−𝛽 .

(7.29)

and corresponding to 𝑄3 we obtain the density and flux

𝑇 𝑡
3 = −𝑒

𝛽𝑡−𝛼𝑥−𝑥
𝛼−1 [(𝛼𝑢𝑥𝑥 + (𝛼− 3)𝑢)(𝑒

2𝛼𝑥
𝛼−1 + 𝑒

2𝑥
𝛼−1 ) + 𝛼𝑢𝑥(𝑒

2𝛼𝑥
𝛼−1 − 𝑒

2𝑥
𝛼−1 )],

𝑇 𝑥
3 = 1

𝛼−1
𝑒

𝛽𝑡−𝛼𝑥−𝑥
𝛼−1 [2𝛼𝑢𝑥𝑡(1− 𝛼) + 𝛽𝑢𝑥(3− 2𝛼)](𝑒

2𝛼𝑥
𝛼−1 + 𝑒

2𝑥
𝛼−1 )

+ [𝛼𝑢𝑡(𝛼− 1) + 𝛽𝑢(𝛼− 3)](𝑒
2𝛼𝑥
𝛼−1 − 𝑒

2𝑥
𝛼−1 )]

(7.30)

We have some of the following symmetry or invariance properties of the multipliers

based on the symmetries 𝑋, 𝑌 and 𝑍 above. These are

𝑋𝑄1 = 0, 𝑌 𝑄1 = 0, 𝑍𝑄1 = 0

𝑋𝑄2 = 𝑄2, 𝑌 𝑄2 = − 1√
𝛼−𝛽

𝑄2, 𝑍𝑄2 = 0

𝑋𝑄3 =
𝛽

𝛼−1
𝑄3, 𝑌 𝑄3 = 𝑒

𝛽𝑡−𝛼𝑥−𝑥
𝛼−1 (𝑒

2𝛼𝑥
𝛼−1 − 𝑒

2𝑥
𝛼−1 ), 𝑍𝑄3 = 0

(7.31)
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Thus, 𝑄2 is ray invariant with respect to𝑋 and 𝑌 . The multiplier 𝑄3 is ray invariant

under 𝑋 but not invariant under 𝑌 . Both of these multipliers are strictly invariant

under 𝑍. The multiplier 𝑄1 is obviously, strictly invariant under 𝑋, 𝑌, 𝑍.

Invariance of a multiplier under a symmetry implies association of the corresponding

conservation law with the symmetry.

(ii) Secondly, we include 𝑊0 ∕= 0 in which case (7.16), with the usual replacements,

becomes

𝑢𝑡 = 𝛼𝑢𝑥𝑥𝑡 + 𝛽𝑢𝑥𝑥 +𝑊0𝑢𝑥 − 𝛼𝑊0𝑢𝑥𝑥𝑥 (7.32)

which has the same Lie algebra of point symmetries as in case (i). Following the

procedure above, the multipliers, when differentiated till second order becomes inde-

pendent of derivatives. For example, ray invariance under translation in 𝑥, viz., 𝑌 ,

requires 𝑄 = 𝑒𝜆𝑥𝑓(𝑡, 𝑥, 𝑢) and it turns out that 𝑄 = 𝑒𝜆𝑥𝑓(𝑥+𝑊0𝑡, 𝑢). Substituting

into (7.25) becomes

𝛿

𝛿𝑢
[𝑒𝜆𝑥𝑓(𝑡, 𝑥, 𝑢)(𝑢𝑡 − 𝛼𝑢𝑥𝑥𝑡 − 𝛽𝑢𝑥𝑥) +𝑊0𝑢𝑥 − 𝛼𝑊0𝑢𝑥𝑥𝑥)] = 0. (7.33)

We obtain the following forms of 𝜆 and the corresponding 𝑓 ,

(a) 𝑓 = 𝑒𝑥+𝑊0𝑡 (𝑄1 = 𝑒𝜆1𝑥𝑒𝑥+𝑊0𝑡),

𝜆1 =
1

6𝑊0𝛼
𝐻1 +

2
3
(𝑊 2

0𝛼
2 − 2𝑊0𝛼𝛽 + 3𝑊 2

0𝛼+ 𝛽2)

𝑊0𝛼𝐻1

− 1

3

𝛽 + 2𝑊0𝛼

𝑊0𝛼

where

𝐻1 = [−24𝛽𝑊 2
0𝛼

2 + 8𝑊 3
0𝛼

3 + 24𝑊0𝛼𝛽
2 − 36𝑊 2

0𝛼𝛽 − 72𝑊 3
0𝛼

2 − 8𝛽3

+ 12(− 1

𝑊0

(3(4𝑊 3
0𝛼− 12𝑊 2

0𝛼
2𝛽 + 12𝑊0𝛼𝛽

2 − 20𝑊 2
0𝛼𝛼− 4𝛽3 + 4𝑊 3

0𝛼
3

− 8𝑊 3
0𝛼

2 +𝑊0𝛽
2)))

1
2𝑊 2

0𝛼]
1
3

(b)𝑓 = 1 (𝑄2 = 𝑒𝜆2𝑥),

𝜆2 =
1

6𝑊0𝛼
𝐻2 +

2
3
(3𝑊 2

0𝛼+ 𝛽2)

𝑊0𝛼𝐻2

− 1

3

𝛽

𝑊0𝛼
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where

𝐻2 = [−36𝑊 2
0𝛼𝛽 − 8𝛽3 + 12(− 1

𝑊0

(3(4𝑊 3
0𝛼+𝑊0𝛽

2)))
1
2𝑊 2

0𝛼]
1
3

It is clear that 𝑄1 is ray invariant under 𝑋 and 𝑌 since 𝑋𝑄1 = 𝑊0𝑄1 and 𝑌 𝑄1 =

(𝜆1 + 1)𝑄1 whilst 𝑄2 is strictly invariant under 𝑋 and ray invariant under 𝑌 as

𝑋𝑄2 = 0 and 𝑌 𝑄2 = 𝜆2𝑄2. Both of these are strictly invariant under 𝑍. The

corresponding conserved flows are

(a)

𝑇 𝑡
1 = [−(𝜆1 + 1)2𝛼𝑢+ (𝜆1 + 1)𝛼𝑢𝑥 − 𝛼𝑢𝑥𝑥 + 3𝑢]𝑄1,

𝑇 𝑥
1 = [−2𝑊0(𝜆1 + 1)𝛼𝑢+𝑊0𝛼𝑢𝑥 + 3(𝜆1 + 1)2𝑊0𝛼𝑢+ (𝜆1 + 1)𝛼𝑢𝑡

− 3𝑊0(𝜆1 + 1)𝛼𝑢𝑥 + 3(𝜆1 + 1)𝛽𝑢− 2𝛼𝑢𝑡𝑥 + 3𝛼𝑢𝑥𝑥𝑊0 − 3𝑢𝑥𝛽 − 3𝑢𝑊0]𝑄1

and

(b)

𝑇 𝑡
2 = [−𝜆2

2𝛼𝑢+ 𝜆2𝛼𝑢𝑥 − 𝛼𝑢𝑥𝑥 + 3𝑢]𝑄2,

𝑇 𝑥
2 = [3𝜆2

2𝛼𝑢𝑊0 + 𝜆2𝛼𝑢𝑡 − 3𝜆2𝑢𝑥𝛼𝑊0 + 3𝜆2𝛽𝑢− 2𝛼𝑢𝑡𝑥 + 3𝑢𝑥𝑥𝛼𝑊0 − 3𝑢𝑥𝛽 − 3𝑢𝑊0]𝑄2.

This set excludes the obvious conserved vector

(𝑇 𝑡, 𝑇 𝑥) = (−𝑢, 𝛼𝑢𝑥𝑡 + 𝛽𝑢𝑥 +𝑊0𝑢− 𝛼𝑊0𝑢𝑥𝑥)

with multiplier 𝑄 = 1.

(iii) It can be shown that the complete version of (7.16) has only the obvious con-

served flow with density and flux given by

𝑇 𝑡 = −𝑢, 𝑇 𝑥 = 𝛼𝑢𝑥𝑡 + 𝛽𝑢𝑥 +𝑊0𝑢− 𝛼𝑊0𝑢𝑥𝑥 + 2𝛽3𝑢
3
𝑥.
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7.4 Conservation laws via partial Lagrangians

In this section, we do a ‘variational’ study of the equations with particular reference

to the first case above. Equation (7.23) does not admit a Lagrangian being a scalar

evolution equation nor does it lend itself to a partial Lagrangian environment as it

is of odd order. One way of getting around this is to make a substitution 𝑢 = 𝑣𝑥

so that the resultant equation is fourth order. Then, however, some or all of the

conserved flows that are constructed via a Lagrangian or partial Lagrangian of the

higher order equation may not be reducible down to the equation in 𝑢 in which case

we have nonlocal flows of the original equation in 𝑢. Making the substitution, (7.23)

becomes

𝑣𝑥𝑡 − 𝛽𝑣𝑥𝑥𝑥 − 𝛼𝑣𝑥𝑥𝑥𝑡 = 0 (7.34)

for which we choose a partial rather than a total Lagrangian

𝐿 = −1

2
𝑣𝑡𝑣𝑥 +

𝛼

2
𝑣𝑡𝑣𝑥𝑥𝑥 (7.35)

which, when substituted into the appropriate version of (7.21) leads to a number

of Noether type generators 𝑋𝑖 with gauge vectors (𝑓𝑖, 𝑔𝑖). When these are put into

(7.22), we obtain the conserved flows (𝑇 𝑡
𝑖 , 𝑇

𝑥
𝑖 ).

𝑋1 = 𝑒
2𝑏
𝑎
𝑡∂𝑣, 𝑓1 = 0, 𝑔1 = − 𝑏

𝑎
𝑒

2𝑏
𝑎
𝑡𝑣 (7.36)

𝑇 𝑡
1 = 𝑒

2𝑏
𝑎
𝑡(−1

2
𝑣𝑥 +

𝑎
2
𝑣𝑥𝑥𝑥)

𝑇 𝑥
1 = 𝑒

2𝑏
𝑎
𝑡(−1

2
𝑣𝑡 +

𝑎
2
𝑣𝑥𝑥𝑡 +

𝑏
𝑎
𝑣)

(7.37)

𝑋2 = 𝑒
√

2√
𝑎
𝑥
𝑒

2𝑏
𝑎
𝑡∂𝑣, 𝑓2 =

1√
2𝑎

𝑒
√

2√
𝑎
𝑥
𝑒

2𝑏
𝑎
𝑡𝑣, 𝑔2 = − 𝑏

𝑎
𝑒

√
2√
𝑎
𝑥
𝑒

2𝑏
𝑎
𝑡𝑣 (7.38)

𝑇 𝑡
2 = 𝑒

√
2√
𝑎
𝑥
𝑒

2𝑏
𝑎
𝑡(−1

2
𝑣𝑥 +

𝑎
2
𝑣𝑥𝑥𝑥 − 1√

2𝑎
𝑣)

𝑇 𝑥
2 = 𝑒

√
2√
𝑎
𝑥
𝑒

2𝑏
𝑎
𝑡(1

2
𝑣𝑡 +

𝑎
2
𝑣𝑥𝑥𝑡 −

√
𝑎√
2
𝑣𝑥𝑡 +

𝑏
𝑎
𝑣)

(7.39)
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𝑋3 = 𝑒
−

√
2√
𝑎
𝑥
𝑒

2𝑏
𝑎
𝑡∂𝑣, 𝑓3 = − 1√

2𝑎
𝑒
−

√
2√
𝑎
𝑥
𝑒

2𝑏
𝑎
𝑡𝑣, 𝑔3 = − 𝑏

𝑎
𝑒
−

√
2√
𝑎
𝑥
𝑒

2𝑏
𝑎
𝑡𝑣 (7.40)

𝑇 𝑡
3 = 𝑒

−
√
2√
𝑎
𝑥
𝑒

2𝑏
𝑎
𝑡(−1

2
𝑣𝑥 +

𝑎
2
𝑣𝑥𝑥𝑥 +

1√
2𝑎
𝑣)

𝑇 𝑥
3 = 𝑒

−
√

2√
𝑎
𝑥
𝑒

2𝑏
𝑎
𝑡(1

2
𝑣𝑡 +

𝑎
2
𝑣𝑥𝑥𝑡 +

√
𝑎√
2
𝑣𝑥𝑡 +

𝑏
𝑎
𝑣)

(7.41)

For the case 𝛼 = 2 and 𝛽 = 1, we obtain an additional result,

𝑋4 = −1

2
𝑒𝑡(𝑒𝑥+1+𝑒−(𝑥+1))∂𝑣, 𝑓4 = −1

4
𝑣𝑒𝑡(𝑒𝑥+1−𝑒−(𝑥+1)), 𝑔4 =

1

4
𝑣𝑒𝑡(𝑒𝑥+1+𝑒−(𝑥+1))

(7.42)

𝑇 𝑡
4 = −1

2
𝑒𝑡(𝑒𝑥+1 + 𝑒−(𝑥+1))(−1

2
𝑣𝑥 + 𝑣𝑥𝑥𝑥) +

1
4
𝑣𝑒𝑡(𝑒𝑥+1 − 𝑒−(𝑥+1))

𝑇 𝑥
4 = −1

2
𝑒𝑡(𝑒𝑥+1 + 𝑒−(𝑥+1))(1

2
𝑣𝑡 + 𝑣𝑥𝑥𝑡 +

1
2
𝑣) + 1

2
𝑒𝑡(𝑒𝑥+1 − 𝑒−(𝑥+1))(𝑣𝑥𝑡)

(7.43)

It can easily be verified that the (𝑇 𝑡, 𝑇 𝑥) are conserved flows of (7.34) but are all

nonlocal with respect to the original equation (7.23).

We will obtain similar results corresponding to the second case above but the third

case does not produce any Noether type generators so that no new conservation laws

are obtained via partial Lagrangians.

7.5 Discussion and conclusion

It is clear that the task of determining and classifying all the conservation laws

of the reduced equation/s of the third grade fluids considered in this section is a

nontrivial one requiring detailed analysis with a number options applied to different

situations. We have used the multiplier approach associated with the conserved

flow as well as the partial variational approach in all the cases, and thus obtained

interesting results which required some tedious calculations.
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Conclusion

We see that the conserved flows for high-order equations (with Lagrangians and,

equivalently, partial Lagrangians of order greater than one in derivatives) support

a formula similar to the well known Noether’s theorem with the provisor that the

higher-order cases have more terms in the Euler operator giving rise to the appropri-

ate order of the conserved flow. Also, in the fifth-order KdV evolution equation, we

resorted to variational techniques usually adopted for the third-order KdV equation.

In general, it would be cumbersome to determine the conserved vector for such a

high-order equation using first principles. We used the modified approach of the

Noether identity to find symmetries and then conservation laws for the high order

equations.

In the third chapter, we considered the equations where the highest order derivative

was mixed. Using the variational technique on the Shallow Water Wave equation, we

get conserved flows that produce extra terms when the conservation law is applied.

These extra terms are adjusted and then merged with the conservation law to form

new conserved quantities. These extra terms also occur in the Regularized Long

Wave equation.

We have shown in the fourth chapter that a large amount of information can be

extracted from a knowledge of the vector fields (one parameter Lie group transfor-

mations) that leave the action integral invariant. In addition to a larger class of

conservation laws than those given by the isometries or Killing vectors, we can con-

clude what the isometries actually are and that these form a Lie subalgebra of the
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Noether symmetry algebra. We have performed the calculations on some versions

of the Vaidiya metric yielding some previously unknown symmetries and conserved

vectors regarding the corresponding manifold. Lastly, with particular reference to

this metric, we concluded that the only variations on 𝑚(𝑢) that occur are 𝑚 = 0,

𝑚 =constant, 𝑚 = 𝑢 and 𝑚 = 𝑚(𝑢).

Particularly, the Petrov III metric admits 10 Killing vectors for both 𝑏 = 0 and

𝑏 = 1 respectively. Also, the metric has all the Ricci tensor components zero except

𝑅11 = 2𝑏(𝑏−1)
𝑡2(1+𝑡2)

and is Ricci flat for both 𝑏 = 0 and 1.The case 𝑏 = 1/2 admits six

Noether point symmetries of which three are Killing vectors.

We have considered the classical wave equation in some Lorentzian spacetime back-

ground with a point in mind that the wave equation there may naturally inherit

nonlinearity from the geometry. We have given some symmetry reductions to show

how wave equations can be either solved or reduced to ordinary differential equations

using the method of invariants. Also, some conservation laws were constructed. In

three flat space dimensions the linear wave equation admits a 16-dimensional Lie

algebra of point symmetries excluding the infinite symmetry. In this study we show

that the wave equation admits fewer symmetries when it is solved on a curved man-

ifold. We note that manifolds that are ‘flat’ need not lead to the wave equation

admitting the maximal 16-dimensional Lie algebra of point symmetries; the case

𝑚 = 0 being noted.

It is hoped that, by fully solving the nonlinear wave equation in curved space-

time background using the invariance approach may provide some insight into the

geometry or relativity for different manifolds. We also presented an alternate method

in finding some higher-order symmetries and associated conservation laws. Finally,

it is clear that the task of determining and classifying all the conservation laws of the

reduced equation/s of the third grade fluids considered in this thesis are nontrivial

requiring detailed analysis with a number of options applied to different situations.

We have done this using the multipliers associated with the conserved flow as well

as the partial variational approach. In all the cases, we have results which required

some tedious calculations.
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