
New Solution Approaches for the Quadratic Assignment

Problem

Franklin Djeumou Fomeni

University of the Witwatersrand, Johannesburg

School of Computational and Applied Mathematics

Supervised by: Professor Montaz Ali, University of the Witwatersrand, South Africa

September 12, 2011

Submitted in partial fulfilment of Masters of Sciences

Declaration

I, the undersigned, hereby declare that the work contained in this dissertation is my original

work, and that any work done by others or by myself previously has been acknowledged

and referenced accordingly. It is being submitted for the degree of Masters of Science at

the University of the Witwatersrand, Johannesburg. It has not been submitted before for

any degree or examination to any other university.

————————————

Franklin Djeumou Fomeni

September 12, 2011

i

Acknowledgements

I acknowledge the almighty God for the strength He gives me and for His love.

I am very thankful towards my supervisor Professor Montaz Ali who drew my attention to

this area of optimization, for his encouragement and his guidance throughout this work. I

thank both him and his visitor Dr Elzain of the university of Khartoum for suggesting the

way of generating initial strictly feasible solution for the interior point method reported in

this dissertation.

My sincere gratitude goes to the African Institute for Mathematical Sciences (AIMS) and

the School of Computational and Applied Mathematics (CAM) for their financial support

without which this dissertation would not have been possible.

I am indebted to all the staff members of the School of Computational and Applied Math-

ematics of the University of the Witwatersrand, for their friendship and assistance, and

particularly Prof Momoniat, Prof Banda, Dr Moitsheki, Mrs B. Pickering and Mrs D.

Bowes for their supports and advices.

I gratefully acknowledge CAM’s higher degree students for their warm friendship and collab-

oration, especially, Naval, Charles, Morgan, Guo-Dong, Innocent, Tumelo, Obakeng, Asha,

Dario, Sima, Elimboto, Viren, Terry, Tanya, Gideon, Byron and Rahab.

I am extremely grateful to my former lecturers at the University of Yaounde I in Cameroon,

especially Prof F. Wamon, Dr B. Tchapnda , Dr G. M. Mbakop, Dr Y. Emvudu for the

strong mathematical background they gave me, and for their continual advices.

To my family relatives, my dear mum Clementine Tientcheu, my dad Barthelemy Tayou, the

family Bakam, the family Tayo, Hugue, Chritel, Edith, and my friends, Ludovic, Lydienne,

Jeanne, Alain Julio, Silver, Diane, Chrystelle, Bertin, Bruno, Thierry, Daniel, Billy, Frank,

Fleur, Ronald, Danielle, Alain, Francine, Arnaud, Tafadzwa and Stephane, I say thanks for

their unconditional encouragement and love. Thanks to St Francis-Xavier Martindale, Holy

Trinity, Braamfontein Catholic churches for the spiritual support.

Finally, I thank the Family Ketcha for encouraging and advising me.

ii

Abstract

A vast array of important practical problems, in many different fields, can be modelled and

solved as quadratic assignment problems (QAP). This includes problems such as university

campus layout, forest management, assignment of runners in a relay team, parallel and

distributed computing, etc. The QAP is a difficult combinatorial optimization problem

and solving QAP instances of size greater than 22 within a reasonable amount of time

is still challenging. In this dissertation, we propose two new solution approaches to the

QAP, namely, a Branch-and-Bound method and a discrete dynamic convexized method.

These two methods use the standard quadratic integer programming formulation of the

QAP. We also present a lower bounding technique for the QAP based on an equivalent

separable convex quadratic formulation of the QAP. We finally develop two different new

techniques for finding initial strictly feasible points for the interior point method used in

the Branch-and-Bound method. Numerical results are presented showing the robustness

of both methods.

iii

Symbols nomenclature

• QAP: Quadratic assignment problem.

• RSQIP : Reformulated standard quadratic integer programming formulation of the

QAP.

• SQIP : Standard quadratic integer programming formulation of the QAP.

• SCQIP : Separable convex quadratic integer programming formulation of the QAP.

• CQIP : Convex quadratic integer programming formulation of the QAP.

• MILP : Mixed integer linear programming formulation of the QAP.

• QIP : Quadratic integer programming formulation of the QAP.

• TF : Trace formulation of the QAP.

• KF : Kronecker formulation of the QAP.

• CR1: Continuous relaxation of (RSQIP).

• CR2: Continuous relaxation of (SCQIP).

• BL: Barrier logarithmic problem.

• ANLIP : Auxiliary non-linear integer programming problem from (RSQIP).

• GA: Genetic algorithm.

• ACO: Ant colony optimization.

• SA: Simulated annealing.

• TS: Tabu search.

• DDC: Discrete dynamic convexized.

iv

Contents

Declaration i

Acknowledgements ii

Abstract iii

Symbols nomenclature iv

1 Introduction 1

1.1 Mathematical formulation of the optimization problem 2

1.2 The Quadratic Assignment Problem . 4

1.3 Methods for solving the QAP . 5

1.4 Structure of the dissertation . 6

2 Mathematical background 7

2.1 The quadratic form . 7

2.2 Matrix analysis . 9

3 Literature review 17

3.1 Formulations of the QAP . 17

3.1.1 Quadratic integer programming formulation 17

3.1.2 Trace formulation . 18

3.1.3 Kronecker formulation . 19

v

3.1.4 Mixed integer linear programming (MILP) formulation 19

3.2 Applications of the QAP . 20

3.3 The lower bounding techniques . 22

3.4 Solution methods for the QAP . 25

4 Problem formulation and lower bounding techniques 29

4.1 Standard quadratic integer programming formulation (SQIP) 29

4.2 Separable quadratic integer programming formulation 32

4.3 Lower bounds via the continuous relaxation of (RSQIP) 33

4.4 Lower bounds via the continuous relaxation of (SCQIP) 34

4.4.1 An interior point algorithm for (CR2) 35

4.4.2 Discussions of the interior point algorithm 38

5 Finding a starting point for the interior point algorithm 43

5.1 Description of the first technique . 43

5.1.1 The first step . 43

5.1.2 The second step . 45

5.2 Description of the second technique . 46

6 New methods for solving the QAP 48

6.1 The Branch-and-Bound method for the QAP 48

6.1.1 Choice of the branching variables . 50

6.1.2 Selection of branching nodes . 51

6.1.3 The Branch-and-Bound algorithm 53

6.2 An auxiliary function-based dynamic convexized method 55

6.2.1 The auxiliary function and its properties 56

6.2.2 The discrete dynamic convexized (DDC) algorithm 62

7 Numerical experiments and results 65

7.1 Computation of lower bounds . 65

7.2 A heuristic random enumeration . 68

7.3 Implementation of the Branch-and-Bound algorithm 69

7.4 Implementation of the auxiliary function-based method 71

8 Conclusion and further research 82

9 Appendix 84

9.1 Appendix 1: Generalized inverse of a matrix 84

9.2 Appendix 2: Minimizers from the auxiliary function-based method 85

9.3 Appendix 3: Choice of the value of N in the random enumeration 89

References 103

List of Figures

1.1 Local optima vs global optima . 3

6.1 The Branch-and-Bound flow chart . 54

7.1 . 78

7.2 . 79

7.3 . 80

7.4 . 81

9.1 . 90

9.2 . 91

9.3 . 92

9.4 . 93

viii

List of Tables

7.1 Lower Bounds from the continuous relaxation of (RSQIP) 67

7.2 Results from the Branch-and-Bound algorithm: Part 1 74

7.3 Results from the Branch-and-Bound algorithm: Part 2 75

7.4 Results from the auxiliary function-based method: Part 1 76

7.5 Results from the auxiliary function-based method: Part 2 77

9.1 Minimizers of the solutions from the auxiliary function-based method (1) . 86

9.2 Minimizers of the solutions from the auxiliary function-based method (2) . 87

9.3 Minimizers of the solutions from the auxiliary function-based method (3) . 88

ix

1. Introduction

Optimization is an important tool in decision science and in analysis of physical systems. It

has application in all branches of Science, Engineering and Management. In nature, physical

systems tend to state of minimum energy. The molecules in an isolated chemical system

react with each other until the total potential energy of their electron is minimized. Rays

of light follow paths that minimize their travel time. Manufacturers aim for maximum

efficiency in the design and operation of their production processes. Airline companies

schedule crews and aircraft to minimize cost. Investors seek to create portfolios that avoid

excessive risks while achieving a high rate of return.

To use optimization, one first needs to identify some objective, which is a quantitative

measure of the performance of the system under consideration. This objective could be, the

cost, the profit, the time, the potential energy or any quantity or combination of quantities

that can be represented by a number. The objective depends on certain characteristics of

the system, called variables. In an optimization problem, one’s goal is to find the values

of the variables that optimize the objective. In most of the cases, There are constraints

in the problem that restrict the values of the variables. The feasible set of the problem is

determined by the constraints. Optimization is divided into continuous, discrete and mixed

integer programming. In the continuous optimization, the variables used in the objective

can assume real values. Continuous optimization comprises linear programming and non-

linear programming. A continuous optimization is convex if the objective is a convex1

function of the variables and the feasible set is also convex.

As opposed to continuous optimization, the variables used in the discrete optimization

are restricted to assume only discrete values, such as the integers. There are two notable

branches of discrete optimization, namely, combinatorial optimization, in which the feasi-

ble set is a finite subset of the set of all the integer numbers, and integer programming in

1Details and characteristics of a convex function are given in Chapter 2

1

Section 1.1. Mathematical formulation of the optimization problem Page 2

which variable are simply constrained to assume only integer values. Discrete optimization

problems can also be formulated as a linear, non-linear, convex or non-convex optimization

problem. Mixed integer optimization combines both real and integer variables. This disser-

tation deals with a combinatorial optimization problem, namely, the quadratic assignment

problem.

1.1 Mathematical formulation of the optimization problem

Mathematically speaking, optimization is concerned with finding the maxima or minima of

a function subject to restrictions on its variables. An optimization problem is a problem of

the form

min
x∈S

f(x), (1.1)

where x stands for the variables, S is the feasible set or the feasible set, and f : S ⊆ Rn −→ Y

with Y ⊆ R is the objective function. The feasible set is defined by S = {x ∈ Rn : g(x) ≥

0, h(x) = 0}, where g(x), h(x) are also real-valued funtions.

If the search space S is continuous, then we have a continuous optimization problem, if it

is discrete, then we have a discrete optimization problem.

Definition 1.1.1 (Feasible and strictly feasible points):

A point x ∈ Rn is said to be feasible for (1.1) if x ∈ S.

If the interior of S is non empty, x is said to be strictly feasible for (1.1) if x is in the

interior of S.

Definition 1.1.2 (Local minimum, local maximum):

A point x∗ ∈ S is said to be a local minimum (local maximum) of f if f(x∗) ≤ f(x)

(f(x∗) ≥ f(x)) for all x in a neighbourhood of x∗. In other words, this means that there

exists ε > 0 such that f(x∗) ≤ f(x) (f(x∗) ≥ f(x)) and ‖x∗ − x‖ < ε, x ∈ S.

Section 1.1. Mathematical formulation of the optimization problem Page 3

Definition 1.1.3 (Global minimum, global maximum):

A point x∗ is said to be a global minimum (global maximum) if f(x∗) ≤ f(x) (f(x∗) ≥ f(x))

for all x ∈ S.

Definition 1.1.4 (Optima):

A point x∗ ∈ S is called an optimizer of f if x∗ is a minimizer or a maximizer of f .

Figure 1.1 gives a graphical illustration of local and global optima. In this figure, the points

(A) and (B) are global maximum and minimum respectively. While the points (a) and (b)

are local maximum and minimum respectively. The global maximum (Minimum) is also a

local maximum (Minimum).

Figure 1.1: Local optima vs global optima

Section 1.2. The Quadratic Assignment Problem Page 4

1.2 The Quadratic Assignment Problem

The QAP is one of the fundamental combinatorial optimization problems. It was introduced

in 1957 by Koopmans and Beckmann [KB57] as a mathematical model for the location of a

set of indivisible economical activities. The QAP considers the problem of allocating a set

of n facilities to a set of n locations, with the cost being a function of the distance and flow

between facilities, plus costs associated with a facility being placed at a certain location.

The formal definition of the problem is as follows. Let n be the number of facilities and

locations, F = (fij)1≤i,j≤n, D = (dkl)1≤k,l≤n and B = (bik)1≤i,k≤n be three n× n matrices,

where fij is the flow between the facilities i and j, dkl, the distance between the locations

k and l, and bik the cost of the facility i being placed at the location k. Let Sn be the set

of all the permutations φ : {1, . . . , n} −→ {1, . . . , n}, see Definition 2.2.15 in Chapter 2.

The QAP was originally defined as follows:

min
φ∈Sn

n∑
i=1

n∑
j=1

fijdφ(i)φ(j) +
n∑
i=1

biφ(i). (1.2)

The term biφ(i) in (1.2) is the cost associated with placing facility i at location φ(i). On the

other hand, the product fijdφ(i)φ(j) represents the cost of placing facility j at location φ(j)

while facility i is placed at location φ(i).

A lot of interests have been given to the QAP since its introduction in 1957. The QAP has

been used as the mathematical model of many real life problems arising in facility location,

computer manufacturing, scheduling, building layout design, process communications, etc.

Indeed, in Chapter 3 we review some of the direct applications of the QAP in real life.

Solving the QAP using exact solution methods is still a challenge. In fact, many problem

instances of size n > 20 are still found difficult to be solved with exact algorithm within

reasonable computational time. Sahni and Gonzalez [SG76] have shown that the QAP is

NP-hard and that even finding an approximate solution within some constant factor from

the optimal solution cannot be done in polynomial time unless P=NP.

Section 1.3. Methods for solving the QAP Page 5

1.3 Methods for solving the QAP

The different methods used to achieve a global optimum for the QAP include Branch-and-

Bound, cutting planes, Branch-and-Cut, and semi-definite programming (SDP). However,

the aim of this dissertation is to develop new solution approaches for the QAP. We identify a

mathematical formulation of the QAP, which has not been studied in the literature yet, for

which we develop two solution methods. Our first solution method is a Branch-and-Bound

method which is a systematic enumerative scheme that uses lower bounds to eliminate

undesired solutions.

Our second solution method is an auxiliary function-based dynamic convexized method.

This method consists of building a sequence of minimizers, using a local search algorithm,

for the QAP which converges towards the optimum solution of the problem. The dynamic

convexized method incorporates some mechanisms that allow it to escape from local minima.

It has recently been proposed by Zhu and Ali [ZA09] for solving the general non-linearly

constrained non-linear integer programming, and has never been applied to the QAP. This

dissertation offers the first application of this method to the QAP. Central to the application

of dynamic convexzied method to the QAP is a neighbourhood structure of the QAP that

we introduce. This makes the dynamic convexzied method different from the one proposed

by Zhu and Ali [ZA09].

In order to improve the efficiency and speed up the convergence of the two solution meth-

ods, we have proposed a heuristic random enumerative scheme to identify an initial solution

with which to start the new methods proposed in this dissertation. Another major contri-

bution in this dissertation is the identification of a strictly feasible solution of the quadratic

formulation of the QAP. We have developed two different techniques for finding an initial

strictly feasible point for the interior point method, since we used an interior point algo-

rithm for our lower bounding technique in the Branch-and-Bound. These two techniques

can consequently be applied to other interior point algorithms.

Section 1.4. Structure of the dissertation Page 6

1.4 Structure of the dissertation

The rest of this dissertation is organized as follows:

• In Chapter 2, we present the mathematical background necessary for the understand-

ing of this dissertation.

• In Chapter 3, we review the previous developments in the area of the QAP. This

review comprises the different mathematical formulations of the QAP, its applications

to real life problems, the existing lower bounding techniques and the existing solution

methods.

• Chapter 4, we present a standard quadratic integer programming (RSQIP) formu-

lation of the QAP. This is a reformulation of the standard quadratic integer pro-

gramming (SQIP) formulation suggested in [BcPP98]. We then transform this stan-

dard quadratic integer programming reformulation, (RSQIP), into a separable convex

quadratic integer programming (SCQIP) problem using a decomposition technique.

We study (RSQIP) and (SCQIP) in this dissertation. Two lower bounding tech-

niques based on these two problem formulations are also presented in this chapter.

• In Chapter 5, we develop two different techniques for finding an initial strictly feasible

point for the interior point method.

• In Chapter 6, we present in detail the two new solution approaches proposed in this

dissertation together with the step-by-step descriptions of the corresponding algo-

rithms.

• In Chapter 7, the details of the numerical experiments and a full set of numerical

results from the two solution methods are presented.

• Chapter 8 presents concluding remarks and possible future research.

2. Mathematical background

Since the introduction of the QAP, researchers have been using mathematical theories

to advance the reformulations and approximations of the QAP. Reformulations and ap-

proximations are used to design algorithms for the QAP. In this dissertation, we develop

some mathematical theories and suggest new algorithms for solving the QAP. This chapter

presents some mathematical tools useful for an easy understanding of various reformula-

tions and approximation of the QAP. We begin with some basic notations used throughout

the dissertation: Rn , Zn and Qn denote the set of all real, integer and rational n-vectors,

respectively; Rm×n , Zm×n and Qm×n denote the set of all real , integer and rational m×n

matrices, respectively. The set of all positive integers is also denoted by Z+ and the set

of all rational numbers by Q. The upper script T to any vector or matrix stands for its

transpose.

2.1 The quadratic form

Definition 2.1.1 (Bilinear function):

A function

f :E × F −→ G, i.e.

(x, y) 7−→ f(x, y),

E ⊆ Rm, F ⊆ Rn and G ⊆ Rq, m,n, q ∈ Z+, is called a bilinear function if it is linear in

each of its variables i.e for all x, x1, x2 ∈ E, y, y1, y2 ∈ F and a, b ∈ R we have:

• f(ax1 + bx2, y) = af(x1, y) + bf(x2, y),

• f(x, ay1 + by2) = af(x, y1) + bf(x, y2).

In addition, if E = F , then f is said to be symmetric if f(x, y) = f(y, x) for all x, y ∈ E.

7

Section 2.1. The quadratic form Page 8

Definition 2.1.2 (Bilinear form):

A bilinear function f is said to be a bilinear form if G is reduced to R i.e.

f :E × F −→ R.

Definition 2.1.3 (Quadratic form):

A quadratic form over E is a function

q :E −→ R, i.e.

x 7−→ q(x)

such that q(x) = f(x, x), where f(•, •) is a symmetric bilinear form over E; f is called the

associated bilinear form of q.

Given a quadratic form q, its associated bilinear form f can always be retrieved from q as

follows:

f(x, y) =
1

2
(q(x+ y)− q(x)− q(y)) .

Any quadratic form q is fully defined by its matrix M i.e.

q(x) =
1

2
xTMx.

Definition 2.1.4 (Positive semi-definiteness and positive definiteness):

A matrix M is said to be positive semi-definite if:

xTMx ≥ 0,∀x ∈ Rm,

it is said to be positive definite if

xTMx > 0,∀x ∈ Rm \ {0} .

Definition 2.1.5 (Convex function):

Let g be a real valued function defined over E ⊆ Rn. The function g is said to be a convex

function if it satisfies:

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y)

Section 2.2. Matrix analysis Page 9

for all x, y ∈ E and t ∈ [0, 1], it is said to be strictly convex if

g(tx+ (1− t)y) < tg(x) + (1− t)g(y)

for all t ∈ (0, 1).

It is well known [Cot67] that a quadratic form q(x) = xTMx is convex if its matrix M is

positive semi-definite, it is strictly convex if M is positive definite.

2.2 Matrix analysis

Definition 2.2.1 (Rational elementary row and column operations):

For a rational matrix, the rational elementary row or column operations are:

i) Interchanging two rows or two columns.

ii) Multiplying a row or a column by a non-zero rational number.

iii) Adding a rational multiple of one row (or one column) to another row (or column).

Theorem 2.2.2:

Let M be an n × n rational symmetric matrix such that a zeros pivot is never encoun-

tered when applying Gaussian elimination with type iii) operations, then there exists a

non-singular rational matrix P such that

P TMP = diag(d̄1, . . . , d̄n). (2.1)

Proof. Let M be an n×n rational symmetric matrix such that the hypothesis of Theorem

2.2.2 holds . It is well known (Chapter 3 of [Mey00]) that by performing a sequence of

rational elementary row and column operations on M , one can decompose M as M = LU

(This decomposition is called the LU factorization of M .), where L is a lower triangular

Section 2.2. Matrix analysis Page 10

matrix and U is an upper triangular matrix, both with non-zero elements on the main

diagonal.

It follows from the LU factorization that UT = L1U1, where U1 is a diagonal matrix, since

all the elements in the upper triangular half of UT are equal to zero, while L1 is a lower

triangular matrix.

Therefore we can write M = LU1L
T
1 . Given that M is a symmetric matrix, we have

MT = M ⇐⇒ L1U1L
T = LU1L

T
1 i.e L = L1, since the same elementary operations that

are applied to each row will also be applied to the corresponding column.

Hence, if we choose P =
(
L−1

)T
and D̄ = U1, Theorem 2.2.2 holds, where D̄ = diag(d̄1, . . . , d̄n).

When transforming the objective function of a quadratic integer programming problem into

a separable1 quadratic form, it is desirable that the resulting quadratic program keeps the

integral nature.

Considering a quadratic form q(x) =
1

2
xTMx + cTx where M is such that P TMP =

diag(d̄1, . . . , d̄n), as in Theorem 2.2.2. We set x = Py ⇐⇒ y = P−1x, then the quadratic

form q becomes q(y) =
1

2
(Py)TM(Py) + cT (Py) =

1

2
yT (P TMP)y+ cTPy =

1

2
yT D̄y+ c̄T y

with c̄T = cTP . The new variable y will be ensured to be integral if P−1 is an integer

matrix.

Definition 2.2.3 (Congruent matrices):

A matrix A is said to be congruent to a matrix B if there exists a non-singular matrix P

such that P TAP = B. The matrix P is called the congruent matrix of A and B.

The congruence relation is an equivalence relation. Indeed we have:

• ITAI = A i.e the congruence relation is reflexive.

• P TAP = B ⇐⇒ (P−1)TB(P−1) = A, the relation is symmetric.

1A quadratic form is separable if its matrix is diagonal.

Section 2.2. Matrix analysis Page 11

• P TAP = B and QTBQ = C =⇒ (PQ)TA(PQ) = C, with (PQ)−1 = Q−1P−1, the

relation is transitive.

Definition 2.2.4 (Unimodular matrix):

A matrix U ∈ Rn×n is unimodular if it is integral and det(U) = ±1, where det(U) denotes

the determinant of U .

It is easy to see that a matrix P is unimodular if and only if P−1 is unimodular. Therefore

if P is unimodular, then Py ∈ Zn ⇐⇒ y ∈ Zn. Hence for a quadratic integer programming

problem that has q(x) =
1

2
xTMx+cTx as the objective function, the transformed separable

quadratic program with the objective function q(y) =
1

2
yT D̄y + c̄T y, x = Py, D̄ =

P TMP , will be an integer optimization problem as well. However, such a unimodular

congruence transformation does not always exist for all the rational symmetric matrices.

Example 2.2.5:

Let

M =

 0 1

1 0

 ,

and suppose that there is an integer matrix

P =

 a b

c d

such that P TMP is diagonal. Then, we must have bc + ad = 0 and ad − bc = ±1, which

implies 2ad = ±1, a contradiction that a and d are both integer numbers. Thus, there does

not exist a unimodular congruence transformation for M .

Definition 2.2.6 (Semi-unimodular matrix):

A matrix P is said to be semi-unimodular if P−1 is an integer matrix.

Let us suppose that P is a semi-unimodular matrix, therefore Py ∈ Zn ⇐⇒ y ∈ Zn.

Section 2.2. Matrix analysis Page 12

For a rational symmetric matrix M with non-zero pivots using type iii) rational elementary

operations under Gaussian elimination, Zheng et al [ZSL10] proposed a procedure of ob-

taining a semi-unimodular congruent matrix P such that P TMP is diagonal. Their result

is stated in the following theorem.

Theorem 2.2.7 (Integer diagonalisation):

For any rational symmetric matrix M such that the hypothesis of Theorem 2.2.2 holds,

there exists a semi-unimodular congruent matrix P such that

P TMP = diag(d1, . . . , dn) (2.2)

Proof. NB: The proof of this theorem is the same as that in [ZSL10].

Let Di(k) be the elementary matrix obtained by multiplying the i–th row of the identity

matrix by k and Tij(k) be the matrix obtained by adding k times of the j–th row to the

i–th row of the identity matrix, where k is a rational number.

It follows from 2.2.2 that there exists a non-singular rational matrix V such that V TMV =

diag(d̄1, . . . , d̄n). Since the elements of M are rational, the elements k in the elementary

matrices Di(k) and Tij(k) involved in V are also rational. Thus each element of V −1 is

rational. If V −1 is an integer matrix, then P = V satisfies (2.2). Suppose now that V −1 is

not an integer matrix. Let all the entries of V −1 be written as (vulgar) fractions. Let ki

be the least common denominator (lcd) of the i–th row of V −1. Here, we set ki = 1 if all

entries of the i–th row are integers. Let

P = V D1

(
1

k1

)
. . . Dn

(
1

kn

)
,

then

P−1 = Dn(kn) . . . D1(k1)V
−1

is an integer matrix and

P TMP = diag(d1, . . . , dn),

where di = d̄i/k
2
i , i = 1, . . . , n.

Section 2.2. Matrix analysis Page 13

Definition 2.2.8 (Diagonally dominant matrix):

A matrix M = (mij)1≤i,j≤n is said to be diagonally dominant if for every row and column

of M the magnitude of the diagonal entry in a row and column is greater than or equal to

the sum of the magnitudes of all other (non-diagonal) entries in the same row and column.

In other words, M is diagonally dominant if | mii |≥
∑
j 6=i
| mij | for all i = 1, . . . , n, M is

strictly diagonally dominant if | mii |>
∑
j 6=i
| mij | for all i = 1, . . . , n.

Lemma 2.2.9:

If a matrix M is diagonally dominant with real non-negative diagonal entries, then it is

positive semi-definite.

Proof. This lemma is a direct consequence of the Gerschgorin’s circle theorem [S.G31].

Lemma 2.2.10:

In addition to the assumptions of Theorem 2.2.7, if the matrix M is diagonally dominant

then there exists a semiunimodular congruence matrix P such that P TMP = diag(d1, . . . , dn)

and di ≥ 0 for all i = 1, . . . , n.

Proof. In the proof of Theorem 2.2.7, the matrix diag(d1, . . . , dn) is obtained from (2.1)

by the relation di = d̄i/k
2
i for some rational number ki, i = 1, . . . , n. So to end our proof,

it is sufficient to show that if M is diagonally dominant, then every element d̄i in (2.1)

is positive. To do so we consider the Gaussian elimination that leads to (2.1), and show

that every diagonal element remains positive. Given that the matrix M is non-zero and

diagonally dominant, there is no need of interchanging two rows or columns. There is also

no need to multiply a row or a column by a non-zero rational number. Thus the only

rational elementary operations involved in the Gaussian elimination are operations of type

iii), which corresponds to, for a row Rj , Rj ←− Rj + αRi with α ∈ Q∗ = Q \ {0}.

If the pivot is fixed at the diagonal entry Mii (which is already positive) on the row Ri,

then for any other row Rj , j > i, we will have Rj ←− Rj −
Mji

Mii
Ri and the diagonal entry

Section 2.2. Matrix analysis Page 14

on the row Rj will become Mjj −
Mji

Mii
Mij . We consider the two cases below:

• If Mij ≤ 0, then Mjj −
Mji

Mii
Mij ≥ 0 since |Mji |≤Mii and |Mij |≤Mjj .

• If Mij > 0, since Mji ≤Mii, therefore Mjj −
Mji

Mii
Mij ≥Mjj −Mij ≥ 0.

Thus every diagonal entry of the resulting matrix will be left positive. Hence d̄i ≥ 0 for

i = 1, . . . , n.

Theorem 2.2.11 (Eigenvalue factorization):

Let M be an n × n symmetric matrix, there exists an orthogonal matrix P such that

M = P TDP , where D is a diagonal matrix with eigenvalues of M on the diagonal.

Definition 2.2.12 (Trace of a matrix):

The trace of an n×n matrix M denoted by tr(M) is the sum of all the element on its main

diagonal, i.e.

tr(M) =

n∑
i=1

mii.

Given any two n× n-matrices F and D, some well known properties of the trace are given

by:

• tr(FD) = tr(DF),

• tr(F) = tr(F T),

• for F = F T and for any n× n-matrix X, we have tr(FXDTXT) = tr(FXDXT).

Definition 2.2.13 (Kronecker product):

Let A be a real m× n-matrix and B a real p× q-matrix. The Kronecker product of A and

Section 2.2. Matrix analysis Page 15

B, denoted A⊗B, is defined by:

A⊗B =

a11B a12B . . . a1nB

. . .

. . .

. . .

am1B am2B . . . amnB

which is the mp × nq matrix formed from all possible pairwise element products of A and

B.

Example 2.2.14:

A =

 1 2 2

4 3 1

 and B =

 5 1

1 2

 then

A⊗B =

 B 2×B 2×B

4×B 3×B B

 (2.3)

=

5 1 10 2 10 2

1 2 2 4 2 4

20 4 15 3 5 2

4 8 3 6 1 2

 . (2.4)

Definition 2.2.15 (Permutation):

A permutation of the set {1, . . . , n} is a one-to-one correspondence from {1, . . . , n} onto

itself.

Definition 2.2.16 (Permutation matrix):

A permutation matrix is a square binary matrix that has exactly one entry 1 on each row

and each column and 0’s everywhere else. We denote by Xn the set of all permutation

matrices of size n× n.

Each permutation of the set {1, . . . , n} can be represented by an n×n permutation matrix.

Section 2.2. Matrix analysis Page 16

Definition 2.2.17 (Vector norm):

Let E be a sub-vector space of Rn. A norm on E is an application ρ : E −→ R which

satisfies the following properties:

i) ρ(x) ≥ 0, for all x ∈ E,

ii) ρ(ax) =| a | ρ(x), for all x ∈ E and a ∈ R,

iii) ρ(x+ y) ≤ ρ(x) + ρ(y), for all x, y ∈ E,

iv) If ρ(x) = 0, then x = 0.

On the vector space Rn, we define the the following norms:

• ‖x‖1 =
n∑
i=1
| xi |, it is called the Taxicab norm.

• ‖x‖2 =

(
n∑
i=1

x2i

)1/2

, it is called the Euclidean norm.

• ‖x‖∞ = max
i=1,...,n

(| xi |), it is called the Maximum norm.

3. Literature review

In this chapter, we present a review on the QAP so that the reader can see how different

is the current work to what have been done in this area already. Since its introduction,

the QAP has gained a lot of attentions from researchers all over the world. This is due

to its applications in a wide range of applied areas and its challenging difficulty. In this

chapter, we review some important mathematical reformulation of the QAP, some of the

real life applications of the QAP, the lower bounding techniques used in different solution

approaches, and finally the exact and heuristic solution methods that have been adopted

for the QAP.

3.1 Formulations of the QAP

Since its introduction, the QAP has been formulated in many different ways ranging from

the linear form to the SDP form. Here we present some selected mathematical formulations.

3.1.1 Quadratic integer programming formulation

Considering the fact that for every permutation of {1, . . . , n}, there is a corresponding ele-

ment X in Xn, where X = (xij)1≤i,j≤n. The permutation φ in the original QAP formulation

(1.2) can therefore be replaced by a permutation matrix X = (xij)1≤i,j≤n where

xij =

 1 if facility i is placed at location j,

0 otherwise.
(3.1)

Using this notation, Koopmans and Beckmann [KB57] gave the following quadratic integer

programming formulation:

(QIP) min

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

fijdklxikxjl +
n∑
i=1

n∑
j=1

bijxij , s.t. (3.2)

17

Section 3.1. Formulations of the QAP Page 18

n∑
i=1

xij = 1 for j = 1, . . . , n, (3.3)

n∑
j=1

xij = 1 for i = 1, . . . , n, (3.4)

xij ∈ {0, 1} for i, j = 1, . . . , n, (3.5)

where fij is the flow between facility i and facility j, dkl the distance between location k

and location l and bij the cost of placing facility i at location j. This formulation can be

found in most of the linearisation approaches for the QAP.

3.1.2 Trace formulation

Considering a QAP instance with flow matrix F , distance matrix D and cost matrix B, we

set D̄ = XDTXT , which leads to d̄ji = dφ(i)φ(j) for i, j = 1, . . . , n. It then follows that

tr(FXDTXT) = tr(FD̄) =

n∑
i=1

n∑
j=1

fij d̄ji =

n∑
i=1

n∑
j=1

fijdφ(i)φ(j),

where φ is the permutation associated with the permutation matrix X.

Therefore the original formulation of the QAP can equivalently be reformulated in the

following form:

min tr
[
(FXDT +B)X

]
, s.t. (3.6)

X ∈ Xn, (3.7)

which is equivalent to

(TF) min tr
[
(FXDT +B)X

]
, s.t. (3.8)

Section 3.1. Formulations of the QAP Page 19

XT e = e, (3.9)

Xe = e, (3.10)

xij ∈ {0, 1} for all i, j, (3.11)

where e is the column n–vector of ones. This formulation was introduced by Edward

[Edw80]. The spectral theory was applied to this formulation to develop the eigenvalue lower

bounding and some other lower bounding techniques, see [FBR87, HRW90, Had94, KR95].

3.1.3 Kronecker formulation

Given an n× n-matrix X, we define vec(X) to be the n2-vector formed by the columns of

X. The QAP can thus be formulated as:

(KF) min xT (F ⊗D)x+ bTx, s.t. (3.12)

XT e = e, (3.13)

Xe = e, (3.14)

xi ∈ {0, 1} for all i = 1, . . . , n2, (3.15)

where x = vec(X) and b = vec(B). This formulation was suggested in a survey by Burkard

et al. [PRW94] in 1994 but has not been studied further.

3.1.4 Mixed integer linear programming (MILP) formulation

In the MILP formulation, the QAP formulation (3.2)–(3.5) is simplified by adding some

new variables, see [LW76]. These variables together with the MILP formulation are pre-

sented below. Let us consider the objective function of the quadratic integer programming

formulation given by equation (3.2). In this function, we set Cijkl = fijdkl if i 6= j or k 6= l

Section 3.2. Applications of the QAP Page 20

and Ciikk = fiidkk + bik. The new variables are now defined as yijkl = xikxjl for i, j, k, l =

1, . . . , n and the QAP is transformed into the following MILP:

(MILP) min

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

Cijklyijkl, s.t. (3.16)

n∑
i=1

xik = 1 for k = 1, . . . , n, (3.17)

n∑
k=1

xik = 1 for i = 1, . . . , n, (3.18)

n∑
i=1

yijkl = xjl for j, k, l = 1, . . . , n, (3.19)

n∑
j=1

yijkl = xik for i, k, l = 1, . . . , n, (3.20)

n∑
k=1

yijkl = xjl for i, j, l = 1, . . . , n, (3.21)

n∑
l=1

yijkl = xik for i, j, k = 1, . . . , n, (3.22)

xij ∈ {0, 1} for i, j = 1, . . . , n, (3.23)

yiikk = xik for i, k = 1, . . . , n, (3.24)

0 ≤ yijkl ≤ 1 for i, j, k, l = 1, . . . , n. (3.25)

3.2 Applications of the QAP

The QAP was originally introduced by Koopmans and Beckmann [KB57] to model the

assignment of activities in economy. Afterwards, the QAP has been successfully used to

model problems arising from many different areas. For example, the QAP has been applied

in the backboard wiring. The backboard wiring is concerned with placing the computer’s

elements on the backboard while minimizing a bounded numeric norm. The norm is cal-

Section 3.2. Applications of the QAP Page 21

culated as the product of the inter-connexion between the elements, and the length of wire

needed to connect elements placed at given positions. The problem was casted into math-

ematical formulation by Steinberg [Ste61]. As an application of mathematics in sports,

Heffley [Hef77] pointed out that the assignment of runners in a relay team leads to the

QAP. Geoffrion and Graves [GG76] used a quadratic assignment formulation to treat the

problem of scheduling parallel production lines with changeover costs. Here the production

orders for a number of products must be scheduled on a number of production lines, so as

to minimize the sum of products costs. The total cost consists of the changeover costs, pro-

duction costs and the cost involving time restrictions. Pollatscheck et al. [PGR76], on the

other hand, used the QAP to define the best design typewriter keyboard and control panels.

The application of the QAP in Chemistry has also been reported by Forsberg et al [FDZ+94]

who used the QAP in the analysis of some chemical reactions. In the area of numerical

analysis, the combinatorial solution for the least-square uni-dimensional scaling of symmet-

ric proximity matrices is known to be very sensitive to the starting point. Brusco and Stahl

[BS00] proved that using the solution to a QAP as a starting point substantially improves

the final seriation quality and the computational efficiency of this problem.

The QAP has a number of applications in the location problem. For example, in university

campus layout problem, where there is a need for a university to enlarge its campuses while

minimizing the amount of required travel for students and staff. The QAP happened to be

the solution as was mathematically formulated so by Dickey and Hopkins [DH72]. Similarly,

the problem of locating hospital department with the aim of minimizing the total distance

travelled by patients was formulated by Elshafei [Els77] as a QAP. Jan Bos [Bos93] used

the QAP formulation to solve the zoning problem which arose in forest management. This

problem is concerned with the planning of territorial structures by designating area units

for specific purpose.

Section 3.3. The lower bounding techniques Page 22

In addition to the above examples, several applications of the QAP also arise in electron-

ics. For example, Rabak and Schiman [RS03] showed that the problem of optimizing the

automatic electronic components insertion in a particular inserting machine corresponds

to a QAP. Miranda et al. [MLMF05] used the QAP formulation to model the electronic

board design problem. In this problem, one needs to place electronic components to some

locations in a printed circuit card so as to minimize the distance among the components

that have greater levels of interactivity and energy or data flow, in order to avoid excessive

signal delay. On the other hand, the index assignment which has to do with error control

in communications was proved by Ben-David and Malah [DM05] to be a special case of the

QAP. Wess and Zeitlhofer [WZ04] represented the problem of memory layout optimization

in signal processor as a QAP. Many other QAP’s applications can be found in the literature

[LAN+07].

3.3 The lower bounding techniques

Ever since the QAP was originally suggested, many researchers have been working on var-

ious solution techniques [LAN+07]. The ability of some QAP instances to be solved, both

exactly and approximately, depends on their lower bounding techniques. The lower bound-

ing techniques are used within implicit enumeration algorithms, such as Branch-and-Bound,

in order to perform a limited search of the feasible region of the problem, until an optimal

solution is found. Therefore many researchers have focused on developing lower bounds

for the QAP instances. Based on the mixed integer linear programming (MILP) formula-

tion (3.16), Gilmore [Gil62] and Lawler [Law63] independently derived similar lower bounds

(known as the Gilmore-Lawler lower bounds) for the QAP by constructing a solution matrix

in the process of solving a series of linear assignment problem. The Gilmore-Lawler lower

bounds have been widely used for roughly three decades because of their cheap computa-

tional cost.

Section 3.3. The lower bounding techniques Page 23

Using the linear programming relaxation of the MILP formulation (3.16), Resende and Ra-

makrishnan [MRD95] computed lower bounds for the QAP instances via an interior point

method. In their work, they used the primal simplex algorithm and the interior point algo-

rithm, both available in the commercial linear programming solver CPLEX. For about 80%

of the problem instances available in the QAP library [BcKR], Resende and Ramakrishnan

produced lower bounds tighter than the Gilmore-Lawler lower bounds. Another bounding

technique that shares the basic idea with the Gilmore-Lawler lower bounding technique has

been developed by Hahn and Grant [HG98]. This lower bounding technique is based upon

a dual formulation. It extends the Hungarian algorithm [Kuh55] for the linear assignment

problem to the QAPs. Karisch et al. [KR95] investigated this dual-based lower bounding

technique. They revealed that it is an iterative approach in which the dual of some linear

programming relaxation of the original problem is solved, and reformulated at each itera-

tion. The reformulation step makes use of the information provided in the preceding step.

Given that linear programming problems are easy to solve, many researchers have focused

on the MILP formulation (3.16) in order to develop good quality lower bounds. For exam-

ple, Frieze and Yadegar [FY83] gave a MILP reformulation of the QAP. They studied the

Lagrangian relaxation of it, and developed two sub-gradient optimization-based algorithms

to approximately solve the MILP. They were able to give lower bounds better than the

Gilmore-Lawler lower bounds. Adams and Johnson [AJ94] proposed another MILP refor-

mulation of the QAP similar to the reformulation idea of Frieze and Yadegar [FY83]. In

their work, the number of constraints of the problem is considerably reduced compared to

the MILP reformulation by Frieze and Yadegar [FY83]. Adams and Johnson obtained lower

bounds simply by considering the continuous relaxation of their problem reformulation. On

the other hand, Karisch et al [KR95] studied a theoretical relationship between the two lower

bounding techniques by Adams and Johnson [AJ94] and Hahn and Grant [HG98]. It was

reported that, unlike other Gilmore-Lawler-like bounds, the Hahn and Grant bounds cannot

be obtained by applying the algorithm of Adams and Johnson (to solve the Lagrangian re-

Section 3.3. The lower bounding techniques Page 24

laxation). However, both Adams and Johnson [AJ94] and Hahn and Grant [HG98] bounds

can be obtained as feasible solutions of the dual of the continuous relaxation of the mixed

integer linear programming reformulation by Adams and Johnson.

In 1990, Hadley et al. [HRW90] used the trace formulation (3.6) to develop the projection

lower bound for the QAP. They obtained additional improvements by making an efficient

use of a tractable representation of the orthogonal matrices having constant row and col-

umn sum. Based on the relationship of the objective function of the trace formulation (3.6)

and the eigenvalues of its coefficient matrices, Finke et al.[FBR87] developed the “Eigen-

values lower bounds”. The bounds obtained were tighter than the Gilmore-Lawler bounds.

However, Clausen et al. [CKPR98] showed that the computation of these bounds is time

expensive, and therefore not good for the Branch-and-Bound method. Based upon this gen-

eral eigenvalue bounding idea, many researchers have applied some reduction techniques to

the quadratic term in the objective function of the trace formulation (3.6) with the aim of

improving the quality of the lower bound. These reduction techniques have significantly

contributed to the improvement of the existing lower bounds [BcKR].

Another important lower bounding technique for the QAP is the one via SDP relaxation.

In the literature of this lower bounding technique, valid bounds are obtained by solv-

ing the SDP relaxation using interior point methods [Kar95], and cutting plane meth-

ods [ZKRW98, Zha96]. The lower bounds obtained by this methods are very competitive

[BcKR]. Burer and Vandenbussche [BV06] computed lower bounds for the general binary

programming via a lift-and-project relaxation, an SDP-based relaxation, which performed

very well and provided challenging bounds for the QAP instances. Further research using the

SDP was carried out by Rendl and Sotirov [RS07] who combined SDP relaxation together

with the bundle method to compute lower bounds. More recently, Ding and Wolkowicz

[DW09] introduced a new SDP relaxation for generating lower bound for the QAP in the

trace formulation (3.6). The authors applied a majorization to obtain a relaxation of the

orthogonal similarity set of the quadratic part of the objective function. This exploits the

Section 3.4. Solution methods for the QAP Page 25

matrix structure of the QAP and results in a relaxation with much smaller dimension than

the previous suggested SDP relaxations by Rendl and Sotirov [RS07], Karisch [Kar95], Zhao

et al. [ZKRW98] and Zhao [Zha96].

3.4 Solution methods for the QAP

Despite the calculation of quality bounds for the QAP instances, the great challenge of

solving the QAP to optimality still remains. In order to achieve optimality for some QAP

instances, exact solution methods for combinatorial optimization such as Branch-and-Bound

and cutting-plane have been used in the literature [BcKR]. Enumerative schemes that use

lower bounds to eliminate undesired solutions started with Gilmore [Gil62] and Lawler

[Law63]. Hahn et al. [HGH98] proposed a Branch-and-Bound algorithm based on the Hun-

garian method [Kuh55]. For problem instances of size up to 22, this Branch-and-Bound

[HGH98] requires significantly less computational time than other methods. Brixius and

Anstreicher [BA01] developed a Branch-and-Bound algorithm for the QAP that uses a con-

vex quadratic programming relaxation to obtain a bound at each node. An exhaustive list

of applications of the Branch-and-Bound methods for the QAP can be found in a recent

QAP survey by Loiola et al. [LAN+07]. Zhang et al [ZRC10] have recently analysed the

variables and constraints reduction of the QAP. In their work, they considered the linear

programming formulation of the QAP by Adams and Johnson [AJ94]. They finally used

the Branch-and-Bound algorithm available in the integer programming solver CPLEX in

Matlab to solve the reduced problem.

It appears that there have been less applications of the cutting-plane method for the QAP

than the Branch-and-Bound and the heuristic methods. Kaufman and Broekx [KB78] first

used a cutting-plane method to solve an equivalent linear formulation of the QAP. Bazaraa

and Sherali [BS82] solved a concave equivalent formulation of the QAP using a cutting-plane

Section 3.4. Solution methods for the QAP Page 26

method as well. A recent implementation of the cutting-plane method for solving the QAP

is the one by Miranda et al. [MLMF05]. They used Benders Decomposition to deal with a

motherboard design problem. The reason why polyhedral cutting plane is not widely used

in the context of the QAP is due to the dearth of knowledge about the QAP polytopes.

Some contributions have been made in this direction by Jünger and Kaibel [JK96] and

Blanchard et al. [BEFW03]. On the other hand, Gasimov and Ustun [GU07] implemented

a generalized version of the modified sub-gradient algorithm. This enabled them to solve

some QAP instances of sizes 12, 15, 18, 32 and 64.

Hahn et al. [HZGS10] provide a survey of the latest methods available for solving exactly

a growing class of assignment problems which includes the QAP. These techniques mainly

consist of the well known reformulation linearization technique (RLT) [HG98, Zhu07]

Given that exact solution methods have not been successful enough in solving the larger

QAPs within reasonable amount of time, the development of heuristic methods, which in-

tend to have near-optimal solution within acceptable computational time, has been of great

interest for some researchers. In this direction, Nissen and Paul [NP95] proposed a modifi-

cation of the threshold accepting heuristic method for the QAP. Gilmore [Gil62] proposed

a constructive method which is an iterative approach that usually starts with an empty

permutation, and iteratively complete a partial permutation into a solution of the QAP

by assigning some facilities that have not been assigned yet to some free locations. Other

heuristic methods include a local search scheme, which intend to improve a given solution

by searching in its neighbourhood for a better solution. For this type of heuristic, the defini-

tion of the neighbourhood structure is very important. Therefore Frieze et al. [FYEHP89]

introduced the “pair-exchange” neighbourhood structure. Here, for a given solution of the

QAP, its neighbours in the form of permutation matrices can be obtained by applying a

transposition1 to this solution.

1A matrix transposition is a permutation which exchanges two rows or two columns of a matrix while

keeping all others fixed.

Section 3.4. Solution methods for the QAP Page 27

Another technique that has also been somewhat successfully applied to the QAP is the

Metaheuristic method which includes Genetic Algorithm (GA) [Hol75], Tabu Search (TS)

[GL], Simulated Annealing (SA) [KGV83], Greedy Randomized Adaptive Search Procedure

(GRASP) [FR95], Ant Colony Optimization (ACO) [CDM+95], Bees Algorithm [PGK+05,

FW10] etc.

Tabu Search was developed by Fred Glover [GL] as a metaheuristic optimization tool.

Skorin-Kapov applied Tabu Search to find near-optimal solutions for the QAP with a fixed

Tabu-list. Taillard [Tai91], on his own, proposed a robust Tabu Search technique by ran-

domizing the size of the Tabu-list between a maximum and a minimum value. Misevicius

[Mis05] implemented Tabu Search algorithm for the QAP with an efficient use of mutation

applied to the best solution found so far. The application of the mutation may allow the

algorithm to escape from local optima. More recently, Rego et al. [RJG10] presented a

new tabu search algorithm for the quadratic assignment problem (QAP) that utilizes an

embedded neighbourhood construction called an ejection chain.

Since its introduction by Kirkpatrick, SA had never been used for the QAP until Burkard

and Rendl [BR84] proposed its first application to the QAP. Subsequently, Whilhelm and

Ward [WW87] presented a new equilibrium component of the SA. Connolly [Con90] also

proposed a SA algorithm for solving the QAP, by employing the “pair-exchange” neigh-

bourhood structure of Whilhelm and Ward. However, the two approaches differ on the

implementation of the “cooling schedule”.

Introduced by Holland [Hol75], the GA is a nature inspired approach for combinatorial

optimization problems. It adapts the evolutionary mechanism acting in selection process in

nature to combinatorial optimization problems. Tate and Smith [TS95] proposed a stan-

dard GA method for the QAP. Experimental results show that this algorithm has difficulties

Section 3.4. Solution methods for the QAP Page 28

to generate the best known solutions even for QAP instances of small to moderate sizes.

Fleurent and Ferland [FG99] proposed a combination of the GA techniques and TS . On

the other hand, good results were obtained with the greedy Genetic Algorithm proposed by

Ahuja et al. [AOT00]. Ji et al. [JWL06] presented a recent implementation of GA for the

QAP. They proposed a hybrid GA to examine the solvability of the QAP instances. Their

numerical results are better than those of Ahuja et al. [AOT00].

The GRASP is a combination of greedy elements with random search elements in a two

phase heuristic. It was introduced by Feo and Resende [FR95]. It consists of a construction

phase in which good solutions from available feasible space are constructed, and a local

improvement phase where the neighbourhood of the solution constructed in the first phase

is investigated for possible improvement. There is a number of applications of GRASP to

the QAP, see the references [FR95, LPR94, RPL96, OPR04, FG99, AOT00].

ACO is a class of algorithms whose first member called Ant System was initially proposed

by Colorni et al. [CDM+95]. The main underlying idea, loosely inspired by the behaviour

of real ants, is that of a parallel search over several constructive computational threads

based on local problem data and a dynamic memory structure containing informations on

the quality of previously obtained result. The collective behaviour emerging from the in-

teraction of the different search threads has been proved effective in solving combinatorial

optimization problems. Stützle and Dorigo [SD99] applied ACO algorithm to the QAP and

obtained good results for the QAP instances. These are available in the QAPLIB library

[BcKR].

A recent advanced metaheuristics for the QAP is the incorporation in a single framework of

GA, SA and TS. This work was done by Song et al. [SLSD09] to find good approximation

of the solution of large QAP instances.

4. Problem formulation and lower

bounding techniques

We have noticed that in the literature, most of the attentions have been given to the lineari-

sation techniques and the SDP formulation of the QAP. To the best of our knowledge, very

few researchers have considered the standard quadratic integer programming formulation

(SQIP) of the QAP. This formulation was originally suggested by Burkard et al. [BcPP98]

in their survey paper on the QAP, but has not been investigated further. Bazaraa and

Sherali [BS82] used this form to construct an equivalent concave quadratic integer pro-

gramming formulation of the QAP that they solved using a cutting-plane method. In this

chapter, we present a reformulated standard quadratic integer programming (RSQIP) for-

mulation of the QAP which has been modified from (SQIP). We present an equivalent

separable convex quadratic integer programming reformulation (SCQIP). These two for-

mulations will be studied in this dissertation for the computation of lower bounds as well

as for developing solution methods for the QAP. We also discuss in this chapter two lower

bounding techniques. Firstly, we consider the continuous relaxation of the reformulated

standard quadratic integer programming (RSQIP) formulation of the QAP. We used this

lower bounding technique within the Branch-and-Bound method. Secondly, we consider

the continuous relaxation of its equivalent separable convex quadratic integer programming

(SCQIP) reformulation. The lower bounds obtained in this case were too weak to be con-

sidered for the Branch-and-Bound method. Nonetheless, we have presented some results

on this, see section 7.1.

4.1 Standard quadratic integer programming formulation (SQIP)

Let us consider the n × n × n × n cost matrix C = (Cijkl) as constructed in section 3.1.4,

Cijkl = fijdkl if i 6= j or k 6= l and Ciikk = fiidkk + bik. We define an n2 × n2-matrix S in

29

Section 4.1. Standard quadratic integer programming formulation (SQIP) Page 30

such a way that the element Cijkl of the matrix C is on the row (i − 1)n + k and column

(j−1)n+ l of S and let x = vec(X). With the above notations, the QAP can be formulated

as [BcPP98]:

(SQIP) min xTSx, s.t. (4.1)

XT e = e, (4.2)

Xe = e, (4.3)

xij ∈ {0, 1} , for all i, j = 1, . . . , n. (4.4)

We now present a variation of (SQIP). We begin with the definition of the following

matrices. Let E and R be the two n× n2 matrices such that

E =

e 0 · · · 0

0 e 0 0
... 0

. . . 0

0 0 · · · e

T

= In ⊗ eT , e ∈ Rn

and R = (Rij) with

Rij =

 1 if j = kn+ i for all k = 0, · · · , (n− 1),

0 otherwise.

It can easily be seen that R = eT ⊗ In, where In is the n-dimensional identity matrix. The

constraint XT e = e can be written as Ex = e and the constraint Xe = e can also be written

as Rx = e. We set A1 =

 E

R

 and b =

 e

e

.

Lemma 4.1.1:

The matrix A1 defined above is of rank 2n− 1.

Proof. This result emanates from the study of the QAP polytopes by Jüngle and Kaibel

[JK96].

Section 4.1. Standard quadratic integer programming formulation (SQIP) Page 31

From the results of Lemma 4.1.1, we consider throughout this dissertation that A1 is of full

row rank. Using the notations described above, we can reformulate (SIQP) as follows:

(RSQIP) min xTSx, s.t. (4.5)

A1x = b, (4.6)

0 ≤ x ≤ e, (4.7)

x ∈ Zn
2
. (4.8)

Bazaraa and Sherali [BS82] explored the objective function of (RSQIP) and transformed it

into an equivalent concave quadratic programming. More specifically, the objective function

of (RSQIP) can be transformed into an equivalent concave quadratic function by subtract-

ing a positive constant term on the diagonal of S, see [BS82]. It can also be transformed

into a convex quadratic programming by adding a positive constant term to the diagonal

of S and this is also what we investigate in this dissertation. The reformulated standard

quadratic formulation (RSQIP) has never been investigated in the literature. In addition,

the convex equivalent formulation of (RSQIP) is an interesting problem. The convex for-

mulation is achieved by adding a non-negative constant, say α, to the diagonal of S. Indeed,

if α is a real constant number, then we have:

xT (S + αI)x = xTSx+ αxTx = xTSx+ αn. (4.9)

It can be shown that the optimizer of (RSQIP) remains the same if S is replaced by S+αI,

with α chosen to be larger than the maximum row sum or column sum of S. Indeed, (4.9)

shows that replacing S in (RSQIP) by S + αI only changes the objective function of

(RSQIP) by a constant, therefore does not change minimizers.

Section 4.2. Separable quadratic integer programming formulation Page 32

4.2 Separable quadratic integer programming formulation

In this section, we transform (RSQIP) into a convex quadratic programming problem by

replacing the matrix S in its objective function with a matrix Q = 2(S + αI) where α is

chosen to be larger than the maximum row sum of S. This leads to the following convex

quadratic integer programming formulation:

(CQIP) min
1

2
xTQx, s.t. (4.10)

A1x = b, (4.11)

0 ≤ x ≤ e, (4.12)

x ∈ Zn
2
. (4.13)

Note that (CQIP) is equivalent to (RSQIP), since the feasible sets are the same and the

objective functions only differ by a constant as shown in (4.9). The matrix Q is a symmetric

positive definite matrix.

Given the eigenvalue decomposition, see Theorem 2.2.11, one can easily transform (CQIP)

into a separable quadratic program by using the eigenvalue decomposition of the matrix Q.

There exists an orthogonal matrix U such that UTQU = diag(λ1, . . . , λn2) = D1, where

λ1, . . . , λn2 are the eigenvalues of Q. We then set x = Uy and plug this in (CQIP). The

objective function becomes:

1/2(Uy)TQ(Uy) = 1/2yT (UTQU)y = 1/2yTD1y,

which is now a separable quadratic function, since D1 is a diagonal matrix. However, the

change of variable, x = Uy ⇐⇒ y = U−1x, may not guarantee the integrability of y.

Therefore, the initial problem (CQIP) might lose its integrability nature.

A good way of making (CQIP) separable while keeping its integrability nature can be

achieved by using the integer diagonalization of the matrix Q (Theorem 2.2.7). Let U

Section 4.3. Lower bounds via the continuous relaxation of (RSQIP) Page 33

be semiunimodular congruent to Q such that UTQU = D = diag(d1, . . . , dn2). We set

x = Uy ⇐⇒ y = U−1x. U−1 being an integer matrix, x ∈ Zn2 ⇐⇒ y ∈ Zn2
and the

following problem is equivalent to (CQIP):

(SCQIP) min 1/2yTDy, (4.14)

s.t Ay = b, (4.15)

0 ≤ Uy ≤ e, (4.16)

y ∈ Zn
2
, (4.17)

where A = A1U. The above problem is a separable convex quadratic integer programming

problem.

4.3 Lower bounds via the continuous relaxation of (RSQIP)

The computation of lower bounds for integer programming problems is of crucial importance

for both exact and heuristic solution methods. The quality of a lower bound is measured in

terms of how tight or how close it is to the exact solution of a problem, and also in terms of

its computational time and complexity requirements. This section presents our first lower

bounding technique which consists of relaxing the integrability requirements of (RSQIP).

In particular, we consider the quadratic programming problem:

(CR1) min xTSx, s.t (4.18)

A1x = b,

0 ≤ x ≤ e.

Any standard optimization method for quadratic programming such as trust-region, active-

set, interior-point method for non convex non-linear programming can be used to solve

Section 4.4. Lower bounds via the continuous relaxation of (SCQIP) Page 34

(CR1) efficiently. We have used the built-in function QUADPROG from Matlab within the

implementation of the Branch-and-Bound method for solving (CR1). The Matlab built-

in function QUADPROG implements an interior point algorithm which requires an initial

strictly feasible solution to be provided. QUADPROG incorporates a default heuristic

procedure of generating the strictly initial solution.

4.4 Lower bounds via the continuous relaxation of (SCQIP)

In this section, we propose our second lower bounding technique for the QAP by considering

the continuous relaxation of (SCQIP) which is as follows:

(CR2) min 1/2yTDy, (4.19)

s.t Ay = b, (4.20)

Cy − s = d, (4.21)

s ≥ 0, (4.22)

where C =

 −U
U

 ∈ Q2n2×n2
, d =

 −e
0

 a 2n2-vector and s is the excess variable for

the inequality constraints. (CR2) is a separable convex quadratic programming problem.

Nimrod and Arie [MT93] have shown that such a problem is not more difficult than linear

programming to be solved using interior point methods. Hence we have decided to used an

interior point method. Next, we present an interior point algorithm to solve (CR2).

Section 4.4. Lower bounds via the continuous relaxation of (SCQIP) Page 35

4.4.1 An interior point algorithm for (CR2)

In order to eliminate the non-negativity constraints s ≥ 0 in (CR2), we introduce the barrier

logarithmic problem as follows:

(BL) min 1
2y

TDy − µ
2n2∑
i=1

ln si, (4.23)

s.t Ay = b, (4.24)

Cy − s = d. (4.25)

The corresponding Lagrangian function will then be:

L = 1
2y

TDy − µ
2n2∑
i=1

ln si − λT (Ay − b)− zT (Cy − s− d).

Since (BL) is convex, therefore the first order optimality conditions will be sufficient and

necessary.

The KKT first order optimality conditions are given by :

∇yL = ∇sL = ∇λL = ∇zL = 0,

which is equivalent to:

Dy −ATλ− CT z = 0, (4.26)

Ay − b = 0, (4.27)

Cy − s− d = 0, (4.28)

SZe = µe, (4.29)

s, z > 0, (4.30)

where e = (1, . . . , 1), S = diag(s1, . . . , s2n2) and Z = diag(z1, . . . , z2n2). The interior point

method aims to solve the above (KKT) system by constructing a sequence (yk, λk, zk, sk)

Section 4.4. Lower bounds via the continuous relaxation of (SCQIP) Page 36

that converges toward the solution of the (KKT) system. In our solution method, we have

adopted a predictor corrector algorithm, as presented by Mehrotra [Meh92], which controls

the step-length of the sequence in order to ensure that all the points of the sequence remain

feasible for (CR2). The full step-by-step description of the interior point method is presented

by Algorithm 1. We also provide description of the main steps in section 4.4.2.

Section 4.4. Lower bounds via the continuous relaxation of (SCQIP) Page 37

Algorithm 1 : The interior point algorithm for (CR2)

Step 1: (initialization): Set k = 0, set a starting point (yk, λk, zk, sk) which is strictly

feasible for (CR2), and a parameter τ ∈ [2, 4].

Step 2: If stopping criteria is met then stop, else compute µ = (zk)T sk/2n2.

Step 3: Solve for (δyk, δλk, δzk, δsk):
D −AT −CT 0

A 0 0 0

C 0 0 −I

0 0 Sk Zk

δyk

δλk

δzk

δsk

 = −

rkD

rkA

rkC

rkz

 , (4.31)

where

Sk = diag(sk1, . . . , s
k
2n2),

Zk = diag(zk1 , . . . , z
k
2n2),

rkD = Dyk −ATλk − CT zk,

rkA = Ayk − b,

rkC = Cyk − sk − d,

rkz = ZkSke.

Step 4: Calculate αaff to be the largest value in (0, 1] such that (zk, sk) +

αaff (δzk, δsk) ≥ 0.

Step 5: Set µaff = (zk + αaffδz
k)T (sk + αaffδs

k)/2n2, set σ = (µaff/µ)τ .

Step 6: Solve for (∆yk,∆λk,∆zk,∆sk):
D −AT −CT 0

A 0 0 0

C 0 0 −I

0 0 Sk Zk

∆yk

∆λk

∆zk

∆sk

 = −

rkD

rkA

rkC

rkµ

 , (4.32)

where rkµ = ZkSke − σµe + ∆Zk∆Ske, ∆Zk = diag(∆zk1 , . . . ,∆z
k
2n2) and ∆Sk =

diag(∆sk1, . . . ,∆s
k
2n2).

Step 7: Calculate αmax to be the largest value in (0, 1] such that (zk, sk) +

αmax(∆zk,∆sk) ≥ 0.

Step 8: Choose ρ ∈ (0, αmax).

Step 9: (yk+1, λk+1, zk+1, sk+1) ←− (yk, λk, zk, sk) + ρ(∆yk,∆λk,∆zk,∆sk). Set k :=

k + 1 and go to Step 2.

Section 4.4. Lower bounds via the continuous relaxation of (SCQIP) Page 38

The algorithm deals with the solution of two systems of equations, namely (4.31) and (4.32)

which involve the predictor and the corrector direction respectively. At iteration k, the

direction obtained from (4.32) can be viewed as an approximate second-order step toward a

point (yk+1, λk+1, zk+1, sk+1) at which the conditions (4.26), (4.27) and (4.28) are satisfied,

and in addition, the pairwise products zk+1
i sk+1

i are all equal to σµ. The heuristic for σ

yields a value in the range (0, 1), so the step usually produces a reduction in the average

value of the pairwise product from their current average µ.

The successive corrections attempt to:

• increase the steplength ρ that can be taken along the final direction,

• bring the pairwise product z+i s
+
i whose values are either much larger than or much

smaller than the average into closer correspondence with the average.

4.4.2 Discussions of the interior point algorithm

In this section, we elaborate on the main steps of Algorithm 1.

• Solution of the linear systems (4.31) and (4.32)

There are two large linear systems of equation (4.31) and (4.32) to be solved in Al-

gorithm 1. This can be time consuming for the algorithm if the left hand matrices

are not reduced. Given some properties of (CR2) stated in Lemma 4.4.1, we can

reduce these systems and make them easy to solve.

Let us consider the linear system of equations (4.32). Without jeopardizing the gen-

Section 4.4. Lower bounds via the continuous relaxation of (SCQIP) Page 39

erality, we can write this system here without the superscripts k.

D∆y −AT∆λ− CT∆z = −rD, (4.33)

A∆y = −rA, (4.34)

C∆y −∆s = −rC , (4.35)

S∆z − Z∆s = −rµ. (4.36)

Equality (4.35) implies that ∆s = C∆y + rC .

Replacing this in (4.36), we have ∆z = S−1(−rµ − ZC∆y − ZrC). We now plug this

in (4.33) and using (4.34), we obtain

∆λ = (APA)−1(−rA −APR2),

∆y = P (AT∆λ+R2),

∆z = S−1(−rµ − ZC∆y − ZrC),

∆s = C∆y + rC ,

where R2 = −rD − CTS−1rµ − CTS−1ZrC and P = (D + CTS−1ZC)−1.

The above technique is also repeated for the solution of (4.31).

Lemma 4.4.1:

The matrix D + CTS−1ZC is invertible. Hence the existence of P .

Proof. The matrix S−1Z is a diagonal 2n2×2n2-matrix with positive elements on the

diagonal. Let T1 be the first n2 × n2 diagonal bloc of S−1Z and T2 be the second

n2 × n2 diagonal bloc of S−1Z. We then have S−1Z =

 T1 0

0 T2

. Recall that

Section 4.4. Lower bounds via the continuous relaxation of (SCQIP) Page 40

C =

 −U
U

. Therefore we have

CTS−1ZC =

 −U
U

T T1 0

0 T2

 −U
U

= (−UT , UT)

 −T1U
T2U

= UTT1U + UTT2U.

Therefore,

D + CTS−1ZC = D + UTT1U + UTT2U

= UTQU + UTT1U + UTT2U, since UTQU = D,

= UT (Q+ T1 + T2)U,

with Q being a symmetric strictly diagonally dominant matrix with positive diagonal

entries, adding positive1 numbers to its diagonal will yield another strictly diagonally

dominant matrix which is invertible. Hence D + CTS−1ZC = UT (Q + T1 + T2)U is

invertible.

• Calculation of the step lengths αmax and αaff in Step 4 and Step 7 :

In Algorithm 1, we have to find αmax and αaff to be the largest values in (0, 1] such

that

(zk, sk) + αmax(∆zk,∆sk) ≥ 0 (4.37)

and

(zk, sk) + αaff (δzk, δsk) ≥ 0. (4.38)

For the easiness of reading, we will deal with (4.37) without using the superscripts

k. We consider (z, s) + α(∆z,∆s) ≥ 0 ⇐⇒ z + αz∆z ≥ 0, s + αs∆s ≥ 0 i.e

1Since the matrices T1 and T2 are diagonal matrices with positive entries in the diagonal.

Section 4.4. Lower bounds via the continuous relaxation of (SCQIP) Page 41

z1, s1
...

zi, si
...

z2n2 , s2n2

+ α

∆z1,∆s1
...

∆zi,∆si
...

∆z2n2 ,∆s2n2

≥ 0

For the i-th component, we can write zi + αiz∆zi ≥ 0 and si + αis∆si ≥ 0, where αis

and αiz are the largest values in (0, 1] for which the inequality holds. Therefore,

αiz =

 1 if ∆zi ≥ 0,

min(1,−zi/∆zi) otherwise,

and

αis =

 1 if ∆si ≥ 0,

min(1,−si/∆si) otherwise.

Let a1 = min
{
α1
z, . . . , α

2n2

z

}
and a2 = min

{
α1
s, . . . , α

2n2

s

}
, let αmax = min {a1, a2}.

Clearly, αmax is the largest value in (0, 1] satisfying (z, s) + αmax(∆z,∆s) ≥ 0

A similar procedure can be applied to find the value of αaff .

• Termination criteria in Step 2 :

For each iteration k of the algorithm, let us define the duality gap gk = (yk)TDyk −

bTλk − dT zk. In addition, we define φk =
‖(rkD, rkA, rkC)‖∞ + gk
‖(D,A,C, b, d)‖∞

at iteration k, where

‖(D,A,C, b, d)‖∞ stands for the element of largest magnitude in all the data quantities

that define (CR2). Therefore the algorithm successfully terminates if the following

two conditions are satisfied:

i) The first condition is based on complementarity convergence, i.e

µ ≤ εµ

ii) The second condition is based on the primal-dual convergence i.e

‖(rkD, rkA, rkC)‖∞ ≤ εr‖(D,A,C, b, d)‖∞.

Section 4.4. Lower bounds via the continuous relaxation of (SCQIP) Page 42

where εµ and εr are tolerance values.

An infeasible solution is obtained by Algorithm 1 if :

φk > εφ and φk ≥ 104 min
1≤i≤k

φi,

where εφ is a used provide tolerance value. See [Meh92] for more details on the

termination criteria and other implementational issues of Algorithm 1.

5. Finding a starting point for the

interior point algorithm

Any interior point algorithm needs a starting point which is in the strictly feasible region of

the original problem, from which the algorithm will start and consecutively build a sequence

of point that converges towards the optimal solution of the problem. Finding such an initial

point is not an easy task. We present in this chapter two techniques for finding an initial

starting point for the interior point algorithm. The first technique finds an initial strictly

feasible point in two steps. The second technique is based on a perturbation of the set of

constraints. This technique shares the same idea in the first step of the first technique.

5.1 Description of the first technique

Here, we obtain an initial strictly feasible point in two steps, the first step will provide us

with a point that is on the vertex of the feasible region and the second step will aim to pull

this point in the interior of the feasible region. Let us consider the set of constraints1 of

(CR2) defined by:

Ay = b (5.1)

and

Cy ≥ d. (5.2)

5.1.1 The first step

In this step, we define an auxiliary linear program for which an optimal solution will be a

point on the vertex of the feasible region of (CR2). We use “artificial” variables which are

1The constraints of (CR1) can also be written in the form A1x = b, Cx ≥

d, where C and d have been constructed from x ≥ 0, −x ≥ −e.

43

Section 5.1. Description of the first technique Page 44

extra variables added to (CR2) resulting in the following problem

min 1
2y

TDy (5.3)

s.t Ay + a0 = b, (5.4)

Cy − s+ a1 = d, (5.5)

a0, a1, s ≥ 0, (5.6)

where a =

 a0

a1

 ∈ R2n−1+2n2
, see Lemma 4.1.1 for more information on the dimension

of a0. The following auxiliary linear programming problem is then considered:

(AP) min

2n2+2n−1∑
i=1

ai, s.t (5.7)

Ay + a0 = b, (5.8)

Cy − s+ a1 = d, (5.9)

a0, a1, s ≥ 0. (5.10)

Lemma 5.1.1:

If (CR2) is feasible, then (AP) is also feasible and has optimal value zero, achieving at

a = 0.

Proof. Let us suppose that (CR2) is feasible and that the optimal value of (AP) is not zero.

It yields that there exists i0 ∈
{

1, . . . , 2n2 + 2n− 1
}

such that ai0 6= 0 i.e ai0 > 0. We then

have for y in the feasible solution,

(i) ATi0y + a0i0 = bi0 with a0i0 = ai0 > 0, where Ai0 is the i0-th row of A, or

(ii) CTi0y − si0 + a1i0 = di0 with a1i0 = ai0 > 0, where Ci0 is the i0-th row of C.

Section 5.1. Description of the first technique Page 45

The condition (i) is equivalent to ATi0y < bi0 and the condition (ii) is equivalent to

CTi0y − si0 < di0 .

Both the cases (i) and (ii) contradict the fact that y is feasible for (CR2).

It follows from Lemma 5.1.1 that if the initial problem (CR2) is feasible, then the auxiliary

linear problem (AP) in the first step is also feasible and provides us with an initial solution

which lies2 on the vertex of the feasible region of (CR2). This procedure is known as the

phase 1 in the two phase method for linear programming [NW99].

Now that we have a point lying on the vertex of the feasible region of (CR2), we can obtain

an initial solution in the strictly feasible region by pulling this point, obtained from the first

step, in the interior of the feasible region. This is described in the next section.

5.1.2 The second step

This second step consists of moving the point provided by the first step, described previously,

in a direction that will finally end at a point in the strictly feasible region. That is, if y0 is

the point obtained from the first step, we will be looking for a strictly feasible point y1.

Let us consider δ to be the direction in which we move the point y0, then y1 will satisfy

y1 = y0 + αδ for some α > 0 which is chosen in such a way that y1 is strictly feasible.

The feasibility of y1 implies Ay1 = Ay0 + αAδ = b, which yields αAδ = 0. So the direction

δ should satisfy Aδ = 0, i.e δ must be in the null space of A. Since y0 is a vertex point

of the feasible region, there exists a set of linear constraints in (5.2) that are active at y0.

Without loss of generality, we assume that {1, . . . , l} is the index set of active constraints

at y0, i.e

CTi y
0 = di, for i = 1, . . . , l, l < 2n2

2The fact that this initial solution lies on the vertex comes from the fact that it is the solution of a linear

program over a convex set.

Section 5.2. Description of the second technique Page 46

For a direction δ to be a non-binding feasible direction, it must satisfy CTi (y0+δ) > di, i =

1, . . . , l i.e CTi δ > 0, i = 1, . . . , l.

Let Al = [C1, C2, . . . , Cl], so ATl δ > 0 characterizes the feasible direction δ which is non-

binding with respect to {1, . . . , l} such that δ can be found by solving

Kδ = β, (5.11)

where K =

 A

ATl

 and β =

 0

e

 . The matrix K is in general not a square matrix or

invertible. Therefore, solving (5.11) may prove tricky. We consider K+ to be the generalized

inverse of K (more details on the generalized inverse of a matrix are given in Appendix 9.1).

The equation (5.11) is therefore solved by δ = K+e, which is the best fit solution. Now

y1 = y0 + αδ, reduce α until y1 is strictly feasible.

5.2 Description of the second technique

The idea of obtaining an initial point here is basically the same as in the first step of the

technique presented previously. We shrink the feasible set of (CR2) by a perturbation of

its boundary. Hence a point in the perturbed boundary will be a strictly feasible point in

the original feasible set. Recall that the feasible set of (CR2) is given by (5.1) and (5.2).

We need a starting point y0 which satisfies Ay0 = b and Cy0 > d. Let ε be a vector of all pos-

itive components. If ε is well chosen such that the set Γ =
{
y ∈ Rn2

: Ay = b, Cy ≥ d+ ε
}

is non empty, then at least one point in Γ will be strictly feasible for (CR2), since Cy ≥

d + ε > d. Before we choose ε, a question might arise concerning the existence of ε > 0

such that the set Γ is non empty. Since the feasible set {y|Ay = b, Cy ≥ d} is continuous

and not singleton, Γ is non empty. Let ε > 0 be small enough. We set d′ = d+ ε and seek

the solution of (AP), described by (5.7)–(5.10), wherein d in the right hand side of (5.10)

is replaced with d′. In particular, an initial strictly feasible solution of the interior point

Section 5.2. Description of the second technique Page 47

algorithm will be the solution of the following problem:

min
2n2+2n−1∑

i=1

ai, s.t (5.12)

Ay + a0 = b, (5.13)

Cy − s+ a1 = d′, (5.14)

a0, a1, s ≥ 0, (5.15)

where a =

 a0

a1

.

Now, (y, s) in the solution of the above linear program (5.12)–(5.15) satisfies Ay = b and

Cy − s = d′ = d+ ε > d⇐⇒ Cy − s > d, since ε > 0.

It is well known from the duality theorem of linear programming [NW99] that if the dual of

a linear programming problem is unbounded, then this problem will have no feasible point.

So, on the choice of an appropriate ε > 0 such that Cy ≥ d+ ε, one can start with a small

positive value of its components. If for this value, the dual of (5.12)–(5.15) is unbounded,

one can reduce the chosen value and test it again, until having an ε for which the dual of

(5.12)–(5.15) is bounded.

6. New methods for solving the QAP

In this chapter, we propose two solution approaches for solving (RSQIP). The first solu-

tion approach is a Branch-and-Bound method. The second solution approach is a discrete

dynamic convexized method which consists of an auxiliary function, which we sequentially

minimize by a local search algorithm. The optimal solution of the defined auxiliary function

is also the optimal solution of (RSQIP).

6.1 The Branch-and-Bound method for the QAP

In this section, k is used to denote an iteration, j is used to denote the j-th sub-problem

or node, and i is the index of the i-th variable xi.

At the beginning of the Branch-and-Bound method, we obtained a solution called the incum-

bent solution, say x∗, f(x∗), by a heuristic technique, see section 7.2. This solution, which

is an upper bound, is updated within the Branch-and-Bound method. The Branch-and-

Bound method has been widely adopted as a basic enumeration strategy for combinatorial

optimization. It is well known that it is a successful and robust method for linear integer

programming when combined with linear programming techniques [BGG+71]. It has also

been established as an effective computational tool for solving mixed integer programming

problems [LS10]. Branch-and-Bound is basically an implicit enumeration scheme which

systematically eliminates non-promising feasible points that cannot lead to optimality.

Let F =
{
x ∈ Zn2

: A1x = b, 0 ≤ x ≤ e
}

be the feasible set of (RSQIP). Branch-and-

Bound is an iterative algorithm and at the iteration k, it maintains p sub-problems in

L = {(RSQIP1), . . . , (RSQIPp)}, with the corresponding feasible sets F1, . . . ,Fp.

An iteration begins with selecting a sub-problem from L and may end with adding a new

sub-problem(s) in L. We now describe how a sub-problem (or more than one sub-problems)

is selected from L for further investigation, and how newly created sub-problems are added

48

Section 6.1. The Branch-and-Bound method for the QAP Page 49

to L. We begin with the sub-problem selection. While there are a number of ways one can

select a sub-problem(s) from L, we have used a recency based technique. We have described

these techniques following the description of Branch-and-Bound. The k-th iteration begins

with selecting a sub-problem. Once a sub-problem, say the j-th sub-problem, has been

selected, the following steps are carried out:

• Solution of the continuous relaxation of the sub-problem using QUADPROG is ob-

tained. This solution is a lower bound, LBj , of (RSQIPj). If LBj > f(x∗) then

(RSQIPj) is fathomed and a new sub-problem is selected.

• If the solution is an integer solution, then the incumbent x∗ and f(x∗) are updated.

The process in this case is ended without creating any new sub-problem from the

selected sub-problem (RSQIPj). A new sub-problem is selected from L again.

• If the solution of the continuous relaxation of (RSQIPj) is not integer, then two

new sub-problems are created from (RSQIPj) by searching1 a variable, say the i-

th variable xi, to branch upon. The feasibility of the new sub-problems (RSQIP 1
j)

and (RSQIP 2
j) with the corresponding feasible sets F1

j = Fj ∩ {xi = 0} and F2
j =

Fj ∩ {xi = 1} are then checked. A sub-problem is fathomed if it is not feasible.

This type of fathoming occurs after a certain number of iteration. The unfathomed

sub-problem is now added to L.

The resulting new sub-problems (RSQIP 1
j) and (RSQIP 2

j) are defined as follows:

(RSQIP 1
j) min xTSx, s.t

x ∈ F1
j ,

and

(RSQIP 2
j) min xTSx, s.t

1This can be done in a number of ways which we have presented in the next subsection. In our imple-

mentation, we have adopted the most fractional variable strategy.

Section 6.1. The Branch-and-Bound method for the QAP Page 50

x ∈ F2
j .

The Branch-and-Bound stops when the set L becomes empty.

Some features within the Branch-and-Bound method are important in the sense that they

facilitate or accelerate the convergence of the algorithm, namely the choice of the variable to

branch upon and the choice of the sub-problem. These features deserve some explanations.

6.1.1 Choice of the branching variables

In the case of linear integer programming, it is known that the rule used to choose branch-

ing variables usually has an important effect on the performance of the Branch-and-Bound

method [BGG+71]. In this section, we discuss some selection rules for selecting the branch-

ing variable. Let x = (x1, . . . , xn2) be the optimal solution of the continuous relaxation of

the sub-problem (RSQIPj) at a node j. Let I(RSQIPj) ⊂
{

1, . . . , n2
}

denotes the index

set of fractional variables in x.

1) The most fractional variable

After the continuous relaxation problem of a sub-problem is solved, the weight, ωi,

associated with the variable xi, i ∈ I(RSQIPj) is calculated as ωi = min(| xi |, |

xi−1 |). This branching strategy selects the variable with the highest weight, i.e. the

variable that is the farthest from its nearest integer value. This selection is aimed at

getting the largest degradation of the objective when branching is carried out so that

more nodes can be fathomed at early stages (see [LS10]).

2) The lowest-index-first

In many situations, some decision variables xis play more important roles in the

model than others. Therefore, it is reasonable to branch variables in terms of their

importance. The rule of lowest-index-first orders the index set I(RSQIPj) in the

decreasing priorities2 and selects the first variable in I(RSQIPj) to branch.

2These priorities are given according to the importance or the role of each variable in a given problem.

Section 6.1. The Branch-and-Bound method for the QAP Page 51

3) Using a pseudo-cost

In this strategy, each variable is given importance according to a pseudo-cost which

allows a prioritization of all the variables. This concept was developed by Benichou

et al. [BGG+71]. For each variable xi, i ∈ I(RSQIPj), a lower pseudo-cost pcli and

an upper pseudo-cost pcui are computed in the following way.

Suppose that at the node j, the variable xi is selected for branching. The fractional

part of the value of the variable xi is still xi since xi ∈ [0, 1]. Let fj denote the

value of the objective function at this node j. Let fl be the value of the objective

function when the continuous relaxation problem is solved with fixing xi = 0. The

lower pseudo-cost of xi is therefore given by pcli = (fl − fj)/xi.

Let fu be the value of the objective function when the continuous relaxation problem is

solved with fixing xi = 1. The upper pseudo-cost is given by: pcui = (fu−fj)/(1−xi).

Although the values of the pseudo-costs depend on the node where they are computed,

they are computed only once and are assumed to remain constant so that the com-

putational effort of recomputing them at every node could be saved. This strategy of

selecting the branching variable is invoked in the following manner:

– Calculate the lower and upper pseudo-costs for all the variables.

– Compute the quantity

Vi = min(pclixi, pcui(1− xi)) (6.1)

for each variable xi.

– Select the variable xi for which the value of Vi is maximum.

6.1.2 Selection of branching nodes

It has been found that the selection method for branching nodes significantly affect the

performance of Branch-and-Bound as does the selection method for the branching variables.

Here are some rules used to select branching nodes.

Section 6.1. The Branch-and-Bound method for the QAP Page 52

1) Branch from the node with the lowest bound

The name of this branching strategy tells everything about itself. In this strategy, the

node which currently has the lowest bound on the objective function is selected for

branching.

2) Branch from the newest node

In this recency-based branching strategy, whenever a branching is carried out, the

nodes corresponding to the new problems are given preference over the rest of the

unfathomed nodes. The node that is the newest in the list of unfathomed sub-problems

is selected for branching. This strategy is also known as depth-first strategy. It has

the advantage of saving storage space.

3) Branch from an estimation

At a node j, the pseudo-costs Vi for i ∈
{

1, . . . , n2
}

defined in (6.1) are added to

the lower bound fj to form an estimation of the best objective function value for the

descendants of node j i.e.

Ej = fj +
n2∑
i=1

Vi.

The quantity Ej is computed for all the unfathomed nodes. The node with the lowest

value of Ej is selected for branching. We have also selected one sub-problem at each

iteration k i.e s = 1.

Remark 6.1.1:

Benichou et al. [BGG+71] give a deeper study and experimental comparison of all these

branching strategies. However, in our numerical implementation, we have used the strategy

of the most fractional variable as branching variable criteria, and the strategy of branching

from the newest node as selection of branching node rule. We have also selected one sub-

problem at each iteration, i.e s = 1.

Section 6.1. The Branch-and-Bound method for the QAP Page 53

Algorithm 2 : The Branch-and-Bound algorithm

Step 1 : (Initialization). Set the sub-problems list L = {(RSQIP)}. Set an initial

feasible solution as the incumbent solution x∗ and f∗ = f(x∗).

Step 2 : (Node selection). If L = ∅, stop and x∗ is the optimal solution to (RSQIP).

Otherwise, choose one or more nodes from L. Denote the set of s selected sub-problems

by Ls = {(RSQIP1), . . . , (RSQIPs)}. Let L := L \ Ls. Set j = 1.

Step 3 : (Bounding). Compute a lower bound LBj of sub-problem (RSQIPj). Set

LBj = +∞ if (RSQIPj) is infeasible. If LBj ≥ f∗, go to Step 6.

Step 4 : (Feasible solution). Save the feasible solution found in Step 3 or generate

a better feasible solution when possible3. Update the incumbent x∗ and f∗ if needed.

Remove from Ls all (RSQIPr) that are infeasible, 1 ≤ r ≤ j. If j < s, set j := j + 1 and

return to Step 3. Otherwise, go to Step 5.

Step 5 : (Branching). If Ls = ∅, go to Step 2. Otherwise, choose a node (RSQIPj)

from Ls. Further divide Fj into smaller subsets: Lsj =
{
F1
j ,F2

j

}
. Remove (RSQIPj)

from Ls and set L := L ∪ Ls ∪ LSj . Go to Step 2.

Step 6 : (Fathoming). Remove (RSQIPj) from Ls. If j < s, set j := j+ 1 and return to

Step 3. Otherwise, go to Step 4.

6.1.3 The Branch-and-Bound algorithm

We have presented above the different components of the Branch-and-Bound method. We

now present, in Algorithm 2, a step-by-step description of the Branch-and-Bound algo-

rithm implemented in this dissertation.

A flowchart detailing the steps of Algorithm 2 is given in Figure 6.1.3. Further detailed

discussions on the general Branch-and-Bound method can be found in [LS10].

3This can be generated using a heuristic method.

Section 6.1. The Branch-and-Bound method for the QAP Page 54

initialization: Set

L = {(RSQIP)}

L = ∅ ?Stop

Choose a set Ls from L

with s nodes. Set j = 0

Compute lower bound

LBj for (RSQIPj) ∈ Ls

LBj ≥ f∗ ?Remove (RSQIPj) from Ls

Save a feasible solution

x0 or generate a better

solution, update x∗ and f∗,

remove all (RSQIPj)

that are infeasible.

j < s?

If x0 is optimal to (RSQIPj)

Ls = ∅?

Choose a node (RSQIPj) ∈

Ls and replace (RSQIPj)

by two new sub-problems

(RSQIP 1
j) and (RSQIP 2

j)

No

Yes

No

Yes

Yes

No

No

Yes

Figure 6.1: The Branch-and-Bound flow chart

Section 6.2. An auxiliary function-based dynamic convexized method Page 55

6.2 An auxiliary function-based dynamic convexized method

In this section, we discuss an auxiliary function-based method for the QAP which is in-

spired by the discrete dynamic convexized method of Zhu and Ali [ZA09]. This method

consists of an auxiliary function which is equivalent to the objective function of (RSQIP).

This auxiliary function is then sequentially minimized using a local search algorithm. This

method has the ability of escaping from local optimal solutions. In our approach, we define

a neighbourhood structure and an auxiliary function, which are different from the ones

presented in [ZA09]. Given the neighbourhood structure, we present a simple local opti-

mization algorithm which we have implemented in the numerical section. Full details of the

local search algorithm are presented in Algorithm 3. The auxiliary function as well as

details of the theoretical results presented in this dissertation conform to the problem we

consider for our study.

Remark 6.2.1:

In this section we mostly deal with the permutation matrices. We establish the link between

the variable x and the permutation matrix X ∈ Xn by setting x = vec(X). Due to this link,

we will sometimes write x ∈ Xn to mean that x = vec(X) with X ∈ Xn.

Definition 6.2.2 (Neighbouring permutation matrix):

Let X be a permutation matrix, we define Xij to be the permutation matrix obtained by

swapping the columns i and j of X for i, j = 1, . . . , n.

Definition 6.2.3 (Neighbourhood of a permutation matrix):

For any permutation matrix X ∈ Xn, the neighbourhood, N(X), of X is a set N(X) ⊆ Xn

such that N(X) = {X,Xij : ∀i, j, i 6= j} = {X} ∪ {Xij : ∀i, j, i 6= j}.

Example 6.2.4:

For n=4, if X is the permutation matrix corresponding to the permutation φ = (2, 3, 1, 4)

then N(X) is defined as

N(X) = {(2, 3, 1, 4), (3, 2, 1, 4), (1, 3, 2, 4), (4, 3, 1, 2), (2, 4, 1, 3), (2, 1, 3, 4), (2, 3, 4, 1)} .

Section 6.2. An auxiliary function-based dynamic convexized method Page 56

Definition 6.2.5 (Local minimizer):

A permutation matrix X0 ∈ Xn is called local minimizer of f(x) = xTSx over Xn if f(x) ≥

f(x0) for all x ∈ N(x0) ∩ Xn.

Definition 6.2.6 (Local search):

A local search is an algorithm which can identify the local minimizer associated with X0

within N(X0), where X0 is an initial solution.

Algorithm 3 illustrates a local search procedure.

Algorithm 3 : Local search algorithm

Step 1 : Take an initial permutation matrix X0 ∈ Xn.

Step 2 : If x0 is a local minimizer of f(x) over Xn then stop else take a permutation

matrix X ∈ N(X0) such that f(x) < f(x0).

Step 3 : Let X0 := X and go to Step 2.

6.2.1 The auxiliary function and its properties

The auxiliary function used in the dynamic convexized method is based on the current best

known minimizer of (RSQIP). Let x∗c be the current best minimizer of (RSQIP) and let

f∗c = f(x∗c) be its objective function value. We define the following auxiliary function:

T (x, λ|x∗c) =

 f(x)− f∗c + λ‖x− x∗c‖ if f(x) ≥ f∗c ,

f(x)− f∗c otherwise,
(6.2)

with λ being a non-negative parameter and ‖.‖ designating the p-norm, p = 1, 2, see Def-

inition 2.2.17. The auxiliary function is updated within the dynamic convexized method

as soon as a new minimizer is found which is better than x∗c .

We can easily notice that if f(x) ≥ f∗c , then T (x, λ|x∗c) ≥ 0, otherwise T (x, λ|x∗c) < 0.

Using the above function, we define the following auxiliary non-linear integer programming

Section 6.2. An auxiliary function-based dynamic convexized method Page 57

problem:

(ANLIP)
min T (x, λ|x∗c), s.t

X ∈ Xn.

The ideas of this method was first introduced by Zhu and Ali [ZA09] and it aims to find

sequentially local minimizers {x∗1, x∗2, . . . , x∗c , . . .}, of (RSQIP) such that f(x∗i) ≥ f(x∗i+1)

by solving (ANLIP) based on updated T (x, λ|x∗i). Before we present theoretical results on

the auxiliary function-based method, we need to define the following sets:

S1 = {x ∈ Xn : f(x) < f∗c },

S2 = {x ∈ Xn : f(x) > f∗c },

S3 = {x ∈ Xn : f(x) = f∗c }.

Theorem 6.2.7:

If x∗c is a local minimizer of (RSQIP), then x∗c is a local minimizer of T (x, λ|x∗c) over Xn.

Proof. Let us assume that x∗c is a local minimizer of (RSQIP). Therefore, f∗c ≤ f(x) for

all x ∈ N(x∗c)∩Xn. We want to show that T (x, λ|x∗c) ≥ T (x∗c , λ|x∗c) for all x ∈ N(x∗c)∩Xn.

Let x ∈ N(x∗c) ∩ Xn, since x∗c is a local minimizer of (RSQIP) then f(x) ≥ f∗c . Therefore

T (x, λ|x∗c) ≥ 0 i.e. T (x, λ|x∗c) ≥ T (x∗c , λ|x∗c) since T (x∗c , λ|x∗c) = 0. Hence x∗c is a local

minimizer of T (x, λ|x∗c) over Xn.

Theorem 6.2.8:

For all x ∈ S1 = {x ∈ Xn : f(x) < f∗c } and for all y ∈ S2 ∪ S3, we have T (x, λ|x∗c) <

T (y, λ|x∗c).

Proof. Let x ∈ S1 and y ∈ S2 ∪ S3, T (x, λ|x∗c) < 0 and T (y, λ|x∗c) ≥ 0. Hence, Theorem

6.2.8 obviously holds.

From Theorem 6.2.8 we can deduce the following result.

Section 6.2. An auxiliary function-based dynamic convexized method Page 58

Corollary 6.2.9:

If f∗c is not the global minimal value of (RSQIP), then S1 = {x ∈ Xn|f(x) < f∗c } 6= ∅ and

all global minimizers of (ANLIP) are in the set S1.

Theorem 6.2.10:

Suppose that f∗c is not the global minimal value of (RSQIP) then for y ∈ S1 = {x ∈ Xn : f(x) < f∗c },

y is a local minimizer of (ANLIP) if and only if y is a local minimizer of (RSQIP).

Proof. Let us suppose that f∗c is not the global minimal value of (RSQIP), then by

Corollary 6.2.9 S1 6= ∅. Let y ∈ S1 such that y is a local minimizer of (ANLIP), i.e.

T (y, λ|x∗c) ≤ T (x, λ|x∗c) ∀x ∈ N(y) ∩ Xn.

This is equivalent to f(y)− f∗c ≤ f(x)− f∗c for all x ∈ N(y) ∩ Xn

i.e. f(y) ≤ f(x) for all x ∈ N(y) ∩ Xn.

Hence y is a local minimizer of (RSQIP). The reverse proof follows easily.

By Corollary 6.2.9 and Theorem 6.2.10, we can find that if f∗c is not the global minimal

value of (RSQIP), then (RSQIP) and (ANLIP) have the same global minimizer.

We now look at some properties of the auxiliary function.

Lemma 6.2.11:

For any x ∈ Xn, if x 6= x∗c , then there exists y ∈ N(x)∩Xn such that ‖y− x∗c‖ < ‖x− x∗c‖.

Proof. Let X be a permutation matrix corresponding to x such that X 6= X∗c , where X∗c

is the permutation matrix corresponding to x∗c . Therefore, there are some corresponding

columns of both matrices that are not equal. Since X and X∗c are permutation matrices,

there are at least two columns by which they differ. Let i and j be the columns in the matrix

X which are not equal to their corresponding columns in X∗c . By swapping the columns i

and j in X, we obtain a permutation matrix Y = Xij such that the column i or the column

j is equal to its corresponding column in the matrix X∗c . Consequently, the matrix Y −X∗c

Section 6.2. An auxiliary function-based dynamic convexized method Page 59

has less non-zero elements than the matrix X−X∗c . Hence ‖y−x∗c‖ < ‖x−x∗c‖ and Lemma

6.2.11 holds.

Theorem 6.2.12:

For the function T (x, λ|x∗c), we have the following results:

i) For any x ∈ S2 ∪ S3, if there exists y ∈ N(x) ∩ Xn such that f(y) < f∗c then x is not

a local minimizer of (ANLIP).

ii) For any x ∈ S2 ∪ S3, x 6= x∗c let

L(x) = min
z

{
f(z)− f(x)

‖x− x∗c‖ − ‖z − x∗c‖
| z ∈ N(x) ∩ Xn, ‖z − x∗c‖ < ‖x− x∗c‖

}
. (6.3)

If λ > L(x), then x is not a local minimizer of (ANLIP).

iii) Especially if

λ > max {L(x) : x ∈ Xn} (6.4)

then for all x ∈ S2 ∪ S3, x 6= x∗c , is not a local minimizer of (ANLIP).

Proof. i) Let x ∈ S2 ∪ S3 and let us suppose that there exists y ∈ N(x) ∩ Xn such that

f(y) < f∗c . x ∈ S2 ∪ S3 implies that T (x, λ|x∗c) = f(x) − f∗c + λ‖x − x∗c‖ ≥ 0 on

the other hand we f(y) < f∗c , it implies that T (y, λ|x∗c) = f(y) − f∗c < 0. Hence

T (y, λ|x∗c) < T (x, λ|x∗c) with y ∈ N(x) ∩ Xn. Whence x is not a local minimizer for

(ANLIP).

ii) We have

L(x) = min
z

{
f(z)− f(x)

‖x− x∗c‖ − ‖z − x∗c‖
| z ∈ N(x) ∩ Xn, ‖z − x∗c‖ < ‖x− x∗c‖

}
i.e. there exists z ∈ N(x) ∩ Xn with ‖z − x∗c‖ < ‖x− x∗c‖ such that

Section 6.2. An auxiliary function-based dynamic convexized method Page 60

L(x) =
f(z)− f(x)

‖x− x∗c‖ − ‖z − x∗c‖
.

Now, λ > L(x) =⇒ λ (‖x− x∗c‖ − ‖z − x∗c‖) > f(z)− f(x)

i.e. λ (‖x− x∗c‖ − ‖z − x∗c‖) > (f(z)− f∗c)− (f(x)− f∗c)

i.e. λ‖x− x∗c‖+ f(x)− f∗c > f(z)− f∗c + λ‖z − x∗c‖

i.e. T (x, λ|x∗c) > f(z)− f∗c + λ‖z − x∗c‖.

So if f(z) < f∗c , we have T (z, λ|x∗c) = f(z)− f∗c ≤ f(z)− f∗c +λ‖z−x∗c‖ < T (x, λ|x∗c).

Otherwise T (z, λ|x∗c) = f(z)− f∗c + λ‖z − x∗c‖ < T (x, λ|x∗c).

Thus in any case, T (x, λ|x∗c) > T (z, λ|x∗c) with z ∈ N(x) ∩ Xn. Hence x is not a local

minimizer of (ANLIP).

iii) Let us suppose that equation (6.4) holds, by ii) we know that if λ > L(x) for any

x ∈ Xn, x 6= x∗c , x is not a local minimizer of (ANLIP). This will therefore be valid

for λ > max
x∈Xn

L(x). Hence x is not a local minimizer of (ANLIP).

By Theorem 6.2.12, we can notice that if the minimization of T (x, λ|x∗c) over Xn using the

local search algorithm gets stuck at a local minimizer in the set S2∪S3, then by a sufficient

increment on the value of λ, the minimization of T (x, λ|x∗c) can escape from the local

minimizer. Moreover, by Theorems 6.2.7 and 6.2.12, if λ is large enough, the minimization

of T (x, λ|x∗c) over Xn starting from any permutation matrix will converge either to the

prefixed point x∗c or to a local minimizer in S1 = {x ∈ Xn : f(x) < f∗c }.

Let h(x) = max {0, f(x)− f∗c } be defined over Xn. It is important to note that the objective

of minimizing T (x, λ|x∗c) over Xn is to find a point x ∈ S1 = {x ∈ Xn : f(x) < f∗c } which

satisfies h(x) = 0. However if the set S1 is small, it is difficult to find such a point. Therefore,

most of the efforts will be spent searching in the set S2 ∪ S3. While minimizing T (x, λ|x∗c)

over Xn, for two points x and y in S2 ∪ S3, x ∈ N(y), if h(x) < h(y), we would like to have

Section 6.2. An auxiliary function-based dynamic convexized method Page 61

T (x, λ|x∗c) < T (y, λ|x∗c). However, by assertion ii) of Theorem 6.2.12, if the value of λ

is large enough so as to satisfy inequality (6.4), then we will have T (x, λ|x∗c) ≥ T (y, λ|x∗c)

when ‖x− x∗c‖ > ‖y − x∗c‖ and this will obviously misconduct the search for a good point.

Theorem 6.2.13:

Let h(x) = max {0, f(x)− f∗c }. Suppose x ∈ S2 ∪ S3 and h(z) < h(x), z ∈ N(x) ∩ Xn.

Then T (z, λ|x∗c) < T (x, λ|x∗c) if and only if one of the following conditions is satisfied:

a) λ = 0,

b) λ > 0 and ‖z − x∗c‖ ≤ ‖x− x∗c‖,

c) λ > 0 , ‖z − x∗c‖ < ‖x− x∗c‖ and λ <
h(x)− h(z)

‖z − x∗c‖ − ‖x− x∗c‖
.

Proof. Let x ∈ S2 ∪ S3, z ∈ N(x) ∩ Xn, z ∈ S2 ∪ S3 and h(z) < h(x).

T (z, λ|x∗c) < T (x, λ|x∗c) is equivalent to f(z)− f∗c + λ‖z− x∗c‖ < f(x)− f∗c + λ‖x− x∗c‖ and

we have h(z) < h(x). So

a) f(z)− f∗c + λ‖z − x∗c‖ < f(x)− f∗c + λ‖x− x∗c‖ holds if and only if λ = 0.

b) λ > 0 and ‖z − x∗c‖ ≤ ‖x − x∗c‖ is equivalent to λ‖z − x∗c‖ ≤ λ‖x − x∗c‖ and this

combined with h(z) < h(x) leads to T (z, λ|x∗c) < T (x, λ|x∗c).

c) Since, λ > 0 , ‖z − x∗c‖ < ‖x − x∗c‖ and λ <
h(x)− h(z)

‖z − x∗c‖ − ‖x− x∗c‖
, we have λ <

f(x)− f(z)

‖z − x∗c‖ − ‖x− x∗c‖
⇐⇒ λ‖z − x∗c‖ − λ‖x− x∗c‖ < (f(x)− f∗c)− (f(z)− f∗c)

i.e. f(z)− f∗c − λ‖z − x∗c‖ < f(x)− f∗c + λ‖x− x∗c‖

Hence T (z, λ|x∗c) < T (x, λ|x∗c).

Theorem 6.2.13 helps us in making T (x, λ|x∗c) < T (y, λ|x∗c) while h(x) < h(y).

Section 6.2. An auxiliary function-based dynamic convexized method Page 62

6.2.2 The discrete dynamic convexized (DDC) algorithm

Here we present the DDC algorithm. The DDC algorithm solves (RSQIP) by repeatedly

solving (ANLIP). This is because the auxiliary function T (x, λ|x∗c) in (ANLIP) is updated

dynamically with new found minimizers of (RSQIP). Parameters involved in the DDC

algorithm are λ which is a non-negative parameter used to define the auxiliary function.

We start the algorithm with λ = 0 and increase its value by δλ when necessary until the

condition4 c) given in Theorem 6.2.13 is satisfied. A numerical study by Zhu and Ali

[ZA09] shows that δλ can be chosen between 0.5 and 5, for our numerical implementation,

we chose δλ = 1. The DDC algorithm also has a parameter NL which represents the

maximum number of iterations. The choice of the value for NL is discussed in the numerical

implementation section. We denote the iteration of DDC by k.

Before presenting a step-by-step description of DDC, we present the basic mechanism of

the DDC algorithm. Initially, an initial solution, say x0, is generated using the heuristic

method described in section 7.2. A local minimizer, x∗c , of (RSQIP) is then found starting

from x0 by Algorithm 3. We denote the local search by Loc(•). The pair x∗c , f
∗
c is then

used to construct the auxiliary function, and the DDC algorithm starts with the following

initial step, Step 0.

• Step 0: At this step of DDC, a random5 initial solution x0 ∈ Xn is found and is used

to minimized T (x, λ|x∗c) with λ = 0. The local minimization of T (x, λ|x∗c) from x0

may result in the minimizer y0 = Loc(x0) landing in one of the following sets.

S1 = {x ∈ Xn : f(x) < f(x∗c}

S2 = {x ∈ Xn : f(x) > f(x∗c}
4This condition varies from one problem to another since it depends on the neighbourhood of the current

incumbent solution x∗
c .

5In the numerical implementation, we found the initial x0 by using the heuristic method described in

section 7.2. The purpose of using the heuristic instead of simply generate a random initial solution is to

facilitate the faster convergence of the DDC algorithm.

Section 6.2. An auxiliary function-based dynamic convexized method Page 63

S3 = {x ∈ Xn : f(x) = f(x∗c}

Depending on which of the above sets, S1,S2 or S3 contains the resulting minimizer

y0, the following steps are executed:

i) If y0 ∈ S2 then Loc(•) is applied with an increased value of λ. In particular, if

z0 = Loc(y0), z0 ∈ S2, then the process is repeated with z0 i.e r0 = Loc(z0) with

a further increased value of λ. The process is repeated until the minimizer lands

in S1 or S3.

ii) If y0 ∈ S3 (or any minimizer in step i) lands in S3) then a new starting point x0

(not using heuristic, as it may be time consuming) is found at random and the

process is repeated from Step 0 again.

iii) If y0 ∈ S1 (or any minimizer in step i) or in step ii) lands in S1) then by Theorem

6.2.10 we have found a local minimizer of (RSQIP) which is better than x∗c .

x∗c , f
∗
c and the auxiliary function are then updated and the process begins with

Step 0 again.

With the above description, a step-by-step procedure of the DDC algorithm is given by

Algorithm 4.

Section 6.2. An auxiliary function-based dynamic convexized method Page 64

Algorithm 4 : DDC algorithm

Step 1 : Let x∗c be an initial minimizer of (RSQIP) and f∗c = f(x∗c). Let NL be a

sufficiently large integer number, and δλ be a positive number. Set k = 0

Step 2 : Set λ = 0 and k = k + 1. If k ≥ NL then go to Step 5 ; Otherwise draw

uniformly at random a permutation matrix Y 0 ∈ Xn set y0 = vec(Y 0) and go to Step 3.

Step 3 : Minimize T (x, λ|x∗c) over Xn from y0 using the local search Algorithm 3.

Suppose that z0 is an obtained local minimizer i.e z0 = Loc(y0)

If z0 ∈ S2, then set λ := λ+ δλ, y
0 = z0 and repeat Step 3.

If z0 ∈ S3 then go to Step 2.

If z0 ∈ S1 then go to Step 4.

Step 4 : Let x∗c = z0, f∗c = f(x∗c) and go to Step 2.

Step 5 : Output x∗c and f∗c as an approximate global minimal solution and global minimal

value of (RSQIP).

7. Numerical experiments and results

In this Chapter, we present full details of the computational experiments. These are the

calculation of lower bounds of QAP instances used within the Branch-and-Bound algorithm,

the calculation of the first incumbent solution, used in both the Branch-and-Bound and the

DDC algorithm, by a heuristic method. Finally, we present the implementation details of

the Branch-and-Bound and the DDC algorithm. A full set of results are also presented and

compared with a recent algorithm by Zhang et al. [ZRC10]. We have used more than 40

test problems of various degree of complexity for the Branch-and-Bound algorithm. We

have used an additional set of 17 problems to test the DDC algorithm. Hence the total

number of problems used is 57. These problems are taken from the QAP library [BcKR].

Programming was carried out using Matlab 7.11 on a desktop computer, Intel Core i7 with

3.07 GHz processor and 6.00 GB RAM. We begin with the computation of lower bounds.

7.1 Computation of lower bounds

In Chapter 4, we have presented two continuous relaxations, namely, (CR1), the continuous

relaxation of (RSQIP) presented in section 4.1, and (CR2), the continuous relaxation of

(SCQIP) presented in section 4.2. Here, we present the numerical calculation of lower

bounds of a representative set of problem instances. We make a comparison of these lower

bound calculations using (CR1) and (CR2) and show that the lower bounds obtained using

(CR1) are better than those obtained using (CR2). The lower bounds obtained using (CR1)

are used within the Branch-and-Bound.

We have used an interior point method to solve (CR1). This is available in the built-in

Matlab routine, QUADPROG, for which we provided an initial strictly feasible solution1

using the first technique of finding initial strictly feasible point developed in section 5.1.

1See the last paragraph on page 32, and the footnote 1 on page 42.

65

Section 7.1. Computation of lower bounds Page 66

On the other hand, we used a predictor-corrector method for the solution of (CR2) which

is the continuous relaxation of (SCQIP). Motivations for the use of the predictor-corrector

are given in section 4.4.1. We have calculated a measure of goodness of the lower bounds

using a gap. The gap is calculated as gap =
| f − f∗ |
| f∗ |

×100, where f is the lower obtained,

and f∗ is the exact or best known optimal function value.

The results are presented in Table 7.1, where column 1 contains the problem name, column 2

the problem size, column 3 the optimal solution of the problem. Columns 4, 5 and 6 contain

the lower bound obtained from solving (CR1), the corresponding gap and the times taken

to compute these lower bounds respectively. Finally column 8 reports the gap obtained

from the solutions of (CR2).

A comparison of the gaps obtained from the two lower bounding techniques (columns 5 and

6 of Table 7.1) shows that the lower bounds based on (CR2) are inferior and this cannot be

used for the Branch-and-Bound method. This is due to the convexification technique used

to transform (RSQIP) into (CQIP).

Section 7.1. Computation of lower bounds Page 67

Table 7.1: Lower Bounds from the continuous relaxation of (RSQIP)

Instances Sizes Opt (CR1) Lower bounds (CR1) Gap (%) CPU times (s) (CR2) Gap (%)

Esc16a 16 68 65.03 4.3 2.09 91.3

Esc16b 16 292 268.8 7.9 2.16 927

Esc16c 16 160 143.2 10.5 2.31 91.3

Esc16d 16 16 12.5 21.8 2.15 91.2

Esc16e 16 28 27.8 0.7 2.13 91.7

Esc16f 16 0 0 0.0 0.87 0.0

Esc16g 16 26 25.3 14.2 2.10 91.5

Esc16i 16 14 11.7 16.4 2.10 90.4

Esc16j 16 8 8 0.0 2.19 91.7

Had12 12 1652 1602.6 2.9 1.73 87.2

Had14 14 2724 2675.5 1.7 3.47 89.3

had16 16 3720 3647.8 1.9 8.22 90.2

Had18 18 5358 5283.7 1.3 18.73 91.4

Had20 20 6922 6845.6 1.1 35.43 92.3

Nug12 12 578 576.3 0.2 2.17 86.7

Nug14 14 1014 1009.1 0.4 3.28 89.4

Nug15 15 1150 1139.1 0.8 5.15 89.8

Nug16a 16 1610 1600.9 0.5 9.15 90.6

Nug16b 16 1240 1224.3 1.2 9.25 90.4

Nug17 17 1732 1716.3 0.9 9.31 91.0

Nug18 18 1930 1923.9 0.3 16.71 91.4

Nug20 20 2570 2551.7 0.7 43.25 92.3

Nug22 22 3596 3576.2 0.5 100.16 93.7

Section 7.2. A heuristic random enumeration Page 68

7.2 A heuristic random enumeration

During our discussion of the Branch-and-Bound method in section 6.1, we mentioned the

calculation of the incumbent solution or the (starting) initial solution. We also mentioned

the calculation of an initial (starting) solution used at the beginning of the DDC algorithm in

section 6.2. The initial solution for both algorithms are generated by a random enumeration

scheme. This solution is provided to both algorithms due to the experience we gathered

during our numerical experiments.

Clearly, if the (initial) starting solution in the Branch-and-Bound is close enough to the

optimal solution, then many branches will be pruned at early stages of Branch-and-Bound

resulting in faster convergence. Similarly, our experiments with the DDC algorithm have

shown that if we start the DDC algorithm with a randomly generated permutation matrix or

the identity matrix, which is more likely to be far from the optimal solution, the probability

of convergence is low. On the other hand, if the initial solution is good enough, then the

convergence is more likely to be achieved after the suggested number of iterations of the

DDC algorithm.

With the above motivation, we now present the details of calculation of the initial solution.

This is a purely random strategy whereby the current permutation matrix (initially the

identity matrix In is chosen) is changed iteratively by swapping two columns taken ran-

domly. For example, we start with the matrix I0 = In and create the next matrix with I1

from I0 by swapping two randomly selected columns of I0. Similarly, we create the permu-

tation matrix Ik+1 from Ik. Each time a permutation matrix is created, its function value

is checked and the better solution is kept2. We have use the function f(x) =
1

2
xTQx of

(CQIP) for this purpose. The pseudo-code for the random enumeration is presented by Al-

gorithm 5. The most important issue in the random enumeration procedure is the choice

of the value N which is the number of randomly generated solutions. We now demonstrate

2One could use a local descent technique from the initial solution In, but our experiences have shown

that the random enumeration is better due to its exploratory feature.

Section 7.3. Implementation of the Branch-and-Bound algorithm Page 69

how we have chosen a value for N .

Our choice of N was based on the following numerical study. The problem presented in

the QAP library [BcKR] have different structures. For some problem instances, there are

pairs of facilities whose flow is zero. Since the cost coefficients in the objective function are

proportional to the flows and distances, the cost associated with the zero flow coefficient

will vanish. The structure of problem instances thus differ with the density3 of the flow

matrix, which is defined as the percent of the number of non-zero elements in this matrix.

We took eight problems with different structure for our study. The remaining problem have

similar structure to one of the eight problems considered.

For each of these eight problems, we have implemented the random enumeration algorithm,

Algorithm 5, using N = 105 and study the improvement of the solution. We have pre-

sented4 the optimal solution together with the evolving random heuristic solution for all

the eight problems in Figures 7.1–7.4. In Figure 7.1–7.4,, the x-axes represent the N values

and the y-axes the function values. These figures clearly show that the random enumera-

tion solution does not necessarily improve with the increase of the value of N . This study

helps us to choose N for different problems. Indeed for our numerical implementation, the

values of N were randomly selected in the interval [104, 105]. Given that for a problem with

n = 12, there are 12! = 479, 001, 600 possibilities, these numbers are reasonably small.

7.3 Implementation of the Branch-and-Bound algorithm

In this section, we present the computational details of the Branch-and-Bound algorithm.

For a faster convergence of the Branch-and-Bound algorithm, the lower bounding technique

used should provide tight lower bounds, and its implementation should not be computa-

tionally expensive. In Chapter 4, we have presented two lower bounding techniques, via the

continuous relaxation of (RSQIP), (CR1), and via the continuous relaxation of (SCQIP),

3Zhang et al. [ZRC10] present the density flow matrix for different problem instances from [BcKR].
4The average optimal solution over 10 runs is also presented in appendix ??.

Section 7.3. Implementation of the Branch-and-Bound algorithm Page 70

Algorithm 5 : Random enumeration

Set N to be a large number

Set the iteration counter, k = 0

Generate the permutation matrix Ik, I0 = In (identity matrix)

Set xs = vec(Ik)

while k ≤ N do

Generate a random permutation matrix Ik+1

Set x0 = vec(Ik+1)

if
1

2
(x0)TQx0 <

1

2
(xs)TQxs then

xs := x0

end if

k := k + 1

end while

(CR2). Motivated by the results presented in Table 7.1, we have used (CR1) to compute

the lower bounds of sub-problems within the Branch-and-Bound algorithm. Therefore, the

lower bound which is the optimal solution of (CR1) was obtained using the interior point

algorithm available in the in-built Matlab solver QUADPROG. As we pointed out ear-

lier, we provided initial strictly feasible solutions in QUADPROG using the first technique

discussed in section 5.1.

At the beginning of the Branch-and-Bound algorithm, we implemented the heuristic random

enumeration algorithm, Algorithm 5 in order to get an initial incumbent solution, details

of which have been presented in the previous section. The heuristic algorithm enables the

Branch-and-Bound algorithm to discard some non promising branches at an early stage of

the algorithm.

Using the Branch-and-Bound algorithm, we have been able to optimally solve up to 30

problem instances out of 40 tested problems, taken from the QAP library [BcKR], of size

n ≤ 22 on a single computer i.e without paralleling. Tables 7.2 and 7.3 present the results

Section 7.4. Implementation of the auxiliary function-based method Page 71

obtained from the Branch-and-Bound algorithm. In these tables, we report the optimizers

obtained in the sixth column, together with corresponding objective function values in col-

umn 2. We also report the computational time and the number of function evaluations in

columns 4 and 5 respectively. The total function calls includes the number of function calls

used within the random enumeration algorithm and in the Branch-and-Bound algorithm.

It is important to point out the fact that for some problem instances, the optimizers ob-

tained from this algorithm are different from the those reported in [BcKR], See for instance

problems Ecs16a, Ecs16b, Ecs16c, Ecs16d, Ecs16e, Ecs16g, Ecs16h, Ecs16i, Ecs16j, Had16,

Nug12, Scr12 and Scr20. However, the optimal function values are the same.

We now compare our Branch-and-Bound with the Branch-and-Bound algorithm presented

in [ZRC10]. This Branch-and-Bound uses parallel computing together with a powerful com-

mercial solver to generate results. Hence this Branch-and-Bound algorithm solved problem

instances with dimension up to 32. We have implemented our Branch-and-Bound using

a personal computer and no commercial solver was used, and therefore we have presented

our results of problem instances of dimension up to 22. We therefore compare these two

Branch-and-Bound on the common problems that were solved by us and by Zhang et al.

[ZRC10]. There were 11 common problems. On these problems, our Branch-and-Bound al-

gorithm solved all successfully, and the Branch-and-Bound of Zhang et al. [ZRC10] solved

6 problems only.

7.4 Implementation of the auxiliary function-based method

In this section we present details of the numerical implementation of the DDC algorithm

presented in Chapter 6. This algorithm starts with the heuristic random enumerative

scheme, see Algorithm 5, to obtain an initial solution . This solution is then used as initial

point to get the initial local minimizer x∗c by the local search Loc(•). We have tested the

DDC algorithm to a set of problem instances of size n ≤ 32 and a problem of size n = 64.

Given that the DDC algorithm solves problems instances of larger sizes than Branch-and-

Section 7.4. Implementation of the auxiliary function-based method Page 72

Bound, for the purpose of comparison, we have used the 30 problems considered in [ZRC10],

and solved them using DDC. In addition, we have also used another set of 27 problems to

test the DDC algorithm. Therefore the total number of problems used to test the DDC

algorithm is 57. These 57 problems also include the 40 used to test the Branch-and-Bound

algorithm. Indeed, [ZRC10] provides recent advances in the QAP, and therefore, a platform

for us to compare our results of the auxiliary function-based method, since it can solve

larger problems within a reasonable amount of time.

In implementing the DDC algorithm, we started the algorithm with λ = 0 and increase its

value by δλ when necessary until the condition c) given in Theorem 6.2.13 is satisfied.

We then reset λ = 0. As we said earlier, we chose to increase the value of λ by δλ = 1. On

the other hand, although the original dynamic convexized method [ZA09] used NL = 106

to stop the algorithm, we have found that NL = 102 is reasonable to use for the QAP

considering the heuristic random enumeration that is implemented at the beginning of the

DDC algorithm. In fact, NL = 102 is large enough for our implementation as we have solved

all the problems with this value.

The results obtained on 57 problem instances are presented in Table 7.4 and Table 7.5. In

column 2 we give the deviation of our optimal function value from the exact or best known

optimal function value for different problem instances. The minimizers corresponding to

these function values are presented in Appendix 9.2. The sixth column provides the gap5

obtained by Zhang et al. [ZRC10], where we use the symbol “–” for the problem instances

for which they did not carry the experiment. Tables 7.4 and 7.5 show that the results by

Zhang et al. [ZRC10] and DDC are comparable. Both algorithms were unable to optimally

solve 13 problems. However, the gaps produced by DDC for the unsolved problems are

much better than those reported in [ZRC10].

As we can see in Tables 7.4 and 7.5, the auxiliary function-based method has been able

to achieve optimality for about 64% of the problems tested. The worst optimality gap we

5These gaps are the best of the gaps they obtained from their three different techniques.

could get is 19.9%. Only 14% of these tested problems have optimality gap greater than

5%.

Section 7.4. Implementation of the auxiliary function-based method Page 74

T
ab

le
7.

2:
R

es
u

lt
s

fr
om

th
e

B
ra

n
ch

-a
n

d
-B

o
u

n
d

al
g
or

it
h

m
:

P
ar

t
1

In
st

a
n

ce
s

O
p

t
G

ap
(%

)
C

P
U

ti
m

e
(s

)
F

u
n

c.
E

va
l

O
p

t.
S
o
l

C
h

r1
2a

95
5
2

0
18

2.
0

20
00

01
7

(7
,5
,1

2,
2,

1,
3,

9,
11
,1

0
,6
,8
,4

)

C
h

r1
2
b

97
4
2

0
12

8.
8

10
00

02
5

(5
,7
,1
,1

0,
1
1,

3
,4
,2
,9
,6
,1

2
,8

)

C
h

r1
2c

1
11

5
6

0
18

6.
3

30
00

03
3

(7
,5
,1
,3
,1

0,
4,

8,
6,

9,
1
1,

2
,1

2)

C
h

r1
5a

10
1
9
6

3.
0

19
28

.1
10

00
64

1
(1

3,
7
,5
,2
,1
,8
,1

4
,3
,4
,6
,9
,1

5,
1
2,

11
,1

0)

C
h

r1
5
b

89
9
0

1
2.

5
13

63
.1

10
00

68
3

(9
,1

4,
3
,1

3
,5
,1
,4
,1

2,
6,

7,
2,

8,
1
1,

10
,1

5)

C
h

r1
5c

1
04

4
6

9
.9

14
99

.9
60

00
07

9
(2
,1

3,
7
,5
,1
,8
,6
,1

4
,4
,9
,1

5,
3,

12
,1

1,
10

)

T
a
i1

0
a

13
5
0
28

0
90

.3
10

00
21

(9
,1
,8
,6
,1

0,
5
,4
,3
,7
,2

)

T
a
i1

0b
1
18

3
7
60

0
95

.7
10

01
17

(5
,6
,1
,4
,7
,8
,9
,3
,2
,1

)

T
a
i1

2
a

22
4
4
16

0
17

9.
7

20
00

01
8

(8
,1
,6
,2
,1

1,
10
,3
,5
,9
,7
,1

2
,4

)

T
a
i1

2b
3
9
46

4
9
25

0
17

0.
6

20
00

09
(9
,4
,6
,3
,1

1,
7,

12
,2
,8
,1

0
,1
,5

)

T
a
i1

5
a

38
8
9
88

0.
2

18
48

.6
60

00
00

31
(4
,7
,2
,1

1,
6
,1

0
,1

4,
9,

8,
13
,1
,3
,1

5,
12
,5

)

T
a
i1

5b
5
1
93

4
4
19

0
.3

16
66

.8
60

00
01

01
(1

3,
1
,4
,6
,5
,1

5
,7
,9
,1

2,
8,

14
,2
,1

1,
3,

1
0)

T
a
i1

7
a

50
8
3
94

3.
3

47
94

7.
5

60
00

00
95

(5
,4
,1

7,
9,

10
,3
,1
,7
,1

5
,2
,6
,1

4,
13
,1

6,
12
,1

1,
8)

T
a
i2

0b
12

3
56

1
7
67

0
.9

17
86

75
.9

60
00

02
03

(7
,6
,1

7,
8
,9
,1

6
,4
,2
,1

5,
1
9,

14
,1

1,
3
,1
,1

0,
1
3,

5
,2

0,
1
8,

12
)

S
cr

1
2

3
1
41

0
0

10
4.

5
20

00
45

(5
,7
,1

0,
11
,3
,1

2,
8,

4
,9
,6
,1
,2

)

S
cr

1
5

5
1
14

0
0

56
9.

5
60

00
01

7
(1

5
,7
,1

1
,8
,1
,4
,3
,2
,1

2,
6,

1
3,

5
,1

4,
10
,9

)

S
cr

2
0

1
1
00

3
0

0
18

63
00

.2
20

00
00

79
(1

7,
6,

9
,7
,1
,5
,2
,3
,1

5,
10
,1

9,
12
,1

8,
14
,1

3
,

2
0,

16
,8
,1

1,
4)

R
o
u

1
2

23
5
5
28

0
11

1.
1

20
00

41
(6
,5
,1

1,
9,

2,
8,

3,
1,

12
,7
,4
,1

0)

R
o
u

1
5

35
4
2
10

0
11

63
.4

60
00

03
5

(1
2
,6
,8
,1

3
,5
,3
,1

5,
2,

7,
1,

9,
1
0,

4
,1

4,
11

)

R
o
u

2
0

74
3
9
74

2
.5

14
16

03
.5

60
00

10
1

(9
,1

1,
7
,2
,1

0,
3,

19
,1

3
,6
,7
,1
,1

8,
20
,5
,1

5,

4,
1
2,

8
,1

4,
16

)

Section 7.4. Implementation of the auxiliary function-based method Page 75
T

ab
le

7.
3:

R
es

u
lt

s
fr

om
th

e
B

ra
n

ch
-a

n
d
-B

o
u

n
d

al
g
or

it
h

m
:

P
ar

t
2

In
st

a
n

ce
s

O
p

t
G

ap
(%

)
C

P
U

ti
m

e
(s

)
F

u
n

c.
E

va
l

O
p

t.
S

ol

N
u

g
12

5
7
8

0
16

8.
3

10
01

35
(2
,1

0,
6
,5
,1
,1

1
,8
,4
,3
,9
,7
,1

2
)

N
u

g
14

10
1
4

0
47

6.
3

60
00

03
9

(9
,8
,1

3,
2,

1,
1
1,

7
,1

4
,3
,4
,1

2,
5,

6,
1
0)

N
u

g1
6
a

16
1
0

0
27

28
54

.3
10

00
08

91
(9
,1

4,
2
,1

5,
1
6,

3
,1

0
,1

2,
8,

1
1,

6
,5
,7
,1
,4
,1

3)

N
u

g
20

25
7
0

0
2
82

06
8.

8
10

00
10

21
(1

8,
14
,1

0,
3
,9
,4
,2
,1

2,
1
1,

16
,1

9,
15
,2

0,
8,

13
,

1
7,

5
,7
,1
,6

)

N
u

g
22

36
5
0

1.
5

31
11

18
.2

60
00

01
52

(1
7,

21
,9
,1

0,
1,

7,
1
9,

8
,1

6,
15
,2

0,
5
,2
,1

3,
6,

12
,2

2,
18
,3
,1

1,
4,

1
4)

H
ad

12
16

5
2

0
21

0.
7

10
00

03
2

(3
,1

0,
1
1,

2,
12
,5
,7
,6
,8
,1
,4
,9

)

H
ad

14
27

2
4

0
72

7.
5

10
00

18
5

(8
,1

3,
5,

10
,1

2,
11
,2
,1

4,
3
,6
,7
,1
,9
,4

)

H
ad

16
37

2
0

0
1
69

59
8.

3
10

00
70

2
(1
,4
,1

6,
1
5,

7,
8,

6,
11
,9
,1

4
,1

2,
5,

2,
13
,1

0,
3)

H
ad

18
53

5
8

0
2
15

83
2.

2
60

00
10

1
(8
,1

5,
16
,6
,7
,1

8,
1
4,

11
,1
,1

0,
1
2,

5
,1

3,
3,

2,
17
,9
,4

)

H
ad

20
69

2
2

0
3
34

90
0.

5
60

00
12

0
(8
,1

5,
1
,1

4,
6,

1
9,

7
,1

1,
16
,1

2
,1

0,
1
7,

2
,2

0,
5,

3,
4,

9,
18
,1

3)

E
sc

16
a

68
0

15
17

.1
10

00
49

(3
,8
,1

6,
7
,2
,1

0,
1,

12
,1

1
,4
,1

4,
6,

5,
9,

15
,1

3)

E
sc

16
b

2
92

0
34

21
.8

10
01

21
(1

4
,4
,3
,5
,7
,6
,1
,2
,1

6,
12
,8
,1

3
,1

5,
10
,9
,1

1
)

E
sc

1
6c

1
6
0

0
3
55

63
2.

3
10

06
21

(7
,1

0,
1
4,

9,
13
,8
,6
,5
,1
,1

2
,3
,4
,2
,1

1,
16
,1

5)

E
sc

16
d

16
0

46
94

22
.3

10
08

97
(6
,7
,1

1,
1
6,

8,
4,

5,
10
,1

4
,2
,1
,1

3,
1
2,

9
,1

5,
3)

E
sc

1
6e

2
8

0
31

46
.5

10
00

83
(4
,1

6,
1
2,

8,
5,

1,
3,

2,
6,

13
,1

5
,1

0,
7,

1
1,

14
,9

)

E
sc

16
g

26
0

49
2.

2
10

00
12

(1
2,

2
,1
,6
,4
,8
,7
,5
,3
,9
,1

3,
1
1,

14
,1

6,
15
,1

0)

E
sc

16
h

9
96

0
48

76
12

.8
10

09
98

(5
,1

5,
1
3,

6,
12
,1

0,
8,

14
,4
,1

6,
2
,3
,1

1,
9,

1,
7
)

E
sc

16
i

14
0

32
72

1.
5

10
05

02
(2
,4
,1

0,
1
2,

16
,8
,7
,1

5
,1

1,
3,

1
3,

14
,6
,1
,9
,5

)

E
sc

16
j

8
0

55
7.

87
10

00
12

(3
,1

3,
2
,1

0,
1
2,

8
,1

6
,1

1,
5,

1
4,

6
,9
,4
,7
,1

5,
1
)

Section 7.4. Implementation of the auxiliary function-based method Page 76

Table 7.4: Results from the auxiliary function-based method: Part 1

Instances Opt DDC Gap (%) CPU time (s) Func. Eval ZBC Gap (%)

Had12 1652 0 83.8 549524 –

Had14 2724 0 147.2 750866 –

Had16 3720 0 628.7 1288724 –

Had18 5358 0 1024.1 2919844 –

Had20 6922 0 430.4 120820 –

Esc16a 68 0 99.6 256498 14.2

Esc16b 292 0 97.3 285490 97.3

Esc16c 160 0 88.5 240643 77.5

Esc16d 16 0 89.7 243814 0

Esc16e 28 0 92.1 266464 0

Esc16f 0 0 1 1 0

Esc16g 26 0 96.8 275977 0

Esc16h 996 0 110.2 295909 30.7

Esc16i 14 0 96.6 277336 –

Esc16j 8 0 105.6 291832 –

Esc32a 132 0 7484.4 62932864 100

Esc32b 192 14.2 5624.1 2491000 100

Esc32c 642 0 46451.2 13664832 100

Esc32d 206 3.0 5835.4 2491000 100

Esc32e 2 0 725.9 2617792 0

Esc32g 6 0 536.9 149604 0

Esc32h 438 0 16560.4 10116736 100

Esc64a 116 0 21254.1 11120480 –

Kra30a 91500 2.9 2151.6 1261600 65.7

Kra30b 95850 4.8 2331.4 2308000 68.3

Kra32 91760 3.4 5462.6 1517839 70.6

Bur26a 5439218 0.2 95.8 167600 –

Chr12a 9552 0 90.3 720020 –

Chr12b 9742 0 36.5 288500 –

Chr18a 11858 6.8 206.9 1046200 0

Chr18b 1534 0 243.1 1424000 0

Section 7.4. Implementation of the auxiliary function-based method Page 77

Table 7.5: Results from the auxiliary function-based method: Part 2

Instances Opt DDC Gap (%) CPU time (s) Func. Eval ZBC Gap (%)

Chr20a 2428 10.7 300.3 1073000 0

Chr20b 2470 7.4 417.3 1573000 0

Chr20c 16962 19.9 351.7 1246000 0

Chr22a 6538 6.2 380.3 5696000 0

Chr22b 6370 2.8 498.0 7960000 0

Chr25a 4382 15.4 213.0 582082 0

Tai10a 135028 0 9.8 100200 –

Tai10b 1183760 0 10.5 100200 –

Tai12a 224416 0 46.2 338000 –

Tai12b 39464925 0 36.2 293000 –

Scr12 31410 0 97.4 1135024 0

Scr15 51140 0 207.1 1975010 0

Scr20 110676 0.5 166.7 296000 6.2

Nug12 578 0 110.4 587378 –

Nug14 1014 0 98.7 199910 –

Nug15 1150 0 104.9 297211 –

Nug16a 1612 0.1 2192.6 43851648 –

Nug16b 1252 0.9 2254.1 18934976 –

Nug20 2570 0 1957.3 4708000 –

Nug21 2438 0 17858.1 11436142 –

Nug27 5306 1.3 21205.7 10940000 –

Nug28 5208 0.8 22505.7 7348603 –

Nug30 6180 0.9 10969.3 7220000 –

Section 7.4. Implementation of the auxiliary function-based method Page 78

Figure 7.1:

Section 7.4. Implementation of the auxiliary function-based method Page 79

Figure 7.2:

Section 7.4. Implementation of the auxiliary function-based method Page 80

Figure 7.3:

Section 7.4. Implementation of the auxiliary function-based method Page 81

Figure 7.4:

8. Conclusion and further research

In this dissertation, we aimed to develop new solution methods for the QAP. In achieving

this, we have identified and studied thoroughly a mathematical formulation of the QAP i.e

the standard quadratic integer programming formulation which has not been studied before.

For this mathematical formulation, we have proposed two solution approaches, namely, a

Branch-and-Bound method and an auxiliary function-based dynamic convexized method.

The Branch-and-Bound method for the QAP is well know in the literature. However,

its application to the standard quadratic integer programming formulation of the QAP is

something that has never been carried out previously. We have presented the first study of

this type and numerical solutions of the QAP using Branch-and-Bound. In addition, we have

introduced a heuristic random enumeration scheme to improve the efficiency and to speed

up the convergence of the Branch-and-Bound method. We use interior point algorithm to

calculate lower bounds for the sub-problems within the Branch-and-Bound algorithm. It is

well known that the problem of finding an initial strictly feasible point for the interior point

algorithm is not an easy task. In this dissertation, we have developed two new techniques

to overcome this. These two different techniques have the advantage that they can be used

for any other interior point algorithm.

The second solution approach is an auxiliary function-based dynamic convexized method.

This method was proposed recently for solving the general non-linearly constrained non-

linear integer programming, and has never been applied to the QAP. For this reason, we

have decided to apply this method to the QAP. The major challenge in applying this method

directly to the QAP was the neighbourhood structure. The auxiliary function-based dy-

namic convexized method requires the definition of an appropriate neighbourhood structure

which was suggested in the context of non-linear programming problem. Unfortunately, the

same neighbourhood structure cannot be used when solving the QAP as this will lead most

often to infeasible solutions. To overcome this problem, we have defined an appropriate

neighbourhood structure for the QAP solutions. As a consequence of this, the auxiliary

82

Page 83

function presented in this dissertation is different from the one used in solving non-linear

integer programming problems. In this neighbourhood structure, all the point are feasible

for the QAP. The theoretical results have been proved for the new neighbourhood structure

and the defined auxiliary function. Numerical results obtained from this method are quite

satisfying. Indeed, we have shown that this method is more robust than Branch-and-Bound

in terms of computational time and efforts.

On the other hand, the Branch-and-Bound method, which is an exact solution method,

could not solve some of the tested problem instances to optimality. This is due to the fact

that, the objective function of the standard quadratic integer programming reformulation

of the QAP is not convex. We have tried to overcome this problem with an equivalent

convex formulation and an equivalent separable convex reformulation, but the lower bounds

obtained were not of good quality. This is due to our convexification technique used.

However, Billionnet et al. [BEP09] proposed a different technique for transforming the

objective function of an indefinite quadratic integer programming problem subject to linear

equality constraints into a convex function. The investigation of this concept, if provides

tight lower bounds, can therefore be adapted to improve the quality of the Branch-and-

Bound method used in this dissertation. This will be one of the object of a future research.

In future research, we can also consider a more appropriate neighbourhood structure for

the auxiliary function-based dynamic convexized method. This is due to the large size of

the neighbourhood structure used in this dissertation, which slows down the computation

of the DDC method.

Something else that is still to be done in the area of the QAP is studying the QAP under the

graph formulation. This formulation was proposed by Loiola et al. [LAN+07] in a survey

paper and has never been studied in the literature. Given the recent advances in the area

of graph theory, and its computational tool in a software like Mathematica, this seems to

be a promising future research direction to consider.

9. Appendix

9.1 Appendix 1: Generalized inverse of a matrix

The generalized inverse of a matrix A is the a matrix that has some properties of the inverse

of A, and which can be used as the inverse of A if A is not invertible. The most widely

known generalized inverse is the Moore–Penrose generalized inverse. This was named after

the works by Moore in 1920 [Moo20] and Penrose in 1955 [Pen55].

For an m × n–matrix A, the Moore–Penrose generalized inverse A+ of the matrix A is

defined as a matrix which satisfies the following:

• AA+A = A,

• A+AA+ = A+,

• (AA+)T = AA+,

• (A+A)T = A+A.

The Moore–Penrose generalized inverse A+ of the A has the following properties:

i) A+ is uniquely determined.

ii) If A is non-singular, A+ = A−1.

iii) If A = 0, A+ = 0.

iv) (A+)+ = A.

v) If rank(A) = m, then A+ = AT (AAT)−1.

vi) (AT)+ = (A+)T , (αA)+ = α−1A+ for α 6= 0.

84

Section 9.2. Appendix 2: Minimizers from the auxiliary function-based method Page 85

The computation of the Moore–Penrose generalized inverse has known many developments.

In Matlab the in-built function pinv computes the Moore–Penrose generalized inverse of

matrices.

9.2 Appendix 2: Minimizers from the auxiliary function-

based method

In this section, we present in Tables 9.1, 9.2 and 9.3 the minimizers that realize the optimal

value from DDC presented in Tables 7.4 and 7.5

Section 9.2. Appendix 2: Minimizers from the auxiliary function-based method Page 86

T
ab

le
9
.1

:
M

in
im

iz
er

s
of

th
e

so
lu

ti
on

s
fr

om
th

e
au

x
il

ia
ry

fu
n

ct
io

n
-b

as
ed

m
et

h
o
d

(1
)

In
st

a
n

ce
s

O
p

t.
S

ol

B
u

r2
6
a

(1
6
,1

1
,7
,1

5,
8,

3,
6,

2,
12
,1

4,
5,

9,
21
,1
,2

6,
13
,1

9
,2

0,
18
,2

5,
10
,4
,1

7,
2
4,

22
,2

3)

C
h

r1
2a

(7
,5
,1

2,
2
,1
,3
,9
,1

1,
10
,6
,8
,4

)

C
h

r1
2
b

(5
,7
,1
,1

0,
11
,3
,4
,2
,9
,6
,1

2,
8)

C
h

r1
2c

(7
,5
,1
,3
,1

0,
4
,8
,6
,9
,1

1
,2
,1

2)

C
h

r1
8a

(8
,5
,9
,6
,1

5,
7,

18
,1

3,
1,

12
,3
,1

7
,1

6,
14
,4
,2
,1

0,
11

)

C
h

r1
8
b

(1
,2
,4
,3
,5
,6
,8
,9
,7
,1

2,
10
,1

1,
13
,1

4
,1

6,
15
,1

7,
1
8)

C
h

r2
0a

(1
3,

2
,1

6,
1
1,

4
,8
,1

5,
9,

6,
18
,1

0,
20
,1
,1

2,
17
,1

9,
3
,7
,5
,1

4)

C
h

r2
0
b

(1
3
,4
,1

6,
1
4,

1
,6
,9
,1

2,
11
,7
,2
,3
,1

9
,2

0,
18
,8
,1

7,
10
,5
,1

5
)

C
h

r2
0c

(1
1,

9
,6
,7
,2
,1

2,
19
,4
,2

0,
10
,1
,1

3,
16
,5
,1

4,
18
,8
,3
,1

7,
15

)

C
h

r2
2a

(4
,1
,1

6,
12
,1

3,
6,

11
,2

0,
5,

21
,3
,1

9
,1

7,
9,

2,
15
,1

4,
10
,2

2,
18
,7
,8

)

C
h

r2
2
b

(1
3,

6,
4,

1,
2
0,

2
,1

7,
22
,8
,1

6,
9,

11
,1

5
,5
,1

8,
7,

21
,1

0,
19
,1

2,
14
,3

)

C
h

r2
5a

(2
5,

2
2,

12
,3
,1

8,
2,

4,
11
,2

0
,1

0,
7,

21
,2

4,
9,

5,
19
,1

4,
8,

16
,6
,2

3
,1

5,
1
7,

13
,1

)

T
a
i1

0
a

(9
,1
,8
,6
,1

0,
5,

4,
3
,7
,2

)

T
a
i1

0b
(5
,6
,1
,4
,7
,8
,9
,3
,2
,1

0)

T
a
i1

2
a

(8
,1
,6
,2
,1

1,
10
,3
,5
,9
,7
,1

2,
4)

T
a
i1

2b
(9
,4
,6
,3
,1

1,
7
,1

2,
2,

8
,1

0,
1,

5)

S
cr

1
2

(1
0,

7
,2
,3
,1

1,
4,

8,
12
,1
,6
,9
,5

)

S
cr

1
5

(1
5,

7
,1

1,
8,

1,
4,

3,
2,

12
,6
,1

3,
5,

14
,1

0,
9)

S
cr

2
0

(2
0,

3
,1

0,
2,

12
,1
,7
,8
,1

4,
11
,1

8,
9,

19
,1

5,
16
,1

7,
13
,5
,6
,4

)

N
u

g
12

(2
,1

0,
6
,5
,1
,1

1,
8,

4,
3
,9
,7
,1

2)

N
u

g
14

(9
,8
,1

3,
2,

1,
11
,7
,1

4,
3,

4
,1

2,
5,

6,
10

)

N
u

g
15

(9
,8
,1

3
,2
,1
,1

1,
7,

14
,3
,4
,1

2,
5,

6,
15
,1

0)

N
u

g1
6
a

(9
,1

0,
12
,1

4,
16
,3
,1
,8
,1

5,
11
,6
,5
,7
,2
,4
,1

3)

Section 9.2. Appendix 2: Minimizers from the auxiliary function-based method Page 87
T

ab
le

9
.2

:
M

in
im

iz
er

s
of

th
e

so
lu

ti
on

s
fr

om
th

e
au

x
il

ia
ry

fu
n

ct
io

n
-b

as
ed

m
et

h
o
d

(2
)

In
st

a
n

ce
s

O
p

t.
S

ol

N
u

g
1
6b

(8
,3
,1

2,
15
,1

3,
9
,2
,1

6
,1

1,
7,

10
,4
,5
,1
,6
,1

4)

N
u

g
20

(9
,3
,1

0,
14
,1

8,
16
,1

1,
12
,2
,4
,1

3,
8,

20
,1

5,
19
,6
,1
,7
,5
,1

7)

N
u

g
21

(2
0
,1

9
,8
,7
,1
,1

2,
17
,1

4,
18
,1

1,
16
,1

0,
6
,1

5,
4,

21
,3
,9
,1

3,
2,

5)

N
u

g
27

(1
1
,1

8,
7
,8
,2

7,
2
3,

4
,3
,1

3
,1

2,
5,

21
,2

2,
26
,2

5,
6,

19
,1

5
,2
,1

7,
9,

14
,2

4,
20
,1
,1

0,
1
6)

N
u

g
28

(1
3,

15
,8
,1
,2

2,
2
6,

11
,4
,1

8,
20
,5
,2

7,
19
,2

3
,2

8,
10
,7
,9
,3
,2

4,
1
7,

12
,2
,1

4,
6
,2

1
,1

6,
2
5)

N
u

g
30

(1
4
,2

0,
3
,2

1,
2,

5,
4,

2
7,

18
,2

9,
9
,2

3,
30
,1

1
,2

2,
19
,1

0,
26
,1

6,
25
,8
,7
,1
,1

7,
15
,2

8,
6
,1

3,
12
,2

4)

H
ad

12
(3
,1

0,
5
,2
,1

2
,1

1,
7,

1,
8,

6,
4,

9)

H
ad

14
(8
,1

3,
10
,1

1
,1

2,
5,

2,
14
,3
,6
,7
,1
,9
,4

)

H
ad

16
(9
,4
,1

6,
1
,7
,8
,6
,1

4,
15
,1

1,
12
,1

0,
5
,3
,2
,1

3)

H
ad

18
(8
,1

5,
16
,6
,7
,1

8,
14
,1

1
,1
,1

0,
12
,5
,1

3,
3,

2,
17
,9
,4

)

H
ad

20
(8
,1

5,
1
,1

4,
6,

19
,7
,1

1,
16
,1

2
,1

0,
17
,2
,2

0,
5,

3,
4,

9,
1
8,

13
)

E
sc

16
a

(1
,1

0,
9
,1

3,
4,

3,
7,

6,
5
,2
,1

1,
16
,8
,1

2,
1
5,

14
)

E
sc

16
b

(1
,4
,1

0,
6
,1

6,
8,

3,
12
,2
,1

4
,7
,5
,1

3,
9,

1
5,

11
)

E
sc

1
6c

(1
,1

0,
2
,1

4,
6,

3,
5,

7,
9,

16
,1

1,
15
,1

3,
1
2,

8,
4)

E
sc

16
d

(1
,1

0,
8
,5
,2
,3
,1

1,
7,

12
,1

5,
13
,1

6,
6
,1

4,
4,

9)

E
sc

1
6e

(3
,2
,7
,4
,1

5,
16
,1

1,
12
,8
,9
,1

3,
10
,5
,1

4,
6,

1
)

E
sc

16
f

(1
,2
,3
,4
,5
,6
,7
,8
,9
,1

0,
11
,1

2,
13
,1

4,
15
,1

6)

E
sc

16
g

(1
,1

3,
9
,1

4,
5,

6,
2,

10
,1

2
,3
,7
,4
,1

6,
8,

1
5,

11
)

E
sc

16
h

(5
,7
,8
,1

6,
12
,1

0,
15
,1

3,
14
,9
,1

1,
2,

1,
4,

3,
6)

E
sc

16
i

(1
,2
,3
,4
,8
,6
,7
,5
,1

3,
12
,1

1,
10
,9
,1

4,
1
5,

16
)

E
sc

16
j

(9
,6
,2
,4
,5
,3
,7
,1

3,
8
,1

4
,1

1,
12
,1
,1

0,
15
,1

6)

Section 9.2. Appendix 2: Minimizers from the auxiliary function-based method Page 88

T
ab

le
9
.3

:
M

in
im

iz
er

s
of

th
e

so
lu

ti
on

s
fr

om
th

e
au

x
il

ia
ry

fu
n

ct
io

n
-b

as
ed

m
et

h
o
d

(3
)

In
st

a
n

ce
s

O
p

t.
S

ol

E
sc

32
a

(1
3
,1

4,
16
,3

2
,3

0,
29
,2

8,
2,

22
,2

7,
21
,9
,5
,6
,8
,3
,1
,2

4
,2

3,
1
0,

20
,2

5,
4
,1

9,
17
,1

1,
18
,2

6,
12
,1

5,
7
,3

1)

E
sc

32
b

(7
,3
,8
,6
,4
,2
,5
,1
,1

3,
15
,9
,1

1,
12
,1

0,
14
,1

6,
30
,3

2,
20
,1

8,
19
,2

7,
26
,2

8,
25
,2

3,
21
,2

4,
17
,2

9,
31
,2

2)

E
sc

3
2c

(2
0
,2

9,
17
,1

9
,2

8,
9,

6,
31
,1

1,
10
,1

6,
14
,1

3
,1

5,
25
,1

2,
30
,3

2,
26
,2

7,
21
,2

2
,2

3,
5,

8,
3,

1,
2,

1
8,

24
,7
,4

)

E
sc

32
d

(1
5,

8
,2

3,
16
,7
,1

2
,6
,1

3,
14
,3
,4
,2

1,
11
,5
,1

0,
2,

9,
1,

27
,2

2
,1

8,
24
,1

7,
19
,2

5,
30
,2

0,
28
,2

9,
26
,3

1,
32

)

E
sc

3
2e

(1
1
,7
,3
,4
,1

9,
30
,2

5
,1

5,
9,

1,
5,

6,
13
,1

4,
28
,1

6,
31
,1

8
,2

7,
1
7,

21
,2

0,
23
,2

4,
2
,2

6,
8
,1

0,
29
,1

2,
22
,3

2)

E
sc

32
g

(6
,1
,3
,4
,2
,1

1,
2
9
,8
,9
,1

0,
5,

12
,1

3,
14
,1

5,
16
,1

7,
18
,1

9,
20
,2

6,
2
2,

23
,2

4,
25
,2

1
,2

7,
2
8,

7
,3

0,
31
,3

2)

E
sc

32
h

(1
7,

2
0,

1,
7,

2
8,

4
,3
,9
,1

1
,2

6,
10
,1

2,
15
,3

1,
27
,1

9,
23
,1

8,
6
,1

3,
8,

2
4,

14
,5
,2

5,
21
,3

0,
32
,2
,2

9,
1
6,

22
)

E
sc

64
a

(1
,5

9,
29
,3

1,
20
,6
,4

1,
8
,5

6,
15
,5
,2

4
,3

6,
14
,1

3,
11
,3

9,
25
,3

7,
27
,2

1,
10
,2

2,
52
,3

3,
54
,2

8,
32
,4

7,
30
,9
,

64
,4

6,
5
7
,4

5,
1
9,

16
,4

4,
12
,4

0,
49
,5

3,
43
,7
,3

5,
38
,2

3,
60
,2
,2

6,
3,

6
3,

42
,5

0,
55
,4
,6

2,
5
8,

18
,4

8,
61
,3

4,
17
,5

1)

K
ra

3
0a

(1
,6
,1

2,
19
,2

7
,1

0,
5,

9,
30
,8
,2

6,
18
,1

3,
20
,1

5
,1

1,
17
,7
,2

3,
24
,2

2,
29
,1

4,
3,

25
,2
,1

6,
28
,2

1,
4)

K
ra

30
b

(7
,1

1,
24
,4
,2

3
,2

9,
1,

6,
20
,1

2,
13
,1

7,
10
,1

4
,2
,2

5,
18
,2

8,
9,

3
0,

5
,3
,2

6,
8,

2
2,

15
,1

6,
27
,2

1,
19

)

K
ra

32
(1

1
,3
,4
,7
,6
,8
,5
,2
,9
,2

5
,1

5,
16
,1

3,
31
,2

3,
14
,1

0,
26
,1

7
,1
,2

1,
1
2,

22
,1

9,
24
,2

7,
30
,2

9,
18
,2

8,
20
,3

2)

Section 9.3. Appendix 3: Choice of the value of N in the random enumeration Page 89

9.3 Appendix 3: Choice of the value of N in the random

enumeration

This section contains the graphical results of the experiment on choosing the value of N

in the heuristic random enumeration method. In Figures 9.1–9.4, the x-axis represents the

number of iteration, and the y axis represent the average optimal value over 10 runs of the

heuristic random enumeration method.

Section 9.3. Appendix 3: Choice of the value of N in the random enumeration Page 90

Figure 9.1:

Section 9.3. Appendix 3: Choice of the value of N in the random enumeration Page 91

Figure 9.2:

Section 9.3. Appendix 3: Choice of the value of N in the random enumeration Page 92

Figure 9.3:

Section 9.3. Appendix 3: Choice of the value of N in the random enumeration Page 93

Figure 9.4:

References

[AJ94] W. P. Adams and T. A. Johnson, Improved linear programming-based lower

bounds for the quadratic assignment problem, DIMACS Series in Discrete Math-

ematics and Theoretical Computer Science 16 (1994), 43–75.

[AOT00] R. Ahuja, J. B. Orlin, and A. Tiwari, A greedy genetic algorithm for the

quadratic assignment problem, Computers and Operations Research 27 (2000),

no. 10, 917–934.

[BA01] N. W. Brixius and K. M. Anstreicher, Solving quadratic assignment problems

using convex quadratic programming relaxations, Optimization Methods and

Software 16 (2001), 49–68.

[BcKR] R. E. Burkard, E. Çela, S. E. Karisch, and F. Rendl,

http://www.seas.upenn.edu/qaplib/ (a mirror site is hosted at ecole poly-

technique de montreal, by miguel anjos http://anjos.mgi.polymtl.ca/qaplib/),

QAPLIB: A Quadratic Assignment Problem Library. Benchmark of problems

collected in May 2011.

[BcPP98] R. E. Burkard, E. Çela, P. M. Pardolos, and L. S. Pitsoulis, The quadratic

assignment problem.

[BEFW03] A. Blanchard, S. Elloumi, A. Faye, and N. Wicker, A cutting algorithm for the

quadratic assignment problem, INFORM 41 (2003), 35–49.

[BEP09] A. Billionnet, S. Elloumi, and M. C. Plateau, Improving the performance of

standard solvers for quadratic 0-1 programs by a tight convex reformulation:

The qcr method, Discrete Applied Mathematics 157 (2009), no. 6, 1185 – 1197.

[BGG+71] M. Benichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and O. Vin-

cent, Experiments in mixed integer linear programming, Mathematical Pro-

gramming 1 (1971), 76–94.

94

REFERENCES Page 95

[Bos93] J. Bos, A quadratic assignment problem solved by simulated annealing, Journal

of Environmental Management 37 (1993), 127–145.

[BR84] R. E. Burkard and F. Rendl, A thermodynamically motivated simulation proce-

dure for combinatorial optimization problems, European Journal of Operational

Research 17 (1984), no. 2, 169–174.

[BS82] M. S. Bazaraa and H. D. Sherali, On the use of exact and heuristic cutting

plane methods for the quadratic assignment problem, Journal of Operations

Research Society 33 (1982), 991–1003.

[BS00] M. J. Brusco and S. Stahl, Using quadratic assignment methods to generate ini-

tial permutations for least-squares unidimensional scaling of symmetric prox-

imity matrices, Journal of Classification 17 (2000), no. 2, 197–223.

[BV06] S. Burer and D. Vandenbussche, Solving lift and project relaxations of binary

integer programs, Siam Journal on Optimization 16 (2006), no. 3, 726–750.

[CDM+95] A. Colorni, M. Dorigo, F. Maffioli, V. Maniezzo, G. Righini, and M. Trubian,

Heuristics from nature for hard combinatorial optimization problems, Interna-

tional Transactions in Operational Research 3 (1995), no. 1, 1–21.

[CKPR98] J. Clausen, S. E. Karisch, M. Perregaard, and F. Rendl, On the applicability of

lower bounds for solving rectilinear quadratic assignment problems in parallel,

Computational Optimization and Applications 10 (1998), no. 2, 127–147.

[Con90] D. T. Connolly, An improved annealing scheme for the qap, European Journal

of Operational Research 46 (1990), 93–100.

[Cot67] R. W. Cottle, On the convexity of quadratic forms over convex sets, Operations

Research 15 (1967), 170–172.

[DH72] J. W. Dickey and J. W. Hopkins, Campus building arrangement using topaz,

Transportation Research 26 (1972), 29–41.

REFERENCES Page 96

[DM05] G. B. David and D. Malah, Bounds on the performance of vector-quantizers

under channel errors, IEEE Transactions on Information Theory 51 (2005),

no. 6, 2227–2235.

[DW09] Y. Ding and H. Wolkowicz, A low dimensional semidefinite relaxation for

the quadratic assignment problem, Mathematics and Operations Research 34

(2009), 1008–1022.

[Edw80] C. S. Edwards, A branch and bound algorithm for the koopmans beckmann

quadratic assignment problem, Mathematical Programming Study 13 (1980),

35–52.

[Els77] A. N. Elshafei, Hospital layout as a quadratic assignment problem, Operational

Research Quarterly (1970 to 1977) 28 (1977), 167–179.

[FBR87] G. Finke, R. E. Burkard, and F. Rendl, Quadratic assignment problems, Annals

of Discrete Mathematics 5 (1987), 61–82.

[FDZ+94] J. . Forsberg, R. M. Delaney, Q. Zhao, G. Harakas, and R. Chandran, Analyz-

ing lanthanide included shifts in the nmr spectra of lanthanide (iii) complexes

derived from 1,4,7,10tetrakis (n,ndiethylacetamido) 1,4,7,10tetraazacyclodode-

cane, Inorganic Chemistry 34 (1994), 3705–3715.

[FG99] C. Fleurent and F. Glover, Improved constructive multistart strategies for the

quadratic assignment problem using adaptive memory, INFORMS Journal on

Computing 11 (1999), 189–203.

[FR95] T. A. Feo and M. Resende, Greedy randomized adaptive search procedures,

Journal of Global Optimization 6 (1995), 109–133.

[FW10] C. W. Fon and K. Y. Wong, Investigating the performance of bees algorithm

in solving quadratic assignment problem, International Journal of Operational

Research 9 (2010), no. 3, 241–257.

REFERENCES Page 97

[FY83] A. M. Frieze and J. Yadegar, On the quadratic assignment problem, Discrete

Applied Mathematics 5 (1983), 89–98.

[FYEHP89] A. M. Frieze, J. Yadegar, S. El-Horbaty, and D. Parkinson, Algorithms for

assignment problems on an array processor, Parallel Computing 11 (1989),

151–162.

[GG76] A. M. Geoffrion and G. W. Graves, Scheduling parallel production lines with

changeover costs: Practical applications of a quadratic assignment/lp approach,

Operations Research 24 (1976), 595–610.

[Gil62] P. C. Gilmore, Optimal and suboptimal algorithms for the quadratic assignment

problem, SIAM Journal on Applied Mathematics 10 (1962), 305–313.

[GL] F. Glover and M. Laguna, Tabu search, Lecture note.

[GU07] R. N. Gasimov and O. Ustun, Solving the quadratic assignment problem using f

msg algorithm, Journal of Industrial and management Optimization 3 (2007),

no. 2, 173–191.

[Had94] S. W. Hadley, Domination and separation applied to the quadratic assignment

problem, DIMACS Series in Discrete Mathematics and Theoretical Computer

Science 16 (1994), 189–196.

[Hef77] D. R. Heffley, Assigning runners to a relay team, Optimal Strategy in Sport.

North Holland,Amsterdam (1977), 169–171.

[HG98] P. Hahn and T. Grant, Lower bounds for the quadratic assignment problem

based upon a dual formulation, Operations Research 46 (1998), no. 6, 912–922.

[HGH98] P. Hahn, T. Grant, and N. Hall, A branch and bound algorithm for the quadratic

assignment problem based on the hungarian method, European Journal of Op-

erational Research 108 (1998), 629–640.

REFERENCES Page 98

[Hol75] J. H. Holland, Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence, Ann

Arbor MI: University of Michigan Press (1975).

[HRW90] S. W. Hadley, F. Rendl, and H. Wolkowicz, Bounds for the quadratic assign-

ment problem using continuous optimization techniques, Integer Programming

and Combinatorial Optimization. University of Waterloo Press (1990), 237–

248.

[HZGS10] P. M. Hahn, Y. R. Zhu, M. Guignard, and J. M. Smith, Exact solution of

emerging quadratic assignment problems, International Transactions in Oper-

ational Research 17 (2010), 525–552.

[JK96] M. Jünger and V. Kaibel, A basic study of the qap-polytope, Tech. report,

Institut für Informatik, Universität zu Köln, Pohligstrasse 1, D-50969, 1996.

[JWL06] P. Ji, Y. Wu, and H. Liu, A solution method for the quadratic assignment

problem (qap), The Sixth International Symposium on Operations Research

and Its Applications (ISORA06) (2006), 106–117.

[Kar95] S. E. Karisch, Nonlinear approaches for quadratic assignment and graph par-

tition problems, Technical University Graz, Austria Ph.D. Thesis (1995).

[KB57] T. C. Koopmans and M. J. Beckmann, Assignment problems and the location

of economic activities, Electronica 25 (1957), 53–76.

[KB78] L. Kaufmann and F. Broeckx, An algorithm for the quadratic assignment prob-

lem using benders decomposition, European Journal of Operational Research

2 (1978), 204–211.

[KGV83] S. Kirkpatrick, C. D. Gellat, and M. Vecchi, Optimization by simulated anneal-

ing, Science 220 (1983), 671–680.

REFERENCES Page 99

[KR95] S. E. Karisch and F. Rendl, Lower bounds for the quadratic assignment problem

via triangle decompositions, Programming (1995), 137–152.

[Kuh55] H. H. Kuhn, The hungarian method for the assignment problem, Naval Research

Logistics Quarterly 2 (1955), 83–97.

[LAN+07] E. M. Loiola, N. M. M. Abreu, P. O. B. Netto, P. Hahn, and T. Querido,

A survey for the quadratic assignment problem, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science 176 (2007), 657–690.

[Law63] E. L. Lawler, The quadratic assignment problem, Management Science 9 (1963),

no. 4, 586–599.

[LPR94] Y. Li, P. M. Pardolos, and M. G. C. Resende, A greedy randomized adap-

tive search procedure for the quadratic assignment problem, DIMACS Series in

Discrete Mathematics and Theoretical Computer Science 16 (1994), 237–261.

[LS10] D. Li and X. Sun (eds.), Nonlinear integer programming, International Series

in Operations Research and Management Science Series, no. 9781441939913,

Springer London, Limited, 233 Spring Street, New York, NY 10013, USA, 2010.

[LW76] R. F. Love and J. Y. Wong, Solving quadratic assignment problems with rectan-

gular distances and integer programming, Naval Research Logistics Quarterly

23 (1976), 623–627.

[Meh92] S. Mehrotra, On implementation of a primal-dual interior point method, SIAM

Journal on Optimization 2 (1992), 575–601.

[Mey00] C. D. Meyer (ed.), Matrix analysis and applied linear algebra, SIAM, 3600

University City Sciences Centre, Philadelphia,PA, 19104-2688, 2000.

[Mis05] A. Misevicius, A tabu search algorithm for the quadratic assignment problem,

Computational Optimization and Applications 30 (2005), no. 1, 95–111.

REFERENCES Page 100

[MLMF05] G. Miranda, H. Luna, G. R. Mateus, and R Ferreira, A performance guaran-

tee heuristic for electronic components placement problems including thermal

effects, Computers and Operations Research 32 (2005), 2937–2957.

[Moo20] E. H. Moore, On the reciprocal of the general algebraic matrix, Bulletin of the

American Mathematical Society 26 (1920), 394–395.

[MRD95] G. C. Mauricio, K. G. Resende, and R. Z. Drezner, Computing lower bounds for

the quadratic assignment problem with an interior point algorithm for linear

programming, Operations Research 43 (1995), no. 5, 781–791.

[MT93] N. Megiddo and A. Tamir, Linear time algorithms for some separable quadratic

programming problems, Operations Research Letters 13 (1993), 203–211.

[NP95] V. Nissen and H. Paul, A modification of threshold accepting and its application

to the quadratic assignment problem, OR Spektrum 17 (1995), 205–210.

[NW99] J. Nocedal and S. J. Wright (eds.), Numerical optimization, Springer series in

operations research, no. 0387987932, Springer New York, 233 Spring Street,

New York, NY 10013, USA, 1999.

[OPR04] C. A. S. Oliveira, P. M. Pardolos, and M. G. C. Resende, Grasp with path

relinking for the quadratic assignment problem, In: Experimental and Efficient

Algorithms at the Third International Workshop (WEA 2004), Brazil, LNCS

3059 (2004), no. 1, 356–368.

[Pen55] R. Penrose, A generalized inverse for matrices, Proceedings of the Cambridge

Philosophical Society 51 (1955), 406–413.

[PGK+05] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi, The

bees algorithm, Technical Note, Manufacturing Engineering Centre Cardiff

University (2005), UK.

REFERENCES Page 101

[PGR76] M. A Pollatscheck, N. Gershoni, and Y. T. Radday, Optimization of the type-

writer keyboard by simulation, Angewandte Informatik 17 (1976), 438–439.

[PRW94] P. M. Pardolos, F. Rendl, and H. Wolkowicz, The quadratic assignment prob-

lem: A survey and recent developments, DIMACS Series in Discrete Math-

ematics and Theoretical computer Sciences 16 (1994), no. In The Quadratic

Assignment and Related Problems (Edited by P.M. Pardalos & H. Wolkowicz),

1–42.

[RJG10] C. Rego, T. James, and F. Glover, An ejection chain algorithm for the quadratic

assignment problem, Networks 56 (2010), no. 3, 188–206.

[RPL96] M. G. C. Resende, P. M. Pardolos, and Y. Li, Algorithm 754: Fortran subrou-

tines for approximate solution of dense quadratic assignment problems using

grasp, ACM Transactions on Mathematical Software 22 (1996), no. 1, 104–118.

[RS03] C. S. Rabak and J. S. Schiman, Using a teams to optimize automatic insertion

of electronic components, Advanced Engineering Informatics 17 (2003), no. 2,

95–106.

[RS07] R. Rendl and R. Sotirov, Bounds for the quadratis assignment problem using

the bundle method, Mathematical Programming 109 (2007), no. Serie B, 505–

524.

[SD99] T. Stützle and M. Dorigo, Aco algorithms for the quadratic assignment problem,

pp. 33–50, McGraw-Hill Ltd., UK, Maidenhead, UK, England, 1999.

[S.G31] S.Gersgorin, Über die abgrenzung der eigenwerte einer matrix, Bulletin de

l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et na

6 (1931), 749–754.

[SG76] S. Sahni and T. Gonzalez, P complete approximation problems, Journal of the

Association for Computing Machinery 23 (1976), 555–565.

REFERENCES Page 102

[SLSD09] L. Q. Song, M. H. Lim, P. N. Suganthan, and V. K. Doan, Ensemble for solving

quadratic assignment problems, International Conference of Soft Computing

and Pattern Recognition (2009).

[Ste61] L. Steinberg, The backboard wiring: A placement algorithm, SIAM Review 3

(1961), 37–50.

[Tai91] E. Taillard, Robust taboo search for the quadratic assignment problem, Parallel

Computing 17 (1991), 44–455.

[TS95] D. E. Tate and A. E. Smith, A genetic approach to the quadratic assignment

problem, Computers and Operations Research 22 (1995), 73–83.

[WW87] M. R. Wilhelm and T. L. Ward, Solving quadratic assignment problems by

simulated annealing, EEE Transactions 19 (1987), 107–119.

[WZ04] B. Wess and T. Zeitlhofer, On the phase coupling problem between data memory

layout generation and address pointer assignment, Lecture Notes in Computer

Science 3199 (2004), 152–166.

[ZA09] W. Zhu and M. M. Ali, Discrete dynamic convexized method for nonlinear

integer programming, Computer and Operations Research 36 (2009), 2723–

2728.

[Zha96] Q. Zhao, Semidefinite programming for assignment and partitioning problems,

University of Waterloo, Ontario, Canada, Ph.D. Thesis (1996).

[Zhu07] Y. R. Zhu, Recent advances and challenges in quadratic assignment and related

problems, University of Pennsylvania Ph.D. Thesis (2007).

[ZKRW98] Q. Zhao, S. E. Karisch, F. Rendl, and H. Wolkowicz, Semidefinite relaxations

for the quadratic assignment problem, Journal of Combinatorial Optimization

2 (1998), 71–109.

REFERENCES Page 103

[ZRC10] H. Zhang, C. B. Royo, and M. Constantino, Effective formulation reductions

for the quadratic assignment problem, Computers and Operations Research 37

(2010), 2007–2016.

[ZSL10] X. J. Zheng, X. L. Sun, and D. Li, Separable relaxation for nonconvex quadratic

integer programming: Integer diagonalization approach, Journal of Optimiza-

tion theory and Applications 146 (2010), no. 2, 182–191.

	Declaration
	Acknowledgements
	Abstract
	Symbols nomenclature
	Introduction
	Mathematical formulation of the optimization problem
	The Quadratic Assignment Problem
	Methods for solving the QAP
	Structure of the dissertation

	Mathematical background
	The quadratic form
	Matrix analysis

	Literature review
	Formulations of the QAP
	Quadratic integer programming formulation
	Trace formulation
	Kronecker formulation
	Mixed integer linear programming (MILP) formulation

	Applications of the QAP
	The lower bounding techniques
	Solution methods for the QAP

	Problem formulation and lower bounding techniques
	Standard quadratic integer programming formulation (SQIP)
	Separable quadratic integer programming formulation
	Lower bounds via the continuous relaxation of (RSQIP)
	Lower bounds via the continuous relaxation of (SCQIP)
	An interior point algorithm for (CR2)
	Discussions of the interior point algorithm

	Finding a starting point for the interior point algorithm
	Description of the first technique
	The first step
	The second step

	Description of the second technique

	New methods for solving the QAP
	The Branch-and-Bound method for the QAP
	Choice of the branching variables
	Selection of branching nodes
	The Branch-and-Bound algorithm

	An auxiliary function-based dynamic convexized method
	The auxiliary function and its properties
	The discrete dynamic convexized (DDC) algorithm

	Numerical experiments and results
	Computation of lower bounds
	A heuristic random enumeration
	Implementation of the Branch-and-Bound algorithm
	Implementation of the auxiliary function-based method

	Conclusion and further research
	Appendix
	Appendix 1: Generalized inverse of a matrix
	Appendix 2: Minimizers from the auxiliary function-based method
	Appendix 3: Choice of the value of N in the random enumeration

	References

