OPTIMAL CHARACTERISTICS OF INSERTED GRAPHIC OBJECTS IN STIMULATING CCTV OPERATOR VIGILANCE AND PERFORMANCE

FIONA MARGARET DONALD

A thesis submitted to the Faculty of Humanities, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Doctor of Philosophy.

September 2011

ATION				
that this thesis is my of Philosophy at the Fa sburg. It has not bee	aculty of Human	nities, University	of the Witwat	ersrand,
iversity.				
argaret Donald				
e o e n	of Philosophy at the Fa	e that this thesis is my own, unaided wof Philosophy at the Faculty of Humar esburg. It has not been submitted preniversity.	e that this thesis is my own, unaided work. It is being of Philosophy at the Faculty of Humanities, University esburg. It has not been submitted previously for any niversity.	e that this thesis is my own, unaided work. It is being submitted for of Philosophy at the Faculty of Humanities, University of the Witwat esburg. It has not been submitted previously for any other degree o niversity.

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and thanks to:

- My supervisor, Prof. Andrew Thatcher, who provided guidance, insight and encouragement throughout the process. His speedy responses and feedback are highly appreciated, especially when other priorities called.
- ❖ Dr Craig Donald, my husband and source of inspiration for this research, for sharing his area of interest, providing intellectual stimulation, challenging my views and giving ongoing emotional support. In addition, this research would not have been feasible without his technical support in terms of computer equipment, photographic skills, video editing and numerous other forms of assistance.
- Mr Michael Greyling for his statistical advice and assistance.
- Dr Yvonne Broom for support during the initial phases.
- ❖ Leaderware cc for the use of SAMAE.
- ❖ The organisations, operators and students who took part in the research despite the time commitments involved.
- ❖ The models for the photographs Bafana, Dakalo, Ian, Katherine and Sifiso.
- ❖ The research assistants who helped with data collection, in particular Ashleigh, Jennifer, Katherine, Leanne, and Nelson.
- ❖ My daughters, Katherine and Heather, who supported the process, graciously made many sacrifices and provided technical support in the form of photographic editing and tips for final formatting. This was truly a family effort.

ABSTRACT

Vigilance is a key process fundamental for sustained performance in many jobs and in particular those requiring continual detection in visually intensive tasks. This research examined operators' overall vigilance performance levels and decrements over time in the context of closed circuit television (CCTV) surveillance. The aims of the research were to develop an intervention to enhance the detection of significant events, and to establish the levels of overall vigilance performance and decrements in a CCTV surveillance task. The intervention consisted of electronically inserting graphic objects (IGOs) or images into the video stream with the intention of assisting operators in detecting actual significant events. IGOs could potentially represent an infinite range of visual stimuli, but it was argued that only particular visual characteristics are likely to enhance the detection of real significant events, rather than merely facilitating the detection of the IGOs themselves. In addition, the characteristics of IGOs are likely to influence the extent to which their relationship to significant events is understood. The research identified a range of characteristics that could be incorporated into IGO design, and focused on salience and semantic distance for the empirical part of the research.

A matched three-group quasi-experimental design involved a sample consisting of 29 specialised CCTV surveillance operators, 13 control room operators doing surveillance, and 31 novices. The task consisted of observing a ninety-minute CCTV video showing general and target behaviour in a video stream of actual work settings. The control group received no IGOs, one treatment group received generic IGOs, and the second treatment group received IGOs with close semantic distances to target behaviours. There were indications that the IGOs had positive effects on alertness and attention sets, but this did not translate into statistically significant improvements in detection rates. Reasons for this included IGO characteristics, the complex and dynamic nature of CCTV displays and significant events, and the dynamic and spatiotemporal properties of the IGOs. Semantic distance was confirmed as an important IGO characteristic.

The research demonstrated a number of critical insights into vigilance dynamics and visual processing and highlighted that there are gaps in the understanding of the attention processes that occur in jobs requiring sustained attention. Only half the target behaviours were detected despite all target behaviours being visible, indicating a concerning underperformance in intensive visual detection tasks involving complex work situations. Responses to vigilance demands were highly individualised, with decrements and surges beginning at different times across individuals. Qualitative analyses of participants' behaviour also found fluctuations in task engagement, suggesting that sustained attention is unstable. Results did not support a steady, linear vigilance decrement for all sub-samples. An increment in detection rates was found for specialised participants after 60 minutes, while novices to surveillance tasks showed a more linear decrement. Work exposure was an important variable that contributed to detection levels and performance fluctuations over time. The research highlights differences between tasks with simple visual stimuli frequently used in vigilance research versus complex real-world tasks in vigilance intensive jobs. Important insights regarding vigilance processes in complex real-world jobs emerged, including the need for active searching processes, visual analysis, high levels of situation awareness and the importance of operator's frame of reference and approach to the detection task. The research has likely implications for other visual imaging technologies such as x-rays, infrared and thermal imaging, and technology using newer millimetre wave and terahertz based imaging common in security, policing, and defence.

CONTENTS

Declarat	ion	i
Acknow	ledgements	ii
Abstract		iii
1.	CHAPTER 1: INTRODUCTION	1
1.1.	The effectiveness of CCTV	1
1.2.	Focus of the current research	5
1.3.	Structure of the thesis	8
1.4.	Abbreviations used	9
2.	CHAPTER 2: VIGILANCE THEORIES AND CCTV SURVEILLANCE	10
	OPERATOR PERFORMANCE	
2.1.	Performance issues related to vigilance	12
2.2.	Vigilance theories	15
2.2.1.	Arousal theory	15
2.2.2.	Signal detection theory	18
2.2.3.	Multiple resource attention theory	23
2.2.4.	Mindlessness theory	24
2.3.	Implications of theories for vigilance performance	28
2.4.	Contributions of vigilance research to an understanding of CCTV	30
	operator performance	
3.	CHAPTER 3: BACKGROUND TO THE INTERVENTION	35
3.1.	Basis for the IGO intervention	37
3.2.	Intervention in the current study	42
3.3.	Types of images and contexts	46
4.	CHAPTER 4: IGOs AND THE DETECTION PROCESS	51
4.1.	Mental models, schemata and situation awareness (SA)	53

4.2.	Attention sets and selective attention	56
4.3.	Top-down and bottom-up attention guidance	58
4.4.	Long term and working memory	61
4.5.	Potential disadvantages of IGOs	63
5.	CHAPTER 5: IGO CHARACTERISTICS	64
5.1.	Semantic distance	65
5.2.	Concreteness	71
5.3.	Visual complexity	74
5.4.	Salience	78
5.5.	Novelty	84
5.6.	Realism	86
5.7.	Categorisation of characteristics	88
5.8.	Interactions between IGO characteristics	90
5.9.	Characteristics examined in the current research	95
5.10.	Hypotheses	98
6.	CHAPTER 6: METHODOLOGY	101
6.1.	Samples	102
6.1.1.	Pilot studies samples	102
6.1.2.	Stage 1 sample	102
6.2.	Procedure	105
6.2.1.	Allocation of participants to experimental groups	108
6.2.2.	Pilot studies: Development of materials	112
6.2.2.1.	Pilot study 1: Video content	113
6.2.2.1.1.	Pilot study 1a: Target behaviour clips	114
6.2.2.1.2.	Pilot study 1b: Non-target behaviour clips	115
6.2.2.2.	Pilot study 2: Video structure and content	116
6.2.2.3.	IGO development and insertion	119
6.2.2.4.	Final video structure	122

6.3.	Measurement	122
6.4.	Analyses	126
6.5.	Participant involvement and ethical issues	128
7.	CHAPTER 7: RESULTS	130
7.1.	Stage 1: Operators	131
7.1.1.	Examination of hypotheses	131
7.1.2.	Secondary analyses	137
7.1.3.	Summary of results of Stage 1	140
7.2.	Stage 2: Novices, generalists and specialists	142
7.2.1.	Methodology	144
7.2.1.1.	Sample	144
7.2.1.2.	Procedure	145
7.2.1.3.	Analyses	147
7.2.2.	Results	147
7.2.2.1.	Examination of hypotheses	147
	Hypothesis 1	147
	Hypothesis 2	151
	Hypothesis 3	159
7.2.2.2.	Qualitative analyses: Reactions to the vigilance task and IGOs	162
7.2.3.	Summary of results	170
8.	CHAPTER 8: DISCUSSION	171
8.1.	Overall level of vigilance performance	172
8.2.	Vigilance decrements	180
8.3.	The IGO intervention	188
8.4.	Limitations of the research	202
8.5.	Directions for future research	207

8.6.	Conclusion	214
REFERENCE	s	219
APPENDICE	s	247

LIST OF TABLES

Table 1.	Abbreviations	9
Table 2.	Factors affecting performance in vigilance tasks (Adapted from Mackie, 1987)	30
Table 3.	Conceptual categorisation of IGO characteristics	89
Table 4.	Reasons for excluding operators	103
Table 5.	Gender and education by experimental group (N=42)	103
Table 6.	CCTV surveillance experience, type of surveillance, training and job grade by group (N=42)	104
Table 7.	Summary statistics of SAMAE scores by treatment group for operators only	110
Table 8.	ANOVAs for groups on SAMAE scores	111
Table 9.	Correlations between SAMAE scores and total TBs and FAs (N=42)	111
Table 10.	Difficulty index for TBs	125
Table 11.	Summary statistics on dependent variables for operators (N=42)	131
Table 12.	Descriptive statistics for TBs by phase and experimental group (N=42)	132
Table 13.	Summary statistics of FAs by phase and experimental group (N=42)	134
Table 14.	Differences in least squares means for FAs between phases (N=42)	134
Table 15.	Summary statistics of IGOs per phase (N=42)	135
Table 16.	Summary statistics for CCTV experience for generalists and specialists (N=42)	138
Table 17.	Analysis of education for generalists and specialists (N=42)	139
Table 18.	Analysis of training for generalists and specialists (N=42)	139
Table 19.	Summary statistics of SAMAE scores per experimental group (Novices, N=31)	146
Table 20.	ANOVAs of SAMAE scores for treatment groups (Novices, N=31)	147
Table 21.	Summary statistics for dependent variables by surveillance background (N=73)	148

Table 22.	Differences in least squares means for TBs by surveillance background (N=73)	149
Table 23.	Differences in least squares means for FAs between surveillance backgrounds (N=73)	150
Table 24.	Differences of least squares means for accuracy between surveillance backgrounds (N=73)	151
Table 25.	Differences in least squares means for TBs by phase for generalists and specialists (N=42)	152
Table 26.	Differences of least squares means for TBs for novices (N=31)	153
Table 27.	Examples of TBs detected over the ninety-minute task	157
Table 28.	Disengagement by surveillance background and phase (N=73)	158
Table 29.	Means and standard deviations for dependent variables for experimental groups (N=73)	159
Table 30.	Differences of least squares means on FAs between experimental groups for generalists (N=13)	160
Table 31.	Reactions to video (N=73)	163
Table 32.	Reactions to IGOs (N=73)	167

LIST OF FIGURES

Figure 1.	Examples of RIGOs	119
Figure 2.	Examples of SIGOs	120
Figure 3.	TBs by experimental group and phase (N=42)	133
Figure 4.	FAs by experimental group and phase (N=42)	134
Figure 5.	Total TBs and FAs for novices, generalists and specialists	150
Figure 6.	TB means over phases for novices, generalists and specialists	154
Figure 7.	FA means over phases for novices, generalists and specialists	155
Figure 8.	FA means by experimental groups for novices, generalists and specialists	160