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ABSTRACT 

 

Hepatitis B virus (HBV) has been found to be highly endemic in Africa and south east Asia.  

In southern Africa, subgenotype A1 and genotype D prevail while in south east Asia genotype 

B and C predominate.  Infection with HBV can lead to a wide spectrum of clinical 

presentations ranging from an asymptomatic carrier state to self-limited acute or fulminant 

hepatitis to chronic hepatitis with progression to cirrhosis and hepatocellular carcinoma 

(HCC).  It has been shown that viral factors as well as a number of host and environmental 

factors can influence the course of HBV infection.  Development and progression of various 

liver diseases are associated with either an increase or decrease in hepatocyte apoptosis.  

Dysregulated apoptosis itself may be a fundamental feature of most acute and chronic human 

liver diseases.  

 

The purpose of this study was to characterise the subgenotype A1 and genotype D HBV 

infection, prevailing in South Africa.  To control for the influence of host factors on HBV 

infection as well as to avoid the use of in vitro cell lines, such as Huh-7, that have defective 

apoptotic pathways, the in vivo urokinase plasminogen activator severe combined 

immunodeficient (uPA-SCID) transgenic mouse model was utilised.  The HBV infection of 

the transgenic mice infected with HBV positive sera containing either subgenotype A1 wild-

type, subgenotype A1 with the G1862T mutation, subgenotype A2 or genotype D, was 

compared.    

 

For the first time, we were able to demonstrate the successful infection of the uPA-SCID 

transgenic mouse model with subgenotype A1 of HBV.  The successful establishment of the 

in vivo HBV infection with different genotypes or subgenotypes in the uPA-SCID transgenic 

mice was demonstrated by the increase of HBV DNA levels, the presence of cccDNA and 

HBV transcripts as well as the detection of the core and/or surface HBV antigens in the liver 

tissue of the chimeric mice.  Differences between the HBV infections with the various 

genotype/subgenotypes were observed.  Subgenotype A1 with the G1862T mutation showed 

the earliest detection and therefore highest levels of cccDNA as well as the highest HBV 

DNA levels when compared to the other strains.  The highest HBV DNA levels were recorded 

for the subgenotype A1 G1862T infected transgenic mouse followed by genotype D, 

subgenotype A2 and the lowest levels observed in the subgenotype A1 wild-type infected 
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transgenic mouse.  HBsAg was also only detected in the livers of mice infected with 

subgenotype A1 with the G1862T mutation.  HBcAg staining in the chimeric liver was 

positive when the mice were infected with genotype D, which concurs with previous 

observations that genotype D is characterised by high HBcAg expression.  Subgenotype A1 

with the 1862 mutant showed the highest levels of apoptosis as a result of the abnormal 

precore precursor protein accumulation shown to be associated with this 1862 missense 

mutation. Thus different genotypes and subgenotypes as well as variations within genotypes 

can influence HBV infection. Moreover, the results of these experiments in the 

immunocompromised chimeric mice, grafted with liver cells from a single donor, suggests 

that even when host and environmental risk factors are controlled for, the subgenotype or 

genotype can influence the course of infection.  

 

The limitations of the uPA-SCID transgenic mouse model include the lack of an immune 

system and the short life-span of the animal; therefore a population based study was carried 

out to investigate the influence of host factors on HBV infection in various disease groups.  

The study cohort comprised 635 serum samples from South Africa, China and Japan.  Of 

these samples, 564 were HBsAg-positive and the remaining 71 HBsAg-negative, HBV DNA 

negative controls.  The study cohort included asymptomatic carriers; chronically infected 

HBV patients as well as patients with HBV associated HCC.  Possible associations were 

determined between HBV genotype, HBV viral load, apoptosis levels, disease group and the 

age and gender of the patient where available.  Apoptosis levels were quantified by the 

measurement of cleaved cytokeratin 18 (M30) in serum. 

 

Patients infected with genotype C or subgenotype A1 were shown to possess a higher odds 

ratios of developing HCC compared to subgenotype B2 or genotype D, respectively.  

Significantly higher HBV viral loads were observed in genotype C compared to subgenotype 

B2.  Among the Asian cohort, it was also shown that the male gender was positively 

associated with high viral loads in HCC patients.  Moreover, a positive association between 

higher HBV viral load levels and HCC in the South African cohort was observed.  Male 

gender, older age, HBV viral load, subgenotype A1 and the presence of the G1862T mutation 

were shown to be positively and significantly associated with higher levels of apoptosis.  In 

this study it was discovered that the levels of cleaved cytokeratin 18 could potentially be used 

as a biomarker for the severity of HBV infection because a significant difference was 
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observed with the apoptosis levels between the asymptomatic and HCC patient disease 

groups.   

 

We conclude that even when the influence of host and environmental factors is controlled for, 

as is the case in the chimeric mouse model, the HBV genotype can affect the progression of 

infection.  Moreover, it was shown in the population based study that the effect of HBV 

genotype on the outcome of HBV infection can be influenced by host factors.  The 

subgenotype A1 G1862T mutation was shown in both studies to affect both HBV infection 

and apoptosis.  This suggests that HBV variants should be investigated to ascertain their 

potential impact on the course of HBV infection as it may differ from the wild-type.  

Apoptosis was shown to be associated with HBV infection in both studies and could possibly 

be an ideal marker of the progression of HBV infection.   

 

These findings are important in helping us to understand factors influencing the course of 

HBV infection.  We have therefore shown in both the studies that differences do exist 

between the South African subgenotype A1 and genotype D, and that these differences should 

be taken into consideration for the future evaluation of HBV infection and treatment of South 

African HBV infected patients.   Moreover, cleaved cytokeratin 18 may provide an ideal 

surrogate marker for HBV disease progression and monitoring.    
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CHAPTER 1 

 

INTRODUCTION 

 

Hepatitis B virus (HBV) is a virus that attacks the liver and can cause both acute and chronic 

disease.  The virus is transmitted through contact with the blood or other body fluids of an 

infected individual.  About 25 % of adults who become chronically infected during childhood 

later die from cirrhosis (scarring of the liver) or hepatocellular carcinoma (liver cancer). A 

vaccine against HBV has been available since 1982 and is 95 % effective in preventing HBV 

infection and its chronic consequences.  This was the first vaccine developed and produced 

against a major human cancer, hepatocellular carcinoma (HCC), a sexually transmitted 

disease, and that protects against another viral infection, hepatitis D virus (HDV).  Despite the 

existence of this effective vaccine,  HBV infection remains a major health problem with about 

2 billion people worldwide having been infected with the virus during the course of their life.  

Approximately 350 million of these are chronic carriers of the virus.  An estimated 600 000 

people die each year as a result of the acute or chronic consequences of the infection (WHO, 

August 2008).  Epidemiological studies conducted in sub-Saharan Africa in the last three 

decades have clearly shown that hepatitis B virus (HBV) is highly endemic (≥8% HBV 

carriage, with carriage being defined as hepatitis B (HB) surface antigen [HBsAg] positivity 

for more than 6months) and is a major public health problem (Burnett et al., 2005, Kiire, 

1996). It has been estimated that HBsAg chronic carriage in black South Africans is 9.6% 

(Kiire, 1996), with a much lower prevalence in whites and Indians (0.2%), and those of mixed 

descent (0.4–3.0%) (Kew, 1996). Also, rural black populations have a much higher HBsAg 

chronic carriage (e.g.: 15.5% in the rural Eastern Cape) than urban black populations (e.g.: 

1.3% in Soweto) (Kew, 1996). The outcomes for chronic carriers in sub-Saharan Africa are 

often severe, with 25% being expected to die from liver disease (Kiire, 1996). In the region 

20% of cirrhosis cases and 70% of hepatocellular cancers are thought to be caused by HBV 

infection (Kew, 1996). The major route of HBV transmission in this region is horizontal (i.e. 

transmission unrelated to recognised sexual, perinatal, or parenteral exposure (Davis et al., 

1989)) in children under 5 years of age. 
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1.1. HEPATITIS B VIRUS CLASSIFICATION, STRUCTURE AND REPLICATION 

 

HBV is the prototype member of the family Hepadnaviridae, which comprises hepatotropic 

DNA viruses.  The host specificity of HBV is limited to humans and chimpanzees.  HBV-

infected cells are known to produce three distinct viral particles.  Spherical viral particles with 

a diameter of 20 nm and noninfectious filaments of variable lengths with a width of 22 nm 

and composed of surface antigen and host-specific lipids (Gavilanes et al., 1982).  The 

spherical double-shelled infectious virion, known as the Dane particle, is approximately 42 

nm in diameter and consists of an outer lipoprotein envelope containing surface antigens 

(Ganem, 1991).  Within the envelope is an inner nucleocapsid or core composed of core 

antigen complexed with the viral genome and polymerase (Summers et al., 1975) (Figure 1.1).   

 

 

 

Figure 1.1.  Schematic representation of a Dane particle, the infectious HBV particle, depicting its structural 

components. 

 

 

The viral genome is a relaxed-circular, partially double-stranded DNA molecule of 3.2 kb in 

length, which contains four open reading frames (ORFs) (Figure 1.2).  The S ORF consisting 

of the pre-S1, pre-S2 and S regions, encodes three viral surface envelope proteins: large, 

middle and small S antigens.  The most abundant of these three proteins is the 24 kD S 
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antigen (HBsAg).  The precore-core ORF encodes the core antigen (HBcAg) and e antigen 

(HBeAg) while the P ORF encodes the viral DNA polymerase involved in replication and 

RNA encapsidation.  The X ORF encodes the X protein, which has been shown to be a potent 

transactivator of cellular and viral genes (Tiollais et al., 1985, Ganem and Varmus, 1987).   

 

Two direct repeats, DR1 and DR2, present on the 5’ ends of the viral genome plus strand are 

required for HBV replication (Seeger et al., 1986).  Enhancer elements, EN1 and EN2 are 

required for liver-specific expression of the HBV viral gene products (Yee, 1989).  Also 

identified within the genome are a glucocorticoid-responsive element sequence within the S 

gene (Tur-Kaspa et al., 1986), a polyadenylation signal within the core gene and a post-

transcriptional regulatory element overlapping EN1 and part of the X gene (Huang and Liang, 

1993).   

 

 

Figure 1.2.  The HBV Genome.  The genomic organization is shown with HBV RNA transcripts, gene products 

and several key regulatory elements.           
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HBV replication begins with the attachment of mature virions via the pre-S domain of the 

large surface protein (Klingmuller and Schaller, 1993), to the host cell membrane via 

receptors as yet unidentified (Figure 1.3).  Only the core particle enters the cytoplasm and is 

transported to the nucleus via the process of membrane fusion.  There the single-stranded gap 

region in the viral genome is repaired by the viral polymerase producing covalently closed 

circular DNA (cccDNA), which serves as a template for transcription of genomic and 

subgenomic transcripts (Kock and Schlicht, 1993).  The transcripts produced are unspliced, 

polyadenylated and possess a 5’ cap structure.  They are all transported to the cytoplasm, 

where translation yields the viral envelope, precore, core, polymerase and X polypeptides.  

There are two species of 3.5 kb genomic transcripts, the pregenomic RNA and precore 

mRNA.  The pregenomic RNA (pgRNA) is translated into core and polymerase after the 

pgRNA has been packaged, together with polymerase, into a nucleocapsid composed of core 

protein.  For the pgRNA to be encapsidated, its 5’ end is folded into a stem-loop structure 

known as the encapsidation signal or epsilon (ε), which is recognized by the terminal protein  

of polymerase (Pollack and Ganem, 1993).  The polymerase is then activated by binding to 

epsilon and mediates the reverse transcription of the pgRNA to minus-strand DNA and 

subsequent positive-strand synthesis creating the circular DNA viral genome.  Some 

nucleocapsid or core particles containing their newly formed genomes are transported back to 

the nucleus, where the genome can be converted once again into cccDNA to maintain a stable 

intranuclear pool of transcriptional templates (Nassal and Schaller, 1996).  Most core particles 

then interact with the envelope proteins in the endoplasmic reticulum to assemble into mature 

virions, which are then secreted from the cell (Ganem and Prince, 2004). 
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Figure 1.3. The Replication Cycle of HBV.  HBV virions bind to surface receptors and are internalized. Viral 

core particles migrate to the hepatocyte nucleus, where their genomes are repaired to form a covalently closed 

circular DNA (cccDNA) that is the template for viral messenger RNA (mRNA) transcription. The viral mRNA 

that results is translated in the cytoplasm to produce the viral surface, core, polymerase, and X proteins. There, 

progeny viral capsids assemble, incorporating genomic viral RNA (RNA packaging). This RNA is reverse-

transcribed into viral DNA. The resulting core paticles can either bud into the endoplasmic reticulum to be 

enveloped and exported from the cell or recycle their genomes into the nucleus for conversion to cccDNA. The 

small, peach-colored sphere inside the core particle is the viral DNA polymerase.  Permission granted for 

reproduction (Ganem and Prince, 2004).   

 

 

 

1.2. HBV MOLECULAR CHARACTERISATION 

 

HBV replicates by reverse transcription of an RNA intermediate, pgRNA, mediated by a viral 

polymerase, which lacks proofreading ability, thus the virus is highly prone to mutations.  The 

estimated mutation rate of HBV and other members of the family Hepadnaviridae is above 20 

000 base substitutions per site per year (Chu and Lok, 2002).  This is about 100 times higher 

than DNA viruses but 1000 times lower than RNA viruses (Chu et al., 2002b). 
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1.2.1. HBV GENOTYPES AND SUBGENOTYPES 

 

Genotype is a term used to define the various groups of replication competent, stable HBV 

genomes circulating in various geographical regions (Francois et al., 2001).  Currently eight 

HBV genotypes, A to H, have been recognized (Okamoto et al., 1988, Norder et al., 1994, 

Stuyver et al., 2000, Arauz-Ruiz et al., 2002) with a further two putative genotypes, I and J, 

being recently described (Huy et al., 2008, Tatematsu et al., 2009, Yu et al., 2010, Osiowy et 

al., 2010, Arankalle et al., 2010).  Although differences based on an intergroup divergence of 

at least 8 % in the complete genome and 4 % in the S gene were originally used to 

differentiate genotypes, more recent analysis has shown that a 7.5 % or more intergroup 

divergence can be utilized for genotype assignment (Kramvis et al., 2008). The identification 

of recombination between genotypes often complicates this genotype assignment (Fang et al., 

2011).  Subgenotype groups have been identified within the genotypes and their separation is 

based on an intergroup divergence of between 4 % and 8 % across the complete genome of 

HBV (Norder et al., 2004, Kramvis et al., 2005, Kimbi et al., 2005).  These 

genotypes/subgenotypes have been observed to have a distinct geographic distribution that 

may in time disappear as a result of increasing human mobility.   

 

HBV can also be divided into one of nine serotypes (ayw1, ayw2, ayw3, ayw4, ayr, adw2, 

adwq, adr, adrq
-
) based on the antigenic heterogeneity of HBsAg.  Serotypes do not 

correspond closely to genotypes or subgenotypes and do not have a distinct geographic 

distribution (Francois et al., 2001). 

 

1.2.1.1. Genotype A    

 

Genotype A possesses a unique 6-nucleotide insert at the carboxyl terminus of the core gene.  

To date, six subgenotypes have been identified, A1 to A6, with a tentative A7 being found in 

isolates from Rwanda and Cameroon (Hubschen et al., 2010).  Subgenotype A1 prevails in 

sub-Saharan Africa and South Asia (Kramvis and Kew, 2007) while subgenotype A2 is found 

mainly in Europe and America but has also been found in Africa (Kimbi et al., 2004).  

Subgenotype A3 was identified in Cameroon and Gabon isolates (Kurbanov et al., 2008).  

Subgenotype A4, A5 and A6 were reported from Mali, Nigeria (Olinger et al., 2006) and Haiti 

(Andernach et al., 2009b) isolates respectively.  The most recently discovered, subgenotype 

A6, was isolated from Congolese and Rwandan patients (Pourkarim et al., 2010b).  Pourkarim 
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et al recently re-analyzed the full length genome of isolates belonging to subgenotype A1 to 

A6 and suggested that genotype A subgenotypes be re-classified as “subgenotype A1, A2, 

quasi-subgenotype A3 and A4”(Pourkarim et al., 2010a, Pourkarim et al., 2011).   

 

1.2.1.2. Genotype B 

 

Subgenotypes B1 to B8 have been found within genotype B.  Originally subgenotypes B1, 

from Japan, and B2, from continental South East Asia, were referred to as Bj and Ba, 

respectively (Sugauchi et al., 2002).  Japanese subgenotype B1 and the more recently 

discovered subgenotype B6 isolates originating from the Arctic region (Sakamoto et al., 

2007), are referred to as the “pure” genotype B isolates (Sugauchi et al., 2002).  Subgenotypes 

B1 and B6 lack the genotype C recombinant region overlapping the precore/core ORF, which 

is characteristic of the remaining genotype B subgenotypes (Sugauchi et al., 2003).  Formally 

known group Ba consists of four subgenotypes: B2 (China), B3 (Indonesia), B4 (Vietnam) 

and B5 (Philippines).  Subgenotype B7 (referred to by the authors as a tentative new 

subgenotype “B6”) is a recombinant of B3, B4 and B5 found in a southern province of China 

(Shen et al., 2009).  The most recently discovered, subgenotype B8 originates from Indonesia 

(Mulyanto et al., 2009). 

 

1.2.1.3. Genotype C 

 

Genotype C is found throughout the eastern and southeastern regions of Asia and the Pacific 

Islands, as well as in Asian immigrants in the United States, Europe, Australia and New 

Zealand.  Genotype C can be divided into several subgenotypes, the most established being 

C1 to C4.  Subgenotype C1 represents isolates from Vietnam, Thailand and Myanmar while 

C2 strains are mainly derived from China, Korea and Japan (Huy et al., 2004, Ahn et al., 

2009).  Isolates from the Pacific Islands cluster into subgenotype C3, while subgenotype C4 is 

found in the Australian Aborigines.  Subgenotypes C6 (Lusida et al., 2008) and C7 (Mulyanto 

et al., 2009) were discovered in Indonesia.  Another tentative subgenotype designated “C9” 

was identified in Tibetans (Yin et al., 2010) while “C10” was observed in Indonesians 

(Mulyanto et al., 2010).  A thymine to cysteine transversion as nucleotide 1858 exists in 10 to 

25% of genotype C carriers in East Asia (Boner et al., 1995, Sugauchi et al., 2002a). 
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1.2.1.4. Genotype D 

 

Genotype D is characterized by a 33 nucleotide deletion at the N terminus of the preS1 region.  

It is found world-wide and consists of subgenotypes D1 to D6 (Banerjee et al., 2006, Bozdayi 

et al., 2005, Norder et al., 2004, Schaefer, 2007).  Subgenotype D1 isolates are derived from 

Europe, Middle East, Egypt, India and Asia while subgenotype D2 can also be found in 

Europe, India and Japan.  Subgenotype D3 is also widespread with isolates identified from 

Europe, Asia, South Africa, India and the United States.  Subgenotype D4 is specific to 

Australia, Japan and Papau New Guinea while subgenotype D5 has only been found in India 

and subgenotype D6 in Indonesia (Lusida et al., 2008). 

 

1.2.1.5. Genotype E 

 

Genotype E is found throughout West Africa, into Central Africa (Kramvis and Kew, 2007) 

and most recently in India (Singh et al., 2009) and Colombia (Alvarado Mora et al., 2010).  It 

is similar to genotype D in the X and C ORFs but contains a unique three-nucleotide deletion 

at the amino terminus of the preS region (Norder et al., 1994).  It has been suggested that 

genotype E has only recently been introduced into the human population and that its current 

high prevalence levels in Africa may be as a result of the use of unsafe needles (Andernach et 

al., 2009a). 

 

1.2.1.6. Genotype F 

 

Genotype F is divided into subgenotype F1 to F4.  Isolates belonging to F1 are from South 

America while F2 to F4 can be found in South and Central America.  Subgenotype F2 codes 

for a thymine to cysteine transversion at nucleotide 1858. 

 

1.2.1.7. Genotype G 

 

Genotype G is the most uncommon of all HBV genotypes.  It has been found in a limited 

distribution of patients from France, Germany, Italy, United Kingdom, Brazil and the United 

States.  It is almost exclusively found in patients co-infected with another HBV genotype, 

most commonly genotype A.  A study showed that mono-infection with genotype G failed to 

yield HBV DNA indicating that the virus replicated poorly.  However, when genotype A was 
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introduced it was rapidly replaced by genotype G (Sugiyama et al., 2007).   Genotype G has a 

unique 36 base pair (bp) insert and shares the 3 bp deletion in the preS1 region found in 

genotype E.  The precore/core region has 2 translational stop codons potentially affecting the 

expression of HBeAg (Stuyver et al., 2000, Kato et al., 2002). 

  

1.2.1.8. Genotype H 

 

Genotype H is found in Central America, mainly in Mexico and Nicaragua.  It is most closely 

related to genotype F and likely evolved from this genotype in the New World (Arauz-Ruiz et 

al., 2002). 

 

1.2.1.9. Genotype I 

  

Genotype I was originally described in Vietnamese (Hannoun et al., 2000, Huy et al., 2008) 

and Laotian (Stuyver et al., 2000) isolates but failed to reach the 7.5 % nucleotide divergence 

from genotype C and was therefore not considered to be a separate genotype (Kurbanov et al., 

2008). A recently discovered isolate from northwest China, related to these Vietnamese and 

Laotian strains, has been found to divert from genotype C by 8.4 % and therefore justifying 

separate genotype assignment (Yu et al., 2010).  This genotype has also been identified in 

India (Arankalle et al., 2010) and in Canadians of Vietnamese origin (Osiowy et al., 2010).  

 

1.2.1.10. Putative Genotype J 

 

Genotype J has been identified in an elderly Japanese patient that resided in Borneo during 

World War II.  It is 9.9 to 16.5% divergent from both human and ape genotypes, respectively.  

Based on the comparison of the four ORFs individually, it appears to be a recombinant of 

human subgenotype C4 and ape (gibbon and orangutan) strains.  In a chimeric mouse study 

genotype J was shown to have efficient infection, replication and antigen expression 

(Tatematsu et al., 2009).  More strains of this putative genotype require to be discovered 

before this 10
th

 genotype is recognized.       
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1.2.2. PRECORE/CORE HBV MUTANTS  

 

One of the most predominant precore mutations involves a guanine (G) to adenosine (A) 

substitution at nucleotide 1896 (G1896A), converting the codon for tryptophan into a stop 

codon.  This prevents the translation of the precore protein and abolishes HBeAg expression 

(Carman et al., 1989).  This mutation is located in the highly conserved ε signal, which is 

essential for the encapsidation of the pgRNA during the viral replication cycle (Lok et al., 

1994).  The G1896A forms a base pair with nucleotide 1858 at the base of the stem loop.  In 

genotypes B, D, E and some C strains, the nucleotide at position 1858 is a thymidine (T) 

therefore stabilizing the stem loop by binding to the adenosine at position 1896 (Lok et al., 

1994).  In contrast, the G1896A is rarely seen in genotypes A, F and some strains of C 

because cytosine (C) is the nucleotide at position 1858 resulting in wobble pairing and 

consequently decreased pgRNA encapsidation and thus decreased replication (Lok et al., 

1994, Li et al., 1993).   

 

Another mutation identified within the precore region, specifically in the bulge of the 

encapsidation signal, is a G to T transversion at nucleotide 1862 resulting in a valine to 

phenylalanine amino acid substitution at codon 17 (Santantonio et al., 1991, Kramvis et al., 

1997, Kramvis and Kew, 1998, Valliammai et al., 1995).  The presence of the aromatic 

phenylalanine residue at the -3 position of the signal peptide cleavage site is not tolerated (von 

Heijne, 1983) resulting in the accumulation of uncleaved mutant HBeAg in the Endoplasmic 

Reticulum Golgi intermediate compartment (ERGIC), the formation of aggresomes and 

ultimately in a decrease of secreted HBeAg (Chen et al., 2008).  The G1862T mutation has 

been observed in several strains of HBV genotypes including genotype A and D (Kurbanov et 

al., 2008).    

 

The basic core promoter region and the core upstream regulatory sequences are located 

upstream of the precore region and also play an important role in HBV replication and 

HBeAg production.  Mutations in these regions downregulate precore mRNA transcription, 

and hence HBeAg production.  The most common core promoter variant involves two point 

mutations: A to T at nucleotide 1762 and G to A at nucleotide 1764.  This double mutation 

decreases precore mRNA production without affecting pgRNA transcription (Okamoto et al., 

1994, Buckwold et al., 1997).  It has been speculated that this is as a result of the conversion 

of a nuclear receptor binding site into a HNF-1 binding site (Li et al., 2002).  This double 
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mutation is strongly associated with some strains of genotype B, C, F and G (Kurbanov et al., 

2008).  Less common but still strongly associated with subgenotype D1, is the T to C point 

mutation at nucleotide 1753 within the core promoter (Takahashi et al., 1999).    

 

1.3. HBV INFECTION AND DISEASE 

 

In the highly endemic areas, where the HBV carrier rate ranges from 8 % to 15 %, such as 

Africa and south east Asia, the main route of transmission in early childhood is horizontal and 

perinatal, respectively.  In low endemic areas, where the carrier rates are less than 2%, such as 

the Western countries and Japan, HBV is predominantly a disease of adolescents and adults as 

a result of high risk sexual behaviour or intravenous drug abuse (Elgouhari et al., 2008). 

        

Most cases of HBV infection acquired in adulthood resolve spontaneously within 6 months.  

In contrast most infections acquired at birth or in early childhood persist and become chronic 

(Elgouhari et al., 2008, Zanetti et al., 2008).  Infection with HBV can lead to a wide spectrum 

of clinical presentations ranging from an asymptomatic carrier state to self-limited acute or 

fulminant hepatitis to chronic hepatitis with progression to cirrhosis and HCC. 

 

HBV produces antigens that can be detected in the blood and that are cleared as the body’s 

defense system produces antibodies against them.  HBV DNA and surface antigen are often 

the first detectable markers of acute infection, appearing before the onset of symptoms or 

elevation of alanine aminotransferese (ALT) and aspartate aminotransferase (AST).  By 

definition, HBV infection is considered chronic if HBsAg persists for longer than 6 months.  

HBeAg is considered a marker of HBV replication and infectivity (Liang and Ghany, 2002), 

however mutations in the precore-core region can result in decreased HBeAg expression 

without affecting viral replication (Kramvis and Kew, 1998, Carman et al., 1989).  In chronic 

infection, HBeAg can persist for years.  HBcAg is not secreted in serum but IgM antibodies 

and later IgG antibodies against HBcAg can be detected.  These and other markers offer 

important clues as to the state and stage of disease. 

 

 

 

 

 



 12 

1.3.1 ACUTE HEPATITIS 

 

The incubation period of acute hepatitis B usually ranges from 2 to 3 months depending on 

the level of virus exposure (Barker and Murray, 1972).  The majority of patients are 

asymptomatic with the infection being undetected but approximately one third of patients 

develop clinical symptoms of the infection (McMahon et al., 1985).  The most common 

symptoms are fatigue, nausea, jaundice and rarely liver failure.  HBV DNA followed by 

HBsAg and HBeAg are the first viral markers to be detected in the patient’s serum (Figure 

1.4).  HBsAg can be detected as early as 1 to 2 weeks or as late as 11 to 12 weeks after 

exposure.  The incubation period is followed by a preicteric phase, defined as preceding the 

appearance of jaundice, which typically lasts a few days to a week.  ALT, AST, HBsAg and 

HBV DNA levels rise followed by the onset of jaundice (icterus) in some cases.  The icteric 

phase follows for 1 to 2 weeks during which ALT levels normalize and the jaundice resolves 

with recovery.  The HBsAg is cleared and the HBV DNA levels low because of early immune 

clearance.  Anti-HBc IgM is detectable and declines as levels of anti-HBc IgG rise.  Loss of 

HBeAg and the detection thereafter of anti-HBe is a favourable marker indicating recovery.  

Antibody to HBsAg (anti-HBs) rises during recovery and persists thereafter, being the marker 

associated with HBV immunity.  However approximately 10 % to 15 % of patients who 

recover from HBV never develop detectable anti-HBs and therefore anti-HBc is the only 

marker of previous infection.  Diagnosis of acute hepatitis is therefore made by the detection 

of IgM anti-HBc in the patient serum.  HBV DNA detection has improved dramatically over 

the past few years with many real-time polymerase chain reaction assays being able to detect 

as low as 5 to 10 copies of HBV DNA copies/ml.  Testing of HBV DNA is therefore 

becoming the preferred tool for the diagnosis and management of HBV infection (Kuhns and 

Busch, 2006).   

 

Acute fulminant hepatitis occurs in 0.1 % to 0.5 % of patients and is characterized by signs of 

liver failure and low or undetectable HBV DNA levels.  Acute liver failure has been found to 

occur in approximately 1 % of patients presenting with acute hepatitis B and jaundice (Berk 

and Popper, 1978). 
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Figure 1.4.  The clinical course and serological patterns observed during acute HBV infection. 

 

1.3.2. CHRONIC HEPATITIS  

 

Patients who develop chronic hepatitis B, initially have a similar pattern of infection to acute 

hepatitis but viral replication persists with HBsAg, HBeAg and HBV DNA being detectable 

in the serum (Figure 1.5).  Chronic hepatitis B is usually diagnosed through a workup of 

abnormal liver function tests or as a result of screening high risk patients because carriage can 

be asymptomatic.  The finding of HBsAg without IgM anti-HBc suggests the chronic hepatitis 

but a finding of the persistence of HBsAg for at least 6 months is required for confirmation 

(Perrillo et al., 1983).  If diagnosis of HBV infection occurs during the acute phase, 
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monitoring of HBV DNA indicating persistently high levels following resolution of this phase 

may indicate the development chronic hepatitis (Loomba and Liang, 2007).  In late cases, 

signs of cirrhosis can present.  It should be noted that liver enzyme levels can be normal, even 

in patients with cirrhosis.  The most characteristic histological feature of chronic HBV 

infection is the ground-glass hepatocyte, as a result of intracellular accumulation of HBV 

surface antigen. 

 

Fewer than 5 % of immunocompetent adults infected with HBV remain chronically infected.  

On the other hand, 80 % to 90 % of infected infants and 20 % to 50 % of children 1 to 5 years 

old at the time of acute infection remain chronically infected (McMahon et al., 1985). 

 

Figure 1.5.  The clinical course and serological patterns observed during chronic HBV infection. 
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1.3.3. STAGES OF HBV INFECTION 

 

There are three stages of HBV infection based on viral-host interaction:  immune tolerant 

phase, immune clearance phase and the inactive carrier phase with or without reactivation.  

After acute infection some patients may remain HBeAg positive with high levels of HBV 

DNA, little or no symptoms, normal ALT levels and minimal histological activity in the liver, 

this is known as the immune tolerance phase.  This phase is typical of infection in children 

and young adults.  It usually lasts for 2 to 4 weeks but can last for years in those who acquired 

the infection during the perinatal period (Merican et al., 2000).  Individuals in this group are 

highly contagious and can transmit HBV easily through body fluids.  When the tolerogenic 

effect is lost, immune-mediated lysis of the infected liver cells occurs and the patients enter 

the second stage defined as the immune clearance phase characterized by decreasing HBV 

DNA levels and increasing ALT levels.  The duration of this phase lasts from months to 

years.  This is followed by the immune clearance phase, in which seroconversion of HBeAg 

to anti-HBe occurs, HBV DNA becomes non-detectable and ALT levels normal, reflecting 

very low or no replication of HBV and mild or no hepatic injury.  The inactive carrier stage 

may last for years or undergo spontaneous reactivation of chronic hepatitis featuring elevated 

ALT, high levels of HBV DNA, moderate to severe liver histological activity and with or 

without HBeAg seroconversion. 

 

A proportion of patients who undergo HBeAg seroconversion demonstrate a recurrence of 

high HBV DNA levels and intermittent or persistent ALT level elevations. These individuals 

have a naturally occurring mutant form of HBV that does not produce HBeAg due to a 

mutation in the precore core region.  The most frequently occurring precore mutation is a 

guanine to alanine substitution at nucleotide 1896 which creates a stop codon and results in 

the loss of HBeAg synthesis.  The most common core promoter mutation involves a 2 

nucleotide substitution at nucleotides 1762 and 1764.  HBeAg-negative carriers are a 

heterogenous group and may have either high or low viral DNA levels as well as relatively 

normal levels of ALT.  Long-term prognosis is poorer among HBeAg-negative individuals 

who actively replicate the virus, compared with their counterparts, who are HBeAg-positive 

(Funk et al., 2002).     
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1.3.4. CONSEQUENCES OF LONG-TERM CHRONIC HEPATITIS 

Following the diagnosis of chronic hepatitis B the survival rate is 100 % at 5 years however 

cirrhosis and HCC are two major long-term complications of chronic infection that 

significantly increase morbidity and mortality.   The mortality rate at 5 years is 16 % for 

patients with compensated cirrhosis (symptomless) and 65 % to 86 % for decompensated 

cirrhosis (associated with complications) (Benvegnu et al., 2004).  In untreated individuals 

with predominantly HBeAg positive chronic hepatitis B infection, the incidence of cirrhosis 

ranges from 2 % to 5.4 %, with 5 year cumulative incidence of cirrhosis of 8 % to 20 % 

(Fattovich, 2003).  A higher rate of cirrhosis, 8 % to 9 %, has been reported in HBeAg-

negative as compared to positive patients (Fattovich, 2003). 

The development of HCC is one of the main causes of death from chronic hepatitis B 

infection.  Chronically infected patients have a 100 times increased risk of HCC compared 

with non-carriers (Pungpapong et al., 2007).  The annual rate of HCC has been estimated to 

be higher in patients with cirrhosis, 2.5 % to 3 %, than in non-cirrhotic carriers, 0.5 % to 1 % 

(Yim and Lok, 2006).  The risk factors for cirrhosis and HCC are summarized in Table 1.1 

(Lok and McMahon, 2007, Yim and Lok, 2006, Lok, 2004, Fattovich et al., 2004, Yu et al., 

1997). 

Table 1.1: Risk factors for HBV-related cirrhosis and HCC  

CIRRHOSIS RISK FACTORS HCC RISK FACTORS 

Longer duration of infection Longer duration of infection 

High levels of HBV DNA High levels of HBV DNA 

HBV genotype and subgenotype HBV genotype and subgenotype 

Male sex Male sex 

Heavy Alcohol consumption Heavy Alcohol consumption 

Co-infection with HCV or HDV or HIV Co-infection with HCV 

Obesity  Obesity  

Diabetes Mellitus Diabetes Mellitus 

 Race (African, Asian) 

 Presence of cirrhosis 

 Family history of HCC  

 Cigarette smoking 

 Aflatoxin exposure 

 Reversion from HBe antibody to HBeAg 

 HBV variants 
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1.3.4.1. Clinical relevance of HBV genotypes/subgenotypes 

 

HBV genotypes and subgenotypes have been shown to differ with regard to clinical outcome, 

prognosis, and response to antiviral treatment. Infection with HBV genotype A is associated 

with high viral load which facilitates viral transmission. High replication rates of genotype A 

in adults lead to an increased risk of horizontal transmission of HBV by sexual activity because 

a high concentration of HBV DNA in serum is associated with high concentrations in semen 

and other body fluids of HBV carriers (Kidd-Ljunggren et al., 2006).  Genotype A also tends to 

cause chronic infection following an acute course. This has been demonstrated in Japan where 

genotype A introduced from Europe has started to increase sharply in patients with acute 

infection since 1991, and gradually in those with chronic infection (Kobayashi et al., 2008).  

Spontaneous HBeAg seroclearance was significantly higher in genotype A carriers than in 

carriers of genotypes C, B, D, and F. After losing HBeAg, those with genotypes C and F were 

more likely to revert to the HBeAg-positive state (Livingston et al., 2007a).  Infection with 

subgenotype B2 is associated with HCC or HCC recurrence in young, mostly noncirrhotic, 

patients in Mainland China and Taiwan (Kao et al., 2000, Yin et al., 2008, Ni et al., 2004), 

whereas infection with subgenotype B1 is frequently associated with fulminant hepatitis B in 

Japan (Kusakabe et al., 2009). Infection with HBV genotype C is associated with increased 

risks of liver cirhosis and HCC at an older age as compared with infection with the HBV 

genotype B (Yu et al., 2005, Chan et al., 2004, Chan et al., 2009a). Although HBV 

subgenotypes C1 and C2 are associated with the risk of HCC, only HBV subgenotype C2 is 

independently associated with an increased risk of HCC (Chan et al., 2008). Genotype B has 

recently been shown to be more likely to cause acute hepatitis B, while the serum viral load of 

asymptomatic carriers with genotype B is significantly higher than those infected with 

genotype C (Zhang et al., 2008). As compared with genotype C, HBV genotype B has been 

shown to be associated with earlier HBeAg seroconversion, and associated with better 

response to interferon therapy in HBeAg-positive chronic hepatitis (Chu et al., 2002a, Wai et 

al., 2002). Early HBeAg seroconversion typically confers a favorable outcome (Lin and Kao, 

2008). In HBeAg-negative patients, detectable HBV DNA and HBV genotype C are associated 

with more severe liver damage (Chan et al., 2002). Thus, infection with HBV genotype C is 

associated with worse clinical outcome as compared with genotype B. With reference to the 

clinical characteristics of HBV genotype D infection and disease severity, the facts are 

contentious.  Genotype D has been shown to be associated with severe liver disease, and a 

higher prevalence of genotype D than genotype A was observed in patients with HCC in 
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comparison with asymptomatic carriers (Thakur et al., 2002). In contrast, other reports 

indicated a lack of association between this genotype and a distinct clinical phenotype 

(Gandhe et al., 2003, Bahri et al., 2006).  In the Caucasian and Indian populations, genotype 

D has been found to be associated with a greater risk for HCC than genotype A (Thakur et al., 

2002).  Data from India has shown that HBV subgenotype D1 is significantly associated with 

chronic liver disease, whereas HBV subgenotype D3 is significantly associated with occult 

HBV infection. No apparent clinical relevance was observed in those infected with HBV 

subgenotypes D2 and D5 (Chandra et al., 2009). There is very limited data on the association 

of genotype E with its clinical relevance. Population-based prospective cohort studies have 

found that HBV genotypes C and F are associated with the highest risk for HCC or liver 

cirrhosis (McMahon, 2009). 

 

1.3.4.2. Clinical relevance of HBV PreS and S region mutations 

  

HBV genomic variations in the PreS and S regions which are selected during the infection 

course are of clinical and public health importance. The HBV envelope is composed of 3 forms 

of HBsAg, the so-called large (L, coded for by the PreS1/S2/S gene), middle (M, the PreS2/S 

gene), and small (S, the S gene) proteins. The small or major peptide is 226 amino acids in 

length, and the M and L proteins are assembled by amino-terminal extension of 55 amino acids 

at the PreS2 domain and of 108-119 amino acids of the PreS1 domain. HBsAg is the main 

target for viral neutralization, either by natural or vaccine-induced anti-HBs. A central major 

hydrophilic region (approximately residues 103-173) exposed at the surface of viral particles. 

The major hydrophilic region itself is structured into five regions, including three central loops 

held together by disulphide bonds. The immunodominant “a” determinant (residues 124-147), 

against which most neutralizing antibodies are directed and which is the major target of HBsAg 

detection tests, is formed by loops 2 and 3 (Kay and Zoulim, 2007). HBV with mutations in the 

portion of the S gene coding the “a” determinant of hepatitis surface antigen, including a 

glycine to arginine substitution at position 145 (G145R) and other S gene mutations in the 

region of amino acids 120-147, can potentially evade neutralizing anti-HBs antibody and infect 

vaccinated people. G145R is by far the most common immune escape mutant, whereas the most 

important immune escape mutants with substitutions outside of the “a” determinant is P120S/T.  

Mutations in the S genes within “a” determinant (but not G145R) are partially responsible for 

occult HBV infection, which are characterized by the presence of HBV DNA in serum in the 

absence of detectable HBsAg, and could present a risk to blood safety (Tabor, 2006). Mutations 
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in PreS are also associated with occult HBV infection (Mu et al., 2009), probably due to the 

inactivation of the overlapping PreS2/S promoter which causes impaired HBsAg secretion. 

The 5’ flanking region of the S gene coding the PreS1 and PreS2 domains is overlapped by the 

region of the P gene coding the spacer domain of the viral polymerase. Genotype D and non-

human primate isolates inherently have a 33 nucleotide deletion at or near the beginning of the 

PreS1 open reading frame (Schaefer, 2005, Kay and Zoulim, 2007). The PreS1 protein contains 

the hepatocyte binding site (amino acids 21-47) and is known to be essential for virion assembly 

and for the transporting of virions out of the hepatocyte (Shinkai et al., 2007). The PreS1 and 

PreS2 regions play an essential role in the interaction with immune responses because they 

contain several epitopes for T or B cells (Chen et al., 2007). There is little evidence supporting 

the idea that PreS mutants are transmissible, therefore, the PreS mutation might generate during 

the pathological process following the infection. The PreS mutations emerge in chronic 

infections, often in patients treated with interferon, and seem to represent desperate attempts to 

escape from host immune surveillance (Kay and Zoulim, 2007).  Many of the mutations 

affecting the PreS domains of the envelope proteins are deletions. More recently, PreS deletions 

are frequently associated with an increased risk of HCC, especially in those infected with HBV 

genotype C (Chen et al., 2007, Mun et al., 2008, Chen et al., 2006a, Gao et al., 2007). Recent 

meta-analysis showed that the frequencies of the PreS deletion mutation consecutively 

increased during the progression of chronic HBV infection from asymptomatic carrier states to 

liver cirrhosis or HCC, while the frequencies of mutations at the promoter sites of PreS1 and 

PreS2 were significantly higher in the patients with HCC than in the patients without HCC (Liu 

et al., 2009). It is suggested that PreS deletion and nucleotide substitution mutations at the 

promoter sites of PreS1 and PreS2 may serve as useful biomarkers for predicting the clinical 

outcomes of HBV-infected patients, especially for predicting HCC (Cao, 2009).  

 

1.3.4.3. Clinical relevance of HBV EnhII / Basic core promoter (BCP) / Precore mutations 

  

The core promoter, positively and negatively regulated by Enhancer II (EnhII) and to some 

extent by Enhancer I, controls the transcription of precore mRNA and pregenomic RNA that 

can be the mRNA for both core protein and the viral polymerase and is the template for viral 

replication. HBeAg expression indicates active viral replication. There are two classes of 

mutants that affect HBeAg expression: BCP mutants and precore mutants. Although viral 

loads are generally several logs lower in HBeAg-negative patients than in HBeAg-positive 

patients and children born to HBeAg-positive mothers have a much higher risk of contracting 
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chronic HBV infection than children born to HBeAg-negative mothers (Kay and Zoulim, 

2007), some combined mutations in the EnhII/BCP/Precore region like 1766/1768, 

1762/1764/1766, 1753/1762/1764, and 1753/1762/1764/1766 mutations have been associated 

with high HBV DNA production in the in vitro transfection studies (Parekh et al., 2003, 

Jammeh et al., 2008). HBV core promoter mutations other than those at 1762/1764 appear to 

upregulate viral DNA replication and, at the same time, greatly reduce HBeAg production. 

Although expression of HBeAg has been associated with an increased risk of HCC in a 

prospective study (Yang et al., 2002), high viral load in HBeAg-negative patients is often 

associated with worse outcome of chronic HBV infection, especially in those with HBV 

carrying mutations at the PreS and EnhII/BCP/Precore regions (Chen et al., 2007, Wong et 

al., 2008, Tong et al., 2006, Yuen et al., 2009, Bahramali et al., 2008, Choi et al., 2009).  

 

Several mutations at the EnhII/BCP/Precore region have been recently associated with an 

increased risk of HCC. These mutations include C1653T, T1753V, T1766/A1768, and 

A1762T/G1764A (Bahramali et al., 2008, Yuen et al., 2009, Yang et al., 2008, Guo et al., 2008, 

Dong et al., 2008, Fang et al., 2008, Sung et al., 2008, Ito et al., 2007).  Recent data has shown 

that C1653T, T1753V, and A1762T/G1764A are each associated with an increased risk of HCC 

(Liu et al., 2009), whereas precore mutations G1896A and C1858T were found to not be 

associated with an increased risk of HCC, regardless of HBeAg status and HBV genotype (Liu 

et al., 2009).  

Double mutataion, A1762T/G1764A has been shown to be a valuable biomarker for identifying 

a subset of male HBsAg carriers who are at extremely high risk of HCC in a prospective study 

(Fang et al., 2008). In a community-based prospective study, A1762T/G1764A and genotype C 

have been associated with an increased risk of HCC, whereas G1896A in the precore region has 

been associated with decreased risk of HCC (Dong et al., 2008).  G1896A has been associated 

with fulminant hepatitis in Japan (Ozasa et al., 2006). Since the EnhII/BCP/Precore region 

overlaps with X gene in the HBV genome, mutations in the EnhII/BCP/Precore region should 

be included in evaluating the role of HBV X protein on the development of HCC. That is to say, 

the mutated X protein might be more carcinogenic than the wild-type X protein in HBV-

induced hepatocarcinogenesis (Cao, 2009) .  
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C1653T, T1753V, and A1762T/G1764A are increasingly more prevalent as chronic HBV 

infection progresses from the asymptomatic HBsAg carrier state to liver cirrhosis or HCC, 

indicating that these mutations accumulate before the diagnosis of HCC (Liu et al., 2009). This 

finding suggests that these HBV mutations may serve as useful biomarkers for predicting 

clinical outcomes of the patients with chronic hepatitis, especially with regard to predicting 

whether they will develop HCC. Like the PreS mutants, HCC-associated HBV mutants in the 

EnhII/BCP/Precore region, e.g. A1762T/G1764A mutants, may not transmit via mother-to-child 

vertical transmission because the children whose mothers carrying HBV mutants were mostly 

found to be infected with the wild-type form of the same viruses (Cheng et al., 2009, Shen et al., 

2008). These HBV mutations are likely generated during HBV-induced pathogenesis. 

A1762T/G1764A is frequently detected approximately 10 years before the diagnosis of HCC 

(Liu et al., 2009). It is therefore necessary to set up likely checkpoints for the examination of the 

HCC-associated HBV mutations in HBV-infected subjects.  

Recently, several clinical scoring systems, or nomograms, consisting of previously confirmed 

independent risk predictors such as sex, age, family history of HCC, alcohol consumption, 

serum alanine aminotransferase (ALT) level, HBeAg status, serum HBV DNA level, and/or 

HBV genotype have been introduced (Yuen et al., 2009, Wong et al., 2010, Yang et al., 

2010).  These easy-to-use nomograms are based on noninvasive clinical characteristics and 

have been found to accurately predict HCC risk in either community- or hospital-based HBV-

infected persons. Their use could facilitate communication between practicing physicians and 

patients in daily practice. However, it has been suggested that these predictive scoring 

systems need further validation in different populations across the world to be truly effective 

(Lin and Kao, 2011, Kao, 2011). 

1.3.4.4. Role of hepatitis B virus  X protein (HBx) 

 

HBx, the nonstructural regulatory protein of HBV has been associated with the development 

of liver cancer in some HBx-transgenic mouse strains and with increased progression to liver 

cancer in other toxin-exposed HBx transgenic mouse strains (Bouchard and Schneider, 2004). 

HBx has been hypothesized to carry out various functions via undefined mechanisms and how 

these activities affect viral replication (and possibly liver cell transformation) remains 

undefined. The T1653 mutation resulting in a histidine-to-tyrosine amino acid substitution at 

codon 94 of the X protein (the center of the immunodominant antigenic domain of amino 
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acids 85–110) (Stemler et al., 1990) did not induce clonal outgrowth of cells and apoptosis as 

reported for wildtype HBx-expressing strains (Sirma et al., 1999). Indeed, codon 94 (nt 1653–

1655) is within the functional domain of the X protein reported to play a central role in 

transactivation (Kumar et al., 1996). Cong et al, 1997 also reported that one of the activation 

domains of the X protein (amino acids 90–122) is required for XAP3 binding (protein kinase 

C-binding protein) (Cong et al., 1997). Protein kinase C is a large family of phospholipid-

dependent kinases involved in cell growth, differentiation, and carcinogenesis. It is of interest 

whether the T1653 mutation affects protein-protein interactions between the X protein and 

XAP3. The X-ORF encoding the 154-amino acid HBx protein that possess transactivator 

properties that can affect various cellular and viral genes via cis- or transactivating elements 

(Kumar et al., 1996) has been reported to play a prominent role in the development of HCC 

(Kekule et al., 1993). Since the X-ORF overlaps the C-terminus of the polymerase gene and 

the N-terminus of the precore/core gene a mutation within the X-region could potentially 

affect three genes simultaneously (Li et al., 1999). In fact, mutations and deletions have been 

identified in integrated HBx sequences (Hsia et al., 1997, Takeuchi et al., 1997). In contrast to 

the mutations occurring in the immunogenic HBsAg protein characteristic of vaccine escape 

mutants (Chong-Jin et al., 1999), the effects of these HCC-integrated HBx mutants on 

hepatocarcinogenesis remain unclear, although some truncated HBx genes have been shown 

to retain biologically activity (Poussin et al., 1999). Some HBx mutations detected in HBV-

infected patients have been linked to disease presentation and severity such as the dual 

mutations at position A1762T and G1764A in the BCP discussed in the above section. 

Although the molecular mechanisms mediated by HBV that result in liver cancer are not well 

defined, their correlation with HCC is well established. For example, a study using HBx 

transgenic mice developed hepatic adenoma and subsequently HCC (Kim et al., 1991). A 

different study demonstrated that although HBx was not sufficient for the induction of 

carcinogenesis it acted as a promoter for malignant transformation in hepatocytes (Zhu et al., 

2004). These studies suggested that HBx is a multifunctional protein that plays various roles 

in HCC development.  

 

1.3.4.5. Clinical relevance of HBV viral load 

 

Many long term follow-up studies in Taiwan, China, and Japan have assessed the relationship 

between viral loads in chronic carriers of HBV and their subsequent chance of HCC 

development. These studies showed that high viral loads (defined as 10
5
 viral copies per ml in 
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some studies (Harris et al., 2003, Chen et al., 2006b, Fung et al., 2007, Liu et al., 2008) or 10
4
 

viral copies per ml in others (Yang et al., 2002, Tang et al., 2004, Chan et al., 2008, Wu et al., 

2008, Yuen et al., 2008)) predict an increased risk for the development of HCC. The effect of 

viral load on hepatocarcinogenesis is influenced by a number of variables, including male 

gender [Chen et al., 2006], HBeAg status (Chen et al., 2006b), genotype (Yu et al., 2005), and 

possibly age (Tsai et al., 2007).  Significantly higher HBV viral loads in Black Africans with 

HCC compared to healthy Black carriers of the virus (Viana et al., 2009) confirms the finding 

in an earlier study of a small number of Senegalese patients (Tang et al., 2004), and is in 

keeping with the more extensive results in Taiwanese, Chinese and Japanese patients (Harris 

et al., 2003, Tang et al., 2004, Yu et al., 2005). 

 

1.4. LIVER DISEASE ASSOCIATED CELL DEATH 

 

Apoptosis or programmed cell death is a genetically conserved process that maintains tissue 

homeostasis and is essential for both normal development and some pathological processes.  

In the dying cell, a family of cysteine-proteases called caspases is responsible for apoptotic 

signaling, during which the cell undergoes several morphological and biochemical changes.  

In the early stages, the cell volume decreases and contact with the neighbouring cells is 

interrupted while the plasma membrane undergoes dynamic membrane blebbing (Kerr et al., 

1972).  The dying cell subsequently forms buds and fragments into apoptotic bodies that are 

phagocytosed by macrophages or neighbouring cells (Jacobson et al., 1997).  The engulfment 

of the apoptotic bodies ensures that this form of cell death does not lead to inflammatory 

reactions.   

 

Necrosis and apoptosis have long been viewed as morphologically and biochemically distinct 

forms of cell death.  Necrosis results from acute metabolic disruption with adenosine 

triphosphate (ATP) depletion, ion deregulation, mitochondrial and cellular swelling, and 

activation of degradative enzymes culminating in the rupture of the plasma membrane and 

loss of intracellular proteins, metabolites and ions (Lemasters, 1999).   Necrosis and 

apoptosis, however have been shown to occur simultaneously in tissues and cell cultures 

exposed to the same stimulus (Shimizu et al., 1996).   

 

Necrapoptosis is used to describe the shared pathways leading to both forms of cell death.  

Pure apoptosis and pure necrosis represent extremes in the spectrum of necrapoptotic 
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responses.  However, the more typical response of tissues and cells to injurious stresses and 

other death signals is a mixture of events associated with both forms (Lemasters, 1999).  The 

contribution of cell death to liver diseases has been shown to be a consequence of 

necrapoptosis (Malhi et al., 2006). 

 

Important to note is that a healthy liver is characterized by a certain degree of apoptosis.  In 

fact, in recent years it has become obvious that development and progression of various liver 

diseases are associated with either an increase or decrease in hepatocyte apoptosis.  Moreover, 

dysregulated apoptosis itself may be a fundamental feature of most acute and chronic human 

liver diseases (Patel et al., 1998, Malhi and Gores, 2008).  A direct link has been suggested 

between upregulated apoptosis, the subsequent release of inflammatory mediators, and the 

development of fibrosis (Canbay et al., 2004).  This link has been observed for ethanol-

induced hepatitis, non-alcoholic fatty liver disease, cholestatic liver diseases, alpha-1-

antitrypsin, Wilson’s disease, viral hepatitis and ischemia-reperfusion injury (Galle and 

Krammer, 1998).   Sustained, excessive apoptosis leading to fibrosis can culminate in 

cirrhosis and liver failure (Jaeschke et al., 2002).  In contrast, the combination of altered 

apoptosis with increasing cell proliferation may promote the development of cancer 

(Guicciardi and Gores, 2005).  Dysregulated apoptosis is thus associated with considerable 

morbidity and mortality in many liver diseases (Patel et al., 1998). 

 

1.4.1. APOPTOTIC PATHWAYS LINKED TO LIVER DISEASE 

 

Apoptosis in the liver may occur via the death receptor-mediated extrinsic pathway or the 

intracellular organelle-based intrinsic pathway (Figure 1.6).  Regulation of apoptotic 

machinery in hepatocytes is complex and commonly triggered through activation of death 

receptors (Rust and Gores, 2000).  The intracellular pathway can be initiated by several 

organelles involving one or more of the following: lysosomal permeabilisation, pathological 

alterations in the cellular storage and mobilization of calcium or in processes that are located 

in the endoplasmic reticulum.  Intracellular DNA damage or mitochondrial dysfunction are 

known to trigger apoptosis (Hengartner, 2000). 
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Figure 1.6. Extrinsic and intrinsic pathways of hepatocyte apoptosis. The extrinsic pathway is activated by 

death receptors. Fas or TRAIL (depicted here) bind to their cognate receptors, leading to the formation of the 

death-inducing signaling complex (DISC), with caspase 8 activation, Bid cleavage, and subsequent 

mitochondrial permeabilization. Bim activation can also occur downstream of death receptor signaling, leading 

to Bax activation and mitochondrial permeabilization. The TNF-α signaling pathway also leads to Bid cleavage 

with lysosomal permeabilization, leading to release of lysosomal contents and mitochondrial permeabilization. 

The intrinsic pathway of cell death can be initiated by myriad intracellular stressors that can activate the ER 

stress pathway, lysosomal permeabilization, or JNK activation. These cascades lead to inhibition of the 

antiapoptotic proteins (Bcl-xL, Bcl-2) and activation of the proapoptotic proteins (Bax, Bim, Bad, Bid). 

Mitochondrial permeabilization occurs eventually and is required for hepatocyte apoptosis.  Permission obtained 

for copyright (Malhi and Gores, 2008). 

 

1.4.1.1. Lysosomal pathway 

 

Lysosomal involvement in cell death is an early event that occurs prior to mitochondrial 

permeabilization or caspase activation.  Lysosomes can be activated by the extrinsic pathway 

or a myriad of intracellular stimuli such as reactive oxygen species (Guicciardi et al., 2004).  

The release of lysosomal proteases, called cathepsins, mediates downstream apoptotic effects.  

Cathepsin B has been linked to several models of liver injury (Kyaw et al., 1983).  Lysosomal 

ultrastructural abnormalities are seen in many chronic liver disorders, while studies show that 

the lysosomal pathway of apoptosis is important in steatohepatitis, cholestatic liver injury and 

tumor necrosis factor alpha (TNFα) mediated liver injury (Guicciardi et al., 2000, Feldstein et 

al., 2004).       
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1.4.1.2. Mitochondrial pathway 

 

Mitochondrial dysfunction is the commitment step in hepatocyte apoptosis and is dependent 

on it (Malhi et al., 2006).  Mitochondrial inner and outer membranes isolate a number of 

proapoptotic proteins within the intermembrane space.  Mitochondrial outer membrane 

permeabilization (MOMP) leads to the release of these proteins namely cytochrome c, second 

mitochondrial activator of caspase (SMAC)/direct IAP binding protein with low pI 

(DIABLO), HtrA2/Omi, apoptosis-inducing factor and endonuclease G (Green and Kroemer, 

2004).   The protein release in turn activates caspases and initiates apoptotic nuclear changes 

(Bradham et al., 1998).  MOMP occurs selectively, mediated via activated Bax / Bak or 

secondary to mitochondrial permeability transition (Green, 2005).  It can also be activated 

downstream of death receptor-triggered signaling cascades, lysosomal permeabilization, 

endoplasmic reticulum stress pathways or activation of intracellular stress kinases such as c-

jun N-terminal kinase (JNK).     

 

1.4.1.3. Death receptor-mediated pathways 

 

TNFα, Fas ligand (Fas L) and tumor necrosis factor-related apoptosis inducing ligand 

(TRAIL) are death ligands that signal via binding to their respective death receptors.  Death 

receptors belong to the TNF/nerve growth factor superfamily and are essential for death 

ligand-mediated cell death.  The death receptors Fas, tumor necrosis factor receptor 1 

(TNFR1) and TRAIL receptors have recognized roles in liver injury (Mochizuki et al., 1996, 

Yamada et al., 1998, Schneider et al., 1997).  The process of the ligand binding to the receptor 

leads to receptor trimerization and activation of intracellular signaling cascades.  The cascade 

begins with the activation of the initiator caspase 8 followed by the cleavage of Bid to tBid, 

which in turn then translocates to the mitochondria causing mitochondrial permeabilization.  

Lysosomal permeabilisation can occur via TNFα-induced Bid-dependent and TRAIL-induced 

Bax-dependent pathways (Werneburg et al., 2007).  Keratins 8 and 18 have been shown to 

modulate apoptosis induced by Fas/TNF family receptors (Caulin et al., 2000, Gilbert et al., 

2001, Ku et al., 2003). 
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1.4.1.4. Keratins 

 

The cytoskeleton consists of three distinct filament systems: intermediate filaments (IFs), 

actin-containing microfilaments and microtubules.  There are five different types of 

intermediate filaments: types I-IV being cytoskeletal IFs and type V nucleoskeletal IFs 

(Helfand et al., 2004).  The keratins represent the largest subgroup among the IF proteins and 

are differentially expressed as pairs of type I and type II IF proteins in epithelia (Hesse et al., 

2001).  Type I keratins include keratin 9 to keratin 23 (K9-K23) and type II keratins include 

keratins 1 to 8 (K1-K8).  It has long been believed that the primary function of cytokeratins is 

as a structural scaffold that gives mechanical strength in cells.  However, recent data indicates 

that IFs are remarkably dynamic rather than static and that IFs exhibit a complex array of 

motile activities (Helfand et al., 2004).  Additional functions include their participation in cell 

signaling and in the resistance of stress and apoptosis (Gilbert et al., 2001).   

In hepatocytes the IFs consist only of the K8/K18 pair.  K18 is cleaved at two sites into three 

fragments during apoptosis by effector caspases (MacFarlane et al., 2000).  The monoclonal 

antibody, M30, has been shown to recognize the neo-epitope of K18 exposed after caspase 

cleavage (Leers et al., 1999).  The antibody detects only the cleaved fragment but not the 

native or intact K18.  The epitope has been shown to map to the C terminus of the caspase 

cleavage site (amino acids 387-396) (Figure 1.7).  This antibody has subsequently been 

shown to detect cells earlier in apoptosis than the popular standard TdT –mediated dUTP 

nick-end labeling (TUNEL) assay (Leers et al., 1999).  The limited prevalence and 

localisation of cytoskeletons in epithelial cells makes the proteins a potentially useful tool for 

monitoring cancers arising in this tissue type (Barak et al., 2004). 

 

 

     Figure 1.7. Cytokeratin 18 cleavage during apoptosis resulting in M30 antibody binding site formation. 
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 1.5 HBV ANIMAL MODELS 

 

Members of the family Hepadnaviridae are found in a wide variety of mammals and avians, 

belonging to the genera Orthohepadnavirus and Avihepadnavirus, respectively.  The largest 

contribution in HBV research however is based on infection studies with the woodchuck and 

duck HBV (Fioravanti et al., 2011, Roggendorf et al., 2010, Kulkarni et al., 2007, Schultz et 

al., 2004, Chassot et al., 1993).  The woodchuck hepatitis virus (WHV) was the first to be 

described after the discovery of HBV (Summers et al., 1978).  WHV is classified as a member 

of the genus Orthohepadnavirus and therefore its genetic organization is similar to other 

mammalian hepadnaviruses including HBV.  Woodchucks chronically infected with WHV 

progressively develop severe hepatitis and HCC, which present in a remarkably similar 

manner to the clinical manifestations of HBV infection in humans (Snyder et al., 1982).  

Chronic WHV carrier woodchucks have therefore become a valuable animal model for the 

preclinical evaluation of antiviral therapy for HBV infection, providing useful 

pharmacokinetics and pharmaco-dynamic results (Rajagopalan et al., 1996).  Since the 

description of WHV, several other closely related hepadnaviruses within the genus 

Orthohepadnavirus have been described: california ground squirrel hepatitis virus, arctic 

ground squirrel hepatitis virus and the woolly monkey hepatitis B virus.   

 

Several avian hepadnaviruses belonging to the genus Avihepadnavirus have been described: 

duck hepatitis B virus (DHBV), heron hepatitis B virus and snow goose hepatitis B virus.   

Much of what is known about the replication of hepadnaviruses has been learned using the 

DHBV model both in vitro and in vivo (Summers and Mason, 1982).  The molecular structure 

(Newbold et al., 1995), role of cccDNA as the template for viral transcription (Summers, 

1988),  mechanism of cccDNA pool replenishment (Summers et al., 1991) and the control of 

this pathway by surface antigen (Summers et al., 1990) have all been investigated using 

DHBV.  The duck animal model has also been invaluable in antiviral drug strategies (Bishop 

et al., 1990, Kern, 1996, Caselmann, 1994, Ying et al., 2010, Feng et al., 2010).   

 

A limitation of the woodchuck and duck model is that neither develops cirrhosis as a result of 

a difference in the mechanism of pathogenesis compared to that of HBV.  Therapeutic 

efficiency of immunological reagents, such as monoclonal antibodies, against HBV can 

therefore not be investigated within these animal models.  Moreover, the DHBV lacks the X 

ORF found in HBV (Lin and Anderson, 2000). 
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The chimpanzee, although endangered in the wild and therefore restricted in its research use, 

has been invaluable in HBV research.  Chimpanzees, and to a lesser extent rhesus monkeys, 

are the only animals that can be infected by human HBV and have been shown to develop 

circulating antibodies and elevated enzyme levels indicative of liver damage following 

inoculation (Barker et al., 1975).  The chimpanzee animal model has played an important role 

in the development of HBV vaccines (Trepo et al., 1975), contributing to human welfare by 

preventing the development of HCC (Prince et al., 1997). 

 

The development of transgenic mouse technology, which permits insertion of any gene of 

interest into fertilized mouse ova, has made it possible to construct mice expressing a target 

transgene so that its function and consequence can be studied in vivo (Palmiter and Brinster, 

1985).  This scientific advancement has provided an opportunity to create an ideal small 

laboratory animal model for the study of HBV.   

 

In 1990 a group of scientists while trying to develop a model to study neonatal bleeding 

disorders, generated a novel murine line carrying a urokinase-type plasminogen activator 

transgene controlled by an albumin promoter (Alb-uPA) that when expressed was toxic to the 

mouse hepatocytes (Heckel et al., 1990).  Demonstration of the ability to “rescue” the mice 

from liver failure with mouse hepatocyte transplants (Rhim et al., 1994) and subsequently rat 

hepatocytes were used as xenografts (Rhim et al., 1995).  Soon thereafter human hepatocyte 

transplantation was successfully executed with modest repopulation of the livers and the 

support of HBV infection (Dandri et al., 2001).  Meuleman et al then further morphologically 

and biochemically characterized uPA transgenic mice backcrossed with severe combined 

immune deficient (SCID) mice, repopulated with human hepatocytes (Meuleman et al., 2005).  

As a result of this work, a number of potential applications of this animal model were 

proposed (Figure 1.8) (Kneteman and Mercer, 2005) and this led to a number of HBV-related 

investigations (Okumura et al., 2007) (Sugiyama et al., 2006) (Turrini et al., 2006, Meuleman 

et al., 2006).   

 

Dandri et al. were the first to successfully infect chimeric immune deficient uPA mice with 

HBV (Dandri et al., 2001).  The human hepatocytes were transplanted into heterozygous uPA 

mice and not in homozygous uPA animals. The transfer of hepatocytes in heterozygous mice 

resulted in a repopulation grade with human cells of only 2 to 10%, meaning that most of the 
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liver parenchyma was occupied by healthy mouse hepatocytes derived from uPA revertants.  

A lethal effect of HBV infection could not be observed since the mice were capable of 

survival without a hepatocyte graft. The infected animals were sacrificed 8 weeks after 

transplantation, at which time the animals had high levels of HBV DNA and HBV proteins in 

their plasma and a strong nuclear expression of the HBV core protein in the liver, phenomena 

also observed by Meuleman et al (Meuleman et al., 2006). Levels of circulating HBV DNA 

with values exceeding 10
9
 copies/ml are also common in immunosuppressed HBV patients.  

Tsuge et al. described long-term HBV infection in uPA-SCID mice (Tsuge et al., 2005). 

Interesting to note is that several weeks after infection, the concentration of human albumin 

decreased in these animals. It is not clear whether this is due to the HBV infection or to a 

spontaneous loss of chimerism. Obvious signs of a cytopathic effect were not reported, and a 

lethal effect is less likely in this setup because the low levels of human albumin suggest the 

presence of high amounts of regenerative red nodules. These nodules would rescue the 

animals in case of graft failure.   

 

uPA/RAG2 mice transplanted with Tupaia hepatocytes have also been infected with HBV 

(Dandri et al., 2005) (10). In these animals the HBV infection persisted for 6 months, the 

experimental endpoint, and no signs of hepatocellular damage were reported.  The main 

differences with the human liver-uPA model are that the onset of viremia was considerably 

delayed and plasma levels of HBV DNA significantly lower. This may be due to the nature of 

the Tupaia hepatocytes. Similarly, hepatocytes from a woodchuck infected with the 

woodchuck hepatitis virus were transplanted in uPA/RAG2 mice. These animals experienced 

high viremia for more than 10 months without obvious lesions in the liver. It might be that the 

woodchuck hepatitis virus is less cytopathic than HBV.  Alternatively, this difference may 

also be related to the different nature of the woodchuck hepatocytes.   

 

In 2006 Meuleman et al successfully infected nine uPA SCID mice with HBV genotype E and 

saw similar histology to patients with fibrosing cholestatic hepatitis (Meuleman et al., 2006).  

In the same year, Sugiyama et al, successfully infected uPA SCID mice with HBV 

genotypes/subgenotypes A2 and C and observed differences in HBV DNA levels, with the 

genotype C infected mice having a 2 log higher viral load compared to the subgenotype A2 

infected mice (Sugiyama et al., 2006).  The HBV cytopathic effect observed in Meuleman’s 

study was not evident in Sugiyama’s study suggesting that this effect was as a result of the 

HBV genotype used for inoculation and infection.  
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While the potential scope of utility is vast, the uPA-SCID model is not without limitations.  

Immunodeficiency may allow the engraftment of human hepatocytes but prevents the study of 

the immune system and therefore immunization.  Promising developments include partial 

reconstitution with donor-specific immunity (Kneteman and Mercer, 2005).  Breeding these 

transgenic mice can be challenging with many mice perishing as a result of the bleeding 

complications.  Optimization of breeding protocols however can result in relatively high 

yields of mice.  Finally, hepatocyte donor supply can be limiting (Kneteman and Mercer, 

2005).  

 

Factors affecting animal survival include engraftment efficacy, kinetics of repopulation and 

susceptibility to infection with HBV/HCV after transplantation of the human hepatocytes 

(Vanwolleghem et al., 2010). Engrafted human hepatocytes in the uPA transgenic liver have a 

proliferative advantage over the sick endogenous murine hepatocytes which leads to 

progressive humanization of the rodent liver (Meuleman et al., 2005, Mercer et al., 2001, 

Dandri et al., 2001).  The donor cell type determines not only animal survival but also 

engraftment efficacy and susceptibility of the chimeric liver to infection with HBV or HCV. 

Interestingly, graft requirements for HBV infectivity are less stringent, leading to a 100% 

infection rate even in animals with human albumin levels of less than 1 mg/ml. Furthermore, 

in HBV and HCV co-infected animals no apparent viral interference has been noted. Both 

observations are important and independent confirmations of published data (Tsuge et al., 

2005, Hiraga et al., 2009).  In contrast to the reproducible rapid viral kinetics after HCV 

inoculation, slower and divergent HBV viral kinetics have been observed after HBV infection 

(Vanwolleghem et al., 2010). A similar lag phase before HBV reaches peak titers has been 

described after experimental HBV inoculations in chimpanzees, which is thought to reflect the 

slower spread of HBV throughout the liver (Wieland and Chisari, 2005). The superior 

survival rate, the higher engraftment efficacies and infection rates and the logistic constraints 

posed by isolating fresh hepatocytes, are all in favour of the use of commercially available 

cryopreserved cells for the humanization of the uPA transgenic mouse liver (Vanwolleghem 

et al., 2010).   

 

Neither donor age nor donor cell viability predict engraftment potential however the 

underlying medical condition of the donor may have an impact on the proliferative capacity of 
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donor cells (Vanwolleghem et al., 2010). Furthermore, the freezing protocol itself influences 

the migratory and proliferative capacities of cryopreserved cells (Hengstler et al., 2000). 

 

 

Figure 1.8.  Schematic representation of the production of uPA-SCID transgenic mice and their potential 

scientific research applications.  Permission obtained for copyright (Kneteman and Mercer, 2005). 
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1.6. OBJECTIVES OF THE STUDY 

 

The main objective of the study was to functionally characterize subgenotype A1, which has 

unique characteristics including the G1862T mutation (Hou et al., 2002).  It has been 

previously shown that the presence of the G1862T mutation, commonly present in South 

African subgenotype A1 isolates, in the precore/core region of HBV results in the 

accumulation of a precore/core mutant protein in the ERGIC leading to impaired secretion of 

HBeAg (Chen et al., 2008).  Transfection of Huh-7 cells with constructs containing the 

G1862T mutation resulted in an increase in apoptosis probably as a result of the accumulation 

of the precore/core mutant protein in the ERGIC (Viana, 2005).   

 

The objectives of the present study were therefore to compare the effect of subgenotype A1 

with or without the mutation to other genotypes/ subgenotypes of HBV in vivo using: 

 

 Infection of the uPA-SCID transgenic mouse model (Chapter 2)  

 

 Population based study using sera from geographically diverse regions of the world 

from patients with different disease manifestations of HBV infection (Chapter 3). 
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CHAPTER 2 

 

FUNCTIONAL CHARACTERISATION OF HBV SUBGENOTYPE A1 ISOLATES IN 

VIVO: USING A UROKINASE-TYPE PLASMINOGEN ACTIVATOR SEVERE 

COMBINED IMMUNODEFICIENCY (uPA-SCID) TRANSGENIC MOUSE MODEL 

 

2.1. INTRODUCTION 

 

The influence of HBV viral factors such as genotype/subgenotype, HBV DNA levels (Chan et 

al., 2009b) and mutations on disease progression and clinical outcome of HBV infection have 

been well documented (Taylor et al., 2009).  Subgenotype A1 is the most common HBV 

strain found in South Africa (Kramvis et al., 2002).  Unique to this subgenotype is the 

guanine to thymine 1862 mutation (Tanaka et al., 2004)  that is present in 24% of HBeAg 

negative southern African carriers (Kramvis and Kew, 2007).  Studies have shown that the 

G1862T mutation is associated with HCC in the southern African black population, 

particularly in HBeAg negative patients and may therefore play a part in the development of 

HCC (Kramvis et al., 1998).  

 

 In order to investigate the in vivo effect of HBV infection on cell death, a HBV susceptible 

animal model was used.  The uPA-SCID transgenic mouse provides a small animal model 

that can be infected with HBV positive human sera.   

 

The objectives of this part of the study were therefore to: 

 

 Infect uPA-SCID transgenic mice with subgenotype A1 HBV and to follow the 

replication of this subgenotype in this animal model. 

 

 Compare infection of the uPA-SCID transgenic mice infected with different genotypes 

and subgenotypes, namely: subgenotype A1, subgenotype A1 (G1862T mutant), 

subgenotype A2 and genotype D. 

 

 Determine the effect of HBV infection on apoptosis in the human hepatocytes grafted 

in the uPA-SCID transgenic mice. 
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2.2. MATERIALS AND METHODS 

 

 

 
Figure 2.1. Techniques used to monitor HBV infection in the uPA-SCID transgenic mouse model.  These are 

divided into two sections, one focusing on the techniques utilized for the selection of suitable serum samples for 

inoculation of the mouse model, the other focusing on the techniques used for uPA SCID mice inoculation and 

techniques used to follow up the HBV infection. 
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2.2.1. HBV DNA POSITIVE SERA 

 

Stored HBV positive serum samples from acute hepatitis B patients were selected at random 

and screened for use as potential inocula of the transgenic mice.  The requirement of 

relatively larger volumes of serum for the uPA SCID mice precluded the testing for eAg.  

Informed consent to use these sera for research purposes was obtained from the patients.  The 

study was approved by the Human Ethics Committee of the University of the Witwatersrand 

(Appendix B). 

 

2.2.2. DNA EXTRACTION FROM HBV POSITIVE SERA 

 

Total DNA was extracted from the serum samples using the QIAamp DNA Mini Kit (Qiagen, 

Hilden, Germany) according to the blood and blood fluid spin protocol provided by the 

manufacturer.  Briefly, 200 µl of serum was used and the cells lysed with proteinase K.  The 

DNA was then bound to a QIAamp membrane before two stringent washes were performed.  

The DNA was finally eluted in 75 µl of nuclease-free sterile water (Fermentas, PureExtreme, 

EU) and stored at -20 
o 

C.  A blank (sterile water sample) reaction was performed in 

conjunction with a negative control. 

 

2.2.3. GENOTYPING PCR AND RESTRICTION FRAGMENT LENGTH 

POLYMORPHISM (RFLP) ANALYSIS  

 

HBV genotype was determined using the Lindh technique (Lindh et al., 1997). 

 

2.2.3.1. Genotyping PCR 

 

The reaction mixture consisted of 10 µl of 10 X NH4, 6 µl of 50 mM MgCl2, 8 µl of 40 mM 

dNTP mix, 5 µl each of 20 nM primer P7 and P8 (Table 2.1), 0.2 µl of 5 U/µl BioTaq DNA 

polymerase (Bioline, London, England) and 1 µl of DNA made up to a final volume of 100 µl 

with nuclease-free sterile water.  The cycling profile (Table 2.1) was carried out using the 

Mastercycler Gradient (Eppendorf, Hamburg, Germany).  A 10 µl aliquot of the PCR product 

was electrophoresed on a 1 % agarose gel (Appendix A1).  The gel was run at 100 volts for 2 

hours followed by visualization using an ultraviolet trans-illuminator.  A 100 bp and/or 1 kb 

molecular weight markers (Promega, Madison, U.S.A) were also run to estimate the size of 
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the PCR product.  The gel image was captured using the Gel Doc XR System (Bio-Rad, 

Milan, Italy). 

 

2.2.3.2. RFLP analysis 

 

Amplicons were digested with restriction enzymes to generate specific fragments 

characteristic of the different HBV genotypes.  The digestion mixture consisted of 2 µl 10 X 

NE buffer (supplied with restriction enzyme), 0.5 µl restriction enzyme, 15 µl PCR product 

made up to a final volume of 20 µl with 2.5 µl of nuclease-free sterile water.  Restriction 

enzymes HinfI and Tsp509I (New England Biolabs, Ipswich, Massachusetts, U.S.A) were 

utilized in separate reactions.  The reactions containing HinfI were incubated at 37 
o 

C while 

the Tsp509I reaction mixtures were incubated at 65 
o 

C, for 3 hours.  5 µl of 6 X gel loading 

dye (Appendix A3) was added to end the restriction reaction.  A 20 µl aliquot of each of the 

digests was electrophoresed on a 3 % composite agarose gel (Appendix A4).  The gel was run 

at 30 V overnight to ensure maximum separation of the DNA fragments.  The Gel Doc XR 

System was used to capture the gel image.  The band patterns produced by both HinfI and 

Tsp509I restriction enzymes were then analyzed according to Lindh et al, and the HBV 

genotype determined (Lindh et al., 1997). 

 

2.2.4. SUBGENOTYPIC PCR AND RFLP ANALYSIS OF GENOTYPE A ISOLATES 

 

2.2.4.1. Subgenotyping PCR  

 

The reaction mixture consisted of 5 µl of 10 X NH4, 3 µl of 50 mM MgCl2, 1 µl of 40 mM 

dNTP mix, 1 µl each of 20 µM primer 522F and 1192R (Table 2.1), 0.4 µl of 5 U/µl BioTaq 

DNA polymerase and 5 µl of viral DNA made up to a final volume of 50 µl with nuclease-

free sterile water.  The cycling profile (Table 2.1) was performed using the Mastercycler 

Gradient.  A 10 µl aliquot of the PCR product was electrophoresed at 100 volts for 2 hours on 

a 1 % agarose gel.  A 100 bp and/or 1 kb molecular weight markers were also run to estimate 

the size of the PCR product.  The gel image was then captured using the Gel Doc XR System. 
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2.2.4.2. RFLP analysis 

 

PCR products were digested using StuI restriction enzyme (New England Biolabs, Ipswich, 

Massachusetts, U.S.A).  The digestion mixture consisted of 2 µl 10 X NE buffer, 0.5 µl of 

StuI restriction enzyme, 10 µl of PCR product made up to a final volume of 20 µl with 7.5 µl 

of nuclease-free sterile water.  The reaction mixture was incubated at 37 
o 

C for 1 hour, 

followed by the addition of 5 µl of 6 X gel loading dye to terminate the restriction reaction.  A 

20 µl aliquot of the digested PCR product was electrophoresed on a 3 % composite agarose 

gel.  The gel was run at 30 V overnight to ensure maximum separation of the DNA fragments 

before its image was captured using the Gel Doc XR System.  The band patterns generated for 

each of the samples was evaluated to determine the subgenotype of A (Kew et al., 2005). 

 

2.2.5. AMPLIFICATION AND SEQUENCING OF THE HBV PRECORE/CORE REGION 

 

The HBV precore/core region of the samples was amplified and sequenced to determine the 

presence or absence of the 1862 mutation. 

 

2.2.5.1. Precore/core nested PCR 

 

The reaction mixture for the first round PCR consisted of 2.5 µl of 10 X NH4, 1.5 µl of 50 

mM MgCl2, 0.5 µl of 40 mM dNTP mix, 1.25 µl each of 20 nM primer 1730F and 2043R 

(Table 2.1), 0.1 µl of 5 U/µl BioTaq DNA polymerase and 2.5 µl of DNA made up to a final 

volume of 25 µl with nuclease-free sterile water.  The cycling profile (Table 2.1) was 

performed using the Mastercycler Gradient.  For the second round the reaction mixture was 

made up of 5 µl of 10 X NH4, 3 µl of 50 mM MgCl2, 1 µl of 40 mM dNTP mix, 2.5 µl each of 

20 nM primer 1763F and 1966R (Table 2.1), 0.2 µl of 5 U/µl BioTaq DNA polymerase and 5 

µl of the first round PCR product made up to a final volume of 50 µl with nuclease-free sterile 

water.  The cycling profile (Table 2.1) was performed using the Mastercycler Gradient.  A 10 

µl aliquot of the PCR product was electrophoresed at 100 volts for 2 hours on a 1 % agarose 

gel.  A 100 bp and/or 1 kb molecular weight markers were run to determine the size of the 

PCR product.  The gel image was captured using the Gel Doc XR System. 
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2.2.5.2. Automated Sequencing 

 

Products amplified by PCR were sequenced by Inqaba Biotechnical Industries Ltd (Pretoria, 

South Africa) using a SpectruMedix model SCE 2410 automated sequencer (SpectruMedix, 

State College, PA) and the ABI Big Dye Terminator Cycle Sequencing kit version 3.1 

(Applied Biosystems).  The primers used for sequencing the PCR amplicons were the same as 

those used to generate the second round PCR products in the nested PCR.  Chromatograms of 

the sequences generated were inspected with Chromas software (version 1.45; Technelysium 

Pty. Ltd., Helensvale, Queensland, Australia).  

 

2.2.6. CLONING PROCEDURE 

 

HBV genomes that were sequenced and found to be one of the following: subgenotype A1, 

subgenotype A1 with the G1862T mutation, genotype D  as well as subgenotype A2  were 

cloned. 

 

2.2.6.1. Full length PCR 

 

The complete genome of the virus was amplified using the method described previously 

(Gunther et al., 1995).  The Expand High Fidelity System (Roche, Mannheim, Germany) was 

used.  The reaction mixture consisted of 2 µl of 10 X buffer with 15 mM MgCl2, 0.2 µl of 25 

mM dNTP mix, 1.25 µl of 20 µM primer P1 and P2 (Table 2.1), and 5 µl of DNA made up to 

20 µl with nuclease-free sterile water.  The enzyme mix was made up of 0.5 µl of 10 X buffer, 

0.75 µl of Expand enzyme (3.5 U/µl), and 3.75 µl of nuclease-free sterile water.  The reaction 

mix was preheated to 94 
o 

C for 2 minutes and then cooled to 58 
o 

C at which point 5 µl of 

enzyme mix was added.  This was followed by 40 cycles in the cycling profile shown in Table 

2.1.  The reaction was carried out on the MyCycler (Bio-Rad, U.S.A).  A 5 µl aliquot of the 

PCR product was electrophoresed on a 1 % agarose gel.  The gel was run at 80 volts for 2 

hours followed by visualization using an ultraviolet trans-illuminator.  A 100 bp and/or 1 kb 

molecular weight markers were also run to estimate the size of the PCR product.  The gel 

image was captured using the Gel Doc XR System. 
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2.2.6.2. A’ overhang addition and PCR product purification  

 

Once the presence of the +3.2 kb fragment was confirmed, 2 µl of Takara Ex Taq 5 U/µl 

(Takara Bio Inc, Shiga, Japan) was added to the remaining 15 µl full length PCR product and 

incubated at 72 
o 

C for 15 minutes to allow for the addition of the A’ overhang.  This mixture 

was purified using the MinElute Reaction Cleanup Kit (Qiagen, Hilden Germany) as per the 

manufacturer’s protocol and eluted in 10 µl of nuclease-free sterile water.  

 

 

2.2.6.3. Cloning of full length HBV product into pCR XL-TOPO vector 

 

The cloning of the purified full length HBV PCR product was carried out as per the TOPO-

XL Cloning Kit (Invitrogen, California, U.S.A) manufacturer’s instructions.  Briefly, 10 µl of 

Crystal Violet Loading dye was added to the 10 µl purified PCR product and the mixture 

loaded into a 0.8 % Crystal Violet agarose gel (Appendix A5).  A 1 kb molecular weight 

marker (Promega, Madison, U.S.A) was used to determine the size of the PCR product.  The 

gel was run at 60 volts for 1 hour and then placed on a white light box to visualize the PCR 

fragment.  The 3.2 kb PCR fragment was excised from the gel and incubated at 45 
o 

C with 

sodium iodide until melted.  At room temperature the binding buffer was added and the entire 

mixture placed in a SNAP purification column and centrifuged several times until the DNA 

was bound to the column. The column was washed and then dried by centrifugation.  The 

DNA was eluted in 20 µl of TE buffer.   

 

For the cloning reaction 10 µl of the DNA was added to 1 µl of the pCR-XL-TOPO vector 

and mixed gently.  A negative vector-only control was also included to rule out 

contamination.  After a 5 minute room temperature incubation, 2 µl of TOPO Cloning Stop 

solution was added.  The entire mixture was transferred to a vial of One Shot cells and 

incubated on ice for 30 minutes followed by a heat-shock treatment at 42 
o 

C for 30 seconds.  

The vial was immediately incubated on ice for 2 minutes.  SOC medium was added and the 

vial incubated at 37 
o 

C for 1 hour with horizontal shaking.  Aliquots of 50 µl, 100 µl and 150 

µl from each transformation were spread onto kanamycin plates (Appendix A7) and incubated 

at 37 
o 

C overnight to allow for sufficient individual colony growth.  Individual colonies were 

restreaked onto fresh kanamycin plates and incubated at 37 
o 

C.  5 ml aliquots of kanamycin 

LB Broth (Appendix A8) were inoculated with cells from individual colonies and incubated 
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overnight at 37 
o 

C in the Orbital Shaker Incubator LM-510 (YIH DER, Germany) at 150 rpm 

to allow for plasmid growth.  Glycerol stocks of all of the clones were prepared by adding 500 

µl of the clone culture to an equal volume of autoclaved glycerol and then stored at -70 
o 

C.  

The plasmid DNA was then isolated using the Genelute Plasmid Mini-Prep Kit (Sigma, 

U.S.A) as per the manufacturer’s instructions.  The plasmid DNA was eluted in 50 µl of 

nuclease-free sterile water.  

 

2.2.6.4. Identification of positive clones     

 

In order to determine which clones contained the full length HBV amplicon, EcoRI enzyme 

(New England Biolabs, Ipswich, Massachusetts, U.S.A) digestions were performed.  The 

reaction mixture consisted of 1 µl EcoRI enzyme, 1 µl NE buffer and 3 µl of plasmid DNA 

made up to 10 µl with nuclease-free sterile water.  A drop of sterile mineral oil was added to 

the surface of the 10 µl mixture and the tube incubated at 37 
o 

C for 2 hours.  The enzymatic 

reaction was terminated by the addition of 4 µl of 6 X gel loading dye placed beneath the 

mineral oil.  The entire 14 µl sample was then loaded onto a 1 % agarose gel and run at 30 

volts overnight.  A 100 bp and 1 kb molecular weight markers were also run to determine the 

size of the digestion-generated DNA fragments.  The gel was visualized using an ultraviolet 

trans-illuminator and the image captured using the Gel Doc XR System.  Clones were 

considered positive when two HBV fragments, approximately 1.8 kilobases and 1.4 kilobases 

in size, were detected.  Clones that did not possess these HBV fragments were discarded.  For 

each serum sample approximately 100 clones were genotyped and subgenotyped.   

  

2.2.7. GENOTYPING AND SUBGENOTYPING OF CLONES 

 

To determine whether more than one genotype or subgenotype was present in each of the 

selected serum samples, genotyping and subgenotyping using RFLP analysis was carried out 

on all of the positive clones as described in sections 2.2.2 and 2.2.3 except for the following 

modifications. 

 

2.2.7.1. Genotyping PCR 

 

The reaction mixture consisted of 10 µl of 10 X NH4, 12 µl of 50 mM MgCl2, 2 µl of 40 mM 

dNTP mix, 5 µl each of 20 nM primer P7 and P8 (Table 2.1), 0.2 µl of 5 U/µl BioTaq DNA 
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polymerase and 1 µl of clone DNA made up to a final volume of 100 µl with nuclease-free 

sterile water. 

 

2.2.7.2. Subgenotyping PCR  

 

The reaction mixture consisted of 5 µl of 10 X NH4, 3 µl of 50 mM MgCl2, 1 µl of 40 mM 

dNTP mix, 1 µl each of 20 µM primer 522F and 1192R (Table 2.1), 0.4 µl of 5 U/µl BioTaq 

DNA polymerase and 5 µl of clone DNA made up to a final volume of 50 µl with nuclease-

free sterile water. 

 

2.2.8. AUTOMATED SEQUENCING 

 

Once it had been determined that only one genotype and subgenotype existed per serum 

sample, ten clones from each serum sample were sent for full length HBV sequencing.  The 

kanamycin plates containing the streaked clones were sent to and sequenced by Inqaba 

Biotechnical Industries Ltd (Pretoria, South Africa) using a SpectruMedix model SCE 2410 

automated sequencer and the ABI Big Dye Terminator Cycle Sequencing kit version 3.1.  

Several primers (See Table 2.2 and Figure 2.3) were used to sequence the entire full length of 

HBV contained within each clone.  Chromatograms of the sequences generated were 

inspected with Chromas software version 1.45.  Serum samples which contained HBV closest 

to the relevant consensus sequence were selected as inocula for the uPA-SCID transgenic 

mice. 

 

2.2.9. PHYLOGENETIC ANALYSIS 

 

Complete HBV genome sequences were compared with corresponding sequences of HBV 

from GenBank. Multiple sequence alignments were carried out using Dambe (Xia and Xie, 

2001).  The complete alignments were edited manually in GeneDoc (Nicholas, 1997) and fed 

into PHYLIP (Phylogeny inference package) version 3.65(Felsestein, 1995).  SEQBOOT, 

DNADIST and NEIGHBOR were used for bootstrapping of 1000 data sets while 

CONSENSE was used to compute a consensus tree.  Trees were visualized using TreeView 

Win 32 (Page, 1996) software program. 
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2.2.10. MONITORING OF HBV INFECTION IN THE uPA-SCID TRANSGENIC MICE  

 

2.2.10.1. Isolation of human hepatocytes and transfer into uPA-SCID mice  

 

The uPA-SCID transgenic mice experiments were performed in Belgium.  Human 

hepatocytes were isolated via a standard collagenase digestion from tumour-free liver 

fragments collected from a single patient undergoing a partial hepatectomy (Meuleman et al., 

2005).  Written informed consent was obtained from the patient from whom the liver biopsy 

was obtained and all experiments were approved by the Ethics Committee of the Ghent 

University Hospital.  Ten homozygous uPA-SCID mice were transplanted with one million 

human hepatocytes two weeks after birth.        

 

2.2.10.2. Inoculation of the uPA-SCID mice with HBV-positive sera  

 

Five weeks later, the grafted mice were inoculated with HBV-positive serum.  Each mouse 

was infected with 2 x 10
5
 IU/ml of the relevant HBV serum sample via an intraperitoneal 

injection.  Two mice were infected with HBV genotype D, four with wildtype subgenotype 

A1, three with subgenotype A1 with the G1862T mutation and one with subgenotype A2.  At 

selected time intervals the animals were bled and the serum stored at -80 
o 

C until analyzed.  

One of the subgenotype A1 wildtype and one of the subgenotype A1 (G1862T) mice perished 

during the course of the experiment and were therefore not included in the analysis. 

 

2.2.10.3. Human Albumin Quantification  

  

An in-house enzyme-linked immunosorbent assay for human albumin was used to monitor 

graft survival (Meuleman et al., 2005).  Maxisorp Immunoplates (Nunc, Roskilde, Denmark) 

were coated with 2.5 µg/ml of goat anti-albumin antibodies (Bethyl Laboratories, 

Montgomery, Texas, U.S.A).  The plates were blocked then washed several times before the 

diluted samples (1:100) and calibrators were added.  The human albumin was bound to the 

plate and detected with a horse radish peroxidase (HRP)-conjugated goat-anti-human albumin 

antibody (10 ng/ml) (Bethyl Laboratories, Mongomery, Texas, U.S.A) at 450 nm on the 

Model 680 Microplate Reader (BioRad, U.S.A).  
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2.2.10.4. HBV DNA Quantification 

 

HBV DNA levels were quantified every two weeks using the Cobas Amplicor HBV Monitor 

test (Roche Diagnostics, Mannheim, Germany) to monitor successful HBV infection. 

 

2.2.10.5. Quantification of apoptosis 

 

The M30-Apoptosense ELISA (Peviva, Bromma, Sweden) was used for the quantification of 

the apoptosis-associated cytokeratin 18Asp396 (M30) neo-epitope in the mice serum as per 

the manufacturer’s instructions (Figure 2.2). 
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Figure 2.2. M30-Apoptosense ELISA plate assay. 

 

 

 

 

 

 

 

 

 

The absorbance was measured at 450 nm on the 

Model 680 Microplate Reader (BioRad, U.S.A). 

Sample serum was added to the microwells 

where, if present, the cleaved CK protein ( ) 

binds to the capture antibody, mouse monoclonal 

CK18 antibody (M5) ( ).  

 

The mouse monoclonal anti-CK18Asp396 (M30) 

antibody conjugated to horseradish peroxidase (
 

) 

was added and the plate incubated for 4 hours at 

room temperature. 

 

The plate was washed and incubated with TMB 

enzymatically activated detection reagent, which 

causes a yellow colour change. 
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The mice were sacrificed either at 6 or 12 weeks post inoculation and the livers stored at  

-80 
o 
C for further analysis in South Africa. 

  

2.2.11. DNA EXTRACTION FROM uPA-SCID TRANSGENIC MICE LIVERS  

 

DNA was extracted from the 12 week infected transgenic mice livers as well as from controls, 

which included a non-infected uPA-SCID transgenic mouse liver and a HBV infected human 

liver sample, using the QIAamp DNA Micro Kit (Qiagen, Hilden, Germany).  The DNA was 

eluted in 50 µl of nuclease-free sterile water and stored at -20 
o 

C.  A blank (sterile water 

sample) reaction was performed in conjunction to rule out any contamination. 

 

2.2.12. HBV cccDNA DETECTION BY REAL-TIME PCR     

   

Real-time PCR was used to detect covalently closed circular (ccc) DNA, a key role player in 

the persistence of HBV infection, in the transgenic mice livers (Chen et al., 2004).  To 

eliminate all linear double-stranded DNA the samples were treated with Plasmid-Safe ATP-

dependent DNase (Epicentre Biotechnologies, Wisconsin, U.S.A) before real-time PCR was 

performed.  The reaction mixture consisted of 1 µl of 25 mM ATP, 2.5 µl of 10 X reaction 

buffer, 2 µl of 40 U Plasmid-Safe DNase, and 10 µl of liver-extracted DNA made up to a final 

volume of 35 µl with nuclease-free sterile water.  The mixture was placed at 37 
o 

C for 1 hour 

to allow for enzymatic digestion followed by a 30 minute incubation at 70 
o 

C to inactivate the 

DNase.  The real-time PCR reaction mixture consisted of: 25 µl of 2 X TaqMan Universal 

PCR Master Mix (Applied Biosystems, New Jersey, U.S.A), 4.5 µl each of 10 µM primer 

CCCF1 (5’ ACT CTT GGA CTC BCA GCA ATG 3’) and CCCR1 (5’ CTT TAT ACG GGT 

CAA TGT CCA 3’), 10 µM of CCCP FAM/TAMRA-labelled probe (5’ CTT TTT CAC CTC 

TGC CTA ATC ATC TCW TGT TCA 3’) and 5 µl of DNase-treated DNA made up to a final 

volume of 50 µl with nuclease-free sterile water.  The thermal profile was performed using 

the ABI Prism 7500 Real-Time PCR System (Applied Biosystems, Singapore) as follows:  

following 2 minutes at 50 
o 

C and 10 minutes at 95 
o 

C, there were 40 cycles at 95 
o 

C for 15 

seconds with data acquisition at the end of each cycle at 61.5 
o 

C for 1 minute.  A blank 

(sterile water) and positive HBV DNA sample were included as controls.  A 15 µl aliquot of 

the real-time PCR product was electrophoresed on a 1 % agarose gel for visual confirmation 

of the real-time results.  The gel was run at 100 volts for 2 hours followed by visualization 

using an ultraviolet trans-illuminator.  A 100 bp molecular weight marker was included to 
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estimate the size of the PCR product.  The gel image was then captured using the Gel Doc XR 

System.   

 

2.2.13. TESTING FOR THE PRESCENCE OF THE ORIGINAL HBV INOCULUM 

STRAIN IN THE uPA-SCID TRANSGENIC MICE LIVERS 

 

To confirm that the original HBV strain used to infect the transgenic mice was the replicating 

virus present in the mouse liver, the HBV precore/core region as well as the S region were 

amplified and sequenced.  The precore/core PCR amplification and detection were performed 

as described in section 2.2.4.  The S-region nested PCR was performed as follows: 

    

The reaction mixture for the first round PCR consisted of 2.5 µl of 10 X NH4, 1.5 µl of 50 

mM MgCl2, 0.5 µl of 40 mM dNTP mix, 1.25 µl each of 20 nM primer 231F and 801R (Table 

2.1), 0.1 µl of 5 U/µl BioTaq DNA polymerase and 2.5 µl of DNA made up to a final volume 

of 25 µl with nuclease-free sterile water.  The cycling profile (Table 2.1) was performed using 

the MyCycler.  For the second round the reaction mixture was made up of 5 µl of 10 X NH4, 3 

µl of 50 mM MgCl2, 1 µl of 40 mM dNTP mix, 2.5 µl each of 20 nM primer P7 and P8 

(Table 2.1), 0.2 µl of 5 U/µl BioTaq DNA polymerase and 5 µl of the first round PCR product 

made up to a final volume of 50 µl with nuclease-free sterile water.  The cycling profile 

(Table 2.1) was performed using the MyCycler.  A 10 µl aliquot of the PCR product was 

electrophoresed at 100 volts for 2 hours on a 1 % agarose gel.  A 100 bp and/or 1 kb 

molecular weight markers were also run to estimate the size of the PCR product.  The gel 

image was then captured using the Gel Doc XR System.  The precore/core and S-region 

amplicons were sent to and sequenced by Inqaba Biotechnical Industries Ltd as explained in 

section 2.2.4.2.      

 

2.2.14. TECHNIQUES USED TO CONFIRM HBV TRANSCRIPTION 

 

2.2.14.1. RNA extraction from uPA-SCID transgenic mice livers 

 

RNA was extracted from the 12 week infected transgenic mice as well as from controls, 

which included a non-infected uPA-SCID transgenic mouse and an HBV infected human liver 

sample, using the RNeasy Micro Kit (Qiagen, Hilden Germany) according to the tissues 

protocol provided by the manufacturer.  The RNA was eluted in 14 µl of RNase-free water 
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and stored at -20 
o 
C.  A blank (sterile water sample) reaction was performed in conjunction to 

rule out any contamination.  The quantity of RNA extracted from each liver sample was 

determined using the Nanodrop ND-1000 Spectrophotometer (NanoDrop Technologies Inc., 

Wilmington, DE, U.S.A.) while the quality of the RNA was evaluated by running 1 µg RNA 

of each sample on a 1 % agarose gel.  The gel was run at 110 volts for 30 minutes followed by 

visualization using an ultraviolet trans-illuminator.  The gel image was then captured using 

the Gel Doc XR System. 

 

2.2.14.2. Reverse transcription PCR (RT-PCR) 

 

The RT-PCR master mix was made up of reagents from the GeneAmp RNA PCR Core Kit 

(Applied Biosystems, New Jersey, U.S.A).  The reaction mixture consisted of 2 µl of 10 X 

PCR buffer II, 4 µl of 25 mM MgCl2, 8 µl of 10 mM dNTP mix, 1 µl of 20 U/µl RNase 

Inhibitor, 1 µl of 50 µM Oligo d(T)16, 1 µl of 50 U/µl MuL V Reverse Transcriptase and 1 

µg of liver-extracted RNA made up to a final volume of 20 µl with nuclease-free sterile water.  

The cycling profile of 22 
o 

C for 12 minutes, 42 
o 

C for 15 minutes and 99 
o 

C for 5 minutes 

was performed using the MyCycler.  Non-reverse transcribed negative controls were prepared 

in an identical manner except that nuclease-free sterile water was used in place of the MuL V 

Reverse Transcriptase enzyme. 

 

2.2.14.3. Glyceraldehyde – 3- phosphate dehydrogenase (GAPDH) PCR 

 

A fragment of the GAPDH housekeeping gene was amplified by PCR.  The reaction mixture 

was made up of 2.5 µl of 10 X KCl buffer, 0.5 µl of 40 mM dNTP mix, 0.625 µl of each 20 

µM GAPDHF and GAPDHR primer (Table 2.1), 0.1 µl of 5 U/µl BioTaq DNA polymerase 

and 4 µl of cDNA made up to a final volume of 25 µl with nuclease-free sterile water.  The 

cycling profile (Table 2.1) was performed using the MyCycler.  A 10 µl aliquot of the PCR 

product was electrophoresed at 100 volts for 2 hours on a 1 % agarose gel.  A 100 bp and/or 1 

kb molecular weight markers were also run to estimate the size of the PCR product.  The gel 

image was then captured using the Gel Doc XR System. 
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2.2.14.4. Precore/core nested PCR used for confirmation of HBV transcription activity 

 

Amplification of the HBV precore/core region was performed as per section 2.2.4.1 except 

that cDNA was used as the template.   

 

 

2.2.15. IMMUNOHISTOCHEMICAL STAINING 

 

The immunohistochemical staining was performed under the supervision of Professor 

Patterson in the Department of Anatomical Pathology at the University of the Witwatersrand 

Medical School.  In order to ensure unbiased results, samples were numbered randomly.  The 

immunohistochemical staining was performed on 4 mm sections of formalin-fixed, paraffin-

embedded tissue sections on 2 % APES coated microscope slides, using the DakoCytomation 

Autostainer (DakoCytomation, Denmark). Sections were deparaffinized and rehydrated 

through immersion in xylene and graded alcohol. Heat-induced antigen retrieval was 

performed using a microwave and a pressure cooker. This entailed heating 10 mM citrate 

buffer (pH6) in the pressure cooker and then using the microwave after its addition to the 

slides. After cooling, endogenous peroxidase was blocked through the incubation of slides in 

3 % H2O2 in distilled water for 15 minutes. Slides were then thoroughly washed in Tris-

buffered saline (TBS) (Dakocytomation, Denmark) (pH 7.6) containing 0.1 % Tween20, 

before blocking any non-specific antigen activity through the immersion of the slides in 5 % 

normal goat sera.  Sections were subsequently exposed to the monoclonal antibodies 

(dilutions prepared in antibody diluent; DakoCytomation, Denmark) in a humidified 

atmosphere at room temperature for 1 hour. After rinsing thoroughly with TBS, slides were 

then treated with a peroxidase-conjugated polymer and antibody (i.e. secondary antibody) 

directed against rabbit and mouse immunoglobulin for 30 minutes (ChemMate Dako 

EnVision Detection kit, DakoCytomation, Denmark). Slides were then washed and incubated 

with 3,3’-diaminobenzidine (DAB) chromogen and H2O2 for 7 minutes.  Sections were then 

washed in distilled water, counterstained with haematoxylin, dehydrated and mounted with a 

cover slip.  The antigen-antibody dilution sources used were the rabbit polyclonal hepatitis B 

core antigen (HBcAg) 1:120 (Signet) and the mouse monoclonal hepatitis B surface antigen 

(HBsAg) (clone S1-210) 1:100 (Signet).  Images were captured with the Olympus Soft 

Imaging Solutions, analySIS docu V 5.0 Build 1243, using an Olympus BX41 Microscope 

and ColorView1 digital camera attached to an Olympus 0.5 c mount adapter. 



Table 2.1: PCR Primers and Cycling Profiles used for amplification 

 
Primer Position

* 
Sequence Initial 

denaturation 

Denaturation Annealing Extension Final 

Extension 

Reference 

P7 

P8 

256-278 

796-776 

5’ GTG GTG GAC TTC TCT CAA TTT TC 3’ 

5’ CGG TAW AAA GGG ACT CAM GAT 3’ 

94 
o 
C 

3 mins 

94 
o 
C 

45 secs 

53 
o 
C 

60 secs 

72 
o 
C 

90 secs 

72 
o 
C 

7 mins 

Lindh  

et al, 1997 

522+ 

1192- 

522-541 

1192-1173 

5’ CCT GCA CGA CTC CTG CTC AA 3’ 

5’ CGT CAG CAA ACA CTT GGC AC 3’ 

94 
o 
C 

3 mins 

94 
o 
C 

45 secs 

60 
o 
C 

60 secs 

72 
o 
C 

90 secs 

72 
o 
C 

7 mins 

Kew  

et al, 2005 

1730+ 

2043- 

1730-1747 

2043-2022 

5’ CTG GGA GGA GTT GGG GGA 3’ 

5’ CAA TGC TCA GGA GAC TCT AAG G 3’ 

 94 
o 
C 

30 secs 

62 
o 
C 

50 secs 

72 
o 
C 

50 secs 

72 
o 
C 

7 mins 

Kramvis 

et al, 1997 

1763+ 

1966- 

1763-1783 

1966-1946 

5’ GGT CTT TGT ACT ACG AGG ATG 3’ 

5’ GTC AGA AGG CAA AAA CGA GAG 3’ 

 94 
o 
C 

30 secs 

58 
o 
C 

50 secs 

72 
o 
C 

50 secs 

72 
o 
C 

10 mins 

Kramvis 

et al, 1997 

P1 

P2 

1820-1841 

1825-1806 

5’ CTT TTT CAC CTC TGC CTA ATC A 3’ 

5’ AAA AAG TTG CAT GGT GCT GG 3’ 

94 
o 
C 

2 mins 

94 
o 
C 

40 secs 

57 
o 
C 

90 secs 

^
68 

o 
C 

180 secs 

 Gunther  

et al, 1995 

231+ 

801- 

231-249 

801-782 

5’ TCA CAA TAC CGC AGA GTC T 3’ 

5’AAC AGC GGT ATA AAG GGA CT 3’ 

 94 
o 
C 

60 secs 

53 
o 
C 

5 mins 

72 
o 
C 

3 mins 

72 
o 
C 

10 mins 

Lindh 

et al,1995 

PC1+ 

COR- 

1813-1836 

2285-2266 

5’ CAT GCA ACT TTT TCA CCT CTG CCT 3’ 

5’ GAG TGC GAA TCC ACA CTC CA 3’ 

94 
o 
C 

4 mins 

94 
o 
C 

60 secs 

65 
o 
C 

5 mins 

72 
o 
C 

3 mins 

72 
o 
C 

10 mins 

Sugauchi 

et al, 2004 

PC2+ 

COR- 

1861-1881 

2285-2266 

5’ TGT TCA AGC CTC CAA GCT GTG 3’ 

5’ GAG TGC GAA TCC ACA CTC CA 3’ 

94 
o 
C 

3 mins 

94 
o 
C 

45 secs 

64 
o 
C 

60 secs 

72 
o 
C 

90 secs 

72 
o 
C 

7 mins 

Sugauchi 

et al, 2004 

GAPDHF 

GAPDHR 

 5’ CCC TTC ATT GAC CTC AAC TAC ATG 3’ 

5’ CAT GCC AGT GAG CTT CCC GTT CAG 3’ 

 
¶
94 

o 
C 

60 secs 

52 
o 
C 

30 secs 

72 
o 
C 

90 secs 

72 
o 
C 

10 mins 

Weinberg 

et al, 2000 

(+), sense; (-), anti-sense. 
*
Represents the nucleotide position of HBV (GenBank accession number X70185) where the EcoR1 cleavage site is position 1. 

^
The Extension time was increased by 120 seconds for every 10 cycles. 

¶
All cycling profiles ran for 40 cycles except for the GAPDH amplification which only ran for 30 cycles.  
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Table 2.2: Primers used for full length sequencing of HBV clones 

 
Map 

number 

Primer Position Sequence HBV Region 

covered 

 M13R TOPO Vector 5’ AGC GGA TAA CAA TTT CAC ACA GG 3’ 1822-2322 

1 1843 (+) 1843-1863 5’ CTT GTT CAT GTC CTA CTG TTC 3’ 1843-2343 

2 2230 (+) 2230-2250 5’ GGA AGA GAA ACC GTC ATA GAG 3’ 2230-2730 

3 2408 (+) 2408-2437 5’ TCT CAA TCG CCG CGT CGC AGA AGA TCT CAA 3’ 2408-2908 

4 2548 (+) 2548-2568 5’ CCT GAT ATT CAT TTG CAC CAG 3’ 2548-3048 

5 2807 (+) 2807-2827 5’ CAT CAT TTT GTG GGT CAC CAT 3’ 2807-107 

6 112 (+) 112-128 5’ TAT CGT CAA TCT TCT CG 3’ 112-612 

7 521 (+) 521-540 5’ CCT GCA CGA CTC CTG CTC AA 3’ 521-1021 

8 970 (+) 970-989 5’ TAT TGA TTG GAA AGT ATG TC 3’ 980-1440 

9 1373 (+) 1372-1392 5’ TGG CTG CTA GGC TGT GCT G 3’ 1373-1822 

10 1416 (+) 1416-1436 5’ CCT TTG TCT ACG TCC CGT CGG 3’ 1406-1822 

11 2498 (-) 2498-2477 5’ AAG CCC AGT AAA GTT TCC CAC C 3’ 2000-2498 

12 2532 (-) 2532-2513 5’ CCA GTT AGG ATT AAA GAC AG 3’ 2032-2832 

13 2880 (-) 2880-2862 5’ TCG AGA GGG ACC GTC CAA G 3’ 2380-2880 

14 268 (-) 268-245 5’ AGA GAA GTC CAC CAC GAG TCT AGA 3’ 2962-268 

15 472 (-) 472-453 5’ CAA ACG GGC AAC ATA CCT TG 3’ 3100-455 

16 1009 (-) 1009-975 5’ CAA AAG ACC CAC AAT TCT TTG ACA TAC TTT CCA AT 3’ 500-1011 

17 1327 (-) 1327-1301 5’ CGA TAA GTT TTG CTC CAG ACC GGC TGC 3’ 827-1327 

 T7 TOPO Vector 5’ TAA TAC GAC TCA CTA TAG GG 3’ 1322-1822 

(+), sense; (-), anti-sense. 
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Figure 2.3. Relative position of the sequencing primers to the clone of the full length HBV amplicon. 
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2.3. RESULTS 

 

2.3.1. CHARACTERISATION OF INOCULA 

 

2.3.1.1. Genotyping of HBV inocula 

 

Thirty HBV positive serum samples were randomly selected to be used as potential inocula 

for the mice.  Using RFLP analysis twenty six of these sera were found to be infected with 

subgenotype A1, three with subgenotype A2 and one with genotype D.  The precore/core 

region of all subgenotype A1 isolates was amplified and sequenced.  Two of these samples 

were found to possess the guanine to thymine transversion at nucleotide position 1862 

(G1862T) (Figure 2.4).   

 

 
Figure 2.4. Chromatograph with the HBV precore-core 1862 mutation. 

 

 

2.3.1.2. Cloning  

 

A sample from each of the HBV groups:  subgenotype A1 , subgenotype A1 with the 1862 

mutation, subgenotype A2  and genotype D , was selected.  The complete genome of HBV 

isolated from the serum samples was amplified (Figure 2.5) and cloned.  Following EcoRI 

digestion, clones that contained the full length HBV genome produced two fragments, 1.8 and 

1.4 kilobases.  These clones were analysed using RFLP analysis to determine their genotype 

and subgenotype.   

 

 

 

 

 

1862 
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3kb
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3kb

 
 

 

2.3.1.3. Genotyping and subgenotyping of HBV clones 

 

One hundred HBV clones were analysed for each sample and found to belong to the same 

genotype (Figure 2.6) and subgenotype (Figure 2.7) identified originally in the serum, 

indicating that the major population of HBV belonged to a single genotype/subgenotype.   
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Figure 2.6. Representative gel image of RFLP analysis using HinfI 

and Tsp509I restriction enzymes for the HBV clone genotype 

determination.  Lane 1: 100 bp molecular weight marker. Lanes 2 and 4: 

HinfI digestion mixtures. Lanes 3 and 5: Tsp509I digestion mixtures.  

Lanes 2-3 show the digestion pattern for genotype A while lanes 4-5 

show a pattern for genotype D according to Lindh et al, 1995.  

* residual unrestricted product  

 

Figure 2.5.  Representative gel image of the full length HBV 

amplicon.  Lanes 1 and 5: 1 kb molecular weight marker. Lanes 2 and 3: 

3.2 kb full length HBV amplicon. Lane 4: blank water control. 
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2.3.1.4. Sequencing and Phylogenetic Analysis 

 

Eight to ten clones of each sample were selected at random and the complete HBV genome 

amplified and sequenced.  The length of the complete genome for the subgenotype A1, 

subgenotype A1 1862 and subgenotype A2 isolates was 3 221 bp.  Sequences revealed that all 

these isolates belonged to serotype adw2.  The genotype D isolates were 3 182 bp in length 

and serotype ayw2 (Kramvis et al., 2005).  The intragroup divergence of the clones from each 

serum sample was low indicating a relative homogenous viral population (Table 2.3).  The 

intergroup divergence between subgenotype A1 and A1 with the 1862 mutation was found to 

be higher at 2.5 % but still within normal range for intragroup divergences (Kramvis et al., 

2008).  The complete genomes of the isolates were aligned with 27 sequences from GenBank 

and analysed phylogenetically (Figure 2.8).  The clones clustered with the respective 

genotype/subgenotype and did not contain any unusual mutations, insertions or deletions 

when compared to the consensus sequence generated from sequences in GenBank. 

 

Table 2.3: Mean nucleotide divergence (%)
*
 of complete genome sequences of HBV clones 

obtained using DAMBE 

 Intragroup  

divergence 

Intergroup 

divergence 

 A1  

 

A1 

1862 

A2  

 

D 

 

A1  

vs 

A1 1862 

Nu. of 

clones 

10 10 8 10 20 

Complete 

Genome 

0.09 + 0.05 

(0 - 0.18) 

0.40 + 0.11 

(0.18 – 0.68) 

0.02 + 0.02 

(0 – 0.62) 

0.20 + 0.07 

(0.03 – 0.37) 

2.50 + 0.07 

(2.38 – 2.72) 
The sequences compared are the clones included in the phylogenetic analysis (ten A1, ten A1 1862, eight A2  

and ten D ). 
*
The mean nucleotide divergence (%)+ standard deviation (%) and the range in parenthesis. 

Figure 2.7. Representative gel image of RFLP analysis using 

StuI restriction enzyme for genotype A subgenotyping of 

clones. Lane 1: 100 bp molecular weight marker.  Lanes 2 and 6 

have the subgenotype A2 samples and lanes 3 to 5 subgenotype 

A1 samples.  

* residual unrestricted product  
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Figure 2.8: Phylogenetic relationship of the complete genome of HBV isolates cloned from human sera to 

representative sequences belonging to genotype A - G, obtained from GenBank, established using neighbour-

joining.  Bootstrap statistical analysis was performed using 1000 data sets and the numbers on the nodes indicate 

the percentage of occurrences.   
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2.3.2. INOCULATION AND MONITORING OF TRANSGENIC MICE 

 

All the uPA-SCID mice were grafted with human hepatocytes from a single donor to ensure 

that no difference existed between the uPA-SCID transgenic mice utilised.  The success of the 

graft was determined by human albumin detection.  The uPA-SCID transgenic mice were 

inoculated with the serum samples from which the HBV was amplified and cloned.  The mice 

sera were collected every 2 or 3 weeks post inoculation to monitor human albumin levels, 

indicative of the human hepatocyte graft survival, and HBV DNA levels to monitor the HBV 

infection.  HBV DNA levels increased over time for all the infected mice.  Mice infected with 

subgenotype A1 1862 mutant showed the highest levels of HBV DNA throughout the twelve 

weeks of infection (Figure 2.9).  Mice infected with the other genotypes/subgenotypes 

showed similar HBV DNA levels.  The HBV DNA levels were not associated with human 

albumin levels, which remained constant throughout the infection.   
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Figure 2.9. Mean human albumin and HBV DNA (log transformed) over the twelve week post inoculation 

period.  Number of mice used for analysis: three for A1 wt, two for A1 1862, one for A2, and two for D. 
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M30 apoptosis levels were not associated with human albumin levels (Figure 2.10) i.e. an 

increase in apoptosis was not found to be dependent on the relative number of human 

hepatocytes.  For the last three time points, subgenotype A1 1862 infected mice showed the 

highest apoptotic M30 levels.   
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Figure 2.10.  Human albumin and M30 apoptosis levels over the 12 week post inoculation period. 

 

At twelve weeks post inoculation, mice infected with subgenotype A1 1862 showed the 

highest levels of HBV DNA and M30 (Figure 2.11).  This relationship between M30 and 

HBV DNA levels however did not hold true for the mice infected with genotype D. 
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Figure 2.11. M30 apoptosis and HBV DNA ratios relative to subgenotype A2 at twelve weeks post inoculation 
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2.3.3. END-POINT EXPERIMENTS PERFORMED AFTER SACRIFICE OF 

TRANSGENIC MICE  

 

2.3.3.1. HBV cccDNA 

 

Closed covalently circular (ccc) DNA plays a key role in the persistence of HBV infection 

therefore the mice were sacrificed and their livers tested for the presence of cccDNA by real-

time PCR.  The mouse-derived subgenotype A1 HBV isolate with the 1862 mutation had the 

lowest critical threshold (Ct) value indicating that it possessed the highest levels of cccDNA, 

followed by the positive control (HBV-associated HCC liver tissue).  The remainder of the 

mice infected with the other HBV genotypes/subgenotypes had similar Ct values (Figure 

2.12).     

 

A1 1862 mouse cccDNA

HBV  positive control 

A1 1862 mouse cccDNA

HBV  positive control 

 
Figure 2.12.  Amplification graph of HBV cccDNA generated by real-time PCR.  HBV region amplified (nt 

1661 to 1921 from EcoRI site) detected using a FAM/TAMRA probe. 
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2.3.3.2. HBV Transcription 

 

In order to determine whether HBV transcription was occurring within the transgenic mice 

livers, RNA was extracted, quantified and found to be of good quality (Figure 2.13) before 

being used for cDNA production.  All mice samples were positive for the amplification of the 

housekeeping GAPDH gene and the precore-core region of HBV (Figure 2.14), confirming 

that HBV transcription was occurring. 
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Figure 2.13.  RNA extracted from the uPA-SCID mice livers.  Lane 1: Genotype D-infected mouse. Lanes 2 

and 3: Subgenotype A1-infected mice. Lanes 4 and 5: Subgenotype A1 with the 1862 mutation-infected mice. 

Lane 6: Subgenotype A2-infected mice. Lane 7: positive human HBV control. 
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Figure 2.14.  Resolution of the precore-core region of HBV and the housekeeping gene GAPDH using 

cDNA generated from the infected chimeric mice extracted RNA.  

Lane 1: 100 bp molecular weight marker. Lane 2: Genotype D-infected mouse. Lanes 3 and 4: Subgenotype A1-

infected mice. Lanes 5 and 6: Subgenotype A1 with the 1862 mutation- infected mice. Lane 7: Subgenotype A2-

infected mice. Lane 8: positive human HBV control. 
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2.3.3.3. Presence of HBV inoculum in transgenic mice livers 

 

To confirm that the original HBV inoculum strain was replicating in the livers of the 

sacrificed mice, the S and precore-core regions of HBV were amplified.  Sequences obtained 

for these HBV regions were aligned with 27 sequences from GenBank and the original human 

HBV inoculum serum sequence for phylogenetic analysis.  All the mice-derived sequences for 

both the S and precore-core region clustered with the original human serum-derived and clone 

sequences.  This is illustrated by the figure for the S region (Figure 2.15).  The intragroup 

divergence for the S region was between 0 and 0.56 + 0.09 while the precore-core divergence 

range was between 0 and 2.18 + 0.81, both of which fell within the normal range of 0 to 2.81 

+ 0.85 (Kramvis et al., 2008, Kurbanov et al., 2008).   
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Figure 2.15. Phylogenetic relationship of a portion of the S region (nt 315 to 693 from EcoRI site) of HBV 

isolates from human inoculum sera, human inoculum sera-derived clones and mice sera, to the representative 

sequences of the HBV genotypes A-G, obtained from GenBank, established using neighbour-joining.  Bootstrap 

statistical analysis was performed using 1000 data sets and the numbers on the nodes indicate the percentages of 

occurrences. 
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2.3.3.4. Immunohistochemical staining 

 

Haematoxylin and eosin staining of the chimeric mice livers was used to examine the liver 

morphology.  The cytoplasm of the human hepatocytes had an unusual pale and granular 

appearance, resembling the morphology of hepatocytes in glycogen storage diseases that 

made it easy to differentiate from the mouse parenchyma (Figure 2.16).  To investigate the 

expression of HBV proteins in the mice liver, labelled antibodies targeting the HBsAg and 

HBc antigens were utilised.  The mouse infected with subgenotype A1 1862 mutant stained 

positively for HBs (Figure 2.17) at twelve weeks while the remaining infected mice 

(subgenotype A1 , subgenotype A2 and genotype D) were negative. The mouse infected with 

genotype D had a positive core nuclear stain (Figure 2.18) at twelve weeks while the 

remaining infected mice (subgenotype A1 with and without the mutation and subgenotype 

A2) were negative for the core stain. 
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Figure 2.16.  Haematoxylin and eosin staining of chimeric liver.  The staining allows for the identification of 

the human hepatocytes (H) within the mouse (M) parenchyma.  

 



 64 

Anti-HBsAnti-HBs

 
Figure 2.17.  Representative image of HBV S-antigen cytoplasmic staining in the liver of the HBV 

subgenotype A1 1862 infected transgenic mouse. 

 

Anti-HBcAnti-HBc

 
Figure 2.18.  Representative image of HBV core antigen nuclear staining in the liver of the HBV genotype 

D infected transgenic mouse. 

 

 

This is the first demonstration of in vivo infection of uPA-SCID mice using subgenotype A1 

of HBV.  These experiments showed that transgenic mice can be infected with HBV 

belonging to subgenotype A1 (with and without the 1862 mutation) as well as subgenotype 

A2 and genotype D.  This was indicated by the increase in HBV DNA levels, presence of 

cccDNA, HBV transcription and the detection of HBV antigens. This led to the cleavage of 

cytokeratin-18, indicating apoptosis.   
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2.4. DISCUSSION 

 

Diverse host and possible interfering environmental factors as well as working with a varied 

distribution of HBV genotypes/subgenotypes can influence the outcomes of large comparative 

population based studies.  It is therefore beneficial in some cases to utilise an in vitro or in 

vivo experimental model to control for such variables.  It has previously been shown in vitro 

that the precore/core 1862 mutation causes an increase in hepatocyte apoptosis as a result of 

the abnormal accumulation of the precore/core protein (Viana, 2005) in the Endoplasmic 

Reticulum Golgi Intermediate Compartment (Chen et al., 2008).  A potential limitation of the 

previous in vitro studies include the use of transfection of hepatoma cell lines, such as the 

Huh7 cell line, which is known to have several defective cell death pathways, including the 

p53 pathway (Bressac et al., 1990).   Moreover, the use of artificially constructed plasmids 

may not reflect what is happening in in vivo infections.  Therefore in the present study uPA-

SCID transgenic mice were inoculated with human HBV positive serum and the replication of 

different genotype/subgenotypes of HBV investigated together with their ability to cause 

apoptosis.  

 

HBV commonly presents as a quasi-species, a term used to describe a cluster of variant 

viruses arising from mutations over time within an isolate (Domingo et al., 1978).  The human 

HBV inoculum was therefore fully characterized by cloning and sequencing to confirm HBV 

mono-sub/genotype infection and to obtain serum containing limited quasi-species population 

to minimize the influence of alternate mutations, insertions or deletions on the study outcome. 

Clones from each sample containing one of the following: subgenotype A1 (wild-type or 

1862 mutant strain), subgenotype A2, and genotype D were evaluated to determine the 

majority viral species present.  Serum samples containing virus closest to the wild-type 

consensus for each genotype/subgenotype were selected as inocula.  Intragroup divergence 

ranging from 0  % to 0.68 % was observed (Table 2.3) indicating a relative homogenous viral 

population and therefore minimal quasi-species presence.  The intergroup divergence between 

the wild-type and 1862 mutant subgenotype A1 strains was higher at between 2.38 % and 

2.72 % (Table 2.3), but still below the 4 % delineating subgenotypes (Kramvis et al., 2005).  

Despite these efforts, we are unable to rule out the possibility of the potential effect of the 

presence of uncharacterized variations on HBV infection.   
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In order to ensure standardization of the uPA-SCID mice HBV infection, all mice utilized 

were grafted with human hepatocytes from a single European donor and inoculated with 

serum containing identical HBV viral loads.  Albumin, a protein of approximately 66000 

Daltons, is synthesized by the liver and present in the blood at a very high concentration.  In 

addition to maintaining blood osmotic pressure, it also plays a role in transporting fatty acids 

and a variety of other substances by forming complexes with them (Doweiko and Nompleggi, 

1991).  It therefore serves as the ideal indicator of human liver function (Whicher and Spence, 

1987).  In agreement with previous studies, human albumin levels were monitored in the 

current study as an indicator of graft success and percentage of human hepatocytes present  

(Dandri et al., 2001, Meuleman et al., 2005, Sugiyama et al., 2006).  Levels of human 

albumin remained similar and constant throughout the lifespan of all the mice (Figure 2.9 and 

2.10) indicating successful graft of the human hepatocytes in the individual mice, with similar 

human hepatocyte levels in the individual mice.  Albumin levels as low as 0.5 mg/ml have 

been shown to be sufficient for the establishment of an HBV infection in the uPA-SCID 

transgenic mouse model (Vanwolleghem et al., 2010).  The levels of human albumin in this 

study ranged from 0.5 to 7.94 mg/ml.   

 

Despite the fact that ten homozygous uPA-SCID mice were inoculated with HBV, only 8 

survived to study completion.  Factors affecting animal survival include engraftment efficacy, 

kinetics of repopulation and susceptibility to infection with HBV after transplantation of 

human hepatocytes (Vanwolleghem et al., 2010). 

 

Once inoculated, the successful establishment of the in vivo HBV infection within the uPA- 

SCID transgenic mice was demonstrated by the increase of HBV DNA levels, presence of 

cccDNA and HBV transcripts as well as the detection of the core and/or surface HBV 

antigens in the chimeric mice liver tissue.  These HBV infection indicators were previously 

selected for evaluation in several transgenic mice studies (Meuleman et al., 2006, Dandri et 

al., 2001).  Genotypes A2, C, D and E have been previously investigated (Sugiyama et al., 

2006, Tsuge et al., 2005, Dandri et al., 2005, Meuleman et al., 2006), however this is the first 

demonstration of the subgenotype A1 in vivo infection and evaluation of apoptosis levels in 

the uPA-SCID transgenic mouse model infected with different genotypes/subgenotypes of 

HBV.  
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HBV cccDNA, the template of HBV replication in natural infection, was first described in a 

non-transgenic mouse model (Takehara et al., 2006), albeit at very low levels of between 1 to 

4 copies.  All the inoculated mice in the present study contained cccDNA essential for 

sustainable HBV replication and expression.  A real-time qualitative assay was used to detect 

cccDNA because it has been shown that successful establishment of an HBV infection is not 

dependent on the copy number of cccDNA but merely its presence of as little as one copy 

(Werle-Lapostolle et al., 2004, Bourne et al., 2007, Chisari, 1996, Raney et al., 2001, Zhang 

et al., 2003).  It is however interesting to note that the mouse infected with subgenotype A1 

1862 showed the earliest detection and therefore lowest Ct value, indicating a greater number 

of cccDNA copies present. The cccDNA in the remaining mice infected with the other strains 

of HBV was detected at a relatively higher Ct value, indicative of lower cccDNA levels 

(Figure 2.12).  The 1862 mutation has been shown to cause the abnormal retention of the 

precore core protein reducing its secretion, which may affect cccDNA production levels.  

Summers and colleagues were the first to demonstrate that by knocking out surface protein 

expression, and thus virion secretion, resulted in a drastic increase of cccDNA copy numbers 

(Summers et al., 1990, Summers et al., 1991).  More recent studies have confirmed this 

observation (Gao and Hu, 2007, Guo et al., 2007) and suggested that a negative-feedback 

mechanism might involve the large surface protein suppressing cccDNA amplification.  When 

nuclear cccDNA levels reach a specified number of copies, sufficient large surface protein is 

made to efficiently shut off the cccDNA amplification pathway and redirect mature 

nucleocapsids to envelopment and extracellular secretion.  It has previously been shown that 

the nuclear cccDNA is organised into minichromosomes with HBV core protein being a 

component thereof (Bock et al., 2001).  A similar mechanism could therefore be taking place, 

whereby the accumulation of precore/core protein in the ERGIC and interference with its 

expression results in an increase of cccDNA production. Further functional studies are 

required to investigate this possibility.  

 

cccDNA serves as a template for transcription of genomic and subgenomic HBV transcripts. 

Efficient transcription of HBV genes requires a number of ubiquitous transcription factors 

such as nuclear factor-1 as well as several liver-enriched transcription factors such as 

hepatocyte nuclear factor 1, that are also key regulators of hepatocyte function and 

morphology (Kock and Schlicht, 1993). In order to determine that HBV transcription was 

occurring within the uPA-SCID transgenic mice, the precore/core coding region was 

amplified successfully from extracted mice liver-derived RNA (Figure 2.1.4).  



 68 

 

HBV DNA levels were monitored regularly because quantification of HBV DNA is the gold 

standard in providing information regarding infectivity, prognosis and in clinical settings, the 

need for, response and required duration of therapy.  We have shown in this in vivo study that 

by 12 weeks post inoculation the 1862- expressing mice demonstrate a 3 log increase in viral 

DNA compared to the wild-type virus suggesting perhaps that the presence of this mutation 

may increase the replication fitness of the subgenotype A1 strain (Figure 2.9).  Previous in 

vitro studies have shown unchanged replication potential (Chen et al., 2008) while others have 

shown a decrease in replication associated with the presence of the 1862 mutation (Guarnieri 

et al., 2006).  Both studies involved transfection with artificially constructed plasmids into 

cancerous cell lines which may not reflect what is occurring in vivo. It is important to note 

however that one of the pitfalls of using serum is the presence of quasispecies and the 

possibility of the occurrence of unknown sequence variations, in addition to 1862, that may 

affect HBV infection and expression.  In future studies this limitation can be eliminated by 

infecting the transgenic mice with virus derived from cells transfected with a replication 

compentent clone containing only one strain of HBV that only differs at the 1862 mutation 

site compared to the wild-type replication competent clone.  This approach would eliminate 

the quasispecies issue and utilizing virus derived from a stable cell line would allow for an 

endless supply of identical inoculum as a “pure” population. 

 

The remaining HBV genotypes/subgenotypes, including the subgenotype A1 wild-type strain, 

showed similar HBV DNA levels throughout the 12 week infection period (Figure 2.9).  

Interestingly, in week 4 shortly following inoculation, subgenotype A2 showed only a 1 log 

difference compared to the 1862 mutant mice suggesting that perhaps the European donor 

hepatocytes may be predisposed to infection by the commonly occurring European 

subgenotype A2 strain suggesting the potential involvement of the donated host genetic 

factors (Frodsham, 2005) or possibly that HBV subgenotype A2 has evolved to infect these 

European host hepatocytes.  At 12 weeks post inoculation, genotype D demonstrated a 1 log 

higher difference compared to the lowest levels observed for subgenotype A1 (wild-type) and 

A2.  Higher viral loads following transfection with genotype D relative to subgenotype A1 

and A2 has been previously observed in vitro (Sugiyama et al., 2006).  Sugiyama et al (2006) 

compared the intra- and extracellular levels of HBV DNA for genotypes A, B, C and D after 

transfection of Huh7 cells.  Intra- and extra-cellular expression of HBV DNA was found to be 

the highest for genotype C, followed by genotype B and further by D, with genotype A having 
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the lowest levels.  In the present study, expression of HBV DNA was found to be the highest 

for subgenotype A1 with 1862, followed by genotype D and further by subgenotype A2, with 

wild-type genotype A1 having the lowest levels.  Tanaka et al in 2004 also found a higher 

HBV DNA level associated with subgenotype A2 compared to A1 (Tanaka et al., 2004).  It is 

of interest that the 1862 mutation only occurs in subgenotype A1, regarded as an “older” 

strain of HBV compared to the other subgenotypes/genotypes A2 and D.  Perhaps the higher 

viral load associated with this mutation causes an increase in immune pressure resulting in its 

de-selection in the “newer” strains, A2 and D, of HBV.    

 

Haemotoxylin and eosin staining allowed for the differentiation of human and mouse 

hepatocytes, visually confirming the successful grafting of human liver (Figure 2.16).  The 

human hepatocytes are clearly distinguishable from the mouse parenchyma in that their 

morphology resembles that typically observed with glycogen storage disease.  This abundant 

accumulation of glycogen has been previously observed (Meuleman et al., 2005).  Meuleman 

et al (2005) suggested that the cause of the aberrant polysaccharide accumulation 

phenomenon is most likely attributable to inappropriate recognition of murine signals by 

human hepatocytes.  This metabolic disturbance has a negative effect on the animal as a 

whole and the grafted hepatocytes, as suggested by the overall appearance of the chimeric 

mouse and the aspect of the liver cells in histology studies.  It is plausible that there are other 

biochemical pathways that may not function optimally, possibly because of communication 

failure between mouse ligands or receptors and their human counterparts (Antonopoulos et 

al., 2011).  

 

Tissue staining for the HBsAg was positive only in the 1862 expressing mouse liver, 

indicative of the high HBV replication levels and therefore proportionally increased 

production of HBsAg.  On the other hand, HBcAg staining in the chimeric liver was positive 

when the mice were infected with genotype D.  A possible explanation for this is that it has 

been shown in vitro that genotype D has a 3-fold higher core antigen expression compared to 

subgenotype A1 and A2 (Sugiyama et al, 2006).  Sugiyama et al (2006) reported that 

intracellular levels of HBV DNA and core protein were higher for genotype D than A, which 

may increase the activity of liver disease and explain the increased resistance to interferon in 

patients infected with genotype D (Erhardt et al., 2005, Zhang et al., 1996).  The lower 

replication levels of genotype A compared to D may result in an imbalance between the 
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syntheses of HBsAg and core protein; resulting in a bias in favour of HBsAg for genotype A, 

and core protein for genotype D. Sugiyama et al (2006) further postulated that the lowest 

replicative activity of genotype A may explain how genotype A can evade the immune 

pressure against it and persist in up to 10 % of all adulthood infection (Ozasa et al., 2006, 

Kobayashi et al., 2002).  In the present study, however, only the mouse infected with mutant 

subgenotype A1 stained positive for HBsAg and not the wild-type A1 or subgenotype A2, 

suggesting that possible sequence variations or host factors may be influencing the expression 

of HBsAg by the different subgenotypes of A. 

 

As was previously shown in vitro, transfection of Huh-7 cells with constructs containing the 

G1862T mutation resulted in an increase in apoptosis because of the accumulation of the 

precore/core mutant protein in the ERGIC (Chen et al., 2008, Viana, 2005).  Similarly by 12 

weeks post inoculation the 1862 expressing mice demonstrated almost double the amount of 

apoptosis compared to the other HBV strains (Figure 2.10).  The extremely high levels of 

apoptosis observed within the 1862 expressing mouse is most likely as a result of the 

accumulation of the mutant precore/core protein within the hepatocytes, as has previously 

been described in vitro (Chen et al., 2008).  This observation was found not to be directly 

associated with the increased viral load burden because genotype D was found to possess 

relatively low apoptosis levels but high viral load levels (Figure 2.11). 

 

Phylogenetic analysis of the precore/core and S region of HBV revealed no significant 

sequence variation, confirming that the replicating virus was derived from the original 

infective inoculum strain (Figure 2.15).  This observation is probably attributable to the lack 

of immune pressure in the severely immunodeficient mice (Meuleman and Leroux-Roels, 

2008, Mason et al., 2010) and low mutation rate of the HBV genome (Orito et al., 1989, 

Osiowy et al., 2006).   

 

To summarize, the present study was the first demonstration of the successful HBV infection 

of the uPA-SCID transgenic mice, with subgenotype A1 HBV with the detection of cccDNA, 

presence of HBV transcripts, increasing levels of HBV DNA, and HBV antigen production.   

 

Care was taken at all levels to ensure standardisation and normalisation to be able to 

accurately compare the infection characteristics of subgenotype A1 with the 1862 mutant, 

subgenotype A1 wild-type, subgenotype A2 and genotype D, which are the genotypes 
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circulating in the South African population.  This included the characterisation of inocula, the 

use of a single hepatocyte donor for the human hepatocyte engraftment into the uPA-SCID 

mice, inoculation with an identical viral copy number of HBV, fixed follow up periods and 

the confirmation of the presence of the original inoculum at the time of animal sacrifice.  

Subgenotype A1 with the 1862 mutant was found to demonstrate the highest levels of almost 

all markers of HBV infection except for the core antigen that was only observed in mice 

infected with genotype D.   

 

This is also the first time that uPA-SCID transgenic mice have been used for the study of 

apoptosis, in relation to HBV infection.  Apoptosis levels were not associated with HBV 

DNA levels, although the low number of mice infected and the absence of an immune 

response precludes us reaching any firm conclusions.   

 

One of the potential limitations of the in vivo uPA-SCID transgenic mouse model is their 

limited lifespan and general poor health of the animal as a result of the absence of an immune 

system.  Despite these limitations, the uPA-SCID transgenic mouse model has presented itself 

as an ideal platform for the study of HBV infection by using healthy human liver cells with 

intact apoptotic pathways reflecting an in vivo HBV infection as opposed to cancerous cell 

lines with defective pathways associated with in vitro studies.  Because we found differences 

in the levels of apoptosis between the different genotypes and the viral load, we decided to 

investigate this further by looking at HBV infection and apoptosis in a population based 

study.  
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CHAPTER 3 

 

INVESTIGATION OF THE RELATIONHIP BETWEEN HBV INFECTION AND 

THE M30 APOPTOSIS MARKER IN HUMANS 

 

3.1. INTRODUCTION 

 

In population-based cohort studies, a sample, or even the entirety, of a defined population is 

selected for longitudinal assessment of exposure-outcome relations.  The study of a cohort, 

which is representative of a defined population, offers three advantages.  1) It allows the 

estimation of distributions and prevalence rates of relevant variables in the reference 

population (information on risk factors is used for the calculation of population attributable 

risks). 2) Risk factor distributions measured at baseline in a study involving periodic 

examinations of the cohort can be compared with distributions in future cross-sectional 

samples so as to assess risk factor trends over time. 3) A representative sample is the ideal 

setting in which to carry out unbiased evaluations of relations, not only of confounders to 

exposures and outcomes, but also among any other variables of interest, even those which 

were not specified in the original study hypotheses (Szklo, 1998).   

 

The majority of data generated from population based studies of HBV has been primarily 

focused on genotypes B and C predominating in Asia.  Population based data available for 

genotype A is collected mainly from European and American derived studies contributing to 

information on subgenotype A2 commonly circulating in these geographic regions.  

Conversely, very limited data is available for subgenotype A1, the predominating HBV strain 

in South Africa.  

 

The purpose of this study was to determine whether: 

 there was a difference in apoptosis levels between HBV asymptomatic carriers, 

chronic HBV patients, HBV associated HCC patients and healthy uninfected 

control subjects 

 any associations exist between HBV genotype, age, apoptosis levels, gender and 

HBV viral load within and across the various disease groups.  
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3.2. MATERIALS AND METHODS 

 

 

 

 
Figure 3.1. Organogram of techniques used. 
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3.2.1. STUDY SUBJECTS 

 

Six hundred and thirty five (635) samples were obtained for evaluation with 564 of them 

being HBsAg-positive sera obtained from South African (346), Japanese (151) and Chinese 

(138) patients (from Hong Kong) and asymptomatic carriers of the HBV virus (Figure 3.2).  

Informed consent was obtained from each participant and the study had ethical clearance from 

each institution that provided the patient samples. This was presented to the ethics board of 

the University of the Witwatersrand and ethical clearance obtained for the project (Appendix 

B). 

 

      Figure 3.2. Number of subjects by disease category and country. 
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3.2.2. HEPATITIS B SURFACE ANTIGEN (HBsAg) ELISA 

 

The Monolisa Ag HBs PLUS kit (BioRad, Steenvoorde, France) was used according to the 

manufacture’s instructions to determine which samples were HBsAg-positive (Figure 3.3). 

 

 

 
Figure 3.3. The Monolisa Ag HBs PLUS ELISA plate assay. 

 

 

 

The optical densities are then measured at 450 nm 

and 650 nm on the Model 680 Microplate Reader 

(BioRad, U.S.A). 

 Sample serum is added to the microwells where 

the HBsAg ( ) binds to the mouse monoclonal 

anti-HBs antibody ( ) coated to the well.  

 

Two mouse monoclonal anti-HBs antibodies 

conjugated to horseradish peroxidase (

 

,

 

) are 

added and the plate incubated for an hour at 37 
o 

C. 

 

The plate is washed and incubated with TMB 

enzymatically activated detection reagent, which 

causes a yellow colour change. 
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3.2.3. DNA EXTRACTION 

 

DNA was extracted using the QIAamp MinElute Virus Spin kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s instructions.  Briefly, 50 µl of serum was added to 175 µl of 

0.9 % sodium chloride and protease solution.  The sample was then lysed by the addition of 

200 µl of Buffer AL and incubation at 56 
o 

C for 15 minutes.  The DNA was precipitated by 

250 µl of 100 % ethanol and the entire reaction mixture placed in a column and centrifuged to 

allow the DNA to bind to the column.  Following two stringent washes the column was then 

dried by centrifugation.  The DNA was finally eluted in 50 µl of nuclease-free sterile water 

and stored at -20 
o 
C.  A blank (sterile water sample) reaction was performed in parallel to rule 

out any contamination. 

 

3.2.4.GENOTYPING PCR AND RESTRICTION FRAGMENT LENGTH 

POLYMORPHISM (RFLP) ANALYSIS 

 

RFLP analysis was used to genotype HBV isolated from South African and Chinese serum 

samples (Lindh et al., 1997) (Table 2.1).  Negative controls included the HBsAg negative 

serum samples.  The genotypes of the HBV from Japan sera were previously determined by 

our Japanese collaborators using the HBsAg Subtype EIA genotyping kit (Institute of 

Immunology, Tokyo, Japan)(Tanaka et al., 2009). 

 

3.2.4.1. Genotyping nested PCR 

 

The reaction mixture for the first round PCR consisted of 2.5 µl of 10 X NH4, 1.5 µl of 50 

mM MgCl2, 0.5 µl of 40 mM dNTP mix, 1.25 µl each of 20 µM primer 231F and 801R 

(Table 2.1), 0.1 µl of 5 U/µl BioTaq DNA polymerase (Bioline, London, England) and 2.5 µl 

of DNA made up to a final volume of 25 µl with nuclease-free sterile water.  The cycling 

profile (Table 2.1) was performed using the Mastercycler Gradient (Eppendorf, Hamburg, 

Germany). 

 

For the second round the reaction mixture consisted of 5 µl of 10 X NH4, 3 µl of 50 mM 

MgCl2, 1 µl of 40 mM dNTP mix, 2.5 µl each of 20 µM primer P7 and P8 (Table 2.1), 0.2 µl 

of 5 U/µl BioTaq DNA polymerase and 5 µl of the first round PCR product made up to a final 
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volume of 50 µl with nuclease-free sterile water.  The cycling profile (Table 2.1) was 

performed using the Mastercycler Gradient.   

 

3.2.4.2. RFLP analysis 

 

Amplicons were then digested in separate reactions with restriction enzymes, HinfI and 

Tsp509I, as previously detailed in section 2.2.3.2 and the genotype determined (Lindh et al., 

1997). 

 

3.2.5.  SUBGENOTYPING PCR AND RFLP ANALYSIS 

 

Genotype A isolates were subgenotyped using the method described by Kew et al (Kew et al., 

2005) as detailed in section 2.2.3 in order to differentiate between subgenotype A1 and A2.  

Genotype B HBV isolates were subgenotyped using the method of Sugauchi et al, 2004 

(Sugauchi et al., 2004). 

 

3.2.5.1. Subgenotyping nested PCR for B1 versus B2 

 

The reaction mixture for the first round PCR consisted of 2.5 µl of 10 X NH4, 1.5 µl of 50 

mM MgCl2, 0.5 µl of 40 mM dNTP mix, 1.25 µl each of 20 µM primer PC1 and COR (Table 

2.1), 0.1 µl of 5 U/µl BioTaq DNA polymerase and 2.5 µl of DNA made up to a final volume 

of 25 µl with nuclease-free sterile water.  The cycling profile (Table 2.1) was performed using 

the MyCycler (Bio-Rad, U.S.A). 

 

For the second round the reaction mixture consisted of 5 µl of 10 X NH4, 3 µl of 50 mM 

MgCl2, 1 µl of 40 mM dNTP mix, 2.5 µl each of 20 µM primer PC2 and COR (Table 2.1), 0.2 

µl of 5 U/µl BioTaq DNA polymerase and 5 µl of the first round PCR product made up to a 

final volume of 50 µl with nuclease-free sterile water.  The cycling profile (Table 2.1) was 

performed using the MyCycler.   

 

3.2.5.2. RFLP analysis 

 

The amplicons were then digested with restriction enzymes to generate specific fragments 

characteristic of the subgenotypes of genotype B.  The digestion mixture consisted of 2 µl 10 
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X NE buffer (supplied with restriction enzyme), 0.5 µl of restriction enzyme, 15 µl of PCR 

product made up to a final volume of 20 µl with 2.5 µl of nuclease-free sterile water.  

Restriction enzymes HpaI and StuI (New England Biolabs, Ipswich, Massachusetts, U.S.A) 

were utilized in separate reactions.  Both enzyme mixtures were incubated at 37 
o 

C for 3 

hours followed by the addition of 5 µl of 6 X gel loading dye (Appendix A3) to end the 

digestion reaction.  HBV isolates were subgenotyped according to the banding patterns 

described in Sugauchi et al, 2004(Sugauchi et al., 2004).   

 

3.2.6. AMPLIFICATION AND SEQUENCING OF THE HBV PRECORE/CORE REGION 

 

In order to determine which of the South African serum samples contained the G1862T 

mutation, the precore/core region was amplified and sequenced according to section 2.2.4. 

 

3.2.7. REAL-TIME PCR QUANTIFICATION OF HBV DNA 

 

An in-house real-time PCR was utilized to quantitate the HBV viral load of all the 

samples(Weinberg et al., 2000).  The real-time PCR reaction mixture consisted of: 25 µl of 2 

X TaqMan Universal PCR Master Mix (Applied Biosystems, New Jersey, U.S.A), 1.5 µl each 

of 10 µM primer Taq1 (5’ CAA CCT CCA ATC ACT CAC CAA C 3’) and Taq2 (5’ ATA 

TGA TAA AAC GCC GCA GAC 3’), 10 µM of BS-1 FAM/TAMRA-labelled probe (5’ TCC 

TCC AAT TTG TCC TGG TTA TCG CT 3’) and 2 µl of DNA made up to a final volume of 

50 µl with nuclease-free sterile water.  The thermal profile was performed using the ABI 

Prism 7500 Real-Time PCR machine (Applied Biosystems) as follows: After 2 minutes at 50 

o 
C and 10 minutes at 95 

o 
C, there were 40 cycles at 95 

o 
C for 15 seconds with data 

acquisition being collected at the end of each cycle at 60 
o 
C for 1 minute. 

 

A plasmid encoding a single genome of HBV DNA was run to obtain a linear standard curve 

with an observed range of 10
3
 to 10

8 
viral copies in agreement with previous reports for this 

primer/probe set (Weinberger et al., 2000).  The second World Health Organization 

International Standard for HBV Nucleic Acid Amplification Techniques, product code 

97/750, which has a final concentration of 1x10
6
 IU/ml was obtained from the National 

Institute for Biological Standards and Controls (NIBSC; Hertfordshire, United Kingdom) and 

used as a positive control as well as to calibrate and align the standard curve.  The standard 

curve, blank, positive and negative controls and samples were all tested in duplicate.  The 
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measured IU/ml for each reaction was calculated using the Ct value of each PCR interpolated 

against the linear regression of the standard curve. For each sample, the duplicate average 

value was multiplied by 4.7 to convert from IU/ml to copies/ml.  The detection limit was 

found to be 10 IU/ml or 50 copies/ml. 

 

3.2.8. QUANTIFICATION OF APOPTOSIS 

 

The M30-Apoptosense ELISA (Peviva, Bromma, Sweden) was used as described in section 

2.2.10.5 to measure apoptosis in human sera.  

 

3.2.9. STATISTICAL ANALYSIS 

 

The distributions of M30-antigen and HBV viral load levels in our study population were 

markedly skewed. Therefore, statistical analysis was conducted on logarithmically 

transformed values of M30 and viral load, and geometric (as opposed to arithmetic) mean 

values are presented.  The analysis of covariance (ANCOVA) method (Winer, 1971) was used 

to compare M30 and viral load levels in study subjects, stratified by gender, age and race. The 

ANCOVA method also was used to compare levels of M30 between HCC patients and non-

HCC control subjects, with control subjects variously defined as HBV carriers alone, 

uninfected controls alone, and HBV carriers and uninfected controls combined. We used the 

Pearson Correlation Coefficient (Winer, 1971) to examine the association between M30 and 

viral load values within individuals, separately for Asian HCC patients, Asian HBV carriers, 

South African HCC patients, and South African HBV carriers. Since the race- and disease-

status-specific correlation coefficient values were comparable, correlation coefficients for all 

Asians, all South Africans, all HCC patients, all HBV carriers, and all study subjects 

combined were also computed and formally tested for statistically significance. We used the 

Chi-square test (Winer, 1971) to examine the distribution of HBV genotype across gender- 

and age-specific subgroups of Asian study subjects. All p values are two-sided and p values 

less than 5 % are considered statistically significant.      
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3.3. RESULTS 

 

3.3.1. DISTRIBUTION OF GENOTYPES AND SUBGENOTYPES 

 

RFLP analysis was used to genotype and subgenotype 295 South African, 131 Japanese and 

138 Chinese HBV isolates.  The expected geographical distribution of the 

genotypes/subgenotypes was found: the South African HBV isolates predominately 

subgenotype A1 followed by genotype D, Japanese primarily genotype C followed by 

subgenotype B1 and Chinese HBV isolates primarily genotype C followed by subgenotype 

B2 (Figure 3.4).   

 

 
Figure 3.4. Genotypes and subgenotypes from South Africa, Japan and China. 

Samples recorded as genotype A or B alone could not be subgenotyped. 
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When the Japanese and Chinese samples were analysed independently, the patients’ age, 

gender and disease group (asymptomatic carriers versus HCC patients) did not affect the 

genotype/subgenotype distribution.  However, when the Japanese and Chinese data were 

combined, a higher frequency of genotype B was found among older men (p = 0.053) (Figure 

3.5).  Chinese patients infected with genotype C had a 1.45 greater probability or 20 fold 

greater odds ratio of developing HCC compared to those infected with subgenotype B2 (Table 

3.1).  There was no difference in the probability or odds ratio of developing HCC between 

genotype C and B1 in Japanese patients.  Among the South African patients the effect of age 

and gender could not be analysed because these parameters were not known which is a 

limiting factor.  The genotype/subgenotype distribution was not affected by the disease 

condition of the South African patients.  South African patients infected with subgenotype A1 

had a 1.57 greater probability or 1.85 greater odds ratio of developing HCC than those 

infected with genotype D (Table 3.1).      
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Figure 3.5.  Chi square test used for the evaluation of HBV genotype by age and gender in Asians.  No 

significant difference was found between Asian men and women in regards to the genotype/subgenotype 

distribution (p=0.21).  There was also no significant difference observed among the various female age groups 

regarding the genotype/subgenotype distribution (p=0.83).  However among the Asian men, a significantly 

higher frequency of genotype B was found in men aged between 64 and 89 (p=0.053). 

 

 

Table 3.1: Relative risk and Odds Ratio of developing HCC among the different population 

groups 

Population South African Japanese Chinese 

Sub/Genotype Subgenotype A1 vs 

Genotype D 

Genotype C vs 

Subgenotype B1 

Genotype C vs 

Subgenotype B2 

Relative Risk 1.57 0.98 1.45 

Odds Ratio 1.85 0.96 20.73 
The South African subgenotype A1 as well as the Chinese genotype C – infected patients had a greater 

probability or odds ratio of developing HCC.   
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3.3.2. HBV VIRAL LOAD 

 

An in-house real-time PCR, using primers targeting the conserved HBV S-region of the HBV 

isolates, was utilized to quantify HBV DNA levels.  Statistical analysis revealed that among 

the Asian asymptomatic carriers, HBV viral load levels were lower in men than women, while 

the opposite was observed among the HCC patients with higher levels in men than women 

(Figure 3.6).  The HBV viral loads of the Asian men and women were found to be unrelated 

to their age.  However, a significant association was observed between the HBV viral load 

and the HBV genotype/subgenotype.  Patients infected with genotype C had significantly 

higher viral loads compared to those infected with genotype B (p = 0.001) (Table 3.2).  

Further analysis found that this association was derived from the Chinese population group 

i.e. patients infected with HBV genotype C had significantly higher viral loads than those 

infected with subgenotype B2 (p < 0.001) (Table 3.2).  Among the Asian patients the HBV 

viral load was not affected by the disease condition.  In South African patients no association 

was found between HBV viral load and HBV genotypes A and D.  However, a significant 

difference was observed between the HBV viral load and disease groups, with HCC patients 

having higher viral loads compared to the asymptomatic carriers (p < 0.001) (Table 3.3).   
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Figure 3.6.  Analysis of covariance with log-transformed viral load as the dependent variable and the age 

and gender as independent variables.  Among Asian asymptomatic carriers, women possessed higher HBV 

viral loads as opposed to men (p=0.065).  The opposite was observed among Asian HCC patients. 
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Table 3.2: Age-sex-disease group adjusted geometric means of viral load (copies/ml) by 

HBV genotype in China and Japan 

HBV genotype Geometric mean of viral load 

China Japan China + Japan 

n Viral load n Viral load n Viral load 

Genotype B* 48 15427 17 40421 65 21636 

Genotype C 83 216780 85 67488 168 137598 

P (genotype)  <0.001  0.673  0.001 

P (country)      0.083 

                 * Genotype B2 for Chinese and B1 for Japanese. 

 

 

Table 3.3: Crude geometric means of viral load (copies/ml) by HBV genotype in South 

Africans 

HBV genotype Geometric mean of viral load 

HCC patients Carriers Total 

n Viral load n Viral load n Viral load 

A 89 481620 158 79782 247 191238 

B 0 --- 1 855400 1 1923769 

D 11 169518 36 110763 47 188311 

P (genotype)      0.732 

P (disease group)      <0.001 
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3.3.3. APOPTOSIS 

 

The M30-Apoptosense ELISA was used for the quantification of the apoptosis via the 

detection of cytokeratin 18Asp396 (M30) neo-epitope.  The relationship between the Asian 

patients’ age and apoptosis M30 levels was found to be different in the various disease groups 

(p = 0.027) (Figure 3.7).  In asymptomatic carriers, apoptosis M30 levels were significantly 

higher in patients 64 or older (p = 0.001), which was not observed with the HCC patients (p = 

0.668) (Figure 3.8).  In both disease groups, however a gender effect was observed with 

apoptosis M30 levels being significantly higher in men than in women, after the adjustment 

for age (p = 0.004) (Figure 3.9).  This shows that it is important to take into account the age 

and gender impact on apoptosis and disease in all subsequent statistical analysis. This 

information was not available for the South African data.   

 

Within the Asian and South African cohorts, apoptotic M30 levels were found to be positively 

and significantly associated with HBV viral loads (Table 3.4).  There was no significant 

difference in M30 levels between Asians infected with genotype B and C, even when 

differentiating between the subgenotypes of B (Table 3.5).  In contrast, there was a significant 

difference in South Africans infected with subgenotype A1 compared to those infected with 

genotype D, with M30 levels significantly higher in subgenotype A1 infected patients (p = 

0.001) (Table 3.6). 

 

There was no significant difference in apoptotic M30 levels between Asian HCC and chronic 

hepatitis patients (p = 0.684) (Table 3.7).  However, the apoptotic M30 levels of all HCC 

patients were found to be significantly higher than in asymptomatic carriers or healthy 

controls (p < 0.001) (Table 3.8), even after a statistical adjustment for HBV viral load and 

HBV genotype (p < 0.001) (Table 3.8).  Furthermore, significantly higher apoptotic M30 

levels were observed in South African HCC patients infected with the 1862 mutant variant as 

opposed to asymptomatic carriers infected with the same mutant (p < 0.001) (Table 3.10).   
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Figure 3.7. Analysis of covariance with log-transformed M30 value as the dependent variable and 

age as the independent variable.  A significant difference was observed between the Asian patient’s 

age and M30 levels in relation to the disease group (p = 0.027). 
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Figure 3.8. Analysis of covariance with log-transformed M30 as the dependent variable and age and 

disease group as independent variables.  M30 levels are significantly higher in Asian asymptomatic carriers 

64 and older (p = 0.001). 
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Figure 3.9. Analysis of covariance with log-transformed M30 as the dependent variable and gender as the 

independent variable.  M30 levels are significantly higher in men compared to women. 
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Table 3.4: Pearson correlation coefficients of log transformed M30 and log transformed 

viral load in Asians and South Africans 

Disease type Asians South Africans Asians + South Africans 

 n          r  n         r  n          r  

HCC patients 129 0.22  

(p=0.013) 

100 0.15  

(p=0.128) 

229 0.23  

(p<0.001) 

Carriers 126 0.19  

(p=0.029) 

195 0.29  

(p<0.001) 

321 0.18  

(p=0.001) 

Total 255 0.20  

(p=0.002) 

295 0.33  

(p<0.001) 

561 0.23  

(p<0.001) 

 

Table 3.5:  Age-sex adjusted geometric means* of M30 levels (U/l) by HBV genotype in 

Asians  

HBV genotype HCC patients Carriers Total 

n M30 n M30 n M30 

A 1 1235.7 1 155.3 2 445.4 

B 30 223.9 40 191.9 70 208.0 

C 85 261.2 84 196.4 169 222.8 

P (genotype)      0.260 

P (disease group)      <0.001 

*One-way analysis of covariance with age and sex as the covariates and log-transformed M30 value as the 

dependent variable. 

 

Table 3.6: Crude geometric means of M30 levels (U/l) by HBV genotype in South 

Africans  

HBV genotype HCC patients Carriers Total 

n M30 n M30 n M30 

A 89 491.9 158 102.5 247 225.1 

B 0 --- 1 83.8 1 185.1 

D 11 296.9 36 54.3 47 123.2 

P (genotype)      0.001 

P (disease group)      <0.001 
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Table 3.7: Comparison of age-sex-adjusted geometric means* of M30 levels (U/l) 

between HCC cases and non-cases in Asians 

Disease category No. Geometric mean (95%CI) P value^ 

HCC patients 116 265.8 (232.4, 304.0)  

Non-HCC controls 158 192.5 (173.0, 214.2) <0.001 

Carriers + uninfected controls 146 187.7 (168.3, 209.4) <0.001 

Carriers 126 186.2 (165.3, 209.7) <0.001 

Chronic hepatitis patients 12 288.2 (198.4, 418.7) 0.684 

Uninfected controls 20 189.2 (141.9, 252.2) 0.037 

*From one-way analysis of covariance with age and sex as the covariates and log-transformed M30 as the 

dependent variable. 

^ Test for difference between HCC and other disease groups.  

 

Table 3.8: Comparison of crude geometric means* of M30 levels (U/l) between HCC 

cases and non-cases in South Africans 

Disease category No. Geometric mean (95%CI) P value^ 

HCC patients 100 465.3 (382.6, 566.0)  

Non-HCC controls 246 81.5 (71.8, 92.5) <0.001 

Carriers  195 91.1 (79.1, 104.8) <0.001 

Uninfected controls 51 53.4 (40.6, 70.2) <0.001 

*From one-way analysis of covariance with log-transformed M30 value as the dependent variable and disease 

group as the independent variable. 

^Test for difference between HCC and other disease groups. 

 

Table 3.9: Comparison of crude geometric means^ of M30 levels (U/l) between HCC 

cases and non-cases using total subjects 

 Geometric mean (95%CI) 

Disease type Model I* Model II** Model III*** 

HCC patients 330.1 (277.2, 393.0) 322.7 (271.3, 383.7) 332.6 (221.6, 499.2) 

Carriers 120.2 (99.8, 144.9) 123.3 (102.4, 148.6) 130.0 (86.6, 195.1) 

Uninfected controls 76.8 (58.6, 100.5) --- --- 

P value    <0.001 <0.001 <0.001 

^One-way analysis of covariance with race, HBV viral load (log transformed) and HBV genotype as the 

covariates and log-transformed M30 value as the dependent variable. 

*Adjusted for race. 

** Further adjusted for HBV viral load (log transformed). 

*** Further adjusted for HBV genotype. 
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Table 3.10: Crude geometric means* of M30 levels (U/l) by 1862 nucleotide in South 

Africans 

1862nt     HCC patients         

Carriers 
       All 

subjects 

n M30 n M30 n M30 

Wild-type 70 390.1 168 90.8 238 192.8 

Mutant  20 856.7 11 77.4 31 290.3 

P (1862nt)      0.044 

P (disease)      <0.001 

P (1862nt x disease)      0.021 
*From analysis of variance with log-transformed M30 value as the dependent variable and 1862nt and disease 

group as the independent variable. 

 

 

The following table summarises the observations noted within this chapter:  

 

Table 3.11: Summary of associations 
 

 
Genotypes/subgenotypes HBV Viral load M30 apoptosis 

Effect of Asian South 

African 

Asian South 

African 

Asian South 

African 

Gender ↑ ♂ 64 years 

and older 

infected with 

genotype B 

N/A ↓ ASC ♂ 

 

↑ HCC ♂ 

N/A ↑ ♂ N/A 

Age None N/A None N/A ↑ ASC 64 

years or older 

N/A 

Genotype N/A N/A ↑ Chinese 

genotype C  vs 

genotype B2 

None None ↑ genotype A vs 

genotype D 

Disease Genotype C 

1.45 ↑ risk 

HCC vs B2 

Subgenotype 

A1 1.57 ↑ risk 

HCC vs D 

None HCC > ASC 

           

HCC > ASC /  

            UC 

 

HCC ≡ CH 

HCC > ASC /  

            UC  

 

1862 Mt > Wt 

Viral load N/A N/A N/A N/A Positively and 

significantly 

associated 

Positively and 

significantly 

associated 

Abbreviations:  HCC = hepatocellular carcinoma, ASC = asymptomatic carriers, UC =   uninfected controls,  

                          CH = chronic carriers, N/A = not applicable, Mt = mutant, Wt = wild-type ,  

                          ↑ = more or higher, ↓ = lower, ♂ = male.  
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3.4. DISCUSSION 

 

The influence of HBV viral factors such as genotype/subgenotype, HBV DNA levels (Chan et 

al., 2009b) and mutations on disease progression and clinical outcome of HBV infection have 

been well documented (Taylor et al., 2009, Kao et al., 2003).  Subgenotype A1 is the most 

common HBV strain found in South Africa (Kramvis et al., 2002).  Unique to this 

subgenotype is the guanine to thymine 1862 mutation that is present in 24% of HBeAg 

negative southern African carriers (Kramvis et al., 1997).  Studies have shown that the 1862 

mutation is associated with HCC in the southern African black population, particularly in 

HBeAg negative patients and may therefore play a part in the development of HCC (Kramvis 

et al., 1998).  In addition to host factors, including an older age and male gender, viral factors 

such as being positive for HBV e antigen and having high viral HBV DNA levels, genotype 

and basal core promoter mutations have been suggested to be associated with a higher risk of 

HCC (Chan et al., 2008, Chen et al., 2006c, Kao et al., 2003, Yang et al., 2002).  

 

The present study cohort comprised 635 serum samples from South Africa, China and Japan.  

Of these samples, 564 were HBsAg-positive and the remaining 71 HBsAg-negative, HBV 

DNA negative controls.  Possible associations were determined between HBV genotype, viral 

load, apoptosis levels, disease group and the age and gender of the patient where available.  

The association of these factors and apoptosis had not been previously investigated. 

 

3.4.1) Genotype/Subgenotype associations 

The proportion of Asian men, older than 64 years that were infected with genotype B was 

higher compared to younger men (Figure 3.5).  Asian patients infected with genotype C had a 

1.45 greater probability of developing HCC compared to subgenotype B2 infected patients.  A 

similar association has been observed in a large study from Hong Kong where it was found 

that genotype C was associated with a 1.5 greater rate of developing HCC (Chan et al., 2008) 

while several other studies have observed even greater odd risks associations of 5.85 (Chou et 

al., 2008) and 5.97 (Chou et al., 2008, Wu et al., 2008) (Table 3.1).  In a study among 

Alaskan Native people, the odds of HCC were four times higher in adults infected with 

genotype A compared to genotype D (Livingston et al., 2007b).  A similar association was 

observed amongst the present South African cohort, with subgenotype A1 having a 1.85 

greater odd of HCC compared to genotype D.  A higher odds risk of 4.5 was found in an 
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earlier South African study, which included rural participants and discussed the possibility of 

aflatoxin as a contributing factor (Kew, 2010).  

 

A few other studies have compared genotypes A and D, without differentiating subgenotypes.  

Some studies suggested that genotype A is associated with more severe disease (Kobayashi et 

al., 2006, Livingston et al., 2007b) while other studies suggest that genotype D results in more 

severe liver disease (Sanchez-Tapias et al., 2002, Thakur et al., 2002).   Possible explanations 

for the conflicting observations are differences in subgenotype distribution as well as host 

factors.   When comparing subgenotype A1 and A2 strains,   mutations were found to occur at 

different frequencies and mutations unique to each subgenotype have been identified 

(Kramvis et al., 2008).   

 

3.4.2) HBV Viral Load associations 

Among the Asian cohort, genotype C infected patients had significantly higher HBV viral 

loads compared to those infected with subgenotype B2 (Table 3.2).  Moreover, HCC patients 

had higher viral loads compared to the asymptomatic carriers.  Higher HBV viral load levels 

have been consistently associated with a poorer clinical outcome involving an increased risk 

of HCC development (Tong et al., 2006, Iloeje et al., 2006).  Both genotype C and high HBV 

DNA levels combined have been shown previously to be associated with HCC development 

(Mahmood et al., 2005). In the present study, the South African HCC patients had 

significantly higher viral loads compared to the asymptomatic carriers regardless of whether 

they were infected with either genotype A or D (Table 3.3) confirming our previous findings 

(Viana et al., 2009).  This observation re-affirms the accumulating evidence that high levels of 

HBV DNA are associated with increased risk of HCC and death (Chen et al., 2006b, Ikeda et 

al., 2005, Yu et al., 2005), regardless of the HBV genotype.  Age and sex were not 

differentiated in the South African cohort.   

 

Males and females tend to follow different clinical courses with HBV infection (Shiratori et 

al., 1995, Lee et al., 1999, Tsay et al., 2009).  The relative risk of chronic HBV-related end-

stage liver disease, HCC and liver disease-related death are consistently several fold higher in 

males than females (Evans et al., 2002, Chang et al., 2000, Taylor et al., 2009).  This has been 

suggested to be attributable to several factors involved in the production of testosterone (Yu et 

al., 2000, Yu et al., 2001, Yeh et al., 2007).  Among the Asian asymptomatic carriers, HBV 

viral load was significantly lower in men than in women, whereas among the HCC patients 
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the opposite was true; it was significantly higher in men than in women (Figure 3.6).  This 

finding supports the observation discussed above that both viral load as well as male gender 

are associated with HCC.   

 

3.4.3) Apoptosis associations 

When the normal balance of populations of apoptotic and proliferating cells is disturbed, this 

can lead to the development of diseases like cancer and autoimmunity.  In tumours compared 

to normal tissue, spontaneous apoptosis is increased and often associated with tumour cell 

turnover (Strater et al., 1995).  Apoptosis levels were quantitated by the detection of 

cytokeratin 18Asp396 (M30) neo-epitope and associations determined between the host and 

viral factors.  Host factors including older age (Figure 3.8) and male gender (Figure 3.9) were 

found to be associated with significantly higher levels of apoptosis.  The HBV viral load was 

also found to be positively and significantly associated with apoptosis (Table 3.4).  Relative 

levels of HBV DNA have been shown to reflect the degree of necroinflammatory activity in 

the liver, which itself reflects the host’s immune response to the virus (Mommeja-Marin et al., 

2003), it therefore can be expected that higher apoptosis levels are associated with heightened 

disease activity associated with a higher HBV viral load.  Similarly, it has been shown that 

older age (Ito et al., 2010) and male gender are associated with an increased risk of liver 

disease and HCC (Taylor et al., 2009), therefore again it can be surmised that higher apoptosis 

levels would be expected to be associated with these increased disease risk factors.  

 

Significantly higher apoptosis levels were found to be associated with subgenotype A1 

compared to genotype D (Table 3.6).  This supports data suggesting that genotype A is 

associated with more severe liver disease (Kobayashi et al., 2006, Livingston et al., 2007b) as 

well as the increased HCC risk association shown in the present and in an earlier study (Kew 

et al., 2005).  A similar association between genotype C and B was not observed suggesting 

perhaps a different mode of cell death or liver disease generation.  An in vitro study has 

previously shown an association with apoptosis and HBV genotypes however genotype B 

displayed a stronger pro-apoptotic effect compared to genotype A and C (Lu et al., 2007).  

Subgenotypes however were not distinguished in the in vitro study.    

 

As apoptosis goes through various extrinsic and intrinsic pathways, with activation of 

caspases and cleavage of specific substrates, such as cytokeratin 18, HBV proteins can 

interfere with the various apoptotic processes.  So far, five HBV proteins have been shown to 
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be involved with apoptosis: the large envelope protein, a truncated form of the middle 

envelope protein, the HBx protein, HBSP - a protein generated from spliced mRNA, and the 

precore protein (Pollicino et al., 1998, Liang et al., 2007, Lu and Chen, 2005, Lu et al., 2006, 

Assrir et al., 2010).  Like the truncated middle envelope protein, the G1862T mutation causes 

the accumulation of unprocessed precore protein in the endoplasmic reticulum (Caselmann, 

1995, Chen et al., 2008).  In the current study, significantly higher levels of apoptosis were 

found to be associated with South African HCC patients infected with the G1862T mutant 

variant compared to the asymptomatic patients infected with the same variant.  It is important 

to note, however that when comparing patients infected with the variant versus the wild-type, 

apoptosis levels were found to be significantly lower in asymptomatic patients infected with 

the variant.  The opposite was observed within the HCC patient group, with significantly 

higher levels of apoptosis being associated with patients infected with the variant (Table 

3.10).  These observations suggest that the G1862T mutation has an effect on the levels of 

apoptosis however the effect on apoptosis may differ at different stages of HBV disease 

progression.  Further investigation of the role of the G1862T mutation as a pro- or anti-

apoptotic factor in the various stages of HBV infection could explain these differences. 

 

When comparing the levels of apoptosis among the different disease groups, no significant 

difference was observed between the Asian HCC and chronic hepatitis patients (Table 3.7).  

The same observation was noted by McPartland et al in 2005 when comparing histologically 

four chronic HBV patients and seven HCC patients (McPartland et al., 2005).  The number of 

chronically infected subjects investigated in the current study was also low (n=20) and further 

investigation with larger numbers of chronically infected HBV patients is suggested.  

Significantly higher levels of apoptosis however were found to be associated with the HCC 

patients compared to the asymptomatic carriers and uninfected control subjects, even after the 

adjustment for HBV viral load and genotype (Table 3.9).  This significant observation 

suggests the potential use of cleaved cytokeratin 18 (M30) as a biomarker of HBV disease 

progression and potential presence and development of HCC.    

 

Liver biopsy, the gold standard for liver injury and fibrosis staging, was widely recommended 

for the assessment of liver disease and hepatocellular carcinoma.  However, the limitations of 

liver biopsy include its invasive nature and possible complications, inadequate biopsy size, 

intra- and inter-observer variability, tissue fragmentation, high cost, and its low acceptance by 

most patients (Cadranel et al., 2000, Bedossa et al., 2003, Regev et al., 2002).  This has lead 
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to the development of noninvasive procedures to stage liver disease, which include either 

imaging methods or assays based on serum biomarkers (Saito et al., 2004, Castera et al., 

2005).  Serum alanine aminotransferase (ALT) levels are regarded as a reliable biomarker of 

hepatocyte damage; however discrepancies in serum ALT concentrations and histologic 

activity have been documented (Sanai et al., 2008).  Bantel et al in 2004 reported an increase 

in the presence of cleaved cytokeratin 18 in the sera from hepatitis C virus (HCV) infected 

patients over healthy controls (Bantel et al., 2004).  As in the case of HCV, cleaved 

cytokeratin 18 has also been shown to be an accurate biomarker for assessing and monitoring 

the histologic activity of nonalcoholic fatty liver disease (NAFLD) as well as alcoholic 

hepatitis (Tsutsui et al., 2010, Gonzalez-Quintela et al., 2009).  Recently it was shown that 

cleaved cytokeratin 18 can be used in the monitoring of chronic hepatitis B treatment.  

Cleaved cytokeratin 18 levels were found to parallel the ALT, AST and HBV DNA levels 

observed during oral antiviral therapy (Giannousis et al., 2011).  

 

In tumors compared to normal tissue, spontaneous apoptosis is increased and often associated 

with tumour cell turnover (Strater et al., 1995).  Higher baseline apoptotic indices in untreated 

tumours are associated with undifferentiated malignancies and lower survival rates (Meggiato 

et al., 2000).  Upon treatment of a tumour with a therapy that induces killing, tumour size 

regresses and this can be attributed to apoptosis or senescence and seems to be tumour type 

specific (Serrano, 2007).  In a study of breast cancer patients who received neoadjuvant 

chemotherapy, total cytokeratin 18 sera levels correlated positively with treatment response 

and patient survival (Olofsson et al., 2007).  A number of recent studies have shown that 

cleaved cytokeratin 18 can be used to monitor cancer therapy treatment response (Brandt et 

al., 2010, Ausch et al., 2009, Micha et al., 2008) and could therefore potentially be used as a 

biomarker for the monitoring of the development and treatment of HBV derived HCC. 

 

To summarise, several associations were found between viral and host factors.  Patients 

infected with genotype C or subgenotype A1 were shown to possess a higher odds ratios of 

developing HCC compared to subgenotype B2 and genotype D, respectively.  As has 

previously been reported, significantly higher HBV viral loads were observed in genotype C 

compared to subgenotype B2.  A positive association between higher HBV viral load levels 

and HCC in the South African cohort, where subgenotype A1 and genotype D prevail, was 

observed. Among the Asian cohort it was shown that the male gender was positively 

associated with high viral loads in HCC patients. 
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Male gender, older age, HBV viral load as well as subgenotype A1 have been shown in the 

present study to be positively and significantly associated with higher levels of apoptosis.  

The presence of the G1862T variant in HCC South African patients was also shown to be 

positively and significantly associated with apoptosis.  Even in the absence of the G1862T 

variant, significantly higher apoptosis levels were observed in the HCC patient group 

compared to the other non-HCC patient groups suggesting the potential role of cleaved 

cytokeration 18 as a non-invasive marker for HBV disease progression and possibly the 

detection and monitoring of HCC. 

Risk equations and risk functions are widely applied in patient management for predicting 

outcomes in liver diseases (Iacob et al., 2007, Kim et al., 2007). Risk equations are used for 

patient counseling/management, clinical diagnosis, risk stratification, treatment selection, and 

prognosis prediction. Identifying patients at risk of progressing to hepatocellular carcinoma 

may help in early management decisions and justifying health resource allocation. 

Nomograms derived from risk functions are easy-to-use graphs for predicting the risk of an 

individual developing an outcome over a specified time frame (McCormack et al., 1997, 

D'Agostino et al., 2008).   

A risk score of hepatocellular carcinoma developed from a retrospectively assembled hospital 

population was been reported (Yuen et al., 2009).  Yang et al recently developed a nomogram 

utilising the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer–

Hepatitis B Virus (REVEAL-HBV) study data (Yang et al., 2010).  This nomogram includes 

all the risk factors detailed in this chapter and could in future potentially incorporate cleaved 

cytokeration 18 levels as a predictor following further prospective studies.  
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CHAPTER 4 

 

CONCLUSION 

 

The main objective of this thesis was to functionally characterise the strains of HBV 

prevailing in South Africa, namely subgenotype A1 and D, relative to other genotypes, using 

both an animal model and in a population based study.  To control for the influence of host 

factors on HBV infection as well as to avoid the use of in vitro cell lines, such as Huh-7, that 

have defective apoptotic pathways, the in vivo urokinase plasminogen activator severe 

combined immunodeficient (uPA-SCID) transgenic mouse model was utilised. Furthermore, a 

population based study was carried out to investigate the influence of host factors and 

immune pressure on HBV infection in various disease groups comparing genotypes prevailing 

in South Africa and south east Asia, the other region besides Africa, where HBV is 

hyperendemic.   

 

This is the first study in which uPA-SCID transgenic mice grafted with human hepatocytes 

have been infected with subgenotype A1 of HBV.  This is also the first study relating 

apoptosis to HBV infection in this transgenic mouse model.  The successful establishment of 

the in vivo HBV infection with different genotypes or subgenotypes in the uPA-SCID 

transgenic mice was demonstrated by the increase of HBV DNA levels, the presence of 

cccDNA and HBV transcripts as well as the detection of the core and/or surface HBV 

antigens in the chimeric mice liver tissue.  Differences between the HBV infections with the 

various genotype/subgenotypes were observed in both the uPA-SCID mice and population 

based study.  Subgenotype A1 with the G1862T mutation showed the earliest detection and 

therefore highest levels of cccDNA as well as the highest HBV DNA levels when compared 

to the other strains.  The highest HBV DNA levels were recorded for the subgenotype A1 

G1862T infected transgenic mouse followed by genotype D, subgenotype A2 and the lowest 

levels observed in the subgenotype A1 wild-type infected transgenic mouse.  When 

comparing HBV viral load levels of subgenotype A1 and genotype D in the population study 

no significant difference was observed.  This suggests that host factors and immune pressure 

may play a role in the regulation of HBV DNA production.   

 

HBsAg was only detected in the livers of mice infected with subgenotype A1 with the 

G1862T mutation, which was indicative of the high HBV replication levels.  HBcAg staining 
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in the chimeric liver was positive when the mice were infected with genotype D, which 

concurs with previous observations that genotype D is characterised by high HBcAg 

expression (Sugiyama et al., 2006).  Subgenotype A1 with the G1862T mutant showed the 

highest levels of apoptosis as a result of the abnormal precore precursor protein accumulation 

shown to be associated with this 1862 missense mutation (Chen et al., 2008, Hou et al., 2002). 

In the population based study a similar finding was observed altlhough apoptosis levels 

differed between the disease groups. Significantly higher apoptosis levels were observed in 

HCC patients infected with subgenotype A1 1862 mutant, while the opposite was observed in 

the asymptomatic group, with significantly lower apoptosis levels associated with patients 

infected with subgenotype A1 1862.  These findings suggest that the G1862T variant 

influences HBV infection by affecting the levels of apoptosis at different stages of HBV 

disease progression.  This may suggest a potential switch from anti- to pro- apoptosis 

depending on the progression of HBV disease and requires further investigation. Thus 

different genotypes and subgenotypes as well as variations within genotypes can influence the 

outcome of HBV infection, which can further be influenced by host factors.  

 

In the population based study, associations were found between genotypes and host factors 

including age and gender.  Moreover, subgenotypes or genotypes were found to be related to 

HBV viral load as well as to apoptosis and to HCC.   Patients infected with genotype C or 

subgenotype A1 were shown to possess a higher odds ratios of developing HCC compared to 

subgenotype B2 or genotype D, respectively. In agreement with previous studies, significantly 

higher HBV viral loads were observed in genotype C compared to subgenotype B2.  Among 

the Asian cohort, it was also shown that the male gender was positively associated with high 

viral loads in HCC patients.  Moreover, a positive association between higher HBV viral load 

levels and HCC in the South African cohort was observed.  

 

Male gender, older age, HBV viral load, subgenotype A1 and the presence of the G1862T 

mutation were shown to be positively and significantly associated with higher levels of 

apoptosis.  Apoptosis was measured by the presence of cleaved cytokeratin 18 (M30) and 

shown to be significantly higher in the HCC disease group compared to the asymptomatic 

group regardless of ethnicity, viral load and genotype.  This suggests the potential use of M30 

as a surrogate marker for HBV disease progression. 

 



 97 

When comparing the genotypes that prevail in South Africa, significantly higher apoptosis 

levels were found to be associated with subgenotype A1 compared to genotype D.  This 

shows that even within a specific geographical area, the presence of multiple genotypes has an 

effect on HBV infection and disease. 

 

We conclude that even when the influence of host and environmental factors is controlled for, 

as is the case in the chimeric mouse model, the HBV genotype can affect the progression of 

infection.  Moreover, it was shown in the population based study that the effect of HBV 

genotype on the outcome of HBV infection can be influenced by host factors.  The 

subgenotype A1 G1862T mutation was shown in both studies to affect both HBV infection 

and apoptosis.  This suggests that HBV variants should be investigated to ascertain their 

potential impact on the course of HBV infection as it may differ from the wild-type.  

Apoptosis was shown to be associated with HBV infection in both studies and could possibly 

be an ideal marker of the progression of HBV infection.   

 

These findings are important in helping us to understand factors influencing the course of 

HBV infection.  We have therefore shown in both the studies that differences do exist 

between the South African subgenotype A1 and genotype D, and that these differences should 

be taken into consideration for the future evaluation of HBV infection and treatment of South 

African HBV infected patients.   Moreover, cleaved cytokeratin 18 may provide an ideal 

surrogate marker for HBV disease progression and monitoring.    
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APPENDIX A – LISTING OF SOLUTIONS   

 

A1) 1 % AGAROSE GEL   

 100 ml 1X TBE buffer (A2) 

 1 g of agarose 

 6 μl of 0.01 mg/μl ethidium bromide 

 

A2) 1 X TRIS-BORATE-EDTA (TBE) BUFFER 

 10.8 g of Tris-base 

 0.93 g of EDTA 

 5.5 g Boric acid  

 Dissolve in 1 ℓ distilled water  

 

A3) 6 X GEL LOADING DYE 

 3 ml glycerol 

 25 mg bromophenol blue (Merck, Germany) 

Made up to 10 ml with nuclease-free sterile water 

 

A4) 3 % COMPOSITE  AGAROSE GEL   

 100 ml 1 X TBE buffer (A2) 

 1 g of D1 agarose (Pronadisa, Madrid, Spain) 

 2 g of NuSieve GTG agarose (BioWhittacker Molecular Applications, Rockland, 

ME) 

 6 μl of 0.01 mg/μl ethidium bromide 
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A5) 0.8 % CRYSTAL VIOLET  AGAROSE GEL   

 50 ml 1 X TAE buffer (A6) 

 0.4 g of agarose 

 40 μl of 2 mg / μl Crystal Violet solution 

 

A6) 1 X TRIS-ACETIC-EDTA (TAE) BUFFER 

 4.84 g of Tris-base 

 0.74 g of EDTA 

 1.14 ml glacial acetic acid  

 Dissolve in 1 ℓ distilled water  

 

A7) LURIA BERTANI (LB) AGAR PLATES WITH KANAMYCIN 

 15 g agar 

 10 g/ℓ sodium chloride 

 10 g/ℓ tryptone                              

 5 g/ℓ yeast extract 

 Dissolve in 1 ℓ distilled water 

 Autoclave for 20 minutes 

 Cool to 55 
o 
C and add 1 ml of kanamycin (50 mg/ml) 

 Pour into 60 mm petri dishes and store at 4 
o 
C 

 

 

 

 

 

pH 7.4 
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A8) LURIA BERTANI (LB) BROTH WITH KANAMYCIN 

 

 10 g/ℓ sodium chloride 

 10 g/ℓ tryptone                              

 5 g/ℓ yeast extract 

 Dissolve in 1ℓ Sabax water 

 Autoclave for 20 minutes 

 Cool to 55 
o 
C and add 1 ml of kanamycin (50 mg/ml) 

 Store at 4 
o 
C 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

pH 7.4 
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APPENDIX B – ETHICS 
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