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Abstract 
 

 

The forecasting ability of the macroeconomic factors upon South African commercial 

property return is investigated in this research. Such research is still very novel in South 

Africa and only Brooks and Tsolacos (2003) has recently investigated this relationship with 

several European markets. In this research, both direct property returns (IPD) and indirect 

property returns (J255 and J256) are investigated. The macroeconomic factors that are 

identified to have some influence on commercial property return are term structure, gilt-

equity ratio, employment index, building plan passed and changing inflation rate (CPIX 

index). Four different types of models were investigated, namely the univariant ARMA 

model, the univariant GARCH model, the VAR model and the MLP neural network model.  

The optimal model for each type is identified using AICc and BIC information criterion 

techniques. The optimal models are then used in long-term forecasting and short-term 

forecasting. The ARMA model and the neural network were identified to best predict indirect 

and direct property returns, respectively.  
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Foreword 
 

 

This is a research report presented for the degree of Master of Science in Building, by 

coursework and research, at the University of the Witwatersrand, Johannesburg, South 

Africa. 

 

The research report is titled “Forecasting return of commercial property in South Africa using 

macroeconomic factors”, which investigates the relationship between commercial property 

return in South Africa and various macroeconomic variables.  

 

The research commences with a literature survey, identifying the macroeconomic variables 

that have influence on commercial property return and the models that are previously used in 

predicting property return. The degree of relationship between each macroeconomic variable 

and property return is calculated and those that are strongly related are used for forecasting. 

The forecasting models are optimised and the performances of the models in predicting retail, 

office and industrial property return are compared.  

 

The research report is presented in the format of a thesis that contains the essential analysis 

and results of the research. The appendices, which are digitised in EXCEL and WORD 

formats, and the rest of the information associated with this research can be found in the 

associated CD.   

 

The first appendix (Appendix A) contains tables of input and output data, which are the 

investigated macroeconomic factors and the property return, used in the research.  

 

The second appendix (Appendix B) contains graphs of all the macroeconomic factors, the 

indirect and direct property returns and their deviations and the correlograms of the indirect 

and direct property returns and their deviations.  

 

The third appendix (Appendix C) contains the result from the Granger causality analysis 

where the degree of relationship between each macroeconomic variable and property return 

are tabulated.  

 

The fourth appendix (Appendix D) contains a background on the Matlab software and the 

development of the models investigated in this research. 

 

The fifth appendix (Appendix E) contains the result of the optimisation process for each type 

of model investigated in this research. 

 

The sixth appendix (Appendix F) contains graphs from the impulse analysis of the optimal 

models for long-term predictions. 

 

The seventh appendix (Appendix G) contains the schedule of the M-file developed in this 

research. 
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1 Introduction 
 

It is an established theory that the performance of various investment markets, such as 

that of stocks, commodities and bonds, is related to the macroeconomic environment and 

its components. When investigating the macroeconomic environment of an economy, the 

focus tends to be placed on aggregate demand and supply (Ball et al., 1998: 159-161).  

Aggregate demand is usually defined by the total expenditure flowing through the 

economy, which is the sum of the total consumption expenditure in the economy, total 

investment, government expenditure and net export (Ball et al., 1998: 159-161). The 

investment in property is considered as either government expenditure, if the properties 

are invested for the use and operation of government, or is considered to be part of the 

total investment through the private sector. Thus one can assume that there is an expected 

relationship between the property market and the macroeconomy. As discussed in Ball et 

al. (1998: 220), it is essential for investors and portfolio managers to forecast property 

return as it provides a prediction of the expected target return, which consequently assists 

in making accurate investment decisions.  This research presents models that determine 

the effect on the return of commercial property arising from changes in the 

macroeconomic environment on the South African property market.    

 

1.1 Problem Statement 
 

This research is based on the observation that there is a relationship between various 

macroeconomic factors and the return of commercial property markets. Such relationship 

is investigated extensively in developed markets such as in the USA, UK, Singapore and 

Australia. However, in South Africa where the market is not as well developed as those 

of the US and the UK, this relationship has received little attention. Therefore, this 

research is largely concerned with the relationship between property returns and expected 

returns in the property sector.  

 

1.2 Research Hypothesis and Objective 
 

This research hypothesis is concerned with the return of commercial property 

investments in South Africa, which can be forecasted using advanced time-series 

modelling techniques and macroeconomic factors. In considering this research hypothesis, 

three main research objectives are addressed. The first objective is to identify the 

macroeconomic factors that affect the return of commercial property in South Africa. The 

second is to identify various types of time-based models used previously in forecasting 

the property sector and using them to predict property return. The third is to compare the 

predictive ability of models from which an optimal predictive model is identified.  

 

1.3 Scope of Research 
 

The scope of the research is limited to the South African property market and its 

macroeconomy. Furthermore, the research is focused on the returns of South African 

commercial and industrial properties only.  This is based on the view that commercial 
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properties are more directly related to the variation of macroeconomic factors than, for 

instance, the residential sector. The research is also focused on existing models used for 

forecasting such relationships and thus little consideration is given to other predictive 

models. 

 

1.4 Research methodology 
 

The quantitative research methodology adopted by this research project also determines 

the sequence of chapters of the thesis. It is divided according to the following sections: 

 

1. Literature reviews made in this field of research 

2. Evaluation of the characteristic of the commercial property return investigated 

and the various macroeconomic factors considered 

3. Discussion of the implementation of the models in the simulation software 

4. Evaluation of the relationships between commercial property return and various 

macroeconomic factors 

5. Identification of the optimal parameters for each type of models investigated 

6. Evaluation of the performance the models used in the research 

7. Conclusion to findings  
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2 Literature Review 
 

The relevant literature is evaluated and divided based on three essential criteria, namely 

the macroeconomic input variables of the proposed model, the type of return that the 

model predicts, and the type of model used for prediction.  

 

The review focused on several significant international research studies, namely the 

works of McCue and Kling (1994), Brook and Tsolacos and West and Worthington 

(2004), as well as existing local studies that are somewhat related to the field investigated 

in this research.  Ball et. al (1998: 245) highlighted that it is very difficult to predict yield 

or return since this factor is relatively stable in established market. Return is determined 

by the sum of the risk free rate and the risk premium of the investment. There are two 

different approaches in predicting return, namely regression methods and the cash flow 

method. Since the focus in this research is on macroeconomic scale, only regressive 

methods are investigated. 

 

2.1 Macroeconomic factors 
 

McCue and Kling (1994) conducted some of the earliest significant research on the 

subject.  Their research is focused around the effect of prices, short-term nominal interest 

rate, economic output, and investment as the macroeconomic factors. They concluded 

that there is a strong relationship between short-term nominal interest rate and property 

returns and a weak relationship between economic output and property returns. Prior to 

this work, they had also researched the macroeconomic factors affecting office 

investment (McCue and Kling, 1987). The research found that nominal interest rate 

significantly affects the volume of office construction, which coincides with their 1994 

findings.  

 

Ling and Naranjo (1997) and (1998) are two other research studies that investigate the 

macroeconomic factors that affect the risk premium of property. Ling and Naranjo (1997) 

identified the growth rate in real per capita consumption, the real Long bond rate (T-bill 

rate), which reflects the real short term interest rate calculated by deducting the  inflation 

rate (measured by consumer price index) from the 3-month bond rate (Ling and Naranjo, 

1998), the term structure of interest rates, and the unexpected inflation rate; which is the 

difference between the actual inflation value (defined by the consumer price index) and 

the expected inflation rate (predicted using the Box-Jenkins process) as influencing 

factors.  

 

In their later work, Ling and Naranjo (1998) included the stock market performance, 

which is quantified using the excess return of a value-weight portfolio of stocks trading 

on the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX) and 

the NASDAQ. The research identified that growth rate in real per capita consumption is a 

significant factor for all types of return. Furthermore, the change in real short-term 

interest rate and interest rate term structure are negatively correlated with property returns. 

The interest rate term structure in this research is defined as the difference between the 

average annualised yield of the 10-year Long bond (Treasury bond) and the 3-month 
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bond (Treasury bill). Returns were found to be most sensitive towards the changes in real 

short-term interest rate and unexpected inflation.  

 

Brook and Tsolacos (1999), (2001), (2001a) and (2003) have extensively researched the 

impact of the macroeconomy on the property market in the United Kingdom. They have 

published three research papers on the topic. The earliest work was Brook and Tsolacos 

(1999) where the investigated economic factors were previous property return as a 

dependant variable, the rate of unemployment, nominal short-term interest rates, term 

spread (term structure) of interest rate, unanticipated inflation and dividend yield as the 

independent variable. Their analysis identified that there are strong relationships between 

the unexpected inflation and term structure of interest rate and the property return in the 

UK.    

 

Term structure of interest rate is defined as the difference between the yields on long-

term bonds and short-term bonds (Brook and Tsolacos, 2003). The term structure is said 

to determine the future expectation of the interest rate and the economic condition as 

mentioned in Brook and Tsolacos (2001). As discussed in Investopedia (2009), the term 

structure is generally positive under normal economic conditions. When the value is close 

to zero, the short-term rate is high and the long-term rate is low and is an indication that 

the market is sending mixed signals. In the situation where the term structure value is 

negative, the long-term rate is lower than the short-term rate and thus the future interest 

rate is expected to decline.  Brook and Tsolacos (2001) also cited the fact that the short-

term bond rate determines the rate of inflation of the economy while the long-term bond 

rate reflects future economic growth, activities and probably inflationary tendencies, 

factors that affect both short-term and long-term investment in the economy. 

  

Unanticipated inflation is defined as the difference between the realized inflation rate and 

an estimated series of expected inflation (Brook and Tsolacos, 1999). Unexpected 

inflation is obtained by fitting an (ARIMA) model to the inflation data with a one period 

lag and extracting the mean from the model, which is the resultant expected inflation.  

 

In the research by Brook and Tsolacos (Brook and Tsolacos, 2001 and 2001a), the 

number of macroeconomic factors (independent variables) were narrowed down to two. 

In Brook and Tsolacos (2001), the term structure of interest rate and gilt equity yield ratio, 

along with the indirect property index (dependant variable), were selected for the analysis, 

while in Brook and Tsolacos (2001a), the effect of both short-term and long-term interest 

rates and the term spread of interest rate on property returns were examined. The term 

spread of interest rate is the difference between the long-term interest rate and the short-

term interest rate. 

 

Gilt-equity yield ratio, according to Brook and Tsolacos (2003), is the ratio of the income 

yield of long-term government bond to the dividend yield on equities. When the dividend 

yield is low, the ratio is high. In such a situation, equity becomes more expensive than 

bond. Conversely, the ratio is low when the dividend yield is high. In both cases, the 

income yield of the bond will have to be adjusted so that equilibrium state is reached.   

 



5 

 

 

 

Other macroeconomic factors previously investigated, such as the rate of unemployment, 

nominal short-term interest rate and inflation, were not investigated in this research 

because those factors were considered to have inferior predictive power in Brook and 

Tsolacos (2001).  

 

Brook and Tsolacos (2001) conclude that the term-spread of interest rate and the gilt-

equity yield ratio can improve the accuracy of short-term property return prediction. In 

the work of Brook and Tsolacos (2001a), it was found that the term spread of interest rate 

is co-integrated with property return but both the term spread and the short-term interest 

have relatively small significance on the variation of property return. 

 

Brooks and Tsolacos (2003) once again investigated the relationship between the gilt-

equity yield ratio and the term structure of interest rates and their impact on property 

returns. However, they had also introduced the dividend yield of the property index as an 

additional macroeconomic factor. Dividend yield was introduced in the research as it 

reflects the future growth, profitability and dividend of the investment. 

 

The economic factors researched in all of the above works by Brook and Tsolacos was 

derived from the significant work of Qi and Maddala (1999). Qi and Maddala (1999) 

identified that there is a non-linear relationships between various economic factors and 

stock market return and conversely a non-linear relationship between excess stock market 

return and certain economic factors. The economic factors were dividend yield, short 

term interest rate, variations in short-term interest rate, growth rate of industrial 

production, inflation rate and money growth rate. The growth rate of industrial 

production was calculated based on the logarithmic differences of the 12-month average 

of the industrial production index between two successive periods.  The inflation rate was 

also calculated based on the logarithmic differences of the annual average of producer 

price index on finished goods between two successive periods.  

 

One of the most recent research studies on the topic is West and Worthington (2004). 

They employed previous general market return as dependant variable and interest rate 

and inflations as independent variables. Furthermore, they introduced construction 

activities, industrial production and employment index into their model, which were 

factors previously examine by McCue and Kling (1994) and Brook and Tsolacos (1999).  

 

They calculated the inflation rate based on the Consumer Price Index (CPI) in the 

housing sector. Unexpected as well as expected inflation is calculated using the Box-

Jenkin ARIMA model where the trend extracted from the model represents the expected 

inflation and the error movement remaining represents the unexpected inflation. The level 

of construction activity, which indicates the level of supply in the market, is represented 

by the number of building plans approved for non-residential buildings; while the indices 

for manufacturing, which indicate the level of demand in the market, represent the level 

of industrial production. Lastly, the employment index is used to represent the level of 

growth in various industries. The result of the research indicated that inflation, industrial 

production, employment index and interest rate are all significant factors affecting 

commercial property return.  
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Several research studies were published focusing on specific factors, such as stock 

market performance, employment growth rate and inflation, affecting the property return 

and market performance. Lizieri and Satchell (1997) investigated the relationship 

between property market return and stock market performance and found that lagging  

equity return affected the property market return. Liang and McIntosh (1998) investigated 

the relationship between employment growth rate and property return. The employment 

growth rate data gathered for this research was from 46 different metropolitan areas 

across the US. They have found that the relationship is positively correlated and is 

significant only for short-term property return.   

 

The research on the relationship between inflation and property return has been the most 

focused topic in this field and is the most conflicted. Chan et al. (1990), Stevenson and 

Murray (1999), Onder (2000) and almost all of the findings in Liu et al. (1997) (except 

for French index for short-term return) found that such relationship is negative correlated. 

While Hartzell et al. (1987), Hoesli (1997), Bond and Seiler (1998) and Quan and Titman 

(1999), found that for a long-term investment, such a relationship is positively correlated. 

Liu et al. (1997) and Hoesli (1997) argued that the cause of such discrepancy is due to the 

fact that some of the investigated indirect property returns, which are indexes from REITs 

and various other listed property stocks and trusts, behave more like stocks than an 

individual property asset. The work from Onder (2000) contradicts such finding as the 

property return data used was direct house prices from various metropolitan areas in 

Turkey, an economy with highly volatile inflation.   

 

The following is a summary of other related research that has bearing on this work:  

 

1. Chan et al. (1990) investigated the effects of changes in risk and term structure of 

interest rate, unexpected inflation and the discount on closed-end stock funds on 

the return of some REITs. The research identified that REIT return is negatively 

correlated to unexpected inflation.  

2. Karolyi and Sanders (1998) employed the weight-index of NYSE, Amex and 

NASDAQ, the risk premium of high-yield corporate bonds, the term spread of 

interest rate and unexpected inflation rate as the examining economic factors. The 

research identified that the risk premium of high-yield corporate bonds and the 

stock market have little influence on the return of the property index. 

3. Further to the investigation of the relationship between inflation and residential 

property return, Bond and Seiler (1998) evaluated other variables that are also 

positively correlated to the return, namely the ratio of household to the total 

population, the real disposable income and its rate, GDP level and its growth rate. 

4. Liow (2004) identified that there is a link between office and retail excessive 

return and five macroeconomic factors, namely growth rate of GDP, growth rate 

of industrial production output, unexpected inflation, short-term interest rate and 

market portfolio. 

5. In Ball et al. (1998), the only related research study identified is the work from 

Hetherington (1988). The research proposed a model that predicts initial yield 

based on the yield of long-dated gilt (long term bond rate), which relates to the 
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risk free rate, and the average investment in property and bank lending rate, which 

relates to the risk premium.  

 

The research of the affecting factors on property return is summarised in the table below. 

 

Research Macroeconomic factors 

McCue and Kling (1994)  
short-term nominal interest rate, property price, economic output, 
level of investment 

Ling and Naranjo (1997) and (1998) 
growth rate in real per capita consumption, the real Long bond  rate, 
term structure of interest rates, unexpected and expected interest 
rate, stock market performance,    

Brook and Tsolacos (1999) 
previous property return, rate of unemployment, nominal short-term 
interest rates, term spread of interest rate, unanticipated inflation 
and dividend yield  

Brook and Tsolacos (2001) 
the term structure of interest rate, gilt equity yield ratio, indirect 
property index, rate of unemployment, nominal short-term interest 
rate, inflation 

Brook and Tsolacos (2001a) 
short-term interest rate, long-term interest rates, the term spread of 
interest rate  

Brook and Tsolacos (2003) 
gilt-equity yield ratio, term structure of interest rates, dividend yield of 
the property index  

Qi and Maddala (1999) 
dividend yield, short term interest rate, variations in short-term 
interest rate, growth rate of industrial production, inflation rate and 
money growth rate 

West and Worthington (2004) 
previous property return, interest rate, inflations, construction 
activities, industrial production and employment index 

Lizieri and Satchell (1997) equity return 

Liang and McIntosh (1998) employment growth rate  

Stevenson and Murray (1999), Onder (2000), 
Liu et al. (1997), Hartzell et al. (1987), Hoesli 
(1997) and Quan and Titman (1999) 

Inflation 

Chan et al. (1990)  
changes in risk and term structure of interest rate, unexpected 
interest rate and the discount on closed-end stock funds  

Karolyi and Sanders (1998) 
stock market index, the risk premium of high-yield corporate bond, 
the term spread of interest rate and unexpected inflation 

Bond and Seiler (1998) 
inflation, ratio of household to the total population, the real 
disposable income and real disposable income rate, GDP level and 
GDP growth rate 

Liow (2004)  
growth rate of GDP, growth rate of industrial production output, 
unexpected inflation, short-term interest rate and market portfolio 

Hetherington (1998) long term bond rate, level of property investment and bank lending  

 

 

Table 1.1: Summary of factors influencing property return in previous research 
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The most investigated macroeconomic factors are inflation, interest rate (in particular 

term structure of interest rate) and general macroeconomic data such as GDP, production 

level and employment rate.  In some research, the performance of the stock market is also 

considered.  

 

2.2  Predicted returns 
 

There are two different types of property return investigated, namely direct and indirect 

property returns. Direct property return reflects returns from direct investment in 

properties, i.e. directly held property investment. While indirect property return refers to 

returns from indirect property investment, i.e. purchasing listed stocks of companies and 

trusts that own and invest in properties.  

 

Bond and Seiler (1998), Liang and McIntosh (1998), Quan and Titman (1999), Stevenson 

and Murray (1999), Onder (2000), Liow (2000) and Liow (2004), researched the effect 

on direct property returns. The data has been sourced from US (in Liang and McIntosh, 

1998, and Bond and Seiler, 1998), Singapore (in Liow, 2000 and 2004) and Turkey (in 

Onder, 2000).  

 

The returns are generally related to certain geographical locations or types of property. 

For example, Bond and Seiler (1998), Liang and McIntosh (1998) and Onder (2000) 

researched on property returns in specific suburbs;  Onder (2000) utilised only residential 

properties return and Liow (2004) utilised office, retail and industrial property returns.   

 

Chan et al. (1990), Liu and Mei (1992), McCue and Kling (1994), Liu et al. (1997), 

Hoesli (1997), Karolyi and Sander (1998), Brook and Tsolacos (1999; 2003) researched 

the effect on indirect property returns. Many of the works are based on the US REITs 

index, such as Chan et al. (1990), Liu and Mei (1992), McCue and Kling (1994) and 

Karolyi and Sander (1998). The other data are derived from the Swiss real estate mutual 

fund (Hoesli, 1997), FTSE Property Total return index (Brook and Tsolacos, 1999) and 

property stock index from London, Amsterdam, Brussel, Paris and Milan exchange 

(Brook and Tsolacos, 2003).  

 

Ling and Naranjo (1998) was one of the earliest works to investigate both indirect and 

direct property returns. The indirect property return data was calculated from REIT and 

returns from listed construction, property management, hospitality and other property- 

related companies. The direct property return data was the appraised-based return 

obtained from the National Council of Real Estate Investment Fiduciaries (NCREIF), 

which is an organisation based in America that collects direct property investment data, 

and return calculated from the capitalisation rate of an insurance company property 

portfolio. The authors divided the return data into geographical, regional and property 

type categories.  The author then deduced the short-term interest rate from the return data 

to obtain the risk premium data. 
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Brook and Tsolacos (2001) and (2001a) used UK property index for indirect property 

return, which consisted of a market value-weighted index based on the top 26 property 

stocks traded in London Stock Exchange, and were the first research to use IPD (UK) 

property return data for direct property return. 

 

West and Worthington (2004) commented that both types of returns should be 

investigated and compared. For direct return, they used the direct commercial property 

indices from Australia Property Council, which is an appraisal based accumulated indices 

that measures total returns of 70% of commercial properties held by institutions in 

Australia. For indirect return, they derived the return from the Australian Stock Exchange 

Listed Property Trust (ASX/LPT) 300 Index, which is derived based on logarithmic 

changes between two consecutive indices.  

 

The research of the type of returns investigated is summarised in the table below: 

 

Type of return Research 

Indirect 
Chan et al. (1990), Liu and Mei (1992), McCue and Kling (1994), Liu et 
al. (1997), Hoesli (1997), Karolyi and Sander (1998), Brook and 
Tsolacos (1999; 2003)  

Direct 
Bond and Seiler (1998), Liang and McIntosh (1998), Quan and Titman 
(1999), Stevenson and Murray (1999), Onder (2000), Liow (2000; 
2004) 

Both indirect and direct 
Ling and Naranjo (1998), Brook and Tsolacos (2001; 2001a), West 
and Worthington (2004) 

 

 

Table 1.2: Summary of the type of returns investigated in previous research 

 

 

Having reviewed the previous research, most use only one type of return. Only a few in 

recent times compare the performance of both type of return. The research here moves on 

with a discussion of the types of models used in forecasting the property return. 

 

 

2.3 Models  
 

The research is focused around four types of models, namely the Vector Autoregression 

(VAR) model, the Autoregressive Moving Average (ARMA) model, the General 

Autoregressive Conditional Heteroskedasticity (GARCH) model and the neural network 

model. In this section, the theories behind these types of models as well as other types of 

models and their application in the field of commercial property return are discussed.  
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2.3.1 Autoregressive moving average (ARMA)  

 

This is regarded as one of the most useful and widely-used time-series models. The 

output of the model is dependent on the previous output (known as the dependent 

variables) and the previous value of other variables (known as independent variables). 

The model is a combination of two separate models, namely the autoregressive (AR) 

model and the moving average (MA) model as defined in Chatfield (2001: 59-64).  

 

The AR(R) model is defined by the following equation: 

 

tRtRRtRttt ZXaXaXaXaX ++++= −+−−−− 112211 K   (1) 

 

Where: 

 

Xt the value of the variable X at time t (predicting variable) 

Xt-1 the value of the variable X at time t-1 (predictor variable) 

Xt-R the value of the variable X at time t-R 

a1 the degree of influence of Xt-1 on Xt 

aR the degree of influence of Xt-R on Xt 

Zt variable of random process determining the error term of the equation 

R the degree of lags, which determines the number of previous X values that   

influence the current X value 

 

 

The MA(M) model is defined by the following equation: 

 

MtMMtMttt ZbZbZbZbX −+−−− +++= 11110 K   (2) 

 

Where: 

 

Xt the value of the variable X at time t (predicting variable) 

Zt variable of random process at time t (predictor variable) 

b0 the degree of influence of Zt on Xt 

Zt-M variable of random process at time t-M 

bM the degree of influence of Zt-M  on Xt 

Zt variable of random process at time t 

M the degree of lags, which determines the number of Z values that influence the 

current X value  

 

The two equations above for both of the models assume that the mean is zero. If the mean 

is not zero, it will be of the following form: 

 

tRtRRtRttt ZmXamXamXamXamX +−+−+−+−=− −+−−−− )()()()( 112211 K  (3.1) 

 

MtMMtMttt ZbZbZbZbmX −+−−− ++++= 11110 K  (3.2) 
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In both of the equations, the mean is deduced from the predicting variable series X so that 

the actual fluctuation caused by the predictor is investigated. It must be noted that the 

mean (m) must be a constant. 

 

The combination of the equations of the two models is the following: 

 

)()()()( 112211 mXamXamXamXamX RtRRtRttt −+−+−+−=− −+−−−− K  (4) 

 

        MtMMtMtt ZbZbZbZ −+−−− ++++ 1111 K  

 

The notation of the above equation is ARMA(R,M) where the variable R and M 

determine the lags of each model. The degree of lags R and M is calculated using 

selection techniques to be covered in later section. After identifying the degree of lags, 

the parameters are then calculated. Prior the calculation of the parameter, the above 

equation should be converted in terms of Zt, which is as follows: 

 

)()()()( 112211 mXamXamXamXamXZ RtRRtRtttt −−−−−−−−−= −+−−−− K  (5) 

 

MtMMtMt ZbZbZb −+−−− −−− 1111 K  

 

Chatfield (2001: 64-65) define the following iterative procedure for calculating the 

parameters a1, a2, …, aR, b1, …, bM: 

 

1. Estimate a suitable value for all of the parameters 

2. Calculate the value of Zt using the above equation for all of the values of Xt in the 

series. Take the previous value of Z in place of Zt-1 and so on. For the initial 

values in the series, assume the previous value as zero. For example, if one is 

calculating Z1 and only has the value of X1, then assume all of the previous values 

of X and Z to be zero. 

3. Calculate the residual sum of square for Zt, using an equation similar to the one 

below: 

 

n

Z
RSS

t

Zt

∑
=

2

  (6) 

 

Where: 

 

n = number of samples in the series 

 

4. Repeat step 2 and 3 by adjusting the values of the parameters accordingly so that 

the residual sum of square for Zt reaches a satisfying level close to zero, usually a 

predefined significant level. 
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Such iterative procedures are usually performed using multivariable optimisation 

techniques by means of a computer.  

 

The use of this technique to examine the relationships between current property return 

and previous property return was introduced in Brook and Tsolacos (2001) and used 

again in Brook and Tsolacos (2003). 

 

A variation of this type of time series model is the autoregressive integrated moving 

average (ARIMA) model. This type of model is widely used in many econometric 

problems where the investigated data is non-stationary, i.e. the mean of the data is 

continuously increasing or decreasing, and there is a presence of random or seasonal 

fluctuation in the data along the mean. This type of model is defined by a similar 

equation to the ARMA model defined in Chatfield (2001: 66):  

 

Rt

d

RRt

d

Rt

d

t

d

t XaXaXaXaX −+−−−− ∇+∇+∇+∇= 112211 K  (7.1) 

 

      MtMMtMtt ZbZbZbZ −+−−− ++++ 1111 K  

 

Where:  

 
d∇  differential of Xt-1 to the order of d, where: 

 

 

2

1

1

1

1 −

−

−

−

− ∇−∇=∇ t

d

t

d

t

d
XXX  (7.2) 

 

 

For example if d = 1, then: 

 

211 −−− −=∇ ttt XXX   (7.3) 

 

If d = 2, then: 

 

211

2

−−− ∇−∇=∇ ttt XXX  (7.4) 

 

 

The model is defined by the notation of ARIMA(R,d,M) where R and M are the lags of 

the autoregressive (AR) part and the moving average (MA) part of the model respectively 

and d represents the order of differencing required for data X. The AR part of the model 

forecasts the seasonal or random fluctuations about the mean of the data, hence the 

requirement of differencing, whilst the MA part forecasts the mean movement of the data. 

This type of model is widely used in McCue and Kling (1994) and Brook and Tsolacos 

(1999; 2003) to extract the unexpected and the expected inflation from the provided 

inflation data, where the mean (Moving Average part) represents the expected inflation 

while the fluctuation about the mean (Autoregressive part) represents the unexpected 

inflation. This model is also used in the research of Ling and Naranjo (1997; 1998).  
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The models covered in this section are generally regarded as univariate time-series model, 

which means that the model predicts the outcome of a variable using values from one 

variable, which could be the predicting variable. The model is useful in identifying the 

degree of influence of the current state of the property return due to its previous state.   

 

 

2.3.2 Vector autoregression (VAR) 

 

This type of model is an extended form of the univariate autoregressive (AR) model 

described in the previous section and is one of the most widely used models in this 

subject as the model allows for multiple variables to develop multiple simultaneous 

equations. This model has been used throughout Brook and Tsolacos (1999; 2001; 2003). 

 

The model is defined by the following equation (Chatfield, 2001: 246): 

 

tptpptpttt ZXXXXX ++++= −+−−−− αααα 112211 K  (8.1) 

 

Where: 

 

Xt vector of variables X at time t 

Xt-1 vector of variables X at time t-1 (predictor variable) 

Xt-p the value of the variable X at time t-p 

α1 the degree of influence of Xt-1 on Xt 

ap the degree of influence of Xt-p on Xt 

Zt variable of random process determining the error term of the equation 

p the degree of lags, which determines the number of previous X value that 

influence the current X value 

 

 

Another variation of this equation defined in McCue and Kling (1994) and Brook and 

Tsolacos (1999) is as follows: 

 

tptpptpttt ZXXXXX +++++= −+−−−− ααααα 1122110 K  (8.2) 

 

 

Where: 

 

α0 constant term 

Zt error term of the equation 

 

For m variables with one equation for each variable, there are m equations in the model. 

The variable Xt will then be a vector of m x 1, the parameter α0 will be a vector of m x 1 

and the parameter α1,…,αp are all vectors of m x m. 

 



14 

 

 

 

The parameters α0, α1,…,αp is calculated using ordinary least square equation or the Yule-

Walker equation. The use of the iterative method mentioned in the previous section is not 

required. 

 

The model has been used to find the interaction between variables within a system. It was 

first introduced by McCue and Kling (1994) to identify the relationships between various 

macroeconomic factors and the return of REITs. Brook and Tsolacos (1999; 2001; 2001a; 

2003) all used this type of model to evaluate such relationship. Generally the researchers 

use a simple VAR model for their analysis. Exceptions apply to Brook and Tsolacos 

(1999) and Brook and Tsolacos (2001a). Brook and Tsolacos (1999) employed a 

simplified version of the model where the lagged values of the variables on the left-hand 

side of the equation were not used, i.e. the lagged values calculated from the model were 

not used. In their subsequent work (Brook and Tsolacos, 2001a), they employed a 

bivariate VAR model to analyse the relationships of the interest rate and its spread on 

property return.  

 

2.3.3  General Autoregressive Conditional Heteroskedasticity (GARCH) 

 

This model is derived from autoregressive conditional heteroskedasticity (ARCH) model, 

which was developed by Engle (1982). The model is designed for series where volatility 

and conditional variance is particularly significant. Generally according to West and 

Worthington (2004), the model is used in financial application where expected return is 

directly related to expected risk.  Pena et al. (2001: 307-327) claims that volatility 

requires the following characteristics in order to apply this model: 

 

1. Volatility must be clustered, i.e. high at certain time period and low at other time 

period 

2. Volatility evolves continuously with time 

3. Volatility is stationary, i.e. it varies within certain fixed range 

4. Volatility reacts differently with positive and negative outcome 
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The equation for the ARCH model is as follows: 

 

ttt hZ ε=   (9.1) 

  

and  

 
22

110 PtPtt ZaZaah −− +++= K   (9.2) 

 

Where: 

 

Zt calculated output at time t 

a0,…,aP parameters measuring the affect of previous output on current output 

εt sequence of independent and identically distributed (iid) random variable 

P   degree of lag of the model 

ht   variance of Zt  

 

Pena et al. (2001: 307-327) described the above relationship between successive values 

of Zt as serially uncorrelated, but dependant on its previous value by a simple quadratic 

equation.  The random variable εt should be normally or t-distributed about a mean of 

zero with a variance of 1. 

 

The GARCH model is very similar to the ARCH model with the exception that ht is 

defined by the following equation: 

 

QtQttPtPtt hbhbhbZaZaah −−−−− +++++++= KK 2211

22

110  (9.3) 

 

Where: 

 

ht-1          previous variance, i.e. variance value at t-1 

b0,…,bQ parameters measuring the affect of previous variance on current variance 

Q   degree of lag of variance 

 

 

The notation for the above model is GARCH(P,Q) where P and Q defines the lags 

affecting the current variable and can be optimised. 

 

Pena et al. (2001: 307-327) summarised the approach for building a GARCH or ARCH 

model: 

 

1. Remove all seasonal and non-stationary movements in the data and deduce the 

mean of the data to zero 

2. Check for conditional heteroskedasticity by checking the distribution of the sum 

of residual square 

3. Identify the optimal order P and Q for the model 
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4. Calculate the value of the parameters   

 

The use of the GARCH model in this application is very recent, namely that of West and 

Worthington (2004) and Liow (2004). West and Worthington (2004) employed the 

GARCH in mean (GARCH-M) model in their research while Liow (2004) employs a 

typical GARCH (1,1) model and a general method of moment (GMM) is used to 

analysed the relationship between the variances of the macroeconomic factors and  

property returns.  West and Worthington (2004) commented that the benefit of using such 

model is to allow risk to vary so that account can be made for conditional covariance of 

returns with the market. Furthermore, the model accounts the effect of volatility 

clustering, where a large variation will lead to a larger variation in future predictions and 

likewise a small variation will lead to a smaller variation in future predictions.  

 

2.3.4 Neural Network 

 

Neural network is a black box modelling techniques that emulates the structure of a brain 

according to Siganos and Stergiou (1996). The network comprised of neurons, which are 

simple model defining a simple mathematic equation. An illustration of this model is as 

follows (Demuth and Hagan, 1999): 

 

 
 

Figure 1: A block diagram illustration of a neuron in a neural network 

 

 

The above is a simple multiple input neurons where p1 to pR are inputs to the neuron. 

Each of these inputs are multiplied by a constant weight, which determines the 

significance of each input. The inputs are then summed together with a constant b and 

feed into a transfer function. The equation defining the model is as follows (Demuth and 

Hagan, 1999).  

 

( )bWfa p +=   (10.1) 

  

Where: 

 

bpwpwpwnbW RRp ++++==+ ,122,111,1 K  (10.2) 
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The typical transfer function F(x) employed is a log-sigmoid transfer function where 

equation is as follows (Demuth and Hagan, 1999).  

 

x
e

xF
−+

=
1

1
)(  (11) 

 

However, one can choose to deploy another transfer function, but such transfer function 

is ideal for the general purpose of approximating a model.  

 

The simplest type of neural network is called the Multi-layered Perceptron (MLP) 

network. The network consisted of three layers, namely input layer, hidden layer and an 

output layer. The input layer consisted of the input to the network and the output layer 

consisted of the last layer of neurons that produces the output of the network. In between 

these two layers is the hidden layer, where most of the manipulation and calculation 

occurs. 

 

 

  
 

Figure 2: Diagram illustrating the structure of a MLP neural network 

 

This type of neural network is ideal for defining very complex regression and 

classification as discussed in Demuth and Hagan (1999). The parameters within the 

network such as weight and bias need to be calculated before the system is operational. 

Such process is called training. Existing input and output data and a method of 

optimizing the parameters of the network is required before training commences. 

Generally, the initial parameters set for the network is estimated. The input set is then fed 

into the network and the calculated output from the network is then compared with the 

actual output, the expected output from the data set. The difference of the outputs, which 

is defined as the error of the network is then used to adjust the parameters of the network. 

The input set is then fed into the network again and the calculated output is then 

compared with the actual output again. This process is repeated until the predefined 

satisfactory conditions from the user are met (usually the number of iterations or error 

level of the output). The calculation of the parameters of the network requires the use of 

multiple variable optimization techniques such as genetic algorithm (GA) and particle 
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swarm optimization (PSO). The most popular technique is the backpropagation algorithm, 

where the parameters are optimized using gradient-descent technique.   

 

The advantages of using a neural network in this application are that it does not require 

complex mathematical modelling and understanding (Brook and Tsolacos, 2003), all that 

the model required is a set of input and output data, and it is very robust, thus the effect 

of many macroeconomic factors on the return can be investigated.  

 

The work of Brook and Tsolacos (2003) was the only published work that has employed 

neural network in comparing property return and macroeconomic factors, where they 

employed a simple MLP model with one hidden unit and one lag for each variable. This 

neural network model was identified to be most successful for short-term prediction. The 

work of Brook and Tsolacos (2003) is based on the work of Qi and Maddala (1999). Qi 

and Maddala (1999) compare the ability of a neural network model and a linear 

regression model in predicting the relationship between macroeconomic factors and the 

stock market. 

 

In the wide field of property studies, neural network was mainly used in the valuation of 

property. Neural network has mainly been employed to model effects on the valuation of 

the property due to the sale price and date of the house (Do and Grudnitski, 1992, and 

Rossini, 1997), dimension and layout of the house (Worzala et al., 1995, Do and 

Grudnitski, 1992, and Rossini, 1997), material used for the house (Rossini, 1997), 

macroeconomic data and geographical information system (GIS) data (Ge and Runeson, 

2004) and the effect of aircraft noise (Collins and Evans, 1994). Other property related 

research studies found using neural networks are the forecasting of construction demands 

(Hua, 1996), mass appraisal techniques (Borst and McCluskey, 1997) and selection of 

property portfolio (Ellis and Wilson, 2005).   

 

From the review above, the most popular model used in this application appears to be the 

VAR model, followed by the ARIMA model, the GARCH model and the neural network. 

The review also indicated that in the earlier works by McCue and Kling (1994) and 

Brook and Tsolacos (1999), the VAR model was used and only in recent works do 

researchers employ the GARCH model and the neural network model. The argument for 

such a trend is that the VAR model is more established than the GARCH and neural 

network model. Further to this argument, the VAR model is mathematically less complex 

than the GARCH and neural network model and thus demands less computation power 

than the latter model.  

 

2.3.5 Other models  

 

In much of the other research studies, the researchers employed a simple multiple linear 

regression model, namely in Ling and Naranjo (1998), Hoesli (1997) and Karolyi and 

Sanders (1998). Bond and Seiler (1998) employed a method called the Added Variable 

Regression Model (AVRM) - a slightly more complex multiple linear regression model, 

in their research. The problem with employing such model, as discussed in Chatfield 
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(2001: 245), is that the output of the model is only defined by the specified input of the 

model and there is no relationship between previous outputs and the current output.  

 

2.4 Related research in South Africa 
 

In terms of similar research done in South Africa, there were three significant research 

studies,  namely Njuguna (2002), Poensgen (2000) and May (2004).  

 

The earliest research by Poensgen (2000) investigated the macroeconomic factors that 

affect residential property prices. The author uses the ABSA and Rode house price index 

as a benchmark for measuring residential property prices and has identified that the 

business confidence index (BCI) is highly correlated to the index. Based on this finding, a 

stepwise multiple regression model was developed based on four variables  namely the 

residential property index that consisted of BCI, investment level of residential houses, 

investment level of infrastructure construction and the value of real estate transaction. 

 

Further to the model developed by the author, two simple regression models from 

industry that predict the effect of certain macroeconomic factors on specific property 

market characteristics were identified. The first model was a regression model predicting 

the return of the property unit trusts (PUTs) in Southern Africa based on the repo rate, 

inflation rate and yield of long-term (30 year US) bonds. The US bond data was used as 

international benchmark. The second model was a five-variable model predicting the 

ABSA index for residential property. The five variables were net migration, consumer 

price index for housing, personal saving, real building cost and real PDI per capita.  

 

Njuguna (2002) investigated the macroeconomic factors that drive the movement of the 

CBD Property Fund, a private fund that was established by Sage Property Trust 

Managers Limited in 1981. The fund had a market capitalisation of over R 2 billion in 

2002 of which 32% of the value is properties in the Johannesburg and Pretoria CBDs. 

The model developed is similar to the four variables model developed by Poensgen (2000) 

consisting of the R150 10 year long bond index, the producer price index, the CPI for 

housing and the JSE real estate share price index. The model explains 69% of the price 

index of the fund, i.e. R2 = 0.69. 

 

May (2004) investigates the effects of macroeconomic variables on the changes to the 

stock market return, which is the JSE All Listed Share Index Return, between January 

1990 and December 2003. The macroeconomic variables investigated in the research 

were the change in the real industrial production, the change in the real term structure of 

interest rate and the change in the real effective exchange rate. In this research, the term 

structure of the interest rate is the difference between the Long-term government bond 

and the Treasury-bill rate, which is the 3 month short term rate. Using the Chen Roll and 

Ross (CRR) model, which is a univariant regressive model relating the rate of return in 

the market with various macroeconomic factors. The research identified the following 

findings: 
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1.  the growth rate of real industrial output positively influenced the change to the 

stock market return; as production rate rises, the return increases  

2. the term structure of interest rate is inversely related to the rate of return, the term 

structure value is positive when the business cycle reaches a low point, then 

decrease to zero when the business cycle reaches expansion stage and finally 

becomes negative when the business cycle reaches the peak of the business cycle     

3. the depreciating change in the real effective exchange rate affects positively to the 

rate of return 

 

All of the above-mentioned South African research used simple stepwise multivariable 

regression model for their work, which has no autoregressive mechanism. 

 

 

2.5 Summary of Literature Review 
 

The macroeconomic factors investigated in most of the research studies, which seem to 

have an influence on property returns, are that of interest rates and the inflation rate. In 

recent research, the term structure of interest rate was investigated in place of interest rate, 

in particular in the works of Ling and Naranjo (1998) and Brook and Tsolacos (1999; 

2001; 2001a; 2003).  Both expected and unexpected inflation were investigated, but 

unexpected inflation appears to be more useful in the forecast as identified in the works 

of Ling and Naranjo (1998) and Brook and Tsolacos (1999; 2001; 2001a; 2003). Various 

research studies focusing on inflation, mainly identify the usefulness of property 

investment in hedging against inflation and in such a case both unexpected and expected 

inflation is examined. The investigation of interest rate and inflation corresponds to the 

finding of Ball et al. (1998: 160), where the use of monetary policies and tools are 

required to control the demand of money in the economy.   

 

Further to interest rate and inflation, another significant factor that previous research has 

investigated is previous (or lagged) property return data. Such factors must be evaluated, 

as most of the investment decision is based upon the performance of the investment in the 

previous periods. In most of the previous works, this is a significant input factor for the 

developed model. 

 

Economic factors such as industrial production (McCue and Kling, 1994, West and 

Worthington, 2004, and Liow, 2004), employment growth rate (Liu and Mei, 1992, and 

West and Worthington, 2004), and GDP growth rate (Ling and Naranjo, 1998, Bond and 

Seiler, 1998, and Liow, 2004) were also identified as significant factors on property 

return. These factors are related to the aggregate supply (industrial production and GDP 

growth rate) and aggregate demand (employment growth rate) of the macroeconomic 

activities as expressed in Ball et al. (1998: 161). As previously researched in May (2005), 

where the growth rate of real industrial production is related to the return of the stock 

market, such factors should be significant in the investment market of South Africa. 
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Brook and Tsolacos (2001a) and (2003) introduced gilt-equity yield ratio and identified it 

as a significant factor affecting property return. This factor is only introduced in recent 

times in the work of Qi and Maddala (1999) and further investigation is required. 

 

The property return investigated is divided mainly between indirect and direct returns. 

The indirect return is based on the return of listed property stocks and funds and direct 

return is based on the return of property portfolios of property companies. Most of the 

previous work on indirect return focused heavily on established and regulated property 

market, in particular the US and the UK market. Furthermore, the funds and stocks in 

these markets control a very significant portion of the property market. There are few 

research studies that investigated direct property return, and the data is mainly based on 

property portfolios from independent evaluators such as NCREIF and IPD. Ling and 

Naranjo (1998), Brook and Tsolacos (2001) and West and Worthington (2004) are recent 

investigations that investigated both types of returns. Such comparison is required as they 

react differently to macroeconomic variables (Stringer, 2001), especially with indirect 

return as it is influenced by the performance of the stock market. 

 

The models used are distinguished between an univariate model, where the model only 

depend on the previous value of the predicted variable, and a multivariate model, where 

the model depend on the previous value of the predicted variable as well as other 

variables. In this research, both types of models are employed. An univariate model is 

useful in to establish the relationship between the current property return and the previous 

property return and is simple to implement. A multivariate model is used for mainly 

identifying the effect of other factors affecting the property return. The most widely use 

model is the VAR model, where it is use to identify relationships between 

macroeconomic factors and predicted return. The ARMA model was used in the works of 

Brook and Tsolacos (2001; 2003) in identifying the autoregressive nature of property 

return. The GARCH model was only introduced in recent research in West and 

Worthington (2004) and Liow (2004) where the return of the property is considered as a 

highly volatile variable. Lastly, Brook and Tsolacos (2003) investigated the use of neural 

networks to predict property return due to the ability of neural networks in predicting 

non-linear relationships. In terms of complexity, the GARCH model is the most complex 

model implement as it requires one to first implement a VAR or a VARMA model before 

one can employ the GARCH model.     

 

There are three research studies in South Africa that are of importance to this research. 

The earliest research by Poensgen (2000) investigated the effect of business confidence 

level, investment level and house prices on ABSA residential house price index. The 

author also discussed two other simple models used in industry, of which a significant 

model was developed by ABSA, where the return of property unit trust was forecasted 

based on the repo rate, inflation rate and the yield of the US 30 year long-bond. Njuguna 

(2002) developed a model to predict the performance of the Johannesburg CBD fund 

using macroeconomic factors such as the long bond index, production price index, 

consumer price index (CPI) for housing and the JSE share price index for property. May 

(2005) is the most recent related research where a model predicting the return on the 

stock market was developed. The macroeconomic factors identified as having an effect 
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were industrial production, expected and unexpected inflation, risk premium and term 

structure of interest rate. The factors used to predict the results in all of these research 

studies are similar to international studies, such as inflation rate and interest rate. Factors 

such as business confidence level and investment levels that reflects the macroeconomic 

environment were used in the work of Poensgen (2000). Generally, the model used in all 

of these research studies was a simple multivariable regression model with no 

autoregressive component, which indicates that the use of complex model in predicting 

property-related factors in South Africa has yet to be investigated. 
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3 Data specification and analysis 
 

3.1 Data specification  
 

The macroeconomic factors examined in this research are property return, inflation, term 

structure of interest rate, the gilt-equity yield ratio, industrial production, employment 

growth rate and GDP growth rate based on the conclusion of the literature review. The 

term structure of the interest rate is the difference between the yield of 10-year 

government bond and 3-year government bond, as discussed in Brook and Tsolacos 

(2003). As discussed in the literature review of the research of Brook and Tsolacos 

(2001), Ling and Naranjo (1997; 1998) and of May (2004), the term structure is an 

indication of the business cycle that the economy is in at a specific period and is related 

to the future trend of interest rate. Therefore, it is more worthwhile using the term 

structure of the interest rate in the model rather than using long term and short term 

interest rate in isolation. Inflation is determined by the consumer price index (CPIX). 

Gilt-equity yield ratio is calculated based on the ratio of the yield of the 10-year 

government bond (long-term bond) to the dividend yield of the JSE All Listed Share 

Index (ALSI), which is the equivalent overall stock market yield in South Africa. The 

calculation method of the gilt-equity yield ratio is in accordance with the method used in 

Brook and Tsolacos (2001; 2003).  

 

DY

LTBR
GER =   (12) 

 

Where: 

 

LTBR long term bond rate 

DY dividend yield 

 

 

The effect of the manufacturing index, rate of employment in the construction sector and 

the GDP of the country are also examined in the research, as recommended by West and 

Worthington (2004). West and Worthington (2004) also examined the affect of the level 

of construction on the property returns in their research. They argued that the level of 

construction is useful in determining the level of supply of new properties and 

consequently affecting the aggregate supply of the macroeconomy. In this research, the 

number of building plans passed, which represents the number of new construction works 

approved, is examined.  

 

Furthermore, the prime lending rate from financial institutions is introduced in this 

research, which is defined as the interest rate that financial institutions charge when 

lending their money to the public and is relate to the ability of property investors to 

access loans to purchase properties (Liberta, 2011). Repossession rate, which is the rate at 

which financial institutes borrow money from the reserve bank and directly related to the 

prime lending rate (Liberta, 2011a), was not considered. This is because there is 
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insufficient historical data available in the market; data is only available from 1999 

onwards. The movement of the prime lending rate, measured by the change in prime 

lending rate, is also investigated in this research. 

 

The indirect and direct property returns are examined in the research. The direct return is 

the IPD property return of retail, office and industrial properties in South Africa. The 

indirect returns examined are the J255 property trust index and the J256 property loan 

stock index. The observation period for indirect property return is between 1
st
 quarter of 

1989 and 4
th

 quarter of 2007 for J255 property trust index and 3
rd

 quarter of 1991 and 4
th

 

quarter of 2007 for J256 property trust index. The observation period for direct property 

return is between 1
st 

quarter of 1995 and 4
th

 quarter of 2007.  

 

The analysed return data are divided into two further parts, namely the actual return value 

and the return deviation value. The actual return value is the average return in a specific 

quarter and the return deviation value is the standard deviation of the return in a specific 

quarter. The return deviation is valuable for determining the degree of volatility in the 

market in a specific quarter. The standard deviation of indirect return is calculated based 

on the annual return recorded monthly. The standard deviation of direct return is 

calculated based on the annual return recorded from different types of properties in 

different regions of South Africa.   

 

 

3.2 Data Analysis 
 

The data analysis in this research is divided into two different sections, namely graphical 

analysis and analytical analysis. Although most previous research studies have employed 

analytical analysis, graphical analysis is also selected as it assists in understanding the 

trends and movement of the data, as discussed in Chatfield (2001: 13-20) and Ebert et al. 

(2008). 

 

3.2.1 Graphical analysis 

 

The trends of the factors affecting property return (input variables) and the property 

returns (output variables) are plotted below against time, in Appendix B, and are 

examined and discussed.  Similar to the case of Brook and Tsolacos (2001) and Ling and 

Naranjo (1997), unexpected inflation is calculated by determining the difference between 

the actual inflation and the simulated (anticipated) inflation. The simulated inflation is 

calculated based on an ARIMA (1,1,1) model developed using actual inflation data.  

 

Referring to appendix B, generally all of the input variables appear to follow a cyclic 

pattern with the exception of the GDP index, the CPIX index and the building plans 

passed index. The GDP and the CPIX index are non-stationary and increase constantly 

with time. In order to obtain useful data that can be use in forecasting, stationary data is 

required as defined by Chatfield (2001: 15-20).  First order differencing is therefore 

implemented for these two variables, which represents the rate of GDP index and the rate 



25 

 

 

 

of CPIX index. The graphs for these two indices display a more random pattern. The 

building plans passed index followed a skewed pattern, where the index increased from 

approximately 120 point in 2003 to over 200 point thereafter. This is an indication of the 

property boom between 2003 and 2007, where building activities have increased 

drastically. The prime lending rate also follows a cyclic pattern and the changing prime 

lending rate displays a more random pattern.  

 

The direct and indirect property returns (output variables) and their deviations are plotted 

and presented in Appendix B. The graphs indicate that the indirect returns displayed a 

more volatile and stochastic trend in comparison to the direct returns, this suggest that the 

indirect market is influenced by movements on the stock exchange. The trend of the 

direct returns appear to move upward between 2004 and 2007, an indication of the 

property boom during these years.   

 

Similarly, the indirect return deviations are more volatile than the direct return deviations.  

The indirect return deviations oscillate around an average value and generally spike at 

points where indirect returns are at their greatest, which is an indication of increasing risk 

and volatility. The direct return deviations again fluctuate very gently from a peak during 

1998 to a dip between 2002 and 2003 and gradually increase to another peak from 2006 

onward.   

 

The difference in the trend between the indirect and direct property data is also due to the 

nature of the data. The direct return data from IPD is based on the performance of a group 

of commercial properties on an annual basis, while the indirect return data is based on the 

performance of portfolios on the listed sector on a monthly basis. This is evident in the 

rapid increase in direct property deviations from 2006 onward, where the number of 

evaluated samples (properties) has drastically increase and has lead to greater variation in 

the data.    

 

3.2.2 Autocorrelation of the return  

 

The investigation into the autocorrelation relationship of the return (output) is essential as 

it allows one to understand the significance of the historic returns (output) on the current 

return as defined in Chatfield (2001: 55-59). As evident in the models investigated in the 

literature survey above, the autocorrelation component is an essential component of the 

models and such analysis will assist one with a basic understanding of the models under 

investigation and in identifying some initial parameters for these models. Referring to 

previous research, only Brook and Tsolacos (2001) have investigated the autocorrelation 

relationships of each return (output). As suggested in Chatfield (2001: 55-59), one of the 

best methods in analysing the autocorrelation relationship is to use the correlogram. The 

correlogram illustrates the relationships between the current value of a variable and its 

previous values. The correlogram of each output is presented in Appendix B. Due to the 

different data sizes between direct and indirect returns, a lag of 15 is investigated for the 

indirect return data and a lag of 10 is investigated for the direct return data.  
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The analysis of the indirect return indicates that the autocorrelation between the samples 

declines rapidly with increasing lag value as referred to the correlogram in appendix B. 

For J255 and for J256, the autocorrelations were only significant up to 2 lags and 3 lags 

respectively, which is an indication that historic indirect returns have minimal effect on 

current and future indirect return. Unlike the indirect return samples, the autocorrelation 

between direct return samples deteriorates gradually with increasing lag value. For all 

three different types of commercial properties, the autocorrelations were significant up to 

10 lags, an indication that the historic direct returns have very strong influence on current 

and future direct return. According to Chatfield (2001: 55-59), this usually suggest a non 

stationary trend. The correlograms of the indirect return also indicate that the 

relationships between current and historic values is slightly cyclical, which is an 

indication of the influence on the return due to the stock market.  

 

The correlogram of the indirect return deviations fluctuates randomly about the zero 

value, which indicates that the current return deviation is unlikely to be affected by 

historic return deviations. Similar to the result discussed above, the autocorrelation 

between direct return deviations is higher than the autocorrelation between indirect return 

deviations.  For all three different types of commercial properties, the autocorrelations 

were significant in the first few lags.  

 

3.2.3 Analytical analysis 

 

Instead of graphical analysis, nearly all of the previous research studies employed 

analytical analysis in determining the characteristic of the data.  Data is evaluated based 

on the distribution of the sample sets and their movement.   

 

The mean, range, standard deviation (or variance), skewness and kurtosis of the sample 

sets are investigated. The first three characteristics are self-explanatory and are widely 

investigated in any statistical problems. The skewness of a sample set determines the 

degree of deviation of the samples from the arithmetic mean of the set and is defined by 

the following equation (Spiegel and Boxer, 1972: 91): 

 

( )
3

3

σ

xxE
S

−
=   (13.1) 

 

Where: 

 

 x          variable under investigation  

x  mean of x 

σ    standard deviation of x 
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and 
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The distribution is known to be negative skew or left-skewed if a negative skewness 

value is calculated. In this case, most of the samples lie above or to the right of the 

arithmetic mean. Conversely, the distribution is known to be positive skew or right-

skewed if a positive skewness value is calculated. In this case, most of the samples lie 

below or to the left of the arithmetic mean. The skewness of a normal distribution is zero 

based on the above equations. 

 

The kurtosis of a sample set determines the shape of its distribution based on the effect of 

its outliers. It is defined by the following equation (Spiegel and Boxer, 1972: 91): 
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Where: 

 

 x          variable under investigation  

x  mean of x 

σ    standard deviation of x 

 

and 

 

( )
( )

n

xx

xxE

n

k

k∑
=

−

=− 1

4

4
  (14.2) 

 

A high kurtosis value indicates that the distribution has a sharper peak and a longer tail 

while a low kurtosis value indicates that the distribution has a round peak and a shorter 

tail. Typically, a sample kurtosis is calculated and is determined by the following 

equation (Wikipedia, 2009a). 

 

( )
3

4

4

−
−

=
σ

xxE
K   (14.3) 

 

The constant at the end represents the kurtosis value of a normal distribution, which is 3. 

Resultantly, the above equation (Equation 14.3) measures the distortion of the analysed 

distribution with respect to a normal distribution. 

 

Following previous research studies by Brook and Tsolacos and West and Worthington 

(2004), the distribution of the data is benchmarked against the normal distribution. The 
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Jarque-Bera method is used in these studies when analysing normality of distribution 

(Wikipedia, 2009b). The method first requires the sample skewness and kurtosis of the 

data set, as defined by equation 15 below. The test statistic of the sample set (known as 

JB statistic) is first calculated and then compared with the values on the JB statistical 

table, as defined in Bera and Jarque (1981). For a normal distribution, the JB statistical 

value is zero. In practice, the researcher usually defines a significant level, where if the 

calculated JB value is below this level, the data set is deemed to be normally distributed. 

Brook and Tsolacos defined a 5% and 1% significant level in their works. In this research, 

a 5% significant level is selected.   

 

( )









 −
+=

4

3

6

2

2 K
S

n
JB  (15) 

Where: 

 

S          sample skewness of the data set 

K sample kurtosis of the data set 

n   sample size of data set 

 

 

The final analysis of the examined variables is the stationary test. In the graphical 

analysis above, it was identified that the GDP and CPIX indices were highly non-

stationary and first order differencing was used to obtain significant data. For analytical 

analysis, the augmented Dickey-Fuller (ADF) test is widely used. Brook and Tsolacos 

(2003) used such technique in their work to determine whether a variable is stationary. 

The augmented Dickey-Fuller test is derived from the Dickey Fuller test (Dickey and 

Fuller, 1979),  which is a hypothesis test that examine whether a set of data is modelled 

by an autoregressive time series with a unit root, i.e. the following simple autoregressive 

equation with ρ = 1.   

 

ttt eYY += −1ρ   (16) 

 

The augmented Dickey-Fuller test utilised a more sophisticated model than the one 

defined by Equation 16 above. It utilises an ARMA model that accommodates unknown 

orders, similar to the ARMA model equation presented in section 2.3.1 (Equation 4). The 

result of the simulated model is then analysed and compared with a predefined table, 

which is called the Dickey-Fuller table. Once again, the researcher usually defines a 

significant level where, if the calculated value is below this level, the sample set is 

deemed to be stationary. 
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The table below summarised the analytical analysis of the examined explanatory data. 

 

Properties 
Term 

Structure CPIX index 
Gilt-equity 

ratio 
Manufacturing 

index GDP 
Employment 

index 

Mean -0.7279 92.171 461.72 81.700 906690 154.570 
Min -3.4467 36.767 246.26 76.950 735580 95.040 
Max 2.0100 151.800 739.91 86.470 1265000 213.490 

Standard deviation 0.9853 32.73 134.11 2.598 152710 34.467 
Skewness 0.2695 0.0619 0.3822 0.2864 0.8300 -0.2249 
Kurtosis 3.3467 1.8257 2.1511 2.0591 2.5489 2.0059 

Jarque-Bera Test 

p-value 0.55883 0.10315 0.11238 0.11167 0.00726 0.12050 
JB test result 1.16380 4.54310 4.37180 4.38440 9.85000 4.23230 

Critical value at 5% 5.99150 5.99150 5.99150 5.99150 5.99150 5.99150 

Augmented Dickey Fuller Test 

Alpha value 0.75536 4.22770 0.90936 0.60611 8.75560 0.71720 
Adf test value -1.32990 0.58206 -0.20258 -1.14330 3.29540 -0.72949 
Critical value -3.43910 -3.56630 -3.43910 -3.43910 -3.43910 -3.43910 

 -2.91520 -2.93700 -2.91520 -2.91520 -2.91520 -2.91520 
 -2.58410 -2.61520 -2.58410 -2.58410 -2.58410 -2.58410 
 -0.40460 -0.43928 -0.40460 -0.40460 -0.40460 -0.40460 
 -0.04810 -0.04988 -0.04810 -0.04810 -0.04810 -0.04810 
 0.53845 0.69424 0.53845 0.53845 0.53845 0.53845 

 

 

Properties 
Building 

plans index 
Changing 

GDP 
Changing 

CPIX index 
Unexpected 

changing CPIX 
Prime interest 

rate 
Changing prime 

interest rate 

Mean 127.360 6517.9 1.6202 0.0692 16.416 0.0188 
Min 83.867 -8689.7 0 -2.9846 10.5 -2.5 
Max 238.120 18549.0 4.0333 1.9121 23.5 4 

Standard deviation 45.922 6347.8 0.7633 0.9813 3.4611 1.0620 
Skewness 1.4750 -0.2048 0.5626 -0.4929 -0.1282 0.2498 
Kurtosis 3.7063 2.4526 3.6700 3.1966 1.9191 5.2267 

Jarque-Bera Test  

p-value 3.12x10
-7

 0.41233 0.10324 0.24791 0.1077 4.4x10
-4

 
JB test result 29.95800 1.77190 4.54140 2.78940 4.4569 15.457 

Critical value at 5% 5.99150 5.99150 5.99150 5.99150 5.9915 5.9915 

Augmented Dickey Fuller Test  

Alpha value 0.62376 0.57021 0.39339 0.38341 0.70492 0.27424 
Adf test value -0.88985 -2.23930 -4.99310 -5.08330 -0.77902 -6.74560 
Critical value -3.43910 -3.43910 -3.56630 -3.56630 -3.43910 -3.43910 

 -2.91520 -2.91520 -2.93700 -2.93700 -2.91520 -2.91520 
  -2.58410 -2.58410 -2.61520 -2.61520 -2.58410 -2.58410 
  -0.40460 -0.40460 -0.43928 -0.43928 -0.40460 -0.40460 
  -0.04810 -0.04810 -0.04988 -0.04988 -0.04810 -0.04810 
  0.53845 0.53845 0.69424 0.69424 0.53845 0.53845 

 

Table 2.1: Analytical analysis of the input (explanatory) variables 

 

The mean, minimum, maximum and standard deviation values calculated correspond to 

the graphs plotted for each variable.  
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The variables are positively skewed with the exception of the employment index, 

changing GDP, unexpected inflation (unexpected change in CPIX) and prime lending rate, 

which means that the samples are generally higher than the mean. The skewness of the 

CPIX index is the lowest while the skewness of the building plans passed is the highest. 

This corresponds to the graphical analysis above for the variables where the graph of the 

CPIX index approximate to a linear curve, an indication of a normally distributed data set, 

and the graph of the building plans passed index remained at a very low level between 

1988 and 2002 and spiked to a very high level from 2003 onward, which is an indication 

of a distribution with two means.  

 

The building plans passed index, the GDP value at market price and the changing prime 

lending rate have all failed the Jarque-Bera test at a 5% significant level, which is a value 

of 5.9915. This is because the Jarque-Bera test result calculated for these variables is 

higher than the defined critical level. The Jarque-Bera test result for the CPIX index and 

the building plans passed index is consistent with previous finding as they have the two 

highest skewness values, which is related to the normality of the data set, as defined in 

the Jarque-Bera equation (Equation 15). However, the changing prime lending rate did 

not pass the Jarque-Bera test even though it has an average skewness value. The cause of 

this phenomenon is the sudden variation in the sample values between 1998 and 2000.  

 

The kurtoses of term structure, building plans passed index, changing inflation (CPIX 

index), unexpected inflation (unexpected change in CPIX) and changing prime lending 

rate are higher than the normal distribution level, which is 3. The result indicates that the 

data samples of these variables are less spread out than the normal distribution, i.e. they 

have distribution curves with sharper peak.   These data sets also have a “longer and 

fatter” tail (Wikipedia, 2009a) and hence a higher variance value. The kurtoses of other 

variables are lower than the normal distribution level of 3, which indicate that the data 

samples of these variables are more spread out than the normal distribution, i.e. they have 

distribution curves with more rounded peak. These data sets also have a “shorter and 

thinner” tail (Wikipedia, 2009a) and hence a lower variance value. The changing prime 

lending rate has the highest kurtosis value (5.2267) while inflation has the lowest kurtosis 

value (1.826).  

 

With the exception of the changing inflation value (changing CPIX), the unexpected 

inflation and the changing prime lending rate, the calculated augmented Dickey Fuller 

test values of the other variables are all higher than the 10% significance level and thus 

have failed the augmented Dickey Fuller (ADF) hypothesis of a stationary zero-order 

series. The CPIX and GDP indices have the highest Dickey Fuller test values, which is 

consistent with previous graphical analysis where these two variables are highly non-

stationary. 
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Properties 
J255 total 

return 
J256 total 

return 
IPD return - 

retail 
IPD return - 

office 
IPD return - 
industrial 

Mean 0.18527 0.20196 0.19324 0.14471 0.17658 
Min -0.15719 -0.15799 0.09008 0.01388 0.02074 
Max 0.58246 0.55825 0.32719 0.35162 0.35264 

Standard deviation 0.15964 0.18229 0.06739 0.08830 0.10476 
Skewness 0.15313 0.10781 0.36741 0.83760 0.38569 
Kurtosis 2.45370 2.10270 1.84390 2.53450 1.69440 

Jarque-Bera Test 

p-value 0.47673 0.25994 0.11291 0.04035 0.07123 
JB test result 1.48160 2.69460 4.36230 6.42060 5.28380 

Critical value at 5% 5.99150 5.99150 5.99150 5.99150 5.99150 

Augmented Dickey Fuller Test 

Alpha value 0.68424 0.89115 1.41870 2.83270 2.02280 
Adf test value -1.63500 -0.46478 0.50532 1.73310 0.70452 
Critical value -3.43910 -3.56630 -3.56630 -3.56630 -3.56630 

 -2.91520 -2.93700 -2.93700 -2.93700 -2.93700 
 -2.58410 -2.61520 -2.61520 -2.61520 -2.61520 
 -0.40460 -0.43928 -0.43928 -0.43928 -0.43928 
 -0.04810 -0.04988 -0.04988 -0.04988 -0.04988 
 0.53845 0.69424 0.69424 0.69424 0.69424 

 

  

Properties 
J255 return 
deviation 

J256 return 
deviation 

IPD return 
deviation - 

Retail 

IPD return 
deviation - 

Office 

IPD return 
deviation - 
Industrial 

Mean 0.04597 0.04136 0.02932 0.03418 0.02399 
Min 0.00628 0.00227 0.01840 0.00558 0.00548 
Max 0.15507 0.13382 0.07291 0.06860 0.05011 

Standard deviation 0.02652 0.02578 0.01194 0.01566 0.01123 
Skewness 1.01560 1.32890 2.06360 0.07303 0.41953 
Kurtosis 5.39060 5.31450 7.10400 2.19600 2.26730 

Jarque-Bera Test 

p-value 5.07x10
-7

 1.22x10
-7

 3.33x10
-15

 0.41673 0.23543 
JB test result 28.9910 31.8390 66.6560 1.75060 2.89260 

Critical value at 5% 5.99150 5.99150 5.99150 5.99150 5.99150 

Augmented Dickey Fuller Test 

Alpha value -0.10543 -0.05163 2.71940 0.78423 1.10400 
Adf test value -9.73830 -8.58080 3.40140 -0.29888 0.47419 
Critical value -3.43910 -3.56630 -3.56630 -3.56630 -3.56630 

 -2.91520 -2.93700 -2.93700 -2.93700 -2.93700 
  -2.58410 -2.61520 -2.61520 -2.61520 -2.61520 
  -0.40460 -0.43928 -0.43928 -0.43928 -0.43928 
  -0.04810 -0.04988 -0.04988 -0.04988 -0.04988 

  0.53845 0.69424 0.69424 0.69424 0.69424 

 

Table 2.2: Analytical analysis of the output (return) 

 

The mean of the returns are generally between 14% and 20%, the indirect return of J256 

property loan stock, which corresponds to the graphs above. The standard deviation for 

the indirect return is higher than the direct return. The deviation of the indirect return 
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deviation is also higher than the standard deviation of the direct return deviation, an 

indication that indirect return is more volatile than direct return.  

 

All of the returns and return deviations are positively skewed, i.e. the sample values are 

generally higher than the mean value, which correspond with the trend of increasing 

return and volatility over the years.  

 

Similar to the analytical analysis of the explanatory variables, the data sets with the 

highest skewness levels, the direct office return, the indirect return deviations and the 

direct retail return deviations, failed the Jarque-Bera test. For direct return and return 

deviation, the result corresponds to the sudden increase in the data from 2006 onwards 

identified in the graphical analysis, which skewed the data significantly. While for 

indirect return deviation, a possible cause is the sharp spikes during periods where 

indirect return peaks, which can skew the mean significantly.  

 

With the exception of the indirect return deviations and the direct retail return deviation, 

all of the data sets have a lower kurtoses value than the normal distribution. In other 

words, these data sets have higher variance and deviation level. The high kurtosis value 

of the indirect return deviations and the direct retail return deviation also indicate that the 

deviation are more likely to be at a specific level and thus it is more likely to predict the 

levels of deviation for these data sets.  

 

Similar to the analysis of the variables, all of the return and return deviation series, with 

the exception of indirect return deviation series, failed the ADF test with 10% 

significance level and thus the series are non-stationary at zero-order. This is an 

indication of increasing average return of commercial properties over the years. 

 

 

3.3 Summary  
 

The explanatory (input) variables selected for this research are term structure of interest 

rate, gilt-equity yield ratio, manufacturing index, employment index, building plans 

passed index, prime lending rate, GDP index and CPIX index, which is inflation. 

Furthermore, the changing GDP index, changing CPIX index, changing prime lending 

rate and the unexpected inflation, which is the unexpected CPIX index change, were 

extracted from the input data for analysis. Indirect property return (output variables) 

derived from the J255 and J256 property indices and direct property return derived from 

IPD data were selected for this research. 

 

All of the data under investigation for this research is first graphically analysed. The 

graphical analysis of the input indicates that the GDP and CPIX indices increases linearly 

with time and is highly non-stationary. The indices are then subjected to first order 

differencing and thus the changing GDP and CPIX indices trends are obtained. 

Furthermore, based on previous research, the unexpected inflation trend is extracted from 

the CPIX indices using an ARIMA model. The graphical analysis of the output indicates 
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a cyclic movement over time and the trends of the indirect return are much more volatile 

than the trends of the direct return. 

 

The autocorrelations of the outputs are also analysed by means of correlograms. The 

autocorrelation relationships of the indirect returns deteriorated much quicker than the 

direct returns.  The relationships between the indirect return samples become 

insignificant after the 3
rd

 lag and the relationships between the direct return samples 

become insignificant after the 7
th

 lag. A similar trend is identified between indirect return 

deviation and direct return deviation, where the autocorrelation relationships between 

indirect return deviation samples is not present and the relationships between the direct 

return samples become insignificant after the 2
nd

 lag. 

 

Lastly, the data was analysed using analytical techniques from which the calculated 

results generally correspond to what was observed in the graphical analysis. The ADF 

stationary test was also performed and the test indicates that most of the data sets are 

slightly non-stationary, an indication of a slight increase in these trends over time. 
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4 Relationships between macroeconomic factors and 

return 
 

The relationships between macroeconomic factors and return are analysed, after an 

analysis of the nature of the input and output data in the previous section. Here, a 

technique is used in identifying the factors that have the most impact on the return. This 

process is essential in eliminating the factors that have little effect on the change of 

property return and isolating the significant factors that can be use for the development of 

simpler and concise models at a later stage. 

 

 

4.1 Analysis of causality 
 

The analysis used, which is previously used in the works of Brook and Tsolacos (2001; 

2001a; 2003), is called the Granger Causality Analysis. The initial model, developed by 

Clive Granger (Granger, 1969), was designed for the examination of the relationships for 

two time-series at a time. The basis of the analysis is to examine the effect on the changes 

to the dependant variable due to changes to the explanatory variable and quantify such 

effect by means of statistical F-test. Wikipedia (2009c) discussed that this technique does 

not apply when a relationship involves more than two variables. For relationships that 

involved multiple variables, the normal procedure is to develop a general VAR model 

with all of the variables and use the F-test to identify the relationships between the 

variables. In this research, VAR models combining the macroeconomic variables and the 

returns or the return deviations are developed and the relationships between the two are 

identified using a typical F-test, as discussed in LeSage (1998: 216-218). Such a method 

is also used in Brook and Tsolacos (2003). The following is the result from the VAR 

models developed based on a lag of 4 for indirect property return series and a lag of 3 for 

direct property return series. The short lag length defined in the models is due to a 

fundamental limitation imposed by VAR model, as discussed in LeSage (1998: 218-219). 

The limitation stated that given a specific sample size, the model is only permitted to 

have a maximum number of parameters, which is less than the number of samples 

available, before the model become inaccurate. Since the available sample size is so 

small, the number of parameters permitted for investigation and the lag values for the 

models investigated is limited to a low value. The tabulated results are the Granger 

causality probability test where the lower the value, the greater the relationship between 

the variables. For probability value higher than the defined cut off point, which is set as 

0.5, ”NaN” is indicated.  
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Variables J255 return J256 return 

Term Structure 0.13 0.42 

Gilt-equity ratio NaN NaN 

Manufacturing index 0.25 0.09 

Employment index  0.04 0.07 

Building plans passed index 0.02 0.01 

Changing GDP 0.47 0.48 

Changing CPIX index 0.21 0.20 

Unexpected changing CPIX 0.43 NaN 

Prime lending rate 0.44 0.39 

Changing prime lending rate 0.44 0.44 

J255 return 0.12 0.10 

J256 return 0.19 0.40 

 

Table 3.1: Granger causality probabilities of indirect property returns 

 

Variables J255 return deviation J256 return deviation 

Term Structure 0.08 0.04 

Gilt-equity ratio 0.03 0.23 

Manufacturing index 0.44 0.24 

Employment index  0.15 0.24 

Building plans passed index 0.20 0.09 

Changing GDP 0.22 NaN 

Changing CPIX index NaN 0.42 

Unexpected changing CPIX NaN NaN 

Prime lending rate 0.46 NaN 

Changing prime lending rate 0.33 NaN 

J255 return deviation 0.02 0.44 

J256 return deviation NaN NaN 

 

Table 3.2: Granger causality probabilities of indirect property return deviations 
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Variables Retail return  Office return  Industrial return 

Term Structure 0.19 NaN 0.24 

Gilt-equity ratio 0.09 0.25 0.28 

Manufacturing index 0.28 NaN 0.11 

Employment index NaN NaN 0.38 

Building plans passed index NaN 0.42 NaN 

Changing GDP 0.38 0.25 NaN 

Changing CPIX index 0.05 0.05 0.19 

Unexpected changing CPIX 0.16 NaN 0.35 

Prime lending rate NaN NaN NaN 

Changing prime lending rate NaN NaN NaN 

Retail return  0 NaN 0.24 

Office return  0.21 0 0.28 

Industrial return  NaN NaN 0 

 

Table 3.3: Granger causality probabilities of direct property returns 

 

 

Variables 
Retail return 

deviation 
Office return 

deviation 
Industrial return 

deviation 

Term Structure NaN 0.31 NaN 

Gilt-equity ratio 0 0.03 0.23 

Manufacturing index 0.34 0.31 0.18 

Employment index  NaN NaN NaN 

Building plans passed index 0.05 0.09 NaN 

Changing GDP 0.02 0.19 NaN 

Changing CPIX index 0.01 0.01 0.4 

Unexpected changing CPIX 0.26 0.12 0.3 

Prime lending rate 0.14 0.50 0.02 

Changing prime lending rate 0.39 0.03 NaN 

Retail return deviation 0 NaN 0.27 

Office return deviation 0.19 0 0.32 

Industrial return deviation 0.35 0.08 0 

 

Table 3.4: Granger causality probabilities of direct property return deviations 

 

 

From the test result above, the relationships between the explanatory variables and the 

output are investigated further if the probability of the relationships is less than 0.2. The 

result is summarised in the table below. The summary table below does not take into 

account the autocorrelation relationship, which will also be incorporated in the models. 
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Output Variables 

J255 return 
Term structure, employment index in construction, building plans passed 
index, J256 return  

J256 return 
Manufacturing index, employment index in construction, building plans 
passed, changing CPIX index, J255 return 

J255 return 
deviation 

Term structure, gilt-equity ratio, employment index in construction, building 
plans passed index 

J256 return 
deviation 

Term structure, building plans passed index 

Retail return 
Term structure, gilt-equity ratio, changing CPIX index, unexpected 
changing CPIX 

Office return Changing CPIX index 

Industrial return Manufacturing index, changing CPIX index 

Retail return 
deviation 

Gilt-equity ratio, building plans passed index, changing GDP, changing 
CPIX index, office return deviation, prime lending rate 

Office return 
deviation 

Gilt-equity ratio, building plans passed index, changing GDP, changing 
CPIX index, unexpected changing CPIX, industrial return deviation, 
changing prime lending rate 

Industrial return 
deviation 

Manufacturing index, prime lending rate 

 

Table 3.5: Explanatory variables with significant causality on return series 

 

 

4.2 Summary 
 

The Granger Causality method, which is based on the F-test for VAR models, is used to 

identify the relationships between the explanatory variables and the return. The factors 

most significant to each specific returns and return deviations are tabulated in Table 3.5 

above. The analysis identified that the three most influential factors on indirect return and 

return deviation are the term structure, employment index and building plans passed 

index.  

 

Both the term structure and employment index factors were identified to have significant 

influence in indirect property returns in previous research, term structure in the works of 

May (2005), Ling and Naranjo (1998) and Brook and Tsolacos (1999; 2001; 2001a; 2003) 

and employment index factor in the works of Liu and Mei (1992) and West and 

Worthington (2004). Since the term structure is directly related to interest rate, the result 

also corresponds to the general consensus that interest rate is strongly related to the 

indirect property return. However, this relationship was not identified in the test above.  

The strong relationship between the building plans passed index and indirect return is a 

new finding and unique to this research. This finding indicates that there is a link between 

direct property market, in terms of actual level of building activity, and indirect property 

market, in terms of indirect property return. Previously only West and Worthington (2004) 

investigated the effect of building activities, related to the building plans passed index, on 

indirect property return and no significance was found in the relationship between the 

two.   



38 

 

 

 

 

The factors that influence the movement of direct return and direct return deviation are 

the changing CPIX index and the gilt-equity ratio. With the exception of the industrial 

return deviation, the changing CPIX index significantly affects direct return and return 

deviations. This observation confirms the results from previous investigations where 

direct property investment has hedging ability against inflation, or in this case the 

movement of inflation. The effect of gilt-equity ratio on any property return has only 

previously been identified in Brook and Tsolacos (2001a) and (2003) where this factor 

did have an effect on indirect property return. The strong relationship between the gilt-

equity ratio and direct return is again a new finding and is unique to this research. Lastly, 

it is of interest to note that industrial return and return deviations are strongly related to 

the manufacturing index. This finding corresponds to the findings of McCue and Kling 

(1994) and May (2005). 

 

Most of the abovementioned relationships identified corresponds to the finding of 

previous research, which are predominantly conducted in well establish property markets 

with extensive property resource - namely the European, US and Australian market. The 

behaviour of the South African commercial property market is therefore related to the 

global commercial property market.  
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5 Development of simulated models 
 

The application used for developing and simulating the models is Matlab version 7.0, 

which is designed for sophisticated mathematical calculation and modelling. The 

software is designed particularly to operate with matrices and big data sets with designed 

modules of sophisticated equations and calculations. Existing modules for the required 

models in this research are available in this software. Appendix D is dedicated to the 

theory of the respective models and one can refer to this section if further understanding 

of the models is required.  It must be noted that the ARMA and the GARCH models in 

this software are limited to one output for each model and a model is designed for each 

output. The VAR and neural network models in this software can accommodate multiple 

outputs and a model is designed for each type of return, i.e. the outputs of the model 

developed for a specific type of return will accommodate for the return and its deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 

 

 

 

6 Optimising models 
 

In developing an optimal model for a problem, the trade off between the complexity of 

the model and the accuracy of the model must be considered. Traditionally, one would 

employ an ad-hoc triads and error approach in order to identify an optimal model. 

Information criterion techniques provide a more logical and scientific way of finding an 

optimal model. Two different information criterions methods are used in this research, 

which are also used in the works of Brooks and Tsolacos (1999; 2001; 2001a; 2003) and 

West and Worthington (2004). The information criterion methods are Akaike Information 

Criterion (AIC) and Schwarz Information Criterion (SIC), which is also known as the 

Bayesian Information Criterion.  

 

 

6.1 Akaike Information Criterion (AIC) 
 

This information criterion technique is the most widely used information criterion in this 

field and was developed by Hirotsugu Akaike (1974). The method is based on the 

approximately unbiased estimator of the expected Kullback-Leibler information theory 

for a fitted model, as discussed in Hurvich and Tsai (1989) and Bedrick and Tsai (1994), 

and is defined by the following equation.  

 

{ }LEF log2),( 2 −=∆ σθ  (17) 

 

Where: 

 

L maximum likelihood function of the approximating model 

 

The general equations for AIC, based on the above equation, are as follow (Hurvich and 

Tsai (1989)).  

 

 

)log(22 LkAIC −=   (18.1) 

 

OR 

 

)ln(22 LkAIC −=   (18.2) 

  

Where: 

 

k number of parameters in the model 

L maximum likelihood of the approximating model 

 

In the case where the log maximum likelihood of the approximating model is not defined, 

under further assumption that the errors are normally and independently distributed, the 

equation above (Equation 18.1) is equated to the following (Hurvich and Tsai, 1989). 
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[ ]1ˆlog2 2 ++= σnkAIC  (18.3) 

 

Where: 

 
2σ̂  

variance of the error function of the approximating model 

n number of samples used for estimating the model 

 

The variance of the error function of the approximating model can be calculated based on 

the residual sum of squares derived from the approximating model. The best model 

examined is the model that produces the lowest AIC value as the equation merits the 

model with the lowest residual sum of square error and the lowest number of parameters, 

which is essential in avoiding overfitting. There is a variation to the above equation 

(Equation 18.3), which is defined in Egriolgu et al. (2008).  

 

[ ]2ˆlog
2

σ+=
n

k
AIC   (18.4) 

 

The calculated value from Equation 18.3 and 18.4 will not be the same as the two 

equations are different. However, it must be noted that the AIC value calculated by the 

equation are merely an indication of the optimal model for a set of data. Provided that the 

same equation is used in the evaluation, the use of either of the equations has no impact 

on the evaluation process of the optimal model.  

 

In the case where the sample set is small, Burnham and Anderson (2004) and Hurvich 

and Tsai (1989) suggested that a constant factor should be added to the calculated AIC 

value in the above equation. This modified form of AIC is known as the modified AIC 

(AICc). 

 

1
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−−

+
+=

kn

kk
AICAICc  (19) 

 

Where: 

 

k number of parameters in the model 

n number of samples used for estimating the model 

 

The additional constant in the above equation (Equation 19) imposes a more severe 

penalty on the complexity of the model.  

 

When optimising models with multiple outputs, such as the VAR model and the neural 

network model, the only difference in the AIC equations listed above (Equation 18.3 and 

18.4) is that the determinant of the error covariance matrix of the approximating model is 

used in place of the variance of the error function ( 2σ̂ ), as defined in Bedrick and Tsai 
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(1994), who derived the following general AIC equation for a model with multivariate 

regression. 

 

[ ]pnkAIC ++= σ̂log2  (20) 

 

Where: 

 

 k number of parameters in the model 

σ̂  determinant of the error covariance matrix of the approximating model 

 p number of output in the model 

 

 

6.2 Schwarz Information Criterion (SIC) 
 

The name of this information criterion is derived from Gideon E Schwarz, who 

developed this information criterion technique in 1978. It is also called the Bayesian 

Information Criterion (BIC) as the technique was developed based on Bayesian argument 

(Wikipedia, 2009e). The general equation for BIC, which is similar to the AIC equation, 

is as follows (Wikipedia, 2009e): 

 

)log(2)log( LnkBIC −=  (21) 

 

Where: 

 

k number of parameters in the model 

L maximum likelihood of the approximating model 

n number of samples used for estimating the model 

 

 

The main difference between the BIC and the AIC equation is the constant term. For BIC, 

the constant term considers the data distribution to be exponential, which is more suitable 

for data sets with a higher kurtosis value, i.e. those sets with longer tail and larger mean 

(Wikipedia, 2009e). Furthermore, the inclusion of the sample size of the data set 

penalises models with higher sample value more severely.  

 

Similarly, assuming that the error is normally distributed, the model can be derived to the 

following form (Laio et al., 2009, and Egriolgu, Aladag and Gunay, 2008). 
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2ˆlog)log( σnnkBIC +=  (22.1) 

 

OR 

 

[ ]2ˆlog
)log(

σ+=
n

nk
BIC  (22.2) 

 

Where: 

 

k number of parameters in the model 
2σ̂  variance of the error function of the approximating model 

n number of samples used for estimating the model 

 

Similar to the AIC technique, the best model is one with the lowest BIC value. This 

model again merits the model with the lowest residual sum of square error and the lowest 

number of parameters. For a model that has multiple outputs, the determinant of the error 

covariance matrix of the approximating model is again used in place of the variance of 

the error function ( 2σ̂ ), as defined in Bedrick and Tsai (1994).    

 

σ̂log)log( nnkBIC +=  (23) 

 

Where: 

 

k number of parameters in the model 

σ̂  determinant of the error covariance matrix of the approximating model 

 p number of output in the model 

 

 

6.3  Identification of optimal models 
 

The optimising model parameters need to be defined prior to the implementation of the 

abovementioned information criterion techniques. In the works of Brook and Tsolacos 

and West and Worthington (2004), the lag of the autoregressive part (R) and the lag of 

the moving average part (M) are the optimising parameters for the univariant ARMA 

model. Likewise, the lag of the autocorrelative variance (P) and the error variance (Q) are 

the optimising parameters for the univariant GARCH model. Further to these parameters, 

the lag of the explanatory factors is an additional parameter incorporated in this 

optimisation process. This parameter is essential in this research as it provides an 

indication of the degree of influence that the historic macroeconomic factors have on 

current and future property returns.  

 

The optimising parameters investigated for the VAR model are the number of lags in the 

model, which is used in Brook and Tsolacos (2003), and the number of explanatory 

factors to be used in the model. For the neural network model, the optimising parameters 

considered are the number of lags in the model, the number of explanatory factors, the 
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number of neurons in the middle layer and the type of transfer function used by the 

neurons in the output layer. Once again, the incorporation of the number of explanatory 

factors as an optimising parameter in these two models provides an indication of the 

degree of influence that the macroeconomic factors have on current and future property 

returns.   

 

In numerous literatures, the two information criterions are compared and BIC is generally 

preferred to AIC in selecting an optimal model. This is because BIC imposes a more 

severe penalty for model complexity (Qi and Zhang, 2001) when the sample set is larger 

than 7. This is also evident in Brook and Tsolacos (2003), where the selection using BIC 

technique is preferred to the selection using AIC technique on occasions where the 

selections using the two techniques do not agree. However, Hurvich and Tsai (1989) and 

Bedrick and Tsai (1994) proved that with the inclusion of the constant factor, AICc is 

more powerful in identifying the optimal model than BIC. Consequently, both BIC and 

AICc techniques are used in identifying the optimal model. Input explanatory variables 

are selected for each model based on the result from the causality test in section 5 and are 

incorporated in the models alongside previous output values.  

 

The following is a summary of the input explanatory variables selected for the univariant 

ARMA and GARCH models, which are variables identified in the causality test in section 

4 that are significantly related to the respective output, as referred to Table 3.5 above. 

  

 

Output Univariant ARMA and GARCH models 

J255 return 
Term structure, employment index in construction, building plans passed 
index, J256 return  

J256 return 
Manufacturing index, employment index in construction, building plans 
passed index, changing CPIX index, J255 return 

J255 return 
deviation 

Term structure, gilt-equity ratio, employment index in construction, building 
plans passed index 

J256 return 
deviation 

Term structure, building plans passed index 

Retail return 
Term structure, gilt-equity ratio, changing CPIX index, unexpected 
changing CPIX 

Office return Changing CPIX index 

Industrial return Manufacturing index, changing CPIX index 

Retail return 
deviation 

Gilt-equity ratio, building plans passed index, changing GDP, changing 
CPIX index, office return deviation, prime lending rate 

Office return 
deviation 

Gilt-equity ratio, building plans passed index, changing GDP, changing 
CPIX index, unexpected changing CPIX, industrial return deviation, 
changing prime lending rate 

Industrial return 
deviation 

Manufacturing index, prime lending rate 

 

Table 4.1: Explanatory variables selected for ARMA and GARCH models 

 

The maximum lag investigated for both parts of the univariant ARMA model, the 

autoregressive part and the moving average part, is limited to 8. Similarly for the 
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GARCH model, the lag for the autocorrelative variance (P) and the error variance (Q) is 

limited to 8.  The lag of the explanatory factors for both type of models investigated are 1, 

2 and 4 respectively. Since the log likelihood function is available for both of these 

models, Equation 18.1 and Equation 21 are used to calculate the AIC (AICc) and BIC 

values respectively. The parameters of the optimal univariant models for each output are 

tabulated below.  

 

 

  Univariant ARMA Univariant GARCH 

  AICc  BIC AICc  BIC 

J255 Return (6,2,1)  (6,2,1)  (1,1,2)  (1,1,2)  

J256 Return (1,3,1)  (1,3,1)  (1,1,1)  (1,1,1)  

Retail Return  (1,4,1)  (1,4,1)  (2,5,2)  (2,5,2)  

Office Return  (1,3,4)  (1,3,4)  (1,1,1)  (1,1,1)  

Industrial Return  (1,3,2)  (1,3,2)  (1,4,4)  (1,4,4)  

J255 Return Deviation (6,1,1)  (6,1,1)  (3,1,1)  (3,1,1)  

J256 Return Deviation (1,1,2)  (1,1,1)  (1,4,1)  (1,2,1)  

Retail Return Deviation (1,3,1)  (1,3,1)  (3,5,1)  (3,5,1)  

Office Return Deviation (1,2,1)  (1,2,1)  (1,6,1)  (1,6,1)  

Industrial Return Deviation (3,1,1)  (1,1,1)  (3,1,1)  (3,1,1)  

 

Table 4.2: Result of the information criterion test for the univariant models 

 

 

The first two parameters represent the lag of the autoregressive part (R) and the lag of the 

moving average part (M) of the optimal ARMA model. Similarly, the first two 

parameters represent the lag of the autocorrelative variance (P) and the error variance (Q) 

of the optimal GARCH model.  The final parameter represents the lag of the explanatory 

variable. Generally, the tests result from both methods yield the same optimal model with 

the exception of the ARMA and GARCH model for J256 Return Deviation and the 

ARMA model for direct industrial return deviation. In these cases, AICc method selects a 

slightly more complex model than the BIC method, which contradicts the finding in the 

work of Hurvich and Tsai (1989). Consequently, further evaluation of models selected by 

both methods is made.  
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The following is a summary of the input explanatory variables selected for the 

multivariant VAR and neural network models.  

 

Output VAR and Neural Network 

Four (4) explanatory variables 

J255 Return and 
Deviation 

Term structure, gilt-equity ratio, employment index in construction, 
building plans passed index  

J256 Return and 
Deviation 

Manufacturing index, employment index in construction, building plans 
passed index, term structure 

Retail Return and 
Deviation 

Gilt-equity ratio, changing CPIX index, changing GDP, building plans 
passed index 

Office Return and 
Deviation 

Gilt-equity ratio, changing CPIX index, building plans passed index, 
changing prime lending rate 

Industrial Return 
and Deviation 

Manufacturing index, gilt-equity ratio, prime lending rate, changing 
CPIX index 

Two (2) explanatory variables 

J255 Return and 
Deviation 

Gilt-equity ratio, building plans passed index  

J256 Return and 
Deviation 

Building plans passed index, term structure 

Retail Return and 
Deviation 

Gilt-equity ratio, changing CPIX index 

Office Return and 
Deviation 

Gilt-equity ratio, changing CPIX index 

Industrial Return 
and Deviation 

Manufacturing index, prime lending rate 

 

Table 4.3: Explanatory variables selected for VAR and neural network models 

 

 

The maximum lag investigated for the VAR model is 6. For each lag, a model with four 

explanatory variables (two of the best performed explanatory variables for each output) 

and a model with two explanatory variables (the best performed explanatory variable for 

each output) are investigated. These variables are summarised in Table 4.3 above. The 

number of lags investigated for neural network models are 1, 2 and 4 respectively. 

Similar to the VAR model, for each number of lag, a model with four explanatory factors 

and a model with two explanatory factors are investigated. The maximum number of 

neurons investigated for the model is 50 and the transfer function investigated are the 

linear function, the logistic function and the softmax function (Equation 6.1 to 6.3 in 

Appendix E) defined in the software. For these models, equation 20 and equation 23 

above are used to calculate the AIC (AICc) and BIC values respectively, since log 

likelihood functions are not available and both types of models produce multiple outputs.  
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 VAR Neural Metwork 

  AICc  BIC AICc  BIC 

J255 Return and Deviation (4,2)  (1,2)  (4,4,2,Linear) (2,2,1,Linear) 

J256 Return and Deviation (4,2)  (1,2)  (4,4,2,Linear) (2,2,1,Linear) 

Retail Return and Deviation (3,2)  (1,2)  (4,2,2,Linear) (2,2,2,Linear) 

Office Return and Deviation (3,2)  (1,2)  (4,2,2,Linear) (2,2,2,Linear) 

Industrial Return and Deviation (3,2)  (1,2)  (4,2,2,Linear) (2,2,1,Logistic) 

 

Table 4.4: Result of the information criterion test for VAR and neural network 

 

 

For VAR models, the first parameter represents the lag of the model and the second 

parameter represents the number of explanatory factor to be use in the model. For neural 

network models, the first parameter represents the number of neurons in the middle layer, 

the second parameter represents the number of explanatory factors in the model, the third 

parameters represents the lag of the explanatory factors and the last parameter represents 

the type of transfer function selected for the neurons. Unlike the univariant models, the 

test results from both methods do not yield the same optimal model. The AICc method 

tends to select a more complex model that the BIC method, in particular for VAR model, 

BIC selected the simplest model as the optimal model for all of the output.  As discussed 

in the work of Bedrick and Tsai (1994), the result from both methods should be 

considered and thus further investigation is made of the models from both methods  

 

The result of all the models evaluated in the optimisation process using the information 

criterion tests is outlined in Appendix E.  

 

 

6.4 Summary 
 

In this section, the model optimisation process is investigated. The process involves the 

implementation of information criterion test. Two established tests were consider, namely 

the AICc and the BIC test. The BIC test is widely used in previous research and the AICc 

test is an enhanced method derived from the AIC test, which is also widely used in 

previous research.  

 

Thereafter, the optimising parameters for each type of models are defined. For the 

ARMA, GARCH and VAR models, the parameters are the lag variables in each 

respective model. For the neural network model, the parameters are the number of 

neurons and the type of transfer functions on the output layer. In addition, the number of 

explanatory variables (macroeconomic factors) and their lags are also optimised. 

 

The optimal models calculated using the AICc test and BIC test are generally identical 

for the ARMA and GARCH models. The lag for the autoregressive (AR) component does 



48 

 

 

 

not exceed 3, with the exception of the ARMA models for J255 return and return 

deviation. This finding corresponds with the observation in section 3.2.2, as the lag 

increases, the correlation between current output (return or return deviation) and previous 

outputs decreases. In the case of the ARMA models for J255 return and return deviation, 

the lag for the autoregressive (AR) component is 6, which correlated to the finding in the 

correlograms of the two outputs. In both cases, the correlogram indicates a significant 

correlation level between the current value and the value 6 periods (lags) ago. The tests 

also identified that simple models with low lag values and fewer parameters are optimal 

for this application.  

 

The result from the optimisation process of the VAR and neural network is quite different 

in comparison to the result above. The models calculated from the two tests do not agree 

with one another. The optimal models identified by AICc are more accurate than the 

models identified by BIC. However, the optimal models identified by BIC are simpler 

than the models identified by AICc. Once again, the tests identified simple models with 

low lag values and fewer parameters for this application.  The general lag for the 

explanatory variables in the optimal models is 1 or 2 periods. This is an indication that 

the effect of the macroeconomic factors on the outputs (return or return deviation) is only 

significant up to 2 periods.  
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7 Model comparison and evaluation  
 

In this final section, the performances of each type of models with the optimal 

configuration identified in section 6 are compared and evaluated. Each model is 

evaluated under two main scenarios, namely the long-term prediction scenario and the 

short-term prediction scenario. The predicted result from each models is then compared 

with the actual result both graphically (for long-term prediction scenario only) and 

analytically, by means of a set of comparison tools used in previous research.   

 

 

7.1 Performance comparison tools 
 

As previously discussed, two types of performance comparison methods are employed in 

this research. The first method is the graphical method, where the predicted results are 

plotted against the actual results. This method is the simplest method of evaluating the 

performances of the models but is highly subjective, as discussed in Ebert et al. (2008). 

Consequently, the analytical method is also introduced in this research, which provides 

information regarding the performance of a model that one might overlook or is not 

apparent using the graphical method. The following benchmarks are used for the 

analytical method, as employed in Qi and Maddala (1999), Egrioglu et al. (2008) and Qi 

and Zhang (2001). In the research of Brook and Tsolacos (2001; 2003) and West and 

Worthington (2004), only the first four criterions are considered. 

 

 

1. Mean squared error, 
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Where: 

 

 y predicted output by the model 

ŷ  actual output  

 n number of samples used for estimating the model 

 

 

2. Root mean squared error, 
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3. Mean Absolute error, 
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4. Mean absolute percentage error,  
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For these four criteria, a low error value is preferred as a low error value indicates 

an accurately predicted value by the model under evaluation. 

 

5. The Pearson correlation coefficient between the actual and the fitted or predicted 

return (only applies for 2-step or more forecast), which is introduced in Qi and 

Maddala (1999).  
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Where: 

 

 y predicted output by the model 

ŷ  actual output  

y  mean of the actual output samples  

ŷ  mean of the predicted output samples 

 

The range of the coefficient varies from 1 to -1 where 1 indicates that the 

predicted return directly correlates to the actual value and -1 indicates that the 

predicted return correlates to the inversed actual value. A high absolute value 

indicates a strong correlation between the two.  
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6. Direction accuracy, which measures the number of times that the model 

accurately predicts the movement of the return.  
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 yi+1 the i+1-th predicted sample by the model 

1
ˆ

+iy  the i+1-th sample in the actual output  

 n number of samples used for estimating the model 

 

The numerator in the above equation increments when the trends of the predicted 

output and the actual output move in the same direction. Consequently, a high 

value is preferred, since it indicates a more accurately predicted trend.  

  

7. Modified direction accuracy, which is a modified version of the abovementioned 

test, as defined in Egrioglu et al. (2008). Unlike the calculation above, the count 

only increment when the trend of the predicted result differ to the trend of the 

actual result. Therefore, a low value is preferred, since it indicates a more 

accurately predicted trend. 
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8. Sign, which compare the number of time where the predicted value and the actual 

value have the same sign, i.e. where both the predicted and the actual value are 
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positive or negative. A high value indicates that most of the predicted value 

follows the same sign as the actual value. 
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The analytical method is used for both long-term and short-term predictions, while the 

graphical method will only be used in the long-term prediction scenario, as it is not 

conducive to use such technique in the short-term prediction scenario. 

 

7.2 Long term prediction 
 

The long term prediction scenario require the model to predict the respective output over 

a long period of time (horizon) as stated in the title. The data set is manipulated using the 

method defined in Qi and Zhang (2001) and Halekoh (2007). The output data is divided 

into two sets of equal length, a set for training and optimising the model, which is called 

the in-sample period set, and a section for verifying the performance of the model, which 

is called the out-of-sample period set. As discussed in section 7.1, both of the evaluation 

methods are used for this scenario. The result produced by all of the models under 

investigation is plotted against the actual values below. 
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Figure 3.1: Long term prediction of J255 total return  
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Figure 3.2: Long term prediction of J255 total return deviation 
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Figure 3.3: Long term prediction of J256 total return  
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Figure 3.4: Long term prediction of J256 total return deviation 
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Figure 3.5: Long term prediction of IPD retail return  
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Figure 3.6: Long term prediction of IPD retail return deviation  
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Figure 3.7: Long term prediction of IPD office return 
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Figure 3.8: Long term prediction of IPD office return deviation  
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Figure 3.9: Long term prediction of IPD industrial return  
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Figure 3.10: Long term prediction of IPD industrial return deviation  

 

Using the performance comparison tools discussed in section 7.1, the performance of the 

model evaluated using the analytical method is summarised in the tables below. 
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  MSE RMSE MAE MAPE 

Pearson 

Coefficient DA MDA Sign 

J255 Return 

ARMA 0.054661 0.233800 0.191780 1.162100 0.198720 0.437500 0.612900 0.687500 

GARCH 0.125090 0.353680 0.316220 1.576600 0.158340 0.500000 0.419350 0.312500 

VAR (AICc) 0.070639 0.265780 0.239040 0.982310 0.555550 0.500000 0.405410 0.815790 

VAR (BIC) 0.070639 0.265780 0.239040 0.982310 0.555550 0.500000 0.405410 0.815790 

NN (AICc) 0.048270 0.219700 0.190720 0.959460 0.561740 0.558820 0.424240 0.794120 

NN (BIC) 0.099887 0.316050 0.255690 1.342500 0.362110 0.617650 0.484850 0.970590 

J256 Return 

ARMA 0.057704 0.240220 0.207020 0.770760 0.198480 0.515150 0.281250 0.969700 

GARCH 0.033597 0.183290 0.165750 0.509700 0.838540 0.545450 0.468750 0.939390 

VAR (AICc) 0.173220 0.416200 0.356310 1.399200 0.214020 0.515150 0.656250 0.424240 

VAR (BIC) 0.173220 0.416200 0.356310 1.399200 0.214020 0.515150 0.656250 0.424240 

NN (AICc) 0.266310 0.516050 0.402350 1.301400 -0.085614 0.548390 0.433330 0.419350 

NN (BIC) 0.116380 0.341150 0.281670 0.977390 -0.148930 0.483870 0.500000 0.645160 

IPD Retail Return 

ARMA 0.036715 0.191610 0.170620 0.658800 -0.902260 0.538460 0.640000 0.961540 

GARCH 0.033271 0.182400 0.163150 0.640940 -0.603470 0.538460 0.560000 0.961540 

VAR (AICc) 0.013306 0.115350 0.102450 0.407440 -0.542380 0.538460 0.760000 0.961540 

VAR (BIC) 0.013306 0.115350 0.102450 0.407440 -0.542380 0.538460 0.760000 0.961540 

NN (AICc) 0.003792 0.061576 0.057485 0.230930 0.976880 0.520000 0.208330 0.960000 

NN (BIC) 0.003731 0.061083 0.057077 0.228530 0.985680 0.520000 0.208330 0.960000 

IPD Office Return 

ARMA 0.015308 0.123720 0.108450 0.594820 -0.057087 0.384620 0.560000 0.961540 

GARCH 0.016202 0.127290 0.107780 0.558360 0.002002 0.384620 0.560000 0.961540 

VAR (AICc) 11.664000 3.415200 1.903300 6.591400 0.780230 0.730770 0.280000 0.961540 

VAR (BIC) 11.664000 3.415200 1.903300 6.591400 0.780230 0.730770 0.280000 0.961540 

NN (AICc) 0.000663 0.025739 0.021369 0.114040 0.990780 0.400000 0.250000 0.960000 

NN (BIC) 0.000250 0.015801 0.012027 0.069639 0.992790 0.640000 0.083333 0.960000 

IPD Industrial Return 

ARMA 0.019650 0.140180 0.127000 0.468070 0.944020 0.153850 0.560000 0.961540 

GARCH 0.014757 0.121480 0.102600 0.446760 0.673760 0.307690 0.440000 0.884620 

VAR (AICc) 0.041785 0.204410 0.189150 0.739150 0.627140 0.153850 0.480000 0.961540 

VAR (BIC) 0.041785 0.204410 0.189150 0.739150 0.627140 0.153850 0.480000 0.961540 

NN (AICc) 0.000829 0.028789 0.025324 0.088808 0.996980 0.440000 0.166670 0.960000 

NN (BIC) 0.009368 0.096788 0.081477 0.278370 0.986590 0.680000 0.291670 0.960000 

 

Table 5.1: Comparison between different models for long-term return prediction  
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  MSE RMSE MAE MAPE 

Pearson 

Coefficient DA MDA Sign 

J255 Return Deviation 

ARMA 0.001386 0.037233 0.030135 0.972280 0.200910 0.567570 0.638890 0.945950 

GARCH 0.002000 0.044723 0.033441 0.630450 0.086779 0.567570 0.472220 0.837840 

VAR (AICc) 0.000926 0.030433 0.022992 0.769440 -0.132350 0.657890 0.621620 0.973680 

VAR (BIC) 0.000926 0.030433 0.022992 0.769440 -0.132350 0.657890 0.621620 0.973680 

NN (AICc) 0.002472 0.049722 0.039247 1.134100 -0.169750 0.500000 0.545450 0.705880 

NN (BIC) 0.002573 0.050726 0.039442 0.889140 -0.195480 0.588240 0.545450 0.705880 

J256 Return Deviation 

ARMA (AICc) 0.013381 0.115670 0.084794 3.102800 -0.255890 0.545450 0.625000 0.666670 

ARMA (BIC) 0.011837 0.108800 0.084019 3.340300 -0.260370 0.545450 0.687500 0.666670 

GARCH (AICc) 0.001621 0.040265 0.029856 1.121700 -0.180550 0.636360 0.406250 0.909090 

GARCH (BIC) 0.002202 0.046922 0.035452 1.287700 -0.197530 0.636370 0.375000 0.666670 

VAR (AICc) 0.001811 0.042553 0.035193 1.466000 -0.020984 0.666670 0.593750 0.818180 

VAR (BIC) 0.001811 0.042553 0.035193 1.466000 -0.020984 0.666670 0.593750 0.818180 

NN (AICc) 0.001793 0.042347 0.028133 1.473500 -0.098766 0.806450 0.433330 0.967740 

NN (BIC) 0.000961 0.031003 0.022035 1.099700 0.086208 0.709680 0.633330 0.967740 

IPD Retail Return Deviation 

ARMA 0.002015 0.044883 0.034977 0.908800 -0.706830 0.320000 0.250000 0.440000 

GARCH 0.000692 0.026297 0.020318 0.523070 -0.283200 0.400000 0.333333 0.960000 

VAR (AICc) 0.000301 0.017349 0.011098 0.262430 -0.308050 0.500000 0.560000 0.961540 

VAR (BIC) 0.000301 0.017349 0.011098 0.262430 -0.308050 0.500000 0.560000 0.961540 

NN (AICc) 0.000328 0.018111 0.012199 0.284730 0.630740 0.440000 0.500000 0.960000 

NN (BIC) 0.000247 0.015705 0.009570 0.223690 0.242010 0.560000 0.500000 0.960000 

IPD Office Return Deviation 

ARMA 0.009032 0.095038 0.073153 3.119100 -0.456870 0.320000 0.708330 0.200000 

GARCH 0.000687 0.026219 0.020492 1.122500 -0.381120 0.480000 0.625000 0.960000 

VAR (AICc) 24.851000 4.985100 2.815400 85.552000 -0.812120 0.307690 0.720000 0.038462 

VAR (BIC) 24.851000 4.985100 2.815400 85.552000 -0.812120 0.307690 0.720000 0.038462 

NN (AICc) 0.001262 0.035518 0.024953 0.911680 -0.231960 0.400000 0.500000 0.440000 

NN (BIC) 0.001768 0.042052 0.031395 1.296900 -0.167820 0.360000 0.458330 0.320000 

IPD Industrial Return Deviation 

ARMA (AICc) 0.000377 0.019410 0.017833 1.131000 0.484480 0.576920 0.520000 0.961540 

ARMA (BIC) 0.000609 0.024673 0.023164 1.428600 0.464040 0.615380 0.560000 0.961540 

GARCH  0.032478 0.180220 0.163190 8.027500 -0.673500 0.307690 0.560000 0.384620 

VAR (AICc) 0.000973 0.031194 0.027566 1.813300 -0.354950 0.538460 0.680000 0.961540 

VAR (BIC) 0.000973 0.031194 0.027566 1.813300 -0.354950 0.538460 0.680000 0.961540 

NN (AICc) 0.000148 0.012177 0.009120 0.596480 -0.18221 0.360000 0.625000 0.960000 

NN (BIC) 0.000038 0.006183 0.004562 0.331100 0.831450 0.520000 0.375000 0.960000 

 

Table 5.2: Comparison between different models for long-term deviation prediction 
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The following is observed for each output based on the two performance comparison 

approaches.  

 

7.2.1 J255 return and return deviation 

 

The ARMA and the neural network models optimised using the AICc method produces 

the most accurate J255 return forecast, particularly between 2005 and 2008 where the 

volatility in the market was accurately predicted. This is confirmed in the evaluation 

using the analytical method, where these two models produce the lowest error. The 

models predicted the return fairly accurately as the actual trend is not too volatile and 

quite predictable. However, referring to Figure 3.1, the reaction time of the predicted 

result to directional changes is delayed by 2 to 3 periods. Term structure, employment 

index and building plans passed index are variables that appear to provide accurate 

indications on the trend of the return as they are found in both of the models, and are 

identified in the causality test to be strongly related to the J255 return. 

 

The trend of the J255 return deviation appears to be highly volatile and it is much more 

difficult to forecast this output. This is particularly evident in the analysis using the 

graphical method where the movement of the output trends from the models deviates 

significantly from the actual trend. Referring to Figure 3.2, the neural network model 

optimised using the AICc method once again produces the most accurate forecast, 

followed by the GARCH model and the neural network model optimised using the BIC 

method. The result from the analytical method however contradicts this finding. It 

indicated that the VAR models produces the most accurate J255 return deviation forecast, 

with the least error, where the output trend forecasted from these two models is constant. 

A possible cause of this difference could be that the predicted trends from the VAR 

models hovers around the average of the actual trend and doesn’t fluctuates significantly 

around the actual trend, which leads to a higher mean square error value.  Gilt-equity 

ratio and building plans passed index are the explanatory variables found in all of the 

optimal models, of which gilt-equity ratio is the significant variable in the forecast of the 

deviation.  

 

7.2.2 J256 return and return deviation 

 

The ARMA and the GARCH models produce the most accurate J256 return forecast, as 

refer to Figure 3.3. The analysis using the analytical method verified this finding. The 

actual trend of the J256 return is more volatile than the J255 return but it can still be 

accurately forecasted using these two models throughout the forecast period between 

2002 and 2008. Manufacturing index, employment index and building plans passed index 

are variables that appear to provide accurate indications of the trend of the return, as they 

are found in both of the models and are identified in the causality test to be strongly 

related to the J256 return. 
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Once again, the trend of the J256 return deviation appears to be highly volatile and is 

very difficult to forecast. With the exception of the neural network model optimised using 

the BIC method, Figure 3.4 shows that none of the models appear to forecast the actual 

trend. This result coincides with the evaluation using the analytical method where it 

produces the lowest mean square error and a relatively high directional accuracy. The 

reaction time of the model to directional change is slightly delayed as referred to in 

Figure 3.4. Term structure and building plans passed index are explanatory variables used 

in all of the models and their influence on predicting the return deviation is minimal. 

  

7.2.3 Retail return and return deviation 

 

Both of the neural network models produce the most accurate forecast of the retail return. 

This is evident in the analysis using both the graphical and the analytical methods. Since 

the actual trend is not volatile, the models can produce a highly accurate forecast. The 

explanatory variables that contribute to the forecast are the gilt-equity ratio and the 

changing CPIX index, which are significantly related to retail return, as evident in the 

causality test above.  

 

The actual trends of the retail return deviation remain fairly constant between 2002 and 

2005 and rise sharply between 2006 and 2008. The VAR models and the neural network 

models predict the constant period fairly accurately but none of the models are able to 

predict the sudden sharp rise between 2006 and 2008 (last 8 periods). The result from the 

analytical method indicates that the neural network model optimised with the BIC 

method predicted the trend with the highest accuracy. Similar to the retail return model, 

the gilt-equity ratio and the changing CPIX index are the two variables that contribute to 

the forecast. 

 

7.2.4 Office return and return deviation 

 

The result from the graphical method again indicates that both of the neural network 

models produce the most accurate forecast of the office return. The result from the 

analytical method indicates that the most accurate model is the neural network model 

optimised using the BIC method. The actual trend is not volatile and the models can 

produce highly accurate forecasts. The explanatory variables that contribute to the 

forecast are the gilt-equity ratio and the changing CPIX index.  

 

The neural network models are able to predict the office return deviation between 2002 

and 2004 and none of the models are able to predict the fluctuation in the deviations 

thereafter. The result from the analytical method indicates that the GARCH model 

produces the best forecast but this is due to the fact that the GARCH model predicted a 

trend that oscillates around the actual trend between 2002 and 2006.  Similar to the retail 

return model, the gilt-equity ratio and the changing CPIX index are the two variables that 

contribute to the forecast. 
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7.2.5 Industrial return and return deviation 

 

The neural network model optimised using the AICc method produce the most accurate 

forecast of the industrial return. This is evident in the analysis using both the graphical 

and the analytical methods. The actual trend once again is not volatile and the model can 

produce a highly accurate forecast. The explanatory variables that contribute to the 

forecast are the manufacturing index and the prime lending rate, which contribute highly 

to the retail return, as evident in the causality test above.  

 

Both of the neural network models produce fairly accurate prediction of the industrial 

deviation trend. However, the neural network optimised using the BIC method is the only 

model able to predict the gradual rise in the trend between 2006 and 2008. This is 

substantiated in the result from the analytical method, where the data indicates that this 

model best predicts this trend. Similar to the retail return model, the manufacturing index 

and the prime lending rate are the two variables that contribute to the forecast. 

 

7.2.6 Variance analysis 

 

So far in this section, only the predicted mean is analysed.  Since the variance component 

of the GARCH model is time-varying, the variance part of the predicted return or return 

deviation should also be analysed. With the exception of the GARCH model, the 

variances of all of the other models are constant. The tables below summarized the 

standard deviation of these models.  

 

 

  J255 Return J256 Return Retail Return Office Return Industrial Return 

Actual 0.159640 0.182290 0.067392 0.088302 0.104760 

ARMA 0.075587 0.079617 0.012041 0.012462 0.011655 

VAR (AICc) 0.037300 0.316300 0.011600 3.000000 0.026700 

VAR (BIC) 0.009500 0.038400 0.009900 0.117900 0.010900 

NN (AICc) 0.129000 0.298900 0.045500 0.087700 0.075700 

NN (BIC) 0.295200 0.203600 0.044800 0.097500 0.151600 

 

Table 6.1: Standard deviations of all the models with constant variance for return 
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J255 Return 

Deviation 

J256 Return 

Deviation 

Retail Return 

Deviation 

Office Return 

Deviation 

Industrial Return 

Deviation 

Actual 0.026516 0.025782 0.011943 0.015662 0.011229 

ARMA (AICc) 0.020551 0.018079 0.001539 0.004455 0.005400 

ARMA (BIC) 0.020551 0.018118 0.001539 0.004455 0.006400 

VAR (AICc) 0.007200 0.030600 0.002100 4.200000 0.009700 

VAR (BIC) 0.000700 0.003300 0.001700 0.036600 0.013900 

NN (AICc) 0.022900 0.028100 0.002900 0.016600 0.005900 

NN (BIC) 0.019200 0.013600 0.001800 0.020500 0.005700 

 

Table 6.2: Standard deviations of all models with constant variances for return deviation 

 

The standard deviations of the accurately predicted indirect return trends (from the 

ARMA and the NN (AICc) models) tend to be slightly lower than the actual trends, 

which is a reflection of the predicted trends being less volatile than the actual trends.  

Similarly, the standard deviations of the accurately predicted direct returns trends (from 

neural networks) also tend to be slightly lower than the actual trends. For both indirect 

and direct return, the standard deviations of the predicted trends from the VAR model are 

either very high or very low. This is an indication that the predicted trends from this 

model either fluctuate excessively or remain constant, which corresponds with the result 

from the graphical method. A similar result was identified in the analysis of the standard 

deviations of the accurately predicted return deviation trends, where they are lower than 

the actual value. 

 

Since the actual outputs are presumed to have a constant variance, it is not helpful to 

directly compare the variance trends of the GARCH model to the variance of the actual 

trends. In order to understand the impact on the variance due to the returns and return 

deviations, the predicted variance is therefore plotted against the actual returns and return 

deviations. 
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Figure 4.1: Relationship between GARCH variance function and actual J255 output 
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Figure 4.2: Relationship between GARCH variance function and actual J256 output 
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Figure 4.3: Relationship between GARCH variance function and actual retail return 

output 
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Figure 4.4: Relationship between GARCH variance function and actual office 

return output 
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Figure 4.5: Relationship between GARCH variance function and actual industrial 

return output 

 

 

The results above indicate that the GARCH variance generally remains constant or 

increases linearly with time, with the exception of J256, where the trend decreases from 

the beginning and remains constant. In all of the outputs, the variance function does not 

follow the trends of the actual output. It can be concluded that there is very little 

correlation between the actual output and the movement of the variance in a GARCH 

model, and that a variance based forecast model, such as the GARCH model, does not 

improve on the forecasting of return and return deviation.    

 

 

7.3 Impulse response of long-term prediction models 
 

Based on the optimal models identified in the long-term prediction section above (section 

7.2), the effects of each explanatory (input) variables on the output of the model are 

investigated. The impulse response technique is a widely used technique used in many 

previous investigations, namely the works of Brooks and Tsolacos (1999; 2003), West 

and Worthington (2004) and McCue and Kling (1994). In this research, a shock of 1 

standard deviation is injected into each of the inputs separately and the (output) response 

is investigated.  The effect on the response is measured in terms of a standard deviation 

unit. For example, if the predicted output resulting from the injected impulse is one 

deviation higher or lower than the predicted output with normal inputs, then there is 1 
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unit change in the result. The response change is plotted over 20 periods for all of the 

optimal models and is located in appendix F. 

 

Besides the response for the ARMA model predicting J255 return and the industrial 

return, the effect is due to impulse shock deviated to zero within 10 periods. In the J255 

return and the industrial return, the effect decreases gradually to approximately 0.2 and 

0.5 units respectively at the 20
th

 period. Unlike the ARMA model, the graphs in appendix 

F indicate that the impulse shock has virtually no effect whatsoever on the GARCH 

model and the neural network model, as these models absorb the shock within 2 periods. 

Generally, the shock with the biggest impact on the predicted output of the ARMA model 

is the autocorrelative variable, i.e. the AR component. While for the GARCH model and 

the neural network model, the explanatory variables can cause the biggest shock to the 

output. The impact on the response due to the shocks injected into the GARCH model 

and neural network are investigated further. The magnitude of the response due to the 

shocks injected into the GARCH model and neural network are tabulated below.  

 

 

  J255 J255 deviation 

J255 1.00000 -0.13217 

Term structure 0.35841 -0.46998 

Gilt equity -1.37300 -4.84453 

Employment 2.65298 3.06900 

Building plans 0.15632 -0.67204 

J255 deviation 0.17942 1.00000 

 

Table 7.1: Magnitude of impulse response of NN(AICc) model for J255 return 

 

 

  J256  

J256 1.00000 

Manufacturing index 0.06088 

Employment 0.01512 

Building plans -0.02557 

Changing CPIX -0.03017 

J255 -0.17028 

 

Table 7.2: Magnitude of impulse response of GARCH model for J256 return 
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  J256 deviation 

J256 deviation 1.00000 

Term structure 22.12524 

Building plans -1.80131 

J256 -3.65365 

 

Table 7.3: Magnitude of impulse response of NN(BIC) model for J256 return deviation 

 

 

  Retail return 

Retail return 1.00000 

Gilt equity 0.26958 

Changing CPIX 0.00088 

Retail return deviation -0.02632 

 

Table 7.4: Magnitude of impulse response of NN(BIC) model for retail return 

 

 

  Office return Office return deviation 

Office return 1.00000 -24.24876 

Gilt equity -0.09026 43.69154 

Changing CPIX 0.08582 -11.42289 

Office return deviation 0.21864 1.00000 

 

Table 7.5: Magnitude of impulse response of NN(BIC) model for office return 

 

 

  Retail return deviation 

Retail return deviation 1.00000 

Gilt-equity 1.18390 

Changing CPIX 0.97150 

Retail return 1.66690 

 

Table 7.6: Magnitude of impulse response of NN(BIC) model for retail return deviation 
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Office return 

deviation 

Office return deviation 1.00000 

Gilt-equity 2.60380 

Building plans -6.06120 

Changing GDP 0.56474 

Changing CPIX -1.75810 

Unexpected CPIX 0.11791 

Changing prime lending rate -0.68379 

Industrial return deviation 8.18940 

 

Table 7.7: Magnitude of impulse response of GARCH model for office return deviation 

 

 

  Industrial return  

Industrial return 1.00000 

Gilt-equity 0.04180 

Manufacturing index  0.04968 

Industrial return deviation -0.24367 

 

Table 7.8: Magnitude of impulse response of NN(AICc) model for industrial return 

 

  Industrial return deviation  

Industrial return 0.05510 

Prime lending rate -0.09644 

Manufacturing index  0.09766 

Industrial return deviation 1.00000 

 

Table 7.9: Magnitude of impulse response of NN(BIC) model for industrial return 

deviation 

 

In most of the results above, the shock with the biggest impact on the predicted output of 

the models is the autocorrelative variable. However, there are some variables that have 

significant impact on a few of the outputs, such as the gilt-equity ratio, the employment 

rate index, the term structure, the changing CPIX and the building plans passed index. 

The change in the gilt-equity ratio has significant impact on the J255 output and the 

office return deviation. The employment rate index also has significant impact on the 

J255 output. Similarly, the building plans passed index and the industrial return deviation 

has significant impact on the office return deviation. The J256 return deviation is very 

sensitive to the change in the term structure.  

 

For the GARCH model, the impact due to autocorrelative shock, i.e. shock in the return 

or return deviation on the variance, is also investigated. The percentage change in 

standard deviation with and without the shock is plotted in appendix F over 20 periods. 
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The result indicates that the shock applied to J256 return and the office return deviation 

has significant impact on the variance of the respective GARCH models. The impact of 

the shock on the variances of all three models decreases exponentially with time to less 

than 10% at the 20th period. 

 

 

7.4 Short term prediction 
 

Lastly, as previously discussed, the short term prediction scenario is investigated. This 

investigation is employed in the works of Brook and Tsolacos (1999; 2001; 2003). In this 

research, three different forecasts are investigated, namely the 1-step, 2-steps and 4-steps 

ahead forecast. Once again, the data are separated into two sets, where one set (in-sample 

period set) is for training and optimising the initial model. However, the second set (out-

of-sample period set) is used for both verification and optimisation. In the second set, the 

samples are first used for verification and performance evaluation. When the model 

forecasts in subsequent period, the actual samples are used for updating and retraining the 

model. This forecasting method is known as the recursive forecasting method and it 

allows the model to evolve with the environment that it is forecasting. This technique 

mimics closely the real life situation where the user only requires the developed model to 

perform in the short term forecast, a matter of few quarters ahead forecast. The results of 

all three scenarios are summarised in the table below. The Pearson Coefficient is only 

calculated for 2-step and 4-step ahead forecasts, as it requires at least two predictions or 

more to calculate the value. The presented values are the mean of the values calculated 

after each forecast. 
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  MSE RMSE MAE MAPE DA MDA Sign 

J255 Return 

ARMA 0.009854 0.083651 0.083651 0.704860 0.593750 0.406250 1.000000 

GARCH 774.2200 6.396800 6.396800 367.8900 0.483870 0.516130 0.806450 

VAR (AICc) 0.029779 0.132740 0.132740 1.024500 0.552630 0.447370 0.947370 

VAR (BIC) 0.028528 0.131130 0.131130 1.382000 0.552630 0.447370 0.947370 

NN (AICc) 0.032236 0.140130 0.140130 1.289800 0.500000 0.500000 0.970590 

NN (BIC) 0.079996 0.149470 0.149470 0.785230 0.441180 0.558820 0.970590 

J256 Return 

ARMA 0.007522 0.070169 0.070169 0.408400 0.696970 0.303030 0.969700 

GARCH 5270.900 23.88800 23.88800 136.4600 0.727270 0.272730 0.848480 

VAR (AICc) 0.034246 0.142660 0.142660 0.528030 0.454550 0.545450 0.939390 

VAR (BIC) 0.026509 0.126080 0.126080 0.587170 0.484850 0.515150 1.000000 

NN (AICc) 0.027113 0.132580 0.132580 0.582300 0.451610 0.548390 1.000000 

NN (BIC) 0.015560 0.095989 0.095989 0.492410 0.483870 0.516130 1.000000 

IPD Retail Return 

ARMA 0.000983 0.018833 0.018833 0.083135 0.615380 0.384620 1.000000 

GARCH 0.025719 0.123090 0.123090 0.607890 0.461540 0.538460 0.961540 

VAR (AICc) 0.000611 0.018570 0.018570 0.090941 0.500000 0.500000 1.000000 

VAR (BIC) 0.000787 0.023255 0.023255 0.108720 0.384620 0.615380 1.000000 

NN (AICc) 0.000198 0.011623 0.011623 0.056107 0.760000 0.240000 1.000000 

NN (BIC) 0.000160 0.009911 0.009911 0.046859 0.760000 0.240000 1.000000 

IPD Office Return 

ARMA 0.000283 0.013162 0.013162 0.113130 0.730770 0.269230 1.000000 

GARCH 0.016547 0.109480 0.109480 0.565960 0.346150 0.653850 1.000000 

VAR (AICc) 0.000583 0.021332 0.021332 0.153610 0.269230 0.730770 1.000000 

VAR (BIC) 0.000520 0.018836 0.018836 0.120150 0.307690 0.692310 1.000000 

NN (AICc) 0.000091 0.007955 0.007955 0.052945 0.760000 0.240000 1.000000 

NN (BIC) 0.000126 0.009217 0.009217 0.057107 0.800000 0.200000 1.000000 

IPD Industrial Return 

ARMA 0.000306 0.009217 0.009217 0.052799 0.769230 0.230770 1.000000 

GARCH 0.003958 0.048553 0.048553 0.215190 0.423080 0.576920 1.000000 

VAR (AICc) 0.000529 0.019007 0.019007 0.115090 0.192310 0.807690 1.000000 

VAR (BIC) 0.000488 0.019378 0.019378 0.099219 0.269230 0.730770 1.000000 

NN (AICc) 0.000107 0.008237 0.008237 0.034334 0.640000 0.360000 1.000000 

NN (BIC) 0.000095 0.008063 0.008063 0.035733 0.560000 0.440000 1.000000 

 

Table 8.1: Comparison between different models for 1-step return forecast 
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  MSE RMSE MAE MAPE DA MDA Sign 

J255 Return Deviation 

ARMA 0.001021 0.025437 0.025437 0.874630 0.595240 0.404760 1.000000 

GARCH 0.000906 0.024277 0.024277 0.809450 0.595240 0.404760 1.000000 

VAR (AICc) 0.001015 0.025011 0.025011 0.876580 0.657890 0.342110 0.973680 

VAR (BIC) 0.000803 0.021108 0.021108 0.778140 0.657890 0.342110 1.000000 

NN (AICc) 0.001288 0.026879 0.026879 0.915940 0.647060 0.352940 1.000000 

NN (BIC) 0.001375 0.027788 0.027788 0.806630 0.617650 0.382350 0.970590 

J256 Return Deviation 

ARMA (AICc) 0.000942 0.023518 0.023518 0.944340 0.727270 0.272730 1.000000 

ARMA (BIC) 0.000958 0.022742 0.022742 0.994010 0.696970 0.303030 1.000000 

GARCH (AICc) 0.004791 0.031298 0.031298 1.166200 0.666670 0.333330 0.969700 

GARCH (BIC) 9.128200 0.592300 0.592300 22.833000 0.696970 0.303030 1.000000 

VAR (AICc) 0.001537 0.031482 0.031482 1.604900 0.636360 0.363640 0.969700 

VAR (BIC) 0.000921 0.022838 0.022838 1.253700 0.666670 0.333330 1.000000 

NN (AICc) 0.001248 0.026659 0.026659 1.482400 0.709680 0.290320 1.000000 

NN (BIC) 0.001122 0.024169 0.024169 1.196500 0.677420 0.322580 1.000000 

IPD Retail Return Deviation 

ARMA 0.000947 0.017031 0.017031 0.468220 0.600000 0.400000 0.960000 

GARCH 1.414921 0.469245 0.469245 20.88453 0.714286 0.700000 0.961540 

VAR (AICc) 0.000025 0.003572 0.003572 0.094210 0.307690 0.692310 1.000000 

VAR (BIC) 0.000034 0.004406 0.004406 0.119440 0.230770 0.769230 1.000000 

NN (AICc) 0.000175 0.008028 0.008028 0.172440 0.360000 0.640000 1.000000 

NN (BIC) 0.000220 0.009074 0.009074 0.198130 0.400000 0.600000 1.000000 

IPD Office Return Deviation 

ARMA 0.000019 0.003474 0.003474 0.180061 0.720000 0.280000 0.840000 

GARCH 0.005781 0.033960 0.033960 1.499500 0.280000 0.720000 0.880000 

VAR (AICc) 0.000059 0.006307 0.006307 0.298420 0.230770 0.769230 0.961540 

VAR (BIC) 0.000092 0.008451 0.008451 0.401270 0.115380 0.884620 0.961540 

NN (AICc) 0.000181 0.010338 0.010338 0.427680 0.360000 0.640000 0.960000 

NN (BIC) 0.000069 0.006536 0.006536 0.337870 0.440000 0.560000 0.960000 

IPD Industrial Return Deviation 

ARMA (AICc) 0.000500 0.010675 0.010675 0.579575 0.520000 0.480000 0.884620 

ARMA (BIC) 0.000022 0.003307 0.003307 0.206420 0.423077 0.576923 0.875000 

GARCH  99.89423 2.598345 2.598345 125.9842 0.333333 0.666667 1.000000 

VAR (AICc) 0.000073 0.005569 0.005569 0.315070 0.461540 0.538460 1.000000 

VAR (BIC) 0.000098 0.005934 0.005934 0.322950 0.461540 0.538460 1.000000 

NN (AICc) 0.000132 0.009611 0.009611 0.505990 0.200000 0.800000 1.000000 

NN (BIC) 0.000121 0.009898 0.009898 0.495740 0.240000 0.760000 1.000000 

 

Table 8.2: Comparison between different models for 1-step return deviation forecast 
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  MSE RMSE MAE MAPE 

Pearson 

Coefficient DA MDA Sign 

J255 Return 

ARMA 0.016414 0.116120 0.108010 1.096900 0.161290 0.483870 0.935480 0.500000 

GARCH 8041.900 17.96200 15.18200 276.8500 -0.200000 0.450000 1.100000 0.433330 

VAR (AICc) 0.040206 0.166420 0.158590 1.273600 0.243240 0.527030 0.837840 0.418920 

VAR (BIC) 0.034177 0.151340 0.144060 1.551000 0.081081 0.554050 0.918920 0.472970 

NN (AICc) 0.043783 0.166570 0.153250 1.423600 0.030303 0.484850 0.939390 0.484850 

NN (BIC) 0.122150 0.166430 0.154260 0.949520 -0.030303 0.424240 1.121200 0.500000 

J256 Return 

ARMA 0.019544 0.117460 0.106730 0.533540 0.062500 0.531250 0.843750 0.468750 

GARCH 6721.100 27.74600 27.07400 116.2100 0.062500 0.625000 0.750000 0.406250 

VAR (AICc) 0.047821 0.186030 0.173830 0.761370 0.125000 0.515630 1.000000 0.453130 

VAR (BIC) 0.033359 0.158910 0.149460 0.804370 0.000000 0.421880 1.031300 0.500000 

NN (AICc) 0.056528 0.161110 0.151640 0.818270 0.066667 0.450000 1.033300 0.483330 

NN (BIC) 0.018276 0.121980 0.110210 0.539500 0.066667 0.450000 1.033300 0.500000 

IPD Retail Return 

ARMA 0.000524 0.018967 0.017397 0.084245 0.040000 0.580000 0.720000 0.500000 

GARCH 0.013929 0.098995 0.098008 0.379230 0.040000 0.560000 0.920000 0.500000 

VAR (AICc) 0.001256 0.026225 0.024972 0.121060 0.280000 0.440000 0.880000 0.500000 

VAR (BIC) 0.001353 0.031124 0.029965 0.137820 -0.120000 0.340000 1.200000 0.500000 

NN (AICc) 0.000177 0.011309 0.010708 0.050644 0.666670 0.791670 0.291670 0.500000 

NN (BIC) 0.000355 0.015505 0.014550 0.075514 0.583330 0.708330 0.458330 0.500000 

IPD Office Return 

ARMA 0.000710 0.022180 0.020368 0.178670 0.440000 0.580000 0.560000 0.500000 

GARCH 0.016130 0.108880 0.108370 0.561020 0.280000 0.360000 1.000000 0.500000 

VAR (AICc) 0.001150 0.030674 0.029353 0.218030 -0.040000 0.240000 1.240000 0.500000 

VAR (BIC) 0.000926 0.025992 0.024917 0.162360 0.120000 0.280000 1.160000 0.500000 

NN (AICc) 0.000105 0.008673 0.007916 0.058484 0.750000 0.750000 0.333330 0.500000 

NN (BIC) 0.000206 0.011998 0.011458 0.072258 0.916670 0.625000 0.375000 0.500000 

IPD Industrial Return 

ARMA 0.000227 0.012245 0.011185 0.055472 0.440000 0.700000 0.400000 0.500000 

GARCH 0.004532 0.055542 0.053808 0.242860 0.120000 0.420000 1.040000 0.500000 

VAR (AICc) 0.001201 0.027582 0.026305 0.157490 -0.200000 0.200000 1.400000 0.480000 

VAR (BIC) 0.000839 0.025780 0.024917 0.126370 0.200000 0.220000 1.120000 0.500000 

NN (AICc) 0.000093 0.007538 0.006966 0.031235 0.750000 0.666667 0.416667 0.500000 

NN (BIC) 0.000054 0.017572 0.016783 0.069085 0.750000 0.666667 0.416667 0.500000 

 

Table 8.3: Comparison between different models for 2-step return forecast 
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  MSE RMSE MAE MAPE 

Pearson 

Coefficient DA MDA Sign 

J255 Return Deviation 

ARMA 0.001034 0.028529 0.025677 0.887930 0.222220 0.611110 0.805560 0.500000 

GARCH 0.682230 0.174840 0.171560 7.764500 -0.121950 0.597560 0.951220 0.541670 

VAR (AICc) 0.000979 0.026280 0.023704 0.848940 0.027027 0.662160 0.810810 0.500000 

VAR (BIC) 0.000856 0.024993 0.022107 0.826620 -0.297300 0.648650 0.972970 0.500000 

NN (AICc) 0.001225 0.031146 0.027444 0.838510 -0.151520 0.621210 0.969700 0.500000 

NN (BIC) 0.001584 0.031703 0.028389 0.798770 0.212120 0.606060 0.787880 0.484850 

J256 Return Deviation 

ARMA (AICc) 0.000891 0.024891 0.022776 0.899060 0.625000 0.812500 0.343750 0.484380 

ARMA (BIC) 0.000912 0.025612 0.022874 0.927920 0.250000 0.734380 0.656250 0.500000 

GARCH (AICc) 0.000892 0.024507 0.021032 0.989580 0.062500 0.734380 0.687500 0.500000 

GARCH (BIC) 11.75500 0.703030 0.693170 22.49700 0.187500 0.734380 0.687500 0.484380 

VAR (AICc) 0.001500 0.034289 0.030947 1.466300 0.187500 0.625000 0.750000 0.484380 

VAR (BIC) 0.001041 0.026715 0.023918 1.430300 -0.312500 0.687500 0.968750 0.500000 

NN (AICc) 0.001205 0.030330 0.026447 1.317100 -0.266670 0.650000 0.966670 0.483330 

NN (BIC) 0.000981 0.026959 0.023752 1.314400 -0.066667 0.700000 0.833330 0.500000 

IPD Retail Return Deviation 

ARMA 0.000207 0.010622 0.009749 0.340195 0.083333 0.456522 0.958333 0.500000 

GARCH 307.1200 3.700100 2.720100 87.75500 -0.360000 0.340000 1.240000 0.440000 

VAR (AICc) 0.000042 0.004990 0.004736 0.129730 0.040000 0.300000 1.160000 0.500000 

VAR (BIC) 0.000055 0.005686 0.005506 0.149400 -0.120000 0.260000 1.320000 0.500000 

NN (AICc) 0.000023 0.004021 0.003811 0.114200 0.583330 0.375000 0.875000 0.500000 

NN (BIC) 0.000194 0.008847 0.008686 0.197620 0.333330 0.500000 0.791670 0.500000 

IPD Office Return Deviation 

ARMA 0.000346 0.010071 0.008530 0.494123 0.250000 0.645800 0.625000 0.437500 

GARCH 0.018862 0.050777 0.047877 2.686600 0.083333 0.250000 1.208300 0.416670 

VAR (AICc) 0.000111 0.008607 0.008236 0.387690 -0.040000 0.180000 1.280000 0.460000 

VAR (BIC) 0.000158 0.011150 0.010797 0.520100 -0.280000 0.100000 1.520000 0.440000 

NN (AICc) 0.000113 0.009111 0.008899 0.546860 0.416670 0.312500 0.958330 0.416670 

NN (BIC) 0.000037 0.004717 0.004482 0.267040 0.500000 0.520830 0.708330 0.479170 

IPD Industrial Return Deviation 

ARMA (AICc) 0.001310 0.061149 0.056270 4.500000 -0.333000 0.500000 1.110000 0.400000 

ARMA (BIC) 0.000059 0.005475 0.005091 0.354212 -0.250000 0.416667 1.166667 0.420000 

GARCH  0.010947 0.038429 0.037864 1.857500 -0.120000 0.240000 1.320000 0.420000 

VAR (AICc) 0.000121 0.007423 0.007089 0.438890 -0.120000 0.440000 1.080000 0.500000 

VAR (BIC) 0.000153 0.007596 0.007415 0.447660 -0.280000 0.440000 1.160000 0.500000 

NN (AICc) 0.000030 0.004545 0.004416 0.253580 0.166667 0.416667 1.041700 0.500000 

NN (BIC) 0.000031 0.004446 0.004331 0.246040 0.250000 0.395830 1.000000 0.500000 

 

Table 8.4: Comparison between different models for 2-step return deviation forecast 
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  MSE RMSE MAE MAPE 

Pearson 

Coefficient DA MDA Sign 

J255 Return 

ARMA 0.028194 0.149270 0.134150 1.489100 0.264490 0.491380 0.632180 0.715520 

GARCH 7878.100 24.76900 16.19500 202.6000 0.113380 0.464290 0.642860 0.598210 

VAR (AICc) 0.060972 0.222190 0.203850 1.354700 0.319930 0.535710 0.609520 0.600000 

VAR (BIC) 0.041166 0.176660 0.161480 1.466600 0.115430 0.557140 0.628570 0.721430 

NN (AICc) 0.038495 0.163430 0.145840 1.931100 0.365090 0.500000 0.634410 0.741940 

NN (BIC) 0.061474 0.172500 0.147040 1.002300 0.132280 0.362900 0.677420 0.709680 

J256 Return 

ARMA 0.022613 0.130030 0.115000 0.696280 0.251750 0.600000 0.544440 0.716670 

GARCH 5920.000 25.54000 23.75400 93.42900 0.346560 0.600000 0.544440 0.633330 

VAR (AICc) 0.067988 0.232180 0.211950 0.942030 0.153530 0.525000 0.666670 0.608330 

VAR (BIC) 0.043644 0.190320 0.174020 0.953560 0.047916 0.466670 0.700000 0.750000 

NN (AICc) 0.027599 0.147980 0.132100 0.845890 0.072827 0.464290 0.702380 0.705360 

NN (BIC) 0.016930 0.126410 0.106730 0.546970 0.286430 0.464290 0.642860 0.732140 

IPD Retail Return 

ARMA 0.002083 0.037059 0.032566 0.139960 -0.064986 0.478260 0.565220 0.750000 

GARCH 0.016081 0.111590 0.108160 0.417870 -0.316970 0.500000 0.768120 0.750000 

VAR (AICc) 0.003362 0.041689 0.038408 0.174520 0.189720 0.402170 0.565220 0.750000 

VAR (BIC) 0.002883 0.046032 0.043075 0.190070 -0.304830 0.217390 0.884060 0.750000 

NN (AICc) 0.000480 0.020054 0.018031 0.083562 0.729760 0.636360 0.318180 0.750000 

NN (BIC) 0.000329 0.015267 0.013815 0.068563 0.884510 0.681820 0.227270 0.750000 

IPD Office Return 

ARMA 0.002106 0.040388 0.035976 0.267860 0.062300 0.467390 0.492750 0.750000 

GARCH 0.015615 0.108540 0.106810 0.544940 -0.179400 0.391300 0.753620 0.750000 

VAR (AICc) 0.003103 0.051579 0.047464 0.330590 -0.169620 0.206520 0.753620 0.728260 

VAR (BIC) 0.002375 0.043468 0.039876 0.260670 -0.073473 0.239130 0.840580 0.739130 

NN (AICc) 0.000228 0.014365 0.013177 0.084172 0.757450 0.534090 0.212120 0.750000 

NN (BIC) 0.000379 0.017673 0.016176 0.107480 0.844560 0.477270 0.257580 0.750000 

IPD Industrial Return 

ARMA 0.001138 0.029671 0.025517 0.113060 0.188350 0.456520 0.521740 0.750000 

GARCH 0.005379 0.063277 0.059379 0.252060 0.254650 0.423910 0.608700 0.750000 

VAR (AICc) 0.003700 0.047666 0.042964 0.228590 -0.179790 0.228260 0.898550 0.717390 

VAR (BIC) 0.002112 0.041147 0.038061 0.183200 0.250750 0.260870 0.652170 0.750000 

NN (AICc) 0.000135 0.010023 0.008948 0.037517 0.827470 0.647730 0.227270 0.750000 

NN (BIC) 0.000929 0.024416 0.022129 0.086449 0.746040 0.647730 0.242420 0.750000 

 

Table 8.5: Comparison between different models for 4-step return forecast 
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  MSE RMSE MAE MAPE 

Pearson 

Coefficient DA MDA Sign 

J255 Return Deviation 

ARMA 0.001063 0.030676 0.025566 0.941130 -0.170420 0.632350 0.617650 0.735290 

GARCH 0.684800 0.185020 0.179690 6.322200 0.005448 0.583330 0.649570 0.711540 

VAR (AICc) 0.000947 0.028003 0.023922 0.836210 0.085902 0.642860 0.580950 0.750000 

VAR (BIC) 0.000844 0.026785 0.022947 0.849000 -0.063641 0.657140 0.714290 0.750000 

NN (AICc) 0.001338 0.034211 0.028498 0.942110 -0.058416 0.596770 0.612900 0.733870 

NN (BIC) 0.001165 0.031610 0.025947 0.843340 -0.072486 0.604840 0.709680 0.733870 

J256 Return Deviation 

ARMA (AICc) 0.000963 0.027814 0.023860 1.006700 0.417460 0.758330 0.400000 0.725000 

ARMA (BIC) 0.001049 0.029386 0.024484 1.121500 0.230910 0.700000 0.522220 0.725000 

GARCH (AICc) 0.000761 0.024659 0.019062 0.981060 0.285100 0.725000 0.555560 0.750000 

GARCH (BIC) 14.44500 0.837030 0.818120 40.87900 0.259310 0.691670 0.566670 0.741670 

VAR (AICc) 0.001431 0.036198 0.029492 1.389800 -0.059904 0.641670 0.577780 0.708330 

VAR (BIC) 0.000915 0.027592 0.022377 1.284900 -0.140590 0.708330 0.711110 0.750000 

NN (AICc) 0.001393 0.033232 0.028334 1.683800 0.116330 0.660710 0.595240 0.750000 

NN (BIC) 0.000760 0.025064 0.020493 1.268100 0.068113 0.750000 0.678570 0.750000 

IPD Retail Return Deviation 

ARMA 0.001321 0.025339 0.023071 0.700934 0.076068 0.431818 0.651510 0.663040 

GARCH 0.156954 0.226910 0.216806 8.922188 0.010136 0.466667 0.577775 0.717390 

VAR (AICc) 0.000088 0.007532 0.006772 0.190640 0.287240 0.358700 0.637680 0.750000 

VAR (BIC) 0.000102 0.007682 0.007067 0.194140 -0.078331 0.304350 0.826090 0.750000 

NN (AICc) 0.000174 0.008888 0.008379 0.201740 0.409500 0.568180 0.484850 0.750000 

NN (BIC) 0.000175 0.008530 0.007988 0.186030 0.319980 0.522730 0.545450 0.750000 

IPD Office Return Deviation 

ARMA 0.001825 0.021958 0.019613 1.142830 -0.088966 0.488636 0.621205 0.725000 

GARCH 0.110070 0.095859 0.084771 5.095500 -0.133420 0.238640 0.772730 0.568180 

VAR (AICc) 0.000309 0.014652 0.013147 0.617810 -0.254000 0.119570 0.884060 0.630430 

VAR (BIC) 0.000346 0.016761 0.015408 0.771530 -0.451570 0.130430 1.058000 0.576090 

NN (AICc) 0.000305 0.014043 0.013282 0.626380 0.216820 0.352270 0.606060 0.556820 

NN (BIC) 0.000380 0.017189 0.016253 0.873530 -0.001110 0.136360 0.757580 0.727270 

IPD Industrial Return Deviation 

ARMA (AICc) 0.003731 0.029680 0.025851 1.492360 -0.095481 0.363636 0.772719 0.541300 

ARMA (BIC) 0.000128 0.008746 0.008079 0.606275 -0.034685 0.409091 0.742418 0.492000 

GARCH  0.003891 0.028854 0.027794 1.861078 0.120250 0.483333 0.577778 0.717390 

VAR (AICc) 0.000236 0.011414 0.010454 0.725600 -0.088390 0.358700 0.739130 0.750000 

VAR (BIC) 0.000237 0.010193 0.009686 0.672640 -0.285700 0.347830 0.826090 0.750000 

NN (AICc) 0.000041 0.005531 0.004994 0.259800 0.440500 0.590910 0.545450 0.750000 

NN (BIC) 0.000028 0.004724 0.004404 0.253140 0.525710 0.465910 0.500000 0.750000 

 

Table 8.6: Comparison between different models for 4-step return deviation forecast 
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The best and the worst performing models from the above forecasts are summarised 

below. 

 

 

Table 8.7: Summary of the best and the worst performing models for short-term forecast 

 

7.4.1 J255 return and return deviation 

 

The ARMA model is the best performing model and the GARCH model is the worst 

performing model for all short-term forecasts of the J255 return. This result corresponds 

with the finding in the long term prediction. The performance of the neural network 

model optimised using the AICc method, which is the optimal model for long term 

prediction, is average. 

 

The VAR model proves to be the most accurate in predicting the J255 return deviation 

with the lowest error and highest directional accuracy for the three short-term forecasts, 

VAR model optimised using the BIC method for 1-step forecast and VAR model 

optimised using the AICc method for 2-steps and 4-steps forecasts. This finding 

corresponds with the findings of the analytical method for long term prediction and even 

in the work of Brook and Tsolacos (2001). However, as evident in the result of the 

graphical method for long term prediction, VAR model predicts the trend of the actual 

return deviation poorly and can produce highly misleading results. The neural network 

model optimised using the BIC model is the worst performing model for 1-step forecast 

and the GARCH model is the worst performing model for 2-step and 4-step forecasts, 

which are fairly accurate models for long-term forecast. 

 

7.4.2 J256 return and return deviation 

 

The ARMA model is the best performing model for 1-step and 2-steps forecasts of the 

J256 return and the neural network model optimised using the BIC model is the best 

performing model for 4-step forecasts of the J256 return. Likewise, the ARMA model is 

also one of the best performing models for long-term forecast. The GARCH model is 

  1-step  2-steps  4-steps 

  Best Worst Best Worst Best Worst 

J255 Return ARMA GARCH ARMA GARCH ARMA GARCH 

J255 Return Deviation VAR(BIC) NN(BIC) VAR(AICc) GARCH VAR(AICc) GARCH 

J256 Return ARMA GARCH ARMA GARCH NN(BIC) GARCH 

J256 Return Deviation ARMA GARCH ARMA(AICc) GARCH(BIC) GARCH(AICc) GARCH(BIC) 

Retail Return  NN(BIC) GARCH NN(AICc) GARCH NN(BIC) GARCH 

Retail Return Deviation VAR(AICc) GARCH NN(AICc) GARCH NN(BIC) GARCH 

Office Return  NN(AICc) GARCH NN(AICc) GARCH NN(AICc) GARCH 

Office Return Deviation NN(BIC) GARCH NN(BIC) GARCH NN(AICc) GARCH 

Industrial Return  NN(Both) GARCH NN(AICc) GARCH NN(AICc) GARCH 

Industrial Return Deviation ARMA(BIC) GARCH NN(BIC) GARCH NN(BIC) ARMA(AICc) 
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once again identified as the worst performing model for all short-term forecasts of the 

J256 return. On the contrary, this model is identified to be one of the best performing 

models for long-term prediction.  

 

The ARMA model is the best performing model for 1-step and 2-steps forecasts of the 

J256 return deviation and the GARCH model optimised using the AICc model is the best 

performing model for 4-step forecasts of the J256 return deviation. The forecasting power 

of the neural network model optimised using the BIC method, which is the best 

performing model for long term prediction, improves with increasing number of 

forecasting steps. The GARCH model is the worst performing model for 1-step and 2-

steps forecasts of the J256 return deviation and the GARCH model, optimised using the 

BIC model, is the worst performing model for 4-step forecasts of the J256 return 

deviation. 

 

7.4.3 Retail return and return deviation 

 

Similar to the long term prediction analysis, the neural network models produce the most 

accurate forecasts of the retail return. The GARCH model is the worst performing model 

for all three forecasts of the retail return, which concur with the finding of the analytical 

method for long term prediction.  

 

The VAR model is the best performing model for 1-step forecast of the retail return 

deviation and the neural network model is the best performing model for 2-steps and 4-

steps forecast of the retail return deviation. The GARCH model is again the worst 

performing model for all three forecasts of the retail return deviation, which concurs with 

the findings of the analytical method for long term prediction. 

 

7.4.4 Office return and return deviation 

 

Similar to previous return and the long term prediction analysis result, the neural network 

models produce the most accurate forecast of the office return and office return 

deviations. The GARCH model is the worst performing model for all of the forecasts.   

 

7.4.5 Industrial return and return deviation 

 

The neural network models produce the most accurate forecasts of the industrial return 

and the GARCH model produces the least accurate forecasts of the industrial return. 

 

The ARMA model, optimised using the BIC method, is the best performing model for 1-

step forecast of the industrial return deviation and the neural network model optimised 

using the BIC model is the best performing model for 2-steps and 4-steps forecasts of the 

industrial return deviation. Likewise, the neural network model optimised using the BIC 

model is the best performing model for long term prediction. The GARCH model is again 
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the worst performing model for 1-step and 2-steps forecasts of the industrial return 

deviation and the ARMA model optimised using the AICc model is the worst performing 

model for 4-steps forecasts of the industrial return deviation. 

 

 

7.5 Summary  
 

The long-term and short-term prediction performances of the ARMA, GARCH, VAR and 

neural network models with optimal parameters and explanatory variables are evaluated 

in this section. Two different methods are used in the evaluation, namely the graphical 

method and the analytical method.  

 

The long-term indirect return prediction indicates that the ARMA model and the neural 

network models are the preferred model, while for the long-term direct return predictions 

the neural network significantly outperformed other models.   

 

However, for long-term predictions of return deviation, the result is not so clear-cut, 

mainly because the trends are so much more difficult to predict. The ARMA, GARCH 

and neural network models are able to predict return deviations with similar accuracy. 

Even though the result from the analytical method indicates that the VAR model 

performed better than the other models in specific cases, the result from the graphical 

method indicates that the output produced by the model is insensitive to the changes in 

the actual trend and can produce misleading results. Lastly, it is evident that the accuracy 

of the predictions of direct return deviation decreased significantly from 2006 onward. 

This is due to the increase in the gap between the properties with the highest and the 

lowest return. For example, the differences in return for retail and industrial property in 

2006 are 13.4% and 5.2% respectively, which are higher than in previous years. 

 

For short-term return predictions, the result is similar where the ARMA model and the 

neural network optimised using the AICc method are the best performing models. The 

neural network model is the preferred choice for direct return predictions.  Again, it is 

much more difficult to define the best models in predicting short-term return deviation as 

various models are able to predict return deviations with similar accuracy. In general, the 

GARCH model is inferior in producing short term forecast. The result of the analysis is 

tabulated below. 

 

 

 

 

 

 

 

 

 

 

 



80 

 

 

 

  Long term  Short term 

J255 Return ARMA(6,2,1)/NN(4,4,2,Linear) ARMA(6,2,1) 

J256 Return ARMA(1,3,1)/GARCH(1,1,1) ARMA(1,3,1)/NN(2,2,1,Linear) 

Retail Return  NN(both models) NN(both models) 

Office Return  NN(both models) NN(both models) 

Industrial Return  NN(both models) NN(both models) 

J255 Return Deviation NN(4,4,2,Linear) VAR(4,2)/ARMA(6,1,1) 

J256 Return Deviation NN(2,2,1,Linear) ARMA(1,1,2)/GARCH(1,4,1) 

Retail Return Deviation NN(2,2,2,Linear) NN(both models) 

Office Return Deviation NN(4,2,2,Linear) NN(both models) 

Industrial Return Deviation NN(2,2,1,Logistic) NN(2,2,1,Logistic)/ARMA(1,1,1) 

 

Table 9: Summary of analysis for the long-term and the short-term prediction  

 

 

The following is a summary of the accuracy of the prediction of the optimal model for 

each return and return deviation and the associated explanatory variables used in the 

models.  

 

 

Output Forecast accuracy Explanatory Variables 

J255 Return Fair 
Term structure, employment index, building 

plans passed index 

J256 Return Poor 
Manufacturing index, employment index, 

building plans passed index 

Retail Return Good 
Gilt-equity ratio, changing CPIX index 

Office Return Very Good 

Industrial Return Very Good Manufacturing index, prime lending rate 

J255 Return Deviation Poor 
Gilt-equity ratio, building plans passed 

index 

J256 Return Deviation Very Poor Term structure, building plans passed index 

Retail Return Deviation Fair 
Gilt-equity ratio, changing CPIX index 

Office Return Deviation Very Poor 

Industrial Return Deviation Very Good Manufacturing index, prime lending rate 

 

Table 10: Summary of accuracy of predictions and variables used by optimal models  

 

Referring to the table above, the models are able to predict the trends of the J255 indirect 

returns fairly accurately. However, the models cannot accurately predict the trends of the 

J256 indirect property return and the indirect return deviations.  The models are able to 

predict both the trends and the actual value of the direct return and the industrial return 

deviation accurately. The retail return deviation is predicted by the models fairly 

accurately, except in the last 8 periods, where none of the models predicted the sudden 

rise and the office return deviation cannot be predicted by any of the models.  
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The impulse response of the optimal long-term prediction models is analysed. For the 

most part, the biggest influence on the output of the models is the autocorrelative 

components. However, the output of some of the GARCH and neural network models are 

more susceptible to changes in the explanatory variables such as gilt-equity ratio, term 

structure and changing CPIX. This finding corresponds to the result in the causality 

analysis in section 4, where these explanatory variables are closely related to the outputs 

of the model under investigation.  

 

The significance of the conditional variance from the GARCH model on the prediction of 

the actual output trend is also investigated, and no relationship between the two was 

found.  

 

While the models examined in this research are far more sophisticated than previous 

models used in the South African property market environment, there is a debate on 

whether to deploy a complex model with few explanatory variables, or a simple model 

with multiple explanatory variables, to forecast the return. In this section, it is clear that a 

simple model with multiple explanatory variables such as the ARMA model is suitable 

for predicting indirect returns, which are volatile and slightly stochastic in nature. 

Conversely, a complex non-linear model with few explanatory variables such as the 

neural network model is suitable for predicting direct returns, which slopes gradually. 

However, a simple model with few explanatory variables, such as the VAR model, is not 

suitable for this application.   

 

Further to the debate above, cognisance must be taken of the limitations and shortfall of 

these models. The general shortfall of these models is that their accuracies are limited to 

the number of samples available, as discussed in work of Brook and Tsolacos (1999). 

Since the quantity of data available for this research is fairly scarce, there is still potential 

in the near future to increase the accuracy of these models. There are also technical 

limitations to these models, as each of the models selected was designed to serve specific 

scenarios, different from each other.   

 

The ARMA model and the GARCH model are designed for a single output (univariant). 

Resultantly, separate models are required for the return and its deviation and the number 

of models required to simulate a set of return doubled, which increased the amount of 

time required to develop models for a specific set of outputs. Even though there is a 

multivariable derivative for these two types of model, they are highly complex and 

difficult to implement in software.  Furthermore, the GARCH model is designed for a 

volatile environment and thus it performs much better in predicting indirect returns and 

return deviations where the trend is volatile.  

 

The VAR model and the neural network model are different from the ARMA and the 

GARCH model in that they are designed to produce multiple outputs. While the VAR 

model has the ability to correlate a set of input and output variables, it is an extension of a 

multiple linear regression model with multiple outputs and is only suitable for linear 

relationships. In a highly non-linear environment such as the one investigated in this 

research, this model failed comprehensively in predicting the trend of the return.    
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For non-linear relationships, the neural network model is employed, which operates like a 

black box (Brook and Tsolacos, 2003). In comparison to the previous models, several 

extra steps are required in order to implement a neural network model, such as 

normalisation of all input and output variables and separating the data into training and 

validating set. Consequently, the accuracy of this type of model relates significantly to 

the size of the training data set. Furthermore, as discussed in Brook and Tsolacos (2003), 

there is an underlying problem with neural network in determining direct relationships 

between a variable and an output. This is because it operates in a black box manner and 

there is no theory to link the relevance in the values of the weights to the relationship 

between an input and an output variable. 

 

Finally, the reason behind the introduction of the return deviation in the forecast is that 

the prediction of the return deviation assists one in determining the risk of achieving the 

forecast return.  
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8 Conclusion 
 

The macroeconomic factors that influence commercial property return are first identified 

and investigated. These factors are inflation, term structure of interest rate, gilt-equity 

yield ratio, manufacturing index, employment growth rate, building plans passed, prime 

lending rate and GDP growth rate. Both indirect and direct property return are 

investigated in this research. The direct property return are gathered from the IPD 

commercial property data while the indirect property returns are gathered from the J255 

property trust index and the J256 property loan stock index. The deviation of the return, 

which is essential in determining the risk of the return value, is also extracted from the 

data for evaluation. Using Granger causality technique, the term structure, employment 

index and building plans passed index were identified to have significant influence in 

indirect return. While the changing CPIX index and gilt-equity ratio were the factors 

identified to have significant influence on direct return.  

 

The ARMA, GARCH, VAR and MLP neural network models are used in this research to 

predict and forecast the returns. The ARMA and GARCH models investigated in this 

research are univariant, i.e. the model only produces one output at a time. While the VAR 

and neural network models investigated are multivariant, i.e. the model can produce 

multiple outputs at a time. The parameters for each type of model are identified and 

optimised by means of information criterion techniques. The optimised parameters are 

the number of lags, input variables and functions to be used in a neuron for neural 

network.     

 

The performances of the optimal models are then evaluated. The models are required to 

perform long-term forecasting and short-term forecasting. The ARMA model predicted 

the indirect return most accurately, while the neural network predicted the direct return 

most accurately. This is because the indirect return trend is a volatile trend and is suitable 

for the ARMA model to predict such a trend, while the direct return is less volatile and 

slightly non-linear and is suitable for the neural network to predict such a trend. There 

was no particular model that is preferable in predicting all of the return deviation. 

Consequently, a combination of models is required in order to predict the return deviation 

accurately. 

 

The result from the performance evaluation indicates that the South African commercial 

property return can be forecast, in particular the direct return. However, further 

investigation is required to refine the forecast model, while this research should serve as a 

stepping stone in the investigation of the relationship between macroeconomic factors 

and the South African property market.  

 

 

 

 

 

 

 



84 

 

 

 

9 References 
 

 

Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE 

Transactions on Automatic Control, 19(6): 716-723. 

 

Ball, M., Lizieri, C. and MacGregor, B.D. (1998). The Economics of Commercial 

Property Market. New York: Routledge.  

 

Bedrick, E.J. and Tsai, C. (1994). Model Selection for Multivariate Regression in Small 

Samples. Biometrics, 50(1): 226-231. 

 

Bera, A.K. and Jarque, C.M. (1980), Efficient Tests for Normality, Homoscedasticity and 

Serial Independence of Regression Residuals. Economics Letters, 6(3): 255-259. 

 

Bera, A.K. and Jarque, C.M. (1981), Efficient Tests for Normality, Homoscedasticity and 

Serial Independence of Regression Residuals: Monte Carlo Evidence. Economics Letters, 

7(4): 313-318. 

 

Bollerslev, T. (1986), Generalized Autoregressive Conditional Heteroscedasticity. 

Journal of Econometrics, 31(3): 307-327 

 

Bond, M.T. and Seiler, M.J. (1998). Real Estate Returns and Inflation: An Added 

Variable Approach. Journal of Real Estate Research, 15(3): 327-338. 

 

Borst, R.A. and McCluskey, W.J. (1997). An Evaluation of MRA, Comparable Sales 

Analysis, and ANNs for the Mass Appraisal of Residential Properties in Northern Ireland. 

Assessment Journal, 4(1): 47-55. 

 

Brooks, C. and Tsolacos, S. (1999).The Impact of Economic and Financial Factors on 

UK Property Performance. Journal of Property Research, 16(2): 139-152. 

 

Brooks, C. and Tsolacos, S. (2001). Forecasting Real Estate Returns Using Financial 

Spreads. Journal of Property Research, 18(3): 235-248. 

 

Brooks, C. and Tsolacos, S. (2001a). Linkage between Property Assets Returns and 

Interest Rates: Evidence for the UK. Applied Economics, 33(6): 711-719. 

 

Brooks, C. and Tsolacos, S. (2003). International Evidence on the Predictability of 

Returns to Securitized Real Estate Assets: Econometric Models versus Neural Networks. 

Journal of Property Research, 20(2): 133-155. 

 

Burnham, K.P. and Anderson, D.R. (2004). Multimodel Inference: Understanding AIC 

and BIC in Model Selection. Sociological Methods and Research, 33(2): 261-304. 

 



85 

 

 

 

Chan, K.C., Hendershott, P.H. and Sanders, A.B. (1990). Risk and Return on Real Estate: 

Evidence from Equity REITs. AREUEA Journal, 18(4): 431-452. 

 

Chatfields, C. (2004). The Analysis of Time Series – An Introduction. 6th Edition. USA: 

Chapman and Hall CRC.  

 

Collins, A. and Evans, A. (1994). Aircraft Noise and Residential Property Value. Journal 

of Transport Economic and Policy, 28(2): 175-197.   

 

Demuth, H.B. and Hagan, M.T. (1999). Neural Network for Control. Invited Tutorial, 

1999. American Control Conference, June, 1999, San Diego, pp. 1642-1656. 

 

Dickey, D.A. and Fuller, W.A. (1979). Distribution of the Estimators for Autoregressive 

Time Series with a Unit Root. Journal of the American Statistical Association, 74(366): 

427-431. 

 

Dickey, D.A. and Said, S.E. (1984). Testing for Unit Roots in Autoregressive-Moving 

Average Models of Unknown Order. Biometrika, 71(3): 599-607. 

 

Do, A.Q. and Grudnitski, G. (1992). A Neural Network Approach to Residential Property 

Appraisal. The Real Estate Appraiser, 58(3): 38–45. 

 

Ebert, B. et al. (2008). Forecast Verification – Issues, Methods and FAQ. 4
th

 

International Verification Methods Workshop. Retrieved 5
th

 August 2009 from the World 

Wide Web: http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif_web_page.html. 

 

Egriolgu, E., Aladag, C.H. and Gunay, S. (2008). A New Model Selection Strategy in 

Artificial Neural Networks. Applied Mathematics and Computation, 195(2): 591-597. 

 

Ellis, C. and Wilson, P. (2005). Can a Neural Network Property Portfolio Selection 

Process Outperform the Property Market? Journal of Real Estate Portfolio Management, 

11(2): 105-121. 

 

Engle, R.F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of 

Variance of United Kingdom Inflation. Econometrica, 50(4): 987-1008. 

 

Granger, C.W.J. (1969). Investigating Causal Relations by Econometric Models and 

Cross-Spectral Methods. Econometrica, 37(3): 424-438. 

 

Ge, X.J. and Runeson, G. (2004). Modeling Property Prices Using Neural Network 

Model for Hong Kong. International Real Estate Review, 7(1): 121-138.  

 

Hetherington, J. (1998) Forecasting of rents, in MacLeary, A. And Nathakumaran, N. 

(Eds.), Property Investment Theory, London: E & F N Spon (pp. 97-107). 

 



86 

 

 

 

Hoesli, M. (1994). Real Estate as a Hedge against Inflation: Learning from the Swiss 

Case. Journal of Property Valuation and Investment, 12(3): 51-59. 

 

Hua, G.B. (1996). Residential Construction Demand Forecasting using Economic 

Indicators: A Comparative Study of Artificial Neural Networks and Multiple Regression. 

Construction Management and Economics, 14(1): 10-34. 

 

Hurvich, C.M. and Tsai, C. (1989). Regression and Time Series Model Selection in Small 

Samples. Biometrics, 76(2): 297-307. 

 

Halekoh, U. (2007). Model Selection. Retrieved 21
st
 November 2009 from the World 

Wide Web: http://gbi.agrsci.dk/statistics/courses/phd07/material/Day6/modelSelection-

handout.pdf.  

 

Investopedia. (2009). Term Structure of Interest Rates. Retrieved 28
th

 February 2010 

from the World Wide Web: http://www.investopedia.com/terms/t/termstructure.asp. 

 

Laio, F., Di Baldassare, G. and Montanari, A. (2009). Design flood estimation using 

model selection criteria. Physics and Chemistry of the Earth, 34: 606-611.  
 

LeSage, J.P. (1999). Spatial Econometrics. Retrieved 21st November 2009 from the 

World Wide Web: http://www.spatial-econometrics.com/wbook.pdf. 

 

Liang, Y. and McIntosh, W. (1998). Employment Growth and Real Estate Return: Are 

They Linked? Journal of Real Estate Portfolio Management, 4(2): 125-168. 

 

Ling, D.C. and Naranjo, A. (1997). Economic Risk Factors and Commercial Real Estate 

Returns. Journal of Real Estate Finance and Economics, 14(3): 283-307. 

 

Ling, D.C. and Naranjo, A. (1998). The Fundamental Determinants of Commercial Real 

Estate Returns. Real Estate Finance, 14(4): 13-24. 

 

Lizieri, C. and Satchell, S. (1997). Interactions Between Property and Equity Markets: 

An Investigation of Linkages in the United Kingdom 1972-1992. Journal of Real Estate 

Finance and Economics, 15(1): 11-26. 

 

Liow, K.H. (2000). The Dynamics of the Singapore Commercial Property Market. 

Journal of Property Research, 17(4): 279-291. 

 

Liow, K.H. (2004). Time-Varying Macroeconomic Risk and Commercial Real Estate: An 

Asset Pricing Perspective. Journal of Real Estate Portfolio Management, 10(1): 47-57. 

 

Liu, C.H. and Mei, J. (1992). The Predictability of Returns on Equity REITs and Their 

Co-Movement with Other Assets. Journal of Real Estate Finance and Economics, (5): 

401-418. 



87 

 

 

 

Liu, C.H., Hartzell, D.J. and Hoesli, M.E. (1997). International Evidence on Real Estate 

Securities as an Inflation Hedge. Real Estate Economics, 25(2): 193-221. 

 

Liberta (2011). Prime Interest Rate in South Africa. Retrieved 15th January 2011 from the 

World Wide Web: http://liberta.co.za/blog/prime-interest-rate-in-south-africa-current-

and-historical. 

 

Liberta (2011a). What is the Repo Rate. Retrieved 15
th

 January 2011 from the World 

Wide Web: http://liberta.co.za/blog/what-is-the-repo-rate/. 

 

May, C. (2004). “An empirical analysis of the macroeconomic variables that affect stock 

market return”, University of the Witwatersrand: M.Comm thesis. 

 

Mathwork (2004). “Full Product Family Help”. Matlab Version 7 Release 14. 

 

McCue, T. and Kling, J.L. (1987). Office Building Investment and the Macroeconomy: 

Empirical Evidence, 1973-1985. Real Estate Economics, 15(3): 234-255. 

 

McCue, T. and Kling, J.L. (1994). Real Estate Returns and the Macroeconomy: Some 

Empirical Evidence from Real Estate Investment Trust Data 1972-1991. Journal of Real 

Estate Research, 9(2): 277-287. 

 

Njuguna, P.K. (2002). “Macroeconomic value drivers for Johannesburg CBD property 

fund units”, University of the Witwatersrand: MBA thesis. 

 

Nabney, I. (2004). Netlab: Algorithm for Pattern Recognition, 4
th

 Edition. UK: Springer. 

 

Onder, Z. (2000). High Inflation and Returns on Residential Real Estate: Evidence from 

Turkey. Applied Economics, 32: 917-931. 

 

Pena, D., Tiao, G.C. and Tsay, R.S. (2001). A Course in Time Series Analysis. USA: 

Wiley Series.  

 

Poensgen, R. (2000). “The Influence of Macroeconomic Factors on Residential Property 

Values”, University of the Witwatersrand: MBA thesis. 

 

Qi, M. and Maddala, G.S. (1999). Economic Factors and the Stock Market: A New 

Perspective. Journal of Forecasting, 18: 151-166. 

 

Qi, M. and Zhang, G.P. (2001). An Investigation of Model Selection Criteria for Neural 

Network Time Series Forecasting. European Journal of Operational Research, 

132(2001): 666-680. 

 

Quan, D.C. and Titman, S. (1999). Do Real Estate Prices and Stock Prices Move 

Together? An International Analysis. Real Estate Economics, 27(2): 183-207. 

 



88 

 

 

 

Rossini, P. (1997). Application of Artificial Neural Networks to the Valuation of 

Residential Property. Paper Presented in the Third Annual Pacific-Rim Real Estate 

Society Conference, Palmerston North, New Zealand. 

 

Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6: 461-

464. 

 

Siganos, D. and Stergiou, C. (1996). Neural Networks. Retrieved 31
st
 May 2006 from the 

World Wide Web: 

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html.  

 

Spiegel, M. and Boxer, R.W. (1972). Schaum’s Outline of Theory and Problems of 

Statistics in SI Units. New York: McGraw-Hill.  

 

Stevenson, S. and Murray, L. (1999). An Examination of the Inflation Hedging Ability of 

Irish Real Estate. Journal of Real Estate Portfolio Management, 5(1): 59-69. 

 

Stock, J.H. and Watson, M.W. (2001). Vector Autoregressions. Journal of Economic 

Perspectives, 15(4): 101-115.  

 

West, T. and Worthington, A. (2004). Macroeconomic Risk Factors in Australian 

Commercial Real Estate, Listed Property Trust and Property Sector Stock Returns: A 

Comparative Analysis using GARCH-M, Proceedings of the Pacific Rim Real Estate 

Society Conference, Bangkok, Thailand. 

 

Wikipedia (2009a). Kurtosis. Retrieved 1
st
December 2009 from the World Wide Web: 

http://en.wikipedia.org/wiki/Kurtosis. 

 

Wikipedia (2009b). Jarque-Bera test. Retrieved 1
st
 December 2009 from the World Wide 

Web: http://en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test. 

 

Wikipedia (2009c). F-test. Retrieved 1
st
 December 2009 from the World Wide Web:   

http://en.wikipedia.org/wiki/F-test. 

 

Wikipedia (2009d). Hyperbolic function. Retrieved 1st December 2009 from the World 

Wide Web: http://en.wikipedia.org/wiki/Hyperbolic_function. 

 

Wikipedia (2009e). Bayesian Information Criterion. Retrieved 1
st 

December 2009 from 

the World Wide Web: http://en.wikipedia.org/wiki/Bayesian_information_criterion. 

 

Worzala, E., Lenk, M. and Silva, A. (1995). An Exploration of Neural Networks and its 

Application to Real Estate Valuation. The Journal of Real Estate Research, 10(2): 185-

201.   

 

 

 



89 

 

 

 

 

 

 

 

 

 

 

 
Appendix A  

 

Tables of input and output data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 

 

 

 



91 

 

 

 

 

 

 



92 

 

 

 
 

 

 

 

 

 



93 

 

 

 
 



 

94 

 

 

 

 
 

 

 

 

 

 

 

 
Appendix B 

 

Graphs of the input variables and property returns  
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1.1 Introduction 
 

This document presents the graphs of the input variables and output variables (property 

returns and their deviation) for the forecasting models in this research. The autocorrelation 

graphs of the output variables are also included in this document. 

 

 

1.2 Graphs of the input variables 
 

The input variables investigated in this research are the term structure of interest rate, gilt-

equity ratio, manufacturing index, employment index, building plans passed index, nominal 

GDP index, changing nominal GDP index, CPIX index, changing CPIX index, prime interest 

rate and changing prime interest rate. The graphs below present the trend of input variables 

between 1988 and 2007. 
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Figure B1.1: Term Structure (in percentage point) between 1988 and 2007 
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Figure B1.2: Gilt-Equity Ratio between 1989 and 2007 
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Figure B1.3: Manufacturing index between 1988 and 2008 
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Figure B1.4: Employment index in the construction sector between 1988 and 2007 
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Figure B1.5: Building plans passed index between 1988 and 2008 
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Figure B1.6: Nominal GDP Index between 1988 and 2008 
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Figure B1.7: Changing nominal GDP Index between 1990 and 2007 
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Figure B1.8: CPIX Index between 1990 and 2007 
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Figure B1.9: Changing CPIX Index between 1990 and 2007 
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Figure B1.10: Prime Interest Rate (in %) between 1988 and 2008 
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Figure B1.11: Changing Prime Interest Rate (in %) between 1988 and 2008 
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1.3 Graphs of the output variables 
 

The output variables investigated in this research are the indirect J255 total property return, 

the indirect J256 total property return, the direct IPD retail property return, the direct IPD 

office property return and the direct IPD industrial property return and their return deviations. 
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Figure B2.1: J255 total return between 1989 and 2008 



 

102 

 

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Year

J
2
5
5
 t

o
ta

l 
re

tu
rn

 d
e
v
ia

ti
o
n

 
Figure B2.2: J255 total return deviation between 1989 and 2008 
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Figure B2.3: J256 total return between 1991 and 2007 
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Figure B2.4: J256 total return deviation between 1991 and 2007 
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Figure B2.5: IPD retail property return between 1995 and 2007 
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Figure B2.6: IPD retail property return deviation between 1995 and 2007 
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Figure B2.7: IPD office property return between 1995 and 2007 
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Figure B2.8: IPD office property return deviation between 1995 and 2007 
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Figure B2.9: IPD industrial property return between 1995 and 2007 
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Figure B2.10: IPD industrial property return deviation between 1995 and 2007 

 

 

1.4 Correlogram of the outputs 
 

Hereunder are the correlograms of each output. A lag of 15 (k-value) is investigated for the 

indirect return data and a lag of 10 (k-value) is investigated for the direct return data. The 

discrepancy is due to the different data sizes between the two types of return, where there are 

more samples for indirect returns than direct returns. The bar graphs indicate the sample 

autocorrelation function values, which indicate the degree of correlation between the current 

sample and the sample in the set k
th

 period previous. The red dotted lines indicate the critical 

sample error level where there is no correlation between the two values if the calculated 

sample autocorrelation function value is below this level.  
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Figure B3.1: Correlogram of J255 total return  
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Figure B3.2: Correlogram of J255 total return deviation 
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Figure B3.3: Correlogram of J256 total return 
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Figure B3.4: Correlogram of J256 total return deviation 



 

109 

 

1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
IPD Return - Retail

k-values

s
a
c
f 

v
a
lu

e
s

 
Figure B3.5: Correlogram of IPD retail property return  
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Figure B3.6: Correlogram of IPD retail property return deviation 
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Figure B3.7: Correlogram of IPD office property return  
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Figure B3.8: Correlogram of IPD office property return deviation 
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Figure B3.9: Correlogram of IPD industrial property return  
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Figure B3.10: Correlogram of IPD industrial property return deviation 
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Tables of result from Granger casuality test 
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Background on econometric model algorithms in software  
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1.1 Introduction 
 

This document presents the background on the algorithms of the models developed in this 

research, which are the ARMA model, the GARCH model, the VAR model and the MLP 

neural network model. A brief introduction to the background of Matlab, the software used to 

simulate the model in this research, is presented. The theory behind each model investigated 

in this research is discussed. A section summarising the theory and characteristics of each 

model is also presented. 

 

 

1.2 Algorithms in software 
 

The models developed in Matlab are based on structures and functions as defined by 

Mathwork (2004). Structure is similar to an object where each structure consists of a set of 

attributes defined by the user. For example, if a user need to define a structure for student 

records, then the possible attributes of this structure are name, student number, standards, 

class code and subjects selected etc. Within these attributes, they store the information that 

the user previously entered. In this case, the structures are used to store information regarding 

the model such as the residual calculated, the values of the respective parameters, the 

information of the model and the result of some test conducted. Function defines a group of 

code that utilises the information stored in the attribute of a structure in order to perform a 

specific task with it. The result from the specific task calculated using the function is then in 

return stored in the attributes of other structures or in the case where the task is repetitive, the 

original attributes are updated with the new set of information. The general procedure for 

developing the models is defined by the flow diagram below (Figure D1). Generally, the first 

step requires the input of specific parameters from the user and the last step produces the 

result in the desirable format predefined by the user or the functions under operation.  
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Figure D1: Flow chart of the basic structure of the code for the models  

 

 

1.3 Univariate ARMA Model 
 

The algorithm for this model is integrated into the GARCH Toolbox of Matlab because the 

GARCH and other non-constant conditional variance models also require one to implement 

such models first before implementing the required scheme for the conditional variance part 

of the model, as defined by Mathwork (2004). In such case where only the ARMA model is 

required, the conditional variance of the model is kept constant, i.e. the variance range of the 
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output is fixed. The model is defined by the following equations and is called the ARMAX 

model, as it incorporates a component for explanatory variables.  
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),(βεθεφ  (1.1) 

   

Where: 

 

C constant bias term 

φ i autoregressive (AR) coefficient for i-th lag 

yt-i output variable y at time t-i  

R autoregressive (AR) lag parameter  

θj moving average (MA) coefficient for j-th lag 

εt-j variable of random process (innovation) at time t-j  

M moving average (MA) lag parameter 

βk coefficient for k-th explanatory variable  

X(t,k) value of the k-th explanatory variable at time t 

Nx total number of explanatory variables, including lags 

 

The above equation (Equation 1.1) is interpreted as the following in the algorithm. 

 

( ) ( ) ( ) ( ) KK +−++−++−+= 1)1()(1)1()( teMAteRtyRARtyARCty  (1.2) 

 

       ( ) ( ) ( )xx NtXNBtXBMteMMA ,)(1,)1()( ++−+ K  

 

Where: 

 

AR(R) autoregressive (AR) coefficient for R-th lag 

MA(M) moving average (MA) coefficient for M-th lag 

B(Nx) coefficient for Nx-th explanatory variable 

 

As discussed in previous section, the user has to specify an initial value for the parameters 

where the algorithm examines them, before proceeding any further. Amongst other 

examinations, the algorithm examines two essential conditions, namely that the 

autoregressive part of the equation must be stationary and the moving average part must be 

invertible. The algorithm achieves this by calculating the eigenvalues of the AR and MA 

parameters and determines whether the calculated eigenvalues lie within the unit roots circle. 

If the eigenvalues lie with the circle, then the autoregressive part is stationary and the moving 

average part is invertible.  

 

Once all of the required conditions have been satisfied, the algorithm first commences with 

the calculation of an initial estimation of the parameters based on the input from the user. The 

initial estimation is performed in two steps. The first step is to calculate the parameters of the 

autoregressive (AR) part of the model and the parameters of the explanatory variables using 

ordinary least square regression. The second step is to extract the residual of the OLS 

regression and use it to estimate the coefficient of the moving average (MA) part, where each 

coefficient of the moving average part is based on its auto-covariance with the autoregressive 
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part. Thereafter, the parameters are then optimised based on minimising the following linear 

equation, derived from Equation 1.2, with the initial estimated values substituted in the 

parameters. 

 

 

( ) ( ) ( ) KK −−−−−−−−+−= 1)1()(1)1()()( teMARtyRARtyARtyCte  (2) 

 

       ( ) ( ) ( )xx NtXNBtXBMteMMA ,)(1,)1()( −−−− K  

 

This equation is an extension to Equation 1.2 and defines the differences between the actual 

result and the predicted result based on the generated model at present time t, which is the 

error term e(t).  

  

1.4 Univariate GARCH Model 
 

As previously discussed in the ARMA model section, the algorithm of the model used in the 

analysis is found in the GARCH Toolbox of Matlab and can be easily extended from the 

previously developed ARMA model. The model used is an univariant GARCH model, which 

is similar to the model used in the work of West and Worthington (2004). The model is 

defined by two different components, namely the conditional mean component and the 

conditional variance component. The conditional mean component is the ARMAX equation 

defined by Equation 1.1 and 1.2. The conditional variance component is defined by the 

equation below. 
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Where: 

 

 Κ constant standard deviation term 
2

it−σ  standard deviation at time t-i 

 Gi autocorrelative coefficient of standard deviation for i-th lag 

 P autocorrelative component (GARCH) lag parameter  
2

jt−ε  variable of random process (innovation) at time t-j  

 Aj coefficient for innovation for j-th lag 

Q innovation component (ARCH) lag parameter 

 

Matlab defined the following constraint to the above equation (Equation 3.1): 

 

1
1 1
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= =

P
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ji AG   (3.2) 

 

0>κ   (3.3) 

 

PiGi ,,2,10 K=≥  (3.4) 
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QjA j ,,2,10 K=≥  (3.5) 

  

 

Once again, the above equation (Equation 3.1) is interpreted to the following in the 

algorithm: 

 

( ) ( ) ( ) KK +−+−++−+=
2

1)1()(1)1()( teARCHPthPGARCHthGARCHKth  (3.6) 

 

( )2
)( QteQARCH −+  

 

Where: 

 

GARCH(P) autocorrelative coefficient for P-th lag 

ARCH(Q) innovation coefficient for Q-th lag 

 

Similar to the ARMA model, the algorithm inspects whether the initial parameters set by the 

user satisfy the above requirements. Once again, the algorithm calculates an initial estimation 

of the parameters based on the input from the user. However, the algorithm employs an ad 

hoc approach for this estimation. Based on the condition defined in Equation 3.2, the 

algorithm proportion 0.85 to all of the G coefficients and 0.05 to all of the A coefficients, 

from which the parameters are optimised by means of minimising the error between the 

actual standard deviation values and the standard deviation values calculated using the above 

equation (Equation 3.6) with the initial parameters.    

 

 

1.5 Vector Autoregressive (VAR) Model 
 

The algorithm is developed in the Econometric Toolbox by James LeSage (1999). There is 

various form of VAR models developed in the toolbox but in this study the simple VAR 

model is employed. The simple VAR model with 1 lag is based on the following equation as 

defined in LeSage (1999: 214). Unlike the previous two models discussed, this model is 

designed for multiple outputs and thus it is also known as multivariant model.  
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Where: 

 

y1(t-1) 1
st
 variable in the matrix at time t-1 

yn(t-1) n
th

 variable in the matrix at time t-1 

Ann(l) coefficient for the n
th

 variable for the n
th

 equation  

Cn constant for the n
th

 equation  
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εnt error term for the n
th

 equation   

 

Once again, initial values are defined for the parameters and the parameters are optimised. As 

discussed in LeSage (1999:214), the parameters are optimised using ordinary least square 

(OLS) regression method.  

 

 

1.6 Neural Network 
 

The Netlab Toolbox developed by Ian Nabney (2004) is used for the development of the 

neural network model. Unlike the Neural Network Toolbox provided in Matlab, the Netlab 

Toolbox is simple to use and provides greater flexibility in developing a neural network 

model. In this research, only the multi-layered perceptron (MLP) model is investigated. The 

algorithm models the neural network based on Equation 10.1 and Equation 10.2 in section 

2.3.4 of the thesis.  The algorithm implements the simplest form of MLP network, which has 

an input layer, a hidden layer and a output layer. The transfer function used for the neurons in 

the input and the hidden layer is the tanh function, which is defined by the following equation 

(Wikipedia, 2009d). 
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Once again, the algorithm first requires some basic inputs from the users on various 

parameters, such as the number of neurons in each layer (the input layer, the hidden layer and 

the output layer) and the transfer function to be used in the output layer. There are three 

choices of transfer functions available from the toolbox, namely the linear, the logistic and 

the softmax functions, as defined in Nabney (2004: 151).  
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Where:  

 
)2(

ka  
the sum of all weighted inputs and bias, for neuron k in the output layer  

N number of samples used for estimating the model 

 

In addition to defining some basic parameters, the input data need to be normalised. The 

process of normalisation is essential as the neural network operation is dependent on the 

consistent range of the input data. The reason behind this is to prevent the weight and bias 

parameters of neurons from undergoing saturation caused by data sets that have higher values 

than others. Furthermore, the process ensures that the movements in the data sets are detected 

without any bias. Each set of data is normalised by dividing all of the samples by the 
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maximum value (in terms of magnitude) in the set, i.e. the normalised value of the maximum 

sample will be 1.   

 

The next step is for the algorithm to initialise and optimise the parameters of the model. It 

defines the initial weights and biases of each neuron in the network with random values. The 

weights and biases are then optimised using the optimisation method defined by the user, 

which also requires the set of input and output data (the data set of the predicting variable and 

the predictors), the information of the neural network and the terminating criteria of the 

optimisation. The terminating criteria are usually the threshold error value between the actual 

and the predicted output, the number of iterations of the optimisation algorithm or a 

combination of both. Finally, the user can utilise this model to evaluate its performance. 

 

 

1.7 Summary and discussion 
 

The models are developed using Matlab version 7.0, which is designed for sophisticated 

calculations and modelling. The general procedure of the algorithm in developing the model 

is to obtain initial parameters from the user, examine the input parameters from the user, 

optimise the parameters, implement the model using the optimised parameter and then 

compare it with the actual values. The four models under investigation in this research, 

namely the univariant ARMA model, the univariant GARCH model, the VAR model and the 

MLP neural network model, have all been previously developed in Matlab.  

 

The univariant ARMA model and GARCH model are both integrated into the GARCH 

toolbox where Matlab permits the user to develop a model with both conditional mean and 

conditional variance. Both of the models provide one output with functions that allow the 

inclusion of explanatory variables in the conditional mean equation (Equation 1.1). The 

conditional variance is consider as a constant when implementing the ARMA model and the 

factors influencing the outputs (return and return deviation) are considered as the explanatory 

variables in the equation. The parameters for the ARMA model are set to zero, i.e. the 

autocorrelation terms are removed from the equation, for the development of a pure GARCH 

model. As a result, the conditional mean is dependently solely on explanatory variables, 

while the conditional variance for the GARCH model will be a function of the standard 

deviations of the outputs (return and return deviation). In this case, the conditional mean 

equation mimics that of a multiple linear regression (MLR) model, where the output depends 

on other factors or independent variables.   

 

The VAR models and the neural network models are multivariant models, in other words, the 

model can product multiple outputs. In the case of VAR model, there is a limitation, where 

the size of the output variable matrix has to correspond to the size of the input (explanatory) 

variables matrix (referring to Equation 4). As a consequence, the output or predicting 

variables (the return or return deviations) and the explanatory variables are combined 

together into the variable matrix. While in the neural network model, such problems do not 

exist, as there is no relation between the size of the output and the size of the input.   

 

Since the ARMA and the GARCH models are limited to one output for each model, a model 

is designed for each output (return and return deviations). While for the VAR and neural 

network models, a model is developed for each type of return and its deviation, i.e. the 

outputs of the model developed for J255 return will be the J255 return and the J255 return 

deviation. 
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Appendix E  

 

Tables of result from optimisation process 
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Appendix F 

 

Impulse response of optimal models for each return 
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1.1 Introduction 

 

This document presents the impulse response of the optimal model for returns and return 

deviations. The plotted result is the output of the model subjected to a shock of 1 standard 

deviation in each input and the effect is measured terms of a standard deviation unit.  

 
Figure F1: Impulse response of ARMA model for J255 return 

 
Figure F2: Impulse response of NN(AICc) model for J255 return 
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Figure F3: Impulse response of NN(AICc) model for J255 return deviation 

 

 
Figure F4: Impulse response of ARMA model for J256 return 
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Figure F5: Impulse response of GARCH model for J256 return 

 

 
Figure F6: Impulse response of NN(BIC) model for J256 return deviation 
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Figure F7: Impulse response of NN(BIC) model for retail return 

 

 
Figure F8: Impulse response of NN(BIC) model for retail return deviation 
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Figure F9: Impulse response of NN(BIC) model for office return 

 
Figure F10: Impulse response of NN(BIC) model for office return deviation 
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Figure F11: Impulse response of GARCH model for office return deviation 

 

 
Figure F12: Impulse response of ARMA model for industrial return 
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Figure F13: Impulse response of NN model for industrial return 

 

 
Figure F14: Impulse response of NN(BIC) model for industrial return deviation 
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Figure F15: Impulse response of variance function of GARCH models  
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Appendix G  

 

Schedule of M-files developed 
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