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Abstract

The loss of speech following a laryngectomy presents substantial challenges, and a

number of devices have been developed to assist these patients. These devices range

from the electrolarynx to tracheoesophageal speech. However, all of these devices

and techniques have concentrated on producing sound from the patient’s vocal tract.

Research into a new type of artificial larynx is presented. This new device utilizes the

measurement of dynamic tongue-palate contact patterns to infer intended speech.

The dynamic tongue measurement is achieved with the use of an existing palatome-

ter and pseudopalate. These signals are then converted to 2-D Space-Time plots and

feature extraction methods (such as Principal Component Analysis, Fourier Descrip-

tors and Generic Fourier Descriptors) are used to extract suitable features for use as

input to neural network systems. Two types of neural network (Multi-layer Percep-

trons and Support Vector Machines) are investigated and a voting system is formed.

The final system can correctly identify fifty common English words 94.14% of the

time with a rejection rate of 17.74%.

Voice morphing is investigated as a technique to match the artificially synthesized

voice to the laryngectomy patient’s original voice. It is successfully implemented

thus creating a transfer function that can change one person’s voice to sound like

another’s. Once the voting system has correctly identified the word said by the

patient the word is then synthesized in the patient’s pre-laryngectomy voice.

The final artificial larynx system solves a number of the problems inherent in previ-

ous artificial larynx designs (such as poor voice quality and invasiveness). This new

artificial larynx uses current technology in a new way to produce a viable solution

for alaryngeal patients.
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Chapter 1

Thesis Overview

“Nature, as we often say, makes nothing in vain, and man is the only

animal whom she has endowed with the gift of speech. And whereas

mere voice is but an indication of pleasure or pain, and is therefore

found in other animals, the power of speech is intended to set forth

the expedient and inexpedient, and therefore likewise the just and the

unjust.” (Aristotle, 350 B.C.E)

Speech and the ability to communicate is one of humanity’s most important tools.

Thus when this faculty is taken away, either by accident or as a result of surgery,

the results can be devastating both to the patients and their family members. In

the USA alone 41 370 new cases of pharyngeal, laryngeal or esophageal cancer were

diagnosed in 2009 (ACS, 2009). Many of these patients will face the prospect of a

total laryngectomy, in which the larynx is removed and the upper part of the trachea

is joined to a tracheostoma in the front of the neck (Ng et al., 1997). This leaves

the patient unable to talk or produce any vocalization.

Currently the phonation restoration options available to laryngectomy patients are

limited and fraught with problems. The voice output by electrolarynges is mechan-

ical and robotic sounding. The voice quality in esophageal and tracheoesophageal

speech is poor, with patients sounding gruff and harsh. Currently, research is being

performed to improve the voice quality of the already existing artificial larynx de-

vices (see for example Tack et al. (2008)). Literature directed at new techniques for

solving the problem of alaryngeal speech is sparse. Fagan et al. (2008) have used

magnets placed on the lips, teeth and tongue and magnetic sensors embedded in a

pair of glasses to detect a small set of different words and phonemes. As the words

are spoken the changing magnetic fields are picked up and a good success rate on a
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small data set was achieved, however the placement and fastening of the magnets is

problematic.

The new artificial larynx researched in this thesis uses the dynamic tongue move-

ments made during speech to detect which of fifty words the user is trying to say.

This is done using a palatometer system which detects tongue-palate contact signals.

These signals are then formed into space-time plots which can be treated as images.

Various shape features (such as Principal Component Analysis, Fourier Descriptors,

Generic Fourier Descriptors and others) are extracted from the space-time plots and

fed into a voting and predictive neural network system. A word identification suc-

cess rate of 94.14% (of accepted words) is achieved with a rejection rate (percentage

of words the system cannot classify and are rejected outright) of 17.74%. The word

is then synthesized in a voice very close to the user’s own voice using a technique

called voice morphing. The solution proposed here is a non-invasive approach to

providing laryngectomy patients with natural sounding speech.

This work is the beginning of research into a new type of artificial larynx that is

intended to provide laryngectomy patients with the option of “sounding like their

old-selves”. Ultimately the artificial larynx will consist of an artificial palate (that

would fit in the user’s mouth) with touch sensors, battery and communication (blue-

tooth or other low-power communication module) seamlessly built in. This would

then send the signals to a small microprocessor and speaker unit in the user’s top

pocket or clipped onto his/her clothing. This unit would then decode the tongue-

palate signals and output the words articulated by the user. See Figure 1.1 for a

general overview.

This thesis outlines the research and investigation done into this new type of artificial

larynx and demonstrates that it circumvents many of the inherent problems of other

artificial larynges.

1.1 Purpose of Research

The hypothesis for this work is that speech-free speech recognition is possible and

can be used as the basis for a new approach to artificial larynges. Even though

laryngectomy patients cannot utter a sound they still possess the tongue and mouth

movements necessary to form words. This research is aimed at investigating and

researching new techniques for a new type of artificial larynx that will provide a non

invasive solution to this problem.



Chapter 1 — Thesis Overview 3

Figure 1.1: An overview of the proposed new artificial larynx

1.2 Research Questions

The following questions were investigated in this work.

1. Can speech recognition be performed on tongue-palate contact patterns from

a palatometer?

2. Are standard signal processing techniques and artificial intelligence techniques

sufficient to relate the data signals to the speech?

3. If the data signals can be correctly identified as speech, can the appropriate

pre-recorded speech be outputted using a loudspeaker?

4. Can pre-recorded speech be altered to mimic other peoples voices?

1.3 Contribution of this Thesis

All previous artificial larynx devices have concentrated on introducing sound into

the patient’s vocal tract which is then modulated into words. These methods have

resulted in poor voice restoration. The central idea behind the new artificial larynx

research is as follows: even though laryngectomy patients have lost the ability to

phonate, they still retain enough physiological movement and information in their

vocal tract to allow for the recognition and classification of what they are trying

to say. In this research, dynamic tongue-palate contact patterns are detected by

use of a palatometer. These patterns are used in conjunction with neural networks

to decipher the user’s speech. Voice morphing algorithms allow the synthesizer to
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output the speech in a voice very similar to the patient’s pre-laryngectomy voice.

This research represents a paradigm shift in the thinking behind artificial larynges

and makes use of current technology to investigate a solution.

This thesis provides the research and investigation into the problems involved in

this new type of artificial larynx. No previous work along these lines has been found

in the literature. Speech recognition performed solely on palatometer data has not

been found in the literature. By using techniques and technologies from diverse fields

and applying them to new situations, inroads into this new approach to artificial

larynges have been made.

A patent has been taken out on this artificial larynx (See Appendix F for more

information).

1.4 Thesis Structure

The structure of this thesis is as follows:

• Chapter 2: This chapter contains the background to the work and the scope

of the thesis. It includes an introduction to the larynx as well as currently

available artificial larynges.

• Chapter 3: This chapter outlines the methods used in this work. The equip-

ment is detailed and methods for feature extraction (such as Principal Com-

ponent Analysis, Fourier Descriptors, Generic Fourier Descriptors) neural net-

works (Multi-layer Perceptrons and Support Vector Machines), voting systems

and voice morphing are given.

• Chapter 4: The results of the methods from Chapter 3 are presented.

• Chapter 5: The results from Chapter 4 are discussed.

• Chapter 6: In this chapter conclusions are drawn and recommendations for

future work are given. The contribution of this work is also highlighted.

Additional supporting material is provided in the appendices as follows:

• Appendix A: The ethics approval given for this work.
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• Appendix B: The Space-Time plots of each of the fifty words used in this

work.

• Appendix C: The grammar used to generate the second voting system.

• Appendix D: This appendix contains graphs showing how the success rate

of the MLP changes depending upon the number of hidden nodes.

• Appendix E: The TIMIT sentences used for speech recording in voice mor-

phing.

• Appendix F: The papers published on this work as well as an article written

about this research and information on the patent filed.

A CD containing all the MATLAB code necessary to run the simulations is also

provided.
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Chapter 2

Background

2.1 Chapter Overview

This chapter gives an introduction to the larynx, the laryngectomy procedure as

well as the current options available for phonation (the electrolarynx, esophageal

speech and tracheoesophageal speech). It also outlines the current state-of-the-art

in artificial larynx technology and current research into improving the voice quality

of existing artificial larynx techniques. The scope of the thesis is also outlined.

2.2 The Larynx

The larynx is a continuation of the conducting tube that joins the pharynx and the

trachea. It has two main functions (van de Graaff, 2002)

• to prevent food or drink from entering the trachea and lungs during swallowing;

• to produce sound

The larynx is made up of a number of different cartilages and muscles which hold

it open during breathing and which close the laryngeal opening (glottis) during

swallowing and speech. The epiglottis is a spoon-shaped structure that aids in

closing the glottis during swallowing (see Figure 2.1). The vocal folds in the larynx

are controlled by muscles and are used in sound production (van de Graaff, 2002).
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Figure 2.1: A diagram of the larynx (Russell et al., 2008)

2.2.1 The Laryngectomy Procedure

A total laryngectomy is a procedure used to remove the larynx which consists of the

thyroid and cricoid cartilages, the hyoid bone, the hyoid pharynx, strap muscles, one

to three rings of the trachea and possibly lobes of the thyroid gland (Shoureshi et

al., 2003). On removal of the larynx the upper part of the trachea is attached to the

front of the neck where a permanent opening (the tracheostoma) is created (Ng et al.,

1997). The tracheostoma is mainly for breathing purposes. A total laryngectomy

results in the patient being completely unable to phonate or whisper, due to the

total removal of the vocal cords.

A supracricoid laryngectomy can be performed on patients in the early stages of

cancer in specific sites. This type of laryngectomy preserves some of the essential

functions of the larynx (such as deglutition and breathing) and the patient is still able

to phonate (Torrejano & Guimaraes, 2009). However the voice quality of the patient

is very poor, with absent gender distinction and poor vocal inflection and intensity

variation (Torrejano & Guimaraes, 2009). In fact supracricoid laryngectomy patients

regard their voice quality as worse than that of total laryngectomy patients who use

a speech prosthesis (Torrejano & Guimaraes, 2009).
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2.3 Artificial Speech Techniques

A number of different techniques and technologies have been developed in an attempt

to restore speech to the laryngectomy patient, all of which have varying degrees of

success. The three most common methods are:

2.3.1 The Electrolarynx

More than half of all laryngectomy patients use an electrolarynx (Kubert et al.,

2009) as their main means of communication. Two different types of electrolarynx

exist: The neck-type (see Figure 2.2) and the intra-oral type. In both kinds, an elec-

tromechanical vibrator transmits sounds waves into the oral and pharyngeal cavities

where the user modulates the sound into words (Liu & Ng, 2007). Electrolaryngeal

speech is associated with low intelligibility and poor listener acceptance (Liu & Ng,

2007). Some electrolarynges have a built in pitch control that the user manually

controls when talking.

Figure 2.2: An electrolarynx (shown with permission from Lauder (2007))

2.3.2 Esophageal Speech

Esophageal speech is a popular voice production method, particularly in Asian coun-

tries (MacCallum et al., 2009). In this method air is gulped by the patient into the

top of the esophagus which is used as an air reservoir. When the patient wishes

to speak, this air (see Figure 2.3) is expelled which results in the vibration of the
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pharyngeal-esophageal segment (Ng et al., 1997). This vibrational noise is modu-

lated into words by the patient’s mouth. Esophageal speech suffers from poor quality

(harsh, gurgling) and low pitch, volume and duration (MacCallum et al., 2009).

Figure 2.3: A diagram showing the path of air in esophageal speech (shown

with permission from Sataloff (2007))

2.3.3 Tracheoesophageal Speech

This is considered the gold standard in voice rehabilitation of laryngectomy pa-

tients (Kazi et al., 2009). Tracheoesophageal speech requires the insertion of a one-

way valve into a fistula created between the trachea and the esophagus (Ng et al.,

1997). During speech the patient must close his/her tracheostoma thus forcing the

air (see Figure 2.4) through the one-way valve and vibrating the pharyngoesophageal

segment. Tracheoesophageal speech is the most common form of voice restoration

in the USA, the UK and continental Europe, however non-English/French speakers

struggle to use this method (MacCallum et al., 2009). Users also have to constantly

alternate between breathing and drawing in air and covering their stoma to talk,

which results in a slow speech rate (Kazi et al., 2009). Another problem is that

someone listening to an unknown tracheoesophageal speaker will struggle to identify

the speaker’s gender (Eadie et al., 2008).
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Figure 2.4: A diagram showing the path of air in tracheoesophageal speech

(shown with permission from Sataloff (2007))

2.4 Current State-Of-The-Art

Generally research is being performed to improve the voice quality of the already

existing artificial larynx devices. The voice quality of tracheoesophageal speech is a

much researched topic (see for example Deshpande et al. (2009); Eadie et al. (2008);

Most et al. (2000); Ng et al. (1997); Torrejano & Guimaraes (2009)). However,

relatively little research is being undertaken into changing and developing the actual

valve or voice-producing element used in tracheoesophageal speech. A new voice-

producing element for female tracheoesophageal speakers has been developed that

increases the pitch of the user’s voice and allows for longer phonation time (Tack

et al., 2008). Automatic tracheostoma valves which allow for hands-free speech

have also been developed (Pawar et al., 2008) however a number of problems are

associated with their use. Research is being done to increase the performance of the

electrolarynx. New placement techniques, such as neck straps or intra-oral devices,

as well as methods to improve the voice quality and introduce pitch control are being

investigated (Kubert et al., 2009; Liu & Ng, 2007; Takahashi et al., 2005).

Completely new approaches to the problem of alaryngeal speech are few and far

between. In the literature, the only research found that used a novel approach was

Fagan et al. (2008). They used magnets placed on the lips, teeth and tongue and

magnetic sensors embedded in a pair of glasses to detect a small set of different words

and phonemes (13 phonemes and 9 words). As the words are spoken the changing
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magnetic fields are picked up, and by using a dynamic time-warping algorithm the

words are classified. A good success rate on a small data set was achieved, however

the placement of the magnets currently uses surgical glue and long time use of the

device would require surgical implantation of the magnets. No speaker outputs are

produced in this research.

2.5 Scope of the Thesis

This research is mainly focused on speech-free speech detection that could be used

for a new type of artificial larynx. A limited set of common words were chosen to

test the idea. The objective of this work was to explore a new approach to the

problem of alaryngeal speech. The development of new neural network techniques

for this application is a topic for future research. Extensive clinical testing on the

new artificial larynx will need to be done in future to prove its viability.
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Chapter 3

Methods

3.1 Chapter Overview

Automatic Speech Recognition (ASR) is a much researched topic in the field of signal

processing. However the main challenge in the design of the new artificial larynx

was how to perform speech recognition and synthesis without any input speech.

The equipment used in this research is detailed, and data normalization and pre-

processing are explained.

The two different artificial intelligence machines used to analyze the data, namely the

multilayer perceptron neural network and the support vector machine are explained.

Raw palatometer data cannot be fed into the machines, thus it had the salient

features extracted from it and these used as input to the machines. The various

feature selection techniques are explained in this chapter as well.

How the neural networks are assembled into voting systems is explained and speech

synthesis and the artificial larynx simulator are introduced. Thus this chapter gives

an overview of the equipment and methods used to create the artificial larynx.

3.2 Equipment

A challenge in this work was the finding of appropriate non invasive instrumenta-

tion. Microphones are unsuitable as laryngectomy patients cannot make any type

of sound. They cannot whisper, as the white noise sound used in whispering is also

created by the larynx and vocal tract.
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A palatometer system is used to provide data to allow for speech-free speech recog-

nition. This device has been used since the mid twentieth century for analyzing

tongue palate contact patterns (see Figure 3.1). It is primarily used by speech ther-

apists to help correct speech problems in individuals. It is also used by linguists and

in investigations into speech production (see Figure 3.2 for an example of a typical

stream of information from a palatometer used in speech studies). Literature using

palatometer data alone for speech recognition has not been found.

Figure 3.1: A screen shot of the palatometer system showing the real time

position of the teacher’s tongue and the student’s tongue (May (2010)).

In this research, a palatometer system (also known as an Electropalatograph (EPG))

developed by CompleteSpeech (formerly known as LogoMetrix), Arizona, was used

to detect the tongue-palate contact patterns made during speech. The palatometer

system (see Figure 3.3) consists of a custom made and fitted pseudopalate which

contains 118 gold contact sensors (see Figure 3.4) and a basic signal processing

unit (CompleteSpeech, 2008). The pseudopalate is sampled at a rate of 100Hz.

Dromey & Sanders (2009) recently used the CompleteSpeech palatometer system to

measure inter-speaker variability in consonant production. Cho & Keating (2009)

used palatometer data for consonantal measures in their study of the effects of

three prosodic factors. Toutios & Margaritis (2008) mapped acoustic signals to

electropalatograph data. Palatometers have been used for many years in phonetics
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Figure 3.2: Typical EPG sequence. Black squares indicate a contact between

the tongue and the palate. Segment is from the word ”opens” (Toutios &

Margaritis (2006)).

research (for example see Christensen et al. (1992)) and speech therapy (for exam-

ple see Dagenais (1995)). EPG recordings have also been used to augment speech

recognition systems (Soquet et al., 1999) but have never been used by themselves

to recognize speech and never in the development of an artificial larynx.

Figure 3.3: The CompleteSpeech System showing the pseudopalate and the

signal processing unit

A computer with an Intel Core Duo 2.66GHz CPU and 3.23GB of RAM was used.

MATLAB Version 7.6.0.324 (R2008a) as well as NETLAB (free downloadable MAT-

LAB software for data analysis and neural network implementation (Nabney, 2003))

was used. For the speech synthesis a MATLAB toolbox for voice morphing from

the Universitat Politecnica de Catalunya Speech Processing Group (Erro, 2008) was

used as well as a speech processing program SFS (Release 4.7/Windows) (Huck-

vale, 2008). To separate the audio information from the palatometer data and to

allow it to be imported into MATLAB a program called LogoCracker (provided by
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(a) A close-up of the pseudopalate (b) The placement of the gold electrodes on

the pseudopalate (CompleteSpeech, 2008)

Figure 3.4: The pseudopalate.

CompleteSpeech) was used.

A Plantronics .AUDIO 625 USB stereo headset and ProRec speech recording soft-

ware (Huckvale, 2007) were used to record the word library used in the speech

synthesis. The microphone had a frequency response that was 100Hz-10KHz.

Ethics approval for human testing on the principal investigators was granted for this

work (see Appendix A).

3.3 Data Capture and Display

3.3.1 The Datasets

Fifty common English words were chosen (see Table 3.1). Palatometer recordings of

these words were made 20 times each, to create a dataset of 1000 words. This was

called the training dataset. The words were then read another four times each, to

create the testing dataset, which contained 200 words. All the words were read by

the same person.

To create a word library the words were recorded using the microphone (sampling

at a rate of 16KHz). They were read in by both a male and a female speaker.
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Table 3.1: The 50 words chosen to test the larynx design (from Russell et al.

(2009a))

1. the 11. if 21. day 31. take 41. small

2. and 12. will 22. come 32. place 42. large

3. is 13. about 23. did 33. live 43. spell

4. that 14. many 24. sound 34. through 44. big

5. was 15. then 25. number 35. just 45. change

6. for 16. them 26. call 36. form 46. kind

7. I 17. write 27. first 37. great 47. picture

8. they 18. like 28. down 38. same 48. animal

9. have 19. long 29. side 39. sentence 49. head

10. them 20. make 30. been 40. three 50. stand

3.3.2 Word Choice

The fifty words used in this work were all randomly chosen from the top 200 of a

list of 500 of the most commonly used words in British, American and Australian

English (WorldEnglish, 2009). As this research focuses on a proof of concept, it was

thought that commonly used words would be the most useful in the testing of the

functionality of this device.

3.3.3 Phonetic Response of the Palatometer

According to Hardcastle et al. (1989) a palatometer system can detect all phonemes

and sounds except back vowels (for example /6, O:, U, u:/) and relatively open vowels

(for example /A:, @, 2/). The fact that the palatometer cannot detect some vowels

is why the decision was made to focus on word recognition as opposed to phoneme

recognition. The meaning of the phonetic symbols is given in Figure 3.5.

3.3.4 Space-Time Plots and Standardization of Data

The palatometer data, once separated from the audio data, can be viewed as a

Space-Time plot (Russell et al., 2008) (see Figure 3.6). The palatometer sensors
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Vowels 

pit pet pat putt pot put another   

Short Vowels 
ɪ e æ ʌ Ƅ ʊ ə     ə   

bean barn born boon burn     

Long Vowels 
iː aː ɔː uː ɜː     

bay buy boy no now peer pair poor  

Diphthongs 
eɪ ai ɔɪ əʊ aʊ ɪə eə ʊə  

Consonants 

pin bin tin din kin gum    

Plosives 
p b t d k g    

chain Jane        

Affricates 
ʧ ʤ        

fine vine think this seal zeal sheep measure how 

Fricatives 
f v θ ð s z ʃ ʒ h 

sum sun sung       

Nasals 
m n ɳ       

light right wet yet      

Approximants 
l r w j      

 

Figure 3.5: Symbols for English transcription (adapted from Roach (2002))

run along the x-axis and the time epochs run along the y-axis from the top to the

bottom. The Space-Time plots for all fifty words can be found in Appendix B.

The palatometer data was standardized by ensuring that each word recorded started

when the first tongue-palate contact was made. The length of time of the recordings

was also standardized, with all words being zero-padded to be the same size as the

largest word in all the datasets. Thus all the words are 118x140 pixels (118 being

the number of palatometer sensors, 140 being the number of time epochs).

The order of the palatometer sensors was investigated, as a number of the feature

extraction algorithms tend to perform better on images that consist of only one

”‘object”’ rather than a number of fragmented ”‘objects”’. However, it was found

that the ordering as devised by CompleteSpeech was as close to optimal as could be

expected. By reordering the sensors, the space-time plots tended to become more

fragmented, thus increasing the difficulty in feature extraction.
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Figure 3.6: Standardized Space-Time plot for the word “many”

3.3.5 Word Variance

The cases of each word are not identical. Even though the tongue palate contact

pattern is fairly standard for each word, there is still variability in the different cases

of the same word. This is due to how quickly the word is said as well as how precisely

it is enunciated. The variance for the word ‘many’ can be seen in Figure 3.7. The

white pixels show which pixels (and thus sensors) never vary between cases of the

word, while the varying shades of gray show how often other sensors are activated

(the closer to white they are, the more frequently they are activated). This variance

increases the difficulty of accurate word recognition.

3.3.6 Audiovisual Synchronization

A potential problem with the newly proposed larynx is that the user will say a word,

a noticeable amount of time will elapse and only then will the word be emitted.

However this does not take account of the plasticity of the listener’s brain. It has
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Figure 3.7: Space-Time plot showing the variance in sensor activation for the

word “many”

been shown by a number of researchers (for example McGrath & Summerfield (1985);

Navarra et al. (2009, 2005); van Wassenhove et al. (2007)) that a window of up to

300ms exists wherein the listener will not realize that the visual and auditory signals

are not perfectly synchronous. It is hoped that by refining the new artificial larynx

(possibly using hardware to implement the neural networks), the processing time

can be decreased to well within this window.

However, if the word takes longer than 300ms to say there still might be a perceptible

gap between the listener seeing the start of the word and hearing the start of the

word (as in the current method the system can only recognize the word once it has

been spoken in full).

3.4 Machine Learning for Word Identification

Pattern recognition is a vast topic with many different techniques and methods for

achieving results. Machine learning is just one such section, however it is unique
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in that the model for predicting the output ‘learns’ from a set of training data. It

tweaks the parameters of the model until the model associates the training data

with the correct output (Bishop, 2006). Two different types of machine learning

were used, namely the Multilayer Perceptron Neural Networks and Support Vector

Machines.

3.4.1 The Multilayer Perceptron (MLP)

The Multilayer Perceptron (MLP) is a popular neural network for classification prob-

lems because of its simplicity, scalability and adaptivity (Trenn, 2008). According

to Li & Meng (2009) the MLP has many advantages over other classifiers due to its

generalization ability, robust performance and need for less training data. An MLP

is a feedforward neural network with an input layer, a hidden layer and an output

layer (see Figure 3.8). There is full connectivity between the input and hidden layers

and the hidden and output layers (Nabney, 2002).

Figure 3.8: The basic layout of an MLP neural network (Adapted from Morgan

& Bourlard (1995))

Recent use of MLPs for image classification can be seen in Li & Meng (2009) who use

an MLP and SVM to classify colour and texture features in endoscopy images. The

MLP provided very good results with an accuracy of around 90%, however the SVM

provided such poor results that the authors did not even include them in the article.

Garcia et al. (2009) used neural networks (a multilayer perceptron, a radial basis

function and a support vector machine) in their classification of retinal images of

patients with diabetic retinopathy. All three of the neural networks achieved a mean

sensitivity of 100% (proportion of test data having diabetic retinopathy classified as

having diabetic retinopathy). The multilayer perceptron acheived a mean specificity

(proportion of test data without diabetic retinopathy classified as not having diabetic
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retinopathy) of 97.01% while the radial basis function and support vector machines

acheived 81.48% and 77.78% respectively. de Albuquerque et al. (2009) used MLPs

and self-organizing map topologies to analyze and segment micro-structural elements

in metallographic images. The MLP consistently outperformed the self-organizing

map in its ability to correctly segment images and its robustness to errors. Diaz et

al. (2009) used an MLP and a SVM to classify erythrocytes infected with malaria in

light microscopy images. The SVM was the best performing classifier and identifier

of the infection stage (although the MLP also performed well with an effectiveness of

over 92%). Automatic identification of infected erythrocytes showed a specificity of

99.7% and a sensitivity of 94. The infection stage was determined with an average

sensitivity of 78.8% and average specificity of 91.2%. Selver et al. (2008) use an

MLP and a K-means based classification system to automatically identify the liver

in computed-tomography angiography images. These are combined with a data-

dependent and automated switching mechanism that decides which method to apply

to which image (the MLP is used for atypical liver shapes). The MLP outperforms

the K-means based system, however it takes a long time to process, thus the authors

created a system which combines the fast running but less accurate K-means system

with the slower but more accurate MLP.

The MLP is capable of universal approximation provided that there are enough

hidden units and that the weights and biases are chosen effectively Nabney (2002).

The definition of a two-layer MLP can be given as follows (Nabney, 2002):

The input to the network is given as xi where i = 1, . . . , d. The input layer forms M

linear combinations of the input values to produce a set of intermediate activation

functions a1
j with one of these variables associated with each hidden layer unit:

a1
j =

d∑
i=1

w
(1)
ji xi + b

(1)
j j = 1, . . . ,M (3.1)

w
(1)
ji are the elements of the input layer’s weight matrix and b

(1)
j are the bias param-

eters of the hidden layer’s units. A non-linear activation function (for example, the

tanh function) is then applied to a1
j . The tanh function is given by:

zj = tanh(a1
j ) j = 1, . . . ,M (3.2)

The second layer weights and biases then transform zj to give the second layer
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activation function a2
k:

a2
k =

M∑
j=1

w
(2)
kj zj + b

(2)
k k = 1, . . . , c (3.3)

where c is the total number of outputs. Finally the values of a2
k are passed through

to the output activation function to give output values yk where k = 1, . . . , c. For

classification problems a logistic sigmoidal activation function is used. It is applied

to each of the outputs independently, such that:

yk =
1

1 + exp(−a
(2)
k )

(3.4)

There are many learning algorithms to train feed-forward networks. During training

the network is taught to associate an input vector with a particular output vector.

The goal of training is to model the underlying process that produced the data in

order to make accurate predictions when new data is presented to the network (Nab-

ney, 2002). In back-propagation training, when an input vector is fed into the neural

network the generated output vector is compared to the desired output vector. All

the relevant weights are then adjusted to ensure that the next time the same input

vector is shown to the network the generated output vector will be closer to the

ideal one. In this way the error between what is desired and what is generated is

slowly decreased until a minimum error is reached or the desired number of training

epochs has passed (Orozco & Garcia, 2003). A popular back-propagation method

in classification problems is called Scaled Conjugate Gradient (SCG), developed

by Moller (1993). In terms of optimization, training a network is equivalent to

minimizing an error function (Moller, 1993). If training is successful the network’s

errors will decrease with each iteration and the network will converge to a stable

set of weights (Gonzalez & Woods, 2002). SCG has been shown to be considerably

faster than other conjugate gradient methods as well as quasi-Newton methods and

standard back-propagation (Moller, 1993).

Regularization

When training an MLP it is essential that the network is not over-trained. When a

network is over-trained it fits the training data precisely (often by employing very

large weights) but will give poor output for any other data (Bishop, 2006). Thus a
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fine balance must be created between training a network enough to get good results

and over-training it. This can be done by using a regularization parameter (λ) in

the error function used to train the network. The sum-of-squares error function is

given by (Bishop, 2006):

E =
1
2

N∑
n=1

(y(xn,w)− tn)2 +
λ

2
||w|| (3.5)

where (x, t) are the training data (input values and target values respectively) and

w are the weights. λ dictates how important the regularization term is as compared

with the sum-of-squares error term. As can be seen from the above equation, if

the weights of the network get too large (indicating over training) then the error

function increases even though the sum-of-squares error term might be very small.

Thus the network cannot be over-trained, as once it has reached an optimal weight

set it will remain there (if λ is large it will settle at a higher value of error after fewer

iterations and vice versa). The choice of value for λ is attained by trial and error.

See Figures 3.9, 3.10, 3.11 and 3.12 for illustrations of how as λ increases the error

increases but the number of iterations taken to reach a stable error falls. Figure 3.13

shows how the accuracy of the neural network decreases as λ gets too large.

Implementation

Using the Netlab toolbox for MATLAB the MLPs were implemented with the fol-

lowing features:

• Network Structure: The Neural Network was a 2-layer feed-forward net-

work. Weights are drawn from a zero-mean, isotropic Gaussian function. The

regularization coefficient λ was set as 0.001. The output activation function

was logistic.

• Units: The number of input units depends on the type of input. The number

of hidden units varies depending on the number of input units. The hidden

units use a tanh activation function. See Appendix D for graphs illustrating

how the number of hidden units changes the success rate of the neural network.

Six binary outputs are used, as in order to represent fifty different outputs 26

binary units are needed. According to a study done by Francis & Kucera

(1982) a vocabulary size of 1000 words would allow a reader to understand

72% of all text he/she would read. The basic English introduced by Ogden
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Figure 3.9: Graph showing Error Rate vs. Iterations when λ = 0

(1937) for foreign speakers contains just 850 core words. Thus a vocabulary

of about 2000 words should be sufficient in the final version of the artificial

larynx. 2000 words can be encoded by 11 binary outputs which is a feasible

output size.

• Training: A Scaled Conjugate Gradient optimization algorithm is used for

training with a maximum number of iterations of 10 000 to 20 0000.

3.4.2 Support Vector Machines (SVM)

Support Vector Machines are tools for data classification and regression (Maglo-

giannis & Zafiropoulos, 2004); they map the input vectors into a high-dimensional

feature-space using a non-linear transformation (Cortes & Vapnik, 1995). In this

space a linear surface can be created that separates the input vectors into two

classes (Cortes & Vapnik, 1995). SVMs are an estimation algorithm that separates

data into two classes, however they can be adapted for multi-class use (Bishop,

2006; Maglogiannis & Zafiropoulos, 2004). A one-versus-the-rest approach was used,
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Figure 3.10: Graph showing Error Rate vs. Iterations when λ = 0.001

where if there are K classes the kth model is trained using the data from its class as

the positive training data and the K−1 data as the negative training data (Bishop,

2006). When SVMs are compared to other learning techniques they perform well on

high dimensional input data and have a high generalization performance (Zhang et

al., 2001).

Krishnan et al. (2009) successfully used SVMs to classify normal and pre-cancerous

connective tissue cells. Various image features such as eccentricity, compactness,

orientation and area were used as input to the SVM for the detection of oral sub-

mucous fibrosis (a pre-cancerous condition). The system achieved a sensitivity of

90.47% and a specificity of 87.54%. Tsantis et al. (2009) achieved a good classifica-

tion rate of malignancy risk using SVMs in ultrasound images of thyroid nodules.

Morphological shape properties such as area, smoothness, concavity and symmetry

as well as wavelets were used in this investigation. The shape and wavelet features

were used as input to two different neural networks (a support vector machine and

a probabilistic neural network). The authors then looked at the effect different

amounts of speckle had on the classification ability of the neural networks. Before



Chapter 3 — Methods 26

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Iterations

E
rr

o
r

Figure 3.11: Graph showing Error Rate vs. Iterations when λ = 10

speckle was added the support vector machine had sensitivity and specificity values

of 93% and 98% and the probabilistic neural network had sensitivity and specificity

values of 96% and 94%. After speckle was added the support vector machine had

sensitivity and specificity values of 93% and 96% and the probabilistic neural net-

work had sensitivity and specificity values of 84% and 88%. Thus showing that

SVMs are more robust to noise than probabilistic neural networks. da Silva Sousa

et al. (2009) used SVMs in their system for automatic lung nodule detection in CT

(Computerized Tomography) images, the SVMs were used to reduce the number of

false-positives diagnoses produced by the system. The SVMs were used with a num-

ber of image features such as geometry, texture, histogram, gradient and spatial.

The system had a sensitivity of 84.84% and a specificity of 96.15%. Hotta (2008)

attained a higher rate with their system that used an SVM with a local Gaussian

summation kernel for face recognition with partial occlusion. In this approach, local

kernels are arranged at all local regions of a recognition target and are used in con-

junction with an SVM to create a robust face recognition system. Even though this

system performed better than systems with global kernels it still did not produce

outstanding results, with occluded face recognition being between 70 and 80%.
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Figure 3.12: Graph showing Error Rate vs. Iterations when λ = 100

The working of a SVM in a linearly separable case is as follows (Zhang et al., 2001):

The general form of a linear classification function is g(x) = h ·x + b which corre-

sponds to a separating hyperplane (see Figure 3.14) h ·x+b = 0 where (xi, yi)1≤i≤N

, xi ∈ Rd are the set of linearly separable training samples and yi ∈ {−1, 1} is the

class label to which xi belongs. Normalize g(xi) to satisfy |g(xi)| ≥ 1 for all of xi

so that the distance from the hyperplane to the closest point is 1/||h||. To find the

optimal separating hyperplane minimize ||h|| since the distance to the closest point

is 1/||h|| thus the objective function becomes:

minφ(h) =
1
2
||h||2 =

1
2
(h ·h) yi(h ·xi + b) ≥ 1, i = 1, . . . , N (3.6)

The N non-negative Lagrange multipliers (α1, . . . , αN ) associated with the con-

straints of the equation above allow for the Optimal Separating Hyperplane to be

constructed by solving a constrained quadratic programming problem. The solu-

tion h can be expanded as h =
∑

i αiyixi in terms of support vectors (ie. training

patterns which lie on the margin). Thus the classification function can be written
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Figure 3.13: Graph showing MLP Success Rate vs. λ

as:

f(x) = sign
( ∑

i

αiyixi ·x + b
)

(3.7)

If the input data is not linearly separable it can be non-linearly mapped into a

high-dimensional feature space where the construction of the Optimal Separating

Hyperplane takes place. When the dot product satisfies Mercer’s condition (i.e.

that the Kernel k is a positive definite function (Tian et al., 2007)) it can then be

represented by k(x,y) := (φ(x) ·φ(y)). The final classification function is thus:

f(x) = sign
( ∑

i

αiyi · k(xi ·x) + b
)

(3.8)
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Figure 3.14: A Support Vector Machine with two linearly separable classes

(Adapted from Cortes & Vapnik (1995))

Implementation

The Support Vectors Machines were created using the Bioinformatics toolbox in

MATLAB. They have the following properties:

• Kernel Function: A linear (or dot product) kernel function was used to

map the training data into kernel space.

• Optimal Hyperplane Method: Quadratic Programming was used thus the

classifier is a soft-margin (allows for overlapping class distributions (Bishop,

2006)), two-norm Support Vector Machine.

3.5 Feature Selection to Generate MLP and SVM In-

puts

The data from the palatometer takes the form of a stream of binary data containing

space and time information (Carreira-Perpinan & Renals, 1998). This large amount



Chapter 3 — Methods 30

of high dimensionality data cannot be inputted straight into the MLP or SVM.

As the data from the palatometer can be viewed as a Space-Time image, image

processing techniques can be applied to it to extract the salient features which can

then be used as input to the MLP and SVM.

Visually, shape is a discerning feature between the 50 words therefore shape de-

scriptors were investigated. According to Zhang & Lu (2004) shape descriptors can

be divided into two main groups, Contour-based and Region-based; these are illus-

trated in Figure 3.15. The classification is based on how the algorithm extracts data

from the shape, i.e. whether it uses only the circumference (Contour-based) or if it

uses the whole shape (Region-based). Data reduction techniques were also investi-

gated. Choosing appropriate techniques to investigate was a difficult task as many

shape descriptors are designed to be immune to rotational, translation, scale and

affine transformations, however in this application these transformations all provide

valuable information (Russell et al., 2009a). Thus many common shape description

techniques were found to be unsuitable.
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Figure 3.15: Summary of shape classification techniques (Adapted from Zhang

& Lu (2004))
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3.5.1 Principal Component Analysis (PCA)

Principal Component Analysis is a data reduction technique that is commonly used

to find patterns (particularly similarities and differences) in high dimensionality

data (Smith, 2006). It provides a method for identifying the important data in a

dataset.

Recent usage of PCA is varied across a number of different applications. Babaoglu

et al. (2009) successfully used PCA to decrease their dataset of coronary artery dis-

ease features from 23 features to 18 features for use with SVMs. They found that

the SVMs produced better results when trained with the PCA features than with

the original 23 features. Using the PCA features also decreased the training error

and the time to run. Lee et al. (2009) used PCA to analyze motion capture data

from loaded and unloaded walking. They successfully used PCA to quantify changes

in gait on loaded and unloaded subjects. The use of PCA allowed quantification of

significant differences that were not apparent in standard temporal analysis. Monas-

terio et al. (2009) used PCA to analyze multilead ECG (Electrocardiogram) signals

in their analysis of T-wave Alternans which is associated with a high incidence of

sudden cardiac death. By performing PCA on the ECG signals spatial redundancy

was eliminated before feeding the data into a generalized likelihood test. This tech-

nique allowed for the detection of T-wave Alternans with a signal-to-noise-ratio of

30dB lower than detected with single lead ECG. Malagon-Borja & Fuentes (2009)

used PCA in an interesting technique to reduce the number of false positives in their

pedestrian image recognition system. By using the knowledge that PCA can only

optimally compress the kinds of pictures that were used to compute the principal

components it can then be inferred that images not of a certain type will be poorly

compressed using only a few principal components. By quantifying how well the

image is reconstructed from a few principal components the image can be assigned

to a class. This system reaches classification rates of up to 99.02%. Wagner (2005)

performed PCA on palatometer data. However a stream of palatometer data was not

considered, this PCA was performed on the maximal contact frame in the phoneme

(when the most electrodes were activated) combined with six lip shape measure-

ments. It was found that two principal components were sufficient to describe the

data.

To perform PCA the following steps are followed (Smith, 2006):

1. Ensure the variables in the data set have a zero mean.
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2. Calculate the covariance matrix for an n× n matrix C using:

Cn×n = cov(Dimi, Dimj) (3.9)

where Dimx is the xth dimension of C. Covariance is given by:

cov(X, Y ) =

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

(n− 1)
(3.10)

where X̄ and Ȳ are the mean of the dataset in the x or y dimension. The

covariance matrix illustrates how much the dimensions in the dataset vary

from the mean with respect to each other.

3. Find the eigenvalues and the eigenvectors of the covariance matrix and order

them so that the eigenvector with the largest eigenvalue comes first and the

eigenvector with the second largest eigenvalue comes second, and so on. This

gives a set of the principal components from most important to least important.

4. Choose the first p eigenvectors to form the feature vector.

FeatureV ector = (eigenvector1, eigenvector2, . . . , eigenvectorp) (3.11)

5. The new dataset can now be derived as follows:

NewDataset = FeatureV ectorT × datasetT (3.12)

The NewDataset now gives the original data solely in terms of the chosen

principal components, with data items in columns and the dimensions in rows.

As the data from the palatometer is binary it can be converted to decimal, thus

keeping all the information but reducing the size of the image. PCA was performed

on the pure, uncompressed data and on the decimal converted data (14-bit binary

strings were converted). For the uncompressed data the first 21 vectors were used.

For the decimal compressed data, the first 20 vectors (providing 80% of the variance)

were used.
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3.5.2 Correlation

Correlation is a measure of how similar an object is to another object. The formula

for correlation between an image f(x, y) of size M × N and a subimage w(x, y) of

size J ×K can be given by (Gonzalez & Woods, 2002):

corr(x, y) =
∑

s

∑
t

f(s, t)w(x + s, y + t) (3.13)

for x = 0, 1, 2, . . . ,M −1, y = 0, 1, 2, . . . , N −1 and the summation is taken over the

region where f and w overlap and J ≤ M and K ≤ N .

Gershikov et al. (2007) used correlation to implement a new method for color image

compression. This method uses the inter-correlation of the colors in an RGB image

to approximate two of the colors as a function of the third. This new correlation

based method outperforms the common JPEG image compression method.

Avants et al. (2008) used correlation in their technique to quantify the amount of

neural degeneration in brain MRI (Magnetic Resonance Imaging) images in patients

with neurological degeneration. This technique uses cross-correlation to normalize

and register the images before segmenting out various regions of interest. Correlation

techniques were chosen due to correlation’s robustness to inconsistent illumination,

reflectance and MRI inhomogeneity. This neural degeneration quantification tech-

nique performs favorably when compared to other segmenting and quantification

techniques. Bing et al. (2009) and Moerman et al. (2009) used correlation to deter-

mine changes in images. Bing et al. (2009)found the coefficient of thermal expansion

in polymer film by correlating images taken of the film at different temperatures,

where as Moerman et al. (2009) used correlation and finite element modeling to

determine the mechanical properties of human soft tissue.

In this work templates were made of each of the 50 words. These were created by

aligning and averaging the Space-Time images for each of the fifty words (Russell

et al., 2009a). An unknown word could then be correlated with the templates and

either the maximum correlation coefficient from each template could be used as

input to the neural network or the number of the template that had the highest

correlation coefficient could be used as input.

Classification using correlation and template matching by itself and not as input to

the neural networks can also be used.
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3.5.3 Fourier Descriptors (FD)

Fourier descriptors are a contour-based technique (Zhang & Lu, 2005). This means

that just the boundary of the shape is taken into consideration. Fourier descriptors

are a popular choice of shape descriptor due to their stability, clarity of meaning

and coarse to fine description ability (Zhang & Lu, 2005).

Menesatti et al. (2009) explored the use of shape matching and FDs to track iden-

tification tags in video images. The FD technique performed faster (if slightly less

accurately) than the shape matching technique which makes it useful for real time

applications. Chen et al. (2009) designed a real time image alignment system for

industry using FDs. Using the magnitude and phase information in the FDs an

image can be matched to a template image (as FDs allow for rotation invariant

matching), then by using a novel phase shift technique the object can be aligned

to the same orientation as the object in the template image. Chen et al. (2009)

achieved results comparable to commercialized methods but with faster process-

ing times, again showing FD’s applicability to real time applications.According to

Lestrel et al. (2009) FDs provide an excellent way to precisely quantify the boundary

of shapes. Previous to the Lestrel et al. (2009) study gender differences in human

skull remains were mainly determined by size however, Lestrel et al. (2009) used

FDs to describe six elements of the human skull in order to distinguish gender. FDs

were chosen due to their ability to outperform simple angle and ratio morphological

features and their ability to normalize for size.

To calculate the Fourier descriptor of a shape, the shape signature must be calcu-

lated. A shape signature is a 1-D representation of a 2-D area that captures the

perceptual features of the shape (Zhang & Lu, 2005). The shape signature u(t)

used in this application is called the complex coordinate and it is created from the

boundary coordinates (x(t), y(t)), t = 0, 1, . . . , N − 1 of the shape (Zhang & Lu,

2005):

u(t) = [x(t)− xc] + i[y(t)− yc] (3.14)

where (xc, yc) is the centroid of the shape which is the average of the boundary

coordinates:

xc =
1
N

N−1∑
i=0

x(t), yc =
1
N

N−1∑
i=0

y(t) (3.15)
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For any 1-D shape signature the discrete Fourier transform q(n) is given by (Zhang

& Lu, 2005):

q(n) =
1
N

N−1∑
i=0

u(t)exp(−j2πnt/N) n = 0, 1, . . . , N − 1 (3.16)

This gives a set of Fourier coefficients that describe the shape. The general shape of

the object is described by the low frequency coefficients, whereas the high frequency

coefficients describe the fine details of the shape (Kunttu et al., 2006). A common

technique is to use a subset of the low frequency coefficients for image description.

It has been found that 10 Fourier descriptors are sufficient to provide for generic

shape description (Zhang & Lu, 2005).

3.5.4 Generic Fourier Descriptors (GFD)

The generic Fourier descriptor can be applied to more general images than the

Fourier descriptor detailed above. In most cases GFD are used in image classification

and database image retrieval applications. Yadav et al. (2008),Ohbuchi et al. (2003)

and Saykol et al. (2005) used GFDs for image retrieval and classification in image

databases. While Yadav et al. (2008) found GFDs outperformed by wavelet Zernike

moment descriptors in their image retrieval application, Ohbuchi et al. (2003) found

that GFD produced the best results in complex 3D shape recognition and retrieval.

Saykol et al. (2005) found their histogram based approach to color and shape queries

in an image and video database, though faster, did not perform better than GFD. Yu

et al. (2007) used Fourier descriptors and generic Fourier descriptors in a different

imaging application. They used it to describe particle morphology which is used in

the monitoring and control of particulate processes. Neither method outperformed

the other, which led Yu et al. (2007) to recommend using both methods in their

application.

The GFD F (up, vq) is calculated from the spectral domain by applying a Fourier

transform to the polar-raster sampled (see Figure 3.16) image (Yadav et al., 2008):

GFD(ρ, φ) =
∑

r

∑
i

f(r, θi)exp[−j2π(
r

R
ρ +

φ

T
)] (3.17)

where 0 ≤ r < R and θi = i(2π/T )(0 ≤ i < T ), 0 ≤ ρ < R, 0 ≤ φ < T . R and T are

the radial and angular resolutions and f(x, y) is the binary shape function. GFD
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has been shown to outperform other shape descriptors such as Zernike moments,

geometric moments and Fourier descriptors (Zhang & Lu, 2004).

Figure 3.16: An example of an image (top) which has been polar-raster sampled

(bottom) (Adapted from Zhang & Lu (2003))

3.5.5 Image Properties

There are a large number of morphological image properties that can be used for

image classification. The variety of these properties means that they are suitable

for describing images and objects in a large number of unrelated fields. Naqa et

al. (2009) used shape properties such as eccentricity, Euler number, solidity and

extent as part of their investigation of a system for predicting cancer treatment

outcomes from PET images. They found that the shape properties provided relevant

information in the case of head and neck cancer, while other features such as texture

proved more relevant in the case of cervical cancer. They thus recommended a

multi modal system. According to Helmuth et al. (2009), the size and shape of cell

organelles give invaluable information about their function. Thus accurate shape

information is of great interest to researchers. Helmuth et al. (2009) used area,

eccentricity, and concavity in their work on the shape reconstruction of cell organelles

from microscopy images. Their method worked well, even in images with a low signal

to noise ration, however the curvature of outlines was consistently underestimated.

A number of investigations into systems that will diagnose various human ailments

also use morphological image properties. Garcia et al. (2009) used a number of color
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and shape features (such as region size and compactness) as input to various neural

networks (a multilayer perceptron, a radial basis function and a support vector

machine) in their classification of retinal images of patients with diabetic retinopathy.

All three of the neural networks achieved a mean sensitivity of 100% (proportion of

test data having diabetic retinopathy classified as having diabetic retinopathy). The

multilayer perceptron acheived a mean specificity (proportion of test data without

diabetic retinopathy classified as not having diabetic retinopathy) of 97.01% while

the radial basis function and support vector machines acheived 81.48% and 77.78%

respectively.Krishnan et al. (2009) used eccentricity, compactness, orientation and

area as image features for the detection of oral sub-mucous fibrosis (a pre-cancerous

condition). These image features were used as input to a support vector machine.

The system achieved a sensitivity of 90.47% and a specificity of 87.54%. Tsantis et

al. (2009) used morphological shape properties such as area, smoothness, concavity

and symmetry as well as wavelets in a thyroid nodule evaluation system. The shape

and wavelet features were used as input to two different neural networks (a support

vector machine and a probabilistic neural network). The authors then looked at

the effect different amounts of speckle had on the classification ability of the neural

networks. Before speckle was added the support vector machine had sensitivity and

specificity values of 93% and 98% and the probabilistic neural network had sensitivity

and specificity values of 96% and 94%. After speckle was added the support vector

machine had sensitivity and specificity values of 93% and 96% and the probabilistic

neural network had sensitivity and specificity values of 84% and 88%.

The following image properties were used on the Space-Time images (Russell et al.,

2009a):

• Area: The area of an image is a measure of how many pixels are in the

region (Gonzalez & Woods, 2002).

• Euler Number: This is defined as the number of connected regions in an

area subtracted by the number of holes in the area (Gonzalez & Woods, 2002).

• Centroid: This refers to the coordinates for the center of mass of the object.

Thus there is a horizontal (x-axis) centroid and a vertical (y-axis) centroid.

• Major and Minor Axis Length: The major axis length is the pixel length

of the major axis of the ellipse that has the same normalized second central

moments as the region. The minor axis length is the minor axis length of the

same ellipse (Mathworks, 2008).
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• Eccentricity: This is the ratio of the major axis length to the minor axis

length (Gonzalez & Woods, 2002).

• Orientation: This is the angle (in degrees) between the x-axis and the major

axis (Mathworks, 2008).

• Convex Area: This is the number of pixels of the smallest convex polygon

the region can fit into (this is known as the convex hull) (Mathworks, 2008).

• Filled Area: This is the number of pixels in the image with all the holes

filled (Mathworks, 2008).

• Equivalent Diameter: This is the diameter of a circle with the same area

as the region (Mathworks, 2008).

• Solidity: This is the number of pixels in the convex hull that are also in the

region. It is calculated by dividing the Area by the Convex Area (Mathworks,

2008).

• Extent: This is calculated by dividing the Area of the region by the area of the

bounding box (the smallest box which contains the whole region) (Mathworks,

2008).

The above image properties were used in various combinations or all together to

provide input to the Neural Networks (Russell et al., 2009a).

3.5.6 SVM Specific Input

Due to the ability of Support Vector Machines to employ high-dimensional data for

classification the following techniques were also implemented as input:

• Sum of Space-Time image columns: How long each sensor was activated.

• Sum of Space-Time image rows and columns: How long each sensor

was activated and how many sensors were activated at the same time.

• Sum of Space-Time image columns and the length of the word: How

long each sensor was activated and how long the word took to say (number of

rows).
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3.5.7 Combinations of Inputs used with MLP and SVM

The features described above are used in a number of different combinations and

permutations as inputs to either the MLP, SVM or both (see Table 3.2). Note that

when 13 image properties are used, the full list as described in 3.5.5 is used. However

when four image properties are used this means that only the Area, Euler number,

X center of mass and Y center of mass are used.

Table 3.2: Which image features are used as input to the MLP and SVM

Image Feature (Input to MLP or SVM) MLP SVM

Principal Component Analysis ✓ ✓

PCA and correlation number ✓ ✓

Fourier descriptors ✓ ✓

Fourier descriptors and correlation num-

ber

✓ ✓

Fourier descriptors and 4 Image Proper-

ties and Correlation Number

✓ ✓

Correlation against templates (input -1 to

1)

✓ ✓

Correlation against templates (input 0 to

1)

✓ ✗

Correlation against templates (abs input) ✓ ✗

4 Image Properties and Correlation Num-

ber

✓ ✓

13 image properties ✓ ✗

13 image properties and correlation num-

ber

✓ ✗

Generic Fourier Descriptors - centered at

center of mass

✓ ✗

GFD not centered ✓ ✗

Column Sums of each word ✗ ✓

Column and row sums of each word ✗ ✓

Column sums and length of each word ✗ ✓
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3.6 Voting Systems to Increase Word Classification Rate

Team decisions are usually better than individual decisions, and the same applies to

neural networks (Battiti & Colla, 1994). It is possible to increase the performance

of a classification system by creating a voting system, which will perform better

than the best classifier in the system (Battiti & Colla, 1994). In classification, the

outputs of the different neural networks are often combined in a voting scheme or

committee. The committee (of M members) assigns the pattern to the class that

has the maximum number of votes (Tresp et al., 2001):

̂class(x) = arg maxj

M∑
i=1

gifi,class=j(x) (3.18)

where fi,class=j(x) is the output of the classifier i for class j. By using a committee

approach it has been shown that the performance of the committee will be better

than, or equal to the average performer in the committee (Tresp et al., 2001). Thus

the squared error between the committee prediction t̂ and the true but unknown

target t for a committee member fi, is (Tresp et al., 2001):

(t̂− t)2 ≤ 1
M

M∑
i=1

(fi − t)2 (3.19)

A committee of neural networks can be applied to many different scenarios and

situations. Nanni et al. (2010) used a fusion of two neural network designs (a Leven-

bergMarquardt neural network and a variant of the Ada-Boost) on a cell phenotype

database and achieved excellent classification results (97.5% accuracy). Reddy &

Buch (2003) used five of the best performing neural networks in a committee for

use in speaker verification. Using a winner-takes-all approach Reddy & Buch (2003)

achieved a 100% success rate on their datasets even though in the majority of the de-

cisions the result was not unanimous. Bogdanov (2008) used a committee consisting

of neural (attractor dynamics algorithm) and non-neural (classifier masking algo-

rithm) based classifiers to classify sea-ice imagery. The results of Bogdanov (2008)

show that training and combining of the individual classifier outputs in the commit-

tee significantly improve the robustness and the error tolerance of the classification

system as compared to a single classifier.

Research on different types of committees as well as the properties of the committees

is ongoing. For example Muhlbaier et al. (2009) introduced a new algorithm (called
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Learn++.NC) for a committee to learn new classes with fewer classifiers. In this

new algorithm individual classifiers consulted with each other to determine which

classifier was the most qualified to classify a given instance as well as how important

each classifiers decision is.

In this application, a voting system allows for the rejection of unknown words thus

increasing the accuracy of the system.

3.6.1 Voting System 1 (Winner-takes-all)

To create a higher success rate, a voting system was introduced into the artificial

larynx system. This system combines the top three classification performers into

a winner-takes-all panel which rejects outputs that have a very low probability of

being correct (Russell et al., 2009b). An unknown word is presented to the three

top performing classifiers; if two or more of the systems agree with each other about

the output, the word classification is accepted, otherwise the word classification is

rejected (Russell et al., 2009b). See Figure 3.17 for the outline of this system.
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Figure 3.17: The Winner-takes-all Voting System (Russell et al., 2009b)
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3.6.2 Voting System 2 (Grammar Prediction)

The application of this system deals with classifying unknown words (rather than

pictures or numbers); thus predictions can be introduced into whether a certain word

can follow another word. A unique grammar (see Figure 3.18 and Appendix C) was

generated for the 50 words used in this application, and this was used to further

increase the accuracy of the voting system (see Figure 3.19 (Russell et al., 2009b)).

If the word order does not follow the grammar rules then the word is rejected.

Figure 3.18: An example of the grammar used (Russell et al., 2009b)

3.6.3 Voting System 3 (Bit-by-bit)

The previous voting systems looked at the entire 6-bit output from each of the three

classifiers as a whole. Another approach is for the voting to occur on a bit-by-bit

basis. This is illustrated in Figure 3.20. Each of the classifiers outputs a 6-bit result,

each of the bits is then compared and voted upon.

3.7 Speech Synthesis

Speech synthesis is the automatic generation of speech and is often the final step in a

Text-to-Speech (TTS) application (O’Shaughnessy, 2003). Most speech synthesizers

are focused on creating a ‘reader’ which can accurately read out text with correct

intonation and prosody. However, in this application, it would be optimal if the new

voice created for the laryngectomy patient was identical (or at least very similar) to

his/her pre-laryngectomy voice. Thus a technique called voice morphing (or voice

conversion) was used, in which a subject’s voice can be transformed into a target
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Figure 3.19: The grammar prediction voting system (Russell et al., 2009b)

voice. If the patient has a recording of his/her voice made before the laryngectomy

or preferably before their voice quality deteriorates due to disease, application of

this technique should be able to restore their pre-laryngectomy voice.

3.7.1 Voice Morphing

Voice morphing has many applications, such as dubbing movies into different lan-

guages while still retaining the original actors voices, as well as personalization of

Text-to-Speech systems in email and language teaching software (Duxans & Bona-

fonte, 2003). Felps et al. (2009) used a voice morphing system to help with foreign

language pronunciation. In this application the voice the learner imitates is the
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learner’s own voice with a foreign accent. Rao (2009) used neural network tech-

niques to develop a new type of voice morphing algorithm. Neural networks were

developed to make mapping functions for each level of speaker characteristics in-

troduced along the vocal tract. For example the shape of the glottal pulse (which

has features of the excitation source), the shape of the vocal tract (which introduces

vocal tract characteristics) and long-term characteristics (such as prosody). This

method outperformed prior methods of vocal characterization

The use of voice morphing in an artificial larynx has not been explored before this

research.

A person’s voice contains a lot of information that is unique to that person, such

as spectral characteristics, prosodic characteristics (phone duration, pitch), lexical

and syntactic properties (Duxans & Bonafonte, 2003). One of the main problems in

voice morphing is to find the minimum set of features that describe a voice.
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Speech Capture and Processing

To perform voice conversion a speech library is needed. This was created by record-

ing a female and a male, each saying the 50 words of the dataset as well as 24

phonetically rich TIMIT sentences (UPenn, 2008) (The TIMIT sentences can be

found in Appendix E). The TIMIT sentences were created to contain all the English

phonemes. These were recorded using a program called ProRec - Prompt and Record

Version 1.2 (Huckvale, 2007) which allows the user to create applications that will

display and record text.

Once the recordings were made, each of the 50 words and the TIMIT sentences had

to be individually processed using the SFS program (Huckvale, 2008) to extract the

timing of the pitch marks (also known as pitch epochs). Pitch marks are related to

the instants of glottal closure in the speech cycle, which is a moment of significant

excitation of the vocal-tract system during production of speech (Murty & Yegna-

narayana, 2008). Pitch markings are used to calculate a number of characteristics

of the speech waveform, such as the fundamental frequency and the frequency re-

sponse of the vocal tract (Murty & Yegnanarayana, 2008). An example of a speech

waveform with its associated pitch markings is shown in Figure 3.21.

Figure 3.21: Screen shot from the SFS software showing a speech waveform on

top and its’ associated pitch marks on the bottom
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The speech file in a .wav format, as well as a text file containing the timing of the

pitch marks, is required for each of the 50 words and TIMIT sentences. These are

needed in order to use the MATLAB toolbox for voice morphing (Erro, 2008).

Voice Morphing Process

The MATLAB voice morphing toolbox (Erro, 2008) was used to perform the follow-

ing:

1. Harmonic/Stochastic Model (HSM): First the audio files are analyzed

according to a Harmonic/Stochastic Model. Harmonic/stochastic models of

speech represent speech as a sum of harmonically related sinusoids (with pa-

rameters that vary over time), as well as a noise-like component (Banos et

al., 2008). Voiced speech segments contain harmonic components whereas

unvoiced segments (such as breath sounds) are represented by stochastic com-

ponents (Banos et al., 2008). The voiced segments can be broken down frame

by frame into the fundamental frequency and phases and amplitudes of the

harmonics (Banos et al., 2008). Unvoiced segments are represented by the co-

efficients of an IIR (Infinite Impulse Response) filter (Banos et al., 2008). The

pitch marks files are necessary for this section of the voice morphing process.

2. Training of the Conversion Function: An option is present in the toolbox

to use parallel or non-parallel recordings to train the conversion function. The

method for non-parallel recordings was chosen for the application (thus allow-

ing for any sample of the user’s pre-laryngectomy voice to be used). The voice

conversion function is found using Gaussian Mixture Models (GMM). GMMs

are probability density functions built as the weighted sum of n Gaussian com-

ponents (Eslava, 2008). The whole acoustic space of the vocal tract can be

represented by GMMs. The transformation function is calculated by minimiz-

ing the acoustic distance between the source voice and the target voice (Erro

& Moreno, 2007).

Once the transformation function has been calculated, any utterance by the source

speaker can be converted into a format that will make it sound like it came from the

target speaker. A full description of the techniques and algorithms used for voice

morphing can be found in Banos et al. (2008); Duxans & Bonafonte (2003); Duxans

et al. (2006); Erro & Moreno (2007); Eslava (2008).
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3.8 The Artificial Larynx Simulator

The aim of the simulator (see Figure 3.22) is to allow for easy demonstration of

the work done in this research. As the palatometer cannot directly interface with

MATLAB, a live demonstration of the artificial larynx cannot be done. Thus the

simulator brings together all the parts of the artificial larynx (the feature extraction,

neural network classification, voice morphing and word synthesis) in a real time

situation. It allows the user to chose a word as the input and then hear the word

outputted in the voice of their choice. The top performing MLPs as well as the

top performing voting system perform classification of the word chosen by the user,

thereby allowing the user to get a sense of how accurate each system is and how long

each system takes. The option of using one of the SVMs to classify the word is not

given as only the top performing systems were chosen and all of the SVM systems

performed poorly.

The simulator is used in the following way:

1. The user first enters a number from one to fifty, representing the word spoken

by the patient. The palatometer information for this word is randomly chosen

from the four cases of each word in the testing database.

2. The user then chooses which image features to use as input to an MLP. The

top performing voting system is also an option.

3. The user chooses the output voice. Female1 and Male1 are unchanged, recorded

voices. Voice morphing options are also given (Female1 converted to Male1

and Male1 converted to Female1).

4. The output from the Larynx Simulator is the word spoken in the chosen voice.

An indicator panel shows whether or not the word has been correctly identified.

An outline of the final system can be seen in Figure 3.23.
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(a) Screen shot of the GUI

(b) The simulator in use

Figure 3.22: The artificial larynx simulator.
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Figure 3.23: Outline of the whole artificial larynx
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Chapter 4

Results

4.1 Chapter Overview

This chapter presents and discusses the results for the different combinations of in-

puts to the MLP and SVM. It also highlights the improvement in performance (an

increase of 9.14%) created by using voting systems and discusses voice morphing.

It shows that the most successful system uses a voting and predicting scheme con-

sisting of the three most successful classification networks alongside a rudimentary

grammar. This system has a correct classification rate of 94.14% and has a rejection

rate of 17.74%.

4.2 Results

The results from the various inputs to the MLP and SVM as well as the voting

schemes and voice morphing are detailed below. For a complete set of the MLP

and SVM results with different inputs see Table 4.1 and see appendix D for how the

number of hidden nodes changes the success rate of the MLP.

4.2.1 Results of MLP using Image Features

The results of using the image features described in Section 3.5 as input to the MLP

are summarized in Table 4.2 and Figure 4.1. By chance alone, there is a one-in-fifty

probability (2% chance) of randomly generating the correct result.
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Table 4.1: The complete results of using different image features as input to

the MLP and SVM

Image Feature (Input to MLP or SVM) Classification

Success rate

using the MLP

(Percent)

Classification

Success rate

using the SVM

(Percent)

Principal Component Analysis 8 4

PCA and correlation number 8 2.66

Fourier descriptors 22.5 1.5

Fourier descriptors and correlation num-

ber

50 0.5

Fourier descriptors and 4 Image Proper-

ties and Correlation Number

60 1

Correlation against templates (input -1 to

1)

76.5 1.5

Correlation against templates (input 0 to

1)

76

Correlation against templates (abs input) 78

4 Image Properties and Correlation Num-

ber

71.5 1.5

13 image properties 45

13 image properties and correlation num-

ber

67

Generic Fourier Descriptors - centered at

center of mass

38

GFD not centered 27

Column Sums of each word 47

Column and row sums of each word 45.5

Column sums and length of each word 45

The top performing MLP used correlation coefficients as its input. The worst per-

forming MLP used Principal Components.
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Table 4.2: The results of using different image features as input to the MLP

(from Russell et al. (2009a))
Image Feature Classification

Success rate

using the MLP

(Percent)

PCA 8

Fourier Descriptors 22.5

Generic Fourier Descriptors 38

4 Image Properties 31

13 Image Properties 45

Correlation Coefficients 78

4 Image Properties and Correlation Number 71.5

13 Image Properties and Correlation Template

Number

67

Fourier Descriptors and Correlation Number 50

Fourier Descriptors and 4 Image Properties and

Correlation number

60
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Figure 4.1: A graphical representation of the success rate of the MLP using

different features to classify each of the 50 words
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4.2.2 Results of SVM using Image Features

Support Vector Machines are good at classifying high dimensional data. Thus the

image properties which produced high dimensional data (PCA, Fourier Descriptors)

were used as input to the SVM. Some other image properties (summing of the

columns and rows of the Space-Time images) were also high dimensional and used

as input to the SVMs. The results can be seen in Table 4.3.

Table 4.3: The results of using different Image Features as input to the SVM

Image Feature Classification

Success rate

using the SVM

(Percent)

PCA 1.5

Fourier Descriptors 1.5

Sum of Space-Time Image’s Columns 47

Sum of Space-Time Image’s Rows and Columns 45.5

Sum of Space-Time Image’s Columns and the

Length of the Word (Number of Rows)

45

The top performing SVM used the sum of the Space-Time image’s columns

4.2.3 Results of Classifying Using Correlation Alone

Using no neural networks, the results of classification using correlation template

matching alone are very good. An 85% success rate was achieved. Four unseen

cases of each word were presented to the system and the number of times each word

was correctly classified can be seen in Figure 4.2.

4.2.4 Results of Voting System 1 (Winner-takes-all)

Using the top three classifiers (pure correlation, MLP using 5 image properties

and MLP using correlation coefficients), this voting system correctly classifies non-

rejected words 93.5% of the time, and has a rejection rate of 17.36% (Russell et
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Figure 4.2: The success rate of using pure correlation to classify each of the 50

words

al., 2009b). Four unseen cases of each word were presented to the system and the

number of times each word was correctly classified are shown in Figure 4.3.

4.2.5 Results of Voting System 2 (Grammar Prediction)

This system identifies an unknown word correctly 94.14% of the time, although the

system now has a slightly increased rejection rate of 17.74% of the input words (Rus-

sell et al., 2009b). 1000 sentences of five words each were randomly created using

the grammar rules and unseen cases of each word. These were then presented to

the system and the number of times each word is correctly identified can be seen in

Figure 4.4.
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Figure 4.3: The success rate of Voting System 1 to classify the test dataset

4.2.6 Results of Voting System 3 (Bit-by-bit)

This system correctly identifies 82.5% of words, however it is not able to reject

incorrect classifications as the other voting systems were able to. Four unseen cases

of each word were presented to the system and the number of times each word was

correctly classified can be seen in Figure 4.5.

4.2.7 Processing Time

The average times to process different sections of the MATLAB code are given in

Table 4.4. As can be seen from Table 4.4, the complete system (i.e. classifying and

outputting the synthesized voice) takes significantly longer than the voting systems

by themselves.
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Figure 4.4: The success rate of the Voting System 2 to classify each of the 50

words when used in sentences

Table 4.4: The average processing times of the different systems

System Time (seconds)

Voting System 1 (Winner-takes-all) 0.2462

Voting System 2 (Grammar Prediction) 0.2406

Voting System 3 (Bit-by-bit) 0.2462

Loading and Synthesizing a Word 0.7921

Complete System with Voice Output 1.1283
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Figure 4.5: The success rate of the Bit-by-Bit Voting System to classify the

test dataset
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Chapter 5

Discussion

5.1 Chapter Overview

This chapter discusses the results obtained from the different neural networks and

the voting systems.

5.2 The Multi-Layer Perceptron

The results of using Principal Component Analysis to decrease the size of the dataset

for input into the MLP were poor. When the principal components of each word in

the training set (50 words, 20 cases of each word) were correlated against each other,

many unrelated words had a high correlation (greater than 90% correlation) (see

Figure 5.1). The diagonal line running from the top left corner to the bottom right

corner shows the correlation of each word’s Principal Components with themselves

(i.e. these should have a correlation value of 1). All the other white areas in

the image show words correlating with other words. This suggests that PCA is

unsuitable as a data reduction technique of palatometer data (Russell et al., 2009a)

due to the fact that the Principal Components of the words are all too similar to

eachother. This may be due to the data being non-linear and therefore not being

linearly decomposable (Russell et al., 2009a).

Fourier Descriptors alone as input to the MLP also performed poorly. This is prob-

ably due to the fact that the shapes in the Space-Time plots are very complex and

contain many parts (Russell et al., 2009a); and Fourier Descriptors tend to be used

on simple images (i.e. images that contain only one ”‘object”’ or area of interest).
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Figure 5.1: Correlation of the PCA vectors of the training set against each

other.

As the space-time plots are binary (and thus have extremely sharply defined edges),

the Fourier Descriptors would have an infinite number of coefficients, which means

that the image would not be well described with only a small portion of the Fourier

coefficients. Generic Fourier Descriptors also performed poorly for similar reasons,

as well as the fact that the shape has to be positioned at the center of mass, which

destroys any spatial information contained in the image (Russell et al., 2009a).

The four image descriptors used as input to the MLP were: area, Euler number,

center of mass on the X axis and center of mass on the Y axis. These performed

poorly, however, as soon as the correlation number is added the performance of

the MLP increases (Russell et al., 2009a). The results of the 13 image properties

mirror those of the four image properties with their performance increasing as the

correlation number is added (Russell et al., 2009a).

The MLP produces the best results (71.5% correct identification) when using Cor-

relation Coefficients as the input (obtained by convolving each test word against

the templates) (Russell et al., 2009a). Combinations of inputs were also tried with
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varying degrees of success (see Table 4.1).

5.3 Support Vector Machines

Due to the fact that a one-versus-the-rest approach was used, the training set can

be seen as unbalanced (i.e. only 20 of the 1000 words in the training set are in class

1 and 980 words are in class 2) (Bishop, 2006). This contributes significantly to the

poor performance of the SVMs. Also, if more than one SVM claims the unknown

word as belonging to it, there is no way of deciding which to class it actually belongs.

5.4 Correlation Alone

Correlation alone performed very well. It is successfully used in the voting systems

to increase the overall classification rate. As can be seen in Figure 5.2 most cases of

each word correlate well with each other.

5.5 Voting Systems

The voting systems substantially increase the success of the system. Using the

grammar voting system there is an increase of 9.14% in the correct classification of

words as compared to the leading individual classifier.

5.6 Undetected Words

Word 48 (“animal”) was never correctly identified. This seems to be due to incon-

sistency in the data and thus the recordings. When all the words were correlated

against each other, it was expected that different cases of the same word would

strongly correlate with each other. Figure 5.2 and Figure 5.3 show the results of

correlating each case of each word against every single other word in the training

set. Most words correlate strongly with other cases of the same word (i.e. form

square regions in Figure 5.2 and Figure 5.3). However, as can be seen in Figure 5.2

and Figure 5.3, the cases for word 48 do not correlate with each other at all. This

was due to inconsistencies in how the word was pronounced during recording. It is
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thus recommended that before training of the neural networks is begun, it is ensured

that all cases of the same word correlate highly with each other.
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Figure 5.2: Correlating 20 cases of each word for all of the 50 words. Only

correlation values of over 0.75 are shown. The arrow indicates where word 48

is situated

5.7 Voice Morphing

Transfer functions that can successfully take one person’s voice and output another

person’s words were created. These transfer functions can be used to make any

sentence spoken by the first speaker sound like it was spoken by the second speaker.

5.7.1 Processing Time

As can be seen from Table 4.4 the process that takes the longest is the voice morphing

and synthesizing. The neural networks, once they are trained, can easily classify an

unknown word in under the required time. The only way to increase the speed of
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Figure 5.3: Closeup on word 48 from Figure 5.2 showing the lack of correlation

in the cases of the same word

the voice synthesizing system would be to implement it in different software and this

is beyond the scope of this study.

5.8 Results and Research Questions

The following research questions were introduced in the beginning of this work and

are discussed below:

1. Can speech recognition be performed on tongue-palate contact pat-

terns from a palatometer?

Speech recognition can be performed on palatometer data. However, the

palatometer does present some limitations in that it cannot detect some vow-

els. However, most of this problem can be solved by detecting and recognizing

whole words and not just phonemes. The use of space-time plots to represent

the palatometer data means that even if a word contains a phoneme that is
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not detected the rest of the word will be detected and have a unique pattern

to it, thus allowing for identification.

2. Are standard signal processing techniques and artificial intelligence

techniques sufficient to relate the data signals to the speech?

The techniques used to identify the palatometer data perform fairly well (Vot-

ing System 2 identifies an unknown word correctly 94.14% of the time with

a rejection rate of 17.74%). By using voting systems, incorrect classifications

can be recognized and thus outputting the wrong word can be avoided. How-

ever many of the image feature extraction algorithms performed poorly on the

space-time images. This may be due to the images being binary in nature or

may be due to the fact that the images tend to be comprised of a number of

discrete parts. Also many of the feature extraction algorithms do not take into

account position information in the image, thus data about when each sensor

is activated is lost.

3. If the data signals can be correctly identified as speech, can the

appropriate pre-recorded speech be outputted using a loudspeaker?

The appropriate pre-recorded speech can be outputted and by using Voting

System 2 94.14% or the outputted words will be correct. The processing times

also lead to the conclusion that once the neural networks are implemented

in hardware the processing time will be fast enough to allow for audio visual

synchronisation.

4. Can pre-recorded speech be altered to mimic other peoples voices?

This is a technique much researched for use in the movie industry. By using

the Voice Morphing toolbox the pre-recorded speech could be altered to sound

like another person’s voice.

The answers to the research questions indicate that the hypothesis (that speech-free

speech recognition is possible) is correct and that it can be used as a basis for a new

type of artificial larynx.
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Chapter 6

Conclusion and Recommendations

Research into speech-free speech recognition and the use of voice morphing for a

new type of artificial larynx has been done. Words can be successfully classified

by using data from the palatometer and these words can then be synthesized in the

user’s pre-laryngectomy voice. Using the voting system with grammar a satisfactory

recognition success rate of 94.14% is achieved with a rejection rate of 17.74% and a

voice morphing system has been implemented. A simulator has been developed to

allow for easy testing.

6.1 Contribution to Knowledge

Research toward the design and implementation of a new type of artificial larynx

has been demonstrated. No previous work along these lines has been found in the

literature. Speech recognition performed solely on palatometer data has not been

performed before. Techniques and technologies from diverse fields have been applied

to new situations and the feasibility of creating a new type of artificial larynx has

been shown.

6.2 Recommendations for Further Research

A number of different aspects can be considered for future work on the artificial

larynx:

• Increase Word Database Size: The word recognition system should be ex-

panded to increase the functionality of the device. As discussed in Section 3.4.1
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2000 words should provide the user with sufficient functionality.

• Palatometer Technology: The palatometer could be improved by re-

moving the ribbon cables that currently project from the user’s mouth and

replacing the connectivity with Blue Tooth or possibly some other low-power

wireless connection. This would make the artificial palate almost unnoticeable

to observers.

• Unidentified Words: Some additional hardware is required to aid in the

recognition of words unable to be identified by the palatometer (e.g. ”I”).

Other physiological measurements such as force measurement, jaw opening

and lip shape detection should be investigated.

• Feature Selection: It is unlikely that the optimal features to describe

palatometer recordings have been found. A technique similar to the “eigen-

faces” algorithm (see for example Kim et al. (2002) and Wang et al. (2005))

could be investigated. Other options include wavelets, data compression tech-

niques and new ways of representing the palatometer data.

• Predictive Neural Networks: A concern with the artificial larynx is

that the words must be recognized and synthesized in real time (or within

300ms). The likelihood of this happening could be increased by employing

Hidden Markov Models (see for example Rabiner (1989) and Bishop (2006))

to predict the outcome of the word before the user has finished saying it.

• Training of Voting System: Introducing the use of Bagging and Boosting

(see for example Tresp et al. (2001), Schapire (2002) and Nanni et al. (2010))

to the voting schemes training algorithms could increase the success rate of

the classification.

• Speed: The speed of the total processing would need to fall below 300ms as

discussed in Section 3.3.6. This could be done by implementing the code in

C++ or by implementing the neural network architecture in hardware. The

system that has the slowest processing time is the voice loading and syn-

thesizing thus possibly more sophisticated speech synthesizing software than

MATLAB could be used to solve this problem.

• Microprocessors: The neural network as well as the various libraries and

templates could be stored and computed using a microprocessor system. This

would allow the user to carry the artificial larynx in a pocket, allowing for

portability.



Chapter 6 — Conclusion and Recommendations 66

• Emotion in Speech: Advances in speech technology are happening at a fast

rate. These, including adding emotion to speech, could all be implemented.

Other sensors such as heart rate monitors and skin conductivity sensors which

detect the physiological changes due to emotions could be used as additional

input to the speech synthesizer thus allowing for even more authentic sounding

speech.

6.3 Additional Outcomes

A patent for this artificial larynx has been applied for. This work has been featured

in the MIT Technology Review online magazine. (For further details on the patent

and the article see Appendix F.)
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Appendix A

Ethics Approval

Ethics approval was given for human testing of the artificial larynx on the principal

investigators. A copy of the approval is shown in Figure A.1. The ethics approval

was granted on 14 December 2007 and the reference number is: R14/49 Russell
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Figure A.1: The Ethics Approval Document
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Appendix B

Space-Time Plots of the 50 Words

Table B.1: Space-Time plots of words 1-4

Word 1: the Word 2: and

Word 3: is Word 4: that
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Table B.2: Space-Time plots of words 5-12

Word 5: was Word 6: for

Word 7: I Word 8: they

Word 9: have Word 10: time

Word 11: if Word 12: will
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Table B.3: Space-Time plots of words 13-20

Word 13: about Word 14: many

Word 15: then Word 16: them

Word 17: write Word 18: like

Word 19: long Word 20: make
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Table B.4: Space-Time plots of words 21-28

Word 21: day Word 22: come

Word 23: did Word 24: sound

Word 25: number Word 26: call

Word 27: first Word 28: down
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Table B.5: Space-Time plots of words 29-36

Word 29: side Word 30: been

Word 31: take Word 32: place

Word 33: live Word 34: through

Word 35: just Word 36: form
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Table B.6: Space-Time plots of words 37-44

Word 37: great Word 38: same

Word 39: sentence Word 40: three

Word 41: small Word 42: large

Word 43: spell Word 44: big
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Table B.7: Space-Time plots of words 45-50

Word 45: change Word 46: kind

Word 47: picture Word 48: animal

Word 49: head Word 50: stand
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Appendix C

Grammar

This is the basic grammar used for creating Voting System 2.



Grammar Used in Voting System 2 
 

Word 1 can be followed by:  

10, 12, 14, 19, 21, 24, 25, 26, 27, 29, 32, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 

50 

 

Word 2 can be followed by:  

1, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 30, 21, 22, 23, 24, 25, 26, 27, 28, 29, 

31, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 

 

Word 3 can be followed by: 

1, 2, 4, 6, 10, 13, 14, 18, 19, 21, 24, 25, 27, 38, 34, 35, 37, 40, 41, 42, 44, 46 

 

Word 4 can be followed by: 

1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 29, 20, 21, 22, 23, 24, 25, 26, 27, 29, 32, 35, 

36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 

 

Word 5 can be followed by: 

1, 4, 6, 7, 13, 19, 21, 24, 27, 28, 34, 35, 37, 41, 42, 44, 46 

 

Word 6 can be followed by: 

1, 4, 7, 8, 10, 11, 13, 14, 15, 16, 19, 24, 35, 36, 37, 40, 41, 42, 44, 45, 46 

 

Word 7 can be followed by: 

1, 5, 9, 12, 17, 18, 19, 20, 22, 23, 24, 25, 26, 31, 32, 33, 35, 36, 43, 45, 47, 50 

 

Word 8 can be followed by: 

4, 9, 12, 15, 17, 18, 19, 20, 22, 23, 24, 25, 26,, 31, 32, 33, 35, 36,  43, 45, 47, 50 

 

Word 9 can be followed by: 

1, 4, 7, 8, 10, 13, 14, 16, 19, 22, 24, 27, 30, 35, 40, 41, 42, 44, 45, 46, 47, 48, 49 

 

Word 10 can be followed by: 

1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 18 

 

Word 11 can be followed by: 

1, 4, 7, 8, 10, 13, 14, 19, 21, 24, 27, 35, 40, 41, 42, 44, 45, 46, 47, 48, 49 

 

Word 12 can be followed by: 

1, 4, 7, 8, 10, 13, 14, 17, 18, 19, 20, 21, 22, 24, 26, 31, 32, 33, 35, 36, 37, 40, 41, 42, 44, 

45, 46, 50 

 

Word 13 can be followed by: 

1, 4, 10, 14, 16, 19, 24, 36, 40, 45, 48 

 

 



Word 14 can be followed by: 

6, 9, 12, 17, 18, 19, 20, 22, 26, 31, 33, 36, 41, 42, 44, 46 

 

Word 15 can be followed by: 

1, 4, 7, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 

35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 

 

Word 16 can be followed by: 

2, 27 

 

Word 17 can be followed by: 

1, 2, 4, 6, 11, 13, 14, 19, 41, 42, 44 

 

Word 18 can be followed by: 

1, 4, 6, 7, 8, 14, 15, 16 

 

Word 19 can be followed by: 

2, 4, 6, 10, 21, 24, 25, 26, 39, 47, 48, 49 

 

Word 20 can be followed by: 

1, 2, 4, 6, 10, 13, 14, 16, 24, 37, 40, 41, 42, 44, 45 

 

Word 21 can be followed by: 

1, 2, 4, 5, 7, 8, 10, 19 

 

Word 22 can be followed by: 

2, 6, 9, 10, 11, 13, 15, 17, 20, 21, 26, 27, 28, 31, 32, 33, 34, 45, 50 

 

Word 23 can be followed by: 

1, 4, 7, 8, 10, 14, 21, 22, 26, 31, 37, 39, 41, 42, 44, 45, 48 

 

Word 24 can be followed by: 

1, 2, 3, 4, 5, 6, 37 

 

Word 25 can be followed by: 

1, 2, 4, 6 

 

Word 26 can be followed by: 

1, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 27, 28 

 

Word 27 can be followed by: 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 20, 22, 24, 25, 26, 28, 31, 32, 33, 36, 40, 

41, 42, 43, 44, 45, 49, 50 

 

Word 28 can be followed by: 

1, 2, 3, 4, 10, 40 



 

Word 29 can be followed by: 

3, 4, 5, 6, 28 

 

Word 30 can be followed by: 

1, 4, 19, 27, 28, 34, 37, 41, 42, 44, 46 

 

Word 31 can be followed by: 

1, 4, 6, 10, 13, 14, 15, 19, 27, 28, 34, 41, 42, 44, 45 

 

Word 32 can be followed by: 

1, 4, 5, 6, 13, 14, 16, 26, 40, 41, 42, 44 

 

Word 33 can be followed by: 

1, 2, 4, 6, 11, 13, 14, 18, 19, 27, 34, 41, 42, 44 

 

Word 34 can be followed by: 

1, 2, 4, 10, 14, 16, 41, 42, 44 

 

Word 35 can be followed by: 

1, 4, 6, 7, 8, 9, 11, 13, 15, 17, 20, 22, 23, 26, 30, 31, 32, 33, 37, 40, 41, 42, 44, 45, 47, 49, 

50 

 

Word 36 can be followed by: 

1, 2, 3, 4, 5, 13, 14, 19, 40, 41, 42, 44 

 

Word 37 can be followed by: 

2, 4, 6, 10, 14, 21, 24, 25, 26, 32, 36, 39, 44, 45, 46, 47, 48, 49 

 

Word 38 can be followed by: 

3, 4, 6, 10, 15, 20, 21, 24, 25, 26, 29, 32, 36, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 

 

Word 39 can be followed by: 

1, 2, 3, 4, 5, 6, 13, 14, 16 

 

Word 40 can be followed by: 

2, 3, 4, 5, 6, 9, 12, 18, 23, 27, 37, 41, 42, 44 

 

Word 41 can be followed by: 

2, 3, 5, 24, 25, 32, 39, 43, 45, 47, 48, 49 

 

Word 42 can be followed by: 

2, 3, 5, 25, 29, 32, 47, 48, 49 

 

Word 43 can be followed by: 

1, 4, 6, 13, 14, 18 



Word 44 can be followed by: 

2, 3, 5, 21, 24, 25, 32, 39, 45, 47, 48, 49 

 

Word 45 can be followed by: 

1, 2, 3, 4, 5, 6, 11, 12, 14, 27, 32 

 

Word 46 can be followed by: 

2, 4, 13 

 

Word 47 can be followed by: 

1, 4, 5, 6, 13, 14, 16, 40, 41, 42, 44, 45 

 

Word 48 can be followed by: 

4, 5, 23, 47, 49 

 

Word 49 can be followed by: 

1, 2, 3, 4, 5, 6, 15, 27, 28, 34, 50 

 

Word 50 can be followed by: 

1, 4, 5, 6, 11, 14, 15, 28 
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Appendix D

MLP Hidden Nodes

The results of running the MLP with different numbers of hidden nodes are shown.
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Figure D.1: MLP classification success rate using Principal Components and

different numbers of hidden nodes
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Figure D.2: MLP classification success rate using Fourier descriptors and dif-

ferent numbers of hidden nodes
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Figure D.3: MLP classification success rate using generic Fourier descriptors

and different numbers of hidden nodes
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Figure D.4: MLP classification success rate using four image properties and

different numbers of hidden nodes
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Figure D.5: MLP classification success rate using 13 image properties and

different numbers of hidden nodes
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Figure D.6: MLP classification success rate using Correlation Coefficients and

different numbers of hidden nodes
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Figure D.7: MLP classification success rate using four image properties and

Correlation Number with different numbers of hidden nodes
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Figure D.8: MLP classification success rate using 13 image properties and

Correlation Number with different numbers of hidden nodes
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Figure D.9: MLP classification success rate using Fourier descriptors and Cor-

relation Number with different numbers of hidden nodes
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Figure D.10: MLP classification success rate using Fourier descriptors, four

image properties and Correlation Number with different numbers of hidden

nodes
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Appendix E

TIMIT Sentences

The 24 phonetically rich TIMIT sentences are (UPenn, 2008):

1. She had your dark suit in greasy wash water all year.

2. Don’t ask me to carry an oily rag like that.

3. A boring novel is a superb sleeping pill.

4. Call an ambulance for medical assistance.

5. We saw eight tiny icicles below our roof.

6. Each untimely income loss coincided with the breakdown of a heating system

part.

7. Jeff thought you argued in favor of a centrifuge purchase.

8. The sermon emphasized the need for affirmative action.

9. Kindergarten children decorate their classrooms for all holidays.

10. Cory and Trish played tag with beach balls for hours.

11. The frightened child was gently subdued by his big brother.

12. The tooth fairy forgot to come when Roger’s tooth fell out.

13. Alice’s ability to work without supervision is noteworthy.

14. Special task forces rescue hostages from kidnappers.

15. If Carol comes tomorrow, have her arrange for a meeting at two.

16. Military personnel are expected to obey government orders.
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17. Laugh, dance, and sing if fortune smiles upon you.

18. The fish began to leap frantically on the surface of the small lake.

19. The easygoing zoologist relaxed throughout the voyage.

20. Brush fires are common in the dry underbrush of Nevada.

21. How much will it cost to do any necessary modernizing and redecorating?

22. Was she just naturally sloppy about everything but her physical appearance?

23. Is a relaxed home atmosphere enough to help her outgrow these traits?

24. The same shelter could be built into an embankment or below ground level.
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Appendix F

Published Papers, Articles and Patents

The following published papers resulted from this work:

• M J Russell, D M Rubin, B Wigdorowitz and T Marwala, “The Artificial

Larynx: A Review of Current Technology and a Proposal for Future Develop-

ment”, NBC 2008 Proceedings, Vol. 20, pp. 160-163, June 2008

• Megan J. Russell, David M. Rubin, Tshilidzi Marwala, Brian Wigdorowitz,

“Pattern Recognition and Feature Selection for the Development of a New

Artificial Larynx”, O. Dossel and W C. Schlegel. (Eds.): WC 2009 IFMBE

Proceedings, 25/IV, pp. 736-739, 2009

• M. J. Russell, D. M. Rubin, T. Marwala and B. Wigdorowitz, “A Voting and

Predictive Neural Network System for use in a New Artificial Larynx”, IEEE

Proceedings of the 2nd International Conference in Biomedical and Pharma-

ceutical Engineering, in press, 2009

An article about this work was written by Rachel Kremen for MIT Technology Re-

view (www.technologyreview.com). The article can be accessed online at:

http://www.technologyreview.com/biomedicine/24051. A printout of this arti-

cle is given at the end of this appendix.

The following patent resulted from this work:

• M.J.Russell; D.M.Rubin; B.Wigdorowitz; T.Marwala; PCT Patent Applica-

tion PCT/IB2009/006125 An Artificial Larynx (Priority South African Provi-

sional Patent Application 2008/05078, filed 11.06.2008).

http://www.technologyreview.com/biomedicine/24051
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