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Abstract

Internet based call control Web services enable telecommunications network operators to

offer Web developers a simplified method of controlling telecommunication resources. Web

Services that expose telecommunication networks to third parties are highly abstracted.

This abstraction allows Web developers to create applications that provide call control

functionality without detailed knowledge of the underlying network. Functionality offered

by network operators is usually of a simple nature, and does not provide developers with

advanced call control functionality, similar to that found in operator services.

Advanced call control requires the Web application to have detailed knowledge of the state

of the telecommunication resources. In this research an Extended Call Control call model

and Extended Call Control Web service are developed and demonstrated to provide Web

applications with this knowledge.

To develop the Extended Call Control call model existing telecommunication call models

were analysed for components suitable for Web control. The Extended Call Control Web

service was developed using advanced call control use cases. The proof of concept suc-

cessfully demonstrates the use of the Extended Call Control Web service and the value of

the Extended Call Control call model in proving asynchronous Web based advanced call

control of telecommunications resources.

This research has developed a novel call model for Web based call control of telecommu-

nications networks. The Extended Call Control call model and API fulfils a fundamental

requirement for Web based advanced call control, namely knowledge of the state of the

underlying network and asynchronous control of those resources. This research facilitates

the development of advanced Web applications controlling telecommunications calls within

the network which previously was limited by the knowledge of the network state. Telecom-

munication service applications can be moved from tightly coupled systems within the

operators network to Web based applications within third party domains such as a Internet

based virtual private branch exchange or call centre.
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Chapter 1

Introduction

Telecommunications operators rely on services to provide added value to the network

beyond that of voice traffic. Provision of these services and the opening of the network

to third parties enables network operators as well as customers to derive greater value from

the network. The move to transform the network from a closed system (that is operated and

programmed by a few companies) to an open system that, in principle allows any third party

access to the network, is now a standard industry trend. This transformation of telecom-

munications networks unlocks the possibility of services that telecommunication operators

would not otherwise create, especially with regard to interworking with the Internet, which

often addresses applications used only by a minority.

This research is focused on call control, the process by which an operator can create,

manipulate and terminate call sessions within the network. In particular Web based call

control is addressed and the requirements to support such control. Specifically how to

provide developers with a means to abstract the required knowledge of telecommunications

call systems, and therefore enable development of new, useful, innovative and lucrative

services for both the operators as well as customers. Initiatives such as the Open Service

Architecture/Parlay (OSA/Parlay) and Java APIs for Integrated Networks (JAIN) provide

the foundation for this research.

Telecommunications networks are complex systems that have evolved to provide a sep-

aration of physical transport and logical control, allowing the provision of value added

services such as voice mail, prepaid billing, and location to name a few. The ability to make

two-person voice telephone calls is considered a commodity in networks, with competition

focusing on tariffs rather than quality or availability (coverage), and as such advanced

services provide a means for operators to differentiate themselves from competitors (Jain

et al. 2005).
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Service Delivery Platforms such as those supporting OSA/Parlay provide developers with

an abstraction of the network, allowing developers to create applications that do not require

understanding of the underlying network protocols such as ISDN Q.931, ISUP, INAP, or

SIP. However in order for developers to create services they are required to have a good

understanding of the mechanics of a telecommunications call and network setup and the

steps required to complete the call. This requirement of telecommunications familiarity

limits the number of developers for telecommunication services, as developers have to be

familiar with the technologies and concepts used by network operators to offer access to

their Service Delivery Platforms.

Network operators are looking towards Web services as a method to further increase the

use of the network, and provide increased return on investment. Web services provide the

potential to further abstract an operator’s Service Delivery Platforms, in such a manner

that IT developers require only superficial knowledge of telephony or telecommunications.

Initiatives such as the Parlay X Web Services API aim to provide “powerful yet simple,

highly abstracted, imaginative, building blocks of telecommunications capabilities that

developers and the IT community can both quickly comprehend and use to generate new,

innovative applications.” (JWG 2002).

Telecommunication Web services are generally of a simple message exchange type, such as

invoking the network to send an SMS or a ringtone to a mobile phone. In this case, third

party developers have simple interactions with operators. Such services do not require Web

developers to know the state of resources within the operators’ network, and the session does

not consist of multiple messages. Lack of information regarding the state of the operator

network limits Web developers’ applications. Dobrowolski, Grech, Qutub, Unmehopa and

Vemuri (1999) found that the ability to provide complex services is proportional to the

complexity of the knowledge of state, and in order for advanced call control applications,

knowledge of call state is required (Vannucci and Hanrahan 2005b).

Web based call control is limited in responsiveness and state information if restricted

to synchronous Web services. Figure 1.1 (Vannucci and Hanrahan 2005b) illustrates an

example Click-to-Dial Web application making use of a Parlay-X like Third Party Call

Control Web service where the application has to poll for updates of the status of the

requested call, during the time between polling the state is uncertain. This limits control

of the call to actions that are not heavily time dependent. Conversely advanced call control

aims to provide Web services with a level of control similar to that of a call control

application within an operators network, with functionality as described in Table 1.1.

Telecommunication service delivery platforms maintain the state of resources within a
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Figure 1.1: Generic Click to Dial application (Adapted from (Vannucci and Hanrahan

2005b))

session or call by means of call state models. The call model represents all the essential

features of a session from either the application’s or network’s point of view (Jain et al.

2005, pg.39), and is a high level, technology independent abstraction of the call (Graf 2000).

Many call models exist for telecommunication networks and their Service Delivery Plat-

forms as discussed in Chapter 3. However these call models are not created for Web based

call control, thus this research defines an innovative call model suitable for Web service

based advanced call control.

1.1 Research objectives

This research aims to develop a call model suitable for Web based advanced call control of

a telecommunications network. The call model should support an Extended Call Control

Web service which would provide advanced call control functionality.

A proof of concept implementation of the Extended Call Control call model is required to

show the applicability of the model in abstracting the complexity of a telecommunications

network.

The Extended Call Control call model and API should fulfil the following requirements for

advanced call control:

• The developed call model should have various levels of control and abstraction for

Web developers.
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Service Description Required Functionality Interaction

Application Initiated Call call setup Pre Call

Network Initiated Call Triggers: Originating notifications Pre Call

Network Initiated Call Triggers: Terminating notifications Post Call

Network Initiated Notifications: Application notifications Mid Call

Call completion call leg control Mid Call

Join call legs call leg control Mid Call

Call transfer: Blind call leg control Mid Call

Call transfer: Supervised call leg control Mid Call

Call hunting: Sequential synchronous call setup Pre Call

Call hunting: Parallel asynchronous call setup Pre Call

Conference: attach call leg control Mid Call

Conference: detach call leg control Mid Call

Conference: reserve call setup Pre Call

Time Limits (call): call leg control Mid Call

Table 1.1: Advanced Call Control Functionality

• The call state model should contain sufficient functionality to interwork with existing

call models.

• The call model must be capable of supporting control of multiple parties.

• The call model should provide a complete view of the connection and accurate

description of the state of other parties.

• The call model must provide the ability to alter a party during any part of the call.

• The call model must be not be overly complex for developers and regardless of the

parties present information in a similar manner.

• The call model must be equally well suited to an all Internet Protocol or circuit

switched Public Switched Telephone Network (PSTN), and therefore should be able

to map to SIP, OSA/Parlay, and CAMEL.

The development of the Extended Call Control call model and Extended Call Control Web

service is the focus of this research.
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Scope of research

This research is intended to present the call model and Web service required for advanced

call control. The following limit the scope of research into this topic:

• The functionality available to the Web developer through the Extended Call Control

Web service is dependent on the telecommunications operators’ underlying network

capability.

• Control of a call requires detailed knowledge of underlying network state and as such

the Extended Call Control Web service is assumed to be within a trusted domain of

the telecommunications operator.

• The use of the Extended Call Control Web service and associated Extended Call

Control call model by the developer requires prior service agreements which are not

considered in this research.

• Security of Web applications and requirements for cross-domain invocation are not

considered.

• Authentication, authorisation and accounting of the Web applications making use of

the Extended Call Control Web service is not considered.

• Implementation and performance of an Extended Call Control Web service requires

access to a telecommunications network and gateway and could not be explored in

this research.

1.2 Thesis Outline

This thesis is organised as follows:

Chapter 1: The requirements for the research and the objectives are defined.

Chapter 2: Web services and how stateful Web services are currently implemented are

reviewed. The requirements for stateful Web services and the key considerations for an

asynchronous Extended Call Control Web service are discussed.

Chapter 3: Existing telecommunications call models are analysed with respect to the

underlying requirements of a Web based call model, and features of each call model are

identified for inclusion into the Extended Call Control call model.

Chapter 4: This chapter describes the main focus of the work, the Extended Call Control

call model, as well as key methods required for an Extended Call Control Web service
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Application Programming Interface (API).

Chapter 5: Use Cases are used to illustrate the application and suitability of the Extended

Call Control call model to advanced Web based call control. The developed Use Cases are

implemented in a proof of concept application. Message sequence charts of the Use Cases

detail the interworking of the components of the distributed implementation.

Chapter 6: The output of the Extended Call Control call model and Web service research

is summarised as well as its potential applicability to future work.

Appendix A: Papers which resulted from this research.

Appendix B: A selected paper.

The source code for the proof of concept implementation is provided on a separate remov-

able storage disc.
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Chapter 2

Stateful Web Services

Web services arose as a response to the demand for software-to-software interactions through

the Internet. Web services are based on four core technologies: Extensible Markup Lan-

guage (XML), Universal Description Discovery and Integration (UDDI), SOAP (originally

defined as Simple Object Access Protocol), and the Web Services Description Language

(WSDL). Together these technologies provide a methodology of interconnecting software

processes across multiple domains and systems. Newcomer (2002) states that any system

can be mapped to Web services, and Web services can be mapped to any system. Web

services can exist in any Web environment for example the Internet, company intranet and

extranet (Esposito 2002, pg. 285).

There are many differing opinions as to the definition of a Web service, for example Esposito

(2002) considers a Web service to be “a software application that can be accessed over the

Web by other software” , whilst Jønvik et al. (2003) considers XML Web services as “a new

breed of Web applications, which are defined as self contained, self describing, modular

applications that can be published, located and invoked across the Web”. Caprio and Moiso

(2003) have a broader interpretation of a Web service and define it as “an interface that

describes a collection of operations that are accessible on the network through standardised

messaging mechanisms”, Newcomer (2002) narrows Web services to XML as “Extensible

Markup Language (XML) applications mapped to programs, objects, or databases or to

comprehensive business functions”.

This highlights the fact that Web services are designed solely for system-to-system inter-

action: Web services receive XML text messages, convert them to a format understood by

the underlying system, which processes the information and optionally sends a response.

In addition to providing data independance for programming languages, Web services

also include semantic information associated with the data, thereby providing a complete
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definition of the data and how to process the data (Newcomer 2002, pg.16).

In Esposito (2002) Web services have three characteristics,

1. A Web service is acessed over the Web using an uniform resource locator (URL).

2. Web service communication is performed using Extensible Markup Language (XML),

usually packaged using the Simple Object Access Protocol (SOAP).

3. Web services are published in public registries together with a description of its

methods and other publisher information using WSDL.

Web services can use many different communication protocols, however Hyper Text Trans-

fer Protocol (HTTP) is most commonly used as it is the protocol of choice for the Internet.

2.1 Web services usefulness

Web services operate with a different paradigm than that of other distributed computing

systems. Standard distributed computing systems and architectures like CORBA and Java

remote method invocation have a tight coupling between the various components in the

architecture whilst Web services strive towards a loose coupling1. As such Web services can

provide a further layer of abstraction and a defined method of integration between disparate

systems, providing unmatched interoperability and integration (Newcomer 2002).

Tight coupling requires a higher overhead than low coupled systems and thus high coupling

is not well suited for the Internet, as the presence of firewalls and elements such as network

address translators and proxies limit tight coupling between disparate domains. In (Kaye

2003, pg. 133) a comparison of tight and loose coupling is given as shown in table 2.1.

As can be seen in Table 2.1 with respect to granularity, Web services are limited to simple

text XML-based data structures instead of objects, and the use of self describing semantic

definitions and the HTTP protocol ensure that Web services are platform and language in-

dependent (da Silva et al. 2004; IBM Web Services Architecture Team 2000). Web services

in addition can themselves use dynamic service discovery to discover other Web services
1Hagel (2002) defines loosely coupled as: “Loosely coupled is an attribute of systems, referring to an

approach to designing interfaces across modules to reduce the interdependencies across modules or components

in particular, reducing the risk that changes within one module will create unanticipated changes within other

modules. This approach specifically seeks to increase flexibility in adding modules, replacing modules and

changing operations within individual modules”
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Service Architecture (Adapted from (Kaye 2003, pg. 133))

Tightly Coupled Loosely Coupled

Technology Mix Homogeneous Heterogeneous

Data Typing Dependent Independent

Interface Model API Service

Interaction Style RPC Document

Synchronisation Asynchronous Synchronous

Granularity Object Text Message

Syntactic Definition By Convention Published Schema

Semantic Adaption By Re-Coding via Transformation

Bindings Fixed and Early Delayed

Software Objective Reusability, Efficiency Broad Applicability

Consequences Anticipated Unexpected

Development Time Longer Shorter

and bind to them at runtime, thus providing self configurable, adaptive Web services, which

can be a conglomeration of multiple dynamically linked smaller Web services.

2.2 Architecture

A Web service architecture has three components: the Service Registry, the Service Provider

and the Service Requestor. The Web service is described in a Service Description and

contained within the Service Provider. The Web services model architecture is shown in

Figure 2.1.

The Web service provider in a business sense is the owner of the service (Caprio and Moiso

2003), whilst in an architectural sense is simply a computer connected to the Web with a

content delivery platform. The Web service registry is a directory containing descriptions

of many Web services. Service requestors use the service description when binding to the

service either statically or dynamically. Since a WSDL service description document is

co-located with any SOAP based Web service, it is not necessary for the Web service to be

published in a service registry: the service requestor, if aware of the location of the service,

can statically bind to the Web service. The Web service requestor in an architectural sense

is the application accessing the Web service, whilst in a business sense it is the customer

requiring certain functions (Caprio and Moiso 2003).
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Figure 2.1: Service Architecture (Adapted from (Caprio et al. 2004; Caprio and Moiso

2003))

Figure 2.2 shows the Web service stack. XML is the key technology common to all Web

services, be they SOAP-based or otherwise, and provides a common language to describe

the data passing between the Web service requestor and the Web service provider and also

how to process it (Newcomer 2002, pg. 16). SOAP defines the envelope to package the

XML and provides serialisation of the data over the network (Newcomer 2002). Web

service Description Language (WSDL) describes the service in terms of interfaces, data and

message types, permitted responses, interaction patterns and protocol mappings (Newcomer

2002). Universal Description, Discovery and Integration (UDDI) is used for storing the

business information related to the Web service, publishing and discovering the location

of the Web service (Jønvik et al. 2003). As shown in Figure 2.2, HTTP is only providing

transportation of the SOAP, and any network transport protocol would be acceptable.

2.3 Stateful Web Services

Standard practice for Web services and the Web servers that host these services is to handle

each client request message separately, and in isolation of any previous or future messages.

This lack of knowledge when dealing with a request is known as stateless behaviour. This

inability to relate messages to a common session can be overcome by incorporating any

information regarding state as part of the message exchanged. That is any information

regarding state must be part of the message exchanged. Stateless services have the ability
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Figure 2.2: Web service stack (Adapted from Hogg et al. (2004))

to recover quickly from a failure due to the fact that the Web server does not require

any data to be associated with a particular session. In addition the Web server does not

require a large quantity of memory as separate processes are not required for each session

(Weerawarana et al. 2005, pg. 55). The preservation of knowledge of the state of a process

is important when the process spans a large amount of time, such as a telephone call, or an

on-line shopping transaction requiring many related interactions with a customer (Vannucci

and Hanrahan 2005b). This demand for service state between the requestor and service

has led to a number of methods of maintaining state by means of a token, such as Web

cookies, encoding URL parameters, and HTTP POST data (Hirsch et al. 2006; Vannucci

and Hanrahan 2005b).

A stateful Web service is one in which the messages passed between the Web requestor and

the Web service relate to a resource by means of a common context which is used when

processing future messages. In Foster et al. (2004) three possible associations with state are

presented:

Stateless. This is a Web service where all user information is passed in the requesting

message and no information regarding the requestor is maintained on the server.

Conversational. This is a Web service where messages represent a series of related oper-

ations. The service uses each message to determine the behaviour of the service, as each

message is logically related. A typical pattern for such a conversational Web service is by
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means of an HTTP session or cookie (Foster et al. 2004).

Stateful Resource. This Web service uses sent and received messages to manipulate a set of

logical stateful resources. However, in this association the Web service itself does not have

to be stateful if the responsibility of maintaining state is handled by a separate component

(Foster et al. 2004). This association forms the basis of the WS-Resource Framework

(Czajkowski et al. 2004).

Stateful resources are any logical or physical elements with state, and can consist of a

collection of other stateful resources. Stateful resources, as described in the stateful resource

association above, provide a means to preserve the benefits of a stateless Web service, as

dynamic state is not stored in the Web service itself. Rather, the state is stored within the

request message or within components with which the Web service can interact (Singh and

Huhns 2005, pg. 190).

Two ways of implementing a stateful Web service are commonly accepted; the first being

a stateful service in which all state resides on the Web server and state identifiers are em-

bedded in messages (Hirsch et al. 2006, pg. 60), or alternatively to use stateful interactions

in which the full state information is passed between the requestor and the service in the

exchanged messages.

The choice of stateless or stateful service is reliant on a number of factors (Hirsch et al.

2006):

• The number of users of the service; stateless services can support a large number of

users, as memory constraints to not increase per user.

• The extent of state exchanged; when the reliance on previous information is relatively

small state can be passed in a single message, however if the state exchanged is large

then a separate context handler would be required to maintain the session state and

associated data.

• The number of interactions; if the number of interactions per service is low, then

state information does not need to be preserved, and a simple stateless service would

suffice. However, as the number of interactions increase, the dependency on previous

messages increases and the need to preserve state information requires a stateful Web

service.

Events generated within a telecommunications network with regards to the progress of a

call are numerous, and due to this reason, as well as the long duration of the call, and the
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Figure 2.4: Asynchronous Web service

intention to control the call from a Web application, stateful Web services are required for

Extended Call Control.

2.4 Synchronous and Asynchronous Stateful Web services

Invocation of any type of service is either synchronous or asynchronous. Synchronous

invocation is when a request is expected to be immediately followed by a response, and no

further computation takes place until the response is provided, as shown in Figure 2.3. Thus

synchronous invocations block the flow of the application in that no other requests can be

completed whilst the response is outstanding. Standard Web browsing is synchronous in that

a HTTP GET or POST is immediately followed by a response. Asynchronous invocation is

one in which the generation of a request does not block the process, and a result can arrive

at an unknown time, as shown in Figure 2.4. The requestor can be notified of the response

in one of two ways: either by providing a predetermined callback reference, usually an

URI, so that the responding process can notify the requestor immediately when ready, or by

the requestor performing polling to check the status of the request (Singh and Huhns 2005,

pg. 180). The implementation of a callback for Web services is a topic of much research,

as usually all Web connections are created by the service requestor, and a Web service

cannot initiate connections to the requestor. Callback Web services can be implemented in

a number of ways and are known variously as “server push”, “streaming”, “two way Web”

or “comet” (Mahemoff 2006, pg. 19), and are a key component in grid service computing

research. The notification pattern requires the Web requestor to provide a URI to which

an asynchronous response can be sent, which updates the Web requestor by means of a

background process. This effectively requires the requestor to act like a service provider by

accepting incoming connections. This notification pattern is used by third party call control

Web services such as Twilio.com.
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Figure 2.5: Ajax Browser Operation (Adapted from (McCarthy 2005))

An application implementing polling would have a separate process where the result of the

request is checked at regular intervals, notifying the application when the result is available.

Polling is wasteful of resources as it generates messages periodically which can be costly

in terms of bandwidth and processing power. However, such a method is essential if the

requestor is without a fixed location and can therefore not provide a callback, as is the case

with a majority of Web requestors behind firewalls. The use of a separate process to perform

the underlying polling and communication with the Web server forms the basic premise of

Ajax or “Asynchronous JavaScript + XML”, and is known as the periodic refresh or call

tracking pattern (Mahemoff 2006), as shown in Figure 2.5.

Enablement of Asynchronous Web services is usually entirely client-side driven (Freeman

et al. 2002, pg. 334), by means of the described polling method. This means that standard

Web services can appear to be asynchronous, without requiring a server side change of
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the service. However, this method of providing asynchronous services is not a true asyn-

chronous invocation as the Web requestor is always the party to initiate the communication.

Ajax is an architectural style of providing seemingly asynchronous Web applications, which

consume Web services. (A Web application or Rich Internet Application is a program

which consumes Web services with a graphical user interface for human machine inter-

action). Ajax consists of a number of related technologies and ideas namely asynchronous

JavaScript, cascading style sheets, the Document Object Model and most importantly uses

XMLHttpRequest (Mahemoff 2006, pg. 6). Due to Ajax using JavaScript such applications

can be upgraded on the service provider domain without user intervention, and as such can

continuously offer better features.

Desktop Web applications or widgets by contrast have a number of features that extend

beyond the capabilities of Web browsers (Mahemoff 2006, pg. 66), some of which are:

• Access to URI other than the Web service URL, providing connections to other

servers on different ports, and possibly in other protocols.

• Access to hardware, such as local or remote file storage.

• Access to other software processes, such as databases, or client-side Web services.

• Faster processing capabilities, as the application is compiled for the operating system.

In the case of Extended Call Control, asynchronous behaviour is required to timeously

notify the Web application of the constant change of state of the underlying network and

associated calls, so that the application can perform call control based on correct knowledge

of the state of the network.

2.5 Maintaining state in a Web server

There are a number of methods to maintain state in a Web server. Some of these are (Powell

2002):

1. Repost application data with each request. It is assumed that the state information

contained within the HTTP GET or POST is not excessive.

2. Use HTTP authentication to map requests to users. The requestor is provided a

session key which is included in all transactions.

15



3. Use cookies2 to preserve the state of a string of requests. Cookies have a name/value

pair for identification of the client application on the Web server. There is a session

state class that has the session information and is continuously updated.

4. Unique URL. Redirect requests are sent back to the client application specifying a

new URL with a unique session identifier. Occasionally redirection can be refused

by a requestor for various reasons such as security (especially in the case of Web

requestors that are not Web browsers, with user adjustable security levels, or user in-

teraction). In the HTTP specification there is the possibility of accepting redirects and

sending a HTTP GET in response to the redirect. This HTTP GET does not format

the message in a SOAP bubble and is not well suited to non browser applications.

Despite the process being automated, it is still necessary to confirm the URL redirect,

otherwise the security of the application could be suspect.

Occasionally cookies on the client application store the state (Powell 2002). This implies the

Web server is less burdened by the maintenance of state. In addition there are no issues about

locating the session object across clustered Web servers. However, cookies are plain text

and there are a number of security issues since confidential implementation and preference

information might be obtainable. If there is a large amount of data serialisation a cookie

might not be practical in limited bandwidth.

SOAP state information can be implemented in a number of ways, one method is to use a

session identifier in the SOAP header. This implies that there is additional server side soft-

ware to handle the header identifier, and secondly the session identifier has to be included

by the client in each SOAP message sent by the client, otherwise state could be disrupted

(Powell 2002).

2.6 Web Service Resource Framework

The WS-Resource Framework (WSRF) (Czajkowski et al. 2004), together with WS-Notification (Gra-

ham et al. 2004), defines an infrastructure for stateful services for business applications, grid

based computing resources and systems management (Singh and Huhns 2005, pg. 190).

The WS-Notification specification provides a scalable messaging model, whilst the WSRF

provides the ability to model stateful resources.
2A cookie is a text file stored by the client, that is created by a Web server to both store and retrieve

information about the client
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The Web services architecture defines a service-orientated distributed computing model as

a means for interoperating between diverse processes on different platforms. Distributed

object computing has a number of architectural challenges, such as a lack of shared memory

between the caller and the object, latency and unreliability of the underlying transport.

Web services are suitable for distributed systems in which the gained platform and vendor

neutrality justify the loss of performance.

Whilst Web services facilitate the provision of platform independent distributed systems,

the basic Web service architecture does not deal with more sophisticated interactions, such

as transactions and reliable messaging (Foster et al. 2004). Thus initiatives such as WS-

Notification and WSRF move to address these issues.

The premise of the WSRF is to introduce a formalisation of interactions with state, i.e. the

description, and modification of state.

In the WSRF the model that is adopted is a stateless Web service that acts upon a stateful

resource. All responsibility for state is maintained by the stateful resource. This provides

the Web service with the advantage of statelessness, such as scalability, and robustness to

failure (in which the Web service can be restarted, or multiple different URI for the service

can be provided) (Foster et al. 2004).

This leads to the need for correlation between the requests and the stateful resource upon

which the requests act. Since Web services interacting with stateful components will modify

the state of the resource, such a service interface cannot be provided without knowledge of

the state in which the resource is currently, especially when the resource is acted upon by

more than one Web service simultaneously. This strengthens the case for asynchronous

notification of the underlying state to the involved Web requestors.

In the WSRF stateful resources have three properties, firstly they have a set of state data

expressible in XML, secondly they have a defined life cycle (in terms of creation and

destruction) and lastly they can be acted upon by one or more Web services (Foster et al.

2004). The implementation of the stateful resource is independent of standards, however

the instantiation of the stateful resource may occur in one of two patterns: either statically

or dynamically. Static association is when the association of the Web service with the

stateful resource occurs when the Web service is deployed. Dynamic association involves

a Web service factory, that creates the association when a requestor message starts a new

session requiring state. Common to both methods is the concept of a stateful resource

identity that is passed to the requestor by the Web service. This identity serves to correlate

the requestor’s messages with the correct stateful resource. The WS-Addressing standard
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serves to standardise the manner in which the address of the Web service can be described.

The WSRF document also mentions another pattern to handle stateful resources, which is

the maintenance of the resource’s state by the Web service as a static state, thus removing

the need for the Web service to provide a resource identity. However, this implies that the

Web service itself has a one-to-one mapping with the resource identity, and the requestor

would thus access the Web service through a unique Web service endpoint, such as a unique

URL (Foster et al. 2004).

The stateful resource identity serves to enable the Web service to correlate the messages

with the correct stateful resource, the identity does not contain any state information, and is

unique in the life cycle of the Web service. The identity may be unique beyond the scope of

the Web service, however this is not guaranteed. All messages regarding state contain the

endpoint reference, so that the Web service can interact with the correct stateful resource.

A stateful resource can be associated with multiple Web services, allowing multiple network

protocols or network endpoints to process messages for the WS-Resource.

The encapsulation of the stateful resource provides the requestor with the ability to modify

the resource’s properties without knowledge of the underlying systems, and varying degrees

of encapsulation are possible. Access to the state of a given stateful resource can be

accomplished with message exchanges between a single WSRF type, or alternatively a

single stateful resource may be part of multiple WSRF types.

The state of the service requestor is always managed by the Web service, and the requestor

can only provide messages to modify the state (Foster et al. 2004), thus eliminating the need

for the requestor to have specific knowledge of the identity and location of the encapsulated

stateful resource. This provides additional security and a well understood interface to the

implementation.

Ultimately, the WSRF provides a standardised pattern to describe access and manage state-

ful resources, without compromising the statelessness of the Web service. Thus there is

still the standard request-response for all Web service messages, and the stateful resource

normally cannot directly initiate an update or notification to the service requestor, as is the

case with the Web server.
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2.7 Conclusion

Web services provide lightly coupled interoperation between distributed systems across

multiple heterogeneous domains. The use of XML and text-based communication allows

Web services to interact across firewalls that would otherwise prevent communication. The

Web service definition allows Web applications to access SOAP based Web services in

a well understood manner. The need for stateful operation in the case of an Extended

Call Control Web service is justified by the large duration over which the Web application

maintains control of the call. The need for asynchronous notification of the state of the

underlying network is highlighted by the number of interactions, as well as the need for the

Web application to have precise knowledge of the underlying network state to effect logical

changes within the network. Sessions occuring over a large duration of time can impose

significant performance penalties when synchronous methods such as polling are used,

asynchronous Web services reduce time spent on HTTP invocations as well as providing

notification as soon as the information is available, as shown in (Wang et al. 2010), where a

69% reduction in invocation duration was observed.

The WSRF provides a mechanism for Web services to provide stateful services by means

of a separate process to handle the session state and associated data. The use of an identifier

for the identification of the correct stateful resource allows Web services to operate in a

stateful manner without sacrificing the advantages of stateless services. By means of a

common resource identifier, multiple Web services can act on the same stateful resource

simultaneously. A one-to-one mapping between the Web service and stateful resource is

to be avoided as this can lead to a number of problems should the Web server become

unavailable, such as a power outage or restart.

Using a separate stateful resource allows a Web based Service Delivery Platform to support

a large number of stateful interactions. The use of Ajax enables asynchronous access

to Web services and coupled with stateful resources, Rich Internet Applications can be

supported. The state of the service requestor is always managed by the Web service,

and the requestor can only provide messages to modify the state (Foster et al. 2004), thus

eliminating the need for the requestor to have specific knowledge of the identity and location

of the encapsulated stateful resource. This provides additional security and abstraction

of underlying implementation for the telecommunications operator and a well understood

interface to the implementation for third parties.

In Chapter 1.1 a number of objectives were identified for an Extended Call Control call

model and API. A stateful resource pattern and identifiers, to relate stateful interactions,
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provide the ability to associate control for the entire duration of the call. In addition the

stateful resource and asynchronous notification of changes in state provide a current view

of the connection.

Chapter 3 analyses existing call models for elements suitable for a Web based call model.
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Chapter 3

Call Control Call Models

Telecommunication Web services are usually of a simple message exchange type, such as

invoking the network to send an SMS or a ringtone to a mobile phone. In the case of these

services the session does not consist of multiple messages nor state information. Lack of

state information limits advanced telecommunications Web services, and in (Dobrowolski,

Grech, Qutub, Unmehopa and Vemuri 1999) the ability to provide complex services was

found to be proportional to the complexity of the supporting state model, as the number of

states and transitions in the state model allows finer grained processing and information.

Unlike Web services, provisioning standard or advanced telecommunication services of a

level similar to an Intelligent Network service like call waiting, conference calling, or pay-

per-call require many messages to be exchanged during the life of the particular service

being provided. In addition, control of the session by the service logic is in place for the

entire duration of the call. These services require the controlling application to implement a

call model to interpret network state messages based on the last known state of the session

(Dobrowolski, Montgomery, Vemuri, Voelker and Brusilovsky 1999b).

Control of resources within a system requires knowledge of the state of the resources, as

well as the state of the system in terms of the ability to modify the resources. Telecommuni-

cation service architectures maintain the state of resources within a session or call by means

of call state models. The call model represents all the essential features of a session from

either the application’s or network’s point of view (Jain et al. 2005, pg. 39), and is a high

level, technology independent abstraction of the call (Graf 2000).

A call model can be defined in many different ways, in Dobrowolski, Grech, Qutub, Un-

mehopa and Vemuri (1999) it is defined as “an abstract representation of user and/or ter-

minal and/or network expectation built during the process of establishing, progressing and

terminating a call. A call model is most conveniently represented using the notation of
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a graphical finite state machine (Moore and Mealy state machines are commonly used).”

In Jain et al. (2005) a call model is thought of as “the basic component of a specialised

virtual machine for the development of applications that involve communication sessions.”,

whilst Dobrowolski, Montgomery, Vemuri, Voelker and Brusilovsky (1999a) defines the

call model as “a finite state machine that governs/controls the execution of a call, how a call

progresses, what features/services may be accessed, and at what call states.”

From the above definitions it is clear that in order to sucessfully control any call in a manner

which allows access to the call during the session, requires knowledge of the state of the call

and understanding of the call model. As outlined in Chapter 1.1 the goal of this research is

to define a call model suitable for Web based advanced call control.

Within the context of a telecommunications service architecture such state is represented

in terms of call state models to maintain track of the progress of each session and the

resources consumed during the session. In Dobrowolski, Grech, Qutub, Unmehopa and

Vemuri (1999) it was found that for any communication session, a call model can always be

built to describe the logical entities involved and their inter-communication.

Call models are used to represent all the essential features of a call session from either

the application’s or network’s point of view (Jain et al. 2005, pg. 39), and is a high level,

technology independent abstraction of the call (Graf 2000).

Through the implementation of a call state model, a far richer set of service functionality

becomes available, than that offered by a simple request response type (Dobrowolski,

Montgomery, Vemuri, Voelker and Brusilovsky 1999b). Thus the call model can be thought

of as the least common denominator supported by the call processing entities of the different

domains (Dobrowolski, Grech, Qutub, Unmehopa and Vemuri 1999), in this case the Inter-

net third party domain and the telecommunications operator domain. A call state model is

extremely important for the service application developer to successfully understand and

implement services within the telecommunications network.

In this chapter the bacground of call models is presented. A large number of existing call

models are analysed for their applicability with regards to Web services and the research

objectives of Chapter 1.1. Useful features of the call models reviewed in this chapter are

synthesised in Chapter 4.
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Figure 3.1: First Party Call Control (Adapted from (Bayer 2000; Graf 2000))
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Figure 3.2: Third Party Call Control (Adapted from (Bayer 2000; Graf 2000))

3.1 Call Model Background

In the following section the concepts of call models are introduced with respect to the

controlling entity (first or third party), information contained within the call model (full

or half call model), and the contained states of the call model (symmetric or asymmetric).

The application and suitability of these concepts will be discussed in further detail in the

remainder of the chapter.

3.1.1 First and Third-Party Call Control

There are two distinct variations of call control; first-party, and third-party. In (Bayer 2000,

pg. 303) first-party call control is defined as “a call control model in which only a single

device or device configuration can be observed and controlled”. Thus in first-party call

control the caller has no control over the destination leg. In this scenario the application

control logic is located at the terminal, as is shown in Figure 3.1, and is unaware of the

controlling logic of the destination leg (Jain et al. 2005, pg. 44). Calls are seen as either

external incoming calls or external outgoing calls to the switching domain (Bayer 2000). In

first-party call control the application has the same control as that of a user (Graf 2000).
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In third-party call control, application control logic is independent of all call parties and

the application creates and controls multiple call legs. The application is usually contained

within the operator domain, providing greater call control than a first-party call scenario. In

Bayer (2000) Third-party call control is defined as “a call control model in which multiple

devices, or device configurations, can be observed and controlled simultaneously”. These

calls are controlled by a single application, responsible for the maintenance of state of all

the involved parties, as depicted in Figure 3.2 where the controlling logic addresses both

parties of the call. The switching domain in third-party call control includes multiple call

legs, and is the general case of call control, whilst first-party call control is the special case

(Bayer 2000).

3.1.2 Full and Half-Call Models

In a call there might be many parties, each with a different connection and associated state.

The entity recording the state, and the level of detail of the call model forms a basis for

the system architecture, as the location of this information is an important factor of the

operation of the call control.

There are, in principle, two ways in which to store the call model state, the first being

each party maintains information only about itself, and the second being each party has full

knowledge of the other parties. It is also possible to store all of the state information in

just one side of the connection, however this is impractical as both sides of the connection

require a certain amount of state information such as the other party’s address and status

of the connection to interoperate successfully. In the case of third party call control the

controlling application has knowledge about each party.

It is possible to maintain the complete call information in both sides of the connection, and

when the call model is such that all parties have a complete view of the connection and state

of other parties, as shown in Figure 3.3, this is know as a full call model. If each party of

the call is logically separate, with each party only knowing the state of their connection,

as shown in Figure 3.4, this is know as a half call model. In Figures 3.3 and 3.4 each

party’s controller within the context of a call is represented by a rectangle. The state of

each party within the controller is represented as a circle. As shown in Figure 3.3 state

information regarding other parties is proxy information, represented by dotted circles, and

as such might not be absolutely current.

The full call model is advantageous in that it represents all parties in the call, thus allowing

a controlling application full knowledge of all parties, and therefore being able to alter any
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party. Conversely objects representing the other parties have to be created for all parties,

resulting in additional memory requirements (the total number of objects to represent each

party is the square of the number of parties), and as the state of each object has to be kept

current, this results in a large amount of messages regardless of whether or not they are

required.

In a half call model the call state is simply updated as a message is received from the other

call controller. This allows for a far simpler view of the connection, requiring an object for

each party in the call (Jain et al. 2005). However, this reduction in state knowledge means

that an application only has concise knowledge of the party within which the application is

hosted and can not authoritatively alter other parties.

Regardless of the type of call model used, each party would require a basic common set of

information such as the address of the other parties, as well as the supposed state of the par-

ties, thus requiring the exchange of state information. In the case of third party call control,

the use of a half or full call model is dependent on the technology and implementation, as

shown in the following analysis of existing call models.
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3.1.3 Symmetric and Asymmetric call models

The term symmetric and asymmetric refers to the states in the finite state machine describing

the various parties involved in the call.

In the case of a call model having identical finite state machines for all parties involved in

the call, regardless of their role as either an originating or terminating party, it is known

as a symmetric call model. If the finite state machines are different depending on the role

of the party then it is known as an asymmetric call model. In a symmetric call model, the

call model for each participant will go through different states in the finite state machine

depending on whether it is the terminating or originating party, with certain states not

permitted, as described by the pre- and post-conditions of the API methods (Jain et al. 2005,

pg. 53). Often, the terminating and originating finite state machines share similar states,

for example an idle or connected state, and thus a symmetric call model has the potential

to simplify the specification of the call model by making it more compact, and easier to

manage (Jain et al. 2005, pg. 53).

3.2 The Intelligent Network

The Intelligent Network (IN) was one of the first service architectures to separate appli-

cation or service logic from the network equipment, and as a result was one of the first

architectures to introduce programmability. The IN call model was the first call model to

facilitate call processing, and IN concepts form the basis for almost all other call models.

The standard public switched telephone network processing model before the introduction

of the IN is shown in Figure 3.5. Supplementary services were independent, each hosted

on the switch equipment (node), requiring a particular service to be loaded on each node

supporting that service. In the case of an update all nodes within the network required

updating, an extremely laborious and time-consuming process.

As a result of the difficulties of service provisioning the fundamental IN concepts focused

around independence (Faynberg et al. 1996; Jain et al. 2005).

Service Independence: The IN architecture supports centralised separate service applica-

tion processing platforms.

Logical separation of basic switching from services: Basic exchange functionality such

as standard routing and call connection does not require the intervention of service applica-

tion logic.
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Figure 3.5: Pre IN service processing model (Adapted from (Jain et al. 2005, pg. 66))

Figure 3.6: IN service processing model (Adapted from (Jain et al. 2005, pg. 67))

Independence of service interactions from lower level communication details: The

service application logic communicates with the switching through a protocol independent

of the underlying network, separating services from lower level protocols.

This network processing model was altered to provide a common service logic, and a way

for the service logic to interact with the nodes though hooks, as in Figure 3.6. These hooks

are instantiated as trigger detection points in the Intelligent Network basic call model, and

allow suspension of call processing whilst the service logic determines the correct course

of action to take and instructs the node how to continue. The processing of a call was also

split into separate service-independent sub processes represented as states within the basic

call model (Jain et al. 2005, pg. 67). The concept of a Service Control Point was introduced

to host the service applications within the network, that would interact with the network

switches and their associated call models, and limited service logic. The call model within

the Intelligent Network is known as the Basic Call State Model (BCSM), and is defined in

the ITU-T’s Q.1204 standard (ITU-T 1993).

There are several key attributes to an Intelligent Network system:

27



1.2. DEFINING PRESENT STATE USING REFERENCE MODELS 15

SCFSSFCCF

p: Point in Call

x
Detection
Point x

q: Point in Call

y

1
DPP

(unarmed)2

3
DPP

(armed T)
Service
Logic

r: Point in Call

z
DPP

(armed- N)

6: Arm

4

5

8 9
7

10

Figure 1.9. Role of detection points, detection point processing and service logic.

the user, collecting digits and routing. The Terminating Basic Call State Model
(T-BCSM) abstracts the functions at the terminating side of the call including
authorising and alerting the called party.

The calling party signals to the O-BSCM. In general, the O-BCSM and the
T-BCSM are in different switches and signal to each other through zero or more
exchanges using the ISUP protocol. Interaction with a SCP containing service logic is
possible from either BCSM, but normally only one at a time.

Figure 1.9 illustrates several concepts in the IN standards. The BCSMs model
call control functionality and are located in the CCF. A Basic Call State Model has
two building blocks: detection points and points in call. A Detection Point (DP)
is a stage in the call control process where external logic hosted by the SCF can
be invoked if predetermined criteria, the trigger criteria, are met. For example, the
number translation logic for a freephone service must be invoked if the dialled number
has a specified prefix, say 080. At each detection point, the call process halts and sends
a notification carrying call parameters to the Service Switching Function as shown in
Figure 1.9. In the SSF, detection point processing (DPP) determines whether call
parameters satisfy the trigger criteria.

The first notification (1 in Figure 1.9) shows the case of a detection point with
no criteria set or the trigger parameters not meeting the criteria. Execution of the
call process resumes execution where processing was interrupted (2). The call process
between this point and the next detection point is encapsulated in a Point in Call
(PIC). The PIC abstracts this part of the vendor’s implementation of the call process.
A PIC can receive and emit signalling such as ISUP and Q.931 messages.

The second notification (3 in Figure 1.9) encounters a case where call parameters
meet criteria that have been preset by a management function for that detection point.
A detection point with a permanent set of criteria is said to be of Trigger Detection
Point (TDP) type. For example, in an abbreviated dialling service, three dialled

Figure 3.7: IN Service Invocation, from (Hanrahan 2007, pg. 15)

• The basic call process is available to all systems within the network.

• The basic call process is modular and independent of available services.

• Triggers allow any basic call process to interact with the service logic, and allow the

service logic to suspend and control the basic call process.

The Intelligent Network call model is a half call model and thus the originating and termi-

nating basic call models are separated, as shown in Figure 3.8 and Figure 3.9. Figure 3.8 (a

copy of Figure A.2 (ITU-T 1993)) shows a recommended version of the finite state machine

for the originating BCSM.

The BCSM consists of states, or points in call, which are numbered, and detection points,

usually before each point-in-call. The detection points are places where the call execution

logic may be suspended for further call processing handed over to the service application

logic.

In Figure 3.7 the IN switch Call Control Function (CCF) contained within each exchange

switch is responsible with connecting the parties from end to end, and passes though

detection points whilst handling the processing of the call. At each detection point a lookup-

table in the Service Switching Function (SSF) is checked to see if any statically armed

trigger criteria are met. If no trigger criteria are met, call processing is resumed, however

if there is the requirement for additional service logic, then call processing is suspended

whilst the SCF by means of the INAP protocol notifies the service logic within the Service

Control Point (SCP). The service logic returns instructions on how the SSF should proceed.

It is possible for the service logic to request further detection points in the call to be set, as

the particular context requires, which would lead to further SCP involvement.

In the BCSM shown in Figure 3.8 points in call one to six are the states during the creation
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Figure 3.8: Example Originating BCSM (Adapted from (ITU-T 1993, After Fig. A.2))

of the call, states seven to nine during the call, and state ten during the release of the call. A

transition from one completed point-in-call to another will always pass through a detection

point, so that the opportunity to have control of the call processing is never lost.

With respect to the BCSM, as shown in Figure 3.8, calls begin in the Null state, in which

case the call is being supervised by the switch, yet no action has been taken. This state

occurs when the telephone goes off-hook, indicating to the switch that further events are

to occur. The switch then transitions to the Authorise Origination Attempt, in

this state the authority of the extension to place a call is confirmed against a service profile

related to the telephone, such as a time varying charging plan.

If the origination attempt is authorised, the call transitions to the Collect Information
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state, wherein the dialling strings are detected and collected by the switch. The dialling plan

is consulted, to determine when sufficient digits have been collected to leave this point-in-

call to begin the process of routing the call attempt.

In the Analyse Info point-in-call the collected address is analysed and translated according

to stored dialling plans to determine the routing address. If a dialling string is collected that

requires translation by a service control point, then the call processing can be suspended

when leaving the point-in-call and passing through the detection point, for example if a

dialling string has a premium number prefix marked for IN processing.

Once the address has been translated, the switch in the Select Route point-in-call selects the

route, in terms of the physical switch address and port number. The authorisation to use

the given route is then checked in the Authorise Call Setup, and if granted, the terminating

switch is notified of the connection in the Send Call point-in-call. The terminating switch

begins ringing the phone of the destination party, and the Alerting point-in-call is entered

until such a time as there is an answer, or a timeout.

The receiving party answering the call results in a transition to the Active state.

Likewise the finite state machine for the terminating basic call state model is shown in

Figure 3.9 (a copy of Figure A.3 (ITU-T 1993)).

3.2.1 IN Service Creation

The programation of IN services is a laborious process requiring detailed knowledge of

the underlying network and operation. As such service development is constrained to

specific service development platforms and a handful of developers. The logic of a service

application is defined in terms of Service-Independent Building Blocks (SIBs), which are

predefined reusable elements containing set uninterruptable scripts. SIBS are chained

together in a process flow with branching conditions to create service logic programs

(Faynberg et al. 1996). Whilst the different IN Capability Sets defined standardised SIBs,

operators would typically develop their own proprietary SIBs that ensured their equipment

and service development environment would be used throughout the network.

The Intelligent Network model is extremely important to all service architectures, as al-

most any service architecture has to provide a mapping from the defined interfaces to the

Intelligent Network call state model. Application Programming Interfaces such as JTAPI,

JCC/JCAT and OSA/Parlay only define the interfaces so as to facilitate service application
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Figure 3.9: Example Terminating BCSM (Adapted from (ITU-T 1993, After Fig. A.3))

programming, but usually do not specify the underlying mechanism to implement the calls

to the corresponding network equipment. The underlying mechanism is implemented by

middleware implementations communicating using various protocols such as the Session

Initiation Protocol, or the General Inter ORB Protocol and Internet Inter ORB Protocol in

the case of CORBA. These middleware objects then communicate directly with the network

equipment using the network equipment protocols such as Signalling System no 7 or ISDN

user part (ISUP).

3.2.2 Conclusions

The Intelligent Network introduced the fundamental concepts that are now core to all

telecommunications service architectures. The concept of service logic independence from

the underlying architecture allowed simpler deployment of services. The basic call state

model defined the call model that underpins all circuit switched operation in one guise or

another, be it a mobile or a fixed line network. The use of a half call model to represent the
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originating and terminating parties separately provide fine grained control over all aspects

of the call, albeit at the expense of simplicity. The separation of call processing into sub

functions allowed operators to create service independent building blocks. These service

independent building blocks were packaged together to create service applications, however

they lacked the now common concepts of an application programming interface. The

concept of scripts to perform blocks of functionality lends itself to Web services, although in

a different level of abstraction. The IN BCSM can be used as a reference to any Web based

call model to ensure that regardless of the level of abstraction, a mapping is possible, for

interworking with existing telecommunications networks. The lack of ease for third parties

to develop standardised services lead to a number of further abstractions and technologies,

as shall be discussed next.

3.3 JTAPI

The Java Telephony API (JTAPI) is an object orientated interface for Java based telephony

applications, usually deployed within a private branch exchange (PBX) or Call Centre.

JTAPI is not intended for use in large distributed systems with many interworking domains,

but rather smaller centralised systems such as within a single corporate company. Due to

object-orientation, development is intended to be faster than that of standard Intelligent

Network methodologies, but the level of control of an advanced network is sacrificed, in

that JTAPI does not specifically cater for suspension of call processing and invocation

of application logic (Jain et al. 2005, pg. 88). This is an important consideration if the

Extended Call Control call model and Web service is abstracting such a platform.

The JTAPI call model is defined in the JTAPI API definitions, as a collection of classes and

interfaces, with a core call model javax.telephony and additional extensions that provide

further granularity and methods to the core call model.

The JTAPI core call model, shown in Figure 3.10, uses six objects to represent the system,

where each object corresponds to a physical or logical entity.

The PROVIDER object represents the software application that interfaces with the telephony

system, and is considered to be an abstraction of the application, encapsulating the specifics

of the underlying system, allowing platform independence. The PROVIDER also maintains

information of all associated CALL objects in the underlying system, for a particular do-

main, regardless of the presence of an application.

The CALL object at its simplest models a telephone call and has state which describes the
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Figure 3.10: JTAPI Call Model

life cycle of the call and its associated CONNECTIONS, of which it can have zero or more

(JTAPI 2002). Each party of the call is represented with a separate CONNECTION, and the

CALL maintains a list of valid CONNECTIONS.

CONNECTION objects serve to associate CALL objects with ADDRESS objects and describe

the relationship between the two. Each CONNECTION has an associated state that describes

the particular stage of the call progress.

The ADDRESS object represents the logical endpoints of the call, being either an IP address

or a telephone number (Jain et al. 2005; JTAPI 2002). ADDRESS objects are never created

by the application, rather local ADDRESS objects are created by the PROVIDER when it

is first instantiated. Objects to represent remote addresses outside of the domain of the

Provider are created dynamically, based on received information.

The TERMINALCONNECTION represents the relationship between the TERMINAL and CON-

NECTION objects.

The call model is an important construct, enabling programmers to understand the order

and processing of the call in greater detail by the various responsible objects. The CALL,

CONNECTION and TERMINALCONNECTION object in the call model all have associated

finite state machines (FSM). The FSM for the core call model CONNECTION object is shown

in Figure 3.11 where shaded states are present on the Terminating side only. The finite state

machine for the extended CONNECTION is shown in Figure 3.12, with additional detail for

the InProgress and Connected states. A state transition arrow with a * shows that the

state can be reached from any other state, whilst a */StateName shows that the state can
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Figure 3.11: JTAPI Connection Object FSM
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Figure 3.12: JTAPI Call Control extension Connection Object FSM (Adapted from (JTAPI

2002))

be reached from any state except StateName.

The Call Control extension adds further detail to the Core Control extension by splitting the

InProgress state into Offering and Queued, where the Offering state is used to

indicate that the call is being offered to the ADDRESS associated with the CONNECTION,

with the controlling application typically having to accept or reject the call based on set

policies before the called party is alerted (Jain et al. 2005; JTAPI 2002). Queuing allows

the call to wait until the called party is available. The additional states are coupled with

additional pre-conditions and post-conditions, as described in the API.

Where in the Core Control once a call had reached the network no further information could

be gathered, the Call Control Extension added significantly more information. Depending

on the ability of the telephone network to provide such information, the Call Control

Extension added: reporting if the network is alerting the destination, if the network has

begun to handle the processing of the call request, and whether the network has begun the

process of routing the call (JTAPI 2002).

The sequence of changes for the objects that have FSMs are shown by means of a time

sequence diagram, where the state of objects are indicated at different times, as shown in
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Figure 3.13: JTAPI State transitions for a two party call (Adapted from (Jain et al. 2005, pg.

42))

Figure 3.13.

A simple call configuration for a two party call is shown in Figure 3.14. The call model is

a symmetric third-party view and therefore does not distinguish between local and remote

users. In this example both parties are connected to a single JTAPI implementation and

under the control of a local provider, thus the addresses are local addresses (Jain et al.

2005, pg. 88).

In this case the PROVIDER object represents the network provider responsible for these

users. The CALL object has two legs, represented by the CONNECTION objects, and each

CONNECTION object has an ADDRESS. TERMINAL objects represent different terminals

the user is connecting with.

Application objects implement the interfaces required to control and query information from

the call control objects.

The finite state machines for the CALL, CONNECTION and TERMINALCONNECTION ob-

jects are shown in Figure 3.15.
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Figure 3.14: Call model for local two-party call (Adapted from (Graf 2000; Jain et al. 2005))
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Figure 3.15: Finite State Machines for Call, Connection and Terminal Connection objects

(Adapted from (Graf 2000))
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Figure 3.16: Call model for two-party call with remote addresses and a full call model

3.3.1 Distributed JTAPI

In the case of a distributed JTAPI implementation the providers are considered to be differ-

ent and the parties in the call are represented by remote addresses.

As in section 3.1.2 such a situation can have two different models, a full-call model or a

half-call model, as described in 3.1.1. In the case of a full call model, the remote parties

are effectively proxy objects (state represented with dotted lines), as in Figure 3.16. Even

though proxy objects are created the local applications have no control over the remote

objects, and in order for a change to be effected in a remote object, protocol messages have

to be exchanged with the remote provider, and enacted upon by the remote application.

In the case of a half call model proxy objects for the remote address are not created, and

as in the case of a full call model, protocol messages have to be again exchanged with the

remote provider and enacted upon by the remote application. However in the case of a half

call model, the volume of messaging can be reduced slightly, as synchronisation with the

remote party state machine is not required. The half call model for a remote call is shown

in Figure 3.17.

37



Call

Cnx.

Addr.

Trm.Cnx. Trm.

P
ro
v
id
e
r

Listener

JTAPI

Alice@wits.ac.za

1546.wits.ac.za

Application 

objects

Call Control 

Objects

1546.wits.ac.za

Alice@wits.ac.za

Call
Cnx.

Addr.

Trm.Cnx. Trm.
P
ro
v
id
e
r

Listener

JTAPI

Bob@wits.ac.za

2783.wits.ac.za

Application 

objects

Call Control 

Objects

2783.wits.ac.za

Bob@wits.ac.za

Protocol

message 

exchange

Figure 3.17: Call model for two-party call with remote addresses and a half call model

3.3.2 Conclusions

The underlying functionality of the service delivery platform will always dictate the possible

functionality of an abstracting Web service. The ability to reflect state in a service delivery

platform that does not specifically cater for suspension of call processing is an important

requirement. Being able to operate on a call that is in progress that does not support

suspension requires that relevant state information is passed to the controlling Web applica-

tion timeously, thus reinforcing the requirement for asynchronous notification of change in

state. The use of multiple objects to represent the state of the call, connection and terminal

connection provides granularity on a high level view in the case of the CALL FSM, and

specific information regarding individual connections in the case of the CONNECTION FSM.

The availability of state progress information with regard to network operators in different

domains has to be considered in the case of an Extended Call Control Web service. The

JTAPI CONNECTION FSM is a symmetric call model, which presents a simpler abstraction

to call state than the IN BCSM. The need to add the call control extension to split progress

state into offering and queued is of special note to fulfilling the requirements of Extended

Call Control, as laid out in Chapter 1.1, where the network provides the facility of call

suspension. Figure 3.13 is useful in providing a summary of how individual CONNECTION

FSMs interact with the CALL FSM, and the levels of abstraction provided by JTAPI. The

CALL FSM, not differentiating between originating and terminating parties, is notable in

38



that it provides abstraction of call participants. The ability to support mid call operations

is lacking in JTAPI, one of the requirements of Extended Call Control. JTAPI uses Java

exceptions and the Java events model to report changes in state to an application (Jain et al.

2000), this correlates closely to asynchronous state notifications in a Web service. One

of the most important assumptions used in JTAPI is that the provider is in control of all

connections of the call.

3.4 JCC/JCAT

The JAIN subgroup known as the Java Call Control (JCC) and Java Coordination and

Transactions (Java Call Control Extensions) (JCAT) Edit Group had a goal to develop an

API that could be applied to not only the PSTN but also packet based networks such as IP

or ATM (Jain et al. 2000). The resulting JCC/JCAT call model not only applies to the PSTN

but also multimedia multi-party multi-protocol communication sessions (Jain et al. 2000).

The IN call model was developed for the PSTN, to be deployed on the PSTN architecture,

namely telephone switches performing the basic call functionality, and JTAPI focuses on

a centralised environment like a private branch exchange or call centre. JTAPI introduced

object orientation, and provides clear abstractions for manipulating calls and the associated

logical entities.

JCC/JCAT uses the concepts in both IN and JTAPI to create a new API, with benefits from

each, allowing an abstraction of the many underlying protocols for managing calls and

managing interaction between the call and the applications. JCC/JCAT is not bound to a

single switch or domain, rather taking the view of a converged network with multiple do-

mains and parties, and supports IN features such as third-party service invocation (Jain et al.

2000). The JCC/JCAT call model is intended to be a generic call model that incorporates

the essential features of the IN as well as JTAPI models. The API is also extensible so

that it may be revised and additional functions added. In Jain et al. (2000) call control is

considered to be the ability to observe, initiate, answer, process and manipulate calls. The

JCC/JCAT API provides independence of the underlying protocol and the type of transport

network (Jain et al. 2000).
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3.4.1 Java Call Control

The Java Call Control API developed by the JCC Edit Group had three functional areas,

each with differing levels of abstraction and control. The three areas were Elementary

Call Control: JCP, Core Call Control: JCC, and Extended Call Control: JCAT. Java Call

Processing (JCP) package, initially the fundamental package for call processing included

all basic facilities for the monitoring of calls. This was relatively simple on its own, and

not very usefull for a complex service, and thus subsequently discontinued in favour of

JCC. The Java Core Call Control included additional facilities for observing, initiating,

processing and manipulating calls, as well as suspension of call processing and invocation

of service application logic to JCP (Jepsen 2001, pg. 63). The Java coordination and

transactions (JCAT) package further extended JCC to provide fine grained call control,

providing support for detailed services. JCC and JCAT are now the supported APIs by

the JCC Edit group.

3.4.2 Relation of JCC/JCAT API to Parlay API

There is an effort to align Parlay and JCC/JCAT as JCC is based on the language neutral

Parlay 3.0 Multi-Party Call Control Service (MPCCS) (Sun Microsystems 2002). Figure

3.18 shows the relationship of the JCC API and the Parlay Call Control APIs, the JCC and

JCAT packages are defined by the JAIN consortium. Parlay extends from JCC, but JCC is

the official Java implementation of the Parlay call control (Sun Microsystems 2002). The

Parlay call control objects finite state machines (FSM) are very similar to those of JTAPI

(Jain et al. 2000). A thorough analysis of the Parlay call model is provided in Chapter 3.5.
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Figure 3.18: Relationship of JCC package to Parlay (Adapted from (Sun Microsystems

2002))
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3.4.3 JCC Finite state Machines

Java Call Control borrows heavily from JTAPI for its core call models, with the view of

creating consistency with the APIs, thus the basic call state model of JCC consists of four

key objects a PROVIDER, CALL, CONNECTOR and ADDRESS object, as shown in Figure

3.19 (Sun Microsystems 2002):

Provider: As in JTAPI, the PROVIDER object allows the application to monitor call pro-

cessing.

Call: This represents the call and is a dynamic collection of physical and logical entities

representing the endpoints.

Connection: The CONNECTION object as in JTAPI represents the relationship between the

CALL and an ADDRESS. A CONNECTION object exists as soon as an ADDRESS becomes

part of the call, and is unique for that particular call.

Address: The ADDRESS represents a static logical endpoint such as telephone number or

uniform resource identifier.
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Figure 3.19: JCC Basic Call State Model (Adapted from (Sun Microsystems 2002))

Multiple parties are represented as additional CONNECTION and ADDRESS objects asso-

ciated with the same CALL, with no limitations on the number of parties in the model.

The JCC model as in the JTAPI model is symmetric as there is no distinction between the

originating and terminating finite state machines, only the validity of transitions are affected.

Unlike the JTAPI model which facilitates a half call model, the JCC call model is a full call

model as the application has a complete view of all the parties of the call (as complete as is

possible).
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Provider Finite State Machine

As in JTAPI the PROVIDER represents the software application that is interfacing with the

telephony subsystem, and the PROVIDER object (JccProvider) has the finite state machine

shown in figure 3.20 (Sun Microsystems 2002). The JCC PROVIDER finite state machine is

the same as for JTAPI. The states as defined in Sun Microsystems (2002) are as follows:

InService: The JCC PROVIDER is currently instantiated and available for use.

Out of Service: The JCC PROVIDER is temporarily not available for use, and some methods

are invalid. The PROVIDER may come back to InService at any time, however, the

application can take no direct action to cause this change.

Shutdown: The JCC PROVIDER is permanently unavailable for use, and almost all methods

are invalid. Applications may use the shutdown() method to cause a PROVIDER object to

move into the Shutdown state.

Figure 3.20: JCC Provider Finite State Machine (Adapted from (Sun Microsystems 2002))

Call Finite State Machine

The CALL object is an association of zero or more ADDRESSES. The CALL object (JccCall)

has the finite state machine shown in Figure 3.21 (Sun Microsystems 2002). Due to the

symmetrical full call model, from JCC version 1.1, a call may be controlled by any of the

parties involved in the call (Jain et al. 2005, pg. 120). This finite state machine is slightly

different from JTAPI in that a transition from Idle to Invalid is possible. The states as

defined in Sun Microsystems (2002) are as follows:

Idle: In this state the CALL object has no connections.

Active: In this state the CALL object has one or more CONNECTIONS and there is ongoing

activity.

Invalid: This state is entered when a CALL has lost all of its CONNECTION objects, and no

further action is required.

42



��������

����

�	
���

�������

Figure 3.21: JCC Call Finite State Machine (Adapted from (Sun Microsystems 2002))

Connection Finite State Machine

The JCC CONNECTION object describes the relationship between a JCC CALL object and

a JCC ADDRESS object. When a CONNECTION object moves to a Disconnected state

the application would lose its reference to the object and the object would be subsequently

destroyed. The finite state machine of the CONNECTION object is a refinement of the JTAPI

Core Call model, and more closely resembles the IN BCSM. In particular the Inprogress

and Connected states are expanded, as is the case with the JTAPI Call Control Extensions.

The states are as follows:

Idle: This is the initial state for all new CONNECTIONS, not yet actively part of a telephone

call. References to CALL and ADDRESS objects are valid in this state. As the Idle state

is only the initial state for a connection, and a transition to another state occurs quickly.

Disconnected: A Disconnected CONNECTION is no longer part of a telephone call

even though the references to the object remain valid. A Disconnected CONNECTION

had to previously belong to a CALL.

Authorise Call Attempt: Authentication is required in order for the call processing to

continue. This state is applicable to both originating and terminating connections.

Address Collect: In this state information regarding the initial information package is

examined to determine if a complete destination address has been provided for the call.

Address Analyze: In this state the information collected is used to determine the routing

of the call and type of call to continue.

Call Delivery: The function performed in this state is dependent of whether the connection

is an originating or terminating connection. If the connection is originating then this

state selects the route through the network as well as the connection delivery notification,

however, for terminating connections this state is responsible for checking the state of the

terminal and informing it of an incoming call. Thus in this state the signalling network used

43



for the call control is busy processing the call through the network.

Alerting: This state occurs when the terminating endpoint is being notified of the incoming

call.

Connected: The CONNECTION and its associated ADDRESS are actively part of a telephone

call. Each ADDRESS of the CALL would have its CONNECTION object in a Connected

state.

Failed: The connection to the associated endpoint of the call has failed. Possible reasons

include the endpoint being busy. CONNECTIONS that are in the Failed state are still

connected to the CALL.
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Figure 3.22: JCC Connection Finite State Machine (Adapted from (Sun Microsystems

2002))
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3.4.4 Java Call Control Extensions (JCAT)

Java Call Control Extensions is an extension to JCC, and provides advanced features such

as transfer and conferencing (Sun Microsystems 2003), mainly in the way of additional

methods, rather than an extended finite state machine. As JCAT is an extension to JCC, the

finite state machines are identical for the JCAT PROVIDER and JCAT CALL objects, and

similar for the JCAT CONNECTION object. However JCAT does add additional objects to

the call model not in JCC, such as JCAT TERMINAL and JCAT TERMINALCONNECTION.

The JCC/JCAT call model is shown in Figure 3.23.
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Figure 3.23: JCC/JCAT Basic Call State Model (Adapted from (Sun Microsystems 2002))

3.4.5 JCAT Finite State Machines

JcatProvider
The JCAT PROVIDER object extends the JCC PROVIDER and has the same finite state

machine as the JCC PROVIDER.

JcatCall
The JCAT CALL object extends the JCC CALL, and provides additional call features such

as the ability to transfer a call or set up a conference.

JcatConnection
The JCAT CONNECTION extends the JCC CONNECTION, and enhances it with additional

objects, such as the JCAT TERMINAL and JCAT TERMINALCONNECTION objects. This

additional association allows services which require multiple terminals per address or mul-

tiple addresses per terminal.
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The JCAT CONNECTION object is associated with a CALL, ADDRESS, and TERMINAL-

CONNECTION object, and maintains the state between the CALL and ADDRESS objects

and the CALL and TERMINAL objects. Detected events are reported to the application, and

each CONNECTION object is associated with one CALL and may not be reused. Due to the

call model being symmetric, the states transversed depend on whether the endpoint is termi-

nating or originating. The finite state machine describes the allowable transitions, and the

API enforces these transitions. The CONNECTION finite state machine is slightly extended,

with the JCC CONNECTION Connected state being separated into a Connected and

Supended state, which allows for additional call processing. There is a direct mapping

between states in order to ensure compatibility and permits applications to view either the

JCC CONNECTION state or the JCAT CONNECTION state and remain consistent.

The CONNECTION finite state machine is shown in Figure 3.24 (Sun Microsystems 2003).

The additional states added by JCAT are shown as shaded.
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Figure 3.24: JCAT Connection Finite State Machine (Adapted from (Sun Microsystems

2003))
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JcatTerminalConnection
The JCAT TERMINALCONNECTION object maintains the state between the TERMINAL and

the CONNECTION. Whereas the JCC CONNECTION object reflects the relationship between

the endpoint JCC ADDRESS object and JCC CALL, the JCAT TERMINALCONNECTION

describes the relationship between the TERMINAL object and its CONNECTION. Different

terminals on the same CONNECTION may have different states, and each is dependent on

the state of the CONNECTION.

The JCAT TERMINALCONNECTION finite state machine is shown in Figure 3.25 Sun

Microsystems (2003).
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Figure 3.25: JCAT Terminal Connection Finite State Machine (Adapted from (Sun Mi-

crosystems 2003))

Idle: This is the initial state. A transition out of this state occurs quickly.

Ringing: This state indicates an incoming call and that the terminal is ringing.

Dropped: This state indicates that the terminal has permanently left the call, and is no

longer referenced by the CONNECTION or TERMINAL objects. The TERMINALCONNEC-

TION however still maintains its references to the CONNECTION and TERMINAL object for

reference.

Bridged: This state indicates that the terminal is currently bridged into a call, but not yet

active.

Talking: The terminal is actively part of a call, and the parties are communicating.

Inuse: This represents the terminal resources currently in use, and not available to be

associated to the CALL object.
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Held: This state represents the terminal being part of a call, but on hold. Only terminals

actively part of a call may go on hold, and had to have been in the Talking state before.

3.4.6 Conclusion

JCC/JCAT introduces call control for not only PSTN but also multi-party multi-protocol

sessions. Seen as incorporating concepts of both IN and JTAPI, JCC/JCAT adopts a con-

verged view to the network, with multiple domains and parties. Independence of the un-

derlying network and suitability to both circuit switched and packet switched networks are

requirements for Extended Call Control as outlined in Chapter 1.1. This makes JCC/JCAT

an important technology to consider when determining the Extended Call Control model.

JCC provides facilities for observing, initiating and manipulating calls, including mid call

operations. JCAT extends JCC to provide call control more closely aligned to that of IN,

including a terminal finite state machine. Extended Call Control requires the control of

multiple parties, and JCC/JCAT has no limitation on the number of parties in the model.

JCC/JCAT uses a full call model to provide the controlling application with a complete view

of all the parties of the call. The JCAT extension to JCC provides additional functionality

mainly in the way of additional methods, rather than an extended finite state machine. This

leads to the concept that should sufficient information be available in the call model, the API

can be extended or reduced based on the required level of complexity, with the finite state

machine describing allowable transitions and the API enforcing such transitions. JCC/JCAT

aligned itself with OSA/Parlay Multi-Party Call Control and as such the OSA/Parlay call

model is of interest for the development of an Extended Call Control call model.

3.5 Parlay State Models

To facilitate the third party development of services the Open Service Architecture (OSA)

and Parlay service architecture were standardised with respect to APIs to abstract the net-

work equipment. This standardised abstraction of the equipment made it possible to create

services that communicated with the equipment without the knowledge of the detailed, often

proprietary, protocols and signalling complexity of the equipment (Vannucci and Hanrahan

2005a). The Parlay and Open Service Architecture (OSA) standards converged into a

common standard as a result of the similarities between the two service architectures, and

the Parlay Group was absorbed into the Open Mobile Alliance.

Parlay has defined four call control APIs: Generic Call Control, Multi-Party Call Control,
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Figure 3.26: OSA/Parlay Call Control Inheritance (Adapted from (Jain et al. 2005, pg. 163))

Multi-Media Call Control, and Conference Call Control. The inheritance of the Call Control

APIs are shown in Figure 3.26. Conference Call Control is not available in the OSA suite.

The Parlay APIs are application-centric, i.e. only the parts of the call that are of specific

interest to the application are defined within the call model (Vannucci and Hanrahan 2005a).

Application-centric call models are often simpler than network-centric ones and the objects

may be deleted if no further control of the call is required (Vannucci and Hanrahan 2005a).

3.5.1 Generic Call Control

The Generic Call Control API contains all the basic methods necessary to manage a two-

party call. The Generic Call Control was designed with Capability Set 1 PSTN interworking

in mind, and as such does not support third-party initiated sessions, but provides function-

ality to allow call routing and management for the Intelligent Network. The API facilitates

only basic services and provision for more than two parties is not supported, as shown in

Figure 3.28. This lack of multiple parties is an inhibiting factor to the extent to which

Generic Call Control can contribute to the Extended Call Control call model. The Generic

Call Control Service (GCCS) is based around a third party model, which allows calls to be

started from the network (ETSI and Parlay 2005a).

The Parlay Call Control Working group together with JAIN, ETSI and other involved parties

has focussed on the Multi-Party Call Control and Multi-Media Call Control APIs, and these

are greatly improved from the Generic Call Control. Thus, the joint call control group

decided that the Multi-Party Call Control API was to be considered as the future base call
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Figure 3.27: Generic Call Control Manager FSM (Adapted from (ETSI and Parlay 2005a,

pg. 46))

control and technical work on the Generic Call Control was suspended.

The GCCS is represented by the IPCALLCONTROLMANAGER and the IPCALL interfaces,

the application implements call back interfaces for responses and reporting.

IpCallControlManager

Figure 3.27 shows the application view of the GCCS IPCALLCONTROLMANAGER (ETSI

and Parlay 2005a, pg. 46), and has the following states:

• Active: This state indicates a relationship has been established between the applica-

tion (service logic) and the GCCS. Active is defined in (ETSI and Parlay 2005a,

pg. 30) as “being routed or connected.”

• Notification Terminated: In this state the GCCS will no longer forward event

notifications to the application, and will not accept any requests for new notifications.

IpCall

Figure 3.28 shows the application view of the IPCALL object (ETSI and Parlay 2005a, pg.

47), which has the following states:

• No Parties: In this state the IPCALL object is created. The application can set the

charging for the call and request charging information updates.

• Active: In this state a call between two parties is being set up, or exists. If a network

event related to the call occurs, processing is suspended and the application has to

resume the call. There are a number of sub states:
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Figure 3.28: Call FSM (Adapted from (ETSI and Parlay 2005a, pg. 46))

– One Party In Call: Only one party is associated with the call. The charging plan

for the second party is setup before the application can request a connection

to the second party. Additional digits can be collected in this state as user

interaction is possible. When the second party answers a transition to the state

Two Parties In Call is made.

– Two Parties in Call: There is a connection between both parties. In this state

user interaction is still possible. Once the second party disconnects, there are

three possible transitions:

1. If the application requested to be notified of a disconnect and for the call

processing to be interrupted then a transition back to the One Party In Call

state is made and the application has control of the call.

2. In the case of the application requesting just a notification but no interrupt

then a transition to Network Released occurs.

3. If the application is not monitoring a disconnect then the call is ended and

a transition to the Network Released state occurs and the application
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Figure 3.29: Multi-Party Call Control Call Model

is notified of the call ending without additional information being given.

– Routing to Destination: In this state there is an outstanding routing request for

the second party connection. Generic Call Control assumes that all parties are

contacted synchronously, with the first party being the “originating” party.

• Network Released: In this state the call has ended and the necessary requested

information is returned to the application. In the case of no further information being

required a transition to Finished is made.

• Finished: In this state the call has ended and no further information is returned to

the application. The gateway waits for the application to request the destruction of

the IPCALL object, as it is expected the application follows good object orientated

practice and does its own garbage collection.

• Application Released: In this state the application has requested the release of the

IPCALL object and the requested information is returned to the application and the

IPCALL object is destroyed.

3.5.2 Multi-Party Call Control

The Multi-Party Call Control API enhances the functionality found in the Generic Call

Control Service, allowing control of the individual legs in a call, and providing multi-party

call functionality. The Multi-Party Call Control Service is represented by the IPMULTIPAR-

TYCALLCONTROLMANAGER, IPMULTIPARTYCALL, and IPCALLLEG objects as shown

in the finite state machine in Figure 3.29. Multi-Party Call Control supports third party

initiated sessions, and does not inherit from the Generic Call Control API as the decision

was made to avoid having changes to the Multi-Party Call Control affecting the Generic

Call Control (Vannucci and Hanrahan 2005a).
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Figure 3.30: Multi-Party Call Control Manager FSM (Adapted from (ETSI and Parlay

2005b, pg. 52))

IpMultiPartyCallControlManager

The Multi-Party Call Control Manager provides the management of the service. The

application uses this interface to create IPMULTIPARTYCALL objects, enable and disable

notifications and provide overload functionality (ETSI and Parlay 2005b, pg. 26). Figure

3.30 shows the application view of the IPMULTIPARTYCALLCONTROLMANAGER object

(ETSI and Parlay 2005b, pg. 52), with the following states:

• Active: A relation exists between the application and the service, and the application

can request call related events. If the application requests information, the IPMULTI-

PARTYCALLCONTROLMANAGER will create the necessary IPMULTIPARTYCALL

and IPCALLLEG objects.

• Interrupted: The IPMULTIPARTYCALLCONTROLMANAGER is unavailable for use

by the application in this state. No notifications are forwarded by the IPMULTIPAR-

TYCALLCONTROLMANAGER to the application and the application cannot invoke

any of the API methods.

IpMultiPartyCall

The IPMULTIPARTYCALL allows the application to control and supervise the routing of the

call legs, request information regarding the state of the call, set the call charging parameters,

and release the call (ETSI and Parlay 2005b, pg. 35).

Figure 3.31 shows the application view of the IPMULTIPARTYCALL object (ETSI and

Parlay 2005b, pg. 53), the associated states are:

• Idle: This state exists when the IPMULTIPARTYCALL object has no IPCALLLEG

objects associated with it. As soon as the first IPCALLLEG object is created, a state
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Figure 3.31: Multi-Party Call FSM (Adapted from (ETSI and Parlay 2005b, pg. 53))

transition is made to the Active state.

• Active: In this state the IPMULTIPARTYCALL object has one or more IPCALLLEG

objects associated to it. The application may create additional IPCALLLEG objects

up to the limit specified by the API implementation. The application can request call

supervision and other call relation information such as charging reports and set call

parameters such as charging plan.

• Released: The IPCALLLEG object has been released from the IPMULTIPARTYCALL

or the IPMULTIPARTYCALL is released. Requested call information is returned to the

application together with a notification that the call has ended and the IPMULTIPAR-

TYCALL object transitions to the end (null) state ETSI and Parlay (2005b).

IpCallLeg

The Multi-Party Call Control API separates the call legs into two objects, one for the

originating party and the second for the terminating party. This asymmetric model im-

plementation has a number of implications, such as upstream events if one of the call legs is

not immediately evident in the other call leg, and vice versa. In addition if an event causes a

suspension in call processing, other events, which may happen at almost the same time, are

handled in a sequential order by the application. There are cases where a state transition in

one of the call leg objects results in a state transition in another call leg object, for example

if the originating IPCALLLEG object went in to a Terminating state, this would also

imply the terminating IPCALLLEG object would also transition to a Terminating state.

The IPCALLLEG object associates the IPMULTIPARTYCALL object with an address, and
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Figure 3.32: Multi-Party Originating Call Leg FSM (Adapted from (ETSI and Parlay 2005b,

pg. 56))

represents the signalling relationship between the IPMULTIPARTYCALL and an address

(ETSI and Parlay 2005b, pg. 41). For the originating IPCALLLEG finite state machine,

the states Active and Analysing may be considered to be one state with sub states to

perform digit collection (ETSI and Parlay 2005b, pg. 55).

The finite state machine for the Originating IPCALLLEG object is shown in Figure 3.32, the

associated states are:

• Initiating: In this state the originating party authorisation to create a connection

to the terminating party is confirmed. If the authorisation is confirmed then the

connection is completed upon successful collection of the initial dialling information

package.

• Analysing: In this state the IPCALLLEG object is responsible for the collection and

analysis of the destination address provided by the calling party, further digits can be

collected if necessary. The address analysis is performed according to the dialling

plan to determine the charging and routing of the terminating call leg.

• Active: In this state there is a connection between the two parties and they are

communicating, mid-call events can be received and the call suspended. Using the

collected address information from the previous states, the authority of the calling

party is confirmed and the application has to create and route the terminating IPCAL-

LLEG. A transition out of this state occurs when a party disconnects or the application
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Figure 3.33: Multi-Party Terminating Call Leg FSM (Adapted from (ETSI and Parlay

2005b, pg. 64))

deassigns or releases the call.

• Releasing: In this state the connection to the called party is released either by the

network or the application, and the relevant call information is returned to the appli-

cation. If no further information is required by the application from the IPCALLLEG

object, it is destroyed.

The finite state machine for the Terminating IPCALLLEG object is shown in Figure 3.33,

with the states being:

• Idle (terminating): This state is entered when a notice to create the terminating

party call leg is received from the application. The CALL LEG object is created and

the interface connection is idle. Once the CALL LEG object receives a route request,

a transition out of this state occurs.

• Active (terminating): Once the call leg is routed, the CALL LEG object becomes

active. Before routing, authorisation of the calling party to create the leg is confirmed.

• Releasing (terminating): This state occurs when a network or application release

occurs. If the terminating party is busy or does not answer then the network initiates

the transition to the Releasing state. The relevant requested reports are sent to the

application and the release event handling is performed and the IPCALLLEG object

destroyed.
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3.5.3 Conclusions

Parlay APIs are application-centric, with only the parts of the call that are of interest to

the application defined within the API. Application-centric call models have the benefit of

being deleted if no further call control is required by the application. This however assumes

a tightly coupled implementation such as CORBA, where the application is extremely stable

and there is a one-to-one matching between the application and associated state objects.

Such is often not the case for a Web application, and this leads to the conclusion that

lightly coupled systems should have a call model that can persist within the operators

domain, should the Web application become unavailable. Generic Call Control does not

fulfil the requirements laid out in Chapter 1.1, however does provide a glimpse as to how

third party call control is handled for two parties only, in that call legs are often set up

synchronously within the network, with the first party being the “originating” party. Multi-

Party Call Control provides control of individual legs in a call, by representing the state

of each leg with a separate finite state machine. The states within the Call Leg finite state

machine closely align to those of the IN BCSM,the however, does provide a greater level

of abstraction, ensuring the suitability of the Parlay API to packet switched networks. The

asymmetrical call model retains the complexity of the IN BCSM, and requires developers to

be familiar with the process of call creation within telecommunications networks in general,

despite not specifying the implementation.

3.6 SIP

The Session Initiation Protocol (SIP) is a protocol whose main benefits are seen as simplic-

ity and its stateless nature (Johnston 2003). SIP was not intended to contain large amounts of

state information, and rather is seen as mostly stateless, as in the case of many other Internet

based technologies. Due to the increasing complexity of SIP messaging and interworking

with other telecommunication systems, a requirement for the transferral and representation

of state arose. As defined in RFC 3261, “A dialog represents a peer-to-peer SIP relationship

between two user agents that persists for some time.” (Rosenberg et al. 2002). Indeed the

proxy systems within a SIP enabled network, play the part of routing and delivery platforms

for services (Marshall et al. 2001), and these proxies are required to have state information

to enable many of these services. The correlation of messages received and sent to user

agents within the network allows this state to be reconstructed and maintained within proxy

elements.

As proxies deal with a large number of calls, maintaining state information can overwhelm
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some systems, and make load balancing problematic. The SIP Extensions for Distributed

Call State proposed maintaining state in the SIP header, which would then allow proxies

to maintain state in the SIP message headers as opposed to within their own systems, thus

effectively rendering the proxy stateless. This solution does have drawbacks in that the size

of the header is far larger than necessary, and subsequently all messages within the network

are larger.

SIP is a transactional protocol, in that interactions between elements takes place in the form

of a series of independent message exchanges (Rosenberg et al. 2002). These message

exchanges consist of a single request and a number of responses, which can include zero or

more provisional responses, and one or more final responses. RFC 3261 defines transactions

depending on the message passed, an INVITE client transaction and a NON-INVITE client

transaction (Rosenberg et al. 2002). The invite transaction, or dialogue, consists of a three-

way handshake, with the client sending an INVITE, the server then responding, and finally

the client acknowledging the response. The INVITE client transaction state machine in

RFC 3261 is superseded by the dialogue state in RFC 4235. RFC 4235 identifies the need

for multiple dialogues at a user agent due to the possibility of forking in which multiple

terminals can be registered to a single address (Rosenberg, Schulzrinne and Mayh 2005). In

RFC 4235 support of state dialogues was enabled by providing a greater number of states

between the transmission of the INVITE dialogue and the creation of actual dialogues based

on receipt of 1xx and 2xx response messages (Rosenberg, Schulzrinne and Mayh 2005).

In addition to support of dialogue state before dialogues are fully instantiated, the state

machine for the originating and terminating parties was combined, essentially changing the

state machine from being an asymmetric call model to a symmetric call model.

The finite state machine for dialogue state is shown in Figure 3.34. This dialog finite state

machine models the state from the initial INVITE message through to the disconnecting

BYE message. The finite state machine is created upon receipt of an INVITE request

message from a user agent client (UAC). All provisional responses have a tag for dialog

identification, and if a response is received without such a tag then the finite state machine

would transition to the Proceeding state as a full dialogue has not yet been created, due

to only two of the three components being available, namely the call identifier and local tag.

Once a 1xx response message with a tag is received (such as a 100 Trying) then the full

dialog identifier is defined and a transition to the Early state can occur. Upon receipt of a

2xx message such as 200 OK the call can move to the Confirmed state.

If a 1xx or 2xx message with a different tag is received, then the finite state machine is

recreated and initialised to the appropriate state, ensuring that the finite state machine is

current and representative of the entire state of the call. If the UAC cancels the call, with
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Figure 3.34: INVITE Dialogue State Machine (Adapted from (Rosenberg, Schulzrinne and

Mayh 2005))

a CANCEL message, and a corresponding 487 Request Terminated is received, then the

call transitions to the Terminated state, and indicates the call is cancelled by means of a

‘cancelled’ event. In the event of a new registration (replacing the original invite), the finite

state machine transitions to the Terminated state, with the notification ‘replaced’. If

there is no positive response from the UAS for the INTIVE message then the call transitions

to the Terminated state with the notification ‘rejected’. In the case of an entity that

is subscribed to receive notifications of state, actual dialog states across all dialogs are

not reported, RFC 4235 defines a single ‘virtual’ dialog finite state machine, which is a

cumulative summary of each dialog (Rosenberg, Schulzrinne and Mayh 2005).

From the Confirmed state the call can either end (Terminated state) by means of a

BYE message, or end by means of a mid-dialogue error message such as a 481 Dialogue

Does Not Exist or a 408 Request Timeout. Note that the SIP standards prohibit sending

of a CANCEL message until a provisional response is sent (Rosenberg, Schulzrinne and

Mayh 2005). RFC 4235 recommends that notifications of state for a single subscriber are

not generated faster than once per second (Rosenberg, Schulzrinne and Mayh 2005).
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3.6.1 Conclusions

The SIP dialog provides a mechanism for the maintenance of state between SIP user agents

and servers. The concept of a dialog was necessary for long lived connections, that persist

for a period of time. This parallels the requirement of a call model for Extended Call Control

as outlined in Chapter 1, where control of a call is for the entire duration of the call. RFC

4235 identifies the need for multiple dialog states per terminal registered to an address. The

Extended Call Control Web service abstracts the state of the terminal which is involved

in the call, as opposed to unused terminals. The change from an asymmetric call model in

RFC 3261 to a symmetric call model in RFC 4235 is important to note for the Extended Call

Control call model, in which simplicity is a key requirement. The transitions within the SIP

dialog are frequent, with a new dialog being created each time a new registration is received.

This reinforces the requirement of Extended Call Control asynchronous notification of state,

as outlined in Chapter 1. The recommendation of RFC 4235 with regard to notifications for

the state of a single subscriber not exceeding one per second indicates the volume of state

messaging that an Extended Call Control Web service can have, with control of multiple

parties. The SIP dialog is a half call model with each user having a state dialog based on

sent and received messages with tags for dialog identification. The single ‘virtual’ dialog

finite state machine as a means of summarising multiple dialog state is useful in defining

priority of call states with the Extended Call Control call model. The lack of mapping

between the SIP dialog and existing telecommunications call models indicates that whilst

the SIP dialog is useful to packet switched networks, it cannot form the sole basis for a Web

based call model. The subsequent section on mapping aligns the SIP dialog with the Parlay

and IN call models, using Parlay as a common denominator.

3.7 Call Model Mapping

In this section it is shown how the Parlay call model maps to an IN circuit switched model,

as well as an IP SIP based packet switched model.

3.7.1 OSA/Parlay-IN CS1 Mapping

In order to provide a mapping from the underlying network call state model to a correspond-

ing OSA/Parlay MPCC IPCALLLEG object, this research considers IN Capability Set 1

(CS1), as this demonstrates the principle of operation, which can be extended for more
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Table 3.1: Originating Detection Points and OSA/Parlay MPCC Notification Mapping

(Adapted from (Vannucci and Hanrahan 2006))
IpAppMultiPartyCallControl-

Manager.reportNotification-

(Originating Call Attempt Authorised)

Orig Attempt Authorised

IpAppMultiPartyCallControlManager.-

reportNotification(Address Collected)

Collected Info

IpAppMultiPartyCallControlManager.-

reportNotification(Address Analysed)

Analysed Info

IpAppMultiPartyCallControlManager.-

reportNotification(Answer)

O Answer

IpAppMultiPartyCallControlManager.-

reportNotification(Redirected)

O Mid Call

IpAppMultiPartyCallControlManager.-

reportNotification(Originating Release)

Route Select Failure

O Called Party Busy

O No Answer

O Disconnect

O Abandon

complex call models. Mapping from the CS1 BCSM to the OSA/Parlay MPCC IPCAL-

LLEG object state transition is performed considering the state entry and exit events. Not

all notifications received from the CS network correspond to a transition. OSA/Parlay has

defined a limited set of notifications from the MPCC Manager to the corresponding Call

Leg objects.

Both the CS1 call state model and the OSA/Parlay Multi-Party Call Control call state model

have half call models, separating the originating and terminating cases. Many of the CS1

detection points correspond closely with OSA/Parlay notifications. The call state mapping

for the originating basic call state model is shown in Figure 3.35. Note that the OSA/Parlay

call state model has been simplified for the sake of clarity and does not show all the possible

transitions. The CS1 call state model detection points can be mapped as shown in Table 3.1.

The call state mapping for the terminating basic call state model mapping is shown in Figure

3.36, again a simplified state model is shown. CS1 BCSM detection points can be mapped

as shown in Table 3.2.
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1. O_Null and Authorise 

Origination_Attempt

2. Collect_Info

1 Orig. Attempt_Autorised

3. Analyse_Info

2 Collected_info

4. Routing and Alerting

3 Analysed_Info

5. O_Active

7 O_Answer

4 Route_Select_Failure

5 O_Called_Party_Busy

6 O_No_Answer

8

O_Mid_Call

9 O_Disconnect

10 O_Abandon

6. O_Exception

Initiating

Analysing

Active

Releasing

PARLAY MPCC 

ORIGINATING 

CALL LEG Q.1214 CS1 O_BCSM

Figure 3.35: CS1 Originating BCSM and OSA/Parlay MPCC Originating Call Leg

Mapping (Adapted from (Vannucci and Hanrahan 2006))

Table 3.2: Terminating Detection Points and OSA/Parlay MPCC Notification Mapping
IpAppMultiPartyCallControl-

Manager.reportNotification-

(Terminating Call Attempt Authorised)

Term Attempt Authorised

IpAppMultiPartyCallControlManager.-

reportNotification(Answer)

T Answer

IpAppMultiPartyCallControlManager.-

reportNotification(Terminating Release)

T Called Party Busy

T No Answer

T Disconnect

T Abandon
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7. T_Null and Authorise 

Termination_Attempt

8. Select_Facility and 

Present_Call

12 Term_Attempt_Autorised

9. T_Alerting

10. T_Active

15 T_Answer

16 T_Mid_Call

17 T_Disconnect

18 T_Abandon

Idle (terminating)

Active (terminating)

Releasing (terminating)

PARLAY MPCC 

TERMINATING 

CALL LEG

Q.1214 CS1 T_BCSM

13T_Called_Party_Busy

14T_No_Answer

11. T_Exception

Figure 3.36: CS1 Terminating BCSM and OSA/Parlay MPCC Terminating Call Leg

Mapping

63



3.7.2 OSA/Parlay-SIP Mapping

SIP Dialogs are used to model the state of SIP calls, in particular the INVITE initiated

dialog. In an Internet Draft by Rosenberg, Schulzrinne and May (2005) a dialog finite state

machine is presented that combines the state for both the case of the originating UAC and

terminating UAS. This dialog models state from the initial INVITE message through to the

disconnecting BYE message. It is assumed that all provisional responses have a tag for

dialog identification. The Proceeding state can then be ignored, and any provisional 1xx

response causes a transition to the Early state, as shown in Figure 3.34.

A mapping is required between the SIP state machine and the OSA/Parlay state machine

if OSA/Parlay is to provide services as well as service interworking between the IMS

network and the CS network. Thus a mapping is defined as shown in figure 3.37. The

MPCC originating states Initiating and Analysing correspond to the SIP dialog

state Trying, since an INVITE message causes a transition to Trying, and similarly

CreateAndRouteCallLeg() originates a call leg. The Early and Confirmed states

correspond to the MPCC Call Leg Active state, as a provisional SIP response corresponds

to a OSA/Parlay Address Analysed or Answer notification. The mapped states do not over-

lap and clear boundaries are preserved in the mapping as recommended by Dobrowolski,

Montgomery, Vemuri, Voelker and Brusilovsky (1999a).
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Figure 3.37: SIP INVITE Dialog FSM and OSA/Parlay MPCC Mapping
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3.8 Conclusion

Advanced Web based call control has a number of requirements for the call model, as

outlined in Chapter 1.1. The Extended Call Control call model aims to provide a suitable

level of abstraction for use in a Web environment, whilst containing sufficient information

to interwork with existing call models. In addition a complete view of the connection is

also required. The Extended Call Control (ECC) call model aims to provide a suitable

level of abstraction of a telecommunications network for use in a Web environment. These

requirements necessitate a review of existing telecommunication networks call models in

order to determine best practices that should appear in the ECC Call Model.

The theory of call models was reviewed with respect to the party controlling the call, the

detail of the call model for involved parties, and the states contained within the call model

for each party. The following call models were reviewed:

• The IN basic call state model was analysed as it forms the basis for all telecommuni-

cations call models.

• The JTAPI call model is useful as it provides a simplified call model intended for

private branch exchange equipment.

• The JCC/JCAT call model applies to not only circuit switched but also packet switched

multimedia multi-party sessions.

• The OSA/Parlay APIs provide complex services, whilst abstracting the underlying

network equipment (be it for packet switched or circuit switched).

• SIP dialogues are analysed with respect to call models for purely packet based com-

munication.

Mappings between circuit switched and packet switched call models by means of the Parlay

call model show how interoperation of all call models is possible.

The useful features of each call model reviewed in this chapter are synthesised in the

following chapter to create the Extended Call Control call model meeting the requirements

in Chapter 1.1.
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Chapter 4

Design of the Extended Call Control Call
Model

As discussed in Chapter 3, advanced call control requires knowledge of the state of the

resources within the network. Telecommunications service architectures use call state

models to keep track of the progress of each session and the services that are used during the

sessions. The call model represents all the essential features of a session (Jain et al. 2005),

and is a high level, technology independent abstraction of the call (Graf 2000; Vannucci and

Hanrahan 2007a).

Telecommunication services, such as conference calling and call centre queueing, require

many messages to be exchanged and control of the call is usually in place for the duration of

the call. These services usually require the application to implement a call model to interpret

these messages based on the last known state of the session (Dobrowolski, Montgomery,

Vemuri, Voelker and Brusilovsky 1999b). Thus, implementation of a call state model and

an asynchronous Extended Call Control Web service allows for a far richer set of service

functionality than that offered by simple request response type messaging (Vannucci and

Hanrahan 2007a).

4.1 Extended Call Control Connection Model

Chapter 3 identified a number of features of a call model; calls within a network can be

thought of consisting of three entities: a device with which the user communicates through,

a connection through which all information flows, and the state of the connection within

the network. Both JTAPI and JCAT use the concept of a connection object to describe call

state, a terminal connection object to describe the state of the terminal, and a call object
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to describe the state of call. The Parlay Multi-Party Call replicates similar characteristion

of state, with an IPMULTIPARTYCALL object and an IPCALLLEG object and media to

describe the state of the terminal with respect to the media session. The Parlay media can

be seen as an abstraction of the state of the terminal as viewed by the network. These three

entities can be related to each other by means of a connection model.

As outlined in Chapter 1 there are a large number of devices, each with different properties,

and abilities. However, the direct control of the device is not considered in the Extended Call

control Web service. The control of the call is the focus of this research and thus the control

of the connections within the network is the focus of the Web service. To abstract control

of each individual connection, the call is represented as a unified entity (as in RFC 4235

(Rosenberg, Schulzrinne and May 2005)), with notifications advising the Web application

of changes in specific connections if required. The underlying network is assumed to be

responsible for the negotiation of connectivity, and the selection of the appropriate media

services.

The SIP proxy Dialog (Rosenberg, Schulzrinne and Mayh 2005) presents the overall state

of the call as being the sum of its connections, with transitions occurring on specific events

which can affect the entire conversation, such as attempting to contact another party. This

concept of an abstracted call state representing multiple terminals at once is implemented

in this research for the Extended Call Control (ECC) call model.

The ECC model abstracts the complexity of the state of the individual terminal connection

(as is done with the Parlay Multi-Party Call Control) using media streams to indicate the

state of the media and associated direction of flow. Thus abstracting the device the user

communicates through as a media stream.

A connection model similar to that used in the Services for Computer Supported Telecom-

munication Applications phase 3 (ECMA 2004) is adopted to illustrate the relationship

between the call object and associated connections of the call, as shown in Figure 4.1.

During the life of a call, connections within the network will transit through various stages.

State transitions are observed by the Web service, and reported to the Web application as

a event notification, the call state will update on a change in a connection state. Individual

connection states are available as an added layer of detail.

Using the call model structuring concepts as presented in JTAPI, JCC/JCAT and Parlay, the

ECC Call model consists of a CALL object, and CONNECTION objects. CONNECTIONS

have the following attributes:
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Figure 4.1: Extended Call Control Connection Model

• Connection Identifier - Each CONNECTION has a unique identifier for a given call.

This identifier can be based on the address of the participant. There are as many

CONNECTIONS as participants.

• Call Identifier - Each CONNECTION has a reference to the identifier of each call with

which it is involved. One CONNECTION could be involved in more than one call, for

example a conference call.

• Media Stream - This attribute is as defined by Parlay Multi-Media Call Control SCF.

A Media stream has a data type, being either voice, video, or data, with an associated

flow direction, either bidirectional or unidirectional.

• State - Depending on the level of abstraction required by the Web application this

state is updated as notifications are received from the network. If a high level of

abstraction is required, this is the same as the state of the CALL object, and can be

disregarded.

4.2 The Extended Call Control Call State Model

The proposed call state model, developed in this research, for the CALL object in the CON-

NECTION model is shown in Figure 4.2. State transitions are observed by the service logic

through event reports, caused by either service logic instructions or network notifications.

The following are the connection state definitions:

• Inactive - In this state the Web application is registered with the Extended Call

Control Web service, however no connections exist. Service logic is waiting for either

a Web application instruction or a network notification. Relevant network triggers

have been created within the underlying network. A transition to Inactive occurs

when there are no longer any connections involved in the call.
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Figure 4.2: Extended Call Control Call Model

The JCC CALL object, as shown in Figure 3.21, represents the relationship between

the controlling software application and connections associated to a call (also com-

mon to the Parlay Multi-Party call finite state machine (FSM), as shown in Figure

3.31). The idle state of the JCC CALL object FSM occurs when no connections are

associated with the call. Likewise the Parlay Multi-Party Call FSM is Idle when

no connections exist. An Inactive state is proposed for the Extended Call Control

model and is representative of there being no connections in a call. A transition out

of the Inactive state occurs with an incoming call notification is received and

causes a transition to the Active state. If the call is released or once all individual

connections are released from the call, a transition is made back to the Inactive

state after a timeout.
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• Active - Considering the state of the JCC/JCAT CALL FSM and JCC/JCAT CON-

NECTION FSM, the CALL FSM Active state occurs when the CALL has one or

more CONNECTIONS associated with it and there is ongoing activity. The CON-

NECTION FSM Connected state occurs when the connections are actively part of

a telephone call. This is again present in the case of the Parlay MPCC CALL FSM

Active state where the call has call legs associated with it, and the MPCC IPCALL-

LEG FSM Active state where there is a connection between communicating parties.

These states can be abstracted such that there may be one or more connections which

have a logical relationship between the call and service logic. The state of the media

stream between parties is represented by the media of the connection. Thus, the ECC

Call Model includes the Active state to signify that there is a relationship between

the call and the service logic. A change in a connection would cause an update in

state information. This event may be responsible for a transition of the overall call

state.

The Active state is the default state of a call with connections that are communicat-

ing. A transition out of the Active state occurs when an additional connection

is in progress, or all connections are disconnected. If a connection disconnects,

a notification is received; however, the overall call state would not change unless

the last connection disconnected. Changes in media will result in a notification if

requested, however not a change of state. As a CONNECTION is added to the CALL,

the state transitions to Initiated.

• Initiated - A state in which the network is in the process of establishing a

connection. In this state the call is in a pre-delivery state and service logic can alter

the routing of the connection. Only once the connection is fully established would

the call state transition to RINGING or QUEUED. In the case of multiple connections

being created simultaneously the call will transition to QUEUED once a connection

is queued, likewise once a connection is ringing the call state would transition to

RINGING.

The JTAPI In Progress state abstracts the processes that occur before the network

alerts the user of an incoming call. JCC/JCAT provides a large number of states for

the call authorisation, the collection of the address, the analysis of the address and

the routing through the network, before finally transitioning to the alerting state. The

Parlay originating IPCALLLEG model includes the Initiating and Analysing

states before transitioning to an Active state after the address is analysed, likewise

the terminating FSM transitions from Idle to Active immediately after receiving

notification from the network that the terminal is ringing. The RFC 4235 SIP Dialog

has a single state Early to include all messages prior to the call being answered by

a 2xx message, such as 200 OK (Rosenberg, Schulzrinne and Mayh 2005). For the
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purpose of Web abstraction, the progress of the network prior to presentation to the

terminal is abstracted into the single Initiated state.

In the case of a particular network not providing an alerting notification, the call will

transition from the Initiated state through the Ringing state to the Active

state, by receiving an alerted notification and answered notification in succession. In

the case of receiving a queued or redirected notification, the state will transition to

Queued. For example the SIP message 180 Ringing is an optional message which

may not be provided by the underlying network, however the 200 OK is mandatory.

• Queued - A state in which call progression is suspended or made inactive by the

network whilst a connection is being established. For example when a call is queued

due to the line being busy, or when a call is queued waiting for processing in a

call centre application. When in the Queued state if all CONNECTIONS become

Active, then the CALL transitions to the Active state. However if a Queued

connection starts to ring, then the CALL transitions to the Ringing state.

The JTAPI Queued state indicates that a CONNECTION is queued at the particular

ADDRESS associated with the CONNECTION. This is due to some telephony plat-

forms, such as call centres, permitting the “queueing” of incoming telephone calls to

an address when the address is busy. In the Parlay MPCC when a call leg is queued,

the event is reported to the application and call leg processing is suspended. The

inclusion of the QUEUED state in the Extended Call Control call model allows the

call processing to wait until the called party is available.

• Ringing - In this state the connection is waiting for confirmation from the partic-

ipant. The device is assumed to be alerting the party that a connection request is

incoming. If all ringing connections transition to Active then the call transitions

to Active. A transition to the Ringing state occurs on receipt of an “alerting”

message.

• Error - It is possible for all states to transition to the Error state except for

Inactive. From an Error state the call can resume its Active state such as

for example when another party is added to the call but fails due to some error.

4.3 Methodology to Determine ECC API Methods

The application programming interface (API) methods of the Extended Call Control Web

service should be quickly understandable by developers of Web based call control applica-

tions. Identifying methods suitable for the Extended Call Control Web service requires a
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methodology to ensure methods are applicable to the requirements of advanced call control.

As such the methods presented by the ECC Web service are derived using two approaches:

• Identification and formalisation of user perceived call operations by considering a

virtual private branch exchange scenario.

• Extension of existing call control Web services such as Parlay-X.

By considering complex APIs that provide call control such as base Parlay APIs, one can

determine characteristic message sequences in any given application, such as Multi-Party

Call Control; these sequences can be abstracted by simplified methods, including associated

notifications, errors and failures. The methods can then be provided by an Extended Call

Control Web service.

Parlay Conference Call Example

If one considers the sequences required to connect participants within a conference call

using the Parlay Conference Call Control SCF API as shown in Figure 4.3, then the se-

quence of creating the call leg, requesting notifications regarding the leg, and routing the

leg are repeated for each participant in the conference. This can be abstracted into a single

initial message containing multiple participants. Parlay-X Third Party Call Control limits

control to two parties (ETSI and Parlay 2007), and hence would not be able to control such a

conference call. Thus, the makeCallSessionRequest method in the Parlay-X Third Party

Call Control can be extended to multiple participants and abstract the initial creation of the

call.

Virtual Switchboard Example

By extending the previous scenario an advanced call control scenario can be developed.

For the purposes of this research the example of a virtual receptionist’s switchboard is

considered (Vannucci and Hanrahan 2007b). This Web based application would allow

a company to operate in a distributed manner, with the receptionist using a rich Internet

application to control the company “extensions”, be they mobile or fixed numbers.

The application would have knowledge of all the extensions and be able to provide advanced

call control for any of them as required. The user specific logic that would be associated
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11: “forward event()”
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A:MakeCall(A,B,C,)

B: “Notify”

C: “Notify”

Figure 4.3: Creation of multiple participants for a conference call

with the application would reside within the Web application and as such would use the

Extended Call Control Web service to provide call control functionality.

The Web application implementation is independent of the telecommunications operator,

and as such could be be hosted on any Web connected device such as a mobile phone, thus

allowing the device to provide direct application layer service signalling as proposed in

Fricke and Hanrahan (2006), as illustrated in Figure 4.4 (Vannucci and Hanrahan 2007b).

The extensions that would be registered for monitoring and control by the Extended Call

Control Web service would have to be separately identified by the telecommunications

operator and customer. These extensions would be specifically marked as falling under

third party call control, thus allowing the state of each extension to be provided to the third

party. The company switchboard number would be marked as falling under the control

of the service logic of the Web application. If no Web application is present to assume

control of the call, then the number would have an alternative default processing as specified

separately. The Web application is required to register with the ECC Web service, and

indicate that it is ready to assume control of the processing of the call. The Web application

74



Parlay X 

Application

Parlay X 

Gateway

IPCall

O T

BCSM

O T

Dialog

---- Adapter

---- API

---- SOA

HTTP

GPRS

J2ME

SOAP

Figure 4.4: Parlay-X Extended Call Control Application (Adapted from (Vannucci and

Hanrahan 2007b))

would then receive updates of the state of extensions falling within its control.

When a caller calls the company number, the processing of the call would be suspended,

whilst the network reports the incoming call and is subsequently instructed to connect the

call to the switchboard operator’s number. The switchboard operator is able to perform

standard and advanced private branch exchange functionality via the Web application,

including:

• Transferring the caller to a salesman’s mobile number, either conferring with the

salesman or doing a blind transfer. This functionality requires: Call Leg Control and

Call Creation.

• Creating a conference call between the caller, support and account salesman, and

passing control of the conference to the salesman. This functionality requires Con-

ference Call Creation and Control.

• Viewing which extension is currently involved in a call, and to whom. This function-

ality requires Call State.

In the following example, as shown in Figure 4.5 (Vannucci and Hanrahan 2007b), it is

illustrated how the above concepts can be abstracted by an Extended Call Control Web
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Figure 4.5: Virtual PBX Example (Adapted from (Vannucci and Hanrahan 2007b))

service and mapped to base Parlay APIs. The implementation of the ECC Web service

logic to interwork with the network would be vendor specific, however in this example

it is assumed that the Parlay Conference Call Control SCF API is used. In this example

a receptionist fields various calls to the company number. The receptionist has a Web

application to perform call logic by means of the Extended Call Control Web service.

1: The ECC Web service creates an object implementing the IpAppConfCallControlMan-

ager interface. The VPBX Web application is registered with the ECC Web service and

associated stateful resource. At this point in time there are no active calls, and as such the

VPBX Web application is waiting for instructions, from either the user or the ECC Web

service associated stateful resource.

2: This message enables the ECC Web service to register with the network to receive

notifications of new call events to the company number, by creating a trigger within the
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network, and afterwards passing those on to the Web application.

3,4,5: The conference is created, waiting for an incoming connection and an associated

object is created. The Web service requests to be notified of parties leaving the conference.

6: A caller calls the company switchboard number, which in turn triggers a notification that

is handled by the service logic. The ECC Web service would instruct the network to handle

the call leg in the appropriate manner as in 7,8,9, whilst notifying the Web application of

the creation of a call within the network. This notification causes a transition within both

the ECC Web service stateful resource and the Web application to the Active state.

7,8,9: The caller is automatically assigned to a sub-conference by the Parlay gateway. This

is obtained by the Extended Call Control Web service, and a call leg object is created to

represent the caller. The calling party is then joined to the conference by attaching the

media. Note that when there is a change in media, the state model would reflect the change

in the relevant connection.

10,11: The switchboard operator’s mobile number is then added as a participant of the

conference and a new IpMultiMediaCallLeg object is created. As the Web application

informs the ECC Web service of the appropriate action to handle the further processing of

the call, namely being to create and route the receptionist’s number to the waiting caller, the

call state transitions to Initiated.

The receptionist’s number is registered with the ECC Web service, which has subscribed

for notifications for each registered number. Thus, as the receptionist’s extension enters the

IN T ALERTING detection point a notification is passed to the ECC Web service which

subsequently notifies the Web application, and causes a transition to the Ringing state.

12: Once the receptionist answers the phone, a notification is issued by the network, and

the Extended Call Control Web service notifies the Web application. The ECC Web service

call state model transitions back to the Active state with both connections established,

and communicating.

Once the caller is communicating with the receptionist, the receptionist has a number of

available options such as transferring the caller, disconnecting the caller or starting a new

conversation with other parties within the company.

At this stage there is communication between the caller and the receptionist. The caller

requests to be put through to both sales and technical support. The receptionist then puts

the caller on hold.
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13: The Extended Call Control Web service splits the caller and receptionist so that there

is no longer any communication between the two parties. There are now two calls with an

active state, within the Web application as well as ECC Web service state manager, both

calls have media that is not connected.

The caller is on hold, and the receptionist has to confer with sales and technical, so that the

caller can be properly directed. In the following sequence the receptionist initiates a call

with sales and technical, and later connects the caller to them.

Once the caller is on hold the receptionist calls the salesman and technical assistant so that

they can be informed of the intention to transfer the caller to them.

14,15,16,17: Connections are created to both sales and technical. In this particular example

the receptionist adds the sales and technical extensions to her call, this results in the re-

ceptionist’s call transitioning to the Initiated state again, as new connections are being

formed. As notifications return from within the network to indicate the progress of the call

and that the sales and technical extensions are ringing, the call transitions to the Ringing

state. As the call model is intended to abstract the individual extensions, the call state

transitions to Ringing on the first notification of an extension ringing.

18,19: As the parties answer the call, the Web application is notified, and on the last ringing

party answering the call state transitions to Active.

The receptionist then transfers the caller from his call to the call with sales and technical.

The call, in which the caller was previously, no longer has any extensions, and transitions

to the Inactive state. The receptionist’s call remains in the Active state, receiving an

update regarding the additional connection.

20: The caller is moved by the ECC State Manager to the same conference as the sales and

technical and the receptionist is free to disconnect.

21: The receptionist disconnects and the VPBX application is notified, the call remains in

the Active state, however the connection information is altered.

From this scenario the requirement to be able to add and remove participants from calls in

progress is identified, and subsequently to receive notifications regarding those extensions

regardless of the call to which the participant is connected. In order to do this again, a

resource Identifier is required for each message.
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Table 4.1: registerRequest

Part Name Part Type Optional Description

username xsd:string No Contains the identity of the party with whom an

operator agreement already exists

password xsd:string No Authenticates the identity of the party with

whom an operator agreement already exists

Table 4.2: registerResponse

Part Name Part Type Optional Description

resourceIdentifier xsd:string No Identifies the endpoint Reference of the stateful

resource. Uses endpoint Reference identifier if

existing.

4.4 ECC Methods

From the previous section 4.3 in which basic Extended Call Control methods were deter-

mined, the methods proposed for the Extended Call Control Web service are now described.

The requirements determined in Chapter 2 for a resource identifier as well as Chapter 3 for

a call identifier are incorporated into the Extended Call Control methods.

4.4.1 Register

The invocation of REGISTER enables the Web service to inform a stateful resource of a

controlling Web application’s presence. The presence of a Web application causes the

stateful resource to monitor and transfer control of extensions to the Web application.

Network notifications are published by the stateful resource. The state of all controlled

extensions by the application are observed as well as associated connections. By means of

the username and password the Web application is authenticated and the pre-registered

Extended Call Control extensions are determined. A resourceIdentifier is returned

on successful invocation of the REGISTER operation. If a subsequent registration is received

for the same user name and password the current resource identity is returned.
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Table 4.3: createCall

Part Name Part Type Optional Description

resourceIdentifier xsd:string No Identifies the endpoint Reference of the stateful

resource

callParticipants xsd:anyURI

[1..unbounded]

No Contains the addresses of the participants to add

to the call.

mediaInfo common: Me-

diaInfo [0..un-

bounded]

Yes Identifies the media direction for each partici-

pant to be added to the call session for each

media type. If no media direction - in,out,

or bidirectional - is chosen then a default of

bidirectional shall be applied. If this part is

omitted, the media type(s) shall be negotiated by

the underlying network.

Table 4.4: createCallResponse

Part Name Part Type Optional Description

callIdentifier xsd:string No Identifies the call session created.

4.4.2 createCall

The invocation of CREATECALL requests to set up a call between multiple addresses.

Optionally the media for the connections in the call can be specified for each participant, if

no media information is specified then the connection is left to the default of the underlying

network. The resourceIdentifier ensures that the Web service passes the request to

the correct stateful resource. A callIdentifier is returned immediately on invocation

of the CREATECALL operation, and the call session is established asynchronously. This

callIdentifier is used to identify the call in subsequent operations.

4.4.3 endCall

The invocation of ENDCALL terminates the call identified by the callIdentifier. All

connections to the call are removed, and the call identifier is no longer valid after a set time,

at which point the stateful resource no longer maintains the state of the call and associated

connections. The provided callIdentifier is returned immediately on invocation of
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Table 4.5: endCallRequest

Part Name Part Type Optional Description

resourceIdentifier xsd:string No Identifies the endpoint Reference of the stateful

resource

callIdentifier xsd:string No Provides the call identifier that should be used to

identify the call

Table 4.6: endCallResponse

Part Name Part Type Optional Description

callIdentifier xsd:string No Identifies the call terminated. Uses given call

identifier as confirmation of receipt of message.

the ENDCALL operation, if an invalid callIdentifer is provided then the response will

be null.

4.4.4 addCallParticipants

The invocation of ADDCALLPARTICIPANTS adds additional participants to an existing call,

as specified by the callIdentifier. The participants to the call are added asyn-

chronously by the underlying network, and the callIdentifier is returned immedi-

ately on invocation of the ADDCALLPARTICIPANTS operation.

4.4.5 moveCallParticipants

The invocation of the MOVECALLPARTICIPANTS operation enables participants identified

by callParticipants to be moved to the call identified by callIdentifier. The

participants can be connected to different calls and thus only the destination call is iden-

tified. The stateful resource as specified by the resourceIdentifier is responsible

for maintaining information regarding the participants and the calls from which they are

originating.
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Table 4.7: addCallParticipantsRequest

Part Name Part Type Optional Description

resourceIdentifier xsd:string No Identifies the endpoint Reference of the stateful

resource

callIdentifier xsd:string No Provides the call identifier that should be used to

identify the call

callParticipants xsd:anyURI

[1..unbounded]

No Contains the addresses of the participants to add

to the call

mediaInfo common: Me-

diaInfo [0..un-

bounded]

Yes Identifies the media for each participant added to

the call. If this part is omitted, the media type(s)

shall be negotiated by the underlying network.

Table 4.8: addCallParticipantsResponse

Part Name Part Type Optional Description

callIdentifier xsd:string No Identifies the call used. Uses given call identifier

as confirmation of receipt of message.

Table 4.9: moveCallParticipantsRequest

Part Name Part Type Optional Description

resourceIdentifier xsd:string No Identifies the endpoint Reference of the stateful

resource

callIdentifier xsd:string No Provides the call identifier that should be used

to identify the call to which the Participants are

being moved.

callParticipants xsd:anyURI

[1..unbounded]

No Contains the addresses of the participants to

move to the call

Table 4.10: moveCallParticipantsResponse

Part Name Part Type Optional Description

result xsd:string No Identifies the call session used. Uses given call

session identifier as confirmation of receipt of

message.
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Table 4.11: removeCallParticipants

Part Name Part Type Optional Description

resourceIdentifier xsd:string No Identifies the endpoint Reference of the stateful

resource.

callIdentifier xsd:string No Provides the call identifier that should be used to

identify the call.

callParticipants xsd:anyURI

[1..unbounded]

No Contains the addresses of the participants to

remove from the call.

Table 4.12: removeCallParticipantsResponse

Part Name Part Type Optional Description

callIdentifier xsd:string No Identifies the call used. Uses given call identifier

as confirmation of receipt of message.

4.4.6 removeCallParticipants

The invocation of REMOVECALLPARTICIPANTS removes the participants identified by

callParticipants from the call identified by callIdentifier. The participants

connections are terminated within the underlying network. The provided callIdentifier

is returned immediately on invocation of the REMOVECALLPARTICIPANTS operation.

4.4.7 modifyMedia

The invocation of MODIFYMEDIA modifies the media of the participants identified by

callParticipants. The participants media are altered within the underlying net-

work. The provided callParticipants is returned immediately on invocation of

the MODIFYMEDIA operation. As the participants might not be in the same call, the

callIdentifier is not provided.

4.5 Transitions

Each Extended Call Control Web service method would result in a change of the network

and subsequently a change of the state model. The change of state would be reported to
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Table 4.13: removeCallParticipants

Part Name Part Type Optional Description

resourceIdentifier xsd:string No Identifies the endpoint Reference of the stateful

resource.

callParticipants xsd:anyURI

[1..unbounded]

No Contains the addresses of the participants to

remove from the call.

mediaInfo common: Me-

diaInfo [0..un-

bounded]

No Identifies the media for each participant

Table 4.14: removeCallParticipantsResponse

Part Name Part Type Optional Description

callParticipants xsd:anyURI

[1..unbounded]

No Identifies the participants. Uses given partici-

pants as confirmation of receipt of message.

the Web application so that futher application logic can take place. In Table 4.15 the effect

of ECC methods from section 4.4 on the state of the network are shown, together with the

outcome of such an action in terms of the change of the call state model as shown in Figure

4.2 and subsequent notification generated.

4.6 Notification Mapping

Mapping the notifications from the underlying network to those of the ECC Call State model

ensures that adequate information is preserved for the Web application to perform advanced

call control as required in Chapter 1.1. Chapter 5.5 showed the mapping of the call state

models between IN CS1 and OSA/Parlay, as well as OSA/Parlay and SIP, and the associated

notifications were mapped to each other. Table 4.16 presents a mapping between the IN CS1

originating notifications, OSA/Parlay Multi-Party Call Control originating call leg notifica-

tions and the Extended Call Control call model. Table 4.17 presents a mapping between the

IN CS1 terminating notifications, OSA/Parlay Multi-Party Call Control terminating call leg

notifications and the Extended Call Control call model.
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Table 4.15: Transitions

Method Name State Before State After Notification Generated

register null update of state none

createCall null initiated in progress

endCall any inactive disconnect

addCallParticipants active initiated in progress

moveCallParticipants active active disconnect,answered

removeCallParticipants active active disconnect

modifyMedia active active media

4.7 Conclusion

Requirements for Extended Call Control were presented in Chapter 1.1. By analysing

existing call models as presented in Chapter 3, and the requirements for Web services

in Chapter 2, an Extended Call Control call model and Web service was synthesised to

meet those requirements. Abstraction and identification of suitable states for a Web based

call model were determined and by using method discovery as shown in section 4.3 the

methods for the Extended Call Control call model Web service were created. A mapping

between the underlying telecommunications notifications and the Extended Call Control

call model was performed to ensure the call model can incorporate network state and

abstract it suitably. The Extended Call control call model abstracts the complexity of the

state of individual terminal connections, and has the ability to provide such information if

required by the Application. The state of the terminal in terms of the media is abstracted,

as well as the relationship between the terminal and network. Common identifiers allow

unique identification of the call as well as connection by the Web application logic. The

Extended Call Control call model state abstracts underlying call state in a manner that is

suitable for Web services aiming to provide advanced call control. The use of the Extended

Call Control call model and Extended Call Control Web service are demonstrated in the

following chapter.
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Chapter 5

Demonstration of Extended Call Control
Call Model

To demonstrate the use of the Extended Call Control call model and Web service, a rich

Internet application is defined that consumes the ECC Web service to provide advanced call

control functionality to an end user. The rich Internet application uses the ECC Web service

together with received state notifications to monitor and control the telecommunication

network functioning from outside of the telecommunications operators’ domain. Such an

application would be hosted and created by a third party provider who is within the IT

domain, and would make use of the ECC Web service which is within the domain of the

telecommunications operator. The Web service uses the infrastructure of the telecommuni-

cations operator to perform necessary underlying call control and bearer connectivity.

The application chosen to demonstrate the concepts of the Extended Call Control Web

service is a virtual private branch exchange application. The virtual private branch exchange

application can co-ordinate the functionality offered by the underlying network resources,

namely voice, video, and data, and provide additional added value from the IT domain. This

service is named Virtual Private Branch Exchange (VPBX). The service demonstrates real

time call and extension control functionality, incorporating asynchronous behaviour for real

time notification that is required for rich Internet application logic.

In section 5.1 the VPBX application requirements are described, considering fundamental

functionality required to demonstrate the use of the Extended Call Control call model.

Section 5.2 follows on to describe the use cases for the application. The graphical user

interface for the application is shown in section 5.3. The architecture of the application is

described in section 5.4 as well as the proof of concept interface. The mapping of the call

model is discussed in section 5.5 as well as message sequence charts detailing the messages

exchanged to update the application as state changes.
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5.1 Virtual Private Branch Application

The VPBX implementation is intended to demonstrate the value of knowledge of state when

providing Web applications with advanced call control functionality. Namely the benefit of

a call state model when performing advanced call control functionality such as altering the

state of extensions whilst those extensions are participating in a call. The functionality

of the VPBX application is limited to displaying the state received by the network and

performing call control operations. Additional functionality, such as integration with further

Web services, is beyond the scope of demonstrating the value of state information, and

not explored in this implementation. The functionality of the VPBX application from the

user’s point of view is defined in use cases to illustrate fundamental call control behaviour

(Kruchten 2003). The application incorporates the basic call control functionality such as

starting and stopping a call as well as more advanced functionality such as controlling the

call whilst it is in progress. Figure 5.1 shows the use cases determining basic application

functionality (Bittner 2000).

The VPBX Application graphical user interface is shown with relation to fulfilling the

previous use cases as described in Chapter 4.

5.2 Use Cases

The VPBX application is firstly described from the perspective of the end user, hence

the use cases describing interactions between the end user and the VPBX application are

defined. The VPBX use cases are shown in Figure 5.1, however the shaded use cases are

not explored further, such as login which requires authentication, and configuration of the

VPBX application and associated extensions. Each use case is described below:

Login: The end-users authenticate themselves with the VPBX application by providing user

names and passwords. Once authenticated they are allowed to access the ECC Web service.

Note that the number of users can vary, and identification of the extensions to control and

the notifications to receive are determined by the application. Web-based authentication,

authorisation and accounting practices can be employed to fulfil this use case.

Logout: The end-users close the VPBX application, resulting in the VPBX application no

longer receiving state updates, and no longer providing call control using the ECC Web

service. In the case of there no longer being any registered application in control of the

VPBX calls, the network operator would default to a standard pre-set behaviour, such as
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Figure 5.1: Virtual Private Branch Exchange Use Cases

forwarding the call to a particular extension.

Configure Extensions: A user is able to alter the extensions falling within the user’s

domain, such as adding and removing extensions to the VPBX. Such behaviour would

require the interaction of the telecommunications operator, as there could be service level

agreements and different pricing structures for extensions falling within the virtual private

branch exchange of the user. As this is outside of the scope of call control, it is left for

future consideration.

Control Call: A user is able to perform advanced call control operations with the external

and registered extensions that are participating in a call. The control of a call can be

decomposed into further sub use cases, as shown in Figure 5.1.

Create Call: A user is able to create a call between multiple ECC registered extensions as

well as external numbers. Each participant within the call will fall under control of the user.
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View Calls and Extensions: The user views the state of calls within the VPBX as well

as registered extensions and other external participants that are involved in a call. New

calls created by participants calling the VPBX number can be viewed and subsequently

controlled.

Update State: The Stateful Resource updates the state of the calls and information on

extensions of interest.

The Control Calls use case can be decomposed into the following sub-use cases:

Transfer Extension: A user is able to transfer a participant from an existing call to an

alternate call.

Disconnect Extension: A user is able to remove a participant from a call currently in

progress. If there are no longer any participants in the call, this has the same effect as

ending the call.

Add Extension: Adds a participant not already in a call to a call currently in progress. If the

participant added is not registered with the VPBX application then the contact details of the

participant are provided by the user.

Modify Media: The user is able to alter the media of a participant, selecting whether the

media flow is bidirectional or unidirectional should the network support such functionality.

5.3 Graphical User Interface

The user can view all connections and calls by means of the Web browser, the user is able

to select calls that are in progress as well as extensions that are registered on the system,

as shown in Figure 5.2. Calls are represented by their call identifier, which is implemented

as a AsteriskNow meet me conference address. The extensions are represented by their

AsteriskNow extension identifier, such as SIP/6000. The option to create a call requires a

particular extension to be first selected, and then the Create button selected, resulting in a

message to the user of the resulting action, as shown in Figures 5.3. To add an extension

to an already existing call the extension and the call are selected and the Add To button

selected, resulting in a message as shown in Figure 5.4. To transfer an extension to an

already existing call the extension and the call are selected and the Transfer To button

selected, resulting in a message as shown in Figure 5.5. Selecting an extension and clicking

the Disconnect Extension will result in a message as shown in Figure 5.6. The message
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in Figure 5.7 is shown when ending a call by selecting it and clicking the End Call button.

The Web service is implemented using Java Glassfish, and manual invocation of the Web

service is possible using the Glassfish application server, as shown in Figure 5.8.

5.4 Implementation Architecture

The implementation of the Extended Call Control Web service as well as asynchronous

notification would vary between service providers; however, certain concepts are required

to be present in each case. Firstly the need for the rich Internet application to receive real

time notifications of alterations in state of the telecommunications network resources, so

that the application logic can provide instructions to the network; and secondly the mapping

of state between the underlying network and the Extended Call Control call model.

In this implementation the architecture shown in Figure 5.9 was used to demonstrate the

principles of Extended Call Control. The Web Requestor is the end user that con-

trols the VPBX application, for the purpose of this proof of concept the application is

JavaScript that is downloaded from the Third Party Service Provider. The application

could be implemented in a number of ways such as a precompiled desktop application

or as a downloadable widget. A rich Internet application has the advantage of the third

party service provider being able to upgrade the application and subscribers would imme-

diately be able to benefit from such an upgrade. The VPBX Application Web Server

contains the VPBX application JavaScript as well as the JavaScript to interwork with the

Streaming HTTP Server. The Streaming HTTP Server or comet server is responsible

for pushing the asynchronous notifications to the VPBX application on the end user’s

browser. Both the VPBX Application Web Server as well as the Streaming HTTP

Server are within the third party service provider domain. For this implementation, au-

thentication as well security concerns with HTTP requests to multiple domains was not

considered. Web browser security typically does not permit multiple domain requests,

without signed and trusted JavaScript. For this implementation authentication is assumed to

be handled separately using standard Web Authentication Authorisation and Accounting

(AAA) methods. The Extended Call Control Web service is contained within the

telecommunications operator domain and provides the required functionality to control the

abstracted underlying network. The Web server hosting the ECC Web service could be

implemented by a telecommunications operator as a Parlay-X Gateway with other Parlay-

X Web services, or a standalone Web server. To implement the Extended Call Control

Web service the standardised Parlay-X set of technologies were extended. The Parlay-

92



Figure 5.2: Virtual PBX Graphical User Interface

93



Figure 5.3: Call Created Figure 5.4: Add Extension

Figure 5.5: Transfer an Extension Figure 5.6: Remove an Extension

X Third Party Call Control forms a basis for the Extended Call control Web service. The

Stateful Resource + Network Adapter is responsible for the maintenance of the Extended

Call Control state models, as well as the state models of the underlying network, and the

mapping between the models. In addition the Extended Call Control Web service methods

have to be adapted to network dependent instructions. The stateful resource and network

adapter can be likened to the functionality provided by an application server within the

telecommunications network, with the application server providing the application logic to

provide mapping and translation of Web requests, and the underlying application server

network adapter (such as a Parlay SCS or CAMEL IM-SSF) communicating with the

network equipment. The telecommunications network is implemented by the Network

Emulator which demonstrates the functionality of the network equipment. The Network

Emulator is implemented as an IP based soft switch. The soft switch provides an emulation

of the underlying telecommunications equipment such as an IMS Serving Call Session

Control Function (S-CSCF).

Figure 5.7: End a call
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Figure 5.8: Manual Web Service Tester

The technologies used for each entity are as follows:

Web Requestor – Firefox browser

Extended Call Control Web service – Glassfish Java Application Server

VPBX Application Web Server – Lightstreamer Web Server

Streaming HTTP Server – Lightstreamer Server

Stateful Resource + Network Adapter – Java application

Network Emulator – AsteriskNOW

5.4.1 Communication

Communication between the VPBX Application Web Server and the browser is standard

HTTP, with the browser downloading the necessary JavaScript from the server to load

the application in the browser, and communicate with the Streaming HTTP Server as

well as the ECC Web service. The Streaming HTTP Server and VPBX application

intercommunicate using AJAX, using proprietary Lightstreamer technology. Invocation of

Extended Call Control methods is performed using SOAP. Communication between the

ECC Web server and the stateful resource is by means of sockets. The use of sockets is to
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Figure 5.9: Virtual Private Branch Exchange Implementation

illustrate fundamental connectivity and more advanced inter-process communication such

as CORBA is not implemented in this proof of concept.

In this implementation the VPBX application interacts directly with the Extended Call

Control Web service, however there are a number of alternative methods of consuming

such a service. A preferred method would be to use the VPBX Application Web server

as a proxy for the Extended Call Control Web service, this would have the added

advantage of there no longer being security concerns due to multiple domains, and the third

party service provider could further abstract the Extended Call Control Web service by

inserting the session specific information on behalf of the user, as illustrated in Figure 5.10.

Communication between the Stateful resource + Network Adapter and the Streaming

HTTP Server is performed using sockets, using the Lightstreamer ARI protocol. Notifica-

tions of changes in state are passed from the Stateful resource to the Streaming HTTP
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Figure 5.10: Third Party Proxy Web Service

Server, which in turn processes and formats the notification for streaming to the Web

Requestor. Note that this separation of state notification and ECC Web service invocation

would allow the ECC Web service to support synchronous behaviour if so required, as per

the WS-Resource Framework stateful resource pattern (Foster et al. 2004).

The Stateful Resource + Network Adapter use the Asterisk-Java package (Reuter 2010)

to interwork with the AsteriskNOW server by means of the Manager API. This allows the

state of the management and control of extensions within the AsteriskNOW server to be

monitored, without interrupting the Asterisk call processing (Reuter 2010).

5.5 Call Model Mapping

Call model mapping has to be performed to interwork the state of extensions within the

AsteriskNOW server and the ECC State manager. Through the Asterisk Java API the As-

teriskNow server provides a high level Asterisk state view of extensions based on underlying

SIP message sequences. The AsteriskNow server does not represent calls as separate objects

but rather provides the concept of extensions that are connected to a channel which are

linked to other channels. Thus the state of the Network Emulator can be described as

channels and associated extensions. Asterisk channels have the following possible states

(Reuter 2010):
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BUSY: Line is busy,

Dialing: Digits (or equivalent) have been dialled,

Dialing Offhook: Digits (or equivalent) have been dialled while offhook,

Down: Channel is down and available,

Hungup: The channel has been hung up and is not longer available on the Asterisk server,

Offhook: Channel is off hook,

Prering: Channel has detected an incoming call and is waiting for ring,

Ring: Line is ringing,

Ringing: Remote end is ringing,

Rsrvd: Channel is down, but reserved,

Up: Line is up.

State transitions within Asterisk are not clearly defined, and a number of Asterisk states do

not map to the Extended Call Control call model. From the implementation it was found

that the most commonly observed states were Down, Ring, Ringing, and Up. Due to the

difference in the Extended Call Control call model being a representation of all connections

and the AsteriskNOW state being a representation of multiple channels, the state reported

has to be contextualised to best represent the overall call behaviour. The mapping used

between the two state models is as shown in Figure 5.11.

The AsteriskNOW management API provides event notifications for any event that occurs

within the softswitch. These events are processed and reported by the Asterisk-Java API.

The Asterisk-Java events are monitored by the Network Adapter for state change notifica-

tions that would alter the call state. Each of the ECC methods are mapped to AsteriskNOW.

The following use cases and message sequence charts show how the call state models are

mapped.

5.5.1 Registration

The registration process, register, shown in Figure 5.12, allows the Web application to

create the asynchronous link between the two systems. An identifier is passed back to the

application allowing the stateful resource to be identified in future transactions. This allows

the Web service to make use of more than one stateful resource. In addition registration

causes the state manager to set the required listeners with respect to the extensions regis-

tered for the Extended Call Control Web service, as well as needed network triggers.

Registration is required to inform the network that there is an application which wishes to

perform call control. In the case of there being no controlling application the network has to

have a preset manner to handle an incoming call to the VPBX number, such as forwarding
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Figure 5.11: Mapping Extended Call Control Call Model to Asterisk

to a set phone number. This functionality is outside of the scope of this research and can be

fulfilled by a Web service such as the Parlay-X Call Handling Web service.

5.5.2 Creation of a Call

The creation of a call is shown in Figure 5.13. The implementation of the call creation

can differ from system to system, as some vendor equipment supports asynchronous call

leg routing, whilst others do not. Figure 5.13, messages 1–25, shows the creation of a

two-party call with synchronous leg creation; and messages 26–46 shows the creation of a

two-party call with asynchronous leg creation.

In the first sequence, messages 1–25, the user selects the participants to connect, the

createCall method is invoked on the ECC Web service and a call identifier, message

5, callId, is returned, to the Web application. The creation of the call within the

state manager causes the call to transition to the Inactive state, as no CONNECTIONS

presently exist. This is passed back asynchronously to the VPBX application, as shown in
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Figure 5.12: Extended Call Control Registration

message 6.

The network adapter creates an OriginateAction, message 7, to connect the first participant.

The network adapter makes use of Asterisk meet me applications to interconnect partici-

pants. As the channel is created within Asterisk, a NewChannelEvent is created by the

Asterisk network emulator reporting the channel state as Down as shown in message 8. This

is mapped by the State Manager to the call state of Active and then Initiated, and

reported to the Web application, message 9. As the extension within the network reports

that it is ringing, Asterisk generates a NewStateEvent notification, message 10, with the

state Ringing. The Asterisk state Ringing is mapped to the ECC state Ringing, and

passed to the Streaming HTTP Server, message 11, for asynchronous delivery to the Web

application.

When the extension goes offhook, a second NewStateEvent is reported with the connec-

tion state of Up, message 13, this subsequently is mapped to the ECC Active state, and the

Web application is notified, message 15. Once the first call leg is active the second call leg

becomes initiated this causes the ECC call state to transition from Active to Initiated

as a new extension is added (message 19). The same process as before is carried out as

Ringing is reported, and finally the Web application transitions to Active, message 25,

as the extension goes off hook and all participants are communicating.

In the second sequence, messages 26–46, the selection of participants is the same as in the

first sequence, however the asynchronous leg creation means that the network adapter can

create multiple OriginateAction requests in series, as shown in messages 32–33, for each

participant. As each OriginateAction is processed and a channel is created within Asterisk,

a NewChannelEvent is reported. Each notification has an attached identifier which is the
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same as provided when invoking the OriginateAction, allowing responses to be correlated

to the correct channel. The reported Asterisk channel state of Down is mapped by the State

Manager to the ECC call state Active and the application is notified by the Streaming

HTTP Server, message 36.

The receipt of the first Asterisk channel Up notification, message 43, does not cause a

transition in the State Manager as there are other extensions still ringing. Once all

extensions are connected, message 44, the ECC state becomes Active and is reported

asynchronously to the Web Requestor VPBX application, message 46.

5.5.3 Transferring a Participant

In order for a participant to be transferred the participant has to be active in an existing call,

this is determined by the application as a result of knowing the call state, as shown in Figure

5.14. The participants to be transferred are selected by the user, and the Extended Call

Control Web service moveCallParticipants method is invoked. This results in the ECC

State Manager + Network Adapter issuing a RedirectAction to the Network Emulator.

Asterisk meetme MeetmeLeave events are triggered when the participant leaves the previ-

ous call, message 5, which is passed to the STREAMING HTTP SERVER which notifies the

WEB REQUESTOR asynchronously, message 7. Once the participant has sucessfuly joined

the selected call. Asterisk creates a MeetmeJoin event, as shown in message 8, once both

participants are sucessfully connected, resulting in the State Manager causing the state of

the selected call to transition through Initiated to Active.

5.5.4 Adding a Participant

Adding a participant to a call is shown in Figure 5.15. the call is already in the Active

state, and the participants being added create a sequence similar to a new call, in that

the addParticipants method causes the Network Emulator to issue an OriginateAction,

as shown in message 4. this would cause the Asterisk Network Emulator to create a

NewChannelEvent with the state Down which would be mapped to the ECC call model

state Initiated. The Streaming HTTP Server would notify the Web Requestor

VPBX application of the change in state, message 10. Once the extension is answered

the State Manager + Network Emulator would change the call state to Active. The

transition for multiple participants is the same as those of when multiple call legs are created

simultaneously.
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Figure 5.13: Extended Call Control Multi-Party Call Creation
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Figure 5.14: Extended Call Control Participant Transfer
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Figure 5.15: Extended Call Control Add a Participant
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Figure 5.16: Incoming Call Notification

5.5.5 Incoming Call Notification

In the case of an incoming call, as shown in Figure 5.16, a NewChannelEvent notifi-

cation is generated by the Network Emulator of a call to the number of interest, in this

case a preset Asterisk meetme number. The incoming call notification causes the Network

Emulator to notify the State Manager, which results in a new CALL object being created.

The meetme extension within Asterisk transitions from Down to Ring, which is translated

to the ECC state Inactive by the State Manager, message 3, and the application is

notified, message 4. As the calling extension is placed in an Asterisk meetme conference,

message 5, the extension transitions to Up, and the resulting NewStateEvent notification

is mapped to the ECC Active state, message 6–7. At this point there is only the calling

party, and the application would signal the operator to include a second party so that the call

might be directed. This would follow the sequence as discussed in 5.5.4.

5.5.6 Disconnecting Participants

To remove participants from a call the participants are selected by the user, message 1, as

shown in Figure 5.17. The overall Extended Call Control call state remains active whilst

participants remain in the call, however notifications are received regarding the state of

the participants if the application has requested such information, as shown in message

7. The ECC State Manager signals the Network Emulator to disconnect the participant

via means of a HangupAction to the Network Emulator, as shown in message 4. The

Network Emulator disconnects the extension and generates a HangupEvent, with an

extension state of Down, message 5. The ECC State Manager records the change to
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Figure 5.17: Extended Call Control Remove a Participant

the call and the application is informed asynchronously of the removal of the participant,

however the overall state of the call does not change. If the last participant is removed from

the call, then the call state would transition to Inactive, and the call would end.

5.5.7 Ending a Call

To end a call the user selects the call to end and the call identifier is passed by the Web

Requestor VPBX application to the Extended Call Control Web service, message 1,

Figure 5.18. The instruction is passed to the correct State Manager, message 3, and is

translated into a number of HangupAction requests to the Network Emulator for all the

extensions involved with the call. The Network Emulator disconnects the extensions and

generates a HangupEvent for each extension, with an extension state of Down, messages

4–7. The State Manager ensures each participant is removed from the call, and once all

extensions are removed, the ECC call state is updated to Inactive, and the application

informed, messages 8–9.

5.6 Discussion

Implementation of the Extended Call Control Web service and call model can be performed

using a number of different Web technologies, in this case JavaScript hosted on a Web

application server. The example application, Virtual Private Branch Exchange demonstrates

real time call and extension control functionality, incorporating asynchronous notification

of changes in state.
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Figure 5.18: Extended Call Control End Call

Advanced control of the network requires knowledge of state of the network, so as to

ensure that the Web application provides valid instructions to the underlying network, thus

notification of state is a vital component of the implementation of an Extended Call Control

Web service.

5.6.1 Web Service

The Extended Call Control API was implemented using a SOAP based Web service, the

use of Glassfish provided a convenient container for the service and allowed distributed

communication with the state manager. From the implementation it is clear that the Web

service and the notifications can be separated, and that notifications can occur in a manner

mutually exclusive of the Web server. For adequate call control, the Web service requires

the following information to be able to successfully operate on a call in a stateful manner,

using a stateful resource: connection identifier, call identifier, and resource identifier. The

methods exposed by the Web service determine the level of functionality offered with

regards to call control, and by means of common identifiers a successful mashup of services

is possible. Unique resource identities allow a Web application to make use of an alternate

Web service in the case of a Web server fault, allowing the operator to provide redundancy.

The methods used in the Extended Call Control API provide an adequate level of control

to implement advanced call control use cases required for a complex service. By catering

for multiple (two or more) participants in the API methods, the number of invocations on a

Web server can be reduced.

Asynchronous invocation of the Web service methods allow the Web application to receive
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a call and connection identifier that is generated by the state manager, thus ensuring the

independence of the Web service from the state manager.

The use of a resource identifier removes the need for the Web server to relate requests to a

particular session, thus providing the possibility of further simplifying the Web service to

be a RESTful Web service.

5.6.2 Network Emulator

The use of Asterisk for the proof of concept implementation provided adequate functionality

to demonstrate the use of the Extended Call Control call model. The Asterisk notifications

were successfully mapped to the Extended Call Control call model events, demonstrating

the usefulness of the Extended Call Control call model in providing an abstracted repre-

sentation of the call. A large volume of notifications generated by the Asterisk server were

irrelevant to the Extended Call Control call model and were filtered by the state manager.

The Asterisk extension state mapped to the Extended Call Control call model, and extension

notifications were mapped successfully by the state manager. Notifications were generated

at a very rapid interval, far faster than the one notification per second as recommended by

RFC 4235.

5.6.3 State Manager

The state manager represents the stateful resource. The implementation showed how the

stateful resource, which is assumed to be a robust application within the service delivery

platform, can successfully map state notifications received from the network to those re-

quired by Web applications performing call control. The use of a resource identifier within

the Web service allows the correct state manager to be identified, and the state of all asso-

ciated connections is maintained within the state manager. The use of a notification server

is required to interface the Extended Call Control notifications to the Web Application.

Each Extended Call Control user would require a separate instance of a state manager to

maintain state for the extensions governed by that particular user, implying that Extended

Call Control can only be provided by creating a relationship between the user and service

provider, in terms of a service level agreement.
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5.6.4 Application

The use of a Web JavaScript application ensures that the application can be upgraded

without requiring reinstallation from the client side. Web applications can achieve seem-

ingly asynchronous behaviour by making use of AJAX, allowing the browser to defer

response handling to an underlying layer. The use of streaming HTTP provides a continuous

connection between the Web server and requestor, thereby allowing notifications to be

pushed to the application. In the case of Extended Call Control it was found that the

nature and volume of notifications was such that only asynchronous streaming HTTP is

suitable to update the client state continuously. The display of the calls and participants

is required for advanced call control as the individual state of a connection is useful when

performing call leg control. Using SOAP based Web services residing in multiple domains

is problematic and requires security certificates or altering the security mechanisms on the

browser directly. The state of a Web application is dependent on the state messages received

and as such would suffer from high latency connections, therefore the use of a network

orientated call model overcomes some of these limitations as the state manager is able to

confirm the correct use of API methods based on known state.

5.6.5 Notification

Real time asynchronous notification of state is a fundamental requirement of Extended

Call Control. Web Application based call control can only be performed successfully

if the application is aware of the state of all calls and participants. The Lightstreamer

AJAX notification service provided a means of demonstrating streaming HTTP, with a large

volume of notifications. Notifications were generated in excess of one per second, and

required that the server be licensed, as opposed to the limited unlicensed version. Using

a separate server to forward notifications from the state manager to the Web application

conformed to the distributed nature of the architecture and would permit redundancy in the

case of failure.

5.6.6 Architecture

By separating notifications from the Web service, and using a separate resource from that of

the Web server to manage state, the Web service can benefit from Web architecture redun-

dancy, without effecting the operation of the call control. Streaming HTTP for notifications

ensured that the Web application was aware of the state of the network, as directly reported
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by the state manager. The state manager performed all call mapping and the Extended Call

Control call model could map to the Asterisk channel state. By providing identifiers for the

state manager, as well as the call and connections Web services can interoperate on the call

by means of the common state manager as proposed in (Czajkowski et al. 2004).

5.7 Conclusion

The use of the Extended Call Control Web service and Extended Call Control call model

was demonstrated in a proof of concept Web Application for a Virtual Private Branch

Exchange. The VPBX Application and associated architecture demonstrates an operator

mapping existing network technologies to the Extended Call Control call model. The

proof of concept architecture provided the necessary notifications of state for the VPBX

application to provide advanced call control. Mapping of the Asterisk states to the Extended

Call Control call model states demonstrated the abstraction provided by the call model.
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Chapter 6

Conclusion

This chapter provides a summary and conclusion of this research and development of

the Extended Call Controll. The novelty of this work, its limitations, and further work

remaining is summarised.

6.1 Summary

This section summarises the requirements for Web based advanced call control using state-

ful Web services. Existing call models and how they apply to the Extended Call Control

Web service and Extended Call Control call model are reviewed. A brief summary of the

results of the implementation of the Extended Call Control Web service and Virtual PBX

application is given.

6.1.1 Requirements for Advanced Web Service Call Control

Telecommunications operators are looking for ways to further allow third parties to make

use of the network in an open manner, so that a greater number of applications using the

network can be created. Third parties are able to develop services for customers, making

use of the telecommunication network. Being able to provide services controlling calls is

known as call control, and exposes the fundamental business of an operator. Operators are

increasingly exposing their functionality through the Web, making use of Web services.

This research is focused on Web based call control, and how the operator can provide

advanced functionality similar to that achievable by tightly coupled third party APIs.
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Web services provide a means to remove the tight coupling between third party applica-

tions and network operators, and provide unmatched interoperability and integration. The

limitations of network proxies and firewalls is reduced when using Web services between

disparate domains. Web services, in addition, provide telecommunications operators with

platform and language independence, removing the need for technologies such as SIP and

CORBA. Also by the operator exposing telecommunications functionality through Web

services, third parties can enhance the functionality with other Web services, providing an

application that can interwork with a conglomeration of multiple dynamically linked Web

services.

SOAP based Web services provide a mechanism for third parties and operators to interwork

systems regardless of the network transport protocol, and allow systems to recover quickly

from failure due to the fact that standard Web services do not require any data to be

associated with a particular session.

Control of a telecommunications network by means of a Web application introduces a

number of requirements to support such control, specifically how to abstract the view of

the network as well as how to provide abstracted APIs that do not require the developer

of the application to have detailed knowledge of the operation of a telecommunications

network.

Existing Web based call control is generally of a simple message exchange type, such

as invoking the network to send an SMS, or making a request for an action and then

determining the outcome of the request. Lack of knowledge of the state of the underlying

network limits the effectiveness of Web applications and the level of control that can be

exerted on the network. The ability to provide complex services is directly proportional to

the complexity of the knowledge of state and this research develops a new call model to

represent call state in a manner suitable for Web applications. As the application processing

spans an increasingly larger time span, so to does the need for preservation of the knowledge

of the state of a process. Web applications can provide advanced call control applications

due to knowledge of the state of the network, and offer third party developers more complex

control of resources than what is currently offered by network operators.

This research set out to provide various levels of control and abstraction of network func-

tionality, which it achieved through the Extended Call Control call model and Web service.

The ability for an operator to map existing network technologies to the Extended Call

Control call model is demonstrated, providing abstraction of complex systems to a level

suitable for Web applications. Many existing Web based call control methods cater only for

two party connections, as the level of complexity when dealing with multiple parties simul-
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taneously increases the requirements on state to a level that is burdensome for standard Web

applications and Web services. The control of multiple parties is therefore a requirement

for advanced call control and reinforces the requirement for a call model to represent the

state of multiple parties as in the Extended Call Control call model. A Web application that

is performing advanced call control logic for the control of the telecommunication network

requires the application to participate in the control of the call for the entire duration of the

call, and be able to perform operations on the network in an asynchronous manner, requiring

an asynchronous Web service API as well as asynchronous notification of the state of the

network.

Telecommunication service architectures can be broadly categorised into three technolo-

gies; namely SIP for IP based networks, Parlay for IP and circuit switched networks and

CAMEL for IN type circuit switched networks. The mapping of these technologies is

demonstrated for the Extended Call Control call model, showing the suitability of the call

model for Web based call control.

6.1.2 Stateful Web Services

Whilst some call control Web services make use of conversational state, in this thesis

an architecture using a stateful resource to maintain the state of the network resources

is proposed, as proposed in the WS-Resource Framework. The use of stateful resources

together with an asynchronous Web service provides a means to preserve many of the

benefits of a stateless Web service, as dynamic state is not stored in the Web service itself,

rather in the state manager which is tightly coupled with the underlying network.

The implementation of a separate resource to provide notifications as to the state of under-

lying resources permits the Web application to have a current view of the network, without

wasting resources having to poll for the status of a call.

A key component of the implementation of stateful resources is the correct identification

of the resource that is in consideration, as all responsibility for state is maintained by

the stateful resource. The stateful resource identity is passed to the requestor by the Web

service, which serves to correlate the request with the correct stateful resource. A stateful

resource can be associated with multiple Web services facilitating the robustness that is

required by network operators.

The state of the Call is managed by the Web application through the Web service, thus

eliminating the need for the Web application to have specific knowledge of the identity or
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location of the encapsulated system. The methods available in the Web service determine

the level of call control a Web application can exert on the network. This research has

identified required functionality common to advanced call control in the Extended Call

Control Web service.

6.1.3 Existing Call Models

In order to develop the Extended Call control call model an analysis of existing telecom-

munications call models was necessary, to determine the best practices and concepts for

inclusion in a Web based call model. The fundamental concepts of call control were

reviewed such as first and third party call control and the description of the state from

a perspective of where state information is stored and how the finite state machines of

different parties relate to each other. The symmetric and asymmetric nature of the finite state

machine used to describe originating and terminating parties were reviewed with respect to

the states permitted in the state machine.

The IN basic call state model was reviewed as the cornerstone of call control, and the basis

for all notifications originating within the network, with a mapping between events in the

BCSM and the Extended Call Control call model being a requirement of the call model.

JTAPI provided an opportunity to consider a call model that does not specifically cater for

suspension of call processing and invocation of application logic, and the states used to

describe the processing of the call were useful as a basis for a number of Extended Call

Control states, and notifications. The use of an asymmetric call model not differentiating

between originating and terminating parties provides a level of abstraction useful for Web

based call control, and the use of events to report changes in state to the controlling

application is borrowed for the Extended Call Control call model.

The JCC/JCAT call model does not impose a limitation on the number of parties in a model,

and represents all parties with the same finite state machine. The use of a full call model

to provide a complete view of all parties in the call is borrowed for the Extended Call

Control call model. Complexity such as application defined routing through the network

is identified as a feature that is not required and is abstracted within the Extended Call

Control call model. The use of additional methods to provide extended functionality leads

to the independence of the Extended Call Control call model from the API, as sufficient

information is shown to be present within the Extended Call Control to cater for various

levels of complexity of APIs.
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The Parlay API and call model are application centric, in that the only parts of the call that

are of specific interest to the application are defined within the call model. Call control can

be deleted if no further control of the call is required. The Extended Call Control call model

borrows from this in providing a view of the call as perceived by the end user, however it

uses a state model that is dependent of network notifications, such that the call state is not

dependent on the presence of a Web application.

RFC 4235 defines a call model for support of state dialogues for SIP. The concept of the

virtual state model being representative of the entire state of all participants is used within

the Extended Call Control call model.

The mapping between the circuit switched and packet switched call models of IN, Parlay

and SIP show how the interoperation of call models is possible.

6.1.4 Extended Call Control Web Service and Call Model

Based on the requirements laid out in Chapter 1 existing call control call models were

examined in Chapter 3. Abstraction and identification of suitable states for a Web based call

model were determined and from these the Extended Call Control call model was created.

The events occurring within the network were mapped to notifications causing a transition

between states in the Extended Call Control call model. The Extended Call Control call

model abstracts the complexity of the state of individual terminal connections, and has the

ability to provide such information as required by the Application. The state of the terminal

in terms of the media is abstracted, as well as the relationship between the terminal and

network. Common identifiers allow unique identification of the call as well as connection.

By considering use cases as well as existing call control APIs such as Parlay-X an Extended

Call Control API is proposed that meets the requirements for advanced call control as laid

out in Chapter 1.

6.1.5 Implementation of Virtual Private Branch Exchange Web Application

Chapter 5 presented a proof of concept application using the Extended Call Control call

model. The implemented virtual private branch exchange application as described within

the Extended Call Control call model Chapter 4, provided a method of validating the

concepts of the call model and associated API. The proof of concept architecture provided

the necessary notifications of state for the application to provide advanced call control.
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6.2 Extended Call Control Web Service and Call Model Contri-
bution

A Web application providing advanced call control requires knowledge of the underlying

network that it is controlling. This representation of the state of the underlying network

is done using a call model. In this research an Extended Call Control call model and API

for call control Web applications is proposed. The developed Extended Call Control Web

service provides third parties with an opportunity to incorporate advanced call control in

their Web applications, adding value to existing and new service mashups.

This Extended Call Control call model, synthesised from the analysis of existing call

models, provides the following benefits:

• It provides abstraction of underlying resources,

• It is sufficiently detailed to interwork with existing call models.

• It can represent multiple parties in an abstracted manner.

• It can abstract circuit-switched and packet-switched networks. Mappings between the

notifications for the Extended Call Control call model and various network service

architectures have been performed to demonstrate this ability.

A method of identifying and abstracting telecommunications functionality for advanced call

control was shown. Using method discovery to abstract functionality present in message

sequence charts for complex call control scenarios the Extended Call Control Web service

APIs were determined.

This Extended Call Control Web service API and call model was demonstrated in a proof

of concept Web application for a Virtual Private Branch Exchange. The architecture of the

implementation facilitates separation of the Web service and the call model, facilitating the

distribution of functionality and redundancy.

Provision for identification of the call after creation as well as identification of a stateful

resource permitted asynchronous stateful Web service operation, providing the Web appli-

cation with the ability to perform mid call operations such as moving a party from one call

to another during the course of the call.

The use of streaming HTTP provided the Web application with state notifications ensuring

that the state of the underlying network and the controlling application were identical, a

requirement for the Web application to provide control of the network.
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Maintenance of state and the corresponding mapping of the state was performed by the

state manager, which reduced the complexity of the implementation of the Web service,

and provided distribution of functionality.

6.3 Research Limitations

The Extended Call Control Web service assumes Third Party call control. Thus the network

is assumed to be in control of the destination leg of the call, requiring that the entity

responsible for the mapping and implementation of the Extended Call Control Web service

has sufficient knowledge of the destination legs progress to update the Extended Call

Control call model, and to perform network level call control on that leg. The function-

ality available to the Extended Call Control Web service is dependent on the underlying

telecommunications operator equipment and service architecture.

The network operator has to create triggers within the network to flag the processing of

calls for extensions falling within the control of an Extended Call Control Web application.

Service level agreements between the Web Application user and the network operator would

have to be performed before extensions could be identified for the Extended Call Control

Web service.

As the element responsible for management and mapping of network call state to Extended

Call Control call state requires information about each party in a call, the memory require-

ments for such a system can grow at a rapid rate. Memory requirements are not a limiting

factor for asynchronous Web services, as Web applications would be distributed amongst

a number of such elements. Rather reducing the quantity of Web application requests

is of a higher priority, a feature which asynchronous Web services provide compared to

synchronous Web services. Implementation of such an element would require telecommu-

nications operator level hardware, such as a Parlay Gateway. The distribution of resources as

proposed in the implementation permits state to be maintained in multiple entities, however

such state would be lost should the state manager fail. Protection of state and robustness of

implementation were not considered in this proof of concept implementation.

Various browsers implement and interpret JavaScript in a non reliable manner and JavaScript

applications can behave slightly differently. In addition security policies on browsers can

change depending on the browser and end user settings. Signed security certificates for the

Web application and robustness of the Web application were not considered in this proof of

concept.
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The Virtual Private Branch Exchange Application and proof of concept implementation

considers every call to be a multi party call, requiring a large amount of resources within the

Asterisk server emulating the network. Treating two party calls as multi party calls within

a telecommunications network is wasteful of resources, and this research does not detail

how a telecommunications operator could implement such a service on a service delivery

platform.

6.4 Future Work

The Extended Call Control is a SOAP based Web service, however RESTful Web services

are gaining popularity for a number of reasons. Some of these reasons include the following:

• The simpler manner in which the service can be accessed without having to use SOAP

encapsulating technologies, or development toolkits.

• The transparency of the requests via HTTP, allowing firewall inspection without

SOAP packet unpacking.

• Authentication using industry-standard certificates and common identity manage-

ment systems, such as a Lightweight Directory Access Protocol server.

The choice to implement a RESTful interface for advanced call control as opposed to a

SOAP based Web service is a subject that requires further investigation.

Security of Web services is a topic that requires thorough research. Security and authenti-

cation are not the focus of this research and further consideration is to be given to this topic

before an implementation can be performed. In addition authorisation to use a Web service

such as the Extended Call Control Web service and the requirements for such authorisation

requires understanding of Service Level Agreements and the resources for such.

By means of the Extended Call Control Web service additional advanced call control

applications can be developed to provide functionality that was previously only available

to a PBX. An example of such an application could be a Web based call centre application.

Performance and scalability of such a Web Application is of great interest, especially

when compared to existing call control Web services such as provided by Twilio.com and

Voxeo.com.

The problem of concurrency and synchronising call state over high latency connections

has not been a topic of this research, and requires further study, especially in the case of

117



a disconnection in which the Web application could lose connectivity from the streaming

notification server, in which case the Web application is no longer performing call control.

Possible methods of ensuring concurrent state could include a method to request an update

of state, based upon a provided previous state identification.
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Abstract – This paper investigates the requirements for a
Parlay-X Extended Call Control Web Service, and identifies
some of the current shortcomings of call control specifi-
cations. A call model suitable for Extended Call Control
is developed and tested against A Virtual Private Branch
Exchange application to illustrate how advanced call control
can be facilitated using such a Web Service. A methodology
to develop Extended Call Control methods is proposed based
on identification of use cases.

Index Terms – OSA/Parlay, Extended Call Control, Web
Service, Convergence, Call Model, Virtual PBX

I. E XTENDED CALL CONTROL

Extended Call Control is a proposed Web Service
for advanced control of telecommunications networks.
This Web Service was proposed in September 2005 by
Ericsson as a possible solution to the current lack of ad-
vanced call control available to Web Service developers
[1]. Extended Call Control is currently being developed
by the Parlay Group, and a number of Parlay-X API
Accelerator meetings have been held to determine the
requirements for such a Web Service.

Extended Call Control aims to allow a large set of
previously unavailable operations such as individual
control of call participants (or legs), control of network
resources such as interactive voice response units and
functionality such as conference support. This Web Ser-
vice has to foremost conform to the paradigms of Web
Services, such as maintaining abstraction [2], provide
loose coupling between the application and the Web
Service and a suitable level of abstraction.

Extended Call Control is intended to provide facility
for notification of both subscribed notifications and trig-
gered network level notifications. In addition the web
application has control and state knowledge over the
entire duration of the call, as opposed to current call
control Web Services where there is no notification of
the call once created. In the current Parlay-X Third
Party Call which incorporates elements of Extended Call
Control, the actual call is established asynchronously
within the network and no notifications are set to the
application regarding the state of the call progress within
the network [3], [4].

∗The Centre is supported by Telkom SA Limited, Siemens
Telecommunications, Vodacom South Africa, Telsaf Data and the
THRIP Programme of the Department of Trade and Industry.
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Figure 1, from [5], shows the Parlay and Parlay-X
architecture, where Parlay-X can be mapped to Par-
lay APIs or alternatively mapped directly to underly-
ing network services. A Parlay-X Web Application is
shown to illustrate the difference between an Extended
Call Control Web Service and a normal Parlay-X call
control Web Service, where the Extended Call Control
application shown by the circle numbered 1 has control
over the call for the entire duration of the call, whereas
the normal Web Service, circle 2, operates in a request
response manner with polling to determine the state of
participants.

In this paper we consider the requirements for an
Extended Call Control Web Service, allowing greater
co-operation between Internet developers and telecom-
munication service providers. There is a clear need for
Extended Call Control, however the requirements are



not fully defined in the standards. This paper provides an
innovative method to develop an Extended Call Control
Web Service in an extensible manner. In addition current
state models for such a service are incomplete, often
foregoing intermediate information such as whether the
participant’s phone is ringing. We propose a call state
model suitable for an Extended Call Control Web Ser-
vice. A reference example in section V is provided to
illustrate how Extended Call Control can be used for a
virtual private branch exchange application, and the call
model used to reflect the state of the progress within the
network.

II. W HY I S EXTENDED CALL CONTROL NECES-
SARY?

OSA/Parlay abstracts network resources (as shown
in Figure 1) so that service application developers are
not required to understand network protocols such as
MAP, SIP, INAP and ISUP [6]. However the OSA/-
Parlay interfaces are very rich in functionality and still
require a fundamental understanding of telecommuni-
cation call control, messaging and database operations
[6]. By providing abstracted Extended Call Control, fine
grained call messaging and complex data operations are
abstracted to the extent that these advanced operations
can be provided in single method calls. For example
creating a call does not require the application to reg-
ister with the framework, authenticate itself, and create
objects to handle the call. Rather instead a single method
is invoked on the Web Service.

The aim of Extended Call Control is rapid service de-
velopment by developers having Web Service skills, and
not the specialised skills required for IN programming,
allowing the number of application developers to move
into the millions [7].

Parlay Call Control consists of five call control related
Web Service specifications:Third Party Call, Call No-
tification, Call Handling, Audio Call, and Multimedia
Conference. Complex control of calls requires combina-
tions of these Web Services; however such functionality
is difficult to combine when creating applications which
operate outside of the intended use cases of the Web
Services. The Parlay group has been creating common
data types and revising the current call control specifica-
tions to better allow interworking of these Web Services,
however data type limitations can hamper extensibility
of call control Web Services.

III. W HAT ARE THE CURRENT I SSUESW ITH EX-
TENDED CALL CONTROL ?

More powerful call control requires the application
to know the state of parties and the operations within
the network. This requires the use of state and an asyn-
chronous model that, while in partial conflict with the

Parlay-X programming model of simplicity and stateless
behaviour, is seen as necessary.

Existing Call Control Web Services have a number of
shortfalls, including:

1) In Call Notification not all call events are reported,
and a call could fail due to unavailable resources
or routing failure and the application would not
know why the call failed [8].

2) Each call event notification is treated as a separate
occurrence and the application cannot keep con-
trol over the call after the event handling [8].

3) Third Party call control sets up a call between
two parties only [9]. However by allowing more
parties in the initial call setup one could provide
conference call setup capabilities.

4) To receive information regarding the status of the
call, the application is required to explicitly poll
the Call Control Web Service, creating a number
of unnecessary messages, and periods of uncer-
tainty [9], [10], [11]. Note that current draft spec-
ifications include a URL correlator as a callback
reference.

5) The Multimedia Conference Web Service requires
the application to add participants sequentially
[11], and can cause a delay in the starting of the
conference, since each request is handled synchro-
nously. The conference organiser may be billed
for time that is not utilised effectively.

By contrast Extended Call Control maintains control
of the call over the entire call life cycle, thus requir-
ing a more detailed model of the call and associated
parties than what is currently provided in any given
call control Web Service. This implies that the Web
Application has substantial logic and no longer simply
defines rules. An application using the Extended Call
Control Web Service would have to be able to operate
in a stateful manner, receive event notifications, and
be able to be invoked on a network triggered event
notification. Applications would also have to be able
to change event subscriptions over the life of the call.
Web Services have inherent delays and asynchronous
behaviour is required to overcome this. When Call Con-
trol is passed from one application to another, say in
the case of transferring control of a conference call, a
unique identifier is required for each call. Support of
multi-party calls also requires new call models [12].
As an Extended Call Control Web Service would allow
manipulation of call media, a number of potential base
Parlay mappings arise, and existing call control Web
Services data structures are inadequate. In section IV we
propose a call model suitable for Extended Call Control.

IV. C ALL M ODEL

As discussed in section III, advanced call control
requires knowledge of the state of the resources within
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the network. Telecommunications service architectures
uses call state models to keep track of the progress
of each session and the services that are used during
the sessions. The call model represents all the essential
features of a session [13, pg. 39], and is a high level,
technology independent abstraction of the call [5], [14].

Telecommunication services such as conference call-
ing and call centre queueing require many messages to
be exchanged, and control of the call is normally in
place for the duration of the call. These services usually
require the application to implement a call model to
interpret these messages based on the last known state
of the session [15]. Thus implementation of a call state
model allows a far richer set of service functionality than
that offered by a simple request response type [5].

An operational model similar to that of the ECMA
[16] can be adopted to illustrate the relationship between
the call object and associated connections of the call, as
shown in Figure 2 .

Connections have the following attributes:
• Connection Identifier - Each connection has a

unique identifier for a given call. This identifier can
be based on the address of the participant. There
are as many connections as participants.

• Call Identifier - Each connection has a reference to
the identifier of each call with which it is involved.
One connection could be involved in more than one
call, for example a conference call.

• Media Stream - This attribute is as defined by
Parlay Multimedia Call Control SCF. Media stream
has data types, and those data types have a flow
direction.

The proposed call state model for the call object in the
connection model is shown in Figure 3. State transitions
are observed by the service logic through event reports,
caused by either service logic instructions or network
notifications.

The following are the connection state definitions:
• Inactive - In this state the application is regis-

tered with the Extended Call Control Web Service,
however no connections exist. Service logic is wait-
ing for either application instruction or network
notification.

• Active - The state where there is a relationship
between a call and service logic, this can include
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zero or more connections. This state describes only
the logical state of connections. Media streams are
described in the connection information. A change
in a connection would cause an update in state
information.

• Initiated - A state in which the network is in
the process of establishing a connection. In this
state the call is in a pre-delivery state and service
logic can accept, reject or redirect the attempted
connection. Only once the connection is fully es-
tablished would the call state transition to Ringing
or Queued.

• Queued - A state in which call progression is
suspended or made inactive by the network whilst a
connection is being established. For example when
a call is parked due to the line being busy, or when
a call is queued waiting for an agent in a call centre
application.

• Ringing - In this state the connection is waiting
for confirmation from the participant.

• Error - It is possible for all states to transition to
the Error state except for Inactive. From an Error
state the call can resume its Active state such as
when adding another party is attempted but fails,
or move into an Inactive state.

V. V IRTUAL PBX EXAMPLE

An example of an Extended Call Control Web Appli-
cation is a virtual receptionist’s switchboard. This appli-
cation would allow a company to operate in a completely
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distributed manner, with the receptionist having a Web
Interface to control the company “extensions”, which
are standard mobile numbers.

The application would have knowledge of all the
extensions and be able to provide advanced call control
for any of them as required. It would be possible for the
application to be embedded onto the mobile phone itself
thus allowing the terminal to provide direct application
layer service signalling to the Parlay X gateway as
proposed in [17], as shown in Figure 4.

A number is assigned to the switchboard, and when
callers call in to the main number, the receptionist’s
mobile phone rings, and the Web based application also
reports an incoming call. The receptionist is able to
perform standard and advanced private branch exchange
functionality via the Web Application, including:

• Transfer the caller to a salesman’s mobile number,
either first conferring with the salesman or doing
a blind transfer. Requires: Call Leg Control, Call
Creation.

• Create a conference call between the caller, support
and account salesman, and pass control of the con-
ference to the salesman. Requires: Conference Call
Creation and Control.

• Which extension is currently connected, and to
whom? Requires: Call Status.

In the following example, as shown in Figure 5, we
illustrate how these fundamental concepts can abstracted
by an Extended Call Control Web Service and mapped
to base Parlay APIs.

1: The Parlay-X Web Service creates an object im-
plementing theIpAppConfCallControlManager inter-
face. The call state transitions toInactive since no
connections exist at this time.

2: This message enables the Parlay-X Web service to
receive notifications of new call events to the company
number, afterwards passing those on to the application.

3,4,5: The conference is created, waiting for an in-
coming connection and an associated object is created.
The Web Service requests to be notified of parties leav-
ing the conference.

6: A caller calls the company switchboard number and
the VPBX application is alerted that a call is incoming.
This notification causes a transition to theActive
state.

7,8,9: The caller is automatically assigned to a sub-
conference by the Parlay gateway and this is obtained
by the Extended Call Control Web Service, and a call
leg object is created to represent the caller. The calling
party is then joined to the conference by attaching the
media. Note that when there is a change in media, the
state model would reflect the change in connections.

10,11: The receptionist’s mobile number is then
added as a participant of the conference and a new
IpMultiMediaCallLeg object is created. The call state
transitions toInitiated , and later toRinging due
to the network notification.

12: Once the receptionist answers the phone, a notifi-
cation is issued by the network, and the Extended Call
Control Web Service notifies the VPBX application. The
call state model transitions to theActive state with
both connections established.

At this stage there is communication between the
caller and the receptionist. The caller requests to be
put through to both sales and technical support. The
receptionist then puts the caller on hold.

13: The Extended Call Control Web Service splits the
caller and receptionist so that there is no longer any
communication between the two parties.

Once the caller is on hold the receptionist calls the
salesman and technical assistant so that they can be
informed of the situation.

14,15,16,17: Calls are created to both sales and tech-
nical. This results in a transition to theInitiated
state again, as new connections are being formed.

18,19: Once parties answer, the VPBX application
is notified, and the conference allows the parties to
interact.
The receptionist is instructed to put the caller through.
TheActive call state is updated.

20: The caller is moved to the same conference as
the sales and technical and the receptionist is free to
disconnect.

21: The receptionist disconnects and the VPBX appli-
cation is notified.
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V IRTUAL PBX EXAMPLE

VI. H OW I S EXTENDED CALL CONTROL

ACHIEVED ?

There are two approaches for an Extended Call Con-
trol specification, firstly extending the existing call con-
trol specifications and creating coherent cross specifi-
cation data structures, or creating a new Extended Call
Control specification, as shown in Figure 6.

Regardless of the approach used, basic requirements
for Extended Call Control emerge when one consid-
ers an example Extended Call Control Web Service as
shown in Figure 5, and when taking into consideration
that the Web Service is in itself a type of Parlay applica-
tion as shown in Figure 1.

Fig. 6
APPROACHES TOEXTENDED CALL CONTROL SPECIFICATIONS

Most important, the Web Application has to be able
to maintain the state of the call and connections, and as
such a call identifer is required that is unique for each
call and a connection identifier. This would allow control
to be passed from one Web Application to another, and



in the case of a failure be able to recover the session.
This is being addressed by the draft Parlay-X call control
Web Services where a session identifier and participant
identifer are included [3]. In addition a web application
using the Extended Call Control Web Service would
have to be able to subscribe to receive notifications,
in an asynchronous manner, thus providing knowledge
of state transitions to the application as soon as they
occur. This requirement has been addressed in the draft
Parlay-X call control specifications, however a limited
number of notifications has been chosen. The call has
to be represented in a manner that, whilst maintaining a
suitable level of abstraction, does not prevent the appli-
cation from differentiating between the various parties
and controlling parties or their connections. We believe
a call model as shown in Figure 2 allows such control.

A. Extended Call Control Methods

Using the base Parlay APIs to determine characteris-
tic message sequences in any given application, such as
Multiparty of Conference Call Control. Use cases can
be identified that lead to Extended Call Control meth-
ods. For the VPBX example, first the call and callback
objects are created. These operations are encapsulated
in a single methodLogon, including associated notifica-
tions of completion, errors and failures. The Application
should not be required to specifically create any call
control objects, only indicate required connections to
the Extended Call Control Web Service. Depending on
the service agreement between the web application and
the Web Service, charging plans are set automatically
by the network. As is shown in messages 10 and 11,
additional call legs are enabled as required by the Web
Service, and a singleConnect method is required to
determine that the caller and receptionist have to be con-
nected. Notifications arising from direct web application
requests and relating to progress of the call would be
reported as is shown when the receptionists phone rings
and is answered to establish communication between the
two parties. As is shown in message 13, the mapping to
base Parlay APIs depends on the service level agreement
of the service and the operator implementation, as one
could also use thedetachMediaReq() to place the
caller on hold. In messages 14 and 16 new call legs are
created as the receptionist’s connection already exists.
Thus, allowing more than one party in a Connect()
method would provide an extensible number of parties.

VII. C ONCLUSION

Extended Call Control aims to allow advanced control
of a telecommunications network via a Web service. In
this paper we have considered the requirements for an
Extended Call Control Web service, allowing for greater

co-operation between Internet developers and telecom-
munication service providers. This paper provides an
innovative method to develop an Extended Call Control
Web Service in an extensible manner, and proposes a
call state model suitable for such a Web service. A
reference example of a virtual private branch exchange
application is provided. Current shortfalls with existing
Call Control Web Services is examined, and key require-
ments for a new Web service identified.

REFERENCES

[1] Ericsson. Meeting #32: Parlay X Call Control improvement,
C5-050482. Technical report, Joint Working Group (Parlay,
ETSI TISPAN Project OSA, 3GPP CT5), September 2005.

[2] Appium. Meeting #33: Parlay X 3.0 Enhanced Call Control,
C5-050616. Technical report, Joint Working Group (Parlay,
ETSI TISPAN Project OSA, 3GPP CT5), October 2005.

[3] ETSI. Open Service Access (OSA); Parlay X Web Services;
Part 2: Third Party Call (Parlay X 3). June 2007.

[4] ETSI. Open Service Access (OSA); Mapping of Parlay X 2
Web Servicees to Parlay/OSA APIs; Part 2: Third Party Call
Mapping; Sub-part 2: Mapping to Multi-Party Call Control.
December 2005.

[5] D. E. Vannucci and H. E. Hanrahan. Extended Call Con-
trol Telecom Web Service. InProceedings of Southern
African Telecommunication Networks and Applications Con-
ference (SATNAC): Next Generation Services - business mod-
els@work, Mauritius, September 2007.

[6] H. Hanrahan.Network Convergence: Services, Applications,
Transport and Operations Support. Wiley, New Jersey, USA,
first edition, 2007.

[7] Z. Lozinski. Parlay/OSA and the Intelligent Network. February
2005.

[8] ETSI. Open Service Access (OSA); Parlay X Web Services;
Part 3: Call Notification (Parlay X 2). December 2006.

[9] ETSI. Open Service Access (OSA); Parlay X Web Services;
Part 2: Third Party Call (Parlay X 2). December 2006.

[10] ETSI. Open Service Access (OSA); Parlay X Web Services;
Part 11: Audio Call (Parlay X 2). December 2006.

[11] Parlay ETSI. Open Service Access (OSA); Parlay X Web
Services; Part 12: Multimedia Conference. March 2005.

[12] Ericsson BT Appium, ETRI. Meeting #34: Requirements
Parlay X Etended Call Control, C5-060016. Technical report,
Joint Working Group (Parlay, ETSI TISPAN Project OSA,
3GPP CT5), February 2006.

[13] R. Jain, J.-L. Bakker, and F. Anjum.Programming Converged
Networks. John Wiley & Sons, Washington, USA, first edition,
2005.

[14] M. Graf. An Introduction to the Java Telephony API
(JTAPI). Technical report, IBM Research Division,
March 2000. http://www.zurich.ibm.com/csc/
distribsys/j323/jtapi-tutorial.pdf .

[15] J. Dobrowolski, W. Montgomery, K. Vemuri, J. Voelker, and
A. Brusilovsky. IN Technology for Internet Telephony En-
hancements, December 1999. INTERNET-DRAFT draft-
dobrowolski-iptel-in-00.txt.

[16] ECMA. Standard ECMA-269: Services for Computer Sup-
ported Telecommunicaiton Applications (CTSA) Phase III.
March 2004.

[17] B. Fricke and H.E. Hanrahan. The Development of a Struc-
tured Approach to Service Provisioning in a Parlay Environ-
ment. InProceedings of Southern African Telecommunication
Networks and Applications Conference (SATNAC): The net-
work @ work, Western Cape, South Africa, September 2006.


	Extended Call Control Telecommunications Web Service
	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Formatting Conventions
	1  Introduction
	1.1 Research objectives
	1.2 Thesis Outline

	2  Stateful Web Services
	2.1 Web services usefulness
	2.2 Architecture
	2.3 Stateful Web Services
	2.4 Synchronous and Asynchronous Stateful Web services
	2.5 Maintaining state in a Web server
	2.6 Web Service Resource Framework
	2.7 Conclusion

	3  Call Control Call Models
	3.1 Call Model Background
	3.1.1 First and Third-Party Call Control
	3.1.2 Full and Half-Call Models
	3.1.3 Symmetric and Asymmetric call models

	3.2 The Intelligent Network
	3.2.1 IN Service Creation
	3.2.2 Conclusions

	3.3 JTAPI
	3.3.1 Distributed JTAPI
	3.3.2 Conclusions

	3.4 JCC/JCAT
	3.4.1 Java Call Control
	3.4.2 Relation of JCC/JCAT API to Parlay API
	3.4.3 JCC Finite state Machines
	3.4.4 Java Call Control Extensions (JCAT)
	3.4.5 JCAT Finite State Machines
	3.4.6 Conclusion

	3.5 Parlay State Models
	3.5.1 Generic Call Control
	3.5.2 Multi-Party Call Control
	3.5.3 Conclusions

	3.6 SIP
	3.6.1 Conclusions

	3.7 Call Model Mapping
	3.7.1 OSA/Parlay-IN CS1 Mapping
	3.7.2 OSA/Parlay-SIP Mapping

	3.8 Conclusion

	4  Design of the Extended Call Control Call Model
	4.1 Extended Call Control Connection Model
	4.2 The Extended Call Control Call State Model
	4.3 Methodology to Determine ECC API Methods
	4.4 ECC Methods
	4.4.1 Register
	4.4.2 createCall
	4.4.3 endCall
	4.4.4 addCallParticipants
	4.4.5 moveCallParticipants
	4.4.6 removeCallParticipants
	4.4.7 modifyMedia

	4.5 Transitions
	4.6 Notification Mapping
	4.7 Conclusion

	5  Demonstration of Extended Call Control Call Model
	5.1 Virtual Private Branch Application
	5.2 Use Cases
	5.3 Graphical User Interface
	5.4 Implementation Architecture
	5.4.1 Communication

	5.5 Call Model Mapping
	5.5.1 Registration
	5.5.2 Creation of a Call
	5.5.3 Transferring a Participant
	5.5.4 Adding a Participant
	5.5.5 Incoming Call Notification
	5.5.6 Disconnecting Participants
	5.5.7 Ending a Call

	5.6 Discussion
	5.6.1 Web Service
	5.6.2 Network Emulator
	5.6.3 State Manager
	5.6.4 Application
	5.6.5 Notification
	5.6.6 Architecture

	5.7 Conclusion

	6  Conclusion
	6.1 Summary
	6.1.1 Requirements for Advanced Web Service Call Control
	6.1.2 Stateful Web Services
	6.1.3 Existing Call Models
	6.1.4 Extended Call Control Web Service and Call Model
	6.1.5 Implementation of Virtual Private Branch Exchange Web Application

	6.2 Extended Call Control Web Service and Call Model Contribution
	6.3 Research Limitations
	6.4 Future Work

	References
	A  Papers
	B  OSA/Parlay Extended Call Control Telecom Web Services

