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Original Article

A valine to phenylalanine mutation in the precore region of
hepatitis B virus causes intracellular retention and impaired
secretion of HBe-antigen

Chien Yu Chen,1 Carol Crowther,2 Michael C. Kew1 and Anna Kramvis1

1MRC/University Molecular Hepatology Research Unit, Department of Medicine and 2Hepatitis B Virus Research
Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg,
South Africa

Aim: Hepatitis B virus (HBV) e antigen (HBeAg) is translated
from precore mRNA as a precore/core protein, which is post-
translationally modified to give rise to the protein that is
secreted into the serum. The G1862T mutation in HBV occurs
in the bulge of the encapsidation signal within the prege-
nomic RNA. When the precore mRNA is translated, this muta-
tion results in a valine to phenylalanine substitution at the -3
position to the signal peptide cleavage site at the amino end
of the precursor protein. The aim of this study was to deter-
mine whether this mutation could affect HBV replication
and/or HBeAg expression.

Methods: Following transfection of Huh 7 cells, HBV replica-
tion was followed using real time polymerase reaction (PCR)
and expression of HBeAg expression was monitored using
confocal microscopy.

Results: HBV replication was reduced when this mutation
was introduced into genotype D but not into genotype A

replication-competent constructs. Using mutant HBeAg-
expressing plasmids, we demonstrated a 54% reduction in
HBeAg secretion relative to the wild type. Confocal micros-
copy demonstrated that the mutant HBeAg accumulated in
the endoplasmic reticulum, endoplasmic reticulum intermedi-
ate compartment and Golgi. These aggregates of mutant
protein increased in size following treatment of the cells with
a proteasome inhibitor, MG132, and had the hallmark features
of aggresomes. They attracted ubiquitin, heat shock proteins
and proteasomes and were isolated from the cytosol by the
intermediate filaments, vimentin and cytokeratin.

Conclusion: The formation of aggresomes, as a result of
the G1862T mutation, may play a contributory role in HBV-
induced liver disease.

Key words: aggresomes, mutant, HBe-antigen, signal
peptide cleavage

INTRODUCTION

HEPATITIS B VIRUS (HBV), a member of the family
Hepadnaviridae, is endemic in the black popula-

tion of southern Africa,1 where genotype A is the domi-
nant genotype2–5 and subgenotype A1 is the dominant
subgenotype.3,5,6 A high rate of HBV e antigen (HBeAg)
negativity is a feature of the chronic carriage of the virus
in this population.7 Distinctive sequence characteristics
of subgenotype A1 have been identified that could
account for the high HBeAg negativity rate.8,9 At the

transcriptional level, the core promoter mutations
1762T1764A can reduce HBeAg expression.10–12 At the
translational level, mutations at 1809–1812 that alter
the Kozak sequence of the precore/core open reading
frame are stable traits and affect HBeAg expression to an
extent comparable to 1762T1764A.13 The co-existence of
1762T1764A and 1809–1812 mutations reduces HBeAg
expression in an additive manner.13 Approximately 25%
of both southern African black asymptomatic carriers of
the virus14 and hepatocellular carcinoma patients2 have
been shown to have a G to T transversion at 1862 in the
precore region. This mutation could affect HBeAg
expression by interfering with signal peptide cleavage at
the post-translational level.

HBeAg is expressed from the precore/core open
reading frame (ORF) as a precore/core protein that is
post-translationally modified to give rise to HBeAg,
which is secreted into the serum and expressed on the
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surface of hepatocytes. A hydrophobic signal sequence
directs the precore/core protein to the endoplasmic
reticulum (ER), where the 19 amino acid signal peptide
is cleaved from the amino-terminal end by a signal
peptidase and a variable number of amino acids are
removed from the arginine-rich carboxy-terminal end to
form HBeAg.15,16 The G1862T mutation in the bulge of
the RNA encapsidation signal (codon 17) changes the
valine at the -3 position to the signal peptide cleavage
site at position 19 to phenylalanine (Fig. 1). Phenylala-
nine, being aromatic, is a “forbidden” amino acid at
this position (-3,-1 rule)17–19 and may abrogate signal
peptide cleavage,14,20 as has been shown for Escherichia
coli alkaline phosphatase.21 Abrogation of signal peptide

cleavage can lead to retention of the precursor protein
in the ER and prevent the formation and secretion of
HBeAg.22

The ER is the cell’s quality control site for accurate
folding of secretory and membrane proteins, including
viral proteins.23,24 Proteins that fail to achieve their
native conformation are retained in the ER, in associa-
tion with ER chaperones, and induce the unfolded
protein response (UPR).25 If this response fails to
produce correct folding and assembly of the proteins,
misfolded proteins are targeted for degradation by the
ubiquitin–proteasome system. Accumulated misfolded
proteins in the ER lumen are retrotranslocated to
the cytoplasm, where they are ubiquinylated and
degraded by the proteasome.26,27 This process, called
ER-associated degradation,26 is also regulated by the
UPR. Failure of this sequence of events to prevent accu-
mulation of unfolded or misfolded proteins results in
aggregation of the proteins and their sequestration into
specialized “holding stations” called aggresomes.28

The purpose of this study was to determine the effect
of the introduction of the G1862T mutation on HBV
replication and on the secretory pathway of HBeAg.

METHODS

Site-directed mutagenesis

SITE-DIRECTED MUTAGENESIS using the Quick-
Change kit (Stratagene, La Jolla, CA, USA) according

to the manufacturer’s directions, together with the
primers and amplification conditions shown in Table 1,
were used for plasmid construction. The plasmid
pCH9/3091-wt (Dr M. Nassal, University of Freiburg,
Germany) was used to generate the HBeAg-expressing
plasmids. pCH9/3091-wt encodes a wild-type, termi-
nally redundant, replication-competent genotype D
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Figure 1 Schematic representation of signal peptide cleavage
site in relation to the hepatitis B virus (HBV) precore/core
protein. n is designated as the amino domain, h is the hydro-
phobic domain and c is the carboxyl domain of the signal
sequences. The amino acids of each domain were defined using
SignalP 3.0 software (Center for Biological Sequence Analysis,
Technical University of Denmark: http://www.cbs.dtu.dk/
services/signalP).

Table 1 Oligonucleotides used for site directed polymerase chain reaction (PCR) mutagenesis

Primer Change Sequence‡ Annealing
temperature

1836F† (+) Genotype D to A 5′-TAATCATCTCATGTACATGTCCCACTGTTCAAGCCTCCAAGCTGT-3′ 77.0°C
1880R† (–) Genotype D to A 5′-ACAGCTTGGAGGCTTGAACAGTGGGACATGTACATGAGATGATTA-3′ 77.0°C
1839F† (+) Val17Phe (G1862T) 5′-TCATCTCATGTACATGTCCCACTTTTCAAGCCTCCA-3′ 74.0°C
1874R† (–) Val17Phe (G1862T) 5′-TGGAGGCTTGAAAAGTGGGACATGTACATGAGATGA-3′ 74.0°C
1881F† (+) Trp28* (G1896A) 5′-GCCTTGGGTGGCTTTAGGGCATGGAC-3′ 72.5°C
1906R† (–) Trp28* (G1896A) 5′-GTCCATGCCCTAAAGCCACCCAAGGC-3′ 72.5°C

†Numbering of the nucleic acids is from EcoRI site according to genotype D HBV (AY233292). +, sense polarity; –, antisense polarity.
‡Mutated nucleotides are shown in bold face and mutated codons are underlined.
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HBV genome and is transcribed using the cytomegalovi-
rus (CMV) promoter.29 The southern African HBV iso-
lates in which the 1862T mutation was detected belong
to genotype A. We therefore modified the original
plasmid to the genotype A sequence in the precore
region and generated mutants G1862T and G1896A
from this template.

Amplification and cloning for
HBeAg-expressing pCR3.1
plasmid constructs
The entire precore/core regions of the modified
HBV constructs were amplified. Forward primer
(1808XhoIF(+)): 5′-C"TCGAGAGCCACCATGCAACTT
TTTCA CCTCTG-3′; reverse primer (2458BamHIR):
5′-G"GATCCCTAACATTGAGA TTCCCGA-3′, yielded a
656 bp polymerase chain reaction (PCR) product. The
PCR mixture, 100 mL in volume, contained 1.75 unit
Expand high fidelity polymerase (Roche, Mannheim,
Germany), 300 mM each of the dNTPs, 2 mM of each
primer, 3 mM of magnesium chloride (MgCl2), 1¥ high
fidelity Expand PCR buffer, and 1.5 mL of plasmid DNA
template. The PCR reaction was performed at 95°C for
45 s, 48°C for 60 s and 72°C for 80 s for 40 cycles in a
programmable thermal cycler (Perkin Elmer, Boston,
MA, USA). PCR products were polished with TaKaRa
ExTaq polymerase (Takara Mirus Bio, Madison, WI,
USA) at 2.5 U/100 mL for 10 min at 72°C before cloning
into the pCR3.1 cloning vector with CMV promoter
using the TA Eukaryotic cloning kit – bidirectional
(Invitrogen, Carlsbad, CA USA). Clones with correct
inserts were selected by restriction digestion and
sequenced bidirectionally.

Cell culture and transfection
The Huh7 hepatocellular carcinoma cell line was
obtained from Professor H. Nakabayashi of Hokkaido
University, Japan.30 The cell line was maintained in
ISE-RPMI1640, 10% (v/v) fetal bovine serum (FBS)
(Gibco-BRL, Paisley, Scotland, UK), with 5% CO2 and
sub-cultured every 2–3 days. Plasmid constructs were
transfected into Huh7 cells using Lipofectamine 2000
(Invitrogen). Various inhibitors were used: MG132
(Z-Leu-Leu-Leu-CHO) (BIOMOL, Plymouth Meeting,
PA, USA), a proteasome inhibitor, was used at 1 mM for
24 h incubation at 37°C before imaging the live cells
transfected with precore/core constructs. Brefeldin A
(BFA) (Sigma-Aldrich, St Louis, MO, USA) was used at
5 mg/mL, and incubated with the cells at 37°C for
30 min before fixing the cells.

Extraction of intracellular core
particle-associated HBV-DNA
Media were collected at 72 h post-transfection and the
cells were rinsed twice with phosphate-buffered saline
(PBS). The cells were lyzed, the intracellular core par-
ticles were precipitated and resuspended according to
the method of Parekh.31 The intracellular core particle-
associated HBV-DNA was extracted using QIAamp
blood kit (Qiagen, Hilden, Germany), according to the
manufacturer’s directions. The DNA was finally eluted
in 180 mL of elution buffer.

Real-time quantitative PCR amplification
of HBV-DNA
Real-time quantitative PCR was performed in a LightCy-
cler, Version 2 (Roche) with primer and hybridization
probe (FRET) sets in the core and polymerase region of
the HBV genome,32 with modification of the probe
sequences to match sequences of the plasmid DNA tem-
plate (pCH-9/3091).

Preparation of biological standard

HBV-DNA was extracted from 200 mL of Eurohep stan-
dard serum containing 5 ¥ 105 copies/mL genotype D
HBV (kindly provided by Dr W. H. Gerlich, University
of Giessen, Germany) using a QIAamp blood kit
(Qiagen). The DNA was finally eluted in 180 mL of
elution buffer.

Preparation of plasmid standard

The recombinant plasmid was purified with Qiagen
endotoxin free plasmid Maxi kit (Qiagen). The concen-
tration of the plasmid DNA was quantified using a
high resolution spectrophotometer. Serial dilutions of
the cloned plasmid DNA ranging from 5.54 ¥ 102 –
5.54 ¥ 109 copies/mL were used for the generation of
the standard curve. The PCR was repeated three times in
duplicate to generate the standard curve.

Hybridization probes and primers

Forward primer (BcP1): 5′-ACCACCAAA TGCCCCTAT-
3′; reverse primer (BcP2): 5′-TTCTGCGACGCGGCGA
-3′, yielded a 130 bp PCR product. The donor fluores-
cent probe (HBVcD: 5′-GAGTTCTTCTTCTAGGGGAC
CTGC-FLUORESCEIN-3′) and acceptor probe (HBVcA:
5′-LightCycler Red 640TCGTCGTCTAACAACAGTA-GT
CTCCG – PHOSPHATE -3′) were used as hybridization
probes (Tib Molbiol, Berlin, Germany).

The amplification reaction mixture per capillary
(20 mL) contained 4 mL extracted HBV-DNA template,
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4 mL LightCycler FastStart DNA MasterPLUS Hybridization
Probe kit (Roche), 1 mM each of PCR primer, 0.15 mM
HBVcD (donor probe) and 0.15 mM HBVcA (acceptor
probe). Thermal cycling conditions were as follows:
initial activation of FastStart DNA polymerase at 95°C
for 10 min followed by 40 cycles of amplification were
performed at 95°C for 5 s, 60°C for 15 s and 72°C for
20 s. Fluorescent data were acquired at each cycle at the
end of the annealing step with detection channel sets at
F2/F1. Biological standard was included in every run of
LightCycler PCR as an internal control. Four indepen-
dent transfection experiments were performed and the
HBV-DNA was extracted. Each construct was tested in
triplicate for each transfection. The real-time quantifica-
tion PCR was performed at least twice for each set of
transfections.

Analysis of secreted HBeAg
The cell culture medium was collected at 48 h post-
transfection and the HBeAg concentration determined
using the Monolisa HBe kit (Bio-Rad, San Diego, CA,
USA). Three independent transfection experiments were
performed to test the HBeAg secreted into the culture
media.

Statistical analysis
Viral replication and HBeAg data were analyzed using
the ordinary one-way analysis of variance setting with
the Bonferroni method for comparison between differ-
ent mutations, using the GraphPad InStat statistical
analysis software version 3.0 (GraphPad, San Diego, CA,
USA). All data were expressed as means with standard
deviations. Differences were considered significant
when P-values were less than 0.05.

Antibodies
The following primary antibodies were used: mono-
clonal antiprotein disulfide-isomerase (PDI), 1:40
(Affinity BioReagents, Golden, CO, USA); monoclonal
anti-ERGIC 53, 1:1000 (Professor H Hauri, University
of Basel, Switzerland); monoclonal antigiantin, 1:1000
(Professor H Hauri); monoclonal antivimentin clone
V9, 1:70 (Sigma-Aldrich); monoclonal antipan cytok-
eratin, 1:70 (Sigma-Aldrich); monoclonal antialpha (a)
tubulin, 1:1000 (Sigma-Aldrich); monoclonal anti-
gamma (g) tubulin clone GTU-88, 1:1000 (Sigma-
Aldrich); rabbit polyclonal antiHSP70, 1:100 (US
Biological, SwampScott, MA, USA); rabbit polyclonal
antiubiquitin, 1:100 (US Biological); rabbit polyclonal
antihuman placental proteasome, 1:1000 (Professor B
Dahlmann, Humboldt University, Berlin, Germany);

monoclonal anti-HBeAg, 0.005 mg/mL. Secondary anti-
bodies used were: AlexaFluor 488 chicken antirabbit IgG
(H + L), 1:100 dilution; AlexaFluor 546 F(ab′)2 fragment
of goat antimouse IgG (H + L), 1:150; AlexaFluor 488
donkey antimouse IgG (H + L), 1:100; AlexaFluor 546
goat antirabbit IgG (H + L), 1:150 (Molecular Probe,
Eugene, OR, USA).

Confocal fluorescence microscopy
At 72 h post-transfection, culture slides were rinsed and
washed in PBS and cells were fixed in freshly prepared
4% (v/v) paraformaldehyde in PBS for 10 min at room
temperature (RT). After fixation, the cells were washed
three times for 10 min per wash in PBS, followed by a
permeabilization step by incubating the slides in 0.01%
(v/v) TX-100 in PBS for 10 min at RT. Cells were washed
three times for 10 min per wash in PBS and incubated in
blocking solution, 1% (w/v) bovine serum albumin
(BSA) prepared in PBS, for 1 h at RT.

Cells were incubated with primary antibody overnight
at 4°C, washed three times in PBS and incubated with
fluorochrome conjugated secondary antibodies. The
nuclei were counterstained with 4′, 6′-diamidino-2-
phenylindole dihydrochloride (DAPI) (Molecular
Probe), for 1 h at RT, protected from light. Cells were
washed four times in PBS at RT. Slides were mounted
under cover slips with antifade mounting medium, Flu-
orSave (Calbiochem, San Diego, CA, USA), and sealed.

The cells were viewed using the Zeiss Axiovert 100 M
microscope equipped with the CARV spinning disc con-
focal system (BD Bioscience, Sparks, MD, USA). Images
were captured using the Hamamatsu CCD camera
(Hamamatsu Cooperation, Hamamatsu, Shizuoka,
Japan) and Axiovision 2.0 software (Carl Zeiss, Göttin-
gen, Germany). Image analysis was performed with
IMAGEJ software for windows V1.34 (http://
rsb.info.nih.gov/ij).

RESULTS

Effects of HBV G1862T mutation on
intracellular replication efficiency and
HBeAg secretion

THE INTRACELLULAR LEVELS of HBV-DNA of wild-
type and mutant replication-competent constructs

were determined by real-time quantification of the
encapsidated HBV. The G1862T mutant showed 31%
reduction of replication efficiency relative to wild-type
in the genotype D construct (P < 0.05), but did not
affect viral replication in genotype A construct (Fig. 2).
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When introduced into the genotype D construct, the
G1896A mutation displayed similar HBV-DNA levels to
the wild-type, but a 80% reduction was obtained when
the mutation was introduced into the genotype A con-
struct (P < 0.001) (Fig. 2).

There was a 54% decrease in HBeAg concentration in
the supernatant when Huh7 cells were transfected with
HBeAg-expressing genotype A constructs with the
G1862T mutation relative to the wild-type (P < 0.001,
S.D 1 17.64). A similar reduction in HBeAg concentra-
tion was observed when the cells were transfected with
the genotype D construct with the mutation. The
G1896A mutation completely abolished the translation
of HBeAg precursor when introduced in both genotype
A and D constructs.

Intracellular localization of wild-type and
mutant precore/core protein
The effects of expression of wild-type and mutant
HBeAg were followed in Huh7 cells. Mock-transfected
Huh7 cells, in which no fluorescence was detected when
stained for anti-HBeAg, and cells transfected with a
plasmid with the G1896A mutation, which results in
the truncation of HBeAg at codon 28,33 were used as
negative controls. In subgenotype A1 HBV isolates, the
G1862T mutant occurs frequently together with a
G1888A silent mutation.3 In order to preclude the pos-
sibility that G1888A could affect the phenotype of the
G1862T mutant, constructs in which these two muta-
tions occurred independently or in combination were
used. The G1888A mutation either alone or in combi-

nation with G1862T did not affect the secretion or
expression of HBeAg (data not shown).

When the Huh7 cells were transfected with wild-type
HBeAg-expressing construct, the precore/core protein
was evenly distributed throughout the cytoplasm, as
demonstrated by the diffuse reticular and fine granular
staining (Fig. 3: a1, b1, c1). The wild-type protein colo-
calized with protein disulfide isomerase (PDI), an ER
resident chaperone (Fig. 3: a3), ERGIC-53 (a transmem-
brane lectin that cycles between ER, ERGIC and Golgi34)
(Fig. 3: b3) and giantin (a Golgi membrane protein)35

(Fig. 3: c3), indicating that the protein is moving along
the ER to the Golgi via ERGIC, before being exported
from the cell. The ER marker, PDI, showed a fine reti-
cular staining pattern that extended throughout the
cytoplasm (Fig. 3: a2). The staining pattern with the
ERGIC-53 label was punctate and closer to the nucleus
(Fig. 3: b2), and that with antigiantin staining gave a
characteristic strong juxtanuclear label compatible with
Golgi compartment labeling (Fig. 3: c2). There was no
difference in the intensity of the staining of the markers
for the different secretory pathway compartments. This
steady state distribution was disrupted when the cells
were treated with brefeldin A (BFA), an antibiotic that
blocks the transport of proteins from the ER to the
Golgi, by causing the disassembly36 and protein redistri-
bution37 of the latter to the ER. This redistribution is
evident by the change of staining for giantin from granu-
lar (Fig. 3: c2) to a finer, reticular pattern (Fig. 3: d2),
similar to the staining for ER (Fig. 3: a2). In BFA-treated
cells, in contrast to untreated cells (Fig. 3: c1), the wild-

Figure 2 Quantification of intracellu-
lar viral particle-associated hepatitis B
virus (HBV)-DNA. Mean values and
standard deviations from three inde-
pendent experiments are shown. Values
are normalized to HBV copy number of
the wild-type construct (100%). Statis-
tically significant differences compared
with wild type are indicated by an
asterisk.
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type protein accumulated in large, granular structures in
the perinuclear region and little or no precore/core
protein was seen on the periphery (Fig. 3: d1).

To follow the fate of the mutant HBV precore/core
proteins, Huh7 cells were transfected with G1862T con-
struct. In addition to the reticular pattern seen with the
wild-type construct, the transfected cells showed punc-
tate concentrations of precore/core protein that reacted

with anti-PDI, indicating movement of the mutant
protein through the ER (Fig. 3: a4–a6). The number of
cells per field showing the punctate staining pattern was
always higher in the cultures transfected with mutant
constructs compared to those transfected with the wild-
type. The intense costaining of precore protein with
ERGIC-53 (Fig. 3: b4–b6) and to a lesser extent with anti
giantin (Fig. 3: c4–c6) demonstrated that some of the
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Figure 3 Intracellular localization of hepatitis B virus (HBV) precore/core protein in relation to the early secretory organelles. Huh7
cells were transfected with plasmid constructs, fixed and then subjected to indirect double immunofluorescence staining with
antibodies against HBV precore/core protein, secondary antibody labeled with AlexaFluor 488, green and antibodies against
endoplasmic reticulum (ER) marker, PDI (a), ERGIC marker, ERGIC-53 (b), Golgi apparatus marker, giantin (c) and treated with
brefeldin A (BFA) prior to fixation, then stained with antigiantin antibody (d). All secretory organelles were detected with secondary
antibodies labeled with AlexaFluor 546, red. Colocalization of precore/core protein and secretory organelles can be seen by the
yellow color. Nuclei were counterstained with diamidino-2-phenylindole dihydrochloride (DAPI). Scale bar, 10 mm.
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mutant HBV precore/core proteins moved from the ER.
This demonstrates that the misfolded mutant protein is
not confined to the ER but a proportion moves to
ERGIC, where it appears to accumulate. A smaller frac-
tion moves onto to the Golgi. Migration of the mis-
folded protein did not occur beyond the Golgi, and this
was reflected by the 54% reduction of HBeAg expression
relative to the wild-type in the supernatant medium. The
truncated precore/core protein that results from the stop
codon introduced by G1896A, localized to the nucleus
(with faint staining only) and was not seen in other
cellular organelles (Fig. 3: a7–a9, b7–b9, c7–c9). More-
over, there was no HBeAg secretion into the supernatant
medium.

Association of mutant precore/core protein
with chaperones, proteasomes and
aggregate formation
To determine whether the quality control machinery
within the ER is operative in Huh7 cells transfected with
mutant HBV precore/core proteins, we stained cells with
antibodies against precore/core protein and against
Hsp70, ubiquitin and proteasomes. Small aggregates of
precore/core protein were formed throughout the cell
when the cells were transfected with the G1862T mutant
construct (Fig. 4: a4, a7, b4, b7, c4, c7), whereas the
distribution of the wild-type protein was more reticular
and diffuse (Fig. 4: a1, b1, c1). There was a relative
increase in the expression of Hsp70 in cells transfected
with the HBV mutant protein when compared with the
wild-type, as evidenced by the solid and bright staining
(Fig. 4: a5, a8), as opposed to the finer and more diffuse
reticular staining in cells transfected with the wild-type
(Fig. 4: a2). The majority of Hsp70 in the cells trans-
fected with the mutant construct colocalized with the
precore/core protein (Fig. 4: a6, a9). Similarly, the
expression of ubiquitin in the cytosol was markedly
increased in cells transfected with the mutant strain
(Fig. 4: b5, b8) compared to those transfected with the
wild-type (Fig. 4: b2), with strong colocalization with
the precore/core protein (Fig. 4: b6, b9). Staining for
proteasomes was also increased when the cells were
transfected with mutant construct (Fig. 4: c5, c8), as
opposed to the wild-type (Fig. 4: c2). The mutant HBV
colocalized with the proteasomes (Fig. 4: c6, c9).

Formation of aggresomes
The formation of aggregates was observed using immu-
nofluorescence confocal microscopy of Huh7 cells

transfected with mutant HBV construct, but not in cells
transfected with wild-type construct. In addition to the
wide distribution pattern seen in the cytoplasm (Fig. 4:
a5, b5, c5), a more restricted staining pattern of Hsp70,
ubiquitin and the proteasomes was observed. As shown
in Fig. 4 (a8, b8, c8) Hsp70, ubiquitin and proteasomes
were confined to the perinuclear region in aggregates
that colocalized with the mutant precore/core protein
(Fig. 4: a9, b9, c9), indicative of the formation of aggre-
somes. Between 15% and 20% of the cells transfected
with mutant constructs developed aggresomes, which
rarely occurred in cells transfected with the wild-type
constructs.

A strong colocalization of g-tubulin, a centrosome
(centriole) marker38,39 and aggresomes formed by
mutant proteins was observed. Centrioles stained as a
bright dot (Fig. 5: b5) that colocalized with the mutant
HBV protein (Fig. 5: b6). When the cells were incubated
with antibodies against a-tubulin (Fig. 5: a2, a5), the
microtubule cytoskeleton had a normal morphology
and was unaffected by aggresome formation in cells
transfected with the mutant construct (Fig. 5: a6).
However, a rearrangement of the intermediate fila-
ments, which is characteristic of cells with aggresomes,
was noted. The intermediate filament vimentin was
shown to be re-arranged into condensed fibres forming
a ring- or cage-like structure around the aggresomes in
the cells transfected with mutant HBV construct (Fig. 5:
c6). This rearrangement did not occur in cells
transfected with wild-type construct (Fig. 5: c3).
Furthermore, another intermediate filament protein,
cytokeratin, was found to be rearranged in a similar
fashion to vimentin, forming a halo around the aggre-
some in cells transfected with mutant construct (Fig. 5:
d6) but not in cells transfected with the wild-type
(Fig. 5: d3).

To distinguish clearly between Golgi apparatus and
aggresomes formed by the mutant precore/core pro-
teins, cells were treated with BFA prior to fixation.
Unlike the Golgi apparatus, the aggresomes were not
disrupted by the BFA treatment (Fig. 3: d6). Further-
more, the addition of the proteasome inhibitor,
MG132, to the Huh7 cells transfected with the mutant
construct enhanced aggresome formation, as demon-
strated by an increase in the size of the aggresomes and
a concomitant increased amount of Hsp70, ubiquitin
and proteasomes that colocalized with the mutant
precore/core protein (Fig. 6: a6, b6, c6). This effect was
not observed when the cells were transfected with wild-
type constructs and treated with MG132 (Fig. 6: a3, b3,
c3).
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DISCUSSION

THE G1862T MUTATION could conceivably have
two functional consequences. First, it could interfere

with, and hence reduce, HBV replication40 because it
occurs within the bulge of e, which plays a pivotal role
in the initiation of reverse transcription of pregenomic
RNA (pgRNA).41,42 Secondly, because the precore/core
open reading frame on the precore mRNA, which
encodes for the precursor of HBeAg, overlaps the region

that codes for e on the pgRNA, the 1862 missense muta-
tion could affect HBeAg expression. We investigated
both possibilities.

Using real-time PCR we showed that HBV-DNA levels
were significantly reduced when the G1862T mutation
was introduced into genotype D replication-competent
constructs (P < 0.05) but were unaffected in the geno-
type D construct with genotype A precore region. This
could explain why the G1862T mutation occurs more
frequently in genotype A43 than in any other geno-

Figure 4 Colocalization of hepatitis B
virus (HBV) precore/core wild-type and
G1862T mutant proteins with molecu-
lar chaperone, ubiquitin and protea-
somes. Huh7 cells were transfected,
followed by double immunofluores-
cence staining with antibodies against
HBV precore/core protein, shown in
green. Hsp70 (a), ubiquitin (b) and
proteasomes (c) are all shown in red.
Nuclei were counterstained with
diamidino-2-phenylindole dihydro-
chloride (DAPI). Note the recruitment
of Hsp70, ubiquitin and proteasomes
to the aggresomes. Scale bar, 10 mm.
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types,22,43 because in order to survive, viruses require a
steady viral replication rate.44 As expected and as previ-
ously demonstrated,45–47 the G1896A mutation in geno-
type A constructs resulted in the reduction of HBV
replication because it disrupts e but did not affect the
replication of genotype D constructs, where e is stabi-
lized. In genotype A, there would be destabilization of e
because the nucleotide at position 1858 is C and there is
a stable G-C Watson-Crick base pair, which would be
disrupted by a G to A mutation at 1896. On the other
hand, in genotype D the nucleotide at 1858 is a T and
the 1896 G to A mutation would convert the T-G
wobble pair to a stable T-A Watson-Crick base pair.14

HBeAg-expressing constructs were used to follow the
secretion and expression of both wild-type and mutant
HBeAg. The wild-type HBV precore/core protein and
HBeAg localized in sites of the secretory pathway neces-

sary for the expression of HBeAg (Fig. 3),23,24 and this
distribution of the wild-type protein was not disturbed
by the treatment of the cells with the proteasome inhibi-
tor MG132 (Fig. 6). On the other hand, when cells were
transfected with the mutant construct, a 54% reduction
of HBeAg expression in the supernatant, relative to the
wild-type, was observed. This is in agreement with the
study of Hou and colleagues, which showed reduced
HBeAg expression when the G1862T mutation was
present,22 but not with a more recent study that reported
that HBeAg expression was not significantly affected by
the introduction of the mutation.48 The reasons for
these discrepant results may be that we and Hou et al.22

used HBeAg-expressing constructs as opposed to the
replication-competent plasmids used by Guarnieri
et al.48 and the clones were derived from templates
belonging to different genotypes/subgenotypes.

Figure 5 The large intracellular hepati-
tis B virus (HBV) precore/core mutant
protein aggregates were localized to
the microtubules organization center
(MTOC) and did not distort the micro-
tubule network. a-tubulin as marker
for the microtubules (a), g-tubulin as
marker for MTOC (b), vimentin (c) or
pan cytokeratin (d). HBV precore/core
protein was labeled in green stain using
a secondary antibody labeled with
AlexaFluor 488; a- and g-tubulins and
intermediate filaments vimentin and
cytokeratin were stained in red, using
secondary antibody labeled with Alex-
aFluor 546. Nuclei were counterstained
with diamidino-2-phenylindole dihy-
drochloride (DAPI). Scale bar, 10 mm.
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The precursor protein produced by the G1862T
mutant did not transfer to ERGIC and beyond and
therefore accumulated in the ER, indicating that it failed
to meet the ER quality control requirements (Fig. 3).
This is the case with most incompletely or incorrectly
folded proteins,49,50 which are recycled to the ER for
further folding.49,50 Further evidence that mutant protein
was misfolded was the increased expression of chaper-
ones, such as Hsp70, involved in protein folding, trans-
location and degradation.51 This finding was to be
expected because misfolded but not wild-type proteins
usually have their hydrophobic domains exposed, pro-
moting chaperone binding.52

If chaperone binding does not result in correct folding
and assembly of the proteins, the accumulated proteins
are exported from the ER,53 polyubiquitinated and then
transferred to the proteasome for degradation.26,27 The

26S proteasome complex is responsible for the majority
of non-lysosomal protein degradation in eukaryotic
cells.54 Increased levels of both ubiquitin and protea-
somes were detected in the cells infected with mutant
constructs, but not in cells infected with the wild-type
(Fig. 4). The misfolded precore/core protein accumu-
lated along the microtubules in the cytosol, where they
formed mini-aggregates (Fig. 5). This is further evidence
that the mutant protein was not correctly folded,
because in vitro studies have shown that misfolded pro-
teins are prone to aggregation.55 In fact, the precore
signal sequence plays an important role not only in the
secretion of HBeAg, but also in determining its structure
and aggregational properties.56,57 Therefore it is possible
that the aggregation is the result of the misfolding
caused by the interference of the mutation with post-
translational modification of the precursor molecule.

Figure 6 Proteasome inhibition pro-
motes aggresome formation by the
hepatitis B virus (HBV) precore/core
mutant protein. Transfected Huh7 cells
were treated with the proteasome
inhibitor, MG132, followed by double
immunofluorescence staining with
antibodies against HBV precore/core
protein, shown in green. Hsp70, ubiq-
uitin and proteasomes are all shown in
red. Hsp70 (a), ubiquitin (b), protea-
somes (c). Nuclei were counterstained
with diamidino-2-phenylindole dihy-
drochloride (DAPI). Scale bar, 10 mm.
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From this observation, it can be intimated, as previously
predicted by us2 and others20 and shown for Escherichia
coli alkaline phosphatase21, that the -3, -1 rule18,19 holds
true for the post-translational modification of the
HBeAg precursor. The phenylalanine, expressed as a
result of the G1862T mutation, is a “forbidden” amino
acid at position -3 because its aromatic ring sterically
hinders the activity of the signal peptidase, leading to
the failure of signal peptide cleavage at the amino end of
the precore/core fusion protein.

The mini-aggregates formed increased in size over
time and were transported, presumably by the protein
dynein, along microtubules to the microtubules organi-
zation center (MTOC) in the region of the centrosome,
which colocalizes with g-tubulin, in a perinuclear
position.51,58–60 Using antibodies against a-tubulin, an
intact microtubule network was shown to be associated
with the retrograde transport of the smaller aggregates
along the microtubules and their deposition at the
MTOC.28,59 At this site, indigestible aggregates were
spontaneously sequestered into aggresomes,28,59,60 even
in the absence of proteasome inhibitor. In agreement
with Johnston et al.60 our observations show that the
aggregation of the precursor of HBeAg occurred when
the expression of the misfolded protein exceeded the
degradation capacity of the proteasome. The accumula-
tion of HBV protein was greatly enhanced when protea-
some activity was exceeded. The fact that aggresomes did
not form in cells transfected with wild-type constructs
indicates that the accumulation of the mutant protein
is the result of its overexpression rather than the
ubiquitin–proteasome machinery not functioning in
Huh7 cells.61 A high accumulation of mutant precore/
core protein but not wild-type protein was observed
when the cells were treated with MG132, a proteasome
inhibitor.

The aggregates of the unprocessed HBeAg precursor
demonstrated the hallmarks of aggresomes. They were
ubiquitin-rich aggregates in the region of the MTOC
that recruited Hsp70 and proteasomes39,60 and were sur-
rounded by a vimentin sheath58,60,62 (Fig. 5). Although
some of the misfolded protein did reach the Golgi appa-
ratus before aggregating (Fig. 3), aggresome formation
did not require an intact Golgi apparatus, because these
structures were undisturbed by BFA treatment that has
been shown to cause disassembly36 and protein redistri-
bution37 of the Golgi to the ER (Fig. 3). This observation
is consistent with similar findings for other proteins and
other cellular systems.28 Moreover, the ability of aggre-
somes to concentrate proteins and attract chaperones
may make them suitable viral assembly sites.52 An

increasing number of publications have described the
formation of aggresomes at various stages of the life
cycle of a number of viruses.52,63–66

As far as we know, ours is the first demonstration of
aggresome formation as a result of the accumulation of
abnormal hepadnaviral proteins. Aggresome formation
may have a role to play in hepadnaviral-induced liver
disease. ER storage (conformational) disease is the result
of the toxic effects of aggregates of abnormal proteins.67

Additionally, the cells’ reaction to chronic or acute ER
stress may include activation of signaling pathways
that ultimately lead to cell death via activation of
ER-dependent apoptotic pathways and/or autophagy.24
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ABSTRACT 

 

Hepatitis B virus (HBV) infection is endemic in South Africa.  A unique feature of 

HBV carriers in this geographical region is that majority of the carriers are HBV e 

antigen (HBeAg) negative before they reach adulthood.  Up to a few years ago the 

reason for this early loss of HBeAg was unknown.  HBeAg is translated from the 

precore mRNA whose transcription is controlled by the basic core promoter.  The 

dominant subgenotype of HBV in South Africa is subgenotype A1.  This 

subgenotype is characterized by various variations/mutations in the basic core 

promoter and precore region of HBV that can affect HBeAg expression.  Within the 

basic core promoter, A1762T/G1764A mutations can affect the expression of HBeAg 

at the transcriptional level.  These mutations interfere with transcription factor 

binding to the basic core promoter and suppress the transcription of precore mRNA 

that is translated into HBeAg, hence reducing HBeAg expression.   Mutations at 

nucleotides 1809-1812, also within the basic core promoter, reduce HBeAg 

expression at the translational level by creating a “sub-optimal” Kozak sequence 

upstream from the precore start codon at position 1814 from the EcoRI site.  

Following translation of the precore/core fusion protein, this precursor molecule of 

HBeAg is post-translationally modified by signal peptide cleavage at a fixed site on 

the amino end and at variable sites on the carboxyl end.  The precore/core open 

reading frame on the precore mRNA that codes for the precursor of HBeAg, overlaps 

the region that codes for the encapsidation signal (ε) on the pregenomic RNA 

(pgRNA).  pgRNA plays a pivotal role in the initiation of reverse transcription and is 

translated into the capsid protein and the polymerase enzyme.   
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In previous studies, a guanine (G) to thymine (T) mutation at nucleotide 1862 within 

the precore region was identified in subgenotype A1 isolates from asymptomatic 

carriers of the virus and from hepatocellular carcinoma patients from South Africa.  

This mutation could conceivably have two functional consequences.  Firstly, the 

G1862T mutation could change the secondary structure of ε and could interfere with 

and hence affect HBV replication.  Secondly, the phenotypic change from valine to 

phenylalanine introduced by the G1862T mutation at codon 17 (-3 position to the 

signal peptidase recognition motif) is close to the signal peptide cleavage site at 

position 19 (-1 position to the signal peptidase recognition motif), and may therefore 

abrogate signal peptide cleavage.  Therefore the objective of this study was to 

functionally characterize the HBV G1862T mutation and its equivalent G1982T 

found in woodchuck hepatitis virus (WHV).  This was done by determining the effect 

of this mutation on viral replication and eAg expression of plasmid constructs in 

vitro.   

 

Replication competent clones were constructed by mutating the wild-type of HBV 

and the mutant of WHV.  The G1862T and T1982G mutation were introduced into 

the precore region of replication competent HBV and WHV plasmids, respectively, 

by site-directed mutagenesis.  HBeAg-expression and WHeAg-expression plasmids 

were constructed using the replication competent clones as templates.  For HBV, 

the templates used belonged to genotype D or to genotype D in which the precore 

region was mutated into a genotype A context, genotype ‘A’.  Huh 7 hepatoma cells 

were transfected with the respective replication competent clones and HBV 

replication was followed using Southern hybridization and real time polymerase 

chain reaction (PCR).  The secretion and expression of HBeAg were monitored 

using enzyme-linked immunosorbent assay (ELISA), immunocytochemistry and 
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confocal microscopy, following transfection with the eAg expressing plasmids.  

The secretion and expression of WHeAg were monitored using pulsed radioactive-

label, immunoprecipitation, sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) and immunocytochemistry and confocal microscopy. 

 

HBV replication was significantly reduced when the G1862T was introduced into 

genotype D but not into genotype ‘A’ HBV replication competent constructs.  

Following transfection with mutated HBeAg-expression plasmids, a reduction of 38 

% for genotype D, and 54 % for genotype ‘A’ in HBeAg secretion relative to the 

wild-type were observed.  Using the WHV constructs, reduced processing of the 

mutant relative to the wild-type protein was demonstrated using pulse-radioactive 

labelling.  Using confocal microscopy it was demonstrated that both the mutant 

HBeAg and mutant WHeAg accumulated in the endoplasmic reticulum, 

endoplasmic reticulum Golgi intermediate compartment and Golgi.  This 

accumulation is because the introduction of a phenylalanine at position -3 of the 

signal peptide cleavage site interfered with the post-translational modification of 

the HBeAg precursor protein.  The aggregates of mutant HBV protein increased in 

size following treatment of cells with a proteasome inhibitor, MG132, and had the 

hallmark features of aggresomes.  They attracted ubiquitin, heat shock proteins and 

proteasomes, and were isolated from the cytosol by the intermediate filaments, 

vimentin and cytokeratin.  Aggresomes formed by the HBV mutant precore protein 

resembled Mallory-Denk bodies which are histological and potential markers of 

progressive liver diseases.   
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CHAPTER 1 

1.0   INTRODUCTION 

1.1   HEPATITIS B VIRUS 

1.1.1   Historical perspective  

Hepatitis B virus (HBV) is the most common hepatitis virus that causes chronic 

infections of the liver in humans and poses a global public health problem.  In 1855, 

Lurman first documented a form of hepatitis that was transmitted by direct 

inoculation of blood during a smallpox immunization campaign (Lurman, 1855).   

In the early and mid 20th century, outbreaks of "long-incubation" hepatitis were 

described in a variety of groups or populations at risk (Neefe, 1946; Mahoney, 

1999).  Studies of human volunteers in the 1930s and 1940s provided further 

convincing evidence of a viral cause, with at least two etiologic agents described 

(Havens, 1946; MacCallum, 1947).  The nomenclature of hepatitis A for infectious 

hepatitis and hepatitis B for "homologous serum" hepatitis was proposed by 

MacCallum and Bauer in 1947 (MacCallum, 1947).   

The groundbreaking study of Krugman and co-workers in 1967 confirmed the 

existence of two distinct types of hepatitis, referred to as hepatitis A and hepatitis B 

(Krugman, 1967).  In the same year, Blumberg and co-workers discovered a protein 

in the blood of an Australian aborigine that was named the Australian antigen (Au) 

(Blumberg, 1967).  In an independent study, Prince and co-workers confirmed the 

presence of the serum hepatitis (SH) antigen in the serum of a hepatitis B infected 

patient (Prince, 1968).  Further research established that the Au and SH antigens 

were identical, and the antigen was later named the hepatitis B surface antigen 

(HBsAg).  

 



2 
 

The viral etiology of hepatitis B was firmly established by electron microscopy and 

the detection of viral particles (also known as Dane particles) that reacted with 

antisera to HBsAg (Dane et al, 1970).  With the discovery of HBsAg and viral 

particles, and the subsequent rapid advances in research technology, more 

information was obtained about the physical properties and epidemiology of the 

virus, as well as the course and consequences of the viral infection. 

 

1.1.2   Epidemiology 

Two billion people worldwide have been infected with HBV.  Of these, 

approximately 350 million are currently chronically infected with the virus and at 

risk for HBV related chronic liver diseases.  Ten million new carriers of the virus 

are identified each year (WHO, 2008).  HBV-related deaths number between 

500000  and 1.2 million per year (Lavanchy, 2004).  

 

The prevalence of HBV infections and patterns of transmission vary greatly in 

different population subgroups (Figure 1.1) (WHO, 2008).  The incidence of HBV 

infections is highest in developing countries, including most of sub-Saharan Africa, 

Asia, Oceania and some parts of South America (Lavanchy, 2005; Shepard et al, 

2006).  Approximately 45 % of the world’s population live in highly endemic areas 

with a lifetime risk to HBV infection of greater than 60 % (Mast & Alter, 1993).  

Highly endemic countries also have markedly higher rates of hepatocellular 

carcinoma (HCC) (Chuang et al, 1992; Bosch et al, 2005; McGlynn & London, 

2005; Nguyen et al, 2009).  The infection is predominately acquired as an infant or 

a very young child, either by perinatal or horizontal transmission, the latter from 

young siblings or playmates (Chiaramonte et al, 1991; Ahn, 1996; Kew, 1996; 

Mahoney, 1999; Maddrey, 2001).   
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Figure 1.1   Geographical distribution of chronic hepatitis B virus infection. 
http://www.who.int/csr/disease/hepatitis/whocdscsrlyo20022/en/index1.html. 
 

 

HBV infections are found with an intermediate incidence in North Africa, some 

parts of the Middle East, the southern parts of Eastern and Central Europe, the 

USSR, the Indian subcontinent and parts of Brazil (Lavanchy, 2004; Lavanchy, 

2005; Shepard et al, 2006).  Forty three percent of world’s population lives in areas 

with an intermediate incidence, with a lifetime risk of the HBV infection ranging 

between 20 to 60 % (Mast & Alter, 1993).  HBV infection occurs at all age groups, 

and the mode of transmission is mixed, including perinatal, horizontal, sexual, 

needle sharing and occupational/health care-related routes (Mahoney, 1999). 

 

In contrast to HBV infections found in developing countries, chronic HBV infection 

is rare in developed countries of Western Europe, North America and Australia 

(Lavanchy, 2004; Lavanchy, 2005; Shepard et al, 2006).  Only 12 % of the global 
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population live in areas of low incidence of HBV infection and where the lifetime 

risk of HBV infection is less than 20 % (Mast & Alter, 1993).  The infection is 

predominantly acquired in the late teenage years or adulthood through sexual 

contact, needle sharing between illicit drug users, or occupational/health care-

related sources (Mahoney, 1999). 

 

Africa is one of the most severely affected continents, with about 65 million of the 

population chronically infected with HBV (Kiire, 1996; Kramvis & Kew, 2007a).   

It also has a very high mortality rate from hepatitis B virus infection, with 250 000 

deaths out of a global annual mortality rate of 1 million per year.  The carrier rate in 

Africa ranges from 6.5 % in Tunisia, North Africa to 19 % in Niger, West Africa 

and 20.6 % in Democratic Republic of the Congo, with an average of 10.4 % 

throughout the continent (Kew, 1996).  In sub-Saharan Africa, the virus is 

hyperendemic, with a carrier rate of > 8 % (Kramvis & Kew, 2007a).  South Africa 

is a country with intermediate HBV endemicity with regions of high endemicity 

occurring in rural areas (Dusheiko et al, 1989a; Dusheiko et al, 1989b).  There is a 

marked difference in prevalence rate of chronic carriers between rural and urban 

populations in South Africa  (Kew, 1996; Burnett et al, 2005):  5-15 % carrier rate 

in rural areas of South Africa and less than 5 % in urban areas of South Africa 

(Dusheiko et al, 1989a; Dusheiko et al, 1989b).  In South Africa, the different racial 

groups have different prevalence rates of chronic carriage of the virus.  Black South 

Africans have the highest carrier rate of more than 10 %.  In contrast, Caucasian and 

Indian South Africans have a 0.2 % carrier rate, those of mixed descent (European-

Africans) a rate between 0.4 - 3 %, and South African Chinese a rate of 5.3 % (Kew 

et al, 1976; Kew, 1996). 
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1.1.3   Clinical outcome of HBV infection 

The incubation period of HBV infection ranges between 1 and 6 months (Seeger & 

Mason, 2000), with different clinical consequences.  Most adults infected with HBV 

recover from the infection, but in approximately 5-10 % of adult patients and up to 

90 % of neonates and young children infections progress to chronic infection 

(Stevens et al, 1975; Liang, 2009).  Acute HBV infections can lead to a number of 

clinical consequences depending of the age, sex, and the immunological defense 

system of the individual (Feitelson, 1994), and the symptoms can range in severity 

from mild to fulminant hepatitis, the latter occurring in 1-2 % of infected persons 

and having a case-fatality ratio of 63 to 93 % (Mahoney, 1999). 

 

Chronic HBV infection, defined as the persistence HBV infection for more than 

6 months (Mahoney, 1999), can be either asymptomatic or symptomatic.  

Individuals with chronic HBV infection are at substantially increased risk of 

developing chronic liver diseases, including cirrhosis and HCC (Beasley, 1988; 

Liaw et al, 1988; Feitelson, 1994; Kew, 1996).  

 

1.2   The family Hepadnaviridae 

The members of the family Hepadnaviridae are highly cell type specific and have a 

very narrow host range, restricted to their natural host and a few closely related 

species (Seeger & Mason, 2000).  This family is classified into two genera, the 

Orthohepadnaviruses and the Avihepadnaviruses, infecting mammals and avian 

hosts, respectively (Schaefer, 2007). 
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1.2.1   Genotypes of HBV 

A genotype is defined as the genetic constitution of an organism (Brown, 1999).  In 

the case of viruses, the term genotypes applies to the forms of the genomic 

sequences that have stabilized after a prolong period of time (Francois et al, 2001).  

HBV genotypes are currently classified into 8 genotypes (from A to H) (Miyakawa 

& Mizokami, 2003; Kramvis et al, 2005; Schaefer, 2007).  This classification 

system is based on an intergroup divergence of more than 8 % in the complete 

genome sequence (Okamoto et al, 1988; Norder et al, 1992a) and more than 4 % at 

the level of the S gene (Norder et al, 1992b).  Two additional genotypes I (Tran et 

al, 2008) and J (Tatematsu et al, 2009) have recently been proposed.   

 

The HBV genotypes have distinct patterns of geographical distribution (Figure 1.2) 

(Norder et al, 1993; Lindh et al, 1997; Norder et al, 2004; Kramvis et al, 2005).  

HBV genotype A is mainly found in Northwestern Europe, North America, and sub-

Saharan Africa (Norder et al, 1993; Bowyer et al, 1997; Lindh et al, 1997).  

Genotype B and C predominate in the indigenous population of Asia and Oceania 

(Okamoto et al, 1988; Kidd-Ljunggren et al, 1995; Lindh et al, 1997; 

Theamboonlers et al, 1999).  Genotype D has a worldwide distribution but 

predominates in the Mediterranean area, and genotype E is found in South-West and 

Central Africa (Norder et al, 1994; Lindh et al, 1997; Odemuyiwa et al, 2001; 

Hubschen et al, 2008).  Genotype F is the most divergent of the genotypes and is 

prevalent in South and Central American (Norder et al, 1993; Arauz-Ruiz et al, 

1997).  It is unique among the Amerindians and is indigenous to the native 

population of the New World (Nakano et al, 2001).   
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The exact distribution of genotype G has not been ascertained because of the small 

number of genomes sequenced from this group.  From the available data, this 

genotype is found in Europe and North America (Stuyver et al, 2000; Kato et al, 

2002; Vieth et al, 2002; Westland et al, 2003).  All known genomic sequences of 

genotype G are closely related to each other, which suggests either an 

epidemiological link between the isolates or high genetic stability of this viral 

genotype (Gunther, 2006).  Genotype H is confined to the Amerindian populations 

of North and Central American (Arauz-Ruiz et al, 1997; Arauz-Ruiz et al, 2002).  

Genotype H is more closely related to genotype F than the other genotypes.  It is 

most likely to have split off from genotype F within the New World (Arauz-Ruiz et 

al, 2002). 

 

Figure 1.2  Global distributions of the eight genotypes of hepatitis B virus 
(Kramvis et al, 2005). The numbers next to the pie charts are the number of 
isolates genotyped and the ratio of the respective genotypes. 
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1.2.2   Subgenotypes of HBV 

The HBV genotypes A, B, C, D and F are further sub-divided into subgenotypes 

with between 4 % to 8 % intergroup nucleotide difference across the complete 

genome, and the subgenotypes are divided into clades, showing less than 4 % 

nucleotide difference (Norder et al, 2004; Kramvis et al, 2005). 

 

Subgenotype A1 is of African/Asian origin, whereas subgenotype A2 is mainly 

found in Europe and America (Bowyer et al, 1997; Sugauchi et al, 2004a), and 

more recently subgenotype A2 is found in Kenya (Mwangi et al, 2008).  

Subgenotype A3 was originally described in patients of Gambian origin (Hannoun 

et al, 2005) and later also found in the Cameroon (Kurbanov et al, 2005) and Gabon 

(Makuwa et al, 2006).  Subgenotypes A4 and A5 are of west-African origin 

(Olinger et al, 2006), and most recently subgenotype A6 was identified in Belgium 

patients of African descent (Pourkarim et al, 2009).  HBV subgenotype B1 is 

prevalent in Japan (Sugauchi et al, 2004b) and subgenotype B2 is found in mainland 

Asia.  Subgenotype B3 is confined to Indonesia (Norder et al, 2004), B4 to Vietnam 

(Norder et al, 2004), and B5 to the Philippines (Nagasaki et al, 2006; Sakamoto et 

al, 2006).  B6 is found in the indigenous populations living in the Arctic region 

(Sakamoto et al, 2007), and B7 and B8 are found in Indonesia (Nurainy et al, 2008; 

Mulyanto et al, 2009). 

 

Subgenotype C1 is mainly found in Vietnam, Myanmar, and Thailand, whereas 

subgenotype C2 is prevalent in Japan, Korea and China (Huy & Abe, 2004; 

Kramvis et al, 2005).  C3 is found in the Oceania (Norder et al, 2004), C4 in 

Aborigines from Australia (Sugauchi et al, 2001), C5 (Sakamoto et al, 2006) and 

C6 in the Philippines (Cavinta et al, 2009) and Indonesia (Lusida et al, 2008), and 
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C7 in the Indonesia (Mulyanto et al, 2009).  Subgenotypes D1 to D4 are widely 

spread in Europe, Africa and Asia, with D4 predominating in the Oceania (Norder 

et al, 2004).  D5 was found in India (Banerjee et al, 2006; Chandra et al, 2009) and 

D6 in Indonesia (Lusida et al, 2008).  Subgenotypes F1 to F4 were found 

exclusively in Central and South America (Huy et al, 2006; Devesa & Pujol, 2007; 

Devesa et al, 2008). 

 

More specifically, the genotypes found within southern Africa include A, B, C and 

D, with subgenotypes A1 and D3 predominating (Kramvis et al, 2005; Kramvis & 

Kew, 2007a; Kramvis & Kew, 2007b; Selabe et al, 2009).  Genotype B and C were 

probably introduced into the country by immigrants from South East Asia.   

 

1.3   Virion structure 

1.3.1   Ultra structure and physical properties 

The infectious HBV virion, or Dane particle, is the complete packaged, spherical-

shaped viral particle that has a diameter of 42 nm (Figure 1.3 A).  The viral 

envelope encloses the icosahedral core particle that contains the viral nucleic acid 

and DNA polymerase (Dane et al, 1970).  Three related envelope glycoproteins 

found in the outer envelope are essential for the formation of Dane particle (Ueda et 

al, 1991).  They are the large (LHBs), middle (MHBs), and small (SHBs) surface 

proteins (Tiollais et al, 1985; Ueda et al, 1991).   In the Dane particle, the LHBs and 

MHBs together constitute 30 % of the total envelope protein content in equal 

proportion, and the remaining 70 % is made up of SHBs (Heermann et al, 1984; 

Heermann et al, 1987).  



10 
 

 

 
Figure 1.3   Electron micrographs of HBV virions and sub-viral particles.  (A) 
HBV virions (Dane particles) [1] and exposed core particles [2]. http://web.uct.ac.za 
/depts/mmi/stannard/hepb.htm.  (B) Non-infectious filamentous [3] and spherical 
particles [4]. http://www.cdc.gov/vaccines/vpd-vac/hepb/photos.htm 

 

In addition to the Dane particles, two distinct types of non-infectious defective sub-

viral particles are also found in the serum of infected individuals:  filamentous and 

small spherical particles (Figure 1.3B) (Gerin et al, 1975; Alberti et al, 1978; 

Yamada et al, 1980; Sakamoto et al, 1983).  Both types of particles have a diameter 

of 22 nm and do not contain viral nucleic acids.  The spherical sub-viral particle is 

composed of the small and middle surface protein, whereas the filamentous particle 

also includes a small proportion of the large surface protein and is variable in length 

(Dane et al, 1970).  These sub-viral particles contain only envelope glycoproteins 

and host-derived lipids, and typically outnumber Dane particles by 1000:1 to 10 

000:1 in serum (Ganem & Prince, 2004).  High levels of these non-infectious 

particles can be found during the acute phase of infection.  Non-infectious sub-viral 

particles present the same antigenic sites as the Dane particles, therefore allowing 
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the infectious Dane particles to remain in the bloodstream undetected by 

neutralizing anti-surface antibodies during the progression of the infection (Fields et 

al, 1977; Gerber & Thung, 1985; Ganem & Varmus, 1987; Thomas et al, 1988).  

The viral envelope encircles the 27 nm in diameter inner icosahedral nucleocapsid 

formed by HBV core protein (Figure 1.4) (Stannard & Hodgkiss, 1979).  

Nucleocapsid assembly starts with the formation of homodimers (Zhou & 

Standring, 1992) as a result of disulfide bridge formation between the Cys residues 

of the core protein (Nassal et al, 1992; Zheng et al, 1992).  Homodimeric units are 

held together by weak interdimeric interactions (Ceres & Zlotnick, 2002).  

Two types of nucleocapsids based on size difference are recognized (Crowther et al, 

1994), and both are found in the liver of HBV infected patients (Kenney et al, 

1995).  Type 1 has a diameter of 30 nm and consists of 90 homodimers arranged 

according to an icosahedral T = 3 symmetry (T is the triangulation number).  Type 2 

is slightly larger with a diameter of 34 nm and is made up of 120 homodimers, 

which are arranged into T = 4 dimer clustered packings (Crowther et al, 1994; 

Beterams et al, 2000; Roseman et al, 2005).  The partially double stranded, circular 

HBV genome and covalently bound DNA dependent polymerase are enclosed 

within the nucleocapsid (Figure 1.4) (Delius et al, 1983; Gerber & Thung, 1985; 

Ganem & Varmus, 1987). 
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Figure 1.4   Schematic representation of the structure and components of HBV 
particles.  The large, middle and small surface proteins are the enbeded in the viral 
envelope.  The nucleocapsid contains the partially double stranded DNA, covalently 
attached via its minus strand to the polymerase.  http://www.dbs-
decipher.com/pic/61144207238154034HBV. 

 

 

1.3.2   Viral genome 

HBV has the smallest genome of all viruses known to be capable of independent 

infection of man.  The viral genome consists of a circular partially double stranded 

DNA molecule with a complete minus strand DNA having a fixed length of 3200 

bases, and an incomplete plus strand DNA that has a length that varies between 

1700 and 2800 bases (Figure 1.5) (Summers et al, 1975; Hruska et al, 1977; 

Landers et al, 1977; Galibert et al, 1979).  The circular nature of the viral DNA is 

maintained by base pairing at the 5’ ends of both strands (the cohesive overlap 

region) (Tiollais et al, 1985). 
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HBV polymerase is attached to the 5’ end of the minus strand DNA (Gerlich & 

Robinson, 1980; Seeger et al, 1986), and a capped oligonucleotide is covalently 

linked to the 5’ end of the plus strand DNA.  The function of the 5’ cap is to 

prevent/block the phosphorylation of the plus strand (Gerlich & Robinson, 1980; 

Delius et al, 1983; Seeger et al, 1986).   

      

            

 

 
 
Figure 1.5   Genome organization of HBV.  The outer lines represent the different 
HBV transcript, the bold inner circles the DNA genome as present in the virion. The 
four major open reading frames (pre-C/C, pre-S1/pre-S2/S, P and X) are indicated 
in the center.  http://www.med.uni-heidelberg.de/\hyg/hyg5 /EN/FRAMESET-res-
hbv.HTM 
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HBV has four open reading frames (ORFs), which are partially overlapping with 

each other and cover the entire genome (Gerber & Thung, 1985; Tiollais et al, 1985; 

Miller et al, 1989).  These ORFs encode the precore/core protein, core protein, 

polymerase, three surface proteins (the SHBs, MHBs and LHBs), and X protein, 

respectively (Figure 1.5). 

 

1.3.3   HBV transcripts 

Hepadnaviruses replicate their genome by reverse transcription of the RNA 

intermediate, the pregenomic RNA (pgRNA).  HBV transcription is uni-directional.  

All HBV transcripts are transcribed from viral covalently closed circular (ccc) DNA 

by cellular RNA polymerase II (Rall et al, 1983).  Transcription generates six viral 

transcripts, namely the pgRNA, precore, pre-S1, pre-S2, S, and X messenger RNA 

(mRNA).  All transcripts are modified with the addition of a 5’ cap and a common 

polyadenylation signal at the 3’ end (Ganem & Varmus, 1987).  Therefore, the 5’ 

end of the transcripts is variable, and is determined by the location of the promoters.  

The single polyadenylation signal terminates transcription at the common 3’ end, 

approximately 20 bases from the 3’ end of the minus strand (Schaller & Fischer, 

1991). 

 

The 3.5 kilobases (kb) pgRNA is the most abundant transcript.  It has two functions:  

(1) serving as template for core protein and polymerase translation; (2) acting as a 

template for viral reverse transcription (Summers & Mason, 1982; Cattaneo et al, 

1984; Will et al, 1987; Yaginuma & Koike, 1989).  The precore transcript is slightly 

longer than the pgRNA, and it serves as template for the translation of the 

precore/core protein, which is the precursor of HBeAg.  LHBs is translated from the 
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2.4 kb pre-S1 mRNA.  MHBs is translated from the 2.1 kb pre-S2 mRNA (Cattaneo 

et al, 1983; Malpiece et al, 1983; Standring et al, 1984; Siddiqui et al, 1986).  SHBs 

is translated from the 2.1 kb S mRNA.  Hepatitis B x protein (HBx) is translated 

from the 0.7 kb X mRNA (Siddiqui et al, 1987; Treinin & Laub, 1987; Zheng et al, 

1994). 

 

HBV transcription is initiated and regulated by the four cis regulators, namely the 

precore/core, S1, S2 and X promoters (Tiollais et al, 1985; Ganem & Varmus, 

1987).  In addition, two regions in the HBV genome have been shown to act as 

transcriptional enhancers, namely the enhancer 1 (EN1) and enhancer 2 (EN2) (Su 

& Yee, 1992).   

 

1.3.4   HBV life cycle 

1.3.4.1   Attachment, fusion and entry of virus 

The early part of virus infection involves the following three stages:  (1) attachment; 

(2) fusion;   (3) entry (Figure 1.6) (Lu & Block, 2004).  The pre-S1 domain of LHBs 

plays a major role in mediating virus attachment and infection (Neurath et al, 

1986a; Pontisso et al, 1989; De Meyer et al, 1997; Le Seyec et al, 1999; Blanchet & 

Sureau, 2007).  The 21-47 amino acid (aa) epitope of pre-S1 domain of the LHBs 

was shown to mediate binding the virion to the cell surface of HepG2 cells (Neurath 

et al, 1986b).  Furthermore, an ‘Gln-Leu-Asp-Pro-Ala-Phe’ epitope situated within 

the 21-47 aa region was mapped to be the key receptor-binding determinant that 

mediates viral attachment (Paran et al, 2001).  HBV attachment is multivalent and 

synergistically involves SHBs with the ‘Gln-Leu-Asp-Pro-Ala-Phe’ epitope (Paran 

et al, 2001).  The abundance of SHBs on the HBV envelope forms multiple contacts 

with the cell membrane, and as the consequence it increases the virus attachment 
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rate by facilitating the specific interactions of the pre-S1 domain with its receptor.  

SHBs is also found to be able to bind plasma membrane of human hepatocytes (de 

Bruin et al, 1995).  A site situated within the small S domain was postulated to be 

involved in viral attachment synergistically with the ‘Gln-Leu-Asp-Pro-Ala-Phe’ 

epitope, by assisting the internalization of the gold labelled sub-viral particles 

(Paran et al, 2001). 
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Figure 1.6   The overview of HBV life cycle (Ganem & Prince, 2004).  HBV 
virions bind to surface receptors and are internalized. Viral core particles migrate to 
the hepatocyte nucleus, where their genomes are repaired to form a covalently 
closed circular DNA (cccDNA) that is the template for viral messenger RNA 
(mRNA) transcription. The viral mRNA that results is translated in the cytoplasm to 
produce the viral surface, core, polymerase, and X proteins. There, progeny viral 
capsids assemble, incorporating genomic viral RNA (RNA packaging). This RNA is 
reverse-transcribed into viral DNA. The resulting cores can either bud into the 
endoplasmic reticulum to be enveloped and exported from the cell or recycle their 
genomes into the nucleus for conversion to cccDNA. The small, peach-colored 
sphere inside the core particle is the viral DNA polymerase. 
 

HBV has a region in the N-terminus of its pre-S2 domain that contains a 

hydrophobic sequence of 13 aa (Gerlich et al, 1993), which is conserved among all 

hepadnaviruses  (Lu et al, 1996; Lu et al, 2001).  It has all the characteristics of a 

fusion motif mediating virus-cell fusion (Lu et al, 1996).  The pre-S2-translocation 

motif (TLM), which is cell permeable, was subsequently identified within the above 

mentioned fusion motif (Oess & Hildt, 2000).  TLM is a 12 aa, amphipathic α-
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helical structure within the region of 41-52 aa of the pre-S2 domain (Oess & Hildt, 

2000).  This unique amphipathic motif was found to be conserved between different 

HBV subtypes.  Stoeckl et al proposed that this TLM motif mediates the energy-

independent process of internalization of HBV viral particles by receptor mediated 

endocytosis across the endosomal membrane into the cytosol (Stoeckl et al, 2006),  

and this putative TLM motif was later proven to be indispensable for HBV 

infectivity (Lepere et al, 2007). 

 

Fusion of viral protein and cell membrane allows the release of viral DNA into 

cytosol.  Viral envelope protein is proteolytically processed in the endosome by a 

specific protease (Lu et al, 1996).  Viral particles escape from the endosomes, and 

the reducing environment in the cytoplasm destroys the disulfide bridges in the S-

domain and destabilizes the interaction between the surface protein and 

nucleocapsid, allowing the removal of envelope from the nucleocapsid.  Capsids are 

retrograde transported along the microtubule network towards the microtubule 

organization centre (MTOC) located at the perinuclear region of the host cells 

(Kann et al, 2007).  The carboxyl terminus of hepatitis B core antigen (HBcAg) 

contains a signal for nuclear localization that is responsible for the targeting of the 

nucleocapsid to the nucleus of host cell (Yeh et al, 1990; Eckhardt et al, 1991).  

Nuclear transport receptors of the importin β superfamily facilitate the docking of 

the capsid to the nuclear basket and translocation through the nuclear pore.  The 

capsid interacts with nuclear basket, before releasing the viral DNA into the nucleus 

(Kann et al, 2007). 
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1.3.4.2   HBV replication 

HBV replication can be divided into several phases  (1) cccDNA formation; (2) 

transcription of all viral mRNA; (3) packaging transcripts (encapsidation) and viral 

capsid assembly; (4) reverse transcription (Nassal, 2008). 

 

Following viral entry into the nucleus of hepatocytes, the partially double stranded 

relaxed circular viral DNA is released from viral nucleocapsid, and is subsequently 

converted into episomal cccDNA (Ruiz-Opazo et al, 1982b; Ruiz-Opazo et al, 

1982a; Weiser et al, 1983; Beck & Nassal, 2007).  The phosphodiester bond 

between the Tyr63 of polymerase and the 5′ phosphoryl group of minus strand DNA 

is cleaved, and the covalently linked polymerase and the RNA primer at the 5’ end 

of plus strand DNA are removed (Guo et al, 2007; Nassal, 2008).  Gaps in the plus 

strand DNA are filled, and the ends of both strands of viral DNA are covalently 

ligated to produce closed circles (Nassal, 2008).  HBV cccDNA serves as the 

template for the transcription of pgRNA and all subgenomic mRNAs.  The pgRNA 

is the key transcript that involves in the translation of core protein and polymerase, 

and is thus crucial for viral replication.  All HBV transcripts are transcribed by 

cellular RNA polymerase II, using the cccDNA as the template.    

 

The pgRNA and polymerase are encapsidated (packaged) into the newly assembled 

capsid by the binding of encapsidation signal, epsilon (ε), a structured 5’-proximal 

stem-loop element of the pgRNA to the polymerase (Bartenschlager et al, 1990; 

Hirsch et al, 1990; Bartenschlager & Schaller, 1992; Pollack & Ganem, 1994).  

 

ε is a cis-acting sequence of 85-nucleotides (nt) in length that is folded into a stable 

secondary stem-loop structure, and located at the 5’ end of the pgRNA (Figure 1.7) 



(Nassal et al, 1990).  ε has

upper stem, a single unpaired U residue in the upper stem

stem (Figure 1.7) (Bartenschlager

& Nassal, 1993; Pollack & Ganem, 1993)

(Nassal & Rieger, 1996).  The 

primer synthesis, and the 5’ proximal nucleotides 

association with polymerase 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7  Secondary structure of HBV encapsidation signal 

obtained with permission from Prof
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has a bipartite stem-loop structure with a 6 nt apical 

unpaired U residue in the upper stem, a 6 nt bulge, and 

(Bartenschlager et al, 1990; Junker-Niepmann et al, 1990; Knaus 

& Nassal, 1993; Pollack & Ganem, 1993).  ε is the origin of HBV replication

.  The 3’ half of the ε bulge serves as template for the DNA 

the 5’ proximal nucleotides mediate encapsidation by its 

with polymerase (Rieger & Nassal, 1995; Rieger & Nassal, 1996)

Secondary structure of HBV encapsidation signal (ε).  

ission from Prof A.Kramvis.  

apical loop, 

a 6 nt bulge, and lower 

, 1990; Knaus 

 is the origin of HBV replication 

 bulge serves as template for the DNA 

mediate encapsidation by its 

(Rieger & Nassal, 1995; Rieger & Nassal, 1996).  

).  Figure is 
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Reverse transcription of hepadnaviruses is a complex multi-step process that takes 

place inside nucleocapsid in infected cells (Yu & Summers, 1991; Nassal et al, 

1992; Beck & Nassal, 1997).  Reverse transcription is triggered/initiated by the 

interaction of the polymerase with ε (Bartenschlager et al, 1990; Hirsch et al, 1990; 

Bartenschlager & Schaller, 1992; Pollack & Ganem, 1994; Wang et al, 1994).  

 

In addition to other functions, the polymerase as protein primer and a reverse 

transcriptase for the initiation of minus strand DNA synthesis using nucleotides 

within the ε as the template (Wang & Seeger, 1992; Wang & Seeger, 1993; Pollack 

& Ganem, 1994; Tavis et al, 1994).  The molecular chaperone, heat shock protein 

(Hsp)70 is responsible for the adenosine 5’-triphosphate (ATP) energy-driven 

activation of the polymerase from an inactive to a meta-stable, active state (Mayer 

& Bukau, 2005; Beck & Nassal, 2007).  The activated polymerase is able to bind to 

the ε.  A second dynamic, energy driven, multi-component chaperone complex 

consisting of Hsp90, p23 and potentially additional co-factors act together to 

maintain the polymerase in the optimal and specific conformation required for 

pgRNA packaging and priming of viral DNA synthesis (Hu et al, 1997; Wang et al, 

2003; Hu et al, 2004).   

   

HBV DNA synthesis starts with the priming of polymerase (Wang & Seeger, 1992; 

Wang et al, 1994; Lanford et al, 1997).  The first nucleotide of the short oligomer is 

covalently linked to the Tyr63 residue of the terminal protein domain of HBV 

polymerase (Weber et al, 1994; Zoulim & Seeger, 1994), and uses the 5’-ε as its 

template.  The 2’-OH group of Tyr63 residue is responsible for the initiation site 

selection and programmed primer synthesis arrest (Schaaf et al, 1999).   
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After synthesis of three or four nucleotides, the short nascent DNA oligomer pauses 

synthesis and switches templates (translocated) to a complementary UUCA (motif) 

sequences at direct repeat (DR) 1 (DR1, nt2872-2882), near the 3’ end of the 

pgRNA (Figure 1.8).  This transfer of the short oligomer is called the first template 

switch (Wang & Seeger, 1993; Tavis et al, 1994; Rieger & Nassal, 1996).  Φ (or β5) 

is a cis-acting element of 27 or 28 nt, located between DR2 and the 3’ of DR1 (Tang 

& McLachlan, 2002; Shin et al, 2004).  It acts as mediator to facilitate the first 

template switch by bringing the acceptor site into close proximity with the donor 

site via base pairing with the 5’ half of ε, or by interacting with protein factors 

involved in this process (Shin et al, 2004; Abraham & Loeb, 2006).  Another cis-

acting element, ω, is located downstream of the acceptor site of the short oligomer.  

ω overlaps with the 3’ end of DR1, and is base paired with the left part of the upper 

ε stem (Abraham & Loeb, 2007).  ε, ω, Φ, and a small 6 nt region located upstream 

of short oligomer acceptor site interact with each other, and facilitate the first 

template switch (Abraham & Loeb, 2007). 

 

Minus strand DNA synthesis resumes at DR1 and elongation proceeds toward the 3’ 

end of the pgRNA template (Rieger & Nassal, 1996).  The RNase H activity of the 

polymerase degrades the pgRNA template that has been copied concurrently with 

the elongation process (Summers & Mason, 1982; Radziwill et al, 1990).  This 

synthesis results in the formation of full-length (complete) minus strand DNA with 

the polymerase covalently linked to its 5’ end  (Seeger et al, 1986; Lien et al, 1987; 

Will et al, 1987).  A short RNA fragment of 17 to 18 nucleotides, a remnant of the 

pgRNA, is cleaved by the RNase H, and functions as a conventional nucleic acid 

primer for the initiation of plus strand DNA synthesis (Lien et al, 1986; Will et al, 

1987; Loeb et al, 1991).    
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Figure 1.8   Model for hepadnavirus reverse transcription. (A) Initiation of 
minus strand DNA synthesis. The thin line represents the pgRNA. The direct 
repeats, DR1 and DR2, are indicated by boxes. Minus strand DNA synthesis is 
templated by the UUCA sequence within the bulge region of the 5' ε. The oval 
circle represents the P protein.  (B) Minus strand template switch. The 4-nt-linked 
viral P protein translocates to an acceptor site, the UUCA sequence, overlapping the 
3' copy of DR1 via 4-bp homology.  (C) Elongation and completion of minus strand 
DNA synthesis. Following the minus strand transfer, the minus strand synthesis 
resumes, with concomitant degradation of the pgRNA by RNase H activity encoded 
by the P protein.  (D) In situ priming from DR1.  Some of the plus strand primers do 
not translocate but are used to initiate plus-strand synthesis from DR1 to generate a 
DL DNA.  (E) Generation of a DL genome.  (F) Plus strand primer translocation to 
DR2. The RNA primer contains a DR1 sequence complementary to DR2. This 
complementarity is required for subsequent translocation to DR2. To generate the 
circular duplex genome, the RNA primer translocates from DR1 to an acceptor site, 
DR2.  (G) Initiation of plus strand DNA synthesis following translocation. After 
translocation to DR2, plus strand DNA synthesis is initiated at DR2.  (H) Template 
switches to circularize the viral genome. The growing point of plus strand DNA 
synthesis switches templates from the 5' end to the 3' end of minus strand DNA.  (I) 
Generation of an RC DNA genome (Lee et al, 2004).   
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The second template switch takes place by translocation of the short RNA primer 

that contains the DR1 sequences, to an acceptor site (DR2) near the 5’ end of the 

minus strand DNA template (Figure 1.8).  The RNA primer anneals to the 5’ end of 

minus strand DNA template, initiates the synthesis of plus strand DNA from DR2, 

and proceeds toward the 5’ end of minus strand DNA (Staprans et al, 1991).  The 

second template switch occurs in approximately 90 to 95 % of the template, which 

comprises the major pathway of plus strand DNA synthesis for HBV.   

 

A secondary minor pathway of plus strand synthesis also exists and does not 

involve the template DR2.  It initiates the synthesis of plus strand DNA from DR1 

on the minus strand in situ, resulting in the formation of a duplex linear (DL) DNA 

genome (Staprans et al, 1991).  This type of synthesis of plus strand of DL DNA is 

called in situ priming.   

 

The nascent plus strand DNA undergoes third template switch (Lien et al, 1986).  

The minus strand DNA is terminally redundant for 9 or 10 nt at 5’ and 3’ end 

(named 5’r and 3’r) (Lien et al, 1987).  Nascent plus strand DNA copies the 5’ r 

sequence from the minus strand.  The growing plus strand DNA transfers and 

anneals to the the new location at 3’ r of minus strand DNA, enabling the further 

elongation of the plus strand DNA, and ultimately generating the relaxed circular 

(RC) form of HBV DNA (Nassal, 2008).   
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1.3.5   Viral  proteins 

(A)  Polymerase 

The polymerase ORF is the largest ORF, and it overlaps with all the other three 

ORFs of HBV.  The polymerase is translated from the ATG within the polymerase 

ORF of the pgRNA (Ganem & Varmus, 1987; Schlicht et al, 1989; Chang et al, 

1990a; Ou et al, 1990) by a ribosomal shunting mechanism (Sen et al, 2004), and it 

produces the 95 kilodalton (kDa) polymerase protein.  The polymerase ORF lacks 

its own promoter, and the translation of polymerase is therefore regulated at 

translational level (Hwang & Su, 1998). 

 

The polymerase protein is made up of four domains (Radziwill et al, 1990).  They 

are arranged in the following order, starting from the amino terminus (Figure 1.9):  

(1) the terminal protein; (2) spacer; (3) reverse transcriptase/DNA polymerase; (4) 

RNase H.  The terminal protein plays a vital role in the priming of the minus strand 

to initiate reverse transcription, and the packaging of pgRNA (Wang & Seeger, 

1993; Seeger & Mason, 2000).  The spacer domain is not a functional domain and is 

therefore prone to mutations (Radziwill et al, 1990).  The reverse transcriptase 

domain contains the classical tyrosine-methionine-aspartate-aspartate (YMDD) 

consensus motif that is involved in the nucleotide binding at the catalytic (active) 

site of polymerase (Poch et al, 1989).  RNase H is the last domain of polymerase 

and is situated at the carboxyl end of the polymerase protein. The function of RNase 

H is to stabilize the terminal protein-reverse transcriptase complex during 

interaction with the template and to degrade the RNA in RNA-DNA hybrids during 

the minus strand DNA synthesis (Chang et al, 1990b; Radziwill et al, 1990; 

Preisler-Adams et al, 1993). 
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Figure 9.   

 

 
 
 

 

 
Figure 1.9   Schematic representation of the HBV polymerase gene.  Amino 
acids are numbered at beginning of each domain, using the standardized numbering 
system proposed by Stuyver et al (Stuyver et al, 2001).  
 

 

(B)  Surface proteins 

The surface ORF encodes three surface proteins, namely the SHBs, MHBs and 

LHBs.  This ORF has three in-frame translation start codons and one common 

termination codon.  The three types of surface protein share the common S-domain 

(Ganem & Varmus, 1987; Feitelson, 1994) (Figure 1.10).  These surface proteins 

are transmembrane proteins that are co-translationally translocated across the 

endoplasmic reticulum (ER), and post-translationally modified with N-linked 

oligosaccharides in the ER.  The N-linked glycosylation is an important process 

because it is necessary for the secretion of the Dane particles (Lu et al, 1995).  

Furthermore, the surface proteins interact with viral nucleocapsids to form virus 

particles during the maturation process by budding into the lumen of a pre-Golgi 

compartment and are then secreted into the serum via the constitutive secretory 
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pathway of the host cell (Bruss & Ganem, 1991; Ueda et al, 1991; Huovila et al, 

1992).     

                                                                                                                                                                                                                                              

SHBs is 226 aa long.  It is produced in excess, and is the major constituent of the 

envelope of Dane and sub-viral particles.  HBV has a common immunodominant 

and immunoprotective determinant, the ‘a’ determinant.  It is located between 124 - 

147 aa of the SHBs (Chen et al, 1996).    

 

MHBs is 281 aa long.  It is composed of SHBs with the additional 55 aa upstream 

encoded by the pre-S2 region.  Like the SHBs, MHBs is also present in the Dane 

particle and sub-viral particles.  The pre-S2 domain is not essential for HBV 

infectivity or viral particle morphogenesis, but it may contribute to virus-host 

cell/hepatocyte attachment as a secondary mechanism (Fernholz et al, 1993; Bruss, 

2007).  

 

LHBs is the largest of the three surface proteins.  It contains the pre-S1, pre-S2 and 

S domains.  The total length of LHBs is 389 or 400 aa.  In the pre-S1 domain of 

LHBs, it becomes myristylated at the N-terminus in order to anchor the N-terminus 

to the membrane.  Although myristylation is not essential for efficient virion 

assembly, it is required for infectivity (Gripon et al, 1995; Bruss et al, 1996; 

Chouteau et al, 2001).     
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Figure 1.10   Organization of the HBV surface ORF.  The large, middle and 
small surface proteins are encoded by a single ORF.  The gene is divided into the 
pre-S1, pre-S2 and S domains.  Length of each domain is specified at the top. 
 
 

 

 

(C)   Core protein 

 
Although there are two in-frame translation initiation codons in the precore/core 

mRNA that encode the precore protein (precursor of hepatitis B e antigen) and core 

protein (HBcAg), respectively, the two proteins have different biosynthetic 

mechanisms (Ou et al, 1986; Junker et al, 1987; McLachlan et al, 1987; Schlicht et 

al, 1987; Garcia et al, 1988).  The core protein is translated from the pgRNA.  

Depending on the genotype of the virus, the 21 kDa core protein consists of 183, 

185 or 195 aa (Locarnini et al, 2003).  Translation of core protein from the pgRNA 

starts at the ATG codon at position 1901 (from EcoRI site).  Core protein is the 

major component of the viral nucleocapsid.  It has intrinsic ability to self-assemble 

to form the nucleocapsid, and this self-assembly mechanism is essential for the 

   pre-S1 pre-S2 S 

108 or 119 aa 226 aa 55 aa 

LHBs 

SHBs 

MHBs 

ATG ATG ATG 
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packaging of viral pgRNA and reverse transciptase (polymerase) (Birnbaum & 

Nassal, 1990; Nassal, 1992; Bruss, 2007).  The first 149 aa on the amino terminus 

comprise the assembly domain, and are required to direct the self-assembly of the 

capsids (Conway et al, 1997).  The protamine domain is within the region of 150-

180 aa, and is obligatory for the packaging of pgRNA (Pasek et al, 1979; Nassal, 

1992; Conway et al, 1997). 

 

HBcAg can elicit both T-cell-independent and T-cell-dependent antibody responses 

(Schodel et al, 1996).  HBcAg elicits a rapid and strong humoral immune response 

in all infected individuals (Magnius & Espmark, 1972b; Hoofnagle et al, 1981).   

 
 
 

(D)  X protein  

The HBx protein contains 154 amino acids, and has a molecular mass of 17 kDa.  

HBx has been reported to be localized to the cytoplasm, nucleus and perinuclear 

region of hepatocytes of infected livers (Su et al, 1998; Nomura et al, 1999; Sirma 

et al, 1999).  In the woodchuck hepatitis virus model, X protein is essential for viral 

replication in vivo (Chen et al, 1993; Zoulim et al, 1994).  Using the transgenic 

mice model it has been suggested that HBx is a co-factor in hepatocarcinogenesis 

(Terradillos et al, 1997).  HBx has been shown to activate transcription of host 

cellular genes and viral genes (Spandau & Lee, 1988; Colgrove et al, 1989; 

Arbuthnot et al, 2000) and also induces apoptosis mediated by an endogenous 

cellular pathway, both in vitro and in vivo (Terradillos et al, 1998).  HBx is not a 

DNA binding protein and therefore it is not classified as a typical transactivator.    
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(E)  Non-structural protein: HBeAg    

In addition to the structural proteins described above, HBV synthesizes a non-

particulate protein, hepatitis B e antigen (HBeAg) (see section 1.5 for the expression 

of HBeAg), which is not required for viral infection, replication or assembly (Chang 

et al, 1987; Schlicht et al, 1987; Chen et al, 1992).  HBeAg and HBcAg share most 

of their amino acid sequences but exhibit fundamentally different biophysical and 

antigenic properties (Imai et al, 1982).  Both act as distinct antigens during HBV 

infection (Milich, 1988).  HBeAg induces a weaker and delayed response that 

frequently correlates with virus elimination (Magnius & Espmark, 1972b; 

Hoofnagle et al, 1981).  Using the murine experimental model, it was suggested that 

HBeAg may have an immunoregulatory role (Milich, 1997; Milich et al, 1998), 

functioning as a T cell tolerogen and regulating the immune response to HBcAg 

(Chen et al, 2004).  Therefore, HBeAg is vital in biasing the virus-host interaction 

toward chronicity by down regulating the host T-cell response to HBcAg via a 

variety of tolerance-inducing mechanisms (Chen et al, 2005).  Furthermore, HBeAg 

can down-regulate the toll-like receptor 2, resulting in downstream inhibition of the 

cytokine production, thus regulating the host innate immune response to HBV 

infection (Visvanathan et al, 2007).  

 

Until mutations affecting HBeAg expression were described (see section 1.5.1-

1.5.3), HBeAg was widely used as the classical marker for HBV infection (Trepo 

et al, 1976).  Seroconversion of HBeAg to corresponding antibody (anti-HBe) is 

generally associated with normalization of liver function (Hoofnagle et al, 1981), 

and regarded by physicians as end point goal for chronic hepatitis B patients 

undergoing anti-viral therapy (Liaw, 2009).  Patients who undergo HBeAg 

seroconversion are more likely to experience better long-term outcomes, including 
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disease remission, reduced progression to cirrhosis and HCC, increased survival 

rate, and the possibility of HBsAg loss or seroconversion (Hsu et al, 2002; van 

Zonneveld et al, 2004; Lin et al, 2007; Liaw, 2009).  A meta-analysis study 

showed that HBeAg negativity is associated with higher grades of fibrosis in a 

subset of paitents in whom HBV replicative markers were measured (Thompson 

et al, 2010). 

 

1.4   HBV and the secretory pathway 

Viruses are obligate intracellular parasites that totally depend on the host cell 

functions for their morphogenesis and propagation (Weiss, 2002; Freed, 2004).  

HBV utilizes the protein synthesis machinery and secretory pathway in the 

hepatocyte, for the production and maturation of viral proteins, as well as the 

assembly of viral particles (Patzer et al, 1986; Huovila et al, 1992).  Mature, newly 

produced nucleocapsids can follow two different intracellular pathways (Bruss, 

2004):   

(1) maturation of virion in the constitutive secretory pathway   HBV utilizes 

host cell machinery to synthesise the nucleocapsid, envelope and 

precore/core proteins using viral mRNA in the cytoplasm.  Viral 

nucleocapsids are assembled and reach the ER, where they associate with 

the envelope protein.  The viral particles complete their maturation during 

their movement from ER through Golgi apparatus, and are secreted/exported 

out of the cell (Huovila et al, 1992);  

 

(2) the genome amplification pathway   The nucleocapsid can be recycled 

back to the nucleus providing more viral genomic material for the 

amplification of intra-nuclear pool of cccDNA (Tuttleman et al, 1986). 
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1.4.1   Overview of secretory pathway  

The secretory pathway is comprised of structurally distinct cellular organelles 

including the ER, tubular-vesicular transport intermediates that mediate intracellular 

membrane transport between ER to the Golgi Apparatus, Golgi Apparatus, and 

post-Golgi carriers (PGCs) that are responsible for the transportation of cargo 

molecules from Golgi to the plasma membrane (Lippincott-Schwartz et al, 2000; 

Lippincott-Schwartz, 2001) (Figure 1.11).   

 

 

 
Figure 1.11   Secretory and endocytotic pathway of eukaryotic cells.  ER-
endosplasmic reticulum;  ERGIC-endoplasmic reticulum Golgi intermediate 
compartment;  TGN-trans-Golgi network;  ISG-immature secretory granules;  
MSG-mature secretory granules;  CSV-constitutive secretory vesicles;  EE-early 
endosomes;  LE-late endsomes;  lyso-lysomes.  (1)  secretory granules of the 
regulated secretory pathway; (2) constitutive secretory vesicles to the cell surface; 
(3) endosome-lysosome directed carrier system  (Rutishauser & Spiess, 2002).   
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A)  Endoplasmic Reticulum  

The ER is the starting point of the secretory pathway.  Peripheral ER is a dynamic 

network, and is the largest intracellular compartment (Lippincott-Schwartz et al, 

2000).  The ER is made up of an extensive array of interconnecting, continuous 

linear membrane tubules, cisternal sheets, polygonal reticulum and three-way 

junctions (Voeltz et al, 2002).  The domains of the ER consist of the nuclear 

envelope, rough ER (RER) and smooth ER (SER) (Dayel et al, 1999; Lippincott-

Schwartz et al, 2000; Voeltz et al, 2002).  ER membranes are differentiated into 

rough and smooth, depending on their association with ribosomes at their 

cytoplasmic surfaces.  RER is the site of translocation and processing of newly 

synthesized secretory or membrane proteins, and  SER is an overflow site to house 

up-regulated enzymes (Lippincott-Schwartz et al, 2000).    

 

The ER has multiple functions, including the translocation of secretory and 

membrane proteins across the ER membrane, folding and post-translational 

modification of secretory and membrane proteins in the ER lumen (Rutishauser & 

Spiess, 2002; Ellgaard & Helenius, 2003), oxidative protein folding, and protein 

processing (Csala et al, 2006).   

 

The ER is involved with the translocation of antigenic peptides.  Antigenic 

polypeptides are firstly degraded in the cytosol by the ubiquitin-proteasome system 

(UPS) into smaller peptides of 3-22 aa in length, and translocated across ER lumen 

by the transporter associated with antigen processing (TAP).  This process provides 

antigenic epitopes to be loaded onto major histocompatibility complex (MHC) class 

1 molecule, and presented to the cytotoxic T lymphocytes (Koch & Tampe, 2006).  

Finally, the ER is an active metabolic compartment, where calcium ion regulation, 



34 
 

carbohydrate metabolism, second-phase reaction of biotransformation of 

glucuronosyl group, antioxidant metabolism, phospholipids and steroids metabolism 

occur (Csala et al, 2006). 

 

Protein translation, translocation and processing 

Protein translation and translocation in the ER serves as the entry point for directing 

secretory and membrane protein precursors into the exocytic and protein sorting 

pathway of the cell (Nicchitta et al, 2005).  Most secretory and membrane proteins 

produced in eukaryotic cells are targeted to, and co-translationally translocated 

across the ER membrane by signal peptides (Walter et al, 1984; von Heijne, 1986; 

Walter & Johnson, 1994; Martoglio & Dobberstein, 1998).  Signal peptides are 

usually 15-50 aa in length, and situated in the amino terminal extension of the 

precursor protein.  Signal peptides are characterized by three structurally distinct 

domains: 

(1) A hydrophilic amino terminal domain designated as the n region, which  

contains a net positive charge.  This is the most variable in terms of overall length.   

(2) A central hydrophobic core domain designated as the h region.  It usually 

contains 6-15 aa residues.  Mutational analysis demonstrated that this region is the 

most essential part of the signal peptide and is  required for targeting and membrane 

insertion (von Heijne, 1985). 

(3) A polar carboxyl terminal domain of 4-6 residues designated as the c 

region that contains helix-breaking Pro and Gly residues (Perlman & Halvorson, 

1983; von Heijne, 1985).    

 

Small, uncharged residues are usually found in positions -3 and -1 upstream of the 

signal peptide cleavage site (von Heijne, 1990).  Their small uncharged side chains 
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fit into the active site of signal peptidase with ease, and this is crucial for the signal 

peptidase to cleave the precursor protein efficiently (Karamyshev et al, 1998). 

 

Nascent, newly synthesized preproteins or precursor proteins carry the signal 

sequences on their amino terminal end.  The newly emerged signal sequences from 

the ribosome tunnel mediate the interaction between the conserved cytoplasmic 

ribosome nascent protein complex (RNC) and the signal recognition particle (SRP) 

(Walter et al, 1981; Luirink & Sinning, 2004), resulting in the formation of the 

ribosome nascent protein complex-RNC (SRP-RNC) (Figure 1.12).  In eukaryotes, 

the complete complex formation retards/arrests the peptide elongation process.   

 

 
Figure 1.12   The SRP-mediated co-translational protein targeting cycle.  (1) A 
nascent polypeptide with a signal peptide emerges from the ribosome and is 
recognized by the SRP, causing elongation arrest. (2) The RNC–SRP complex is 
then targeted to the membrane through guanosine triphosphate (GTP)-dependent 
interactions between the SRP and its SR. (3) At the membrane, after the ribosome 
docking to the translocon, the signal sequence is released from the SRP by co-
translational cleavage by the membrane-bound signal peptide peptidase (Blobel & 
Dobberstein, 1975).  This is followed by the elongation and transportation of 
remaining part of the nascent polypeptide chain into the lumen of the ER. (4) 
Following GTP hydrolysis, the SRP–SR targeting complex dissociates and is 
recycled (Egea et al, 2005). 
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The SRP-RNC complex is targeted to the ER membrane by interaction with the 

SRP receptor in the ER membrane, followed by binding of the SRP-RNC complex 

to the SRP receptor site of ER membrane (Gilmore et al, 1982; Meyer et al, 1982).  

After docking to the ER membrane, the RNC is transferred to the translocon, a 

protein-conducting channel that is formed by the heterotrimeric Sec61 complex 

(Keenan et al, 2001; Koch et al, 2003).  SRP and SRP receptor are dissociated from 

the SRP-RNC-SRP receptor complex with the aid of energy generated from 

hydrolysis of GTP.  The binding of the RNC to the translocon leads to its gating, as 

a result of the interaction with the signal sequences.  Unfolded, nascent polypeptide 

chain is inserted into the channel and translocated while protein synthesis resumes 

(Keenan et al, 2001; Doudna & Batey, 2004; Halic & Beckmann, 2005).  The leader 

signal sequence is now co-translationally cleaved by membrane-bound signal 

peptide peptidase (Blobel & Dobberstein, 1975), and followed with the elongation 

and transportation of remaining part of the nascent polypeptide chain into the lumen 

of the ER. 

 

(B)  ER to Golgi transport 

Newly synthesized polypeptide chain is folded to native conformation, oligomerized 

in the ER, and is transported to the transitional ER (ER exit sites) before exiting the 

ER.  The transitional ER is biochemically, functionally and morphologically distinct 

from RER.  It is situated adjacent to the pre-Golgi intermediate compartment, and 

scattered over the surface of the ER (Lippincott-Schwartz et al, 2000).  Secretory 

protein exited/exported from the transitional ER (Mezzacasa & Helenius, 2002) is 

carried by the coatomer protein complex II (COP II-coated vesicles) to Golgi via the 

pre-Golgi intermediate compartment (Gorelick & Shugrue, 2001). 
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The pre-Golgi or ER-Golgi intermediate compartment (ERGIC) is made up of 

tubulo-vesicular membrane clusters (Saraste & Kuismanen, 1992; Bannykh et al, 

1996; Hauri et al, 2000), and is situated in the vicinity of ER exit site (Hammond & 

Helenius, 1994; Hammond & Glick, 2000; Stephens et al, 2000).  ERGIC is 

structurally distinct from ER or Golgi, and ERGIC membranes are enriched with 

ERGIC-53 (a marker protein of ERGIC) (Schweizer et al, 1991).   ERGIC-53 is a 

mannose-lectin that functions as a secretory cargo receptor (Hauri et al, 2000).  The 

ERGIC is the first anterograde (ER to Golgi) and retrograde (Golgi to ER) sorting 

station in the secretory pathway (Klumperman et al, 1998; Appenzeller et al, 1999; 

Appenzeller-Herzog & Hauri, 2006).  Newly synthesized secretory proteins 

concentrate and accumulate at ERGIC prior to their delivery to the cis-side of the 

Golgi apparatus.   

 

(C)  Golgi Apparatus 

The Golgi apparatus is a highly dynamic organelle that receives, modifies, and sorts 

newly synthesized proteins transported from the ERGIC.  It is composed of 

biochemically distinct cis-, medial-, and trans-Golgi sub-compartments, with the 

cis-Golgi located closest to the ER.  The three sub-compartments (stacks) are 

connected by the tubulo-vesicular domains.  Transport intermediates, COP II 

vesicles, carry cargo and deliver their content from ERGIC to the cis- side of the 

elaborate tubular network of the Golgi (Cooper et al, 1990; Lippincott-Schwartz et 

al, 2000).  Secretory and membrane proteins continue their outbound journey in the 

Golgi complex, by moving through polarized stacks of flattened cisternae. 

 

The secretory cargo can further undergo post-translational modification such as 

phosphoglycosylation and glycosylation in the Golgi apparatus (Spiro, 2002).    
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Phosphorylation occurs during the  movement of protein through the cis-side of the 

Golgi, and glycosylation of protein takes place while the protein is moving through 

the medial-side of the Golgi.  Proteins that are destined to exit from the Golgi arrive 

at the trans-side of the Golgi where they can be sorted and packaged into different 

PGCs.  The Golgi apparatus serves as a quality control check-point to 

segregate/separate proteins and lipids to be retained in the ER/Golgi system from 

those to be delivered to the plasma membrane (Lippincott-Schwartz et al, 2000).   

 

(D)  Golgi to plasma membrane transport 

The enriched protein is packaged into post-Golgi, membrane-bound, PGCs/transport 

carriers destined for the plasma membrane (Lippincott-Schwartz et al, 2000; Luini 

et al, 2008).  Microtubule motor-dynein is able to drive the PGCs to their desired 

destination (Tai et al, 1999).  Three different and distinct pathways are involved 

with the transport of mature protein out of the cells: (1) secretory granules of the 

regulated secretory pathway; (2) constitutive secretory vesicles to the cell surface; 

(3) endosome-lysosome directed carrier system (Rutishauser & Spiess, 2002).  

These PGCs are able to fully fuse and integrate all their membranes with the plasma 

membrane, and release the cargo proteins to the extracellular environment 

(Schmoranzer et al, 2000; Toomre et al, 2000).  

 

(E)   Quality control in the secretory pathway 

All polypeptides translocated across the secretory are mandatorily subjected to 

quality control (Hurtley et al, 1989; Ellgaard et al, 1999; Ellgaard & Helenius, 

2003; Sitia & Braakman, 2003).   
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The ER is the first checkpoint for protein quality control: it monitors the fidelity of 

protein structure/folding and assembly, hence prevents the further transport of 

immature or faulty proteins along the secretory pathway (Sayeed & Ng, 2005).  The 

ER compartment is enriched with a broad-range of chaperones and folding 

enzymes, which assist in correct protein folding, the maintainance of the protein in 

its native state, and the prevention of the intermediates forming protein aggregates 

(Marquardt et al, 1993).  Molecular chaperones such as protein disulphide 

isomerase (PDI) in the lumen of ER play a central role in the protein quality control, 

being involved in the first line of defense.  Selective recognition of the non-native 

protein is the first step towards its elimination.  Molecular chaperones have the 

ability to interact with non-native folding intermediates, and retain them in the ER.  

Once the faulty proteins have being identified, the cell responds in three different 

ways.  Firstly, cellular factors may attempt to rescue the misfolded proteins by 

refolding them to a functional native state.  Secondly, the cell can sequester 

misfolded proteins in an attempt to prevent toxic interactions.  Finally, those 

proteins that cannot be refolded are eliminated by co-operation of the unfolded 

protein response (UPR) pathway (McClellan et al, 2005; Zhang & Kaufman, 2006) 

with the ER-associated degradation (ERAD) pathway (Sommer & Wolf, 1997; 

Brodsky & McCracken, 1999; McCracken & Brodsky, 2000; Travers et al, 2000).   

 

Following retrotranslocation from the ER to cytosol, nearly all misfolded proteins 

are polyubiquitinated by a cascade of ubiquitin ligase enzymatic reactions that 

lead to ubiquitination of lysine residues of the substrate, prior to proteolytic 

degradation by 26S proteasome (Thrower et al, 2000; Hampton, 2002; Kostova & 

Wolf, 2003).  The entrance to the proteasome complex is relatively small, and 

proteins must be unfolded before they can enter (Gillece et al, 1999; Jarosch et al, 
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2002; Wolf & Hilt, 2004).  If unfolded proteins do not gain access they cannot be 

degraded (Kisselev et al, 2002).   

 

In some severe cases, the defective proteins are not degraded and aggregate, either 

transiently or permanently in the ER compartment.  This occurs when correct 

protein folding is difficult or impossible to achieve, and the degradation process is 

not initiated swiftly.  Unfolded proteins or partially folded proteins expose their 

hydrophobic domains, leading to the non-productive associations of protein and 

protein aggregation (Wetzel, 1994; Speed et al, 1996; Wickner et al, 1999; Garcia-

Mata et al, 2002).  Protein aggregates are defined as covalently cross-linked 

oligomeric complexes of misfolded or unfolded proteins.  They are insoluble and 

stable under physiological conditions (Johnston et al, 1998).  These cross-linked 

protein aggregates have been referred to as “protein aggregates”, “aggresomes”, 

“inclusion bodies” or “plaques” (Kopito, 2000).   

 

Not all proteins that fail ER quality control are retro-translocated into the cytosol, 

and degraded by the classical ubiquitin-proteasome system.  Some proteins with 

minor conformational defects may escape quality control in the ER, and undergo 

anterograde transport to the Golgi.  These defective proteins can be detected by the 

quality control system as they transit through the Golgi and retrograde transported 

back to the ER, and re-targeted to the ERAD pathway.  Alternatively, these proteins 

can be diverted to lysosomes/endosomes for degradation by the vacuolar/lysosomal 

proteases (Minami et al, 1987; Arvan et al, 2002).  LHBs and MHBs are diverted to 

lysosomes for degradation when treated with glucosidase inhibitors (Lu et al, 1997).   
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Oxidative stress in the ER or cytosol is also another main contributing factor to 

protein aggregation by inducing oxidative modification to the protein, and 

promoting protein aggregation (Grune et al, 2004).  Protein aggregates can be 

further chemically modified by various cellular metabolites, including aldehydic 

lipid peroxidation products, and bi-functional aldehydes (Friguet et al, 1994; Grune 

et al, 1997; Grune et al, 2004).  The rate of protein aggregate formation is totally 

dependent on time, protein concentration, and intracellular conditions (Grune et al, 

2004).  Intracellular protein aggregates are able to inhibit proteasome activity 

(Friguet et al, 1994; Sitte et al, 2000).  The inhibition of proteasome activity can 

further delay the degradation of aggregates, regulatory protein and transcription 

factors.  Thus may lead to the initiation of the apoptosis pathway.  

 

1.5   Expression of HBeAg 

The precore/core protein is translated from precore mRNA, whereas the core 

protein is translated from the pgRNA.  Precore/core protein translation initiates at 

the first in-frame ATG at the 5’ end in the precore/core ORF of precore mRNA. 

Translation produces the precore/core protein-precursor of HBeAg of 25 kDa 

(p25).  The p25 protein has 212 aa in length, and consists of the precore domain of 

29 aa followed by a core polypeptide chain (Figure 1.13).  
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Figure 1.13   Schematic representations of the translation of HBcAg and 
precore/core protein, and the processing of HBeAg.  Please note translation of 
HBcAg occurs from the pgRNA, whereas translation of the precore/core protein 
occurs from the precore mRNA. 
 

The first 29 aa in the amino-terminus of precore protein are highly evolutionarily 

conserved among the orthohepadnaviruses (Revill et al, 2010), suggesting their 

functional importance (Ou et al, 1986).  The sequence of the first 19 aa of the 

precore region resembles that of signal sequences and can direct and translocate the 

precore/core protein into the lumen of the ER (Watson, 1984; Ou et al, 1986; 

Standring et al, 1988).  The signal peptide of p25 is co-translationally cleaved by 

host cell signal peptidase during translocation of the p25 protein into ER lumen 

(Junker et al, 1987; Garcia et al, 1988).  Processing of the first 19 aa generates a 22 

kDa intermediate protein (p22) of 193 aa in length (Ou et al, 1986; Junker et al, 
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1987; Bruss & Gerlich, 1988; Garcia et al, 1988; Standring et al, 1988).  The 

remaining p22 has 10 extra amino acids at its amino terminus followed by the core 

polypeptide chain (Standring et al, 1988).  The p22 protein is transported out of ER, 

and delivered to the Golgi complex.  The second endoproteolytic cleavages take 

place at the carboxyl terminus of the p22 in the Golgi (Wang et al, 1991) by furin or 

furin-like proprotein convertase (Gil-Torregrosa et al, 1998; Messageot et al, 2003; 

Ito et al, 2009).  Furin, a transmembrane proprotein convertase, is localized in the 

trans-Golgi network (TGN) (Molloy et al, 1999; Remacle et al, 2008).  The 

trimming of p22 carboxyl terminus by furin in the TGN provides antigen 

presentation to the cytotoxic T lymphocytes (Gil-Torregrosa et al, 1998). 

 

The exact location of carboxyl terminus cleavage has been the subject of debate.  

Takahashi et al initially identified cleavage site at Val149 (Takahashi et al, 1983).   

However, the study of Messageot et al showed that the maturation of HBeAg from 

p22 can be in one step or two steps (Messageot et al, 2003).  The first cleavage site 

is at Arg167, and this cleavage gives rise to a 20 kDa intermediate, approximately 

177 aa in length.  The second cleavage site is at Arg154 and the cleavage generates 

the 17 kDa mature HBeAg of 164 aa in length (Messageot et al, 2003).  The study 

of Ito et al demonstrated that the cleavage site at the carboxyl terminus is genotype 

specific (Tong, 2007; Ito et al, 2009).  The non-A genotype cleavage site was 

identified to be the Arg154 (Messageot et al, 2003; Tong, 2007; Ito et al, 2009), 

whereas in genotype A, the cleavage site of the majority of HBeAg was mapped to 

Arg159 (Ito et al, 2009).  In addition to the Arg159 site, two other alternative 

cleavage sites, Arg154 and Arg169 have also been recognized in genotype A (Ito et 

al, 2009).  This produces a heterogenous final mature HBeAg of 15-18 kDa.  The 

intra-molecular disulfide bond formed between Cys7 (counting from the first amino 



44 
 

acid of core region) and Cys61, is important to prevent dimerization of monomeric 

HBeAg, and is critical in maintaining the tertiary structure of HBeAg and the 

antigenicity of HBeAg (Wasenauer et al, 1992; Nassal & Rieger, 1993; Bang et al, 

2005).  In fact, HBeAg was identified by Magnius and Espmark, in the plasma of a 

chronic carrier of HBV, as a distinct antigen-antibody complex using an 

immunodiffusion method (Magnius & Espmark, 1972a).  Mature HBeAg is 

transported out of the hepatocytes, and secreted into the blood in a monomeric form 

(Wasenauer et al, 1992).  HBeAg is also found to be expressed on the surface of 

infected hepatocytes (Mushahwar & Overby, 1981). 

HBV DNA negative Dane particles were documented to exist in serum (Gerin et al, 

1975; Alberti et al, 1978; Takahashi et al, 1980; Sakamoto et al, 1983).  Kimura et 

al reported the existence of DNA negative Dane particles, which are rich in 22 kDa 

precore protein (p22cr), without viral DNA and core capsid (Kimura et al, 2005).  

This p22cr protein has uncleaved signal peptides on the amino end and is cleaved on 

the carboxyl terminus in the arginine-rich domain (Kimura et al, 2005).  The 

functions of the p22cr are largely unknown, but it has been suggested that it may 

play a role in persistence of HBV infection (Gerin et al, 1975; Takahashi et al, 

1980; Sakamoto et al, 1983), and may disturb the host immune response (Kimura et 

al, 2005).  Kimura et al postulated that p22cr may possibly also play a role in the 

inhibition of HBV replication during natural infection (Kimura et al, 2005) because 

overexpression of precore protein has been shown to inhibit viral replication in cell 

culture (Scaglioni et al, 1997b) and the transgenic mice system (Guidotti et al, 

1996). 
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Various mutations in the basic core promoter (BCP) and precore region of HBV 

may affect the expression of HBeAg at three levels, namely the transcriptional, 

translational and post-translational levels.  

 

1.5.1   The transcriptional level:  A1762T/G1764A mutants 

The BCP (nt1742-1849) controls the transcription of the precore mRNA and 

pgRNA (Yaginuma & Koike, 1989; Yuh & Ting, 1990).  The most common BCP 

mutations A1762T/G1764A were first discovered by Okamoto et al (Okamoto et 

al, 1994).  The combination of A1762T/G1764A synergistically reduce the basic 

core promoter activity and suppress the transcription of precore mRNA 

(Buckwold et al, 1996; Moriyama et al, 1996; Sterneck et al, 1998), thus resulting 

in reduced expression of HBeAg (Moriyama et al, 1996; Moriyama, 1997; 

Scaglioni et al, 1997a; Parekh et al, 2003).  The mutations also increase 

transcription of pgRNA (Moriyama et al, 1996; Moriyama, 1997), leading to 

moderately increased viral replication (Buckwold et al, 1996; Moriyama et al, 

1996; Scaglioni et al, 1997a; Parekh et al, 2003; Tong et al, 2005; Jammeh et al, 

2008). 

 

1.5.2   The translational level:  1896 and 1809-1812 mutants 

1896 mutant 

The classical G1896A mutation, which results in the generation of translational stop 

codon by converting the TGG codon for Trp to the stop codon TAG (Carman et al, 

1989; Tong et al, 1990).  This is the predominant mutation in the precore region 

(Revill et al, 2010) and has been implicated in resulting in HBeAg-negativity as a 

consequence of the premature termination of the synthesis of the precore precursor 

protein (Carman et al, 1989; Tong et al, 1990).   
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G1896A mutation occurs at the lower stem of the ε in the pgRNA, and is base 

paired with T1858 in the opposite position of the lower stem.  Base pairing of 

G1896A with 1858T stabilizes the encapsidation signal, improves viral genome 

stability, encapsidation of pgRNA, and initiation of DNA synthesis (Lok et al, 

1994; Rodriguez-Frias et al, 1995).  This mutation is frequently observed in HBV 

from Asian and Mediterranean patients, but rarely in Western Europe and North 

America (Kramvis et al, 1997; Nagasaka et al, 1998; Grandjacques et al, 2000). 

The reason for this is that the G1896A is genotype-specific (Li et al, 1993; Lok et 

al, 1994).  This mutation is rarely identified in genotypes A (Li et al, 1993; Lok et 

al, 1994; Kramvis et al, 2008), genotype F (Arauz-Ruiz et al, 1997; Lindh, 1997; 

Norder et al, 2003) or in certain strains of HBV genotype C (Lindh, 1997) 

because position 1858 in these genotypes is a C instead of a T.  The stable 

Watson-Crick base pairing between 1858C and 1896G would be disrupted by 

G1896A,  destabilizing the lower stem of ε (Li et al, 1993; Lok et al, 1994).  In 

contrast, genotypes B, D and some strains of genotype C, the wobble base pair is 

formed between 1858T and 1896G (Li et al, 1993; Lok et al, 1994).  In these 

genotypes, the G1896A mutation is more favorable because it converts the wobble 

base pair into a stable Watson-Crick base pair contributing to the enhancement of 

ε stability (Lok et al, 1994).   

 

1809-1812 mutants 

In 1999, Baptista et al reported the missense mutations that are unique to 

subgenotype A1 at nt1809, 1811 and 1812 (Baptista et al, 1999; Owiredu et al, 

2001; Kramvis et al, 2002; Kimbi et al, 2004).  The 1809, 1811 and 1812 mutations 

corresponding to the -5, -3 and -2 position to the precore translation initiation codon 

(Ahn et al, 2003).  The sequence around precore initiation codon (nt1808-1817) is 
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well conserved among genotypes A to H (Arauz-Ruiz et al, 1997), and is regarded 

as the “optimal” Kozak sequence for the translational initiation of the precore 

precursor protein (Kozak, 1987; Kozak, 1999).  The combination of the triple 

mutations creates a “sub-optimal” translational initiation context, which reduces 

precore/core protein translation by a leaky scanning mechanism (Ahn et al, 2003).  

The “sub-optimal” context of the precore AUG region caused by the triple mutation 

results in small ribosomal subunit (40S) missing this AUG codon, and re-initiating 

translation at the next downstream in-frame initiation codon, leading to core protein 

translation from the precore mRNA (Ahn et al, 2003).  The reduction of HBeAg 

expression as a result of the 1809-1812 mutations in the Kozak sequence is  

comparable to that resulting from the effect of A1762T/G1764A mutants on 

transcription.  Moreover, the presence of both the BCP A1762T/G1764A mutants 

together with the 1809-1812 mutations results in an additive reduction of HBeAg 

expression (Ahn et al, 2003).  

 

In addition to the mutations described above sequencing of HBV isolates from 

southern African Blacks lead to the identification of a G1862T mutation in the 

precore region that could conceivably affect the expression of HBeAg.   

 

1.5.3   Can the G1862T mutation affect HBeAg expression at the post-

translational level? 

The guanine (G) to thymine (T) transversion at nt 1862 (numbering from the EcoR1 

cleavage site) within the bulge of the RNA encapsidation signal (ε) of the HBV was 

initially reported in occasional patients with various forms of acute or chronic HBV-

induced liver disease (Carman et al., 1995; Clementi et al., 1993; Horikita et al., 

1994; Laskus et al., 1993; Laskus et al., 1994; Li et al., 1993; Loriot et al., 1995; 
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Santantonio et al., 1991; Tran et al., 1991; Valliammai et al., 1995; Zhang et al., 

1996).  Subsequently, the mutation was detected in 24 % southern African Black 

asymptomatic carriers of the virus (Kramvis et al, 1997), and in 26 % of southern 

African Black patients with HBV-induced HCC (Kramvis et al, 1998).  This 

mutation occurs together with the G1888A silent mutation commonly found in 

subgenotype A1 (Kimbi et al, 2004).  The G1862T mutation was present in 35 % of 

the tumor tissues but was absent in non-tumorous hepatic tissue (Kramvis et al, 

1998), 74 % of patients with various forms of liver disease who were infected with 

subgenotype A1 of the virus (but in none of similar patients infected with 

subgenotype A2 or genotype D) (Tanaka et al, 2004b), and 14 % of Chinese 

patients with fulminant hepatitis B (Hou et al, 2002).   

 

Woodchuck hepatitis virus (WHV) is naturally found in the Eastern North 

American woodchuck (Marmota monax).  WHV shares approximately 65 % 

nucleotide sequence identity with HBV (Galibert et al, 1982).  The WHV genomic 

organization, replication strategies and biological properties are similar to those of 

HBV and other mammalian hepadnaviruses (Kodama et al, 1985).  WHV produces 

acute and/or chronic infections similar to the HBV infections in human.  In addition, 

WHV chronically infected woodchucks develop HCC within a relative short period 

of time (2-3 years) (Popper et al, 1987; Gerin et al, 1989).  Therefore, the WHV 

infected woodchuck is an ideal animal model to study the course of viral infection, 

antiviral therapy and hepadnavirus-induced HCC (Menne & Cote, 2007).   A greater 

than 90 % sequence homology exists between HBV and WHV in the ε region 

(Figure 1.14) (Kramvis & Kew, 1998).   
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Figure 1.14  The nucleotide sequences and predicted secondary structure of the 
encapsidation signal of HBV genotype A and WHV (Junker-Niepmann et al, 
1990).  The DNA sequences are shown for ease of interpretation. 

 

The earliest evidence for the presence of a woodchuck hepatitis virus e antigen 

(WHeAg)/anti-WHeAg system was from the indirect immunoassay performed using 

blood from the WHV-infected Eastern woodchucks (Hantz et al, 1984).  

Documented proof for the existence of WHeAg, however, was not reported until 

1994.  The maturation pathway of WHeAg is similar to that of HBeAg, via the 

signal peptidase cleavage of the amino end as it passes through ER lumen, and 

cleavage of the arginine-rich carboxyl terminus in the Golgi by furin (Carlier et al, 

1994).  The difference between completely processed WHeAg and HBeAg is that 

WHeAg is N-glycosylated with a molecular weight (Mr) of 24 kDa (Carlier et al, 

1994) and HBeAg is not glycosylated and has a Mr of 17kDa (Messageot et al, 

2003) . 
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WHV G1982T mutation (equivalent to G1862T in HBV) is found in 

approximately 33.3 % of complete WHV sequences deposited in GenBank.   The 

prevalence of WHV G1982T was found to be 88.6 % in the study of Li et al 

where a total of 53 WHV isolates were sequenced in their study (Li et al, 1996).  

For the sake of clarity, the WHV 1982G will be referred as wild-type in this thesis 

although it is difficult to conclude whether this is strictly speaking correct.  

 

The phenotypic change from Val to Phe introduced by the G1862T (G1982T in 

WHV)  mutation at codon 17 of the precore core precursor protein (-3 position to 

the signal peptidase recognition motif) is close to the signal peptide cleavage site at 

position 19 (-1 position to the signal peptidase recognition motif) (Figure 1.15), and 

may therefore interfere and abrogate signal peptide cleavage (Valliammai et al, 

1995; Kramvis et al, 1997).  Phe has a bulky, aromatic side chain and is regarded as 

a “forbidden” amino acid at -3 position to the signal peptidase recognition motif 

(von Heijne, 1985; von Heijne, 1990).  In both prokaryotic and eukaryotic 

organisms, signal peptidase exhibits similar substrate requirements.  Type 1 signal 

peptidase recognizes substrate with small amino acid residues at the -1 position or 

small uncharged residues at -3 position of the signal peptide relative to the cleavage 

site (Dierstein & Wickner, 1986; Fikes et al, 1990; Shen et al, 1991; Karamyshev et 

al, 1998).  The complete abrogation of signal peptide cleavage as a result of amino 

acid substitution to Phe at -3 position was observed in the Escherichia coli alkaline 

phosphatase model (Karamyshev et al, 1998).  
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Figure 1.15   Structure of signal peptide with relation to HBV precore 
sequences.  The amino acids of each domain were defined using SignalP 3.0 
software, available at http://www.cbs.dtu.dk/services/SignalP. 
 

 

1.6   Rationale and aims of this study 

HBV is endemic in the Black population of southern Africa.  A high rate of HBeAg-

negativity is a unique feature of chronic carriage of the virus in this population, with 

HBeAg expression being lost relative early during the course of the infection  (Song 

et al, 1984).  Approximately 5 % of carriers are HBeAg-positive when they reach 

adulthood (Dusheiko et al, 1985), as opposed to a rate of 40 % or higher found in 

other hyperendemic areas of the world (Stevens et al, 1980).  In this population 

subgenotype A1 of genotype A is the dominant strain circulating (Bowyer et al, 

1997; Hardie & Williamson, 1997; Kramvis et al, 1998; Kramvis et al, 2002; Kimbi 

et al, 2004; Kramvis & Kew, 2007b).  Subgenotype A1 carriers have been shown to 

have a significantly lower frequency of HBeAg-positivity than subgenotype A2 or 

D, and this lower frequency is statistically significant in carriers younger than 30 

years (Tanaka et al, 2004b).  Distinctive sequence characteristics of subgenotype 
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A1 have been identified that could account for the high HBeAg negativity rate 

(Tanaka et al, 2004b; Kramvis & Kew, 2007b).  At the transcriptional level, the 

core promoter mutations A1762T/G1764A can reduce HBeAg expression 

(Takahashi et al, 1995; Kurosaki et al, 1996; Baptista et al, 1999).  At the 

translational level, mutations at 1809-1812 that alter the Kozak sequence of the 

precore/core open reading frame are stable traits and affect HBeAg expression to an 

extent comparable to A1762T/G1764A (Ahn et al, 2003).  The co-existence of 

A1762T/G1764A and 1809-1812 mutations reduces HBeAg expression in an 

additive manner (Ahn et al, 2003).  

 

Approximately 25% of both southern African black asymptomatic carriers of the 

virus (Kramvis et al, 1997) and HCC patients (Kramvis et al, 1998) have been 

shown to have a G to T transversion at 1862 in the precore region.  This mutation 

could conceivably have two functional consequences.  Firstly, the bulge of ε plays       

a pivotal role in the initiation of reverse transcription of pgRNA (Knaus & Nassal, 

1993; Pollack & Ganem, 1993).  The G1862T mutation could change the secondary 

structure of ε and could interfere with and hence affect HBV replication (Fallows & 

Goff, 1995).  Secondly, the precore/core ORF from the precore mRNA, which 

codes for the precursor of HBeAg overlaps the region that codes for ε on the 

pgRNA.  The phenotypic change from Val to Phe introduced by the G1862T 

mutation at codon 17 (-3 position to the signal peptidase recognition motif) is close 

to the signal peptide cleavage site at position 19 (-1 position to the signal peptidase 

recognition motif), and may therefore abrogate signal peptide cleavage (Valliammai 

et al, 1995; Kramvis et al, 1997).  
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The objective of the present study was to functionally characterize the HBV 

G1862T mutation and its equivalent G1982T found in WHV.  This was achieved 

by attaining the following aims: 

• The introduction of the G1862T mutation into the precore region of 

replication competent HBV plasmid by site-directed mutagenesis with or 

without the presence of the 1888A mutation. 

• The introduction of the T1982G mutations into the precore region of 

replication competent WHV plasmid by site-directed mutagenesis.  

• The construction of HBeAg-expression plasmids from the wild-type and 

mutant replication competent HBV plasmids. 

• The construction of WHeAg-expression plasmids from the wild-type and 

mutant replication competent WHV plasmids. 

• The comparison of HBV replication of wild-type and mutant constructs in 

transfected Huh7 cells. 

• The monitoring of secretion and expression of HBeAg in Huh7 cells 

transfected with wild-type or mutant HBeAg-expression plasmids.  

• The monitoring of secretion and expression of WHeAg in Huh7 cells 

transfected with wild-type or mutant WHeAg-expression plasmids. 
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CHAPTER 2    

2.0   MATERIALS AND METHODS 

 

 

Figure 2.1   Overview of experimental design and methodologies.  
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2.1   Plasmid construction 

2.1.1   Hepatitis B virus plasmids 

The HBV plasmid pCH-9/3091-wt encoding a wild-type, terminally redundant, 

1.3X unit over-length, replication competent genotype D HBV genome was the 

generous gift from Dr M. Nassal, University of Freiburg, Germany (Nassal, 1992).  

pCH-9/3091 is a pgRNA expression plasmid, from which a wild-type pgRNA is 

transcribed from a cytomegalovirus (CMV) IE promoter (Junker et al, 1987).  The 

southern African HBV isolates in which the G1862T mutation was detected, belong 

to genotype A.  Therefore, the original replication competent genotype D plasmid 

was modified to genotype A context in the precore region and mutant constructs 

were generated from this template.  Genotype ‘A’ refers to the genotype D construct 

mutated to genotype A in the precore region. 

 

2.1.2   Woodchuck hepatitis virus (WHV) plasmids 

The WHV replication competent plasmid pCWT-9/3235 has native 1982T 

(expressing Phe and equivalent to mutant G1862T in HBV), and it was a gift from 

Dr M. Nassal.  pCWT-9/3235 contains a complete WHV-2 genome (Kodama et al, 

1985) under control of the CMV promoter.  The pCWT-9/3235 plasmid was used as 

the template for the generation of WHV plasmids expressing Val, 1982G, the 

quivalent to wild-type in HBV.    
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Figure 2.2   Flow chart showing the generation of mutant HBV and WHV 

replication competent plasmids.  Genotype ‘A’ refers to the genotype D construct 
mutated to genotype A in the precore region.   
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2.1.3   Site-directed mutagenesis 

Using the pCH-9/3091-wt plasmid as the template, in conjunction with the 

QuickChange kit (Stratagene, La Jolla, CA, USA) and appropriately designed 

mutagenic primer pairs and polymerase chain reaction (PCR) conditions (Table 

2.1), the precore region was firstly mutated from genotype D to A.  Subsequently, 

G1862T, G1888A, G1862T/ G1888A and G1896A mutants were generated from 

the wild-type genotype ‘A’ and D plasmids.  The G1862T/G1888A double mutation 

was generated using the G1862T mutant plasmid as template together with the 

G1888A mutagenic primer pair in a second mutagenic PCR.  The PCR mix was 

composed of 5 µl of 10 X reaction buffer, 2 µl of template plasmid DNA (5-50 ng), 

125 ng of forward mutagenic primer, 125 ng of reverse complimentary mutagenic 

primer, 1 µl of dNTP mix provided by the mutagenesis kit, 1 µl of Pfu Turbo DNA 

polymerase at 2.5 U/µl, and made up to a final volume of 51 µl with best quality 

water.  PCR were carried out using the GeneAmp PCR system 9600 thermal cycler 

(Applied Biosystems, Foster City, CA, USA) or Eppendorf Mastercycler Gradient 

(Eppendorf, Hamburg, Germany).  PCR amplification conditions were as follows:  

initial denaturation at 95 °C for 30 sec, followed by 12 cycles of 95 °C for 30 sec, 

variable temperature  °C for 1 min (note:  please see Table 2.1 for detailed 

annealing temperature for each primer set) and 68 °C for 7 min (1 kb = 1 min).  

After PCR cycling, PCR tubes were placed on ice for 2 min to cool down the 

reaction mix before proceeding with the enzyme digestion.  Each PCR product was 

digested with 10 U of restriction enzyme, Dpn I (10 U/ µl) for 1 hour at 37 °C.  This 

digestion allows the methylated parental supercoiled template DNA to be degraded. 

 

An aliquot (1 µl) of Dpn I digested PCR product was gently mixed with 50 µl of 

supercompetent XL1-Blue E.coli cells (provided by the QuickChange kit).  The 
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wild-type and mutated daughter plasmid was transformed individually into XL1-

Blue cells using the heat shock method according to the manufacturer’s directions.  

The transformed bacteria were plated onto ampicillin (50 µg/ml) enriched LB agar 

plates (Appendix A1).  The plates were incubated at 37 °C overnight, after which 

colonies were selected and inoculated in LB broth supplemented with ampicillin at 

50µg/ml (Appendix A2, A3).  Bacterial cultures were grown overnight at 37 °C in 

the Orbital Shaker Incubator LM-510 (YIH DER, Germany) with constant shaking 

at 150 revolutions per minute (rpm).  Bacteria were harvested by centrifugation for 

20 min at 6000 x g at 4 °C.   Plasmids were purified from the harvested bacteria 

using QIAprep Spin Miniprep kit (Qiagen, Hilden, Germany), according to 

manufacturer’s instructions.   

 

The WHV replication competent plasmid, pCWT-9/3235 bearing the 1982G 

(equivalent to the HBV wild-type) was generated using the same mutagenic method 

described above for HBV replication competent plasmid mutagenesis.  Details of 

WHV mutagenic primer sequences and annealing temperature for the PCR used can 

be found in Table 2.1. 

 

The plasmids were sequenced directionally using the sequencing primer, 3091 

CMVIE promoter:  5’-CATTGACGCAAATGGGCGGTA-3’. 
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Figure 2.3   Flow chart summarizing the construction of HBeAg- and WHeAg- 

expression plasmids, and also the precore/core-eGFP fusion protein expression 

plasmids. 
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2.1.4   Construction of HBeAg- and WHeAg-expression plasmids 

2.1.4.1   HBV HBeAg-expression pCR3.1 plasmids 

The entire precore/core regions of the wild-type or modified mutant pCH-9/3091 

plasmids were amplified using primer set shown in Table 2.2.  The total PCR 

mixture was 100 µl containing 1.75 U Expand high fidelity polymerase (Roche, 

Mannheim, Germany), 300 µM each of the dNTPs, 2 µM of each primer, 3 mM of 

magnesium chloride, 1 X Expand high-fidelity PCR buffer and 1.5 µl of plasmid 

DNA template.  PCR amplification condition was as follows:  initial denaturation at 

94 °C for 2 min, followed by 40 cycles of 94 °C for 45 sec, 48 °C for 1 min, 72 °C 

for 1 min 20 sec, and one cycle of 10 min at 72 °C for final extension.  PCR 

reactions were carried out using the GeneAmp PCR system 9600 thermal cycler 

(Applied Biosystems, Foster City, CA, USA) or Eppendorf Mastercycler Gradient 

(Eppendorf, Hamburg, Germany).  An aliquot of PCR product was analyzed by 

electrophoresis on 1 % (w/v) agarose gel (Appendix A4-A5) in 1 X TBE buffer 

(Appendix A6).  Expand high-fidelity polymerase is a blend of Taq polymerase and 

proofreading polymerase, therefore the PCR product generated using this enzyme 

will have a mixture of blunt and sticky ends.  When using PCR product generated 

using this polymerase blend, it is necessary to take an additional step by treating 

with Taq polymerase, to generate PCR product with A overhang.  PCR products 

were incubated with TaKaRa ExTaqTM polymerase (Takara Mirus Bio, Madison, 

WI, USA) at 2.5 U/100 µl for 10 min at 72 °C before proceeding with the cloning 

procedure.   

 

The PCR product was subsequently cloned into the pCR3.1 cloning vector using the 

TA Eukaryotic cloning kit-bidirectional (Invitrogen, Carlsbad, CA, USA) according 

to manufacturer’s instructions.  Ligated vector was transformed into supercompetent 
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TOP10 E coli cells, provided with the kit.  Transformed bacteria were plated onto 

kanamycin (50 µg/ml) supplemented LB agar plates (Appendix A7).  These agar 

plates were incubated at 37 °C overnight, after which colonies were selected and 

inoculated in LB broth supplemented with kanamycin (50 µg/ml) (Appendix A2, 

A8).  Bacterial cultures were grown overnight at 37 °C in the Orbital Shaker 

Incubator LM-510 (YIH DER, Germany) with constant shaking at 150 rpm. 

Bacteria were harvested by centrifugation for 20 min at 6000 x g at 4 °C.   Plasmids 

were purified from the harvested bacteria using QIAprep Spin Miniprep kit.  

Plasmids with the correct insert were selected by restriction digestion, and 

sequenced bi-directionally using sequencing primers provided by the cloning kit. 
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2.1.4.2   WHV WHeAg-expression pCR3.1 plasmids 

The same approach as described in section 2.1.4.1 was used to generate the 

WHeAg-expression pCR3.1 plasmids.  The entire WHV precore/core region 

bearing either the G1982T nucleotide (equivalent of HBV mutant at position 1862) 

or the 1982G (equivalent of HBV wild-type) was amplified from pCWT-9/3235 

G1982T or 1982G (wild-type) plasmids using primer set shown in Table 2.2.  The 

total PCR mixture was 100 µl containing 1.75 U Expand high fidelity polymerase, 

300 µM each of the dNTPs, 2 µM of each primer, 2.5 mM of magnesium chloride, 1 

X Expand high fidelity PCR buffer and 1.5 µl of plasmid DNA template.  The PCR 

reactions were performed as follows:  initial denaturation at 94 °C for 2 min, 

followed by 30 cycles of 94 °C for 40 sec, 55.5 °C for 1 min, 72 °C for 1 min, and 

one cycle of 7 min at 72 °C for final extension.  PCR were carried out using the 

GeneAmp PCR system 9600 thermal cycler (Applied Biosystems, Foster City, CA, 

USA) or Eppendorf Mastercycler Gradient (Eppendorf, Hamburg, Germany). 
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2.1.5  Construction of the precore/core-eGFP fusion protein expression 

plasmids 

The enhanced green fluorescent protein (eGFP) can be use as a fusion tag in vivo or 

in vitro to localize proteins, follow their movement, or to study the dynamics of 

protein targeting to the secretory pathway.  In order to monitor the dynamic 

movement of wild-type or mutant HBV or WHV precore/core protein in their 

secretory pathway, we designed and generated the HBV or WHV precore/core 

protein-eGFP fusion protein expression plasmids with a flexible poly-linker 

between the upstream precore/core gene and the downstream eGFP gene. 

 

2.1.5.1    Construction of the HBV precore/core-eGFP fusion protein expression 

plasmids 

The entire precore/core region of HBV was amplified using the pCH-9/3091 as 

template and primer set shown in Table 2.3.  Briefly, the total PCR mixture was 100 

µl containing 1.75 U Expand high fidelity polymerase, 300 µM each of the dNTPs, 

1 µM of each primer, 2.5 mM of magnesium chloride, 1 X Expand high fidelity 

PCR buffer and 2 µl of plasmid DNA template.  PCRs were performed as follows:  

initial denaturation at 94 °C for 2 min, followed by 40 cycles of 94 °C for 35 sec, 63 

°C for 1 min, 72 °C for 1 min 10 sec, and final extension cycle of 10 min at 72 °C.  

The PCR product was cloned into the Sma I site of the eGFP fusion vector-pWay20 

(generous gift from Dr T. Hughes, Molecular Motion Lab, Montana State 

University, USA), using ligase and the reaction buffer from the pCR-Script Amp 

cloning kit (Stratagene, La Jolla, CA, USA).  The ligated plasmid was transformed 

into supercompetent TOP10 E. coli cells (Invitrogen, Carlsbad, CA, USA).  

Transformed bacteria were plated onto kanamycin (50µg/ml) enriched LB agar 

plates.  These agar plates were incubated at 37 °C overnight, after which colonies 



68 
 

selected and inoculated in LB broth with kanamycin supplemented at 50µg/ml.  

Bacterial cultures were grown overnight at 37 °C in the Orbital Shaker Incubator 

LM-510 (YIH DER, Germany) with constant shaking at 150 rpm. Bacteria were 

harvested by centrifugation for 20 min at 6000 x g at 4 °C.   Plasmids were purified 

from the harvested bacteria using QIAprep Spin Miniprep kit.  Plasmids with the 

correct insert were identified by restriction digestion, and sequenced directionally 

using pWay20-eGFP primer, 5’-TCCAGTGTG GTGGAATTCGGCTTG-3’. 

 

2.1.5.2   Construction of the WHV precore/core-eGFP fusion protein 

expression plasmids 

The entire precore/core region of WHV was amplified using the primer set shown in 

Table 2.3.  PCR mixture preparation was identical to the HBV precore/core gene 

amplification PCR for the cloning of HBV precore/core-eGFP fusion protein 

expression plasmid (see section 2.1.5.1) except the magnesium chloride 

concentration was optimized to 3 mM.   PCR were performed as follows:  initial 

denaturation at 94 °C for 2 min, followed by 40 cycles of 94 °C for 35 sec, 63 °C 

for 1 min, 72 °C for 1 min 10 sec, and final extension cycle of 10 min at 72 °C.  

PCR were carried out using the GeneAmp PCR system 9600 thermal cycler 

(Applied Biosystems, Foster City, CA, USA) or Eppendorf Mastercycler Gradient 

(Eppendorf, Hamburg, Germany).  The PCR product was cloned into the eGFP 

fusion vector-pWay20 using the same method used for the construction of HBV 

precore/core-eGFP fusion protein expression plasmid mentioned in section 2.1.5.1.  

Plasmids with the correct insert were selected by restriction digestion, and 

sequenced directionally using pWay20-eGFP primer, 5’-TCCAGTGTGGTGGAA 

TTCGGCTTG-3’. 



69
 

 T
a
b

le
 2

.3
: 

 O
li

g
o
n

u
cl

eo
ti

d
e 

p
ri

m
er

s 
u

se
d

 f
o
r 

th
e 

P
C

R
 t

o
 a

m
p

li
fy

 H
B

V
 a

n
d

 W
H

V
 p

re
co

re
/c

o
re

 g
en

es
 

 f
o
r 

th
e 

co
n

st
ru

ct
io

n
 o

f 
p

re
co

r
e/

co
re

-e
G

F
P

 f
u

si
o
n

 p
ro

te
in

 e
x
p

re
ss

io
n

 p
la

sm
id

s 
 

 A
m

pl
ic

on
 

P
ri

m
er

 
S

eq
ue

nc
ec 

S
iz

ed
 

 H
B

V
 

pr
ec

or
e/

co
re

- 

eG
F

P
 

 18
08

X
h
o

IF
(+

)a 

24
32

R
(-

)a 

 5’
– 

C
↓
T

C
G

A
G

A
G

C
C

A
C

C
A

T
G

C
A

A
C

T
T

T
T

T
C

A
C

C
T

C
T

G
–3

’ 

5’
– 

A
G

T
A

C
C

T
C

C
G

C
C

A
C

C
A

C
T

A
C

C
T

C
C

G
C

C
A

C
C

A
C

A
 

T
T

G
A

G
A

T
C

C
C

G
A

G
A

–3
’ 

 66
4 

W
H

V
 

pr
ec

or
e/

co
re

- 
 

eG
F

P
 

 19
28

F
(+

)b
 

25
87

R
(-

)b
 

 5’
 –

T
C

T
A

G
G

A
G

C
C

A
C

C
A

T
G

T
A

T
C

T
T

T
T

T
C

A
C

C
T

G
T

G
C

C
– 

3’
 

5’
 –

A
G

T
A

C
C

T
C

C
G

C
C

A
C

C
A

C
T

A
C

C
T

C
C

G
C

C
A

C
C

G
C

A
 

G
T

T
G

G
C

A
G

A
T

G
G

A
G

A
T

T
G

A
– 

3’
 

 69
8 

  



70
 

 a : 
nu

m
b

er
in

g 
of

 n
uc

le
ic

 a
ci

ds
 f

ro
m

 E
co

R
I 

si
te

 a
cc

or
di

ng
 t

o 
ge

no
ty

p
e 

D
 H

B
V

(A
Y

23
32

9
2)

 +
:s

en
se

 p
ol

ar
it

y;
 -

: 
an

ti
se

ns
e 

po
la

ri
ty

 

b
: 

nu
m

be
ri

ng
 o

f 
nu

cl
ei

c 
ac

id
s 

ac
co

rd
in

g 
to

 W
H

V
 g

en
om

e 
(A

Y
62

80
98

) 
+

: 
se

ns
e 

po
la

ri
ty

; 
-:

 a
nt

is
en

se
 p

ol
ar

it
y 

c : 
vi

ra
l 

se
qu

en
ce

s 
ar

e 
sh

o
w

n 
in

 i
ta

li
cs

; 
re

st
ri

ct
io

n 
si

te
s 

in
 b

o
ld

fa
ce

 a
nd

 u
n

de
rl

in
ed

; 
se

q
ue

nc
e 

co
di

n
g 

fo
r 

li
nk

er
s 

ar
e 

sh
ow

n 
in

 b
o
ld

; 
 

ab
ol

is
he

d 
st

op
 c

od
on

s 
of

 c
or

e 
O

R
F

 a
re

 u
nd

er
li

ne
d.

   

d
: S

iz
e 

of
 t

he
 a

m
pl

ic
on

s 
in

 b
as

e 
pa

ir
s.

 

 



71 
 

 2.1.5.3   Plasmids extraction and purification 

All recombinant plasmids were extracted and purified from the overnight bacterial 

culture using the QIAprep Spin Miniprep kit for small scale plasmid extraction and 

Qiagen Endofree Plasmid Maxi kit for transfection experiments (Qiagen, Hilden, 

Germany).  The concentrations of all plasmid DNA were quantified for transfection 

purposes, by measuring absorbance at 260 nm using a high-resolution 

spectrophotometer, GeneQuant (Amersham Bioscience, Buckinghamshire, UK). 

 

 2.1.6   Automated sequencing 

Mutations and plasmids with correct inserts were confirmed by sequencing using 

the BigDye Terminator V3.0 Cycle Sequencing Ready Reaction Kit (Applied 

Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions 

and subjected to cycle sequencing on a GeneAmp PCR system 9600 thermal cycler 

(Applied Biosystems, Foster City, CA, USA).  Unincorporated dye terminators were 

removed using DyeEx 2.0 Spin Kit (Qiagen, Hilden, Germany).  The sequencing 

reactions were loaded and analyzed on the Applied Biosystem 377 automated 

sequencer (Applied Biosystems, Foster City, CA, USA). 
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2.2   Cell culture 

The Huh7, a human hepatoma cell line was a generous gift from Prof H. 

Nakabayashi, Department of Biochemistry, Graduate School of Medicine, 

Hokkaido University, Japan (Nakabayashi et al, 1982).  The cell line was 

maintained and sub-cultured every 2 to 3 days in chemically defined medium, 

ISE- Roswell Park Memorial Institute (RPMI) 1640 + L-Glutamine (Gibco-BRL, 

Paisley, Scotland, UK) (Appendix A9), supplemented with 10 % (v/v) foetal 

bovine serum (FBS) (Gibco-BRL, Paisley, Scotland, UK).  The culture medium 

was prepared according to the formulations in Appendix A9.  The spent culture 

medium (conditioned medium) was removed from the culture vessel and filtered 

through a 0.2 µm MiniSart filter (Sartorius, Göttingen, Germany) to remove any 

cellular debris.  Cells were first rinsed once with phosphate buffered saline (PBS) 

(Gibco-BRL, Paisley, Scotland, UK).  A volume of 0.01 % (w/v) ethylene 

diamine tetra-acetic acid di-sodium salt (EDTA) / PBS (Appendix A10) was 

added to the cells, and further incubated at 37 °C for 10 min to allow the cells to 

detach from the culturing vessel.  The detached cells in 0.01 % EDTA/ PBS 

solution were centrifuged for 2 min at 300 rpm in the Minor centrifuge (MSE, 

London, UK).  The supernatant was discarded and the cell pellet was re-

suspended in fresh medium supplemented with 10 % (v/v) FBS before adding to 

the culturing vessel.  The filtered conditioned medium was also added at 20-25 % 

of the total final volume of medium.  The growth factors in the conditioned 

medium will enhance the growth of Huh 7 cells.  Cells were grown at 37 °C 

incubator in a humidified atmosphere containing 5 % CO2. 

 

MG132 (Z-Leu-Leu-Leu-CHO) (BIOMOL, Plymouth Meeting, PA, USA), a 

potent and selective reversible proteasome inhibitor was added to the Huh7 cells 
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at 1 µM.  Cells were further incubated for 24 hours at 37 °C after the addition of 

MG132.  The fungal metabolite, brefeldin A (BFA) (Sigma-Aldrich, St Louis, 

MO, USA), induces the disassembly of the Golgi complex and cause rapid 

redistribution of Golgi proteins to the ER in mammalian cells.  Huh7 cells were 

incubated with BFA at 5 µg/ml for 30 min at 37 °C before fixing the cells.  

 

2.3   Transfection 

Huh7 cells were seeded 24 hours prior to transfection into 100 mm dishes (Corning, 

Corning, NY, USA) for the HBV replication and metabolic labelling experiments, 6 

well plate for HBeAg analysis (Corning, Corning, NY, USA) or  8-well LAB-TEK® 

II chamber slides and 4-well LAB-TEK®II chamber coverglass (Nalge Nunc 

International, Rochester, NY, USA) for confocal microscopy.  When the cells had 

reached approximately 70-80 % confluency, transfection by the cationic lipid-

mediated method using lipofectamine™2000 (Invitrogen, Carlsbad, CA, USA) was 

performed according to manufacturer’s directions (Table 2.4).  Briefly, the 

appropriate volume of plasmid DNA was added to the Opti-MEM1 reduced serum 

medium (Gibco-BRL, Paisley, Scotland, UK).  In a separate tube, 

lipofectamineTM2000 was added to the second aliquot of Opti-MEM1 reduced 

serum medium and incubated at room temperature for 5 min.  The diluted DNA was 

combined with the diluted lipofectamineTM2000 with gentle mixing, and incubated 

at room temperature for 20 min to allow the cationic lipid-DNA complexes to form.  

The complexes were added to the cells followed by gently rocking to evenly 

distribute the complexes.  The culture vessels were further incubated at 37 °C for  

48 to 72 hours, allowing the gene of interest to be expressed.   
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Table 2.4:  Transfection reaction volumes used for the different types of 

culture vessels 

Culture Vessel Quantity of  
DNA (µg) 

Volume of Opti- 
MEM 1 reduced  
serum medium 

Volume of 
lipofectamineTM 2000 

Per well of 8-well   
chamber slides  

1 µg 2X 50 µl 0.5 µl 

Per well of 4-well  
cover glass 

2 µg 2X 100 µl 1 µl 

6 well plate 5 µg 2X  250 µl 2.5 µl 

100 mm dish 48 µg 2X 1.5 ml µl 12 µl 

 

 

2.4   Analysis of secreted HBeAg  

The cell culture medium was collected at 48 hours post transfection, and the HBeAg 

concentration was determined using the Monolisa HBe kit according to 

manufacturer’s instructions (Bio-Rad, San Diego, CA, USA).  Three independent 

transfection experiments were performed to test the HBeAg secreted in the culture 

media.  

 

2.5   Extraction of intracellular core particle-associated HBV DNA 

Intracellular core particle-associated HBV DNA was extracted using the method of 

Parekh (Parekh et al, 2003).  Media were collected at 72 hours post transfection, 

and the cells were rinsed with PBS twice and lysed with 700 µl lysis buffer 

(Appendix A11).  The cell lysate was centrifuged at 7300 x g for 15 min at 4 °C to 

pellet the nuclei.  The supernatant was transferred to a new tube and supplemented 

with 10 mM CaCl2-12 mM MgCl2 (Appendix A12) , and digested with 10 U of 

RNase-free DNase (Roche, Mannheim, Germany) and 40 U of mung bean nuclease 
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(Promega, Madison, WI, USA) at 37 °C for 1 hour to degrade the transfected 

plasmid DNA. 

A 256 µl of polyethylene glycol (PEG) solution (Appendix A13) was added to each 

tube and allowed to incubate at 4 °C for 1 hour before pellet the core particles by 

centrifugation at 7300 x g for 20 min at room temperature.  The pellet was 

resuspended in 180 µl of resuspension solution (Appendix A14).   Any remaining 

transfected plasmid DNA was further degraded with the addition of 5 U of RNase- 

free DNase, and 20 U of mung bean nuclease.  The mixture was incubated for 30 

min at 37 °C. 

The DNase activity was stopped by the addition of 50 µl stop solution (Appendix 

A15).  The intracellular core particle associated HBV DNA was extracted using 

QIAamp blood kit (Qiagen, Hilden, Germany), according to manufacturer’s 

directions.  The DNA was finally eluted in 180 µl of elution buffer. 

 

2.6   Southern hybridization 

Southern hybridization of the intracellular core particle-associated HBV DNA was 

carried out by electrophoresis in 1% agarose gels, denatured in the gel, neutralized 

and transferred to the Hybond-N nylon membrane (Amersham Bioscience, 

Buckinghamshire, UK) using the method of Southern (Sambrook et al, 1989). 

DNA fragments encoding the full length HBV genome were generated from the 

EcoRI digestion of pBR325 plasmid which have a full length HBV genome insert, 

adr subtype (kindly provided by C. Bréchot, INSERM U 370, Institut Pasteur, Paris, 

France).  EcoRI digested fragments were isolated by electrophoresis on 1 % agarose 
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gel.  Fragments of correct size (3.2kb) were excised from the agarose gel, and 

subsequently purified using the QIAquick gel extraction kit (Qiagen, Hilden, 

Germany).  Purified HBV fragment was used to generate 32P-radiolabeled HBV 

probe using the Mega prime DNA labelling kit (Amersham Bioscience, 

Buckinghamshire, UK).  The nylon membrane was hybridized with the 

radiolabelled probe using QuickHyb hybridization solution (Stratagene, La Jolla, 

CA, USA) and Mini Oven MK II (Hybaid, Waltham, MA, USA).  Autoradiography 

was carried out at -70 °C with intensifying screens and Kodak X-Omat film 

(Eastman Kodak, Rochester, NY, USA) for 4 days before developing the film. 

 

2.7   Real-time quantitative PCR amplification of HBV DNA 

Real-time quantitative PCR was performed in a LightCycler, Version 2 (Roche, 

Mannheim, Germany) with primer and fluorescence resonance energy transfer 

(FRET) hybridization probe sets in the core and polymerase region of HBV genome 

(Ho et al, 2003) with modification of the probe sequences to match sequences of 

plasmid DNA template (pCH-9/3091). 

 

Preparation of biological standard  

HBV DNA was extracted from 200 µl of Eurohep standard serum containing 5 X 

105 copies/ml genotype D HBV (kindly provided by Dr W.H.Gerlich, University of 

Giessen, Germany) using QIAamp blood kit (Qiagen, Hilden, Germany).  The DNA 

was finally eluted in 180 µl of elution buffer. 

 
Preparation of plasmid standard 

The recombinant plasmid was purified with Qiagen Endofree Plasmid Maxi kit 

(Qiagen, Hilden, Germany).  The concentration of the plasmid DNA was quantified 

using the spectrophotometer, GeneQuant (Amersham Bioscience, Buckinghamshire, 
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UK).  Serial dilutions of the cloned plasmid DNA ranging from 5.54 x 102 to 5.54 x 

108 copies of HBV DNA/ml were used for the generation of the standard curve.  

The PCR was repeated three times in duplicate to generate the standard curve. 

 

Hybridization probes and primers  

Forward primer (BcP1): 5'-ACCACCAAATGCCCCTAT-3';   reverse primer 

(BcP2): 5'-TTCTGCGACGCGGCGA-3', yielded a 130 bp PCR product.  The donor 

fluorescent probe (HBVcD: 5'-GAGTTCTTCTTCTAGGGGACCTGC-

FLUORESCEIN-3') and acceptor probe (HBVcA: 5'-LightCycler Red 640 

TCGTCGTCTAACAACAGTAGTCTCCG-PHOSPHATE-3') were used as 

hybridization probes (TIB MOLBIOL, Berlin, Germany). 

 

The amplification reaction mixture per capilliary (20 µl) contained 4 µl extracted 

HBV DNA template, 4 µl LightCycler FastStart DNA MasterPLUS Hybridization 

Probe kit (Roche, Mannheim, Germany), 1 mM each of PCR primer, 0.15 µM 

HBVcD (donor probe), 0.15 µM HBVcA (acceptor probe).  Thermal cycling 

conditions were as follows:  initial activation of FastStart DNA polymerase at 95 °C 

for 10 min followed by 40 cycles of amplification were performed at 95 °C for 5 

sec, 60 °C for 15 sec and 72 °C for 20 sec.  Fluorescence data were acquired at each 

cycle at the end of annealing step with detection channel sets at F2/F1.  Biological 

standard was included in every single run of LightCycler PCR as an internal control.  

Four independent transfection experiments were performed and the HBV DNA was 

extracted.  Each construct was tested in triplicate for each transfection.  The real 

time quantification PCR was performed at least twice for each set of transfections.   
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2.8   Statistical analysis 

Viral replication and HBeAg data were analysed using the one-way analysis of 

variance setting with the Bonferroni method for comparison between different 

mutations using the GraphPad InStat statistical analysis software version 3.0 

(GraphPad, San Diego, CA, USA).  All data were expressed as means with standard 

deviations.   Differences were consider significant when P-values less than 0.05. 

 

2.9   Analysis of the processing rate of WHV precore/core protein 

 

2.9.1 Metabolic labelling of WHV precore/core protein and 

immunoprecipitation analysis 

 
Huh7 cells were plated out in 100 mm culture dishes 24 hours before transfection 

with WHeAg-expression plasmids.  At 48 hours post transfection, the Huh 7 cells 

were washed twice with cysteine, methionine-free RPMI 1640 medium.  Cells were 

starved for 2 hours in cysteine, methionine-free medium supplemented with 2 % 

(v/v) dialyzed FBS, to deplete the intracellular methionine and cysteine reserves.  

The cells were incubated (“pulse”) with RedivueTM Pro-mix, a 35S in vitro cell 

labelling mix (Amersham Bioscience, Buckinghamshire, UK) at 100 µCi 35S-

labelled methione/cysteine per ml of medium for 3 hours.  Culture medium was 

collected and centrifuged at 20 000 x g at 4 °C for 20 min to remove cell debris.  

The cells were washed twice with ice cold PBS, and lysed with ice cold lysis buffer 

(Appendix A16).  Protease inhibitor cocktail-Complete® (Roche, Mannheim, 

Germany) was added to the lysis, washing buffers, and collected culture medium to 

prevent protein degradation.  Cell lysates were centrifuged at 20 000 x g at 4 °C for 

20 min to remove cell debris. 
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Both clarified cell lysate and culture medium were incubated with 100 µl and 200 µl  

of 10 % (v/v) protein A-sepharose beads (Sigma-Aldrich, St Louis, MO, USA), 

respectively, and incubated overnight at 4 °C  on a rocking platform to reduce non-

specific adsorption of irrelevant cellular proteins to the protein A-sepharose beads.  

The supernatant was collected after centrifugation at 20 000 x g for 20 second at 4 

°C, and processed by the addition of 10 µl of rabbit polyclonal anti-WHcAg 

antibody (Prof T.I. Michalak, Molecular Virology and Hepatology Research, 

Division of Basic Medical Sciences, Memorial University of Newfoundland, 

Newfoundland, Canada) overnight at 4 °C on a rocking platform.   The anti-WHcAg 

antibody was precipitated by adding 100 µl (cell lysate) or 200 µl (culture medium) 

of 10 % (v/v) protein A-sepharose beads (Sigma, St Louis, MO, USA) and 

incubated overnight at 4 °C on a rocking platform.  The beads were washed twice 

for 20 min per wash with lysis buffer, followed by two 20 min washes with washing 

buffer 1 (Appendix A17).  The immunoprecipiated complex was finally washed in 

washing buffer 2 for 20 min (Appendix A18), and centrifuged at 20 000 x g for 20 

sec at 4 °C.  The supernatant was removed, and the immunoprecipitated complex 

was resuspended in 50 µl of Laemmli loading buffer (Appendix A19). 

 

2.9.2   Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) 

SDS-PAGE gel eletrophoresis of the immunoprecipitated, pulsed precore/core 

protein was performed according to the method of Laemmli (Laemmli, 1970).  

Briefly, the protein sample was boiled for 3 min prior to electrophoresis, and 

resolved on a 15 % SDS-PAGE gel (Appendix A20-A23).  Methyl-14C labelled 

protein molecular weight marker (Amersham Bioscience, Buckinghamshire, UK) 

was loaded onto the same gel. 
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The polyacrylamide gel was firstly fixed in fixative solution (Appendix A24) for 30 

min, and soaked in the glycerol based solution (Appendix A25) overnight to prevent 

gel cracking during the drying process.  The gel was then immersed in Amplify 

reagent-an enhancer solution used to amplify and enhance the radioactively labelled 

protein signal (Amersham Bioscience, Buckinghamshire, UK) for 20 min before 

drying.   The gel was dried, and the labelled protein visualized by fluorography, and 

quantified by scanning densitometry, VERSADOCTM imaging system (Bio-Rad, 

San Diego, CA, USA).  

 

2.10   Confocal microscopy 
 

2.10.1   Double immunofluorescence staining  

At 48 hours or 72 hours post transfection, the culture medium was removed from 

the 8-well LAB-TEK ® II chamber slides (Nalge Nunc International, Rochester, NY, 

USA) before detaching the culture slide from the plastic chamber.  Culture slides 

were rinsed and washed in PBS, and cells were fixed in freshly prepared 4 % (v/v) 

paraformaldehyde in PBS (Appendix A26, A27), for 10 min at room temperature.  

After fixation, the cells were washed three times, for 10 min per wash in PBS, and 

permeabilized by incubating in 0.01 % (v/v) TX-100 in PBS (Appendix A28), for 

10 min at room temperature.  Cells were, washed three times, for 10 min per wash, 

in PBS.  The cells were incubated in blocking solution, 1 % (w/v) BSA (Roche, 

Mannheim, Germany) prepared in PBS (Appendix A29), for 1 hour at room 

temperature, to block unspecific binding sites on the cells.  The cells were incubated 

with primary antibody overnight in humidified chamber at 4 °C, and later were 

washed 3 times, for 10 min per wash in PBS.  The cells were incubated with 

fluorochrome conjugated secondary antibodies and the nucleus was counterstained 

with, 4’, 6-diamidino-2-phenylinodole, dihydrochloride (DAPI) (Molecular probe, 



81 
 

Eugene, OR, USA), for one hour at room temperature and protected from light.  The 

cells were washed 4 times, for 10 min per wash in PBS at room temperature.  The 

slides were mounted under cover slips with anti-fade mounting medium, FluorSave 

(Calbiochem, San Diego, CA, USA), and sealed with Entellan (Merck, Darmstadt, 

Germany) before viewing under confocal microscope. 

 

Antibodies and reagents 

 
The following primary antibodies were used in this study:  monoclonal anti-protein 

disulphide-isomerase (PDI), 1:40 dilution (Affinity BioReagents, Golden, CO, 

USA); monoclonal anti-ERGIC 53, 1:1000 (Prof H Hauri, Department of 

Pharmacology, Biozentrum, University of Basel, Switzerland);  monoclonal anti-

giantin, 1:1000 (Prof H Hauri, Department of Pharmacology, Biozentrum, 

University of Basel, Switzerland);  monoclonal anti-vimentin clone V9, 1:70 

(Sigma-Aldrich, St Louis, MO, USA);  monoclonal anti-pan cytokeratin, 1:70 

(Sigma-Aldrich, St Louis, MO, USA);  monoclonal anti-alpha (α) tubulin, 1: 1000 

(Sigma-Aldrich, St Louis, MO, USA);  monoclonal anti-gamma (γ) tubulin clone 

GTU-88, 1:1000 (Sigma-Aldrich, St Louis, MO, USA);  rabbit polyclonal anti-

HSP70, 1:100 (USBiological, Swampscott, MA, USA);  rabbit polyclonal anti-

ubiquitin, 1:100 (USBiological, Swampscott, MA, USA);  rabbit polyclonal anti-

human placental proteasome, 1:1000 (Prof B Dahlmann, Institute for biochemistry, 

Humboldt University, Berlin, Germany);  monoclonal anti-HBeAg, 0.005 µg/µl 

(USBiological, Swampscott, MA, USA);  rabbit polyclonal anti-HBcAg, 1:50 

(Zymed Laboratory, San Francisco, CA, USA);  rabbit polyclonal anti-WHcAg, 

1:25 (Prof T.I. Michalak, Molecular Virology and Hepatology Research, Division of 

Basic Medical Sciences, Memorial University of Newfoundland, Newfoundland, 

Canada). 
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Secondary antibodies 

AlexaFluor 488 Chicken anti rabbit IgG (H+L), 1:100 dilution;  AlexaFluor 546 F( 

ab’) 2 fragment of goat anti mouse IgG (H+L), 1:150;  AlexaFluor 488 Donkey anti 

mouse IgG (H+L), 1:100;  AlexaFluor 546 Goat anti rabbit IgG (H+L), 1:150 

(Molecular Probe, Eugene, OR, USA). 

 

2.10.2   Image capture and analysis 

The cells were viewed using the Zeiss Axiovert 100M microscope (Carl Zeiss, 

Göttingen, Germany) equipped with the CARV spinning disc confocal system (BD 

bioscience, Sparks, MD, USA).  The filters sets used were (1) fluorescein/ 

fluorescein isothiocyanate (FITC) for the green AlexaFluor 488 fluorochrome, (2) 

tetramethylrhodamine-5-isothiocyanate (TRITC) for the red AlexaFluor 546 

fluorochrome and (3) 4’, 6-diamidino-2-phenylinodole, dihydrochloride (DAPI) for 

the blue DAPI stain.  Images were captured using the Hamamatsu CCD camera 

(Hamamatsu cooperation, Hamamatsu city, Shizuoka, Japan), and obtained using 

the Axiovision 2.0 software (Carl Zeiss, Göttingen, Germany) on the PC 

workstation.  Image analysis was performed with IMAGEJ software for windows 

V1.34 (http://rsb.info.nih.gov/ij). 
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2.10.3   Imaging of HBV and WHV precore/core-eGFP fusion protein in Huh 7 

cells 

 
Huh7 cells were seeded in the Nunc chambered coverglass (Nalge Nunc 

International, Rochester, NY, USA) 24 hours before transfection.  HBV or WHV 

precore/core-eGFP fusion plasmid bearing wild-type or mutant HBV precore/core 

sequences was transfected into the Huh7 cells using the Lipofectamine 2000 

reagents with optimized protocol.  Hoechst 33342 (Molecular Probe, Eugene, OR, 

USA) was added to the culture medium to counter stain the nucleus.  Huh7 cells 

were incubated at 37 °C for 30 min, allowing the Hoechst stain to be taken up by 

the cells.  The cell images were captured as described in section 2.9.2.  The filters 

sets used were (1) fluorescein/fluorescein isothiocyanate (FITC) for the precore-

eGFP fusion protein-green (2) 4,6-diamidino-2-phenylinodole, dihydrochloride 

(DAPI) for the Hoechst 33342 stain-blue. 
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CHAPTER 3 

 

3.0   RESULTS 

 
Transfection of Huh7 cells with various constructs was used to determine the 

effect of the G1862T mutation on viral replication, HBeAg expression and 

secretion.  Southern hybridization and real time PCR were used to monitor 

replication following transfection with replication competent clones.  Pulsed 

radioactive-label, immunoprecipitation, SDS-PAGE, ELISA, 

immunocytochemistry and confocal microscopy were used to follow HBeAg 

expression following transfection with HBeAg-expression construct.  

 

3.1   Southern hybridization analysis of intracellular core particle-associated 

HBV DNA 

Southern hybridization analysis of intracellular core particles-associated HBV 

DNA extracted from Huh7 cells transfected with wild-type or mutant replication 

competent constructs revealed the presence and characteristic pattern of HBV 

viral DNA replicative intermediates. These are the single stranded (SS), duplex 

linear (DL) and relax circular (RC) forms of DNA (Figure 3.1 A, genotype D 

constructs; Figure 3.1 B, genotype ‘A’ constructs). 

 

A reduction of HBV replication was observed when the precore region of the 

genotype D was mutated to genotype ‘A’ context (comparing lane 1 of Figure 3.1 

A and lane 1 of Figure 3.1 B).  When the G1862T mutation was introduced to the 

genotype D construct, this mutation reduced viral replication relative to its wild-

type (lane 1 versus lane 2 of Figure 3.1 A).  In contrast, G1862T mutation did not 

reduce viral replication in genotype ‘A’ context (Figure 3.1 B, G1862T, genotype 

‘A’, lane2).  The silent mutation of G1888A reduced viral replication relative to 
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its wild-type only when introduced into the genotype D construct (Figure 3.1 A, 

G1888A, genotype D, lane 3), but did not reduce viral replication in genotype ‘A’ 

context (Figure 3.1 B, G1888A,  genotype ‘A’, lane 3).  When the G1862T and 

G1888A mutations were combined, viral replication was reduced in genotype D 

context (Figure 3.1 A, G1862T/G1888A, genotype D, lane 4), but the combination 

of G1862T with G1888A did not change viral replication in genotype ‘A’ context, 

compared to the respective wild-type constructs (Figure 3.1 B, G1862T/G1888A, 

genotype ‘A’, lane 4). 

 
Because Southern hybridization analysis can only provide qualitative 

measurement of HBV replication, real time quantitative PCR, which covers a 

wider linear range of detection, with good reproducibility and high sensitivity, 

was carried out.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 

 

 

Figure 3.1   Southern hybridization analysis of 

associated hepatitis B virus (HBV) DNA isolated from transfected Huh7 cells.  
The DNA was analysed by 1 % (w/v) agarose gel electrophoresis and southern 
hybridized with 32P labelled HBV probe.  The positions of relaxed circular (RC), 
duplex linear (DL), and single stranded (SS) HBV DNA are indicated. 
genotype D constructs:  lane 1, wild
4, G1862T/G1888A; lane 5, linear full leng
constructs:  lane 1, wild
G1862T/G1888A; lane 5, linear full length HBV DNA.  Please note that the linear 
full length HBV DNA was loaded to the same agaro
shorter time.  High background makes
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associated hepatitis B virus (HBV) DNA isolated from transfected Huh7 cells.  
The DNA was analysed by 1 % (w/v) agarose gel electrophoresis and southern 

labelled HBV probe.  The positions of relaxed circular (RC), 
duplex linear (DL), and single stranded (SS) HBV DNA are indicated. 

:  lane 1, wild-type;  lane 2, G1862T; lane 3, G1888A; lane 
4, G1862T/G1888A; lane 5, linear full length HBV DNA (B) genotype ‘A’ 

:  lane 1, wild-type;  lane 2, G1862T; lane 3, G1888A; lane 4, 
G1862T/G1888A; lane 5, linear full length HBV DNA.  Please note that the linear 
full length HBV DNA was loaded to the same agarose gel, except exposed for 

High background makes differentiation of individual bands difficult.
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3.2   Quantitative analysis of intracellular core particle-associated HBV DNA 

using real time PCR 

Intracellular levels of HBV DNA in Huh7 cells transfected with wild-type or 

mutant HBV replication competent constructs were quantitatively measured using 

real time PCR.  The linear dynamic range of the HBV real time PCR assay was 

initially determined using serial dilution of cloned plasmid DNA, with the 

EUROHEP genotype D included as the internal positive control.  A typical 

amplification plot of the serial diluted plasmid DNA and EUROHEP genotype D 

standard is shown in Figure 3.2 A.  The standard curve plotted for the linear 

regression analysis of these data is shown in Figure 3.2 B.  Regression analysis 

showed a good linear correlation between PCR amplification cycles and viral 

loads with a correlation coefficient value of 0.996.  The y-intercept value 

calculated was 41.225, and the slope of the linear regression line was - 4.079.   

 

The G1862T mutant showed 31 % reduction of replication relative to wild-type in 

the genotype D construct (Figure 3.3 A, G1862T, genotype D, P<0.05).  On the 

other hand, introduction of the G1862T mutations in the genotype ‘A’ construct 

did not result in a statistically significant reduction relative to the wild-type 

(Figure 3.3 B, G1862T, genotype ‘A’, P>0.05).  Similar results were observed in 

cells transfected with G1888A mutant (Figure 3.3 A, G1888A, genotype D, 

P<0.05; Figure 3.3 B, G1888A, genotype ‘A’, P>0.05).  The combination of 

G1862T and G1888A mutations further reduced replication efficiency by 51 % in 

genotype D construct when compared with the wild-type genotype D construct 

(Figure 3.3 A, G1862T/G1888A, genotype D, P<0.001), but did not affect viral 

replication in genotype ‘A’ construct relative to the wild-type genotype ‘A’ 

(Figure 3.3 B, G1862T/G1888A, genotype ‘A’,  P>0.05).  When introduced in the 
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genotype D construct, the G1896A mutation displayed similar HBV DNA levels 

to the wild-type (Figure 3.3 A, G1896A, genotype D, P>0.05), but a 80% 

reduction in viral replication was observed when the mutation was introduced into 

the genotype ‘A’ construct (Figure 3.3 B, G1896A, genotype ‘A’, P<0.001). 
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Figure 3.2 (A) Amplification plot of 10-fold serially diluted HBV plasmid 
DNA.  Illustrated the typical sigmoidal fluorescent curves. (B) Standard 

curve generated for the quantification of the virus, using cloned plasmid 

DNA as template.  Linear regression of the standard curve ranged from 102 to 108 
copies of viral genome / ml.  y = - 4.079 log 10 (X) + 41.225; r = - 0.996. 
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Figure 3.3   Quantification of intracellular core particle associated-hepatitis B 

virus (HBV) DNA.  (A) genotype D constructs  (B) genotype ‘A’ constructs.  
Mean values and standard deviations from three independent experiments are 
shown. Values are normalized to HBV copy number of the wild-type construct 
(100 %).  Statistically significant differences compared with wild-type are 
indicated by an asterisk.   
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3.3   Effect of HBV G1862T mutation on HBeAg secretion 
 
Secretion of HBeAg into the tissue culture medium of transfected cells was 

monitored using ELISA.  The G1862T mutant in the HBeAg-expression genotype 

D constructs showed 38 % reduction in the HBeAg concentration in the 

supernatant relative to the wild-type (Figure 3.4 A, G1862T, genotype D, 

P<0.001).  Transfection of Huh7 cells with the mutant genotype ‘A’ constructs 

resulted in a 54 % decrease in HBeAg concentration in the supernatant relative to 

the tranfection with wild-type construct (Figure 3.4 B, G1862T, genotype ‘A’, 

P<0.001).  When G1888A mutation was introduced to both genotype D and ‘A’ 

constructs, the HBeAg expression levels were identical to those of wild-type 

(Figure 3.4 A, G1888A, genotype D, P>0.05; Figure 3.4 B, G1888A, genotype 

‘A’, P>0.05).  The degree of HBeAg reduction in the presence of G1862T alone 

was comparable to that when G1862T was introduced together with G1888A: 39 

% for genotype D (Figure 3.4 A, G1862T/G1888A, genotype D, P<0.001) and 42 

% for genotype ‘A’ (Figure 3.4 B, G1862T/G1888A, genotype ‘A’, P<0.001).  As 

expected, the G1896A mutation completely abolished the expression of HBeAg in 

the supernatant when introduced in both genotype ‘A’ and D constructs (Figure 

3.4 A, G1896A, genotype D; Figure 3.4 B, G1896A, genotype ‘A’). 
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Figure 3.4   Quantification of secreted HBeAg.  (A) genotype D constructs (B) 
genotype ‘A’ constructs.  Mean values and standard deviations from three 
independent experiments are shown. Values are normalized to HBeAg of the 
wild-type construct (100 %).  Statistically significant differences compared with 
wild-type are indicated by an asterisk.   
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3.4   Processing of wild-type versus mutant WHeAg  

HBV and WHV share greater than 90 % sequence homology in the ε region.  The 

WHV G1982T (equivalent to G1862T in HBV) occurs frequently in WHV (Li et 

al, 1996).  HBV G1862T and WHV G1982T introduce phenotypic change from 

Val to Phe at codon 17 of the precore core precursor protein (-3 position to the 

signal peptidase recognition motif).  The biosynthesis of wild-type WHeAg was 

characterized (Carlier et al, 1994), but not for the G1982T mutant.  The 

processing of WHV wild-type and G1982T mutant precursor was followed using 

radioactive pulse labelling, immunoprecipitation and SDS-PAGE methods. 

 

The cleavage of the amino-terminus of the WHV wild-type precursor protein after 

3 hours of pulse labelling is shown in lane 4 of Figure 3.5.  As measured by 

scanning densitometry, 23 % of the total wild-type precursor was processed into 

the intermediate protein (+ 27 kDa) after 3 hours of labelling.  Furthermore, 

complete maturation of WHeAg was demonstrated by the presence of 24 kDa 

protein (Figure 3.5, lane 4) (Carlier et al, 1994).  The mature wild-type WHeAg 

was not detected in culture medium (Figure 3.5, lane 5) because of the short 

duration of pulse labelling.   
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Figure 3.5   Fluorograph showed the processing of WHeAg from the 
precursor to intermediate form.  Huh7 cells were transfected with wild-type or 
G1982T WHeAg expressing plasmids and pulse labelled with 35S-methionine and 
cysteine for 3 hours.  Proteins immunoprecipitated with polyclonal anti-WHcAg 
were resolved using 15 % polyacrylamide gel electrophoresis.  C: intracellular 
fraction; M: extracellular culture medium.  Lane 1: 14C-labelled protein molecular 
mass marker. 
 

 

On the other hand, the mutant precursor protein, which encoded Phe instead of 

Val at the -3 position from the signal peptide cleavage site, was processed with a 

lower efficiency compared to the wild-type.  Only 4.8 % of the total mutant 

precursor was processed (Figure 3.5, lane 2).  Furthermore, the 24 kDa protein 

was not detected in cells transfected with the mutant construct indicating the 

absence of complete maturation after 3 hours of pulse labelling.  
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3.5   Immunocytochemistry 

3.5.1   Intracellular localization of wild-type and mutant precore/core protein 

in the early secretory organelles  

Expression of wild-type and mutant HBeAg or WHeAg was followed in 

transfected Huh7 cells.  Mock-transfected Huh7 cells in which no fluorescence 

was detected when stained for anti-HBeAg and cells transfected with a plasmid 

with the G1896A mutation, which results in the truncation of HBeAg at codon 28 

(Carman et al., 1989), were used as negative controls.  In subgenotype A1 HBV 

isolates, the G1862T mutant occurs frequently together with a G1888A silent 

mutation (Kimbi et al., 2004) (Figure 1.7).  In order to preclude the possibility 

that G1888A could affect the phenotype of the G1862T mutant constructs in 

which these two mutations occurred independently or in combination were used.   

 

The intracellular localization of the wild-type and mutant precore/core protein was 

investigated by confocal immunofluorescence microscopy, using antibodies 

targeting the precore/core protein in conjunction with antibodies against various 

components of the early secretory pathway.  Intracellular organelle markers 

included the protein disulphide isomerase (PDI)-an ER resident chaperone as ER 

marker, ERGIC-53-a transmembrane lectin that cycles between ER, ERGIC and 

Golgi, as the marker for the ER-Golgi intermediate compartment (ERGIC) (Hauri 

et al, 2000), and giantin-Golgi apparatus matrix protein as marker for the Golgi 

apparatus (Linstedt & Hauri, 1993).   

 

When the Huh7 cells were transfected with either genotype D or genotype ‘A’ 

wild-type HBeAg-expression constructs, the precore/core protein was evenly 

distributed throughout the cytoplasm, as demonstrated by the diffused reticular 
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and fine granular stains.  Some of wild-type protein was co-localized with protein 

disulphide isomerase (PDI), (Figure 3.6-3.9, A-C), ERGIC-53 (Figure 3.11-3.14, 

A-C), and giantin (Figure 3.16-3.19, A-C), indicating that the wild-type protein is 

moving along the ER to the Golgi via ERGIC rapidly before being exported from 

the cells, suggesting the normal biogenesis of the precore/core protein.  The ER 

marker, PDI gave a fine reticular staining pattern that extended throughout the 

cytoplasm (Figure 3.6-3.9, B), the ERGIC-53 label was punctuate and closer to 

the nucleus (Figure 3.11-3.14, B), where as the Golgi compartment labelled with 

anti-giantin gave a characteristic strong, juxtanuclear label (Figure 3.16-3.19, B).  

The G1888A mutant precore/core protein exhibited similar distribution pattern 

compared to those of the wild-type (Figure 3.6-3.9, G-I; Figure 3.11-3.14, G-I; 

Figure 3.16-3.19, G-I).  The same distribution pattern was observed in cells 

transfected with the wild-type WHeAg-expression construct at 48hr post-

transfection (Figure 3.10, A-C; Figure 3.15, A-C; Figure 3.20, A-C).  There was 

no difference in the intensity of the staining of the markers for the different 

compartments of the secretory pathway.   

 

In contrast, cells transfected with HBV G1862T (Figure 3.6-3.9, D-F), 

G1862T/G1888A (Figure 3.6-3.9, J-L) and WHV G1982T (Figure 3.10, D-F) 

mutant precore/core constructs showed, in addition to the reticular pattern, 

punctuate concentrations of precore/core protein that co-localized with anti-PDI, 

indicating the movement of mutant protein through the ER.  The number of cells 

per counting field showing the punctuate pattern was always higher in the cultures 

transfected with HBV G1862T, G1862T/G1888A or WHV G1982T mutant 

precore/core constructs when compared to those transfected with the respective 

wild-type constructs.  HBV G1862T (Figure 3.11-3.14, D-F), G1862T/G1888A 
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(Figure 3.11-3.14, J-L) or WHV G1982T (Figure 3.15, D-F) mutant precore/core 

protein escaped from the ER as was demonstrated by the accumulation of the 

proteins in the ERGIC, indicated by intense co-staining with ERGIC-53.  HBV 

G1862T (Figure 3.16-3.19, D-F), G1862T/G1888A (Figure 3.16-3.19, J-L) and 

WHV G1982T (Figure 3.20, D-F) mutant precore/core proteins were co-localized 

with giantin to a lesser extent when compared to the wild-type.  These 

observations demonstrated that the mutant (HBV G1862T, G1862T/G1888A and 

WHV G1982T) precore/core proteins are not confined to the ER but a significant 

proportion moves to ERGIC where they appear to accumulate and only a 

relatively small fraction migrate to the  Golgi.  

 

The truncated precore/core protein that results from the stop codon introduced by 

G1896A, localized to the nucleus (with faint staining only), and was not seen in 

other cellular organelles (Figure 3.6-3.9, M-O;  Figure 3.11-3.14, M-O;  Figure 

3.16-3.19, M-O). 
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Figure 3.6   Intracellular localization of genotype D HBV precore/core 

protein to the ER at 48 hours post-transfection.  Huh7 cells were transfected 
with genotype D plasmid constructs, fixed at 48 hours post-transfection, and 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green.  The ER was detected with primary antibodies 
against PDI and secondary antibodies were labelled with AlexaFluor 546, shown 
in red. Co-localization of precore/core protein and ER can be seen by the yellow 
color.  Nuclei were counterstained with diamidino-2-phenylindole 
dihydrochloride (DAPI).  Scale bars, 10 µm. 
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Figure 3.7   Intracellular localization of genotype D HBV precore/core 

protein to the ER at 72 hours post-transfection.  Huh7 cells were transfected 
with genotype D plasmid constructs, fixed at 72 hours post-transfection, and 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green.  The ER was detected with primary antibodies 
against PDI and secondary antibodies were labelled with AlexaFluor 546, shown 
in red.  Co-localization of precore/core protein and ER can be seen by the yellow 
color. Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.8   Intracellular localization of genotype ‘A’ HBV precore/core 

protein to the ER at 48 hours post-transfection.  Huh7 cells were transfected 
with genotype ‘A’ plasmid constructs, fixed at 48 hours post-transfection, and 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green.  The ER was detected with primary antibodies 
against PDI and secondary antibodies were labelled with AlexaFluor 546, shown 
in red.  Co-localization of precore/core protein and ER can be seen by the yellow 
color.  Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 

PDI Merge Precore 

A B C 

D E F 

G H I 

J K L 

M N O 

P Q R 

H
B

V
 

W
il

d
-t

y
p

e
 

H
B

V
 

G
1
8
6
2
T
 

H
B

V
 

G
1
8
6
2
T

/G
1
8
8
8
A
 

H
B

V
 

G
1
8
9

6
A
 

H
B

V
 

G
1

8
8
8
A
 

M
o
c
k

 

tr
a
n

sf
ec

ti
o
n
 



101 
 

 
 
Figure 3.9   Intracellular localization of genotype ‘A’ HBV precore/core 

protein to the ER at 72 hours post-transfection.  Huh7 cells were transfected 
with genotype ‘A’ plasmid constructs, fixed at 72 hours post-transfection, and 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green.  The ER was detected with primary antibodies 
against PDI and secondary antibodies were labelled with AlexaFluor 546, shown 
in red.  Co-localization of precore/core protein and ER can be seen by the yellow 
color.  Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.10   Intracellular localization of WHV precore/core protein to the 

ER at 48 hours post-transfection.  Huh7 cells were transfected with WHV 
plasmid constructs, fixed at 48 hours post-transfection, and subjected to indirect 
double immunofluorescence staining with antibodies against WHV precore/core 
protein, detected with secondary antibodies labelled with AlexaFluor 488, shown 
in green.  The ER was detected with primary antibodies against PDI and 
secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and ER can be seen by the yellow color.  
Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.11   Intracellular localization of genotype D HBV precore/core 

protein to the ER-Golgi intermediate compartment (ERGIC) at 48 hours 
post-transfection.  Huh7 cells were transfected with genotype D plasmid 
constructs, fixed at 48 hours post-transfection, and subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The ERGIC was detected with primary antibodies against ERGIC-53 and 
secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and ERGIC can be seen by the yellow color.  
Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.12   Intracellular localization of genotype D HBV precore/core 

protein to the ER-Golgi intermediate compartment (ERGIC) at 72 hours 

post-transfection.  Huh7 cells were transfected with genotype D plasmid 
constructs, fixed at 72 hours post-transfection, and subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The ERGIC was detected with primary antibodies against ERGIC-53 and 
secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and ERGIC can be seen by the yellow color.  
Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.13   Intracellular localization of genotype ‘A’ HBV precore/core 

protein to the ER-Golgi intermediate compartment (ERGIC) at 48 hours 

post-transfection.  Huh7 cells were transfected with genotype ‘A’ plasmid 
constructs, fixed at 48 hours post-transfection, and subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The ERGIC was detected with primary antibodies against ERGIC-53 and 
secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and ERGIC can be seen by the yellow color.  
Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.14   Intracellular localization of genotype ‘A’ HBV precore/core 

protein to the ER-Golgi intermediate compartment (ERGIC) at 72 hours 

post-transfection.  Huh7 cells were transfected with genotype ‘A’ plasmid 
constructs, fixed at 72 hours post-transfection, and subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The ERGIC was detected with primary antibodies against ERGIC-53 and 
secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and ERGIC can be seen by the yellow color.  
Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.15   Intracellular localization of WHV precore/core protein to the 

ER-Golgi intermediate compartment (ERGIC) at 48 hours post-transfection.  
Huh7 cells were transfected with WHV plasmid constructs, fixed at 48 hours post-
transfection, and subjected to indirect double immunofluorescence staining with 
antibodies against WHV precore/core protein, detected with secondary antibodies 
labelled with AlexaFluor 488, shown in green.  The ERGIC was detected with 
primary antibodies against ERGIC-53 and secondary antibodies were labelled 
with AlexaFluor 546, shown in red.  Co-localization of precore/core protein and 
ERGIC can be seen by the yellow color.  Nuclei were counterstained with DAPI.  
Scale bars, 10 µm. 
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Figure 3.16   Intracellular localization of genotype D HBV precore/core 

protein to the Golgi at 48 hours post-transfection.  Huh7 cells were transfected 
with genotype D plasmid constructs, fixed at 48 hours post-transfection, and 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green.  The Golgi was detected with primary antibodies 
against giantin and secondary antibodies were labelled with AlexaFluor 546, 
shown in red.  Co-localization of precore/core protein and Golgi can be seen by 
the yellow color. Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.17   Intracellular localization of genotype D HBV precore/core 
protein to the Golgi at 72 hours post-transfection.  Huh7 cells were transfected 
with genotype D plasmid constructs, fixed at 72 hours post-transfection, and 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green.  The Golgi was detected with primary antibodies 
against giantin and secondary antibodies were labelled with AlexaFluor 546, 
shown in red.  Co-localization of precore/core protein and Golgi can be seen by 
the yellow color. Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.18   Intracellular localization of genotype ‘A’ HBV precore/core 

protein to the Golgi at 48 hours post-transfection.  Huh7 cells were transfected 
with genotype ‘A’ plasmid constructs, fixed at 48 hours post-transfection and 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green.  The Golgi was detected with primary antibodies 
against giantin and secondary antibodies were labelled with AlexaFluor 546, 
shown in red.  Co-localization of precore/core protein and Golgi can be seen by 
the yellow color.  Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.19   Intracellular localization of genotype ‘A’ HBV precore/core 
protein to the Golgi at 72 hours post-transfection.  Huh7 cells were transfected 
with genotype ‘A’ plasmid constructs, followed by fixation at 72 hours post-
transfection.  The cells were subjected to indirect double immunofluorescence 
staining with antibodies against HBV precore/core protein, detected with 
secondary antibodies labelled with AlexaFluor 488, shown in green.  The Golgi 
was detected with primary antibodies against giantin and secondary antibodies 
were labelled with AlexaFluor 546, shown in red.  Co-localization of precore/core 
protein and Golgi can be seen by the yellow color.  Nuclei were counterstained 
with DAPI.  Scale bars, 10 µm. 
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Figure 3.20   Intracellular localization of WHV precore/core protein to the 
Golgi at 48 hours post-transfection.  Huh7 cells were transfected with WHV 
plasmid constructs, followed by fixation at 48 hours post-transfection.  The cells 
were subjected to indirect double immunofluorescence staining with antibodies 
against WHV precore/core protein, detected with secondary antibodies labelled 
with AlexaFluor 488, shown in green.  The Golgi was detected with primary 
antibodies against giantin and secondary antibodies were labelled with AlexaFluor 
546, shown in red.  Co-localization of precore/core protein and Golgi can be seen 
by the yellow color.  Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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3.5.2   Post-ER expression of wild-type and mutant precore/core protein  

Golgi apparatus is located around the MTOC (Lippincott-Schwartz, 1998).  In 

order to confirm the mutant protein was not accumulated in the Golgi apparatus, 

BFA was used to disrupt the Golgi apparatus.  The treatment with BFA dispersed 

the Golgi apparatus and re-distributed the Golgi elements to ER exit site (Figure 

3.21-3.22, B, E, H, K, N and Q).   Reticular type of stain pattern similar to those 

of ER was observed in cells transfected with HBV wild-type (Figure 3.21-3.22, A-

C), G1888A mutant (Figure 3.21-3.22, G-I) or WHV wild-type (Figure 3.23, A-C) 

constructs.  Treatment with BFA did not reduce the occurrence or disrupt the 

large, perinuclar structure which was staining positive for HBV G1862T (Figure 

3.21-3.22, D-F) or G1862T/G1888A mutant precore/core protein (Figure 3.21-

3.22, J-L).  HBV G1862T or G1862T/G1888A mutant precore/core protein was 

not retained within the Golgi apparatus but instead appeared to be associated with 

another compartment, which is structurally distinct and physically close to the 

Golgi.  The same pattern was also observed in cells transfected with WHV 

G1982T mutant construct at 48 hr post-transfection (Figure 3.23, D-F). 
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Figure 3.21   Genotype D HBV G1862T mutant precore/core protein did not 

accumulate in the Golgi following BFA treatment.  Huh7 cells were transfected 
with genotype D plasmid constructs, treated with BFA prior to fixation at 72 
hours post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The Golgi was detected with primary antibodies against giantin and secondary 
antibodies were labelled with AlexaFluor 546, shown in red.  Co-localization of 
precore/core protein and Golgi can be seen by the yellow color.  Nuclei were 
counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.22   Genotype ‘
not accumulate in the Golgi

transfected with genotype ‘A’ plas
fixation at 72 hours post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with Al
The Golgi was detected with primary antibodies against giantin and secondary 
antibodies were labelled with AlexaFluor 546, shown in red.  
precore/core protein and Golgi
counterstained with DAPI.  
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‘A’ HBV G1862T mutant precore/core protein
not accumulate in the Golgi following BFA treatment.  Huh7 cells were 
transfected with genotype ‘A’ plasmid constructs, treated with BFA prior to 

transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The Golgi was detected with primary antibodies against giantin and secondary 
antibodies were labelled with AlexaFluor 546, shown in red.  Co-localization of 

and Golgi can be seen by the yellow color.  Nuclei were 
counterstained with DAPI.  Scale bars, 10 µm. 

Giantin Merge 

 

protein did 
Huh7 cells were 

mid constructs, treated with BFA prior to 
transfection.  The cells were subjected to indirect double 

immunofluorescence staining with antibodies against HBV precore/core protein, 
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Figure 3.23   WHV G1982T mutant precore/core protein did not accumulate 
in the Golgi following BFA treatment.  Huh7 cells were transfected with WHV 
plasmid constructs, treated with BFA prior to fixation at 48 hours post-
transfection.  The cells were subjected to indirect double immunofluorescence 
staining with antibodies against WHV precore/core protein, detected with 
secondary antibodies labelled with AlexaFluor 488, shown in green.  The Golgi 
was detected with primary antibodies against giantin and secondary antibodies 
were labelled with AlexaFluor 546, shown in red.  Co-localization of precore/core 
protein and Golgi can be seen by the yellow color.  Nuclei were counterstained 
with DAPI.  Scale bars, 10 µm. 
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3.5.3   Quality control of HBeAg expression by wild-type and mutant 

constructs 

In order determine whether the quality control machinery within the cells is 

operative in Huh7 cells transfected with HBV mutant precore/core protein 

expressing constructs, the cells were stained with antibodies against precore/core 

protein and against Hsp70, ubiquitin and proteasomes.  The distribution of HBV 

wild-type (Figure 3.24-3.29, A-C) and G1888A mutant precore/core protein 

(Figure 3.24, 3.26 and 3.28, G-I; Figure 3.25, 3.27 and 3.29, J-L) in the 

transfected cells were reticular and diffuse.  There was no or very low association 

of Hsp70, ubiquitin and proteasome with wild-type or G1888A precore/core 

protein as none of three markers co-localized with either the wild-type (Figure 

3.24-3.29, A-C) or G1888A mutant precore/core proteins (Figure 3.24, 3.26 and 

3.28, G-I; Figure 3.25, 3.27 and 3.29, J-L).   

 

Small aggregates of precore/core protein were formed throughout the cell when 

the cells were transfected with G1862T (Figure 3.24, 3.26 and 3.28, D; Figure 

3.25, 3.27 and 3.29, G) or G1862T/ G1888A mutant constructs (Figure 3.24, 3.26 

and 3.28, J; Figure 3.25, 3.27 and 3.29, M).  In addition to the small aggregates, 

unique large perinuclar inclusions were also present in the cells transfected with 

HBV G1862T (Figure 3.24, 3.26 and 3.28, D-F; Figure 3.25, 3.27 and 3.29, G-I) 

or G1862T/G1888A mutant construct (Figure 3.24, 3.26 and 3.28, J-L; Figure 

3.25, 3.27 and 3.29, M-O).   Upon further examination, these large inclusions 

were found to strongly co-localize with the Hsp70, ubiquitin and proteasome 

(G1862T: Figure 3.24, 3.26 and 3.28, D-F; Figure 3.25, 3.27 and 3.29, G-I; 

G1862T/G1888A: Figure 3.24, 3.26 and 3.28, J-L; Figure 3.25, 3.27 and 3.29, M-
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O).  There was a relatively marked increased in the expression of chaperone 

Hsp70, ubiquitin and proteasome, found in cells transfected with HBV G1862T or 

G1862T/G1888A mutant construct as indicated by the solid and bright staining for 

the three markers (G1862T: Figure 3.24, 3.26 and 3.28, D-F; Figure 3.25, 3.27 

and 3.29, G-I; G1862T/G1888A: Figure 3.24, 3.26 and 3.28, J-L; Figure 3.25, 

3.27 and 3.29, M-O) when compared to those transfected with wild-type (Figure 

3.24-3.29, A-C) or G1888A mutant construct (Figure 3.24, 3.26 and 3.28, G-I; 

Figure 3.25, 3.27 and 3.29, J-L).  Cells transfected with HBV G1896A mutant 

construct showed the typical nuclear staining and did not co-localize with Hsp70, 

ubiquitin and proteasome (Figure 3.24, 3.26 and 3.28, M-O; Figure 3.25, 3.27 and 

3.29, P-R). 
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Figure 3.24   Aggresome formed by genotype D HBV G1862T mutant 

precore/core protein co-localized with molecular chaperone, Hsp70.   
Huh7 cells were transfected with genotype D plasmid constructs followed by 
fixation at 72 hours post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The molecular chaperone was detected with primary antibodies against Hsp70 and 
secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and Hsp70 can be seen by the yellow color.  
Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.25   Aggresome formed by genotype ‘A’ HBV G1862T mutant 

precore/core protein co-localized with molecular chaperone, Hsp70.  Huh7 
cells were transfected with genotype ‘A’ plasmid constructs followed by fixation 
at 72 hours post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The molecular chaperone was detected with primary antibodies against Hsp70 and 
secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and Hsp70 can be seen by the yellow color.  
Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.26   Genotype D, HBV G1862T mutant precore/core proteins was 
ubiquitinated and localized to the aggresome structure.  Huh7 cells were 
transfected with genotype D plasmid constructs followed by fixation at 72 hours 
post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The ubiquitin was detected with primary antibodies against ubiquitin and 
secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and ubiquitin can be seen by the yellow color.  
Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.27   Genotype ‘A’, HBV G1862T mutant precore/core protein was 

ubiquitnated and localized to the aggresome structure.  Huh7 cells were 
transfected with genotype ‘A’ plasmid constructs followed by fixation at 72 hours 
post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The ubiquitin was detected with primary antibodies against ubiquitin and 
secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and ubiquitin can be seen by the yellow color.  
Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.28   Aggresome formed by genotype D HBV G1862T mutant 

precore/core protein co-localized with proteasome.  Huh7 cells were 
transfected with genotype D plasmid constructs followed by fixation at 72 hours 
post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The proteasome was detected with primary antibodies against proteasome and 
secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and proteasome can be seen by the yellow 
color.  Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.29   Aggresome formed by genotype ‘A’ HBV G1862T mutant 

precore/core protein co-localized with proteasome.  Huh7 cells were 
transfected with genotype ‘A’ plasmid constructs followed by fixation at 72 hours 
post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The proteasome was detected with primary antibodies against proteasome and 
secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and proteasome can be seen by the yellow 
color.  Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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3.5.4.1   Characterization of aggregates formed following transfection with 

mutant constructs 

The formation of aggregates was observed using immunofluorescence confocal 

microscopy of Huh7 cells transfected with HBV G1862T (Figure 3.24, 3.26 and 

3.28, D-F; Figure 3.25, 3.27 and 3.29, G-I) or G1862T1888A mutant construct 

(Figure 3.24, 3.26 and 3.28, J-L; Figure 3.25, 3.27 and 3.29, M-O) but not in cells 

transfected with HBV wild-type (Figure 3.24-3.29, A-C) or G1888A construct 

(Figure 3.24, 3.26 and 3.28, G-I; Figure 3.25, 3.27 and 3.29, J-L).  In addition to 

the wide distribution pattern seen in the cytoplasm (G1862T:  Figure 3.25, 3.27 

and 3.29, D-F), a more restricted staining pattern of Hsp70, ubiquitin and the 

proteosome was observed.  As shown in Figure 3.24-3.29, Hsp70, ubiquitin and 

proteasome were confined to the perinuclear region in aggregates that co-localized 

with the mutant precore/core protein (G1862T: Figure 3.24, 3.26 and 3.28, D-F; 

Figure 3.25, 3.27 and 3.29, G-I; G1862T/G1888A:  Figure 3.24, 3.26 and 3.28, J-

L; Figure 3.25, 3.27 and 3.29, M-O) indicative of the formation of aggresomes.  

Between 15% and 20% of the cells transfected with mutant constructs developed 

inclusions or aggregates, which rarely occurred in cells transfected with the wild-

type constructs. 

 

The investigation was taken further to determine whether the inclusions formed by 

the HBV G1862T or G1862T G1888A mutant precore/core protein shared other 

features with aggresomes.    

 

A strong co-localization between the γ-tubulin, a centrosome marker for the 

MTOC (Dictenberg et al, 1998; Wigley et al, 1999) and aggresomes formed by 

the HBV G1862T (Figure 3.30-3.33, D-F), G1862T/G1888A (Figure 3.30-3.33, J-
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L) or WHV G1982T  (Figure 3.34, D-F) mutant precore/core protein was 

observed, indicating a close physical relationship between the aggresome and 

centrosome.  Centrioles stained as a distinct bright red spot/dot that was co-

localized to the center of aggresomes formed by the HBV G1862T (Figure 3.30-

3.33, D-F), G1862T/G1888A (Figure 3.30-3.33, J-L) and WHV G1982T mutant 

precore/core protein (Figure 3.34, D-F).  In contrast cells transfected with HBV 

wild-type (Figure 3.30-3.33, A-C), G1888A mutant (Figure 3.30-3.33, G-I), or 

WHV wild-type (Figure 3.34, A-C) constructs showed typical diffused reticular 

pattern of precore/core protein and there was no co-localization of the γ-tubulin 

with the wild-type or G1888A precore proteins.   

 

When the cells were stained with antibodies against α–tubulin, it was evident that 

the microtubule had the normal morphology and was not affected by the 

formation of aggresome in cells transfected with the HBV G1862T (Figure 3.35-

3.38, D-F), G1862T/G1888A (Figure 3.35-3.38, J-L) or WHV G1982T (Figure 

3.39, D-F) mutant precore/core constructs. An intact microtubule network is 

known to be required for the retrograde transport of misfolded proteins to the 

MTOC and formation of aggresomes (Johnston et al, 1998).   

 

Cells expressing HBV wild-type (Figure 3.35-3.38, A-C), G1888A (Figure 3.35-

3.38, G-I) or WHV wild-type (Figure 3.39, A-C) precore/core protein showed 

same reticular distribution pattern of precore/core protein, with the microtubules 

network remained intact.  The microtubule network was also not affected in cells 

transfected with the HBV G1896A stop codon mutant construct (Figure 3.35-3.38, 

M-O). 
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The intermediate filament vimentin, was shown to be re-arranged into condensed 

fibers forming a ring- or cage like structure around the aggresomes in the cells 

transfected with HBV G1862T (Figure 3.40-3.43, D-F), G1862T/G1888A (Figure 

3.40-3.43, J-L) or WHV G1982T (Figure 3.44, D-F) constructs.  This 

rearrangement did not occur in cells transfected with HBV wild-type (Figure 3.40-

3.43, A-C), G1888A (Figure 3.40-3.43, G-I), G1896A (Figure 3.40-3.43, M-O) or 

WHV wild-type (Figure 3.44, A-C) constructs.  Furthermore, another intermediate 

filament protein, cytokeratin, was also found to be rearranged in a similar fashion 

to vimentin, forming a halo around the aggresome in cells transfected with HBV 

G1862T (Figure 3.45-3.48, D-F), G1862T/G1888A (Figure 3.45-3.48, J-L) or 

WHV G1982T (Figure 3.49, D-F) mutant constructs, but not in cells transfected 

with the HBV wild-type (Figure 3.45-3.48, A-C), G1888A (Figure 3.45-3.48, G-

I), G1896A (Figure 3.45-3.48, M-O) or WHV wild-type (Figure 3.49, A-C) 

construct. 
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Figure 3.30   Accumulated genotype D HBV G1862T mutant precore/core 

protein was localized to the microtubule organization center (MTOC) at 48 
hours post-transfection.  Huh7 cells were transfected with genotype D plasmid 
constructs followed by fixation at 48 hours post-transfection.  The cells were 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green.  The MTOC was detected with primary 
antibodies against γ-tubulin and secondary antibodies were labelled with 
AlexaFluor 546, shown in red.  Co-localization of precore/core protein and γ-
tubulin can be seen by the yellow color.  Nuclei were counterstained with DAPI.  
Scale bars, 10 µm. 
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Figure 3.31   Accumulated, genotype D HBV G1862T mutant precore/core 

protein was localized to the microtubule organization center (MTOC) at 72 

hours post-transfection.  Huh7 cells were transfected with genotype D plasmid 
constructs followed by fixation at 72 hours post-transfection.  The cells were 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green.  The MTOC was detected with primary 
antibodies against γ-tubulin and secondary antibodies were labelled with 
AlexaFluor 546, shown in red.  Co-localization of precore/core protein and γ-
tubulin can be seen by the yellow color.  Nuclei were counterstained with DAPI.  
Scale bars, 10 µm. 
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Figure 3.32   Accumulated, genotype ‘A’ HBV G1862T mutant precore/core 

protein was localized to the microtubule organization center (MTOC) at 48 
hours post-transfection.  Huh7 cells were transfected with genotype ‘A’ plasmid 
constructs followed by fixation at 48 hours post-transfection.  The cells were 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green.  The MTOC was detected with primary 
antibodies against γ-tubulin and secondary antibodies were labelled with 
AlexaFluor 546, shown in red.  Co-localization of precore/core protein and γ-
tubulin can be seen by the yellow color.  Nuclei were counterstained with DAPI.  
Scale bars, 10 µm. 
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Figure 3.33   Accumulated, genotype ‘A’ HBV G1862T mutant precore/core 

protein was localized to the microtubule organization center (MTOC) at 72 
hours post-transfection.  Huh7 cells were transfected with genotype ‘A’ plasmid 
constructs followed by fixation at 72 hours post-transfection.  The cells were 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green.  The MTOC was detected with primary 
antibodies against γ-tubulin and secondary antibodies were labelled with 
AlexaFluor 546, shown in red.  Co-localization of precore/core protein and γ-
tubulin can be seen by the yellow color.  Nuclei were counterstained with DAPI.  
Scale bars, 10 µm. 
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Figure 3.34   Accumulated, WHV G1982T mutant precore/core protein was 

localized to the microtubule organization center (MTOC) at 48 hours post- 

transfection.  Huh7 cells were transfected with WHV precore/core plasmid 
constructs followed by fixation at 48 hours-post transfection.  The cells were 
subjected to indirect double immunofluorescence staining with antibodies against 
WHV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green.  The MTOC was detected with primary 
antibodies against γ-tubulin and secondary antibodies were labelled with 
AlexaFluor 546, shown in red.  Co-localization of precore/core protein and γ-
tubulin can be seen by the yellow color.  Nuclei were counterstained with DAPI.  
Scale bars, 10 µm. 
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Figure 3.35   Morphology of microtubule network was not affected by the 

accumulation of genotype D HBV G1862T mutant precore/core protein at 48 
hours post-transtection.  Huh7 cells were transfected with genotype D plasmid 
constructs followed by fixation at 48 hours post-transfection.  The cells were 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green.  The microtubule network was detected with 
primary antibodies against α-tubulin and secondary antibodies were labelled with 
AlexaFluor 546, shown in red.  Co-localization of precore/core protein and α-
tubulin can be seen by the yellow color.  Nuclei were counterstained with DAPI.  
Scale bars, 10 µm. 
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Figure 3.36   Morphology of microtubule network was not affected by the 

accumulation of genotype D HBV G1862T mutant precore/core protein at 72 
hours post-transfection.  Huh7 cells were transfected with genotype D plasmid 
constructs followed by fixation at 72 hours post-transfection.  The cells were 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green.  The microtubule network was detected with 
primary antibodies against α-tubulin and secondary antibodies were labelled with 
AlexaFluor 546, shown in red.  Co-localization of precore/core protein and α-
tubulin can be seen by the yellow color.  Nuclei were counterstained with DAPI.  
Scale bars, 10 µm. 
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Figure 3.37   Morphology of microtubule network was not affected by the 

accumulation of genotype ‘A’ HBV G1862T mutant precore/core protein at 
48 hours post-transfection.  Huh7 cells were transfected with genotype ‘A’ 
plasmid constructs followed by fixation at 48 hours post-transfection.  The cells 
were subjected to indirect double immunofluorescence staining with antibodies 
against HBV precore/core protein, detected with secondary antibodies labelled 
with AlexaFluor 488, shown in green.  The microtubule network was detected 
with primary antibodies against α-tubulin and secondary antibodies were labelled 
with AlexaFluor 546, shown in red.  Co-localization of precore/core protein and 
α-tubulin can be seen by the yellow color.  Nuclei were counterstained with 
DAPI.  Scale bars, 10 µm. 
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Figure 3.38   Morphology of microtubule network was not affected by the 

accumulation of genotype ‘A’ HBV G1862T mutant precore/core protein at 
72 hours post-transfection.  Huh7 cells were transfected with genotype ‘A’ 
plasmid constructs followed by fixation at 72 hours post-transfection.  The cells 
were subjected to indirect double immunofluorescence staining with antibodies 
against HBV precore/core protein, detected with secondary antibodies labelled 
with AlexaFluor 488, shown in green.  The microtubule network was detected 
with primary antibodies against α-tubulin and secondary antibodies were labelled 
with AlexaFluor546, shown in red. Co-localization of precore/core protein and α-
tubulin can be seen by the yellow color.   Nuclei were counterstained with DAPI.  
Scale bars, 10 µm. 
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Figure 3.39   Morphology of microtubule network was not affected by the 

accumulation of WHV G1982T mutant precore/core protein at 48 hours post-
transfection.  Huh7 cells were transfected with WHV plasmid constructs 
followed by fixation at 48 hours post-transfection.  The cells were subjected to 
indirect double immunofluorescence staining with antibodies against HBV 
precore/core protein, detected with secondary antibodies labelled with AlexaFluor 
488, shown in green.  The microtubule network was detected with primary 
antibodies against α-tubulin and secondary antibodies were labelled with 
AlexaFluor 546, shown in red.  Co-localization of precore/core protein and α-
tubulin can be seen by the yellow color.  Nuclei were counterstained with DAPI.  
Scale bars, 10 µm. 
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Figure 3.40   The formation of juxtanuclear aggresome by genotype D HBV 

G1862T precore/core protein was accompanied by a re-organization of the 

intermediate filament-vimentin at 48 hours post-transfection.  Huh7 cells 
were transfected with genotype D plasmid constructs followed by fixation at 48 
hours post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The intermediate filament was detected with primary antibodies against vimentin 
and secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and vimentin can be seen by the yellow color.  
Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.41   The formation of juxtanuclear aggresome by genotype D HBV 

G1862T precore/core protein was accompanied by a re-organization of the 
intermediate filament-vimentin at 72 hours post-transfection.  Huh7 cells 
were transfected with genotype D plasmid constructs followed by fixation at 72 
hours post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The intermediate filament was detected with primary antibodies against vimentin 
and secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and vimentin can be seen by the yellow color.  
Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.42   The formation of juxtanuclear aggresome by genotype ‘A’ HBV 

G1862T precore/core protein was accompanied by a re-organization of the 
intermediate filament-vimentin at 48 hours post-transfection.  Huh7 cells 
were transfected with genotype ‘A’ plasmid constructs followed by fixation at 48 
hours post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The intermediate filament was detected with primary antibodies against vimentin 
and secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and vimentin can be seen by the yellow color.  
Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.43   The formation of juxtanuclear aggresome by genotype ‘A’ HBV 

G1862T precore/core protein was accompanied by a re-organization of the 
intermediate filament-vimentin at 72 hours post-transfection.  Huh7 cells 
were transfected with genotype ‘A’ plasmid constructs followed by fixation at 72 
hour post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The intermediate filament was detected with primary antibodies against vimentin 
and secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and vimentin can be seen by the yellow color.  
Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.44   The formation of juxtanuclear aggresome by WHV G1982T 

precore/core protein was accompanied by a re-organization of the 

intermediate filament-vimentin at 48 hours post-transfection.  Huh7 cells 
were transfected with WHV plasmid constructs followed by fixation at 48 hours 
post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against WHV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The intermediate filament was detected with primary antibodies against vimentin 
and secondary antibodies were labelled with AlexaFluor 546, shown in red.  Co-
localization of precore/core protein and vimentin can be seen by the yellow color.  
Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.45   Aggresome formed by genotype D HBV G1862T precore/core 

protein also resulted in the rearrangement of another family of intermediate 
filament-cytokeratin at 48 hours post-transfection.  Huh7 cells were 
transfected with genotype D plasmid constructs followed by fixation at 48 hours 
post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The intermediate filament was detected with primary antibodies against pan 
cytokeratin and secondary antibodies were labelled with AlexaFluor 546, shown 
in red.  Co-localization of precore/core protein and cytokeratin can be seen by the 
yellow color.  Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.46   Aggresome formed by genotype D HBV G1862T precore/core 

protein also resulted in the rearrangement of another family of intermediate 
filament-cytokeratin at 72 hous post-transfeciton.  Huh7 cells were transfected 
with genotype D plasmid constructs followed by fixation at 72 hours post-
transfection.  The cells were subjected to indirect double immunofluorescence 
staining with antibodies against HBV precore/core protein, detected with 
secondary antibodies labelled with AlexaFluor 488, shown in green.  The 
intermediate filament was detected with primary antibodies against pan 
cytokeratin and secondary antibodies were labelled with AlexaFluor 546, shown 
in red.  Co-localization of precore/core protein and cytokeratin can be seen by the 
yellow color.  Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.47   Aggresome formed by genotype ‘A’ HBV G1862T precore/core 

protein also resulted in the rearrangement of another family of intermediate 
filament-cytokeratin at 48 hours post-transfection.  Huh7 cells were 
transfected with genotype ‘A’ plasmid constructs followed by fixation at 48 hours 
post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The intermediate filament was detected with primary antibodies against pan 
cytokeratin and secondary antibodies were labelled with AlexaFluor 546, shown 
in red.  Co-localization of precore/core protein and cytokeratin can be seen by the 
yellow color.  Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
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Figure 3.48   Aggresome formed by genotype ‘A’ HBV G1862T precore/core 

protein also resulted in the rearrangement of another family of intermediate 
filament-cytokeratin at 72 hours post-transfection.  Huh7 cells were 
transfected with genotype ‘A’ plasmid constructs followed by fixation at 72 hours 
post-transfection.  The cells were subjected to indirect double 
immunofluorescence staining with antibodies against HBV precore/core protein, 
detected with secondary antibodies labelled with AlexaFluor 488, shown in green.  
The intermediate filament was detected with primary antibodies against pan 
cytokeratin and secondary antibodies were labelled with AlexaFluor 546, shown 
in red.  Co-localization of precore/core protein and cytokeratin can be seen by the 
yellow color.  Nuclei were counterstained with DAPI.  Scale bars, 10 µm. 
 
 

 Cytokeratin Merge Precore 

A B C 

D E F 

G H I 

J K L 

M N O 

P Q R 

H
B

V
 

W
il

d
-t

y
p

e
 

H
B

V
 

G
1
8
6
2

T
 

H
B

V
 

G
1

8
6
2
T

/G
1
8
8
8
A
 

H
B

V
 

G
1
8
9
6
A
 

H
B

V
 

G
1
8
8
8
A
 

M
o
ck

 

tr
a
n

sf
e
ct

io
n
 



150 
 

 

 
 
 

Figure 3.49   Aggresome formed by WHV G1982T precore/core protein also 

resulted in the rearrangement of another family of intermediate filament-

cytokeratin at 48 hours post-transfection.  Huh7 cells were transfected with 
WHV plasmid constructs followed by fixation at 48 hours post-transfection.  The 
cells were subjected to indirect double immunofluorescence staining with 
antibodies against WHV precore/core protein, detected with secondary antibodies 
labelled with AlexaFluor 488, shown in green.  The intermediate filament was 
detected with primary antibodies against pan cytokeratin and secondary antibodies 
were labelled with AlexaFluor 546, shown in red.  Co-localization of precore/core 
protein and cytokeratin can be seen by the yellow color.  Nuclei were 
counterstained with DAPI.  Scale bars, 10 µm. 
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3.5.4.2   Effect of proteasome inhibitor on the aggresome formation 

To evaluate the effect of cellular stress on aggresome formation in cells expressing 

the wild-type or mutant precore/core mutants, transfected cells were incubated 

with the proteasome inhibitor, MG132.  When cells transfected with wild-type 

constructs were treated with MG132, there was a relatively small increase in the 

expression of precore/core protein when compared to untreated cells.  The 

increase was more pronounced when the cells were transfected with HBV 

G1862T (Figure 3.50-3.55, D-F) or G1862T/G1888A (Figure 3.50-3.55, J-L) 

constructs.  There was in addition an increase in the size and fluorescent intensity 

of the aggresomes formed in the cells treated with MG132.   Concomitantly, the 

expression of Hsp70, ubiquitin and proteasome, which co-localize with 

aggresomes, was also increased when Huh 7 cells transfected with  HBV G1862T 

(Figure 3.50-3.55, D-F) or G1862T/G1888A (Figure 3.50-3.55, J-L) constructs, 

were treated with MG132.   A single, large, juxtanuclear aggresome impinged on 

the nuclear envelope causing its distortion.   Reniform nuclei were observed in the 

cells transfected with HBV G1862T precore/core constructs at 72 hr post-

transfection following MG132 treatment (Figure 3.50-3.55, D-F), 

G1862T/G1888A (Figure 3.50-3.55, J-L).  The distortion of the nuclear envelope 

has been shown to be a unique feature of cells bearing single, large aggresomes 

(Johnston, 1998).   
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Figure 3.50   Proteasomal inhibition promotes aggresome formation by the 

genotype D HBV G1862T mutant precore/core protein.  Genotype D HBV 

G1862T precore/core protein co-localized with Hsp70.  Huh7 cells were 
transfected with genotype D plasmid constructs, treated with MG132, a 
proteasome inhibitor.  The cells were fixed at 72 hours post-transfection, and were 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green.  The molecular chaperone was detected with 
primary antibodies against Hsp70 and secondary antibodies were labelled with 
AlexaFluor 546, shown in red.  Co-localization of precore/core protein and Hsp70 
can be seen by the yellow color.  Nuclei were counterstained with DAPI.  Scale 
bars, 10 µm. 
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Figure 3.51   Proteasomal inhibition promotes aggresome formation by the 

genotype ‘A’ HBV G1862T mutant precore/core protein.  Genotype ‘A’ HBV 

G1862T precore/core protein co-localized with Hsp70.  Huh7 cells were 
transfected with genotype ‘A’ plasmid constructs, and treated with MG132, a 
proteasome inhibitor.  The cells were fixed at 72 hours post-transfection, and were 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green. The molecular chaperone was detected with 
primary antibodies against Hsp70 and secondary antibodies were labelled with 
AlexaFluor 546, shown in red.  Co-localization of precore/core protein and Hsp70 
can be seen by the yellow color.  Nuclei were counterstained with DAPI.  Scale 
bars, 10 µm. 
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Figure 3.52   Proteasomal inhibition promotes aggresome formation by the 

genotype D HBV G1862T mutant precore/core protein.  Genotype D HBV 
G1862T precore/core protein co-localized with ubiquitin.  Huh7 cells were 
transfected with genotype D plasmid constructs, and treated with MG132, a 
proteasome inhibitor.  The cells were fixed at 72 hours post-transfection, and were 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green. The ubiquitin was detected with primary 
antibodies against ubiquitin and secondary antibodies were labelled with 
AlexaFluor 546, shown in red.  Co-localization of precore/core protein and 
ubiquitin can be seen by the yellow color.  Nuclei were counterstained with DAPI.  
Scale bars, 10 µm. 
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Figure 3.53   Proteasomal inhibition promotes aggresome formation by the 

genotype ‘A’ HBV G1862T mutant precore/core protein.  Genotype ‘A’ HBV 
G1862T precore/core protein co-localized with ubiquitin.  Huh7 cells were 
transfected with genotype ‘A’ plasmid constructs, treated with MG132, a 
proteasome inhibitor.  The cells were fixed at 72 hours post-transfection, and were 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green. The ubiquitin was detected with primary 
antibodies against ubiquitin and secondary antibodies were labelled with 
AlexaFluor 546, shown in red.  Co-localization of precore/core protein and 
ubiquitin can be seen by the yellow color.  Nuclei were counterstained with DAPI.  
Scale bars, 10 µm. 
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Figure 3.54   Proteasomal inhibition promotes aggresome formation by the 

genotype D HBV G1862T mutant precore/core protein.  Genotype D HBV 
G1862T precore/core protein co-localized with proteasome.  Huh7 cells were 
transfected with genotype D plasmid constructs, treated with MG132, a 
proteasome inhibitor.  The cells were fixed at 72 hours post-transfection, and were 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green. The proteasome was detected with primary 
antibodies against proteasome and secondary antibodies were labelled with 
AlexaFluor 546, shown in red.  Co-localization of precore/core protein and 
proteasome can be seen by the yellow color.  Nuclei were counterstained with 
DAPI.  Scale bars, 10 µm. 
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Figure 3.55   Proteasomal inhibition promotes aggresome formation by the 

genotype ‘A’ HBV G1862T mutant precore/core protein.  Genotype ‘A’ HBV 
G1862T precore/core protein co-localized with proteasome.  Huh7 cells were 
transfected with genotype ‘A’ plasmid constructs, treated with MG132, a 
proteasome inhibitor.  The cells were fixed at 72 hours post-transfection, and were 
subjected to indirect double immunofluorescence staining with antibodies against 
HBV precore/core protein, detected with secondary antibodies labelled with 
AlexaFluor 488, shown in green. The proteasome was detected with primary 
antibodies against proteasome and secondary antibodies were labelled with 
AlexaFluor 546, shown in red. Co-localization of precore/core protein and 
proteasome can be seen by the yellow color.  Nuclei were counterstained with 
DAPI.  Scale bars, 10 µm. 
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3.5.4.3 Dynamics of aggresomes formation:  a precore/core protein-eGFP 

fusion protein study 

In order to monitor the dynamic movement of HBV or WHV precore/core protein 

in the secretory pathway, the HBV and WHV precore/core protein-eGFP fusion 

protein expression vectors were designed and generated.  These expression 

vectors had a flexible poly-linker between the upstream precore/core gene and the 

downstream eGFP gene.  These constructs were used to transfect Huh7 cells and 

the expression of eGFP fusion protein in live cells was followed using confocal 

microscopy. 

Huh7 cells expressing HBV wild-type (Figure 3.56-3.57, A and C), G1888A 

(Figure 3.56-3.57, I and K) or WHV wild-type (Figure 3.58, A and C) 

precore/core-eGFP fusion protein showed a faint, reticular pattern of eGFP 

distribution throughout the cytoplasm of the cells with small green fluorescent 

specks found only occasionally both at 48 hr and 72 hr post-transfection.  In 

contrast, green fluorescent signals in the perinuclear region of the cells were 

observed in Huh7 cells expressing HBV G1862T (Figure 3.56-3.57, E and G), 

G1862T/G1888A (Figure 3.56-3.57, M and O) or WHV G1982T (Figure 3.58, E 

and G) precore/core-fusion proteins.  These fluorescent signals were similar in 

appearance to aggresomes.  There was no significant difference in the expression 

of the wild-type proteins when the cells transfected with HBV wild-type (Figure 

3.56-3.57, B and D), G1888A (Figure 3.56-3.57, J and L), or WHV wild-type 

(Figure 3.58, B and D) constructs were treated with MG132.   There was no 

difference in the pattern and distribution of green fluorescence.  In contrast, when 

Huh7 cells transfected with HBV G1862T (Figure 3.56-3.57, F and H), 

G1862T/G1888A (Figure 3.56-3.57, N and P) or WHV G1982T (Figure 3.58, F 
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and H) precore/core-eGFP construst were treated with MG132, the aggresomes 

developed earlier and were even larger, more compact and with brighter 

fluorescence intensity compared to those in cells not treated with MG132.  

Moreover, the size of aggresomes increased with time between 48 hr and 72 hr 

post-transfection (HBV G1862T: Figure 3.56-3.57, F and H; HBV 

G1862T/G1888A: Figure 3.56-3.57, N and P; WHV G1982T: Figure 3.58, F and 

H).   
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Figure 3.56   Expression of genotype ‘A’ HBV precore/core-eGFP fusion 

protein in Huh7 cells.  Green fluorescent signals in the perinuclear region of the 
cells were observed in Huh7 cells expressing HBV G1862T and G1862T/G1888A 
precore/core-fusion proteins.  Huh7 cells were transfected with genotype ‘A’ 
HBV precore/core-eGFP fusion constructs, and treated with proteasome inhibitor, 
MG132.  The cells were not fixed.  Confocal images were taken either at 48 hours 
or 72 hours post-transfection.  Scale bars, 10 µm. 
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Figure 3.57   Expression of genotype D HBV precore/core-eGFP fusion 

protein in Huh7 cells.  Green fluorescent signals in the perinuclear region of the 
cells were observed in Huh7 cells expressing HBV G1862T and G1862T/G1888A 
precore/core-fusion proteins.  Huh7 cells were transfected with genotype D HBV 
precore/core-eGFP fusion constructs, and treated with proteasome inhibitor, 
MG132.  The cells were not fixed.  Confocal images were taken either at 48 hours 
or 72 hours post-transfection. Scale bars, 10 µm. 
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Figure 3.58   Expression of WHV precore/core-eGFP fusion protein in Huh7 
cells.  Green fluorescent signals in the perinuclear region of the cells were 
observed in Huh7 cells expressing WHV G1982T precore/core-fusion proteins.  
Huh7 cells were transfected WHV precore/core-eGFP fusion constructs, and 
treated with proteasome inhibitor, MG132.  The cells were not fixed.  Confocal 
images were taken either at 48 hours or 72 hours post-transfection.  Scale bars, 10 
µm. 
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CHAPTER 4 

4.0   DISCUSSION 

The G1862T mutation is a distinctive characteristic of subgenotype A1 of HBV, 

which is the most prevalent subgenotype circulating in South Africa (Kramvis et 

al, 1997; Kramvis et al, 1998; Sugauchi et al, 2004a; Kramvis et al, 2008).  The 

objective of this study was to functionally characterize this mutation in tissue 

culture cells.  The G1862T mutation could conceivably have two functional 

consequences.  First, because G1862T occurs within the bulge of ε (Fallows & 

Goff, 1995), which plays a pivotal role in the initiation of reverse transcription of 

pgRNA (Knaus & Nassal, 1993; Pollack & Ganem, 1993), this mutation could 

interfere with HBV replication.  Secondly, because the precore/core open reading 

frame on the precore mRNA, which encodes for the precursor of HBeAg, overlaps 

the region that codes for ε on the pgRNA, the G1862T missense mutation (Val to 

Phe) could interfere with the signal peptide cleavage and affect HBeAg 

expression.  Both possibilities were investigated in this study by measuring HBV 

DNA levels using a replication competent plasmid and HBeAg expression using a 

HBeAg-expression plasmid.  

This study was initiated several years ago, when advanced molecular techniques 

for full length HBV genome amplification had not been developed, and 

subgenotype A1 had not been recognized and characterized.  Moreover, the high 

frequency of G1862T in subgenotype A1 had not been established.  Thus pCH-

9/3091-wt, a terminally redundant, 1.3 X unit over-length, replication competent 

genotype D HBV genome was used as template to generate mutant constructs 

(Nassal, 1992).  In the pCH-9/3091-wt plasmid, the transcription of HBV pgRNA 

is controlled by the CMV IE promoter whereas recently developed cloning 
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techniques allow transcription of HBV pgRNA to be controlled by the native 

HBV promoter.  The pCH-9/3091-wt plasmid was designed to support the 

transcription of pgRNA but not precore mRNA.  Therefore, the precore/core gene 

was PCR amplified and cloned into the pCR3.1 plasmid, where the transcription 

of precore mRNA was controlled by the CMV promoter and this latter plasmid 

was used to monitor HBeAg expression in vitro. 

 

Effect of mutation on HBV replication 

Using real time PCR to quantify HBV DNA loads, the HBV DNA levels were 

significantly reduced when the G1862T mutation was introduced into a genotype 

D replication competent construct (pCH-9/3091) but not when introduced into the 

genotype ‘A’ construct (Figure 3.3).  This is in agreement with the reported 

impairment of HBV replication by the G1862T mutation in genotype D (Guarnieri 

et al, 2006), and subgenotype B2 (Inoue et al, 2009).  A virus with a high 

replication rate will eventually lead to the rapid cell lysis and host death, and 

hence result in a reduced probability of stable host-to-host transmission.  On the 

other extreme, a virus with a low replication rate will result in increased viral 

clearance and reduced host-to-host transmission.  In order for a virus to survive, it 

requires an optimal and steady rate of viral replication (Sallie, 2005).  This could 

explain why the G1862T mutation occurs more frequently in genotype A 

(Kramvis et al, 2008) than any other genotypes (Hou et al, 2002; Kramvis et al, 

2008). 

 

The G1862T mutation is situated immediately after the UUC sequence (Figure 

1.7) (nt 1863-1865) that is used as template by the reverse transcriptase to 

synthesise the DNA primer for the minus strand DNA (Nassal & Rieger, 1996).  
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This short oligo primer is then transferred to the complementary acceptor site at 

DR1 that is close to the 3’ end of the pgRNA, where the extension of the minus 

strand DNA continues and is completed to form the minus strand DNA (Nassal & 

Schaller, 1996).  The study of Rieger and Nassal showed that nt 1864 and 1865 

are sufficient for the DNA primer to transfer to the DR1 position (Rieger & 

Nassal, 1995), and therefore nucleotide variations at position 1862 would not be 

expected to affect primer synthesis or reverse transcription.  The stability of the 

secondary structure of ε is important in maintaining optimal reverse transcription 

(Kramvis & Kew, 1998) and therefore the possibility exists that the introduction 

of G1862T resulted in the destabilization of ε.  However, computation of 

minimum free energy (∆G) using mfold (http://mfold.bioinfo.rpi.edu/cgi-bin/rna-

form1.cgi) showed no significant change in the ∆G when the mutation was 

introduced into either genotype A or genotype D sequences (Mathews et al, 1999; 

Zuker, 2003).  On the other hand, the introduction of G1896A in the genotype A 

sequence leads to ~20% reduction in ∆G, a significant reduction.  Therefore, 

reduced HBV DNA replication using pCH-9/3091 plasmid constructs cannot be 

attributed to either interference with reverse transcription or destabilization of ε.  

 

A comparable level of reduction in the HBV DNA level was also observed when 

G1888A mutation was introduced into genotype D construct but not into genotype 

‘A’ construct (Figure 3.3).  The G1888A mutation formed a stable Watson-Crick 

base pair with 1871T stabilizing the structure of ε in the genotype ‘A’ construct.  

G1888A mutation could possibly contribute to the destabilization of the ε in the 

genotype D context, thereby affecting reverse transcription (Rodriguez-Frias et al, 

1995) and subsequently reducing viral replication.  When the G1862T and 

G1888A mutations were combined in the genotype D context, the combination of 
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the two mutations further reduced viral replication when compared to G1862T or 

G1888A mutations individually.  In contrast to the genotype D context, the 

combination of the G1862T and G1888A mutations did not affect viral replication 

in the genotype ‘A’ context (Figure 3.3).  The G1862T and G1888A mutations 

individually or in combination may possibly have evolutionary advantage in the 

genotype ‘A’ context because G1862T and G1888A mutations are frequently 

associated with subgenotype A1.   Kramvis et al suggested that both mutations 

may have co-evolved (Kramvis et al, 2008). 

 

As expected and previously demonstrated (Tong et al, 1992; Li et al, 1993; Lok et 

al, 1994; Yuan et al, 1995), the G1896A mutation did not affect viral replication 

in the genotype D context, where the structure of ε was stabilized by the Watson-

Crick base pair of nucleotide 1858T with 1896A (Kramvis et al, 1997).  On the 

other hand, when the G1896A mutation was introduced into the genotype ‘A’ 

context, the stable Watson-Crick base pair formed by nucleotide 1858C with 

1896G was disrupted.  The formation of wobble base pair by 1858C and 1896A 

destabilized the structure of ε, compromising viral replication (Li et al, 1993; 

Rodriguez-Frias et al, 1995).  The classical G1896A stop codon mutation was 

commonly associated with genotype D, but not with genotypes A, C and E 

(Kramvis et al, 2008).  This mutation is rarely found in genotype A (Li et al, 

1993), and this was later confirmed by the study of Kramvis et al, in which the 

frequency of G1896A mutation in the different genotypes was statistically 

analysed (Kramvis et al, 2008).  In the present study, a statistically significantly 

decrease in viral replication was observed when G1896A mutant was introduced 

into genotype ‘A’, confirming the findings of Li et al (Li et al, 1993).  The 

introduction of the G1896A mutation in genotype ‘A’ context would certainly 
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compromise the maintenance of a constant viral replication rate and therefore the 

virus would evolutionarily be eliminated.  

 

Expression of HBeAg/WHeAg in Huh 7 cells 

HBeAg/WHeAg-expression constructs were used to follow the secretion and 

expression of both wild-type and mutant HBeAg/WHeAg.  The wild-type HBV 

and WHV precore/core proteins localized to the sites of the secretory pathway 

necessary for the expression of HBeAg and WHeAg (Lippincott-Schwartz et al, 

2000; Lippincott-Schwartz, 2001; Rutishauser & Spiess, 2002; Ellgaard L, 2004), 

namely the ER (Figure 3.6-3.10), ERGIC (Figure 3.11-3.15) and the Golgi (Figure 

3.16-3.20).  This distribution of wild-type protein was not disturbed by the 

treatment of the cells with proteasome inhibitor, MG132 (Figure 3.50-3.55).  

These observations demonstrated that the wild-type protein was post-

translationally modified correctly, HBeAg/WHeAg was formed and proceeded 

through the secretory pathway normally.  It was either expressed on the cell 

surface or secreted from the cell.   

 

On the other hand, when cells were transfected with the mutant constructs, there 

was a reduction of HBeAg expression in the supernatant, relative to the wild-type 

(38% for genotype D and 54% for genotype ‘A’) (Figure 3.4).  This is in 

agreement with the study of Hou and colleagues that showed reduced HBeAg 

expression when the G1862T mutation was present in a genotype B HBeAg-

expressing construct (Hou et al, 2002).  However, this was not found to be the 

case when this mutation was introduced into genotype D and subgenotype B2 

constructs in more recent studies in which HBeAg expression was not 

significantly affected by the introduction of the mutation (Guarnieri et al, 2006; 
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Inoue et al, 2009).  These discrepancies between results could be explained by the 

fact that HBeAg-expression constructs were used in the present study and that of 

Hou et al (Hou et al, 2002) whereas replication competent plasmids were used by 

Guarnieri et al and Inoue et al (Guarnieri et al, 2006; Inoue et al, 2009).  

Moreover, the plasmids were derived from templates belonging to different 

genotypes/subgenotypes.   

 

Accumulation of mutant precore/core protein in the ER and ERGIC 

The precursor protein produced by the G1862T mutant did not transfer to the 

ERGIC and beyond and therefore accumulated in the ER, indicating that it failed 

to meet the ER quality control requirements.  Retention of mutant proteins in the 

ER can be found in the mutant α-1-antitrypsin (Sifers et al, 1988; Lomas & 

Parfrey, 2004), thyroglobulin (Kim & Arvan, 1998; Kim et al, 2000), mutant low 

density lipoprotein receptor (Pathak et al, 1988), mutant collagen alpha 1 chain 

(Bogaert et al, 1992), mutant proinsulin (Wang et al, 1999), G145R variant of 

HBsAg  (Kalinina et al, 2001), L215Q mutant of HBsAg (Araujo et al, 2008) and 

overexpressed wild-type LHBs protein (Xu et al, 1997). 

 

Despite the retention in the ER compartment, a proportion of the precore/core 

protein reached the ERGIC and cis-Golgi compartments (Figure 3.6-3.20).  

Quality control requirements in respect to correct protein folding and assembly 

must be met in these two compartments.  Most incorrectly, incompletely folded or 

misfolded proteins detected at this point are retrogradely transported back to the 

ER by the COP I vesicles, for further refolding (Hammond & Helenius, 1994; 

Caldwell et al, 2001; Taxis et al, 2002; Trombetta & Parodi, 2003; Romisch, 
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2005).  This sequence of events explains the demonstration of the precursor 

protein found in compartments beyond the ER.   

 

Similar results have been described for misfolded vesicular stomatitis virus (VSV) 

G protein (Hammond & Helenius, 1994).  When the amount of misfolded VSV G 

protein increased in the ER, some of the protein started to move to ERGIC and the 

Golgi.  The extent of escape from ER correlates more closely with the expression 

level of G protein than with time after infection.  It was postulated that the 

appearance of G protein in ERGIC and the Golgi occurs by some type of 

saturation phenomenon in ER (Hammond & Helenius, 1994).  Misfolded proteins 

are able to escape ER quality control check point, be transported beyond ER, 

recycle between ER and Golgi.  This seems to be the case in misfolded VSV G 

protein  (Hammond & Helenius, 1994) and unassembled MHC class I molecules 

(Hsu et al, 1991).  The retention of the misfolded precore/core protein in the ER 

and ERGIC agrees with the model proposed by Hammond and Helenius 

(Hammond & Helenius, 1994) and occurs for mutant ∆F508 cystic fibrosis 

transmembrane regulator (CFTR) (Gilbert et al, 1998), presenilin-1 (Johnston et 

al, 1998), mutant proinsulin in the Akita diabetes model (Zuber et al, 2004; Fan et 

al, 2007) and mutant vasopressin receptor in nephrogenic diabetes insipidus 

(Hermosilla et al, 2004; Oueslati et al, 2007).  Moreover, accumulation in Golgi 

has been described for the mutant L77R HBsAg (Chua et al, 2005). 

 

Further evidence that the mutant proteins were misfolded was the increased 

expression of chaperones, such as Hsp70 (Figure 3.24-3.25), involved in protein 

folding, translocation and degradation (Hartl, 1996; Hartl & Hayer-Hartl, 2002; 

De Los Rios et al, 2006).  This finding was to be expected because misfolded 
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proteins but not wild-type proteins usually have their hydrophobic domains 

exposed, promoting chaperone binding (Heath et al, 2001). 

 

If chaperone binding does not result in correct folding and assembly of the 

proteins, the accumulated proteins will be targeted by the unfolded protein 

response (UPR) and endoplasmic reticulum associated degradation (ERAD) 

pathways co-operatively (Travers et al, 2000; Hampton, 2002; Kostova & Wolf, 

2003; Meusser et al, 2005).  The defective protein is first unfolded, then 

retrotranslocated and exported from the ER through the Sec61 translocon to the 

cytosol (Pilon et al, 1997; Tsai et al, 2002) where it is polyubiquitinated and then 

transferred to the 26S proteasome complex for degradation (Hampton, 2002; 

Kostova & Wolf, 2003).  The 26S proteasome complex is responsible for the 

majority of non-lysosomal protein degradation in eukaryotic cells (Hochstrasser, 

1996).   

 

Increased levels of both ubiquitin (Figure 3.26-3.27) and proteasomes (Figure 

3.28-3.29) were also detected in the cells infected with mutant constructs, but not 

in cells infected with the wild-type constructs.  The misfolded precore/core 

proteins were found to have accumulated along the microtubules in the cytosol, 

where they formed mini-aggregates (Figure 3.35-3.39).  This is further evidence 

that the mutant protein was not correctly folded because in vitro studies have 

shown that misfolded proteins are prone to aggregation (Ellgaard et al, 1999).  

Moreover, protein aggregation has been shown to impair and inhibit the ubiquitin-

proteasome system (Sitte et al, 2000; Bence et al, 2001; Bennett et al, 2005).  

Furthermore, the accumulation of ubiquitinated protein conjugates can lead to cell 

cycle arrest and cell death (Bence et al, 2001).    
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Over time, cells become overloaded with the accumulation of misfolded protein in 

the ER.  The ER homeostasis is disturbed, and ER transmembrane sensors detect 

the onset of ER stress and trigger the ER stress response (Rutkowski & Kaufman, 

2004; Schroder & Kaufman, 2005).  The mammalian ER stress response results in 

the inhibition of protein synthesis, the up-regulation of genes responsible for the 

expression of chaperones and ERAD components,esponsible for protein 

degradation, and the activation of apoptosis (Groenendyk & Michalak, 2005; 

Rutkowski & Kaufman, 2007; Yoshida, 2007).  When the ER stress is prolonged 

or becomes chronic, UPR and ERAD pathways fail to clear the accumulated 

misfolded proteins.  If ER homeostasis cannot be restored or returned to its 

normal status, the cells undergo programmed cellular death, that is, apoptosis 

(Soldatenkov & Dritschilo, 1997; Ellgaard & Helenius, 2003; Lai et al, 2007).   

   

The precore signal sequence has been shown to play an important role not only in 

the secretion of HBeAg but also in determining its structural and aggregational 

properties (Schlicht & Wasenauer, 1991; Wasenauer et al, 1992).  Therefore, it is 

possible that the aggregation is caused by the interference of the mutation with 

post-translational modification of the precursor molecule.  

 

From this observation, it can be intimated, as previously predicted by Kramvis et 

al (Kramvis et al, 1998) and Valliammai et al (Valliammai et al, 1995), and 

shown for Escherichia coli alkaline phosphatase (Karamyshev et al, 1998) and 

Escherichia coli maltose-binding protein (Fikes et al, 1990), that the -3,-1 rule 

(von Heijne, 1983; von Heijne, 1984) holds true for the post-translational 

modification of the HBeAg precursor.   
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Using metabolic labelling, it was demonstrated in this study that the presence of 

G1982T mutation in WHV construct impaired the maturation of the WHeAg 

precursor relative to the wild-type (Figure 3.5).  This impaired processing of 

WHeAg precursor is comparable to the impairment caused by the HBV G1862T 

mutation  (Hou et al, 2002).  Karamyshev et al proposed two possible 

mechanisms for the impairment of mutant precursor processing (Karamyshev et 

al, 1998):  (1) the translocation of precursor protein across ER membrane is 

blocked, therefore the precursor is not accessible to the signal peptidase; (2) direct 

inhibition of the signal peptide cleavage as a result of the protein structural change 

caused by the introduction of the Phe, with its aromatic ring.  The Phe expressed 

as result of the G1862T in HBV (or G1982T in WHV) mutation, is a “forbidden” 

amino acid at position -3 to the signal peptide cleavage site.  According to the -3, -

1 rule, the acceptable cleavage domains conform to the following:  (1) the residue 

at position -1 from the cleavage site must be small and neutral (Ala, Cys, Gly, Ser, 

Thr, or Gln); (2) The residue at position -3 must not have aromatic (His, Phe, Tyr, 

and Trp), charged (Asp, Glu, Lys, and Arg), or large polar side chains (Asn and 

Gln); (3) Pro residue is prohibited in the region between -3 and +1 position 

(Perlman & Halvorson, 1983; von Heijne, 1983; von Heijne, 1984).  Such 

structural regularity at the -3, -1 position is considered to be necessary for signal 

peptidase recognition.  In the study of Karamyshev et al, the Escherichia coli 

alkaline phosphatase was used to test the -3, -1 rule, it was found that the efficient 

signal peptidase cleavage requires highly specific amino acids at -1 position, 

whereas the requirement of the amino acids at -3 position are less stringent 

(Karamyshev et al, 1998).  In the bacterial signal peptidase structural model, the 

substrate specificity at -1 position is more stringent as a result of a much smaller 

binding pocket for the amino acid side chain at -1 position (Karla et al, 2005).  In 
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contrast, more relaxed substrate specificity at -3 position was observed (Karla et 

al, 2005).  The binding pocket for the amino acid side chain at -3 position was 

found to be bigger and broader. Therefore, the binding pocket can be able to 

accommodate (accept) amino acids with larger aliphatic side chains (Paetzel et al, 

1998; Ekici et al, 2007). 

 

There are large differences in the molecular volume between Val (140 Å3) and Phe 

(189.9 Å3) (Zamyatnin, 1972), as well as in the accessible surface area between 

Val (155 Å2) and Phe (210 Å2) (Chothia, 1976).  When the Val is replaced by Phe, 

the bulky aromatic side chain of Phe would introduce a molecular volume 

constraint, which would affect the packing within its immediate surrounding 

environment.  Secondly, it also creates a steric constraint with the change of side 

chain conformational entropy.  Both factors will restrict the conformation, thereby 

interfering with and hindering the proper positioning and docking of precore/core 

protein (substrate) to the binding pocket of signal peptidase, and subsequently 

affecting signal peptide cleavage at the amino end of the precore/core protein.  

 

The Val side chain is relatively non-reactive, and is rarely directly involved in 

protein function, but it can play a role in substrate recognition (Betts & Russell, 

2003).  Generally, it is regarded as not ideal to substitute Val with Phe.  As Phe is 

an aromatic, hydrophobic amino acid, and is usually substituted with other amino 

acids of the same type.  It is noteworthy that Phe is never found -1 or -3 position 

in the SWISS-PROT data set of signal peptides (Bendtsen et al, 2004).  The 

experimental introduction of Phe at the -3 position of the signal peptidase 

recognition motif of the Escherichia coli alkaline phosphatase (Karamyshev et al, 
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1998) and Escherichia coli maltose-binding protein (Fikes et al, 1990) completely 

abolished signal peptide processing. 

 

Substitution of the amino acid at -3 position of signal peptide with amino acids 

other than Phe can also result in the impairment of precursor protein processing.  

Coagulation factor XSanto Domingo is a mutant form of human coagulation factor X in 

which a point mutation results in the substitution of Gly to Arg at the critical -3 

position of the signal peptide (Watzke et al, 1991).  Patients bearing this mutation 

exhibit a severe bleeding diathesis associated with less than 1 % coagulation factor 

X enzymatic activity and less than 5% circulating coagulation factor X protein.  In 

a later study, it was found that this mutation did not interfere with targeting and 

translocation to the RER, rather it is the cleavage of factor X by signal peptidase 

that is markedly impaired (Racchi et al, 1993).   

 

Aggresome formation by mutant precore/core proteins 

Signal peptides influence the timing and efficiency of signal peptide cleavage 

(Rutkowski et al, 2003).  Impaired signal peptide cleavage can create protein 

folding constraints (Stevens & Argon, 1999), which can result in the aggregation 

of the protein in the cytoplasm as was observed in the present study.   

 

Mini-aggregates increased in size over time and were transported, presumably by 

the protein dynein, along microtubules to the MTOC in the region of the 

centrosome, which co-localizes with γ-tubulin in a perinuclear position (Hartl, 

1996; Johnston et al, 1998; Kopito & Sitia, 2000; Harada et al, 2001).  Using 

antibodies against α-tubulin, an intact microtubule network was shown to be 

associated with the retrograde transport of the smaller aggregates along the 
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microtubules and their deposition at the MTOC (Figure 3.30-3.34 for γ-tubulin, 

and Figure 3.35-3.39 for α-tubulin) (Kopito & Sitia, 2000; Garcia-Mata et al, 

2002).  At this site, indigestible aggregates were spontaneously sequestered into 

aggresomes (Johnston et al, 1998; Kopito & Sitia, 2000; Garcia-Mata et al, 2002) 

even in the absence of proteasome inhibitor.  In agreement with Johnson et al 

(Johnston et al, 1998), this data shows that the aggregation of the mutant 

precursor of HBeAg occurred when the expression of the misfolded protein 

exceeded the degradation capacity of the proteasome, and the accumulation of 

mutant HBV proteins was greatly enhanced when proteasome activity was 

inhibited (Figure 3.50-3.55).  The fact that aggresomes did not form in cells 

transfected with wild-type constructs indicates that the accumulation of the mutant 

protein is as a result of its defective expression rather than the ubiquitin-

proteasome machinery not functioning in Huh7 cells  (Gu et al, 2003).   

 

The aggregates of the unprocessed HBeAg precursor demonstrated the hallmarks 

of aggresomes.  They were ubiquitin-rich aggregates in the region of the MTOC 

(Figure 3.30-3.34 for γ-tubulin, and Figure 3.26-3.27 for ubiquitin) (Harada et al, 

2001; Heath et al, 2001; Waelter et al, 2001; Garcia-Mata RG et al, 2002; Saliba 

et al, 2002) that recruited Hsp70 and proteasomes (Figure 3.24-3.25 for Hsp70, 

Figure 3.28-3.29 for proteasomes) (Johnston et al, 1998; Wigley et al, 1999; 

Garcia-Mata et al, 2002) and were surrounded by a vimentin sheath (Figure 3.40-

3.44) (Johnston et al, 1998; Harada et al, 2001; Garcia-Mata et al, 2002; Saliba et 

al, 2002).  Although before aggregating, some of the misfolded protein did reach 

the Golgi apparatus, aggresome formation did not require an intact Golgi 

apparatus, because these structures were undisturbed by BFA treatment that has 

been shown to cause disassembly (Fujiwara et al, 1988) and protein redistribution 
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(Doms et al, 1989) of the Golgi to the ER (Figure 3.21-3.23).  This is consistent 

with similar findings for other proteins and other cellular systems (Johnston et al, 

1998).  

 

Thus, in agreement with a previously published study (Garcia-Mata et al, 1999), 

the current study shows that aggresome formation is not dependent on the 

presence of the proteosome inhibitor-MG132, and that aggresomes occur 

spontaneously in cells transiently transfected with mutant HBV constructs.  

Protein misfolding was necessary for aggresome formation, which did not occur 

to any extent in cells transfected with the wild-type constructs even in the 

presence of the proteasome inhibitor.  The formation of aggresomes demonstrates 

that the precore/core protein encoded for by the G1862T mutant in HBV (G1982T 

in WHV) results in misfolding of the protein because misfolded proteins have 

been shown to be involved in aggresome formation (Garcia-Mata et al, 1999).   

 

Aggresome formation has been proposed to be a generalized cellular response 

induced when the proteolytic degradation capabilities of the proteasome are 

surpassed by the production of incorrectly folded proteins (Johnston et al, 1998; 

Kopito & Sitia, 2000).  It is a cellular cyto-protective mechanism in which the 

potentially toxic misfolded protein is transported to and disposed of in a 

centralized region (enclosure) (Johnston et al, 1998).  This process decreases the 

intracellular levels of misfolded protein, enhances and facilitates their 

degradation, thereby increasing cell survival (Taylor et al, 2003; Arrasate et al, 

2004; Tanaka et al, 2004a).  These observations are consistent with the model 

proposed by Johnston et al (Johnston et al, 1998) and this model can therefore be 

used to describe the formation of aggressomes by mutant HBeAg precursor in the 
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case of both HBV and WHV in cells transfected with HBeAg-expression 

plasmids.   

 

Viral infection and aggresomes 

Although cytoplasmic inclusions have long been recognized as markers of viral 

infection, they have only more recently been shown to be aggresomes or 

aggresome-like structures.  There has been a spurt of publications that describe the 

formation of aggresomes at various stages of the life cycle of a number of viruses.  

Moreover, the ability of aggresomes to concentrate proteins and attract 

chaperones, may make them suitable viral assembly sites (Heath et al, 2001; 

Wileman, 2006; Netherton et al, 2007).  African swine fever virus (Heath et al, 

2001), vaccinia virus (Ploubidou et al, 2000), Epstein-Barr virus (EBV) (Laszlo et 

al, 1991), overexpressed and misfolded Sin Nombre virus G1 protein 

(Spiropoulou et al, 2003), rabies virus (Lahaye et al, 2009), adenovirus type 5 E4 

or F3 (Araujo et al, 2005) and E1B-55K (Liu et al, 2005) proteins have been 

shown to assemble spontaneously in the absence of proteasome inhibitors in sites 

that resemble aggresomes.  In the case of herpes simplex virus 2, virus assembly 

occurs in aggresome-like structures that recruit chaperones, but unlike aggresomes 

do not require an intact microtubule network and are not characterized by a 

vimentin cage (Nozawa et al, 2004).  In an attempt to evade class I MHC antigen 

presentation (Ploegh, 1998), EBV-encoded nuclear antigen 1 (EBNA1) has been 

shown to impair proteolysis by the ubiquitin-proteasome system (Levitskaya et al, 

1997; Ploegh, 1998).  Antigen processing and presentation are synchronized with 

dendritic cell maturation, by the storage of ubiquitinated influenza virus 

nucleoprotein in dendritic cell aggresome-like induced structures (Herter et al, 

2005).  Moreover, in earlier publications, parts of the aggresome pathway have 
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been reported to be activated during the assembly of several viruses.  A vimentin 

cage has been shown to form around African swine fever virus (Heath et al, 

2001), human immunodeficiency virus (Karczewski & Strebel, 1996), Theiler’s 

virus (Nedellec et al, 1998), reovirus inclusions (Sharpe et al, 1982; Parker et al, 

2002), vaccinia virus (Ferreira et al, 1994) and iridovirus assembly sites (Murti & 

Goorha, 1983).  The present study is the first demonstration of aggresome 

formation as a result of the accumulation of hepadnaviral proteins.  

 

ER stress, aggresome formation and liver disease progression  

Hepatocytes have a well-developed ER structure that is crucial for the efficient 

and rapid synthesis of secretory proteins.  ER stress response has been shown to 

induce mitochondrial dysfunction, up-regulate the synthesis of triglycerides and 

cholesterol, promote oxidative stress, initiate inflammatory response, and 

apoptosis (Ji, 2008; Zhang & Kaufman, 2008).  All of these events play a role in 

the pathogenesis of liver disorders including genetic disorders of fibrinogen, 

fumaryl acetoacetate hydrolase, and α-1-antitrypsin, iron absorptions, saturated fat 

and cholesterol, heavy metals, lipopolysaccharide, reactive oxygen species and 

hyperhomocysteinemia, as well as acquired diseases caused by hepatitis B and C 

virus–induced viral hepatitis, drugs, alcohol, and scurvy (Kaplowitz et al, 2007; 

Ji, 2008).  ER stress is involved in different liver-related disorders ranging from 

elevated alanine aminotransferase levels, fatty liver, keratin inclusions, 

inflammation, apoptosis, hepatitis, cirrhosis, liver failure and hepatocellular 

carcinoma (Arai et al, 2006; Ji & Kaplowitz, 2006; Wang et al, 2006; Ji, 2008) . 

 

The retention of HBV mutant precore protein in the ER observed in this study can 

possibly be a contributing factor to HBV-related hepatocarcinogenesis.  Two 
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types of LHBs produced by the pre-S1 and pre-S2 deletion mutants are retained in 

the ER, causing ER stress, inducing signal transactivators to activate different 

signaling pathways which may lead to hepatocarcinogensis (Wang et al, 2006).  

Pre-S deletion mutants can upregulate cyclooxygenase-2 (Hung et al, 2004), and 

cyclin A to induce cell cycle progression and nodular proliferation in hepatocytes 

of transgenic mice (Wang et al, 2005).  Moreover, the overexpression of 

cytoplasmic cyclin A may be initiated by ER stress, and may contribute to the 

increased multi-nucleation and DNA aneuploidy observed in the transgenic mice 

liver expressing defective pre-S proteins (Wang et al, 2005).  ER stress triggered 

by pre-S deletion mutants induces oxidative stress, which leads to oxidative DNA 

damage of HBV-infected hepatocytes (Hsieh et al, 2004).  Oxidative DNA 

damage may result in genomic instability, mutation of hepatocytes, and eventually 

progress to HCC (Wang et al, 2006).  HBV pre-S mutants play a role in the model 

of ER stress associated viral-related hepatocarcinogenesis (Wang et al, 2006).   

 

The aggresomes formed in cells transfected with G1862T mutant construct 

resembled Mallory-Denk bodies, aggresomes found in primary hepatocytes (Riley 

et al, 2002).  In 1911, F.B. Mallory first described cytoplasmic hyaline inclusions 

in hepatocytes of alcoholic hepatitis patient, and this type of inclusion was 

initially called Mallory body (Mallory, 1911).  In 1975,  H. Denk and colleagues 

described the first animal model of Mallory body, renamed Mallory-Denk body 

(Zatloukal et al, 2007).  Mallory-Denk bodies can be found in variable sizes 

(Mallory, 1911); small inclusions are associated with intermediate filament 

throughout cytoplasm and the large inclusions are located within the perinuclear 

region of hepatocytes (Denk et al, 2000; Ku et al, 2007; Zatloukal et al, 2007; 

Strnad et al, 2008).  The major components of the Mallory-Denk bodies are 
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keratin 8/18, ubiquitin and sequestosome 1/p62-a stress inducible adapter protein 

that has high affinity for polyubiquitinated proteins (Stumptner et al, 2007; Strnad 

et al, 2008).  Hsp70, Hsp90, subunits of 20S and 26S proteasome are the minor 

constituents of the Mallory-Denk bodies (Riley et al, 2002; Riley et al, 2003).  

Re-arrangement of cytokeratin that is related to the formation of Mallory-Denk 

bodies in hepatocytes was also observed in cells transfected with the G1862T 

mutant construct (Figure 3.45-3.49).  Mallory bodies have been shown to form in 

diseased liver, ranging from childhood cirrhosis, alcoholic hepatitis, alcoholic 

cirrhosis, Wilson’s disease, primary biliary cirrhosis, nonalcoholic cirrhosis and 

hepatocellular carcinoma (Jensen & Gluud, 1994).  Aggresome formation in liver 

cells has been implicated in hereditary liver diseases including α-1-antitrypsin 

deficiency (Propst et al, 1994; Rudnick et al, 2004) and hereditary tyrosinemia 

type 1 (Kvittingen, 1986), which can develop into hepatocellular carcinoma.   

 

The G1862T mutation is characteristic of subgenotype A1 of HBV.  In this study, 

it was shown that the introduction of this mutation into genotype A precore 

context plasmid lead to the accumulation of the precursor of HBeAg in the 

ERGIC.  This is as a result of Phe substitution at -3 position interfering with 

signal peptide cleavage and preventing maturation of the precursor into HBeAg.  

Furthermore, the accumulation of the HBeAg was shown to lead to the formation 

of aggresomes. 

 

From the available data, the consequences and implications of aggresome 

formation by mutant HBeAg and WHeAg precursor molecules with respect to 

liver disease progression are difficult to predict.  In three studies (Kimbi et al, 

2004; Sugauchi et al, 2004a; Tanaka et al, 2004b) in which the patients/carriers 
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were infected with subgenotype A1, the G1862T mutation was found in 35 

patients with liver disease and 14 asymptomatic carriers (ASCs), whereas the 

wild-type sequence was detected in only 9 patients with liver disease and 20 ASCs 

(P<0.001).  In the study of Hou et al, the G1862T mutation was detected in 13.7 

% of Chinese patients with genotype B HBV induced fulminant hepatitis 

compared with 2.5 % chronic carriers of the virus (the prevalence of the mutation 

in uncomplicated acute hepatitis B was not studied), and it was concluded that the 

variant may be a contributing factor in fulminant hepatitis (Hou et al, 2002; Inoue 

et al, 2009).  However, these analyses were not in the case control format with 

respect to the presence or absence of G1862T and thus it is difficult to reach any 

firm conclusions.  Moreover, in the one study that showed subgenotype A1 to be 

more hepatocarcinogenic than other genotypes and subgenotypes, the presence of 

G1862T was not determined (Kew et al, 2005).  Therefore prospective, 

longitudinal studies to follow the development of liver disease in relation to the 

G1862T mutant are necessary together with further transfection studies with 

subgenotype A1 replication competent constructs with authentic promoters. 
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APPENDICES 

 

APPENDIX A SOLUTIONS AND REAGENTS 
 
 
A1. Luria-Bertini broth agar plates with ampicillin 

 

 15 g agar (Pronadisa, Madrid) 

10 g Tryptone (Pronadisa, Madrid) 

5 g yeast extract (Pronadisa, Madrid)  

10 g NaCl 

Make up to 1 litre with distilled water and autoclave.  Cool to 55 oC, 

followed by the addition of 1 ml of ampicillin (50mg/ml).  Pour into 

60mm petri dishes and store at 4 oC. 

  

A2. Luria-Bertini broth (LB) (1 litre) 

 

10 g Tryptone (Pronadisa, Madrid)  

5g yeast extract (Pronadisa, Madrid) 

10 g NaCl 

Make up to 1 litre with distilled water and autoclave. 

  
 
A3.  Ampicillin (50 mg/ml) 

 

1 g ampicillin (Roche, Germany) 

Make up to a final volume of 20 ml with distilled water.  Sterilize by 

filtration using 0.22 µm filter (Sartorius, Germany).  Solution is stored in 1 

ml aliquots at -20oC. 

 
 

A4.  1% Agarose 
 
      1 g agarose 
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     10 ml 10x TBE  

Make up to 100 ml with distilled water 

 

A5. 10 X gel loading dye 

 50 % (v/v) glycerol 

 0.25 % (w/v) bromophenol blue 

 0.25 % xylene cyanol 

 0.1 M ETDA pH8 

 Make up to volume with distilled water. 

 

A6.  10x Tris Boric Acid EDTA Buffer (TBE) 

            2.5 litres of 10x TBE  

            270 g Tris base (Roche, Germany) 

            127.5 g Boric acid (Sigma-Aldrich, USA) 

            18.6 g of EDTA (Saarchem, SA) 

         Make up to 2.5 litres with distilled water and autoclave. 

 

A7. Luria-Bertini broth agar plates with kanamycin 

 15 g agar (Pronadisa, Madrid) 

10 g Tryptone (Pronadisa, Madrid) 

5 g yeast extract (Pronadisa, Madrid)  

10 g NaCl 

Make up to 1 litre with distilled water and autoclave.  Cool to 55 oC and 

add 1 ml of kanamycin (50mg/ml).  Pour into 60mm petri dishes and store 

at 4 oC. 
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A8.  kanaymycin (50 mg/ml) 

1 g kanamycin (Roche, Germany) 

Make up to a final volume of 20 ml with distilled water.  Sterilize by 

filtration using 0.22 µm filter (Sartorius, Germany).  The solution is stored 

in 1 ml aliquots at -20 oC. 

 

A9. ISE-RPMI 1640 medium 

10.4 g Powdered Roswell Park Memorial Institute (RPMI) 1640 + L-

Glutamine (Gibco-BRL, UK)                                           

1.19 g Hepes (Roche, Germany)                                                                       

2 g NaHCO3 (Saarchem, SA) 

Dissolve in 1 litre of distilled water.  Add the following filter sterilized 

supplements: 

1 ml Na2SeO3 (3 x 10-5 M)  

1 ml FeSO4.7H2O (1 x 10-4 M) 

1 ml of solution 3: (NH4)6MO7O2.4H2O (3 x 10-6 M)/ MnCl2.4H2O (3 x  

10-7 M)/ NH4VO3 (1 x 10-5 M)  

100 µl Linoleic/Oleic acid BSA complex (3 x 10-5 M) 

1 ml Ethanolamine (3 x 10-2 M) 

 

The ISE-RPMI1640 medium was prepared from RPMI-1640 powder, with 

L-Glutamine (51800-035) (Gibco, Scotland, UK), buffering salts, trace 

elements, fatty acids supplements.  The pH was adjusted to 7.12, sterilized 

by filtration using the 0.22 µm filter (Sartorius, Germany).  The medium 

was stored at 4oC for a maximum period of one month. 
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Stock solution for the supplements: 

All supplement stock solutions were sterilized by membrane filtration 

using 0.22 filters and stored at -20 oC 

 

            Na2SeO3 (3 x 10
-5

 M) 

Dissolved 518.7 mg of Na2SeO3 (Sigma-Aldrich, USA) in 100 ml distilled 

water and dilute at 1/1000. 

 

 FeSO4.7H2O (1 x 10
-4 

M) 

Dissolve 278 mg FeSO4.7H2O (Sigma-Aldrich, USA) in 100 ml distilled 

water, add one drop of concentrated HCL, and then dilute at 1/100. 

 

 (NH4)6MO7O2.4H2O (3 x 10
-6 

M) 

Dissolve 37.1mg (NH4)6MO7O2.4H2O (Sigma-Aldrich, USA) in 100 ml of 

distilled water, dissolve 59.4 mg of MnCl2.4H2O (Sigma-Aldrich, USA) in 

100 ml of distilled water and dilute to 1/100, dissolve 11.7 mg NH4VO3 

(Sigma-Aldrich, USA) in 100 ml of distilled water. Combine the three 

solutions together. 

 

 Linoleic/Oleic acid BSA complex (3 x 10
-5

 M) 

Dissolve 302 µg linoleic acid and 10 mg linoleic acid-water soluable 

(Sigma-Aldrich, USA), 305.8 µg oleic acid and 9.38 mg oleic acid 

soluable (Sigma-Aldrich, USA) in 36 ml of distilled water. 

            

Ethanolamine (3 x 10
-2 

M) 

Dissolve 183.2 mg ethanolamine (Sigma-Aldrich, USA) in 100 ml of  
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distilled water. 

 

A10.  0.01 % (w/v) ethylene diamine tetra-acetic acid di-sodium salt (EDTA) / 

PBS 

0.5 g ethylene diamine tetra-acetic acid di-sodium salt (EDTA) (Saarchem, 

SA) 

Make up to 50 ml with PBS to prepare the 1 % (w/v) stock solution.  

Prepare the final 0.01 % (w/v) solution from the 1 % stock solution with 

PBS.  

 

A11.  Cell lysis buffer 

10 mM HEPES (pH 7.5)  

100 mM NaCl 

1 mM EDTA 

  1% (v/v) NP-40 

The lysis buffer was prepared and filter sterilized.  

 

A12.  10 mM CaCl2-12 mM MgCl2 

 100 mM CaCl2  

120 mM MgCl2 

Prepare the 10 X concentration stock of both CaCl2 and 120 mM MgCl2 

with cell lysis buffer (A11).  The solution was prepared and autoclaved.  

Add 1/10 volume to the supernatant.   

 

A13.  PEG solution 

1.2 M NaCl 
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60 mM EDTA 

30% (w/v) sucrose 

26% (w/v) PEG 8000 

The solution was prepared and autoclaved. 

 

A14. Resuspension solution for enzyme digestion  

10 mM Tris (pH 7.5) 

6 mM MgCl2 

8 mM CaCl2 

 

A15. Stop solution for enzyme activity 

50 mM EDTA  

10 mM Tris –HCl buffer, pH 7.5 

 

A16.   Lysis solution for pulse chased cells  

 50 mM Tris-HCl, pH 7.5 

150 mM NaCl 

1 % (v/v) Nonidet P40 

0.5 % (w/v) sodium dexoycholate 

Protease inhibitor cocktail-Complete® (Roche, Germany) was added just 

before experiments. 

 

A17.   Washing buffer 1  

 50 mM Tris-HCl, pH 7.5 

500 mM NaCl 

0.1 % (v/v) Nonident P40 
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0.05 % (w/v) sodium deoxycholate 

Protease inhibitor cocktail-Complete® was added just before experiments. 

 

A18.  Washing buffer 2 

10 mM Tris-HCl, pH 7.5 

0.1 % (v/v) Nonident P40  

0.05 % (w/v) sodium deoxycholate   

Protease inhibitor cocktail-Complete® was added just before experiments. 

A19.  loading buffer  

50 ml 1M Tris pH 6.8  

30 g SDS  

1 g bromophenol blue  

100ml glycerol  

Make up to 250 ml with distilled water , and add 100 µl of 2M 

dithiothreitol  (DTT) to 400 ml. 

 

A20. 30% acrylamide solution 

 30 g acrylamide (Sigma, Germany) 

 0.8 g bisacrylamide (Promega, USA) 

 Make up to 100 ml with distilled water. 

 

A21. 15% Protein gel mix  

96 ml water  

100 ml 1.5M Tris pH 8.8  

2 ml 20% (w/v) SDS  
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For 1 gel use 4.9 ml of this plus  

5 ml of 30% acrylamide (Sigma, Germany)  

0.1 ml of 10% APS (Ammonium persulphate, Promega, USA)  

4 µl of TEMED (Promega, USA) 

A22. Stacking gel mix  

139.75ml distilled water  

63 ml 0.5M Tris pH 6.8  

1.25 ml 20% SDS  

For 1 gel use 2.04 ml of this plus  

415 µl of 30% acrylamide (Sigma, Germany)  

25 µl of 10% APS (Ammonium persulphate, Promega, USA)  

2.5 µl of TEMED (Promega, USA)  

A23. Protein running buffer 10x  

75 g Tris base  

470 g Glycine  

25 g SDS  

Make up to 2.5 litres with distilled water.  

 

A24. SDS-PAGE fixative solution 

 10 % (v/v) acetic acid  

40 % (v/v) methanol 

 Make up to volume with distilled water.   

 

A25.   Acetic acid, methanol and glycerol solution 

 7 % (v/v) acetic acid,  
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7 % (v/v) methanol  

10 % (v/v) glycerol 

Make up to volume with distilled water.   

 

A26. 4 % (w/v) Paraformaldehyde, fixative solution 

 4 g paraformaldehyde (Saarchem, SA) 

 100 ml of PBS 

Dissolve 4 g of paraformaldehyde with 100 ml of boiling PBS (A28).  Add 

1 M sodium hydroxide solution drop by drop to adjust the pH to 7.4.   

 

A27. Phosphate buffered saline (PBS) 

 0.2 g KCl 

 8 g NaCl 

 0.2 g KH2PO4 

 1.15 g Na2H2PO4 

 Dissolve, make up volume to 1 l and adjust pH to 7.4. 

 

A28.    0.01 % (v/v) Trixton X-100 solution 

 1 ml Trixton X-100 (Roche, Mannheim, Germany)     

99 ml PBS 

0.01 % Trixton X-100 solution is diluted from the 1 % stock solution with 

PBS. 

 

A29. Blocking solution, 1 % (w/v) BSA 

1g BSA (Roche, Mannheim, Germany) 

Make up to 100 ml with PBS. 

1 % (v/v) stock solution 
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