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Abstract 

A brain computer interface (BCI), which reroutes neural signals from the brain to 

actuators in a prosthetic or orthotic hand, promises to aid those who suffer from hand 

motor impairments, such as amputees and victims of strokes and spinal cord injuries. 

Such individuals can greatly benefit from the return of some of the essential 

functionality of the hand through the renewed performance of the basic hand 

movements involved in daily activities. These hand movements include wrist 

extension, wrist flexion, finger extension, finger flexion and the tripod pinch. The 

core of this sensorimotor BCI solution lies in the interpretation of the neural 

information for the five essential hand movements extracted from EEG 

(electroencephalogram). It is necessary to improve on the interpretation of these EEG 

signals; hence this research explores the possibility of single-trial EEG discrimination 

for the five essential hand movements in an offline, synchronous manner.  

 

The EEG was recorded from five healthy test subjects as they performed the actual 

and imagined movements for both hands. The research is then divided into three 

investigations which respectively attempt to differentiate the EEG for: 1) right and 

left combinations of the different hand movements, 2) wrist and finger movements on 

the same hand and 3) the individual five movements on the same hand. A general 

method is applied to all three investigations. It utilizes independent component 

analysis (ICA) and time-frequency techniques to extract features based on event-

related (de)synchronisation (ERD/ERS) and movement-related cortical potentials 

(MRCP).  The Bhattacharyya distance is used for feature reduction and Mahalanobis 

distance clustering and artificial neural networks are used as classifiers.  
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The best average accuracies of 89 %, 71 % and 57 % for the three respective 

investigations are obtained using ANNs and features related to ERD/ERS. Along with 

accuracies around 70 % for a few subjects in the five-movement differentiation 

investigation, these results indicated the possibility of offline, synchronous 

differentiation of single-trial EEG for the five essential hand movements. These hand 

movements can be used in part or in combination as imagined and performed motor 

tasks for BCIs aimed at controlling prosthetic or orthotic hands. 
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transform  

This is a time frequency signal analysis technique using sampled 
wavelets  
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FE  Finger extension 
FF  Finger flexion 
FMDI  Five movement differentiation investigation 
FN  False negative 
FP  False positive 
Gabor 
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Gaussian function and the Fourier transform  
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ICA  Independent Component Analysis 
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the body’s natural output pathways, but rather on the user’s intent 
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the same side of the body 

Isometric 
plantarflexion  

A movement of the foot which attempts to increase the angle 
between the front part of the foot and the shin (similar to 
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ITV Inter-trial variance method of calculating non-phase locked 
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MD  Mahalanobis distance 
MLP  Multilayer perceptron 
MMPI  Mu movement performance/imagination 
MPM  Mu pre-movement 
MRCP  Movement-related cortical potential 

Mu  The frequency band of sensorimotor waves occurring between 8 
and 12 Hz 

Offline  Refers to methods where brain activity is recorded and analysis is 
done on the recordings 

Online Refers to analysis that is done as brain activity is recorded i.e. in 
real-time   

Orthosis  An orthopaedic device that supports or corrects the function of a 
limb or the torso. 

PCA  Principle Component Analysis 
PMA  Pre-motor cortex/area 
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the body (pronation of the hand) 

Prosthesis  An artificial device or extension that replaces a missing body 
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(BP) after movement or imagination onset. 

Reinnervation The operation of grafting a viable nerve to restore the nerve 
supply of an organ or paralyzed muscle. 

RH  Right hand 
RLI  Right vs. Left investigation 
Self-paced Voluntary control by the user of the timing of actions 

Single-trial  
A singular occurrence of an event, such movement imagination of 
a limb, which is contained within one trial. Single-trial analysis 
involves examining neural patterns in each trial individually. 

SL  Surface Laplacian 
SMA  Supplementary motor cortex/area 
SNR Signal-to-noise ratio 

Somatotopy 
The correspondence of receptors in regions or parts of the body 
via respective nerve fibres to specific organised, functional areas 
of the cerebral cortex 

Supination  Rotation of the forearm and thus the hand away from the centre 
of the body (supination of the hand) 

Synchronous BCI A BCI associated with movements which are initiated by external 
cues and not according to the voluntary intention of the user 

Targeted muscle 
reinnervation  

A method where the original nerves of the chest muscle or upper 
arm are cut or deactivated. The chest muscle or upper arm 
muscle, which is inactive due to the lost of the arm, is 
reinnervated with residual nerves of the amputated arm. The chest 
then provides an amplified source of motor commands from the 
arm nerves in the form of EMG, which can be used to control a 
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TF Time-frequency  

TFSE Used to refer to the time-frequency spectral features based on mu 
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TSFM Used to refer to the time-frequency spectral features based on 
delta MRCP 

Theta  The frequency band of brain waves occurring between 4 and 7 Hz 
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Chapter 1      

Introduction 

1.1 Introduction 

Consider the lifestyles of people who have lost an arm or hand in an accident or 

through an amputation or who have lost the control of their hand through a stroke or a 

spinal cord injury. Now consider the difficulties that such people must endure on a 

daily basis: they can no longer perform hand gestures, grasp and release a glass of 

water or write with a pen. Such individuals can greatly benefit from technology that 

can return some of the essential functionality of the hand by allowing the performance 

of the basic hand movements involved in the daily activities mentioned above 

(Section 1.2 elaborates upon these basic hand movements). A neurally controlled 

prosthetic hand is a possible solution for an amputee, whereby neural commands are 

rerouted from the brain to actuators in the prosthetic hand [1]. Similarly, an orthotic 

hand can be used to return basic hand movements to those who have suffered from 

spinal cord injuries or strokes and consequently lost the use of their arms.  

 

This chapter provides basic background on different solutions for the neural control of 

prosthetic/orthotic hands and highlights some of their key challenges. The use of a 

brain-computer interface (BCI) based on electroencephalogram (EEG) is a safe and 

cheap solution that can address some of these challenges and can be applied to 
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amputees and victims of strokes and spinal cord injuries. This solution presents the 

problem of efficient, reliable EEG interpretation that will allow the control of a multi-

functional prosthetic/orthotic hand capable of performing essential hand movements. 

This research aims to address this problem in part by investigating the possibility of 

EEG interpretation for five essential hand movements in a controlled laboratory 

experiment.  

1.2 Hand Movement Selection 

Five essential hand movements are chosen to allow people who have motor 

impairments of the hand to perform simple daily tasks. Considering the movements 

that patients learn during motor rehabilitation [2][3], five hand movements providing 

essential functionality are considered i.e. wrist extension, (WE), wrist flexion (WF), 

mass finger extension (FE), mass finger flexion (FF) and the tripod pinch (TR). These 

are shown in Figure 1.1 and occupational therapists consider these to be the most 

essential hand movements [2][3][4]. 

 

 
WE and WF provide a person with basic overall movement of the entire hand and in 

turn enable the performance of hand gestures such as waving. WF and WE facilitate 

the stability, positioning and load control of the hand, which in turn are essential for 

grasping strength and finer finger movement control [2][5]. FF and FE respectively 

allow the basic grasping and voluntary release of objects (such as a drinking glass) 

[3]. Training patients during rehabilitation to perform pinches such as the tripod pinch 

Figure 1.1: Most essential hand movements from a rehabilitation perspective: (a) wrist extension 
(WE), (b) wrist flexion (WF), (c) mass finger extension (FE), (d) mass finger flexion (FF) and 
(e) tripod grasp/pinch (TR). The tripod grasp is finer and more complex than the other 
movements 
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stimulate finer hand motor skills and allow them to perform activities such as 

buttoning or writing with a pen [5]. 

1.3 Current Prosthetic or Orthotic Solutions 

In order to allow the execution of the five essential hand movements the prosthetic or 

orthotic solution requires: 1) a physically suitable, mechatronic artificial device 

capable of sufficient degrees of freedom to perform the five different movements and 

2) an efficient control system that can interpret the user’s intention to perform one of 

the five movements and consequently execute the artificial device accordingly [6]. 

This is a challenging task since the human hand is an adaptable and complex system 

with a large number of degrees of freedom, sensors, actuators and tendons and a 

complex control system [6]. Despite these complexities, however, minimal effort is 

required by a person to use it for daily activities [6].   

 

In contrast, current prosthetic and orthotic hand solutions are far from providing the 

capabilities of the human hand [6][7]. Commercially available prosthetic hands, such 

as the Otto Bock SensorHand [8], do not provide efficient grasping functionality 

[6][9]. Current prosthetics solutions also require a large amount of training, adjusting 

and concentration during use to enable a few degrees of freedom [6][9][7]. Other 

robotic and anthropomorphic hands can provide more degrees of freedom, but are 

heavy and bulky and are hence not suitable as a prosthetic [9]. The use of 

microactuators for example, in a complete redesign of the prosthetic hand could 

provide a lighter artificial device with more degrees of freedom and efficient grasping 

functionality [6].  

 

However, with more degrees of freedom and improved functionality, efficient neural 

control still remains a limiting factor [6]. The processing of neural signals required for 

prosthetic/orthoctic hand control is challenging (as explained in Section 2.3) 

[1][9][10]. Hence, complex computational techniques and algorithms are required to 

detect, extract and translate relevant movement-related information from the neural 

signals [10][11][12] (see Chapter 5 and Section 2.4 for examples of such techniques). 

These methods are computationally expensive making real-time control more 

challenging [12]. Furthermore, the controller’s accuracy decreases when the number 
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of movements to be identified increases [11]. Due to these challenges, most studies to 

date, which are related to neural prosthetics/orthotics, have focused the detection of 

simple hand movements [6][12]. However, some studies have attempted to allow 

more extensive control of more degrees of freedom [6][9][7] and this research 

contributes toward that effort. 

1.4 Controlling of a Prosthetic or Orthotic Hand 

A prosthetic/orthotic hand may be controlled mechanically by using a shoulder 

harness or by the movement of the elbow in the case of the WILMER elbow [13][14]. 

However these solutions are limited in functionality and provide unnatural control 

[15]. By connecting the prosthetic/orthotic hand more directly to the nervous system, 

it can be controlled in a manner similar to how a human hand is controlled [15].  In 

particular electromyography (EMG), electro-corticography (ECoG), and 

electroencephalography (EEG) can be use to infer control of a prosthetic/orthotic 

hand [13], provided that the relevant information can be extracted and translated 

[11][16]. 

 

Research efforts into EMG-based control of a prosthetic hand [6] have demonstrated 

the possibility of reliable, multifunctional control in real-time [7]. WE, WF, FE, FF 

and the TR are included in some EMG-based prosthetic hand studies [7][9] (the 

results of this study are shown in Section 7.5.1). Surface EMG does not require 

surgery and is an easily obtainable information source [6]. Although it requires 

external power, unlike mechanical harnesses, it does not hinder movement as some of 

them do [6]. Prosthetic control using this method, however, requires muscle control in 

the upper body, such as the upper arm or, in the case of targeted muscle reinnervation, 

the chest [6][15][17]. Hence this method cannot be applied in the case of complete 

paralysis, which may result from strokes or spinal cord injuries [13]. Another 

disadvantage of EMG-controlled prosthetic solutions is that adaptation to different 

levels of amputation is needed [15]. The use of ECoG or EEG as a source of control 

information could overcome these problems. Since ECoG and EEG deal with the 

brain directly, which produces all the control information for hand movement, it is 

hypothesized that they possess more control information than EMG. This may allow 
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the control of more advanced hand movements as neural understanding and 

interpretation improves. 

 

Compared to EEG, ECoG (like other invasive techniques) has been shown to provide 

a better signal-to-noise ratio (SNR), overall better results and superiority in hand 

movement classification problems [10][18] to the point where individual finger 

movements can be discriminated [19][20]. Studies using the Braingate neural 

interface, which uses ECoG, have shown that tetraplegic patients can operate simple 

computer software without training [21]. However, non-invasive methods, such as 

EEG, have the advantage of being cheaper, safer and more practical for patients and 

researchers [22]. Currently only EEG can support rapid communication with 

relatively simple and inexpensive equipment that is non-invasive and requires no 

neurosurgical procedures (such as for ECoG). Hence EEG is favoured by many BCI 

researchers and is used in this research as a source of neural information [10]. 

1.5 Brain-Computer Interface as a Solution 

Based on the assumption that neural activity can be translated into intended 

movements, a BCI can interpret the neural motor control signals for the five selected 

hand movements via EEG [1]. The user’s intention to perform a particular type of 

hand movement can then be realized by actuating a prosthetic or orthotic hand 

accordingly [1].  

 

Although EEG represents brain activity, there are several challenges associated with 

extracting relevant information from EEG. These challenges are described in Section 

2.3. It is thus necessary to improve on the interpretation of EEG with the purpose of 

improving prosthetic/orthotic hand functionality. Hence this research investigates the 

possibility of improved EEG interpretation for five essential hand movements.  

1.6 Problem of Interpretation 

The incomplete understanding of the neural signals that control hand movements and 

the need for the improvement of EEG interpretation toward prosthetic/orthotic hand 

control remain challenging areas in BCI and prosthetic/orthotic hand research 
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[1][23][12]. Hence this research is directed towards improving on the interpretation of 

the neural information, encapsulating movement intent, taken from EEG, using a BCI, 

in order to facilitate efficient, multifunctional control of a prosthetic/orthotic hand. 

 

In terms of the bigger picture, the BCI that controls the prosthetic/orthotic device 

requires the ability to differentiate between the EEG associated with each movement 

type in order to execute the user’s intention to perform one of the selected 

movements. Currently, to the best of the author’s knowledge, no known BCI research 

has been undertaken using the combination of WE, WF, FE, FF and the TR and such 

efforts are deduced to be minimal. Some success, however, has been shown in 

differentiating EEG for different wrist movements (which include extension, flexion 

and rotation) [12][24][25]. Current BCI literature is examined more extensively in 

Chapter 3. The questions thus arise as to whether EEG can be interpreted to 

differentiate these five hand movements, to what degree is this interpretation possible 

and whether this interpretation is possible for imagined movements as well? 

Furthermore, what methods can be used to evaluate this?  

1.7 Procedure to Solve the Problem 

The research is divided into three sub-investigations:  

1. Firstly, the different types of movements will be combined for each hand and 

differentiation between right and left hand movements will be verified.   

2. The possibility of differentiating between groups of wrist and finger 

movements will be examined in the second investigation. 

3.  The third investigation examines the possibility of discrimination between the 

individual five hand movements.  

Motivation for the division into these sub-investigations is detailed in Chapter 4. 

 

Considering that the neural control signals for different types of movements on the 

same hand originate from roughly the same area of the brain (see Section 2.2) [12] 

and the challenges associated with EEG interpretation (see Section 2.3 for details), the 

discrimination between the EEG for WE, WF, FE, FF and the TR is a complex task 

[12]. Independent component analysis (ICA) is a technique that has provided 

improved performance in the discrimination of EEG associated with wrist movements 
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and movements of other body parts [25][26][27][28] (shown in Section 3.4). It can be 

used to isolate signals originating from the motor control areas of the brain [29] and is 

hypothesised to be suitable for this research, which involves different types of wrist 

and finger movements.  

 

The designed method is applied to all three investigations for real and imagined 

movements. ICA is used as a spatial filter to aid feature extraction. Time-frequency 

(TF) spectral features based on event-related (de)synchronisation (ERD/ERS) 

(referred to as TFSE) and movement-related cortical potentials (MRCP) (referred to 

as TFSM) are extracted. It is hypothesised that the combination of features from these 

two electrophysiological features could improve results [30]. Hence the individual 

and combined uses of both feature types are investigated and compared. Mahalanobis 

distance (MD) clustering and artificial neural networks (ANN) are used to classify the 

extracted EEG features into different classes of movement. The results of the 

classifiers are compared. 

1.8 Conclusion 

This chapter has introduced two research fields i.e. prosthetic/orthotic arm control and 

brain-computer interfaces. The functional limitations of current prosthetic solutions 

are due to incomplete understanding of the neural signals that control hand 

movements and it is thus necessary to improve on the interpretation of the neural 

signals that control essential hand movements. Five essential hand movements are 

thus selected from a rehabilitation perspective in order to provide basic hand 

functionality to aid daily activities. The benefits of using an EEG-based BCI to 

control a prosthetic/orthotic hand in order to return essential hand movement 

functionality to those who have motor impairments (specifically amputees and 

victims of strokes and spinal cord injuries) has been described. 

 

The research is directed towards the improvement of EEG interpretation to allow a 

prosthetic hand to perform these basic movements in real-time. However, no BCI 

research exploring these movements has been found. Hence it is necessary to first 

determine the level of possible discrimination of the EEG for these five movements in 

an offline and synchronous manner. This research is a pilot study to investigate this 
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possibility in healthy test subjects on a single trial-basis. ICA may be advantageous in 

the complex task of extracting suitable movement information from EEG. This 

information is derived from electrophysiological sensorimotor features, i.e. ERD/ERS 

and MRCP, where the combination of the two feature types may improve results. The 

research is divided into three investigations to align the research with the literature 

and to investigate the level of possible discrimination of hand movement type. The 

investigations aim to answer the following questions: can a synchronous BCI use ICA 

in conjunction with TFSE and TFSM features to allow single-trial, offline 

differentiation of EEG patterns for real and imagined 1) left and right hand 

movements, 2) wrist and finger movements and 3) five types of hand movements viz. 

WE, WF, FE, FF and the TR? In summary, does the selected method allow improved 

offline and synchronous EEG interpretation, such that different wrist and finger 

movements on the same hand can be differentiated? 

 

The next chapter provides some basic background knowledge and relevant 

terminology pertaining to this research. Thereafter, the novelty of the problem of the 

research will be shown along with the benefit of solving the problem before it is 

clearly defined. The design and implementation of the method used is documented 

and the consequential results are thereafter presented and discussed. Future work is 

briefly discussed and the research is concluded.  
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Chapter 2  

Background 

2.1 Introduction 

Brain-computer interface research is a multidisciplinary and interdisciplinary field, 

which involves and integrates researchers from different fields including 

neuroscience, engineering, physiology, psychology, computer science, rehabilitation 

and health-care [10][31]. Thus in order to contextualise the research, some basic 

background is provided in this chapter.  This includes necessary terminology, relevant 

neural anatomical and physiological knowledge and an overview of brain-computer 

interfaces.   

2.2 Sensorimotor Neuro-Anatomy 

The areas of the brain associated with movement are the primary motor cortex (M1), 

the premotor cortex (PMA) and the supplementary motor cortex (SMA) [32]. They all 

play different roles in movement control and their locations are shown in Figure 2.1 

[32]. Control by these regions can be contralateral or bilateral [32].  

 

As the name suggests, the primary motor cortex is the main area of the brain 

responsible for motor control, which is apparent from the critical motor deficits that 

follow its destruction [32]. M1 contralaterally controls basic movements such as 

flexion of the finger or movement about a single joint [32]. As shown by Figure 2.1, it 
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occupies a tapering strip in the precentral gyrus, which corresponds to Brodmann’s 

area 4 [32]. It lies anterior to the Rolandic fissure or central sulcus and is also referred 

to as the Rolandic region [33]. M1 is spatially organised into divisions that are each 

directly responsible for the control of a specific part of the body [32]. This is referred 

to as a somatotopic arrangement which can be represented as a distorted image of the 

human body known as the homunculus [32]. This is shown in Figure 2.2 [32]. Finer 

motor skills of a particular part of the body, such as the hand, require a larger number 

of neural connections and hence a larger area on the homunculus of M1 [32]. From 

Figure 2.2 it is clear that the control areas for the wrist and finger are located in close 

proximity, while the control regions for the hand, foot and tongue are spatially distant. 

Electrodes superficial to this region according to the 10-20 system are Cz, C1, C2, 

C3, C4, C5 and C6, which correspond to electrodes 129, 31, 106, 37, 105, 42 and 104 

in the EGI system [34][35][37]. Refer to Figure 5.3 in Section 5.2.1 for the electrode 

positions of the 128-channel 10-20 and EGI systems 

  
The premotor cortex plays a role in the planning, selection and execution of 

movements from external cues [36] (refer to Figure 5.2 for the timing of the external 

cues used in this research). It is located in Brodmann’s area 6 [32] as shown in Figure 

2.1. The PMA also contains a homunculus, but the somatotopy is not as specific as for 

M1 [32]. This has been shown by electrical stimulation, which results in the 

Figure 2.1: Location of motor areas of the cerebral cortex. The numbers are the labels of the 
Brodmann areas [32]. 
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movement of a group of muscles with the PMA as opposed to singular muscles with 

M1 [32]. Electrodes superficial to this region according to the 10-20 system are FC1, 

FC2, FC3, FC4, FC5 and FC6, while the corresponding EGI electrode numbers are 

21, 119, 30, 117, 35 and 112 [34][35][37] (refer to Figure 5.3).  

 

In contrast to the PMA, the SMA activates when performing self-initiated 

movements, such as movements from memory [36]. The SMA can be divided into the 

pre-SMA and SMA proper, where the former is more active when learning new 

movement sequences, while the latter is more active when the movement is automated 

and performed from memory [36]. The SMA also shows activity during movement 

preparation [36] and is involved in the performance and imagination of more complex 

tasks, such as those that require two hands [32]. This is supported by the fact that 

electrical stimulation of the SMA causes bilateral muscle activation [32]. The SMA is 

located in Brodmann’s area 6, anterior to the foot control region of M1 [32]. This is 

shown in Figure 2.1. Electrodes superficial to this region according to the 10-20 

system are FC1, FC2, and FCz, while the corresponding EGI electrode numbers are 

21, 119 and 6 [34][35][37] (refer to Figure 5.3). 

 

Figure 2.2: Somatotopy of human primary motor cortex. The size of a given part of the 
homunculus is approximately proportional to the size of the area dedicated to controlling that 
region [32]. 



12 
 

Since this research is based on performed and imagined hand movements, which 

involve finger and wrist movements, the wrist, hand and finger control regions of M1 

are of main interest. This research incorporates a synchronous BCI (see Figure 5.2 

and Section 2.5) and aspects of movement intention. The SMA shows an association 

with intended movements and the PMA with externally-stimulated movements 

[32][36]. Hence these areas are also considered as sources of movement-control 

information.  

2.3 Electroencephalogram  

The electroencephalogram (EEG) is comprised of electrical potentials originating 

from multiple sources i.e. neuron clusters [16]. The electrical potentials combine to 

form a superposition of topographical maps on the scalp, which can be measured by 

scalp electrodes [38]. Electrical signals of interest in the brain can be extracted from 

the EEG [38]. Since the early 1900’s, EEG has been used mainly to investigate 

neurological disorders and to investigate brain functions [10]. Recent years have 

shown an interest in the use of EEG to decipher intended movements, however, the 

task of extracting information containing movement intent is not trivial [10]. 

 

The brain presents a complex geometry and involves numerous simultaneously-active 

neural processes, which are generated by approximately 100 billion central neurons 

[10][38]. The limited number of EEG measurement sites (even with high resolution 

EEG, e.g. 128 surface electrodes) results in a considerable mixing of these 

information sources from all over the head at each electrode [10][38][39]. With 

ECoG, neural signals are measured directly from the cortical surface of the brain [18]. 

In contrast, with EEG, neural signals must pass through the high electrical resistance 

of the scalp and skull, which results in spatial blurring [40]. EEG electrodes are also 

more widely positioned than ECoG electrodes [21]. All the above contribute to the 

low spatial resolution of EEG, which in turn contributes to its low SNR [10][38][39].  

 

EEG signals are small (in the µV range), difficult to measure and are easily 

contaminated by artifacts originating from muscle movement, eye movement and 

blinks and noise from the mains power supply [10][41]. Consequently it becomes 

difficult to detect and isolate weak signals (< 10 µV), such as sensorimotor signals, 
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due to interference by stronger signals (> 30 µV) from artifacts and non-sensorimotor 

neurons, such as the alpha rhythm from the visual cortex [10]. These interferences 

also result in a low SNR for EEG [10]. Furthermore, neural signals vary with regard 

to time, circumstance and the individual, which adds to the challenge of extracting 

and learning the neural patterns associated with movement control [10]. 

 

However, clinical research has increased the understanding of EEG signals and 

numerous studies have shown relationships between EEG and imagined movements 

[10][42][43][44]. Inexpensive computer equipment now supports the required 

computational demands for real-time EEG signal processing [10]. The latter two 

factors make it possible to use EEG to perform simple functions, such as basic 

prosthetic/orthotic hand control [10] in a controlled laboratory environment. 

2.4 Spatial Filters and Independent Component Analysis 

A spatial filter is a technique that combines data from two or more locations 

(electrodes) in order to enhance the focal activity from spatially local sources and 

reduce those from widely distributed sources, hence improving the SNR of EEG 

[16][10]. Spatial filtering techniques include common average referencing (CAR), 

surface Laplacian (SL), common spatial patterns (CSP), principle component analysis 

(PCA) and independent component analysis (ICA). Some advantages of ICA are 

discussed and a brief background on ICA pertaining to its use in BCI is presented. 

 

As in the case of PCA and CSP, ICA determines the weighting of the channels from 

the data [10], i.e. blind source separation, while CAR and SL combine channels or 

electrode locations linearly to create a set of weights that is independent of the 

underlying data [10]. SL emphasizes the radial component of the neural activity from 

sources located directly below each recording electrode [10]. In comparison, ICA is 

able to detect radial and tangential sources and thus may be advantageous over SL 

[10][45].  

 

Defined statistically, ICA is a method aimed to find a linear representation of non-

Gaussian data in the form of constituent components, which are as statistically 

independent as possible [46]. Using ICA, measured signals consisting of a linear 
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mixture of statistically independent source signals, such as EEG, can be decomposed 

into their fundamental underlying Independent Components (ICs) thus extracting the 

original source signals [29][46]. Access to the mixture of neural processes is available 

in the form of EEG and ICA allows the extraction of the original components of brain 

activity [46] or estimation thereof. ICA was first applied to EEG by Makeig et Al [41] 

in 1996 and is now widely used in the EEG and BCI research community [29][41]. It 

is commonly used to remove artifacts, but has also proven useful in separating 

biologically plausible brain components whose activity patterns relates to behavioural 

occurrences [41]. In terms of a sensorimotor BCI, ICA can in principle be used as a 

spatial filter to isolate activity over the sensorimotor cortex [10][29]. ICA can be 

implemented using a number of algorithms, such as infomax, JADE and FastICA 

[41][46]. 

2.5 Brain-Computer Interfaces 

Research into the relationship between neural signals and limb movement has led to 

the development of brain-computer interfaces [1]. By using EEG or other 

electrophysiological methods, a brain-computer interface (BCI) provides a 

communication channel from the brain to the external world, circumventing the 

natural neuro-muscular pathway [10][11]. BCI systems aim to provide a means of 

communication and control for people who suffer from neuromuscular disorders or 

motor disabilities, such as spinal cord injuries, brainstem stroke, multiple sclerosis, 

Amyotrophic lateral sclerosis (ALS) and limb amputations [10][11][16]. BCIs could 

allow the use of assistive devices such as simple word processors, speech 

synthesizers, wheelchairs, prosthetics and orthotics in order to improve the quality of 

life of such individuals [16].  

 

Recent studies have shown the ability to partially decipher movement intent or 

movement imagination from neural signals [10]. Motor impairments may change the 

motor cortices of the brain and thus alter the neural activity associated with movement 

imagination. Turner et Al [47] suggests that motor cortex rewiring occurs in the case 

of spinal cord injuries and to a lesser degree in the case of limb amputations, but that 

activity in the motor areas is still present. Hence it is possible that people who have 

lost motor capabilities of their hand through amputation or spinal cord injuries can 
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imagine hand movements in order to initiate prosthetic/orthotic actuation [11][16]. 

BCIs are ultimately intended to aid those with motor impairments, yet in this research 

data was captured from healthy test subjects. Further experiments would need to be 

undertaken to establish the effectiveness of the proposed system on impaired patients. 

This is however beyond the scope of this research.  

 

BCIs help users interface with the world using an alternative method and can be 

dependant or independent [10]. A dependant BCI relies on the activity in the brain’s 

natural output pathways in order to generate neural activity, while an independent 

BCI relies on the user producing voluntary neural activity to actuate an external 

device without the use of the brain’s natural output pathways [10]. The latter is more 

suitable for the control of a prosthetic/orthotic hand since the user’s voluntary mental 

intention is used to control the assistive device [10]. BCI analysis can also be done 

online or offline [10]. In the case of offline analysis, data is recorded from several test 

subjects and techniques are applied to the data thereafter [10]. Methods that appear 

promising offline are validated by extensive online testing, where the user’s/subject’s 

neural signals are analyzed in real-time [10][12].  

 

BCIs can operate in an asynchronous or synchronous manner [48]. For synchronous 

or cue-based BCIs the user is instructed when to perform a task and the computer is in 

control of the timing, whereas in the case of an asynchronous or self-paced BCI, the 

user decides when to perform the task [48]. Asynchronous BCIs are more complicated 

than synchronous ones [48]. They need to differentiate between control states (when 

the user intends to control the BCI) and non-control or idle states (when the user is 

engaged in other activities not related to the intention to control the BCI, such as 

thinking or daydreaming) [48]. They also need to decipher between different types of 

control states in order to actuate the different functions of the external device [48]. A 

synchronous BCI only needs to perform the latter since the control states are time-

locked to and marked by the cues [48] (see Figure 5.2 for an example of external 

cues). Hence synchronous BCIs are suitable for laboratory investigations (such as 

those contained in this research) since they allow the exploration of time-related 

features used to design a suitable feature extraction and translation method [48]. Refer 

to Sections 5.2.5 and 5.2.6 as well as Appendix B for feature extraction methods. A 

successful synchronous BCI can then be adapted to an asynchronous BCI, which is 
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suitable for real world applications [48] such as the control of a prosthetic/orthotic 

hand in everyday life [49].  

 

The main components of a BCI are shown in Figure 2.3 [16][10]. The signals are 

captured either by invasive (ECoG) or non-invasive (EEG) methods and thereafter 

digitized [10]. Refer to Sections 1.4 and 2.3 for more information on these methods. 

After acquisition, the digitized signals enter the signal enhancement phase to improve 

the SNR [16]. The signals are pre-processed: they are usually filtered and artifacts 

that could contaminate the required information are removed [16][10]. Spatial filters 

are usually applied to enhance the signals originating from the relevant 

electrophysiological sources [16][10]. Thereafter features are extracted from these 

sources and the best features are selected to reduce dimensionality [16]. These are the 

features that ideally capture the user’s control commands [10]. The feature translation 

algorithm classifies the selected features into logical commands that can be passed to 

the device controller [10]. The device controller actuates the external device, such as a 

prosthetic/orthotic hand, in order to perform the user’s intent [16]. 

 

 

Results and analysis in BCI research are either based on multi-trial or single-trial 

techniques, where a trial is an EEG time-sequence containing an individual instance 

of a stimulus or task, such as a single hand movement (see Figure 5.2 as an example) 

[50][51]. Most of the literature reviewed (in Chapter 3) employs single-trial methods 

which are more suitable for BCI applications since they facilitate real-time BCI 

Figure 2.3: Model of a sensorimotor BCI used for communication to a prosthetic hand. 

Signal Enhancement Feature Extraction & 
Selection Feature Translation 

Data Acquisition Device Controller 

User intention Assistive Device actuation 

Visual feedback 
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operation [12][51]. The challenges lie in dealing with the large inter-trial variability in 

EEG signals and dealing with the fact that the desired patterns are mostly hidden in 

the background noise [50]. A method to try to reduce the effects of inter-trial variation 

is to use an average template created from multi-trial results to try to identify the 

waveform from a single-trial dataset as done in [50] and [52]. This can involve the 

analysis of event-related potential (ERP) time-series waveforms from individual 

events [50]. Averaging over many individual trials, which are grouped according to 

some relevant measure such as movement type, allows the pattern to emerge from the 

average ERP [41][50][51]. 

2.6 Electrophysiological Signal Features 

BCIs that deal with motor functions or sensory inputs of the body deal with the 

sensorimotor cortex of the brain. They are thus called sensorimotor BCIs and are 

suitable for the control of a prosthetic/orthotic hand. The two most distinctive 

electrophysiological signal features physiologically related to movement performance 

or movement imagination are sensorimotor rhythms (SMR) or ERD/ERS and 

movement-related cortical potentials (MRCP) [12]. Hence they are both used in this 

research. Although MRCP and SMR emanate from the motor cortices of the brain, 

they show differences in their spatiotemporal patterns and thus represent different and 

independent aspects of sensorimotor cortical processes [30][53][54]. A brief 

description of each signal feature type follows. 

2.6.1 Event-related desynchronisation and synchronisation 

When people are not engaged in processing sensory inputs or producing motor 

outputs while awake, the sensory and motor cortices produce EEG activity in the 8-

12 Hz range [10]. This is called the mu rhythm and has been shown to be present in 

most adults and related to concurrent sensory or motor processes [10]. The mu rhythm 

is usually accompanied by the beta rhythm (13 – 30 Hz), which can present 

independent EEG features [10]. Since these sensorimotor rhythms are associated with 

the brain’s normal motor output channels, prominent features are usually extracted 

from the mu and beta frequency ranges [16][10]. Some studies, however, have also 

explored the use of SMR from the delta, theta and gamma bands [22][25][55] since 
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there is evidence of their relevance to movement [56] (some of this is explained 

further in Section 3.3). This research focuses on sensorimotor rhythms in the mu and 

beta ranges. 

 

Events, such as sensory stimuli or motor actuation, produce frequency specific 

changes in the sensorimotor rhythms, which in general consist of increases or 

decreases in power in these frequencies [56]. These changes are a result of a change 

in synchrony of the underlying neurons [56]. The rhythms are synchronized when no 

sensory inputs or motor outputs are being processed [16][10]. Voluntary movement or 

preparation for movement results in a decrease in the mu and lower beta rhythms, 

referred to as event-related desynchronisation (ERD) [16][10][57]. It begins in the 

contralateral rolandic region about 2 s prior to movement onset and becomes 

bilaterally symmetrical just before movement execution [16][56]. Event-related 

synchronization (ERS) occurs after movement when the rhythms increase again 

[16][10][57]. Post-movement beta ERS occurs about 1 s after movement in 

contralateral M1 [56]. It is a robust oscillatory brain signal with a relatively good 

signal-to-noise ratio and is prevalent in most test subjects [56]. More importantly, 

contralateral ERD and ERS occur during imagined movements as well, making them 

suitable for independent BCIs [10]  (see Section 2.5). In terms of controlling a 

prosthetic/orthotic hand, the user can voluntarily imagine performing a particular 

hand movement in order to produce the neural ERD and ERS patterns that correspond 

to that hand movement. 

 

The terms SMR ERD and ERS typically refer to the respective amplitude (and hence 

power) attenuation and enhancement of EEG rhythms in the mu and beta bands [58] 

originating from the motor cortex. The use of the terms ERD/ERS in this research 

refers to the use of mu and beta frequencies, unless otherwise specified. Although 

event-related trials are time-locked to the event, they can either be phase-locked or 

non-phase-locked [56][58]. Averaging over all trials, as with an ERP, enhances the 

phase-locked components, which can mask the non-phase locked components of the 

EEG rhythms; hence methods of ERD/ERS calculation are available to overcome this 

[56][58]. There are two methods for calculating the event-related power changes i.e. 

the classical ERD or power method (P) and the inter-trial variance (ITV), shown by 

Equations 2.1 and 2.2 respectively [58].  
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For both methods each trial has been bandpass filtered and is denoted by xf(i). N refers 

to the number of trials, i denotes the trial number, j the sample number and mf(j) is the 

mean over all bandpassed trials at the jth sample. The power method computes the 

power change for phase-locked and non-phase-locked components, while only the 

non-phase-locked are computed using the ITV method [58]. ERD and ERS are 

defined as the respective percentage change of power decrease and increase relative to 

a reference or rest period [56]. The ERD at each sample is given by Equation 2.3, 

where A(j) is either P(j) or ITV(j) and R is the average of A(j) over the reference period  

[58]. 
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The analysis of ERD/ERS patterns is usually done over multiple trials as shown by 

equations 2.1 and 2.2. [56][51]. For single trials, the relative changes in power over 

time within mu and beta frequency sub-bands can be calculated using time-frequency 

(TF) techniques [16]. TF techniques represent changes in EEG with regard to time 

and frequency and are used to analyze the time-varying content of EEG [16]. They 

show improvements over ordinary frequency-based techniques [16] and have been 

shown to be effective with the analysis of single trial EEG [59]. Some examples of TF 

techniques used for single-trial EEG analysis include discrete wavelet transforms and 

discrete Gabor transforms [16][24][25][59]. 

 

Commonly used electrode locations for the extraction of ERD/ERS features for hand 

(and sometimes foot and tongue) movements are C3, C4 and Cz according the 10-20 

system, which correspond to regions over M1 (see Section 2.2 for anatomical 

information and Figure 5.3 for electrode positioning) [44][37]. The corresponding 

GSN-128 electrode numbers are 37, 105 and 129 [35]. 
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2.6.2 Movement-related Cortical Potentials 

Another type of electrophysiological feature emanating from the motor cortex is the 

movement-related cortical potential (MRCP) and the pre-movement stage is a slow 

moving potential [24][30][60]. Shibasaki et Al [53] suggest that movement 

characteristics, such as speed, precision and repetition can influence the amplitude 

and time course of MRCPs. Other studies have linked MRCPs to force parameters in 

movement [12][61][64]. For further information of these studies refer to Section 3.3. 

 

The pre-movement stage of the MRCP is associated with an event-related negativity 

referred to as the Bereitschaftspotential (BP) that occurs 1 - 2 s before the onset of 

movement [10][24][52][60]. According to Shibasaki et Al [53], the BP can be divided 

into two sections, named the early BP and late BP, the latter having a steeper negative 

slope [24][62]. The early BP starts about 2 s before movement onset in the pre-SMA 

and SMA proper and thereafter in the PMA with a maximum at the centro-parietal 

midline [53] (refer to Figure 2.1). It appears bilaterally and without any specific 

somatotopic organization in the pre-SMA, but with relatively clear somatotopy 

bilaterally in the PMA and SMA proper [53]. The late BP occurs with precise 

somatotopy in contralateral M1 and lateral PMA from approximately 400 ms before 

movement onset [53]. The motor potential (MP) occurs just prior to movement 

(approximately 10 ms) and is localised with precise somatotopy in the contra-lateral 

motor cortex (M1) [53]. The pre-motor stage is followed by a rebound after the 

movement or imagination onset and is referred to as the post-movement potential 

[24].  

 

Traditional methods for extracting features based on MRCP patterns, particularly for 

movement disorder analysis in clinical applications, involve time-series analysis [53], 

where the slope of the BP, the rebound rate, the latency and peak amplitudes can be 

used to form features [24][54][63]. Such analysis usually involves the detection of 

typical or atypical patterns in average MRCP ERPs after averaging over 100’s of 

trials [51][53]. Some studies, however, have used time-frequency techniques to 

extract EEG patterns from MRCP. The discrete wavelet transform was used on 

MRCP signals to successfully discriminate different levels of torque development in 

isometric plantar flexion in [64] and [70] (refer to Section 3.3 for more information on 
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the success of these studies). Vuckovic and Sepulveda [25] used the discrete Gabor 

transform to extract features for imagined wrist movement classification and found 

that features in the MRCP frequency range were most prominent. 

 

Electrode locations commonly used for MRCP analysis covers regions between 

frontal and central sites including Cz, FCz, FC3, FC4, C1, C2, C3 and C4 in the 10-20 

system [50][53][64] (see Section 2.2 and Figure 5.3). The corresponding GSN-128 

electrode numbers are 129, 6, 30, 112, 31, 106, 37 and 105 [35]. 

2.7 Conclusion 

Some background knowledge on sensorimotor anatomy, EEG, spatial filters, BCIs 

and sensorimotor electrophysiological sources of information is outlined in this 

chapter. This is relevant information needed to contextualise the problem to decipher 

the EEG for different hand movements using a sensorimotor BCI.  The next chapter 

explores relevant BCI literature so as to identify the problem of the research. 
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Chapter 3  

Literature Review 

3.1 Introduction 

The previous chapter provides an overview of the necessary background knowledge 

for sensorimotor BCI research. This chapter explores related sensorimotor BCI 

literature in order to find an area that has not yet been explored. The types of 

movements explored for interpretation by BCIs are discussed and the combination of 

WE, WF, FE, FF and the TR are deduced to be novel to BCI literature to the best of 

the author’s knowledge. Due to nature of the problem, techniques such as ICA and 

ERD/ERS and MRCP feature combination are explored. The way the research 

complements and extends the literature is explained and possible benefits are 

discussed. 

3.2 Exploring Different Movement Types 

The use of a BCI to utilize EEG to extract information from the motor cortex of the 

brain in order to interpret movement imagination began in the 1990s [65]. This has 

led to numerous research efforts into the classification or differentiation of different 

motor tasks. These motor tasks consist of real and imagined movement tasks and can 

also differ in a kinematic (movement type) or dynamic nature (force or speed). 

 

The discrimination between the EEG associated with right and left hand motor tasks 
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is common in sensorimotor BCI research. The choice for this type of discrimination is 

most likely due to the contralateral positioning of the hand control regions of M1 [32], 

which allows spatial discrimination between the left and right motor cortices. See 

Figure 2.2 to view the hand control region of M1. Different types of real and 

imagined, right and left motor tasks have been explored using a variety of techniques 

to improve classification rates. Pfurtscheller et Al [65] first investigated the possibility 

of right vs. left movement imagination discrimination on a single-trial basis in 1997. 

The discrimination between right and left imagined middle finger movements was 

investigated in [28], [42] and [66], while studies such as [59] used the movement of 

right and left index fingers. The use of right and left self-paced key finger presses was 

also used in some studies, such as in [28] and [50]. Navarro et Al [26] and Khan and 

Sepulveda [55] investigated the EEG discrimination between right and left wrist 

movements. Although different variations of hand movements were used by different 

authors, these problems all involve differentiating between the EEG information 

associated with the control the right and left hand or parts thereof. According to the 

classification review by Lotte et Al [11], the accuracy of classification (AOC) for 

right vs. left movement/imagery problems ranges between 60 % and 90 % and 

averages around 79 %. 

 

Another common objective in sensorimotor BCI research is the discrimination 

between the execution or imagination of left hand, right hand, foot and tongue 

movements [44][67]. This can be considered an extension of the right vs. left hand 

classification problem when looking at the chronological order of publications by 

Pfurtscheller and associates [37][44][65][68][69][71] and by noting that the locations 

on M1 for the control of the four appendages are spatially distinct [32] (refer to Figure 

2.2). Wang and James [29] used imagined right hand and right foot movements in an 

EEG classification investigation. Similarly, Blankertz et Al [39] used imagined right 

hand, left hand and right foot motor tasks and Neuper and Pfurtscheller [57] used 

imagined foot and hand movements in their investigation.  

 

Studies aimed at discriminating various dynamic properties of movements are few 

[12]. Farina et Al [70] classified different levels and rates of torque development for 

real isometric plantar flexion of the right foot, while do Nascimento and Farina [64] 

performed a similar study for imagined isometric plantar flexion. The former reported 
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varying AOC rates between 50 % and 90 %, while the later reported an average 

maximum AOC rate of 82.6 %. A study by Slobonouv et Al [64] examined the 

interdependency of fingers associated with force-related tasks and showed that 

musicians exhibit improved control of and interdependency between their ring and 

index fingers over non-musicians.  Logar et Al [61] studied the possibility of 

predicting different gripping forces of the hand using EEG, which was consequently 

shown to contain enough information for gripping force prediction.  

 

Most current BCIs are effective when discriminating between two different limb 

effectors [12], but to date not much research has been done to discriminate between 

the EEG associated with different types of movements on the same hand [12]. 

Vuckovic and Sepulveda [25] investigated the possibility of classifying between 

different types of unilateral wrist movements i.e. extension, flexion, pronation and 

supination. Averaging the results for real and imagined movements, an overall AOC 

of approximately 72 % was obtained when discriminating between binary 

combinations of the four movement types. Gu et Al [24] investigated the classification 

between fast and slow variations of wrist extension and rotation and reported AOC 

rates of 79 % for the best binary combination of the movement tasks. It was the first 

study to compare classification accuracies in a kinematic and dynamic manner.  

 

Classification of neural signals associated with different kinematic or dynamic 

movements on the same limb/hand is complex and challenging since these 

movements activate a similar area in the cortex of the brain (M1) [12][32][72] (refer 

to Figure 2.2). Successful discrimination of EEG for binary combinations of four 

different unilateral wrist movements [24][25] suggests that binary classification 

between other types of hand movements on the same hand (e.g. wrist vs. finger 

movements), using EEG, is possible.  

 

The problem, however, becomes increasingly more difficult when considering more 

than two types of movement on the same hand in a multiclass problem since accuracy 

decreases as the number of classes increases [25][71]. Individual finger movement 

discrimination using BCIs based on ECoG [20][73][74] suggests that more advanced 

movement discrimination on the same hand is physiologically possible. This problem 

is significantly more challenging for EEG-based BCIs due to the noisy nature of EEG 
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and the difficulty with spatially-specific recordings [10][12] (see Section 2.3 for more 

challenges associated with EEG). A four-class BCI problem involving wrist 

movement imagination achieved an AOC of 78 % in one subject [75]. This study, 

however, classified between right and left wrist extension and wrist flexion i.e. binary 

classification on different limbs [75]. A multiclass, EEG-based BCI problem, 

involving five tasks i.e. movement imagination of the left hand, right hand, foot and 

tongue as well as a mental calculation task, showed an AOC of approximately 68 % 

in one subject [71]. According to a review on BCI classification by Lotte at Al [11], 

the average accuracies for two other multiclass problems, involving right and left 

hand movements, foot movements and tongue movements, range between 42 % and 

63 % [71][99] (using the AOC). These results, along with the success of [24][25], 

suggests that it may be possible to discriminate EEG for different unilateral hand 

movements in a multiclass problem in at least one subject, provided that sufficient 

spatially-specific information can be extracted. Refer to Sections 2.4 and 3.4 on how 

ICA may be beneficial in this regard.  

 

To the best of the author’s knowledge, the combination of WE, WF, FE, FF and the 

TR (refer to Section 1.2 for details of these movements) has not been explored in BCI 

literature [12]. This is possibly due to most BCI studies focusing on inclusively aiding 

ALS patients, who favour simple communication above the return of hand 

functionality [76]. As a result, the author is unaware of studies concerned with the 

right vs. left EEG discrimination of the combination of these movements. Wrist and 

finger movement/imagery have been used in separated studies 

[24][25][26][42][50][55][66], but a studies have not been found, which attempt to 

differentiate between the EEG for finger and wrist movements or imagination [12]. 

Furthermore, the classification between EEG associated with WE, WF, FE, FF and 

the TR in a five-class multiclass problem is novel to BCI research to the best of the 

author’s knowledge. 

3.3 Exploring Different Sensorimotor Features 

In order to allow for differentiation of movements on the same hand, it is necessary to 

extract as much relevant motor control information from EEG as possible. The uses of 
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MRCP and SMR or ERD/ERS in the literature are presented and the feasibility of 

combining the two feature types is discussed.  

 

Studies done by Pfurtscheller and colleagues used ERD and ERS of mu and beta 

sensorimotor rhythms to distinguish between simple real and imagined motor actions 

including right hand, left hand, right finger, left finger, foot and tongue movements 

[10][77]. Consequently, many other studies have used this feature for similar 

investigations [22][28][29][39][43][78]. This sensorimotor rhythm has allowed online 

AOC rates around 80 % for right vs. left hand imagery after several training sessions 

[10][65]. Features related to ERD/ERS are used to distinguish between the EEG 

associated with right hand, left hand, foot and tongue movements in [44] and [67], 

where the latter showed AOC rates between 60 % and 90 % in one subject for binary 

combinations of pairs of ERD/ERS feature sets for the four motor tasks.  

 

Vuckovic and Sepulveda [25] applied the concept of power ratios of ERD and ERS in 

the mu and beta frequency bands to the SMR in the delta, theta, alpha, beta and 

gamma ranges in order to investigate the possibility of discrimination between 

different kinematic wrist movements. Time-frequency features of the SMR were 

obtained using the discrete Gabor transform [25]. The findings show a dominance of 

SMR features from the lower delta band, which is the same frequency range for 

MRCP [25]. Power in the mu and beta bands (ERD/ERS), obtained using a discrete 

wavelet transform, is also used as part of the feature set for classifying EEG signals 

for different types and speeds of wrist movements [24].  

 

MRCPs are not used as frequently as ERD/ERS is for discrimination of EEG for the 

performance or imagination of different limb movements on a single-trial basis. This 

is probably due to ERD/ERS being more reliable for single-trial analysis [51]. 

Kohlmorgen et Al [50] used the BP portion of MRCPs to create a classifier to 

differentiate between EEG for right and left self-paced finger presses, where the best 

AOC achieved was 95 %. In a study by Bai et Al [28], different computational 

methods were explored for movement intention and features related to ERD/ERS and 

MRCP were used, however it is not clear how well the MRCP-related features 

performed in isolation and to what extend MRCP contributed toward the classification 

rate [28]. Studies have been undertaken to use MRCP features for EEG associated 
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with dynamic movement discrimination [24]. Force-related studies using MRCP for 

foot movements, finger movements and gripping movements were studied in [64], 

[63] and [61] respectively, while the rebound rate of MRCP played a key role in 

discriminating different speeds of movements in [24].  

 

Dornhege et Al [30] showed an improvement in classification rate when exploring 

different methods of combining MRCP and ERD/ERS features for the imagination of 

right and left finger movements. Promising results in [24] and [25] also showed the 

value of adding lower frequency or MRCP features to mu and beta ERD/ERS features 

for different unilateral wrist movements. It is thus hypothesized that the combination 

of features related to ERD/ERS and MRCP can improve EEG interpretation for other 

types of hand movements on the same hand; more specifically for WE, WF, FE, FF 

and the TR. 

3.4 Exploring the use of ICA as a Spatial Filter 

Section 2.4 presents some background knowledge on ICA and other spatial filters. 

The spatial filters used in studies investigating wrist movements are explored in this 

section, since these types of investigations bear the closest resemblance to this study. 

The advantages of the use of ICA in this research are then discussed.  

 

Considering BCI research involving wrist movements, Vuckovic and Sepulveda [25] 

and Navarro et Al [26] used ICA; Gu et Al [24] used SL and Khan and Sepulveda [55] 

used CSP. Since Vuckovic and Sepulveda [25] discriminated EEG for only kinematic 

movements on the same hand, ICA could be most suitable for this research, which 

involves a similar problem. The superiority of ICA over raw EEG for the 

classification of EEG for right vs. left wrist movement was shown in [26].  

 

With regard to other types of movements, Pfurtscheller and colleagues as well as 

other BCI researcher used SL to aid the extraction of features based on ERD/ERS 

[30][42][54][56][65]. However, when exploring different computational methods for 

classifying EEG between voluntary right and left finger key strokes, Bai et Al [28] 

reported superior performance of ICA over raw EEG, PCA, SL and CSP. Brunner et 

Al [27] compared the performances of different ICA algorithms to each other and to 
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other spatial filters. Here, for EEG discrimination between right hand, left hand, foot 

and tongue movements, the ICA infomax algorithm performed best, with CSP coming 

in second [27]. Hence ICA may be superior to SL in terms of extracting maximum 

information from local sources (see Section 2.4).  

 

ICA has shown usefulness in extracting spatial features for different kinds of wrist 

movements [25][26] and has shown to provide more accurate classification results 

than other spatial filters in some studies involving other motor tasks [28][27]. ICA 

can also provide subject-specific spatial filters, which is advantageous since EEG 

patterns and hence the specific source location of motor control may differ subtly 

between individuals [10][29]. ICA can in theory also distinguish between spatially 

overlapping sources [10]. This makes it suitable for the discrimination of different 

kinds of hand movements on the same hand, whose control originates from sources 

located close together on M1 [32][39] (see Figure 2.2).  

3.5 Conclusion 

The exploration of relevant BCI literature reveals that the auhor is not aware of any 

EEG research done involving the combination of the basic hand movements of WE, 

WF, FE, FF and the TR. Consequently the use of EEG to detect the difference 

between right and left hand combinations of all five movements, between wrist and 

finger movements and between the individual five movements is deduced to be novel. 

This chapter has also shown that the use of ICA and the combination of MRCP and 

(mu and beta) ERD/ERS features are most suitable to handle the complexity of this 

research. The question of improving EEG interpretation to differentiate between 

different types of hand movements/imagery, using suitable techniques, is clearly 

defined in the next chapter.  
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Chapter 4  

Problem Statement 

4.1 Introduction 

The previous chapter identified a problem within BCI research that has not yet been 

explored. This chapter clearly defines the purpose of this research aimed to address 

this problem and highlights the possible impacts of a solution.  

 

The aim of this dissertation is to investigate the possibility of using EEG to decipher 

between the neural motor signals that control different types of essential hand 

movements i.e. WE, WF, FE, FF and the TR. The combination of TF spectral 

information from two types of electrophysiological features [30] is used in 

conjunction with ICA [41] to improve EEG interpretation. It is also desired to 

investigate the possibility of improved EEG interpretation for real and imagined 

movements. The question is: can the use of ICA along with features related to 

ERD/ERS and MRCP (TFSE and TFSM features) be used to differentiate between the 

EEG for different types of real and imagined unilateral hand movements using data 

recorded synchronously from healthy test subjects and processed offline on a single-

trial basis? 

 

In order to answer the latter, the research is divided into three sub-investigations as 

outlined in Section 1.6. The rest of this chapter defines the purposes and aims of each 
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investigation and highlights their impacts. Success criteria and the overall value of the 

research are outlined.  

4.2 Right vs. Left Hand Movement Investigation (RLI) 

The ability to classify between right and left hand movements is an important 

intermediate step towards classifying more advanced movement types on the same 

hand for two reasons. Firstly, differentiating between left and right hand movements 

is a simpler task since the spatial differences between the neural patterns for right and 

left hand movements are more distinct than between those for different types of 

unilateral movements [12][32][39] (refer to Sections 2.2 and 3.2). Secondly the 

results obtained for right vs. left classification for real and imagined movements can 

be compared to those in the literature (refer to Section 3.2). Consistencies with the 

literature would indicate that the data and method are satisfactory and that they can be 

used to attempt to classify different types of hand movements on the same hand.  

 

The purpose of this investigation, which will be referred to as the right vs. left 

investigation (RLI), is to determine the ability of the designed method to classify 

between EEG for right and left (real and imagined) hand movements using ICA along 

with TFSE and TFSM features. Based on the average of the results for similar studies 

in the literature (refer to Section 3.2), the investigation will be successful if an 

average result close to 80 % classification accuracy is obtained for both real and 

imagined movements [11][42][43][65]. This can be achieved using TFSE or TFSM 

features or preferably using the combination of features [30].  

4.3 Wrist vs. Finger Movement Investigation (WFMI) 

The five basic types of movements consist of two wrist movements and three finger 

movements (see Section 1.2). Relative to the challenging task of multiclass unilateral 

hand movement discrimination using EEG (refer to Section 3.2 for details of these 

challenges), the binary classification between EEG associated with wrist and finger 

movements is a simpler task. The ability to differentiate between the movement of the 

wrist and the movement of the fingers will provide insight into the ability to extract 

separable information from neighbouring hand control regions of the cortex [12][32] 
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(refer to Figure 2.2). The purpose of this investigation, which is referred to as the 

wrist vs. finger movement investigation (WFMI), is to examine the possibility of 

classifying between the EEG for wrist and finger, real and imagined, movements on 

the same hand using ICA in conjunction with TFSE and TFSM features. 

 

The focus of the investigation is not to obtain the best classification rates possible but 

rather to evaluate the level of possible discrimination. Hence success is considered to 

be the achievement of an average classification accuracy close to 70 % using TFSE or 

TFSM features or preferably using the combination of features. This criterion is 

chosen based on the expectation of poorer results than that of the RLI and on the 

average result of a similar binary classification study [25] (refer to Section 3.2). 

4.4 Five Movement Differentiation Investigation (FMDI) 

The purpose of this investigation, which is referred to as the five movement 

differentiation investigation (FMDI), is to determine if it is possible to classify 

between EEG associated with the real and imagined movements of WE, WF, FE, FF 

and the TR using ICA to enhance TFSE and TFSM features. This investigation 

contributes toward increasing the number of classes for hand motor task classification 

problems in BCI research and also adds new types of hand movements which may be 

explored in future BCI studies [12]. 

 

As with the WFMI, the focus of the investigation is not to optimise classification, but 

to evaluate the level of possible discrimination of EEG for the five hand movements. 

Success is considered to be the achievement of classification accuracy between 65 % 

and 75 % in at least one subject for either hand, using any feature type for either real 

or imagined movements. This criterion is based on the results of a five-class 

multiclass BCI problem mentioned in Section 3.2 [71]. Considering that results vary 

between subjects [10][71], accurate classification in at least one subject is an 

indication that classification of the selected five movements is possible on some level.  
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4.5 Conclusion  

A complete positive result entails the success of all three investigations. This implies 

that the designed method allows for improved offline EEG interpretation for a 

sensorimotor BCI to the point where the neural motor control signals for five essential 

hand movements can be differentiated on a synchronous, single-trial basis. The 

success of only the first two investigations implies that the designed method only 

provides improved EEG interpretation to the degree where the movement control of 

different major parts of the hand i.e. the wrist and fingers, can be distinguished. In this 

case, however, the method is not suited to individual movement differentiation and a 

different approach should be investigated to solve this. It does however show that 

more advanced unilateral movement identification is possible and in that sense still 

answers the overall question of the research positively. The success of only the first 

investigation implies that the method is equivalent to existing methods in 

differentiating between right and left hand motor control signals obtained from EEG, 

yet does not allow any improved EEG interpretation in terms of distinguishing 

between different types of movements on the same hand. In this case more research 

needs to be done to find a method to improve EEG interpretation and the result of the 

research will be defined as negative.   

 

The WFMI and the FMDI could contribute toward respectively increasing and 

improving the class number and flexibility of motor tasks in BCI research [12]. They 

also add knowledge to the attempt to find a method that will allow the control signals 

of individual hand movements to be distinguished. This may lead to further advances 

in neurally controlled assistive devices.  

 

This chapter clearly defines the overall objective of the research and the question that 

needs to be answered. The problem of answering the question is split into three 

investigations and the purpose and impact of each are detailed. Success criteria are 

defined and the benefit of the research is discussed. The next chapter details the 

design and implementation of the method to perform the investigations.  
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Chapter 5  

Methodology 

5.1 Introduction 

This chapter presents the design and implementation of the methodologies used to 

investigate all three problems described in the previous chapter. The method is 

designed to differentiate between different types of unilateral hand movements, but its 

effectiveness is first evaluated using the RLI (as explained in Section 4.2). The 

method is thereafter applied to the WFMI and the FMDI to determine its ability to 

differentiate between the neural control information for different types of hand 

movements using information taken from EEG.  

 

The backbone of the methodology and the techniques used therein are common to all 

the investigations; however the details of the procedures within each section of the 

methodology differ slightly between the investigations. The details of these 

differences are discussed within the description of each section of the method, which 

makes up the rest of this chapter. 

5.2 Design and Implementation of Method 

The general method applied to all three investigations is described by Figure 5.1 

[16][10][25]. EEG was captured and pre-processed, the result of which yielded two 

sets of bandpass-filtered data, mu/beta band data (for ERD/ERS) and delta band data 
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(for MRCP) [10][24]. The bandpass-filtered data were arranged in accordance with 

the type of investigation and flowed through the rest of the method in parallel. ICA 

was then run and the best ICs were chosen using visual inspection [41][80]. This is 

explained in more detail in Section 5.2.4. TF spectral features based on ERD/ERS and 

MRCP (TFSE and TFSM features respectively) were then extracted [25][28][30][70] 

and the best features were selected using the Bhattacharyya distance [67]. MD 

clustering and ANN methods were used to classify the reduced feature set [11]. 

Classification was done using TFSE and TFSM features individually and thereafter on 

the combination of the two types of features [30]. MATLAB and two of its open-

source toolboxes, EEGLAB [41] and Netlab [79], were used to process the data and to 

implement the techniques and algorithms.  

 

 
The general method is customised for each investigation to accommodate for their 

differences. The main differences are as follows: 

 

1. The RLI and the WFMI are two class classification problems, while the FMDI is a 

five-class multiclass classification problem.  

Raw EEG data 

Pre-processing:  
Bad channel removal, 
filtering, splitting into 
single-trials, artifact 
removal, filtering for 
delta and mu & beta 

rhythms 

Extract time-frequency 
spectral features based on 

ERD/ERS and MRCP 

Feature selection using 
Bhattacharyya distance 

Preparation for feature extraction 

Feature Extraction, Selection and 
Translation 

Figure 5.1: Overall process flow of method 

Classification using 
Mahalanobis distance and 

Artificial Neural 
Networks 

ICA and best IC selection 

Data Arrangement 
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2. The RLI compares movements on the right hand to movements on the left, while 

the WFMI and the FMDI consider data for right and left hand movements 

independently.  

3. For the RLI, one class consisted of the grouping of all five types of movements 

for the right hand, while the other class grouped all types of movements for the 

left hand. For the WFMI, WE and WF were grouped to form one class, while FE, 

FF and the TR are grouped to formed the other class. Each of the five movement 

types formed a class in the FMDI.  

 

Hence each stage in the method was adapted to accommodate for these differences, 

while keeping the function and basic structure of each stage common. 

5.2.1 Experimental Procedure and Data Acquisition 

Following ethics approval from the University of Cape Town, data was captured from 

five healthy, male, untrained volunteers in their early twenties. Data recording for 

BCI research is demanding on test subjects [11][28][67] whose EEG exhibits a large 

inter-subject variance [10] and are thus usually examined individually 

[24][25][43][67]. Hence the numbers of subjects are usually few and range 

approximately between three and twelve subjects [22][24][25][67][59][61]. This 

research examines each subject individually (also refer to the latter portion of Section 

3.4), hence the use of five test subjects was thus deemed suitable.  

 

The subjects were seated in a comfortable chair facing a computer screen 

[24][25][67], which was used along with custom E-prime software to queue the 

movements [81]. The hand and forearm in use were rested on an armrest while the 

subjects’ EEG were measured [25][80]. Each subject was asked to perform real and 

imagined repetitions of the 5 movement types for each hand (starting with the right 

hand). Repetitions were grouped into sets of 20 such that each set consisted of one 

movement type, which is similar to the grouping of movements into sets of 15 in [25]. 

For each hand, the subjects performed 10 sets of movements: 5 for real movements 

and 5 for imagined movements. In summary each test subject had: movement type (5) 

× Left/Right hand (2) × real/imagined (2) × repetitions (20) = 400 trials. 
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The type of movement for each set was shown to the subjects on the computer screen 

prior to the commencement of the set. E-prime was used to mark the queues on the 

recorded EEG data as events [81]. Before the start of the each movement set, subjects 

were allowed to practice the movements [25]. There were short breaks between sets 

and the repetitions for each set were performed continually, while the EEG was 

recorded [25]. The trials were controlled by instructions shown on the computer 

screen, the timeline of which is shown in Figure 5.2 [25][67]. Subjects were 

instructed to prepare for the current movement/imagination of the set (S1); thereafter 

they were instructed to commence the movement/imagination, which was sustained 

(S2) until the instruction to stop was given [25][55][67]. A short relaxation period 

(S3) preceded the instruction to prepare for the next repetition. The timing of each 

period was based on the experimental setups in [25] and [67]. The duration of the 

preparation period (S1) allows for the visualisation of the BP (which can precede 

movement onset by up to 2 s) [53] and of pre-movement ERD (which can occur 1 – 

2 s before movement) [16][10]. A sustained movement (S2) requires more 

concentration from the test subject, which may improve EEG patterns for imagined 

movements and also allows sufficient time to extract relevant features during 

movement performance/imagination [67]. S3 was kept to a minimum to allow more 

trials to be performed before the subject began to fatigue [11][26].  

 

 
A subject’s EEG may vary during the recording session since they may become 

physically settled or alternatively restless over time [10]. The progression of the 

experiment allows more practice and can consequently improve the performance of 

Figure 5.2: Time sequence and instructions for a single trial 
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the test subject [10]. If the movement sets are performed in the same order for each 

subject, an unwanted pattern may be embedded into the data simply due to EEG 

variance with time. To avoid this, the order of the sets was randomised [55]. 

 

Subjects were asked not to blink, swallow, move their eyes, adjust their bodies or 

clear their throats during S1 and S2, but rather during S3, so as to reduce artifact 

contamination during the movement preparation and movement performance phases 

[28][67]. Subjects were observed to ensure that they did not perform any real hand 

movements when they were required to imagine hand movements and any undesired 

movement performance or behaviour by the subjects, such as the shifting of the body, 

was noted [67]. 

 

An EGI system (System 200) that consisted of 128 high-impedance scalp electrodes 

forming the Geodesic Sensor Net 128 (GSN 128), along with Geodesic EEG System 

and Net Station Software was used [82]. The electrode layout is shown in Figure 5.3 

[82][83][84]. The electrodes consisted of Ag/sAg-Cl pellets that are attached to 

sponges, which were soaked in an electrolyte solution of potassium chloride and make 

contact with the scalp [84]. The 129th electrode formed the reference electrode and 

was placed centrally at the top of the scalp, corresponding to Cz in the 10-20 EEG 

electrode placement system [35] (see Figure 5.3). Electrode impedance was kept 

below 50 kΩ as per EGI specifications for this high impedance system [84]. 

5.2.2 Pre-Processing 

EEGLAB was used to handle the pre-processing [41]. Some channels had to be 

removed for some subjects’ data due to excessive noise corruption [41]. The number 

of channels removed for each subject is summarized in Table 5.1. It was found that 

the left hand data for subjects 1 and 4 was greatly insufficient and was disregarded 

[25]. A high pass filter at 0.5 Hz was applied to remove DC (direct current) shifts, 

while a low pass filter removed frequencies above 90 Hz since the data was sampled 

at 200 Hz by the EGI system [25][67]. A 50 Hz Notch filter was also applied to 

remove noise from the mains power line [25][85]. MRCP frequencies range between 

0 and 3 Hz, hence the lowpass filter may have removed some very slow moving 

components of the MRCP [24]. However, Vuckovic and Sepulveda [25] showed a 
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Figure 5.3: Electrode positions of the 128 electrode a) EGI GSN 128 system and the b) 10 – 20 
international system [83][84]. 

a) 

b) 
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dominance of features from frequencies between 0.5 and 2 Hz during imagined 

unilateral wrist movement classification. Kauhanen et Al [86] achieved classification 

accuracies up to 91 % for right vs. left imaginary index finger movements using 

features from the 0.5 – 3 Hz frequency band. Furthermore, the presence of the BP is 

still apparent after applying the lowpass filter (refer to Figure 5.4 as an example). 

 

 
Data was then divided into 7 s trials [25][67], from t = -1s to t = 6 s, placing t = 0 at 

the Get Ready event shown in Figure 5.2. This was done so that the continuous 

signals are not split in the crucial areas of S1 and S2 [25]. Trials were manually 

inspected for voltage spikes and severe distortions across multiple channels and bad 

trials were consequently removed [41][67]. The numbers of bad trials removed for 

each subject are summarized in Table 5.1. The trials were baseline corrected using the 

interval from t = -1 to t = 0 s in order to align the rest state with the zero volt level 

[25][30][85]. 

 

The Automatic Artifact Removal (AAR) toolbox [87] for EEGLAB was used to 

remove artifacts, which includes electrooculogram (EOG) from eye-blinks and eye 

movements, and EMG from tongue, face, neck and shoulder movements [10]. EOG 

and EMG artifacts were removed using spatial filtering and blind source separation 

(BSS) [87]. EMG removal and EOG removal are particularly important since they 

share common frequencies with mu/beta rhythms and MRCP respectively [10]. The 

single-trial data was decomposed into spatial components representing information 

sources within the brain [87]. Thereafter, artifactual components were automatically 

removed using suitable criteria for each artifact type [87]. Criteria for EOG artifacts 

Table 5.1: Summary of the number of bad channels and bad trials that were removed. 

 Removed Channels Removed Trials 

 RH LH RH LH 
Subject 1 0 N/A 2 N/A 
Subject 2 0 4 12 5 
Subject 3 1 1 8 11 
Subject 4 0 N/A 0 N/A 
Subject 5 0 0 5 5 
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were based on the fact that EOG components have high amplitudes relative to EEG, 

have few low-frequency sub-components and occur spatially near the front of the 

head [87][88]. Criteria for EMG artifacts are based on the fact that they occur in 

shorter bursts and their average power exceeds that of average EEG according to a 

ratio based on the typical power values of EMG and EEG [87][88]. The data was then 

reconstructed from the reduced component set. The effectiveness of the AAR 

approach was verified by using ICA (infomax algorithm) and visual inspection.  The 

ICs before and after artifact removal were extracted and inspected to make sure that 

artifactual ICs had been removed using AAR and that non-artifactual EEG data was 

predominantly unchanged [41]. A Blind source separation technique in the form of 

Canonical Correlation Analysis (which is part of the AAR toolbox) was most 

effective in removing EOG and EMG artifacts [87]. 

 

A bandpass filter between 8 – 30 Hz was applied to isolate the mu and beta data (for 

ERD/ERS analysis) [24], while a lowpass filter with a 3 Hz cut-off was used to isolate 

delta band data (for MRCP analysis) [24].  

5.2.3 Data Arrangement 

EEG patterns and hence the timing, origin and spatial pattern of the sensorimotor 

activity differs between individuals [59], between different frequencies and feature 

types [30], between right and left hands [43][44] and between real and imagined data 

[25][67]. Hence, the two sets of bandpass-filtered data were rearranged into datasets 

by separating real and imagined movements and either grouping or separating right 

and left movements depending on the investigation type. This arrangement enabled 

ICA to extract spatially-specific components (see Section 5.2.4). The details of the 

data arrangement for each investigation are shown in Table 5.2. All five types of 

movements for both hands were grouped for the RLI. For the WFMI and FMDI, the 

five movements were grouped for each hand. The grouping allowed the same ICA 

weighting to be applied to all the classes in each investigation (refer to Section 2.4 for 

additional information on ICA channel weighting).  

 

Datasets were created for each subject (for reasons explained in Section 5.2.1) where 

sufficient data is available. Multiple subjects’ data were combined where possible in 
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order to investigate the inter-trial variability. Data per subject per movement was 

limited for the FMDI (100 trials per dataset); hence the use of a few features and 

simple classifier architecture was essential in this investigation [11]. It was not 

possible to perform the RLI for subjects 1 and 4 since their LH data was insufficient. 

The same datasets were used for the WFMI and FMDI since the same data splits were 

required for both. The movement types were grouped differently for these two 

investigations in the classification phase, which is explained in Section 5.2.8. In 

summary the RLI used 16 datasets and the WFMI and FMDI used 40 datasets.  

 

 

5.2.4 Source Localisation using ICA as a Spatial Filter 

Background on ICA and spatial filters are given in Section 2.4, while studies showing 

the advantageous use of ICA as a spatial filter are examined in Section 3.4. ICA was 

run on each dataset described in the previous sub-section using EEGLAB’s automatic 

implementation of the infomax ICA algorithm: runica [41]. This was to decompose 

the EEG into individual localised sources of potentials. In order to accommodate for 

the variability of EEG patterns (as explained in the previous sub-section), the 

potentials or ICs emanating from relevant motor areas (see Section 2.2) were visually 

and uniquely selected and isolated for each dataset. Hence a spatial filter specific to 

each dataset was attained [29]. 

 

Table 5.2: Data arrangement for each investigation, where ‘RL’ denotes a single dataset with right 
and left movements combined, ‘RH’ a single dataset with right hand movements only and ‘LH’ a 
single dataset with left hand movements only. In contrast to ‘RL’, ‘RH, LH’ in a cell represents two 
datasets, such that the right and left hand movements are separated 

Investigation 
Type 

Bandpass 
filter type 

Movement 
Type 

Subject 
1 

Subject 
2 

Subject 
3 

Subject 
4 

Subject 
5 

Subjects 
2, 3 & 5 
combined 

Subjects 1 
- 5 
combined 

RLI 
Mu/beta 

Real - RL RL - RL RL - 
Imaginary - RL RL - RL RL - 

delta 
Real - RL RL - RL RL - 
Imaginary - RL RL - RL RL - 

WFMI and 
FMDI 

Mu/beta 
Real RH RH, LH RH, LH RH RH, LH LH RH 
Imaginary RH RH, LH RH, LH RH RH, LH LH RH 

delta 
Real RH RH, LH RH, LH RH RH, LH LH RH 

Imaginary RH RH, LH RH, LH RH RH, LH LH RH 
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Several ICs representing motor activity were selected [25][80]. This approach is 

advantageous since the inter-subject variability of EEG makes it difficult to predict 

which electrodes provide relevant information [59]. The use of multiple ICs may also 

help to capture the information from different regions of the motor areas (see Section 

2.2), which may activate during different stages of movement [59]. Spatial focusing 

was aided by the use of a high density EEG system (128 channels) to provide a better 

resolution for IC activity [41] (note the small localised activity in Figure 5.4 d).  

Motor IC selection also reduced the dimensionality of the data and filtered 

contamination from non-sensorimotor potentials in the brain [41][80].  

 

 
 

The criteria for IC selection were based mainly on viewing localised contralateral, 

ipsilateral or bilateral activity in the region of M1 that controls the hand, but activity 

in the SMA and PMA was also considered [30][37][59] (see Section 2.2 for more 

information). Ipsilateral components were considered since they may have 

represented part of the bilateral activity of the electrophysiological features (see 

Section 2.6). For mu and beta filtered data, the average ERD/ERS pattern was 

calculated using the ITV method (see Section 2.6.1) and this was used to aid IC 

selection. The desired pattern consisted of the presence of ERD just prior to and/or 

Figure 5.4: Examples of selected ICs for the RLI based on the visual inspection of scalp, ERP 
and ITV plots. a) shows the average ITV ERD/ERS pattern in the mu and beta frequencies for 
an IC from subject 2 and b) shows the corresponding IC scalp plot. ERD occurs after 2.5 s and 
ERS after 4.8 s in a), which respectively corresponds to sustained movement in S2 and 
relaxation at the commencement of S3 (refer to Figure 5.2). c) shows the average MRCP ERP 
pattern for an IC from subject 3 and d) shows the corresponding IC scalp plot. The BP between 
1 and 2 s, which corresponds to movement preparation during S1, is clear. Positive activity in 
the hand control region of M1 is clear in b) and d) with a much sharper resolution in d). 

a) b) 

c) d) 

ERD ERS 

BP 
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during S2 followed by ERS after the movement has ceased i.e. when S2 ends and S3 

starts [56]. ICs whose event-related patterns differed greatly from the above were 

discarded even if their activity was localized over the appropriate hand control areas. 

For delta-band filtered data, IC selection was also based on the presence of the 

Bereitschaftspotential in the average ERPs. Examples of the desired ERD/ERS and 

average MRCP ERP patterns, upon which the selection criteria were based, are shown 

in Figure 5.4 along with their associated scalp plots. The scalp plots of all the visually 

selected ICs for all datasets are shown in Appendix A as well as their ITV ERD/ERS 

or average MRCP ERP patterns. The number of visually selected ICs differed 

between the subjects and Table 5.3 summarises the range of selected ICs within each 

investigation.  

 

 

 

5.2.5 Time-Frequency Spectral Feature Extraction for ERD/ERS 

As explained in Section 2.6.1, TF representations of the ERD/ERS patterns from 

sensorimotor neural signals can be used to form a set of features [16]. A simple TF 

technique has shown success in extracting features from pre-recorded audio such as 

music and audio advertisements [89]. Both music and EEG are non-stationary signals; 

hence the technique was used in this study to extract features based on ERD/ERS 

patterns [16][89]. 

Table 5.3: Number of selected ICs, total features and optimum number of selected features 

 RLI WFMI FMDI 

 ERD/ERS MRCP ERD/ERS MRCP ERD/ERS MRCP 

Number 
selected ICs 6 - 8 4 - 15 8 - 12 3 - 12 8 - 12 3 - 12 

Total number 
of features 

1176 - 
1568 84 - 315 1568 - 

2352 63 - 252 1568 - 
2352 63 - 252 

Optimum 
Number of 
selected 
features 

5 7 18 17 8  8 
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The TF technique is explained graphically in Figure 5.5 and was used to extract 

power spectral features from the selected ICs. It was used to capture the changes in 

power over time for different frequencies and thus captures the event-related power 

synchronisations and desynchronisations for each trial [16][24]. The time range from 

t = 1 s to t = 4 s was considered in order to include pre-movement (S1) and movement 

or movement-imagination (S2) phases (refer to Figure 5.2) [24][25][28][67]. An 

overlapping sliding window of 300 ms was then applied in increments of 100 ms 

(similar window sizes are used in [25] and [28]). The power spectrum for each 

window was calculated using a fast Fourier transform (FFT) [28][89]. The resulting 

frequency spectrum was then split into 7 bands of 3 Hz each (similar frequency splits 

were used in [25], [28] and [67]) and the sum of the powers within each band formed 

a feature [89]. 28 time windows were extracted over the time range considered, with 7 

power band features each. This was done for each IC resulting in a large number of 

features per dataset equal to (number of ICs) × 28 × 7. The range of the total number 

of features for each investigation is shown in Table 5.3. 

5.2.6 Time-Frequency Spectral Feature Extraction for MRCP 

A method of feature extraction based on traditional time-domain analysis of MRCP 

(refer to Section 2.6.2) was attempted but proved unsuccessful. Refer to Appendix B 

for details of this method. Hence an alternate approach involving TF analysis was 

Figure 5.5: Flow of TFSE feature extraction algorithm 

FFT 8 Hz 

30 Hz 

Sum power in 3 Hz 
bins. Each sum forms 
a feature giving a 
total of 7 features 

Sliding time window 
300 ms each with 100 

ms increments 

Consider time range between 1 and 4 s 
to include pre-movement and movement 

phases 
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adopted since some studies have used TF techniques for MRCP as explained in 

Section 2.6.2.  

 

A TF technique similar to that used for the extraction of TFSE features is used to 

extract power features from the selected ICs for delta-filtered data and is shown in 

Figure 5.6. The time range between t = 0.6 s to t = 2.9 s (most of S1 and beginning of 

S2 in Figure 5.2) was considering. This time range was chosen considering the 

estimated time of occurrence of the Bereitschaftspotential, motor potential and 

rebound rate (see Section 2.6.2). Although the timing and amplitudes of these 

occurrences were not used as features, they affect the TF characteristics of the signals, 

which may in turn allow class discrimination. As with TFSE feature extraction, an 

overlapping sliding window of 300 ms was then applied in increments of 100 ms and 

the power spectrum for each window was calculated using a FFT [25][28][67][89]. 

Since the frequency range of MRCP signals was limited to 3 Hz [24] (see Section 

5.2.2), only one frequency band was used, wherein the sum of the power was 

calculated. 21 time windows were extracted over the time range considered, with 1 

power band feature each. This was done for each IC and the total number of features 

is given by (number of ICs) × 21 × 1. Since the numbers of ICs for each investigation 

and dataset differed, the range of the total number of features associated with each 

investigation is summarized in Table 5.3. 

 

 

Figure 5.6: Flow of TFSM feature extraction algorithm 

FFT 

3 Hz 

0 Hz 

Sum of power 
between 0 and 3 Hz 
gives a single feature 
per window 

Sliding time window 
300 ms each with 100 

ms increments 

Consider time range between 0.6 and 2.5 s 
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5.2.7 Feature Selection 

The TFSE and TFSM feature sets were very large and the dimensionality needed to 

be reduced to simplify the classification problem and allow the classifier to perform 

optimally [16]. At the same time, key information needed to be retained [16]. The 

Bhattacharyya distance (BD) was used to reduce the TFSE and TFSM feature sets to 

much smaller feature sets, which the classifiers could handle [67][28]. The TFSE and 

TFSM feature sets were also concatenated to form a combined dataset (referred to as 

COMB) and the BD was used to reduce this dataset as well. This also reduced any 

duplicated movement information that was contained in both feature sets. 

 

The BD can be used to measure the separability of classes for univariate feature sets 

[28]. Hence it measures how well a single feature can differentiate between two 

classes and can thus be used to find those features, from a multivariate feature set, that 

individually capture the differences between the classes best [28]. It is related to the 

Bhattacharyya coefficient (BC) which measures the closeness of two statistical 

populations or sample sets by considering the overlap of their respective probability 

distributions [90][91]. The more the probability distributions for each classes’ sample 

populations overlap, the larger the BC will be calculated to be according to 

equation 5.1 [91]. The BD can be calculated from the BC according to equation 5.2 

and decreases as the BC increases [91]. Variables a and b represent the probability 

distributions of the two classes concerned, while x is the variable describing the 

values of the samples.  

 

  !" !, ! = ! ! ! !!"        5.1 

!" !, ! = − ln !" !, !      5.2 

 

For two class classifier problems such as the RLI and WFMI, the BD was simply 

calculated for each feature using all trials concerned and those with the largest BDs 

were selected to form a small subset of features [28]. For multiclass problems such as 

the FMDI, the 2-class feature selection method was extended by considering each 

binary combination of classes and calculating the BD for each pair. A matrix was 

created containing the BD for each class pair for each feature. For the FMDI, which 



47 
 

contains 5 classes, the matrix was a 10 by N matrix, where N is the total number of 

features and 10 is the number of possible pairings of the 5 classes. For each of the 10 

pairs of classes, the BDs over all features were sorted in descending order. A 

weighted average were then applied across all 10 sets of sorted BDs to select the 

features that had the highest BDs for all classes considered. 

 

The number of selected features used for classification was varied iteratively for 

TFSE, TFSM and COMB feature sets and the classification accuracies (measured 

using the ACA method described in Section 5.2.8.4) using MD clustering were 

examined for all datasets and investigations [59][66][80]. Section 5.2.8.2 explains the 

advantages of the use of MD clustering. The change in accuracy with respect to 

feature number is averaged over all datasets within each investigation and plotted in 

Figure 5.7 [80]. The optimum number of features for each investigation is 

summarized in Table 5.3 and it is shown that low dimensionality is provided in all 

cases. 

 

 

Figure 5.7: Change in accuracy with respect to the number of selected features for all 
investigations and feature types. The number of features producing the best accuracy (ACA) for 
each case is circled. A maximum of 25 BD-selected features were tested for the RLI and WFMI 
and 12 for the FMDI. This is to limit dimensionality and reduce classifier complexity in the 
former case and to accommodate for the limited data in the latter case (since more training data is 
needed for more input features [97]). 
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Feature selection was then performed for each dataset (see Section 5.2.3) since the 

features holding crucial movement-control information that can separate the classes 

can differ between subjects, between right and left hands and between real and 

imaginary movements [65]. The number of features selected for each dataset depends 

on the investigation it is associated with.  

5.2.8 Classification 

The MD was used to first remove outliers and thereafter MD and ANN techniques 

were used to attempt to translate the selected features into a class representing a single 

type or a grouped type of movement. Classification was done for each dataset and 

investigation on a single-trial basis. The MD clustering method provided an objective 

first view at the classification accuracy and the ANN method attempted to validate 

and improve the results. The method of calculating the classification accuracy is 

explained and this method was applied to both classification methods to yield the 

results for all three investigations. 

5.2.8.1 Mahalanobis Distance Outlier Removal 

Outlier removal is an important task in data mining and involves identifying, from the 

sample population, those samples/observations that deviate from the expected or 

general range and consequently removing or accommodating them [92][93]. The 

extreme values of these samples could be due to the erroneous recording of data [93] 

or the origination from a different mechanism [94] and could thus incorrectly skew 

the results of the data analysis [92][93]. Since the data was obtained from EEG, 

outliers were most likely due to noisy bursts or recording errors [11] and were thus 

dealt with by removing them from the population [16].  

 

The MD can be used to find multivariate outliers [95] by finding those samples that 

lie far away from the mean of a population [92][93]. To identify the outliers, the MD 

from the feature vector of each trial to the mean of the feature vectors for all the trials 

was calculated, thus forming a set of MDs for all trials [95]. The standard deviation 

for all the MDs was then calculated. If the MD for a given feature vector from a 

single trial was greater than 3 times the standard deviation, that vector was defined as 

an outlier and removed [25]. Thus a feature vector from a single-trial was considered 
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an outlier only if it was very different from the feature vectors for the total population 

[92][93]. In this way outliers were removed before classification. 

5.2.8.2 Mahalanobis Distance Clustering 

A MD-based classifier is simple and robust and despite its good performance in BCI 

research, including multiclass problems, has not been widely used therein [11]. It is 

based on the MD, which can be used as a multivariate method of measurement 

between objects and is appropriate since it takes into account the correlation in the 

data [95]. It is also suitable for use with a few features [66] and is an objective means 

of classification not susceptible to overtraining as ANNs are [11]. It can be used to 

find the dissimilarity between multivariate feature vectors from different classes [95] 

and in that way determine if the chosen features capture the separateness of the 

classes. The squared MD di
2 between the ith vector of dataset x and the mean of dataset 

y can be calculated using equation 5.3, where µY is the mean of dataset y, CY
-1 is the 

inverse covariance matrix of dataset y and T is the transpose operator [66].  

 

!!! = !! − !! !!!!! !! − !!                                          5.3 

 

Figure 5.8 shows classification by MD clustering diagrammatically using the example 

of the problem to classify between right and left hand movements, but only using 2 

features for classification so as to allow feature representation on a 2D graph. When 

considering a single-trial for classification, the MDs from that observation/trial to the 

means of all the classes are calculated [66]. The mean of a class represents the centre 

of the cluster for that class. If the MD between the single-trial’s feature vector xi and 

the mean feature vector of its class µx is smaller than the MDs between that single-

trial vector and the mean vectors of the other class(es), then it can be concluded that xi 

belongs to class x and that classification is successful for that single-trial.  
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The trial to be classified was not used in the calculation of the mean and covariances 

of the clusters/classes so that it did not impact on the mean and covariance of the class 

to which it did in fact belong. Hence, for each trial, and the means, covariances and 

MDs were calculated based on all other trials. This allowed all trials to be used for 

testing and eliminated the need to split the data into training and testing datasets for 

this type of classification. This is advantageous since data is limited in BCI research 

[11]. In this way classification using MD clustering was performed on all datasets for 

all investigations and the classification accuracy was thereafter calculated.  

5.2.8.3 Neural Network Classification 

An ANN can approximate almost any function, given enough neurons, and can 

classify any number of classes making them flexible and adaptable to many problems 

[11][96]. A multilayer perceptron (MLP) ANN consists of neurons arranged in 

several layers i.e. an input layer, one or more hidden layers and an output layer [11]. 

MLP ANNs have thus been used for a variety of BCI problems including binary and 

multiclass classifications scenarios [11]. They are however sensitive to overtraining 

especially with noisy data such as EEG [11]. In this research, MLP ANNs used the 

Figure 5.8: Illustration of Mahalanobis distance clustering between 2 classes. Each trial is 
represented by a small solid dot, while the crosses are the means of the clusters/classes. The hollow 
circle (xi) is the trial to be classified, while lines represent the distances to each cluster mean. In this 
scenario xi is classified as belonging to the LH Cluster, since MD1 > MD2. 
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selected features to predict the movement-type class for single-trials. They were 

implemented using the Netlab toolbox for MATLAB [79]. From this point on the 

MLP ANNs used in this research are referred to only as ANNs.  

 

Outliers were removed from the reduced feature set using the MD as explained in 

Section 5.2.8.1. Each dataset was then randomly divided into training and testing data 

in a 7:3 ratio [67]. The classes were represented as numerical outputs since ANNs 

require a mapping to a numerical output. For the RLI, a single binary output was used 

for all associated ANNs, where 1 and 0 corresponded to right and left respectively 

[96]. Similarly for the two-class problem in the WFMI, a single binary output was 

used, where 1 and 0 corresponded to wrist and finger movements respectively. 3 

binary outputs were used to represent the 5 classes in the FMDI, where the 

combinations of 001, 010, 011, 100 and 101 respectively represented WE, WF, FE, 

FF and TR [96][97].  

 

The structures of the ANNs are summarized in Table 5.4 and depend on the type of 

investigation. The numbers of nodes in the hidden layer were chosen by iteratively 

varying the number of hidden nodes to select that which yielded the smallest 

classification error [96][97]. A subset of the training data, the validation data, was 

used to test the performance of each ANN structure when evaluating the optimum 

number of hidden nodes [96][97]. Hence curves comparing accuracy against the 

number of hidden nodes were generated for all datasets within each investigation, 

where the maximum number of hidden nodes was limited to 30 to prevent the ANN 

becoming too complex [96]. The number of hidden nodes used for each investigation 

and feature type was calculated by averaging the accuracy curves across all related 

datasets. 

 

Thus ANNs were structured according to the type of investigation and feature type 

and trained, using the training data, for all datasets [25][96]. Each ANN was then 

tested by using each trial in the testing dataset to compare the class predicted by the 

ANN to the trial’s actual class [25][96]. The accuracy was evaluated using cross 

validation, where the testing and training data were randomly separated three times 

and the accuracy each time is calculated. The three results were averaged to yield the 

accuracy [25]. 
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5.2.8.4  Accuracy Calculation  

In clinical applications, the statistics most often used to evaluate the accuracy of 

diagnostic tests are sensitivity and specificity [98]. Sensitivity describes the likelihood 

of a positive test result if a patient has a disease, while specificity indicates the 

likelihood of a negative result if the patient does not have the disease [98]. They have 

the advantage of allowing the comparison of the diagnostic potential of different 

clinical tests [98] and since BCI research is very much linked with medical research, 

the use of these statistical measures, as done in [43], is advantageous. Sensitivity and 

specificity are calculated using equations 5.4 and 5.5 respectively, where TN, TP, FN 

and FP represent true negative, true positive, false negative and false positive 

respectively [43][98].  

!"#$%&!"!#$ =    !"
!"!!"

     5.4 

!"#$%&%$%'( =    !"
!"!!"

     5.5 

 

Sensitivity and specificity can be generalized if one considers all cases where the 

patient has a disease as belonging to class 1 and all those who do not have the disease 

as belonging to class 2. If one considers right vs. left hand classification and labels 

right hand movements as class 1 and left hand movements as class 2, selectivity and 

specificity will respectively indicate the percentage of right and left hand movements 

that are correctly classified. This applies similarly to wrist vs. finger movement 

Table 5.4: Summary of optimum ANN structures for each investigation.  

 RLI WFMI FMDI 

 TFSE TFSM COMB TFSE TFSM COMB TFSE TFSM COMB 

Number of 
input nodes 5 7 9 18 17 9 8 8 11 

Number of 
hidden 
nodes 

6 15 11 24 24 17 15 16 16 

Number of 
output 
nodes 

1 1 1 1 1 1 3 3 3 
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classification or any other binary classification problem. Hence both sensitivity and 

specificity measure the accuracy rate within a single class.  

 

This idea can be extended to multiclass problems where the accuracy rate within each 

class is measured using Equation 5.6, where Ai indicates the accuracy in class i, Ci the 

number of correctly classified cases from class i and Fi the number of falsely 

classified cases belonging to the same class. The overall accuracy can then be 

calculated by finding the average of the sensitivity and selectivity or by the average of 

the all accuracies per class. Equation 5.7 shows this, where N refers to the number of 

classes and Ai to the accuracy for each class. In this research, this measure of 

classification accuracy is referred to as the average of class accuracy (ACA).  

                !! =   
!!
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Hence the classification accuracies of for all investigations and datasets, using both 

classifiers, were evaluated using the ACA as shown by equation 5.7. Accuracies for 

other studies mentioned in this research (mostly in Chapter 3) used the measure of the 

AOC. They both essentially evaluate the overall percentage of trials that are correctly 

classified and are thus comparable provided that the number of trials for each class is 

similar.  

5.3 Conclusion  

A method aimed at improving the interpretation of EEG using a sensorimotor BCI is 

presented in this chapter. It is designed to allow the differentiation of EEG for 

different types of unilateral hand movements, but its general structure was applied to 

all three investigations. The customization of the general method to suit each 

investigation is detailed for each stage of the method. The experimental setup, the 

data acquisition stage and the pre-processing stage are explained. The method uses 

ICA as a spatial filter to aid the extraction of TFSE and TFSM features, which are 

used individually and in combination. Smaller subsets of features are selected using 

the BD and are then classified using MD-clustering and ANNs. The method to 
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evaluate the accuracy of classification for all investigations is also described and the 

accuracy results are presented in the next chapter.  
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Chapter 6  

Results 

6.1 Introduction 

This chapter presents the results of the implementation of the method described in the 

previous chapter. The results of all three investigations are presented and involve the 

presentation and analysis of: 1) the time-frequency characteristics of the features that 

are selected using the BD, and 2) the classification accuracies.  

 

The selected features differ for each dataset (see Section 5.2.7). Hence, within each 

investigation, the selected features are plotted for left and right hands, real and 

imagined movements, and TFSE and TFSM features on an individual subject basis 

i.e. for each dataset described in Section 5.2.3. This was done by combining the 

selected features from all the ICs associated with that dataset since the selected 

features could originate from multiple ICs. The TF positions of the selected features 

from all ICs are represented on a single TF plot for each subject’s real and imagined 

data. These selected features were then summed for all individual subjects in order to 

highlight those features that are selected more frequently. 

 

The classification accuracy is labelled as Accuracy in all the figures in this chapter 

and was calculated using the ACA method described in Section 5.2.8.4. For each 

investigation, the classification accuracies for the real and imaginary, RH and LH 
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datasets for each subject are plotted and the average accuracies across all subjects are 

tabulated. This is done for TFSE, TFSM and COMB features. The datasets containing 

data from all the subjects (those labelled AllSubjects in the plots in this chapter), are 

not included in the calculation of the average accuracy, since they do not represent 

data from a single subject and will thus distort the mean accuracy across the subjects. 

Their use is explained in Section 5.2.3. In all plots, Imag represents data for 

imaginary movements. 

6.2 Right vs. Left Hand Movement Investigation (RLI) 

6.2.1 Selected Features 

The TF distributions of the selected TFSE and TFSM features for each subjects’ data 

for the RLI are shown in Figure 6.1 and Figure 6.2 respectively. Figure 6.3 shows the 

summation of the selected features for all individual subjects. As explained in Section 

5.2.3, only data for subjects 2, 3 and 5 can be used in the RLI. Right and left hand 

data are combined. The time scales for all plots are consistent with the timing diagram 

in Figure 5.2, which can be found in Section 5.2.1. 

 

 

 

Figure 6.1: TF distributions of BD selected TFSE features for the RLI. Selected features are 
shown in black and shown for each subject’s data for real and imagined movements. Imag 
represents data for imaginary movements.  



57 
 

 

 

6.2.2 Accuracy 

The classification accuracies for the RLI, based on TFSE, TFSM and COMB features, 

are shown in Figure 6.4, Figure 6.5 and Figure 6.6 respectively. Accuracies for each 

individual subject and for the combination of subjects are shown in these plots. Table 

6.1 summarises the average classification accuracy across all individual subjects used 

in the RLI.  

 

Figure 6.2: TF distributions of BD selected TFSM features for the RLI. Selected features are 
shown in black and shown for each subject’s data for real and imagined movements.  

Figure 6.3: TF distributions of BD selected TFSE and TFSM features for the RLI, which have 
been summed for all individual subjects’ data for real and imagined movements. The greyscale 
indicates the frequency of occurrence of a feature amongst all subjects i.e. black for features 
occurring in all subjects, and white for features occurring in no subjects. 
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Figure 6.4: Accuracy for individual and combined subjects for TFSE features in the RLI using 2 
different classifiers i.e. ANN and MD. 

Figure 6.5: Accuracy for individual and combined subjects for TFSM features in the RLI using 2 
different classifiers i.e. ANN and MD. 

Figure 6.6: Accuracy for individual and combined subjects for COMB features in the RLI using 2 
different classifiers i.e. ANN and MD. 
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6.3 Wrist vs. Finger Movement Investigation (WFMI) 

6.3.1 Selected Features 

The TF distributions of the selected TFSE and TFSM features for each subjects’ data 

for the WFMI are shown in Figure 6.7 and Figure 6.8 respectively. Figure 6.9 shows 

the summation of the selected features for all individual subjects. Feature selection for 

each subject’s right and left hand data is shown. As explained in Section 5.2.3, the left 

hand data for subjects 1 and 4 is not available. The time scale for all plots is 

consistent with the timing diagram in Figure 5.2 which can be found in Section 5.2.1. 

 

 

 

 

 

 

Table 6.1: Summary of average classification accuracies and standard deviations for the RLI (%) 

 
TFSE TFSM COMB Average of all 

Feature Types 

MD ANN MD ANN MD ANN MD ANN 

Real         

Average of all individual subjects 84 90 66 69 85 82 78.7 80.4 
Average of all individual subjects 
and both classifiers 

87 ± 11 68 ± 17 84 ± 11 79.5 ± 15.1 

Imaginary         
Average of all individual subjects 83 88 76 71 83 81 80.7 79.7 
Average of all individual subjects 
and both classifiers 

85 ± 9 73 ± 7 82 ± 8 80.2 ± 9.1 

Average of Real and Imaginary         

Average of all individual subjects 84 89 71 70 84 81 79.7 80.0 
Average of all individual subjects 
and both classifiers 

86 ± 9 71 ± 13 83 ± 9 79.9 ± 12.3 
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Figure 6.7: TF distributions of BD selected TFSE features for the WFMI. Selected features are 
shown in black and shown for each subject’s data for real and imagined movements. Imag 
represents data for imaginary movements. 
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Figure 6.8: TF distributions of BD selected TFSM features for the WFMI. Selected features are 
shown in black and shown for each subject’s data for real and imagined movements.  

Figure 6.9: TF distributions of BD selected TFSE and TFSM features for the WFMI, which have 
been summed for all individual subjects’ data for real and imagined movements. The greyscale 
indicates the frequency of occurrence of a feature amongst subjects i.e. black for features 
occurring in all subjects, and white for features occurring in no subjects. 

 



62 
 

6.3.2 Accuracy 

The classification accuracies for the WFMI, based on TFSE, TFSM and COMB 

features are shown in Figure 6.10, Figure 6.11 and Figure 6.12 respectively. 

Accuracies for each individual subject and for the combination of subjects are shown. 

Table 6.2 summarises the average classification accuracy across all individual 

subjects used in the WFMI.  

 

 
 

 

Figure 6.10: Accuracy for individual and combined subjects for TFSE features in the WFMI using 
2 different classifiers i.e. ANN and MD. 

Figure 6.11: Accuracy for individual and combined subjects for TFSM features in the WFMI 
using 2 different classifiers i.e. ANN and MD. 
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Figure 6.12: Accuracy for individual and combined subjects for COMB features in the WFMI 
using 2 different classifiers i.e. ANN and MD. 

Table 6.2: Summary of average classification accuracies and standard deviations for the WFMI (%) 

 
TFSE TFSM COMB Average of all 

Feature Types 

MD ANN MD ANN MD ANN MD ANN 

Real         

Average of all individual subjects 64 70 54 57 58 71 58.6 65.9 
Average of all individual subjects 
and both classifiers 63 ± 9 56 ± 7 60 ± 12 59.8  ± 10.6 

Imaginary         
Average of all individual subjects 67 72 51 59 59 71 59.0 67.3 
Average of all individual subjects 
and both classifiers 69 ± 7 55 ± 7 65 ± 16 63.2 ± 12.4 

Average of Real and Imaginary         

Average of all individual subjects 65 71 53 58 59 71 58.8 66.6 
Average of all individual subjects 
and both classifiers 66 ± 8 55 ± 7 63 ± 14 61.5 ± 11 
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6.4 Five Movement Differentiation Investigation (FMDI) 

6.4.1 Selected Features 

The TF distributions of the selected TFSE and TFSM features for each subjects’ data 

for the FMDI are shown in Figure 6.13, and Figure 6.14 respectively. Figure 6.15 

shows the summation of the selected features for all individual subjects. Feature 

selection for each subject’s right and left hand data is shown. As explained in Section 

5.2.3, the left hand data for subjects 1 and 4 is not available. The time scale for all 

plots is consistent with the timing diagram in Figure 5.2 which can be found in 

Section 5.2.1. 

 

 

 

Figure 6.13: TF distributions of BD selected TFSE features for the FMDI. Selected features are 
shown in black and shown for each subject’s data for real and imagined movements. Imag 
represents data for imaginary movements. 
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Figure 6.14: TF distributions of BD selected TFSM features for the FMDI. Selected features are 
shown in black and shown for each subject’s data for real and imagined movements. 

Figure 6.15: Time-frequency distributions of BD selected TFSE and TFSM features for the 
FMDI, which have been summed for all individual subjects’ data for real and imagined 
movements. The greyscale indicates the frequency of occurrence of a feature amongst subjects i.e. 
black for features occurring in all subjects, and white for features occurring in no subjects. 
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6.4.2 Accuracy 

The classification accuracies for the FMDI, based on TFSE, TFSM and COMB 

features, are shown in Figure 6.16, Figure 6.17 and Figure 6.18 respectively. 

Accuracies for each individual subject and for the combination of subjects are shown. 

Table 6.3 summarises the average classification accuracy across all individual 

subjects used in the FMDI.  

 

 
 

 

Figure 6.16: Accuracy for individual and combined subjects for TFSE features in the FMDI using 
2 different classifiers i.e. ANN and MD. 

Figure 6.17: Accuracy for individual and combined subjects for TFSM features in the FMDI 
using 2 different classifiers i.e. ANN and MD. 
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6.5 Conclusions 

The results of the implementation of the method for all three investigations are 

presented in this chapter. For each investigation, the time-frequency distributions of 

the features selected using the BD are plotted, followed by the classification 

accuracies, which are shown for individual subjects and on average. The next chapter 

discusses the results in relation to the purpose of the research.   

Figure 6.18: Accuracy for individual and combined subjects for COMB features in the FMDI 
using 2 different classifiers i.e. ANN and MD. 

Table 6.3: Summary of average classification accuracies and standard deviations for the FMDI (%) 

 
TFSE TFSM COMB Average of all 

Feature Types 

MD ANN MD ANN MD ANN MD ANN 

Real         

Average of all individual subjects 57 63 24 25 49 54 43.3 47.3 
Average of all individual subjects 
and both classifiers 51 ± 6 25 ± 8 44 ± 13 40.0 ± 17.8 

Imaginary         
Average of all individual subjects 55 51 28 29 54 48 45.7 42.9 
Average of all individual subjects 
and both classifiers 53 ± 11 29 ± 8 51 ± 11 44.3 ± 14.9 

Average of Real and Imaginary         

Average of all individual subjects 56 57 26 27 51 51 44.5 45.1 
Average of all individual subjects 
and both classifiers 52 ± 9 27 ± 8 48 ± 12 42.1 ± 16 
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Chapter 7  

Discussion 

7.1 Introduction 

This chapter discusses the results presented in the previous chapter. For each 

investigation the following are discussed: 1) the time-frequency characteristics of the 

selected features, 2) the success of the investigation in relation to its purpose and 

success criteria (which were defined in Chapter 4) and 3) the inter-subject variability.  

 

The time scales of the plots of the selected features shown in Chapter 6 are consistent 

with the timing of the trials shown in Figure 5.2. The trials are time-locked to the 

movement stimuli or cues as explained in Section 5.2.1 and not to movement onset. 

Hence the exact times of commencement and completion of the performance or 

imagination of a movement in any given trial cannot be clearly defined, since a test 

subject will most likely not respond immediately to a cue. A fraction of a second 

delay between the computer’s cue and the subject’s response is created and most 

likely varies from trial to trial.  

 

Movement onset is thus estimated to occur between 2.1 and 2.7 s and on average at 

approximately 2.3 s (these estimates are based on inspection of the subjects’ ERPs 

and ITV ERD/ERS patterns; some of which are shown in Appendix A). Similarly, the 

commencement of the performance or imagination of muscle relaxation is estimated 
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to occur on average around 5.3 s such that complete relaxation is estimated to be 

attained around 5.6 s.  

 

Movement preparation in the motor cortices is estimated to commence between 0.3 

and 1.3 s, but on average around 0.8 s (refer to Section 2.6). Based on these 

assumptions, the early BP could commence from 0.3 s on average and the late BP 

from around 1.9 s (refer to Section 2.6.2 for details on the BP). The feature extraction 

method uses a time window of 0.3 s and has a resolution of 0.1 s (see Sections 5.2.5 

and 5.2.6) which may blur the boundary between the pre-movement, movement 

performance/imagination and movement completion phases. Hence the estimations of 

the different movement phases are guidelines used to determine whether the selected 

features are extracted from the movement preparation, or movement 

performance/imagination phase.  

 

For each investigation, the time and frequency characteristic of the TFSE and TFSM 

features are examined for individual subject’s data and on average. The selected 

TFSE features are categorised into four groups i.e. mu pre-movement (MPM), beta 

pre-movement (BPM), mu movement performance/imagination (MMPI) and beta 

movement performance/imagination (BMPI). This is done based on typical ERD/ERS 

patterns described in the literature [56] (and explained in more detail in Section 

2.6.1). This research maximises the information needed to classify between different 

types of hand movements on the same hand and thus includes both pre-movement and 

movement performance/imagination features [24][25][67]. Movement preparation or 

pre-movement features become increasingly valuable for a real time system in order 

to prevent delays between movement intentions and BCI responses [67]. TFSM 

features are grouped into early BP, late BP and movement-onset phases [63].  

7.2 Right vs. Left Hand Movement Investigation (RLI) 

7.2.1 Analysis of Selected Features 

Figure 6.3 shows that MPM features occur more frequently for imagined movements 

than for real movements. This is verified in Figure 6.1, where MPM features are 

absent in 2 out of 3 subjects for real data, while are prevalent in all subjects for 
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imagined data. BPM features also appear more frequently in imagined data than in 

real data as shown in Figure 6.3. Figure 6.1 shows that BPM features are present in 

subjects 3 and 5 for real movements, while they are present in all 3 subjects for 

imagined movements. On the other hand, MMPI features are absent for all imagined 

movements for all subjects (see Figure 6.1), but shows some prevalence for real 

movements (see Figure 6.3).  

 

As shown by Figure 6.3, features from imagined movements are largely from the pre-

movement phase, while many features for real movements come from the time of 

estimated movement onset. Real movement BMPI features also show some 

commonality amongst subjects in the lower beta range (15 – 18 Hz) close to the 

estimated movement onset. These BMPI features are common to both real and 

imagined movements. Furthermore BMPI features are common in all subjects for real 

and imagined data, although their specific timing and frequencies differ between 

subjects and between real and imagined data.  

 

TFSM features that appear in the time range estimated to correspond to the early BP 

are common in all subjects for real and imagined data, as shown in Figure 6.2. Figure 

6.3 shows that fewer features occur within the estimated time of the late BP in real 

movements when compared to imagined movements. Conversely more features from 

the estimated movement onset phase are prevalent for real movements than for 

imagined movements. 

 

A few points can be deduced from the above observations: 

• In this research, for the investigation between right and left hand movements, the 

mu (and to a smaller extent beta) frequency range plays a more important role in 

movement preparation for imagined movements than in real movements, while the 

mu frequency range plays a more important role in movement performance than 

in movement imagination.  

• In this investigation, imagined movements favour pre-movement TFSE features, 

while real movements favour TFSM and TFSE features close to movement onset.  

• Activity in the beta frequencies during movement imagination and performance 

shows commonality and a large prevalence in this investigation.  
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The relevance of these deductions in relation to similar literature and to future work is 

discussed in Section 7.5.2. 

7.2.2 Accuracy Analysis 

The average accuracies for the RLI are summarised in Table 6.1. The success 

criterion mentioned in Section 4.2 requires an average classification rate of 80 %. 

Both the MD and ANN classifiers meet this criterion for real and imagined 

movements when using TFSE or COMB features, but not when using TFSM features 

alone. TFSE features provide the best results with an overall average of 86 %, 

followed by COMB features with an overall average of 83 %, and thereafter TFSM 

features with an overall average of 71 %. Reasons for this order are discussed later in 

this chapter in Section 7.5.2. Navarro et Al [26] report an average accuracy of 77 % 

when using features obtained from the theta, mu and beta frequency ranges, in 

conjunction with ICA, to discriminate between the EEG for right and left groups of 

different performed and imagined wrist movements. In a similar study, Khan and 

Sepulveda [55] obtain a classification accuracy of 89 % when discriminating between 

the right and left EEG for different kinds of imagined wrist movements individually. 

(These studies do not detail which measure of accuracy is used, hence the use of AOC 

is assumed since it is common [11]). This investigation obtains a similar average 

result when using ANN classifiers and TFSE features for imagined movements 

(88 %). Thus the results for the RLI meet its success criterion and match the best 

results obtained in recent similar studies. This suggests the suitability of the method to 

allow the investigation of EEG discrimination of different types of unilateral hand 

movements.  

 

As shown in Table 6.1, the ANN classifier performs better than the MD clustering 

classifier in some cases but not in others. The results show that the ANN classifiers 

are well suited to TFSE features and this combination provides the best results in the 

investigation (average of 89 %). MD clustering is more suited to TFSM features and 

to COMB features. For real movements, the ANN classifiers perform slightly better 

than the MD clustering (80.4 % vs. 78.7 % respectively), while the converse is true 

for imagined movements (79.7 % vs. 80.7 % respectively). The results for TFSM 

imagined movements are better than for TFSM real movements (73 % vs. 68 % 
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respectively), while results for real movements when using TFSE or COMB features 

are slightly better than for imagined movements (87 % vs. 85 % and 84 % vs. 82 % 

respectively).  Overall, the average results for real and imagined movements are 

similar (79.5 % vs. 80.2 % respectively). The comparison between real and imagined 

movements is discussed further in Section 7.5.4. 

7.2.3 Inter-Subject Variability 

In this investigation, the highest accuracy for an individual subject occurs for subject 

3’s imaginary movements (98 % using an ANN as shown in Figure 6.4) and is 

obtained using TFSE features. The lowest corresponding accuracy occurs for subject 

2’s real movements (71 % using MD clustering). This presents a large difference of 

approximately 40 % over real and imagined movements for TFSE. Average standard 

deviations, over real and imagined movements, of 9 % and 13 % are shown in Table 

6.1 for TFSE and TFSM features respectively. The overall standard deviation for real 

movements is greater than that for imagined movements; 17 % vs. 7 % respectively 

for TFSM and 11 % vs. 9 % respectively for TFSE.  Figure 6.4 shows classification 

accuracies between 53 % and 73 % for TFSE data for grouped subjects (labelled as 

AllSubjects), while Figure 6.5 shows corresponding accuracies between 54 % and 64 

% using TFSM features. These results are not much better than the odds of random 

selection in a binary problem (50 %). This indicates very little commonality between 

subjects and along with the above-mentioned points, indicates a large inter-subject 

variance.  

7.3 Wrist vs. Finger Movement Investigation (WFMI) 

7.3.1 Analysis of Selected Features 

According to Figure 6.9, the TFSE features for the WMFI are in general more evenly 

distributed than those for the RLI, which is most likely due to the use of more selected 

features (18 vs. 5) and more test subjects (5 vs. 3 for RH only). However, for 

imagined LH movements, the features are grouped into two regions i.e. before 

movement onset below mid beta frequencies (< 20 Hz) and toward the late stage of 

movement performance/imagination in the upper beta frequencies (> 20 Hz). The 

features for real movements for the RH also appear slightly more scattered than for 
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the RH imagined movements. Figure 6.9 also shows a higher prevalence of MPM 

features for RH imagined movements than for RH real movements; however this is 

not as clear for the LH. A higher prevalence of BPM features is shown in real 

movements in comparison to imagined movements and this is clearer for the left hand 

than for the right. Figure 6.9 also shows a higher prevalence of MMPI features in LH 

real movements than LH imaginary movements. BMPI features are common to right 

and left, real and imagined movements. As shown in Figure 6.7, groupings of BMPI 

features are clear for all of subject 2’s data, for subject 4’s RH real movements, 

subject 1’s RH imaginary movements, subject 5’s RH imagined movements and for 

subject 3’s LH real and imagined movements.  

 

TFSM features from the estimated region of the early BP are common to right and 

left, real and imagined movements, but occur more frequently for LH imagined 

movements, as shown in Figure 6.9. In contrast, TFSM features associated with the 

estimated time of movement onset appear more frequently in real than imagined 

movements. No pattern is clear for late BP features, but clusters of these features are 

shown in Figure 6.8 for the RH, real and imagined movements, for subject 2 and 

subject 5.  

 

In summary, a few points can be deduced from the above observations:  

• Pre-movement features pay a bigger role in imagined movement classification 

than in real movement classification. This is seen, in this investigation, in the pre-

movement features for TFSM and mu TFSE, but not in beta TFSE. LH TFSE, and 

right and left hand TFSM analysis suggests that features extracted during or after 

movement onset play a more prominent role in movement performance than in 

movement imagination.  

• Activity in the beta frequencies during movement imagination and performance 

shows commonality and a large prevalence (shown by numerous clusters of 

features) in this investigation.  

The relevance of these deductions in relation to literature and to future work is 

discussed in Section 7.5.2. 
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7.3.2 Accuracy Analysis 

The average accuracies for the WFMI are summarised in Table 6.2. The success 

criterion described in Section 4.3 requires average classification accuracy close to 

70 %. TFSE or COMB features meet this criterion for real and imagined movements 

when using ANN classifiers, since they provide average classification accuracies 

between 70 % and 72 %. TFSE features provide the best results with an overall 

average of 66 %, followed by COMB feature types with an overall average of 63 %, 

and thereafter TFSM features with an overall average of 55 %. Reasons for this order 

are discussed later in this chapter in Section 7.5.2. Considering that this investigation 

involves a binary classification problem, TFSM features do not provide much better 

classification than selection by chance i.e. 50 %. The results of this investigation can 

be compared to other BCI binary classification problems involving discriminating 

EEG for different unilateral hand movements. The closest study is that by Vuckovic 

and Sepulveda [25], which achieved an accuracy of 73 % for real movements when 

averaged across all subjects and all six wrist movement pairs investigated. A 

corresponding average result of 71 % was achieved for imagined movements (also see 

Section 3.2). When using TFSE features and ANN classifiers, this investigation 

achieved similar average results of 70 % and 72 % for real and imagined movements 

respectively. Thus, the WFMI meets its success criterion and its results match those 

obtained in recent similar studies. Hence, the method using an ANN classifier and 

ICA as a spatial filter to aid the extraction of TFSE can discriminate between EEG for 

wrist and finger movements on the same hand for real and imagined movements.  

 

As shown in Table 6.2, the ANN classifier performs better than the MD clustering in 

most cases in this investigation. The results show that the ANN classifiers outperform 

the MD clustering for all three sets of features and for real and imagined movements. 

The ANN results averaged over real and imagined movements for TFSE features are 

practically identical to those for COMB features (both 71 %), while the TFSE features 

outperform the COMB features (65 % vs. 59 % respectively) when using MD 

clustering. This is most likely due to the ability of the ANN to zero the TFSM input 

features (which hold little class discriminative capability and provide no improvement 

to classification) from the combined features set and perform classification based 

effectively on only TFSE features [97]. With MD clustering it is not possible to 
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eliminate the effects of the TFSM features in the combined feature set since all 

features are used to calculate the MD. Thus, the TFSM features may confuse the 

classifier and reduce accuracy. 

 

Overall, the average accuracies for imagined movements are higher than those for real 

movements (63.9 % vs. 59.8 % respectively as shown in Table 6.2). The comparison 

between real and imagined movements is discussed further in Section 7.5.4. 

7.3.3 Inter-Subject Variability 

The inter-subject variability is gauged using results for TFSE features only. TFSM 

features performed poorly in this investigation, as shown in Figure 6.11 and Table 

6.2, and this influences the COMB features (as explained further in Section 7.5.2).  

 

The lowest result for an individual subject using TFSE features occurs for subject 3’s 

LH real movements (56 % for ANN and 45 % for MD as shown in Figure 6.10). The 

highest corresponding accuracy occurs for subject 2’s LH real movements (84 % 

using MD clustering). This presents are large difference of approximately 40 %. An 

average standard deviation of 8 % is shown in Table 6.2 for TFSE features for real 

and imagined movements. The standard deviation for real movements is greater than 

that for imagined movements; 9 % vs. 7 % respectively (refer to Section 7.5.4 for 

further discussion). Figure 6.10 shows classification accuracies between 49 % and 

64 % for data for grouped subjects (labelled as AllSubjects), which are not much 

better the odds of random selection in a binary problem (50 %). This indicates very 

little commonality between subjects and along with the above-mentioned points 

indicates a large inter-subject variance.  

7.4 Five Movement Differentiation Investigation (FMDI) 

7.4.1 Analysis of Selected Features 

Since the FMDI involves a significantly more complex problem than the WFMI (see 

Sections 3.2 and 4.3), it would intuitively require more features for classification. 

However, the optimum number of selected features for the FMDI is less than that of 

the WFMI. This is most likely due to the maximum number of features being limited 
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due to limited data for the FMDI (refer to Section 5.2.7 for details on feature 

selection). Hence, the TF plots (Figure 6.13, Figure 6.14 and Figure 6.15) for the 

selected features for the FMDI appear simpler. As shown in Figure 6.15, the features 

are evenly distributed with little commonality amongst the test subjects.  

 

MPM features are apparent for most subjects’ real and imagined movements as shown 

in Figure 6.13. These features appear more frequently for RH imagined movements 

than for RH real movements, as shown in Figure 6.15; however the same is not clear 

for the LH. One feature is common for all RH real movements and occurs around 

10 Hz close to movement onset. BPM features are very prevalent in all the subject’s 

movements, but no clear difference can be discerned between real and imagined 

movements. Figure 6.13 shows a prevalence of MMPI features in all plots except for 

subject 5’s LH. According to Figure 6.15, the prevalence of MMPI features appears 

similar for real and imagined movements for both hands. A common MMPI feature 

for LH imagined movements is shown around 4 s at 10 Hz. BMPI features occur more 

frequently in LH real movements than in LH imaginary movements, but the opposite 

is seen in RH movements. They are prevalent in all plots except two and are frequent 

for both hands for real and imagined movements.   

 

TFSM features related to the early BP are found in most subjects’ data, as shown in 

Figure 6.14, and are more prevalent in imagined movements than in real movements 

for both hands. Late BP features are less prevalent than early BP features and are 

almost completely absent for LH imagined movements, as shown in Figure 6.15. 

Features associated with the estimation of movement onset are more prevalent in real 

movements than imagined ones for both hands (shown in Figure 6.15) and are 

common to all subjects’ data (shown in Figure 6.14). 

 

Since there are only a few instances where successful classification is obtained in this 

investigation (which are attributed to TFSE features as discussed in Section 7.4.2), the 

selected TFSE features are analyzed for these cases. According to Figure 6.10, 

classification accuracies around 70 % were obtained for real movements for subject 

2’s LH, subject 1’s RH and subject 5’s RH; and for imagined movements for subject 

1’s RH and subject 2’s RH.  However, there is little commonality amongst these cases 
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in terms of feature selection, besides the prevalence of BMPI features. The TF 

characteristics of these features still differ in each case.  

 

In summary a couple of points can be deduced from the above observations:  

• Pre-movement features pay a bigger role in imagined movement classification 

than in real movement classification. This is seen, in this investigation, in the pre-

movement features for TFSM and mu TFSE, but not in beta TFSE.  

• Activity in the beta frequencies during movement imagination and performance 

shows commonality and a large prevalence in this investigation.  

The relevance of these deductions in relation to literature and to future work is 

discussed in Section 7.5.2. 

7.4.2 Accuracy Analysis 

As shown in Figure 6.16 and Figure 6.18, the success criterion described in Section 

4.4 is met in the following six cases for either TFSE features or COMB features or 

both: subject 2 RH imaginary (MD and ANN), subject 1 RH real (ANN only), subject 

1 RH imaginary (MD only), subject 2 LH real (MD only) and subject 3 LH real (ANN 

only). These individual classification accuracies range from 76 % to 67 %, with 4 

cases obtaining accuracies of 70 % or more, for either or both feature types mentioned 

above. Subject 1 showed success for real and imagined movements. Despite these few 

successful cases, the average accuracies are low as shown in Table 6.3.  

 

TFSE features provide the best results with an overall average of 52 %, followed by 

COMB features with an overall average of 48 %, and thereafter TFSM features with 

an overall average of 27 %. Reasons for this order are discussed later in this chapter in 

Section 7.5.2. Considering that this investigation involves a 5-class classification 

problem, TFSM features do not provide much better classification than selection by 

chance i.e. 20 %. The results of this investigation can be compared to other BCI 

multiclass problems, although most of these problems are 4-class classification 

problems and do not involve movements on the same limb (refer to Section 3.2). 

Hence, they do not present all the challenges of the FMDI, yet provide the closest 

comparison. An average accuracy of 63 % is obtained in this investigation when using 

ANN classifiers and TFSE features for real movements, however, the best result for 
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imagined movements is 55 % when using TFSE features with the MD classifier. 

These results are comparable to the results of other multiclass BCI problems (refer to 

Section 3.2).  

 

As shown in Table 6.3, the ANN classifier performs better than the MD clustering for 

real movements, while MD clustering is preferred for imagined movements. For all 

three feature sets, MD and ANN classifiers show similar results. Averaged over all 

feature types and for real and imagined movements, the classifiers performances are 

very similar (44.5 % for MD vs. 45.1 % for ANN). The overall average results for 

imagined movements are better than those for real movements (44.3 % vs. 40.0 %). 

However, the best results are obtained for real movements (63 %). This implies a 

smaller variance for imagined movements, which is also shown by the comparisons of 

the standard deviations in Section 7.4.3. 

 

The results for the FMDI meet its success criterion and are similar to results obtained 

in other multiclass BCI problems, despite the FMDI holding more challenges. Hence, 

the method using ICA as a spatial filter to aid the extraction of TFSE features has 

shown the ability to discriminate between EEG for WE, WF, FE, FF and the TR on 

the same hand for real and imagined movements in a few subjects. This shows the 

possibility of improved offline EEG interpretation for a sensorimotor BCI to the 

degree where the neural motor control signals for five basic hand movements can be 

differentiated on a synchronous, single-trial basis. The method, however, does not 

provide consistent results and was not successful for all the subjects’ data. This 

implies that the method is not sufficient to allow consistent accurate classification.  

7.4.3 Inter-Subject Variability 

As with the WFMI (refer to Section 7.3.3), the inter-subject variability is gauged 

using results for TFSE features only. The lowest result for an individual subject using 

TFSE features occurs for subject 5’s LH imaginary movements (22 % for ANN and 

33 % for MD as shown in Figure 6.16). The highest accuracy corresponding accuracy 

occurs for subject 2’s LH imaginary movements (75 % for both classifiers). This 

presents are large difference of approximately 50 % and emphasises and the 

inconsistency shown by the other results in this investigation (shown in Figure 6.16 
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and Figure 6.18). A standard deviation of 11 % is shown in Table 6.3. Imagined 

movements show an overall smaller standard deviation relative to that for real 

movements (14.9 % vs. 17.8 %). Figure 6.16 shows classification accuracies between 

19 % and 25 % for data for grouped subjects (labelled as AllSubjects), which are 

basically the odds of random selection (20 %). This indicates very little commonality 

between subjects. The above-mentioned points indicate a large inter-subject variance.  

7.5 Overall Discussion for all Investigations 

7.5.1 Overall Accuracy 

Considering the detailed discussions of the results presented in Sections 7.2.2, 7.3.2 

and 7.4.2, the accuracy of the research is summarized below:  

1. All investigations show success for real and imagined movements. 

2. For the RLI, success is obtained when using TFSE or COMB features along with 

either MD or ANN classifiers.  

3. For the WFMI, success is obtained when using TFSE or COMB features along 

with ANN classifiers only.  

4. For FMDI, success is obtained when using TFSE or COMB features along with 

either MD or ANN classifiers.  

5. The best average results, across real and imagined movements for all subjects, are 

obtained using the combination of TFSE features and ANN classifiers i.e. 89 %, 

71 % and 57 % for the RLI, WFMI and FMDI respectively.  

6. TFSE and ANNs provided accuracies ranging between 76 % and 67 % (for either 

real or imagined movements) in three subjects in the FMDI.  

7. Despite the success of the FMDI, its low average result along with the large 

variability in its results (see Section 7.4.3) shows that its method needs to be 

improved to provide higher, consistent classification accuracies. 

8. The results of all three investigations are comparable to their respective similar 

BCI studies. 

9. The MD clustering classifiers are superior to ANN classifiers for imagined 

movements in some cases i.e. in the RLI using TFSM and COMB features, and in 

the FMDI using TFSE and COMB features.  
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10. COMB features are almost completely dependent on the TFSE features for 

successful classification, as explained in Section 7.5.2. 

 

As explained in Section 4.5, these results imply that the designed method, using ICA 

along with TFSE features and ANN classifiers provides a positive solution to the 

problem of the research. The method is suitable for real and imagined movements and 

is more reliable and consistent for right vs. left and wrist vs. finger movement EEG 

classification.  

 

It should be noted that some EMG experiements with common hand movements i.e. 

WE, WF, FE and FF achieved average classification accuracies over 90 % [7][9]. 

These studies involved multiclass classification problems with between 6 and 8 

classes of hand movements [7][9]. Extensive subject training and real-time 

classification was used in [9] and it is thus not directly comparable to this research. 

Nevertheless, the results of these EMG studies highlight the differences in the current 

capabilities of EEG and EMG methods for prosthetic/orthotic hand control and 

empahsises the need for increased EEG-based research.  

7.5.2 Overall use of Features 

For all three investigations, the commonly selected TFSE features originated from the 

beta frequency range during movement performance or movement imagination 

(details are discussed in Sections 7.2.1, 7.3.1 and 7.4.1). Classic ERD/ERS patterns 

deal more with the mu range [56], but other frequency ranges may hold discriminative 

information for more advanced hand movements [25][55][100]. Promising results for 

wrist movements have been shown using the delta [25] and gamma bands [55] and 

this research shows some promise using the beta band. Vuckovic and Sepulveda [25] 

refers to another study, involving four types of wrist movement, where the largest 

variation between two wrist movements in general originated from the 12 – 30 Hz 

frequency band. An online, asynchronous BCI investigation allowed the partial 

restoration of the grasp function in a tetraplegic patient using beta activity [49]. Bai et 

Al [100] also found that EEG features from beta band activity provided the largest 

class discrimination in a sensorimotor BCI. It was suggested that the EEG beta 

rhythm can support a reliable, high performance BCI for both healthy test subjects 
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and patients with neurological disorders [100]. The results of this research support the 

latter notion for healthy subjects. 

 

It was expected that COMB features would provide the best results since MRCP and 

ERD/ERS features would provide complimentary information to improve 

classification results [30] (refer to Section 2.6) . However, this is not the case as 

explained in Sections 7.2.2, 7.3.2 and 7.4.2. For all three investigations the best 

results were obtained using TFSE features, followed COMB features and then TFSM 

features.  

 

Dornhege et Al [30] explored different methods of combining MRCP and ERD/ERS 

features and found that the simple concatenation of the two feature sets added little 

benefit over the use of single feature types. In this research, simple concatenation of 

the two feature types is used (refer to Section 5.2.7), which explains why in most 

cases COMB features do not perform better than TFSE features. TFSM features carry 

significantly less class discriminative information than TFSE features, as shown by 

their relatively poorer results in all three investigations. Hence their combination with 

TFSE features using concatenation does not provide additional discriminative 

information. Instead they may contradict the TFSE information and confuse the 

classifiers, thus reducing the accuracies for COMB features. In the WFMI, the ANN 

managed to eliminate the effects of the MRCP features in most cases [97], allowing 

the COMB features to perform close to the ERD/ERS features.  In order to improve 

results, combination methods based on the assumption that ERD/ERS and MRCP are 

independent should be used [30]. An example would be to use a classifier for each 

feature type and combine the outputs of each classifier [16][30]. 

 

The TFSM feature extraction method was designed and tested in the RLI and the 

features’ performances were satisfactory in this investigation (71 % overall accuracy 

mentioned in Section 7.2.2). However, they did not perform as well as the TFSE 

features. When the feature extraction method was applied to the WFMI and the 

FMDI, the TFSM features extracted proved ineffective. This can be attributed to 

MRCP patterns not easily appearing on single-trial basis and only emerging in an 

ERP after averaging over many trials [51]. Although ERD/ERS patterns also emerge 

clearly only after averaging over many trials, they are more reliable for single-trial 
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analysis [51]. Gu et Al [24] also reported that the early BP, late BP and peak 

negativity of MRCP (see Section 2.6.2) did not differ much for different kinematic 

movements on the same hand. This research involves five different kinematic 

movements (see Section 1.2); hence features related to MRCP cannot clearly 

distinguish them. Research suggests that MRCP favours dynamic movement 

discrimination, while ERD/ERS favours kinematic movement discrimination, 

[63][64] (refer to Section 3.2). This also explains the better results obtained for 

features related to ERD/ERS in this research. Hence feature combination is useful 

when classifying between different dynamic and kinematic movements as shown by 

[24]. 

 

In summary, this research shows a dominance of features originating from beta 

sensorimotor rhythms and some studies have reported similar results [100]. In order 

for feature combination of ERD/ERS and MRCP to improve classification results, 

especially for complex problems such as multiclass problems or movement 

discrimination on the same limb, two areas should be addressed: 1) the improvement 

of the MRCP feature extraction method in order to add valuable class discriminative 

information and 2) the improvement of the feature combination method that takes 

advantage of the independence of the feature types [30].   

7.5.3 Inter-Subject Variability and ICA 

As shown in Sections 7.2.3, 7.3.3 and 7.4.3, all three investigations show large inter-

subject variability. This is based on the: 

• high standard deviations,  

• large differences between the highest and lowest accuracies,  

• limited commonality in the TF characteristics of the selected features and  

• low accuracies for the datasets grouping data for all subjects.  

The subjects’ performances also vary from one investigation to the next. For example, 

subject 3 holds the highest accuracy in the RLI (98 %), but obtains the worst TFSE 

result in the WFMI (45 %). The results for RH, LH, real and imagined movements are 

also not consistent within individual subjects. This is expected since ERD/ERS and 

other EEG patterns differ for real and imagined movements [67] and for right and left 

hand movements [30][39][65][66][67]. 
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This EEG inter-subject variability exists since the following varies from one 

individual to the next: the exact position and size of M1, the amount of cortical 

activity and the electrode placement when measuring EEG [67]. Other factors may 

also contribute towards the EEG variance between test subjects [10]. It becomes 

difficult to develop a system capable of learning the EEG patterns for different 

individuals due to this large inter-subject variance [10]. Hence a BCI used to control a 

prosthetic/orthotic hand needs to be adapted to each user [10][65].  

In this research ICA, along with visual inspection (see Section 5.2.4) is used to 

separate the EEG into independent sources that are most likely to represent motor 

control activity. This approach is different to those used in other studies involving 

ICA and different types of hand movements, where ICs from all over the head can 

potentially yield features [25][26][67]. It is beneficial since it ensures that non-

sensorimotor activities (such as the visual alpha rhythm) are not used for 

classification [16][65]. It is also not affected by skewed electrode placement and 

varying M1 positioning to the degree that other spatial filters, such as SL, may be 

[10][45][67]. The success of the WFMI shows the ability to differentiate between 

EEG for wrist and finger movements, whose control regions on the cortex are 

adjacent [32] (see Figure 2.2). Furthermore, the success of the FMDI shows that 

separable information from overlapping neural sources was provided in some cases 

[10], since some movements, such as WE and WF are controlled by the same part of 

M1 (see Figure 2.2). This demonstrates the spatial resolution provided by the 

combination of high resolution (128 channels) EEG measurement and ICA [41].  

 

The success of all three investigations suggests that the approach using ICA, along 

with visual IC selection based on a priori knowledge, is valuable. Such an approach 

can be used to create subject-specific BCIs [29] (see Section 3.4), which can also 

accommodate for changes in sensorimotor patterns as a result of motor impairment 

(see Section 2.5) [47][52].  

7.5.4 Real vs. Imaginary 

Differences between the results of real and imagined movements are discussed in 

terms of selected features, overall accuracy and inter-subject variability within each 
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investigation (Sections 7.2, 7.3 and 7.4). Common issues are discussed in this section 

in order to draw conclusions on the EEG interpretation of real and imagined 

movements in this research.  

 

The RLI and WFMI show that features generated during movement performance are 

more prevalent than those generated during movement imagination. This is most 

likely due to EEG activity being greater during movement performance than during 

movement imagination [67][77].  Also, the RLI, WFMI and to a smaller extent, the 

FMDI, show that pre-movement features are more prevalent in imagined movements 

than in real movements. Morash et Al [67] found that preparatory ERD/ERS was 

better with predicting movement imagery than with predicting movement 

performance. A possible explanation could be that EEG activity is stronger during 

preparation for movement imagination than that for movement performance, since 

movement imagination requires more concentration [101]. However, more research 

needs to be done to investigate this result and to understand the underlying neural 

mechanisms involved in the preparation of motor imagery and performance [67].  

 

Overall, the BCI performed slightly better for imagined movements than for real 

movements. This is shown by higher overall average accuracies for imagined 

movements in the WFMI and FMDI. This is contrary to the expectation that real 

movement classification would outperform imagined movement classification, since 

motor imagery involves less M1 activation than movement [67][77] and many studies 

reported better results for motor execution than motor imagery [67][77]. However, 

some studies reported similar results for real and imagined movements [25]. A 

possible explanation for the unexpected result in this research is that all the test 

subjects were university students who were familiar with motor imagery. 

Consequently their concentration levels and imaginative skills may have been above 

average, which may have increased the classification accuracy for imagined 

movements [101]. Subjects who participated in the study in [24] reported an ease of 

imagining movements such as WE since it is used in everyday life. Hence the use of 

WE, WF, FE, FF and the TR in everyday life may have made the motor imagery tasks 

easier for the test subjects, thus enhancing their sensorimotor EEG patterns, despite 

having no training. This may also have contributed to imagined movement 

classification outperforming that for real movements.  
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In all three investigations, imagined movements show smaller standard deviations 

than real movements, showing more consistency in the former case (see Sections 

7.2.3, 7.3.3 and 7.4.3). Vuckovic and Sepulveda [25] also reported more consistency 

with imagined movements than with real movements. A possible reason is that from 

trial to trial, real movements may vary slightly in terms of speed, force and direction, 

while movement imagination may not bear these slight trial-to-trial variations. It may 

also have to do with differences in the inter-subject variability for real and imagined 

movements. Reasons for this are unknown and need to be explored [25]. 

 

The BCI method used in this research is able to classify imagined and performed hand 

movements with the similar accuracies (in some cases slightly better). All three 

investigations are successful for real and imagined movements. It should be noted that 

this movement imagery will differ for people who have motor impairments (such as 

amputations and spinal cord injuries) [47][52] and the method used in this research 

may need to be adjusted accordingly.  

7.6 Significance of Findings 

Successful results for the WFMI imply that EEG can be used to extract separable 

neural information from neighbouring areas of the motor cortex (shown in Section 

2.2) [12]. Some successful results for FMDI show that it is possible to use EEG to 

discriminate the neural signals for different real and imagined hand movements on the 

same hand in a multiclass problem. The research shows that improved EEG 

interpretation is possible for the essential hand movements of WE, WF, FE, FF and 

the TR. The research contributes towards improving the flexibility of BCI motor 

imagery and increasing the number of separable movement classes that a BCI can 

handle [12]. However, there is a tradeoff between the number of separable classes 

(which can relate to degrees of freedom) and the accuracy of the system; therefore a 

balance should be found [25]. The research also introduces a unique combination of 

movements to BCI research (to the best of the author’s knowledge), which may be 

explored in future BCI studies (see Section 7.7). Some of these movements have not 

been found in BCI literature (FE and the TR) and may stimulate the exploration of 
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other basic hand movements, such as adduction and abduction, or different 

combinations of basic hand movements [2][3][5][12]. 

 

The research suggests that ICA may be very valuable in improving the spatial 

resolution and interpretation of EEG as explained in Section 7.5.3. Training test 

subjects and tailoring the BCI and the combination of techniques to each test subject 

could significantly improve results [10][39]. This may allow the development of a 

real-time BCI capable of using motor imagery to control a multifunctional prosthetic 

hand for an amputee or an orthotic hand for the victim of a stroke or spinal cord injury 

[6][10][13][12]. This may provide a safer and more affordable alternative to neurally 

controlled prosthetics/orthotics solutions that rely on invasive recordings such as 

ECoG [10] (see Section 1.4). 

7.7 Limitations of Method and Future Work 

More work is needed to improve on the accuracy and consistency of the offline, 

synchronous, single-trial EEG discrimination of WE, WF, FE, FF and the TR (as 

explained in Section 7.5.1). A few shortcomings were identified during the research 

process and should be corrected in future work. Future work is suggested to validate 

and expand on the results obtained in this research. 

 

The experimental procedure should be modified slightly. Firstly, the length of each 

trial should be lengthened from 7 s to approximately 10 s [25][27][28][55] (refer to 

Section 5.2.1). The movement preparation phase should be increased from 2 s to 3 s 

to comfortably accommodate the 2 s of neural preparatory activity that precedes 

movement onset [16]. The rest time should also be increased to approximately 4 s 

[25] to allow a longer period from which to calculate a reference or rest state and to 

clearly differentiate movement from non-movement. Secondly, more data should be 

collected in terms of the number of healthy test subjects and the number of trials per 

subject [25][67]. The number of trials per subject is more important since analysis 

should be done on an individual subject basis (as explained in Section 5.2.1). EMG 

can also be used to mark the onset of performed movements so that analysis based on 

movement onset can be done, instead of having to estimate movement onset [28]. It 

can also be used to verify that no muscle activation occurs during movement 
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imagination [24]. The use of a 256 electrode EEG measurement system may improve 

the spatial resolution further [41][102]. 

 

Another method of to extract MRCP-related features should be explored, which could 

possibly combine time-domain and spectral features [24]. The full MRCP frequency 

should be explored as well as features from other frequency bands, such as gamma 

and theta [55][25][86] (see Section 2.6). Another method of feature combination, such 

as the use of group classifiers, should also be explored [11][30] (refer to Section 

7.5.2). The combination of MD and ANN classifiers can also be applied to each 

feature type individually to possibly improve results [11]. Support vector machines 

have shown success in BCI investigations and should also be explored [11].  

 

Similar studies should be performed to validate the results of this research [12] and to 

verify the possibility of EEG discrimination for WE, WF, FE, FF and the TR. Similar 

investigations to the RLI, WFMI and FMDI should be conducted using other spatial 

filters such as CAR, SL and CSP to evaluate the effectiveness of ICA in this 

application [24][26][28][55] (refer to Sections 2.4 and 3.4 for supplementary 

information on spatial filters).  

 

Other BCI studies involving the five (wrist and finger) movements used in this 

research can also be done to expand on the knowledge of these movements [12]. 

Work should be done to develop a system that can discriminate EEG for the five 

essential hand movements or for wrist and finger movements in real-time [65][12] 

(see Section 2.5). This would most likely involve training a single healthy test subject 

and tailoring the BCI to suit their EEG patterns [10][12][65]. In doing so, the 

complexity of the algorithms and techniques used in the method should be considered 

[12]. A similar study could aim to develop an asynchronous BCI that can differentiate 

between hand movement imagery on the same hand [48] (see Section 2.5). Another 

follow up study may add force and speed parameters to kinematic wrist and finger 

movements and use feature combination to discriminate the EEG for different 

kinematic and dynamic wrist and finger movements [24][61] (also refer to Section 

3.2). Another study may involve exploring the possibility of EEG discrimination 

between imagined wrist and finger movements in a stroke victim or an amputee 

[49][100] (see Section 2.5). 
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7.8 Conclusion 

The results within each investigation and the overall results of the research are 

discussed in this chapter. The investigations and the research are discussed in terms of 

the features used, the inter-subject variability and the accuracies of the results. The 

differences in the results for real and imagined movements are also discussed. 

Conclusions on the success of each investigation and on the research as a whole are 

drawn and the significance of the findings of the research is mentioned. Corrections to 

the method and future work are suggested. The next chapter concludes the research.  
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Chapter 8  

Conclusion 

8.1 Introduction 

In conclusion, this chapter summarizes the objectives, methods and results of the 

research as well as the main deductions from the discussion in the previous chapter.  

8.2 Research Summary 

The research is directed towards improved EEG interpretation in a sensorimotor BCI 

for the control of prosthetic/orthotic hand, in order to allow the user more degrees of 

freedom and improved functionality. In order to provide hand functionality that will 

allow such users to perform basic daily activities, five essential hand movements are 

selected i.e. wrist extension, wrist flexion, finger extension, finger flexion and the 

tripod pinch. The author is unaware of any BCI literature concerned with the 

combination of these movements and such research is deduced to be minimal. Hence 

it is necessary to explore the possibility of differentiating the neural control signals for 

these movements using EEG, as an intermediate step. Hence, this research addresses 

this general problem in part by investigating the possibility of EEG discrimination for 

five essential hand movements (real and imagined) in healthy subjects in an offline, 

synchronous manner on a single trial basis. 
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The study was divided into three sub-investigations; which all used ICA to aid the 

extraction of TFSE and TFSM features; the BD to select the best features and reduce 

the dimensionality of the extracted features; and MD clustering and ANNs to classify 

the TFSE and TFSM features, individually and in combination. The first investigation 

explored the use of the above-mentioned techniques to differentiate between the EEG 

associated with right and left hand groupings of the five movement types. This 

evaluated the performance of the method by comparing the results with those of other 

right vs. left BCI studies in the literature. The second investigation attempted to 

classify between EEG patterns for wrist and finger movement groupings of the 

selected movements on the same hand, while the third investigation explored the 

possibility of differentiating the EEG for each movement type on the same hand. The 

second and third investigations explored the possibility of EEG classification for more 

advanced hand movements on the same hand. 

 

The method provided similar average results for real and imagined movements in 

most cases, although the results for imagined movements were more consistent. ANN 

and MD-based classifiers provided similar results overall, with the ANNs 

outperforming the MD clustering in the WFMI. The results also show that the 

combination of TFSE and TFSM features did not improve the classification accuracy. 

The combination of TFSE features and ANNs provided the best results, with average 

classification accuracies of 89 %, 71 % and 57 % for the RLI, WFMI and FMDI 

respectively as well as respective highest classification accuracies of 98 %, 84 % and 

75 %. TFSM features provided satisfactory classification for the RLI but not for the 

WFMI and FMDI. Significant class-discriminative information originates from beta 

sensorimotor activity, which is consistent with the findings of other BCI studies.   

 

The results show that all three investigations were successful. Hence the designed 

method shows the possibility of improved offline EEG interpretation in a 

sensorimotor BCI. This was shown by differentiating the neural motor control signals 

for five essential hand movements in a few healthy test subjects on a single-trial basis. 

The method also allows EEG interpretation such that the movement control of 

different major parts of the hand i.e. the wrist and fingers, can be distinguished. The 

method can also provide equivalent differentiation of right and left hand motor 

control signals obtained from EEG in relation to existing methods. However, more 
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work needs to be done to improve on the accuracy and consistency of the method 

when differentiating the individual five movements. All of the above holds for real 

and imagined movements for healthy subjects.  

 

The research provides a platform for future EEG-based BCI work involving the 

combination of WE, WF, FE, FF and the TR. This research affirms the value of ICA 

in terms of improving EEG spatial filtering in this regard. Future work should be done 

to validate, improve on and comprehensively explain the results obtained in this 

research, especially for the FMDI. The experimental procedure, the extraction of 

features related to MRCP and the method of feature combination should be improved. 

Studies can also be undertaken to expand on the use of the five essential hand 

movements. 

8.3 Conclusion 

This chapter concludes the research aimed towards improving EEG interpretation in a 

sensorimotor BCI for the control of a prosthetic or orthotic hand. Such a system can 

greatly improve the quality of life for those who have suffered amputations, strokes or 

spinal cord injuries. This can be achieved by allowing such individuals to perform 

simple daily tasks by controlling a prosthetic or orthotic hand using only their minds.  
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Appendix A  

Scalp Plots and Graphs for Visually 

Selected ICs 

A.1 Scalp plots 

A.1.1 Scalp plots for the RLI 

 

 

 
 

Figure A.1: Scalp plots of all visually selected ICs for subject 2’s real, right and left hand (RL), 
MRCP filtered data. 
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Figure A.2: Scalp plots of all visually selected ICs for subject 2’s imaginary, right and left hand 
(RL), MRCP filtered data. 

Figure A.3: Scalp plots of all visually selected ICs for subject 5’s real, right and left hand (RL), 
MRCP filtered data. 

Figure A.4: Scalp plots of all visually selected ICs for subject 5’s imaginary, right and left hand 
(RL), MRCP filtered data. 
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Figure A.5: Scalp plots of all visually selected ICs for subject 3’s real, right and left hand (RL), 
MRCP filtered data. 

Figure A.6: Scalp plots of all visually selected ICs for subject 3’s imaginary, right and left hand 
(RL), MRCP filtered data. 



95 
 

 
 

 
 

 
 

 
 

Figure A.7: Scalp plots of all visually selected ICs for subject 2’s real, right and left hand (RL), 
mu and beta (ERD/ERS) filtered data. 

Figure A.8: Scalp plots of all visually selected ICs for subject 2’s imaginary, right and left hand 
(RL), mu and beta (ERD/ERS) filtered data. 

Figure A.9: Scalp plots of all visually selected ICs for subject 3’s imaginary, right and left hand 
(RL), mu and beta (ERD/ERS) filtered data. 

Figure A.10: Scalp plots of all visually selected ICs for subject 3’s imaginary, right and left 
hand (RL), mu and beta (ERD/ERS) filtered data. 
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A.1.2 Scalp Plots for WFMI and FMDI 

 

 

Figure A.11: Scalp plots of all visually selected ICs for subject 3’s imaginary, right and left 
hand (RL), mu and beta (ERD/ERS) filtered data. 

Figure A.12: Scalp plots of all visually selected ICs for subject 5’s real, right and left hand 
(RL), mu and beta (ERD/ERS) filtered data. 

Figure A.13: Scalp plots of all visually selected ICs for subject 5’s imaginary, right and left 
hand (RL), mu and beta (ERD/ERS) filtered data. 

Figure A.14: Scalp plots of all visually selected ICs for subject 1’s real, right hand (RH), 
MRCP filtered data. 
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Figure A.15: Scalp plots of all visually selected ICs for subject 1’s imaginary, right hand (RH), 
MRCP filtered data. 

Figure A.16: Scalp plots of all visually selected ICs for subject 2’s real, right hand (RH), 
MRCP filtered data. 

Figure A.17: Scalp plots of all visually selected ICs for subject 2’s imaginary, right hand (RH), 
MRCP filtered data. 
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Figure A.18: Scalp plots of all visually selected ICs for subject 3’s real, right hand (RH), 
MRCP filtered data. 

Figure A.19: Scalp plots of all visually selected ICs for subject 3’s imaginary, right hand (RH), 
MRCP filtered data. 



99 
 

 
 

 
 

 
 

Figure A.20: Scalp plots of all visually selected ICs for subject 4’s real, right hand (RH), 
MRCP filtered data. 

Figure A.21: Scalp plots of all visually selected ICs for subject 4’s imaginary, right hand (RH), 
MRCP filtered data. 

Figure A.22: Scalp plots of all visually selected ICs for subject 5’s real, right hand (RH), 
MRCP filtered data. 
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Figure A.23: Scalp plots of all visually selected ICs for subject 5’s imaginary, right hand (RH), 
MRCP filtered data. 

Figure A.24: Scalp plots of all visually selected ICs for subject 2’s real, left hand (LH), MRCP 
filtered data. 

Figure A.25: Scalp plots of all visually selected ICs for subject 2’s imaginary, left hand (LH), 
MRCP filtered data. 
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Figure A.26: Scalp plots of all visually selected ICs for subject 5’s real, left hand (LH), MRCP 
filtered data. 

Figure A.27: Scalp plots of all visually selected ICs for subject 5’s imaginary, left hand (LH), 
MRCP filtered data. 
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Figure A.28: Scalp plots of all visually selected ICs for subject 3’s real, left hand (LH), MRCP 
filtered data. 
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Figure A.29: Scalp plots of all visually selected ICs for subject 3’s imaginary, left hand (LH), 
MRCP filtered data. 

Figure A.30: Scalp plots of all visually selected ICs for subject 1’s real, right hand (RH), mu 
and beta (ERD/ERS) filtered data. 
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Figure A.31: Scalp plots of all visually selected ICs for subject 1’s imaginary, right hand (RH), 
mu and beta (ERD/ERS) filtered data. 

Figure A.32: Scalp plots of all visually selected ICs for subject 2’s real, right hand (RH), mu 
and beta (ERD/ERS) filtered data. 

Figure A.33: Scalp plots of all visually selected ICs for subject 2’s imaginary, right hand (RH), 
mu and beta (ERD/ERS) filtered data. 
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Figure A.34: Scalp plots of all visually selected ICs for subject 3’s real, right hand (RH), mu 
and beta (ERD/ERS) filtered data. 

Figure A.35: Scalp plots of all visually selected ICs for subject 3’s imaginary, right hand (RH), 
mu and beta (ERD/ERS) filtered data. 
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Figure A.36: Scalp plots of all visually selected ICs for subject 4’s real, right hand (RH), mu 
and beta (ERD/ERS) filtered data. 

Figure A.37: Scalp plots of all visually selected ICs for subject 4’s imaginary, right hand (RH), 
mu and beta (ERD/ERS) filtered data. 
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Figure A.38: Scalp plots of all visually selected ICs for subject 5’s real, right hand (RH), mu 
and beta (ERD/ERS) filtered data. 

Figure A.39: Scalp plots of all visually selected ICs for subject 5’s imaginary, right hand (RH), 
mu and beta (ERD/ERS) filtered data. 
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Figure A.40: Scalp plots of all visually selected ICs for subject 2’s real, left hand (LH), mu and 
beta (ERD/ERS) filtered data. 

Figure A.41: Scalp plots of all visually selected ICs for subject 2’s imaginary, left hand (LH), 
mu and beta (ERD/ERS) filtered data. 
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Figure A.42: Scalp plots of all visually selected ICs for subject 3’s real, left hand (LH), mu and 
beta (ERD/ERS) filtered data. 

Figure A.43: Scalp plots of all visually selected ICs for subject 3’s imaginary, left hand (LH), 
mu and beta (ERD/ERS) filtered data. 
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Figure A.44: Scalp plots of all visually selected ICs for subject 5’s real, left hand (LH), mu and 
beta (ERD/ERS) filtered data. 

Figure A.45: Scalp plots of all visually selected ICs for subject 5’s imaginary, left hand (LH), 
mu and beta (ERD/ERS) filtered data. 
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A.2 ITV ERD/ERS Plots 

A.2.1 ITV ERD/ERS Plots for RLI 

 

 
 

 
 

Figure A.46: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 2’s real, right and left hand (RL) data. 

Figure A.47: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 2’s imaginary, right and left hand (RL) data. 

Figure A.48: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 3’s real, right and left hand (RL) data. 
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Figure A.49: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 3’s imaginary, right and left hand (RL) data. 

Figure A.50: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 5’s real, right and left hand (RL) data. 

Figure A.51: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 5’s imaginary, right and left hand (RL) data. 
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A.2.2 ITV ERD/ERS Plots for WFMI and FMDI 

 
 

 

 
 

 
 

 

 

 

Figure A.52: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 1’s real, right hand (RH) data. 

Figure A.53: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 1’s imaginary, right hand (RH) data. 
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Figure A.54: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 2’s real, right hand (RH) data. 

Figure A.55: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 2’s imaginary, right hand (RH) data. 
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Figure A.56: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 3’s real, right hand (RH) data. 

Figure A.57: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 3’s imaginary, right hand (RH) data. 
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Figure A.58: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 4’s real, right hand (RH) data. 

Figure A.59: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 4’s imaginary, right hand (RH) data. 
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Figure A.60: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 5’s real, right hand (RH) data. 

Figure A.61: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 5’s imaginary, right hand (RH) data. 
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Figure A.62: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 2’s real, left hand (LH) data. 

Figure A.63: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 2’s imaginary, left hand (LH) data. 
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Figure A.64: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 3’s real, left hand (LH) data. 

Figure A.65: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 3’s imaginary, left hand (LH) data. 
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Figure A.66: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 5’s real, left hand (LH) data. 

Figure A.67: ITV ERD/ERS patterns (averaged over all trials) of visually selected ICs for 
subject 5’s imaginary, left hand (LH) data. 
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A.3 MRCP ERP Plots 

A.3.1 MRCP ERP Plots for RLI 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

Figure A.68: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 2’s real, 
right and left hand (RL) data. 

Figure A.69: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 2’s 
imaginary, right and left hand (RL) data. 
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Figure A.70: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 5’s real, 
right and left hand (RL) data. 

Figure A.71: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 5’s 
imaginary, right and left hand (RL) data. 
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Figure A.72: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 3’s real, 
right and left hand (RL) data. 

Figure A.73: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 3’s 
imaginary, right and left hand (RL) data. 



124 
 

A.3.2 MRCP ERP Plots for WFMI and FMDI 

 

 

 

 

 

 

 
 

 

 

 

 

Figure A.74: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 1’s 
imaginary, right hand (RH) data. 

Figure A.75: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 1’s real, 
right hand (RH) data. 
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Figure A.76: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 2’s real, 
right hand (RH) data. 

Figure A.77: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 2’s 
imaginary, right hand (RH) data. 
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Figure A.78: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 3’s real, 
right hand (RH) data. 

Figure A.79: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 3’s 
imaginary, right hand (RH) data. 
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Figure A.80: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 4’s real, 
right hand (RH) data. 

Figure A.81: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 4’s 
imaginary, right hand (RH) data. 

Figure A.82: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 5’s real, 
right hand (RH) data. 
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Figure A.83: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 5’s 
imaginary, right hand (RH) data. 

Figure A.84: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 2’s real, 
left hand (LH) data. 

Figure A.85: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 2’s 
imaginary, left hand (LH) data. 
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Figure A.86: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 3’s real, 
left hand (LH) data. 



130 
 

 

 

 
 

 
 

 

 

 

Figure A.87: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 3’s 
imaginary, left hand (LH) data. 

Figure A.88: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 5’s real, 
left hand (LH) data. 
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Figure A.89: MRCP ERPs (averaged over all trials) of visually selected ICs for subject 5’s 
imaginary, left hand (LH) data. 
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Appendix B  

Attempt at Time-Domain MRCP 

Feature Extraction 

B.1 Introduction  

The attempt at using a time-domain method of feature extraction for MRCPs is 

described here. The method is based on the more traditional time-domain analysis of 

MRCPs [24][53]. However, it proved ineffective in classifying between right and left 

hand movements using MD clustering in the RLI. Hence a time-frequency method 

was investigated for use in all three investigations (this method is described in section 

5.2.6). 

B.2 Feature Extraction Method 

The average ERPs from the collection of ICs from all the test subjects are used to 

design the feature extraction method. The MRCP time-series waveform 1.5 s before 

movement stimulus onset up to 0.5 s after movement stimulus onset is considered 

(refer to timing diagram in Figure 5.3 section 5.2.1). This section of the waveform is 

broken up into time bands of varying lengths and the average voltages within these 

time bands form most of the features. This is a similar approach to that used in [63]. 

Time bands and time ranges for the early BP, late BP, MP, movement onset and post-

movement potentials are evaluated by considering the ERPs for the different 
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movement types (see section 2.5.2 for additional information on the components of 

MRCPs). Differences between right and left, and real and imagined ERPs are also 

considered. Close to and during movement onset the time bands are between 50 and 

100 ms wide. This is done in order to capture more detailed information during the 

late BP, MP and movement onset phases. During the early BP, time bands are 300 ms 

wide in order to capture the gradual negative slope and to reduce the effects of inter-

trial variability. These time bands are shown in Figure B.1. 

 

As shown in Figure B.1, the maximum voltage at the commencement of the negative 

slope of the BP (A1), the minimum voltage at the termination of the negative slope 

(A2), their associated times, and the average slope and mean voltage level between 

the A1 and A2 also form features. This is done since the negative slope of the BP is of 

key interest and it is hypothesised that the slope, amplitude and timing of the BP 

differs for different types of movements [24]. The peak voltage and its associated 

time during the overshoot at movement onset form two more features. This adds 

further information concerning movement onset, which strengthens the feature set. 

 
The later-mentioned set of features in combination with the former-mentioned time 

band features results in a total of 21 features that form the feature vector. The number 

of features is kept to a minimum due to the curse of dimensionality and practical 

Figure B.1: Time-domain MRCP feature extraction, based on averages, slopes, peak voltage 
amplitudes and associated times and average voltages in time bands. 
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limitations of acquiring EEG data [11][41]. The final feature set is determined by 

iteratively adjusting and selecting features and evaluating the MD clustering accuracy. 

B.3 Results and Conclusions 

The results of the MD clustering of the extracted MRCP features are shown in Table 

B.1. The results are close to 50 % in most cases, which is not suitable.  

 

 
 

 

 

 

 

 

 

Table B.1: Results of MD clustering for the RLI using time-based MRCP features (%) 

 Subject 2 Subject 3 Subject 5 

Real Movements 47.5 53.2 56.1 

Imagined Movements  55.6 81.2 52.5 
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