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Abstract

The evolution of drug resistance in human immunodeficiency virus (HIV) infection has

been a focus of research in many fields, as it continues to pose a problem to disease

prevention and HIV patient management. In addition to techniques of molecular

biology, studies in mathematical modelling have contributed to the knowledge here,

but many questions remain unanswered. This thesis explores the application of a

number of hybrid stochastic/deterministic models of viral replication to scenarios

where viral evolution may be clinically or epidemiologically important. The choice of

appropriate measures of viral evolution/diversity is non-trivial, and this impacts on

the choice of mathematical techniques deployed. The use of probability generating

functions to describe mutations occurring during early infection scenarios suggest

that very early interventions such as pre-exposure prophylaxis (PrEP) or vaccines

may substantially reduce viral diversity in cases of breakthrough infection. A modified

survival analysis coupled to a deterministic model of viral replication during transient

and chronic treatment helps identify clinically measurable indicators of the time it

takes for deleterious rare mutations to appear. Lastly, persistence of problematic

mutations is studied through the use of deterministic models with stochastic averaging

over initial conditions.

ix



Acknowledgements

I would like to thank Dr Alex Welte, my supervisor, for his guidance, mentorship,

many suggestions and constant support during this research. I am also thankful to

Nina Fefferman for introducing me to the research field of social networks and her

guidance throughout the year (March 2009 - March 2010) whilst visiting DIMACS at

Rutgers University.

The SACEMA bursary, which was awarded to me for the period 2007–2010, was

very crucial to the successful completion of this project. I would also like to thank

Professor Fred Roberts for the DIMACS research fellowship at Rutgers University,

and the useful contacts and friendly encouragement that he gave me.

I had the pleasure of meeting David Wick and his fellow SCHARP staff members

in Seattle. They are wonderful people. Dave’s invitation and advice made me enjoy

my research and I would also like to thank him for the reading material (books and

preprints). We also had stimulating discussions on modelling methods.

Of course, I am grateful to my wife and my parents for their patience and love.

Without them my stay in South Africa would have been a nightmare (literally).

Thank you for the calls every night, those made me keep going and proud to have

such a loving family.

Finally, I wish to thank the following: Peter Olofsson and Marek Kimmel (for

their technical assistance on branching processes); Alantha Newman (for stimulating

discussions); Levin Lab Tea (for the stimulating talks in ecology and evolutionary

biology) and Fefferman Lab members (for all the good times we had together). I

might have forgotten the people who were involved in the early stages of my studies,

my apologies to all those.

x



Chapter 1

Introduction

1.1 Background

In this chapter, we furnish the reader with current facts on the impact of HIV (Human

Immunodeficiency Virus)/AIDS (Acquired Immune Deficiency Syndrome) disease and

HIV pathogenesis. We also give a little essay about the general situation in modelling

viral genetics, important modelling work in HIV evolution, what has been achieved

so far in the field of HIV modelling and highlight questions that remain unanswered.

The Joint United Nations Programme on HIV/AIDS (UNAIDS) and the World

Health Organization (WHO) 2009 [143] estimated that by December 2008, nearly 34.4

million individuals were living with the disease, the virus killed 2 million people and

2.7 million individuals were infected in 2008. Again, sub-Saharan Africa is still leading

on the number of people living with the disease (22.4 million) and the epidemic is still

the leading cause of death (1.44 million deaths in 2008) in sub-Saharan Africa [133].

The epidemic’s effects are multi-faceted, affecting not only an individual’s health but

also impacting life style, the structure of families and society. This disproportionate

burden of the global pandemic threatens sub-Saharan Africa’s economic and social

fabric.

1
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Currently, science has produced no magic bullet, there is still no cure and vaccine

although recently there were reports of a vaccine with some efficacy [124] and a modest

efficacy afforded by 1% Tenofovir vaginal gel [70]. Given the ongoing burden of the

HIV pandemic, new proposals for controlling the epidemic now include circumcising

men [7], giving a daily prophylactic pill to high risk groups [121], and testing and

treating as many infected individuals as countries can afford to reduce transmission

[50]. These, together with the traditional prevention methods such as abstinence,

faithfulness, use of condoms and treatment, form a comprehensive prevention package.

Although significant progress has been made in reducing new infections in some

contexts and in prolonging individual lives, there are still challenges. Mechanisms of

HIV disease progression are still unclear and there is still no convincing explanation

why there is a long and variable asymptomatic phase. Some infected individuals have

died within one or two years of infection, while others are still asymptomatic after 15

years [48, 94, 110]. The rapid accumulation of mutations in HIV, the theme of this

thesis, presents a great challenge to treatment and therapeutic development efforts.

Understanding key evolutionary and ecological processes underlying successful viral

lineages, the timing of key events in viral emergence is relevant to vaccine design and

other control efforts.

1.2 HIV Pathogenesis

HIV is a complex virus that belongs to the lentivirus (because it causes disease slowly)

genus of the retroviridae family [76], which ‘reversely’ transcribe their ribonucleic

acid (RNA) genome to deoxyribonucleic acid (DNA). Other examples of retroviruses

are simian immunodeficiency viruses (SIV) that mainly infect sooty mangabeys and
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rhesus macaques [82]. The virus encodes major precursor polypeptides and several

accessory genes which are indispensable to its life cycle. As a retrovirus, HIV does

not have the required mechanisms to prevent errors during the transcription process,

and therefore it is prone to generating a large number of copying errors.

After infection, HIV leads to primary infection where there is high viral load and

massive dissemination of the virus throughout the body. Subsequently, infected indi-

viduals enter an asymptomatic phase that can last for years. The hallmark of HIV-1

infection is the depletion and incapacitation of immune cells central to human antimi-

crobial defenses. The depletion of the CD4+ T cells with no medical intervention may

result in a situation where the viral population flourishes, leading to a state where the

immune system becomes heavily compromised in fighting off opportunistic infections,

known as the AIDS stage [133]. Initiation of effective antiretroviral therapy results in

a decay in plasma HIV-1 RNA levels and a concurrent increase in the CD4+ T cell

count [62].

Currently, the use of antiviral therapies in HIV-1 infected individuals has signifi-

cantly impacted on HIV/AIDS morbidity and mortality and this has greatly improved

the prognosis of people living with the virus [118]. Clinical and immunologic stabil-

ity are the favourable outcomes of antiretroviral treatment. Management of HIV-1

infected patients has become increasingly complex due to expanding choices of drug

regimens, emergence of resistance and drug tolerability problems. With the increase

in numbers of patients receiving antiviral therapy, concerns about the long term man-

agement of patients and resources are being explored on multiple fronts, from training

and logistics, to mathematical modelling. It is clear that a novel portfolio of HIV-1

prevention ideas is required.
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1.3 The Evolution of HIV

The techniques of modern molecular biology have elucidated many aspects of HIV-1

infection, and some fine details about the immune responses mounted by the host to

fight infection [8, 19, 90, 93, 103]. To complement this knowledge, mathematical tech-

niques may be used to facilitate the analysis and interpretation of dynamic processes

such as viral transmission, multiple viral evolutions within the host and the interplay

between viral population growth and drugs/immunological responses. Mathematical

techniques allow the description of biological systems in terms of hazards or rates of

the processes. Mathematical modelling of the dynamics of HIV-1 infection within an

individual has become a substantial area of research. Genuine advances have been

modest in number, but large in impact.

Historically, there have been three primary approaches to thinking about in-vivo

viral evolution: population genetics, ecological genetics, and quasispecies (for a more

complete review see Wick et al.[150]). Population genetics began with R. A. Fisher in

his 1930s book [38]. In his thinking he included rivals (members of the same species)

but not enemies (members of other species which act as predators or parasites). It was

a conscious decision to leave ecology to others. This fixes the demographic popula-

tion size, imagining that there are a particular number of niches; population dynamics

became simply reproduction followed by random sampling, with the ‘selection coef-

ficient’, or fitness of each sub-species determining the probability an offspring gets

a niche, i.e. competition so strong that if one subspecies population goes up by x,

another must decline by x. Under these assumptions, Fisher proved his Fundamental

Theorem of Natural Selection: average fitness in every population always increases.

E. B. Ford invented the field of ecological genetics [40]. He investigated the role
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of natural selection in nature by studying British birds and moths; the moths varied

the spots on their wings to avoid predation by birds. Ford considered that ecological

genetics dealt with adjustments and adaptations of wild populations to their natural

environment. Characteristic of ecological genetics is that organism traits are related

to fitness, which affect an organism’s fitness.

Quasispecies were introduced by Eigen and Schuster in the 1970s [33, 34]. A

quasispecies is a group of related genotypes that exist due to high mutation rates.

The quasi-species model is a description of evolution of certain self-replicating entities

within the framework of physical chemistry. They discovered the high mutation rate in

RNA viruses and modelled populations using ordinary differential equations (ODEs).

Deterministic approaches, mainly using ODEs, have been the core of most ecolog-

ical models, including virus population dynamics. Simple ODEs have been solved to

fit to sets of observational HIV-1 RNA viral load data [62, 120] in order to estimate

the parameters of viral and cellular kinetics. Significant insights into HIV-1 dynamics

such as rates of viral turnover and virus clearance rates have been derived from the

basic model of HIV-1 dynamics [115, 120, 145]. However, the basic model is simplistic

in that it only describes a single strain, whereas in reality there are many coexisting

strains.

It has been widely adopted and modified to model plasma viral load in HIV-1

infected patients, for example see [13, 105, 108, 113, 144]. Some of these models

have been used to estimate viral growth rates, basic reproductive numbers and post

peak decay rates [87, 114, 128]. Other extended versions of the basic model have

been used to explore the evolution of drug resistant mutants [42, 98, 111, 115, 126,

127, 136, 144]. Nowak et al. explored the evolutionary mechanism for HIV disease
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progression [111] and the effect of treatment in reducing viral diversity [116]. In

another study, Wahl and Nowak [144] used modelling to assess the conditions under

which resistance dominates as a result of imperfect adherence. Wodarz and Lloyd

[152] also investigated the role of immune responses in emergency of drug resistant

mutants.

ODEs are both elegant and powerful, but there are instances when they miss

relevant aspects, as will be illustrated in chapter 2. Monte Carlo simulations of

within host HIV dynamics have also been used as alternatives to ordinary differential

equations [61, 106, 131, 139, 142]. Wick and Self have used compartmental Markov

models to explore whether cytotoxic T lymphocytes (CTLs) really control HIV in-

fection [147, 148] and assess the influence that the timing of immune responses and

drugs have on the rate of disease progression [146]. Recently, a stochastic spatial

model based on the Monte Carlo approach was developed to study the dynamics of

HIV infection, and it successfully reproduced the three-phase pattern observed in HIV

infection [83].

Recent advances through coupling data analysis and mathematical modelling have

allowed the identification and characterization of the nature of the transmitted virus

[71]. Monte Carlo methods have been used to capture the stochasticity of early

infection focusing on sequence evolution of the virus [79]. These models of random

mutations have been used successfully to assess viral diversity as an indicator of

the number of transmission events or founder strains [71, 79] and also to simulate the

effects of mutations and fitness on the correlation between HIV quasispecies evolution

and disease progression [80].
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1.4 Structure of the Thesis

The overall objective of this thesis is to test and develop appropriate methods for

modelling the effects of immune system pressure and therapeutic intervention on virus

diversification. We then use these models to investigate the impact of acute infection

dynamics on the accumulation of mutations, the effect of suboptimal therapy on the

appearance of rare higher order mutations (those that do not typically exist at most

points in time) and the persistence of these new genomes.

In chapter 21, we give a critical review of some of the modelling techniques that

have been used to explore virus evolution. We also compare various indicators of viral

diversity and show how they impact on the choice of mathematical techniques.

Chapter 32 explores how the dynamics of early infection affects the accumula-

tion of mutations which lay the seeds for long term evolution of drug resistance and

immune system evasion, using a branching process model in a deterministically vary-

ing environment. We relate applications of these ideas to pre-exposure prophylaxis

(PrEP) and vaccine strategies.

We present a strain-differentiated hybrid deterministic-stochastic population dy-

namic type model of healthy and infected cells in chapter 43 to explore how the tran-

sient increase in a population of cells transcribed with a common mutation, which

occurs in response to a short course of monotherapy and chronic treatment, has an

impact on the risk of appearance of rarer, higher-order, therapy-defeating mutations.

In chapter 54,we analyze the full hybrid model. The objective is to explore

1Part of the content was presented as a poster at: DIMACS Capstone Workshop on Mathematical
Modelling of Infectious Diseases in Africa (25-27 June 2007)

2Published in J. Theor. Biol. 2011; 279(1): 44-54
3Most of the content was published in Theor. Biol. Med. Model. 2008; 5: 25
4Manuscript in Preparation
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how long specific viral variants persist in the population, if suboptimal treatment

is stopped. Finally, in chapter 6, we take stock of what was achieved in the thesis

and suggest direction for future work.



Chapter 2

Review of Modelling Techniques

Introduction

The thesis is about how to construct and apply appropriate mechanistic models of in-

vivo viral replication. We now give a review of some of the modelling techniques that

have been used for viral dynamics. At a high level, we distinguish deterministic models

from stochastic models, and note that they can be formulated in either continuous or

discrete time. In each case, the defining elements are state variables and dynamical

rules, but we also pay attention to ‘metrics’ of viral diversity that can be computed

from the model ingredients.

2.1 Continuous Time Models

A large variety of in-vivo HIV models are based on continuous time processes, as these

are often analytically tractable (closed form solution or efficient numerical schemes).

Examples of these models are in the form of ODEs, stochastic differential equations

(SDEs) and partial differential equations (PDEs). Of these models, ODEs have been

9
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at the core in modelling the complex set of interacting concepts that are relevant to

the dynamical understanding of HIV evolution. In the setting of HIV, which replicates

very fast, some mutations, such as known single base mutations, cannot be avoided.

They are repeatedly generated even though they might be kinetically compromised.

By contrast, in a given patient/environmental context, there may be rare mutations

which are unlikely to occur during an infected individual’s lifetime. ODE models are

appropriate to investigate the evolution of common mutants and are not appropriate

to model rare events. In the following section, we demonstrate that ODEs fail to

capture correctly the dynamics of rare mutations. For example, mutants which will

almost certainly not happen in a stochastic model are instantaneously generated as

infinitesimal populations in an ODE model. In reality, a new rare mutant shows up

in a single productively infected cell, while continuous models such as ODEs produce

infinitesimal population sizes which immediately become a dynamical entity without

a waiting time.

Modelling Rare Mutation Events

The rate of evolution of HIV in-vivo is probably greater than for any other persistent

infection, for example, the mutation rate per nucleotide per round of replication

is about 3 × 10−5 [92]. This is very high considering that for eukaryotes is closer

to 10−10 [77]. The number of productively infected cells is around 108 in chronic

infection; therefore, every mutation in HIV’s genome which is about 104 nucleotides

is made everyday [24, 55]. We are interested in the dynamics of quasispecies, therefore

we mainly consider different types of infected cells which will be denoted by Pi, i.e.

which distinguishes cells infected by strain i. These different cell types reproduce at
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different rates. Right now, we present a basic model of virus dynamics [115, 120] with

a single strain labeled P1. The single strain ODE model is given by

dT (t)

dt
= ST − k1T (t)P1(t)− µTT (t);

dP1(t)

dt
= fk1P1(t)T (t)− µPP1(t), (2.1.1)

where ST is the rate at which healthy or target cells T are generated, k1 is the wild-

type strain infectivity parameter, µT is the natural target cell death rate, µP is the rate

at which infected cells are cleared, and f is the probability of error free transcription.

The model (2.1.1) does not explicitly include the virus population. The free virion

decay rate is much larger than the decay rate of virus-producing cell populations. By

standard analysis of the separation of fast and slow dynamics, one shows that to

a good approximation, the free virus population is in a quasi equilibrium with the

lower mortality cell population, according to the relation V1(t) = αP1(t), where the

constant α contains virion production rates and mortality. Thus, the dynamics of a

model with virions can be reproduced by system (2.1.1) unless one is asking questions

about very short time scales, i.e. short compared to the mean lifetime of a virion,

which we do not do. Incorporating virions in our model can help distinguish how

certain drugs work, for example, reverse transcriptase inhibitors (RTIs) that block

reverse transcription early in infection cycle and protease inhibitors (PIs) that block

viral maturation at the end of the virus life cycle. To distinguish the dynamics of

these drugs clinically requires high quality HIV RNA data that may be separated by

hours which means frequent blood drawing from patients.

The ODE model has a disease free equilibrium given by(
T 0, P 0

1

)
=

(
ST

µT

, 0

)
(2.1.2)
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and an infected equilibrium state given by(
T ∗, P ∗

1

)
=

(
µP

fk1
,
µT

k1
(R0 − 1)

)
, (2.1.3)

where R0 is the basic reproductive number (which can be thought as the number of

new infections caused by one infection in an extremely susceptible population, i.e. at

the beginning of infection [4]) given by

R0 =
fSTk1
µPµT

.

Theorem 2.1.1. If R0 > 1, then the infected equilibrium state (equation 2.1.3) is

locally asymptotically stable.

Proof. We investigate local stability by evaluating the linearized system at the in-

fected equilibrium state. This equilibrium state is locally asymptotically stable if and

only if all the eigenvalues of the Jacobian matrix J have a strictly negative real part.

We determine the eigenvalues by solving the characteristic equation of the Jacobian

matrix J given by

J
(
T ∗, P ∗

1

)
=

 −µTR0 −µP

f

fµT(R0 − 1) 0

 . (2.1.4)

The characteristic equation is given by

λ2 + µTR0λ+ µPµT(R0 − 1) = 0, (2.1.5)

such that the two eigenvalues are given by

λ1,2 =
−µTR0 ±

√
(µTR0)2 − 4µPµT(R0 − 1)

2
. (2.1.6)

Using the Routh-Hurwith stability criterion [49] we conclude the existence of roots

with negative real parts if and only if R0 > 1.
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In the setting of HIV infection, some common variants are created quickly early

after infection with a single founder strain. This model can be extended to accommo-

date a new variant that can emerge, say mutant P2. The new model that describes

the dynamics of two strains is given as:

dT (t)

dt
= ST − k1T (t)P1(t)− k2T (t)P2(t)− µTT (t);

dP1(t)

dt
= fk1P1(t)T (t) + ϵk2P2(t)T (t)− µPP1(t); (2.1.7)

dP2(t)

dt
= fk2P2(t)T (t) + ϵk1P1(t)T (t)− µPP2(t),

where ϵ is the mutation rate and k2 is the new mutant strain infectivity parameter.

In this model, the wild-type strain P1 is the initially infecting strain and the mutant

strain P2 is a result of mutations from the wild-type strain. Similarly, the two-strain

deterministic model has two steady states: the uninfected steady state and a unique

infected steady state which is either physical (a positive number of infected cells) or

unphysical (a negative number of infected cells) depending on the fitness parameters.

The uninfected steady state is given by

(
T 0, P 0

1 , P
0
2

)
=

(
ST

µT

, 0, 0

)
. (2.1.8)

The exact infected steady state is given by

T̄ =
µP

(
f(k1 + k2)−

√
f 2(k1 + k2)2 − 4(f 2 − ϵ2)k1k2

)
2(f 2 − ϵ2)k1k2

;

P̄1 =

(
ST − µTT̄

)(
µP − fk2T̄

)
k1T̄

(
µP − (f − ϵ)k2T̄

) ; (2.1.9)

P̄2 =
ϵk1P̄1T̄

µP − fk2T̄
.
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For a high value of the mutation production rate ϵk1P1T, i.e. for very small intervals

between individual mutation events, mutant infected cells are quickly generated, thus

we can call P2 a common mutant. This model is sensible to capture the dynamics of

common mutants, where the appearance of a new variant is captured by the parameter

ϵ and its growth is captured by parameter k2. For small values of ϵk1P1T, in reality

the mutant might never occur, thus we call it a rare mutant. Here, we need to check

whether it makes sense to model the appearance of rare mutations as a deterministic

process, as was done by some of the authors including [115, 116, 136].

Now, we consider P2 as a fitter rare mutant which may arise when healthy and

wild-type infected cells are at equilibrium (infected steady state, equation 2.1.3). As

an approximation, we assume that this mutant population grows exponentially during

the initial stages such that its dynamics are given by a linear ODE

dP2(t)

dt
= µP (γ − 1)P2(t) + ϵsT

(
R0 − 1

R0

)
, (2.1.10)

where γ = k2/k1 > 1. We have also assumed that healthy and wild-type infected

cell populations are not significantly perturbed from their initial values (i.e. from

the infected steady state) over the time it takes to produce one cell of the fitter rare

mutant. Solving the equation P2(t) = 1 for t, we have the evolutionary time required

to have one cell infected by an advantageous mutant strain in the population, i.e.

t1 =
1

µP(γ − 1)
ln

(
1 +

µP(γ − 1)R0

ϵST(R0 − 1)

)
. (2.1.11)

On the other hand, the stochastic mean waiting time before the appearance of a

mutant is given by

< tw > =

(
1

ϵk1P ∗
1 T

∗

)
;

=
R0

ϵST(R0 − 1)
. (2.1.12)
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We numerically integrate the evolution of wild-type and mutant strain infected cells

using the fourth order Runge-Kutta scheme when:

1. there is no waiting time for different values of γ in figure 2.1 and

2. there is a mean waiting time of 186 days calculated from equation 2.1.12 using

the chosen parameters in figure 2.2 and figure 2.3.

Figure 2.1 and Table 2.1 show that the evolutionary time depends on the mutant

infectivity parameter and the mutation rate in the deterministic framework.
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Figure 2.1: Growth of mutant strain with no waiting time. The other parameter
values are R0 = 148, ST = 2× 108, µP = 0.5, k1 = 2× 10−8 and ϵ = 2.7× 10−11. The
initial values for the healthy T cells and the wild-type strain are given by equation
2.1.3 and that of the rare mutant is zero.
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Figure 2.2: Growth of mutant strain including a mean waiting time of 186 days. The
other parameter values are as in figure 2.1

We use equations 2.1.11 and 2.1.12 to generate values in Table 2.1.
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Figure 2.3: Growth of mutant strain including pseudo sampled waiting times. The
times (< tw >) chosen are 42, 95, 172 and 300 which are chosen so that there are
spaced inversely proportional to the probability density. The other parameter values
are as in figure 2.1 and k2 = 1.5k1.

The appearance of a rare mutation will almost certainly not happen in an individ-

ual’s lifespan, for example numbers in brackets for < tw > in Table 2.1 as calculated

from a stochastic model. In an ODE framework, there is an instantaneous creation of

infinitesimal populations (from the mutation term) and the dynamic property (given

by the infectivity parameter) of the strain will drive the growth such that there is

a significant population size within days (see numbers in brackets for t1 calculated

from a deterministic model). In reality, the mean waiting time for the emergence of

a mutant strain depends on the mutation rate and not on the selective advantage or

disadvantage of the mutant.

In chapter 4, we use a combination of ODE and stochastic models to calculate the

probability of appearance of rare mutations. We use concepts of survival analysis,
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Table 2.1: Deterministic times (in days) to generate a single three-point mutant (t1)
and stochastic mean waiting times before the appearance of a mutant (< tw >), for
different values of R0, γ = k2/k1 > 1 and ϵ = 2.7× 10−11. The figures in brackets are
obtained when ϵ = 2.7× 10−14.

R0 < tw > t1

γ = 2 γ = 1.5 γ = 1.05

2 370 [370370] 10 [24] 18 [46] 93 [365]

10 206 [205760] 9 [23] 16 [43] 73 [342]

148 186 [186440] 9 [23] 16 [43] 69 [338]

i.e. we introduce mutations at random, as a state-dependent Poisson process. Within

this framework, we use the conventional survival analysis to ask questions such as

how long till a key event occurs or the probability that an event has not occurred.

We then use a modified survival analysis to calculate the probability that the key

event has not ‘occurred recently’.

Furthermore, it is important not just for the rare mutant to appear in one produc-

tively infected cell, but for its lineage not to go extinct. However, the modified survival

analysis framework does not allow us to investigate in a dynamically consistent way

whether the new cell harboring the rare mutant will die before infecting other cells

or before infecting enough other cells for the mutant to be fixed, i.e. the persistence

of the new mutants. We run full simulations of the hybrid deterministic-stochastic

model in chapter 5 to investigate persistence of new variants with a subcritical fit-

ness. The new rare mutant has to compete with existing strains and its persistence

depends on its characteristics such as viability and replication ability. Varying the

new genome’s replicative ability, we determine the period at which the new genome
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lineage will be sustained in the face of competition from existing strains after the

initial appearance of a single cell with a new genome.

2.2 Discrete Time Models

Mathematical biology is about modelling discrete populations, e.g. cells, usually

changing over time. Continuous time models in the form of ODEs formally enforce

that, in any time interval, actual population change equals the expected change of that

population as it would be conceived in some stochastic model. While a deterministic

model (formulated in either continuous or discrete time) predicts a single outcome

for a given set of parameters, a stochastic model predicts a set of possible outcomes

weighed by their likelihoods or probabilities. There are many types of deterministic

and stochastic discrete models. Examples of stochastic discrete models include birth

and death models, Markov models and branching processes. We compute important

indicators of viral diversity using a branching process model of viral evolution.

The model folds in the notions of the mutation rate, reproductive ratio and gen-

eration time (implemented as discrete non-overlapping generations). The branching

process model is as follows: one infected cell initiates the process. On replication,

each cell produces a deterministic number of new cells (say R0); the type of each new

daughter cell may or may not be the same as that of the parent cell, i.e. infected

cell populations evolve as a stochastic process with random choices for the type of

offspring. This model assumes exponential viral growth with no selection pressure, no

recombination and a constant mutation rate across sites and lineages. We consider two

fundamentally similar approaches to calculate viral diversity properties. In the first
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framework, we explicitly calculate diversity properties for each evolving individual

species (simulation based computational approach - at every time point population

sizes are updated). The second framework involves calculating statistical properties

of ensembles (mean fields) using the theory of probability generating functions. Mod-

els of random mutations have been used successfully to assess viral diversity as an

indicator of the number of transmission events or founder strains [71, 79].

Simulation Based Computational Approach

In this framework, proposed by Lee et al. [79], we consider infected cells carrying

a genome of length NB, i.e. a sequence of nucleotides A, T, C, and G. Mutations

can occur in any of the NB sites in the entire genome. At the first replication cycle,

the R0 daughter cells produced by the single infected cell will each differ from the

infecting strain at exactly m positions with probability given by

P(mutations = m) =

(
NB

m

)
ηm

(
1− η

)NB−m

,

where η is a per base mutation rate. The authors [79] showed that the total number

of mutations after n replication cycles (assuming that no back mutations), will follow

the probability distribution

P(mutations = m|gen = n) =

(
nNB

m

)
ηm

(
1− η

)nNB−m

,

a convolution of n binomial distributions which is also a binomial distribution. The

Hamming distance (HD0) is defined as the number of base differences from the

founder strain, assumed to coincide with the number of mutations and therefore

it follows the same distribution:

P(HD0 = d|gen = n) =

(
nNB

d

)
ηd
(
1− η

)nNB−d

. (2.2.1)
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In addition to comparing any given sequence to its founder, all sequence pairs in a

sample can be used to calculate their relative Hamming distance, where the distribu-

tion of the intersequence Hamming distance (HDI) distribution is

P(HDI = d|gen = n) =

(
2nNB

d

)
ηd
(
1− η

)2nNB−d

. (2.2.2)

Based on the calculated Hamming distance from the founder strain and the interse-

quence Hamming distance between all possible sequence pairs, the authors defined

the following measures of diversity at any generation n :

1. Divergence as the average Hamming distance per base from the founder strain

and using equation 2.2.1, it can be estimated as the mean of the binomial

distribution divided by the number of bases, i.e. nη.

2. Diversity as the average intersequence Hamming distance per base between

sequence pairs and by using equation 2.2.2 is given by 2nη.

3. Sequence identity as the proportion of sequences identical to the founder strain

sequence, using equation 2.2.1 and setting d to zero, we have (1− η)nNB .

4. Expected maximum Hamming distance, see [79]

All these four measures of diversity depend only on the number of generations and

the authors [79] argued that the number of transcriptional events that have occurred

along a lineage are important in determining viral diversity and not the number of

cells infected at each generation. Monte Carlo based simulations can be used to

calculate the defined indicators of viral diversity.

The simulation starts at generation zero with one infected cell with a single HIV-

1 sequence NB bases long. The founder sequence is generated randomly with base
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frequencies for [A C G T] given by [0.373 0.193 0.241 0.192]. At every generation

each infected cell infects R0 other cells synchronously. Mutations occur during in-

fection and the occurrence of the base substitutions are chosen randomly from NB

bases. The probability that base i is replaced by base j is given by a 4× 4 transition

matrix deduced from a simple parametric model of nucleotide substitution by Jukes

and Cantor [69], i.e. all nucleotides are equally likely to undergo substitution and

given that a substitution has taken place, any other nucleotide is equally likely to

be a replacing nucleotide (uniform replacement). Lee et al. [79] used the maximum

likelihood General Time Reversible (GTR) model of substitutions. At each genera-

tion exactly Ns sequences are sampled with replacement and the Hamming distance

distribution is constructed. Multiple runs are performed with Hamming distance

frequencies computed at each generation step averaged over all iterations giving the

mean field measures of diversity given by the closed form equations.

We assume a genome with NB = 2600 bases, a base substitution rate of η =

2.16 × 10−5 per base per replication [79] and R0 of 2. Each run consists of 1000

replicates with the maximum number of generations given by 50. At each generation,

Ns = 30 nucleotide sequences were chosen randomly from the population and are

used to calculate the metrics. When the total population exceeds 104, we allow 104

cells (selected at random from a uniform distribution) to multiply and sample another

104 from 104R0 new cells to contribute to the next generation. The simulated results,

showing the dependance of the metrics of diversity on the number of generations, are

given in figure 2.4 (the simulations match the formulas). The results still coincide

with the ones obtained by Lee et al. [79], when they assumed a GTR model of

substitutions and a reproductive ratio (R0) of 6.
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Figure 2.4: Monte Carlo simulations of the synchronous infection model. Dynamics
of (A) divergence - average hamming distance per base from the founder strain,
(B) diversity - average inter sequence hamming distance per base between sequence
pairs, (C) maximum hamming distance and (D) percentage identity - proportion of
sequences identical to the founder strain, for sequences of length 2600, and from 1000
simulations where n is the generation. The vertical bars are the standard errors.

A Critical Review of The Number of Transmission Events

To expand the analysis of the synchronous model with full viral genome, we allow

multiple infections by distinct types to initiate the infection process. For simplicity, we

assume two very distinct founder sequences with different fitness values (i.e. different

reproductive ratios). The reproductive ratios of the two founder strains are R01 and
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R02 such that R02 = (1 − f2)R01, where f2 is the growth disadvantage of the second

founder strain. We allow the two founder strains to evolve as described previously

(Monte Carlo based simulation) and at each generation n, we draw a sample of Ns

sequences with a probability of picking a descendant of founder strain i given by(
R0i

)n(
R01

)n
+
(
R02

)n , i = 1.2. (2.2.3)

and construct the intersequence Hamming distance distribution. In the single sce-

nario we consider here, we assume that infection starts with two founder strains with

different reproductive rates R01 = 4 and R02 = 2. At the time of infection, the Ham-

ming distance between the two sequences is fixed at 50. At certain time points, within

a period of 20 generation, we sample Ns = 30 sequences and plot the histograms of

the observed intersequence Hamming distance frequencies, see figure 2.5 and figure

2.6.
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Figure 2.5: Observed intersequence hamming distance frequencies. At the specified
generation we randomly draw 30 sequences (from a uniform distribution) and compute
the intersequence hamming distance, continued in figure 2.6.
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Figure 2.6: Continuation of figure 2.5 of the observed intersequence hamming distance
frequencies.

Sampling at generation 18 (figure 2.6 shows the distribution of the intersequence

Hamming distance), we get sequences with the maximum Hamming distance of 6

which is consistent with that of an infection started by a single founder strain (see

figure 2.4 where the maximum Hamming distance at generation 18 is around 6). This

is expected because at generation 18, the probability of selecting the fitter strain

(strain with an R0 of 4) is almost 1 and that of selecting a less fitter strain is nearly 0.

In our simple model, we have only incorporated differential fitness and the model is

silent about the origin of this fitness difference. Effects of selection pressure due to the
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immune system can greatly influence the population frequencies such that random

samples of genomes from populations seeded with multiple genotypes may resemble

those of single-genome infections. Due to innate differential fitness and selection by

immune system pressure, wrong deductions about the number of transmission events

may be made. In this simple example, analysis of the extent of viral diversity, some

time after infection by multiple founder strains, will resemble those of individuals

infected by a single strain because the fittest strain will be the dominant species.

Probability Generating Function Approach

In this framework, instead of considering the entire genome (all NB bases), we choose

a particular segment of the genome. For illustration purposes, we consider a single-

point mutation that occurs in a particular position in the viral genome, i.e. we

consider an artificial viral genome with a single site, changes at the other remaining

sites are deemed irrelevant. In this scenario, we only have two types of infected cells

of relevance, the initially infecting strain (wild type) and a population of cells infected

with a virus carrying a sequence with a base change at the site of interest, i.e. the

single point mutant. We extend the size of the genome segment to three bases in

chapter 3. Branching processes have a recursive structure that makes it amenable

to analysis by generating functions [59]. Definitions and properties of generating

functions are given in Appendix A.

The population of the virus is modelled as a two-type process where the types

are 0 (wild-type infected cells) and 1 (mutant infected cells). The set of types is

T = {0, 1}. Independently of each other, each wild-type infected cell gives birth at

a rate η to a mutant infected cell and at rate (1 − η) to a wild-type infected cell.

Similarly, a mutant infected cell gives birth at a rate η to a wild-type infected cell
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and at a rate (1 − η) to a mutant infected cell. In our notation, superscripts will

denote the generation number and subscripts the type of the cell (0 for wild-type and

1 for the mutant). The transition matrix is given by


P0 P1

P0 1− η η

P1 η 1− η

, (2.2.4)

where the number of wild-type and single point mutant infected cells are given by P0

and P1, respectively. The offspring distribution for the wild-type and mutant infected

cells are: p0(k0, k1) ∼ Bin(R0, 1 − η) and p1(k0, k1) ∼ Bin(R0, η), respectively. Here

p0(k0, k1) is the probability that the wild-type cell will give birth to k0 wild-type

cells with probability 1− η and k1 mutant cells with probability η, assuming that at

death each cell gives birth to R0 cells (i.e. a binomial distribution). Using, equation

A.0.7 (Appendix A), we can derive the wild-type infected cell offspring probability

generating function (pgf) as:

g0(s0, s1) =
∞∑

k0=0

∞∑
k1=0

p0(k0, k1)s
k0
0 sk11 ;

=
∞∑

k0=0

∞∑
k1=0

(
R0

k0

)
(1− η)k0ηk1sk00 sk11 ;

=
∞∑

k0=0

(
R0

k0

)(
(1− η)s0

)k0(
ηs1

)(R0−k0)

, (where k1 = R0 − k0);

=
(
(1− η)s0 + ηs1

)R0

, (2.2.5)

where at the last step we have used the binomial theorem. Similarly, the probability

generating function for mutant infected cells can be shown to be

g1(s0, s1) =
(
ηs1 + (1− η)s1

)R0

. (2.2.6)
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Assuming that the population is started from a single wild-type infected cell, i.e. the

total population initial conditions {P0(0), P1(0)} = {1, 0}, we have

Gn
0 (s0, s1) = g0

(
Gn−1

0 (s0, s1), G
n−1
1 (s0, s1)

)
;

=
(
(1− η)Gn−1

0 (s0, s1) + ηGn−1
1 (s0, s1)

)R0

(2.2.7)

and

Gn
1 (s0, s1) = g1

(
Gn−1

0 (s0, s1), G
n−1
1 (s0, s1)

)
;

=
(
ηGn−1

0 (s0, s1) + (1− η)Gn−1
1 (s0, s1)

)R0

, (2.2.8)

assuming that each infected cell gives rise to exactly R0 new cells of generally all

types at generation n, with initial conditions G0
i (s0, s1) = si for i = 0, 1. Here

Gn
0 (s0, s1) = E

(
s
P0(n)
0 s

P1(n)
1

∣∣∣P0(0) = 1, P1(0) = 0
)

is the probability generating function of the population started by a single wild-type

infected cell and

Gn
1 (s0, s1) = E

(
s
P0(n)
0 s

P1(n)
1

∣∣∣P0(0) = 0, P1(0) = 1
)

is the probability generating function of the population started by a single mutant

infected cell, where n ≥ 0, s0, s1 ∈ [0, 1], P0(n) is the number of wild-type infected

cells and P1(n) the number of mutant infected cells at generation n. We can calculate

the following indicators of viral diversity in this framework:

1. Probability that a single mutant has never occurred. To calculate this prob-

ability, we use the following trick: Compute Gn
0 (1, 0) in the model with type

transition matrix given in equation 3.2.1 but with state 1 (mutant) made an
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absorbing state, i.e.


P0 P1

P0 1− η η

P1 0 1

, (2.2.9)

where the last row of the matrix is reset to (0 1). The modified process will go

to state 1 for the first time exactly as the process would, but will stay there.

Denoting S0(n) = Gn
0 (1, 0) and also S1(n) = Gn

1 (1, 0), we have the following

recursive equations

S0(n) =
(
(1− η)S0(n− 1)

)R0

;

S1(n) =
(
S1(n− 1)

)R0

, (2.2.10)

with initial conditions S0(0) = 1 and S1(0) = 0. This implies that S1(n) ≡ 0,

such that the probability of the event in question (mutant has never occurred)

is given by

S0(n) =
(
1− η

)∑n
i=1R

i
0
;

=
(
1− η

) R0

R0−1

(
Rn

0 − 1
)
. (2.2.11)

2. A related question of the mean time to the occurrence of a particular single

point mutant is given by

E(WT ) =
∞∑
n=0

S0(n);

=
∞∑
n=0

(
1− η

) R0

R0−1

(
Rn

0 − 1
)
. (2.2.12)

The median time to the appearance of a particular single point mutant is given

by solving the equation S0(n) = 0.5 for n. Thus the median time is

nm =
1

ln R0

ln

(
1− (R0 − 1) ln 2

R0 ln (1− η)

)
. (2.2.13)
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3. The probability that a mutant infected cell is not currently present in the popu-

lation. This metric is precisely given by P0(n) = Gn
0 (1, 0) which can be obtained

from the equations

P0(n) =
(
(1− η)P0(n− 1) + ηP1(n− 1)

)R0

;

P1(n) =
(
ηP0(n− 1) + (1− η)P1(n− 1)

)R0

, (2.2.14)

with initial conditions P0(0) = 1 and P1(0) = 0. This system of equations can

be easily solved numerically.

4. The expected number of infected cells present at generation n. For illustration

purposes, we consider the simplest case when R0 = 2. Denoting the matrix of

expected cell counts M(n) =
(
Mij(n)

)
,

Mij(n) = E
(
Pj(n)

∣∣∣Pk(0) = δik, k = 0, 1
)
;

=
∂

∂sj
Gn

i (s0, s1)
∣∣∣
s0=s1=1

, (2.2.15)

the expected number of type j offspring of a single type i cell in generation n

and δik is the Kronecker delta. The expected total number of cells present at a

particular time n is

PT (n) = E
(
P0(n) + P1(n)

∣∣∣P0(0) = 1, P1(0) = 0
)
;

=
( ∂

∂s0
+

∂

∂s1

)
Gn

0 (s0, s1)
∣∣∣
s0=s1=1

(2.2.16)

The expected number of mutant infected cells at a particular time is

m(n) = E
(
P1(n)

∣∣∣P0(0) = 1, P1(0) = 0
)
;

=
∂

∂s1
Gn

0 (s0, s1)
∣∣∣
s0=s1=1

(2.2.17)
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Differentiating the pgfs of the process, we obtain

M(n) = 2

 (1− η)
∂Gn−1

0 (1,1)

∂s0
η
∂Gn−1

1 (1,1)

∂s1

η
∂Gn−1

0 (1,1)

∂s0
(1− η)

∂Gn−1
1 (1,1)

∂s1

 ;

= 2

 1− η η

η 1− η




∂Gn−1
0 (1,1)

∂s0
0

0
∂Gn−1

1 (1,1)

∂s1

 ;

= µM(n− 1), n = 1, 2, · · · ;

= µn, (2.2.18)

where µ is the expected offspring matrix

µ = 2

 1− η η

η 1− η

 , (2.2.19)

and M(0) = I is the identity matrix derived from the initial conditions:

E
(
P0(0)

∣∣∣Pi(0) = δ0i

)
= 1, E

(
P1(0)

∣∣∣Pi(0) = δ1i

)
= 1;

E
(
P0(0)

∣∣∣Pi(0) = δ1i

)
= 0, E

(
P1(0)

∣∣∣Pi(0) = δ0i

)
= 0.

Matrix µ is diagonalizable if there is a matrix, say V, such that V −1µV = D is

a diagonal matrix. Then, as the matrix product is associative

µn = V DnV −1. (2.2.20)

The two eigenvalues of the matrix µ are 2 and 2(1− 2η) and the matrix of the

corresponding eigenvectors is given by

V =

 1 −1

1 1

 (2.2.21)
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and its inverse given by

V −1 =
1

2

 1 1

−1 1

 , (2.2.22)

such that

µn =

 1 −1

1 1


 2n 0

0 (2(1− 2η))n


 1

2
1
2

−1
2

1
2



=

 2n−1 + 2n−1(1− 2η)n 2n−1 − 2n−1(1− 2η)n

2n−1 − 2n−1(1− 2η)n 2n−1 + 2n−1(1− 2η)n

 . (2.2.23)

The expected total number of infected cells is given by

PT (n) = 2n,

the expected number of mutant cells at generation n is

m(n) =
2n

2

(
1− (1− 2η)n

)
,

and the expected number of wild-type infected cells at generation n is

w(n) = 2n−1 + 2n−1(1− 2η)n,

for n = 0, 1, 2, · · · . Numerical simulations are carried out to compare to the

derived formulas and results are shown in figure 2.7. The two solutions (proba-

bility generating function framework and stochastic simulations) are in perfect

agreement.
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Figure 2.7: The probability that the mutant has never occurred (A) and (B) the
probability that the mutant is not currently present in the population. (C) Average
cell counts (wild-type (w) and mutant (m)) of 1000 runs of the branching process,
started by a single wild-type infected cell (with 95% confidence intervals) and (D) the
expected cell counts given by the formulas for R0 = 2, mutation rate η = 10−4. The
simulations and the formulas give the same result.

In general, if each infected cell produces R0 cells at the time of death, the mean

offspring matrix is

µ = R0

 1− η η

η 1− η

 , (2.2.24)

such that the two eigenvalues are given by R0 and R0(1 − 2η). Similarly, the
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expected number of infected cells at every generation is given by the matrix

µn =


1
2
Rn

0 +
1
2
(R0(1− 2η))n 1

2
Rn

0 − 1
2
(R0(1− 2η))n

1
2
Rn

0 − 1
2
(R0(1− 2η))n 1

2
Rn

0 +
1
2
(R0(1− 2η))n

 . (2.2.25)

The expected total number of infected cells is given by

PT (n) = Rn
0 , (2.2.26)

the expected number of mutant cells at generation n is

m(n) =
Rn

0

2

(
1− (1− 2η)n

)
, (2.2.27)

and the expected number of wild-type infected cells at generation n is

w(n) =
Rn

0

2

(
1 + (1− 2η)n

)
, (2.2.28)

for n = 0, 1, 2, · · · .

2.3 Viral Diversity Measures

In order to assess aspects such as the number of transmission events and resistance

evolution in HIV infections, various diversity indicators can be clinically measured.

Different questions require different diversity measures. Diversity measures are im-

portant and they can act as signals of epidemiological and clinical conditions. Among

these various indicators some may be very informative especially if a clinical condition

variation is a function of a metric indicator, e.g. appearance of particular mutations

(metric) can result in drug failure (clinical condition). We compare the different



37

metrics that can be computed using different tools and suggest those that might be

of clinical or epidemiological significance, i.e. those metrics that can be related to

prognosis.

From the two methodologies used to compute diversity outlined in the previous

sections, i.e. tracking individuals in the population (sequence evolution) and the use

of probability generating functions, a variety of diversity measures can be calculated.

Computing viral diversity indicators for each individual cell, diversity metrics such as

hamming distance distributions, average diversity, average divergence and sequence

identity do not depend on the virus reproductive rate, but depend on time only.

Asking questions about particular mutants in the probability generating function

framework, we can calculate diversity metrics such as the probability that a particular

mutant has never occurred or the probability of its non-existence in the population.

These diversity indicators which are readily calculated in the probability generating

function framework depend on both time and viral replication rate. Figure 2.8 shows

how different metrics depend on time and the number of new infected cells.

Instead of asking questions about probabilities of particular events or Hamming

distance distributions, alternatively we can ask questions about the mean and median

times to the occurrence of particular mutants in both paradigms. We have already

demonstrated how the mean and median waiting times are calculated in the proba-

bility generating function framework and now we use the full viral genome evolution

model (i.e. Monte Carlo Simulations only) to calculate the mean and median times to

the appearance of a particular single point mutation and compare these to the closed

form solutions obtained in the probability generating function framework.

Our numerical scheme is as follows: we assume that the mutation probability per
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Figure 2.8: The dependence of diversity metrics on time and virus replication rate.
The probability that a particular single point mutant A: has never occurred and B:
is currently absent for varying virus replication rates., i.e. R0 decreases from left to
right (R0 = 10 - dashed line, R0 = 6 - dashed and dotted line, R0 = 4 - dotted line
and R0 = 2 - continuous line). C: Average divergence, nη. D: Average diversity, 2nη,
where n is the generation number.

base is η = 10−4 and sequences are of length NB = 175. We generate the founder

sequence with weights [A C G T] given by [0.373 0.193 0.241 0.192], respectively.

Our substitution model is the Jukes and Cantor model [69]. We also assume that the

relevant single point mutation occurs when a base at a specific position X changes

to a particular base, for example, say C is the current base at X and the relevant

mutation occurs when base C changes to base G at position X. This can be achieved

straight away or through intermediate bases, A or/and T. The substitution rate is
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modified such that the probability that sequence i with base C at position X changes

to sequence j with base G at position X is given by P(i → j) = 1
3
η (the new mutation

rate in the closed form equation). We also assume that any changes at other remaining

sites other than that at site X in the sequence are regarded as not important, and

hence there is no differential fitness among infected cells carrying these sequences.

We start the simulation with one wild-type cell and when total population exceeds

106, we allow 106 cells (selected at random from a uniform distribution) to multiply

and sample another 106 from 106R0 new cells to contribute to the next generation.

For each value of R0, we run the model 1000 times and calculate the mean and median

times. The dependence of the mean and median times to appearance of a particular

single point mutant on replication rate is shown in Table 2.2 and figure 2.9. The table

and figure made counting only those simulations where the mutant appeared in the

population.

Table 2.2: Mean and median generations to the appearance of a particular single point
mutant calculated from the closed form probability generating function equations (cf)
(i.e. equations 2.2.12 and 2.2.13, respectively) and Monte Carlo simulations of the
synchronous model (sim). SE is the standard error that will give 95% confidence
intervals.

R0 2 3 4 5 6 7 8 9 10
median (cf) 13.34 8.68 6.96 6.04 5.45 5.03 4.72 4.47 4.27
median (sim) 14 9 7 7 6 6 5 5 5
mean (cf) 13.54 8.99 7.31 6.41 5.83 5.43 5.12 4.86 4.67
mean (sim) 13.43 9.04 7.31 6.42 5.84 5.44 5.16 4.89 4.66
SE 0.11 0.07 0.06 0.05 0.05 0.04 0.04 0.04 0.04

Using the sequence evolution modelling framework to calculate calculate different

indicators of diversity, we observe that different metrics behave differently. In this case

mean and median times to the appearance of particular mutations depend on both the
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Figure 2.9: Mean and median generations to the occurrence of a single point mutation
as given by the closed form solutions of the probability generating functions (i.e.
equations 2.2.12 and 2.2.13, respectively) and Monte Carlo simulations of the full
viral genome model, including 95% confidence intervals.

number of generations and the number of infected cells at each generation (whereas

Hamming distance distributions depend only on the number of transcriptional events).

For these measures (mean and median times to the occurrence of particular genomes),

the probability generating function technique and the Monte carlo simulations of the

full viral genome framework coincide. We conclude that choosing measures of diversity

to compute is very important as different metrics behave differently. Perhaps the

presence or absence of a particular variant (especially therapy defeating variants)

is prognostic. It is important to choose measures that correlate to the probable

outcome. Experiments can be performed to test whether there are correlations of

clinical outcomes and diversity measures.
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2.4 Conclusion

We have demonstrated that deterministic models are appropriate to investigate evo-

lution of common mutants. In environments where rare higher order mutations may

appear, deterministic models cannot explain appropriately the evolution of these rare

mutations. We develop a deterministic model with a few assumptions that allow for

a pseudo-stochastic component in chapter 4. The Poissonian waiting time is used to

refine the estimate for the impact of both transient and chronic treatment on strain

selection. The model is then extended to allow for non-exponential death rates and

for the transient survival of new genomes.

For discrete time models, we considered a simple synchronous model of viral evo-

lution and used two fundamentally similar frameworks to compute viral diversity

measures. The sequence evolution framework developed by Lee et al. [79] was suc-

cessful in assessing the degree of viral diversity during the early phase of infection.

However, the effect of assumptions such as differential fitness and selection pressure

can significantly affect the overall conclusions. The probability generating function

paradigm offers the ability to efficiently compute important indicators of viral diver-

sity without simulating the full range of individual level scenarios. Because of the

computational efficiency and the fact that important measures of viral diversity that

can be computed from this paradigm depend on both time and virus replication rate,

we use this methodology in chapter 3 to model early events of HIV infection and

assess the impact of therapeutic interventions on the course of infection.
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2.5 Summary of Implications for the Biomedical

Field

Components of virus-host interactions are sufficiently complex that intuition alone is

insufficient to understand the dynamics of such interactions [9]. Mechanistic models

attempt to explain real events, observed or not. Selection of modelling techniques

should be influenced by the essence of the problem to be investigated to avoid misap-

plication such as using deterministic models to capture the dynamics of rare mutants

that exist as small sub-populations. Models need not be necessarily complex. Sen-

sible model building that incorporates realistic size and timescales, where possible,

avoiding having to estimate numerous microscopic properties such as molecular avidi-

ties can be very useful. Models with realistic assumptions can be experimental and

analytical tools. For example models have helped elucidate high viral turnover in HIV

infected individuals [120] and through coupling a mathematical model of HIV diver-

sification and single genome amplification (SGA) sequencing techniques, transmitted

HIV envelope sequences have been identified [71] . This work also showed that there

is a high barrier to infection, with approximately 80% of heterosexual infections ap-

parently started by a single virus, and that within 8 days of infection escape mutants

for envelope-directed CTLs appeared in the viral population. Also, models developed

in this work suggest that new measures of viral diversity, which correlate to prognosis,

should be sought, and monitored in clinical trials for vaccines for example.



Chapter 3

Modelling the Impact of Acute
Infection Dynamics on the
Accumulation of HIV-1 Mutations

3.1 Introduction

The extent of virus replication and immunopathological events during primary infec-

tion may be important determinants of the subsequent course of HIV disease [58].

Despite advances in elucidating the structure of HIV, its genetics and its mechanisms

of replication and survival in host immune system cells, the course of primary infec-

tion (the dynamics, timing and specificity of the immune response and the creation

and establishment of cellular reservoirs of virus) is only partially understood. In sex-

ual transmission, early events in HIV infection at the mucosal surface are critical to

the initiation and propagation of the disease [56].

Recent advances, through coupling data analysis and mathematical modelling,

have allowed the identification and characterization of the nature of the transmit-

ted virus. Results indicate that HIV-1 quasispecies that arise following a mucosal

infection are apparently consistent with a single transmitted strain [1, 71, 79]. The

43



44

evidence of a high barrier to infection has created the enthusiasm and re-energized

the interest in targeting the early infection period with preventative or therapeutic

interventions such as vaccines [124] or pre-exposure prophylaxis (PrEP) [70]. Thera-

peutic vaccines can prime the immune system to develop antibodies and cytotoxic T

lymphocytes (CTLs) against the virus such that they are readily available to block

or control infection by attenuating virus replication. PrEP can block the early am-

plification process (when infected resting cells pass the virus to activated cells which

are critical for the infection process to start) after the virus has permeated through

the mucosa [56] or restrict viral expansion by reducing the reproductive rate of the

virus, preventing chronic infection.

The main clinical benefit of intervention at the early phase of HIV-1 infection is

to block infection or contain early viral spread in the case of a breakthrough infec-

tion. There are undesirable consequences of undeterred viral replication during early

infection, for example, 1) massive depletion of the CD4+ T-cell population, in partic-

ular within the gut-associated lymphoid tissue (GALT) [14, 96, 100] and 2) probable

early establishment of viral reservoirs [37]. The establishment of viral reservoirs is a

likely barrier to eradication of the virus [20]. Also, undeterred viral replication during

early HIV infection seems associated with amplified transmission probability per sex

act, and the timing of this peak in infectiousness means that patients are unlikely

to know their HIV status at the time of this peak. Massive depletion of the CD4+

T-cell population is harmful for the patient: e.g. the risk of tuberculosis (TB) disease

seems to be much higher in acutely infected people than in HIV negative people [26].

Existing analysis and modelling of early infection is largely driven by the kind of

questions being addressed. For example, models of random mutations have been used
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successfully to assess viral diversity as an indicator of the number of infection events

or founder strains [71, 79]. According to these models, in homogenous infections, i.e.

infections initiated by a single founder strain, the hamming distance (the number of

bases at which any two sequences differ) distributions are essentially Poisson distri-

butions. Models of sequence evolution have also been used to assess viral diversity

during the chronic phase [80, 132]. Using recent acute HIV-1 infection data and a

codon model of sequence evolution, a group of researchers found evidence of positive

selection which appeared to be driven by cytotoxic T lymphocyte responses [154].

Also, population dynamic type models, mainly ordinary differential equations,

have been used to study viral dynamics of early HIV-1 and SIV infections. Some

of these models have been used to estimate viral growth rates, basic reproductive

numbers and post peak decay rates [87, 114, 128]. Such models have also been used

to understand the role of early immune responses in HIV infection [6, 47, 141]. These

models have helped to define the challenge that immune responses and therapeutic

interventions have to overcome to defeat HIV early in infection. However, these

models make specific assumptions about many intra-cellular processes, such as cell

entry rates and lifetime distributions, that are not directly observable.

As an alternative to the use of diversity, divergence, sequence identity and maxi-

mum hamming distance as correlates of the number of transmission events, we propose

a new metric of diversity which may relate to prognosis. Whilst every possible single

point mutation in the viral genome may occur in each generation, we are interested in

computing the probability of appearance of particular mutations in the viral genome,

i.e. we can ask about the probability that a particular mutant has never occurred or

is currently present. Viral genetic changes can result in increased virulence, increased
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cell tropism, escape from host immune/drug pressure [32, 84, 140] and may conse-

quently lead to treatment failure [67]. One study has reported that low pre-treatment

diversity (diversity defined by pairwise comparisons of nucleotide substitutions per

site) is also associated with control of viremia during subsequent treatment interrup-

tion and low viral replication capacity [68]. Accumulation of quasispecies can also

result in alterations in receptor usage, in particular CCR5 and CXR4, and this switch

in receptor usage is correlated with a faster progression of the disease [84, 132]. Also

these new mutations are likely to be archived in latently infected cells and are unlikely

to be eliminated by HIV-1 immune responses and antiretroviral therapy, even after

treatment intensification [31].

Previously, some authors calculated the expected frequency of resistant virus and

showed that the likelihood of generating resistant mutants during treatment is less

than the likelihood that such mutants are present before treatment is initiated [13,

112, 127]. A simple calculation of waiting times to the appearance of mutants before

and during treatment shows that it is highly unlikely that new mutants appear during

suppressive therapy (see chapter 4). Unabated viral replication results in a continuous

accumulation of variants which may persist at very low frequencies. The pre-existing

minority mutations which may not be detected by standard bulk sequencing genotypic

assays in both drug-naive and drug-experienced persons, e.g. thymidine analogue

mutations (TAMS), have shown to be significantly associated with virologic failure

[67, 101].

A birth and death process model of viral growth [125] was used to assess the prob-

ability of appearance of resistant mutants. In their framework, the authors calculated

the total number of replications until a specific mutant first appeared. From direct
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simulations in [125], results show that common mutants (one point and two point

mutants) were likely to appear early during acute infection and three point mutants

may emerge around the peak of viremia but disappeared at the set point. However,

calculating the number of replication cycles may not be a good metric if immune

effects are considered because immune control impact can change the absolute time

until appearance of a specific mutant but not the number of replication cycles. In this

model [125], the number of infected cells changes by one at a time. This assumption

is unlikely suited for virus proliferation as noted in [57].

In this chapter, we use a multi-type Galton-Watson branching process (GWBP)

in a varying deterministic environment. In our branching process model, the number

of offspring is time dependent (in discrete non-overlapping generations). Multi-type

branching processes have been used to calculate the risk of escape that comes from

pre-existence of resistant mutations held in a mutation-selection equilibrium for a

population of organisms challenged by a biomedical intervention [64, 65], mutation

accumulation in mitochondrial DNA and the polymerase chain reaction [75, 117]. The

Galton-Watson process has a simple recursive structure that makes it amenable to

analysis by generating functions, hence we can derive ensemble level probabilities of

diversity without the need for calculating many population level ‘realizations’.

Our model differentiates from previous studies [64, 65, 125] in that it parame-

terizes the dynamics through an effective reproductive number of offspring per indi-

vidual. This makes it relatively straightforward to model changes between scenarios

corresponding to interventions, whose impact on the course of infection can then be

heuristically described. By contrast, previous authors have tended to define specific

microscopic dynamics, such as exponential growth, or mass action, with particular
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rate constants that have not been reliably measured. We can tune our effective re-

productive number over a period of several weeks/months post infection to obtain

realistic initial viremic peaks and set points, without having to unpack the underly-

ing combination of target cell depletion and immune system responses, as it is only

the infected cell population which we need to model in order to quantify opportunities

for evolution.

The main focus here is calculating probabilities of appearance and the likelihood

of existence of genomes which potentially arise from infections initiated by a single

strain. We explore how the dynamics of early infection affects the accumulation of

mutations which lay the seeds for long term evolution of drug resistance and immune

system evasion. These models may be useful to test the biological effectiveness of

early interventions (PrEP or vaccines) in the case of a breakthrough infection. There

is concern that PrEP or imperfect vaccines may lead to clinically disadvantageous

selective pressures during HIV transmission. The details of how a topical exposure

becomes a systemic infection are beyond the scope of this analysis. In the case of a

drug or vaccine naive infectious partner, it may be that the relevant mutations are

absent, or present only in trace quantities, so that to first order there is little selective

pressure affecting what, for the purposes of the present analysis, is the founding strain

or wild-type, defined by a narrow view of a small portion of the viral genome.

3.2 A Model of Viral Diversity

In our model, we consider an infection that is started by a single infected cell carrying

a particular sequence with a certain number of bases. We focus on a small segment of

the viral genome where changes or mutations at these particular sites are relevant and
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lead to key variants. Any changes at the other remaining sites are deemed irrelevant

in our model. The mutation rate per nucleotide is given by a parameter η. The

branching process model is as follows: one infected cell initiates the process. On

replication, each cell produces new cells; the type of each new daughter cell may or

may not be the same as that of the parent cell, i.e. infected cell populations evolve

as a pure stochastic process with random choices for the type of offspring.

3.2.1 Single Mutation

We start by considering a single-point mutation that occurs in a particular position

in the viral genome, i.e. our artificial viral genome has a single site. In this scenario,

we only have two types of infected cells of relevance, i.e. the initially infecting strain

(wild type) and a population of cells infected with a virus carrying a sequence with a

base change at the site of interest (single point mutant). The mutation matrix with

transition probabilities is given by:


P0 P1

P0 1− η η

P1 η 1− η

, (3.2.1)

where the number of wild-type and single point mutant infected cells are given by P0

and P1, respectively. This process is a two-type Galton-Watson process (see Appendix

for details). We assume that the two types have different replication rates and the

mean number of offspring for each type may change from generation to generation, i.e.

the two effective reproductive numbers are R0(n) and R1(n) for the wild-type strain

and mutant, respectively. The effective reproductive number is the average number

of new infections caused by one infected cell at a given time/context in a population

that is not necessarily wholly susceptible. In our notation for probability generating
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functions (pgfs), superscripts will denote the generation number and subscripts the

type of the cell (0 for wild-type and 1 for the mutant).

The offspring distributions for the wild-type and mutant infected cells at every gen-

eration are binomial, i.e. p0(k0, k1) ∼ Bin(R0(n), 1−η) and p1(k0, k1) ∼ Bin(R1(n), η),

respectively, where pi(k0, k1) is the probability that a cell of type i = 0, 1 has k0 off-

spring of type 0 and k1 of type 1. Using equation A.0.7, the pgf for the wild-type

infected cell offspring at generation n is given by

gn0 (s0, s1) =
∞∑

k0=0

∞∑
k1=0

p0(k0, k1)s
k0
0 sk11 ;

=
∞∑

k0=0

∞∑
k1=0

(
R0(n)

k0

)
(1− η)k0ηk1sk00 sk11 ;

=
∞∑

k0=0

(
R0(n)

k0

)(
(1− η)s0

)k0(
ηs1

)R0(n)−k0
;

=
(
(1− η)s0 + ηs1

)R0(n)

, (3.2.2)

where k1 = R0(n) − k0 and at the last step we have used the binomial theorem.

Similarly, the pgf for the mutant infected cell offspring is given by

gn1 (s0, s1) =
(
ηs0 + (1− η)s1

)R1(n)

. (3.2.3)

Assuming that the population is started from a single wild-type infected cell, we

have the process initial conditions given by {P0(0) = 1, P1(0) = 0}. We can use the

iteration

Gn
i (s) = Gn−1

i

(
gn0 (s), g

n
1 (s)

)
, n = 2, 3, · · · (3.2.4)

for i = 0, 1, where s = (s0, s1), to derive the pgf specifying the distribution law of the

number of cells at every generation. The marginal laws for subsets Pi can be obtained

by setting respective arguments of the pgf equal to 1 [75]. The derived marginal pgf
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constructs can then be used to calculate probabilities of interest. The marginal pgf of

mutant infected cells in a process initiated by a single wild-type infected cell is given

by Gn
0 (1, s1), such that the probability that a mutant infected cell is not currently

present at generation n in the population is precisely given by P0(n) = Gn
0 (1, 0). To

calculate the probability that a single point mutant has never occurred, we use the

following trick: we compute Gn
0 (1, 0) in the model with type transition matrix given

in equation 3.2.1 but with state 1 (mutant) made an absorbing state, i.e. where the

last row of the matrix is reset to (0 1). The modified process will go to state 1 for the

first time exactly as the process would, but will stay there. Letting S0(n) = Gn
0 (1, 0)

with the initial condition S0(0) = 1, we have the sequence

S0(1) =
(
(1− η)

)R0(1)

;

S0(2) =
(
(1− η)(1− η)R0(2)

)R0(1)

;

S0(3) =
(
(1− η)

(
(1− η)(1− η)R0(3)

)R0(2))R0(1)

; (3.2.5)

S0(4) =
(
(1− η)

(
(1− η)

(
(1− η)(1− η)R0(4)

)R0(3))R0(2))R0(1)

;

... =
...

and so on, such that the probability that the mutant has never occurred is given by

S0(n) =
(
1− η

)∑n
i=1

∏i
j=1 R0(j)

, (3.2.6)

which has boundary conditions S0(0) = 1 and S0(∞) = 0. The exponent is the

total wild-type infected cell population size after n generations. Equation 3.2.6 is the

“survival” function (“survival” means no mutant present). Let a non-negative random

variable T represent the number of generations until there is a mutation, then the

cumulative distribution function, which gives the probability that the mutation has
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occurred by generation n, is given by Pr(T ≤ n) = 1 − S0(n). Thus the density is

given by f(n) = S0(n−1)−S0(n). The expected time (generation) to the appearance

of a single point mutant is given by:

E(WT ) =
∞∑
n=0

nf(n);

=
∞∑
n=1

(
1− η

)∑n
i=1

∏i
j=1R0(j)

. (3.2.7)

3.2.2 Multiple Mutations

For higher order mutations, we choose a small portion of the viral genome with three

sites where we assume a founder strain (wild-type), the possibility of three single-

point and three double-point mutants, and also the possibility of multiple mutations

which lead to a three point mutant that is reachable by different pathways (see Ap-

pendix C for the three point mutation network matrix). This is just one example

of a phylogenetic tree; any tree can be easily accommodated in our framework by

modifying the mutation matrix. We are using the minimum number of mutations

within which we can describe the interplay between common mutations, unviable in-

termediate mutations, and ‘compensatory’ mutations. It will be interesting to apply

this approach to high quality clinical data, demonstrating how mutations accumulate

to provide increasing resistance [67, 101, 129, 136].

From system C.0.5 in Appendix C, the result that is relevant to our setting is the

joint pgf of the numbers of cells of all types, present at generation n in the process

initiated by a single wild-type infected cell given by Gn
0 (s), where s = (s0, · · · , s7). In

our notation, {0} represents wild-type infected cells, {1,2,3} three single point mutant

infected cells, {4,5,6} three double point mutant infected cells and {7} triple point
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mutant infected cells. We can derive recurrent equations for:

1. the marginal joint pgf of the numbers of all single point mutant infected cells

as Gn
0 (s)|sj=1,j ̸={1,2,3}, such that the probability that no single point mutant

infected cells are present at generation n is given by

Psp
0 (n) = Gn

0 (s), (3.2.8)

using substitutions s = (1, 0, 0, 0, 1, 1, 1, 1).

2. the marginal joint pgf of the number of all double point mutant infected cells as

Gn
0 (s)|sj=1,j ̸={4,5,6}, where the probability that no double point mutant infected

cells are present at generation n is given by

Pdp
0 (n) = Gn

0 (s), (3.2.9)

using substitutions s = (1, 1, 1, 1, 0, 0, 0, 1).

3. the marginal pgf of triple point mutant infected cells as Gn
0 (s)|sj=1,j ̸=7, where the

probability that no triple point mutant infected cells are present at generation

n is given by

P tp
0 (n) = Gn

0 (s), (3.2.10)

using substitutions s = (1, 1, 1, 1, 1, 1, 1, 0).

3.3 Early Infection Scenarios

The effective reproduction number is of great importance in facilitating quantitative

assessment, in real time, of the impact of intervention strategies on the course of dis-

ease progression [53]. In order to explore the impact of intervention early in infection
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(such as effects of vaccines or PrEP) on the probability of diversity, we choose var-

ious profiles of the effective reproduction number and calculate the probability that

particular mutants are currently absent from the population. We assume that the

effective reproduction number is given by the following continuous piecewise linear

function:

R(n) =



R0 if n < ng

(R0 −Rm)(np − n)

np − ng

if ng ≤ n < np

Rm if np ≤ n < ns

1 if n ≥ ns

(3.3.1)

schematically shown in figure 3.1. Here R0 is the basic reproductive ratio, defined

 

 

 

 

 

0 nsnpng
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n

Figure 3.1: A generic profile of the effective reproductive number. Parameters: ng−1
is the initial number of generations when infected cells replicate undeterred, np − 1
is the number of generations taken to reach the maximum number of infected cells
(peak) and ns is the number of generations it takes for the infected cell population
to settle at steady-state, with each productively infected cell producing on average a
single new infected cell. Varying ng and R0 we can mimic the effects of a vaccine and
PrEP strategies.

as the number of new infections caused by one infection in an extremely susceptible
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population, i.e. at the beginning of infection [4]. We have R(n) ≤ R0, with the upper

bound and n is the generation number. This offspring production function gives three

stages in the infection process, i.e. exponential growth up to generation np − 1 (time

to attain peak viral levels), decline from generation np up to generation ns−1 (time to

reach set point) with a minimum offspring production of Rm and finally the infection

incidence remains approximately constant at set-point starting from generation ns.

We obtain the following dynamics from this function: an exponential expansion

soon after infection until generation ng − 1, (we call this the period of unrestrained

growth) which may be attributed to the unlimited availability of target cells and the

absence of immunological control. Subsequently, immune control becomes activated,

together with the gradual depletion of the target cell pool hence the decline in the

number of offspring produced. There is an attenuated viral expansion up to generation

np − 1. During the period between np and ns generations, we have R(n) < 1, i.e. the

chain reaction is subcritical due to immune system control and/or loss of target cells.

We can vary the four parameters in this simple function to mimic aspects such as: the

time the immune system comes into effect, the period at which the immune system

can suppress viremia, the time to reach peak and set-point, and the height and width

of the viremia peak. Using the offspring effective reproductive function, the number

of infected cells at generation n is given by:

P (n) = ⌊P (n− 1)R(n)⌋ , for n ≥ 1, (3.3.2)

where ⌊x⌋ = max{m ∈ Z|m ≤ x} is the floor function where Z is the set of integers.

This slight modification of the total number of infected cells in each generation allows

us to retain the integer counts of infected cells. Unless stated in the scenarios, we

assume that all types of infected cells have the same number of offspring at generation
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n - i.e. no differential fitness among variants.

Also, we can relax the assumption that there is no differential fitness among

variants and explore the impact of intermediate mutants fitness bottleneck on the

probability of viral diversity. We let the growth disadvantage of mutant i relative to

the wild-type be given by fi = 1 − R0i/R0, for i = 1, 2, 3 representing single point,

double point and triple point mutants, respectively. R0 is the basic reproduction rate

of the wild-type strain. Now the effective reproduction number for the mutants will

be given by R0i(n) and we assume that there is no differential fitness at steady state.

At steady state each infected cell produces one new cell. For illustration purposes, we

assume that the reproductive ratios of the wild-type and the triple point mutants are

equal, i.e. R03 = R0. Therefore, this investigates the effect of intermediate mutants’

fitness bottleneck on the evolution of a higher order mutant.

To investigate the effects of biomedical interventions, we choose a base scenario

that may correspond to the standard course of disease progression and then explore

perturbations that influence viral diversity. Our parameters are assigned values to

produce realistic population sizes and timescales observed clinically. The inspiration

is to produce different phases of viral growth after a breakthrough infection, i.e. a

viremic peak of a couple of weeks, viral load to decline and to stabilize at equilibrium

(stages of early HIV infection [36]). With these different parameter values, we can

explore important regimes of classes of models which are consistent with important

overall features of the system. This analysis captures regimes of impact, on diversity,

of PrEP and vaccine strategies.

Our base scenario is generated by the effective reproduction number profile given

by the following parameters: R0 = 6, ng = 8, np = 20 and ns = 28. In all the figures,
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we assume a per base mutation probability (η) of 3× 10−5 [92]. The profile, explicit

stochastic simulations and recurrent equation solutions for probability of diversity

(equations 3.2.8, 3.2.9 and 3.2.10) are shown in figure 3.2. In this figure, we are com-

paring solutions derived from the use of pgfs, which capture likelihoods of existence

of particular genomes, against full explicit stochastic simulations. Figure 3.2(B) is a

single run of the full branching process. Simulations and recurrent equation solutions

are in good agreement, where single and double point mutations are overwhelmingly

likely to appear early and most of the times (about 80%), the triple point mutant

does not appear around the peak viral load (similar to results obtained by Ribeiro

and Bonhoeffer [125]). This illustrates that using pgf equations rather than explicit

simulations, we can efficiently obtain answers to key questions about viral evolution.

Therapeutic interventions may provide inhibition from the very onset of viral entry

(e.g. PrEP) or attenuate viral load during the course of infection (e.g. vaccine) and

may significantly change the course of disease progression. We investigate the impact

of these intervention programmes by calculating viral diversity on either side of our

’threshold’, i.e. base scenario. Our models capture well known semi-quantitative

aspects of HIV infection such as the magnitude and duration of early viremia which

itself parameterizes opportunities for mutation. Using several model scenarios that we

regard as clinically relevant, we demonstrate various regimes of ’response’ of evolution

to ’intervention’ in a framework in which a modest number of assumptions create

the scenarios.
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Figure 3.2: A comparison of pgf recurrent equation solutions and explicit stochastic
simulations. A : Viral reproduction rate profile when R0 = 6, ng = 8, np = 20, ns =
28. B: A single realization of the 8-type branching process generated by profile in panel
A, showing the dynamics of wild-type, three single point mutant and three double
point mutant infected cell populations. We assume a per base mutation probability
of η = 3× 10−5. C: The probabilities of non-existence of i) single-point mutants (Psp

0

- dashed curve), ii) double point mutants (Pdp
0 - dotted curve) and iii) triple point

mutant (P tp
0 - solid line). There is no differential fitness among variants, i.e. all viral

strains have the same effective reproduction number profile given in panel A. Panels
A and C make up panel B in both figures 3.3 and 3.4.

3.3.1 Vaccine Effects

We assume that a hypothetical vaccine intervention’s impact can resemble trends

that have been observed in SIV vaccinated animal models, i.e. it causes the attenu-

ation of viral load that results in reduced peak and set-point. Clinical trial data on
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SIV animal models has shown that there is a significant difference between viral load

growths, peak viremia and early viral set point of vaccinated and unvaccinated ani-

mals [81, 151]. In general unvaccinated animals had fast growth, high peak viremia

and often high early viral set-point compared to the vaccinated animals. A vac-

cine can prime and/or boost immune function of an individual that can limit the

rate of viral replication. To mimic the effects of vaccine-induced immunity using our

framework, we vary the time of unrestrained viral growth (ng) and explore its im-

pact on diversity, see figure 3.3. Reducing ng in our base case to 1 (which resembles

an ever ready vaccine-induced immune control at infection), significantly increases

the chances of extinction of even common (single point and double point) mutants

later during chronic infection. Delaying viral control, i.e. increasing ng in our model,

results in a higher likelihood of mutation accumulation and persistence.
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Figure 3.3: The effects of varying the time of unrestrained replication (ng) on the
probability of mutations being currently absent from the population. In each panel,
we show the attenuated viral replication profile and the corresponding viral diversity,
i.e. probability of non-existence of i) single-point mutants (Psp

0 - dashed line), ii)
double point mutants (Pdp

0 - dotted line) and iii) triple point mutant (P tp
0 - solid

line). The other parameters are fixed: R0 = 6, np = 20, ns = 28 and the per base
mutation rate is η = 3 × 10−5. A: effects of early intervention, B: baseline scenario
and C: effects of late intervention.

3.3.2 PrEP Effects

PrEP is one of the options currently being tested as part of the efforts to identify

additional tools to reduce the risk of HIV acquisition. The rationale of this approach

is to inhibit HIV replication from the moment of infection and this may help to avert
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chronic or persistent infection. Drugs such as tenofovir disoproxil fumarate which can

be used on its own or in combination with emtricitabine taken daily are candidates

for oral preventative drugs. PrEP trials in macaques [44] and humans [121] reported

evidence of efficacy. We vary the virus’s basic reproduction ratio, R0, and assess its

impact on accumulation of mutations. Figure 3.4 shows PrEP scenarios varying in

effectiveness and the associated impact on viral diversity. Effects that reduce the

amplification process early (reducing virus’s reproduction rate) significantly reduce

viral fitness and consequently reduce viral diversity. Unabated and rapid replication

(high virus reproduction rate) soon after infection quickly leads to high diversity.
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Figure 3.4: The effects of varying the basic reproductive number (R0) on the prob-
ability of mutations being currently absent from the population. In each panel, we
show the attenuated viral replication profile and the corresponding viral diversity, i.e.
probability of non-existence of i) single-point mutants (Psp

0 -dashed line), ii) double
point mutants (Pdp

0 -dotted line) and iii) triple point mutant (P tp
0 -solid line). The

other parameters are fixed: ng = 8, np = 20, ns = 28 and the per base mutation rate
is η = 3× 10−5. A: effects of reduced reproductive number, B: baseline scenario and
C: effects of high reproductive number.

Incorporating differential fitness among variants in both vaccine and PrEP scenar-

ios, we explore the impact of intermediate mutants fitness bottleneck on the proba-

bility of non-existence of the triple point mutant during the chronic state of infection.

For illustration purposes, we choose the worst case scenarios in both the vaccine and

PrEP strategies (i.e. figure 3.3(C) and figure 3.4(C)). As shown in the two contour
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plots (figure 3.5 and figure 3.6), high fitness costs for early events are important in

reducing diversity later on. High fitness cost for single point mutants significantly

reduces viral diversity (measured as the probability that there is no triple-point mu-

tant at chronic stage, i.e. at generation 50) compared to high fitness costs for double

point mutants.
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Figure 3.5: A contour plot for the probability of non-existence of a triple point mutant
at generation 50 as a function of intermediate mutants fitness costs (for scenario 3.3
(C)). We assume that the reproductive ratios of the wild-type and triple point mu-
tants are equal, therefore this investigates the effect of intermediate mutants’ fitness
bottleneck on the evolution of a higher order mutant.
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Figure 3.6: A contour plot for the probability of non-existence of a triple point mutant
at generation 50 as a function of intermediate mutants fitness costs (for scenario 3.4
(C)). We assume that the reproductive ratios of the wild-type and triple point mu-
tants are equal, therefore this investigates the effect of intermediate mutants’ fitness
bottleneck on the evolution of a higher order mutant.

3.4 Conclusion

Using a simple model, we have calculated viral diversity (defined as the probability of

existence of particular mutants) under various scenarios. It is useful to identify and

characterize particular mutations that can evolve during the early stages of infection.

We relate the exploration to the effects of interventions on mutation accumulation

and have shown that early intervention has a profound impact on the evolution of
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the virus. This is another dimension to investigate whether the unrestrained growth

of virus during early infection generates sufficient diversity which may relate to prog-

nosis.

An ever ready intervention at the time of infection may not prevent the occurrence

of single point and double point mutations but has a very significant impact on their

persistence, i.e. attenuating the founder virus results in reduced diversity. Delaying

viral control guarantees the persistence of common mutants but does not necessarily

mean higher order mutations (e.g. triple point mutants) will occur or will persist

if they appear. Further delay of viral control will result in a higher likelihood of

mutation accumulation and persistence. Our scenarios include 1) the effect of a

vaccine on the immune system (i.e. a vaccine that can prime the immune system to

develop antibodies or CTLs against the virus) being present at the very beginning

of infection or immune response that gradual develops and 2) therapy that inhibits

infection of target cells. We would also like to mention that there is also a danger of

drug resistance if individuals continue to take PrEP drug after they became infected

with HIV, they could develop resistance forms of the virus because of suboptimal

suppression.

Branching process models have also been used to estimate the probability of suc-

cess or failure of a biomedical intervention basing on assumptions that mutation rates

are small, mutations exist in mutation-selection equilibrium and all intermediate mu-

tants carry subcritical fitness costs [64, 65]. These studies characterized the efficacy of

interventions in terms of a critical population size, typically relying either on substan-

tial simplifying assumptions which make it possible to derive closed form solutions
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[64, 65] or complex models which involve explicit simulation of the infection dynam-

ics [125]. In the present approach, there is no need to perform explicit simulations,

yet we can calculate what appear to be the crucial indicators of diversity, within a

model that captures known semi-quantitative aspects of HIV infection such as the

magnitude and duration of early viremia - which itself parameterizes opportunities

for mutation.

Our analysis is a new way to study replication/viral diversity where the number of

offspring per individual is given by an effective reproductive number function. This

allows us to model the impact of interventions on the course of infection, without

having to make specific assumptions about many microscopic details. Within this

framework, we explored scenarios demonstrating the interplay between common, in-

termediate and rare mutations, by calculating statistical indicators of diversity. This

method obtains impressive efficiency by making use of recursion relations for en-

semble level probability generating functions without the need for calculating many

population level ‘realizations’.

An HIV vaccine is still years ahead, therefore treatment is one of the immediate

therapeutic remedies at our disposal. The brighter side is that current drug profiles

are favorable (dosing convenience, e.g. multi-pills in one and improved safety profiles)

and patients can now easily adhere to prescriptions but there is evidence that pre-

existence of mutations before therapy is a crucial part of the long term prognosis

[67, 86]. At the rate at which diversity increases, by the time patients start treatment

(at the late stage of infection, usually after 5 to 10 years if treatment is initiated during

symptomatic phase), a lot of mutations could have been generated and probably

archived too.



67

Early treatment might help retard accumulation of resistance and therefore might

cut into the opportunity for viral replication to produce treatment defeating variants.

Also, studies have shown that early treatment reduces the size of the latent viral

reservoir [89, 137]. Initiation of treatment early is also associated with the preser-

vation of the immune function [63], a benefit to the patient which can increase the

probability of cure as well as decreased transmission within the population. Reducing

the number of mutants in the viral population may help increase treatment efficacy

and options for patients. If treatment should be started to benefit from low prevalence

of mutants, “universal treat and test” approach [50] might be a good idea although

“hit hard and early” tactic [62] would be the best.

This simple analysis supports both proponents of “hit hard and early” and “uni-

versal test and treat” in that early treatment-induced control of viremia will help

reduce viremia of homogenous population therefore reducing chances of further mu-

tation accumulation. Waiting for years to initiate treatment gives the virus enough

time to accumulate compensatory mutations which will reduce treatment efficacy

later on. This is in line with the clinical assumption that the window of opportunity

is from transmission to peak viremia and after that it becomes a point of no return

[99, 153].

Although such analysis may be probably too simplistic for the complex dynamics

of HIV, we have shown that including, even conservative assumptions such as equal

fitness for all variants, there is still a chance that higher order mutants generated early

in infection might eventually go to extinction. There is an overwhelming likelihood

that variants generated early in infection and are present in low quantities will go to

extinction during viral decline due to either limited target cell population or immune
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control provided that it is cross reactive. The branching process construct incorpo-

rates a fair amount of the complexity of the stochastic reality. In our scenarios, we

chose an arbitrary tipping point between the good and the bad regimes, and our model

seems heuristically sensible. Our model captures realistic overall population sizes and

timescales characterizing the typical course of infection. It remains to be seen if our

framework can be quantitatively accurate if applied to detailed clinical/experimental

scenarios from careful studies.

There are some limitations to our approach. We have modelled populations with

discrete and non-overlapping generations, whereas in HIV dynamics, individual in-

fected cells die and reproduce at random times. Also, as noted previously by Iwasa et

al. 2003 [64], multi-type branching processes describe accumulation of mutations in

independent lineages, so that the model is unable to describe recombination, which

can be crucial in viral evolution. Nevertheless, this analysis captures regimes of im-

pact, on diversity, of some topical intervention strategies.

3.5 Summary of Implications for Public Health

According to the analysis in this chapter, there may be substantial clinical benefits

for patients who are on PrEP but happen to be infected, as it appears that the initial

drug levels can substantially impede viral replication and hence long term prospects

for viral evolution. This could be investigated further by following up patients infected

during studies and monitoring their viral diversity over longer periods of time, such

as in the recent (IPreX) trial (Grant et al. [51]).



Chapter 4

Chronic and Transient
Antiretroviral Therapy Selecting
for Common HIV-1 Mutations
Substantially Accelerates the
Appearance of Rare Mutations

4.1 Introduction

The rapidity of human immunodeficiency virus (HIV) replication, combined with its

high reverse transcriptase error rate [41], leads to rapid viral evolution, in particu-

lar the emergence of drug resistance. Treatment that is unable to sufficiently inhibit

viral replication allows the appearance and/or selection of drug-resistant strains. Fur-

ther accumulation of resistant variants may limit therapeutic efficacy and jeorpadize

subsequent treatment options.

A single dose nevirapine (NVP) regimen for prevention of mother to child trans-

mission (PMTCT) is a well known example of a suboptimal regimen that inevitably, if

69
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temporarily, exerts selective pressure in favour of resistant strains. This is still a ma-

jor concern in developing countries where a prophylactic regimen of single dose NVP

is widely used for PMTCT [74]. Given the high frequency of mutation, some minority

resistant mutants are always preexisting, albeit in trace quantities, at the moment

therapy is initiated. Because of the long half-life of single dose NVP, with blood levels

detectable up to 2-3 weeks after exposure [25, 107], the duration of sub-therapeutic

NVP concentrations may present a significant hazard of developing resistance for

the mother. There is a risk of treatment failure after single dose NVP exposure, if

the treatment includes a non-nucleoside reverse transcriptase inhibitor (NNRTI) [39].

The question arises whether, and to what extent, a transient treatment-induced boost

to an otherwise marginal subpopulation results in increased risk of accumulation of

further resistance mutations that could potentially increase the risk of subsequent

NNRTI-based treatment failure.

In the search for better PMTCT regimens, improved efficacy has been demon-

strated for a number of short course regimens for PMTCT in resource-limited set-

tings. For example, 1) use of single dose NVP with additional short course of zidovu-

dine/lamivudine during 3-7 days postpartum [97], 2) addition of single dose NVP

to zidovudine short course during the antenatal period [88] and, recently, 3) use of

intrapartum single dose of combined tenofovir/emtricitabine taken after antenatal

short course of zidovudine plus intrapartum single dose NVP [18]. These regimens

improve on single dose NVP either in efficacy for PMTCT or reduction of NVP re-

sistance in the mother, or both. However they appear suboptimal in that they select

for NNRTI-resistant strains and therefore increase the mothers’ risk of virologic fail-

ure for subsequent NNRTI-based therapy. For example, in the MASHI study[88] a
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total of 218 women started post partum NVP-based therapy after they had received

zidovudine from 34 weeks of gestation through delivery. Of these, 112 had received

single dose NVP, whilst the rest had received a placebo during labour. After 6 months

of post partum treatment with a NVP-based regimen, women without prior NVP ex-

posure were less likely to have virologic failure compared to women who had received

intrapartum NVP. Strikingly, of women who started NVP-based therapy within 6

months, 41.7% from the single dose NVP group, but none from the control group,

had virologic failure.

In-vivo mathematical models have been useful in exploring the evolution of drug

resistance, suggesting that significant evolution can occur during treatment or before

initiation of treatment [3, 12, 13, 126, 130, 134, 155]. Based on the models, the authors

argued that chances of resistance evolving during treatment are small compared to

chances of resistance evolving before suppressive therapy. However these studies did

not explore, in any dynamically consistent framework, the emergence/accumulation

of multiple mutations in a possibly non constant environment. In this chapter, we

extend these standard models to explicitly investigate the consequences of population

dynamical effects amongst common resistant mutants. We show how the deterministic

dynamics of the common mutants affects the time taken to produce the rarer mutants.

We start from an ordinary differential equation (ODE)-type model of in-vivo viral

replication in the deterministic regime, applicable to cell populations that are large

enough for statistical fluctuations to be relatively small (wild-type and common mu-

tant strains). We explicitly add expressions for Poisson rates for the occurrence of rare

mutations. Using standard survival analysis, we compute, as a function of time, the

probability of avoiding a mutation event. Furthermore, we introduce an additional
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timescale to the ‘survival function’ to capture the time over which cells infected by an

unfit genome persist before being ecologically overwhelmed. This ‘survival function’

is a continuous state variable that is incorporated into the system of ODEs without

much complexity.

We apply our modelling framework to clinically inspired scenarios. Firstly, we

explore the quasi steady state that corresponds to chronic treatment in the presence of

two viral populations. We characterize treatment regimes in which rates of appearance

of rare mutants are either increased or decreased. Secondly, inspired by regimens used

for PMTCT in resource limited countries, we investigate the transient behaviour of

the model under a short perturbation of the fitness parameters, such as occurs during

a short course of suboptimal therapy. Transient therapy significantly increase the

hazards of rare mutations. Thirdly, we explore the interaction between a monotherapy

short course and subsequent ongoing antiretroviral therapy (ART). Appendix D deals

with details of mutation combinatorics.

4.2 The Model

We develop a hybrid deterministic-stochastic model of healthy and infected T cell

populations. Our analysis starts with a standard multi-strain model of in-vivo viral

replication that distinguishes cells infected with one of Ns viral strains. These kinds

of models have been used to try to understand viral evolution in the context of

immune response and antiretroviral therapy [3, 5, 13, 125, 126]. For our purposes,

we add a new self-consistent stochastic element to the standard deterministic model

of viral evolution. Uninfected T cells are produced at rate ST and die at rate µT.

Virus-producing cells, infected with strain i, are counted under Pi and have a mean
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lifetime of 1/µP. Mass-action (perfect mixing) contact between infected and healthy

cells produces new infected cells, with a rate constant ki. The probability of error free

transcription is given by f and ϵij is the probability of a particular mutation, that is

strain i arising out of strain j from a reverse transcription error. This leads to the

base model equations:

dT (t)

dt
= ST − T (t)

Nd∑
i=1

kiPi(t)− µTT (t) (4.2.1)

dPi(t)

dt
= fkiPi(t)T (t) +

Nd∑
j=1
j ̸=i

ϵijkjPj(t)T (t)− µPPi(t), i = 1, · · · , Nd

where Nd is the number of strains which are modelled by a deterministic process,

i.e. those strains which are assumed to be present with sufficiently large populations

for deterministic models to be sensible. We address the incorporation of rare strains

shortly.

Physiologically, HIV transmission occurs either by cell-free viral particles released

by infected cells, or by direct cell-to-cell contact. It has been demonstrated that

cellular contacts drastically enhance productive viral transfer compared to what is

observed with free virus infection [135]. Our model, like previously published models

of in-vivo HIV dynamics, does not have free virions. Even if free virions are physio-

logically important, including them for the present purposes would not change any of

our conclusions as the dynamical effects appear only at very short time scales. In our

basic model, ki is a composite fitness parameter that captures the effective cell-to-

cell transmission efficiency via all mechanisms. Antiretroviral therapy with currently

known drugs does not affect virion or infected-cell survival, but interferes with some

stage of the viral replication cycle, i.e. reduces the values of the fitness parameter

ki. This basic model also does not explicitly incorporate the dynamics of immune
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system response such as clonal expansion of effector cells or feedback linking viral

and infected-cell clearance rates to the healthy cell population. Our base parameter

values are given in Table 4.1.

Table 4.1: Model parameters

Symbol Description Value Source

µT natural healthy cell death rate 0.02 day−1 [11]

µP productively infected cell death rate 0.5 day−1 [24]

ST supply rate of target cells 2× 108 cells day−1 Estimated

ki viral strain infectivity varies Estimated

ϵ21 single-point mutation rate 2.5× 10−5 Appendix D

f probability of error free transcription 0.37 Appendix D

Since it is not possible to measure all of these parameters directly in-vivo, some of

these values are hypothetical, but they give rise to reasonable dynamics. We assume

a universal, single-point-mutation rate, where the substitution rate of any base is

of the order 10−4 [109]. The derivation of any particular ϵij follows directly from

combinatorial arguments outlined in the Appendix D .

Latently infected cells may be responsible for ongoing viral production in treated

individuals, and their presence will introduce a longer timescale into a model. To

capture effects of long-lived cells, we can consider the following model:

dT (t)

dt
= ST − T (t)

Nd∑
i=1

kiPi(t)− µTT (t)

dPi(t)

dt
= fFkiPi(t)T (t) +

Nd∑
j=1
j ̸=i

ϵijkjPj(t)T (t) + aLi(t)− µPPi(t), i = 1, · · · , Nd

dLi(t)

dt
= f(1− F )kiPi(t)T (t)− aLi(t), i = 1, · · · , Nd. (4.2.2)
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Error free infected cells either become productive or latent. A fraction F of infected

cells become virus producing. The others become latent and, on average, take time

1/a to reactivate to become virus-producing cells. For simplicity, we assume that

latently infected cells have a much longer lifetime than their activation time. Note

that for F = 1, we obtain system 4.2.1. By adjusting F (it cannot be very realistically

estimated directly from data) we can vary the importance assigned to the presence of

latently infected cells, without changing the equilibrium values of healthy and virus-

producing infected cells. The model assumes that latently infected cells do not mutate

at either infection or activation and are merely infected cells with integrated provirus

that is transcriptionally silent [21, 23]. For our purposes, only a small fraction of cells

become latent therefore incorporating mutation of these cells would not significantly

change our conclusions. We do not attempt to capture fine physiological details of

latently infected cell dynamics, but rather the concept that these cells can be the

source of new productively infected cells and hence give rise to slower dynamics than

a model with just virus producing infected cells.

Our main goal is to model rare mutation events which are characterized by waiting

times rather than continuous processes. We consider scenarios in which the initial

populations of these rare mutations are zero, and we would like to model the waiting

time to their appearance. In this regime, the appearance of rare mutant strains

i (Nd < i ≤ Ns) should be modelled as a nonhomogenous Poisson process with

intensity

λi(t) = T (t)

Nd∑
j=1

ϵijkjPj(t), for i = Nd + 1, · · · , Ns, (4.2.3)

which captures mutations from all the deterministically modelled strains. (Recall

that Ns is the total number of strains.) According to standard survival analysis, the
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probability of there being no rare mutant of type i, at time t, given that there was

none at time 0, is

Λi(t) = exp

(
−
∫ t

0

λi(τ)dτ

)
. (4.2.4)

The phylogenetic relationships amongst all strains, and the initial conditions, deter-

mine the number of continuously and stochastically modelled strains. We adopt the

following computational procedure:

1. Initially run the deterministic model with populations for Nd strains, and sur-

vival functions for avoiding the Ns −Nd rare mutants.

2. Draw a uniformly distributed random variable Ri ∈ [0, 1] for each possible rare

mutation event.

3. When Λi reaches Ri the appearance of mutant i occurs.

4. If the mutant appears into an environment in which it is fit enough to thrive,

pause the simulation.

5. Add one cell of the new rare mutant.

6. Resume running the new deterministic model with N ′
d = Nd + 1 strains.

This piecewise deterministic model is hardly more complex than a purely deterministic

model. The abrupt changes to the evolving process transforms the ODE system

into differential equations involving impulse effects (impulsive differential equations)

[78]. The difference between our computational approach and previously considered

schemes of which we are aware, is that in our scheme, mutation hazards are derived

from explicit deterministic model state variables, and also, they depend on mutational
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pathways, whereas, for example, in Nowak et al [111], the probability of generating

a new mutant is proportional to the total virus population.

Note that in the computational procedure just outlined, we have only explicitly

modelled the consequences of those rare genomes which have a fitness above a crit-

ical value. Of course, the appearance of low fitness mutations is also possible. We

now propose that genomes with sub-critical fitness, which do not give rise to explic-

itly modelled populations, survive, presumably in trace quantities, for a typical time

(which we call ∆) before they are driven to extinction. If there is an environmental

shift during this persistence period, such as initiation of therapy that strongly sup-

presses the other genomes, this one can then begin to thrive and grow in the same

manner as any mutation which arises into an initially favourable environment. If the

perfect-mixing model is assumed to be valid on all size scales, this new timescale

would simply be the lifetime of the infected cell bearing the new genome, as an unfit

variant will be unlikely, under a fully stochastic treatment, to produce daughter cells.

However, it is far from certain that this simple view captures the dynamics surround-

ing rare mutations. A small local cluster of cells bearing the new genome may have

a good chance of arising from the seminal mutation, but then be almost certain to

be overwhelmed ecologically within a typical time as mixing or directly competing

with fitter variants occurs. Since we do not know what this time may be, we simply

note the crucial role it plays in our modified survival analysis. Now, instead of simply

considering the probability that the mutant has never occurred since time 0, as in

equation 4.2.4, we consider the probability that a rare mutant has not occurred in

the most recent time interval of size ∆, i.e.

Λ∆(t) = exp

(
−
∫ t

t−∆

λ(τ)dτ

)
. (4.2.5)
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This new state variable is just the probability that the relevant mutant genome is

absent at time t. The smallest physically feasible value of ∆ is the lifetime of an

infected cell (as noted above for the case where the rare mutant produces no daughter

cells from the seminal mutation) and the largest feasible value is greater than the

expected survival time of the infected individual (if the genome is significantly banked

into a latently infected cell population) i.e. essentially infinite for practical purposes.

It is particularly relevant when we model environmental shifts, such as the start or

end of an antiretroviral (ARV) regimen. We will demonstrate scenarios in which

the presence or absence of a ‘currently unfit’ genome, at the moment of initiation of

therapy, can have an impact on rates of treatment failure.

4.3 Chronic Treatment

We now apply, to clinically inspired scenarios, the survival analysis of the model pre-

sented in the previous section. The particular model implementations are in certain

respects simplistic preliminary work, but they demonstrate the kinds of questions

that can be seriously investigated within this framework. We use a model with two

continuously variable strains (wild-type and common mutant) and a waiting time

for the appearance of the third strain (rare mutant). In the absence of treatment,

the wild-type strain is dominant and the mutant subpopulation is present in trace

quantities, of the order of the mutation rate.

We are interested in modelling mutations that occur rarely i.e. those that do

not typically exist at most points in time. Consider a mutant which differs from the

wild-type by three single-point mutations (say M1, M2 and M3) and from a common

mutant (M1) by two-point mutations (M2 and M3). We assume that strains bearing
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just M2 or M3, or any two of M1, M2 and M3 are highly fitness compromised i.e. the

M1 M2 M3 (P3) are all compensatory mutations. We use this particular phylogeny

to illustrate the application of our method. Adding a rare mutant to a two-strain

deterministic model as strain i = 3 gives the Poisson rate

λ3(t) = T (t)
(
ϵ31k1P1(t) + ϵ32k2P2(t)

)
, (4.3.1)

which shows how a rare mutant variant can arise through a number of pathways, such

as sequential single-point mutations or simultaneous higher-order mutations.

First, we consider a quasi steady state scenario corresponding to chronic treat-

ment, then we model a short course of monotherapy, followed, after some delay, by

initiation of chronic therapy. Important interactions between the two regimens are

captured by the newly introduced state variable Λ∆.

We start by analyzing the steady-state dynamics of the two continuously modelled

strains in the absence of a rare mutant. The choice of parameter F , which introduces

latently infected cells, does not affect this analysis. An approximate, much simpler,

equilibrium solution can be derived directly from the exact equations 2.1.9 by setting

ϵ221 and other higher-order terms to zero, where ϵ is replaced by ϵ21:

T̄ =
µP

fk1
+O(ϵ221)

P̄1 =
µT

k1
(R′

01 − 1)

(
1− ϵ21k2

f(k1 − k2)

)
+O(ϵ221) (4.3.2)

P̄2 =
ϵ21µT

f(k1 − k2)
(R′

01 − 1) +O(ϵ221),

where the wild-type is the fitter strain (k1 > k2). The basic reproductive ratio of
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strain i is given by

R′
0i =

fSTki
µPµT

i = 1, 2. (4.3.3)

We are interested in modelling the regime where R′
0i is always greater than one in the

absence of therapy, since our main focus is on persistent infection. Note that

P̄2 =
ϵ21k1

f(k1 − k2)
P̄1 +O(ϵ221). (4.3.4)

The less-fit strain is present in trace quantities that will be very difficult to detect by

standard clinical assays, even if the fitness difference is marginal. This is a modified

version of the usual population genetics phenomenon that two species in a single niche

do not coexist even with very similar fitness; one dominates and drives the other to

extinction. The non-extinction of the less-fit quasispecies observed in this case results

from the high mutation rate, which leads to waiting times between mutation events

that are very small compared to the lifetimes of productively infected cells, so that

the subdominant species persists in significant quantities. Given realistic orders of

magnitude for infected cell populations (108) and lifetimes (a day), and the mutation

rates between strains that differ by a single base mutation (10−5) [24, 55], certain

minority populations (single-point and double-point mutations relative to a dominant

wild type) are large enough to be modelled deterministically.

The mean waiting time to the occurrence of a rare mutation according to the Pois-

son rate (equation 4.3.1) before treatment (evaluated at the pre-treatment equilibrium

state) is given by

⟨τw⟩ =

[
T̄
(
ϵ31k1P̄1 + ϵ32k2P̄2

)]−1

≈

[
ST(R

′
01 − 1)

R′
01

(
ϵ31 +

(ϵ32 − ϵ31)ϵ21k2
f(k1 − k2)

)]−1

.

(4.3.5)

It is important to understand how fundamentally different this result (and reality)
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is from a what can be obtained in a model which treats all strains deterministically.

Mathematically, it is perfectly sensible to define a model with any number of deter-

ministically strains, as per the basic model above, and to try to capture the ‘rare’

mutants by using suitably small mutation rates. When a purely deterministic model

runs from an initial condition in which the fitter strain is absent, this absent strain is

immediately produced continuously. The new strain then grows according to its fit-

ness advantage (see figure 4.1). Thus, the time taken for it to reach some proportion
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Figure 4.1: Growth of a rare mutant strain (i.e. with no waiting time) in the deter-
ministic model. The initial value of the rare mutant (P3) is zero whereas viral strains:
wild-type (P1) and common mutant (P2) begin their dynamics from the steady state.
The rare mutant is immediately produced continuously and grows according to its
fitness advantage. The time required to attain one cell infected by this rare mutant
is of the order of weeks. In these simulations, the differential fitness parameters are
given by (k3, k2, k1) = (2k1, 0.9k1, k1) where k1 = 2 × 10−8; that is, the environment
favours the rare mutant to outgrow existing viral variants.

of the total infected cell population is deterministic, and substantially dominated by
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the dynamical interaction of the two strains. The time required to attain one cell

infected by the new strain (P3 = 1) can be derived by solving P3(t) = 1 from an

initial value of P3(0) = 0, and using the dynamical equation

dP3(t)

dt
= fk3P3(t)T (t) + T (t)

(
ϵ31k1P1(t) + ϵ32k2P2(t)

)
− µPP3(t)

= λ̃3 + µP(γ − 1)P3(t) (4.3.6)

where

λ̃3 =
ST(R

′
01 − 1)

R′
01

(
ϵ31 +

(ϵ32 − ϵ31)ϵ21k2
f(k1 − k2)

)
and γ =

k3
k1

> 1. (4.3.7)

This implements the assumption that the other cell populations are not significantly

perturbed from their initial values over the time it takes to produce one cell of the

rare mutant. Then

⟨τ1⟩ =
1

µP(γ − 1)
ln

(
1 +

µP(γ − 1)

λ̃3

)
. (4.3.8)

For the chosen parameter values (Table 4.1), the time required to attain one cell

infected by the new strain is of the order of weeks (see figure 1). On the other

hand, the explicitly modelled mean waiting time (⟨τw⟩) to the occurrence of the new

mutation according to the constant Poisson rate λ̃3 is of the order of years. It seems to

us that the latter is a reasonable model of rare events and the former is fundamentally

flawed.

We now return to the stochastic waiting time model, which at the pre-treatment

equilibrium state, has a waiting time to the occurrence of a rare mutant of the order

of years for the chosen parameter values given in Table 4.1. We are interested in

the impact of long term treatment on these waiting times. Let treatment efficacy on
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strain i be denoted by ξi ∈ [0, 1], so that the infectivity parameter during treatment is

k′
i = ξiki. In figures 4.2 and 4.3, we show the surface plots of the waiting times to the

occurrence of rare events as a function of drug efficacy on viral strains. Less effective

selection pressure or treatment that successfully suppresses both viral subpopulations

results in increased waiting times or even guarantees the non-occurrence of rare mu-

tations. Suboptimal treatment that suppresses the wild-type strain but barely affects

the common mutant leads to dramatic reduction in waiting times to the occurrence

of rare mutations. On the other hand, treatment that affects the common mutant

but allows continuation of wild-type strain replication, increases the waiting time to

the occurrence of a rare mutant.
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Figure 4.2: Surface plot showing the waiting times to the occurrence of rare mutations
as a function of drug efficacy on viral strains (ξi) for k2 = 0.9k1 where k1 = 2 ×
10−8. The point ((ξ1, ξ2) = (0, 0)) represents potent treatment that results in viral
elimination.
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Figure 4.3: Surface plot showing the waiting times to the occurrence of rare mutations
as a function of drug efficacy on viral strains (ξi) for k2 = 0.1k1 where k1 = 2 ×
10−8. The point ((ξ1, ξ2) = (0, 0)) represents potent treatment that results in viral
elimination.

A key result is that waiting times are significantly smaller when the common

mutant is only marginally less fit, than when there is a large fitness cost. Note that

these plots describe a relationship between ‘clinical’ parameters (waiting times) and

pharmacological parameters (drug efficacies) which are difficult to determine in-vivo.

On the other hand, quantitation of plasma HIV RNA can be performed to determine

viral populations which in turn can be used as alternative parameters to calculate

the waiting times to the occurrence of rare mutations. We demonstrate this by

introducing parameters which express treatment effectiveness at the level of changes

in the equilibrium viral loads. Let the treated equilibrium values of the wild-type and

the mutant-strain-infected cell populations, relative to the pre-treatment wild-type
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infected cell level, be given by

Fw =
P̄1(k

′
1, k

′
2)

P̄1(k1, k2)
and Fm =

P̄2(k
′
1, k

′
2)

P̄1(k1, k2)
, (4.3.9)

respectively. Recalling that in the untreated state, the viral load is strongly dominated

by the wild type (P̄1(k1, k2)), this notation facilitates comparisons between the treated

and untreated states, both in terms of overall viral suppression, and selection between

strains.

Disruption of the pre-treatment equilibrium state (Fw = 1 and Fm ≪ 1) by

therapy leads to different possible effects on the “benchmark” (pre-treatment) waiting

time. The limiting case scenarios of interest are

1. Therapy suppresses the mutant subpopulation (Fm → 0) but allows the domi-

nant wild-type strain to replicate relatively unhindered (Fw ≈ 1); this increases

the waiting times to the occurrence of a new strain. In other words, even though

the total viral load is barely affected, there is a benefit in terms of impaired viral

evolution.

2. Treatment is optimal against the wild-type strain (Fw → 0) but barely affects

the common mutant i.e.

Fm → k1
k2

(
R′

02 − 1

R′
01 − 1

)
, (4.3.10)

where R′
0i is strain i reproductive ratio. This leads to a dramatic reduction in

waiting times to the appearance of rare mutations, i.e. the much more rapid

emergence of the rare mutant.

3. Treatment is optimal; that is, treatment that successfully suppresses both vi-

ral subpopulations ((Fw, Fm) → (0, 0)). This essentially guarantees the non-

occurrence of rare mutations.



86

4.4 Transient Nevirapine Monotherapy

We use our piecewise deterministic model to explore the consequences of transient

increases in the relative frequency of common mutations (such as K103N) on the

occurrence of rarer mutations, during and after short-course monotherapy. To obtain

curves resembling the K103N decay data shown in figure 4.4 [90], we incorporate a

population of latently infected (i.e. long-lived and non-virus-producing) cells [22, 115]

that are activated to productively infected cells on a timescale of 2 to 3 weeks, by

setting F = 0.9.
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Figure 4.4: Relative fractions of K103N variants in maternal plasma viral RNA after
single dose nevirapine for three individual women (NVP16, NVP19 and NVP196).
We read data off a chart published in [90]. In this study, the relative abundance of
K103N declined to undetectable levels by 12 months [90]

First we explore the effect of a single short course of highly selective treatment

on waiting times to the appearance of rare mutations. Initiating suboptimal therapy
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results in dramatic increase of the common resistant mutant (K103N) population

and an equally dramatic decrease in the wild-type strain (K103) population. When

pressure of therapy is discontinued, the common mutant population declines to pre-

treatment levels. At every time point during and after short course therapy, we

evaluate the cumulative probability of a rare mutation having occurred. Figure 4.5

illustrates the transient increase and decline in the proportion of a common mutant,

and figure 4.6 shows the corresponding cumulative probabilities of observing a rare

mutant. We compare the cumulative probability under transient treatment to the

case in which therapy is not given at all. For the chosen parameters, the probability

of observing a rare mutation, within a year in the absence of therapy, is negligible.

However, transient therapy dramatically increases this probability.
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Figure 4.5: Relative frequency of K103N during and after 7 days of idealized treat-
ment. Short-course highly selective therapy results in dramatic increases in pre-
existing resistant viral variants. Withdrawal of therapy results in a slow decline of
the subpopulation. We assume that 10% of infected cells become long-lived infected
cells and are activated after 2 weeks i.e. we set F = 0.90 and a = 1/14.
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Figure 4.6: The cumulative probabilities of observing a new mutation in the ab-
sence (Equilibrium) and presence (Transient) of drug pressure. Model choices which
produce a transient of a magnitude and duration shown in figure 4.5 lead to signif-
icant acceleration of viral evolution. In the absence of selective pressure chances of
observing a new mutant are negligible.

Next we explore the interaction between a monotherapy short course and subse-

quent continuous therapy, as was investigated in the MASHI study. We evaluate the

probability that a rare mutant is currently present at time t, given various possible

values of the rare mutant persistence timescale ∆ (see figure 4.7). For values of ∆ less

than 60 days, the probability of a rare mutant being present, at some point more than

6 months after the single dose of NVP, is small (< 5%) i.e. cells infected by the new

genome are unlikely to be present, and hence pose a low residual risk if the mother

is put on treatment more than six months after single dose Nevirapine for PMTCT.

This is not inconsistent with the clinical findings from the MASHI study [88]. The
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reality is presumably more complex than what our model can capture, but little is

known about the persistence of unfit mutants. It has been observed that resistant

genomes may persists, even at undetectable level, for prolonged periods [17, 35]. It

makes sense that initiating therapy in the presence of a therapy defeating mutant,

or an immediate precursor to such a mutant (even at levels too low for detection by

typical assays), will reduce chances for treatment success.
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Figure 4.7: The probability of there existing a mutant which persists for a time ∆
after a seminal mutation, plotted as a function of time from a brief period of selective
pressure (such as single dose NVP). Plots are shown for a number of values ∆ ranging
from 2 days to 350 (taken as ∞) days. The other parameter values are as in figure
4.5.
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4.5 Conclusion

We have considered a number of more-or-less standard deterministic multi-strain mod-

els of in-vivo viral dynamics, which are tunable to produce scenarios like a chronic

ARV regimen, and a short course of monotherapy. We have adjoined a stochastic

component to these models, in the form of a ’sliding window’ survival analysis, which

substantially expands the possible analyses of rare strain dynamics within the frame-

work of ordinary differential equations.

We have considered scenarios which capture the concepts of a dominant wild-type

strain, a relatively unimpaired 1 base mutant, a number of unviable 2 base mutants,

and the possibility of compensatory mutations which lead to a treatment defeating

3 base mutant that is reachable by different pathways, which have different relative

importance at various stages during transient dynamics. Different phylogenies, to-

gether with different chosen fitness parameter values, will result in different numbers

of deterministically and stochastically modelled strains and pathways, all of which

can immediately be accommodated into our general model.

The transient increases in common subpopulations of cells infected by mutant

genomes produced by the short course of antiviral therapy affects waiting times to

the appearance of rare mutations, conceived as differing more from the wild type than

from the deterministically modelled primary mutant. Over a range of model choices

which produce a transient of the order (size and duration) of that known to occur

under nevirapine monotherapy used for PMTCT, there is significant acceleration of

viral evolution - even from just the short course alone. This effect is suspected, but

not unambiguously observed, from clinical studies.
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A further important set of questions arises about the risks associated with ini-

tiation of chronic therapy (HAART) a short while after the suboptimal transient

regimen like for PMTCT. Our newly proposed additional timescale ∆, representing

the persistence of a new genome in an infavourable environment has a substantial

impact on the rates of treatment failure.

These models demonstrate that even transient subpopulations of common mutants

which appear to fade are associated with accelerated appearance of rarer mutations.

Further work which should be performed includes 1) variations on these models which

are designed to capture precise genetic differences (and hence realistic pathways and

mutation rates) between sets of quasispecies being directly observed in studies utilis-

ing highly sensitive assays, and 2) biological investigation into the dynamics of small

populations of new mutants (the theme of chapter 5), which these models summarise

into the timescale Λ∆.

4.6 Summary of Implications for Public Health

Results in this chapter show that even relatively brief, and fully reversed, increases

in subpopulations of common mutants are associated with accelerated appearance of

further rarer mutations. The accelerated appearance of new genomes in patients on

failing therapy highlights a potential risk for public health. The analysis highlights

an important point of biology which is difficult to observe, and on which experimental

evidence would be instructive. Specifically, it is likely that rare mutations carrying

potentially serious properties like multiple drug resistance occur from time to time,

but that these variants are created largely in unfavourable environments where they

do not thrive, so that they usually become extinct in a short time. Knowledge of
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how long these transient subpopulations of new genomes persist would help guide

expectations for studies trying to link patterns of treatment, viral load, etc. to longer

term outcomes like regimen failure. These issues will need to be investigated in the

long run as more and more clinicians and their patients face complex decisions about

regimen choice and switch.



Chapter 5

Modelling the Persistence of Drug
Resistant Mutations After
Cessation of Suboptimal Therapy

5.1 Introduction

This chapter reflects on how the the previous chapter might be extended. In chap-

ter 4, we showed how suboptimal therapy may accelerate the appearance of higher

order rarer mutations. However, we did not investigate in a dynamically consistent

way whether the new cell harboring the rare mutant will die before infecting other

cells or before infecting enough other cells for it to be fixed, i.e. the persistence of

mutants. The absolute time it takes for subcritical minority variants to eventually go

to extinction is not known. Initiating therapy in the presence of a therapy defeating

mutant, even at levels too low for detection by typical assays, will reduce chances

for treatment success. Since we do not know what this time may be, in the previous

chapter, we simply noted the crucial role it plays in the modified survival analysis. In

reality, the new rare mutant has to compete with existing strains, i.e. its persistence

depends on its characteristics such as viability and replication ability.

94



95

In clinical practice, resistance tests are performed at baseline and also on patients

who are failing therapy. However, there is a big danger of misinterpreting resistance

tests, due to failure in minority mutation detection, such that clinicians may end up

administering regimens that may fail to suppress viremia. In treatment naive patients,

mutations that are not detected at baseline may subsequently emerge during the early

weeks of therapy [102]. In patients on failing regimens, newly emergent mutations

may not be detected because they may not replicate to levels that are detectable.

Administering therapy in the presence of these undetectable minority species increases

the risk of continued selective pressure which may result in development of additional

mutations.

The persistence of transmitted or primary drug resistance has been assessed

[10, 15, 29, 43, 85, 119] and results have shown that primary resistance persists over

a prolonged time-period even in cases where mutants have impaired replicative com-

petence. Secondary resistance (developed in response to antiretroviral treatment) is

usually lost at a rapid rate [10]. However, little is known about typical persistence

times of these small populations.

Here, we investigate the persistence of secondary resistance that develops after

a short course treatment. We perform numerical simulations of the hybrid model

developed in the previous chapter. Our framework allows us to assess the role of

stochasticity and its interplay with nonlinearity. This framework is appropriate for

modelling small populations as ODEs cannot incorporate high heterogeneity, because

small populations become important and important events become random. To better

understand the relationship between fitness cost and persistence times, we vary the

new genome’s replicative ability and determine the likelihood of persistence of this



96

new genome lineage in the face of competition from existing strains after its initial

appearance. The replacement or mutual co-existence of strains is strongly influenced

by competition. The only form of competition in our model is the infection of healthy

target T cells.

5.2 The Model

From the deterministic model developed in chapter 4 given by system of equations

4.2.2, we can derive a full stochastic model, i.e. a Markov jump process. The schema

for this process, which specifies the probability of the system transitioning to each of

the possible states, is given in Table 5.1. Recall that the model assumes, for simplicity,

that latently infected cells do not mutate at either infection or activation and are

merely infected cells with integrated provirus that is transcriptionally silent [21, 23].

The sojourn times in each state of the process follow an exponential distribution, thus

stochastic events are timed by an exponential clock with a parameter

Ω =
∑

Jumps

(Rate) ;

= ST + µTT +
Ns∑
i=1

(
fkiPiT + µPPi + aLi

)
+

Ns∑
i=1
j ̸=i

ϵjikiPiT, (5.2.1)

a sum of all allowed jump rates (see Table 5.1). This parameter is an average of an

exponential distribution and is used to generate the next jump time. Also, the type

of the next jump is random in this stochastic process. Assuming that both jumps and

jump times are random is convenient because even in theory we don’t know when the

next event (e.g. infection of a target cell, death of an infected or uninfected cell, etc)

will occur, nor even what it will be.
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Table 5.1: Stochastic process schema showing allowed jumps and jump rates

Event Jump Rate

Supply of target T cells T → T + 1 ST

Target T cell death T → T − 1 µTT

Infection of T cells by strain i :

(a) error free transcription :

(i) productive infection T → T − 1 and fFkiPiT

Pi → Pi + 1

(ii) latent infection T → T − 1 and f(1− F )kiPiT

Li → Li + 1

(b) mutation into strain j (for j ̸= i) T → T − 1 and ϵjikiPiT

Pj → Pj + 1

Activation of strain i latently infected cell Li → Li − 1 and aLi

Pi → Pi + 1

Strain i productively infected cell death Pi → Pi − 1 µPPi

One standard way of analyzing this problem is to use Gillespie’s algorithm [45] but

because some of our processes involve large numbers (billions of cells), this method

becomes inefficient as it searches for the next event (maybe in less than a nanoday)

[72, 149]. Although efficient methods have been developed that involve either grouping

together processes that occur in fast succession (τ - leap methods) [16, 46, 123],

application of quasi-steady-state theory [122], or averaging over first reactions [60],
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purely stochastic simulations of such systems remain computationally expensive.

We adopt a strategy that models processes with a large number of cells (fast

rates) in a deterministic way whilst keeping small populations as stochastic processes

(i.e. minority populations become random). Mixed frameworks have been proposed

to simulate biochemical systems [2, 54, 73, 138, 147]. They are mainly based on a

prediction correction type heuristics for the realization of the stochastic part. The

main concept is to first calculate the time (waiting time) in which a stochastic event

should occur. During the waiting time to the next jump, the ODE component of the

process is kept evolving [2]. Our populations are divided into compartments. Small

populations evolve in a discrete compartment and we call this compartment D whilst

large populations are in a continuous compartment called C simulated by ODEs, i.e.

our compartments are:

{T, P1, P2, L1, L2} ∈ C and {P3, L3} ∈ D.

In our mixed method, the dynamics of healthy T cells, wild-type and common

mutant infected cells is given by the sum of all fast rates or simply by a set of

ODEs given in chapter 4 (equation 4.2.2) whilst the stochastic schema for the discrete

populations P3 and L3 is given in Table 5.2. We write the mutations’ fitness parameter

as ki = (1 − fi)k1 for i = 2, 3 and f2, f3 are fitness costs for the common and rare

mutant, respectively. To simulate our system, we use the direct hybrid method [2].

This method explicitly calculates which event occurs next and when it occurs. At the

beginning, the system is set to the initial state. An exponential random number with

a mean of one is drawn to prepare for the numerical integration of the ODE system.

The time to a discrete event is determined by the cumulative hazard function that

depends on the state of the system. If a discrete event has been generated, the next
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event to occur is randomly chosen and the state variables are updated accordingly.

This procedure continues until the entire trajectory is computed. The pseudo-code is

given in Appendix E.

Table 5.2: Stochastic process schema showing allowed jumps and jump rates for small
populations (or for slow rates)

Event Jump Rate

Infection of T cells by strain i :

(a) error free transcription :

(i) productive infection T → T − 1 and fFk3P3T

P3 → P3 + 1

(ii) latent infection T → T − 1 and f(1− F )k3P3T

L3 → L3 + 1

(b) mutation into strain P3 (i = 1, 2) T → T − 1 and ϵ3ikiPiT

P3 → P3 + 1

Activation of latently infected cell L3 → L3 − 1 and aL3

P3 → P3 + 1

Productively infected cell death P3 → P3 − 1 µPP3

We have explained in principle how hybrid simulations can be done (an example

is given in the next section). To determine approximately persistence of new genomes

does not require explicit modelling of the stochastic process of population eradication.

We now demonstrate that, in practice, population numbers for infected cells are

typically large enough to be modelled deterministically for heuristic conclusions about
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magnitudes of persistence times, i.e. “deterministic extinction”. A scenario in which

we can model stochastic persistence explicitly is the radioactive decay process. We

assume that a constant per-item decay rate is given by the parameter λ, and we

calculate the mean time it takes to reach 0 items, starting from an initial population

of P. This mean decay time is given by

E[τ0] =
1

λ

P∑
n=1

1

n
.

We can calculate the number of cells at E[τ0], in the deterministic version of the

model, as

P (E[τ0]) = Pe−λE[τ0]. (5.2.2)

The coefficient of variation (the ratio of the standard deviation to the mean) is cal-

culated as:

cv =

√
var

E[τ0]
, (5.2.3)

where the numerator is the standard deviation (square root of the variance). The

variance of the decay time is given by:

var =
1

λ2

P∑
n=1

1

n2
.

We show the dependence of the expected number of cells at the expected time to

decline to zero and the coefficient of variation with the initial population size in figure

5.1. The number of cells evaluated at the expected decay time rapidly approaches

an asymptote with a value close to one half and the coefficient of variation, for a

population that starts at a size of at least 100 is somewhat less than 20%, but declines

slowly with initial population size. Evidently, the intrinsic uncertainty in persistence

in the stochastic process dominates over any error made in using the deterministic
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model to estimate expectation values. In this example, it was not difficult to calculate

the stochastic result, but in the HIV applications which follow, there is not a single

decay rate, so the fully stochastic model is considerably more complex. We will model

a fading subpopulation deterministically.
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Figure 5.1: A: The number of cells at the expected decay time, i.e. “deterministic
extinction”. B:The coefficient of variation as a function of the initial population size.

5.3 Persistence of Rare Mutations

First, we present simulations of the hybrid model that resemble the single dose NVP

case presented in chapter 4, where we have assumed a 10% fitness cost (f2 = 0.1)

for the common mutant strain and a 5% fitness cost (f3 = 0.05) for the rare mutant

that appears as a result of suboptimal suppression. The dynamics of all populations

started from an infected equilibrium state with two strains (see equation 2.1.9) are

shown in figure 5.2. We assume treatment is administered for 7 days. For these

parameter values, the mean time to appearance of a rare mutant is 0.54 ± 0.005

weeks (with a probability of appearance within a year of 0.9998 after 104 runs).
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Figure 5.2: A single realization showing the dynamics of infected cell populations
for a scenario such as NVP given previously. A: uninfected T cells, B: productively
infected cells, C: latently infected cells and D: proportion of P2 cells. Here f2 = 0.1,
f3 = 0.05, k1 = 2 × 10−8, we assumed 7 days of idealized treatment and simulations
are started at the two strain equilibrium state.

Now we investigate the typical time until a small cluster of cells infected by the new

genome persist before disappearing. Using the survival function for the appearance

of a rare mutant given by equation 4.2.4 (see figure 5.3(A)), we can calculate the

distribution of times to first occurrence of a rare mutant, i.e. the probability that a

rare mutant first appears in any interval [a b] is given by Λ(a)−Λ(b). For short term

treatment, we calculate the probability that a rare mutant will appear in sub-intervals
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between 0 and 7 days. These intervals for the time to first appearance of the rare

mutant are broken down as in Table 5.3. A new rare genome with a subcritical fitness

cost that appears in the absence of selective pressure persists for a while or even make

occasional offspring and finally go to extinction. We want to assess persistence time

of subcritical genomes that appear, survive for a short time in the presence of pressure

that favours them and then go to extinction after the removal of selective pressure.

Table 5.3: The probability that a new rare mutant will appear in a given interval,
using the survival function given by equation 4.2.4.

Interval [0 1] [1.01 2] [2.01 3] [3.01 4] [4.01 5] [5.01 6] [6.01 7] [≥ 7.01]

prob (%) 0.02 0.11 1.84 19.24 11.35 5.21 4.65 57.58

In figure 5.3(B), we show the dynamics of wild-type, common mutant and rare

mutant infected cells. We assume that prior to treatment we have only two strains

(wild-type and common mutant) and after starting treatment, the new genome (rare

mutant) appears after 0.5 days. Recall that the new genome is only rare in the

absence of suboptimal therapy. In this case, the new genome carries a 10% fitness cost

relative to the wild-type strain. Under drug influence the environment is favourable

for the rare mutant (it is fitter than the wild-type strain) so it grows to fairly large

populations such that we can use the deterministic model to compute “deterministic

extinction” times. In this scenario, the appearance of the rare mutant is stochastic

and its growth and decay are treated deterministically.
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Figure 5.3: A: Survival function, Λ(t), up to 350 days and B: The dynamics of all
infected cell populations (wild-type (P1), common mutant (P2) and rare mutant (P3))
when treatment is administered for 7 days. Here f2 = f3 = 0.1, k1 = 2 × 10−8, and
simulations are started at the two strain equilibrium state. The rare mutant is allowed
to appear after 0.5 days.

Now we vary the replicative disadvantage of the new genome and time of appear-

ance and assess the typical time it takes to decay to a single cell. In our simulations,

we introduce a new rare mutant at the middle of each interval and allow it to grow

deterministically and assess the time it takes for its population to reach a single cell

(“deterministic extinction” time). Now, we can ask questions such as: what is the

probability that a cluster of cells infected by the new genome exist in the population

at 6, 12 and 18 months for varying fitness cost parameter?

For illustration purposes, we assume that a rare genome carries either a 5%, 10%

or 50% fitness cost relative to the wild-type strain. For each of these replicative

competencies, we assess the persistence of the new genome that appears at the centre

of these intervals [0 1], [1.01 2], [2.01 3], [3.01 4] and [4.01 5]. We let the rare mutant

population size decline to a value near one, see figure 5.4 which shows the dynamics of
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the rare mutant infected cell population. Through eye-balling, we note the population

size of rare mutant infected cells at different time points (6, 12 and 18 months for our

scenario) after suboptimal treatment and determine persistence through stochastic

averaging over initial conditions, i.e. use the probability distribution of appearance

given by the intervals (see Table 5.3) to evaluate the likelihood of persistence, see

Table 5.4.

After 18 months, only mutants that emerge at the centre of either intervals [0 1]

or [1.01 2] (and if the mutants carry a 5% fitness cost relative to the wild-type strain)

will be still present in the population. Thus the probability that a rare mutant with

a 5% fitness cost will exist after 18 months is approximately given by 0.1%, which is

calculated from the sum of respective probabilities of appearance in intervals [0 1] and

[1.01 2], i.e. 0.02% + 0.11% rounded off to 1 decimal point. Similarly, assuming a rare

mutant with a 10% fitness cost, there is a 2% probability that it will persist beyond

6 months (since genomes that appear at the centre of three intervals [0 1], [1.01 2]

and [2.01 3] will be still present). A new genome with a 50% growth disadvantage is

guaranteed to die out quickly.

From this ad hoc approach of using initial stochastic conditions to predict intrinsic

population decay rates, i.e. extinction probabilities, we observe that there is a compli-

cated relationship between persistence time and the time at which the new genomes

appear. Small population persistence is determined by both replication competence

and the environment.
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2], [2.01 3], [3.01 4] and [4.01 5]. The other parameter values are as in figure 5.2.
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Table 5.4: The probability that rare mutant infected cells exist at 6, 12 and 18 months
as a function of growth disadvantage and time of occurrence (these are approximate
values).

Rare mutant fitness cost(f3) 6 months 12 months 18 months

0.05 21% 2% 0.1%

0.10 2% 0% 0%

0.50 0% 0% 0%

5.4 Conclusion

Numerical simulations of the hybrid model confirm the significant acceleration of viral

evolution from just the short course treatment. We have performed full simulations

incorporating assumptions on the replicative competence of the new genome to assess

persistence of secondary resistance after short course treatment. Varying the rare

genome’s replicative ability and the time to appearance, we have determined the

period at which the new genome lineage will be sustained in the face of competition

from existing strains after the initial appearance of a single cell with a new genome.

In terms of the interaction between a short course and subsequent continuous

therapy, model results have shown that the disappearance of a rare mutant carry-

ing a 10% fitness cost or more relative to the founder at some point more than 6

months after selective therapy is highly likely (there is a 2% likelihood of persis-

tence for rare genomes with such replicative competence). This is comparable to the

small probabilities of a rare mutant being present derived using the modified survival

analysis previously. Administering therapy in the presence of these undetectable mi-

nority species increases the risk of continued selective pressure which may result in
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development of additional mutations.

These results are also important in the setting of HIV-1 suboptimal chronic treat-

ment. It is not known whether the benefits of continued treatment with a failing

regimen outweigh those of interrupting failing therapy. Maintaining suboptimal treat-

ment may have immunological and virological benefits, e.g. stable immune cells and

viral load despite limited control of viral replication [28, 104]. However, long term

exposure to incomplete viral suppression may lead to the development of additional

mutations and continued exposure to drug toxicities [91, 104]. There may be benefits

of discontinuing failing therapy in spite of viral rebound, such as loss of resistance

mutations [28, 66, 95]. Some studies on patients with previous treatment failures and

multidrug-resistant virus indicated that in some patients a shift to complete wild-type

population may occur upon discontinuation of all treatments [30] and that treatment

re-initiation in patients who had interrupted treatment may achieve durable virus

population suppression [27, 104]. In patients failing first line regimens, it may be

beneficial to give drug holidays before administering a second line or salvage regimen

to allow the minority variants to eventually die out.

In our models, the only form of competition is infection of target cells. It re-

mains to be seen if this form of competition alone is sufficient to block or enable the

formation of quasi-species. Another issue is whether the evolution of new genomes

is a function of population sizes of existing strains alone or is due to intrinsic ran-

domness in retroviral reproduction caused by the varying activation of target cells or

both. However, as a starting point, our framework is heuristically sensible, it demon-

strates the interplay of deterministic evolution with stochastic averaging over initial

conditions.
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5.5 Summary of Implications for Public Health

It is very difficult, or impossible, to observe small subpopulations of virions and

infected cells by standard laboratory assays, so there is little direct data on these

populations. Mathematical modelling, after making particular assumptions, may be

the only recourse available to develop intuition on the dynamics of these undetectable

populations. This might not yield precise estimates but at least qualitative results

such as distinguishing fast from slow decay rates of subpopulations with no selective

advantage. The analysis in this work shows that there is a complex relationship

between occurrence time and persistence of new variants. We might not have obtained

credible estimates of persistence times but the model shows that subcritical genomes

have a high chance of going to extinction. Clinical studies of molecular evolution

guided by modelling of this kind may shed light on how best to manage patients seen

to be on failing regimens, helping shed light on such options as quick switching, what

regimen to switch to, whether to have drug holidays between regimens, or perhaps

even interim regimens.



Chapter 6

Conclusion

In this chapter, we take stock of what we have achieved in this thesis and suggest

areas of extension. The aims of the thesis were to develop and test appropriate

models of viral evolution, and then use these models to investigate the impact of

acute infection dynamics on the accumulation of mutations, the effect of suboptimal

therapy on the appearance of rare higher order mutations and the persistence of new

variants after suboptimal treatment. We tried to ensure that the models remain close

to the biology, so that the models will be fairly transparent and comprehensible to

experimentalists. On the other hand, a “kitchen sink”, approach where just about

every known physiological or immunological detail is incorporated, was avoided, since

the aim was to gain some insight into overall system behaviours.

6.1 The Results

We demonstrated that while ODE models may be adequate for modelling mutations

of HIV as some variants may be produced many times a day, they are inappropriate

110
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to model the generation of rare mutants, as they have no explicit waiting time to the

occurrence of rare mutants. The sequence evolution framework developed by Lee et

al.[79] was successful in assessing the degree of viral diversity during the early phase of

infection. However the effect of assumptions such as differential fitness and selection

pressure can significantly affect the overall conclusions. Viral diversity measures are

important as they can act as signals of epidemiological and clinical outcomes. We

suggest that diversity indicators that correlate to prognosis need to be sought in

experiments and clinical trials.

Transient effects of therapeutic interventions early in infection, that confer a fitness

cost to early viruses, can significantly reduce the extent of diversity later during the

chronic state of infection. This stands in contrast to the concern that early selective

pressure may increase the probability of later existence of drug resistance mutations,

for example. These models may be useful to illustrate the impact of vaccines and

PrEP on viral evolution in the case of breakthrough infection.

Scenarios with a transient change in relative fitness of strains, of a magnitude

and duration such as is known to occur under NVP monotherapy, exhibit signifi-

cantly accelerated viral evolution compared to no-treatment scenarios. Total viral

load suppression (which results in reduced overall viral replication) but with tran-

sient/temporary increases (order of weeks) of common minority mutants can lead to

acceleration of rarer mutations appearance. Experimental data on the persistence

of small subpopulations of rare mutants, in unfavourable environments, should be

sought, as this affects the risk of subverting later regimens.

Simulations of the hybrid model shows that some unfit drug resistant viruses,

even those carrying only a small fitness cost relative to the wild-type strain, would
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not persist indefinitely in the absence of selective pressure. This suggests that dis-

continuing failing therapy for a certain period may give patients a better opportunity

for viral suppression with subsequent regimens. The idea is to understand the effects

of suboptimal therapy and its interruption on patient management.

6.2 Future Directions

The topics discussed within this thesis leave considerable scope for further research

and development. Perhaps the most fruitful avenue would not be by developing more

nuanced or sophisticated mathematical models, but by working more closely with

specific data sets. For example, we constructed a model scenario inspired by data

about NVP containing regimens, by choosing a particular phylogeny to explore the

effects of a suboptimal regimen on the common and rare resistant mutants. It captures

the concepts of a primary, relatively unimpaired mutant, a number of unviable 2 base

mutants, and the possibility of compensatory mutations which lead to a treatment

defeating 3 base mutant that is reachable by different pathways which have different

relative importance at various stages during transient dynamics. While we do not

claim that this is a truly faithful representation of the relevant physiology, realistic

trees can be chosen, and they can be immediately accommodated into our general

framework. Recently, the advent of new sequencing technologies, vast amounts of

HIV-1 clinical data have become available for analysis. The mathematical modelling

presented in this thesis can be extended and coupled with statistical methods to

understand and predict the dynamics and control of HIV-1 infection.
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6.3 Strengthening Multidisciplinary Collaborations

In this thesis we have attempted to answer specific questions on viral evolution dur-

ing acute infection and suboptimal treatment using mathematical models. Perhaps

our models have generated more questions than answers, but these appear to be

important questions for the management of patients infected with HIV, so that vi-

ral evolution can be limited. The complex interplay between laboratory, clinical and

mathematical disciplines suggests that communication and active collaboration across

these fields should be enhanced, to develop new concepts in HIV/AIDS pathogenesis,

and understand their implications for patients.



Appendix A

Generating Functions

Generating functions are a useful tool for calculating probabilities and expectations.

Any sequence of real numbers can be transformed into several kinds of “generating

functions”, in this case a power series. Let us consider a positive count (Z+) random

variable X, i.e. a discrete random variable taking non-negative values, such that

pk = P(X = k). We can write X ∼ {pk}k≥0 and say that {pk} is the distribution of

X [75].

Definition A.0.1. (Definition of the probability generating function)[75]. The prob-

ability generating function GX of a Z+-valued random variable is a function GX(s) =

E(sX) =
∑∞

k=0 pks
k for those values of the parameter s for which the sum converges.

For a given sequence, there exists a radius of convergence such that the sum converges

absolutely if |s| < 1 and diverges if |s| > 1, i.e. the symbolic argument s ∈ U ≡ [0, 1].

The following properties are true for the power series, GX(s) :

GX(1) = 1, and GX(0) = p0.
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We can recover the coefficient pk by calculating the kth derivative of GX(s) at s = 0,

i.e

pk =
G

(k)
X (0)

k!

The kth factorial moment of X is µk = G
(k)
X (1) such that the first derivative of the

series evaluated at s = 1 is the expectation of the random variable X. If X and Y are

two independent Z+-valued random variables, then we have GX+Y (s) = GX(s)GY (s).

Proof.

GX+Y (s) = E(sX+Y );

= E(sX)E(sY ) (independence);

= GX(s)GY (s). (A.0.1)

If N is a discrete random variable with probability generating function GN . If

X1, X2, · · · , XN are independent count random variables and identically distributed,

with a common probability generating function GX such that N,X1, X2, · · · , XN are

independent count random variables, then SN = X1 + · · · + XN has a probability

generating function GSN
(s) = GN(GX(s)) [52].
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Proof.

GSN
(s) = E

(
sSN

)
=

∞∑
n=0

E
(
sSN

∣∣∣N = n
)
P(N = n) (conditioning on N - see Appendix B)

=
∞∑
n=0

E(sSn)P(N = n)

=
∞∑
n=0

GX1+···+Xn(s)P(N = n)

=
∞∑
n=0

[
GX(s)

]n
P(N = n)

= GN(GX(s)) (by definition of GN) (A.0.2)

This definition of the probability generating function can be generalized to the

multivariate case. Suppose that X = (X1, · · · , Xn) ∼
{
pi1i2···in

}
i1,i2,··· ,in≥0

is a finite

vector of non-negative random variables, or a Zn
+-valued random variable.

Definition A.0.2. (Definition of the multivariate probability generating function)

[75]. The probability generating function GX of a Zn
+-valued random variable X is

the function

GX(s) = E
(
sX1
1 sX2

2 · · · sXn
n

)
=

∞∑
i1,i2,··· ,in≥0

pi1i2···ins
i1
1 s

i2
2 · · · sinn , (A.0.3)

well defined if s = (s1, s2, · · · , sn) ∈ Un ≡ [0, 1]n.

Theorem A.0.1. (Multivariate probability generating function theorem) [75]. Sup-

pose X is a Zn
+-valued random variable with probability generating function GX
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1. GX is non-negative and continuous with all derivatives.

2. The marginal laws for subsets of Xi’s can be obtained by setting respective ar-

guments of the probability generating function equal to 1, for example,

GX(s)|sj=1,j ̸=i = GXi
(si),

etc and GX(e) = 1, where e = (1, · · · , 1).

3.

∂k1+···+knGX(0)

∂sk11 · · · ∂sknn
= k1! · · · kn!pk1···kn .

4.

µk1,··· ,kn =
∂k1+···+knGX(s)

∂sk11 · · · ∂sknn

∣∣∣∣∣
s=e

.

5. If X and Y are two independent Zn
+-valued random variables, then

GX+Y(s) = GX(s)GY(s).

6. If Y is a Zn
+-valued random variable and

{
X

(i)
j ; i ≥ 1

}
, j = 1, 2, · · · , n, are

sequences of Zm
+ -valued random variables, then V =

∑n
j=1

∑Yj

ij=1X
(ij)
j is a Zm

+ -

valued random variable with probability generating function

GV(s) = GY

[
G

X
(1)
1
(s), · · · , G

X
(1)
n
(s)

]
, s ∈ Um.

Galton-Watson Branching Processes

In a Galton-Watson process, a population of individuals evolves in discrete time.

Each (n − 1)st generation individual produces a random number of offspring in the
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nth generation. The state of the process at time n is the number of individuals in the

nth generation. For example, consider an organism that lives for exactly one time

unit and then dies in the process of giving birth to a family of similar organisms, C,

having the distribution P(C = k) = pk; k = 0, 1, 2, · · · [52].

If we let Pn be the number of individuals born at time n (i.e., the size of the nth

generation), the evolution of the population is described by the sequence of random

variables P0, P1, P2, · · · (an example of a stochastic process). We assume that P0 = 1,

i.e. we start with precisely one organism. Let g(s) be the probability generating

function of C (offspring) given by

g(s) =
∞∑
k=0

pks
k,

and Gn(s) the probability generating function of Pn given by

Gn(s) =
∞∑
x=0

P(Pn = x)sx.

Now we have G0(s) = s, since P(P0 = 1) = 1 and P(P0 = x) = 0 for x ̸= 1. Also

G1(s) = g(s). The population size at generation n is

Pn =

Pn−1∑
i=1

Ci,

that is, the number of individuals in the nth generation is equal to the number of

offspring of all individuals in the (n − 1)st generation, where Ci is the size of the

family produced by the ith member of the (n−1)st generation. Any individual in the

nth generation of the process can be traced to its parent in the (n− 1)st generation

of the process [52].

Now, since Pn is the sum of a random number of independent and identically

distributed (i.i.d.) random variables, we have

Gn(s) = Gn−1(g(s)) for n = 2, 3, · · · (A.0.4)
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Iterating equation A.0.4, we have

Gn(s) = Gn−1(g(s))

= g ◦ · · · ◦ g (n times) (A.0.5)

that is Gn is a composition (nth iterate) of g. For more general processes, equation

A.0.4 (also known as the forward equation) may not be feasible and for Galton-

Watson processes, the forward equation leads to the backward equation, i.e. Gn(s) =

g
(
Gn−1(s)

)
[75]. The single-type Galton-Watson branching process can also be gen-

eralized to the multi-type case.

The evolution of a population with multiple variants is a multi-type Galton-

Watson process (for further reference see [65, 75, 117]). In this process, each in-

dividual is assigned a type from a finite set T = {1, · · · , r}, and each individual, say

of type i ∈ T is associated with a random vector Ci = (Ci1, · · · , Cir), where Cij is a

random variable that represents the number of offspring of type j born from a type

i individual. Given its type, the infected cell reproduces according to a probability

distribution. The probability that a type i parent cell produces k1 children of type 1,

k2 of type 2,· · · , kr of type r is

pi(k1, · · · , kr) = P
(
Ci = [k1, · · · , kr]

)
, (A.0.6)

The ith generating function gi(s1, · · · , sr) determines the distribution of the number

of offspring of various types to be produced by a type i cell

gi(s) = Ei

(
sk11 · · · skrr

)
,

=
∑

k1,··· ,kr

pi(k1, · · · , kr)sk11 · · · skrr , |s1|, · · · , |sr| ≤ 1; (A.0.7)

such that

g(s) =
(
g1(s), · · · , gr(s)

)
,
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where s = (s1, · · · , sr). The multi-type GWBP is a vector-valued, non-negative ran-

dom process P(n) =
(
P1(n), · · · , Pr(n)

)
, where Pi(n) represents the nth generation

size of type i with i = 1, · · · , r. The vector forms a Markov chain describing the

population size and the type structure evolving generation-wise. In general, if

P(n− 1) =
(
P1(n− 1), · · · , Pr(n− 1)

)
,

then by summing the number of children generated by parent j of type i in generation

n− 1, the vector-valued population size at generation n is given by

P(n) =
r∑

i=1

Pi(n−1)∑
j=1

C
(j)
i ,

where C
(j)
i is the offspring vector produced by each jth member of the ith type in

(n−1)st generation. Using the multivariate probability generating function theorem,

we have

Gn(s) = Gn−1(g(s)), (A.0.8)

the generating function of X(n), where G0(s) = s and G1(s) = g(s).



Appendix B

Conditional Expectation

See [52] for more details. If X and Y are discrete random variables with a joint

function defined by

pX,Y (x, y) = P(X = x, Y = y),

then the marginal probability mass function of X is

P(X = xi) =
∑
y

P(X = xi, Y = y),

and that of Y is

P(Y = yi) =
∑
x

P(X = x, Y = yi).

The conditional expected value of X given Y = yj is defined as:

E(X|Y = yj) =
∑
i

xiP(X = xi|Y = yj) (B.0.1)

=
∑
i

xi
P(X = xi, Y = yj)

P (Y = yj)
, ∀yj (j = 1, 2, · · · )
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Since E(X|Y ) is a function of Y, we can write down its mean as

E[E(X|Y )] =
∑
j

E(X|Y = yj)P(Y = yj)

=
∑
j

∑
i

xiP(X = xi|Y = yj)P(Y = yj) (from equation B.0.1)

=
∑
j

∑
i

xi
P(X = xi, Y = yj)

P(Y = yj)
P (Y = yj)

=
∑
j

∑
i

xiP(X = xi, Y = yj)

=
∑
i

xi

∑
j

P(X = xi, Y = yj)

=
∑
i

xiP(X = xi) (marginal mass function of X)

= E(X) (B.0.2)

The result is very useful, it enables us to compute expectations easily by first condi-

tioning on some random variable Y and using

E(X) =
∑
j

E(X|Y = yj)P(Y = yj). (B.0.3)



Appendix C

8-type Galton-Watson Branching

Process

The symmetric mutation matrix (M) for all the pathways is given by:



P0 P1 P2 P3 P4 P5 P6 P7

P0 (1− η)3 η(1− η)2 η(1− η)2 η(1− η)2 η2(1− η) η2(1− η) η2(1− η) η3

P1 η(1− η)2 (1− η)3 η2(1− η) η2(1− η) η(1− η)2 η3 η(1− η)2 η2(1− η)

P2 η(1− η)2 η2(1− η) (1− η)3 η2(1− η) η(1− η)2 η(1− η)2 η3 η2(1− η)

P3 η(1− η)2 η2(1− η) η2(1− η) (1− η)3 η3 η(1− η)2 η(1− η)2 η2(1− η)

P4 η2(1− η) η(1− η)2 η(1− η)2 η3 (1− η)3 η2(1− η) η2(1− η) η(1− η)2

P5 η2(1− η) η3 η(1− η)2 η(1− η)2 η2(1− η) (1− η)3 η2(1− η) η(1− η)2

P6 η2(1− η) η(1− η)2 η3 η(1− η)2 η2(1− η) η2(1− η) (1− η)3 η(1− η)2

P7 η3 η2(1− η) η2(1− η) η2(1− η) η(1− η)2 η(1− η)2 η(1− η)2 (1− η)3



,

(C.0.1)

where the rows and columns are ordered as follows: wild-type strain (P0), three single-

point mutants (P1, P2, P3), three double-point mutants (P4, P5, P6) and a triple-point
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mutant (P7). The pgf of the wild-type offspring is given by:

gn0 (s0, · · · , s7) = E
(
sk00 · · · sk77

)
;

=
∞∑

k0=0

· · ·
∞∑

k7=0

(
R0(n)

k0, · · · , k7

)(
(1− η)3

)k0
· · ·

(
η3
)k7

sk00 · · · sk77 ;

=
( 7∑

j=0

M(0, j)sj

)R0(n)

,

(C.0.2)

where M(0, j) is the jth element (j = 0, · · · , 7) of row 0 of matrix (C.0.1); our

indexing starts from zero and we have used the multinomial theorem to rewrite the

summation. Also the following sum is true,
∑7

i=0 ki = R0(n), at every generation n.

Similarly, we can derive the offspring pgfs for all the mutants:

gn1 (s0, · · · , s7) =
( 7∑

j=0

M(1, j)sj

)R1(n)

· · · = · · ·

gn7 (s0, · · · , s7) =
( 7∑

j=0

M(7, j)sj

)R7(n)

(C.0.3)

where Ri(n), i = 0, · · · , 7 is strain i effective reproductive number function such that

gn(s) =
(
gn0 (s), · · · , gn7 (s)

)
, (C.0.4)

where s = (s0, · · · , s7). We assume that the infection process is started from a single

wild-type infected cell, i.e. {P0(0) = 1, P1(0) = 0, · · · , P7(0) = 0}. We can use the

iteration

Gn
i (s) = Gn−1

i

(
gn0 (s), · · · , gn7 (s)

)
, n = 2, 3, · · · (C.0.5)

to derive the pgfs for the distribution law of the number of cells at every generation.



Appendix D

Mutation Combinatorics

We relate the HIV mutation process parameters ϵij and f to an underlying single-

point-mutation process. The error rate per site for HIV reverse transcriptase (for any

given nucleotide A, C, G and T) is assumed to be 10−4 [109], so that the rate of change

to any of the three alternatives (for example substitution of A by C, G or T) is given

by η = 1
3
× 10−4. The probability that a site within a gene will remain unchanged

after reverse transcription (i.e. A → A, C → C, T → T or G → G) is given by

(1− 3η). Then the probability of a particular mutation (strain j → strain i), where i

and j differ by precisely m point mutations, given a genome length L (approximately

104 bases for HIV) is given by

ϵij = (1− 3η)L−mηm ≈ (1− 3η)Lηm ≡ fηm, (D.0.1)

where m << L and 1− 3η ≈ 1. Note that f = (1− 3η)L ≈ 0.37 is the probability of

error free replication. For example, we consider particular point mutations at codon

103 of reverse trancriptase gene that are associated with 103K/N viral populations.

Given that AAA & AAG code for K and AAC & AAT code for N, the rate of lysine
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(K) substitutions by asparagine (N) at this codon is given by

P(K → N) = 2fη. (D.0.2)

The single point mutation rate at this codon using equation D.0.2 is given by ϵ21 =

2.5 × 10−5. Then, using equation D.0.1, we have ϵ31 = fη3 ≈ 1.4 × 10−14 and ϵ32 =

fη2 ≈ 4.1× 10−10.



Appendix E

The Direct Hybrid Method

To simulate our system (with the phylogeny given in chapter 4), we use the direct

hybrid method [2]:

1. Initialize the system T (0), P1(0), P2(0), P3(0), L1(0), L2(0), L3(0) and set the ini-

tial time t = t0;

2. Generate a random variable ξ ∼ Exp(1);

3. Set g(t/t) = 0 and solve the system of ODEs starting at time τ = t

dT (τ)

dτ
= ST − T (τ)

2∑
i=1

kiPi(τ)− µTT (τ)

dPi(τ)

dτ
= fFkiPi(τ)T (τ) + T (τ)

2∑
j=1
j ̸=i

ϵijkjPj(τ) + aLi(τ)− µPPi(τ), i = 1, 2

dLi(τ)

dτ
= f(1− F )kiPi(τ)T (τ)− aLi(τ), i = 1, 2

g(τ/t)

dτ
= fk3P3(τ)T (τ) + T (τ)

2∑
i=1

ϵ3ikiPi(τ) + aL3(τ) + µPP3(τ) (E.0.1)

until time τ = s such that g(s/t) = ξ;
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4. Generate a discrete random variable with values in D and probabilities (Table

5.2) in order to determine the event to be performed.

5. Make the indicated jump, update the time to t = s and go to step 2.
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