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Abstract 

Forty seven of the toxin-antitoxin modules in the genome of 

Mycobacterium tuberculosis belong to the VapBC family in which the VapC toxin 

is a member of the PIN-domain protein family associated with nuclease activity. 

The role of VapBCs in the physiology of M. tuberculosis and the cellular 

function(s) served by their expansion are unknown but is the subject of intense 

investigation as a result of the evidence suggesting an association between TA-

module function and stress adaptation as well as phenotypic drug tolerance in 

certain organisms. In this study, the function of ten vapBC modules from M. 

tuberculosis and the single vapBC from M. smegmatis was investigated. Of the 

vapCs assessed, Rv0549c, Rv0595c, Rv2549c and Rv2829c were growth 

inhibitory when conditionally expressed under the control of a tetracycline (Tet)-

regulated promoter in both M. smegmatis and M. tuberculosis, with Rv0549c 

being less toxic than the others. The toxicity of Rv2549c in M. smegmatis 

correlated with the level of protein expressed, suggesting that in order for toxicity 

to be observed, the VapC level must exceed a certain threshold. Low levels of 

protein expression were demonstrated for Rv2456 following induction, which may 

account for the lack of toxicity observed for this, and the remaining ‘non-toxic’ 

VapCs. In addition, given that Rv3320c was toxic in both M. smegmatis and M. 

tuberculosis only when expressed in the absence of the Tet repressor, protein 

expression levels, rather than differences in (nuclease) activity appeared to be the 

principal determinant of VapC toxicity in this assay system. VapC toxicity was 

neutralized by co-expression of the cognate vapB antitoxin from both an operon 

with the toxin, as well as from a different chromosomal locus. However, non-

cognate antitoxins could not abrogate VapC toxicity, thus demonstrating a 

specificity of interaction between VapCs and their cognate VapBs. Deletion of 

selected vapBC genes did not affect mycobacterial growth in vitro or 

mycobacterial stress adaptation, but rendered it more susceptible to growth 

inhibition following toxic VapC expression. However, toxicity of ‘non-toxic’ 

VapCs was not increased in deletion mutant strains, even when the mutation 

eliminated the cognate VapB, presumably due to insufficient levels of VapC 

expression in this genetic background. Interestingly, low levels of VapC appeared 
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to result in increased ofloxacin tolerance, thus making it likely that lower levels of 

VapCs that are induced as a result of stochastic and/or environmentally-induced 

vapBC expression might have a significant effect on the physiology of 

mycobacteria. The above-mentioned findings suggest that�the vapBC family may 

provide an abundant source of nuclease activity in M. tuberculosis, which can 

vary as a function of regulated expression of individual modules, and the 

rates/mechanisms of antitoxin degradation. Such activity is likely to have a 

profound impact on the physiology of M. tuberculosis. 
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1. Introduction 

1.1 Tuberculosis, chemotherapy and drug-resistance 

Mycobacterium tuberculosis causes one of the most debilitating human 

diseases, tuberculosis (TB). This contagious and air-borne bacillus infects over 2 

billion people worldwide. In 2008 alone, 9.4 million new cases were reported and 

1.8 million people died from TB (302). While it remains true that these recent 

statistics indicate a drop in the global incidence rate from 143 cases per 100,000 in 

2004 to 139 per 100,000 in 2008, the advent of the Human Immunodeficiency 

Virus (HIV) and poor socio-economic conditions in developing countries, which 

incidentally have the highest TB incidence and mortality rates, continue to make 

this disease a global health crisis (302). 

This pandemic is particularly daunting when one considers that TB is a 

curable disease. In the late 1990’s, the World Health Organization (WHO) 

introduced the DOTS (Directly Observed Therapy - Short Course) program which 

has been implemented worldwide (302). This strategy recommends combination 

therapy consisting of an intense 2 month treatment phase with the first-line drugs 

isoniazid, rifampicin, ethambutol and pyrazinamide; followed by a 4 month 

continuation phase of isoniazid and rifampicin (302). This intense chemotherapy 

often leads to patient non-compliance, which can result in the emergence and 

spread of strains of M. tuberculosis that are resistant to first-line drugs, thus the 

development of multidrug-resistant tuberculosis (MDR-TB), a form of TB that is 

resistant to the two most powerful anti-TB drugs isoniazid and rifampicin (68). 

MDR-TB is treatable using the second-line drugs pyrazinamide, ethionamide, 

cycloserine, any of the injectables (kanamycin, amikacin or capreomycin) and one 

of the fluoroquinolones (ciprofloxacin and ofloxacin) (302). This treatment is 

however expensive, can last for up to two years and can be quite toxic to patients 

(68).  

In 2006, the Centres for Disease Control and Prevention (CDC) together 

with the WHO, genotyped M. tuberculosis strains collected in the years 2000 - 

2004 from an international network of TB laboratories worldwide (6). Of the 
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drug-resistant strains, 2% of isolates, which they referred to as extensively drug 

resistant (XDR), were found to be resistant to at least three classes of second line 

drugs used in the 4-18 month continuation phase of TB treatment (6). With the 

paucity of information from Africa, and the lack of availability of HIV co-

infection data, Gandhi and colleagues embarked on surveillance of M. 

tuberculosis isolates obtained from patients in a provincial district hospital of 

Msinga, a rural sub-district of KwaZulu Natal (South Africa), where 

approximately 40% of patients are infected with HIV. Of the 475 culture-positive 

TB patients tested, 53 were diagnosed as having XDR-TB, and of these, 44 

patients were also seropositive for HIV. Alarmingly, within 16 days of diagnosis, 

52 of the 53 XDR-TB patients had died (67). This was an immediate cause for 

concern. As a result, two other South African researchers set out to determine the 

evolution of the XDR F15/LAM4/KZN M. tuberculosis strain associated with this 

outbreak (225). Their analysis revealed that the first XDR strain of M. 

tuberculosis actually appeared in South Africa in 2001. This prompted them to 

hypothesize that the introduction of DOTS without performance of antibiotic 

susceptibility testing or drug resistance surveillance, may have played a major role 

in the evolution and transmissibility of the F15/LAM4/KZN M. tuberculosis 

strain, since patients with MDR-TB were still treated with the prescribed standard 

first line drug-regimen and so, only one or two drugs were successfully acting 

against the infecting bacteria (225). This was subsequently addressed by Calver 

and colleagues who documented a step-wise acquisition of drug-resistance as well 

as re-infection of patients with an MDR strain of  M. tuberculosis despite strict 

adherence to the DOTS program (30). More recently, findings by Cohen and 

colleagues from autopsies of patients who died at the public Edendale Hospital in 

KwaZulu Natal (South Africa), indicate that not only did late diagnosis of TB lead 

to demise of the patients, but 16% of patients on TB treatment for the first time 

were harbouring MDR strains of M. tuberculosis, thereby confirming that first-

time infections can be caused by drug-resistant strains circulating within a 

community (45).  

As Charles Darwin would have predicted, it was only a matter of time 

before a strain of M. tuberculosis resistant to all second-line drugs emerged. In 
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2009, the first report of totally drug-resistant (TDR) strains came out of Iran 

(288). With most of these drug-resistant strains genotyped as members of the 

Beijing, Haarlem and EAI super families (288), the TB epidemic has become even 

more alarming given that members of the Beijing super-family have been 

associated with increased ability to cause and spread disease, drug resistance as 

well as co-infection with HIV (35, 64, 114, 133).  

Drug-resistant strains of M. tuberculosis have been shown to arise as a 

result of sequential accumulation of chromosomal mutations (231), with 

rifampicin and isoniazid resistance being associated with a conditional cost of 

fitness dependent on the nature of the drug-resistance-conferring mutations, as 

well as the M. tuberculosis strain family (20, 85, 86, 180). While data are not yet 

available with regards to fitness cost and transmissibility of TDR strains of M. 

tuberculosis, whole-genome sequencing of MDR and XDR strains obtained from 

HIV-positive patients in KwaZulu Natal (South Africa), at the Broad Institute 

(Cambridge, Massachusetts, USA), revealed 22 novel mutations unique to the 

drug-resistant strains. Analysis of the 12 mutations not present in highly-repetitive 

genome regions, revealed that these mutations were specific to the KZN strains 

and did not confer any fitness advantage to the strain (191). Despite this finding, 

the emergence of drug-resistant M. tuberculosis strains remains extremely 

worrisome, not only because M. tuberculosis strains associated with high-fitness 

costs do cause disease in HIV-positive patients, but also because TB disease 

phenotype has been linked significantly to both M. tuberculosis and human 

genotypes (13, 30, 34, 75, 88, 191, 200, 288). 

1.2 Mycobacterium tuberculosis – a pathogen’s success story 

One of the key attributes of a successful persistent pathogen is the ability 

to survive within an infecting host over long periods of time, whilst still retaining 

the ability to cause disease. Pathogens such as Salmonella enterica serovar Typhi, 

successfully persist in their human hosts by secreting effectors that control and 

diminish the response of the host’s immune system during infection and also 

allow for subsequent colonization of the gallbladder – an organ not monitored by 

the immune system, which then serves as a reservoir of viable bacteria (274).  
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M. tuberculosis, on the other hand, thwarts the host immune response by 

forming a niche within the immune system where it uses specific mechanisms to 

counteract the stresses imposed by the host (274). Briefly, upon inhalation of M. 

tuberculosis, the aerosolized bacteria are phagocytosed by the host’s alveolar 

macrophages. Within this primary site of infection known as the Ghon focus, the 

non-activated immature macrophages allow mycobacterial replication. These 

actively replicating bacteria recruit mobile monocyte-derived macrophages and 

other immune cells, forming lesions known as granulomas. These granulomas are 

then surrounded by lymphocytes, and eventually become calcified to form the 

Ghon complex. Whilst the Ghon complex can undergo caseous necrosis resulting 

in dissemination of tubercle bacilli into the lungs to cause acute M. tuberculosis 

infection, the bacilli within the granulomas of old pulmonary tissues and the Ghon 

complex establish an equilibrium with the host immune system to create a 

reservoir of viable bacteria, thereby allowing the bacilli to persist in the human 

host for decades in a state of latent infection. It is important to note that this 

chronic stage of infection, known as latent TB infection (LTBI), is characterised 

not only by low bacterial counts but it is also devoid of clinical symptoms (23, 48, 

218, 274, 291, 298).  

Whilst factors such as mycobacterial and human phenotypes, smoking, 

diabetes, malnutrition and residence in high-density locations increase the risk of 

TB infection, HIV co-infection has been the greatest risk factor for the 

progression of the TB epidemic, despite the introduction of highly active 

antiretroviral therapy (HAART) (67). One of the reasons for this is the immune 

reconstitution inflammatory syndrome (IRIS). This is a clinical deterioration of 

HAART-treated patients, despite satisfactory control of viral replication and 

improvements in the CD4+ lymphocyte counts, which leads to inflammatory 

responses towards previously diagnosed or persisting pathogens (255). In the case 

of M. tuberculosis, TB-IRIS may present either paradoxically - where patients 

receiving and responding to TB treatment prior to initiation of antiretroviral 

therapy (ART) succumb to worsening TB symptoms once on HIV treatment; or as 

ART-associated TB - where patients neither diagnosed nor treated for TB prior to 

initiation of ART develop TB (185). This TB/HIV co-infection continues to be a 
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huge cause of concern, since one third of the world’s population is estimated to be 

infected with M. tuberculosis and the HIV-positive population which reached 33.4 

million in December 2008 - 20% more than reported in 2000 (93, 269, 279), is 

continuing to rise, and has thus increased the pool of possible TB cases 

worldwide. 

It has been widely accepted, albeit not proven, that during the LTBI, the 

bacilli are dormant i.e. the bacteria are viable but have decreased metabolic 

activity and are not undergoing replication. M. tuberculosis possesses many 

mechanisms, including mycobacterial cell wall modifications, the ability to 

change its metabolism to survive on different carbon sources, DNA maintenance 

and repair, induction of the intrinsic apoptotic pathway of macrophages, as well as 

upregulation of genes involved in stress-regulation, which allow it to persist 

within the human host (36, 51, 71, 125, 188, 189, 218, 241, 252, 267, 297, 299). 

This successful intracellular persistent pathogen also retains its ability to cause 

post-primary or reactivation of disease, despite the stresses imposed by innate and 

adaptive host immune responses, and the hostile environments encountered by the 

bacilli within granulomas - where factors such as nutrient and oxygen starvation 

limit growth (18, 36, 53, 71, 136, 284, 290, 292, 297, 298).  

While it has been conjectured that the bacilli are dormant during LTBI, 

recent findings that M. tuberculosis replicates throughout chronic infection in 

mice (99), and the wide range of pathologies associated with latent infection in 

humans, have shed further light on the phenomenon of mycobacterial “dormancy” 

during LTBI. It has been postulated that instead of presenting as either active 

disease where the bacilli are replicating, or latent disease where the bacilli are 

dormant, M. tuberculosis infection actually occurs as a continuous spectrum based 

on elicited host immune responses (16).  In this model, the bacilli reside within 

different microenvironments within the host tissue, and it is the nature of these 

microenvironments that dictate whether the bacilli replicate, remain dormant, 

reactivate, or whether they are eradicated by the host (16). Hence, insight into the 

heterogeneous population of bacilli in the various lesions of the human host would 

be extremely valuable towards winning the war against TB. 
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1.3 Mycobacterium tuberculosis – winning the war 

As part of a global effort to eradicate TB, the WHO has implemented a 

program known as the “Global Plan to Stop TB 2006-2015” (7), which aims at 

reducing the 1990 prevalence of TB by 50% by the year 2015 and the eventual 

eradication of the disease by 2050 (303). This multifaceted program entails i) 

expanding and improving the DOTS program, so that supervised standardised 

treatment and effective drug management is implemented; ii) increasing TB/HIV 

collaborations, preventing and managing drug resistant M. tuberculosis strains and 

addressing the poor socio-economic conditions of the most vulnerable 

populations; iii) strengthening the primary health care sector; iv) engaging all 

communities (TB patients, care providers as well as the affected communities) to 

endorse the implementation and adherence of International Standards of 

Tuberculosis Care (ISTC); and v) promoting the development of novel and more 

effective TB diagnostic tools as well as therapies (303). 

In line with this, Salomon and colleagues, using a mathematical model, 

predicted that while the DOTS program would greatly reduce the incidence, 

prevalence and mortality of TB, implementation of shorter drug regimens would 

increase this decline in incidence and mortality by 2 - 3 fold (244). With no new 

antibiotics introduced for the treatment of TB since the discovery of rifampicin in 

1967, a number of drug development programs have recently been implemented 

for the identification and characterization of novel drug targets against M. 

tuberculosis (240). From these initiatives, six new lead compounds with novel 

modes of action have been discovered in recent years, and four previously existing 

drugs are being redeveloped to be more efficacious against M. tuberculosis (171).  

1.3.1 Drugs repurposed for use in TB 

The four previously existing drugs being repurposed for TB treatment 

belong to three classes of antimicrobial agents. Rifapentine, a bacterial RNA 

polymerase inhibitor, which is more effective than rifampicin in vitro and has a 

longer serum half-life, would be an ideal replacement candidate for the latter. This 

drug is currently in Phase II clinical trials to assess if it could be given once or 
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twice weekly as a replacement for the daily intake of the first-line antibiotic 

rifampicin (171, 242).  

The second drug, linezolid, is a member of the oxazolidinones. These 

compounds bind to the 50S ribosomal subunit inhibiting the subsequent formation 

of the 70S ribosome, thereby effectively inhibiting protein synthesis (15, 171). 

Although linezolid, which is currently in phase II clinical trials, is associated with 

high toxicity levels, this drug has been successfully used off-label for the 

treatment of MDR- and XDR-TB (15, 171, 242).  

Gatifloxacin and moxifloxacin, which are members of the fluoroquinolone 

family of drugs - and thus target the bacterial DNA gyrase, have proven to be 

more effective than the current second-line drugs ofloxacin and ciprofloxacin in 

the treatment of TB. Currently, phase III clinical trials are underway to ascertain 

whether these drugs can be used to shorten first-line therapy to 4 months by 

replacement of ethambutol or isoniazid (171, 242). 

1.3.2 Drugs developed specifically for TB  

Six new compounds, specifically identified for TB treatment, are currently 

being characterised. Three of these are are currently in Phase I clinical trials. The 

first, PNU-100480 is an oxazolidinone that exhibits greater activity than linezolid 

against M. tuberculosis in a murine model (171, 242); the second drug AZD-5847, 

also an oxazolidinone compound, is active against drug-resistant forms of M. 

tuberculosis (171); and SQ-109 on the other hand, is an ethylenediamine with an 

unknown target(s) that interacts synergistically with isoniazid and rifampicin 

against M. tuberculosis in a murine model (15, 171, 242).  

The new drugs developed specifically for TB that are currently in Phase II 

trials are TMC-207, OPC-67683 and PA-824. TMC-207, a member of the 

diarylquinoline class of compounds, is an ATP synthase inhibitor that has shown 

great efficacy against susceptible and resistant M. tuberculosis strains both in vitro 

and in vivo (15, 171, 242). PA-824 and OPC-67683, on the other hand, belong to 

the nitroimidazole class of antibiotics. These compounds have been shown to 

exhibit high potency against replicating and dormant bacilli through generation of 
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reactive chemical species upon bioreduction of their nitroimidazole 

pharmacophore. PA-824 has been demonstrated to kill drug-resistant M. 

tuberculosis, as well as dormant bacilli under hypoxic conditions, and OPC-67683 

is highly efficacious against susceptible and resistant M. tuberculosis strains in 

vitro and in vivo (15, 171, 242). 

It is remarkable that TMC-207, moxifloxacin and the nitroimidazoles, 

which target replicating and non-replicating bacilli, have also enabled the 

development of various models for testing the efficacy of new TB drugs under 

stressful conditions encountered within the host e.g. under conditions of hypoxia 

in the presence and absence of reactive nitrogen intermediates, (15, 128, 171, 242, 

243). Despite the lack of experimental evidence, it is widely assumed that these 

non-replicating bacilli are responsible for the long duration of TB treatment, and 

relapse after successful chemotherapy. Since one of the primary goals of improved 

TB treatment is the implementation of shorter drug regimens (244), these models 

will be greatly beneficial in identifying non-replicating bacilli which arise from 

treatment of M. tuberculosis with new drug candidates and/or regimens. Insight 

into these recalcitrant M. tuberculosis populations is of extreme importance, since 

elucidation of genes involved in this phenomenon as well as their molecular 

mechanisms of action, would allow for more efficacious TB treatment.  

1.4 Role of biofilms in infectious diseases 

Biofilms, which are structured layers or matrices of microbial communities 

that adhere to either biological or non-biological surfaces, are responsible for 

many chronic human infections such as cystic fibrosis, and catheter related 

infections (109, 165). These biofilm matrices, caused either by bacteria, fungi, 

mixed species or mixed genera populations, are particularly noteworthy as 

organisms in this niche have the ability to avoid elimination by antimicrobial 

agents as well as the host immune system (109, 110). It has been postulated that 

biofilms are recalcitrant to elimination from a host for three main reasons. Firstly, 

the biofilm matrix provides a barrier that protects the communities within it from 

attack by large antimicrobial compounds, thus diluting the latter to sub-lethal 

concentrations which have no effect on the cells within the matrix (109, 110, 165). 
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Secondly, the different gradients within the biofilm create acidic, anoxic and 

nutrient depleted zones resulting in starved dormant cells. As such, antimicrobials 

that target rapidly replicating organisms e.g. �-lactams which act against gram-

positive bacteria, are no longer functional (109, 110, 165).  The third reason 

biofilms are refractory to elimination is the presence of cells within the microbial 

community known as persisters. It has been suggested that although antimicrobial 

agents and the host immune system do eventually eliminate most of the microbial 

cells within the biofilm, they do not eradicate the dormant multidrug tolerant cells 

known as persisters, which are described in detail in Section 1.5 (165). As a result, 

once treatment is halted and levels of antimicrobial agents diminish, these 

persisters resume active replication and re-colonize the biofilm thus causing 

infection relapse (109, 110, 165). 

In 2007, M. tuberculosis bacilli present as clusters within the distinct 

acellular rim of primary granulomas, were hypothesized to be part of a biofilm 

(163). While biofilm formation had been documented in the saprophytic M. 

smegmatis (182, 205, 232) and the pathogenic M. avium (33, 182) relatives of M. 

tuberculosis, it was only in 2008 that M. tuberculosis was actually shown to have 

the ability to form biofilms in vitro (206). The emergence of a M. tuberculosis 

biofilm is stimulated by environments rich in carbon dioxide with low oxygen 

tensions and the presence of zinc and iron. Secretion of free mycolic acids as well 

as the presence of glycopeptidolipids in mycobacteria is also imperative in the 

formation of these highly structured matrices (33, 182, 205, 207, 232). M. 

tuberculosis biofilms, which are made of bacteria physiologically different from 

actively replicating bacilli in culture, have been shown to harbor persister cells 

that are intractable to elimination by isoniazid and rifampicin (206). This, coupled 

with the fact that persisters have been implicated in the ability of M. tuberculosis 

to evade elimination by the new antitubercular drugs moxifloxacin and PA-824 

(162, 203, 278), makes the knowledge of these dormant multidrug tolerant cells 

crucial in the fight against TB. So, what exactly are persisters and how are they 

formed within a population?  
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1.5 Persistence – an epigenetic phenomenon 

Nearly seven decades ago, Joseph Bigger first reported the observation 

that the bactericidal antibiotics do not completely eradicate bacteria within a 

culture (19). He demonstrated that despite lysis of Staphylococcus pyogenes by 

penicillin, the surviving bacterial sub-population was not penicillin-resistant. 

Interestingly these survivors were revealed to be penicillin-tolerant rather than 

penicillin-resistant, since subsequent addition of penicillin resulted in cell lysis 

(19). This phenomenon, which occurs due to the fact that over time the rate of 

killing by antibiotics declines thereby allowing a population of bacteria to survive, 

is an epigenetic one referred to as persistence (164). The explanation put forward 

for this phenomenon of non-inherited antibiotic resistance is that the surviving 

bacterial sub-population of approximately 1 × 10-6 of the original population of 

bacteria is not undergoing active replication during exposure to the antibiotic (56, 

157, 164).  

A number of biological mechanisms have been demonstrated to account 

for the cessation of replication. In the ‘deterministic’ or environmentally 

controlled mechanism of persister formation, bacteria cease to replicate when they 

encounter one or more conditions/ environments, such as hypoxia, nutrient 

depletion, genotoxic stress, and/or antibiotic exposure, that can trigger growth 

arrest. A classic example of a deterministic mechanism of persistence is the halt in 

replication upon over-expression of DpiA (187). This effector of the DpiBA two-

component signal transduction system, which regulates transcription as well as 

DNA replication and segregation, interrupts DNA replication and induces the SOS 

response - a DNA repair system that enables the bypass of errors during DNA 

replication - resulting in inhibition of Escherichia coli cell division. To further 

corroborate this finding, inactivation of penicillin binding protein 3 by β-lactam 

antibiotics was demonstrated to increase expression of the dpiBA operon, which in 

turn initiates the E. coli SOS response thereby stopping bacterial cell division 

(187).  

In the alternate, ‘stochastic’ mechanism of persistence, persistence is not 

as a result of arrest in replication due to a physiological response to a stress 
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condition, but is rather a reflection of heterogeneous bacterial populations which 

have yet to begin replication (12). Forty years after Bigger’s discovery, Harry 

Moyed - as part of an attempt to understand the persistence phenomenon, 

identified a hipA7 mutant allele of the hipA gene that conferred increased levels of 

persisters, up to 1000-fold more than wild-type E. coli, upon treatment with 

ampicillin (193). Using direct observations and optical microscopy of single E. 

coli cells harboring this hipA7 mutant allele, Balaban and colleagues discovered 

the existence of two types of persisters: type I and type II (12). Type I persisters 

were initially believed to consist of a pre-existing population of non-replicating 

cells generated in response to a trigger during stationary phase. These persisters 

exhibit an extended lag phase upon inoculation into fresh media from stationary 

phase, as well as a slight spontaneous switching rate from normal to persister cells 

in exponential phase (12). Type II persisters on the other hand consist of slow 

growing bacterial cells that do not originate from passage through stationary 

phase, but are continuously generated during growth of the culture. Unlike type I 

persisters whose cell numbers are directly proportional to the size of the inoculum 

from stationary phase cells, the number of type II persister cells is determined by 

the total number of cells in the culture (12).  

1.5.1 Physiology of bacterial persisters 

In an attempt to understand the physiology of bacterial persisters, Shah and 

colleagues undertook the task to isolate these cells (254). They hypothesized that 

because persister cells are not undergoing active replication, these could be 

isolated from the general cell population based on their low translation levels. 

Using an E. coli strain expressing degradable green fluorescent protein (GFP) 

under the control a ribosomal promoter, the authors could successfully separate 

dim persister cells from the bright green growing population of the culture using 

fluorescent activated cell sorting (FACS), since expression of GFP could only 

occur during cell growth. They demonstrated that the gene expression profile of 

these persisters was vastly different from cells obtained during exponential and 

stationary phases of growth. In addition, possibly because of this difference, the 
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persisters were more tolerant, by 20-fold, to ofloxacin, an antibiotic known to kill 

both replicating and non-replicating cells (254).  

Two years later, Gefen and colleagues studied single cell induction 

dynamics of E. coli persisters using microfluidic devices and detection by 

fluorescence (94). They observed that while persisters are physiologically 

different from the replicating cells in a population, protein production within 

persisters was surprisingly similar to replicating cells, albeit for a short period of 

time, with persisters fully forming only subsequent to this window period. This 

demonstrated that type I persisters are not formed during stationary phase as was 

initially believed (12), but rather form upon exit from stationary phase. As 

expected, fully formed persisters were tolerant to antibiotics and treatment of 

bacteria with antibiotics during the short period prior to persister formation 

drastically reduced the number of persisters in the culture. This suggested that 

treatment of bacteria with antibiotics during the period where persisters are similar 

to replicating cells might prevent formation of these persister cells (94). 

Irrespective of the mechanism of persister formation however, the general 

accord until now has been that these cells, rather than occurring as a consequence 

of exposure to antibiotics, constitute a small slow-growing or dormant sub-

population of cells (166). However, data from a recent study, suggests that the 

frequency of persisters in a given culture is not fixed at any given point in time, 

but varies depending on several factors including growth conditions (132). Using 

flow cytometry, Joers and colleagues observed different resuscitation kinetics 

when an equal number of E. coli cells from an identical stationary-phase culture 

was inoculated into different culture media (132). In addition, the variation in the 

kill kinetics of the bacteria in the different growth media upon treatment with 

antibiotics was attributable to the heterogeneous resuscitation kinetics of the 

population of cells (132).  

More recently, the SOS response, which is activated when double-strand 

DNA breaks occur within a cell, has been implicated in the formation of persisters 

of E. coli upon treatment with the antibiotic ciprofloxacin (59). Dorr and 

colleagues determined that not only is persister formation within a population 
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dependent on the level of SOS induction, but the persister fraction formed upon 

treatment with ciprofloxacin is dependent on the antibiotic concentration as well 

as functional SOS response and double-strand DNA break pathways. However, 

the observation that mutants unable to produce ciprofloxacin-induced persisters, 

still generated persisters upon treatment with ampicillin and streptomycin, 

suggests that different persisters are formed in response to different antibiotics and 

that the stochastic mechanism of persistence is also responsible for the formation 

of persisters (59). 

This adds on to previous observations (94, 132, 254), suggesting that while 

the physiology of persisters is markedly different to replicating cells, the 

frequency of persisters in any given population is dependent on the window period 

within which persisters are formed, and this, in turn, is dependent on factors such 

as growth media and antibiotic treatment. These findings raise the possibility that 

persisters may have very distinct physiologies depending on how and when they 

are formed, thus raising the likelihood that not all persisters are physiologically 

identical. 

1.5.2 Molecular mechanisms of persister formation 

The first attempt to elucidate the molecular mechanisms of persister 

formation was by Harris Moyed and Kevin Bertrand in 1983. In order to do this, 

they treated different mutagenized E. coli K-12 strains with ampicillin and 

isolated 10% of surviving populations as E. coli mutants with high persistence 

frequencies i.e. Hip mutants. After eliminating ampicillin-resistant mutants and 

mutants exhibiting either slow growth rates or no growth, four mutants were 

isolated: two from an E. coli dapA strain and two from a marked E. coli F- strain. 

The two mutants HM7 and HM9 from the E. coli F- strain were further 

characterized revealing mutations, hipA7 and hipA9 respectively, located within 

the hipA gene. This was the first demonstration of a genetic link to the high 

persistence frequency of approximately 1% of E. coli to ampicillin (193). Moyed 

and colleagues also convincingly demonstrated that a hipA7 persister phenotype 
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was able to prevent cell death arising from stresses other than the inhibition of 

peptidoglycan synthesis by ampicillin (193, 251).  

The hipA gene, a member of the hipAB toxin-antitoxin family [discussed in 

detail in Section 1.6], was observed to confer toxicity to E. coli (154, 155, 194). 

Korch and colleagues established that two mutations, G22S and D291A, which 

render hipA7 non-toxic, are essential for the hipA7 persistence phenotype (154). In 

addition, their findings that relA - a gene that synthesizes the stringent response 

regulator guanosine 3’-5’-bispyrophosphate (ppGpp), is required for the high 

persistence hipA7 phenotype, has led to the hypothesis that expression of hipA7 

results in increased levels of ppGpp, which in turn allows the bacteria to cease 

replication and become antibiotic tolerant (154).  

Besides hipA, members of a number of other toxin-antitoxin (TA) families 

have also been implicated in persister formation. Keren and colleagues observed 

that over-expression of RelE, a toxin of the relBE TA family that causes 

translation inhibition, also resulted in increased persister formation by up to 

10,000 fold upon treatment with cefotaxime, tobramycin and ofloxacin (142). 

MazF, a member of the mazEF TA family also increased persisters upon treatment 

with kanamycin and gentamicin by up to 81-fold (113). In addition, whilst 

deletion of an SOS-inducible TA module (tisAB/itsR) decreased the number of 

persisters in an E. coli population by up to 100-fold upon treatment with 

ciprofloxacin, over-expression of the TisB toxin resulted in 100-fold more 

persisters in the presence of ciprofloxacin (60). 

Given the evidence implicating TA modules in the formation of multidrug-

tolerant persisters, Vazquez-Laslop and colleagues decided to establish whether 

only members of these families play a role in persister formation (286). They 

over-expressed HipA and MazF together with two unrelated proteins DnaJ, a 

molecular chaperone, and the Salmonella enterica PmrC. As a negative control, 

they included a component of homoserine kinase - ThrB. After protein induction 

of 1 - 2h, the cultures were treated with ampicillin (100µg/ml) and ciprofloxacin 

(0.4µg/ml) for 4h. At these antibiotic concentrations and for the time period 

exposed, resistant mutants are not formed hence ensuring that only normal cells 
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but not persister cells would be lysed. As expected, ThrB had no effect on 

persister formation and both HipA and MazF over-expression resulted in 

increased persister formation up to 10,000 fold. Interestingly, DnaJ as well as 

PmrC also resulted in increased levels of persisters although only up to 1000-fold 

(286).  

In subsequent studies, over-expression of genes such as the 5-formyl-THF 

cyclo-ligase yfgA, the flavin mononucleotide phosphatase yigB, was also observed 

to yield a � 0.5-log10 increase in persisters of an E. coli population in the presence 

of antibiotics such as ofloxacin (115). In addition, the alternate sigma factor rpoS 

has also been implicated in antibiotic tolerance of Pseudomonas aeruginosa 

during the stationary growth phase (197). All these observations clearly indicate 

that genes other than those of toxin-antitoxin families play a role in persister 

formation. As a result, bacterial molecular genetic tools such as transposon 

mutants and over-expression libraries were used to search for persistence genes. 

1.5.2.1 Identification of molecular mechanisms of persister formation by use of 

transposon mutant libraries  

In 2005, Hu and Coates screened 5000 E. coli transposon mutants for the 

reduced ability to grow on a lethal dose of kanamycin (100µg/ml) during the late 

stationary phase of growth. Of the nine kanamycin-sensitive mutants isolated, the 

KS639 mutant was analyzed in depth. This isolate, which was the most 

kanamycin-sensitive mutant with a 2-log10 more reduction in viability compared 

to the other mutants, was also highly sensitive to the antibiotics rifampicin, 

gentamicin and ciprofloxacin. The mutation of this strain mapped to the intragenic 

region between aldB - a gene involved in small carbon compound degradation, 

and yiaW - a gene of unknown function. Whilst deletion of aldB and yiaW had no 

effect on the number of persisters obtained after kanamycin treatment, deletion of 

their intragenic region resulted in a >1-log10 decrease in the viability of E. coli 

upon treatment with kanamycin both in vitro and in vivo (126).  

Another E. coli transposon mutant library of over 11,000 clones was then 

used to identify genes implicated in the formation of ampicillin-tolerant persisters 
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(168). Li and Zhang screened for transposon mutants susceptible to 100µg/ml 

ampicillin.  Of the susceptible mutants isolated, the JHU-313 mutant, which had 

an insertion within the phoU gene - a phosphate metabolism negative regulator, 

was further characterized. Besides being susceptible to ampicillin, the JHU-313 

mutant was also � 2-fold more susceptible to the antibiotics norfloxacin, 

tetracycline, trimethoprim and gentamicin. In addition, stresses such as starvation, 

oxidative and heat stresses as well as exposure to weak acids, energy metabolism 

inhibitors and acidic pH, resulted in decreased cell viability of this mutant.  Whilst 

phoU is part of the PhoR-PhoB two-component signal transduction system that 

regulates gene expression during phosphate-limiting conditions, this gene was the 

only bona fide persister gene of the PhoR-PhoB two-component system, since 

none of the other members of the PhoR-PhoB affected the ability of E. coli to 

form persisters (168). 

Although persister genes were identified by Hu & Coates (126) and Li & 

Zhang (168), the fact that both of these transposon mutant libraries were generated 

by random insertion mutagenesis prompted Hansen and colleagues to search for 

persistence genes using a more organized approach. As such, they generated a 

transposon mutant library of the already developed ordered E. coli Keio collection 

of 3985 strains, by removing the kanamycin resistance marker cassette to generate 

in frame single deletion mutants. The mutant library was then grown to stationary 

phase in the presence of 5µg/ml ofloxacin for 6h, since this antibiotic 

concentration allowed for survival of persister cells without generation of resistant 

mutants within the specified time-frame. The survivors were plated on 4µg/ml of 

the �-lactam amdinocillin in the presence of MgSO4 to prevent ofloxacin 

carryover, as Mg2+ ions halt ofloxacin penetration. Although resistant mutants do 

emerge at this amdinocillin concentration, the frequency of mutation in a wild 

type control strain is 5 × 10-5 CFU/ml (colony forming units per ml), suggesting 

that under these conditions a transposon mutant with reduced persistence would 

either have fewer or no resistant mutants at all when compared to the wild type 

strain. Using this screen, 150 mutants which yielded few or no colonies were 

identified. After eliminating mutants that displayed reduced growth rates as well 

as increased sensitivity to the antibiotics used, they identified the following genes 
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as key for persister formation: the chaperone encoding genes dnaJ and dnaK, the 

diadenosine tetraphosphatase encoding gene apaH, the peptiyl-prolyl cis-trans 

isomerase encoding gene surA, the global regulator encoding genes fis and hns, 

the RpoS response regulator-encoding gene hnr, dksA which regulates rRNA 

transcription, the 5-formyl-THF cyclo-ligase-encoding gene ygfA and the flavin 

mononucleotide phosphatase-encoding gene yigB (115).  

With all the large-scale screen searches for mechanisms of persister 

formation undertaken in E. coli, in 2009, De Groote and colleagues decided to 

identify persistence genes in P. aeruginosa – an opportunistic organism renowned 

for its ability to form biofilms (54). They generated a random insertion P. 

aeruginosa plasposon mutant library of 5000 mutants using the PA14 strain. 

These mutants were grown to stationary phase and then treated with 5µg/ml 

ofloxacin for 5h. The surviving cells after treatment, with this 10-fold MIC50 of 

ofloxacin, were inoculated into fresh media and the growth rates observed. 

Differences in the lag-phase of these isolates compared to that of the wild type 

strain were used to identify mutants with different persister fractions since these 

mutants would have longer or shorter lag-phases.  Using this strategy, 126 mutants 

- all of which were confirmed to be genotypically ofloxacin-sensitive, were 

isolated. Of the nine mutants further characterized, four displayed longer lag-

phases, and hence a smaller persister population, while five had shorter lag-phases 

and thus an increase in the persister population. Sequencing of the plasposon 

insertion sites revealed that disruptions of the genes encoding the putative DNA-

helicase dinG, the putrescin aminotransferase spuC, the PA14 locus: PA14_17880 

predicted to encode an acetyl-CoA acetyltransferase and the PA14 locus: 

PA14_66140 predicted to encode a conserved hypothetical protein; all reduce the 

number of persisters in a population. In contrast, disruptions of the genes encoding 

the alginate biosynthesis regulatory protein algR, the type IV pilus response 

regulator pilH, a putative fumarylacylacetoacetate hydrolase ycgM, the fused 

chorismate mutase-prephenate dehydratase pheA and the PA14 locus: 

PA14_13680 predicted to encode a short-chain dehydrogenase; increase the 

number of persisters in a P. aeruginosa population (54).  
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From all these mutagenesis data, it is interesting to note that most of the 

genes implicated in persistence play a major role in cell functioning and viability. 

1.5.2.2 Identification of molecular mechanisms of persister formation by use of an 

expression library 

In addition to transposon mutant libraries, an expression library was also 

used to identify genes responsible for persister formation in E. coli (266). Here, 

the library was constructed by cloning partially digested fragments of the genomic 

DNA into an expression vector. The expression library was then treated with 

100µg/ml ampicillin to yield a 106 CFU/ml surviving persister population. As in 

the previous study, this antibiotic dosage was used because this high concentration 

ensures that only persisters survive. Plasmids were isolated from 6 clones obtained 

after antibiotic treatment, and one of these clones which contained the yzgL and 

glpD genes was further characterized. Over-expression of the glycerol-3-

phosphate dehydrogenase glpD gene resulted in 10-fold more persisters upon 

treatment with ampicillin and ciprofloxacin when compared to the empty vector 

control. To further corroborate this finding, Spoering and colleagues generated an 

E. coli glpD mutant, and observed a decrease in viability of this strain in the 

presence of ciprofloxacin. Since glpD is involved in glycerol-3-phosphate 

metabolism, mutants of other members of this pathway were generated and tested 

for the ability to form persisters. Only two members involved in this pathway i.e. 

glpABC - a glycerol-3-phosphate dehydrogenase and plsB - a glycerol-3-

phosphate dehydrogenase acetyltransferase were found to play a role in persister 

formation (266). This further corroborates the observations that genes targeting 

essential cellular processes affect persister formation.  
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1.5.3 Persistence in M. tuberculosis 

In the pathogenic organism M. tuberculosis, numerous genes have been 

implicated in its ability to persist within a host, despite the adverse conditions 

encountered.  

1.5.3.1 The mighty M. tuberculosis proteasome 

One major approach M. tuberculosis uses to achieve persistence within the 

human host is by surviving the onslaught of reactive nitrogen and oxygen 

intermediates encountered within granulomas. In 2003, Darwin and colleagues, in 

an attempt to identify genes required for resistance to reactive nitrogen 

intermediates, screened a M. tuberculosis transposon mutant library for increased 

sensitivity to nitrite (53). Of the 10100 mutants screened, twelve were sensitive to 

nitric oxide, and of these, five had insertions within predicted proteasome 

encoding genes with two mutants containing insertions within pafA and three 

within mpa. Further characterization of these proteasome associated factors pafA 

and mpa mutants revealed an inability to grow in wild type and inducible nitric 

oxide synthase impaired (iNOS-/-) macrophages. In addition, an mpa mutant also 

displayed a reduced ability to grow in mice. In mice lacking iNOS, which renders 

the animals susceptible to TB infections, the wild type M. tuberculosis strain 

completely colonized the mouse lung resulting in death as early as 9 weeks post-

infection. In contrast, the mpa mutant exhibited markedly less colonization of the 

lung and did not affect viability of the mice even 37 weeks post-infection. These 

observations implicate the M. tuberculosis proteasome in the defense against 

reactive nitrogen intermediates (53). 

Whilst eukaryotic proteasomes are responsible for oxidized protein 

degradation and bacterial proteolysis is carried out by the proteases ClpAP/XP, 

HslUV, FtsH and Lon, M. tuberculosis is unique as it possesses ClpAP/XP 

proteases as well as a proteasome which is comprised of the core subunits prcA 

and prcB genes.  Just like with the proteasome associated factors mpA and pafA, 

deletion of the prcA and prcB subunits also resulted in impaired growth in vitro, 

reactive nitrogen intermediate hyper-susceptibility, and increased resistance to 
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oxidative stress (90). In addition, the prcBA operon was demonstrated to be 

essential for in vivo growth in mice as well as for during chronic TB infection 

(90). More recent data has also uncovered that the M. tuberculosis proteasome 

allows for mycobacterial survival within the host during nutrient starvation, 

independently of its ability to resist the action of reactive nitrogen intermediates 

(89). 

1.5.3.2 How does M. tuberculosis persist during chronic infections? 

One of the mechanisms used by M. tuberculosis to persist for prolonged 

periods of time within the human host is based on its ability to survive on different 

carbon sources such as fatty acids (184). To generate carbon and energy from fatty 

acids, bacteria make use of either the �-oxidation cycle where acetyl-CoA the first 

molecule in the Krebs cycle is generated, or the glyoxylate cycle where 

carbohydrates are synthesized. The isocitrate lyase (ICL) enzyme, which is 

required for catalysis of isocitrate to succinate and glyoxylate in the glyoxylate 

cycle, is encoded by two M. tuberculosis Erdman genes, denoted icl1 and icl2. 

Whilst single deletion mutants of icl1 and icl2 could still enable M. tuberculosis 

growth on long-chain fatty acids, a double icl1/icl2 M. tuberculosis mutant could 

not survive on either short-chain or long-chain fatty acids (195). In addition, an 

icl1 deletion mutant revealed that although this gene plays no role during acute 

TB infection, it is essential for chronic TB infection in mice (184). It was 

interesting to note that although the single icl2 mutant did not affect the 

establishment of a murine TB infection, a M. tuberculosis mutant lacking both icl 

genes failed to establish acute TB infection, and hence was rapidly cleared from 

the lungs and spleens of the mice (195). Also, whilst only ICL1 was shown to be 

necessary for M. tuberculosis survival within murine activated and not non-

activated macrophages (184), the double icl1/icl2 M. tuberculosis mutant could 

also not grow within non-activated macrophages (195). These key observations 

establish that both icl genes are required for M. tuberculosis growth and 

persistence during TB infections.  

Interestingly, the stringent response was also shown to affect the ability of 

M. tuberculosis to survive in environments which are oxygen and nutrient limiting 
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in vitro and in vivo (226). The stringent response, which is induced in E. coli as a 

result of reduced levels of amino acids, nitrogen, carbon, phosphorus or fatty acids 

together with stresses such as DNA damage, is mediated by (p)ppGpp levels in the 

cell. This (p)ppGpp stringent response regulator can be synthesized and 

hydrolysed by spoT and relA. The only homologue of both spoT and relA present 

on the M. tuberculosis chromosome is encoded by the Rv2583c gene, also referred 

to as relMtb. This gene was convincingly demonstrated to be responsible for the 

synthesis of (p)ppGpp during starvation of M. tuberculosis since no intracellular 

(p)ppGpp could be detected in a relMtb deletion mutant and with complementation 

reversing this phenotype. In addition to relMtb being necessitated for overcoming 

stresses such as heat, and growth in either minimal or rich synthetic liquid media 

in vitro, it was also required for survival during in vitro conditions of hypoxia, 

nutrient starvation and stationary phase growth (226). The RelMtb protein, which 

can both synthesize and hydrolyze (p)ppGpp, is also essential for growth in 

macrophages, and for sustaining TB infection in mice. Deletion of the relMtb was 

observed not only to reduce the TB symptom of drastic weight loss, but it also 

changed the histopathology associated with a TB infection as reduced granuloma 

formation and foamy vacuoles within murine lung macrophages were observed. 

These findings, together with microarray analyses that reveal that relMtb is 

essential for the down-regulation of essential genes during starvation, 

convincingly demonstrate that relMtb is essential for persistence of M. tuberculosis 

during chronic TB infections (49, 226). 

Another approach used by M. tuberculosis to persist within the human host 

is the use of a phosphate metabolism regulator. Deletion of both of the E. coli 

phoU phosphate metabolism regulator homologues present in M. tuberculosis - 

phoY1 and phoY2, revealed that only phoY2 was a bona fide persistence gene. 

This mutant exhibited increased sensitivity to the antimycobacterial drugs 

pyrazinamide and rifampicin, and also had a reduced ability of up to 30-fold to 

survive and persist in vivo in a mouse model (258). 

All these observations have proven that M. tuberculosis is a formidable foe 

that possesses many mechanisms which allow for persistence during chronic 
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infection. However, whilst decreased growth rates and low metabolic activities of 

M. tuberculosis are thought to play a role in the failure of drug treatment, little is 

actually known about bacterial physiology during chemotherapy. 

1.5.3.3 How does M. tuberculosis persist during chemotherapy? 

In an attempt to understand M. tuberculosis physiology during 

chemotherapy, Dhar and McKinney set out to identify genetic mutations that 

would either decrease or increase M. tuberculosis persistence in isoniazid-treated 

mice (57). This antimycobacterial agent was chosen not only because M. 

tuberculosis persistence during isoniazid treatment has been reported in both 

murine and human hosts, but also because the efficiency of this drug is determined 

by the stage of infection, with it being more effective during acute infection. M. 

tuberculosis transposon mutants were generated by signature-tagged transposon 

mutagenesis and used to infect mice. After the acute stage of infection, half the 

mice were treated with isoniazid following which mutants were recovered after 6 

weeks to test for persisters after early isoniazid treatment as well as after 12 weeks 

to determine the impact of prolonged isoniazid treatment. The 576 mutants 

recovered were then classified into three groups based on their ability to result in 

either: normal, reduced, or increased persistence after isoniazid treatment. One 

mutant from each group was then further characterized. For the mutant that 

displayed reduced persistence, a transposon insertion was identified within the 

cydC gene which is the last gene in the cydABDC operon, which has been 

implicated in aerobic respiration under microaerobic conditions (137, 257). Whilst 

growth and survival of this mutant was similar to wild type M. tuberculosis in 

untreated mice, these were severely impaired during isoniazid treatment but not 

rifampicin or pyrazinamide treatment. In contrast, a mutant that displayed 

increased persistence in the screen, displayed growth impairment in untreated 

mice but was not eliminated by isoniazid, rifampicin and pyrazinimide treatment. 

Whilst this appears to be common, not all mutants that displayed impaired growth 

in the absence of isoniazid were refractory to eradication by antimycobacterial 

drugs. Apart from suggesting that M. tuberculosis growth-impairing mutations in 

untreated mice can enhance persistence during treatment, and that INH-
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Figure 1.1: Schematic representation of the numerous mechanisms of 
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Due to the fact that screens for bacterial mutants that are unable to form 

persisters have failed to yield a single “persister - less” mutant, it is likely that the 

mechanisms of persister formation are redundant (165). To further identify genes 

associated with persistence, the transcription profiles of persister cells have been 

(59, 60, 142, 254). 
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In 2004, Keren and colleagues, using the E. coli hipA7 strain previously 

shown to produce persisters subsequent to ampicillin treatment (193), isolated an 

enriched persister fraction of the population after treatment with ampicillin (142). 

Analyses of the persister transcriptome profile revealed that approximately 300 

genes were associated with persister cells. Further analysis of this cluster 

uncovered that these genes belonged to stress response regulatory pathways 

including the SOS, heat-, cold-, and phage shock pathways. In addition, genes 

responsible for macromolecular synthesis inhibition such as the translation 

inhibitor rmf and the replication inhibitor umuDC, as well as members of TA 

families such as mazEF, relBE which comprised about 2% of the persister genes, 

were identified (142).  

Two years later, Shah and colleagues purified total RNA from their dim E. 

coli persister cells that were isolated as described in Section 1.5.1 (254), and 

analyzed the transcriptome by DNA microarray. The expression profile obtained 

revealed that about 420 genes were associated with persister formation. These 

genes, which were not upregulated in stationary phase E. coli cells, included 

metabolic genes such as the glycerol-3-phosphate dehydrogenase glpD, 

transcription regulation genes such as marR, phage shock genes as well as toxin-

antitoxin genes such as yoeB, relE and ygiU (renamed mqsR). It is interesting to 

note that although relE and mazF were more highly expressed in the hipA7 mutant 

allele strain (142), mqsR was the most highly expressed toxin gene in the wild 

type E. coli strain used by Shah and colleagues. This certainly raises the 

possibility that although persister formation occurs using similar mechanisms i.e. 

upregulation of stress response genes, macromolecular synthesis inhibitors as well 

as toxin - antitoxins, persisters formed under different conditions are not identical 

(254). 

From these transcription profiles, what is abundantly clear is that in the 

state of persistence, where bacteria are able to survive hostile environments such 

as the presence of antibiotics, a notable number of genes that are differentially 

expressed are TA modules (96, 142, 164, 211, 254, 297). Taken together, all these 

observations about TA modules suggest that these are involved in persistence 
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through their toxin components. The toxins affect essential cellular processes 

required for bacterial growth, viability as well as survival, and thus enable the cell 

to enter a transient state of bacteriostasis refractory to elimination by antibiotics 

that target actively replicating cells. 

1.6 Toxin - antitoxin modules 

TA modules are small bicistronic genetic elements composed of two genes 

organized in an operon that encode a toxin and a cognate antitoxin. These loci, 

first discovered over two decades ago on bacterial plasmids, were initially shown 

to be responsible for post-segregational killing of bacteria (130). The phenomenon 

of post-segregational killing is one of the main approaches used by bacteria to 

prevent plasmid loss during cell division. In this instance, bacterial daughter cells 

which do not possess the plasmids containing a TA pair are killed due to the rapid 

degradation of the short-lived antitoxin. In the absence of this unstable cognate 

antitoxin to form a tight complex with the toxin, the latter which has a longer half-

life accesses its cellular target ensuing in cell death (130). 

TA loci have also been found on bacterial and archaeal chromosomes in 

multiple copies (10, 29, 211, 230).  These chromosomal TA modules have been 

shown to reduce bacterial gene loss through stabilization of superintegrons 

thereby allowing unstable DNA regions to be retained within the genome (272).  

In addition, the absence of TA loci in obligate intracellular parasites such as 

Rickettsia and Chlamydia, which replicate in constant environmental conditions, 

suggests that chromosomal TA loci may also play a role in changing environments 

(96).  Based on these observations as well as the implication of TA modules in 

persistence (Section 1.5), it has been postulated that TA modules could represent a 

general mechanism for the formation of persistent populations in the presence of 

antibiotics by inhibiting cell replication. 
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1.6.1 Transcriptional activation of TA modules 

 Deterministic and stochastic models have been proposed to account for 

the activation of TA loci. Two versions of the deterministic model, which occurs 

as a result of a signal, have been put forward. In the first version, environmental 

insults produce a signal that triggers a cellular protease such as Lon to degrade the 

less stable antitoxin, either in its free form or in association with the more stable 

toxin (96, 283).  This action results in an increase in the amount of unpaired toxin 

in the cell which can either lead to bacteriostasis or cell death (Figure 1.2). In the 

second version of this model, environmental stress generates a signal that 

destabilizes the TA complex, consequently releasing the antitoxin which is then 

degraded by a cellular protease (96, 283).  

 

 

 

 

 

 

Figure 1.2: A schematic representation of a TA operon, and its mode of 
activation. The broken arrow on the chromosome represents a promoter upstream of the operon, 
to which the TA complex binds to repress transcription of the operon. As proposed by the first 
deterministic mode of activation, cellular proteases degrade the less stable antitoxin either in its 
bound or unbound state, and the curved arrow represents the translational coupling of the toxin and 
antitoxin genes.  

The stochastic model, on the other hand, proposes that activation of the TA 

locus occurs randomly in the absence of an external signal. Unlike in the 

deterministic model, where proteases such as Lon activate TA loci, in this model 

changes in intracellular rates of translation, brought about by amino acid 

starvation, directly result in TA loci activation. The reduced rate of translation of 

the antitoxin-encoding mRNA results in a reduction of the antitoxin, and a de-

repression of the TA locus promoter. The ensuing increase in toxin activity is 

thought to be as a result of the increased transcription rate of the TA operon and 

the reduced antitoxin level in the cell (96). 
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1.6.2 Classification of TA modules 

Members of the TA loci have been classified into three categories: type I, 

type II and type III TA loci, based on whether the antitoxin is an RNA or a protein 

molecule (76, 98). 

1.6.2.1 Type I TA modules 

Type I TA modules are comprised of cis or trans small RNA (sRNA) 

antitoxins that regulate toxin expression (82, 84, 98, 140). These modules which 

are widely distributed within the Enterobacteriaceae and Vibrionaceae families as 

well as the Bacillus and Enterococcus genera, have evolved by gene duplication 

(84). Type I toxins are hydrophobic membrane proteins generally smaller than 70 

amino acids and their encoding genes are characterized by long stretches of 

intergenic regions from their neighbouring genes (82, 84, 98, 282). Chromosomal 

type I TA loci include Hok-Sok, RNAI (Fst)-RNAII, Ldr-Rd1, Ibs-Sib, ShoB-

OhsC, TisB-IstR1, SymE-SymR, TpxA-RatA systems, as well as the newly 

identified z3289/z3290, the YhzE and YonT families (82, 84).  

The Hok-Sok locus of E. coli was the first identified type I TA module 

(97). The Hok toxin is an approximately 50 amino acid membrane-associated 

protein that targets the cell membrane. Contrary to most TA loci, this locus 

comprises of three genes: the suppression of killing gene (sok), the modulation of 

killing gene (mok), and the host killing gene (hok). The mok gene overlaps with 

the hok gene and it is required for both expression and regulation of hok 

translation. Interestingly, the unstable cis Sok antitoxin with a 30s half-life 

inhibits hok translation indirectly by actually inhibiting mok translation. The Hok 

toxin, which results in bacterial cell death as a result of permanent bacterial cell 

membrane damage, is similar to holins which are proteins that cause pores within 

inner cell membranes of bacteria. Although the cellular target of Hok remains 

unknown, induction of this toxin has been observed to cause efflux of ATP and 

Mg2+, influx of extracellular molecules and RNase I as well as collapse of 

membrane potential and cessation of respiration (82, 97, 98).  
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The unique Fst-RNAII locus, discovered in Enterococcus faecalis and 

Bacillus subtilis, consists of a 210 nucleotide (nt) RNAI or Fst toxin that is 

overlapped by 75 bp in its 3’ end by the 65 nt RNAII antitoxin (219, 300). The 

trans RNAII antitoxin inhibits translation of Fst in the stable complex as well as 

ribosome - Fst binding (98). The Fst toxin encoded by the RNAI transcript is the 

smallest known toxin consisting of 33 amino acids. Whilst over-expression of Fst 

has been observed to cause inhibition of macromolecular synthesis and possibly 

result in persister formation, the loss of membrane integrity observed is due to 

defects in chromosomal segregation, thus suggesting that the primary target of Fst 

plays a role in chromosomal segregation (219, 301).  

The Ldr-Rdl, Ibs-Sib, and ShoB-OhsC type I TA modules have all been 

discovered within repeat sequences of E. coli. The four long direct repeat (LDR) 

sequences, annotated LDR-A, -B, -C and -D, are approximately 500 bp tandem 

repeats that encode ldrA, ldrB, ldrC and ldrD genes whose 35 amino acid products 

are toxic to the bacterial cell. The unstable 60 nt trans sRNA rdl antitoxins control 

the translation of the Ldr toxins, and although all four LDR loci do not affect cell 

growth, morphology, mutation frequencies or nucleoid structures, over-expression 

of ldrA, ldrB, ldrC and ldrD result in bacterial death. Interestingly, ldrD over-

expression results in condensation of the nucleoid structure and microarray data 

suggest that the LdrD actually affects purine metabolism (141).  

The five homologous repeat elements termed short intergenic abundant 

sequences (SIB) are also located in separate intergenic regions of E. coli. 

Although these toxins have not been fully characterized, all five Sib genes (sibA, 

sibB, sibC, sibD and sibE) encode the sib antitoxins as well as a toxic 18 - 19 

amino acid hydrophobic protein called induction brings stasis (ibs), in a genomic 

organisation similar to the ldR-rdl TA module. Here the toxin is encoded by an 

open reading frame (ORF) opposite the antitoxin ORF, and the Sib sRNA 

antitoxins are complementary to both the ribosome binding sites and coding 

sequence of ibs (83). 

The ShoB-OhsC TA module was identified within the yfhL-acpS 

intergenic region. While this locus appears unique to E. coli and Shigella, OhsC 
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behaves similarly to the other type I TA loci, as it regulates the toxic 26 amino 

acid ShoB protein downstream of it. Just as with Hok, over-expression of both 

IbsC and ShoB, is detrimental to the bacterial cell since the abundance of both 

proteins result in loss of cell membrane potential (83). 

The TisAB-IstR1 locus of E. coli was the first type I TA module found to 

be regulated by the SOS response. This module, implicated in persister formation 

(Section 1.5.2), contains a LexA binding site (SOS box) within its promoter. It is 

predicted that only the toxin i.e. TisB, is upregulated upon SOS induction. The 

TisAB-IstR1 locus is unique in that it transcribes four different mRNAs: the 

constitutively transcribed trans IstR-1 antisense antitoxin that regulates the toxic 

tisAB mRNA, a LexA dependent IstR-2 transcript that does not regulate tisAB, a 

small RNA tisA as well as a tisB transcript. Although the two small tisAB 

transcripts are transcribed from different promoters they share the same 

terminator. tisA is an untranslated, unconserved reading frame that contains a 

binding site for both the IstR-1 antitoxin and the ribosome that allows for tisB 

translation. In fact, both the antitoxin and the ribosome compete for the site. As a 

result, upon binding of the antitoxin to the binding site, translation of tisB does not 

occur as RNase III cleaves the resulting RNA duplex. If however the ribosome 

attaches to the binding site, translation of tisB occurs. It has been proposed that 

upon translation of this 29 amino acid peptide, TisB binds to the inner membrane, 

causing loss of membrane potential. This, in turn, reduces cellular ATP levels, 

which results in decreased macromolecular synthesis and eventual bacteriostasis 

(82, 98, 280). 

The second type I TA module regulated by the SOS response is the E. coli 

SymE-SymR locus. This module, which also contains an SOS box within its 

promoter, encodes a cis antisense RNA and a 113 amino acid SymE toxin. SymE 

over-expression results in mRNA cleavage, which reduces protein synthesis and 

ultimately leads to bacteriostasis. The expression of SymE is tightly regulated not 

only by SymR but also the LexA repressor and the Lon protease. It has been 

suggested that the cleavage of RNA by SymE allows it to contribute to the 

recycling of damaged RNAs during induction of the SOS response (82, 98, 140). 
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The TpxA-RatA locus was identified on the Bacillus subtilis chromosome 

(260). This type I TA module, like the Fst-RNAII, loci encodes a trans antisense 

RNA that overlaps the 3’ end of the TxpA toxin by 75 nucleotides. Bioinformatic 

analysis of the TxpA toxin shows a predicted N-terminal membrane domain, and 

it has been proposed that the TpxA-RatA complex like with all other TA modules 

prevents translation of the 59 amino acid TpxA toxin and hence mRNA cleavage. 

In addition, TxpA has been hypothesized to be responsible for maintaining a 

Bacillus subtilis chromosomal region excised during spore formation (82, 84, 98). 

Recently Basic Local Alignment Search Tool (BLAST) searches of 

numerous genomes demonstrated that type I TA loci were not acquired by 

horizontal gene transfer between organisms (84). In addition, these searches also 

uncovered three novel type I TA systems: z3289/z3290, the YhzE and YonT 

families. Although these have not yet been characterized, they are bona fide TA 

modules as the toxicity of the toxins encoded by these families have been shown 

to be abrogated by their cognate antitoxins (84). 

While the function of these TA modules remains undeciphered, the 

differences observed thus far for the various type I systems (82, 84, 140, 282), 

suggests that different type I TA loci have distinct biological roles when 

integrated into bacterial chromosomes. 

1.6.2.2 Type II TA modules 

Type II TA modules, much like their plasmid-based counterparts, are 

comprised of operonic bicistronic toxin-antitoxin genes that are transcriptionally 

regulated and whose antitoxins encode unstable proteins instead of sRNA’s (95, 

96, 211, 282, 316). The type II antitoxins consist of two domain proteins: a C-

terminus protein-protein interaction domain which binds to the toxin, as well as an 

N-terminus DNA-binding domain which binds the operator of the TA module thus 

resulting in transcription auto-repression of the whole module (174, 183, 263). 

Members of type II toxins and antitoxins can also be structurally and functionally 

different (174). While it was initially unclear whether the chromosomally located 

type II TA modules were functionally similar to those found on plasmids (10), 
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recent evidence suggests that once integrated into the bacterial chromosome, these 

modules assume new cellular roles as the type II TA families CcdAB, DinJ-YafQ, 

HigAB, HipBA, MazEF, MqsR-YgiT, ParDE, Phd-Doc, RelBE, VapC and YefM-

YoeB affect a variety of cellular processes resulting in bacteriostasis or cell death 

(Table 1.1) (96, 282).  

Table 1.1: Properties of type II TA chromosomal modules 
TA locus Toxin Toxin cellular 

target 
Cellular process 
targeted 

Effect of toxin 

ccdAB CcdB DNA gyrase DNA replication Cell death 
irreversible by 
addition of 
antitoxin 

dinJ-yafQ YafQ mRNA bound 
ribosome 

Protein translation and 
persister formation 

Bacteriostasis and 
cell death 

hicAB HicA Unknown Protein translation Bacteriostasis 

higBA HigB Ribosome Protein translation Bacteriostasis 

hipBA HipA EF-Tu translation 
factor 

Protein translation and 
persister formation 

Bacteriostasis and 
eventually cell 
death 

mazEF MazF 5’-NAC-3’site of 
single and double 
stranded RNA 

Protein translation Bacteriostasis / cell 
death 

mqsRA MqsR Ribosome Protein translation, 
biofilm and persister 
formation 

Bacteriostasis 

parDE ParE DNA gyrase DNA replication Cell death 

phd-doc Doc Ribosome Protein translation Bacteriostasis 

relBE RelE mRNA bound 
ribosome 

Protein translation and 
persister formation 

Bacteriostasis 

vapBC VapC RNA Protein translation Bacteriostasis 

yefM-yoeB YoeB mRNA bound 
ribosome 

Protein translation and 
biofilm formation 

Bacteriostasis 
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The mazEF module 

In 1996, Engelberg-Kulka and colleagues first reported the E. coli mazEF, 

which encodes the MazE antitoxin and MazF toxin, as a bona fide type II TA 

module (2). This locus, identified as part of the rel operon, and downstream of 

relA (2, 248), has been one of the best characterized TA modules. A mutant 

lacking the mazEF locus was constructed in a relA+ E. coli strain (73) since 

expression of mazEF is regulated by the ppGpp (2).  A variety of stresses 

including amino acid starvation, inhibition of transcription and translation by 

antibiotics, DNA damage caused by thymine starvation, genotoxic and oxidative 

agents, as well as heat were demonstrated to induce transcription of the mazEF 

locus during exponential growth of the bacteria (118, 119, 248, 249). Upon 

transcription of the E. coli mazEF, the ClpXP proteases degrade the MazE 

antitoxin (42, 96, 147) and the MazF toxin, with its longer half-life, is freed from 

the C-terminus of MazE (309). The MazF protein is an endoribonuclease which 

cleaves the 5’ end of the adenine residues within the consensus sequence, 5’-

NAC-3’ of single and double stranded RNA in a ribosome-independent manner, 

consequently halting protein translation (196). Whilst ectopic expression of MazF 

can result in bacteriostasis that is reversible upon expression of MazE (42, 72, 

220), the reversal of toxicity is only possible within a short window period, after 

which an irreversible process leading eventually to bacterial cell death ensues (4, 

148). However, because mazEF-mediated programmed cell death is an active 

process, MazE cannot reverse processes already affected by MazF (4, 148). 

Interestingly MazG, which is transcribed downstream of mazEF, has been 

observed to delay the “point of no return” upon which cidality of the bacterial cell 

occurs by reducing the levels of ppGpp in the cell which in turn represses 

transcription of mazEF thereby limiting the amount of MazF during amino acid 

starvation (106).  

Recently, in an attempt to ascertain whether chromosomal TA modules 

play a role in bacterial stress management, Tsilibaris and colleagues used the 

Engelberg-Kulka MC4100relA+
�mazEF E. coli strain (73) as a host for generating 

an E. coli mutant lacking five TA systems, mazEF, relBE, yefM-yoeB, chpB and 
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dinJ-yafQ (276). Attempts to grow this MC4100relA+
�mazEF mutant on minimal 

media containing serine, methionine, and glycine were unsuccessful, thus 

suggesting that the mutant may have a relA- phenotype. Sequencing of the mutant 

revealed that the strain was actually relA and mazG deficient, and as such, 

Tsilibaris et al. generated a new E. coli mutant lacking the five targeted TA 

systems, whilst ensuring that their parental MC4100 strain remained relA+ and had 

an intact mazG. Exposure of this new quintuple deletion mutant to a variety of 

stress conditions, including amino acid starvation, long term starvation, change in 

pH, heat and antibiotic treatment, did not affect the fitness of this E. coli mutant 

strain (276). These findings suggested that the observations made by the 

Engelberg-Kulka group were probably attributable to the absence of ppGpp and 

MazG in their mutant strain, and not to MazF. Subsequently however, the 

Engelberg-Kulka group rebutted these findings attributing the discrepancies to the 

density of the bacterial culture and not deficiencies in RelA and MazG (147).  

The Engelberg-Kulka group also reported that mazEF-mediated 

programmed cell death, which acts in either a reactive oxygen species dependent 

or independent pathway, only occurs at high cell densities and requires an 

“extracellular death factor” (149, 150). This “extracellular death factor”, 

characterized as a linear pentapeptide (Asn-Asn-Trp-Asn-Asn), acts as an 

autoinducer in the quorum-sensing mazEF-mediated cell death process to prevent 

further bacterial growth (147, 150, 151).  While it was initially believed that the 

absence of the “extracellular death factor” in stationary-phase cultures was the 

reason for the sensitivity of logarithmically growing bacteria and not stationary-

phase cultures to mazEF-mediated cell death, recent evidence has shown that the 

stationary-phase sigma factor �s is responsible for this phenomenon (149). It 

appears that the proteins induced by �s during stationary phase antagonize the 

proteins responsible for mazEF-mediated programmed cell death (149). It is also 

worth mentioning that although MazF leads to cidality of E. coli, it appears that 

MazF also results in the production of small proteins of less than 20kDa such as 

SoxR which are key for the survival of a sub-population of the bacteria (3).  
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The relBE module and its homologues 

The second best characterized type II TA module, the relBE locus, was 

initially discovered in 1998 in E. coli (104). Upon activation of this module during 

amino acid starvation, Lon protease degrades the RelB antitoxin leading to 

increased levels of the toxic RelE which results in bacteriostasis (41). 

Interestingly, excess RelB in the cell promotes binding of this antitoxin to RelE 

and represses transcription of the operon (209). In contrast, excess RelE prevents 

proteolysis of RelB by Lon and promotes binding of RelB to the rel operator 

triggering transcription (208, 209). RelE acts by binding to ribosomes (87), where 

it cleaves sequence specific mRNA within the ribosomal A subunit rendering the 

ribosome inactive (221). A transfer messenger RNA (tmRNA) then attaches a 

protein degradation tag onto 3’- regions of these impaired mRNAs, resulting in 

the proteolysis of the truncated peptides and release of the ribosome. The decrease 

in the cellular tmRNA pool activates relA resulting in the production of ppGpp 

which reduces global protein translation rates and subsequently causes 

bacteriostasis (96). In addition to the RelB-reversible bacteriostasis caused by 

RelE (41, 104, 220), RelE toxin expression has also been shown to increase the 

number of persisters in a culture subsequent to antibiotic treatment with 

cefotaxime, ofloxacin and tobramycin (142).  

E. coli also possesses two other relBE homologues, the dinJ-yafQ and 

yefM-yoeB loci (96). The dinJ-yafQ module encodes a toxic YafQ protein whose 

bacteriostatic effect is countered by the DinJ antitoxin (190). Upon activation of 

the module, Lon and ClpXP proteases degrade DinJ, thereby allowing the YafQ 

toxin to associate with ribosomes to initiate global translation inhibition. The toxin 

cleaves mRNA bound to the 50S subunit of the ribosome at the 5’AAA-G/A 3’ 

site and prevents translation elongation which results in eventual bacteriostasis 

(228). Recently, the dinJ-yafQ module has been implicated in instigating bacterial 

cell death to achieve the threshold of dead cells required for biofilm formation 

(151). The YafQ toxin has also been shown to play a role in the formation of 

persisters tolerant to specific antibiotics within E. coli biofilms (116). 
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The other relBE homologue yefM-yoeB that encodes the YoeB toxin which 

forms a tight complex with the YefM antitoxin was discovered in E. coli (37). 

During overproduction of Lon, this protease specifically degrades YefM thus 

allowing the YoeB endoribonuclease to inhibit translation initiation in a ribosome-

dependent fashion by associating with the 50S subunit of the ribosome to cleave 

translated mRNAs, thus resulting in bacteriostasis (40, 167, 201, 308, 311). 

Recently, this yefM-yoeB module has also been implicated in biofilm formation 

(143).  

Other type II TA  modules 

The control of cell death (ccdAB) locus which is unique to Gram-negative 

bacteria encodes the CcdB toxin and CcdA antitoxin (1, 96). The toxin of this rare 

chromosomal locus acts as a DNA topoisomerase gyrase poison. To do so, CcdB 

binds the DNA gyrase in two manners. Firstly, it binds to the open conformation 

of DNA gyrase rendering it unable to bind and supercoil DNA, an essential 

prerequisite for DNA replication. CcdB also binds the DNA gyrase during its 

catalytic cycle when the gyrase binds to DNA. The resulting CcdB-gyrase-DNA 

complex forms a barrier preventing both DNA and RNA polymerases from 

traversing this block. This DNA gyrase poisoning leads to breaks in DNA and 

consequently induction of the SOS response which eventually results in death of 

the bacterial cell (11, 29, 52, 117). 

The parDE locus encodes the toxic 9kDa ParE protein and a 12kDa ParD 

antitoxin (96, 131). This locus which was found within an E. coli prophage 

reinforces the notion that TA modules play a role in genome stabilization (111). In 

addition, this ParE toxin, just like CcdB, targets the DNA gyrase, inducing the 

SOS response and causing bacteriostasis, cell filamentation and eventual bacterial 

cell death (111, 131).   

The higBA and hicAB operons are unique type II TA modules as these 

encode for the toxin upstream of the antitoxin (96, 211). Using bioinformatic 

analyses, the Haemophilus influenza contiguous (hicAB) TA module was first 

proposed to be a bona fide TA operon whose HicA toxin binds and possibly 
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cleaves RNA (173). This was subsequently proven when induction of the HicA 

toxin resulted in bacteriostasis that was reversed by the HicB antitoxin (134). 

Transcription of this locus is induced via a Lon-dependent mechanism during 

amino acid and carbon starvation. Although the cellular HicA target remains 

unknown, over-expression of the 58 amino acid HicA protein leads to arrest of 

global translation rates as well as induction of mRNA cleavage ultimately 

resulting in bacteriostasis (134). 

The host inhibition of growth (higBA) locus is also transcribed during 

amino acid starvation (38, 39). The HigB toxin is a Lon-dependent 

endoribonuclease associated with the 50S subunit of the ribosome, that cleaves 

translated mRNA at adenine-rich sites resulting in bacteriostasis of Vibrio 

cholerae and E. coli (27, 38, 39, 127).  

The high persistence (hipBA) locus described in Section 1.5.1 encodes the 

hipA toxin and the hipB antitoxin. As mentioned previously, HipA, which has 

been implicated in persister formation in E. coli (74, 142, 154, 155), belongs to 

the phosphatidylinositol 3/4-kinase family (47). This toxin, whose serine kinase 

activity is crucial for persister formation, phosphorylates the EF-Tu translation 

factor, resulting in decreased macromolecular synthesis and eventually 

bacteriostasis (139, 142, 154, 155, 253). During prolonged conditions of stress 

however, HipA has been reported to initiate loss of cell viability (139). 

The phd-doc TA locus, originally discovered on the plasmid prophage P1, 

is comprised of the antitoxin phd (prevents host death) and the toxin doc (death on 

curing) (120). Upon activation of the locus, ClpXP serine protease degrades the 

Phd antitoxin allowing the Doc toxin to associate with the 70S and 30S ribosomal 

subunits (161, 169). Whilst it has been suggested that this binding triggers 

bacteriostasis via activation of the mazEF module (120), over-expression of Doc 

alone has been shown to induce RelE (91). Although the MazF and RelE are not 

required for the activity of Doc, because both MazF and RelE are induced during 

cell stress, it is probable that the arrest of translation by Doc induces these 

ribonucleases as a fail-safe attempt by the bacteria to overcome this stress (91). 
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The motility quorum-sensing (mqsRA) TA locus encodes the MqsR toxin 

and MqsA antitoxin. The MqsR toxin, implicated in persister formation of E. coli 

(145, 254), has been observed to induce motility and biofilm formation through a 

two-component regulatory system (102, 138). This mRNA interferase, which 

cleaves RNA at GCU sites independently of translation (39, 305) is activated by 

the Lon protease during amino acid and carbon starvation resulting in 

bacteriostasis (39, 138, 305). The mqsRA operon has also been shown to repress 

activation of cspD, a gene implicated in persister formation by binding of its 

MqsA antitoxin (144, 145). As such, one probable mechanism of persister 

formation occurs when HipA activation results in upregulation of MqsR (138) 

through degradation of MqsA by the Lon protease which then allows for cspD 

transcription (144, 145). This suggests that MqsR, like RelE which can be induced 

by Doc, is part of a cascade of mechanisms used by the cell to overcome cellular 

stresses. 

Finally, TA modules of the the virulence associated protein (vapBC) type, 

discovered initially in Salmonella dublin, are the most abundant of the TA loci 

(96). The vapBC operon, a homologue of which is absent in E. coli, encodes a 

VapC toxic toxin and a VapB antitoxin that abrogates VapC toxicity (50). The 

VapC toxin is unique because it belongs to the PIN-domain family of proteins that 

bear homology to the N-terminus of the pilin biogenesis protein and the RNase H 

nuclease domain (5, 186). Bioinformatic analyses of PIN domain proteins reveal 

that these consist of four conserved acidic residues, which are all in close 

proximity to each other thus allowing for the formation of a negatively charged 

cavity (8, 28). Based on this observation, these prokaryotic VapC toxins were 

initially thought to be metal-ion-dependent endoribonucleases that cleave mRNA-

associated ribosomes in a manner similar to the eukoryotic RNA interference and 

nonsense-mediated RNA decay (5, 44, 96, 100). Although the VapC targets 

remain unknown, the auto-regulated vapBC TA modules regulate growth of 

bacteria during periods of stress such as amino acid starvation (50, 237, 304, 312). 

It is thought that dissociation of the VapB-VapC complex allows for the binding 

of the divalent metal ions - magnesium or manganese, to the negatively charged 

pocket of VapC thereby creating an active site for this ribonuclease to cleave free 



38 
 

RNA and thus inhibit protein translation (28, 46, 50, 186, 237, 304). Interestingly, 

although absent from the E. coli genome, overexpression of VapC in this 

organism has been shown to cleave mRNAs at translational stop codon sites 

between the second and third base resulting in translation inhibition. This is 

believed to result in activation of Lon which in turn degrades the YefM antitoxin, 

thus allowing for action of YoeB in E. coli (304). This suggests a possible role for 

VapC as part of a cascade of mechanisms used to overcome cellular stresses. 

On the basis of all of the above-mentioned findings, what is abundantly 

clear is that TA modules play a significant and possible redundant role in stress-

induced growth regulation with some modules appearing to directly or indirectly 

regulate other TA loci. They also appear to play a major role in chromosomal 

gene stabilization, biofilm formation, persister formation, programmed cell death 

and even pathogenesis of bacteria. 

1.6.2.3 Type III TA modules 

A novel TA system, the type III toxIN module was recently identified on a 

cryptic plasmid of Erwinia carotovora (76). This bona fide negatively 

autoregulated TA system encodes the RNA antitoxin toxI and a ToxN toxin, 

which is identical to the phage abortive infection, Abi, proteins. The toxIN module 

also allows for resistance to different bacteriophages and therefore may provide 

the bacteria with protection from mobile genetic elements (24, 76). 

1.6.3 TA modules in mycobacteria 

TA loci which have been discovered in the chromosomes of numerous 

bacteria and archaea are also found in mycobacterial genomes (96). Curiously, 

they appear to be found predominantly in mycobacteria that encounter changing 

environments. Bioinformatic analyses have revealed that only members of the 

Mycobacterium tuberculosis complex (MTBC) i.e. M. tuberculosis, M. bovis, M. 

africanum and their M. canetti progenitor, possess an unusually large number of � 

82 TA loci in their genomes (211, 230). It is interesting to note that, although not 

as many TA modules are present on the chromosomes of the non-MTBC 

mycobacterial relatives, a novel TA system Rv0909-Rv0910 has been identified in 



39 
 

all members of the Mycobacterium genus (230). Interestingly too, the closest 

MTBC relative - M. marinum, possesses only 2 TA modules on its chromosome, 

including the novel TA system Rv0909-Rv0910. This together with the fact that 

37% of these loci were identified in the genomic islands acquired before 

speciation of the MTBC strongly indicates that these modules play a specific role 

in the physiology of these organisms (211, 230). 

1.6.4 The TA modules of M. tuberculosis 

M. tuberculosis possesses 88 putative TA loci including 1 higBA, 2 parDE, 

3 relBE, 9 mazEF, 26 novel TA and 47 vapBC modules on its chromosome (230). 

Although the 2 parDE loci of M. tuberculosis have not been characterized, suffice 

to confirm that they are bona fide TA modules (108, 230), the sole M. tuberculosis 

higBA locus (Rv1955-Rv1956) (79) is part of an Rv1954A-Rv1957 operon (264) 

that encodes a HigA antitoxin that abrogates the toxic HigB toxin (108, 230). The 

HigA antitoxin appears to bind specifically to the ATATAGG(N6)CCTATAT 

DNA binding motif, suggesting that this antitoxin only regulates its operon since 

this motif is unique to the promoter region of the Rv1954A-Rv1957 operon (79). 

The higBA operon has also been implicated in the survival of M. tuberculosis to 

various stresses including hypoxia and nutrient starvation (18, 230). 

The M. tuberculosis relBE loci, typical of relBE homologue found in other 

organisms, encode a RelE toxin which causes mycobacterial growth inhibition, 

and RelB antitoxin which transcriptionally activates the relBE operon and 

abrogates RelE action via its C-terminus (152, 261). Whilst M. tuberculosis relE 

genes are induced in vivo during late macrophage infections and in mouse lungs, it 

is interesting to note that each individual relE is induced by specific bacterial 

stresses (152, 261). RelE1 and RelE2 were observed to be upregulated together 

with genes associated with nutrient starvation, while RelE3 was associated with 

genes that play a role in translation inhibition. These differences indicate that the 

RelE endoribonucleases may cleave target mRNAs at different sites. RelEs have 

also been observed to play a role in M. tuberculosis persister formation in vitro 

either through induction of persister formation or maintenance of persister cells, 
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with phenotypically different persister populations generated with each RelE (152, 

261). These modules were found to be dispensable for in vivo growth and persister 

formation (152, 261) possibly as a result of functional redundancy within the 

family of relBE homologues in M. tuberculosis (307). 

The other well characterized family of TA modules in M. tuberculosis is 

the mazEF family. Although not all nine MazFs were found to be toxic based on 

growth inhibition assays when ectopically expressed in the heterologous hosts M. 

smegmatis and E. coli (31, 230, 316), each of the characterized ribonucleases of 

this family have been shown to target sequence specific mRNAs. For example, 

Rv2801c degrades mRNA at the 5’-U�AC-3’ sequence, Rv1102c at the 5’-

U/CU�A/UCU/C-3’ site, Rv1495c cuts within the pentad 5’-U�CGCU-3’ mRNA 

sequence and Rv1991c targets 5’-U/CU�CCU-3’ mRNA sites (314, 316). 

Microarray analyses have also suggested that like their E. coli counterparts, some 

of the M. tuberculosis MazFs are regulated by relA (18). Interestingly, recent data 

has revealed that heterologous expression of a M. tuberculosis MazF toxin, which 

was observed to induce bacteriostasis, also resulted in increased persister 

formation in M. smegmatis (113). 

In an important recent study, 26 novel TA loci were identified on the M. 

tuberculosis chromosome (230). Four of these, including two which are absent in 

M. tuberculosis clinical isolates, were not tested for growth inhibitory properties. 

However, of the 22 remaining novel TA modules tested, only three were toxic to 

M. smegmatis. Although one of these is homologous to MazF and is believed to 

function in a similar manner, the other two novel toxins showed homology to 

neither of the TA families. Interestingly the Rv0910 toxin component of the 

Rv0909-Rv0910 operon found across all members of the Mycobacterium genus 

was one of the novel toxins that caused bacteriostasis in M. smegmatis. This novel 

toxin does not appear to target cellular translation and may represent a distinct 

mode of TA action in mycobacteria  (230). 

Most M. tuberculosis TA modules, however, belong to the vapBC family 

(10, 96, 211). Of the 47 members of this family identified so far in M. tuberculosis  

(230), only one VapC, Rv0627, has been structurally characterized (186). This 
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magnesium-dependent endoribonuclease, which was structurally analyzed in 

complex with the C-terminal end of its cognate VapB antitoxin, is a protein 

comprising of a core domain of four parallel �-sheets encompassed by five �-

helices, and a clip structure domain that extends from the core domain and 

comprises two �-helices. This RNase H-like structure allows the four highly 

conserved acidic residues involved in divalent metal ion binding, characteristic of 

PIN domain proteins, to form the putative active site essential for ribonuclease 

activity (186).  

Despite the fact that most of the VapCs appear to be dispensable for in 

vitro growth (159, 247), suggestions of functional and/or conditional 

differentiation within the VapC family has emerged from other studies, revealing 

that the toxins of this large M. tuberculosis TA family play a significant role for 

the survival and pathogenesis of this organism under certain stress conditions 

(Table 1.2). 
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Table 1.2: Properties of M. tuberculosis VapC proteins 
VapC In vitro  

essentiality 
 (247) 

Toxicity in 
E. coli 
(108) 

Toxicity in  
M. smegmatis 
(186, 230) 

Properties 

Rv0065 No Non-toxic Non-toxic Part of a genomic island (230) 

Rv0240 No - Non-toxic  

Rv0277c No - Toxic Induced by SDS stress (179) 

Rv0301 No Non-toxic Toxic Exhibits RNase activity (230); Induced in the presence of diamide (178) and SDS 
stress (179).  Protein identified in 30-d infected guinea pig lungs (156). Part of a 
genomic island (230)   

Rv0549c No Non-toxic Toxic Induced by hypoxia (199, 230), SDS stress (179), during adaptation to nutrient 
starvation (112), during infection of human macrophages (65, 230), and in the presence 
of high concentrations of vancomycin (227). 

Rv0582 No - Toxic Induced by acid stress (78) 

Rv0595c No Non- toxic Non-toxic Required for survival in nonhuman primate lungs (66); induced during adaptation to 
nutrient starvation (112), macrophage infection (268) and by SDS stress (179). Part of 
a genomic island (230). 

Rv0598c No - Non-toxic Part of a genomic island (230) 

Rv0609 No - Toxic Part of a genomic island (230) 

Rv0617 No - Non-toxic  

Rv0624 No - Toxic  

Rv0627 Yes Non-toxic Non-toxic Structure determined in complex with C-terminal part of antitoxin (Rv0626) and 
biochemical evidence for ribonuclease activity (186). 

Rv0656c No Non-toxic Non-toxic Part of a genomic island (230) 

Rv0661c No Non-toxic Non-toxic Induced in SCID mice (273). Part of a genomic island (230) 

Rv0665 No Non-toxic Non-toxic Part of a genomic island (230) 

Rv0749 No - Toxic Induced in the presence of diamide (178) and by SDS stress (179). Part of a genomic 
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island (230) 

Rv0960 No Non-toxic Non-toxic  

Rv1114 No - Toxic Induced in the presence of diamide (178) 

Rv1242 No - Toxic Repressed in sputum (92) 

Rv1397c No Non-toxic Non-toxic Induced by SDS stress (179), and during nutrient starvation (18), but repressed in 
sputum (92). Part of a genomic island (230) 

Rv1561 No Toxic Toxic Exhibits RNase activity (230);  and is induced in SCID mice (273)  

Rv1720c No Non-toxic Non-toxic Induced in the presence of high concentrations of vancomycin (227) and in sputum 
(92) 

Rv1838c No Non-toxic Non-toxic Induced in the presence of diamide (178) and by SDS stress (179) 

Rv1953 No Non-toxic Non-toxic C-terminally truncated and lacking part of the PIN domain. Induced during adaptation 
to nutrient starvation (18, 112) 

Rv1962c No - Toxic Induced during macrophage infections (80). Part of a genomic island (230) 

Rv1982c - - Non-toxic Part of a genomic island (230) 

Rv2010 No Non-toxic Toxic Induced during hypoxia (199) and in Balb/c mice (273), but repressed during nutrient 
starvation (18), adaptation to hypoxia (256) and in wild type H37Rv compared to a 
phoP mutant (296). Protein identified in 30-d infected guinea pig lungs (156). 

Rv2103c No - Toxic Part of a genomic island (230) 

Rv2231A - - Non-toxic  

Rv2494 No - Non-toxic Induced in the presence of diamide (178); Part of a genomic island (230) 

Rv2527 No Non-toxic Non-toxic Repressed by low iron (238) but induced by SDS stress (179) 

Rv2530c No - Toxic  

Rv2546 No Non-toxic Non-toxic Induced in Balb/c mice (273) and during treatment with SRI#967, a compound 
exhibiting strong anti-mycobacterial properties (293) 

Rv2548 No Non-toxic Toxic Induced during hypoxia (199) and during macrophage infections (268), but repressed 
in sputum (92) 
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-Unknown

Rv2549c No Toxic Non-toxic Induced during macrophage infections (268) and in the presence of high iron 
concentrations (238). 

Rv2596 - - Non-toxic  

Rv2602 No - Toxic Induced in the presence of diamide (178); high concentrations of vancomycin (227) 
and by SDS stress (179) 

Rv2757c No Non-toxic Toxic  

Rv2759c No - Non-toxic Induced during nutrient starvation (18) 

Rv2829c - Non-toxic Toxic Induced during macrophage infection (230), hypoxia (230, 256) and nutrient starvation 
(112). Protein identified in 30-d infected guinea pig lungs (156). 

Rv2863 No Non-toxic Non-toxic  

Rv2872 No - Toxic Part of a genomic island (230) 

Rv3180c No - - Induced in sputum (92) 

Rv3320c No - Non-toxic Repressed during hypoxia (256), by low iron (238) and nutrient starvation (18). Part of 
a genomic island (230). 

Rv3384c No - Toxic Repressed in sputum (92) 

Rv3408 No - Toxic  

Rv3697c No - - Induced during nutrient starvation (18) 
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1.7 Aim 

In light of the observations in Sections 1.5 and 1.6 which suggest that TA 

modules play a role in genome stabilization, stress adaptation and phenotypic drug 

tolerance, this study aimed at understanding the individual and collective roles of 

selected VapBC modules in the stress physiology and drug tolerance of 

mycobacteria. This was achieved by assessing: 

a) The growth inhibitory effects of VapCs in heterologous and native 

mycobacterial hosts; 

b) The effect of vapBC-loss on the susceptibility of vapC-mediated 

toxicity 

c) The requirements necessary for abrogation of VapC toxicity in 

mycobacteria; 

d) The role of vapBCs in mycobacterial growth and survival; and  

e) The role of vapBCs in the formation of phenotypic drug tolerant 

mycobacterial persister populations. 
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2. Materials and Methods 

All DNA manipulations were performed according to standard protocols 

(246). The composition of culture media and solutions except otherwise stated are 

detailed in Appendix B.  

2.1 General recombinant nucleic acid manipulations 

2.1.1 Bacterial strains, plasmids and culture conditions 

All bacterial strains and cloning vectors used in this study are listed in 

Table 2.1 and Table 2.2 respectively. Glycerol stocks of bacterial strains were 

prepared in 33.3% glycerol (v/v) and stored at -70°C.  

Table 2.1: General bacterial strains 
Bacterial Strain Genotype Reference 
Esherichia coli DH5� 
 

supE44 �lacU169  hsdR17 recA1 endA1 
gyrA96 thi-1 relA1 

Promega, Madison, 
WI 

Mycobacterium 
smegmatis mc2155 

High-frequency transformation mutant of 
M. smegmatis ATCC 607                                                  

(265) 

Mycobacterium 
tuberculosis H37Rv 

Virulent laboratory isolate ATCC 25618 Laboratory collection 

 
Table 2.2: Cloning vectors 

Plasmid Genotype Reference 
pGEM3Z(+)f E. coli cloning vector; AmpR                                                                                                                             Promega 
p2NIL E. coli cloning vector; KmR (215) 
pGOAL17 Plasmid carrying lacZ and sacB genes as a PacI 

cassette; AmpR 
(215) 

pGOAL19 Plasmid carrying lacZ, sacB and hyg genes as a PacI 
cassette; AmpR 

(215) 

pIJ963 Plasmid carrying hyg as a BamHI-BglII cassette; 
AmpR, HygR 

(22) 

pOLYG E. coli-Mycobacterium shuttle vector; HygR (204) 
pGaa pOLYG derivative carrying M. smegmatis 

acetamidase promoter (Pami) from pAGAN11(213); 
HygR 

Digby Warner, 
MMRU 

pSE100 E. coli-Mycobacterium shuttle vector carrying 
Pmyc1tetO; HygR 

(70) 

pSE0595c pSE100 carrying Rv0595c under control of Pmyc1tetO ; 
HygR 

Diane Kuhnert, 
MMRU 

pMC1s L5-based integration vector carrying Psmyc-tetR; KmR  (70) 
pMC2m L5-based integration vector carrying Pimyc-tetR; KmR (107) 
pTTP1B Tweety-based integration vector; AmpR, KmR (223) 
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a) E. coli DH5α strains 

E. coli cells containing plasmids were grown in Luria-Bertani (LB) broth 

with the appropriate antibiotics at 37°C overnight, with vigorous shaking (Labcon 

Shaking Incubator) or at 30°C for 48h in the New Brunswick Scientific Innova 

400 incubator shaker. For selection on solid media, E. coli containing plasmids 

were grown on Luria-Bertani agar (LA) containing the appropriate antibiotics at 

37°C in the Incotherm Labotec Incubator overnight or at 30°C for 48h in the 

Heraeus Instrument Incubator.  E. coli strains carrying large plasmids of � 8000bp 

were grown at 30°C to avoid plasmid rearrangement.  

For selection of E. coli cells containing plasmids, the following antibiotics 

at the indicated concentrations were used: 200µg/ml ampicillin (Amp), 200µg/ml 

hygromycin (Hyg), 50µg/ml kanamycin (Km) and 10µg/ml gentamycin (Gm). For 

counter selection of clones carrying sacB, 5% w/v sucrose was used. For 

confirmation of disruption of the lacZ- � cassette during cloning or identification 

of a clone containing the lacZ-� cassette 40µg/ml 5-bromo-4-chloro-3-indolyl- �-

galactoside (X-gal) and 4µg/ml of its substrate isopropyl-beta-D-

thiogalactopyranoside (IPTG) were used.  

b) Mycobacterial strains 

Mycobacterium smegmatis strains, unless otherwise stated, were grown in 

Middlebrook 7H9 media supplemented with 0.05% Tween or on Middlebrook 

7H10 solid media supplemented with glucose salts (0.085 % NaCl, 0.2 % glucose) 

and 0.5% glycerol. M. tuberculosis strains were grown in Middlebrook 7H9 liquid 

media containing 0.05% Tween 80 or on Middlebrook 7H10 media, both of which 

were supplemented with 100ml oleic acid-albumin-dextrose-catalase (OADC) 

enrichment (Difco) per litre of media. All culturing of M. tuberculosis strains was 

performed in a Biosafety Level 3 laboratory, with manipulations performed in a 

Class II flow cabinet at a negative pressure of at least 160kPA. 

For selection of strains containing plasmids, 50µg/ml Hyg and 25µg/ml 

Km were used. When gentamicin selection was required, 7H9 media were 

supplemented with 5µg/ml while on solid 7H10 media this was decreased to 
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2.5µg/ml. For induction of toxins, anhydrotetracycline (ATc, Sigma) at varying 

concentrations (0 - 200ng/ml) was used. For counter selection of clones carrying 

the sacB and lacZ-alpha cassettes, 2% w/v sucrose was included in plates 

containing 40µg/ml X-gal at a concentration of 40µg/ml and IPTG at 4µg/ml. 

2.1.2 DNA extraction 

a)  Plasmid preparation from E. coli 

Briefly, 1ml stationary phase aliquots of overnight E. coli cultures were 

transferred to 1.5ml microcentrifuge tubes. The cells were harvested by 

centrifugation at room temperature (16168 × g for 1 min) and resuspended in 

100µl lysis solution I (50mM glucose, 25mM Tris-Cl pH 8.0, 10mM EDTA). To 

this suspension, 200µl solution II (1% SDS, 0.2M NaOH) was added and the cells 

were mixed by inversion and chilled on ice. After 5 min, 150µl neutralisation 

solution III (3M Potassium acetate, pH5.5) was added to the cells. The suspension 

was mixed vigorously and incubated on ice for 10 min. Cell debris was removed 

by centrifugation (16168 × g for 10 min), and the supernatant was transferred to a 

fresh microcentrifuge tube containing 2µl of 10µg/ml RNaseA, and incubated for 

20 min at 42°C. Plasmid DNA was then precipitated by addition of 350µl 

isopropanol, incubation for 10 min at room temperature and centrifugation (16168 

× g for 10 min). The DNA pellet was washed with 70% Ethanol and dried at 45°C 

in a vacuum centrifuge (SpeedVac, Savant, Farmingdale, NY, USA). The DNA 

was resuspended in 20 - 30µl sterile distilled water (sdH20).  

For large scale DNA extractions, E. coli cultures were grown in 50ml LB, 

overnight with shaking, and cells were harvested by centrifugation in the 

Beckmann J2-21 centrifuge (3901 × g for 10 min). The DNA extraction method 

was as described above except that the solution volumes were increased by a 

factor of 10.  The DNA was resuspended in a final volume of 300µl sdH2O and 

then purified by addition of equal volumes of phenol: chloroform (1:1 v/v). The 

aqueous phase of the solution was added to an equal volume of chloroform: 

isoamyl alcohol (24:1 v/v) and centrifuged (16168 × g for 2 min). The plasmid 

DNA was then re-precipitated by addition of 1/10 volumes 5.3M sodium acetate 
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pH 5.2 and 2.5 × volumes 100% ethanol to the aqueous phase. The solution was 

incubated at -20°C for 1h and the precipitated DNA was collected by 

centrifugation (16168 × g for 20 min). The DNA pellet was further washed with 

ice-cold 70% ethanol to remove any residual salts, dried in a vacuum centrifuge 

and resuspended in 50 - 200µl sdH20. 

b) Chromosomal extraction from mycobacteria 

Mycobacterial chromosomal DNA was isolated using a modified 

cetyltrimethylammonium bromide (CTAB; ICN Biomedicals, Aurora, Ohio) 

method (160). Briefly, mycobacterial cells were harvested and resuspended in 

500µl TE buffer (10mM Tris-HCl pH 8.0, and 1mM EDTA). The cells were heat 

killed (65°C for 10 min for M. smegmatis and 95°C for 5 min for M. tuberculosis), 

harvested by centrifugation (16168 × g for 5 min) and resuspended in 500µl TE 

buffer. To this 50µl lysozyme (10mg/ml) was added and incubated at 37°C 

overnight. A solution of 70µl 10% SDS and 6µl proteinase K (10mg/ml) was then 

added and the mixture incubated at 65°C for 2h. One hundred microlitres of a 5M 

solution of sodium chloride and 80µl pre-warmed CTAB/NaCl mix (10% CTAB 

made in 0.7M NaCl) was added to the sample and incubated at 65°C for a further 

10 min. An equal volume of chloroform:isoamyl alcohol (24:1 v/v) was added to 

remove residual proteins. Subsequent to centrifugation (16168 × g for 10 min) the 

aqueous phase containing the DNA was precipitated by addition of 1/10 volume 

of 5.3M sodium acetate and 2.5 × volumes 100% ethanol, and incubation at -20°C 

for 1h. The DNA was then pelleted by centrifugation (16168 × g for 20 min), 

washed with ice-cold 70% ethanol, dried in a vacuum centrifuge and resuspended 

in sdH2O. 

2.1.3 DNA manipulations 

a) Restriction enzyme digestions 

All restriction enzymes were obtained from New England Biolabs, Inc., 

Roche Applied Science, or Amersham. Unless otherwise stated by the 

manufacturer, all digests were performed at 37°C with the appropriate buffer. 
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Plasmid DNA of up to 5µg was digested in 20µl reaction volumes for between 1 - 

2h and up to 10µg mycobacterial chromosomal DNA was digested overnight in 

50µl reaction volumes. DNA fragments were then separated on agarose gels using 

electrophoresis (See section 2.1.4). 

b) Modification of 5’ overhangs 

5’-overhangs obtained subsequent to restriction digests were filled in when 

warranted using the DNA polymerase I, large (Klenow) fragment and dNTPs from 

Invitrogen as per manufacturer’s instructions. The reaction mix was incubated on 

ice for 20 min and terminated by a phenol extraction. 

c) Phosphorylation of DNA 

Phosphorylation of blunt PCR products, to insert phosphates that allowed 

for ligation into the dephosphorylated vector, was performed using polynucleotide 

kinase (Roche Applied Science), as per the manufacturer’s instructions for 30 min 

at 37°C. The reaction was stopped by separation on an agarose gel. 

d) Dephosphorylation of 5’ends of plasmid DNA 

Ensuing plasmid digestion, the 5’-phosphate of linearised vector DNA was 

removed by treatment with either Antarctic Alkaline Phosphatase (AAP) or 

Shrimp Alkaline Phosphatase (SAP), to prevent vector religation. 

Dephosphorylation was performed according to the manufacturer’s instructions 

(Roche Applied Science) for 1h at 37°C after which the enzyme was heat 

inactivated for 20 min at 65°C. 

e) Ligation reactions 

DNA ligations were performed using either the Fast-LinkTM ligation kit 

(Epicentre ® Biotechnologies) or the T4 DNA Ligase (Roche Applied Science), 

as per instructions from the manufacturer. The ligation reactions were then used 

for transformations into E. coli DH5� cells (See section 2.1.6). 
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2.1.4 Agarose gel electrophoresis 

General electrophoretic techniques were used to separate out DNA 

fragments (245, 246). For the separation of high molecular weight DNA 

fragments, 0.8% - 1% agarose gels, made in 1 × TAE buffer (1mM EDTA, 40mM 

Tris-acetic acid pH8.5) were used. For low molecular weight DNA fragments of 

�1kb, 2% agarose gels were used.  

All gels contained 0.5µg/ml ethidium bromide and the DNA samples were 

loaded with a tracking dye (0.025% bromophenol blue in 30% glycerol).  Lambda 

DNA molecular weight markers (III, IV and V; Roche Applied Science) were 

used to assess DNA fragment sizes. The agarose gels were electrophoresed 

between 80 - 100V in a Mini-Sub Cell GT minigel horizontal submarine unit 

(BIO-RAD) and visualized under UV-light using the Gel Doc 2000 system (BIO-

RAD). 

2.1.5 DNA fragment recovery from agarose gels and quantification 

The required DNA fragment was excised from the gel and purified using 

the Nucleospin kit (Macherey-Nagel) as per manufacturer’s instructions. Briefly, 

the excised gel fragment was melted, loaded onto a provided column, and washed. 

The DNA was then eluted using pre-warmed sterile distilled water. 

The DNA was quantified either on agarose gels by comparison to DNA 

molecular weight markers or on the NanoDrop ND-1000 Spectrophotometer 

(Thermo Scientific). 

2.1.6 Transformation of bacteria 

a) Chemical transformation of E. coli 

E. coli DH5α chemically competent cells were used for transformation of 

plasmids. Rubidium chloride cells were prepared as detailed in the protocol 

obtained from Dr P Stolt. Briefly, 1ml of a stationary phase overnight culture was 

inoculated in 100ml LB and grown to an OD600 of between 0.48 - 0.55. The cells 
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were chilled on ice for 15 min and harvested (3901 × g for 5 min at 4°C). The 

pellets were resuspended in 20ml TfbI solution (30mM potassium acetate, 100mM 

rubidium chloride, 10mM calcium chloride, 50mM manganese chloride, and 15% 

v/v glycerol - pH 5.8), and chilled on ice for 15 min. The cells were re-harvested 

(3901 × g for 5 min at 4°C), resuspended in 2ml TfbII solution (10mM MOPS, 

75mM calcium chloride, 10mM rubidium chloride and 15% v/v glycerol-pH 6.5) 

and 500µl aliquots were flash-frozen in ethanol and stored at -80°C until further 

use. 

For transformations, E. coli DH5α competent cells were thawed on ice and 

100µl cells used per transformation. Up to 1µg plasmid DNA was incubated with 

the cells on ice for 1h, heat-shocked for 90s at 42°C and chilled on ice for 2 min. 

Four volumes of 2TY was then added to rescue the cells at 37°C for 1h (245, 

246). These were plated on LA media containing the appropriate antibiotics, and 

incubated 1 - 2 days at 37°C. 

b) Electroduction of E. coli 

Electrocompetent E. coli cells were used for electroductions. These cells 

were prepared as a modification of the protocol obtained from the BIO-RAD Gene 

Pulser manual. Briefly, 500µl of an overnight culture of E. coli DH5α was 

inoculated in 50ml 2TY broth and grown to an OD600 of 0.6 - 0.9. The cells were 

then chilled on ice for 20 min and harvested by centrifugation (3901 × g for 15 

min at 4°C). The pellet was resuspended in 20ml ice-cold sterile distilled water 

and washed by centrifugation (3901 × g for 15 min at 4°C). A further wash step 

was performed in 10ml ice-cold sterile distilled water. The pellet was then 

resuspended in 2ml ice cold 10% glycerol and harvested (3901 × g for 10 min at 

4°C). The resulting pellet was resuspended in 100µl ice-cold 10% glycerol. 

For electroductions, a single M. smegmatis colony was dispersed in 20µl 

cold 10% glycerol and chilled on ice for 10 min. To this, 70µl of the 

electrocompetent E. coli DH5α was added and the suspension transferred to a 

0.1cm electroporation cuvette. The cells were pulsed in an electroporator with the 

following conditions: 1.8kV, 25µF and 200�. The electroporated cells were 
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rescued for 1h at 37°C with 400µl 2TY. The cells were subsequently plated on LA 

media containing the appropriate antibiotics, and incubated 1 - 2 days at 37°C. 

c) Transformation of mycobacteria by electroporation 

All mycobacterial electroporations were carried out as previously 

described (103, 160), and these are briefly described below. 

Electroporation into Mycobacterium smegmatis 

One millilitre of a stationary phase M. smegmatis culture was inoculated in 

100ml LB containing 0.05% Tween80 and grown to an OD600 of 0.4 - 0.7. The 

cells were harvested by centrifugation (2360 × g for 10 minutes at 4°C) and the 

pellet washed twice by gentle resuspension in 10ml ice-cold 10% glycerol and 

centrifugation at 2360 × g for 10 min at 4°C. The pellet was resuspended in 1ml 

ice-cold 10% glycerol and these competent cells were used immediately. 

Up to 5µg plasmid DNA was added to 400µl M. smegmatis competent 

cells. This was transferred to a 0.2cm electroporation cuvette and pulsed using the 

following conditions: 2.5kV, 25µF and 1000�. The cells were rescued 

immediately with 800µl 2TY for at least 3h at 37°C. These were plated on 

Middlebrook 7H10 media containing the appropriate supplements and antibiotics, 

and incubated for 3 - 7 days at 37°C before scoring CFUs. 

Electroporation into Mycobacterium tuberculosis 

Electroporation into M. tuberculosis was performed in the same manner as 

with M. smegmatis with the following exceptions: a final concentration of 1.5% 

glycine was added to the M. tuberculosis cells 16h prior to harvesting; all 

manipulations were performed at room temperature and the plasmid DNA was 

UV-irradiated (100 mJ/cm2) before electroporation into the cells. Subsequent to 

electroporation, the cells were rescued at 37°C overnight. The following day the 

cells were harvested, resuspended in fresh 7H9 media and spread on Middlebrook 

7H10 media containing the appropriate supplements and antibiotics. The plates 

were incubated for at least 21 days at 37°C before scoring CFUs. 
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2.1.7 Polymerase Chain Reaction (PCR) 

All preliminary and screening PCRs were performed using the Roche 

FastStart kit (Roche Applied Science), while for the amplification of fragments 

required for cloning, Phusion High-Fidelity DNA polymerase (Finnzymes) which 

has a low error rate of 4.4 × 10-7 was used. The reactions were performed as per 

manufacturer’s instructions.  

For reactions using the Roche FastStart Taq DNA polymerase, 20 - 50µl 

reactions were set up containing: 1 × reaction buffer, up to 250ng plasmid or 

genomic DNA, 200µM of each dNTP, 0.5 - 1.0 µM of each primer, 1.5mM 

MgCl2, 1 × GC rich solution and 2U/50µl of the DNA polymerase. DNA 

amplification was performed using the following cycling parameters: denaturation 

at 94°C for 5 min; followed by 30 cycles of denaturation at 94°C for 60s, 

annealing for and an extension at 72°C for 60s; with a final extension at 72°C for 

7 min.  

For reactions using the Phusion High-Fidelity DNA polymerase 

(Finnzymes), 20 - 50µl reactions were set up to contain: 1 × reaction buffer, up to 

250ng plasmid or genomic DNA (gDNA), 200µM of each dNTP, 0.5 µM of each 

primer, 3% DMSO and 0.02U/µl of the DNA polymerase. DNA amplification was 

then performed using the following cycling parameters: denaturation at 98°C for 

30s; followed by 25 - 35 cycles of denaturation at 98°C for 10s, annealing for 30s, 

and extension at 72°C for 30s/1kb; with a final extension at 72°C for 7 min.  

For each amplification reaction, three control reactions (a no DNA control 

reaction; a reaction containing only the forward primer and one containing only 

the reverse primer) were included to elucidate the presence of genomic 

contamination and/or non-specific DNA amplification if present. 

All polymerase chain reactions were performed using the MyCyclerTM 

thermal cycler (BIO-RAD) or the PCR Express (Hybaid) machines with 

oligonucleotide primers (Sections 2.2, 2.3, 2.6 and 2.8) obtained from Inqaba 

Biotech Ltd. 
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2.1.8 Sequencing 

Sequencing, which was outsourced to either the Department of Molecular 

and Cell Biology (University of Cape Town), Inqaba Biotech Ltd (South Africa) 

or the DNA Sequencing Facility of Stellenbosch University, was performed using 

the Big Dye terminator v3.1 Cycle Sequencing kit and Bioline Half Dye Mix. The 

EditSeq and SeqManTM modules of the Lasergene suite of programs were used to 

analyse the sequencing data. 

2.1.9 Southern blot analyses 

For the detection of specific DNA sequences within a complex DNA 

mixture, Southern blotting was performed using radioactively or non-radioactively 

labelled probes.  

a) Electroblotting  

Approximately 10µg of genomic DNA was digested overnight at 37°C 

with the appropriate restriction enzyme and the DNA fragments were separated on 

a 0.8% agarose gel at 80V. The DNA was initially depurinated by treating the 

agarose gel in a 0.25M HCl solution for 15 min, then denatured by soaking in a 

0.5M NaOH/1.5M NaCl solution for 15 min and subsequently equilibrated in 1 × 

TBE buffer (Tris-Borate-EDTA pH 8.0, Sigma). The agarose gel was then 

overlayed with a HybondTM – N nitrocellulose membrane, sandwiched between 

two pre-soaked 3MM Whatmann filter papers, and two pre-soaked sponges. After 

ensuring no air bubbles were present, this “sandwich” was placed carefully in a 

TE 22 Mini Transphor cassette and the cassette transferred to a TE 22 Mini 

Transphor unit (Hoefer) containing 1 × TBE buffer. The DNA was then 

transferred to the nitrocellulose membrane (0.5A for 2h at 4°C), and cross-linked 

by irradiation at 1200mJ/cm2 in a UV Stratalinker 1800 (Stratagene). 
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b) Radioactive labelling and hybridization of probe 

The random primed labelling kit (Roche Applied Science) was used to 

incorporate the [32P]-dCTP radioactive isotope, as per manufacturer’s protocol. 

The reaction was terminated by addition of 50µl TE buffer (pH 8.0) and the 

labelled probe was eluted by fractionation through two pre-equilibrated Sephadex 

G-25 columns. This ensured that unincorporated nucleotides were removed, as 

these bound to the columns. The eluted probe was then used immediately. 

Subsequent to cross-linking the DNA onto nitrocellulose membranes, the 

membranes were pre-hybridised in pre-hybridisation solution (0.5% SDS, 6 × 

SSC, 5 × Denhardts and 50% deionised formamide) at 42°C with 10µg/ml heat-

denatured salmon sperm DNA (Roche Applied Science) in Techne Hybridizer 

HB-1 roller bottles. After 2h, the radioactively labelled probe was denatured 

(95°C for 10 min), added to the pre-hybridisation buffer and hybridisation was 

allowed to occur overnight at 42°C. The membrane was subsequently washed 

twice with wash solution I (2 × SSC, 0.1% SDS), once with wash solution II (0.5 

× SSC, 0.1% SDS), and once with wash solution III (0.1 × SSC, 0.1% SDS), with 

all four wash steps performed at 42°C for 15 min. Finally, the nitrocellulose 

membrane was washed with wash solution IV (0.1× SSC, 1% SDS) at 65°C for 30 

min, and exposed to X-ray film at -80°C for 24 - 72h. 

c) Non-radioactive labelling and hybridization of probe 

For the non-radioactive labelling of probes, the alkali-labile digoxigenin 

(DIG)-dUTP was incorporated either by PCR or by random primed labelling, as 

per the manufacturer’s instructions (Roche Applied Science). 

Hybridisation of the probe to the membrane was implemented as detailed 

in the DNA High Prime DNA labelling and Detection Starter Kit II insert (Roche 

Applied Science). Briefly, the membrane was pre-hybridised with 12ml DIG Easy 

Hyb solution (1h at 52°C) in Hybaid HB-OV-BM roller bottles incubated in a 

hybridization oven (Hybaid Micro-4). The heat-denatured probe (95°C for 10 

min) was added to the pre-hybridisation solution and hybridization was allowed to 

occur overnight at 52°C. The membrane was then washed twice with Solution I (2 
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× SSC, 0.1% SDS) at room temperature for 5 min and then once with Solution II 

(0.5 × SSC, 0.1% SDS) at 65°C for 30 min. 

Following these stringency washes, the labeled DNA was detected as per 

the manufacturer’s protocol (Roche Applied Science). Briefly, detection of the 

DIG-labelled hybrids was achieved by dephosphorylation of the CSPD substrate 

upon addition of a specific DIG alkaline phosphatase-conjugated antibody, which 

resulted in chemiluminescence at 477 nm. This enabled visualization on X-ray 

film after 30 min - 4h incubation at room temperature. 

2.2 Construction of vectors for conditional expression of toxins and antitoxins 

in mycobacteria 

2.2.1 Construction of toxin-expressing vectors 

The toxins Rv2546, Rv2548, and Rv2549c were PCR amplified from M. 

tuberculosis H37Rv, and the toxin MSMEG_1284 was PCR amplified from 

M.smegmatis using the oligonucleotides listed in Table 2.3. A standardized 

concensus ribosome binding site (GGAAG/A) was incorporated to optimize the 

yield of the protein expressed. The PCR amplified toxins were cloned downstream 

of the Pmyc1tetO promoter-operator element of pSE100 to generate a toxin-

expressing vector pSEvapC. The toxins Rv2546, Rv2548, and Rv2549c were 

expressed as BamHI-HindIII fragments while MSMEG_1284 was cloned into the 

PvuII site of pSE100.  A pSE100 vector expressing the whole Rv2550c_49c 

operon was generated using the antitoxin specific primer Rv2550cF and the toxin 

primer Rv2549cR. 
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Table 2.3: Oligonucleotides used for generation of toxin expressing vectorsa 
Toxin Primer Sequence Expected 

Size 

Rv2546 Rv2546F ACTGGGATCCGGAAGGTGATGGTGT
TCTGCGTC 

498bp 

Rv2546R TGATAAGCTTGGGTCACCTGAGTCC
GCATG 

Rv2548 Rv2548F ACTGGGATCCGGAAGGTCTGGCGTG
AAGCTGAT 

428bp 

Rv2548R CGCGAAGCTTGCTGATGCCCCAGGG
AGT 

Rv2549c Rv2549cF TGATGGATCCGGAAAGCACGAATGA
TCTTC 

500bp 

Rv2549cR TGTAAAGCTTCAACGCAACGCAGCC
CTGT 

Rv2550c Rv2550cF CGTAGGATCCGGAGGAACAGCATTA
TGCTAGTGG 

746bp 

MSMEG_1284 MSMEG_1284F TTCTAAGCTTGGAAGGTCCTGATGG
TTATCGAC 

442bp 

 MSMEG_1284R CGATGGATCCTGACCTGAATTCTGA
CCT 

 

aThe highlighted sequence represents the incorporated ribosome binding sites and the underlined 
sequence represents incorporated restriction enzyme sites. 

For regulated-toxin expression, all these constructs, unless otherwise 

stated, were co-electroporated in M. smegmatis or M. tuberculosis with either the 

intergrative tetR-containing plasmid pMC1s, whose tetracycline repressor is 

expressed under the control of the strong tetracycline promoter (Psmyc-tetR) or the 

intergrative tetR-containing plasmid pMC2m, whose tetracycline repressor is 

expressed under the control of the tetracycline promoter Pimyc-tetR of intermediate 

strength. 

2.2.2 Construction of vectors for uncoupled regulated expression of toxins and 

antitoxins 

a) Construction of the antitoxin expressing integrating vectors 

The integrative pMC1s vector was digested with NotI and the 4kb vector 

backbone was re-ligated to generate the vector pMC1r. The vector pGaa was 

digested with PvuII and ClaI, and the 4.4kb fragment, containing the acetamidase 

promoter, was then cloned into the PvuII/ClaI site of pMC1r to generate the 

pMAP vector which integrates at the L5 tRNAGly site of the mycobacterial 

chromosome.  
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The antitoxins Rv2550c, Rv0595c and Rv2830c were PCR amplified from 

genomic H37Rv DNA with the primer pairs Rv2550cF/Rv2550cR, 

0596ACEfwd/0596ACErev and 2830ACEfwd/2830ACErev respectively (Table 

2.4). The PCR products were digested with EcoRI and ClaI and then cloned into 

the EcoRI/ClaI site of pMAP to generate the vectors pMAP2550c, pMAP0595c 

and pMAP2830c respectively. 

Table 2.4: Oligonucleotides used for generation of antitoxin expressing 
vectorsa 

Antitoxin Primer Sequence Expected 

Size 

Rv0596c 0596ACE
fwd 

TAGTGAATTCGTGAGGAATCGTAGCATGTCTG
CTA 

302bp 

0596ACE
rev 

TCACATCGATTCATACGTTCACCACCGCACA 

Rv2550c Rv2550c 
fwd 

CGTAGAATTCGGAGGAACAGCATTATGCTAGT
GG 

314bp 

Rv2550c 
rev 

GCCCATCGATTAAAGTGCAGCCCAGAA 

Rv2830c 2830ACE
fwd 

TACTGAATTCGTGAGGAAAGAAAAATGACCGC
TACG 

256bp 

2830ACE
rev 

TGCAATCGATACTATGTCATGAAACGTTCCAC
G 

a The underlined sequence represents incorporated restriction enzyme sites. 

b) Construction of the toxin expressing integrating vectors 

To construct a toxin expressing integrating vector, it is imperative that the 

vector carries a different resistant cassette from the antitoxin expressing 

integrating vector. It is also essential that this vector should integrate at a different 

locus. As such, the Km-resistant Tweety vector pTT1B (223), which integrates at 

a tRNALys gene distinct from the attB locus where the pMAP vector would 

integrate, was modified by replacing the Km-resistance cassette with a Gm-

resistance cassette. This was done by digesting pTT1B with HindIII and re-

ligation of the vector backbone to generate pTT1B*. The Gm-resistant plasmid 

pML10 (158) was digested with PstI, and the 930bp fragment containing the Gm-

resistance cassette was cloned into the PstI site of pTT1B* to generate the vector 

pTTBG. 
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Another prerequisite for the toxin expressing integrating vector is that it 

must contain both a tetracyline repressor and the promoter-operator element 

Pmyc1tetO to allow for inducible toxin expression. To generate the plasmid with 

the tetracycline repressor, the integrative pMC1s vector was digested with NotI 

and the 1kb fragment containing the Psmyc-tetR was cloned into the SmaI site of 

pTTBG to produce pTTBGs. For incorporation of Pmyc1tetO and the toxin to 

pTTBG, the toxin expressing vectors pSE2549c, and pSE0595c were digested 

with SpeI/ClaI. The fragments containing the operator and toxins were cloned into 

the EcoRI site of pTTBGs thus generating the Gm-resistant toxin-expressing 

integrating vectors, pTTvapC. 

Table 2.5: Cloning vectors used for the uncoupling system 
Plasmid Genotype Reference 
pTTP1BG Derivative of pTTP1B with KmR marker replaced by 

GmR marker from pML10 (158); GmR 
Garth 
Abrahams, 
MMRU 

pTTP1BGs Derivative of pTTP1BG carrying Psmyc-tetR from 
pMC1s; GmR 

This study 

pTT2549c pTTP1BGs derivative carrying Pmyc1tetO::Rv2549c; 
GmR 

This study 

pTT0595c pTTP1BGs derivative carrying Pmyc1tetO::Rv0595c; 
GmR 

This study 

pMAP Derivative of pMC1r carrying Pami cloned as a 4.4-kb 
PvuII/ClaI fragment from pGaa; KmR 

This study 

pMAP2550c Integration vector carrying Pami::Rv2550c; KmR This study 
pMAP2830c Integration vector carrying Pami::Rv2830c; KmR This study 
pMAP0596c Integration vector carrying Pami::Rv0596c; KmR This study 

 

For uncoupled regulated expression of both toxins and antitoxins, these 

constructs, unless otherwise stated, were co-electroporated in M. smegmatis in 

varying combinations as reported in Section 3.3. 

2.3 Site-directed mutagenesis of a conserved aspartic acid residue of Rv2549c 

A single D5A mutation was introduced in Rv2549c using the Megaprimer 

method (262). Briefly, the megaprimer was produced by PCR with Rv2549cR and 

the mutagenic F2*SDM primer CATGATCTTCGTCGCCACGTCCTTCTGGG), 

using pSE2549c as the template DNA. For generation of pSE2549cD5A the 
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megaprimer and the F1_SDM primer (GCTAAGCAGAAGGCCATCC) were 

used in a second round of PCR, and the PCR product (Rv2549cD5A) generated 

from the pSE2549c template DNA was then cloned into the BamHI/ HindIII site 

of pSE100 to generate pSE2549cM. 

2.4 Effect of toxin over-expression on mycobacterial growth and viability 

2.4.1 Effect of constitutive ectopic toxin expression on mycobacteria 

The effect of constitutive ectopic toxin expression on mycobacteria was 

assessed by electroporating the pSEvapC constructs in the absence of pMC1s and 

enumerating the number of transformants on 7H10 Middlebrook plates containing 

Hyg. 

2.4.2 Effect of regulated toxin expression on mycobacteria 

To assess regulated toxin expression, mycobacteria were first co-

electroporated with the toxin-expressing vector and pMC1s or pMC2m, and 

transformants selected on 7H10 media containing Km and Hyg.  

The effect of regulated toxin expression on M. smegmatis growth and 

viability was assessed on solid and liquid media. Briefly, for effect of toxin 

expression on solid media, M. smegmatis transformants were grown in 7H9 media 

containing Hyg and Km to late log-phase (OD600 ~ 1). Ten-fold serial dilutions of 

the cultures were then spotted onto 7H10 plates containing varying concentrations 

of ATc (0 - 50ng/ml), and these were incubated at 37°C. Growth was assessed 

after 24h and 48h. 

In liquid media, the effect of toxin expression was assessed by growing M. 

smegmatis transformants in 7H9 media containing Hyg and Km to early log-phase 

(OD600 ~ 0.1 - 0.4), and diluting to OD600 of 0.1 with fresh pre-warmed 7H9 

antibiotic containing-media. The cultures were then split into two equal aliquots, 

one of which was treated with ATc at a concentration of 25ng/ml. Growth and 

viability was assessed by 2h OD600 measurements and 4h CFU enumeration over a 

25h period. 
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The effect of regulated toxin expression on M. tuberculosis was only 

assessed in liquid media. This was performed exactly as with M. smegmatis as 

described above, with the following exceptions: The cultures were diluted to an 

OD600 of 0.04 and left to grow overnight before splitting into two equal aliquots;  

growth and viability was assessed by 24h OD600 measurements and CFU 

enumerated over a period of 8 days. 

2.5 Effect of regulated ectopic toxin expression on the drug tolerance of 

mycobacteria 

Pre-cultures of H37Rv strains containing pMC1s together with pSE2829, 

pSE2546 and pSE2549c plasmids were inoculated in middlebrook 7H9 media 

containing Hyg and Km and grown with rolling overnight at 37°C. These cultures 

were split equally, and to one culture ATc at a concentration of 25ng/ml was 

added to induce toxin expression. After 24h incubation (rolling at 37°C), three 

equal aliquots were dispensed into separate receptacles. To the uninduced 

cultures, no antibiotics, 8µg/ml ofloxacin (10 × MIC), and 20µg/ml 

chloramphenicol (CM) + 8µg/ml ofloxacin after 1h of CM treatment were added 

to each aliquot. To the induced cultures, 8µg/ml ofloxacin and no antibiotics were 

added to each aliquot. The aliquots were incubated at 37°C for 7d and CFUs 

assessed by duplicate plating on 7H10 plates (See Figures 3.37 & 3.39 for 

schematic representation of assay). 

2.6 Construction of knockout mycobacterial strains 

Knockout mutant mycobacterial strains were generated by homologous 

recombination, as previously described (103). Briefly, suicide vectors 

p2�2545_50cKO and p2�SM1283_84KO, for the knockout of Rv2545-Rv2550c 

and MSMEG_1283-MSMEG_1284, were generated by PCR amplification of the 

upstream and downstream regions of the genes of interest from genomic H37Rv 

and M. smegmatis mc2155 DNA respectively. Primers designed to amplify the 

upstream regions contained HindIII and BglII restriction sites, while the 

downstream amplification primers had BglII and Asp718 restrictions sites (Table 

2.6). Each amplicon was cloned into the SmaI site of pGEM3Zf(+) vector and 
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sequenced before sub-cloning via 3-way cloning into the HindIII and Asp718 sites 

of p2NIL.  The hyg resistance cassette from pIJ963 was cloned into the BglII site 

of p2NIL2545_50c to generate a marked deletion allele. The lacZ-sacB cassette 

from pGOAL17 (for the marked suicide vector p2NIL2545_50c::hyg) and 

pGOAL19 (unmarked suicide vector) were cloned into the PacI site of 

p2NIL2545-50c and p2NIL1283-84 to create the marked suicide vector 

p2�2545_50cKO::hyg, and the unmarked suicide vectors p2�2545_50cKO and 

p2�SM1283_84KO respectively. These vectors were electroporated into H37Rv 

and mc2155 (Section 2.1.6) and mutants �Rv2545_Rv2550c and �MSMEG_1283-

MSMEG_1284 were obtained by homologous recombination using a two step 

selection method as previously described by Gordhan and Parish (103). 

Table 2.6: Oligonucleotides used for generation of knockout vectorsa 
Gene Primer Sequence Expected 

Size 

Deletion 

Size 

Rv2545-Rv2550c 

upstream region 

Forward TGATAAGCTTGATGACGATCTC
GCGCAG 

2052bp 2415bp 

Reverse TAATAGATCTGAGATATATGCA
TTGGA 

Rv2545-Rv2550c 

downstream 

region 

Forward ATGTAGATCTGCAGCCTTTTCA
CA 

1776bp 

Reverse TTATGGTACCAGGGACTATCAG   

MSMEG1283-

MSMEG1284 

Upstream region 

Forward TGATAAGCTTGCTCATACGGCC
AGGC 

965bp 378bp 

Reverse TAATAGATCTCTGGCCAGCCGG
TCGG 

MSMEG1283-

MSMEG1284 

Downstream 

region 

Forward CGCCGAGATCTGTGGTTGCATC
GC 

1099bp 

Reverse TGATGGTACCGAGCAGTGGCTA
CTGG 

a The underlined sequence represents incorporated restriction sites. 
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2.7 Role of VapCs during mycobacterial stress 

To determine whether VapCs play a role during mycobacterial stress, 

nitrosative, heat, genotoxic and cell wall stresses were applied to the M. 

smegmatis wild type and mutant �MSMEG_1283-MSMEG_1284 strains.  

The effect of cell wall stress was assessed as described by Vandal and 

colleagues (284). Briefly, 10µl of 10-fold dilution series of mid-log phase (OD600 

~ 0.6) cultures of wild type M. smegmatis and �MSMEG_1283-MSMEG_1284 

were spotted onto 7H10 plates containing 0.01% and 0.02% SDS. 7H10 plates 

with no SDS were used as controls. 

The effect of nitrosative stress was assessed as described by Firmani and 

Riley (77). Briefly, mid-log phase cultures (OD600 ~ 0.6) were diluted 1:10 and 

incubated for 24h in 7H9 (pH 5.3) supplemented with sodium nitrite at 

concentrations up to 48mM. Mycobacterial survival was assessed by scoring 

CFU/ml on 7H10 plates after a 3-day incubation period at 37°C. 

The effect of heat stress was assessed following a modified protocol from 

Stewart and co-workers (270). Briefly, 1ml of late log-phase cultures (OD600 ~ 

0.8) were aliquoted in two eppendorf tubes. One was incubated at 37°C and the 

other at 45°C for 45h. CFUs were then scored for survival on 7H10 plates after 3d 

at 37°C. 

For genotoxic stress, as previously decribed (192), mid-log phase cultures 

(OD600 ~ 0.6) were serially diluted and plated on 7H10 plates containing 

concentrations of mitomycin C ranging from 0mM to 0.1mM. CFUs were scored 

for survival after a 3-day incubation period at 37°C. 

2.8 RNA Isolation and reverse transcription 

RNA was isolated as a modification of the Downing and colleagues 

protocol (61). Briefly, 50ml logarithmic phase cultures were harvested at 2360 × g 

for 20 min at room temperature. The pellets were resuspended in 1ml TRIzol 

(Gibco-BRL), and transferred to Lysing Matrix B tubes (Qbiogene). The cells 

were ribolysed three times for 20s at speed 6 using the Savant Fastprep FP120 
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ribolyser, with 2 min intervals between pulses when the cells were cooled on ice. 

The sample was then centrifuged at top speed for 45s, and the TRIzol solutions 

were transferred to a clean eppendorf. One hundred microlitres 1-bromo-3-

chloropropane (BCP) was added to the solution for phase separation. The solution 

was inverted rapidly for 30s and centrifuged at top speed for 5 min. The aqueous 

phase containing the nucleic acids was transferred to a clean eppendorf tube and 

RNA was precipitated using the lithium chloride precipitation method as per 

manufacturer’s instructions (Ambion).  

Each RNA sample was then treated two to four times with Turbo DNase 

(Ambion) as per manufacturer’s instructions to remove any contaminating DNA. 

The samples were then run on a 2% agarose gel containing 0.1% SDS to assess 

the quality of the purified RNA. The RNA was quantified using the NanoDrop 

ND-1000 Spectrophotometer (Thermo Scientific), and reverse transcription (RT) 

reactions were subsequently performed using the C. therm. Polymerase RT-PCR 

system (Roche) according to the manufacturer’s instructions. Briefly, 50µl 

reactions were set up containing: 1 × reaction buffer, up to 1µg RNA, 25mM of 

each dNTP, 0.5µM of each primer, 7% DMSO, 5mM DTT, 20U RNase Inhibitor, 

and 2µl of the C. therm polymerase mixture. The RT reaction was performed by 

incubating the samples in a thermocycler equilibrated at 60°C for 30 min, and the 

primers used for RT-PCR analysis (Table 2.7) were designed using Primer 3 

software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). The DNA 

amplification was then performed using 2µl of the cDNA generated during the RT 

reaction. The cycling parameters used were as shown in Table 2.8. 
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Table 2.7: Oligonucleotides used to detect mRNA expression of toxins 
Toxin Primer Sequence Expected 

Size 

Rv2546 Rv2546RTF TATACCAGTCGGTGCCGAAA 143bp 

Rv2546RTR ACACGATGGTGCCTGAAAGT 

Rv2549c Rv2549cRTF TCTTCCAGGTCGGCTGTTAC 138bp 

Rv2549cRTR GATGACCTCCAACCATGTCC 

Rv2550c Rv2550cRF1 CATGTGAAAAGGCTGCAGAT 218bp 

Rv2550cRR1 TGCTTTCCGTAAACCACGTC 

M. smegmatis sigA MSM SigAF GGGCGTGATGTCCATCTCCT 122bp 

 MSM SigAR GTATCCCGGTGCACATGGTC 

 
Table 2.8: Cycling Parameters used to amplify cDNA 

Cycle Cycling Condition Number of cycles 

1 94°C for 10 minutes 1 

2 94°C for 30 seconds 

65°C (-0.5°C/cycle) for 30 seconds 

72°C for 30 seconds 

14 

3 94°C for 30 seconds 

57°C for 1 minute 

72°C for 30 seconds 

24 

4 Hold at 4°C 	 

2.9 Protein extraction, quantification and detection 

For protein analyses, Rv2546, Rv2549c and Rv2549cD5A were C-

terminally tagged with a triple FLAG sequence by Dr Edith Machowski. Here, the 

gene of interest was amplified by PCR to incorporate the standardized consensus 

ribosome binding site (GGAAG/A) at the N-terminus in order to optimize the 

yield of expressed protein. The PCR amplification also incorporated a triple (3×) 

FLAG sequence (Asp-Tyr-Lys-Asp-His-Asp-Gly-Asp-Tyr-Lys-Asp-His-Asp-Ile-

Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys) at the C-terminus, followed by the native 
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stop codon. This amplicon was cloned into the BamHI/HindIII site of pSE100 

under the control of the Pmyc1tetO promoter-operator element. The resulting 

FLAG-tagged construct, pSEvapC_FLAG, was co-electroporated with pMC1s 

into M. smegmatis to allow for conditional gene expression upon addition of ATc. 

The supernatants and pellets from whole-cell extracts of ATc-induced vs. 

uninduced M. smegmatis strains were run on SDS-PAGE gels, and blotted onto 

nitrocellulose membranes before detection of the FLAG-tagged fusion protein by 

an anti-FLAG antibody (Figure 3.17). 

M. smegmatis cells containing triple FLAG-tagged VapC fusion proteins 

were grown in 50ml cultures to mid log-phase (OD600 ~ 0.3 - 0.5) and split in two 

equal 25ml volumes. One aliquot was treated with ATc (50ng/ml) and the other 

served as the uninduced control. After 3h induction, cells were harvested and 

resuspended in 250 µl of Bacterial Protein Extraction Reagent (B-PER II Reagent, 

Thermo Scientific) containing complete mini protease inhibitor cocktail (Roche). 

The cells were lysed three times for 20s at speed 6 using the Savant Fastprep 

FP120 ribolyser, with 5 min intervals between pulses when the cells were cooled 

on ice. The protein concentration of each sample was quantified using the 

Bradford Protein Assay as per the manufacturer’s instructions (BIO-RAD). 

Equal amounts of protein from supernatant and pellet fractions of the 

samples were resolved on SDS-PAGE gels and the proteins transferred to a PVDF 

membrane (Amersham). The membrane was incubated with the Anti-FLAG M2 

antibody (Sigma) and the FLAG-tagged proteins were detected using the 

ProteoQwestTM chemiluminescent Western blotting kit (Sigma). 

2.10 Minimal Inhibitory Concentration (MIC) determination 

The role of vapBCs in mycobacterial drug susceptibility was determined in 

liquid medium using the broth microdilution method as previously described (58). 

Briefly, M. smegmatis wild type and �MSMEG_1283-MSMEG_1284 cells were 

grown to an OD600 of 0.2 - 0.3 (~ 106 CFU/ml). Before inoculation, the 

mycobacterial cells were diluted two fold (~ 104 CFU/ml). Using the antibiotics 

rifampicin, ofloxacin, streptomycin and clofazimine, the assay was set up in 96-
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well titre plates. The plates were visually read after 2 – 4 day incubation of 37°C, 

with the MIC scored as the lowest drug concentration that completely inhibited 

visible growth. 

2.11 Statistics 

The statistical significance of differences between data sets was calculated 

using the GraphPad QuickCalcs website: 

http://www.graphpad.com/quickcalcs/ttest1.cfm?Format=SD (accessed November 

2010).
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3. Results 

3.1 VapC selection 

As part of a study at the Molecular Mycobacteriology Research Unit 

(MMRU – University of the Witwatersrand, South Africa) to ascertain the 

significance of the massive expansion of vapBC modules in mycobacteria, a 

subset of 10 vapBC modules from M. tuberculosis and the sole vapBC module in 

M. smegmatis, MSMEG_1283-MSMEG_1284, were selected for investigation. 

The selection was guided, in part, by information on gene essentiality and 

transcriptional responsiveness of vapBC gene expression available at the time that 

the study was initiated (Table 3.1 and 3.2).  

The vapCs Rv2546, Rv2548 and Rv2549c were included as part of this 

subset since these genes are contained in a contiguous cluster on the M. 

tuberculosis chromosome (Figure 3.1). The remaining Rv0549c, Rv2595c, 

Rv0627, Rv2010, Rv2829c and Rv3320c, were selected after generation of a 

phylogenetic tree containing all 47 M. tuberculosis VapC proteins (Figure 3.2) in 

an attempt to ensure that a representative vapC from each cluster was included in 

the study.  

Consistent with their designation as PIN domain proteins, most VapC 

proteins have the highly conserved Asp/Glu/Asp/Asp catalytic residues essential 

for ribonuclease activity (8, 14, 15, 22, 23). The vapC Rv1953, which encodes the 

Rv1953 protein that possesses only two conserved, active site acidic residues 

(Asp/Glu), was therefore included in the study as it was considered unlikely to 

possess nuclease function and, as such, could serve as a negative control (Figure 

3.3). 

 

 

 

 
Figure 3.1: Diagrammatic representation of the contiguous gene cluster of 
Rv2545-Rv2550c on the M. tuberculosis chromosome. The blue arrows represent 
antitoxin genes, and the red arrows represent toxin genes. This figure is not drawn to 
scale. 

 
Rv2545 Rv2546 Rv2548 Rv2547 Rv2550c Rv2549c 

92 bp 39 bp -1 bp 490 bp -1 bp 
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Table 3.1: Properties of mycobacterial VapB antitoxins selected for study 

  

VapB In vitro  
essentiality 
 (247) 

Properties 

Rv0550c No Induced by heat stress (270), during macrophage infections (230) and high concentrations of vancomycin (227) 

Rv0596c - Induced in a sigE mutant after SDS stress (179) 

Rv0626 - Induced in vivo but not in vitro (273); repressed during infection of human macrophage-like cells (80); and structure of C-
terminal region determined in complex with toxin Rv0627 (186) 

Rv1952 No  Induced during phosphate starvation (235) and during macrophage infections (80) 

Rv2009 No Induced during human macrophage infections (65, 230), in SCID mice (273), after SDS stress (179) and during transition 
to hypoxia (230); but repressed during nutrient starvation (18), hypoxia (256), and in wild type H37Rv vs. a phoP mutant 
(296);  Part of a genomic island (230) 

Rv2545 No Repressed at low pH in vitro (78); and a P19L polymorphism was identified in MDR strain of Mtb (129) 

Rv2547 No Induced during hypoxia (199, 230) and infection of macrophages (230, 268) 

Rv2550c No Induced during macrophage infections (268), in Balb/c mice (273), in the presence of high iron concentrations (238) and 
SDS stress (179); but repressed by hypoxia (256) and in a sigE mutant after SDS stress (179) 

Rv2830c Yes Induced during hypoxia (217), SDS stress (179) and during in vitro and in vivo growth (273) 

Rv3321c No Induced  in SCID mice (273) and during human macrophage infections (65) 

MSMEG_1283 - - 
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Table 3.2: Properties of mycobacterial VapC toxins selected for study 

- Unknown 

VapC In vitro 
essentiality 
 (247) 

Toxicity 
in E. coli 
(108) 

Toxicity in  
M. smegmatis 
(186, 230) 

Properties 

Rv0549c No Non-toxic Toxic Induced by hypoxia (199, 230), SDS stress (179), during adaptation to nutrient starvation 
(112), during infection of human macrophages (65, 230), and in the presence of high 
concentrations of vancomycin (227) 

Rv0595c No Non- 
toxic 

Non-toxic Required for survival in nonhuman primate lungs (66); induced during adaptation to nutrient 
starvation (112), macrophage infection (268) and by SDS stress (179). Part of a genomic 
island (230). 

Rv0627 Yes Non-toxic Non-toxic Structure determined in complex with C-terminal part of antitoxin (Rv0626) and biochemical 
evidence for ribonuclease activity (186). 

Rv1953 No Non-toxic Non-toxic C-terminally truncated and lacking part of the PIN domain. Induced during adaptation to 
nutrient starvation (112) 

Rv2010 No Non-toxic Toxic Induced during hypoxia (199) and in Balb/c mice (273), but repressed during nutrient 
starvation (18), adaptation to hypoxia (256) and in wild type H37Rv compared to a phoP 
mutant (296). Protein identified in 30-d infected guinea pig lungs (156). Part of a genomic 
island (230). 

Rv2546 No Non-toxic Non-toxic Induced in Balb/c mice (273) and during treatment with SRI#967, a compound exhibiting 
strong anti-mycobacterial properties (293) 

Rv2548 No Non-toxic Toxic Induced during hypoxia (199) and macrophage infections (268), but repressed in sputum (92). 

Rv2549c No Toxic Non-toxic Induced during macrophage infection (268) and in the presence of high iron concentrations 
(238). 

Rv2829c - Non-toxic Toxic Induced during macrophage infection (230), hypoxia (230, 256) and nutrient starvation (112). 
Protein identified in 30-d infected guinea pig lungs (156). 

Rv3320c No - Non-toxic Repressed during hypoxia (256) and nutrient starvation (18). Part of a genomic island (230). 

MSMEG_1284   Toxic  
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Figure 3.2: Phylogenetic tree of VapC proteins from mycobacteria. VapC proteins 
were aligned using ClustalW2 multiple sequence and alignment server 
(http://www.ebi.ac.uk/Tools/clustalw2/index.html). The tree was generated in Jalview 2.08.1 
based on percentage identity between sequences. The arrows represent the 10 selected VapCs. 
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Figure 3.3: Sequence alignment of the 11 VapCs encoded by the genes selected for 
study. VapC proteins were aligned using the PROMALS3D multiple sequence and structure 
alignment server (http://prodata.swmed.edu/promals3d/promals3d.php) (222). The circled 
residues represent the conserved catalytic residues essential for nuclease activity. 

3.2 Differential growth inhibitory effects of VapC toxins in mycobacteria 

 The effect of the chosen VapC toxins in mycobacteria was assessed using an 

uncoupled conditional expression system which uses the antibiotic anhydrotetracycline 

(ATc) as an inducer. In this system, the gene of interest is under the control of an ATc-

regulated Pmyc1tetO promoter-operator element carried on the episomal pSE100 

plasmid, and a tetracycline repressor (tetR) located on an integrating plasmid is used to 

regulate the expression of the gene by varying the concentration of the inducer (70). 
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Briefly, when both the tetracycline repressor (TetR) and operator (tetO) are present in 

mycobacteria, the TetR binds to the tetO sequence and prevents expression of the gene 

of interest. However, upon addition of ATc, the antibiotic binds to the TetR resulting 

in a change in conformation of the TetR, leading to dissociation of TetR from tetO 

allowing for expression of the gene of interest (Figure 3.4). The modularity of this 

system also allows for assessment of gene function during constitutive or conditional 

expression in the absence and presence of TetR, respectively (Figure 3.5). 

 

 

 

 

 

 

Figure 3.4: Mechanism for ATc conditional gene expression. Annotation: TetR: 
tetracycline repressor; tetO: tetracycline operator; ATc: anhydrotetracycline. The blue circles 
represent ATc molecules. 

 

 

 

              

 

 

 

 
 
 
Figure 3.5: Schematic representation of the modularity of the ATc expression 
system used. Annotation: The purple box represents the Pmyc1tetO promoter-operator 
element and the red box represents the gene. 

 

For the purposes of this study, the vapC genes were inserted downstream of the 

Pmyc1tetO promoter-operator element of pSE100 (Figure 3.6 & Section 3.2.1), and 

constitutive expression of these toxins was achieved by electroporating these 

constructs into mycobacteria in the absence of a TetR. Since there is some evidence to 

suggest that VapCs halt translation through mRNA cleavage (14, 15, 24, 25), the 
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physiological effect of each toxin was assessed by scoring transformation efficiencies. 

In this assay, low transformation efficiency would indicate VapC toxicity, whereas a 

transformation efficiency approximating that of the empty vector control would 

suggest a lack of VapC-mediated toxicity. 

 For conditional expression of VapCs on the other hand, the VapC constructs 

were co-electroporated into mycobacteria together with a TetR-encoding gene, which 

was either under the control of a strong mycobacterial promoter (Psmyc) as part of the 

L5-based integration vector pMC1s (70); or under the control of a mycobacterial 

promoter of intermediate strength (Pimyc) as part of the L5-based integration vector 

pMC2m (107) (Figure 3.6). In this configuration, addition of ATc would enable 

assessment of regulated expression of VapCs on the growth and viability of 

mycobacteria. 

 

 

 

 
 
 
 
 
 
 
Figure 3.6: Schematic representation of the replicating vector pSE100 and the 
integrating vectors pMC1s and pMC2m. Annotation: rmBT1: transcriptional 
terminator; rmBT2: transcriptional terminator; Puv15: strong mycobacterial promoter; Ptb21: 
intermediate mycobacterial promoter; T4g32: E. coli transcriptional terminator; ColE1: origin 
of replication for E. coli; ori myc: origin of replication for mycobacteria; hygR: Hyg resistance 
cassette; tetR: tetracycline repressor gene. 

3.2.1 Effect of constitutive ectopic VapC over-expression on the viability of wild type 

mycobacteria 

M. smegmatis mc2155 has been used widely as a model for studying 

mycobacterial physiology because it is a non-pathogenic, faster growing 

mycobacterium with a high transformation efficiency that is more easily genetically 

manipulated than its pathogenic relative M. tuberculosis (14, 198, 234, 259, 265, 277). 

Although its genome is nearly twice as large as that of M. tuberculosis, M. smegmatis 

has only one identifiable vapBC module on its chromosome (237), where the vapB is 
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homologous to Rv0623 and the vapC encodes a protein homologous to Rv0624 from 

M. tuberculosis (Figure 3.2). As such, M. smegmatis mc2155 lacks vapB antitoxin 

homologues that could potentially counter the toxic effects of the M. tuberculosis 

VapCs under investigation in this study. These factors therefore suggested that M. 

smegmatis would be a useful host system to initially assess the toxicity or growth 

inhibitory effects of M. tuberculosis VapC proteins. 

To determine the effect of the VapCs chosen for study on the viability of M. 

smegmatis, the vapC ORFs were amplified by PCR to incorporate a standardized 

consensus ribosome binding site (GGAAG/A). The amplicons were cloned into the 

BamHI/HindIII (Rv2546, Rv2548 and Rv2549c), BamHI/PstI (Rv0549c, Rv0595c, 

Rv2829c and Rv1953), PstI/HindIII (Rv0627) or PvuII (MSMEG_1284) sites of the 

episomal plasmid pSE100, under the control of the regulatory element, Pmyc1tetO. The 

constructs pSE0549c, pSE0595c, pSE1953, pSE2010 and pSE2829c were generated 

by Dr. Diane Kuhnert, pSE0627 and pSE3320c were constructed by Dr. Garth 

Abrahams, whereas pSE2546, pSE2548, pSE2549c, and pSESM1284 were generated 

in this study. 

All eleven constructs were electroporated into M. smegmatis without a 

corresponding tetR-encoding vector to allow for constitutive expression of the VapC 

proteins (Figure 3.5). As discussed above (Section 3.2), VapC toxicity was determined 

by scoring the transformation efficiency of the corresponding VapC expression vector. 

In this assay, a low transformation efficiency value is indicative of VapC toxicity 

whereas a high efficiency value suggests limited or no toxicity. The empty vector, 

pSE100, was used as negative control in this assay. 

The results of this experiment revealed that pSE0549c, pSE0595c, pSE2549c, 

pSE2829c conferred toxicity to M. smegmatis, as evidenced by the fact that their 

transformation efficiencies were ≥ 3-log10 lower than the empty vector control (Table 

3.3). In accordance with the prediction that Rv1953 would lack ribonuclease activity 

and hence be non toxic to mycobacteria, the transformation efficiency of pSE1953 was 

indistinguishable from pSE100. However, it is interesting to note that the VapCs 

Rv0627, Rv2010, Rv2546, Rv2548 and MSMEG_1284 also appeared to have no 

growth inhibitory effects on M. smegmatis, as the transformation efficiencies of their 
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expression vectors were comparable to that of pSE100 (between 0.08- and 1.3-fold of 

the transformation efficiency of pSE100) (Table 3.3).  

 
Table 3.3: Toxicity of VapCs in the M. smegmatis wild type strain as assessed by 
transformation efficiency of VapC expressing vectors 

VapC Plasmid Transformation  
efficiency (CFU/µg)* 

 - pSE100 2.7 × 104 
Rv0549c pSE0549c 63 
Rv0595c pSE0595c 8 
Rv0627 pSE0627 2.4 × 104 
Rv1953 pSE1953 2.6 × 104 
Rv2010 pSE2010 2.1 × 103 
Rv2546 pSE2546 3.5 × 104 
Rv2548 pSE2548 2.0 × 104 
Rv2549c pSE2549c 11 
Rv2829c pSE2829c 15 
Rv3320c pSE3320c 1 
MSMEG_1284 pSESM_1284 1.5 × 104 

*These data represent the results from one of three independent experiments. 

Interestingly, electroporation of pSE0549c into M. smegmatis resulted in the 

production of both normal-sized colonies as well as a background ‘haze’ of small 

colonies (Figure 3.7A). This phenomenon was not observed when M. smegmatis was 

electroporated with the vectors pSE0595c, pSE2549c and pSE2829, which carry toxic 

VapC-encoding genes: in these cases, normal M. smegmatis colony forming 

phenotypes were observed (Figure 3.7B). 

 
 
 
 
 
 
 
 
 
 
Figure 3.7: Phenotype of M. smegmatis upon constitutive ectopic over-expression 
of (A) Rv0549c and (B) Rv2549c. 

Large 
colony 
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Restriction analyses of plasmids recovered from the large colonies obtained by 

electroporation of M. smegmatis with pSE0549c showed rearrangement of the DNA 

(Figure 3.8A – left gel). This was not the case for the plasmids isolated from haze-like 

colonies, which appeared identical to the original plasmid (Figure 3.8A- right gel). 

However, when plasmid DNA was recovered from a haze-like colony and investigated 

further by sequence analysis, an 18bp deletion was observed within Rv0549c. These 

data, therefore, suggest that plasmids expressing toxic VapCs undergo either plasmid 

rearrangement or other types of mutation(s) to ensure that little or no toxic protein is 

produced, in a bid to ensure M. smegmatis cell survival.  

This observation made it imperative to ascertain that the constructs expressing 

the apparently non-toxic VapCs were not rendered thus through mutation(s) or gross 

plasmid rearrangement. To this end, the plasmids expressing the non-toxic Rv0627, 

Rv2546, Rv2548 and MSMEG_1284 VapCs were recovered from the respective M. 

smegmatis transformants and analyzed. Restriction mapping together with sequencing 

of the promoter-operator regions of the toxin genes revealed that the plasmids 

pSE0627, pSE2546 pSE2548 and pSESM_1284 recovered post-electroporation were 

indistinguishable from the original constructs used for electroporations (Figure 3.8B, 

C, D & E). Taken together, these data therefore suggest that whilst Rv0627, Rv2546, 

Rv2548, MSMEG_1284 are non-toxic to M. smegmatis and undergo no plasmid 

alterations, plasmids expressing toxic VapCs are rearranged in such a manner as to 

reduce/ eliminate VapC toxicity. 
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Figure 3.8: Restriction mapping of constructs recovered post-constitutive VapC 
expression in M. smegmatis. In all panels, a schematic representation of the original 
plasmid is depicted and the position of restriction sites annotated. Also, with the exception of 
(B), Lane 1 for all gels displays the separation of the molecular weight marker Roche Marker 
III or IV, with the fragment sizes adjacent to the gel and Lane 2 shows uncut plasmid DNA. 
(A) pSE0549c: Comparison of restriction digests of plasmids for both gels, where Lane 3: 
EcoRV, Lane 4: BamHI, Lane 5: HindIII, Lane 6: BamHI/HindIII, Lane 7: SalI and Lane 8: 
EcoRI, showed the expected fragment sizes from a haze-like colony (right gel) but gross 
plasmid rearrangement in the large colonies (left gel) since none of the expected fragment 
sizes were detected. (B) pSE0627: Here, Lane 7 displays the separation of Roche Marker IV, 
with the fragment sizes adjacent to the gel.  Restriction analysis shows the expected fragment 
sizes with all enzymes (Lane 2: SalI, Lane 3: EcoRI, Lane 4: MluI, Lane 5: PstI, Lane 6: 
MluI/PstI and Lane 7: MluI/EcoRI). (C) pSE2546: Restriction analysis shows the expected 
fragment sizes with all enzymes (Lane 3: SalI, Lane 4: SphI, Lane 5: StuI, Lane 6: StuI/SphI, 
Lane 7: EcoRI and Lane 8: EcoRI/SphI). (D) pSE2548: Restriction analysis shows the 
expected fragment sizes with all enzymes (Lane 3: PstI, Lane 4: XhoI, Lane 5: StuI, Lane 6: 
SphI, Lane 7: StuI/SphI Lane 8: EcoRI and Lane 9: EcoRI/SphI). (E) pSESM_1284: 
Restriction analysis shows the expected fragment sizes with all enzymes (Lane 3: EcoRI, Lane 
4: NruI, Lane 5: PvuI, Lane 6: StuI). 
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Effect of constitutive M. tuberculosis VapC over-expression on its native host 

The effect of the ten selected M. tuberculosis VapC proteins was then assessed 

in wild type M. tuberculosis. A major difference between this host strain when 

compared to M. smegmatis is that wild type M. tuberculosis carries the cognate VapB 

antitoxin-encoding gene as part of the corresponding chromosomal vapBC module. As 

such, the consequence of VapC expression may differ in the native host compared to 

the heterologous M. smegmatis host.  

The expression constructs for the ten M. tuberculosis VapCs were 

electroporated into M. tuberculosis in the absence of a TetR. As above, transformation 

efficiency was used to assess the effect of constitutive VapC expression, with low 

efficiencies indicating toxicity. This experiment revealed that pSE0549c, pSE0595c, 

pSE2549c, pSE2829c and pSE3320c were poorly tolerated in M. tuberculosis, as 

evidenced by � 2-log10 lower transformation efficiencies when compared to the empty 

vector control. In contrast, pSE0627, pSE1953, pSE2010, pSE2546, and pSE2548 

conferred no apparent toxicity, displaying transformation efficiencies comparable to 

that of pSE100 (between 0.5- and 3.2- fold of the transformation efficiency of 

pSE100) (Table 3.4). Restriction mapping of plasmids recovered from randomly 

selected transformants revealed the rearrangement of the constructs expressing the 

toxic VapCs Rv0549c, Rv0595c, Rv2549c, Rv2829c and Rv3320 in the surviving 

transformants (data not shown). These results mirror those in M. smegmatis (Table 

3.3) and therefore suggest that the heterologous M. smegmatis host was appropriate for 

assessing VapC toxicity. 

Taken together, these data suggest a differentiation in VapC function in 

mycobacteria, where Rv0627, Rv1953, Rv2010, Rv2546, and Rv2548 are non-toxic 

whilst Rv0549c, Rv0595c, Rv2549c, Rv2829c and Rv3320c are toxic, with Rv0549c 

being the least potent of the toxic VapC proteins.  
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Table 3.4: Toxicity of VapCs in an M. tuberculosis H37Rv wild type strain 
assessed by transformation efficiency of VapC expression vector 
   VapC Plasmid Transformation  

efficiency (CFU/µg)* 
- pSE100 3.0 × 106 
Rv0549c pSE0549c 1.4 × 104 
Rv0595c pSE0595c 3.3 × 103 
Rv0627 pSE0627 8.7 × 106 
Rv1953 pSE1953 5.6 × 106 
Rv2010 pSE2010 9.7 × 106 
Rv2546 pSE2546 1.6 × 106 
Rv2548 pSE2548 2.6 × 106 
Rv2549c pSE2549c 8.4 × 102 
Rv2829c pSE2829c 1.0 × 104 
Rv3320c pSE3320c 9.0 × 102 

*These data represent the results from one of four independent experiments 

3.2.2 Moderate regulation of VapC expression is insufficient to repress toxic VapC 

proteins in wild type M. smegmatis 

To probe whether expression of tetR under the control of a mycobacterial 

promoter of intermediate strength (Pimyc) could regulate expression of the toxic VapCs, 

and hence, modulate their toxic effects on M. smegmatis, the constructs pSE0549c, 

pSE0595c, pSE2549c, pSE2829c and pSE3320 were co-electroporated into M. 

smegmatis together with pMC2m to generate M. smegmatis vapC::pMC2m strains, 

which were selected on 7H10 plates containing both hygromycin (Hyg) and 

kanamycin (Km), but not ATc. Notably, co-electroporation of pMC2m with pSE0549c 

did not result in the ‘haze-like’ colony phenotype of pSE0549c observed in the 

absence of a TetR (Figure 3.7). Here, the resulting transformants were phenotypically 

similar to the control transformants recovered by co-electroporation of the empty 

vector, pSE100, with pMC2m.  

The co-transformation efficiency of pSE0549c with pMC2m was also similar 

to that of the M. smegmatis pSE100::pMC2m and M. smegmatis pSE1953::pMC2m 

control strains (Table 3.5). This differs from the observations above (Table 3.3), and 

shows, quite clearly, that Rv0549c toxicity that is evidenced under conditions of 

maximal, constitutive ectopic expression, can be effectively eliminated when the 
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expression level of this VapC is dampened by a moderately expressed TetR. In 

contrast, co-transformation of pSE0595c, pSE2549c and pSE2829c with pMC2m 

resulted in ≥2-log10 lower transformation efficiencies compared to the empty vector 

control strain, with co-electroporation of pSE3320c with pMC2m yielding no colonies 

(Table 3.5).  

As observed with plasmids recovered from transformants obtained by 

electroporation of M. smegmatis with the VapC expression vectors alone (Figure 3.8), 

the toxic VapC-expressing episomal plasmids isolated from M. smegmatis 

transformants obtained by co-electroporation with pMC2m had undergone gross 

plasmid rearrangement, as assessed by restriction mapping (data not shown). This 

observation convincingly demonstrates that a promoter of intermediate strength does 

not allow for sufficient TetR expression to repress the expression of these VapCs. In 

addition, these findings corroborate those in Section 3.2.1 which suggest a 

differentiation in VapC toxicity, with Rv0549c being the least toxic of the toxic VapCs 

investigated.  

 

Table 3.5: Toxicity of VapCs in M. smegmatis as assessed by co-transformation 
efficiency of VapC expressing vectors and pMC2m 
VapC Plasmid Transformation  

efficiency (CFU/µg)* 

- pSE100 7.2 × 103 
Rv0549c pSE0549c 3.7 × 103  
Rv0595c pSE0595c 2.0 × 101 
Rv1953 pSE1953 3.2 × 104 
Rv2549c pSE2549c 2.2 × 101 
Rv2829c pSE2829c 1.0 × 101 
Rv3320 pSE3320c 0 

*The data represent the results of one of three independent experiments 

3.2.3 Tight repression of tetO is sufficient for regulation of M. tuberculosis VapC 

toxicity in wild type M. smegmatis 

 To determine whether the strong Psmyc promoter was able to drive expression 

of the TetR to levels sufficient for repression of VapC toxicity, the construct 

pSE2549c, expressing the toxic VapC Rv2549c, was co-electroporated with pMC1s 
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into M. smegmatis. As controls, the pSE100 vector as well as the two non-toxic 

constructs pSE2546 and pSE2548 were co-electroporated with pMC1s into M. 

smegmatis. The transformation efficiencies of all transformants, selected on 7H10 

plates containing Hyg and Km but not ATc, was similar (~ 104 CFU/µg of DNA), 

thereby suggesting that enough TetR was expressed to repress expression of the 

Rv2549c gene.  

To assess the integrity of the VapC expression plasmids, electroductions from 

the M. smegmatis transformants were performed to recover HygR plasmids from the 

pSE2546, pSE2548 and pSE2549c co-electroporations. Consistent with the 

constitutive over-expression data (Figure 3.8), restriction mapping and sequencing of 

the episomal plasmids recovered from pSE2546 and pSE2548 transformants revealed 

that the plasmids had neither undergone rearrangements nor had they acquired point 

mutations (data not shown). In the case of transformants recovered from the pSE2549c 

co-electroporation, the Rv2549c expression vector was stable in the absence of the 

ATc inducer, as it did not undergo plasmid rearrangement or acquire point mutations 

(data not shown). This observation therefore establishes that vapC expression is 

sufficiently repressed by the TetR expressed under the control of a strong promoter, to 

avoid plasmid loss or mutation(s) arising as a result of toxic gene expression.  

3.2.4 Effect of conditional vapC expression on the growth and viability of M. 

smegmatis 

Since pMC1s was able to repress toxic vapC expression, its usefulness for 

conditional toxin expression was determined. To this end, each of the VapC 

expressing M. smegmatis strains, in which vapC expression was repressed by the 

highly expressed TetR carried on pMC1s, were spotted on solid media containing 

Hyg, Km and varying concentrations of ATc. As reported under Section 3.2.1, Rv2546 

and Rv2548 were not toxic when expressed under conditions of maximal de-repression 

(i.e. in the absence of TetR). Consistent with these results, no growth inhibition was 

observed for strains conditionally expressing Rv2546 and Rv2548 at concentrations of 

ATc up to 50ng/ml. In contrast, conditional expression of Rv2549c was growth 

inhibitory to M. smegmatis. However, growth inhibition was only observed at ATc 

concentrations � 6.2ng/ml (Figure 3.9).  
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Figure 3.9: The effect of conditional VapC expression on the growth of M. 
smegmatis. Spotting assays in which 10µl of 10-fold serial dilutions of late logarithmic phase 
cells were spotted on 7H10 agar with increasing concentrations of ATc (1.6, 6.2 and 50ng/ml) 
and incubated for 24 - 48 h at 37°C before scoring. 

 

The effect of these M. tuberculosis VapC proteins on the growth and viability 

of M. smegmatis was also assessed in liquid media. Here, the toxins were induced 

during early logarithmic growth stages (OD600 ~ 0.1) with ATc at a concentration of 

25ng/ml, which was sufficiently high to confer growth inhibition on M. smegmatis on 

solid medium (Figure 3.9). The growth and viability of M. smegmatis was monitored 

over a period of up to 25h. The VapC proteins Rv2546 and Rv2548 had no effect on 

M. smegmatis growth, as assessed spectrophotometrically (OD600) and by enumeration 

of CFUs (Figure 3.10). Restriction mapping and sequence analyses of the episomal 

plasmids expressing Rv2546 and Rv2548 for up to 24h show that neither construct had 

undergone plasmid rearrangement or acquired point mutations (data not shown), thus 

ruling out plasmid instability as a reason for the lack of toxicity in this case.  
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Figure 3.10: Effect of conditional ectopic expression of Rv2546 and Rv2548 on the 
growth and viability of M. smegmatis. (A) OD600 spectrophotometric measurements were 
made at 1.5h intervals for 12h. (B) CFUs were assessed by plating 100µl of 10-fold serial 
dilutions of cells every 3h over a 12h period, and plates were scored after 3 - 4 days incubation 
at 37°C. Annotation: Empty symbols represent induced samples and filled in symbols 
represent uninduced samples 

 

In contrast, Rv2549c was growth inhibitory in liquid media, as assessed by 

OD600 measurements which showed no increase above the starting OD600 value over 

the time period of the experiment (Figure 3.11A). CFU enumeration of samples taken 

over the 25h time course revealed a 2-log10 decrease in viability within 3h post-

induction, which was maintained for the duration of the experiment (Figure 3.11B).  
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Figure 3.11: Effect of conditional ectopic expression of Rv2549c on the growth 
and viability of M. smegmatis. (A) OD600 spectrophotometric readings were taken at   2h 
intervals for 16h, and then again at 25h post-induction of Rv2549c. (B) CFUs were assessed 
by plating 100µl of 10-fold serial dilutions of cells every 4h over a 16h period and at 25h post-
induction of Rv2549c. Plates were scored after 3 - 4 days incubation at 37°C. Annotation: 
Empty symbols represent induced samples and filled in symbols represent uninduced samples. 
 

To ascertain whether the viable M. smegmatis colonies obtained subsequent to 

Rv2549c induction (Figure 3.11) still retained the intact pSE2549c and pMC1s 

plasmids, ten colonies from each time point assayed were spotted onto solid 7H10 

media containing Km, Hyg and/or ATc. As a control, colonies were recovered from 

the Rv2549c uninduced sample at the same time points. All of the colonies recovered 

from the uninduced Rv2549c sample behaved as expected i.e. they grew in the 

presence of Hyg and Km, but not upon induction of the toxin by addition of ATc 

(Figure 3.12, top panel). This confirmed that the KmR pMC1s integrating plasmid was 
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intact, and that the HygR pSE2549c episomal plasmid was functional since it grew on 

Hyg and addition of ATc resulted in growth arrest due to Rv2549c expression.  

 

 

 

 

 

Figure 3.12: Assessing plasmids retained by viable M. smegmatis colonies by use 
of antibiotic markers. Single colonies recovered at varying time-points after 3 - 24h post-
induction of Rv2549c were resuspended in 50µl 7H9 media and 10µl was spotted onto 7H10 
media containing antibiotics as annotated above. 
 

In contrast, while the M. smegmatis colonies recovered after induction of 

Rv2549c in liquid culture appear to have retained pMC1s since these grew on Km, the 

episomal plasmid did not remain intact. These episomal plasmids either appeared to 

have been lost, as evidenced by the failure to grow on Hyg, or to have rearranged, as 

observed by the ability of the M. smegmatis clones to thrive in the presence of ATc 

(Figure 3.12, bottom panel). These data suggest that within one replication cycle of M. 

smegmatis, either loss or extensive rearrangement of pSE2549c occurs so as to 

mitigate the growth inhibitory effects of the toxic Rv2549c VapC protein. 

To further investigate the molecular basis of these phenotypes, plasmids were 

recovered from the M. smegmatis clones obtained following ATc induction in liquid 

culture. From the hygromycin sensitive colonies, no episomal plasmid could be 

recovered, confirming that the pSE2549c plasmid had been lost from these clones. 

Moreover, analyses of all plasmids recovered from colonies that showed a HygR and 

ATcR phenotype showed extensive plasmid rearrangement within the tetO and/or the 

Rv2549c ORF, as evidenced by restriction mapping (Figure 3.13). These observations 

indicate that Rv2549c is extremely toxic to M. smegmatis, and to survive, the 

organism either renders the toxic Rv2549c non-toxic through mutations, or it prevents 

induction of Rv2549c expression. 
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Figure 3.13: Restriction mapping of pSE2549c recovered post-VapC induction in 
M. smegmatis. (A) Schematic representation of the original pSE2549c plasmid with the 
position of the restriction sites annotated. (B) For assessment of gross plasmid rearrangement 
and mutations within the tetO region, the 10 clones recovered by electroductions into E. coli 
after induction of VapC expression were digested with SphI and EcoRI. Here, only 3 clones 
retained the expected 1.6 kb, 2.0 kb and 2.3 kb fragment size, thus suggesting no plasmid 
rearrangement in these cases, but plasmid rearrangement in the remaining 7 clones. (C) For 
assessment of gross mutations within Rv2549c, the 9 of the 10 clones recovered by 
electroduction in (B) were digested with ScaI. Here, none of the clones displayed the expected 
linearized 5.9 kb fragment, confirming rearrangement and/or loss of the Rv2549c for all 10 
clones. All empty lanes represent colonies from which plasmids were not recovered i.e. the 
plasmids had been lost, and Lane 10 (Gel B) and Lane 9 (Gel C) displays the separation of the 
molecular weight marker marker IV (Roche), with fragment sizes adjacent to the gels. 
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3.2.5 Regulated expression of Rv2549c results in bacteriostasis of wild type M. 

tuberculosis 

To understand the effect of expression of a toxic M. tuberculosis VapC on the 

growth and viability of its native host, pSE2549c was co-electroporated with pMC1s 

into wild type M. tuberculosis. As controls, the constructs pSE2546 and pSE2548, 

which direct the ectopic over-expression of VapCs that were non-toxic in M. 

smegmatis, were used in addition to the empty vector, pSE100. PCR-based genotyping 

at the attB locus (See Appendix C for strategy) confirmed that pMC1s successfully 

integrated into the H37Rv chromosome following electroporation of this plasmid (data 

not shown). In addition, the transformation efficiency of all constructs was similar (~ 

102 CFU/µg of DNA), thereby confirming that pSE2549c expression was sufficiently 

repressed by the highly expressed TetR from pMC1s to restrict the growth inhibitory 

effects of this VapC. Each strain was then grown in liquid media to early logarithmic 

growth stages (OD600 ~ 0.1) and the VapCs were induced with ATc at a concentration 

of 25ng/ml. The effect of Rv2546 and Rv2548 on the viability of M. tuberculosis was 

assessed by scoring CFUs over an 8-day period. Consistent with the transformation 

efficiency data (Table 3.4), the strains expressing Rv2546 and Rv2548 did not affect 

the viability of wild type M. tuberculosis as these displayed the same growth kinetics 

as the control strain carrying the empty vector, pSE100  (Figure 3.14). 
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Figure 3.14: Effect of ectopic expression of Rv2546 and Rv2548 on the viability of 
wild type M. tuberculosis H37Rv. Each M. tuberculosis transformant was grown in media 
containing Hyg and Km to mid-logarithmic phase and diluted to OD600 0.04 in 30ml 7H9 
media. The cultures were then grown overnight at 37°C standing, and divided the next day into 
2 equal aliquots of 10ml each. To one aliquot, ATc was added at a concentration of 25ng/ml to 
induce the VapC toxin. To determine the effect of toxin over-expression on the viability of M. 
tuberculosis, CFUs were assessed by plating 100µl of 10-fold serial dilutions of cells over an 
8-day period post VapC-induction, and plates were scored after 21 - 27 days incubation at 
37°C. Annotation: Empty symbols represent induced samples and filled in symbols represent 
uninduced samples 
 

In contrast, regulated expression of Rv2549c in its native host resulted in 

growth inhibition for at least 2 days, as observed by OD600 measurements (Figure 

3.15A). Whilst this was similar to the data observed in M. smegmatis (Figure 3.11A), 

regulated expression of Rv2549c appeared to result in bacteriostasis rather than 

cidality of M. tuberculosis during these first 2 days post-induction, as assessed by CFU 

enumeration (Figure 3.15B). This suggests that the presence of the cognate antitoxin 

on the chromosome may be able to mitigate, to some extent, the growth inhibitory 

effects of ectopically expressed Rv2549c. Interestingly, rearrangement or loss of the 

pSE2549c plasmid occurred after day 2 (data not shown), presumably to ensure that 

Rv2549c is no longer expressed and thus allowing the cells to overcome the Rv2549c-

induced bacteriostasis. 
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Figure 3.15: Effect of Rv2549c on viability of wild type M. tuberculosis H37Rv. 
The M. tuberculosis transformant containing pSE2549c and pMC1s was grown in media 
containing Hyg and Km to mid-logarithmic phase and diluted to OD600 0.04 in 30ml 7H9 
media. The culture was then grown overnight at 37°C standing, and divided the next day into 2 
equal aliquots of 10ml each. To one aliquot, ATc was added at a concentration of 25ng/ml to 
induce Rv2549c. (A) The effect of Rv2549c on the growth of M. tuberculosis was assessed by 
OD600 spectrophotometric readings taken over an 8-day period. (B) The effect of ectopic 
expression of Rv2549c on the viability of M. tuberculosis was determined by CFU assessment. 
Here, plating of 100µl of 10-fold serial dilutions of cells over an 8-day period post-induction 
of Rv2549c was performed, and the plates were scored after 21 - 27 days of incubation at 
37°C.  Annotation: Empty symbols represent induced samples and filled in symbols represent 
uninduced samples 

3.2.6 VapCs are transcribed but not evenly translated in M. smegmatis 

To assess whether the lack of toxicity of non-toxic VapC proteins might be due 

to deficient expression of the vapCs, semi-quantitative RT-PCR was used to 

investigate the expression of the Rv2546 gene upon addition of ATc at a concentration 

of 25ng/ml, which has been shown not induce Rv2546 toxicity (Figure 3.10 & 3.14). 

The sigA housekeeping gene was used as an internal control, and the Rv2549c 
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transcript was used as a positive control, since expression of this vapC causes toxicity 

in mycobacteria (Figure 3.11 & 3.15). As shown below (Figure 3.16), no amplicon 

was detected in reactions in which the RNA samples had not been reverse transcribed, 

thus excluding genomic DNA contamination. As expected, the Rv2549c control 

transcript was detected upon reverse transcription (Figure 3.16A, +ATc; +RT). 

Interestingly, Rv2549c transcript was also detected in the uninduced sample (Figure 

3.16A, -ATc; +RT), suggesting that this conditional expression system is leaky. 

Nonetheless, the level of Rv2549c transcript observed after treatment with ATc for a 

period of 1h, was significantly higher than that in the uninduced control. Similar 

results were obtained with the non-toxic vapC, Rv2546 (Figure 3.16B). These results 

therefore confirm that the VapCs Rv2549c and Rv2546 are conditionally expressed by 

addition of ATc and suggest that the lack of toxicity associated with ectopic 

expression of Rv2546 in a mycobacterial host is not due to a lack of transcription of 

the encoding gene. 

 
 

 

 

 

 

 

Figure 3.16: Inducible expression of (A) the toxic Rv2549c vapC and (B) the non-
toxic Rv2546 vapC. Cells were grown in a 50ml culture volume to mid-logarithmic phase 
(OD600 ~ 0.4 - 0.7), and divided into 2 equal volumes. To one 25ml aliquot, ATc was added at 
a concentration of 50ng/ml to induce VapC expression. Both 25ml cultures were then 
incubated at 37°C for 1h to allow for mRNA expression in the induced samples. Both RNA 
extraction and reverse transcription were performed as described in Section 2.8, and 10µl of 
the amplified cDNA was loaded onto a 2% agarose gel. 

Since the lack of toxicity of Rv2546 could be as a result of defective post-

translational processing, an epitope tagging system was used to detect VapC proteins 

when conditionally expressed in M. smegmatis (Figure 3.17). Here, the gene of interest 

was amplified by PCR to incorporate the standardized consensus ribosome binding site 

(GGAAG/A) at the N-terminus in order to optimize the yield of expressed protein. The 

PCR amplification also incorporated a triple (3×) FLAG sequence at the C-terminus, 

followed by the native stop codon. This amplicon was cloned into the BamHI/HindIII 
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site of pSE100 under the control of the Pmyc1tetO promoter-operator element. The 

resulting FLAG-tagged construct, pSEvapC_FLAG, was co-electroporated with 

pMC1s into M. smegmatis to allow for conditional gene expression upon addition of 

ATc. The supernatants and pellets from whole-cell extracts of ATc-induced vs. 

uninduced M. smegmatis strains were run on SDS-PAGE gels, and blotted onto 

nitrocellulose membranes before detection of the FLAG-tagged fusion protein by an 

anti-FLAG antibody (Figure 3.17).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.17: Schematic representation of construction, expression and detection 
of epitope tagged VapC proteins in M. smegmatis. Annotation of the episomal 
construct: The purple box represents the Pmyc1tetO promoter, the red box represents the VapC 
with a consensus ribosome binding site, the grey box represents the 3 × FLAG sequence and 
the black box denotes the stop codon. 
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As per Figure 3.17, the non-toxic Rv2546 was epitope-tagged and co-

electroporated with pMC1s into M. smegmatis. After addition of ATc at a 

concentration of 50ng/ml for 3h to allow for protein expression, detection of the 

FLAG-tagged fusion protein by an anti-FLAG antibody, revealed the tagged 17.53kDa 

Rv2546 protein in both the supernatant and pellet fractions of M. smegmatis, with 

more protein observed in the supernatant fractions (Figure 3.18). As observed with the 

transcription data (Figure 3.16), this gene expression system was leaky since protein 

was observed even in the absence of the ATC inducer (Figure 3.18). These data 

conclusively demonstrate that, although insoluble Rv2546 was observed in the pellet 

fraction, this non-toxic VapC was translated using this system. This therefore excluded 

defective post-translational processing as a factor for non-toxicity of this VapC. 

 

 

 

 

 

 

 

Figure 3.18: Detection of the FLAG-tagged Rv2546 protein. Cells were grown in a 
50ml culture volume to early-logarithmic phase (OD600 0.3 - 0.4), and divided into 2 equal 
volumes. To one 25ml culture aliquot, ATc was added to a concentration of 50ng/ml to induce 
Rv2546 expression. Both 25ml culture aliquots were then incubated at 37°C for 3h to allow 
for protein translation in the induced samples. Subsequent to protein extraction, a Bradford 
assay was performed to ensure equal amounts of total protein (10µg) were loaded into each 
well of the SDS-PAGE gel. Hybridization and western blotting were performed as previously 
described (Section 2.9) to detect the flag-tagged protein. 

3.2.7 A specific VapC expression threshold appears to be required for toxicity in M. 

smegmatis   

   The effect of Rv2549c expression on the growth of M. smegmatis was 

responsive to the concentration of ATc (Figures 3.9 & 3.19A), suggesting that the 

system was titratable. Western blot analysis of M. smegmatis cultures expressing 

Rv2549c carrying a C-terminal 3× FLAG tag (Figure 3.17), that were induced with 

varying ATc concentrations, revealed that the level of Rv2549c protein was indeed 
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titratable, with increased amounts of VapC observed when higher ATc concentrations 

were used for induction (Figure 3.19B). 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
Figure 3.19: The titratable Rv2549c VapC initiates mycobacterial toxicity when 
its protein levels reach the threshold caused by >>>>3ng/ml ATc.  
(A)  Spotting assays in which 10µl of 10-fold serial dilutions of mid-logarithmic phase M. 
smegmatis cells were spotted on 7H10 agar with or without ATc (0 - 50 ng/ml) and incubated 
for 24 - 48 h at 37°C before scoring. (B) To determine Rv2549c concentrations by Western 
blotting, 25ml cultures induced with varying ATc concentrations were incubated at 37°C for 
3h. Extraction, quantification and detection of the Rv2549c protein, was performed as 
previously described (Section 2.9), with 3µg of protein from each culture loaded into each lane 
of the SDS-PAGE gel. 
 

Since toxicity of Rv2549c was only observed once a certain threshold of the 

VapC was present in the cell (Figure 3.19), it is possible that the reason for the non-

toxicity attributed to Rv2546 was as a result of insufficient Rv2546 present in the cell. 

To determine if this was the case, the level of Rv2546 protein produced when 

constitutively expressed (i.e. in the absence of a TetR) was compared to the level of 

Rv2549c protein  when conditionally expressed by induction  with ATc at a 

concentration of 2ng/ml, which is known not to cause mycobacterial toxicity (Figure 

3.19). Briefly, the expression vector carrying the C-terminally FLAG-tagged Rv2546 

under the control of Pmyc1tetO was electroporated into M. smegmatis in the absence of 

a TetR. An ensuing M. smegmatis::pSE2546_FLAG transformant was grown to mid-

logarithmic phase and as per Figure 3.17, cellular proteins were extracted, quantified 

using the Bradford Assay (Section 2.9). Equal amounts of total protein from M. 
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smegmatis::pSE2546_FLAG and M. smegmatis::pSE2549c_FLAG obtained when 

Rv2549c was either uninduced or induced with ATc at a concentration of 2ng/ml were 

separated by SDS-PAGE electrophoresis. The epitope-tagged Rv2546 and Rv2549c 

proteins were then detected using an anti-FLAG antibody, as described above (Figure 

3.17). This experiment revealed that even when tagged Rv2546 was constitutively 

expressed, the level of this protein was markedly lower than that of the tagged 

Rv2549c protein when induced with 2ng/ml ATc (Figure 3.20). The profound 

difference in VapC protein levels when comparing Rv2546 to Rv2549c (Figure 3.20), 

could explain their differential effects on mycobacterial growth.  

 

 

 

 

 

  

 
Figure 3.20: Comparison of the relative abundance of unregulated Rv2546 
protein vs. Rv2549c induced with 2ng/ml ATc. A 25ml M. smegmatis culture 
constitutively expressing the epitope-tagged Rv2546 was grown to mid-logarithmic phase. 
Protein was extracted, quantified and 3µg of protein loaded into each lane of an SDS-PAGE 
gel was detected as previously described (Section 2.9). A 50ml M. 
smegmatis::pSE2549c_FLAG strain was grown to early-logarithmic phase (OD600 0.3 - 0.4), 
and divided into 2 equal volumes. To one of the 25ml cultures, ATc at a concentration of 
2ng/ml was added to induce VapC expression. Both 25ml culture aliquots were then incubated 
at 37°C for 3h to allow for protein translation in the induced samples. The epitope-tagged 
VapCs were extracted, quantified and detected as previously described (Section 2.9), with 3µg 
of protein from each culture loaded onto the SDS-PAGE gel. 
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3.3 Abrogation of M. tuberculosis VapC toxicity 

Having established that ectopic expression of Rv2549c was growth inhibitory 

in M. smegmatis and M. tuberculosis (Figs. 3.11 and 3.15), this VapC was used as a 

tool to investigate how VapC toxicity in a mycobacterial host can be neutralized.  

3.3.1 Co-expression of the Rv2550c VapB abrogates the growth inhibitory effects of 

Rv2549c 

To assess whether Rv2549c toxicity could be neutralised by its cognate 

Rv2550c antitoxin when expressed as a bi-cistronic unit, the 746bp Rv2550c-Rv2549c 

operon was amplified by PCR and cloned into the BamHI and HindIII sites of pSE100, 

to generate the pSE2550c_49c construct. This construct was co-electroporated with 

pMC1s into M. smegmatis. Integration of the pMC1s plasmid was confirmed by PCR 

using the attB primers and the integrity of pSE2550c_49c was confirmed by restriction 

analysis and sequencing of plasmid recovered from a M. smegmatis transformant by 

electroduction into E. coli (data not shown). Spotting assays on plates containing ATc 

at a concentration of 50ng/ml revealed that regulated expression of the bi-cistronic 

unit, Rv2550c-Rv2549c had no effect on the growth and viability of M. smegmatis 

(Figure 3.21). Semi-quantitative RT-PCR confirmed the presence of the Rv2549c 

transcript in ATc-induced cultures of the strain carrying the Rv2550c-Rv2549c operon 

(Figure 3.22). This conclusively demonstrated that co-expression of the Rv2550c 

antitoxin abrogated the toxicity of its cognate Rv2549c toxin. 

 

 

 

 

 

 
 
Figure 3.21: Effect of ectopic expression of the Rv2550c-Rv2549c operon on the 
growth of M. smegmatis. Induction of Rv2550c_Rv2549c has no growth inhibitory effects 
on M. smegmatis as assessed by spotting assays in which 10-fold serial dilutions of late 
logarithmic phase cells were spotted on 7H10 agar with or without ATc (50ng/ml).  The 
vectors pSE100 and pSE2549c were used as negative and positive controls, respectively.  
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pSE2549c 

pSE2550c_49c 

pSE100 
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Figure 3.22: Inducible expression of the Rv2550c-Rv2549c operon. Cells containing 
pSE2550c_49c were grown in a 50ml culture volume to mid-logarithmic phase (OD600 ~ 0.4 - 
0.7), and divided into 2 equal volumes. To one of the 25ml culture aliquots, 50ng/ml ATc was 
added to induce vapBC expression. Both 25ml aliquots were then incubated at 37°C for 1h to 
allow for mRNA expression in the induced samples. Both RNA extraction and reverse 
transcription were performed as previously described (Section 2.8), and 10µl of the amplified 
cDNA, using Rv2549c specific primers, was loaded onto a 2% agarose gel. 

3.3.2 The toxicity of Rv2549c and Rv0595c can only be abrogated by their respective 

cognate antitoxins 

To assess whether VapC toxicity could also be neutralized by expression of a 

non-cognate VapB, an uncoupled expression system was developed in which vapC 

and vapB genes were expressed under the control of different promoters from different 

chromosomal loci.  In this system, the vapC gene was expressed under control of 

Pmyc1tetO on a Tweety-based integrative vector containing a gentamicin resistance 

cassette as well as the Psmyc-tetR element from pMC1s to allow for ATc-dependent 

regulation of vapC expression (pTTvapC). This Tweety-based integration-proficient 

vector, pTTvapC, which possesses the attP-int region of the M. smegmatis 

mycobacteriophage Tweety, integrates at a tRNALys attachment site (223). It is 

important to note that this uncoupled expression system differs significantly from the 

system previously used to assess VapC toxicity (Section 3.2), as the vapC is cloned in 

single copy (i.e. on an integrative vector) rather than in multi-copy (i.e. on an episomal 

plasmid). The antitoxins, on the other hand, were cloned under the control of the 

acetamide-inducible acetamidase promoter, Pami on a KmR, mycobacteriophage L5-

based integration vector that integrates at a tRNAGly attachment site, to generate a 

pMAPvapB construct (Table 2.4). 
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Using this expression system, the toxicity of Rv2549c, and the abrogation 

thereof, was initially assessed. It was imperative to first determine whether sufficient 

Rv2549c was expressed in this configuration to inhibit M. smegmatis growth. To this 

end, the pTTRv2549c construct was electroporated into M. smegmatis, and a resulting 

transformant was spotted on solid media containing ATc at a concentration of 

50ng/ml. In this configuration, the toxicity of Rv2549c was retained (Figure 3.23), 

thus convincingly demonstrating that even when ATc-dependent expression of 

Rv2549c was driven from a single-copy integrating vector, growth inhibition was still 

observed. 

 

 

 

Figure 3.23: Toxicity of Rv2549c when expressed from the Tweety site. Growth was 
assessed by a spotting assay, where 10µl aliquots of 10-fold serial dilutions of logarithmic 
phase cells were spotted on 7H10 agar with (50ng/ml) or without ATc. 

 

In contrast to the ATc-dependent regulation of Rv2549c expression observed 

in this system, Rv2550c expression under the control of the acetamidase promoter was 

not regulatable by addition of acetamide (Figure 3.24). In accordance with previous 

observations (135, 214, 216), the acetamidase promoter is non-regulatable and as a 

result, the antitoxin was expressed even in the absence of acetamide. 

 

 

 

 

 
 
Figure 3.24: Expression of Rv2550c from the phage L5 attachment site of M. 
smegmatis. Cells were grown in a 50ml culture volume to mid-logarithmic phase (OD600 ~ 
0.4 - 0.7), and divided into 2 equal volumes. To one of the 25ml culture aliquots, acetamide 
was added at a concentration of 2mg/ml to induce vapB expression. Both 25ml cultures 
aliquots were then incubated at 37°C for 1h to allow for mRNA expression in the induced 
samples. RNA was isolated and quantified as described in Section 2.8. 
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Having confirmed that Rv2549c expression conferred toxicity and that 

Rv2550c was expressed, the uncoupled system was then used to determine what effect 

expression of cognate vs. non-cognate vapB expression would have on the growth 

inhibition of M. smegmatis upon ATc-inducible expression of two toxic VapCs, 

namely Rv2549c and Rv0595c, the latter of which was also toxic in this configuration 

(data not shown). The pTTRv2549c and pTTRv0595c constructs were co-

electroporated with various antitoxin-expressing constructs into M. smegmatis (Figure 

3.25) (Table 2.4). The transformants were grown to mid-logarithmic phase (OD600 ~ 

0.4 - 0.7) and then spotted onto plates containing various antibiotics (Figure 3.26). In 

this configuration, both the Rv2549c and Rv0595c toxicity (Figure 3.26A&B, panel 1) 

was completely neutralized by expression of the cognate Rv2550c and Rv0596c 

antitoxins, respectively, when integrated at a chromosomal locus distal from that of the 

toxin (Figure 3.26A&B, panel 2). In stark contrast, two different non-cognate 

antitoxins, which previously had been shown to abrogate toxicity of their cognate 

toxins when co-expressed on an operon (Figure 3.21, and Diane Kuhnert, personal 

communication), could not alleviate the toxic effects of Rv2549c, and Rv0595c when 

expressed in a strain of M. smegmatis in which the non-cognate toxin is also expressed 

(Figure 3.26A&B, panels 3&4). These data therefore confirm the specificity of the 

VapC-VapB interactions for the two cases investigated in this study, namely Rv2549c-

Rv2550c, and Rv0595c-Rv0596c.  

 

 

 
Figure 3.25: Schematic representation of a M. smegmatis strain carrying  a M. 
tuberculosis vapC gene under the control of Pmyc1tetO integrated at the phage 
Tweety attachment site and a M. tuberculosis vapB gene (cognate or non-cognate) 
under the control of the Pami promoter integrated at the phage L5 attachment site 
in the mycobacterial chromosome. 
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Figure 3.26: VapC toxicity is specifically abrogated by its cognate VapB 
antitoxin.  The M. smegmatis strains express: (A) Rv2549c under the control of Pmyc1tetO 
from the Tweety attachment site and cognate vs. non-cognate vapB genes under the control of 
Pami from the L5 attachment site of the chromosome.  (B) Rv0595c under the control of 
Pmyc1tetO from the Tweety site and the same vapB under the control of Pami from the L5 sites 
of the chromosome. For induction of vapC gene expression, 10µl of 10-fold serial dilutions of 
cells were spotted on 7H10 agar with or without ATc (50ng/ml). 

3.3.3 Can mutation of an aspartic acidic residue conserved in PIN domain proteins also 

abrogate the growth inhibitory effects of Rv2549c? 

To determine whether there was an association between the growth inhibitory 

effects of VapC function and nuclease activity associated with PIN domain proteins 

(50, 186), the acidic Asp/Asp/Gln/Asp residues that are conserved in VapCs were first 

identified by multiple sequence alignment (Figure 3.3). If these residues are required 

for VapC catalytic function, then mutation of one or more of these residues would be 

expected to lead to loss of catalytic function, and hence, loss of VapC toxicity.  The 

conserved Asp5 residue in the N-terminal region of Rv2549c was thus mutated to an 

Ala residue, to produce the Rv2549cD5A mutant. The Rv2549cD5A gene was cloned into 

the pSE100 vector, and the resulting construct, pSE2549cM, was co-electroporated 

into M. smegmatis together with pMC1s. The effect of this mutation on the viability of 

M. smegmatis was assessed alongside the empty vector (negative control), the wild-

type Rv2549c (positive control), as well as the Rv2550c-Rv2549c operon negative 

No antibiotic Gm + Km Gm + ATc 
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pTT2549c + pMAP2550c 
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control, by spotting serial dilutions of the various cultures on plates containing ATc at 

a concentration of 50ng/ml. As expected, the empty vector and Rv2550c-Rv2549c 

controls showed no ATc-dependent M. smegmatis growth inhibition, whereas 

expression of the Rv2549c toxin resulted in growth inhibition. Interestingly, the 

Asp5�Ala mutation in Rv2549c completely abrogated the growth inhibitory effects 

resulting from ectopic expression of this VapC (Figure 3.27).  

 
 
 
 
 
 
 
 
 
 
Figure 3.27: Effect of ectopic expression of the Rv2549cM on the growth of M. 
smegmatis. For induction of gene expression 10-fold serial dilutions of logarithmic-phase 
cells were spotted on 7H10 agar with or without ATc (50ng/ml). 

 

To test whether the expression level of Rv2549c was affected by the 

Asp5�Ala mutation, a gene encoding a C-terminal, FLAG-tagged version of the 

mutated VapC, Rv2549cD5A, was generated by PCR and cloned in pSE100. The 

expression cassette was identical, in all respects, to the FLAG-tagged version of wild 

type Rv2549c described above (Section 3.2.7), with the exception of the D5A 

mutation. This expression cassette was cloned into the BamHI/HindIII site of pSE100 

under the control of the Pmyc1tetO promoter-operator element. The ensuing FLAG-

tagged construct was co-electroporated with pMC1s in M. smegmatis and detected 

using an anti-FLAG antibody post-induction with ATc at a concentration of 50ng/ml, 

as described previously (Figure 3.17). Western blot analysis revealed that the 

16.47kDa Rv2549cD5A VapC was indeed expressed upon addition of ATc at a 

concentration of 50ng/ml (Figure 3.28A). However, comparison of its expression level 

to that of the corresponding wild type protein revealed that the relative abundance of 

Rv2549cD5A was significantly lower than the corresponding wild type protein (Figure 

3.28A). Moreover, even when Rv2549cD5A was constitutively expressed in the absence 

of a TetR, the amount of protein present was significantly less than that of wild type 
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pSE2549cM 
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Rv2549c conditionally expressed at an ATc concentration of 2 ng/ml (Figure 3.28B), 

which had been shown not to cause toxicity (Figure 3.19).  

 
 
 
 
 
 
 
 
 
Figure 3.28: Detection of FLAG-tagged Rv2549c and Rv2549cD5A proteins.  
(A) Cells were grown in a 50ml culture volume to early-logarithmic phase (OD600 ~ 0.3 - 0.4), 
and divided into 2 equal volumes. To one 25ml culture aliquot, ATc was added to a 
concentration of 50ng/ml to induce gene expression. Both 25ml culture aliquots were then 
incubated at 37°C for 3h to allow for protein translation in the induced samples. Subsequent to 
protein extraction, a Bradford assay was performed to ensure equal amounts of protein at a 
concentration of 5µg were loaded onto the SDS-PAGE gel. Hybridization and western blotting 
were performed as previously described (Section 2.9) to detect the flag-tagged protein. (B) A 
25ml M. smegmatis culture constitutively expressing the epitope tagged Rv2549cD5A was 
grown to mid-logarithmic, and protein was extracted, quantified and 3µg of loaded protein was 
detected as previously described (Section 2.9). A 50ml M. smegmatis::pSE2549c_FLAG strain 
was grown to early-logarithmic phase (OD600 ~ 0.3 - 0.4), and divided into 2 equal volumes. 
To one of the 25ml cultures, ATc at a concentration of 2ng/ml was added to induce VapC 
expression. Both 25ml culture aliquots were then incubated at 37°C for 3h to allow for protein 
translation in the induced samples. The epitope tagged VapCs were extracted, quantified and 
detected as previously described (Section 2.9), with 3µg of protein from each culture loaded 
onto the SDS-PAGE gel. 
 
 The Asp5�Ala mutation Rv2549c may have affected the level of protein by 

destabilizing the mRNA secondary structure and thus decreasing translational 

efficiency (55, 224, 281), or by destabilizing the N-terminus of the translated protein, 

resulting in protein degradation (224, 285). To investigate the latter possibility, the 

structures of both the wild type and mutant proteins were predicted using the 

PSIPRED protein structure prediction program (26). Interestingly, this analysis 

revealed a potentially significant difference in the predicted structure of Rv2549cD5A 

compared to Rv2549c. Specifically, the Asp5�Ala mutation was predicted to have 

disrupted the first � strand in Rv2549c, resulting in a protein comprised of three 

instead of four � strands (Figure 3.29). This amino acid substitution in the N-terminal 

region of Rv2549c may have affected the structure and/or folding of the protein, 

rendering it more prone to intracellular degradation. Irrespective of the reason 

underlying the difference in expression level between Rv2549c and Rv2549cD5A in M. 

Rv2549c Rv2549cD5A 

- + - + ATc 

16.47kDa 
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ATc ng/ml 0                2            
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smegmatis (Figure 3.28), this finding makes it difficult to ascribe the lack of toxicity 

observed for Rv2549cD5A to a loss of nuclease activity. 
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3.3.4 Members of the other type II TA families do not alleviate VapC toxicity in M. 

smegmatis 

Members of some type II TA module families have been implicated in 

regulation of other TA modules either directly or indirectly (91, 138, 304). As such it 

was important  to determine whether VapC function in M. smegmatis is modulated, in 

any way, by the presence of other type II TA modules. To this end, a M. smegmatis 

mc2155 parental strain and a derivative thereof that lacks all three type II TA modules 

– vapBC, mazEF and phd/doc (�mazEF �vapBC::aphA-3 �phd/doc::aph) were 

obtained as a generous gift from Professor Gregory Cook (University of Otago, New 

Zealand). The plasmids expressing each of the ten M. tuberculosis VapCs and the sole 

M. smegmatis VapC (MSMEG_1284) (Section 3.2.1) were electroporated into both 

strains without a tetR-expressing vector, and transformation efficiencies determined 

(Table 3.6). As observed previously (Section 3.2.1), Rv0627, Rv1953, Rv2010, 

Rv2546, Rv2548 and MSMEG_1284 had no effect on the wild type strain of M. 

smegmatis, as evidenced by the fact that the transformation efficiencies of the 

expression vectors were similar to that of the empty vector control (0.6 - 3.8 fold 

change), whereas Rv0549c, Rv0595c, Rv2549c, Rv2829c and Rv3320c were toxic to 

M. smegmatis, as evidenced by � 2-log10 lower transformation efficiencies (Table 3.6).  

As in the wild type M. smegmatis strain, the VapCs Rv0549c, Rv0595c, 

Rv2549c, Rv2829c and Rv3320c were toxic to the �mazEF�vapBC::aphA-

3�phd/doc::aph, as evidenced by � 4-log10 lower transformation efficiencies (Table 

3.6). It was however interesting to note that constitutive ectopic expression of the 

VapCs Rv0627, Rv1953, Rv2010, Rv2546, Rv2548 and MSMEG_1284 VapCs, had 

also no effect on the viability of the M. smegmatis �mazEF�vapBC::aphA-

3�phd/doc::aph strain (between 0.08 and 6 fold of the transformation efficiency of 

pSE100) (Table 3.6). Taken together, these data suggest that VapC function in M. 

smegmatis is not modulated by the presence of other, chromosomally encoded type II 

TA modules in this organism.  
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Table 3.6: Effect of unregulated mycobacterial VapC expression in an M. 
smegmatis strain devoid of any type II TA modules 
VapC Plasmid Wild type  

transformation 

efficiency 

(CFU/µg)* 

�mazEF �vapBC::aphA-3 

�phd/doc::aph 

transformation efficiency 

(CFU/µg)* 

- pSE100 3.4 × 103 1.7 × 105 
Rv0549c pSE0549c 44  2 
Rv0595c pSE0595c 20  4 
Rv0627 pSE0627 2.1 × 103 1.0 × 106 
Rv1953 pSE1953 6.8 × 103 1.0 × 106 
Rv2010 pSE2010 4.1 × 106 3.3  × 105 
Rv2546 pSE2546 2.5 × 103 2.9 × 105 
Rv2548 pSE2548 1.2 × 104 7.5 × 104 
Rv2549c pSE2549c 30  8 
Rv2829c pSE2829c 12  16  
Rv3320c pSE3320c 2 2 
MSMEG_1284 pSESM1284 1.2 × 104 1.3 × 104 

*The data are from one of three independent experiments. 

3.4 Does the single vapBC module play a role in M. smegmatis stress physiology? 

TA modules have been shown to play a significant role in stress-induced 

growth regulation (38, 39, 41, 50, 111, 118, 119, 131, 134, 151, 237, 248, 249, 304, 

312). The fact that M. smegmatis has a highly restricted complement of TA modules, 

which includes only one vapBC, makes this organism an attractive one for 

investigating the role of TA modules in mycobacterial physiology. To determine if the 

M. smegmatis vapBC plays a role in stress physiology, a deletion mutant of M. 

smegmatis mc2155 in which an internal segment of the MSMEG_1283-MSMEG_1284 

operon was removed by allelic exchange mutagenesis was constructed. The two-step 

allelic replacement strategy employed for this purpose allows for the replacement of a 

functional chromosomal gene with a disrupted copy carried on a suicide vector. As 

described in Section 2.8, the p2�SM1283_84KO suicide vector was engineered to 

carry 932bp of the genomic region upstream of the vapB gene MSMEG_1283, and 

23bp of the 5’ end of this gene, as well as 880bp of the genomic region downstream of 

the vapC gene MSMEG_1284, and 219bp of the 3’ end of this gene.  This construct, 
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which lacks a 428bp segment internal to the MSMEG_1283-MSMEG_1284 operon 

and the two of the conserved acidic residues essential for MSMEG_1284 ribonuclease 

activity i.e Asp5 and Gln38, was electroporated into M. smegmatis and plated on media 

containing Km, Hyg and X-gal to select for a partial merodiploid carrying both the 

wild type and the deleted operon. After a 3 - 5 day incubation period at 37°C, seven 

blue, KmR-, HygR- colonies were recovered. Two of these putative single cross-over 

recombinants (SCOs) were subjected to sacB-based counter selection, by plating on 

sucrose and Km, to allow double cross-over (DCO) recombinants to be identified. Ten 

white, SucR-, KmS- clones were identified from both SCOs. Genotypic characterization 

of these recombinants by PCR revealed that two of the ten colonies were wild type 

revertants, in which the second crossover event occurred on the same side of the 

deletion mutant as the first, whereas two showed a PCR genotype expected for 

genuine, allelic exchange mutants. These classes of DCOs were distinguishable by the 

size of the PCR amplicons obtained (data not shown). The remaining four colonies 

appeared to be spontaneous sacB mutants of the SCO recombinant.  

One of the putative allelic exchange mutants was selected for further study. 

The genotype of this ∆MSMEG_1283-MSMEG_1284 strain was confirmed by 

Southern blot analysis (Figure 3.30). Using this strategy, a probe was generated by 

PCR to hybridize to the 2857bp and 4204bp EcoRV fragments of MSMEG_1283-

MSMEG_1284 in the wild type M. smegmatis. Successful disruption of the vapBC 

module should result in the deletion of an internal 428bp segment within the operon. 

Southern blot analyses of the wild type M. smegmatis strain revealed that the probe 

bound to 2857bp and 4204bp EcoRV fragments, as expected. This analysis revealed 

that the two SCOs that had been used to identify DCOs, by sacB-based counter-

selection, differed in that one was a product of homologous recombination in the 

upstream region, whereas the other the product of recombination in the downstream 

region. Importantly, this analysis confirmed the genotype of the ∆MSMEG_1283-

MSMEG_1284 mutant since a 2429bp cross-hybridizing fragment was observed in 

place of the wild type 2857bp EcoRV fragment, consistent with loss of an internal 

428bp fragment within the MSMEG_1283-MSMEG_1284 operon. Furthermore, this 

deletion did not affect the integrity of the regions upstream of the MSMEG_1283-

MSMEG1284 operon, with the 4204bp region remaining unaffected (Figure 3.30). 
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Figure 3.30: Construction and genotypic characterization of ∆∆∆∆MSMEG_1283-
MSMEG_1284 mutant by homologous recombination. The MSMEG_1283-
MSMEG_1284 and flanking genes are shown as solid arrows (Figure not drawn to scale). The 
hatched box represents the 428bp internal deletion in the �MSMEG_1283-MSMEG_1284 
mutant strain. For the Southern blot analysis (below), 1 - 5µg chromosomal DNA was 
digested with EcoRV, which cuts on either side of the deleted region, to produce a common 
4204bp fragment in both wild type and mutant strains. This digestion also produces a 2857bp 
fragment in the wild type strain and a 2429bp fragment in the mutant strain. All fragments 
were detected using a PCR-generated probe denoted by the grey box. 
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3.4.1 The sole vapBC module is dispensable for growth of M. smegmatis in liquid 

media 

To determine whether loss of vapBC function affected the growth of M. 

smegmatis, the �MSMEG_1283-MSMEG_1284 strain was compared to its parental 

wild type when grown into stationary phase in 7H9 media containing glycerol.  

However, the two strains were indistinguishable in terms of the rate of growth and the 

maximum cell density achieved in stationary phase (Figure 3.31).  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 3.31: Deletion of MSMEG_1283-MSMEG_1284 has no effect on the growth 
kinetics of M. smegmatis. (A) OD600 spectrophotometric readings were taken at regular 
intervals over a 40h period. (B) CFUs were assessed by plating 100µl of 10-fold serial 
dilutions of cells over a 40h period, and scored after 3 - 4 days incubation at 37°C. The data 
represent the average of 3 independent experiments. 

3.4.2 The M. smegmatis vapBC module is dispensable for the survival of M. 

smegmatis under conditions of stress 

To determine whether the single M. smegmatis vapBC module is involved in 

the response of the organism to nitrosative, genotoxic, cell wall, heat, or antibiotic-

mediated stresses, the survival of the �MSMEG_1283-MSMEG_1284 strain was 

compared to wild type under these stress conditions by monitoring CFUs during the 

course of the exposure. The mutant and wild type strains behaved identically in all of 
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the assays, suggesting that the vapBC module is dispensable for the survival of M. 

smegmatis under the stress conditions tested (Figure 3.32).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 3.32: Effect of loss of MSMEG_1283-MSMEG_1284 on the survival of M. 
smegmatis under conditions of (A) Nitrosative, (B) Genotoxic, (C) Heat and (D) 
Cell wall stress. CFUs were assessed by plating 10-fold serial dilutions of M. smegmatis 
cells exposed to the various stresses as described in Section 2.7. The data panels represent one 
of three biological replicates. 
 

To then assess whether the vapBC module plays a role in the susceptibility of 

M. smegmatis to anti-mycobacterial drugs, the MICs of four drugs were determined 

for the wild type and �MSMEG_1283-MSMEG_1284 strains by the broth 
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2µg/ml and 0.12 - 8µg/ml, respectively (233, 271, 294, 295). In contrast, the MIC 

values of rifampicin differed by < 2- fold of the reported values of 16 - 32µg/ml (43, 

229, 271, 295). This is not unexpected as the MIC value of rifampicin against M. 

smegmatis has been shown to be strain-dependent and also dependent on the starting 

inoculum size (43, 229, 271, 295). Taken together, these data revealed that loss of 

vapBC function had no discernable effect on the MICs of rifampicin, ofloxacin, 

streptomycin and clofazimine (Table 3.7). In summary, the vapBC module, 

MSMEG_1283-MSMEG_1284, was entirely dispensable M. smegmatis under all of the 

stress conditions tested. 

 
Table 3.7: MICs of wild type and �MSMEG_1283-MSMEG_1284 M. smegmatis 
strains to anti-mycobacterial antibiotics 
 Minimal inhibitory concentration (µg/ml) 

Antibiotic mc2155  �MSMEG_1283-MSMEG_1284 
Rifampicin 6.25 6.25 
Ofloxacin 0.4 0.4 
Streptomycin 0.8 0.8 
Clofazimine 0.8 0.8 

3.5 Role of the cluster of three contiguous vapBC modules at the Rv2545-Rv2550c 

locus in M. tuberculosis 

Given that TA modules have been implicated in the formation of multidrug 

tolerant persisters (74, 113, 142, 154, 155), and M. tuberculosis is intransigent to 

elimination by antibiotics (162, 165, 203, 206, 278), there is considerable interest in 

understanding the role of TA modules in M. tuberculosis. Based on the results 

described above, strains with altered expression of the vapC genes in the Rv2545-

Rv2550c region of the M. tuberculosis genome were constructed for use in various 

assays in an attempt to understand the role of this cluster in the physiology of M. 

tuberculosis. 

3.5.1 Construction of �Rv2545-Rv2550c::hyg and �Rv2545-Rv2550c mutants 

A classic way to investigate the function of a gene is to determine the effect 

that loss of its function has on an organism. Whilst individually Rv2545, Rv2546, 

Rv2547, Rv2548, Rv2549c and Rv2550c are not essential (247), the possibility that  

that the Rv2545-Rv2550c cluster, as a whole, might be essential for growth of M. 
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tuberculosis could not be excluded. As such, strategies for generating both hyg-marked 

and unmarked deletions of the �Rv2545-Rv2550c cluster were pursued in parallel 

(103). As described in Section 2.6, the marked and unmarked suicide vectors, 

p2�2545_50cKO::hyg and p2�2545_50cKO, respectively, were engineered to contain 

an upstream region of homology generated as a 2052bp amplicon comprising 1921bp 

of the genomic region upstream of Rv2545 with 131bp of the 5’ end of Rv2545, and a 

downstream region of homology generated as a 1776 bp amplicon comprising 1734bp 

of the genomic region downstream of Rv2550c with 42bp of the 3’ end of the Rv2550c 

gene. Both constructs were electroporated into the wild type M. tuberculosis H37Rv 

strain and plated on Km, Hyg and X-gal. After the first cross-over event, five blue 

KmR, HygR SCO recombinants were recovered from the electroporation with the 

p2�2545_50cKO::hyg vector. Two of these were subjected to sacB-based counter-

selection by plating on sucrose-containing medium to identify products of second 

cross-over homologous recombination events. Eleven clones were recovered by 

counter-selection. These clones were identified as possible DCO mutants by virtue of 

their HygR, KmS, SucR phenotype and the fact that they formed white colonies when 

plated on X-gal-containing media and had thus lost the lacZ marker. Genotypic 

characterization of these eleven possible DCOs by PCR revealed that two were 

spontaneous sacB mutants, whereas the remaining nine clones were DCO 

recombinants with a putative �Rv2545-Rv2550c::hyg genotype (data not shown).  

The genotype of these two �Rv2545-Rv2550c::hyg mutants was then further 

confirmed by Southern blot analysis using the strategy illustrated below (Figure 3.33). 

Using the BamHI restriction enzyme, digestion of wild type M. tuberculosis 

chromosomal DNA should yield a 6039bp fragment that would cross-hybridize to a 

probe within the Rv2545-Rv2550c region. Allelic exchange mutagenesis should result 

in the deletion of an internal 2426bp segment within the Rv2545-Rv2550c region as 

well as the insertion of a hyg cassette, resulting in a 4463bp fragment identifiable by 

the probe. In addition, this probe would also be able to ascertain the site-specificity of 

recombination as the BamHI sites are located beyond the upstream and downstream 

region of homology contained in the suicide vector. 

Southern blot analysis of both �Rv2545-Rv2550c::hyg mutants, with the same 

probe as that used in the wild type stain, identified the expected 4463bp fragment upon 
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digestion with BamHI (Figure 3.33). This confirmed both the successful deletion of 

the three contiguous vapBC modules as well as the conservation of the integrity of the 

downstream region surrounding the three vapBC modules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 3.33: Construction and genotypic characterization of the marked 
∆∆∆∆Rv2545-Rv2550c::hyg mutant by homologous recombination. The Rv2545-Rv2550c 
cluster and flanking genes are shown as solid arrows (Figure not drawn to scale). The hatched 
box represents the 2426bp internal segment replaced through homologous recombination by 
the hygromycin resistant cassette (red box) in the �Rv2545-Rv2550c::hyg strain. For the 
Southern blot analysis (below), 1 - 5µg chromosomal DNA was digested with BamHI, which 
cuts on either side of the deleted region, to produce a 6039bp fragment in the wild type strain 
and a 4463bp fragment in the mutant strain. All fragments were detected using a PCR-
generated probe denoted by the grey box. 
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Electroporation of the p2�2545_50cKO suicide vector into M. tuberculosis 

H37Rv, on the other hand, yielded two KmR, HygR blue colonies. These SCOs were 

confirmed to be site-specific, and each recombinant integrated either downstream or 

upstream of the Rv2545-Rv2550c cluster (Figure 3.34). These SCOs were then 

subjected to counter selection, where plating on sucrose and Km yielded eighty four 

white SucR, KmS putative DCO recombinants. Of these putative DCOs, one was an 

allelic exchange mutant, whereas the rest were wild type revertants, as confirmed by 

PCR (data not shown). The genotype of putative allelic exchange mutant was 

confirmed by Southern blot analysis using the strategy depicted below (Figure 3.34). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 3.34: Construction and genotypic characterization of ∆∆∆∆Rv2545-Rv2550c 
mutant by homologous recombination. The Rv2545-Rv2550c and flanking genes are 
shown as solid arrows (Figure not drawn to scale). The hatched box represents the 2426bp 
internal deletion in the �Rv2545-Rv2550c mutant strain. For the Southern blot analysis 
(below), 1 - 5µg of chromosomal DNA was digested with NotI, which cuts on either side of 
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the deleted region, to produce a 6241bp fragment in the wild type strain and a 3834bp 
fragment in the mutant strain. All fragments were detected using a PCR-generated probe 
denoted by the grey box. 

3.5.2 The Rv2545-Rv2550c cluster is dispensable for M. tuberculosis growth in both 

rich and minimal media 

The effect of the vapBC cluster deletion on the growth of M. tuberculosis in 

axenic culture was investigated using the �Rv2545-Rv2550c::hyg strain. The growth 

of this strain in rich 7H9 media containing OADC and in Sauton’s minimal media was 

monitored over a period of 14 days and compared to its parental wild type. This 

analysis revealed that the deletion mutant grew as well as the wild type in both rich 

and minimal media (Figure 3.35). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.35: Effect of loss of the Rv2545-Rv2550 region on the growth kinetics of 
M. tuberculosis. OD600 spectrophotometric readings of the strains where taken over 14 days 
when grown in (A) 7H9 containing OADC or (B) Sauton’s minimal media. The data represent 
the average of 3 independent experiments. 

3.5.3 Effect of constitutive, ectopic VapC expression on the viability of the �Rv2545-

Rv2550c deletion mutant strain 

To determine the role of constitutive VapC expression in a strain lacking the 

Rv2545-Rv2550c gene cluster, the plasmids expressing each of the three M. 

tuberculosis VapCs Rv2546, Rv2548 and Rv2549c were electroporated into �Rv2545-
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toxicity of each VapC. Whilst, Rv2549c behaved in a similar manner to when 

expressed in the wild type H37Rv strain (Table 3.4), unexpectedly too, Rv2546 and 

Rv2548 whose cognate antitoxins are absent in the mutant, were also non-toxic to this 

strain with transformation efficiencies comparable to that of pSE100 (Table 3.8). 

Restriction analyses of pSE2546 showed that the Rv2546 expressing construct had not 

undergone any plasmid rearrangement. This, coupled with the fact that pSE2549cM 

had transformation efficiencies comparable to that of pSE100 (Table 3.8), suggests 

that, like with M. smegmatis (Section 3.2.7), the protein threshold required to cause 

mycobacterial toxicity had not been attained with either pSE2546 or pSE2548.  

Table 3.8: Toxicity of VapCs in �Rv2545-Rv2550c as assessed by transformation 
efficiency of VapC expressing vectors 

VapC Plasmid Transformation 
efficiency 
(CFU/µg*) 

- pSE100 1.0 × 105 
Rv2546 pSE2546  1.0 × 105 
Rv2548 pSE2548 1.5 × 104 
Rv2549c pSE2549c 7.1 × 102 
Rv2549cD5A pSE2549cM 1.1 × 106 

*This is a representation of one of three reproducible experiments. 

3.5.4 Regulated expression of Rv2549c is bactericidal in M. tuberculosis �Rv2545-

Rv2550c 

To determine the effect of regulated expression of a toxic M. tuberculosis 

VapC on its native host in the absence of its cognate antitoxin, the pSE2549c construct 

was co-electroporated with pMC1s into �Rv2545-Rv2550c. A KmR HygR transformant 

was then grown in liquid media to early logarithmic growth stages (OD600 ~ 0.1), and 

the VapC induced with ATc at a concentration of 25ng/ml. The effect of Rv2549c on 

the viability of �Rv2545-Rv2550c was assessed by spectrophotometric readings and 

CFUs over an 8-day period. Interestingly, although OD600 growth assessment was 

similar to that observed upon Rv2549c expression in wild type M. tuberculosis, where 

no growth was observed (Figure 3.15A), CFU assessments revealed that unlike the 

observation in wild type M. tuberculosis where regulated expression of Rv2549c 

results in bacteriostasis (Figure 3.15B), regulated expression of Rv2549c in its native 
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host lacking its cognate antitoxin on the chromosome, results in growth inhibition that 

leads to a 1-log10 decrease in viability (Figure 3.36). Restriction analyses of plasmids 

recovered after 2 days of Rv2549c expression show the occurrence of plasmid 

rearrangement, accounting for the re-growth observed after day 2 (data not shown). 

This therefore suggests that not only is Rv2549c extremely toxic to M. tuberculosis in 

the absence of its neutralizing cognate antitoxin Rv2550c, but also that the remaining 

85 non-cognate type II antitoxins present on the �Rv2545-Rv2550c chromosome 

cannot alleviate the toxicity of this VapC. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.36: Effect of regulated expression of Rv2549c on the growth and viability 
of �Rv2545-Rv2550c. A culture was grown to mid-logarithmic phase and diluted to OD600 
0.04 in 30ml 7H9 media. After growth overnight at 37°C standing, it was divided into 2 equal 
aliquots of 10ml each. To one aliquot, 25ng/ml ATc was added to induce Rv2549c. (A) The 
effect of Rv2549c on the growth of �Rv2545-Rv2550c was assessed by OD600 
spectrophotometric readings taken over an 8-day period. (B) The effect of Rv2549c ectopic 
expression on the viability of �Rv2545-Rv2550c was determined by CFU assessment. Here, 
plating of 100µl of 10-fold serial dilutions of cells over an 8-day period post-induction of 
Rv2549c was performed, and the plates were scored after 21 - 27 days incubation at 37°C. 
Annotation: Empty symbols represent induced samples and filled in symbols represent 
uninduced samples. 
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3.6 Effect of VapC expression on ofloxacin tolerance of M. tuberculosis 

Toxin-antitoxin modules have been widely implicated in the antibiotic 

tolerance of numerous organisms (74, 113, 142, 154, 155). Whilst deletion of TA 

modules have no effect on the ability of bacteria to form persisters in the presence of 

antibiotics (142), over-expression of the toxins HipA, MazF, RelE and TisB all 

resulted in increased drug tolerant bacterial populations in the presence of antibiotics 

such as fluoroquinolones (60, 74, 113, 142).  It is therefore possible that expression of 

VapCs might allow for M. tuberculosis drug tolerance.  

As described above, ectopic expression of certain VapCs was shown to induce 

bacteriostasis and cidality in M. tuberculosis (Figures 3.15 & 3.36). To test whether 

VapC expression might affect the tolerance of M. tuberculosis to anti-tubercular drugs, 

the fluoroquinolone ofloxacin (OFX), which is employed during the second-line drug 

regimen of TB, was used for antibiotic treatment. In mycobacteria, fluoroquinolones 

bind to the two bacterial type II topoisomerase bacterial DNA gyrase which catalyzes 

the introduction and maintenance of the supercoiling process of DNA (62). During 

supercoiling, these enzymes decatenate duplex molecules and this process results in 

transient DNA breaks (123, 124). Fluoroquinolones then trap the topoisomerases on 

the broken DNA forming a complex which blocks DNA replication and RNA 

synthesis, resulting in bacteriostasis, and eventually cell death (62, 63).  

To determine whether VapCs play a role in M. tuberculosis drug tolerance, the 

M. tuberculosis::pSE2829c strain carrying pMC1s, which was available prior to the 

start of this study, was used. The VapC, Rv2829c, was shown to be toxic to M. 

tuberculosis when constitutively expressed (Table 3.4), and like Rv2549c (Figure 

3.15), when conditionally expressed in wild type M. tuberculosis this VapC also 

results in bacteriostasis (Diane Kuhnert, personal communication). Using the 

experimental protocol described in Figure 3.37, the M. tuberculosis::pSE2829c co-

electroporated with pMC1s was grown to mid-logarithmic phase and induced with 

ATc at a concentration of 50ng/ml to allow for Rv2829c expression. After 24h 

induction, both uninduced and induced cultures were treated with the antibiotic OFX 

at a concentration of 8µg/ml (10 × MIC). ATc was maintained in the induced culture 

to allow for continued expression of Rv2829c. After a 6-day exposure to OFX at 37°C, 
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serial dilutions of the cultures were plated on 7H10 media to score for cells that had 

survived the drug treatment. It has been reported that at concentrations of 5 - 10 times 

the MIC value, this fluoroquinolone rapidly kills logarithmic phase M. tuberculosis 

cultures but its activity against stationary phase cultures is significantly reduced (121, 

212), possibly due to the fact that stationary phase cells have low metabolic rates and 

so would not undergo DNA synthesis (212). As such, if Rv2829c plays a role in drug 

tolerance, an increase in the number of survivors would be observed upon toxin 

induction, even when the activity of OFX is significantly reduced. As a control, an 

aliquot of uninduced cells was treated with chloramphenicol (CM). This antibiotic has 

been reported to induce bacteriostasis via protein synthesis inhibition, and enable 

increased fluoroquinolone tolerance (176). Since expression of the toxic Rv2829c 

resulted in bacteriostasis of the wild type M. tuberculosis strain (Diane Kuhnert, 

personal communication), the CM-treated control would ascertain whether any 

increased ability to tolerate OFX upon VapC induction is analogous to the effects of 

this bacteriostatic agent on drug tolerance.  

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 3.37: Schematic representation of strategy used to assess tolerance of M. 
tuberculosis to ofloxacin. Fifty ml of the M.tuberculosis::pSE2829c strain carrying pMC1s 
was grown with rolling to mid-logarithmic phase. The culture was divided into two equal 
aliquots, and the toxin in one was induced by addition of ATc for 24h. Both uninduced and 
induced cultures were grown for 24h with rolling at 37°C. Starting CFUs were assessed by 
plating 100µl of 10-fold serial dilutions of cells, and the plates were scored after 21 - 27 days 
incubation at 37°C. Uninduced culture: Three 1ml cultures of uninduced samples were 
aliquoted into 2ml eppendorf tubes. To the untreated control aliquot, no antibiotics were 
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added. One of the two remaining aliquots was treated with OFX (10 × MIC) and the last 
aliquot was first treated with CM for 1h before addition of OFX (10 × MIC). Induced 
culture: Two 1ml cultures of induced samples were aliquoted into 2ml eppendorf tubes. To 
the untreated control aliquot, no antibiotics were added and the remaining aliquot was treated 
with OFX (10 × MIC), as depicted in the flow diagram. These were grown at 37°C standing 
for 7 days. CFUs were also assessed by plating 100µl of 10-fold serial dilutions of cells, and 
the plates were scored after 21 - 27 days incubation at 37°C.  
 

For induction of Rv2829c, ATc was added to a mid-logarithmic M. 

tuberculosis::pSE2829c culture for 24h. The uninduced M. tuberculosis::pSE2829c 

culture, on the other hand, was not treated with ATc, thereby allowing the culture to 

reach late-logarithmic to early-stationary phases of growth after 24h incubation.  The 

starting cell densities of the uninduced and ATc-induced cultures were 7.4 × 107 

CFU/ml and 8.5 × 107 CFU/ml, respectively (Figure 3.38, purple bars). After 6 days’ 

further incubation, both the ATc-induced and uninduced control cultures of M. 

tuberculosis::pSE2829c that were not exposed to OFX remained in late-logarithmic 

phase (Figure 3.38, red bars). This is possibly due to the fact that the 1ml cultures were 

grown in 2ml eppendorf tubes, and as such, reduced oxygen availability might have 

restricted further growth. 

Treatment of M. tuberculosis::pSE2829c uninduced samples with 10 × MIC 

OFX for 6 days resulted in a statistically significant reduction of CFU (p < 0.05) from 

4 × 107 CFU/ml to 2.93 × 106 CFU/ml (Figure 3.38, “uninduced” panel red bar vs. 

yellow bar). This is in accordance with previously reported data (121, 212), which 

show that high OFX concentrations reduce the CFU of M. tuberculosis stationary 

phase cultures by about 10-fold (212). Pretreatment of the uninduced M. 

tuberculosis::pSE2829c culture with CM before addition of OFX allowed for little or 

no killing by the fluoroquinolone (p > 0.5) (Figure 3.38, “uninduced” panel red bar vs. 

green bar). This observation confirmed that the protein synthesis inhibitory properties 

of CM resulted in increased fluoroquinolone tolerance. 

As mentioned above, induction of Rv2829c had no effect on CFUs after 6 days 

(p > 0.5) (Figure 3.38, “induced” panel purple bar vs. red bar). This is possibly due to 

the fact that the cells, being in late-logarithmic to early-stationary growth phase, were 

already in a state of growth arrest, presumably as a result of poor aeration, thus making 

it difficult to discern any Rv2829c-specific effect. OFX-treatment of M. 

tuberculosis::pSE2829c cells after Rv2829c induction resulted in a < 1-log reduction 
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of viability cell death from 1.6 × 108 CFU/ml to 4.6 × 107 CFU/ml (p < 0.5) (Figure 

3.38, “induced” panel red bar vs. yellow bar). This observation was similar to when 

uninduced cells were pre-treated with CM before addition of OFX (p > 0.5) (Figure 

3.38, “uninduced” panel green bar vs. “induced” panel yellow bar). The increase in the 

number of OFX-tolerant cells observed in cultures in which  Rv2829c expression was 

induced was also greater than when Rv2829c was not induced (p < 0.5) (Figure 3.38, 

“uninduced” panel yellow bar vs. “induced” panel yellow bar). Taken together, these 

data suggest that induction of Rv2829c increases the ability of M. tuberculosis to form 

persisters in the presence of OFX in a manner similar to CM.  

 

 

 

 

 

 

 

 

 

 

 
Figure 3.38: Expression of Rv2829c appears to contribute to M. tuberculosis 
tolerance to ofloxacin. CFUs were obtained by plating 100µl of 10-fold serial dilutions of 
cells obtained subsequent to treatment and incubation at 37°C for 21 - 27 days. The data 
panels represent the average of 2 biological replicates. All two-tailed p-values were obtained 
using the Graphpad software as described in Section 2.11. The asterisks represent statistically 
significant p-values. 
 

To then determine whether VapCs enhance M. tuberculosis drug tolerance in 

the absence of their cognate antitoxins, the effect of conditional expression of Rv2546 

with pMC1s and Rv2549c with pMC1s were assessed in the �Rv2545-Rv2550c strain. 

In E. coli, reduced binding of the HipA7 mutant to HipB antitoxin has been shown to 

result in a higher probability of persister formation (239). Assuming that analogous 

situation applies in the case of VapBC modules in M. tuberculosis it is possible that a 

non-toxic VapC drug tolerant phenotype may be unmasked by the absence of its 

cognate antitoxin. In addition, since the possibility that the mechanism of VapC-
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induced mycobacterial toxicity could be different from that of formation of drug-

tolerant populations, these experiments would also address the question of whether a 

toxicity phenotype is linked to drug tolerance.  

Using the modified experimental protocol described in Figure 3.39, �Rv2545-

Rv2550c::pSE2546 and �Rv2545-Rv2550c::pSE2549c strains, both with pMC1s,  

were grown to early-logarithmic phase and induced with ATc at a concentration of 

50ng/ml to allow for VapC expression. After 24h induction, both uninduced and 

induced cultures were treated with OFX at a concentration of 8µg/ml (10 × MIC). As 

previously, ATc was maintained in the induced culture for the entire duration of the 

OFX treatment to ensure continued expression of VapC. However, in contrast to the 

Rv2829c tolerance experiment (Figure 3.37), the cultures were treated with OFX in 

50ml tissue culture flasks to enable the cells to have sufficient oxygen to ensure 

growth during a 7-day period at 37°C. As per the original protocol, an aliquot of 

uninduced cells was treated with CM to determine whether any increased ability to 

tolerate OFX upon induction of the VapCs is similar to this bacteriostatic agent. If 

ectopic expression of either of the toxins has an effect in OFX tolerance, an increase in 

the number of survivors would be observed in the presence of OFX upon toxin 

induction. 
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Figure 3.39: Schematic representation of the modified strategy used to assess 
tolerance of M. tuberculosis to ofloxacin. Seventy ml of the �Rv2545-
Rv2550c::pSE2546 and �Rv2545-Rv2550c::pSE2549c, both carrying pMC1s was grown with 
rolling to early logarithmic phase. The culture was divided into two equal aliquots, and the 
toxin in one was induced by addition of ATc for 24h. Both uninduced and induced cultures 
were grown for 24h with rolling at 37°C. Starting CFUs were assessed by plating 100µl of 10-
fold serial dilutions of cells, and the plates were scored after 21 - 27 days incubation at 37°C. 
Uninduced culture: Three 5ml cultures of uninduced samples were aliquoted into 50ml tissue 
culture flasks. To the untreated control aliquot, no antibiotics were added. One of the two 
remaining aliquots was treated with ofloxacin (10 × MIC) and the last aliquot was first treated 
with chloramphenicol (CM) for 1h before addition of ofloxacin (10 × MIC). Induced culture: 
Two 5ml cultures of induced samples were aliquoted into 50ml tissue culture flasks. To the 
untreated control aliquot, no antibiotics were added and the remaining aliquot was treated with 
ofloxacin (10 × MIC), as depicted in the flow diagram. These were grown at 37°C standing for 
7 days. CFUs were also assessed by plating 100µl of 10-fold serial dilutions of cells, and the 
plates were scored after 21 - 27 days incubation at 37°C.  
 

After 7 days’ incubation, both the ATc-induced and uninduced cultures of 

�Rv2545-Rv2550c::pSE2546 grew from a starting cell density of ca. 107 CFU/ml to 

stationary phase, reaching cell densities of ca. 3 × 108 CFU/ml (Figure 3.40, blue and 

red bars). This improved growth of the untreated OFX controls observed using the 

modified protocol (Figure 3.39), suggested that limited oxygen availability restricted 

growth in the original protocol (Figure 3.37). Addition of OFX to the control culture in 

which Rv2546 was not induced, resulted in a � 6-log reduction in viability of cells i.e. 

from 2 × 108 CFU/ml to 5 × 102 CFU/ml (Figure 3.40, “uninduced” panel, red bar vs. 

green bar).  This massive killing effect, compared to that seen in the Rv2829c 
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experiment, confirmed that high OFX concentrations reduce the CFU of M. 

tuberculosis logarithmic phase cultures significantly more than stationary phase 

cultures (121, 212). Importantly, however, pre-treatment of the uninduced culture with 

CM for 1h before addition of OFX reduced the susceptibility of the cells to OFX-

mediated killing by 2-log10 i.e. the viable cell count after 7 days’ exposure to OFX was 

2 × 104 as opposed to 5 × 102 for the sample that had not been pre-treated with CM 

(Figure 3.40, “uninduced” panel, turquoise bar vs. green bar). These observations are 

in accordance with previous data which have reported a > 3-log10 reduction in viability 

of logarithmic phase M. tuberculosis cultures when treated with high concentrations of 

fluoroquinolones, as well as the observation that addition of CM reduces 

fluoroquinolone lethality (121, 170, 176, 212, 313). 

For the �Rv2545-Rv2550c::pSE2546 cultures where Rv2546 was induced by 

addition of ATc, the untreated control behaved as expected (Figure 3.14), with the 

cultures reaching stationary phase after 7 days (Figure 3.40, “induced” panel, red bar). 

Induction of Rv2546 with ATc followed by treatment with OFX resulted in a ~ 5-log10 

reduction in viability of cells i.e. from 2 × 108 CFU/ml to 1 ×103 CFU/ml (Figure 3.40, 

“induced” panel, red bar vs. green bar). Over-expression of Rv2546 appeared to 

increase the percentage of OFX-tolerant cells in M. tuberculosis when compared to the 

cultures in which this VapC is uninduced (p < 0.05) (Figure 3.40, “uninduced” panel 

green bar vs. “induced” panel green bar). This statistically significant difference 

suggests that expression of low levels of VapC contributes to formation of M. 

tuberculosis OFX-tolerant populations, and that VapC toxicity – as assessed using the 

methods employed in this study, in which toxicity is scored by growth inhibition - is 

not a requirement for the formation of drug tolerance cells. It is interesting to note that 

unlike with Rv2829c, induction of Rv2546 did not result in as high a fraction of OFX-

tolerant cells as the pre-treated CM cells (p < 0.05) (Figure 3.40, “uninduced” panel 

turquoise bar vs. “induced” panel green bar). These data therefore suggest that, in the 

absence of the cognate antitoxin, although Rv2546 increases the percentage of M. 

tuberculosis persisters when treated with OFX, the effect on OFX tolerance is not as 

profound as that manifested by CM treatment.  

 

 



 

127 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 3.40: Expression of Rv2546 contributes to M. tuberculosis tolerance of 
ofloxacin. CFUs were obtained by plating 100µl of 10-fold serial dilutions of cells obtained 
subsequent to treatment and incubation at 37°C for 21-27 days. The data panels represent the 
average of 3 biological replicates. All two-tailed p-values were obtained using the Graphpad 
software as described in Section 2.11. The asterisks represent statistically significant p-values.  

 
In the case of �Rv2545-Rv2550c::pSE2549c, although the experiment was 

performed four times, the results from only one experiment are reported here (Figure 

3.41) as most of the plates from the other three experiments were lost to fungal 

contamination, and due to time constraints, the experiment could not be repeated. The 

results of the single experiment revealed that, after 7 days’ incubation, the ATc-

uninduced culture of grew from a starting cell density of 2 × 106 CFU/ml to a cell 

density of ca. 2 × 107 CFU/ml (Figure 3.41, “uninduced” panel blue and red bars). As 

expected (121, 212), addition of OFX to this control culture resulted in a > 3-log 

reduction in viability of cells i.e. from 2 × 107 CFU/ml to 6.7 × 102 CFU/ml (Figure 

3.41, “uninduced” panel, red bar vs. green bar). As observed with Rv2546 (Figure 

3.40), pre-treatment of the uninduced culture with CM for 1h before addition of the 

fluoroquinolone increased OFX-tolerance of the cells by 2-log10 i.e. from 6.7 × 102 to 

1.5 × 104 (Figure 3.41, “uninduced” panel, green bar vs. turquoise bar).  

However, it was surprising to note that when Rv2549c expression was induced, 

the culture reached a cell density of 1.5 × 107 CFU/ml (Figure 3.41, blue and red bars). 
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This result is in contrast with previous observations, which show that induction of the 

toxic Rv2549c results in a reduction of viability of �Rv2545-Rv2550c (Figure 3.36). 

Since the cultures in this experiment were grown rolling instead of standing, and so 

had a faster doubling time, it is possible that plasmid rearrangement/ mutation leading 

to abrogation of Rv2549c toxicity may have occurred at an earlier stage, thereby 

enabling the “induced” culture to attain cell density levels similar to “uninduced” 

culture by day 7. The fact that induction of Rv2549c followed by treatment with OFX 

resulted in a ~ 6-log10 reduction in viability of cells i.e. from 1.5 × 107 CFU/ml to 8 × 

101 CFU/ml (Figure 3.41, “induced” panel, red bar vs. green bar), instead of the 5-

log10 reduction in viability observed with the “uninduced” cells (Figure 3.41, 

“uninduced” panel, red bar vs. green bar), suggests that the expected 1-log10 reduction 

in viability upon expression of Rv2549c occurred. Taken together, these data suggest 

that expression of the toxic Rv2549c in the absence of its cognate Rv2550c antitoxin 

did not significantly increase the percentage of OFX-tolerant cells. Although this 

experiment needs to be repeated to confirm these data, this finding contrasts with the 

findings obtained from the Rv2829c and Rv2546 tolerance experiments, where 

expression of these latter two VapCs was shown to result in an increase in OFX 

tolerance in M. tuberculosis (Figures 3.38 & 3.40). Like the toxic Rv2549c (Figures 

3.11 & 3.15), expression of Rv2829c in the presence of its cognate antitoxin was 

found to result in bacteriostasis (Diane Kuhnert, personal communication), whilst 

expression of this toxin in M. smegmatis, which lacks a cognate antitoxin resulted in a 

2-log10 decrease in viability (Diane Kuhnert, personal communication). It therefore 

follows that, just as with Rv2549c (Figure 3.15), the presence in M. tuberculosis of the 

cognate antitoxin, Rv2830c, may have dampened the toxic effect of Rv2829c, 

resulting in low levels of active cellular VapC, and increased persisters (Figure 3.38). 

This, coupled with the fact that low levels of Rv2546 also resulted in increased OFX-

tolerant populations (Figure 3.40), make it highly probable that a specific VapC 

threshold is required for persister formation, and once this threshold has been 

breached, toxicity/ cell death ensues. 

 

 



 

129 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.41: Expression of Rv2549c does not contribute to M. tuberculosis 
tolerance to ofloxacin. CFUs were obtained by plating 100µl of 10-fold serial dilutions of 
cells obtained subsequent to treatment and incubation at 37°C for 21 - 27 days. The vertical 
bars represent the experimental standard deviation.  
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4. Discussion 

Based on the most recent estimates, the pathogen,  M. tuberculosis, possesses 

88 TA loci on its chromosome, of which 47 belong to the vapBC family (230). Despite 

the fact that this is the largest TA family currently annotated (9, 96, 108, 211, 230), the 

vapBCs have been relatively poorly characterized (9). This study has shown that over-

expression of VapCs caused mycobacterial toxicity only once a certain threshold level 

of protein was attained, and this toxicity was fully alleviated only by the presence of 

their cognate antitoxins. Whilst VapCs were not found to play a role in stress 

management of mycobacteria under the conditions tested in this study, the presence of 

low cellular VapC levels appears to contribute to the formation of ofloxacin-tolerant 

M. tuberculosis populations. 

4.1 Are all mycobacterial VapCs functional? 

Conditional gene expression is a classic and powerful tool for elucidation of 

gene function. Several such gene expression systems are available for use in 

mycobacteria. The first inducible expression system described for use in mycobacteria 

makes use of the acetamide-inducible M. smegmatis acetamidase promoter (213). This 

promoter is located within the 1.5kb region upstream of the amide-encoding gene 

(213), which contains four possible open reading frames with mycobacterial codon 

usage (172), and is regulated by both positive and negative elements (213, 214, 216, 

236). Although this promoter has successfully been used for inducible expression of 

mycobacterial proteins by addition of acetamide (69, 101, 105, 177, 275), this system 

is unstable and not tightly regulated, as evidenced by the high levels of basal gene 

expression observed in the absence of inducer  (25, 135, 214, 216, 236). 

Another mycobacterial gene expression system, the arabinose-inducible 

system, derived from the E. coli arabinose operon, has successfully been demonstrated 

to express a M. tuberculosis MazF toxin in M. smegmatis (31). Unlike in E. coli where 

arabinose is the sole inducer of this system, in M. smegmatis addition of either 

arabinose or glucose results in gene expression. The PBAD promoter used in this system 

is extremely weak, exhibiting low promoter level activities and gene expression was 

only detectable on solid media and not in liquid media. In addition to these 
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confounders, a basal level of gene expression is observed even in the absence of the 

inducer, demonstrating that this system is not tightly repressed (31).  

Two novel inducible gene expression systems have recently been described for 

mycobacteria: the Pip-inducible (81) and nitrile-inducible expression systems (210). 

The Pip-inducible system, which has already widely been used in eukaryotic cells 

including plant and mammalian cells, comprises of the Streptomyces pristinaespiralis 

multidrug resistance ptr gene promoter-operator region and the S. coelicor pip 

repressor gene which is responsive to the pristinamycin inducer (81). The nitrile-

inducible system, on the other hand, comprises of the regulatory nitR gene, under the 

control of a Rhodococcus rhodochrous nitA gene promoter, as well as a second nitA 

promoter which regulates the gene of interest (210). Whilst both systems have been 

used successfully in saprophytic and pathogenic mycobacteria, these were not 

available at the start of this study. 

The most commonly used gene expression systems in mycobacteria are 

tetracycline-inducible (Tet-inducible) (21, 32, 70, 122, 146). Four Tet-inducible 

systems have been described to date. In 2005, Carroll and colleagues adapted a 

Staphylococcus aureus Tet-inducible system (17), which made use of Tet regulatory 

elements from the E. coli Tn10 transposable element and the Bacillus subtilis-derived 

Pxyl promoter (310) to generate an integrating vector possessing the TetR repressor 

with two divergent promoters (32). In this system, tetR is located downstream of one 

of these promoters and the gene of interest is cloned downstream of the second 

divergent promoter. Since the two operator sites to which TetR binds overlaps with 

these promoters, absence of the Tet inducer guarantees that TetR is bound to its target, 

thus ensuring no gene expression. Addition of Tet, on the other hand, allows for 

binding of TetR to the inducer, leading to a conformational change of this protein 

resulting to its dissociation from the operators, and hence expression of the gene of 

interest. This system, which makes use of a single-copy integrating plasmid, exhibited 

a significantly higher gene expression than the acetamide system, and was successfully 

used to express genes in both the saprophytic M. smegmatis and pathogenic M. 

tuberculosis (32). 
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The second Tet-inducible system described makes use of a Corynebacterium 

glutamicum Tet efflux system (21). Here, the tetR-encoded transcriptional regulator, 

the tetO operator region and the tetA promoter of the C. glutamicum tetZ locus were 

cloned onto an episomal plasmid, and the gene of interest cloned downstream of 

tetRO.  Although this system could be used to regulate in vitro and ex vivo gene 

expression in both saprophytic and pathogenic mycobacteria, the tetA promoter was 

significantly weaker than that of the strong mycobacterial hsp60 promoter used for 

constitutive expression, and incomplete gene repression was observed in the absence 

of the inducer (21). 

Up until 2006, no mycobacterial inducible gene-expression system had been 

developed for use in animal models (122).  In 2006, Hernandez-Abanto and co-

workers developed a mycobacterial Tet-inducible system for use in vitro (122). This 

system made use of a tcp830 Tet-inducible promoter and a TetR regulator, both of 

which were obtained from the closely related actinomycete Streptomyces coelicolor. 

The tetR was cloned under the control of the acetamidase promoter and the tcp830 

promoter-operator region was optimized to ensure maximal expression of the gene of 

interest. Whilst this system was shown to regulate gene expression of the saprophytic 

M. smegmatis within an animal model, addition of acetamide is required for control of 

TetR. Furthermore, gene expression using this system has not been demonstrated in 

pathogenic mycobacteria suggesting that modification of this system may be required 

for expression in M. tuberculosis.  

In this study, the functionality of VapCs in M. smegmatis and M. tuberculosis 

was investigated using the uncoupled ATc-dependent (ATc-dependent) mycobacterial 

conditional gene expression system that was developed by Ehrt, Schnappinger and 

colleagues (70). This system utilizes the Pmyc1tetO mycobacterial promoter - a 

promoter stronger than the mycobacterial hsp60 promoter - for expression of the gene 

of interest off an episomal plasmid (70). In addition, this system not only enables 

efficient regulation of a gene of interest in both fast and slow-growing mycobacteria, 

but also allows for regulatable expression of the TetR, which is available in both 

forward and reverse configurations (70, 107), by different strength promoters. 

Moreover, because the Tet-regulated promoter-operator (tetO) and the TetR are carried 
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on different vectors, the Ehrt and Schnappinger system (70) allows for constitutive and 

regulatable gene expression over a large dynamic range (Figure 3.5). 

Using this system, constitutive VapC expression of the sole M. smegmatis 

vapC and the ten selected M. tuberculosis vapCs revealed a similar differentiation in 

VapC function in both the heterologous M. smegmatis and native M. tuberculosis hosts 

(Tables 3.3 & 3.4). In this instance where maximal derepression of VapC is achieved 

in the absence of a TetR (Figure 3.5), the Rv1953 control, which has only two 

conserved active site acidic residues (Asp/Glu) (Figure 3.3), was not growth inhibitory 

to mycobacteria (Tables 3.3 & 3.4). These data are consistent with the notion that 

cleavage of free RNA by VapCs occurs when the four conserved acidic residues 

(Asp/Glu/Asp/Asp) form a negatively charged pocket to which divalent metal ions 

bind, forming the active site required for nuclease degradation (28, 46, 50, 186, 237, 

304).  It was therefore surprising to observe that the VapC proteins Rv0627, Rv2010, 

Rv2546, Rv2548 and MSMEG_1284, all of which retain the four highly conserved 

Asp/Glu/Asp/Asp catalytic residues essential for ribonuclease activity (Figure 3.3) 

were not growth inhibitory when ectopically expressed in either M. smegmatis or M. 

tuberculosis. In fact, mycobacterial growth inhibition only occurred in cells 

ectopically expressing Rv0549c, Rv0595c, Rv2549c, Rv2829c and Rv3320c, where 

Rv0549c was the least potent of the toxic VapC proteins (Section 3.2.1). These data 

therefore suggested a differentiation in VapC function where Rv0627, Rv2010, 

Rv2546, Rv2548 and MSMEG_1284 are non-toxic and, of the toxic Rv0549c, 

Rv0595c, Rv2549c, Rv2829c and Rv3320c VapCs, Rv0549c is the least toxic VapC. 

Differentiation in VapC function has widely been reported, where differences in VapC 

toxicity in E. coli, M. smegmatis and M. tuberculosis hosts have been observed (Table 

4.1) (108, 153, 261, 316). For instance, of the five toxic M. tuberculosis VapCs 

observed in this study, Gupta demonstrated that only expression of Rv0595c and 

Rv2549c were growth inhibitory to E. coli (108). While these discrepancies may have 

been expected because a non-related host was used to assess growth inhibition, and 

factors such as G+C content could affect protein expression and hence toxicity, 

differences in VapC function have also been observed upon expression in M. 

smegmatis (186, 230, 237). Miallau and colleagues reported that Rv0627, which was 

non-toxic to M. tuberculosis when constitutively expressed in this study (Table 3.4), 
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was extremely toxic when expressed in M. tuberculosis (Table 4.1) (186). In addition, 

while Robson and co-workers observed that conditional expression of MSMEG_1284 

resulted in growth inhibition of M. smegmatis (Table 4.1) (237), the data reported 

herein revealed a lack of toxicity of this gene even when constitutively expressed in 

both wild type M. smegmatis (Table 3.3), and in a deletion M. smegmatis mutant 

lacking all type II TA modules (Table 3.7). Furthermore, using M. smegmatis as a host 

to test for toxicity, Ramage and colleagues observed that Rv0595c, Rv2549c and 

Rv3320c were not growth inhibitory to M. smegmatis, while Rv2548 and Rv2010 

were growth inhibitory (Table 4.1) (230). These data contrast those reported in this 

study where both Rv2548 and Rv2010 were non-toxic while Rv0595c, Rv2549c and 

Rv3320c were growth inhibitory (Table 3.3). It is therefore probable that all the 

discrepancies in attributing VapC function (Table 4.1) may be due to experimental 

differences such as use of different conditional gene expression systems, differences in 

standardized ribosome binding sites - if incorporated, as well as the method used for 

assaying toxicity, as evidenced by the observation that Rv3320c is only toxic to 

mycobacteria when constitutively, but not conditionally expressed. . 
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Table 4.1: General experimental conditions used for assessing VapC toxicity – A 
comparison 

VapC Host Conditional 
expression 
system 

Standardized 
ribosome 
binding site 

Toxicity assay Toxicity Reference 

Rv0549c E. coli Arabinose-
inducible 

Unknown Growth by 
OD600 and CFU 

Non-
toxic 

(108) 

M. 
smegmatis 

Acetamide-
inducible 

Yes Growth on solid 
media 

Toxic (230) 

M. 
smegmatis 

ATc-
inducible 

Yes Transformation 
efficiency 

Toxic This study 

M. 
tuberculosis 

ATc-
inducible 

Yes Transformation 
efficiency 

Toxic This study 

Rv0595c E. coli Arabinose-
inducible 

Unknown Growth by 
OD600 and CFU 

Toxic (108) 

M. 
smegmatis 

Acetamide-
inducible 

Yes Growth on solid 
media 

Non-
toxic 

(230) 

M. 
smegmatis 

ATc-
inducible 

Yes Transformation 
efficiency 

Toxic This study 

M. 
tuberculosis 

ATc-
inducible 

Yes Transformation 
efficiency 

Toxic This study 

Rv0627 E. coli Arabinose-
inducible 

Unknown Growth by 
OD600 and CFU 

Toxic (108) 

M. 
smegmatis 

Acetamide-
inducible 

Yes Growth on solid 
media 

Non-
toxic 

(230) 

M. 
tuberculosis 

Unknown Unknown Unknown Toxic (186) 

M. 
smegmatis 

ATc-
inducible 

Yes Transformation 
efficiency 

Non-
toxic 

This study 

M. 
tuberculosis 

ATc-
inducible 

Yes Transformation 
efficiency 

Non-
toxic 

This study 

Rv1953 E. coli Arabinose-
inducible 

Unknown Growth by 
OD600 and CFU 

Non-
toxic 

(108) 

M. 
smegmatis 

Acetamide-
inducible 

Yes Growth on solid 
media 

Non-
toxic 

(230) 

M. 
smegmatis 

ATc-
inducible 

Yes Transformation 
efficiency 

Non-
toxic 

This study 

M. 
tuberculosis 

ATc-
inducible 

Yes Transformation 
efficiency 

Non-
toxic 

This study 

Rv2010 E. coli Arabinose-
inducible 

Unknown Growth by 
OD600 and CFU 

Non-
toxic 

(108) 

M. 
smegmatis 

Acetamide-
inducible 

Yes Growth on solid 
media 

Toxic (230) 

M. 
smegmatis 

ATc-
inducible 

Yes Transformation 
efficiency 

Non-
toxic 

This study 

M. 
tuberculosis 

ATc-
inducible 

Yes Transformation 
efficiency 

Non-
toxic 

This study 
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Rv2546 E. coli Arabinose-
inducible 

Unknown Growth by 
OD600 and CFU 

Non-
toxic 

(108) 

M. 
smegmatis 

Acetamide-
inducible 

Yes Growth on solid 
media 

Non-
toxic 

(230) 

M. 
smegmatis 

ATc-
inducible 

Yes Transformation 
efficiency and 
growth by 
OD600 and CFU 

Non-
toxic 

This study 

M. 
tuberculosis 

ATc-
inducible 

Yes Transformation 
efficiency and 
growth by CFU 

Non-
toxic 

This study 

Rv2548 E. coli Arabinose-
inducible 

Unknown Growth by 
OD600 and CFU 

Non-
toxic 

(108) 

M. 
smegmatis 

Acetamide-
inducible 

Yes Growth on solid 
media 

Toxic (230) 

M. 
smegmatis 

ATc-
inducible 

Yes Transformation 
efficiency and 
growth by 
OD600 and CFU 

Non-
toxic 

This study 

M. 
tuberculosis 

ATc-
inducible 

Yes Transformation 
efficiency and 
growth by CFU 

Non-
toxic 

This study 

Rv2549c E. coli Arabinose-
inducible 

Unknown Growth by 
OD600 and CFU 

Toxic (108) 

M. 
smegmatis 

Acetamide-
inducible 

Yes Growth on solid 
media 

Non-
toxic 

(230) 

M. 
smegmatis 

ATc-
inducible 

Yes Transformation 
efficiency and 
growth by 
OD600 and CFU 

Toxic This study 

M. 
tuberculosis 

ATc-
inducible 

Yes Transformation 
efficiency and 
growth by 
OD600 and CFU 

Toxic This study 

Rv2829c E. coli Arabinose-
inducible 

Unknown Growth by 
OD600 and CFU 

Non-
toxic 

(108) 

M. 
smegmatis 

Acetamide-
inducible 

Yes Growth on solid 
media 

Toxic (230) 

M. 
smegmatis 

ATc-
inducible 

Yes Transformation 
efficiency 

Toxic This study 

M. 
tuberculosis 

ATc-
inducible 

Yes Transformation 
efficiency 

Toxic This study 

Rv3320c E. coli Arabinose-
inducible 

Unknown Growth by 
OD600 and CFU 

Non-
toxic 

(108) 

M. 
smegmatis 

Acetamide-
inducible 

Yes Growth on solid 
media 

Non-
toxic 

(230) 

M. 
smegmatis 

ATc-
inducible 

Yes Transformation 
efficiency 

Toxic This study 

M. 
tuberculosis 

ATc-
inducible 

Yes Transformation 
efficiency 

Toxic This study 

M. 
smegmatis 

ATc-
inducible 

Yes Growth by 
OD600 and CFU 

Non-
toxic 

Diane 
Kuhnert, 
MMRU 
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MSMEG
_1284 

M. 
smegmatis 

C. 
glutamicum 
Tet-
inducible 

Yes CFU Toxic (237) 

M. 
smegmatis 

ATc-
inducible 

Yes Transformation 
efficiency 

Non-
toxic 

This study 

 

Prior to this work, all studies in which VapC function was ascertained  

assumed that since an identical expression system was used for assessment of gene 

function, all VapCs were expressed at equal levels in the cell (108, 186, 230). In an 

attempt to understand the molecular basis of the functional differentiation of VapCs, 

i.e. toxic vs. non-toxic, this study was the first to monitor vap(B)C expression at both 

mRNA as well as at protein levels. It was interesting to note that, despite the fact that 

both a non-toxic and toxic VapC were transcribed when conditionally expressed from 

the same ATc-inducible system (Figure 3.16), the protein levels of the toxic Rv2549c 

was significantly higher than that of the non-toxic Rv2546 VapC, even when the latter 

was constitutively expressed (Figure 3.20). This difference in cellular protein levels 

may account for the differentiation of VapC function observed in this and other studies 

(108, 186, 230). The observations that growth inhibition by Rv2549c (Figure 3.19) and 

HipA – another type II TA toxin (239) – is only observed once a cellular protein 

threshold is achieved,  corroborates this notion.  

Over-expression of proteins often results in the formation of inactive insoluble 

aggregates of the protein referred to as inclusion bodies. More often than not, these 

inclusion bodies form when the protein does not fold correctly during expression (175, 

181, 250, 289, 306). To determine whether VapC proteins became insoluble during 

expression, the supernatant (soluble) and pellet (insoluble) fractions of M. smegmatis 

strains expressing various VapCs were analyzed. Although in this study there was 

always significantly more soluble than insoluble VapC protein detected (Figures 3.18 

and 3.20), the presence of insoluble aggregates make it possible for the discrepancies 

observed in variations of functionality between studies (Table 4.1) to be a consequence 

of differences in the amount of inclusion bodies formed when using different 

expression systems. If more insoluble aggregates are formed when using a specific 

conditional expression system, this could result in diminished availability of soluble 

active VapC, and thus make the readout of VapC functionality “non-toxic”.  
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The presence of these inclusion bodies (Figures 3.18 and 3.20), coupled with 

the fact that toxicity occurs only once a specific cellular threshold has been achieved 

(Figure 3.19), suggests that differences in expression vectors and cloning strategies 

where different promoters, ribosome binding sites and codon usage were employed, 

may account for the incongruities observed between studies (Table 4.1). It therefore 

follows that factors affecting processes such as rates of translation and protein 

solubility greatly influence growth inhibition readout and hence the “functionality” 

score of a TA module (108, 152, 230, 261, 316). The findings of this study therefore 

make it imperative for VapC protein levels to be determined before any conclusions 

vis-à-vis (comparative) toxicity of these proteins can be made. 

4.2 Are the growth inhibitory effects of Rv2549c associated with nuclease activity 

of PIN domains? 

To probe the association of Rv2549c toxicity with nuclease activity of PIN 

domains (50, 186), site-directed mutagenesis was used to replace one of the conserved 

acidic residues (Asp5) by an alanine. The growth inhibitory effects resulting from 

expression of the mutant VapC were then compared to that of the wild type (Section 

3.3.3), and this D5A mutation was observed to abrogate Rv2549c toxicity (Figure 

3.27). Comparison of the expression levels of the FLAG-tagged mutant protein to that 

of the wild type protein, however, revealed that the mutation resulted in a significant 

reduction of protein present upon expression (Figure 3.28). This finding makes it 

impossible to conclude that the abrogation of growth inhibitory activity was a direct 

result of the loss of nuclease activity. 

Whilst it is possible that disruption of this acidic residue may have destabilized 

the transcribed mRNA thereby leading to degradation (175), protein structure 

prediction analyses revealed a potentially significant difference in the mutant Rv2549c 

(Figure 3.29). It appears that the mutation of the N-terminal conserved acidic residue 

may have rendered the protein unstable through disruption of the first � strand. This 

abnormal protein would then have been targeted for proteolytic degradation by the 

bacteria (175). Taken together, these data reaffirm that soluble protein expression 

levels of all VapCs must be quantified before conclusions about toxicity and/or 
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abrogation thereof may be made, even when single amino acid substitutions are 

introduced into the VapCs. 

4.3 Conditional gene expression of Rv2549c causes bacteriostasis in the presence 

of its cognate antitoxin but cidality in its absence 

Using the ability to conditionally express the toxic Rv2549c in the presence of 

high TetR levels (Section 3.2.3), the effect of regulated VapC expression in 

mycobacteria was elucidated. Ectopic expression of Rv2549c was observed to induce 

bacteriostasis in wild type M. tuberculosis, which carries the cognate Rv2550c 

antitoxin as part of the chromosomal Rv2550c-Rv2549c operon, over a period of two 

days (Figure 3.15). Unlike episomal RelE-induced bacteriostasis which could be 

prolonged by supplementation of the M. tuberculosis culture with more inducer (261), 

VapC-induced bacteriostasis could not be prolonged in this manner because plasmid 

rearrangement or loss occurred resulting in the abrogation of toxic VapC expression  

in M. tuberculosis (data not shown). Whilst the mode of action of VapCs remains 

unknown, these data suggest that although RelE is also growth inhibitory (41, 104, 

221, 261) and cleaves mRNA (87), its mode of action of nuclease degradation may be 

vastly different to that of VapCs. 

Upon conditional expression of Rv2549c in the heterologous M. smegmatis 

host - which lacks the cognate Rv2550c antitoxin - a “no-growth” phenotype was 

observed (Figure 3.11A). This was as a result of a rapid initial reduction in viability, as 

determined by CFU assessment, followed by protracted bacteriostasis (Figure 3.11B). 

This 2-log10 decrease in viable cell counts was in accordance with previously reported 

data that demonstrated that expression of MSMEG_1284 in a �vapBC M. smegmatis 

strain (237), and expression of M. tuberculosis RelE in M. smegmatis – which, 

incidentally, lacks the relBE family (211, 230, 237) - both resulted in a 100-fold 

decrease in viability followed by protracted bacteriostasis (152). In addition, 

expression of Rv2549c in the �Rv2545-Rv2550c strain, which lacks the cognate 

Rv2550c antitoxin, resulted in a 1-log10 reduction in viability of M. tuberculosis 

(Figure 3.36), while bacteriostasis was observed upon expression of the same toxin in 

wild type M. tuberculosis (Figure 3.15). Furthermore, since all survivors expressing 

Rv2549c had either been lost or had undergone plasmid rearrangement, taken together, 
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these data confirm that: (i) the effect of toxic VapC expression on mycobacteria is 

tempered by its cognate antitoxin expressed in the context of its chromosomal operon 

i.e. bacteriostasis vs. cidality; and (ii) expression of a toxic VapC has deleterious 

effects on mycobacteria, which surviving cells overcome by mutations that abrogate 

VapC expression (Figure 3.16, 3.17, 3.19 & 3.44). 

4.4 There is a specificity of interaction between cognate VapBC pairs 

Given the plethora of vapCs on the M. tuberculosis chromosome, which 

encode related proteins that retain PIN domains, the ability for cross-regulation of the 

vapBCs was assessed. The interaction of cognate VapBC pairs was initially tested by 

co-expressing the VapC with its cognate antitoxin from a single operon. Expression of 

the Rv2550c-Rv2549c operon was observed to neutralize Rv2549c toxicity (Figure 

3.21). This was in accordance with previous findings that demonstrated that in E. coli 

as well as M. smegmatis, co-expression of antitoxins from the same operon abrogated 

the toxicity imposed by their cognate toxins (42, 72, 230, 237). Whilst a number of 

groups have obtained evidence for cognate and non-cognate TA interactions using 

biochemical (113, 307, 312) and genetic approaches (41, 104, 134, 190, 220, 230) in 

which the toxins and antitoxins were both conditionally induced using high copy 

plasmids, a different genetic approach was employed in this study. Plasmid 

incompatibility, which occurs when two high copy number plasmids reside within a 

bacterial, still remains a real problem with eventual loss of plasmid occurring despite 

the fact that two co-resident episomal plasmids can be stably inherited for a defined 

period of time (202, 287). Therefore, a modular system was developed such that a 

toxic VapC was conditionally expressed, in single copy, from one phage integration 

site, while cognate vs. non-cognate vapBs were expressed from a different 

chromosomal locus using a different promoter (Figure 3.25). Using this system, the 

toxic Rv2549c as well as Rv0595c were found to be neutralized only by their cognate 

antitoxins (Figure 3.26). These findings were in agreement with Ramage and 

colleagues who showed, using high copy plasmids, the specificity of interaction of 

cognate VapBC pairs (230). In view of the fact that cidality rather than bacteriostasis 

of a M. tuberculosis strain devoid of the cognate Rv2550c antitoxin occurred 

subsequent to Rv2549c induction (Figure 3.36) and that constitutive expression of 
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toxic VapCs in wild type M. smegmatis was observed to have a similar effect to 

expression of the same VapCs in a M. smegmatis strain devoid of all type II TA 

modules (Table 3.6), these data argue against cross-interaction between the toxin and 

antitoxin components of different VapBC modules in M. tuberculosis for alleviation of 

growth inhibition.  

Even though all antitoxins located upstream of vapCs are denoted vapBs, the 

vapB antitoxins Rv0599c and Rv2595 have been observed to be more similar to MazE 

antitoxins (315). Interestingly, these two VapBs have been demonstrated to restore 

growth of E. coli (partially or fully), post induction of the toxic Rv2801c and Rv1991c 

MazFs (315). Moreover, protein interactions between (i) the VapB antitoxin Rv0599c 

with the non-cognate toxins Rv2596 (VapC) and Rv1991c (MazF) (315); (ii) the 

MazE antitoxin Rv1991A with the VapCs Rv0598c and Rv2596 (315); and (iii) both 

M. tuberculosis RelB1 and RelB2 with their non-cognate RelEs (307) have also been 

established. Despite the findings of this study, the abovementioned observations, 

together with the fact that some TA modules appear to directly or indirectly regulate 

other TA loci (91, 138, 304), make it important to probe whether interactions that may 

not alleviate toxicity may nonetheless be physiologically relevant in M. tuberculosis 

pathogenesis. 

4.5 Are vapBCs required for mycobacterial survival to cellular stressors? 

Numerous type II TA modules have been implicated in genome stabilization 

and stress-induced growth regulation of bacteria during nutrient starvation, DNA 

damage, oxidative stress, heat and antibiotic treatment (118, 119, 134, 230, 248, 249), 

just to name a few. Apart from inferences deduced from transcriptional data (Table 

1.2), little, if anything is known about the role of VapCs in stress-induced growth 

regulation of mycobacteria. Consequently, this study attempted to determine whether 

VapCs play a role in mycobacterial stress physiology by investigating the effect of loss 

of TA module function on survival under conditions of stress. The saprophytic 

mycobacterium M. smegmatis has successfully been used to study M. tuberculosis 

pathogenesis (14, 198, 234, 259, 277). This, together with the fact that M. smegmatis 

possesses only one vapBC module on its chromosome, and thus, is not complicated by 

the massive expansion of the VapBC family which would render such an undertaking 
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in M. tuberculosis unfeasible, makes M. smegmatis a useful tool for this understanding 

the role of vapBCs in mycobacterial stress physiology. Using a genetic approach, the 

sole M. smegmatis vapBC module was successfully deleted from M. smegmatis by 

homologous recombination (Figure 3.30).The survival of the M. smegmatis vapBC 

deletion mutant following exposure to cell wall, nitrosative, genotoxic, thermal and 

antibiotic stresses was indistinguishable from its parental wild type strain under all 

conditions tested, as measured by enumerating CFUs (Figure 3.32 & Table 3.7). 

Whilst viability measurement by means of CFU assessment is a widely used method 

for monitoring effect of gene loss, as was the case in this study, it nonetheless remains 

a crude readout of the response of an organism to cellular stress and subtle differences 

in survival could be missed. Significantly, whereas Engelberg-Kulka’s group 

demonstrated an association between the stress response of E. coli with mazEFs (118, 

119, 248, 249), this association could not be reproduced by Tsilibaris et al. using a 

quintuple mutant of E. coli lacking all five type II TA modules, presumably as a result 

of the high density of the bacterial culture used (276). These findings suggest that 

variations in experimental conditions, such as growth phase, can profoundly affect the 

outcome of stress survival experiments. Therefore, although loss of the sole M. 

smegmatis vapBC did not appear to sensitize M. smegmatis to the lethal effects of 

certain stresses, the possibility that vapBC modules may play a role in stress-induced 

growth regulation of mycobacteria cannot be excluded.  

4.6 VapC expression and M. tuberculosis drug tolerance 

With the overwhelming evidence implicating TA modules in the formation of 

multidrug tolerant persisters upon treatment with antibiotics (60, 113, 116, 142, 193, 

254), and the sheer number of vapBC modules on the M. tuberculosis chromosome, it 

was important to determine whether VapC expression results in the tolerance of M. 

tuberculosis to antibiotics. Wild type M. tuberculosis ectopically expressing the toxic 

Rv2829c VapC, was initially used to establish a protocol for testing the effect of VapC 

expression on the drug tolerance in M. tuberculosis. Using this initial protocol (Figure 

3.37), over-expression of Rv2829c was observed to increase M. tuberculosis OFX-

tolerance of late-logarithmic to early-stationary phase M. tuberculosis cells (Figure 

3.38). However, limited oxygen availability not only restricted M. tuberculosis growth, 
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but also hindered the ability to discern any bacteriostatic effect that the VapC might 

have on the culture (Figure 3.38). As such, it was not possible to conclude that this 

was akin to the increase in OFX tolerance mediated by the protein synthesis inhibitor, 

CM. Therefore, the protocol was modified to ensure availability of oxygen-rich 

environments, maximal growth of M. tuberculosis cells and maximal killing by OFX 

for the duration of the experiment (Figure 3.39). Since Rotem and colleagues had 

demonstrated, using the mutant HipA7 toxin/ HipB antitoxin pair, that weakened 

binding between a toxin and its antitoxin resulted in a higher probability for persister 

formation in E. coli (239), the �Rv2545-Rv2550c strain which lacks both cognate 

antitoxins to bind the VapCs, was used in place of the wild type M. tuberculosis to 

increase the likelihood that even marginal changes in the ability of M. tuberculosis to 

tolerate OFX might be detected.  

Upon implementation of these modifications, treatment of �Rv2545-Rv2550c 

cells expressing Rv2549c with OFX revealed a 1-log10 reduction in OFX-tolerance 

(Figure 3.41), similar to the 1-log10 reduction in viability observed upon Rv2549c 

expression in the absence of antibiotics (Figure 3.36). Although the expected 1-log10 

decrease in viability of M. tuberculosis upon Rv2549c expression (Figure 3.36) was 

not observed in the absence of OFX in this experiment (Figure 3.41), the faster 

doubling time of the cells, as a result of being grown as rolling rather than standing 

cultures, probably allowed for earlier and faster plasmid loss or rearrangement, and 

hence a more rapid outgrowth of cells. This notwithstanding, the data suggested that 

expression of a toxic VapC in the absence of its cognate-antitoxin plays no role in M. 

tuberculosis OFX-tolerance. However, induction of Rv2546, which from previous 

observations yield lower cellular levels compared to Rv2549c (Figure 3.20), resulted 

in increased M. tuberculosis OFX-tolerance (Figure 3.40).  

Therefore, to summarise the data obtained from three different VapCs: (i) the 

toxic Rv2829c expressed in the presence of its cognate antitoxin carried on the 

chromosome as part of the endogenous TA module - which effectively reduced the 

total amount of Rv2829c in the cell - increased M. tuberculosis OFX-tolerance; (ii) 

ectopic expression of Rv2546, with its low protein cellular levels, increased M. 

tuberculosis OFX-tolerance; and (iii) over-expression Rv2549c, whose high cellular 
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protein levels resulted in loss of viability in the absence of its cognate antitoxin, had 

no effect on M. tuberculosis OFX-tolerance. These data, together with the fact that 

ectopic expression of (i) the three toxic M. tuberculosis RelEs (261); and (ii) the toxic 

Rv1102c MazF (113), also increase mycobacterial persister populations using a variety 

of different antibiotics, including fluoroquinolones (113, 261), strongly suggest that 

OFX treatment of cells with low cellular VapC levels results in drug tolerance, but 

once high cellular VapC levels are reached, toxicity ensues. This may potentially 

explain why M. tuberculosis has undergone a massive expansion of this family. The 

availability of so many of these modules on its chromosome may act as a fail-safe 

mechanism to ensure that under conditions of stress, expression of these VapCs in the 

presence of their cognate antitoxins reduce the levels of the toxin in the cell, thereby 

allowing the cells to persist within the stressful environments.  

4.7 Concluding Remarks 

The work presented here has highlighted numerous challenges - plasmid 

instability and variations in VapC functionality readout when using different 

expression systems, to name but a few - encountered during elucidation of the role of 

mycobacterial VapCs. It is therefore imperative that future studies address these 

challenges before assigning absolute and comparative functionality to these proteins. 

Moreover, whilst VapC proteins do not appear to play a role in stress management of 

mycobacteria in vitro under the conditions tested, it would be interesting to assess the 

role of VapCs in various ex vivo and in vivo models, as well as analyzing and 

comparing transcriptome data obtained from M. tuberculosis exposed to a variety of 

stress conditions.  

Given that low levels of VapC appear to result in increased drug tolerance, and 

comparatively high levels of VapC are required in order to see growth inhibitory 

effects in a mycobacterial host, it is likely that lower levels of VapCs that are induced 

as a result of stochastic and/or environmentally-induced vapBC expression might have 

a significant effect on the physiology of mycobacteria, without necessarily affecting 

growth. The presence of this large ribonuclease family in M. tuberculosis may also 

ensure abundant nuclease activity under specific conditions, which would likely have a 

profound effect on the physiology of the organism. Unlike MazF toxins which have 
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been characterized as sequence-specific ribonucleases (314, 316), very little is known 

about the nuclease activity of VapC proteins or their cellular target(s) (8, 50, 186, 230, 

304). Studies are therefore required to identify the mechanism(s) of action as well as 

the cellular target(s) of VapCs, and to shed further light on their role in M. tuberculosis 

physiology and pathogenesis. 
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5. Appendices 

Appendix A: List of Abbreviations 

AAP  Antarctic Alkaline Phosphatase 

Amp  Ampicillin 

aph  Gene encoding aminoglycoside phosphotransferase 

ATc  Anhydrotetracycline 

ATCC   American Type Culture Collection 

BCP  bromo-3-chloropropane 

bp  Base pairs 

BSA  Bovine serum albumin 

CDC   Centres for Disease Control and Prevention 

CFU  Colony forming unit 

CM Chloramphenicol 

CSPD Disodium 2-chloro-5-(4-methoxyspiro (2-dioxetane-3,2 (2-dioxetane-
3,2’-(5’-chloro)-tricyclo[3.3.1.1. 3, 7. ]decan)-. 4-yl)-1-phenyl 
phosphate 

CTAB  Cetyltrimethylammonium bromide 

d  Days 

DCO  Double cross over 

DIG  Digoxigenin 

DMSO  Dimethylsulphoxide 

DNA  Deoxyribonucleic acid 

DNTPs Deoxynucleotide triphosphate 

DOTS   Directly Observed Therapy – Short Course 

DTT  Dithiothreitol 

EDTA   Ethylenediaminetetraacetic acid 

g  Gravitational force 

Gm  Gentamicin 
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h  Hours 

HAART  Highly Active Antiretroviral Therapy 

HCl  Hydrochloric acid 

HIV   Human Immunodeficiency Virus 

hyg  Gene conferring resistance to hygromycin B 

Hyg  Hygromycin 

IPTG  Isopropyl-beta-D-thiogalactopyranoside 

IRIS  Immune Reconstitution Inflammatory Syndrome 

kb  Kilo base pair 

Km  Kanamycin 

kPA  Kilo Pascal 

LA   Luria-Bertani agar 

lacZ   Gene encoding �-galactosidase 

LB   Luria-Bertani broth 

LTBI   Latent tuberculosis infection 

MDR-TB Multidrug-Resistant Tuberculosis 

MIC   Minimum inhibitory concentration 

min   Minutes 

ml   Mililitre 

MTBC  Mycobacterium tuberculosis complex 

NaCl  Sodium chloride 

NaNO2  Sodium nitrite 

NaOH  Sodium hydroxide 

OADC  Oleic acid-albumin-dextrose-catalase 

OD600  Optical density at 600 nanometre wavelength 

OFX  Ofloxacin 

ORF  Open reading frame 

PCR  Polymerase Chain Reaction 
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ppGpp  Guanosine 3’-5’-Bispyrophosphate 

R  Resistant 

RNA  Ribonucleic acid 

RT   Reverse transcription/transcriptase 

s  Seconds 

sacB   Gene encoding levansucrase 

SAP  Shrimp Alkaline Phosphatase 

SCO   Single cross over 

sdH20  Sterile distilled water 

SDS   Sodium dodecylsulphate 

Suc   Sucrose 

TB  Tuberculosis 

TDR-TB Totally Drug Resistant Tuberculosis 

TE  Tris-EDTA 

tmRNA Transfer messenger RNA 

Tris   Tris(hydroxymethyl)aminomethane 

Tween   Polyoxyethylene sorbitan monooleate 

U  Units 

XDR-TB Extensively Drug Resistant Tuberculosis 

v/v  Volume per volume 

w/v  Weight per volume 

WHO  World Health Organization 

X-gal  5-bromo-4-chloro-3-indolyl-�-D-thiogalactopyranoside 
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Appendix B:  Culture media and solutions 

Culture media 

All media was made up in one litre de-ionized water and except otherwise stated 

sterilized by autoclaving (121°C for 20 mins). 

Luria-Bertani Broth (LB) 

5g yeast, 10g tryptone, 10g sodium chloride 

Luria-Bertani Agar (LA) 

5g yeast, 10g tryptone, 10g sodium chloride, 15g agar 

2TY 

5g sodium chloride, 10g yeast extract, 16g tryptone 

Middlebrook 7H9 

2ml glycerol, 4.7g DifcoTM Middlebrook 7H9 broth  

Middlebrook 7H10 

5ml glycerol, 19g DifcoTM Middlebrook 7H10 agar 

Sauton’s minimal media (pH 7.2) 

4 g asparagine, 0.5 g magnesium sulphate, 2 g citric acid, 0.5 g potassium dihydrogen 

orthophosphate, 0.05 g ammonium ferric citrate, 48ml glycerol. Sterilized by filtration. 

Solutions 

20× SSC 

8.82% sodium citrate, 17.53% NaCl; pH to 7.0 with HCl 

50× Denhardt’s Reagent 

1% Ficoll (Type 400), 1% polyvinylpyrrolidone, 1% BSA  
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Appendix C: attB PCR strategy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Schematic representation of the PCR strategy used to confirm successful 
integration at the tRNAGly attachment site following allelic exchange 

attB 

276 bp 

Chromosome 

attBS2 attBS1 

attP 

Allelic exchange 

attL2 attL4 

attP Chromosome 

attL2 attBS1 

attB 

attBS2 attL4 

320 bp 282 bp 
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Appendix D: Lamda DNA molecular weight markers 

 

 

 

 

 

 

 

 

 

 

 
The above DNA molecular weight markers III, IV and V used in this study were 
supplied by Roche Applied Science. 
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