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Abstract

An explosion of genomic data in recent years has necessitated the novel application of old algorithms
and the development of new algorithms in order to process and understand this information. One
specific type of data comes in the form of expressed sequence tags (ESTs) which have significant
biological importance. They do, however, require a lot of work in the dry lab once they have been
created in a wet lab before anything meaningful can be made of the data.

ESTs are short fragments of genomic data that represent the active genes in a sequenced sample.
The sequencing process is complex and involves the copying, magnification and then splitting up of
long complete sequences. The splitting of each copy is random and by looking for overlaps on the
shorter sequences we can then begin to re-assemble the original long sequence. The process of finding
the overlaps is called clustering and in theory it groups all the ESTs from a single gene together (where
data sets in general contain ESTs from many different genes).

Two new heuristics have been developed in this research that aim to speed up the time taken
to do the clustering, which is traditionally an all-against-all comparison (and thus quadratic time
complexity). The first heuristic uses a sorted word list of all the words in all the sequences to rapidly
identify matching pairs of sequences. Further, the standard deviation between the relative position
where words occur in the matching sequences is used to determine the quality of the matches – if a
pair of sequences has sufficiently many words in common, and the variation in relative positions of
those words is sufficiently low it is then tested by the second heuristic.

The second heuristic uses a distance measure called d1 which identifies pairs of matching se-
quences in a very similar way to the d2 distance measure. d2 is an accepted distance calculation for
calculating the relatedness of ESTs, but d1 is used as a comparison as it runs in linear time and rules
out many of the potential matches from the first heuristic that would also be ruled out by the final d2

comparison.
The results show that with careful selection of clustering parameters a significant speed-up can be

made over various competing clustering techniques with little significant impact on clustering quality.



Acknowledgements

Firstly I would like to thank my supervisor, Scott Hazelhurst, for giving me a great project to work on
and being patient with me in times of low-productivity (most times). Thanks also to my sponsors at
the National Bioinformatics Network for funding my project as well as educating me in the ways of
Bioinformatics. Special thanks to my mother and brother for supporting me in my endevour to be the
eternal student. Thanks to Deborah for putting up with me and helping out so much in the final stages
of this project. And finally I’d like to thanks Wes and Em for always standing by me and helping me
to exercise my TABing ability on the water and on my Bruce.

i



Contents

1 Introduction 1
1.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contribution of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Structure of the document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Expressed Sequence Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 From DNA to RNA to protein . . . . . . . . . . . . . . . . . . . . . . . . . 8
The molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Protein synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 From RNA to cDNA to ESTs . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 EST Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Sequence Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
d2 distance measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Smith-Waterman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
FASTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
BLAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Needleman and Wunsch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
d2 clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
PaCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
HECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
CLU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
ESTate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
TGICL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
xsact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
UICluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Assembly Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Cleaning the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Lucy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
RepeatMasker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
dust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
RBR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.4 Comparison of clustering techniques . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ii



3 Algorithm 27
3.1 Algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Set-up phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 sd heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.3 d1 heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.4 d2 calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.5 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Algorithm Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Why d1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 d1 versus d2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Introducing d1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Comparing d1 and d2 scores . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Using d1 for pre-clustering d2 . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Results 40
4.1 Experimental tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Cluster Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1 sd heuristic Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Influence of word size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Influence of word count threshold . . . . . . . . . . . . . . . . . . . . . . . 52
Influence of standard deviation threshold . . . . . . . . . . . . . . . . . . . 53
Skip Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 d1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Scaling performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Effects of different data sets . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Effects of cleaning the data . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Parameter Space Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Conclusions 64

References 65

iii



List of Figures

1.1 Creating clusters by finding the connected components in the graph. . . . . . . . . . 2
1.2 The solution for EST clustering in this research takes a data set of EST sequences

and rapidly identifies candidate matches using word frequencies as well as positional
information in the sd heuristic. It then narrows down the candidates using a more
stringent sequence comparison called d1. Finally the matches are checked using the
d2 comparison and if they are sufficiently similar they are clustered together. . . . . . 4

1.3 This shows an example sequence that has lots of words in common with two other
sequences. While they have exactly the same number of common words, in one case it
is a poor match since the matches do not occur in the same relative positions, whereas
in the other it is a good match since the relative position of the words is consistent. . 5

2.1 This represents a chromosome or a piece of DNA as well as a gene found within the
chromosome. The red shows the genes within the chromosome; the blue shows the
exons within gene; and the black represents the non-coding parts. . . . . . . . . . . . 9

2.2 This figure shows the three polymers considered as well as their constituent parts.
First there is DNA made up of nucleotides, then the RNA made up of it’s nucleotides
(with (U)racil replacing (T)hymine) and finally protein made from it’s amino acids. . 9

2.3 This is an illustration of protein synthesis. First a gene is transcribed from the DNA
to create precursor mRNA. The introns are then spliced out to produce the mature
mRNA. Finally the mRNA is translated into protein which folds to form a secondary
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 This figure shows the process of going from expressing a gene in a cell to the final
creation of the expressed sequence tag. Products i) through iii) are natural, while the
rest are created artificially. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 This figure illustrates alternative splicing where the precursor mRNA can result in two
different mature mRNAs (which in turn code for two different proteins) . . . . . . . 13

2.6 This is a simplified version of what happens when mRNA is sequenced, clustered
and then aligned. The gene is expressed twice in this case, and thus it is sequenced
twice. The two sets of ESTs are produced at the same time and it is not known
where each EST comes from. They are then clustered together by looking for overlaps
(similarities between a pair of ESTs are indicated as a pair of parallel lines) and then
they are aligned and the original gene is found. . . . . . . . . . . . . . . . . . . . . 14

2.7 An example EST clustering. Firstly the cDNAs are sequenced. Matches are then
found between the ESTs. This can be reported as a hierarchical clustering, or the
clusters themselves can be returned. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iv



2.8 An example of a hierarchical versus a non-hierarchical clustering. It illustrates the
differing amount of information that needs to be discovered and shows that while a
hierarchical clustering gives a more complete picture of the similarities between the
sequences, it also requires more work. . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 ESTs are first pre-clustered with a faster heuristic that quickly generates a coarse
clustering. This is then fine tuned by more fine-grained algorithms. ESTs within the
pre-clusters do not need to be considered against ESTs not in their cluster. . . . . . . 17

2.10 In this example the ESTs have been under-clustered, either because of a strict or a
greedy algorithm. Once the initial clusters are formed the ESTs only need to be con-
sidered against the ESTs in the other three clusters. . . . . . . . . . . . . . . . . . . 24

4.1 The figure shows how to classify pairs of ESTs between the two different clusterings. 43
4.2 Example 1: Reference Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Example 1: Test Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Example 2: Reference Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Example 2: Test Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 Parameter selection – word size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7 Parameter selection – word count threshold . . . . . . . . . . . . . . . . . . . . . . 49
4.8 Parameter selection – standard deviation threshold . . . . . . . . . . . . . . . . . . . 50
4.9 Parameter selection – standard deviation threshold . . . . . . . . . . . . . . . . . . . 51
4.10 Parameter selection – skip value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.11 This shows a box plot of the FP:TP ratios over all the real world data sets for the raw

data as well as the cleaned data. A low FP:TP ratio is good and the figure indicates
that most of the data sets had very low FP:TP ratios where even the outliers were
relatively low except in the one case in the raw data where there were more than 20
false positives for every true positive. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.12 Scaling performance – parameter selection: This figure illustrates a number of aspects
of how parameter selection effects scaling performance. Firstly it shows how the time
scaling varies with parameter selection (more detail in Figure 4.13). Secondly it shows
the number of times the heuristic passed for the various parameter selections. Finally
it shows the number of times the final d2 check passed – indicating a similar quality
of clustering for all the parameter selections. . . . . . . . . . . . . . . . . . . . . . . 60

4.13 Scaling performance – regression: This shows that the scaling performance of sd clust
is somewhat dependent on the parameters used. In this case the time scale is between
O(n1.58) and O(n1.86). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.14 Scaling performance – resource usage: This shows that processor usage scales in
polynomial time, while the memory usage scales linearly. . . . . . . . . . . . . . . . 62

4.15 Data set variablility: This shows that the success of the heuristic using a given set
of parameters is dependent on the data set. A more aggressive set of parameters can
work in most cases, but fail in others. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.16 Histogram of mus musculus cluster sizes illustrating that wcd has combined some of
the larger clusters created by sd clust into a larger super-cluster. . . . . . . . . . . . 63

v



Chapter 1

Introduction

In the last two decades we have seen the amount of biological information generated by researchers
grow exponentially. This data covers the entire field of biology, but in the field of molecular biology
we have seen the largest growth. There are many categories where this data falls into – be it genomic,
proteomic, systems biology, but this research is concerned with an important large volume of data that
comes in individually small packages – the expressed sequence tag.

Expressed sequence tags (ESTs) are created when mRNA is sequenced. This genetic data gives us
direct information on the genes that are active within some cell, tissue, organ or organism at some point
during its life. Being able to effectively use this information enables researchers to better understand
the cells, tissues, organs and organisms which in turn enables a variety of further research to be done,
whether it be drug development [Lizotte-Waniewski et al. 2000], novel gene discovery [Verdun et al.
1998] or even creating phylogenetic trees [Dunn et al. 2008]. This research looks at a method to speed
up a process that takes raw sequence data from the wet lab, to meaningful data in the hands of the
researcher.

This step is called EST clustering. When a given sample’s mRNA is sequenced, the original strand
is cut up into smaller strands and the end result is a large number of short sequence fragments (the
ESTs), that correspond to many/all the different genes that were active when the sample was taken.
Unfortunately when this is done there is no way to keep track of which fragment belonged to which
mRNA or gene. Fortunately when the sequencing is done there are many copies of each mRNA, each
of which is cut in a different place and, by finding regions of similarity between the ESTs, we can then
group together the ESTs that came from the original strand (clustering). We can then try and rebuild
what the original strand looked like (assembly).

The clustering is a relatively simple, yet time-consuming, step in the process that requires every
EST to be compared to every other EST to find the regions of similarity. Computationally this takes
quadratic time which makes it unfeasible to do on very large data sets without either parallelising the
solution or using some kind of heuristic to quickly narrow down potential matches. The algorithm
developed in this research uses two such heuristics, the first of which speeds up the clustering process
by rapidly identifying potential matches and avoiding any complex computation on pairs of sequences
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with little chance of matching. The second heuristic is more fine-grained than the first heuristic and
simply aims at narrowing down the list of candidate matches further.

The rest of this chapter gives a slightly more detailed introduction into the problems of EST
clustering and the solution that has been developed. A brief summary of the results is presented and
finally the structure of the rest of this document is outlined.

1.1 The problem

More formally, the task of EST clustering can be seen in mathematical terms as creating a graph,
where nodes represent ESTs and the presence of edges between vertices indicates some overlap, or
match, between them. In the model shown in Figure 1.1 we see that from the original unconnected
graph we get three sub-graphs created by connected nodes, which are then considered the clusters.

Figure 1.1: Creating clusters by finding the connected components in the graph.

The problem that this research tackles is finding a way to discover a quick and efficient method of
identifying which ESTs are connected to which other ESTs. We are not concerned with finding every
single edge in the graph, since the final output is simply a list of lists that describe which ESTs belong
in a cluster. This does mean that if an EST, α, is found to match another EST, β, which already belongs
to a larger cluster, γ, then it is unnecessary to compare α to the rest of the ESTs in γ. However, it is
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still necessary to compare it to the rest of the ESTs in the data set. In the worst case this means that
we need to compare every EST against every other EST – which takes quadratic time (in the number
of ESTs) and thus is impractical for very large data sets.

Another complicating factor for EST clustering occurs when the data set is created. EST creation
uses a high-throughput sequencing technique that puts an emphasis on quantity rather than quality. As
such, the data that is produced tends to have a relatively high error rate of around 2% [Schuler 1997].
The implication of this is that we cannot simply look for exact matches between two sequences,
but rather we look for approximate matches. There are two main categories of algorithm for doing
this – alignment based and alignment free. Alignment based comparisons generally consider edit
distance as the matching criterion – thaey looks at how many substitutions, deletions and insertions
are required to convert one sequence into another. Alignment free based comparisons usually consider
word frequencies – the occurrence of all the words of some given length are considered and compared
in some way. The advantage of alignment based methods is that they use well researched methods of
sequence/string comparisons and have been efficiently implemented for many years. Unfortunately
they can miss identifying related sequences that have been altered due to shuffling and recombination
[Vinga and Almeida 2003]. On the other hand, since alignment free algorithms tend to be based on
word frequencies, they are better at identifying sequences which have been altered due to these events.

1.2 The solution

This research has looked at the development of two heuristics which are used to rapidly identify
candidate sequences for d2 based clustering. The d2 distance measure is an alignment free comparison
that was first used by Burke et al. [1999] for EST clustering and has since been included in the
StackPACK set of tools [Christoffels et al. 2001] and wcd [Hazelhurst 2003], both of which are often
used for EST clustering. The basic procedure is depicted in Figure 1.2 and is described below.

The first heuristic, called sd heuristic, works by assuming that shorter sub-sequences, or words,
within an EST are less likely to occur in non-matching pairs than they are in matching pairs. It takes
advantage of this by creating a sorted list of all the words of some given length in all the sequences and
then by going through the sequences one-by-one it is simple to check which sequences have common
words. This then avoids computationally expensive comparisons between sequences with no, or few,
words in common. If the number of common words between sequences exceeds a certain threshold,
it then uses a second mechanism to further narrow down the predicted matches. This is done by
checking if the relative positions of the matching words in the candidate sequences are similar. The
idea behind this is illustrated in Figure 1.3 and says that if the two sequences are similar, then the
matching words will occur in a similar order. In order to achieve this a list of the offsets is stored and
if the standard deviation of these offsets is less than some value then it is considered a match.

While the first heuristic quickly identifies possible candidate matches, it is not very stringent.
The second heuristic, called the d1 heuristic, narrows down the positive results by calculating the d1

distance between the sequences. This is more strict than the first heuristic, but less strict than the
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Figure 1.2: The solution for EST clustering in this research takes a data set of EST sequences and
rapidly identifies candidate matches using word frequencies as well as positional information in the
sd heuristic. It then narrows down the candidates using a more stringent sequence comparison called
d1. Finally the matches are checked using the d2 comparison and if they are sufficiently similar they
are clustered together.

final d2 comparison. The d1 comparison compares all the windows in one sequence against the entire
second sequence and is able to run in linear time. Furthermore it is a good approximation to d2 since
it always predicts the correct positive matches, while still filtering out many of the false positives
predicted by the first heuristic.

Results

A number of tests were carried out to analyse the performance of the developed algorithm. They
looked at each individual level of the algorithm (the sd heuristic, the d1 heuristic, overall performance)
and considered the accuracy of the clustering as well as the scaling performance. Various data sets
were used, including an artificial data set and many real-world data sets. It was found that in most
cases the accuracy of the clustering was very good with a Jaccard Index1 over 95%. Furthermore,
both the memory and computational scaling characteristics were found to be sub-quadratic. The
memory requirements of the algorithm is an issue and a proposed solution is discussed in Section
5. Computationally it was found that in most of the cases it outperformed the two other clustering

1a commonly used measure for comparing EST clusters
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Figure 1.3: This shows an example sequence that has lots of words in common with two other se-
quences. While they have exactly the same number of common words, in one case it is a poor match
since the matches do not occur in the same relative positions, whereas in the other it is a good match
since the relative position of the words is consistent.

methods that were considered and parallelisation techniques are proposed in Section 5.

1.3 Contribution of the research

A new method of EST clustering has been developed that takes less time to compute than existing
sequential solutions, yet maintains a high standard of quality. This paves the way for dry lab biologists
to more rapidly analyse their EST data and allowing for a smoother work-flow. It has demonstrated
the usefulness of two new heuristics that rapidly identify candidate matches for EST clustering and
could potentially be applied in similar problems.

1.4 Structure of the document

This document is structured as follows:

• Chapter 1 has introduced the subject at a high level and gives a broad outline of what the
research covers and how it aims to solve the problem.

• Chapter 2 covers all the background material related to this research. It puts the research in
context by relating the biological aspects surrounding ESTs. Competing technologies are com-
pared and contrasted to one another to identify weak and strong points. research hypotheses,
and analyses how testing is done from both a theoretical and practical point of view.

• Chapter 3 presents the algorithm and heuristics that were developed and discusses the practical
implementation of the algorithm as well as a theoretical analysis of its performance.

• Chapter 4 presents and discusses the empirical results of this research. The results explore
the parameter space of the sd heuristic and shows how the various options affect the overall

5



clustering. Also discussed is the influence of other factors such as the nature of the data set and
the effect of “cleaning” the data before clustering.

• Chapter 5 is a summary of what the research has accomplished and what still remains to be
done.
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Chapter 2

Background

Bioinformatics, the merger between information science and biology, is a rapidly growing field. This
joining of two distinct sciences has come about because of the explosion of information being pro-
duced in biological labs – especially those involved in genetic research. The massive amount of data
that is output from institutions around the world has created a situation where it is not only impossible
to analyse this information by hand, it is becoming increasingly difficult for computers to keep up
with the demand. So there is a requirement for more accurate, faster, cheaper ways of analysing the
data.

The data that is of interest in this research is expressed sequence tag (or EST) data. ESTs represent
small fragments of genes that code for proteins in a cell. These sub-sequences of genes are of interest
since they can be used to identify all of the active genes in a cell. While each cell has its own complete
copy of the DNA, and thus a copy of each gene, it does not need to produce all the possible proteins
encoded in it and so only some of the genes are active. Since an individual EST only represents a
small portion of a gene they are not of much use on their own, but when they are grouped together
then the original gene is easier to identify. The grouping of ESTs together is known as EST clustering
and is the process that this research looks at.

There are many methods of clustering EST data, but they are unfortunately all computationally
expensive. This research considers an all-against-all approach that reduces the overall time to cluster
ESTs. The theoretical worst-case performance of the algorithm is still as bad as any of the existing
algorithms but with real world data the performance is often superior.

This chapter begins by introducing much of the background material relevant to this research. It
begins by putting the project into its biological context and showing its importance to the field. Finally
various clustering algorithms are introduced, with special attention paid to d2 which is one of the more
important algorithms relating to this research.
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2.1 Expressed Sequence Tags

Since the discovery of the structure and role of DNA in the 1950s by James D. Watson and Francis
Crick, the field of molecular biology has resulted in large amounts of research into the behaviour
of DNA, RNA and proteins in a cell. DNA contains all the information necessary for a living cell,
or organism, to function and replicate. Much of this information is in the form of genes, which are
relatively short regions within the long DNA molecule that most famously code for proteins (the basic
functional units within cells).

This Section describes the process of creating proteins and ESTs from the genes within a cell.
Firstly the fundamental molecules involved are discussed and then the processes of creating proteins
and ESTs are outlined.

2.1.1 From DNA to RNA to protein

It is beyond the scope of this report to give a detailed description of all the molecules and processes
involved in protein synthesis so a very simplified outline is given here. For more detailed information
a good introduction can be found in Hunter [1993].

The molecules

DNA (or deoxyribonucleic acid) is a polymer made up of pairs of complementary molecules called
nucleotides (often referred to as base pairs) that are joined by a hydrogen bond. The nucleotides can
be one of four different molecules: adenine; guanine; cytosine; and thymine, where adenine bonds
with thymine, and guanine bonds with cytosine. The reasons for complementary strands are: to make
the molecule more stable, which is desirable as any changes in the molecule can result in mutations
which are, more often than not, harmful to the cell or organism; and for DNA replication during cell
division as each strand can be copied once to make two complete copies. An organism’s DNA contains
anywhere from a few thousand (the virus Phage X has 5 386) to many billions (the amoeba Amoeba
dubia has 670 000 000 000) of nucleotides, and within that there may be anywhere from hundreds to
tens of thousands of genes. However, in many organisms, not all DNA codes for genes and there are
often large non-coding regions. Even within a gene in the DNA there are coding regions (exons) and
non-coding regions (introns) which are ignored during actual protein production. Figure ?? shows the
relationshop between a complete strand of DNA, or chromosome, the genes within it and the coding
and non-coding regions within the gene.

The second long stranded genetic molecule is RNA (ribonucleic acid). RNA is structurally very
similar to DNA except that it is single stranded and Thymine is replaced by Uracil. RNA is transcribed
from DNA and represents a single gene, whereas DNA contains many genes.

Proteins are organic compounds comprised of a long chain of amino acids which folds in on itself
to create complex structures. Protein is a vital structural component in all organisms and is involved
in almost all biological processes, including (but not limited to): acting as enzymes (which catalyse
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Figure 2.1: This represents a chromosome or a piece of DNA as well as a gene found within the
chromosome. The red shows the genes within the chromosome; the blue shows the exons within
gene; and the black represents the non-coding parts.

chemical reactions); structural roles (e.g. muscles and connective tissue); involved in the immune
system in the form of antibodies. Figure 2.2 shows the relationship between DNA, RNA and protein.

Figure 2.2: This figure shows the three polymers considered as well as their constituent parts. First
there is DNA made up of nucleotides, then the RNA made up of it’s nucleotides (with (U)racil replac-
ing (T)hymine) and finally protein made from it’s amino acids.

Protein synthesis

The mechanism for creating proteins is shown in Figure 2.3. The process begins with a gene being
transcribed from DNA by RNA polymerase which creates precursor messenger RNA (mRNA). Tran-
scription makes a complementary copy of the DNA and produces all the genetic data in the form of
an interrupted gene – a gene containing both introns and exons. Only the exons are necessary for the
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final protein synthesis so the introns are removed in a process called splicing, with mRNA being the
final product. Note that there are alternative splice forms of the mRNA where different regions within
a given gene are sliced in or out.

Finally the protein is created by translating the mRNA into a chain of amino acids which folds
and gives the protein its final shape. Translation is done by an organelle called a ribosome which takes
each successive group of three nucleotides in the mRNA, called codons, finding the associated amino
acid and joining it to the chain. Once the amino acid chain is complete, it folds in on itself to form a
secondary structure.

Figure 2.3: This is an illustration of protein synthesis. First a gene is transcribed from the DNA to
create precursor mRNA. The introns are then spliced out to produce the mature mRNA. Finally the
mRNA is translated into protein which folds to form a secondary structure.
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2.1.2 From RNA to cDNA to ESTs

Expressed sequence tags (or ESTs) are the result of sequencing a gene expressed in the form of mRNA.
mRNA is unstable and so sequencing is a process that involves extracting the mRNA from the cell
and then artificially synthesising a complementary strand of DNA (cDNA) using reverse transcription
so that a stable molecule is created. This cDNA sequence is then amplified using a polymerase chain
reaction (PCR) and then inserted into a small circular DNA molecule called a plasmid. This plasmid
is in turn inserted into a vector organism (such as E.coli) which is allowed to grow and multiply –
creating copies of: itself; the plasmid; the cDNA clone and ultimately the mRNA sequence [Malde
2004]. This collection of cDNA sequences is known as a cDNA library. Note that mRNA from many
different genes has been present from the beginning of the process, and so the cDNA library contains
clones from many different genes. The individual cDNA clones can then be extracted out of the
plasmid for sequencing since it was inserted in a known place. Random clones are selected from the
library and sequenced so that short sequences called ESTs in the range of 100 to 800 nucleotides long
are created [Nagaraj et al. 2007]. The division of the mRNA is non-deterministic, which means that
if the exact same mRNA is sequenced twice, a different set of ESTs will be produced. The process is
shown in Figure 2.4.

There are many advantages to using ESTs over regularly sequenced DNA. Firstly an EST shows
that the gene is active in a cell. This enables a comparison of gene expression in healthy cells versus
unhealthy cells, young cells versus old cells and ultimately this gives valuable information about the
healthy cellular life-cycles. Another advantage is that the process of transcription and splicing the
DNA into mRNA removes the introns, or non-coding portions of the genes. This is particularly useful
as it is then relatively simple to identify the codons and thus identify the sequence of amino acids
in a protein. A third advantage is that some ESTs can be used as Sequence Tagged Sites (or STSs).
An STS is a relatively short, unique DNA sequence that can be used to identify where in a gene a
sequence comes from – a process known as gene mapping.

There are some disadvantages to using EST data. One of the major problems is that the quality
of the data tends to be fairly low since each EST is read only once. Sources of errors include con-
taminants (foreign genetic material in the sample), read errors (random noise, primer interference, or
stuttering where a base is repeatedly sequenced when it shouldn’t be) and ligation (where unrelated
ESTs are bonded together). The other problem is caused by the piecemeal nature of the sequences –
rather than having completely sequenced mRNA strands we have many shorter sequences, with no in-
dication of where they come from. Yet another difficulty arises from alternative splicing which occurs
when different forms of the mRNA are produced from the precursor mRNA as shown in Figure 2.5.
Since the alternative splice forms have different introns and exons, the codons are thus also different
meaning that the same gene can code for different proteins.
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Figure 2.4: This figure shows the process of going from expressing a gene in a cell to the final
creation of the expressed sequence tag. Products i) through iii) are natural, while the rest are created
artificially.

2.2 EST Clustering

The sequencing step results in many short sub-sequences. The sequences come from many different
regions of transcribed DNA and so it is necessary to identify which ESTs belong to the same region
before any useful information can be extracted. The process of identifying ESTs from the same gene
is called clustering. It is made possible because of the non-deterministic fashion in which the mRNA
is split when sequencing. Most genes will be either expressed many times in a given cell or replicated
several times in the cloning stage, which means that they will be sequenced several times, resulting in
many overlapping ESTs. By looking for these overlaps we can piece the original gene back together
as illustrated in Figure 2.6. Note that it is often possible to cluster two ESTs together even if they
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Figure 2.5: This figure illustrates alternative splicing where the precursor mRNA can result in two
different mature mRNAs (which in turn code for two different proteins)

share no overlap and this is the case when they have been sequenced from the exact same cDNA clone
as (this information is available from the sequencing step).

The process can be looked at as creating a graph where each EST represents a vertex in the graph.
If an EST is found to be sufficiently similar to another EST then an edge is created between the
two vertices. Clusters are then said to be the connected components in the graph – an example is
shown in Figure 2.7. Depending on the method of clustering it might be necessary to check every
EST against every other EST. For example in a hierarchical clustering the connected graph is returned
which means that every edge in the graph needs to be discovered and thus every EST needs to be
compared to every other EST. On the other hand in a non-hierarchical clustering only the connected
components are returned, which means that once an EST is found to be in a cluster, it is unnecessary
to check it against other ESTs already in the cluster. A comparison of two clusterings of the same data
using a hierarchical and a non-hierarchical clustering can be seen in Figure 2.8.

EST clustering has two levels of complexity. On the top level we usually compare every EST
against every other EST and this typically results in a complexity O(n2) where n is the number of
sequences. The second level has to do with the sequence comparisons. Depending on the algorithm
used, this tends to be between O(m2) and O(m) where m is the average sequence length. However
for accurate sequence comparisons this is usuallyO(m2) and the overall complexity is thusO(m2n2).
An optimization in either level of complexity then results in a performance boost.

More steps can be added into the process and typically clustering programs will be multi-phase
algorithms where fast, coarse algorithms are run before the finer-grained solutions. The faster algo-
rithms are used to quickly filter out the obvious mismatches between sequences and then allow faster
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Figure 2.6: This is a simplified version of what happens when mRNA is sequenced, clustered and
then aligned. The gene is expressed twice in this case, and thus it is sequenced twice. The two sets of
ESTs are produced at the same time and it is not known where each EST comes from. They are then
clustered together by looking for overlaps (similarities between a pair of ESTs are indicated as a pair
of parallel lines) and then they are aligned and the original gene is found.

algorithms to refine the clustering. An example pre-clustering is shown in Figure 2.9.
There are many methods for sequence comparison, but the general approach is to see if two se-

quences are sufficiently similar, or have sufficiently similar regions, to be classed together. The reason
for looking for “sufficiently similar” regions is that there are typically many errors in the data (as de-
scribed in Section 2.1.2) which make exact matches unlikely.

Two potential sources of cluster errors are when: ESTs get clustered together that shouldn’t be;
and ESTs that should be clustered together aren’t. An example of when the former error occurs is
when ligation has taken place (when two unrelated ESTs have bonded). What can happen then is
that the ligated EST overlaps with two separate genes and that one cluster is created instead of two
distinct ones. Related ESTs not getting clustered can happen if the data is of low quality. Clustering
algorithms usually have parameters that can be set to accommodate for this by making matching more
lenient, but of course this also increases the possibility of false positive matches. Statistical tests or
human experts can be used to look for these kinds of errors.
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Figure 2.7: An example EST clustering. Firstly the cDNAs are sequenced. Matches are then found
between the ESTs. This can be reported as a hierarchical clustering, or the clusters themselves can be
returned.

EST Clustering Algorithms

There are many different algorithms used for the sequence comparisons and many different ways to
classify them. For most EST clustering algorithms we need to consider two major aspects: first the
type of clustering they do; and secondly the way the sequences are compared. Another important
aspect to consider for EST clustering is pre-processing of data, which normally involves cleaning the
data.

The clustering, or method of grouping ESTs together has several different taxonomies. On one
level we can consider whether the clustering is supervised or unsupervised. A supervised clustering
considers the EST data set against some other database – usually a genomic database of some organism
whose DNA has been sequenced. An unsupervised clustering involves only comparing the ESTs in the
data-set against the one another. The advantage of a supervised clustering is that tools such BLAST can
be used to quickly identify ESTs that belong to the same gene and thus need to be clustered together.
Unsupervised clustering is necessary when ESTs have been sequenced from an organism that has not
had its genome sequenced. This research deals with an unsupervised EST clustering algorithm.

Furthermore the technique of identifying clusters is another way of classifying the algorithm.
Clusters can form hierarchies – that is a graph structure where every node represents an EST and
edges between the nodes represent a match between the ESTs. Here we usually start with a graph
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Figure 2.8: An example of a hierarchical versus a non-hierarchical clustering. It illustrates the differ-
ing amount of information that needs to be discovered and shows that while a hierarchical clustering
gives a more complete picture of the similarities between the sequences, it also requires more work.

with no edges and all subsequent matches between sequences are stored as edges in the graph. On the
other hand a single linkage algorithm can be used (and is in this research) and this is more like using
sets than graphs. Here a cluster is represented only by the ESTs within it, and we are not concerned
with the linkage details. In this approach all ESTs are initially considered as clusters on their own
(known as singletons). If a pair of sequences match, then the two clusters containing the ESTs are
merged.

2.2.1 Sequence Comparison

Sequence comparison looks at how we measure the similarity between two given ESTs. There are
two main classes: alignment-based and alignment-free comparisons1. Alignment-based algorithms
usually look at the edit distance between two sequences – that is the weighted cost of changing the one
sequence into the other using the following operations: insertions (adding bases into the sequence);
deletions (removing bases from the sequence); and substitutions (changing one base into another).

1A comprehensive summary of alignment-free sequence comparisons can be found in Vinga and Almeida [2003].
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Figure 2.9: ESTs are first pre-clustered with a faster heuristic that quickly generates a coarse cluster-
ing. This is then fine tuned by more fine-grained algorithms. ESTs within the pre-clusters do not need
to be considered against ESTs not in their cluster.

Using this alignment we can very easily assign a score based on how much the two sequences overlap
and how similar the overlaps are. This usually gives good quality clustering, but is computationally
expensive (O(n2)).

On the other hand we have alignment-free sequence comparison and this usually takes the form of
a comparison of the word-frequencies between two sequences. This is done by counting all the words
in each sequence and essentially comparing their histograms. The exact method of comparisons varies
and can take many forms including: simply counting the number of words they have in common;
finding the sum of the differences in the word counts; finding the sum of the differences squared in
the word counts; and many others. Alignment-free comparisons have the advantage that they often
have a better computational complexity, but they can also be used to filter out poor quality data.
Unfortunately they can also result in two completely unrelated sequences being clustered together if
they have similar word counts.

d2 distance measure

Burke et al. [1999] developed a clustering algorithm based on the d2 distance function. The d2 dis-
tance function gives a similarity score between sequences by comparing the frequencies of words
within pairs of sequences . Mathematically this can be represented as:
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Given:
The alphabet Λ = {A,C,G, T}
Two sequences of letters from Λ, x and y

Let:
cx(w) denote the number of times that a word w (also a sequence of letters
from Λ) occurs in sequence x

Then:
d2k(x, y) =

∑
|wi|=k(cx(wi) − cy(wi))

2 gives the sum of the square of the
differences for all of the occurrences of all possible words wi, of length k,
in sequences x and y. So, the smaller the value, the more similar the two
sequences are.

More generally:

d2(x, y) =
∑L

k=l d
2
k(x, y) gives the d2k scores for a range of word lengths.

For EST clustering the d2 score usually refers to a fixed word length k and thus d2 will, in fact,
refer to d2k, where k is typically a value between 6 and 8. Also, for EST clustering it is not necessary,
or even desirable, to compare entire sequences to each other. So smaller sub-sequences, or windows,
are usually compared, with the most similar pair of windows being the most significant result of the
sequence comparison. Thus we define:

d̂2k(x, y, r) = min{d2(u, v) : u v x, v v y, |u| = |v| = r}, where u and
v are subsequences, size r, of sequences x and y respectively (v denotes a
subsequence).

This is the formula that is typically used for d2 based EST clustering.

Smith-Waterman

The Smith-Waterman algorithm [Smith and Waterman 1981] is a sensitive method for calculating
local alignments – that is regions of similarity between sequences. It is a dynamic-programming so-
lution that works by producing a matrix where the elements in the matrix represent the edit-distances
between the segments of the two matrices. The edit-distance represents the number of “events” re-
quired to convert one sequence into another. Events are operations such as substitutions (where one
character is changed into another) as well as additions and deletions (where characters are added or
removed from the sequence). An exact match will give an edit distance of zero, and inexact matches
are calculated based on the number of events. Penalties for substitutions, additions and deletions vary
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according to the application.

FASTA

Pearson and Lipman [1988] developed a local alignment tool called FASTA that was popular before
BLAST became the dominant tool. It was an extension of FASTP which was developed by Lipman and
Pearson [1985] for doing protein similarity searches. It does a heuristic search for the pattern of word
matches between sequences. Conceptually this can be seen as looking for diagonals on a scatter plot
where the x-axis represents the words in one sequence, and the y-axis represents the words in the other
sequence. A diagonal with a negative gradient represents a matching region, and the length of the line
indicates the strength of the match. The algorithm takes into account small regions of dissimilarity
by joining diagonals that are close to one another. If two sequences are found to have a sufficiently
large region of similarity, then a more accurate alignment can be performed using Smith-Waterman
like algorithms.

BLAST

The Basic Local Alignment Search Tool [Altschul et al. 1990] is also a local alignment tool. It aims to
produce similar alignments to the Smith-Waterman algorithm, but at much lower computational cost.
It is a heuristic that does not guarantee the best alignment as Smith-Waterman does, but rather returns
an estimated alignment. The method it uses is to find two smaller matching regions in the sequences
being compared. This is done via an array of all the possible words of some given length where each
entry points to a list of sequences that match that word. Then when looking at the words in a given
sequence the matching sequences and positions of those words can be identified. These are then used
as a seed whereby the regions of similarity are grown by looking for matching sections to either side
of the seeds. The algorithm can take into account short regions of non-matching sequence but once
the matching score drops below a certain level the search is ended and the final score computed as the
maximum found when growing the seeds.

Needleman and Wunsch

The Needleman-Wunsch algorithm [Needleman and Wuncsh 1970] is similar to the Smith-Waterman
algorithm but it performs a global alignment rather than a local alignment – that is it finds the best
possible alignment over the entire two sequences rather than just local regions. It was in fact the pre-
cursor to the Smith-Waterman algorithm and uses a similar dynamic-programming strategy however
the penalties are different which allows one to find the global alignment.

2.2.2 Clustering

In the following subsection we explore various EST clustering techniques and implementations. In
terms of this research the most closely related are those that fall under the d2 clustering branch as this
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research uses the d2 distance measure as its final sequence comparison.

d2 clustering

d2 clustering is based primarily upon the d2 distance measure discussed on page 17. This distance
measure calculates the d2 score as d2k(x, y, r) = min{d2(u, v) : u v x, v v y, |u| = |v| = r} which
means we find the minimum d2 score when all subsequences of length r (typically a window size of
100 is used) are compared between sequences x and y using a word size of k (typically a value of 8 is
used). Usually a d2 score of 40 or less indicates matching sequences.

d2 cluster

The original implementation by Burke et al. [1999], called d2 cluster, is undocumented but a naı̈ve
implementation would be to calculate the d2 of every possible pair of sequences. This approach
results in a complexity of m2n2 where m is the average length of the sequences and n is the total
number of sequences. The worst-case performance cannot be improved upon, but certain heuristics
and intelligent implementations can make vast improvements to the running time. Examples include
wcd which is discussed below and Carpenter et al. [2002] who present a parallelisation of d2 cluster
where the comparisons were distributed on 126 nodes of an SGI Origin 2000 multiprocessor and
speedups of around 100x were found.

wcd

Hazelhurst et al. [2008] implements a set of algorithms for the wcd clustering tool that includes an
efficient d2 algorithm and two heuristics. The first heuristic is very fast and compares the algorithm by
checking that they have a small number of longer words2 in common. The second heuristic is similar
but looks for more matches while using a shorter word3.

Once two sequences have passed both heuristics the d2 score between them is calculated. Hazel-
hurst [2003] noted that it is unnecessary to recalculate every window’s d2 score from scratch, but
rather an adjacent window’s score can be calculated by subtracting the amount that the word leaving
the window contributes to the d2 score and then adding in the amount that the new word contributes.
This is done in a zig-zag manner that results in the minimum number of calculations being made.

Finally clusters are formed using a disjoint-set data structure which allows non-hierarchical clus-
ters to be formed and members of the clusters to be rapidly identified. The benefit of this is that when
considering a pair of sequences it is simple to check if they already belong to the same cluster and
thus avoid expensive comparisons (if they do belong to the same cluster).

2the current version does an asymmetric comparison of non-overlapping words of length 8
3the current version considers all overlapping words of length 6 and requires 65 similarities
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Parallelisation of wcd

Parallelisation has been extensively used in optimising d2 clustering. Ranchod [2005] presents a
solution where a cluster of machines are employed. The goal was to organise 100 machines to each
handle a small part of the problem, with one machine coordinating them and collecting the results.
This was achieved by having the controlling machine broadcast all the data to the machines on the
network and tell them which sequences to compare. The computing nodes then did their portion of
the clustering and reported the results back to the controller. A super-linear speedup was found where
it took 100 machines less than 1/100th of the time that a single machine would have taken, which
is very surprising since this kind of parallelisation typically shows a sub-linear improvement – often
due to the cost of coordination of compute nodes and communication. Ranchod suspects that this is
primarily due to fewer cache misses since fewer sequences need to be loaded into any one machine’s
cache.

FPGA implementation of wcd

FPGAs4 have been used to implement the d2 algorithm in Berry [2004]. While the same clustering al-
gorithm is used in both the software and the hardware solutions, the parallel nature of FPGAs allowed
for some clever enhancements to be made. Rather than running the 3 stages of the wcd algorithm
sequentially, it is possible to do them in parallel on the FPGA. The benefit of this is seen primarily in
cases when the heuristics pass (indicating a possible match) as the d2 calculation has already begun.
This research showed that a significant speedup over software solutions was possible most of the time.
The software solution was, however, slightly faster on some rare combinations of data. The test sam-
ples were divided up into three different cases. The first, and most likely to occur in real data, is where
the heuristics fail – indicating a mismatch and no need to calculate the d2 score. In this case the FPGA
solution had a speed-up factor of around 20. The second most commonly occurring case is where the
heuristics pass (indicating a possible match), but the d2 score does not fall below the threshold (indi-
cating a mismatch). This only had a speed-up of around 3.2. The least commonly occurring case is
when both the heuristics pass and the d2 score falls below the threshold (i.e. a match is found). The
timing of this varied quite a bit depending on where the matches in the sequences were. In the best
case the matches were at the beginning of both sequences. This unlikely case had a speedup factor
between 178 and 383. When the matching portions of the sequences were at the end the hardware
solution had its worst performance relative to the software solution. This was because the software
solution was designed so that it only check the regions where similar word counts occurred in the
heuristics. In this case the software implementation had a speedup of approximately 1.5. A signifi-
cant result was that the functional units of the implementation used a relatively small percentage of
the available space on the FPGA, which means that there is the possibility of implementing multiple

4An FPGA is a f ield programmable gate array which is essentially a customisable chip. While an FPGA typically
performs fewer calculations per second than general purpose CPUs they are application specific which means they can be
optimised to a given task which often allows for a large amount of parallelisation and efficiency.
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functional units on a single FPGA, resulting in a parallelised architecture. A very basic parallelisation
is to simply increase the number of d2 calculations taking place on the FPGA. While this may not
scale linearly due to various routing issues on the FPGA, it should still result in good improvements.

PaCE

Kalyanaraman et al. [2003] developed a program which does Parallel Clustering of ESTS. They use
a generalised suffix trees (GST) in order to find maximal common substrings between ESTs. This is
used for rapid candidate pair prediction which has the effect of predicting the most promising pairs
early in the process. The tree construction is done at slave nodes and then the result is sorted so that
pair prediction based on maximal common substrings can be done. Batches of potential pairs are then
sent to slave nodes where they are aligned and the results are then returned to the master node which
decides if the clusters containing the pairs should be merged.

HECT

The Hash based EST Clustering Tool developed by Mudhireddy et al. [2004] generates a hash table
from words within two query sequences – essentially finding all the common words of some fixed
length between the sequences. When matches are found the nucleotides to either side of the word are
compared and if they match then the nucleotides next to those are compared etc. until some acceptable
level of similarity is found. If the pair is found to be similar then the clusters containing the sequences
are merged.

CLU

Ptitsyn and Hide [2005] developed single-linkage agglomerative clustering solution that uses a novel
all-versus-all word-frequency style sequence comparison. The comparison works by considering all
the words in one sequence against all the words in a sliding window in the other sequence. The
number of identical words in each window is recorded to produce a vector which then describes the
local similarity of the windows to the target sequence as a whole. This vector is then multiplied by
a weighting factor which results in single similarity score which can be compared to a pre-defined
threshold to determine where the clusters containing the ESTs should be merged.

ESTate

The ESTate program [Slater 2000] is a word frequency based algorithm that is closely related to this
research. It uses an all-versus-all algorithm of counting the number of matching words in all the
sequences. It uses a novel approach of a virtual finite state machine to calculate the occurrences of
all possible words of length k in all the sequences. A similarity score is calculated by summing the
products of the word counts between the sequences, i.e. if the word “ATTC” occurred three times in
the first sequence and twice in the other, then the contribution of that word to the total is 2×3 = 6. The
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scores for all the ESTs are then calculated and then those that have a score above some threshold (in
one experiment he uses a threshold of 700) are then subjected to pairwise alignment. If the sequences
align well, then they are clustered together. Sequences already in the same cluster do not need to be
compared again. There is a priority queue established whereby the sequences with the highest word
count scores are sent to the alignment first. This is done so that ESTs with a high probability of being
clustered together are done so first, which promotes early cluster formation. The advantage of this is
that the total number of pairwise alignments is lessened because there is a greater chance of sequences
already belonging to their final clusters.

TGICL

The TIGR Gene Indices Clustering tools is a pipelined set of programs for EST analysis [Pertea et al.
2003]. It takes as input a simple FASTA file and starts off by masking regions of low complexity using
an undocumented program called mdust. The masked sequences are then indexed and an all-against-
all similarity search is performed using mgblast which is based on megablast [Zhang et al. 1999].
If the overlap between two sequences is 40 basepairs (default) and there is a 95% identity then the
sequences are clustered together. The pipeline then runs CAP3 [Huang and Madan 1999] to assemble
the sequences.

xsact

Malde et al. [2003] present an algorithm based on suffix arrays that can be used for pre-clustering.
The algorithm is O(n log n) and uses linear space (an O(n) algorithm is possible, but it uses n2 space
which is impractical for large data-sets). A suffix array for a set of strings is an ordered array of all
the suffixes of all the strings. By looking at the suffixes in the list and finding strings where the first k
characters match you can say that the original strings (where the suffixes came from) have regions of
length k that match exactly. The original sequences can then be grouped together for more accurate
clustering later on. With a “good” choice of k there will hopefully be several smaller preclusters to
analyse – meaning the algorithm goes from O(n2) to O(n20 + n21 + ...+ n2j ), where n0, n1, ..., nj are
the sizes of the j new preclusters. In the worst case scenario it will still be O(n2) since all the original
sequences will be in the precluster, i.e. j = 0↔ nj = n.

UICluster

The UICluster program developed by Pedretti [2001] uses a greedy algorithm that does not perform
an all-versus-all comparison of the ESTs. Rather it starts off with none of the ESTs belonging to a
cluster. Then each EST is considered in turn against known clusters, if it does not match any of the
known clusters, then it is said to be the start of its own cluster. So the very first EST considered is
placed in its own cluster. The second EST is considered against it. If they are found to match, then
it is placed in the cluster, if it is not, then it becomes its own cluster. When an EST is considered
to membership of a cluster it is only considered against a single representative EST of the cluster.
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The representative can be chosen in a number of ways – it can simply be the first EST added to the
cluster, or it can be the longest EST added to the cluster, or it can be a virtual representative. The
virtual representatives are actually created by the overlaps of the original representative and the ESTs
that are clustered with it. If an EST is compared to the virtual representative and found to belong to
the EST then any portions that overlap with the ends of the representative are added on so that the
representative grows.

The risk of using a greedy algorithm such as this one is a poorer overall clustering – typically it
will result in under-clustering as matches will be missed (Figure 2.10). The advantage is that they run
quickly, and that the results are relatively good. Just as loose/over-clustered data can be used to speed
up clustering, so too can under-clustered data. This can be achieved by telling a clustering solution
which ESTs already belong to clusters and don’t need to be considered against each other, but do need
to be considered against the rest (as opposed to an over-clustering which says that the individual ESTs
within the cluster do not need to be considered against ESTs outside of the cluster).

Figure 2.10: In this example the ESTs have been under-clustered, either because of a strict or a greedy
algorithm. Once the initial clusters are formed the ESTs only need to be considered against the ESTs
in the other three clusters.

Assembly Tools

As noted before, the process of taking the raw EST data from the machine to yielding useful informa-
tion for a biologist usually involves clustering the data before assembling since this reduces overall
computation time. However, it is worth noting that in some cases it is unnecessary to perform cluster-
ing before assembly of sequences. This usually happens with small datasets where the cost of trying
to align unrelated sequences will not impact too greatly on the overall computation time. There are
a large number of tools available ranging from: PHRAP [Green 1999] and CAP3 Huang and Madan
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[1999] which are used for assembling shotgun DNA sequences and can take base calling quality into
account; to Velvet [Zerbino and Birney 2008] which is usually used on much shorter sequences –
usually in the region of 25 to 50 base pairs.

2.2.3 Cleaning the data

It is important to have the best quality data possible when doing EST clustering in order to avoid clus-
tering items together that should not be clustered together. There are many sources of errors – many
kinds of read errors caused by technical aspects or from contaminants. The various software solutions
listed here aim to remove these two kinds of erroneous data so that the best possible clustering can be
performed.

Lucy

Lucy is a tool developed by Chou and Holmes [2001] that removes vector splice sites and contami-
nants. It has been used extensively at The Institute for Genomic Research (TIGR) and is multi-phase
program that looks at removing low quality data by analysing the quality of each base read in a se-
quence and then filtering out the vector splice sites. It uses some other programs (phred [Ewing et
al. 1998; Ewing and Green 1998] as well as TraceTuner [Paracel 2000]) to identify the quality of the
data. Once low quality data has been identified the splice sites are then trimmed out of the data. This
is done using two files: one containing the entire vector sequence so that it can easily be identified in
the sequence; and the other contains the upstream and downstream sequences at the splice site. The
final step is to remove contaminant data – either from the vector or from unrelated sources.

RepeatMasker

RepeatMasker is a program that screens DNA sequences for interspersed repeats and low complexity
DNA sequences [Smit et al. 2007; Jerka et al. 2005]. It does this by using cross match which is
an efficient implementation of the Smith-Waterman-Gotoh algorithm [Gotoh 1982]. Essentially the
algorithm compares the sequences to a curated database of known repeats and if there is a matching
region it is masked out.

dust

dust is an undocumented program used to mask low complexity repeats that is widely used as it is part
of TGICL’s clustering pipeline [Pertea et al. 2003]. It looks at each individual sequence in a dataset
and locates regions of low complexity where shorter subsequence of between 1−4 nucleotides are re-
peated. These areas are then masked out. A symmetric DUST implementation has been implemented
by Morgulis et al. [2006] that aims to make the results more reliable since the original implementation
is unsymmetric and masks different areas depending on whether the original sequence or its reverse
complement is used.
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RBR

Where mdust considers repeats on a sequence-by-sequence basis, RBR looks at repeats over the entire
dataset. Malde et al. [2006] does this by first counting the word frequencies over the entire dataset.
Then each sequence is taken in turn and the word frequencies are again calculated. If the frequency
of a particular word in a sequence is significantly above the frequency of that word in the dataset as a
whole, then it is masked out.

2.2.4 Comparison of clustering techniques

A direct comparison of the various sequence comparison, clustering and cleaning tools is very prob-
lematic as the tools are often part of larger packages and the output is often not immediately compara-
ble. In terms of sequence comparison the alignment based comparisons are generally more accurate,
but slower than their word-frequency base counterparts. Since clustering is usually a precursor to EST
assembly where alignment is done anyway, the faster (but still quite accurate) word-frequency based
methods were used – specifically using the d2 distance measure since it accurately identifies matching
pairs of sequences and fast related heuristics can be developed.

For clustering purposes a non-hierarchical disjoint-set data structure was chosen for identifiying
ESTs belonging to the same cluster. As in wcd this means needless comparisons can be avoided as it
is quick and simple to check if a pair of ESTs are already in the same cluster. A hierarchical clustering
where all matching pairs of sequences is unnecessary since this tends to be computed in the assembly
stage of making EST’s data useful.

2.3 Summary

EST clustering is an important step in making useful information available to biologists from the
wealth of EST data produced in labs. It is a computationally intensive task that has been tackled in
a variety of ways ranging from simple all-versus-all exhaustive searches or assemblies, to intelligent
searches with time-saving heuristics. With the high-throughput techniques being employed to produce
EST data, simple clustering techniques are inadequate since they result in unreasonable computation
times and thus ways of rapidly identifying EST clusters is required. For this research we primarily look
at rapidly identifying candidate matching pairs of sequences. This is done using an alignment-free
comparison which identifies pairs of sequences which will potentially match when using a d2 sequence
comparison. This was chosen since d2 is widely used and has been found to produce biologically
reliable clusters.
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Chapter 3

Algorithm

This chapter introduces the algorithm that was developed and implemented for this research. Further-
more a complexity analysis is done in Section 3.2 and a justification of the d1 heuristic is described in
Section 3.3.

3.1 Algorithm description

The algorithm is based on word-frequency similarity in sequences similar to those used in the wcd
clustering system. There are three major functions used when creating the clusters: the first of which
aims to rapidly identify candidate matching sequences (step 1.1); the second function attempts to filter
out false positives identified in the first step by using the d1 heuristic which is similar to the final check
(step 1.1); the third function is simply the d2 comparison to find the final fine-grained clustering (step
1.1). Algorithm 1 shows the basic steps involved and these are then elaborated on in algorithms 2 to
6. A complexity analysis can be found in Section 3.2.

The idea behind the algorithm is to avoid as many unnecessary, costly calculations as possible.
This is done in two ways: firstly the outer loop does a comparison (called the sd heuristic) that
identifies potentially matching sequences. This is done by going through the sequences one-by-one
and looking at the words contained within them, consulting a sorted word list that identifies all the
sequences that contain a given word. Every time the source sequence word matches another sequence
the match is noted, together with the relative positions of the matches. Since words are checked
against a sorted list of matching words, any comparison between sequences that contain no matching
words are avoided completely. Note that we may not check every word in the source sequence, but
rather only look at every ith word. Once the words in the source sequence have been checked, the list
of matches is checked and any sequence that matches more than a given number of times is looked at
more closely. Firstly the relative positions of the matches between the sequences are compared and if
the standard deviation is found to be small they are looked at with the more fine-grained d1 heuristic.

The d1 heuristic, which is justified and explained in more detail in Section 3.3.1 works in much
the same way as the d2 comparison in that it checks the word frequencies between two sequences, but
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it allows for a linear time comparison. This is achieved by calculating the number of common words
between all the windows in one sequence versus the entire other sequence where the parameters are
defined by those used in the final d2 comparison. Even though the one sequence is looked at in its
entirety we are still guaranteed that any positive match made by d2 will be made by d1 (proof in
Section 3.3.1). Because d1 is similar to d2 it is hoped that the number of false positives are few (and
this is found to mostly be the case with empirical testing discussed in Section 4.2.2). Pairs that match
this comparison are then finally checked with a d2 comparison and if they match they are clustered
together.

Algorithm 1: The algorithm

Create word list (Section 3.1.1)1

forall ESTs S and their reverse complements S′ do2

Find matching pairs using sd heuristic (Section 3.1.2)3

if pair matched using sd heuristic then4

Compare pair using d1 heuristic (Section 3.1.3)5

if pair matched using d1 heuristic then6

Compare pair using d2 comparison (Section 3.1.4)7

if pair matched using d2 comparison then8

Join clusters containing pair (Section 3.1.5)9

end10

end11

end12

end13

There are a number of parameters that are used in the algorithm and they are listed here and ex-
plained in the algorithms themselves:

Parameter Symbol
sd word size ωsd

sd window size βsd

sd threshold τsd

sd skip value λsd

d1 word size ωd1

d1 window size βd1

d1 threshold τd1

d2 word size ωd2

d2 window size βd2

d2 threshold τd2
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3.1.1 Set-up phase

This is a simple step that first involves going through each sequence and counting the number of words
of a given size. This allows a table to be created (the WLT or word list table) which contains for every
word in the data set: the sequence number that the word comes from; and the position in the sequence
where the word occurs. This list is then sorted so that: firstly they’re in alphabetical order for which
word each entry points to; and secondly they’re in numerical order.

Algorithm 2: Create word list
Count words of length ωsd

Create word list table (WLT)
Sort word list table

From an implementation point of view there is only one real issue to be considered and that is
that the data is often imperfect. There are often portions of the sequences that are marked as bad or
unknown and this can be from either the raw data or from a masking process. There are several ways
of dealing with this and it is often done by simply substituting in some random data. In this case it is
done with the final d2 since the heuristics implemented here don’t consider regions that are marked as
bad and it is unlikely that random substitution will create a match between two otherwise unrelated
sequences.

3.1.2 sd heuristic

This heuristic is an asymmetrical word frequency based comparison with an additional check which
looks at the relative position of the words in the sequences to ensure that they occur in similar order.
This is done by first looking at every λsdth word in the source sequence and finding every match by
looking in the WLT. By only comparing every λsdth word in the source sequence we can make fewer
lookups to the WLT and potentially make far fewer matches. The previous βsd matches between
any two given pairs of sequences are stored and the standard deviation of the difference between the
positions of those matches is calculated. The reason for calculating the standard deviation is that it
is possible for two unrelated sequences to have a large number of words in common as illustrated in
Figure 1.3. The standard deviation in this case will be larger than when the matching pairs of words
occur in relatively consistent positions. A fixed number for βsd was chosen since there are potentially
many matches being made here. Consider a case where there are large regions of low complexity
data, say a region of 10 As in both sequences. If we were considering every word of length 6 then
we would have 25 matches (since there are 5 separate AAAAAAs in each sequence matching to each
other). In a large data set this could end up using a large amount of memory. Worse these regions of
low complexity like this influence the standard deviation in matching sequences since they can match
to many different positions.

If at least βsd matches are found and at some point the standard deviation is less than or equal to
τsd then that pair of sequences passes the heuristic.
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Algorithm 3: sd heuristic

foreach λsdth word w of size ωsd in sequence Si do
Look in WLT and find all sequences containing w
foreach sequence Sj containing word w do

Create a list that contains the last βsd positions of the word in both sequences
Calculate the standard deviation (σj) of the difference in those positions
if βsd matches are found AND σj ≤ τsd then

Record match between sequence Si and sequence Sj
end

end
end

Implementation is done by creating several data structures. The first is a match array that has an
element for every sequence in the data set. Each element in this array can store βsd potential matches
and their positions between itself (Sj) and the sequence Si. Although it is unlikely that any sequence
will match to every other sequence (especially if the data that has been properly cleaned) an array
was chosen since it allows quick, indexed access to any potential match. Secondly a match vector of
indexes is created which stores a list of all sequences Sj that are found to have words in common with
Si. This is done so that the entire match array doesn’t need to be looked at to find out which sequences
Si matched to. Also it allows the elements in the match array that have been altered to be reset, rather
than having to reset everything for each new Si. A vector was chosen since it is dynamic and its size
will scale to the number of matches found.

3.1.3 d1 heuristic

The d1 heuristic is based on calculating a d1 score between two sequences. As shown in Section 3.3.1
we see that given the correct parameters the d1 comparison is guaranteed to match anything that d2

matches. In order to do this we require that the sequences that are being compared are at least as
long as the window size used in the d2 calculation and a d1 threshold (τd1) is calculated based on the
d2 parameters, but is independent of the size of the sequences being compared. In particular the d1

score that is calculated here compares the windows in one sequence against the whole of the second
sequence.
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Algorithm 4: d1 heuristic
Create a table δi that records the number of all words of size ωd1 in sequence Si
foreach window Wj of length βd1 in sequence Sj do

Create a table δj that records the number of all words of size ωd1 in window Wj

Calculate score =
∑

wk
min{δi(wk), δj(wk)}

if score < τd1 then
Record match between sequence Si and sequence Sj

end
end

The implementation is again fairly straight forward. Since we find all matches between sequence
Si we need only set up the δi table once. Once that has been done the d1 score of the first window in
sequence Sj can be calculated. The window is then shifted all the way to the end of the sequence and
it is a simple case of removing the words that are leaving the table from the calculation, and adding
those that are entering into the window. τd1 is calculated from the d2 thresholds and is equal to:

βd1 − ωd2 + 1− τd2

2

3.1.4 d2 calculation

This is the same used in the wcd solution outlined in Section 2.2.2.

3.1.5 Clustering

The final output of the algorithm is a list of clusters, where the cluster itself is simply a list of the ESTs.
What this means is that it is unnecessary to know a detailed linkage between the ESTs. Thus the same
approach that is used in the wcd solution is used and that is to employ a disjoint-set data structure1.
The data structure is composed of n elements where n is the number of ESTs. Each element then has
a pointer that points to its parent and this is initially set to itself. If two ESTs are found to belong
to the same cluster then the parent of the topmost parent of one of the ESTs is set to be the topmost
parent of the other EST. Thus to find out whether two ESTs belong to the same cluster their parents
can simply be traced to their topmost level.

Algorithm 5 shows the recursive algorithm for locating a given node’s parent and 6 shows how to
join two separate clusters.

1also known as union-find, and merge-find data structure
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Algorithm 5: FindParent

if Sequenceα.parent == alpha then
Return alpha

end
else

Return FindParent(Sequenceα.parent)
end

Algorithm 6: Cluster
parentA = FindParent(sequenceA)
parentB = FindParent(sequenceB)
parentA.parent = parentB

Tarjan [1975] showed that using some simple path compression techniques can make the time
complexity of using the union-find data structure effectively constant for all tractable sizes of that
data set.

3.2 Algorithm Analysis

The main outline of the algorithm has already been described as:
We see in algorithm 1 that there is a nested structure where a successful match on one level of the

algorithm results in the next level being called. Thus we analyse the algorithm from the outside in.
The first step creates a sorted word list and so for n sequences of average length m we have a sorted
list of mn words and thus O(mn logmn).

Next the looping aspect is analysed but this is difficult due to the inability to know how often
a success on each level will occur and so we need to assume a naı̈ve worst case for every event.
What this means is that both heuristics pass for every pair of sequences, but the d2 comparison fails
(a pass on the d2 comparison would result in a cluster being formed early on, making subsequent
comparisons unneccesary). The analysis is thus very simple – the very first step is creating a sorted
list of every word in every sequence, i.e. O(mn log (mn)). Then the loop starts with the sd heuristic
and here every sequence matches every other sequence giving a complexity of O(mn logmn+ n2 ×
(d1complexity + d2complexity)). The mn logmn comes from every word needing to be searched
for in the complete word list and then since matches between every pair are found we have n2× the
inner loop. The inner loop has the two components which in the case of d1 is linear in the length of
the sequence (O(m)) and quadratic in the case of the d2 comparison (O(m2)).

Thus the final complexity is O(2 × mn logmn + n2(m + m2)) which simplifies to O(m2n2).
This is, however, a fairly pessimistic prediction as it is unlikely that matches like this would happen
in the real world – the empirical analysis shown in Section 4.2.3 shows this to be the case.

The memory requirements are dominated by the sd heuristic (the d1 and d2 steps require a static
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amount of memory). The first requirement is that of storing the sequences and creating the word
list. This scales linearly with the number of sequences and their average size, i.e. O(mn). Then
since any one sequence can potentially match every other sequence we need to record this, together
with the exact positions of the matches. We only store a fixed number of matches between the two
sequences so the memory requirement is O(βsdn) where βsd is the window size discussed in chapter
3. In the empirical analysis the memory requirement was found to be greater than O(n) and possible
explanations are discussed in Section 4.2.3.

3.3 Why d1

This Section introduces the fundamental mathematical principal behind the d1 comparison and justi-
fies its use as a heuristic.

3.3.1 d1 versus d2

This Section introduces the d1 distance measure and compares and contrasts it to the d2 distance
measure defined in Section 2.2.2. If two sequences’ similarity is calculated using d1 and d2, the d1

score will always show them to be at least as similar as the d2 score. The result of this is that clusters
based on d1 will always be valid pre-clusters for a d2 clustering, i.e. anything that should be clustered
by d2 will be clustered by d1, but the clusterings may need some further refinement.

Introducing d1

d1 is a distance measure which is very similar to d2 in that it is also based on comparing the word
frequencies within sequences. The major difference is that d1 uses the Manhattan/city block type
distance rather than the straight line distance that d2 uses. Here we introduce a number of subtle
variants of the d1 calculation which look at varying word lengths, and varying the window sizes.
After the basic definitions another formulation is given which allows the scores to be calculated based
only words that occur in both sequences (or windows). This is important for the algorithm as it allows
us to ignore words that are not present in both sequences.

d1 can formally be defined as:

Given:
The alphabet Λ = {A,C,G, T}
Two sequences of letters from Λ, x and y

Let:
cx(w) denote the number of times that a word w (also a sequence of letters
from Λ) occurs in sequence x
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Then:
d1(x, y) =

∑
|cx(wi) − cy(wi)| gives the sum of the absolute value of the

differences between the counts of all the possible words wi, in sequences x
and y. i.e. if a word appears in x or y then the difference between the counts
of that word in each sequence is added to the total.

d1k(x, y) =
∑
|wi|=k |cx(wi) − cy(wi)| gives the sum of the absolute value of

the difference between the counts of all the possible words w, of length k, in
sequences x and y.

d̂1(x, y, r) = min{d1(u, v) : u v x, v v y, |u| = |v| = r}, where u and v are
windows, size r, of sequences x and y respectively. This gives the minimum
d1 score of all the subsequences of size r in sequences x and y.

d̂1k(x, y, r) = min{d1k(u, v) : u v x, v v y, |u| = |v| = r}, where u and v
are windows, size r, of sequences x and y respectively, and k is the size of the
words. This gives the minimum d1k score of all the subsequences of size r in
sequences x and y.

Now the standard definition of d1 gives a result in terms of the differences between word counts.
We can, in fact, derive a further function that gives the same score, but the function only needs the
number of words that are common to both sequences.

d1(x, y) =
∑
|cx(wi)− cy(wi)| (3.1)

But |cx(wi)− cy(wi)| =


0 if wi /∈ x or y
cx(wi) if wi ∈ x, /∈ y
cy(wi) if wi ∈ y, /∈ x
|cx(wi)− cy(wi)| if wi ∈ x and y

Now we can rewrite (3.1) as:

d1(x, y) =
∑
w

|cx(w)− cy(w)| (3.2)

=
∑

wi∈x,y
|cx(wi)− cy(wi)|

+
∑

wj∈x,/∈y

cx(wj) (3.3)
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+
∑

wk∈y,/∈x

cy(wk) (3.4)

Now, from (3.3) we have:∑
wj∈x,/∈y

cx(wj) = WC(x)−
∑

wi∈x,y
cx(wi) (3.5)

(Since
∑

cx(w) = WC(x))

Where WC(z) is simply a count of the total number of words in z. Similarly, from (3.4) we have:∑
wk∈y,/∈x

cy(wk) = WC(y)−
∑

wi∈x,y
cy(wi) (3.6)

Again rewriting d1(x, y) from (3.2) using (3.5) and (3.6) we have:

d1(x, y) =
∑
w

|cx(w)− cy(w)|

=
∑

wi∈x,y
|cx(wi)− cy(wi)|

+WC(x)−
∑

wi∈x,y
cx(wi)

+WC(y)−
∑

wi∈y,x
cy(wi)

= WC(x) + WC(y)

+
∑

wi∈x,y

[
|cx(wi)− cy(wi)| − cx(wi)− cy(wi)

]
(3.7)

Now consider the case where cx(wi) ≥ cy(wi). Then we can say:

|cx(wi)− cy(wi)| − cx(wi)− cy(wi) = cx(wi)− cy(wi)− cx(wi)− cy(wi)

= −2cy(wi) (3.8)

Similarly, if cy(wi) ≥ cx(wi) we get:

|cx(wi)− cy(wi)| − cx(wi)− cy(wi) = −2cx(wi) (3.9)

Finally using (3.8) and (3.9) we can rewrite (3.7) as:

d1(x, y) = WC(x) + WC(y)
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−2
∑

wi∈x,y

[
min{cx(wi), cy(wi)}

]
(3.10)

The relevance of equation (3.10) is that we can now find the d1 scores as a function of: the number
of words in the sequence; and the words that are common to both sequences, i.e. we can ignore all the
words in the sequences that do not occur in both of them.

Now consider d1k. This can simply be rewritten as:

d1k(x, y) = WC(x) + WC(y)

−2
∑

wi∈x,y

[
min{cx(wi), cy(wi)}

]
(3.11)

The only difference between (3.10) and (3.11) is that there are fewer words to be counted for
d1k(x, y) since it is limited to a fixed word size. This is important as the d2 method of clustering also
uses fixed word sizes. Finally consider the formula for d̂1k – that is the formula for calculating the d1

for the windows of the sequence. This can be rewritten as:

d̂1k(x, y, r) = min{d1k(u, v) : u v x, v v y, |u| = |v| = r}

= min

{
WC(u) + WC(v)

−2
∑

wi∈u,v

[
min{cu(wi), cv(wi)}

]
: u v x, v v y, |u| = |v| = r

}
(3.12)

But, we are looking at d̂1k(x, y, r) which means we are limited to word lengths of k and to window
sizes of r, so in this case WC(z) = r − k + 1. Putting this into (3.12) gives:

d̂1k(x, y, r) = min
{

2(r − k + 1)

−2
∑

wi∈u,v

[
min{cu(wi), cv(wi)

]
: u v x, v v y, |u| = |v| = r}

}
= 2(r − k + 1)

+min
{
− 2

∑
wi∈u,v

[
min{cu(wi), cv(wi)

]
: u v x, v v y, |u| = |v| = r}

}
(3.13)

Comparing d1 and d2 scores

In this Section we compare the d1 and d2 scores that any given sequence will produce. Further we
show that any clustering based on d1 scores will be a superset of one based on d2 scores – thus showing
that d1 is valid for pre-clustering data (as any sequences clustered by d2 will be clustered by d1). First
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we show that d1(x, y) ≤ d2(x, y):

RTP d1(x, y) ≤ d2(x, y) :

i.e. RTP
∑
|cx(wi)− cy(wi)| ≤

∑
(cx(wi)− cy(wi))

2

We know |a| ≤ |a|2 ∀a ∈ Z (3.14)

Also cx(w)andcy(w) ∈ N0

⇒ (cx(w)− cy(w)) ∈ Z (3.15)

And |a|2 = a2 ∀a ∈ Z

⇒ |cx(w)− cy(w)|2 = (cx(w)− cy(w))2 (3.16)

(3.14)&(3.15) ⇒ |cx(w)− cy(w)| ≤ |cx(w)− cy(w)|2 (3.17)

(3.16)&(3.17) ⇒ |cx(w)− cy(w)| ≤ (cx(w)− cy(w))2 (3.18)

Summing(3.18) ⇒
∑
|cx(wi)− cy(wi)| ≤

∑
(cx(wi)− cy(wi))

2 �

Now since d1(x, y) ≤ d2(x, y), and d2 clustering works by clustering sequences together whose
d2 scores falls beneath a given threshold, it is clear that any two sequences clustered by d2 will also
be clustered by d1 (assuming the same threshold). In general however, the clusterings will not be
the same as d1 can cluster sequences that would not be clustered by d2, we can say that d2cluster ⊆
d1cluster and so d1 is valid to use for pre-clustering. Similarly we can show that d1k(x, y) ≤ d2k(x, y),
d̂1(x, y, r) ≤ d̂2(x, y, r), and finally d̂1k(x, y, r) ≤ d̂2k(x, y, r).

Using d1 for pre-clustering d2

Now the standard d2 score that is used for clustering is the d̂2k formula, so it is natural to then use d̂1k
for pre-clustering. As discussed in Section 2.2.2 we know that usually a window size of 100 is used
together with a word size of between 6 and 8, with 6 being the default. Using the formula derived in
(3.13) we can say that:

d̂16(x, y, 100) = 2(r − k + 1) + min[−2
∑

wi∈u,v
min{cu(wi), cv(wi) : u v x, v v y, |u| = |v| = r}]

= 190 + min[−2
∑

wi∈u,v
min{cu(wi), cv(wi) : u v x, v v y, |u| = |v| = r}]

Now say in a d2 cluster we use a threshold of T = 40 to decide whether or not two sequences
should be clustered together, i.e. if d̂2k(x, y, r) ≤ T then cluster x and y. Using the same threshold in
d1 means that we cluster when:

40 ≥ d̂16(x, y, 100)
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40 ≥ 190 + min[−2
∑

wi∈u,v
min{cu(wi), cv(wi) : u v x, v v y, |u| = |v| = r}]

−150 ≥ min[−2
∑

wi∈u,v
min{cu(wi), cv(wi) : u v x, v v y, |u| = |v| = r}]

−150 ≥ −2×min[
∑

wiinu,v

min{cu(wi), cv(wi) : u v x, v v y, |u| = |v| = r}]

75 ≤ min[
∑

wiinu,v

min{cu(wi), cv(wi) : u v x, v v y, |u| = |v| = r}] (3.19)

What inequality (3.19) tells us is that any pair of sequences where we can find two windows of
size 100 with at least 75 words in common are to be clustered together and are good candidates for
d2 clustering. Unfortunately the number of calculations to look at individual windows will be very
similar to the optimised d2 algorithm discussed in Section 2.2.2. So now consider d1k(x, y) where we
don’t look at individual windows. Here we have:

d1k(x, y) = WC(x) + WC(y)− 2
∑

wi∈x,y
min{cx(wi), cy(wi)}

Now if we use the same term 2(r − k + 1) that was used in the d̂1k formulation instead of the WC
terms we then get a new formula which we call d1′k (x, y, r):

d1′k (x, y, r) = 2(r − k + 1)− 2
∑

wi∈x,y
min{cx(wi), cy(wi)}

Using the same thresholds gives the formula:

d1′6 (x, y, 100) ≤ 40

40 ≥ 190− 2
∑

wi∈x,y
min{cx(wi), cy(wi)}

75 ≤
∑

wi∈x,y
min{cx(wi), cy(wi)} (3.20)

d1′k can be used to pre-cluster d̂1k since the RHS of equation (3.20) will always be greater than or
equal to that in equation (3.19) as the cx(wi) and cy(wi) terms in d1′k will be greater than or equal
to the cu(wi) and cv(wi) terms in d̂1k as u and v are substrings of x and y respectively. So anything
clustered using the d̂1k score will also be clustered by d1′k . In english that means that with formula 3.20
we can precluster using d1 on a whole sequence versus whole sequence using the same thresholds
as we would use on a window-by-window and be guaranteed not to miss any matches (assuming the
sequences are at least as long as the window size). The implication of this is that we can also compare
the windows in one sequence against the whole of the other sequence using d1 as this can be viewed
as comparing a whole set of sequences of the window length against the other sequence. This is how
the sequence comparison is implemented in Section 3.1.3.
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So now what we have is that d1′k pre-clusters for d̂1k, which in turn pre-clusters for d̂2k. Thus d1′k
pre-clusters for d̂2k. Next we develop an algorithm that calculates the d1′k score.

3.4 Summary

To conclude the algorithm developed for this research can be divided into three sub-algorithms, each
of which aim to identify pairs of matching sequences so that clusters of related sequences can be iden-
tified. Each stage is more refined and aims to rapidly identify potential matching pairs of sequences
and rapidly build clusters. The first heuristic aims to find matches between sequences by looking for
sequences that have similar words in relatively similar positions. Note that by altering the parameters
passed to this heuristic it is possible to make it either very coarse (few matches and/or large standard
deviation threshold and/or large skip value), or very fine grained (many matches and/or small standard
deviation and/or small skip value). The second stage is closely linked to the third in that it uses the
d1 comparison which is very similar to the d2 comparison. This has a computational advantage over
the popular d2 comparison, while still giving similar results from an analytical perspective. The final
stage is the d2 comparison which is often used as a similarity measure when doing EST clustering. If
two matching sequences are found here they are joined using the disjoint-set data structure which is
both computationally and memory efficient and allows for fast joining, or clustering, of sets.
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Chapter 4

Results

The empirical results of this research are discussed in this chapter while some theoretical results are
discussed in Sections 3.3. The algorithm was implemented in C++ since it is a compiled language
and allows for optimisation and a fair comparison to other EST clustering solutions which are often
implemented in similar languages. Timing of the algorithm was achieved using code which allows it
to count the actual number of clock cycles used during execution. In comparison to a timing which
merely looks at the clock, it is more accurate since external processes do not influence the final result.
The implementation was evaluated in three main parts: sd heuristic performance (Section 4.2.1),
d1 heuristic performance (Section 4.2.2) and the overall performance (Section 4.2.3). All testing
was done on an Intel server with: two Xeon E5345 cpus clocked at 2.33 gigahertz, each with four
cores and four megabytes of L2 cache; and four gigabytes of ram. The code is available at http:
//code.google.com/p/sdclust/

4.1 Experimental tools

While overall performance is the major interest of this study, it is important to look at the individual
components to analyse where it succeeds or fails and thus experiments were designed to test not only
the overall performance, but also the sd heuristic’s performance and the d1 heuristic’s performance.
A wide variety of data sets are used since the performance of the algorithm is dependent on not only
the parameters passed to the algorithm, but on the specific nature of the data set itself. This Section
gives an introduction to the various data sets and cluster comparison methods that are used.

4.1.1 Experimental data

The experimental data used comes from artificial as well as real-world sources. The artificial data
was created using ESTSim [Hazelhurst and Bergheim 2003] and was specifically used to examine the
scaling performance of the algorithm as the number of ESTs and their specific characteristics (such
as length and error rate) are well controlled. Then most of the real-world data came from Genbank
and were chosen largely because there were significant numbers (more than 10 000) of ESTs in the
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database. Partial data-sets were used in most cases that were judged to be of sufficient size. Looking
at the results in Section 4.2.3 we see that run times for the data-sets ranged from a few seconds to
many hours and this gives a good idea about the range of performance for various data-set sizes and
types.

The data sets are shown in Table 4.1.

4.1.2 Cluster Comparison

In order to evaluate the clustering quality of the algorithm the new clusters are generally compared
against a reference clustering that is considered to be correct. There are several different measures to
do this, but mostly rely on four individual counts:

• True positives (tp) indicate a valid matching prediction in the test data.

• False positives (fp) indicate an invalid matching prediction in the test data.

• True negatives (tn) indicate a valid non-matching prediction in the test data.

• False negatives (fn) indicate an invalid non-matching prediction in the test data.

Once these values have been calculated there are a number of ways to gauge the performance of
the clustering. Specifically these are:

• Sensitivity =
∑

tp∑
tp+

∑
fn

: This indicates the percentage of the positive matches, in the reference
clustering, that were correctly identified. Ideally we want to miss as few as possible of these,
thus getting a low fn count and a value close to 1.

• Specificity =
∑

tn∑
tn+

∑
fp

: This indicates the percentage of correctly identified negative values.
A value close to 1 indicates that relatively few fps were found and thus not too many false
clusterings have been formed.

• False Positive Ratio (FPR) =
∑

fp∑
tp+

∑
fp

• False Negative Ratio (FNR) =
∑

fn∑
tp+

∑
fn

• Jaccard Index =
∑

tp∑
tp+

∑
fp+

∑
fn

: This is used to compare the similarity of two sets or clusters.
Considering the sets shown in Figure 4.1 it is calculated as the intersection of the test and
reference clusters (

∑
tp), divided by the union of the test and reference clusters (

∑
tp+

∑
fp+∑

fn). Thus the greater the similarity between the two sets, the more the intersection resembles
the union, i.e. the fp and fn sums get smaller and the jaccard index gets closer to 1.

• Matthews Correlation Coefficient =
∑

tp×
∑

tn−
∑

fp×
∑

fn√
(
∑

tp+
∑

fp)(
∑

tp+
∑

fn)(
∑

tn+
∑

fp)(
∑

tn+
∑

fn)
: is typ-

ically used in machine learning and is a fair overall measure for assessing the quality of a
classification.
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Data Set Num Seqs ave len Description
Benchmark10000 10 000 360 Human eye-tissue ESTs from [SANBI] that has

been used as test data by many other clustering
programs and thus is included for comparison
purposes (not from genbank).

CSeries 126 719 469 Ten artificial data set created from a cDNA li-
brary using ESTSim. All of the ESTs inside the
data sets have similar characteristics (length and
error rates) and they range in size from around
12, 000 to 126, 719. These properties mean that
the data set is ideal for checking the scaling prop-
erties of the algorithm.

anopheles gambiae 25 000 548 Mosquito
arabidopsis thaliana 81 000 111 Thale cress ESTs often used as a model organism

for genetic studies since it has a small genome
and was the first plant to be fully sequenced
[Meinke et al. 1998].

bos taurus 44 479 624 Cow
caenorhabditis elegans 99 946 380 This nematode was the first sequenced multicel-

lular animal genome [The C. elegans sequencing
consortium 1998].

canis familiaris 80 460 593 Dog
drosophila melanogaster 79 999 433 Fruit fly
gallus gallus 44 000 694 Chicken
gasterosteus aculeatus 111 000 987 Three-spined stickleback
homo sapiens 200 009 514 Human
macaca mulatta 58 230 750 Rhesus macaque
mus musculus 46 500 419 House mouse
oryza sativa 54 500 701 Rice
ovis aries 78 500 595 Sheep
pan troglodytes 16 356 472 Chimpanzee
pongo pygmaeus 46 910 541 Bornean orangutan
rattus norvegicus 59 000 743 Brown rat
saccharomyces cerevisiae 34 604 513 Brewer’s yeast
sus scrofa 182 500 427 Wild Boar
triticum aestivum 46 917 570 Wheat
xenopus tropicalis 191 500 681 Western clawed frog

Table 4.1: Data sets
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Traditionally in EST clustering the way to classify tps, fps, tns and fns is shown in Figure 4.1.
When we only have information on which ESTs belong to which clusters we say that:

• True positives (tp) are when ESTs i and j belong to the same cluster in both the test and the
reference clustering.

• False positives (fp) are when ESTs i and j belong to the same cluster in the test clustering, but
not in the reference clustering.

• True negatives (tn) are when ESTs i and j do not belong in the same cluster in either the test
clustering or the reference clustering.

• False negatives (fn) are when ESTs i and j are in the same cluster in the reference clustering,
but not in the test clustering.

Figure 4.1: The figure shows how to classify pairs of ESTs between the two different clusterings.

For most cases this is the only way of calculating the tp, tn, fp and fn values of alternate clustering
methods. In certain circumstances, however, it can lead to misleading results. Consider the two
examples shown in Figures 4.2 and 4.3 which show a reference and test clusterings respectively.
Looking at the reference clustering we see that there are two separate clusters. Examining the larger
cluster we see that it is composed of 3 groups where there are lots of links between the ESTs, which
are then joined by single links. In the test clustering we can see that the clustering missed these single
links and so we now have four distinct clusters.

Now when comparing the two clusterings we only consider which clusters the ESTs belong to,
and not how they matched the other ESTs. This comparison yields the following values:

•
∑
tp = 48

•
∑
tn = 54
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Figure 4.2: Example 1: Reference Cluster

•
∑
fp = 0

•
∑
fn = 108

• sensitivity = 0.31

• specificity = 1.0

• Jaccard Index = 0.31

• Matthews Correlation Coefficient = 0.32

This would usually lead us to conclude that the clustering is poor. If, instead, the exact matches
between the ESTs had been considered such that:

• True positives (tps) are when ESTs i and j are found to have an overlap by both the reference
clustering program and the test clustering program.

• False positives (fps) are when ESTs i and j are found to have an overlap by the test clustering
program, but not by the reference clustering program.

• True negatives (tns) are when neither the reference clustering program or the test clustering
program find overlaps between ESTs i and j.

• False negatives (fns) are when ESTs i and j are found to have an overlap by the reference
clustering program, but not by the test clustering program.

Recalculating the values shows that:

•
∑
tp = 48

•
∑
tn = 160

•
∑
fp = 0
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Figure 4.3: Example 1: Test Cluster

•
∑
fn = 2

• sensitivity = 0.96

• specificity = 1.0

• Jaccard Index = 0.96

• Matthews Correlation Coefficient = 0.97

The difference in the values is due to there being far fewer false negatives and more true negatives
in the new calculation. This leads to what appears to be more confidence in the test clustering. How-
ever, Figures 4.4 and 4.5 show a counter example where the new method of calculating the tps, tns
etc. actually leads to having lower confidence in the clustering.

Here the test clustering program produces exactly the same clusters as the reference clustering
program, however if we were able to see which ESTs matched with each other in the two different
programs, then we would notice that the reference clustering produces clusters which are fully con-
nected (every EST in the cluster matches with every other EST in the cluster), while the test clustering
produces a relatively sparse set of matches.

When calculating the different values we find that if we only consider which ESTs belong to which
clusters we find:
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Figure 4.5: Example 2: Test Cluster

•
∑
tp = 48

•
∑
tn = 30

•
∑
fp = 0

•
∑
fn = 0

• sensitivity = 1.0

• specificity = 1.0

• Jaccard Index = 1.0

• Matthews Correlation Coefficient = 1.0

Whereas considering the exact matches between the ESTs we find:

•
∑
tp = 12

•
∑
tn = 30
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•
∑
fp = 0

•
∑
fn = 36

• sensitivity = 0.25

• specificity = 1.0

• Jaccard Index = 0.25

• Matthews Correlation Coefficient = 0.34

So now there are two examples where the different methods of calculating the tps, tns etc. produce
very different results for validating a particular clustering. In this research both have been used. When
evaluating the performance of the heuristics, the pairwise matches are considered. When evaluating
the overall algorithm performance, the cluster-wise matches are considered.

4.2 Experimental Results

This Section describes the experiments that were done as well as describing and discussing the results.
Essentially each step in the overall algorithm is looked at and the parameters analysed and finally the
algorithm as a whole is considered.

4.2.1 sd heuristic Performance

When looking at the accuracy and timing results of the algorithm there are 4 parameters that need to
be considered. They are:

1. Word size: This specifies the sizes of words to be considered between any two sequences. A
larger word size means that any given word is less likely to occur randomly, so random matches
between two unrelated sequences is unlikely. Unfortunately this also means that in noisy data,
a match that should occur is more likely to be missed. Conversely with a smaller word size
we are more likely to get matches between unrelated sequences and less likely to miss matches
between related sequences.

2. Word count threshold: The word count threshold specifies the number of words that two se-
quences should have in common before considering them a (potential) match. Making a high
threshold means that two sequences must have a high number of words in common and so it is
relatively unlikely that two unrelated sequences will meet this criterion, but it is also possible
that two related sequences will be missed. Conversely with a low threshold we are unlikely
to miss two related sequences, but it is more likely that two unrelated sequences will meet the
criterion.

47



Figure 4.6: Parameter selection – word size

3. Standard deviation threshold: The standard deviation threshold specifies how distributed related
words can be across the two sequences being compared. It does this by taking the difference
in the positions and then calculating the standard deviation of those values. Two sequences
with a low standard deviation will have words that occur in relatively similar positions, i.e. say
words α, β, γ and δ occur in positions 1, 2, 3 and 4 respectively in sequence A, then a related
sequence could have them in positions 11, 12, 14 and 15, say, giving a standard deviation of
0.577. An unrelated sequence could have them in positions 11, 18, 19 and 12, say, giving a
standard deviation of 4.12.

4. Skip value: The skip value specifies the frequency of words being considered from the source
sequences (every word in the target sequence is considered). Having a word spacing of zero

48



The effect of changing word count threshold in sd_clust
benchmark10000: w=14, s=1, S=1
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Figure 4.7: Parameter selection – word count threshold

means that every word is considered in the source sequences. A word spacing of one means
that every alternate word is considered, a spacing of two means that every third word is con-
sidered etc. A small spacing means that it is unlikely that important matching words between
sequences are missed, but it also means that it is more likely that matching words between un-
related sequences are found. Conversely a larger spacing means it is less likely to find matching
words between unrelated sequences and more likely to miss related words between matching
sequences. Of course the word count threshold needs to be adjusted to reflect the change in
word spacing since if we are only considering half as many words in the source sequences we
expect half as many matches with a matching target sequence.

Each parameter has been varied on its own to see the influence it has on clustering performance.
There are four graphs for each parameter which show:
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The effect of changing standard deviation in sd_clust
benchmark10000: t=16, w=8, S=4
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Figure 4.8: Parameter selection – standard deviation threshold

1. The running time

2. The number of times the heuristic, d1, and d2 succeed

3. The heuristic performance in terms of false positive rate, false negative rate, Matthews correla-
tion coefficient

4. The overall clustering performance in terms of sensitivity, specificity and Jaccard index.

Note that the reference cluster was created by doing an all-against-all comparison using d2 scores.
And since the sd clust algorithm also calculates the d2 score it never gets any false positives and so
the specificity is always 1 and the Jaccard index is identical to the sensitivity.
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The effect of changing standard deviation in sd_clust
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Figure 4.9: Parameter selection – standard deviation threshold

Influence of word size

Word size was found to have a large impact on the performance of the algorithm (Figure 4.6). When
fixing the rest of the parameters and increasing the word size from 6 to 32 we find that in general:
execution time decreases; the number of false positives decreases; the number of false negatives in-
creases; and the overall clustering quality decreases. Interestingly we see that when we use a small
word size of 6 we actually get a poorer quality of clustering than using a word size of 22. This occurs
because the smaller word size means that matching words from unrelated parts of matching sequences
are found. While this increases the match count, it also increases the standard deviation of the match,
which means it sometimes fails to fall below the required threshold. The execution time can be seen
to decrease dramatically for word sizes between 6 and 10 after which the speed gains are less sig-
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The effect of changing skip value
sd: t=3, w=20, sd=2
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Figure 4.10: Parameter selection – skip value

nificant. Looking specifically at the heuristic performance we see that the larger the word size, the
better the performance – with dramatic improvements in the false positive ratio, and a relatively small
worsening in the false negative ratio. The overall clustering quality, however, does decrease with the
larger word sizes, and this is seen with the decrease in sensitivity and Jaccard index.

Influence of word count threshold

The word count threshold parameter shows a similar pattern to the word size parameter (Figure 4.7).
We see that as the word count threshold increases from 10 to 60 the a number of things happen in-
cluding: execution time decreases; number of false positives decreases; the number of false negatives
increases; and overall clustering quality decreases.
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Influence of standard deviation threshold

The impact that the standard deviation threshold has on clustering quality appears in Figure 4.8. We
see that the larger the threshold, the more pairs of sequences that pass the heuristic. This is, however,
dependent on the selection of the other parameters and can be seen in Figure 4.9. What we see here is
that with the large word size of 22 we do not get a significantly larger number pairs passing the heuris-
tic, but when a small word size of 8 is chosen the number of pairs matching with the heuristic grows
faster and more consistently. The overall clustering quality does not seem to improve dramatically
with large standard deviation thresholds, but neither does the clustering time increase dramatically.

Skip Value

Changing the skip value has a very significant effect on clustering quality and time, and the tuning of
this parameter is very important. In Figure 4.10 we see that clustering time decreases rapidly with a
larger skip value. This is due to two factors: most importantly the number of words being compared
drops proportionally to the skip value (half as many comparisons when using a skip value of 2 as
compared to using a skip value of 1), and secondly the number of matches between sequences that
occur by chance also decreases. Looking at 4.10 b) we see that using a skip value of 15 or larger
produces almost no false positives. We do however, also start getting more false negatives. Looking at
the Matthews correlation coefficient in Figure 4.10 c) and the Jaccard index in Figure 4.10 d) we see
that a good choice for skip value is about 7 (with this set of parameters) which gives a good balance
of speed and quality.

4.2.2 d1 Performance

The quality of the d1 heuristic was measured by doing an all-versus-all comparison of the sequences
in various data sets using d1 as the only heuristic, and d2 as the final check. Looking at the FP

TP ratio in
Table 4.2 we see that the performance was varied – in the best case it was 0.5% (for every 200 correctly
identified matches, there was 1 falsely identified match) and in the worst case it was 2 154% (for every
2 correctly identified matches, there were 43 incorrectly identified matches). Figure 4.11 shows a box
plot of the FP

TP ratio for the raw data, as well as when it has been cleaned (more information on
cleaning can be seen in Section 4.2.3).

4.2.3 Overall Performance

Scaling performance

The scaling performance is shown in Figures 4.12, 4.13 and 4.14. Figure 4.12 shows how the per-
formance of sd clust changes with some arbitrary changes in the parameters (all with similar cluster
quality characteristics). Figure 4.13 shows some least-squares fitted curves to evaluate the compu-
tational order of the implementation and was found to be between O(n1.58) and O(n1.86) (for these
choices of parameters). Finally Figure 4.14 shows the processing time and peak memory usage for a
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Data Set False Positives True Positives FP
TP

anopheles gambiae 22 874 236 797 0.097
arabidopsis thaliana 473 137 847 036 0.559
bos taurus 49 011 9 146 383 0.005
caenorhabditis elegans 72 104 1 280 215 0.056
canis familiaris 5 118 387 5 735 435 0.892
drosophila melanogaster 209 992 4 746 030 0.044
gallus gallus 7 132 745 331 155 21.539
gasterosteus aculeatus 5 197 257 10 980 593 0.473
homo sapiens 181 822 63 735 165 0.028
macaca mulatta 2 081 372 6 439 171 0.323
mus musculus 62 481 1 484 072 0.042

Table 4.2: d1 performance

single choice of parameter. The memory usage in this case was found to be O(n1.28). The theoretical
analysis showed that memory usage should have been O(n) and a possible reason why this didn’t oc-
cur is that a vector data structure was chosen in the implementation to record when a match between
two sequences was found. This was done so that the list of matches could be quickly searched, and
then reset, when it was time to do the d1 comparison. However, with a larger data set, it means that this
data structure grows since it is more likely that more pairs of sequences will have a word in common.
Compounding this even further is the data structure itself and the fact that its space requirements are
dynamically allocated – with a scheme that results in the data structure doubling in size each time it
runs out of space. This means that the memory requirements do not scale linearly. While this sounds
poor, it does mean that in most cases the memory allocation will be less than if a static allocation is
made – since that would require a worst-case scenario memory allocation to be made.

Another interesting feature to note in Figure 4.12 is that total clustering time cannot be predicted
solely on a single parameter’s value, or on the heuristic’s performance. We see that in b) that with
the largest word size (w = 20) we actually have the most number of false positives predicted, and yet
looking at a) we see that it performed better (time-wise) than when the smallest word size was used
(w = 10) which had the most accurate heuristic. Also, when using the middle word size (w = 16),
we had the heuristic’s performance falling between the other two, yet having the best computational
time values. More work can be done on looking at each parameter’s influence on the computational
complexity.

Effects of different data sets

Different heuristic parameters do have different degrees of success depending on the data set being
tested. Looking at Figure 4.15 we see that in most cases both sets of parameters work very well with
a Jaccard index > 95%. In two cases, however, we see that the Jaccard index of the heuristic using
the longer words (w = 16) drops dramatically down to 37% and 50% for the mus musculus and
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gasterosteus aculeatus data sets respectively. The reason why it performs well on some data sets and
not on others is not obvious, however there are a couple of possible explanations.

In the case of gasterosteus aculeatus it may be because the average sequence length is very long –
about 987 base pairs. The long sequence length means that there is a higher probability that within a
pair of matching sequences, matching words are found which do not actually belong to longer regions
of similarity. The result of this is that the standard deviation of the matches then increases, meaning
that it’s less likely to fall under the threshold and thus pass the heuristic test.

In the case of mus musculus we can see that only 33 clusters less have been formed. A closer
look at the clustering reveals that the “poorly” performing heuristic only gives 633 false negatives
out of a total of 1 483 509 positives, when compared to an all-against-all d2 clustering. That’s only
0.042% of the total positive matches and if a pair-wise comparison is done, then the Jaccard index
is 99.9%. Looking at the histograms in Figure 4.16 we see a possible explanation for this – a large
cluster of 4396 ESTs has been divided up into a number smaller clusters (1 910, 995, ...). As described
in Section 4.1.2 even though the clusters are in general very similar, when a large cluster is divided
up into smaller clusters it can have a large impact on the sensitivity and Jaccard index (when doing a
set/cluster-wise comparison).

Effects of cleaning the data

The raw data was run through the mdust program which marks all the low-complexity regions with
N. Low complexity regions are identified as simple sequence repeats. The default settings were used
which meant that the region had to be at least 28 nucleotides long, and that a maximum word size of
3 is used. In other words if a single nucleotide, doublet, or triplet is repeated over a window of 28 or
more, then it is masked.

Malde and Jonassen [2008] discuss the value of several cleaning techniques and find that the most
effective, in terms of quality of output, is to use masking with species specific repeat libraries. It
was beyond the scope of this research to find all the relevent repeat libraries and so the second best
alternative of library-less repeat masking was used. Specifically mdust as it was readibly available,
and widely used since it is included in the TGICL pipeline. Additionally RBR was used for comparison
as it has been shown to give high quality results when clusters were compared to a reference cluster
[Malde et al. 2006].

Cleaning the data has a significant impact on clustering time and the results can be seen in Table
4.3. The most dramatic improvements can be seen in the data sets which had a large amount of low-
complexity, e.g. bos taurus had 2% and gallus gallus had nearly 4% of their basepairs marked as
low-complexity regions after dusting. The low-complexity regions have a large impact on clustering
time since they cause a very large number of pairs of ESTs to be matched by the heuristic when, in
fact, they are not similar. Looking at bos taurus and gallus gallus we see that the number of heuristic
passes drops from 88 185 534 to 73 754 and from 17 035 937 to 48 601 respectively after dusting.
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Data File Raw mdust rbr
sd wcd time sd total wcd total tgicl time sd total wcd total

anopheles gambiae 69 112 23 50 106 75 152 179 237
arabidopsis thaliana 620 355 11 47 339 148 80 102 406
bos taurus 2 007 3 279 47 135 365 862 370 466 708
caenohabtitis elegans 105 995 64 167 1 088 563 430 542 1 427
canis familiaris 3 102 27 348 80 420 1 088 785 803 991 6 340
drosophila melanogaster 1 240 1 118 58 148 863 513 456 552 1 265
gallus gallus 18 787 20 873 55 149 806 177 520 603 1 391
gasterosteus aculeatus 15 775 42 248 191 13 191 8 352 3 178
homo sapiens 640 5 575 174 667 5 504 5 233
macaca mulatta 3 168 8 081 74 281 950 946 684 836 1 687
mus musculus 58 247 32 83 259 243 212 255 437
oryza sativa 58 118 156 467 63 205 1348 336 790 884 2 796
ovis aries 424 1 118 79 239 1 086 464 802 942 1 810
pan troglodytes 18 37 13 26 40 62 66 89 103
pongo pygmaeus 204 1 121 43 148 365 332 326 389 786
rattus norvegicus 252 1 228 75 275 829 989 851 974 1 562
saccharomyces cerevisiae 46 144 30 73 180 238 176 268 397
sus scrofa 6 540 4 437 130 4 599 3 437 36 217 1 551 1 779 5 674
triticum aestivum 103 338 46 147 375 625 331 475 693
xenopus tropicalis 4 715 15 970 225 965 6 832 3 908

Table 4.3: Time to cluster: This shows the time taken to cluster various data sets before and after they
have been cleaned with mdust or rbr. The tgicl algorithm is included next to the mdusted data since
it applies mdust as a default when clustering. rbr failed to clean the gasterosteus a., homo s. and
xenopus t. data sets and so those results could not be included. The green and red highlighted regions
indicate the minumum and maximum clustering times respectively for any given data set
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Data Set Run Time (seconds) Run Time (seconds)
t = 3, w = 14, s = 4, S = 10 t = 1, w = 16, s = 4, S = 14

anopheles gambiae 48 41
arabidopsis thaliana 178 103
bos taurus 1218 505
caenohabtitis elegans 96 93
canis familiaris 2067 1913
drosophila melanogaster 730 646
gallus gallus 6012 5251
gasterosteus aculeatus 7387 7373
homo sapiens 577 550
macaca mulatta 1843 1513
mus musculus 51 46
oryza sativa 35462 33228
ovis aries 301 291
pan troglodytes 16 15
pongo pygmaeus 126 124
rattus norvegicus 190 182
saccharomyces cerevisiae 37 36
sus scrofa 4151 7015
triticum aestivum 78 76
xenopus tropicalis 3122 1197

Table 4.4: Parameter Exploration: This table shows the dramatic, and sometimes unpredictable, effect
that varying parameters can have. While both of these sets of parameters gave very similar results in
terms of their correctness we see that for the most part the second set results in a shorter run time for
the first but in at least one case is actually significantly slower.

Parameter Space Exploration

The brief exploration of the parameter space was made and it was found that the parameters used for
the sd heuristic could be very different to those used for most of this research with large impacts on
the clustering time and little effect on the clustering quality. Specifically it was found that setting the
word size to 16, a skip value of 14 and a word count threshold of 1 gave very good results. The major
implication of this is apparent when looking at the word count threshold of 1, i.e. all we need now is
a single match between sequences of a word of length 16. This means that the standard deviation will
always be 0 and thus it is a waste to compute this value. Note that this appears to be a sweetspot in
terms of the computation – finding few false positives and negatives (d 2 comparisons are still done
to filter out the false positives that are found). Looking at Table 4.4 shows some of the results found,
but it again becomes clear that parameter selection is dependent on the specific data set being used.
For instance in the case of x. tropicalis we see that the second set of parameters takes less than 40%

of the default parameters, whereas with s. scrofa the new parameters actually take about 70% longer.

4.3 Summary

In this Section an empirical analysis of the algorithm has been performed. We showed in Section
3.3 that theoretically the d1 comparison will always predict the true positives that a d2 comparison
predicts. Theoretical bounds on the computational complexity was shown to be m2n2 in Section 3.2,
but empirical testing showed this to be sub-quadratic. Absolute timing against several other clustering
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solutions also found it was quicker in most cases. Parameter selection was found to be important and
different parameters were found to perform differently on different data sets.

The theoretical bound on the memory requirement was shown to be O(m2n), i.e. linear in the
number of sequences, but it was actually found to be slightly worse than this. This could be due to the
choice of data structure used, however more analysis on this needs to be performed.
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Figure 4.11: This shows a box plot of the FP:TP ratios over all the real world data sets for the raw
data as well as the cleaned data. A low FP:TP ratio is good and the figure indicates that most of the
data sets had very low FP:TP ratios where even the outliers were relatively low except in the one case
in the raw data where there were more than 20 false positives for every true positive.
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Scaling Performance:
Heuristic Parameter Variation

20000 60000 100000

0
10

00
30

00

a) Time scaling
Number of ESTs

tim
e 

(s
ec

on
ds

)

20000 60000 100000
0.

0e
+

00
1.

0e
+

07
2.

0e
+

07

b) Heuristic success
Number of ESTs

H
eu

ris
tic

 P
as

s

20000 60000 100000

20
00

0
80

00
0

c) d2 success
Number of ESTs

d2
 P

as
s

wcd: default

sd: t=14, w=10, s=1, S=4

sd: t=3, w=20, s=2, S=5

sd: t=8, w=16, s=2, S=4

Figure 4.12: Scaling performance – parameter selection: This figure illustrates a number of aspects of
how parameter selection effects scaling performance. Firstly it shows how the time scaling varies with
parameter selection (more detail in Figure 4.13). Secondly it shows the number of times the heuristic
passed for the various parameter selections. Finally it shows the number of times the final d2 check
passed – indicating a similar quality of clustering for all the parameter selections.
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Scaling Performance:
Curve fitting
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Figure 4.13: Scaling performance – regression: This shows that the scaling performance of sd clust
is somewhat dependent on the parameters used. In this case the time scale is between O(n1.58) and
O(n1.86).
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Scaling Performance: Resource Usage
CSeries: t=8, w=16, s=2, S=4
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Figure 4.14: Scaling performance – resource usage: This shows that processor usage scales in poly-
nomial time, while the memory usage scales linearly.
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Figure 4.15: Data set variablility: This shows that the success of the heuristic using a given set of
parameters is dependent on the data set. A more aggressive set of parameters can work in most cases,
but fail in others.
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Histograms of mus musculus cluster sizes
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Figure 4.16: Histogram of mus musculus cluster sizes illustrating that wcd has combined some of the
larger clusters created by sd clust into a larger super-cluster.
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Chapter 5

Conclusions

ESTs are an important tool for genetic research, but require significant computation in order to make
the data useful. This research has presented an algorithm that takes a set of individual ESTs and creates
clusters of them so that similar sequences can be analysed. The algorithm uses a number of word-
frequency based techniques to quickly process the information and it was found to be sub-quadratic
in computation time. The first heuristic (sd heuristic) based on finding matching words in similar
relative positions was found to be quite sensitive to parameter tuning and to the data-set being used,
but in general it performed well – even when conservative values were used. While it was accurate
it was ultimately found to be unnecessary as the best results were obtained when the parameters for
the heuristic meant that a single match of a word of length 16 was required between two sequences
to give the best computational time versus accuracy ratio. By altering the parameters it could be far
more accurate (less false positives predicted), however this came at the expense of longer computation
which did not give more accurate results after the second heuristic had been run.

The second heuristic was shown to be mathematically correct in that it never produces any false
negative predictions when presented with a pair of sequences. Further it was shown to be finer grained
than the first heuristic and thus dramatically reduced the number of pairs of sequences that were passed
onto the d2 final sequence comparison.

An empirical analysis showed the computational complexity of the complete algorithm (two
heuristics plus the final d2 comparison) to be sub-quadratic and it was feasible to cluster large data
sets (of more than 1 000 000 sequences) on a single modern computer. It was found that clustering
time could, in many cases, be significantly reduced by first cleaning the data.

Future Work

The algorithm can be extended in a number of directions. The most obvious of which is to parallelize
the solution since the sequence comparisons are independent of one another. Furthermore this is
necessary since most modern EST clustering tools have been designed to run in parallel and thus
comparing this method against them is unfair. Parallelisation can be done to take advantage of multiple
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CPUs in a single machine, as well as multiple computers (possibly with multiple CPUs themselves) in
a networked cluster. Both of these ideas should be explored, although they do present some challenges.
When distributing the work to a cluster there is always the issue of communication, and when there
are many computers to talk to, this can be a limitting factor in achieving speedup. Other factors need
to be considered like how much work should be sent to each node at a time so that no nodes are left
sitting idle.

Another area that can use more investigation is finding the optimal parameters for the heuristics
to use. A fairly conservative set of values was used for many of the tests here that in most cases
gave a Jaccard index of 99% or more. If this requirement is relaxed a little – say to 95% then dra-
matic speedups can be gained. Furthermore it was found that the sd heuristic’s performance was not
consistent with different data sets. In one case it could be fairly accurate – predicting very few false
positives, but in other cases it can predict very many false positives. There are two possible areas
where work could be done that look at this problem: firstly the program could perform some analysis
of the data and then predict a good set of parameters to use; or alternatively a dynamic solution might
be possible that tunes the parameters on the fly if they are found to be either too stringent or too re-
laxed. Either way a more thorough investigation of the parameter space needs to be performed so that
guidelines for the parameters can be found.

Another issue that was raised in the research was the memory requirements of the algorithm.
There are a number of ideas that can be tested to lower requirements. A simple solution to tackle the
space required for the word list is to store fewer words. In its current form every word is stored, but
when the algorithm does the sd heuristic comparison one of the parameters is the skip value which
specifies how many words to skip between each word being compared. It would be simple to not
skip any words here, but to rather store fewer words in the word list. The added advantage of using
less memory here is to have better memory locality – potentially resulting in fewer cache misses and
improved overall performance. Another simple technique is to create a far smaller word list in the first
place, say only the first k sequences have their words added to the word list and then all the sequences
are compared to that. The word list is then deleted and the next k are added. Then all the sequences
(apart from the first k sequences, since they have already been compared to everything) are compared
to that wordlist. This would mean that any data set that can fit in memory can be analysed given a
small enough value of k. Again the memory locality could result in a performance boost.

Finally since the sd heuristic was not found to be terribly relevant for prediction (since the best
results were found for parameters that required a single match between sequences of a word that
was 16 characters long) it may be a better idea to consider the standard deviation measure for a final
comparison rather than as a heuristic step before a comparison such as d2. This would require shorter
word-lengths, say 6. And a very high sd threshold.
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