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Abstract iii

Abstract

In this thesis, we study one-dimensional wave and Euler-Bernoulli beam equations with

Kelvin-Voigt damping, and one-dimensional wave equation with Boltzmann damping.

The spectral property of equations with clamped boundary conditions and internal

Kelvin-Voigt damping are considered. Under some assumptions on the coefficients, it is

shown that the spectrum of the system operator is composed of two parts: point spectrum

and continuous spectrum. The point spectrum consists of isolated eigenvalues of finite

algebraic multiplicity, and the continuous spectrum that is identical to the essential spec-

trum is an interval on the left real axis. The asymptotic behavior of eigenvalues is also

presented.

Two different Boltzmann integrals that represent the memory of materials are consid-

ered. The spectral properties for both cases are thoroughly analyzed. It is found that when

the memory of system is counted from the infinity, the spectrum of system contains a left

half complex plane, which is sharp contrast to most results in elastic vibration systems that

the vibrating dynamics can be considered from the vibration frequency point of view. This

suggests us to investigate the system with memory counted from the vibrating starting

moment. In the later case, it is shown that the spectrum of system determines completely

the dynamic behavior of the vibration: There is a sequence of generalized eigenfunctions

of the system, which forms a Riesz basis for the state space. As the consequences, the

spectrum-determined growth condition and exponential stability are concluded.
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Chapter 1

Introduction

1.1 Background of the thesis and literature review

Mechanical vibration is one of the most frequent movements in physical world. The earlier

study on vibration is closely related to sound and music instruments. However, little

progress was made before 16th century ([77]).

Spurred by the large applications of smart materials, there has been, starting from

1990, an increasing research on elastic system with viscoelastic dampings ([6, 8]). When

the smart materials are added into the elastic structures, the Young’s modulus, the mass

density and the damping coefficients are changed accordingly. This passive method, on the

one hand, makes the distributed control practically implementable but on the other hand,

brings some new mathematical challenges which attract an increasing research interests,

see for instance [33, 34, 40, 48, 85, 88, 92, 96, 102, 103] for beam equations, and [18, 30,

43, 44, 52, 65, 74, 82, 106] for wave equations. For the controllability study of this kind of

systems, we refer to [56, 57, 61, 63, 66, 68, 104]. The research of spectral analysis can be

found in [4, 43, 81, 84, 98, 101]. The results of exponential stability by bounded viscous

damping can be found in [9, 15, 30, 73, 106]. The exponential stability of one-dimensional

wave and Euler-Bernoulli beam equations with Kelvin-Voigt damping is discussed in [71,

72], and [74] for multi-dimensional case. Other studies can be found in [1, 13, 14, 37, 38,

41, 45, 46, 47, 50, 53, 54, 64, 75, 89, 94, 97, 100].

Among these works, two types of unbounded viscoelastic damping, Kelvin-Voigt damp-

ing and Boltzmann damping, are specially important. These kinds of passive control can

now be accomplished as active vibration control through piezoelectric actuator/sensor

([86]). The Kelvin-Voigt damping models of linear viscoelasticity assume that the instan-
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taneous stress depends on the instantaneous strain and the strain rate linearly. The Boltz-

mann models of linear viscoelasticity assume that the instantaneous stress depends on the

instantaneous strain and the entire history of strain rate linearly. For the Boltzmann mod-

els, we refer to [7, 28, 69, 72, 82, 103] and the references therein. Basically, there are two

types of Boltzmann integrals. One is with the infinite entire memory ([7, 69, 72, 75, 103]),

and another is with finite memory ([5, 29, 82]). The Kelvin-Voigt damping that is a

special case of Boltzmann damping where the relaxation function is a delta function and

is stronger than the Boltzmann damping. Some results of Kelvin-Voigt damping can be

found in [16, 43, 70, 71, 74, 81, 98, 101, 102].

However, for these works aforementioned, only partial properties of the vibration fre-

quencies are presented. This is an unfortunate situation since it has been shown for many

other elastic systems in [33, 34, 76, 90] that for a vibrating system, the vibration frequen-

cies could determine all dynamic behaviors of the system. The reason for occurrence of this

situation is that for a viscoelastic system, the resolvent of system operator is not compact

anymore, which is in sharp contrast with that discussed in [33, 34, 76, 90]. Nevertheless,

a viscoelastic system with constant coefficients still shows the validity of Riesz basis prop-

erty due to the fact that the continuous spectrum is the limit set of point spectrum ([55]).

But for the viscoelastic systems with variable coefficients, the situation is quite different

even in one-dimensional cases, see for instance [59, 60, 81, 98].

In this thesis, we study the wave and Euler-Bernoulli beam equations with Boltzmann

type or Kelvin-Voigt damping. The spectrum for these systems are analyzed, and the Riesz

basis properties are investigated. Partial results have been published in my publications

during the candidate ([42, 43, 51, 101]).

1.2 Preliminaries

A linear time-invariant infinite-dimensional system on a Hilbert Space H can be repre-

sented as 



ẋ(t) = Ax(t), t > 0,

x(0) = x0,
(1.2.1)

where A is the infinitesimal generator of a strongly continuous semigroup T (t) on H.

In this section, we introduce some basic concepts about the linear operators in Hilbert

space. The strong continuous semigroups for linear operators (C0-semigroup in short) and

Riesz basis are also briefly introduced.
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1.2.1 Basic results of the linear operators

Firstly, we recall some definitions (see [2, 23, 31, 32], or check on wikipedia) about the

spectrum and eigenvector of the linear operators.

Let A be a linear operator in a Hilbert space H with the domain D(A). Then the

adjoint operator of A is denoted by A∗. σ(A), σp(A), σr(A), σc(A), ρ(A) will denote

respectively the spectrum of A, the point spectrum, the residual spectrum, the continuous

spectrum and the resolvent set of A. For any λ ∈ ρ(A),

R(λ,A) := (λI −A)−1 (I is the identity operator)

is called the resolvent operator of A.

Definition 1.2.1. Let A be a closed linear operator in a Hilbert space. The set of complex

numbers λ is called the essential spectrum of A, and is denoted by σess(A), if one of

the following three conditions is satisfied:

(i). R(λI −A), the range of λI −A, is not closed.

(ii). dimN (λI −A) = ∞, here N (λI −A) denotes the null space of λI −A.

(iii). dim(R(λI −A))⊥ = ∞, here (R(λI −A))⊥ is the orthogonal complement space

of range R(λI −A) of λI −A.

Notice that if A is densely defined, then (iii) of Definition 1.2.1 can be replaced by

dimN (λI −A∗) = ∞.

The following Proposition 1.2.1 is a direct consequence of Corollary 4.4 of [31, p.378].

Proposition 1.2.1. Let T be a closed linear operator in a Hilbert space and G a compact

operator. Then

σess(T ) = σess(T + G).

Definition 1.2.2. A nonzero element Φ in a Hilbert space H is called a generalized

eigenvector of a closed linear operator A, corresponding to an eigenvalue λ of A, if there

is a nonnegative integer n such that

(λI −A)nΦ 6= 0 and (λI −A)n+1Φ = 0.

If n = 0, then Φ is an ordinary eigenvector. The root subspace of A corresponding to λ is

defined as

Nλ(A) =
∞⋃

n=1

N ((λI −A)n).
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The dimension mλ,a of Nλ(A) is called the algebraic multiplicity of λ. When mλ,a = 1,

we say λ is algebraically simple. The collection of all eigenvectors of A corresponding

to an eigenvalue λ is just N (λI−A) and it is called the geometric eigenspace of λ. The

dimension mλ,g of N (λI−A) is called the geometric multiplicity of λ. When mλ,g = 1,

we say λ is geometrically simple.

Now we introduce C0-semigroup of linear operators (see [21, 25, 26, 32, 62, 79]).

Definition 1.2.3. Let X be a Banach space. A one parameter family T (t), 0 ≤ t < ∞, of

bounded linear operators from X into X is a semigroup of bounded linear operators

on X if

(i) T (0) = I;

(ii) T (t + s) = T (t)T (s) for every t, s ≥ 0. (the semigroup property).

A semigroup of bounded linear operators, T (t), is uniformly continuous if

lim
t→0

‖T (t)− I‖ = 0.

The linear operator A defined by

Ax = lim
t→0

T (t)x− x

t
, ∀x ∈ D(A)

and

D(A) =
{

x ∈ X| lim
t→0

T (t)x− x

t
exists

}

is the infinitesimal generator of the semigroup T (t).

Definition 1.2.4. Let X be a Banach space. A semigroup T (t), 0 ≤ t < ∞, of bounded

linear operators on X is a strongly continuous semigroup of bounded linear oper-

ators if

lim
t→0

T (t)x = x, ∀x ∈ X.

A strongly continuous semigroup of bounded linear operators on X will be called a semi-

group of class C0 or simply a C0-semigroup.

For a C0-semigroup, we have following Theorem 1.2.1.

Theorem 1.2.1. Let T (t) be a C0-semigroup. Then there exist constants ω and M ≥ 1

such that

‖T (t)‖ ≤ Meωt ∀0 ≤ t < ∞.
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In Theorem 1.2.1, if ω = 0, then T (t) is called uniformly bounded and if moreover

M = 1 it is called a C0-semigroup of contractions.

The next Theorem, Hille-Yosida Theorem is very important in theory of semigroups

of linear operators. It is a characterization of generators of arbitrary strongly continuous

semigroups.

Theorem 1.2.2. Let A be a linear operator on a Banach space X and let ω ∈ R,M ≥ 1

be constants. Then the following properties are equivalent.

(i) A generates a C0-semigroup T (t), t ≥ 0 satisfying

‖T (t)‖ ≤ Meωt, ∀t ≥ 0;

(ii) A is closed, densely defined, and for every λ > ω one has λ ∈ ρ(A) and

‖(λ− ω)nR(λ,A)n‖ ≤ M, ∀n ∈ N;

(iii) A is closed, densely defined, and for every λ ∈ C with Reλ > ω one has λ ∈ ρ(A)

and

‖R(λ,A)n‖ ≤ M

(Reλ− ω)n
, ∀n ∈ N.

For contraction semigroups, the Hille-Yosida characterization is especially simple (case

M = 1, ω = 0).

Corollary 1.2.1. An operator A is the generator of a C0-contraction semigroup if and

only if it is closed, densely defined, and ρ(A) contains R+ and for every λ > 0,

‖λR(λ,A)‖ ≤ 1.

Definition 1.2.5. Let A be the infinitesimal generator of a strongly continuous semigroup

T (t) on a Hilbert space H. Consider

ω(A) := lim
t→∞

1
t

log ‖T (t)‖,

the growth exponent bound of T (t), and

s(A) := sup{Reλ : λ ∈ σ(A)},

the spectral bound of the operator A. If ω(A) = s(A), we say that the spectrum

determined growth condition holds.
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Remark 1.2.1. From the Hille-Yosida Theorem, we know that s(A) ≤ ω(A) for any

infinitesimal generator of strongly continuous semigroups. However, in general, s(A) ≥
ω(A) is not true. A counterexample can be found in [76, 105].

Next, we give characterization of C0-semigroup of contractions, namely, the Lumer-

Phillips Theorem (Theorem 1.2.4). Before doing so, some definitions are needed.

Let X be a Banach space and let X∗ be its dual. We denote the value x∗ ∈ X∗ at

x ∈ X by 〈x, x∗〉. For every x ∈ X we define duality set F (x) ⊂ X∗ by

F (x) =
{
x∗ ∈ X∗|〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
.

From the Hahn-Banach Theorem it follows that F (x) 6= ∅ for every x ∈ X.

Definition 1.2.6. A linear operator A on a Banach space X is dissipative if for every

x ∈ D(A) there is an x∗ ∈ F (x) such that

Re〈Ax, x∗〉 ≤ 0.

A useful characterization of dissipative operators is given next.

Theorem 1.2.3. A linear operator A is dissipative if and only if

‖(λI −A)x‖ ≥ λ‖x‖, ∀x ∈ D(A), λ > 0.

Corollary 1.2.2. Let X be a Hilbert space. Then a linear operator A is dissipative if and

only if

Re〈Ax, x〉 ≤ 0, ∀x ∈ D(A).

Theorem 1.2.4. (Lumer-Phillips Theorem) Let A be a linear operator with dense

domain D(A) in a Banach space X.

(i) If A is dissipative and there is a λ0 > 0 such that the range, R(λ0I−A) = X, then

A is the infinitesimal generator of a C0-semigroup of contractions on X.

(ii) If A is the infinitesimal generator of a C0-semigroup of contractions on X, then

R(λI −A) = X for all λ > 0 and A is dissipative. Moreover,

Re〈Ax, x∗〉 ≤ 0, ∀x ∈ D(A), x∗ ∈ F (x).

Corollary 1.2.3. Let A be a closed and densely defined linear operator on a Banach

space X. If both A and A∗ are dissipative, then A is the infinitesimal generator of a

C0-semigroup of contractions on X.
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We define the exponential stability for a linear infinite-dimensional system (see [21,

76]).

Definition 1.2.7. Suppose that the infinitesimal generator A of system (1.2.1) generates

a strongly continuous semigroup of linear operators T (t) on Hilbert space H. T (t) is said

to be exponentially stable if there are constants α > 0 and M > 0 such that

‖T (t)‖ ≤ Me−αt, for t > 0.

The minimal such of α is called the decay rate for the semigroup T (t).

In systems theory, the exponential stability is the most desirable type of stability

because if a semigroup associated with an infinite-dimensional system is exponentially

stable, then the system is automatically input-output stable and robustly stable. The

following necessary and sufficient condition for the exponential stability of a C0-semigroup

is due to Huang (see [58]):

Theorem 1.2.5. Let T (t) be a C0-semigroup on a Hilbert space H and A be its infinites-

imal generator. Then T (t) is exponentially stable if and only if

sup {Reλ : λ ∈ σ(A)} < 0

and

sup
Reλ≥0

‖(λI −A)−1‖ < ∞

hold.

From Definition 1.2.5, we have another sufficient condition for the exponential stabil-

ity: Assume the semigroup generalized by the system satisfies the spectrum determined

growth condition and s(A) < 0, then the semigroup is exponentially stable. However, the

verification of spectrum determined growth condition represents a challenge problem in

infinite-dimensional system theory.

1.2.2 Riesz basis

We give the definition of Riesz basis first, which can be found in [21].

Definition 1.2.8. A sequence {Φn : n ≥ 1} in a Hilbert space H is said to be a Riesz

basis for H if the following two conditions hold:

1.

spann≥1{Φn} = H;
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2. There exist positive constants C1 and C2 such that for arbitrary N ∈ N and arbitrary

scalars αn, n = 1, 2, · · · , N , we have

C1

N∑

n=1

|αn|2 ≤
∥∥∥∥∥

N∑

n=1

αnΦn

∥∥∥∥∥

2

≤ C2

N∑

n=1

|αn|2.

Riesz basis is equivalent to an orthonormal basis (see [99]).

Proposition 1.2.2. A sequence {Φn : n ≥ 1} in a Hilbert space H is a Riesz basis if and

only if there is a linear bounded and boundedly invertible operator T on H such that

T Φn = en, n ≥ 1,

where {en}∞n=1 is an orthonormal basis of H.

The following proposition reveals the importance of Riesz basis property in infinite-

dimensional systems (see [21, 87]).

Proposition 1.2.3. Let A be a densely defined closed linear operator in Hilbert space H
and let {λn}∞n=1 be its eigenvalues with finite multiplicities and let {Φn,j |a ≤ j ≤ mλn,a}
be a family of generalized eigenvectors of A corresponding to the eigenvalue λn, that form

a basis for the finite-dimensional space Nλn(A). Suppose that λn is separated and simple

for sufficient large n, i.e.,

|λ1| ≤ |λ2| ≤ · · · ≤ |λn| ≤ |λn+1| ≤ · · · , λj 6= λk, if j 6= k,

and for large enough N ∈ N,

mλn,a = 1, for n ≥ N.

Suppose

{Φn,j |1 ≤ j ≤ mλn,a}N−1
n=1 ∪ {Φn}∞n=N

forms a Riesz basis in H.

1. If {Ψn,j |1 ≤ j ≤ mλn,a} is the set of generalized eigenvectors of A∗ corresponding to

the eigenvalue λn, that forms a basis for the finite-dimensional space Nλn
(A∗), then we can

normalize {Ψn,j |1 ≤ j ≤ mλn,a} so that {Φn,j |1 ≤ j ≤ mλn,a} and {Ψn,j |1 ≤ j ≤ mλn,a}
are biorthogonal. In general, the generalized eigenvectors {Φn,j |1 ≤ j ≤ mλn,a} and

{Ψn,j |1 ≤ j ≤ mλn,a} can be constructed from the following procedures:

AΦn,j = λnΦn,j + Φn,j+1, j = 1, 2, · · · ,mλn,a − 1,



1.2 Preliminaries 9

AΦn,mλn,a
= λnΦn,mλn,a

,

A∗Ψn,j = λnΨn,j + Ψn,j−1, j = 2, · · · ,mλn,a,

A∗Ψn,1 = λnΨn,1,

and obtain

〈Φn,s,Ψn,k〉 = δsk =





1, if s = k,

0, if s 6= k.

2. Every x ∈ H can be represented uniquely by

x =
N−1∑

n=1

mλn ,a∑

j=1

〈x,Ψn,j〉Φn,j +
∞∑

n=N

〈x,Ψn〉Φn

and there exist positive constants C1 and C2 such that

C1

(
N−1∑
n=1

mλn ,a∑
j=1

|〈x,Ψn,j〉|2 +
∞∑

n=N

|〈x,Ψn〉|2
)
≤ ||x||2

≤ C2

(
N−1∑
n=1

mλn ,a∑
j=1

|〈x,Ψn,j〉|2 +
∞∑

n=N

|〈x,Ψn〉|2
)

.

3. Under {Φn,j} and {Ψn,j}, the operator A has the form

Ax =
N−1∑
n=1

(
λn〈x,Ψn,mλn,a

〉Φn,mλn,a
+

mλn,a−1∑
j=1

〈x,Ψn,j〉(λnΦn,j + Φn,j+1)

)

+
∞∑

n=N

λn〈x,Ψn〉Φn

for every x ∈ D(A), and

D(A) =

{
x ∈ H

∣∣∣
∞∑

n=N

|λn|2|〈x,Ψn〉|2 < ∞
}

.

4. Operator A is the infinitesimal generator of a strongly continuous semigroup T (t)

in H if and only if

sup
n≥1

Reλn < ∞.

In that case, the semigroup T (t) is given by

T (t) =
N−1∑

n=1

eλnt

mλn,a∑

j=1

〈·,Ψn,j〉
j∑

s=1

tj−s

(j − s)!
Φn,s +

∞∑

n=N

eλnt〈·,Ψn〉Φn.

5. If sup
n≥1

Reλn < ∞, then the spectrum determined growth condition holds: ω(A) =

s(A).
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In infinite-dimensional control theory, Riesz basis property is one of the most wanted

properties, particular for elastic vibrating systems for which the Riesz basis property is

significant both theoretically and practically. Usually, the Riesz basis property will lead to

the establishment such as the spectrum determined growth condition, and the exponential

stability of the system. However, verification of the Riesz basis is extremely difficult since

the associated system operator is non-self-adjoint. Here are some useful methods on the

verification of the Riesz basis property:

(i) Let A be a closed linear operator in a Hilbert space H. If A is a self-adjoint and

resolvent compact operator, then its eigenvectors form an orthonormal basis for H and

hence a Riesz basis.

(ii) The Riesz basis can be established via some classical perturbation results for dis-

crete operators as illustrated in [24] and [67].

(iii) For a system that has its generalized eigenvectors asymptotically close to the

set of linear combinations of non-harmonic exponentials, the property can be established

through the method of non-harmonic exponentials (see [3] and [99]).

(iv) Classical Bari’s Theorem (see, for example, [9, 19, 20, 35, 36, 39, 49, 83, 95]): if

{Φn}∞n=1 is a Riesz basis for a Hilbert space H, and {Ψn}∞n=1, an ω-linearly independent

sequence in H, is quadratically close to {Φn}∞n=1 in the sense that

∞∑

n=1

‖Φn −Ψn‖2 < ∞,

then {Ψn}∞n=1 is also a Riesz basis itself for H.

The following Lemma (see [80]) will be used later.

Lemma 1.2.1. Let {φn}∞1 be a Riesz basis for a Hilbert space H. Suppose there are

N0 ≥ 1 and an ω-linearly independent sequence {ψn}∞N0
such that

∞∑

n=N0

‖ψn − φn‖2 < ∞.

Then {ψn}∞N0
forms a Riesz basis for the subspace spanned by itself.

1.3 Organization of the thesis

This thesis consists of three parts.
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Chapter 2 is devoted to the spectral analysis of a one-dimensional wave equation with

clamped boundary conditions and internal Kelvin-Voigt damping. The spectrum of the

system operator is discussed. The asymptotic expression for eigenvalues is presented.

In Chapter 3, we examine an Euler-Bernoulli beam equation with Kelvin-Voigt damp-

ing, which was initiated in [98]. The spectral property of the equation is considered. The

asymptotic behavior of eigenvalues is also presented.

In Chapter 4, we study the one-dimensional wave equation with Boltzmann damping.

Two different Boltzmann integrals that represent the memory of materials are considered.

The spectral properties for both cases are thoroughly analyzed. Riesz basis property for

the equation with memory counted from the vibrating starting moment is described.



Chapter 2

Spectral Analysis of a

One-Dimensional Wave Equation

with Internal Kelvin-Voigt

Damping

2.1 Introduction

In this chapter, we shall consider a one-dimensional wave equation with clamped boundary

conditions and internal Kelvin-Voigt damping. It is shown that the spectrum of the system

operator is composed of two parts: point spectrum and continuous spectrum. The point

spectrum consists of isolated eigenvalues of finite algebraic multiplicity, and the continuous

spectrum that is identical to the essential spectrum is an interval on the left real axis. The

asymptotic behavior of eigenvalues is presented.

We shall give an outline of the Chapter: In next section, Section 2.2, we formulate

the problem into an abstract evolution equation in the state space. Section 2.3 is devoted

to the analysis of essential spectrum and continuous spectrum of the system operator,

see Theorem 2.3.2 and 2.3.3. The asymptotic expression for eigenvalues is presented in

Section 2.4, see Theorem 2.4.1.
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2.2 System operator setup

The system that we are concerned with is the following wave equation with Kelvin-Voigt

damping and clamped boundary conditions:




ρ(x)ytt(x, t)− (a(x)yx(x, t) + b(x)yxt(x, t))′ = 0, 0 < x < 1, t > 0,

y(0, t) = y(1, t) = 0,

y(x, 0) = y0(x), yt(x, 0) = y1(x),

(2.2.1)

where the continuous function b(·) ≥ 0 is the damping function, and the continuous

functions ρ(·), a(·) > 0 are system parameter functions in spacial variable. In this thesis,

we use prime “′” to represent the derivative with respect to x. The system energy is

E(t) =
1
2

∫ 1

0

[
a(x)|yx(x, t)|2 + ρ(x)|yt(x, t)|2] dx. (2.2.2)

For any positive continuous function ρ, set L2
ρ = L2(0, 1) with norm

‖f‖2
L2

ρ
=

∫ 1

0
ρ(x)|f(x)|2dx

and V = H1
0 (0, 1), the first order Sobolev space with zero boundary values. We consider

the system (2.2.1) in the energy state Hilbert space H = V × L2
ρ with the inner product:

〈(f1, g1), (f2, g2)〉 =
∫ 1

0
[a(x)f ′1(x)f ′2(x) + ρ(x)g1(x)g2(x)]dx,

∀ (fi, gi) ∈ H, i = 1, 2.

(2.2.3)

Define the system operator A : D(A)(⊂ H) → H as




A(f, g) =
(

g,
1
ρ
(af ′ + bg′)′

)
,

D(A) =
{
(f, g) ∈ H1

0 (0, 1)×H1
0 (0, 1)| af ′ + bg′ ∈ H1(0, 1)

}
.

(2.2.4)

Then (2.2.1) can be formulated into an abstract evolution equation in H:




d
dt

Y (t) = AY (t),

Y (0) = Y0,

(2.2.5)

where Y (t) = (y(·, t), yt(·, t)) is the state variable and Y0 = (y0(·), y1(·)) is the initial value.

The following Lemma 2.2.1 is straightforward.

Lemma 2.2.1. Let A be defined by (2.2.4). Then its adjoint A∗ has the following form:




A∗(f, g) =
(
−g, −1

ρ
(af ′ − bg′)′

)
,

D(A∗) =
{
(f, g) ∈ V × V | af ′ − bg′ ∈ H1(0, 1)

}
.

(2.2.6)
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Proposition 2.2.1. Let A and A∗ be given by (2.2.4) and (2.2.6) respectively. Then A
and A∗ are dissipative, and hence A generates a C0-semigroup of contractions on H.

Proof. For any (f, g) ∈ D(A), we have

〈A(f, g), (f, g)〉 =
〈

(g,
1
ρ
(af ′ + bg′)′), (f, g)

〉

=
∫ 1

0

[
a(x)g′(x)f ′(x) + (a(x)f ′(x) + b(x)g′(x))′g(x)

]
dx

=
∫ 1

0

[
a(x)g′(x)f ′(x)− a(x)f ′(x)g′(x)

]
dx−

∫ 1

0
b(x)|g′(x)|2dx,

and hence

Re〈A(f, g), (f, g)〉 = −
∫ 1

0
b(x)|g′(x)|2dx ≤ 0.

Similarly for any (u, v) ∈ D(A∗),

〈A∗(u, v), (u, v)〉 =
〈

(−v,−1
ρ
(au′ − bv′)′), (u, v)

〉

=
∫ 1

0

[
−a(x)v′(x)u′(x)− (a(x)u′(x)− b(x)v′(x))′v(x)

]
dx

=
∫ 1

0

[
−a(x)v′(x)u′(x) + a(x)u′(x)v′(x)

]
dx−

∫ 1

0
b(x)|v′(x)|2dx,

and hence

Re〈A∗(u, v), (u, v)〉 = −
∫ 1

0
b(x)|v′(x)|2dx ≤ 0.

Therefore, both A and A∗ are dissipative. By the Lumer-Phillips Theorem, A generates

a C0-semigroup of contractions on H. ¥

2.3 Essential and continuous spectrum

In this section, we consider the spectrum of A. First, let us formulate the eigenvalue

problem. Suppose A(f, g) = λ(f, g) with (f, g) ∈ D(A) and (f, g) 6= 0. Then g = λf and

f ∈ H1
0 (0, 1) satisfies





((a(x) + λb(x))f ′(x))′ = λ2ρ(x)f(x),

f(0) = f(1) = 0.

(2.3.1)

The Theorem 2.3.1 following shows that the set σr(A) is empty.

Theorem 2.3.1. σr(A) = ∅.
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Proof. Since λ ∈ σr(A) if and only if λ ∈ σp(A∗), it suffices to show that

σp(A) = σp(A∗).

Suppose A∗(f, g) = λ(f, g) for some (f, g) ∈ D(A∗) and (f, g) 6= 0. Then g = −λf and f

satisfies 



(a(x)f ′(x) + λb(x)f ′(x))′ = λ2ρ(x)f(x),

f(0) = f(1) = 0.

(2.3.2)

It is seen that (2.3.2) is the same with (2.3.1). Hence, λ ∈ σp(A∗) if and only if λ ∈ σp(A).

Since the eigenvalues of A∗ are symmetric with real axis, we have σr(A) = ∅. ¥

Proposition 2.3.1. Let A be defined by (2.2.4). Then 0 ∈ ρ(A) and A−1 is given by

A−1




f

g


 (x)

=




g1(x)−
∫ x

0

b(τ)
a(τ)

f ′(τ)dτ +
a1(x)
a1(1)

[∫ 1

0

b(τ)
a(τ)

f ′(τ)dτ − g1(1)
]

f(x)


 ,

(2.3.3)

where 



g1(x) =
∫ x

0

1
a(τ)

[∫ τ

0
ρ(s)g(s)ds

]
dτ,

a1(x) =
∫ x

0

1
a(τ)

dτ.

(2.3.4)

Proof. Let (f, g) ∈ H. By A(φ, ψ) = (f, g), we have




ψ(x) = f(x),
1

ρ(x)
(a(x)φ′(x) + b(x)ψ′(x))′ = g(x).

(2.3.5)

These together with the boundary conditions show that




(a(x)φ′(x) + b(x)f ′(x))′ = ρ(x)g(x),

φ(0) = φ(1) = 0.

A direct computation gives

φ(x) = g1(x)−
∫ x

0

b(τ)
a(τ)

f ′(τ)dτ + C1a1(x),

where g1(x), a1(x) are given by (2.3.4). Using the boundary condition φ(1) = 0, it gives

C1 =
1

a1(1)

[∫ 1

0

b(τ)
a(τ)

f ′(τ)dτ − g1(1)
]

.
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Therefore

φ(x) = g1(x)−
∫ x

0

b(τ)
a(τ)

f ′(τ)dτ +
a1(x)
a1(1)

[∫ 1

0

b(τ)
a(τ)

f ′(τ)dτ − g1(1)
]

.

This together with (2.3.5) gives (2.3.3). The proof is complete. ¥

Next, we consider the essential spectrum of A. Define a bounded linear operator

D : V → L2
a by

(Df)(x) = f ′(x), ∀ f ∈ V = H1
0 (0, 1). (2.3.6)

The following Lemma 2.3.1 is straightforward.

Lemma 2.3.1. Let D be defined by (2.3.6). Then the following assertions hold:

(i) For any φ ∈ V , ‖Dφ‖L2
a

= ‖φ‖V .

(ii) The range of D,

R(D) =

{
f ∈ L2

a

∣∣∣
〈

f(·), 1
a(·)

〉

L2
a

= 0

}
(2.3.7)

is a closed subspace of L2
a.

(iii) D−1 is a bounded linear operator from R(D) onto V given by

D−1f(x) =
∫ x

0
f(τ)dτ, ∀ f ∈ R(D). (2.3.8)

Let H1 = R(D)×L2
ρ with the same inner product defined by (2.2.3). Define the linear

operator T : H → H1 by

T (φ, ψ) = (Dφ, ψ) = (φ′, ψ), ∀ (φ, ψ) ∈ H. (2.3.9)

Then, it is easy to see that

T −1(f, g) = (D−1f, g), ∀ (f, g) ∈ H1

and

‖T (φ, ψ)‖2
H1

=
∫ 1

0

[
a(x)|φ′(x)|2 + ρ(x)|ψ(x)|2] dx = ‖(φ, ψ)‖2

H, ∀ (φ, ψ) ∈ H.

Define a linear operator Ã : D(Ã)(⊂ H1) → H1 by

Ã = T AT −1. (2.3.10)

Then Ã is explicitly given by




Ã(φ, ψ) =
(

ψ′,
1
ρ
(aφ + bψ′)′

)
,

D(Ã) =
{
(φ, ψ) ∈ R(D)×H1

0 (0, 1)| aφ + bψ′ ∈ H1(0, 1)
}

.

(2.3.11)

By (2.3.10), we have Lemma 2.3.2 below.
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Lemma 2.3.2. σ(A) = σ(Ã).

Proposition 2.3.2. Let Ã be defined by (2.3.11). Then Ã−1 exists and has the following

expression:

Ã−1




f

g


 = P




f

g


 +Q




f

g


 , ∀ (f, g) ∈ H1, (2.3.12)

where P and Q are bounded operators on H1 and have the following expressions respec-

tively: for each (f, g) ∈ H1,

P




f

g


 (x) =




1
a(x)

∫ x

0
ρ(s)g(s)ds− g1(1)

a1(1)
1

a(x)∫ x

0
f(τ)dτ


 (2.3.13)

and

Q




f

g


 (x) =



− b(x)

a(x)
f(x) +

1
a1(1)

1
a(x)

∫ 1

0

b(τ)
a(τ)

f(τ)dτ

0


 . (2.3.14)

Moreover,

(i) P is compact and skew-adjoint on H1;

(ii) Q is self-adjoint on H1, and its essential spectrum is given by

σess(Q) = {0} ∪ {λ ∈ C | λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1]}. (2.3.15)

Proof. Since Ã = T AT −1, Ã−1 exists and Ã−1 = T A−1T −1. For any (f, g) ∈ H1,

Ã−1




f

g


 (x) = T A−1T −1




f

g


 (x) = T A−1




∫ x

0
f(τ)dτ

g(x)




= T




g1(x)−
∫ x

0

b(τ)
a(τ)

f(τ)dτ +
a1(x)
a1(1)

[∫ 1

0

b(τ)
a(τ)

f(τ)dτ − g1(1)
]

∫ x

0
f(τ)dτ




=




1
a(x)

∫ x

0
ρ(s)g(s)ds− b(x)

a(x)
f(x) +

1
a1(1)

1
a(x)

[∫ 1

0

b(τ)
a(τ)

f(τ)dτ − g1(1)
]

∫ x

0
f(τ)dτ




= P




f

g


 (x) +Q




f

g


 (x),

where P and Q are defined by (2.3.13) and (2.3.14) respectively.
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Notice that when b(·) ≡ 0, A is skew-adjoint and is of compact resolvent. So is for Ã
when b(·) ≡ 0 and in this case, Ã−1 = P. Hence, P is compact and skew-adjoint on H1.

(i) is thus proved.

Next we prove (ii). We proveQ is self-adjoint first. Actually, for any (f, g), (u, v) ∈ H1,

by (2.3.7), f, u ∈ R(D), ∫ 1

0
f(x)dx =

∫ 1

0
u(x)dx = 0,

and hence

〈Q(f, g), (u, v)〉H1 =
∫ 1

0
a(x)

[
− b(x)

a(x)
f(x) +

1
a1(1)

1
a(x)

∫ 1

0

b(τ)
a(τ)

f(τ)dτ

]
u(x)dx

= −
∫ 1

0
b(x)f(x)u(x)dx

= 〈(f, g),Q(u, v)〉H1 ,

which shows that Q is self-adjoint on H1.

Now we show

σ(Q) = {0} ∪ {λ ∈ C | λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1]}. (2.3.16)

Let λ ∈ C. For any (u, v) ∈ H1, consider the equation

(λI −Q)(f, g) = (u, v),

which is equivalent to

λg(x) = v(x)

and f satisfies

λf(x) +
b(x)
a(x)

f(x)− 1
a1(1)

1
a(x)

∫ 1

0

b(τ)
a(τ)

f(τ)dτ = u(x). (2.3.17)

Since 〈u(·), 1
a(·)〉L2

a
= 0, if (2.3.17) admits a solution, integrating both sides of (2.3.17)

over [0, 1] shows that it must have

〈λf(·), 1
a(·)〉L2

a
= 0.

When λ 6= 0 and λ +
b(x)
a(x)

6= 0 for any x ∈ [0, 1],

g(x) = λ−1v(x)

and it follows from (2.3.17) that

f(x) =
a(x)

λa(x) + b(x)

[
u(x) +

1
a1(1)

1
a(x)

∫ 1

0

b(τ)
a(τ)

f(τ)dτ

]
. (2.3.18)
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A direct computation gives

∫ 1

0

b(τ)
a(τ)

f(τ)dτ =
1
λ

a1(1)
(∫ 1

0

1
λa(τ) + b(τ)

dτ

)−1 ∫ 1

0

b(τ)u(τ)
λa(τ) + b(τ)

dτ.

Hence,

f(x) =
1

λa(x) + b(x)

[
a(x)u(x)

+
1
λ

∫ 1

0

b(τ)u(τ)
λa(τ) + b(τ)

dτ

(∫ 1

0

1
λa(τ) + b(τ)

dτ

)−1
]

.

(2.3.19)

So

(f, g) ∈ H1.

Therefore λ ∈ ρ(Q), which implies that

σ(Q) = C\ρ(Q) ⊆ {0} ∪ {λ ∈ C | λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1]}. (2.3.20)

Moreover, when λ = 0, since for each (f, g) ∈ H1,

(λI −Q)




f

g





 (x)

=




λa(x) + b(x)
a(x)

f(x)− 1
a1(1)

1
a(x)

∫ 1

0

b(τ)
a(τ)

f(τ)dτ

λg(x)


 ,

(2.3.21)

it has {0} × L2
ρ ⊂ N (Q). Hence dimN (Q) = ∞ and by Definition 1.2.1,

0 ∈ σess(Q). (2.3.22)

If λ 6= 0 and λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1], we claim that

R(λI −Q) 6= H1.

In fact, define

Eλ = {x ∈ [0, 1]|λa(x) + b(x) = 0}.

If the measure of Eλ is nonzero and (2.3.17) admits a solution, it must have

u(x) = C/a(x) in Eλ for some constant C.

Obviously, such a function cannot represent all functions of R(D) on Eλ, that is

R(λI −Q) 6= H1.
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Now suppose that the measure of Eλ is zero and (2.3.17) has solution f ∈ R(D) for any

u ∈ R(D). Then f must be of the form (2.3.18). Take special u ∈ R(D) in (2.3.18) as

following

u(x) =





1
3
√

x− ξ
, x ∈ E1,

−1
1−mes(E1)

∫

E1

1
3
√

x− ξ
dx, x ∈ [0, 1]\E1,

where E1 ⊂ [0, 1] is a given small closed interval containing ξ, and mes(E1) is the measure

of E1, 0 < mes(E1) < 1. Obviously, for this special u, there exists a closed interval

E2 ⊂ E1, ξ ∈ E2, such that the corresponding solution f satisfies
∣∣∣∣a(x)u(x) +

1
a1(1)

∫ 1

0

b(τ)
a(τ)

f(τ)dτ

∣∣∣∣ > 1, x ∈ E2,

and hence by (2.3.18), ∥∥∥∥
1

λa + b

∥∥∥∥
L2(E2)

≤ ‖f‖L2(E2) < ∞,

which means that
1

λa + b
∈ L2(E2).

This fact together with (2.3.18) shows that

aũ

λa + b
∈ L2(E2), ∀ ũ ∈ L2(E2).

Define the multiplication operator F : L2(E2) → L2(E2) by

(F ũ)(x) =
a(x)

λa(x) + b(x)
ũ(x), ∀ ũ ∈ L2(E2). (2.3.23)

Then F is a closed operator on L2(E2). In fact, for any sequence {ũn} ⊂ L2(E2), if

‖ũn − ũ‖L2(E2) → 0, ‖F ũn − û‖L2(E2) → 0,

for some ũ, û ∈ L2(E2), then there exist subsequences {ũnk
} and {F ũnk

} converge to ũ

and û almost everywhere for x ∈ E2, respectively. Therefore, by definition (2.3.23), we

have

(F ũ)(x) =
a(x)

λa(x) + b(x)
ũ(x) = û(x), x ∈ E2 a.e..

Hence F is closed on L2(E2). By the Closed Graph Theorem, F is bounded on L2(E2),

which implies that
a

λa + b
∈ L∞(E2).

This contradicts to λa(ξ) + b(ξ) = 0 and continuity of a, b. Hence

R(λI −Q) 6= H1.
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Therefore

{λ ∈ C | λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1]} ⊆ σ(Q). (2.3.24)

Combining (2.3.20), (2.3.22) and (2.3.24) gives (2.3.16).

Finally, we show (2.3.15). Since σess(Q) ⊆ σ(Q), we only need to show that

σ(Q) ⊆ σess(Q).

Let 



m = min
0≤x≤1

{λ| λa(x) + b(x) = 0} ,

M = max
0≤x≤1

{λ| λa(x) + b(x) = 0}.

By (2.3.16) and (2.3.22), it suffices to show that

[m,M ] ⊂ σess(Q).

There are two cases:

Case I: m = M . In this case, b(x)/a(x) = −m is a constant. It follows from (2.3.21) that

(mI −Q)(f, g) = (0,mg).

Hence,

R(D)× {0} ⊂ N (mI −Q),

which means by Definition 1.2.1 that

λ = m ∈ σess(Q).

Case II: m < M . In this case, λ can be taken as any point of interval [m,M ] by the

continuity of b(x)/a(x). So by (2.3.16),

[m,M ] ⊆ σ(Q).

Since Q is self-adjoint, [m,M ] ⊆ σess(Q) follows from Theorem 5 of [23, p.1395] which

says that for a self-adjoint operator, all non-isolated spectrum must be essential spectrum

(note that in [23], the essential spectrum of a closed operator is defined as only those that

(i) of our Definition 1.2.1 is satisfied). ¥

With these preparations, we could summarize the properties of σess(A) as Theorem

2.3.2 following.



2.3 Essential and continuous spectrum 22

Theorem 2.3.2. Let A be defined by (2.2.4). Then the following assertions hold.

(i) The essential spectrum of operator A is given by

σess(A) = {λ ∈ C | a(ξ) + λb(ξ) = 0 for some ξ ∈ [0, 1]}. (2.3.25)

(ii) σ(A)\σess(A) consists of at most countable isolated eigenvalues of finite algebraic

multiplicity.

Proof. Suppose (i) is valid. Then σ(A)\σess(A) is an open connected subset of C\σess(A),

(ii) is then a direct consequence of Theorem 2.1 of [31, p.373]. So only proof of (i) is needed.

Since Ã−1 = P +Q and P is compact, it follows that

σess(Ã−1) = σess(Q) = {0} ∪ {λ ∈ C | λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1]}.

Since λ ∈ σess(Ã−1) if and only if λ−1 ∈ σess(Ã), we have

σess(Ã) = {λ ∈ C | a(ξ) + λb(ξ) = 0 for some ξ ∈ [0, 1]}.

The desired result then follows directly through the relation (2.3.10). ¥

Next, we consider the continuous spectrum for the system (2.2.1).

Lemma 2.3.3. Let A be defined by (2.2.4) and the following conditions are satisfied:




a(x), b(x) and ρ(x) are analytic in [0, 1];

∀ λ ∈ R,
(x− ξ)2

a(x) + λb(x)
is analytic in a neighboorhood of any ξ ∈ [0, 1].

(2.3.26)

Then the set of the continuous spectrum of A satisfies

σc(A) = σess(A) = {λ ∈ C| a(ξ) + λb(ξ) = 0 for some ξ ∈ [0, 1]}.

Proof. Suppose that a(ξ) + λb(ξ) = 0 for some ξ ∈ [0, 1], λ ∈ R. If λ ∈ σp(A), then there

exists a nonzero f ∈ H1
0 (0, 1) satisfying the characteristic equation (2.3.1). The proof will

be accomplished if we can show that f ≡ 0 because σr(A) = ∅ claimed by Theorem 2.3.1.

This will be divided into three steps:

Step 1: We claim that in a neighborhood of ξ,

f(x) = Cξ

(
1 +

∞∑

n=1

an(x− ξ)n

)
(2.3.27)

or there exists a r1 > 0 such that

f(x) = Dξ(x− ξ)r1

[
1 +

∞∑

n=1

bn(x− ξ)n

]
, (2.3.28)
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where Cξ and Dξ are constants and each series in equation (2.3.27) and (2.3.28) converges

uniformly in a neighborhood of ξ and defines a function that is analytic at x = ξ.

It follows from (2.3.26) that ξ is the regular singular point of the first equation in

(2.3.1). Using Theorem 4.4 of [12, p.192], (2.3.1) must admit a Frobenius series solution

in a neighborhood of ξ. The procedure is as follows. By (2.3.26), assume that

a(x) + λb(x) = (x− ξ)kϕ(x),

where k = 1 or 2 and ϕ is analytic in [0, 1], ϕ(ξ) 6= 0. Thus,

(a(x) + λb(x))′

a(x) + λb(x)
=

k

x− ξ
+

ϕ′(x)
ϕ(x)

.

Let 



p0 = lim
x→ξ

(x− ξ)
(a(x) + λb(x))′

a(x) + λb(x)
,

q0 = lim
x→ξ

(x− ξ)2
−λ2ρ(x)

a(x) + λb(x)
.

The indicial equation of (2.3.1) is (see e.g., Theorem 4.4 of [12, p.192])

F (r) = r(r − 1) + p0r + q0 = 0.

A simple calculation shows that p0 = 1, q0 = 0 when ξ is the first order zero point of

a + λb, and p0 = 2, q0 6= 0 while ξ is the second order zero point of a + λb.

Since f is required to be continuous, when ξ is the first order zero point of a + λb,

F (r) = 0 has only zero solution and hence f is of the form (2.3.27). While ξ is the second

order zero point of a + λb, let r1, r2 be the roots of F (r) = 0:

r1,2 =
−1±√1− 4q0

2
.

If r1 is a nonreal number, then Re(r1) = −1
2 . In this case, f must be identical to zero in a

neighborhood of ξ and Dξ = 0 in (2.3.28). Otherwise, we may suppose r1 > 0 > r2. Since

f is continuous in [0, 1], it must be of the form (2.3.28).

Step 2: We claim that there is a sequence {γn}∞n=1 ⊂ [0, 1], γi 6= γj for any i 6=
j, i, j = 1, 2, · · · , such that

f(γn) = 0, n = 1, 2, · · ·

and

lim
n→∞ γn = ξ. (2.3.29)
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To do this, it suffices to show that for any [x1, x2] ⊂ [0, 1], if ξ ∈ [x1, x2] and f(x1) =

f(x2) = 0, then there exists a γ ∈ (x1, x2) such that f(γ) = 0. In fact, if there exists a

second order zero point γ of a + λb in (x1, x2), it follows from Step 1 that

f(γ) = 0.

If there exists no second order zero point of a + λb in (x1, x2), by Step 1, f must be

analytic in (x1, x2). By Rolle’s Theorem, it follows that there exists an η ∈ (x1, x2) such

that

f ′(η) = 0.

If ξ = η, then by (2.3.1) and (a + λb)(ξ) = 0, it has

f(η) = 0.

In this case, we take γ = η. If ξ 6= η, then we have

[(a + λb)f ′](ξ) = [(a + λb)f ′](η) = 0.

By using Rolle’s Theorem again, there exists a γ between ξ and η such that

[(a + λb)f ′]′(γ) = 0,

which yields f(γ) = 0 from (2.3.1).

Step 3: It follows from Step 1 and Step 2 that there is a neighborhood Oξ of ξ such

that

f ≡ 0 in Oξ.

Since f is identical to zero in a neighborhood of any regular singular point ξ, f must be

identical to zero everywhere by the uniqueness theorem of the regular ordinary differential

equations. The proof is complete. ¥

Theorem 2.3.3. Let A be defined by (2.2.4) and a(x), b(x), ρ(x) are analytic in [0, 1].

Then

σc(A) = σess(A) = {λ ∈ C| a(ξ) + λb(ξ) = 0 for some ξ ∈ [0, 1]}.

Proof. Suppose a(ξ) + λb(ξ) = 0 for some ξ ∈ [0, 1] and λ ∈ C. If a ≡ −λb, it is trivially

that the solution f of equation (2.3.1) must be identical to zero. By Lemma 2.3.3, we may

assume that

a(x) + λb(x) = (x− ξ)mϕ(x),
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where m > 2 is a positive integer and ϕ is analytic in [0, 1], ϕ(ξ) 6= 0. We show that

f ≡ 0.

This case corresponds the irregular singular point for equation (2.3.1). The proof will be

divided into three steps:

Step 1: We claim that

f(ξ) = 0.

In fact, we can rewrite (2.3.1) as

f ′′(x) +
1

x− ξ

[
m +

ϕ′(x)
ϕ(x)

(x− ξ)
]

f ′(x) +
1

(x− ξ)m

−λ2ρ(x)
ϕ(x)

f(x) = 0 (2.3.30)

with the boundary conditions:

f(0) = f(1) = 0.

By the analyticity of ϕ and ρ, we may assume that




c(x) =
1

x− ξ

[
m +

ϕ′(x)
ϕ(x)

(x− ξ)
]

=
1

x− ξ

[
m +

∞∑

i=1

hi(x− ξ)i

]
,

d(x) =
1

(x− ξ)m

−λ2ρ(x)
ϕ(x)

=
1

(x− ξ)m

[
l0 +

∞∑

i=1

li(x− ξ)i

]
,

where the two series on the right side above are the Taylor series and by assumption l0 6= 0.

We only need to discuss the case of x ≥ ξ since the case of x ≤ ξ can be treated similarly.

Let x− ξ = t2. Then (2.3.30) is equivalent to

y′′(t) + C(t)y′(t) + D(t)y(t) = 0, (2.3.31)

where

C(t) = 2tc(ξ + t2)− 1
t

=
2m− 1

t
+ 2[h1t + h2t

3 + · · ·+ hnt2n+1 + · · · ]

and

D(t) = 4t2d(ξ + t2) =
4

t2m−2
[l0 + l1t

2 + l2t
4 + · · ·+ lnt2n + · · · ].

Then f(ξ) = 0 is equivalent to

y(0) = 0.

We choose k = m− 2 and let

c0 = tk+1C(t) |t=0= 0
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and

d0 = t2k+2D(t) |t=0= 4l0.

Then the solutions of (2.3.31) are of the form (see, e.g., [17, p.224]).

y(t) = eF (t)Y (t), (2.3.32)

where

F (t) =
Ak

tk
+

Ak−1

tk−1
+ · · ·+ A1

t
(2.3.33)

and

Y (t) =
∞∑

n=0

antn+s, a0 6= 0 (2.3.34)

is a Frobenius series. Substitute (2.3.32) into (2.3.31) to obtain the differential equation

satisfied by Y :

Y ′′(t) + [C(t) + 2F ′(t)]Y ′(t) +
[
D(t) + C(t)F ′(t) + [F ′(t)]2 + F ′′(t)

]
Y (t) = 0. (2.3.35)

Choose the constants An, n = 1, 2, · · · , k to eliminate the most singular terms in the

coefficient of Y in (2.3.35) to get, after a calculation, that




Ak =
c0 ±

√
c2
0 − 4d0

2k
= ±2

k

√
−l0 6= 0,

Ak−1 = Ak−3 = · · · = 0.

There are two cases:

Case I: l0 > 0. In this case,

ReAk = 0.

By a simple calculation, we find that

ReAn = 0, n = 1, 2, · · · , k.

By equation (6.53) of [17, p.226],

Res = −−(2m− 1)kAk + k(k + 1)Ak

−2kAk
= −m

2
< 0.

Let 



F (t) = iτ(t),

Y (t) = ts[u(t) + iv(t)],

s = α + iβ,
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where α = −m

2
, β, τ(t), u(t), v(t) ∈ R and u, v are analytic at t = 0, u2(0) + v2(0) 6= 0.

Then
y(t) = [cos τ(t) + i sin τ(t)]tα[cos(β ln t) + i sin(β ln t)][u(t) + iv(t)]

= tα[cos(τ(t) + β ln t) + i sin(τ(t) + β ln t)][u(t) + iv(t)]

= tα[u(t) cos(τ(t) + β ln t)− v(t) sin(τ(t) + β ln t)]

+itα[v(t) cos(τ(t) + β ln t) + u(t) sin(τ(t) + β ln t)].

Let z(t) = τ(t) + β ln t. Since Ak 6= 0, limt→0+ z(t) = ∞, this together with the continu-

ity of z(t) enables us to easily show that [u(t) cos z(t) − v(t) sin z(t)] and [v(t) cos z(t) +

u(t) sin z(t)] are linearly independent. Therefore the general solution of (2.3.31) is of the

form

y(t) = tα {b1[u(t) cos z(t)− v(t) sin z(t)] + b2[v(t) cos z(t) + u(t) sin z(t)]} , (2.3.36)

where b1 and b2 are real constants. Since f(x) is continuous at x = ξ, so is for y(t) at

t = 0. Since α < 0, it must have

lim
t→0+

{b1[u(t) cos z(t)− v(t) sin z(t)] + b2[v(t) cos z(t) + u(t) sin z(t)]} = 0. (2.3.37)

Since limt→0+ z(t) = ∞, one can find two positive sequences {tn1} and {tn2} such that

lim
n1→∞

tn1 = 0, lim
n2→∞

tn2 = 0,

cos z(tn1) = 1, sin z(tn1) = 0,

cos z(tn2) = 0, sin z(tn2) = 1.

This together with (2.3.37) gives





b1u(0) + b2v(0) = lim
n1→∞

[b1u(tn1) + b2v(tn1)] = 0,

−b1v(0) + b2u(0) = lim
n2→∞

[−b1v(tn2) + b2u(tn2)] = 0.

Since u2(0) + v2(0) 6= 0, it has

b1 = b2 = 0.

By (2.3.36),

y(t) ≡ 0. (2.3.38)

Case II: l0 < 0. In this case,

Ak ∈ R.
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By the similar calculation as Case I, we have

An ∈ R, n = 1, 2, · · · , k

and the general solution of (2.3.31) is of the form

y(t) = c1e
F (t)Y1(t) + c2e

−F (t)Y2(t),

where c1 and c2 are constants, F (t) is of the form (2.3.33), and Yi(t), i = 1, 2 is of the

form (2.3.34). Now, we may assume without loss of generality that

Ak = −2
k

√
−l0 < 0.

Then by the continuity of y and limt→0+ e−F (t)Y2(t) = ∞, it must have

y(t) = c1e
F (t)Y1(t) (2.3.39)

and hence

y(0) = 0.

Step 2: We claim that there is a sequence {γn}∞n=1 ⊂ [0, 1], γi 6= γj for any i 6= j, i, j =

1, 2, · · · , such that f(γn) = 0 for n = 1, 2, · · · , and

lim
n→∞ γn = ξ. (2.3.40)

To do this, it suffices to show that for any [x1, x2] ⊂ [0, 1], if ξ ∈ [x1, x2] and f(x1) =

f(x2) = 0, then there exists a γ ∈ (x1, x2) such that f(γ) = 0. In fact, if there exists a

zero point γ of a + λb in (x1, x2) whose order is greater than one, it follows from Step 1

and the proof of Lemma 2.3.3 that

f(γ) = 0.

Otherwise, by the proof of Lemma 2.3.3, f is analytic at any first order zero of a + λb in

(x1, x2), and ξ = x1 or ξ = x2. But since the solution y of (2.3.31) is of (2.3.38) or (2.3.39),

it is differentiable in a neighborhood of t = 0 except t = 0. So the solution f of (2.3.1) is

differentiable in a neighborhood of x = ξ except x = ξ. In any case, f is differentiable in

(x1, x2). By Rolle’s Theorem, there exists an η ∈ (x1, x2) such that

f ′(η) = 0.

Clearly ξ 6= η. Since

[(a + λb)f ′](ξ) = [(a + λb)f ′](η) = 0,
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using Rolle’s Theorem again, there exists a γ between ξ and η such that

[(a + λb)f ′]′(γ) = 0,

which yields f(γ) = 0 from (2.3.1).

Step 3: By Step 2, the solution y of (2.3.31) has infinitely many zero points approach-

ing zero. Since y is of (2.3.38) or (2.3.39), y ≡ 0 in a neighborhood of t = 0. Equivalently,

there is a neighborhood Oξ of ξ such that

f ≡ 0 in Oξ.

Since there are at most finite number of singular points ξ, f must be identical to zero every-

where by the uniqueness of the solution for regular linear ordinary differential equations.

The proof is complete. ¥

If there is no analyticity, Theorem 2.3.3 is not true anymore. This is suggested by

many studies on Sturm-Liouville problem. The following is a counter-example.

Example 2.3.1. Let

−p(x) = a(x) + λb(x) = −x1/3.

Then

1/p ∈ L1(0, 1).

According to Theorem 0 of [27], there are countable number of positive µ such that the

Sturm-Liouville problem:



−(p(x)f ′(x))′ = µf(x), x ∈ (0, 1),

f(0) = f(1) = 0
(2.3.41)

admits nonzero absolutely continuous solutions f . Take specially µ > 0 for such a µ. Then

we may choose 



a(x) =
√

µ + 2x1/3,

b(x) = 1 +
3√
µ

x1/3,

λ = −√µ,

ρ(x) = 1.

equation (2.3.1) is now having a nonzero absolutely continuous solution f . Suppose

(pf ′)(0) = c. We show that f ∈ H1
0 (0, 1) or equivalently f ′ ∈ L2(0, 1), which hence
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serves as a counter-example. Indeed, set




α =
1
3
,

A(x) =




0 x−α

−µ 0


 ,

y(x) =




f(x)

p(x)f ′(x)


 ,

y0 = y(0) =




0

c


 .

Then (2.3.41) is rewritten as
dy

dx
= A(x)y(x).

According to Theorem 1 of [[78], Section 16], the above equation is equivalent to the

following integral equation

y(x) = y0 +
∫ x

0
A(ξ)y(ξ)dξ

for which the solution can be represented uniformly in [0, 1] as

y(x) = lim
n→∞ yn(x),

where

yn+1(x) =




fn+1(x)

hn+1(x)




= y0 +
∫ x

0
A(ξ)yn(ξ)dξ, n = 0, 1, 2, · · · .

A direct computation shows that




f2n+1(x) = f2n+2(x) =
c

1− α
x1−α +

n∑

k=1

akx
k+(k+1)(1−α),

h2n(x) = h2n+1(x) = xαf ′2n+1(x),

n = 1, 2, · · · ,

where

ak =
(−1)kcµk

(1− α)(2− α)(3− 2α)(4− 2α)(5− 3α) · · · (2k − kα)(2k + 1− (k + 1)α)
.

Therefore,

f(x) =
c

1− α
x1−α +

∞∑

k=1

akx
k+(k+1)(1−α).
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The above series is absolutely uniformly convergent since

|f(x)| ≤ |c|/(1− α) +
∞∑

k=1

|ak|

and

lim
k→∞

|ak|
|ak−1| = lim

k→∞
µ

(2k − kα)(2k + 1− (k + 1)α)
= 0.

Now,

f ′(x) = cx−α +
∞∑

k=1

ak[2k + 1− (k + 1)α]xk−1+(k+1)(1−α).

The above series is also absolutely uniformly convergent since
∣∣∣∣∣
∞∑

k=1

ak[2k + 1− (k + 1)α]xk−1+(k+1)(1−α)

∣∣∣∣∣ ≤
∞∑

k=1

|ak[2k + 1− (k + 1)α]|

and

lim
k→∞

|ak[2k + 1− (k + 1)α]|
|ak−1[2k − 1− kα]| = lim

k→∞
µ

(2k − kα)(2k − 1− kα)
= 0.

This shows that

f ′(x) = cx−α + g(x),

where g is a continuous function. Hence

f ′ ∈ L2(0, 1).

2.4 Asymptotic behavior of eigenvalues

In this section, we consider the asymptotic behavior of eigenvalues for the system (2.2.1).

To do this, we assume further that

a(x), b(x) ∈ C1[0, 1] and a(x), b(x) > 0 for all x ∈ [0, 1]. (2.4.1)

Suppose that λ is an eigenvalue with large modulus. Then

a(x) + λb(x) 6= 0 for any x ∈ [0, 1] (2.4.2)

and we rewrite the characteristic equation (2.3.1) as




[a(x) + λb(x)]f ′′(x) + [a′(x) + λb′(x)]f ′(x) = λ2ρ(x)f(x),

f(0) = f(1) = 0.

(2.4.3)

By (2.4.3), it is apparently seen that λ must be geometrically simple.

The following Lemma 2.4.1 is immediate.
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Lemma 2.4.1. Let λ ∈ C. Then as |λ| → ∞, it has

1
a(x) + λb(x)

=
1

λb(x)
· 1

1 + a(x)
λb(x)

=
1

λb(x)
− a(x)

λ2b2(x)
+

a2(x)
λ3b3(x)

+O(|λ|−4)

(2.4.4)

and

[a(x) + λb(x)]f ′′(x) + [a′(x) + λb′(x)]f ′(x) = λ2ρ(x)f(x) (2.4.5)

has the following asymptotic expression:

f ′′(x)

+
[

1
λb(x)

− a(x)
λ2b2(x)

+
a2(x)

λ3b3(x)
+O(|λ|−4)

]
[a′(x) + λb′(x)]f ′(x)

−λ

[
1− a(x)

λb(x)
+

a2(x)
λ2b2(x)

+O(|λ|−3)
]

ρ2
0(x)f(x) = 0.

(2.4.6)

where

ρ0(x) =

√
ρ(x)
b(x)

. (2.4.7)

In order to find the asymptotic fundamental solutions of (2.4.6), we introduce the

following space-scaling transformation:




φ(z) = f(x),

z =
1
h

∫ x

0
ρ0(τ)dτ,

h =
∫ 1

0
ρ0(τ)dτ.

(2.4.8)

Under this transformation, (2.4.6) becomes

φ′′(z) + h

{
1

ρ0(x)

[
1

λb(x)
− a(x)

λ2b2(x)
+

a2(x)
λ3b3(x)

+O(|λ|−4)
]

[a′(x) + λb′(x)]

+
ρ′0(x)
ρ2
0(x)

}
φ′(z)− λh2

[
1− a(x)

λb(x)
+

a2(x)
λ2b2(x)

+O(|λ|−3)
]

φ(z) = 0
(2.4.9)

with the boundary conditions:

φ(0) = φ(1) = 0. (2.4.10)

Proposition 2.4.1. The equation (2.4.6) with boundary condition (2.4.3) is equivalent

to (2.4.9) and (2.4.10). That is, (λ, f), f 6= 0, satisfies (2.4.6) and boundary conditions

(2.4.3) if and only if (λ, φ), φ 6= 0, satisfies (2.4.9) and (2.4.10).
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Now we consider (2.4.9) and (2.4.10). Since the eigenvalues are symmetric about the

real axis and Reλ ≤ 0 for any λ ∈ σ(A), we only consider those eigenvalues λ with

π

2
≤ argλ ≤ π.

Let λ = µ2. Then as
π

2
≤ argλ ≤ π, we consider µ locating on the following sector:

S =
{

µ ∈ C
∣∣ π

4
≤ argµ ≤ π

2

}
. (2.4.11)

Lemma 2.4.2. Suppose λ = µ2 6= 0. Then for z ∈ [0, 1] and µ ∈ S,

eµhz, e−µhz (2.4.12)

are linearly independent fundamental solutions of

φ′′(z)− µ2h2φ(z) = 0,

and for |µ| large enough, (2.4.9) has the following asymptotic fundamental solutions:




φ1(z) = eµhz
[
φ10(z) + φ11(z)µ−1 +O(µ−2)

]
,

φ2(z) = e−µhz
[
φ20(z) + φ21(z)µ−1 +O(µ−2)

]
,

(2.4.13)

where




φ10(z) = φ20(z) = exp

{
−1

2

∫ z

0
ρ1(x)ρ0(x)dx

}
,

φ11(z) = −1
2

∫ z

0
exp

{
−1

2

∫ z−ζ

0
ρ1(x)ρ0(x)dx

}
ρ2(ζ)dζ,

φ21(z) = −φ11(z) =
1
2

∫ z

0
exp

{
−1

2

∫ z−ζ

0
ρ1(x)ρ0(x)dx

}
ρ2(ζ)dζ

(2.4.14)

and 



ρ1(x) =
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

,

ρ2(z) =
1
h

φ′′10(z) +
(

ρ′0(x(z))
ρ2
0(x(z))

+
1

ρ0(x(z))
b′(x(z))
b(x(z))

)
φ′10(z)

+h
a(x(z))
b(x(z))

φ10(z).

(2.4.15)

Proof. The first claim is trivial. We only need to show that (2.4.13) are the asymptotic

fundamental solutions of (2.4.9). This can be done along the same way of [11] and [[78],

Section 4]. Here we present briefly a simple calculation to (2.4.13)-(2.4.15).

Let 



φ̃1(z, µ) = eµhz
[
φ10(z) + φ11(z)µ−1

]
,

φ̃2(z, µ) = e−µhz
[
φ20(z) + φ21(z)µ−1

]
,

(2.4.16)



2.4 Asymptotic behavior of eigenvalues 34

where φki(z), k = 1, 2, i = 0, 1 are some functions to be determined, and

D(φ)

= φ′′(z) + h

{
1

ρ0(x)

[
1

µ2b(x)
− a(x)

µ4b2(x)
+

a2(x)
µ6b3(x)

+O(|µ|−8)
]

[a′(x) + µ2b′(x)]

+
ρ′0(x)
ρ2
0(x)

}
φ′(z)− µ2h2

[
1− a(x)

µ2b(x)
+

a2(x)
µ4b2(x)

+O(|µ|−6)
]

φ(z).

Substitute φ̃1(z, µ) into D(φ) to yield

e−µhzD(φ̃1(z, µ))

= µ2h2
[
φ10(z) + φ11(z)µ−1

]
+ 2µh

[
φ′10(z) + φ′11(z)µ−1

]
+

[
φ′′10(z) + φ′′11(z)µ−1

]

−µ2h2

[
1− a(x)

µ2b(x)
+

a2(x)
µ4b2(x)

+O(|µ|−6)
] [

φ10(z) + φ11(z)µ−1
]

+h

{
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)

[
1

µ2b(x)
− a(x)

µ4b2(x)
+

a2(x)
µ6b3(x)

+O(|µ|−8)
]

[a′(x) + µ2b′(x)]
}

×
{

µh
[
φ10(z) + φ11(z)µ−1

]
+

[
φ′10(z) + φ′11(z)µ−1

] }

= µ

[
2hφ′10(z) + h2

(
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

)
φ10(z)

]

+
[
2hφ′11(z) + h2

(
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

)
φ11(z)

+φ′′10(z) + h2 a(x)
b(x)

φ10(z) + h

(
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

)
φ′10(z)

]
+O(µ−1).

Letting the coefficients of µ1 and µ0 be zero gives

2φ′10(z) + h

(
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

)
φ10(z) = 0

and

2hφ′11(z) +h2

(
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

)
φ11(z)

+φ′′10(z) + h2 a(x)
b(x)

φ10(z) + h

(
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

)
φ′10(z) = 0.

Use the conditions φ10(0) = 1 and φ11(0) = 0 to obtain

φ10(z) = exp

{
−1

2
h

∫ z

0
ρ1(x(τ))dτ

}

and

φ11(z) = −1
2

∫ z

0
exp

{
−1

2
h

∫ z−ζ

0
ρ1(x(τ))dτ

}
ρ2(ζ)dζ,

where ρ1(x) and ρ2(z) are given by (2.4.15). From (2.4.8), we have

dz

dx
=

1
h

ρ0(x),
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and so
dx

dz
=

h

ρ0(x)
.

Hence

φ10(z) = exp

{
−1

2

∫ z

0
ρ1(x(τ))ρ0(x(τ))

dx

dτ
dτ

}

= exp

{
−1

2

∫ z

0
ρ1(x)ρ0(x)dx

}

and

φ11(z) = −1
2

∫ z

0
exp

{
−1

2

∫ z−ζ

0
ρ1(x)ρ0(x)dx

}
ρ2(ζ)dζ.

Same arguments also give φ20(z) and φ21(z) as in (2.4.14) and (2.4.15). The proof is

complete. ¥

Let λ = µ2 with large modulus and µ ∈ S defined by (2.4.11). Let φ be a solution of

(2.4.9) and (2.4.10). There are constants c1 and c2 such that

φ(z) = c1φ1(z) + c2φ2(z), (2.4.17)

where φ1(z) and φ2(z) are fundamental solutions given by (2.4.13)-(2.4.15). By using the

boundary conditions of (2.4.10), we have

∆(µ)[c1, c2]> = 0, (2.4.18)

where

∆(µ) =




1 1

φ1(1) φ2(1)


 . (2.4.19)

Hence, φ(z) has a nontrivial solution if and only if

det(∆(µ)) = 0.

That is, µ ∈ S satisfies the characteristic equation:

det(∆(µ)) = φ2(1)− φ1(1)

= e−µh
[
φ20(1) + φ21(1)µ−1 +O(µ−2)

]

−eµh
[
φ10(1) + φ11(1)µ−1 +O(µ−2)

]

= φ10(1)
{

e−µh − eµh + k0µ
−1

[
e−µh + eµh

]}
+O(µ−2)

= 0,

(2.4.20)
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where k0 is a constant satisfying

k0 = −φ11(1)
φ10(1)

=
1
2

∫ 1

0
exp

{
−1

2

∫ 1−ζ

0
ρ1(x)ρ0(x)dx

}
ρ2(ζ)dζ

exp

{
−1

2

∫ 1

0
ρ1(x)ρ0(x)dx

} . (2.4.21)

Lemma 2.4.3. Let ∆(µ) be given by (2.4.19). Then the characteristic determinant

det(∆(µ)) has the following asymptotic expression:

1
φ10(1)

det(∆(µ)) = e−µh − eµh + k0µ
−1

[
e−µh + eµh

]
+O(µ−2), (2.4.22)

where k0 is given by (2.4.21).

Theorem 2.4.1. Let λ = µ2 with large modulus and µ ∈ S defined by (2.4.11). Then λ,

which must be geometrically simple as indicated in the beginning of the section, has the

following asymptotic form:

λn = −n2π2

h2
+ 2

k0

h
+O(n−1), n = N, N + 1, . . . , (2.4.23)

where k0 is given by (2.4.21) and h is given by (2.4.8).

Proof. Since in sector S, det(∆(µ)) has the asymptotic form given by (2.4.22), it follows

from det(∆(µ)) = 0 that

e−µh − eµh + k0µ
−1

[
e−µh + eµh

]
+O(µ−2) = 0, (2.4.24)

which can also be rewritten as

1− e−2µh +O(µ−1) = 0. (2.4.25)

Since in sector S, the solutions of 1− e−2µh = 0 are given by

µ̃n =
nπi

h
, n = 0, 1, 2, . . . ,

it follows from Rouché’s Theorem that the solutions of equation (2.4.25) have the form of

µn = µ̃n + αn =
nπi

h
+ αn, αn = O(n−1), n = N, N + 1, N + 2, . . . ,

where N is a sufficiently large positive integer. Substitute µn into (2.4.24) and use the

fact that e2µ̃nh = 1 to obtain

1− e2αnh + k0µ
−1
n

[
1 + e2αnh

]
+O(µ−2) = 0. (2.4.26)
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Expand the exponential function in (2.4.26) according to its Taylor series, to give

2αnh = 2k0µ̃
−1
n +O(µ−2

n ).

Hence we obtain that

αn =
k0

h
µ̃−1

n +O(n−2),

and

µn = µ̃n + αn =
nπi

h
+

k0

h
µ̃−1

n +O(n−2), n = N, N + 1, . . . .

Due to λn = µ2
n, we get eventually

λn =
(

nπi

h

)2

+ 2
k0

h
+O(n−1)

= −n2π2

h2
+ 2

k0

h
+O(n−1), n = N, N + 1, . . . .

The proof is complete. ¥

Theorem 2.4.1 gives the asymptotic expression of high eigenfrequencies. To end this

section, we indicate that the high eigenfrequencies are actually real, which is stronger than

that claimed by Theorem 1 of [81] under the assumption b > 0.

Proposition 2.4.2. Suppose b > 0. Let A be defined by (2.2.4) and

Λ0 = {λ ∈ σ(A)| Imλ 6= 0}. (2.4.27)

Then Λ0 is a bounded set of C. Moreover, there is no spectrum on the imaginary axis and

hence Reλ ≤ −α for some α > 0 for all λ ∈ σ(A).

Proof. By Theorems 2.3.1 and 2.3.2, Λ0 ⊂ σp(A). For any λ = τ + iω ∈ Λ0, we may take

(f, λf), f 6= 0 to be an eigenfunction corresponding to λ. Multiply the first equation of

(2.3.1) by fn and then integrate over [0, 1] with respect to x, to obtain, after separating

real part and imaginary part, that




(τ2 − ω2)
∫ 1

0
ρ(x)|f(x)|2dx +

∫ 1

0
[a(x) + τb(x)]|f ′(x)|2dx = 0,

2τω

∫ 1

0
ρ(x)|f(x)|2dx + ω

∫ 1

0
b(x)|f ′(x)|2dx = 0,

which is equivalent to




|λ|2
∫ 1

0
ρ(x)|f(x)|2dx =

∫ 1

0
a(x)|f ′(x)|2dx,

−2Reλ
∫ 1

0
ρ(x)|f(x)|2dx =

∫ 1

0
b(x)|f ′(x)|2dx.

(2.4.28)
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Thus Reλ 6= 0, and

|λ| ≤ |λ|2
|Reλ| = 2

∫ 1

0
a(x)|f ′(x)|2dx

∫ 1

0
b(x)|f ′(x)|2dx

≤ 2 max
0≤x≤1

a(x)
b(x)

. (2.4.29)

So Λ0 is a bounded set of C and there is no eigenvalue on the imaginary axis. These

together with (i) of Theorem 2.3.2 show that Reλ ≤ −α for some α > 0 for all λ ∈ σ(A).

The proof is complete. ¥

It is notice that we only get the asymptotic expression for larger eigenvalues. For

constant case that both a and b are constant, there is a sequence of finite eigenvalues that

approach to continuous spectrum. However, for variable a, b, it becomes complicated that

needs further investigations.



Chapter 3

On the Spectrum of an

Euler-Bernoulli Beam Equation

with Kelvin-Voigt Damping

3.1 Introduction

In this Chapter, we shall generalize the results of [43] to an Euler-Bernoulli beam equation

with clamped boundary conditions and internal Kelvin-Voigt damping, which was initiated

in [98]. The spectral property of the equation is considered. We show rigorously that the

essential spectrum of the system operator is identified to be an interval on the left real

axis. Moreover, under some assumptions on the coefficients, we show that the essential

spectrum also contains continuous spectrum only, and the point spectrum consists of

isolated eigenvalues of finite algebraic multiplicity. The asymptotic behavior of eigenvalues

is presented.

The chapter is organized as follows. Firstly, in next section, Section 3.2, we formulate

the problem into an abstract evolution equation in the state space. Secondly, in Section

3.3, we show that the system operator has no residual spectrum, see Theorem 3.3.1. The

continuous spectrum is discussed under the analyticity of coefficient functions, see Theorem

3.3.3. Finally, in Section 3.4, we develop the asymptotic property of the eigenvalues when

the damping is global, see Theorem 3.4.1.
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3.2 System operator setup

The system that we are concerned with is the following Euler-Bernoulli beam equation

clamped at two boundaries with internal Kelvin-Voigt damping:




ρ(x)ytt(x, t) + (a(x)yxx(x, t) + b(x)yxxt(x, t))xx = 0, 0 < x < 1, t > 0,

y(0, t) = yx(0, t) = y(1, t) = yx(1, t) = 0,

y(x, 0) = y0(x), yt(x, 0) = y1(x),

(3.2.1)

where the continuous function b(·) ≥ 0 is the damping function, and the continuous

functions ρ(·), a(·) > 0 are system parameter functions in spacial variable. The system

energy is given by

E(t) =
1
2

∫ 1

0

[
a(x)|yxx(x, t)|2 + ρ(x)|yt(x, t)|2] dx. (3.2.2)

Let H2
0 (0, 1) be the usual Sobolev space equipped with the inner product:

〈f, g〉 :=
∫ 1

0
a(x)f ′′(x)g′′(x)dx, ∀ f, g ∈ H2

0 (0, 1).

For any positive continuous function ρ, denote by L2
ρ(0, 1) = L2(0, 1) with norm

‖f‖2
L2

ρ(0,1) =
∫ 1

0
ρ(x)|f(x)|2dx.

We consider system (3.2.1) in the energy state Hilbert space

H = H2
0 (0, 1)× L2

ρ(0, 1)

with the inner product:

〈(f1, g1), (f2, g2)〉 =
∫ 1

0
[a(x)f ′′1 (x)f ′′2 (x) + ρ(x)g1(x)g2(x)]dx,

∀ (fi, gi) ∈ H, i = 1, 2.

(3.2.3)

Define the system operator A : D(A)(⊂ H) → H as follows:




A(f, g) =
(

g, −1
ρ
(af ′′ + bg′′)′′

)
,

D(A) =
{
(f, g) ∈ H2

0 (0, 1)×H2
0 (0, 1)|af ′′ + bg′′ ∈ H2(0, 1)

}
.

(3.2.4)

With the operator A at hand, we can write system (3.2.1) into an evolutionary equation

in H: 



d
dt

Y (t) = AY (t),

Y (0) = Y0,

(3.2.5)

where Y (t) = (y(·, t), yt(·, t)) is the state variable and Y0 = (y0(·), y1(·)) is the initial value.

The following Lemma 3.2.1 is straightforward.
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Lemma 3.2.1. Let A be defined by (3.2.4). Then its adjoint A∗ has the following form:




A∗(f, g) =
(
−g,

1
ρ
(af ′′ − bg′′)′′

)
,

D(A∗) =
{
(f, g) ∈ H2

0 (0, 1)×H2
0 (0, 1)| af ′′ − bg′′ ∈ H2(0, 1)

}
.

(3.2.6)

Proposition 3.2.1. Let A and A∗ be given by (3.2.4) and (3.2.6) respectively. Then A
and A∗ are dissipative, and hence A generates a C0-semigroup of contractions on H.

Proof. For any (f, g) ∈ D(A), we have

〈A(f, g), (f, g)〉 =
〈

(g, −1
ρ
(af ′′ + bg′′)′′), (f, g)

〉

=
∫ 1

0

[
a(x)g′′(x)f ′′(x)− (a(x)f ′′(x) + b(x)g′′(x))′′g(x)

]
dx

=
∫ 1

0
a(x)g′′(x)f ′′(x)dx +

∫ 1

0
(a(x)f ′′(x) + b(x)g′′(x))′g′(x)dx

=
∫ 1

0

[
a(x)g′′(x)f ′′(x)− a(x)f ′′(x)g′′(x)

]
dx−

∫ 1

0
b(x)|g′′(x)|2dx,

and hence

Re〈A(f, g), (f, g)〉 = −
∫ 1

0
b(x)|g′′(x)|2dx ≤ 0.

Similarly for any (u, v) ∈ D(A∗),

〈A∗(u, v), (u, v)〉 =
〈

(−v,
1
ρ
(au′′ − bv′′)′′), (u, v)

〉

=
∫ 1

0

[
−a(x)v′′(x)u′′(x) + (a(x)u′′(x)− b(x)v′′(x))′′v(x)

]
dx

= −
∫ 1

0
a(x)v′′(x)u′′(x)dx−

∫ 1

0
(a(x)u′′(x)− b(x)v′′(x))′v′(x)dx

=
∫ 1

0

[
−a(x)v′′(x)u′′(x) + a(x)u′′(x)v′′(x)

]
dx−

∫ 1

0
b(x)|v′′(x)|2dx,

and hence

Re〈A∗(u, v), (u, v)〉 = −
∫ 1

0
b(x)|v′′(x)|2dx ≤ 0.

Therefore, both A and A∗ are dissipative. By the Lumer-Phillips Theorem, A generates

a C0-semigroup of contractions on H. ¥

3.3 Essential and continuous spectrum

In this section, we consider the spectrum of A. First, let us formulate the eigenvalue

problem. Suppose that A(f, g) = λ(f, g) with (f, g) ∈ D(A) and (f, g) 6= 0. Then g = λf
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and f ∈ H2
0 (0, 1) satisfies





λ2ρ(x)f(x) + ((a(x) + λb(x))f ′′(x))′′ = 0,

f(0) = f(1) = f ′(0) = f ′(1) = 0.

(3.3.1)

The Theorem 3.3.1 following shows that the set of residual spectrum of A is empty.

Theorem 3.3.1. σr(A) = ∅.

Proof. Since λ ∈ σr(A) implies λ ∈ σp(A∗), it suffices to show that

σp(A) = σp(A∗).

Suppose that A∗(f, g) = λ(f, g) for some (f, g) ∈ D(A∗) and (f, g) 6= 0. Then g = −λf

and f satisfies 



λ2ρ(x)f(x) + (a(x)f ′′(x) + λb(x)f ′′(x))′′ = 0,

f(0) = f(1) = f ′(0) = f ′(1) = 0.

(3.3.2)

It is seen that (3.3.2) is the same as (3.3.1). Hence, λ ∈ σp(A∗) if and only if λ ∈ σp(A),

and consequently σr(A) = ∅. ¥

The following Theorem 3.3.2 about the essential spectrum of A is from [98].

Theorem 3.3.2. Let A be defined by (3.2.4). Then following assertions hold:

(i) The essential spectrum of operator A is given by

σess(A) = {λ ∈ C | a(ξ) + λb(ξ) = 0 for some ξ ∈ [0, 1]}. (3.3.3)

(ii) σ(A)\σess(A) consists of all isolated eigenvalues of finite multiplicity.

Proof. The (ii) of Theorem 3.3.2 was claimed in [98] without proof. Here we give a simple

explanation. Suppose that (i) is valid. Then σ(A)\σess(A) is an open connected subset of

C\σess(A), (ii) is then a direct consequence of Theorem 2.1 of [31, p.373].

(i) of Theorem 3.3.2 was also claimed in [98] but the proof there is incomplete. Actually,

in [98], the authors defined a bounded operator B on H1 as following:

B




f

g


 (x) =



− b(x)

a(x)
f(x) +

xG1(f) + G2(f)
a(x)

0


 , ∀




f

g


 ∈ H1, (3.3.4)

where
H1 = L2

E(0, 1)× L2
ρ(0, 1),

L2
E(0, 1) :=

{
f ∈ L2

a(0, 1)
∣∣∣ 〈f, x

a 〉L2
a

= 0, 〈f, 1
a〉L2

a
= 0

}
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and

G1(f) =

∫ 1
0

b(τ)
a(τ)f(τ)dτ

∫ 1
0

1−τ
a(τ)dτ − ∫ 1

0 (1− τ) b(τ)
a(τ)f(τ)dτ

∫ 1
0

1
a(τ)dτ

∫ 1
0

τ2

a(τ)dτ
∫ 1
0

1
a(τ)dτ −

[∫ 1
0

τ
a(τ)dτ

]2 ,

G2(f) = −
∫ 1
0

b(τ)
a(τ)f(τ)dτ

∫ 1
0

(1−τ)τ
a(τ) dτ − ∫ 1

0 (1− τ) b(τ)
a(τ)f(τ)dτ

∫ 1
0

τ
a(τ)dτ

∫ 1
0

τ2

a(τ)dτ
∫ 1
0

1
a(τ)dτ −

[∫ 1
0

τ
a(τ)dτ

]2 .

It was proved in [98] that B is self-adjoint and its essential spectrum is given by

σess(B) = {0} ∪ {λ ∈ C | λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1]}. (3.3.5)

However, in the proof of

σess(B) ⊃ {λ ∈ C\{0} | λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1]} (3.3.6)

in [98], the authors claimed unfoundedly that when λ 6= 0 and λa(ξ) + b(ξ) = 0 for some

ξ ∈ [0, 1], the rang of operator λI − B satisfies

R(λI − B) ⊃
{

y ∈ L2(0, 1)
∣∣∣ y(ξ) =

c1ξ + c2

a(ξ)
, c1, c2 ∈ C

}
.

Here we give a correct proof for (3.3.6). First, we show that

σ(B) ⊃ {λ ∈ C\{0} | λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1]}. (3.3.7)

Let λ ∈ C\{0} and λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1]. Define

Eλ = {x ∈ [0, 1]|λa(x) + b(x) = 0}.

For any (u, v) ∈ H1, consider the equation

(λI − B)(f, g) = (u, v),

which is equivalent to

λg(x) = v(x)

and f satisfying

λf(x) +
b(x)
a(x)

f(x)− xG1(f) + G2(f)
a(x)

= u(x). (3.3.8)

If the measure of Eλ is nonzero and (3.3.8) admits a solution, it must have

u(x) =
C1x + C2

a(x)
in Eλ for some constants C1, C2.

Obviously, such functions cannot represent all functions of L2
E(0, 1) on Eλ, that is

R(λI − B) 6= H1.
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So

λ ∈ σ(B).

Now suppose that the measure of Eλ is zero and (3.3.8) has solution f ∈ L2
E(0, 1) for any

u ∈ L2
E(0, 1). In this case, it follows from (3.3.8) that f must be of the form:

f(x) =
1

λa(x) + b(x)
[a(x)u(x) + xG1(f) + G2(f)], ∀ x ∈ [0, 1]\Eλ. (3.3.9)

Take special u ∈ L2
E(0, 1) in (3.3.9):

u(x) =





1
3
√

x− ξ
, x ∈ E1,

c1 + c2x, x ∈ E0 = [0, 1]\E1,

where c1, c2 are constants to be chosen such that u ∈ L2
E(0, 1), E1 ⊂ [0, 1] is a given small

closed interval containing ξ, and mes(E1) is the measure of E1, 0 < mes(E1) < 1. A

simple computation shows that the sufficient condition for the existence of c1, c2 is
[∫

E0

xdx

]2

−
∫

E0

x2dx

∫

E0

1dx 6= 0,

which is obviously true. Now for this special u, choose a closed interval E2 ⊂ E1, ξ ∈ E2,

such that the associated f with this u through (3.3.9) satisfies

|a(x)u(x) + xG1(f) + G2(f)| > 1, x ∈ E2,

and hence by (3.3.9), ∥∥∥∥
1

λa + b

∥∥∥∥
L2(E2)

≤ ‖f‖L2(E2) < ∞,

which means that
1

λa + b
∈ L2(E2).

This fact together with (3.3.9) shows that

aũ

λa + b
∈ L2(E2), ∀ ũ ∈ L2(E2).

Define the multiplication operator F : L2(E2) → L2(E2) by

(F ũ)(x) =
a(x)

λa(x) + b(x)
ũ(x), ∀ ũ ∈ L2(E2).

Then F is a closed operator on L2(E2). By the Closed Graph Theorem, F is bounded on

L2(E2), which implies that
a

λa + b
∈ L∞(E2).
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This contradicts to λa(ξ) + b(ξ) = 0 and continuity of a, b. Hence

R(λI − B) 6= H1.

Therefore

λ ∈ σ(B)

and (3.3.7) holds.

Next, we show (3.3.6). Let




m = min
0≤x≤1

{λ| λa(x) + b(x) = 0} ,

M = max
0≤x≤1

{λ| λa(x) + b(x) = 0} .

It suffices to show that

[m,M ] ⊂ σess(B).

There are two cases:

Case I: m = M . In this case, b(x)/a(x) = −m is a constant, and a simple computation

shows that

G1(f) = G2(f) = 0, ∀ f ∈ L2
E(0, 1).

By the definition of B,

(mI − B)(f, g)(x) =
(
−xG1(f) + G2(f)

a(x)
,mg(x)

)

= (0,mg(x)).

Hence,

L2
E(0, 1)× {0} ⊂ N (mI − B),

which means, by Definition 1.2.1, that

λ = m ∈ σess(B).

Case II: m < M . In this case, λ can be taken as any point of interval [m,M ] by the conti-

nuity of b(x)/a(x). So by (3.3.7), [m,M ] ⊆ σ(B). Since B is self-adjoint, [m,M ] ⊆ σess(B)

follows from Theorem 5 of [23, p.1395] which says that for a self-adjoint operator, all

non-isolated spectrum must be essential spectrum (note that in [23, p.1393], the essential

spectrum of a closed operator is defined as only those that (i) of our Definition 1.2.1 is

satisfied). ¥
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Next, we consider the continuous spectrum of A. To do this, we need additional

conditions of the following




a(x), b(x) and ρ(x) are analytic in [0, 1];

∀ λ ∈ R and ξ ∈ [0, 1],
(x− ξ)4

a(x) + λb(x)
is analytic in a neighboorhood of ξ.

(3.3.10)

Remark 3.3.1. For analytic functions a, b, it can be easily shown that at the nonzero

point of b, the second condition of (3.3.10) is equivalent to the following conditions:




a′(x)− a(x)
b(x)

b′(x) 6= 0

or a′′(x)− a(x)
b(x)

b′′(x) 6= 0

or a′′′(x)− a(x)
b(x)

b′′′(x) 6= 0

or a(4)(x)− a(x)
b(x)

b(4)(x) 6= 0

at the point x ∈ [0, 1] where b(x) 6= 0. (3.3.11)

Actually, for any ξ ∈ [0, 1] with b(ξ) 6= 0, find λ ∈ R such that a(ξ) + λb(ξ) = 0. So

λ = −a(ξ)/b(ξ).

Let

a(x) + λb(x) = (x− ξ)kϕ(x)

with ϕ(ξ) 6= 0. By (3.3.10), k ∈ {1, 2, 3, 4}. If k = 1,

(a + λb)′(ξ) = ϕ(ξ) 6= 0,

which is equivalent to

a′(ξ)− a(ξ)
b(ξ)

b′(ξ) = ϕ(ξ) 6= 0.

This is the first case of (3.3.11). When k ∈ {2, 3, 4}, the similar arguments lead to the

other cases of (3.3.11).

The condition (3.3.11) is easier to check for given functions a, b. For instance, the

functions b(x) = x and any function a with a′′ 6= 0 satisfy (3.3.11).

Theorem 3.3.3. Let A be defined by (3.2.4) and (3.3.10) holds. Then the set of contin-

uous spectrum of A satisfies

σc(A) = σess(A) = {λ ∈ C| a(ξ) + λb(ξ) = 0 for some ξ ∈ [0, 1]}.
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Proof. Suppose that a(ξ) + λb(ξ) = 0 for some ξ ∈ [0, 1], λ ∈ R. If λ ∈ σp(A), then there

is a nonzero f ∈ H2
0 (0, 1) satisfying the characteristic equation (3.3.1). The proof will be

accomplished if we can show that f ≡ 0 because σr(A) = ∅ claimed by Theorem 3.3.1.

This will be split into three steps:

Step 1: We claim that the solution f of the first equation in (3.3.1) that is rewritten

specifically in following

λ2ρ(x)f(x) + ((a(x) + λb(x))f ′′(x))′′ = 0 (3.3.12)

is either analytic in a neighborhood of ξ with f(ξ) = 0, or

f(ξ) = f ′(ξ) = 0.

We consider f in a neighborhood of ξ. By (3.3.10), we assume that

a(x) + λb(x) = (x− ξ)kϕ(x),

where k ∈ {1, 2, 3, 4} and ϕ is analytic in [0, 1], ϕ(ξ) 6= 0. Then ξ is the regular singular

point of the equation (3.3.12) ([10, p.62]). Set

P0(x) =
λ2ρ(x)

a(x) + λb(x)
=

1
(x− ξ)k

[
c +

∞∑

i=1

p0,i(x− ξ)i

]
,

P2(x) =
a′′(x) + λb′′(x)
a(x) + λb(x)

=
1

(x− ξ)2

[
k(k − 1) +

∞∑

i=1

p2,i(x− ξ)i

]
,

P3(x) =
2(a′(x) + λb′(x))

a(x) + λb(x)
=

1
(x− ξ)

[
2k +

∞∑

i=1

p3,i(x− ξ)i

]
,

where the three series on the right side above are the Taylor series and by assumption

c =
λ2ρ(ξ)
ϕ(ξ)

6= 0.

The indicial equation of (3.3.12) is (see e.g., [10, p.76])

F (r) = r(r − 1)(r − 2)(r − 3) + 2kr(r − 1)(r − 2) + k(k − 1)r(r − 1) + c̃ = 0, (3.3.13)

where

c̃ =





0, k < 4,

c, k = 4.

If the four roots r do not differ by integers, then there will be four linearly independent

solutions of equation (3.3.12) of the form (see e.g., [10, p.63,76]):

f(x) = (x− ξ)rA(x). (3.3.14)
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Otherwise, the form of the solution of equation (3.3.12) must be generalized to

f(x) = (x− ξ)rA(x) ln |x− ξ|+ C(x)(x− ξ)r2 , (3.3.15)

or

f(x) = (x− ξ)rA2(x)[ln |x− ξ|]2 + (x− ξ)r2A1(x) ln |x− ξ|+ (x− ξ)r3A0(x), (3.3.16)

or

f(x) = (x− ξ)α
3∑

j=0

[ln |x− ξ|]jBj(x). (3.3.17)

Here r, r2, r3, α are roots of (3.3.13), A(x), Ai(x), Bj(x), C(x) are analytic functions at ξ

that have Taylor series whose radius of convergence are at least as large as the distance

to the nearest singular point of the coefficient functions in the equation (3.3.12). A direct

calculation shows that

F (r) =





r(r − 1)2(r − 2), k = 1,

r2(r − 1)2, k = 2,

r2(r − 1)(r + 1), k = 3,

r(r − 1)(r + 1)(r + 2) + c, k = 4.

We have now two cases:

Case I: k < 4. In this case, we claim that f must be analytic in a neighborhood of ξ and

f(ξ) = 0.

We only give a proof for the case of k = 1 since other cases can be treated similarly. Now,

the roots of (3.3.13) are r = 0, 1, 1, 2. By (3.3.14), (3.3.15), (3.3.16) and (3.3.17), in a

neighborhood of ξ, the solution of (3.3.12) must be

f(x) = C1(x− ξ)2A1(x) + C2

[
(x− ξ)2A1(x) ln |x− ξ|+ (x− ξ)A2(x)

]

+C3

[
(x− ξ)2A1(x)[ln |x− ξ|]2 + (x− ξ)A2(x) ln |x− ξ|+ (x− ξ)A3(x)

]

+C4

[
(x− ξ)2A1(x)[ln |x− ξ|]3 + (x− ξ)A2(x)[ln |x− ξ|]2

+(x− ξ)A3(x) ln |x− ξ|+ A4(x)] ,

where Ai(x), i = 1, 2, 3, 4 are analytic at ξ, Ai(ξ) 6= 0, and have Taylor series whose radius

of convergence are at least as large as the distance to the nearest singular point of the
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coefficient functions in the equation (3.3.12). Then

f ′(x) = C4

[
2(x− ξ)A1(x) + (x− ξ)2A′1(x)

]
[ln |x− ξ|]3

+C4 [3(x− ξ)A1(x) + A2(x) + (x− ξ)A′2(x)] [ln |x− ξ|]2

+C3

[
2(x− ξ)A1(x) + (x− ξ)2A′1(x)

]
[ln |x− ξ|]2

+C4 [2A2(x) + A3(x) + (x− ξ)A′3(x)] ln |x− ξ|

+C3 [2(x− ξ)A1(x) + A2(x) + (x− ξ)A′2(x)] ln |x− ξ|

+C2

[
2(x− ξ)A1(x) + (x− ξ)2A′1(x)

]
ln |x− ξ|

+C4 [A3(x) + A′4(x)]

+C3 [A2(x) + A3(x) + (x− ξ)A′3(x)]

+C2 [(x− ξ)A1(x) + A2(x) + (x− ξ)A′2(x)]

+C1

[
2(x− ξ)A1(x) + (x− ξ)2A′1(x)

]
.

Since f ′ is continuous, it must have

C3 = C4 = 0.

Thus,

f(x) = C1(x− ξ)2A1(x) + C2

[
(x− ξ)2A1(x) ln |x− ξ|+ (x− ξ)A2(x)

]

and

f ′′(x) = [2C2A1(x) + (x− ξ)B1(x)] ln |x− ξ|+ B2(x),

where

B1(x) = 4A′1(x) + (x− ξ)A′′1(x),

B2(x) = C1

[
2A1(x) + 4(x− ξ)A′1(x) + (x− ξ)2A′′1(x)

]

+C2 [3A1(x) + 2(x− ξ)A′1(x) + 2A′2(x) + (x− ξ)A′′2(x)] .

So,

(a(x) + λb(x))f ′′(x)

=
[
2C2(x− ξ)A1(x) + (x− ξ)2B1(x)

]
ϕ(x) ln |x− ξ|+ B2(x)(x− ξ)ϕ(x).

By the continuity of ((a + λb)f ′′)′, we have

C2 = 0.
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Hence,

f(x) = C1(x− ξ)2A1(x),

which implies that f must be analytic in a neighborhood of ξ and

f(ξ) = 0.

Case II: k = 4. In this case, 0, 1 are not roots of (3.3.13). By the continuity of f and f ′,

it follows from (3.3.14), (3.3.15), (3.3.16), and (3.3.17) that

f(ξ) = f ′(ξ) = 0.

Step 2: We claim that for any [α1, α2] ⊂ [0, 1] with ξ ∈ [α1, α2], if

f(α1) = f(α2) = f ′(α1) = f ′(α2) = 0

and f is analytic in (α1, α2), then there are infinitely many x̃i ∈ (α1, α2) such that

f(x̃i) = 0, x̃i 6= x̃j , i 6= j, i, j = 1, 2, · · · . (3.3.18)

In fact, since there are at most finitely many regular singular points of (3.3.12) in

[0, 1], by the boundary conditions and Step 1, such interval [α1, α2] exists. We will use

the mathematical induction to prove the result.

First, we claim that there is an x̂ ∈ (α1, α2) such that

f(x̂) = 0.

In fact, by f(α1) = f(α2) = 0 and Rolle’s Theorem, there is an η ∈ (α1, α2) such that

f ′(η) = 0. By f ′(α1) = f ′(α2) = 0 and Rolle’s Theorem, there are γ1, γ2 ∈ (α1, α2) such

that γ1 < γ2 and

f ′′(γ1) = f ′′(γ2) = 0.

If ξ = γ1 or ξ = γ2, take x̂ = ξ. Then

f(x̂) = 0.

If ξ 6= γ1 and ξ 6= γ2, suppose that ξ < γ1 < γ2 without loss of generality. By

((a + λb)f ′′)(ξ) = ((a + λb)f ′′)(γ1) = ((a + λb)f ′′)(γ2) = 0,

there are ξ1 ∈ (ξ, γ1), ξ2 ∈ (γ1, γ2) such that

((a + λb)f ′′)′(ξi) = 0, i = 1, 2.
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So there is an x̂1 ∈ (ξ1, ξ2) such that

((a + λb)f ′′)′′(x̂1) = 0,

which, together with (3.3.1) implies that

f(x̂1) = 0.

Next, we assume ξ 6= α1 (otherwise, we may assume ξ 6= α2). Suppose generally that

f(xi) = 0, i = 1, 2, · · · , n, α1 < x1 < x2 < · · · < xn < α2.

We will show that there are n + 1 number of different zeros {xi1}n+1
i=1 of f in (α1, α2).

Set x0 = α1, xn+1 = α2. Assume ξ ∈ (xj , xj+1] for some j ∈ {0, 1, · · · , n}. By Rolle’s

Theorem, for each i ∈ {1, 2, · · · , n + 1}, there is an xi1 ∈ (xi−1, xi) such that

f ′(xi1) = 0.

Obviously,

α1 < x11 < x21 < · · · < xn1 < x(n+1)1 < α2.

Set x01 = α1 and x(n+2)1 = α2. Then ξ ∈ (xj1, x(j+2)1) or ξ = α2. By Rolle’s Theorem

again, for each i ∈ {1, 2, · · · , n + 2}, there is an xi2 ∈ (x(i−1)1, xi1) such that

f ′′(xi2) = 0. (3.3.19)

Obviously,

α1 < x12 < x22 < · · · < x(n+1)2 < x(n+2)2 < α2.

Set x(n+3)2 = α2. Then ξ ∈ (xj2, x(j+3)2) or ξ = α2. Now we have two cases:

Case I: ξ = x(j+1)2 or ξ = x(j+2)2. In this case, by (a + λb)(ξ) = 0, we have

((a + λb)f ′′)′(ξ) = 0. (3.3.20)

Moreover, from (3.3.19), we have

((a + λb)f ′′)(xi2) = 0, i = 1, 2 · · · , n + 2.

By Rolle’s Theorem, for each i ∈ {1, 2, · · · , n+1}, there is an xi3 ∈ (xi2, x(i+1)2) such that

((a + λb)f ′′)′(xi3) = 0.

This together with (3.3.20) shows that there is a sequence {xi}n+2
i=1 ⊂ (α1, α2) such that

((a + λb)f ′′)′(xi) = 0, i = 1, 2, · · · , n + 2, α1 < x1 < x2 < · · · < xn+2 < α2. (3.3.21)
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Case II: ξ 6= x(j+1)2 and ξ 6= x(j+2)2. In this case,

((a + λb)f ′′)(ξ) = ((a + λb)f ′′)(xi2) = 0, i = 1, 2, · · · , n + 2.

By Rolle’s Theorem, we can get (3.3.21) also for some different {xi}n+2
i=1 ⊂ (α1, α2).

Since (3.3.21), by Rolle’s Theorem, for each i ∈ {1, 2, · · · , n + 1}, we can find an

xi1 ∈ (xi, xi+1) such that

((a + λb)f ′′)′′(xi1) = 0.

This is equivalent to, by (3.3.1), that

f(xi1) = 0, i = 1, 2, · · · , n + 1, α1 < x11 < x21 < · · · < x(n+1)1 < α2.

By mathematical induction, we get (3.3.18) eventually.

Step 3: Let τ be an accumulation point of {x̃i} satisfy (3.3.18). If τ is a zero of a+λb,

by (3.3.14), (3.3.15), (3.3.16), and (3.3.17), there is a neighborhood Oτ of τ such that

f ≡ 0 in Oτ . (3.3.22)

If τ is not a zero of a + λb, then it must be an ordinary point of (3.3.12). By the

uniqueness theorem of the regular ordinary differential equations, we get (3.3.22) again.

Same arguments as Step 2, it follows that there is a neighborhood Oξ of ξ such that

f ≡ 0 in Oξ.

Since f is identical to zero in a neighborhood of any singular point ξ, f must be identical to

zero everywhere by the uniqueness theorem of the regular ordinary differential equations.

The proof is complete. ¥

Remark 3.3.2. For one-dimensional wave equation with internal Kelvin-Voigt damping,

we showed that Theorem 3.3.3 is still true for irregular singularity but it is not true

without analytic assumption on coefficient functions. These are also expected for the

system (3.2.1), which however, needs nontrivial investigations.

3.4 Asymptotic behavior of eigenvalues

In this section, we consider the asymptotic behavior of eigenvalues of A. To do this, we

assume further that

ρ(x), a(x), b(x) ∈ C3[0, 1] and ρ(x), a(x), b(x) > 0 for all x ∈ [0, 1]. (3.4.1)
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Suppose that λ is an eigenvalue with large modulus. Then

a(x) + λb(x) 6= 0 for any x ∈ [0, 1] (3.4.2)

and we rewrite the characteristic equation (3.3.1) as



(a(x) + λb(x))f (4)(x) + 2(a′(x) + λb′(x))f ′′′(x)

+(a′′(x) + λb′′(x))f ′′(x) + λ2ρ(x)f(x) = 0,

f(0) = f(1) = f ′(0) = f ′(1) = 0.

(3.4.3)

The following Lemma 3.4.1 is direct.

Lemma 3.4.1. Let λ ∈ C. Then as |λ| → ∞, the first equation of (3.4.3) has the following

asymptotic expression:

f (4)(x) + 2(a′(x) + λb′(x))
[

1
λb(x)

− a(x)
λ2b2(x)

+O(|λ|−3)
]

f ′′′(x)

+(a′′(x) + λb′′(x))
[

1
λb(x)

− a(x)
λ2b2(x)

+O(|λ|−3)
]

f ′′(x)

+λ

[
1− a(x)

λb(x)
+

a2(x)
λ2b2(x)

+O(|λ|−3)
]

ρ4
0(x)f(x) = 0,

(3.4.4)

where

ρ0(x) =
[
ρ(x)
b(x)

]1/4

. (3.4.5)

In order to find the asymptotic fundamental solutions of (3.4.3), we introduce the

following space-scaling transformation:

ϕ(z) = f(x), z =
1
h

∫ x

0
ρ0(τ)dτ, h =

∫ 1

0
ρ0(τ)dτ. (3.4.6)

Under this transformation, (3.4.4) becomes

ϕ(4)(z) +
h

ρ4
0(x)

[
2ρ3

0(x)(a′(x) + λb′(x))
(

1
λb(x)

− a(x)
λ2b2(x)

+O(|λ|−3)
)

+6ρ2
0(x)ρ′0(x)

]
ϕ′′′(z)

+
h2

ρ4
0(x)

[
3(ρ′0(x))2 + 4ρ0(x)ρ′′0(x)

+6ρ0(x)ρ′0(x)(a′(x) + λb′(x))
(

1
λb(x)

− a(x)
λ2b2(x)

+O(|λ|−3)
)

+ ρ2
0(x)(a′′(x) + λb′′(x))

(
1

λb(x)
− a(x)

λ2b2(x)
+O(|λ|−3)

)]
ϕ′′(z)

+
h3

ρ4
0(x)

[
ρ′′′0 (x) + 2ρ′′0(x)(a′(x) + λb′(x))

(
1

λb(x)
− a(x)

λ2b2(x)
+O(|λ|−3)

)

+ ρ′0(x)(a′′(x) + λb′′(x))
(

1
λb(x)

− a(x)
λ2b2(x)

+O(|λ|−3)
)]

ϕ′(z)

+λh4

[
1− a(x)

λb(x)
+

a2(x)
λ2b2(x)

+O(|λ|−3)
]

ϕ(z) = 0

(3.4.7)
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with the boundary conditions:

ϕ(0) = ϕ(1) = ϕ′(0) = ϕ′(1) = 0. (3.4.8)

With this transformation, we have the following Proposition 3.4.1.

Proposition 3.4.1. The equation (3.4.4) with boundary condition (3.4.3) is equivalent

to (3.4.7) and (3.4.8). That is, (λ, f), f 6= 0, satisfies (3.4.4) and boundary condition

(3.4.3) if and only if (λ, ϕ), ϕ 6= 0, satisfies (3.4.7) and (3.4.8).

Now we consider (3.4.7) with the boundary condition (3.4.8). Since the eigenvalues

are symmetric about the real axis and Reλ ≤ 0 for any λ ∈ σ(A), we only consider those

eigenvalues λ with π
2 ≤ argλ ≤ π. Let λ = µ4. Since π

2 ≤ argλ ≤ π, we consider µ located

on the following sector:

S =
{

µ ∈ C ∣∣ π

8
≤ argµ ≤ π

4

}
. (3.4.9)

Let

ω1 = e
3
4
πi, ω2 = e

5
4
πi, ω3 = −ω2, ω4 = −ω1. (3.4.10)

Then we have

Re(µω1) ≤ Re(µω2) ≤ Re(µω3) ≤ Re(µω4) (3.4.11)

and




Re(µω1) = |µ| cos(argµ +
3
4
π) = −|µ| sin(argµ +

π

4
) ≤ −

√
2

2
|µ| < 0,

Re(µω2) = |µ| cos(argµ +
5
4
π) ≤ 0.

(3.4.12)

The following Lemma 3.4.2 gives the form of the asymptotic fundamental solutions of

(3.4.7).

Lemma 3.4.2. Suppose λ = µ4 6= 0. Then for z ∈ [0, 1] and µ ∈ S,

eµhωkz, k = 1, 2, 3, 4,

are linearly independent fundamental solutions of

ϕ(4)(z) + µ4h4ϕ(z) = 0,

and when |µ| large enough, (3.4.7) has the following asymptotic fundamental solutions:

for k = 1, 2, 3, 4,

ϕk(z) = eµhωkz

[
ϕ0(z) +

1
ωk

ϕ1(z)µ−1 +
1
ω2

k

ϕ2(z)µ−2 +
1
ω3

k

ϕ3(z)µ−3 +O(µ−4)
]

, (3.4.13)



3.4 Asymptotic behavior of eigenvalues 55

where




ϕ0(z) = exp
{
−h

2

∫ z

0
ρ1(x(τ))dτ

}
= exp

{
−1

2

∫ z

0
ρ1(x)ρ0(x)dx

}
,

ϕ1(z) = −1
4

∫ z

0
exp

{
−1

2

∫ z−ζ

0
ρ1(x)ρ0(x)dx

}
ρ2(ζ)dζ,

ϕ2(z) = −1
4

∫ z

0
exp

{
−1

2

∫ z−ζ

0
ρ1(x)ρ0(x)dx

}
ρ3(ζ)dζ,

ϕ3(z) = −1
4

∫ z

0
exp

{
−1

2

∫ z−ζ

0
ρ1(x)ρ0(x)dx

}
ρ4(ζ)dζ,

(3.4.14)

and




ρ1(x) =
3ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

,

ρ2(z) =
6
h

ϕ′′0(z) +
(

18ρ′0(x(z))
ρ2
0(x(z))

+
6

ρ0(x(z))
b′(x(z))
b(x(z))

)
ϕ′0(z)

+
hϕ0(z)
ρ4
0(x(z))

(
ρ2
0(x(z))

b′′(x(z))
b(x(z))

+ 6ρ0(x(z))ρ′0(x(z))
b′(x(z))
b(x(z))

+ 4ρ0(x(z))ρ′′0(x(z)) + 3(ρ′0(x(z)))2
)
,

ρ3(z) =
1
h2

[
6hϕ′′1(z) + 4ϕ′′′0 (z)

+h

(
6ρ′0(x(z))
ρ2
0(x(z))

+
2

ρ0(x(z))
b′(x(z))
b(x(z))

)
(3hϕ′1(z) + 3ϕ′′0(z))

+
h2

ρ4
0(x(z))

(
ρ2
0(x(z))

b′′(x(z))
b(x(z))

+ 6ρ0(x(z))ρ′0(x(z))
b′(x(z))
b(x(z))

+ 4ρ0(x(z))ρ′′0(x(z)) + 3(ρ′0(x(z)))2
)
(hϕ1(z) + 2ϕ′0(z))

+
h3ϕ0(z)
ρ4
0(x(z))

(
ρ′′′0 (x(z)) + 2ρ′′0(x(z))

b′(x(z))
b(x(z))

+ ρ′0(x(z))
b′′(x(z))
b(x(z))

)]
,

ρ4(z) =
1
h3

[
6h2ϕ′′2(z) + 4hϕ′′′1 (z) + ϕ

(4)
0 (z)− h4 a(x(z))

b(x(z))
ϕ0(z)

+h

(
6ρ′0(x(z))
ρ2
0(x(z))

+
2

ρ0(x(z))
b′(x(z))
b(x(z))

) (
3h2ϕ′2(z) + 3hϕ′′1(z) + ϕ′′′0 (z)

)

+
h2

ρ4
0(x(z))

(
ρ2
0(x(z))

b′′(x(z))
b(x(z))

+ 6ρ0(x(z))ρ′0(x(z))
b′(x(z))
b(x(z))

+ 4ρ0(x(z))ρ′′0(x(z)) + 3(ρ′0(x(z)))2
)
(h2ϕ2(z) + 2hϕ′1(z) + ϕ′′0(z))

+
h3(hϕ1(z) + ϕ′0(z))

ρ4
0(x(z))

(
ρ′′′0 (x(z)) + 2ρ′′0(x(z))

b′(x(z))
b(x(z))

+ ρ′0(x(z))
b′′(x(z))
b(x(z))

)]
.

(3.4.15)

Proof. The first claim is trivial. We only need to show that (3.4.13) are the asymptotic

fundamental solutions of (3.4.7). This can be done along the same way of [11] and [[78],
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Section 4]. Here we present briefly a simple calculation to (3.4.13), (3.4.14) and (3.4.15).

Let

ϕ̃k(z, µ) := eµhωkz
[
ϕk0(z) + ϕk1(z)µ−1 + ϕk2(z)µ−2 + ϕk3(z)µ−3

]
,

where ϕkj(z), j = 0, 1, 2, 3 are some functions to be determined, and

D(ϕ) := ϕ(4)(z)

+
h

ρ4
0(x)

[
6ρ2

0(x)ρ′0(x) + 2ρ3
0(x)(a′(x) + λb′(x))

(
1

λb(x)
− a(x)

λ2b2(x)
+O(|λ|−3)

)]
ϕ′′′(z)

+
h2

ρ4
0(x)

[
3(ρ′0(x))2 + 4ρ0(x)ρ′′0(x)

+ 6ρ0(x)ρ′0(x)(a′(x) + λb′(x))
(

1
λb(x) −

a(x)
λ2b2(x)

+O(|λ|−3)
)

+ ρ2
0(x)(a′′(x) + λb′′(x))

(
1

λb(x)
− a(x)

λ2b2(x)
+O(|λ|−3)

)]
ϕ′′(z)

+
h3

ρ4
0(x)

[
ρ′′′0 (x) + 2ρ′′0(x)(a′(x) + λb′(x))

(
1

λb(x)
− a(x)

λ2b2(x)
+O(|λ|−3)

)

+ ρ′0(x)(a′′(x) + λb′′(x))
(

1
λb(x)

− a(x)
λ2b2(x)

+O(|λ|−3)
)]

ϕ′(z)

+λh4

[
1− a(x)

λb(x)
+

a2(x)
λ2b2(x)

+O(|λ|−3)
]

ϕ(z).

Substitute ϕ̃k(z, µ), k = 1, 2, 3, 4, into D(ϕ) respectively, to yield

e−µhωkzD(ϕ̃k(z, µ))

= µ4h4ω4
k

[
ϕk0(z) + ϕk1(z)µ−1 + ϕk2(z)µ−2 + ϕk3(z)µ−3

]

+4µ3h3ω3
k

[
ϕ′k0(z) + ϕ′k1(z)µ−1 + ϕ′k2(z)µ−2 + ϕ′k3(z)µ−3

]

+6µ2h2ω2
k

[
ϕ′′k0(z) + ϕ′′k1(z)µ−1 + ϕ′′k2(z)µ−2 + ϕ′′k3(z)µ−3

]

+4µhωk

[
ϕ′′′k0(z) + ϕ′′′k1(z)µ−1 + ϕ′′′k2(z)µ−2 + ϕ′′′k3(z)µ−3

]

+
[
ϕ

(4)
k0 (z) + ϕ

(4)
k1 (z)µ−1 + ϕ

(4)
k2 (z)µ−2 + ϕ

(4)
k3 (z)µ−3

]

+
h

ρ4
0(x)

[
2ρ3

0(x)(a′(x) + µ4b′(x))
(

1
µ4b(x)

− a(x)
µ8b2(x)

+O(|µ|−12)
)

+ 6ρ2
0(x)ρ′0(x)

]
· {µ3h3ω3

k

[
ϕk0(z) + ϕk1(z)µ−1 + ϕk2(z)µ−2 + ϕk3(z)µ−3

]

+3µ2h2ω2
k

[
ϕ′k0(z) + ϕ′k1(z)µ−1 + ϕ′k2(z)µ−2 + ϕ′k3(z)µ−3

]

+3µhωk

[
ϕ′′k0(z) + ϕ′′k1(z)µ−1 + ϕ′′k2(z)µ−2 + ϕ′′k3(z)µ−3

]

+
[
ϕ′′′k0(z) + ϕ′′′k1(z)µ−1 + ϕ′′′k2(z)µ−2 + ϕ′′′k3(z)µ−3

]}
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+
h2

ρ4
0(x)

[
3(ρ′0(x))2 + 4ρ0(x)ρ′′0(x)

+6ρ0(x)ρ′0(x)(a′(x) + µ4b′(x))
(

1
µ4b(x)

− a(x)
µ8b2(x)

+O(|µ|−12)
)

+ ρ2
0(x)(a′′(x) + µ4b′′(x))

(
1

µ4b(x)
− a(x)

µ8b2(x)
+O(|µ|−12)

)]
·

{
µ2h2ω2

k

[
ϕk0(z) + ϕk1(z)µ−1 + ϕk2(z)µ−2 + ϕk3(z)µ−3

]

+2µhωk

[
ϕ′k0(z) + ϕ′k1(z)µ−1 + ϕ′k2(z)µ−2 + ϕ′k3(z)µ−3

]

+
[
ϕ′′k0(z) + ϕ′′k1(z)µ−1 + ϕ′′k2(z)µ−2 + ϕ′′k3(z)µ−3

]}

+
h3

ρ4
0(x)

[
ρ′′′0 (x) + 2ρ′′0(x)(a′(x) + µ4b′(x))

(
1

µ4b(x)
− a(x)

µ8b2(x)
+O(|µ|−12)

)

+ρ′0(x)(a′′(x) + µ4b′′(x))
(

1
µ4b(x)

− a(x)
µ8b2(x)

+O(|µ|−12)
)]

·
{
µhωk

[
ϕk0(z) + ϕk1(z)µ−1 + ϕk2(z)µ−2 + ϕk3(z)µ−3

]

+
[
ϕ′k0(z) + ϕ′k1(z)µ−1 + ϕ′k2(z)µ−2 + ϕ′k3(z)µ−3

]}

+µ4h4

[
1− a(x)

µ4b(x)
+

a2(x)
µ8b2(x)

+O(|µ|−12)
] [

ϕk0(z) + ϕk1(z)µ−1

+ ϕk2(z)µ−2 + ϕk3(z)µ−3
]

= µ3

[
4h3ω3

kϕ
′
k0(z) +

h

ρ4
0(x)

(
6ρ2

0(x)ρ′0(x) + 2ρ3
0(x)

b′(x)
b(x)

)
h3ω3

kϕk0(z)
]

+µ2
[
4h3ω3

kϕ
′
k1(z) + 6h2ω2

kϕ
′′
k0(z)

+
h

ρ4
0(x)

(
6ρ2

0(x)ρ′0(x) + 2ρ3
0(x)

b′(x)
b(x)

) (
h3ω3

kϕk1(z) + 3h2ω2
kϕ

′
k0(z)

)

+
h2

ρ4
0(x)

(
3(ρ′0(x))2 + 4ρ0(x)ρ′′0(x) + 6ρ0(x)ρ′0(x)

b′(x)
b(x)

+ ρ2
0(x)

b′′(x)
b(x)

)
h2ω2

kϕk0(z)
]

+µ
[
4h3ω3

kϕ
′
k2(z) + 6h2ω2

kϕ
′′
k1(z) + 4hωkϕ

′′′
k0(z)

+
h

ρ4
0(x)

(
6ρ2

0(x)ρ′0(x) + 2ρ3
0(x)

b′(x)
b(x)

) (
h3ω3

kϕk2(z) + 3h2ω2
kϕ

′
k1(z) + 3hωkϕ

′′
k0(z)

)

+
h2

ρ4
0(x)

(
3(ρ′0(x))2 + 4ρ0(x)ρ′′0(x) + 6ρ0(x)ρ′0(x)

b′(x)
b(x)

+ ρ2
0(x)

b′′(x)
b(x)

)
·

(h2ω2
kϕk1(z) + 2hωkϕ

′
k0(z))

+
h3

ρ4
0(x)

(
ρ′′′0 (x) + 2ρ′′0(x)

b′(x)
b(x)

+ ρ′0(x)
b′′(x)
b(x)

)
hωkϕk0(z)

]

+
[
4h3ω3

kϕ
′
k3(z) + 6h2ω2

kϕ
′′
k2(z) + 4hωkϕ

′′′
k1(z) + ϕ

(4)
k0 (z)− h4 a(x)

b(x)
ϕk0(z)

+
h

ρ4
0(x)

(
6ρ2

0(x)ρ′0(x) + 2ρ3
0(x)

b′(x)
b(x)

)
·

(
h3ω3

kϕk3(z) + 3h2ω2
kϕ

′
k2(z) + 3hωkϕ

′′
k1(z) + ϕ′′′k0(z)

)
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+
h2

ρ4
0(x)

(
3(ρ′0(x))2 + 4ρ0(x)ρ′′0(x) + 6ρ0(x)ρ′0(x)

b′(x)
b(x)

+ ρ2
0(x)

b′′(x)
b(x)

)
·

(h2ω2
kϕk2(z) + 2hωkϕ

′
k1(z) + ϕ′′k0(z))

+
h3

ρ4
0(x)

[
ρ′′′0 (x) + 2ρ′′0(x)

b′(x)
b(x)

+ ρ′0(x)
b′′(x)
b(x)

]
(hωkϕk1(z) + ϕ′k0(z))

]

+O(|µ|−1).

Setting the coefficients of µj , j = 0, 1, 2, 3 be zero gives

4h3ω3
kϕ

′
k0(z) +

h

ρ4
0(x)

(
6ρ2

0(x)ρ′0(x) + 2ρ3
0(x)

b′(x)
b(x)

)
h3ω3

kϕk0(z) = 0,

4h3ω3
kϕ

′
k1(z) + 6h2ω2

kϕ
′′
k0(z)

+
h

ρ4
0(x)

(
6ρ2

0(x)ρ′0(x) + 2ρ3
0(x)

b′(x)
b(x)

) (
h3ω3

kϕk1(z) + 3h2ω2
kϕ

′
k0(z)

)

+
h2

ρ4
0(x)

(
3(ρ′0(x))2 + 4ρ0(x)ρ′′0(x) + 6ρ0(x)ρ′0(x)

b′(x)
b(x)

+ ρ2
0(x)

b′′(x)
b(x)

)
h2ω2

kϕk0(z) = 0,

4h3ω3
kϕ

′
k2(z) + 6h2ω2

kϕ
′′
k1(z) + 4hωkϕ

′′′
k0(z)

+
h

ρ4
0(x)

(
6ρ2

0(x)ρ′0(x) + 2ρ3
0(x)

b′(x)
b(x)

) (
h3ω3

kϕk2(z) + 3h2ω2
kϕ

′
k1(z) + 3hωkϕ

′′
k0(z)

)

+
h2

ρ4
0(x)

(
3(ρ′0(x))2 + 4ρ0(x)ρ′′0(x) + 6ρ0(x)ρ′0(x)

b′(x)
b(x)

+ ρ2
0(x)

b′′(x)
b(x)

)
·

(h2ω2
kϕk1(z) + 2hωkϕ

′
k0(z))

+
h3

ρ4
0(x)

(
ρ′′′0 (x) + 2ρ′′0(x)

b′(x)
b(x)

+ ρ′0(x)
b′′(x)
b(x)

)
hωkϕk0(z) = 0

and

4h3ω3
kϕ

′
k3(z) + 6h2ω2

kϕ
′′
k2(z) + 4hωkϕ

′′′
k1(z) + ϕ

(4)
k0 (z)− h4 a(x)

b(x)
ϕk0(z)

+
h

ρ4
0(x)

(
6ρ2

0(x)ρ′0(x) + 2ρ3
0(x)

b′(x)
b(x)

)
·

(
h3ω3

kϕk3(z) + 3h2ω2
kϕ

′
k2(z) + 3hωkϕ

′′
k1(z) + ϕ′′′k0(z)

)

+
h2

ρ4
0(x)

(
3(ρ′0(x))2 + 4ρ0(x)ρ′′0(x) + 6ρ0(x)ρ′0(x)

b′(x)
b(x)

+ ρ2
0(x)

b′′(x)
b(x)

)
·

(h2ω2
kϕk2(z) + 2hωkϕ

′
k1(z) + ϕ′′k0(z))

+
h3

ρ4
0(x)

[
ρ′′′0 (x) + 2ρ′′0(x)

b′(x)
b(x)

+ ρ′0(x)
b′′(x)
b(x)

]
(hωkϕk1(z) + ϕ′k0(z)) = 0.
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Use the conditions ϕk0(0) = 1 and ϕki(0) = 0, i = 1, 2, 3 to obtain

ϕk0(z) = exp
{
−h

2

∫ z

0
ρ1(x(τ))dτ

}
,

ϕk1(z) =
1
ωk

[
−1

4

∫ z

0
exp

{
−h

2

∫ z−ζ

0
ρ1(x(τ))dτ

}
ρk2(ζ)dζ

]
,

ϕk2(z) =
1
ω2

k

[
−1

4

∫ z

0
exp

{
−h

2

∫ z−ζ

0
ρ1(x(τ))dτ

}
ρk3(ζ)dζ

]
,

ϕk3(z) =
1
ω3

k

[
−1

4

∫ z

0
exp

{
−h

2

∫ z−ζ

0
ρ1(x(τ))dτ

}
ρk4(ζ)dζ

]
,

where

ρ1(x) =
3ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

,

ρk2(z) =
6
h

ϕ′′k0(z) +
(

18ρ′0(x(z))
ρ2
0(x(z))

+
6

ρ0(x(z))
b′(x(z))
b(x(z))

)
ϕ′k0(z)

+
hϕk0(z)
ρ4
0(x(z))

(
3(ρ′0(x(z)))2 + 4ρ0(x(z))ρ′′0(x(z)) + 6ρ0(x(z))ρ′0(x(z))

b′(x(z))
b(x(z))

+ ρ2
0(x(z))

b′′(x(z))
b(x(z))

)
,

ρk3(z) =
1
h2

[
6hωkϕ

′′
k1(z) + 4ϕ′′′k0(z)

+h

(
6ρ′0(x(z))
ρ2
0(x(z))

+
2

ρ0(x(z))
b′(x(z))
b(x(z))

)
(3hωkϕ

′
k1(z) + 3ϕ′′k0(z))

+
h2

ρ4
0(x(z))

(
3(ρ′0(x(z)))2 + 4ρ0(x(z))ρ′′0(x(z)) + 6ρ0(x(z))ρ′0(x(z))

b′(x(z))
b(x(z))

+ ρ2
0(x(z))

b′′(x(z))
b(x(z))

)
(hωkϕk1(z) + 2ϕ′k0(z))

+
h3ϕk0(z)
ρ4
0(x(z))

(
ρ′′′0 (x(z)) + 2ρ′′0(x(z))

b′(x(z))
b(x(z))

+ ρ′0(x(z))
b′′(x(z))
b(x(z))

)]
,

ρk4(z) =
1
h3

[
6h2ω2

kϕ
′′
k2(z) + 4hωkϕ

′′′
k1(z) + ϕ

(4)
k0 (z)− h4 a(x(z))

b(x(z))
ϕk0(z)

+h

(
6ρ′0(x(z))
ρ2
0(x(z))

+
2

ρ0(x(z))
b′(x(z))
b(x(z))

) (
3h2ω2

kϕ
′
k2(z) + 3hωkϕ

′′
k1(z) + ϕ′′′k0(z)

)

+
h2

ρ4
0(x(z))

(
3(ρ′0(x(z)))2 + 4ρ0(x(z))ρ′′0(x(z)) + 6ρ0(x(z))ρ′0(x(z))

b′(x(z))
b(x(z))

+ ρ2
0(x(z))

b′′(x(z))
b(x(z))

)
(h2ω2

kϕk2(z) + 2hωkϕ
′
k1(z) + ϕ′′k0(z))

+
h3(hωkϕk1(z) + ϕ′k0(z))

ρ4
0(x(z))

(
ρ′′′0 (x(z)) + 2ρ′′0(x(z))

b′(x(z))
b(x(z))

+ ρ′0(x(z))
b′′(x(z))
b(x(z))

)]
.
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From (3.4.6), we have
dx

dz
=

h

ρ0(x)
.

Hence ∫ z

0
ρ1(x(τ))dτ =

1
h

∫ z

0
ρ1(x(τ))ρ0(x(τ))

dx

dτ
dτ

=
1
h

∫ z

0
ρ1(x)ρ0(x)dx.

Therefore

ϕkj(z) =
1

ωj
k

ϕj(z), j = 0, 1, 2, 3,

where ϕj(z), j = 0, 1, 2, 3 are given by (3.4.14) and (3.4.15). The proof is complete. ¥

Next, we consider the asymptotic behavior of eigenvalues λ of A. Let λ = µ4 and µ ∈ S
defined by (3.4.9). Let ϕ be a solution of (3.4.7). There are constants ck, k = 1, 2, 3, 4,

such that

ϕ(z) = c1ϕ1(z) + c2ϕ2(z) + c3ϕ3(z) + c4ϕ4(z), (3.4.16)

where ϕk(z), k = 1, 2, 3, 4 are fundamental solutions given by (3.4.13), (3.4.14), (3.4.15),

and (3.4.5). By the boundary conditions of (3.4.8), we have

∆(µ)[c1, c2, c3, c4]> = 0,

where

∆(µ) =




ϕ1(0) ϕ2(0) ϕ3(0) ϕ4(0)

ϕ′1(0) ϕ′2(0) ϕ′3(0) ϕ′4(0)

ϕ1(1) ϕ2(1) ϕ3(1) ϕ4(1)

ϕ′1(1) ϕ′2(1) ϕ′3(1) ϕ′4(1)




. (3.4.17)

Hence, ϕ(z) has a nontrivial solution if and only if

det(∆(µ)) = 0.

Set

Φk(1) = ωkϕ0(1) + [ϕ1(1) +
1
h

ϕ′0(1)]µ−1

+
1
ωk

[ϕ2(1) +
1
h

ϕ′1(1)]µ−2 +
1
ω2

k

[ϕ3(1) +
1
h

ϕ′2(1)]µ−3, k = 1, 2, 3, 4

and

[a]4 = a +O(µ−4), ∀a ∈ C.
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Then µ ∈ S satisfies the characteristic equation

det(∆(µ)) = det [∆1(µ), ∆2(µ), ∆3(µ), ∆4(µ)] = 0,

where

∆k(µ) :=




[1]4

µh
[
ωk + 1

hϕ′0(0)µ−1 + 1
h

1
ωk

ϕ′1(0)µ−2 + 1
h

1
ω2

k
ϕ′2(0)µ−3

]
4

eµhωk

[
ϕ0(1) + 1

ωk
ϕ1(1)µ−1 + 1

ω2
k
ϕ2(1)µ−2 + 1

ω3
k
ϕ3(1)µ−3

]
4

µheµhωk [Φk(1)]4




, k = 1, 2, 3, 4.

Now we compute the high eigenvalues. A simple computation gives that

det(∆(µ)) = µ2h2eµh(ω3+ω4)
{

det(∆̃(µ)) +O(µ−4)
}

,

where

∆̃(µ) =
[
∆̃1(µ), ∆̃2(µ), ∆̃3(µ), ∆̃4(µ)

]
,

∆̃1(µ) :=




1

ω1 + 1
hϕ′0(0)µ−1 + 1

h
1
ω1

ϕ′1(0)µ−2 + 1
h

1
ω2

1
ϕ′2(0)µ−3

0

0




,

∆̃2(µ) :=




1

ω2 + 1
hϕ′0(0)µ−1 + 1

h
1
ω2

ϕ′1(0)µ−2 + 1
h

1
ω2

2
ϕ′2(0)µ−3

eµhω2

[
ϕ0(1) + 1

ω2
ϕ1(1)µ−1 + 1

ω2
2
ϕ2(1)µ−2 + 1

ω3
2
ϕ3(1)µ−3

]

eµhω2Φ2(1)




,

∆̃3(µ) :=




eµhω2

eµhω2

[
ω3 + 1

hϕ′0(0)µ−1 + 1
h

1
ω3

ϕ′1(0)µ−2 + 1
h

1
ω2

3
ϕ′2(0)µ−3

]

ϕ0(1) + 1
ω3

ϕ1(1)µ−1 + 1
ω2

3
ϕ2(1)µ−2 + 1

ω3
3
ϕ3(1)µ−3

Φ3(1)




,
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∆̃4(µ) :=




0

0

ϕ0(1) + 1
ω4

ϕ1(1)µ−1 + 1
ω2

4
ϕ2(1)µ−2 + 1

ω3
4
ϕ3(1)µ−3

Φ4(1)




.

Notice that

det(∆̃(µ)) = det
[
∆̂1(µ), ∆̂2(µ), ∆̂3(µ)

]
,

where

∆̂1(µ) :=




(ω2 − ω1) + 1
hϕ′1(0)[ 1

ω2
− 1

ω1
]µ−2 + 1

hϕ′2(0)[ 1
ω2

2
− 1

ω2
1
]µ−3

eµhω2

[
ϕ0(1) + 1

ω2
ϕ1(1)µ−1 + 1

ω2
2
ϕ2(1)µ−2 + 1

ω3
2
ϕ3(1)µ−3

]

eµhω2Φ2(1)




,

∆̂2(µ) :=




eµhω2

[
−(ω2 + ω1) + 1

hϕ′1(0)[ 1
ω3
− 1

ω1
]µ−2 + 1

hϕ′2(0)[ 1
ω2

3
− 1

ω2
1
]µ−3

]

ϕ0(1) + 1
ω3

ϕ1(1)µ−1 + 1
ω2

3
ϕ2(1)µ−2 + 1

ω3
3
ϕ3(1)µ−3

Φ3(1)




and

∆̂3(µ) :=




0

ϕ0(1) + 1
ω4

ϕ1(1)µ−1 + 1
ω2

4
ϕ2(1)µ−2 + 1

ω3
4
ϕ3(1)µ−3

Φ4(1)




.

Thus,

det(∆̃(µ))

=
[
(ω2 − ω1) +

1
h

ϕ′1(0)[
1
ω2
− 1

ω1
]µ−2 +

1
h

ϕ′2(0)[
1
ω2

2

− 1
ω2

1

]µ−3

]
·

[
(ϕ0(1) +

1
ω3

ϕ1(1)µ−1 +
1
ω2

3

ϕ2(1)µ−2 +
1
ω3

3

ϕ3(1)µ−3)Φ4(1)

− (ϕ0(1) + 1
ω4

ϕ1(1)µ−1 + 1
ω2

4
ϕ2(1)µ−2 + 1

ω3
4
ϕ3(1)µ−3)Φ3(1)

]

−e2µhω2

[
−(ω2 + ω1) +

1
h

ϕ′1(0)[
1
ω3
− 1

ω1
]µ−2 +

1
h

ϕ′2(0)[
1
ω2

3

− 1
ω2

1

]µ−3

]
·

[
(ϕ0(1) +

1
ω2

ϕ1(1)µ−1 +
1
ω2

2

ϕ2(1)µ−2 +
1
ω3

2

ϕ3(1)µ−3)Φ4(1)

− (ϕ0(1) + 1
ω4

ϕ1(1)µ−1 + 1
ω2

4
ϕ2(1)µ−2 + 1

ω3
4
ϕ3(1)µ−3)Φ2(1)

]
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= (ω2 − ω1)
[
1− 1

h
ϕ′1(0)µ−2 − 1

h
ϕ′2(0)(ω2 + ω1)µ−3

]
·

[
(ϕ0(1) +

1
ω3

ϕ1(1)µ−1 +
1
ω2

3

ϕ2(1)µ−2 +
1
ω3

3

ϕ3(1)µ−3)Φ4(1)

− (ϕ0(1) +
1
ω4

ϕ1(1)µ−1 +
1
ω2

4

ϕ2(1)µ−2 +
1
ω3

4

ϕ3(1)µ−3)Φ3(1)
]

+(ω2 + ω1)e2µhω2

[
1 +

1
h

ϕ′1(0)µ−2 +
1
h

ϕ′2(0)(ω2 − ω1)µ−3

]
·

[
(ϕ0(1) +

1
ω2

ϕ1(1)µ−1 +
1
ω2

2

ϕ2(1)µ−2 +
1
ω3

2

ϕ3(1)µ−3)Φ4(1)

− (ϕ0(1) +
1
ω4

ϕ1(1)µ−1 +
1
ω2

4

ϕ2(1)µ−2 +
1
ω3

4

ϕ3(1)µ−3)Φ2(1)
]

= (ω2 − ω1)2
[
ϕ2

0(1)− (ω2 + ω1)ϕ0(1)ϕ1(1)µ−1

+
[
−1

h
ϕ2

0(1)ϕ′1(0)− ϕ0(1)[ϕ2(1) +
1
h

ϕ′1(1)]

+ ϕ1(1)[ϕ1(1) +
1
h

ϕ′0(1)] + ϕ0(1)ϕ2(1)
]

µ−2

+(ω2 + ω1)
[

1
h

ϕ0(1)ϕ1(1)ϕ′1(0)− 1
h

ϕ2
0(1)ϕ′2(0)

+ ϕ0(1)[ϕ3(1) +
1
h

ϕ′2(1)]− ϕ2(1)[ϕ1(1) +
1
h

ϕ′0(1)]
]

µ−3

]

−(ω2 + ω1)2e2µhω2
[
ϕ2

0(1)− (ω2 − ω1)ϕ0(1)ϕ1(1)µ−1

+
[

1
h

ϕ2
0(1)ϕ′1(0) + ϕ0(1)[ϕ2(1) +

1
h

ϕ′1(1)]

−ϕ1(1)[ϕ1(1) +
1
h

ϕ′0(1)]− ϕ0(1)ϕ2(1)
]

µ−2

−(ω2 − ω1)
[

1
h

ϕ0(1)ϕ1(1)ϕ′1(0)− 1
h

ϕ2
0(1)ϕ′2(0)

+ ϕ0(1)[ϕ3(1) +
1
h

ϕ′2(1)]− ϕ2(1)[ϕ1(1) +
1
h

ϕ′0(1)]
]

µ−3

]
.

By the facts

ω2 − ω1 = −
√

2i, ω2 + ω1 = −
√

2,

we get the following Lemma 3.4.3.

Lemma 3.4.3. Let ∆(µ) be given by (3.4.17). Then the characteristic determinant

det(∆(µ)) has the following asymptotic expression:

det(∆(µ)) = −2ϕ2
0(1)µ2h2e

√
2µh

{
[1 +

√
2A0µ

−1 −A1µ
−2 −√2A2µ

−3]

+e2µhω2 [1 +
√

2iA0µ
−1 + A1µ

−2 +
√

2iA2µ
−3] +O(µ−4)

}
,

(3.4.18)
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where

A0 =
ϕ1(1)
ϕ0(1)

,

A1 =
1

ϕ2
0(1)

{
1
h

ϕ2
0(1)ϕ′1(0) + ϕ0(1)[ϕ2(1) +

1
h

ϕ′1(1)]

−ϕ1(1)[ϕ1(1) +
1
h

ϕ′0(1)]− ϕ0(1)ϕ2(1)
}

,

A2 =
1

ϕ2
0(1)

{
1
h

ϕ0(1)ϕ1(1)ϕ′1(0)− 1
h

ϕ2
0(1)ϕ′2(0)

+ ϕ0(1)[ϕ3(1) +
1
h

ϕ′2(1)]− ϕ2(1)[ϕ1(1) +
1
h

ϕ′0(1)]
}

.

(3.4.19)

Theorem 3.4.1. Let λ = µ4 satisfy (3.4.3) with µ ∈ S defined by (3.4.9). Then λ has

the following asymptotic expansion:

λn =
(
µ̃n + k0µ̃

−1
n + k1µ̃

−2
n + k2µ̃

−3
n +O(n−4)

)4

= − 1
h4

(
n +

1
2

)4

π4 − 1
h3

(2n + 1)2π2A0 +
2
h2

(2n + 1)π(A2
0 + A1)

+
4
h

A2 − 4
h

A0A1 − 2
h2

A2
0 −

8
3h

A3
0 +O(n−1), n →∞,

(3.4.20)

where




µ̃n = −(2n + 1)πi

2hω2
,

k0 =
√

2(1− i)
2hω2

A0,

k1 = − 1
hω2

(A2
0 + A1),

k2 = −
√

2(1 + i)
2hω2

A2 +
1

2hω2

[√
2(1 + i)A0A1 +

2i

hω2
A2

0 +
2
√

2(1 + i)
3

A3
0

]

(3.4.21)

and Ak, k = 0, 1, 2 are given by (3.4.19), (3.4.5), (3.4.14), and (3.4.15).

Proof. Since in sector S, det(∆(µ)) has the asymptotic form given by (3.4.18), det(∆(µ)) =

0 yields

[1 +
√

2A0µ
−1 −A1µ

−2 −√2A2µ
−3]

+e2µhω2 [1 +
√

2iA0µ
−1 + A1µ

−2 +
√

2iA2µ
−3] +O(µ−4) = 0,

(3.4.22)

which can also be rewritten as

[1 +
√

2A0µ
−1] + e2µhω2 [1 +

√
2iA0µ

−1] +O(µ−2) = 0 (3.4.23)

or

1 + e2µhω2 +O(µ−1) = 0. (3.4.24)
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Since in sector S, the solutions of 1 + e2µhω2 = 0 are given by

µ̃n = −(2n + 1)πi

2hω2
, n = 0, 1, 2, . . . ,

it follows from Rouché’s Theorem that the solutions of equation (3.4.24) have the form of

µ̂n = µ̃n + αn, αn = O(n−1), n →∞.

Substitute µ̂n into (3.4.23) and use the fact e2µ̃nhω2 = −1 to obtain

[1 +
√

2A0µ̂
−1
n ]− e2αnhω2 [1 +

√
2iA0µ̂

−1
n ] +O(µ̂−2

n ) = 0. (3.4.25)

Since

µ̂−1
n = (µ̃n + αn)−1 = µ̃−1

n +O(n−3),

expand the exponential function in (3.4.25) according to its Taylor series, to give

2αnhω2 =
√

2A0µ̃
−1
n −

√
2iA0µ̃

−1
n +O(n−2).

Hence

αn = k0µ̃
−1
n +O(n−2)

and

µ̂n = µ̃n + k0µ̃
−1
n +O(n−2), n →∞.

By Rouché’s Theorem again, the solutions of equation (3.4.23) have the form of

µ̆n = µ̃n + k0µ̃
−1
n + βn, βn = O(n−2), n →∞.

Substitute µ̆n into (3.4.26) below

[1 +
√

2A0µ
−1 −A1µ

−2] + e2µhω2 [1 +
√

2iA0µ
−1 + A1µ

−2] +O(µ−3) = 0 (3.4.26)

and use the fact

e2µ̃nhω2 = −1, µ̆−1
n = µ̃−1

n +O(n−3)

to obtain

[1 +
√

2A0µ̃
−1
n −A1µ̃

−2
n ]

− exp
{√

2(1− i)A0µ̃
−1
n + 2hω2βn

}
[1 +

√
2iA0µ̃

−1
n + A1µ̃

−2
n ] +O(n−3) = 0.

Similarly, we have

βn = k1µ̃
−2
n +O(n−3)
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and

µ̆n = µ̃n + k0µ̃
−1
n + k1µ̃

−2
n +O(n−3), n →∞.

By Rouché’s Theorem again, the solutions of equation (3.4.26) have the form of

µn = µ̃n + k0µ̃
−1
n + k1µ̃

−2
n + γn, γn = O(n−3), n →∞.

Substitute µn into (3.4.22), and notice

µ−1
n = µ̃−1

n − k0µ̃
−3
n +O(n−4),

to obtain that

[−2hω2k0 +
√

2A0(1− i)
]
µ̃−1

n

− [
2hω2k1 + 2hω2k0

√
2iA0 + 2A1 + 2h2ω2

2k
2
0

]
µ̃−2

n

−{
2hω2k2 +

√
2[A0k0 + A2] +

√
2i[−A0k0 + A2] + 2hω2k0A1

+
√

2iA0[2hω2k1 + 2h2ω2
2k

2
0] + 4h2ω2

2k0k1 + 4
3h3ω3

2k
3
0

}
µ̃−3

n

+O(n−4) = 0.

So, we have

γn = k2µ̃
−3
n +O(n−4)

and

µn = µ̃n + k0µ̃
−1
n + k1µ̃

−2
n + k2µ̃

−3
n +O(n−4), n →∞.

We then get (3.4.20) eventually by λn = µ4
n. The proof is complete. ¥

Theorem 3.4.1 is about the asymptotic expression for high eigenfrequencies. To end

this section, we indicate that the high eigenfrequencies are actually real.

Proposition 3.4.2. Suppose that b > 0. Let A be defined by (3.2.4) and

Λ0 = {λ ∈ σ(A)| Imλ 6= 0}. (3.4.27)

Then Λ0 is a bounded set of C. Moreover, there is no spectrum on the imaginary axis and

hence Reλ ≤ −α for some α > 0 for all λ ∈ σ(A).

Proof. By Theorems 3.3.1 and 3.3.2, Λ0 ⊂ σp(A). For any λ = τ + iω ∈ Λ0, we may take

(f, λf), f 6= 0 to be an eigenfunction corresponding to λ. Multiply the first equation of
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(3.3.1) by f and then integrate over [0, 1] with respect to x, to obtain, after separating

real part and imaginary part, that




(τ2 − ω2)
∫ 1

0
ρ(x)|f(x)|2dx +

∫ 1

0
[a(x) + τb(x)]|f ′′(x)|2dx = 0,

2τω

∫ 1

0
ρ(x)|f(x)|2dx + ω

∫ 1

0
b(x)|f ′′(x)|2dx = 0,

which are equivalent to




|λ|2
∫ 1

0
ρ(x)|f(x)|2dx =

∫ 1

0
a(x)|f ′′(x)|2dx,

−2Reλ
∫ 1

0
ρ(x)|f(x)|2dx =

∫ 1

0
b(x)|f ′′(x)|2dx.

(3.4.28)

Thus Reλ 6= 0, and

|λ| ≤ |λ|2
|Reλ| = 2

∫ 1

0
a(x)|f ′′(x)|2dx

∫ 1

0
b(x)|f ′′(x)|2dx

≤ 2 max
0≤x≤1

a(x)
b(x)

. (3.4.29)

So Λ0 is a bounded set of C and there is no eigenvalue on the imaginary axis. These

together with (i) of Theorem 3.3.2 show that Reλ ≤ −α for some α > 0 for all λ ∈ σ(A).

The proof is complete. ¥



Chapter 4

On Spectrum and Riesz Basis

Property for One-Dimensional

Wave Equation with Boltzmann

Damping

4.1 Introduction

In this Chapter, we study the one-dimensional wave equation with Boltzmann damping.

Two different Boltzmann integrals that represent the memory of materials are considered.

The spectral properties for both cases are thoroughly analyzed. It is found that when the

memory of system is counted from the infinity, the spectrum of system contains a left half

complex plane, which is a sharp contrast to most results in elastic vibration systems that

the vibrating dynamics can be considered from the vibration frequency point of view. This

suggests us to investigate the system with memory counted from the vibrating starting

moment. In the later case, it is shown that the spectrum of system determines completely

the dynamic behavior of the vibration: There is a sequence of generalized eigenfunctions

of the system, which forms a Riesz basis for the state space. As the consequences, the

spectrum-determined growth condition and exponential stability are concluded.

Particular interest is on the difference between two different types of Boltzmann inte-

grals for the dynamics of vibrating systems. We use the one-dimensional wave equation

with Boltzmann model of the viscoelasticity for expository demonstration. It is assumed

that the instantaneous stress depends on the instantaneous strain and history of strain
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rate linearly. When the history is entire, that is, the memory is counted from −∞ to t,

then the stress σ at time t and position x is ([72]):

σ(x, t) =
∫ t

−∞
η(x, t− s)εt(x, s)ds (ε(x,−∞) = 0)

= η(x, 0)ε(x, t) +
∫ t

−∞
ηt(x, t− s)ε(x, s)ds

= η(x, 0)ε(x, t) +
∫ ∞

0
ηs(x, s)ε(x, t− s)ds

= η(x,∞)ε(x, t)−
∫ ∞

0
ηs(x, s)[ε(x, t)− ε(x, t− s)]ds

= a(x)ε(x, t)− b(x)
∫ ∞

0
gs(s)[ε(x, t)− ε(x, t− s)]ds,

(4.1.1)

while the memory is finite, that is, the memory is counted from the vibration starting

moment 0 to t, the stress is:

σ(x, t) =
∫ t

0
η(x, t− s)εt(x, s)ds (ε(x, 0) = 0)

= η(x, 0)ε(x, t) +
∫ t

0
ηt(x, t− s)ε(x, s)ds

= [a(x) + b(x)g(0)]ε(x, t) +
∫ t

0
b(x)gt(t− s)ε(x, s)ds,

(4.1.2)

where we take the relaxation function in the form of ([72])

η(x, s) = a(x) + b(x)g(s), g(∞) = 0. (4.1.3)

So, the corresponding governing equation to infinite memory is ([72]):




utt(x, t) =
(

a(x)ux(x, t)− b(x)
∫ ∞

0
gs(s)[ux(x, t)− ux(x, t− s)]ds

)

x

,

u(0, t) = u(1, t) = 0, t > 0, 0 < x < 1,

u(x, t) = u0(x, t), ut(x, t) = u1(x, t), t ≤ 0, 0 < x < 1,

(4.1.4)

and the equation to finite memory is ([82]):




utt(x, t) =
(

a(x)ux(x, t) + b(x)
∫ t

0
gt(t− s)ux(x, s)ds

)

x

, x ∈ (0, 1), t > 0,

u(0, t) = u(1, t) = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x),

(4.1.5)

where in (4.1.5), we replace a(x) + b(x)g(0) by a(x) for the sake of simplicity.
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In order to compare the models (4.1.4) and (4.1.5) qualitatively, we take the kernel

simply as the finite sum of exponential polynomials, and both a and b are positive constant

functions: 



g(s) =
N∑

j=1

aje
−bjs, 0 < aj , bj ∈ R, 1 ≤ N ∈ N,

a(x) ≡ a > 0, b(x) ≡ b > 0,

(4.1.6)

where it is assumed that

0 < b1 < b2 < · · · < bN . (4.1.7)

It is noted that since we replace a + bg(0) by a in (4.1.5) and a > 0 in modeling (4.1.2),

it is natural to assume in (4.1.6) that

a− bg(0) = a− b

N∑

j=1

aj > 0. (4.1.8)

The system (4.1.4) has been formulated into an abstract evolution equation in [72]

based on the idea of [22]. In next section, Section 4.2, the spectral analysis for this system

with kernel (4.1.6) is thoroughly performed. The asymptotic distribution of eigenvalues is

presented. It is shown that the spectrum of the system operator contains a half complex

plane, which is an unexpected result for an elastic vibrating system, see Theorem 4.2.2.

Section 4.3 is devoted to the analysis of system (4.1.5), (4.1.6). We adapt the meth-

ods used in [91] for the heat equation with finite memory. The spectral analysis for the

system operator that is not of compact resolvent shows that there is a sequence of gen-

eralized eigenfunctions of the system operator, which forms a Riesz basis for the state

space, see Theorem 4.3.5. This is a sharp contrast with the heat equation with memory

discussed in [91], but coincides, in reflecting the dynamic behavior of system via the vi-

brating frequencies, with those presented in [33, 34] where the system operators are of

compact resolvent. Consequently, the spectrum-determined growth condition as well as

the exponential stability of the system is concluded.

4.2 Infinite memory

In this section, we analyze the spectrum of system (4.1.4) with kernel (4.1.6). Special

attention would be paid to the distribution of the spectrum on the complex plane and the

asymptotic behavior of the eigenvalues.
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4.2.1 System operator setup

The following general formulation comes from [72] for general kernel satisfying

(g1) g ∈ C2(0,∞) ∩ C[0,∞), and gs ∈ L1(0,∞);

(g2) g > 0, gs < 0, gss > 0 on (0,∞);

(g3) −kgs ≤ gss ≤ −Kgs on (0,∞) for some k, K > 0;

(g4) g(∞) = 0.

It is easily seen that the special kernel (4.1.6) satisfies the above four conditions. Let

y(x, t, s) = u(x, t)− u(x, t− s), v = ut.

Then

yt = ut − ys,

and

y(·, ·, 0) = 0. (4.2.1)

The energy of the system (4.1.4) is given by

E(t) =
1
2

∫ 1

0
(a|ux(x, t)|2 + |ut(x, t)|2)dx +

1
2

∫ ∞

0
|gs(s)|

∫ 1

0
b|yx(x, t, s)|2dxds. (4.2.2)

Let W = H1
0 (0, 1) with the inner product:

〈w1, w2〉 = b

∫ 1

0
w′1(x)w′2(x)dx, ∀ w1, w2 ∈ W. (4.2.3)

Define the energy state Hilbert space

H = V ×H × Y, (4.2.4)

where

V = H1
0 (0, 1), ‖u‖2

V = a

∫ 1

0
|u′(x)|2dx,

H = L2(0, 1), ‖v‖2
H =

∫ 1

0
|v(x)|2dx,

Y = L2((0,∞);W ), ‖y‖2
Y =

∫ ∞

0
|gs(s)|‖y‖2

W ds.

(4.2.5)

Define the system operator A : D(A)(⊂ H) → H as




Az =
(

v,

(
au′ − b

∫ ∞

0
gs(s)y′(·, s)ds

)′
, v − ys

)
,∀ z = (u, v, y) ∈ D(A),

D(A) =





z ∈ H

∣∣∣∣∣∣∣

v ∈ V, ys ∈ Y, y(·, 0) = 0,

au′ − b
∫∞
0 gs(s)y′(·, s)ds ∈ H1(0, 1)





.

(4.2.6)
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Then system (4.1.4) can be formulated as an abstract evolution equation in H ([72]):




d
dt

z(t) = Az(t),

z(0) = z0,

(4.2.7)

where z(t) = (u(·, t), ut(·, t), y(·, t, ·)), z0(x) = (u0(x, 0), u1(x, 0), u0(x, 0) − u0(x,−s)) is

the state variable and the initial value, respectively.

The Proposition 4.2.1 below justifies the adjoint operator of A.

Proposition 4.2.1. Let A be defined by (4.2.6). Then its adjoint A∗ has the following

form:




A∗z =
(
−v, −

(
au′ − b

∫ ∞

0
gs(s)y′(·, s)ds

)′
,−(v − ys − gss(s)

gs(s)
y)

)
,

D(A∗) =





z = (u, v, y) ∈ H

∣∣∣∣∣∣∣

u, v ∈ V, y, ys ∈ Y, y(·, 0) = 0,

au′ − b
∫∞
0 gs(s)y′(·, s)ds ∈ H1(0, 1)





.

(4.2.8)

The next Lemma 4.2.1 comes from Lemma 2.1 in [69].

Lemma 4.2.1. Suppose that y ∈ Y , Reλ > −k
2 , g satisfies conditions (g1)-g(4),

h(s) =
∫ s

0
e−λ(s−τ)y(τ)dτ.

Then

(i)

h ∈ Y ∩ C([0,∞),W ), hs ∈ Y

and

‖h‖2
Y ≤ 1

δ
(2Reλ + k − δ)−1‖y‖2

Y for δ ∈ (0, 2Reλ + k); (4.2.9)

(ii)

Re
∫ ∞

0
gs(s)〈hs(s), h(s)〉W ds ≤ −k

2
‖h‖2

Y .

It was explained shortly in [72] that A is invertible and generates a C0-semigroup.

Here, we give a simple proof.

Proposition 4.2.2. Let A be defined by (4.2.6). Then A−1 is given by

A−1




u

v

y




(x, s) =




h1(x) + h2(x)− [h1(1) + h2(1)]x

u(x)

u(x)s−
∫ s

0
y(x, ζ)dζ




, (4.2.10)
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where




h1(x) =
b

a
u(x)

∫ ∞

0
sgs(s)ds− b

a

∫ x

0

[∫ ∞

0
gs(s)

∫ s

0
yx(τ, ζ)dζds

]
dτ,

h2(x) =
1
a

∫ x

0

[∫ τ

0
v(ζ)dζ

]
dτ.

(4.2.11)

And hence 0 ∈ ρ(A). Moreover, A is dissipative, and thus A generates a C0-semigroup of

constructions eAt on H.

Proof. Let (u, v, y) ∈ H. By A(ũ, ṽ, ỹ) = (u, v, y), it has




ṽ(x) = u(x),
(

aũx(x)− b

∫ ∞

0
gs(s)ỹx(x, s)ds

)

x

= v(x),

ṽ(x)− ỹs(x, s) = y(x, s).

This together with the boundary conditions shows that

ṽ = u, ỹ = us−
∫ s

0
y(·, ζ)dζ

and 



(
aũ′(x)− b

∫ ∞

0
gs(s)

[
u′(x)s−

∫ s

0
y′(x, ζ)dζ

]
ds

)′
= v(x),

ũ(0) = ũ(1) = 0.

A direct computation gives

ũ(x) = h1(x) + h2(x) +
C

a
x,

where h1(x), h2(x) are given by (4.2.11), and C is a constant to be determined. Using the

boundary condition ũ(1) = 0 gives

C = −a[h1(1) + h2(1)].

Therefore

ũ(x) = h1(x) + h2(x)− [h1(1) + h2(1)]x.

By Lemma 4.2.1, it has

ỹ ∈ Y.

And hence,

(ũ, ṽ, ỹ) ∈ D(A),

(4.2.10) holds.
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For each z = (u, v, y) ∈ D(A), it has

〈Az, z〉 = 〈(v, (au′ − b
∫∞
0 gs(s)y′(·, s)ds)′, v − ys)), (u, v, y)〉

=
∫ 1

0
av′(x)u′(x)dx +

∫ 1

0

(
au′(x)− b

∫ ∞

0
gs(s)y′(x, s)ds

)′
v(x)dx

+
∫ ∞

0
|gs(s)|

∫ 1

0
b(v(x)− ys(x, s))′y′(x, s)dxds

=
∫ 1

0
a

(
v′(x)u′(x)− u′(x)v′(x)

)
dx

+b

∫ 1

0

∫ ∞

0
gs(s)

(
y′(x, s)v′(x)− v′(x)y′(x, s)

)
dsdx

+b

∫ 1

0

∫ ∞

0
gs(s)y′s(x, s)y′(x, s)dsdx.

By Lemma 4.2.1, we have

Re〈Az, z〉 ≤ −k

2
‖y‖2

Y ≤ 0.

Therefore, A is dissipative. By the Lumer-Phillips Theorem, A generates a C0-semigroup

of contractions on H. The proof is complete. ¥

4.2.2 Spectral analysis for system operator

In this subsection, we analyze the spectrum of A with the kernel (4.1.6). First, consider

the eigenvalue problem. Suppose Az = λz for 0 6= λ ∈ C and 0 6= z = (u, v, y) ∈ D(A).

Then 



v(x) = λu(x),
(

au′(x)− b

∫ ∞

0
gs(s)y′(x, s)ds

)′
= λv(x),

v(x)− ys(x, s) = λy(x, s),

u(0) = u(1) = 0.

(4.2.12)

From the third equation of (4.2.12) and y(·, 0) = 0, we have

y(x, s) =
1
λ

(1− e−λs)v(x). (4.2.13)

We claim that v can not be identical to a constant. Actually, if this is the case, it follows

from (4.2.12) that

(u, v, y) = 0.

Hence, for any Reλ ≤ − b1
2 ,

y /∈ Y.
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Therefore,

σp(A) ⊂ D1 = {λ ∈ C | −b1

2
< Reλ < 0}. (4.2.14)

By this fact, we always assume that λ ∈ D1 when we mention the eigenvalues of A in

what follows. Collecting these facts just mentioned, we find, from (4.2.12) and (4.2.13),

that λ ∈ σp(A) if and only if (λ, u), u 6= 0, satisfies





a + b

N∑

j=1

aj − b

N∑

j=1

ajbj

λ + bj


 u′′(x)− λ2u(x) = 0,

u(0) = u(1) = 0.

(4.2.15)

Lemma 4.2.2. Let A be defined by (4.2.6) and

p(λ) = a + b
N∑

j=1

aj − b
N∑

j=1

ajbj

λ + bj
. (4.2.16)

Then there exists a unique solution λc ∈ {λ| − b1 < Reλ < 0} to p(λ) = 0. Moreover, λc

is real, and

λc /∈ σp(A). (4.2.17)

Proof. Obviously, for any j = 1, 2, · · · , N , λ = −bj is not the zero point of p(λ). Thus,

p(λ) = 0 is equivalent to p̃(λ) = 0, where

p̃(λ) = p(λ)
N∏

j=1

(λ + bj)

=


a + b

N∑

j=1

aj




N∏

j=1

(λ + bj)− b

N∑

j=1

ajbj

N∏

k=1,k 6=j

(λ + bk).

However, p̃(λ) is an N -th order polynomial, and hence there are at most N number of zeros

for p(λ). Now we find these zeros. Notice that p(λ) is continues in
(
∪N−1

j=1 (−bj+1,−bj)
)
∪

(−b1,∞), and

lim
λ→−b−j

p(λ) = +∞, lim
λ→−b+j

p(λ) = −∞, p(0) > 0, j = 1, 2, · · · , N.

It follows that there exists a solution to p(λ) = 0 in (−bj+1,−bj), j = 0, 1, 2, · · · , N − 1,

here we set b0 = 0. Moreover, when λc > − b1
2 and p(λ) = 0, it follows from (4.2.15) that

u ≡ 0. This together with (4.2.12) gives

(u, v, y) = 0.

Hence (4.2.17) is valid. The proof is complete. ¥
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By Lemma 4.2.2, the eigenvalue problem (4.2.15) can be written as




u′′(x) =
λ2

p(λ)
u(x),

u(0) = u(1) = 0.

(4.2.18)

The nonzero solution of (4.2.18) is found to be

u(x) = e

√
λ2

p(λ)
x − e

−
√

λ2

p(λ)
x
, (4.2.19)

where λ satisfies

e

√
λ2

p(λ) − e
−

√
λ2

p(λ) = 0. (4.2.20)

That is

e
2
√

λ2

p(λ) = 1,

or
λ2

p(λ)
= −n2π2, n = 1, 2, · · · . (4.2.21)

Substituting (4.2.21) into (4.2.19) gives the corresponding eigenfunction

(u(x), λu(x), (1− e−λs)u(x)),

where

u(x) = sin nπx, (4.2.22)

for some n ∈ N+.

Set

ã = a + b
N∑

j=1

aj . (4.2.23)

When |λ| is large enough, since

λ2

p(λ)
=

λ2

ã
· 1

1− b
ã

∑N
j=1

ajbj

λ+bj

=
λ2

ã


1 +

b

ã

N∑

j=1

ajbj

λ + bj
+

b2

ã2




N∑

j=1

ajbj

λ + bj




2
 +O(|λ|−1)

=
1
ã


λ2 +

b

ã

N∑

j=1

ajbjλ

1 + bj

λ

+
b2

ã2




N∑

j=1

ajbj

1 + bj

λ




2
 +O(|λ|−1)

=
1
ã


λ2 +

b

ã

N∑

j=1

ajbjλ− b

ã

N∑

j=1

ajb
2
j +

b2

ã2




N∑

j=1

ajbj




2
 +O(|λ|−1),
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we obtain that

λ2 +
b

ã

N∑

j=1

ajbjλ− b

ã

N∑

j=1

ajb
2
j +

b2

ã2




N∑

j=1

ajbj




2

+ ãn2π2 +O(|λ|−1) = 0.

Thus, the eigenvalues of A are found to be

λn = − b

2ã

N∑

j=1

ajbj ± i
√

ãnπ +O(n−1), n →∞.

When λ → λc, µ = λ− λc → 0. Since

p(λ) = a + b

N∑

j=1

aj − b

N∑

j=1

ajbj

λ + bj

= a + b
N∑

j=1

aj − b
N∑

j=1

ajbj

λc + bj

1

1 + (λ−λc)
λc+bj

= µb
N∑

j=1

ajbj

[
1

(λc + bj)2
− µ

(λc + bj)3
+O(µ2)

]
,

it has

λ2

p(λ)
=

λ2
c + 2λcµ + µ2

p(λ)

=
1
µ

λ2
c∑N

j=1
bajbj

(λc+bj)2

·
(

1 +
2
λc

µ +
1
λ2

c

µ2

)
·

1−

∑N
j=1

ajbj

(λc+bj)3∑N
j=1

ajbj

(λc+bj)2

µ +O(µ2)



−1

=
1
µ

λ2
c∑N

j=1
bajbj

(λc+bj)2

·
(

1 +
2
λc

µ +
1
λ2

c

µ2

)
·

1 +

∑N
j=1

ajbj

(λc+bj)3∑N
j=1

ajbj

(λc+bj)2

µ


 +O(µ)

=
1
µ

λ2
c

∆

[
1 +

(
2
λc

+
∆1

∆

)
µ

]
+O(µ),

where 



∆ =
N∑

j=1

bajbj

(λc + bj)2
,

∆1 =
N∑

j=1

ajbj

(λc + bj)3
.

(4.2.24)

This together with (4.2.21) yields

1
µ

λ2
c

∆

[
1 +

(
2
λc

+
∆1

∆

)
µ

]
+O(µ) = −n2π2, n →∞.

Thus

µn = − 1
n2π2

λ2
c

∆
+O(n−3), n →∞
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or

λn = λc − 1
n2π2

λ2
c

∆
+O(n−3), n →∞.

We summarize these results as Theorem 4.2.1 following.

Theorem 4.2.1. Let A be defined by (4.2.6). Then the eigenvalues of A must be located

inside of D1 that is given by (4.2.14). The eigenfunction corresponding to λ is

(u(x), λu(x), (1− e−λs)u(x))

with

u(x) = sin nπx, (4.2.25)

for some n ∈ N+. More precisely,

(i). When λc > − b1
2 , where λc is given in Lemma 4.2.2, there is a sequence of eigen-

values {λn} of A, which have the following asymptotic expression:

λn = λc − 1
n2π2

λ2
c

∆
+O(n−3), n →∞, (4.2.26)

where ∆ is given by (4.2.24). Furthermore, the corresponding eigenfunctions

(un(x), λnun(x), (1− e−λns)un(x))

are of the form:

un(x) = sin nπx, n →∞. (4.2.27)

(ii). When |λ| → ∞ and

− b

2ã

N∑

j=1

ajbj > −b1

2
,

the eigenvalues of A have the following asymptotic expressions:

λn = − b

2ã

N∑

j=1

ajbj ± i
√

ãnπ +O(n−1), n →∞, (4.2.28)

where ã is given by (4.2.23). In particular,

Reλn → − b

2ã

N∑

j=1

ajbj < 0, n →∞, (4.2.29)

that is, Reλ = − b
2ã

∑N
j=1 ajbj is the asymptote of the eigenvalues specified by (4.2.28).

Furthermore, the corresponding eigenfunctions

(un(x), λnun(x), (1− e−λns)un(x))

satisfy (4.2.27).
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Now we characterize the spectrum of A.

Theorem 4.2.2. Let A be defined by (4.2.6), and λc be given in Lemma 4.2.2. Then

σ(A) = σp(A) ∪ {λc} ∪ {λ| Reλ ≤ −b1

2
}. (4.2.30)

Proof. Let λ /∈ σp(A). If λ = 0, by Proposition 4.2.2, λ ∈ ρ(A). So we need only consider

the case of λ 6= 0. For any z̃ = (ũ, ṽ, ỹ) ∈ H. Solve (λI −A)z = z̃ for z = (u, v, y), that is,




λu(x)− v(x) = ũ(x),

λv(x)−
(

au′(x)− b

∫ ∞

0
gs(s)y′(x, s)ds

)′
= ṽ(x),

λy(x, s)− (v(x)− ys(x, s)) = ỹ(x, s),

u(0) = u(1) = 0,

(4.2.31)

to get 



v(x) = λu(x)− ũ(x),

y(x, s) =
1
λ

(1− e−λs)v(x) + e−λs

∫ s

0
eλτ ỹ(x, τ)dτ

(4.2.32)

and




(
au′(x)− b

∫ ∞

0
gs(s)y′(x, s)ds

)′
− λ2u(x) + λũ(x) + ṽ(x) = 0,

u(0) = u(1) = 0.

(4.2.33)

There are three cases:

Case I: Reλ ≤ − b1
2 . We claim that

λ ∈ σ(A).

In fact, take

z̃ = (ũ, ṽ, ỹ) = (0, ṽ, 0), ∀ṽ ∈ H, ṽ 6= 0.

It follows from (4.2.32) and (4.2.33) that




v(x) = λu(x),

y(x, s) = (1− e−λs)u(x),
(

au′(x)− b

∫ ∞

0
gs(s)(1− e−λs)u′(x)ds

)′
− λ2u(x) + ṽ(x) = 0,

u(0) = u(1) = 0.

(4.2.34)
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If (4.2.34) admits a solution, it must have

y ∈ Y.

This together with Reλ ≤ − b1
2 shows that u′ ≡ 0. Thus, u ≡ 0. So

ṽ ≡ 0.

This is a contradiction. Therefore, there is no solution to equation (4.2.34), which means

that

λ ∈ σ(A).

Case II: Reλ > − b1
2 and λ 6= λc. We show that

λ ∈ ρ(A).

By Lemma 4.2.1, it has

y ∈ Y.

(4.2.33) is equivalent to




η′(x)− λ2u(x) + λũ(x) + ṽ(x) = 0,

η(x) = p(λ)u′(x) +
1
λ

(a− p(λ))ũ′(x)

−b

∫ ∞

0
gs(s)

[∫ s

0
e−λ(s−τ)ỹ′(x, τ)dτ

]
ds,

u(0) = u(1) = 0.

(4.2.35)

We write above equation as the following first order system of differential equations




d

dx




u(x)

η(x)


 =




0 1
p(λ)

λ2 0







u(x)

η(x)


 +




1
p(λ)U(x)

−λũ(x)− ṽ(x)


 ,

u(0) = u(1) = 0,

(4.2.36)

where

U(x) = − 1
λ

(a− p(λ))ũ′(x) + b

∫ ∞

0
gs(s)

[∫ s

0
e−λ(s−τ)ỹ′(x, τ)dτ

]
ds. (4.2.37)

Let

A(λ) =




0 1
p(λ)

λ2 0


 .
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Then

eA(λ)x =




a11(λ, x) a12(λ, x)

a21(λ, x) a22(λ, x)


 ,

where




a11(λ, x) = cosh
(

λ√
p(λ)

x

)
,

a21(λ, x) = λ
√

p(λ) sinh
(

λ√
p(λ)

x

)
,





a12(λ, x) = 1

λ
√

p(λ)
sinh

(
λ√
p(λ)

x

)
,

a22(λ, x) = cosh
(

λ√
p(λ)

x

)
.

The general solution of (4.2.36) is given by




u(x)

η(x)


 = eA(λ)x




u(0)

η(0)


−

∫ x

0
eA(λ)(x−γ)




1
p(λ)U(γ)

−λũ(γ)− ṽ(γ)


 dγ.

By u(0) = 0, it has,

u(x) = a12(λ, x)η(0)

−
∫ x

0

[
1

p(λ)
a11(λ, x− γ)U(γ) + a12(λ, x− γ)(−λũ(γ)− ṽ(γ))

]
dγ

(4.2.38)

and

η(x) = a22(λ, x)η(0)

−
∫ x

0

[
1

p(λ)
a21(λ, x− γ)U(γ) + a22(λ, x− γ)(−λũ(γ)− ṽ(γ))

]
dγ.

(4.2.39)

Since λ /∈ σp(A), it follows from (4.2.20) that

a12(λ, 1) =
1

λ
√

p(λ)
sinh

(
λ√
p(λ)

)
6= 0.

By the boundary condition u(1) = 0, it has

η(0)

=
1

a12(λ, 1)

∫ 1

0

[
1

p(λ)
a11(λ, 1− γ)U(γ) + a12(λ, 1− γ)(−λũ(γ)− ṽ(γ))

]
dγ.

(4.2.40)

Hence u is uniquely determined by (4.2.38). By the second equation of (4.2.35) and

(4.2.39), it has

u′ ∈ L2(0, 1).

This together with (4.2.32) shows that (λI −A)−1 exists and is bounded, or

λ ∈ ρ(A).
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Case III: λ = λc > − b1
2 . In this case, it follows from (4.2.33) that





u(x) =
1
λ2

[
λũ(x) + ṽ(x)− U ′(x)

]
,

u(0) = u(1) = 0,
(4.2.41)

where U is given by (4.2.37). Since ũ ∈ H1
0 (0, 1), (4.2.41) means that (4.2.31) admits a

solution if and only if U is differentiable and

ṽ(0)− U ′(0) = ṽ(1)− U ′(1) = 0.

Thus

λ /∈ ρ(A).

Combing all these cases completes the proof. ¥

4.3 Finite memory

In this section, we turn to the system (4.1.5) with kernel (4.1.6). We analyze the spectrum

of the system operator first, and then prove the Riesz basis property for the system. The

idea comes from [91] but the result is different, particularly for the basis property.

4.3.1 System operator setup

In what follows, we always assume (4.1.8). Set

hj(x, t) = ajbj

∫ t

0
e−bj(t−s)ux(x, s)ds, j = 1, 2, · · · , N. (4.3.1)

Then it has 



(hj)t(x, t) = ajbjux(x, t)− bjhj(x, t),

(hj)x(x, t) = ajbj

∫ t

0
e−bj(t−s)uxx(x, s)ds,

hj(x, 0) = 0.

(4.3.2)

Thus we can rewrite the system (4.1.5),(4.1.6) as




utt(x, t) =


aux(x, t)− b

N∑

j=1

hj(x, t)




x

, x ∈ (0, 1), t > 0,

(hj)t(x, t) = ajbjux(x, t)− bjhj(x, t), j = 1, 2, · · · , N,

u(0, t) = u(1, t) = 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), hj(x, 0) = 0, j = 1, 2, · · · , N.

(4.3.3)
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The system energy is given by

E(t) =
1
2

∫ 1

0


a|ux(x, t)|2 + |ut(x, t)|2 +

N∑

j=1

|hj(x, t)|2

 dx. (4.3.4)

We consider system (4.3.3) in the energy state Hilbert space

H = H1
0 (0, 1)× (L2(0, 1))N+1

with the inner product:

〈(u, v, h1, · · · , hN ), (ũ, ṽ, h̃1, · · · , h̃N )〉

=
∫ 1

0
au′(x)ũ′(x)dx +

∫ 1

0
v(x)ṽ(x)dx +

N∑

j=1

∫ 1

0
hj(x)h̃j(x)dx,

∀ (u, v, h1, · · · , hN ), (ũ, ṽ, h̃1, · · · , h̃N ) ∈ H.

(4.3.5)

Define the system operator B : D(B)(⊂ H) → H as




B




u

v

h1

...

hN




>

=




v

(au′ − b
N∑

j=1

hj)′

a1b1u
′ − b1h1

...

aNbNu′ − bNhN




>

,

D(B) =








u

v

h1

...

hN




>∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u, v ∈ H1
0 (0, 1),

hj ∈ L2(0, 1), j = 1, · · · , N,

au′ − b
N∑

j=1

hj ∈ H1(0, 1)





.

(4.3.6)

Then (4.3.3) can be formulated into an abstract evolution equation in H:




d
dt

U(t) = BU(t),

U(0) = U0,

(4.3.7)

where 



U(t) = (u(·, t), ut(·, t), h1(·, t), · · · , hN (·, t)),

U0 = (u0(·), u1(·), 0, · · · , 0)
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is the state variable and the initial value, respectively.

The following Lemma 4.3.1 shows that B is invertible.

Lemma 4.3.1. Let B be defined by (4.3.6). Then 0 ∈ ρ(B).

Proof. Let Ũ = (ũ, ṽ, h̃1, · · · , h̃N ) ∈ H. Solve BU = Ũ for U = (u, v, h1, · · · , hN ), that is




v(x) = ũ(x),

au′(x)− b

N∑

j=1

hj(x)



′

= ṽ(x),

ajbju
′(x)− bjhj(x) = h̃j(x), j = 1, 2, · · · , N,

u(0) = u(1) = 0,

(4.3.8)

to give 



v(x) = ũ(x),

hj(x) = aju
′(x)− 1

bj
h̃j(x), j = 1, 2, · · · , N

(4.3.9)

and 
a− b

N∑

j=1

aj


 u′(x) + b

N∑

j=1

1
bj

h̃j(x) =
∫ x

0
ṽ(τ)dτ + C1, (4.3.10)

where C1 is a constant to be determined. By the boundary condition u(0) = 0, it follows

from (4.3.10) that

u(x) = − b

A

∫ x

0

N∑

j=1

1
bj

h̃j(τ)dτ +
1
A

∫ x

0

∫ s

0
ṽ(τ)dτds +

C1

A
x, (4.3.11)

where

A = a− b

N∑

j=1

aj .

Using the other boundary condition u(1) = 0, it gives

C1 = b

∫ 1

0

N∑

j=1

1
bj

h̃j(x)dx−
∫ 1

0

∫ s

0
ṽ(τ)dτds. (4.3.12)

This together with (4.3.9) and (4.3.11) gives the unique solution U ∈ D(B) to equation

(4.3.8). Hence B−1 exists and is bounded, or

0 ∈ ρ(B).

¥
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4.3.2 Spectrum of system operator

In this subsection, we consider the spectrum of B. As in previous section, we first consider

the eigenvalue problem. Suppose

BU = λU, λ ∈ C, 0 6= U = (u, v, h1, · · · , hN ) ∈ D(B),

that is, 



v(x) = λu(x),

au′(x)− b

N∑

j=1

hj(x)



′

= λv(x),

ajbju
′(x)− bjhj(x) = λhj(x), j = 1, 2, · · · , N,

u(0) = u(1) = 0.

(4.3.13)

Proposition 4.3.1. Let B be defined by (4.3.6). Then λ = −bj, j = 1, 2, · · · , N are

eigenvalues of B, which corresponding to eigenfunctions ej+2, j = 1, 2, · · · , N respectively,

where ej is a constant function whose element is the j-th element of the canonical basis of

RN+2. Moreover, each of these eigenvalues is algebraically simple.

Proof. We only give the proof for λ = −b1 because other cases can be treated similarly.

Let λ = −b1 and U = (u, v, h1, · · · , hN ) ∈ D(B). Since λ = −b1, (4.3.13) becomes




v(x) = −b1u(x)

au′(x)− b

N∑

j=1

hj(x)



′

= −b1v(x),

a1b1u
′(x) = 0,

(bj − b1)hj(x) = ajbju
′(x), j = 2, · · · , N,

u(0) = u(1) = 0.

(4.3.14)

This together with (4.1.7) yields

u(x) = v(x) = hj(x) = 0, j = 2, · · · , N. (4.3.15)

By the second equation of (4.3.14), it has

h′1(x) = 0.

Therefor, e3 is an eigenfunction of B corresponding to −b1. Further computation of

(b1I + B)U1 = −e3,
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where U1 = (ũ, ṽ, h̃1, · · · , h̃N ) ∈ D(B), gives





ṽ(x) = −b1ũ(x),

aũ′(x)− b

N∑

j=1

h̃j(x)



′

= −b1ṽ(x),

a1b1ũ
′(x) = −1,

(bj − b1)h̃j(x) = ajbj ũ
′(x), j = 2, · · · , N,

ũ(0) = ũ(1) = 0.

(4.3.16)

(4.3.16) has no solution since otherwise, ũ satisfies

a1b1ũ
′(x) = −1, ũ(0) = ũ(1) = 0,

which is impossible. This shows that −b1 is algebraically simple. ¥

When λ 6= −bj , j = 1, 2, · · · , N , it follows from (4.3.13) that




v(x) = λu(x),

hj(x) =
ajbj

λ + bj
u′(x), j = 1, 2, · · · , N

(4.3.17)

and u satisfies 




a− b

N∑

j=1

ajbj

λ + bj


 u′′(x) = λ2u(x),

u(0) = u(1) = 0.

(4.3.18)

The following Lemma 4.3.2 is straightforward.

Lemma 4.3.2. Let B be defined by (4.3.6) and

Λ =



λ ∈ C

∣∣∣∣∣∣
a− b

N∑

j=1

ajbj

λ + bj
= 0



 . (4.3.19)

Then

Λ ∩ σp(B) = ∅. (4.3.20)

Lemma 4.3.3. Let B be defined by (4.3.6). Λ is given by (4.3.19). Then

Λ = {λc1, λc2, · · · , λcN}, (4.3.21)

where λc1 ∈ (−b1, 0), and λck ∈ (−bk,−bk−1), k = 2, · · · , N .
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Proof. Since −bj /∈ Λ, j = 1, 2, · · · , N , p(λ) = 0 is equivalent to q(λ) = 0, where




p(λ) = a− b
N∑

j=1

ajbj

λ + bj
,

q(λ) = p(λ)
N∏

j=1

(λ + bj).

(4.3.22)

However, q(λ) is an N -th order polynomial, and hence there are at most N number of

zeros for p(λ). Now we find all these zeros.

Since p(λ) is continues in (−b1,∞) ∪ (∪N−1
j=1 (−bj+1,−bj)), by the fact

lim
λ→−b+1

p(λ) = −∞

and (4.1.8), we see that there exists a solution to p(λ) = 0 in (−b1, 0). For any j =

1, 2, · · · , N − 1, it has

lim
λ→−b+j+1

p(λ) = −∞, lim
λ→−b−j

p(λ) = +∞.

Therefore, there exists a solution to p(λ) = 0 in (−bj+1,−bj). The proof is complete. ¥

By Lemma 4.3.2, the eigenvalue problem (4.3.18) is equivalent to the following problem:




u′′(x) =
λ2

p(λ)
u(x),

u(0) = u(1) = 0,

(4.3.23)

where p(λ) is given by (4.3.22). Hence

u(x) = e

√
λ2

p(λ)
x − e

−
√

λ2

p(λ)
x
. (4.3.24)

By the boundary condition u(1) = 0, (4.3.23) has non-trivial solution if and only if

e

√
λ2

p(λ) − e
−

√
λ2

p(λ) = 0. (4.3.25)

That is

e
2
√

λ2

p(λ) = 1,

which is equivalent to
λ2

p(λ)
= −n2π2, n = 1, 2, · · · . (4.3.26)

Substituting (4.3.26) into (4.3.24), we obtain the eigenfunction
(

u(x), λu(x),
a1b1

λ + b1
u′(x), · · · ,

aNbN

λ + bN
u′(x)

)
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corresponding to λ, where

u(x) = sin nπx, (4.3.27)

for some n ∈ N+.

When |λ| is large enough, since

λ2

p(λ)
=

λ2

a
· 1

1− b
a

∑N
j=1

ajbj

λ+bj

=
λ2

a


1 +

b

a

N∑

j=1

ajbj

λ + bj
+

b2

a2




N∑

j=1

ajbj

λ + bj




2
 +O(|λ|−1)

=
1
a


λ2 +

b

a

N∑

j=1

ajbjλ

1 + bj

λ

+
b2

a2




N∑

j=1

ajbj

1 + bj

λ




2
 +O(|λ|−1)

=
1
a


λ2 +

b

a

N∑

j=1

ajbjλ− b

a

N∑

j=1

ajb
2
j +

b2

a2




N∑

j=1

ajbj




2
 +O(|λ|−1),

it has

λ2 +
b

a

N∑

j=1

ajbjλ− b

a

N∑

j=1

ajb
2
j +

b2

a2




N∑

j=1

ajbj




2

+ an2π2 +O(|λ|−1) = 0.

Thus, the eigenvalues of B in this case are found to be

λn = − b

2a

N∑

j=1

ajbj ± i
√

anπ +O(n−1), n →∞.

For any λc ∈ Λ, when λ → λc, µ = λ− λc → 0. Notice that

p(λ) = µb

N∑

j=1

ajbj

[
1

(λc + bj)2
− µ

(λc + bj)3
+O(µ2)

]
.

We have
λ2

p(λ)
=

1
µ

λ2
c

∆

[
1 +

(
2
λc

+
∆̃
∆

)
µ

]
+O(µ),

where 



∆ =
N∑

j=1

bajbj

(λc + bj)2
,

∆̃ =
N∑

j=1

ajbj

(λc + bj)3
.

This together with (4.3.26) yields

1
µ

λ2
c

∆

[
1 +

(
2
λc

+
∆̃
∆

)
µ

]
+O(µ) = −n2π2, n →∞.



4.3 Finite memory 89

Thus,

µn = − 1
n2π2

λ2
c

∆
+O(n−3), n →∞.

Hence, the eigenvalues of B in this case are given by

λn = λc − 1
n2π2

λ2
c

∆
+O(n−3), n →∞.

We summarize these results as Proposition 4.3.2 following.

Proposition 4.3.2. Let B be defined by (4.3.6), λ be an eigenvalue of B, satisfying

λ 6= −bj , j = 1, 2, · · · , N.

Then the eigenfunction corresponding to λ is of the form
(

u(x), λu(x),
a1b1

λ + b1
u′(x), · · · ,

aNbN

λ + bN
u′(x)

)
,

where

u(x) = sin nπx, (4.3.28)

for some n ∈ N+. Furthermore,

(i). For any 1 ≤ k ≤ N , there is a sequence of eigenvalues {λnk} of B, which have the

following asymptotic expressions:

λnk = λck − 1
n2π2

λ2
ck

∆k
+O(n−3), n →∞, (4.3.29)

where

∆k =
N∑

j=1

bajbj

(λck + bj)2
. (4.3.30)

The corresponding eigenfunctions
(

un(x), λun(x),
a1b1

λ + b1
u′n(x), · · · ,

aNbN

λ + bN
u′n(x)

)

satisfy

un(x) =
1

nπ
sinnπx, n →∞. (4.3.31)

(ii). When |λ| → ∞, the eigenvalues {λn0, λn0} of B have the following asymptotic

expressions:

λn0 = − b

2a

N∑

j=1

ajbj + i
√

anπ +O(n−1), n →∞, (4.3.32)

where λn0 denotes the complex conjugate of λn0. In particular,

Reλn0 → − b

2a

N∑

j=1

ajbj < 0, n →∞, (4.3.33)
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that is, Reλ = − b
2a

∑N
j=1 ajbj is the asymptote of the eigenvalues λn0 given by (4.3.32).

Furthermore, the corresponding eigenfunctions
(

un(x), λun(x),
a1b1

λ + b1
u′n(x), · · · ,

aNbN

λ + bN
u′n(x)

)

satisfy (4.3.31).

Combing Proposition 4.3.1 and 4.3.2, we obtain the following Theorem 4.3.1.

Theorem 4.3.1. Let B be defined by (4.3.6). Then

(i). B has the eigenvalues

{−bj , j = 1, 2, · · · , N} ∪ {λn1, λn2, · · · , λnN , λn0, λn0, n ∈ N+}, (4.3.34)

where λnk, k = 1, 2, · · · , N and λn0 have the asymptotic expressions (4.3.29) and (4.3.32),

respectively.

(ii). The eigenfunction corresponding to −bj is ej+2 for any j = 1, 2, · · · , N .

(iii). The eigenfunctions corresponding to λnk, k = 1, 2, · · · , N , are given by

Unk(x) =
(

1
nπ

sinnπx, 0,
a1b1

λnk + b1
cos nπx, · · · ,

aNbN

λnk + bN
cos nπx

)

+(0, 1, · · · , 1)O(n−1), n →∞.

(4.3.35)

(iv). The eigenfunctions corresponding to λn0 and λn0, are given by

Un0(x) =
(

1
nπ

sinnπx, i
√

a sinnπx, 0, · · · , 0
)

+ (0, 1, · · · , 1)O(n−1), n →∞ (4.3.36)

and

Un0(x) =
(

1
nπ

sinnπx,−i
√

a sinnπx, 0, · · · , 0
)

+ (0, 1, · · · , 1)O(n−1), n →∞ (4.3.37)

respectively.

Concerning about σ(B), we have the following Theorem 4.3.2.

Theorem 4.3.2. Let B be defined by (4.3.6). Λ is given by (4.3.19). Then

σ(B) = Λ ∪ σp(B). (4.3.38)

Proof. Let λ /∈ σp(B). For any Ũ = (ũ, ṽ, h̃1, · · · , h̃N ) ∈ H. Solve

(λI − B)U = Ũ
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for U = (u, v, h1, · · · , hN ), that is,




λu(x)− v(x) = ũ(x),

λv(x)−

au′(x)− b

N∑

j=1

hj(x)



′

= ṽ(x),

λhj(x)− (ajbju
′(x)− bjhj(x)) = h̃j(x), j = 1, 2, · · · , N,

u(0) = u(1) = 0,

(4.3.39)

to get 



v(x) = λu(x)− ũ(x),

hj(x) =
1

λ + bj
(ajbju

′(x) + h̃j(x)), j = 1, 2, · · · , N
(4.3.40)

and 



θ′(x) = λ2u(x)− λũ(x)− ṽ(x),

θ(x) = p(λ)u′(x)−
N∑

j=1

b

λ + bj
h̃j(x),

u(0) = u(1) = 0,

(4.3.41)

where p(λ) is given by (4.3.22). There are two cases:

Case I: λ /∈ Λ. In this case, p(λ) 6= 0. Since by Lemma 4.3.1, 0 ∈ ρ(B), we only need

consider the case of λ 6= 0. Now, we can rewrite (4.3.41) as the following first order system

of differential equations:




d

dx




u(x)

θ(x)


 =




0 1
p(λ)

λ2 0







u(x)

θ(x)


 +




1
p(λ)V (x)

−λũ(x)− ṽ(x)


 ,

u(0) = u(1) = 0,

(4.3.42)

where

V (x) =
N∑

j=1

b

λ + bj
h̃j(x). (4.3.43)

Let

A(λ) =




0 1
p(λ)

λ2 0


 .

Then

eA(λ)x =




a11(λ, x) a12(λ, x)

a21(λ, x) a22(λ, x)


 ,



4.3 Finite memory 92

where




a11(λ, x) = cosh
(

λ√
p(λ)

x

)
,

a21(λ, x) = λ
√

p(λ) sinh
(

λ√
p(λ)

x

)
,





a12(λ, x) = 1

λ
√

p(λ)
sinh

(
λ√
p(λ)

x

)
,

a22(λ, x) = cosh
(

λ√
p(λ)

x

)
.

The general solution of (4.3.42) is given by




u(x)

θ(x)


 = eA(λ)x




u(0)

θ(0)


−

∫ x

0
eA(λ)(x−γ)




1
p(λ)V (γ)

−λũ(γ)− ṽ(γ)


 dγ.

By u(0) = 0, it has,

u(x) = a12(λ, x)θ(0)

−
∫ x

0

[
1

p(λ)
a11(λ, x− γ)V (γ) + a12(λ, x− γ)(−λũ(γ)− ṽ(γ))

]
dγ

(4.3.44)

and

θ(x) = a22(λ, x)θ(0)

−
∫ x

0

[
1

p(λ)
a21(λ, x− γ)V (γ) + a22(λ, x− γ)(−λũ(γ)− ṽ(γ))

]
dγ.

(4.3.45)

Since λ /∈ σp(B), by (4.3.25),

a12(λ, 1) =
1

λ
√

p(λ)
sinh

(
λ√
p(λ)

)
6= 0.

By the boundary condition u(1) = 0, it has

θ(0)

=
1

a12(λ, 1)

∫ 1

0

[
1

p(λ)
a11(λ, 1− γ)V (γ) + a12(λ, 1− γ)(−λũ(γ)− ṽ(γ))

]
dγ.

(4.3.46)

Hence u is uniquely determined by (4.3.44). By the second equation of (4.3.41) and

(4.3.45), we know that

u′ ∈ L2(0, 1).

This together with (4.3.40) shows that (λI − B)−1 exists and is bounded, or

λ ∈ ρ(B).

Case II: λ ∈ Λ. In this case, λ 6= 0. By (4.3.41),




u(x) =
1
λ2

(
λũ(x) + ṽ(x)− V ′(x)

)
,

u(0) = u(1) = 0,

(4.3.47)
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where V is given by (4.3.43). Since ũ ∈ H1
0 (0, 1), (4.3.47) means that (4.3.39) admits a

solution if and only if V is differentiable, and

ṽ(0)− V ′(0) = ṽ(1)− V ′(1) = 0.

Thus λ /∈ ρ(B).

The result follows by combining of these two cases. ¥

In order to investigate the residual and continuous spectrum of B, we need the adjoint

operator B∗.

Lemma 4.3.4. Let B be defined by (4.3.6). Then

B∗




u

v

h1

...

hN




>

=




−v + 1
a

∑N
j=1 ajbj

∫ x
0 hj(τ)dτ

−au′′

bv′ − b1h1

...

bv′ − bNhN




>

, (4.3.48)

with

D(B∗) =








u

v

h1

...

hN




>∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u, v,
∑N

j=1 ajbj

∫ x
0 hj(τ)dτ ∈ H1

0 (0, 1),

u′′, hj ∈ L2(0, 1), j = 1, · · · , N.





. (4.3.49)

Theorem 4.3.3. Let B be defined by (4.3.6). Then

σr(B) = ∅, σc(B) = Λ, (4.3.50)

where σr(B) and σc(B) denotes the set of residual and continuous spectrum of B, respec-

tively.

Proof. By Lemma 4.3.2 and Theorem 4.3.2, we only need to prove

Λ ∩ σr(B) = ∅.
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Since λ ∈ σr(B) implies λ ∈ σp(B∗), it suffices to show that

Λ ∩ σp(B∗) = ∅.

Suppose that B∗U = λU for λ ∈ C and 0 6= U = (u, v, h1, · · · , hN ) ∈ D(B∗). Then




−v(x) +
1
a

N∑

j=1

ajbj

∫ x

0
hj(τ)dτ = λu(x),

−au′′(x) = λv(x),

bv′(x)− bjhj(x) = λhj(x), j = 1, 2, · · · , N,

v(0) = v(1) = 0.

When λ 6= −bj , j = 1, 2, · · · , N , v satisfies





a− b

N∑

j=1

ajbj

λ + bj


 v′′(x) = λ2v(x),

v(0) = v(1) = 0.

(4.3.51)

For any λ ∈ Λ, it has v = 0. This implies that U = 0. Therefore,

λ /∈ σp(B∗).

So, Λ ∩ σp(B∗) = ∅. The proof is complete. ¥

4.3.3 Riesz basis property

Now, we study the Riesz basis property for system (4.3.3). To this purpose, we need the

following Theorem 4.3.4, which was proved in [55] (The similar result can be found in

[93]). Since [55] is not published, we attach its brief proof as Appendix.

Theorem 4.3.4. Let A be a densely defined closed linear operator in a Hilbert space H

with isolated eigenvalues {λi}∞1 and σr(A) = ∅. Let {φn}∞1 be a Riesz basis for H. Suppose

that there are N0 ≥ 1 and a sequence of generalized eigenvectors {ψn}∞N0
of A such that

∞∑

n=N0

‖ψn − φn‖2
H < ∞. (4.3.52)

Then there exist M(≥ N0) number of generalized eigenvectors {ψn0}M
1 such that {ψn0}M

1 ∪
{ψn}∞M+1 forms a Riesz basis for H.
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Theorem 4.3.5. Let B be defined by (4.3.6). Then

(i). There is a sequence of generalized eigenfunctions of B, which forms a Riesz basis

for the state space H.

(ii). All eigenvalues except finitely many are algebraically simple.

(iii). B generates a C0-semigroup eBt on H.

Therefore, for the semigroup eBt, the Spectrum-determined growth condition holds:

ω(B) = s(B).

Proof. Since from Theorem 4.3.1, all eigenvalues are located in some left half complex

plane, the other parts follow directly from (i) and (ii). So we only need to prove (i) and

(ii). For any n ∈ N+, set

Vn0 =
(

1
nπ

sinnπx, i
√

a sinnπx, 0, · · · , 0
)

, (4.3.53)





ϕn0 =
(√

a cos nπx, i
√

a sinnπx, 0, · · · , 0
)

+ (0, 1, 1, · · · , 1)O(n−1),

ϕnk =
(√

a, 0,
a1b1

λnk + b1
, · · · ,

aNbN

λnk + bN

)
cos nπx + (0, 1, 1, · · · , 1)O(n−1),

k = 1, 2, · · · , N.

(4.3.54)

Define the reference sequence:




ψn0 =
(√

a cos nπx, i
√

a sinnπx, 0, · · · , 0
)
,

ψnk =
(

0, 0,
a1b1

λnk + b1
, · · · ,

aNbN

λnk + bN

)
cos nπx, k = 1, 2, · · · , N.

(4.3.55)

Since bj 6= bk, λnj 6= λnk, 1 ≤ j < k ≤ N , a direct computation shows that

det




a1b1
λn1+b1

a1b1
λn2+b1

· · · a1b1
λnN+b1

a2b2
λn1+b2

a2b2
λn2+b2

· · · a2b2
λnN+b2

· · · · · · · · · · · ·
aN bN

λn1+bN

aN bN
λn2+bN

· · · aN bN
λnN+bN




6= 0.

Hence,

{ψn0, ψn0, ψn1, ψn2, · · · , ψnN}∞1 (4.3.56)

forms a Riesz basis for H1 = (L2(0, 1))N+2. By (4.3.54), (4.3.55) and Theorem 4.3.1, there

exists an N0 ∈ N+, such that,
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∞∑

n=N0

[
‖Un0 − Vn0‖2

H + ‖Un0 − Vn0‖2
H +

N∑

k=1

∥∥∥∥Unk − Un0 + Un0

2
− ψnk

∥∥∥∥
2

H

]

=
∞∑

n=N0

[
‖ϕn0 − ψn0‖2

H1
+ ‖ϕn0 − ψn0‖2

H1
+

N∑

k=1

∥∥∥∥ϕnk − ϕn0 + ϕn0

2
− ψnk

∥∥∥∥
2

H1

]

< ∞.

(4.3.57)

By Theorem 4.3.4, (i) and hence (ii) hold true. The proof is complete. ¥

Combing Theorem 4.3.1, 4.3.2 and 4.3.5, we conclude the exponential stability of

system (4.3.3).

Theorem 4.3.6. System (4.3.3) is exponentially stable, that is,

E(t) ≤ Me−ωtE(0), (4.3.58)

for some M, ω > 0, where E(t) is given by (4.3.4).



Appendix

Proof of Theorem 4.3.4

For the sake of coherent understanding, we first define the spectral projection corre-

sponding to the operator A which is available in most of textbooks of functional analysis.

Definition (Spectral Projection): Let A be a closed operator and γ ⊂ σ(A) be a compact

subset of C which is open and closed in σ(A). A subset with these properties will be called

a compact spectral set. With the compact spectral set γ, we can construct a closed Jordan

curve Γ, which is oriented in the customary positive sense of complex variable theory, and

it bounds a finite domain containing every point of γ and no point of σ(A)\γ. The spectral

projection on γ is now defined as

E(γ) :=
1

2πi

∫

Γ
(λI −A)−1dλ. (Ap1)

When γ = {λ}, where λ is an isolated eigenvalue of A, we shall denote

E(λ,A) := E({λ}). (Ap2)

The following basic properties of spectral projection can be found in chapter XVIII of

[24].

Proposition A1 The spectral E(·) defined by (Ap1) has the following properties:

(i). E(γ) is a projection (not necessarily self-adjoint).

(ii). E(∅) = 0.

(iii) E(γ1)E(γ2) = E(γ1 ∩ γ2).

(iv). If λ is an isolated eigenvalue, with finite multiplicity, then E(λ,A) is the projection

on the space of generalized eigenvectors of A corresponding to λ, that is, the subspace

spanned by all those φ satisfying (λI −A)nφ = 0 for some positive integer n.
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Next, we give two lemmas.

Lemma A1. Let A be a linear operator in a Hilbert space H with isolated eigenvalues

and residual spectrum {λi}∞1 , ρ(A) 6= ∅. Let

σ∞ = {x | E(λi, A)x = 0, i ≥ 1}. (Ap3)

Then σ∞ is either 0 or infinite dimensional.

Proof. Suppose first that A is bounded and 0 < dimσ∞ < ∞. Since σ∞ is invariant

subspace of A, that is, Aσ∞ ⊂ σ∞, A has at least one eigenvector x∞ ∈ σ∞ such that

Ax∞ = ηx∞ for some constant η. So η = λi for some i, and hence,

x∞ = E(λi, A)x∞ = 0,

which is a contradiction. So (Ap3) holds true.

If A is unbounded. Take λ0 ∈ ρ(A) such that | λ0 − λi |≥ ε > 0 for all i ≥ 1. Let

T = (λ0I −A)−1, µi = (λ0 − λi)−1, i = 1, 2, · · · . Then it is well-known that

λi ∈ σp(A) if and only if µi ∈ σp(T ), λi ∈ σr(A) if and only if µi ∈ σr(T )

and

E(λi, A) = E(µi, T ), for all i ≥ 1.

Hence

σ∞ = {x | E(µi, T )x = 0, µi ∈ σp(T ) ∪ σr(T )}.

Since T is bounded, σ∞ is either 0 or infinite dimensional. ¥

Lemma A2. Let A be a densely defined closed operator in a Hilbert space H with isolated

eigenvalues {λi}∞1 . Then

H = sp(A)⊕ σ∗∞, (Ap4)

where sp(A) denote the closed linear span of all generalized eigenfunctions of A, and

σ∗∞ = {x | E(λi, A
∗)x = 0, λi ∈ σp(A)}.

Proof. By a well-known fact σ(A∗) = {λ | λ ∈ σ(A)}, λi is an isolated spectral point of A∗

and so E(λi, A
∗) makes sense. For any f ∈ E(λi, A)H, g∗ ∈ σ∗∞, we have E(λi, A)f = f .

And hence

〈f, g∗〉 = 〈E(λi, A)f, g∗〉 = 〈f,E(λi, A
∗)g∗〉 = 0.
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So sp(A) ⊂ (σ∗∞)⊥. If f 6∈ sp(A), then there exists a functional g∗ such that

〈f, g∗〉 = 1, 〈h, g∗〉 = 0, for all h ∈ sp(A).

For any w ∈ H, it follows from E(λi, A)w ∈ sp(A) that

〈w, E(λi, A
∗)g∗〉 = 〈E(λi, A)w, g∗〉 = 0.

By the arbitrary of w, it has E(λi, A
∗)g∗ = 0. That is g∗ ∈ σ∗∞. Hence f 6∈ (σ∗∞)⊥.

Therefore, sp(A) = (σ∗∞)⊥, proving (Ap4). ¥

Proof of Theorem 4.3.4. Condition (4.3.52) implies that there exists an M ≥
N0 such that {φn}M

1 ∪ {ψn}∞M+1 forms a Riesz basis for H. In particular, (sp(A))⊥ is

finite dimensional. This together with (Ap4) shows that σ∗∞ is finite dimensional. It is

known that λ ∈ σp(A∗) ∪ σr(A∗) if and only if λ ∈ σp(A) ∪ σr(A). By our assumption,

σp(A∗) ∪ σr(A∗) = {λi}∞1 . By Lemma A1, it follows that σ∗∞ = {0}. Therefore,

sp(A) = H. (Ap5)

Suppose that {ψα}∪{ψn}∞M is the “maximal” ω-linearly independent set of generalized

eigenvector of A, that is, {ψα} ∪ {ψn}∞M is an ω-linearly independent set and if adding

another extra generalized eigenvector of A to {ψα} ∪ {ψn}∞M , the extended set is not ω-

linearly independent anymore. By Lemma 1.2.1, {ψα} ∪ {ψn}∞M forms a Riesz basis for

the subspace spanned by itself, which is the whole space as we just proved.

Since a proper subset of a Riesz basis can not be a Riesz basis, it follows from condition

(4.3.52) and Bari’s Theorem (see Section 2 of [32] on p.309) that the number of {ψα} is

just M . The proof is complete. ¥
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