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ABSTRACT  

 
The Savanna biome covers around 60% of sub-Saharan Africa. The goods 

and services it provides are utilised and often depended upon by rural 

communities, commercial farmers and managers of conservation areas 

existing within it. The benefits derivable by these parties depend largely on 

vegetation structure and species composition which can show great 

variation within savannas. Fire has long been used as an effective means 

of manipulating savanna vegetation to maximise the provision of specific 

benefits, usually the provision of new herbaceous growth, and to a lesser 

extent to control woody cover. Information on the abundance and 

distribution of herbaceous biomass, which is the primary fuel source for 

savanna fires, has emerged as one of the most important inputs for 

savanna management planning. Although the most popular and reliable 

means of obtaining this information remains field-based sampling, 

estimation using remote sensing data is increasingly being incorporated 

into the process. Its increased popularity stems from the fact that it can 

greatly expand the extent of the areas for which herbaceous biomass 

estimations can be provided. 

 

Although there have been studies conducted on the performance of 

individual remote sensing based herbaceous biomass estimation methods, 

few have focused on the relative performance of available methods. 

Information on the accuracy of methods when applied in relatively densely 

wooded savannas, or those where a large amount of herbaceous material 

is retained between seasons is also limited. This presents a problem for 

savanna managers in South Africa where these conditions prevail. It was 

the aim of this study to compare the accuracy and precision of two 

different remote sensing based herbaceous biomass estimation 

techniques (the use of a regression model and cokriging) when applied 

under such conditions. 

 

To achieve this aim a large amount of herbaceous biomass data were 

required to form testing and training datasets. These were acquired from 
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the Kruger National Park’s Veld Condition Assessment (VCA) datasets for 

the growth seasons between 2000 and 2006, which contains herbaceous 

biomass estimates based on disk pasture meter readings. It was 

suspected early on in the study that the VCA field data was not ideal for 

use as remote sensing (ground truthing) field data because of the limited 

size of the field plots relative to the pixels of the remotely sensed imagery 

used. It was decided to include an additional section of analysis to 

determine the possible contribution of this issue to the estimation error of 

the methods assessed. This involved measuring and comparing mean 

herbaceous biomass in co-located trial 60x60m VCA sites and trial 

250x250m, The Moderate Resolution Imaging Spectroradiometer (MODIS) 

pixels.  

 

The main section of analysis involved (i) gathering and deriving the 

required variables for use in the two estimation methods assessed, (ii) 

producing the estimates and (iii) comparing their accuracy and precision. 

The first method assessed was the use of a linear regression model.  

Seven regression models were created in total, one for each year of the 

growth seasons occurring between 2000 and 2006, plus another using all 

of the data combined. The models included variables to account for 

vegetation production (based on MODIS EVI), tree cover and fire history. 

These variables were derived using data supplied by the CSIR and Kruger 

National Park Scientific Services. The second method assessed was 

cokriging performed with the VCA herbaceous biomass field estimates as 

the primary variable and the MODIS EVI data as a secondary variable.  

 

The regression models were unable to account for more than 46% of the 

variation in herbaceous biomass, usually accounting for between just 20 

and 30% (R2 of between 0.2 and 0.3). Three potential methods were 

identified that could improve the model fits obtained in the future, namely: 

 

1. Increasing the dimensions of the field sample plots  

2. Improving the calibration of the disk pasture meter used to collect the 

field data  
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3. Using EVI from previous seasons in conjunction with fire scar data to 

account for the presence of dry material from previous seasons. 

 

Cokriging produced estimates that were on average 119 kg/ha more 

accurate than those of the regression models. However, the performance 

of cokriging was poorer than expected given the results of previous studies 

in the area. A possible explanation for this discrepancy is that the ArcGIS 

geostatistical analysis extension used in this study is limited in its 

capabilities. Even with the poorer than expected performance recorded in 

this study, the cokriged maps remain the best option for fire managers as 

they are the most accurate to date and require the fewest resources to 

produce. Neither method produced estimates with less than 1000 kg/ha of 

error (RMSE), the upper limit initially considered useful in this study. 

However this error limit could be considered unrealistic given the well 

documented high level of heterogeneity typical of southern African 

savannas. 
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Chapter 1 
 

INTRODUCTION 
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1.1. Rationale  
 

The Savanna biome is of great importance in sub Saharan Africa. It covers 

60% of the region, contains an exceptionally high diversity of both plant and 

animal species and is a major provider of resources that sustain both rural 

livelihoods and commercial activity (Van Wilgen et al. 2003; Twine et al. 2003; 

Shackleton et al. 2007).  Savannas provide grazing for commercial and 

domestic livestock, medicinal plants, timber for construction and fuel wood for 

cooking and heating (Shackleton et al. 2007). In the majority of cases the 

consumption and trade of savanna resources to secure livelihoods is not a 

choice but a necessity, with those depending on them having few if any 

alternatives. In South Africa alone there are 9.2 million rural people living in 

and deriving direct benefits from savannas through resource extraction (Twine 

et al. 2003). Benefits are also derived from non consumptive use of savanna 

resources such as wildlife tourism. The revenue generated through tourist 

spending in and around the National Parks, conservation areas, game farms 

and various related enterprises located in savannas generates a significant 

portion of income in many areas (Wells 1997; Shackleton et al. 2007). 

 

Even though all savannas contain both tree and grass layers (Archibald and 

Scholes 2007), the density of the woody layer and the species richness, 

abundance and dominant growth form in either layer can vary through both 

space and time (Smit 2004). Throughout this study the term ‘herbaceous 

biomass’ is used to refer to the biomass of both grass and forbs which 

collectively make up the herbaceous layer while ‘woody biomass’ refers to 

trees and shrubs. Variation in the above mentioned factors causes different 

stocks and flows of goods and services to become available. The density of 

the woody layer determines the availability of fuel wood and construction 

timber, the quality of which depends on the species present and their growth 

form. From a conservation perspective it affects the type of habitat available 

and the fauna it will support. The quality of the grazing available will depend 

on the species composition of the herbaceous layer and the amount of dead 

accumulated material persisting from previous seasons. 
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Management of savannas to maximise their value, be it in terms of supporting 

livelihoods or conservation of biodiversity, is therefore focused on 

manipulating factors that alter vegetation properties. Fire’s ability to do just 

that has long been recognised and harnessed by man (Sheuyange, Oba, and 

Weladji 2005). The efficiency with which it enables the manipulation of 

vegetation properties has led to it being recognised as one of the most 

important tools in contemporary savanna management. 

 

Successful prediction of the effect of fire on savanna vegetation requires 

among other things information on fuel load because of its role in determining 

fire intensity and hence a fires affect on vegetation (Trollope, Trollope and 

Hartnett 2002).  In savannas this is provided through information on 

herbaceous biomass because herbaceous biomass constitutes the primary 

source of fuel for wildfires (Trollope, Trollope, and Hartnett 2002). Knowing 

how much herbaceous biomass is present and how it is distributed enables 

better planning of  fire suppression and controlled burning activities for the 

achievement of management objectives (de Ronde, Geldenhuys, and Trollope 

2004; Flasse et al. 2004).  

 

The most straightforward, and often the most accurate means of attaining 

herbaceous biomass information is through field based methods such as 

clipping and weighing biomass or the use of a Disk Pasture Meter (DPM). 

These methods, which are covered in more detail in the literature review and 

methods sections, are labour intensive and best suited to the detailed 

assessment of herbaceous biomass within limited areas. 

 

There are however situations in which detailed information on the spatial 

distribution of herbaceous biomass is required over a large area. These 

requirements cannot be met using a purely field based approach (Flasse et al. 

2004). Indeed one of the primary motivations for this study was the interest 

expressed by the Kruger National Park fire management team in some means 

of attaining annual, spatially explicit herbaceous biomass estimates at useful 

levels of accuracy for the entire park (Wessels et al. 2006). This is a task not 

achievable using field based sampling alone (see appendix 1 of this chapter). 
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Two approaches present themselves for making the transition from point data 

to continuous data that have been explored in the literature because they 

were deemed appropriate for the study area. The first is making use of a 

measurement strongly correlated to herbaceous biomass that can be taken at 

every point within the area of interest without requiring excessive resources. 

Once obtained, the relationship between the measurements and herbaceous 

biomass can be established through the use of a regression analysis, and a 

regression model created.  A number of studies have been conducted 

investigating the relationship between Vegetation Indices (VI’s) and 

herbaceous biomass (Al-Bakri and Taylor 2003; Moreau et al. 2003; Prince 

1991; Cayrol et al. 2000; Verbesselt et al. 2006; Sannier, Taylor and Plessis 

2002; Wessels et al. 2006; Mutanga and Rugege 2006). The strength of the 

relationship reported varies widely, most likely due to variation in the size of 

the field sample plots used, variation in the complexity of the vegetation layer 

in the different study sites and the fact that some studies use aggregated, 

instead of per pixel data. All of these studies, except Mutanga and Rugege 

(2006) stop short of actually producing spatially explicit, per pixel fuel load 

maps.  

 

To understand why a correlation between end of season herbaceous biomass 

and VI values exists, and why the strength of the correlation reported varies 

so widely, one must be clear on what VI’s measure. According to (Huete et al. 

2006), “Vegetation Indices (VI) are optical measures of vegetation canopy 

‘greenness’, a direct measure of photosynthetic potential resulting from the 

composite property of total leaf chlorophyll, leaf area, canopy cover, and 

structure”. They provide this measure by combining information from the 

chlorophyll-absorbing red spectral region with the non-absorbing, leaf 

reflectance signal in the near-infrared (NIR). The extent to which 

photosynthetic potential is realised is determined by a range of climatic and 

biophysical factors including the amount of incoming Photosynthetically Active 

Radiation (PAR), ambient temperature and available soil moisture. In other 

words, VI’s only provide information on the upper limit of the Fraction of PAR 

that can be absorbed (fPAR) (Huete et al. 2006), they are not a direct measure 
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of net primary production (NPP). They are however sufficiently well correlated 

to NPP to have resulted in them being widely used as proxies for NPP (Huete 

et al. 2006). 

 

NPP for a given growth season is in turn correlated to the amount of 

herbaceous biomass present at the end of that growth season. There are 

however numerous additional sources of variation which affect the 

relationship (figure 1).  

 

Figure 1: The relationship between Vegetation, Index values and herbaceous biomass. 

 

The removal of herbaceous NPP through fire, herbivory and decay is 

constantly occurring. Some of the photosynthetic potential and resulting NPP 

will also be attributable to the tree layer where one is present such as in 

savannas. Production from previous growth seasons (also termed ‘carry-

over’) which accumulates in the herbaceous layer also adds to the end of 

season herbaceous biomass but will not be related to the current seasons VI 

values. It should be clear then that the relationship between VI values and 

herbaceous biomass can be extremely complex, involving multiple potential 

sources of variation. The strength of the relationship varies considerably 
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depending on the combination of perturbing factors existing within the location 

being observed.  

The most widely referenced VI is the Normalised Difference Vegetation Index 

(NDVI). This is produced using the red and NIR (near infra-red) bands from 

optical sensors as follows:  

NDVI   =  [ρ NIR  – ρ red ]  /  [ρ NIR  + ρ red ]       (Huete et al. 2006) 

There are however many variations on this formula designed to address 

various issues such as variation in background soil colour. One such 

variation, the Enhanced Vegetation Index (EVI) was developed to be 

implemented using the data from the Terra and Aqua Moderate Resolution 

Imaging Spectroradiometer (MODIS) sensors (Huete, Justice and Van 

Leeuwen 1999). EVI differs from NDVI in that in addition to the red and near 

infrared bands, the blue band is used to overcome limitations identified in the 

NDVI, such as sensitivity to atmospheric interference and changes in 

background soil colour. It is calculated as follows: 

EVI   =  2.5 [ρ NIR  – ρ red ]  /  [L + ρ NIR  +   C 1  ρ red  – C 2  ρ blue ] 

where L is the canopy background adjustment factor, and C 1  and C 2  are 

the aerosol resistance weights.  The coefficients of the EVI equation are L=1; 

C 1 =6 and C 2  =7.5 (Huete et al. 2006).  

 

The modelling approach pursued in this study is neither purely mechanistic 

nor is it purely statistical. Mechanistic modelling of vegetation properties is 

most often used at coarse continental scales, matching the resolution of the 

most readily available input variables such as incoming solar radiation and 

interpolated rainfall (see Higgins et al. (2010) for an example). Statistical 

modelling on the other hand is more common in the literature on localised 

modelling of vegetation properties  such as herbaceous biomass (Mutanga 

and Rugege  2006; Verbesselt et al 2006; Wessels et al 2006), where the 

variables for mechanistic modelling are seldom available at the required 

resolution. At the outset of this study the intention was to pursue a basic 

statistical modelling approach. Preliminary results where however poor. Given 
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the knowledge that the relationship underpinning the model varied to some 

extent in relation to variables already available as GIS layers, some effort was 

made to account for variation in production through direct adjustment of the 

surrogate measure of production, Vegetation Index values. The result was a 

statistical modelling approach with some elements of mechanistic modelling at 

various points in the study.   

 

The second approach to making the transition from point data to continuous 

data is through the use of geostatistical interpolation. This produces estimates 

of herbaceous biomass at every point in the areas of interest using either the 

assumed or determined spatial trends in herbaceous biomass. One of the 

methods for determining the nature of the spatial trends in herbaceous 

biomass is known as Kriging (Clark and Harper 2000). The method can also 

be extended to make use of VI data (or any intensively sampled variable 

correlated to herbaceous biomass) to guide spatial estimates and increase 

estimation accuracy in a process called cokriging (Johnston, Sakala and 

Wrightsell 2001; Curran and Atkinson 1998; Mutanga and Rugege 2006).  

 

Regardless of which of these methods is used to transform point data into 

continuous data, the results obtained will be affected by the characteristics of 

the VI data used. The MODIS sensor aboard the Terra and Aqua satellites 

offers’ the best combination of spatial resolution, time span, temporal 

resolution, pixel quality information and VI products currently available for use 

in vegetation monitoring. Its potential and limitations therefore need to be 

tested and understood if remotely sensed estimations of herbaceous biomass 

are to be improved. 

 

The accuracy and precision of the two methods mentioned above have only 

been investigated in three published studies in southern Africa (Mutanga and 

Rugege  2006; Verbesselt et al 2006; Wessels et al 2006). Only one of these 

studies, that by Mutanga and Rugege  (2006) made use of MODIS data and 

assessed the relative accuracy of the two methods of herbaceous biomass 

estimation. It is also the only study to have addressed the per pixel accuracy 

of either method.  Both Verbesselt et al (2006) and Wessels et al (2006) 
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report correlations for aggregated data or smoothed data. Aggregated data is 

useful for illustrating the underlying relationships present, but is of no use in 

producing spatially explicit fuel load maps. Having only a single study 

addressing the production of spatially explicit fuel load maps makes it difficult 

for management agencies to make decisions confidently regarding the 

implementation of operational remote sensing based herbaceous biomass 

monitoring programs. Without more information on the relative performance of 

the two methods there is little information on which to base their decisions.  

 

1.2. Aim and objectives  

 

The aim of this study was to compare the relative accuracy and precision of 

cokriging and a linear regression model used to produce spatially explicit 

herbaceous biomass estimates from 250m MODIS VI data. 

 

The objectives of the study were: 

 

1. Quantify the accuracy and precision achieved when using a regression 

model, derived using the data currently available to the Kruger National 

Park, to produce herbaceous biomass estimates. 

 

2. Quantify the accuracy and precision achieved when using cokriging, 

performed using the data currently available to the Kruger National 

Park, to produce herbaceous biomass estimates. 

 

3. Provide a comparison of the two methods. 
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2. LITERATURE REVIEW 

 

2.1. Fires in savannas 

 

Climate, geology, fire and herbivory all interact to determine the tree grass 

balance in savannas. Of these, fire is the most easily manipulated and is thus 

a useful management tool. The changes it brings about depend largely on fire 

frequency and intensity and hence its effective use depends on ones ability to 

manipulate these components of the fire regime (Higgins, Bond and Trollope 

2000).  

 

Savanna trees are highly resilient to the effects of fire, especially fire of 

moderate intensity, often resisting top kill (death of the aerial biomass) 

because of thick cork like bark (Wilson and Witkowski 2003; de Ronde et al. 

2004). They are also able to re-sprout from their base if top kill does occur 

(Hoffmann and Solbrig 2003; Higgins, Bond and Trollope 2000). Newly 

sprouted shoots and seedlings trapped within a savannas herbaceous layer 

are however extremely vulnerable to fire (Higgins, Bond, and Trollope 2000). 

They remain this way until they have grown to a sufficient height and 

produced sufficiently thick bark to survive frequent burns (Sankaran et al. 

2005; Higgins, Bond and Trollope 2000). It is this vulnerable phase that allows 

a series of subsequent fires to result in significantly decreased density of the 

woody layer through accumulated mortalities and lowered recruitment rates 

by preventing trees from reaching reproductive size (Hoffmann and Solbrig 

2003). In preventing trees from reaching reproductive size and killing of new 

seedlings, frequent fires also reduce the seed bank (Witkowski and Garner 

2000) and lower future recruitment rates. From the above it is evident that 

both the frequency and the intensity of fires are therefore important in 

determining the impact of fire on the tree layer.   

 

In contrast to the tree layer, fire intensity is less important, in terms of direct 

effects, than fire frequency in determining the properties of the herbaceous 

layer (Trollope 1996). Unpalatable grass species that might accumulate and 

shade out new growth or prevent recruitment of palatable species can be 
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removed by occasional burning. Alternately their abundance can be increased 

by fire suppression (Van Wilgen et al. 2003; de Ronde et al. 2004). Perennial 

species that can reproduce by sending out sub surface runners may become 

more abundant than those that rely on seeds when there are frequent fires. 

This is because the seeds will be destroyed before becoming established 

(Garnier, Durand and Dajoz 2002). None of the above is especially sensitive 

to the intensity of the fires involved. 

 

Although intensity has little bearing on the direct affects of fire on the 

herbaceous layer, indirectly it plays a significant role through affecting the 

density of the woody layer present. Herbaceous biomass production has been 

shown to be negatively related to the density of woody cover when assessed 

at the landscape scale (Wessels et al. 2006), although locally the reverse may 

be true. The relationship exists because increased woody cover reduces 

available light and water availability, which limits the production of herbaceous 

material (Savadogo et al. 2008). Because herbaceous material is the primary 

fuel for savanna wildfires, a decrease in herbaceous production reduces fire 

frequency and intensity. Frequency is decreased because fewer fires are 

successfully ignited and sustained given the lower fuel loads (Trollope 1996). 

Intensity is decreased because there is less fuel to burn.  This creates a 

positive feedback loop. Decreased fire intensity and frequency caused by 

decreased herbaceous production leads to increased woody cover by 

allowing seedlings to escape the fire trap (Higgins, Bond, and Trollope 2000). 

As these seedlings grow and begin to intercept more light, they further reduce 

herbaceous production. In the absence of disturbance events such as the 

felling of trees by humans, or the damage and uprooting of trees by 

elephants, woody cover will increase to the limits set by climate and self 

shading (Smit 2005).   

 

Even where trees are absent, herbaceous production can be reduced by 

shading. This occurs where dead herbaceous material (often termed 

moribund grass) is able to accumulate in sufficient amounts for it to shade out 

new herbaceous growth, decreasing production and accumulation rates. After 

5 years, standing herbaceous biomass declines as dead material begins to 
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decay faster than new material is produced (Govender, Trollope and Van 

Wilgen 2006). For production to resume, accumulated material needs to be 

removed. To summarise, prescribed burning can therefore be used to:  

 

1. Remove dead herbaceous material and encourage new, palatable 

growth. 

2.  Encourage a reduction in the density of the woody layer through 

depleting the seed bank, stunting or damaging mature trees and killing 

seedlings. 

 

Achieving either outcome, or their opposites, while maintaining control of 

prescribed burns requires information on prevailing climatic conditions, fuel 

moisture and fuel load as these all affect fire intensity. Broadly speaking, fuel 

loads of < 2000 kg/ha are insufficient for fire to spread, fuel loads of between 

2000 and 4000 kg/ha produce cool to moderately intense fires of < 3000 

kj/s/m and fuel loads of > 4000 kg/ha produce intense fires of >3000 kj/s/m 

(Trollope 1996). Fires of cool to moderate intensity will clear accumulated 

herbaceous material and encourage new palatable growth with little damage 

to mature trees. Intense fires on the other hand are likely to cause greater 

damage to mature trees and may reach the canopy layer, resulting in death of 

aerial biomass. The more detailed and accurate the information on 

herbaceous biomass that is available to savanna managers the greater their 

ability to plan, execute and achieve specific management objectives will be.  

 

2.2. Herbaceous biomass estimation: regression 

 

Regression models can serve two very useful purposes. Firstly, the process of 

creating a regression model and the model that results, provided variables are 

not just chosen at random, contributes to the understanding of the relationship 

being modelled. Secondly, once the relationship is represented as a 

mathematical equation it can be used to predict the value of the response 
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variable if values for the predictor variable are available. Creating a regression 

model involves the following general steps: 

1. Variable selection  
 

2. Selection of model type and functional form 
 

3. Data collection 
 

4. Model fitting and evaluation 

Each of these steps, and the corresponding information on how they have 

been addressed in past studies seeking to estimate herbaceous biomass 

using regression, are covered in more detail in the sections that follow.  

2.2.1. Variable selection  

Variable selection involves identifying all the variables affecting the 

relationship between the response and primary predictor variable as well as 

any important interactions between variables. Omission of variables or the 

interactions between variables affecting the relationship being modelled 

results in unexplained variation and error in predictions.  

The simplest model possible for estimating herbaceous biomass in this study 

could contain just two variables, herbaceous biomass as the response 

variable and some form of VI variable as the predictor variable. Data to 

calculate VI’s can be obtained from any optical sensor that records 

information from the red and near-infrared portions of the spectrum.  

Although any optical imagery with the appropriate bands can be used to 

create VI’s, the production of herbaceous biomass estimates for large areas is 

most easily accomplished using low or medium resolution imagery from a 

sensor and platform because of their high temporal resolution. This will 

provide regular and complete coverage of the area of interest required to 

monitor vegetation growth throughout a season. Historically the best source of 

such data has been the Advanced Very High Resolution Radiometer 

(AVHRR) sensor. This lead to its use in many herbaceous biomass and 

primary production estimation studies (Al-Bakri and Taylor 2003; Fensholt and 
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Sandholt 2005; Moreau et al. 2003; Prince and Tucker 1986; Tucker et al. 

1985; Wessels et al. 2006). At the time of writing AVHRR’s successor, the 

MODIS sensor aboard the Aqua and Terra satellites, has become the 

preferred source for such data as it offers much improved spatial and 

radiometric resolution (Anaya, Chuvieco and Palacios-Orueta 2009; Fensholt 

et al. 2006; Grigera, Oesterheld and Pacin 2007).  

Both single VI images and summations of all the images within a growth 

season have been used in past studies. A single image can only provide 

information on the amount of photosynthetic potential at the time of acquisition 

(Funk and Budde 2009). This measure is only sensitive to the presence of live 

vegetation at a single point in time. True end of season biomass cannot be 

reliably inferred using a single season image because the end of the growth 

season only occurs once vegetation has dried out. Under these conditions the 

characteristics of vegetation VI’s were designed to be sensitive to, primarily 

absorption in the red portion of the spectrum by chlorophyll, are absent or 

severely reduced in the herbaceous layer (Huete, Justice and Van Leeuwen 

1999; Todd, Hoffer and Milchunas 1998). 

 It may be possible to work around this by using an image from earlier in the 

season when the vegetation is still green. If this is done, the problem of which 

point in the season the image should be acquired for then arises. Because a 

single image cannot account for vegetation which has dried out at any prior 

point in the season, it would be optimal to locate the image at the height of 

vegetation activity before the grass has begun to dry out. Not all regions in a 

study area will however experience maximum active vegetation levels 

simultaneously (Thein et al. 2008). The best possible solution, if using a single 

image, is to select the time period corresponding to mean peak in the 

presence of active vegetation for the study area for the year of interest. Error 

will still result from those areas when peak vegetation activity falls either side 

of the mean. 

Summations of all the images within a growth season provide a measure of 

photosynthetic potential that existed during the growth season, rather than at 

a point in time. This approach is reported to maximise the herbaceous 
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biomass – NDVI correlation within the study area (Verbesselt et al. 2006). 

Identification of appropriate images to include in a summation is complicated 

by the fact that the onset of rainfall events which trigger this activity is highly 

variable both spatially and temporally (Archibald and Scholes 2007). 

Summation of the VI over periods when photosynthetic potential is low has 

the potential to weaken its correlation to standing biomass through introducing 

noise to the VI signal. There is limited evidence that by basing the period of 

the summation on phenological cues derived from VI data a stronger 

correlation can be achieved between NDVI and crop biomass (Funk and 

Budde 2009) although to date this has not been tested for herbaceous 

biomass in savannas. 

However, as outlined in figure 1, photosynthetic potential is not directly related 

to herbaceous biomass accumulation. Removal through herbivory is 

constantly occurring (Hely et al. 2003b). This removal is sufficient to have 

been identified as a possible source of error when using a VI summation to 

predict herbaceous biomass in the study area (Verbesselt et al. 2006). 

Incorporating the effects of herbivory into a model would require information 

on grazer distribution and abundance and herbaceous biomass consumption 

(Hely et al. 2003b). Accurate information on the distribution of large 

herbivores is difficult to obtain for the study area because of its size and the 

absence of internal divisions restricting animal movement. Acquiring such 

data would require extensive field work, the quality of which would ultimately 

be limited by cost and logistical constraints. No studies attempting to account 

for herbivory could be found to provide information on how best to do so or 

the improvements in estimation accuracy achievable. 

 

Vegetation index values provide information on total photosynthetic potential, 

which includes the potential of both woody and herbaceous vegetation 

(Archibald and Scholes 2007). Only the portion of the signal relating to 

herbaceous production is of interest when predicting herbaceous biomass. 

One way to deal with this is the introduction of additional variables and 

interactions to account for the mixed signal. Alternately the signals can be 

unmixed and only the herbaceous component made use of. A number of 
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studies have been conducted on ways in which the two signals can be 

unmixed (Lu et al. 2003; Scanlon et al. 2002; Archibald and Scholes 2007). 

These methods have however not been applied prior to the use of VI data in 

any of the attempts to estimate herbaceous biomass encountered in the 

literature. Successful implementation of such methods would do away with the 

need for additional variables and interactions. Fuller, Prince and Astle (1997) 

found that the issue of mixed signal can be ignored when few trees are 

present, and reflectance from the herbaceous layer dominates the VI signal 

during the growing season. Their study was however carried out in an area 

with limited woody cover. In areas where woody cover is in excess of 20% 

(Prince 1991b) and herbaceous production is limited, the herbaceous layer no 

longer dominates the signal and the woody cover needs to be accounted for.  

Given that 75% of the Kruger National Park has a woody crown cover of 

between 20% - 40% (Eckhardt, van Wilgen and Biggs 2000), it is possible that 

the contribution of the woody layer to VI values is significant. (Sannier, Taylor 

and Plessis 2002b) found that sample sites in areas with high wood cover 

constantly fell below the regression line fitted to their data. The effect was 

noticeable at 30% woody cover but became far more pronounced when it 

exceeded 60%. This indicates that for the same level of herbaceous biomass 

VI values will be significantly greater in heavily wooded areas. The 

relationship between VI data and herbaceous biomass therefore varies with 

changes in woody cover (Wessels et al 2006). This could be accounted for by 

adding an interaction term between the VI variable and a tree cover variable.  

Hely et al. (2003b) avoid the need for complex interaction terms by adjusting 

the VI data prior to analysis by penalising it based on canopy cover. Anaya, 

Chuvieco and Palacios-Orueta (2009) on the other hand adjust their 

herbaceous biomass estimates post production using a woody cover variable. 

At the time of writing there does not appear to be any consensus on which 

approach is best.  

Four approaches can therefore be seen to exist: 1) ignore the issue if 

herbaceous cover dominates the signal, 2) un-mix the signal prior to analysis, 

3) penalise the signal prior to analysis or 4) include a woody cover term in the 

regression model specifying an interaction between it and the VI variable. 
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There have not been any published studies to date comparing the 

effectiveness of the different approaches. 

There also exists a negative relationship between herbaceous biomass and 

woody cover. Wessels et al. (2006), working in the KNP, investigated the 

affect of adding a percentage tree cover variable to the regression model 

without an interaction term which would account for this affect. This resulted in 

a 10% improvement in fit.  

 

In southern African savannas the fuel load at the end of a season consists not 

only of that season’s growth (less removal by herbivory and fire), but also of 

all dry, dead vegetation persisting from previous season’s growth. This 

retained growth is also known as carry-over (Smit 2005). Studies conducted 

on Drakensberg highland sourveld indicate that after 3 years of being left un-

burnt carry-over makes up between 60% and 90% of the herbaceous layer 

(Thompson and Everson 1993). Regression of NDVI against standing 

biomass under these conditions has produced an R2 ranging from 0.003 to 

0.28. In contrast carry-over in annually burnt veld accounts for between 0% to 

10% of the herbaceous layer and regressions yielded an R2 of between 0.55 

and 0.79 (Thompson and Everson 1993). Similar differences in correlation 

between grazed and un-grazed sites were reported by Todd, Hoffer and 

Milchunas (1998) when working in the short-grass steppe of Eastern 

Colorado. They found that the R2 for the regression predicting herbaceous 

biomass using NDVI for grazed sites was 0.66, whereas no significant 

relationship was found between NDVI and biomass on un-grazed sites. 

Clearly a variable to account for senesced material should be included in a 

model created for the study area as carry-over forms a significant percentage 

of the herbaceous layer and therefore potential fuel for wild fires.   

2.2.2. Selection of model type and functional form 

Having identified the variables to be included, a model type needs to be 

selected. There are a number of different model types that can be used with 

the most appropriate choice depending on the relationship being modelled 
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and the characteristics of the available data. Past studies have found that a 

linear multiple regression model is appropriate for modelling the relationship 

between biomass and VI’s (Wessels et al. 2006; Todd, Hoffer and Milchunas 

1998; Prince 1991a). Given the past success with simple linear models for 

estimating herbaceous biomass there seems little reason to adopt the use of 

anything more complex. 

2.2.3. Data Collection 

The next step in model creation is data collection. There is a fair amount of 

variation in how data is collected and processed prior to analysis in the 

studies published in the literature. The data collection and pre processing 

methods most commonly encountered in the literature are described in the 

subsections that follow. 

 

Ideally field data should be accurately measured and reflect the variation in 

herbaceous biomass within the pixels it will be assigned to. Measurement 

accuracy depends on the method used. The two most common methods are 

clipping and weighing of herbaceous biomass and the use of a Disc Pasture 

Meter (DPM). Clipping and weighing involves clipping and weighing all of the 

herbaceous material within numerous quadrates at each sample site (Hely et 

al. 2003). The quadrates are usually 0.25 m2 to 1m2  and the number used 

dependent on the variability of the herbaceous layer and size of the sample 

site. Because the method is labour intensive it is most suited to situations 

where data quality is more important than data quantity. A DPM comprises an 

aluminium disk, with a hole in the centre to which a section of aluminium pipe 

is fitted and a rod with graduations on it is threaded through the pipe to 

measure disc suspension height (Figure 2). 
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Figure 2: Operation of a pasture meter. 

 

The pipe is slid up the rod so that their tops are level, the rod is then held 

upright with its end in contact with the ground and the pipe is released 

allowing the disk to fall. The height at which the disk is suspended is then 

read off the graduated rod and recorded.  

 

Before the measurements from a pasture meter can be related to biomass the 

pasture meter must be calibrated (Sanderson et al. 2001). This involves 

gathering sets of co located pasture meter readings (height at which disc is 

suspended) and direct measurements of the herbaceous layer attained by 

clipping and weighing. A linear regression model is then created to enable 

herbaceous biomass to be estimated based on disk height. The biomass 

estimates produced in this way are often incorrectly treated and/or referred to 

as measurements. They are in fact estimates which have an error of more 

than 20% (Trollope and Potgieter 1986). The original calibration performed for 

the pasture meters used in the Kruger National Park, carried out by Trollop 

and Potgieter (1986), had a prediction error of +898 kg/ha. When the 

calibration was performed, mean herbaceous biomass for the study area was 

3826 kg/ha, which means that the estimates produced had an error of +23%. 

This is comparable to the 25% error recorded by Sanderson et al. (2001) 
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when assessing the accuracy of a disk pasture meter calibrated for cultivated 

pasture in the United States. Accuracy is likely to decrease when estimating 

herbaceous biomass outside of the original calibration area. This is because 

the model lacks variables to account for the differences in the biomass / 

suspension height relationship caused by the differences in herbaceous 

species composition, vegetation condition and many other factors that vary 

between areas (Sanderson et al. 2001). Because the accuracy depends 

primarily on the model created during calibration, increasing accuracy 

requires an improved model. Variables could be added to account for 

vegetation type or separate calibrations performed for each. The presence of 

large amounts of dry material has also been shown to affect the relationship, 

which is more difficult to account for in the model created (Trollope and 

Potgieter 1986). 

 

The accuracy of the measurement instrument is not the only factor which 

needs to be considered. It is also important to ensure that either the area 

being measured is the same for all the variables being used or is 

representative of that area. A slight mismatch in the measurement areas is 

less important when spatial variation in the property of interest is low and 

occurs at broad scales than when it is high and occurs over shorter distances. 

Variation in herbaceous biomass is ultimately controlled by the effect of 

topographic variation, disturbance and herbivore density on herbaceous 

production and accumulation (Augustine 2003). The more constant the mean 

and variance of herbaceous biomass within the area covered by a pixel the 

more limited the field sampling needs to be while still accurately reflecting the 

mean biomass within the pixel. The reverse is also true. The greater the 

variance in herbaceous biomass within a pixel the more extensive the 
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sampling will need to be. Pixel 14 in Figure 3 illustrates just such a situation. 

 

Figure 3: Simulated biomass raster overlaid with a 250m grid to reflect possible 
location of MODIS pixels. The smaller squares represent potential locations for 50x60m 
sample sites. 

 

If the mean value from a 60x60m site were used it would differ greatly from 

the actual mean biomass within the area sampled by the MODIS pixel it would 

be matched to. Alternately if the sites and corresponding pixels occur as in 

pixels 7,8 and 16 in Figure 3, there would not be an issue.   

 

To avoid encountering these issues, herbaceous biomass field measurements 

should be taken over areas equal to the size of the pixel they are to be 

matched to, if not larger (Sannier, Taylor and Plessis 2002). A common 

approach is to use a 1km transect located within a homogenous area. Multiple 

clipping or pasture meter readings are then taken either side of the length of 

this transect (Prince 1991; Sannier, Taylor and Plessis 2002; Moreau et al. 

2003). Use of much smaller transects and sample sites is resorted to when 

only historical datasets, not designed for comparison with remotely sensed 

data, are the only ones available (Wessels et al. 2006; Sannier, Taylor and 
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Plessis 2002). As outlined above, measurements from smaller field sites can 

still be representative of the surrounding area, and the error introduced will be 

minimal if herbaceous biomass is fairly homogenous at scales larger than the 

pixels being used. Wessels et al. (2006) made use of herbaceous biomass 

measurement from the VCA (veld condition assessment) dataset maintained 

by the Kruger National Park. The dataset contains various vegetation 

measurements taken annually at over 500 sites across the park as well as 

herbaceous biomass estimates based on disk pasture meter measurements. 

Wessels et al. (2006) screened the VCA sites using the level of local 

heterogeneity in vegetation as measured by Landsat ETM NDVI in the areas 

surrounding VCA sites.  This was done to exclude 60 x 60m sites located in 

areas too heterogeneous for use with 1km AVHRR pixels. The assumption 

made was that if there was a negative correlation between the level of 

variation in LANDSAT NDVI around a VCA site and the strength of the 

temporal relationship between biomass at the site and AVHRR NDVI, then the 

VCA sites were not representative of the surrounding area. They found that 

there was no correlation between the variation in LANDSAT NDVI within 

700m of most VCA sites and the strength of the temporal relationship 

between biomass and NDVI within the study area. This suggests that patches 

of relatively homogenous biomass much larger than 700m in diameter exist 

resulting in most sites falling completely within such patches. This would 

result in 60 x 60m sample sites accurately characterising the mean 

herbaceous biomass sampled by a pixel. It should also be noted that the 

above approach detects variation in live material and not dead material 

because NDVI is only sensitive to green vegetation. Direct field based 

measurements would be required to provide a definitive answer to the 

variability question.   

 

Up to this point only the quality of field based measurements has been 

discussed. The quality of the VI data used is also of great importance. End 

users have less control over this than the quality of other data sources. This is 

because cloud, atmospheric interference, and data acquisition gaps all reduce 

the useful information content of VI data, yet cannot be determined by the 

user (Kerr and Ostrovsky 2003). The only option available to a user wishing to 
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avoid such issues is post acquisition processing. Cloud contaminated or 

atmospherically perturbed pixels can be excluded from the dataset or 

replaced with estimates based on temporal and / or spatial interpolation. 

Noise in VI signals caused by cloud contamination and other issues is most 

often negatively biased, causing dips in the time series profile (Thein et al. 

2008). Fitting a curve that smoothes over these negative biases in VI time 

series data, for pixels where these issues are known to exist, and generating 

new values based on this curve, will minimise this noise (Thein et al. 2008). 

Although similar methods for pre-processing of VI data to account for cloud 

contamination and atmospheric interference is fairy common, no studies 

quantifying its effect on herbaceous biomass estimation were found.  

 

2.2.4. Model fitting and evaluation 

Ordinary least squares (OLS) regression is the standard method for fitting a 

regression line to data and is available in all statistical software packages. It is 

the method used in almost every simple statistical study published in the 

literature and therefore was adopted for use in this study.  

 

There are a number of statistics that can be used for evaluating the 

performance of a model. The coefficient of determination, displayed as R2 

values, is one of the most commonly used statistics as it provides a relatively 

straightforward and easily interpretable measure of how well the model fits the 

data. It does so by representing the proportion of variance accounted for by 

the model. 

 

 

 

 As such, it provides a simple means of evaluating how well a model fits the 

data. An R2 of 0.2 for example can be interpreted as indication that the model 

to which it applies accounts for 20% of the variation in the data which it was 

created to describe. The major limitation associated with R2 as the basis for 
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comparing model fit is the fact that it increases as additional explanatory 

variables are added, regardless of whether there is a real correlation to the 

dependent variable. For this reason simple R2 is a less reliable measure of fit 

for comparing models with differing numbers of explanatory variables. This is 

especially the case when the sample size is relatively small and the number of 

explanatory variables large,  

 

 Adjusted R2 goes some way towards addressing the limitation of R2 by 

penalising R2 based on the number of explanatory variables used. The 

formula for calculating adjusted R2 is: 

 

 

 

Where n is the number of observations, i =1 if there is an intercept and k = the 

number of predictors + i. The difference between R2 and Adjusted R2 

becomes far less pronounced as the n increases in very large samples.  

 

Adjusted R2 is a very basic metric on which to base model selection 

compared to more advanced metrics such as (AIC). It was used in this study 

despite its limitations for a number of reasons. The first was the absence of 

any mention of more advance methods in determining whether adding a 

variable to a model is acceptable in any of the literature consulted. The 

second was that extremely large samples and out of sample model 

verification were used in this study. Both increasing sample size relative to the 

number of predictor variables and using out of sample model verification 

improve the reliability of adjusted R2 as a model selection metric. It was not 

used as the primary means by which the most promising model was selected. 

It was instead used as a means of rejecting variables which did not result in 

an increase in adjusted R2, an indication that the addition of those variables 

was of no real value. Models containing variables that did result in an increase 

in Adjusted R2 were compared based on their Root Mean Square Error 

(RMSE). 
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RMSE, literally the square root of the average value of the squared residuals 

(Willmott and Matsuura 2005), was selected because the figure it returns is in 

the same units as the models predictions, and is therefore more accessible 

than Adjusted R2. It was also used as the statistic to facilitate the comparison 

of the two methods assessed in this study.  

 

2.3. Herbaceous Biomass Estimation: Cokriging 

 

The primary function of cokriging, as with any form of interpolation, is the 

prediction of values for the property of interest where no measurements have 

been taken (Krivoruchko 2009).  All interpolation methods achieve this by 

assigning unknown locations values based on surrounding known values. The 

major difference between interpolation methods lies in how the relative 

contributions of the known points are determined (Clark and Harper 2000). 

Kriging, which forms the basis of cokriging, exploits the spatial autocorrelation 

inherent in the property to inform these weightings. Spatial autocorrelation 

simply refers to the tendency for things/objects spatially closer together to be 

more similar than things/objects further apart. Inverse distance weighting uses 

similar assumptions in that it assigns greater weight to those points closer to 

the point of estimation (Johnston et al. 2001). It is unlikely however that the 

nature of spatial autocorrelation in herbaceous biomass could be adequately 

characterised by a linear function derived from the inverse of the distance 

between points in a savanna. 

 

Kriging allows for a better approximation of the nature of spatial 

autocorrelation by modelling the change in semivariance of a property through 

space. Semivariance refers to half of the squared difference between the 

value of a property measured at two points (Clark and Harper 2000). This is 

calculated for all possible point pairs and the values assigned to groups or 

‘bins’ according to their separation distance e.g. the semivariance of points 

separated by between 0 and 20m, 20 and 40m, 40 and 60m, etc., the size of 

the bins is referred to as the ‘Lag’. The average semivariance is calculated for 

the point pairs in each bin and this value plotted against the distance 
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corresponding to the centre point of that bin. The resulting plot is referred to 

as a semivariogram, although many authors simply refer to it as a variogram 

which has lead to considerable confusion (Clark and Harper 2000).  The 

nature of the autocorrelation in a property is then approximated by fitting one 

of the standard autocorrelation models, such as the Spherical model (figure 4) 

to the semivariogram.  

 

Figure 4: Spherical semi variogram and its associated parameters 

(http://planet.uwc.ac.za/nisl/GIS/spatial/chap_1_41.htm) 

 

The Range value indicates the distance at which point measurements cease 

to exhibit spatial autocorrelation. The Sill value indicates what the variation in 

the sample population is beyond the range of autocorrelation. The Nugget 

value indicates both measurement error and the amount of variation occurring 

at scales finer than that of the field sample spacing (Clark and Harper 2000). 

The parameters values for the model can be arrived at through automated 

iterative fitting programmed to minimise the sum of the squared residuals by 

stepping through a range of values for each model parameters or through 

subjective fitting by the user. For more information on automated iterative 

fitting see the documentation for the ‘sgeostat’ package available at 

http://cran.r-project.org/web/packages/sgeostat/index.html. 

 

Kriging can be extended to take advantage of the autocorrelation inherent in a 

second more intensively sample cross correlated variable in a process known 

as cokriging (Johnston, Sakala and Wrightsell 2001; Curran and Atkinson 

1998). ‘Cokriging accounts simultaneously for the autocorrelation in each 

variable, represented by the variograms and the crosscorrelation between the 
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variables, represented by the crossvariograms’ (Curran and Atkinson 1998). 

The stronger the cross correlation the greater the increase in prediction 

accuracy will be. Cross correlation in this context simply means the correlation 

between the primary and secondary variable in cokriging and crossvariograms 

means the variogram for the secondary variable. 

 

Successful execution of cokriging involves the following steps: 

 

1. Selection of an appropriate secondary variable  

 

2. Data collection 

 

3. Fitting of a standard model to the semi-variogram 

 

4. Accuracy assessment of estimates produced 

 

Only one study on the cokriging of herbaceous biomass was found for the 

whole of southern Africa. The study was conducted by Mutanga and Rugege 

(2006) in the Kruger National Park. The same study also provides the only 

available comparison of a regression based, kriging and co kriging approach 

to herbaceous biomass estimation for the region.  

 

To identify the most appropriate secondary variable the authors regressed 

VI’s, as well as individual MODIS bands used to calculate the indices, against 

herbaceous biomass estimates. They found MODIS band 2 (841–876nm, 

referred to as near infrared (NIR) to be the best correlated to biomass data, 

far better correlated than NDVI or the other VI’s used. At first glance this is in 

conflict with most other studies published on relating remotely sensed data to 

plant biomass. The satellite data used in the study was however a single 

MODIS mod13 16 day composite corresponding to the beginning of July 

2004, well into the dry season. Knowing that most vegetation activity in the 

region ceases during the dry season, especially in the herbaceous layer, the 

results make more sense as NDVI is insensitive to dry material (Thompson 

and Everson 1993). 
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Data used in the above study was taken from the KNP’s Veld Condition 

Assessment (VCA) dataset which provided 463 samples spaced on average 

1km apart (Mutanga and Rugege 2006). These samples are taken annually 

on between 450 and 500 50x60m sample plots using a disc pasture meter 

calibrated for the area. No information is available as to how optimal or sub 

optimal the VCA sample scheme is for use in kriging or how accuracy would 

be affected by an increase or decrease in sample intensity and site 

dimensions. It has however been noted by other authors that increasing the 

number of sample sites and decreasing the size of the sample plots increases 

the precision of kriging (Xiao et al. 2005).    

 

The semi variogram models for kriging and cokriging in Mutanga and Rugege 

(2006) were arrived at by manual iterative alteration of the parameters (model 

form, total sill, range and nugget), obtained by an initial visual estimate of 

what would be optimal given the semi variogram plotted.  The best model 

created using this approach was identified by comparing goodness of fit 

produced by all of the subjective model fittings. An alternative offered by some 

software is to obtain parameters through one subjective fitting and then allow 

a least squares iterative fitting algorithm to optimise those parameters 

(Rossiter 2007). 

 

Accuracy assessment of kriged estimates can be performed either by 

validation or cross validation. Validation requires two sets of data one for 

creating the model and the other for assessing its accuracy. Mutanga and 

Rugege (2006) split the available VCA data assigning 75% to the training 

dataset and 25% to the testing dataset. Cross validation on the other hand 

does not require pre splitting of the data. Instead a single point is removed 

and used as validation data over a number of iterations or ‘folds’ and the 

average validation statistics calculated. This method is known to slightly 

inflate accuracy figures but is useful if insufficient data is available for 

conventional validation (Johnston et al. 2001).  
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Mutanga and Rugege (2006) found kriging, cokriging and regression based 

estimates to have RMSE’s of 1008, 830 and 1374 kg/ha respectively when 

applied using the 2004 VCA herbaceous biomass field estimates and MODIS 

band 2 near infrared reflectance from a 16 day composite image 

corresponding to July 2004 as secondary data. This needs to be interpreted in 

light of the fact that herbaceous biomass at the end of the 2003 – 2004 growth 

season varied between 42 kg/ha and 9655 kg/ha, with an average of 3796 

kg/ha and a standard deviation of 1628 kg/ha.  

 

The herbaceous biomass – near infrared reflectance relationship produced an 

R2 of 0.44. This was sufficient to provide the178 kg/ha improvement in 

cokriging accuracy over ordinary kriging recorded above. The spatial trends, 

as captured by the kriging model, produced estimates that were 366 kg/ha 

more accurate than the reflectance – herbaceous biomass relationship 

derived using regression modelling. By exploiting a combination of both the 

spatial patterns in herbaceous biomass and the correlation between 

reflectance and herbaceous biomass, cokriging was able to deliver a 544 

kg/ha increase in estimation accuracy over a simple regression model. 

Although these results suggest that cokriging offers significant advantages 

over simple regression, the study used data from only a single growth season, 

providing no insight into whether similar results would arise given a different 

seasons data, 

In this chapter the aim and objectives of this study have been laid out. A brief 

overview of the importance of information on herbaceous biomass and a brief 

introduction to remote sensing based herbaceous biomass estimation 

methods have also been provided for the reader. In the next chapter the 

methods and materials used in this study will be looked at in greater detail 

and their advantages and disadvantages discussed. 
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Appendix 1: Field based sampling  

 

Resource requirements for providing detailed information on 

herbaceous biomass (spatial resolution of 250m) for the entire KNP 

using the ‘clip and weigh’ approach: 

 

One would need to sample on a grid with nodes spaced at most 50m apart to 

gain a representative sample for each 250 m block. Assume that the fieldwork 

team: 

  

1. could move between nodes at 5 km/hr 

2. could  clip and weigh herbaceous material at a node in 2 minutes (a 

very generous assumption)  

3. would work for 9 hours a day with a 1 hour lunch break  

4. would take 1 hour each way to travel to and from the field, a total of 2 

hours each day (once again a very generous assumption) 
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If sampling at 50m intervals and using these assumptions then a team of 

fieldworkers (1 operator, 1 data recorder and 1 game guard) could cover a 

maximum of 8.08 km/day collecting 162 measurements. To move between 

and sample all the nodes needed to cover the KNP at this rate would take 

2351 days or 6.4 years. Information on herbaceous biomass is however 

needed before the fire season starts each year so measurements need to be 

completed as soon as possible after the grass starts drying out. To complete 

all of the measurements within one month of the end of the growth season 

would require 84 teams containing in total 2100 people working 7 days a 

week.  

 

Resource requirements for providing detailed information on 

herbaceous biomass (spatial resolution of 250m) for the entire KNP 

using a Disk Pasture Meter (DPM): 

 

One would need to sample on a grid with nodes spaced at most 50m apart to 

gain a representative sample for each 250 m block. Assume that the fieldwork 

team: 

 

1. could move between nodes at 5 km/hr 

2. Take a DPM reading at a node in 10 seconds  

3. would work for 9 hours a day with a 1 hour lunch break  

4. would take 1 hour each way to travel to and from the field, a total of 2 

hours each day (once again a very generous assumption) 

 

If sampling at 50m intervals and using these assumptions then a team of 

fieldworkers (1 operator, 1 data recorder, and 1 game guard) could cover a 

maximum of 27.39 km a day collecting 548 measurements. This is 19.31 km 

further and 386 more measurements than possible when clipping and 

weighing material. To move between and sample all the nodes needed to 

cover the Kruger National Park at this rate would take 694 days or 1.9 years. 

To complete all of the measurements in one month would require 25 such 

teams containing in total 75 people working 7 days a week.  
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Chapter 2 

METHODS AND MATERIALS 
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1. OVERVIEW 

The materials and methods used in the completion of this study have been grouped 

into eight sections based largely on the order in which the work was completed.  

Figure 1 provides a summary of how these sections linked together to achieve the 

aim of this study.  
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Figure 1: Flow chart summarising steps involved in achieving this studies aim. 
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Section 1 of the analysis was concerned with assessing the Veld Condition 

Assessment (VCA) field data available for use in the study. This step was included in 

light of the fact that the VCA sample plot dimensions were significantly smaller in 

area than those of the MODIS pixels the data was being paired with. The intention 

was to develop a context in which the final results of the study could be compared to 

other studies, and interpreted. Section 2 involved deriving 10 different herbaceous 

biomass production variables using both MODIS MOD13 EVI and NDVI. Section 

three involved identifying the herbaceous biomass production variable produced in 

section 2 that was best correlated to the herbaceous biomass field estimates from 

the VCA dataset. Sections 4 and 5 involved deriving woody cover variables and 

identifying the woody cover variable that accounted for the greatest improvement in 

estimation accuracy when: 

a. included in a linear model to predict herbaceous biomass using the production 

variable identified in section 3, and  

b. used to adjust the variable identified in section 3 to account for the 

contribution of trees to that variable’s value. 

Section 6 involved creating a fire history variable using fire scar and geology data 

and then creating a regression model using this variable, the production variable  

from section 3 and the woody cover variable form section 5 to predict herbaceous 

biomass. Error statistics and prediction maps for all seasons were also produced. 

Section 7 involved cokriging the herbaceous biomass map from the VCA field 

estimates with the production variable adjusted using the woody cover from section 5 

as the secondary variable. Error statistics were also produced for the cokriged maps. 

Section 8 involved comparing the two methods based on the error statistics obtained 

from sections 6 and 7. 

Detailed flowcharts outlining the activities undertaken for each section are provided 

later in this chapter. Each flowchart is preceded by information on the materials and 

methods used and followed by a detailed description of those methods. All 

flowcharts in this chapter use rectangles to represent both inputs and outputs while 

diamonds are used to represent actions or processes. 
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2. STUDY AREA 

The Kruger National Park (KNP) was selected as the study area for a number of 

reasons. The primary reason was that a sufficiently large number of herbaceous 

biomass field estimates, those from the annual Veld Condition Assessment (VCA), 

already existed for the area. The VCA sample locations were also distributed over a 

large and diverse enough area, and the historical record long enough, to allow for 

meaningful statistical analysis to be conducted. No comparable data could be 

obtained for use from any other part of the country or region. The third reason was 

the interest in such a study expressed by the KNP remote sensing and fire 

management teams. The final reason was that numerous GIS layers detailing 

biophysical variables for the area were also available for use as additional predictor 

variables and to assess the conditions at each field sample location if required. 

The KNP is located in the lowveld on the North Eastern border of South Africa 

adjacent to Zimbabwe and Mozambique (Figure 2). It falls entirely within the 

Savanna biome with mean annual rainfall varying from 350 mm/year in the north to 

950 mm/year in the South West (Wessels et al. 2006). There is a rough West –East 

geological divide in the park with Granites in the West and Basalts in the East. This 

results in a similar divide in soil fertility with nutrient poor soils overlying the granites 

and relatively nutrient rich soils overlying the basalts (Venter, Scholes and Eckhardt 

2003). Woody canopy cover varies from 5% to 60% with more than 75% consisting 

of 2-5 meter high trees with a canopy cover of between 20 and 40%. Canopy cover 

tends to be lower within the fertile soils overlying basalt where fires are more intense 

and higher within the infertile soils overlying granite where fires are less intense 

(Venter, Scholes and Eckhardt 2003). 
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Figure 2: Location of the Kruger National Park within South Africa. 

 

3. METHODS 

3.1. Assessment of the adequacy of the VCA sample site dimensions 

This section of work was not originally included in the project plan, however, initial 

exploratory analysis showed a discouragingly weak relationship through space 

between VI values and herbaceous biomass in the area (R2 of 0.00 – 0.29).  After 

revisiting the literature it became clear that this was not a fault with the initial 

analysis. This conclusion was reached based on the fact that other studies 

conducted in the area (Wessels et al. 2006; Mutanga and Rugege 2006), which 

made use of the VCA data, showed a weaker than expected relationship when 

compared to other published work (Al-Bakri and Taylor 2003; Moreau et al. 2003; 

Prince 1991). One of the major differences between the studies based in the KNP 

making use of the VCA sample sites and the other studies encountered was the size 

of the field sample plots used. The VCA field plots (50x60m = 3000 m2, or 0.3 ha) 

dimensions differed significantly from those used in studies encountered in the 

literature. Sannier et al (2002) for example, used 1000x8m transects giving an area 
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of 8000 m2, or 0.8 ha, although the sampling intensity was the same as for the VCA 

sites, 100 DPM readings per transect. It was decided to further investigate the 

effects of the mismatch in the dimensions of the VCA field data and MODIS pixel 

data available for use in this study.  

The VCA dataset consists of herbaceous vegetation species composition and 

biomass estimates recorded at approximately 533 fixed 50 x 60m sites across the 

KNP (Figure 3) between the end of March and the middle of April (i.e. at the end of 

the wet season) each year (Zambatis 2002).  

 

 

Figure 3: Location of VCA sample sites in the Kruger National Park.  
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Pasture meter readings are not taken at all the sites every year, resulting in slight 

variation in the number of estimates available for each season. Measurements have 

been recorded since 1986, providing 23 years of biomass estimates at the time of 

writing. There is no other comparable herbaceous biomass dataset available to 

researchers in southern Africa. This makes the VCA a valuable resource for those 

interested in the inter annual variation in anything associated with herbaceous 

biomass.  

No information regarding the consistency of the teams who collected the data was 

evident in the excel spreadsheet in which the data was provided. Sampling 

commences when the grass begins to dry out, as determined by visual assessment 

of the herbaceous layer by those responsible for carrying out the survey (Zambatis 

2002). Herbaceous biomass is measured using a disk pasture meter (DPM) 

calibrated for the area. 100 readings are taken on a grid paced out within a 50 x 60m 

area located at the sites co-ordinates and converted to biomass in kg/ha using the 

conversion equation detailed in Trollope and Potgieter (1986):  

Herbaceous biomass (kg/ha)  = -3019 + 2260 √mean DPM height (cm)  

[Equation 1] 

The standard deviation of the residuals calculated during the creation of the equation 

using the field measurements as both testing and training data was reported to be 

898 kg/ha (Trollope and Potgieter 1986). In other words, on average herbaceous 

biomass estimates produce using a pasture meter differ from the actual herbaceous 

biomass on the ground by 898 kg/ha.  

The paper by Trollope and Potgieter (1986) on the calibration process states that 

measurements taken where the veld was moribund did not fit with the overall 

relationship (Figure 4) and thus were removed (Figure 5). Moribund veld in this 

context refers to veld in which live green herbaceous material is absent or scarce 

because new growth is shaded out by dead material from previous growth seasons.  
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Figure 4: The relationship between clipped biomass measurements and disk pasture meter 

height readings in the Kruger National Park, adapted from Trollope and Potgieter (1986). The 

bold points indicate moribund site measurements removed from the final training data.  
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Figure 5: “The linear regression between the square root of disk height and fuel load for non 

moribund and erect grass swards in the major landscapes of the central and southern Kruger 

National Park” (Trollope and Potgieter 1986).  Note that in contrast to Figure 3 the points where 

the veld was moribund have been removed. The square root of the disk heights was used 

because Trollope and Potgieter (1986) found they resulted in the best model fit. 

 

To account for the points being removed a proviso was attached to the use of the 

conversion equation. The proviso was that the equation cannot be used to convert 

pasture meter readings taken in areas where the veld was dominated by dead 

material (Trollope and Potgieter 1986) because it would clearly underestimate the 

actual herbaceous biomass and thus fuel load in areas with significant moribund 

grass.   
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Two characteristics of the VCA dataset evident from this description are of relevance 

to a remote sensing study, these are: 

1. The herbaceous biomass data are not measurements, they are estimates with 

a RMSE of +800kg/ha. This is a significant error considering the RMSE of the 

herbaceous estimates produced by (Mutanga and Rugege 2006) by 

combining this data with remotely sensed imagery ranged from 830 – 1374 

kg/ha. 

2. The field sites used are 50x60m in size (much smaller than MODIS or AVHRR 

pixels). 

The affects of using inaccurate estimates as field data are fairly easy to predict. The 

issue here would be related to the distribution of areas with significant moribund 

grass. Sites that have been burnt recently would generally tend to have very little 

moribund material, but sites unburnt for several years are quite likely to be moribund. 

Similarly areas favoured by grazing herbivores would also have low levels of 

moribund grass. Measurement error in a variable will lead to unexplained variation in 

the model and increase estimation error. The effect of using small sample sites is 

more difficult to predict as it depends on both the nature of the spatial variation in the 

herbaceous layer and the size of the VI pixels. After consulting past studies it was 

apparent that in most cases where a strong relationship between herbaceous 

biomass and VI data was found, the area of the sample plots used to obtain the 

biomass field estimates were much larger than the 3000 m2 used to obtain the VCA 

biomass field estimates (Diallo et al. 1991; Prince 1991; Prince and Tucker 1986; 

Sannier, Taylor, and Plessis 2002). This suggests that one of the factors involved in 

attaining a strong relationship between VI values and herbaceous biomass field 

estimates in savannas is the use of large field sample plots.  

Wessels et al (2006), aware of the field data – pixel dimension mismatch, looked for 

a correlation between variability in NDVI generated from LANDSAT imagery in a 

700m radius around each VCA site and the strength of AVHRR derived NDVI and 

the VCA biomass estimates through time. They found the sites with very high 

standard deviations in Landsat NDVI were generally closer than 600m to rivers and 

often contained riparian woodland vegetation along drainage channels with seasonal 
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water or bare sand. These sites (n=37) were therefore excluded from further 

analysis. After this removal there was no relationship between the Landsat NDVI 

variation in the sites and their coefficient of determination between biomass and 

growth season sum AVHRR NDVI. All remaining sites (n=464) were therefore 

included in the subsequent analyses (Wessels et al. 2006). Although Wessels et al. 

(2006) provide a method for excluding highly heterogeneous sites they do not 

provide any information on the magnitude of the error that might arise by failing to do 

so. It was decided to pursue this via a field based assessment measuring the extent 

of the difference between herbaceous biomass measured on co located 50x60m and 

250 x 250m sample plots. A summary of the assessment is provided in Figure 6. 
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Figure 6: The steps involved in assessing the adequacy of the VCA sample site dimensions. 

Collection of the DPM readings (Figure 6: 1.1 and 1.2) was conducted during the 

second week of April 2007 in the south of the KNP. Fieldwork was restricted to the 

south of the park within reasonable proximity of the research camp (adjacent to 

Skukuza rest camp) because of logistical constraints. Eight sample sites were 

selected based on them being within less than 2 hours drive from the research camp 

(Figure 7) and two sets of disk pasture meter readings taken at each site.  
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Figure 7: The location of the 50x60 m and 250x250 m sample sites within the Kruger National 

Park. 

 

The first set comprised of 36 Disk Pasture Meter (DPM) readings taken over a 50x60 

m area with the second set comprised of 60 readings taken over a 250x250 m area 

(Figure 8). The smaller set was always located within the area covered by the larger 

set.  
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Figure 8: Layout of sample points to test the suitability of 50x60m sample plots as 

representative samples for 250x250m areas. 

 

The pasture meter readings were converted to herbaceous biomass estimates 

(Figure 6: 1.3 and 1.4) using Equation 1, the equation specified by Trollope and 

Potgieter (1986). The mean biomass value for each site (Figure 6: 1.5 and 1.6) and 

the difference between the mean values for the corresponding large and small sites 

(Figure 6: 1.7) were calculated and the outputs entered into a table for comparison 

(Figure 6: 1.8).  
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3.2. Deriving VI variables 

Having investigated concerns over the suitability of the VCA field data being used, 

attention was turned to the first step in the creation of the regression model, deriving 

a suitable primary explanatory variable based on Vegetation Index (VI) data.  

A single VI image provides an indication of vegetation greenness and hence total 

photosynthetic potential at that specific point in time (Huete et al. 2006).  

 However, fire management planning in savannas requires estimates of herbaceous 

biomass at the end of the growing season once the herbaceous layer has dried out, 

but before prescribed burning has occurred.  

To address this problem individual VI images can be integrated over the growing 

season to give a measure of total photosynthetic potential within a growth season 

(Huete et al. 2006; Wessels et al. 2006). Figure 9 summarises how the problem was 

dealt with, namely that individual VI images were integrated over the growth seasons 

assessed in this study. 
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Figure 9: A summary of the process by which Vegetation Index variables were derived from 

separate MODIS MOD13 16 day composite Vegetation Index images.  

 

MODIS data was selected for use in the study because it offers the best combination 

of radiometric, spatial and temporal resolutions currently available for monitoring of 

vegetation activity over large areas (Figure 9: 2.1). Before the specific MODIS 

product can be discussed some general background on the MODIS sensor is 

required. The MODIS sensors aboard the Aqua and Terra satellites record data in 36 

spectral bands for the entire earth’s surface every 1-2 days. The Red and Near 
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Infrared bands (bands 1 and 2) are acquired at 250m resolution while the blue band 

used to correct for atmospheric interference and background soil colour (band 3) in 

some VI’s is acquired at 500m resolution (Huete, Justice and Van Leeuwen 1999a).  

Data products derived from both satellites are available at a number of different 

spatial and temporal resolutions. Most are gridded products, meaning that the 

original observations from the sensor are resampled to fit into a predefined grid. 

Nearest neighbour resampling is used to assign observations to grid pixels (Tan et 

al. 2006). This causes ‘pixel shift’ because the pixel on the predefined grid will no 

longer correspond to the exact location at which the reflectance values which they 

assigned were measured (Tan et al. 2006).  The difficulty this causes for those trying 

to match field data to a pixel is compounded by the fact that MODIS is a ‘whisk 

broom’ scanner. These scanners capture data from a scene by scanning it one row 

at a time perpendicular to the axis of travel or ‘track’ as it passes overhead. This 

produces pixels that vary in size depending on the angel at which the scanner was 

tilted to capture them, known as the viewing angle (Figure 10).  
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Figure 10: Illustration of how pixel size increases with increased view angle leading to a 

mismatch of pixel dimensions between observed and grid pixels (Tan et al. 2006). 

 

 

Increased viewing angle leads to increased pixel size. This means that in addition to 

a mismatch in the location of the sample between grid position and the actual area 

sampled, it may also be larger than the pixel to which the reflectance value is 

assigned (Tan et al. 2006). This will result in an upward bias in reflectance values 

because reflection from a larger area is being recorded. Even in cases where the 

observed area and a grid cell overlap perfectly, only 75% of the value recorded is 

attributable to the area covered by the grid cell (Figure 11) (Tan et al. 2006; Huang et 

al. 2002). To limit these effects the MODIS VI is composited using a “view-angle” 

constraint (Huete, Justice and Van Leeuwen 1999a) 
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Figure 11: The ‘triangular’ or bell shaped point spread function (PSF) of the MODIS sensor 

results in only 75% of the reflectance in an observation at nadir originating from within the 

area observed. Modified from (Huang et al. 2002b). 

 

This is because of the sensor’s bell shaped point spread function (PSF) (Tan et al. 

2006). A technical understanding of PSF and why it occurs falls outside of most 

natural scientist’s sphere of knowledge. For the purpose of this study it is sufficient to 

state that PSF is dependent on sensor design and so cannot be controlled by end 

users as is the case with gridding error. When taking both into account it turns out 

that on average less than 30% of the signal received originates from the area 

covered by the pixel in the gridded product to which it is assigned (Tan et al. 2006).  

As the two error sources cannot be removed by end users their effect must either be 

accepted at a given resolution or minimised through aggregating pixels together. It 

has been shown that by degrading the data’s resolution by a factor of 8 through 

grouping pixels together, 80% of the signal from the group originates from the area 

covered by that group (Tan et al. 2006). This equates to moving from 250 m 

resolution to 2km resolution or from 500 m to 4 km resolution. This was not 

attempted in this study because the field data available would be grossly 
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unrepresentative of a 2km pixel because of the dimensions of the field plots it was 

gathered from (50x60 m). 

The specific MODIS data product of interest in this study is the MOD 13 Vegetation 

Index product which was created to provide a spatially and temporally consistent 

measure of vegetation conditions (Huete, Justice and Van Leeuwen 1999b). MOD 13 

data is available at spatial resolutions of 250m and 500m as 16 day composites. It is 

also available at spatial resolutions of 1 km and 5.6 km as either 16 day or monthly 

composites. These composites are created using a special compositing algorithm 

designed to maximise VI data quality through a combination of methods discussed 

below.  

The first step in creating a 16 day image composite is the collection of 16 days of 

data and filtering it to exclude cloud contaminated and extreme of-nadir pixels. This 

typically yields less than 10 pixels per 16 pixel stack deemed to be of adequate 

quality (Wolfe, Roy, and Vermote 1998). Pixels with an off-nadir viewing angle of <45 

degrees and no cloud contamination are considered ‘good’, while those with >45 

degree viewing angle and/or cloud contamination are deemed unacceptable and 

discarded (Wolfe, Roy, and Vermote 1998). Depending on the number and quality of 

the pixels retained, one of three compositing methods is applied to produce a single 

pixel representative of the average conditions over the 16 day period. The methods 

are the MVC: maximum value composite, CV-MVC: constraint-view angle - 

maximum value composite and the BRDF-C: bidirectional reflectance distribution 

function composite (Wolfe, Roy, and Vermote 1998). The maximum value composite 

involves calculating the VI for each of the pixels and selecting the pixel with the 

highest value. This is the most basic method and is used as a backup when no 

acceptable values are present. The CV-MVC involves taking the 3 highest VI values 

and selecting the one with the viewing angle closest to nadir. The method is used 

when there are less than 5 acceptable values. The BRDF method is the most 

complex, it involves first making use of all bands from all acceptable pixels to 

calculate the expected at nadir reflectance in each band. The interpolated 

reflectance values of the resulting pixel are then used to calculate the VI. This 

method is used if 5 or more good quality values exist (Wolfe, Roy, and Vermote 1998). 

The success of the compositing method at improving pixel quality depends on the 
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prevalence of cloud cover. The more prevalent cloud cover during acquisition, the 

more cloud contaminated and extreme viewing angle pixels contained in the 16 day 

composites.  

The Native projection of MODIS data is Sinusoidal and the native file format HDF5, 

both of which make it difficult to open and interact with in many standard GIS and 

remote sensing software packages. To address this issue the MODIS science team 

created the MODIS Reprojection Tool (MRT), which enables users to reproject the 

data into more user friendly projections and file formats. MRT was used to reproject 

the data used in this study into WGS 1984 UTM 36 south. This projection was 

selected to match the projection of all of the available GIS layers provided as support 

for the study by the Kruger National Park (Figure 9: 2.2). The resulting NDVI and EVI 

raster layers were saved as16 bit flat binary files to await further processing and 

summation (Figure 9:  2.3).     

As part of the compositing process discussed earlier, information on the quality of 

the pixels produced by the compositing algorithm is recorded on a per pixel basis. A 

number of levels of detail are available ranging from an overview of quality to a 

complete breakdown of all contributing factors to pixel quality and values for each. 

This allows users to screen the data and identify poor quality pixels. Cloud 

contamination of pixels is one of the major issues in optical remote sensing. As such 

it was expected that this might be the case in this study. Analysis of the quality flags 

however revealed cloud contamination to be of minor concern (table 1). The 

percentage of pixels classed as “Marginal” quality was of greater concern as it, 

depending on the growth season, ranged from 17% to 41%, which is a significant 

portion of the time series. 
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Table 1: Pixel reliability information contained within the MOD13 version 5 quality flag layer for 
the study area.  

Year 

% of pixels classified 

as "Good" quality  

% of pixels classified 

as "Marginal" quality  

% cloud contaminated 

pixels 

2001 56.5 41.1 2.3 

2002 64.3 34.5 1.2 

2003 75.6 23.6 0.8 

2004 65.8 32.8 1.4 

2005 82.6 17.0 0.4 

2006 73.9 24.6 1.6 

 

Marginal quality pixels are referred to in the MOD13 documentation as “useful”, but 

have been produced using less than perfect data (USGS LP DAAC 2010). Less than 

perfect data can refer to pixels acquired at extreme viewing angles, pixels with 

clouds in adjacent pixels, pixels containing cloud shadow or pixels obtained under 

extreme aerosol interference. Determining the exact cause can be difficult because 

of the complexity of the detailed quality flag layer. The effects of the data quality 

issues on pixel values are likewise difficult to predict. If pixels obtained under extreme 

viewing angles are present they can result in increased VI values while cloud contamination 

can results in decreased VI values (Huete et al. 2002). These affects add increased variation 

to the temporal profile of a pixels VI values which is not related to actual changes in 

photosynthetic potential. Minimising this variation should therefore increase the correlation 

between VI values and herbaceous biomass.   

Ideally one would like to tailor the adjustment of a pixel’s VI value to the issue 

reflected in the pixel’s quality flag. This would involve increasing the value of cloud 

contaminated pixels, decreasing those viewed at extreme angels and making no 

adjustment to pixels with no data quality issues. Doing so would be fairly complex, 

and time constraints meant that this could not be successfully pursued. Fortunately, 

a software tool called Timesat (Jonsson and Eklundh 2006), identified for use in 

deriving phonological cues used elsewhere in this study was found to offer a simple 

yet reportedly robust solution. The Timesat software fits a curve to the existing 

temporal profile of pixel values, smoothing it. New values can be generated from this 
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curve in which the negative bias caused by clouds and atmospheric interference and 

the positive bias caused by extreme viewing angels should be significantly reduced. 

The software was used to run an adaptive Savitzky-Golay filtering algorithm over 

each pixel’s NDVI and EVI temporal profiles to achieve this (Jonsson and Eklundh 

2006). New values were then generated from the resulting curve (figure 9: 2.4, 2.5).   

One of the questions identified in the literature review was ‘for which dates should a 

growth season sum be performed’? Four options were included for evaluation in this 

study (figure 9: 2.7). The first was a summation over the same set of dates, 

September – April, each year this ensured that even early rains (September) and 

associated onset of herbaceous growth would be captured. April was used as the 

cut-off date to coincide with the time at which VCA field data is collected each year.  

The second was a summation taking into account the variation in the onset of the 

growth season. This required the start and end dates for each growth season 

included in the study. Timesat identified the start and end of the growth season using 

the instant at which a curve fitted to the VI time series exceeded the user defined 

percentage of the pre-season VI minimum, in this case 20% (Jonsson and Eklundh 

2006). The curve was fitted to the data using the Adaptive Savitzky-Golay filtering 

algorithm with 3 fitting steps of window size 2, 3 and 4 respectively. Points more than 

2 standard deviations above the mean were also removed as they were assumed to 

be attributable to sensor errors (Figure 9: 2.6). The resulting start and end date 

raster were saved as flat binary files for use in the summation process. The end date 

raster was filtered to remove any end dates later than the 7th of April and replaced 

with that date to ensure that no summation included values from after the collection 

of the field data.  

The third summation was designed to compensate for the removal of production by 

grazers. To do so a weighting was applied to the summation process based on the 

following reasoning: 

1. The later in the season herbaceous growth occurs, the less likely it is to be 

removed by grazers before field measurements are taken. 
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2. The greater the removal through herbivory, the weaker the correlation 

between VI data from the early part of the growth season and the field 

estimates will be. 

3. The VI data should therefore be summed in such a way as to increase the 

weight assigned to images as the season progresses. An arbitrary weighting 

of 30% for the first image in the time series and 100% for the last was chosen.   

 

It was however acknowledged that these assumptions would be incorrect if:  

 

1. There is significant vegetation growth early in the season  

2. This activity is followed by extensive senescence of the herbaceous layer 

prior to the acquisition of the field data. The resulting error will be greatest in 

areas where herbaceous material remains palatable once senesced. This is 

more likely to occur on sweetveld occurring on basalts than sourveld 

occurring on granites.  

 

The fourth and final summation was a combination of the variable dates based on 

actual growth season and the weighted summation described above.  

All of the summations were conducted using scripts written in MATLAB. A single 16 

day MODIS VI composite commencing on Julian date 97 (7th April) was included to 

facilitate comparison between the summations and a single image. This date was 

chosen once again to correspond as close as possible to the time at which the field 

data was gathered. All 5 steps were then repeated using the values generated from 

the curve fitted to the EVI and NDVI time series in Timesat (figure 9: 2.8) to assess 

the effectiveness of the curve fitting in remedying the effects of cloud contamination 

and atmospheric interference. This resulted in 20 VI variables, 5 EVI variables and 5 

NDVI variables from the raw data (figure 9: 2.9) and the same again from the fitted 

data (figure 9: 2.10). 
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3.3. Assessing the performance of the VI variables  

Having created the VI variables, their correlation to the VCA herbaceous biomass 

field estimates needed to be assessed so that subsequent analysis would only 

involve the best correlated summation. A summary of how this was accomplished is 

contained in Figure 12. 
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Figure 12: A summary of the process by which the best performing Vegetation Index variable 

derived for use in the study was selected for use in subsequent analysis steps. 
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The relative performance of the VI variables created was assessed by performing a 

simple linear regression between each variable and the herbaceous biomass field 

data for each growth season between 2000 and 2006. The field data used was once 

again drawn from the VCA dataset described previously (Figure 12: 3.1). The data 

was received as entries in an excel spreadsheet along with a shape file containing 

points indicating the location of each VCA site. The biomass estimates from the VCA 

data were assigned to their correct point location by using the unique site number 

identifier. Prior to inclusion in the regression the VCA data was screened to remove 

all sites within 500m of dams as well as 1st and 2nd  order streams and rivers (Figure 

12: 3.2). These sites were deemed to be too heterogeneous in terms of land cover to 

be included in the study. In all years, even after excluding highly heterogeneous 

sites, more than 400 acceptable sites were available (Figure 12: 3.3). 

 All of the VI variables (Figure 12: 3.4 and 3.5) were imported to ArcGIS and  the 

pixel values underlying the VCA points extracted and added to the point files 

attribute table. The information in the attribute tables was then imported into the 

statistical program R. The following process was then run for each growth season: 

1.  A subset of 70% of the VCA sites was created (Figure 12: 3.6). 

2. This data was used to train a regression model using each of the VI variables 

being assessed (Figure 12: 3.7, 3.8 

3. The resulting models were used to predict the values of the remaining 30% of 

the data. Each of the models prediction accuracy and fit to the data was then 

determined by calculating RMSE and R2 using the corresponding VCA 

biomass estimates as ground truth data.  

4. This process was repeated 100 times and the average RMSE and R2 for each 

growth season calculated. The best performing model based RMSE was then 

selected for use in further analysis steps (Figure 12: 3.11 and 3.12).  
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Monthly rainfall was obtained much later in the study in an attempt to aid 

understanding of the variability in the performance of the summations. This was 

plotted on bar charts and inserted alongside the above results. 

 

 

3.4. Woody canopy cover derivation and accuracy assessment 

Having selected the best VI variable for use as the herbaceous biomass production 

variable, work began on selecting an explanatory variable providing information on 

the presence of woody vegetation. The global MODIS MOD44 tree cover product 

was at the time of writing one of the few tree cover products available. The tree 

cover map for Kruger National Park derived by Gabriella Bucini’s, regarded at the 

time of the final corrections to this dissertation as the most accurate tree cover map 

available, was not known to the author early enough in the study’s project cycle for it 

to be made use of. Initial inspection of the MOD44 product raised doubts over its 

accuracy, especially in the relatively low tree cover of the Lowveld where the study 

area is located. Two approaches for deriving information on the presence of woody 

vegetation were therefore selected from the literature to be evaluated in this study in 

addition to the MODIS MOD 44 tree cover product. The first relied on the response 

of VI signal to rainfall relative to the temporal mean VI values (Scanlon et al. 2002). 

The second attempted to exploit the seasonal differences in woody and herbaceous 

vegetation activity (Archibald and Scholes 2007). The MODIS MOD 44 product 

estimates canopy cover based on reflectance in a number of different bands using a 

supervised regression tree algorithm (Hansen et al. 2002). Further details on the 

production and assessment of all three are presented below; Figure 13 provides a 

summary of the process. 
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Figure 43: A summary of the process by which the variables used to account for the effect of woody vegetation on the 

VI – herbaceous biomass relationship were derived and evaluated. ‘Selection of end members’ in 4.6 refers to 

identifying pixels composed entirely of each of the cover types present. In the method adapted from Scanlon et al. 

(2002), these cover types were trees, grass and bare soil. 
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A method for deriving fractional woody vegetation cover adapted from a paper by 

Scanlon et al. (2002) was carried out using both AVHRR derived NDVI at 1km 

resolution for the years 1985 - 2003 and the MOD13 EVI at 250m resolution for the 

years 2001 – 2008 (Figure 13: 4.1 – 4.8). Unlike in the original method detailed in the 

paper, no spatial averaging was used as a spatially explicit fractional cover was 

needed. All calculations outlined below are therefore on a per pixel basis. 

Temporal mean MODIS EVI and AVHRR NDVI images were calculated for each wet 

season in the time series. The wet season was taken to be between November and 

February for the study area. The long term temporal mean vegetation index values 

for all of the wet season mean images were also calculated (Figure 13: 4.2). Total 

rainfall for the wet season was normalised by subtracting the temporal mean rainfall 

and dividing by the temporal standard deviation in rainfall (Figure 13: 4.1).  

OLS regression was performed using the time series of values from each pixel in the 

study area with normalized rainfall as the independent/predictor variable and the wet 

season vegetation index value as the dependent/response variable (Figure 13: 4.3). 

The beta coefficient for the pixel was recorded only if the regression has a P value of 

< 0.1. If the relationship was not significant, the pixel was excluded from further 

analysis (Figure 13: 4.4). It was found that less than 20% of the pixel time series 

regressions involving the MODIS data showed a significant relationship between VI 

and Rainfall. Less than 20% coverage of the study area was deemed insufficient 

coverage to be useful as tree cover could only be generated for those pixels with a 

significant relationship. Further assessment of the MODIS derived fractional cover 

product was therefore abandoned. 

The significant coefficients were plotted against corresponding long term temporal 

mean vegetation index values (Figure 13: 4.5). The resulting plot was then used to 

visually select end member values for 100% tree cover, 100% grass cover and 100% 

bare soil (Figure 14 & Figure 13: 4.6). 
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Figure14: End member selection for the AVHRR derived canopy cover method.  

 

Fractional cover was then determined by solving equations 1, 2 and 3 

simultaneously (Figure 14: 4.7). 

1. Xt(i) +  Xb(i) + Xg(i) = 1 

 

2. EVIt(Xt(i)) + EVIb(Xb(i)) + EVIg(Xg(i)) = EVI(i) 

 

3. βt(Xt(i)) + Bb(Xb(i) + Bg(Xg(i)) = B(i) 

Where: 

EVI(i) is the temporal mean vegetation index value of pixel (i)  

EVIt, EVIb and EVIg are the temporal mean EVI component of the tree, bare soil and 

grass end member values respectively 

B(i) is the regression coefficient of pixel (i) 

Bt, Bb and Bg are the regression coefficient component of tree, bare soil and grass 

end member values respectively 

Xt(i), Xb(i) and Xg(i) are the fraction of pixel (i) made up of tree, bare soil and grass. 
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The raster containing the values for the fraction of each pixel made up of trees was 

then imported to ArcGIS for use in later analysis (Figure 13: 4.8). 

The second tree cover variable derived was the mean MODIS EVI for September 

and October of each year. The variable was an attempt to exploit the fact that certain 

trees green up before grasses in the study area and so dominate VI signal in 

September and October. The new leaves on the trees are the dominant source of 

green vegetation before the herbaceous layer begins growth again after inactivity in 

the dry season. The mean MODIS EVI for the September and October was 

calculated (Figure 13: 4.9 – 4.10) and the temporal average created to minimise the 

potential affect of large EVI decreases caused by fire and not changes in the tree-

grass balance (Figure 13: 4.11). Because those species of trees that green up 

before grasses are not uniformly distributed across the study area the above method 

will be more effective in some areas than others.  

The third tree cover variable, the MODIS v4 MOD 44 canopy cover product (Figure 

13: 4.12), was obtained for the years 2002 - 2005 from the Global Land Cover 

Facility webpage (http://glcf.umiacs.umd.edu/data/vcf/). The product is derived using 

a supervised regression tree algorithm using 7 of the MODIS bands and 250 

classified Landsat images as training data (Hansen et al. 2002). The product 

documentation defines trees as woody structures >5m. However, as the product is 

heavily reliant on the NDVI signal, it is not clear how other green vegetation is 

prevented from influencing the tree cover value reported by the product. For a more 

comprehensive account of the method, refer to the MOD44 users guide available 

online through the MODIS website (http://modis.gsfc.nasa.gov). Of the variation 

accounted for in the method, 70% arose from splits based on red reflectance levels. 

The presence of chlorophyll is the major determinant of red reflectance as 

chlorophyll absorbs in this region of the spectrum. Fire and fluctuations in 

herbaceous production related to rainfall are likely to introduce a large amount of 

variation into a product depending predominantly on the levels of chlorophyll present. 

This may not be a major issue where vegetation is dominated by evergreen trees. It 

is however a major issue when vegetation is dominated by highly variable 

herbaceous species as is the case in the study area. Initial inspections of the layers 

showed a larger inter-annual variation in canopy cover than seems likely (Figure 15). 
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Figure15: Change in MOD44 canopy cover values for the periods indicated. 

 

The validation results published for the MOD 44 product confirm the concerns over 

the product’s accuracy. The limited agreement between measured and predicted 

values evident in Figure 16 suggests that the product is not suitable for use in 

quantitative studies. As such, expectations of the product’s performance in this study 

were fairly low. 
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Figure 16 MOD 44 canopy cover validation results (Hansen et al. 2003). The R
2 
value for the 

regression is given as 0.89. 

In an attempt to compensate for what seems to be unrealistically large inter-annual 

variations in canopy cover, the product was averaged for the entire period (Figure 

13: 4.13), producing a single temporally average MOD 44 tree cover layer (Figure 

13: 4,14). 

The accuracy of all three layers was assessed by regressing them against degraded 

10m resolution canopy cover estimates derived from a combination of LiDAR; aerial 

photography and IKONOS Imagery (Figure 13: 4.16). The estimates were derived 

and provided courtesy of Dr. Sean Levick from the University of the Witwatersrand 

(now employed by the Carnegie Institute) and Russel Main and Melanie Vogel from 

the CSIR Ecosystems and Earth Observation department (Figure 13: 4.15). Scatter 

plots with R2, P value and regression lines shown were then produced for 

comparison (Figure 13: 4.17).  

 

3.5. Woody canopy cover re-evaluation 

 

The regression of the woody canopy cover testing data against the Tree cover 

variables derived for this study did not reveal any statistically significant 

relationships. This meant that one or more of the following was true: 
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1. The tree cover variables investigated for use in this study contained little 

information on tree cover 

2. The testing data was not an accurate measure of tree cover 

3. Error was introduced when the testing data had its resolution degraded to 

match that of the tree cover variables being assessed. 

Visual inspection of the tree cover variables by researchers with knowledge of the 

actual conditions on the ground suggested that the tree cover variables showed at 

least broad agreement with actual patterns of tree density in the study area. 

Inspection of the testing data alongside the high resolution imagery it was derived 

from suggested that the testing data reflected tree cover fairly accurately. This 

allowed possibilities 1 and 2 to be ruled out.  

At the time the analysis was performed, possibility 3 did not register as a concern 

because I was not fully aware of the need to take into account PSF when degrading 

the spatial resolution of imagery to match coarse resolution imagery on a per pixel 

basis. In retrospect it seems the most likely candidate for the lack of correlation in 

this case is the September - October mean variable. It also seems likely that it would 

significantly affect the correlation with the other two tree cover variables as they were 

derived from similar coarse resolution imagery. In the absence of this knowledge, 

rather than attempting to correct for the PSF and re-running the accuracy 

assessment, a new approach was pursued. It was decided to re-assess the 

performance of the Tree cover variables based on their ability to account for 

additional variation in the regression between the best VI variable identified during 

previous analysis and the herbaceous biomass field estimates. The process for 

doing so is summarised in Figure 17 below.   
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Figure17: A summary of the process by which the tree cover variables considered were re-

assessed based on their ability to account for additional variation in the previously created 

herbaceous biomass estimation models. 

 

Pre correction of the VI variables was conducted by reducing each pixels VI value by 

an amount proportional to the corresponding pixel value of one of the tree cover 

variables. In the case of the temporal mean September – October VI value tree 

cover variable (Figure 17: 5.1), this was achieved by subtracting it from each of the 

images used to create the original fixed date summations and then once again 
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performing a weighted summation (Figure 17: 5.2). In the case of the two percentage 

measures (Figure 17: 5.4 and 5.7), the VI variable was simply reduced by the 

percentage tree cover indicated (Figure 17: 5.5 and 5.8), under the assumption that 

there was a 1:1 relationship between tree cover and VI contribution. 

Performing the pre analysis correction provided four possible VI variables for each 

year, the original VI summation (Figure 17: 5.10) and three others adjusted using the 

tree cover variables (Figure 17: 5.3, 5.6 and 5.9). All of the VI variables (Figure 17: 

5.3, 5.6, 5.9 and 5.10), as well as the tree cover variables (Figure 17: 5.1, 5.4 and 

5.7), were imported to ArcGIS and the pixel values underlying the VCA points 

(Figure 17: 5.11) extracted and added to the point files attribute table. The 

information in the attribute tables was then imported into the statistical program R 

and the following process carried out for each growth season: 

1. A subset of 70% of the VCA sites was created 

2. This data was used to train a total of ten competing linear models. The first 

model had only the weighted summation of EVI (Figure 17: 5.10) as a 

predictor variable. Three models with the adjusted EVI variables (Figure 17: 

5.3, 5.6 and 5.9) as the predictor variables were then trained. This was 

followed by three models with both the weighted summation of EVI (Figure 17: 

5.10) and one of the tree cover variables (Figure 17: 5.1, 5.4 and 5.7) as 

predictor variables. Finally a last set of three models using the same set of 

variables as above but with interactions between the EVI summation and the 

tree cover variables were trained. 

3. The resulting models were used to predict the values of the remaining 30% of 

the data. Each of the models prediction accuracy and fit to the data was then 

determined by calculating RMSE and adjusted R2 using the corresponding 

VCA biomass estimates as ground truth data.  

4. This process was repeated 100 times and the average RMSE and adjusted 

R2 calculated for each growth season (Figure 17:  5.12).  
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The change in adjusted R2 for each model relative to the base model was assessed 

and those not registering an increase rejected. The best performing of the remaining 

models, based RMSE, was then selected for use in further analysis steps.  

 

 

 

 

 

3.6. Production of final regression model 

Having identified the best performing tree cover variable and the most successful 

means of incorporating it into a regression model, a final refinement, the addition of a 

fire history variable, was investigated. The fire history variable was pursued in an 

attempt to account for the presence of dry material, a factor identified as having the 

potential to have a significant effect on the accuracy of a VI based prediction model 

(Thompson and Everson 1993). In addition to the usual regression diagnostics 

produced in previous modelling steps, the final model created for each year was 

used to produce herbaceous biomass estimates for the entire study area. Figure 18 

provides a summary of the process. 
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Figure 18: A summary of the process undertaken to create the final regression models used in 

this study. The arrows feeding into box 6.10 indicate variables that were used as inputs into 

the regression model identified as the most accurate predictor of herbaceous biomass.  
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Initially when searching for a suitable variable to account for dry material, VI 

summations from previous seasons were considered as they would provide an 

indication of past production. Average fire return period for the KNP is approximately 

4.5 years (Van Wilgen et al. 2003). Production estimates for a maximum of four years 

prior to the season of interest, but fewer when a fire had occurred more recently, 

would therefore be sufficient to create a variable to account for carry-over. 

Attempting this approach would have necessitated the creation of a fairly complex 

model containing the following: 

 

1. Separate VI variables for each of the season’s prior to the season of interest 

until the first of the following is reached: 

• The season when the veld last burnt is reached 

• Four seasons without a burn event have lapsed 

 

2. A three way interaction between each of these VI variables and variables 

accounting for:  

• Differences in herbivory. This would be required because the 

relationship between production and carry-over will be affected by the 

level of herbivory occurring in the dry season. Even a weighted 

summation of VI values could only account for herbivory occurring 

within the growth season. 

• The number of seasons between the season of interest and the season 

in which production occurred.  This would be required because the 

greater the time lag, the more likely the material present is to be eaten. 

 

There is no record of this approach being implemented in the literature, possibly 

because of the large amount of data required relative to the expected effectiveness 

of including such a variable.  A simpler approach was therefore sought given the 

limited time and resources available for this project.  
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The approach decided on was to produce a categorical variable that was a 

combination of both fire history and geology as both affect accumulation of dry 

material. The effects of fire are obvious; burn events remove the majority of 

accumulated dry material resulting in areas most recently burnt having little dry 

material in the herbaceous layer. The effect of geology on the accumulation of dry 

material is more complex and is related to both production and herbivory which are 

controlled to some extent by underlying geology. The study area can be broadly 

divided into fertile regions located on basalts and infertile regions located on granites 

(Venter, Scholes and Eckhardt 2003). Infertile soils lead to lower herbaceous 

production and less palatable herbaceous material of little grazing value once dry. 

Fertile soils on the other hand enable greater herbaceous production and result in 

more palatable herbaceous material that remains palatable even once dry. It was 

therefore assumed that removal through herbivory would be higher where these soils 

occur. 

By combining geology and fire history (Figure 18: 6.3), it was thought that the 

resulting categorical variable comprised of categories detailing geology and time 

since last burnt(Figure 18: 6.4) would improve estimation accuracy by allowing for 

variation in the intercept of the regression model. Information on time available for 

accumulation was provided by fire history determined using fire scar maps obtained 

from the KNP Scientific Services (Figure 18: 6.1). Information on differences in 

potential productivity and hence accumulation rate was provided by a geological 

layer indicating the location of granite and basalt parent material (Figure 18: 6.2). It is 

acknowledged that this fails to include the effect of rainfall on actual production. 

The combined fire history and geological categorical variable, was imported to 

ArcGIS and the pixel values underlying the VCA points extracted and added to the 

point files attribute table already containing the best performing VI (Figure 18: 6.5) 

and tree cover variables (Figure 18: 6.6) identified in previous analysis steps. The 

information in the attribute tables was then once again imported into the statistical 

program R and the following process implemented for each growth season:  
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1. A subset of 70% of the VCA sites was created 

2. This data was used to train a total of two competing linear models. The first 

model included the VI variable and the tree cover variable as predictors. The 

second contained the VI variable, the tree cover variable and the combined 

fire history – geology categorical variable. 

3. The resulting models were used to predict the values of the remaining 30% of 

the data. Each of the models prediction accuracy and fit to the data was then 

determined by calculating RMSE and adjusted R2 using the corresponding 

VCA biomass estimates as ground truth data.  

4. This process was repeated 100 times and the average RMSE and adjusted 

R2 calculated for each growth season (Figure 17:  5.12).  

Average RMSE and adjusted R2 values were calculated for each model and entered 

into tables for comparison. The change in adjusted R2 for the models containing the 

geology-fire history variable relative to the simpler model was assessed. All of the 

more complex models registered an increase in adjusted R2 and so were accepted 

for further scrutiny. The model providing the greatest average decrease in RMSE 

between seasons (Figure 18:  6.10), was re-trained using all the points for a 

particular year, and the resulting model used in the production of spatially explicit 

biomass estimates. The estimates were then imported back into Arc GIS and 

presented as maps (Figure 18:  6.12). 

 

 

3.7. Cokriging 

 

Having completed the regression component of the analysis for the study, attention 

was turned to producing estimates using cokriging. A summary of the process is 

provided below in figure 19. 
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Figure 19: A summary of the process involved in producing herbaceous biomass estimates 

using geo-statistical interpolation in this study. 

 

The VCA herbaceous biomass data for each year were imported into R (Figure 19: 

7.1). Standard models were fitted using the ‘sgeostat’ package’s iterative fitting 

command (Figure 19: 7.2), with the type of model selected based on visual 

inspection of the semi-variograms. The iterative fitting command cycles through a 

user defined number of iterations, altering the nugget and sill values, and selects the 

values that result in the best fit of the model type specified to the points on the semi-

variogram. Because of difficulties experienced in successful use of the ‘sgeostat’ 

package, the actual kriging and cokriging interpolations were performed using the 
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ArcGIS 9.2 geostatistical wizard. The standard model parameter values determined 

through iterative fitting of the models to the semi-variogram data in R were entered 

into ArcGIS and the geostatistical wizard was allowed to optimise the number of 

lags, range, sill and nugget values. This provided a final set of parameters (Figure 

19: 7.3) used by ArcGIS to perform the kriging (Figure 19: 7.4). The software 

provides two standard outputs when performing any type of kriging. The first is a set 

of cross-validation accuracy assessment figures (Figure 19: 7.5) and the second the 

actual kriged maps of herbaceous biomass (Figure 19: 7.6). As was the case in 

Mutanga and Rugege (2006) I used the default set of cross validation results to 

assess the accuracy of the kriged and cokrieged maps in this study. Cross-validation 

makes use of the entire set of training data to estimate the trend and autocorrelation 

models. Data points are then withheld from the dataset one at a time or in randomly 

selected subsets. A surface is interpolated using the remaining points and its 

accuracy assessed by comparing the actual value for the withheld validation points 

to the interpolated value. The validation points are then returned to the dataset and a 

new subset selected and the process repeated, until all points have been used in 

validation. Finally an average is calculated based on all of the accuracy assessment 

gathered (ESRI 2001). 

Once again the VCA field estimates were used as the primary variable (Figure 19:  

7.1 feeding into 7.10).  The strongest correlated EVI variable identified in section 

three of this analysis that could be used as the secondary variable for cokriging was 

the weighted summation of growth season EVI adjusted for tree cover using the 

September – October temporal mean EVI (Figure 19: 7.7). Owing to the software 

repeatedly freezing when attempting to use all 304179 EVI points as secondary data, 

a 7000 point subset was randomly selected for each year in addition to the +400 co-

located with the VCA points (Figure 19: 7.9).  The same standard model parameters 

as used for kriging were manually entered and the software was allowed to optimise 

the cokriging parameters (Figure 19: 7.10). Once again the software outputs the 

results for both the cross-validation accuracy assessment (Figure 19: 7.11) and the 

cokriged maps of herbaceous biomass (Figure 19: 7.12). 
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3.8. Comparison of methods 

The regression model and cokriging approaches were compared by calculating the 

mean accuracy and standard deviation of accuracy for the study period. The 

difference between the herbaceous biomass prediction maps was calculated to 

identify if there were any patterns in how the predictions differed. Histograms of the 

residuals were calculated to determine if either method showed biased residuals. 

The residuals were plotted onto a map of the study area with symbols proportionate 

to the size of the residual to check for spatial trends in the magnitude of the 

residuals. 
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Chapter 3 

RESULTS 
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1. OVERVIEW 

The results arising from the various analysis steps have been grouped as 

follows: 

1. Assessment of the affects of the VCA sample site dimensions (section 1 

on methods flowchart) 

2. Creation of a regression model: 

2.1. Assessing the performance of the Vegetation Index variables 

(section 3 on methods flowchart) 

2.2. Assessment of a suitable woody canopy cover variable 

(sections 4 and 5 on methods flowchart) 

2.3. Assessment of a suitable variable to account for dry / 

moribund material (section 6 on methods flowchart) 

2.4. Assessment of the completed regression models. 

3. Kriging and Cokriging (section 7 on methods flowchart). 

4. Comparison of the accuracy and precision of the regression model and 

cokriging approaches (section 8 on methods flowchart). 

 

2. ASSESSMENT OF THE ADEQUACY OF VCA SAMPLE PLOT 

DIMENSIONS 

Table 1 contains the results from the analysis of the discrepancy in mean 

herbaceous biomass measured using a DPM on co-located 60 x 60m and 250 

x 250m sample sites at the end of the 2007-2008 growth season. Biomass 

within 250 x 250m sites differed from that within co-located 60 x 60m sites 

between 42 kg/ha and 1308 kg/ha with a mean difference of 556 kg/ha and 

standard deviation of the differences of 410 kg/ha. On three occasions the 

biomass estimates for the 60 x 60 m plot were greater than biomass 

estimates for the 250 x 250 m, while it was the opposite for the other 5, and 

hence no directional bias was evident. No research was done in this study 
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into what caused some sites to show a greater discrepancy in biomass 

estimates than others. The take home message here was that the 

discrepancy exists and researchers need to be aware of this source of error. 

Table 1: The difference in mean biomass estimates based on pasture meter readings 
for co-located 60 x 60m and 250 x 250m sample sites in the Kruger National Park at the 
end of the 2007-2008 growth season. SD refers to DPM readings within each site. Refer 
back to the map in Figure 7 of chapter 2 for site locations. 

 Site 

Mean and SD 
Biomass 
measurement 
60*60m (kg/ha) 

Mean and SD 
Biomass 
measurement 
250*250m (kg/ha) Difference(kg/ha) 

Vegetation type 

1 4163 (1478) 3647, (1276) -516 
Terminalia/Rock Ficus 
Sour Bushveld 

2 4477 (1690) 4020, (1493) -457 
Terminalia/Rock Ficus 
Sour Bushveld 

3 3087 (1139) 3045, (1268) -42 

Knob 
Thorn/Dichrostachys 
Thorn Thickets 

4 2035 (632) 2831, (1302) +796 

Knob 
Thorn/Dichrostachys 
Thorn Thickets 

5 2184 (1501) 3492, (1937) +1308 

Knob 
Thorn/Dichrostachys 
Thorn Thickets 

6 5067 (1908) 5223,  (1262) +156 
Knob thorn/Marula tree 
Savanna 

7 5497 (1616) 5850, (1336) +353 
Knob thorn/Marula tree 
Savanna 

8 5003 (1109) 5821, (1697) +818 
Knob thorn/Marula tree 
Savanna 

 

3. CREATION OF THE REGRESSION MODELS 

3.1. Assessing the performance of the vegetation index variables  

Two sets of imagery were used for each growth season. The first set of 

imagery was used without any pre processing of the data apart from 

Reprojection. This set of images is referred to as the ‘raw’ data in this study. 

The second set of images was produced from the raw data by fitting a curve 

to each pixel’s time series and generating new pixel values from that curve. 

This was intended to minimise the effects of cloud contamination. The second 
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set of data is referred to as the ‘smoothed’ data in this study. For each set of 

imagery and each growth season eight different growth season sum VI 

variables were created to predict herbaceous biomass. 

The growth season sum variables were:  

1. A summation over the same fixed set of dates, September – April, for 

each growth season (referred to as ‘fixed’ in the tables that follow). 

2. A summation taking into account the variation in the onset of the 

growth season as determined by a 20% increased VI value on a pixel 

by pixel basis (referred to as ‘variable’ in the tables that follow). 

3. A summation placing a 30% weighting on the first image in September 

and increasing the weighting linearly to 100% for the first image in April 

(the last image in the time series) (referred to as ‘weighted’ in the 

tables that follow). 

4. A pixel by pixel summation placing a 30% weighting on the first value in 

the growth season time series (start of growing season) as determined 

by a 20% increased VI value from the previous season low and 

increasing the weighting linearly  to 100% for the first image in April. 

Each variable was created using both EVI and NDVI, yielding 8 growth 

season sum variables in total. 

A single raw 16 day image composite was also selected from both the NDVI 

and EVI imagery for each growth season for use as VI variables. These 16 

day composites corresponded to mid April in each growth season, the period 

in which the field measurement were reportedly taken (referred to as ‘single 

composite’ in the tables that follow). 

The resulting data was randomly sampled to create 100 testing and training 

datasets using a 70% training 30% testing split. OLS regression was 

performed on each dataset using each VI variable in turn to predict 

herbaceous biomass.    

Where appropriate, the best performing VI variable for each year based on 

either the average Root Mean Square Error (RMSE) or R2 is highlighted in 
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bold. R2 has been used as a means of comparison in table 5 to facilitate 

comparison to other studies. In other tables RMSE has been used as it 

provides information on the accuracy of the estimates produced in kg/ha, 

which is of greater interest in this study than R2 , which is a measure of how 

well the models fit the data. The tables are followed by a figure (figure 2) 

showing the average rainfall within the study area for each month within the 

relevant growth season. This was added to aid in the interpretation of 

variations in the performance of the VI variables. 

It is clear that on average EVI outperforms NDVI as a predictor of herbaceous 

biomass in the study area (table 2). The only instance in which this is not the 

case is in the 2002 – 2003 growth season, when the single NDVI composite 

image was the only variable with a significant correlation.   The difference in 

performance is fairly minor in the 2004 – 2005 and 2001 – 2002 growth 

seasons, while it is most pronounced in the 2005 – 2006 growth season. It is 

also evident that vegetation indices were not related to herbaceous biomass 

in the 2002 – 2003 growth season, which was particularly dry. Having 

identified EVI as the best performing VI variable, it was selected as the VI with 

which the rest of the study was conducted. NDVI therefore does not appear in 

any of the subsequent results.   
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Table 2: The difference in the mean RMSE values of the linear models to predict 
herbaceous biomass using the NDVI and EVI to account for herbaceous production. 
Negative numbers indicate instances in which the NDVI based variable had a smaller 
RMSE value than its EVI equivalent. The missing values in 2002 -2003 indicate that 
neither the EVI nor NDVI variable were significantly correlated to herbaceous biomass. 
* indicates that one of the variables in the pair was not significantly correlated to 
herbaceous biomass.    

VI Variable 

2000 - 2001 

(NDVI - EVI, 

kg/ha)  

2001 - 2002 

(NDVI - EVI, 

kg/ha) 

2002 - 2003 

(NDVI - EVI, 

kg/ha) 

2003 - 2004 

(NDVI - EVI, 

kg/ha) 

2004 - 2005 

(NDVI - EVI, 

kg/ha) 

2005 - 2006 

(NDVI - EVI, 

kg/ha) 

Single Composite 54* -2* -11* 73 16 77 

Fixed smoothed ∑ 74 19 . 20 -3 68 

Variable smoothed ∑ 55 18 . 21 4* 100 

Weighted smoothed ∑ 86 18 . 47 3 78 

Variable weighted 

smoothed ∑ 72 17 . 58 6 106 

Fixed Raw ∑ 64 27 . 24 4 51 

Variable Raw ∑ 48 24 . 20 9 83 

Weighted Raw ∑ 74 25 . 55 9 67 

Variable weighted Raw ∑ 63 23 . 58 11 92 

Average 66 19 . 42 6 80 
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The percentage of cloud contaminated pixels was extremely low for all growth 

seasons assessed in the study. The most contaminated growth season 

imagery was recorded in 2000 – 2001, when 2.3% of the pixels in the image 

stack were cloud contaminated according to the MODIS quality flags (table 3). 

The percentage of marginal pixels recorded within the study period was of 

greater concern, with between 17% and 41.1% of the pixels in the image 

stacks for the growth seasons being labelled ‘marginal’ in the quality flag layer 

(table 3).  

Table 3: Pixel reliability information contained within the MOD13 quality flag layer for 
the study area. The quality flag layer is a raster image included with MODIS imagery 
with pixel values coded to provide information on the quality of the data in the 
acompanying layers on a per pixel basis. 

Growth 

season 

% of pixels classified 

as "Good" quality  

% of pixels classified 

as "Marginal" quality  

% cloud 

contaminated pixels 

2000 -

2001 56.5 41.1 2.3 

2001 -

2002 64.3 34.5 1.2 

2002 -

2003 75.6 23.6 0.8 

2003 -

2004 65.8 32.8 1.4 

2004 -

2005 82.6 17.0 0.4 

2005 -

2006 73.9 24.6 1.6 

 

Smoothing the data to account for clouds and “marginal pixels” lead to 

greater prediction error, for all of the VI variables in the growth seasons 

between 2000 and 2003 (Table 4). The data from the latter half of the study 

period showed the opposite trend. In the growth seasons between 2003 and 

2006, smoothing the data decreased prediction error, but only for some of the 

variables. The differences in RMSE between the raw and smoothed data 

were greatest in the 2000 – 2001 growth season, where they differed on 

average by 6 kg/ha (table 4). The performance of the raw and smoothed data 
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also varied on average more widely for NDVI. All of the differences were 

extremely small (0 – 9 kg/ha) when compared to the size of the actual 

RMSEs’ of the regression models created (1200 – 1700 kg/ha, appendix 1). 

In percentage terms these changes were in the region of 2%, similar to the % 

of cloud contaminated pixels present but far lower than the % of “marginal 

quality” pixels. It may be possible that: 

 

1. Smoothing each pixels temporal profile helps remove the negative bias of 

cloud contaminated pixels, but that of marginal quality pixels obtained 

under extreme viewing angels remained a problem. 

or 

2. Cloud contamination and marginal quality pixels do not create significant 

perturbations to the VI time signal and therefore smoothing the data did 

little and these are not significant issues.  

 

Table 4: The difference in the mean RMSE values between the smoothed data to 
account for the effect of cloud contamination and “marginal pixels”, and the raw data 
for the EVI variables assessed in this study to account for herbaceous production. 
Negative values indicate instances in which using  smoothed data resulted in improved 
estimation accuracy. Average values across the four summation types are provided for 
each growth season.  

Summation 

2000 - 2001 

(smoothed - 

raw, kg/ha) 

2001 - 2002 

(smoothed - 

raw, kg/ha) 

2002 - 2003 

(smoothed - 

raw, kg/ha) 

2003 - 2004 

(smoothed - 

raw, kg/ha) 

2004 - 2005 

(smoothed - 

raw, kg/ha) 

2005 - 2006 

(smoothed - 

raw, kg/ha) 

       

Fixed ∑ EVI  8 3 . -6 -6 -1 

Variable ∑ EVI  3 3 . -2 -3 6 

Weighted ∑ EVI  9 3 . -6 -5 -4 

Variable weighted ∑ 

EVI  
5 3 . -4 -3 3 

 Average 6 3 . -4 -4 1 
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Based on the fact that the raw data on average performed marginally better than the 

smoothed data, the raw data was selected for use in all subsequent analysis.   

The amount of variation accounted for in the herbaceous biomass data by the EVI 

variables assessed in the study exceeded 20% in only 2 of the 6 growth seasons, 

2003 – 2004 and 2005 – 2006 (table 5). None of the variables could account for any 

variation in the data in the 2002 – 2003 growth season, or more than 6% in 2001 – 

2002. 2005 – 2006 stands out as the only growth season in which all of the variables 

assessed accounted for more than 20% of the variation in the data (Table 5). All 

summations performed extremely badly in 2003 – 2004, while the single April EVI 

composite with an R2 value of 0.37 performed relatively well. This leads on to the 

point that there is no single VI variable that consistently performed well or that could 

be considered the best. It is also interesting to note that there were numerous 

instances of multiple VI summations in a growth season showing no significant 

differences in the amount of variation which they accounted for or differences of only 

1- 2%. These VI summations, although they vary in their preparation, must therefore 

contain much the same information. 

 

Table 5: Mean R
2 
values from the 100 iterations run for each of the models predicting 

herbaceous biomass using the EVI variables derived from the raw MODIS MOD13 data 
assessed in this study to account for herbaceous production.  The best performing 
variable/s for the growth season are highlighted in bold.  0.00 indicates no significant 
correlation. 

Summation 
Mean R

2
 

2000 - 2001 

Mean R
2
 

2001 - 2002 

Mean R
2
 

2002 – 2003 

Mean R
2
 

2003 - 2004 

Mean R
2
 

2004 – 2005 

Mean R
2
 

2005 - 2006 

       

Single EVI Composite 0.06 0.00 0.00 0.37 0.05 0.36 

Fixed Raw ∑ EVI 0.16 0.06 0.00 0.08 0.18 0.29 

Variable Raw ∑ EVI 0.14 0.06 0.00 0.03 0.17 0.30 

Weighted Raw ∑ EVI 0.16 0.06 0.00 0.15 0.18 0.34 

Variable weighted Raw 

∑ EVI 
0.14 0.06 0.00 0.10 0.18 0.35 

 

The similarity in the amount of variation accounted for by the fixed and 

variable date summations in table 5 is interesting to note, considering the fact 
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that the images summed to create the two often varied considerably. The 

variation in the phenologically derived start dates for the growth seasons that 

led to this variation in images summed is apparent in figure 1. The similarity in 

variation accounted for suggests that although the start of the growth season 

as derived from changes in EVI value may vary considerably, the vegetation 

production occurring very early in the season contributes little to end of 

season herbaceous biomass. If this early season production was a significant 

contributor to herbaceous fuel load, the amount of variation accounted for by 

the fixed and variable summations could not be as similar as indicated in table 

5. Accurate delineation of the growth appears to offer little benefit relative to 

the level of prediction error currently experienced. 

  

Figure 1: Standard deviation, measured in number of days, in the onset of vegetation 
growth for the growth seasons between 2000 and 2006. The onset of vegetation growth 
was established using a 20% increase in vegetation greenness from the previous 
seasons low, measured using EVI.   

 



 

94 

 

The onset of the growth season in savannas is dictated by the onset of the rains, 

while the amount of rainfall acts in conjunction with soil and other factors to 

determine the amount of production within a growth season.  Both the distribution of 

rainfall through the year and the total amount of rain received by the study area as a 

whole shows a fair amount of variation between growth seasons (figure 2).  

 

Figure 2: Monthly rainfall for each growth season within the study period.  

 

The relevance of this variation to this study lies primarily in the relationship between 

production and biomass accumulation. Production must exceed removal for 

accumulation to occur. EVI has been used to measure production in this study. If 

there is insufficient rainfall to facilitate sufficient production to exceed the 

accumulation threshold, then EVI will not be correlated to end of season herbaceous 

biomass estimates. Timing of rainfall and hence production also plays a role in the 

correlation of EVI to end of season herbaceous biomass estimates. If the 

accumulation threshold is only exceeded very early or late in the season, an EVI 

summation for the entire season is unlikely to be strongly correlated to end of season 

herbaceous biomass estimates.  This is apparent in the results contained in table 5.  
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The 2002 – 2003 growth seasons received fairly low but uniformly distributed rainfall. 

In comparison the 2000 – 2001 growth season received more rainfall but most of it 

was concentrated in two peaks, the first in November and the second in February. 

The 2001 – 2002 and 2003 – 2004 growth seasons were almost exact opposites in 

terms of the distribution of the rainfall they received. The former received the majority 

of its rainfall at the beginning of the season in November and December and the 

latter the majority in January, February and March, close to the end of the growth 

season. Late rainfall appears to increase the correlation between single date EVI and 

herbaceous biomass and weakens the correlation between growth season sum EVI 

(table 5). 

3.2. Assessment of the woody canopy cover variables 

Table 6 contains the results from the assessment of variables included in this study 

to account for tree cover. Assessment of the tree cover variables involved degrading 

the resolution of high resolution derived validation data (10m) to that of the three tree 

cover variables assessed (250m, 1km). Degrading of the resolution was achieved by 

assigning the average value of all of the 10m pixels contained within the 

corresponding cell of an overlaid 250m or 1km grid. The high resolution validation 

data was derived from a mixture of IKONOS and LiDAR data corresponding to three 

separate sites, two in the south and one in the centre of the study area. The three 

variables to be assessed were used as predictors of canopy cover using OLS 

regression.  

All three variables can be seen to display negative relationships of varying strengths  

with the high resolution derived tree cover data (table 6), which is the opposite of 

what would logically be expected.  
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Table 6: Regression diagnostics for the relationships between the three 

potential tree cover variables originally assessed for use in this study and 

canopy cover measurements derived from high resolution imagery. 

Tree cover variable R R Squared P Value 

MOD44 -0.04 0.00 0.10 

September – October 

mean MODIS EVI 

-0.13 0.01 P<0.01 

AVHRR NDVI derived 

woody cover 

-0.61 0.38 P<0.01 

 

Figures 3, 4 and 5 show the fit of the above models to the data. No correlation was 

found for the MOD44 product. Figure 3 shows that the percentage tree cover 

indicated by the MOD44 product never exceeded 25% for the areas assessed. 

Based on experience in the field and the high resolution data available, this seems 

unlikely. It is likely that the inaccuracy of the MOD44 product arose because it was 

calibrated as a global product and therefore is not suited for use in studies carried out 

at a local scale. Although figures 4 and 5 correspond to models that are statistically 

significant, inspection of the plots, and the fact that the r values are negative, reveal 

the correlations found to be meaningless. There is no way that as tree cover 

increases, either of the indicators of tree cover could decrease.  
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Figure 3: Relationship between MOD44 tree cover variable and high resolution tree 
cover data . 

 

Figure 4: Relationship between the Modis September –October mean EVI variable and 
the high resolution tree cover data. 

 



 

98 

 

 

Figure 5: Relationship between the AVHRR derived tree cover variable and the high 
resolution tree cover data. 

 

The above assessment, carried out using the high resolution derived tree cover data, 

was strongly suspected of being flawed. This was because it failed to show even a 

weak positive correlation as would be expected based on the literature consulted. A 

method for re-evaluating the above variables was therefore sought.  It was decided 

that re-evaluation of the variables would be achieved by comparing the relative 

performance of regression models containing each of the different tree cover 

variables. As there was little guidance in the literature on how best to achieve this, 

they were included in three different ways. These were simple addition to the model, 

addition with an interaction term and finally, adjustment of the EVI variable prior to 

inclusion in the model as described in the methods section.  

In four of the six years the September – October mean EVI variable resulted in the 

greatest decrease in RMSE of the three tree cover variables assessed (table 7). In 

two of the years this was achieved using an interaction term and in the other two it 

was achieved without one. The difference in performance between the inclusion and 

absence on an interaction term was never more than 10 kg/ha, which is less than 1% 

of the total error. Pre-correction, thereduction in the EVI value based on the tree 

cover variable, described in chapter 2, (section 3.5. Woody canopy cover re-
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evaluation),  was the worst performing of the three inclusion methods, most 

noticeably in the very dry 2002 - 2003 growth season.  In 2003 – 2004 and 2005 – 

2006 the MODIS MOD44 product included with an interaction term resulted in the 

greatest increase in estimation accuracy, significantly outperforming  the September 

–October mean EVI variable in the latter case. The AVHRR derived variable 

performed inconsistently and poorly in almost every instance regardless of inclusion 

method, with it being rejected entirely in numerous instances. Based on the fact that 

the September – October mean EVI woody cover variable resulted on average in the 

greatest improvement in accuracy, it was selected for use in subsequent analysis 

steps. Given the comparable performance of the two inclusion methods, the addition 

of the variable without an interaction term was selected because of its simplicity.  
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Table 7: The change in RMSE caused by adding a variable to account for the presence 
of woody vegetation to a model previously only containing a weighted summation of 
growth season EVI to account for herbaceous production. Posotive  numbers 
highlighted in red indicate a decrease in performance (corresponding to an increase in 
RMSE). The greatest Decrease in RMSE for each year is highlighted in bold. Those 
instances in which the addition of the variable did not result in an increase in adjusted 
R

2 
have been labelled as ‘rejected’. 

Explanatory variables to 

predict herbaceous biomass 

Change 

in 

RMSE 

(kg/ha) 

2000 - 

2001 

Change 

in 

RMSE 

(kg/ha) 

2001 - 

2002 

Change 

in 

RMSE 

(kg/ha) 

2002 - 

2003 

Change 

in 

RMSE 

(kg/ha) 

2003 - 

2004 

Change 

in 

RMSE 

(kg/ha) 

2004 - 

2005 

Change 

in 

RMSE 

(kg/ha) 

2005 - 

2006 

EVI summation and 

September –October mean 

EVI tree cover variable 

-116 

(6.9%) 

-89 

(5.9%) 

-87 

(6.8%)  

-97 

(6.3%)  

-62 

(4.3%) 

-39 

(2.9%) 

Interaction between EVI 

summation and September 

–October mean EVI tree 

cover variable 

-112 

(6.6%) 

-85 

(5.6%) 

-94 

(7.4%) 

-89 

(5.7%) 

-63 

(4.4%) 

-41 

(3.1%) 

EVI summation adjusted 

prior to regression using  

September –October mean 

EVI tree cover variable 

-109 

(6.5%) 

-64 

(4.2%) 

-24 

(1.9%) 

-99 

(6.4%) 

-59 

(4.1%) 

-35 

(2.6%) 

EVI summation and  

AVHRR derived tree cover 

variable 

0      

(0%) 

0      

(0%) 

-14 

(1.1%) 

-72 

(4.6%) 

+4        

(-0.3%) 

-48 

(3.6%) 

Interaction between EVI 

summation and AVHRR 

derived  tree cover variable 

+5          

(0.3%) 
rejected      

-34 

(2.7%) 

-79 

(5.1%) 

+1          

(0.1%) 

-51 

(3.8%) 

EVI summation adjusted 

prior to regression using  

AVHRR derived tree cover 

variable 

rejected rejected   8 (0.6%) rejected rejected rejected 

EVI summation and mod44 

tree cover variable 

-35 

(2.1%) 
-4 (0.3%)  

+-1          

(0.1%) 

-63 

(4.1%) 

-8   

(0.6%) 

-49 

(3.7%) 

Interaction between EVI 

summation and mod44 tree 

cover variable 

-38 

(2.3%) 

-21 

(1.4%) 

+3          

(0.2%)       

-116 

(7.5%) 

-7   

(0.5%) 

-82 

(6.1%) 

EVI summation adjust prior 

to regression  using MOD 

44 tree cover variable 

-42 

(2.5%) 

-14  

(0.9%) 
rejected 

-81 

(5.2%) 

-14 

(1.0%) 

-62 

(4.6%) 
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3.3. Assessment of a suitable variable to account for dry (moribund) 

material 

Having investigated the best variable to account for tree cover and the best 

means of including it in the model, a combined fire history and geology 

categorical variable accounting for the presence of dry material was 

assessed. The fire history was arrived at by calculating the number of 

seasons since the veld was burned. This was achieved using digitised fire 

scar data provided by the KNP Scientific Services. The resulting fire history 

data was combined with a map of underlying geology to create a categorical 

variable with a value for every pixel of the MODIS imagery covering the study 

area. The resulting variable accounted for only slight improvements in both 

2000 – 2001 and in the very dry growth season of 2002 – 2003 (table 8). In all 

other years it resulted in a minor yet moderately greater decrease in RMSE.  

 

Table 8: The Reduction in RMSE caused by the addition of a variable to account for the 
presence of dry / moribund herbaceous material relative to a model including an EVI 
summation to account for herbaceous production and September –October mean EVI 
to account for the presence of woody cover. Adjusted R

2 
increased in all cases, so 

RMSE has been reported for all models.  

Explanatory variables 

used in addition to EVI  

to predict herbaceous 

biomass 

Chang

e in 

RMSE 

(kg/ha) 

2000 – 

2001 

Chang

e in 

RMSE 

(kg/ha) 

2001 - 

2002 

Chang

e in 

RMSE 

(kg/ha) 

2002 - 

2003 

Chang

e in 

RMSE 

(kg/ha) 

2003 - 

2004 

Chang

e in 

RMSE 

(kg/ha) 

2004 - 

2005 

Chang

e in 

RMSE 

(kg/ha) 

2005 - 

2006 

September –October 

mean EVI tree cover 

variable and combined 

geology/fire history 

variable 

-16 

(1%) 

-46 

(3.2%) 

-14 

(1.2%) 

-63 

(4.3%) 

-66 

(4.8%) 

-81 

(6.2%) 
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3.4. Assessment of the completed regression models 

Based on the above investigations into the performance of the available 

variables, the final model specification used for all of the growth seasons was: 

sqrt(biomass) = f(weighted growth season sum EVI, September and 

October mean EVI, number of seasons since last fire occurred and 

underlying geology) 

Where: 

a) weighted growth season sum EVI was used as a proxy for 

a measure of herbaceous biomass production 

b) September and October mean EVI was used as a proxy for 

a measure of woody cover 

c) The number of seasons since last fire occurred and 

underlying geology were used as an indicator of differing levels 

of accumulated dry material 

 

Seven models were created in total. Six models were created using the variables 

derived for each growth season separately (one model using data from 2000 – 2001, 

another using only data from 2001 – 2002, etc.).  A seventh model was created using 

all six of the growth season’s data combined into one large dataset. The models 

created for the individual growth seasons had lower RMSE values than the seventh 

model, created using the combined dataset, for 5 out of the 6 growth seasons (Table 

9). However, in 2001 – 2002, 2002 – 2003 and 2004 – 2005, there was very little 

difference in the performance of the models trained for individual season and the 

model trained using all the available data. The R2  values in table 10 show how 

variable the performance of the individual growth season models were.   
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Table 9: RMSE (kg/ha) of the final models.   

  
2000 – 
2001 

2001 – 
2002 

2002 -
2003 

2003 - 
2004 

2004 - 
2005 

2005 - 
2006 

One model for all 
growth seasons 
 

1711 1374 1197 1417 1313 1410 

Separate model 
for each growth 
season 

1555 1383 1171 1390 1312 1221 

 

Table 10: Adjusted R
2
 Values  and regression coefficients for the final models 

produced. In all cases the model specification was: sqrt(biomass 
estimate)=A(weighted growth season sum EVI)+B(September and October mean 
EVI)+C(combined geology and fire history dummy variable)+Intercept 

 
2000-
2001 

2001-
2002 

2002-
2003 

2003-
2004 

2004-
2005 

2005-
2006 Combined 

R2 
0.31 0.25 0.18 0.32 0.34 0.46 0.4 

Intercept 34.930349 44.559838 62.586046 29.020591 47.192627 19.976594 39.94742 

A 0.001976 0.001672 0.0009442 0.001778 0.001529 0.001659 0.0016 

B -0.022914 -0.024658 -0.025604 -0.015759 -0.022787 -0.007 -0.01905 

C1  10.066876 6.9425826 7.011689 -23.75499 -5.303775 3.98792 

C2 5.300167 5.439267 1.5010101 6.042806 10.760002 -4.675132 5.66033 

C3 -2.081968 -0.591684 3.8396495 2.238204 0.526876 -4.961998 -0.90316 

C4 -2.822972 -2.364269 -3.945986 -3.299088 -3.977131 -10.40284 -5.51498 

C5 4.079999 2.449018 4.2885474 -1.392103 2.049056 -9.841138 -0.53004 

C6 6.469278 6.48037 2.1914478 -1.011521 1.300199 -16.34216 -1.04851 

C7 0.706152 0.604061 1.5305816 -3.84689 -3.227868 -13.48145 -4.19113 

 

 

 

 

 

 

 

 



 

104 

 

4. KRIGING AND COKRIGING 

Table 11 contains the kriging parameters optimised by ArcGIS 9.2 

Geostatistical Analyst for all years within the study period. The range of 

autocorrelation was shortest during the 2001 -2002 growth season when it 

was just 13 km. Autocorrelation ceased to exist beyond between 20 and 23 

km in all other years.  

Table 11: Optimised Kriging parameters provided by ArcGIS Geostatistical Analyst. 

Growth 

Season 

Lag size 

(m) 

# lags Model Nugget Partial sill Range (m) 

2000 -

2001 

2000  12 Spherical 1230700 1887000 20207.8 

2001 – 

2002 

2000 12 Spherical 590940 1453700 13076.3 

2002 – 

2003 

2000 12 Spherical 725940 736230 23706.5 

2003 – 

2004 

2000 12 Spherical 1149100 1433700 21754.3 

2004 – 

2005 

2000 12 Spherical 1004000 809940 20689.6 

2005 – 

2006 

2000 12 Spherical 821790 1272700 23230.1 

 

Table 12 contains the Cokriging parameters optimised by ArcGIS 9.2 

Geostatistical Analyst for all years within the study period. The Range value 

returned by the software as optimal (23.7 km) was identical in all 6 years. 

Experimentation within Arc showed that by using a lag of 3000m the ranges 

calculated by the software were no longer all equal, but that performance in 

terms of RMSE remained essentially unchanged. 
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Table 12: Optimised Cokriging parameters provided by ArcGIS Geostatistical Analyst. 
Weighted growth season sum of EVI values adjusted for the presence of woody 
vegetation, using September – October mean EVI values, were used as secondary 
variables for cokriging. 

Growth 
Season 

Lag size 
(m) 

# lags Model Nugget 
Partial 

sill 
Range 

(m) 

R squared of 
correlation 
between 

herbaceous 
biomass field 

estimates and the 
weighted growth 
season sum EVI 

variable corrected 
for tree cover 

2000 -
2001 

2000 12 Spherical 948050 2501400 23706.5 0.23 

2001 - 
2002 

2000 12 Spherical 1088100 1147600 23706.5 0.18 

2002 - 
2003 

2000 12 Spherical 685410 798950 23064.9 0.03 

2003 - 
2004 

2000 12 Spherical 1133800 1457600 23706.5 0.23 

2004 - 
2005 

2000 12 Spherical 172930 23706.5 23706.5 0.27 

2005 - 
2006 

2000 12 Spherical 423090 1996700 23706.5 0.36 

 

 There was no consistency in which of the two kriging methods performed 

best in this study (table 13). What is of note is that in three of the growth 

season’s cokriging performed worse than kriging, which was unexpected. 

 

 

Table 13: The change in the prediction accuracy when using cokriging with EVI as a 
secondary variable rather than kriging to interpolate herbaceous biomass. Negative 
values indicate that kriging outperformed cokriging. RMSE values were arrived at 
using leave-one-out cross-validation as implemented by ArcGIS 9.2. 

 

2000 - 

2001 

2001 - 

2002 

2002 - 

2003 

2003 - 

2004 

2004 - 

2005 

2005 - 

2006 

Change In Cross Validation 
RMSE 

 
(kg/ha) 

-22.62 
(-1.5%) 

-81.96 
(-6.4%) 

6.77 
(0.7%) 

76.22 
(6.1%) 

-18.45 
(-1.5%) 

76.37 
(6.8%) 
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5. COMPARISON OF THE ACCURACY AND PRECISION OF THE REGRESSION 

MODEL AND COKRIGING APPROACHES 

Cokriging using the weighted growth season sum EVI variable corrected for tree 

cover as the covariable was the most accurate means of herbaceous biomass 

prediction for every growth season in the study period (table 14). It performed on 

average 119 kg/ha better than the competing regression model approach for the 

growth seasons assessed (table 15). Although its precision is less than that of the 

regression model approach, it is only by 20 kg/ha, which is trivial compared to the 

average herbaceous biomass for the period.    

Table 14: Prediction accuracy of the regression model and cokriging approaches for 
estimating end of season herbaceous biomass for each season in the study period. 
The lowest RMSE figures are highlighted in bold. 

 

 
2000 - 
2001 

2001 - 
2002 

2002 - 
2003 

2003 - 
2004 

2004 - 
2005 

2005 - 
2006 

Regression 
RMSE 
(kg/ha) 

1555 1383 1171 1390 1312 1221 

Cokriging 
RMSE 
(kg/ha) 

1464 1271 993 1249 1217 1124 

Difference 91 112 178 141 95 97 

 

Table 15: Accuracy and precision figures for the regression model and cokriging 
approaches to estimating end of season herbaceous biomass. The lowest RMSE 
figures are highlighted in bold. 

Method Accuracy (mean of RMSE, 
kg/ha for growth seasons 
assessed) 

Precision (STDEV of RMSE, 
kg/ha for growth seasons 
assessed) 

Regression Model 1339 137 

Cokriging 1220 157 

 

The regression approach produced maps showing more abrupt changes in the level 

of herbaceous biomass, with drainage channels and river beds being identifiable 

(figure 6).  Cokriging on the other hand produced maps of a more smoothed 

appearance, with gradual rather than abrupt transitions in the level of herbaceous 

biomass predicted. These differences are even more apparent in the prediction maps 

when the pixels are grouped into classes as has been done for the maps contained 

in appendix 2. Although the maps in appendix 2 represent the final product of the 
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methods assessed in this study, they contain little additional information not 

obtainable from figure 6. They were included only as an illustration of what the final 

outputs might look like, and for the sake of completeness. It is for this reason that 

they receive no further attention in this study. The important findings are contained in 

the error statistics presented in the preceding tables and the differences in the 

prediction maps highlighted in the figures that follow. 

 

Figure 6: Maps of the herbaceous biomass estimates produced for the 2005 – 2006 
growth season using Cokriging and a regression model.   
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Although the two methods were found to have accuracies that were within 120 kg/ha 

of one another, these figures hide the extent of their disagreement on the spatial 

distribution of herbaceous biomass within each growth season. Figure 7 illustrates 

the extent of these differences. Differences of >1000kg/ha for large areas of the park 

were found to be common.  

 

Figure 7: The difference between the herbaceous biomass estimates produced using 
the two methods for all growth seasons within the study period. Negative values 
(orange - red) indicate areas where cokriging estimates of herbaceous biomass 
exceeded those of the regression models. Positive values (light and dark green) 
indicate the opposite. 
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The distributions of the residuals for both methods in all seasons are centred 

on zero (figure 8), with slight tails to the left in some instances indicating a 

minor tendency for underestimates. Although there are slight differences 

identifiable between the error distributions of the two methods in each year, 

there are no clear trends in the differences. 
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Figure 4: Distribution of the regression model and cokriging residuals for each growth season in 

the study period. 
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There are also no clear spatial patterns in the magnitude of the residuals for 

either the regression models or cokriging (figures 9 and 10). The magnitude of 

the residuals appears to depend more on the growth season than geographic 

location. 

 

Figure 5: Location of the Veld Condition Assessment (VCA) sites (=field data) in the Kruger 

National Park and associated cokriging residuals.   
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Figure 6: Location of the field data and associated regression model residuals.   
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Appendix 1: Regression statistics for the various EVI variables assessed in the 

study.   

2001 Summation 
Mean RMSE 

(kg/ha) 
Mean 

R.Squared Mean P.Value 
Mean Absolute 
percentage Error 

Single NDVI 
Composite 

1835 0.01 0.182 51 

Fixed Fitted ∑NDVI  
1769 0.08 P<0.01 49 

Variable Fitted 
∑NDVI 

1768 0.08 P<0.01 49 

Weighted Fitted 
∑NDVI 

1782 0.06 P<0.01 49 

Variable weighted 
Fitted ∑NDVI 

1780 0.06 P<0.01 49 

Fixed Raw ∑NDVI  
1750 0.10 P<0.01 48 

Variable Raw 
∑NDVI 

1758 0.09 P<0.01 49 

Weighted Raw 
∑NDVI 

1760 0.09 P<0.01 49 

Variable weighted 
Raw ∑NDVI 

1765 0.08 P<0.01 49 

Single EVI 
Composite 

1781 0.06 P<0.01 48 

Fixed Fitted ∑EVI  
1695 0.16 P<0.01 45 

Variable Fitted ∑ 
EVI 

1713 0.14 P<0.01 46 

Weighted Fitted ∑ 
EVI 

1696 0.16 P<0.01 44 

Variable weighted 
Fitted ∑ EVI 

1708 0.14 P<0.01 45 

Fixed Raw ∑ EVI 
1687 0.16 P<0.01 45 

Variable Raw ∑ EVI 
1710 0.14 P<0.01 46 

Weighted Raw ∑ 
EVI 

1686 0.16 P<0.01 45 

Variable weighted 
Raw ∑ EVI 

1703 0.14 P<0.01 46 
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2002 Summation 
Mean RMSE 

(kg/ha) 
Mean 

R.Squared Mean P.Value 
Mean Absolute 
percentage Error 

Single NDVI 
Composite 

1556 0.01 0.040 57 

Fixed Fitted ∑NDVI  
1547 0.03 0.009 57 

Variable Fitted 
∑NDVI 

1549 0.02 0.011 57 

Weighted Fitted 
∑NDVI 

1546 0.03 0.008 57 

Variable weighted 
Fitted ∑NDVI 

1547 0.03 0.009 57 

Fixed Raw ∑NDVI  
1544 0.03 0.005 57 

Variable Raw 
∑NDVI 

1546 0.03 0.006 57 

Weighted Raw 
∑NDVI 

1543 0.03 0.005 57 

Variable weighted 
Raw ∑NDVI 

1544 0.03 0.005 57 

Single EVI 
Composite 

1558 0.01 0.082 58 

Fixed Fitted ∑EVI  
1528 0.05 0.001 57 

Variable Fitted ∑ 
EVI 

1531 0.05 0.001 57 

Weighted Fitted ∑ 
EVI 

1529 0.05 0.001 57 

Variable weighted 
Fitted ∑ EVI 

1530 0.05 0.001 57 

Fixed Raw ∑ EVI 
1517 0.06 P<0.01 56 

Variable Raw ∑ EVI 
1522 0.06 P<0.01 56 

Weighted Raw ∑ 
EVI 

1518 0.06 P<0.01 56 

Variable weighted 
Raw ∑ EVI 

1521 0.06 P<0.01 56 
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2003 Summation 
Mean RMSE 

(kg/ha) 
Mean 

R.Squared Mean P.Value 
Mean Absolute 
percentage Error 

Single NDVI 
Composite 

1256 0.02 0.023 88 

Fixed Fitted ∑NDVI  
1271 0.00 0.645 89 

Variable Fitted 
∑NDVI 

1271 0.00 0.565 89 

Weighted Fitted 
∑NDVI 

1271 0.00 0.592 89 

Variable weighted 
Fitted ∑NDVI 

1272 0.00 0.653 89 

Fixed Raw ∑NDVI  
1271 0.00 0.622 89 

Variable Raw 
∑NDVI 

1271 0.00 0.584 89 

Weighted Raw 
∑NDVI 

1270 0.00 0.538 89 

Variable weighted 
Raw ∑NDVI 

1272 0.00 0.667 89 

Single EVI 
Composite 

1267 0.00 0.216 89 

Fixed Fitted ∑EVI  
1272 0.00 0.625 89 

Variable Fitted ∑ 
EVI 

1271 0.00 0.508 89 

Weighted Fitted ∑ 
EVI 

1272 0.00 0.635 89 

Variable weighted 
Fitted ∑ EVI 

1272 0.00 0.622 89 

Fixed Raw ∑ EVI 
1272 0.00 0.594 89 

Variable Raw ∑ EVI 
1270 0.00 0.442 88 

Weighted Raw ∑ 
EVI 

1272 0.00 0.643 89 

Variable weighted 
Raw ∑ EVI 

1272 0.00 0.595 89 
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2004 Summation 
Mean RMSE 

(kg/ha) 
Mean 

R.Squared Mean P.Value 
Mean Absolute 
percentage Error 

Single NDVI 
Composite 

1384 0.32 P<0.01 40 

Fixed Fitted ∑NDVI  
1623 0.05 P<0.01 50 

Variable Fitted 
∑NDVI 

1654 0.00 0.187 52 

Weighted Fitted 
∑NDVI 

1599 0.08 P<0.01 49 

Variable weighted 
Fitted ∑NDVI 

1640 0.02 0.010 51 

Fixed Raw ∑NDVI  
1629 0.04 0.001 51 

Variable Raw 
∑NDVI 

1656 0.00 0.268 52 

Weighted Raw 
∑NDVI 

1605 0.08 P<0.01 49 

Variable weighted 
Raw ∑NDVI 

1644 0.02 0.016 51 

Single EVI 
Composite 

1311 0.37 P<0.01 38 

Fixed Fitted ∑EVI  
1602 0.08 P<0.01 49 

Variable Fitted ∑ 
EVI 

1633 0.04 0.002 51 

Weighted Fitted ∑ 
EVI 

1552 0.14 P<0.01 46 

Variable weighted 
Fitted ∑ EVI 

1582 0.10 P<0.01 48 

Fixed Raw ∑ EVI 
1605 0.08 P<0.01 49 

Variable Raw ∑ EVI 
1636 0.03 0.003 51 

Weighted Raw ∑ 
EVI 

1550 0.15 P<0.01 47 

Variable weighted 
Raw ∑ EVI 

1585 0.10 P<0.01 48 
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2005 Summation 
Mean RMSE 

(kg/ha) 
Mean 

R.Squared Mean P.Value 
Mean Absolute 
percentage Error 

Single NDVI 
Composite 

1578 0.04 0.002 134 

Fixed Fitted ∑NDVI  
1433 0.19 P<0.01 125 

Variable Fitted 
∑NDVI 

1451 0.17 P<0.01 129 

Weighted Fitted 
∑NDVI 

1444 0.18 P<0.01 125 

Variable weighted 
Fitted ∑NDVI 

1452 0.17 P<0.01 128 

Fixed Raw ∑NDVI  
1439 0.18 P<0.01 126 

Variable Raw 
∑NDVI 

1455 0.17 P<0.01 130 

Weighted Raw 
∑NDVI 

1450 0.18 P<0.01 126 

Variable weighted 
Raw ∑NDVI 

1456 0.17 P<0.01 128 

Single EVI 
Composite 

1563 0.05 P<0.01 132 

Fixed Fitted ∑EVI  
1437 0.18 P<0.01 130 

Variable Fitted ∑ 
EVI 

1447 0.17 P<0.01 132 

Weighted Fitted ∑ 
EVI 

1442 0.18 P<0.01 130 

Variable weighted 
Fitted ∑ EVI 

1447 0.17 P<0.01 131 

Fixed Raw ∑ EVI 
1436 0.18 P<0.01 131 

Variable Raw ∑ EVI 
1446 0.17 P<0.01 133 

Weighted Raw ∑ 
EVI 

1440 0.18 P<0.01 130 

Variable weighted 
Raw ∑ EVI 

1445 0.18 P<0.01 132 
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2006 Summation 
Mean RMSE 

(kg/ha) 
Mean 

R.Squared Mean P.Value 
Mean Absolute 
percentage Error 

Single NDVI 
Composite 

1395 0.30 P<0.01 40 

Fixed Fitted ∑NDVI  
1449 0.24 P<0.01 44 

Variable Fitted 
∑NDVI 

1474 0.20 P<0.01 46 

Weighted Fitted 
∑NDVI 

1405 0.29 P<0.01 42 

Variable weighted 
Fitted ∑NDVI 

1433 0.25 P<0.01 44 

Fixed Raw ∑NDVI  
1449 0.24 P<0.01 44 

Variable Raw 
∑NDVI 

1468 0.21 P<0.01 45 

Weighted Raw 
∑NDVI 

1409 0.29 P<0.01 42 

Variable weighted 
Raw ∑NDVI 

1430 0.26 P<0.01 43 

Single EVI 
Composite 

1318 0.36 P<0.01 39 

Fixed Fitted ∑EVI  
1381 0.31 P<0.01 42 

Variable Fitted ∑ 
EVI 

1374 0.32 P<0.01 41 

Weighted Fitted ∑ 
EVI 

1328 0.37 P<0.01 39 

Variable weighted 
Fitted ∑ EVI 

1328 0.37 P<0.01 39 

Fixed Raw ∑ EVI 
1398 0.29 P<0.01 43 

Variable Raw ∑ EVI 
1385 0.30 P<0.01 42 

Weighted Raw ∑ 
EVI 

1342 0.34 P<0.01 41 

Variable weighted 
Raw ∑ EVI 

1338 0.35 P<0.01 40 
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Appendix 2: Herbaceous biomass prediction maps produced using the 

regression models and cokriging. 

 

 

 

 

 



 

120 

 

 

 

 



 

121 

 

 

 

 

 



 

122 

 

 

 



 

123 

 

 

 



 

124 

 

 

 

 

 

 



 

125 

 

 

 

 

 



 

126 

 

 

 



 

127 

 

 

 

 



 

128 

 

 



 

129 

 

 

 

 

 

 



 

130 

 

 

 

 

 

 

 



131 

 

Chapter 4 

DISCUSSION AND CONCLUSIONS 
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1. FIELD DATA 
 
1.1. Assessment of the affects of the VCA sample site dimensions 
 
 
Field surveys conducted in this study revealed that the mean DPM based 

estimates for the 60x60m plots differed from the 250x250m plots by between 42 

kg/ha and 1308 kg/ha with an average difference of 556 kg/ha. In other words, 

for the sites sampled in this study, the use of 60x60m plots to sample a 

250x250m area result in measurement error of on average 556kg/ha.  

 

The use of mismatched field sample plot and pixel dimensions is not an 

uncommon occurrence in remote sensing studies. Sannier, Taylor and Plessis 

(2002) note that because hyper temporal remote sensing imagery has relatively 

large pixels, that it is seldom feasible to collect field data on plots with 

comparable dimensions. The scale of the mismatch in this study, 50x60m field 

data matched to 250x250m MODIS pixels, is however far larger than in many 

other studies where transects of +1km were matched to 1km AVHRR pixels (Al-

Bakri and Taylor 2003; Moreau et al. 2003; Prince 1991). To minimize the error 

arising from a mismatch in dimensions it is common to select field sites located in 

areas showing the greatest level of homogeneity in herbaceous biomass and 

vegetation type (Wessels et al. 2006; Sannier, Taylor and Plessis 2002). 

Wessels et al. (2006) found heterogeneity, as measured by variation in 

LANDSAT NDVI, to increase sharply in the immediate proximity of dams and 

rivers. None of these sites were located within 250m of either feature. A similar 

amount of error is therefore likely to exist in the VCA sites that were retained in 

this study after those located within 250m of dams and rivers were excluded.  

 

At the time of writing there were no published studies detailing the amount of 

herbaceous biomass prediction error attributable to the use of small field sample 

plots, highly heterogeneous or otherwise, for the study area. Although my results 

for this section of analysis are useful in that they place a tentative figure on the 

average magnitude of the error, the figure is unreliable as there were so few sites 
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sampled. The analysis also falls short of answering one of the most interesting 

and useful questions we should be asking about the current VCA data. The 

question is: how much would the correlation between field data and satellite data 

increase, and the RMSE decrease, if instead of excluding heterogeneous sites 

we increased field sample plot dimensions to match those of the pixels used? 

 

Answering this question would require a suitable number of the VCA sites to be 

selected and, during the next round of VCA sampling, DPM readings to be taken 

for co-located plots of varying sizes at these sites. At least 30-40 sites evenly 

distributed throughout the study area would be required to perform meaningful 

statistical analysis. The Inclusion of 60x60m and 250x250m plots at each site 

would be essential as these represent the current VCA and officially stated 

MODIS pixel dimensions. If possible 125x125m and 300x300m plots could be 

added to increase the information provided.  

 

Comparing the R2 and RMSE values of the regression models produced using 

the 60, 125, 250 and 300m data would provide a quantitative measure of how the 

correlation between field data and satellite data change as one approaches and 

then exceeds the stated pixel dimensions.  This information would allow 

managers to make an informed decision on what trade-off between sample size 

and prediction accuracy would best suit their budget and management needs. 

 

Based on my experience of similar fieldwork conducted in this study, a two 

person team could comfortably sample both 60x60m and 250x250m plots at 

three sites a day using a DPM. This may be reduced to two sites a day if 

125x125m and 300x300m plots were included. Assuming one aimed to sample 

only two sites a day, obtaining 50 sets of site measurements would require 25 

working days, or about a month of fieldwork. This is a significant amount of 

fieldwork to answer a single question but it provides a reliable way of assessing 

the affects of sample plot size on estimation accuracy. It is also important to note 

that regardless of the size of the field plots, the VCA field data has been and will 
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continue to be used in remote sensing studies. This is because it is the longest 

running annually updated herbaceous biomass dataset in southern Africa. It is 

also, according to Wessels et al. (2006), the best field data available in South 

Africa for use in a study of this nature. For this reason I believe it is in the interest 

of the remote sensing and fire management communities that the error 

attributable to field sample dimensions is quantified. This will provide the data 

necessary to motivate for larger sites if it turns out that doing so would 

significantly improve the usefulness of the dataset.  

 

1.2. Error associated with the use of a Disk Pasture Meter  

 

The use of a DPM to collect the VCA herbaceous biomass field data makes it 

less than ideal for use in a quantitative remote sensing study. The herbaceous 

biomass data collected using a DPM, although often treated like measurements, 

are estimates of herbaceous biomass based on disk suspension height. These 

estimates, if produced using the equation derived during the calibration of the 

DPM for Kruger National Park by Trollope and Potgieter (1986), have a RMSE of 

898 kg/ha. By using DPM data in this study to create models and interpolate 

surfaces we have used estimates to produce estimates. The model prediction 

errors presented in this study do not therefore reflect actual real world prediction 

error but rather how accurately DPM based estimates of herbaceous biomass 

can be estimated. 

 

Dealing with this issue and arriving at actual estimation error was not included in 

the aim of this study of this study. Although the issue was not resolved in this 

study this study’s findings have been interpreted by making the reasonable 

assumption that that actual error will be greater than the figures reported here.  
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2. REGRESSION 
 
 
2.1. Assessing the performance of the Vegetation Index variables 
 
 
It was realized at the outset of this study that there was no clear guidance as to 

the magnitude of the advantage EVI offered over NDVI as an indicator of 

production for use in estimating herbaceous biomass. Huete et al. (2002) provide 

evidence for how EVI avoids saturation over tropical rainforests, but it seems 

unlikely that biomass within savannas will ever reach that of tropical rainforests. 

There is also mention of EVI’s superior resistance to atmospheric interference 

caused by water vapour in the MOD 13 algorithm theoretical basis document 

(Huete, Justice and Van Leeuwen 1999). There were however no published 

studies on the difference in the strength of the relationship between the two VI’s 

and standing herbaceous biomass, and the resulting differences in estimation 

accuracy.   

 
Depending on the summation and growth season, the differences in estimation 

accuracy recorded in this study ranged from 3 – 106 kg/ha, with EVI being better 

correlated to biomass than NDVI.  Based on these findings, EVI is without a 

doubt the better of the two indexes for use in estimating herbaceous biomass.  

 
 

In this study it was found that performance of the raw and smoothed data never 

varied by more than 22 kg/ha. This represents only a minor improvement 

considering that the total RMSE values are in the range of 1200 – 1700 kg/ha 

relative to average herbaceous biomass of 3000 kg/ha. Smoothing the data was 

intended to remove the variation not related to changes in photosynthetic 

potential introduced by cloud contamination and “marginal” quality pixels. The 

fact that such a minor change was recorded after soothing the data could 

therefore be because:  
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1. smoothing the data is not an efficient means of dealing with the variation 

in VI signal caused by  cloud contamination and “marginal” quality pixels 

 

or 

 

2. the factors causing a pixel to be classified as ‘marginal’ quality do not 

significantly alter VI values.  

 

If evidence could be found that cloud contamination, and other data quality 

issues, significantly decreased the herbaceous biomass –  MODIS VI relationship 

for the study, then the second possibility could be dismissed. Cloud 

contamination is widely cited as a source of error in remote sensing studies but 

rarely quantified. Sannier, Taylor and Plessis (2002) exclude pixels that are cloud 

contaminated while Al-Bakri and Taylor (2003) interpolate new values for them. 

Neither paper assessed what the resulting error would have been had these 

steps not been taken. Likewise, although there is mention in the literature that 

viewing angel, and hence pixel quality, can affect VI values (Huete et al. 2002), 

no studies quantifying the effect that this has on the herbaceous biomass – VI 

correlation were found. Verbesselt et al. (2006) removed the possibility of 

extreme viewing angles in the SPOT vegetation data used in their study by 

excluding any such pixels from analysis. They did not however assess the effect 

on the correlation between in situ biomass estimates and the SPOT data when 

including pixels obtained at extreme viewing angles. Their results therefore do 

not provide any information on the extent to which the inclusion of pixels obtained 

under extreme viewing angles affect the herbaceous biomass VI correlation. No 

conclusion can therefore be reached as to the most likely explanation as to the 

minor change in estimation accuracy achieved by smoothing the data in this 

study.  

 

To quantify the effect of pixel quality on the herbaceous biomass - VI correlation 

and answer the above question, one would need to extract three subsets from 
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each growth season image stack. The first should consist purely of points 

overlaid by ‘good’ quality pixels. The second subset should consist of points 

overlying numerous ‘marginal’ quality pixels, but with none adjacent to one 

another in the temporal profile. The third should consist of points all overlying 

pixel stacks with one or more set of marginal quality pixels adjacent to one 

another in the temporal profile. Comparison of the estimation accuracy achieved 

when creating regression models with the three datasets would provide a fair 

indication of the effect of pixel quality on estimation accuracy. 

 
 
Four different summations of growth season EVI and one 16 day composite were 

assessed as predictors of herbaceous biomass for each growth season. The 

performance of the variables was inconsistent between seasons, both in relation 

to themselves (the amount of variation they accounted for changed between 

seasons), and one another (the performance of the variables relative to one 

another changed between seasons). Variation in the amount of variation the 

variables accounted for between seasons is to be expected because the 

summations were the only explanatory variables included in the first round of 

analysis. Any change in an important explanatory variable not included in the 

regression would therefore result in this sort of variation. Variation in the 

performance of the variables relative to one another between growth seasons 

was of more interest. This is because ideally one would like to identify a single VI 

variable that performs consistently well across growth seasons.  

 

Other studies have made use of either single images (Mutanga and Rugege 

2006) or growth season sum VI values (Wessels et al. 2006), with no comparison 

of the two approaches being made. Verbesselt et al. (2006) compared the two 

approaches and concluded that the growth season sum approach provides the 

most strongly correlated variable. However, they combined their data into one 

large dataset and as a result no information was provided on the consistency of 

the performance of the temporal stability of either approach. There do not appear 
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to be any studies directly investigating the causes of variation in the performance 

of the two approaches to which to compare the results obtained in this study.   

 

To understand what caused the variation in the VI variables relative to one 

another between seasons identified in this study, one needs to look at how the 

summations differed from one another and how this could affect the correlation 

between the VI variables and herbaceous biomass. If this can be determined, the 

cause of the variation could be addressed, and a more consistently useful 

variable created. The difference in the summations, and hence the reason for the 

inconsistent performance, lies in the weightings assigned to the different images. 

All other variables within a season remain constant because the models created 

for each summation within a season were trained using the same data.  

 

To recap, the summations included: 

 

1. A summation over the same set of dates, September – April, for each 

growth season 

 

 

2. A summation taking into account the variation in the onset and of the 

growth season as determined by a 20% increased VI value on a pixel 

by pixel basis 

 

 

3. A summation placing a 30% weighting on the first image in September 

and increasing the weighting linearly to 100% for the first image in April 

 

 

4. A pixel by pixel summation placing a 30% weighting on the first value 

in the growth season time series as determined by a 20% increased VI 
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value from the previous season low and increasing the weighting 

linearly to 100% for the first image in April. 

 

The single 16 day image composite selected corresponded to mid April, the 

period in which the field measurement were reportedly taken (not a summation 

but included for comparison). 

 

The weighted summations placed less weight on the contribution of images from 

early in the season than did the ‘fixed’ or ‘variable’ summations which included all 

growth season images at equal weighting. The single image composite on the 

other hand in effect places zero weight on all preceding images. In the 2003 – 

2004 and 2005 – 2006 growth seasons, this difference led to the single image 

composite and the weighted growth season sum performing better than the fixed 

growth season sum. It can therefore be said that the additional production 

information the fixed and variable summations contained for these growth 

seasons was not well correlated to end of season herbaceous biomass. For this 

to be the case, the production they provided information on must not have 

resulted in the accumulation of herbaceous biomass.  

 

For production to lead to accumulation of herbaceous biomass, production must 

exceed removal through fire, herbivory and decay. A plausible explanation for the 

above is that at certain times during these seasons this production threshold was 

not exceeded for parts of the study area. According to Trollope (2008) this often 

occurs in sweetveld areas due to the palatability of the grass, which persists 

even when it is dry. It is not impossible that the same could occur in sourveld 

regions when rainfall is sufficiently low. Assuming this was the case, the majority 

of the production as measured by the VI summation under these conditions 

would not be present in the herbaceous layer when the VCA pasture meter 

readings were taken and used to produce herbaceous biomass estimates. The 

fixed and variable summations would however have counted the contribution of 

the images from these periods as equal to the contribution from any other period. 
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This would have resulted in a weakened correlation of the VI sum to measured 

herbaceous biomass.  

 

An alternate and equally plausible explanation is that some of the additional 

information on production in the fixed summation was attributable to woody 

vegetation canopy and not herbaceous production. During periods of limited 

water availability, the VI signal is dominated by the leaves of woody vegetation 

(Archibald and Scholes 2007). These remain green because the trees can 

access deeper water reserves than the shallow rooted grasses. This is most 

likely to occur at the beginning of the growth season because trees green up as 

day length increases regardless of whether the spring rains have begun, 

whereas grass does not (Archibald and Scholes 2007). In this case the variable 

summation could potentially contain even more information incorrectly attributed 

to herbaceous production. This is because the EVI threshold of a 10% increase 

from the previous season’s lowest value, used to determine growth season start 

date, often resulted in a longer growth season than the fixed growth season. The 

10% increase in EVI most likely came from the greening up of the woody canopy 

and not the herbaceous layer, thus making the summation even more prone to 

the error discussed above.  

 

Distribution of the rainfall within these two growth seasons can be interpreted as 

providing support for both of the above explanations. If one looks at the rainfall in 

the 2003 – 2004 growth season (Figure 2, Chapter 3), it becomes apparent that 

the bulk of production would have occurred very late in the growth season. This 

is because herbaceous production is dependent on moisture availability and 

significant rainfall only occurred at the end of the season between January and 

March. This being the case, it is possible that the woody layer dominated the EVI 

signal in the early part of the season. It is also possible that production only 

marginally exceeded removal through herbivory in the early parts of the season 

and hence contributed little to end of season standing crop. This would have 

been exacerbated by the fact that there was very little rainfall and hence 
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production in the 2002 – 2003 growth season. As a result very little production 

would have carried over and the limited amount of new growth would have 

constituted the bulk of available grazing, leading to a large percentage being 

removed. A similar rainfall distribution occurred in 2005 – 2006. The major 

difference seems to be that the onset of significant rainfall occurred slightly 

earlier in the season than in the 2003 – 2004 growth season. This would have 

resulted in the accumulation threshold being exceeded in more of the months 

captured by the weighted summation, improving its performance relative to the 

single image composite when compared to the 2003 – 2004 season.  

 

Either of the explanations, or a combination of the two, would account for why the 

single image composite and the weighted summation variables, that place less 

weight on these periods, performed better than a fixed summation for the 2002 – 

2003 growth season. Factoring in these possibilities and adjusting for them when 

creating summations in the future could lead to the creation of a single variable 

that performs consistently well across seasons.  

 

Creating such a variable would require one to track the variation in accumulation 

determined by the interaction between rainfall, herbivory and production.  It may 

be possible to achieve this by establishing a threshold for EVI values through 

further experimentation which must be exceeded before EVI values are added to 

the summation. The assumption behind this is that EVI values below the 

threshold are either reflecting production that is insufficient to result in 

accumulation or are attributable primarily to the woody layer.   

 

Alternately, instead of determining thresholds through experimentation and 

creating a single VI variable through summation, all of the EVI images in a 

growth season could be entered as individual variables. Stepwise regression 

could then be used to empirically determine which EVI images should be 

included in each seasons regression model, Stepwise regression would also do 

away with the need to derive weightings for each image to account for removal 
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through herbivory. In this study arbitrary weightings were applied because time 

prohibited anything more advance. By using stepwise regression optimal 

‘weightings’ in the form of regression coefficients would be automatically 

calculated as part of least squares fitting.  

 

If none of these options have been pursued it would be advisable to run 

exploratory regressions to identify the best performing of the EVI variable 

assessed in this study based on correlation to the available herbaceous biomass 

data. 

 

2.2. Assessment of a suitable woody canopy cover variable 
 
 

One of the challenges involved in estimating herbaceous biomass in the study 

area using satellite derived VI data is variation in woody canopy cover. Ideally 

one would like for there to be only one vegetation layer contributing to the VI 

signal, and for that layer to be the one of interest. This is not the case in the 

study area where in addition to the herbaceous layer there is often a significant 

woody layer.  

 

The presence of a woody layer does not however mean that no information on 

the herbaceous layer can be extracted from a VI signal. Apart from riparian 

zones there are few areas in the study area where closed canopy forest exist. In 

the vast majority of cases there will be VI signal that is originating from un-

obscured herbaceous layer somewhere in a MODIS Pixel. As canopy cover and 

density increase, a greater percentage of the herbaceous layer will be obscured 

from view by optical sensors, increasing the error associated with estimates 

based on remotely sensed VI data. The accuracy and therefore usefulness of 

optical remote sensing based herbaceous biomass estimation methods will 

therefore decrease with increased woody canopy cover. 
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The finding that there was an apparent lack of any significant relationship 

between the tree cover variables and high resolution derived tree cover validation 

data was unexpected. The tree cover variables were chosen because, based on 

the literature consulted (Scanlon et al. 2002; Archibald and Scholes 2007; 

Hansen et al. 2003), each was expected to show at least a weak positive 

correlation to tree cover. The high resolution derived data used to check them 

against seems unlikely to have been the problem as visual comparison of the 

tree cover layer with aerial photography shows a close match. The following 

possibilities remain: 

 

1. The variables are in fact not correlated to tree cover 

2. The accuracy assessment was performed incorrectly. 

It is unlikely that option 1 could be the case for all three variables. The lack of a 

significant relationship across all three variables suggests that something else is 

more likely at fault. It is most likely therefore that there was a fault in the accuracy 

assessment performed.  

 

The accuracy assessment was conducted before I had developed an 

understanding of the point spread function (PSF), or the occurrence of pixel shifts 

when gridded products are created. This led to a failure to account for the fact 

that the point spread function of MODIS data results in 25% of the pixel signal 

originating from outside the area of the pixel and that signal contribution 

increases from the pixel edge to the centre. Validation pixels exactly matched in 

size and location to the tree cover variables pixels were derived from the high 

resolution data by calculating the mean value of all of the high resolution pixels 

that fell within them. No weighting was applied to the individual high resolution 

pixels based on their location relative to the pixel centre to account for the PSF.  

Even if this alone does not fully account for the lack of any significant relationship 

in the validation step, it does go some way towards doing so.  
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The MOD44 variable performed poorly in four of the years and yet significantly 

outperformed the September – October mean EVI variable in 2003 -2004 and 

2005 – 2006. The poor performance of the variable in those four years may be 

attributed to the difference in resolution between it and the EVI summation. Use 

of a variable not measuring the effect of tree cover over the exact area of the 

production variable would be expected to account for less variation than one that 

did. A variable designed to provide a global scale measure of canopy cover could 

also be expected to perform poorly at accurately identifying local variations in 

canopy cover.  No logical explanation could be arrived at as to why the variable 

could suddenly perform better than all others in two growth seasons. It is 

possible that the improvement occurred by chance, but even if it was not, its 

inconsistent performance makes it difficult to recommend using in future studies 

of this nature. 

 

The AVHRR NDVI derived variable, arrived at using the method outlined in 

Scanlon et al. (2002), performed extremely poorly. The method is complex and in 

retrospect may have been beyond my technical ability to correctly implement. 

The AVHRR data is also of coarser resolution than the EVI summation and 

resampling the data using nearest neighbour resampling to match the MODIS 

data may have introduced additional error. Even if executed correctly the method 

has its limitations. It assumes that there are end member pixels, made up of 

100% forest, grass and bare soil in the training data. It is highly unlikely that any 

of these will occur within the study area, given a pixel resolution of 1km. This 

means that the end members selected will be compromises containing far more 

of the other cover types than intended. Furthermore the method requires the 

subjective selection of end members from the plot of response in NDVI to rainfall 

vs. long term mean NDVI. The tree cover variable produced will therefore be 

highly influenced by the person selecting the end members and the purity of the 

pixels that end up being used as end members in the study area. In the case of 

this study the above factors have produced a variable that is an extremely poor 

predictor of tree cover. The patches of homogenous cover required to produce 
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good end members occur in the study area at scales finer than the spatial 

resolution of any imagery that provides the temporal resolution required for the 

method.  

 

Overall the September – October mean EVI variable accounted for the greatest 

decrease in RMSE. Its superior performance when compared to the other two 

woody cover variables may be in part attributable to the resolution of this variable 

matching the EVI summation perfectly. This exact matching existed because 

both the EVI summation and the September – October mean EVI were derived 

using the same gridded MOD13 data product and so the pixels overlap perfectly. 

In all growth seasons adding the variable to the regression model resulted in 

appreciable decrees in RMSE. This is in agreement with Wessels et al. (2006) 

and Fuller, Prince and Astle (1997), who reported the existence of a negative 

relationship between the density of woody vegetation and herbaceous biomass in 

southern African savannas. 

 

It is also apparent that there was little difference in the improvement in estimation 

accuracy when including or excluding an interaction term between the 

September – October mean EVI and the EVI summation. In other words, it did 

not matter very much how the September – October mean EVI tree cover 

variable was included, it still accounted for similar decreases in RMSE. 

Interaction terms are intended to account for the fact that the relationship 

between two variables is affected by a third. In this case it was assumed that the 

amount of woody vegetation present would affect the relationship between EVI 

and herbaceous biomass. One can imagine how this would manifest in a 

situation where the same amount of herbaceous biomass was present in two 

areas but that the density of trees was higher in the second area. The greater 

density of trees would lead to higher EVI values because the leaves of the trees 

cannot be distinguished from the grass by the satellite sensor. Failure to include 

an interaction term would result in this difference being introduced into the error 

term as variation unaccounted for in the relationship between EVI and 
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herbaceous biomass. Very little variation in the RMSE, regardless of whether an 

interaction term was included, suggests that the signal is usually dominated by 

the herbaceous layer. Hence, an interaction term is not necessary. This is in line 

with the findings of Fuller, Prince and Astle (1997) 

 

Adjustment of the EVI prior to analysis was found to be a less reliable means of 

accounting for the effect of trees on the herbaceous layer than including a 

variable in the regression equation. That such a simplistic and clearly flawed 

method could produce improvements only slightly less than including the variable 

in the regression in all growth seasons except for the very dry 2002 – 2003 was 

unexpected. I consider the method simplistic and flawed, and the results 

unexpected, because by subtracting the full amount of the September – October 

mean EVI from each EVI composite in the summation, the implicit assumption is 

that 100% of its value is attributable to the woody layer. Although it has been 

shown that trees green up earlier than the herbaceous layer for most years in the 

study area (Archibald and Scholes 2007), it is highly unlikely that there will 

consistently be no herbaceous activity in September or October. It was also 

unexpected because the failure of the interaction term to provide consistent 

additional reductions in RMSE also invalidated the primary assumption that the 

pre-correction was based on. This assumption was that the woody layer 

contributed enough to the EVI signal for the pre-correction of EVI to remove this 

contribution would provide significant improvements to RMSE. The 

improvements in RMSE yielded by the pre-adjustment method are therefore not 

because it corrects for the contribution of the woody layer to EVI. The only 

explanation I can offer for this is that the pre-adjustment is accounting for the 

inverse relationship between canopy cover and herbaceous biomass that exists 

when trees reach sufficient density to shade grasses enough to reduce their 

production.  

 

Of all of the inclusion methods and variables assessed, the simple addition of the 

September - October temporal mean EVI performed best, reducing estimation 
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error by on average 82 kg/ha and as such is recommended for future use in 

place of the other two methods. It is noted that the increased availability of 

RADAR and LiDAR data for the study area has already led to more accurate 

measure of tree cover being available than were used in this study. Boggs (2010) 

reported accuracies of > 85% when mapping tree cover for selected sites in the 

study area using Quickbird imagery. The greatest barrier to applying the method 

he describes to the entire Kruger National Park is the cost of the imagery. 

Assuming a cost per km2 of $55 (www.eurimage.com, 2010), this would amount 

to $1,045,000, assuming 19000 km2 of imagery would be sufficient to cover the 

entire park. Given an exchange rate of 7.8 rand to the US dollar, as it was at the 

time of writing, this equates to ZAR 8,151,000. With no knowledge of the KNP’s 

budget I cannot say whether this would ever be a possibility, but I strongly 

suspect that this is more than management would be willing to spend on a single 

dataset. Unless RADAR based methods can deliver both affordable and 

sufficiently accurate estimates of woody cover, the use of the September - 

October temporal mean EVI may remain a viable option, regardless of the 

variable’s limitations. 

 
 
 
2.3. Assessment of a suitable variable to account for dry material 
 
A large amount of dead herbaceous biomass is known to accumulate and persist 

between seasons in the study area (Govender, Trollope and Van Wilgen 2006). 

This material is not reflected in EVI values because of the absence of chlorophyll 

(Thompson and Everson 1993). For this reason a variable accounting for some 

of the variation in herbaceous biomass brought about by this dead material was 

sought. The variable arrived at was one that combined fire history and geology. 

Fire history provides information on how many seasons of accumulated growth 

could be present. Geology was intended to account for the fact that the amount 

accumulating during that time would vary between sites. Geology was, 

admittedly, a poor predictor of variation in production but was used because it 

does have some influence on it and was readily available.   
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Although the variable was simple to derive and clearly a compromise, it did lead 

to increases in estimation accuracy of over 40kg/ha in four of the growth 

seasons. Even so, this never represented more than a 6% increase in estimation 

accuracy. What’s more, during the extremely dry 2002 – 2003 growth season, it 

accounted for just 14 kg/ha of additional variation. During this growth season the 

herbaceous layer must have consisted almost entirely of dry material because of 

limited rainfall. The majority of herbaceous biomass would have to have 

originated from previous seasons. One would expect a variable accounting for 

the presence of dry herbaceous biomass to have performed extremely well in 

these conditions, rather than performing this poorly.  

 

It has been shown by Thompson and Everson (1993) that within grasslands, after 

three years of accumulation of dead herbaceous material, the correlation 

between field measurements and NDVI values can fall to zero. It is also known 

that within the study area, dead herbaceous material frequently constitutes a 

large percentage of the herbaceous layer (Trollope 2008).  

Both of these factors suggest that there is a good chance that the presence of 

dry material is responsible for a large amount of the unexplained variation in the 

relationship between the DPM estimates and the EVI values. It would be 

beneficial to attempt to derive a variable that better accounts for its presence.  A 

variable that could potentially do so is one derived by combining an EVI based 

production estimate from previous seasons with burn scar data to identify 

appropriate dates to sum between.  
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2.4 . Assessment of the completed regression models 
 
 
 
Even with two additional explanatory variables, one to account for the affect of 

canopy cover on the herbaceous layer and one to account for the presence of 

dry material, the models performed disappointingly. In 5 of the 6 growth seasons, 

the models created accounted for less than 35% of the variation in herbaceous 

biomass. This is in line with the findings of Wessels et al (2006), who regressed 

the VCA data against AVHRR NDVI, landscape groups and tree cover data, 

achieving R2 values between 0.08 – 0.41.  

 

In contrast, studies in which herbaceous biomass was estimated using AVHRR 

data in Senegal (Tucker et al. 1985) and Jordan (Al-Bakri and Taylor 2003), 

without any additional variables, reported R2 values of > 0.6, which roughly 

equates to having accounted for >60% of the variation in herbaceous biomass. 

Unfortunately these studies can provide only limited insight into how estimation 

accuracies could be improved in this study. This is because they were not 

conducted in comparable vegetation types. Al-Bakri and Taylor (2003) conducted 

their study in Jordan. The study area was not reported as having any significant 

woody layer and experienced extremely low, 100–200mm mean annual rainfall, 

resulting in limited production and little or no carry-over. “The green flush lasts for 

a very short time and tends to be overgrazed shortly after it occurs” (Al-Bakri and 

Taylor 2003). Similar conditions are described for Senegal where Tucker et al. 

(1985) conducted their study, although tree cover ranging from 5% – 20% was 

reported and rainfall of up to 200-400 mm/annum. In both of these systems the 

relationship between photosynthetic potential and herbaceous biomass 

production is less complicated than in the savanna encountered in the Kruger 

National Park. There is little carry-over between seasons, the influence of trees 

would only be an issue in a handful of pixels and spatial heterogeneity is 

relatively low (Tucker et al 1985). The lower R2 values obtained for this and other 

studies conducted in the study area, despite the presence of additional 
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explanatory variables, is attributable to the numerous variables that must be 

accounted for when creating such models in southern African savannas. In 

retrospect, my disappointment at the modest correlations reported for this study 

arose because I failed to fully comprehend just how very different these study 

areas were compared to my study in the Kruger National Park.  

 

 

The single model created using data from all of the years combined performed 

well relative to the individual models trained for the growth seasons between 

2001 and 2005, averaging a decrease in accuracy of only 11 kg/ha.  The 

prediction error from the single model for the first and last growth season on the 

other hand exceeded that of the individual growth season models by 156 and 

198 kg/ha respectively. This indicates that there is a factor involved in 

determining end of season herbaceous biomass which is not well accounted for 

by the models assessed. Fluctuations in this factor cause the models created for 

individual growth seasons to outperform the general model for the entire period 

because the effect of the factor, held constant within each season, is captured in 

the individual season models. This is not a major issue in the Kruger National 

Park where field data is collected every year. New models can be created at the 

end of each growth season to ensure maximum estimation accuracy is achieved. 

It is however an important point to be aware of if similar models are to be created 

for other areas, located in savannas with similar vegetation structure and 

variation, where yearly biomass field estimates are not collected. If a single 

model is created and applied across years, users of the model should be aware 

that the accuracy of the estimates produced could potentially fluctuate by an 

amount comparable to that reported above. It would be up to the user of the 

herbaceous biomass estimates to decide if the resulting level of accuracy would 

be sufficient.  

 

In this study a conscious decision was made to try and keep the model as 

general as possible. The complexity of the landscape within the study area does 

however make stratification an appealing option. Stratifying the landscape and 
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creating individual models for each sub region would likely improve estimation 

accuracy and should be investigated further by those interested in producing 

herbaceous biomass estimation models to be applied only within the Kruger 

National Park. Geographically weighted regression is another alternative to 

stratification or the extensive use of dummy variables which may provide 

improved estimation accuracies. 

 

3. KRIGING AND COKRIGING 
 
 
The results obtained for kriging and cokriging are perplexing. Cokriging was 

expected to perform either on par with or better than kriging. Instead, in three of 

the six years, it performed worse. In those instances where it did result in an 

improvement, it resulted in less of an improvement than expected when 

compared to a similar study conducted in the area. Mutanga and Rugege (2006) 

working with the VCA data and MODIS band 2 reported an increase in estimation 

accuracy of 178 kg/ha over kriging and 554 kg/ha over a regression model. The 

R2 of the relationship between the VCA herbaceous biomass estimates and 

MODIS band 2 in that study was 0.44. By comparison the use of an EVI 

summation from the 2005 – 2006 growth season in this study correlated to 

herbaceous biomass with an R2 of 0.36, provided an improvement over kriging of 

only 76 kg/ha. The improvement over the regression model with an R2 of 0.46 

created specifically for 2005 - 2006 was only 97 kg/ha. All of this suggests that 

there was some major flaw in the cokriging implemented in this project.  

 

The implementation of cokriging is dependent on both the decisions made by the 

operator and the algorithm embedded in the software. When implementing 

cokriging in this project, many of the default parameters related to trend removal 

and number of points to include suggested by the ArcGIS geo-statistical 

extension, were accepted. The semivariogram model for the primary variable 

was modeled for each growth season to the best of my ability through adjusting 

lag size and experimenting with different nugget and sill values before deciding 
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on a compromise and specifying the lag value and accepting the optimized 

nugget sill and range values. No option was given for experimental modeling of 

the semivariogram model for the secondary variable or the cross variogram 

model.  

 

Despite my attempts at ensuring the models specified fitted the 

semivariaograms, results comparable to those of Mutanga and Rugege (2006) 

could not be obtained. Inspection of the ILWIS software used in their study 

revealed that it does not provide an equivalent of the Geostatistical wizard 

available in ArcGIS and the associated option of automatically ‘optimized’ 

parameters. Instead it requires the user to work through each step of the 

process, separately fitting each model through experimentation and using the 

parameters obtained as inputs into the subsequent steps.  

 

It seems most likely then that using the geostatistical wizard available in ArcGIS 

resulted in sub-optimal semi variogram models being fitted. This might explain 

the inconsistent performance of cokriging relative to kriging, and hence my 

inability to achieve accuracies comparable to those of (Mutanga and Rugege 

2006). Due to time constraints I was unable to redo the analysis using the ILWIS 

software. Even so the results obtained produce the useful finding that kriging and 

cokriging implemented by the ArcGIS geostatistical wizard is unlikely to achieve 

the levels of accuracy possible when the user is forced to optimize all of the 

semivariaogram model parameters manually. This is an important finding as 

ArcGIS is one of the most widely used commercial GIS packages, and many 

ecologists might consider it their first option when needing to interpolate surfaces 

from point measurements or estimates such as rainfall and herbaceous biomass.   
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4. COMPARISON OF THE ACCURACY AND PRECISION OF THE 
REGRESSION MODEL AND COKRIGING APPROACHES 
 
 

This section is critical in terms of achieving the aim of this study, which was the 

to compare the accuracy and precision achieved using cokriging and a linear 

regression model for producing spatially explicit herbaceous biomass estimates 

using 250m MODIS VI data. An attempt to go beyond a simple comparison of 

RMSE values and prediction map characteristics has also been made. The two 

methods are assessed in terms of the resources required for implementation, 

and the implications of the studies findings for savanna management are 

discussed.  

  
 
In terms of accuracy, even though cokriging was not performing optimally in this 

study, with a mean RMSE of 1220 kg/ha, its estimates of herbaceous biomass 

were on average 119kg/ha better than those of the regression model. This is in 

line with the findings of Mutanga and Rugege (2006), although they achieved a 

much more significant 544 kg/ha improvement. That said, Mutanga and Rugege 

(2006) only used data from a single growth season in their study. Whether similar 

results could have been obtained in consistently in different seasons is unknown.  

 

Histograms of the residuals reveal that both methods are unbiased estimators, 

producing estimates with errors centered on zero. The precision achieved using 

regression models, measured using Standard Deviation of estimation accuracy 

between seasons, was greater than that achieved with cokriging, but only by 

20kg/ha. Considering that the accuracy of the cokriging estimates were 

consistently the best, a slightly lower precision figure would not, based on these 

figures alone, cause anyone to identify the use of a regression model as the 

preferable method.  

 
Although the RMSE figures for the two methods differ on average by only 

119kg/ha, the predictions as to the distribution of herbaceous biomass differ 
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widely. Large areas on the maps produced show differences of more than 1000 

kg/ha in the amount of herbaceous biomass predicted. The areas with the largest 

discrepancies differ from year to year indicating that the difference in 

performance it is not due to some geographically fixed underlying factor such as 

vegetation type. There are also no spatial trends apparent in the residuals of 

either method for any season. The difference in prediction accuracy cannot 

therefore be attributed to a specific factor in any one location. Whatever is 

causing the regression model to produce less accurate herbaceous biomass 

estimates than cokriging must therefore occur fairly evenly throughout the study 

area.   

 
The maps produced using cokriging have a smoothed appearance when 

compared to those produced using the regression models. It is tempting to 

assume that because the regression maps appear to provide more detail, they 

will be of more use as decision aids than the cokrieged maps. However, as 

mentioned previously the seemingly less detailed cokriged maps provide, based 

on the ground truth data available, a more reliable indication of herbaceous 

biomass. This means that they should also be regarded as more reliable by 

decision makers even though they appear less detailed. 

 

The fine spatial resolution of the remotely sensed data results in abrupt changes 

in vegetation properties being identifiable on the herbaceous biomass maps 

created. Good examples of this are the large sandy riverbeds which stand out 

clearly on the maps produced using regression models. The inclusion of 

categorical variables also adds to the sense of increased detail through the sharp 

boundaries created by the different intercepts associated with the different levels 

of the categorical variable. Rapid changes in EVI over a short distance or a 

transition form one type of geology or burn history to another may correspond to 

a real and significant change in herbaceous biomass. However, if the 

combination of measurements available does not explain more of the variation in 

herbaceous biomass than can be inferred from the location of a point relative to a 
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series of suitably arranged field measurements, the extra detail is of no use. The 

maps produced may reflect in detail the variation in the properties measured, but 

they provide less information on the abundance of herbaceous biomass than the 

cokriged estimates.   

 
 

Because resources are usually scarce, it is useful to compare the methods not 

just in terms of the accuracy and precision achievable, but also in terms of the 

resources required to implement them. The creation of a regression model for a 

single season was the most resource intensive method to implement in this 

study. It required both field measurements that were time-consuming and 

relatively expensive to gather and measurements derived from satellite imagery 

for the explanatory variables. Hence the method requiring the most resources to 

implement did not provide the most accurate estimates of herbaceous biomass, 

and only a marginal increase in precision. Cokriging required fewer resources, 

but only marginally so as it did not make use of the fire history variable included 

in the regression models created. Even though it required marginally fewer 

resources, and was marginally less precise, it produced the most accurate 

estimates in the study (apart from kriging in certain instances, although if 

cokriging had been optimally implemented it could not have produced estimates 

worse than, only equal to, kriged estimates).    

 

Creation of a single regression model to predict herbaceous biomass over a 

number of seasons required the same amount of data as all of the individual 

models combined. However, if its resource costs were calculated on a per 

season basis over a greater number of seasons than were used to provide the 

training data, it would be found to require the fewest resources. All of the 

measurements of explanatory variables required for subsequent estimations can 

be produced using remotely sensed data. Burn scar maps can be digitized from 

high resolution imagery, while the EVI summation to approximate production and 

the September - October mean EVI to account for the effect of woody vegetation 
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are both derived from freely available MODIS data. Provided the imagery used to 

derive the fire scar maps is not excessively expensive, the cost of obtaining 

these measurements should be modest. By avoiding the need for constantly 

acquiring herbaceous biomass field estimates, which are expensive and time 

consuming to obtain, the use of a single regression model saves resources. The 

estimates produced by such a model are however less accurate than either 

cokriging or the creation of a growth season specific model.  

 

In the case of the Kruger National Park, where herbaceous biomass data is 

collected every year for the VCA dataset, the best choice of method based on 

accuracy measured using RMSE and resource requirements, is cokriging. It also 

seems likely that the accuracy of the predictions could be further improved by 

using software such as ILWIS, which allows for greater control over the 

variogram models fitted to the data. The regression models created in this study 

simply cannot compete in terms of accuracy or resources required and only offer 

a marginal increase in precision. They reflect the fine scale variation in 

vegetation greenness, fire history and geology within the study area far better 

than cokriging could by virtue of having measurements for every pixel present. 

Unfortunately, variation in these properties does not account for variation in 

herbaceous biomass as accurately as does the relative position in space of each 

pixel to the VCAestimate.  

 

Given the current data available in the Kruger National Park for producing the 

estimates, cokrigings combination of greater accuracy, comparable precision and 

marginally lower resource requirements make it the easier of the two methods 

assessed to recommend for operational implementation. Given a lower sampling 

density, it is highly likely that the reverse would be true, although this was not 

tested in this study.  
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5. IMPLICATIONS OF THE STUDIES FINDINGS FOR SAVANNA 
MANAGEMENT 
 

The accuracy of herbaceous biomass estimates desired by the KNP fire 

management team based on the figure reported in a paper by Wessels et al. 

(2006) is 500 kg/ha. Given that the DPM conversion equation described in  

Trollope and Potgieter (1986) has a residual error of 898 kg/ha, and that a DPM 

is used to collect the VCA data, it would be impossible to achieve estimates with 

an accuracy of the order of 500kg/ha using this data. This is because the 

measurement error in the DPM estimates sets the maximum level of estimation 

accuracy achievable. Improvements to the DPM calibration equation would need 

to be made to reduce this error to below 500 kg/ha, followed by improvements to 

the variables affecting the correlation between herbaceous biomass and the EVI 

growth season sum. However, given that disk suspension height, which is a 

direct field based measurement, has in the past delivered estimation accuracies 

of only 898 kg/ha, it seems unlikely that the relationship between the remotely 

sensed data and standing herbaceous biomass could deliver estimation 

accuracies less than 898 kg/ha. There are simply too many additional variables, 

present because of the distance between the herbaceous layer and the sensor, 

that weaken the relationship between remotely sensed data and end of season 

herbaceous biomass.  

 

During an informal conversation with Prof. Winston Trollop, a fire ecologist who 

has worked extensively in the study site and across Southern and East Africa, it 

was ascertained that, although 500 kg/ha would be desirable, estimation error as 

high as 1000 kg/ha would be acceptable. Based on the assumption that 

measurement error in the dependent/response variable causes an increases in 

estimation error equal to its magnitude, any model created using DPM based 

estimates containing 900 kg/ha of error can add no more than 100 kg/ha of error 

if it is to achieve the required 1000 kg/ha accuracy. Given that the average error 

for the regression models created in this study was 1339 kg/ha, 1000kg/ha 

seems a far more realistic goal to aim for than 500gh/ha. Given the distance 
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between the satellite sensor and the herbaceous layer, combined with the effects 

of herbivory and dead material from previous seasons, limiting additional error to 

100kg/ha is not something that could be consistently achieved using a regression 

model, even with improvements to the variables used in this study. Cokriging on 

the other hand, using a combination of the information regarding spatial 

autocorrelation in the herbaceous layer and the herbaceous biomass – EVI sum 

relationship, offers greater hope. Cokriging produced average errors of 1220 

kg/ha, just 220 kg/ha above the acceptable level of accuracy, It must however be 

remembered that this is not the actual accuracy as it does not reflect the almost 

900kg/ha of measurement error introduced by using  DPM based estimates of 

herbaceous biomass. If the improvements in estimation accuracy of the 

magnitude achieved by Mutanga and Rugege (2006) could be replicated by re-

running the cokriging with appropriate software, and the measurement error from 

the DPM reduced, estimation errors of much closer to 1000 kg/ha might be 

achievable. As I have not explored the relationship between measurement error, 

model error and actual estimation error I cannot provide an informed opinion on 

how much closer to 1000 kg/ha might be achievable.  

 

After the completion of this study I encountered an interpolation method known 

as regression kriging. Although I did not have time to explore this method I 

encountered a reference on it in which it is described by the JRC as currently the 

best statistical method available for interpolating surfaces 

(http://eusoils.jrc.ec.europa.eu/esdb_archive/eusoils_docs/other/eur22904en.pdf). Based 

on this reference I would advise any researcher interested in carrying this work 

further in familiarizing themselves with this method and considering it as an 

alternative to the methods explored in this study. 
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Appendix 1. Threshold classification accuracy 

 

In this study the accuracies of the prediction methods have been presented in 

terms of kg/ha.  However, during the course of the study I became aware that 

land managers planning prescribed burns are more likely to make decisions 

based on fuel load thresholds than on exact values as the latter are seldom 

available. Neither method explored in this study provided categorical outputs 

corresponding to these thresholds. It is however relatively simple assign each 

prediction to a class. This makes it possible to assess the methods in terms of 

their ability to correctly predict which threshold the herbaceous fuel load for an 

area falls within.  

 

After the completion of the study a basic classification error matrix was created 

showing the accuracy with which the two methods predicted which of three 

classes the herbaceous biomass for an area fell within. The three classes were 

“< 2000kg/ha”, “2000 – 4000 kg/ha” and “>4000 kg/ha”. These classes were 

chosen to match those laid out in (Trollope 1996). Table 16 provides an overview 

of “classification accuracy” for both methods when their estimates are assigned 

to one of three classes. The first class, < 2000 kg/ha, corresponds to the range of 

herbaceous fuel loads at which fire will not spread in savannas. The second 

class, 2000 – 4000 kg/ha refers to the range which produce fires of cool to 

moderate intensity (< 3000 kj/s/m). The third class, >4000 kg/ha, refers to the 

range which produce fires of high intensity (>3000 kj/s/m). Tables 17- 22 provide 

a more detail on the classification and misclassification of pixels for all growth 

seasons assessed. 

 

It is immediately apparent from Table 1 that cokriging achieves higher 

classification accuracy for the “<2000 kg/ha” and “>4000 kg/ha” classes than the 

regression models. The regression models on the other hand achieve higher 

classification accuracy than cokriging in the “2000 – 4000 kg/ha” class. 

Numerous incorrect decisions regarding prescribed burning would result from the 
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use of maps produced with either of these levels of classification errors. Of 

greater importance is which class the pixels are most often incorrectly classified 

to. In other words, the important question is: does the method tend to over or 

underestimate herbaceous biomass within the given classes?  

 

Over estimation in the “<2000 kg/ha” class has the fewest consequences. A fire 

team may arrive on site incorrectly classified through an overestimate as falling 

into the “2000 – 4000 kg/ha class” to initiate a burn and find that the fire does not 

spread. Time and resources have been wasted but the problem is self limiting, 

the fire will simply die out. Underestimates are far more serious. If a prescribed 

burn is set in an area incorrectly classified through an underestimate of fuel load 

as belonging to the “2000 – 4000 kg/ha” class but in reality 10000kg/ha of 

herbaceous biomass is present, the fire will be far more intense than expected. 

This could result in unwanted damage to the woody layer and possibly injury to 

the fire crew.  

 

In all growth seasons except for 2005 - 2006  (tables 2 - 7) cokriging produces 

fewer instances of underestimates for the “>4000 kg/ha” class. The percentage of 

pixels misclassified due to underestimates in this class for the regression method 

ranged from 22 – 81% and 13 – 77% for cokriging. Within the “2000 – 4000 kg/ha 

class” cokriging once again produced fewer underestimates than regression. The 

percentage of pixels misclassified because of underestimates was on the whole 

lower than for the “>4000 kg/ha” class. For the regression method it ranged from 

0 - 38% while for cokriging it ranged from 1 - 23%. Consequences arising from 

the misclassifications produced by cokriging are less serious because they arise 

primarily out of overestimating the amount of herbaceous biomass. This will lead 

fire teams to err on the side of caution rather than being surprised by a fire of 

greater intensity than they were expecting. It is up to fire mangers to determine 

whether the levels of classification accuracy reported here are sufficient for the 

maps produced to be useful decision aids. 
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After the completion of the study I encountered a promising hybrid approach to 

interpolation of surfaces known as regression kriging. Although I did not have 

time to explore this method further it is possible that through combining the use 

of regression models and cokriging the resulting outputs may lack the biases 

evident in the two methods assessed here. The paper entitled “A Practical Guide 

to Geostatistical Mapping of Environmental Variables” provides a good overview 

of regression kriging can be accessed at the following URL: 

http://eusoils.jrc.ec.europa.eu/esdb_archive/eusoils_docs/other/eur22904en.pdf 
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Table 1: Classification accuracy of the regression and cokriging methods, the highest classification 

accuracy for each class in each season is highlighted in bold 

    Classification accuracy 

Growth Season Method <2000 kg/ha 
2000 - 4000 
kg/ha 

> 4000 
kg/ha 

2000 - 2001 Regression 0% 67% 64% 

2001 - 2001 Cokriging 21% 56% 87% 

2001 - 2002 Regression 13% 90% 28% 

2002 - 2002 Cokriging 23% 76% 57% 

2002 - 2003 Regression 61% 62% 0% 

2003 - 2003 Cokriging 69% 73% 9% 

2003 - 2004 Regression 3% 78% 51% 

2004 - 2004 Cokriging 22% 72% 68% 

2004 - 2005 Regression 42% 76% 24% 

2005 - 2005 Cokriging 52% 73% 45% 

2005 - 2006 Regression 13% 52% 78% 

2006 - 2006 Cokriging 48% 72% 67% 

Average Regression 22% 71% 41% 

Average Cokriging 37% 65% 48% 
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Table 2: Herbaceous biomass classification error matrix for the 2000 – 2001 growth season 

    Regression Model  
2000 - 
2001   Cokriging 

2000 - 
2001 

  

 Predicted (kg/ha)  Predicted (kg/ha) 

   <2000 
2000 - 
4000 > 4000  <2000 

2000 - 
4000 > 4000 

M
e

a
s

u
re

d
 

(k
g

/h
a

) <2000 0% 88% 12%  21% 63% 16% 
2000 - 
4000 0% 67% 33%  1% 56% 44% 

> 4000 0% 36% 64%   0% 13% 87% 
 

Table 3: Herbaceous biomass classification error matrix for the 2001 – 2002 growth season 

    Regression Model  
2001 - 
2002   Cokriging 

2001 - 
2002 

   Predicted (kg/ha)  Predicted (kg/ha) 

   <2000 
2000 - 
4000 > 4000  <2000 

2000 - 
4000 > 4000 

M
e

a
s

u
re

d
 

(k
g

/h
a

) <2000 13% 83% 5%  23% 70% 7% 
2000 - 
4000 4% 90% 6%  6% 76% 18% 

> 4000 0% 72% 28%   1% 42% 57% 
 

Table 4: Herbaceous biomass classification error matrix for the 2002 – 2003 growth season 

    Regression Model  
2002 - 
2003   Cokriging 

2002 - 
2003 

   Predicted (kg/ha)  Predicted (kg/ha) 

   <2000 
2000 - 
4000 > 4000  <2000 

2000 - 
4000 > 4000 

M
e

a
s

u
re

d
 

(k
g

/h
a

) <2000 61% 39% 0%  69% 31% 0% 

2000 - 
4000 38% 62% 0%  23% 73% 4% 

> 4000 19% 81% 0%   14% 77% 9% 
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Table 5: Herbaceous biomass classification error matrix for the 2003 – 2004 growth season 

    Regression Model  
2003 - 
2004   Cokriging 

2003 - 
2004 

   Predicted (kg/ha)  Predicted (kg/ha) 

   <2000 
2000 - 
4000 > 4000  <2000 

2000 - 
4000 > 4000 

M
e

a
s

u
re

d
 

(k
g

/h
a

) <2000 3% 93% 3%  22% 72% 6% 

2000 - 
4000 1% 78% 21%  4% 72% 25% 

> 4000 0% 49% 51%   0% 32% 68% 
 

Table 6: Herbaceous biomass classification error matrix for the 2004 – 2005 growth season 

    Regression Model  
2004 - 
2005   Cokriging 

2004 - 
2005 

   Predicted (kg/ha)  Predicted (kg/ha) 

   <2000 
2000 - 
4000 > 4000  <2000 

2000 - 
4000 > 4000 

M
e

a
s

u
re

d
 

(k
g

/h
a

) <2000 42% 57% 1%  52% 45% 3% 

2000 - 
4000 19% 76% 5%  18% 73% 9% 

> 4000 4% 72% 24%   2% 53% 45% 
 

Table 7: Herbaceous biomass classification error matrix for the 2005 – 2006 growth season 

    Regression Model  
2005 - 
2006   Cokriging 

2005 - 
2006 

   Predicted (kg/ha)  Predicted (kg/ha) 

   <2000 
2000 - 
4000 > 4000  <2000 

2000 - 
4000 > 4000 

M
e

a
s

u
re

d
 

(k
g

/h
a

) <2000 13% 81% 6%  48% 49% 3% 

2000 - 
4000 2% 52% 46%  2% 72% 26% 

> 4000 0% 22% 78%   0% 33% 67% 
 


