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Abstract

In this thesis, the large N limit of the anomalous dimension of operators in

N = 4 super Yang-Mills theory described by restricted Schur Polynomials

are studied. The operators studied in this thesis are labelled by Young Di-

agrams which have two columns (both long) so that the classical dimension

of these operators is O(N). At large N these two column operators mix with

each other but are decoupled from operators with n 6= 2 columns. The planar

approximation does not does not capture the large N dynamics. The dilata-

tion operator is explicitly evaluated for 2, 3, and 4 impurities. In all three

cases, for a certain limit, the dilatation operator is a discretized version of

the second derivative defined on a lattice emerging from the Young Diagram

itself. The dilatation operator is diagonalized numerically. All eigenvalues

are an integer multiple of 8g2
YM and there are interesting degeneracies in the

spectrum. The spectrum obtained in this thesis for the one loop anomalous

dimension operator is reproduced by a collection of harmonic oscillators. The

equivalence to harmonic oscillators generalizes giant graviton results known

for the BPS sector and further implies that the Hamiltonian defined by the

one loop large N dilatation operator is integrable. This is an example of an

integrable dilatation operator, obtained by summing both the planar and the

non-planar diagrams.
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Chapter 1

Introduction

In the last few years, interesting progress has been made in the study of the

dynamics of multimatrix models. It was observed in [1] that Schur Polyno-

mials are a complete basis of gauge invariant operators which diagonalize the

two point function of the free (g2
YM = 0) super Yang- Mills Theory. Similar

bases have been found for multimatrix models in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12]. The two point function for these bases is diagonal and known exactly as

a function of N where g2
YM = 0.

As the N dependence is known exactly, it suggests that the results may

be used for going beyond the planar limit. It must be noted that “the planar

limit” and “the large N limit” are, in general, not the same concept. To see

this, suppose one computes the two point correlator of an operator with a bare

dimension ∆ of most ∆ ∼ J with J2

N
<< 1. Summing the planar diagrams

will capture the large N limit. If one were to consider an operator with

dimensions larger than this, then the combinatoric factors will overpower

the nonplanar ( 1
N2 ) suppression and the planar approximation is completely

ineffective[13]. In this case, it is necessary to sum more than the planar

diagrams in order to get the correct large N limit. In general, one expects
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the large N limit to be simpler than the full theory [14]. As the planar

diagrams represent a small subset of all possible diagrams, it is natural to

expect the summation of these diagrams to provide a simpler problem. But

why should one expect the large N limit to be simple when one sums more

than the planar diagrams? The answer to this may not be general and

may depend on the specific dynamical problem considered and might be

answered case by case. One approach may be to consider the large N limit

and simply look for simplifications. This was accomplished in [15, 16, 17] in a

number of examples including LLM geometries [18, 19] and the near horizon

geometry of a bound state of giant gravitons [20]. The results obtained are

surprisingly simple. As an example, for 1
2

BPS- correlators in the presence

of M giant gravitons with M of order N , [15, 16, 17] showed that the usual

1
N

expansion was replaced by a 1
M+N

expansion. As these correlators are 1
2

BPS (they do not depend on g2
YM but only on N and M), then the expansion

coefficients for the correlators in the background of M giants are the same

as the expansion coefficients for correlators with no giants present. This

simple result was confirmed holographically in [21] by matching to graviton

dynamics in the LLM geometries using the formalism of [22]. For near BPS

operators corresponding to BMN loops [23] it was argued in [24, 25, 26]

that the usual ’t Hooft coupling g2
YMN is replaced by the effective ’t Hooft

coupling g2
YM(N +M).

In this thesis, the problem of computing the one loop anomalous dimen-

sion of an operator with a bare dimension of order N will be considered. In

order to examine this, we explore beyond the planar limit using the meth-

ods and approach of [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The results obtained are

rather simple- the spectrum of the anomalous dimension can be matched to

the spectrum of a set of oscillators. Once again, it is seen that the large N
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limit is a simple limit. This result is obtained by considering restricted Schur

Polynomials as the operators used, built using O(N) Zs and 3 or 4 “impu-

rities” (Y s) where Z and Y are the complex adjoint scalars of N =4 super

Yang Mills theory. The case of operators with two impurities was studied in

[30]. When the dilatation operator acts on a restricted Schur Polynomial, it

produces terms that have a ZY − Y Z combination. In [30], the techniques

of [4, 6] were used to separate the Z and the Y and write the results as a lin-

ear combination of restricted Schur Polynomials. This calculation becomes

cumbersome as it involves the inversion of a matrix. For the two impurities

case, the matrix that is inverted is 6 × 6 and must be done analytically. Any

case with more impurities seemed out of reach following this method. In this

thesis, a new formula is developed which avoids the matrix inversion. This

can be seen in Chapter 5. Using the new formula, the case for three and

four impurities can be handled without much trouble. As can be seen in Ap-

pendix A, the expressions obtained for the action of the dilatation operator

are long and complicated however, the spectrum obtained is quite simple.

The results suggest that for the class of operators considered, the Hamil-

tonian defined by the dilatation operator is integrable as it is just a set of

oscillators. This is an example of an integrable dilatation operator obtained

from summing both the planar and the non-planar diagrams. The operators

considered in this thesis can be mapped to giant gravitons [28] in spacetime

[13, 1, 29]. There is already a known connection between the geometry of

giant gravitons and harmonic oscillators [31, 32, 33, 34, 35, 36]. Although

this is the case, the work presented in this thesis differs from the previous

work in two very important ways. Firstly, we claim that the complete spec-

trum, not just the BPS spectrum, has a connection to harmonic oscillators.

Secondly, we have control over the set of operators used as they are dual to

3



the two giant system. Previous studies captured the full set of BPS states

and consequently were not able to distinguish, for example, giant graviton

with graviton from excited giant gravitons. In this thesis, only the states

of the two giant system are captured. Thus it is possible to associate the

oscillators with excitation modes of a giant graviton.

The restricted Schur Polynomials studied in this thesis are built by dis-

tributing “impurities” (Y s) in an operator built mainly from Zs. By replac-

ing the Y s by words containing O(
√
N) letters; which could be Z, Y , other

fields or derivatives of fields, these words are naturally identified with open

strings [37, 38, 39]. In this case the dilatation operator reproduces the dy-

namics of open strings connected to a giant graviton [40, 3, 4, 6]. The mixing

of operators is highly constrained. It was shown in [4, 6] that operators which

mix can differ at most by moving one box around on the Young Diagram la-

beling the operator. Another interesting basis to consider is the Brauer basis

[5, 11]. This basis is built using Brauer algebra projectors. The structure

constants of the Brauer algebra are N dependent. There is an elegant con-

struction of a class of BPS operators [41] in which the natural N dependence

appearing in the definition of the operator [42] is naturally reproduced by

the Brauer algebra projectors[41]. Another approach to this problem is to

adopt a basis with sharp quantum numbers for the global symmetries of the

theory [7, 9]. The action of the anomalous dimension operator in this basis is

very similar to the action on the restricted Schur basis. Operators which mix

can differ at most by moving one box around on the Young diagram labeling

the operator [43]. For a general approach for counting and constructing the

weak coupling BPS operators, see [36].

This thesis is organized as follows: Chapter Two will give a brief review

of the AdS/CFT correspondence. Chapter Three will be a review of the
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paper Invasion of the giant graviton from anti − de Sitter space by J.

McGreevy, L. Susskind and N. Toumbas [30]. Chapter Four will give a brief

review of Matrix Models as well as on Schur Polynomials (the operators dual

in conformal field theory to giant gravitons). Chapters Five to Chapter Eight

will be on the research done and the results obtained. Chapter Nine will give

a summary of the results and a conclusion to this thesis. The results of

this thesis have been reported in arXiv:1012.3884v1[hep-th] and have been

submitted to JHEP for publication.
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Chapter 2

AdS/CFT correspondence

In this chapter, a brief review of the AdS/CFT correspondence shall be given.

This will include a brief history as to why this correspondence is studied as

well as what exactly the AdS space is and what a Conformal Field Theory

is and why they are dual to each other.

2.1 A brief history

For many decades, physicists have worked hard at the problem of trying unify

the four fundamental forces of nature- the electromagnetic force, the strong

force, the weak nuclear force and gravity. The study of quantum mechan-

ics and Einstein’s general theory of relativity have provided descriptions of

physics at both the subatomic scale and the cosmological scale. Quantum

mechanics has successfully been combined with the electromagnetic force and

the weak nuclear force to give the electroweak force, the theory of which is a

quantum field theory. The combination of quantum mechanics with special

relativity in a quantum field theory gives rise to quantum chromodynam-

ics (QCD). The Standard Model is composed of the electroweak theory and
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QCD. A theory which combines both quantum mechanics and the force of

gravity (quantum gravity), however, has not yet been found. It is believed

that string theory holds the answer to this unifying puzzle.

String theory is a theory which describes elementary particles as loops

of string, not much bigger than the Planck scale. These strings are one -

dimensional and each oscillation mode of a string corresponds to a different

particle in perturbative string theory. By assuming these strings are one

dimensional has the result that supersymmetric theories must be built using

10 dimensions to be consistent. These extra dimensions of space are said

to be compactified so as to ensure that one is left with a 3+1 dimensional

world. One might think that the inclusion of extra dimensions into a theory

in order for it to work would automatically count it as wrong however this is

not the case. Present in this theory is a massless spin two boson which can

only be associated with a gravity carrying particle-a graviton. The particle

arises out of the theory, it was not put in by hand. This makes string theory

a viable option for quantum gravity [51].

There are several different types of string theory, each of which can be for-

mulated using different backgrounds. The type studied in this thesis is that

of IIB string theory whose background is composed of a five dimensional non

compact Anti deSitter (AdS) space and a five sphere (S5) as it is a solution

to the IIB supergravity equations of motion. According to the Maldacena’s

conjecture [52], the quantum string that lives on the AdS5 background is dual

to the conformally invariant field theory living on a 4 dimensional spacetime,

which is interpreted as the boundary of the AdS space. This conformally

invariant field theory is the maximally supersymmetric SU(N) Yang Mills

theory in 4 dimensional Minkowski space. It is known as “maximally super-

symmetric” as it has the most supersymmetry for a theory that contains no

7



gravity. It is known as a conformal field theory because it is invariant under

conformal transformations (to be discussed later)[55]. Maldacena’s conjec-

ture is a realization of the holographic principle initially proposed by Gerard

’t Hooft [53] and later extended by Leonard Susskind [54]. The holographic

principle states that the physical description of quantum gravity in a vol-

ume of space is encoded in an ordinary quantum field theory (QFT) living

on the boundary of the space. This is most easily imagined using a regu-

lar hologram, usually a two dimensional object which gives rise to a three

dimensional image.

It must be noted that the AdS/CFT correspondence is a correspondence

between two theories, one which contains gravity (AdS) and one which does

not contain gravity (CFT). It must also be mentioned that the word “dual”

means the full equivalence between the two theories. Each side of the corre-

spondence shall now be briefly discussed. For the mathematical details, it is

suggested that one consider [55, 56].

2.2 Anti deSitter Space

As previously mentioned, the AdS side of the correspondence forms part of

the background of the type IIB string theory. Through the space flows the

IIB 5- form flux which is an integer multiple of N . The equal radii of the

AdS5 space and the S5 space is given by R4 = 4πgsNl
4
s where gs is the string

coupling and ls is the string length. (This will be seen again in chapter three).

An Anti deSitter space, itself, is a space with constant negative curvature.

To picture this, one could think of a saddle where the curvature at every

point along the saddle is the same. AdS space is a solution to the Einstein

equations with a negative cosmological constant. This can be shown simply
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using AdS5 space. The AdS5 space can be described as the hypersurface

R2 = x2
0 + x2

5 − x2
1 − x2

2 − x2
3 − x2

4

in a six-dimensional space such that the metric for the space is given by

ds2 = −dx2
0 − dx2

5 + dx2
1 + dx2

2 + dx2
3 + dx2

4

Consider the following parametrization

X0 =
1

2u
(1 + u2(~x · ~x− t2) + u2R2)

X4 =
1

2u
(1 + u2(~x · ~x− t2)− u2R2)

Xi = Ruxi

X5 = Rut

(2.1)

where i = 1,2,3. Before continuing, it must be noted that this parameter-

ization of the surface which does not cover the entire surface, is called a

Poincaré patch. To see this, note that for u > 0, one always has X0 > X4.

This means that the X0 < X4 part of AdS5 has not been captured. Using

this parametrization, the metric can be rewritten as follows

ds2 = R2

(
u2(−dt2 + d~x · d~x) +

du2

u2

)
(2.2)

From the analysis of this metric, it can be seen that there is a horizon at

u=0. When u→∞, then one is at a boundary. Setting u = 1
z

results in the

metric

ds2 =
1

z2
(−dt2 + d~x · d~x+ dz2) (2.3)

The curvature of the space can be calculated. This is done by calculating the

Christoffel symbols. Once these have been calculated, the Riemann curvature

tensor can be calculated which will then be used to obtain the Ricci tensor.
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The result shall be stated here without the calculations shown. The result

obtained for the Ricci tensor is

Rµν = −4gµν (2.4)

where gµν is defined as in equation (2.3). In terms of the cosmological con-

stant, the Ricci tensor (applicable to AdSd) is given by

Rµν = Λgµν

Rµν = −(d− 1)gµν

(2.5)

and R=−(d− 1)d so for AdS5, R=−20.

In summary, the AdS5 surface was parameterized by a set of co-ordinates

which did not cover the entire space. In metric (2.2) when u=0, a horizon is

obtained and when u → ∞ a boundary is obtained. The co-ordinate z = 1
u

was also considered. When the limit of z → ∞ is taken, it is seen that the

metric goes to zero and it the one is in the middle of the AdS space. When

the limit z=0 is taken, it can be seen that one is at the boundary of the

entire AdS space. This solution can be thought of as putting the Universe in

a box. Indeed, geodesics leave the origin and return exactly as if the particle

was in a harmonic oscillator potential.

2.3 Conformal Field Theory

A conformal field theory (CFT) is defined as being a quantum field theory

(QFT) that is invariant under conformal transformations. A conformal trans-

formation is a transformation which scales the metric (angles are preserved).

Suppose one has the following change of co-ordinates

x→ x′
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then the metric will change as follows

gµν(x)→ g′µν(x
′) = Ω(x)gµν(x)

where Ω(x) gives the information for how the metric has been scaled.

There are many different types of conformal transformations, each with

their own Ω(x). These conformal transformations are Lorentz rotations,

translations, dilatations and special conformal transformations. Each con-

formal transformation has its own generator.

For Lorentz boosts and rotations, Ω(x) is set to one. This is not surprising

as the action of boosting an object or rotating it does not change its proper

length. In this case, the generator for these transformations is given by

Mµν = i(xµ∂ν − xν∂µ)

For translations, Ω(x) is again one. Again, this is not surprising as the

action of changing one’s position does not change its length. The generator

in this case is

Pµ = i∂µ

In cases where the metric does not change, one is said to have an isometry.

For dilatations, the metric scaling factor is not one. Consider the following

transformation

xµ → λxµ

where λ is a constant. From this transformation, the metric scaling factor

can be obtained.

ds2 = gµνdx
µdxν

=
gµν
λ2
d(λxµ)d(λxν)

=
gµν
λ2
dx′µdx′ν

(2.6)
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From equation(2.6) it can be seen that

Ω = λ−2 (2.7)

In order to obtain the generator of dilatations, one needs to consider the

infinitesimal transformation

xµ → (1 + ε)xµ (2.8)

By considering equation (2.8) alone, the generator for the dilatation is

not obvious. It is however if one considers the following

xµ → (1 + ε)µxµ

= (1 + µε)xµ

From this transformation, it can be seen that the generator is

D = −ixµ∂µ

This just counts the number of xµ’s.

For special conformal transformations, the metric scaling factor is, again

not one. Consider the following transformation

xµ → xµ + aµx2

1 + 2a · x+ a2x2

where aµ is any four vector.

For this transformation, the metric scaling factor is given by

Ω = (1 + 2a · x+ a2x2)2 (2.9)

In order to find the generator of this transformation, the infinitesimal trans-

formation must be considered. To do this, substitute a with ε and expand

12



xµ → xµ + εµx2 − 2ε · xxµ

Thus the generator is given by

Kµ = i(x2∂µ − 2xµx
ν∂ν)

In order to test any theory, one must ask what is observable. In quantum

field theory, the observable is the S-matrix. The S-matrix allows the observer

to consider a non interacting system in the past, allows the system to interact

and then compare the non interacting system in the future to ascertain what

happened during the interaction. In CFTs, the S-matrix is not an observable.

This is because in a CFT, the concept of the distant past and far future has

no meaning as a scaling in time is a symmetry. An observable in CFT is the

scaling dimension or the anomalous dimension. The anomalous dimension is

a function related to the shift in the field strength as a result of renormali-

sation. The standard method for obtaining the anomalous dimension ∆α is

to consider the two point function of a set of conformal fields Ôα [45]

< Ôα(x)Ôβ(y) >=
δαβ

|x− y|2∆α

The eigensystem of the dilatation operator, D̂ is composed of the eigenstates

Ôα and the eigenvalues ∆α [45]

D̂Ôα = ∆αÔα

In this thesis, the N = 4SYM field theory is considered. We will study the

action of the one loop dilatation operator on a restricted Schur Polynomial.

The one loop dilatation operator in the SU(2) sector [45] of the N = 4 super

Yang-Mills Theory is

D = −g2
YMTr[Y, Z][∂Y , ∂Z ]

13



where g2
YM is the Yang Mills coupling.

2.4 Matching Parameters

Going back to Maldacena’s conjecture, there is a relationship between the

string coupling gs and the Yang Mills coupling gYM as follows

g2
YM = gs

Substituting in for the string coupling gives

Ng2
YM =

R4

l4s
(2.10)

If one now takes the limit N → ∞ while holding Ng2
YM large and fixed,

one can see that R4

l4s
is big and thus one would expect that this limit of

the gauge theory is dual to a weakly coupled gravity theory on a smooth

spacetime.
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Chapter 3

Giant Gravitons

In this chapter, the paper Invasion of the giant gravitons from anti-de Sitter

space by J. McGreevy, L.Susskind and N.Toumbas [28] will be reviewed. In

this paper, the physical origin of the stringy exclusion principle is examined

and is shown to be the result of a large distance phenomenon. The stringy

exclusion principle is a limit on the number of single particle states propa-

gating on the spherical component of AdSn × Sm. The particles considered

in this paper are gravitons or any other massless particles in Sm.The paper

argues that the particles are dipoles. This implies that there is no nett charge

but they expand when set in motion. When the size of the particle reaches

the radius of the space, the particle can no longer grow in size. This implies

a bound on the angular momentum which reproduces the stringy exclusion

principle. In order to show this, the authors review the theory of electric

dipoles moving in a magnetic field as a non-commutative field theory. The

authors then consider the motion of a massless particle in three different

maximally supersymmetric spaces: AdS7×S4, AdS4×S7 and AdS5×S5. A

brief review of the section on dipoles will be given as well as the motion of a

massless particle on AdS5×S5.
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3.1 A brief review of an electric dipole mov-

ing in a magnetic field

In this section, the motion of an electric dipole moving in a uniform magnetic

field is considered. The dipole is composed of a pair of oppositely charged

unit charges. The dipole has some kinetic energy and experiences a force as

a result of the applied uniform magnetic field (Lorentz Force). There is also

a force present between the two unit charges which is like that of a Hooke

force. It is assumed that the mass of the unit charges, and consequently the

dipole, is small such that the kinetic energy of the dipole can be ignored

in comparison to the effects from the magnetic field and the force between

the unit charges. By considering the relative co-ordinates and the centre of

mass co-ordinates of the dipole, it is found that the co-ordinates are non-

commuting variables. From further analysis it is also seen that the dipole is

stretched as it moves in a direction perpendicular to the applied field with

some momentum. This is a basis for non-commutative field theory with

non-local effects. In order to learn more about the motion of the dipole, it

is assumed that the dipole is moving on the surface of a sphere with some

magnetic flux. Making this assumption implies that there is a magnetic

monopole at the centre of the sphere. By parameterising the sphere and

analyzing the Lagrangian density obtained for the electric dipole, a key result

is obtained. It was found that the angular momentum of the dipole in the

non-commutative field is bounded by the magnetic flux on the sphere and

that it is a long distance effect. This means that as momentum of the dipole

increases, so does its size. The faster the dipole orbits the surface of the

sphere, the larger the dipole gets until it reaches the size of the sphere and

dipole can no longer grow. Thus the dipole’s motion is limited by some
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maximum momentum.

3.2 AdS5×S5

Here the motion of a BPS particle on a five-sphere is considered. The as-

sumption will be made that the radius of curvature of the space R is much

greater that the ten dimensional Planck length lp. The motion of the BPS

particle is considered as it moves through a five-form field strength on the

sphere. The flux density is labelled B. The quantization of flux requires

Ω5BR
5 = 2πN (3.1)

where R is the radius of the S5 space and is given by

R = (4πgsN)
1
4 ls (3.2)

where gs is the string coupling constant, N is the number of units of flux on

the sphere and ls is the string length. As it was assumed that R is much

larger than ls then N must be large with gsN both large and fixed.

In order to obtain the relationship between N and the angular momentum

L of the graviton, it is necessary to consider the motion of the graviton on

the five-sphere in a five-form field strength. Substituting (3.2) into (3.1) and

dropping the constants gives an expression for B in terms of N

B ≈ N
−1
4 l−5

s g
−5
4
s (3.3)

With our conventions, B fills the (x5,x6,x7,x8,x9) directions. The graviton

will move in the x9 direction with momentum

P9 =
L

R
(3.4)
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This is the usual form of the momentum in terms of angular momentum.

Parametrize S5 using Cartesian co-ordinates X1, ... X6 as follows

X1 = R cos θ1

X2 = R sin θ1 cos θ2

X3 = R sin θ1 sin θ2 cos θ3

X4 = R sin θ1 sin θ2 sin θ3 cos θ4

X5 = R sin θ1 sin θ2 sin θ3 sin θ4 cos θ5

X6 = R sin θ1 sin θ2 sin θ3 sin θ4 sin θ5

(3.5)

where θ1, ... θ4 range from 0 to π and θ5 is the azimuthal angle ranging

from 0 to 2π. This correctly describes the five-sphere

X2
1 +X2

2 +X2
3 +X2

4 +X2
5 +X2

6 = R2 (3.6)

We consider a spherical membrane embedded in S5. Any angles can be

chosen to parametrize the worldvolume of this membrane. Here, the choice is

made to parametrize the worldvolume of the membrane using θ3,θ4,θ5. This

means that the brane will move in the transverse X1,X2 plane. The size of

the membrane depends on where it is on the X1,X2 plane according to

r5 = R sin θ1 sin θ2 (3.7)

Clearly the size of the membrane is at a maximum when θ1=θ2=π
2

result-

ing in r5=R. Making this substitution back into the parametrization of the

membrane, one obtains X1=X2=0 which means that the membrane, at its

maximum size, is at the origin. Using the r5=R relationship results in

R2 − r2
5 = X2

1 +X2
2 (3.8)
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From this, it can be seen that the membrane can move around in a circle

in the plane with a constant size. As a result of this the following expressions

for X1 and X2 can be obtained

X1 =
√
R2 − r2

5 cosφ

X2 =
√
R2 − r2

5 sinφ
(3.9)

This means that the original parametrization of the five-sphere as seen in

equation (3.5) can be rewritten as

X1 =
√
R2 − r2

5 cosφ

X2 =
√
R2 − r2

5 sinφ

X3 = r5 cos θ3

X4 = r5 sin θ3 cos θ4

X5 = r5 sin θ3 sin θ4 cos θ5

X6 = r5 sin θ3 sin θ4 sin θ5

(3.10)

Using these co-ordinates, the metric on the five- sphere can be rewritten

in terms of r5, φ, θ3, θ4, θ5

ds2 =
R

R2 − r2
5

dr2
5 + (R2 − r2

5)dφ2 + r2
5dΩ2

3 (3.11)

where dΩ3 is the solid angle of the three sphere parametrized by θ3, θ4 and

θ5. It can be seen that the volume element is

Rr2
5dr5dφdΩ3 (3.12)

The metric on the worldvolume of the membrane needs to still be calculated.

To do this, note that the complete spacetime metric is

ds2 = ds2
AdS5

+ ds2
S5

(3.13)

19



The metric for the AdS space must still be included. In a convenient set of

co-ordinates [48]

ds2
AdSm = −(1 +

r2

L2
)dt2 +

dr2

(1 + r2

L2 )
+ r2dΩ2

m−2 (3.14)

When m=5

ds2
AdS5

= −(1 +
r2

L2
)dt2 +

dr2

(1 + r2

L2 )
+ r2dΩ2

3 (3.15)

For the purpose of this problem, r=0. Recall, it was stated earlier that

the motion of the BPS particle on S5 was to be considered as the membrane

sits at the origin of the AdS5 space. The radius r is the radial co-ordinate of

AdS5 and bears no relation to the one seen previously (r5). Thus

ds2
worldvolume = −dt2 +

R

R2 − r2
5

dr2
5 + (R2 − r2

5)dφ2 + r2
5dΩ2

3 (3.16)

The parameters for the worldvolume are dθ3, dθ4, dθ5 and dτ where t=τ .

As S3 wraps in S5 then r5 is a constant so dr5=0. The metric for the

worldvolume thus becomes

ds2 = −dτ 2+(R2−r2
5)φ̇2dτ 2+r2

5dΩ2
3 = −(1−(R2−r2

5)φ̇2)dτ 2+r2
5dΩ2

3 (3.17)

From the definition of the metric, this can be written in general as

ds2 = habdx
adxb

where

hab =


−(1− (R2 − r2

5)φ̇2) 0 0 0

0 r2
5 0 0

0 0 r2
5 sin2 θ3 0

0 0 0 r2
5 sin2 θ3 sin2 θ4

 (3.18)
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Using this it is possible to obtain the kinetic energy of the membrane using

the Dirac-Born-Infeld (DBI) Lagrangian. The DBI action is considered as

the Lagrangian is easily read off of it.

The DBI action is given by[48]

SDBI =

∫
−Tm−2

√
−gdτdσ1...dσm−2 (3.19)

where T is the tension of the brane and
√
−g is the square root of the

determinant of the metric.

Written for the system considered here:

SDBI =

∫
−TD3

√
−hdτdθ3dθ4dθ5 (3.20)

where TD3 is the tension of the D3 brane wrapping S5 and
√
−h is the

square root of the determinant of the matrix obtained in equation (3.18).

Substituting (3.18) into (3.20) gives

SDBI =

∫
−TD3

√
1− (R2 − r2

5)φ̇2r3
5dτdΩ3 (3.21)

The kinetic component of the Lagrangian is now easily read from (3.21)

LK = −TD3Ω3r
3
5

√
1− (R2 − r2

5)φ̇2 (3.22)

The tension of the D3 brane is given by

TD3 =
1

(2π)3l4sgs
(3.23)

Using equation (3.2), (3.23) can be re-written in terms of N and R

TD3 =
N

Ω3R4
(3.24)

and so the following expression is obtained

TD3Ω3 =
N

R4
(3.25)
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The kinetic contribution to the Lagrangian has been obtained. It is now

necessary to obtain the contribution from the background field. In order

to obtain this contribution, the Chern-Simons coupling involving the back-

ground field must be derived. The background field is the applied five- form

field whose flux was denoted as B. The contribution of the five form field

strength to the action of the brane around S5 is

SB =

∫
wv

C =

∫
Σ

F (3.26)

where the first integral is over the worldvolume of the brane. The second

integral is over a five manifold in S5 whose boundary is a 4-dimensional

surface swept out by the brane during an orbit. F is the background flux

given by

F = BdV ol

where B is the flux density and dVol is the volume form of S5 The Chern

Simons action is

SB = BV ol(Σ) (3.27)

The contribution to the Lagrangian is thus given by

LB =
SB
T

(3.28)

where T is the period of the D3-brane motion. Equation (3.28) can be

rewritten as follows

LB = BV ol(Σ)
φ̇

2π
(3.29)

where φ̇ is the constant angular velocity of the brane. The volume of Σ is

given by

V ol(Σ) = R

∫ r5

0

r3dr

∫ 2π

0

dφ

∫
dΩ3 (3.30)

Calculating the integral gives

V ol(Σ) = r4
5RΩ5 (3.31)
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Using equations (3.31) and (3.1), equation (3.29) can be rewritten as

LB = φ̇N
r4

5

R4
(3.32)

The full Lagrangian for the system is thus given by

L = −TD3Ω3r
3
5

√
1− (R2 − r2

5)φ̇2 + φ̇N
r4

5

R4

= −m
√

1− (R2 − r2
5)φ̇2 + φ̇N

r4
5

R4

(3.33)

where m=TΩ3r
3
5.

In order to obtain the relationship between the angular momentum of the

brane, L, and the number of units of flux of the sphere, N; the angular

momentum of the brane needs to be calculated from the Lagrangian. The

expression for the angular momentum of the brane is

L =
m(R2 − r2

5)φ̇2√
1− (R2 − r2

5)φ̇2

+
Nr4

5

R4
(3.34)

It is known that (see (3.10)) the size of the membrane cannot exceed R

(the size of the S5 space) and that the velocity of the brane cannot exceed

the speed of light. Thus L is bounded by N.

If the membrane was the size of the space (r5=R) then it can be seen

from (3.34) that

Lmax = N (3.35)

The maximum value for the angular momentum is N. When r5 <<R, then

the brane is a Kaluza-Klein graviton which is free to increase in size as its

angular momentum increases. However, when r5 =R then the Kaluza-Klein

graviton has maximum angular momentum which agrees with the stringy

exclusion principle. When r5 =R, the membrane is at its maximal size in the

S5 space and is called a sphere giant graviton.
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Using the Lagrangian for the system, the energy of the membrane can

also be obtained

E = φ̇L− L =

√
m2 +

(L− Nr45
R4 )2

(R2 − r2
5)

(3.36)

In keeping L fixed and varying r5, the potential of the system can be

obtained

dE

dr5

=
r5

E(R2 − r2
5)2

(
L− 3Nr2

5

R2
+

2Nr4
5

R4

)(
L− Nr2

5

R2

)
(3.37)

When considering the minima from (3.38), there is a stable minimum at

r2
5 = R2 L

N
(3.38)

when L<N.

From finding the minima of the potential, it can be see that the membrane

does indeed increase in size as the angular momentum increases. Substituting

this minimum into the expression obtained in (3.36) for the energy gives

E =
L

R
(3.39)

This expression for the energy at the minimum is not surprising as it is

what one would expect for a massless particle

E2 = −→p · −→p −m2 = p2

⇒ E = |−→p |

=
L

R

where L is the angular momentum of the brane and R is the size of the space.
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Chapter 4

Matrix Models and Schur

Polynomials

4.1 Matrix Models

As previously mentioned, the N = 4 super Yang-Mills (SYM) theory is

considered in this thesis. In chapter two, it was mentioned that this theory

is a quantum field theory where the fields are matrix fields built from the

complex linear combination of six scalar fields [1]. These matrix fields are

Z = Φ1 + iΦ2

Y = Φ3 + iΦ4

X = Φ5 + iΦ6

(4.1)

Any quantum field theory is determined by the Lagrangian of the theory.

A simple Lagrangian will be considered and will show the key results needed

for this thesis. The Path Integral Method shall be used for the following

calculation. This method is seen in detail in [57].

Consider the following Lagrangian
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L =
1

2
Tr(∂µX∂

µX)− m2

2
Tr(X2)

where X is a matrix Xij where i,j=1,2,...,N and X=X†. The source term,

which is included so as to calculate the propagator, is given by Tr(JX) where

J is a Hermitian matrix and the trace is cyclic. The inclusion of this source

term results in the following Lagrangian

L =
1

2
∂µXij∂

µXji −
m2

2
XijXji + JijXji (4.2)

As a source as been included to the system, the matrix field must be shifted

to ensure that the peak of the Gaussian sits at the origin. The shift is

Xij = X ′ij +Xijmax (4.3)

where X ′ij is the new field and Xijmax is the value of Xij at the maximum of

the Gaussian. Using this shift the Lagrangian becomes

L =
1

2
∂µX

′
ij∂

µX ′ij −
m2

2
X ′ijX

′
ji +

1

2
JijXjimax (4.4)

In order to calculate correlators for this system, the generating functional

must be considered

Z[J ] =

∫
[DX ′]e

∫
d4x( i

2
∂µX′ij∂

µX′ji−i
m2

2
X′ijX

′
ji+

i
2
JijXjimax ) (4.5)

which can be rewritten as

Z[J ] = e
∫
d4x i

2
JijXjimax

∫
[DX ′]e

∫
d4x( i

2
∂µX′ij∂

µX′ij−i
m2

2
X′ijX

′
ji)

= e
∫
d4x i

2
JijXjimax

∫
[DX ′]eiS

′
(4.6)

where

S ′ =

∫
d4x(

1

2
∂µX

′
ij∂

µX ′ij −
m2

2
X ′ijX

′
ji) (4.7)
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For the system considered to be correctly normalized,∫
[DX]eiS = 1

resulting in

Z[J ] = e
∫
d4x i

2
JijXjimax (4.8)

Correlation functions are thus generated by computing

1

in
δnZ

δJij(x1)...δJkl(xn)

∣∣∣∣
J=0

=

∫
[DX]Xij(x1)...Xkl(x2)eiS

But before any correlation function can be computed, Xijmax must be com-

puted. By computing the maximum of the action obtained from equation

(4.2)

(∂µ∂
µ +m2)Xijmax = Jij

Using Green’s function, the following is obtained

Xijmax = i

∫
d4y∆F (x− y)Jij(y) (4.9)

or

∆F (x− y) =

∫
d4k

(2π)4

ieik(x−y)

k2 −m2

Thus equation (4.8) becomes

Z[J ] = e
i
2

∫
d4xJiji

∫
d4y∆F (x−y)Jji(y) (4.10)

Calculating the two point function gives

< Xab(x)Xcd(y) > = − δ2Z[J ]

δJab(x)δJcd(y)

∣∣∣∣
J=0

= δadδcb∆F (x− y)

= δadδcb

∫
d4k

(2π)4

ieik(x−y)

k2 −m2

(4.11)
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Figure 4.1: The propagator for < Xab(x)Xcd(y) >

Figure 4.2: The propagator for < Xab(x)Xba(x) >

Using the two point function, the Feynman diagram for the propagator can

be obtained. From (4.11), it can be seen that the propagator is

δadδcb∆F (x− y)

This would correspond to the Feynman diagram as seen in figure 4.1. In

what follows, the spacetime dependence is suppressed as it can be trivially

determined by conformal invariance.

Now consider the following correlator

< Tr(X2) >=< XabXba > (4.12)

The result for this is

δaaδbb = N2 (4.13)

The corresponding diagram to this can be seen in figure 4.2.

Each loop in figure 4.2 is equal to N, as there are two loops, the propagator

is N2, in agreement with (4.13).
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Figure 4.3: < Tr(X2)Tr(X2) >

These ribbon diagrams can be drawn for any trace correlator, with each

loop corresponding to an N (when an N ×N matrix field theory is consid-

ered). Using these ribbon diagrams, two important results can be seen. The

first result shows why large N is a classical limit and the second result shows

the breakdown of the planar approximation.

To see that large N is a classical limit, consider the following example:

< Tr(X2)Tr(X2) > = N4 + 2N2

= N4

(
1 +

2

N2

) (4.14)

This corresponds to the ribbon diagrams of figure (4.3).

Taking N →∞

< tr(X2)tr(X2) > ≈ N4

= N2N2

=< tr(X2) >< tr(X2) >

In general, we have (at large N)

< O1O2O3...On > =< O1 >< O2 > ... < On >

=
∑
i1

µi1O1(i1)
∑
i2

µi2O2(i2)...
∑
in

µinOn(in)

where O is any gauge invariant operator and µi is the probability of finding

operator i in state i. This is true for all n. This implies that µi = 1, µj = 0
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Figure 4.4: < Tr(X4) >

when j 6= i for some state i. This means that there is only one solution

and it is the “classical” solution. This classical solution was obtained by

considering the large N limit only.

The next important result which can be seen from these ribbon diagrams

is the breakdown of the planar approximation. Consider

< Tr(X4) >= 2N3 +N

The ribbon diagram associated with this can be seen in figure 4.4. The

first two ribbon diagrams in figure 4.4 are the planar diagrams, the third

ribbon diagram in figure 4.4 is a non-planar diagram as it is a torus shape.

More ribbon diagrams can be drawn as the number of matrices considered

increases. In general

< tr(Xn) > = c0N
n
2

+1 + c1N
n
2
−1 + ...

= c1

[
c0

c1

N
n
2

+1 +N
n
2
−1 + ...

]
where c0 are the number of planar diagrams for correlation function, c1 are the

number of torus contributions for the correlation function, n is the number
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of operators and
c0

c1

∼ n−4

Substituting this in gives

< tr(Xn) >= c1[n−4N
n
2

+1 +N
n
2
−1 + ..

When n ∼
√
N then

< tr(Xn) >= c1[N
n
2
−1 +N

n
2
−1 + ...] (4.15)

From equation (4.15), it can be seen that the torus contribution is the same

size as the non-planar contribution. This is the breakdown of the planar

limit. As more non-planar diagrams are summed up, their contribution can

overpower the planar contribution. It is not possible to sum just the planar

diagrams unless n�
√
N . For this reason restricted Schur Polynomials, as

discussed in the next section, are used as a basis as they allow one to take

into consideration all possible contributions (planar and non-planar).

4.2 Schur Polynomials

Schur polynomials are useful tools in describing giant gravitons on the quan-

tum field side of the AdS/CFT correspondence. This is because Schur Poly-

nomials are a complete set of gauge invariant field operators in the quantum

field theory and the free field two point correlator of Schur Polynomials is

simple. Schur Polynomials are characters of the unitary group in their irre-

ducible representations where the irreducible representations R are labelled

using Young diagrams. Schur Polynomials are classified into two main types:

unrestricted and restricted. It must be noted that the tools for calculating

Schur Polynomials have been developed over many years. In this chapter,
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the results of previous research will be shown. Full derivations of the results

shown in this chapter can be seen in [3, 4, 6, 8].

4.2.1 Schur Polynomials- Unrestricted

An unrestricted Schur Polynomial is defined as follows

χR(Z) =
1

n!

∑
σ∈Sn

χR(σ)Zi1
iσ(1)...Z

in
iσ(n) (4.16)

where χR(σ) is a character of an element σ of the symmetric group Sn in the

irreducible representation R. In general the character is defined as follows

χR(σ) = tr(ΓR(σ))

where R is a representation of Sn. R is labelled by a Young Diagram with n

boxes as there is a one-to-one correspondence between an irreducible repre-

sentation of the symmetric group Sn and Young Diagrams. Young Diagrams

also label SU(N) tensors. A Young Diagram comprised of n boxes in a single

column corresponds to a completely antisymmetric tensor with n indices. A

Young Diagram comprised of m boxes in a single row corresponds to a com-

pletely symmetric tensor with m indices [15]. Z1 is a complex scalar field.

The lower index on the Z is permuted as specified by σ. The product of the

Zs above for a given σ will give a product of traces of Zs. (Note: Zii=tr(Z))

Some properties of these Schur Polynomials can be seen in equations

(4.17), (4.18), (4.19).

< χRχ
†
R >= fR (4.17)

1In section 4.1, the symbol X was used to denote the complex scalar field so as not to

confuse the complex scalar field Z with the generating functional Z[J]. For the rest of this

thesis, the symbol X will be replaced by Z.
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Figure 4.5: A Young Diagram with the weight of each block displayed

< χR(Z)χ†S(Z) >= fRδRS (4.18)

χRχS = fRSTχT (4.19)

In equation (4.17) and (4.18), fR is the product of the weights of the boxes

comprising the Young Diagram. The weights of the Young Diagram increase

by one as one moves across (left to right) the Young Diagrams and decrease

by one as one moves down the Young Diagrams. An example of a Young

Diagram with the weights filled in can be seen in figure 4.5.

Equation (4.18) is the exact two point correlation function of the Schur

Polynomials. From the presence of the delta function, it can be seen that the

correlator is diagonal in representations, that is, all non-diagonal elements

are zero. Correlation functions are the basic observables of any quantum

field theory so it is extremely useful to have such explicit formulas. From the

section on matrix models, it was seen that the number of loops obtained from

taking traces of the matrices will give N to some power. In equation (4.19),

the product of two Schur Polynomials is shown to be the sum of many differ-

ent Schur Polynomials with coefficients the Littlewood Richardson numbers.

This product rule is known as the Littlewood- Richardson rule. If represen-
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tation R is a Young Diagram with n boxes and representation S is a Young

Diagram with m boxes then representation T is a Young Diagram with n+m

boxes. fRST are the Littlewood Richardson numbers. This product rule is

useful as it can be used to break up any product of Schur Polynomials in to

a sum of Schur Polynomials [15].

The two point function of these Schur Polynomials can be calculated ex-

actly with the result (4.17) [1]. The two point correlation function as seen in

equation (4.18) can be rewritten as

< χR(Z)χS(Z∗) >= δRS
DRnR!

dR
(4.20)

where DR is the dimension of the representation R of the unitary group and

dR is the dimension of the representation R of the permutation group. The

dimension of the representation R of the unitary group DR is given by

DR =
fR

hooksR

and the dimension of the representation R of the permutation group is given

by

dr =
n!

hooksR

In these equations, fR is again the product of the weights of the boxes and

the hook lengths of the representation R are given by summing the number

of boxes below the box and the number of boxes to the right of the block

plus the block itself. An example of a Young Diagram with the hook lengths

filled in can be seen in figure 4.6.

It is further possible to consider the two point correlation function with

some spacetime dependence x,y. In this case the two point correlation func-
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5 3 1
3 1
1

Figure 4.6: A Young Diagram with the hook length displayed in each box

tion is [1]

< χR(Z(x))χS(Z∗(y)) >= δRS
DRnR!

dR

1

(x− y)2nR
(4.21)

In the work presented in this thesis, Schur Polynomials without a space-

time dependence are considered. As mentioned earlier, the spacetime de-

pendence plays a trivial role since it is completely determined by conformal

invariance.

How to remove a box

It is possible to obtain an expression for the case where one block is removed

from the Young Diagram. This is known as the reduction rule. In general

for unrestricted Schur Polynomials

d

dZi
i

χR(Z) =
∑
R′

CRR′χR′(Z) (4.22)

In this equation, R′ is a representation obtained when one block is re-

moved from the Young Diagram. As there may be many different possible

ways to remove a block from the particular representation, each possible re-

sulting representation must be considered. Thus there is a summation over

R′. CRR′ is the weight of the block pulled off the Young Diagram. χR′(Z) is

the Schur Polynomial associated with the representation R′. From the rep-

resentation theory of the symmetric group it is known that R (an irreducible

representation of Sn) subduces all possible R′ when restricted to an Sn−1

subgroup:
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ΓR =


ΓR′1 0 . . .

0 ΓR′2 . . .

. . . . . . . . . . . . . .

0 0 ΓR′i

 (4.23)

In equation (4.23), the number of R′ subspaces i depends on the irreducible

representation of Sn being considered. In general, the number of irreducible

representations of a group is equal to the number of conjugacy classes within

the group R. An example of the reduction of an unrestricted Schur Polyno-

mial is as follows

d

dZi
i

χ (Z) = (N + 1)χ (Z) + (N − 1)χ (Z) (4.24)

It was suggested in [1] that the completely antisymmetric representation

(for example ) with O (N) boxes in the column is dual to a sphere giant

whereas the completely symmetric representation (for example ) is dual

with O (N) boxes in the row to an AdS giant.

4.2.2 Schur Polynomials- Restricted

Excitation of giant gravitons are obtained by attaching open strings to giant

gravitons. The dual to this in the conformal field theory is the restricted

Schur Polynomial [3, 4, 6]

χR,Rα(Z, Y ) =
1

n!m!

∑
σ∈Sn+m

TrRα(ΓR(σ))Tr(σZ⊗n ⊗ Y ⊗m) (4.25)

where

Tr(σZ⊗n ⊗ Y ⊗m) = Zi1
iσ(1)...Z

in
iσ(n)Y

in+1

iσ(n+1)...Y
in+m
iσ(n+m)

In this expression, R is an irreducible representation of Sn+m and is labelled

by the Young Diagram with n+m boxes. Rα is an irreducible representation
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of Sn×Sm and is labelled by two Young Diagrams, one with n boxes, the

other with m boxes. The Rα is interchangeable with the label (r,s). Sn×Sm

is a subgroup of Sn+m in which Sn acts on n indices of the Z’s and Sm acts

on m indices of the Y’s. The trace TrRα(ΓR(σ)) is a restricted trace of the

group elements of σ ∈ Sn+m in the irreducible representation R. By restricting

R to the Sn×Sm subgroup, R will in general be reducible. The irreducible

representations subduced are labelled Rα. The restricted trace corresponds

to taking the trace over the Rα subspace [8].

As in the previous section, the exact two point correlation function for

the restricted Schur Polynomials can be obtained [8]

< χR,(rα1,rα2)χ
†
S,(sβ1,sβ2) >= δRSδ(rα1sβ1)δ(rα1sβ2)

(hooks)R
(hooks)rα1(hooks)rα2

fR

(4.26)

where fR is the product of the weights of the boxes comprising the Young

Diagram and the hook length of a box is calculated as seen previously.

How to remove a box

As with the case for the unrestricted Schur Polynomial, in order to study

the action of the Dilatation Operator on the restricted Schur Polynomial,

a reduction rule must be obtained. However, the reduction rule for the

restricted Schur Polynomial is not as straight forward as the unrestricted case.

In some cases, calculating the reduction of a restricted Schur Polynomial

means having to calculate projection operators. An example of the reduction

of a restricted Schur Polynomial where the calculation of projection operators

is not needed can be seen as follows

d

dY j
j

χR,R′(Z, Y ) =
d

dY j
j

1

n!1!

∑
σ∈Sn+1

TrR′(ΓR(σ))Zi1
iσ(1)...Z

in
iσ(n)Y

in+1

iσ(n+1)
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where R′ is an irreducible representation of Sn. By explicit computations,

one gets the following result

d

dY j
j

χR,R′(Z, Y ) = CR,R′χR′(Z) (4.27)

where CR,R′ is the weight of the Y block removed from the Young Diagram.

Another example of this easy removal of a block can be seen when one

considers the representation composed of n Z’s, one Y and one W

d

dW j
j

χR,R′′(Z, Y,W ) =
d

dW j
j

1

n!

∑
σ∈Sn+2

TrR′′(ΓR(σ))Zi1
iσ(1)...Z

in
iσ(n)Y

in+1

iσ(n+1)W
in+2

iσ(n+2)

where R is an irreducible representation of Sn+2, R′ is an irreducible repre-

sentation of Sn+1 (one box removed) and R′′ is an irreducible representation

of Sn (two boxes removed). For this sort of example, the chain of subgroups

must be specified. The Sn+1 subgroup leaves n + 2 inert. The Sn subgroup

leaves n+ 2 and n+ 1 inert. R′′ is subduced from R′ which is an irreducible

representation of Sn+1. Again, explicit computation shows

d

dW j
j

χR,R′′(Z, Y,W ) = CR,R′χR′,R′′(Z, Y ) (4.28)

where CR,R′ is the weight of the W block removed from the Young Diagram

R to obtain R′.

Again, this is a relatively easy calculation as the action of the “derivative”

acts on the {n+2} element of the group thus resulting in an expression in

terms of the Sn+1 subgroup whose elements are σ∈Sn+1= {1,2,...,n+1}. See

[3] for further details. However, if one were to consider the following

d

dY j
j

χR,R′(Z, Y,W ) =
d

dY j
j

1

n!

∑
n∈Sn+2

TrR′(ΓR(σ))Zi1
iσ(1)...Z

in
iσ(n)Y

in+1

iσ(n+1)W
in+2

iσ(n+2)

then the“derivative” would act on the n+1 term. In this case, the projection

operator needs to be rewritten in terms of the projector defined by a different
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Figure 4.7: Representation R

, or , or ,

Figure 4.8: R′1, R′2, R′3 respectively

chain of subgroups. The projection operator is defined by stating what space

it acts in and what subspace it projects to. This can be done by specifying a

Young Diagram (what space it acts in) and specifying boxes to be removed

and the order in which they must be removed (what subspace it projects to).

Consider the irreducible representation R of figure 4.7.

R can be decomposed into three possible subspaces when one box is re-

moved. These possible subspaces are shown in figure 4.8.

The subspace into which one projects must be stated explicitly. The

projection operator constructed for this will not only then project into the

correct subspace but will also ensure that the other possible subspaces give

a zero contribution. It was seen in (4.23) that the trace of the representation

R is like that of the sum of the traces of the individual subspaces.

Suppose the subspace is chosen as the subspace into which one

projects, then the projection operator will be chosen in such a way that the

contributions from and are zero.

Generally, what is studied is the case where two or more boxes are re-

moved. Where two boxes are removed, the correct projectors again need to
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be considered. The possible projectors can be seen by removing another box

from the R′ subspaces. In this example, where σ ∈ S4, there are two places

where a box can be removed from each R′. The spaces subduced from R′i are

labelled R′′j .

Γ =



Γ 0 0 0 0 0

0 Γ 0 0 0 0

0 0 Γ 0 0 0

0 0 0 Γ 0 0

0 0 0 0 Γ 0

0 0 0 0 0 Γ


(4.29)

Again, the subspace desired must be explicitly stated in order to use the

correct projector. Notice in (4.29) that the same Young Diagrams appear

along the diagonal of the matrix. It must be noted that the ΓR11 entry does

not equal that of the ΓR55 entry even though they have the same Young

Diagram. This is because the ΓR11 entry came from reducing the R′ 1 sub-

space whereas the ΓR55 entry came from reducing the R′ 3 subspace. Clearly,

the order in which boxes are removed from R is important. It can also be

noted that all the combinations with which a box can be removed, must be

considered, with the necessary projector built in order that only the wanted

subgroup remains.

From the definition of the restricted Schur Polynomial, it can be seen that

the restricted character TrRα (ΓR(σ)) must also be calculated. However,

not much is known about the restricted character. The restricted Schur

Polynomial needs to be rewritten in terms of a basis which can be easily

manipulated. This is easily done by considering the original representation
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R with the blocks that are to be removed lablled on the Young Diagram

rather than the considering the representations R′ that one projects to. This

is the Young-Yamonouchi basis. For example rather than considering

χ

; ,

(Z, Y ) =
1

4!2!

∑
n∈S6

Tr
,

(Γ (σ))Tr(σ)Zi1
iσ(1)...Z

i4
iσ(4)Y

i5
iσ(5)Y

i6
iσ(6)

(4.30)

it is easier to consider

χ ∗

∗

(Z, Y ) =
1

4!

∑
n∈S6

Tr ∗

∗

(Γ (σ))Tr(σ)Zi1
iσ(1)...Z

i4
iσ(4)Y

i5
iσ(5)Y

i6
iσ(6)

(4.31)

where the blocks containing ∗ are the blocks which are removed. There are

two different ways of arranging the blocks removed

By summing over all possible ways to remove boxes, the following S4×S2

irreducible representations can be subduced from R

⊕ ⊕ ⊕ ⊕ ⊕

One way to check that all the subduced representations have been caught is

by summing the dimensions of all the subduced representations and compar-

ing with the dimension of representation R. The dimensions are calculated
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using the method as shown previously. The dimensions of the representations

obtained are 3, 3, 2, 2, 3 and 3 respectively. The sum of this is 16 which is

the exact dimension of R so all possible subduced representations have been

obtained.

It is necessary to only construct the operator which assembles the removed

boxes in the correct way to produce s. Using the example as seen already

∗

∗

The corresponding projector will act in the subspace spanned by two sets

of states

|1〉 = |

1

2 > |2〉 = |

2

1 >

Using the Young- Yamonouchi basis, each state above could be one of

any d =2 states corresponding to the number of different ways to complete

the labels. Now, all that is needed is to supply a formula for the action of

ΓR(σ) for σ=1,(12) when acting on the subspaces |1〉 and |2〉. This is done

by making the following observation

∣∣∣∣∣ , ,

〉
= α |1〉+ β |2〉

where α and β are normalized. For the action of ΓR((12)) it is known that

ΓR((12))

∣∣∣∣∣ , ,

〉
=

∣∣∣∣∣ , ,

〉
This action of ΓR(σ) on any Young-Yamonouchi state is well known and

can be calculated using strand diagrams. Strand diagrams are invented in
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Appendix B3 of [6]. Using strand diagrams, the values for α and β can be

obtained ∣∣∣∣∣ , ,

〉
=

√
5

8
|1〉+

√
3

8
|2〉

This result can be substituted back into (4.15) to obtain

χ

; ,

(Z, Y ) =
5

16
χ

1

2

(Z, Y ) +
3

16
χ

2

1

(Z, Y ) (4.32)

Using the projection operator, the restricted trace can be rewritten as

follows

TrRα(ΓR(σ)) = TR(PR→RαΓR(σ)) (4.33)

It is difficult to write down an explicit formula for the projection operator

as it is possible that the representation (r,s) can be subduced more than

once when irreducible representation R is decomposed into the irreducible

representations of the Sn× Sm subgroup. When studying an irreducible rep-

resentation R whose Young Diagram has at most two columns this problem

does not arise and then it is possible to write down a general expression for

the projection operator. For more than two columns, the multiplicity of the

problem is non trivial to solve. For the case where there are at most two

columns in the Young Diagram considered the projection operator is

Ps =
ds
m!

∑
σ∈Sm

χs(σ)ΓR(σ) (4.34)

How to grow a box

When considering the Dilatation Operator, it can be seen that not only does

one remove boxes from the Young Diagram considered but one also “grows”

the boxes back on[4].
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Consider

χR,R′(Z, Y ) =
1

n!

∑
σ∈Sn+1

TrR′(ΓR(σ))Zi1
iσ(1)...Z

in
iσ(n)Y

in+1

iσ(n+1) (4.35)

In equation (4.20), R is an irreducible representation of Sn+1 and R′ is

an irreducible representation of Sn. In order to obtain the expression for

“growing” a box, it is necessary to rewrite the sum over Sn+1 as a sum over

the cosets of an Sn subgroup which leaves n+1 unchanged (σ(n+1) = n+1).

After rearranging one will get

χR,R′(Z, Y )− χR′(Z)Tr(Y ) =
1

n!

∑
σ∈Sn

[
TrR′(ΓR[σ(1, n+ 1)])(ZY )i1iσ(1)(Z)i2iσ(2)...Z

in
iσ(n)

+ TrR′(ΓR[σ(2, n+ 1)])(Z)i1iσ(1)(ZY )i2iσ(2)...Z
in
iσ(n) + ...+

+ TrR′(ΓR[σ(n, n+ 1)])(Z)i1iσ(1)(Z)i2iσ(2)...(ZY )iniσ(n)

]
(4.36)

where χR′(Z) is a Schur Polynomial. Introduce the notation Y + = (ZY ) and

focus on the first term in (4.36). This term can be rewritten as a sum over

the Sn−1 subgroup of Sn which comprises of all permutations which leave 1

fixed

1

n!

∑
σ∈Sn

TrR′(ΓR[σ(n+ 1, 1)])(Y +)i1iσ(1)(Z)i2iσ(2)...Z
in
iσ(n)

=
1

n!

∑
σ∈Sn−1

TrR′(ΓR[σ(n+ 1, 1)])Tr(Y +)(Z)i2iσ(2)...Z
in
iσ(n)

+
1

n!

∑
σ∈Sn−1

TrR′(ΓR[σ(1, 2)(n+ 1, 1)])(Y +Z)i2iσ(2)...Z
in
iσ(n) + ...+

+
1

n!

∑
σ∈Sn−1

TrR′(ΓR[σ(1, n)(n+ 1, 1)])(Z)i2iσ(2)...(Y
+Z)iniσ(n)

R′ can be broken up into R′ = ⊕αR′′α where the sum runs over all represen-

tations R′′α that can be obtained from R′ by removing a box. The subgroup
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that is summed leaves both 1 and (n+1) unchanged so that

ΓR(τ)ΓR[(n+ 1, 1)] = ΓR[(n+ 1, 1)]ΓR(τ).

By Schur’s Lemma, this implies that ΓR[(n + 1, 1)] is proportional to the

identity when acting on the R′′α subspace

〈a,R′′α|ΓR[(n+ 1, 1)] |b, R′′α〉 = λαδab

By decomposing the trace over R′, one can write

TrR′(ΓR[τ(1, n)(n+ 1, 1)]) =
∑
α

TrR′′α(ΓR[τ(1, n)(n+ 1, 1)])

Making use of projectors and the block structure of ΓR[τ ] as already seen

in this chapter, the following is obtained [4]

TrR′(ΓR[τ(1, i)(i+ 1, 1)]) =
∑
α

λαTrR′′α(ΓR[τ(1, i)])

where i is fixed. Thus

1

n!

∑
σ∈Sn

TrR′(ΓR[σ(n+ 1, 1)])(Y +)i1iσ(1)(Z)i2iσ(2)...Z
in
iσ(n)

=
1

n!

∑
α

λα
∑
σ∈Sn

TrR′′(ΓR′ [σ])(Y +)i1iσ(1)(Z)i2iσ(2)...Z
in
iσ(n)

=
1

n

∑
α

λαχ
(1)
R′,R′′α

(Z, Y +)

It can be seen that the n terms on the right hand side of (4.36) make the

same contribution to give

χ
(1)
R,R′(Z, Y )− χR′(Z)Tr(Y ) =

∑
α

λαχ
(1)
R′,R′′α

(Z, Y +)

where it was found in [3] that

λα =
1

cRR′ − cR′R′′α
(4.37)
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where cRR′ is the weight of the box removed from R to obtain R′ and cR′R′′α

is the weight of the box removed from R′ to obtain R′′.

Making this substitution gives

χ
(1)
R,R′(Z, Y )− χR′(Z)Tr(Y ) =

∑
α

1

cRR′ − cR′R′′α
χ

(1)
R′,R′′α

(Z, Y +) (4.38)

From the results described in this chapter, it is now possible to find the

Hamiltonian. To do this the action of the dilatation operator on the restricted

Schur Polynomial must be considered. The steps that must be completed to

do this are

• act with D on χ

• go to χR′R′′ basis

• reduce

• evaluate characters

• grow a box

• go back to χR,(r,s) basis

• Normalization

This is a long and difficult process that involves the inversion of a matrix. It

can be seen that a new method for solving this Hamiltonian is needed, start-

ing with the re-evaluation of the action of the one loop dilatation operator

on the restricted Schur Polynomial.
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Chapter 5

Action of the Dilatation

Operator

In this chapter, the action of the one loop dilatation operator on the restricted

Schur Polynomial built using two adjoint scalars will be studied. Consider

the action of the one loop dilatation operator in the SU(2) sector [45] of the

N = 4 super Yang Mills Theory

D = −g2
YMTr[Y, Z][∂Y , ∂Z ]

on the restricted Schur Polynomial

χ(R,(r,s))(Z
⊗n, Y ⊗m) =

1

n!m!

∑
σ∈Sn+m

Tr(r,s)(ΓR(σ))Zi1
iσ(1)...Z

in
iσ(n)Y

in+1

iσ(n+1)...Y
in+m
iσ(n+m)

This restricted Schur Polynomial is exactly that which was seen previously

in equation (4.25).

Calculating the one loop dilatation operator action on the restricted Schur
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Polynomial gives

Dχ(R,(r,s))(Z
⊗n, Y ⊗m) =

g2
YM

(n− 1)!(m− 1)!

∑
ψ∈Sn+m

Tr(r,s)(ΓR((n, n+1)ψ−ψ(n, n+1)))×

Zi1
iψ(1)...Z

in−1

iψ(n−1)(Y Z − ZY )iniψ(n)δ
in+1

iψ(n+1)Y
in+2

iψ(n+2)...Y
in+m
iψ(n+m) (5.1)

The sum ψ runs only over permutations for which ψ(n+1)=n+1. In

order to perform the sum over the delta function δ
in+1

iφ(n+1)
, the sum over Sn+m

must be written in terms of the sum over the cosets of the Sn+m−1 subgroup

obtained by keeping the permutations that satisfy ψ(n+1)=n+1. The result

follows from the reduction rule for Schur Polynomials as discussed previously

in Chapter 4.

Dχ(R,(r,s))(Z
⊗n, Y ⊗m) =

g2
YM

(n− 1)!(m− 1)!

∑
ψ∈Sn+m−1

∑
R′

cRR′Tr(r,s)(ΓR((n, n+1))ΓR′(ψ)−

ΓR′(ψ)ΓR((n, n+ 1)))Zi1
iψ(1)...Z

in−1

iψ(n−1)(Y Z − ZY )iniψ(n)Y
in+2

iψ(n+2)...Y
in+m
iψ(n+m)

The sum over R′ runs over all representations that can be subduced from

R. In terms of Young Diagrams, R′ are all possible Young Diagrams which

can be obtained by dropping one box from R. cR,R′ is the weight of the box

removed from R in order to obtain R′ . From Chapter Four, it was seen that

for restricted traces one can write

χ(R,(r,s))(σ) = Tr(r,s)(ΓR(σ)) = Tr(PR→(r,s)ΓR(σ))

This will prove to be useful later on in this calculation. Using the identity

and that ψ(n+1)=n+1 the following can also be written

Zi1
iψ(1)...Z

in−1

iψ(n−1)(Y Z−ZY )iniψ(n)Y
in+2

iψ(n+2)...Y
in+m
iψ(n+m) = Tr(((n, n+1)ψ−ψ(n, n+1))Z⊗nY ⊗m)

It can be noted that

Tr(σZ⊗nY ⊗m) = Zi1
iψ(1)...Z

in
iψ(n)Y

in+1

iψ(n+1)...Y
in+m
iψ(n+m)
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It was proven in [47] that

Tr(σZ⊗nY ⊗m) =
∑
T,(t,u)

dTn!m!

dtdu(n+m)!
χT,(t,u)(σ)χT,(t,u)(Z, Y )

Making these substitutions the following expression is obtained

Dχ(R,(r,s))(Z, Y ) = g2
YM

∑
T,(t,u)

∑
ψ∈Sn+m−1

∑
R′

cRR′dTnm

dtdu(n+m)!
Tr(r,s)(ΓR((n, n+1))ΓR′(ψ)−

ΓR′(ψ)ΓR((n, n+ 1)))χT,(t,u)(ψ(n, n+ 1)− (n, n+ 1)ψ)χT,(t,u)(Z, Y )

By setting

MR,(r,s);T,(t,u) = g2
YM

∑
ψ∈Sn+m−1

∑
R′

cRR′dTnm

dtdu(n+m)!
Tr(r,s)(ΓR((n, n+1))ΓR′(ψ)−ΓR′(ψ)ΓR((n, n+1)))×

× χT,(t,u)(ψ(n, n+ 1)− (n, n+ 1)ψ)

then the action of the one loop dilatation operator on the restricted Schur

Polynomial can be written as follows

Dχ(R,(r,s))(Z, Y ) =
∑
T,(t,u)

MR,(r,s);T,(t,u)χT,(t,u)(Z, Y )

Using the fundamental orthogonality relation, the sum over ψ can be per-

formed to give

MR,(r,s);T,(t,u) = 2g2
YM

∑
R′

cRR′dTnm

dR′dtdu(n+m)
Tr([ΓR((n, n+1)), PR→(r,s)]IR′T ′×

× [PT→(t,u),ΓT ((n, n+ 1))]IT ′R) (5.2)

where IR′T ′ and IT ′R′ are known as the intertwiners. The intertwiners are

defined in Appendix B. The action of the one loop dilatation operator on

normalized operators must now be considered so as to obtain the spectrum

for the anomalous dimensions. It was seen in chapter four that the two point

correlation function for the restricted Schur Polynomial is [8]

< χR,(r,s)(Z, Y )χT,(t,u)(Z, Y )† >= δR,(r,s);T,(t,u)fR
hooksR

hooksrhookss
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As in Chapter four, fR is the product of the weights in Young Diagram R

and hooksR is the product of the hook lengths in Young Diagram R. The

normalized operators can thus be obtained from

χR,(r,s)(Z, Y ) =

√
fR

hooksR
hooksrhookss

OR,(r,s)(Z, Y )

In terms of these normalized operators

DOR,(r,s)(Z, Y ) =
∑
T,(t,u)

NR,(r,s);T,(t,u)OT,(t,u)(Z, Y )

where

NR,(r,s);T,(t,u) = 2g2
YM

∑
R′

cRR′dTnm

dR′dtdu(n+m)

√
fThooksThooksrhookss
fRhooksRhooksthooksu

Tr([ΓR((n, n+ 1)), PR→(r,s)]IR′T ′ [PT→(t,u),ΓT ((n, n+ 1))]IT ′R) (5.3)

Equation(5.3) will be used when the the spectrum of the dilatation operator

is numerically studied in Chapter 7.

50



Chapter 6

Excited Giant Graviton Bound

States

In this Chapter, the class of operators being studied will be defined as well

as the approximations that can be made in the large N limit. In this thesis,

restricted Schur Polynomials labelled by a Young Diagram with at most two

columns will be studied. The number of Zs appearing will be αN where

2−α ≡ ζ << 1. The number of Ys appearing is fixed to O(1). As previously

mentioned, these operators are dual to giant gravitons that wrap an S3 in the

S5 of the AdS5×S5 background. The restricted Schur Polynomials provide

a suitable basis for the two giant system, that is, these operators capture

all excitations (BPS and non supersymmetric) of the two giant system. The

excitations of the single giant system using restricted Schur Polynomials was

studied in [30]. The spacetime study of excitations of the single giant system

using the Born-Infield action can be seen in [48]. An important result from

both [48] and [30] is that all deformations of the single threebrane giant

gravitons that are in the SU(2) sector are supersymmetric.

The mixing of these operators with restricted Schur Polynomials that
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have three columns or more is suppressed by a factor O( 1√
N

). This factor

comes from the normalization of the restricted Schur Polynomials. It was

found in [30] that the three column restricted Schur Polynomial (with one

short column) has a two point function which is smaller than the two column

restricted Schur Polynomials by a factor O( 1
N

). Thus at large N, one need

only study the two column restricted Schur Polynomials. This statement is

the analog of the statement that for operators with dimension O(1), different

trace structures do not mix. The fact that the two column restricted Schur

Polynomials are a decoupled sector at large N is to be expected. At large

N , these operators correspond to a well defined stable semi classical object

in spacetime namely the two giant system. It is expected that n column

restricted Schur Polynomials are also a decoupled sector for the same reason.
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Chapter 7

The Radial Direction

In this chapter, a limit in which the dilatation operator simplifies significantly

will be discussed. There are only two columns in the Young Diagrams labeling

the restricted Schur Polynomials. In the first column containing O(
√
N) more

boxes than the second column, the dilatation operator simplifies to a lattice

realization of the second derivative where the Young Diagram label defines

the lattice.

7.1 Three Impurities

The three impurity operators are built using many Zs and three Ys. In order

to specify these operators, the three Young Diagrams labelling the restricted

Schur Polynomials must be given. The second Young diagram, r, is specified

by stating the number of rows with two boxes (=b0) and the number of

rows containing a single box (=b1). The third Young diagram label, s, and

the first Young diagram label, R, can be built from r by specifying which

boxes in R are to removed to obtain r and how the boxes removed are to be

assembled into s. Note that for this example, label R specifies an irreducible
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representation of Sn+3, label r specifies an irreducible representation of Sn

and label s specifies an irreducible representation of S3. In total, there are

six possibilities

χA(b0, b1) = χ (Z, Y ) χB(b0, b1) = χ (Z, Y )

χC(b0, b1) = χ (Z, Y ) χD(b0, b1) = χ (Z, Y )

χE(b0, b1) = χ (Z, Y ) χF (b0, b1) = χ (Z, Y )

Normalized operators are denoted using capital letter O in the same nota-

tion as Chapter Five. From the discussion in Chapter Five, it is known that

b0 is O(N) and b1 ranges from 0 or 1 to O(N). The action of the dilatation

operator is given in Appendix A. The R charge of an operator in the field

theory maps into the angular momentum of the dual string theory state. As

a result of the Myers Effect [49], the angular momentum of the string theory

states determines its size. Identifying the two columns of the Young Diagram

with the two threebranes, the number of boxes in each column determines

the angular momentum and thus the size of the threebranes. Considering

the limit where N-b0=O(N), b0=O(N) and b1=O(
√
N), then there are non

maximal giants separated by a distance of O(1) in string units. In this limit,

the dynamics should simplify. The system should be described by two D3
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brane giant gravitons with open strings stretched between them. Imposing

the limits on the action of the dilatation operator expressions as seen in

Appendix A, gives

DOA(b0, b1) = g2
YM(N − b0)×O(

1

b1

)

DOB(b0, b1) = −4

3
g2
YM (N − b0)

[
OB(b0 + 1, b1 − 2)− 2OB(b0, b1)

+OB(b0 − 1, b1 + 2)

]
+

2
√

2

3
g2
YM(N − b0)

[
OC(b0 + 1, b1 − 2)

− 2OC(b0 + 1, b1) +OC(b0 − 1, b1 + 2)

]
DOC(b0, b1) =

2
√

2

3
g2
YM(N − b0)

[
OB(b0 + 1, b1 − 2)− 2OB(b0, b1)

+OB(b0 − 1, b1 + 2)

]
− 2

3
g2
YM(N − b0)

[
OC(b0 + 1, b1 − 2)

− 2OC(b0, b1) +OC(b0 − 1, b1 + 2)

]
DOD(b0, b1) = −4

3
g2
YM(N − b0)

[
OD(b0 + 1, b1 − 2)− 2OD(b0, b1)

+OD(b0 − 1, b1 + 2)

]
+

2
√

2

3
g2
YM(N − b0)

[
OE(b0 + 1, b1 − 2)

− 2OE(b0, b1) +OE(b0 − 1, b1 + 2)

]
DOE(b0, b1) =

2
√

2

3
g2
YM(N − b0)

[
OD(b0 + 1, b1 − 2)− 2OD(b0, b1)

+OD(b0 − 1, b1 + 2)

]
− 2

3
g2
YM(N − b0)

[
OE(b0 + 1, b1 − 2)

− 2OE(b0, b1) +OE(b0 − 1, b1 + 2)

]
DOF (b0, b1) = g2

YM (N − b0)×O
(

1

b1

)
Firstly, notice that there are four operators for which the Sm represen-

tation is completely antisymmetric. It will be seen that there are also four
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operators for which the corresponding states are also supersymmetric. In gen-

eral for two giant systems, there will be an agreement between the number

of totally antisymmetric representations of Sm and the number of supersym-

metric states. By now considering the labels, OA(b0,b1) can be interpreted as

being a state in which only the larger of the threebranes is deformed. From

Chapter Five, it was discussed that deforming a single threebrane gives a

supersymmetric state thus it is expected for OA(b0,b1) to remain supersym-

metric. OF (b0,b1) can be interpreted in a similar way. For OF (b0,b1), it is

the smaller threebrane which is deformed. Again, OF (b0,b1) will remain su-

persymmetric. Consider now the combinations of OB(b0, b1) +
√

2OC(b0, b1)

and OD(b0, b1) +
√

2OE(b0, b1) . Each combination of states is annihilated by

D. This implies that there are another two supersymmetric ways to deform

the threebrane. Finally, notice that if one set OB(b0, b1) − OC(b0, b1)/
√

2 ≡

OB−C(b0, b1) and OD(b0, b1)−OE(b0, b1)/
√

2 ≡ OD−E(b0, b1) then

DOB−C(b0, b1) = −2g2
YM(N − b0)

[
OB−C(b0 + 1, b1 − 2)

− 2OB−C(b0, b1) +OB−C(b0 − 1, b1 + 2)

]
DOD−E(b0, b1) = −2g2

YM(N − b0)

[
OD−E(b0 + 1, b1 − 2)

− 2OD−E(b0, b1) +OD−E(b0 − 1, b1 + 2)

]
The right hand side is a discretization of the second derivative. The Young

Diagram itself is defining the lattice. Note that if the number of boxes in each

column sets the angular momentum and thus the radius of the threebrane

(as the threebrane wraps S3 of a given radius then it is this radius that is

known as the ‘radius of the threebrane’), then it can be seen that the radius

of the threebrane with the local physics in the radial direction has emerged.
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7.2 Four Impurities

For the case where there are many Zs and four Ys (four impurities) than

there are nine possible operators which can be defined

χA(b0, b1) = χ (Z, Y ) χB(b0, b1) = χ (Z, Y )

χC(b0, b1) = χ (Z, Y ) χD(b0, b1) = χ (Z, Y )

χE(b0, b1) = χ (Z, Y ) χF (b0, b1) = χ (Z, Y )

χG(b0, b1) = χ (Z, Y ) χH(b0, b1) = χ (Z, Y )

χI(b0, b1) = χ (Z, Y )

Again, the corresponding normalized operators are denoted using the capital

letter O. The action of the dilatation operator is given in Appendix A.

In the same way as was seen with the three impurity case, the limit that
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N-b0=O(N), b0=O(N) and b1=O(
√
N) will simplify the dynamics. When

applying these limits the action of the dilatation operator becomes

DOA(b0, b1) = (N − b0)g2
YM ×O

(
1

b1

)
DOB(b0, b1) = −3

2
g2
YM (N − b0)

[
OB(b0 + 1, b1 − 2)− 2OB(b0, b1)

+OB(b0 − 1, b1 + 2)

]
+

√
3

2
g2
YM (N − b0)

[
OC(b0 + 1, b1 − 2)

− 2OC(b0 + 1, b1) +OC(b0 − 1, b1 + 2)

]
DOC(b0, b1) =

√
3

2
g2
YM(N − b0)

[
OB(b0 + 1, b1 − 2)− 2OB(b0, b1)

+OB(b0 − 1, b1 + 2)

]
− 1

2
g2
YM(N − b0)

[
OC(b0 + 1, b1 − 2)

− 2OC(b0, b1) +OC(b0 − 1, b1 + 2)

]
DOD(b0, b1) = −2g2

YM (N − b0)

[
OD(b0 + 1, b1 − 2)− 2OD(b0, b1)

+OD(b0 − 1, b1 + 2)

]
+

2√
3
g2
YM (N − b0)

[
OE(b0 + 1, b1 − 2)

− 2OE(b0 + 1, b1) +OE(b0 − 1, b1 + 2)

]
DOE(b0, b1) = −2g2

YM(N − b0)

[
OE(b0 + 1, b1 − 2)− 2OE(b0, b1)

+OE(b0 − 1, b1 + 2)

]
+

2√
3
g2
YM(N − b0)

[
OD(b0 + 1, b1 − 2)

− 2OD(b0, b1) +OD(b0 − 1, b1 + 2)

]
+

2
√

6

3
g2
YM(N − b0)

[
OF (b0 + 1, b1 − 2)

− 2OF (b0, b1) +OF (b0 − 1, b1 + 2)

]
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DOF (b0, b1) = −2g2
YM (N − b0)

[
OF (b0 + 1, b1 − 2)− 2OF (b0, b1)

+OF (b0 − 1, b1 + 2)

]
+

2
√

6

3
g2
YM (N − b0)

[
OE(b0 + 1, b1 − 2)

− 2OE(b0 + 1, b1) +OE(b0 − 1, b1 + 2)

]
DOG(b0, b1) = −3

2
g2
YM (N − b0)

[
OG(b0 + 1, b1 − 2)− 2OG(b0, b1)

+OG(b0 − 1, b1 + 2)

]
+

√
3

2
g2
YM (N − b0)

[
OH(b0 + 1, b1 − 2)

− 2OH(b0 + 1, b1) +OH(b0 − 1, b1 + 2)

]
DOH(b0, b1) = −1

2
g2
YM (N − b0)

[
OH(b0 + 1, b1 − 2)− 2OH(b0, b1)

+OH(b0 − 1, b1 + 2)

]
+

√
3

2
g2
YM (N − b0)

[
OG(b0 + 1, b1 − 2)

− 2OG(b0 + 1, b1) +OG(b0 − 1, b1 + 2)

]
DOI(b0, b1) = (N − b0)g2

YM ×O
(

1

b1

)
Again, it can be seen that the combinations of certain operators are an-

nihilated by the action of D. These combinations of operators are OB(b0, b1)+
√

3OC(b0, b1), OD(b0, b1)+
√

3OE(b0, b1)+
√

2OF (b0, b1) andOG(b0, b1)+
√

3OH(b0, b1).

For both the case of the three impurities and the the case of the four impu-

rities, the following can be written for all the operators

OBPS(R, r) =
∑
s

√
dsOR,(r,s)(b0, b1)

where dS is the dimension of the irreducible representation s of the symmet-

ric group. As was seen for the three impurity case, making the substitu-

tion
√

3OB(b0, b1) − OC(b0, b1) ≡ OB−C(b0, b1),
√

2OD(b0, b1) − OF (b0, b1) ≡
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OD−F (b0, b1), OD(b0, b1)−
√

3OE(b0, b1) +
√

2OF (b0, b1) ≡ ODF−E(b0, b1) and
√

3OG(b0, b1)−OH(b0, b1) ≡ OG−H(b0, b1), results in the following

DOB−C(b0, b1) = −2g2
YM(N − b0)

[
OB−C(b0 + 1, b1 − 2)− 2OB−C(b0, b1)

+OB−C(b0 − 1, b1 + 2)

]
DOD−F (b0, b1) = −2g2

YM(N − b0)

[
OD−F (b0 + 1, b1 − 2)− 2OD−F (b0, b1)

+OD−F (b0 − 1, b1 + 2)

]
DODF−E(b0, b1) = −4g2

YM(N − b0)

[
ODF−E(b0 + 1, b1 − 2)− 2ODF−E(b0, b1)

+ODF−E(b0 − 1, b1 + 2)

]
DOG−H(b0, b1) = −2g2

YM(N − b0)

[
OG−H(b0 + 1, b1 − 2)− 2OG−H(b0, b1)

+OG−H(b0 − 1, b1 + 2)

]
Again, the right hand side is the discretization of the second derivative.
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Chapter 8

Numerical Results

In this Chapter, the result of numerically diagonalizing the dilatation oper-

ator will be examined. In order to set up the numerical computation of the

spectrum of the anomalous dimension, the maximum difference between the

number of boxes in the the long column and the number of boxes in the short

column must be specified. This value will be denoted amax. Given amax, the

number of operators participating in the problem can be determined and it

will also be possible to describe the resulting spectrum explicitly. The case

where the difference between the number of boxes in the long column and

the number of boxes in the short column is even will be considered (amax is

even).

8.1 Two Impurities

For a given value of amax, there are 2+2amax states in total. Of the total

number of states, 3
2
amax+1 values are zero eigenvalues and correspond to the

supersymmetric states. The remaining values are

λi = 8g2
YM i i = 1, 2, · · · , amax

2
+ 1 .
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8.2 Three Impurities

For a given value of amax, there are 1+3amax states in total. Of the total

number of states, 2amax values are zero eigenvalues and correspond to the

supersymmetric states. The remaining values are

λi = 8g2
YM i i = 1, 2, · · · , amax

2
,

each with a degeneracy of two and a single maximum eigenvalue λ = 4amaxg
2
YM+

8g2
YM . This degeneracy almost certainly indicates a symmetry enhancement

in the large N limit.

8.3 Four Impurities

For a given value of amax, there are 1+9
2
amax states in total. Of the total

number of states, 5
2
amax−1 values are zero eigenvalues. Again, the eigenvalues

are evenly spaced at 8g2
YM and they are again degenerate. The low lying

eigenvalues

λi = 8g2
YM i i = 1, 2, · · · , amax

2
,

have a degeneracy which alternates between 3 and 4. Thus, there will be

three eigenvalues λ = 8g2
YM , then four eigenvalues λ = 16g2

YM , then three

eigenvalues λ = 24g2
YM , then four eigenvalues λ = 32g2

YM and so on. If amax is

a multiple of 4 then the larger eigenvalues are given by λ = 4amaxg
2
YM+8g2

YM ,

λ = 4amaxg
2
YM + 16g2

YM and

λi = 4amaxg
2
YM + 16g2

YM + 16ig2
YM i = 1, 2, · · · , amax

4
.

All of these larger eigenvalues are non-degenerate. If amax is not a multiple

of 4 then the larger eigenvalues are given by λ = 4amaxg
2
YM + 8g2

YM with a
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degeneracy of 2 and

λi = 4amaxg
2
YM + 16g2

YM + 16ig2
YM i = 1, 2, · · · , amax + 2

4
.

All of these larger eigenvalues are non-degenerate.

These degeneracies observed almost certainly indicate a symmetry en-

hancement in the large N limit.
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Chapter 9

Discussion

9.1 Results Discussion

The one loop anomalous dimension of an operator built from O(N) Zs and

three or four Y “impurities” has been computed. Several comments can be

made from the results obtained. Firstly, it can be seen that the results for

the one loop dilatation operator (Appendix A) are complicated. This result

is expected as many classes of Feynman diagrams are summed, not only the

planar diagrams. It can also be seen that although the results for the one loop

dilatation operator are complicated, the spectra for the one loop anomalous

dimensions are simple. In order to obtain a problem that was numerically

solvable, the value for amax was kept finite. In the large N limit, amax = ζN

goes to infinity. For the purpose of the rest of the discussion, the assumption

will be made that the limit amax →∞ is used.

For the case of two impurities [30], it was found that there were three

times as many zero eigenvalue states as there were positive eigenvalue states.

There are amax

2
positive eigenvalue states with a constant energy level spacing

8g2
YM . An oscillator can be naturally associated from this with a set of ∼ amax

2
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states. Using this assumption, the action of the dilatation operator acting

on two impurity operators gives the spectrum of three harmonic oscillators

with level zero spacing and one harmonic oscillator with level spacing 8g2
YM .

Comparing this to the following two impurity operators

χA(b0, b1) = χ (Z, Y ) χB(b0, b1) = χ (Z, Y )

χD(b0, b1) = χ (Z, Y ) χE(b0, b1) = χ (Z, Y )

it can be seen that there are three operators with impurities in the anti-

symmetric representation and one operator with impurities in the symmetric

representation.

In the case of three impurities, the spectrum obtained from the dilatation

operator is that of four harmonic oscillators with zero eigenvalue states and

two harmonic oscillators with level spacing 8g2
YM . It was also found that

each oscillator had ∼ amax

2
states. Looking at the three impurity states as

seen in Chapter 7, section 1, it can be seen that there are four operators

with impurities in the antisymmetric representation. It can also be seen that

there are two operators with impurities in the representation.

In the case of four impurities, an interesting degeneracy structure is ob-

served. The degeneracy alternates between three degenerate states and four

degenerate states. This can be explained as three oscillators with level spac-

ing 8g2
YM and a fourth oscillator with spacing 16g2

YM . Each oscillator again

has ∼ amax

2
states. In this case, the dilatation operator gives the spectrum of

five harmonic oscillators with zero level spacing, three harmonic oscillators
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with 8g2
YM level spacing and one harmonic oscillator with 16g2

YM level spac-

ing. Looking at the four impurity states as seen in Chapter 7, section 2, it

can be seen that there are five operators with impurities in the antisymmet-

ric representation, three operators with impurities in the representation

and one operator with impurities in the representation. Although the

frequencies of the harmonic oscillators have been obtained by considering

the representations which organize the impurities, it does not mean that the

claim is made (for example) that operators OF correspond to the frequency

16g2
YM operators.

It can be noted that the case for five impurities was not studied because

the methods used break down but rather because as the number of impurities

increase so does the level of difficulty and complication in writing down the

projectors and computing the action of the dilatation operator. In princi-

ple there is no problem with considering an operator with O(N) impurities.

The case of no impurities and one impurity were computed in [30] analyti-

cally with the result that all the operators were annihilated by the one loop

dilatation operator.

From the results obtained, it is possible to guess a result for a general

number of impurities. Two general cases can be considered, the case with an

even number of impurities and the case with an odd number of impurities.

For the case of an even number of impurities = 2n then one would expect a

set of oscillators with frequency ωi and degeneracy di of the form

ωi = 8ig2
YM , di = 2(n− i) + 1, i = 0, 1, ..., n .

For the case of an odd number of impurities = 2n+ 1 then one would expect

a set of oscillators with frequency ωi and degeneracy di of the form

ωi = 8ig2
YM , di = 2(n− i+ 1), i = 0, 1, ..., n .
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This conjecture passes a counting test:
∑

i di is equal to the number of Schur

Polynomials that can be defined. Also, the number of degeneracies di match

the number of each type of oscillator that can be defined. So di is equal

to the number of operators with impurities organized into a Young diagram

with i boxes in the short column.

Although the expressions obtained for the dilatation operator are rather

complicated, the underlying picture is quite simple. The dilatation operator

is equivalent to a set of harmonic oscillators. For each type of operator there

is a single oscillator whose frequency is determined by the representation

which arranges the impurities. As sets of harmonic oscillators are integrable

systems, then the system studied is also an example of an integrable dilata-

tion operator obtained by summing planar and non planar diagrams.

So far, the results have been discussed solely on the CFT side of the

AdS/CFT correspondence. It is natural to consider the dual interpretation

of the results. The operators considered are dual to giant gravitons. It was

seen in [34, 35, 36] that there is a connection between the geometry of giant

gravitons and harmonic oscillators. The work in these papers quantize the

Moduli space of Mikhailov’s giant gravitons. Therefore, a huge space of states

is captured. This huge space of states connects to harmonic oscillators. As

this thesis has focused on a two giant system, it is therefore known that the

oscillators that have been captured are associated to the two giant system

and the excitations of it. The results obtained in this thesis give a more

refined statement as to how the harmonic oscillator enters. It could be asked

if the set of operators examined include excitations (for example) of a two

giant system plus a graviton. This, however, is a small perturbation of the

two giant system, not an excitation of it. The graviton would be an excitation

of spacetime. The states obtained in this thesis do not have such excitations.
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States which would have this type of excitation would correspond to operators

with a small third column, which have decoupled at large N . In a similar

way that quantizing the possible excitation modes of a string results in one

obtaining a set of harmonic oscillators, it could be said that the oscillators

obtained in this thesis arose from the quantization of the possible excitation

modes of a giant graviton.

By using the limit of the first column of the Young Diagram containing

O
√
N more boxes than the second column, it was found that the dilatation

operator simplifies to the lattice realization of the second derivative. It was

the Young Diagram that defined the lattice. As the number of boxes in each

column sets the angular momentum and hence the radius of the threebrane,

it is clear that the radius of the giant graviton together with the local physics

in the radial direction has emerged. For the operators studied in this thesis,

the number of lattice sites is O(N) whereas the number of lattice sites for

BMN loops is O
√
N .

9.2 Further Studies

There are many directions which one could follow for further research. Given

the simplicity of the results obtained for the spectra of the one loop anoma-

lous dimensions, it should be possible to construct an analytic solution. This

is still under investigation [50]. Another aspect of this which could be stud-

ied is how the results are modified at higher loops. One could also study

the case of n > 2 column restricted Schur Polynomials and more species of

impurities. It could also be asked when and how simple systems are expected

to emerge from multimatrix models. It is already known that for a single ma-

trix model the planar limit is captured by the dynamics of N non interacting
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non-relativistic fermions in an external potential. In this thesis, it has been

argued that the large N limit of a class of operators dual to giant gravitons is

captured by a collection of harmonic oscillators. Perhaps every semi-classical

object in spacetime is associated with the emergence of a simple system in

the large N limit of the corresponding class of operators in the field theory.
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Appendix A

Dilatation Operator for Three

or Four Impurities

In what follows DO ≡ g2
YMD̂O with D the one loop Dilatation operator.

A.1 Three Impurities

D̂OA(b0, b1) =
√

(N − b0 − b1 − 2) (N − b0 + 1)

[
4 b1

√
b1 + 4

b1 + 2

1

(b1 + 2) (b1 + 3)
OB(b0, b1)

−2

√
b1 + 4

b1 + 2

√
2

1

(b1 + 2)
OC(b0, b1)+8

√
(b1 + 4) (b1 + 1)

(b1 + 2) (b1 + 3)

1

(b1 + 3) (b1 + 2)
OD(b0−1, b1+2)

+2

√
(b1 + 4) (b1 + 1)

(b1 + 3) (b1 + 2)

√
2

(b1 + 3) (b1 + 2)
OE(b0 − 1, b1 + 2)

]
+(N−b0−b1−2)

[
12

(b1 + 2) (b1 + 3)
OA(b0, b1)

−4

√
(b1 + 1) (b1 + 3) (b1 + 5)

(b1 + 3)2 (b1 + 2)
OB(b0 − 1, b1 + 2) + 2

√
(b1 + 1) (b1 + 3)

√
2

(b1 + 3)2 OC(b0 − 1, b1 + 2)

]

D̂OB(b0, b1) =
√

(N − b0 − b1 − 1) (N − b0)

[
−4

3

√
(b1 + 2) (b1 − 1)

b1 (b1 + 1)

(b1 − 2) (b1 + 3)

b1 (b1 + 1)
OB(b0 + 1, b1 − 2)

70



+
2

3

b1 + 3

b1

√
(b1 + 2) (b1 − 1)

(b1 + 1) b1

√
2OC(b0+1, b1−2)−32

3

b1
2 + 2 b1 − 3

b1(b1 + 1)(b1 + 2)2

√
b1 + 2

b1
OD(b0, b1)

−2
√

2

3

√
b1 + 2

b1

(b1 + 3)(3b1 − 2)

b1(b1 + 2)(b1 + 1)
OE(b0, b1) + 8

√
(b1 + 3) b1

(b1 + 2) (b1 + 1)

1

(b1 + 1) (b1 + 2)
OF (b0 − 1, b1 + 2)

]

+
√

(N − b0 − b1 − 2) (N − b0 + 1)

[
2

3

√
(b1 + 4) (b1 + 1)

(b1 + 2) (b1 + 3)

√
2b1

(b1 + 3)
OC(b0 − 1, b1 + 2)

−4

3

√
(b1 + 4) (b1 + 1)

(b1 + 3) (b1 + 2)

(b1 + 5) b1

(b1 + 3) (b1 + 2)
OB(b0 − 1, b1 + 2)

+4

√
b1 + 4

b1 + 2

b1

(b1 + 3) (b1 + 2)
OA(b0, b1)

]
+(N − b0 − b1 − 1)

[
−4

√
b1 − 1

b1 + 1

(b1 + 3)

(b1 + 1) b1
OA(b0 + 1, b1 − 2)

+
4

3

(b1 + 3)(b3
1 + 5b2

1 + 8b1 − 12)

(b1 + 1)b1(b1 + 2)2
OB(b0, b1)−2

√
2

3

(b2
1 + 2b1 − 4)(b1 + 3)

(b1 + 1)(b1 + 2)2
OC(b0, b1)

−8

3

√
b1 + 3

b1 + 1

(b1 + 4) b1

(b1 + 2)2 (b1 + 1)
OD(b0 − 1, b1 + 2) +

4

3

√
2

√
b1 + 3

b1 + 1

b1

(b1 + 2)2OE(b0 − 1, b1 + 2)

]

+ (N − b0 + 1)

[
4

3

(b1 + 4) b1
2

(b1 + 3) (b1 + 2)2OB(b0, b1) +
8

3

√
(b1 + 1) (b1 + 3)b1 (b1 + 4)

(b1 + 3)2 (b1 + 2)2 OD(b0 − 1, b1 + 2)

−2

3

√
2 (b1 + 4) b1

(b1 + 2)2 OC(b0, b1) +
2

3

√
2
√

(b1 + 1) (b1 + 3)b1 (b1 + 4)

(b1 + 3)2 (b1 + 2)2 OE(b0 − 1, b1 + 2)

]

D̂OC(b0, b1) =
√

(N − b0 − b1 − 1) (N − b0)

[
2
√

2

3

√
(b1 + 2) (b1 − 1)

(b1 + 1) b1

(b1 − 2)

b1 + 1
OB(b0 + 1, b1 − 2)

−2

3

√
(b1 + 2) (b1 − 1)

(b1 + 1) b1
OC(b0+1, b1−2)+

2
√

2

3

√
b1 + 2

b1

(b1 − 1)(3b1 + 8)

(b1 + 1)(b1 + 2)2
OD(b0, b1)

−4

3

√
b1 + 2

b1

1

(b1 + 1)(b1 + 2)
OE(b0, b1) + 2

√
(b1 + 2) (b1 + 3) (b1 + 1) b1

√
2

(b1 + 1)2 (b1 + 2)2 OF (b0 − 1, b1 + 2)

]

+
√

(N − b0 − b1 − 2) (N − b0 + 1)

[
−2

√
(b1 + 4) (b1 + 2)

√
2

(b1 + 2)2 OA(b0, b1)

+
2
√

2

3

√
(b1 + 4) (b1 + 1)

(b1 + 3) (b1 + 2)

(b1 + 5)

(b1 + 2)
OB(b0 − 1, b1 + 2)− 2

3

√
(b1 + 4) (b1 + 1)

(b1 + 2) (b1 + 3)
OC(b0 − 1, b1 + 2)

]
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+ (N − b0 − b1 − 1)

[
2

√
b1 − 1

b1 + 1

√
2

1

b1 + 1
OA(b0 + 1, b1 − 2)

−2
√

2

3

(b2
1 + 2b1 − 4)(b1 + 3)

(b1 + 1)(b1 + 2)2
OB(b0, b1) +

2

3

b1(b2
1 + 2b1 − 1)

(b1 + 1)(b1 + 2)2
OC(b0, b1)

−2

3

√
2

√
b1 + 3

b1 + 1

(b1 + 4) b1

(b1 + 2)2 (b1 + 1)
OD(b0 − 1, b1 + 2) +

2

3

√
b1 + 3

b1 + 1

b1

(b1 + 2)2OE(b0 − 1, b1 + 2)

]

+ (N − b0 + 1)

[
−2

3

√
2 (b1 + 4) b1

(b1 + 2)2 OB(b0, b1) +
2

3

(b1 + 4) (b1 + 3)

(b1 + 2)2 OC(b0, b1)

−4

3

√
2
√

(b1 + 1) (b1 + 3) (b1 + 4)

(b1 + 3) (b1 + 2)2 OD(b0 − 1, b1 + 2)− 2

3

√
(b1 + 1) (b1 + 3) (b1 + 4)

(b1 + 3) (b1 + 2)2 OE(b0 − 1, b1 + 2)

]

D̂OD(b0, b1) =
√

(N − b0 − b1) (N − b0 − 1)

[
−4

3

√
(b1 + 1) (b1 − 2)

b1 (b1 − 1)

(b1 − 3) (b1 + 2)

b1 (b1 − 1)
OD(b0 + 1, b1 − 2)

+
2

3

(b1 + 2)
√
b1 (b1 − 1) (b1 + 1) (b1 − 2)

√
2

b1 (b1 − 1)2 OE(b0 + 1, b1 − 2)− 4
(b1 + 2)

√
b1 (b1 − 2)

b1
2 (b1 − 1)

OF (b0, b1)

]

+
√

(N − b0 − b1 − 1) (N − b0)

[
8

b1 (b1 + 1)

√
(b1 + 2) (b1 − 1)

(b1 + 1) b1
OA(b0 + 1, b1 − 2)

+
2
√

2

3

√
b1(b1 + 2)(b1 − 1)(3b1 + 8)

(b1 + 1)(b1 + 2)2b1
OC(b0, b1)−32

3

(b2
1 + 2b1 − 3)

√
b1(b1 + 2)

(b1 + 2)2b2
1(b1 + 1)

OB(b0, b1)

−4

3

√
b1 (b1 + 3)

(b1 + 2) (b1 + 1)

(b1 − 1) (b1 + 4)

(b1 + 2) (b1 + 1)
OD(b0 − 1, b1 + 2)

+
2

3

√
b1 (b1 + 3)

(b1 + 2) (b1 + 1)

√
2

(b1 − 1)

b1 + 2
OE(b0 − 1, b1 + 2)

]
+(N − b0)

[
4

3

(b1 − 1)(b3
1 + b2

1 + 16)

(b1 + 1)b2
1(b1 + 2)

OD(b0, b1)

+
8

3

√
b1 − 1

b1 + 1

b1
2 − 4

b2
1 (b1 + 1)

OB(b0 + 1, b1 − 2)− 4

3

√
2

√
b1 − 1

b1 + 1

b1 + 2

b2
1

OC(b0 + 1, b1 − 2)

−2
√

2

3

(b2
1 + 2b1 − 4)(b1 − 1)

(b1 + 1)b2
1

OE(b0, b1) + 4 (b1 − 1)

√
b1 + 3

b1 + 1

1

(b1 + 2) (b1 + 1)
OF (b0 − 1, b1 + 2)

]

+ (N − b0 − b1)

[
4

3

(b1 − 2) (b1 + 2)2

(b1 − 1) b1
2 OD(b0, b1)− 2

√
2

3

(
b1

2 − 4
)

b1
2 OE(b0, b1)

72



−8

3

√
(b1 + 1)

(b1 − 1)

(
b2
1 − 4

)
b1

2 (b1 − 1)
OB(b0 + 1, b1 − 2)− 2

√
2

3

√
(b1 + 1)

(b1 − 1)

(
b2
1 − 4

)
b1

2 (b1 − 1)
OC(b0 + 1, b1 − 2)

]

D̂OE(b0, b1) =
√

(N − b0 − b1) (N − b0 − 1)

[
2
√

2

3

√
(b1 + 1) (b1 − 2)

b1 (b1 − 1)

(b1 − 3)

b1
OD(b0 + 1, b1 − 2)

−2

3

√
b1 (b1 − 1) (b1 + 1) (b1 − 2)

b1 (b1 − 1)
OE(b0 + 1, b1 − 2) + 2

√
2
√
b1 (b1 − 2)

b1
2 OF (b0, b1)

]

+
√

(N − b0 − b1 − 1) (N − b0)

[
2

√
2
√

(b1 + 2) (b1 − 1) (b1 + 1) b1

b1
2 (b1 + 1)2 OA(b0 + 1, b1 − 2)

−4

3

√
b1(b1 + 2)

(b1 + 2)(b1 + 1)b1
OC(b0, b1)− 2

√
2

3

√
b1(b1 + 2)

(b1 + 3)(3b1 − 2)

(b1 + 1)b2
1(b1 + 2)

OB(b0, b1)

+
2

3

√
b1(b1 + 3)

(b1 + 2)(b1 + 1)

√
2
b1 + 4

b1 + 1
OD(b0−1, b1+2) −2

3

√
b1 (b1 + 3)

(b1 + 1) (b1 + 2)
OE(b0 − 1, b1 + 2)

]

+ (N − b0)

[
−2
√

2

3

(b2
1 + 2b1 − 4)(b1 − 1)

(b1 + 1)b2
1

OD(b0, b1)

+
2

3

(b1 + 2)(b2
1 + 2b1 − 1)

(b1 + 1)b2
1

OE(b0, b1)− 2

√
b1 + 3

b1 + 1

√
2

1

b1 + 1
OF (b0 − 1, b1 + 2)

+
2

3

√
2

√
b1 − 1

b1 + 1

b2
1 − 4

(b1 + 1)b2
1

OB(b0 + 1, b1 − 2)− 2

3

√
b1 − 1

b1 + 1

b1 + 2

b2
1

OC(b0 + 1, b1 − 2)

]

+ (N − b0 − b1)

[
2

3

(
b1

2 − 3 b1 + 2
)

b1
2 OE(b0, b1)− 2

√
2

3

(
b1

2 − 4
)

b1
2 OD(b0, b1)

+
4
√

2

3

(b1 − 2)
√

(b1 + 1) (b1 − 1)

b1
2 (b1 − 1)

OB(b0 + 1, b1 − 2) +
2

3

(b1 − 2)
√

(b1 + 1) (b1 − 1)

b1
2 (b1 − 1)

OC(b0 + 1, b1 − 2)

]

D̂OF (b0, b1) =
√

(N − b0 − b1) (N − b0 − 1)

[
8

√
b1 (b1 − 1) (b1 + 1) (b1 − 2)

b1
2 (b1 − 1)2 OB(b0 + 1, b1 − 2)

+2

√
2
√

b1 (b1 − 1) (b1 + 1) (b1 − 2)

b1
2 (b1 − 1)2 OC(b0+1, b1−2)−4 (b1 + 2)

√
b1 − 2

b1

1

b1 (b1 − 1)
OD(b0, b1)
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+2

√
b1 − 2

b1

√
2

1

b1
OE(b0, b1)

]
+4

(b1 − 3)
√

(b1 + 1) (b1 − 1) (N − b0 − 1)

b1 (b1 − 1)2 OD(b0+1, b1−2)

−2

√
(b1 + 1) (b1 − 1)

√
2 (N − b0 − 1)

(b1 − 1)2 OE(b0 + 1, b1− 2) + 12
N − b0 − 1

b1 (b1 − 1)
OF (b0, b1)

A.2 Four Impurities

D̂OA(b0, b1) =
√

(N − b0 − b1 − 3)(N − b0 + 1)

[
6

√
b1 + 5

b1 + 3

b1
(b1 + 4)(b1 + 2)

OB(b0, b1)

−2
√

3

√
b1 + 5

b1 + 3

1

b1 + 2
OC(b0, b1) + 12

√
(b1 + 1)(b1 + 5)

(b1 + 3)(b1 + 2)(b1 + 4)
OD(b0 − 1, b1 + 2)

+4
√

3

√
(b1 + 5)(b1 + 1)

(b1 + 3)(b1 + 4)(b1 + 2)
OE(b0 − 1, b1 + 2)

]
+(N−b0−b1−3)

[
24

(b1 + 2)(b1 + 4)
OA(b0, b1)

−6

√
b1 + 1

b1 + 3

b1 + 6

(b1 + 2)(b1 + 4)
OB(b0 − 1, b1 + 2) + 2

√
3

√
b1 + 1

b1 + 3

1

b1 + 4
OC(b0 − 1, b1 + 2)

]

D̂OB(b0, b1) =
√

(N − b0 − b1 − 2) (N − b0)

[√
3

2

√
(b1 + 3) (b1 − 1)

b1 + 4

b1(b1 + 1)
OC(b0 + 1, b1 − 2)

−3

2

√
(b1 + 3)(b1 − 1)

(b1 + 1)(b1 + 2)

(b1 + 4)(b1 − 2)

b1
OB(b0+1, b1−2)+3

(b1 + 4)(b1 − 1)(b1 − 6)

b1(b1 + 3)(b1 + 2)2

√
b1 + 3

b1 + 1
OD(b0, b1)

−
√

3
(b1 + 4)(3b1 − 2)

b1(b1 + 2)2

√
b1 + 3

b1 + 1
OE(b0, b1) +

2b1(b1 + 4)

(b1 + 1)(b1 + 3)(b1 + 2)2

(
9OG(b0 − 1, b1 + 2) +

√
3OH(b0 − 1, b1 + 2)

)]
+
√

(N − b0 − b1 − 3)(N − b0 + 1)

[
−3

2

√
(b1 + 5)(b1 + 1)

b1(b1 + 6)

(b1 + 3)(b1 + 2)(b1 + 4)
OB(b0 − 1, b1 + 2)

+

√
3

2

√
(b1 + 5)(b1 + 1)

b1
(b1 + 3)(b1 + 4)

OC(b0−1, b1+2) +6
√

(b1 + 5)(b1 + 3)
b1

(b1 + 2)(b1 + 3)(b1 + 4)
OA(b0, b1)

]

+(N−b0−b1−2)

[
−6

√
b1 − 1

b1 + 1

b1 + 4

b1(b1 + 2)
OA(b0 + 1, b1 − 2) +

3

2

(b31 + 7b21 + 22b1 − 24)(b1 + 4)

b1(b1 + 2)2(b1 + 3)
OB(b0, b1)

−
√

3

2

(b21 + 3b1 − 6)(b1 + 4)

(b1 + 2)2(b1 + 3)
OC(b0, b1)− 6

√
b1 + 3

b1 + 1

b1(b1 + 5)(b1 + 4)

(b1 + 2)2(b1 + 3)2
OD(b0 − 1, b1 + 2)

+
√

12
√

(b1 + 3)(b1 + 1)
b1(b1 + 4)

(b1 + 3)2(b1 + 2)2
OE(b0 − 1, b1 + 2)

]
+(N−b0+1)

[
3

2

b21(b1 + 5)

(b1 + 2)(b1 + 3)(b1 + 4)
OB(b0, b1)
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−
√

3

2

(b1 + 5)b1
(b1 + 2)(b1 + 3)

OC(b0, b1)+3
√

(b1 + 3)(b1 + 1)
b1(b1 + 5)

(b1 + 3)2(b1 + 4)(b1 + 2)
OD(b0−1, b1+2)

+
√

3
√

(b1 + 3)(b1 + 1)
b1(b1 + 5)

(b1 + 3)2(b1 + 2)(b1 + 4)
OE(b0 − 1, b1 + 2)

]

D̂OC(b0, b1) =
√

(N − b0 − b1 − 2)(N − b0)

[√
3

2

√
(b1 − 1)(b1 + 3)

b1 − 2

(b1 + 1)(b1 + 2)
OB(b0 + 1, b1 − 2)

−1

2

√
(b1 + 3)(b1 − 1)

1

b1 + 1
OC(b0 + 1, b1 − 2) +

1√
3

√
b1 + 3

b1 + 1

(b1 − 1)(5b1 + 18)

(b1 + 3)(b1 + 2)2
OD(b0, b1)

+

√
b1 + 3

b1 + 1

3b1 − 2

(b1 + 2)2
OE(b0, b1) + 2

√
3

b1(b1 + 4)

(b1 + 1)(b1 + 2)2(b1 + 3)
OG(b0 − 1, b1 + 2)

−4
√

6

3

√
b1 + 3

b1 + 1

1

b1 + 2
OF (b0, b1) + 2

(3b21 + 12b1 + 8)

(b1 + 3)(b1 + 1)(b1 + 2)2
OH(b0 − 1, b1 + 2)

]

+
√

(N − b0 − b1 − 3)(N − b0 + 1)

[√
3

2

√
(b1 + 5)(b1 + 1)

b1 + 6

(b1 + 3)(b1 + 2)
OB(b0 − 1, b1 + 2)

−1

2

√
(b1 + 5)(b1 + 1)

(b1 + 3)
OC(b0−1, b1+2) −2

√
3

√
(b1 + 5)(b1 + 3)

(b1 + 3)(b1 + 2)
OA(b0, b1)

]
+(N−b0−b1−2)×

×

[√
b1 − 1

b1 + 1

2
√

3

b1 + 2
OA(b0 + 1, b1 − 2)−

√
3

2

(b21 + 3b1 − 6)(b1 + 4)

(b1 + 2)2(b1 + 3)
OB(b0, b1)+

b31 + 3b21 + 10b1 + 32

2(b1 + 2)2(b1 + 3)
OC(b0, b1)

− 2√
3

√
b1 + 3

b1 + 1

b1(b1 + 5)(b1 + 4)

(b1 + 2)2(b1 + 3)2
OD(b0−1, b1+2)−2

√
(b1 + 3)(b1 + 1)

(b1 + 4)2

(b1 + 2)2(b1 + 3)2
OE(b0−1, b1+2)

+
4
√

2√
3

√
(b1 + 3)(b1 + 1)

(b1 + 2)(b1 + 3)
OF (b0 − 1, b1 + 2)

]
+(N−b0+1)

[
−
√

3

2

b1(b1 + 5)

(b1 + 2)(b1 + 3)
OB(b0, b1)

+
1

2

(b1 + 5)(b1 + 4)

(b1 + 2)(b1 + 3)
OC(b0, b1)−

√
3
√

(b1 + 3)(b1 + 1)
b1 + 5

(b1 + 3)2(b1 + 2)
OD(b0 − 1, b1 + 2)

−
√

(b1 + 3)(b1 + 1)
(b1 + 5)

(b1 + 2)(b1 + 3)2
OE(b0 − 1, b1 + 2)

]

D̂OD(b0, b1) =
√

(N − b0 − b1 − 1)(N − b0 − 1)

[
−2

(b21 − 9)(b21 − 4)

b21(b21 − 1)
OD(b0 + 1, b1 − 2)

+
(b21 − 4)(b1 + 3)

b21(b1 + 1)2

[
2(b1 + 1)2√

3(b1 − 1)
OE(b0 + 1, b1 − 2)−

√
b1 + 1

b1 − 1

(
6OG(b0, b1) +

2√
3
OH(b0, b1)

)]]
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+3

√
b1 − 1

b1 + 1

b1
2 + b1 − 6

b1(b1 + 1)(b1 + 2)
OG(b0, b1)−

√
3

√
b1 − 1

b1 + 1

b1 + 3

b1(b1 + 1)
OH(b0, b1)

+ 12

√
(b1 + 3)(b1 − 1)

b1(b1 + 1)(b1 + 2)
OI(b0 − 1, b1 + 2)

]
+
√

(N − b0 − b1 − 2)(N − b0)×

×
[
−3
√

(b1 + 3)(b1 + 1)
(b1 + 4)(b1 − 1)

(b1 + 1)2b1(b1 + 2)
OB(b0, b1) +

√
3
√

(b1 + 3)(b1 + 1)
b1 − 1

(b1 + 1)2(b1 + 2)
OC(b0, b1)

+12

√
(b1 + 3)(b1 − 1)

b1(b1 + 1)(b1 + 2)
OA(b0 + 1, b1 − 2)− 2

b1(b1 − 1)(b1 + 4)(b1 + 5)

(b1 + 1)(b1 + 3)(b1 + 2)2
OD(b0 − 1, b1 + 2)

+6

√
b1 + 1

b1 + 3

b1(b21 + 3b1 − 4)

(b1 + 2)2(b1 + 1)2
OB(b0, b1) +

2√
3

√
b1 + 1

b1 + 3

b1(b21 + 3b1 − 4)

(b1 + 2)2(b1 + 1)2
OC(b0, b1)

+
2√
3

b1(b1 + 4)(b1 − 1)

(b1 + 3)(b1 + 2)2
OE(b0 − 1, b1 + 2)

]
+(N−b0−b1−1)

[
−6

√
b1 − 1

b1 + 1

b31 + 3b21 − 4b1 − 12

b21(b21 − 1)
OB(b0 + 1, b1 − 2)

− 2√
3

√
b1 − 1

b1 + 1

b31 + 3b21 − 4b1 − 12

b21(b21 − 1)
OC(b0 +1, b1−2)+2

(b1 − 2)(b1 + 3)2(b1 + 2)

b21(b1 + 1)2
OD(b0, b1)

− 2√
3

(b1 − 2)(b1 + 3)(b1 − 1)(b1 + 2)

b21(b1 + 1)2
OE(b0, b1)

]
+(N−b0)

[
3

√
b1 − 1

b1 + 1

b21 + b1 − 6

b1(b1 + 1)(b1 + 2)
OB(b0 + 1, b1 − 2)

−
√

3

√
b1 − 1

b1 + 1

b1 + 3

b1(b1 + 1)
OC(b0 + 1, b1 − 2) + 6

(b1 + 3)(b1 − 1)

b1(b1 + 2)(b1 + 1)2
OD(b0, b1)

+2
√

3
(b1 + 3)(b1 − 1)

(b1 + 2)b1(b1 + 1)2
OE(b0, b1)

]
+ (N − b0 − b1 − 1)

[
6

(b1 + 3)(b1 − 1)

(b1 + 1)2b1(b1 + 2)
OD(b0, b1)

+2
√

3
(b1 − 1)(b1 + 3)

(b1 + 1)2b1(b1 + 2)
OE(b0, b1)− 3

√
b1 + 3

b1 + 1

b21 + 3b1 − 4

b1(b1 + 1)(b1 + 2)
OG(b0 − 1, b1 + 2)

+
√

3

√
b1 + 3

b1 + 1

(b1 − 1)

(b1 + 1)(b1 + 2)
OH(b0 − 1, b1 + 2)

]
+(N−b0)

[
2

(b1 + 4)(b1 − 1)2b1
(b1 + 1)2(b1 + 2)2

OD(b0, b1)

− 2√
3

(b1 − 1)(b1 + 3)b1(b1 + 4)

(b1 + 1)2(b1 + 2)2
OE(b0, b1)+6

√
b1 + 3

b1 + 1

(b21 + 3b1 − 4)b1
(b1 + 1)(b1 + 2)2(b1 + 3)

OG(b0−1, b1+2)

+
2√
3

√
b1 + 3

b1 + 1

(b21 + 3b1 − 4)b1
(b1 + 1)(b1 + 2)2(b1 + 3)

OH(b0 − 1, b1 + 2)

]

D̂OE(b0, b1) =
√

(N − b0 − b1 − 1)(N − b0 − 1)

[
2√
3

b31 − 3b21 − 4b1 + 12

(b1 + 1)b21
OD(b0 + 1, b1 − 2)

−2
(b21 − 4)

b21
OE(b0+1, b1−2)+

2
√

6

3

b1 + 2

b1
OF (b0+1, b1−2)+

√
3

√
b1 − 1

b1 + 1

(b1 − 2)(3b1 + 8)

b21(b1 + 2)
OG(b0, b1)
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−
√

b1 − 1

b1 + 1

3b1 + 8

b21
OH(b0, b1) + 4

√
3

√
(b1 + 3)(b1 − 1)

b1(b1 + 1)(b1 + 2)
OI(b0 − 1, b1 + 2)

]

+
√

(N − b0 − b1 − 2)(N − b0)

[
−
√

3
√

(b1 + 1)(b1 + 3)
(b1 + 4)(b1 − 1)

b1(b1 + 1)2(b1 + 2)
OB(b0, b1)

+
√

(b1 + 1)(b1 + 3)
b1 − 1

(b1 + 2)(b1 + 1)2
OC(b0, b1) + 4

√
3

√
(b1 − 1)(b1 + 3)

b1(b1 + 1)(b1 + 2)
OA(b0 + 1, b1− 2)

−2
√

3
√

(b1 + 3)(b1 + 1)
b1(b1 + 4)

(b1 + 1)2(b1 + 2)2
OB(b0, b1)

+2
√

(b1 + 1)(b1 + 3)
b21

(b1 + 2)2(b1 + 1)2
OC(b0, b1)+

2√
3

b1(b21 + 9b1 + 20)

(b1 + 1)(b1 + 2)2
OD(b0−1, b1 +2)

−2
b1(b1 + 4)

(b1 + 2)2
OE(b0 − 1, b1 + 2) +

2
√

2√
3

b1
(b1 + 2)

OF (b0 − 1, b1 + 2)

]
+ (N − b0 − b1 − 1)×

×

[
2
√

3

√
b1 − 1

b1 + 1

b21 − 4

b21(b1 + 1)
OB(b0 + 1, b1 − 2)− 2

√
b1 − 1

b1 + 1

(b1 + 2)2

b21(b1 + 1)
OC(b0 + 1, b1 − 2)

− 2√
3

(b1 − 2)(b1 + 3)(b1 − 1)(b1 + 2)

b21(b1 + 1)2
OD(b0, b1) + 2

(b41 + 2b31 + b21 − 4)

b21(b1 + 1)2
OE(b0, b1)

−2
√

6

3

b21 + b1 − 2

b1(b1 + 1)
OF (b0, b1)

]
+(N−b0)

[
√

3

√
b1 − 1

b1 + 1

b21 + b1 − 6

(b1 + 2)b1(b1 + 1)
OB(b0 + 1, b1 − 2)

−
√

b1 − 1

b1 + 1

b1 + 3

b1(b1 + 1)
OC(b0 + 1, b1 − 2) + 2

√
3

(b1 + 3)(b1 − 1)

b1(b1 + 2)(b1 + 1)2
OD(b0, b1)

+2
(b1 + 3)(b1 − 1)

b1(b1 + 2)(b1 + 1)2
OE(b0, b1)

]
+ (N − b0 − b1 − 1)

[
2
√

3
(b1 − 1)(b1 + 3)

(b1 + 1)2(b1 + 2)b1
OD(b0, b1)

+2
(b1 + 3)(b1 − 1)

(b1 + 1)2b1(b1 + 2)
OE(b0, b1)−

√
3

√
b1 + 3

b1 + 1

b21 + 3b1 − 4

b1(b1 + 1)(b1 + 2)
OG(b0 − 1, b1 + 2)

+

√
b1 + 3

b1 + 1

b1 − 1

(b1 + 1)(b1 + 2)
OH(b0 − 1, b1 + 2)

]
+(N−b0)

[
− 2√

3

(b1 − 1)(b1 + 3)b1(b1 + 4)

(b1 + 1)2(b1 + 2)2
OD(b0, b1)

+2
(b1 + 3)(b21 + 3b1 + 4)b1

(b1 + 1)2(b1 + 2)2
OE(b0, b1)− 2

√
6

3

(b1 + 3)b1
(b1 + 2)(b1 + 1)

OF (b0, b1)

−2
√

3

√
b1 + 3

b1 + 1

(b1 + 4)b1
(b1 + 1)(b1 + 2)2

OG(b0 − 1, b1 + 2) + 2

√
b1 + 3

b1 + 1

b21
(b1 + 2)2(b1 + 1)

OH(b0 − 1, b1 + 2)

]

D̂OF (b0, b1) =
√

(N − b0 − b1 − 1)(N − b0 − 1)

[
2
√

6

3

b1 − 2

b1
OE(b0 + 1, b1 − 2)−2OF (b0+1, b1−2)
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+
4
√

6

3

√
(b1 − 1)(b1 + 1)

b1(b1 + 1)
OH(b0, b1)

]
+
√

(N − b0 − b1 − 2)(N − b0)
[
−2OF (b0−1, b1 +2)

2
√

2√
3

b1 + 4

b1 + 2
OE(b0 − 1, b1 + 2)− 4

√
6

3

√
b1 + 3

b1 + 1

1

b1 + 2
OC(b0, b1)

]
+ (N − b0 − b1 − 1)×

×

[
4
√

6

3

√
b1 − 1

b1 + 1

1

b1
OC(b0 + 1, b1 − 2)− 2

√
6

3

b21 + b1 − 2

b1(b1 + 1)
OE(b0, b1) + 2

b1 − 1

b1 + 1
OF (b0, b1)

]

+(N−b0)

[
−2
√

6

3

(b1 + 3)b1
(b1 + 2)(b1 + 1)

OE(b0, b1) + 2
(b1 + 3)

b1 + 1
OF (b0, b1) −4

√
6

3

√
b1 + 3

b1 + 1

1

b1 + 2
OH(b0 − 1, b1 + 2)

]

D̂OG(b0, b1) =
√

(N − b0 − b1)(N − b0 − 2)

[
−3

2

√
(b1 + 1)(b1 − 3)(b21 − 2b1 − 8)

b1(b1 − 2)(b1 − 1)
OG(b0 + 1, b1 − 2)

+

√
3

2

√
(b1 + 1)(b1 − 3)(b1 + 2)

(b1 − 2)(b1 − 1)
OH(b0 + 1, b1 − 2) −6

√
b1 − 3

b1 − 1

(b1 + 2)

b1(b1 − 2)
OI(b0, b1)

]

+
√

(N − b0 − b1 − 1)(N − b0 − 1)

[
18

(b1
2 − 4)

b21(b21 − 1)
OB(b0 + 1, b1 − 2)

+2
√

3
(b21 − 4)

b21(b21 − 1)
OC(b0 + 1, b1 − 2)− 3

√
b1 − 1

b1 + 1

(b1 − 2)(b1 + 8)(b1 + 3)

b21(b1 + 2)(b1 − 1)
OD(b0, b1)

+
√

3

√
b1 − 1

b1 + 1

(b1 − 2)(3b1 + 8)

b21(b1 + 2)
OE(b0, b1)−3

2

√
(b1 + 3)(b1 − 1)

(b21 + 2b1 − 8)

b1(b1 + 1)(b1 + 2)
OG(b0−1, b1+2)

+

√
3

2

√
(b1 + 3)(b1 − 1)

(b1 − 2)

(b1 + 1)(b1 + 2)
OH(b0 − 1, b1 + 2)

]
+(N−b0−b1)

[
−
√

3

2

b21 − b1 − 6

b1(b1 − 1)
OH(b0, b1)

−
√

3
√

(b1 + 1)(b1 − 1)
b21 − b1 − 6

(b1 − 2)(b1 − 1)2b1
OE(b0+1, b1−2)+

3

2

(b1 − 3)(b1 + 2)2

b1(b1 − 2)(b1 − 1)
OG(b0, b1)

−3

√
b1 + 1

b1 − 1

b21 − b1 − 6

(b1 − 2)(b1 − 1)b1
OD(b0 + 1, b1 − 2)

]
+(N−b0−1)

[
−
√

3

2

(b1 − 2)(b21 + b1 − 8)

b21(b1 − 1)
OH(b0, b1)

+
3

2

(b1 − 2)(b31 − b21 + 6b1 + 48)

b21(b1 − 1)(b1 + 2)
OG(b0, b1)+6

√
b1 − 1

b1 + 1

(b1 − 2)(b1 − 3)(b1 + 2)

b21(b1 − 1)2
OD(b0+1, b1−2)

−2
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3
√

(b1 + 1)(b1 − 1)
b21 − 4

(b1 − 1)2b21
OE(b0+1, b1−2) +6

√
b1 + 3

b1 + 1

(b1 − 2)

b1(b1 + 2)
OI(b0 − 1, b1 + 2)

]

D̂OH(b0, b1) =
√

(N − b0 − b1)(N − b0 − 2)

[√
3

2

√
(b1 + 1)(b1 − 3)(b1 − 4)

(b1 − 1)b1
OG(b0 + 1, b1 − 2)
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−1

2

√
(b1 + 1)(b1 − 3)

b1 − 1
OH(b0 + 1, b1 − 2) + 2

√
3

√
(b1 − 1)(b1 − 3)

b1(b1 − 1)
OI(b0, b1)

]

+
√

(N − b0 − b1 − 1)(N − b0 − 1)

[
2
√

3
b21 − 4

b21(b21 − 1)
OB(b0 + 1, b1 − 2)

+2
3b21 − 4

b21(b21 − 1)
OC(b0 + 1, b1 − 2)− 2√

3

√
b1 − 1

b1 + 1

b31 + 3b21 − 4b1 − 12

(b21 − 1)b21
OD(b0, b1)

−2

√
b1 − 1

b1 + 1

(b1 + 2)2

b21(b1 + 1)
OE(b0, b1) +

4
√

6

3

√
b1 − 1

b1 + 1

1

b1
OF (b0, b1)

+

√
b1 − 1
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√
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(b1 + 3)(b1 − 1)
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2
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2
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1
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√
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1
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Appendix B

Intertwiners

When Sn acts on V ⊗n n > 1 it furnishes a reducible representation. Imagine

that this includes the irreducible representations R and S. Representing the

action of σ as a matrix Γ(σ), in a suitable basis we can write

Γ(σ) =


ΓR(σ) 0 · · ·

0 ΓS(σ) · · ·

· · · · · · · · ·

 .
If we restrict our selves to an Sn−1 subgroup of Sn, then in general, both

R and S will subduce a number of representations. Assume for the sake of

this discussion that R subduces R′1 and R′2 and that S subduces S ′1 and S ′2.

Then, for σ ∈ Sn−1 we have

Γ(σ) =



ΓR′1(σ) 0 0 0 · · ·

0 ΓR′2(σ) 0 0 · · ·

0 0 ΓS′1(σ) 0 · · ·

0 0 0 ΓS′2(σ) · · ·

· · · · · · · · · · · · · · ·


.

Imagine that S ′1 = R′1, that is, one of the irreducible representations
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subduced by R is also subduced by S. Then, a simple application of the

fundamental orthogonality relation gives

∑
σ∈Sn−1



ΓR′1(σ) 0 0 0 · · ·

0 0 0 0 · · ·

0 0 0 0 · · ·

0 0 0 0 · · ·

· · · · · · · · · · · · · · ·


ij



0 0 0 0 · · ·

0 0 0 0 · · ·

0 0 ΓS′1(σ) 0 · · ·

0 0 0 0 · · ·

· · · · · · · · · · · · · · ·


ab

=
(n− 1)!

dR′1
δR′1S′1



0 0 1 0 · · ·

0 0 0 0 · · ·

0 0 0 0 · · ·

0 0 0 0 · · ·

· · · · · · · · · · · · · · ·


ib



0 0 0 0 · · ·

0 0 0 0 · · ·

1 0 0 0 · · ·

0 0 0 0 · · ·

· · · · · · · · · · · · · · ·


aj

≡ (n− 1)!

dR′1
δR′1S′1(IR′1S′1)ib(IS′1R′1)aj

where the form of the intertwiners has been spelled out.
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