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Abstract

We prove an original version of the Hahn-Banach theorem in the fuzzy setting. Con-

vex compact sets occur naturally in set-valued analysis. A question that has not been

satisfactorily dealt with in the literature is: What is the relationship between collections

of such sets and vector spaces? We thoroughly clarify this situation by making use of

Rådström’s embedding theorem, leading up to the definition of a near vector space. We

then go on to successfully apply these results to provide an original method of proof of

Doob’s decomposition of submartingales.
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Introduction

We have made a study comprising a number of important related themes in modern func-

tional analysis. This thesis can essentially be divided into two parts. The first part deals

with fuzzy Hahn-Banach theorems, while the second focuses on near vector spaces, lead-

ing up to applications thereof in Doob’s decomposition theorems.

A significant part of this work involves the use of fuzzy sets and the application of fuzzy

set theory to classical theories. Over the last few decades, fuzzy set theory has proved

to be a useful tool when dealing with inherent uncertainty that is caused by inexact data

due to imprecision of human knowledge. We look at such concepts as ordering of fuzzy

sets, fuzzy points, mappings and inverse mappings defined on fuzzy sets. We discuss the

notion of level sets associated with each fuzzy set, and we present a number of theorems

that make use of these level sets which will be used at various points in the thesis. We

also explain the typical ways in which fuzzy set theory is used to extend mathematics in

the classical setting, which is a re-occuring theme.

In Chapter 3, we discuss and present our original versions of the famous Hahn-Banach

theorem in the fuzzy setting. We also present our careful study of previous attempts

at fuzzy Hahn-Banach theorems and compare them with our own results. The Hahn-

Banach theorem is of central importance in functional analysis and there have been several

successful attempts to generalize this theorem over the years.

The central ideas from Chapter 4 were initiated by Samuel’s attempt to define a fuzzy

vector lattice in [70]. We noticed an error in the relevant paper - in this paper Samuel

claimed that the set of fuzzy points is a Riesz space. We showed, by means of a coun-

terexample, that this is definitively not the case. Since Samuel used this mistaken fact

to then define a fuzzy Riesz space and to develop a theory of integration in subsequent

papers, we attempted to rectify this problem which we have managed to do successfully.

The above mentioned error in this first paper, which was carried along in subsequent

papers by the same author, was that he assumed that each fuzzy point has an additive

inverse with respect to the usual addition of fuzzy sets. This is a similar situation to

classical set theory, where certain collections of sets have all of the properties of vector

spaces except for the additive inverse property. By examining ways to bridge this prob-

lem, we were lead to the work of Rådström. In [68], Rådström proved a theorem that is

the key to successfully overcoming the problem that we faced. Using a special case of

Rådström’s embedding procedure, we developed the concept of a near vector space. We

noticed that for this type of embedding to be performed, we required the law of cancel-

lation (A + C = B + C ⇒ A = B). Thus near vector spaces are spaces that satisfy

all of the vector axioms but the one that guarantees the existence of an inverse of each

element and in addition satisfy the cancellation law. In our study of such objects, we
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discovered natural examples arising from certain collections of sets and fuzzy sets. This

issue has never been satisfactorily dealt with in the literature and has immediate appli-

cations in the area of set-valued analysis. Since compact sets are extremely important

and frequently occurring in functional analysis, our results seem to be a significant con-

tribution. We considered three main collections of subsets of a separable Banach space,

namely ck(X), cwk(X) and cbf(X), the compact convex sets, the weakly compact sets

and the closed and bounded sets respectively since these sets are endowed with certain

required properties. After studying the literature on the topic, we noticed that set-valued

mappings from a measure space into the collection of compact subsets of a separable

Banach space equipped with the Hausdorff metric have been much studied but such map-

pings into the collection of weakly compact subsets and into closed, bounded subsets

have not been adequately considered. By examining these further cases we were able to

clarify and extend existing theory. A fruitful discussion about this concept is presented,

involving the above mentioned collections of sets, culminating in several original results.

Using Rådström’s embedding theorem, we can show that these hyperspaces can be em-

bedded in C(Ω) spaces. We explore these spaces, with a particular interest in applications

to probability theory.

Random variables and the related notion of conditional expectations have played a signifi-

cant role in probability theory, ergodic theory, quantum statistical mechanics and financial

mathematics. We therefore present a comprehensive discussion about set-valued random

variables.

Set-valued martingales are generalizations of the classical notion of a martingale that first

arose in the study of betting strategies in the 1800’s. Convergence of martingales is an

extremely important topic in probability theory for many applications. Our main focus

in the final chapter is Doob’s decomposition theorem. Notably, we have found a simpler

way of proving Doob’s well-known decomposition of set-valued submartingales which

we believe to be an important contribution. This is an immediate application of the near

vector space ideas developed in Chapter 4.
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Chapter 1

Preliminaries

1.1 Introduction

In this chapter, we lay the foundations for the concepts that will be discussed in this

thesis. To successfully engage the material, the reader will need to be familiar with certain

aspects of topology, functional analysis and measure theory. We thus present an overview

of the important notions as they are used in the theory of vector spaces and Riesz spaces.

For a detailed presentation of these results, the reader is referred to [2, 16, 18, 23, 59, 76,

78, 83].

Section 1.2 deals with some essential notions from set theory, topology and vector spaces

and Section 1.3 provides a basis for our work involving operator theory. Section 1.4

introduces the basic ideas of measure theory and then the Lp spaces for the scalar case. In

section 1.5, we present the vector case of the Lp spaces. We will not always refer to these

preliminary results explicitly in order to enhance readability, and it will subsequently be

assumed that the reader is familiar with the material of this chapter.

1.2 Normed vector spaces and Riesz spaces

Set theory is fundamental to the topics discussed in this thesis, and thus, we begin by

collecting and presenting some well-known concepts and notational conventions in order

to make this thesis more self-contained. It must be emphasized that we make no attempt

to discuss this elementary material thoroughly. We assume a familiarity with the most

well-known and basic mathematical symbols and abbreviations.

We will always be considering sets that are subsets of a universal set U , and we usually

3



CHAPTER 1. PRELIMINARIES 4

adhere to the convention that elements of U will be denoted by small case letters and

subsets of U will be denoted by capital letters. If x is an element and A is a set then we

denote the fact that x is an element of A by x ∈ A. We denote that x is not an element of

A by x 6∈ A. The collection of all elements that satisfy a condition P (x) will be written

as {x ∈ U : P (x)}. If A and B are two sets then we say that A is a subset of B, denoted

A ⊂ B, if every element of A is also an element of B. We denote by ∅ the empty set, that

is, the set that contains no elements. If A,B ⊂ U , then we denote

the union by A ∪B = {x ∈ U : x ∈ A or x ∈ B},

the intersection by A ∩B = {x ∈ U : x ∈ A and x ∈ B},

the complement by Ac = {x ∈ U : x 6∈ A}, and

the relative complement of B with respect to A by A\B = {x ∈ A : x 6∈ B}.

If {Ai}i∈I is a collection of sets with Ai ⊂ U , for all i ∈ I , for I an index set; then we

denote the union and intersection of {Ai}i∈I respectively by

⋃

i∈I

Ai = {x ∈ U : ∃i ∈ I, x ∈ Ai},

⋂

i∈I

Ai = {x ∈ U : ∀i ∈ I, x ∈ Ai}.

As usual, we denote the natural numbers by N, the integers by Z, the rational numbers

by Q, the real numbers by R and the complex numbers by C. We will denote the extended

real line by R = R∪ {∞}∪ {−∞}. To denote intervals of the extended real line, we use

the following standard notation for a, b ∈ R, a ≤ b:

[a, b] = {x ∈ R : a ≤ x ≤ b},

[a, b) = {x ∈ R : a ≤ x < b},

(a, b] = {x ∈ R : a < x ≤ b},

(a, b) = {x ∈ R : a < x < b}.

Throughout the thesis, R+ will denote the set [0,∞) of nonnegative real numbers.

1.2.1 Definition

Let X and Y be sets. A function (mapping) f from X to Y , denoted by f : X → Y , is

a rule that assigns to each x ∈ X a unique element y ∈ Y . We write y = f(x) to denote

that f assigns the element x ∈ X to the element y ∈ Y . We refer to the set X as the

domain, Y as the codomain, and the set {f(x) : x ∈ X} as the range of f respectively.

1.2.2 Definition

Let X and Y be sets. A function f : X → Y is said to be
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(a) injective (or one-to-one) if for for each y ∈ Y there is at most one x ∈ X such that

f(x) = y.

(b) surjective (or onto) if for each y ∈ Y there is an x ∈ X such that f(x) = y.

(c) bijective if f is both injective and surjective.

1.2.3 Definition

Let X, Y, and Z be sets; f : X → Y and g : Y → Z be functions. The composition of f
and g, denoted by g ◦ f , is the function g ◦ f : X → Z defined by (g ◦ f)(x) = g(f(x)).

Diagrammatically:

X Y

Z

f

g
g ◦ f

Let X and Y be sets, A ⊂ X and f a mapping from X into Y . We denote by f |A, the

restriction of f to A, defined by

f |A : A → Y,

a 7→ f(a),

for each a ∈ A.

Let X and Y be sets, then for a function f : X → Y , there corresponds a function

f : P(X) → P(Y ), where f [A] = {f(x) : x ∈ A} is called the direct image of A ⊂ X;

and a function f← : P(Y ) → P(X), where f←[B] = {x ∈ X : f(x) ∈ B} is called the

pre-image of B ⊂ Y .

1.2.4 Definition

(a) Two sets A and B are said to have the same cardinality, denoted by |A| = |B|, if

there exists a bijective function from A onto B. Sets that have the same cardinality

are also said to be equipotent or equinumerous.

(b) A set S is said to be finite if S = ∅ or if there is an n ∈ N such that

|S| = |{1, 2, . . . , n}|.

(c) A set S is said to be countable if S is finite or |S| = |N|.

(d) A set S is said to be uncountable if S is not countable.
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We define for a subset A of a universal set X the characteristic function of A, denoted by

χ
A

, by

χ
A
(x) =

{
1 if x ∈ A
0 if x 6∈ A.

We use P(X) to denote the power set of a set X, that is, P(X) = {A : A ⊂ X}.

1.2.5 Definition

A partition of a set is a decomposition of the set into subsets such that every element of

the set is in one and only one of the subsets. We call these subsets the cells of the partition.

1.2.6 Theorem

Let S be a nonempty set and let ∼ be a relation between elements of S that satisfies the

following properties for all x, y, z ∈ S:

(1) x ∼ x (Reflexivity).

(2) If x ∼ y, then y ∼ x (Symmetry).

(3) If x ∼ y and y ∼ z, then x ∼ z (Transitivity).

Then ∼ yields a natural partition of S, where

[x] = {s ∈ S : s ∼ x}

is the cell containing x, for all x ∈ S.

Conversely, each partition of S gives rise to a natural∼ satisfying the reflexive, symmetric

and transitive properties if x ∼ y.

This leads to the following well-known definition.

1.2.7 Definition

A relation ∼ on a set S satisfying the reflexive, symmetric and transitive properties de-

scribed in Theorem 1.2.6 is an equivalence relation on S. Each cell [x] in the natural

partition given by an equivalence relation is an equivalence class.

Since vector spaces are of particular importance throughout this thesis, we present the

definitions of some well-known algebraic structures leading to a precise definition of a

vector space.
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1.2.8 Definition (Binary operation)

A binary operation ∗ on a set S is a rule that assigns to each ordered pair (x, y) of elements

of S some element of S.

1.2.9 Definition

A group (G, ∗) is a set G, together with a binary operation ∗ on G, such that the following

axioms are satisfied:

(a) For each x, y, z ∈ G, (x ∗ y) ∗ z = x ∗ (y ∗ z) (∗ is associative).

(b) There is an element e in G such that e ∗ x = x ∗ e = x, for all x ∈ G. This element

e is called the identity element for ∗ on G.

(c) For each x ∈ G, there is an element x′ ∈ Gwith the property that x∗x′ = x′∗x = e.
The element x′ is an inverse of x with respect to the operation ∗.

A group is a set together with a binary operations but provided that there is no ambiguity,

we simply writeG to denote the group consisting of G together with the binary operation

∗.

1.2.10 Definition (Abelian group)

A group G is abelian if and only if for all x, y ∈ G, x ∗ y = y ∗ x (∗ is commutative).

1.2.11 Definition

A ring (R,+, ·) is a set R together with two binary operations + and · which we call

addition and multiplication, defined on R such that the following axioms are satisfied:

(a) (R,+) is an abelian group.

(b) Multiplication is associative.

(c) For all x, y, z ∈ R, the left distributive law, x · (y + z) = (x · y) + (x · z), and the

right distributive law, (x+ y) · z = (x · z) + (y · z), hold.

Again, we can refer to the ring R when we mean (R,+, ·), provided this causes no con-

fusion.

1.2.12 Definition

A ring in which the multiplication is commutative is a commutative ring. A ring with a

multiplicative identity 1 such that 1 · x = x · 1 = x, for all x ∈ R, is a ring with unity.

1.2.13 Definition

Let R be a ring with unity. An element u in R is a unit of R if it has a multiplicative

inverse in R. If every nonzero element of R is a unit, then R is a division ring. A field is

a commutative division ring.
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1.2.14 Definition

Let F be a field. A vector space (linear space) over F consists of an abelian group X
under addition together with an operation of scalar multiplication of each element of X
by each element of F on the left, such that for all α, β ∈ F and x, y ∈ X, the following

conditions are satisfied:

(a) α · x ∈ X.

(b) α · (βx) = (αβ)x.

(c) (α+ β) · x = (α · x) + (β · x).

(d) α · (x+ y) = (α · x) + (α · y).

(e) 1 · x = x.

The elements of X are vectors, and the elements of F are called scalars.

(X,+, ·) will be denoted simply by X, provided there is no confusion. Throughout this

thesis, for every vector space under consideration, the field of scalars F will be either the

set of real numbers R or the set of complex numbers C. When F = R, we say that X is a

real vector space, and when F = C, we say that X is a complex vector space. When we

refer to a vector space or a vector space over F, we will mean either a real or a complex

vector space.

Let X be a vector space over F, x ∈ X; A and B subsets of X and λ ∈ F. The following

notation is standard:
x+ A := {x+ a : a ∈ A},

A+B := {a + b : a ∈ A, b ∈ B},

λA := {λa : a ∈ A}.

1.2.15 Definition

A subset M of a linear space X over F is called a linear subspace of X if

(a) x+ y ∈M , for all x, y ∈M , and

(b) λx ∈M , for all x ∈M and for all λ ∈ F.

Clearly, a subset M of a vector space X is a linear subspace if an only if M + M ⊂ M
and λM ⊂ M , for all λ ∈ F. Often, we will simply say subspace rather than the more

cumbersome ‘linear subspace’, when it is understood that the type of subspace in question

is a linear one.
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1.2.16 Definition

Let K be a subset of a linear space X. The linear hull of K, denoted by lin(K) or

span(K), is the intersection of all linear subspaces of X that contain K.

The linear hull of K is also called the linear subspace of X spanned (generated) by K.

1.2.17 Definition

(1) A subset {x1, x2, . . . , xn} of a linear space X is said to be linearly independent if

the equation

α1x1 + α2x2 + · · · + αnxn = 0,

α1, α2, . . . , αn ∈ F, only has the trivial solution α1 = α2 = · · · = αn = 0.

Otherwise, the set {x1, x2, . . . , xn} is linearly dependent.

(2) A subset K of a linear space X is said to be linearly independent if every finite

subset {x1, x2, . . . , xn} of K is linearly independent.

1.2.18 Definition

If {x1, x2, . . . , xn} is a linearly independent subset of linear space X and

X = lin{x1, x2, . . . , xn},

then X is said to have dimension n. In this case we say that {x1, x2, . . . , xn} is a basis

for the linear space X. If a linear space X does not have a finite basis, we say that it is

infinite-dimensional.

1.2.19 Definition

Let S be a subset of a linear space X. We say that:

(a) S is convex if λx+ (1 − λ)y ∈ S, whenever x, y ∈ S and λ ∈ [0, 1].

(b) S is balanced if λx ∈ S, whenever x ∈ S and |λ| ≤ 1.

(c) S is absolutely convex if S is convex and balanced.

(d) S is absorbing if for each x ∈ X, there corresponds some r > 0 such that x ∈ αS
if |α| ≥ r.

1.2.20 Definition

Let S be a subset of a linear space X. Then we define the convex hull of S, denoted coS,

to be the intersection of all convex sets which contain S.

In order to apply the techniques of analysis to vector spaces, it is necessary for the vector

space to have a topological structure.

1.2.21 Definition

(a) τ ⊂ P(X) is said to be a topology on the set X if it satisfies the following condi-

tions:
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(i) ∅ ∈ τ and X ∈ τ .

(ii) If {Ai}n
i=1 ⊂ τ , for n ∈ N; then

⋂n
i=1 ∈ τ .

(iii) If {Ai}i∈I ⊂ τ , for I an index set; then
⋃

i∈I Ai ∈ τ.

(b) If τ is a topology on X, then the pair (X, τ ) is called a topological space, and the

sets in τ are called open sets in X. We may leave out the reference to τ if there is

no confusion. We say that a set A ⊂ X is closed if its complement is open.

(c) If τ1 and τ2 are topologies onX with τ1 ⊂ τ2, then we say that τ1 is weaker (coarser)

than τ2 and that τ2 is stronger (finer) than τ1.

(d) If X, Y are topological spaces and f : X → Y , then f is called continuous if A
open in Y implies f−1(A) is open in X. f is called open if A open in X implies

that f(A) is open in Y .

(e) If {fi}i∈I is a family of mappings from a topological spaceX to a topological space

Y , then the weak topology on X generated by {fi}i∈I, for I an index set, is defined

to be the weakest topology on X such that fi is continuous for each i ∈ I .

(f) We say that a topological space X is Hausdorff if each pair of distinct points can

be separated by open sets. That is, for each x, y ∈ X such that x 6= y, we have that

there exists Ux, Uy ∈ τ such that x ∈ Ux, y ∈ Uy and Ux ∩ Uy = ∅.

1.2.22 Definition

Let A be a nonempty subset of a topological space (X, τ ). We define the collection

τA = {G ∩ A : G ∈ τ}. It is simple to confirm that τA is a topology on A. It is called the

relative (subspace) topology on A and we say that A is a topological subspace of X.

1.2.23 Definition

Let (X, τ1), (Y, τ2) be topological spaces.

(a) X is said to be homeomorphic (or topologically equivalent) to Y if there exists a

bijective mapping f : X → Y such that f and f−1 are continuous. In this case, the

function f is called a homeomorphism.

(b) X is said to be embedded in Y if X is homeomorphic to a topological subspace of

Y . In this case, we say that there exists an embedding g : X → Y and we often

write g : X ↪→ Y .

1.2.24 Definition

Let (X, τ ) be a topological space and A ⊂ X. Then the interior of A, denoted A◦, is

defined as

A◦ =
⋃{

B ∈ τ : B ⊂ A
}
.
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This is the largest open set contained in A and we immediately have that A is open if and

only if A = A◦.

1.2.25 Definition

Let (X, τ ) be a topological space and A ⊂ X. Then the closure of A, denoted by A (or

cl(A)), is given by

A =
⋂ {

B ⊂ X : Bc ∈ τ, A ⊂ B
}
.

Therefore, the closure of A is the smallest closed set containing A, and we trivially have

that A is closed if and only if A = A.

1.2.26 Definition

Let (X, τ ) be a topological space.

(a) If A is a subset of X, then we say that a set B ⊂ A is dense in A if A ⊂ B. We

sometimes say that B is τ -dense in A to indicate that B is dense in A with respect

to the topology τ .

(b) X is said to be separable if there exists a countable set dense in X.

1.2.27 Definition

(a) Let A be a subset of a topological space X. We call A = {Gi ∈ τ : i ∈ I},

a collection of open subsets of X for some index set I , an open cover for A if

A ⊂ ∪i∈IGi. Furthermore, if a finite subcollection of A is also an open cover of A,

we say that A is reducible to a finite cover (or contains a finite subcover).

(b) A subsetA of a topological spaceX is compact if every open cover ofA is reducible

to a finite cover.

1.2.28 Definition

Let (X, τ ) be a topological space.

(a) A set B ⊂ P(X) is called a base for τ if and only if each element of τ is the union

of elements of B.

(b) A set S ⊂ P(X) is called a subbase for τ if and only if the family of all finite

intersections of elements of S is a base for τ .

1.2.29 Definition

Let {(Ai, τi)}i∈I be a collection of topological spaces for I an index set. For each k ∈ I ,

we define the projection pk to be the mapping

pk :
∏

i∈I
Ai → Ai, (ai) 7→ ak.

We define the product topology on
∏

i∈I Ai to be the weak topology generated by all such

projections.
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It is sometimes more convenient to work with neighbourhoods instead of open sets.

1.2.30 Definition

Let (X, τ ) be a topological space and let x ∈ X. A subset N of X is a neighbourhood of

x if and only if N contains an open set O containing x. The class of neighbourhoods of

x ∈ X, denoted Nx, is called the neighbourhood system of x.

There are four central facts about the neighbourhood system Nx of any point x ∈ X and

are thus termed the neighbourhood axioms. It should be noted that these axioms may be

used to define a topology on X. We list the neighbourhood axioms below as a proposition

and they are simple to prove.

1.2.31 Proposition

(1) Nx is not empty and x belongs to each member of Nx.

(2) The intersection of any two members of Nx belongs to Nx.

(3) Every superset of a member of Nx belongs to Nx.

(4) Each member N ∈ Nx is a superset of a member M ∈ Nx, where M is a neigh-

bourhood of each of its points; i.e., M ∈ Ny, for every y ∈M .

1.2.32 Definition

A sequence (xn)n∈N in a topological space (X, τ ) converges to a point x ∈ X, or x is the

limit of the sequence (xn), denoted by

lim
n→∞

xn = x or xn → x as n→ ∞,

if and only if for each open set O containing x, there exists N ∈ N such that n ≥ N ,

implies that xn ∈ O.

1.2.33 Theorem

Let (X, τ ) be a topological space and A ⊂ X. A set B ⊂ X is dense in A if and only if

for each a ∈ A, there exists a sequence (bn) contained in B such that lim
n→∞

bn = a.

1.2.34 Definition

(a) Let X be a nonempty set. A metric on X is a real function d onX×X that satisfies:

(i) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y, for all x, y ∈ X.

(ii) d(x, y) = d(y, x), for all x, y ∈ X (Symmetry).

(iii) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X (Triangle inequality).

(b) Let X be a set and d a metric on X. Then ordered pair (X, d) is called a metric

space.

(c) Let (X, d) is a metric space. We define an open ball to be a set Bε(x) = {y ∈ X :
d(x, y) < ε}, for x ∈ X and ε ∈ R+.
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If (X, d) is a metric space, then it is a simple matter to show that the collection of open

balls {Bε(x) : x ∈ X, ε ∈ R+} is in fact a base for a topology. This topology is referred

to as the metric topology on X. It is easy to show that every set equipped with a metric

topology is a Hausdorff space.

1.2.35 Definition

(a) Let (xn) be a sequence in a a metric space (X, d). Then a sequence (xn) in X is

called a Cauchy sequence if given ε > 0 there exists a natural number N = N(ε)
such that

d(xn, xm) < ε, for all n,m ≥ N.

Equivalently, (xn) is Cauchy if

lim
n,m→∞

d(xn, xm) = 0.

(b) A metric space (X, d) is said to be complete if every Cauchy sequence in X con-

verges in X. A subset M of X is complete if every Cauchy sequence in M con-

verges in M .

Following [67], if X is a set and d : X ×X → R+ satisfies the properties (ii) and (iii) in

Definition 1.2.34 (a) but with property (i) replaced by:

(i’) d(x, y) ≥ 0, and d(x, x) = 0, for all x, y ∈ S,

then d is said to be a semimetric, and the ordered pair (X, d) is called a semimetric space.

1.2.36 Definition

Let X be a real vector space.

(a) A map ‖ · ‖ : X → R is called a norm if the following conditions are satisfied:

(i) ‖x‖ ≥ 0, for all x ∈ X and ‖x‖ = 0 if and only if x = 0.

(ii) ‖αx‖ = |α|‖x‖, for all x ∈ X and α ∈ R.

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, for all x, y ∈ X (Triangle inequality).

(b) The pair (X, ‖ · ‖) is called a normed linear space.

(d) The set BX := {x ∈ X : ‖x‖ ≤ 1} is called the closed unit ball in X.

(e) If ‖·‖ satisfies properties (ii) and (iii) listed in (a) above but condition (i) is replaced

by:

(i’) ‖x‖ ≥ 0, for all x ∈ X,
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then it is called a seminorm and we call the pair (X, ‖ · ‖) a seminormed linear

space.

1.2.37 Theorem

(1) If (X, ‖ · ‖) is a normed linear space, then

d(x, y) = ‖x− y‖

defines a metric on X. Such a metric d is said to be induced or generated by the

norm ‖ · ‖. Thus, every normed linear space is a metric space and therefore inherits

a natural topological structure as a metric space. Unless otherwise indicated, we

will always consider (X, ‖ · ‖) to be a topological space with respect to the induced

metric.

(2) If d is a metric on a linear space X satisfying the properties: For all x, y, z ∈ X and

for all λ ∈ F,

(i) d(x, y) = d(x+ z, y + z) (Translation Invariance)

(ii) d(λx, λy) = |λ|d(x, y) (Absolute Homogeneity),

then

‖x‖d = d(x, 0)

defines a norm on X.

1.2.38 Example

Consider the set of real numbers R. It is easy to show that d : R × R → R+, (x, y) 7→
|x − y| is a metric on R. The corresponding induced topology τord is referred to as the

usual topology on R.

1.2.39 Definition

A linear topology on a vector space X over R is a topology such that the two mappings

+ : X ×X → X, (x, y) 7→ x+ y,

· : R ×X → X, (t, y) 7→ t · y,

are continuous when R is equipped with τord, and R×X andX×X have the corresponding

product topologies.

A vector space X with a linear topology is called a topological vector space (topological

linear space).

1.2.40 Definition

Let (X, τ ) be a topological space and A a topological subspace of (R, τord), where τord is

once again the usual topology on R. We say that a function f : X → A is upper (resp.,

lower) semicontinuous if {x ∈ X : f(x) < α} ∈ τ (resp., {x ∈ X : f(x) > α} ∈ τ ), for

each α ∈ A.
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If (X, ‖ · ‖) is complete with respect to the norm, then (X, ‖ · ‖) is called a Banach space

and if a Banach space (X, ‖ · ‖) is separable as a topological space, then we will refer to

(X, ‖ · ‖) as a separable Banach space.

1.2.41 Definition

Let A be a subset of a normed linear space (X, ‖ · ‖). We define the closed convex hull of

A, denoted coA to be the closure of the convex hull of A.

Clearly, the closed convex hull of A is the smallest closed convex set containing A. and

A is closed and convex if and only if A = coA.

We say that a subset of a Banach space (X, ‖ · ‖) is norm compact if it is compact with

respect to the metric topology induced by ‖ · ‖.

1.2.42 Theorem (Mazur, see p51, [16])

The closed convex hull of a norm compact subset of a Banach space is norm compact.

1.2.43 Definition

A subset S of a be a normed linear space (X, ‖ · ‖) is bounded if S ⊂ Br(x) = {y ∈ X :
‖x− y‖ ≤ r}, for some x ∈ X and r > 0.

1.2.44 Theorem ([78])

Let (X, ‖ · ‖) be a normed linear space. Then every compact set is bounded and complete.

Note that the converse of the theorem above does not hold in general.

1.2.45 Theorem

Let (X, ‖ · ‖) be a Banach space and let S be a subset of X. Then S is complete if and

only if S is closed in X.

If it causes no confusion, we will refer to the normed linear space (X, ‖ · ‖) simply as X.

1.2.46 Definition

(a) Let M be linear subspace of a vector space X. For all x, y ∈ X, define

x ≡ y(mod M) ⇔ x− y ∈M.

It is easy to verify that ≡ defines an equivalence relation on X.

(b) For x ∈ X, denote by

[x] := {y ∈ X : x ≡ y(mod M)} = {y ∈ X : x− y ∈M} = x+M,

the coset of x with respect to M . The quotient space (factor space) X/M consists

of all equivalence classes [x], x ∈ X.
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1.2.47 Proposition ([78])

Let M be a linear subspace of a vector space X over F. For any x, y ∈ X and λ ∈ F,

define the operations

[x] + [y] = [x+ y] and λ[x] = [λx].

Then X/M is a linear space with respect to these operations.

Note that the operations above are well defined and do not depend on the chosen repre-

sentants.

We now introduce a norm on a quotient space in a natural way.

1.2.48 Definition

Let M be a closed linear subspace of a normed linear space X over F. For x ∈ X, define

‖[x]‖ := inf
y∈[x]

‖y‖.

1.2.49 Proposition

Let M be a closed linear subspace of a normed linear space X over F. The quotient space

X/M is a normed linear space with respect to the norm

‖[x]‖ := inf
y∈[x]

‖y‖, where [x] ∈ X/M.

1.2.50 Definition

Let S be a nonempty set. A partial order relation (partial ordering) in S is a relation ≤
which satisfies the following properties:

(1) x ≤ x for every x ∈ S (Reflexivity).

(2) x ≤ y and y ≤ x⇒ x = y, for all x, y ∈ S (Antisymmetry).

(3) x ≤ y and y ≤ z ⇒ x ≤ z, for all x, y, z ∈ S (Transitivity).

Furthermore, if for any two elements x and y of S one of the relations:

x ≤ y or y ≤ x

holds, then S is said to be totally ordered under ≤. A nonempty set S in which there is

defined a partial order relation is called a partially ordered set. We sometimes say that the

ordered pair (S,≤) is a partially ordered set if there is any confusion as to which partial

ordering we are referring to.

1.2.51 Definition

Let S be a subset of a partially ordered set L (= (L,≤)).
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(a) An element u ∈ L is an upper bound for S if x ≤ u, for all x ∈ S.

(b) An element l ∈ L is an lower bound for S if l ≤ x, for all x ∈ S.

(c) An element m ∈ L, denoted by sup(S), is said to be a supremum (least upper

bound) for S if

(i) m is an upper bound for S, and

(ii) for all upper bounds u for S, we have that m ≤ u.

(d) An element m ∈ L, denoted inf(S), is said to be an infimum (greatest lower bound)

for S if

(i) m is a lower bound for S, and

(ii) for all lower bounds l for S, we have that l ≤ m.

(e) An element m ∈ S is a maximal element (resp., minimal element) of S if s ∈ S
such that m ≤ s implies that m = s (resp., s ∈ S such that s ≤ m implies that

s = m), denoted max(S) (resp., min(S)).

1.2.52 Definition

Let (L1,≤1), (L2,≤2) be partially ordered sets. Then we say that a mapping T : L1 → L2

is order preserving if for any x, y ∈ L1,

x ≤1 y ⇒ T (x) ≤2 T (y).

1.2.53 Definition

Let L (= (L,≤)) be a partially ordered set.

(a) If every subset of L consisting of two elements has a supremum and an infimum,

then L is a lattice. We also denote sup{x, y} by x ∨ y and inf{x, y} by x ∧ y, for

all x, y ∈ L.

(b) If L is a lattice, we say that L is complete, if each subset D ⊂ L has a join (the

supremum):
∨
D ∈ L. By the duality principle, this is equivalent to the require-

ment that each D ⊂ L has a meet (the infimum):
∧
D. If {xi : i ∈ I} ⊂ L, for I an

index set, then we denote the supremum (resp., infimum) of {xi : i ∈ I} by
∨

i∈I xi

(resp.,
∧

i∈I xi).

(c) If L is a lattice, then L is called a distributive lattice if x∧(y∨z) = (x∧y)∨(x∧z),
for all x, y, z ∈ L.

(d) If L is a lattice such that for all x ∈ L and {yj}j∈J ⊂ L, for J an index set, we

have that x ∧ (
∨

j∈J yj) =
∨

j∈J(x ∧ yj), then L is said to be infinitely distributive

(a frame).
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(e) If L and S are lattices under the same partial ordering and S ⊂ L, then we say that

S is a sublattice of L.

1.2.54 Definition

Let L (= (L,≤)) be a lattice. A mapping ′ : L → L is called an involution, if for each

a ∈ L, (a′)′ = a and any lattice with an involution is said to satisfy the law of double

negation. An involution is said to be order reversing if a ≤ b implies b′ ≤ a′, for all

a, b ∈ L. If L is equipped with an order reversing involution, then we say that L is de

Morgan.

1.2.55 Definition

(a) A chain is a totally ordered subset of a partially ordered set.

(b) A choice function is a function f , defined on a collection X of nonempty sets, such

that for every set S in X, f(S) is an element of S.

A brief mention of Zorn’s lemma and the axiom of choice is appropriate since these

statements are implicitly assumed in many of our results.

1.2.56 Lemma (Zorn’s lemma)

Every partially ordered set, in which every chain has an upper bound, contains at least

one maximal element.

1.2.57 Lemma (Axiom of choice)

For any collection of nonempty sets X, there exists a choice function.

It is well-known that Zorn’s lemma is logically equivalent to the axiom of choice. For

further reading about the axiom of choice and it’s consequences, the reader is referred to

[26].

1.2.58 Definition

Let (X, d) be a metric space. If A ∈ P(X) and x ∈ X, the distance between x and A is

defined by

d(x,A) = inf{d(x, y) : y ∈ A}.

If A,B ∈ P(X), then the Hausdorff distance dH between A and B is defined by

dH(A,B) = sup
a∈A

d(a,B) ∨ sup
b∈B

d(b, A).

In the special case where B = {0}, let

‖A‖H = dH(A, {0}).

In general dH is not a metric but a semimetric and ‖ · ‖H is not a norm but a seminorm.

We now recall some more terminology from [56, 59, 74, 83].
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1.2.59 Definition

(a) A real vector space E is called an ordered vector space, if (E,≤) is a partially

ordered set and the vector space structure is compatible with the order structure,

i.e., for all x, y, z ∈ E:

(O.1) x ≤ y ⇒ x+ z ≤ y + z, and

(O.2) x ≤ y ⇒ λx ≤ λy, for all λ ∈ R+.

If, in addition,E is a lattice with respect to ≤, thenE is a vector lattice, also known

as a Riesz space.

(b) If E is a vector lattice, then E+ := {x ∈ E : x ≥ 0} denotes the positive cone

of E. Furthermore, x+ := x ∨ 0, x− := (−x) ∨ 0 and |x| := x ∨ (−x) denote,

respectively, the positive part, negative part and absolute value of x ∈ E. The

following identities hold in E, for all x, y ∈ E:

(I.1) (x ∨ y) + (x ∧ y) = x+ y,

(I.2) (x− y)+ = (x ∨ y)− y.

(c) An ordered vector space E is said to have an order unit e ∈ E+, if for each x ∈ E,

there exists K ∈ R+ such that −Ke ≤ x ≤ Ke.

(d) If E is a Riesz space, then the cone E+ is said to be generating if E = E+ − E+.

(e) IfE is a Riesz space, then we say thatE+ is Archimedean if it follows from y−nx ∈
E+, for all n ∈ N, with y ∈ E+ and x ∈ E that −x ∈ E+. If E+ is Archimedean,

then E is called an Archimedean Riesz space.

If an ordered vector space E has an order unit e ∈ E+, the gauge (also known as the

Minkowski functional) pe of the order interval {x ∈ E : −e ≤ x ≤ e}, is defined by

pe(x) :=
∧

{K > 0 : −Ke ≤ x ≤ Ke}, for all x ∈ E.

It is well-known (and easy to verify) that pe is a seminorm on E. If E is an Archimedean

ordered vector space with an order unit e ∈ E+, then pe is a norm on E.

We recall from [83], that if E is a vector lattice and ‖ · ‖ is a (semi)norm on E, then ‖ · ‖
is called a Riesz (semi)norm on E provided that:

(i) 0 ≤ y ≤ x in E implies that ‖y‖ ≤ ‖x‖, and

(ii) ‖ |x| ‖ = ‖x‖, for all x ∈ E.

1.2.60 Definition ([74])

Let E be a vector lattice.
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(a) A ⊂ E is called solid if x ∈ A, y ∈ E, and |y| ≤ |x| implies y ∈ A. A solid vector

subspace I of E is called an ideal (lattice ideal) of E.

(b) Let B ⊂ E, then B is contained in a smallest ideal I(B) of E containing B, called

the ideal generated by B. The ideal of E generated by a singleton {u}, for u ∈ E,

is called a principle ideal and denoted by Eu.

(c) An element x ≥ 0 of a topological vector lattice E is called a quasi-interior point

of E+ (or a quasi-interior positive element of E) if the principle ideal Ex is dense

in E.

1.3 Operator theory on normed linear spaces

We present some fundamental results from functional analysis. The reader is referred to

[83] for a more comprehensive presentation.

1.3.1 Definition

Let X and Y be vector spaces.

(a) We call a mapping T : X → Y a linear operator if we have T (αx + βy) =
αT (x)+βT (y), for each α, β ∈ R and x, y ∈ X. Note that we denote T (x) by Tx.

(b) A linear operator P : X → X is called a projection if P 2x = P (P (x)) = Px, for

all x ∈ X.

(c) We shall denote by IX : X → X the identity operator on a vector space X, which

is defined by IX(x) = x, for all x ∈ X.

1.3.2 Definition

Let X and Y be vector spaces and T : X → Y be a linear operator.

(a) We denote the range of T by R(T ) = {y ∈ Y : ∃x ∈ X such that Tx = y}. R(T )
is a vector subspace of Y .

(b) We denote the kernel or null space of T by N (T ) = {x ∈ X : Tx = 0}. N (T ) is

a vector subspace of X.

(c) We define the rank of a linear operator to be the dimension of R(T ) as a vector

space.

(d) We define the nullity of the operator to be the dimension of N (T ) as a vector space.

1.3.3 Definition

Let (X, d1) and (Y, d2) denote metric spaces and let T : X → Y be an operator.
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(1) T is said to be an isomorphism if T is a bijection.

(2) T is called an isometry (or T is isometric) if d2(Tx, 0) = d1(x, 0), for all x ∈ X.

1.3.4 Definition

Let X and Y denote normed linear spaces and let T : X → Y denote a linear operator.

(a) T : X → Y is called bounded if there exists a constant C > 0 such that

‖Tx‖ ≤ C‖x‖, for all x ∈ X.

(b) T : X → Y is called a metric surjection if T is surjective and

‖y‖ = inf{‖x‖ : x ∈ X, Tx = y},

for every y ∈ Y . Metric surjections are sometimes referred to as quotient operators.

1.3.5 Remark

(1) Note that with this terminology, we are able to give a precise meaning to the state-

ment that one metric space is essentially the same as another - that is, a metric

space is said to be isometrically isomorphic to another metric space if there exists

an isometric isomorphism from the one space onto the other.

(2) In view of the fact that normed linear spaces are metric spaces, we consider two

normed linear spaces to be essentially the same as each other (isometrically iso-

morphic), if there is a linear operator from the one onto the other that is also an

isometric isomorphism.

(3) An isomorphism from a vector lattice onto another vector lattice, which is also order

preserving, is called a vector lattice isomorphism.

(4) It is a well-known fact that a linear operator from one vector space to another is

bounded if and only if it is continuous (see e.g. [76]), and we will therefore use

these terms interchangeably.

(5) Statement (b) in the previous definition is equivalent to T : X → Y mapping the

open unit ball ofX onto the open unit ball of Y . This implies that Y is isometrically

isomorphic to the quotient space

X/N (T ) = {x+ y : x ∈ X, y ∈ N (T )}.

1.3.6 Theorem (completion)

Let (X, d) be a metric space. Then there exists a complete metric space (X̃, d̃) which

has a subspace W̃ that is, isometric with X and is dense in X̃ . This space X̃ is unique

except for isometries, that is, if X̂ is any complete metric space having a dense subspace

Ŵ isometric with X, then X̂ and X̃ are isometric.
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1.3.7 Definition

Let X and Y be normed linear spaces.

(a) We shall denote by L(X, Y ) the collection of all linear operators from X into Y . If

X = Y , then we shall write L(X,X) as L(X).

(b) We define addition and scalar multiplication on L(X, Y ) as follows. Let T, S ∈
L(X, Y ) and let λ be a scalar.

(T + S)x := Tx+ Sx, and

(λT )x := λTx,

for all x ∈ X. Note that L(X, Y ) is a vector space under these operations.

(c) In the case where Y = R, we shall write L(X, Y ) as X∗. The elements of X∗ are

called linear functionals and X∗ is called the algebraic dual of X.

(d) X∗∗ = (X∗)∗ is called the algebraic bidual of X.

1.3.8 Definition

(a) We define the normed linear space L(X, Y ) by L(X, Y ) := {T ∈ L(X, Y ) :
T is bounded} together with the operator norm ‖ · ‖ defined by ‖T‖ = sup{‖Tx‖ :
‖x‖ ≤ 1}, for all T ∈ L(X, Y ). If X = Y , then we write L(X, Y ) as L(X).

(b) In the case where Y = R, we shall write L(X, Y ) as X ′. The elements of X ′ are

called linear functionals and X ′ is called the continuous dual of X.

(c) We call X ′′ = (X ′)′ the continuous bidual of X.

1.3.9 Theorem (Hahn-Banach)

Let (X, ‖ · ‖) be a normed linear space and f a bounded linear functional on a linear

subspace M of X. Then there exists a linear functional F on X, such that F |M = f and

‖F‖ = ‖f‖.

1.3.10 Corollary (Hahn-Banach)

(1) If X is a normed linear space and x ∈ X, then there exists x′ ∈ X ′ of norm 1 such

that x′(x) = ‖x‖.

(2) If X is a normed linear space, then, for all x ∈ X, we have ‖x‖ = sup{|x′(x)| :
‖x′‖ ≤ 1, x′ ∈ X ′}.

(3) If X is a normed linear space and x′(x) = 0, for all x′ ∈ BX ′ , then x = 0, i.e., BX ′

separates points in X.

Let X be a normed linear space. Then each element x ∈ X gives rise to a linear functional

Fx in X ′′ in the following way. We define Fx by

Fx(f) = f(x),
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where f ∈ X ′.

Fx is called the functional on X ′ induced by the vector x and we refer to functionals of

this type as induced linear functionals. The mapping x→ Fx is an isometric isomorphism

of X into X ′′ (see [76], p. 231) and we can thus regard X as a subset of X ′′.

1.3.11 Definition

Let (X, ‖ · ‖) be a normed linear space.

(a) The topology on X generated by the norm is called the strong topology on X.

(b) The topology on X generated by all the linear functionals in X ′ is called the weak

topology on X and is denoted by σ(X,X ′).

(c) The weak topology on X ′ is denoted by σ(X ′, X ′′).

(d) The weak topology on X ′ generated by all the induced linear functionals on X ′ is

called the weak∗ topology on X ′ and is denoted by σ(X ′, X). Note that σ(X ′, X)
is weaker than σ(X ′, X ′′).

(e) A normed linear space X is called reflexive if X = X ′′, in this case the weak and

the weak∗ topologies on X ′ coincide.

(f) We define the weakly compact sets of X to be the subsets of X that are compact

with respect to the weak topology on X.

1.3.12 Theorem (Krein-Smulian, [36], p.582)

The closed convex hull of a weakly compact subset of a Banach space is weakly compact.

1.3.13 Definition

Let E,F be ordered vector spaces and let T : E → F be a linear operator.

(a) T is called positive if Tx ≥ 0 for all x ∈ E, x ≥ 0; T is called strictly positive if

Tx > 0, for all x ∈ E, x > 0.

(b) IfE,F are vector lattices, T is called a lattice homomorphism if T (x∨y) = Tx∨Ty
and T (x ∧ y) = Tx ∧ Ty, for all x, y ∈ E.

1.4 Scalar-valued Lp spaces

The classical Lp space is an important concrete example of a Riesz spaces. For vari-

ous reasons, Lp spaces are studied extensively in functional analysis and measure theory.

There are many texts that cover Lp spaces in more detail and the reader is referred to [23]

for a more thorough treatment. We will also present the basic notions and notation of

measure theory which are necessary for our discussion about Lp spaces.
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1.4.1 Definition

Let Ω denote a nonempty set.

(a) Σ ⊂ P(Ω) is called a σ-algebra on Ω if the following conditions hold:

(i) Ω ∈ Σ.

(ii) A ∈ Σ, then Ac ∈ Σ.

(iii) {Ai}i∈N ⊂ Σ, then
⋃∞

i=1Ai ∈ Σ.

(b) If Σ and Σ0 are σ-algebras on Ω such that Σ0 ⊂ Σ, then we say that Σ0 is a sub-σ-

algebra of Σ.

(c) If Σ is a σ-algebra on Ω, then the pair (Ω,Σ) is called a measurable space and the

sets in Σ are called measurable sets.

1.4.2 Definition

Let (Ω,Σ) be a measurable space. A (nonnegative, real) measure on (Ω,Σ) is a set func-

tion

µ : Σ → [0,∞] such that:

(i) µ is countably additive (or σ-additive). That is, for a mutually disjoint collection

{Ai}i∈N, with Ai ⊂ Ω, for each i ∈ N, we have µ(
⋃∞

i=1Ai) =
∑∞

i=1 µ(Ai), and

(ii) µ(∅) = 0.

1.4.3 Definition

Let (Ω,Σ) be a measurable space and µ a measure on (Ω,Σ).

(a) The triple (Ω,Σ, µ) is called a (real) measure space.

(b) If µ(Ω) = 1, then µ is called a probability measure and (Ω,Σ, µ) is called a proba-

bility space. In this case we usually denote µ by P .

(c) If µ(Ω) <∞, then we say that the measure space (Ω,Σ, µ) is finite.

(d) If (Ω,Σ, µ) is a measure space, (X, τ ) a topological space, then f : Ω → X is

called µ-measurable if U open in X implies f−1(U) is measurable in Ω. We may

drop the reference to µ if there is no confusion.

(e) If (Ω,Σ, µ) is a measure space, (X, τ ) a topological space and Σ0 a sub-σ-algebra

of Σ, then f : Ω → X is said to be Σ0-measurable ifU open inX implies f−1(U) ∈
Σ0.

1.4.4 Definition

Let (Ω, τ ) be a topological space.
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(1) We define the Borel algebra B(Ω) to be the smallest σ-algebra on Ω that contains

all of the elements of τ .

(2) A Borel measure is any measure on B(Ω).

Throughout the remainder of this section, (Ω,Σ, µ) will denote a real measure space un-

less otherwise specified. Let M(Ω,Σ, µ) denote the set of all real-valued, µ-measurable

functions on Ω. Then M(Ω,Σ, µ) becomes a real vector space under pointwise addition

and scalar multiplication.

1.4.5 Definition

We define a null set to be a set of measure zero, and we identify functions that differ only

on a null set, denoted f ∼ g if and only if µ({x ∈ Ω : f(x) 6= g(x)}) = 0. In this case

we write f = g almost everywhere [µ], often abbreviated to f = g a.e. [µ]. Once again,

the reference to µ can be omitted if there is no confusion.

It should be be noted that it can easily be shown that ∼ as defined above is an equivalence

relation and hence, induces a partition on M(Ω,Σ, µ).

1.4.6 Definition

Let (Ω,Σ, µ) be a measure space. We define L0(Ω,Σ, µ) to be the collection of equiva-

lence classes of a.e. [µ] equivalent functions in M(Ω,Σ, µ). If there is no confusion, we

can simply write L0(µ).

L0(Ω,Σ, µ) is a real vector space under [f ] + [g] = [f + g] and α[f ] = [αf ], for [f ], [g] ∈
L0(Ω,Σ, µ) and α a scalar. L0(Ω,Σ, µ) is called the space of µ-measurable functions in

M(Ω,Σ, µ), and we treat its elements as functions rather than equivalence classes.

1.4.7 Definition

Let (Ω,Σ, µ) be a measure space. A function s : Ω → R, with s(Ω) finite is called a step-

function (simple function). If {α1, α2, ..., αn} are the values of s and Ai = s−1({αi}),
then s =

∑n
i=1 αiχAi

. Note that s is measurable if and only if the Ai’s are measurable

sets.

We define order on L0(µ) pointwise almost everywhere, i.e., f ≤ g ⇔ f(ω) ≤ g(ω), for

all ω ∈ Ω a.e. Then L0(µ) is a Riesz space under the lattice operations f ∨g = max{f, g}
and f ∧ g = min{f, g}, for all f, g ∈ L0(µ).

1.4.8 Theorem

Let (Ω,Σ, µ) be a measure space. Let f : Ω → [0,∞] be measurable. Then there exists

a nondecreasing sequence (sn) of measurable step-functions that converge pointwise to f
on Ω, and uniformly to f on any set on which f is bounded.
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This leads us to the definition of the integral of a nonnegative function on Ω.

1.4.9 Definition

Let (Ω,Σ, µ) be a measure space.

(a) Let s : Ω → [0,∞) be a measurable step-function, then, for E ∈ Σ, we define the

integral of s with respect to µ to be
∫

E

sdµ =
n∑

i=1

αiµ(s−1({αi}) ∩E),

with s(Ω) = {α1, α2, . . . , αn}.

(b) If f : Ω → [0,∞] is a measurable function andE ∈ Σ, then we define the Lebesgue

integral of f with respect to µ to be
∫

E

fdµ = sup

{ ∫

E

sdµ : 0 ≤ s ≤ f, s a step-function

}
.

(c) Let Σ1 be a sub-σ-algebra of Σ. We define

(Σ1)∫

Ω

fdµ = sup

{∫

A

fdµ : A ∈ Σ1

}
.

The following two theorems are of fundamental importance in measure theory. Note that

since L0(µ) is a Riesz space, we use the notation of Definition 1.2.59.

1.4.10 Lemma (Fatou’s Lemma)

Let (Ω,Σ, µ) be a measure space. If (fn) is in L0(µ)+, then
∫

Ω

(
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

∫

Ω

fndµ.

1.4.11 Theorem (Lebesgue’s Monotone Convergence Theorem)

Let (Ω,Σ, µ) be a measure space. If (fn) is a nondecreasing sequence in L0(µ)+ and

f(x) = limn→∞ fn(x), then f is Σ-measurable, and

lim
n→∞

∫

Ω

fndµ =

∫

Ω

fdµ.

As a consequence of Lebesgue’s Monotone Convergence Theorem, this integral is linear.

Therefore, if f : Ω → [−∞,∞] is a measurable function, then
∫

E
(f+ − f−)dµ =∫

E
f+ −

∫
E
f−dµ, which is well defined if at least one of the integrals of f+ or f− is

finite. Similarly,
∫

E
|f |dµ =

∫
E
(f+ + f−)dµ =

∫
E
f+dµ +

∫
E
f−dµ, which leads us to

the definition of integrability.
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1.4.12 Definition

Let (Ω,Σ, µ) be a measure space. A function f : Ω → [−∞,∞] is integrable if and only

if
∫
Ω
|f |dµ <∞.

1.4.13 Lemma

Let (Ω,Σ, µ) be a measure space and f a nonnegative real-valued measurable function on

Ω. Then
∫

X
fdµ = 0 if and only if f = 0 a.e.

We can now define the Lp-spaces.

1.4.14 Definition

Let (Ω,Σ, µ) be a measure space.

(a) Let 1 ≤ p <∞.

(i) We define the function ‖ · ‖p : L0(Ω,Σ, µ) → R+ by

‖f‖p =

( ∫

Ω

|f |pdµ

) 1
p

.

(ii) We define the Lebesgue space of p-integrable functions to be

Lp(Ω,Σ, µ) = {f ∈ L0(Ω,Σ, µ) : ‖f‖p <∞}.

We shall use the shorthand notation Lp(µ) provided that this does not lead to

confusion.

(b) Let p = ∞.

(i) We define ‖ · ‖∞ : L0(Ω,Σ, µ) → R+ by

‖f‖∞ = inf{M > 0 : µ({ω ∈ Ω : |f(ω)| > M}) = 0}.

‖ · ‖∞ is called the essential supremum norm of f .

(ii) We define the Lebesgue space of essentially bounded functions to be

L∞(Ω,Σ, µ) = {f ∈ L0(Ω,Σ, µ) : ‖f‖∞ <∞}.

Again, we use the notationL∞(µ) for brevity provided no ambiguity is caused.

1.4.15 Note

It should be noted that it is easy to verify, that for 1 ≤ p ≤ ∞, ‖ · ‖p is an example of a

Riesz norm on Lp(µ).
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In the case of p = 1, we have from the above definition, that Lp(µ) = L1(µ) is just

the vector space of integrable functions on Ω. The following theorem describes some

important properties of ‖ · ‖p.

1.4.16 Theorem

Let (Ω,Σ, µ) be a measure space and 1 ≤ p ≤ ∞. Choose q such that p−1 + q−1 = 1.

Then the following statements hold:

(1) [Hölder’s Inequality] For all f, g ∈ L0(µ), we have ‖fg‖1 ≤ ‖f‖p‖g‖q.

(2) [Minkowski’s Inequality] For all f, g ∈ L0(µ), we have ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

(3) ‖ · ‖p defines a norm on Lp(µ).

(4) Lp(µ) is complete with respect to ‖ · ‖p.

1.4.17 Theorem

Let (Ω,Σ, µ) be a measure space and let

Sp(R) = {s ∈ Lp(µ) : s a step-function}.

Then Sp(R) is dense in Lp(µ) with respect to ‖ · ‖p, for all 1 ≤ p <∞.

1.5 Vector-valued Lp spaces

We can generalize the classical Lp-spaces of real-valued functions to functions that take

on values in a Banach space. Once again, throughout this section, (Ω,Σ, µ) will denote a

measure space with µ a real measure unless otherwise specified. Let X denote a Banach

space and f : Ω → X denote a function on Ω taking on values in X. The material in this

section is taken mainly from [16]. Notice that for A ⊂ Ω, x ∈ X and t ∈ Ω we have that

xχ
A
(t) =

{
x if t ∈ A
0 if t 6∈ A.

1.5.1 Definition

Let (Ω,Σ, µ) be a measure space. We call s : Ω → X a step-function if there exists

x1, x2, ...xn ∈ X and A1, A2, ..., An ∈ Σ disjoint such that s =
∑n

i=1 xiχAi
.
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1.5.2 Definition

Let (Ω,Σ, µ) be a measure space. We say that f : Ω → X is µ-measurable if there exists

a sequence of step-functions (sn) such that

lim
n→∞

‖sn − f‖ = 0 a.e. [µ].

We denote the space of a.e. [µ] equivalent measurable functions by L0(Ω,Σ, µ,X), and

we will just write L0(µ,X) provided there is no ambiguity.

1.5.3 Definition

Let (Ω,Σ, µ) be a measure space.

(a) Let s : Ω → X be the step-function s =
∑n

i=1 xiχAi
, for x1, x2, ...xn ∈ X and

A1, A2, ..., An ∈ Σ mutually disjoint, then we define

∫

E

sdµ =

n∑

i=1

xiµ(Ai ∩E),

for each E ∈ Σ.

(b) A measurable function f : Ω → X is called Bochner integrable if there exists a

sequence (sn) of X-valued step-functions such that

lim
n→∞

∫

Ω

‖sn − f‖dµ = 0.

In this case,
∫

E
fdµ is defined to be

∫

E

fdµ := lim
n→∞

∫

E

sndµ,

for each E ∈ Σ.

It is known that the above definition of the integral of a Bochner integrable function is

well defined and independent of the defining sequence (sn) (see [16, p.45]).

We present a natural characterization of Bochner integrability that is similar to the scalar

case. The proof can be found in [16].

1.5.4 Proposition

Let (Ω,Σ, µ) be a measure space. A measurable function f : Ω → X is Bochner inte-

grable if and only if ∫

Ω

‖f‖dµ <∞.
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1.5.5 Definition

Let (Ω,Σ, µ) be a measure space and X a Banach space.

(a) Let 1 ≤ p <∞.

(i) We define the function 4p : L0(Ω,Σ, µ,X) → R ∪ {∞} by

4p(f) =

( ∫

Ω

‖f‖pdµ

) 1
p

.

(ii) We define the Bochner space of p-integrable functions to be

Lp(Ω,Σ, µ,X) = {f ∈ L0(Ω,Σ, µ,X) : 4p(f) <∞}.

When unambiguous, we shall use the shorthand notation Lp(µ,X).

(b) Let p = ∞.

(i) We define the function 4∞ : L0(Ω,Σ, µ,X) → R ∪ {∞} by

4∞(f) = inf{M > 0 : µ({ω ∈ Ω : ‖f(ω)‖ > M}) = 0}.

(ii) We define the Bochner space of essentially bounded functions to be

L∞(Ω,Σ, µ,X) = {f ∈ L0(Ω,Σ, µ,X) : 4∞(f) <∞}.

Again we use the shorthand notation L∞(µ,X) provided that no ambiguity is

caused.

The Banach space X in the above definition is referred to as the target space. We now

present some important properties of 4p. The proof of the following theorem is similar

to the proof for the scalar case.

1.5.6 Theorem ([16])

Let (Ω,Σ, µ) be a measure space.

(1) [Minkowski’s Inequality] 4p(f + g) ≤ 4p(f) + 4p(g), for all f, g ∈ Lp(µ,X).

(2) 4p defines a norm on Lp(µ,X).

(3) Lp(µ,X) is complete with respect to 4p.

Since the Banach space X has no order structure, Lp(µ,X) does not inherit a pointwise

ordering from X as in the scalar case. The final result for this section is similar to the

result in the scalar case.
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1.5.7 Theorem ([10])

Let (Ω,Σ, µ) be a measure space and let

Sp(X) = {s ∈ Lp(µ,X) : s a step-function},

then, for 1 ≤ p <∞, Sp(X) is dense in Lp(µ,X) with respect to 4p.

PROOF.

Let (Ω,Σ, µ) be a measure space, 1 ≤ p < ∞ and f ∈ Lp(µ,X). Then since f is

integrable, there exists a sequence (sn) of step-functions such that

lim
n→∞

41(f − sn) = lim
n→∞

∫

Ω

‖f − sn‖dµ = 0.

We need to show that lim
n→∞

4p(f − sn) = 0. To that end, assume that 4p(f − sn) 6→ 0 as

n → ∞. Then there exists an ε′ > 0 such that for any N ′ ∈ N, there exists n ≥ N ′ such

that

4p(f − sn) =

( ∫

Ω

‖f − sn‖
pdµ

) 1
p

≥ ε′

⇔
∫
Ω
‖f − sn‖pdµ ≥ (ε′)p > 0 ⇒ ‖f − sn‖p 6= 0 a.e., by Lemma 1.4.13. Therefore,

∃δ > 0, ∃A ∈ Σ, µ(A) > 0 such that for all ω ∈ A, ‖f(ω)− sn(ω)‖p ≥ δ, for all n ≥ N ′,

⇔ ∀ω ∈ A, ‖f(ω) − sn(ω)‖ ≥ δ
1
p

⇒ 41(f − sn) ≥

∫

A

‖f − sn‖dµ ≥

∫

A

δ
1
pdµ = δ

1
pµ(A) > 0 (again by Lemma 1.4.13)

⇒ 41(f − sn) 6→ 0 as n→ ∞.

That is, 41(f − sn) → 0 as n → ∞ implies 4p(f − sn) → 0 as n → ∞ and thus we

have 4p(f − sn) → 0 as n→ ∞.

Now, let ε > 0 be given. Then there exists N ∈ N such that for all n ≥ N ,

4p(sn) = 4p(sn − f + f)

≤ 4p(sn − f) + 4p(f)

< ε+ ∞ = ∞.

i.e., sn ∈ Sp(X), for all n ≥ N . We have shown that the sequence (sn)n≥N in Sp(X)
converges to f , and hence, by Theorem 1.2.33, Sp(X) is dense in Lp(µ,X).

2



Chapter 2

Fuzzy sets

2.1 Introduction

Set theory forms the foundation of mathematics and every mathematical object can be

viewed as a set or a class. Fuzzy set theory was effectively started when Zadeh published

his now famous paper [84] in 1965. In terms of practical applications, fuzzy sets have

successfully been used in mathematical modelling and control theory when inherent, non-

probabilistic uncertainty is involved. That is, uncertainty that arises from insufficient

information or imprecise boundaries.

One of the main themes of this thesis is the use of fuzzy set theory to extend recent ideas.

Essentially, fuzzy set theory is a generalization of set theory. To highlight the similar-

ity, we present a set calculus of P(X), and then naturally extend this calculus to fuzzy

sets. We thus need to define notions which are analogues of subset, union, intersection

and complement in such a way that when the fuzzy sets are in fact crisp sets, then the

respective notions reduce to the usual crisp ones.

We are also interested in the concept of α-cuts which can be used to decompose a fuzzy

set into a supremum of a sequence of special fuzzy sets, determined by crisp sets. This

idea provides the basic mechanism of relating the fuzzy setting to the classical setting.

Since we deal with notions such as compactness and closure, we need to discuss a few

topological aspects of fuzzy sets. The material in this introductory chapter is all well-

known. For further information with regard to fuzzy sets and fuzzy topology, the reader

is referred to [19, 20, 21, 48, 52, 53, 54, 64, 84].

2.1.1 Definition

Let X be a set and I the unit interval [0, 1]. A fuzzy set on X (fuzzy-subset of X) is a map

from X into I . That is, if A is a fuzzy subset of X, then A ∈ IX , where IX denotes the

32
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collection of all maps from X into I .

Let X be a set and A ⊂ X. We naturally associate with A the mapping

χ
A

: X → {0, 1},

as defined in Section 1.2. In fuzzy set theory, we drop the codomain restriction and use

A : X → [0, 1].

In other words, we have generalized classical set theory by rejecting the bivalency require-

ment, and can consider various degrees of membership associated with an element of a

fuzzy set. We will henceforth refer to ordinary sets as crisp sets as opposed to fuzzy sets.

When we generalize a theory that relies on classical set theory, by replacing the crisp sets

with fuzzy sets, we refer to this as fuzzification. One of the goals of fuzzification is that

by considering the more general fuzzy theory, we can obtain new results in the original

setting.

2.2 Order-structure of fuzzy subsets

Let X be a nonempty set and A ⊂ X. Note that χ
A
∈ {0, 1}X = 2X , and hence, there is

a natural bijection between P(X) and 2X . We observe that for A,B ∈ P(X):

• ∀x ∈ X,χ
∅
(x) = 0,

• ∀x ∈ X,χ
X
(x) = 1,

• ∀x ∈ X,χ
Ac (x) = 1 − χ

A
(x),

• ∀x ∈ X,χ
A∪B

(x) = χ
A
(x) ∨ χ

B
(x),

• ∀x ∈ X,χ
A∩B

(x) = χ
A
(x) ∧ χ

B
(x),

• A ⊂ B ⇔ ∀x ∈ X,χ
A
(x) ≤ χ

B
(x).

Now, on IX , with A,B ∈ IX , we define correspondingly:

• The empty fuzzy set χ
∅

is: ∀x ∈ X,χ
∅
(x) = 0,

• The whole fuzzy set χ
X

is: ∀x ∈ X,χ
X
(x) = 1,

• A = B ⇔ ∀x ∈ X,A(x) = B(x),
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• A ≤ B ⇔ ∀x ∈ X,A(x) ≤ B(x),

• (A ∨B)(x) ≡ A(x) ∨B(x), x ∈ X,

• (A ∧B)(x) ≡ A(x) ∧B(x), x ∈ X,

• (
∨

j∈J Aj)(x) ≡
∨

j∈J Aj(x), x ∈ X,

• (
∧

j∈J Aj)(x) ≡
∧

j∈J Aj(x), x ∈ X,

• A′(x) ≡ A(x)′, x ∈ X (where ′ is any order reversing involution).

Thus, IX is naturally equipped with an order structure induced by I , and since I is a

complete lattice, de Morgan and a frame, so is IX . We have the usual order reversing

involution: A′(x) = 1 − A(x), x ∈ X.

For a treatment of L-fuzzy sets where I is replaced by a general complete, de Morgan

lattice L which is also a frame (see e.g. [20, 64]).

2.3 Fuzzy sets induced by maps

In Zadeh’s historical paper [84], he defined fuzzy analogues to the notions of direct image

and pre-image as discussed in Section 1.2. For X and Y sets, f : X → Y , A ∈ IX

and B ∈ IY , we define the direct image of A, denoted by f [A], and the pre-image of B,

denoted by f←[B], as follows.

For y ∈ Y ,

f [A](y) = sup
f(x)=y

A(x),

with the convention that sup ∅ = 0, and

f←[B](x) = (B ◦ f)(x),

for all x ∈ X.

This concept of a direct image above is known as Zadeh’s extension principle. It is a

simple matter to confirm that both definitions above reduce to the usual crisp ones in the

case where A and B are crisp.

2.3.1 Theorem

Let X and Y be sets.
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(1) If A ∈ IX×Y , then

sup
(x,y)∈X×Y

A(x, y) = sup
x∈X

sup
y∈Y

A(x, y),

inf
(x,y)∈X×Y

A(x, y) = inf
x∈X

inf
y∈Y

A(x, y),

sup
x∈X

inf
y∈Y

A(x, y) ≤ inf
y∈Y

sup
x∈X

A(x, y).

(2) If X, Y ⊂ I , then
supX ∧ sup Y = sup

x∈X

sup
y∈Y

x ∧ y,

inf X ∧ inf Y = inf
x∈X

inf
y∈Y

x ∧ y.

(3) If A,B ∈ IX , then

sup
x∈X

(A ∧B)(x) ≤ sup
x∈X

A(x) ∧ sup
x∈X

B(x).

(4) If A ∈ IX and E,F ⊂ X, then

sup
x∈E

A(x) ∧ sup
y∈F

A(y) = sup
x∈E

sup
y∈F

(A(x) ∧ A(y)).

2.3.2 Theorem

Let X, Y, Z be sets and let f ∈ Y X , g ∈ ZY , A ∈ IX , B ∈ IY and C ∈ IZ . Let

(Aj : j ∈ J) ∈ (IX)J and (Bj : j ∈ J) ∈ (IY )J . Then

(1) (g ◦ f)[A] = g[f [A]],

(2) (g ◦ f)←[C ] = f←[g←[C ]],

(3) f←[
∨

j∈J Bj ] =
∨

j∈J f
←[Bj],

(4) f←[
∧

j∈J Bj ] =
∧

j∈J f
←[Bj],

(5) f←[B ′] = (f←[B])′,

(6) B1 ≤ B2 ⇒ f←[B1] ≤ f←[B2],

(7) f [
∨

j∈J Aj] =
∨

j∈J f [Aj],

(8) f [
∧

j∈J Aj] ≤
∧

j∈J f [Aj],

(9) f [A]′ ≤ f [A′],

(10) A1 ≤ A2 ⇒ f [A1] ≤ f [A2],

(11) f [f←[B]] ≤ B, with equality if f is surjective,

(12) A ≤ f←[f [A]], with equality if f is injective,

(13) f [f←[B]∧ A] ≤ f [A], with equality if f is injective.
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2.4 Crisp subsets of X associated with a fuzzy set

For a given fuzzy subset of a set X, we associate collections of crisp subsets of X with it.

If A ∈ IX and α ∈ I we define

Aα := {x ∈ X : A(x) > α},

Aα := {x ∈ X : A(x) ≥ α}.

These crisp sets are referred to as α-levels (or α-cuts), strong and weak respectively.

When a crisp theory is to be fuzzified, very often we expect that if A is a fuzzy set that

has a certain fuzzy property, then Aα (or Aα) has the crisp property which is analogous to

that particular fuzzy property. We will work mainly with weak cuts in this thesis although

in most cases similar results can be obtained by using the strong cuts.

For a fuzzy set A, we call suppA = A0 the support of A.

2.4.1 Lemma

Let X be a set and A,B ∈ IX . Then A ≤ B ⇔ for all α ∈ (0, 1], Aα ⊂ Bα.

We have the following immediate consequence of the previous lemma.

2.4.2 Lemma

Let X be a set and A,B fuzzy sets on X, then

A = B ⇔ for all α ∈ (0, 1], Aα = Bα.

We will need the following useful characterization of fuzzy sets.

2.4.3 Theorem ([48])

Let X be a set. For a A ∈ IX and x ∈ X, we have

A(x) = sup
α∈(0,1]

{
αχ

Aα
(x)

}
.

Also, notice that I is separable and therefore, there exists a set Λ = {α
n
}n∈N = Q ∩ I ,

which is countable and dense in I . We can now state the following theorem.

2.4.4 Theorem

Let X be a set. If A ∈ IX and x ∈ X, then

A(x) = sup
αn∈Λ

{
αnχAαn

(x)
}

where Λ = {α
n
}n∈N = Q ∩ I .
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PROOF.

Let X be a set, A ∈ IX and x ∈ X, then we have

A(x) = sup
α∈(0,1]

αχ
Aα

(x) = a ∈ I.

Thus,

a =

{
supα∈(0,1]{α : A(x) ≥ α} if ∃α ∈ (0, 1] such that A(x) ≥ α
0 if 6 ∃α ∈ (0, 1] such that A(x) ≥ α.

Let
b = sup

αn∈Λ

{
αnχAαn

(x)
}

=

{
supαn∈Λ{αn : A(x) ≥ αn} if ∃αn ∈ Λ such that A(x) ≥ αn

0 if 6 ∃αn ∈ Λ such that A(x) ≥ αn .

Clearly, a ≥ b since Λ ⊂ I , so we need only show that a 6> b. Assume that a > b, then

a = b + ε for some ε > 0. Then the set O = (a − ε, a) is an open set on I such that

O ∩ Λ = ∅, which is a contradiction to the fact that Λ is dense in I .

2

There is an important subset of IX that we discuss in subsequent chapters.

Let X be a set and let x ∈ X and α ∈ (0, 1]. Then

αχ
{x}

=

{
α on x
0 elsewhere.

We call αχ
{x}

a fuzzy point with support at x and value α. We will denote the set of fuzzy

points in IX by X̃ . A fuzzy point can be viewed as a generalization of a point in ordinary

set theory.

2.5 Fuzzy topology

Shortly after fuzzy set theory was developed, mathematicians began to fuzzify various

areas of classical mathematics. A typical example of such a fuzzification is the study
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of fuzzy topology. The concept of a fuzzy topological space follows naturally from the

corresponding classical notion. Since a crisp topological space can be defined in terms of

open sets, we simply replace the crisp open sets with fuzzy open sets, which leads directly

to Chang’s definition of a fuzzy topological space (see [9]).

2.5.1 Definition

A fuzzy topology on a set X is a subset τ of IX satisfying:

(a) χ
∅
, χ

X
∈ τ .

(b) A,B ∈ τ ⇒ A ∧B ∈ τ .

(c) ∀j ∈ J,Aj ∈ τ ⇒
∨

j∈J Aj ∈ τ .

The pair (X, τ ) is called a fuzzy topological space (fts) and the members of τ the fuzzy

open sets of X.

In [51], Lowen defines a subset τ ⊂ IX to be a fuzzy topology on X if (a), (b), (c) hold

as well as:

(d) ∀a ∈ I, aχ
X
∈ τ . In this case we speak of a fuzzy topology in Lowen’s sense.

2.5.2 Examples

(1) The discrete fuzzy topology on X: τ = IX .

(2) The indiscrete fuzzy topology in Lowen’s sense on X: τ = {αχ
X

: α ∈ I}.

(3) Any ordinary (crisp) topology T on X generates a fuzzy topology on X - simply

identify with the open sets, their characteristic functions.

(4) Any ordinary topology T on a set X generates a fuzzy topology ω(T ) in Lowen’s

sense, where

ω(T ) = {δ : (X, T ) → Ir is lower semicontinuous},

and Ir is the topological space obtained by giving the unit interval I the subspace

topology as a subspace of R equipped with the usual topology τord (see [51]).

If τ1 and τ2 are fuzzy topologies on a set X, then we say that τ1 is smaller (coarser) than

τ2 (or equivalently τ2 is bigger (finer) than τ1) if and only if τ1 ⊂ τ2.

As in general topology, we define the concepts of a base and subbase.

2.5.3 Definition

Let (X, τ ) be a fuzzy topological space.
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(a) A set B ⊂ IX is called a base for τ if and only if each element of τ is the supremum

of members of B.

(b) S ⊂ IX is called a subbase for τ if and only if the family of all finite infima of

members of S is a base for τ .

(c) If P ⊂ IX , then the fuzzy topology generated by P , written τ = 〈P〉, is given by

〈P〉 =
{ ∨

J∈K

∧

j∈J

Aj : J finite and each Aj ∈ P
}
,

where K is any index set.

2.5.4 Lemma

Let X be a set and for each j ∈ J , let τj be a fuzzy topology on X. Then τ =
⋂

j∈J τj is

a fuzzy topology.

PROOF.

(a) χ
∅
, χ

X
∈ τ trivially.

(b) Let A,B ∈ τ . Then

∀j ∈ J ;A,B ∈ τj ⇒ ∀j ∈ J,A ∧B ∈ τj

⇔ A ∧ B ∈ τ.

(c) For each k ∈ K, let Ak ∈ τ . That is,

∀k ∈ K, ∀j ∈ J,Ak ∈ τj ⇒ ∀j ∈ J,
∨

k∈K

Ak ∈ τj

⇔
∨

k∈K

Ak ∈ τ.

2

2.5.5 Lemma

If we define, for τ1, τ2 fuzzy topologies on a set X, and with

τ1 ∨ τ2 := 〈τ1 ∪ τ2〉,

and

τ1 ∧ τ2 := τ1 ∩ τ2,

then the collection of fuzzy topologies on X is a lattice.



CHAPTER 2. FUZZY SETS 40

2.5.6 Lemma

Let X be a set and S ⊂ IX . Then

〈S〉 =
⋂

δ⊃S,δ∈T

δ,

where T is the collection of all fuzzy topologies on X.

PROOF.

(1) Let A ∈ 〈S〉. Then A ∈
∨

J∈K

∧
j∈J Aj, where each J ∈ K is finite and each

Aj ∈ S.

Let δ be a fuzzy topology on X such that δ ⊃ S, then ∀J ∈ K, ∀j ∈ J , Aj ∈ δ

and thus,

∀J ∈ K,
∧

j∈J

Aj ∈ δ ⇒
∨

J∈K

∧

j∈J

Aj ∈ δ

⇒ A ∈
⋂

δ∈T,δ⊃S

δ.

(2) A ∈
⋂

δ∈T,δ⊃S δ implies that for all δ such that δ ⊃ S and δ ∈ T , we have that

A ∈ δ. Hence, A ∈ 〈S〉, as 〈S〉 is a fuzzy topology which contains S.

2

2.5.7 Definition

Let (X, τ ) be a fuzzy topological space and A ⊂ X. Then the fuzzy interior A◦ of A is

the join of all members of τ contained in A. i.e.,

A◦ =
∨

{B ∈ IX : B ∈ τ, B ≤ A}.

We sometimes write intX(A) to denote the closure of A with respect to the fuzzy topo-

logical space X. This is the largest open fuzzy set contained in A, and trivially,A is open

if and only if A = A◦.

Due to the fact that we have an order reversing involution ′ defined on I , we are able to

give reasonable definitions of closedness and related notions.

2.5.8 Definition

A fuzzy set A in a fuzzy topological space (X, τ ) is τ -closed (fuzzy closed) if and only if

A′ ∈ τ . Once again we may omit reference to τ and ‘fuzzy’ if there is no confusion.

It then follows trivially, from the definition of a closed fuzzy set, that the collection of

closed fuzzy sets C on a set X satisfies the following properties:
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(1) χ
∅
, χ

X
∈ C.

(2) If A,B ∈ C, then A ∨ B ∈ C.

(3) If {Aj : j ∈ J} ⊂ C, then
∧

j∈J Aj ∈ C.

The concept of a closed set leads naturally to the notion of a closure operator.

2.5.9 Definition

Let (X, τ ) be a fuzzy topological space. The fuzzy closure, denoted A (or cl(A)), of a

fuzzy set is the meet of all τ -closed sets which contain A. That is,

A =
∧

{B ∈ IX : B ′ ∈ τ, A ≤ B}.

Therefore, A is the smallest τ -closed set which contains A and A is closed if and only if

A = A. We sometimes write clX(A) to denote the closure of A with respect to the fuzzy

topological space X.

It is clear that the closure operator in fuzzy topology has similar properties to its classical

analogue, as is illustrated by the following two propositions.

2.5.10 Proposition ([82])

Let (X, τ ) be a fuzzy topological space and A,B ∈ IX . Then the closure operator

¯: IX → IX has the following properties:

(1) χ
∅

= χ
∅
,

(2) A ∨B = A ∨B,

(3) A = A,

(4) A ≤ A.

2.5.11 Proposition ([82])

Let (X, τ ) be a fuzzy topological space and A ∈ IX . Then

(1) A
′
= (A′)◦,

(2) (A◦)′ = (A′).

PROOF.
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(1)

A
′
= [

∧
{B ∈ IX : B ′ ∈ τ, A ≤ B}]′

=
∨

{B ′ ∈ IX : B ′ ∈ τ, A ≤ B}

=
∨

{B ′ ∈ IX : B ′ ∈ τ, A′ ≥ B ′}

= (A′)◦.

(2) Simply replace A with A′ in (1).

2

2.6 Continuous Functions

The notion of (fuzzy) continuity was first introduced in [9] by Chang in 1968.

2.6.1 Definition

Let (X, τ1) and (Y, τ2) be fuzzy topological spaces. A function f : (X, τ1) → (Y, τ2) is

(fuzzy) continuous if and only if ∀B ∈ τ2, f
←[B] ∈ τ1.

When discussing continuity, we will often omit the word ‘fuzzy’ provided that the context

makes it clear which type of continuity is under discussion.

2.6.2 Proposition

Let (X, τ1), (Y, τ2) and (Z, τ3) be fuzzy topological spaces. If f : (X, τ1) → (Y, τ2) and

g : (Y, τ2) → (Z, τ3) are continuous functions, then g ◦ f : (X, τ1) → (Z, τ3) is continu-

ous.

2.6.3 Theorem ([82])

Let (X, τ1) and (Y, τ2) be fuzzy topological spaces and f : (X, τ1) → (Y, τ2) a function.

Then the following are equivalent:

(1) f is continuous.

(2) For each τ2-closed B, f←[B] is τ1-closed.

(3) For each B ∈ IY , f←[B] ≤ f←[B].

(4) For each A ∈ IX, f [A] ≤ f [A].

(5) For each B ∈ IY , f←[B◦] ≤ (f←[B])◦.
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2.6.4 Theorem ([82])

Let (X, τ1), (Y, τ2) be fuzzy topological spaces and T be a subbase of τ2. A function

f : (X, τ1) → (Y, τ2) is continuous if and only if ∀A ∈ T , f←[A] ∈ τ1.

2.6.5 Definition

Let {(Xj , δj) : j ∈ J} be a family of fuzzy topological spaces, for J an index set, and let

X be a set without a fuzzy topology. For each j ∈ J , let

fj : X → (Xj , δj)

be a mapping.

Now consider the subbase S = {f←j [Aj] : Aj ∈ δj, j ∈ J}. Let τ1 be the fuzzy topology

generated by S. We call τ1 the initial (fuzzy) topology and it is the smallest fuzzy topology

on X such that all mappings fj will be continuous.

We list the following special cases of initial fuzzy topologies as examples.

2.6.6 Examples

(1) Product Spaces

For X =
∏

j∈J Xj where (Xj, τj) are fuzzy topological spaces and fj = pj for

j ∈ J (the projection maps), i.e., ∀j ∈ J , pj((xi : i ∈ J)) = xj.

Now for each j ∈ J , let Aj ∈ τj. For j1 ∈ J , we have

f←j1 [Aj1] =
∏

j∈J

Aj,

where Aj = χ
X

for j 6= j1.

Hence, the initial fuzzy topology is the one generated by the subbase {f←j [Aj] :
j ∈ J ; ∀j ∈ J,Aj ∈ τj}. This fuzzy topology is referred to as the product (fuzzy)

topology on X.

(2) Subspaces

Let (X, τ ) be a fuzzy topological space with S ⊂ X and let

iS =

{
S → X
x 7→ x.

Then i←S [A] = A|S for A ∈ IX . The initial fuzzy topology τ
S

= {A|S : A ∈ τ}
is the subspace (fuzzy) topology, that is, the collection of elements of τ restricted to

S.
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2.6.7 Theorem ([82])

Let (Y, τ2) be a fuzzy topological space and let f : (Y, τ2) → (X, τ1) a mapping. Then f
is continuous if and only if ∀j ∈ J , fj ◦ f is continuous.

2.6.8 Lemma

Let (X, τ ) be a fuzzy topological space, let S ⊂ X and let τ
S

be the subspace fuzzy

topology on S. Then, for A ∈ IX ,

(1) intX(A)|S ≤ intS(A|S),

(2) clS(A|S) ≤ clX(A|S),

where
intX(A) is the interior of A ∈ IX with respect to τ,

intS(A) is the interior of A ∈ IS with respect to τ
S
,

clX(A) is the closure of A ∈ IX with respect to τ, and

clS(A) is the closure of A ∈ IS with respect to τ
S
.

PROOF.

(1)

intX(A)|S =
∨

{B|S : B ∈ τ, B ≤ A},

and

intS(A|S) =
∨

{B ∈ IS : B ∈ τ
S
, B ≤ A|S}.

Let C = {B ∈ IX : B ∈ τ, B ≤ A}|S and D = {B ∈ IS : B ∈ τA, B ≤ A|S}.

Then C = {B|S : B ∈ τ, B ≤ A}. We know that:

(i) B ∈ IX ⇒ B|S ∈ IS,

(ii) B ∈ τ ⇒ B|S ∈ τ
S
,

(iii) B ≤ A ⇒ B|S ≤ A|S.

So, C ⊂ D and therefore, intX(A)|S ≤ intS(A|S).

(2)

clS(A|S) =
∧

{B ∈ IS : B ′ ∈ τ
S
, A|S ≤ B},

and

clX(A)|S =
∧

{B|S : B ′ ∈ τ, A ≤ B}.

Let E = {B ∈ IS : B ′ ∈ τ
S
, A|S ≤ B} and F = {B ∈ IX : B ′ ∈ τ, A ≤ B}|S.

Now F = {B|S : B ′ ∈ τ, A ≤ B}. In addition to (a) and (c) above, we know that
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(d) B ′ ∈ τ ⇒ (B|S)′ = B ′|S ∈ τ |
S
.

Thus, F ⊂ E and thus, clS(A|S) ≤ clX(A)|S.

2

The inequalities of the preceding lemma cannot be replaced by equalities as is illustrated

in the following example.

2.6.9 Example

Let X be a set and S ⊂ X. Consider the following fuzzy topology τ on X defined as

follows.

τ := {A ∈ IX : A ≥ a} ∪ {χ
∅
},

for some a ∈ (0, 1].

Then τ
A

= {B ∈ IS : B ≥ a}
⋃
{χ

S
}. Let b > a and choose c such that 0 < c < a. We

define

ω(x) =

{
b if x ∈ S
c if x 6∈ S.

Now, ω◦ = χ
∅

but (ω|S)◦ 6= χ
∅
.

We could similarly construct an example that shows that the inequality of Lemma 2.6.8

(2) cannot be replaced by equality either.

2.7 Fuzzy neighbourhoods spaces

As in classical topology, we can define a fuzzy topology in terms of neighbourhoods

instead of open sets as the two concepts are equivalent. The work by Warren [81] is

often quoted in this regard, but his requirement that a neighbourhood n(x) of a point x
should contain an open set g such that g(x) = n(x), is to ensure a one-to-one correspon-

dence between neighbourhood spaces and topological spaces. We will not consider this

requirement (cf. also [22] where a neighbourhood without this condition was called an

s-neighbourhood). In order to clarify the relationships between neighbourhoods and open

sets, we supply the following.

2.7.1 Definition

Let X be a set. If for every x ∈ X, there exists a nonempty family Nx of fuzzy subsets of

X called neighbourhoods of x, satisfying the following axioms:
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(a) U ∈ Nx ⇒ U(x) > 0.

(b) U, V ∈ Nx ⇒ U ∧ V ∈ Nx.

(c) U ∈ Nx, U ≤ V ⇒ V ∈ Nx.

(d) If U ∈ Nx, then there exists a W ∈ Nx, W ≤ U such that if W (y) > 0, then

W ∈ Ny.

The family N = {Nx : x ∈ X} is called the neighbourhood system on X and the ordered

pair (X,N ) is called a neighbourhood space. We simply refer to the neighbourhood space

X if this causes no confusion.

2.7.2 Definition

Let X = (X,N ) be a fuzzy neighbourhood space.

(a) A nonzero fuzzy subset A on X is open if whenever A(x) > 0, there exists a

V ∈ Nx such that V ≤ A. (Or we say A is open if and only if x is an interior point

of A, for all x such that A(x) > 0). We also take χ
∅

to be open.

(b) A fuzzy subset A on X is closed if A′ is open.

2.7.3 Proposition

An open set A is a neighbourhood of x if and only if A(x) > 0.

PROOF.

Follows from Axiom (c) of neighbourhoods.

2

2.7.4 Theorem

If X is a fuzzy neighbourhood space, then

(1) χ
X

and χ
∅

are open.

(2) If A and B are open, then so is A ∧ B.

(3) If Ai is open for each i ∈ I , then so is
∨

iAi.

PROOF.

(1) Follows from Axiom (c) and Definition 2.7.2.

(2) Follows from Axiom (b) of neighbourhoods.
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(3) Follows from Axiom (c) of neighbourhoods.

2

We have shown that by defining open sets as in Definition 2.7.2, each neighbourhood

space generates a fuzzy topology. If (X,N ) is a neighbourhood space, the collection τ
N

of all the open subsets of X is called the fuzzy topology on X (generated by the neigh-

bourhood system N ).

2.7.5 Proposition

LetX be a set and x ∈ X. Then every U ∈ Nx contains an open set A such thatA(x) > 0.

PROOF.

Follows from axiom (d) if neighbourhoods.

2

We can now characterize fuzzy continuity on neighbourhood spaces.

2.7.6 Theorem (Characterization of fuzzy continuity)

Let f : (X,N1) → (Y,N2) be a map between two fuzzy neighbourhood spaces. Then the

following statements are equivalent:

(1) f is fuzzy continuous as a mapping from (X, τ
N1

) to (Y, τ
N2

).

(2) If B is closed in (Y, τ
N2

), then f←[B] is closed in (X, τ
N1

).

(3) f [clXA] ≤ clY (f [A]), for all A ∈ IX (where clX is the fuzzy closure in (X, τ
N1

)
and clY is the fuzzy closure in (Y, τ

N2
)).

(4) For every x ∈ X and for every neighbourhood Nf(x) of f(x) in Y , f←[Nf(x)] is a

neighbourhood of x in X.

(5) For every x ∈ X and for every neighbourhoodNf(x) in Y , there exists a neighbour-

hood Nx of x in X such that f [Nx] ≤ Nf(x).

PROOF.

(1) ⇒ (2): Follows from
f←[χ

Y
− A] = (χ

Y
− A)f

= χ
X
− f←[A]f.
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(1) ⇒ (4): Nf(x) contains an A ∈ τ2 such that A(f(x)) > 0. So,

f←[Nf(x)] = Nf(x)f

≥ Af

= f←[A].

By (1), f←[A] ∈ τ1, and is greater than 0. So by definition, f←[Nf(x)] is a neigh-

bourhood of x.

(4) ⇒ (5): Let Nx = f←[Nf(x)] of (4). Then

f [Nx] = f [f←[Nf(x)]]

≤ Nf(x).

(5) ⇒ (4): We have f [Nx] ≤ Nf(x). Then

Nx ≤ f←[f [Nx]]

≤ f←[Nf(x)],

and hence, f←[Nf(x)] is a neighbourhood on x.

(4) ⇒ (1): SinceA ∈ τ2 is a neighbourhood for each y ∈ Y for which A(y) > 0, f←[A] = Af
is a neighbourhood for each x, for which A(f(x)) > 0. Thus, f←[A] ∈ τ1.

(2) ⇒ (3): clY (f [A]) is closed in Y , and so by (2), f←[clY f [A]] is closed in X. Now,

A ≤ f←[f [A]]

≤ f←[clY f [A]].

So, clXA ≤ f←[clY f [A]] and hence, f [clXA] ≤ clY f [A].

(3) ⇒ (2): Let W be closed in Y . Then by (3),

f [clXf
←[W ]] ≤ clY [f [f←[W ]]

≤ clYW

= W.

Hence, clXf
←[W ] ≤ f←[W ]. Therefore, f←[W ] is closed.

2



Chapter 3

A fuzzy Hahn-Banach theorem

3.1 Introduction

The Hahn-Banach theorem is an elegant and powerful statement which has applications

in many disparate branches of mathematics such as game theory, thermodynamics, linear

equations and control theory amongst other areas. Above all, it is of extreme importance

to the analyst and has been referred to as ‘the analyst’s form of the axiom of choice’ and

even ‘The crown jewel of functional analysis’ (see [47]). While, in fact, the Hahn-Banach

theorem is strictly weaker than the axiom of choice - it does encapsulate the spirit of

functional analysis, and is indeed one of the most important theorems in this area. Since

the theorem was first proved in the 1920’s, it has been generalized in many different

directions. The reader is referred to [5, 47, 61] for further insight into the history and

significance of the Hahn-Banach theorem.

In Chapter 1, we stated a well-known version of the theorem and its most important

corollaries. The main idea of this chapter follows from the fact that a norm is an example

of convex sublinear functional and we use this fact to obtain original versions of the Hahn-

Banach theorem in the fuzzy setting. The central results of this chapter were presented in

[35], in which we used a particular form of classical Hahn-Banach Theorem as stated in

[2] or [18]:

3.1.1 Theorem (Real case)

Let M be a subspace of the real vector space X and p a sublinear functional on X, i.e.,

p(x + y) ≤ p(x) + p(y) and p(αx) = αp(x), for all x, y ∈ X and α ≥ 0, and f a real-

valued linear functional on M such that for all x ∈ M , f(x) ≤ p(x). Then there exists a

linear functional g on X, extending f (so f(x) = g(x) on M) such that g(x) ≤ p(x), for

all x ∈ X.

49



CHAPTER 3. A FUZZY HAHN-BANACH THEOREM 50

3.1.2 Theorem (Complex case)

Let M be a subspace of the complex vector space X and p a functional on X such that

p(x) ≥ 0, p(x + y) ≤ p(x) + p(y), p(αx) = |α|p(x), for all x, y ∈ X and α ∈ C, and f
is a linear functional on M such that for all x ∈ M , |f(x)| ≤ p(x). Then there exists a

linear functional g on X, extending f such that |g(x)| ≤ p(x), for all x ∈ X.

It should be emphasized that Theorem 1.3.9 immediately follows from the statements

above due to the fact that a norm is a sublinear functional. We will use these results to

prove counterparts for the fuzzy case. The Axiom of Choice is required for the proof of

these two theorems, and so is inherent in our results as well.

3.2 Preliminaries

3.2.1 Operations on fuzzy sets

In order to obtain our fuzzy Hahn-Banach theorem, we need a suitable definition of a

fuzzy normed space. In order to do this, we must generalize the concepts of addition and

scalar multiplication of sets as well as the notions from Definition 1.2.19 to the fuzzy

setting.

We require the following preliminaries. Throughout this section, X will denote a vector

space over F, and I the unit interval I = (I,≤), which is a complete lattice.

We extend the addition and scalar multiplication of crisp sets to the fuzzy setting using

Zadeh’s extension principle as discussed in Section 2.3.

3.2.1 Definition

Let X be a vector space; A,B ∈ IX; t ∈ F and x ∈ X. Then we define:

(a) [Addition] (A+B)(x) = supx1+x2=x{A(x1) ∧A(x2)}.

(b) [Scalar multiplication] t · A(x) = A(x
t
) for t 6= 0. If t = 0:

t · A(x) =

{
0 if x 6= 0

supA if x = 0.

This is indeed the natural way in which to define t · A. Let X := R. Let A = χ
[a,b]

for



CHAPTER 3. A FUZZY HAHN-BANACH THEOREM 51

a, b ∈ R, a ≤ b, then for x ∈ R and t ∈ R (t > 0),

t · A(x) = χ
[a,b]

(x
t

)

=

{
1 if x

t
∈ [a, b]

0 if x
t
6∈ [a, b].

Since
x

t
∈ [a, b] ⇔ a ≤

x

t
≤ b

⇔ ta ≤ x ≤ tb,

we have

t · A(x) = A
(x
t

)

=

{
1 if x ∈ [ta, tb]
0 if x 6∈ [ta, tb].

That is, the set [a, b] is stretched by a factor of t. For t < 0, via a similar argument, we

have

t · A(x) = χ
[a,b]

(x
t

)

=

{
1 if x ∈ [tb, ta]
0 if x 6∈ [tb, ta].

If, on the other hand, we have that t = 0, then 0 · χ
[a,b]

= χ
{0}

, i.e., we have the fuzzy

point with support 0 and value 1.

Similarly, it can be shown trivially that the definition of addition on fuzzy sets defined

above coincides with the crisp definition of addition of sets in the case that the fuzzy sets,

in question, are crisp.

3.2.2 Remark

Let X be a vector space. The · for scalar multiplication of a fuzzy set is used simply

to avoid confusion with the usual pointwise multiplication of a scalar by a function as

in Definition 2.4.4. Definition 3.2.1 follows from defining A + B as the direct image of

f : X × X → X, where f is given by f(x, y) = x + y; and defining t · A as the direct

image of g : X → X, where g is given by g(x) = tx:
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g[A](y) =

{ ∨
{A(x) : g(x) = y}

0 if g(x) 6= y, for all x ∈ X

=

{ ∨
{A(x) : tx = y}

0 if tx 6= y, for all x ∈ X

=






A(y

t
) for t 6= 0

0 for t = 0 and y 6= 0∨
A(x) for t = 0 and y = 0.

3.2.3 Lemma

Let s, t ∈ R and let A,A1 and A2 be fuzzy sets on a vector space X. Then

(1) s · (t · A) = t · (s · A) = (st) · A, and

(2) A1 ≤ A2 ⇒ t · A1 ≤ t · A2.

PROOF.

(1) If s, t 6= 0:

s · (t · A)(x) = (t · A)
(x
s

)

=
(
A

( x
st

))

= (s · A)
(x
t

)

= t · (s · A)(x).

Also,

(st) · A(x) = A
( x
st

)
.

If s = 0 and t 6= 0:

0 · (t · A)(x) =

{
sup(t · A) if x = 0
0 if x 6= 0

=

{
supA if x = 0
0 if x 6= 0.

As supx∈X A(x) = supx∈X A(x
t
) (replace x by tx).
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t · (0 · A)(x) = (0 · A)
(x
t

)

=

{
supA if x

t
= 0

0 if x
t
6= 0

=

{
supA if x = 0
0 if x 6= 0.

(0t) · A(x) = 0 · A(x)

=

{
supA if x = 0
0 if x 6= 0.

Obviously, the case where t = 0 and s 6= 0 is the same as the preceding case.

If t = s = 0 :

0 · (0 · A)(x) =

{
sup(0 · A) if x = 0
0 if x 6= 0

=

{
supA if x = 0
0 if x 6= 0

= 0 · A(x).

(2) Choose x ∈ X. We have that A1(x) ≤ A2(x). If t 6= 0, then

t ·A1(x) = A1

(x
t

)

≤ A2

(x
t

)

= t · A2(x).

If t = 0 and x = 0, then 0 ·A1(0) = supA1 and 0 ·A2(0) = supA2. Since we have

that supA1 ≤ supA2, we have that 0 · A1(0) ≤ 0 · A2(0). If t = 0 and x 6= 0, then

0 · A1(x) = 0 = 0 · A2(x).

2

3.2.4 Lemma

Let X, Y be real vector spaces and let f : X → Y be a linear mapping. Let A,B ∈ IX

and let k ∈ R. Then
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(1) f [k · A] = k · f [A], and

(2) f [A +B] = f [A] + f [B].

PROOF.

Let y ∈ Y .

(1) If k 6= 0:
f [k · A](y) = sup

z:f(z)=y

k · A(z)

= sup
z:f(z)=y

A
(z
k

)
,

and
k · f [A](y) = k sup

z:f(z)=y

A(z)

= sup
z:f(z)=y

A
(z
k

)
.

If k = 0:

f [0 · A](y) = sup
z:f(z)=y

0 · A(z)

=

{
supA if f(0) = y
0 if f(0) 6= y,

and

f [0 · A](y) = 0 · sup
z:f(z)=y

A(z)

=

{
sup{supz:f(z)=y A(z)} if f(0) = y
0 if f(0) 6= y

=

{
supA if f(0) = y
0 if f(0) 6= y.
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(2)

f [A +B](y) = sup
z:f(z)=y

(A+B)(z)

= sup
z:f(z)=y

sup
z1+z2=z

{
A(z1) ∧ B(z2)

}

= sup
f(z1+z2)=y

{
A(z1) ∧ B(z2)

}

= sup
f(z1)+f(z2)=y

{
A(z1) ∧ B(z2)

}
(since f is linear)

= sup
x1+x2=y

{
sup

f(z1)=x1,f(z2)=x2

{
A(z1) ∧B(z2)

}}

= sup
x1+x2=y

{
sup

f(z1)=x1

sup
f(z2)=x2

{
A(z1) ∧B(z2)

}}
(from Theorem 2.3.1 (1))

= sup
x1+x2=y

{
sup

f(z1)=x1

{
A(z1)

}
∧ sup

f(z2)=x2

{
B(z2)

}}

= sup
x1+x2=y

{
f [A](z1) ∧ f [B](z2)

}

=
(
f [A] + f [B]

)
(y).

2

3.2.5 Proposition ([30])

Let A,A1, ..., An be fuzzy sets on a vector space X and r1, ..., rn ∈ R, then the following

assertions are equivalent:

(1) r1 · A1 + . . .+ rn · An ≤ A.

(2) ∀x1, ..., xn ∈ X, we have

A(r1x1 + . . .+ rnxn) ≥ min{A1(x1), . . . , An(xn)}.

PROOF.

(1) ⇒ (2):

A(r1x1 + . . .+ rnxn) ≥ (r1 · A1 + . . . + rn · An)(r1x1 + . . . + rnxn)

≥ min{r1 · A1(r1x1), . . . , rn · An(rnxn)} (from Definition 3.2.1 (1))

≥ min{A1(x1), . . . , An(xn)}. (from Definition 3.2.1 (2))

(2) ⇒ (1): By rearranging the order if necessary, we may assume that ri 6= 0, for i = 1, . . . , k,

and ri = 0, for k < i ≤ n. If ∀i = 1, . . . , n, ri 6= 0, then this method of proof
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is still valid. Let x1, . . . , xk be elements of X. From (2), we have that for all

y1, . . . , yn−k ∈ X,

A(r1x1 + . . .+ rkxk) ≥ min{A1(x1), . . . , Ak+1(y1), . . . , An(yn−k)}.

Since 0 ·Aj(0) = supy∈X Aj(y), we get

A(r1x1 + . . .+ rkxk) ≥ min{A1(x1), . . . , Ak(xk), 0 · Ak+1(0), . . . , 0 · An(0)}.

Now,

(r1 · A1 + . . . + rn · An)(z) = sup
x1+...+xk=z

{
min{r1 · A1(x1), . . . , rn · An(xn)}

}

(from Definition 3.2.1 (1))

= sup
x1+...+xk=z

{
min{r1 · A1(x1), . . . , rk · Ak(xk), 0 ·Ak+1(0), . . . , 0 · An(0)

}

= sup
x1+...+xk=z

{
min{A1

(( 1

r1

)
x1

)
, . . . , Ak

(( 1

rk

)
xk

)
, 0 · Ak+1(0), . . . , 0 · An(0)}

}

≤ sup
x1+...+xk=z

A
(
r1

( 1

r1

)
x1 + . . . + rk

( 1

rk

)
xk

)
= A(z).

2

With the classical definitions of convex, balanced and absorbing in mind, we respectively

extend these notions to the fuzzy setting and collect a number of useful associated results.

3.2.2 Convex fuzzy sets

3.2.6 Definition

Let X be a vector space and A a fuzzy subset of X. A is convex if

A(kx+ (1 − k)y) ≥ A(x) ∧ A(y),

whenever x, y ∈ X and 0 ≤ k ≤ 1.

3.2.7 Remark

Let X be a vector space, A a convex and crisp subset of X; x, y ∈ A and k ∈ [0, 1], then

χ
A
(kx+ (1 − k)y) ≥ χ

A
(x) ∧ χ

A
(y).

Now, since χ
A
(x) = χ

A
(y) = 1, we have

kx+ (1 − k)y ∈ A.

So, A is convex in the classical sense. We thus have that our definition of convexity

reduces to the classical notion of convexity in the crisp case.
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3.2.8 Proposition

Let A be a fuzzy set on a vector space X, then the following three assertions are equiva-

lent:

(1) A is convex.

(2) ∀k ∈ [0, 1], k · A + (1 − k) · A ≤ A.

(3) ∀α ∈ I, Aα is convex.

PROOF.

The equivalence of (1) and (2) follows from Proposition 3.2.5, with

r1 := k, r2 := 1 − k,

x1 := x, and x2 := y.

(1) ⇒ (3): Choose k ∈ [0, 1] and α ∈ I . Let x, y ∈ Aα, then A(x) ≥ α and A(y) ≥ α, and

thus,

A(x) ∧A(y) ≥ α.

So, from the convexity of A, we have

A(kx+ (1 − k)y) ≥ A(x) ∧ A(y) ≥ α.

Thus, kx+ (1 − k)y ∈ Aα. i.e., Aα is convex.

(3) ⇒ (1): Choose k ∈ [0, 1]. Let x, y ∈ X and let α := A(x) ∧ A(y) ∈ I . Then x, y ∈ Aα.

By the convexity of Aα, we have

kx+ (1 − k)y ∈ Aα.

Hence,

A(kx+ (1 − k)y) ≥ α = A(x) ∧A(y).

2

3.2.9 Proposition

Let X, Y be real vector spaces and let f : X → Y be a linear map. If A is a convex fuzzy

set in X, then f [A] is a convex fuzzy set in Y . Similarly, f←[B] is a convex fuzzy set in

X, whenever B is a convex fuzzy set in Y .
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PROOF.

Let k ∈ [0, 1] and A a convex fuzzy set on a vector space X. Then by Lemma 3.2.4, we

have
f [k · A + (1 − k) · A] = f [k · A] + f [(1 − k) · A]

= k · f [A] + (1 − k) · f [A].

By Proposition 3.2.8, we have that k ·A+ (1− k) ·A ≤ A. Now, by Theorem 2.3.2 (10),

we have f [k · A + (1 − k) · A] ≤ f [A], which implies

k · f [A] + (1 − k) · f [A] ≤ f [A].

So, f [A] is convex by Proposition 3.2.8.

Now, assume that B is a convex fuzzy set in Y and let k ∈ [0, 1]. Set M = k · f←[B] +
(1 − k) · f←[B].

Then
f(M) = f [k · f←[B] + (1 − k) · f←[B]]

= f [k · f←[B]] + f [(1 − k) · f←[B]] (by Lemma 3.2.4 (2))

= k · f [f←[B]] + (1 − k) · f [f←[B]] (by Lemma 3.2.4 (1))

≤ k · B + (1 − k) · B (by Theorem 2.3.2 (11))

≤ B. (by Proposition 3.2.8)

Now, by Theorem 2.3.2 (6), we have f←[f [M ]] ≤ f←[B] and hence, by Theorem 2.3.2

(12), we have M ≤ f←[B].

2

3.2.10 Proposition

If A,B are convex fuzzy sets on a vector space X, then A+B is a convex fuzzy set in X.

PROOF.

Let A,B be convex fuzzy sets. Let x, y ∈ X and choose k ∈ [0, 1]. Then

(A +B)(kx+ (1 − k)y) =
∨

z1+z2=kx+(1−k)y

{A(z1) ∧B(z2)}.

If x1 + x2 = x and y1 + y2 = y, for x1, x2, y1, y2 ∈ X, then (kx1 + (1 − k)y1) + (kx2 +
(1 − k)y2) = kx+ (1 − k)y, and
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(A +B)(kx+ (1 − k)y) ≥
∨

x1+x2=x,y1+y2=y

{
A(kx1 + (1 − k)y1) ∧B(kx2 + (1 − k)y2)

}

≥
∨

x1+x2=x,y1+y2=y

{
(A(x1) ∧A(y1)) ∧ ((B(x2) ∧ B(y2))

}

(since A and B are convex)

≥
∨

x1+x2=x,y1+y2=y

{
(A(x1) ∧B(x2)) ∧ ((A(y1) ∧ B(y2))

}

(from Theorem 2.3.1 (1))

≥
∨

x1+x2=x

{
A(x1) ∧B(x2)} ∧

∨

y1+y2=y

{A(y1) ∧B(y2)
}

= (A+B)(x) ∧ (A+B)(y).

2

3.2.11 Remark

A convex ⇒ t · A convex for t 6= 0:

t · A(kx+ (1 − k)y) = A
(1

t
kx+

1

t
(1 − k)y

)

≥ A
(x
t

)
∧A

(y
t

)

= [t · A(x)]∧ [t · A(y)].

3.2.3 Balanced fuzzy sets

3.2.12 Definition

Let X be a vector space and A a fuzzy subset of X. A is called balanced (circled) if

A(kx) ≥ A(x) whenever x ∈ X, k ∈ F, |k| ≤ 1.

3.2.13 Remark

Let X be a vector space and A ∈ IX .

(1) A balanced ⇒ A(−x) = A(x), for all x ∈ X.

(2) A balanced ⇒ A(0) = supx∈X A(x).

(3) Let χ
A

be balanced for a crisp set A. Let x ∈ X and k ∈ R such that |k| ≤ 1.

Consider the case where k 6= 0. We then have χ
A
(x) ≥ k · χ

A
(x) ≥ χ

A
(x

k
).

So,

χ
A

(x
k

)
= 1 ⇒ χ

A
(x) = 1.
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Thus, x
k
∈ A ⇒ x ∈ A, and hence, x ∈ k · A ⇒ x ∈ A. Therefore, k · A ⊂ A, and

hence, A is balanced in the classical sense.

(4) If A is balanced, ( t1
t2

) · A(x) = A( t2
t1
x) ≥ A(x) if | t2

t1
| ≤ 1. So, t1 · A ≥ t2 · A if

0 < |t2| ≤ |t1|.

(5) A balanced ⇔ t · A ≤ A whenever |t| ≤ 1.

3.2.14 Proposition

Let A be a fuzzy set on a vector space X, then the following two assertions are equivalent:

(1) A is balanced.

(2) ∀α ∈ I, Aα is balanced.

PROOF.

(1) ⇒ (2): Choose α ∈ I . Choose k ∈ R such that |k| ≤ 1 and choose x ∈ Aα. Then k ·A ≤ A
by Remark 3.2.13 (5).

(a) If k 6= 0, then

k · A(x) ≤ A(x) ⇒ A
(x
k

)
≤ A(x).

So, A
(

x
k

)
≥ α ⇒ A(x) ≥ α, and thus, x

k
∈ Aα ⇒ x ∈ Aα. i.e., x ∈

[k · A]α ⇒ x ∈ Aα

(b) If k = 0 and x = 0, then (2) trivially.

0 ∈ Aα ⇒ 0 ∈ 0Aα = {0}.

(c) If k = 0 and x 6= 0, then

x ∈ 0 · Aα = {0} ⇒ x = 0,

a contradiction.

From (a), (b) and (c) above, we have that Aα is balanced.

(2) ⇒ (1): Choose k ∈ R such that |k| ≤ 1 and let α ∈ I . We have that

x ∈ Aα ⇒ kx ∈ Aα.

Thus, A(x) ≥ α⇒ A(kx) ≥ α and hence, A(x) ≤ A(kx).

2
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3.2.15 Proposition

Let X, Y be real vector spaces and let f : X → Y be a linear map. If A is a balanced

fuzzy set in X, then f [A] is a balanced fuzzy set in Y . Similarly, f←[B] is a balanced

fuzzy set in X whenever B is a balanced fuzzy set in Y .

PROOF.

Choose k ∈ R such that |k| ≤ 1 and let A ∈ IX be balanced. We have by Proposition

3.2.14, that k ·A ≤ A. Now, by Theorem 2.3.2 (10), we have f [k ·A] ≤ f [A] ⇔ k ·f [A] ≤
f [A] (from Lemma 3.2.4 (1)). By Proposition 3.2.14, we have that f [A] is balanced in Y .

Let B ∈ IY be balanced and choose k ∈ R such that |k| ≤ 1. By Proposition 3.2.14, we

have k · B ≤ B and by Theorem 2.3.2 (6), we have f←[k · B] ≤ f←[B]. Now, if k 6= 0,

then for x ∈ X,

f←[k · B](x) ≤ f←[B](x) ⇔ k · B(f(x)) ≤ B(f(x))

⇔ B
(1

k
f(x)

)
≤ B(f(x))

⇔ B
(
f
(x
k

))
≤ B(f(x))

⇔ f←[B]
(x
k

)
≤ f←[B](x)

⇔ k · f←[B](x) ≤ f←[B](x).

If, on the other hand, k = 0, then

0 · f←[B](x) = 0 · B(f(x))

=

{
supB if f(x) = 0
0 if f(x) 6= 0.

We have from Proposition 3.2.25, that B(0) = supB and as

f←[B](x) = B(f(x))

=

{
B(0) if f(x) = 0
B(f(x)) if f(x) 6= 0,

we have 0 · f←[B] ≤ f←[B].

2

3.2.16 Proposition

If A,B are balanced fuzzy sets on a vector space X, then A + B is a balanced fuzzy set

in X.
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PROOF.

Let A,B be balanced and choose k ∈ R such that |k| ≤ 1. Choose x ∈ X. Now,

(A+B)(x) =
∨

x1+x2=x

{
A(x1) ∧B(x2)

}

≤
∨

x1+x2=x

{
A(kx1) ∧B(kx2)

}
(since A is balanced)

≤
∨

kx1+kx2=kx

{
A(kx1) ∧ B(kx2)

}

(since x1 + x2 = x⇒ kx1 + kx2 = kx, for x1, x2 ∈ X)

≤
∨

z1+z2=kx

{
A(z1) ∧B(z2)

}
= (A +B)(kx).

2

3.2.17 Proposition

If {Aj}j∈J is a family of convex (resp., balanced) fuzzy sets on a vector space X, for J

an index set, then A =
∧

j∈J

Aj is a convex (resp., balanced) fuzzy set in X.

PROOF.

Let α ∈ I , then

Aα = {x ∈ X : A(x) ≥ α} =
⋂

j∈J

{x ∈ X : Aj(x) ≥ α}.

Since the intersection of ordinary convex (balanced) subsets of X is convex (balanced),

the result follows from Propositions 3.2.8 and 3.2.14.

2

3.2.18 Lemma

Let X be a vector space and A a fuzzy set on X. If A is convex (resp., balanced), then

supp(A) is convex (resp., balanced).

PROOF.

(i) Let A ∈ IX be convex. Then, by Proposition 3.2.8, we have that for all α ∈ I ,

Aα is convex. Let x, y ∈ supp(A) and let k ∈ I . Then A(x) > 0 and A(y) > 0,
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and therefore, x, y ∈ Aα, where α = A(x) ∧ A(y) > 0. Since Aα is convex

we have that A(kx + (1 − k)y) ≥ A(x) ∧ A(y) = α, and thus, we have that

kx+ (1 − k)y ∈ Aα ⊂ supp(A) which means that supp(A) is convex.

(ii) Let A ∈ IX be balanced and let k be such that |k| ≤ 1. We have, by Proposition

3.2.14, that Aα is balanced for each α ∈ I . Let x ∈ supp(A), then A(x) > 0. Thus

x ∈ Aα where α = A(x). Since Aα is balanced, we have that kx ∈ Aα ⊂ supp(A),
and thus, supp(A) is balanced.

2

3.2.4 Absorbing fuzzy sets

3.2.19 Definition

A fuzzy set A on a vector space X is absorbing if
∨

t>0 t · A = χ
X

.

3.2.20 Remark

It is clear the that the concept of absorbing in the fuzzy setting is a direct generalization

of the classical analogue. Unlike the notions of convexity and balancedness, however, the

notion absorbing does not reduce to the classical notion in the following sense. It is pos-

sible to have a crisp set A that is not absorbing in the classical sense, yet its characteristic

function χ
A

is absorbing in the fuzzy sense. This is illustrated by he following example.

3.2.21 Example

Consider the set R × R. Let

A :=
{
(0, 0)}

⋃
{(x, y) ∈ R × R : 1 ≤ x2 + y2 ≤ 2

}
.

Now, ∨

t>0

t · χ
A

= 1,

but for x = (1, 1), 6 ∃q ∈ R, q > 0 such that ∀s ∈ R, |s| < q, sx ∈ A, and hence, A is not

absorbing in the classical sense.

3.2.22 Lemma

Let X be a vector space and let A ∈ IX be balanced and absorbing. Then supp(A) is

balanced and absorbing.

PROOF.

If A ∈ IX is balanced, then we have, by Lemma 3.2.18, that supp(A) is both balanced in

the classical sense.
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We thus need only show that supp(A) is absorbing. Choose x ∈ supp(A). Since A
is absorbing, we have that (

∨
t>0A)(tx) = 1. There exists q ∈ R, q > 0 such that

A(qx) > 0. If this were not the case, then we would have
∨

t>0 tA(x) = 0, a contradiction.

Choose s ∈ R such that |s| ≤ q. Since |s| ≤ q, we have that | s
q
| ≤ 1. Because A is

balanced, we have that

A
(s
q
x
)
≥ A(x) ⇔ A

(s
q
x
)
≥ A

(q
q
x
)

⇔ q · A(sx) ≥ q · A(qx)

⇔
(1

q
q
)
· A(sx) ≥

(1

q
q
)
· A(qx)

⇔ A(sx) ≥ A(qx) > 0.

So, sx ∈ supp(A), and therefore supp(A) is absorbing.

2

Note that if A absorbing, then supt>0 t · A(0) = A(0) = 1.

3.2.23 Proposition

Let f : X → Y be a linear map for X, Y real vector spaces, A an absorbing fuzzy set in

Y , and t ∈ R. Then f←[A] is an absorbing fuzzy set in X.

PROOF.

Let x ∈ X. Then

t · f←[A](x) = f←[A](
x

t
)

= A(f(
x

t
)
)

= A
(1

t
f(x)

)

= t · A(f(x)).

So, ∨

t>0

t · f←[A](x) =
∨

t>0

t · A(f(x)) = 1,

since A is absorbing.

2
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3.2.5 Fuzzy vector spaces

The next definition provides us with a concept of a fuzzy vector space.

3.2.24 Definition

Let X be a vector space. Then A ∈ IX is called a fuzzy subspace ofX (fuzzy vector space

on X) if ∀a, b ∈ R and ∀x, y ∈ X,

A(ax+ by) ≥ A(x) ∧A(y).

3.2.25 Proposition

Let A be a fuzzy subspace of a vector space X, then:

(1) A(0) = supx∈X A(x).

(2) For each α ∈ I, Aα is a linear subspace of X.

(3) x ∈ X, a 6= 0 ⇒ A(ax) = A(x).

PROOF.

(1)
x ∈ X ⇒ A(0) = A(0x+ 0x)

≥ A(x) ∧ A(x)

= A(x).

(2) Choose α ∈ I . If Aα = ∅, then it is a linear subspace of X. If not, then choose

x, y ∈ Aα. Then

A(x) ≥ α and A(x) ≥ α.

Since A is a fuzzy subspace, we have ∀a, b ∈ R,

A(ax+ by) ≥ A(x) ∧A(y)

≥ α ∧ α

= α.

Hence, ax+ by ∈ Aα, and so Aα is a linear subspace.

(3)
x ∈ X, a 6= 0 ⇒ A(ax) = A(ax+ 0x)

≥ A(x) ∧A(x)

= A(x).

Now, replace x by ax and a by 1
a
, to get A(x) ≥ A(ax). Equality follows.
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2

We are now in a position to give a characterization of a fuzzy subspace.

3.2.26 Lemma ([30])

Let A be a fuzzy set on a vector space X. Then the following are equivalent:

(1) A is a fuzzy subspace of X.

(2) ∀k,m ∈ R, we have k · A +m · A ≤ A.

(3) The following two conditions hold:

(a) A + A ≤ A,

(b) ∀t ∈ R, t · A ≤ A.

PROOF.

(3) ⇒ (2): Follows trivially, also (1) and (2) are equivalent by Proposition 3.2.5.

(2) ⇒ (3): A + A = 1 · A + 1 · A ≤ A and k · A = k · A+ 0 · A ≤ A.

2

3.2.27 Proposition

Let X be a vector space, u, v ∈ X and A a fuzzy subspace of X such that A(u) > A(v).
Then A(u+ v) = A(v).

PROOF.

Since A(u) > A(v), we have A(u+ v) ≥ A(v). Also

A[(u+ v)− u] = A(v)

≥ A(u+ v) ∧ A(u).

Since A(u) > A(v), we have A(u+ v) ≤ A(v). Consequently, A(u+ v) = A(v).

2

3.2.28 Proposition

If A is a fuzzy subspace of a vector space X and v, w ∈ X with A(v) 6= A(w), then

A(v + w) = A(v) ∧A(w).
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PROOF.

Apply Proposition 3.2.27.

2

3.2.29 Proposition ([30])

If A and B are fuzzy subspaces of a vector space X and k ∈ R, then k ·A and A+B are

fuzzy subspaces.

PROOF.

(1) We have that for x, y ∈ X and a, b ∈ R,

A(ax+ by) ≥ A(x) ∧A(y).

Let k ∈ R and assume that k 6= 0. Then

k · A(ax+ by) = A
(1

k
(ax+ by)

)

= A
(a
k
x+

b

k
y
)

≥ A
(x
k

)
∧A

(y
k

)

≥ k · A(x) ∧ k · A(y).

If, on the other hand, we have that k = 0, then

0 · A(ax+ by) =

{
0 if ax+ by 6= 0
supA if ax+ by = 0

If ax+ by = 0:

0 · A(ax+ by) = supA ≥ A(x) ∧A(y).

If ax+ by 6= 0:

We have that 0 · A(ax+ by) = 0. We must show that (0 · A(x)) ∧ (0 · A(y)) = 0.

Assume that (0 ·A(x)) ∧ (0 · A(y)) 6= 0. Then

0 · A(x) > 0 and 0 · A(y) > 0. So, y = x = 0. A contradiction.

(2)

(A +B)(ax+ by) =
∨

z1+z2=ax+by

{
A(z1) ∧B(z2)

}
.
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Now, if x1 + x2 = x and y1 + y2 = y, for x1, x2, y1, y2 ∈ X, then

(ax1 + by1) + (ax2 + by2) = ax+ by.

So,

(A +B)(ax+ by) ≥
∨

x1+x2=x,y1+y2=y

{(
A(ax1 + by1) ∧B(ax2 + by2)

)}

≥
∨

x1+x2=x,y1+y2=y

{(
A(x1) ∧A(y1)

)
∧

(
B(x2) ∧B(y2)

)}

(A and B are both fuzzy subspaces)

=
∨

x1+x2=x,y1+y2=y

{(
A(x1) ∧B(x2)

)
∧

(
A(y1) ∧B(y2)

)}

=
∨

x1+x2=x

∨

y1+y2=y

{(
A(x1) ∧ B(x2)

)
∧

(
A(y1) ∧B(y2)

)}

(by Theorem 2.3.1 (1))

=

[ ∨

x1+x2=x

{
A(x1) ∧B(x2)

}] ∧ [ ∨

y1+y2=y

{
A(y1) ∧B(y2)

}]

= (A+B)(x) ∧ (A+B)(y).

2

3.2.30 Proposition ([30])

If (Aj)j∈J is a collection of fuzzy subspaces of a vector space X, for J an index set, then∧
j∈J Aj is also a fuzzy subspace of X.

PROOF.

Let m, k ∈ R and x, y ∈ X. Then

( ∧

j∈J

Aj

)
(mx+ ky) =

∧

j∈J

Aj(mx+ ky)

≥
∧

j∈J

(
Aj(x) ∧ Aj(y)

)
(since the Aj’s are fuzzy subspaces)

=
( ∧

j∈J

Aj(x)
)
∧

( ∧

j∈J

Aj(y)
)
.

2
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3.3 Fuzzy topological vector spaces and normed spaces

We now present Katsaras’s definition of a fuzzy topological vector space. The material of

this section is taken from [30], [31] and [32].

The fuzzy norm and fuzzy seminorm were first formulated by Katsaras in [32], and we

now present his motivation and definitions. If p is a seminorm on a vector space X, then

the set V = {x : p(x) < 1} is convex, balanced, absorbing and the family {t · V : t > 0}
is a base at zero for a linear topology. Further, p is a norm if and only if

⋂
t>0 t · V =

{0}. Conversely, if W is a balanced, convex, absorbing subset of E, then the Minkowski

functional p of W ,

p(x) = inf{t > 0 : x ∈ t ·W}

is a seminorm on X. We also have

{x : p(x) < 1} ⊂W ⊂ {x : p(x) ≤ 1}.

So, we have that the linear topology generated by p coincides with the linear topology

which has as a base at zero the family {t ·W : t > 0}. This leads us to the following

definition.

If (X, ‖ · ‖) is a normed space and B is the unit ball (open/closed), then B is convex,

balanced and absorbing in the classical sense and χ
B
∈ IX has the same properties (as

defined above).

Furthermore, if x ∈ X, x 6= 0, then there exists t > 0 such that x 6∈ t ·B (i.e., χ
B
(x

t
) = 0).

This condition distinguishes a norm from a seminorm.

3.3.1 Definition ([32])

Let X be a vector space.

(1) A convex, balanced and absorbing ρ ∈ IX is called a fuzzy seminorm on X. If in

addition, ∀x 6= 0, inft>0 t · ρ(x) = 0, ρ is called a fuzzy norm.

(2) A fuzzy seminormed space is a pair (X, ρ), X a vector space, ρ a fuzzy seminorm

on X. A fuzzy normed space is a pair (X, ρ), X a vector space and ρ a norm on X.

3.3.2 Example

Consider the function χ
B

defined on the vector space C as follows.

χ
B
(z) =

{
1 on B
0 off B,

where B = {z ∈ C : |z| ≤ 1}.

Then, χ
B

is a fuzzy norm on C:
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(i) Let x, y ∈ B. If k ∈ {0, 1}, then trivially χ
B
(kx + (1 − k)y) = 1. Let k ∈ (0, 1),

then, for each α ∈ (0, 1], [χ
B
]α = B, which is a convex set in the classical sense.

Thus by 3.2.8, we have that χ
B

is fuzzy convex.

(ii) Let x ∈ X and α ∈ C be such that |α| ≤ 1. Then |αx| = |α||x| ≤ |x|. Now, it

follows that if |x| ≤ 1, then χ
B
(x) = 1 and χ

B
(αx) = 1. If, on the other hand,

|x| > 1, then, χ
B
(x) = 0, then clearly χ

B
(αx) ≥ χ

B
(x). Thus, χ

B
is balanced.

(iii) Let x ∈ X. If x = 0, then χ
B
(x) = 1. If x 6= 0, then, χ

B
is absorbing since if

t = |x| 6= 0, then |x
t
| = 1 and thus,

∨

s>0

sχ
B
(x) = tχ

B
(x) = 1.

(iv) Finally, let x ∈ X, then
∧

t>0 tχB
(x) = {0}, which means that χ

B
is a fuzzy norm.

3.3.3 Definition

Let X be a vector space. Given x ∈ X and A ∈ IX , then x+ A ∈ IX is defined as

(x+ A)(y) = A(y − x), ∀y ∈ X.

Note that in the definition above, it can easily be shown that x+ A = χ
{x}

+ A.

3.3.4 Definition

A linear fuzzy topology on a vector space X over R is a fuzzy topology (containing all

the constant sets) such that the two mappings

+ : X ×X → X, (x, y) 7→ x+ y,

· : R ×X → X, (t, y) 7→ t · y,

are continuous when R is equipped withω(τord), the fuzzy topology generated (in Lowen’s

sense, as explained in Example 2.5.2 (4)), by the usual topology on R; and R × X and

X ×X have the corresponding product fuzzy topologies.

A vector space X with a linear fuzzy topology is called a fuzzy topological vector space

(fuzzy topological linear space).

3.3.5 Definition

A collection B of fuzzy sets on a vector space X is a base at zero for a linear fuzzy

topology if the collection

N0 = {A ∈ IX : ∃B ∈ B, A ≥ B,A(0) = B(0)}

is a collection of neighbourhoods of zero for a linear fuzzy topology.

For each x ∈ X, we define Nx the collection of all neighbourhoods of x in the following

way.

Nx = {x+ A : A ∈ N0}.



CHAPTER 3. A FUZZY HAHN-BANACH THEOREM 71

These collections generate a topology by defining the open sets as in Definition 2.7.2.

3.3.6 Theorem ([31])

Let B be a family of balanced fuzzy sets on a vector space X. Then B is a base at zero for

a linear fuzzy topology if and only if B satisfies the following conditions:

(1) For each A ∈ B, A(0) > 0.

(2) For each nonzero constant fuzzy set c in X and and l ∈ (0, c), there exists A ∈ B

with A ≤ c and A(0) > l.

(3) IfA1, A2 ∈ B and l ∈ (0, A1(0)∧A2(0)), then there exists A ∈ B withA ≤ A1∧A2

and A(0) > l.

(4) If A ∈ B and t ∈ R, t 6= 0, then for each l ∈ (0, A(0)), there exists A1 ∈ B, with

A1 ≤ t · A and A1(0) > l.

(5) Let A ∈ B and let l ∈ (0, A(0)). Then there exists A1 ∈ B such that A1(0) > l and

A1 + A1 ≤ A.

(6) Let A ∈ B and x0 ∈ X. If l ∈ (0, A(0)), then there exists a positive number s such

that for all t ∈ R such that |t| ≤ s, we have A(tx0) > l.

(7) For each A ∈ B there exists a fuzzy set A1 in X, with A1 ≤ A and A1(0) = A(0),
and such that for each x0 ∈ X, for which A1(x0) > 0, and each n such that

0 < n < A1(x0), there exists B ∈ B, with B ≤ −x0 + A1 and B(0) > n.

3.3.7 Theorem ([32])

If ρ is a fuzzy seminorm on a vector space X, then the family

Bρ = {l ∧ (t · ρ) : t > 0, l ∈ (0, 1]}

is a base at zero for a linear fuzzy topology τρ.

Now, by Definition 3.3.5, N0 the collection of all neighbourhoods of 0 is defined in in the

following way.

N0 = 〈Bρ〉 = {A ∈ IX : ∃B ∈ Bρ, A ≥ B,A(0) = B(0)}.

Hence, we can state the following corollary.

3.3.8 Corollary

A fuzzy seminormed space (and hence a fuzzy normed space) is a fuzzy topological vector

space.
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3.3.9 Lemma

If (X, ρ) is a fuzzy (semi)normed space and M is a linear subspace of X, then (M, ρ|
M

)
is a fuzzy (semi)normed subspace of (X, ρ).

PROOF.

Let (X, ρ) be a fuzzy seminormed space, M a linear subspace of X and x, y ∈M .

(i) Let k ∈ [0, 1], then,

ρ|M (kx+ (1 − k)y) = ρ(kx+ (1 − k)y)

≥ ρ(x) ∧ ρ(y)

= ρ|M(x) ∧ ρ|M (y).

That is, ρ|M is fuzzy convex.

(ii) Now let α be such that |α| ≤ 1. Then ρ|M(αx) = ρ(αx) ≥ ρ(x) = ρ|M(x), and

hence, ρ|M is balanced.

(iii) Also,
∨

t>0 ρ(tx) = 1, for all x ∈ X, and thus,
∨

t>0 ρ|M (tx) =
∨

t>0 ρ(tx) = 1,

for all x ∈M . i.e., ρ|M is absorbing.

(iv) Finally, in the case that ρ is a fuzzy norm, we have that
∧

t>0 ρ(tz) = 0, for all

z ∈ X, z 6= 0, and therefore,

∧

t>0

ρ|M(tx) ≤
∧

t>0

ρ(tx) = 0,

for all x ∈ M ⊂ X, x 6= 0. Thus,
∧

t>0 ρ|M(tx) = 0, for all x ∈ M,x 6= 0, which

implies that ρ|M is a fuzzy norm on M .

2

3.4 Hahn-Banach theorems in the fuzzy setting

Katsaras introduced a meaningful idea of a fuzzy seminorm in [32] and thus, the stage

was set for our main results of this chapter. Gil Seob Rhie and In Ah Hwang fuzzified the

theorem in [27].

Before we reach the statement and proof of the [27] version of the theorem, it is necessary

to establish a few preliminary notions. For this section we will again be considering the

vector space X over the field R of real numbers.
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The following definition was yielded by Krishna and Sarma in [38], in their discussion

on how to generate a fuzzy vector topology from an ordinary vector topology on a vector

space.

3.4.1 Lemma ([38])

If ρ is a fuzzy seminorm on a vector space X (see Definition 3.3.1), then for each

l ∈ (0, 1),

Pl(x) =
∧ {

t > 0 : t · ρ(x) > l
}

(∈ R+)

gives an ordinary seminorm on X. This seminorm is called the induced seminorm.

3.4.2 Lemma ([27])

Let X be a vector space. The function P : X → R+, defined by

P (x) =
∧

{Pl(x) : l ∈ (0, 1)},

is a seminorm on X.

3.4.3 Theorem ([27])

Let X be a vector space, ρ1, ρ2 fuzzy seminorms on X and let P 1
l , P

2
l be induced ordinary

seminorms, respectively. If ∀x ∈ X, ρ1(x) ≤ ρ2(x), then ∀x ∈ X, ∀l ∈ (0, 1),

P 1
l (x) ≥ P 2

l (x).

3.4.4 Definition (The ∗-property, [27])

Let ρ be a fuzzy seminorm on a vector space X. ρ is said to have the ∗-property if for

every x ∈ X,

ρ(x) =
∧

{ρ(tx) : 0 < t < 1}.

3.4.5 Example

Let X = R and define the function ρ : R → I by

ρ(x) =

{
1 if x ∈ [−1, 1]
0 if x 6∈ [−1, 1].

Then it can easily be shown that ρ is a seminorm with the ∗-property.

3.4.6 Lemma ([27])

Let ρ be a fuzzy seminorm on a vector space X with the ∗-property. If x0 ∈ X and

ρ(x0) < l < 1, then Pl(x0) > 1.

3.4.7 Theorem ([27])

Let ρ1 and ρ2 be two fuzzy seminorms on a vector space X and ρ2 have the ∗-property. If

∀l ∈ (0, 1), ∀x ∈ X,P 1
l (x) ≥ P 2

l , then ∀x ∈ X, ρ1(x) ≤ ρ2(x).
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We are now in a position to state and prove Gil Seob Rhie and In Ah Hwangs’ fuzzification

of an analytical form of the Hahn-Banach Theorem.

3.4.8 Theorem ([27])

Let X be a vector space over R, let ρ be a fuzzy seminorm on X, and let M ⊂ X be

a linear subspace. If f is a linear functional on M such that χ
Bf

≥ ρ on M , then there

exists a linear functional g on X such that:

(1) ∀x ∈M, f(x) = g(x), and

(2) χ
Bg

≥ ρ on X,

where Bf = {x ∈M : |f(x)| ≤ 1}, Bg = {x ∈ X : |g(x)| ≤ 1}.

PROOF.

Let χ
Bf

= ρ1. Then ∀x ∈M, l ∈ (0, 1),

P 1
l (x) =

∧
{t > 0 : t · ρ1(x) > l}

=
∧

{t > 0 : ρ1(
x

t
) > l}

=
∧

{t > 0 : ρ1(
x

t
) = 1} (as ρ1 = χ

Bf
)

=
∧

{t > 0 : |f(
x

t
)| ≤ 1} (as

x

t
∈ Bf )

=
∧

{t > 0 : |f(x)| ≤ t} = |f(x)|.

So, by Theorem 3.4.3, ∀l ∈ (0, 1), ∀x ∈ M, |f(x)| ≤ Pl(x), where ∀x ∈ X,

Pl(x) =
∧

{t > 0 : t · ρ(x) > l}.

Now by Lemma 3.4.2, we have ∀x ∈M ,

|f(x)| ≤ P (x) =
∧

{Pl(x) : l ∈ (0, 1)}.

Therefore, by the classical Hahn-Banach Theorem, there exists a linear functional g on X
such that:

(1) ∀x ∈M, g(x) = f(x), and

(2) ∀x ∈ X, |g(x)| ≤ P (x).
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Let χ
Bg

= ρ2. Then for all x ∈ X, a ∈ (0, 1),

P 2
a (x) =

∧
{s > 0 : s · ρ2(x) > a}

=
∧

{s > 0 : ρ2(
x

s
) > a}

=
∧

{s > 0 : ρ2(
x

s
) = 1} (since ρ2 = χ

Bg
)

=
∧

{s > 0 : |g(
x

s
)| ≤ 1} (since

x

s
∈ Bg)

=
∧

{s > 0 : |g(x)| ≤ s} = |g(x)|.

Thus, ∀a ∈ (0, 1), ∀x ∈ X,

P 2
a (x) ≤ P (x) =

∧
{Pl(x) : l ∈ (0, 1)},

and hence, ∀l ∈ (0, 1), ∀x ∈ X,

P 2
l (x) ≤ Pl(x).

Since χ
Bg

has the ∗-property, χ
Bg

≥ ρ by Theorem 3.4.7.

2

The remainder of this section is our original from [35]. We can now define a fuzzy topol-

ogy on a fuzzy seminormed space (X, ρ) in the following way.

3.4.9 Definition

Let (X, ρ) be a fuzzy seminormed space. The basic neighbourhoods of 0 (the zero vector

of X) are the fuzzy subsets t ·ρ, where t > 0. A fuzzy subset A is called a neighbourhood

of 0 if there exists a t > 0 such that t · ρ ≤ A.

The collection of all neighbourhoods of 0, defined above, is denoted by N (0).

3.4.10 Proposition

Let Let (X, ρ) be a fuzzy seminormed space.

(1) A(0) > 0, for all A ∈ N (0).

(2) A ∈ N (0) and S ≤ B ⇒ B ∈ N (0).

(3) If A1, A2 ∈ N (0), then A1 ∧A2 ∈ N (0).

(4) t · ρ ∈ N (0), for each t > 0 (in fact for each t ∈ F, t 6= 0).
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(5) If A ∈ N (0), then A is absorbing.

(6) If A ∈ N (0), then there exists a convex A∗ ∈ N (0) such that A∗ ≤ A.

PROOF.

(1) A(0) ≥ t · ρ(0) = ρ(0) = supx∈X ρ(x) > 0.

(2) Obvious.

(3) We have t1, t2 > 0 such that t1 · ρ ≤ A1 and t2 · ρ ≤ A2. Thus,

(t1 · ρ) ∧ (t2 · ρ) ≤ A1 ∧A2.

If t2 ≤ t1, then by Remark 3.2.11 (5), t2 · ρ ≤ A1 ∧ A2, and so A1 ∧ A2 ≤ N (0).

(4) Obvious. The remark in parentheses follows for t ∈ R\{0} since ρ being balanced,

ρ(−x) = ρ(x). If t ∈ C\{0}, then by Remark 5, r · ρ ≤ t · ρ, for 0 < r ≤ |t|, and

so t · ρ ∈ N (0).

(5) There exists a t1 > 0 such that t1 · ρ ≤ A. So, supt>0 tt1 · ρ ≤ supt>0 t · A, or

1 = sups>0 s · ρ ≤ supt>0 t · A. Thus, sup t · A = 1.

(6) We have t · ρ ≤ A, for a t > 0. ρ is convex and hence, t · ρ is convex by Remark

3.2.11.

2

One can define neighbourhoods of an arbitrary point x ∈ X by translation.

3.4.11 Definition

Let (X, ρ) be a fuzzy seminormed space. Given x ∈ X and A ∈ IX , then x+ A ∈ IX is

defined as (x+ A)(y) = A(y − x), for all y ∈ X. (cf. χ
[a+x,b+x]

(y) = χ
[a,b]

(y − x)). The

neighbourhoods of x are defined as the sets of the form x + A, where A ∈ N (0). The

collection of all the neighbourhoods of x is denoted by N (x).

3.4.12 Theorem

Let (X, ρ) be a fuzzy seminormed space. The family N (x) defines a neighbourhood

system as specified in Definition 2.7.1.

PROOF.

We simply need to show that N (x) satisfies the four neighourhood axioms of Definition

2.7.1.
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(1) A = x + B, where B ∈ N (0). So, A(y) = (x + B)(y) = B(y − x), and thus,

A(x) = B(0) > 0, by Proposition 3.4.10 (1).

(2) A(y) = (x + A1)(y) = A1(y − x) and B(y) = A2(y − x), with A1, A2 ∈ N (0).
Thus, A ∧ B(y) = A1(y − x) ∧ A2(y − x) = A3(y − x), where A3 ∈ N (0), by

Proposition 3.4.10 (3), which is equal to (x+ A3)(y).

(3) x+ A ≤ x+B ⇒ B ∈ N (0), by Proposition 3.4.10 (2). Thus, x+B ∈ N (x).

(4) A = x + B and there exists a t > 0 such that t · ρ ≤ B. So, x + t · ρ ≤ A. If

C(y) = (x+t ·ρ)(y) > 0, then t ·ρ(y−x) > 0, or y+t ·ρ(x) > 0 (ρ(−x) = ρ(x)),
and is a neighbourhood of y.

2

3.4.13 Theorem

A linear map T : (X1, ρ1) → (X2, ρ2) between two fuzzy seminormed spaces is fuzzy

continuous on X1 if and only if A ∈ N (0) in X2 ⇒ T←[A] = A ◦ T ∈ N (0) in X1.

PROOF.

Let A ∈ N (Tx0) in X2. So, A = Tx0 + B, where B ∈ N (0) in X2. We immediately

have by Theorem 2.7.6 that T←[B] = A ◦ T ∈ N (0) in X1. Now,

A ◦ T (x) = (Tx0 +B)(Tx)

= B(Tx− Tx0)

= B ◦ T (x− x0)

= C(x− x0)

= x0 + C(x),

where C = B ◦ T ∈ N (0) in X1 by the assumption. Thus, A ◦ T = T←[A] is a

neighbourhood on x0 in X1.

2

With the background notions established, we are able to present our two main results of

this section. We consider the real and the complex case separately. It should be mentioned

that the basic idea for this work was conceived by J. J. Chadwick at a seminar at Rhodes

University in the 1990’s.
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3.5 The real case

Firstly, notice that χ
[−1,1]

on R is an example of a fuzzy norm on R. For this section we

use the following notation to prove the main results.

3.5.1 Definition

Let (X, ρ) be a fuzzy seminormed space where X is a real vector space. Let X ′ denote

the set of all fuzzy continuous linear functionals from (X, ρ) into (R, χ
[−1,1]

).

Let A ∈ N (0). SinceA is absorbing, by Proposition 3.4.10 (5), supp(A) is absorbing, and

ifA is convex (balanced), so is supp(A) (by Lemma 3.2.22, Proposition 3.2.8 (Proposition

3.2.14)).

3.5.2 Proposition

Let (X, ρ) be a fuzzy seminormed space and f : X → R a linear mapping. Then f ∈ X ′

if and only if there exists A ∈ N (0) in X such that |f(x)| ≤ 1, for all x ∈ supp(A).

PROOF.

⇒: f ∈ X ′. Now, χ
[−1,1]

is a (basic) neighbourhood of 0 in R, and so A = f←[χ
[−1,1]

] ∈
N (0) in X. If x ∈ supp(A),A(x) > 0, i.e., f←[χ

[−1,1]
](x) = χ

[−1,1]
(f(x)) > 0, and

therefore, |f(x)| ≤ 1.

⇐: Assume that |f(x)| ≤ 1, for x ∈ supp(A), where A ∈ N (0). Then A(x) ≤
χ

[−1,1]
(f(x)), for all x ∈ X. Let A be a neighbourhood of 0 in (R, χ

[−1,1]
). Choose

t1 > 0 such that t1χ[−1,1]
≤ A and t2 > 0 such that t2ρ ≤ A. Then for x ∈ X,

(t1t2) · ρ(x) ≤ t1 ·A(x)

= A(
x

t1
)

≤ χ
[−1,1]

(f(
x

t1
))

= χ
[−1,1]

(
1

t1
f(x))

= t1 · χ[−1,1]
(f(x))

≤ A(f(x))

= f←[A](x).

Hence, (t1t2) · ρ ≤ f←[A], and so f←[A] ∈ N (0). Thus, f is fuzzy continuous by

Theorem 3.4.13.

2
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3.5.3 Corollary

Let (X, ρ) be a fuzzy seminormed space, then X ′ is a vector space.

PROOF.

Let f, g ∈ X ′. Choose Af , Ag ∈ N (0) such that |f(x)| ≤ 1 on supp(Af ), |g(x)| ≤ 1 on

supp(Ag). Put A = 1
2
· Af ∧

1
2
· Ag. So, A ∈ N (0), by Proposition 3.4.10. Now,

x ∈ supp(A) ⇒
1

2
· Af(x) ∧

1

2
· Ag(x) > 0

⇒
1

2
· Af(x) > 0,

and 1
2
· Ag(x) > 0 ⇒ Af(2x) > 0 and Ag(2x) > 0 ⇒ |f(2x)| ≤ 1 and |g(2x)| ≤ 1 ⇒

|(f + g)(x)| ≤ 1. So, by the preceding Proposition, f + g ∈ X ′. Likewise, we can show

that if f ∈ X ′, r real, then rf ∈ X ′:

The case r = 0 is trivially true. So, for r 6= 0, put A = 1
r
·Af . Then by Proposition 3.4.10

(4), A ∈ N (0). Then

x ∈ supp(A) ⇒
1

r
· Af(x) > 0

⇒ Af(rx) > 0

⇒ |f(rx)| ≤ 1

⇒ |rf(x)| ≤ 1

⇒ rf ∈ X ′.

2

Let (X, ρ) be a fuzzy seminormed space and M a linear subspace of X. The neighbour-

hoods of 0 in (M, ρ|
M

) are A|
M

, where A is a neighbourhood of 0 in (X, ρ). This can be

shown in a similar manner to the proof of Theorem 3.4.12. Note that

supp(A|
M

) = {m ∈M : A(m) > 0} = M ∩ supp(A),

where M ′ has the obvious meaning.

3.5.4 Theorem (Hahn-Banach - real case)

Let (X, ρ) be a fuzzy seminormed space over R, M a linear subspace of X and f ∈ M ′.
Then there exists a g ∈ X ′ such that g(m) = f(m), for m ∈M .

PROOF.

Since f ∈M ′, there exists a neighbourhood B on 0 in (M, ρ) such that

|f(m)| ≤ 1, for all m ∈ supp(B).
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Now, there exists a neighbourhoodA of 0 inX such that B = A|
M

. By Proposition 3.4.10

(6), there exists a convex A ∈ N (0) such that A ≤ A. So,

|f(m)| ≤ 1, for all m ∈ supp(A|
M

) = M ∩ supp(A).

We can assume A is balanced (or if necessary, replace A by A ∧ (−A) with

−A(x) = A(−x) as per Definition 3.2.1). The convexity and absorption properties are

retained, the latter because in a frame arbitrary suprema distribute over finite infima. The

set supp(A) is convex, balanced and absorbing (by Proposition 3.2.8, Propostion 3.2.14

and Lemma 3.2.22). Thus, the Minkowski functional (‘gauge’),

p(x) = inf{t > 0 : x ∈ t(supp(A))},

defines a sublinear functional on X as in Theorem 3.1.1 (see e.g. [33] or [81]).

Now,
f(m) ≤ p(m), for all m ∈M, p(m) < 1 ⇒ m ∈M ∩ supp(A)

⇒ |f(m)| ≤ 1.

For any m ∈M , k > 0,

p

(
m

p(m) + k

)
=

p(m)

p(m) + k
< 1.

So, ∣∣∣∣f(
p(m)

p(m) + k
)

∣∣∣∣ ≤ 1 or |f(m)| ≤ p(m) + k.

Since k > 0 is arbitrary, |f(m)| ≤ p(m), and hence, f(m) ≤ p(m). Apply the classical

result Theorem 3.1.1 and we obtain a g defined on X such that g(x) ≤ p(x), for all x ∈ X
and g(m) = f(m), for all m ∈ M . If x ∈ supp(A), then p(x) ≤ 1, so g(x) ≤ 1. Also,

since supp(A) is balanced, we have

g(−x) = −g(x) ≤ 1.

Thus, |g(x)| ≤ 1 on supp(A). It follows that g ∈ X ′.

2
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3.6 The complex case

Consider now a vector space X over C, ρ a fuzzy seminorm on X, with X ′ the set of all

fuzzy continuous linear functionals from (X, ρ) into (C, χ
B
), where B = {z ∈ C : |z| ≤

1}, i.e.,

χ
B
(z) =

{
1 on B
0 off B.

This is a fuzzy norm on C (see Example 3.3.2). Proposition 3.5.2 is also valid for this X ′

as is Corollary 3.5.3 (f ∈ X ′, k ∈ C ⇒ kf ∈ X ′ follows again from Proposition 3.4.10

(4)).

Theorem 3.5.4 then has a counterpart for this case. In the corresponding proof we need A
balanced as well. If not, replace it first with A∗ = A∧ (−A). Then for k real and |k| ≤ 1,

A∗(kx) ≥ A∗(x). Then put Ã(kx) = A∗(|k|x) for k complex. Then Ã(kx) ≥ A∗(x) =
Ã(x) (for |k| ≤ 1).

The convexity and absorption properties are carried over from A to Ã. Then p(x) =
inf{t > 0 : x ∈ t · supp(A)} defines a sublinear functional on X (see [33] or [78]) of the

type as in Theorem 3.1.2, which can be applied to get the following theorem.

3.6.1 Theorem (Hahn-Banach - complex case)

Let (X, ρ) be a fuzzy seminormed space over C, M a linear subspace of X and f ∈ M ′.
Then there exists a g ∈ X ′ such that g(m) = f(m), for m ∈M .

3.7 Notes and remarks

A comparison between Theorem 3.4.8 and our fuzzy Hahn-Banach theorem is in order.

Let (X, ρ) be a fuzzy seminormed space M a linear subspace of X.

The conditions in Theorems 3.5.4 and 3.4.8 are respectively:

A: f ∈ M ′, i.e., there exists a A ∈ NX(0) such that for all x ∈ supp(A) ∩ M ,

|f(x)| ≤ 1.

B: On M , ρ ≤ χ
Bf

, where Bf = {x ∈M : |f(x)| ≤ 1}.
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Now, B ⇒ A:

The fuzzy seminorm ρ is a neighbourhood on 0. Since ρ ≤ χ
Bf

on M , for all x ∈

supp(ρ) ∩M , |f(x)| ≤ 1. So, f ∈M ′. On the other hand A implies :

There exists t > 0 such that t · ρ ≤ A, and therefore, on M we have t · ρ ≤ χ
Bf

.

So, Theorem 3.5.4 has as the following corollary.

3.7.1 Corollary

If (X, ρ) is a fuzzy seminormed space and M a linear subspace of X such that B holds,

then there exists a g ∈ X ′ such that for all x ∈M , g(x) = f(x).

This is exactly the statement of Theorem 3.4.8 in view of the comments above.



Chapter 4

Rådström’s embedding theorem

4.1 Introduction

It is a natural question to ask what the relationship between sets and vectors is since

certain collections of sets satisfy all but one of the vector space axioms - that is, all but

axiom (c) of Definition 1.2.9. In this chapter, we solve the problem of how to embed

such a collection of sets into a vector space, which was the central theme in [46]. We

firstly look at the motivation for one of our main results and also present the necessary

preliminary material that leads to these main results. This research was initiated by the

search for a good way of defining a fuzzy Riesz space. We became aware of an incorrect

definition of a fuzzy Riesz space, in the literature [70, 71, 72, 73], and realized that the

situation was more complicated than it initially appeared. We responded to this error in

[44], which lead to the results of this chapter.

Modelled on the classic Daniell integral in the crisp setting, M.S. Samuel considered

fuzzy vector lattices to investigate extension properties of fuzzy Daniell integrals in [70,

71, 72, 73]. He considered the vector lattice R
X

= [−∞,∞]X of extended real-valued

functions on a set X. Using the notion of a fuzzy vector space on R, as can be found in

[30], Samuel introduces the notion of a fuzzy vector latticeA on R and the notion of fuzzy

points of A. Samuel shows that the fuzzy points Ã of a fuzzy vector space A on R can

be endowed, in a natural way, with an order structure. Extensions are then considered of

fuzzy Daniell integrals; i.e., linear maps τ : Ã → R̃, with the property that if (xn) is a

decreasing sequence in Ã and
∧

n xn = 0, then limn→∞ τ (xn) = 0. The map τ is extended

to the space Ãu consisting of limits of increasing sequences of fuzzy points in Ã.

He then introduces an upper Daniell integral τ and a lower Daniell integral τ, which

agree on Ãu. This leads naturally to the notion of τ -integrability of a fuzzy point; a fuzzy

point g is τ -integrable provided that τ (g) = τ (g) ∈ R̃.

83
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The set of all fuzzy points which are τ -integrable, is denoted by Ã1. The main properties

of Ã1, as claimed in [71, Proposition 3.10] and [72, Proposition 4.5], are that Ã1 is again

a vector lattice and τ can be uniquely extended to a Daniell integral on Ã1.

The extension of a Daniell integral, as proposed in [70, 71, 72, 73], hinges on the premise

that if A is a fuzzy vector lattice on a given vector latticeX, then the set of fuzzy points Ã
of A is a vector lattice. Unfortunately, this is not the case, as the counter example below

shows. Consequently, Samuel’s Daniell integrals are then not linear and neither are their

extensions, contrary to his claims in [70, 71, 72].

We now prove, by means of a counter example, that the central premise that Samuel used

in his definition of a fuzzy Riesz space is unsound.

Let X be a crisp set. For any fuzzy set A of X, once again Ã will denote the fuzzy points

of A. That is, Ã = {αχ
{x}

∈ X̃ : α ≤ A(x)} as in [70].

IfB is a fuzzy vector space, we adhere to the following convention, which guarantees that

χ
{0}

∈ B̃.

Convention: If X is a vector space and B a fuzzy vector space on X, define B(0) = 1.

Let X be a vector lattice. Following [70, Definition 1.3], A is is said to be a fuzzy vector

lattice on X, if A is a fuzzy vector space on X, and for all x, y ∈ X,

A(x ∧ y) ≥ min{A(x), A(y)} and A(x ∨ y) ≥ max{A(x), A(y)}.

In [70], the following theorems are deduced from the natural definitions of addition and

scalar multiplication of fuzzy vector spaces, as in Definition 3.2.1.

4.1.1 Theorem (see Note 1.9, [70])

Let X be a vector space and B be a fuzzy vector space on X. Then, for all a, b ∈ R and

αχ
{x}
, βχ

{y}
∈ B̃, the following hold:

(1) a · αχ
{x}

= αχ
{ax}

,

(2) a · αχ
{x}

+ b · βχ
{y}

= min{α, β}χ
{ax+by}

.

Let A be a fuzzy vector lattice. As in [70], define an ordering on A as follows. If

αχ
{x}
, βχ

{y}
∈ Ã, define

αχ
{x}

≥ χ
{0}

⇔ x ≥ 0,

and

αχ
{x}

≥ βχ
{y}

⇔ x ≥ y and α ≤ β.
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4.1.2 Theorem (see Theorem 1.7, Result 1.10, [70])

Let A be a fuzzy vector lattice. Then, for all αχ
{x}
, βχ

{y}
∈ Ã, the following hold:

(1) αχ
{x}

∨ βχ
{y}

= min{α, β}χ
{x∨y}

,

(2) αχ
{x}

∧ βχ
{y}

= max{α, β}χ
{x∧y}

.

Samuel claims in [70, Result 1.10], that if A is a fuzzy vector lattice, then Ã is a vector

lattice. Unfortunately this is not the case, as the following example shows.

4.1.3 Example

Let A be a fuzzy vector lattice. We claim that Ã is not a vector lattice. In fact, Ã is not a

group, since the cancellation law

∀x, y, z ∈ A (x+ z = y + z ⇒ x = y)

is not satisfied. This follows from
(

3

4

)
χ

{a}
+

(
1

2

)
χ

{b}
= min

{
3

4
,
1

2

}
χ

{a+b}

= min

{
2

3
,
1

2

}
χ

{a+b}

=

(
2

3

)
χ

{a}
+

(
1

2

)
χ

{b}
,

but
(

3
4

)
χ

{a}
6=

(
2
3

)
χ

{a}
, for any A(a) ≥ 3

4
and A(b) ≥ 2

3
.

This leads us to our conclusion. Our counter example shows that the set of fuzzy points

of fuzzy vector lattices does not form a vector lattice. As a consequence, the error in [70]

has an adverse effect on the linearity claims of the fuzzy Daniell integral in [71, 72, 73].

Moreover, it seems that Samuel’s definition of a fuzzy vector lattice is inadequate, since

it demands B(x ∧ y) ≥ min{B(x), B(y)} and B(x ∨ y) ≥ max{B(x), B(y)}. In order

to reflect the notion that B is a lattice, the ‘max’ should possibly be replaced by ‘min’ in

the latter inequality.

4.2 Near vector spaces

In light of the discussion above, the problem with Samuel’s definition of a fuzzy vector

lattice is that the set of fuzzy points, of a given fuzzy set, is not a vector space. In fact more

pertinently, such sets are not even additive groups. This is similar to collections of sets or
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fuzzy sets. In fact, it is fairly trivial to show that, for a Banach space X, P(X) satisfies

all but one of the requirements of 1.5. The problem is that, for a given set A ∈ P(X),
an additive inverse of A does not exist in general. The problem that we then undertook to

solve was to establish under what conditions such objects can be naturally embedded into

vector spaces. Rådström’s work in [68] is the key to this problem and we need a special

case of his embeddings result.

Rådströms embedding theorem for ‘near vector spaces’, which are essentially vector

spaces without additive inverses, is extended to embeddings of near vector lattices, which

are essentially vector lattices without additive inverses, into vector lattices. If the near

vector space is endowed with a metric, properties of the metric are considered for which

the norm completion of the embedding space is one of the classical Lp Banach spaces.

Rådström proved, in [68], that a ‘near vector space’, can be embedded into a vector space.

He also showed that if the ‘near vector space’ is endowed with a metric compatible with

the addition and multiplication by positive scalars defined on the near vector space, then

the embedding space can be normed and the embedding also preserves distance.

Rådström’s embedding theorem is cited in papers in many different areas of mathematics,

but in particular, in set-valued analysis (cf. [1, 6, 8, 14, 17, 40, 39, 57, 58, 63, 68, 79],

which is by no means an exhaustive list).

In set-valued analysis, such ‘near vector spaces’ arise naturally. Let X be a Banach space

and let P0(X) be the set of all nonempty subsets of X. There are also two natural opera-

tions on P0(X), namely addition and scalar multiplication, defined by

A +B := {a + b : a ∈ A, b ∈ B} and λA := {λa : a ∈ A},

for all A,B ∈ P0(X) and λ ∈ R. It is not always possible to find an additive inverse for a

subset A of X. Thus, the set P0(X) does not, in general, form a vector space with respect

to the above defined addition and scalar multiplication. Certain hyperspaces (i.e., spaces

of subsets of P0(X)) can be embedded in a vector space with preservation of addition and

multiplication by positive scalars. Hyperspaces, which are embeddable, must at least obey

a cancellation law from the outset for an embedding into a vector space to be possible.

Rådström noted in [68, Lemmas 1 and 2], that if A and C are nonempty convex closed

subsets of X and B is a nonempty bounded subset of X, then

A +B ⊂ C +B ⇒ A ⊂ C.

Consequently, if A,B and C are nonempty convex bounded closed subsets of X, then

A +B = C +B ⇒ A = C .

We define the following hyperspaces:

• f(X) of nonempty closed subsets of X,
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• bf(X) of nonempty closed bounded subsets of X,

• cf(X) of nonempty convex closed subsets of X,

• cbf(X) of nonempty convex bounded closed subsets of X,

• cwk(X) of nonempty convex weakly compact subsets of X,

• ck(X) of nonempty convex compact subsets of X,

where X is a Banach space.

Notice that ck(X) ⊂ cwk(X) ⊂ cbf(X) ⊂ bf(X) ⊂ f(X).

It is well-known that the Hausdorff distance dH is a metric on bf(X), and that (bf(X), dH)
is a complete metric space. We may thus speak of the Hausdorff topology on bf(X),
where X a Banach space. Furthermore, cbf(X) is a closed subspace of bf(X) (cf. [48]).

However, bf(X) is not closed under +, since A+B need not be a closed set (even in the

case where A,B ∈ bf(X)). If we define ⊕ on bf(X) by

A⊕ B = A +B

(where the latter denotes the norm closure of A+B in X), then bf(X) is closed under ⊕.

Set inclusion is a natural ordering on P0(X) which is compatible with addition + and

multiplication · by positive scalars. It is interesting to note that Rådström’s embedding

procedure does not take the natural ordering on the hyperspace into account (The ordering

on the hyperspace was taken into account in [79] to consider an embedding procedure for

a hyperspace of convex compact fuzzy sets). We extend Rådström’s embedding for a

‘near vector space’ and show that a ‘near vector lattice’, which is essentially a vector

lattice without additive inverses, can be embedded into a vector lattice. If the ‘near vector

lattice’ is endowed with a metric, we consider the conditions on the metric required to

guarantee that the associated norm on the embedding space is a Riesz norm.

Based on [67], we introduce the notion of an ‘order unit’ in an ‘ordered near vector space’.

We show that this notion corresponds to the standard notion in vector lattices on the em-

bedding space. This correspondence also yields a correspondence between the Hausdorff

metric on the ‘ordered near vector space’ and the Minkowski functional of the corre-

sponding order unit of the embedding space. By using Kakutani’s (M)-space representa-

tion theorem, we give a representation for ‘near vector lattices’ with order units, endowed

with the Hausdorff metric, in terms of C(Ω)-spaces.

We consider properties of the metric on the ‘near vector lattice’ that connects the embed-

ding space to the classical Banach spaces Lp(µ) for 1 ≤ p <∞. If the ‘near vector lattice’
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has an order unit, we consider properties on the endowed metric on the ‘near vector lat-

tice’ for which it is possible to embed the ‘near vector lattice’ into an L1(µ)-space, where

(Ω,Σ, µ) is a probability space. Our approach uses Kakutani’s (L)-space representation

theorem.

We also consider ‘near vector lattices’ which do not necessarily have order units. For such

spaces, we consider properties that the metric on the ‘near vector lattice’ has to satisfy so

as to connect the embedding space to the classical Banach spaces Lp(µ) for 1 ≤ p <∞.

This approach uses the Kakutani-Bohnenblust representation for Lp-spaces.

The order embedding procedure is then applied to obtain representations of cbf(X),
cwk(X) and ck(X).

The reader is referred to [56, 59, 69, 74, 83] for further reading in this area.

We introduce the following terminology.

4.2.1 Definition

Let S be a nonempty set.

(1) Then S is said to be a near vector space, provided that: addition +: S × S → S
is defined such that (S,+) is a cancellative commutative semigroup; i.e., for all

x, y, z ∈ S:

(a) x+ z = y + z ⇒ x = y,

(b) x+ y = y + x,

(c) (x+ y) + z = x+ (y + z),

and multiplication · : R+ × S → S by positive scalars is defined such that for all

x, y ∈ S and λ, δ ∈ R+:

(d) λx + λy = λ(x+ y),

(e) (λ + δ)x = λx+ δx,

(f) (λδ)x = λ(δx),

(g) 1x = x.

(2) If S is a near vector space and d : S× S → R+ is a metric on S, then d is said to be

an invariant metric on S, provided that:

(h) the two mappings

+ : S × S → S, (x, y) 7→ x+ y, and

· : R+ × S → S, (t, y) 7→ t · x,
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are continuous when R+ is equipped with the subspace topology (as a sub-

space of R with the usual topology), S is equipped with the metric topology

induced by d, and R+ × S and S × S are equipped with the corresponding

product topologies.

(i) d(λx, λy) = λd(x, y), for all λ ∈ R+ and x, y ∈ S,

(j) d(x+ z, y + z) = d(x, y), for all x, y, z ∈ S.

The following is a special case of what Rådström proved in [68, Theorem 1].

4.2.2 Theorem

Let S be a near vector space.

(1) There exist a vector space R(S) and a map j : S → R(S) such that

(a) j is injective,

(b) j(αx+ βy) = αj(x) + βj(y) ∀α, β ∈ R+ and x, y ∈ S,

(c) R(S) = j(S) − j(S) := {j(x) − j(y) : x, y ∈ S}.

(2) If d : S×S → R is an invariant metric, then there exists a norm ‖ · ‖d on R(S) such

that

d(x, y) = ‖j(x) − j(y)‖d, for all x, y ∈ S.

Since Rådström’s construction of R(S) plays an fundamental role in the remainder of the

this work, we include a proof outline of Theorem 4.2.2 for the convenience of the reader.

Consider S × S and define ∼ on S × S by

(x, y) ∼ (x1, y1) ⇔ x+ y1 = x1 + y.

Then ∼ is an equivalence relation on S × S. Let

[x, y] := {(x1, y1) ∈ S × S : (x, y) ∼ (x1, y1)} .

On the quotient R(S) := (S × S)/∼,= {[x, y] : (x, y) ∈ S × S}, define addition by

[x, y] + [x1, y1] = [x+ x1, y + y1].

Then R(S) is an abelian group with additive identity [x, x] and additive inverse

−[x, y] := [y, x], for any (x, y) ∈ S × S.

If multiplication by positive scalars is defined on S with the properties as stated above,

define scalar multiplication · : R × R(S) → R(S) by

λ · [x, y] :=

{
[λx, λy] λ ∈ R+

[−λy,−λx] −λ ∈ R+ .
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Then R(S) is a vector space.

If d is an invariant metric on S, then ‖ · ‖d, defined by

‖ [x, y] ‖d := d(x, y), for all [x, y] ∈ R(S),

is a norm on R(S) with the desired property.

The map j : S → R(S), defined by

j(x) = [x+ z, z], for all x ∈ S,

for any z ∈ S, has the desired properties.

The following two results are analogues of those noted by Rådström in [68, Lemma 1].

4.2.3 Lemma

Let X be a Banach space. If A and C are nonempty convex closed subsets of X and B is

a nonempty bounded subset of X, then A⊕ B ⊂ C ⊕ B implies A ⊂ C .

PROOF.

Let a ∈ A. We show that a ∈ C . If b1 ∈ B, then a + b1 ∈ C ⊕ B. Since C +B is dense

in C ⊕ B, we may select c1 ∈ C and b2 ∈ B such that ‖a + b1 − (c1 + b2)‖ <
1
2
. For

the same reason, we may select c2 ∈ C and b3 ∈ B such that ‖a + b2 − (c2 + b3)‖ <
1
22 .

Repeat the process and if bn ∈ B has been chosen, we select cn ∈ C and bn+1 ∈ B such

that

‖a + bn − (cn + bn+1)‖ <
1

2n
.

Consequently, for each n ∈ N,

∥∥∥na+
n∑

i=1

bi −
( n∑

i=1

ci +
n+1∑

i=2

bi
)∥∥∥ ≤

n∑

i=1

∥∥∥a+ bi − (ci + bi+1)
∥∥∥ <

n∑

i=1

1

2i
,

i.e.,

∥∥∥a +
1

n
b1 −

1

n
bn+1 −

1

n

n∑

i=1

cn

∥∥∥ <
1

n
.

Let dn = 1
n

∑n

i=1 cn. Then dn ∈ C by the convexity of C . Since

‖a− dn‖ ≤
∥∥∥a +

1

n
b1 −

1

n
bn+1 − dn

∥∥∥ +
1

n

∥∥∥b1
∥∥∥ +

1

n

∥∥∥bn+1

∥∥∥

<
1

n
+

1

n

∥∥∥b1
∥∥∥ +

1

n

∥∥∥bn+1

∥∥∥,
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and B is bounded, we get that limn→∞ ‖a− dn‖ = 0. By the closedness of C , it follows

that a ∈ C .

2

4.2.4 Lemma

Let X be a Banach space. Then (cbf(X),⊕) satisfies the following cancellation law

(C) If A,B,C ∈ cbf(X) and A⊕ B = C ⊕ B, then A = C .

PROOF.

The result follows from the preceding lemma.

2

4.3 Rådström’s embedding and order

If S is an ordered near vector space or a near vector lattice, we want to consider Rådström’s

embedding by taking the given order or lattice structure on S into account. We, therefore,

recall some terminology and introduce new terminology.

Recall that a partially ordered set (P,≤) is called a join-semilattice if the least upper

bound of x and y, denoted x ∨ y, exists for all x, y ∈ P .

4.3.1 Definition

Let S be a near vector space.

(a) If (S,≤) is a partially ordered set such that ≤ is compatible with addition and

multiplication by positive scalars; i.e.,

(i) x ≤ y ⇒ x+ z ≤ y + z, and

(ii) x ≤ y ⇒ αx ≤ αy, for all α ∈ R+,

then S is called an ordered near vector space.

(b) If S is an ordered near vector space and (S,≤) is a join-semilattice for which

(x ∨ y) + z = (x+ z) ∨ (y + z), for all x, y, z ∈ S,

then S is called a near vector lattice.
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If S1 and S2 are partially ordered sets and both are join-semilattices and T : S1 → S2 is

join preserving; i.e., T (x∨y) = T (x)∨T (y), for all x, y ∈ S1, then T is order preserving.

4.3.2 Examples

Let X be a Banach space.

(1) By Lemma 4.2.4, (cbf(X),⊕) satisfies the cancellation law (C). It is then easily

verified, that (cbf(X),⊕, · ,⊂) satisfies the other properties required to be an or-

dered vector space. Furthermore, (cbf(X),⊂) is a join-semilattice with join given

by

K1 ∨K2 = co(K1 ∪K2)

(where the latter denotes the norm closure of the convex hull of K1 ∪ K2). Then,

for all K1, K2, K3 ∈ cbf(X),

(K1 ∨K2) ⊕K3 = (K1 ⊕K3) ∨ (K2 ⊕K3) :

It is easy to see that (K1 ⊕ K3) ∨ (K2 ⊕ K3) ⊂ (K1 ∨ K2) ⊕ K3. The crux of

proving the reverse containment is to note that if λ1, . . . , λn ∈ R+,
∑n

i=1 λi = 1,

e1, . . . , en ∈ K1 ∪K2 and b ∈ K3, then

( n∑

i=1

λiei

)
+ b =

n∑

i=1

λi(ei + b) ∈ co((K1 ⊕K3) ∪ (K2 ⊕K3)).

That is, co((K1 ∨K2) + K3) ⊂ co((K1 ⊕K3) ∨ (K2 ⊕K3)). Taking closures on

both sides yields (K1∨K2)⊕K3 ⊂ (K1⊕K3)∨(K2⊕K3). Consequently, cbf(X)
is a near vector lattice.

(2) Theorem 1.3.12 states that if A is a nonempty weakly compact subset of X, then

coA ∈ cwk(X) (see also [16, p.51]). Thus, if K1, K2 ∈ cwk(X), then

K1 ∨K2 ∈ cwk(X). It also follows, from Theorem 1.3.12, that if A,B ∈ cwk(X),
then A ⊕ B = A + B ∈ cwk(X) (see [36]). Therefore, (cwk(X),+, · ) is a near

vector space with respect to the operations induced by the operations on cbf(X).
Furthermore, cwk(X) is an ordered near vector space with respect to ⊂. We also

have that cwk(X) ⊂ cbf(X). Consequently, cwk(X) is a near vector lattice with

respect to the operations and order induced by cbf(X).

(3) It is well-known that if K1, K2 ∈ ck(X), then K1 ⊕K2 = K1 +K2 ∈ ck(X).

Thus, by Theorem 1.2.42, if K1, K2 ∈ ck(X), then K1 ∨ K2 ∈ ck(X). It follows

easily that ck(X) is a near vector lattice with respect to the operations and order

induced by cwk(X).

Let S be an ordered near vector space. Define an order ≤ on R(S) by

[x, y] ≤ [x1, y1] ⇔ x+ y1 ≤ y + x1.
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4.3.3 Theorem

Let S be a near vector lattice. Then R(S) is a vector lattice, with positive coneR(S)+ :=
{[x, y] : y ≤ x}, in which the following formulas hold:

(1) [x, y]+ = [x ∨ y, y],

(2) [x, y]− = [x ∨ y, x],

(3) | [x, y] | = [2(x ∨ y), x+ y],

(4) [x, y]∨ [x1, y1] = [(x1 + y) ∨ (x+ y1), y + y1],

(5) [x, y]∧ [x1, y1] = [x+ x1, (x1 + y) ∨ (x+ y1)].

PROOF.

It is readily verified that R(S) is an ordered vector space with positive cone R(S)+ =
{[x, y] : y ≤ x}.

To prove (1), note that [u ∨ v, v] is an upper bound for {[u, v], [z, z]}. If [a, b] is also an

upper bound for {[u, v], [z, z]}, then u + b ≤ a + v and b + z ≤ a + z. It follows from

u∨v+b+z = (u+b+z)∨ (v+b+z) ≤ a+v+z that [u∨v, v] ≤ [a+z, b+z] = [a, b].
Thus, [u ∨ v, v] = [u, v]+. This also proves that R(S) is a vector lattice.

The remaining proofs follow from (1) and appropriate application of properties (I.1) and

(I.2) from Definition 1.2.59 (b).

2

4.3.4 Corollary

Let S be a near vector lattice. Then the embedding j : S → R(S) is join preserving.

PROOF.

Let x, y ∈ S. Then, for any z ∈ S, it follows from Theorem 4.3.3 (4), that

j(x) ∨ j(y) = [x+ z, z] ∨ [y + z, z]

= [(y + z + z) ∨ (x+ z + z), z + z]

= j(x ∨ y).

2

Let S1 and S2 be ordered near vector spaces, t : S1 → S2 and define

T ([x, y]) = [t(x), t(y)], for all x, y ∈ S1.



CHAPTER 4. RÅDSTRÖM’S EMBEDDING THEOREM 94

If t preserves addition, then it is readily verified that T is a well defined map from R(S1)
to R(S2). The following result relates properties of t to T .

4.3.5 Theorem

Let S1 and S2 be ordered near vector spaces, t : S1 → S2 addition preserving and T : R(S1) →
R(S2) as defined above. Then the following statements hold:

(1) If t(αx+ βy) = αt(x) + βt(y), for all x, y ∈ S1 and α ∈ R+, then T is linear.

(2) If t is order preserving, then T is a positive map.

(3) If t is injective, so is T .

Moreover, if S1 and S2 are near vector lattices, then

(4) t(x ∨ y) = t(x) ∨ t(y), for all x, y ∈ S1, implies that

T ([x, y]∨ [a, b]) = T ([x, y])∨ T ([a, b]), for all x, y, a, b ∈ S1.

PROOF.

(1) Firstly, we notice that because t is addition preserving, we immediately have that

t(0) = 0 and that t(−x) = −t(x), for all x ∈ S1. Let α, β ∈ R and x, y ∈ S1. We

also have that j(αx+ βy) = [αx+ βy, 0]. Now,

T ([αx+ βy, 0]) = [t(αx+ βy), t(0)]

= [t(αx) + t(βy), 0]

= [t(αx), 0] + [t(βy), 0].

If α ∈ R+, then [t(αx), 0] = [αt(x), 0] = α[t(x), 0], while on the other hand, if

−α ∈ R+, then

[t(αx), 0] = [t((−α)(−x)), 0]

= [−αt(−x), 0]

= [(−α)(−t(x)), 0]

= [αt(x), 0]

= α[t(x), t(0)].

Similarly, [t(βy), 0] = β[t(y), t(0)], which gives us

T ([αx+ βy, 0]) = αT ([x, 0]) + βT ([y, 0]).

i.e., T is linear.
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(2) Let x, y ∈ S1 such that [x, y] ≥ [0, 0]. Then x ≥ y, and hence, t(x) ≥ t(y) by the

fact that t is order preserving. This implies that

T ([x, y]) = [t(x), t(y)] ≥ [0, 0],

and thus, T is a positive map.

(3) Let x, y, a, b ∈ S1 such that T ([x, y]) = T ([a, b]). Then

[t(x), t(y)] = [t(a), t(b)] ⇔ t(x) + t(b) = t(a) + t(y)

⇔ t(x)− t(a) = t(y)− t(b)

⇔ t(x− a) = t(y − b)

⇔ x− a = y − b (since t is injective)

⇔ x+ b = y + a

⇔ [x, y] = [a, b].

That is, T is injective.

(4) Assume that t(x∨y) = t(x)∨ t(y), for all x, y ∈ S1. Now, let x, y, a, b ∈ S1. Then,

T ([x, y]∨ [a, b]) = T ([(a+ y) ∨ (x+ b), y + b]) (by Theorem 4.3.3)

= [t((a+ y) ∨ (x+ b)), t(y + b)].

On the other hand,

T ([x, y])∨ T ([a, b]) = [t(x), t(y)]∨ [t(a), t(b)]

= [(t(a) + t(y)) ∨ (t(x) + t(b)), t(y) + t(b)] (by Theorem 4.3.3)

= [(t(a+ y)) ∨ (t(x+ b)), t(y) + t(b)]

= [t((a+ y) ∨ (x+ b)), t(y + b)].

That is, T ([x, y]∨ [a, b]) = T ([x, y])∨ T ([a, b]).

2

4.3.6 Definition

(a) Let S2 be an ordered near vector space and S1 a nonempty subset of S2. S1 is said

to be a sub ordered near vector space of S2 provided that S1 is closed under the

operations addition, multiplication by positive scalars and join.

(b) If S1 is a subset of a near vector lattice S2 and S1 is a near vector lattice under the

same ordering as S2, then we say that S1 is a sub-near vector lattice of S2.

4.3.7 Corollary

If S1 is a sub-near vector lattice of a near vector lattice S2, thenR(S1) is a vector sublattice

of R(S2).
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PROOF.

The proof follows from Theorem 4.3.5.

2

Example. If X is a Banach space, then ck(X) is a sub-near vector lattice of cwk(X).
The latter is a sub-near vector lattice of cbf(X). By Corollary 4.3.7, R(ck(X)) is a vector

sublattice of R(cwk(X)), which is a vector sublattice of R(cbf(X)).

If S is an ordered near vector space or a near vector lattice which is endowed with a metric

d, we consider conditions on d which guarantee that the associated norm ‖ · ‖d on R(S)
is compatible with the order or lattice structure of R(S).

4.3.8 Definition

Let S be a near vector lattice and d : S × S → R+ an invariant metric. Then d is said to

be a Riesz metric on S, provided that:

(a) if x ≤ y ≤ z ∈ S, then d(x, y) ≤ d(x, z), and

(b) if x, y ∈ S, then d(x, y) = d(2(x ∨ y), x+ y).

4.3.9 Example

Let S = [0,∞) with the usual ordering of real numbers. Then S is a near vector lattice

and the metric d given by d(x, y) = |x− y|, for x, y ∈ S, is a Riesz metric on S.

We consider a connection between Riesz metrics on near near vector lattices and Riesz

norms on the Rådström spaces that they generate.

4.3.10 Lemma

Let S be a near vector lattice and d : S × S → R+ an invariant metric. Then d is a Riesz

metric on S if and only if ‖ · ‖d is a Riesz norm on the vector lattice R(S).

PROOF.

Suppose d is a Riesz metric. Let a, b, x, y, z ∈ S and [z, z] ≤ [x, y] ≤ [a, b]. It follows

from y ≤ x, b ≤ a and x + b ≤ a + y, that y + b ≤ x + b ≤ a + y. Hence, d(x, y) =
d(x+ b, y + b) ≤ d(a + y, y + b) = d(a, b). Consequently,

‖ [x, y] ‖d ≤ ‖ [a, b] ‖d.

Let x, y ∈ S. Since [2(x ∨ y), x+ y] = | [x, y] |, we get

‖ [x, y] ‖d = d(x, y) = d(2(x ∨ y), x+ y) = ‖ | [x, y] | ‖d.
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Thus, ‖ · ‖d is a Riesz norm on R(S).

Conversely, if ‖ · ‖d is a Riesz norm on R(S), let x ≤ y ≤ z in S. Then [u, u] ≤ [y, x] ≤
[z, x]. Consequently,

d(y, x) = ‖ [y, x] ‖d ≤ ‖ [z, x] ‖d = d(z, x).

Let x, y ∈ S. Since [2(x ∨ y), x+ y] = | [x, y] |, we get

d(x, y) = ‖ [x, y] ‖d = ‖ | [x, y] | ‖d = d(2(x ∨ y), x+ y).

Thus, d is a Riesz metric on S.

2

If E is a vector lattice, then E+ is a near vector lattice. We want to compareR(E+) to E.

We first introduce some more terminology.

4.3.11 Definition

Let S be an ordered near vector space [near vector lattice] which also satisfies

(Z) there exists 0 ∈ S such that x+ 0 = x, for all x ∈ S and λ0 = 0, for all λ ∈ R+.

Then S is said to be an ordered near vector space [near vector lattice] with a zero.

If E is a vector lattice, then E+ is a near vector lattice with a zero and x ∈ E+ if and only

if x ≥ 0. We claim that the vector lattice R(E+) has as positive cone R(E+)+ = {[x, 0] :
x ∈ E+}. Clearly, {[x, 0] : x ∈ E+} ⊂ R(E+)+. Conversely, if [x, y] ∈ R(E+)+,

then y ≤ x. But then z := x − y ∈ E+ and y + z = x. Thus, (x, y) ∼ (z, 0), hence,

[x, y] = [z, 0].

We recall from [83, p.17], that (x ∨ y) − (x ∧ y) = |x − y|, for all x, y ∈ E. It follows

from (I.1) from Definition 1.2.59 (b), that

(I.3) 2(x ∨ y) − (x+ y) = |x− y|, for all x, y ∈ E.

This identity is used in the proof of the following theorem.

4.3.12 Theorem

Let E be a vector lattice. Then J : R(E+) → E, defined by

J([x, y]) = x− y, for all x, y ∈ E+,

is a vector lattice isomorphism.
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PROOF.

It is readily verified that J is well-defined and injective. To verify that J is surjective,

let x ∈ E. Then x+, x− ∈ E+ and J([x+, x−]) = x. The linearity of J follows easily.

To complete the proof, we show that J( | [x, y] | ) = | J([x, y]) |, for all x, y ∈ E+. This

follows from

J( | [x, y] | ) = J
(
2(x ∨ y), x+ y

)

= 2(x ∨ y) − (x+ y)

= |x− y|

= | J([x, y]) |.

2

4.3.13 Corollary

Let E be a Riesz normed vector lattice. Then

(1) d‖·‖ : E+×E+ → R+, defined by d‖·‖(x, y) = ‖x−y‖, for all x, y ∈ E+, is a Riesz

metric on E+, and

(2) the map J , as in Theorem 4.3.12, is a surjective vector lattice and isometric isomor-

phism.

PROOF.

(a) Let x, y, z ∈ E+ such that x ≤ y ≤ z. Then 0 ≤ y − x ≤ z − x, from which we get

that d‖·‖(x, y) = ‖y − x‖ ≤ ‖z − x‖ = d‖·‖(z, x).

If x, y ∈ E+, then

d‖·‖
(
2(x ∨ y), x+ y

)
= ‖2(x ∨ y) − (x+ y)‖

= ‖ |x− y| ‖

= ‖x− y‖

= d‖·‖(x, y).

Thus, d‖·‖ is a Riesz metric.

(b) For all x, y ∈ E+, we have

‖ [x, y] ‖d‖·‖ = d‖·‖(x, y) = ‖x− y‖ = ‖J( [x, y] )‖.

Thus, J has the desired properties.

2
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4.4 Order units

4.4.1 Definition

A Riesz (semi)norm ‖ · ‖ on a vector lattice E is called an M-(semi)norm on E, provided

that

(M) ‖x ∨ y‖ = max{‖x‖, ‖y‖}, for all x, y ∈ E+.

In this case we call E = (E, ‖ · ‖) an M-normed space.

Let Ω be a compact Hausdorff space and

C(Ω) := {f : Ω → R : f is continuous}.

Endow the latter with pointwise addition, scalar multiplication and order, and norm given

by

‖f‖∞ :=
∨

{|f(t)| : t ∈ Ω}.

ThenC(Ω) is a norm completeM-normed vector lattice. The function 1 : Ω → R, defined

by

1(s) = 1, for all s ∈ Ω,

is an order unit of C(Ω).

4.4.2 Theorem (Kakutani’s (M)-space representation theorem, [29])

Let E be any M-normed space with an order unit, then there exists a compact Hausdorff

space Ω such thatE is isometric and lattice isomorphic to the space C(Ω) of all continuous

real-valued functions f(ω) defined on Ω.

4.4.3 Lemma

Let S be a near vector lattice and d : S × S → R+ an invariant metric. Then d is a Riesz

metric and

(Md) d
(
(x1 + y) ∨ (x + y1), y + y1

)
= max{d(x, y), d(x1, y1)}, for all x, y, x1, y1 ∈ S

such that y ≤ x and y1 ≤ x1

if and only if ‖ · ‖d is an M-norm on R(S).

PROOF.

By Lemma 4.3.10, d is a Riesz metric on S if and only if ‖ · ‖d is a Riesz norm on R(S).
If x, y, x1, y1 ∈ S and y ≤ x and y1 ≤ x1, it follows from

[(x1 + y) ∨ (x+ y1), y + y1] = [x, y]∨ [x1, y1],
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that d has property (Md) if and only if ‖ · ‖d has property (M).

2

Let X be a Banach space. We once again denote by X ′ the continuous dual of X, and by

BX the closed unit ball of X.

Recall that in Definition 1.2.59 (e), an order unit of a Riesz space was defined. Kaku-

tani gave a complete description of Archimedean vector lattices with order units in [29].

If E is an Archimedean vector lattice with an order unit e ∈ E+, then the Minkowski

functional pe on E is an M-norm on E. By the (M)-space representation Theorem of

Kakutani (Theorem 4.4.2), the norm completion E of (E, p) is vector lattice and isomet-

rically isomorphic to C(Ω), where Ω is a compact Hausdorff space. In fact, Ω is the set

of extreme points of H0 := {F ∈ E
′
: ‖F‖ = 1} and Ω is endowed with the topology

induced by the weak∗ topology σ(E
′
, E). The reader is referred to [69] for properties of

the weak∗ topology.

In terms of Rådström completions, we now look for a suitable notion of an order unit of

S that yields on R(S) the usual notion of an order unit of a vector lattice. This motivates

the following.

4.4.4 Definition

Let S be an ordered near vector space. If e ∈ S has the property that

(ou) for all x, y ∈ S, there exists K ∈ R+ such that x ≤ Ke+ y and y ≤ Ke+ x,

then e is called an order unit of S.

4.4.5 Note

If S is an ordered near vector space with zero, then it is readily verified that e is an order

unit of S if and only if for each x ∈ S there exists K ∈ R+ such that x ≤ Ke and

0 ≤ Ke+ x. Furthermore, 0 ≤ e.

It is well-known that if X is a Banach space, then

• BX ∈ cwk(X) if and only if X is reflexive, and

• BX ∈ ck(X) if and only if X is finite dimensional.

4.4.6 Example

Let X be a Banach space.

(1) Then BX is an order unit of the near vector lattice cbf(X).

(2) If X is reflexive, then BX is an order unit of the near vector lattice cwk(X).
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(3) If X is finite dimensional, then BX is an order unit of the near vector lattice ck(X).

If X is a Banach space, the Hausdorff metric dH on bf(X) is sometimes given in the

following form in the literature (see [6, 48, 67]).

dH(A,C) = inf{K > 0 : A ⊂ KBX + C and C ⊂ KBX + A},

for all A,C ∈ bf(X). It is easily verified that

dH(A,C) = inf{K > 0 : A ⊂ KBX ⊕ C and C ⊂ KBX ⊕A},

for all A,C ∈ bf(X). This motivates the following.

4.4.7 Definition

Let S be an ordered near vector space and let e ∈ S be an order unit of S. Define, for all

x, y ∈ S,

he(x, y) = inf{K > 0 : x ≤ Ke+ y and y ≤ Ke+ x}.

4.4.8 Proposition

Let S be an ordered near vector space and let e ∈ S be an order unit of S. Then he, as

defined in Definition 4.4.7 above, is a semimetric.

4.4.9 Definition

Let S be an ordered near vector space with an order unit e ∈ S. Then S is said to be

Archimedean, provided that S satisfies

(A) if x, y ∈ S and x ≤ 1
n
e+ y, for all n ∈ N, then x ≤ y.

Let S be an Archimedean ordered near vector space and let e ∈ S be an order unit of S.

Then he also satisfies

(a′) if he(x, y) = 0, then x = y,

i.e., he is a metric on S.

4.4.10 Example

Let X be a Banach space.

(1) Then cbf(X) is an Archimedean near vector lattice withBX as an order unit. More-

over, hBX
is the Hausdorff metric dH on cbf(X).

(2) If X is not reflexive, then BX 6∈ cwk(X). Thus, BX is, therefore, not an order unit

of the Archimedean ordered near vector lattice cwk(X).
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(3) If X is not finite dimensional, then BX 6∈ ck(X). Thus, BX is, therefore, not an

order unit of the Archimedean ordered near vector lattice ck(X).

In terms of Rådström completions, the following result shows how the notions on S mesh

with the standard notions of vector lattices on R(S).

4.4.11 Lemma

Let S be an ordered near vector space which has an order unit e. Then

(1) [e+ z, z] is an order unit of the ordered vector space R(S), for any fixed z ∈ S, and

(2) R(S) is Archimedean if S has a zero and is Archimedean.

PROOF.

(a) Let [x, y] ∈ R(S). Select K ∈ R+ such that x ≤ Ke + y and y ≤ Ke + x. Then

x+Kz ≤ Ke+y+Kz and y+Kz ≤ Ke+x+Kz. Consequently, [x, y] ≤ [Ke+Kz,Kz]
and −[x, y] = [y, x] ≤ [Ke+Kz,Kz], showing that −K[e+z, z] ≤ [x, y] ≤ K[e+z, z].
Thus, [e+ z, z] is an order unit of R(S).

(b) Let a, b, u, v, z ∈ S and [z, z] ≤ n[u, v] ≤ [a, b], for all n ∈ N. By the preceding

part of the proof, there exists K ∈ R+ such that [a, b] ≤ K[e, 0]. Consequently, [u, v] ≤
K
n
[e, 0], for all n ∈ N. It follows from u ≤ K

n
e + v, for all n ∈ N that u ≤ v. But then

u = v, i.e., [u, v] = [z, z]. This means that R(S) is Archimedean.

2

4.4.12 Lemma

Let S be an Archimedean near vector lattice with a zero and an order unit e. Then he : S×
S → R+ is an invariant metric on S with the property that the associated norm ‖ · ‖he on

R(S) is exactly the Minkowski functional p[e,0] of the order unit [e, 0] of the Archimedean

vector lattice R(S).

PROOF.

Since R(S) is an Archimedean vector lattice with [e, 0] as an order unit, the Minkowski

functional p[e,0] is an M-norm on R(S).

We claim that he(x, y) = p[e,0]([x, y]), for all x, y ∈ S. If x, y ∈ S and K ∈ R+, then

x ≤ Ke+ y and y ≤ Ke+ x ⇔ [x, y] ≤ K[e, 0] and [y, x] ≤ K[e, 0]

⇔ [x, y] ≤ K[e, 0] and − [x, y] ≤ K[e, 0]

⇔ −K[e, 0] ≤ [x, y] ≤ K[e, 0].
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Thus, he(x, y) = p[e,0]([x, y]), for all x, y ∈ S, as claimed.

Consequently, he is an invariant metric on S and the associated norm ‖ · ‖he on R(S) is

exactly the Minkowski functional p[e,0] of the order unit [e, 0] on R(S).

2

4.4.13 Theorem

Let S be an Archimedean near vector lattice with a zero and an order unit e. Then the

invariant metric he : S × S → R+ is a Riesz metric on S with property Md.

PROOF.

Since p[e,0] is an M-norm on R(S), the result follows directly from Lemmas 4.4.12 and

4.4.3.

2

4.4.14 Corollary

Let X be a Banach space. Then the following statements hold:

(1) The Hausdorff metric dH is a Riesz metric on cbf(X) with property Md.

(2) The restriction of the Hausdorff metric dH to cwk(X) is a Riesz metric on cwk(X)
with property Md.

(3) The restriction of the Hausdorff metric dH to ck(X) is a Riesz metric on ck(X)
with property Md.

PROOF.

(1) Since cbf(X) is an Archimedean near vector lattice with {0} as zero and BX as an

order unit, it follows from Theorem 4.4.13 that hBX
is a Riesz metric on cbf(X)

with property Md. But hBX
equals dH , as already noted in the preceding example.

(2) The Hausdorff metric dH on cbf(X) corresponds to the Minkowski functional p[e,0]

on R(cbf(X)). Since cwk(X) is a sub-near vector lattice of cbf(X), it follows

from Corollary 4.3.7, that R(cwk(X)) is a vector sublattice of R(cbf(X)). Con-

sequently, the restriction of p[e,0] to R(cwk(X)) is an M-norm on R(cwk(X)) and

corresponds to the restriction of dH to cwk(X). By Lemma 4.4.3, it follows that

the restriction of dH to cwk(X) is a Riesz metric on cwk(X) with property Md.

(3) The proof is almost verbatum the same as that of (2).

2
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4.5 A C(Ω) embedding

We relateR(S) to some of the classical Banach spaces, under appropriate assumptions on

d.

The following is one of our main results of this section.

4.5.1 Theorem

Let S be an Archimedean near vector lattice with a zero and an order unit e ∈ S. Then

there exist a compact Hausdorff space Ω and a map K : S → C(Ω) such that:

(1) K is injective.

(2) K(αx+ βy) = αK(x) + βK(y), for all x, y ∈ S and α, β ∈ R+.

(3) K(S) −K(S) is norm dense in C(Ω).

(4) he(x, y) = ‖K(x) −K(y)‖∞, for all x, y ∈ S.

(5) K(x ∨ y) = K(x) ∨K(y), for all x, y ∈ S.

(6) K(e) = 1.

PROOF.

By Lemma 4.4.12, he : S × S → R+ is a Riesz metric on S with the property that the

associated norm ‖ · ‖he on R(S) is exactly the Minkowski functional p[e,0] of the order

unit [e, 0] of the Archimedean vector lattice R(S). There exist, by Kakutani’s (M)-space

representation theorem (Theorem 4.4.2), a compact Hausdorff space Ω and a vector lattice

and isometric isomorphism V from the norm completion of R(S) onto C(Ω) such that

V (e) = 1. Let K = V ◦ j, where j : S → R(S) is the natural embedding. By Theorem

4.2.2 and Corollary 4.3.4, it follows that K has the desired properties.

2

4.5.2 Corollary

Let X be a Banach space. Then the following statements hold:

(1) S = cbf(X) fulfills the requirements of Theorem 4.5.1 with e = BX .

(2) If X is reflexive, then S = cwk(X) fulfills the requirements of Theorem 4.5.1 with

e = BX .

(3) If X is finite dimensional, then S = ck(X) fulfills the requirements of Theorem

4.5.1 with e = BX .
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Our next aim is to derive a version of Theorem 4.5.1 for the case where S does not

necessarily have an order unit.

We recall that a completely regular topological space is called a Stone space if the closure

of every open set is open.

4.5.3 Definition

A Riesz (semi)norm on a vector lattice E is called an L-(semi)norm, provided that

‖x+ y‖ = ‖x‖ + ‖y‖, for all x, y ∈ E+.

A vector lattice equipped with an L-norm is said to be an L-normed space.

4.5.4 Theorem (Kakutani’s (L)-space representation theorem (see [28, 59, 74]))

Let E be aL-normed Banach lattice with an order unit. Then there corresponds a compact

Hausdorff space Ω, a strictly positive Borel measure µ on Ω such that E is isomorphic

with L1(µ). Furthermore,E possesses a weak order unit u if and only if Ω can be chosen

to be compact and such that the isomorphism E → L1(µ) maps Eu onto L∞(µ).

This brings us to our second main result of this section, in which we drop the assumption

of an order unit of S, but assume S can be embedded into an ordered near vector lattice

with an order unit.

4.5.5 Theorem

Let S1 be an Archimedean near vector lattice with a zero, denoted by 0, and an order unit,

denoted by e. If S is a sub-near vector lattice of S1 such that 0 ∈ S, then there exist a

compact Hausdorff Stone space Ω and a map J : S → C(Ω) such that:

(1) J is injective.

(2) J(αx+ βy) = αJ(x) + βJ(y), for all x, y ∈ S and α, β ∈ R+.

(3) J(S)− J(S) is w∗-dense (i.e., σ(C(Ω), R(S)′)-dense) in C(Ω).

(4) h(x, y) = ‖J(x) − J(y)‖∞, for all x, y ∈ S. where h denotes the restriction of

he : S1 × S1 → R+ to S × S.

(5) J(x ∨ y) = J(x) ∨ J(y), for all x, y ∈ S.

PROOF.

By Theorem 4.5.1, he : S1 × S1 → R+ yields the Minkowski functional p[e,0] as the norm

‖ · ‖he on the Archimedean vector lattice R(S1). By Corollary 4.3.5, R(S) is a vector

sublattice of R(S1). Consequently, the restriction pR(S) of p[e,0] to R(S) is an M-norm.
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The dual (R(S)′, p′R(S)) of (R(S), pR(S)) is a norm complete L-normed vector lattice with

L-norm given by

p′R(S)(x
′) := sup{|x′(x)| : pR(S)(x) ≤ 1}, for all x′ ∈ R(S)′

(see [74, Ch 2]). The bidual (R(S)′′, p′′R(S)) of (R(S), pR(S)) is a norm complete M-

normed vector lattice with M-norm given by

p′′R(S)(x
′′) := sup{|x′′(x′)| : p′R(S)(x

′) ≤ 1}, for all x′′ ∈ R(S)′′.

Moreover, f ′′, defined by

f ′′(x′) = p∗R(S)(x
∗+) − p∗R(S)(x

∗−), for all x′ ∈ R(S)′,

is an order unit of R(S)′′ (see [74, Ch 2]). By Kakutani’s (M)-space representation the-

orem, there exist a compact Hausdorff space Ω and a vector lattice and isometric iso-

morphism V from R(S)′′ onto C(Ω). Let J = V ◦ κ ◦ j, where j : S → R(S) and

κ : R(S) → R(S)′′ are the natural embeddings.

By Theorem 4.2.2 and Corollary 4.3.4, and noting that any Banach space X is weak∗-

dense in its bidual X ′′, it follows that J has the desired properties.

2

The following complements Corollary 4.5.2 (2) and (3).

4.5.6 Corollary

Let X be a Banach space.

(1) If X is not reflexive, then S = cwk(X) fullfills the requirements of Theorem 4.5.5,

provided that S1 = cbf(X), e = BX and 0 = {0}.

(2) IfX is not finite dimensional, then S = ck(X) fullfills the requirements of Theorem

4.5.5, provided that S1 = cbf(X), e = BX and 0 = {0}.

Let X be a Banach space. The well-known embedding procedure of Hörmander to embed

cbf(X) and ck(X) into C(Ω)-spaces, as can be found in [48], requiresX to be separable.

Our embedding of cbf(X) in Corollary 4.5.2 does not require the separability ofX. Com-

bining the ideas in Theorem 4.5.1 with Hörmander’s embedding procedure, it is possible

to also obtain norm-dense embeddings of cwk(X) and ck(X) in C(Ω)-spaces, rather than

weak∗-dense embeddings, as in Corollary 4.5.6. Furthermore, X is not required to be

separable. The details follow.

For every bounded subset C of X and each x′ ∈ X ′, let

s(x′, C) := sup{x′(x) : x ∈ C}.
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4.5.7 Lemma

Let X be a Banach space. Then, for all nonempty bounded subsets A and C of X and for

all x′ ∈ X ′,
s
(
x′, co

(
A ∪ C

))
= max{s(x′, A), s(x′, C)}.

PROOF.

Direct verification yields that

s(x′, A ∪ C) = max{s(x′, A), s(x′, C)},

for all nonempty bounded subsets A and C of X and for all x′ ∈ X ′. We claim that for

any nonempty bounded subset A of X and for all x′ ∈ X ′,

s(x′, coA) = s(x′, A).

To establish our claim, let x ∈ coA. Then there exist sequences (xi), (yi) ⊂ A and (λi) ⊂
[0, 1] such that limi→∞

(
λixi + (1 − λi)yi

)
= x. Since x′

(
λixi + (1 − λi)yi

)
≤ s(x′, A),

for all x′ ∈ X ′, we obtain x′(x) ≤ s(x′, A), for all x′ ∈ X ′. Thus,

s(x′, coA) ≤ s(x′, A),

for all x′ ∈ X ′. Since the reverse inequality follows readily, our claim is proved. To

complete the proof of the lemma, let A and B be nonempty bounded subsets of X and

x′ ∈ X ′. Then, by the preceding parts of the proof,

s
(
x′, co(A ∪ C)

)
= s(x′, A ∪ C) = max{s(x′, A), s(x′, C)}.

2

4.5.8 Theorem

Let X be a Banach space. Then there exist a compact Hausdorff space Ω and a map

V : cwk(X) → C(Ω) such that:

(1) V (αA + βC) = αV (A) + βV (C), for all A,C ∈ cwk(X) and α, β ∈ R+.

(2) dH(A,C) = ‖V (A)− V (C)‖∞, for all A,C ∈ cwk(X).

(3) V (cwk(X)) is norm closed in C(Ω).

(4) V
(
co(A ∪ C)

)
= max{V (A), V (C)}, for all A,C ∈ cwk(X).

PROOF.

Let l∞(BX ′) be the Banach space of all bounded real-valued functions defined on BX ′ ,

equipped with the supremum norm ‖·‖∞. Then, by [6, Lemma 1.1], the map U : cwk(X) →
l∞(BX ′), defined by U(A) = s( ·, A), satisfies:
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(1) U(αA + βC) = αU(A) + βU(C), for all A,C ∈ cwk(X) and α, β ∈ R+.

(2) dH(A,C) = ‖U(A) − U(C)‖∞, for all A,C ∈ cwk(X).

(3) U(cwk(X)) is norm closed in l∞(BX ′).

Moreover, by Lemma 4.5.7 and the result of Krein and Smulian (Theorem 1.3.12), U also

satisfies

(d) U
(
co(A ∪ C)

)
= max{U(A), U(C)}, for all A,C ∈ cwk(X).

But l∞(BX ′) is a norm complete M-normed vector lattice with an order unit. Thus, by

Kakutani’s (M)-space representation theorem, there exist a compact Hausdorff space Ω
and an isometric and vector lattice isomorphism W from l∞(BX ′) onto C(Ω). Then

V = W ◦ U has the desired properties.

2

A similar embedding result as Theorem 4.5.8 can be obtained for ck(X) (see also [17]).

4.5.9 Theorem

Let X be a Banach space. Then there exist a compact Hausdorff space Ω and a map

V : ck(X) → C(Ω) such that:

(1) V (αA + βC) = αV (A) + βV (C), for all A,C ∈ ck(X) and α, β ∈ R+.

(2) dH(A,C) = ‖V (A)− V (C)‖∞, for all A,C ∈ ck(X).

(3) V (ck(X)) is norm closed in C(Ω).

(4) V
(
co(A ∪ C)

)
= max{V (A), V (C)}, for all A,C ∈ ck(X).

PROOF.

In the proof of Theorem 4.5.8, replace l∞(BX ′) by C(BX ′) and the Theorem of Krein and

Smulian by that of Mazur (Theorem 1.2.42). Furthermore, there is no need here to use

Kakutani’s (M)-space representation theorem.

2

4.6 An Lp(µ) embedding

We proceed with our investigation of properties on the metric d on S for which R(S) is a

classical Banach space.
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A Riesz seminorm on a vector lattice E is called p-additive (1 ≤ p <∞), provided that

‖x+ y‖p = ‖x‖p + ‖y‖p, for all x, y ∈ E+, for which x ∧ y = 0.

If (Ω,Σ, µ) is any measure space and 1 ≤ p < ∞, then Lp(µ) endowed with ‖ · ‖p

(as defined in Definition 1.4.14) with addition, scalar multiplication and order which is

defined pointwise almost everywhere, is an example of a norm complete p-additive Riesz

normed vector lattice.

4.6.1 Lemma

Let S be a near vector lattice and d : S × S → R+ an invariant metric. Then d is a Riesz

metric and

(Ld) d(x+ x1, y + y1) = d(x, y) + d(x1, y1), for all x, y, x1, y1 ∈ S such that y ≤ x and

y1 ≤ x1

if and only if ‖ · ‖d is an L-norm on R(S).

PROOF.

⇒: Let d be a Riesz metric satisfying (Ld). Then,

‖x+ y‖d = d(x+ y, 0)

= d(x, 0) + d(y, 0) (by (Ld))

= ‖x‖d + ‖y‖d,

and hence, ‖ · ‖d is an L-norm on R(S).

⇐: Let ‖ · ‖d be an L-norm on R(S), then d is a metric by Theorem 1.2.37.

Let x, y, x1, y1 ∈ S such that y ≤ x and y1 ≤ x1. Then,

d(x+ x1, y + y1) = d(x+ x1 − y − y1)

= ‖x+ x1 − y − y1‖d

= ‖(x− y) + (x1 − y1)‖d

= ‖x− y‖d + ‖x1 − y1‖d (since ‖ · ‖d is an L-norm)

= d(x− y, 0) + d(x1 − y1, 0)

= d(x, y) + d(x1, y1),

which is condition (Ld).
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Now, let x, y, z ∈ S such that x ≤ y ≤ z. Then

d(x, z) = ‖z − x‖

= ‖z − y + y − x‖

= ‖z − y‖ + ‖y − x‖ (by the fact that ‖ · ‖ is an L-norm)

≥ ‖y − x‖

= d(y, x).

Lastly, let x, y ∈ S. If x ≤ y, then

d(2(x ∨ y), x+ y) = ‖2(x ∨ y) − (x+ y)‖

= ‖2x− x− y‖

= ‖x− y‖

= d(x, y).

Similar for the case when y ≤ x, and thus, d is a Riesz metric.

2

4.6.2 Theorem

Let S be an Archimedean near vector lattice with 0 as zero and e as an order unit. If

d : S × S → R+ is a Riesz metric with property (Ld) and d(e, 0) = 1, then there exist a

probability space (Ω,Σ, µ) and a map K : S → L1(µ) such that:

(1) K is injective.

(2) K(αx+ βy) = αK(x) + βK(y), for all x, y ∈ S and α, β ∈ R+.

(3) K(S) −K(S) is norm dense in L1(µ).

(4) d(x, y) = ‖K(x) −K(y)‖1, for all x, y ∈ S.

(5) K(x ∨ y) = K(x) ∨K(y), for all x, y ∈ S.

(6) K(e) = 1, where the latter denotes a function which is one almost everywhere.

PROOF.

The norm completionR(S)
d

of (R(S), ‖·‖d) is a norm completeL-normed vector lattice.

In the terminology of [74, Ch.2, S8] this means that [e, 0] is a quasi-interior point of

R(S)
d
, since [e, 0] is an order unit of R(S). By Kakutani’s (L)-space representation for

such spaces with quasi-interior points, there exist a compact Hausdorff space Ω, a strictly

positive regular Borel measure µ on Ω and a vector lattice and isometric isomorphism
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V : R(S)
d
→ L1(µ) such that V (R(S)) = L∞(µ) = C(Ω), V ([e, 0]) = 1, and the norm

functional ϕ‖·‖d on R(S)
d
, defined by

ϕ‖·‖d(f) = ‖f+‖d − ‖f−‖d, for all f ∈ R(S)
d
,

has the property that

ϕ‖·‖φ([x, y]) =

∫

Ω

V ([x, y]) dµ, for all x, y ∈ S

(see [74, Ch.2, S8]). Then

1 = ϕ‖·‖φ([e, 0]) =

∫

Ω

1dµ = µ(Ω),

showing that µ is a probability measure.

If we let K = V ◦ j, where j : S → R(S) is the natural embedding, then, by Theorem

4.2.2 and Corollary 4.3.4, K has the desired properties.

2

The preceding result can be extended to the following theorem.

4.6.3 Theorem

Let S be a near vector lattice and d : S × S → R+ a Riesz metric with property (Ld).
Then there exist a measure space (Ω,Σ, µ) and a map K : S → L1(µ) such that:

(1) K is injective.

(2) K(αx+ βy) = αK(x) + βK(y), for all x, y ∈ S and α, β ∈ R+.

(3) K(S) −K(S) is norm dense in L1(µ).

(4) d(x, y) = ‖K(x) −K(y)‖1, for all x, y ∈ S.

(5) K(x ∨ y) = K(x) ∨K(y), for all x, y ∈ S.

PROOF.

Since ‖ · ‖d is an L-norm on the vector latticeR(S), it follows from Kakutani’s (L)-space

representation theorem (Theorem 4.5.4), that there exist a measure space (Ω,Σ, µ) and

a vector lattice and isometric isomorphism V from the norm completion of R(S) onto

L1(µ). Let K = V ◦ j, where j : S → R(S) is the natural embedding. By Theorem 4.2.2

and Corollary 4.3.4, it follows that K has the desired properties.
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2

The preceding result can be extended to cover the cases 1 ≤ p <∞.

4.6.4 Lemma

Let S be a near vector lattice and d : S × S → R+ an invariant metric. Then d is a Riesz

metric with the property that

(Pd) d(x+x1, y+y1)
p = d(x, y)p+d(x1, y1)

p for 1 < p <∞ and for all x, y, x1, y1 ∈ S
such that y ≤ x, y1 ≤ x1 and x+ x1 = (x1 + y) ∨ (x+ y1)

if and only if ‖ · ‖d is a p-additive Riesz norm on R(S).

PROOF.

Note that if x, x1, y, y1 ∈ S, then x+ x1 = (x1 + y) ∨ (x+ y1) if and only if

[z, z] = [x+ x1, (x1 + y) ∨ (x+ y1)] = [x, y] ∧ [x1, y1].

The result now follows trivially.

2

4.6.5 Theorem (Kakutani-Bohnenblust representation for Lp-spaces, see [3, 4, 59, 74])

Let X be a vector lattice equiped with a p-additive Riesz norm ‖ · ‖. Then there exists a

measure space (Ω,Σ, µ) and a vector lattice and isometric isomorphism V from the norm

completion of X onto Lp(µ).

4.6.6 Theorem

Let S be a near vector lattice and d : S × S → R+ a Riesz metric with property (Pd).
Then there exist a measure space (Ω,Σ, µ) and a map K : S → Lp(µ) such that:

(1) K is injective.

(2) K(αx+ βy) = αK(x) + βK(y), for all x, y ∈ S and α, β ∈ R+.

(3) K(S) −K(S) is norm dense in Lp(µ).

(4) d(x, y) = ‖K(x) −K(y)‖p, for all x, y ∈ S.

(5) K(x ∨ y) = K(x) ∨K(y), for all x, y ∈ S.

PROOF.



CHAPTER 4. RÅDSTRÖM’S EMBEDDING THEOREM 113

Since ‖ · ‖d is a p-additive Riesz norm on the vector lattice R(S), there exist, by the

theorem of Kakutani-Bohnenblust (Theorem 4.6.5), a measure space (Ω,Σ, µ) and a vec-

tor lattice and isometric isomorphism V from the norm completion of R(S) onto Lp(µ).
Let K = V ◦ j, where j : S → R(S) is the natural embedding. By Theorem 4.2.2 and

Corollary 4.3.4, it follows that K has the desired properties.

2



Chapter 5

Generalized random variables

5.1 Random variables

The theory of conditional expectations has been established for Banach space-valued,

Bochner-integrable functions. In [65], the central ideas of this chapter were developed.

We present the introduction to random variables, which is important not only for the main

result of this chapter, but also for the work on martingales in the subsequent chapter.

Throughout the remainder of this thesis we will again be considering functions from a

measure space (Ω,Σ, µ) into a separable real Banach space (X, ‖ · ‖).

A random variable is a measurable function f : Ω → X. A random variable can be

thought of as an unknown value that may change every time it is inspected. Thus, from

a mathematical point of view, we simply regard a random variable as a function mapping

the sample space of a random process to X. As in section 1.5, we will again denote by

L0(µ,X) and Lp(µ,X), the collections of measurable and p-integrable functions

f : Ω → X respectively, for 1 ≤ p ≤ ∞. Due to the completeness of X we have several

characterizations of this class of functions (see [24] Theorem 1.0).

5.1.1 Definition

Let (Ω,Σ, µ) be a measure space, X a separable real Banach space and f an integrable

random variable.

(a) We define the expectation of a random variable f to be

E(f) =

∫

Ω

fdµ.

(b) Let Σ0 a sub-σ-algebra of Σ. Then the conditional expectation E[f |Σ0] of f relative
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to (with respect to) Σ0 is a Σ0-measurable function g such that

(Σ0)∫

Ω

fdµ =

(Σ0)∫

Ω

gdµ.

Uniqueness of the conditional expectation can be shown to be almost sure. That is, differ-

ent conditional expectations of the same function with respect to a given sub-σ-algebra of

Σ will only differ on a null set.

There are several different senses in which random variables can be considered to be

equivalent.

5.1.2 Definition

Let (Ω,Σ, µ) be a measure space, X a separable real Banach space, and f and g two

random variables.

(a) We say that f and g are weakly equal if E(f) = E(g).

(b) f and g are equal in p-th mean if E(‖f − g‖p) = 0. This type of equality pro-

vides a method of determining the distance between two random variables, namely

dp(f, g) = E(‖f − g‖p).

(c) f and g are said to be equal almost surely if f = g a.e.

(d) f and g are equal if f(ω) = g(ω), for all ω ∈ Ω.

Note that for all practical purposes in probability theory, almost sure equality is as strong

as actual equality. For this reason it is ubiquitous in probability theory literature, and

therefore the type of equality that we are most interested in.

In Definition 1.2.32, we defined the general concept of convergence of sequences. There

are a number of senses in which sequences of random variables can converge. We list

several of the most ubiquitous of these below.

5.1.3 Definition

Let (Ω,Σ, µ) be a measure space and X a separable real Banach space. Suppose that (fn)
is a sequence of random variables and that f is a random variable.

(a) If lim
n→∞

E(fn) = E(f), then we say that (fn) converges weakly to f .

(b) To say that the sequence (fn) converges in measure towards f means

lim
n→∞

µ(‖fn − f‖) ≥ ε) = 0,
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for every ε > 0. If µ is a probability measure that satisfies the condition above, then

we say that (fn) converges in probability towards f .

(c) To say that the (fn) converges surely or everywhere or pointwise towards f means

that

lim
n→∞

fn(ω) = f(ω),

for all ω ∈ Ω.

(d) The sequence (fn) converges almost surely or almost everywhere means that

lim
n→∞

fn(ω) = f(ω) a.e.

(e) The sequence (fn) converges uniformly if

lim
n→∞

‖f − fn‖∞ = 0,

where ‖f‖∞ := sup
ω∈Ω

‖f(ω)‖ is the supremum norm.

(f) We say that the sequence (fn) converges in the pth mean towards f , if p ≥ 1,

E(‖fn‖p) <∞, for all n ∈ N, and

lim
n→∞

E(‖fn − f‖p) = 0.

Notice that (e) ⇒ (c) ⇒ (d) ⇒ (b) ⇒ (a) and also that r > s ≥ 1, then convergence with

respect to ‖ · ‖r implies convergence with respect to ‖ · ‖s.

5.2 Set-valued random variables

Hiai and Umegaki have generalized random variables and conditional expectations to the

set-valued (multivalued) setting in [24]. We also contribute to the theory of set-valued

martingales and since martingales are important in probability theory, we feel that there

are potential applications to be developed from this work.

Let (Ω,Σ) be a measurable space, X a metric space and P0(X) = {A ⊂ X : A 6= ∅}. A

mapping F : Ω → P0(X) is called a set-valued mapping. The set

G(F ) = {(ω, x) ∈ Ω ×X : x ∈ F (ω)},

is called the graph of F , and the set

F−1(A) = {ω ∈ Ω : F (ω) ∩A 6= ∅}, A ⊂ X,

the inverse image of F .
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5.2.1 Definition

Let (Ω,Σ, µ) denote a measure space and X a separable real Banach space. A set-valued

mapping F : Ω → f(X)] is called strongly measurable if, for each closed subset C of X,

F−1(C) ∈ Σ. A set-valued mapping F : Ω → f(X) is called weakly measurable if, for

each open set O of X, F−1(O) ∈ Σ. A weakly measurable set-valued mapping is also

called a set-valued random variable or a random set. We denote the collection of weakly

measurable random variables by M[Ω, f(X)]. If U ⊂ f(X), then we denote by M[Ω, U ],
the collection {F ∈ UΩ : F ∈ M[Ω, f(X)]}.

5.2.2 Remark

Let (Ω,Σ, µ) be a measure space, X a separable Banach space and F : Ω → f(X). Then

F is strongly measurable if and only if F is weakly measurable (see [48]). In this work,

we require that weak measurability and strong measurability coincide and this justifies

the requirement that the Banach space X is separable.

5.2.3 Definition

Let (Ω,Σ, µ) denote a measure space and X a separable real Banach space.

(a) A measurable function f : Ω → X is called a measurable selection of F if f(ω) ∈
F (ω) a.e. That is, f is a measurable selection of F if f(ω) ∈ F (ω), for all ω ∈ Ω
except on a null set. We define the set

Sp
F = {f ∈ Lp(µ,X) : f(ω) ∈ F (ω) a.e.}.

It is easy to show that Sp
F is a closed subset of Lp(µ,X) for 1 ≤ p ≤ ∞.

(b) If F ∈ M[Ω, f(X)], then F is called integrable provided that S1
F 6= ∅.

(c) If F ∈ M[Ω, f(X)], then F is called integrably bounded provided that there exists

ρ ∈ L1(µ) such that ‖x‖X ≤ ρ(ω), for all x ∈ F (ω) and for all ω ∈ Ω. In this case,

F (ω) ∈ f(X) a.e. and ‖F (ω)‖H = sup{‖x‖X : x ∈ F (ω)} ≤ ρ(ω), for all ω ∈ Ω.

Let L1[Ω,Σ, µ, f(X)] denote the set of all equivalence classes of a.e. equal F ∈
M[Ω, f(X)], which are integrably bounded. We will simply write L1[Ω, f(X)] if

there is no confusion. If ∆: L1[Ω, f(X)] × L1[Ω, f(X)] → R+ is defined by

∆(F1, F2) =

∫

Ω

dH

(
F1(ω), F2(ω)

)
dµ,

where dH is the Hausdorff metric, then (L1[Ω, bf(X)],∆) is a complete metric

space (see [24, 48]).

It now follows that with respect to the Hausdorff topology on M[Ω, bf(X)], that if (Fn)n∈N

is a sequence in M[Ω, bf(X)], then we have

lim
n→∞

Fn = F
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if and only if

lim
n→∞

dH(Fn(ω), F (ω)) = 0 a.e.

5.2.4 Definition

Let (Ω,Σ, µ) denote a measure space and X a separable real Banach space.

(a) Let Σ0 be a sub-σ-algebra of Σ. If F : Ω → f(X) is Σ0-measurable, then we define

S1
F (Σ0) = {f ∈ L1(Ω,Σ0, µ,X) : f(ω) ∈ F (ω) a.e.[µ|Σ0 ]}.

(b) Let U be any subset of f(X). Then we define

L1[Ω, U ] = {F ∈ L1[Ω, f(X)] : F (ω) ∈ U a.e.}.

Note that L1[Ω, U ] ⊂ L1[Ω, f(X)].

5.2.5 Definition

Let (Ω,Σ, µ) denote a measure space and X a separable real Banach space. Let F ∈
M[Ω, f(X)]. We define E(F ), the expectation of F , to be

E(F ) = {E(f) : f ∈ XΩ,E(‖f‖) <∞, f(ω) ∈ F (ω) a.e.}.

5.2.6 Lemma ([24])

Let (Ω,Σ, µ) denote a measure space and X a separable real Banach space. Let F ∈
M[Ω, f(X)] and 1 ≤ p ≤ ∞. If Sp

F is nonempty, then there exists a sequence (fi)i∈N

contained in Sp
F such that F (ω) = cl{fi(ω) : i ∈ N}, for ω ∈ Ω.

5.2.7 Corollary ([24])

Let (Ω,Σ, µ) denote a measure space and X a separable real Banach space. Let F1, F2 ∈
M[Ω, f(X)] and 1 ≤ p ≤ ∞. If Sp

F1
= Sp

F2
6= ∅, then F1(ω) = F2(ω), for all ω ∈ Ω.

A brief discussion of the generalization of conditional expectations is necessary before

we reach the main result of this chapter. This material is covered more comprehensively

in [24].

Let Σ0 be a sub-σ-algebra of Σ, then we define

S1
F (Σ0) = {f ∈ L1(Ω,Σ0, µ,X) : f(ω) ∈ F (ω) a.e.}, and

(Σ0)∫

Ω

Fdµ =

{ ∫

Ω

fdµ : f ∈ S1
F (Σ0)

}
.

We define addition⊕, scalar multiplication · and an order relation pointwise onL1[Ω, f(X)].
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5.2.8 Definition

Let (Ω,Σ, µ) be a measure space and letX be a separable real Banach space. IfF, F1, F2 ∈
M[Ω, f(X)] and λ ∈ R, define F1 ⊕ F2, λF1 and coF1, respectively, by

(a)
(F1 ⊕ F2)(ω) := F1(ω) ⊕ F2(ω),

(λF )(ω) := λ(F (ω)), and

(coF )(ω) := co(F (ω)),

for all ω ∈ Ω. Here co(F (ω)) denotes the norm closure in X of the convex hull

co(F (ω)) of F (ω).

(b) We define a partial order relation on M[Ω, f(X)] as follows:

F1 ≤ F2 ⇔ F1(ω) ⊂ F2(ω) a.e.

The following theorem provides a natural extension of the notion of a conditional expec-

tation to the set-valued setting.

5.2.9 Theorem ([24])

Let (Ω,Σ, µ) denote a measure space, X a separable real Banach space and Σ0 a sub-σ-

algebra of Σ. Let F ∈ L1[Ω, f(X)]. Then there exists a unique E[F |Σ0] ∈ L1[Ω,Σ0, µ, f(X)]
such that

S1
E [F |Σ0]

(Σ0) = cl{E[f |Σ0] : f ∈ S1
F},

where the closure is taken with respect to the norm ∆ on L1[Ω, f(X)].

5.2.10 Definition

Let (Ω,Σ, µ) denote a measure space, X a separable real Banach space and Σ0 a sub-σ-

algebra of Σ. The unique E[F |Σ0], as defined in the theorem above, is called the condi-

tional expectation of F relative to Σ0.

It is well known that E[F |Σ0] ∈ L1[Σ0, f(X)], for all F ∈ L1[Ω, f(X)] (see [48]).

5.2.11 Theorem (see [24, 48])

Let (Ω,Σ, µ) be a measure space, X a separable real Banach space and Σ0 a sub-σ-

algebra of Σ. If F ∈ L1[Ω,Σ, µ, f(X)], then the conditional expectation E[F |Σ0] ∈
L1[Ω,Σ0, µ, f(X)] of F with respect to Σ0 has the following properties:

(E1) If F1, F2 ∈ L1[Ω, f(X)], then E[F1 ⊕ F2|Σ0] = E[F1|Σ0] ⊕ E[F2|Σ0].

(E2) If F ∈ L1[Ω, f(X)] and λ ∈ R+, then E[λF |Σ0] = λE[F |Σ0].

(E3) If F1, F2 ∈ L1[Ω, f(X)], then F1 ≤ F2 implies E[F1|Σ0] ≤ E[F2|Σ0].

(E4) If F ∈ L1[Ω,Σ0, µ, f(X)], then E[F |Σ0] = F .
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(E5) If Σ1 and Σ2 are σ-algebras such that Σ1 ⊂ Σ2 ⊂ Σ and F ∈ L1[Ω,Σ1, µ, f(X)],
then E [ E[F |Σ2] |Σ1] = E[F |Σ1].

5.2.12 Theorem (see [24, 48])

Let (Ω,Σ, µ) be a measure space and X a separable real Banach space. A function

F : Ω → f(X) is Σ-measurable provided that there exists a sequence (fi)n∈N such that

each function fi : Ω → X is:

(M1) µ-measurable; (as in Definition 1.4.3 (d))

(M2) a selection of F , and

(M3) F (ω) = {fi(ω) : i ∈ N}, for all ω ∈ Ω, where the closure is the norm closure in X.



Chapter 6

Generalized martingales and

submartingales

6.1 Preliminaries

The concept of martingale in probability theory was introduced by Paul Pierre Lévy. Part

of the motivation for that work was to show the impossibility of successful betting strate-

gies. A martingale was originally devised as an indexed sequence of random variables

with the index representing time. If t is a later time than s, then the idea is that the con-

ditional expected value at time t given the same observations as at time s will be equal to

the expected value at time s. The notion of a martingale has proved to be a powerful tool

in probability theory and related fields. The advantage of martingale theory is its intrinsic

simplicity and intuitive nature and martingale theory is an extremely important applica-

tion of functional analysis. The range of applications of martingale theory is enhanced by

the construction of stochastic integrals and a martingale calculus.

The main results of this section are generalizations of the Doob-Meyer decomposition

theorem, which is a theorem in stochastic calculus stating the conditions under which a

submartingale may be decomposed in a unique way as the sum of a martingale and a

continuous increasing process. It is named after Joseph Leo Doob and Paul-André Meyer

and Doob published the original decomposition theorem in 1953 which gives a unique

decomposition for certain discrete time martingales. He conjectured a continuous time

version of the theorem, and in two publications in 1962 and 1963 Paul-André Meyer

proved such a theorem, which became known as the Doob-Meyer decomposition.

The basis of this chapter was developed in [65] and [45]. We present a precise definition

of the classical notion of a martingale, followed by the generalization to the set-valued

setting, leading up the main results.
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We remind the reader of the following standard terminology.

6.1.1 Definition

Let (Ω,Σ, µ) be a measure space and X a separable real Banach space.

(a) A filtration on (Ω,Σ, µ) is a sequence of σ-algebras (Σn) such that Σn ⊂ Σ and

Σn ⊂ Σn+1, for all n ∈ N.

(b) A sequence of set-valued random variables (Fn) is predictable with respect to a

filtration (Σn) if Fn is Σn-measurable, for each n ∈ N.

6.1.2 Definition

Let (Ω,Σ, µ) be a measure space and X a separable real Banach space. If (fn) is a

sequence of random variables and (Σn) a filtration, then the sequence (fn,Σn) is called a

martingale if we have for each n ∈ N,

(a) fn is Σn-measurable and E[fn|Σn] <∞, and

(b) E[fn+1|Σn] = fn.

Alternatively, if property (b) is replaced by

(b’) E[fn+1|Σn] ≥ fn (resp., E[fn+1|Σn] ≤ fn), then (fn,Σn) is called a submartingale

(resp., supermartingale).

The following definition asserts that we can equally well define martingales in terms of

projections.

6.1.3 Definition

Let S be any nonempty set, (Ti) a commuting sequence (i.e., TiTj = TjTi = Ti, for all

i ≤ j) of projections on S and (fi) a sequence in S. Then

(a) (fi, Ti) is a martingale in S, provided that fi = Tifj, for all i ≤ j.

If, in addition, (S,≤) is a partially ordered set and each Ti is order preserving, then

(b) (fi, Ti) is called a supermartingale (resp., submartingale) in S, provided that fi ∈
R(Ti), for all i (where R(Ti) is the range of Ti) and fi ≤ Tifj (resp., fi ≥ Tifj),

for all i ≤ j.
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6.2 Doob’s decomposition

In mathematics, specifically in stochastic analysis, Doob’s martingale convergence theo-

rems are a collection of results on the long-time limits of submartingales and supermartin-

gales.

We concern ourselves with Doob’s decomposition of submartingales, which states the

conditions under which a submartingale may be decomposed in a unique way as the sum

of a martingale and a continuous increasing process. This decomposition was extended

from the classical setting of real-valued martingales to set-valued martingales by Daures,

Ni and Zhang (see [48, 62]) and also by Shen and Wang (see [75]).

In the set-valued setting, the first problem that one encounters, is that neither the range

spaces of the submartingales nor the spaces of submartingales are vector spaces. However,

these spaces are near vector spaces; i.e., they have all the properties of a vector space

except that elements do not necessarily have additive inverses, (see [46, 68]).

Our aim is to use ideas from measure-free martingale theory (see [11, 12, 13, 41, 77, 80]),

together with Rådström’s completion of a near vector space, to give an elementary proof

for Doob’s decomposition of set-valued submartingales.

Our strategy is as follows. After introducing the necessary preliminaries and notation, we

consider Doob’s decomposition of a submartingale in an ordered vector space. From this,

and with the aid of Rådström’s completion of a near vector space (see [46]), we obtain

a Doob decomposition of a submartingale in an ordered near vector space. We then spe-

cialize the ordered near vector space to the appropriate set-valued space of submartingales

that are integrable. As special cases, we obtain the Daures, Ni and Zhang result by using

the fact that martingales which are integrably bounded are integrable (see [48]). We also

derive an analogue of the Doob decomposition of set-valued submartingales, as noted by

Shen and Wang.

Let (Ω,Σ, µ) be a measure space. If Σ0 is a sub σ-algebra of Σ, denote by L0(Ω,Σ0, µ)
the set of Σ0-measurable functions f : Ω → R.

We now generalize the concept of a martingale to the set-valued setting in the natural way.

6.2.1 Definition

Let (Ω,Σ, µ) be a measure space and X a separable real Banach space. Let (Fn) be a

sequence of set-valued random variables and (Σn) a filtration, then the sequence (Fn,Σn)
is called a set-valued martingale if we have, for each n ∈ N,

(a) Fn is Σn-measurable and E[Fn|Σn] <∞, and

(b) E[Fn+1|Σn] = Fn a.e.
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Alternatively, if property (b) is replaced by

(b’) E[Fn+1|Σn] ≥ Fn a.e. (resp., E[Fn+1|Σn] ≤ Fn a.e.),

then (Fn,Σn) is called a set-valued submartingale (resp., set-valued supermartingale).

The following well-known result relates submartingales to martingales.

6.2.2 Theorem (Doob’s Decomposition, see [13, 62] )

Let (Ω,Σ, µ) be a measure space and X a separable real Banach space. If (Σi) an increas-

ing sequence of sub σ-algebras of Σ, and (fi,Σi) is a submartingale, then (fi,Σi) has a

unique decomposition

fi(ω) = Mi(ω) + Ai(ω) a.e.,

where (Mi,Σi) is a set-valued martingale and (Ai) is a predictable (i.e., Ai is Σi−1-

measurable, for all i ≥ 2), increasing sequence such that:

(a) A1(ω) = 0 a.e.,

(b) Aj(ω) =
∑j−1

i=1

(
E[fi+1|Σi](ω)− fi(ω)

)
a.e., for j ≥ 2,

(c) Mj(ω) = fj(ω) −Aj(ω) a.e., for all j ∈ N.

Daures, Ni and Zhang proved an analogue of Doob’s decomposition for set-valued sub-

martingales (see [13, 62]). Before we state their result, as can be found in [48], we first

recall some terminology from [24, 48].

Let X be a Banach space. There is a canonical addition operation +, a canonical scalar

multiplication operation · and a canonical subtraction operation 	 on

P0(X) := {A ⊂ X : A is nonempty},

defined, for all A,B,C ∈ P0(X) and λ ∈ R, by

A	 B := {x ∈ X : x+B ⊂ A},

where x + B := {y = x + b : b ∈ B}. It is well-known that the set P0(X) does not, in

general, form a vector space with respect to the above defined operations.

6.3 Doob’s decomposition in an ordered near vector space

We are now in a position to state the Doob decomposition theorem of Daures, Ni and

Zhang, as can be found in [48].
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6.3.1 Theorem (see [48], p.159)

Let (Ω,Σ, µ) be a measure space and X a separable real Banach space. Let (Fi,Σi) be a

set-valued submartingale in L1[Ω, cf(X)]; If there exists B ∈ Σ with µ(B) = 0 such that

for any ω 6∈ B and all i ∈ N,

(i) s( · , E[Fi|Σi−1](ω)) − s( · , Fi−1(ω)), and

(ii) s( · , Fi(ω)) − s( · , E[Fi|Σi−1](ω)),

are convex functions on X ′, then (Fi,Σi) can be decomposed as

Fi(ω) = Mi(ω) ⊕Ai(ω), for all ω 6∈ B,

where (Mi,Σi) is a set-valued martingale and (Ai) is a set-valued predictable increasing

sequence such that for all ω 6∈ B:

(a) A1(ω) = 0,

(b) Aj(ω) =
(∑j−1

i=1 E[Fi+1|Σi](ω) 	 Fi(ω)
)

, for all j ≥ 2,

(c) M1(ω) = F1(ω), and

(d) Mj(ω) =
(∑j

i=2[Fi(ω) 	 E[Fi|Σi−1](ω)
)

+ F1(ω), for all j ≥ 2.

The proof of Theorem 6.3.1, as given in [48], exploits the properties of the the functions

s(·, C) where C ∈ cf(X). Our aim is to give an elementary proof of Doob’s decomposi-

tion of a set-valued submartingale.

To achieve our aim, we derive a Doob decomposition theorem for submartingales in or-

dered near vector spaces as considered in [46]. As a consequence and as an intermediate

step, we obtain a Doob decomposition for set-valued submartingales which are integrable.

The latter then yields the Daures, Ni and Zhang result (see [13, 62]) as a special case, as

integrably bounded functions are integrable (see [48, p.31]). It also yields an analogue of

the Doob decomposition of set-valued submartingales, as noted by Shen and Wang (see

[75]).

It was noted in [46], that if X is a Banach space, then (cbf(X),⊕, · ) is a near vector

space (see Chapter 4).

If X is a separable Banach space, then, as noted in [42, 43]:

(a) (M[Ω, f(X)],⊕, ·,≤), and
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(b) (L1[Ω, cbf(X)],⊕, ·,≤),

are ordered near vector space with with {0} as zero. In fact, (L1[Ω, cbf(X)],⊕, ·,≤) is a

sub ordered near vector space of (M[Ω, f(X)],⊕, ·,≤).

It is clear that if S is an ordered near vector space with a zero, then there exists a sub-

traction operation on R(S), but this does not guarantee the existence of a subtraction

operation on S under which S is closed.

To overcome this problem, we consider the following.

6.3.2 Definition

Let S be an ordered near vector space with a zero and define v by

y v x ⇔ ∃ z ∈ S [0 ≤ z and y + z = x].

Then, by the cancellation law, z is unique in Definition 6.3.2 and we define

x− y := z.

Also,

x v y ⇒ x ≤ y, for all x, y ∈ S

and it follows that v is a partial ordering on S. We call v the ordering associated with ≤.

Also note that, for all x ∈ S,

0 v x⇔ 0 ≤ x;

i.e.,

S+ := {x ∈ S : 0 ≤ x} = {x ∈ S : 0 v x}.

It is readily verified that (S,v) is an ordered near vector space with 0 as zero. Further-

more, if we consider the Rådström completion R(S) of (S,+, ·,v), then

y v x ⇔ ∃ z ∈ S (0 ≤ z and [z, 0] = [x, y])

⇔ ∃x− y ∈ S (0 ≤ x− y and [x− y, 0] = [x, y]) .

Our strategy is now as follows. We first consider Doob’s decomposition of a submartin-

gale in an ordered vector space. Then we use this ordered vector space result to obtain a

Doob decomposition of a submartingale in an ordered near vector space. We specialize

the ordered near vector space to the appropriate set-valued space of submartingales that

are integrable and obtain the Daures, Ni and Zhang result as a special case from the latter

for integrably bounded martingales.
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Let (Ω,Σ, µ) be a measure space and X a separable real Banach space. As was noted in

[43], it follows from Theorem 5.2.11 that if (Ω,Σ, µ) a measure space, X a separable real

Banach space, (Σi) a filtration and if we set

Ti(F ) = E[F |Σi], for all F ∈ L1[Ω, cbf(X)] and i ∈ N,

then (Ti) is a commuting sequence of order preserving projections on the ordered near

vector space L1[Ω, cbf(X)] and the range R(Ti) of Ti is L1[Ω,Σi, µ, cbf(X)] for each

i ∈ N. Furthermore, if (Fi) is contained in L1[Ω, cbf(X)] and (Σi) is an increasing

sequence of sub-σ-algebras of Σ, then (Fi, Ti) is a martingale (resp., submartingale) in

the ordered near vector space L1[Ω, f(X)] (resp., L1[Ω, cbf(X)]) in the sense of Definition

6.1.3.

The following result, which is based on a vector lattice version in [41], is the first step in

achieving our aim of proving the Daures, Ni and Zang result in an elementary way.

6.3.3 Theorem

Let E be an ordered vector space, (fi) a sequence inE and (Ti)i∈N a commuting sequence

of positive linear projections on E. If (fi, Ti)i∈N is a submartingale such that:

(a) A1 = 0,

(b) Aj =
∑j−1

i=1

(
Tifi+1 − fi

)
, for all j ≥ 2, and

(c) Mj = fj − Aj, for all j ∈ N,

then the decomposition fi = Mi + Ai, i ∈ N, is the unique decomposition of (fi, Ti)
with (Mj, Tj) a martingale in E, (Aj) ⊂ EN a positive and increasing sequence and

Aj+1 ∈ R(Tj), for all j ∈ N.

PROOF.

As A1 = 0 ∈ R(Tj), for all j ∈ N and Ti(fi+1 − fi) ∈ R(Ti) ⊂ R(Tj), for all

2 ≤ i ≤ j, it follows that Aj ∈ R(Tj), for all j ∈ N. But (fi, Ti) is a submartingale, so

Ti(fi+1 − fi) ≥ fi − fi = 0. Consequently, Aj ≥ 0 and the sequence (Aj) is increasing.

We verify that Ti(Mj) = Mi, for all i ≤ j. Let i ≤ j. Then

Ti(Aj) =
i−1∑

k=1

TiTk(fk+1 − fk) +

j−1∑

k=i

TiTk(fk+1 − fk)

=
i−1∑

k=1

Tk(fk+1 − fk) +

j−1∑

k=i

Ti(fk+1 − fk)

= Ai + Ti(fj − fi).



CHAPTER 6. GENERALIZED MARTINGALES AND SUBMARTINGALES 128

Hence,

Ti(Mj) = Ti(fj) − Ti(Aj)

= Ti(fj) − [Ai + Ti(fj − fi)]

= Ti(fj) − [Ai + Ti(fj) − T (fi)]

= Ti(fj) − [Ai + fi − fi]

= fi − Ai

= Mi,

proving the first part of the theorem.

Suppose that fi = M̃i + Ãi, for all i ∈ N is another decomposition satisfying the con-

ditions of the theorem. We prove by induction on i, that Ai = Ãi and Mi = M̃i, for all

i ∈ N. As A1 = 0 = Ã0 and M1 + A1 = f1 = M̃1 + Ã1, it follows that M1 = M̃1. Now

suppose that Ai = Ãi and Mi = M̃i. As (Mi, Ti) and (M̃i, Ti) are martingales,

Mi + Ti(Ai+1) = Ti(Mi+1 + Ai+1)

= Ti(fi+1)

= Ti(M̃i+1 + Ãi+1)

= M̃i + Ti(Ãi+1);

thus, Ti(Ai+1) = Ti(Ãi+1). But Ai+1, Ãi+1 ∈ R(Ti), which yields Ai+1 = Ãi+1; hence,

Mi+1 = M̃i+1.

2

Let S be an ordered near vector space. A map T : S → S is called R+-linear provided

that T (αx+ βy) = αTx+ βTy, for all x, y ∈ S and α, β ∈ R+.

Let (fi, Ti) be a submartingale in an ordered near vector space S, where (Ti) is a com-

muting sequence of order preserving R+-linear idempotents on S. Then ([fi, 0], T̂i) is

a submartingale in R(S) and (T̂i) is a commuting sequence of order preserving linear

projections on R(S).

We need the following notion.

6.3.4 Definition

Let S be an ordered near vector space with a zero, (fi) ⊂ SN, (Ti) a commuting sequence

of order preserving R+-linear idempotents on S.We call (fi, Ti) a v-submartingale in S
if fi ∈ R(Ti), for all i, and fj v Tj(fi), for all j ≤ i.

6.3.5 Theorem

Let S be an ordered near vector space with a zero, (fi) ⊂ SN and (Ti) a commuting

sequence of increasing R+-linear projections on S. If (fi, Ti) is a v-submartingale such

that:
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(a) A1 = 0,

(b) Aj =
∑j−1

i=1 [Tifi+1 − fi, 0], for all j ≥ 2,

(c) M1 = [f1, 0], and

(d) Mj = [f1, 0] +
∑j−1

i=1 [fi+1, Tifi+1], for all j ∈ N,

then the decomposition [fi, 0] = Mi + Ai, for all i ∈ N, is the unique decomposition of

([fi, 0], T̂i) with (Mj , Tj) a martingale in R(S), (Aj) a positive and increasing sequence

in R(S) and Aj+1 ∈ R(Tj), for all j ∈ N.

PROOF.

Let (fi, Ti) be a v-submartingale in S. Then (fi, Ti) is a submartingale and Tifi+1 − fi ∈
S+, for all i ∈ N. By the preceding theorem, ([fi, 0], T̂i) has a unique decomposition

[fi, 0] = Mi + Ai, for all i ∈ N, (6.1)

where A1 = 0, and for all j ≥ 2,

Aj =

j−1∑

i=1

[Tifi+1, fi] =

j−1∑

i=1

[Tifi+1 − fi, 0], (6.2)

and 0 ≤ Ai−Ai−1 = [Ti−1fi, fi−1] = [Ti−1fi−fi−1, 0]. Moreover, (Mi, T̂i) is a martingale

in R(S) given by M1 = [f1, 0], and for all j ≥ 2,

Mj = [fj, 0] −

j−1∑

i=1

[Tifi+1, fi] = [fj, 0] +

j−1∑

i=1

[fi, Tifi+1] .

As the identity [a, b] = [a, 0] + [0, b] holds in R(S), for all a, b ∈ S, it readily follows, for

all j ≥ 2, that

[fj, 0] +

j−1∑

i=1

[fi, Tifi+1] = [fj, 0] + [fj−1, Tj−1fj] + · · · + [f2, T2f3] + [f1, T1f2]

= [fj, Tj−1fj] + [fj−1, Tj−2fj−1] + · · · + [f2, T1f2] + [f1, 0]

= [f1, 0] +

j−1∑

i=1

[fi+1, Tifi+1] ;

i.e., for all j ≥ 2,

Mj = [f1, 0] +

j−1∑

i=1

[fi+1, Tifi+1] .

2
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6.4 The Daures-Ni-Zhang version of Doob’s decomposi-

tion

Let X be a Banach space. We first specialize our above discussion on the associated

ordering to the ordered near vector space (cbf(X),⊕, ·,⊂).

The ordering v on cbf(X) × cbf(X) associated with ⊂ is given by

A v B ⇔ ∃C ∈ cbf(X) ({0} ⊂ C and A⊕ C = B).

Before we relate, in the definition of A v B, the set C in the equation A ⊕ C = B to

B 	 A, we first note that it is well-known and also easy to verify (see [48]) that:

• 0 ∈ A	 B ⇔ B ⊂ A, for all A,B ∈ P0(X).

• If A is bounded, then A	A = {0}.

• If A ∈ f(X), then A	 B ∈ f(X).

• If A is convex, so is A	B provided A	 B 6= ∅.

• If A and B are bounded, then A	B is also bounded provided A	 B 6= ∅.

6.4.1 Theorem

Let X be a Banach space.

(1) If A,B ∈ f(X), then there exists C ∈ f(X) such that B ⊕ C = A if and only if

B ⊕ (A	 B) = A.

(2) If A,B ∈ cbf(X), then there exists C ∈ cbf(X) such that B ⊕ C = A if and only

if B ⊕ (A 	 B) = A. Moreover, in this case, A 	 B is the unique C satisfying

A = C ⊕ B.

PROOF.

(1) Suppose there exists a closed subsetC ofX such thatA = B⊕C . SinceC+B ⊂ A,

we get C ⊂ {x ∈ X : {x}+B ⊂ A} = A	 B. But then C +B ⊂ (A	B) +B.

Consequently, A = (C +B) ⊂ (B + (A	 B)) = B ⊕ (A 	 B). To see that

B ⊕ (A 	 B) ⊂ A, notice that it follows readily from the definition of 	 that

B + (A	 B) ⊂ A. Hence, B ⊕ (A	B) ⊂ A. Thus, B ⊕ (A	 B) = A.

Conversely, let B ⊕ (A	 B) = A. Since A and B are closed, it follows easily that

A	B is closed. So, we take C = A	 B.
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(2) Let A,B ∈ cbf(X). Then we have that A 	 B ∈ cbf(X). Suppose there exists

C ∈ cbf(X) such that B ⊕ C = A. Then B ⊕ (A 	 B) = A, by (1). Since

(cbf(X),⊕) satisfies the cancellation law:

(∀ U, V ∈ cbf(X)) (U ⊕ V = U ⊕W ⇒ V = W ) ,

we get that C = A	 B and that C is unique.

Conversely, let B ⊕ (A 	 B) = A. Then C = A 	 B is the unique member of

cbf(X), which satisfies B ⊕ C = A.

2

6.4.2 Corollary

Let X be a Banach space and A,B ∈ cbf(X). Then the following statements are equiva-

lent:

(1) There exists C ∈ cbf(X) such that B ⊕C = A.

(2) B ⊕ (A	 B) = A.

(3) s( · , A) − s( · , B) is a convex function on X ′.

PROOF.

(1)⇔(2) This equivalence was proved in Theorem 6.4.1.

(2)⇔(3) A proof for this equivalence may be found in [48, Lemma 4.7.6].

2

6.4.3 Corollary

Let X be a Banach space. Then, for all A,B ∈ cbf(X), the following statements are

equivalent:

(1) B v A.

(2) {0} ⊂ A	 B and B ⊕ (A	B) = A.

(3) B ⊂ A and s( · , A) − s( · , B) is a convex function on X ′.

PROOF.

It is known that

{0} ⊂ A	B ⇔ B ⊂ A,
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(see [48, p.159]). The rest follows from Theorem 6.4.1.

2

We now use Theorem 6.3.5 to obtain the following.

6.4.4 Theorem

Let (Ω,Σ, µ) be a measure space and X a separable real Banach space. Let (Fi,Σi) be

a set-valued submartingale in L1[Ω, cbf(X)]. If there exists B ∈ Σ with µ(B) = 0 such

that for any ω 6∈ B and all i ∈ N,

(i) s( · , E[Fi|Σi−1](ω)) − s( · , Fi−1(ω)), and

(ii) s( · , Fi(ω)) − s( · , E[Fi|Σi−1](ω)),

are convex functions on X ′, then (Fi,Σi) has a decomposition

Fi(ω) = Mi(ω) ⊕Ai(ω), for all ω 6∈ B,

where (Mi,Σi) is a set-valued martingale and (Ai) is a set-valued predictable increasing

sequence such that, for all ω 6∈ B:

(a) A1(ω) = 0,

(b) Aj(ω) =
(∑j−1

i=1 E[Fi+1|Σi](ω) 	 Fi(ω)
)

, for all j ≥ 2,

(c) M1(ω) = F1(ω), and

(d) Mj(ω) =
(∑j

i=2[Fi(ω) 	 E[Fi|Σi−1](ω)
)

+ F1(ω), for all j ≥ 2.

PROOF.

We want to apply Theorem 6.3.5 to the ordered near vector space L1[Ω, cbf(X)]. It was

noted earlier that (E[ · |Σi]) is a commuting sequence of increasing R+-linear projections

on L1[Ω, cbf(X)] such that R(E[ · |Σi]) = L1[Ω,Σi, µ, cbf(E)], for all i ∈ N. We first

verify that (Fi,Σi) is a set-valued v-submartingale.

As (Fi,Σi) is a set-valued submartingale, it follows from Fi(ω) ⊂ E[Fi+1|Σi](ω) a.e., for

all i ∈ N, that

{0} ⊂ E[Fi+1|Σi](ω) 	 Fi(ω) a.e., for all i ∈ N.

Also, s( · , E[Fi|Σi−1(ω)]) − s( · , Fi−1(ω)), for all ω 6∈ B and all i ∈ N means that

Fi(ω) ⊕
(
E[Fi+1|Σi](ω)	 Fi(ω)

)
= E[Fi+1|Σi](ω),
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for all ω 6∈ B and all n ∈ N; consequently,

Fi(ω) v E[Fi+1|Σi](ω) a.e., for all i ∈ N.

Hence, (Fi,Σi) is a set-valued v-submartingale.

Let A1(ω) = 0, for all ω 6∈ B, and for all j ≥ 2,

Aj =

j−1∑

i=1

[
E[Fi+1|Σi] 	 Fi, {0}

]
=

[ j−1∑

i=1

(
E[Fi+1|Σi] 	 Fi

)
, {0}

]
,

M1 = [F1, 0], and for all j ≥ 2,

Mj = [F1, 0] +

j−1∑

i=1

[
Fi+1, E[Fi+1|Σi]

]
.

Then it follows from Theorem 6.3.5, that in the Rådström’s completionR(L1[Ω, cbf(X)])

of L1[Ω, cbf(X)], we have that the submartingale ([Fi, {0}], Ê[· |Σi]) has a unique decom-

position

[Fi(ω), {0}(ω)] = Mi(ω) + Ai(ω), for all ω 6∈ B and i ∈ N,

where with (Mj, Ê[· |Σi]) a martingale in R(L1[Ω, cbf(X)]), (Aj) ⊂ L1[Ω, cbf(X)] a

positive and increasing sequence and Aj+1 ∈ L1[Ω,Σj, µ, cbf(E)], for all j ∈ N.

From the assumption s( · , Fn(ω)) − s( · , E[Fi|Σi−1](ω)) is convex, for all ω 6∈ B and all

i ≥ 2, we get thatFi = E[Fi|Σi−1](ω)⊕
(
Fi	E[Fi|Σi−1](ω)

)
. Hence, inR(L1[Ω, cbf(X)]),

it follows that [
Fi, E[Fi|Σi−1]

]
=

[
Fi 	 E[Fi|Σi−1], {0}

]
.

But then, for all j ≥ 2,

Mj = [F1, {0}] +

j−1∑

i=1

[
Fi+1, E[Fi+1|Σi]

]

= [F1, {0}] +

j−1∑

i=1

[
Fi+1 	 E[Fi+1|Σi], {0}

]

=
[ j−1∑

i=1

(
Fi+1 	 E[Fi+1|Σi]

)
+ F1, {0}

]
.

Let

A1 = 0 and Aj =

j−1∑

i=1

(
E[Fi+1|Σi] 	 Fi

)
, for all j ≥ 2,
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M1 = 0 and Mj =

j−1∑

i=1

(
Fi+1 	 E[Fi+1|Σi]

)
+ F1, for all j ≥ 2.

Then (Fi,Σi) has a decomposition

Fi = Mi ⊕ Ai, for all i ∈ N,

with the desired properties.

2

We are now in a position to prove Theorem 6.3.1, the Doob decomposition as noted by

Daures, Ni and Zhang, using Theorem 6.4.4.

Proof of Theorem 6.3.1. As L1[Ω, cf(X)] is a sub ordered near vector space of L1[Ω, cbf(X)]
(see [43]), we may replace L1[Ω, cbf(X)] by L1[Ω, cf(X)], as in Corollary 6.4.4, which

completes the proof of Theorem 6.3.1. 2

6.5 The Shen-Wang version of Doob’s decomposition

If {0} 6= E is a Banach lattice, then the canonical embedding E ↪→ cbf(E), given by

x 7→ {x}, is not order preserving if cbf(E) is endowed with the ordering of set inclusion.

We want to relate the ordering on E to an appropriate ordering on cbf(E). We therefore

consider:

f(E+) : = {A ∈ P0(E+) : A is closed and bounded},

cbf(E+) : = {A ∈ f(E+) : A is convex}.

For all F,G ∈ cbf(E), define

F � G⇔ ∃H ∈ cbf(E+) (F ⊕H = G).

Direct verification yields that

(1) if F ∈ cbf(E), then {0} � F if and only if 0 ≤ f , for all f ∈ F , and

(2) (cbf(E),�) is a partially ordered set and (cbf(E),⊕, · ,�) is an ordered near vector

space.

It is also clear that the ordering v associated with � on cbf(E) coincides with �.

We extend the ordering� pointwise to the space. L1[Ω, cbf(E)]. (L1[Ω, cbf(E)],⊕, · ,�)
is an ordered near vector space.

The next result shows that conditional expectations are �-preserving.
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6.5.1 Lemma

Let E be a Banach lattice, (Ω,Σ, µ) a measure space and Σ0 a sub σ-algebra of Σ. Then

the following holds:

(E3′) If F1, F2 ∈ L1[Ω, cbf(E)], then F1 � F2 implies E[F1|Σ0] � E[F2|Σ0].

PROOF.

Let F1 � F2. Select H ∈ L1[Ω, cbf(E)] for which H(ω) ∈ cbf(E+) a.e. and F1 ⊕H =
F2. Then E[F1|Σ0] ⊕ E[H|Σ0] = E[F2|Σ0]. To conclude that E[F1|Σ0] � E[F2|Σ0], it

suffices to show that {0} � E[H|Σ0].

If h ∈ L1(Ω,Σ, µ) such that h(ω) ∈ H(ω) a.e., then, as H(ω) ∈ cbf(E+) a.e., it follows

that h(ω) ≥ 0 a.e.; consequently, E[h|Σ0](ω) ≥ 0 a.e. and

S1
H(Σ0) = {h ∈ L1(Ω,Σ0, µ) : 0 ≤ h(ω) ∈ H(ω) a.e.}.

But then {0} � {E[h|Σ0] : h ∈ S1
H(Σ0)}. From the definition of E[H|Σ0], it follows that

{0} � E[H|Σ0], and the proof is complete.

2

The following version of Doob’s decomposition is similar to a result noted by Shen and

Wang (see [75]). Their result differs from the one below mainly in the assumption (1)

in Theorem 6.5.2 below. This assumption yields an explicit description of the martingale

involved in the decomposition, which they do not obtain in their result.

6.5.2 Theorem

Let E be a Banach lattice, (Fi,Σi) be a �-submartingale in L1[Ω, cbf(E)] (alternatively,

L1[Ω, cf(E)]). If there exists B ∈ Σ with µ(B) = 0, and for each i ≥ 2,

s( · , Fi(ω)) − s( · , E[Fi|Σi−1(ω)]), for all ω 6∈ B,

is a convex function on X ′, then there is a decomposition of (Fi,Σi) as

Fi(ω) = Mi(ω) ⊕Ai(ω), for all ω 6∈ B,

where (Mi,Σi) is a set-valued martingale in L1[Ω, cbf(E)] (alternatively, L1[Ω, cf(E)])
and (Ai) is a set-valued predictable �-increasing sequence such that for all ω 6∈ B:

(a) A1(ω) = 0,

(b) Aj(ω) =
(∑j−1

i=1 E[Fi+1|Σk](ω) 	 Fk(ω)
)

, for all j ≥ 2,
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(c) M1(ω) = F1(ω), and

(d) Mj(ω) =
(∑j

i=2 Fk(ω) 	 E[Fi|Σi−1](ω)
)

+ F1(ω), for all j ≥ 2.

Moreover, the decomposition is unique.

PROOF.

The proof is very similar to that of Theorem 6.4.4, although we are considering the order-

ing � instead of ⊂. The details follow.

From Lemma 6.5.1, we know that E[ · |Σi] is �-preserving. Hence, in R(L1[Ω, cbf(X)])

we have that ([Fi, {0}], Ê[· |Σi]) has a unique decomposition

[Fi, {0}] = Mi + Ai, for alli ∈ N,

where A1 = 0, and for all j ≥ 2,

Aj =

j−1∑

i=1

[
E[Fi+1|Σi] 	 Fi, {0}

]
=

[ j−1∑

i=1

(
E[Fi+1|Σi] 	 Fi

)
, {0}

]
,

M1 = [F1, 0], and for all j ≥ 2,

Mj = [F1, 0] +

j−1∑

i=1

[
Fi+1, E[Fi+1|Σi]

]

with (Mj, Ê[· |Σi]) a martingale in R(L1[Ω, cbf(X)]), (Aj) ⊂ L1[Ω, cbf(X)] a positive

and increasing sequence and Aj+1 ∈ L1[Ω,Σj, µ, cbf(E)], for all j ∈ N.

From the assumption s( · , Fn(ω)) − s( · , E[Fi|Σi−1](ω)), for all ω 6∈ B and all i ≥ 2, we

get that Fi =
(
E[Fi|Σi−1](ω)

)
⊕

(
Fi 	 E[Fi|Σi−1](ω)

)
. Hence, in R(L1[Ω, cbf(X)]), it

follows that [
Fi, E[Fi|Σi−1]

]
=

[
Fi 	 E[Fi|Σi−1], {0}

]
.

But then, for all j ≥ 2,

Mj = [F1, {0}] +

j−1∑

i=1

[
Fi+1, E[Fi+1|Σi]

]

= [F1, {0}] +

j−1∑

i=1

[
Fi+1 	 E[Fi+1|Σi], {0}

]

=
[ j−1∑

i=1

(
Fi+1 	 E[Fi+1|Σi]

)
+ F1, {0}

]
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Let

A1 = 0 and Aj =

j−1∑

i=1

(
E[Fi+1|Σi] 	 Fi

)
, for all j ≥ 2,

M1 = 0 and Mj =

j−1∑

i=1

(
Fi+1 	 E[Fi+1|Σi]

)
+ F1, for all j ≥ 2.

Then (Fi,Σi) has a decomposition

Fi = Mi ⊕ Ai, for all i ∈ N,

with the desired properties.

2
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