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ABSTRACT 

 
Coal petrography, micro Raman spectroscopy (MRS) and thermogravimetric analysis 

(TGA) were employed to obtain further inside into the evolution of char structure and its 

reactivity during heat treatment in the temperature range of 300-1400°C on inertinite-rich 

South African coals. The lack of publications particularly on South African coals, relating 

Raman spectroscopy to coal petrography and thermogravimetric analyses when 

investigating the evolution of char structure was a motivation for the study. A laboratory 

scale Packed Bed Balance Reactor (PBBR) was used to prepare coal char samples at 

various temperatures; that is 300, 600, 800 and 1000 °C. A drop tube furnace (DTF) was 

used to prepare chars at 1400°C. Raman spectra of coal and chars were measured on the 

first-order in the range 800-2000cm-1. Characteristic bonds for amorphous carbons, G 

band (graphitic) and D band (disorder), were deconvoluted and curve fitted using the 

OPUS software. Three bands for coal particles were determined; that is the G band at 

~1590-1603cm-1, D1 band at ~1343-1355cm-1 and D3 band at ~1507-1557cm-1. Four 

bands were determined for char particles; that is the G band at ~1590-1603cm-1, D1 band 

at ~1343-1355cm-1, D3 band at ~1507-1557cm-1 and D4 band at ~1200-1232cm-1. All the 

bands were fitted with a mixture of Lorentzian and Gaussian functions except the D3 

band for which only a Gaussian function was used. It was found that sp2-sp3 bonding 

(reactive sites/crystallites) occurred in dense chars (originating from inertinite particles) 

at the initial heat treatment temperature, and these sp2-sp3 bondings are known to be 

consumed later at high temperature. Earlier consumption of sp2-sp3 bonding was 

observed in porous chars, since they were vitrinitic in origin and contained more reactive 

sites. The D1 and G bandwidths showed a significant change with heat treatment, which 

was consistent with structural modification due to high temperatures. Reflectance 

measurements, that is: mean vitrinite reflectance (MVR) and mean total reflectance 

(MTR), showed an increase with heat treatment temperature. MVR and MTR were 

successfully correlated with Raman parameters (D1 and G bandwidth). MVR and MTR 

also showed a good correlation with combustion reactivity measured by TGA. Char 

morphology analyses were carried out petrographically by point counting for 

quantification and qualification purposes. The char morphology data showed a significant 
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increase in the amount of dense/solid chars as compared to the porous chars with an 

increase in temperature which is in-line with expectations from the inertinite-rich parent 

coal. Correlations between the D1 and G bandwidths and char morphology counts were 

carried out. An inverse of D1 and G bandwidth showed good correlation with the 

proportion of dense/solid and porous char. It was concluded from this study that the best 

correlations between Raman spectroscopy and coal petrography was through reflectance 

measurements, and the identified Raman D1 and G bandwidths. A good linear correlation 

was also found between Raman D1 and G bandwidths and combustion reactivity. These 

correlations confirm the strong connection between char structure and its reactivity and 

illustrate the advantage of Raman spectroscopy in conjunction with coal petrography with 

respect to other structural analyses. Therefore, the use of MRS and petrography on coal 

chars enhances the understanding of char structural evolution on a molecular level and 

may lead to enhanced understanding of pulverised fuel (pf) coal combustion.  
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CHAPTER 1 
 

1.1 Introduction 
 

Coal dominates as South Africa’s primary energy source and presently it provides about 

79% of our country’s primary energy needs. South Africa is known to be the world’s 

sixth largest producer of coal, mining around 220 million tones per annum over a third of 

which is exported (DME, 2004). Because coal is abundant, and is the primary fossil fuel, 

it will continue to play an increasingly important role to meet the increasing demands for 

different forms of energy (electricity and liquid fuels). In the domestic market in South 

Africa coal is used in electricity generation (110Mt), petrochemical coal-to-liquids 

industry (41Mt), general industries (8Mt), the metallurgical industry (7Mt), and for 

domestic use (7Mt) (Falcon and Van der Riet, 2007). South Africa has approximately 

75% of Africa’s coal resources and consists of nineteen coalfields of which nine are 

currently producing (Wagner and Hlatswayo, 2005). Over 95% of South African coal 

reserves are bituminous, with about 2% being anthracite (Kershaw and Taylor, 1992). 

South African coals contain considerable amounts (up to 60%) of low reflecting 

inertinite, called ‘reactive semifusinite’ (Snyman and Botha, 1993; Hagelskamp and 

Snyman, 1988). South African Permian coals typically have minor liptinite content (less 

than 7% by volume) and high mineral matter content (up to 30%), in comparison to 

Northern Hemisphere Carboniferous coals (Kruszewska, 2003; Cairncross, 2001; Walker, 

2000; Snyman and Botha, 1993).  

 

Coal in South Africa is primarily used in combustion and gasification processes. For a 

better understanding of these processes, it is necessary to study coal structure and its 

derivatives (char and coke); because the structure of coal can have an influence on its 

performance in coal conversion processes (combustion and gasification). An 

understanding of coal and char structure can assist with predicting and controlling these 

processes. In this chapter, the need for the investigation into the evolution of char 

structure and its reactivity during combustion is motivated.   
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1.2 Background and motivation 
 

Since the 1950’s, South African coals were mined and then beneficiated. The high value 

products are used in the production of high-value export grade blend-coking coals and 

high grade steam coal. The lower grade coals are used as feedstocks in combustion and 

gasification plants. This has resulted in a reduction of good quality coal available to the 

inland market, and local consumers are obliged to use lower-grade high-ash coal, either 

in the form of middlings arising from beneficiation or lower quality run of mine seams. 

Southern African coals are characteristically rich in minerals, relatively difficult to 

beneficiate, and variable in rank (maturity) with high inertinite contents and hence low 

combustion efficiency when compared to world coals (Falcon and Ham, 1988). This 

presents a challenge to the coal-based industries (power and liquid fuels) as run of mine 

quality of the coal reserves continue to decrease in the South African region. In parallel, 

the increasing environmental constraints being imposed on users of coal provides further 

challenges to coal conversion. These factors have led to challenges being experienced by 

local coal users; coals of different type and grade to that which the boiler or gasifier plant 

was originally designed are introduced into the process. Under such conditions poor 

combustion or gasification performance often results. This is manifested at times by poor 

ignition, irregular flames and flameouts, delayed heat transfer, high carbon carry-overs, 

overall inefficient combustion and ash deposits of various types (Falcon and Ham, 1988; 

Lee and Lau, 1985).  

 

The greatest utilization of coal lies with coal combustion for power generation. Coals for 

combustion are assessed for ignition and burnout characteristics. The combustion 

behaviour depends on the characteristics of the coal and also on the operating conditions 

of the boiler (temperature, heating rate, oxygen concentration, etc.) (Alonso et al. 2001b). 

There are two distinct stages in the combustion of pulverised fuel (Pyatenko et al. 1992; 

Bailey, 1989; Bend et al. 1989; Sadakata et al. 1989; Tsai and Scaroni, 1987; Gromulski 

and Sieurin, 1983). The first stage is pyrolysis, which is the rapid release of volatiles and 

their combustion. The second stage is char combustion. The performance of a particular 
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coal in a furnace therefore depends on how it reacts in the stages of pyrolysis and char 

combustion (Cloke and Lester, 1994).  

 

 In order to reduce problems encountered in coal utilization, various tests and analyses 

are conducted on coals and their resulted chars. These include: proximate analysis, 

ultimate analysis, coal petrography, mineral analysis, calorific value, swelling index, 

physical tests, thermogravimetric analyses tests, and drop tube furnace tests (DTF). There 

are many results reported in literature on the characterization of South African coals and 

their resulted chars using some of these tests (Falcon and Ham, 1988; Falcon, 1986; 

Falcon and Snyman, 1986). The structure of coal and char can be characterised with the 

help of advanced techniques including X-ray diffraction (XRD), high-resolution 

transmission electron microscopy (HRTEM), and Raman spectroscopy. Raman 

spectroscopy is a powerful technique, because it is sensitive not only to the crystalline 

structure but also to the molecular and amorphous structures of samples. It has been 

widely employed to characterise almost all carbonaceous materials (Yoshiba et al. 2006; 

Quirico et al. 2005; Sadezky et al. 2005; Beyssac et al. 2003; Zerda et al. 2000; Ferrari 

and Robertson, 2000; Cuesta et al. 1998; Jawhari et al. 1995; Cuesta et al. 1994; Green et 

al. 1983; Rouzaud et al. 1983; Tuinstra and Koenig, 1970). More recently, it has also 

been applied to analyse coal char structure, which was further correlated with char 

reactivity (Li et al. 2006; Sekine et al. 2006; Zaida et al. 2006; Sekine et al. 2005; Bar-

ziv et al. 2000; Livneh et al. 2000; Doorn et al. 1990), also discussed in a recent review 

article (Potgieter-Vermaak et al. 2010). Raman spectroscopic analysis can provide insight 

into char structure, the effect of heat treatment on the structure evolution, and 

consequently on char reactivity. There are a limited number of publications in the 

literature relating Raman spectroscopy to coal petrography and thermogravimetric 

analyses when investigating the evolution of char structure, and none on South African 

coals. Amongst them, none of these publications was found relating Raman spectroscopy 

directly to coal petrography and thermogravimetric analyses. The need for a detailed 

investigation into the evolution of char structure and its reactivity was considered 

important and was chosen as the subject for this research. The purpose of the research 

was to consider char structure formation and its reactivity during coal conversion via 
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Raman spectroscopy and coal petrography. A pulverised Witbank coal sample was 

pyrolysed under various treatment temperatures (300-1000°C) to generate char samples, 

which were examined using Raman spectroscopy, petrography and thermogravimetric 

analyses. The study aims to improve the knowledge and understanding of combustion 

properties, and may assist in predicting combustion performance of coal, thus aiding in 

the design and maintenance of combustion boilers, and may help to maximise burning 

efficiency and assist in reducing carbon particle emission from coal utilities. 

   

1.3 Research questions 
 

A number of authors (Senneca et al. 2004, Feng et al. 2002, Sharma et al. 2001, Shim et 

al. 2000, Russell et al. 1999) propose that the understanding of char structural change 

during heat treatment is essential for theoretical description of char reactivity evolution 

during coal combustion and gasification. Hence, the following research questions were 

derived: 

 

(a) Would the use of Raman spectroscopy in conjunction with petrography enable a 

better understanding of the behaviour of char during combustion? 

(b) Would the combination of petrography and Raman spectroscopy assist in solving 

problems associated with coal utilization including suitability for combustion, 

gasification and liquefaction? 

 

And since Sheng (2007) showed good correlation between combustion reactivity (TGA) 

and Raman spectroscopy (Raman ratios): 

(c) Would TGA results (to assess the combustion reactivity) correlate with ratio’s of 

the obtained Raman bands, and would there be any correlation with the 

petrographic results? 
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1.4 Aims of the investigation 
 

The aims of the research project are as follows: 

(a) To investigate the evolution of char structure and char reactivity using Raman 

spectroscopy in conjunction with coal petrography and thermo-gravimetric analysis 

(TGA) of pulverised coal samples.  

(b) To gain an understanding of char structure formation at a molecular level to enhance 

understanding of coal combustion. 

 

1.5 Objectives of the investigation 
 

(a) Parent coal will be characterised using different techniques, namely: proximate 

analysis, coal petrography, X-ray diffraction, micro Raman spectroscopy, and 

thermogravimetric analysis. 

(b) Then coal will be charred to different temperatures (300ºC-1000ºC), and the resultant 

chars will be analysed using the same techniques outlined above (1.5 (a)). 

(c) An additional set of char samples produced at 1400ºC will be obtained to get an 

indication of the behaviour of coal at this temperature. 

  

1.6 Hypothesis 
 

The hypotheses to be addressed during the course of the research investigation are: 

(a) Petrographic analysis (char morphology and reflectance) can be correlated with 

Raman bands or ratio’s of Raman bands. 

(b) Char reactivity (determined by thermo gravimetric analysis) can be correlated with 

Raman bands or ratio’s of Raman bands. 
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1.7 Scope of the dissertation 
 

The dissertation is summarised as follows: 

Chapter 1: Introduction which has four sections, i.e. background and motivation, research 

questions, aims and objectives of the investigation and scope of the dissertation. 

Chapter 2: Literature review. 

Chapter 3: Experimental methodology followed during the investigation. 

Chapter 4: Results and discussion. 

Chapter 5: Conclusion and recommendations. 
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CHAPTER 2 
 

Literature review 
 

In this chapter, a literature review concerning the detailed characterisation of coal and 

chars using different techniques such as coal petrography, Raman spectroscopy, powder 

X-ray diffraction (PXRD) and thermogravimetric analysis is provided. Section 2.1 gives 

a general introduction to South African Witbank coals; Section 2.2 describes the 

petrographic properties of coal; Section 2.3 describes coal conversion; Section 2.4 

describes the facilities used to prepare chars (for example DTF and PBBR); PXRD is 

discussed in Section 2.5; Section 2.6 discusses the Raman spectroscopy; TGA is 

discussed in Section 2.7; and the chapter is concluded by a brief summary of different 

techniques used to characterise coal and char (Section 2.8). 

   

2.1 General introduction to South African Witbank coals. 
 

The South Africa Witbank Basin contains approximately 16.2Gt of in situ coal (Snyman 

and Botha, 1993) out of the 60Gt found in the Permian Karoo Basin of South Africa 

(Cadle et al. 1993; Smith and Whittaker, 1986). Most of the Witbank coal occurs as part 

of the Vryheid Formation (Cairncross et al. 1988). The Vryheid formation is in the 

cratonic Witbank Basin and was deposited on a glacially incised topography forming part 

of the Permian Ecca Group, resting either directly on pre-Karoo strata or on Permo-

Carboniferous Dwyka glacial sediments (Cairncross and Cadle, 1988). South African 

Permian coals from the Witbank Basin frequently have high a inertinite content (Boshoff 

et al. 1991), as illustrated in Table 2.1. Inertinite formation is thought to be the product of 

fungal activity, cold climatic conditions and atmospheric exposure of peat resulting in 

oxidation (Cadle et al. 1993; Snyman and Botha, 1993). The Witbank coals also have 

minor liptinite content (less than 7% by volume) and high mineral matter content (up to 

30% by volume) (Kruszewska, 2003; Cairncross, 2001; Walker, 2000; Snyman and 

Botha, 1993).  
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Table 2.1: The calculated average ash-free maceral composition of 34 mines samples 

from the Witbank Coalfield; data calculated from Boshoff et al. (1991) 

Maceral group Average Witbank coal (% by volume) 

Vitrinite 27.9 ± 12.2 

Liptinite 4.2 ± 1.2 

Inertinite 67.9 ± 12.3 

 

When comparing the Witbank coalfield to some of the other South African coalfields 

such as the Highveld and Waterberg coalfields, it is found that the inertinite contents are 

comparable (approximately 60-80%) (Wagner and Hlatshwayo, 2005). Vitrinite is the 

dominant maceral (up to 90% by volume) in the upper zone of the Waterberg coals, 

decreasing with depth of formation, with 60% inertinite at the base of the formation 

(Faure et al. 1996). 

 

2.2 Properties of coal 

2.2.1 Coal petrography 

 
Coal petrography is the study of the microscopic organic and inorganic constituents in 

coal and the degree of metamorphosis (or rank). It has become a major tool in evaluation 

and assessment procedures and is often an integral part of the testing during the 

exploration, mining, beneficiation, marketing and utilization phases in the coal industry 

(Berry, 1981; Zimmerman, 1979; Steyn and Smith, 1977; Smith, 1972a, 1972b; Brown et 

al. 1971; Taylor et al. 1967; Schapiro and Gray, 1964; Francis, 1961). Microscopically, 

coal is composed of a number of discrete organic constituents termed macerals, which are 

analogous to their inorganic counterparts, minerals. There are three main maceral groups, 

namely: vitrinite, liptinite and inertinite. It might be expected that the inertinite would be 

less reactive during combustion than the other fractions. However, although this may be 

true for a single coal, not all inertinites are inert and not all vitrinites are reactive. For a 

maceral to be classed as reactive, it must exhibit thermoplasticity during pyrolysis and 

char formation; hence if ‘inerts’ are to be considered as reactive, some degree of 

structural alteration must be shown to have occurred. Low-reflecting inertinite (termed 
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reactive semi-fusinite) is the most likely sub-maceral in which plasticity would be 

observed during combustion (Thomas et al. 1991), although medium-reflecting inertinite 

can also undergo the same degree of plastic deformation. When determining the 

proportions of macerals in a coal, a point count system is used and a volume % maceral 

composition is obtained. 

 

Reflectance is one of the most important analyses in coal petrography, and it can be 

performed on vitrinite particles or on total macerals. The reflectance is a measure of the 

state of coalification based on a scale correlating from brown coal to anthracite; this 

progression shows an increase in value with carbon content (Berkowitz, 1985). The 

maceral vitrinite (specifically telovitrinite) is selected as a reference material as its 

reflectance increases uniformly with the coalification process. The mean vitrinite 

reflectance (MVR) value is a very reliable parameter because it is independent of the 

vitrinite content and the grade of the coal, but dependent on the carbon/hydrogen and 

carbon/oxygen ratios and the volatile matter, and is commonly used as a rank indicator 

(Cloke and Lester, 1994). A total maceral reflectance/mean total reflectance (MTR) can 

also be measured on coal samples with readings taken on all organic components: 

liptinite, vitrinite and inertinite (Tang et al. 2005a, 2005b; O’Brien et al. 2003; Benfell, 

2001). It has been suggested by Tang et al. (2005a); Cloke and Lester (1994) that the 

MVR value can be an accurate parameter for predicting combustion behaviour. Tang et 

al. (2005a, 2005b) and O’Brien et al. (2003) proposed a full maceral reflectance (FMR) 

parameter defined as the summation of each reflectance value multiplied by its frequency 

derived from the full reflectogram, thus incorporating both rank and maceral 

composition. FMR has more advantages over MVR, because it provides the information 

for whole coal, instead of just vitrinite information (Tang et al. 2005b).  

 

The reflectance and type of macerals present in the parent coal have an effect on char 

properties. Thus the reflectance has an effect on the combustion and gasification 

reactivity (Mendez et al. 2003; Alonso et al. 2001a; Rosenberg et al. 1996a, 1996b; Hurt 

et al. 1995; Cloke and Lester, 1994; Crelling et al. 1992; Bailey et al. 1990; Oka et al. 

1987; Jones et al. 1985a, 1985b). 
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Petrographic analyses, including maceral, microlithotype, mineral groups, and rank by 

vitrinite reflectance, allow for the characterisation and classification of coal in terms of 

type, grade and rank for the determination of technical behaviour and utilisation 

potentials of the materials. Petrography plays an important role in determining char 

morphology, because an understanding of the type of macerals present in the coal can 

enable the prediction of the type of char morphology from that particular coal. Most 

workers (Bengtsson, 1987; Skorupska, 1987; Jones et al. 1985a, 1985b; Nandi et al. 

1977) have concentrated upon the influence of petrographic composition in determining 

specific char morphology. Investigations into the relative behaviour of vitrinite and 

inertinite macerals of a specific rank range has led some workers to conclude that specific 

char morphologies were generated from specific macerals (for examples cenosphere from 

vitrinite, honeycomb structures or dense particles from inertinite-rich particles) during 

pyrolysis or combustion (Skoruspka et al. 1987; Jones et al. 1985a, 1985b; Nandi et al. 

1977).  

 

2.3 Coal conversion 
 

2.3.1 Coal combustion and char formation. 

 
The greatest utilization of coal lies with coal combustion. Coals are assessed for ignition 

and burnout characteristics when determining suitability for combustion. Coal 

combustion involves the generation of thermal energy as a result of oxidation of the 

combustible constituents of coal in the presence of heat. The process is a series of 

reactions in which oxidation and heat generation lead to devolatilization of the organic 

matter. Combustion behaviour depends on the characteristics of the parent coal and also 

on the operating conditions of the boiler or furnace (temperature, heating rate, oxygen 

concentration, etc.) (Alonso et al. 2001a). There are two distinct stages in the combustion 

of pulverised fuel as identified by most workers (Bend et al. 1989; Sadakata et al. 1989). 

The first stage is pyrolysis; that is rapid release of volatiles and their combustion 

(Pyatenko et al. 1992; Bailey, 1989; Tsai and Scaroni, 1987; Gromulski and Sieurin, 
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1983). The second stage is char combustion. During the pyrolitic stage, tar and gases 

escape, leaving solid carbon-rich residues known as char which is then oxidised and 

consumed until, at elevated temperatures, no organic residues remain at all (Falcon and 

Ham, 1988). The performance of a particular coal in a furnace therefore depends on how 

it reacts in the stages of pyrolysis and char combustion (Cloke and Lester, 1994). Much 

research has been carried out into the link between maceral types and combustion 

behaviour (Cloke and Lester, 1994), and the overall conclusion from the literature is that 

the combustion behaviour of a coal is not always related to the basic maceral composition 

as the behaviour of vitrinite varies with its reflectance (generally referred to as ‘rank’) 

(Bengtsson, 1986; Jones et al. 1985b). The reflectance of inertinite is known to affect the 

combustion behaviour of the coal as well as that of the vitrinite (Diessel and Wolff-

Fischer, 1987; Shibaoka, 1969). Jones et al. (1985a, 1985b) suggested that both rank and 

maceral composition contribute to the morphology of the char. Shibaoke et al. (1985) 

suggested that the morphology of chars generated from vitrinite during devolatilization 

mostly depends on the coal rank, and that some type of inertinites, which are usually 

considered to have poor combustibility, might have as good combustibility as vitrinites. 

 

The evolution of char structure during coal pyrolysis mainly depends on coal 

petrography, rank of the coal and pyrolysis conditions (Tang et al. 2005a), and it also 

depends on the particle size and the temperature of the char formation (Bengtsson, 1987). 

Major components of coal char are fixed carbon and ash. Generally, in pulverised coal 

combustion/gasification technology, the existence of ash reduces the heating value and 

corrodes the internal surfaces in boilers or furnaces (Qui et al. 1999; Reifenstein et al. 

1999). 

 

2.3.2 Char morphology 

  
The morphology of char is determined by changes occurring during pyrolysis, and the 

types of char present affect the overall combustion efficiency (Oka et al. 1987). Char 

morphology, that is shape, size, thickness and porosity, has significant effects on coal 

combustion (Tang et al. 2005a, 2005b). Subjective quantitative analysis of char products 
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has generally taken preference to actual objective quantification of their characteristics. 

Poor repeatability between laboratories world-wide is partly due to the common practice 

of using self-defined analysis techniques, which are tailored to suit the type of samples 

that are under analysis. Char analysis is essentially a non-standardised technique (Bailey 

et al. 1990; Shibaoka et al. 1989), where the operator creates a series of different char 

classes based on the characteristics of the sample that are considered to be most 

important. 

Numerous research groups have attempted a microscopic description of different 

structural types of char particles (Bailey et al. 1990; Jones et al. 1985a, 1985b; Shibaoka 

et al. 1985; Lightman and Street, 1968). Lightman and Street (1968) was the first to 

investigate the morphology of pyrolyzed char from a drop tube furnace (DTF) with a 

Scanning Electron Microscope (SEM) and an optical microscope, and four types of char 

were distinguished. It is well known that the porosity of most vitrinite-derived char 

decreases with increasing rank, and most inertinite-derived chars are initially less porous 

than the vitrinite-derived char. However, the difference decreases with the increase of 

rank (Tang et al. 2005a, 2005b). The higher the temperature the more thick-walled are 

the char particles formed. Networks are present in chars from lower rank coals which are 

related to coal aromaticity, and increase with coal rank (Cloke and Lester, 1994). Bend et 

al. (1992) also examined vitrinite-rich coal of increasing rank and found that low rank 

coals generated multi-chambered and optical isotropic chars and that with increasing 

rank, hollow single-chambered optical anisotropic chars are formed. Some vitrinites are 

non-reactive, such as pseudo-vitrinite with a high reflectance (Cloke and Lester, 1994; 

Bengtsson, 1987). Thomas et al. (1993a, 1993b) and Rosenberg et al. (1996); report that 

the structure of char particles mainly depends on the individual maceral compositions of 

the parent coal particles. Bailey et al. (1990) correlated the formation of eleven different 

char types with coal microlithotypes and Bend et al. (1991) related content of vitrinite-

rich microlithotypes with porosity of chars formed under different conditions. O’Brien et 

al. (2003) successfully correlated the full maceral reflectance parameter (FMR) with coal 

chemical properties (proximate and ultimate) while Tang et al. (2005b) correlated this 

parameter with porosity for coals with pure macerals only. Tang et al. (2005b) estimated 

char reactivity kinetics from a coal reflectogramme and thermogravimetric analyser 
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experimental results, and related the pre-exponential factor (Arrhenius equation) with 

FMR parameter with application to particularly chars derived from inertinite rich coals. 

 
Figure 2.1 shows the microscopic representation of different types of char and their 

descriptions are given in Table 2.2 (Cloke and Lester, 1994). Whilst there may be several 

different descriptions for a specific char type, there is some degree of consistency 

between the literatures reported in Table 2.2. For the purpose of this project, the 

terminology as proposed by Falcon and Wagner (1995, 1994), Wagner (1998) and Bailey 

(1990) will be applied. 

 

 

Figure 2.1: Diagrammatic representation of char types as discussed in Table 2.2 (Cloke 

and Lester, 1994) 
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Table 2.2: Char classification systems adapted from Cloke and Lester (1994) and expanded. 

 A B C D E F G H I  
Wagner 
(1998) 

thin walled 
cenosphere 

thick walled 
cenosphere 

thin walled 
honeycomb 

thick walled 
honeycomb 

dense dense/ 
solid 

fusinoid mixed 
(banded, 
granular) 

- 

Crelling 
(1992) 

cenosphere cenosphere honeycomb - unfused 
char 

unfused 
char 

unfused 
char 

- - 

Bailey 
(1990) 

tenuisphere crassisphere tenuinetwork mesosphere inertoid solid fusinoid mixed 
dense 

mixed 
dense 

Shibaoka 
(1989) 

plastic plastic plastic - open 
solid 

solid char open 
solid 

mixed mixed 

Phong-
Anant 
(1989) 

cenosphere cenosphere network 
honeycomb 

solid solid solid solid solid solid 

Young 
(1987) 

thin walled thick walled network honeycomb solid 
disrupted 

unfused 
disrupted 
skeleton 

unfused solid solid 

Oka et al 
(1987) 

thin walled 
balloon 

thick walled 
balloon 

network - unfused 
block 

unfused skeleton - - 

Jones et 

al. (1985) 

cenosphere - honeycomb - unfused unfused unfused unfused - 

Lightman 

(1968) 

thinwalled 

cenosphere 

thickwalled 

ceneosphere 

lacy 

cenosphere 

solid solid solid solid solid - 
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2.3.3 Char structure 

 
Coal chars are composed of pseudo-graphitic building blocks (Walker and Mahajan, 

1978). They contain nanometer crystalline domains (graphene layers) that grow due to 

heat treatment (Emmerich, 1995). In coal chars, particularly those prepared at low 

temperature, the carbon crystallites are small in size and poorly aligned because of cross 

linking. The edge site and various imperfections in the carbon structure (including single 

bonded “dangling” carbons) are thought to be the “active sites” during gas reactions. It 

was observed that annealing-induced structural rearrangement of graphene layers is 

induced by heat treatment (Emmerich, 1995), affecting the char reactivity and hence its 

lifetime in a reactor (Senneca et al. 2005, 1998; Salatino et al. 1999; Davis et al. 1995; 

Suuberg, 1990). Coal char is a highly disordered carbonaceous material that has a short-

range order polycrystalline structure (Sharma et al. 2001; Shim et al. 2000; Davis et al. 

1995). Hence the understanding of its structural change during heat treatment is essential 

for its (char) theoretical description of reactivity evolution during coal combustion and 

gasification, which has been the subject of many research efforts (Senneca et al. 2004; 

Feng et al. 2002; Sharma et al. 2001; Shim et al. 2000; Russell et al. 1999). 

 

A frequently applied technique for following the changes in the structure of carbonaceous 

materials with heat treatment is by optical properties, one of the most useful of which is 

maximum reflectance. The increase in maximum reflectance for heat treatment 

temperatures up to about 1000°C for coal chars has been well established (Goodarzi, 

1984; Murchison, 1978; Goodarzi and Murchison, 1972; de Vries et al. 1968; Ghosh, 

1968; Chandra and Bond, 1956). It is attributed to increasing anisotropy resulting from 

changing mutual orientation of the aromatic layers (Rouzaud et al. 1983). It has been 

suggested (Rouzaud et al. 1983) that changes in optical properties are brought about by 

changing mutual orientation of the polyaromatic molecules. 

 

Carbonaceous materials like coal and char structure are often characterised by maceral 

analysis or reflectance measurements which are often subjective in nature and do not 

distinguish atomic level differences of different carbon types. Recently, advanced 
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analytical tools such as the X-ray diffraction (XRD) or Raman spectroscopy are being 

developed to characterise carbon structure of different carbonaceous materials including 

coal, char and their high temperature derivatives. The former gives the crystalline 

structure and the latter gives the bonding structure. Therefore, by comparing the XRD 

and Raman analysis of an identical sample, a deeper insight of the coal and char carbon 

structure can be developed (Kawakami et al. 2006; Lu et al. 2001). Recently Sheng 

(2007) showed that the evolution of char structure under heat treatment can be 

characterised by Raman spectroscopy, in particular, band area ratios, where it was shown 

that the increase in heat treatment on the char had led to the increase of its structural 

order. Good correlations were also found between the combustion reactivity (determined 

by TGA) and the Raman ratios. The correlations were independent on the coal types and 

heat treatment conditions. In this investigation the main techniques applied will be 

petrography, PXRD, Raman spectroscopy and TGA.  

2.3.4 Char reactivity 

 
The major factors which control the reactivity of carbonaceous solids to O2, CO2, H2O, 

and H2 are known (Walker et al. 1959). They are: (1) concentration of active sites, (2) 

presence of inorganic impurities which could act as catalysts, and (3) diffusion 

limitations on how rapid the reactive gas can reach active sites. Char reactivity have been 

investigated by numerous researchers. The rank of the parent coal (Koba and Ida, 1980; 

Linares-Solano et al. 1979; Tomita et al. 1977; Hippo and Walker, 1975; Jenkins et al. 

1973), the heat treatment temperature (Koba and Ida 1980; Hippo et al. 1979; Linares-

Solano et al. 1979; Tomita et al. 1977; Hippo and Walker 1975; Jenkins et al. 1973), the 

heating rate (Radovic et al. 1983; Ashu et al. 1978), and the presence of inorganic 

impurities (Radovic et al. 1983; Hippo et al. 1979; Ashu et al. 1978; Soledade et al. 

1978; Jenkins et al. 1973; Patrick and Shaw, 1972), have been found to affect char 

reactivity. 

 

The results for pyrolysis of chars generated over 1000°C indicate that the higher the 

temperatures and heating rates, the lower the reactivity of the chars. This is attributed to 

the increased devolatilization rates, enhanced thermal annealing and decreased 
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concentration of active sites (Russell et al. 1999; Davis et al. 1995). Most of the studies 

have considered the influence of the characteristics of the parent coal (rank and maceral 

composition) in the structure and reactivity of chars (Cai et al. 1998; Thomas et al. 

1993a, 1993b; Bend et al. 1992; Bailey et al. 1990). General trends of decreasing char 

reactivity with the increase of the rank of the parent coal have been obtained at both low 

and high temperatures, although some deviations of the general trend were also reported 

(Khan, 1987; Smith, 1978). The results are somewhat contradictory when dealing with 

inertinite-rich coal chars, which show generally lower intrinsic reactivity than the 

vitrinite-rich chars of similar rank in thermogravimetric experiences, but comparable to 

higher performances in industrial boilers or DTF experiments (Davini et al. 1996; 

Morgan et al. 1986). 

 

Structural changes of char induced by heat treatment (Senneca et al. 1998; Davis et al. 

1995; Radovic et al. 1983) are known to have an important role on its reactivity. In many 

studies, char reactivity is represented by the density of active sites on the internal surface, 

and this is often assumed to be constant during reaction. It has been assumed that the 

main effect of heat treatment is the reduction of the internal surface area at a constant 

reactive surface area fraction (Bhatia and Perlmutter, 1980; Gavalas, 1980; Lewis and 

Simons, 1979; Petersen, 1957). A significant change in the density of active sites during 

conversion is well documented (Radovic et al. 1983; Laurendeau, 1978). Several studies 

(Weiss and Bar-Ziv, 1993; Hurt et al. 1988) reported shrinkage of the highly porous char, 

which was also attributed to changes in the density of active sites. Kantorovich and Bar-

Ziv (1998; 1994) modeled the reactivity of coal char and showed the mutual influence of 

reactivity and pore structure. They showed a monotonic increase of the intrinsic reaction 

rate during conversion, which is consistent with the increase in edge-to-basal-plane 

carbon atom ratio. Thermal conductivity was used as a mean to detect changes in pore 

structure, showing significant changes with reactivity (Zhang et al. 1998; Kantorovich 

and Bar-Ziv, 1997). 

 

Snow et al. (1960) studied the influence of hydrogen content on the oxidation of carbon 

black and observed that the higher the hydrogen content, the higher the reactivity 
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(Jenkins et al. 1973; Snow et al. 1960). Further, they noted that the C/H ratio of the 

residue increased sharply with increasing burn-off of the sample, suggesting that the 

hydrogen was being preferentially oxidised relatively to carbon. Walker and co-workers 

(Linares-Solano et al. 1979; Hippo and Walker, 1975; Jenkins et al. 1973) have shown 

that the reactivity of coal char to air, CO2, and steam is strongly dependent upon the rank 

of coal from which the char is produced and mineral matter composition. The differences 

in reactivity of coal chars are attributed to three factors. The low-rank chars have: (1) a 

higher concentration of active carbon sites, (2) better site utilization because of a greater 

concentration of feeder pores, and (3) impurities of higher specific catalytic activity than 

the higher-rank coal chars. Comparison of reactivity of low- and high-temperature chars 

shows that the low-temperature chars exhibit higher reactivity than either the parent coals 

or the high-temperature chars (Khan, 1987). The char reflectance measurements indicate 

that the low temperature chars are carbon-poorer than their high temperature 

counterparts, and contain high amounts of residual H and heteroatoms, which could be 

responsible for their higher intrinsic reactivity (Alonso et al. 2001a). 

 

2.4 Drop Tube Furnace 
 
The drop tube furnace (DTF) is a laboratory-scale test instrument that empirically 

simulates the combustion environment of a pulverised-fuel (p.f) boiler furnace. Good 

correlations have been reported between predicted and actual boiler combustion 

efficiencies based on the standard DTF char test at 3% oxygen (Van der Riet, 1995; 

Smoog, 1992). This instrument (DTF) allows for the identification of ignition and 

burnout characteristics of pulverised coal, by measuring the combustible matter content 

of a sample taken at a specific point. A DTF can be used to prepare pyrolysis chars, since 

it can reproduce the conditions experienced by coal in the initial stages of combustion 

(Lester and Cloke, 1999). Work has been published (Lester et al. 1995) which shows the 

similarity between the characteristics of chars produced in the DTF, with char samples 

from the same coal taken from the first port of a 1MW combustion test facility. With 

such a short residence time the pyrolysis stage should have produced an intermediate char 

that has begun to experience the first stage of combustion. One set of samples used in this 
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investigation was prepared in a DTF. Others char samples were prepared using a packed 

bed balanced reactor (PBBR). 

 

2.5 Powder X-ray diffraction 
 
Powder X-ray diffraction (PXRD) is one of the traditional methods of investigating 

carbons (Fischbach, 1971; Ergun, 1968; Ruland, 1968). The intensity of the diffracted X-

rays is measured as a function of the diffraction angle 2θ and the orientation of the 

specimen. It allows the direct measurement of the inter-layer spacing and stack height, 

and some measurements of layer diameter. PXRD can provide average measurements 

from a relatively large sample, and can be used to follow the graphitization process 

(Marchand, 1986; Mering and Maire, 1960; Pinnick, 1952). It is a non-destructive and 

well established technique with good reproducibility. PXRD uses a relatively large 

amount of sample and collects most of the intensity scattered from the examined sample. 

Therefore the properties yielded represent an average for the sample rather than the local 

properties. This is very important to a material like coal, which is inherently 

heterogeneous.  

 
PXRD is one of the techniques applied to determine the coal structure (Alvarez et al. 

1998; Farrell et al. 1998; Iwashita and Inagaki, 1993; Lin and Guet, 1990; Radovic et al. 

1983; Blayden et al. 1944) which yet to be fully understood due to its complexity and 

heterogeneity. The main feature of the PXRD pattern of coal is the appearance of the 

peak similar to that of graphite at the position (002), which is the peak at around 26.5° in 

2θ; and a peak at the position (10), which is a peak at around 45° in 2θ (Lu et al. 2001, 

2000). The coal contains a short-range graphite-like structure to a small degree and this is 

evident by the positions at the (002) and (10) bands that correspond to the position of 

graphite bands (Van Niekerk et al. 2008). A gamma band can be observed on the left-

hand side of the (002) band and represent the aliphatic side chains that are attached to the 

crystalline carbon (aromatic carbon) (Lu et al. 2001, 2000). It is generally accepted that 

coals contain small regions of stacks of aligned aromatic ring structures (Hirsch, 1954) 

which approximate the structure of graphite. Size, perfection and concentration are 

different for different coals and change on heating (Schoening, 1983).  
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2.6 Raman spectroscopy 
 
Raman spectroscopy is a well established technique for studying the vibration of the 

molecules in their electronic ground state and can provide information relating to the 

molecular structure of the samples. It is concerned with the change in frequency 

associated with the inelastic scattering of photons by lattice vibration phonons in solids 

and can be used as a lattice dynamic probe. Inelastic scattering means that the frequency 

of photons in monochromatic light changes upon interaction with a sample. Photons of 

the laser light are absorbed by the sample and then reemitted. Frequency of the reemitted 

photons is shifted up or down in comparison with original monochromatic frequency, 

which is called the Raman effect. The frequency shifts observed for the scattered light are 

due to the interaction of incident photons with vibrating molecules. Frequency shifts 

provide information about vibrational, rotational and other low frequency transitions in 

molecules. The frequency shifts depend on the molecular structure of the scattering 

media and can be regarded as unique fingerprints that can be used to characterise 

materials and to obtain information about local molecular orientation. 

 

The Raman effect occurs when light impinges upon a molecule and interacts with the 

electron cloud and the bonds of that molecule. As the electromagnetic radiation wave 

interacts with the matter, the electron orbits within the constituent molecules are 

perturbed periodically with the same frequency (νo) as the electric field of the incident 

wave. The oscillation or perturbation of the electron cloud results in a periodic separation 

of charge within the molecules, which is called an induced dipole moment. For the 

spontaneous Raman effect, a photon excites the molecule from the ground state to a 

virtual energy state. The oscillating induced dipole moment is manifest as a source of 

electromagnetic radiation, thereby resulting in scattered light. When the molecule relaxes 

it emits a photon and returns to a different rotational or vibrational state. The difference 

in energy between the original state and this new state leads to a shift in the emitted 

photon's frequency away from the excitation wavelength. 

If the final vibrational state of the molecule is more energetic than the initial state, then 

the emitted photon will be shifted to a lower frequency in order for the total energy of the 
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system to remain balanced. This shift in frequency is designated as a Stokes shift. If the 

final vibrational state is less energetic than the initial state, then the emitted photon will 

be shifted to a higher frequency, and this is designated as an Anti-Stokes shift. Raman 

scattering is an example of inelastic scattering because of the energy transfer between the 

photons and the molecules during their interaction. 

A change in the molecular polarization potential or amount of deformation of the electron 

cloud with respect to the vibrational coordinate is required for a molecule to exhibit a 

Raman effect. The amount of the polarizability change will determine the Raman 

scattering intensity. The pattern of shifted frequencies is determined by the rotational and 

vibrational states of the sample. 

 

The Raman spectra of coal were first published by Tuinstra and Koenig (1970) and 

Friedel and Karlson (1971) and reported the two broad bands in the regions 1575-

1620cm-1 and 1355-1380cm-1, called the G (graphitic) and D1 (disorder) bands. Tuinstra 

and Koenig (1970) suggested that the 1575cm-1 band could be assigned to the E2g 

graphite mode with D46h crystal symmetry, and the band at ~1370cm-1 to the A1g mode 

forbidden in a hexagonal lattice and activated when symmetry rules are relaxed as a result 

of boundary discontinuities. Tuinstra and Koenig (1970) related the ratio ID1/IG to the 

average graphite domain dimension, La. Numerous papers have been published since the 

pioneering work of Tuinstra and Koenig (1970) on the deconvolution of the G and D 

bands and its consequent assignment, of which an elegant review, specifically addressing 

coal Raman analyses has been published recently (Potgieter-Vermaak et al. 2010). The 

following paragraph highlights some of the findings, but is by no means a comprehensive 

overview of the published results, and the reader is referred to the review paper for 

further reading. Friedal and Carlson (1971) debated the origin of the band at 1580cm-1 by 

investigating IR absorption and Raman scattering of very finely ground graphite (C-C 

bond broken), coal and carbon black and suggested that the bands at 1580cm-1 and 

1350cm-1 most likely arose from graphitic structures and not from aromatic (Cannon and 

Sutherland, 1955) or conjugated carbonyls (Brown, 1955), as has been suggested earlier. 

Tsu et al. (1977) speculated that the 1370cm-1 band (disordered induced) could be 

explained by phonon dispersion of graphite and postulated a typical cluster size for a coal 
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molecule in the order of 65-72 ’Å. Additional “disorder bands” are found at 1250cm-1 

(D4 band) and 1450cm-1 (D3 band). These disorder-induced bands (D bands) are 

activated due to finite size effects and structural defects such as: presence of in-plane 

substitutional hereroatoms, grain boundaries, vacancies or other defects. All of those 

affect the crystalline symmetry (Brown et al. 2001). Another disorder band can also be 

found at 1620cm-1 (Jawhari et al. 1995; Li and Lannin, 1992; Dillon et al. 1984; Lespade 

et al. 1984). A 1150cm-1 band (D4 band) was found and is apparently associated with sp3 

bonding (Basca et al. 1993), or with mixed sp2-sp3 bonding (Schwan et al. 1996), which 

has been proposed as the location of active sites in carbons (Livneh et al. 2000). Vidano 

and Fischbach (1981) mention that, although the Raman active band at 1580cm-1 for the 

in-plane E2g mode has been assigned, the assignment of the observed bands at 

intermediate wave numbers (1100-1700cm-1) remained controversial. These show that 

there is still a discrepancy on where the Raman spectrum originates, it depends on the 

type of material being analysed. 

 

Apart from literature focusing on the characterization of the Raman spectrum of coals 

and other amorphous carbonaceous materials, Raman bands and their corresponding 

ratios have also been used to explain various phenomena pertaining to the degree of order 

in the amorphous C structure, graphitization, char reactivity and many more. Raman 

spectroscopy has been used to study carbonaceous materials and follows the 

graphitization process (Lespade et al. 1984; Rouzaud et al. 1983; Lespade et al. 1982). 

During the graphitization process, D-bands tend to disappear, and the Raman spectrum 

progressively transforms, becoming closer and closer to the graphite spectrum. The 

change in frequency, relative intensity, and widths of the bands have been observed by 

several authors and correlated with the degree of graphitization (Zaida et al. 2007). 

Studies on Raman spectra of wide range of carbonaceous materials have revealed 

frequency shifts and changes in relative intensities and bandwidths which can be used for 

structural characterization (Dillon et al. 1984; Green et al. 1983; Lespade et al. 1982; 

Vidano and Fischbach, 1978; Nakamizo et al. 1974; Nathan et al. 1974; Solin and 

Kobliska, 1974; Tuinstra and Koenig, 1970). Various workers have tried to correlate 

Raman spectral parameters with the data provided by other characterization techniques. 
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The most useful of these is the crystallite diameter (La), as measured by PXRD, for 

various carbonaceous materials. The findings of these studies (Lespade et al. 1982; 

Nakamizo et al. 1974; Nathan et al. 1974; Solin and Kobliska, 1974; Tuinstra and 

Koenig, 1970) were not all consistent with each other, probably because most workers 

have concentrated on measuring Raman band intensity ratios. These are difficult to 

measure accurately due to the presence of overlapping bands, and comparison between 

experiments carried out on different instruments may not be valid. Although no 

consistent quantitative interpretation of the Raman spectra emerged from these earlier 

studies, there was general agreement that the intensity of the D-band, relative to the G 

band, decreases as La increases. 

 

Raman spectral properties, such as the intensity ratio of the D1 band and G band and the 

full width at half maximum (FWHM) of the G band, have been proved to have good 

correlations with the degree of carbon structural order (Yoshida et al. 2006; Cuesta et al. 

1998; Green et al. 1983; Tuinstra and Koenig, 1970). Van Doorn et al. (1990) employed 

Raman spectroscopy to determine the degree of ordering in various carbonaceous 

materials including coal, activated carbon, soot, and correlated it with their oxidation 

reactivity measured by temperature programmed oxidation. They found a linear 

relationship between the peak position of the G band and the maximum oxidation 

temperature. Bar-ziv et al. (2000) developed the approach of applying Raman to 

characterise synthetic, coal and cellulose chars. They found fairly good correlations 

between the first-order and the second-order Raman spectral parameters and the 

gasification reactivity towards air and carbon dioxide. The full width at half maximum 

(FWHM) intensity of the G band is known to reflect the surface crystallinity of carbon 

material (Katagiri, 1996). The reduction of G band FWHM results from increasing 

structural order through the carbon network as a consequence of increasing the thermal 

maturity. Previous studies of G band reduction of Raman spectra of coals and kerogens 

(Beny-Bassez and Rouzaud, 1985) have observed that the G band FWHM can be 

correlated to vitrinite reflectance measurements (%RoV). Johnson et al. (1986) studied 

the characterization of coal char, and found that powder X-ray diffraction and Raman 

spectroscopy do not correlate with the reflectance measurements. 
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2.7 Thermogravimetric analysis 
 
Thermogravimetric analysis (TGA), the monitoring of sample weight loss as a function 

of temperature, has been shown to be an effective tool for studying coal combustion 

behaviour (Cumming, 1984; Cumming and McLaughlin, 1982; Smith et al. 1981; 

Wagoner and Duzy, 1976; Wagoner and Winegartner, 1973). The TGA based techniques 

are accepted as a standard method in assessing the combustion reactivity (Unsworth et al. 

1991). They fall into two categories: (1) isothermal, where the sample is maintained at a 

constant temperature and (2) non-isothermal, where the sample is heated at a constant 

rate. The most common parameter of char reactivity, derived from isothermal TGA 

measurements, is the time taken to reach 50% of the original sample weight. It can be 

used for linear ranking of char reactivity (Tang et al. 2005a, 2005b). The non-isothermal 

approach has the great advantage of being able to achieve complete conversion, and 

hence characterizations of char with a very wide range of reactivity using the same short 

heating program. However, the reactivity measured does not mean intrinsic reactivity, 

particularly at higher temperature when the oxygen diffusion plays an important role 

(Tang et al. 2005a, 2005b). 

 

TGA is commonly used to measure the chemical reactivity of a char. Precautions such as 

using low temperature; small sample weight and small particle size are usually taken in 

TGA experiments to eliminate the influence of molecular diffusion on the measured 

reactivity. The rate parameters thereby measured are assumed to reflect the overall 

influence of the physicochemical properties of the char such as the pore size distribution, 

the number and nature of active sites, and catalytic effects of inorganic impurities. TGA 

reactivity data, therefore, is not only important in predicting coal ignition and char burn-

out behaviour but also in providing insight into the nature and structure of the chars (Tsai 

and Scaroni, 1987).  

 

Most of the studies on char reactivity have made an extensive use of TGA techniques in 

order to determine the intrinsic reactivity of the material for their use in the modelling of 

char combustion under the various combustion regimes described in the literature 

(Alonso et al. 1999; Alvarez et al. 1998; Smith et al. 1993). These procedures do not 
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pretend to reproduce the conditions prevailing in the boiler but allow the monitoring of 

the reactions under well-controlled conditions and yield kinetic parameters which can be 

extrapolated to the higher temperature systems such as DTF and even full scale power 

plants (Borrego et al. 1997; Thomas et al. 1993a, 1993b). Previous TGA studies have 

shown coal combustion to be influenced by rank (Smith et al. 1981), the surface area 

available (Ghetti, 1985) and even differences on whole coal maceral content (Morgan et 

al. 1986; Crelling et al. 1988; White et al. 1989). Char combustion reactivity can be 

measured using thermogravimetric analyzer (TGA). In order to study the reactivity of 

coal and chars, TGA data can be collected from a Perkin-Elmer TGA analyser in flowing 

oxygen gas at 34ml/min. The shape of the TGA curve can give useful information about 

the presence of carbonaceous materials such as amorphous carbon. The strong influence 

of heat treatment on char reactivity can be shown in TGA, which was also reported by 

Radovic et al. (1998), and Jones and Thrower (1991). 

 

2.8 Summary 
 
In this research, pulverised coal sample from Witbank coalfield is pyrolysed under 

various heat treatment conditions to generate char samples. The coal and chars samples 

are subjected to: (1) petrography for reflectance measurement and for quantification and 

qualification purposes, (2) PXRD to confirm the presence of graphite in the samples, (3) 

Raman spectroscopy for microcrystalline structure analysis, and (4) TGA for reactivity 

determination.  The objective is to apply these techniques to characterise the evolution of 

coal char microstructure and its reactivity from South African Witbank coal treated at 

various heat treatment temperatures, and to probe the correlation between these 

techniques.  Therefore, by comparing the results obtained from these analyses, a deeper 

insight of the coal and char carbon structure can be developed. 
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CHAPTER 3 
 

 

Experimental 

3.1 Introduction 
 
This chapter describes the methods involved in the preparation of the parent coal to 

produce chars prior to characterisation analyses. The different sections address the origin 

of the parent coal sample (Section 3.2), preparation of chars (Section 3.3), proximate 

analysis on coal and chars (Section 3.4), sample preparation in Section 3.5, and the 

analytical techniques used for the analyses and characterisation of the char samples 

(Sections 3.6-3.8). The aim of this chapter is to highlight the methods used to prepare 

coal and char and to give the operation procedures of the techniques used to characterise 

them (coal and char) such as the operation procedures of coal petrography, Raman 

spectroscopy, PXRD and TGA.   

  

3.2 Origin and preparation of the coal sample 
 
The parent coal sample originates from the South African Witbank coal field. Coal from 

this region is mainly utilised as a power station feedstock by Eskom, for the production of 

synthetic petroleum products (Sasol), and it is also exported to Europe and Asia mainly 

for steam generation. Approximately 10kg of parent coal sample was mixed thoroughly 

on a clean concrete floor by transferring the coal from one point to another by shovel. 

The mixed coal sample was divided into four quarters. The opposite quarters were 

rejected, and the retained quarters were mixed again. The process was repeated until the 

required amount of material (2kg) has been reached. A representative coal sample was 

crushed using a ring roller mill to -850µm passing sieve and retained on the 450µm 

screen. This was done to effectively minimise the amount of fine particles. The resulting 

representative sample was used to prepare the blocks for petrographic analyses. A 

representative coal sample (firstly ground and thoroughly mixed) was pulverised  in the 

laboratory by screening to below 150µm. From this population the following analyses 
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were performed on the raw coal: Proximate analysis (moisture, ash, volatile matter, fixed 

carbon) as well as petrographic analyses (using reflected polarised light microscopy and 

oil objective lens) were conducted to determine the coal properties. In addition, Raman 

spectroscopy and XRD were performed to probe the molecular structure of the coal. This 

same portion of the original 10kg sample was then used to produce the packed bed 

balance reactor char samples (up to a temperature of 1000°C) and the char structure,  

morphology and reactivity were investigated by Raman spectroscopy, petrography, XRD 

and TGA. Due to in-house furnace temperature limitations, four char samples were 

obtained from Eskom. These four samples were all prepared at different times, from 

different populations by utilising a pilot plant operating a drop tube furnace (DTF) at 

1400°C, at Eskom. Their parent coals were known to originate from the Witbank coal 

field as well. 

 

3.3 Char preparation 
 
A Packed Bed Balanced Reactor (PBBR) was used to prepare char samples at different 

temperatures (300ºC, 600ºC, 800ºC and 1000ºC) using the pulverised coal sample 

(Witbank coal) via a pyrolysis process (Figure 3.1). Facilities located at the University of 

North-West (Potchefstroom campus) were used.  

The method used for the char preparation consisted of the following: 

 

a) Approximately 40g of pulverised coal (<150µm) was loaded into the reactor 

and introduced into the furnace. 

b) The sample was equilibrated at ambient temperature and pressure in a 

nitrogen atmosphere. 

c) The sample was heated at a constant heating rate of 15ºCmin-1 to 300ºC/ 

600ºC/800ºC or 1000ºC to obtain the char sample. 

d) The sample was held isothermally at the target temperature for 60min to 

ensure that all the volatiles were driven off. 

e) The resultant char sample was then cooled to ambient temperature under 

nitrogen flow and placed in a closed plastic bag. 
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Figure 3.1: Schematic representation of PBBR used to prepare chars. 
  

Due to inability to prepare the char samples  (above 1000°C) in-house, Eskom provided 

the four samples obtained from a drop tube furnace (DTF) charred at 1400ºC in order to 

get an indication/snapshot of the behaviour of coal samples charred at that particular 

temperature (1400ºC). The four DTF char samples were prepared from the four separate 

coal samples, all slightly different from PBBR parent coal sample, but known to originate 

from Witbank coal field.  The operation procedure of DTF can be found in Wagner 

(2008), and its description is also covered in Chapter 2 (Section 2.4). The four DTF char 

samples were collected and graded into <38µm and 38 - 75µm. The >75µm DTF char 

samples could no be obtained from the supplier. The four DTF char samples were 

prepared for analyses. 

 

3.4 Proximate analysis on coal and chars 
 
Proximate analysis of the parent coal and chars was performed using an in-house TGA 

method similar to the method of Jones et al. (1999). Samples (~15mg) were heated under 

nitrogen at 50°C/min to 110°C and held to constant weight for 3s, before being heated at 
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the same rate to 900°C and again held to constant weight for 3s. This yielded the 

moisture and volatile matter contents. Air (oxygen) was then introduced to the TGA 

furnace, and the sample burned to constant weight, so that the ash and fixed carbon 

contents were determined. The name of the TGA was Perkin-Elmer TGA instrument 

which uses Pyris software. The equipment is located in School of Chemical and 

Metallurgical Engineering in University of the Witwatersrand. Refer to Appendix ‘A’ and 

Figure A.1 for more details. 

 

3.5 Samples preparation for microscopic analysis 
 
The parent coal and char samples were prepared for microscopic examination in 

accordance with the ISO Standard 7404-2, (1985), and also followed the procedure given 

in Oka et al. (1987): 100-200mg of char particles were poured into a plastic mold, 

followed by mixture of epoxy resin and hardener, which were then mixed together and 

left overnight to harden at room temperature. The mounted coal and char samples were 

polished using a Struers Tegraforce polisher with an application of alumina (Al2O3) 

powder in the final stage of polishing.  The mounted coal and char blocks were examined 

microscopically in reflected light with oil immersion using a Leica DMP 4500 reflected 

light polarising microscope. The samples were prepared in the School of Chemical and 

Metallurgical engineering in University of the Witwatersrand. 

 

The coal and char blocks prepared were microscopically analysed using petrography and 

Raman spectroscopy. The petrographic microscopy is located in the School of Chemical 

and Metallurgical engineering, and Raman spectroscopy is located in School of 

chemistry, both techniques are in University of the Witwatersrand 

 

3.6 Petrographic analysis 

3.6.1 Reflectance analysis 

 
Coal rank was determined on the polished block surface of the parent coal using a 

petrographic microscope with a polarised light attached and a sensitive photometer. This 
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microscope was also used to determine the reflectance analysis on chars. The analyses are 

conducted using a Leica DMP 4500 reflected light polarising microscope equipped with 

an oil objective lens of X50 magnification. The microscope is interfaced with a J and M 

spectroscopic system where by reflectance values are obtained via a fibre optic cable. A 

computer collects and processes the data via MSP software. The microscope is calibrated 

using glass reflectance standards with known reflectance reading (0.431, 0.906, 1.728 and 

3.240 %RoV). Rank determination was conducted through vitrinite random reflectance 

and through total maceral reflectance measurements in order to establish the parent coal 

maturity for all macerals. These were carried out in accordance with ISO Standard 7404-

5, (1994). 100 readings were taken on the vitrinite particles. 100 readings were also taken 

on the total maceral reflectance count on the parent coal sample, as well as on the char 

particles derived from the parent coal sample. These were averaged to obtain a mean 

vitrinite reflectance (%MVR) and mean total reflectance (%MTR) values, and ranges of 

readings and standard deviations were also recorded.  

 

3.6.2 Maceral group analysis and char morphology 

 
Petrographically, coal maceral and char morphological analyses were conducted and 

categorised using reflected light microscopy to determine their morphology and porosity. 

For the parent coal sample, the group macerals were quantified by a 500-point count 

technique, following the ISO 7404-3 (1994) method and the reactive macerals were 

identified according to the method of Smith et al. (1983) for South African coals. 

 

Char morphology classifications were conducted following the work done by Wagner 

(1998) and Bailey et al. (1990) as shown in Table 3.1. The char classification was 

conducted in order to compare the char morphologies with the original feed coal (parent 

coal). In order to examine the population of the categorised chars, each char group on the 

sample block was counted using a point counter, following the ISO 7404-3 (1994) 

method, and up to 500 points were also recorded proportionately per sample. The 

analysis of each block was repeated three times to confirm the results. 
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Table 3.1: Char morphology classification (Wagner, 1998 and Bailey et al., 1990)  

 

Char type Shape Pore 

volume 

Vesicles Pore shape Wall 

thickness 
Primary Secondary 

Thin walled 

cenosphere 

(Tenuisphere) 

Spheroidal >80% 1-3 common spheroidal <5µm 

Thick walled 

cenosphere 

(Crassisphere) 

spheroidal 60-90% 1-5 common spheroidal >5µm 

Thin walled 

honeycomb 

(Tenuinetwork) 

spheroidal, 

elongate or 

irregular 

60-90% - many Spheroidal to 

elongate and 

subparallel 

<5µm  

Thick walled 

honeycomb 

(Mesosphere) 

spheroidal, 

elongate or 

irregular 

40-60% - >3 Spheroidal to 

elongate and 

subparallel 

>5µm 

Mixed porous spheroidal 

to irregular 

>50% - - variable variable 

Mixed dense rectangular 

to irregular 

<50% - - variable variable 

Dense/solid rectangular 

to irregular 

<5% - - - Solid 

Fusinoid irregular <5% - - Inherited 

cellular 

porosity 

solid 

Mineroid/ 

Carbominerite 

Spheroidal 

to 

rectangular 

- - - - Mineral 

>50% 
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The char morphology system outlined in Table 3.1 is based on the physical properties 

that determine char reactivity. There are three major types of materials encountered in the 

samples. The first is porous material, which contains vesicles produced by degassing and 

shows evidence of fusion, while the second is dense material containing few or no pores 

and often resembling fusinite, semi-fusinite, macrinite or inertodetrinite macerals. The 

third type of material consists of minerals. 

 

3.6.3 Micro Raman spectroscopy (MRS) 

 
MRS was undertaken to determine the structural characterization of the coal and char 

particles using a micro Raman spectrometer (Senterra, Bruker) located in School of 

Chemistry, University of the Witwatersrand. This instrument consists of a microscope 

with a Raman spectrometer having spectrographic dispersion and multichannel detection. 

A 50X objective was used to focus the excitation laser beams (532 and 785nm exciting 

lines of a spectra Nd-YAG lasers) on the particle. This can be used to obtain insight into 

coal and char structure and, the effect of heat treatment on the char structure evolution 

and consequently on the char reactivity, can be addressed. 

 

MRS operation can be described as summarised in Figure 3.2. An optical beam produced 

by a continuous-wave Nd-YAG laser enters a microscope and is directed onto an 

objective that focuses it to a 50 X 1000µm spot on the sample surface. The incident light 

interacts with the sample and the consequent Raman scattering generated from a surface 

layer is collected with a 180° configuration. The Raman photons emitted from the 

illuminated spot (~4-5µm) are collected by the same microscope objective (50X) and sent 

to spectrometer. The spectrometer comprises of foremonochromator that selects the 

spectral range. The spectral information is sent to the multi-channel detector (CCD) and 

the data is saved in a computer. 
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Figure 3.2: A schematic diagram of the micro Raman spectroscopy (MRS). 

 

Raman spectra of coal and char particles were taken using a 50X objective and a 532nm 

Nd-YAG laser beam. The spectra were recorded at ~3-5cm-1 resolution. The laser power 

at the sample surface was controlled at about 2mW to avoid laser damage. The laser spot 

diameter on the sample was about 4-5µm, much larger than the size of carbon micro-

crystallites in the coal/chars. Therefore, the Raman spectroscopy provided average 

information of a large number of randomly distributed micro-crystallites. Approximately 

30-50 different particles were randomly chosen from the polished coal and char blocks, 

and analysed. The spectra were recorded in the range 800-2000cm-1, covering the first-

order bands, and the acquisition time for each spectrum was 60s. 
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3.7 Powder X-ray diffraction (PXRD) 
 
PXRD was conducted to determine the graphitic nature of the parent coal as well as the 

resultant chars. The coal and char samples were pressed firmly into the sampler holder 

before analysis using the Philips PW 1830 diffractometer located in School of Chemical 

and Metallurgical Engineering, University of the Witwatersrand. The Powder X-ray 

diffractometer was operated at 40kV and 40mA for 45min, over a range of °2θ from 0° to 

80º, and a step size of 0.04. The High Score Plus software was used for data identification 

and interpretation. 

 

3.8 Char reactivity 
 
Char combustion reactivity was measured using a Perkin-Elmer TGA instrument located 

in School of Chemical and Metallurgical Engineering, University of the Witwatersrand. 

The measurement was performed under non-isothermal conditions following the 

procedure of Shim and Hurt (2000). A 5-15mg sample char was placed in the TGA pan 

and heated from room temperature at 7ºC/min to 105°C and held for 30min to remove 

any moisture. It was then heated at 7ºC/min to 950°C and held for 10min for a complete 

burnout. The reaction gas used was oxygen, and reaction was conducted in flowing 

oxygen at 34mL/min flow rate. Figure 3.3 shows the summary of the determination of 

char combustion reactivity using TGA. 
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Figure 3.3: Schematic representation of determination of char combustion reactivity 

using TGA. 
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3.9 Summary 
 

In this chapter the methodology applied to this research investigation was introduced. 

Figure 3.4 provides a flow chart that summarises the methodology outlined above. 

 

 

 

 

Figure 3.4: The flow chart summary of the research methodology. 
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CHAPTER 4 

 

Results and discussion 

 

4.1 Introduction 
 
In this chapter, the experimental results from the investigation into the evolution of char 

structure at different temperatures (300, 600, 800, 1000, and 1400°C) and char reactivity 

are presented. Samples charred at 300-1000°C were made in the packed bed balance 

reactor (PBBR), and correspond to the same sub-set of samples, prepared as described in 

Section 3.2 from parent coal from the Witbank coalfield. Samples 1-4 charred at 1400°C 

were made in a drop tube furnace (DTF) from different parent coal populations than those 

used in the PBBR, but also originating from Witbank coal field. The experiments were 

conducted using techniques including coal petrography, powder X-ray diffraction 

(PXRD), micro Raman spectroscopy (MRS), as well as thermogravimetric analysis. The 

objective of this chapter is to: 1) provide quantitative information concerning the detailed 

morphological composition of coal and char. 2) provide insight of the char structure 

(crystallinity and molecular) and the effect of heat treatment on the structural evolution; 

3) provide information concerning the reactivity behaviour of the char; and 4) make 

comparison between the different techniques to determine the correlations. 

 

Proximate analyses are discussed in Section 4.2. This is followed by the petrographic 

results which include reflectance measurements and qualitative and quantitative 

compositional information (detailed morphological composition), these are presented in 

Section 4.3. PXRD results are discussed in Section 4.4 which confirms the presence of 

graphite (graphitic ordering) in coal and chars. Raman spectroscopic results are discussed 

in Section 4.5. The reactivity of coal and char is illustrated in Section 4.6. The chapter is 

concluded by drawing correlations between petrography, Raman spectroscopy and 

thermogravimetric analysis in Section 4.7. 
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4.2 Proximate analyses 
 
4.2.1 Proximate analyses on coal and chars prepared using PBBR 
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Figure 4.1: Comparison of proximate analysis on coal and chars derived from the PBBR 

(air dried). 

 
The results of proximate analyses on coal and the resulted chars at different temperatures 

are presented in Figure 4.1. The percentage components (moisture, volatile matter, ash 

and fixed carbon) were calculated as illustrated in Appendix A. It can be seen that the 

volatile matter in the samples decreases with an increase in charring temperature (from 

27% in the parent coal to 12.3% in char 1000°C), and correspondingly the percentage 

fixed carbon increases from 42.5% for parent coal (air dry) to 50.4% at 1000°C. This is in 

agreement with results obtained by Falcon and Ham (1988). The fact that some volatile 

matter remained indicates that these chars did not achieve complete conversion. The 

trend of the variations in the value of volatile matter and fixed carbon in the coal and 

chars are as anticipated, as the trend is similar to values reported by Fuwape (1996); 
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Buekens and Schoeters (1987); Jenkins et al. (1973); Brocksiepe (1971) and Hoffman 

and Fitz (1968). An anomaly was noted on the samples charred at 800°C and 1000°C, 

where an increase of moisture was observed. This could be attributed to the increase in 

the surface area as approaching the high charring temperature. Repeated runs produced 

the same results. 

 

 4.2.2 Proximate analyses on chars prepared using DTF 
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Figure 4.2: Comparison of proximate analysis on drop tube furnace (DTF) chars (air 
dried). 
 
The four char samples (charred at 1400°C) in a DTF vary in terms of the proximate 

analysis data (Figure 4.2). Following the trend of the values of volatile matter and fixed 

carbon obtained from PBBR chars, it was expected that the four DTF chars would have 

less volatile matter and higher fixed carbon as compared to the PBBR chars due to the 

higher temperature that the coal was exposed to. However, this was not as different as 

anticipated, with approximately 10% volatile matter remaining in the DTF chars. The 
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proximate analysis reveal a difference between the DTF chars, with sample 1 having 

much lower ash content (23.6%), and therefore a higher fixed carbon content (65.6%). 

This sample (sample 1) might have a totally different parent coal as compared to the 

other three DTF samples. 

 

4.3 Petrographic analysis  
 
The section contains reflectance properties (Section 4.3.1), which include both mean 

vitrinite reflectance (MVR) and mean total maceral reflectance (MTR); maceral analysis 

(including minerals) on parent coal (Section 4.3.2); and char morphology analysis 

(Section 4.3.3). 

 

4.3.1 Reflectance analyses 

 
As outlined in Section 3.6.1, Reflectance measurements were performed on the parent 

coal and char samples using vitrinite as a reference material (determination of mean 

vitrinite reflectance (MVR) and mean total maceral reflectance (MTR) analysis. The 

results are presented in Table 4.1 and the histograms are located in Appendix B.1 (Figure 

B.1 and B.2). The parent coal has RoV of 0.59% and a mean total reflectance or RoC of 

1.09% (Table 4.1).  

 

Figure 4.3 shows the results from MVR analysis on the PBBR. It can be seen that the 

MVR increases with heat treatment temperature, which agrees with previous work 

(Goodarzi, 1984; Murchison, 1978; Goodarzi and Murchison, 1972; de Vries et al. 1968; 

Ghosh, 1968; Chandra and Bond, 1956). The increase in MVR could be attributed to 

increasing anisotropy resulting from changing mutual orientation of the aromatic layers 

(Rouzaud et al. 1983). MVR was determined on vitrinite particle and on char components 

clearly recognisable as originating from vitrinites in the parent coal, which is isotropic 

porous char. 
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Table 4.1: The table of Mean Vitrinite Reflectance (MVR / %), Mean Total reflectance 

(MTR /%). 

Sample name Reflectance [%] 

 MVR MTR 

   

Parent coal 0.59 1.09 
Char 300°C 0.62 1.12 
Char 600°C 1.60 2.69 
Char 800°C 4.06 4.75 
Char 1000°C 5.38 6.05 
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Figure 4.3: Variation of mean vitrinite reflectance (MVR) with heat treatment 
temperature. 
 
 
Figure 4.4 shows results from mean total maceral reflectance (MTR) experiments. It was 

also found that MTR increases with heat treatment temperature. The extent of the change 

in MTR as a result of the different charring temperatures was determined in all coal 

macerals and their resultant char components. Very significant shifts were displayed in 
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the levels and ranges of MTR in the char samples compared to those shown by the 

original coal (Table 4.1). 
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Figure 4.4: Variation of mean total maceral reflectance (MTR) with heat treatment 
temperature. 
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4.3.2 Maceral group analysis on parent coal and chars. 

 
Table 4.2: Maceral group analysis (including minerals) 
 

Particle type Percentage 
(by volume) 

Maceral & 
mineral 
groups 
 

Maceral  
subgroups 

% Total (%) 

 
Vitrinite 
 

 
Telovitrinite 

 
22.4 

 
22.4 

 
 
 
Inertinite 

Fusinite 
 

5.4  
 
 
54.0 

Reactive semi-
fusinite 

6.8 

Inert semi-
fusinite 

8.0 

Inertodetrinite 
 

33.8 

Liptinite 
 

 1.6 1.6 

Minerals   22.0 

 
 
Results obtained from the maceral group analysis on the parent coal show that the coal is 

rich in inertinite particles (54.0%), with a low vitrinite content (22.4%) and very low 

liptinite content (1.6%), which is typical of Witbank coals. Two categories of minerals 

were identified in the parent coal sample, namely: those associated with organics 

(carbominerite) and those liberated such as pyrite, clay, quartz and carbonate minerals. 

The overall amount of mineral matter determined petrographically is 22% (Table 4.2). 

This implies that the coal is likely to have a moderate to high ash content, which is a 

clearly evident from the values of percentage ash presented in Figure 4.1 (26-34%). 

Examples of maceral types described in Table 4.2 are shown in Figure B.3 in Appendices 

section (Appendix B). The petrographic composition of parent coal of DTF chars could 

not be presented, as the DTF char’s parent coal could not be obtained from Eskom. 
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Results obtained from PBBR char samples show the effect of temperature on carbon 

conversion as illustrated in Table 4.3 below. 

 

Table 4.3: Coal maceral analysis on parent coal and PBBR char samples (% by volume). 

 

Coal 

maceral group 

Parent 

coal 

Char300°C Char600°C Char800°C Char1000°C 

Vitrinite 22.4 21.4 3.6 0 0 

Liptinite 1.6 0.8 0 0 0 

Inertinite 54.0 53.8 23.4 13.6 0 

Minerals 22.0 24.0 8.4 8.0 7.8 

Total char  

by difference 

0 0 64.6 78.4 92.2 

 

The sample charred at 300°C showed no observable conversion on a maceral basis, since 

almost the same percentages were found in terms of maceral composition relative to the 

parent coal (Table 4.3). According to Bengtsson (1986), liptinite is likely to alter at lower 

temperature compared to the other maceral groups, and indeed a lower value was 

obtained at 300°C. However this is also within the range of reproducibility/repeatability. 

At 600°C no liptinite was recorded, because at lower temperatures (300 and 600°C), 

liptinite liquefies and vaporises, forcing holes in the surface of the softened particle 

(Bengtsson, 1986). Hence, liptinite is significant only in the pyrolysis stage and does not 

contribute significantly to the char combustion stage. As anticipated, there was a marked 

reduction of macerals as charring temperature increases as the organic matter is converted 

to chars. By 1000°C, no coal macerals were observed, meaning that all macerals were 

converted into chars. The proportion of minerals showed a decrease with an increase in 

temperature, as the minerals may have turned to a glass-like amorphous phase; such 

minerals cannot be identified or quantified petrographically. Other minerals showed 

alteration to ash and were not included in the maceral count.  
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4.3.3 Char morphological analysis 

 
Table 3.1 in Chapter 3 summarises the char morphology classification followed in the 

study, which follows the work conducted by Wagner (1998) and Bailey et al. (1990). The 

types of char formed depend on the parent coal macerals and microlithotypes, coal rank, 

particle size and temperature of char formation (Cloke and Lester, 1994). Char 

morphologies obtained from Witbank coal are illustrated in Figures 4.5, 4.6 and 4.7; and 

are divided into three categories: 1) porous particles, 2) dense particles and 3) 

carbomineroid/mineroid particles respectively. 
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Figure 4.5: Examples of porous char particles (oil immersion lense, X500, reflected 

light).  

 

Thin walled cenosphere 
at 1400°C 

_________ 
     50 mµ  

Thick walled cenosphere 
at 1400°C 

_________ 
     50 mµ  

Thin walled honeycomb at 
1400°C 

_________ 
     50 mµ  

Thick walled honeycomb 
at 1400°C 

_________ 
     50 mµ  

Mixed porous 
at 600°C 

_________ 
     50 mµ  

Mixed porous  
at 1000°C _________ 

     50 mµ  
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Figure 4.6: Examples of dense char particles (oil immersion lense, X500, reflected light).  
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few pores at 1000°C 

_________ 
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Mixed dense 
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at 1000°C) 
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Inertodetrinite with 
cracks due to heat 
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Figure 4.7: Examples of mineroid/mineral associated with organics (carbominerites), (oil 

immersion lense, X500, reflected light).    
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Table 4.4: Char morphology analysis 
 

 
Char morphology 

 

 
PBBR chars (% by vol)1 

 
DTF chars (% by vol) 

 
Main 

groups 
 

 
Subgroups 

 
Char 
300°C 

 
Char 
600°C 

 
Char 
800°C 

 
Char 

1000°C 

 
Sample 1 

 
Sample 2 

 
Sample 3 

 
Sample 4 

 
 
 
 

Porous 

Thin walled 
cenosphere 

0 0.6 1.4 1 2.1 0.7 0.2 2.2 

Thick walled 
cenosphere 

0 0 0 0 3.2 2.8 0.8 2.8 

Thin walled 
honeycomb 

0 0 0 0 2.2 3.5 0.6 1.0 

Thick walled 
honeycomb 

0 0 0 0 3.1 1.4 2.2 1.6 

Mixed porous 0 3.4 5 7.6 31.2 45.8 40.8 30.0 
Total  0 4.0 6.4 8.6 41.8 54.2 44.6 37.6 

          
 

Dense 
Mixed dense 0 18.4 22.2 38 29.3 30.4 38.0 24.0 
Dense/solid 0 35.4 44.8 41 23.9 4.8 9.0 32.4 

Fusinoid 0 2.2 0.4 1.8 1.8 1.1 1.4 0.8 
Total  0 56.0 67.4 80.8 55.0 36.3 48.4 57.2 

          
Mineral Mineroid 0 4.6 4.6 2.8 3.2 9.5 7.0 5.2 

 

                                                 
1 The PBBR char ≠100% as the difference is due to the coal particles as per Table 4.3 
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The types of char studied in this research are summarised in Table 4.4. These include 

char formed in the PBBR and the DTF. These chars are divided into two main groups; 

that is porous particles (reactive char) and dense particles (less reactive char). Results 

obtained from the PBBR chars showed that an increase in temperature lead to an increase 

in the amount of char formed. This was observed as the amount of dense particles were 

found to be 80.8% at 1000°C as compared to 0% at 300°C and the amount of porous 

particles were found to be 8.6% at 1000°C as compared to 0% at 300°C (Table 4.4) as 

also shown by the graphs below (Figure 4.9 and 4.8, respectively).  

 

R2 = 0.998

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200

Temperature [°C]

P
or

ou
s 

pa
rt

ic
le

 [%
]

 

Figure 4.8: Effect of temperature in the evolution of porous char particle. 
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Figure 4.9: Effect of temperature in the evolution of dense char particle. 

 

The two straight line graphs above (Figure 4.8 and 4.9) show that increasing the charring 

temperature leads to an increase in the amount of char particles due to the conversion 

from parent coal. Such trends were also observed by Everson et al. (2008), studying the 

properties of high ash char particles from inertinite-rich coal, where a large fraction of 

char at high charring temperature (900°C) was quantified as compared to charring 

temperature at 700°C. 

 

The DTF chars showed some differences in terms of their char morphologies. As 

expected, the four DTF char samples did not originate from the same population. As 

compared with the PBBR chars, all four DTF char samples were dominated by dense 

particles (36.3-57.2%), but also showed to have high percentage of porous chars (37.6-

54.2%), which was not observed in PBBR chars. Such difference might be attributed to 

the different petrographic composition (macerals composition) of the parent coals from 

which the chars prepared in the two reactors (PBBR and DTF) were derived (Table 4.4).  
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4.4 Powder X-ray diffraction (PXRD) analysis 
 

4.4.1 PXRD results on parent coal and chars 

 
PXRD is discussed in Section 3.7. Figures 4.10 and 4.11 show some PXRD results 

obtained from the parent coal and char samples. The (002) reflection observed on coal 

and chars corresponds to the spacing of aromatic layers (Lu et al. 2001). It was found that 

the parent coal contained a short-range graphite-like structure to a small degree and this 

was evident by the position at the (002) band that corresponds to the position of graphite 

band. Gamma bands were observed on the left-hand side of the (002) band (Figure 4.10), 

and represent the aliphatic side chains that are attached to the crystalline carbon (aromatic 

carbon) (Lu et al. 2000, 2001). The gamma band tends to disappear as the heat treatment 

temperature increases up to 1000°C (Schoening, 1983). The sharpening of the peaks with 

heat treatment temperature in Figure 4.10 clearly shows the development of structural 

order (Schoening, 1983). Schoening (1983) associated the peak at about 20° in 2θ (a-

peak) as a two dimensional reflection arising from graphite-like atomic order within 

single plane, and the same peak (at 20° in 2θ) was also observed in a DTF chars as shown 

in Figure 4.11 and was labelled as ‘a-peak’. The graphite-like band can be associated 

with the G band (crystalline band) at ~1580cm-1 (Tuinstra and Koenig, 1970) which was 

found in micro Raman spectroscopy (MRS) as discussed in Section 4.5. The other 

compositions (gamma bands) might be associated with the disorder in the structure of 

coal and char. This confirms that charring eliminates some of the disorder in the structure 

which is associated with gamma bands. 
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Figure 4.10: Summary on PXRD spectra of parent coal and the resultant chars (PBBR 
chars)2  
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Figure 4.11: Summary on PXRD spectra of DTF chars prepared at 1400°C.3   

                                                 
2; 3 Spectra in Figure 4.10 and 4.11 have been offset on the y-axis for clarity. 
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4.5 Raman spectroscopic analysis 
 
Figure 4.12 below shows a summary of spectra generated from the coal and the char 

samples at different temperatures, which shows a decrease in the bandwidths with the 

increase in temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Raman spectra generated from parent coal and different char samples4. 

 

In order to improve the accuracy in the determination of spectroscopic parameters such as 

peak position, bandwidth, line shape (i.e., Lorentzian, Gaussian or a mixture of both) and 

band intensity, each spectrum was subjected to curve fitting using curve fitting software 

in OPUS. From the curve fitting program, mathematical fitting procedures/models were 

set up following the procedures outlined in Sadezky et al. (2005), Dippel et al. (1999), 

Jawhari et al. (1995), Cuesta et al. (1994), and Nistor et al. (1994), as summarised in 

Table 4.5 below. 

                                                                                                                                                 
 
4 Spectra in Figure 4.12 have been offset on the y-axis for clarity and the Raman intensity is referred as 
arbitrary units. 
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Table 4.5: Band combinations tested for curve fitting of first-order Raman spectra of coal 

[I (Cuesta et al. 1994); II (Jawhari et al. 1995) and III] and char particles [IV (Dippel et 

al. 1999); V; VI; VII; VIII] in this work and earlier studies (initial position; line shape: L 

= Lorentzian, G = Gaussian and L+G = mixture of Lorentzian and Gaussian). 

 

Band Initial 

position 

I  II  III IV V VI VII VIII 

G 1592 L L 100% 

L+G 

L L L L 100% 

L+G 

D1 1350 L L 100% 

L+G 

L L L L 100% 

L+G 

D2 1620 - - - - L L - - 

D3 1530 L G G L L G G G 

D4 1180 - - - L L L L 100% 

L+G 

 

The models above were used to fit all the spectra obtained from the coal or char samples. 

Band fitting combinations I, II and III were tested for the parent coal sample; and IV, V, 

VI, VII, and VIII combinations tested for curve fitting the char spectra. The best fittings 

were found through combination III (for coal) and combination VIII (for chars). The 

reason for not including the D4 band (originating from sp3/ sp2-sp3 bonded carbon) on 

the curve fitting of coal spectra in the adjusted deconvolution was because Raman spectra 

detected in the sample had no obvious trace of graphitic microcrystallinity (Nistor et al. 

1994). The parameters such as peak position, intensity, width, integral, and shape were 

obtained for each coal/char particle analysed. Multiple spectra (~50 spectra) were 

obtained from the parent coal and from each char sample. The average values as well as 

the standard deviations of the Raman structural parameters were then obtained from each 

sample. Figure 4.13 shows some typical curve fitted spectra measured at different 

temperatures. The ratios of the intensity of the D bands to the intensity of the G band 

(ID4/IG, ID1/IG, ID3/ID3) will be discussed, followed by discussion on the D and G 

bandwidths, as well as G band position. The word “mixture” labeled in Figure 4.14, 4.15, 
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4.16, 4.17, 4.18 and 4.19 refers to all the chars together without differentiating between 

dense and porous.  
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Figure 4.13: First order region Raman spectra of coal and the resultant chars, (a) Parent coal and char 300°C spectrum overlapping, 
(b) char600°C spectrum, (c) char 800°C spectrum, (d) char 1000°C and char 1400°C spectrum overlapping5. 

                                                 
5 The vertical scales differ and done so that the spectra are clear. 
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The summarised results of the curve fitted spectra shown above (Figure 4.13) are 

presented in Tables 4.6 and 4.7 below. The complete data are available in Appendix C. 

The spectra of parent coal and of the sample charred at 300°C displayed the same 

deconvolution (Figure 4.13a). The spectra of the sample charred at 1000°C and 1400°C 

also displayed the same deconvolution (Figure 4.13d).  It was observed that the spectra 

obtained from the same sample were different for different macerals. This was attributed 

to the heterogeneity of coal particles within a sample.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 59

Table 4.6: Summarised results from micro Raman Spectroscopy (MRS) in PBBR chars. 
 

Sample 
and Raman 

bands 

Band position (cm-1) Intensity  
ratios 

Full width at 
 Half maximum 

(cm-1) 

Integral RMS 
error 

Stdev 
RMS 
error 

Lowest- 
highest 

Average/ 
mean  

Standard 
deviations 

     ID/IG     
Parent coal          

D1 1345 1359 1352 ± 3 5.3 0.96 ± 0.04 281 ± 8 160703 8.63 1.80 
D3 1555 1566 1559 ± 2 3.9 0.32 ± 0.06 91 ± 1 13606   
G 1593 1595 1594 ± 1 0.8  87 ± 2 64503   
          

Char 300°C          

D1 1342 1359 1348 ± 3 7.6 0.91 ± 0.05 270 ± 6 181943 10.58 2.50 
D3 1554 1561 1556 ± 2 3.2 0.27 ± 0.03 93 ± 4 14005   
G 1593 1595 1594 ± 1 0.9  84 ± 3 75066   
          

Char 600°C          

D4 1199 1281 1238 ± 8 5.3 0.23 ± 0.03 189 ± 21 56265 11.07 0.10 
D1 1335 1364 1351 ± 3 3.5 0.80 ± 0.12 176 ± 4 184467   
D3 1505 1478 1529 ± 22 27.8 0.22 ± 0.06 135 ± 7 21255   
G 1587 1594 1591 ± 1 1.6  82 ± 2 111452   
          

Char 800°C          

D4 1206 1208 1207 ± 7 0.5 0.24 ± 0 165 ± 12 34497 7.31 0.01 
D1 1343 1344 1343 ± 2 0.3 0.85 ± 0.09 161 ± 4 126014   
D3 1510 1510 1510 ± 7 0.2 0.29 ± 0.04 154 ± 11 31979   
G 1596 1596 1596 ± 1 0.1  72 ± 5 80514   
          

Char 1000°C          
D4 1200 1202 1200 ± 4 0.6 0.24 ± 0 183 ± 14 15737 3.01 0.05 
D1 1348 1350 1349 ± 3 0.1 1.12 ± 0.01 157 ± 3 66631   
D3 1527 1531 1528 ± 1 0.9 0.42 ± 0 157 ± 1 21247   
G 1601 1602 1602 ± 0 0.2  70 ± 1 29935   
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Table 4.7: Summarised results from micro Raman Spectroscopy (MRS) in DTF chars. 
 

Sample 
and Raman 

bands 

Band position (cm-1) Intensity  
ratios 

Full width at 
 Half maximum 

(cm-1) 

Integral RMS 
error 

Stdev 
RMS 
error 

Lowest- 
highest 

Average/ 
mean  

Standard 
deviations 

Sample 1     ID/IG     
Char 1400°C          

D4 1206 1239 1216 ± 3 7.3 0.18 ± 0 222 ± 9 6590 2.17 0.10 
D1 1353 1356 1355 ± 9 0.8 1.20 ± 0 156 ± 1 37046   
D3 1527 1539 1533 ± 2 1.8 0.38 ± 0.01 153 ± 3 8679   
G 1602 1605 1603 ± 0 0.3  75 ± 4 14170   

Sample 2          

Char 1400°C          
D4 1211 1273 1230 ± 1 13.0 0.21 ± 0 240 ± 7 9817 2.27 0.10 
D1 1352 1356 1354 ± 5 0.9 1.21 ± 0 152 ± 2 41988   
D3 1535 1539 1537 ± 7 1.0 0.42 ± 0 153 ± 1 10904   
G 1602 1604 1603 ± 1 0.3  73 ± 1 15943   

Sample 3          
Char 1400°C          

D4 1205 1234 1217 ± 4 8.0 0.21 ± 0.02 228 ± 10 8490 2.17 0.02 
D1 1353 1356 1355 ± 6 0.9 1.25 ± 0 154 ± 1 39155   
D3 1537 1539 1538 ± 3 0.01 0.46 ± 0 162 ± 3 11259   
G 1603 1604 1604 ± 0 0.01  73 ± 1 14199   

Sample 4          
Char 1400°C          

D4 1201 1222 1211 ± 3 9.9 0.20 ± 0 221 ± 5 6303 2.08 0.07 
D1 1355 1357 1356 ± 7 0.2 1.28 ± 0 161 ± 3 35111   
D3 1539 1542 1540 ± 2 0.3 0.48 ± 0 161 ± 1 9529   
G 1603 1605 1604 ± 0 0.5  74 ± 2 11706   
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The effect of heat treatment temperature to some Raman spectroscopic parameters such 

as intensity ratios of D1, D3 and D4 band to the G band, D1 and G bandwidths and G 

band position is discussed below. 
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Figure 4.14: First-order intensity ratio (ID4/IG) versus heat treatment temperature of 
chars6.  
 
Figure 4.14 shows the relationship between ID4/IG and heat treatment temperature. The 

interpretation of the ratio (ID4/IG) is attributed to the abundance of sp3 (Schwan et al. 

1996) or sp2-sp3 sites (Basca et al. 1993) and would imply an association with the 

concentration of active carbon sites (Livneh et al. 2000). From such an interpretation it is 

expected that this ratio should decrease monotonically with temperature, because 

annealing decreases the number of active sites. This was only proven true when 

considering the porous chars derived from vitrinite particles. In contrast, this ratio was 

seen to increase up to ~950°C when considering dense chars (derived from inertinite 

particles) and the whole char mixture (overall mixture). With a further increase in 

temperature, above 950°C, a monotonic decrease in the ratio was observed, as expected 

                                                 
6 “Mixture” labeled in Figure 4.14, 4.15, 4.16, 4.17, 4.18, and 4.19 refers to all the chars together without 

differentiating between dense and porous.  
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(Zaida et al. 2007). The initial increase in this intensity ratio can be attributed to the 

preferential creation of sp2-sp3 bonding by annealing very small crystallites. Above 

950°C there is a consumption of sp2-sp3 bonds by further annealing and ID4/IG ratio 

decreases (Zaida et al. 2007). Dense/solid chars show the same trend as the overall 

mixture which could indicate that the parent coal could be dominated by inertinite 

macerals, as confirmed petrographically in Section 4.3 (Table 4.2).  

 

The difference in the behaviour of the chars originating from the two macerals (inertinite 

and vitrinite) as shown in Figure 4.14 could be due to their different organic structural 

composition, since the inertinite-rich coal is more aromatic and more polycondensed 

(indicated by a higher bridgehead carbon content) than vitrinite-rich coal. The inertinite-

rich coal is structurally more ordered, with a high degree of crystalline stacking (Van 

Niekerk et al., 2008). At 300°C, no chars were obtained as the sample only contained 

unheated coal macerals and hence the points of the figures begin at 600°C. In conclusion, 

it could be noted that reflectance shows the change earlier than morphology. 
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Figure 4.15: First-order intensity ratio (ID1/IG) versus heat treatment temperature of 
chars. 
 
Figure 4.15 shows that the ID1/IG ratio cannot be used blindly to quantitatively 

characterise the degree of disorder in the carbon material as suggested by Tuinstra and 

Koenig (1970). It was expected that this ratio would decrease monotonically with 

temperature, which was observed only in the range from parent coal up to char 600°C. 

However, there was an increase in the ratio (ID1/IG) from char 600°C upwards. It may be 

said that the initial decrease in ID1/IG was observed purely because coal/char has 

extremely complex structure at the molecular level up to about 600°C because of the 

remaining atomic groups containing H or O as shown by Yamauchi and Kurimoto 

(2003). The value of root mean square (RMS) error/standard deviation obtained from 

curve fitted spectra was quite high, ranging between 8.63 on parent coal to 13.81 at 

600°C (Table 4.6) and could indicate largely differing structures. The ID1/IG ratios 

reported in open literature are widely inconsistent, since these (ID1/IG) are difficult to 

measure correctly due to strongly overlapping bands (Sheng, 2007; Zaida et al. 2007; 

Zaida et al. 2006; Yamauchi and Kurimoto, 2003; Johnson et al. 1986; Green et al.1983). 

Therefore trends of the intensity ratios of D band to the G band (ID1/IG) with increase in heat 

treatment temperature are also inconsistent. 
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Work done on magnetron sputtered carbon films at temperatures varying from 30-450°C 

by Cho et al. (1992) led them to an assumption that at the initial stage of annealing, the 

increase of the number of graphitic clusters and their degree of crystallinity takes place 

without changing their size. Above 600°C, there was an increase on the ID1/IG ratio for 

the char samples. Such behaviour has also been observed by Livneh et al. (2000). They 

speculated that below a certain size the crystallites are “invisible” to the Raman effect. 

Initially, the crystallites of the char are too small to effectively couple with the 

incident/incoming laser beam, and thus contribute little to the Raman spectrum. Upon 

high temperature the crystallites grow in size, and thus begin to contribute to the Raman 

spectrum, causing the ratio ID1/IG to decrease. Similar behaviour of the intensity ratio 

(ID1/IG) has also been observed when considering the individual particles, for example, 

porous chars derived from vitrinite particles and dense/solid chars derived from inertinite 

particles.    
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Figure 4.16: First-order intensity ratio (ID3/IG) versus heat treatment temperature of 
chars. 
 
Figure 4.16 shows the relationship between ID3/IG and heat treatment temperature. The 

decrease could be assigned to a decrease in disordered C or the increase of graphitic 

character. From 600°C upwards, the behaviour was similar to that of the D1 (ID1/IG) band. 
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Figure 4.17: First-order bandwidth of D1 band versus heat treatment temperature of 
chars. 
 
Figure 4.17 shows that the D1 bandwidth decreases with increase heat treatment 

temperature. This agrees well with the graph of D bandwidth versus heat treatment 

temperature reported previously (Johnson et al. 1986; Green et al. 1983), but the 

difference is not that significant as the error bars indicate. 
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Figure 4.18: First-order bandwidth of G band versus heat treatment temperature of chars. 

 
Figure 4.18 shows that the G bandwidth decreases with increase in heat treatment 

temperature from parent coal up to chars at 1000°C. As expected, this could be caused by 

annealing which makes the graphene layers larger and hence, a decrease of G bandwidth 

was seen (Zaida et al. 2006; Bar-Ziv et al. 2000; Green et al. 1983). These results 

confirm that the G band is related to the crystalline component in carbons. The observed 

decrease of G bandwidth with increasing heat treatment temperature is consistent with 

what has been reported in the literature (Zaida et al. 2006; Bar-Ziv et al. 2000; Green et 

al. 1983).  
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Figure 4.19: G-band position versus heat treatment temperature of chars. 

 
It was found (Tables 4.6 and 4.7) that the variations of the bands positions (D band 

positions) with the heat treatment temperature were not significant, which might be 

attributed to the experimental errors and the strong overlapping of the bands. It was 

reported by Robertson (1986) that an increase of order in carbonaceous materials was 

reflected by an increase in the frequency of the G mode as well as a decrease of its 

bandwidth (Figure 4.18 and 4.19). Figure 4.19 shows that there was a slight decrease in G 

band’s position up to 600°C, which could be explained by the “invisibility” to the Raman 

effect of the very small crystallites. This might also be possible due to the fact that the D2 

mode, which usually appears at about 1620cm-1 as a shoulder, was not observed and 

probably interferes with the G mode, thus complicating the interpretation (Jawhari et al. 

1995). Further annealing makes the graphene layer larger (which indicates lower degree 

of band-angle disorder) and hence an increase was seen, as expected (from 600°C 

upwards).  

 
 
 
 
 



 68

4.5.1 Conclusions 

 
MRS proves to be a useful technique for obtaining information on the crystalline and 

molecular structure of coal and chars. Raman parameters such as intensity ratio of D band 

relative to G band (ID/IG), D and G bandwidths, G-band position were used to determine 

the insight of the char structure and the effect of heat treatment on the structural evolution 

of char. The results obtained from ID/IG in the range from coal up to char 600°C showed a 

decline in the intensity ratio with an increase in temperature, which could be attributed to 

the coal/char having extremely complex structure at the molecular level up to about 

600°C because of the remaining atomic groups containing H or O. Above 600°C, the 

intensity ratio of ID1/IG started to increase, which showed the increase in the size of the 

crystallites.  

 

It was found that sp2-sp3 bonding (reactive sites/crystallites) was created in dense chars 

(originating from inertinite particles), indicated by the increase in ID4/IG ratio with an 

initial heat treatment temperature and these sp2-sp3 bondings were known to be 

consumed later at high temperature. These could be because inertinite particles are 

carbon-rich, creating sp2-sp3 bonding by annealing aromatic structures. Earlier 

consumption of sp2-sp3 bonding (indicated by decrease in ID4/IG ratio) was observed in 

porous chars from the start, because they were vitrinitic in origin and contained more 

reactive sites (more oxygen-rich and easier consumption of Sp2-Sp3 bonding from the 

start). From the D and G bandwidth results, it was found that the parent coal bands (D 

and G band) were relatively broad, indicating that its crystallite size was too small to 

couple with the Raman laser. But as the annealing temperature increased, the bandwidths 

seemed to decrease which was consistent with the removal of disorder and the increasing 

dominance of crystallites. The results obtained show the usefulness of MRS technique on 

characterizing coal and char structure, and confirm the results of the other researchers in 

this field (Sheng 2007; Zaida et al. 2007; Zaida et al. 2006; Yamauchi and Kurimoto, 

2003; Bar-Ziv et al. 2000; Livneh et al. 2000; Schwan et al. 1996; Basca et al. 1993; 

Johnson et al. 1986; Green et al. 1983; Tuinstra and Koenig, 1970). 
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4.6 Reactivity on coal and chars 
 
Char combustion reactivity was measured using thermogravimetric analyzer (TGA) as 

discussed in Section 3.8. The shape of the TGA curve can give useful information about 

the presence of carbonaceous materials such as amorphous carbon. In order to study the 

reactivity of coal and chars, TGA data were collected from a Perkin-Elmer TGA analyser 

in flowing oxygen gas at 34ml/min. and the results are presented in Figure 4.20. This 

figure shows a strong influence of heat treatment on char reactivity. This is also reported 

by Radovic et al. (1998) and Jones and Thrower (1991). 
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Figure 4.20: TGA results of parent coal and the resultant chars formed at different 

temperatures (300-1000°C). 
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All samples showed similar oxidation behaviour with weight loss stage at different 

temperatures (Figure 4.20). Decomposition of coal and chars was observed in the 

temperature range 350-550°C. Generally, this account for most of the weight loss of 

approximately 70%. The results show that as charring temperature increases, chars 

become more stable due to the increase in loss of carbon.  
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Figure 4.21: TGA results of DTF chars formed at 1400°C. 

 

The four DTF chars show a difference in their reactivities (Figure 4.21). Sample 4 shows 

decomposition earlier as compared to the other three DTF samples. This could be due to 

the high mineral matter which acts as a catalyst during the reaction. This is confirmed by 

high percentage ash (40.5%) in Sample 4 obtained from proximate analysis (Figure 4.2). 

The four DTF results are relatively consistent with proximate analysis data presented in 
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Section 4.2 (Figure 4.2) in terms of ash contents, which increases from 23.6% (Sample 1) 

up to 40.5% (Sample 4).  

 

4.6.1 Conversion 

 
The coal and char conversion at any time t was calculated from equation 1 below. 

 

%100
mm

mm
X

ASH0

t0 X
−

−=                                (1) 

 

Where m0 and mt are the sample weights on a dry basis at initial and time t, respectively, 

and mASH is the weight of the ash in the sample. 

Figure 4.22: Conversion of parent coal and the resultant char versus time. 
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Figure 4.23: Conversion of parent coal and the resultant char at: 300-1000°C. 

 

Combustion reactivity determination was attempted through 20% (T20%) and 50% (T50%) 

conversion following the procedure outlined in Zaida et al. (2007) and Sheng (2007). The 

results are presented in Appendix D. The results from 20% conversion (T20%) did not 

show good consistency. It was found that combustion reactivity of coal and chars could 

be measured with the help of sample temperature at 50% conversion (T50%). The value of 

1/T50% was a good measure of the reactivity of the chars, and the results were consistent 

to what has been reported in the literature (Zaida et al. 2007). It is known that disordered 

carbon, in general becomes less reactive as heat treatment temperature increased (Blake 

et al. 1967). The results shown in Figure 4.24 confirm this observation. These was 

expected because as heat treatment temperature increases, the volatile matter decreases 
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while fixed carbon increases (Figure 4.1), and consequently result in the decrease in char 

combustion reactivity as shown in Figure 4.24.  
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Figure 4.24: Reciprocal temperature for 50% conversion (1/T50%) as a measure of 

combustion reactivity versus heat treatment temperature. 
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4.7 Correlations between coal petrography, micro Raman spectroscopy 
(MRS) and Thermogravimetric analysis (TGA). 
 

4.7.1 Correlations between Raman spectroscopy (D and G bandwidth) and coal 
petrography (through reflectance measurements). 

 
Attempts were made to find correlations between results obtained from reflectance 

measurements (mean vitrinite reflectance and mean total reflectance) and MRS 

parameters (D1 and G bandwidths) (Figure 4.25). It was found that the reflectance 

measurements (MVR and MTR) correlated with Raman parameters (D1 and G 

bandwidth). Previous studies of G band reduction of Raman spectra of coals have 

observed that the G bandwidth can be correlated to mean vitrinite reflectance 

measurement (Beny-Bassez and Rouzaud, 1985), which is consistent to the results 

obtained in this study (Figure 4.25 (c)). Johnson et al. (1986) studied the characterization 

of coal chars by Raman spectroscopy, X-ray diffraction and reflectance measurements, 

where they found no correlations between reflectance and Raman measurements. The 

results obtained in this study show good correlation between the two parameters (D1 and 

G bandwidth and reflectance measurements) as illustrated in Figure 4.25 and Table E.1-

E.4 (Appendix E). This means that the reflectance measurements can be used as an early 

indicator of changes in coal when heated, and the correlations enhance the understanding 

of char structural change during coal combustion. 
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Figure 4.25: (a) D1 bandwidth correlated with mean vitrinite reflectance; (b) D1 bandwidth correlated with mean total reflectance; (c) 
G bandwidth correlated with mean vitrinite reflectance; (d) G bandwidth correlated with mean total reflectance. 
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4.7.2 Correlations between Raman spectroscopy (D and G bandwidth) and coal 
petrography (through % char petrographic count). 

 
The results of D1 and G bandwidth were also correlated with percentage char 

morphology count obtained from petrography. This was attempted by identifying the 

reciprocal of D1 and G bandwidth from MRS and percentages of porous and dense char 

particles determined petrographically. Results are shown in Figure 4.26, where good 

correlations were obtained through the D1 bandwidth with porous and dense chars 

(correlation coefficients better than 0.91 and 0.99 respectively) (Figure 4.26 (a) and (b)). 

The reciprocal of G bandwidth versus % of porous particles/and dense particles did not 

show good correlation as the plots had lower correlation coefficients to be 0.85 and 0.68 

(Figure 4.26 (a) and (b) respectively) (Tables E.5 and E.6 in Appendix E). Since the G 

band is a graphitic character caused by C-C vibration in the aromatic layers, while the D1 

band originates from imperfections in-plane located between the basic structural units 

(graphene layers). Then at low temperature (below 1000°C), pyrolysis would mostly 

influence D1 band than G band as shown in Figure 4.17 and 4.18, the influence on D1 

bandwidth was more significant than G bandwidth. These resulted on better correlation of 

Raman spectroscopy and petrography through D1 bandwidth. The correlations confirm 

the strong connection between char structure and char morphology (determined through 

petrographic count), and enhance the understanding of coal combustion. 
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Figure 4.26: (a) Reciprocal of D1 bandwidth correlated with % porous particles; (b) reciprocal of D1 bandwidth correlated with % 
dense particles; (c) reciprocal of G bandwidth correlated with % porous particle; (d) reciprocal of G bandwidth correlated with % 
dense particle. 
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4.7.3 Correlating combustion reactivity (from TGA) with reflectance measurements 

 
Attempts were also made to find the correlation between the TGA combustion reactivity 

and the reflectance measurements (MVR and MTR). This was attempted through the plot 

of 1/T50% versus MVR or MTR (Appendix E.3). It was found that the combustion 

reactivity showed a good correlation with both MVR and MTR with correlation 

coefficients of 0.96 and 0.91 respectively (Figure 4.27 (a) and (b). The trend of decrease 

in combustion reactivity with the increase of rank was observed, which agrees with most 

of the previous work (Morgan and Roberts, 1987; Jenkins et al. 1973). The trend shown 

in Figure 4.27 (a) could be due to the chemical properties of vitrinite varying in a 

systematic way with rank (Tang et al. 2005a, 2005b). Similar observation was also found 

by Thomas and co-workers (Thomas et al. 1991, 1989a, 1989b) on the investigation of 

Australian coals, where they found the combustion reactivity to correlate well with coal 

rank (vitrinite reflectance and elemental carbon). The correlations confirm the strong 

connection between char reactivity and reflectance, and enhance the understanding of 

coal combustion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 79

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.27: (a) The combustion reactivity (1/T50%) correlated with rank (mean vitrinite 
reflectance); (b) the combustion reactivity (1/T50%) correlated with rank (mean total 
reflectance) 
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4.7.4 Correlating combustion reactivity (from TGA) with structure (from MRS) 

 
Attempts were also made to find the correlation between the TGA combustion reactivity 

and the char structure. This was attempted through the plot of 1/T50% versus the D1 and G 

bandwidth (Appendix E.4). Good correlations were found between combustion reactivity 

and D1 and G bandwidth measured from MRS, as shown by the plots with the correlation 

coefficients of 0.91 and 0.94 (Figures 4.28 (a) and (b) respectively). The correlations 

confirm the strong connection between char reactivity and char structure, and enhance the 

understanding of coal combustion. 
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Figure 4.28: (a) The combustion reactivity (1/T50%) correlated with D1 bandwidth; (b) 
the combustion reactivity (1/T50%) correlated with G bandwidth. 
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4.8 Summary 
 

The chapter presented the results obtained from different techniques, which included 

proximate analysis, coal petrography, PXRD, MRS and TGA. The results from these 

techniques showed the effect of heat treatment temperature on the char structural 

evolution and the reactivity during combustion. In conclusion, correlations were drawn 

between some of these techniques. Reflectance measurements showed good correlations 

with Raman parameters (D1 and G bandwidth), which led to the conclusion that the best 

correlation between Raman spectroscopy and coal petrography was through reflectance 

measurements. Figure 4.26 shows that the correlation between Raman spectroscopy and 

coal petrography can be obtained not only through reflectance measurements and D1 and 

G bandwidth, but also through % char petrographic counts and D1 and G bandwidth. The 

combustion reactivity results (from TGA) was also correlated with the first-order Raman 

bandwidth (D1 and G bandwidth) measurements, which contradicts the findings by Zaida 

et al. (2007) as illustrated in Figures 4.28 above. 
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CHAPTER 5 
 

5.1 General conclusions 
 
The dissertation presents the results for the characterization of typical Witbank coal and 

its respective chars derived from the same parent coal prepared at different temperatures 

(300°C-1400°C). Raman spectroscopy, petrography, TGA and XRD were the key 

characterisation tools applied. The following conclusions have been made from this 

investigation:  

 

(1) (a) It was found that the reflectance measurement increases with heat treatment 

temperature (from parent coal up to char 1000°C) which is attributed to increasing 

anisotropy resulting from changing mutual orientation of the aromatic layers. The 

reflectance results are presented in Appendix B (Table B1). 

  (b) The reflectance measurements of the parent coal and low temperature chars 

prepared at 300 and 600°C seemed to show a minor increase of MVR and MTR. This 

might be due to the fact that at these temperatures, the samples are dominated by 

macerals found in the parent coal. There was major increase in MVR & MTR 

between 600°C and at 800°C. This might be because the particles were experiencing 

a marked devolatilisation with complete conversion of all macerals. These samples 

consisted of a large fraction of dense char originating from the inertinite particles.  

(c) It can be concluded from this study that the reflectance measurements should not 

only be done on vitrinite reflectance and vitrinite chars, but it should also be done by 

considering all macerals and their respective chars as there were better correlations 

between MVT, MTR and Raman spectroscopy. These might be taken as an advantage 

to South African coals, especially Witbank coals, since they are rich in inertinite 

macerals. 

(2) It was found petrographically that the parent coal (Witbank coal) was rich in inertinite 

particles, low vitrinite content and very low liptinite content. This resulted in a high 

percentage of inert/dense chars at high temperature (for example 80.8% at 1000°C). 

Such particles showed little or no porosity, with no apparent softening on charring, 
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largely retaining their original coal macerals shape and form. In terms quantitative 

analysis, chars prepared at 300°C was found to have almost the same composition as 

the parent coal as illustrated in Table 4.3.3 and 4.3.4. The difference between the 

parent coal and the chars prepared at 300°C was determined through reflectance 

(rank) analysis. 

(3)  XRD results confirmed the presence of graphite-like structures to a small degree. 

This was evident by the positions at the (002) band that corresponds to the position of 

graphite band. The results also showed that the coal and the chars investigated 

contained aliphatic side chains which were indicated by gamma bands, which tend to 

disappear as the heat treatment temperature increased. The gamma band can be 

associated with disorder in the structure.  

(4) MRS spectra were measured in the first-order region in the range 800-2000cm-1. 

Three bands were observed for the parent coal, which included the G band at ~1590-

1603cm-1, D1 band at ~1343-1355cm-1 and D3 band at ~1507-1557cm-1. There was 

an additional band (D4 band at ~1200-1232cm-1) on char particle Raman spectra 

which was associated with reactive sites being created in chars. It was found that sp2-

sp3 bondings were created in dense chars (originating from inertinite particles), with 

an initial heat treatment temperature, and the sp2-sp3 bondings were known to be 

consumed later at high temperature. This was because inertinite particles are carbon-

rich, creating sp2-sp3 bonding by annealing aromatic structures. Earlier consumption 

of sp2-sp3 bondings were observed in porous chars from the start, because they were 

vitrinitic in origin and contain more reactive sites (more oxygen-rich and easier 

consumption of Sp2-Sp3 bonding from the start). The D1 bandwidth was found to 

decrease from 281cm-1 for the parent coal to 157cm-1 for the 1000°C char and could 

be associated with a reduction of disorder in coal and chars. The G bandwidth was 

also found to decrease from 87cm-1 for the parent coal to 70cm-1 for the 1000°C char, 

which was consistent with the growth of crystallites as charring temperature 

increased. In conclusion, MRS proves to be a useful technique for obtaining 

information on the crystalline and molecular structure of coal and chars.  

(5) TGA experiments confirmed the significant influence of heat treatment temperature 

on the char samples. It was found that combustion reactivity of coal and chars could 
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be measured with the help of sample temperature at 50% conversion (T50%). The 

combustion reactivity was found to decrease with increase in heat treatment 

temperature, as expected. 

(6) Reflectance measurements were found to correlate with Raman D1 and G bandwidth, 

as well as combustion reactivity. Raman D1 and G bandwidth were found to correlate 

with percentage char obtained from petrography. It can be concluded from this study 

that the best correlation between Raman spectroscopy and coal petrography is 

through reflectance measurement and Raman D1 and G bandwidth. Reflectance 

measurement was also found to correlate with combustion reactivity as proposed by 

various researchers (Thomas et al., 1991, 1989a, 1989b). A good linear correlation 

was found between Raman D1 and G bandwidth and combustion reactivity. This 

correlation confirms the strong connection between char structure and its reactivity 

and illustrates the advantage of Raman spectroscopy with respect to other structural 

analyses. 

 

Results obtained from this study answer the questions presented in Chapter 1 (Section 

1.3) and also proves the hypothesis presented in Section 1.6. The results presented in this 

study shows that Raman spectroscopy provides good correlations with coal petrography, 

and the correlations were drawn through D1 and G bandwidths and reflectance 

measurements as well as through percentage dense and porous chars obtained. Raman 

spectroscopy provided better correlations with combustion reactivity as well as with 

petrography. It was found that the use of Raman spectroscopy in conjunction with 

petrography enables a better understanding of the behaviour of char during combustion. 

This would assist in solving problems associated with coal utilization including 

suitability for combustion, gasification and liquefaction. 

 
 
 
 
 
 
 
 



 86

5.2 Recommendations (Future work) 
 
The study was conducted on parent coal and its respective chars up to 1000°C in the 

PBBR, and chars prepared in the DTF at 1400°C. The chars prepared in the different 

reactors show to have different characteristics in terms of quantitative composition 

determined petrographically. It was recommended that a reactor be obtained/sourced that 

could operate above 1000°C to make chars at much higher temperatures using the same 

parent coal sample in order to confirm the findings reported by various workers (Russell 

et al. 1999; Davis et al. 1995; Khan, 1987; Smith, 1978). This would eliminate the 

discrepancies raised in this dissertation for Witbank coal. Goodarzi (1984) has shown that 

as heat treatment temperature increases above 1000°C, the reflectance measurement 

decreases slightly. It would be very interesting to investigate whether this would be 

applicable to the Witbank char samples.  

 

Research shows that the second-order Raman spectrum can be used to characterise 

disorder in carbon materials (Zaida et al. 2007); however it has not been used 

extensively. The main features in the spectrum are at 2730 and 2940cm-1, where the 

former is the second-order of the disorder-induced band D (Chieu and Dresselhaus, 

1982). Additional bands are located at about 2450 and 3250cm-1 (Nemanich and Solin, 

1979). The second-order Raman spectra are in part due to structural disorder and are 

expected to be more sensitive to disorder changes. Since the current study focused on the 

first-order Raman spectroscopy on the range 800-2000cm-1, it would be interesting to 

extend the study to the second-order Raman spectroscopy to investigate the behaviour of 

coal and char, and to try to correlate the results with coal petrography and combustion 

reactivity.  

 

Research shows that the results for pyrolysis of chars generated over 1000°C indicate that 

the higher the temperatures and heating rates, the lower the reactivity of the chars 

(Russell et al. 1999; Davis et al. 1995). This was being attributed to the increased 

devolatilization rates, enhanced thermal annealing and decreased concentration of active 

sites. It would be interesting to confirm such findings as well. 
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APPENDICES 
 
 
APPENDIX A: Proximate analysis 
 
Proximate analyses were conducted using thermogravimetric analysis (TGA) in order to 

obtain the percentage coal properties such as moisture, volatile matter, fixed carbon and 

ash. TGA results are presented in Figure A.1 below showing different regions on the 

sketch, whereby first region represents moisture loss, followed by volatile matter in the 

second region. The third region represents the fixed carbon, and what remains after 

complete combustion is ash in the fourth region. The percentage coal properties were 

determined by calculating the change in weight percent (∆ weight %) on each region as 

shown in Figure A.1 below. The results obtained from proximate analysis in coal and 

chars are presented in Table A.1 and A.2. 

 
Figure A.1: Proximate analysis result showing Weight loss in percentage against time.  
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 Table A.1: Proximate analyses PBBR chars 

Sample Moisture 
[%] 

Volatile matter 
[%] 

Ash 
[%] 

Fixed carbon 
[%] 

Parent coal 4.105 27.029 26.34 42.5 
Char 300°C  2.388 27.026 27.725 42.9 
Char 600°C  1.017 20.457 34.02 44.5 
Char 800°C  3.48 13.485 33.951 49.1 
Char 1000°C  3.209 12.254 34.091 50.4 
 
 
 
Table A.2: Proximate analyses DTF chars 
Sample no: Moisture Volatile matter Ash Fixed carbon 
1 0.941 10.261 23.638 65.6 
2 0.443 13.621 36.378 49.6 
3 0.224 11.966 38.771 49.0 
4 0.492 11.493 40.497 47.5 
 
 
 
APPENDIX B: Petrography results 
 
B.1 Rank (reflectance) and count 
 
Table B.1: The table of Mean Vitrinite Reflectance (MVR / %), Mean Total reflectance 
(MTR /%) and total chars count. 
Sample name Reflectance [%] Porous char 

[%] 
Dense char 

[%] 
 MVR MTR   

     
Parent coal 0.59 1.09 0 0 
Char 300°C 0.62 1.12 0 0 
Char 600°C 1.60 2.69 4.0 56.0 
Char 800°C 4.06 4.75 6.4 67.4 
Char 1000°C 5.38 6.05 8.6 80.8 
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Figure B.1: Reflectance measurements on vitrinite particles on parent coal (MVR) (a) and the resultant chars derived from vitrinite 

particle at different temperatures (300-1000°C) (b)-(e). 
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Figure B.2: Reflectance measurements of total coal macerals on parent coal (MTR) (a) and the resultant chars at different 

temperatures (300-1000°C) (b)-(e). 

 
 
 
 
 
 
 
 
 
 

Char 1000°C mean total Rr% = 6.05
                                        σ = 0.939

0

5

10

15

20

25

2.326 3.491 4.657 5.822 6.988

Reflectance [%]

R
el

at
iv

e 
fr

eq
ue

nc
y 

[%
]

(e) 



 110

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.3: Examples of different particles found in parent coal (oil immersion lense, X500, reflected light) with a scale of 50 µm as 
described in Table 4.2: (a), vitrinite particle with a crack on it; (b), liptinite particle which is dark grayish; (c), semifusinite particle 
which is banded; (d) and (e), are fusinite particles showing some wholes and high reflectance; (f), inertodetrinite with minor vitrinite 
towards left; (g) and (h), are examples of some minerals found in parent coal.  
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APPENDIX C: Raman spectroscopic data 
 

C.1: Calculations of root mean square (RMS), mean/average and standard deviation. 

 

These were obtained by curve fitting each spectrum using the OPUS software program 

following the procedures outlined on Sadezky et al. (2005), Dippel et al. (1999), Jawhari 

et al. (1995), Cuesta et al. (1994), and Nistor et al. (1994). Raman bands were added to 

each individual spectrum depending on the number of bands available. For example, in 

coal spectrum (Jawhari et al., 1995; Cuesta et al., 1994), three bands were added, while 

four bands were added to char spectrum (Dippel et al., 1999) (Figure C.1). The mixture 

of Lorentzian and Gaussian functions was employed on the curve fitted spectra. The 

OPUS program contains an auto-fit which is used to calculate the RMS for each 

spectrum. Mean and standard deviation were calculated by the summation of all the 

information (band positions, bandwidth/FWHM, Intensity ratios and integral) obtained 

from each spectrum on each sample. The results are presented below in Table C.1-C.4 

below. 
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Figure C.1: First order region Raman spectra of coal (a) and char 1000°C (b). 
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Table C.1: Summarised results from micro Raman Spectroscopy (MRS) (PBBR chars), vitrin = Vitrinite, inert = Inertinite. 
 

Sample 
and Raman 

bands 

Band position (cm-1) Intensity  
ratios 

Full width at 
 Half maximum 

(cm-1) 
Lowest- 
highest 

Lowest- 
Highest  

Average/ 
mean 

Standard deviations 

         ID/IG ID/IG   
Parent coal Vitrin vitrin inert inert Vitrin Inert vitrin inert vitrin inert vitrin inert 

D1 1353 1364 1338 1354 1359 1346 3.0 3.9 0.96 0.90 292 268 
D3 1550 1568 1545 1568 1560 1557 4.0 6.8 0.36 0.25 91 92 
G 1591 1597 1593 1596 1595 1594 1.6 0.8   92 81 
             
Char 300°C Vitrin vitrin inert inert Vitrin Inert vitrin inert vitrin inert vitrin inert 

D1 1354 1367 1337 1356 1359 1343 2.8 3.1 0.98 0.88 295 257 
D3 1554 1565 1536 1567 1561 1554 3.0 7.8 0.37 0.22 92 93 
G 1592 1598 1590 1597 1595 1593 1.4 1.5   91 81 
             
Char 600°C Porous porous dense dense porous dense porous dense porous dense porous dense 

D4 1217 1266 1185 1268 1235 1225 16.8 17.4 0.27 0.23 210 210 
D1 1350 1362 1334 1370 1355 1354 4.5 8.4 0.63 0.73 166 179 
D3 1490 1525 1470 1544 1505 1508 11.4 17.9 0.17 0.18 149 136 
G 1588 1593 1587 1597 1590 1591 1.8 2.6   81 84 
             
Char 800°C Porous porous dense dense porous dense porous dense porous dense porous dense 

D4 1188 1256 1186 1253 1206 1207 23.2 19.6 0.23 0.25 165 166 
D1 1338 1355 1337 1364 1343 1344 5.1 5.2 0.84 0.86 163 159 
D3 1492 1518 1465 1535 1510 1510 8.6 15.0 0.28 0.30 151 157 
G 1588 1602 1587 1600 1596 1596 3.9 3.5   72 71 
             
Char 1000°C Porous porous dense dense porous dense porous dense porous dense porous dense 
D4 1184 1223 1186 1218 1200 1201 10.0 7.1 0.24 0.24 180 185 
D1 1338 1354 1343 1365 1349 1349 3.2 3.0 1.15 1.10 158 156 
D3 1514 1542 1511 1545 1529 1527 6.9 6.0 0.42 0.42 156 157 
G 1597 1603 1599 1608 1602 1602 1.6 1.6   70 70 
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Table C.2: Summarised results from micro Raman Spectroscopy (MRS) in PBBR chars. 
 

Sample 
and Raman 

bands 

Band position (cm-1) Intensity  
ratios 

Full width at 
 Half maximum 

(cm-1) 

Integral RMS 
error 

Stdev 
RMS 
error 

Lowest- 
highest 

Average/ 
mean  

Standard 
deviations 

     ID/IG     
Parent coal          

D1 1345 1359 1352 ± 3 5.3 0.956 ± 0.04 281 ± 8 160703 8.63 1.8 
D3 1555 1566 1559 ± 2 3.9 0.324 ± 0.06 91 ± 1 13606   
G 1593 1595 1594 ± 1 0.8  87 ± 2 64503   
          
Char 300°C          

D1 1342 1359 1348 ± 3 7.6 0.913 ± 0.05 270 ± 6 181943 10.58 2.5 
D3 1554 1561 1556 ± 2 3.2 0.268 ± 0.03 93 ± 4 14005   
G 1593 1595 1594 ± 1 0.9  84 ± 3 75066   
          
Char 600°C          

D4 1199 1281 1238 ± 8 5.3 0.234 ± 0.03 189 ± 21 56265 11.07 0.1 
D1 1335 1364 1351 ± 3 3.5 0.802 ± 0.12 176 ± 4 184467   
D3 1505 1478 1529 ± 22 27.8 0.215 ± 0.06  135 ± 7 21255   
G 1587 1594 1591 ± 1 1.6  82 ± 2 111452   
          
Char 800°C          

D4 1206 1208 1207 ± 7 0.5 0.239 ± 0 165 ± 12 34497 7.31 0.01 
D1 1343 1344 1343 ± 2 0.3 0.848 ± 0.09 161 ± 4 126014   
D3 1510 1510 1510 ± 7 0.2 0.288 ± 0.04 154 ± 11 31979   
G 1596 1596 1596 ± 1 0.1  72 ± 5 80514   
          
Char 1000°C          
D4 1200 1202 1200 ± 4 0.6 0.240 ± 0 183 ± 14 15737 3.01 0.05 
D1 1348 1350 1349 ± 3 0.1 1.123 ± 0.01 157 ± 3 66631   
D3 1527 1531 1528 ± 1 0.9 0.421 ± 0 157 ± 1 21247   
G 1601 1602 1602 ± 0 0.2  70 ± 1 29935   
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Table C.3: Summarised results from micro Raman Spectroscopy (MRS) (DTF chars), vitrin = Vitrinite, inert = Inertinite. 
 

Sample 
and Raman 

bands 

Band position (cm-1) Intensity  
ratios 

Full width at 
 Half maximum 

(cm-1) 
Lowest- 
highest 

Lowest- 
Highest  

Average/ 
mean 

Standard deviations 

Sample 1         ID/IG ID/IG   
Char 1400°C porous porous dense dense porous dense porous dense porous dense porous dense 

D4 1182 1259 1172 1332 1208 1223 15.8 20.8 0.17 0.19 219 225 
D1 1348 1359 1351 1357 1355 1354 2.81 1.73 1.16 1.25 165 146 
D3 1501 1540 1524 1552 1531 1535 6.21 6.39 0.38 0.39 154 153 
G 1596 1605 1602 1605 1603 1604 1.60 0.71   77 73 
Sample 2             

Char 1400°C porous porous dense dense porous dense porous dense porous dense porous dense 
D4 1185 1334 1195 1333 1217 1243 22.4 31.0 0.19 0.22 229 250 
D1 1347 1359 1350 1357 1355 1353 2.1 1.4 1.21 1.20 163 141 
D3 1520 1558 1526 1556 1536 1538 6.9 7.5 0.44 0.40 154 152 
G 1596 1605 1602 1605 1603 1604 1.4 0.9   75 71 

Sample 3             
Char 1400°C porous porous dense dense porous dense porous dense porous dense porous dense 
D4 1175 1273 1183 1331 1209 1225 15.7 28.7 0.21 0.22 222 234 
D1 1351 1359 1348 1358 1356 1354 1.9 1.7 1.25 1.24 163 144 
D3 1522 1555 1527 1554 1538 1538 6.8 6.5 0.47 0.44 163 161 
G 1599 1605 1602 1605 1604 1604 1.1 0.7   75 71 
Sample 4             
Char 1400°C porous porous dense dense porous dense porous dense porous dense porous dense 
D4 1172 1243 1193 1297 1201 1221 15.5 22.4 0.17 0.22 210 231 
D1 1351 1361 1351 1362 1356 1356 2.2 2.4 1.30 1.25 172 150 
D3 1525 1561 1527 1556 1541 1540 9.6 5.2 0.48 0.47 159 162 
G 1601 1605 1603 1606 1603 1604 1.3 0.8   75 72 
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Table C.4: Summarised results from micro Raman Spectroscopy (MRS) in DTF chars. 
 

Sample 
and Raman 

bands 

Band position (cm-1) Intensity  
ratios 

Full width at 
 Half maximum 

(cm-1) 

Integral RMS 
error 

Stdev 
RMS 
error 

Lowest- 
highest 

Average/ 
mean  

Standard 
deviations 

Sample 1     ID/IG      
Char 1400°C          

D4 1206 1239 1216 ± 3 7.3 0.178 ± 0 222 ± 9 6590 2.17 0.1 
D1 1353 1356 1355 ± 9 0.8 1.204 ± 0 156 ± 1 37046   
D3 1527 1539 1533 ± 2 1.8 0.384 ± 0.01 153 ± 3 8679   
G 1602 1605 1603 ± 0 0.3  75 ± 4 14170   
Sample 2          

Char 1400°C          
D4 1211 1273 1230 ± 1 13.0 0.209 ± 0 240 ± 7 9817 2.27 0.1 
D1 1352 1356 1354 ± 5 0.9 1.208 ± 0 152 ± 2 41988   
D3 1535 1539 1537 ± 7 1.0 0.420 ± 0 153 ± 1 10904   
G 1602 1604 1603 ± 1 0.3  73 ± 1 15943   

Sample 3          
Char 1400°C          
D4 1205 1234 1217 ± 4 8.0 0.212 ± 0.02 228 ± 10 8490 2.17 0.02 
D1 1353 1356 1355 ± 6  0.9 1.246 ± 0 154 ± 1 39155   
D3 1537 1539 1538 ± 3 0.01 0.457 ± 0 162 ± 3 11259   
G 1603 1604 1604 ± 0 0.01  73 ± 1 14199   
Sample 4          
Char 1400°C          
D4 1201 1222 1211 ± 3 9.9 0.196 ± 0 221 ± 5 6303 2.08 0.07 
D1 1355 1357 1356 ± 7 0.2 1.279 ± 0 161 ± 3 35111   
D3 1539 1542 1540 ± 2 0.3 0.478 ± 0 161 ± 1 9529   
G 1603 1605 1604 ± 0 0.5  74 ± 2 11706   
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C.2 Curve fitting of spectra obtained from particles charred at 600°C. 

 

Sample charred at 600°C was found to have significant amount of macerals being mixed 

with chars. Two types of curve fitting were applied on different spectra obtained from 

different particles. Maceral spectra at 600°C were fitted following the procedure applied 

on parent coal spectra. This includes the bands D1 at 1350cm-1, D3 at 1530cm-1 and G at 

1592cm-1. The overall D1 bandwidth was obtained to be 272cm-1. The char spectra were 

fitted with four bands; which include D1 band at 1350cm-1, D3 at 1530cm-1, D4 at 

1200cm-1 and G at 1592cm-1. The overall D1 bandwidth was obtained to be 176cm-1. The 

overall D1 bandwidth of particles at 600°C was obtained to be 222cm-1. 

 
APPENDIX D: Reactivity 
 
Table D.1: Reactivity at 20% and 50% conversion on PBBR chars. 

Sample name T (20%) 
[°C] 

T (50%) 
[°C] 

Reactivity 
(1/T20%) [1/°C] 

Reactivity (1/T50%) 
[1/°C] 

Parent coal 399.75 464.38 0.002502 0.002153 
Char 300°C 399.69 468.08 0.002502 0.002136 
Char 600°C 420.27 483.48 0.002379 0.002068 
Char 800°C 439.52 509.76 0.002275 0.001962 
Char 1000°C 471.68 539.52 0.002120 0.001853 
 
 
Table D.2: Reactivity at 20% and 50% conversion on DTF chars. 

Sample name T (20%) 
[°C] 

T (50%) 
[°C] 

Reactivity 
(1/T20%) [1/°C] 

Reactivity (1/T50%) 
[1/°C] 

1 - - - - 
2 518.41 582.88 0.001929 0.001716 
3 522.52 552.61 0.001914 0.001810 
4 501.65 565.85 0.001993 0.001767 
 
The reactivity on Sample 1 could not be calculated due to the sharpness on the point of 

the decomposition as indicated in Figure 4.21, which could be attributed to the 

experimental errors of the TGA equipment. 
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APPENDIX E: Correlation tables 
 
E.1: Correlation between Raman spectroscopy and coal petrography through reflectance 
and bandwidth measurements. 
 
Table E.1: Mean Vitrinite Reflectance (MVR) and D1 bandwidth measured from Raman 
spectroscopy. 

Sample name MVR [%] D1 bandwidth 
[cm-1] 

Parent coal 0.592 292 
Char 300°C 0.618 295 
Char 600°C 1.598 222 
Char 800°C 4.061 163 
Char 1000°C 5.375 157 
 
 
Table E.2: Mean Total Reflectance (MTR) and D1 bandwidth measured from Raman 
spectroscopy. 

Sample name MTR [%] D1 bandwidth 
[cm-1] 

Parent coal 1.094 281 
Char 300°C 1.122 270 
Char 600°C 2.687 222 
Char 800°C 4.753 161 
Char 1000°C 6.05 157 
 
Table E.3: MVR and G bandwidth measured from Raman spectroscopy. 

Sample name MVR [%] G bandwidth 
[cm-1] 

Parent coal 0.592 92 
Char 300°C 0.618 91 
Char 600°C 1.598 82 
Char 800°C 4.061 72 
Char 1000°C 5.375 70 
 
 
 
 
 
 
 
 
 
 
 



 119

Table E.4: MTR and D1 bandwidth measured from Raman spectroscopy. 
Sample name MTR [%] G bandwidth [cm-1] 
Parent coal 1.094 87 
Char 300°C 1.122 84 
Char 600°C 2.687 82 
Char 800°C 4.753 72 
Char 1000°C 6.05 70 

 
E.2: Correlation between Raman spectroscopy and coal petrography through counts and 
bandwidth. 
 
Table E.5: Petrographic counts and Raman D1 bandwidth. 

Sample name Porous 
[%] 

Dense [%] D1 bandwidth 
[cm-1] 

Parent coal 0 0 281.0935 
Char 300°C 0 0 269.5724 
Char 600°C 4.0 56.0 175.8526 
Char 800°C 6.4 67.4 161.3135 
Char 1000°C 8.6 80.8 157.3208 

 
 
Table E.6: Petrographic counts and Raman G bandwidth. 

Sample name Porous 
[%] 

Dense [%] G bandwidth 
[cm-1] 

Parent coal 0 0 86.90844 
Char 300°C 0 0 84.2558 
Char 600°C 4.0 56.0 82.11838 
Char 800°C 6.4 67.4 71.63294 
Char 1000°C 8.6 80.8 70.08748 
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E.3: Correlation between reactivity (measure by TGA) and reflectance measurements of 
coal and chars. 
 
Table E.7: Reactivity and reflectance measurements (MVR and MTR). 
Sample name Reflectance [%] 1/T20% [1/°C] 1/T50% [1/°C] 

 MVR MTR   
     
Parent coal 0.592 1.094 0.002502 0.002153 
Char 300°C 0.618 1.122 0.002502 0.002136 
Char 600°C 1.598 2.687 0.002379 0.002068 
Char 800°C 4.061 4.753 0.002275 0.001962 
Char 1000°C 5.375 6.05 0.002120 0.001853 
 
 
E.4: Correlation between reactivity (measure by TGA) and Raman bandwidth (D1 and G 
bandwidth). 
 
Table E.8: Reactivity and Raman D1 bandwidth. 

Sample name 1/T20% 
[1/°C] 

1/T50% 
[1/°C] 

D1 bandwidth 
[cm-1] 

Parent coal 0.002502 0.002153 281.0935 
Char 300°C 0.002502 0.002136 269.5724 
Char 600°C 0.002379 0.002068 222.1446 
Char 800°C 0.002275 0.001962 161.3135 
Char 1000°C 0.002120 0.001853 157.3208 

 
Table E.9: Reactivity and Raman G bandwidth. 

Sample name 1/T20% 
[1/°C] 

1/T50% 
[1/°C] 

G bandwidth 
[cm-1] 

Parent coal 0.002502 0.002153 86.90844 
Char 300°C 0.002502 0.002136 84.2558 
Char 600°C 0.002379 0.002068 82.11838 
Char 800°C 0.002275 0.001962 71.63294 
Char 1000°C 0.002120 0.001853 70.08748 
 
 
 

 

 

 

 

 


