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ABSTRACT 
 

The aim of this work was to use experimental, analytical and computational (Computational Fluid 

Dynamic - CFD) methodologies to investigate so-called highly transient axi-symmetric squeeze flows. 

These flows occur between two co-axial and parallel discs which are subjected to an impact, arising from 

a falling mass, which induces a constant energy squeezing system, as distinct from the traditionally 

investigated constant force or constant velocity squeezing systems. 

 

Experiments were conducted using a test cell comprising two parallel discs of diameter 120 mm with a 

flexible bladder used to contain fluid. This test cell was bolted onto the base of a drop-weight tester used 

to induce constant energy squeeze flows. Glycerine was used as the working fluid, the temperature of 

which was appropriately monitored. Disc separation, together with pressures (at three radial positions), 

were measured throughout the experimental stroke (typically less than 10 ms duration). Two additional 

pressure transducers (at the same radial position as the outermost transducer) were also used to monitor 

(and subsequently correct for) minor non-axi-symmetries that arose in the system. Approximately 150 

tests were conducted, embracing combinations of drop height from 0.1 to 1 m, drop mass from 10 to 55 

kg and initial disc separation from 3 to 10 mm. 

 

Three elementary features were typically observed: a distinct preliminary pressure spike (1) immediately 

after impact corresponding to very large accelerations (exceeding over 6 km/s2 in some experiments), a 

secondary major pressure spike (2) towards the termination of the stroke corresponding to diminishing 

disc separations and a bridging region (3) joining the two spikes corresponding to somewhat reduced 

pressures. While pressure distributions were observed to be closely parabolic during the major pressure 

spike, some uncertainty was present during the preliminary pressure spike, ascribed to sensitivities to 

deviations from axi-symmetry, and the likelihood of inertially generated pressures at the edge of the disc. 

 

By applying newly defined parameters of inertial composition Ը (which characterizes the ratio of 

temporal to spatial inertia effects) and dynamic Reynolds number ܴ݁ௗ௬௡ (which represents the 

instantaneous ratio of inertial to viscous effects), it was established that the preliminary pressure spike is 

dominated by temporal inertia whereas the major pressure spike is viscous dominant. The former feature 

appears not to have been reported on in the formal literature. 
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Four analytical models were considered, invoking the parallel flow assumption in conjunction with the 

Navier Stokes equations: an inviscid/inertial model, a viscous model (the lubrication approximation), a 

quasi-steady linear (QSL) model and a quasi-steady corrected linear (QSCL) model. The first two of these 

models, on incorporation of measured disc separations, and the derived velocities and accelerations, 

achieved acceptable correlations with pressure measurements (largely within uncertainty bounds) during 

the initial impact and towards the end of the stroke, respectively. The QSL model agreed satisfactorily 

with measurements throughout the entire duration of the experiment, while the QSCL model, by 

incorporating non-linear effects in an approximate linear way, yielded somewhat better correlations. By 

invoking the parallel flow assumption, all four models predict a parabolic radial pressure distribution. 

 

Utilizing a hypothetical case in which variations of disc separation, velocity and acceleration were 

considered (employing similar magnitudes and timescales to those that were measured), outputs of the 

QSL model yielded results that correlated closely with CFD predictions, while the QSCL data were 

somewhat better. On the basis of the CFD data it was also inferred that, within practical uncertainty 

bounds, the parallel flow assumption was valid for the range of disc separation to radius ratios embraced 

in the current investigation. 
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݄ Disc separation m 

 Axial coordinate m ݖ
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 ோ Circumferential pressure offset݌
(experimentally inferred) Pa 

ܾ Radial coordinate (of bladder) m 

݉ Source strength m2/s 

߮ Effective annular jet angle rad 

 Skewness angle rad  ߠ 

߰ Sinusoidal displacement rad 

߶ Symmetry angle rad 

 - Skewness magnitude ߪ 

߯ Eccentricity magnitude Pa 

 Peak offset m ߦ

 - Parabolic deviation variable ߝ
 

Operator Meaning 

ሺ ሶ ሻ Denotes a time derivative 

ሺ ሻԢ Denotes a dimensionless axial separation derivative (see above) 

ܱሺ ሻ Denotes an order of magnitude 

ሺ ሻതതത Denotes a mean or average measurement 

ሺ ሻכ Denotes a dimensionless variable 
 

Subscript Meaning 

ሺሻ௥, ሺሻ௭  and  ሺሻ ఏ Respectfully denotes radial, axial and tangential coordinates  

ሺሻ௕ Denotes a radial direction within the fluid bladder 

ሺሻఓ Denotes only viscous forces have been considered 

ሺሻఘ Denotes only inertial forces have been considered 
 

Acronyms 
• CFD: Computational Fluid Dynamics. 
• CAD: Computer Aided Design. 

 

• QS: Quasi-Steady. 
• QSL: Quasi-Steady Approximately Linear. 
• QSCL: Quasi-Steady Corrected Linear. 
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1 INTRODUCTION 
 

Squeeze flows are flows in which a material is compressed between two parallel plates and is thus 

squeezed out. Axi-symmetric squeeze flow geometries are regularly investigated, i.e. the squeeze flow 

between two circular, parallel and co-axial discs as shown in Figure 1-1 (other investigated squeeze flow 

geometries are briefly discussed in Section 2.1.1, p. 3). 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Axi-symmetric squeeze flow schematic  

 

Squeeze flows have long been recognised as one of the most basic problems in lubrication theory 

(Hamza, et al., 1981), with the earliest attempts to solve the problem dating back to Stefan (1874) and 

Reynolds (1886). Due to the interesting combination of shear and extension in various parts of the flow 

field, it also has attractions from a basic continuum mechanics viewpoint (Brindley, et al., 1976). 

 

Squeeze flows are inherently transient and inhomogeneous flows due to the changing geometry, and are 

one of a few deformation systems that have applications for a wide range of materials including purely 

viscous liquids, viscoelastic solids and liquids, and purely elastic solids. Hence squeeze flows are studied 

in various scientific disciplines ranging from soil mechanics and metal deformation research to fluid 

mechanics (Engmann, et al., 2005). 

 

In order for squeeze flows to be considered highly transient, the discs must be squeezed together rapidly 

(in the order of milliseconds), in such a way that the pressure development varies from temporal inertial 

dominance through to viscous dominance. A logical way to induce large forces (rapid squeezing motions) 

ܨ

݄ 

 ݖ

ݎ
 ܴ ߠ
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is to drop a mass from a predetermined height onto the upper disc which is initially separated from its 

stationary lower counterpart (Figure 1-2). These tests are hereafter referred to as ‘drop-hammer’ tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2: ‘Drop-hammer’ tests used to induce highly transient squeeze flows 

 

Traditionally, however, experimental squeeze flows have primarily been concerned with slow or 

‘creeping’ flows corresponding to low Reynolds numbers (ܴ݁ ا 1) (Engmann, et al., 2005). In general, 

these flows are experimentally induced by releasing a mass (or hammer) already in contact with the upper 

disc that is initially separated from its stationary lower counterpart (Figure 1-3). These tests are hereafter 

referred to as ‘contact-hammer’ tests. 

 

 

 

 

 

 

 

 

 

Figure 1-3: ‘Contact-hammer’ tests used to induce creeping squeeze flows 
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M 

M 
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2 REVIEW MATERIAL 
 

2.1 Squeeze Flow Systems 
 

Squeeze flows can occur between plates of any plan-form; however the flow dynamics may vary 

depending on the surface geometry, squeezing motion and the initial geometry of the squeeze sample, as 

defined and concisely discussed in the subsequent sections. 

 

2.1.1 Surface geometries 

 

Commonly investigated surface geometries (Engmann, et al., 2005) include: 

i. Circular parallel discs (Figure 1-1), resulting in axi-symmetric squeeze flows. 

ii. Long rectangular plates, resulting in two-dimensional squeeze flows. 

 

2.1.2 Squeezing motions 

 

Generally, analyses of squeeze flows are concerned with either one of two squeezing motions: 

i. Constant velocity squeezing motion: This motion assumes a velocity step-change from zero to a 

prescribed disc velocity. Consequently, analysis is only performed to a time before the discs 

would theoretically contact and the resultant pressure tends to infinity. 

ii. Constant force squeezing motion or the motion resulting for a constant squeezing force. The disc 

separation forms an asymptotic relationship with time for this squeezing motion. 

Both of these hypothetical disc motions prove difficult to reproduce experimentally. A true velocity step-

change would require an instantaneous infinite squeezing force which is physically impossible. It is 

however possible to induce a velocity ramp that may be approximated as a step-change if the time 

duration of the velocity ramp is negligible in comparison to other associated experimental timescales, for 

example viscous diffusion. On the other hand, a constant force is hard to realize because of the inertia 

associated with the driving masses (Figure 1-3). For this reason various authors have included disc and 
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driving mass inertia within their calculations; nevertheless, these tests are still generally classified as 

constant force squeezing motions. 

 

Symmetrical and asymmetrical squeezing motions 

 

Symmetrical and asymmetrical squeezing motions respectively refer to whether: 

a. Both discs are squeezed together with mirrored velocities. 

b. A single disc is dynamic while the other remains static. 

 

Experimentally inducing asymmetrical squeezing motions is mechanically simpler than inducing 

symmetrical squeezing motions (Figure 1-2). On the other hand, theoretically modeling symmetrical 

squeezing motions is simpler than modeling asymmetrical ones due to the symmetry of the radial fluid 

velocities and resultant pressure distributions (about the radial plane bisecting the disc separation). 

However, if spatial inertia (which is responsible for the skewing of the radial velocity and resultant 

pressure distribution) is considered to be negligible, asymmetrical squeezing motion experimentation may 

be compared directly against a symmetrical squeezing motion analysis. Spatial inertia in creeping flows 

(ܴ݁ ا 1) is generally considered negligible; however, it is unknown if this assumption is valid for highly 

transient squeeze flows. This issue is later investigated in Section 6.5, p. 63. 

 

2.1.3 Squeeze sample geometries 

 

The initial geometry of the squeeze sample (Engmann, et al., 2005) may also be split into the two 

following categories: 

i. Constant contact area squeeze material: The entire area of the both plates initially makes contact 

with the squeeze sample before squeezing, for example submerging two separated discs in a 

liquid before squeezing. 

ii. Constant mass squeeze material: A cylindrical squeeze sample (mass), of radius less than that of 

the discs, for the case of an axi-symmetric squeeze, is concentrically placed between the discs 

before squeezing. Generally this squeeze sample geometry only applies to non-liquid material 

squeeze flows because radially unrestrained liquids are unable to maintain the initial geometry 

existing before the squeezing motion. 
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This thesis is only concerned with axi-symmetric squeeze flows (circular discs) with a constant contact 

area squeeze sample. Furthermore, since highly transient disc dynamics are investigated, neither of the 

above squeezing motions is exclusively considered. 

 

2.2 Research Trends 
 

Squeeze flows are an attractive technique for measuring rheological properties of materials that create 

difficulties in conventional rheometers; for example very viscous materials, fluids with an apparent yield 

stress, fluids that tend to slip at instrument interfaces or materials with large particles (often, these 

characteristics appear together) (Engmann, et al., 2005). Hence constant squeeze force, axi-symmetric 

squeeze flows form the basic configuration for parallel plate viscometers or plastometers as they are 

known today (Phan-Thien, et al., 1983). Plastometers use either constant contact area or constant volume 

squeeze material and generally only measure creeping flows (ܴ݁ ا 1). As a consequence of these 

commercial applications, the following research trends of squeeze flow rheometry are observed in the 

comprehensive review compiled by Engmann et al (2005): 

i. In general, work on Newtonian squeeze flows took place before the 1980s. During and post the 

1980’s there was a shift in research from Newtonian to non-Newtonian fluids. This trend is 

apparent in table 8 of Engmann’s review, which gives the peak period during which most 

publications have appeared for a particular material class. 

ii. As a consequence of the multitude of the non-Newtonian models, and owing to the increase in 

theoretical (mathematical) complexity of non-Newtonian fluids, the number of papers concerning 

non-Newtonian fluids outnumbers those exclusively concerning Newtonian fluids. This trend is 

apparent by reviewing the referenced titles in Engmann’s review. 

iii. Although inertia for non-Newtonian squeeze flows has been considered by a handful of authors, 

most notably Phan-Thien (1983), in general research of non-Newtonian squeeze flows pertains 

only to creeping flows (negligible inertia). More specifically, in table 3 of Engmann’s review, 52 

references of various models approximating solutions to non-slip squeeze flows with varying 

boundary conditions (varying fluid models in particular) are made. Of these 52 referenced 

models, only 16 take inertia into account. It is noted that Newtonian fluids can be considered as a 

limiting case of non-Newtonian fluids; however, it is generally found that these studies have 

made limiting assumptions regarding inertia and concentrated rather on the mathematical 

complexities arising from the specific fluid under investigation. 
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2.3 Governing Equations 
 

For the sake of convenient referencing, governing equations are introduced preceding the literature 

review. 

 

The following squeeze flow assumptions are made: 

i. The flow is incompressible and isothermal. 

ii. Gravitational body forces are negligible. 

iii. The disc separation ݄ is small in comparison to the disc radius ܴ. 

֜ ߲ሺall velocitiesሻ/߲ب ݖ ߲ሺall velocitiesሻ/߲ݎ . 

iv. Axial flows are negligible, i.e. the flow is two-dimensional (֜ ݒ௭ ൎ 0). 

v. The flows are axi-symmetric (֜ ݏԢߠ߲/߲ ൌ ఏݒ ;0  ൌ 0). 

 

Applying the above squeeze flow assumptions to the Navier-Stokesa equations yields 

 

 

݌݀ 
ݎ݀

ൌ ߤ
߲ଶݒ௥

ଶݖ߲ െ ߩ ൬
௥ݒ߲

ݐ߲
൅ ௥ݒ

௥ݒ߲

ݎ߲
൅ ௭ݒ

௥ݒ߲

ݖ߲
൰ (2-1)

 

and 

 
݌߲
ݖ߲

ൎ 0 (2-2)

 

where ݌ is pressure, ߤ is absolute viscosity, ݒ is velocity, ߩ is density and ݐ is time. The suffices ݎ and ݖ 

respectively denote radial and axial components as shown in Figure 1-1, p. 1. 

 

The terms of equation (2-1) are labelled and are physically interpreted as follows: 

• A represents the radial pressure gradient. 

• B represents viscous forces. 

• C represents temporal inertia. 

• D1 and D2 represent spatial inertia. 

 

                                                      
a Refer to Appendix A to review the reduction of the Navier-Stokes equation yielding equation (2-1). 

(B) (D2) (A) (C) (D1) 
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Continuity of the flow system (Brindley, et al., 1976) is be given as 

 

 
௥ݒ߲

ݎ߲
൅

௥ݒ

ݎ
൅

௭ݒ߲

ݖ߲
ൌ 0. (2-3)

 

In addition, from the condition of continuity (Ishizawa, 1966), the mean velocity through any radial strip 

is given as  

 

௥ഥݒ  ൌ െ
ݎ
2

ሶ݄
݄

 (2-4)

 

where the dot operator denotes a time derivative. 

 

Within the reviewed literature, unless otherwise specified, the Reynolds number (Tichy, 1981) is given as 

 

 ܴ݁ ؠ െ
݄ ሶ݄
ν

 (2-5)

 

in which ν is the kinematic viscosity where 

 

ߥ  ؠ
ߤ
ߩ

. (2-6)
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2.4 Literature Review 
 

Stefan (1874) first considered two separating discs, or “reverse squeeze flows” and the apparent adhesion 

(negative pressures) observed. Later Reynolds (1886) rediscovered many of Stefan’s results for 

conventional squeeze flows. Both authors considered squeeze flows for incompressible Newtonian fluids 

with negligible inertia effects, i.e. only terms C and D of equation (2-1). This assumption of negligible 

inertia effects later became known as the lubrication approximation (Tichy, 1981). Under the lubrication 

approximation, these authors discovered that both the radial fluid velocity profiles and resultant pressure 

distribution are invariably parabolic (Phan-Thien, et al., 1987), with radial and axial fluid velocities, and 

pressure respectively given by 

 

௥ఓݒ  ൌ
ݎ3 ሶ݄
݄ଷ ሺݖଶ െ ௭ఓݒ ,ሻݖ݄ ൌ െ

ሶ݄
݄ଷ ሺ2ݖଷ െ ଷሻ, (2-7a, b)ݖ3݄

 

and 

 

ఓ݌  ൌ െ3ߤ
ሶ݄

݄ଷ ሺܴଶ െ ଶሻݎ ؠ െ3ܴߤଶ
ሶ݄

݄ଷ ൫1 െ ଶ൯, (2-8)כݎ

 

where the ߤ subscript indicates the solution considers only viscosity (neglects inertia) and where כݎ is 

defined as the dimensionless radius where 

 

כݎ  ؠ
ݎ
ܴ

. (2-9)

 

Finally both authors derived an expression, equating the squeezing force with the disc separation and 

velocity given by 

 

ఓܨ  ൌ
3
2

ߤߨ
ሶ݄

݄ଷ ܴସ (2-10)

 

where ܨ is the squeezing force applied to the discs. 
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Scott (1931) proceeded to show that the radial pressure distribution for an incompressible power law 

(non-Newtonian) fluid with negligible inertia effects remains invariably parabolic and then derived an 

expression for the squeezing force 

 

ఓ,௣௟ܨ  ൌ െ2
൫െ ሶ݄ ൯

௡

݄ଶ௡ାଵ ߤߨ ൬
2݊ ൅ 1

݊
൰

௡ ௡ାଷܴ݉ߨ

݊ ൅ 3
 (2-11)

 

where ݉ and ݊ represent the fluid consistency and power law index respectively and the ݈݌ subscript 

indicates power-law fluids. Although the investigation of non-Newtonian fluids is beyond the scope of 

this thesis, it is noted that for the limiting case of a Newtonian fluid, where ݉ ൌ ݊ ൌ 1, equation (2-11) 

reduces to equation (2-10), as expected. 

 

Axi-symmetric squeeze flows experimentation with power-law fluids was carried out by Leider (1974) 

who showed that ݐଵ/ଶ (the so-called ‘separation half-time’ or the time required to squeeze half the fluid 

out from between the discs) is a useful measurement and is a relatively constant experimental variable for 

constant force squeezing motions. Leider’s analysis was extended by McClelland et al (1983), who 

considered both viscometric functions and compressibility effects of squeeze flows. However, both 

authors neglected inertia effects, and consequently results obtained from their models, like those obtained 

from of Scott’s model [equation (2-11)] differed increasingly from experimental results as squeeze 

velocities increased. 

 

In order to derive an analytically determinable squeeze flow model that incorporates both viscous and 

inertial forces, further simplification of the governing equations is required. This simplification is given in 

the form of the exact kinematics of the Newtonian fluid (including all inertia terms) in which the radial 

and axial fluid velocities are given by 

 

௥ݒ  ൌ െ
ݎ
2

ሶ݄
݄

݃Ԣሺכݖ, ௭ݒ ሻ andݐ ൌ ሶ݄ ݃ሺכݖ, ሻ, (2-12a, b)ݐ

 

where ݐ is time, ݃a is the dimensionless axial velocity and the prime denotes a derivative with respect to 

the dimensionless axial derivative כݖ which is defined as  

 

                                                      
a Authors generally use ݂ as opposed to ݃. However in this thesis ݂ is defined as ݂ ൌ ݃Ԣ. 
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כݖ  ؠ
ݖ
݄

. (2-13)

 

Equations (2-12a, b) later became known as the parallel flow assumption because fluid planes initially 

parallel to the plates remain parallel throughout (Engmann, et al., 2005). Since the axial flow is 

independent of radius, this leads to a partial differential governing equation with two independent 

variables ( כݖ and ݐ) as opposed to three (כݖ , ݎ and ݐ) when applied to equation (2-1). This was explicitly 

demonstrated by Phan-Thien et al (1987) who showed that for an incompressible Newtonian fluid under 

the parallel flow assumption, ݃ satisfies the following relationship 

 

 ݃ᇱ௩ െ
ሶ݄ ݄
ν

ቊቈ
ሷ݄ ݄
ሶ݄ ଶ െ 2቉ ݃ᇱᇱ ൅

݄
ሶ݄ ሶ݃ ᇱᇱ ൅ ሺ݃ െ ሻ݃ᇱᇱᇱቋכݖ ൌ 0 (2-14)

 

with boundary conditions of 

 

כݖ ൌ 0; ݃ ൌ ݃ᇱ ൌ 0 

כݖ ൌ 1; ݃ ൌ 1, ݃ᇱ ൌ 0 

 

for an asymmetrical squeezing motion. Appendix A contains the derivation of equation (2-14). 

 

Although it is noted that the parallel flow assumptions is embedded in even the simplest models of Stefan 

and Reynolds [equations (2-7a, b)], it appears that its first deliberate application was made by Ishizawa 

(1966). Ishizawa presented an elegant model for axi-symmetric squeeze flows at arbitrary varying disc 

separations, including disc acceleration. Ishizawa first derived a governing equation under the parallel 

flow assumption, similar to equation (2-14) but which neglected disc acceleration. He then used a 

standard series perturbation technique to obtain an infinite set of time dependent parameters (which 

included disc acceleration) given by the series 

 

 ݄
ν

ሶ݄ ,
݄ଷ

νଶ
ሷ݄ ,

݄ହ

νଷ
ሸ݄, … (2-15)

 

These parameters were used to define a multifold power series of parameters to accurately obtain the 

dimensionless axial velocity ݃ when applied to the governing equation; in turn, ݃ was used to solve for 

the radial pressure gradient. This expansion technique assumes that the arbitrary disc separation is 

infinitely differentiable with time [series (2-15)] and applies only to Reynolds numbers of less than unity 
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[equation (2-5)]. Hence, when applied to systems with large Reynolds numbers, Ishizawa’s model 

produces erroneous results; this was later demonstrated by Grimm (1976) (discussed below). 

 

Jones and Wilson (1975), Tichy and Modest (1980), and Gupta and Gupta (1977) also took cognisance of 

inertia effects under the parallel flow assumption and solved the resultant equations using perturbation 

methods. A peculiarity was noted by Jones and Wilson in that while most perturbation solutions are 

theoretically valid for ܴ݁ ൏ 1, accurate results were obtained up to  ܴ݁ ൎ 10. 

 

Brindley et al (1976) showed that the parallel flow assumption is only valid for power-law fluid (of which 

Newtonian fluids are a limiting case). Brindley then showed that the parallel flow assumption needs to be 

‘relaxed’ for a fluid with an arbitrary viscosity/shear rate relationship which may result in a non-parabolic 

pressure distribution. 

 

Equation (2-14) is a partial differential equation that represents a non-linear system and is best solved by 

numerical means. This was done by Hamza and MacDonald (1981), who solved equation (2-14) 

numerically, using a finite difference scheme for a theoretical investigation of a Newtonian fluid under a 

constant velocity squeezing motion. Hamza and MacDonald’s equation is similar to equation (2-14), 

albeit in a more elaborate non-dimensional form, which was derived from the non-dimensional 

momentum equations. However, due to the assumed velocity step-change, Hamza and MacDonald’s 

equation neglects the term encompassing the disc acceleration (Section 2.1.2, p. 3). Non-dimensional 

terms defined by Hamza and MacDonald include 

 

 ܴ݁ ؠ െ
݄଴ ሶ݄

ν
כݐ , ؠ െ

ሶ݄ ݐ
݄଴

 and ߬ ؠ
כݐ

ܴ݁
ൌ

νݐ

݄0
2  

 

where ݄0 is the initial disc separation (hence, it is noted that the authors consider ܴ݁ as constant 

throughout the experimental stroke) and כݐ is defined as the dimensionless time where כݐ א ሺ0,1ሻ. 

 

Essentially, Hamza and MacDonald proceeded to perform an order of magnitude analysis on equation 

(2-14), where for ܴ݁߬ଵ ଶ⁄ ~ܱሺ1ሻ, their equation approximates to 

 

 ݄ଶ

ν
ሶ݃ ᇱᇱ ൌ ݃ᇱ௩. (2-16)
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After being analytically solved for a given ܴ݁ and כݐ, the solution of equation (2-16) was then used to 

solve the radial pressure gradient of the hypothetical system. This result, in turn, was compared against 

radial pressure gradient obtained by the numerical solution of equation (2-14) in its entirety at the same 

ܴ݁ and כݐvalues. Hence a parametric testing range of ܴ݁ (0.5 ൑ ܴ݁ ൑ 96) and 0.0175) כݐ൑ כݐ ൑ 0.960) 

was then set up in which the numerical and analytical solutions for the radial pressure gradient are 

tabulated and compared. Deviations of less than 5% between numerical and analytical results were 

achieved for low ܴ݁ (ܴ݁ ൏ 20) throughout the experimental stroke (all ranges of כݐ). However, as ܴ݁ 

increased to ܴ݁ ൌ 96, a discrepancy of approximately 15% was observed. 

 

Closer investigation of the restriction ܴ݁߬ଵ ଶ⁄ ~ܱሺ1ሻ reveals that 

 

 ሺ1ሻ. (2-17)ܱ~כݐ√ܴ݁√ 

 

Hence values of the Reynolds number were limited to 0.5 ൑ ܴ݁ ൑ 96 as not to violate equation (2-17). 

Similarly כݐ was also truncated at כݐ ൒ 0.0175 and also limited to כݐ ൒ 0.96 because of the infinite 

pressure gradient experienced at zero disc separation corresponding to כݐ ൌ 1. At the above selected 

parametric space limits, ܴ݁߬ଵ ଶ⁄  falls between the liberal range of 0.935 ൑ ܴ݁߬ଵ ଶ⁄ ൑ 9.6. 

 

Kuzma (1967) used the first term of a successive approximation method to solve for the radial velocity 

profiles of incompressible, axi-symmetric squeeze flows. Kuzma’s approach was similar to that of 

Jackson (1962) in that the inertia components of purely viscous velocity profiles are used to calculate an 

approximate radial fluid velocity profile. However, unlike Jackson’s work, Kuzma considered the inertia 

contributions of both of the dominant spatial inertia terms entirety while Jackson neglected, amongst 

others, the ݒ௥ఓ ௥ఓݒ߲ ⁄ݎ߲  term in the expression 

 

ߤ 
߲ଶݒ௥

ଶݖ߲ ൌ  െ
1
ߤ

݌߲
ݎ߲

൅
1
ν

ቆ
௥ఓݒ߲

ݐ߲
൅ ௥ఓݒ

௥ఓݒ߲

ݎ߲
൅ ௭ఓݒ

௥ఓݒ߲

ݖ߲
ቇ െ ቆ

߲ଶݒ௥ఓ

ଶݎ߲ ൅
1
ݎ

௥ఓݒ߲

ݎ߲
െ

௥ఓݒ

ଶቇ (2-18)ݎ߲

 

where ݒ௥ఓ and ݒ௭ఓ are recalled from equations (2-7a, b). Even though the last bracket of equation (2-18) 

is considered extraneous for squeeze flow systems in accord with standard practice (Van Dyke, 1964), 

Kuzma solved for the velocity profile as 
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௥ݒ ൌ  

1
ߤ

ቈ
ݎߤ6 ሶ݄

݄ଷ ൅ ቆ
ݎߩ3 ሷ݄

5݄
െ

ݎߩ15 ሶ݄ ଶ

14݄ଶ ቇ቉ ቆ
ଶݕ

2
െ

ݕ݄
2

ቇ ൅
1
ν

ቈ
ݎ3 ሷ݄
݄ଷ ቆ

ସݕ

12
െ

ଷݕ݄

6
൅

݄ଷݕ
12

ቇ

൅
ݎ3 ሶ݄ ଶ

݄଺ െ
଺ݕ

10
൅

ହݕ3݄

10
െ

3݄ଶݕସ

4
൅ ݄ଷݕଷ ൅

9݄ସݕଶ

20
቉ 

(2-19)

 

and the pressure between the discs is given by 

 

݌  െ ଴݌ ൌ
ଶݎ െ ܴଶ

2
ቆ

ߤ6 ሶ݄
݄ଷ ൅

ߩ3 ሷ݄
5݄

െ
ߩ15 ሶ݄ ଶ

14݄ଶ ቇ (2-20)

 

which may to integrated across the disc area to give a squeeze force of 

 

ܨ  ൌ
ସܴߨ

4
ቆ

ߤ6 ሶ݄
݄ଷ ൅

ߩ3 ሷ݄
5݄

െ
ߩ15 ሶ݄ ଶ

14݄ଶ ቇ. (2-21)

 

Kuzma also conducted constant force squeeze flow experiments in which he used mercury as a working 

fluid as to minimize the kinematic viscosity and hence maximize the contribution of inertia to the pressure 

generation. Kuzma experimentally measured the disc separation traces of squeeze flow systems, which he 

compared against the theoretical disc separation traces resulting from both the lubrication approximation 

[equations (2-10)] and his approximate solution [equation (2-21)]. In conclusion, Kuzma showed that 

there was a large discrepancy between the lubrication approximation and experimental results, whereas 

his approximate analytical solution showed good agreement with experimental results for systems for 

Reynolds numbers up to approximately 60 (as suggested by Kuzma’s results). 

 

It is subsequently shown in Figure 6-13 (Section 6.4.1, p. 62) that Kuzma’s approximate pressure trace 

solution corresponds very accurately with the Computational Fluid Dynamics (CFD) solution for the 

hypothetical highly transient squeeze flow given in Section 6.1, p. 47. It is also shown that this correlation 

is most accurate where fluid velocity profiles are similar to that of the lubrication approximation, i.e. 

where ݒ௥ ൎ ௭ݒ ௥ఓ andݒ ൎ  ௭ఓ. Correspondingly, Kuzma’s radial velocity shapes (Figure 6-14) appearݒ

erroneous at the stroke initiation (associated with a squarer radial velocity profile). 

 

A simpler way of including inertia in squeeze flow flows was used by Lin and Hung (2007) and Batra and 

Kanasamy (1989), who assumed that the fluid inertial forces are constant across thin film thickness and 

are thus relatively simple to include in conjunction with viscous forces. Lin and Hung investigated non-
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Newtonian (Bingham) squeeze flows and hence were primarily concerned with non-Newtonian effects; 

however for the limiting case where non-Newtonian fluids tend to Newtonian fluids, their expression for 

pressure simply becomes 

 

݌  ൌ
ଶݎ െ ܴଶ

2
ቆ

ߤ6 ሶ݄
݄ଷ ൅

ߩ ሷ݄
2݄

െ
ߩ18 ሶ݄ ଶ

20݄ଶ ቇ. (2-22)

 

It can be seen that equation (2-22) is similar to equation (2-20), with only coefficients of the last two 

terms varying slightly due to different assumptions. 

 

Kramer (1974) considered both viscous and inertial effects in squeeze flows and derived a partial 

differential equation defining the complete numerical solution of the disc separation given in a convected 

coordinate system given by 

 

 െ
ߩ
ݍ

ሷݍ ൅ ସݍߤ ସܴߨ

݄ସ ቈ
ሶݍ ԢԢ
ሶݍ

቉ ൌ
ሻݐሺܨ
4ܴସ  where ݄ ൌ න כݖଶ݀ିݍ

௛బ

଴
. (2-23a, b)

 

Kramer did not solve equation (2-23a) as it stands, but rather went on to consider non-Newtonian flows 

ignoring inertial effects. Grimm (1976) however, proceeded to solve Kramer’s equation numerically to 

obtain an accurate solution of the disc separation. Grimm also expressed the squeezing force in terms of 

Ishizawa’s expansion series (2-15) as 

 

 

ܨ
νଶߩ ൌ െ

ସܴߨ

݄ସ ቈ
4݄
ν

ሶ݄ െ
5
7

൬
݄
ν

ሶ݄ ൰
ଶ

൅
2
5

݄ଷ

νଶ
ሷ݄ െ

1
2100

݄ହ

νଷ
ሸ݄ ൅

2
315

൬
݄
ν

ሶ݄ ൰ ቆ
݄ଶ

νଶ
ሷ݄ ቇ

െ
554

40425
൬

݄
ν

ሶ݄ ൰
ଷ

൅ ڮ ቉ 

(2-24)

 

where he used the first three terms in the right-hand bracket as the first-order perturbation solution and the 

entire equation as the second-order perturbation solution. Ultimately Grimm compared the disc separation 

trace obtained from equation (2-23a) (the complete numerical solution) against the first and second order 

perturbation solution and that of the lubrication approximation [equation (2-10)], for a variety of 

hypothetical test results with varying absolute viscosities. The results showed that inertia effects are 

significant and the first order perturbation solution is in relatively good agreement with the complete 

numerical solution. Conversely, the second order perturbation solution deviates radically from the 
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complete numerical solution; hence, Grimm concluded that Ishizawa’s perturbation solution is divergent 

and it is therefore preferable to use numerical techniques for solving squeeze flow problems when 

possible. However, closer analysis of Grimm’s data suggests that his experiments were conducted at 

Reynolds numbers of order 50 to 500 and his initial gap to radius ratio was, in some experiments, close 

unity. Both of the above factors may explain the deviation of Ishizawa’s perturbation solution at higher 

orders. 

 

Equation (2-14) and (2-23a) are partial differential equations with two partial derivatives, namely a 

dimensionless axial coordinate and time ݐ. Hence many authors have sought similarity solutions in order 

to analytically solve either equation. Ishizawa (1966) first discovered a similarity solution in which a disc 

velocity, given by ሶ݄ ൌ ݇√1 െ  reduces the problem to an ordinary differential equation. This approach כݐߙ

was subsequently adopted by Wang (1976), in the context of a perturbation approach and more recently 

by Rashidi et al (1998) who adopted a homotopy analysis solution for the same equation. 

 

On the other hand, Tichy (1981) developed a similarity solution in which the only constraint is small disc 

accelerations. Tichy shows that through an Oseen or slug-flow linearization approximation, where 

௥ݒ ௥ݒ߲ ⁄ݎ߲ ൅ ௭߲ݒ ௥ݒ ⁄ݖ߲ ൎ ௥ഥݒ ௥ݒ߲ ⁄ݎ߲ െ ሺ2 ݎ/ݖሻݒ௥ഥ ௥ݒ߲ ⁄ݖ߲  [where ݒ௥ഥ  is recalled from equation (2-4)] 

allows equation (2-1) to be linearized, for plate accelerations satisfying ห ሷ݄ ݄ ሶ݄ ଶ⁄ ห ا 3 2⁄ , as follows 

 

 ݃ᇱ௩ െ
ሺܴ݁ሻ
|ܴ݁| ݉ଶ݃ᇱᇱ ൌ 0 where ݉ ൌ ඨฬ

3
2

ܴ݁ฬ. (2-25a, b)

 

Hence Tichy analytically solved equation (2-25a) to give a radial velocity shape of 

 

 ݃Ԣሺכݖሻ ൌ
݉

2coshሺ݉ െ ሻכݖ െ ݉ sin ݉
ൈ ሾsin ݉ሺ1 െ ሻכݖ ൅ sin כݖ݉ ൅ sin ݉ሿ (2-26)

 

for ܴ݁ ൏ 0 [equation (2-5)], and  

 

 ݃Ԣሺכݖሻ ൌ
݉

2ሺ1 െ cos݉ሻ െ ݉ sinh ݉
ൈ ሾsinh ݉ሺ1 െ ሻכݖ ൅ sinh כݖ݉ ൅ sinh ݉ሿ (2-27)

 

for ܴ݁ ൐ 0 [equation (2-5)]. 
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Weinbaum et al (1985) studied the drainage between two axi-symmetric discs under a constant normal 

force applied to a mass that is in contact with the upper disc. They formulated the problem by coupling 

the inertia of the driving mass with that of the fluid. The solutions obtained showed that two 

dimensionless groups characterise the system; the Reynolds number based on the initial disc separation 

(as for Hamza and MacDonald) and a characteristic inertial settling velocity, and the ratio of the squares 

of the gravitational and the fluid inertia settling times, given by 

 

ߚ  ؠ
௚ݐ

ଶ

௜ݐ
ଶ ൌ

4݄଴݉
ସܴߩߨ . (2-28)

 

The authors then proceeded to solve the resultant equations for various ߚ and ܴ݁ combinations at 

different asymptotic limits, under the parallel flow assumption. The authors showed that their analytically 

determinable solutions agreed accurately with complete numerical solutions at the asymptotic limits and 

relatively well throughout the various hypothetical numerical experiments. 

 

They obtained closed form solutions in the infinite ܴ݁ limit for ߚ ՜ ∞ and ߚ ՜ 0 respectively, 

representing motion through a vacuum and a system in which hydrodynamically generated pressures 

instantaneously support the mass. For example, Kuzma’s experiment in which mercury is squeezed 

between two discs corresponds to ߚ ا 0, whereas for a sheet of paper dropped onto a desk from 1 cm, 

 10ଶ. The authors also obtained solutions~ߚ ,and for a book dropped from the same height 1~ߚ

corresponding to:- (i) early times (݄~݄଴) for all values of ߚ, (ii) small ߚ values for the limiting cases 

ܴ݁ ب 1, ݄~݄଴ and (iii) ܴ݁ ا 1.  

 

Lawrence continued his work with Weinbaum and Kuang (1985) and developed an approximate high   ܴ݁ 

solution to the above problem using an integral approach and assuming negligible inertia of the driving 

mass. The results showed an interesting combination of a time dependent invicid core adjacent to an 

unsteady boundary layer. This solution compared favourably with numerical predictions. 

 

The work of Weinbaum et al is interesting in that its holistic formulation (coupling of inertia forces) 

allows it to be applied to a myriad of constant force squeeze flow problems, as described above. However, 

it is because of this inertia coupling in the ߚ parameter that this work cannot readily be applied to highly 

transient squeeze flows in which a large impulsive force is applied to the driving mass. 
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Rukmani and Usha (1994) conducted an investigation into axi-symmetric squeeze flows in which the 

solution is obtained in a power series of a single non-dimensional parameter called the squeeze number ܵ 

where 

 

 ܵ ൌ
݄ଶ

8νܶ
, (2-29)

 

in which ܶ is the experimental stroke period. The squeeze motions considered are constant disc velocities, 

constant squeeze force motions and constant squeeze power motions, all for small squeeze numbers 

ܵ ا 1. 

 

In general, Phan-Thien’s work [(1983), (1985), (1987)] was primarily concerned with non-Newtonian 

squeeze flows. Hence, due to the mathematical complexities arising from the modeling of non-Newtonian 

fluids, Phan-Thien often omitted or drastically simplified inertial effects. However, Phan-Thien (1986) 

has shown that a ‘transmission loss’ occurs for an asymmetrical squeezing motion (Section 2.1.2, p. 3) 

with the force and pressure difference between the top (dynamic) and the bottom (stationary) disc 

respectfully given by 

 

ܨ∆  ൌ െ
1
2

ଶ݄ܴߨߩ ሷ݄  and ∆݌௖௘௡௧ ൌ െ݄ߩ ሷ݄ . (2-30a, b)
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3 MOTIVATION 
 

The reviewed literature indicates that constant velocity squeeze flows have been analysed in detail by 

various authors, most notably by Hamza and MacDonald (1981). However, no physical experimentation 

regarding the constant velocity squeeze motion has been found, due to complexity of experimentally 

replicating such a highly idealised squeezing motion. On the other hand, constant force squeeze flows 

have been both experimentally and analytically investigated by various authors, most successfully by 

Kuzma (1967). Kuzma’s first term successive approximation method yields a theoretical disc separation 

trace which agrees closely with experimentally obtained disc separation traces. 

 

Other authors have endeavoured to derive squeeze flow models that can be applied to squeeze flows with 

arbitrary disc motions. The most noteworthy work of which is presented by Ishizawa (1966), however, 

Ishizawa’s work is only applicable for Reynolds numbers of order unity or less. Likewise Tichy’s (1981) 

similarity solution is only valid for small disc accelerations; it is later shown in Figure 6-2, p. 49, that 

Tichy’s restriction ห ሷ݄ ݄ ሶ݄ ଶ⁄ ห ا 3 2⁄  (similar to so-called inertial composition [defined in Section 5.2, p. 

21]), is not appropriate for highly transient squeeze flows. Moreover, Rukmani and Usha’s (1998) model 

is only valid for small squeeze numbers ܵ ا 1 [equation (2-29), p. 17] and applicable to only specific 

squeezing motions. 

 

With the exception of Kuzma’s model, due to the above limitations, none of the reviewed models have 

applicability extending to highly transient squeeze flows, i.e. flows with large Reynolds numbers and/or 

large disc accelerations (p. 2). 

 

It follows that the broad motivation of this thesis is to analytically establish the mechanics of highly 

transient axi-symmetric squeeze flows for Newtonian fluids, and proceed to experimentally examine these 

squeeze flows induced by a drop-hammer system (Figure 1-2, p. 2). Drop-hammer tests require a given 

amount of energy to be dissipated over a small distance through the generation of fluid forces (i.e. the 

pressures); hence constant energy squeeze flows are introduced as a new squeeze flow system, as distinct 

from the traditionally investigated constant force or constant velocity squeezing systems. 
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4 OBJECTIVES 
 

The broad aim of this work was to use experimental, analytical and computational (CFD) methodologies 

to investigate the pressure variations with time in fluid between two parallel discs that have been 

subjected to a constant energy squeezing system, as distinct from the traditionally investigated constant 

force or constant velocity squeezing systems. Primary questions to be answered were as follows: 

1. the relative magnitudes of viscous versus inertia effects, and temporal inertia versus spatial inertia 

effects – and the manner in which these affect pressures - throughout the event; 

2. the validity of using simple analyses in the limits where viscous and inertia effects are likely to be 

dominant – for example, towards the end and beginning of each event respectively; 

3.  the possibility of developing an analytical model that is capable of incorporating both viscous 

and inertial affects throughout the event; 

4. the legitimacy of the parallel flow assumption and  

5. the extent to which measured pressure distributions are radially parabolic.  

 

The means by which the above issues were considered are contained in the following specific objectives 

addressed during the investigation: 

1. Develop a test cell that induces highly transient axi-symmetric squeeze flows when used in 

conjunction with a drop-hammer test facility, and incorporates the capability of monitoring (i) 

pressure variations with time and radial position, (ii) the effects of non-axi-symmetric testing 

conditions, and (iii) disc separations with time. 

2. Conduct a systematically planned series of tests during which pressures and disc separation are 

measured with time, under appropriate variations of the independent parameters initial disc 

separation, drop mass, and drop height.  

3. Develop a solution for inviscid squeeze flows, i.e. a solution that only considers fluid inertia. In 

addition, using equation (2-14), p. 10, which encompasses the reduced Navier Stokes equations 

and parallel flow assumption derive a more comprehensive model that embraces both viscous and 

inertial effects. Reconcile these models with the measurements, thereby establishing their 

limitations. 

4. Employ hypothetical variations of disc separation, velocity and acceleration (using similar 

magnitudes and time scales to those that are measured) in a CFD model and in so doing evaluate 

the validity of:- (i) the analytical models developed in 3. and (ii) the parallel flow assumption. 
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5 THEORETICAL ANALYSIS 
 

The reviewed models (Section 2.4, p. 8) fail to deliver accurate results for squeeze flow systems with 

large Reynolds numbers and/or large disc accelerations, with the exception of Kuzma’s model (as later 

discussed in Section 6.4.1, p. 61). Hence highly transient axi-symmetric squeeze flows (squeeze flows 

with large Reynolds numbers and large disc accelerations) are analyzed within this chapter. 

 

5.1 Inviscid/Inertial Model 
 

If a fluid is assumed inviscid, only inertia contributes to the pressure development between the discs, i.e. 

terms A, C, D1 and D2 of equation (2-1) are considered. By definition the no-slip boundary condition is 

violated and so the radial fluid velocity simply becomes the average flow rate [equation (2-4), p.7]. Hence 

the radial and axial velocities are given by 

 

௥ఘݒ  ൌ ௥ഥݒ ൌ െ
ݎ
2

ሶ݄
݄

 and ݒ௭ఘ ൌ െ
ሶ݄

݄
(1a, b-5) ݖ

 

where the ߩ subscript indicate that the solution considers only fluid density, i.e. inertial effects. It is easy 

to substitute equations (5-1a, b) into equation (2-1) to obtain an expression for pressure of 

 

ఘ݌  ൌ െ
ߩ
8

൥2
ሷ݄

݄
െ 3 ቆ

ሶ݄
݄

ቇ
ଶ

൩ ሺܴଶ െ ଶሻݎ ؠ െ
ଶܴߩ

8
൥2

ሷ݄
݄

െ 3 ቆ
ሶ݄

݄
ቇ

ଶ

൩ ൫1 െ ଶ൯, (5-2)כݎ

 

which when integrated across the disc area gives a squeeze force of  

 

ఘܨ  ൌ െ
ସܴߩ

16
൥2

ሷ݄
݄

െ 3 ቆ
ሶ݄

݄
ቇ

ଶ

൩. (5-3)
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5.2 Inertial Composition 
 

Through the derivation of equation (5-2) it can be shown that both the temporal and spatial inertia 

contribute to the term containing ሶ݄ , whereas only the temporal inertia contributes the term containing ሷ݄ . 

Since the Reynolds number for squeeze flows [equation (2-5)] only considers disc velocity (and not 

acceleration), it is useful to establish the ratio of temporal to spatial inertia. For the inviscid/inertial 

model, the corresponding constituents of equation (5-2) are used to yield a ratio of 

 

 

 
Temporal inertia

Spatial inertia
ؠ ߍ ቆ

ሷ݄ ݄
ሶ݄ ଶ െ 1ቇ, (5-4)

 

and so it is appropriate to define this dimensionless grouping as a parameter 

 

 Ը ؠ ቤ
ሷ݄ ݄
ሶ݄ ଶ െ 1ቤ, (5-5)

 

where Ը is introduced as the inertial composition.  

 

If the experimental data of Kuzma (1967) is examined in this light, their Ը~ߍሺ1ሻ.  It is therefore of 

interest to examine a dynamic situation in which Ը ب 1. 

 

5.3 Parallel Flow Assumption 
 

It is uncertain to whether or not effects initially assumed negligible would sufficiently violate the parallel 

flow assumption in the context of highly transient squeeze flows as to render it an inappropriate 

assumption for use in further analysis. Hence, a CFD evaluation of the system was setup as described in 

Section 6, p. 47 in order to test this assumption for highly transient squeeze flows. The CFD results (all 

the figures in Section 6.3.1, p. 50) strongly support a parallel flow assumption for an incompressible fluid, 

therefore it is assumed that the parallel flow assumption is a good approximation and is utilised in further 

analysis. 
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For the sake of convenient referencing, the parallel flow assumption, equations (2-12a, b), p. 9, are 

recalled as 

 

௥ݒ  ൌ െ
ݎ
2

ሶ݄
݄

݃ᇱ ൌ ௥ഥݒ ݂ሺכݖ, ௭ݒ ሻ andݐ ൌ ሶ݄ ݃ሺכݖ, ሻ, (2-12a, b)ݐ

 

where ݃ is the dimensionless axial velocity variable and ݂ is conveniently introduced as the 

dimensionless radial velocity with ݃ᇱ ൌ ݂. The radial fluid velocity for a symmetrical squeeze is visually 

represented in  

Figure 5-1. 

 

 

 

 

 

Figure 5-1: Visual interpretation of dimensionless radial velocity for symmetrical squeeze flows 

 

The dimensionless axial and radial fluid velocity profiles for a symmetrical squeezing motion have the 

following boundary conditions: 

i. Symmetry of the dimensionless radial velocity dictates that 

 

݂ᇱ ൬
1
2

൰ ൌ ݃ᇱᇱ ൬
1
2

൰ ൌ 0. (5-6)

 

ii. Flow conservation is embodied in 

 

න ݂
ଵ
ଶ

଴
כݖ݀ ൌ න ݂

ଵ

ଵ
ଶ

כݖ݀ ൌ െ݃ሺ0ሻ ൌ ݃ሺ1ሻ ൌ
1
2

. (5-7)

 

iii. The no-slip condition on the discs is given by 

 

݂ሺ0ሻ ൌ ݃ᇱሺ0ሻ ൌ 0. (5-8)

 

௥ഥݒ  ൌ ൈ ݂ ݒ௥ 



23 
 

5.4 Exact Kinematic Model 
 

After substituting equations (2-12a, b) into equation (2-1), it can be shown that the radial pressure 

gradient is given bya 

 

 
݌݀
ݎ݀

ൌ  െݎ
ߩ
2

൝ν
ሶ݄

݄ଷ ݃ᇱᇱᇱ െ ቆ
ሶ݄

݄
ቇ

ଶ

ሺ݃ െ ሻ݃ԢԢכݖ െ ቆ
ሶ݄

݄
ቇ ሶ݃ ᇱ ൅

1
2

ቆ
ሶ݄

݄
ቇ

ଶ

݃ᇱଶ െ ൥
ሷ݄

݄
െ ቆ

ሶ݄
݄

ቇ
ଶ

൩ ݃Ԣൡ (5-9)

 

whence it can be seen that ݀ݎ݀/݌ ן  and therefore, once the assumed boundary condition of zero ݎ

circumferential pressure offset ݌ሺܴሻ ൌ 0 is used to solve for the constant of integration, the radial 

pressure profile is shown to be parabolic given by ݌ ൌ ௖௘௡௧൫1݌ െ  ௖௘௡௧ is the central݌ ଶ൯, whereכݎ

pressure. Hence this confirms the CFD observation of an invariantly parabolic pressure distribution for an 

incompressible axi-symmetric squeeze flow under the parallel flow assumption (Figure 6-5, p. 52). 

 

In order to eliminate the radial pressure distribution term from the dimensionless velocity terms in 

equation (5-9), with the intension of ultimately solving for the dimensionless velocities, equation (5-9) is 

differentiated with respect to כݖ [since ݀ݖ݀/݌ ൎ 0 in equation (2-2)] to giveb 

 

 

 ν ቆ
ሶ݄

݄ସቇ ݃ᇱ௩ െ ቆ
ሶ݄ ଶ

݄ଷቇ ሺ݃ െ ሻ݃ԢԢԢכݖ െ ቆ
ሶ݄

݄ଶቇ ሶ݃ ᇱᇱ െ ቈ
ሷ݄

݄ଶ െ 2 ቆ
ሶ݄ ଶ

݄ଷቇ቉ ݃ԢԢ ൌ  0. (5-10)

 

Equation (5-10) is equivalent to equation (2-14), p. 10, as derived by Phan-Thien. In this context of this 

thesis, equation (5-10) is referred to as the Exact Kinematic model, as it is assumed to solve for the exact 

fluid kinematics for an axi-symmetric squeeze flow under the parallel flow assumption. In equation (5-10) 

each remaining term is labelled with dashed letters. These letters correspond to the previously defined 

labelled terms of equation (2-1), while the dash indicates the derivative with respect to כݖ. To reiterate, 

terms B’, C’ and D’ are physically interpreted as viscous, temporal inertial and spatial inertial forces 

respectively. More specifically, the interpretations of the inertia force terms are classified as follows: 

i. C1’- represents the temporal inertia developed by the disc acceleration. 

                                                      
a The full derivations are given in Appendix A. 
b The full derivations are given in Appendix A. 

(C1’) (B1’) (C2’) (D2’) (C’D’) 
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ii. C2’- represents the newly introduced so-called shape evolution term (as it contains the only partial 

time derivative). 

iii. C’D’- is a combined term arising from temporal and spatial inertia of equal proportions. 

iv. D2’- represents the spatial inertia derived from a fraction of the D2 term. Term D1’ has been 

cancelled by a component of the D2’ term. 

 

The exact kinematic model [equation (5-10)] is a fourth order partial differential equation which is 

difficult to solve analytically and is hence best solved by numerical means. However, in order to establish 

an approximate analytical solution, equation (5-10) is reduced yielding the limiting models as discussed 

in the subsequent chapters. 

 

5.5 Quasi-Steady (QS) Model 
 

Recalling equation (5-10), term C2’ contains the only partial time derivative, hence its elimination reduces 

equation (5-10) to an ordinary semi-lineara differential equation 

 

 γ݃ᇱ௩ െ ሾ݃ߚ െ ሿ݃ԢԢԢכݖ െ ሾα െ ሿ݃ԢԢߚ2 ൌ 0, (5-11)

 

where the prime now denotes an ordinary derivative and the coefficient variables are introduced as 

 

 α ൌ
ሷ݄

݄ଶ ߚ ൌ
ሶ݄ ଶ

݄ଷ γ ൌ ν
ሶ݄

݄ସ. (5-12a, b, c)

 

These variables are subsequently used to determine the so-called shape parameter (Section 5.6, p. 26) and 

hence are introduced as the shape parameter variables. Equation (5-11) is a quasi-steady approximation 

of equation (5-10) in that all partial time derivatives have been omitted; hence, equation (5-10) is 

introduced as the so-called Quasi-Steady (QS) model. 

 

Although quasi-steady approximation is common practice in analysis, the error magnitude associated with 

the quasi-steady approximation is currently undetermined. It is however known that quasi-steady 

                                                      
a Differential equation (5-11) is semi-linear because in isolation the left and right terms compose a linear differential 

equation, however, when introduced into this linear system, the middle term represents a non-linear term. 
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approximations will be experiment-specific and also time specific within each experiment. Therefore, in 

order to quantify whether the quasi-steady approximation is sufficiently accurate during an experiment, 

and more specifically at any time instant within the experiment, the Quasi-Steady Applicability Analysis 

(Section 5.9, pp 36) is subsequently employed. 

 

If a fluid is considered massless, or purely viscous, by equation (2-6) ߥ ՜ ∞; therefore from equation 

(5-12c) it can be seen that equation (5-11) reduces to γ݃ᇱ௩ ൌ 0 or ݂ᇱᇱᇱ ൌ 0 which in combination with the 

boundary conditions (Section 5.3) leads to 

 

 ݂ ൌ െ6൫כݖଶ െ ൯, (5-13)כݖ

 

which is a parabolic dimensionless radial velocity distribution as previously determined by the lubrication 

approximation [equation (2-7a)]. It logically follows that when this ݂ value [equation (5-13)] is inserted 

into equation (5-9), the resultant pressure is the same as that given by the lubrication approximation 

[equation (2-8)]. 

 

For the case of a transient squeeze flow (where ߚ ,ߙ and ߛ are dynamic variables), the semi-linear 

differential eqation (5-11) may be solved numerically (by say MATLAB’s Simulink toolbox) by 

introducing two trial variables, namely ݉ and ݊, as the initial conditions for the second and third 

derivatives respectively, i.e. 

 

 ݃ԢԢሺ0ሻ ൌ ݉ and ݃ᇱᇱᇱሺ0ሻ ൌ ݊.  

 

Then through a double iterative process, varying both ݉ and ݊, equation (5-11) may be solved ensuring 

that the boundary conditions are met (Section 5.3, p. 21). This iterative process involves manual feedback 

and therefore is arduous when applied to a large number of discrete data points. The initial condition of 

݃ሺ0ሻ ൌ െ1/2 is used for a symmetrical squeeze motion and ݃ሺ0ሻ ൌ 0 for an asymmetrical squeeze 

motion at the stationary disc (Section 2.1.2, p.3). 

 

The block diagrams for the QS model is shown in Appendix B and the ‘QS model’ MATLAB Simulink 

program are given in CD-Appendix A. In both instances, the QS model is accompanied by the QSL 

model which is discussed in Section 5.6. 

 



26 
 

5.6 Quasi-Steady Linear (QSL) Model 
 

In order to determine the starting values for ݃ԢԢሺ0ሻ ൌ ݉ and ݃ԢԢԢሺ0ሻ ൌ ݊ for equation (5-11) [Section 5.6, 

p. 25], equation (5-11) is approximated as a linear differential equation by neglecting the non-linear term 

ሾ݃ߚ െ  ሿ݃ԢԢԢ.This is equivalent to further reducing equation (5-10) by eliminating term D2’, so that bothכݖ

terms C2’ and D2’ have been eliminated from equation (5-10) reducing it to 

 

Ԣ௩݃ߛ  െ ሾߙ െ ሿ݃ᇱᇱߚ2 ൌ 0. (5-14)

 

This may alternatively be given as 

 

 ሺܦଶ െ ሻ݇ߣ ൌ 0 (5-15)

 

where ܦ ൌ  is the dimensionless shape parameter defined as ߣ ,כݖ݀/݀

 

ߣ  ؠ
ߙ െ ߚ2

ߛ
ؠ

1
ν

ቆ
ሷ݄ ݄ଶ െ 2 ሶ݄ ଶ݄

ሶ݄ ቇ (5-16)

 

and 

 

 ݇ሺכݖሻ ൌ
݂݀
כݖ݀ ൌ

݀ଶ݃
ଶ (5-17)כݖ݀

 

Equation (5-14)/(5-15) is an analytically determinable ordinary linear differential equation which has 

three potential solution categories given as follows: 

ߣ • ൐ 0 results in an exponential solution. 

ߣ • ൏ 0 results in an oscillatory solution. 

ߣ • ൌ 0 results in a border-case solution. 

 

It is noted that if term D2’ is determined to be small in magnitude as compared to term C1’ in equation 

(5-11), then it may be unnecessary to solve for ݃ numerically via the semi-linear differential equation 

(5-11) altogether because the approximated ordinary differential equation (5-14), may yield sufficiently 
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accurate results. Hence the approximated dimensionless axial velocity profiles may be obtained 

analytically without the utilization of iterative methods; equation (5-14) thus represents the appropriately 

named Quasi Steady Linear (QSL) modela. 

 

5.6.1 Dimensionless fluid velocity determination 

 

The general solutionb of the dimensionless axial velocity ݃ሺכݖሻ, the dimensionless radial velocity ݂ሺכݖሻ 

and its first and second dimensionless axial derivatives for exponential solutions (ߣ ൐ 0) are respectively 

given by 

 

 ݃ሺߣ, ሻכݖ ൌ
൫cosh כݖߣ√ െ 1൯ െ ൫sinh כݖߣ√ െ ൯כݖߣ√ coth ߣ√

2

ߣ√ coth ߣ√
2 െ 2

 (5-18)

 

 ݂ሺߣ, ሻכݖ ൌ
sinh כݖߣ√ െ ൫cosh כݖߣ√ െ 1൯ coth ߣ√

2

coth ߣ√
2 െ 2

ߣ√

 (5-19)

 

 ݂ᇱሺߣ, ሻכݖ ൌ
ߣ√ ቆcosh כݖߣ√ െ sinh כݖߣ√ coth ߣ√

2 ቇ

coth ߣ√
2 െ 2

ߣ√

 (5-20)

 

 ݂ᇱᇱሺߣ, ሻכݖ ൌ
ߣ ቆsinh כݖߣ√ െ cosh כݖߣ√ coth ߣ√

2 ቇ

coth ߣ√
2 െ 2

ߣ√

. (5-21)

 

For the case of oscillatory solutions, a complex value of ߣ is substituted into the above exponential 

solutions, in which 

                                                      
a It is later be shown in Section 5.7, pp 13, that a correction can be made to the QSL model in order to include an 

approximate linear value of the non-linear term, i.e. the Quasi Steady Corrected Linear (QSCL) model. 
b The derivations are given in Appendix A. 
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 െߣ ൌ ቀ݅ඥ|ߣ|ቁ
ଶ
 (5-22)

 

where ݅ ൌ √െ1 . 

 

 

Hence for oscillatory solutions (ߣ ൏ 0), dimensionless axial velocity ݃ሺכݖሻ, the dimensionless radial 

velocity ݂ሺכݖሻ and its first and second dimensionless axial derivatives are respectively given by 

 

 ݃ሺߣ, ሻכݖ ൌ
ቀcos ඥ|כݖ|ߣ െ 1ቁ െ ቀsin ඥ|כݖ|ߣ െ ඥ|כݖ|ߣቁ cot ඥ|ߣ|

2

ඥ|ߣ| cot ඥ|ߣ|
2 െ 2

 (5-23)

 

 ݂ሺߣ, ሻכݖ ൌ െ
sin ඥ|כݖ|ߣ ൅ ቀcos ඥ|כݖ|ߣ െ 1ቁ cot ඥ|ߣ|

2

cot ඥ|ߣ|
2 െ 2

ඥ|ߣ|

 (5-24)

 

 ݂ᇱሺߣ, ሻכݖ ൌ െ
ඥ|ߣ| ቆcos ඥ|כݖ|ߣ െ sin ඥ|כݖ|ߣ cot

ඥ|ߣ|
2 ቇ

cot ඥ|ߣ|
2 െ 2

ඥ|ߣ|

 (5-25)

 

 ݂ᇱᇱሺߣ, ሻכݖ ൌ
|ߣ| ቆsin ඥ|כݖ|ߣ ൅ cos ඥ|כݖ|ߣ cot

ඥ|ߣ|
2 ቇ

cot ඥ|ߣ|
2 െ 2

ඥ|ߣ|

. (5-26)

 

It can be shown by L’Hospital’s rule that, as expected, the solutions of both equations (5-19) and (5-24) 

reduce to a parabolic velocity distribution as ߣ ՜ 0 (derivatives taken with respect to ߣ). This limiting 

solution is given by the lubrication approximation in equation (5-13). 

 

It is later shown in Figure 5-3 that ߣ has the lower limit of ߣ ൒ െ4ߨଶ, which restricts the flow adjacent to 

the discs from reversing direction. 
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Dimensionless axial velocities are calculated with equations (5-19) and (5-24) at discrete values of ߣ and 

are plotted against dimensionless disc separation in Figure 5-2. 

 

 

 

Figure 5-2: Dimensionless axial velocity profiles at discrete shape parameter values 

 

It can be seen from Figure 5-2 that for large possitive ߣ values, ݃ changes almost proportionally with כݖ. 

However, for large negative values of ߣ there is only a negligible axial fluid velocity change in the fluid 

layer adjacent to the disc surface. 

 

Similarly using equations (5-19) and (5-24), dimensionless radial fluid velocities at discrete values of ߣ 

are plotted against dimensionless disc separation in Figure 5-3. 

 

Finally using equations (5-21) and (5-26), second axial derivative curves of the dimensionless radial fluid 

velocities at discrete values of ߣ are plotted against dimensionless disc separation in Figure 5-4. 
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Figure 5-3: Dimensionless radial velocity profiles at discrete shape parameter values 

 

 

 

Figure 5-4: Second derivative profiles of dimensionless radial velocity at discrete shape parameter values 
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The dimensionless radial fluid velocity shapes in Figure 5-3 are intuitively satisfactory in which the 

following features are observed: 

• High values of ߣ) ߣ ൒ 500) yield radial fluid velocity shapes that correspond to impulsive flow 

patterns with a well defined boundary layer, such as the Rayleigh problem (Schlichting, 1960).  

ߣ • ൌ 0 yields the abovementioned parabolic radial fluid velocity as determined by the lubrication 

approximation (ܴ݁ ൌ 0), equation (5-13). 

• Low values of ߣ) ߣ ൏ െߨଶ) yield inflexional radial fluid velocity shapes (Schlichting, 1960), 

hence negative pressures are generated. The shape parameter is limited to ߣ ൒ െ4ߨଶ so the flow 

adjacent to the disc interfaces which presumably would initiate the onset of turbulence 

(Schlichting, 1960). 

 

Hence from one relatively simplistic equation set [equations (5-19) and (5-24)], the QSL model produces 

radial fluid velocity shapes that form an elegant set of solutions for a myriad of flow patterns.  

 

Before Figure 5-4 is discussed, it is noted that at the disc interface, there is no radial fluid motion and 

therefore no radial inertial force. Hence the pressure development at the disc interface is purely due to 

viscous forces; therefore by equation (5-9), ݀ݎ݀/݌|௭כୀ଴ ן ݂ᇱᇱ|௭כୀ଴. In addition, since the axial pressure 

gradient is assumed negligible [equation (2-2)] it follows that ݀ݎ݀/݌ ן ݂ᇱᇱ|௭כୀ଴. Therefore, the shapes of 

݂ᇱᇱ versus כݖ represent the ratio of viscous to inertial fluid forces across the disc separation. This becomes 

pertinent later in determining the so-called dynamic Reynolds number (Section 5.10, p. 38). 

 

Figure 5-4 shows that dimensionless radial fluid velocity shapes with high values of ߣ) ߣ ൒ 500) are 

associated with high viscous forces (high shear stresses) at the disc interfaces and no viscous forces 

midway between the discs (only inertial forces act on the fluid in this region). As expected, there is a 

uniform viscous force ן ݂ᇱᇱ ൌ െ12 independent of כݖ for a parabolic fluid velocity profile ݂ሺߣ ൌ 0ሻ, i.e. 

the lubrication approximation. Hence it can be seen that a purely viscous flow does not have the lowest 

average viscous force across the disc separation, because for ߣ ൏ െߨଶ negative viscous forces are 

developed at disc interfaces, even though the radial fluid velocity shapes for ߣ ՜ െߨଶ  are visually 

similar to a parabolic velocity distribution (Figure 5-3). 

 

The ‘Dimensionless Velocities’ Excel spreadsheet used to develop Figures 5-2, 5-3 and 5-4 is given in 

CD-Appendix B. 
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5.7 Quasi-Steady Corrected Linear (QSCL) Model 
 

From equation (5-11) it is noted that the ߚ coefficient is common to both ݃ԢԢ and ሾ݃ െ  .ሿ݃ԢԢԢ termsכݖ

Therefore, a correction can be made to the existing QSL model in which an approximate linear value for 

the neglected non-linear D2’ term [equation (5-10)] can be included into equation (5-14). This correction 

follows a similar method to a first term approximation of a successive approximation technique, and is 

made using the following steps: 

i. The QSL model’s dimensionless fluid velocities [equations (5-18) to (5-26)] are used to 

determine ሾ݃ െ  .ሿ݃ԢԢԢ (‘Dimensionless velocities’ Excel spreadsheet, CD-Appendix B)כݖ

ii. Since the coefficients of these terms are the same, the average magnitude (integral with respect to 

of ሾ݃ (כݖ െ  .i.e ,ߢ ሿ݃ԢԢԢ is equated with the average magnitude ݃ԢԢ across the disc separation byכݖ

 

 න ሾ݃ െ כݖሿ݃ԢԢԢ݀כݖ
ଵ/ଶ

଴
ൌ ߢ න ݃ԢԢ݀כݖ

ଵ/ଶ

଴
 or ߢሺߣሻ ൌ

׬ ሾ݃ െ ଵ/ଶכݖሿ݃ԢԢԢ݀כݖ
଴

݃Ԣ|௭כୀଵ/ଶ
 (5-27)

 

where ߢ is introduced as the linearization term. The linearization term is determined at various values of 

ߣ for ߢ as shown in Figure 5-5 where a fourth order polynomial fit gives an approximate value ߣ ൑ 100 

and ߢ ൎ 0.4 for ߣ ൐ 100 (Figure 5-5 insert). 

 

 

Figure 5-5: Linearization term change with shape parameter variation 
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Hence ݃ߢᇱᇱ may be used as an approximate substitution for the non-linear term ሾ݃ െ  ሿ݃ᇱᇱᇱ in equationכݖ

(5-11) to account for the spatial inertia term previously neglected by the QSL model, i.e. 

 

 ሾα െ ሿ݃ᇱᇱߚ2 ൅ ሾ݃ߚ െ ሿ݃ᇱᇱᇱכݖ െ γ݃ᇱ௩ ؆ ሾα ൅ ሺߢ െ 2ሻߚሿ݃ᇱᇱ െ γ݃ᇱ௩, 

 

so that 

 

 ሾα ൅ ሺߢ െ 2ሻߚሿ݃ԢԢ െ γ݃ᇱ௩ ൌ 0 (5-28)

 

which is identical to the equation (5-14) of the QSL model apart from the coefficients of ߚ. Hence the 

solution of the QSCL model [equation (5-28)] is determined in an identical fashion to that by which the 

QSL model [equation (5-14)] is determined, with the exception that a corrected shape parameter ߣ௖௢௥ 

replaces ߣ, in which ߣ௖௢௥ calculated as 

 

௖௢௥ߣ  ؠ
ߙ ൅ ሺߢ െ 2ሻߚ

ߛ
ؠ

1
ν

ቈ
ሷ݄ ݄ଶ ൅ ሺߢ െ 2ሻ ሶ݄ ଶ݄

ሶ݄ ቉. (5-29)

 

It is noted that ߣ must first be established so that ߢሺߣሻ can be obtained (Figure 5-5) in order to establish a 

value of ߣ௖௢௥. Thereafter ߣ௖௢௥ may be substituted into equations (5-18) or (5-24) to obtain more accurate 

instantaneous dimensionless radial velocities. Hence the so-called Quasi-Steady Corrected Linear 

(QSCL) model is calculated identically to the QSL model after ߣ௖௢௥ is determined by equation (5-29). 

 

It can be seen in the Excel ‘Dimensionless velocities’ spreadsheet (CD-Appendix B), that the shapes 

of ݃ԢԢ are not very similar to ሾ݃ (variations כݖ) െ  ሿ݃ᇱᇱᇱ. Nevertheless, it is later shown that when theכݖ

resultant pressure traces of the QSCL model are compared with those of the QSL model in Figure 6-12, 

p. 59, the increase in accuracy of the QSCL model is substantial as the QSCL model’s trace intersects 

every marker of the QS model, i.e. less than a maximum of 2% error throughout the pressure trace. 

Furthermore, it is noted that this percentage-wise accuracy is not experiment specific as the ߚ coefficients 

of equation (5-11) are grouped in equation (5-28). Hence the QSCL model is considered to accurately 

approximate the inclusion of the non-linear term and hence warrants no error analysis. 
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From Figure 5-5 it can be seen that the value of ߢ never exceeds 0.4 for any value of ߣ. It follows that 

since the coefficient of ߚ in the QSL model is 2 [equation (5-16)], in excess of 80% of the magnitude of 

the spatial inertia is always included within the QSL model (by the above analysis). 

 

5.8 Pressure Determination 
 

From Figure 5-4 and associated text, the radial pressure gradient can be determined at the disc interface 

by recalling equation (5-9) with neglected inertial forces 

 

݌݀ 
ݎ݀

ൌ
݌݀
ݎ݀

ฬ
௭כୀ଴

ൌ െ
ߤݎ
2

ሶ݄
݄ଷ ݂ᇱᇱ|௭כୀ଴. (5-30)

 

Depanding on the sign of ߣ, either equation (5-21) or (5-26) is substituted into equation (5-30) at כݖ ൌ 0. 

 

When equation (5-30) is integrated with respect to ݎ, the pressure in dimensionless radial form is given by 

 

݌  ൌ
ܴଶߤ

4
ሶ݄

݄ଷ ݂ᇱᇱ|௭כୀ଴൫1 െ ଶ൯כݎ ൅ ௖௜௥ (5-31)݌

 

where ݌௖௜௥ is the (analytically determined) circumferential offset pressure. Generally a zero 

circumferential offset pressure is assumed (݌௖௜௥ ൌ 0). It is noted that the quasi-steady model pressures are 

determined by three dynamic variables, namely ݂ᇱᇱሺ݄, ሶ݄ , ሷ݄ ሻ, ݄ሺݐሻ and ሶ݄ ሺݐሻ, hence as expected ݌ሺ݄, ሶ݄ , ሷ݄ ሻ. 

 

The pressure determined in equation (5-32) may be integrated with respect to disc area to give a squeeze 

force of 

 

ܨ  ൌ
ܴସߨߤ

8
ሶ݄

݄ଷ ݂ᇱᇱ|௭כୀ଴ ൅  ଶ. (5-32)ܴߨ௖௜௥݌

 

Solving equations (5-21) and/or (5-26) can become analytically and even numerically intensive for a large 

set of discrete data points. However, since only ݂ᇱᇱ|௭כୀ଴ is required to determine the resultant pressure or 

radial pressure gradient; ݂ᇱᇱ|௭כୀ଴ is plotted against ߣ for small values of  ߨ4) ߣଶ ൑ ߣ ൑ 100) in Figure 

5-6. 
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Figure 5-6: Variation of second axial derivative of radial velocity at disc interface with shape parameter 

ଶߨ4) ൑ ߣ ൑ 100ሻ 

 

The variation of ݂ᇱᇱ|௭כୀ଴ with large values of ߣ) ߣ ൐ 100) are plotted in Figure 5-7. 

 

 

Figure 5-7: Variation of second axial derivative of radial velocity at disc interface with shape parameter 

ߣ) ൐ 100ሻ 
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A third and second order polynomial curve fit are respectively fitted to the data points of Figure 5-6 and 

Figure 5-7. It is found that using these polynomial as opposed to equations (5-21) and/or (5-26) is a more 

efficient numerical means to process a large set of discrete data points. 

 

Holistic modeling of the system would necessitate the coupling of the resultant pressure force with the 

impulsive impact force. However, the impact dynamics comprises a complex combination of restitution 

and dissipation dynamics (Section 8.1.5 p. 107), and is thus an inappropriate analysis for this thesis. 

 

5.9 Quasi-Steady Applicability Analysis 
 

In order to quantify an approximate error associated with the quasi-steady approximation, i.e. the 

elimination of the evolution term C2’ of equation (5-10) (Sections 5.5, pp 24), the following quasi-steady 

applicability analysis is used. The average magnitude of term ܥଶ’ across the disc separation (or integral 

with respect to כݖ) is divided through by the average inertial forces developed by terms ܥଵ’ ൅  ’ܦ’ܥ

yielding 

 

ܺ ؠ อ
׬ ଶ’ଵ/ଶܥ

଴ כݖ݀

׬ ’ଵܥ ൅ ଵ/ଶ’ܦ’ܥ
଴ כݖ݀

อ ൌ ተ
ተ

׬ ቆ
ሶ݄

݄ଶቇ ሶ݃ ԢԢଵ/ଶ
଴ כݖ݀

׬ ቈ
ሷ݄

݄ଶ െ 2 ቆ
ሶ݄ ଶ

݄ଷቇ቉ ݃ԢԢଵ/ଶ
଴ כݖ݀

ተ
ተ ൌ ተተ

1

൤
ሷ݄
ሶ݄ െ 2 ሶ݄

݄ ൨

ሶ݃ Ԣ|௭כୀଵ/ଶ

݃Ԣ|௭כୀଵ/ଶ
ተተ (5-33)

 

where ܺ is the so-called evolution ratio. This technique makes use of the approximate values of ݃ and its 

derivatives that have been determined by the QSL model, i.e. equations (5-16) and (5-18) though (5-26)a. 

The value of ݃Ԣ|௭כୀଵ/ଶ  ൌ ݂|௭כୀଵ/ଶ can be determined from Figure 5-3 in which ݂|௭כୀଵ/ଶ lies within the 

narrow range of 1 ൑ ݂|௭כୀଵ/ଶ ൑ 2 throughout the applicable range of ߨ4) ߣଶ ൑ ߣ ൏ ∞); hence it is 

approximated that ݂|௭כୀଵ/ଶ ൎ ݂ሺߣ ൌ 0ሻ|௭כୀଵ/ଶ ൌ 3/2. Furthermore the partial derivatives are replaced 

with ordinary derivatives (since the already established values of ݃ and its derivatives are used) and hence 

݂ሶห௭כୀଵ/ଶ ൌ ሶ݃ Ԣ|௭כୀଵ/ଶ (the order of differentiation is unimportant) and therefore equation (5-33) becomes 

                                                      
a It is noted that the values of ݃, ݃ᇱ, ݃ᇱᇱ, … should be derived from the complete numerical solution of equation 

(5-10). However since the complete numerical solution is unavailable, this approximate technique is utilised. 

Owing to the transient nature of the system under investigation, neither an order of magnitude technique nor a 

perturbation technique is found suitable as an applicability analysis for this system. 
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ܺ ؠ ተተ
2

3 ൤
ሷ݄
ሶ݄ െ 2 ሶ݄

݄ ൨
݂ሶห௭כୀଵ/ଶተተ. (5-34)

 

In order to determine the value of ݂ሶห௭כୀଵ/ଶ, the following derivative product is introduced 

 

 
݂݀
ݐ݀

ฬ
௭כୀଵ/ଶ

ൌ
݂݀
ߣ݀

ฬ
௭כୀଵ/ଶ

ߣ݀
ݐ݀

 (5-35)

 

in which ݀ݐ݀/ߣ is determinable for a discrete series of ߣሺ݄, ሶ݄ , ሷ݄ ሻ values. The term ݂݀/݀ߣ|௭כୀଵ/ଶ in 

equation (5-35) is determined by differentiating equations (5-19) and (5-24) at כݖ ൌ 1/2  with respect to 

 as is numerically done in the Excel spreadsheet ‘Dimensionless Velocities’ (CD-Appendix B), the ,ߣ

evaluation of which is given in Table 5-1 and shown in Figure 5-8 with varying shape parameter. 

 

Table 5-1: Variation of the evolution ratio component with shape parameter 
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Figure 5-8: Variation of the evolution ratio component with shape parameter 
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From Table 5-1 the instantaneous average value of ݂݀/݀ߣ can be interpolated at any value of ߣ. Hence an 

evolution ratio trace for a given experiment is obtainable if a discrete series of data points of ݄, ሶ݄  and ሷ݄  

are known. 

 

During the very early stages of a constant energy squeeze flow experiment, directly following the drop-

hammer impact, the disc acceleration will be relatively large and the velocity relatively small. 

Consequently ߣ will be large (say ߣ ൐ 1000) [equation (5-16)] and therefore ݂݀/݀ߣ௭כୀଵ/ଶ will be 

relatively small (Figure 5-8). As a consequence of the above relationships it can be seen from equation 

(5-34) that ܺ will be relatively small during this initial ‘impact’ stage and therefore a quasi-steady 

approximation is appropriate (according to this simplistic qualitative analysis). 

 

It must, however, be noted that instantaneously small values of ܺ following large ܺ values potentially 

may not indicate an accurate quasi-steady assumption. This is because of the partial time derivative 

omission and therefore the history dependence. Instead, ܺ must not exceed a certain limiting magnitude 

for a predetermined period to before the quasi-steady approximation may be considered accurate. This 

magnitude/lag combination is presently undetermined. 

 

5.10 Dynamic Reynolds Number Determination 
 

Traditionally Reynolds numbers are applied to steady-state system such as pipe flows(Schlichting, 1960). 

However, due to squeeze flows being inherently transient and inhomogeneous flows, the application of a 

fixed Reynolds number to a squeeze flow system is somewhat ambiguous. 

 

Nevertheless the Reynolds number for squeeze flows has traditionally been defined as either 

 

 ܴ݁ ؠ െ
݄଴ ሶ݄

ν
 or ܴ݁௧௥௔ௗ ؠ െ

݄ ሶ݄
ν

, (5-36a, b)

 

for a constant velocity squeeze flow(Hamza, et al., 1981) or a constant force squeeze flow (Tichy, 1981) 

respectively. Due to the changing disc kinematics in equation (5-36b), the Reynolds number itself has 

become a dynamic variable through the experimental stroke. It is also noted, as pointed out by Tichy, that 

since the discs may be squeezing or separating, the Reynolds number may be defined as either positive or 

negative. 
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A so-called dynamic Reynolds number, which adheres to the traditional Reynolds number definition as 

the ratio of inertial forces to viscous forces, is introduced as 

 

 ܴ݁ௗ௬௡ ؠ
inertial forces
viscous fores

. (5-37)

 

Referring to Figure 5-4 and the accompanying text, if the axial pressure gradient is assumed negligible 

then the ratio of viscous to inertial forces at any specific value of כݖ is given by  

 

 ܴ݁ௗ௬௡ห
௭כ ؠ

ሾ݂ԢԢ|௭כୀ଴ െ ݂ԢԢሿ
݂ԢԢ

. (5-38)

 

However, in order to establish a mean dynamic Reynolds number across the disc separation, the 

numerator and denominator of equation (5-38) are integrated across half the disc separation to yield 

 

 ܴ݁ௗ௬௡ ؠ ܴ݁ௗ௬௡ห
଴
ଵ/ଶ ؠ

׬ ሾ݂ԢԢ|௭כୀ଴ െ ݂ԢԢሿ݀כݖଵ/ଶ
଴

׬ ݂ԢԢ݀כݖଵ/ଶ
଴

ൌ
1
2 ݂ԢԢ|௭כୀ଴ െ ݂Ԣ|௭כୀ଴

݂Ԣ|௭כୀ଴
. (5-39)

 

Equations (5-20) and (5-21) are substituted into equation (5-39) for an exponential solution ሺߣ ൐ 0) to 

yield 

 

 ܴ݁ௗ௬௡ ൌ
1
2

ߣ√ coth
ߣ√
2

െ 1. (5-40)

 

Equation (5-22) is substituted into equation (5-40) to solve for an oscillatory solution ሺߣ ൏ 0ሻ to give 

 

 ܴ݁ௗ௬௡ ൌ
1
2

ඥ|ߣ| cot
ඥ|ߣ|

2
െ 1, (5-41)

 

which yield only negative values of ܴ݁ௗ௬௡. 
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The interpretation of a positive ܴ݁ௗ௬௡ is that both the average values of viscous and inertial forces act in 

the same direction whereas a negative ܴ݁ௗ௬௡ indicates that the averaged viscous and inertial forces are 

acting in opposing directions. 

 

Using equation (5-41) and (5-42), the variation of ܴ݁ௗ௬௡ with ߣ and the ‘traditional’ Reynolds number 

ܴ݁௧௥௔ௗ (5-36b) are plotted in Figure 5-9. 

 

 

Figure 5-9: Variation of dynamic Reynolds number with shape parameter 

 

The zero intersection of ܴ݁ௗ௬௡ occurs at ߣ ൌ 0 (Figure 5-9), this corresponds to the parabolic fluid 

velocity profile of the lubrication approximation. It is also noted how the curve forms an asymptote at 

ߣ ൌ െ4ߨଶ, which corresponds to incipient separation as defined in the text associated with Figure 5-3. 

 

The traditional Reynolds number is invariant with disc acceleration and hence by equation (5-16), it can 

be shown that ܴ݁௧௥௔ௗ ൌ  Figure 5-9 shows very poor correlation between ܴ݁௧௥௔ௗ and ܴ݁ௗ௬௡, hence .ߣ 1/2

the traditional Reynolds number is a poor representation of the ratio of viscous to inertial forces [equation 

(5-37)]. 
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5.11 Circumferential Pressure Approximation 
 

Within the reviewed literature, a zero circumferential gauge pressure is generally assumed. However, the 

constant of integration arising from the integral of the radial pressure gradient allows the inclusion of 

instantaneous circumferential pressures [equation (5-31)]. 

 

In the context of highly transient squeeze flows it is speculated that circumferential pressures may be 

generated due to fluid inertia effects which extend beyond circumferences of the discs. Initially it was 

thought that containing the fluid precisely between the discs before the experimental stroke (by say a 

burst diaphragm) would eliminate such this effect. However, in this configuration, shortly into the 

experimental stoke, the fluid would extend past the disc circumference due to the radial outflow, and thus 

again promote this effect. Hence if this speculated pressure generation mechanism is correct, 

circumferential offset pressures are unavoidable for a constant contact area squeeze flow (Section 2.1.3, 

p.4). 

 

It is pre-emptively shown that the experimental test cell contains fluid within a flexible fluid bladder 

attached to both disc circumferences as shown in Figure 7-3, pp 70, and the assembly drawing on p. 72. 

Viewing a radial section of the squeeze flow system and the fluid bladder, it can be seen that the fluid 

bladder may be approximated as a constricted source flow system (Figure 5-10). 

 

 

 

 

 

 

 

Figure 5-10: Fluid bladder boundary system modelled as souse flow 

 

In Figure 5-10, ܾ is the bladder radius and ߮ is the effective annular jet angle:\. If an unimpeded source 

flow is assumed then ߮ ൌ  which has the unphysical interpretation that fluid adjacent to the disc would ,ߨ

flow unimpeded through a right angle. Instead the effective annular jet angle is assumed to satisfy 
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2/ߨ ൏ ߮ ൏  this is an purely speculative range because no research material investigating this specific ;ߨ

submerged annular jet flow has been found. 

 

A constricted source flow is given as 

 

௕ݒ  ൌ
݉
ܾ߮

 (5-42)

 

where ݒ௕ is the radial fluid velocity (within the bladder) and ݉ is the source strength. The source strength 

may be approximated to  

 

 ݉ ൌ ௥ഥݒ ݄ ൌ െ
ܴ
2

ሶ݄  (5-43)

 

where ݒ௥ഥ  is recalled from equation (2-4), p. 7. Equation (5-43) is substituted into equation (5-42) which in 

turn is differentiated with respect to time to give 

 

௕ݒ݀ 

ݐ݀
ൌ െ

ܴ
2ܾ߮

݄.ሷ  (5-44)

 

The pressure development for a temporal inertia dominant cylindrical flow system (refer to the Navier-

Stokes equation in Appendix A) is given by 

 

௖௜௥݌݀ 

ܾ݀
ൌ ߩ

௕ݒ݀

ݐ݀
 (5-45)

 

where ݌௖௜௥ is the pressure at the disc circumference, so that when equation (5-44) is substituted into 

equation (5-45) and integrated with respect to radius, the circumferential pressure is obtained as 

 

௖௜௥݌  ൌ ߩ  න െ
ܴ

2ܾ߮
ሷ݄ ܾ݀

௕೚

௕೔

ൌ െ
ܴߩ
2߮

ሷ݄ ln
ܾ௢

ܾ௜
 (5-46)

 

where ܾ௜ denotes the approximated radial start of the source flow and ܾ௢ denotes the approximate bladder 

radius (Figure 5-10). 
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Experimental system constants are substituted into equation (5-46) in Section 7.5.1, p. 84, in order to 

solve for the experimental circumferential pressure. The resultant circumferential pressure offsets and 

corrections made to the experimentally measured radial pressure distributions are shown in Section 8.1.3, 

Figure 8-6, p. 103. 

 

5.12 Eccentric Pressure Distributions 
 

Under the parallel flow assumption, by equation (5-9) the resultant pressure distribution is invariably 

parabolic כ݌ ൌ  ൫1 െ  the result is an ,ߨଶ൯. When this parabolic pressure distribution is rotated through 2כݎ

elliptical paraboloid. It is speculated that through experimental errors such as disc misalignment or non-

uniform circumferential pressures, this paraboloid may become skewed or eccentric, i.e. ݀ߠ݀/݌ ് 0 and 

௠௔௫݌ ്  .௖௘௡௧ are the maximum and central pressures respectively݌ ௠௔௫ and݌ ௖௘௡௧, where݌

 

An eccentric pressure distribution is empirically modelled as being sinusoidally eccentric, i.e. an 

empirical sinusoidal skewness term ሺ1 ൅ cosכݎߪ  ሻ is introduced and multiplied by the paraboloidߠ

pressure distribution term to yield 

 

כ݌  ൌ ሺ1 ൅ cosכݎߪ ሻ൫1ߠ െ ଶ൯כݎ ൌ െߪ cos ߠ ଷכݎ െ ଶכݎ ൅ ߪ cos ߠ כݎ ൅ 1 (5-47)

 

where ߠ and ߪ are defined as the skewness angle and the skewness magnitude respectively and כ݌ is the 

dimensionless pressure given by כ݌ ؠ  ௠௔௫. This empirical model is assumed to correspond accurately݌/݌

with experimental results for small values of ߪ) ߪ ൑ 0.3). 

 

For illustrative purposes, Figure 5-11 shows an oblique and top (contour) view of a sectioned eccentric 

paraboloid with a skewness magnitude of ߪ ൌ 0.3 (upper limit of applicability) and with a skewness 

angle of 0 ൑ ߠ ൑  .2/ߨ3
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Figure 5-11: Eccentric paraboloid radial pressure distributions (three-dimensional) 

 

The plane of symmetry of the eccentric paraboloid lies along the 0:  plane (Figure 5-11). Pressure ߨ

distribution lines at specific angles have been highlighted with various colours; these pressure distribution 

lines are re-plotted against כݎ in Figure 5-12. 

 

 

Figure 5-12: Eccentric paraboloid radial pressure distributions (two-dimensional) 
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The ‘Eccentric Paraboloid’ MATLAB program used to derive Figures 5-11 and 5-12 is given in CD-

Appendix A. 

 

The dimensionless eccentricity magnitude ߯כ is defined as the maximum dimensionless pressure 

difference between an eccentric and a concentric paraboloid at equal radii with equal maximum pressures. 

This is equivalent to the pressure difference between two points at equal radii on either edge of the 

sectioned base in Figure 5-11). Hence ߯כis determined as ߯כ ൌ ሺ0ሻכ݌ െ  2ሻ from equation (5-47)/ߨሺכ݌

this yields 

 

כ߯  ൌ െכݎߪ൫כݎଶ െ 1൯ (5-48)

 

which is also plotted in Figure 5-12. In order to determine the radius of at which the maximum pressure 

difference occurs, equation (5-48) is differentiated with respect to כݎand equated to zero, giving 

 

כ߯݀ 

כݎ݀ ൌ െߪ൫3כݎଶ െ 1൯ ൌ 0  

׵  כݎ ൌ
1

√3
ൎ 0.577. (5-49)

 

Hence, for the eccentric pressure distribution model investigated, equation (5-49) gives the optimum 

radial position at which a set of pressure transducers used to measure pressure paraboloid skewness (or 

the so-called axi-symmetric pressure transducers) should be positioneda. 

 

The peak offset ߦ is defined as the radial distance from the disc/s center to the apex of the skewed 

paraboloid. Similar to the non-dimensional radius, the non-dimensional peak offset is defined as כߦ ؠ

 along the plane of כ݌ The peak offset may be obtained as the radius at which the gradient of .ܴ/ߦ 

symmetry of the eccentric paraboloid is zero. Hence differentiating equation (5-47) at ߠ ൌ 0 with respect 

to כݎ and equating it to zero gives 

 

                                                      
a The reason the axi-symmetric pressure transducers of the test rig are not placed at approximately ܴ/√3 (Figure 

7-7, p. 89) is due to this non-axi-symmetric model being developed after the fabrication of the test rig. Non-axi-

symmetry was only realized as a significant effect after the experimentation was conducted utilizing the already 

fabricated test rig. 
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כ݌݀ 

כݎ݀ ൌ െ3כݎߪଶ െ כݎ2 ൅ ߪ ൌ 0  

 

which may be solved using the quadratic formula in which the plus/minum operator will always be 

positive since the peak offset is positive, then after simplification 

 

כߦ  ൌ
√1 ൅ ଶߪ3 െ 1

ߪ3
ൌ

ଶߪ3

൫√1ߪ3 ൅ ଶߪ3 ൅ 1൯
ൌ

ߪ
√1 ൅ ଶߪ3 ൅ 1

ൎ
ߪ
2

 (5-50)

 

for small values of ߪ. (if 0 ൑ ߪ ൑ 0.3, then 2 ൑ √1 ൅ ଶߪ3 ൅ 1 ൏ 2.13). 

 

Hence when equating the central and maximum pressures, by equations (5-47) and (5-50) 

 

௖௘௡௧݌   ൌ
௠௔௫݌ 

ሺ1 ൅ ሻ൫1כߦߪ െ ଶ൯כߦ
ൎ

௠௔௫݌

ቀ1 ൅ ߪ
2

ଶ
ቁ ቀ1 െ ߪ

4
ଶ

ቁ
ൎ

௠௔௫݌

1 ൅ ߪ
4

ଶ. (5-51)

 

The above theoretical model is adapted for the experimental results in Section 7.5.2, p. 90, in order to 

correct for any errors associated with the eccentricity of the experimentally measured radial pressure 

distributions, the results of which are shown in Section 8.1.3, Figure 8-6. 

 



47 
 

6 CFD MODELING 
 

This CFD evaluation is developed in parallel with the theoretical analysis (Section 0, p.19) to serve as a 

numerical model against which various analytical assumptions and approximations are tested. More 

specifically, the derived theoretical models are directly compared against a hypothetical CFD model in 

order to quantify errors associated with various assumptions and approximations made. 

 

6.1 Hypothetical Disc Motion 
 

Since experimental values of ݄, ሶ݄  and ሷ݄  are currently unknown, a hypothetical velocity curve is created. 

This hypothetical velocity is of sinusoidal form given by 

 

 ܷሺݐሻ ൌ
ܷ௠௔௫

2
൤1 െ cos ൬

2ܽ௠௔௫

ܷ௠௔௫
൰ ൨ (6-1)ݐ

 

where ܷ ൌ െ ሶ݄  and ܷ௠௔௫ is the maximum disc velocity which is set to ܷ௠௔௫ ൌ 4 m/s and ܽ௠௔௫ is the 

maximum acceleration which is set to ܽ ൌ ሷ݄ ൌ 8000 m/s2. The initial disc separation is ݄଴ ൌ 4 mm and 

the experimental stroke time is set to 0 ൑ ݐ ൏ 1.6 ms. The resulting sinusoidal disc velocity curve and 

corresponding acceleration and separation curves are shown in Figure 6-1. 

 

 

Figure 6-1: Hypothetical CFD disc separation, velocity and acceleration vs time 
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A symmetrical squeezing motion is modelled (Section 2.1.2, p. 3), so that each disc moves towards its 

counterpart with half the velocity specified by equation (6-1) and shown in Figure 6-1. 

 

Dimensionless radial fluid velocity profiles are analyzed at the three discrete time instants highlighted 

with letters A, B and C in Figure 6-1 corresponding to time  ݐ ൌ 0.1, 1.0 and 1.5 msa respectively. 

 

6.1.1 Forecast Reynolds Numbers 

 

The traditional Reynolds number [equation (2-5), p. 7] and dynamic Reynolds number [equations (5-40) 

and (5-41), p. 39] for the hypothetical CFD simulation are derived and plotted on the left-hand scale of 

Figure 6-2. In addition the inertial composition [equation (5-7), p. 22] is also plotted in Figure 6-2 on a 

secondary right-hand log scale. 

 

Figure 6-2 shows that the traditional Reynolds number follows a similar form to the disc velocity (Figure 

6-1). However, ܴ݁௧௥௔ௗ holds no correlation with the ܴ݁ௗ௬௡ and hence it be inferred that the traditional 

Reynolds number for squeeze flows is not a good reflection of the ratio of inertial to viscous forces when 

applied to highly transient squeeze flows. 

 

The dynamic Reynolds number is greater than ten during the stroke initiation (ݐ ൏ 0.1 ms) indicating 

inertial force dominance during this phase which is expected. It is also noted that หܴ݁ௗ௬௡ห ൏ 1 for the 

narrow time range of 0.9 ൏ ݐ ൏ 1.35 ms, during which it is inferred that viscous forces are dominant. 

Viewing the inertial composition, it can be seen that temporal inertia is the dominant inertial force 

contributor throughout the experimental stroke (on a time average basis) with spatial inertia only 

becoming dominant through a narrow time region surrounding ݐ ൌ 1 ms. 

 

From the dynamic Reynolds number and inertial composition in Figure 6-2, it may be inferred that the 

pressure generation mechanism at time A (0.1  ms) is dominated by temporal inertia whereas at time B 

(1 ms) the pressure generation mechanism is viscous dominant. Finally, at time instant C (1.5 ms) the 

pressure generation mechanism is once again dominated by temporal inertia. 

                                                      
a These three discrete time points were selected with hindsight to best illustrate the dimensionless radial fluid 

velocity evolution. 
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Figure 6-2: Traditional and dynamic Reynolds numbers and inertial force composition vs time 

 

6.2 Computational Setup 
 

The disc is set to a 60 mm radius with a 4 mm initial disc separation. Gambit™ (the meshing program) is 

set up as a rectangular grid representing a radial slice through the disc separation. This rectangle is 30 

(radial) cells by 51 cells (axial). This ‘Preliminary_4mm’ mesh file is available in CD-Appendix D. 

 

Fluent™ (2ddp) is set up with an axi-symmetric pressure based solver with a laminar viscous flow 

regime. The working fluid is set as incompressible glycerine with ߩ ൌ 1259 kg/m3 and ߤ ൌ 0.799 Ns/m2. 

The Fluent case and data files are given in CD-Appendix D by the ‘Preliminary_4mm’ program. 

 

The step times are set to 1×10-5 s, i.e. a total of 150 steps are needed to complete the experimental stroke 

of 1.5 ms. At time instants B and C the case and data files are saved and are available in Appendix D as 

‘4mm_1ms’ and ‘4mm_1.5ms’ respectively along with other time instants which are similarly, 

appropriately named. 
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6.3 Results 
 

6.3.1 Evaluation of parallel flow assumption 
 

Figures 6-3 and 6-4 respectively show the CFD dimensionless axial velocities and pressure distribution 

contours between the two discs at time instant A (ݐ ൌ 0.1 ms)a, where these dimensionless variables are 

defined as 

 

௔ݒ
כ ൌ

௔ݒ

ܷ
 and כ݌ ൌ

݌
௠௔௫݌

. (6-2a, b)
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Figure 6-3: Dimensionless axial velocity contours at time instant A 

 

 

 

 

 

 

 

 
1 0.75 0.5 0.25 0 

Figure 6-4: Dimensionless pressure distribution contours at time instant A 

                                                      
a The ratio of separation to radius is not to scale in the above figures. 
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Figure 6-3 shows that the dimensionless axial velocity contours are accurately parallel across the disc 

separation with only a marginal distortion towards the disc circumference (right-hand side). It is 

speculated that these distortions are due to edge effects; nevertheless for the purpose of analysis it can be 

assumed that these distortions are negligible and therefore the axial velocities contours are parallel and 

thus the parallel flow assumption is supported [refer to equation (2-12a, b), p. 9, and associated text]. 

 

Figure 6-4 shows a slight axial pressure gradient as seen by the cambering of the vertical pressure contour 

lines (most apparent closest to the centre of the discs). This transverse pressure gradient is very slight and 

can be considered negligible, however it must be noted that ݀כݖ݀/݌ ൎ 0 is an approximate constraint. As 

expected, the pressure distribution is symmetrical about  כݖ ൌ 1/2 due to the symmetrical squeezing 

motion. 

 

Figure 6-5 shows the dimensionless radial pressure distributions at the disc interface (either disc) versus 

dimensionless radius at time instant A, B and C. In addition, an exact parabolic pressure distribution is 

superimposed upon these axes; these four traces are visually so similar that they appear as a single curvea. 

Parabolic pressure distributions are theoretically expected under the parallel flow assumption (Section 

5.4, p. 23). Therefore, in order to quantify the errors of the radial pressure distributions against that of a 

parabolic pressure distribution at time instant A, B and C, a parabolic deviation or error is introduced as  

 

ߝ  ൌ |כ݌| െ ௣௔௥௔௕௢௟௜௖݌
כ . (6-3)

 

Parabolic deviations for time instant A, B and C are plotted on the right-hand scale in Figure 6-4. It can 

be seen that for each measured time instance ߝ ൏ േ1%. This small error is speculated to be due to the 

abovementioned edge affects and other second order affects (terms of the Navier–Stokes equations which 

are considered negligible for analytical derivations, refer to Appendix A). With a maximum measured 

deviation of ߝ ൏ േ1%, the radial pressure distribution may be approximated as invariably parabolic. 

 

                                                      
a It is noted that the pressure distribution at time instant C is plotted as a negative pressure because at this time 

instant a negative pressure is developed between the discs. This is elaborated upon in Section 6.4, pp26. 
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Figure 6-5: CFD dimensionless radial pressure distributions and associated parabolic deviations vs 

dimensionless radius 

 

The dimensionless radial fluid velocities at four predetermined circumferential strips along the disc radius 

[at כݎ ൌ 0.25, 0.5, 0.75 and 1 (disc circumference)] are shown at time instant A, B and C in Figure 6-6. 

 

 

Figure 6-6: CFD dimensionless radial fluid velocities at time instants A, B and C 
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At each time instant, the shapes of ݂ are so similar they appear as a single curve in Figure 6-6. However, 

on closer inspection close to the wall interface, it can be seen that  ݂௥כୀଵ|୆.and  ݂௥כୀଵ|େ stray noticeably 

off the other superimposed ݂ values. This is once again speculated to be due to the abovementioned edge 

effects. 

 

The CFD dimensionless radial velocities are determined using the ‘DRV 0.1ms’, ‘DRV 1ms’, and ‘DRV 

1.5 ms’, Excel spreadsheets in CD-Appendix B. Thereafter the ‘CFD vs Analytical’ Excel spreadsheet 

(CD-Appendix B) is used to develop Figures 6-5 and 6-6. 

 

It is found that both the parallel flow assumption and the assumption of a negligible axial pressure 

gradient are adversely affected by an increase in disc separation. Nevertheless at a ratio of radius to disc 

separation of up to 1: 6, the axial pressure gradient may still be considered negligible and the parallel flow 

assumption may still be considered sufficiently accuratea. 

 

6.4 Comparison of CFD with Theoretical Models 
 

At time instants A, B and C the CFD generated dimensionless radial velocities are compared against 

those of the following models: 

a. QSL model (Section 5.6, p.26) - analytically determined. 

b. QSCL model (Section 5.7, p. 32) - analytically determined. 

c. QS model (Section 5.5, p. 24) - numerically determined. 

 

This comparison assumes that the CFD results are dictated by the exact kinematic model (Section 5.4, 

p.23), i.e. the solution of equation (5-10). Furthermore the mesh motion is assumed to accuratelyb 

correspond to the numerically determined disc velocity, acceleration and resultant separation as calculated 

by Excel (spreadsheet ‘CFD hypothetical experiment’, CD-Appendix B), hence errors such as truncation 

and rounding are considered negligible. 

 
                                                      
a These conclusions are reached from an additional CFD simulation in which the initial disc separation of 4 mm is 

increased to 10 mm (all other parameters are identical); the resulting dimensionless axial velocities and pressure 

distributions contours at 0.1 ms are given in Appendix D. 
b It is noted that equation (5-9), p. 21, will not be exactly satisfied because of the slight transverse pressure gradient 

and slight deviation or the parallel flow as shown in Figure 6-3 and Figure 6-6 respectively. 
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In order to ultimately establish the dimensionless radial velocities of the QSL and the QSCL models, the 

instantaneous shape parameter and corrected shape parameter values are respectively determined by 

equation (5-16) (Section 5.6, p. 26) and equation (5-29) (Section 5.7, p. 33). Truncated values of both the 

shape parameter and corrected shape parameter traces are plotted on the left-hand scale of Figure 6-7. 

Due to the large range and small variations between ߣ and  ߣ௖௢௥  these two traces appear as a single line. 

Hence, in order to distinguish between these two traces and to determine small values of ߣ and ߣ௖௢௥ 

,ߣ) ௖௢௥ߣ ൏ േ50), േߣ and േߣ௖௢௥ are plotted on a log scale on the right-hand scale of Figure 6-7. 

 

 

Figure 6-7: Shape parameter vs time 

 

The shape parameter and corrected shape parameter at time instant A, B and C are given by: 

i. A: ݐ ൌ 0.1 ms; ߣ ൌ 525.41 ൎ ௖௢௥ߣ ൌ 525.13 

ii. B: ݐ ൌ 1. ms; ߣ ൌ ௖௢௥ߣ ,10.91 ൌ  8.18 

iii. C: ݐ ൌ 1.5 ms; ߣ ൌ െ30.09 ൎ ௖௢௥ߣ ൌ  െ30.11 

The exact ߣ and ߣ௖௢௥ values (above) are taken from the Excel spreadsheet ‘CFD hypothetical experiment’ 

(CD-Appendix B). 

 

Since the values of ߣ and ߣ௖௢௥ at A, B and C have been established, the corresponding dimensionless 

radial velocities of the QSL and QSCL models are calculated with the use of equations (5-19) and (5-24), 

pp. 27-28. 
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The dimensionless velocities of the QS model are determined numerically with the use of the MATLAB’s 

Simulink toolbox (‘QS model’ program given in CD-Appendix A, block diagrams of which are shown in 

Appendix B). As discussed in Section 5.5, p. 24, two trial variables, representing ݂ԢԢ|୸כୀ଴ and ݂Ԣ|୸כୀ଴, are 

needed to iteratively solve for these dimensionless velocities, and as further discussed in Section 5.6, p. 

26, the starting values for these two trial variables may be obtained from the QSL model. However, it is 

found that more accurate starting values are obtained from the QSCL model. These starting values are 

varied through a double iterative process and are ultimately solved for by satisfying the boundary 

conditions (Section 5.3, p. 21), yielding the dimensionless velocities of the QS model. 

 

The values of ݂ԢԢ|୸כୀ଴ and ݂Ԣ|୸כୀ଴ for the QS, QSL and QSCL models are given in Appendix C. It is 

recalled that ݌ ן ݂ԢԢ|୸כୀ଴ [equation (5-31), p. 34]. 

 

The dimensionless radial velocities of the QS, QSL and QSCL models are plotted against the CFD 

generated dimensionless radial velocities at the corresponding time instants. However, unlike Figure 6-6, 

only a single ݂ trace at an arbitrary radius is plotted for the CFD solution because approximate radial 

invariance has been established for ݂ (Figure 6-6, p. 52). Therefore, the dimensionless radial velocity at 

50% disc radius is arbitrarily chosen for this comparison. 

 

Figure 6-8 superimposes the dimensionless radial velocities of the CFD solution and the QS, QSL, and 

QSCL models at time instant A (0.1 ms). The difference between the dimensionless radial velocities of 

the QS and QSL/QSCL models are visually indistinguishable, hence it can be inferred that non-linear 

term D2’ [equation (5-10)] is negligible at this time instant. This finding is further supported in that both 

QSL and QSCL models have near identical ߣ and ߣ௖௢௥ values. Moreover, a discrepancy of about 0.4% at 

כݖ ൌ 1/2 is observed between the dimensionless radial velocities of the CFD solution and 

QS/QSL/QSCL models; this reveals that the shape evolution term C2’ may also considered to be 

negligible at this time instant. 
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Figure 6-8: Dimensionless radial velocities at time A 

 

Figure 6-9 superimposes the dimensionless radial velocities of the CFD solution and the QS, QSL, and 

QSCL models at time instant B (1 ms). The dimensionless radial velocities of the CFD solution and all 

theoretical models show a discrepancy of less than 0.5% at כݖ ൌ 1/2. This negligible discrepancy 

suggests that both the shape evolution term C2’ and the non-linear term D2’ [equation (5-10)] are 

negligible at this time instant. 

 

Finally, Figure 6-10 superimposes the dimensionless radial velocities of the CFD solution and the QS, 

QSL, and QSCL models at time instant C (1.5 ms). The dimensionless radial velocities of the QS and 

QSL/QSCL models are negligibly different on a visual basis. Hence it can be inferred that non-linear term 

D2’ [equation (5-10)] is negligible at this time instant. This finding is supported by both the QSL and 

QSCL models having near identical ߣ and ߣ௖௢௥ values (similar to that at time instant A). However, the 

CFD solution lags about 5% (at כݖ ൌ 1/2) behind the QS/QSL/QSCL models dimensionless radial 

velocities at time instant C; this error is associated with the omission of the shape evolution term C2’ 

[equation (5-10)]. Nevertheless term C2’ may still tentatively be inferred to be negligible. 

 

It is however found that if the values of ߣ ൎ ௖௢௥ߣ ൌ െ24.8, which corresponds to a time of ݐ ൌ 1.485 ms, 

is used as opposed to that at ݐ ൌ 1.5 ms for time instant C (Excel spreadsheet ‘CFD hypothetical 

experiment’, CD-Appendix B), the resultant QSL and QSCL models dimensionless radial velocity profile 

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1 1.2

z*

f

CFD

QS model

QSL & QSCL model



57 
 

corresponds almost identically to CFD trace (Figure 6-10). This suggests that ߣ ൎ  ௖௢௥ has effectivelyߣ 

been lagged by approximately 15 μs at time instant C. This seemingly insignificant time lag (less than 1% 

of the stroke period) has a considerable effect on the resultant dimensionless radial velocity profiles due 

to the steep gradient of ߣ ,ߣ௖௢௥ with respect to time at time instant C, as shown in Figure 6-7. 

 

 

Figure 6-9: Dimensionless radial velocities at time B 

 

 

Figure 6-10: Dimensionless radial velocities at time C 
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Figure 6-11 shows the evolution ratio [Section 5.9, p. 36, equation (5-33)] applied to the hypothetical disc 

motion. It can be seen that ܺ remains well below 10% throughout the pressure development (ݐ ൑ 1 ms) of 

the experimental stroke and hence the quasi-steady approximation may be considered applicable 

throughout this phase. This is supported by the good agreement of the dimensionless radial velocity 

profiles of the CFD and the QS model at time instants A and B in Figures 6-8 and 6-9 respectively. 

However, ܺ forms a spike as ݐ ՜ 1.16 ms (truncated in Figure 6-11), which occurs when the sum of 

terms (ܥ’ ൅ ߣ) intersects a zero value [equation (5-10), p. 23] (’ܦ’ܥ ൌ 0). This spike is speculated to be 

the major contributor for the effective 15 μs lag in CFD solution at time instant C (Figure 6-10), refer to 

Section 5.9 p. 36. 

 

Hence the errors associated with the quasi-steady approximation are convincingly negligible when ߣ ൐ 0 

(Figures 6-8 and 6-9), whereas when െ4ߨଶ ൏ ߣ ൏ 0, the errors associated with the quasi-steady 

approximation are at best only tentatively negligible (Figure 6-10) for this hypothetical experiment. 

 

The ‘CFD vs Analytical’ Excel spreadsheet used to develop Figures 6-5, 6-9 and 6-10 are given in CD-

Appendix B. 

 

The resultant central pressure traces of the QS, QSL and QSCL models are obtained by substituting the 

resultant instantaneous values of ݂ᇱᇱ|௭כୀ଴ into equation (5-31), p. 34, at כݎ ൌ 0. These resultant pressure 

traces are shown in relation to the CFD generated central pressure trace in Figure 6-12. The lubrication 

approximation and the inviscid/inertial model are also plotted in Figure 6-12, i.e. equations (2-8), p. 8 and 

equation (5-2), p. 20, respectively. These simplistic models serve as an illustration of the significant 

increase in analytical modeling accuracies of the QSL, QSCL and QS models. 
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Figure 6-11: Evolution ratio vs time 

 

 

Figure 6-12: CFD and theoretical central pressure traces vs time 
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central pressure trace (Figure 6-12). However, in the early stroke stages (ݐ ൑ 0.2 ms), the trace of the 

inviscid/inertial model corresponds closely with the CFD generated pressure trace. 

 

A fairly close correlation between the QSL model and the CFD generated pressure traces is observed with 

only 7% discrepancy between the two traces during the pressure peak (Figure 6-12). Furthermore, as 

expected, this correlation is significantly improved on by the QSCL model which has a mere -3% 

discrepancy between the two traces during the pressure peak. The QSCL model also corresponds 

accurately with the QSa model in that it intersects every QS model marker, i.e. less than 2% error 

(Appendix C, in which ݂ᇱᇱ|௭כୀ଴ ן  ௖௘௡௧). Therefore, the QSCL model is assumed to accurately account݌

for all spatial inertia. 

 

The accurate correlation between the QS model markers and the CFD generated pressure trace [less than 

-3% during the major pressure development (Figure 6-12)] suggests that the quasi-steady approximation, 

(Section 5.5, p.24), is an appropriate assumption for this specific experiment. 

 

It is noted that seemingly negligible deviations in theoretical dimensionless radial velocities (as compared 

against CFD) may result in comparatively large deviations in the resultant pressure differences (as 

compared against CFD) or vice-versa; see Figures 6-9, 6-10 and 6-12. The reason for this apparent 

incongruity is that the pressure development is proportional to ݂ԢԢ|௭כୀ଴ and not ݂, i.e. ݂ԢԢ|௭כୀ଴ is the 

uniquely fine curvature of ݂ at the disc/s interface which cannot be visually ascertained from plots of ݂. 

 

                                                      
a Only eight QS model markers because of the intensive manual iterative processes used to derive the ݂ᇱᇱ|௭כୀ଴ and 

݂ᇱ|௭כୀ଴ values, refer to Section 5.5, p. 23. 
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6.4.1 Kuzma’s solution 

 

Kuzma’s successive approximation [Section 2.4, p. 13, equation (2-19)] is applied to the hypothetical disc 

kinematics (Figure 6-1). The resultant central pressure traces in addition to that of the QSCL model is 

compared against the CFD solution in Figure 6-13. The errors associated with these theoretical models 

(relative to the CFD trace) are also displayed in Figure 6-13 on the secondary right–hand scale. 

Positive/negative spikes (truncated in Figure 6-13) of these error traces occur at ݐ ՜ 1.38 ms due to the 

zero intercept of the CFD trace not coinciding with the theoretical trace intercepts. 

 

Kuzma’s approximation is in good agreement with the CFD results with an associated error of about 15% 

at the stroke initiation (Figure 6-13). Yet as ݐ ՜ 0.8 ms, i.e. as ߣ, ௖௢௥ߣ ՜ 0, the associated error decreases 

because the radial velocity profiles become more parabolic in shape which is Kuzma’s first approximation 

(Section 2.4, p. 12). On the other hand the pressure trace of the QSCL model has an almost negligible 

associated error of ±1% during this development phase of the experimental stroke. However, for ݐ ൐

0.8 ms, both the theoretical models stray increasingly from the CFD solution with time, it is speculated 

that this is due to the quasi-steady approximation which both models make. This speculation is supported 

by the increase in the evolution ratio during this region as can be seen in Figure 6-11. 

 

The dimensionless velocity profiles of Kuzma’s approximation at time instants A, B and C are shown in 

Figure 6-14. It can be seen that at time instant B (1 ms) and C (1.5 ms) the dimensional velocities are 

similar to those shown in Figures 6-9 and 6-10 respectively. However, at time instant A (0.1 ms), the 

dimensional velocity diverges radically from what is predicted by CFD due to the actual dimensionless 

velocities (CFD) being almost square in shape as opposed to parabolic (Kuzma’s first approximation). 

 

Hence the application of Kuzma’s approximation to highly transient squeeze flow systems results in 

relatively accurate pressure traces (േ10% through the significant pressure proportion of the experimental 

stroke), which in turn produces accurate resultant radial velocity profile at relatively low Reynolds 

numbers or shape parameters of ߣ ൏ 50. However, Kuzma’s approximation fails to predict accurate radial 

velocity profiles at high Reynolds numbers or shape parameters of ߣ ൒ 50. Therefore, in order to yield 

more accurate dimensionless radial velocities throughout a highly transient squeeze flow it is 

recommended that the QSCL, or the less complex QSL model, is used. 
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Figure 6-13: Central pressure traces of CFD, Kuzma’s approximation and the QSCL model traces vs time 

 

 

Figure 6-14: Dimensionless radial velocities of Kuzma’s approximation at time instants A, B and C 
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6.5 Symmetrical versus Asymmetrical Squeezing Motions 
 

Spatial inertia is the only pressure development parameter that is affected by symmetrical or asymmetrical 

squeezing motions (Section 2.1.2, p.3). This can be seen by in equation (5-10), p. 23, in which term D2
’ is 

the only term that incorporates the dimensionless axial coordinate כݖ. 

 

The differences in central pressure traces resulting from symmetrical and asymmetrical squeezing 

motions for highly transient squeeze flows are currently not quantified. Therefore, an additional CFD 

simulation is set up which is identical to the hypothetical experiment (Section 6, p. 47) apart from 

incorporating an asymmetrical as opposed to a symmetrical squeezing motion. 

 

Figure 6-15 shows the resultant central pressure traces of the top and bottom discs of the asymmetrical 

squeezing motion experiment, in addition to that of the symmetrical squeezing motion experiment 

 

 

Figure 6-15: Resultant pressure traces of asymmetrical and symmetrical squeezing systems 
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equations (2-30a, b), p. 17. On close examination of Figure 6-15 it can be seen that the symmetrical 

central pressure trace lies marginally below (less than 1.5%) both top and bottom asymmetric central 

pressure traces during the major pressure developments. Hence from this CFD comparison it can be 

inferred that symmetrical and asymmetrical squeezing motions experiments negligibly different pressures 

(pressure gradients) for positive pressures. 

 

Now considering negative pressures, ݐ ൐ 1.38 ms (Figure 6-15), it can be seen that the symmetrical 

squeezing motion central pressure traces appears to continue along the trend established by positive 

pressure traces to reach a minimum pressure of about -3 MPa. However, both the asymmetric squeezing 

motion central pressure traces appear discontinuous and form a negligible pressure plateau; this result is 

clearly erroneous and is speculated to be a CFD error. 

 

Therefore, the resultant pressure traces obtained from asymmetrical squeezing motion experimentation 

may be approximated as symmetrical squeezing motion experimentation. Hence, asymmetrical squeezing 

motion experimental results may be directly compared against symmetrical squeezing motion theory. 

 

The ‘Asymmetric squeeze’ Excel spreadsheet used to develop Figure 6-15 is given in CD-Appendix B. 
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7 EXPERIMENTATION 
 

The theoretical models derived for highly transient axi-symmetric squeeze flows (Section 0, p.19) are 

shown to be accurate when compared against hypothetical squeeze flows as modelled by CFD (Section 6, 

p. 47). It is ultimately intended to compare the theoretical models against experimental results; in order to 

achieve this aim, experimentation is planned and conducted as defined and elaborated upon within this 

chapter. 

 

7.1 Experimental Planning 
 

Recalling Section 1, p. 1, two test categories are proposed for experimentation: 

i. Drop-hammer tests, where a drop-hammer is dropped from a predetermined height onto the upper 

disc that is initially separated from its stationary lower counterpart. 

ii. Contact-hammer tests, where the drop-hammer is initially in contact with the upper disc that is 

initially separated from its stationary lower counterpart. 

Drop-hammer tests are used to induce highly transient axi-symmetric squeeze flows and are classified as 

constant energy squeeze flows [Section 3, p. 18]. On the other hand, contact-hammer tests are expected to 

follow traditional ‘creeping’ axi-symmetric squeeze flow experimentation and thus yield viscous 

dominated results. 

 

Test results are intended to show the following: 

a. Experimental consistency of tests, and if adequately repeatable: 

b. Trends of experimental variables with varying parameters. 

Corresponding to point (a), each test is to be repeated a minimum of five times in order to establish test 

consistency. Henceforth sets of five or more identically repeated tests are called test-sets. Corresponding 

to point (b), assuming the test results are adequately repeatable, tests-sets are conducted at varied 

parameters which include: 

i. Drop mass M (kg). 

ii. Initial disc separation h0 (mm). 

iii. Drop height H (mm). Contact-hammer can be considered a special case of drop-hammer test 

where H = 0 m. 
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In order to establish trends of experimental variables with varying parameters, a minimum of say five 

test-sets per parameter is required. Hence a complete parametric space would require a minimum of 5 

(tests/test-set) ൈ 5ଷ ൌ 625 tests; this parametric space is visually represented as the rows, columns and 

depth of a three dimensional matrix in Figure 7-1, in which each test-set is represented by a cube. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-1: Complete experimental parametric space representation 

 

This above complete parametric space (Figure 7-1) would not only be experimentally intensive to 

achieve, but would also yield protracted and tedious experimental results if represented in full. 

 

Alternatively, if a single parameter is varied whilst the other two are kept constant, the resultant 

experimental variable trends are isolated for that particular varied parameter. These resulting trends may 

be represented by a single set of plots. Since this approach requires substantially less testing, the number 

of test-sets per varying parameter may be increased from five to, say ten; the result of which is a more 

accurate trend establishment. 

 

Preceding these so-called varying parameter plots, a single test is proposed to be analysed in extensive 

detail. This so-called reference test is to be specifically selected from all conducted tests so to best 

illustrate the features of highly transient axi-symmetric squeeze flows. 

 

The increments in drop-mass are limited to the masses of manufactured weight plates of approximately 

5 kg each. On the other hand, both the parameters of initial disc separation and drop height may be varied 

H

h0 

M
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between the values of 0 ൏ ݄଴ ൑ 18 mm (test cell limitation) and 0 ൏ ܪ ൑ 3.5 mm (ceiling height) 

respectively. 

 

The planned parameter increments of all three parameters are given in Table 7-1 with the shaded blocks 

representing the values at which two of the parameters are fixed while the third is varied. Hence Table 7-1 

gives the planned test-sets for drop-hammer tests and consists of a minimum of {5 (tests/test-set) × [10 

 8 (݄଴ variation)]} = 140 tests. In addition a single contact-hammer + (variation ܪ) 10 + (variation ܯ)

test-set is performed (Section 7.3, p.80). 

 

Table 7-1: Planned parameter variations. 

Test number 
Drop Mass (kg) 

േ૙. ૞ kg 

Drop  Height 

(mm) 

Initial Disc 

Separation (mm) 

1 10 100 - 

2 15 200 - 

3 20 300 3 

4 25 400 4 

5 30 500 5 

6 35 600 6 

7 40 700 7 

8 45 800 8 

9 50 900 9 

10 55 1000 10 

 

7.2 Experimental Facilities 
 

Experimental facilities consist of the drop-hammer test rig, the squeeze-flow test cell and various 

instruments. These facilities are discussed in the subsequent three sections. 
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7.2.1 Drop-hammer test rig 

 

The test rig raises and drops the drop-hammer subassembly onto the squeeze flow test cell (Figure 7-2). 

This test rig effectively consists of the following components and subassemblies: 

 

Drop-hammer subassembly: Comprises the hammer, nut and drop-weights. The drop-hammer is 

upwardly supported and axially guided by the support frame. 

 

Support frame: Guides the drop-hammer along the guide rails. 

 

Guide rails: Two solid Ø 50 mm steel bars (columns) secured to the floor and ceiling which guides both 

the support frame and winch frame. 

 

Winch frame: Is winched up by the motorised winch and is latched to the support frame by the latch 

release. 

 

Motorised winch: Elevates and lowers the winch frame (and support frame when latched onto the winch 

frame) with a 2:1 reduction pulley system. 

 

Pneumatic release latch subassembly: Comprises the pneumatic cylinder and latch release. The latch 

releases the support frame (from the winch frame) when the pneumatic cylinder is activated, this is done 

when the operator throws the pneumatic release switch which is located 3 m away from the test rig (not 

shown in Figure 7-2). 

 

Shock absorbers: Brings the support frame to a stop when impacted by the support frame’s journal 

guides. This shock absorber system is constructed with re-enforced rubber tubing (Ø 50 mm I.D. and 

Ø 80 mm O.D.) which surround the guide rails and are externally supported by multiple (adjustable) pipe 

clamps. 

 

Safety arms: Safety devices that pivot at the floor to make contact with the guide rails and hence prevent 

the support frame/drop-hammer from descending lower than a limiting safety height when the operator is 

working on the test cell. 
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Figure 7-2: Test rig schematic (Courtesy of Mr. V Vythilingam) 

 

The hammer protrudes through a hole in the cradle of the support frame, i.e. the drop-hammer 

subassembly is not fixed to the support frame (Figure 7-2). Instead, the lowest drop-weight contacts the 

cradle and thus axially supports the drop-hammer subassembly. Hence during a drop-hammer test, after 

the hammer makes contact with the test cell and begins to decelerate, the support frame continues falling 

until its journal guides contact the shock absorbers which stop its descent. 

 

Although not shown in Figure 7-2, the entire test rig is housed within an expanded steel safety cage with 

an access door and hence is in compliance with health and safety regulations. This steel cage is used 

during drop-hammer tests. 
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7.2.2 Squeeze flow test cell 

 

The test cell is the unit in which squeeze flows are induced and experimentally measured. Essentially this 

test cell assembly consists of four subassemblies as shown in Figure 7-3. In addition the front and right 

assembly diagrams and part lists are given on pages 70 and 71 respectively. The engineering drawing for 

the test cell components are available in CD-Appendix E. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-3: Four sub-assemblies of the test cell (CAD exploded views) 
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Although the assembly and operation of the test cell is relatively self explanatory, key design features of 

the above four sub-assemblies are given as follows: 

 

Base subassembly 

 

• The base is bolted directly to the base of the test rig (Figure 7-2).  

• The base (of which the bottom disc is a constituent) is manufactured from a single piece of steel 

to maximise rigidity. 

• Pressure transducers are screwed directly into the base so that their diaphragms are flush (or 

slightly receded) from bottom disc face. 

• Nylock nuts are used to adjust the alignment of the top plate which in turn aligns the top disc, in 

order that any manufacturing deviations can be corrected for. 

 

Compound plunger subassembly 

 

• The components of the compound plunger subassembly and the bladder (including its top ring) 

are the only components that move axially during an experimental stroke. 

• A compound, as opposed to a simple plunger, was designed as to maximise the specific rigidity of 

the top disc. Retrospective calculations (using the maximum experimental pressures) show a 

maximum axial flexure of 45 µm at 25 MPa is induced (liberal calculations); refer to Appendix E 

for calculations of flexure due to pressure and inertia. 

• The ball bearing on top of the plunger is used to transmit the force applied by the drop-hammer 

directly (axially) downwardsa. 

• The top of the plunger’s shaft is uniquely shaped in a way to minimise (negate) the 

‘mushrooming’ of the top of the shaft (like the anvil of a used chisel). 

• The M4 guide screw (inserted through the axial slot in the sleeve and screwed radially into the 

plunger’s shaft) is used tangentially restrain the plunger. It also allows the user to load the test-

cell, i.e. separate the discs (subsequently discussed in Section 7.3, p. 80) 

                                                      
a Preliminary testing used a flat topped plunger, which resulted in highly eccentric pressure distributions. This in 

turn prompted the development of the eccentric paraboloid distribution theory and axi-symmetric corrective data 

processing; refer to Section 5.12, p. 42 and Section 7.5.2, p. 86 respectively. 
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Bladder subassembly 

 

• The bladder is made of flexible rubber and contains the working fluid between the top disc and 

the base. A rubber inner tube (Ø 200 mm O.D. and tube Ø 50 mm) is used to fabricate the 

bladder. 

• Both of the bladder ring basses are bonded to the fluid bladder (contact adhesive). In this 

configuration when the bladder ring bases are fastened to the top disc and the test cell base (with 

twelve countersunk M3 screws for each seal) the bladder itself becomes a self sealing gasket. 

• The sump attachment attaches the fluid bladder to an elevated fluid sump via flexible rubber or 

silicon tubing (see below). 

• The bleed valve is used to fill/empty the fluid bladder (Section 7.2.4, p.77) and bleed out any 

air/air bubbles in the working fluid. 

 

Guide plate subassembly 

 

• Although not visible in the above figures, the laser sensor measures the displacement of the top 

disc through a slot cut in the top plate. 

• Also not discernable from the above figures, the crown is able to rotate around the sleeve if 

unimpeded by the guide screw, i.e. if the guide screw (and therefore the plunger subassembly) is 

sufficiently elevated. 

• The M4 lever screw (screwed radially into the crown), is used as a lever to rotate the crown for 

contact-hammer tests and to lock the crown in position for drop-hammer tests (elaborated upon in 

Section 7.3.1, p.80). 

 

It can be seen from the above figures that the test cell induces an asymmetric as opposed to a symmetric 

squeeze flow as elaborated upon in Section 6.5, p. 63. 

 

Sump subassembly 

 

The fluid sump is an inverted 1.5 l plastic bottle with a hole cut into its base as shown in Figure 7-4. The 

cap of the bottle is modified to be attached to flexible rubber or silicon tubing which in turn attaches to 

the sump attachment of the bladder subassembly (Figure 7-3). This sump is clamped onto a clamp stand, 
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this arrangement allows the sump to be raised or lowered and thus vary the ambient pressure within the 

bladder. 

 

Figure 7-4: Sump subassembly schematic (courtesy of Mr. V Vythilingam) 

 

7.2.3 Instrumentation 

 

Pressure Transducers: Five pressure transducers are inserted into the test cell base. PCB 

PIEZOTRONICS pressure transducers are used; model 113A23 are used for the three outermost 

transducers and M109B12 models are used for the two inner transducers (Figure 7-7, p. 90). See Section 

7.5.1, p. 84 for calibration coefficients and see Appendix G for pressure transducer specifications. 

 

Pressure transducer cables: PCB PIEZOTRONICS coaxial cables are used to connect the pressure 

transducers to their respective signal conditioners. 
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Signal conditioners: PCB PIEZOTRONICS units amplify the voltage outputs of the pressure 

transducers. A dial indicator on the front panel of the signal conditioners indicates the incoming signal 

‘quality’ from the transducers, i.e. whether the pressure transducers are operational or not. 

 

Laser displacement sensor: This sensor measures the disc separation trace of the plunger (݄ vs ݐ). A 

KEYENCE LB12 sensor head with LB72 controller are used for this purpose (Appendix H). A laser 

sensor is used as opposed to a Linear Variable Differential Transformer (LVDT) due to its higher 

response frequency. 

 

DC power supply: The laser sensor requires an external power supply of 12-24V DC. A LOADSTAR 

DC power supply, model PS-3030 is used for this purpose. 

 

PCP cables: Coaxial PCP cables are used to connect the signal conditioners and the laser sensor 

controller to the multi-channel oscilloscope. 

 

Multi-channel digital oscilloscope: A multi-channel digital oscilloscope is used to store the 

experimental output voltages from the pressure transducers and the laser sensor which are later transferred 

to computer for data processing. In addition this oscilloscope provides the user with experimental 

observation by displaying the output traces of the experimental stroke on its LCD screen. A Yokogawa 

DL708E 8CH DIGITAL SCOPE is used for this purpose. 

 

Tape measure: A tape measure is required to measure the drop height. This measurement is taken 

between the height of the drop-hammer base and the top of the ball bearing at zero disc separation. The 

housing of the tape measure is fastened to a shock absorber of the test rig (using cable ties) and the end of 

the tape is secured to the journal guide of the winch frame (using tape) (Figure 7-2). 

 

Thermometer: A thermometer is required for fluid temperature measurements at the time of 

experimentation (in order to calculate the viscosity). The thermometer is placed in the fluid sump: It is 

assumed that the difference in temperature between the fluid in the sump and the fluid bladder is 

negligible. 

 

Clamp stand: A clamp stand is used to grip and adjust the elevation the fluid sump (Figure 7-4). 

 

Verniers: Verniers are used to set the initial disc separation to a predetermined level. 
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7.2.4 Experimental setup 

 

The test cell is set up by performing the sequential operations discussed in the following subsections. 

 

Pressure transducer insertion 

 

Pressure transducers are inserted into the base of the test cell and sufficiently tightened (with a socket 

spanner) so not to loosen due to vibrations during experimentation. The pressure transducer diaphragms 

must not protrude from the bottom disc face, nor must they recede more than 0.05 mm from the disc 

surface. 

 

To check for diaphragm protrusion, a razor blade is glided along the disc surface (as if shaving the disc). 

On the other hand, the base of the verniers is used to measure the recession of the pressure transducer’s 

diaphragm. If a diaphragm protrudes from the disc surface a PCB PIEZOTRONICS brass washer is 

inserted between the seat of the pressure transducer and that of the test-cell base. The thickness of this 

washer may be reduced by rubbing it against glass paper with a finger (whilst regularly checking its 

thickness with verniers). Hence the correct seating tolerance of the pressure transducer may be achieved 

using the above techniques in an iterative fashion. 

 

Pressure transducer cables are now attached to the pressure transducers in the base of the test cell and to 

the respective signal conditioners. Proper connection is checked by the output given on the signal 

conditioner dials and the live feed output on the oscilloscope when pressure is applied to the pressure 

transducer diaphragms with a finger. 

 

Test cell assembly 

 

The test cell now is assembled as shown in the above assembly diagrams on pp. 70-71 with the exception 

that the fluid bladder subassembly is not attached. All dynamic test cell components are well lubricated 

with grease before assembly. Furthermore, the sump is assembled as shown in Figure 7-4 but is not yet 

attached nor filled. 
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Disc alignment 

 

To accurately align the discs, the following procedure is carried out: 

i. The discs are separated. 

ii. Three small pieces of tissue paper (~1 cm2) are placed across the bottom disc circumference at 

equal radial spacing (~120˚). 

iii. The discs are mated under no additionally applied load. 

iv. The pieces of tissue paper are radially pulled and so that they are either torn or slip out from 

between the discs. In this way the level of the top disc can be inferred. 

v. The top disc level is adjusted according using the nylock nuts (Figure 7-3). 

vi. Steps 1-5 are repeated until all three tissue papers tear when pulled. 

 

This procedure should result in an alignment tolerance of less than 25 μm at the disc circumference 

(measured by pulling a piece of tissue paper gripped with the verniers). 

 

Zero disc separation measurements 

 

Before the fluid bladder is filled, the output voltage of the laser displacement sensor at zero disc 

separation is measured: This ensures that a fluid film is not responsible for an erroneous zero disc 

separation measurement (it is assumed that an air film is of negligible thickness). 

 

This zero disc separation measurement is made by mating the aligned discs under an applied load (~20 kg 

applied to the plunger) and recording the output voltage measured by the laser sensor and displayed on 

the oscilloscope. This so-called ‘grounded voltage’ is determined at ௛ܸబ ൌ 6.08 V for the presented work, 

however this value will vary with experimental setups (positioning of components). Furthermore, in this 

zero disc separation configuration, the disc suspender is screwed down to its lowest position to make 

contact with the plunger. The verniers are then used to measure the protrusion height of the disc 

suspender from the top plate; this measurement is recorded and is used later in determining the initial disc 

separations for drop-hammer testing as later discussed in Section 7.3.2, p. 81. 
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Bladder installation 

 

The guide plate subassembly is then removed from the test rig assembly and the bladder subassembly is 

attached to the base attached with twelve M3 countersunk screws. Similarly the bladder is then attached 

to the top disc of the plunger subassembly. The guide plate subassembly is then replaced. 

 

Fluid bladder filling 

 

The test cell is then attached to the sump subassembly as indicated in Figure 7-4. In order to fill the fluid 

bladder the procedure below is followed: 

i. The test cell is placed on its side on the ground so that the bleed valve points upwards. 

ii. The discs are separated (disc suspender is unscrewed) and the bleed valve cap is removed. 

iii. The empty sump is lowered to its lowest position on the clamp stand. 

iv. Approximately 1.5 l of working fluid is gently poured into the top hole of the sump as to 

minimise the amount of air bubbles incurred by the pouring process. In this configuration the 

equilibrium level of fluid in the sump should be lower than the top of the bleed valve. 

v. The sump is then raised to a position in which the fluid in the sump is at the same level, or 

marginally below the bleed valve level. 

vi. This configuration is left until all the air bubbles in the bladder have diffused out of the fluid. If a 

viscous working fluid is being used (glycerine, say), this process may take several hours. 

vii. The bladder is gently squeezed (i.e. fluid is slowly squeezed out of the bleed valve) at the same 

time the bleed valve cap is screwed onto the bleed valve to ensure no air bubbles are trapped in 

the bladder. 

 

Test cell installation 

 

The pressure transducer wires are taped together and then taped within the radial slot in the base of the 

test cell (Figure 7-3): This ensures that the wires are not crimped between the base of the test rig and that 

of the test cell when placed in position. 

 

The test cell is then secured to the centre of the test rig base with two M10 bolts and the thermometer is 

places in the fluid sump. 
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Finally the laser sensor and the pressure transducer wires are connected to the other instrumentation as 

previously elaborated upon in Section 7.2.3, p.75. 

 

Precautions: During the test cell installation, when the operator must physically position him/herself 

(limbs) under the drop-hammer to position and secure the test cell, the safety arms are employed. This 

involves the following operations: 

i. Elevating the drop-hammer (via winch) to about 5 cm above the safety arm level. 

ii. Lowering the safety arms into position (contacting against the guide rails), i.e. the safe position. 

 

Photographs of the above test cell setup procedures were taken and are shown in CD-Appendix F. 

 

7.3 Procedure and Precautions 
 

Many of the following operations refer to specific test rig and test cell components; hence it is assumed 

that the reader is familiar with Figures 7-2, 7-3 and the assembly diagrams on pp. 70-71. The 

methodology adopted for conducting experiments is elaborated upon in the following subchapters. 

 

7.3.1 Contact-hammer testing procedure 

 

For contact-hammer tests, the disc separator is removed from the test cell. Thereafter the procedure is as 

follows: 

1. The oscilloscope is setup to record pressure transducer output voltages of about 0.01 V and a disc 

separation voltage difference of about 7 V (offset depends on setup), with an associated stroke 

period of ~100 ms. Setting up the oscilloscope is an iterative procedure and may require several 

preliminary tests before the captured data is satisfactory. 

2. The fluid temperature is recorded. 

3. The drop-hammer is loaded up to its full load of approximately 55 kg by loading the drop-

hammer assembly with all ten plates. The nut must be securely tightened with a spanner so that 

the drop-hammer subassembly can be considered a homogenous mass. 

4. The drop-hammer is winched up approximately 50 mm above the ball bearing (plunger 

subassembly). 
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5. The test cell is ‘loaded’ This procedure entails the following operations: 

a. Levering the M4 guide screw (and therefore the plunger subassembly) upwards against 

the top disc (a M10 Allen-key works well for this operation); this operation overcomes 

the negative force generated by the reverse squeeze flow. The guide screw is further 

elevated to above the top ridge of the crown. 

b. Rotating the crown (with the lever screw) and then releasing or lowering the guide screw: 

This positions the guide screw on ridge (top) of the crown and hence axially restrains the 

plunger into position. Only the maximum disc separation of 18 mm is used for contact-

hammer tests, for reasons elaborated upon in Section 8.2, p.116. 

6. The drop-hammer is lowered (winched) onto of the ball bearing (plunger subassembly). The 

drop-hammer is now radially but not axially supported by the support frame. 

7. The stroke is initiated by rotating the crown (with the lever screw) so that the guide screw falls 

into its slot. 

8. The resultant output voltages of the pressure transducers and the laser sensor are checked for 

consistency on the oscilloscope. If an experiment was found to be inconsistent, the experimental 

trace is saved but an additional set is added to the test-set. 

9. Steps 1-9 are repeated until the contact-hammer test-set is completed. 

 

7.3.2 Drop-hammer testing procedure 

 

For drop-hammer tests, the disc separator is replaced (after completion of the contact-hammer test-set) 

and the crown’s lever screw is tightened. It acts like a grub screw and thus secures the crown into position 

during testing, i.e. makes the crown superfluous during drop-hammer tests. 

 

1. The oscilloscope is setup to record pressure transducer output voltages ranging between 0.04 V 

and 0.4 V (dependant on parameters) and a disc separation voltage difference of about 4 V (offset 

depends on setup), with an associated stroke period of about 10 ms. Setting up the oscilloscope is 

an iterative procedure and may require several preliminary tests before the captured data is 

satisfactory. 

2. The fluid temperature is recorded. 

3. If necessary, the drop-hammer is reloaded to its designated mass by adding or removing plates to 

the drop-hammer assembly. The nut must be securely tightened with a spanner so that the drop-

hammer subassembly can be considered a homogenous mass. 
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4. The drop-hammer is winched to approximately 50 mm above the ball bearing (plunger 

subassembly). 

5. If necessary, the initial disc separation is adjusted, this procedure entails the following operations: 

a. Un-tightening the disc suspender lock so that the disc separator may be adjusted. 

b. Adjusting (screwing/unscrewing) the disc separator to increase or decrease the initial disc 

separation. 

c. Measuring the protrusion height of the disc separator with the verniers and subtracted 

from the zero disc separation measurement (Section 7.2.4, p.77) to obtain the initial disc 

separation value. Hence through an iterative process of Steps 5b and c, the initial disc 

separation can be set. 

d. Re-tightening the lock: This ensures that the disc separator does not move due to test cell 

vibrations. 

6. The test cell is ‘loaded’, this procedure entails the following operations: 

Levering the M4 guide screw (attached to the plunger subassembly) upwards against the 

top disc (an M10 Allen-key works well for this operation); this operation overcomes the 

negative force generated by the reverse squeeze flow. The guide screw is further elevated 

until the plunger makes contact with the magnetic clip and is hence ‘latched’ into 

position. 

7. The drop-hammer is then further winched to its designated drop height. 

8. The experimental stroke is initiated by throwing the pneumatic release switch. 

9. The resultant output voltages of the pressure transducers and the laser sensor are checked for 

consistency on the oscilloscope. If an experiment was found to be inconsistent, the experimental 

trace was still saved but an additional set was added to the test-set. 

10. Steps 1-9 are repeated until all test sets as outlined in Table 7-1 and the associated text are 

completed. 

 

Precautions 

 

Although omitted from the above drop-hammer test procedure, the safety cage (Section 7.2.1, p. 68) is 

used during drop-hammer tests for specific health and safety requirements. A safety cage or similar 

device is recommended if these drop-hammer tests are to be replicated. Moreover, it is recommended that 

hearing protection be used during experimentation. 
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differences in voltage magnitudes). The oscilloscope used during experimentation allowed the user to 

scale (magnify) the output voltages and hence view all six of the above traces on the same set of axes. 

Furthermore, this function allowed the output voltages of the pressure transducers to be scaled (roughly 

calibrated) to yield the approximate pressure scaling relative to each other, i.e. roughly normalise 

pressures. During experimentation, these experimental observations were important to allow the operator 

to visually compare traces of repeated tests within test-sets and in so doing, identify and make note of the 

outlying test/s and repeat more tests if necessary. 

 

7.5 Data Processing 
 

Experimental data was saved on the oscilloscope and transferred to computer. These data are given in 

CD-Appendix B in a MATLAB format; the tests are appropriately named with a nomenclature, an 

example of which is given as follows: 

 

D 10 5 50-5 

Indicates the test number. 

Indicates the drop-height in (cm). This number is omitted from contact-hammer tests. 

Indicates the number of drop-hammer weight plates used (where each plate is about 5 kg 

in addition to the 5 kg hammer and nut). 

Indicates the initial disc separation (mm). 

Indicates whether the test is a Contact (C) or Drop-hammer (D) test. 

 

7.5.1 Elementary operations 

 

Although elementary, the following data processing operations discussed in within this section are 

relatively abstract when viewed in isolation from the results (processed data). Therefore, it is 

recommended that the reader proceeds to Section 7.5.2, p. 90, and refers to this section when additional 

information of the stated data processing operation is required. 

 

The following elementary data processing operations are carried out within the MATLAB ‘Process’ 

program (CD-Appendix B): 
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Calibration 

 

The pressure transducers are inter-calibrated against a new, factory calibrated pressure transducer. Inter-

calibration involves the comparison of output voltages between the existing and new pressure transducers 

which all measure an impulsive pressure spike applied to the same body of fluid (this procedure is 

elaborated upon in Appendix F). The inter-calibration constants are given in Table 7-2. 

 

Table 7-2: Pressure transducer information and calibration constants 

Pressure 
transducer 

Radial position 
(mm) and radial 
percentage (%) 

Model Serial 
number 

Calibration constants 
(linear fit) 

Uncertainty 
bound 

coefficients 
 [࣌]

Gradient 
[m] 

Intercept 
[c] 

pt1 0 (0%) M109B12 3870 0.061 0.132 2000 

pt2 27 (45%) M109B12 3869 0.064 0.131 2000 

pt3a 54 (90%) 113A23 6707 0.063 0.993 200 

pt3b 54 (90%) 113A23 7933 0.067 0.981 200 

pt3c 54 (90%) 113A23 6706 0.055 1.065 200 
 

The calibration coefficient of a given pressure transducer is given by 

 

 ݈ܿܽ ൌ ሺܸ݉ ൅ ܿሻ ൈ 0.07282 V/MPa (7-1)

 

where V is the pressure transducer’s output voltage. 

 

The calibration constant of the laser sensor set to 0.4 V/mm (Appendix H). This calibration was tested 

with verniers across its full range and shown to be accurate. 

 

Uncertainty bound calculations 

 

It is empirically found that conservative uncertainty bounds coefficients, defined as ε, follow the 

relationship: 
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 ε ൌ ݈ܿܽ േ
2ܸ|୫ୟ୶

ܸߪ
 (7-2)

 

where ݈ܿܽ is obtained equation (7-1) and ߪ is obtained from Table 7-2 (refer to Appendix F for 

derivations). 

Smoothing 

 

Second order low-pass digital Butterworth filters are used to smooth the raw data output voltages. A 

normalised cutoff frequency of 0.02 is used to smooth pressure traces and a normalised cutoff frequency 

of 0.005 is used to smooth disc separation, velocity and acceleration traces. These above filtering values 

are empirically selected and tested by superimposing the unsmoothed against the smoothed traces, where 

it is visually observed that the noise associated with the unsmoothed traces is eliminated by the filter but 

the dominant features remain visually unaltered (Appendix I). 

 

Stroke initiation/termination 

 

The experimental stroke initiation and termination values are respectively taken when the pressure 

transducer measurement of pt1 exceeds and fall below 2% of the maximum pressure. 

 

Pressure trace truncations 

 

The pressure traces are truncated at 10% of the stroke length preceding the stroke initiation and at 1% of 

the stroke length after the stroke termination, see above. This relatively small value of 1% is used to 

eliminate the erroneous pressure traces associated with termination of the experimental stroke, see Figure 

7-5. 

 

Normalised pressure distribution truncations 

 

The normalised pressure distribution truncations are taken at the experimental stroke initiation and 

termination values (see above). 
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Zeroing time 

 

The time scale is shifted in such a way that zero-time corresponds to the experimental stroke initiation, 

(see above). 

 

Zeroing pressure 

 

It can be seen in Figure 7-5 that the output voltages of the pressure transducers are not zero before the 

stroke initiation; hence the respective pressure transducer output voltages are offset to 0 V before the 

stroke initiation. 

 

Differentiation 

 

The disc separation trace is differentiated with respect to time to yield the disc velocity. In turn, the disc 

velocity (after being smoothed, see above) is differentiated with respect to time to yield the disc 

acceleration. The MATLAB ‘gradient’ function is used to differentiate the above traces. 

 

Normalised parabolic pressure distribution constants 

 

Theoretically a radial parabolic pressure distribution is invariably established [equation (5-9), p. 23]. The 

normalised parabolic pressure distribution constants are calculated as 

 

௧ଵ݌/௧௡݌  ൌ ൫1 െ ଶ൯, (7-3)כݎ

 

 

so that ݌௧ଶ and ݌௧ଷ (see Table 7-2) are respectively calculated as follows: 

i. ݌௧ଶ/݌௧ଵ ൌ 0.798 ൎ 80%  

ii. ݌௧ଷ/݌௧ଵ ൌ 0.19 ൎ 20%. 
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Normalised pressure distribution uncertainty bound calculations 

 

The uncertainty bounds of the normalised pressure distribution values are calculated in a similar way in 

which the unprocessed normalised pressure distribution values are calculated. For example, the upper 

normalised pressure distribution uncertainty bound for ݌௧ଶ is calculated by dividing the upper uncertainty 

bound of ݌௧ଶ by the lower uncertainty bound of ݌௧ଵ and vice-versa. 

 

Inferred circumferential pressure offset 

 

Assuming a parabolic radial pressure distribution is invariably established, the instantaneous resultant 

circumferential pressure ݌ோ may be inferred by fitting a second order, least-square polynomial fit to the 

instantaneous values of ݌௧ଶ௖௢௥  (axi-symmetric corrected), and ݌௧ଷ௔௩௘ (averaged) (later discussed in 

Section 7.5.2, p. 90) while fixing its value at ݌௧ଵ as shown in Figure 7-6. Thereafter, the instantaneous 

values of ݌ோ  may be inferred. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-6: Second order, least-square polynomial pressure distribution fitting 

 

 

 

 

  ோ݌

ܴ 

௧ଶ௖௢௥݌ ௧ଵ݌

௧ଷ௔௩௘݌

݌ ൌ ௧ଵ݌ െ ଶכݎܿ
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Approximate analytical circumferential pressure offset 

 

A theoretical model of the fluid bladder being modelled as a sources flow is introduced in Section 5.11 

(Circumferential Pressure Approximation), p. 41. This data processing operation continues from this 

theoretical model, more specifically, recalling equation (5-46), the equation constants are set to the 

experimental values as follows: 

• ߮ ൌ  .is approximated 3/ߨ2

• ܾ௜ may be approximated as half of the disc separation as shown in Figure 5-10. 

• ܾ௢ is approximated to have an average radius 15 mm; this is a mean value between a flaccid 

bladder (pre-experimental stroke) and fully inflated bladder (post-experimental stroke).  

Hence equation (5-46) becomes 

 

௖௜௥݌  ൌ െ
ܴߩ3
ߨ4

ሷ݄ ln
30
݄

. (7-4)

 

Parabolic carpet plots 

 

Sixty second-order, least square polynomials are fitted to three pressure transducer measurements at 

regular disc separation intervals (Figure 7-6) which then merged together to yield a carpet plot. As with 

Figure 7-6 the circumferential gauge pressure has not been set to zero and therefore is a floating 

parameter. 

 

Spline carpet plot 

 

Same as above except using a spline fit as opposed to a polynomial fit. 

 

Axi-symmetric pressure distribution shapes 

 

As above, a spline fit is fitted to three pressure transducer measurements which in turn are rotated through 

 .to give a (dimensionless) axi-symmetric pressure distribution shape ߨ2
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7.5.2 Eccentricity corrections 

 

This data processing operation follows on from the analysis in Section 5.12 (Eccentric Pressure 

Distributions), p. 43, which assumes a sinusoidally eccentric paraboloid pressure distribution with a zero 

offset pressure may be established due to experimental errors. At any time instant during an experimental 

stoke, both the orientation and magnitude of eccentricity of the skewed paraboloid are unknown. 

However, both these quantities may be inferred from the interrelationship the instantaneous pressure 

transducer measurements. Hence corrections may then be made to these measurements in order to correct 

for associated eccentricity errors. 

 

The test rig measures the central pressure and so by equation (5-51) the maximum pressure may be 

determined. Assuming that ߪ ൑ 0.3 through significant pressure developments of the experimental stroke, 

by equation (5-51)  ݌௠௔௫ ൌ ௠௔௫݌  ௖௘௡௧, hence it may be approximated that݌ 1.025 ൎ  .௖௘௡௧݌

 

The symmetry angle ߶ is defined as the angle made between the plane of symmetry of the eccentric 

paraboloid with a line passing through ݌௧ଵ, ݌௧ଶ and ݌௧ଷ௔ as shown in Figure 7-7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-7: Pressure transducer placement and symmetry angle 

 

Equation (5-47) may be written as 

 

כ݌  ൌ ൫1 െ ଶ൯כݎ ൅ ൫כݎ െ (7-5) ߰ߪଷ൯כݎ

௧ଷ௔݌

௧ଷ௖݌ ௧ଷ௕݌

௧ଶ݌

௧ଵ݌

߶
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where ߰ is introduced as the sinusoidal displacement and is assigned for the three axi-symmetric 

(outermost) pressure transducers which are angularly spaced 23/ߨ apart at equal radii (as shown in 

Figure 7-7). Hence ߰௔, ߰௕ and ߰௖ are respectively giving as 

 

 ߰௔ ൌ cos ௕߰ ߠ ൌ cos ൬ߠ ൅
ߨ2
3

൰ ߰௖ ൌ cos ൬ߠ ൅
ߨ4
3

൰ . (7-6a, b, c)

 

Plotting ߰௔, ߰௕ and ߰௖ with respect to ߠ in Figure 7-8 gives three sinusoidal curves with the properties 

that their sum is zero and the sum of their squares is a constanta. 

 

 

Figure 7-8: Sinusoidal angular displacement vs skewness angle 

 

These two properties are expressed as 

 

 ߰௔ ൅ ߰௕ ൅ ߰௖ ൌ 0 (7-7)

 

and 

 

                                                      
a Only the applications (and not proofs) of these relationships are relevant in the context of this thesis. 
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 ߰௔
ଶ ൅ ߰௕

ଶ൅߰௖
ଶ ൌ

3
2

 (7-8)

 

respectively. 

 

Similar to equations (7-7) and (7-8), it can be shown from equations (7-5), (7-6a, b, c), (7-7) and (7-8) 

that 

 

௧ଷ௔௩௘݌  ൌ
ሺ݌௧ଷ௔ ൅ ௧ଷ௕݌ ൅ ௧ଷ௖ሻ݌

3
 (7-9)

 

where ݌௧ଷ௔௩௘ is the average pressure from all ݌௧ଷ transducers, and 

 

 ߯|௥య
כ ൌ

2
3

ඥሺ݌௧ଷ௔ െ ௧ଷ௔௩௘݌ ሻଶ ൅ ሺ݌௧ଷ௔ െ ௧ଷ௔௩௘ሻଶ݌ ൅ ሺ݌௧ଷ௔ െ ௧ଷ௔௩௘ሻଶ. (7-10)݌

 

where ߯ is the eccentricity magnitude recalled from equation (5-48) in which ߯ ؠ  Using the above .ܴכ߯

approximation that  ݌௠௔௫ ൎ   ௖௘௡௧ and equations (5-48), (5-50) and (5-51), it can be shown that݌

 

ߪ  ൎ כߦ2 ൎ
߯|௥య

כ

ଷݎ௧ଵ൫݌
כ െ ଷݎ

ଷ൯כ
. (7-11)

 

where ݎଷ
 ௧ଷ transducers are situated. For practical data݌ is the dimensionless radius at which all כ

processing operations, it is unnecessary to solve for ߪ as ݌௧ଵ, ݌௧ଶ and ݌௧ଷ௔ lie on the same radial line 

(angular displacement) as shown in Figure 7-7. Instead from equation (7-5) where ݎଶ
כ ൌ 0.45 and 

ଷݎ
כ ൌ 0.9, it can be shown that 

 

 
௧ଶ݌ െ ௧ଶ௖௢௥݌

௧ଵ݌
ൌ  ௔ and߰ߪ0.359

௧ଷ௔௩௘݌௧ଷ௔ି݌

௧ଵ݌
ൌ ௔ (7-12a, b)߰ߪ0.171

 

where ݌௧ଶ௖௢௥  is the eccentricity corrected ݌௧ଶ value. Hence from equations (7-12a, b), ݌௧ଶ௖௢௥  is solved as 

 

௧ଶ௖௢௥݌  ൌ ௧ଶ݌ ൅ 2.1
௧ଷ௔௩௘݌ െ ௧ଷ௔݌

௧ଵ݌
. (7-13)
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It can be seen from equation (7-13) that if ݌௧ଶ௖௢௥ is calculated for a skewed parabolic pressure distribution 

with an associated circumferential pressure offset, then the resultant ݌௧ଶ௖௢௥  value will not yield an 

absolutely accurate correction under the above analysis. However, the correction associated with a 

positive pressure offset will always be under-corrected and hence it will always be advantageous to 

correct results for a skewed parabolic pressure distribution with an associated positive pressure offset 

(more accurate than uncorrected results). On the other hand it can be shown that the correction associated 

with a negative pressure offset will always be over-corrected; this over-correction value reaches twice the 

optimum correction value (calculated at zero offset pressure) at a negative pressure offset of ݌௖௜௥ ൎ

െ0.4݌௧ଵ. Hence it is advantageous to correct for a skewed parabolic pressure distribution with an 

associated negative pressure offset not below -40% of ݌௧ଵ.  

 

Furthermore, it is noted that skewed non-parabolic pressure distributions (a measure of which has not 

been established) will not yield absolutely accurate corrections under the above analysis. It is however 

assumed that pressure distributions that deviate marginally from eccentric paraboloid distributions (i.e. 

distributions that tend towards eccentric conical or cylindrical volumes) will be advantageously corrected 

for. 

 

As a matter of academic interest, if a skewed parabolic distribution with no circumferential pressure offset 

is assumed, the symmetry angle ߶ is given by 

 

 ߶ ൌ cosିଵ ߰௔  

 

in which ߰௔, in addition to ߰௕ and ߰௖, is calculated by  

 

 ߰௔ ൌ
௧ଷ௔݌ െ ௧ଷ௔௩௘݌

߯|௥య
כ

, ߰௕ ൌ
௧ଷ௕݌ െ ௧ଷ௔௩௘݌

߯|௥య
כ

, ߰௖ ൌ
௧ଷ௖݌ െ ௧ଷ௔௩௘݌

߯|௥య
כ

. (7-14a, b c)

 

However, as can be seen from Figure 7-8, the values of ߰௔ are symmetrical about ߨ. Therefore, in order 

to determine whether ߶ lies within the first/second or third/forth quadrant it is noted that ߰௕ െ ߰௖ is 

positive for 0 ൑  ߶ ൑ ߨ and negative for ߨ  ൑  ߶ ൑ Hence ߶ is determinable for  0 .ߨ2  ൑ ߶ ൑  by ߨ2 

 

 ߶ ൌ cosିଵ ߰௔ ; ߰௕ െ ߰௖ ൒ 0 ߶ ൌ ߨ2 െ cosିଵ ߰௔ ; ߰௕ െ ߰௖ ൏ 0. (7-15a ,b)
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7.5.3 Test selection 

 

It is subsequently shown in Section 8.3, p.121, that experiments are highly repeatable by superimposing 

various experimental variables on the same set of axes. This is done by the MATLAB ‘Selection’ 

program (CD-Appendix B). However, outlying traces do occur during certain tests which may be 

identified using this selection program. Hence these tests are excluded from the Averaging process 

(Section 7.5.4) as not to adversely influence the subsequently composed varying parameter plots (Section 

7.5.5) in which these averaged results are utilized. The eliminated tests are given in the ‘Exclusion table’ 

Excel spreadsheet given in CD-Appendix C. 

 

7.5.4 Test averaging 

 

The selected tests (Section 7.5.3) are aggregated to render an averaged test which is in turn used to 

determine varying parameter plots (Section 7.5.5). This is done by the ‘Averaging’ programs (CD-

Appendix B, found in the respective Varying Parameter folder). These programs render averaged results 

which are saved in a MATLAB format with the same naming nomenclature defined in Section 7.5, p. 84, 

with the exception that the test number is omitted. These averaged results are given in CD-Appendix B in 

an ‘Averaged’ folder within the appropriate Varied Parameter folders. 

 

7.5.5 Varying parameter plots 

 

Finally the averaged tests (Section 7.5.4) are used to render varying parameter plots. This is done by 

MATLAB ‘VP’ (Varying Parameter) programs where: 

• VP-H: processes carpet plots for drop-Height variations. 

• VP-M: processes carpet plots for drop-Mass variations. 

• VP-h0: processes carpet plots for initial disc separation variations. 

These ‘VP’ programs are given in CD-Appendix B within the appropriate ‘Averaged’ folder. 
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8 RESULTS AND DISCUSSION 
 

Experimental data obtained from the testing procedure (Section 7.3, p. 80) are development by various 

data processing operations (defined in Section 7.5, p. 84) by the MATLAB ‘Process’ program (CD-

Appendix B) to yield experimental results presented within the subsequent two sections (Sections 8.1 and 

8.2). In order to optimise the following discussion, experimental results are sequentially presented and 

concisely discussed within these sections with data processing operations only being specified but not 

elaborated upon. Hence if the reader requires information on specific data processing operations, Section 

7.5, p. 84 (Data Processing) may be referred to. 

 

Within Sections 8.1 and 8.2 various experimental variables are determined with the intension of 

ultimately comparing experimental results against theory [Section 0 (Theoretical Analysis), p. 19]. For 

example the comparison of instantaneous experimentally determined radial pressure distributions against 

the theoretically determined parabolic distribution and the comparison of the experimental central 

pressure trace with those theoretically determined. 

 

8.1 Reference Test Results 
 

The first test (test 1) conducted with the initial conditions of H = 500 mm, h0 = 10 mm and M = 30 kg was 

selected as the reference test (Section 7.1, p. 65). Only this test is analysed in extensive detail within this 

section. 

 

Before proceeding with the experimental results of the reference test, it must pre-emptively be noted that 

tests comprising test-sets (identical initial conditions) are highly repeatable, as is later shown in Section 

8.3, p. 121. This is important to justify the methodology of analysing only one test in extensive detail. In 

turn, varying parameter carpet plots, subsequently presented in Section 8.4, p. 125, show the change of 

experimental variables (features) with a varying experimental parameter. 

 

Within all figures (or all figures on the same page), the parameters of drop-height H, initial disc 

separation h0, drop-mass M and test-set number are specified within the graph title. 
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8.1.1 Pressure and disc separation traces 

 

The resultant pressure traces for the reference experiment, measured by pressure transducers 1, 2, 3a, 3b 

and 3c (the radial and angular positions of which are specified in Table 7-2, p. 85, and shown in Figure 

7-7, p. 90) are displayed on the left-hand scale of Figure 8-1 with respect to time. In addition to these 

pressure traces, the disc separation trace is displayed on a secondary right-hand scale as a red trace. 

 

 

Figure 8-1: Pressures and disc separation vs time 

 

The data processing operations required to yield Figure 8-1 include calibration, uncertainty calculations, 

smoothing, zeroing time and pressure trace truncating (Section 7.5.1, p. 84). 

 

For the sake of neatness, only upper and lower uncertainty bounds for ݌௧ଵ (central pressure measurement) 

are included as the dotted black lines in Figure 8-1. The uncertainty bounds for the other pressure 

transducers become pertinent when establishing the radial pressure distributions as subsequently shown in 

Figure 8-3 and discussed in the associated text. The laser displacement sensor has a measurement 

tolerance of േ50 µm (Appendix H); hence for the sake of neatness the disc separation uncertainty bounds 

are omitted from Figure 8-1 as their inclusion results in a marginally thicker ݄ trace. 
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Since the instantaneous disc separation measurements are known (Figure 8-1), various experimental 

variables may be plotted with respect to disc separation as opposed to time (as is subsequently done in 

Figures 8-19 and 8-20, p. 120). Both these domains are useful for different evaluations; plotting curves on 

the disc separation domain is particularly useful for varying parameter carpet plots where in general, the 

stroke period varies but the stroke displacement remains relatively constant (Section 8.4, p. 125). 

 

Feature classification 

 

The following features are visually ascertained from Figure 8-1 and classified as follows: 

• The preliminary pressure spike: 

This small pressure spike develops at the stroke initiation, peaks with a maximum central 

pressure of 0.4 MPa at t = 0.45 ms and lasts for approximately 1 ms. 

 

• The major pressure spike:  

This pressure spike peaks at t = 6.8 ms and reaches a maximum central pressure of about 

3.5 MPa at 1.5 mm disc separation.  

 

• The bridging region: 

This is the lower pressure region that bridges the preliminary and major pressure spikes and 

has a time interval of 1 ൑ ݐ ൑ 3.5 ms. 

 

• The residual fluid film: 

It is seen by the disc separation trace that the plunger does not come to rest at zero disc 

separation. Instead, a residual fluid film is responsible for a 0.9 mm post experimental stroke 

disc separation. This residual fluid film continues to diminish with respect to time after the 

termination of the experimental stroke, following an asymptotic relationship. Hence it is 

assumed that the discs never make contact when encompassing a fluid film. For this reason, 

the grounded disc separation value of ݄ ൎ 0 must be measured when the discs are dry 

(Section 7.2.4, p. 77). 
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8.1.2 Disc velocity and acceleration 

 

In addition to the pressure and the disc separation traces shown in Figure 8-1, the first and second disc 

separation time derivatives (disc velocity and disc acceleration respectively) are crucial experimental 

quantities in determining theoretically modelled pressure traces. These derivatives are shown on the right-

hand scale of Figure 8-2 with the central pressure trace plotted on the left-hand scale for purpose of 

correlating events. 

 

 

Figure 8-2: Central pressure, velocity and acceleration vs time 

 

The disc velocity trace is obtained by differentiating and then smoothing (Section 7.5.1, p. 84) the disc 

separation trace. The disc acceleration trace is in turn obtained by differentiating and then smoothing the 

disc velocity trace. The uncertainty bounds of both the disc velocity and acceleration traces cannot be 

accurately determined due to the utilisation of the smoothing algorithms. 

 

From Figure 8-2, the velocity is seen to increases through the preliminary pressure spike and reaches a 

maximum value of 1.85 m/s at 1.4 ms through the bridging region. The maximum measured negative 

acceleration is -2250 m/s2 which occurs at 0.5 ms and its peak corresponds relatively accurately with the 
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peak of the preliminary pressure spike; this strongly suggests that the preliminary pressure spike is an 

acceleration dominant pressure development. 

 

If the drop-hammer were in direct contact with the plunger subassembly during the major pressure spike, 

then a direct correlation between the acceleration trace and the pressure spike would be observed 

according to Newton’s second law (݌ ן ݉ ሷ݄ ); this is not observed in Figure 8-2. It is later shown in 

Figure 8-10 and the associated text that the reason for this poor acceleration/pressure correlation is due to 

bouncing of the plunger relative to the drop-hammer. Furthermore, if the maximum disc velocity of 

1.85 m/s through the bridging region is compared against an unimpeded drop-hammer impact velocity of 

ܸ ൌ ඥ2݃ܪ ൌ 1.98 m/s (elementary kinematic equations), then a velocity discrepancy of only 7% is 

observed. This relatively minor velocity discrepancy cannot account for the energy dissipation associated 

with the pressure development and other energy losses. Instead, this higher than expected experimental 

disc velocity supports the above inference that the plunger bounces relative to the drop-hammer during 

the bridging region as shown Figure 8-10. 

 

8.1.3 Radial pressure distribution 

 

The normalised pressure distribution values are calculated by dividing the instantaneous pressures 

measurements of transducer 1 to 3c by transducer 1 and plotting the resultant dimensionless traces with 

respect to time as represented by the solid lines on the left-hand scale of Figure 8-3. The associated 

normalised pressure distribution uncertainty bounds (Section 7.5.1, p. 84) are also been included in 

Figure 8-3 as dotted lines with colours corresponding to their respective normalised pressure distribution 

trace. Moreover, the theoretical normalised parabolic pressure distribution constants (Section 7.5.1, p. 

84) are also plotted as horizontal dashed lines with the blue and magenta lines corresponding to the 

theoretical (parabolic) values of normalised pressure distribution 2 and 3 respectively. Pressure 

distribution truncations (Section 7.5.1, p. 84) are used to exclude the error dominated pressure 

distributions associated with small pressures. Finally the central pressure trace has been included on the 

right-hand scale of Figure 8-3 for the purpose of correlation events. 

 

It is recalled from equation (5-9), p. 23, and associated text that an axi-symmetric parabolic radial 

pressure distribution is invariably theoretically established for a squeeze flow system under the parallel 

flow assumption. In conjunction with this parabolic radial pressure distribution, a zero circumferential 

pressure boundary condition is generally assumed. However, from Figure 8-3 it is apparent that the 
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pressure distribution is both eccentric and offset by a circumferential pressure during preliminary pressure 

spike and bridging regions of the experimental stroke: If an axi-symmetric parabolic pressure distribution 

with zero circumferential pressure were invariably established, the normalised pressure distribution 

uncertainty bounds in Figure 8-3 would enclose their respective theoretical parabolic normalised pressure 

distribution constants throughout the experimental stroke.  

 

Hence applying the eccentricity correction procedure (Section 7.5.2, p. 90) to the unprocessed normalised 

pressure distribution values (Figure 8-3) gives Figure 8-4. By comparing in Figure 8-3 with Figure 8-4 it 

can be seen that the normalised pressure distribution values have only been marginally altered. The 

normalised pressure distribution uncertainty bounds have been omitted from Figure 8-4 due to associated 

data processing (mathematical) complexities; however as a heuristic, the uncertainty bounds can be 

thought of as (instantaneously) similar those given in Figure 8-3. In this light it is clear that the reference 

test is offset by a circumferential pressure during the preliminary pressure spike and the bridging regions. 

 

The eccentricity correction procedure results in negligibly altered normalised pressure distribution traces 

for this specific test, i.e. the pressure distribution of the reference test is relatively concentric throughout 

the stroke (a contributing factor in the selection of the reference test). However, the effectiveness of this 

corrective procedure is best illustrated when comparing the superimposed unprocessed and eccentricity 

corrected normalised pressure distribution traces of a whole test-set (repeated tests) against each other. 

This is subsequently done in Section 8.3, p. 121, in which Figures 8-22a and 8-22b show that this 

procedure greatly reduces the spread of the normalised pressure distribution traces by about 60% during 

the major pressure spike. 
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eccentricity and offset corrected normalised pressure distribution values, the inferred instantaneous 

resultant circumferential pressure offset ݌ோ is also given as a percentage of ݌௧ଵ  in Figure 8-5. By 

comparing Figure 8-5 with Figure 8-4, it can be seen that this technique significantly corrects the 

normalised pressure distribution traces towards that of a parabolic distribution during the preliminary 

pressure spike and the bridging region. 

 

Additionally, the approximate analytical technique is used to solve for the circumferential pressure offset 

 ௖௜௥  [the empirical model of which derived in Section 5.11, p. 41 into which constants for the݌

experimental system are substituted in Section 7.5.1, p. 84, equation (7-4)]. Hence, using the approximate 

theoretical values of the circumferential pressure ݌௖௜௥  as opposed to the experimentally inferred 

 .ோ values, the corrected normalised pressure distribution traces are given by Figure 8-6݌

 

Comparing Figure 8-6 with Figure 8-5 it can be seen that the analytical normalised circumferential 

pressure ݌௖௜௥ /݌௧ଵ  follows the trend of the inferred normalised circumferential pressure ݌ோ /݌௧ଵ almost 

identically but at a lesser magnitude. This comparison strongly supports the analysis of the bladder being 

approximated to a source flow in which temporal inertial forces (a strong function of disc acceleration) 

are dominant [equation (7-4), p. 89].  

 

Despite the pressure distribution being corrected for instantaneous eccentricity and circumferential 

pressure offsets, it is still apparent from both Figures 8-6 and 8-5 that normalised pressure distribution 2 

is still largely exceeding (~20%) its parabolic normalised pressure distribution constant during the 

preliminary pressure spike [with uncertainly bounds being inferred as comparable to those given in Figure 

8-3]. The interpretation of this is that the pressure distribution is not parabolic during this region, and 

tends towards the shape of a truncated cone. 

 

Notwithstanding the good correlation of the analytical and experimentally inferred circumferential 

pressures offsets observed in Figures 8-6 and 8-5, various experimental assumptions made in applying the 

theoretical model (݌௖௜௥ ) are purely speculative and are therefore questionable. Furthermore, the 

experimentally inferred pressure offset (݌ோ ) assumes that the radial pressure distribution is parabolic; this 

assumption is clearly false as shown by Figures 8-6 and 8-5 (as discussed above). Therefore, this offset 

correction model is only applied to the reference experiment results. 
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In isolation, the reference experiment, with its relatively loose uncertainty bounds, is not a compelling 

argument for the establishment of a non-parabolic pressure distribution (Figures 8-5 and 8-3). However, it 

is subsequently shown in Figure 8-40, p. 141, that all ten of the averaged test traces (each of which is 

averaged from a minimum of four tests) have an eccentricity corrected normalised pressure distribution 

values of 90 ൑ ௧ଵ݌/௧ଶ݌ ൑ 100% throughout the preliminary pressure spike. Hence these averaged 

normalised pressure distribution traces are similar to Figure 8-3 and thus would yield similar eccentricity 

and offset corrected pressure distributions to those given in Figures 8-5 and 8-6. 

 

On the other hand, throughout the major pressure spike, the eccentricity and offset corrected normalised 

pressure distribution traces (Figures 8-5 and 8-6) appear to be in good agreement with parabolic pressure 

distribution constants, with negligible inferred circumferential pressures. 

 

Hence, in conclusion, it may tentatively be stated that a concentric parabolic pressure distribution is 

established during the major pressure spike with a negligible associated offset pressure, while during the 

preliminary pressure spike a non-parabolic pressure distribution with a relatively significant 

circumferential pressure offset is established. However, the ratio of parabolic pressure distribution 

deviation to circumferential pressure offset is undeterminable with the current test cell. During the 

bridging region the uncertainty bounds are too large to reach a conclusion (Figure 8-3); henceforth only 

the pressure distributions associated with the preliminary and the major pressure spikes are investigated. 

 

The axi-symmetric pressure distribution shapes (Section 7.5.1, p. 84) at the preliminary pressure spike 

peak and the major pressure spike peak are respectively presented in Figures 8-7a and b; their shapes give 

a more intuitive representation of these pressure distribution variations. 

 

 

Figure 8-7: Axi-symmetric pressure distribution shapes at: 

(a) the preliminary pressure spike peak (b) the major pressure spike peak. 

(a) (b) 
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8.1.4 Three-dimensional plots 

 

A more informative way to view Figure 8-1, so that both central pressure and associated pressure 

distributions may simultaneously be viewed, is to plot the pressure with respect to disc separation and 

disc radius. Hence each pressure trace may be plotted along its appropriate disc radius as shown by the 

dashed lines below in Figure 8-8 where ݌௧ଶ௖௢௥  (eccentricity corrected) and ݌௧ଷ௔௩௘(averaged value) are 

shown by the blue and red dashed lines respectively while the black dashed line shows the pressure 

measured by ݌௧ଵ. The circumferential gauge pressure has not been set to zero in Figure 8-8 and so it is a 

floating parameter. The data processing operation used to yield this parabolic carpet plot is discussed in 

Section 7.5.1, p. 84. 

 

The above process is repeated for the preliminary pressure spike to yield Figure 8-9. However, unlike 

Figure 8-8, a spline carpet plot (Section 7.5.1, p. 84) now replaces the second order polynomial fitted 

carpet plot. Similarly, the circumferential gauge pressure has not been set to zero in Figure 8-9 and so it is 

a floating parameter. 
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Figure 8-8: Pressure vs radius vs height 

 

 

Figure 8-9: Pressure vs radius vs height (preliminary pressure spike) 
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8.1.5 Force and energy calculations 

 

Numerically integrating instantaneous spline fitted pressure plots over the disc area yields an approximate 

instantaneous force exerted by the pressure ܨ௣௥௘. Furthermore, since the instantaneous acceleration 

(Figure 8-2) and mass of the plunger (2.1 kg) are known, the resultant force ܨ௥௘௦ exerted on the plunger 

may be calculated by Newton’s second law. Thereafter, since both the force due to pressure and resultant 

force exerted on the plunger are known, the force exerted by the drop-hammer on the plunger ܨ௠௔௦௦ may 

be inferred as the difference of these forces. These three forces are plotted in Figure 8-10 below. 

 

Figure 8-10 reveals that the plunger bounces relative to the drop-hammer throughout the bridging region 

of the experimental stroke (1.5 ൏ ݐ ൏ 3.2 ms) consistent with ܨ௠௔௦௦ ൎ 0. Initially it was assumed that the 

masses of both the drop-hammer and the plunger would combine as a homogenous mass soon after 

impact. This assumption is false and holds implications for theoretical modelling of the system in that a 

homogeneous mass may not be assumed in order to couple the disc acceleration with the pressure 

development between the discs, according to Newton’s second law. 

 

 

Figure 8-10: Force due to pressure, applied force and resultant force vs disc separation 
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The work done by the pressure is given by ௣ܹ௥௘ ൌ ׬  ௣௥௘ ݄݀; for the above experiment this value isܨ

calculated as ௣ܹ௥௘  ൌ 41.62 J. The gravitational potential energy of the drop-hammer is calculated as  

 

ீܧ  ൎ  (1-8) ,ܪ݃ܯ

 

where the initial disc separation ݄଴ is not included in equation (8-1) because ܪ ب ݄଴ [with the exception 

of very low drop heights (ܪ ൏ 200 mm)]. The gravitational potential energy of the above test is 

calculated at ீܧ ൌ 58.8 J. So by the first law of thermodynamics the energy of the drop-hammer and the 

work due to pressure development may be equated to reveals a discrepancy of 29%. 

 

Non-conservative energy losses such as friction of the drop-hammer cradle along the drop-hammer 

columns (Figure 7-2, p. 69) and thermal energy transfer to the working fluid are speculated to account for 

the above energy losses. It is also recalled that plastic deformation of the drop-hammer, which was noted 

on the impact area of the drop-hammer after testing (Section 7.4, p. 83), will contribute to energy losses. 

On the other hand, it is also recalled that the drop-hammer bounced off the plunger after the experimental 

stroke (Section 7.4, p. 83); therefore the impact dynamics of the systems are a combination of restitution 

and dissipation dynamics. Since the above energy transfers cannot individually be quantified, ߟ is 

introduced as the energy transfer coefficient where 

 

 ௣ܹ௥௘௦ ൌ  (2-8) .ீܧߟ

 

Hence for the reference test (above) ߟ ൌ 71%. 

 

8.1.6 Application of theoretical models 

 

In order to apply the various theoretical models to the experimental stroke, it is first necessary to obtain 

the fluid kinematic viscosity. During experimentation, the temperature was noted to fluctuate between 

18±1˚Ca which yields a viscosity range of ߤ ൌ 1.63ି଴.ଵ଺
ା଴.ଵ଼ Pa.s (refer to the Excel ‘Viscosity’ Spreadsheet 

Appendix C, composed from data obtained from Dorsey (1995). Furthermore, due this small temperature 

fluctuation, a density of ߩ ൌ 1262 kg/m3 is relatively constant(Dorsey, 1995). The kinematic viscosity 
                                                      
a For the purposes of error analysis, the viscosity change due to temperature fluctuation is investigated. 



109 
 

may therefore be obtained by ߥ ؠ ߥ yielding [equation (2-6)] ߩ/ߤ ൌ 1.292ି଴.ଵଶ଻
ା଴.ଵସଷ ൈ 10ିଷ m2/s [not the 

same as used for the CFD modelling (Section 6, p. 47)]. 

 

Before theoretically modelling the central pressure traces, it is of interest determine the instantaneous 

pressure generation mechanisms, i.e. the terms of the exact kinematic model [equation (5-10), p. 23] that 

are predominantly responsible for the pressure developments at any time instant. 

 

For the sake of convenient referencing, the inertial composition [equation (5-5)], traditional Reynolds 

number [equation (2-5)] and the dynamic Reynolds numbers [equations (5-40) and (5-41)] are 

respectively recalled as follows 

 

 Ը ൌ ቤ
ሷ݄ ݄
ሶ݄ ଶ െ 1ቤ,  ܴ݁௧௥௔ௗ ؠ െ

݄ ሶ݄
ν

, 

 

 ܴ݁ௗ௬௡ ൌ
1
2

ߣ√ coth
ߣ√
2

െ 1 for (ߣ ൐ 0) and ܴ݁ௗ௬௡ ൌ
1
2

ඥ|ߣ| cot
ඥ|ߣ|

2
െ 1 for (ߣ ൏ 0).

 

The inertial composition indicates the ratio of temporal to spatial inertia (Section 5.2, p. 21) and the 

dynamic Reynolds numbersa indicates the ratio of inertial to viscous forces (Section 5.10, pp 38). The 

above parameters are shown on the right-hand scale of Figure 8-11 with the central pressure trace plotted 

on the left-hand scale for purposes of correlating events. 

 

As shown before for the CFD model (Figure 6-2, pp 49), the traditional Reynolds number has poor 

correlation with the dynamic Reynolds number, once again indicating that the traditional Reynolds 

number is a poor representation of the ratio of inertial to viscous forces for highly transient squeeze flows. 

 

Figure 8-11 shows that ܴ݁ௗ௬௡ ൐ 5 during the preliminary pressure spike indicating inertial force 

dominance. Furthermore, within this region the inertial composition is approximately of order two (Ը 

truncated in Figure 8-11); hence during the preliminary pressure spike it is inferred that temporal inertia 

[term C1’ of equation (5-10), p. 23] is dominant. On the other hand, during the major pressure spike 

ܴ݁ௗ௬௡ ൎ 0, indicating that viscous forces [term B1’ of equation (5-10), p. 23.] are dominant. 

                                                      
a The shape parameter values used in determining the dynamic Reynolds number are pre-emptively obtained from 

Figure 8-13. 
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Figure 8-11: Traditional and dynamic Reynolds numbers and inertial composition vs time 

 

Before the various quasi-steady models are applied to the reference test, it is important to determine 

whether or not a quasi-steady approximation is applicable for the theoretical modelling of the above 

experimental results. Hence the evolution ratio ܺ (Section 5.9, p. 36) is recalled as the magnitude of the 

partial time-derivative term divided by the inertial terms used in determining the QSL model (Sections 

5.6, p. 26). Thus ܺ is desired to be as low as possible to validate the quasi-steady approximations made by 

both the QSL model and the QSCL model (Sections 5.7, p. 32). The evolution ratio is recalled from 

equation (5-33) as 

 

ܺ ؠ ተተ
2

3 ൤
ሷ݄
ሶ݄ െ 2 ሶ݄

݄ ൨
݂ሶห௭כୀଵ/ଶተተ 

 

where ݂ሶห௭כୀଵ/ଶ is calculated by equation (5-35)a, which makes use of the values in Table 5-1, as 

elaborated upon in Section 5.9, p. 36. The evolution ratio is plotted with respect to time in Figure 8-12. 

 

                                                      
a The shape parameter values used in determining the evolution ratio number are pre-emptively obtained from 

Figure 8-13. 
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Figure 8-12 truncates the sharp ܺ spike occurring at ݐ ൌ 6.6 ms which corresponds to ߣ ൌ 0. 

Notwithstanding this spike, ܺ predominantly lies below 10% throughout the experimental stroke, with a 

subsidiary spike peaking at ܺ~30% at ݐ ൌ 1.1 ms, the beginning of the bridging region. In general, the 

averaged magnitude of ܺ is similar to that obtained for the CFD experiment shown in Figure 6-11, p. 59; 

thus ܺ may tentatively be considered as sufficiently small throughout the experimental stroke for a quasi-

steady approximation to be considered accurate. This therefore permits the applications of both QSCL 

and QSL models. 

 

Theoretical pressure traces are obtained by inserting instantaneous experimental values of ݄, ሶ݄  and ሷ݄  and 

fluid constants ߤ ,ߥ and ߩ into the following models: 

• Lubrication Approximation [equation (2-8)] defined in Sections 2.4, p. 8. 

• Inviscid/Inertial Model [equation (5-2)] defined in Sections 5.1, p. 20. 

• QSL Model [equations (5-16) and (5-31)] defined in Sections 5.6, p.26. 

• QSCL Model [equations (5-29) and (5-31)] defined in Sections 5.7, p.32. 

 

The above theoretical pressure traces are then compared against experimentally measured pressures in 

order to test the respective models validity. It is emphasized that, in principle, the above comparative 

technique is no different (for example) to substituting specified values of ሶ݄  into the well documented 

lubrication approximation to obtain a theoretical disc separation trace. 

 

All of the above modes predict invariably parabolic radial pressure distributions, hence only the central 

theoretical pressure traces (כݎ ൌ 0) of these models are compared against the central pressure transducer 

trace. However, it must be recalled that the experimentally measured central pressure traces have un-

quantified associated non-parabolic pressure distributions and circumferential offset pressure, especially 

during the preliminary pressure spike (refer to Figure 8-6 and associated text). Hence direct comparisons 

between experimentally measured and theoretical central pressure traces must be made tentatively. 

 

In order to generate central pressure traces for the QSL and QSCL models, the instantaneous values of the 

shape parameter and corrected shape parameter are required. The shape parameter [equation (5-16), p. 26] 

and corrected shape parameter [equation (5-29), p. 33] are respectively recalled as follows 

 

ߣ  ؠ
1
ν

ቆ
ሷ݄ ݄ଶ െ 2 ሶ݄ ଶ݄

ሶ݄ ቇ and ߣ௖௢௥ ؠ
1
ν

ቈ
ሷ݄ ݄ଶ ൅ ሺߢ െ 2ሻ ሶ݄ ଶ݄

ሶ݄ ቉ 
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in which the linearization variable ߢ is given by the polynomial as a function of ߣ in Figure 5-5, p. 32. 

Both the shape parameter and corrected shape parameter are plotted on a log scale against time in Figure 

8-13, in which ߣ and ߣ௖௢௥ are plotted as solid lines whereas െߣ and െߣ௖௢௥ are plotted as dashed lines. 

Uncertainty bounds for ߣ are calculated by inserting the upper and lower fluid viscosity limits (arising 

from temperature change) and the upper and lower disc separation uncertainty limits (laser sensor 

measurement tolerance) into equation (5-16), p. 26, while disc velocity and acceleration are assumed to be 

absolutely accurate (uncertainties unavailable due to the use of smoothing algorithms). Subsequently the 

upper and lower limits (traces) of ߣ are used to obtain the upper and lower limits of ߢ, which in turn are 

used to calculate the uncertainty of ߣ௖௢௥ (explained above). Hence the upper and lower uncertainty 

bounds of ߣ௖௢௥ are included in Figure 8-13, however for the sake of clarity the uncertainties of ߣ are 

omitted. 

 

In addition to ultimately calculating the theoretical central pressures, the shape parameter and corrected 

shape parameter traces can be used to calculate the instantaneous dimensionless radial fluid velocity 

profiles by equations (5-19) and (5-24). Alternatively, using Figure 5-3, p. 30, the approximate 

dimensionless radial fluid velocity profiles may be inferred. However, it must be recalled that an 

asymmetrical squeezing motion is experimentally induced (Section 2.1.2, p. 3), whereas the theory 

assumes a symmetrical squeezing motion, so the experimental dimensionless radial fluid velocities would 

differ slightly (become skewed as a function of disc velocity) from those theoretically predicted. 

 

At the peak of the preliminary pressure spike, ߣ ൎ ௖௢௥ߣ ൎ 5000 (Figure 8-13), hence a radial flow with a 

well defined boundary layer and associated high sheer stresses at the disc interfaces is established. During 

the major pressure spike, ߣ ൎ ௖௢௥ߣ ൎ 0, hence the radial flow tends to a parabolic velocity profile 

(lubrication approximation). The minimum measured value for the shape parameter at the termination of 

the experimental stroke is ߣ ൎ ௖௢௥ߣ ൎ െ0.4; therefore the resultant minimum dimensionless radial fluid 

velocity would never appear visually different from a parabolic velocity profile (Figure 5-3, p. 30). 

 

The instantaneous values of ߣ and ߣ௖௢௥ are used to derive corresponding ݂ԢԢ|௭כୀ଴ values calculated by the 

polynomial curve fits given in Figures 5-6 and 5-7, p. 35. In turn, these ݂ԢԢ|௭כୀ଴ values are substituted into 

equation (5-31) (Section 5.8, p. 34) recalled as 

 

݌  ൌ
ܴଶߤ

4
ሶ݄
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The central pressure traces of the QSL and QSCL models are plotted alongside the experimental pressure 

traces in Figure 8-14. Also included are the upper and lower uncertainty bounds of the QSCL model given 

by red dotted lines. The uncertainty bounds of the QSL model are omitted for the sake of neatness (they 

are similar to those of the QSCL model). These uncertainty bounds are calculated in a similar way in 

which ߣ and ߣ௖௢௥ are calculated, in that viscosity and disc separation measurement uncertainties are 

included in equation (5-31) in addition to the uncertainties of ߣ௖௢௥. 

 

The QSL and QSCL pressure traces are very similar, but the QSCL model produces marginally more 

accurate (closer to experimental) results during the bridging region during which disc velocities are 

highest (magnified insert in Figure 8-14). The uncertainty bounds of the QSCL trace overlap those of the 

experimental pressure trace for the entire experiment with the exception of the tail end of the 

experimental stroke and the initial development of preliminary pressure spike (Figure 8-14 insert). 

Corresponding to this initial inaccuracy, it can be seen that the theoretical preliminary pressure spike lags 

behind the experimental pressure trace by approximately 200 μs. It is speculated that this theoretical lag is 

due to second order effects such as rig flexure, laser sensor frequency response lag and smoothing errors. 

 

Superimposing the central pressure traces of the simplistic models, namely the lubrication approximation 

and inviscid/inertial model, alongside the experimentally measured central pressure trace yields Figure 

8-15. Figure 8-15 is plotted directly below Figure 8-14 to promote visual comparison between all 

theoretically modelled pressure traces. Uncertainty bounds of these simplistic models are also included in 

Figure 8-15 which are calculated in a similar way to those of the QSCL model. Due to the assumed disc 

acceleration accuracy, the inviscid/inertial model has a negligible associated uncertainty, whereas the 

uncertainty bound of the lubrication approximation is comparable to that of the QSCL model. 

 

Both the QSL and QSCL models (Figure 8-14) show a marked increase in accuracy over the lubrication 

approximation and inviscid/inertial model (Figure 8-15). Nevertheless, it can be seen that the pressure 

trace of the inviscid/inertial model corresponds relatively accurately with the experimentally measured 

preliminary pressure spike, whereas the pressure trace of the lubrication approximation corresponds 

relatively accurately with the experimentally measured major pressure spike Therefore, for the sake of a 

simplistic approximation the preliminary pressure spike may be approximated to be inertial dominant 

(and is approximately modelled by the inviscid/inertial model) whereas the major pressure spike may be 

assumed to be viscous dominant (and is approximately modelled by the lubrication approximation). 
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8.2 Contact-Hammer Test Results 
 

Contact-hammer tests are a special set of drop-hammer tests where the drop height is set to zero before 

the experimental stroke initiation, i.e. the drop-hammer makes contact with the plunger before the 

initiation of the experimental stroke. As a consequence of the low energies involved in contact-hammer 

tests the resultant pressures are relatively low ( ݌௠௔௫ ൏ 0.6 MPa). Hence in order to maximise the 

pressures measured during the contact-hammer tests, both the initial disc separation and the drop-hammer 

mass are set to their maximum values of 18 mm and 55 kg respectively. Therefore, only a single contact-

hammer test-set is performed so that the resultant maximum resultant pressure is approximately two 

orders of magnitude greater than the ambient noise of the pressure transducers. 

 

Contact-hammer tests have a resultant central pressure trace as shown on the left-hand scale of Figure 

8-16. In addition the velocity and acceleration traces have been plotted on the right-hand scale. 

 

 

Figure 8-16: Central pressure, velocity and acceleration vs time (contact-hammer test) 
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Comparing this contact-hammer test against a drop-hammer test (reference test), i.e. Figure 8-16 versus 

Figure 8-2, p. 98, the following differences are noted: 

i. The contact-hammer test has no large negative acceleration during the stroke initiation 

(associated with the drop-hammer impact) and therefore no preliminary pressure spike, only 

pressure transducer noise until ݐ ൐ 60 ms. 

ii. The contact-hammer test has a maximum velocity of approximately one order of magnitude 

smaller than drop-hammer tests. 

iii. The experimental stroke period of the contact-hammer test is approximately one order of 

magnitude larger than drop-hammer tests. 

 

It is also noted that the contact-hammer test (Figure 8-16) has good correlation between the major 

pressure spike trace and the positive acceleration trace [unlike the above drop-hammer tests (Figure 8-2, 

p. 98)]. It may therefore be inferred that no significant bouncing occurs between the plunger and the drop-

hammer. This inference is further supported by an average acceleration of approximately -8 ms-2 during 

0 ൏ ݐ ൏ 60 ms, which correlates to a slightly retarded gravitational free-fall. 

 

Viewing the pressure distributions based on an inferred least-square second order polynomial fit (as 

previously performed in Figure 8-5, p. 103, and described in the associated text) yields Figure 8-17. 

Alternatively viewing the pressure measurements and associated pressure distribution variation as a 3-

dimensional plot (as previously composed in Figure 8-9 and described in associated text) yields Figure 

8-18. 

 

Both Figures 8-17 and 8-18 show that the pressure distribution is close to parabolic. However, from 

Figure 8-17 it can be seen that this parabolic pressure distribution is associated with a back pressure of up 

to 25 kPa during the major pressure spike. It is speculated that this back pressure arises from the elastic 

strain of the rapidly inflated fluid bladder (Section 7.2.2, p. 70). This circumferential offset pressure 

generation mechanism is negligible in the context of drop-hammer tests due to the substantially higher 

pressures generated. 

 

Plotting the shape parameter during the major pressure spike yields Figure 8-19, it can be seen that the 

shape parameter has a comparatively narrow range of െ0.9 ൏ ߣ ൏ 3.5, i.e. visually indistinguishable 

from a parabolic radial velocity (Figure 5-3, p. 30). This indicates that during contact-hammer tests, the 

pressure development of the major pressure spike is viscous dominant. This conclusion is supported by 

the similarity (less than 2% difference) of the central pressure traces of the QSCL model and lubrication 
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approximation in Figure 8-20, both of which correspond well (entirely within uncertainty bounds) to the 

experimentally measured central pressure trace. 

 

Although not included within any of the figures, the evolution ratio ܺ lies within the narrow range of 

ܺ ൏ 1.5%, with the exception of the sharp ܺ spike corresponding to ߣ ൌ 0. This small value suggests that 

term C1’ of equation (5-10) is negligible throughout the contact-hammer experiment and hence a quasi-

steady approximation is applicable. 
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8.3 Repeatability of Results 
 

As stated in Section 7.1, p. 65, every test-set consists of a minimum of five repeated tests. Tests are 

repeated in order to determine the experimental repeatability or consistency. Superimposing various 

variables on the same axes allows visual assessment of experimental repeatability. Hence through this 

process outlying tests may be identified and eliminated before the respective test-set is averaged. These 

averaged tests are in turn used to yield varying parameter carpet plots as defined in Section 8.4, p. 125. 

 

A test-set with an initial dropped height of 500 mm, as opposed to the 200 mm of the reference test is 

analysed for experimental consistency within this section. The superimposed pressure traces for ݌௧ଵ, ݌௧ଶ 

and ݌௧ଷ௔ are shown in Figure 8-21. 

 

Figure 8-21 shows that the five superimposed pressure traces for ݌௧ଵ are acceptably repeatable, with a 

spread of only about 3% during the major pressure spike peak. The repeatability of pressure traces of 

pressure transducers 2 and 3a have discrepancies of up to 6% during the major pressure spike. This latter 

trend is also true for the pressure traces of pressure transducers 3b and c, however, for the sake of brevity 

these plots are omitted. 

 

It can be seen in Figure 8-21 that there are discrepancies in the initial disc separation of up to 0.3 mm. 

Such experimental errors can be attributed to grit being caught in between the magnetic clip and the 

plunger (see assembly diagram on p. 70). 

 

Figure 8-22 shows five superimposed uncorrected (a) and eccentricity corrected (b) normalised pressure 

distribution 2 traces [Section 7.5.2, p. 90, equation (7-13)], which are placed directly on top of each other 

to aid visual comparison. The eccentricity correction of normalised pressure distribution 2 is most 

accurate where the circumferential pressure is relatively small; i.e. the major pressure spike (see Figure 

8-5 and the associated text), which is expected because temporal inertia affects are small. Hence during 

the major pressure spike (4 ൐ ݄ ൐ 0.8 mm) the spread is reduced by up to 65%. This illustrates the 

effectiveness of the eccentricity correcting model in correcting axi-asymmetric parabolic pressure 

distributions. 
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On the other hand, Figure 8-25 shows that test 3 strays most significantly from the mean spread of the 

acceleration traces, particularly during the major pressure spike (4 ൐ ݄ ൐ 0.5 mm). Therefore, test 3 is 

omitted from the test-set before the experimental variables are aggregated to produce the averaged test 

with parameters given by H = 500 mm, h0 = 10 mm and M = 30 kg (Section 7.5.4, p. 94). The outlying 

tests for every test-set are listed in the Excel ‘Exclusion table’ in CD-Appendix C 

 

8.4 Final Results 
 

Various aggregated experimental variables [obtained from averaged tests (Section 7.5.4, p. 94)] including 

central pressure, normalized pressure distribution values, disc velocity and acceleration may in principle 

be obtained as a function of drop height (H), drop mass (M) and initial disc separation (h0) as independent 

parameters. Hence varying parameter carpet plots have been constructed by (i.) varying H while keeping 

M and h0 constant, (ii.) varying M while keeping H and h0 constant, and (iii.) varying h0 while keeping H 

and M constant. These are reflected in Sections 8.4.1 to 8.4.3 respectively. 

 

8.4.1 Drop height variation 

 

Figure 8-26 shows the variation of central pressure traces with disc separation for ݄଴ ൎ 10 mm 

corresponding to ten drop heights (ten 3-dimensional line plots). In addition, a carpet plot is fitted 

(interpolated) to these ten 3-dimensional line plots so that pressure at any given disc separation and drop 

height can be visually interpolated by means of the corresponding colour-bar (right of the figure). Finally 

a contour plot is displayed on the floor of Figure 8-26, where the contour lines correspond to the marked 

increments of the colour-bar. Hence it can be seen that the shapes (scale) of the major pressure spikes 

appear virtually proportional to drop height. 

 

Similarly Figure 8-27 shows the preliminary pressure spikes as a function of drop height (identical to 

Figure 8-26 with magnified z-axis and truncated y-axis). It can be seen that the preliminary pressure 

spikes also appear to be scaled with drop height. The jagged edge at the stroke initiation in Figure 8-35 is 

due to the truncation operations used to yield the carpet plots. 
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Figure 8-26: Central pressure vs drop height vs disc separation 

 

Figure 8-27: Central pressure vs drop height vs preliminary disc separation 
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When following the peak pressure lines in the contour plots of Figure 8-28, it can be seen that for 

ܪ ൐ 300 mm, all major pressure spikes occur at ܷ~0.75 m/s. The lubrication approximation [equation 

(2-8), p. 8] shows that ݌ ן ܷ/݄ଷ, or ݄ ן ඥ1/݌య  when applied to this above observation. This asymptotic 

relationship is experimentally observed (but not quantified) by the peak pressure lines (1 ൑ ݄ ൑ 1.5 mm) 

in the auxiliary contour plots (most apparent in subsequent Figure 8-30 due to the magnified disc 

separation axis). Hence this simplistic analysis and supports the claim that the major pressure spike is a 

viscous dominant feature. 

 

A further simplistic analysis has been conducted in which the preliminary pressure spike is approximated 

as being inertial dominant. When conducting an order of magnitude analysis to the inviscid/inertial model 

[equation (5-2), p.20] during the preliminary region (݄ ൐ 9 mm), it can be shown that ݌ ן ܽ/݄ (using 

instantaneous values of ݄, ሶ݄  and ሷ݄  ascertained from Figures 8-28 and 8-29). Figure 8-27 shows that the 

preliminary pressure spike occurs at an approximately constant disc separation and Figure 8-29 shows 

that the disc acceleration is proportional to the drop height, ܽ ן  Applying these observations to the .ܪ

above inviscid/inertial approximation results in ݌ ן  ,which is experimentally observed in Figure 8-27 ,ܪ

thus supporting this simplistic analysis. 

 

Figure 8-30 shows the experimental central pressure variations with drop height (a) measured 

experimentally, (b) modelled by the QSCL model and (c) modelled by the lubrication approximation. 

Both theoretical models of the central pressure variation with increasing drop height appear to correlate 

satisfactorily with that experimentally measured during the major pressure spike. However, the peak 

pressure lines in the auxiliary contour plots indicate that the disc separation at which the peak pressures 

occur are more accurately modelled by the QSCL model than by the lubrication approximation. 

Moreover, it can also be seen from the auxiliary contour plots that the magnitudes of the developing 

major pressure spikes are more accurately modelled by the QSCL model than by the lubrication 

approximation. The above correlations have previously been observed in isolation for the reference test as 

shown in Figures 8-15 and 8-14. 

 

On the other hand for larger drop heights of ܪ ൐ 500 mm, it can be seen in from Figure 8-30 that the 

central pressure variation of the QSCL model becomes increasingly erratic with drop height relative to the 

lubrication approximation (view the jagged edge of the major pressure spike in Figure 8-30b). 
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Figure 8-31 shows the variations of the preliminary pressure spike with drop height (a) measured 

experimentally, (b) modelled by the QSCL model, (c) modelled by the lubrication approximation and (d) 

modelled by the inviscid/inertial model (identical to Figure 8-30 with magnified z-axis and truncated y-

axis). 

 

 
 

 
 

Figure 8-31: Central pressure vs drop height vs preliminary disc separation: (a) Experimental (b) QSCL 

model (c) Lubrication approximation (d) Inviscid/Inertial model 

 

Figure 8-31 shows that the preliminary pressure spikes developed by the QSCL model correspond 

satisfactorily on a visual basis with the experimental results. Likewise the inviscid/inertial model shows 

similar trends albeit at an approximately 20% lower magnitude. It is also noted that the preliminary 

(a) (b) 

(c) (d) 
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pressure spikes of the theoretical models are more rounded towards the peak magnitudes than those of the 

experimental results. It is speculated that this deviation is due to second order effects such as rounding 

errors. As expected, the lubrication approximation does not develop a preliminary pressure spike. The 

above correlations have previously been observed in isolation for the reference test as shown in Figures 

8-15 and 8-14 (similar to the major pressure spike correlations). 

 

Figure 8-32 shows the eccentricity corrected normalised pressure distribution 2 traces (Section 7.5.2, 

p. 90) and the averaged normalised pressure distribution 3 traces (Section 7.5.2, p. 90) versus disc 

separation corresponding to ten drop heights. It can be seen that the normalised pressure distribution 

values are relatively stable between 4 ൐ ݄ ൐ 1 mm (between the initial development and peak of the 

major pressure spike) where ݌௧ଶ௖௢௥/݌௧ଵ ൎ 80% and ݌௧ଷ௔௩௘/݌௧ଵ ൎ 20% indicating that the radial pressure 

distribution is approximately parabolic and is not offset by a significant circumferential pressure. 

However, during the decline of the major pressure spike (݄ ൏ 1 mm), these distribution values become 

unstable. 

 

On the other hand, during the preliminary pressure spike and the bridging region (10 ൐ ݄ ൐ 4 mm), the 

normalised pressure distribution values in Figure 8-32 follow a trend virtually independent of drop height, 

which is identical to the trend established by the reference test (Section 8.1.3, p. 99). Hence during the 

preliminary pressure spike it is strongly suggested that a non-parabolic radial pressure distribution is 

established with an associated offset pressure (Section 8.1.3, p.99). 

 

Figure 8-33 shows the gravitational potential energy ீܧ  and the work due to pressure ௣ܹ௥௘ (Section 8.1.5, 

p. 107.) plotted against drop height (for all drop height test-sets). The ௣ܹ௥௘ values used to compose the 

௣ܹ௥௘ curve are taken as the average value for each test-set, whereas the upper and lower ௣ܹ௥௘ uncertainty 

bounds (included as dotted lines) correspond to the upper and lower values of tests within the test-sets. It 

can be seen that ீܧ ן  and ݃ are constants. Furthermore, it can be seen that ௣ܹ௥௘ also increases ܯ since ܪ

approximately linearly with respect to drop height; therefore after introducing a mean energy transfer 

coefficient of ߟҧ ൌ 65% [equation (8-2)] it can be seen that the ௣ܹ௥௘ trace corresponds satisfactorily to 

ீܧҧߟ  (largely within error bounds). This relationship is expected because the major pressure spike (the 

dominant energy dissipation mechanism) is also linearly scaled with increasing drop height (Figure 8-26) 

and the associated pressure distributions are relatively independent of drop height (Figure 8-32). 
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Figure 8-32: Normalised pressure distribution 2(cor) and 3(ave) vs drop height vs disc separation 

 

 

Figure 8-33: Energy vs drop height 
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8.4.2 Drop mass variation 

 

The plots presented within this section are developed the identical way in which the drop height variation 

plots are developed, therefore descriptions of the construction of the plots presented within this section 

are omitted but can be referenced by the paragraphs following the corresponding plots of drop height 

variation in Section 8.4.1, p. 125. Furthermore, many of the trends observed for drop mass variations are 

identical to those for drop height variations, therefore similar trend descriptions and evaluations are 

referred to in Section 8.4.1, p. 125. 

 

Figure 8-34 shows the variation of central pressure traces with disc separation for ݄଴ ൎ 10 mm 

corresponding to ten drop masses (ten 3-dimensional line plots). It can be seen that the scaling of major 

pressure spikes appear to be proportional to drop mass, similar to that of the drop height variation (Figure 

8-26). However, unlike the drop height variations, when the preliminary pressure spikes are viewed in 

Figure 8-35, it can be seen that the preliminary pressure spikes are also virtually independent of drop 

mass. 
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Figure 8-34: Central pressure vs drop mass vs disc separation 

 

Figure 8-35: Central pressure vs drop mass vs preliminary disc separation 
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By following the peak pressure lines in the auxiliary contour plots of Figures 8-36 and 8-37 for ܯ ൐

15 kg, it can be seen that all major pressure spikes occur at relatively stable disc accelerations ܽ~1 km/s2 

and velocities ܷ~0.5 m/s, irrespective of drop mass. On close investigation of the disc velocities at the 

peak pressure line (Figure 8-36), it is counterintuitive to note that the velocities actually decrease slightly 

with increasing major pressure spike magnitudes, albeit through a limited disc velocity range of  0.75 ൑

ܷ ൑ 0.5 m/s. Furthermore, similarly to drop height variation, the peak pressure line tends asymptotically 

towards zero disc separation as drop mass increases, within limits of 0.7 ൑ ݄ ൑ 2.3 mm (intercepting 

݄ ൌ 1 mm at ܯ ൎ 30 kg). Therefore, similar to the drop height variations, the above observations are 

supportive of the major pressure spike being approximated as a lubrication approximation (Section 8.4.1, 

p. 125). 

 

Figure 8-38 show the experimental central pressure variations with drop mass (a) measured 

experimentally, (b) modelled by the QSCL model and (c) modelled by the lubrication approximation. For 

lower drop masses of ܯ ൑ 35, both theoretical models show the central pressure variation with increasing 

drop mass correlates satisfactorily with that experimentally measured during the major pressure spike. 

 

However, for higher drop masses of ܯ ൐ 40, there is poor correlation: the lubrication approximation 

exceeds the measured major pressure spike by up to 50% and the QSCL model appears radically erratic 

and exceeds the measured pressure by up to 100% (truncated in Figure 8-38b). A similar, but less extreme 

trend of theoretical models producing increasing erratic pressure variations at diminishing disc 

separations has previously been observed for drop height variations (Figure 8-30). 

 

The above erratic theoretical pressure modelling trends may result from one or more of the following 

factors: 

i. Measurement tolerances of the laser sensor. 

ii. Rig flexure which may lead to further inaccurate disc separation measurements. Both (i) and (ii) 

will adversely affect the subsequent disc velocity and acceleration derivations. 

iii. Fluid compressibility affects. 

iv. Disc flexure [even though retrospective calculations have shown that this flexure is small with 

deflection of less than 45 µm (Appendix E)]. 

v. Smoothing algorithms used in determining disc acceleration and velocity. 

 

Corresponding to point (i.), considering the laser sensor has a measurement tolerance of േ50 µm 

(Appendix H) at a disc separation of 0.7 mm the disc separation uncertainty is േ7%, applying the inverse 



137 
 

cubic relationship of the lubrication approximation ݌ ן 1/݄ଷ [equation (2-8), p. 8] results in a pressure 

uncertainty of േ23%. Furthermore, the above analysis neglects the disc velocity error (also proportionate 

to disc separation measurements) [corresponding to point (ii.)]. 

 

Referring to Figures 8-14 and 8-15, p. 115, it can be seen that both the QSCL model and the lubrication 

approximation have similar uncertainty bounds. However, both these uncertainty bounds assume that disc 

velocity and acceleration are absolutely accurate (uncertainties are unavailable due to the use of 

smoothing algorithms). This assumption is clearly false, as can be seen by comparing Figure 8-44 with 

Figure 8-45, p. 144, which reveals that the higher the time derivative, the greater the associated spread of 

superimposed traces, i.e. uncertainty bounds. Hence the uncertainty bounds of the lubrication 

approximation should be larger those presented in Figure 8-14, and the uncertainty bounds of the QSCL 

model should be even larger than those of the lubrication approximation. Correspondingly the QSCL 

model results in a more erratic modelling trend than the lubrication approximation (Figure 8-39b, c). 

 

As a heuristic, a limiting disc separation value may be approximated, below which the application of the 

theoretical models becomes too erratic (error dominated). From Figures 8-30 and 8-38 the minimum disc 

separation modelling value is estimated at 1 mm. 

 

Despite the more erratic peak pressure values of the QSCL model relative to the lubrication 

approximation, the magnitude of the development of the major pressure spikes is more accurately 

modelled by this model as seen on the auxiliary contour plots in Figure 8-38.  
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Figure 8-39 shows the variations of the preliminary pressure spike with drop mass (a) measured 

experimentally, (b) modelled by the QSCL model, (c) modelled by the lubrication approximation and (d) 

modelled by the inviscid/inertial model (identical to Figure 8-38 with magnified z-axis and truncated y-

axis). 

 

 
 

 

 

Figure 8-39: Central pressure vs drop mass vs preliminary disc separation: (a) Experimental, (b) QSCL 

model (c) Lubrication approximation  

 

Notwithstanding the approximate invariance of the preliminary pressure spike with drop mass (discussed 

in the text associated with Figure 8-35), the correlations between the experimental and theoretical models 
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observed in Figure 8-39 are identical to those observed for drop height variations (Figure 8-31 and 

associated text, p. 130). 

 

Figure 8-40 shows the eccentricity corrected normalised pressure distribution 2 traces (Section 7.5.2, p. 

90) and the averaged normalised pressure distribution 3 traces (Section 7.5.2, p. 90) versus disc separation 

corresponding to ten drop masses. The variations observed in Figure 8-40 is almost identical to those 

observed for the drop height variations (Figure 8-32). Hence for descriptions of the observed trends in 

Figure 8-40 refer to the text associated with Figure 8-32. 

 

Figure 8-41 shows the gravitational potential energy ீܧ  and the work due to pressure ௣ܹ௥௘ (Section 8.1.5, 

p. 107.) plotted against varying drop mass for all test-sets. The correlation between ீܧ  and the work due 

to pressure ௣ܹ௥௘ in Figure 8-41 is virtually identical to those observed for drop height variations as shown 

in Figure 8-33. Hence for descriptions of the observed trends in Figure 8-41 refer to the text associated 

with Figure 8-33. 
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Figure 8-40: (a) Normalised pressure distribution 2 (cor) and 3(ave) vs drop mass vs disc separation 
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8.4.3 Initial disc separation variations 

 

The plots presented within this section are constructed the identical way in which the drop height 

variation plots are constructed. Therefore, descriptions of the developments of the plots presented within 

this section are omitted, but can be referenced within the text associated with the corresponding plots of 

drop height variation (Section 8.4.1, p. 125). 

 

Figure 8-42 shows the variation of central pressure traces with disc separation corresponding to eight 

initial disc separations (eight 3-dimensional line plots). It can be seen that the scaling of major pressure 

spikes are relatively independent of initial disc separation. 

 

Unlike the plots of varying drop mass (Figure 8-35) and drop height (Figure 8-26) it is not possible to 

directly view (magnify) the preliminary pressure spikes in Figure 8-42 due to their staggered positioning. 

Instead the preliminary pressure spikes are viewed from an oblique angle as indicated by the arrow in 

Figure 8-42 to give Figure 8-43(a). Figure 8-43(a) shows that the preliminary pressure spike peaks 

increase with decreasing initial disc separations, however, the relationship between these two variables is 

unclear; therefore the preliminary pressure spike peak values of the experimental preliminary pressure 

spikes are plotted with respect to initial disc separation in  

Figure 8-43(b). An empirical hyperbolic curve is also fitted to the experimental preliminary pressure 

spike peak values in Figure 8-43(b), in conjunction with the theoretical model values for the preliminary 

pressure spike peaks. The preliminary pressure spike peak at ݄଴ ൌ 3 mm has been omitted from Figure 

8-43(b) because, as can be seen from Figure 8-43 (a), the preliminary pressure spike has completely 

merged with the major pressure spike. This is also true for the preliminary pressure spike of the QSCL 

model. 

 

From Figure 8-43(b) it can be seen that the peaks of the preliminary pressure spikes follows a hyperbolic 

relationship ݌ ൌ ݇/݄଴, where ݇ is empirically determined as ݇ ൌ 6000. The QSCL model is in good 

agreement with the experimentally measured preliminary pressure spikes. The inviscid/inertial model’s 

preliminary pressure spike values are on average 80% that of the experimentally measured pressure 

spikes; this ratio has previously been observed in both the drop mass variations (Figure 8-39) and the drop 

height variations (Figure 8-31). For low initial disc separations of ݄଴ ൏ 5 mm, it can be seen that 

preliminary pressure spike of the inviscid/inertial model no longer accurately correlates with the 
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experimental results; this indicates that the pressure generation mechanism is not inertial dominant and 

therefore the inviscid/inertial model may no longer be considered an accurate approximation. 

 

Figure 8-42: Experimentally measured central pressure vs initial disc separation vs disc separation 

 

 

 

Figure 8-43: (a) Oblique view of Figure 8-42 (b) Experimental and theoretical central pressures of 

preliminary pressure spike vs initial disc separation. 
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stable disc velocities and accelerations has previously been observed for both the drop mass variations 

(Figures 8-36 and 8-37) and drop height variations (Figures 8-33 and 8-28). However, unlike drop mass 

and height variations, the major pressure spike peaks for varying initial disc separations occur at a 

relitively constant disc separation values of ݄ ൎ 0.8 mm (seen by the near vertical the peak pressure line 

in the contour plots of Figures 8-44 and 8-45). 

 

The application of theoretical models to the major pressure spikes, for varying initial disc separations, 

yields highly erratic results and are thus omitted. This modelling trend of erratic results at low disc 

separations of ݄ ൏ 1 mm has previously been estimated in Figure 8-38, p. 138, and is discussed in the 

associated text. 

 

For ݄଴ ൐ 4, it can be seen from Figures 8-44 and 8-45 that the preliminary pressures spikes occurs within 

a relatively stable range of velocities (ܷ~1 m/s) and accelerations (ܽ~ െ 3 km/s2). Hence, approximating 

the preliminary pressure spike as inertial dominant and after performing an order of magnitude analysis 

on equation (5-2), as elaborated on in the text associated with Figures 8-28 and 8-29, it can be shown that 

݌ ן ሷ݄ /݄ or ݌ ן 1/݄ since disc acceleration is relatively invariant; this hyperbolic relationship can be 

seen in Figure 8-43. 

 

Figure 8-46 shows the eccentricity corrected normalised pressure distribution 2 traces (Section 7.5.2, p. 

90) and the averaged normalised pressure distribution 3 traces (Section 7.5.2, p. 90) versus disc separation 

corresponding to eight initial disc separations. For large initial disc separations, the pressure distribution 

observed in Figure 8-46 is almost identical to that observed for drop height and drop mass variations 

(Figure 8-32 and associated text). However, as the initial disc separation decreases, the lower normalised 

pressure distribution values, associated with the bridging region, also decreases until they disappears at 

݄଴~6 mm. This observation is supported by the disappearance of the bridging region in Figure 8-42 also 

at ݄଴~6 mm. As further expected by this trend, the assumedly offset and non-parabolic pressure 

distribution associated with preliminary pressure spike (Figure 8-5 and associated text) directly merges 

with the parabolic pressure distribution of the major pressure spike at ݄଴~3 mm (Figure 8-46). 

 

Figure 8-47 shows the gravitational potential energy ீܧ  and the work due to pressure ௣ܹ௥௘ (Section 8.1.5, 

p. 107.) plotted against initial disc separations for all test-sets. It can be seen that ீܧ  is constant since both 

ீܧ are constants. The ratio between ܯ and ܪ  and the work due to pressure ௣ܹ௥௘ in Figure 8-47 is 

approximately constant at ߟҧ ൌ 65% [equation (8-2)], as previously calculated for both the drop height 
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(Figure 8-33) and drop mass (Figure 8-41) variations. The observation of a relatively constant ௣ܹ௥௘௦ 

value in Figure 8-47 is in keeping with the relative invariance of the major pressure spikes with varying 

initial disc separations (Figure 8-46) and with a relatively constant associated pressure distribution 

(Figure 8-46). 
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Figure 8-46: Normalised pressure distribution 2(cor) and 3(ave) vs initial disc separation vs disc 

separation 

 

 

Figure 8-47: Energy vs initial disc separation 
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9 CONCLUSIONS 
 

Through theoretical analysis, CFD modelling and physical experimentation, the following conclusions 

regarding highly transient squeeze flows have been established: 

1. CFD shows that the parallel flow assumption appears to be valid over a range of disc separation 

to disc radius ratios as large as 1:6, far exceeding those encountered in typical lubrication 

situations. Consequently, the exact kinematic squeeze flow equation (5-10), p. 23, is valid, 

consistent with an invariably parabolic radial pressure distribution. 

2. The exact kinematic squeeze flow equation was reduced to a Quasi-Steady (QS) model in the 

form of a semi-linear differential equation which is numerically (computationally) determinable. 

This model neglects the rate of change of the dimensionless radial velocity profile. 

3. Neglect of the non-linear term (which according to an approximate analysis accounts for less than 

20% of total spatial inertia) in the QS model further reduced it to an analytically determinable 

linear differential equation - the Quasi-Steady Linear (QSL) model. 

4. Subsequently, the QSL model was amended to account for the neglected non-linear term by 

means of a linear approximation, thus yielding the analytically determinable Quasi-Steady 

Corrected linear (QSCL) model. 

5. The resultant pressure traces and dimensionless radial fluid velocities of the above theoretical 

models were compared against a hypothetical CFD highly transient squeeze flow system (which 

is assumed to be exactly dictated by the exact kinematic model [equation (5-10), p. 23] and hence 

the following correlations were shown: 

a. The QS model had excellent correlation with the CFD results (discrepancies of ൏ ~5%), 

hence validating the quasi-steady approximation as being sufficiently accurate for the 

specific hypothetical squeeze flow. 

b. The QSL model is shown to have relatively good correlation with the CFD results, 

(discrepancies of ൏ ~10%), hence revealing the neglected non-linear term may be 

considered as marginally significant. 

c. The QSCL model is shown to agree almost exactly with the QS model (discrepancies of 

൏ ~2%), hence validating the linear approximation made by the QSCL model to account 

for spatial inertia. 

6. A so-called evolution ratio, derived for evaluating the applicability of the quasi-steady 

assumption, suggested that a quasi-steady approximation for the above hypothetical model was 

accurate, thus reinforcing the applicability of the QS and therefore the QSCL models. This 



149 
 

analysis may be applied to any transient squeeze flow system if the disc dynamics (instantaneous 

separation, velocity and acceleration) are known. 

7. When applied to highly transient squeeze flows, the QS and QSCL models both produced radial 

fluid velocities and resultant central pressure traces that are more accurate than the other reviewed 

models, although the current system – in contrast with most previous ones - embraced situations 

in which the disc acceleration was very large.   

8. CFD showed that the resultant pressure distributions arising from asymmetrical (one disc 

moving) and symmetrical (both discs moving) squeezing motions are virtually identical, resulting 

in less than േ1% difference for positive pressures. Hence, experimental asymmetrical squeeze 

flow pressure measurements were compared directly against symmetrical squeeze flow 

theoretical predictions. 

9. Experimental results for impact-induced, constant energy squeeze flows, generally showed that 

two pressure spikes were induced; firstly the preliminary pressure spike which occurs at the 

stroke initiation associated with large disc accelerations and secondly the major pressure spike 

which precedes the stroke termination, associated with diminishing disc separations. 

10. The effects of eccentricity were successfully corrected for during the measured major pressure 

spike, for which the radial pressure distribution was observed to be closely parabolic in shape and 

the circumferential pressure offset was small. However, the effects of eccentricity, 

circumferential pressure offset and non-parabolic radial pressure distributions during the 

preliminary pressure spike were non-negligible, and could not be individually isolated and 

quantified using the current test-cell.  

11. Despite the uncertainties mentioned in item 10, non-parabolic radial pressure distributions were 

observed during the preliminary spike that could be attributed to compressibility effects and/or 

violation of the parallel flow assumption (item 1). 

12. The evolution ratio (item 6) suggested that the experimental data could be regarded as quasi-

steady in nature, hence supporting their comparison with the QSL and QSCL models. 

13. The measured disc separations, derived velocities and accelerations, when substituted into the 

above theoretical models yield theoretical (central) pressure traces. The following inferences 

could be made by comparing these theoretical pressure traces with the corresponding 

experimental central pressure trace: 

a. The simple inviscid/inertial model, p. 20 encapsulates the essential physics of the system, 

during the preliminary pressure spike, where disc acceleration and therefore fluid 

temporal inertia effects are dominant. 
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b. As expected, the lubrication approximation correlated satisfactorily with experimental 

results towards the termination of the experimental stoke (major pressure spike) where 

the disc separation was small and therefore viscous effects were dominant. 

c. The QSL model held good correlation with experimental results throughout the 

experimental stroke, encompassing successively a dominance of temporal inertia, spatial 

inertia and viscous effects. By taking cognisance of the non-linear effects, the QSCL 

model yielded marginally better results. 

14. The lubrication approximation, and to a greater extent the QSCL model, resulted in theoretical 

pressures of the major pressure spike that held good agreement with experimental pressure 

measurements for the major pressure spikes at relatively large disc separations of ݄ ൐ 1.2 mm 

and poor agreement with experimental pressure measurements at relatively small disc separations 

of ݄ ൏ 1 mm. It is speculated that this trend is predominantly due to the measurement tolerance 

of the laser sensor and rig flexure which at large disc separations results in relatively small 

measurement errors and vice-versa.  

15. It was found the overall energy dissipation coefficient of the above experimentation is relatively 

constant at ߟҧ ൌ 65%. 
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10 FUTURE WORK 
 

To order to further the investigation of highly transient squeeze flows, the following recommendations are 

put forward: 

1. Program a CFD model to more accurately replicate an experimental test (for example the 

reference test). This would entail: (i) accurately replicating the experimental disc velocity versus 

time, this could be done by using multiple piecewise continuous polynomial curve fits, 

(ii) modelling the fluid bladder, (iii) modelling a compressible fluid.  

The resultant CFD pressures may thereafter be compared directly against the experimentally 

measured pressures. 

2. Using the CFD bladder model (item 1), evaluate the analytically derived bladder flow dynamics 

(Section 5.11, p. 41). 

3. Improve the accuracy of the instantaneous disc separation measurements: This can be done by 

using a more accurate displacement sensor (with smaller measurement tolerances), for example a 

Halls effect sensor, this in turn should yield more accurate theoretical results. 

4. Alternatively or additionally, if the overall experimental disc separations are larger (in particular 

the final disc separation), the relative disc separation errors are reduced thus increasing the 

accuracy of theoretical pressure results. This can be achieved by: (i) using a larger disc diameter, 

(ii) using a higher viscosity fluid, (iii) externally limiting the disc separation, i.e. not allowing the 

discs to come to rest under the force of the generated pressure. 

5. Attempt to solve the QSL model with the inclusion of the shape evolution term [equation (5-10), 

p. 23] i.e. all terms of equation (5-10) excluding D2’. The resultant partial differential equation 

could potentially be analytically solved with the use of the diffusion or heat equation. 

6. If (5) is possible, attempt to reconcile the result of the partial differential equation to include the 

non-linear term D2’of equation (5-10). p. 23, in a similar fashion to which the QSL model is 

corrected to include this term by the derivation of the QSCL model (Section 5.7, p. 32). The 

result should be a more accurate analytically determinable approximate solution of exact 

kinematic model (Section 5.4, p. 23). 

7. Design a hypothetical disc motion and select an appropriate kinematic viscosity for which the 

QSCL model predicts a shape parameter variation of ߣ ൏ െ4ߨଶ (as for the hypothetical case); 

this would assumedly initiate the onset of turbulence. Hence, attempt to experimentally reproduce 

this hypothetical disc motion (presumably not using a drop-hammer system) and therefore 

experimentally induce a turbulent squeeze flow: It is speculated that the resulting turbulent flow 
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should result in a pressure (squeeze force) change and therefore should be experimentally 

measurable. 

8. Investigate highly transient squeeze flows for non-Newtonian fluids. 
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13 APPENDICES 
 

Appendix A: Analysis Calculations 
 

The complete set of Navier Stokes Equations in cylindrical coordinates (ݎ ,ݖ and ߠ) is given as 
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where ߤ ,ݐ ,ߩ, ݃ and  ݌ which respectively denote density, time, dynamic viscosity, gravitational 

acceleration and pressure. 

 

The following squeeze flow assumptions are made: 

i. The flow is incompressible and isothermal. 

ii. Gravitational body forces are negligible. 

iii. The disc separation ݄, is small in comparison to the disc radius ܴ. 

(֜ ߲ሺall velocitiesሻ/߲ب ݖ ߲ሺall velocitiesሻ/߲ݎ ). 

iv. Axial flows are negligible, i.e. the flow is two-dimensional (֜ ݒ௭ ൎ 0). 

v. The flows are axi-symmetric (֜ ݏԢߠ߲/߲ ൌ ఏݒ ;0  ൌ 0). 

 

These assumptions are now applied to the Navier-Stokes equations (13-1), (13-2) and (13-3), as follows 
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߲ଶݒ௭

ଶߠ߲ ൅
߲ଶݒ௭

ଶݖ߲ ቇ. 

 

 

Hence equation (13-1) is reduced to 

 

 

݌݀ 
ݎ݀

ൌ ߤ
߲ଶݒ௥

ଶݖ߲ െ ߩ ൬
௥ݒ߲

ݐ߲
൅ ௥ݒ

௥ݒ߲

ݎ߲
൅ ௭ݒ

௥ݒ߲

ݖ߲
൰ (13-4) 

 

and equation (13-3) is reduced to 

 

݌߲ 
ݖ߲

ൎ 0. (13-5) 

 

 

(B1) 

(iii) 

(v) 

(ii) (iii) (iii) (v) (v) 

(B2) (A) 

(C) (D) 

(v) 

(v) 

(v) 

(ii) 

(iv) 

(iv) 

(v) 

(B) (D2) (A) (C) (D1) 
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Furthermore, the continuity of the flow system can be given as  

 

 
௥ݒ߲

ݎ߲
൅

௥ݒ

ݎ
൅

௭ݒ߲

ݖ߲
ൌ 0. (13-6) 

 

From the condition of continuity, the mean velocity through any radial strip is given as  

 

௥ഥݒ  ൌ െ
ݎ
2

ሶ݄
݄

. (13-7) 

 

The parallel flow assumption is given by 

 

௥ݒ  ൌ െ
ݎ
2

ሶ݄
݄

݃ᇱ ൌ െ
ݎ
2

ሶ݄
݄

݂ሺכݖ, ௭ݒ ሻ andݐ ൌ ሶ݄ ݃ሺכݖ,  ሻ, (13-8a, b)ݐ

 

where ݐ is time, ݃ is the dimensionless axial velocity and the prime denotes a derivative with respect to 

the dimensionless axial derivative כݖ which is defined as  

 

כݖ  ؠ
ݖ
݄

. (13-9) 

 

The dimensionless radial velocity ݂ is introduced as ݃ᇱ ൌ ݂. The dimensionless axial and radial fluid 

velocity profiles for a symmetrical squeezing motion have the following boundary conditions: 

i. Symmetry of the dimensionless radial velocity dictates that 

 

݂ᇱ ൬
1
2

൰ ൌ ݃ᇱᇱ ൬
1
2

൰ ൌ 0. (13-10)

 

ii. Flow conservation is embodied in 

 

න ݂
ଵ
ଶ

଴
כݖ݀ ൌ න ݂

ଵ

ଵ
ଶ

כݖ݀ ൌ െ݃ሺ0ሻ ൌ ݃ሺ1ሻ ൌ
1
2

. (13-11)

 

iii. The no-slip condition on the discs is given by 
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݂ሺ0ሻ ൌ ݃ᇱሺ0ሻ ൌ 0. (13-12)

 

Substituting equations (13-8a, b) into term C of equation (13-7) by the chain rule results in 

 

 
௥ݒ߲

ݐ߲
ൌ

௥ഥݒ߲
ݐ߲

݃Ԣ ൅ ௥ഥݒ ሶ݃ Ԣ (13-13)

 

where the dot accent ሺ ሶ ሻ denote the partial time derivative. Values of ݒ௥ഥ  [equation (13-7)] are substituted 

into equation (13-13) yielding 

 

 
௥ݒ߲

ݐ߲
ൌ െ

ݎ
2

ቈ
ሷ݄ ݄ െ ሶ݄ ଶ

݄ଶ ቉ ݃Ԣ െ
ݎ
2

ሶ݄
݄

ሶ݃ Ԣ. (13-14)

 

Substituting equations (13-8a, b) into term D1 of equation (13-7) gives 

 

௥ݒ 
௥ݒ߲

ݎ߲
ൌ

ݎ
4

ቆ
ሶ݄

݄
ቇ

ଶ

݃Ԣଶ. (13-15)

 

The axial velocity, equation (13-8b), is substituted into the D2 term of eqaution (13-7) to give 

 

௭ݒ 
௥ݒ߲

ݖ߲
ൌ െ

ݎ
2

ቆ
ሶ݄

݄
ቇ

ଶ

݃݃ԢԢ. (13-16)

 

Substituting equation (13-8a) into term B of equation (13-7) gives 

 

 ߲ଶݒ௥

ଶݖ߲ ൌ െ
ݎ
2

ሶ݄
݄ଷ ݃ԢԢԢ (13-17)

 

Finally recalling the definition of kinematic viscosity given as  

 

ߥ  ؠ
ߤ
ߩ

 (13-18)

 



161 
 

when equations (13-14), (13-15), (13-17) and (2-6) are substituted into equation (13-7) and rearranged as 

to make ݀ݎ݀/݌ the subject of the formula 

 

 
݌݀
ݎ݀

ൌ  െݎ
ߩ
2

൝ν
ሶ݄

݄ଷ ݃ᇱᇱᇱ െ ቆ
ሶ݄

݄
ቇ

ଶ

ሺ݃ െ ሻ݃ԢԢכݖ െ ቆ
ሶ݄

݄
ቇ ሶ݃ ᇱ ൅

1
2

ቆ
ሶ݄

݄
ቇ

ଶ

݃ᇱଶ െ ൥
ሷ݄

݄
െ ቆ

ሶ݄
݄

ቇ
ଶ

൩ ݃Ԣൡ. (13-19)

 

In order to eliminate the radial pressure distribution term from the dimensionless velocity terms in 

equation (13-19) with the intension of ultimately solving for the dimensionless velocities, the expression 

is differentiated with respect to כݖ, since ݀ݖ݀/݌ ൎ 0 [equation (2-2)] to give 

 

 

 ν ቆ
ሶ݄

݄ସቇ ݃ᇱ௩ െ ቆ
ሶ݄ ଶ

݄ଷቇ ሺ݃ െ ሻ݃ԢԢԢכݖ െ ቆ
ሶ݄

݄ଶቇ ሶ݃ ᇱᇱ െ ቈ
ሷ݄

݄ଶ െ 2 ቆ
ሶ݄ ଶ

݄ଷቇ቉ ݃ԢԢ ൌ  0. (13-20)

 

As elaborated upon within the thesis (Section 5.5, p. 24, and Section 5.6, p. 26), if only terms B1’, C1’ and 

C’ D’ are considered, equation (13-20) becomes 

 

Ԣ௩݃ߛ  െ ሾߙ െ ሿ݃ᇱᇱߚ2 ൌ 0 (13-21)

where 

 

 α ൌ
ሷ݄

݄ଶ ߚ ൌ
ሶ݄ ଶ

݄ଷ γ ൌ ν
ሶ݄

݄ସ. (13-22a, b, c) 

 

which is an analytically determinable linear ordinary differential equation and can be given in the form 

 

 ሺܦଶ െ ሻ݇ߣ ൌ 0 (13-23)

 

where ܦ ൌ  is the dimensionless shape parameter defined as ߣ ,כݖ݀/݀

 

ߣ  ؠ
ߙ െ ߚ2

ߛ
ؠ

1
ν

ቆ
ሷ݄ ݄ଶ െ 2 ሶ݄ ଶ݄

ሶ݄ ቇ (13-24)

 

and 

(C1’) (B1’) (C2’) (D2’) (C’D’) 
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 ݇ሺכݖሻ ൌ
݂݀
כݖ݀ ൌ

݀ଶ݃
ଶ. (13-25)כݖ݀

 

Equation (13-23) has three potential solution categories defined as follows: 

ߣ • ൐ 0 results in an exponential solution. 

ߣ • ൏ 0 results in oscillatory solution. 

ߣ • ൌ 0 results in a border-case solution. 

 

The solution for equation (13-23) is in the form of a linear differential equation where 

 

 ݇ሺכݖሻ ൌ כఒ௭√݁ܣ ൅ (13-26) כఒ௭√ି݁ܤ

 

or alternatively given by 

 

 ݇ሺכݖሻ ൌ ݃ᇱᇱሺכݖሻ ൌ ߣܽ cosh כݖߣ√ ൅ ߣܾ sinh (13-27) .כݖߣ√

 

The integral of equation (13-27) is given by 

 

 ݂ሺכݖሻ ൌ ݃ᇱሺכݖሻ ൌ ߣ√ܽ sinh כݖߣ√ ൅ ߣ√ܾ cosh כݖߣ√ ൅ ܿ (13-28)

 

and the integral of equation (13-28) is given by 

 

 ݃ሺכݖሻ ൌ ܽ cosh כݖߣ√ ൅ ܾ sinh כݖߣ√ ൅ כݖܿ ൅ ݁. (13-29)

 

Boundary conditions (i) [equation (13-10)] and (iii) [equation (13-12)] are substituted into equations 

(13-27) and (13-28) respectively to yield 

 

 ܽ ൅ ݁ ൌ െ
1
2

 and ܾ√ߣ ൅ ܿ ൌ 0  

 

so that when substituting these values into equation (13-29) and (13-28), the result is 
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 ݃ሺכݖሻ ൌ ܽ൫cosh כݖߣ√ െ 1൯ െ
1
2

൅ ܾ൫sinh כݖߣ√ െ ൯ (13-30)כݖߣ√

 

and 

 

 ݂ሺכݖሻ ൌ ݃ᇱሺכݖሻ ൌ ߣ√ܽ sinh כݖߣ√ ൅ ൫coshߣ√ܾ כݖߣ√ െ 1൯ (13-31)

 

respectively. 

 

When boundary condition (ii) [equation (13-11)] is substituted into equation (13-30) the result is 

 

 ݃ ൬
1
2

൰ ൌ 0 ൌ ܽ ቆcosh
ߣ√
2

െ 1ቇ െ
1
2

൅ ܾ ቆsinh
ߣ√
2

െ
ߣ√
2

ቇ (13-32)

 

and when boundary condition (i) [equation (13-10)] is substituted into equation (13-27), it follows that 

 

 ݃ᇱᇱ ൬
1
2

൰ ൌ 0 ൌ ܽߣ cosh
ߣ√
2

൅ ܾߣ sinh
ߣ√
2

  

׵  ܾ ൌ െܽ coth
ߣ√
2

 (13-33)

 

So now ܽ and ܾ may be obtained by simultaneously solving equations (13-33) and (13-32) ultimately 

resulting in 

 

 ܽ ൌ
1

ߣ√ coth ߣ√
2 െ 2

 (13-34)

 

and 

 

 ܾ ൌ
െ coth ߣ√

2

ߣ√ coth ߣ√
2 െ 2

. (13-35)
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Hence for exponential solutions (ߣ ൐ 0) equations (13-34) and (13-35) are substituted into equation ݂ሺכݖሻ 

as follows 

 

 ݃ሺߣ, ሻכݖ ൌ
൫cosh כݖߣ√ െ 1൯ െ ൫sinh כݖߣ√ െ ൯כݖߣ√ coth ߣ√

2

ߣ√ coth ߣ√
2 െ 2

 (13-36)

 

 ݂ሺߣ, ሻכݖ ൌ
sinh כݖߣ√ െ ൫cosh כݖߣ√ െ 1൯ coth ߣ√

2

coth ߣ√
2 െ 2

ߣ√

 (13-37)

 

Futhermore the first and second dimensionless axial derivatives are respectively given by 

 

 ݂ᇱሺߣ, ሻכݖ ൌ
ߣ√ ቆcosh כݖߣ√ െ sinh כݖߣ√ coth ߣ√

2 ቇ

coth ߣ√
2 െ 2

ߣ√

 (13-38)

 

 ݂ᇱᇱሺߣ, ሻכݖ ൌ
ߣ ቆsinh כݖߣ√ െ cosh כݖߣ√ coth ߣ√

2 ቇ

coth ߣ√
2 െ 2

ߣ√

 (13-39)

 

For the case of oscillatory solutions, a complex value of ߣ is substituted into the above exponential 

solutions, in which 

 

 െߣ ൌ ቀ݅ඥ|ߣ|ቁ
ଶ
 (13-40)

 

where ݅ ൌ √െ1 . 

 

Hence for oscillatory solutions (ߣ ൏ 0), dimensionless axial velocity ݃ሺכݖሻ, the dimensionless radial 

velocity ݂ሺכݖሻ and its first and second dimensionless axial derivatives are respectively given by 
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 ݃ሺߣ, ሻכݖ ൌ
ቀcos ඥ|כݖ|ߣ െ 1ቁ െ ቀsin ඥ|כݖ|ߣ െ ඥ|כݖ|ߣቁ cot ඥ|ߣ|

2

ඥ|ߣ| cot ඥ|ߣ|
2 െ 2

. (13-41)

 

 ݂ሺߣ, ሻכݖ ൌ െ
sin ඥ|כݖ|ߣ ൅ ቀcos ඥ|כݖ|ߣ െ 1ቁ cot ඥ|ߣ|

2

cot ඥ|ߣ|
2 െ 2

ඥ|ߣ|

 (13-42)

 

 ݂ᇱሺߣ, ሻכݖ ൌ െ
ඥ|ߣ| ቆcos ඥ|כݖ|ߣ െ sin ඥ|כݖ|ߣ cot

ඥ|ߣ|
2 ቇ

cot ඥ|ߣ|
2 െ 2

ඥ|ߣ|

 (13-43)

 

 ݂ᇱᇱሺߣ, ሻכݖ ൌ
|ߣ| ቆsin ඥ|כݖ|ߣ ൅ cos ඥ|כݖ|ߣ cot

ඥ|ߣ|
2 ቇ

cot ඥ|ߣ|
2 െ 2

ඥ|ߣ|

. (13-44)
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Appendix B: QSL and QS Model Block Diagrams 
 

 

 

 

QSL model 

QS model 
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Appendix C: Theoretical Model Comparison 
 

 

t 0.1 Model f'|z*=0 f''|z*=0
α ‐1.67E+08 QSAL 25.113016 ‐575.63626
β 2.58E+05 QSML 25.107043 ‐575.347971
γ ‐3.19E+05 QS 25.107043 ‐575.35894

t 0.4 Model f'|z*=0 f''|z*=0
α ‐5.81E+08 QSAL 12.99737 ‐136.859936
β 7.66E+07 QSML 12.867151 ‐133.716617
γ ‐6.62E+06 QS 12.867151 ‐133.42

t 0.6 Model f'|z*=0 f''|z*=0
α ‐5.77E+08 QSAL 10.453323 ‐81.3139162
β 3.72E+08 QSML 10.216583 ‐76.7634469
γ ‐2.19E+07 QS 10.1 ‐75.55

t 0.8 Model f'|z*=0 f''|z*=0
α ‐2.23E+06 QSAL 8.5282327 ‐47.2423547
β 1.17E+09 QSML 8.2720285 ‐43.1991181
γ ‐7.76E+07 QS 8.2 ‐42.7

t 1 Model f'|z*=0 f''|z*=0
α 2.13E+09 QSAL 6.9525283 ‐24.097492
β 2.58E+09 QSML 6.7747769 ‐21.736414
γ ‐2.96E+08 QS 6.75 ‐21.825

t 1.2 Model f'|z*=0 f''|z*=0
α 6.48E+09 QSAL 5.8486015 ‐10.1995118
β 2.65E+09 QSML 5.7702115 ‐9.27997713
γ ‐7.93E+08 QS 5.73 ‐9.3

t 1.35 Model f'|z*=0 f''|z*=0
α 7.69E+09 QSAL 5.0891816 ‐1.64523872
β 8.16E+08 QSML 5.059322 ‐1.32462249
γ ‐7.11E+08 QS 5.059322 ‐1.326

t 1.5 Model f'|z*=0 f''|z*=0
α 3.63E+09 QSAL 2.0045183 26.07806066
β 1.68E+07 QSML 1.9987512 26.12101786
γ ‐1.20E+08 QS 1.9987512 26.12101786
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Appendix D: CFD Results of Large Initial Disc Separations 
 

 
Figure 13-1: CFD axial velocity contours (݄଴ ൌ 10 mm) 

 
Figure 13-2: CFD pressure distribution contours (݄଴ ൌ 10 mm) 
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Appendix E: Disc Flexure 
 

A compound plunger (Figure 13-3) was selected as opposed to a simple plunger due to its higher specific 

rigidity for a given pressure distribution. This compound plunger was designed to sustain minimal disc 

flexure under a parabolic pressure distribution (Figure 13-4). 

 

 

 

 

 

 

 

 

 

 

Figure 13-3: Compound plunger design 

 

 

 

 

 

 

 

 

 

 

Figure 13-4: Magnified flexure of compound plunger under parabolic pressure distribution. 

 

The equations used in determining the flexure and stress of the compound plunger are obtained from 

equations for thin plate flexure (Roark, 1975). The equations used assume that the thickness of the discs 

do not exceed more than a quarter of the maximum transverse distance, this assumption has been violated 

Plunger 

Top Disc 

yp 

ydo ydi 

rc 
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for the compound plunger under investigation, however it is speculated that this violation yields more 

conservative results for both the stress and flexure. 

 

Only solutions for radially increasing parabolic pressure distributions are presented. Hence, the principal 

of superposition is used in which these ‘inverse’ parabolic pressure profile is subtracted from a uniform 

pressure distribution (of the same maximum pressures) yielding radially decreasing parabolic pressure 

profile (corresponding to the measured system). The flexure of the circumference of the top disc (Figure 

13-3) is calculated separately from the flexure at the centre of the top disc, however both these flexures 

are coupled by the stress occurring at ݎ௖. 

 

The dimensions of the top disc are taken as ܽ ൌ 60 mm, ܾ ൌ 0 mm, ݐ ൌ 12 mm (see the engineering 

drawings in CD-Appendix E) whereas Young’s modulus and Poisson’s ratio for steel is given as ܧ ൌ

200 GPa and ߥ ൌ 0.3 respectively. It is found through a manual iterative process that if ݎ௖ is set to 

௖ݎ ൌ 31 mm a similar deflection is obtained at both the circumference and centre of the top disc (Figure 

13-4: Magnified flexure of compound plunger under parabolic pressure distribution.). These deflection 

values and resultant stress at ݎ௖ are respectively given as 

 

ௗ௜ݕ ൎ ௗ௢ݕ ൎ 1.8 ൈ 10ିଵଶ݌௖௘௡௧ m and ௥ߪ ൎ ௖௘௡௧ Pa (13-45)݌2.25

 

where ݌௖௘௡௧ is recalled as the central pressure. Calculations for the above equations are carried out in 

MATLAB, the ‘disc flexure’ code given in CD-Appendix A. At the maximum experimentally measured 

pressure of about 25 MPa (Figure 8-34, p. 134), the maximum deflections are stress is approximately 

45 µm and 56 MPa respectively. It is calculated that this compound plunger has a deflection of less than 

1/10 that of a simple plunger (with the same top disc dimensions). The maximum deflection and stress of 

the plunger (top component) is respectively given as 

 

௣ݕ ൎ 2.5 ൈ 10ିଵଶ݌௖௘௡௧ m and ߪ௣ ൎ ௖௘௡௧ Pa (13-46)݌14.5

 

In addition to the deflection calculations due to the pressure, the deflection of the top disc due to inertia 

may be equated to an uniform pressure acting upon the disc which may be calculated by ݌௘௤௩ ൌ  or ܣ/ܨ

௘௤௩݌ ൌ ݐߩ ሷ݄ . This equivalent pressure has been calculated at a maximum acceleration of about 6 km/s2 

(Figure 8-29, p. 127), and a conservatively high steel density of 8000 kg/m3, at which the equivalent 
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pressure is ݌௘௤௩ ൌ 77 kPa. At this relatively negligible equivalent pressure, the stress and deflection of 

the plunger’s disc due to inertial affects are negligible.  

 

After all the experimentation was conducted the plunger’s disc was checked for permanent yield. There 

was no visually detectable permanent yield. 
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Appendix F: Inter-Calibration 
 

Since the pressure transducers used for experimentation are high frequency response transducers, they 

cannot be calibrated with a traditional Budenberg type pressure transducer calibrator because the pressure 

is generated slowly and therefore the charge decay rate is too fast to yield accurate results. Furthermore, 

no local (South African) facility to re-calibrate these pressure transducers is available. Hence all the 

pressure transducers used in the test rig are inter-calibrated against a brand new, factory calibrated PCB 

113A23 pressure transducer (see attached page- pressure transducer serial # 19131). 

 

Inter-calibration involves the comparison of output voltages between the test-rig’s existing pressure 

transducers and that of a newly calibrated pressure transducer which all measure an impulsive pressure 

spike applied to the same body of fluid, thus the calibration coefficients of constants of the test-rig’s 

existing pressure transducers may be inferred. 

 

The inter-calibration ring (engineering drawings in CD-Appendix E) is used to convert the existing test-

rig into a cylinder/piston assembly as shown in Figure 13-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13-5: Inter-calibration test-rig 
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Procedure 

 

The inter-calibration procedure closely follows that of the experimental procedure for drop-hammer tests 

as elaborated upon in Section 7.3, p. 80. The number of inter-calibration tests is limited to ten in which 

the maximum pressure measured by the reference pressure transducer is 25 MPa.  

 

Results 

 

The calibration coefficient of the new pressure transducer (Serial #: 19131) is given as 0.5021 mV/PSI 

(see attached page), or ݈ܿܽ௡ ൌ 0.07282 V/MPa. In turn, the test-rig’s pressure transducers output 

voltages are calculated as a straight line curve fit with respect to the new pressure transducer’s output 

voltage in order to account for non-linearity that may have occurred during previous usage. Table 13-1 

gives the inter-calibration results for the test-rigs pressure transducers. 

 

Table 13-1: Pressure transducer information and calibration constants 

Pressure 
transducer 

Radial position 
(mm) and radial 
percentage (%) 

Model Serial 
number 

Calibration constants 
(linear fit) 

Uncertainty 
bound 

coefficients 
 [࣌]

Gradient 
[m] 

Intercept 
[c] 

pt1 0 (0%) M109B12 3870 0.061 0.132 2000 

pt2 27 (45%) M109B12 3869 0.064 0.131 2000 

pt3a 54 (90%) 113A23 6707 0.063 0.993 200 

pt3b 54 (90%) 113A23 7933 0.067 0.981 200 

pt3c 54 (90%) 113A23 6706 0.055 1.065 200 
 

Hence the calibration coefficient of an above given pressure transducer is given as 

 

 ݈ܿܽ ൌ ሺܸ݉ ൅ ܿሻ ൈ 0.07282 V/MPa (13-47)

 

where V is the pressure transducer’s output voltage.  
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Uncertainty Bounds 

 

It is empirically found that conservative uncertainty bound coefficients, defined as ε, follow the formula  

 

 ε ൌ ݈ܿܽ േ
2ܸ|୫ୟ୶

ܸߪ
 (13-48)

 

where V is the output voltage of the pressure transducer and ߪ is defined as the uncertainty bound 

coefficient where, for the 113A23 pressure transducers, σ ൌ 200 and for the M109B12 pressure 

transducers σ ൌ 2000. This difference in uncertainty bound coefficient is due to differences in the 

calibration coefficients range between the different pressure transducer models. 
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Appendix G: Pressure Transducer Specifications 
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Appendix H: Laser Displacement Sensor Specifications 
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