Logical Theories of Trees

by
Ruaan Kellerman

under the supervision of

Prof. V. F. Goranko

Prof. M. Möller

School of Mathematics
University of the Witwatersrand
Johannesburg
South Africa

A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy.

Summary

Trees occur naturally in many mathematical settings as important partial orders yet no systematic study of their first-order theories exists. We investigate some of the first-order theories of trees. The two problems which motivate the thesis are (i) the first-order definability of sets within a given tree, and (ii) the first-order definability and axiomatisability of particular classes of trees.

Of particular interest is the correspondence between the first-order theory of a tree and the first-order theory of the class of linear orders which comprise the paths in the tree. For every class \mathcal{C} of linear orders we introduce eight classes of trees collectively called the \mathcal{C}-classes of trees, the paths of which are related in various natural ways to the linear orders in \mathcal{C}. We completely establish both the set-theoretical relationships between these eight classes of trees as well as the relationships between the first-order theories of these eight classes of trees. We also investigate some of the properties of these first-order theories.

A special case is where the class \mathcal{C} consists of a single ordinal α with $\alpha<\omega^{\omega}$ since such ordinals are finitely axiomatisable. We obtain the firstorder theory of the class of trees where every path is isomorphic to the ordinal α for α any finite ordinal and also for the case where $\alpha=\omega$. The remaining cases are more difficult because of the existence of undefinable paths in the tree. For the cases where $\omega<\alpha<\omega^{\omega}$ we introduce the notion of an almost α-tree and show that every almost α-tree can be elementarily extended in a natural way to a tree of which every path, definable or undefinable, satisfies the first-order theory of α. We also examine what this elementary extension of the almost α-tree looks like for the case where $\alpha=\omega+\mathbf{1}$.

Throughout the thesis we also investigate various first-order properties and theories of trees and establish some results in this regard.

Acknowledgements

The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author and are not necessarily to be attributed to the NRF.

Furthermore I would like to thank

- Prof. Valentin Goranko, for the immeasurable contribution he has made towards my education and for supervising this study.
- Prof. Manfred Möller, for standing in as supervisor during the latter part of the study.
- The University of the Witwatersrand, for creating an environment conducive to research.
- My family, for their support.

Declaration

I declare that this thesis is my own unaided work. It is being submitted for the degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other university.

Contents

1 Introduction 1
2 Some preliminaries 5
2.1 Notation 5
2.2 Definability without and with parameters 7
2.3 Relativising a formula 8
2.4 Characteristic formulas 10
3 General theory of trees 13
3.1 Definition of a tree 13
3.2 Nodes, paths and segments 14
3.2.1 Nodes and paths 14
3.2.2 Segments 15
3.2.3 Bridges and furcations 17
3.3 Subtrees 18
3.4 Condensations 19
3.4.1 About maximal bridges 19
3.4.2 Condensations of trees 21
3.4.3 Preservation of structure 22
3.4.4 Condensed trees 24
3.4.5 Products of trees with linear orderings 25
4 Some important classes of trees 31
4.1 Well-founded trees 31
4.2 Finitely branching trees 33
4.2.1 Definition of bounded branching 34
4.2.2 Other notions of finite branching 36
4.2.3 Condensations of finitely branching trees 39
4.2.4 Branching behaviour and height of a tree 39
4.3 Trees associated with a class of linear orders 40
4.3.1 Definition of \mathcal{C}-classes of trees 41
4.3.2 Relationships between \mathcal{C}-classes of trees 43
5 First-order definability and trees 46
5.1 Ehrenfeucht-Fraïssé games on trees 46
5.2 First-order definition of trees 48
5.3 Nodes 49
5.3.1 Some definable nodes 49
5.3.2 Neighbourhoods of nodes 50
5.4 Paths 50
5.4.1 Path-defining formulas 50
5.4.2 Singular and emergent paths 53
5.5 Subtrees 57
5.6 Condensations 58
6 First-order theories of trees 64
6.1 Well-founded trees 64
6.2 Finitely branching trees 68
6.3 Finite trees 72
6.4 Condensations 73
6.5 The \mathcal{C}-classes of trees 75
6.5.1 Relationships between FO theories of the \mathcal{C}-classes 75
6.5.2 Axiomatising the FO theories of the \mathcal{C}-classes 76
7 Axiomatisations of ordinal trees 83
7.1 The first-order theory of the ordinal α with $\alpha<\omega^{\omega}$ 84
7.1.1 Finite α 85
7.1.2 Powers of ω 85
7.1.3 The general case 88
7.2 Tails of ordinals 90
7.3 Some general observations 94
7.4 Towards first-order theories of α-trees 95
7.4.1 The finite case 95
7.4.2 The class of ω-trees 96
7.4.3 The class of almost α-trees 97
7.5 Almost $(\omega+\mathbf{1})$-trees and their extensions 104
8 Concluding remarks 110
List of symbols 112
Bibliography 115

Chapter 1

Introduction

Trees occur naturally in many mathematical settings as important partial orders. They are amongst the simplest relational structures which exhibit nontrivial behaviour. Independence results in set theory frequently involve constructions which make use of trees (see e.g. [4, 20]). Curiously some set-theoretical results which seemingly have nothing to do with trees can be rephrased in terms of trees, for example the Suslin conjecture which was originally formulated in terms of linear orders but which was later reformulated very elegantly in terms of trees (see e.g. [20, 29]). The theory of automata makes extensive use of trees (see e.g. [30]). Databases (see e.g. [3, 17, 28]) and formal grammars (see e.g. [1, 2]) are commonly modeled as trees. Trees can be seen as models of theories of temporal logics with the paths in the tree representing different histories (see e.g. [9, 11, 13, 15, 16, 26]).

The logical theories of linear orders are systematically studied in [24]. A similar systematic study of the logical theories of trees has not been done. It is known by Rabin's Tree Theorem that the monadic second-order theory of rooted binary trees with infinite paths is decidable and this result can be extended to other classes of trees (see e.g. [14, 23, 31]). In this thesis we investigate certain first-order theories of trees. We adopt a broad settheoretical definition of trees. We do not require that trees be finite, rooted, discrete, finitely branching or well-founded.

The two questions which underly the thesis are (i) the first-order definability of sets within a given tree, and (ii) the first-order definability and axiomatisability of particular classes of trees. In this regard some of the important known results include the following:

- The first-order theory of well-founded trees is determined in [5].
- The first-order theory of finite ordered trees is determined in [1]. (An ordered tree is a tree with an order relation imposed on the set of immediate successors of every node.)
- The first-order theory of finitely branching trees is studied in [10, 27]. It is shown in [27] that every tree T has a weakly boundedly branching subtree S with $S \preceq_{n} T$. Hence the class of trees is complete with respect to the class of weakly boundedly branching trees, i.e. if σ is a first-order sentence satisfiable in any tree then σ is satisfiable in some weakly boundedly branching tree.

Of particular interest is the correspondence between the first-order theory of a tree and the first-order theory of the class of linear orders which comprise the paths in the tree. Hence we introduce, for an arbitrary class \mathcal{C} of linear orders, eight classes of trees, the paths of which are related to the linear orders in \mathcal{C} in various natural ways. These classes of trees are collectively called the \mathcal{C}-classes of trees. We completely establish the set-theoretical relationships between these classes and also the relationships between their first-order theories. We present these results in [12]. The idea of classifying trees in terms of how their paths are related to the linear orders in a class of linear orders \mathcal{C} is also considered in [13].

The general problem of studying the \mathcal{C}-classes of trees based on knowledge of the first-order theory of the class \mathcal{C} is difficult because the class \mathcal{C} may be an entirely arbitrary class of linear orders. Moreover we treat trees as consisting of a set of nodes with an order relation imposed on those nodes, so we are not able to quantify over undefinable sets of nodes, in particular over undefinable paths, within the tree. Hence even when the class \mathcal{C} is a simple one, for example consisting of a single finitely axiomatisable linear order, it may be difficult to use the first-order theory of \mathcal{C} to establish results about the first-order theory of a tree of which every path is drawn from \mathcal{C}.

Still we investigate the problem of axiomatising the first-order theory of the class of trees of which every path is isomorphic with the ordinal α for $\alpha<\omega^{\omega}$. We completely solve this problem for the cases where α is a finite ordinal and for $\alpha=\omega$. The remaining cases are more difficult because of the existence of undefinable paths in the tree. For the cases where $\omega<\alpha<\omega^{\omega}$ we introduce the notion of an almost α-tree. We then show that every almost α tree can be elementarily extended in a natural way to a tree of which every path, definable or undefinable, satisfies the first-order theory of α. These
results relating to the axiomatisation of the first-order theory of the class of trees of which every path is isomorphic with the ordinal α will still be submitted for publication.

Along the way we also investigate the first-order properties and theories of trees and establish various results in this regard.

This thesis is structured as follows. In Chapter 2 (Some preliminaries) we fix some notation and terminology used often in the text and give an overview of relativisation of formulas and characteristic formulas.

Chapter 3 (General theory of trees) introduces trees from a settheoretical standpoint and investigates some of their basic properties and behaviour. In Section 3.4 (Condensations) we introduce condensations of trees, a generalisation of the notion of the condensation of a linear order described for example in [24]. Condensations of trees give a natural way to factorise a tree into its constituent bridges.

Chapter 4 (Some important classes of trees) examines, from a set-theoretical perspective, well-founded trees in Section 4.1 (Well-founded trees) and finitely branching trees in Section 4.2 (Finitely branching trees). In Section 4.3 (Trees associated with a class of linear orders) we introduce the eight \mathcal{C}-classes of trees determined by a class of linear orders \mathcal{C} in terms of how the paths in those trees are related to the linear orders in \mathcal{C}. We completely determine the set-theoretical relationships between these eight classes.

We then shift our focus to first-order definability within trees and the first-order theories of trees. Chapter 5 (First-order definability and trees) starts with some brief comments on Ehrenfeucht-Fraïssé games and gives a first-order definition of the class of trees. In Section 5.3 (Nodes) we establish that the expressive power of nodes improves with the height of those nodes and we define neighbourhoods of nodes which allows us to capture properties of trees which are locally true. In Section 5.4 (Paths) we introduce path defining formulas. Singular and emergent paths are also introduced and the notion of an emergent path is further refined into that of internal and peripheral paths. The main result in this section is that within certain trees every parametrically definable path can be defined using a single node lying high up on that path as parameter. The chapter ends with a look at the definability of subtrees and condensations.

Chapter 6 (First-order theories of trees) looks at the first-order
theories of certain important classes of trees. In Section 6.1 (Well-founded trees) we describe the construction used in [5] to prove that every definably well-founded tree has a well-founded n-equivalent. In Section 6.2 (Finitely branching trees) we show how it is possible in any tree to remove all but finitely many components extending a stem so that the tree obtained is n equivalent to the original tree. This result is a special case of the result in [27] that every weakly boundedly branching tree T has a subtree S for which $S \preceq_{n} T$. In Section 6.3 (Finite trees) we axiomatise the first-order theory of the class of finite trees by adapting the method used in [1] to axiomatise the first-order theory of the class of finite ordered trees. In Section 6.4 (Condensations) we show how the first-order theory of a tree may be determined using the first-order theory of its condensation and the firstorder theories of the maximal bridges in the tree. Finally Section 6.5 (The \mathcal{C}-classes of trees) completely establishes the relationships between the firstorder theories of the various \mathcal{C}-classes of trees. We also investigate the general problem of axiomatising the various \mathcal{C}-classes of trees using the first-order theory of the class \mathcal{C}.

In Chapter 7 (Axiomatisations of ordinal trees) we study the problem of axiomatising the first-order theory of the class of trees of which every path is isomorphic with the ordinal α with $\alpha<\omega^{\omega}$. We begin in Section 7.1 (The first-order theory of the ordinal α with $\alpha<\omega^{\omega}$) by describing the first-order theory of the ordinal α using an axiom system similar to the one in [24]. In Section 7.2 (Tails of ordinals) we establish some results on tails of ordinals which are used later. In Section 7.4 (Towards first-order theories of α-trees) we determine the first-order theories of the classes of \mathbf{n}-trees for every finite ordinal \mathbf{n} as well as the first-order theory of the class of ω-trees. We also introduce the class of almost α-trees and show that every almost α-tree can be elementarily embedded in a pathwise uniformly α-like tree. Finally we examine what this elementary extension of the almost α-tree looks like in Section 7.5 (Almost $(\omega+1)$-trees and their extensions) for the case where $\alpha=\omega+1$.

Chapter 2

Some preliminaries

We begin by fixing some notation and terminology used frequently in the text. In Section 2.3 (Relativising a formula) we describe how to relativise a formula to a definable subtructure of a structure and in Section 2.4 (Characteristic formulas) we describe characteristic formulas which will allow us to formalise the structure of trees up to n-equivalence.

For further information on linear orders, the reader is referred to the text [24]. For further information on logic or model theory, the reader is referred to $[6,7,18,19,22]$.

2.1 Notation

Let \mathfrak{A} be a structure and let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a first-order formula. The domain of \mathfrak{A} is denoted as $|\mathfrak{A}|$ or simply as A. Let $c_{1}, \ldots, c_{n} \in|\mathfrak{A}|$ and put $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\bar{c}=\left(c_{1}, \ldots, c_{n}\right)$. Then $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is also written as $\varphi(\bar{x})$. When evalutating the truth of φ in \mathfrak{A} when the elements c_{i} are substituted for x_{i} for every $i(1 \leqslant i \leqslant n)$, we also denote the expression $\mathfrak{A} \models \varphi\left(c_{1} / x_{1}, \ldots, c_{n} / x_{n}\right)$ as $\mathfrak{A} \models \varphi(\bar{c} / \bar{x})$. When enriching the signature of \mathfrak{A} with c_{1}, \ldots, c_{n} as parameters, we also denote $\left(\mathfrak{A} ; c_{1}, \ldots, c_{n}\right)$ as $(\mathfrak{A} ; \bar{c})$ and $(\mathfrak{A} ; \bar{c}) \models \varphi\left(c_{1}, \ldots, c_{n}\right)$ as $(\mathfrak{A} ; \bar{c}) \models \varphi(\bar{c})$.

For $\bar{a}=\left(a_{1}, \ldots, a_{k}\right)$ and $\bar{b}=\left(b_{1}, \ldots, b_{n}\right)$, the notation $\bar{a} c$ indicates the $(k+1)$-tuple $\left(a_{1}, \ldots, a_{k}, c\right)$ and $\bar{a} \bar{b}$ indicates the $(k+n)$-tuple $\left(a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{n}\right)$.

The quantifier rank (the greatest number of nested quantifiers) of a firstorder formula φ is denoted as $\operatorname{qr}(\varphi)$. Elementary equivalence of structures \mathfrak{A}
and \mathfrak{B} is denoted as $\mathfrak{A} \equiv \mathfrak{B}$, and n-equivalence (equivalence with respect to all sentences of quantifier rank at most n) of \mathfrak{A} and \mathfrak{B} is denoted as $\mathfrak{A} \equiv_{n} \mathfrak{B}$. The notation $\mathfrak{A} \preceq \mathfrak{B}$ indicates that \mathfrak{A} is an elementary substructure of \mathfrak{B} while $\mathfrak{A} \preceq_{n} \mathfrak{B}$ indicates that
(i) \mathfrak{A} is a substructure of \mathfrak{B}, and
(ii) for every formula $\varphi(x, \bar{y})$ where \bar{y} is a k-tuple of variables and with $\operatorname{qr}(\varphi)+k+1 \leqslant n$, if

$$
\mathfrak{B} \models \exists x \varphi(x, \bar{a} / \bar{y})
$$

for some k-tuple of elements \bar{a} from \mathfrak{A}, then there exists $b \in|\mathfrak{A}|$ such that

$$
\mathfrak{B} \models \varphi(b / x, \bar{a} / \bar{y}) .
$$

In particular, if $\mathfrak{A} \preceq_{n} \mathfrak{B}$ then $\mathfrak{A} \equiv_{n} \mathfrak{B}$.
For Γ a finite theory, define $\bigwedge \Gamma:=\bigwedge\{\gamma: \gamma \in \Gamma\}$. For Γ any theory, $\operatorname{MOD}(\Gamma)$ denotes the class of models of Γ. For \mathcal{C} any class of structures, $\mathrm{TH}(\mathcal{C})$ denotes the first-order theory of \mathcal{C}.

Let \mathcal{A} be a class of structures and let $\mathcal{B} \subseteq \mathcal{A}$. Then $\operatorname{TH}(\mathcal{A})$ is called complete with respect to \mathcal{B} when, for every sentence σ with $\mathfrak{A} \models \sigma$ for some $\mathfrak{A} \in \mathcal{A}$, there exists $\mathfrak{B} \in \mathcal{B}$ with $\mathfrak{B} \models \sigma$.

For κ a cardinal, a theory Γ is called κ-categorical when Γ has precisely one model of cardinality κ, up to isomorphism. A structure \mathfrak{A} is called κ categorical when $\operatorname{TH}(\mathfrak{A})$ is κ-categorical.

The order type of a finite linear order consisting of n elements is denoted as \mathbf{n}. The order types of the linear orders $(\mathbb{N} ;<),(\mathbb{Z} ;<),(\mathbb{Q} ;<)$ and $(\mathbb{R} ;<)$ are denoted respectively as ω, ζ, η and $\lambda . \omega_{1}$ denotes the order type of any uncountable well-order of which every proper initial segment is countable. For convenience, we will sometimes identify a linear order with its order type. For example, the linear order $(\mathbb{N} ;<)$ may be written simply as ω etc. The reverse order of a linear order L is denoted as L^{\star}.

ZF denotes Zermelo-Fraenkel set theory and ZFC denotes ZermeloFraenkel set theory with the axiom of choice.

The notation \mathbb{N}^{+}indicates the set of positive integers.

Define for every positive integer n the sentences

$$
\begin{aligned}
& \lambda_{n}:=\exists x_{1} \ldots \exists x_{n}\left(\bigwedge_{i \neq j} x_{i} \neq x_{j}\right), \\
& \mu_{n}:=\neg \lambda_{n+1} .
\end{aligned}
$$

The sentence λ_{n} states that there are at least n elements and μ_{n} states that there are at most n elements. The sentence $\lambda_{n} \wedge \mu_{n}$ states that there are precisely n elements.

Using a signature containing the symbols $=$ and $<$, the expressions $x \leqslant y$, $x \nless y$ and $x<z<y$ are abbreviations respectively for $x<y \vee x=y$, $\neg(x<y)$ and $x<z \wedge z<y$. The expression \exists ! indicates unique existence. The formula $\exists!x \varphi(x)$ may be seen as short for $\exists x(\varphi(x) \wedge \forall y(\varphi(y) \rightarrow y=x))$.

2.2 Definability without and with parameters

Let \mathfrak{A} be a structure. Let $c \in|\mathfrak{A}|$ be an element, let $R \subseteq|\mathfrak{A}|^{n}$ be a relation and let $f:|\mathfrak{A}|^{n} \rightarrow|\mathfrak{A}|$ be a function. Let \bar{a} be a k-tuple of elements from $|\mathfrak{A}|$ and let $\bar{y}=\left(y_{1}, \ldots, y_{k}\right)$.
(i) A first-order formula $\varphi(x)$ defines c in \mathfrak{A} when

$$
(\mathfrak{A} ; c) \models \forall x(\varphi(x) \leftrightarrow x=c) .
$$

A formula $\varphi(x, \bar{y})$ defines c with parameters \bar{a} in \mathfrak{A} when $\varphi(x, \bar{a})$ defines c in the structure $(\mathfrak{A} ; \bar{a})$.
(ii) A first-order formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ defines R in \mathfrak{A} when

$$
(\mathfrak{A} ; R) \models \forall x_{1} \ldots \forall x_{n}\left(\varphi\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow R\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

A formula $\varphi\left(x_{1}, \ldots, x_{n}, \bar{y}\right)$ defines R with parameters \bar{a} in \mathfrak{A} when $\varphi\left(x_{1}, \ldots, x_{n}, \bar{a}\right)$ defines R in the structure $(\mathfrak{A} ; \bar{a})$.

Let $B \subseteq|\mathfrak{A}|$ and define the unary relation R on $|\mathfrak{A}|$ as $R(x)$ if and only if $x \in B$. A formula φ defines the set B (without or with parameters) when φ defines R in \mathfrak{A}.
(iii) A first-order formula $\varphi\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$ defines f in \mathfrak{A} when
$(\mathfrak{A} ; f) \models \forall x_{1} \ldots \forall x_{n} \forall x_{n+1}\left(\varphi\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \leftrightarrow f\left(x_{1}, \ldots, x_{n}\right)=x_{x+1}\right)$.
A formula $\varphi\left(x_{1}, \ldots, x_{n}, x_{n+1}, \bar{y}\right)$ defines f with parameters \bar{a} in \mathfrak{A} when $\varphi\left(x_{1}, \ldots, x_{n}, x_{n+1}, \bar{a}\right)$ defines f in the structure $(\mathfrak{A} ; \bar{a})$.

2.3 Relativising a formula

Relativisations give a neat method for imposing first-order properties on definable substructures of a structure. The following definition and results are taken from [24, pp. 259-260].

Let \mathfrak{A} be any structure and let $a_{1}, \ldots, a_{k} \in|\mathfrak{A}|$. Fix $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$, $\bar{y}=\left(y_{1}, \ldots, y_{k}\right)$ and $\bar{a}=\left(a_{1}, \ldots, a_{k}\right)$.

Definition 2.1 ([24]) Let $\varphi(\bar{x})$ and $\theta(u, \bar{y})$ be any first-order formulas. The relativisation of φ to θ is denoted as φ^{θ} (where $\varphi^{\theta}=\varphi^{\theta}(\bar{x}, \bar{y})$) and is defined as follows:
(i) if φ is atomic then $\varphi^{\theta}:=\varphi$;
(ii) if $\varphi=\neg \psi$ then $\varphi^{\theta}:=\neg\left(\psi^{\theta}\right)$;
(iii) if $\varphi=\psi_{1} \star \psi_{2}$ then $\varphi^{\theta}:=\psi_{1}^{\theta} \star \psi_{2}^{\theta}$, where \star is any of $\vee, \wedge, \rightarrow$ or \leftrightarrow;
(iv) if $\varphi=\exists x \psi$ then $\varphi^{\theta}:=\exists x\left(\theta(x, \bar{y}) \wedge \psi^{\theta}\right)$;
(v) if $\varphi=\forall x \psi$ then $\varphi^{\theta}:=\forall x\left(\theta(x, \bar{y}) \rightarrow \psi^{\theta}\right)$.

Note that if φ is quantifier-free then φ^{θ} contains the variables y_{1}, \ldots, y_{k} vacuously, while if φ contains quantifiers then the variables y_{1}, \ldots, y_{k} will appear explicitly in φ^{θ}.

Remark 2.2 ([24]) For φ and θ any first-order formulas, it can be seen (using structural induction on formulas) that $\operatorname{qr}\left(\varphi^{\theta}\right)=\operatorname{qr}(\varphi)+\operatorname{qr}(\theta)$.

For $\theta(u, \bar{y})$ any first-order formula, define

$$
(\mathfrak{A} ; \bar{a})^{\theta}:=\{b \in|\mathfrak{A}|:(\mathfrak{A} ; \bar{a}) \models \theta(b / u, \bar{a})\} .
$$

Proposition 2.3 ([24]) Let $\varphi(\bar{x})$ and $\theta(u, \bar{y})$ be first-order formulas with the tuples \bar{x} and \bar{y} disjoint. For any $b_{1}, \ldots, b_{n} \in\left|(\mathfrak{A} ; \bar{a})^{\theta}\right|$ and with $\bar{b}=$ $\left(b_{1}, \ldots, b_{n}\right)$,

$$
\mathfrak{A} \models \varphi^{\theta}(\bar{b} / \bar{x}, \bar{a} / \bar{y}) \Leftrightarrow(\mathfrak{A} ; \bar{a})^{\theta} \models \varphi(\bar{b} / \bar{x}) .
$$

Proof By structural induction on formulas.
QED
Corollary 2.4 ([24]) Let σ be a first-order sentence and let $\theta(u, \bar{y})$ be a first-order formula. Then

$$
\mathfrak{A} \models \sigma^{\theta}(\bar{a} / \bar{y}) \Leftrightarrow(\mathfrak{A} ; \bar{a})^{\theta} \models \sigma .
$$

Corollary 2.5 ([24]) Let σ be a first-order sentence and let $\theta(u)$ be a firstorder formula. Then

$$
\mathfrak{A} \models \sigma^{\theta} \Leftrightarrow \mathfrak{A}^{\theta} \models \sigma .
$$

Example 2.6 ([24]) Consider the formula

$$
\theta(u):=\forall v(v<u \rightarrow \exists w(v<w<u)) .
$$

$\theta(u)$ states that u has no immediate predecessor. In the context of wellorders, this means that u is a limit point.

Next consider the sentence

$$
\sigma:=\forall x \exists y(x<y) .
$$

Then

$$
\begin{aligned}
\sigma^{\theta}=\forall x(& \forall v(v<x \rightarrow \exists w(v<w<x)) \rightarrow \\
& \exists y(\forall v(v<y \rightarrow \exists w(v<w<y)) \wedge x<y))
\end{aligned}
$$

By Corollary 2.5 the sentence σ^{θ} holds in a well-order $\mathfrak{A}=(A ;<)$ if and only if A contains no greatest limit point.

We will make use of the following abbreviations:

θ	φ^{θ}	\mathfrak{A}^{θ}
$y_{1}<u<y_{2}$	$\varphi^{\left(y_{1}, y_{2}\right)}$	$\mathfrak{A}^{\left(y_{1}, y_{2}\right)}$
$y_{1} \leqslant u<y_{2}$	$\varphi^{\left[y_{1}, y_{2}\right)}$	$\mathfrak{A}^{\left[y_{1}, y_{2}\right)}$
$y_{1}<u \leqslant y_{2}$	$\varphi^{\left(y_{1}, y_{2}\right]}$	$\mathfrak{A}^{\left(y_{1}, y_{2}\right]}$
$y_{1} \leqslant u \leqslant y_{2}$	$\varphi^{\left[y_{1}, y_{2}\right]}$	$\mathfrak{A}^{\left[y_{1}, y_{2}\right]}$

θ	φ^{θ}	\mathfrak{A}^{θ}
$u<y_{1}$	$\varphi^{<y_{1}}$	$\mathfrak{A}^{<y_{1}}$
$u \leqslant y_{1}$	$\varphi^{\leqslant y_{1}}$	$\mathfrak{A}^{\leqslant y_{1}}$
$y_{1}<u$	$\varphi^{>y_{1}}$	$\mathfrak{A}^{>y_{1}}$
$y_{1} \leqslant u$	$\varphi^{\geqslant y_{1}}$	$\mathfrak{A}^{\geqslant y_{1}}$

2.4 Characteristic formulas

Characteristic formulas give a syntactic formalisation of the EhrenfeuchtFraïssé game played on a pair of structures. The following definition and results are taken from [5]. An excellent account of characteristic formulas may also be found in [7].

Fix structures \mathfrak{A} and \mathfrak{B}. Let $\bar{a}=\left(a_{1}, \ldots, a_{k}\right)$ and $\bar{b}=\left(b_{1}, \ldots, b_{k}\right)$, where $a_{1}, \ldots, a_{k} \in|\mathfrak{A}|$ and $b_{1}, \ldots, b_{k} \in|\mathfrak{B}|$. Put $\bar{x}=\left(x_{1}, \ldots, x_{k}\right)$.

Definition $2.7([5])$ For $n \in \mathbb{N}$ we define the formula $\llbracket(\mathfrak{A} ; \bar{a}) \rrbracket^{n}$ (where $\left.\llbracket(\mathfrak{A} ; \bar{a}) \rrbracket^{n}=\llbracket(\mathfrak{A} ; \bar{a}) \rrbracket^{n}(\bar{x})\right)$ inductively as follows:
(i) $\llbracket(\mathfrak{A} ; \bar{a}) \rrbracket^{0}:=\bigwedge\{\varphi(\bar{x}): \varphi$ an atomic or negated atomic

$$
\text { formula with } \mathfrak{A} \models \varphi(\bar{a} / \bar{x})\} \text {; }
$$

(ii) $\llbracket(\mathfrak{A} ; \bar{a}) \rrbracket^{m+1}:=\bigwedge_{a_{k+1} \in|\mathfrak{A}|} \exists x_{k+1} \llbracket\left(\mathfrak{A} ; \bar{a} a_{k+1}\right) \rrbracket^{m} \wedge$

$$
\forall x_{k+1} \bigvee_{a_{k+1} \in|\mathfrak{2}|} \llbracket\left(\mathfrak{A} ; \bar{a} a_{k+1}\right) \rrbracket^{m}
$$

The formula $\llbracket(\mathfrak{A} ; \bar{a}) \rrbracket^{n}$ is known as the \boldsymbol{n}-characteristic of \bar{a} in \mathfrak{A}.
Lemma 2.8 ([5]) For $n \in \mathbb{N}$ the following hold:
(i) $\mathfrak{A} \models \llbracket(\mathfrak{A} ; \bar{a}) \rrbracket^{n}(\bar{a} / \bar{x})$;
(ii) the formula $\llbracket(\mathfrak{A} ; \bar{a}) \rrbracket^{n}$ has quantifier rank n.

Proof By induction on n.
QED

Theorem 2.9 ([5]) For $n \in \mathbb{N}$ the following conditions are equivalent:
(i) $(\mathfrak{A} ; \bar{a}) \equiv_{n}(\mathfrak{B} ; \bar{b})$;
(ii) $\mathfrak{B} \models \llbracket(\mathfrak{A} ; \bar{a}) \rrbracket^{n}(\bar{b} / \bar{x})$;
(iii) the formulas $\llbracket(\mathfrak{A} ; \bar{a}) \rrbracket^{n}$ and $\llbracket(\mathfrak{B} ; \bar{b}) \rrbracket^{n}$ are equivalent.

Proof See [5, Theorem 1.6.3].
QED

Corollary 2.10 For $n \in \mathbb{N}$ the following conditions are equivalent:
(i) $\mathfrak{A} \equiv_{n} \mathfrak{B}$;
(ii) $\mathfrak{B} \models \llbracket \mathfrak{A} \rrbracket^{n}$;
(iii) the sentences $\llbracket \mathfrak{A} \rrbracket^{n}$ and $\llbracket \mathfrak{B} \rrbracket^{n}$ are equivalent.

Proof Immediate from Theorem 2.9.
QED
Hence the n-characteristics of empty tuples are canonical objects associated with classes of structures which are n-equivalent.

When working with a finite signature, there will be only finitely many n-characteristics of k-tuples.

Theorem 2.11 ([5]) Let $\left\{\mathfrak{A}_{i}\right\}_{i \in I}$ be a class of structures over the same finite signature. Let $k, n \in \mathbb{N}$ and for every $i \in I$, let \bar{a}_{i} be a k-tuple of elements from $\left|\mathfrak{A}_{i}\right|$. There are only finitely many non-equivalent formulas in the set $\left\{\llbracket\left(\mathfrak{A}_{i} ; \bar{a}_{i}\right) \rrbracket^{n}: i \in I\right\}$.

Proof Use induction on n.
QED
The number of n-characteristics of empty tuples over a given finite signature is called the \boldsymbol{n}-characteristic index of that signature.

Example 2.12 Consider the linear order $\omega:=(\mathbb{N} ;<)$. Then

$$
\begin{aligned}
\llbracket(\omega ;(0,0)) \rrbracket^{0}= & x_{1}=x_{1} \wedge x_{2}=x_{2} \wedge x_{1}=x_{2} \wedge x_{2}=x_{1} \wedge \\
& \neg\left(x_{1}<x_{1}\right) \wedge \neg\left(x_{2}<x_{2}\right) \wedge \neg\left(x_{1}<x_{2}\right) \wedge \neg\left(x_{2}<x_{1}\right)
\end{aligned}
$$

and $\llbracket\left(\omega ;\left(a_{1}, a_{2}\right)\right) \rrbracket^{0}$ is equivalent to $\llbracket(\omega ;(0,0)) \rrbracket^{0}$ when $a_{1}=a_{2}$. Furthermore

$$
\begin{aligned}
\llbracket(\omega ;(0,1)) \rrbracket^{0}= & x_{1}=x_{1} \wedge x_{2}=x_{2} \wedge \neg\left(x_{1}=x_{2}\right) \wedge \neg\left(x_{2}=x_{1}\right) \wedge \\
& \neg\left(x_{1}<x_{1}\right) \wedge \neg\left(x_{2}<x_{2}\right) \wedge x_{1}<x_{2} \wedge \neg\left(x_{2}<x_{1}\right)
\end{aligned}
$$

and $\llbracket\left(\omega ;\left(a_{1}, a_{2}\right)\right) \rrbracket^{0}$ is equivalent to $\llbracket(\omega ;(0,1)) \rrbracket^{0}$ when $a_{1}<a_{2}$. Finally

$$
\begin{aligned}
\llbracket(\omega ;(1,0)) \rrbracket^{0}= & x_{1}=x_{1} \wedge x_{2}=x_{2} \wedge \neg\left(x_{1}=x_{2}\right) \wedge \neg\left(x_{2}=x_{1}\right) \wedge \\
& \neg\left(x_{1}<x_{1}\right) \wedge \neg\left(x_{2}<x_{2}\right) \wedge \neg\left(x_{1}<x_{2}\right) \wedge x_{2}<x_{1}
\end{aligned}
$$

and $\llbracket\left(\omega ;\left(a_{1}, a_{2}\right)\right) \rrbracket^{0}$ is equivalent to $\llbracket(\omega ;(1,0)) \rrbracket^{0}$ when $a_{2}<a_{1}$.

Next

$$
\begin{aligned}
& \llbracket(\omega ; 0) \rrbracket^{1}=\exists x_{2} \llbracket(\omega ;(0,0)) \rrbracket^{0} \wedge \exists x_{2} \llbracket(\omega ;(0,1)) \rrbracket^{0} \wedge \\
& \forall x_{2}\left(\llbracket(\omega ;(0,0)) \rrbracket^{0} \vee \llbracket(\omega ;(0,1)) \rrbracket^{0}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \llbracket(\omega ; 1) \rrbracket^{1}=\exists x_{2} \llbracket(\omega ;(1,0)) \rrbracket^{0} \wedge \exists x_{2} \llbracket(\omega ;(0,0)) \rrbracket^{0} \\
& \wedge \exists x_{2} \llbracket(\omega ;(0,1)) \rrbracket^{0} \wedge \\
& \forall x_{2}\left(\llbracket(\omega ;(1,0)) \rrbracket^{0} \vee \llbracket(\omega ;(0,0)) \rrbracket^{0} \vee \llbracket(\omega ;(0,1)) \rrbracket^{0}\right) .
\end{aligned}
$$

The formula $\llbracket\left(\omega ; a_{1}\right) \rrbracket^{1}$ is equivalent to $\llbracket(\omega ; 1) \rrbracket^{1}$ when $a_{1}>1$.
Finally we get

$$
\llbracket \omega \rrbracket^{2}=\exists x_{1} \llbracket(\omega ; 0) \rrbracket^{1} \wedge \exists x_{1} \llbracket(\omega ; 1) \rrbracket^{1} \wedge \forall x_{1}\left(\llbracket(\omega ; 0) \rrbracket^{1} \vee \llbracket(\omega ; 1) \rrbracket^{1}\right) .
$$

By Corollary 2.10, for any structure $\left(L ;<_{L}\right),\left(L ;<_{L}\right) \equiv_{2} \omega$ if and only if $\left(L ;<_{L}\right) \models \llbracket \omega \rrbracket^{2}$.

Chapter 3

General theory of trees

We begin our study of trees by defining some basic notions and we investigate some of the structural properties of trees from a set-theoretical standpoint. The reader may also consult $[20,21,25,32]$ in this regard. In Section 3.4 (Condensations) we introduce condensations of trees obtained by collapsing every maximal bridge in a tree to a single point and we use this notion to show how a tree can be factorised into the product of a simpler tree with a class of linear orders which are associated with the nodes in that tree.

3.1 Definition of a tree

Let A be a non-empty set and let $<$ be a binary relation on A. The structure $(A ;<)$ is called an ordered set, and when there is no ambiguity, the ordered set $(A ;<)$ will sometimes be written simply as A. If $a<b$ we say that a is a predecessor of b and that b is a successor to a. The qualifier immediate indicates that there is no x in A for which $a<x<b$. Thus b is an immediate successor to a when $A \models s(a / x, b / y)$, where

$$
s(x, y):=x<y \wedge \neg \exists z(x<z<y) .
$$

If $B, C \subseteq A$ with $x<y$ for all $x \in B$ and $y \in C$ then we write $B<C$, while the notation $a<B$ indicates that $a<y$ for all $y \in B$, etc.

The relation $<$ is irreflexive when $x \nless x$ for all $x \in A$, and transitive if, for all $x, y, z \in A$, whenever $x<y$ and $y<z$ then $x<z$. When $<$ is both
irreflexive and transitive then $(A ;<)$ is called a partial order. ${ }^{1}$
If $a, b \in A$ are such that $a<b$ or $a=b$ or $b<a$, we say that a and b are comparable, and this will be denoted as $a \smile b$. Otherwise, a and b are said to be incomparable, and this will be denoted as $a \nsucc b$. The property of two nodes being comparable can be formalised using the first-order formula

$$
x \smile y:=x<y \vee x=y \vee y<x
$$

An ordered set of which all elements are pairwise incomparable is called an antichain. From Zorn's Lemma it follows that every antichain can be extended to a maximal antichain.

The ordered set A is total when every two elements in A are comparable, and subtotal when the set $\{y \in A: y<x\}$ is total for every $x \in A$. A total partial order is called a linear order.

A linear order A is called dense when for every $x, y \in A$ with $x<y$ there exists $z \in A$ with $x<z<y$. A is called complete when every non-empty bounded subset of A has an infimum and a supremum.
A is connected when, for every $x, y \in A$, there exists $z \in A$ such that $z \leqslant x$ and $z \leqslant y$. If A is not connected then it is called disconnected. A maximal connected subset of A is called a component of A.

Definition 3.1 A subtotal partial order $(T ;<)$ is called a forest. A connected forest is called a tree.

In what is to follow, our definitions and results will be phrased mainly within the context of trees. However, many of these definitions and results apply also to forests by observing that every tree is a forest, and every forest is a union of trees.

3.2 Nodes, paths and segments

3.2.1 Nodes and paths

The elements of a tree are called nodes. If a tree has a minimal node, then that node is unique and is called the root of the tree. A tree containing a

[^0]root is called a rooted tree. A maximal node of a tree, if it exists, is called a leaf.

Given a tree T with $a \in T$, define

$$
\begin{aligned}
a_{>} & :=\{x \in T: x<a\}, \\
a_{\geqslant} & :=\{x \in T: x \leqslant a\}, \\
a_{<} & :=\{x \in T: a<x\}, \\
a_{\leqslant} & :=\{x \in T: a \leqslant x\} .
\end{aligned}
$$

The sets $a_{>}$and a_{\geqslant}are linear orderings. The set a_{\leqslant}is a tree, while $a_{<}$is a forest but not necessarily a tree. The sets $a_{>}, a_{\geqslant}, a_{<}$and a_{\leqslant}will also be treated as substructures of T.

A maximal total set of nodes is called a path. Using Zorn's Lemma, it is easy to see that every total subset of a tree is contained in a path.

A tree T is called downwards discrete when every non-root node in T has an immediate predecessor. T is called weakly upwards discrete when every non-leaf node has an immediate successor, and upwards discrete when, for every path X in T, every non-leaf node in X has an immediate successor belonging to $X . T$ is called weakly discrete when it is both downwards discrete as well as weakly upwards discrete, and discrete when it is both downwards discrete and upwards discrete.

For an upwards discrete tree T and for any node $a \in T$, we define the set $S(a)$ as consisting of all the immediate successors to a in T.

3.2.2 Segments

Let T be a tree and let $A \subseteq T$. The set A is called
(i) downwards convex when, for every $x \in A$, if $y<x$ then $y \in A$;
(ii) upwards convex when, for every $x \in A$, if $x<y$ then $y \in A$;
(iii) convex when, for every $x, y \in A$ with $x<y$, if $x<z<y$ then $z \in A$.

A total and convex subset of a tree is called a segment. A total and downwards convex subset of a tree is called a stem. Hence a stem is simply a downwards convex subset of a path. A subset B of a path A is called a branch when, if $x \in B$ and $y \in A$ with $x<y$, then $y \in B$. For every node
$a \in T$, the sets $a_{>}$and a_{\geqslant}are stems. The empty set vacuously constitutes a segment, stem and branch.

Given a tree T and nodes $a, b \in T$, the intervals $(a, b),(a, b],[a, b)$ and $[a, b]$ will be defined as usual, namely $(a, b):=\{x \in T: a<x<b\}$ etc. All these intervals are examples of segments, although not every segment has this form. For example, consider a path of the form $\zeta \cdot 3$ and the segment consisting of the second copy of ζ in that path, or a path of the form η and the segment consisting of all rational numbers x with $\sqrt{2}<x<\sqrt{3}$.

For T a tree and A a non-empty segment in T, we define the following sets: ${ }^{2}$

$$
\begin{aligned}
& A_{>}:=\{x \in T: x<A\}, \\
& A_{<}:=\{x \in T: A<x\} .
\end{aligned}
$$

Proposition 3.2 Let T be a tree and let A and B be segments in T such that $A \cup B$ is total and $A \cap B=\emptyset$. Let $a \in A$ and $b \in B$ with $a<b$. Then $A<B$.

Proof Put $a_{1}:=a$ and $b_{1}:=b$. Suppose to the contrary that there exists $a_{2} \in A$ and $b_{2} \in B$ with $b_{2}<a_{2}$. Since $A \cup B$ is total then the nodes a_{1}, a_{2}, b_{1} and b_{2} can be related to each other in the following ways:

$$
\begin{array}{llll}
b_{2}<a_{2} \leqslant a_{1}<b_{1} & \text { giving } & a_{1} \in B, \\
b_{2} \leqslant a_{1}<a_{2} \leqslant b_{1} & \text { giving } & a_{1} \in B, \\
b_{2} \leqslant a_{1}<b_{1}<a_{2} & \text { giving } & a_{1} \in B, \\
a_{1}<b_{2}<a_{2} \leqslant b_{1} & \text { giving } & b_{2} \in A, \\
a_{1}<b_{2} \leqslant b_{1}<a_{2} & \text { giving } & b_{2} \in A, \\
a_{1}<b_{1}<b_{2}<a_{2} & \text { giving } & b_{2} \in A .
\end{array}
$$

In each case, the assumption that $A \cap B=\emptyset$ is violated.
QED

Proposition 3.3 Let T be a tree and let A and B be segments in T with $A \cup B$ total and with the sets $\{x \in T: A<x<B\}$ and $\{x \in T: B<x<A\}$ empty. Then $A \cup B$ is a segment.

[^1]Proof Let $a, b \in A \cup B$ with $a<b$ and let $a<c<b$. We must show that $c \in A \cup B$. We may assume without loss of generality that $a \in A \backslash B$ and $b \in B \backslash A$. The are two cases to consider.

First, consider the case where $A \cap B \neq \emptyset$, say $d \in A \cap B$. If $b \leqslant d$ then from A being a segment we get $b \in A$, a contradiction. Hence $d<b$. Since T is subtotal then $c \smile d$. Thus we either have $a<c \leqslant d$, in which case $c \in A$, or $d<c<b$, in which case $c \in B$.

Next consider the case where $A \cap B=\emptyset$. From Proposition 3.2 we get $A<B$. Suppose to the contrary that $c \notin A \cup B$.

Let $y \in B$. If $b \leqslant y$ then since T is transitive this gives $c<y$ and so $c \smile y$. If, on the other hand, $y<b$, then again $c \smile y$ since T is subtotal. Now if $y \leqslant c$ then B being a segment gives $c \in B$, a contradiction. Hence $c<y$ and it follows that $c<B$.

Moreover, since T is subtotal and $A<b$ then $x \smile c$ for all $x \in A$. If $c \leqslant x$ then since A is a segment we get $c \in A$, a contradiction. Hence $x<c$ and so $A<c$.

But the set $\{x \in T: A<x<B\}$ is empty. This contradiction shows that $c \in A \cup B$.

QED

3.2.3 Bridges and furcations

Definition 3.4 A segment A in a tree T is called a bridge when, for every path X in T, either $X \cap A=\emptyset$ or $X \cap A=A$ (i.e. $A \subseteq X$). A segment that is not a bridge is called a furcation.

Thus a segment A is a furcation if there is a path B with $\emptyset \neq B \cap A \neq A$. The empty set trivially constitutes a bridge.

Proposition 3.5 Let T be a tree and let A and B be bridges in T with $A \cap B \neq \emptyset$. Then $A \cup B$ is a bridge.

Proof Let C be a path with $A \cap B \subseteq C$. Since A and B are bridges then $A, B \subseteq C$ hence $A \cup B$ is total. By Proposition 3.3 we get that $A \cup B$ is a segment.

Let X be any path with $X \cap(A \cup B) \neq \emptyset$, say $X \cap A \neq \emptyset$. Then $X \cap A=A \supseteq A \cap B$ so that $X \cap B \neq \emptyset$, from which $X \cap B=B$. This gives $X \cap(A \cup B)=X \cap A \cup X \cap B=A \cup B$, hence $A \cup B$ is a bridge. QED

3.3 Subtrees

Definition 3.6 Let $T=(T ;<)$ be a tree and let $S \subseteq T$ be such that $\left.(S ;<\rceil_{S}\right)$ is a tree, where $\left.<\right\rceil_{S}$ is the relation $<$ restricted to S. The structure $S=\left(S ;<\Gamma_{S}\right)$ is called a subtree of T.

Let $T=(T ;<)$ be a tree and let $S \subseteq T$. Since irreflexivity, transitivity and subtotalness are universal properties, then $S=\left(S ;<\upharpoonright_{S}\right)$ satisfies these properties automatically. Hence every subset of a tree forms a forest, and the set S will form a subtree of T if and only if S is connected.

A subtree S of a tree T is called downwards convex (respectively upwards convex, convex) when the set S is downwards convex (respectively upwards convex, convex) in T.

Example 3.7 Let T be a tree.
(a) For every node x, the set x_{\leqslant}forms a subtree of T, and every rooted subtree of T has the form x_{\leqslant}for some x.
(b) Let S be an upwards convex subtree of T and define $A:=\{x \in T$: $x<S\}$. Since T is subtotal then A is total, and from the transitivity of T it follows that A is downwards convex. Hence A is a stem in T and $S=A_{>}$. Every upwards convex subtree of T has the form $X_{<}$for some stem X.

Proposition 3.8 Let T be a tree, let S be an upwards convex subtree of T, and let A be a path in T. Then $S \cap A$ is a path in S.

Proof Clearly $S \cap A$ is total. Let $a \in S$ with $a \smile x$ for all $x \in S \cap A$. Suppose there exists $b \in S \cap A$ with $a<b$. Since A is downwards convex then $a \in S \cap A$. Hence suppose $a>S \cap A$ and let $c \in S \cap A$. Since S is upwards convex then $\{x \in S \cap A: x \geqslant c\}=\{x \in A: x \geqslant c\}$, from which it follows that $a>\{x \in A: x \geqslant c\}$ and hence $a>A$, a contradiction with the fact that A is maximal total in T. It follows that $S \cap A$ is maximal total in S, as required.

QED

Proposition 3.9 Let T be a tree, let S be an upwards convex subtree of T, and let A be a path in S. Define $B:=\{x \in T: x<S\}$. Then $A \cup B$ is a path in T.

Proof Since T is subtotal then B is total, and from the fact that A is total together with the fact that $B<A, A \cup B$ is total.

Next let $a \in T$ with $a \smile x$ for all $x \in A \cup B$. If $a \in S$ then $a \in A$ since A is maximal total in S. Hence assume $a \notin S$. Then $a<A$ since S is upwards convex. Let $b \in S$ and $c \in A$. From the connectedness of S, there exists $d \in S$ with $d \leqslant b, c$. Hence $d \in A$ and so $a<d$. Since $d \leqslant b$ then $a<b$. It follows that $a \in B$. Hence $A \cup B$ is maximal total in T, as required. QED

3.4 Condensations

We now introduce condensations of trees, a notion roughly similar to that of condensations of linear orderings as discussed for example in [24].

3.4.1 About maximal bridges

Proposition 3.10 Let T be a tree and let A be a bridge in T. Then A is contained in a unique maximal bridge.

Proof Let \mathcal{A} be a chain of maximal bridges with $A \subseteq X$ for every $X \in \mathcal{A}$ and put $A_{0}:=\cup \mathcal{A}$. Note that A_{0} is total and convex, and hence a segment.

Let B be a path with $B \cap A_{0} \neq \emptyset$. Then $B \cap A_{1} \neq \emptyset$ for some $A_{1} \in \mathcal{A}$ so that $B \cap A_{1}=A_{1} \supseteq A$. Hence $A \subseteq B$ from which $B \cap X=X$ for all $X \in \mathcal{A}$. This gives

$$
B \cap A_{0}=B \cap(\cup \mathcal{A})=\cup\{B \cap X: X \in \mathcal{A}\}=\cup\{X: X \in \mathcal{A}\}=A_{0} .
$$

It follows that A_{0} is a bridge. From Zorn's Lemma, A can therefore be extended to a maximal bridge.

Next let C_{1} and C_{2} be maximal bridges with $A \subseteq C_{1}, C_{2}$. By Proposition 3.5 we get that $C_{1} \cup C_{2}$ is a bridge, and by the maximality of C_{1} and C_{2} this means $C_{1}=C_{1} \cup C_{2}=C_{2}$.

QED
If A and B are maximal bridges in a tree T, then either $A \cap B=\emptyset$ or $A=B$. The set of maximal bridges in T forms a partition of the tree, and the relation of two nodes in T belonging to the same maximal bridge forms an equivalence relation on T.

Definition 3.11 For $a \in T$ the maximal bridge in T containing a will be denoted as $[a]$.

As with other sets of nodes, the notation $[a]<[b]$ will indicate that $x<y$ for all $x \in[a]$ and $y \in[b]$ and $[a] \smile[b]$ will indicate that $[a]<[b]$ or $[a]=[b]$ or $[b]<[a]$ etc.

Proposition 3.12 Let T be a tree and let $a, b \in T$.
(i) If $a<b$ and $[a] \neq[b]$ then $[a]<[b]$.
(ii) If $a \nsim b$ then $x \nsim y$ for all $x \in[a]$ and $y \in[b]$.

Proof (i) Let A be a path in T with $a, b \in A$. Since $[a]$ and $[b]$ are bridges then $[a],[b] \subseteq A$ so that $[a] \cup[b]$ is total. Since $[a] \neq[b]$ then $[a] \cap[b]=\emptyset$. By Proposition 3.2 this gives $[a]<[b]$.
(ii) Follows from (i).

QED

Corollary 3.13 Let T be a tree and let $a, b \in T$. Then $a \smile b$ if and only if $[a] \smile[b]$.

Proof From Proposition 3.12.
QED

Proposition 3.14 Let T be a tree with $a, b \in T$. The following conditions are equivalent:
(i) there exists a bridge B such that $a, b \in B$;
(ii) $[a]=[b]$;
(iii) for every path X in $T, a \in X$ if and only if $b \in X$;
(iv) for every node $x \in T, x \smile a$ if and only if $x \smile b$.

Proof (i) \Leftrightarrow (ii) Immediate.
(ii) \Rightarrow (iii) Suppose $[a]=[b]$. Let A be a path with $a \in A$. Then $[a] \subseteq A$ and so $b \in[b] \subseteq A$ which gives $b \in A$. It follows that for every path X, if $a \in X$ then $b \in X$. It can likewise be shown that for every path X, if $b \in X$ then $a \in X$.
(iii) \Rightarrow (ii) Suppose condition (iii) holds. If $a=b$ then the result is immediate, so assume $a \neq b$ and let A be a path with $a \in A$. Then $b \in A$ and so $a \smile b$, say $a<b$. Consider the segment $[a, b]$ and let X be any path with $X \cap[a, b] \neq \emptyset$. Then $a \in X$ and so $b \in X$, from which $[a, b] \subseteq X$. It
follows that $[a, b]$ is a bridge with $a, b \in[a, b]$. By Proposition 3.10, $[a, b]$ is contained in a unique maximal bridge, from which it follows that $[a]=[b]$.
(iii) \Rightarrow (iv) Suppose condition (iii) holds. Let $c \in T$ with $c \smile a$ and let A be a path with $c, a \in A$. Then $b \in A$ and so $c \smile b$. Hence for every $x \in T$, if $x \smile a$ then $x \smile b$, and likewise for every $x \in T$, if $x \smile b$ then $x \smile a$.
(iv) \Rightarrow (iii) Suppose condition (iv) holds. Let A be a path with $a \in A$. Since $x \smile a$ for every $x \in A$ then $x \smile b$ for every $x \in A$, from which $b \in A$. Hence for every path X, if $a \in X$ then $b \in X$, and likewise it can be shown that if $b \in X$ then $a \in X$.

QED
Hence two nodes x and y belong to the same maximal bridge if and only if they satisfy the formula

$$
\begin{equation*}
\beta(x, y):=\forall z(z \smile x \leftrightarrow z \smile y) . \tag{3.1}
\end{equation*}
$$

The formula β determines an equivalence relation.

3.4.2 Condensations of trees

Definition 3.15 Let $(T ;<)$ be a tree. Define $[T]:=\{[x]: x \in T\}$ and for $[a],[b] \in[T]$, define the relation $<$ on $[T]$ in the usual way, namely $[a]<[b]$ if and only if $x<y$ for all $x \in[a]$ and $y \in[b]$. The structure $([T] ;<)$ is called the condensation of the tree T.

Thus the condensation of a tree is simply the quotient structure of that tree generated by the relation of membership to the same maximal bridge.

The operator [•] defines a mapping

$$
[\cdot]: T \rightarrow[T] .
$$

For $X \subseteq T, y \in[T]$ and $Y \subseteq[T]$, we denote

$$
\begin{aligned}
{[X] } & :=\{[x] \in[T]: x \in X\}, \\
{[y]^{-1} } & :=\{x \in T:[x]=y\}, \\
{[Y]^{-1} } & :=\{y \in T:[y] \in Y\} .
\end{aligned}
$$

Then $X \subseteq[[X]]^{-1}$ and $\left[[Y]^{-1}\right]=Y$ for all $X \subseteq T$ and $Y \subseteq[T]$.
Proposition 3.16 For T any tree, $[T]$ is also a tree.

Proof It is straightforward to check that $[T]$ is irreflexive, transitive, subtotal and connected.

QED
Thus we will treat the elements of $[T]$ as nodes within $[T]$.
Example 3.17 Figure 3.1 shows a tree T together with its condensation $[T]$. The bridges A_{1} through A_{6} are linear orders which may be infinite, and are condensed respectively to the nodes $\left[A_{1}\right]$ through $\left[A_{6}\right]$ in $[T]$, so that $[T]$ is finite.

Figure 3.1: The condensation of a tree (see Example 3.17).

3.4.3 Preservation of structure

Proposition 3.18 Let T be a tree and let $A \subseteq T$.
(i) If A is an antichain then $[A]$ is an antichain.
(ii) If A is total then $[A]$ is total.
(iii) If A is maximal total in T then $[A]$ is maximal total in $[T]$.
(iv) If A is convex in T then $[A]$ is convex in $[T]$.
(v) If A is downwards convex in T then $[A]$ is downwards convex in $[T]$.
(vi) If A is upwards convex in $[T]$ then $[A]$ is upwards convex in $[T]$.

Proof (i), (ii): From Corollary 3.13.
(iii): Let A be maximal total in T. Since A is total then $[A]$ is total. Let $[b] \in[T] \backslash[A]$. Then $b \notin A$ so $b \nsim c$ for some $c \in A$. This gives $[b] \nsucc[c]$ and since $[c] \in[A]$ then it follows that $[A]$ is maximal total in $[T]$.
(iv): Let $[a],[b] \in[A]$ and let $x \in[T]$ with $[a]<x<[b]$. Then $a<$ $[x]^{-1}<b$ and $[x]^{-1} \subseteq A$. This gives $x=\left[[x]^{-1}\right] \in[A]$.
(v), (vi): Similar to (iv).

QED

Proposition 3.19 Let T be a tree and let $B \subseteq[T]$.
(i) If B is total then $[B]^{-1}$ is total.
(ii) If B is maximal total in $[T]$ then $[B]^{-1}$ is maximal total in T.
(iii) If B is convex in $[T]$ then $[B]^{-1}$ is convex in T
(iv) If B is downwards convex in $[T]$ then $[B]^{-1}$ is downwards convex in T.
(v) If B is upwards convex in $[T]$ then $[B]^{-1}$ is upwards convex in T.

Proof The proof is similar to that of Proposition 3.18.
QED
Thus paths, segments and stems are preserved between a tree and its condensation under the mapping [.] and its inverse. The next result shows that branches are likewise preserved.

Proposition 3.20 Let T be a tree.
(i) If A is a branch in T then $[A]$ is a branch in $[T]$.
(ii) If B is a branch in $[T]$ then $[B]^{-1}$ is a branch in T.

Proof (i) Let A be a branch in T. Let B be a path in T with $A \subseteq B$ and with the property that for every $x \in A$, if $y \in B$ with $x<y$, then $y \in A$. Then $[A] \subseteq[B]$ and from Proposition 3.18, $[B]$ is a path in $[T]$. Let $x \in[A]$ and $y \in[B]$ with $x<y$, and let $z \in[x]^{-1}$ and $w \in[y]^{-1}$ with $z \in A$ and $w \in B$. Then $z<w$ so $w \in A$. Hence $y=[w] \in[A]$, and it follows that $[A]$ is a branch in $[T]$.
(ii) The proof is similar to that of (i), but using Proposition 3.19 instead of Proposition 3.18.

QED
A path A in a tree T is called singular (see also Definition 5.7) if there exists $a \in A$ such that a_{\leqslant}is total. Otherwise A is called emergent.

Proposition 3.21 Let T be a tree and let A be a path in $T . A$ is singular if and only if $[A]$ contains a greatest node.

Proof Let A be singular, let $a \in A$ be such that a_{\leqslant}is total, and note that a_{\leqslant}is a bridge. Suppose there exists $[b] \in[A]$ such that $[a]<[b]$. Then $a<b$ which gives $b \in a_{\leqslant} \subseteq[a]$ so $[a]=[b]$, a contradiction. Thus $[a]$ is the greatest node of $[A]$.

Conversely suppose $[A]$ contains a greatest node $[a]$. Obviously $a \in A$. Let $b, c \in a_{\leqslant}($i.e. $a \leqslant b, c)$. Then $[a] \leqslant[b],[c]$. This gives $[b],[c]=[a]$ hence $b, c \in[a]$. Thus $b \smile c$ and so a_{\leqslant}is total, as required.

QED
Thus a path A is emergent if and only if $[A]$ does not contain a greatest node.

A tree T is called well-founded (see also Section 4.1) when every nonempty set of nodes from T contains a minimal node.

Corollary 3.22 Let T be a well-founded tree and let A be a path in T.
(i) A is singular if and only if the order type of $[A]$ is a successor ordinal.
(ii) A is emergent if and only if the order type of $[A]$ is a limit ordinal.

Proof From Proposition 3.21.
QED

3.4.4 Condensed trees

Definition 3.23 A tree T is called condensed when $T \cong[T]$.
Lemma 3.24 Let T be a tree. Then every non-empty bridge in the tree $[T]$ consists of a single node.

Proof Let $[a],[b] \in[T]$ with $[a] \neq[b]$. Then a and b belong to different maximal bridges in T. From Proposition 3.14 we may conclude, without loss of generality, that there exists $c \in T$ such that $c \smile a$ and $c \nsucc b$. By Corollary 3.13 this gives that $[c] \smile[a]$ and $[c] \nsim[b]$, so that $[a]$ and $[b]$ belong to different maximal bridges in $[T]$.

QED

Proposition 3.25 Let T be a tree. The following conditions are equivalent:
(i) T is condensed;
(ii) $T \cong[S]$ for some tree S;
(iii) $[x]=\{x\}$ for every $x \in T$.

Proof (i) \Rightarrow (ii) Let T be condensed. Then $T \cong[T]$.
(ii) \Rightarrow (iii) Let $T \cong[S]$ for some tree S and let $f: T \rightarrow[S]$ be an isomorphism. Let $a, b \in T$ with $a \neq b$. Then $f(a) \neq f(b)$ so by Lemma 3.24, $f(a)$ and $f(b)$ belong to different maximal bridges in $[S]$. From Proposition 3.14 we may conclude, without loss of generality, the existence of $c \in[S]$ such that $c \smile f(a)$ and $c \nsim f(b)$. Since f is an isomorphism then $f^{-1}(c) \smile a$ and $f^{-1}(c) \nsucc b$. Hence $[a] \neq[b]$ and the result follows.
(iii) \Rightarrow (i) Assume that $[x]=\{x\}$ for every $x \in T$, and verify that the map given as $x \mapsto[x]$ defines an isomorphism from T to $[T]$.

QED

3.4.5 Products of trees with linear orderings

For sets A and B, the cartesian product of A and B is denoted as $A \times B$.
Given partial orders $A:=\left(A ;<_{A}\right)$ and $B:=\left(B ;<_{B}\right)$, the lexicographical product of A and B is the partial order $A \times_{\text {lex }} B$ (with $A \times_{\text {lex }} B=$ $\left.\left(A \times B,<_{\text {lex }}\right)\right)$, where for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in A \times B$,

$$
\left(x_{1}, y_{1}\right)<_{\operatorname{lex}}\left(x_{2}, y_{2}\right): \Leftrightarrow x_{1}<_{A} x_{2} \text { or both } x_{1}=x_{2} \text { and } y_{1}<_{B} y_{2} .
$$

Definition 3.26 Let $T=\left(T ;<_{T}\right)$ be a tree, let $\mathcal{L}=\left\{\left(L_{i} ;<_{i}\right): i \in I\right\}$ be a class of linear orders, and let $f: T \rightarrow \mathcal{L}$ be a function. The f-product of T with \mathcal{L} is the structure $T \times_{f} \mathcal{L}=\left(\left|T \times_{f} \mathcal{L}\right| ;<\right)$, defined as follows:
(i) $\left|T \times_{f} \mathcal{L}\right|:=\bigcup_{x \in T}(\{x\} \times|f(x)|)$;
(ii) for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in\left|T \times_{f} \mathcal{L}\right|$,

$$
\left(x_{1}, y_{1}\right)<\left(x_{2}, y_{2}\right): \Leftrightarrow x_{1}<_{T} x_{2} \text { or both } x_{1}=x_{2} \text { and } y_{1}<_{f\left(x_{1}\right)} y_{2} .
$$

Remark 3.27 Suppose there exists $L_{0} \in \mathcal{L}$ such that $f(x)=L_{0}$ for all $x \in T$. Then $T \times_{f} \mathcal{L}=T \times_{\text {lex }} L_{0}$.

Example 3.28 Consider the tree T as depicted in Figure 3.2 and let $\mathcal{L}:=$ $\left\{\omega, \omega^{\star}\right\}$, where ω^{\star} is the reverse order $(\mathbb{N} ;>)$ of ω. Define $f: T \rightarrow \mathcal{L}$ as

$$
f(x)= \begin{cases}\omega^{\star} & \text { when } x \in\left\{a_{4}, a_{6}, a_{8}\right\} \\ \omega & \text { otherwise }\end{cases}
$$

For every i, let A_{i} be the linear order consisting only of the point a_{i}. The f-product of T with \mathcal{L} is shown in Figure 3.2. The linear orders A, B, C and D are as follows:

$$
\begin{array}{rll}
A:=A_{1} \times_{\operatorname{lex}} \omega+A_{2} \times{ }_{\operatorname{lex}} \omega+A_{3} \times \times_{\operatorname{lex}} \omega & \cong \omega \cdot 3 ; \\
B:=A_{4} \times{ }_{\text {lex }} \omega^{\star}+A_{5} \times{ }_{\operatorname{lex}} \omega & \cong \omega^{\star}+\omega=\zeta ; \\
C:=A_{6} \times{ }_{\text {lex }} \omega^{\star}+A_{7} \times{ }_{\operatorname{lex}} \omega & \cong \omega^{\star}+\omega=\zeta ; \\
D:=A_{8} \times{ }_{\operatorname{lex}} \omega^{\star} & \cong \omega^{\star} .
\end{array}
$$

Figure 3.2: The f-product of T with \mathcal{L} (see Example 3.28).

Proposition 3.29 Let T be a tree, let \mathcal{L} be a class of linear orders, and let $f: T \rightarrow \mathcal{L}$ be a function. Then $T \times{ }_{f} \mathcal{L}$ is a tree.

Proof Let $(a, b) \in\left|T \times_{f} \mathcal{L}\right|$. Since T and $f(a)$ are both irreflexive then $a \nless_{T} a$ and $b \nless_{f(a)} b$. Hence $(a, b) \nless(a, b)$. This shows that $T \times_{f} \mathcal{L}$ is irreflexive.

Next let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right) \in\left|T \times_{f} \mathcal{L}\right|$ with $\left(a_{1}, b_{1}\right)<\left(a_{2}, b_{2}\right)$ and $\left(a_{2}, b_{2}\right)<\left(a_{3}, b_{3}\right)$. Then either $a_{1}<_{T} a_{2}$ or both $a_{1}=a_{2}$ and $b_{1}<_{f\left(a_{1}\right)} b_{2}$, and either $a_{2}<_{T} a_{3}$ or both $a_{2}=a_{3}$ and $b_{2}<_{f\left(a_{2}\right)} b_{3}$. We have the following possibilities:

	$a_{2}<_{T} a_{3}$	$a_{2}=a_{3}, b_{2}<_{f\left(a_{2}\right)} b_{3}$
$a_{1}<_{T} a_{2}$	$a_{1}<_{T} a_{3}$	$a_{1}<_{T} a_{3}$
$a_{1}=a_{2}, b_{1}<_{f\left(a_{1}\right)} b_{2}$	$a_{1}<_{T} a_{3}$	$a_{1}=a_{3}, b_{1}<_{f\left(a_{1}\right)} b_{3}$

In each case we get $\left(a_{1}, b_{1}\right)<\left(a_{3}, b_{3}\right)$. It follows that $T \times_{f} \mathcal{L}$ is transitive.
To show that $T \times_{f} \mathcal{L}$ is subtotal, let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right) \in\left|T \times_{f} \mathcal{L}\right|$ with $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)<\left(a_{3}, b_{3}\right)$. Then either $a_{1}<_{T} a_{3}$ or both $a_{1}=a_{3}$ and $b_{1}<_{f\left(a_{1}\right)} b_{3}$, and either $a_{2}<_{T} a_{3}$ or both $a_{2}=a_{3}$ and $b_{2}<_{f\left(a_{2}\right)} b_{3}$. We have the following possibilities:

$$
\begin{array}{|c|c|c|}
\hline & a_{2}<_{T} a_{3} & a_{2}=a_{3}, b_{2}<_{f\left(a_{2}\right)} b_{3} \\
\hline a_{1}<_{T} a_{3} & a_{1} \smile_{T} a_{2} & a_{1}<_{T} a_{2} \\
\hline a_{1}=a_{3}, b_{1}<_{f\left(a_{1}\right)} b_{3} & a_{2}<_{T} a_{1} & a_{1}=a_{2}, b_{1} \smile_{f\left(a_{1}\right)} b_{2} \\
\hline
\end{array}
$$

Again in each case we get $\left(a_{1}, b_{1}\right) \smile\left(a_{2}, b_{2}\right)$, and it follows that $T \times{ }_{f} \mathcal{L}$ is subtotal.

Finally let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in\left|T \times_{f} \mathcal{L}\right|$. Since T is connected then there exists $a_{3} \in T$ such that $a_{3} \leqslant_{T} a_{1}, a_{2}$. Let b_{3} be any element in $f\left(a_{3}\right)$ such that, if $a_{3}=a_{1}$ then $b_{3} \leqslant_{f\left(a_{1}\right)} b_{1}$, and if $a_{3}=a_{2}$ then $b_{3} \leqslant_{f\left(a_{2}\right)} b_{2}$. Then $\left(a_{3}, b_{3}\right) \leqslant\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)$. It follows that $T \times_{f} \mathcal{L}$ is connected.

QED

Proposition 3.30 Let T be a tree. Let $[T]$ be the condensation of T and let $\mathcal{L}:=\{[x]: x \in T\}$ be the class of linear orders consisting of all the maximal bridges in T. Let $f:[T] \rightarrow \mathcal{L}$ be given by $f([x])=[x]$. Then $T \cong[T] \times{ }_{f} \mathcal{L}$.

Proof Verify that the map $x \mapsto([x], x)$ defines an isomorphism from T to $[T] \times{ }_{f} \mathcal{L}$.

QED

Corollary 3.31 Every tree can be expressed in the form $T \times_{f} \mathcal{L}$ for T a condensed tree, \mathcal{L} a class of linear orders, and $f: T \rightarrow \mathcal{L}$ a function.

Proof From Proposition 3.30 and the fact that $[T]$ is condensed for every tree T.

QED

Lemma 3.32 Let T be a tree, let \mathcal{L} be a class of linear orders, and let $f: T \rightarrow \mathcal{L}$ be a function. Let $A \subseteq T$ and define $B:=\bigcup_{x \in A}(\{x\} \times f(x))$.
(i) A is total in T if and only if B is total in $T \times_{f} \mathcal{L}$.
(ii) A is convex (respectively downwards convex, upwards convex) in T if and only if B is convex (respectively downwards convex, upwards convex) in $T \times{ }_{f} \mathcal{L}$.

It follows that A is a segment (respectively stem, branch) in T if and only if B is a segment (respectively stem, branch) in $T \times{ }_{f} \mathcal{L}$.

Proof (i) Straightforward.
(ii) Assume A is convex in T. Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in B$ and let $\left(a_{3}, b_{3}\right) \in$ $\left|T \times_{f} \mathcal{L}\right|$ with $\left(a_{1}, b_{1}\right)<\left(a_{3}, b_{3}\right)<\left(a_{2}, b_{2}\right)$. There are four possibilites which are tabulated below:

	$a_{3}<_{T} a_{2}$	$a_{3}=a_{2}, b_{3}<_{f\left(a_{3}\right)} b_{2}$
$a_{1}<_{T} a_{3}$	$a_{3} \in A$	$a_{3} \in A$
$a_{1}=a_{3}, b_{1}<_{f\left(a_{1}\right)} b_{3}$	$a_{3} \in A$	$a_{3} \in A$

In each case the fact that $a_{3} \in A$ means that $\left(a_{3}, b_{3}\right) \in B$ so B is convex in $T \times{ }_{f} \mathcal{L}$.

It is straightforward to see that A is convex in T when B is convex in $T \times{ }_{f} \mathcal{L}$.

The argument to show that downwards convexivity and upwards convexivity is preserved between A and B is similar.

QED

Lemma 3.33 Let T be a tree, let \mathcal{L} be a class of linear orders, and let $f: T \rightarrow \mathcal{L}$ be a function. Let $A \subseteq T$ and define $B:=\bigcup_{x \in A}(\{x\} \times f(x))$.
(i) A is a bridge in T if and only if B is a bridge in $T \times_{f} \mathcal{L}$.
(ii) A is a maximal bridge in T if and only if B is a maximal bridge in $T \times_{f} \mathcal{L}$.
(iii) Every maximal bridge in $T \times_{f} \mathcal{L}$ has the form $\bigcup_{x \in X}(\{x\} \times f(x))$ for some maximal bridge $X \subseteq T$.

Proof (i) We know from Lemma 3.32 that A is a segment in T if and only if B is a segment in $T \times{ }_{f} \mathcal{L}$.

Assume A is a bridge in T. In order to show that B is a bridge in $T \times{ }_{f} \mathcal{L}$ it suffices, by Proposition 3.14, to show that for every $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in B$ and $(x, y) \in\left|T \times_{f} \mathcal{L}\right|,(x, y) \smile\left(a_{1}, b_{1}\right)$ if and only if $(x, y) \smile\left(a_{1}, b_{1}\right)$. Hence let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in B$, say with $\left(a_{1}, b_{1}\right)<\left(a_{2}, b_{2}\right)$, and let $(x, y) \in\left|T \times_{f} \mathcal{L}\right|$.

Suppose $(x, y) \smile\left(a_{1}, b_{1}\right)$. We consider two cases:
Case 1: $a_{1}=a_{2}$. If $x \neq a_{1}$ then it is immediate that $(x, y) \smile\left(a_{2}, b_{2}\right)$, while if $x=a_{1}$ then it follows that $(x, y) \smile\left(a_{2}, b_{2}\right)$ from the fact that $f\left(a_{1}\right)$ is a linear order.

Case 2: $a_{1} \neq a_{2}$. Then $a_{1}<_{T} a_{2}$. If $x=a_{1}$ then clearly $(x, y) \smile\left(a_{2}, b_{2}\right)$ while if $x=a_{2}$ then $(x, y) \smile\left(a_{2}, b_{2}\right)$ from the fact that $f\left(a_{2}\right)$ is a linear order. If $x \neq a_{1}, a_{2}$ then since $x \smile_{T} a_{1}$ and A is a bridge in $T, x \smile_{T} a_{2}$ giving $(x, y) \smile\left(a_{2}, b_{2}\right)$.

In each of the above cases we get that $(x, y) \smile\left(a_{2}, b_{2}\right)$. An identical argument shows that if $(x, y) \smile\left(a_{2}, b_{2}\right)$ then $(x, y) \smile\left(a_{1}, b_{1}\right)$. Hence B is a bridge in $T \times_{f} \mathcal{L}$.

It is straightforward to see that if B is a bridge in $T \times{ }_{f} \mathcal{L}$ then A is a bridge in T.
(ii) Follows from (i).
(iii) Let $C \subseteq\left|T \times_{f} \mathcal{L}\right|$ be a maximal bridge with $(a, b) \in C$. Since $[a]$ is a maximal bridge in T then from (ii) we know that $\bigcup_{x \in[a]}(\{x\} \times f(x))$ is a maximal bridge in $T \times_{f} \mathcal{L}$. Since $(a, b) \in \bigcup_{x \in[a]}(\{x\} \times f(x))$ then it follows that $C=\bigcup_{x \in[a]}(\{x\} \times f(x))$.

QED

Corollary 3.34 Let T be a condensed tree, let \mathcal{L} be a class of linear orders, and let $f: T \rightarrow \mathcal{L}$ be a function. For every $x \in T$, the set $\{x\} \times f(x)$ is a maximal bridge in $T \times{ }_{f} \mathcal{L}$, and every maximal bridge in $T \times{ }_{f} \mathcal{L}$ has the form $\{x\} \times f(x)$ for some $x \in T$.

Proof From Proposition 3.25 and Lemma 3.33.
QED

Proposition 3.35 Let T be a condensed tree, let \mathcal{L} be a class of linear orders, and let $f: T \rightarrow \mathcal{L}$ be a function. The function $g:\left[T \times_{f} \mathcal{L}\right] \rightarrow T$ defined as $g([(x, y)])=x$ for every $[(x, y)] \in\left[T \times_{f} \mathcal{L}\right]$ is an isomorphism.

Proof Let $\left[\left(a_{1}, b_{1}\right)\right],\left[\left(a_{2}, b_{2}\right)\right] \in\left[T \times_{f} \mathcal{L}\right]$ with $\left[\left(a_{1}, b_{1}\right)\right] \neq\left[\left(a_{2}, b_{2}\right)\right]$. Then $a_{1} \neq a_{2}$ since by Corollary 3.34, $\left\{a_{1}\right\} \times f\left(a_{1}\right)$ and $\left\{a_{2}\right\} \times f\left(a_{2}\right)$ are maximal bridges in $T \times_{f} \mathcal{L}$. Hence $g\left(\left[\left(a_{1}, b_{1}\right)\right]\right)=a_{1} \neq a_{2}=g\left(\left[\left(a_{2}, b_{2}\right)\right]\right)$ and so g is injective.

Next let $a \in T$ and $b \in f(a)$. Then $g([(a, b)])=a$ hence g is surjective.
Finally, for $\left[\left(a_{1}, b_{1}\right)\right],\left[\left(a_{2}, b_{2}\right)\right] \in\left[T \times_{f} \mathcal{L}\right]$, note that

$$
\begin{aligned}
g\left(\left[\left(a_{1}, b_{1}\right)\right]\right)<_{T} g\left(\left[\left(a_{2}, b_{2}\right)\right]\right) & \Leftrightarrow a_{1}<_{T} a_{2} \\
& \Leftrightarrow\left(a_{1}, b_{1}\right)<\left(a_{2}, b_{2}\right) \text { and } a_{1} \neq a_{2} \\
& \Leftrightarrow\left[\left(a_{1}, b_{1}\right)\right]<\left[\left(a_{2}, b_{2}\right)\right]
\end{aligned}
$$

CHAPTER 3. GENERAL THEORY OF TREES 30
Hence g is an isomorphism. QED

Chapter 4

Some important classes of trees

In this chapter we investigate some important classes of trees starting with well-founded trees in Section 4.1 (Well-founded trees). We then move to finitely branching trees in Section 4.2 (Finitely branching trees). The notion of finite branching is usually studied in the context of trees which are wellfounded and discrete and admits problematic cases when applied to trees which are not well-founded or discrete. We introduce a notion of finite branching which appears to be consistent with the intuitive understanding of finite branching and generalises well to trees which are not well-founded or discrete. In Section 4.3 (Trees associated with a class of linear orders) we introduce eight classes of trees determined by how the paths in those trees relate to the linear orders in some class \mathcal{C} of linear orders and we completely establish the set-theoretical relationships between these eight classes of trees.

4.1 Well-founded trees

Let $(A ;<)$ be a partial order. An element $a \in A$ is called the least element of A if $a \leqslant x$ for all $x \in A$. The element a is called a minimal element in A if there exists no element $x \in A$ for which $x<a$.

Definition 4.1 A linear order L is called well-ordered when every nonempty subset of L contains a least element. A tree T is called well-founded when every non-empty set of nodes from T contains a minimal node.

Proposition 4.2 Let T be a tree. Then T is well-founded if and only if every path in T is well-ordered.

Proof \Rightarrow Immediate.
\Leftarrow Suppose T is not well-founded. Let $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ be an infinite strictly descending chain in T. Then $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ can be extended to a path A which is not well-ordered.

QED

Proposition 4.3 Let T be a well-founded tree. Then T is upwards discrete.
Proof Assume T is well-founded. Let A be a path in T and let $a \in A$ with a not a leaf. Define $B:=\{x \in A: x>a\}$. Then B contains a minimal node b and b will be an immediate successor to a in A. Hence T is upwards discrete.

QED
Let T be a well-founded tree. For a non-empty segment A in T, let $S(A)$ be the set of minimal nodes in $A_{<}$. Hence $S(A)$ represents the set of immediate successors to A. The level of a node $a \in T$, denoted $l(a)$, is the order type of the set $a_{>}$. The node a is called a successor node when $l(a)$ is a successor ordinal. The node a is called a limit node when $l(a)$ is a limit ordinal. The supremum of the set $\{l(x)+\mathbf{1}: x \in T\}$ is called the height of T.

The following describes a naming convention for refering to nodes and paths in a well-founded tree T. For every stem $X \subseteq T$, let I_{X} be a set such that $|S(X)| \leqslant\left|I_{X}\right|$, and let $f_{X}: S(X) \rightarrow I_{X}$ be an injective function. We assign labels $\ell(x)$ to nodes x in T as follows:
(i) The root of T is given the label (0).
(ii) If a is a successor node, let b be the node for which $a \in S(b)$ and suppose b has as its label the sequence \bar{b} of length γ. Then a is assigned as label the sequence $\left(\bar{b}, f_{a_{>}}(a)\right)$ of length $\gamma+\mathbf{1}$.
(iii) If a is a limit node then a is assigned as label the sequence γ of length $l(a)+\mathbf{1}$ which is defined as follows. For every node b with $b<a, \ell(b)$ is the initial subsequence of γ of length $l(b)+\mathbf{1}$. The last entry in γ is $f_{a>}(a)$.

We can impose an order $<_{L}$ on labels by specifying that, for any two labels $\ell(x)$ and $\ell(y)$ obtained from $T, \ell(x)<_{L} \ell(y)$ when $\ell(x)$ is an initial subsequence of $\ell(y)$. Then if L is the set of all labels obtained from T, the structures $\left(L ;<_{L}\right)$ and $(T ;<)$ are isomorphic under the function which maps nodes in T to their respective labels in L.

We can assign labels $\ell(X)$ to paths X in T as follows. Let A be a path in T and suppose A has order type α. Then A is assigned as label the sequence γ of length α defined by the property that for every node $b \in A, \ell(b)$ is the initial subsequence of γ of length $l(b)+\mathbf{1}$.
Example 4.4 Let T be a binary tree of which every path is isomorphic with ω. Clearly T contains \aleph_{0} many nodes. For every node x in T, let $I_{x \geqslant}=\{0,1\}$ and, if y and z are the immediate successors to x with y located to the left of z as T is depicted in Figure 4.1, define $f_{x \geqslant}(y):=0$ and $f_{x \geqslant}(z):=1$. This gives a labeling of the nodes in T.

Under this labeling, every path in T has a binary sequence ($0, x_{1}, x_{2}, \ldots$) of length ω as its label, corresponding to the real number with binary representation $\left(0 . x_{1} x_{2} \cdots\right)_{2}$. Hence T contains $2^{\aleph_{0}}$ many paths. For $a_{i}=0$, note that

$$
\left(0, a_{1}, \ldots, a_{i}, 1,1,1, \ldots\right) \neq\left(0, a_{1}, \ldots, a_{i-1}, 1,0,0,0, \ldots\right)
$$

but

$$
\left(0 . a_{1} \cdots a_{i} 111 \cdots\right)_{2}=\left(0 . a_{1} \cdots a_{i-1} 1000 \cdots\right)_{2}
$$

Hence the function which maps labels of paths in T to their corresponding binary numbers in the interval $[0,1]$ is surjective but not injective.

Figure 4.1: A labeling of the tree described in Example 4.4.

4.2 Finitely branching trees

The concept of finite branching of trees is studied in [27] and [10]. The definitions used for finite branching in these two texts are roughly equivalent. Here we will make use of a slightly broader notion of finite branching.

4.2.1 Definition of bounded branching

The notation $X \leqslant_{\mathrm{p}} Y$ indicates that for every $y \in Y$, there exists $x \in X$ such that $x \leqslant y$.

Definition 4.5 For $n \in \mathbb{N}$, a tree T is called n-branching from the stem A when, for every antichain X in T with $A<X$, there exists a set L_{X} in T with $\left|L_{X}\right| \leqslant n$ and such that $A<L_{X} \leqslant_{\mathrm{p}} X$.
T is called finitely branching from A if it is n-branching from A for some n, and infinitely branching from A when it is not finitely branching from A.
T is called n-branching when it is n-branching from each of its stems, and boundedly branching when it is n-branching for some n. T is called finitely branching when it is finitely branching from each of its stems.

We can also view a tree as being n-branching, finitely branching or infinitely branching from one of its nodes x by considering whether it is n branching, finitely branching or infinitely branching from the stem x_{\geqslant}.

Clearly if a tree T is n-branching from a stem A, then T will be m branching from A for all m with $m \geqslant n$. The notion of n-branching also applies to the empty stem, and if A is a path in T then Definition 4.5 yields that T is 0 -branching from A.

For $n \in \mathbb{N}$, an upwards discrete tree is called \boldsymbol{n}-ary when every node in that tree has exactly n immediate successors. A 2-ary tree is called simply a binary tree.

Example 4.6 (a) Consider the tree T obtained by taking the order type of the rationals η and at every positive number in η, we attach another copy of η (see Figure 4.2). Then T is infinitely branching from the node 0 located in the copy of η with which we started.
(b) Consider the tree T obtained by taking the order $\omega+\zeta$, and at every node in the copy of ζ, we attach a copy of the order ω (see Figure 4.3). Then T is infinitely branching from the stem consisting of the natural numbers in the copy of ω in the path $\omega+\zeta$.

Proposition 4.7 Let T be a well-founded tree and let A be a stem in T. Then T is n-branching from A if and only if $|S(A)| \leqslant n$.

Figure 4.2: Depiction of the nonfinitely branching tree described in Example 4.6(a).

Figure 4.3: Depiction of the nonfinitely branching tree described in Example 4.6(b).

Proof Let T be n-branching from A and note that $S(A)$ is an antichain. Hence there exists L with $|L| \leqslant n$ and such that $A<L \leqslant \mathrm{p} S(A)$. It follows that $S(A) \subseteq L$ hence $|S(A)| \leqslant n$.

Conversely assume $|S(A)| \leqslant n$ and let G be an antichain with $A<G$. Let $a \in G$ and define $B:=\{x: A<x \leqslant a\}$. Since T is well-founded then B contains a least node b. From the definition of $S(A)$ this gives $b \in S(A)$ and it follows that $A<S(A) \leqslant_{\mathrm{p}} G$. Hence T is n-branching from A. QED

Definition 4.8 Let T be a tree and let $A \subseteq T$ and $B \subseteq T$ with $B \subseteq A$. Then B is said to span A when, for every $x \in A$, there exists $y \in B$ such that $y \smile x$.

Proposition 4.9 Let T be a tree and let A be a stem in T. Then T is n-branching from A if and only if there exists $H \subseteq A_{<}$with $|H| \leqslant n$ and such that H spans $A_{<}$.

Proof Suppose T is n-branching from A. Let G be a maximal antichain in $A_{<}$and let L be a set of nodes with $|L| \leqslant n$ and such that $A<L \leqslant_{\mathrm{p}} G$. Let $a \in A_{<}$. Then there exists $b \in G$ such that $b \smile a$, and there exists $c \in L$ such that $c \leq b$. It follows that $c \smile a$ hence L spans $A_{<}$.

Conversely, suppose H spans $A_{<}$for some $H \subseteq A_{<}$with $|H| \leqslant n$, and let G be an antichain in $A_{<}$. Then for every $x \in G$, there exists $b_{x} \in H$ such
that $b_{x} \smile x$. Take $c_{x}:=\min \left\{x, b_{x}\right\}$ and let $L:=\left\{c_{x}: x \in G\right\}$. Then L satisfies the condition $A<L \leqslant_{\mathrm{p}} G$. Moreover $|L| \leqslant n$, for if $|L|>n$ then from the fact that $|H| \leqslant n$, there must exist $x, y \in G$ with $x \neq y$, and $b \in H$ with $b \smile x$ and $b \smile y$, such that $c_{x}=\min \{x, b\}$ and $c_{y}=\min \{y, b\}$ but with $c_{x} \neq c_{y}$. Since G is an antichain this leads to a contradiction. Hence T is n-branching from A.

QED

4.2.2 Other notions of finite branching

We will now introduce the notions of finite branching used in [27] and [10] and show that the notion of finite branching used in this text admits a smaller class of trees than the notions of finite branching used in [27] and [10].

Let T be a tree and let C be a path in T, A a stem in T and B a branch in T with $A, B \subseteq C$. If A and B are such that $A \cup B=C$ and $A \cap B=\emptyset$ then A is called a stem of B and B is called a branch of A.

Two branches which share a stem A are called siblings with stem A. A pair of siblings are called twins when their intersection is non-empty. A set of siblings \mathcal{B} which share the stem A are called a litter of A when \mathcal{B} is maximal with respect to the property that every two siblings in \mathcal{B} are twins.

Remark 4.10 Let T be a tree, let A be a stem in T, and let $\left\{\mathcal{B}_{i}\right\}_{i \in I}$ be the set of all litters of A. Then the set $\left\{\bigcup \mathcal{B}_{i}\right\}_{i \in I}$ forms a partition of the set $A_{<}$.

Lemma 4.11 Let T be a tree, let A be a stem in T, and let \mathcal{B} be a set of branches of A. Then \mathcal{B} is a litter of A if and only if $\bigcup \mathcal{B}$ is a component of $A_{<}$.

Proof Immediate.
QED
We will make use of the following terminology. Let T be a tree and let A and B be segments in T. If $A<B$ and the set $\{x \in T: A<x<B\}$ is empty then B is said to extend A. If $B \subseteq A$ then B is called a subsegment of A. If B is a subsegment of A and the set $\{x \in A: x<B\}$ is empty, then B is called an initial subsegment of A.

Lemma 4.12 Let T be a tree and let A be a stem in T. If T is n-branching from A then A has at most n litters in T.

Proof Let T be n-branching from the stem A and let $\left\{\mathcal{B}_{i}\right\}_{i \in I}$ be the set of litters of A. Suppose $|I|>n$. For every $i \in I$, choose exactly one node a_{i} from the set $\bigcup \mathcal{B}_{i}$ and define $G:=\left\{a_{i}: i \in I\right\}$. Then G constitutes an antichain so that there exists L with $|L| \leqslant n$ and $A<L \leqslant_{\mathrm{p}} G$. For every $i \in I$, the set $\bigcup \mathcal{B}_{i}$ must contain at least one node from L, from which $|L|>n$, a contradiction. Hence $|I| \leqslant n$.

QED

Corollary 4.13 Let T be a tree that is n-branching from the stem A and let $\left\{B_{i}\right\}_{i \in I}$ be a set of pairwise disjoint bridges in T which extend A. Then $|I| \leqslant n$.

Proof If B_{i} and B_{j} are disjoint bridges which extend A then B_{i} and B_{j} are contained within different litters of A. The result hence follows from Lemma 4.12.

QED
The converse of Lemma 4.12 fails. For example, the stem A consisting of the non-positive rationals in the starting copy of η in the tree described in Example 4.6(a) has only one litter, but the tree is infinitely branching from A. Likewise the stem consisting of the elements in the copy of ω in the path $\omega+\zeta$ in the tree described in Example 4.6(b) has only one litter, but again the tree is infinitely branching from this stem. The next result gives a more complete relationship between the branching behaviour of a stem and the number of litters of that stem.

Proposition 4.14 Let T be a tree and let A be a stem in T. Then T is n-branching from A if and only if the following two conditions are satisfied:
(i) A has at most n litters in T.
(ii) If B is a segment that extends A then B has an initial subsegment that is a bridge.

Proof Let T be n-branching from the stem A. Condition (i) holds by Lemma 4.12. If B is a bridge then condition (ii) holds immediately, so consider the case where B is a furcation. If B contains a least node a, then the set $\{a\}$ forms an initial subsegment of B that is a bridge. Hence consider the case where B has no least node.

For every path X with $\emptyset \neq X \cap B \subsetneq B$, let $a_{X} \in X$ with $a_{X}>X \cap B$. Let G be the set consisting of all these nodes a_{X} and let G_{0} be a maximal
antichain in G. Then $A<G_{0}$ so there exists L with $|L| \leqslant n$ and $A<L \leqslant \mathrm{p}$ G_{0}. For every $x \in L$, let $x^{-} \in B$ be any node such that $x^{-} \leqslant x$ and put $b:=\min \left\{x^{-}: x \in L\right\}$. Then the set $\{x: A<x<b\}$ is an initial subsegment of B and a bridge.

Next let A be a stem in T and assume that conditions (i) and (ii) hold. Let $\mathcal{B}_{1}, \ldots, \mathcal{B}_{k}$ be the litters of A and for each i with $1 \leqslant i \leqslant k$, let $b_{i} \in \bigcup \mathcal{B}_{i}$ be any node. Then for each i, there exists a bridge B_{i} which is an initial subsegment of the segment $\left\{x: A<x \leqslant b_{i}\right\}$. For each i, let $a_{i} \in B_{i}$ be any node and take $H:=\left\{a_{1}, \ldots, a_{k}\right\}$. Then H spans $A_{<}$and since $|H|=k \leqslant n$ then T is n-branching from A by Proposition 4.9.

QED
Let T be a tree and let $a, b \in T$. Define the set

$$
T_{a b}:=\{x \in T: \text { if } y \in T \text { with } y \leqslant a, b \text { then } y<x\} .
$$

Hence $T_{a b}=\left(a_{\geqslant} \cap b_{\geqslant}\right)_{<}$.
Proposition 4.15 ([10]) Let T be a tree and let n be a positive natural number. The following properties are equivalent:
(i) For every $x, y \in T$, the set $T_{x y}$ has at most n components.
(ii) For every stem X in T, X has at most n litters.

Proof For $x, y \in T$ define the stem $A(x, y):=\{z \in T: z \leqslant x, y\}$. Then $T_{x y}=(A(x, y))_{<}$and the result follows from Lemma 4.11. QED

Remark 4.16 Trees are defined in [27] and [10] as being ordered sets which are irreflexive, transitive and subtotal, which coincides with the notion of forest as introduced in this text.

Finite branching is defined in [27] as follows. A tree T is n-branching when, for all $x, y \in T$, the set $T_{x y}$ has at most n components. A tree is finite-branching when it is n-branching for some n.

Bounded branching is defined in [10] as follows. A tree T is boundedly branching if there exists $n \in \mathbb{N}$ such that every stem has at most n litters.

Proposition 4.15 shows that the definition of finite-branching in [27] is equivalent to the definition of boundedly branching in [10].

Lemma 4.12 together with Example 4.6 show that the notion of finitely branching introduced in this text is a refinement of the notion of finite branching used in [27], and of the notion of boundedly branching used in [10]. The
trees in Example 4.6 would be regarded as finite-branching using the definition of finite-branching in [27], and boundedly branching using the definition of boundedly branching in [10]. These trees are not finitely branching in the sense that we have defined the notion in this text.

4.2.3 Condensations of finitely branching trees

Lemma 4.17 Let T be a finitely branching tree. Then $[T]$ is well-founded.
Proof Suppose [T] is not well-founded. Then there exists $\left\{b_{i}\right\}_{i \in \mathbb{N}} \subseteq[T]$ with $b_{i+1}<b_{i}$ for all $i \in \mathbb{N}$. Let $A:=\left\{x \in[T]: x<\left\{b_{i}\right\}_{i \in \mathbb{N}}\right\}$ and $B:=\{x \in$ $\left.[T]: A<x \leqslant b_{0}\right\}$. Then $[A]^{-1}$ is a stem in T and $[B]^{-1}$ is a segment in T extending $[A]^{-1}$. But every initial subsegment of $[B]^{-1}$ is a furcation. From Proposition 4.14, it follows that T is infinitely branching from $[A]^{-1}$. QED

Proposition 4.18 Let T be a tree. Then T is n-branching if and only if $[T]$ is well-founded and $|S(X)| \leqslant n$ for every stem X in $[T]$.

Proof Let T be n-branching. Then by Lemma 4.17, $[T]$ is well-founded. Next let A be a stem in $[T]$. Then $\mathcal{B}:=\left\{[x]^{-1}: x \in S(A)\right\}$ is a set of maximal bridges (hence pairwise disjoint) which extend $[A]^{-1}$ in T, so by Corollary $4.13,|\mathcal{B}| \leqslant n$ hence $|S(A)| \leqslant n$.

Conversely, assume that $[T]$ is well-founded and that $|S(X)| \leqslant n$ for every stem X in $[T]$. Let A be a stem in T. First consider the case where $A \subsetneq[A]$ and let $a \in[A] \backslash A$. Then the set $\{a\}$ spans $A_{<}$. Next consider the case where $A=[A]$. Treating $[A]$ as a stem in $[T]$, for every $x \in S([A])$, let a_{x} be any node in $[x]^{-1}$ and put $B:=\left\{a_{x}: x \in S([A])\right\}$. Then B spans $A_{<}$and $|B| \leqslant n$. From Proposition 4.9 we get that T is n-branching from A. QED

4.2.4 Branching behaviour and height of a tree

The branching behaviour and height of well-founded trees are related. The reader is referred to [20] for a more detailed explanation of the results that follow. We begin with a well-known result.

König's Lemma: Let T be a well-founded tree of height ω that is finitely branching. Then T contains a path which is isomorphic with ω.

König's Lemma is a theorem in ZFC but not in ZF. König's Lemma can be extended to the following result: if T is a well-founded tree of height ω_{1} and having the property that the set $\{x \in T: l(x)=\alpha\}$ is finite for every order type α then T contains a path isomorphic with ω_{1}.

Let κ be an infinite cardinal. A well-founded tree T is called a κ-Aronszajn tree when
(i) T has height κ, and
(ii) for every order type $\alpha,|\{x \in T: l(x)=\alpha\}|<\kappa$, and
(iii) T contains no paths which are isomorphic with κ.

König's Lemma states that there are no \aleph_{0}-Aronszajn trees. The existence of \aleph_{1}-Aronszajn trees is a theorem of ZFC. For $n \geq 2$ the existence of $\aleph_{n^{-}}$ Aronszajn trees involves large cardinal assumptions.

A well-founded tree T of height ω_{1} is called a Kurepa tree when $|\{x \in T: l(x)=\alpha\}|<\aleph_{1}$ for every order type α and when T contains at least \aleph_{2} many paths which are isomorphic with ω_{1}. The existence of Kurepa trees is undecidable within ZFC.

A well-founded tree T of height ω_{1} is called a Suslin tree when T does not contain paths which are isomorphic with ω_{1} and when T does not contain any uncountable antichains. Hence a Suslin tree is an \aleph_{1}-Aronszajn tree which does not contain any uncountable antichains. The existence of Suslin trees is undecidable within ZFC.

Let R be a complete dense linear order without endpoints and with the property that every set of pairwise disjoint non-empty open intervals in R is countable. If R is not isomorphic with λ (the order type of the reals) then R is called a Suslin line. The existence of Suslin trees is equivalent to the existence of Suslin lines.

4.3 Trees associated with a class of linear orders

We now introduce several classes of trees which arise naturally from a class of linear orders. The idea of classifying trees in terms of how their paths are related to some class of linear orders is also considered in [13].

4.3.1 Definition of \mathcal{C}-classes of trees

Let α be an order type. A path A in a tree T is called an α-path when $A \cong \alpha . A$ is called an α-like path when $A \equiv \alpha$.

Definition 4.19 Let \mathcal{C} be a class of linear orders. A tree T is called a:
(i) \mathcal{C}-tree when every path X in T is an α-path for some $\alpha \in \mathcal{C}$ dependent on X;
(ii) uniformly \mathcal{C}-like tree (U-C-like tree) if $T \equiv S$ for some \mathcal{C}-tree S;
(iii) \mathcal{C}-like tree if, for every $n \in \mathbb{N}$, there is a \mathcal{C}-tree S such that $T \equiv{ }_{n} S$;
(iv) pathwise uniformly \mathcal{C}-like tree (PU- \mathcal{C}-like tree) if, for every path X in T, there exists $\alpha \in \mathcal{C}$ such that $X \equiv \alpha$;
(v) pathwise \mathcal{C}-like tree (P-C-like tree) if, for every path X in T and for every $n \in \mathbb{N}$, there exists $\alpha \in \mathcal{C}$ such that $X \equiv_{n} \alpha$;
(vi) definably \mathcal{C}-tree (D- \mathcal{C}-tree) if every parametrically definable path X in T is an α-path for some $\alpha \in \mathcal{C}$ dependent on X;
(vii) definably uniformly \mathcal{C}-like tree (DU-C-like tree) if, for every parametrically definable path X in T, there exists $\alpha \in \mathcal{C}$ such that $X \equiv \alpha$;
(viii) definably \mathcal{C}-like tree (D-C-like tree) if, for every parametrically definable path X in T and for every $n \in \mathbb{N}$, there exists $\alpha \in \mathcal{C}$ such that $X \equiv_{n} \alpha$. Equivalently (since the language of trees has finite signature) if every parametrically definable path in T is a model of the first-order theory of \mathcal{C}.

If $\mathcal{C}=\{\alpha\}$ then T is simply called an α-tree, a uniformly α-like tree, etc.
The classes described above are collectively referred to as \mathcal{C}-classes of trees. We follow with six examples of trees and classes of linear orders which will be used as counterexamples in the proof of Theorem 4.26.

Example 4.20 Let $B_{\omega+1}$ be the binary tree of which every path is isomorphic to the order type $\omega+\mathbf{1}$. The tree $B_{\omega+1}$ is uncountable. Let T_{1} be any countable elementary substructure of $B_{\omega+1}$ (the existence of such T_{1} follows from the Downward Löwenheim-Skolem Theorem), and let $\mathcal{C}_{1}=\{\omega+\mathbf{1}\} . T_{1}$
will be a binary tree not containing any finite paths, so every path in T_{1} will be either an ω-path or an $(\omega+\mathbf{1})$-path. Moreover, T_{1} does actually contain both ω-paths and $(\omega+\mathbf{1})$-paths. It follows that T_{1} can be seen as the result of having removed an uncountable set of leaves from $B_{\omega+\boldsymbol{1}}$.
T_{1} will contain paths which are not elementarily equivalent with $\omega+\mathbf{1}$. In fact, the ω-paths in T_{1} already fail to be 2-equivalent with $\omega+\mathbf{1}$ since they satisfy the sentence $\forall x \exists y(x<y)$.

Suppose $\varphi(x, \bar{z})$ defines a path A in T_{1} with parameters \bar{c}. Then $\left(T_{1}, \bar{c}\right) \models$ $\pi_{\varphi}(\bar{c})$ and so $\left(B_{\omega+\mathbf{1}}, \bar{c}\right) \models \pi_{\varphi}(\bar{c})$. Hence $\varphi(x, \bar{z})$ defines a path in $B_{\omega+1}$ with parameters \bar{c} also. Now since every path in $B_{\omega+1}$ is an $(\omega+\mathbf{1})$-path then we get that $\left(B_{\omega+\mathbf{1}}, \bar{c}\right) \models \exists x(\operatorname{leaf}(x) \wedge \varphi(x, \bar{c}))$ and so $\left(T_{1}, \bar{c}\right) \models \exists x(\operatorname{leaf}(x) \wedge \varphi(x, \bar{c}))$. Hence A will contain a leaf.

Thus every parametrically definably path in T_{1} will contain a leaf, and since every path in T_{1} containing a leaf is parametrically definable using that leaf as parameter, it follows that the parametrically definable paths in T_{1} are precisely its $(\omega+\mathbf{1})$-paths.

Hence T_{1} is a uniformly $(\omega+\mathbf{1})$-like tree, and also a definably $(\omega+\mathbf{1})$-tree, but neither an $(\omega+\mathbf{1})$-tree, nor a pathwise $(\omega+1)$-like tree.

Example 4.21 Let T_{2} be the tree indicated in Figure 4.4 and let $\mathcal{C}_{2}=\{\omega\}$. Each of the two paths in T_{2} are parametrically definable and are elementarily equivalent with ω. In any ω-tree, every parametrically definable set contains a minimal node. The set of nodes in T_{2} defined by the formula

$$
\varphi(x)=\forall y \forall z(x<y \wedge x<z \rightarrow y \smile z)
$$

contains no minimal node. Thus T_{2} is a definably uniformly ω-like tree, but not an ω-like tree.
Let σ_{1} be the sentence

$$
\sigma_{1}:=\exists u \varphi(u) \rightarrow \exists u(\varphi(u) \wedge \forall w(w<u \rightarrow \neg \varphi(w)))
$$

stating that the set defined by $\varphi(x)$ contains a minimal node, where $\varphi(x)$ is defined as above. This sentence will be used further.

Example 4.22 Let T_{3} be the tree indicated in Figure 4.4 and let $\mathcal{C}_{3}=\{\mathbf{n}$: $n \in \mathbb{N}\}$. Both of the paths in T_{3} are parametrically definable. It is known (e.g. [24]) that for every m there exists some sufficiently large n such that $\omega+\omega^{\star} \equiv_{m} \mathbf{n}$. However, $\omega+\omega^{\star} \not \equiv \mathbf{n}$ for every n. In any definably uniformly

Figure 4.4: The trees T_{2} and T_{3} described in Example 4.21 and Example 4.22 .
\mathcal{C}_{3}-like tree, the set defined by the formula $\varphi(x)$ from Example 4.21 will contain a minimal node. However, the subset of T_{3} defined by $\varphi(x)$ does not contain a minimal node. Thus T_{3} is a definably \mathcal{C}_{3}-like tree, even a pathwise \mathcal{C}_{3}-like tree, but neither a \mathcal{C}_{3}-like tree nor a definable uniformly \mathcal{C}_{3}-like tree.

Example 4.23 Let T_{4} be the linear order $\omega+\omega^{\star}$ and let $\mathcal{C}_{4}=\{\mathbf{n}: n \in \mathbb{N}\}$. Again we note that there exists, for every m, some sufficiently large n such that $\omega+\omega^{\star} \equiv_{m} \mathbf{n}$, but that $\omega+\omega^{\star} \not \equiv \mathbf{n}$ for every n.

Example 4.24 Let T_{5} be the binary tree of which every path is an ω-path and take $\mathcal{C}_{5}=\{\omega+\mathbf{1}\}$. Note that T_{5} contains no parametrically definable paths. Let σ_{2} be the sentence

$$
\sigma_{2}:=\forall x \exists y(x \leqslant y \wedge \operatorname{leaf}(y)) .
$$

This sentence will be used further.
Example 4.25 Let T_{6} be the linear order $\omega+\zeta$ and take $\mathcal{C}_{6}=\{\omega\}$. It is known that $\omega \equiv \omega+\zeta$.

4.3.2 Relationships between \mathcal{C}-classes of trees

Theorem 4.26 Let \mathcal{C} be a class of linear orders. The set-theoretical inclusions and non-inclusions which hold between the \mathcal{C}-classes of trees are presented in Figure 4.5.

Proof To begin with the inclusions, we will show that the class of \mathcal{C}-like trees is contained in the class of $\mathrm{D}-\mathcal{C}$-like trees. The argument to show that the class of U-C-like trees is contained in the class of DU-C-like trees is similar. The remaining inclusions are easy to verify.

Let T be a \mathcal{C}-like tree and let A be a path in T defined in $(T ; \bar{c})$ by the formula $\varphi(x, \bar{c})$ for some tuple of nodes \bar{c} from T. Suppose that A has n-characteristic τ. Then $T \models \pi_{\varphi}(\bar{c} / \bar{z})$ and $T \models \tau^{\varphi}(\bar{c} / \bar{z})$ hence $T \models \exists \bar{z}\left(\pi_{\varphi}(\bar{z}) \wedge \tau^{\varphi}(\bar{z})\right) .{ }^{1} \quad$ Since T is a \mathcal{C}-like tree then there exists a \mathcal{C} tree S for which $S \models \exists \bar{z}\left(\pi_{\varphi}(\bar{z}) \wedge \tau^{\varphi}(\bar{z})\right)$. Thus $\varphi(x, \bar{d})$ defines a path B in $(S ; d)$ for some tuple of nodes d from S and $B \models \tau$. But B is isomorphic with some linear order C in \mathcal{C} and so $A \equiv_{n} C$. It follows that T is a D- \mathcal{C}-like tree.

As an example of a non-inclusion demonstrated by a counterexample, we show that the class of P-C-like trees is not always included in the class of \mathcal{C}-like trees. Note that the tree T_{2} from Example 4.21 is a P- \mathcal{C}_{2}-like tree, but not a \mathcal{C}_{2}-like tree, where \mathcal{C}_{2} is the class of linear orders defined in Example 4.21. This is because every \mathcal{C}_{2}-like tree must satisfy the sentence σ_{1} defined in Example 4.21, while T_{2} does not satisfy σ_{1}. Hence the class of P-C \mathcal{C}_{2}-like trees is not contained in the class of \mathcal{C}_{2}-like trees.

As an example of a non-inclusion obtained through transitive completion in Figure 4.5, consider the claim that the class of P-C-like trees is not generally a subclass of the class of PU-C-like trees. If, to the contrary, the class of P-C-like trees were a subclass of the class of PU-C-like trees for all classes of linear orders \mathcal{C}, then since the class of PU- \mathcal{C}-like trees is also a subclass of the class of DU-C-like trees for all classes \mathcal{C}, we would get that the class of P-C-like trees is a subclass of the class of DU- \mathcal{C}-like trees for all classes \mathcal{C}. But this contradicts the fact that the tree T_{4} from Example 4.23 is a P - \mathcal{C}_{4}-like tree, where \mathcal{C}_{4} is defined in Example 4.23, but T_{4} is not a DU- \mathcal{C}_{4}-like tree. This establishes the non-inclusion.

The remaining non-inclusions are easily verified.
QED

Proposition 4.27 Let \mathcal{C} consist of a single linear order. In addition to the set-theoretical inclusions which have been shown to hold between the \mathcal{C}-classes of trees in Theorem 4.26, the following inclusions also hold:
(i) the class of P-C-like trees \subseteq the class of PU-C-like trees;
(ii) the class of D-C-like trees \subseteq the class of DU-C-like trees.

Consequently
(iii) the class of \mathcal{C}-like trees \subseteq the class of DU-C-like trees;

[^2](iv) the class of P-C-like trees \subseteq the class of DU- \mathcal{C}-like trees.

Proof Routine.
QED

Figure 4.5: Relationships between the \mathcal{C}-classes of trees (see Theorem 4.26). Inclusions $X \subseteq Y$ are denoted as $X \rightarrow Y$. Non-inclusions are indicated by specifying a counterexample drawn from Examples 4.20-4.25 or, when obtained through transitive completion of the diagram, by \times. There are no downwards directed inclusions between any of the classes.

Chapter 5

First-order definability and trees

We now shift our focus to the first-order theories of trees. In this chapter we investigate the first-order definability of particular sets of nodes within a tree. In Section 5.3 (Nodes) we show in the relevant trees that the expressive power of nodes increases with the height of those nodes. We also introduce neighbourhoods of nodes which can be useful for imposing properties which are locally true on a tree. In Section 5.4 (Paths) we investigate paths which are parametrically definable and shed some light on some of the reasons why it may happen that a path is not parametrically definable. We also show in the relevant trees that if a path is parametrically definable then it can be defined using a node lying high up on the path. The remainder of the chapter looks at elementary equivalence between trees obtained from one another by substitution of a subtree in Section 5.5 (Subtrees) and by constructions involving condensations in Section 5.6 (Condensations).

5.1 Ehrenfeucht-Fraïssé games on trees

The Ehrenfeucht-Fraïssé game of length n on a pair of structures \mathfrak{A} and \mathfrak{B} will be denoted as $\mathrm{EF}_{n}(\mathfrak{A}, \mathfrak{B})$. The situation where Player II has a winning strategy for this game will be denoted as $\operatorname{II}_{n}(\mathfrak{A}, \mathfrak{B})$. For more information on Ehrenfeucht-Fraïssé games the reader is referred to [6]. The paper [33] investigates Ehrenfeucht-Fraïssé games played specifically on trees.

For T a tree and $x \in T$, define the set

$$
C(x):=T \backslash x_{<}
$$

consisting of all nodes y in T such that $y \leqslant x$ or y is incomparable with x. The set $C(x)$ will also be treated as a substructure of T.

The following is a well known result in the study of linear orders.
Proposition 5.1 (Splitting Lemma) ([24, Theorem 6.6]) Let L_{1} and L_{2} be linear orders. Then $\mathrm{II}_{n+1}\left(L_{1}, L_{2}\right)$ if and only if the following two conditions are satisfied:
(i) for every $a \in L_{1}$, there exists $b \in L_{2}$ such that $\mathrm{II}_{n}\left(a_{>}, b_{>}\right)$and $\mathrm{II}_{n}\left(a_{<}, b_{<}\right)$;
(ii) for every $b \in L_{2}$, there exists $a \in L_{1}$ such that $\mathrm{II}_{n}\left(a_{>}, b_{>}\right)$and $\mathrm{II}_{n}\left(a_{<}, b_{<}\right)$.

Proof By induction on n.
QED
This result generalises as follows to trees.
Proposition 5.2 Let T_{1} and T_{2} be trees. Then $\mathrm{II}_{n+1}\left(T_{1}, T_{2}\right)$ if and only if the following two conditions are satisfied:
(i) for every $a \in T_{1}$, there exists $b \in T_{2}$ such that $\mathrm{II}_{n}((C(a) ; a),(C(b) ; b))$ and $\mathrm{II}_{n}\left(a_{<}, b_{<}\right)$;
(ii) for every $b \in T_{2}$, there exists $a \in T_{1}$ such that $\mathrm{II}_{n}((C(a) ; a),(C(b) ; b))$ and $\mathrm{II}_{n}\left(a_{<}, b_{<}\right)$.

Proof Let σ be a winning strategy for Player II for the game $\mathrm{EF}_{n+1}\left(T_{1}, T_{2}\right)$. Let $a \in T_{1}$ and suppose the response of Player II in the game $\mathrm{EF}_{n+1}\left(T_{1}, T_{2}\right)$, using the strategy σ, where Player I chooses the node $a \in T_{1}$ for his first move, is the node $b \in T_{2}$. Then $\mathrm{II}_{n}\left(\left(T_{1} ; a\right),\left(T_{2} ; b\right)\right)$. In particular, $\mathrm{II}_{n}((C(a) ; a),(C(b) ; b))$ and $\mathrm{II}_{n}\left(a_{<}, b_{<}\right)$. This proves condition (i). The proof of condition (ii) is similar.

Next assume that the conditions (i) and (ii) hold. We outline a winning strategy for Player II for the game $\mathrm{EF}_{n+1}\left(T_{1}, T_{2}\right)$. For his first move, suppose Player I chooses the node $a_{1} \in T_{1}$. According to condition (i), there exists
$b_{1} \in T_{2}$ such that $\mathrm{II}_{n}\left(\left(C\left(a_{1}\right) ; a_{1}\right),\left(C\left(b_{1}\right) ; b_{1}\right)\right)$ and $\mathrm{II}_{n}\left(\left(a_{1}\right)_{<},\left(b_{1}\right)_{<}\right)$. Player II then responds by choosing the node $b_{1} \in T_{2}$ for her first move.

Let σ_{1} and σ_{2} be winning strategies for Player II for the games $\mathrm{EF}_{n}\left(\left(C\left(a_{1}\right) ; a_{1}\right),\left(C\left(b_{1}\right) ; b_{1}\right)\right)$ and $\mathrm{EF}_{n}\left(\left(a_{1}\right)_{<},\left(b_{1}\right)_{<}\right)$respectively. Then Player II plays her remaining n moves according to the strategies σ_{1} and σ_{2} as follows.

When Player I chooses for his i-th move the node $a_{i} \in C\left(a_{1}\right) \subseteq T_{1}$ (respectively $b_{i} \in C\left(b_{1}\right) \subseteq T_{2}$) then Player II responds with the node $b_{i} \in$ $C\left(b_{1}\right) \subseteq T_{2}$ (respectively $a_{i} \in C\left(a_{1}\right) \subseteq T_{1}$) using the strategy σ_{1} and based on the nodes that have already been played in $C\left(a_{1}\right)$ and $C\left(b_{1}\right)$.

And when Player I chooses for his i-th move the node $a_{i} \in\left(a_{1}\right)_{<} \subseteq T_{1}$ (respectively $b_{i} \in\left(b_{1}\right)_{<} \subseteq T_{2}$) then Player II responds with the node $b_{i} \in$ $\left(b_{1}\right)_{<} \subseteq T_{2}$ (respectively $\left.a_{i} \in\left(a_{1}\right)_{<} \subseteq T_{1}\right)$ using the strategy σ_{2} and based on the nodes that have already been played in $\left(a_{1}\right)_{<}$and $\left(b_{1}\right)_{<}$.

The case where Player I begins the game by choosing the node $b_{1} \in T_{2}$ is handled analogously using condition (ii) instead.

5.2 First-order definition of trees

The class of forests can be defined using the following first-order sentences:

$$
\begin{aligned}
& \text { Ir : } \forall x(x \nless x) ; \\
& \text { Tr : } \forall x \forall y \forall z(x<y \wedge y<z \rightarrow x<z) ; \\
& \text { ST: } \forall x \forall y \forall z(y<x \wedge z<x \rightarrow y \smile z) .
\end{aligned}
$$

Adding the sentence

$$
\text { Co: } \forall x \forall y \exists z(z \leqslant x \wedge z \leqslant y)
$$

gives a first-order definition of the class of trees. The class of all linear orders can be first-order defined using the sentences Ir and Tr , together with the sentence

To : $\forall x \forall y(x \smile y)$.
The set of sentences consisting of Ir, Tr and ST , which define the class of forests, is denoted as A_{F}, while the set of sentences $A_{F} \cup\{C o\}$, which defines the class of trees, is denoted as A_{T}. The set of sentences consisting of Ir, Tr and $T o$, which defines the class of linear orders, is denoted as A_{L}.

5.3 Nodes

5.3.1 Some definable nodes

Roots and leaves can be defined using the respective formulas

$$
\begin{aligned}
\operatorname{root}(x) & :=\forall y(x \leqslant y) \\
\operatorname{leaf}(x) & :=\forall y(x \leqslant y \rightarrow x=y)
\end{aligned}
$$

It is known (see [24] and also Section 7.1 below) that for every ordinal α with $\alpha<\omega^{\omega}$, there exists a first-order sentence Φ_{α} which axiomatises the first-order theory of α, and $\Phi_{\alpha} \equiv \Phi_{\beta}$ if and only if $\alpha=\beta$. Hence the set of nodes in a well-founded tree T having level α with $\alpha<\omega^{\omega}$ can be defined using the formula

$$
\operatorname{level}_{\alpha}(x):=\Phi_{\alpha}^{<x} .
$$

The next result shows that in well-founded trees T of height less than ω^{ω}, the ability of nodes to define subsets of T improves with the level of those nodes.

Proposition 5.3 Let T be a well-founded tree of height less than ω^{ω}. Let A be a set of nodes in T definable using the formula $\varphi(x, \bar{z})$ with parameters \bar{c} from T substituted for \bar{z}, where $\bar{z}=\left(z_{1}, \ldots, z_{k}\right)$ and $\bar{c}=\left(c_{1}, \ldots, c_{k}\right)$. For every i, let $d_{i} \in T$ with $c_{i} \leqslant d_{i}$. Then there is a formula $\psi(x, \bar{z})$ which defines A with the parameters \bar{d} substituted for \bar{z}, where $\bar{d}=\left(d_{1}, \ldots, d_{k}\right)$.

Proof For every i, suppose c_{i} has level α_{i}. Then c_{i} can be defined in T using the formula $\gamma_{i}(y, z):=y \leqslant z \wedge \operatorname{level}_{\alpha_{i}}(y)$ with the parameter d_{i} substituted for z. Hence take

$$
\psi(x, \bar{z}):=\forall y_{1} \ldots \forall y_{k}\left(\bigwedge_{i=1}^{k} \gamma_{i}\left(y_{i}, z_{i}\right) \rightarrow \varphi\left(x, y_{1}, \ldots, y_{k}\right)\right)
$$

QED
In particular, in well-founded trees of height less than ω^{ω} satisfying the property

Do: $\forall x \exists y(\operatorname{leaf}(y) \wedge x \leqslant y)$
every parametrically definable set of nodes can be defined using leaves as parameters. The sentence Do states that every node is dominated by a leaf.

5.3.2 Neighbourhoods of nodes

Define the formulas

$$
\begin{aligned}
d_{0}(x, y) & :=x=y \\
d_{1}(x, y) & :=s(x, y) \vee s(y, x)
\end{aligned}
$$

and for $k \geqslant 2$,

$$
d_{k}(x, y):=\exists z_{1} \cdots \exists z_{k-1}\left(\bigwedge_{i \neq j} z_{i} \neq z_{j} \wedge d_{1}\left(x, z_{1}\right) \wedge,\right.
$$

Let T be a tree and let $a, b \in T$. For $k \geqslant 2, T \models d_{k}(a / x, b / y)$ if and only if a and b can be reached from one another by traversing exactly $k-1$ nodes along the order relation of T. It is easy to see that there is at most one value of k for which $T \models d_{k}(a / x, b / y)$.

Let F be any set of nodes in T with the property that, for all $u, v \in F$, $T \models d_{k}(u / x, v / y)$ for some natural number k. For $u, v \in F$ define $\rho_{F}(u, v)$ to be the unique natural number k for which $T \models d_{k}(u / x, v / y)$. Then ρ_{F} : $F^{2} \rightarrow \mathbb{R}$ forms a metric on the set of nodes F. In particular, if T is an ω-tree then ρ_{T} forms a metric on the entire set of nodes in T.

For $k \geqslant 0$ define the formula

$$
r_{k}(x, y):=\bigvee_{i=0}^{k} d_{k}(x, y)
$$

For every $a \in T$ we define the neighbourhood of a of radius k as the set

$$
N_{k}(a):=\left\{v \in T: T \models r_{k}(a / x, v / y)\right\} .
$$

For $a \in T$ and $G:=\left\{v \in T: T \models d_{i}(a / x, v / y)\right.$ for some $\left.i \in \mathbb{N}\right\}$ it is clear that $N_{k}(a)=\left\{v \in T: \rho_{G}(a, v) \leqslant k\right\}$.

5.4 Paths

5.4.1 Path-defining formulas

For $k \in \mathbb{N}$ and $\varphi(x, \bar{z})$ any formula with $\bar{z}=\left(z_{1}, \ldots, z_{k}\right)$, define the formula

$$
\begin{align*}
\pi_{\varphi}(\bar{z}) & :=\exists x \varphi(x, \bar{z}) \wedge \forall x \forall y(\varphi(x, \bar{z}) \wedge \varphi(y, \bar{z}) \rightarrow x \smile y) \wedge \\
& \forall x \forall y(x<y \wedge \varphi(y, \bar{z}) \rightarrow \varphi(x, \bar{z})) \wedge \neg \exists x \forall y(\varphi(y, \bar{z}) \rightarrow y<x) . \tag{5.1}
\end{align*}
$$

If $k=0$ then π_{φ} becomes a sentence. Moreover, it is clear that if φ has quantifier rank n then π_{φ} has quantifier rank $n+2$.
The formula π_{φ} formalises the claim that the formula φ defines a path.
Proposition 5.4 Let T be a tree and let \bar{c} be a k-tuple of nodes from T. The formula $\varphi(x, \bar{z})$ (with $\bar{z}=\left(z_{1}, \ldots, z_{k}\right)$) defines a path in T with parameters \bar{c} substituted for \bar{z} if and only if $T \models \pi_{\varphi}(\bar{c} / \bar{z})$.

Proof Define $A:=\{u \in T:(T ; \bar{c}) \models \varphi(u / x, \bar{c})\}$.
If A is a path then it is straightforward to see that each of the four conjuncts in (5.1) hold true in T with \bar{c} substituted for \bar{z}.

Next assume that $T \models \pi_{\varphi}(\bar{c} / \bar{z})$. From the first conjunct in (5.1), A is non-empty. From the second conjunct in (5.1), A is total.

Let $B \subseteq T$ be total and with $A \subseteq B$. Let $b \in B$. By the fourth conjunct in (5.1), there exists $a \in A$ with $b \leqslant a$. The third conjunct in (5.1) then gives that $b \in A$. Hence $A=B$. It follows that A is maximal total, hence A is a path.

QED
It follows that if T_{1} and T_{2} are trees with $T_{1} \equiv T_{2}$ then a formula φ defines a path in T_{1} if and only if φ defines a path in T_{2}.

Proposition 5.5 Let T be a finitely branching tree which is well-founded and in which every node has finite level. Let A be a path in T definable using parameters $\bar{c}=\left(c_{1}, \ldots, c_{k}\right)$. Then there exists $d \in A$ such that A is definable using only d as parameter.

Proof We first show that the parameter c_{k} can be replaced with a parameter d_{k} from A itself. Hence let $\varphi(x, \bar{z})$ define A in T with \bar{c} substituted for \bar{z}, where $\bar{z}=\left(z_{1}, \ldots, z_{k}\right)$. Suppose φ has quantifier rank n and that c_{k} has level l_{k}. Let

$$
\begin{array}{r}
B:=\left\{u \in T: T \models \llbracket(T ; \bar{c}) \rrbracket^{n+2}\left(c_{1} / x_{1}, \ldots, c_{k-1} / x_{k-1}, u / x_{k}\right)\right. \\
\text { and } \left.u \text { has level } l_{k}\right\} .
\end{array}
$$

From the fact that T is finitely branching and that every node in T has finite level it follows that B is finite. B can be defined in T using the formula

$$
\xi\left(x, z_{1}, \ldots, z_{k-1}\right):=\llbracket(T ; \bar{c}) \rrbracket^{n+2}\left(z_{1}, \ldots, z_{k-1}, x\right) \wedge \operatorname{level}_{l_{k}}(x)
$$

with parameters c_{1}, \ldots, c_{k-1} substituted for z_{1}, \ldots, z_{k-1}.

Since $(T ; \bar{c}) \models \pi_{\varphi}(\bar{c})$ and $\left(T ; c_{1}, \ldots, c_{k}\right) \equiv_{n+2}\left(T ; c_{1}, \ldots, c_{k-1}, u\right)$ for every $u \in B$ then φ defines a path in T with $c_{1}, \ldots, c_{k-1}, u$ substituted for z_{1}, \ldots, z_{k}. Hence the formula

$$
\zeta\left(x, z_{1}, \ldots, z_{k-1}\right):=\exists y\left(\xi\left(y, z_{1}, \ldots, z_{k-1}\right) \wedge \varphi\left(x, z_{1}, \ldots, z_{k-1}, y\right)\right)
$$

defines a downwards convex subtree T_{0} of T with the parameters c_{1}, \ldots, c_{k-1} substituted for z_{1}, \ldots, z_{k-1} and where T_{0} contains only finitely many paths, amongst which is the path A.

Choose any $d_{k} \in A$ such that d_{k} does not belong to any path in T_{0} other than the path A. Then A can be defined in T using the formula

$$
\chi(x, \bar{z}):=\zeta\left(x, z_{1}, \ldots, z_{k-1}\right) \wedge x \smile z_{k}
$$

with the parameters $c_{1}, \ldots, c_{k-1}, d_{k}$ substituted for z_{1}, \ldots, z_{k}. Hence we have succeeded in replacing the parameter c_{k} with a parameter d_{k} from A.

Repeating this procedure for the parameters c_{k-1}, \ldots, c_{1}, we eventually obtain nodes $d_{1}, \ldots, d_{k} \in A$ and a formula $\chi^{\prime}\left(x, z_{1}, \ldots, z_{k}\right)$ which defines A in T with the parameters d_{1}, \ldots, d_{k} substituted for z_{1}, \ldots, z_{k}. Suppose without loss of generality that $d_{i} \leqslant d_{1}$ for every $i(i \geqslant 2)$ and that the level of d_{i} is m_{i}. Then d_{i} can be defined in T using the formula $x_{i} \leqslant z \wedge \operatorname{level}_{m_{i}}\left(x_{i}\right)$ with the parameter d_{1} substituted for z. It follows that A can be defined in T using the formula

$$
\psi(x, z):=\forall z_{2} \ldots \forall z_{k}\left(\bigwedge_{i=2}^{k}\left(z_{i} \leqslant z \wedge \operatorname{level}_{m_{i}}\left(z_{i}\right)\right) \rightarrow \chi^{\prime}\left(x, z, z_{2}, \ldots, z_{k}\right)\right)
$$

with d_{1} substituted for z. Hence take $d=d_{1}$.
QED

Lemma 5.6 Let T be a tree and let A be a path in T that is not parametrically definable.
(i) For every $a \in A$ and $n \in \mathbb{N}$, there exists $b \in A$ and $c \in T \backslash A$ with $b, c \geqslant a$ and such that $b_{\leqslant} \equiv_{n} c_{\leqslant}$.
(ii) For every $a \in A$ and $n \in \mathbb{N}$, there exists $b \in A$ and $c \in T \backslash A$ with $b, c \geqslant a$ and such that $C(b) \equiv_{n} C(c)$.

Proof (i) Let $a \in A$ and $n \in \mathbb{N}$ but suppose to the contrary that $u_{\leqslant} \not \equiv_{n} v_{\leqslant}$ for every $u \in A$ and for every $v \in T \backslash A$ with $u, v \geqslant a$. Let $\tau_{1}, \ldots, \tau_{m}$ be
all n-characteristics of empty tuples over the language of ordered sets. Let $U:=\left\{i: u_{\leqslant} \models \tau_{i}\right.$ for some $u \in A$ with $\left.u \geqslant a\right\}$. Then for every u satisfying $u \geqslant a$, we have that $u_{\leqslant} \models \tau_{i}$ for some $i \in U$ if and only if $u \in A$. But then A can be defined in T using the formula

$$
\varphi(x, z):=x<z \vee x \geqslant z \wedge\left(\bigvee_{i \in U} \tau_{i}^{\geq x}\right)
$$

with the parameter a substituted for z, a contradiction.
(ii) Note that for every $d \in T$, the subtree $C(d)$ of T can be defined in T using the formula

$$
\theta(w, y):=\neg(y<w)
$$

with the parameter d substituted for y. The proof is then similar to that of part (i).

QED

5.4.2 Singular and emergent paths

Definition 5.7 Let T be a tree and let A be a path in T. A is called singular if there exists $a \in A$ such that a_{\leqslant}is total. Otherwise the path A is called emergent. If \mathcal{B} is a set of paths in T with $A \notin \mathcal{B}$ and with $A \subseteq \bigcup \mathcal{B}$ then A is said to emerge from \mathcal{B}.

For a more detailed analysis of singular and emergent paths, the reader is referred to [13].

Example 5.8 Let T be the tree obtained by taking the linear order $A:=\omega$ and at each point in A, we adjoin a copy of ω (see Figure 5.1). Thus every path in T is isomorphic with ω. The path A is an emergent path, while every other path in T is singular.

It is immediate that every path containing a leaf must be singular.
Proposition 5.9 Let T be a tree and let A be a singular path in T. Then A is parametrically definable.

Proof Let $a \in A$ such that a_{\leqslant}is total. Then A can be defined in T using the formula

$$
\varphi(x, z):=x \smile z
$$

with the parameter a substituted for z.
QED

Figure 5.1: Singular and emergent paths (see Example 5.8).

Figure 5.2: The formula p_{n} (see Example 5.12(a)).

Proposition 5.10 Let T be a tree satisfying the sentence Do. Every path in T which is not parametrically definable emerges from a set of parametrically definable paths from T.

Proof Let A be a path in T which is not parametrically definable. For every $x \in A$ there exists a leaf a_{x} with $a_{x} \notin A$. Let $\mathcal{B}:=\left\{\left(a_{x}\right)_{\geqslant}: x \in A\right\}$. Then \mathcal{B} is a set of parametrically definable paths and A emerges from \mathcal{B}.

QED
The notion of an emergent path can be further refined as follows. For every $n \in \mathbb{N}^{+}$, define the formula ${ }^{1}$

$$
\mathrm{p}_{n}(x):=\forall y_{1} \ldots \forall y_{n}\left(x \leqslant y_{1} \leqslant y_{2} \leqslant \ldots \leqslant y_{n} \rightarrow \beta\left(x, y_{1}\right) \vee \bigvee_{i=1}^{n-1} \beta\left(y_{i}, y_{i+1}\right)\right) .
$$

For T a tree and $a \in T$ we have that $T \models \mathrm{p}_{n}(a / x)$ if and only if any strictly ascending sequence of maximal bridges starting with the maximal bridge [a] consists of at most n maximal bridges. Note that if $T \models \mathrm{p}_{n}(a / x)$ then $T \models \mathrm{p}_{m}(a / x)$ for all m with $m \geqslant n$.

Definition 5.11 Let T be a tree and let A be a path in T. Then A is called a peripheral path if there exists $a \in A$ and $n \in \mathbb{N}^{+}$such that, for every $u \in a_{\leqslant} \backslash A$, we have $T \models \mathrm{p}_{n}(u / x)$. Otherwise A is called an internal path.

[^3]Intuitively a path A in a tree T is peripheral when for some $n \in \mathbb{N}^{+}$, nodes high up in A can be reached from the top-end of the tree by traversing at most n maximal bridges along paths which branch off from A.

Example 5.12 (a) The tree depicted in Figure 5.2 shows the maximal bridges where which the formula $\mathrm{p}_{n}(n=1,2,3)$ holds for nodes in those bridges.
(b) The emergent path A in the tree depicted in Figure 5.1 is a peripheral path.
(c) For every $n \in \mathbb{N}$, let B_{n} denote the binary $(\mathbf{n}+\mathbf{1})$-tree (up to isomorphism), i.e. B_{n} is the binary tree of which every path is isomorphic to the linear order $\mathbf{n}+\mathbf{1}$. Let T be the tree obtained by taking the linear order $C:=\omega$ and at every point n in C, we adjoin the tree B_{n}, as shown in Figure 5.3. Then the path C is internal.

Figure 5.3: An internal path (see Example 5.12(c)).

Note that every singular path is vacuously peripheral.
Lemma 5.13 Let T be a tree and let $n \in \mathbb{N}^{+}$. The set $T^{\neg \mathrm{p}_{n}}$ is downwards convex in T.

Proof Let $a \in T^{\neg \mathrm{p}_{n}}$ and let $b<a$. Hence $T \models \neg \mathrm{p}_{n}(a / x)$ and since

$$
\neg \mathrm{p}_{n}(x)=\exists y_{1} \ldots \exists y_{n}\left(x \leqslant y_{1} \leqslant y_{2} \leqslant \ldots \leqslant y_{n} \wedge \neg \beta\left(x, y_{1}\right) \wedge \bigwedge_{i=1}^{n-1} \neg \beta\left(y_{i}, y_{i+1}\right)\right)
$$

then from the transitivity of the relation $<$ we get that $T \models \neg \mathrm{p}_{n}(b / x)$. Hence $b \in T^{\neg \mathrm{P}_{n}}$, as required.

QED

Lemma 5.14 Let T be a tree and let $n \in \mathbb{N}^{+}$. Then $T^{\neg \mathrm{p}_{n}}$ is a subtree of T.
Proof We need to show that $T^{\neg \mathrm{p}_{n}}$ is connected. Let $a, b \in T^{\neg \mathrm{p}_{n}}$. From the connectedness of T there exists $c \in T$ such that $c \leqslant a, b$. From Lemma 5.13 we get $c \in T^{\neg \mathrm{p}_{n}}$, as required.

QED
Intuitively the tree $T^{\neg \mathrm{p}_{n}}$ is the tree that remains when all branches which are contained within singular paths and which consist of at most n distinct maximal bridges have been removed from T.

Peripheral paths are related to singular paths in the following way.
Lemma 5.15 Let T be a tree and let A be an emergent path in T that is also peripheral. There exists $n \in \mathbb{N}^{+}$such that A is a singular path in $T^{\neg \mathrm{p}_{n}}$.

Proof Since A is emergent then it follows that $T \models \neg \mathrm{p}_{m}(u / x)$ for every $m \in \mathbb{N}^{+}$and for all $u \in A$ and so $A \subseteq T^{\neg \mathrm{p}_{m}}$. From the fact that A is maximal total in T it follows that A will be maximal total in $T^{\neg \mathrm{p}_{m}}$. Hence A is a path in $T^{\neg \mathrm{p}_{m}}$ for every $m \in \mathbb{N}^{+}$.

Since A is peripheral then there exists $a \in A$ and $n \in \mathbb{N}^{+}$such that $T \models \mathrm{p}_{n}(u / x)$ for every $u \in a_{\leqslant} \backslash A$. Hence $u \notin T^{\neg \mathrm{p}_{n}}$ for every $u \in a_{\leqslant} \backslash A$. It follows that the branch $\{x \in A: x \geqslant a\}$ is total in $T^{\neg \mathrm{p}_{n}}$. Hence A is a singular path in $T^{\neg \mathrm{P}_{n}}$.

QED

Proposition 5.16 Let T be a tree and let A be a peripheral path in T. Then A is parametrically definable in T.

Proof In the case where A is a singular path we have already demonstrated that A is parametrically definable in T in Proposition 5.9. Hence assume A is an emergent path in T. Then by Lemma 5.15 , there exists $n \in \mathbb{N}^{+}$such that A is a singular path in $T^{\neg \mathrm{p}_{n}}$. From Proposition 5.9 we know that there exists $a \in A$ such that the formula $\varphi(x, z):=x \smile z$ defines A in $T^{\neg \mathrm{p}_{n}}$ with the parameter a substituted for z. Hence the formula $\varphi{ }^{\mathrm{p}_{n}}(x, z)$ defines A in T with the parameter a substituted for z.

QED

5.5 Subtrees

The next result can also be found in [10].
Proposition $5.17([10])$ Let $T_{1}=\left(\left|T_{1}\right| ;<_{T_{1}}\right)$ be a tree and let $\left\{S_{i}: i \in I\right\}$ be a pairwise disjoint set of upwards convex subtrees of T_{1}. For every $i \in I$, let $U_{i}=\left(\left|U_{i}\right| ;<_{U_{i}}\right)$ be a tree with $S_{i} \equiv_{n} U_{i}$. Let T_{2} be the tree obtained from T_{1} by replacing every subtree S_{i} with the tree U_{i}. Formally we define $T_{2}=\left(\left|T_{2}\right| ;<_{T_{2}}\right)$ as follows:

- $\left|T_{2}\right|:=\left(\left|T_{1}\right| \backslash \bigcup_{i \in I}\left|S_{i}\right|\right) \cup \bigcup_{i \in I}\left|U_{i}\right|$, and
- for $x, y \in\left|T_{2}\right|, x<_{T_{2}} y$ if and only if one of the following conditions are satisfied:
(i) $x, y \in\left|T_{1}\right| \backslash \bigcup_{i \in I}\left|S_{i}\right|$ and $x<_{T_{1}} y$, or
(ii) $x, y \in\left|U_{i}\right|$ for some i and $x<_{U_{i}} y$, or
(iii) $x \in\left|T_{1}\right| \backslash\left|S_{i}\right|$ and $y \in\left|U_{i}\right|$ for some i, and $x<_{T_{1}} z$ for some $z \in\left|S_{i}\right|$.

Then $T_{1} \equiv{ }_{n} T_{2}$. Consequently if $S_{i} \equiv U_{i}$ for every $i \in I$ then $T_{1} \equiv T_{2}$.
Proof A winning strategy for Player II for the game $\mathrm{EF}_{n}\left(T_{1}, T_{2}\right)$ is as follows. Whenever Player I chooses a node from $\left|T_{1}\right| \backslash \bigcup_{i \in I}\left|S_{i}\right|\left(\subseteq\left|T_{1}\right|\right)$ or from $\left|T_{2}\right| \backslash \bigcup_{i \in I}\left|U_{i}\right|\left(\subseteq\left|T_{2}\right|\right)$, then Player II responds by choosing the exact same node from the tree not used by Player I for that move. And whenever Player I chooses a node from $\left|S_{i}\right|\left(\subseteq\left|T_{1}\right|\right)$ or from $\left|U_{i}\right|\left(\subseteq\left|T_{2}\right|\right)$ for some i, then Player II selects a node using her winning strategy for the game $\mathrm{EF}_{n}\left(S_{i}, U_{i}\right)$, and based on the nodes already played in S_{i} and U_{i}. QED

When an upwards convex subtree of tree is replaced with an elementary extension of that subtree, we have the following result.

Proposition 5.18 Let $T_{1}=\left(\left|T_{1}\right| ;<_{T_{1}}\right)$ be a tree and let $\left\{S_{i}: i \in I\right\}$ be a pairwise disjoint set of upwards convex subtrees of T_{1}. For every $i \in I$, let $U_{i}=\left(\left|U_{i}\right| ;<_{U_{i}}\right)$ be a tree with $S_{i} \preceq U_{i}$. Let T_{2} be the tree obtained from T_{1} by replacing every subtree S_{i} with the tree U_{i} as in Proposition 5.17. Then $T_{1} \preceq T_{2}$.

Proof Let \bar{c} be a tuple of nodes in T_{1} and let $S_{i_{1}}, S_{i_{2}}, \ldots, S_{i_{k}}$ be all those trees from the set $\left\{S_{i}: i \in I\right\}$ which contain nodes from the tuple \bar{c}. Suppose without loss of generality that $\bar{c}=\bar{c}_{0} \bar{c}_{1} \cdots \bar{c}_{k}$ where \bar{c}_{j} is a tuple of nodes from $S_{i_{j}}$ and where \bar{c}_{0} is a tuple of nodes in $\left|T_{1}\right| \backslash \bigcup_{i \in I}\left|S_{i}\right|$. Hence we have that $S_{i} \equiv U_{i}$ for all i with $i \neq i_{1}, \ldots, i_{k}$, and $\left(S_{i_{j}} ; \bar{c}_{j}\right) \equiv\left(U_{i_{j}} ; \bar{c}_{j}\right)$ for all j with $j=1, \ldots, k$.

A winning strategy for Player II for the game $\mathrm{EF}_{n}\left(\left(T_{1} ; \bar{c}\right),\left(T_{2} ; \bar{c}\right)\right)$ is as follows. Whenever Player I chooses a node from $\left|T_{1}\right| \backslash \bigcup_{i \in I}\left|S_{i}\right|\left(\subseteq\left|T_{1}\right|\right)$ or from $\left|T_{2}\right| \backslash \bigcup_{i \in I}\left|U_{i}\right|\left(\subseteq\left|T_{2}\right|\right)$, then Player II responds by choosing the exact same node from the structure not used by Player I for that move. Whenever Player I chooses, for some i with $i \neq i_{1}, \ldots, i_{k}$, a node from $\left|S_{i}\right|\left(\subseteq\left|T_{1}\right|\right)$, respectively from $\left|U_{i}\right|\left(\subseteq\left|T_{2}\right|\right)$, then Player II selects a node from $\left|U_{i}\right|$, respectively from $\left|S_{i}\right|$, using her winning strategy for the game $\mathrm{EF}_{n}\left(S_{i}, U_{i}\right)$, and based on the nodes already played in S_{i} and U_{i}. And finally, whenever Player I chooses, for some j with $j=1, \ldots, k$, a node from $\left|S_{i_{j}}\right|\left(\subseteq\left|T_{1}\right|\right)$, respectively from $\left|U_{i_{j}}\right|\left(\subseteq\left|T_{2}\right|\right)$, then Player II selects a node from $\left|U_{i_{j}}\right|$, respectively from $\left|S_{i_{j}}\right|$, using her winning strategy for the game $\mathrm{EF}_{n}\left(\left(S_{i_{j}} ; \bar{c}_{j}\right),\left(U_{i_{j}} ; \bar{c}_{j}\right)\right)$, and based on the nodes already played in $S_{i_{j}}$ and $U_{i_{j}}$.

Hence $\left(T_{1} ; \bar{c}\right) \equiv_{n}\left(T_{2} ; \bar{c}\right)$ and it follows that $T_{1} \preceq T_{2}$.
QED

Proposition 5.19 Let T be a tree, let $a \in T$ and let A be a path in the tree a_{\leqslant}which is parametrically definable in a_{\leqslant}. Then the path $a_{>}+A$ in T is parametrically definable in T.

Proof Suppose the formula $\varphi(x, \bar{z})$ defines the path A in a_{\leqslant}with parameters \bar{c} from a_{\leqslant}substituted for \bar{z}. Then the formula

$$
\varphi^{\geqslant u}(x, \bar{z} u) \vee x<u
$$

defines $a_{>}+A$ in T with the parameters $\bar{c} a$ substituted for $\bar{z} u$.
QED

5.6 Condensations

Proposition 5.20 Let T be a tree, let \mathcal{L}_{1} and \mathcal{L}_{2} be classes of linear orders, and let $f: T \rightarrow \mathcal{L}_{1}$ and $g: T \rightarrow \mathcal{L}_{2}$ be functions. Let $n \in \mathbb{N}$ and suppose that for every $x \in T, f(x) \equiv_{n} g(x)$. Then $T \times{ }_{f} \mathcal{L}_{1} \equiv_{n} T \times_{g} \mathcal{L}_{2}$. Consequently if $f(x) \equiv g(x)$ for every $x \in T$ then $T \times_{f} \mathcal{L}_{1} \equiv T \times_{g} \mathcal{L}_{2}$.

Proof For every $x \in T$, let σ_{x} be a winning strategy for Player II for the game $\mathrm{EF}_{n}(f(x), g(x))$. We will describe a winning strategy for Player II for the game $\mathrm{EF}_{n}\left(T \times_{f} \mathcal{L}_{1}, T \times{ }_{g} \mathcal{L}_{2}\right)$.

Suppose the first $i-1$ moves of the game consist of the nodes $a_{1}, \ldots, a_{i-1} \in$ $\left|T \times_{f} \mathcal{L}_{1}\right|$ and $b_{1}, \ldots, b_{i-1} \in\left|T \times_{g} \mathcal{L}_{2}\right|$, where for every $j(1 \leqslant j \leqslant i-1)$ the nodes a_{j} and b_{j} have the form $a_{j}=\left(a_{j, 1}, a_{j, 2}\right)$ and $b_{j}=\left(b_{j, 1}, b_{j, 2}\right)$, with $a_{j, 1}, b_{j, 1} \in T$ and with $a_{j, 2} \in f\left(a_{j, 1}\right)$ and $b_{j, 2} \in g\left(b_{j, 1}\right)$.

Suppose that for his i-th move, Player I chooses the node $a_{i} \in\left|T \times_{f} \mathcal{L}_{1}\right|$, where $a_{i}=\left(a_{i, 1}, a_{i, 2}\right)$ with $a_{i, 1} \in T$ and $a_{i, 2} \in f\left(a_{i, 1}\right)$. Let $a_{j_{1}, 1}, \ldots, a_{j_{k}, 1}$ be all the nodes from amongst $a_{1,1}, \ldots, a_{i-1,1}$ for which $a_{j_{1}, 1}, \ldots, a_{j_{k}, 1}=a_{i, 1}$.

Consider the game $\operatorname{EF}_{n}\left(f\left(a_{i, 1}\right), g\left(a_{i, 1}\right)\right)$. Suppose that the first k moves of the game consist of the elements $a_{j_{1}, 2}, \ldots, a_{j_{k}, 2} \in f\left(a_{i, 1}\right)$ and $b_{j_{1}, 2}, \ldots, b_{j_{k}, 2} \in$ $g\left(a_{i, 1}\right)$. Suppose that, using the strategy $\sigma_{a_{i, 1}}$, the response of Player II when Player I chooses for his $(k+1)$-th move the element $a_{i, 2} \in f\left(a_{i, 1}\right)$ is that Player II chooses the element $b_{i, 2} \in g\left(a_{i, 1}\right)$.

Let $b_{i, 1}=a_{i, 1}$. For her i-th move of the game $\operatorname{EF}_{n}\left(T \times_{f} \mathcal{L}_{1}, T \times_{g} \mathcal{L}_{2}\right)$, Player II then chooses the node $b_{i} \in\left|T \times{ }_{g} \mathcal{L}_{2}\right|$ where $b_{i}=\left(b_{i, 1}, b_{i, 2}\right)$.

The case where Player I instead chooses some $b_{i} \in\left|T \times{ }_{g} \mathcal{L}_{2}\right|$ for his i-th move is similar.

This choice of nodes will result in a win for Player II for the game $\mathrm{EF}_{n}\left(T \times_{f} \mathcal{L}_{1}, T \times{ }_{g} \mathcal{L}_{2}\right)$ and the result follows.

QED

Example 5.21 In part (a) of this example we show that two given trees T_{1} and T_{2} are elementarily equivalent. In part (b) we define a class of linear orders \mathcal{L}_{1} together with a function $f: T_{1} \rightarrow \mathcal{L}_{1}$ and then show that there is no function $g: T_{2} \rightarrow \mathcal{L}_{1}$ for which $T_{1} \times{ }_{f} \mathcal{L}_{1} \equiv T_{2} \times_{g} \mathcal{L}_{1}$. We do this by showing that for every class of linear orders \mathcal{L}_{2} and for every function $g: T_{2} \rightarrow \mathcal{L}_{2}$ such that $T_{1} \times_{f} \mathcal{L}_{1} \equiv T_{2} \times{ }_{g} \mathcal{L}_{2}$, it must be the case that $\mathcal{L}_{1} \subsetneq \mathcal{L}_{2}$.
(a) Consider the trees T_{1} and T_{2} as depicted in Figure 5.4 and Figure 5.5. The tree T_{1} is obtained by taking the linear order $A:=\omega$ and at the i-th element c_{i-1} of A we attach the node $c_{i-1}^{+} . T_{2}$ is obtained by taking the linear order $B:=\omega+\zeta$ and at every element x in B we attach the node x^{+}. Let d_{i-1} be the i-th element in the copy of ω in B; then d_{i-1}^{+}is the node attached to it.

Then $T_{1} \equiv T_{2}$. The following describes a winning strategy for Player II for the game $\mathrm{EF}_{n}\left(T_{1}, T_{2}\right)$ with $n \in \mathbb{N}$.

Let the first $i-1$ moves of the game consist of the nodes $a_{1}, \ldots, a_{i-1} \in T_{1}$

Figure 5.4: The tree T_{1} (see Example 5.21(a)).
and $b_{1}, \ldots, b_{i-1} \in T_{2}$. For his i-th move, suppose Player I chooses the node $a_{i} \in T_{1}$.

For any node x, define x^{-}as follows: if x has the form $x=y^{+}$for some node y then $x^{-}:=y$; otherwise $x^{-}:=x$. In other words, x^{-}is the greatest node in the path A or in the path B for which $x^{-} \leqslant x$.

As is well known (see e.g. [24, Corollary 6.12]), $\omega \equiv \omega+\zeta$ and so $A \equiv B$. Thus Player II has a winning strategy for the game $\mathrm{EF}_{n}(A, B)$. Suppose that the first $i-1$ moves of the game $\operatorname{EF}_{n}(A, B)$ are $a_{1}^{-}, \ldots, a_{i-1}^{-} \in A$ and $b_{1}^{-}, \ldots, b_{i-1}^{-} \in B$. Using her winning strategy for the game $\operatorname{EF}_{n}(A, B)$, in response to Player I choosing for his i-th move the node $a_{i}^{-} \in A$, let Player II choose the node $b_{i}^{\star} \in B$.

If a_{i} has the form $a_{i}=x^{+}$for some x then Player II's i-th move in the game $\mathrm{EF}_{n}\left(T_{1}, T_{2}\right)$ is the node $b_{i} \in T_{2}$, where $b_{i}:=\left(b_{i}^{\star}\right)^{+}$; otherwise Player II's i-th move is the node $b_{i} \in T_{2}$, where $b_{i}:=b_{i}^{\star}$.

The case where Player I chooses for his i-th move the node $b_{i} \in T_{2}$ is similar.
(b) Let $\mathcal{L}_{1}:=\left\{\mathbf{n}: n \in \mathbb{N}^{+}\right\}$and define $f: T_{1} \rightarrow \mathcal{L}_{1}$ by specifying that $f\left(c_{0}\right)=\mathbf{2}, f\left(c_{k}\right)=\mathbf{1}$ for every $k \in \mathbb{N}^{+}$, and $f\left(c_{k}^{+}\right)=\mathbf{k}+\mathbf{1}$ for every $k \in \mathbb{N}$.

The tree $T_{1} \times_{f} \mathcal{L}_{1}$ is depicted in Figure 5.6. It consists of a path C (isomorphic with ω) with the linear order \mathbf{n} attached to the ($n+1$)-th element of C.

We will now construct a class of linear orders \mathcal{L}_{2} and a function $g: T_{2} \rightarrow$ \mathcal{L}_{2} such that $T_{1} \times{ }_{f} \mathcal{L}_{1} \equiv T_{2} \times_{g} \mathcal{L}_{2}$. In particular, for every such class \mathcal{L}_{2} we

Figure 5.6: The tree $T_{1} \times{ }_{f} \mathcal{L}_{1}$ (see Example 5.21(b)).

Figure 5.7: The tree $T_{2} \times{ }_{f} \mathcal{L}_{2}$ (see Example 5.21(b)).
will have $\mathcal{L}_{1} \subsetneq \mathcal{L}_{2}$.
Clearly we will need $\mathbf{1 , 2} \in \mathcal{L}_{2}$ with $g\left(d_{0}\right)=\mathbf{2}$ and $g(x)=\mathbf{1}$ for every $x \in B$ with $x \neq d_{0}$. Let

$$
\varphi(x):=\mathrm{To}^{\geqslant x} \wedge \forall y\left(y<x \rightarrow \neg \mathrm{To}^{\geqslant y}\right) .
$$

For every $n \geqslant 1$ we have

$$
T_{1} \times_{f} \mathcal{L}_{1} \models \exists!x\left(\varphi(x) \wedge\left(\lambda_{n} \wedge \mu_{n}\right)^{\geqslant x}\right) .
$$

It follows that we will need $\mathbf{n} \in \mathcal{L}_{2}$ for every $n \geqslant 3$ and $g\left(d_{k}^{+}\right)=\mathbf{k}+\mathbf{1}$ for every $k \in \mathbb{N}$ if we are to have $T_{1} \times_{f} \mathcal{L}_{1} \equiv T_{2} \times_{g} \mathcal{L}_{2}$, and $g\left(x^{+}\right) \neq \mathbf{n}$ for every $\mathbf{n} \in \mathbb{N}^{+}$and with x any element in the copy of ζ in B.

As is well known (see e.g. [24, Exercise 6.11]), $\mathbf{k} \equiv_{n} \omega+\zeta \cdot \alpha+\omega^{\star}$ for $k \geqslant 2^{n}-1$ and for every order type α. Hence let \mathcal{L}_{2} also contain the class of order types $\left\{\omega+\zeta \cdot \alpha+\omega^{\star}: \alpha \in \mathcal{C}\right\}$ for some class \mathcal{C}. Hence $\mathcal{L}_{2}:=\left\{\mathbf{n}: n \in \mathbb{N}^{+}\right\} \cup\left\{\omega+\zeta \cdot \alpha+\omega^{\star}: \alpha \in \mathcal{C}\right\}$.

For every element x in the copy of ζ in B, let $g\left(x^{+}\right)=\omega+\zeta \cdot \alpha+\omega^{\star}$ for some order type $\alpha \in \mathcal{C}$ depending on x.

The tree $T_{2} \times{ }_{g} \mathcal{L}_{2}$ is depicted in Figure 5.7. It consists of a path D, isomorphic with the linear order $\omega+\zeta$, with the linear order \mathbf{k} attached to the $(k+1)$-th element of the copy of ω in D, and with some linear order
$x^{+} \times_{\text {lex }}\left(\omega+\zeta \cdot \alpha+\omega^{\star}\right)$ (isomorphic with $\omega+\zeta \cdot \alpha+\omega^{\star}$) attached to every element x in the copy of ζ in D.

We will now show that $T_{1} \times_{f} \mathcal{L}_{1} \equiv T_{2} \times_{g} \mathcal{L}_{2}$. Fix $n \geqslant 1$ and note that for all $x \in A$ with $x \geqslant c_{2^{n}-2}$ we have $x^{+} \times_{\operatorname{lex}} f\left(x^{+}\right) \equiv_{n} \omega+\omega^{\star}$, and for all $x \in B$ with $x \geqslant d_{2^{n}-2}$ we have $x^{+} \times_{\operatorname{lex}} g\left(x^{+}\right) \equiv_{n} \omega+\omega^{\star}$. Let S_{1} be the tree obtained from $T_{1} \times_{f} \mathcal{L}_{1}$ by replacing the branch $x^{+} \times_{\text {lex }} f\left(x^{+}\right)$in $T_{1} \times_{f} \mathcal{L}_{1}$ with the linear order $\omega+\omega^{\star}$ for every $x \in A$ with $x \geqslant c_{2^{n}-2}$, and let S_{2} be the tree obtained from $T_{2} \times{ }_{g} \mathcal{L}_{2}$ by replacing the branch $x^{+} \times_{\text {lex }} g\left(x^{+}\right)$in $T_{2} \times_{g} \mathcal{L}_{2}$ with the linear order $\omega+\omega^{\star}$ for every $x \in B$ with $x \geqslant d_{2^{n}-2}$. It then follows from Proposition 5.17 that $T_{1} \times_{f} \mathcal{L}_{1} \equiv_{n} S_{1}$ and $T_{2} \times_{g} \mathcal{L}_{2} \equiv_{n} S_{2}$.

Hence S_{1} can be seen as consisting of the linear order ω with the linear order \mathbf{k} attached to the $(k+1)$-th element of ω for $k \leqslant 2^{n}-2$ and with the linear order $\omega+\omega^{\star}$ attached to every other element of ω. The tree S_{2} can be seen as consisting of the linear order $\omega+\zeta$ with the linear order \mathbf{k} attached to the $(k+1)$-th element of $\omega+\zeta$ for $k \leqslant 2^{n}-2$ and with the linear order $\omega+\omega^{\star}$ attached to every other element of $\omega+\zeta$. By modifying the winning strategy empoyed by Player II for the game $\mathrm{EF}_{n}\left(T_{1}, T_{2}\right)$ above, it is easy to see that Player II also has a winning strategy for the game $\operatorname{EF}_{n}\left(S_{1}, S_{2}\right)$ and so $S_{1} \equiv{ }_{n} S_{2}$. Hence $T_{1} \times{ }_{f} \mathcal{L}_{1} \equiv_{n} T_{2} \times_{g} \mathcal{L}_{2}$ and the result follows.

For $\varphi(x)$ any formula, define the sentence χ_{φ} as 2

$$
\chi_{\varphi}:=\forall x \exists y(\varphi(y) \wedge \beta(x, y)) \wedge \forall x \forall y(\varphi(x) \wedge \varphi(y) \wedge \beta(x, y) \rightarrow x=y)
$$

The sentence χ_{φ} states that every maximal bridge contains exactly one node satisfying the formula $\varphi(x)$.

The next result shows that $T^{\varphi} \cong[T]$ if and only if $T \models \chi_{\varphi}$.
Proposition 5.22 Let T be a tree and let $\varphi(x)$ be a formula. Consider the function [$\cdot]: T \rightarrow[T]$ which maps nodes in T to their maximal bridges in $[T]$ and let $[\cdot] \int_{T^{\varphi}}$ be the restriction of $[\cdot]$ to the set T^{φ}. Then $[\cdot] \int_{T^{\varphi}}$ is an isomorphism if and only if $T \models \chi_{\varphi}$.

Proof Straightforward using Proposition 3.12.
QED

[^4]Example 5.23 Let T be a well-founded tree. Every maximal bridge in T contains a unique minimal node hence $[T]$ is isomorphic to the tree formed by these minimal nodes taken from each maximal bridge. It follows from Proposition 3.14 that the condensation of T can be defined up to isomorphism using the formula

$$
\varphi(x):=\forall y(y<x \rightarrow \exists z(z \smile y \wedge z \nsim x))
$$

Note that the root of T vacuously satisfies the formula $\varphi(x)$.

Chapter 6

First-order theories of trees

We now look at the first-order theories of some important classes of trees. In Section 6.1 (Well-founded trees) we describe the construction used in [5] to prove that every definably well-founded tree has a well-founded n-equivalent. In Section 6.2 (Finitely branching trees) we show how it is possible in any tree to remove all but finitely many components extending a stem so that the tree obtained is n-equivalent to the original tree. This result is a special case of the result in [27] that every weakly boundedly branching tree T has a subtree S for which $S \preceq_{n} T$. In Section 6.3 (Finite trees) we axiomatise the first-order theory of the class of finite trees by adapting the method used in [1] to axiomatise the first-order theory of the class of finite ordered trees. In Section 6.4 (Condensations) we show how the first-order theory of a tree may be determined using the first-order theory of its condensation and the first-order theories of the maximal bridges in the tree. Finally Section 6.5 (The \mathcal{C}-classes of trees) completely establishes the relationships between the first-order theories of the various \mathcal{C}-classes of trees. We also investigate the general problem of axiomatising the various \mathcal{C}-classes of trees using the first-order theory of the class \mathcal{C}.

6.1 Well-founded trees

A tree T is called definably well-founded when every parametrically definable non-empty set of nodes in T contains a minimal element. The property of being definably well-founded can be formalised using the scheme A_{W} con-
sisting of the sentences

$$
\forall \bar{z}(\exists x \varphi(x, \bar{z}) \rightarrow \exists x(\varphi(x, \bar{z}) \wedge \forall y(\varphi(y, \bar{z}) \wedge y \leqslant x \rightarrow y=x)))
$$

for all $k \in \mathbb{N}$ and for every formula $\varphi(x, \bar{z})$ with $\bar{z}=\left(z_{1}, \ldots, z_{k}\right)$.
The dual of the property of well-foundedness in a tree states that every non-empty set of nodes in the tree contains a maximal node. The property that every parametrically definable non-empty set of nodes contains a maximal node can be formalised using the scheme $A_{W D}$, where $A_{W D}$ consists of the sentences

$$
\forall \bar{z}(\exists x \varphi(x, \bar{z}) \rightarrow \exists x(\varphi(x, \bar{z}) \wedge \forall y(\varphi(y, \bar{z}) \wedge x \leqslant y \rightarrow y=x)))
$$

for all $k \in \mathbb{N}$ and for every formula $\varphi(x, \bar{z})$ with $\bar{z}=\left(z_{1}, \ldots, z_{k}\right)$.
Proposition 6.1 Let T be a tree.
(i) If T satisfies the scheme A_{W} (in particular when T is well-founded) then T is upwards discrete.
(ii) If T satisfies the scheme A_{WD} (in particular when T satisfies the dual of the property of well-foundedness) then T is downwards discrete.

Proof (i) Let T satisfy the scheme A_{w}. Let A be a path in T and let a be a non-leaf node in A. Then there exists $b \in A$ with $a<b$. Define $\varphi\left(x, z_{1}, z_{2}\right):=z_{1}<x \leqslant z_{2}$. The formula $\varphi\left(x, z_{1}, z_{2}\right)$ defines the interval ($a, b]$ in T with the parameters a and b substituted for z_{1} and z_{2} respectively. From A_{W} this interval $(a, b]$ contains a minimal node c which clearly satisfies the condition that $c \in A$ and c is an immediate succesor to a. Hence T is upwards discrete.
(ii) Similar to (i).

Proposition 6.2 Let T be a tree.
(i) Suppose every path in T contains a leaf and T is downwards discrete. If T satisfies the scheme A_{W} then T satisfies the scheme A_{wd}. If T is wellfounded then T satisfies the dual of the property of well-foundedness.
(ii) Suppose T is rooted and upwards discrete. If T satisfies the scheme A ${ }_{\text {WD }}$ then T satisfies the scheme A_{W}. If T satisfies the dual of the property of well-foundedness then T is well-founded.

Proof (i) Suppose every path in T contains a leaf and T is downwards discrete and let T satisfy the scheme A_{W}. Let \bar{c} be a k-tuple of nodes in T and let $\varphi(x, \bar{z})$ be a formula with \bar{z} a k-tuple of variables and suppose that the set A defined in T by $\varphi(x, \bar{z})$ with the parameters \bar{c} substituted for \bar{z} is nonempty. In order to show that T satisfies the scheme A_{WD} we need to show that A contains a maximal node. If A contains a leaf then we are done so assume A does not contain any leaves. Define

$$
\psi(x, \bar{z}):=\neg \exists y(x \leqslant y \wedge \varphi(y, \bar{z})) \wedge \exists y(y<x \wedge \varphi(y, \bar{z})) .
$$

The set B defined in T by $\psi(x, \bar{z})$ with the parameters \bar{c} substituted for \bar{z} is non-empty since it will contain a leaf and by the scheme A_{W} it follows that B contains a minimal node a. Since T is downwards discrete then a has an immediate predecessor b and the node b clearly is a maximal element of A as required.

A similar argument can be used to show that if T is well-founded then T satisfies the dual of the property of well-foundedness.
(ii) Similar to (i).

QED
It is worth noting that the property of a tree being downwards discrete can be formalised using the sentence
$\mathrm{D}_{1}: \forall x(\exists y(y<x) \rightarrow \exists y(y<x \wedge \forall z(\neg(y<z<x))))$
and the property of a tree being upwards discrete can be formalised using the sentence

$$
\mathrm{D}_{2}: \forall x \forall y(x<y \rightarrow \exists z(x<z \leqslant y \wedge \forall u(\neg(x<u<z)))) .
$$

The following result is taken from [5] where a detailed proof can also be found. We will give an outline of the proof.

Theorem 6.3 ([5, Theorem 4.1]) Let T be a definably well-founded tree. For every $n \in \mathbb{N}$ there is a well-founded tree S such that $S \equiv_{n} T$.

Proof The basic idea is to move up from the root of the tree and systematically replace subtrees which are not well-founded with well-founded n-equivalents.

The first part of the proof consists of showing that if T is a definably well-founded tree then for $a, b \in T$ with $a<b$, there exists $(R ; \beta)$ with β
a well-ordered interval in R and with all the components of $R \backslash \beta$ definably well-founded and such that $\left(a_{\leqslant} \backslash b_{\leqslant},[a, b)\right) \equiv_{n}(R ; \beta)$. For let X be the set of nodes b in T with the property that, if $a<b$ then there exists $(R ; \beta)$ with β well-ordered and with all the components of $R \backslash \beta$ definably well-founded and with $\left(a_{\leqslant} \backslash b_{\leqslant},[a, b)\right) \equiv_{n}(R ; \beta)$, but suppose $X \neq T$. Let $\tau_{1}, \ldots, \tau_{k}$ be the characteristic formulas of rank n over the empty tuple which are satisfied in trees $(R ; \beta)$ for which β is well-ordered and for which all the components of $R \backslash \beta$ are definably well-founded. Assume that the sentences τ_{i} do not contain the variables x and y and for each i, let $\tau_{i}^{\prime}(x, y)$ be the formula obtained from τ_{i} by replacing every instance of the expression $\beta(u)$ with the expression $x \leqslant u<y$. Let

$$
\theta\left(u, y_{1}, y_{2}\right):=y_{1} \leqslant u \wedge \neg\left(y_{2} \leqslant u\right) .
$$

The formula $\theta\left(u, y_{1}, y_{2}\right)$ defines the set $a_{\leqslant} \backslash b_{\leqslant}$in $(T ; a, b)$ with a substituted for y_{1} and b substituted for y_{2}. Then the formula

$$
\varphi(y):=\forall x\left(x<y \rightarrow \bigvee_{i=1}^{k}\left(\tau_{i}^{\prime}(x, y)\right)^{\theta(u, x, y)}\right)
$$

defines the set X in T. Hence $T \backslash X$ is definable and so contains a minimal node b. Let $a \in T$ with $a<b$ be such that $\left(a_{\leqslant} \backslash b_{\leqslant},[a, b)\right)$ does not have an n-equivalent $(R ; \beta)$ of the required form. By the minimality of b together with the fact that T is definably well-founded it follows that b does not have an immediate predecessor. Hence let $\left\{a_{\xi}\right\}_{\xi<\alpha} \subseteq[a, b)$ be cofinal in $[a, b)$ with $a_{0}=a$ and $a_{\xi}<a_{\zeta}$ for $\xi<\zeta$. For every ξ let $\left(R_{\xi} ; \beta_{\xi}\right)$ be a tree with β_{ξ} well-ordered and with all the components of $R_{\xi} \backslash \beta_{\xi}$ definably wellfounded and with $\left(\left(a_{\xi}\right) \leqslant \backslash\left(a_{\xi+1}\right)_{\leqslant} ;\left[a_{\xi}, a_{\xi+1}\right)\right) \equiv_{n}\left(R_{\xi} ; \beta_{\xi}\right)$. Now take $(R ; \beta)$ to be the tree obtained as the union of the trees $\left(R_{\xi} ; \beta_{\xi}\right)$ by glueing the segments β_{ξ} one after the other in ascending order of the index ξ. From its construction, β will be well-ordered and all the components of $R \backslash \beta$ will be definably well-founded, and it can be seen using an Ehrenfeucht-Fraïssé game that $\left(a_{\leqslant} \backslash b_{\leqslant},[a, b)\right) \equiv_{n}(R ; \beta)$, as required. This completes the first part of the proof.

Using this result, we can next show that if T is a definably well-founded tree and if $b \in T$ then there exists a tree R with $c \in R$ and such that (i) the interval $c_{>}$is well-ordered, (ii) all the components of $R \backslash c_{>}$are definably well-founded, and (iii) $(T ; b) \equiv_{n}(R ; c)$. This is done by first noting that, being definably well-founded, T will be rooted. Then apply the result of the
first part of the proof by taking a as the root of T and replacing $\left(a_{\leqslant} \backslash b_{\leqslant},[a, b)\right)$ with an appropriate n-equivalent and take $c=b$ so as to obtain R.

Using induction, we next extend this result to state the following: if T is a definably well-founded tree and if $B \subseteq T$ is finite then there exists a tree R with $C \subseteq R$ and such that (i) the interval $c_{>}$is well-ordered for every $c \in C$, (ii) every component of $R \backslash\left(\bigcup_{c \in C} c_{>}\right)$is definably well-founded, and (iii) $(T ; b)_{b \in B} \equiv_{n}(R ; c)_{c \in C}$.

Finally we construct a sequence of trees T_{0}, T_{1}, \ldots and a sequence of sets A_{0}, A_{1}, \ldots with $A_{i} \subseteq T_{i}$ as follows. Take $T_{0}:=T$ and $A_{0}:=\emptyset$. Then given the tree T_{i} and set A_{i} for some i, the tree T_{i+1} and set A_{i+1} are obtained as follows. For every component C in $T_{i} \backslash A_{i}$ choose $B \subseteq C$ in such a way that, for every $c \in C$ there exists $b \in B$ with $(C ; b) \equiv_{n-1}(C ; c)$, and with B finite. This can be done since there are only finitely many characteristic formulas of any given rank over any given tuple of variables. Then from the previous result in the proof we know there is a tree C^{\prime} and a set of nodes $B^{\prime} \subseteq C^{\prime}$ such that (i) the interval $b_{>}^{\prime}$ is well-ordered for every $b^{\prime} \in B^{\prime}$, (ii) every component of $C^{\prime} \backslash\left(\bigcup_{b^{\prime} \in B^{\prime}} b_{>}^{\prime}\right)$ is definably well-founded, and (iii) $(C ; b)_{b \in B} \equiv_{n}\left(C^{\prime}, b^{\prime}\right)_{b^{\prime} \in B^{\prime}}$. Then T_{i+1} is obtained from T_{i} by replacing every component C in $T_{i} \backslash A_{i}$ with the tree C^{\prime} and A_{i+1} is obtained as the union of the set A_{i} together with the sets $\bigcup_{b^{\prime} \in B^{\prime}} b_{\geqslant}^{\prime}$ for every set B^{\prime}.

Then take $S:=\bigcup_{i=1}^{\infty} A_{i}$ where each set A_{i} is treated as a substructure of the tree T_{i}. From the way the tree S is constructed it will be well-founded, and it can be seen, using an Ehrenfeucht-Fraïssé game, that $S \equiv_{n} T$. That this works relies on the fact that every A_{i+1} was chosen to be large enough as to capture all first-order behaviour up to n-equivalence in the structure $T_{i} \backslash A_{i}$.

QED
Theorem 6.4 ([5]) The first-order theory of the class of well-founded trees can be axiomatised using the theory

$$
A_{T} \cup A_{W} .
$$

Proof Immediate from Theorem 6.3.
QED

6.2 Finitely branching trees

Motivated by [27], we call a tree T weakly n-branching when, for every $x, y \in T$, the set $T_{x y}$ has at most n components, and weakly boundedly
branching when T is weakly n-branching for some natural number n. A forest is called weakly n-branching when it has at most n components and each of its components is weakly n-branching, and weakly boundedly branching when it is weakly n-branching for some n.

Proposition 6.5 Let k be the n-characteristic index of the language with equality and order. Let T be a tree and let $a, b \in T$ be nodes for which $\left|T_{a b}\right|>n k$ (in particular, when $T_{a b}$ is infinite). Then it is possible to remove all but $n k$ components from $T_{a b}$ so as to obtain a tree S for which $S \equiv_{n} T$.

Proof Let $\tau_{1}, \ldots, \tau_{k}$ be the characteristic formulas of rank n over the empty tuple. For every q with $1 \leqslant q \leqslant k$, we perform the following construction. Let $\left\{A_{i}^{q}\right\}_{i \in I_{q}}$ be the components in $T_{a b}$ for which $A_{i}^{q} \models \tau_{q}$. If $\left|I_{q}\right|>n$ then remove all but any n components in $\left\{A_{i}^{q}\right\}_{i \in I_{q}}$ from T.

Once this construction has been done for every q, we are left with at most $n k$ components in $T_{a b}$. Let S be the tree thus obtained. Then $S \equiv_{n} T$. To see this consider the Ehrenfeucht-Fraïssé game $\mathrm{EF}_{n}(T, S)$. We will describe a winning strategy for Player II for this game.

Suppose the first j moves of the game consist of nodes $a_{1}, \ldots, a_{j} \in T$ and $b_{1}, \ldots, b_{j} \in S$. For every q with $1 \leqslant q \leqslant k$ and for every i with $i \in I_{q}$, let $\left(a_{i}^{q}\right)_{1}, \ldots,\left(a_{i}^{q}\right)_{j(q, i)}$ be the nodes already played from T for which $\left(a_{i}^{q}\right)_{1}, \ldots,\left(a_{i}^{q}\right)_{j(q, i)} \in A_{i}^{q}$, and let $\left(b_{i}^{q}\right)_{1}, \ldots,\left(b_{i}^{q}\right)_{j(q, i)}$ be the corresponding nodes played from S. Assume the game has been played such that for every q and i, there exists $A_{i^{\prime}}^{q}$ for which the nodes already played from S and belonging to $A_{i^{\prime}}^{q}$ are precisely $\left(b_{i}^{q}\right)_{1}, \ldots,\left(b_{i}^{q}\right)_{j(q, i)} \in A_{i^{\prime}}^{q}$.

First consider the case where Player I selects, for his $(j+1)$-th move, a node t from T with $t \notin T_{a b}$. Since $T \backslash T_{a b}=S \backslash T_{a b}$ then the identity map determines a natural correspondence between nodes in $T \backslash T_{a b}$ and $S \backslash T_{a b}$. Player II hence responds for her $(j+1)$-th move by choosing the node from S corresponding to t. Likewise when Player I chooses for his $(j+1)$-th move a node s from S with $s \notin T_{a b}$, then Player II chooses the corresponding node from T.

Next consider the case where Player I chooses, for his $(j+1)$-th move, a node t from T with $t \in T_{a b}$. If $t \in A_{i}^{q}$ and if no node has yet been selected from A_{i}^{q} by either player for any of their earlier moves, then there exists $A_{i^{\prime}}^{q}$ in S from which no nodes have been played yet either. Using her winning strategy for the game $\mathrm{EF}_{n}\left(A_{i}^{q}, A_{i^{\prime}}^{q}\right)$, Player II then selects a node s from $A_{i^{\prime}}^{q}$ in response to the node t chosen by Player I from A_{i}^{q}. Likewise when Player

I selects a node s from S with $s \in A_{i^{\prime}}^{q}$ for some $A_{i^{\prime}}^{q}$ from which no nodes have been played yet.

Finally consider the case where Player I chooses, for his $(j+1)$-th move, a node t from T with $t \in T_{a b}$, where $t \in A_{i}^{q}$, and for which the nodes already played from A_{i}^{q} are $\left(a_{i}^{q}\right)_{1}, \ldots,\left(a_{i}^{q}\right)_{j(q, i)}$. Player II responds by choosing a node s from $A_{i^{\prime}}^{q}$ using her winning strategy for the game $\operatorname{EF}_{n}\left(A_{i}^{q}, A_{i^{\prime}}^{q}\right)$, where the first $j(q, i)$ nodes played for this game are $\left(a_{i}^{q}\right)_{1}, \ldots,\left(a_{i}^{q}\right)_{j(q, i)} \in A_{i}^{q}$ and $\left(b_{i}^{q}\right)_{1}, \ldots,\left(b_{i}^{q}\right)_{j(q, i)} \in A_{i^{\prime}}^{q}$, and where the $(j(q, i)+1)$-th move of Player I for this game is t. Likewise when Player I selects a node s from S with $s \in A_{i^{\prime}}^{q}$ for some $A_{i^{\prime}}^{q}$ from which the nodes already played are $\left(b_{i}^{q}\right)_{1}, \ldots,\left(b_{i}^{q}\right)_{j(q, i)}$.

Clearly this strategy constitutes a winning strategy for Player II for the game $\operatorname{EF}_{n}(T, S)$ hence $S \equiv_{n} T$.

QED
More generally, using this same technique, we can convert a tree T of which only finitely many sets of the form $T_{a b}$ contain more than $n k$ components, into a weakly $n k$-branching tree S for which $S \equiv_{n} T$.

In [27], the following similar but substantially stronger result is proved using the notion of nuclearity.

Theorem 6.6 ([27]) Let T be a tree and let $n \in \mathbb{N}$. There exists a weakly boundedly branching tree S with $S \preceq_{n} T$.

Proof The result is proved in [27, Lemma 2.5] for the class of forests (i.e. for every forest T there is a weakly boundedly branching forest T_{1} with $T_{1} \preceq_{n} T$). From the proof of [27, Lemma 2.5], the result applies to trees as well: we need to show that T_{1} is connected, so let $a_{1}, a_{2} \in T_{1}$. Using the notation in the proof of [27, Lemma 2.5], it follows that $a_{1}, a_{2} \in A_{m}$ for some m. Then for some even $j(j \geqslant m)$, there exists $b \in A_{j+1}$ with $b \leqslant a_{1}, a_{2}$. Hence $b \in T_{1}$ and it follows that T_{1} is connected, as required.

QED
In particular, every tree has a weakly boundedly branching n-equivalent for $n \in \mathbb{N}$.

Remark 6.7 If T is a finite tree then T itself satisfies the condition of being weakly boundedly branching with $T \preceq_{n} T$. Hence consider the case where T is infinite. From the proof of [27, Lemma 2.5], the tree S mentioned in Theorem 6.6 will be infinite: using the notation in the proof of [27, Lemma 2.5] with $S=T_{1}$, note that for odd j, we have $b \notin A_{j}$ so that $A_{j+1}=$ $A_{j} \cup\{b\} \supsetneq A_{j}$. Hence $T_{1}=\bigcup_{j \in \mathbb{N}} A_{j}$ will be infinite.

Example 6.8 Consider the tree T described in Example 4.6(a). Let σ be the sentence

$$
\exists x \exists y(x<y \wedge \forall z \forall u(x \leqslant z<u \leqslant y \rightarrow(\exists v(z<v<u) \wedge \neg \beta(z, u)))) .
$$

The sentence σ states that there exists a dense segment $[x, y]$ with no two distinct nodes from $[x, y]$ belonging to the same bridge. Then $T \models \sigma$ but σ does not hold in any boundedly branching tree. Since $\operatorname{qr}(\sigma)=5$ then for $n \geqslant 5$, there is no boundedly branching tree S with $S \equiv_{n} T$. Hence the result of Theorem 6.6 does not hold for the stronger notion of a boundedly branching tree.

Corollary 6.9 ([27]) The first-order theory of the class of trees is complete with respect to the class of weakly boundedly branching trees.

Proof Follows from Theorem 6.6.
QED
Theorem 6.10 ([27]) Let T be an \aleph_{0}-categorical tree. The first-order theory of T is decidable.

Proof See [27, Theorem 2.1].
QED
Theorem 6.11 ([27]) The first-order theory of the class of \aleph_{0}-categorical trees is complete with respect to the class of weakly boundedly branching \aleph_{0}-categorical trees.

Proof See [27, Theorem 2.8], where the result is proved for forests (i.e. the first-order theory of the class of \aleph_{0}-categorical forests is complete with respect to the class of weakly boundedly branching \aleph_{0}-categorical forests), but using a slightly broader definition of $\aleph_{0^{-}}$categoricity (namely that a theory Γ is $\aleph_{0^{-}}$ categorical when Γ has, up to isomorphism, precisely one model of cardinality less than or equal to \aleph_{0}).

As in Theorem 6.6, the result again applies to trees, and using the notation in the proof of [27, Theorem 2.8], in the event that T is infinite, then T_{1} will be infinite as well, so that T_{1} will be \aleph_{0}-categorical in the sense used in this text.

QED
Theorem 6.12 ([27]) Let T be an \aleph_{0}-categorical tree. The first-order theory of T is finitely axiomatizable if and only if T is weakly boundedly branching.

Proof See [27, Theorem 2.2].
QED

6.3 Finite trees

Define the sentence
Ro: $\exists x \forall y(x \leqslant y)$
which states the existence of a root.
In [1] they study trees using a language which includes an order relation on the set of immediate successors of every node. The following result is adapted from there.

Theorem 6.13 (See also [1].) The first-order theory of the class of trees of which all paths are finite can be axiomatised using the theory

$$
\left\{\mathrm{Ir}, \mathrm{Tr}, \mathrm{ST}, \mathrm{Ro}, \mathrm{D}_{2}\right\} \cup \mathrm{A}_{\mathrm{WD}} .
$$

Proof Clearly every tree of which the paths are all finite satisfies the given theory.

Let T be a model of the theory. We describe, for $n \in \mathbb{N}$, the construction of a tree S from the tree T having only finite paths and such that $S \equiv_{n} T$.

Let $\tau_{1}, \ldots, \tau_{k}$ be all the characteristic formulas of rank n over empty tuples. For every $i(1 \leqslant i \leqslant k)$ let $\varphi_{i}(x):=\tau_{i}^{\geqslant x}$.

The first step in the construction of S is as follows. Let $a_{0,0}$ be the root of T (which exists since T satisfies the sentence Ro) and suppose that $\left(a_{0,0}\right) \leqslant \models \tau_{i_{0,0}}$. Then $T \models \varphi_{i_{0,0}}\left(a_{0,0} / x\right)$, so by the scheme A ADD there exists a node $b_{0,0} \in T$ maximal with the property that $T \models \varphi_{i_{0,0}}\left(b_{0,0} / x\right)$, i.e. $b_{0,0}$ is maximal with the property that $\left(b_{0,0}\right) \leqslant \models \tau_{i_{0,0}}$. Let T_{0} be the tree obtained from T by replacing the subtree $\left(a_{0,0}\right)_{\leqslant}$(which in this case equals T itself) with the tree $\left(b_{0,0}\right)_{\leqslant}$. Then $b_{0,0}$ is maximal in T_{0} with the property that $\left(b_{0,0}\right) \leqslant \models \tau_{i_{0,0}}$, and by Proposition 5.17, $T_{0} \equiv_{n} T$.

For $m \geqslant 1$, the ($m+1$)-th step of the construction now proceeds as follows. Suppose we have obtained from the m-th step a tree T_{m-1} such that, for every node $b_{j, z} \in T_{m-1}$ of which the order type of the set $\left\{x \in T_{m-1}: x \leqslant b_{j, z}\right\}$ is at most \mathbf{m}, if $\left(b_{j, z}\right) \leqslant \models \tau_{i_{j, z}}$ then the node $b_{j, z}$ is maximal in T_{m-1} with the property that $\left(b_{j, z}\right)_{\leqslant} \models \tau_{i_{j, z} .}{ }^{1}$ Let $a_{m, z} \in T_{m-1}$ be a node for which the

[^5]order type of the set $\left\{x \in T_{m-1}: x \leqslant a_{m, z}\right\}$ is $\mathbf{m}+\mathbf{1}$, and suppose that $\left(a_{m, z}\right) \leqslant \models \tau_{i_{m, z}}$. Then $T \models \varphi_{i_{m, z}}\left(a_{m, z} / x\right)$, so by the scheme A AD there exists a node $b_{m, z} \in T$ with $b_{m, z} \geqslant a_{m, z}$ and maximal such that $T \models \varphi_{i_{m, z}}\left(b_{m, z} / x\right)$. Hence $b_{m, z}$ is maximal in T with the property that $\left(b_{m, z}\right)_{\leqslant} \models \tau_{i_{m, z}}$.

Let T_{m} be the tree obtained from T_{m-1} by replacing every subtree $\left(a_{m, z}\right)_{\leqslant}$ of T_{m-1} with the tree $\left(b_{m, z}\right)_{\leqslant}$. Then T_{m} satisfies the property that for every node $b_{j, z} \in T_{m}$ of which the order type of the set $\left\{x \in T_{m}: x \leqslant b_{j, z}\right\}$ is at most $\mathbf{m}+\mathbf{1}$, if $\left(b_{j, z}\right)_{\leqslant} \models \tau_{i_{j, z}}$ then the node $b_{j, z}$ is maximal in T_{m} with the property that $\left(b_{j, z}\right)_{\leqslant} \models \tau_{i_{j, z}}$. By Proposition 5.17 we also have that $T_{m} \equiv_{n} T_{m-1}$.

From the fact that there are only finitely many non-equivalent characteristic formulas of rank n over empty tuples, it follows that the above construction will terminate after finitely many steps to give a tree T_{q} such that $T_{q} \equiv_{n} T$, and T_{q} will have the property that for every path X in T_{q}, every node in X satisfies some formula $\varphi_{i}(x)$, and every formula $\varphi_{i}(x)$ is satisfied by at most one node from X. Since there are only finitely many formulas $\varphi_{i}(x)$ then X will be finite. Hence take $S=T_{q}$.

QED

Theorem 6.14 (See also [1].) The first-order theory of the class of finite trees can be axiomatised using the theory

$$
\left\{\mathrm{Ir}, \mathrm{Tr}, \mathrm{ST}, \mathrm{Ro}, \mathrm{D}_{2}\right\} \cup \mathrm{A}_{\mathrm{WD}} .
$$

Proof Follows from Theorem 6.6 and Theorem 6.13.
QED

6.4 Condensations

Theorem 6.15 Let T be a condensed tree, let \mathcal{L} be a class of linear orders, and let $f: T \rightarrow \mathcal{L}$ be a function. Suppose we have the following:

- a theory Γ which defines T up to isomorphism;
- for every $L \in \mathcal{L}$, a theory Σ_{L} which axiomatises the first-order theory of L;
- for every $L \in \mathcal{L}$, a formula $\varphi_{L}(x)$ such that for every $a \in T$,

$$
T \models \varphi_{L}(a / x) \Leftrightarrow f(a)=L ;
$$

- a formula $\alpha(x)$ which defines in $T \times_{f} \mathcal{L}$ a set of nodes consisting of exactly one node from every maximal bridge of $T \times{ }_{f} \mathcal{L}$.

Then the first-order theory of $T \times{ }_{f} \mathcal{L}$ can be axiomatised using the theory

$$
\begin{aligned}
& \left\{\chi_{\alpha}\right\} \bigcup\left\{\gamma^{\alpha}: \gamma \in \Gamma\right\} \bigcup \\
& \quad\left\{\forall y\left(\alpha(y) \wedge \varphi_{L}^{\alpha}(y) \rightarrow \sigma_{L}^{\beta(x, y)}(y)\right): L \in \mathcal{L} \text { and } \sigma_{L} \in \Sigma_{L}\right\} .
\end{aligned}
$$

Proof We first show that $T \times_{f} \mathcal{L}$ satisfies the theory. It is immediate that $T \times_{f} \mathcal{L} \models \chi_{\alpha}$. From Proposition 5.22 the function

$$
[\cdot] \Gamma_{\left(T \times_{f} \mathcal{L}\right)^{\alpha}}:\left(T \times_{f} \mathcal{L}\right)^{\alpha} \rightarrow\left[T \times_{f} \mathcal{L}\right]
$$

is an isomorphism, and from Proposition 3.35 the function $g:\left[T \times{ }_{f} \mathcal{L}\right] \rightarrow T$ given as $g([(x, y)])=x$ is an isomorphism. Let

$$
\left.h:=g \circ\left([\cdot] \prod_{(T \times f} \mathcal{L}\right)^{\alpha}\right) .
$$

Thus $h:\left(T \times_{f} \mathcal{L}\right)^{\alpha} \rightarrow T$ with $h((x, y))=x$ for every $(x, y) \in\left(T \times_{f} \mathcal{L}\right)^{\alpha}$, and h is an isomorphism.

Let $\gamma \in \Gamma$. Since Γ defines T then $T \models \gamma$ hence $\left(T \times{ }_{f} \mathcal{L}\right)^{\alpha} \models \gamma$ so that $T \times{ }_{f} \mathcal{L} \models \gamma^{\alpha}$.

Finally let $L \in \mathcal{L}$ and $\sigma_{L} \in \Sigma_{L}$ and suppose that $T \times_{f} \mathcal{L} \models \alpha((a, b) / y)$ and $T \times_{f} \mathcal{L} \models \varphi_{L}^{\alpha}((a, b) / y)$ for some $(a, b) \in\left|T \times_{f} \mathcal{L}\right|$. Then $(a, b) \in\left(T \times_{f} \mathcal{L}\right)^{\alpha}$ so that $\left(T \times_{f} \mathcal{L}\right)^{\alpha} \models \varphi_{L}((a, b) / y)$ hence $T \models \varphi_{L}(h((a, b)) / y)$. This gives $T \models \varphi_{L}(a / y)$ so $f(a)=L$.

From Corollary 3.34 we know that $\{a\} \times L$ is a maximal bridge in $T \times{ }_{f} \mathcal{L}$, and since $(a, b) \in\{a\} \times L$ then $[(a, b)]=\{a\} \times L$. Moreover, $\left(T \times_{f} \mathcal{L} ;(a, b)\right)^{\beta(x, y)}=[(a, b)]$ and since $\{a\} \times L \models \sigma_{L}$ then we get $\left(T \times_{f} \mathcal{L} ;(a, b)\right)^{\beta(x, y)} \models \sigma_{L}$. This gives $T \times_{f} \mathcal{L} \models \sigma_{L}^{\beta(x, y)}((a, b) / y)$, as required. Thus $T \times{ }_{f} \mathcal{L}$ is a model of the theory.

Next let S be a model of the theory. We need to show that $S \equiv T \times_{f} \mathcal{L}$. Since $S \models \gamma^{\alpha}$ for all $\gamma \in \Gamma$ then $S^{\alpha} \cong T$. Let $g: T \rightarrow S^{\alpha}$ be an isomorphism. Also since $S \models \chi_{\alpha}$ then the function $[\cdot] \upharpoonright_{S^{\alpha}}: S^{\alpha} \rightarrow[S]$ is an isomorphism. Hence the function $\left([\cdot] \prod_{S^{\alpha}}\right) \circ g: T \rightarrow[S]$ is an isomorphism. Put $h:=$ $\left([\cdot] \Gamma_{S^{\alpha}}\right) \circ g$.

Let $\mathcal{S}=\{[x]: x \in S\}$ and let $\iota:[S] \rightarrow \mathcal{S}$ be given by $\iota([x])=[x]$. From Proposition 3.30 we get that

$$
S \cong[S] \times_{\iota} \mathcal{S} \cong T \times_{\iota \circ} \mathcal{S}
$$

Let $L \in \mathcal{L}$ and $\sigma_{L} \in \Sigma_{L}$ and let $a \in T$ with $f(a)=L$ and $g(a)=b \in S^{\alpha} \subseteq$ S. Since $T \models \varphi_{L}(a / y)$ then $S^{\alpha} \models \varphi_{L}(g(a) / y)$ hence $S \models \varphi_{L}^{\alpha}(b / y)$. Also since $b \in S^{\alpha}$ then $S \models \alpha(b / y)$. From the axioms this gives $S \models \sigma_{L}^{\beta(x, y)}(b / y)$ and since $(S ; b)^{\beta(x, y)}=[b]$ then we get $[b] \models \sigma_{L}$.

It follows that $(\iota \circ h)(a)=h(a)=[g(a)]=[b] \equiv L=f(a)$ and from Proposition 5.20 we get that $S \cong T \times_{\iota \circ} \mathcal{S} \equiv T \times_{f} \mathcal{L}$. QED

6.5 The \mathcal{C}-classes of trees

6.5.1 Relationships between FO theories of the \mathcal{C} classes

Theorem 6.16 Let \mathcal{C} be a class of linear orders. The set-theoretical inclusions which hold between the first-order theories of the \mathcal{C}-classes of trees are summarised in Figure 6.1.

Proof Let $\sigma \in \mathrm{TH}(\mathrm{P}-\mathcal{C}$-like trees) say with $\operatorname{qr}(\sigma)=n$. Let T be a \mathcal{C} like tree. Then $T \equiv{ }_{n} T_{0}$ for some \mathcal{C}-tree T_{0}. But T_{0} is also a P-C-like tree hence $T_{0} \models \sigma$ and so $T \models \sigma$. It follows that $\sigma \in \mathrm{TH}(\mathcal{C}$-like trees) and so $\mathrm{TH}($ P-C-like trees $) \subseteq \mathrm{TH}(\mathcal{C}$-like trees $)$.
The following inclusions can be proven using a similar argument:

- $\mathrm{TH}(\mathrm{DU}-\mathcal{C}$-like trees $) \subseteq \mathrm{TH}(\mathcal{C}$-like trees $)$,
- $\mathrm{TH}($ D- \mathcal{C}-trees $) \subseteq \mathrm{TH}(\mathcal{C}$-like trees $)$,
- $\mathrm{TH}(\mathrm{PU}$ - \mathcal{C}-like trees $) \subseteq \mathrm{TH}(\mathcal{C}$-like trees $)$,
- $\mathrm{TH}(\mathrm{U}-\mathcal{C}$-like trees $) \subseteq \mathrm{TH}(\mathcal{C}$-like trees $)$,
- TH(PU-C-like trees) $\subseteq \operatorname{TH}(\mathrm{U}-\mathcal{C}$-like trees),
- TH(P-C-like trees) $\subseteq \mathrm{TH}(\mathrm{U}-\mathcal{C}$-like trees $)$,
- $\mathrm{TH}(\mathrm{D}-\mathcal{C}$-trees $) \subseteq \mathrm{TH}(\mathrm{U}-\mathcal{C}$-like trees $)$.

The inclusion $\mathrm{TH}(\mathcal{C}$-trees $) \subseteq \mathrm{TH}(\mathrm{U}$ - \mathcal{C}-like trees) is immediate.
The remaining inclusions follow from Theorem 4.26 and the accompanying diagram in Figure 4.5.

We briefly discuss the non-inclusions shown in Figure 4.5. Consider for example the non-inclusion $\mathrm{TH}\left(\mathrm{DU}-\mathcal{C}_{3}\right.$-like trees) $\nsubseteq \mathrm{TH}\left(\mathrm{P}-\mathcal{C}_{3}\right.$-like trees). To see this, let T be a DU-C \mathcal{C}_{3}-like tree and suppose that $T \models \varphi(a / x)$ for some $a \in T$, where $\varphi(x)$ is as in Example 4.22. Then a belongs to a singular, and hence parametrically definable, path A, with $A \equiv \mathbf{n}$ for some $n \in \mathbb{N}$. Hence A will be finite. It follows that $T \models \sigma_{1}$, where σ_{1} is as in Example 4.21, and
so $\sigma_{1} \in \mathrm{TH}\left(\mathrm{DU}-\mathcal{C}_{3}\right.$-trees). However, T_{3} is a P - \mathcal{C}_{3}-like tree with $T_{3} \not \vDash \sigma_{1}$, so that $\sigma_{1} \notin \mathrm{TH}\left(\mathrm{P}-\mathcal{C}_{3}\right.$-like trees). This serves as a counterexample to establish the non-inclusion $\mathrm{TH}\left(\mathrm{DU}-\mathcal{C}_{3}\right.$-like trees) $\nsubseteq \mathrm{TH}\left(\mathrm{P}-\mathcal{C}_{3}\right.$-like trees).

A similar argument shows that $\mathrm{TH}\left(\mathrm{D}-\mathcal{C}_{2}\right.$-trees) $\nsubseteq \mathrm{TH}\left(\mathrm{PU}-\mathcal{C}_{2}\right.$-like trees).
The non-inclusions which use the class \mathcal{C}_{5} and the sentence σ_{2} from Example 4.24 as counterexample are easily verified.

Finally, the non-inclusions obtained through completion are trivial. For example, $\mathrm{TH}(\mathcal{C}$-trees) is not generally a subtheory of $\mathrm{TH}(\mathrm{D}-\mathcal{C}$-trees $)$, for if it were, then using the fact that $\mathrm{TH}(\mathrm{PU}-\mathcal{C}$-like trees $) \subseteq \mathrm{TH}(\mathcal{C}$-trees) for all classes \mathcal{C}, this would give $\mathrm{TH}($ PU- \mathcal{C}-like trees $) \subseteq \mathrm{TH}(\mathrm{D}-\mathcal{C}$-trees) for all classes \mathcal{C}, contradicting the fact that $\mathrm{TH}\left(\mathrm{PU}-\mathcal{C}_{5}\right.$-like trees $) \nsubseteq \mathrm{TH}\left(\mathrm{D}-\mathcal{C}_{5}\right.$-trees $)$.

Likewise the theory $\mathrm{TH}(\mathcal{C}$-like trees) is not generally a subtheory of the theory $\mathrm{TH}(\mathrm{D}-\mathcal{C}$-trees), for if it were, then the theories $\mathrm{TH}(\mathrm{D}-\mathcal{C}$-trees), $\mathrm{TH}(\mathcal{C}$-like trees) and $\mathrm{TH}(\mathrm{U}-\mathcal{C}$-like trees) would coincide for all classes \mathcal{C}. But this would contradict the fact that $\mathrm{TH}(\mathcal{C}$-trees $) \subseteq \mathrm{TH}(\mathrm{U}-\mathcal{C}$-like trees) for all classes \mathcal{C}, while there exist classes \mathcal{C} for which $\mathrm{TH}(\mathcal{C}$-trees) $\nsubseteq \mathrm{TH}$ (D-C-trees).

The remaining non-inclusions can be shown by similar reasoning. QED

Proposition 6.17 Let \mathcal{C} consist of a single linear order. In addition to the set-theoretical inclusions which have been shown to hold between the first-order theories of the \mathcal{C}-classes of trees in Theorem 6.16, the following inclusions also hold:
(i) $\mathrm{TH}(\mathrm{DU}-\mathcal{C}$-like trees $) \subseteq \mathrm{TH}($ D-C-like trees $)$;
(ii) $\mathrm{TH}(\mathrm{DU}-\mathcal{C}$-like trees $) \subseteq \mathrm{TH}(\mathrm{P}-\mathcal{C}$-like trees $)$;
(iii) $\mathrm{TH}(\mathrm{PU}-\mathcal{C}$-like trees $) \subseteq \mathrm{TH}(\mathrm{P}-\mathcal{C}$-like trees $)$.

The remaining non-inclusions stay the same.
Proof Straightforward using Proposition 4.27.
QED

6.5.2 Axiomatising the FO theories of the \mathcal{C}-classes

We now investigate the first-order theories of some of the \mathcal{C}-classes of trees. In its most general form this problem is difficult because \mathcal{C} is an arbitrary class of linear orders. The next example shows that the class of \mathcal{C}-trees need not generally be first-order definable.

Figure 6.1: Relationships between the first-order theories of the \mathcal{C}-classes of trees (see Theorem 6.16). Inclusions $X \subseteq Y$ are denoted as $X \rightarrow Y$. Non-inclusions are indicated by specifying a counterexample drawn from Examples 4.20-4.25 or, when obtained through transitive completion of the diagram, by the symbol \times.

Example 6.18 Let α be an ordinal with $\alpha>\omega$ and let T be a binary α-tree. Thus $|T| \geqslant 2^{\aleph_{0}}$. From the Downward Löwenheim-Skolem Theorem it follows that T has a countable elementary substructure S. In particular, S will not be an α-tree. Thus the class of α-trees is not first-order definable.

Let Σ be the first-order theory of some class of linear orders. We define the scheme De_{Σ} as consisting of the sentences

$$
\forall \bar{z}\left(\pi_{\varphi}(\bar{z}) \rightarrow \sigma^{\varphi}(\bar{z})\right)
$$

for every formula $\varphi(x, \bar{z})$ (including formulas $\varphi(x)$ for which the tuple \bar{z} is empty) and for every sentence $\sigma \in \Sigma$. If $\Sigma=\{\sigma\}$ then De_{Σ} is written simply as De_{σ}. The scheme De_{Σ} states that every parametrically definable path satisfies the theory Σ.

Theorem 6.19 Let \mathcal{C} be a class of linear orders axiomatised by the theory Σ. The class of definably \mathcal{C}-like trees is precisely the class of models of the theory

$$
A_{T} \cup D e_{\Sigma}
$$

Proof Let T be a definably \mathcal{C}-like tree. It is immediate that T satisfies A_{T}. Let $\varphi(x, \bar{z})$ be a formula with \bar{z} a k-tuple of variables (\bar{z} may be empty), let \bar{c} be a k-tuple of nodes in T, and let $T \models \pi_{\varphi}(\bar{c} / \bar{z})$. Then from Proposition 5.4 there is a path A defined in T by $\varphi(x, \bar{z})$ with the parameters \bar{c} substituted for \bar{z}. But $A \models \sigma$ for every $\sigma \in \Sigma$ and $A=(T ; \bar{c})^{\varphi}$ so using Corollary 2.4, $T \models \sigma^{\varphi}(\bar{c} / \bar{z})$ for every $\sigma \in \Sigma$. It follows that T satisfies the scheme De_{Σ}.

Next let T be a structure which satisfies the theory $\mathrm{A}_{\boldsymbol{T}} \cup \mathrm{De}_{\Sigma}$. Since T satisfies A_{\top} then T is a tree. Let \bar{c} be a (possibly empty) k-tuple of nodes in T and let A be a path defined in T using the formula $\varphi(x, \bar{z})$ with the parameters \bar{c} substituted for \bar{z}, where \bar{z} is a k-tuple of variables. Then $T \models \pi_{\varphi}(\bar{c} / \bar{z})$ hence $T \models \sigma^{\varphi}(\bar{c} / \bar{z})$ for every $\sigma \in \Sigma$. But $A=(T ; \bar{c})^{\varphi}$ so from Corollary 2.4, $A \models \sigma$ for every $\sigma \in \Sigma$. Hence $A \in \operatorname{MOD}(\mathrm{TH}(\mathcal{C}))$ and it follows that T is a definably \mathcal{C}-like tree.

QED

Corollary 6.20 Let \mathcal{C} be a class of linear orders axiomatised by the theory Σ. Then the class of definably \mathcal{C}-trees is precisely the class of models of the theory

$$
A_{T} \cup D e_{\Sigma} .
$$

Proof By the fact that when \mathcal{C} is axiomatisable then the class of definably \mathcal{C}-like trees coincides with the class of definably \mathcal{C}-trees.

QED

Corollary 6.21 Let \mathcal{C} be a finite class of linear orders axiomatised by the theory Σ. Then the class of definably uniformly \mathcal{C}-like trees is precisely the class of models of the theory

$$
A_{T} \cup D e_{\Sigma}
$$

Proof If \mathcal{C} is finite then the class of definably \mathcal{C}-like trees coincides with the class of definably uniformly \mathcal{C}-like trees.

QED
Let El denote the scheme consisting of the sentences

$$
\begin{aligned}
& \forall \bar{z}(\forall x(\varphi(x, \bar{z}) \rightarrow \exists y(x<y \wedge \varphi(y, \bar{z}))) \rightarrow \\
& \quad \exists x(\operatorname{leaf}(x) \wedge \forall y(y<x \rightarrow \exists u(y<u<x \wedge \varphi(u, \bar{z})))))
\end{aligned}
$$

for every formula $\varphi(x, \bar{z})$ (including formulas $\varphi(x)$ for which the tuple \bar{z} is empty). The scheme El holds in a tree T when T has the property that if A is a cofinal set of nodes in T then there exists a leaf a (an Elder) and a subset B of A with $B \subseteq a_{>}$such that B is cofinal in the set $a_{>}$.

Example 6.22 Let T be the tree constructed by starting with the linear order $A:=\omega$ and at each positive element $n \in A$ we attach the n-ary $(\omega+\mathbf{1})$-tree $B_{\omega+1}^{n}$. Hence every path in T is an $(\omega+\mathbf{1})$-path except for the path A which is an ω-path. The i-th node of the path A in T has i immediate successors while every node not belonging to A but lying in the subtree $B_{\omega+1}^{j}$ has j immediate successors.

We will show that the scheme El holds in T. Let $\varphi(x, \bar{z})$ be a formula with \bar{z} an n-tuple of variables and let \bar{c} be an n-tuple of nodes in T. Let $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ be a sequence of nodes in T with $a_{i}<a_{i}$ when $i<j$ and suppose that $(T ; \bar{c}) \models \varphi\left(a_{i} / x, \bar{c}\right)$ for all a_{i}. We distinguish two cases.

First consider the case where, for some k, we have that $a_{i} \notin A$ when $i \geqslant k$. Then the set $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ is contained in an $(\omega+\mathbf{1})$-path B of T, so that there is a leaf in B which is a successor to all of the nodes a_{i}.

Next consider the case where $\left\{a_{i}\right\}_{i \in \mathbb{N}} \subseteq A$. Suppose that the quantifier rank of $\varphi(x, \bar{z})$ is m. It is easy to see, for example by using an EhrenfeuchtFraïssé game, that for some sufficiently large value of $p,\left(T ; \bar{c} a_{p}\right) \equiv_{m}(T ; \bar{c} u)$
for every non-leaf node u with $u \geqslant a_{p}$. Hence there exists a sequence of nodes $\left\{b_{i}\right\}_{p \leqslant i, i \in \mathbb{N}} \subseteq T \backslash A$ with $b_{i}<b_{j}$ for $i<j$ and such that $(T ; \bar{c}) \models \varphi\left(b_{i} / x, \bar{c}\right)$ for all b_{i}. The set $C:=\left\{a_{i}: 0 \leqslant i \leqslant p-1\right\} \cup\left\{b_{i}: i \geqslant p\right\}$ is contained in an $(\omega+\mathbf{1})$-path B of T, so that there is a leaf in B which is a successor to all of the nodes in C.

It follows that El holds in T.
For Σ any theory, $\operatorname{Le}_{\Sigma}$ denotes the scheme consisting of the sentences

$$
\forall x\left(\operatorname{leaf}(x) \rightarrow \sigma^{\leqslant x}\right)
$$

for every $\sigma \in \Sigma$. If $\Sigma=\{\sigma\}$ then Le_{Σ} is written simply as Le_{σ}. The scheme Le_{Σ} states that every path containing a leaf satisfies the theory Σ.

If α is a linear order with a greatest point and α is axiomatised by the theory Σ then the effect of the scheme $\operatorname{Le}_{\Sigma}$ within an α-tree is to ensure that every parametrically definable path is α-like.

Proposition 6.23 Let α be a linear order containing a greatest element and suppose the sentence σ axiomatises the first-order theory of α. Let T be a definably uniformly α-like tree containing only finitely many paths which are not parametrically definable. Then for every $n \in \mathbb{N}$ there exists a pathwise uniformly α-like tree S such that $S \equiv_{n} T$.

Proof It suffices to prove the result for large n so let $n \geqslant \operatorname{qr}(\sigma)+1$. Let A_{1}, \ldots, A_{k} be the paths in T which are not parametrically definable and for every i, let $a_{i} \in A_{i}$ be such that $a_{i} \notin A_{j}$ for all j with $j \neq i$. By Lemma 5.6 there exists, for every i, nodes $b_{i} \in A_{i}$ and $c_{i} \in T \backslash A_{i}$ with $b_{i}, c_{i} \geqslant a_{i}$ such that $\left(b_{i}\right)_{\leqslant} \equiv_{n}\left(c_{i}\right)_{\leqslant}$.

Let S be the tree obtained by taking the tree T and for every i we replace the subtree $\left(b_{i}\right)_{\leqslant}$of T with the tree $S_{i}:=\left(c_{i}\right)_{\leqslant}$. From the way S is constructed, every path in S will contain a leaf hence every path in S is definable using that leaf as parameter. Define

$$
\tau:=\forall x\left(\operatorname{leaf}(x) \rightarrow \sigma^{\leqslant x}\right) .
$$

i.e. $\{\tau\}=\operatorname{Le}_{\sigma}$. Note that $\operatorname{qr}(\tau)=\operatorname{qr}(\sigma)+1 \leqslant n$. By Proposition 5.17 we get $S \equiv_{n} T$ and since T satisfies τ then S also satisfies τ. Since every path in S contains a leaf then it follows that every path in S satisfies σ hence S is a pathwise uniformly α-like tree.

QED

Proposition 6.24 Let α be a linear order containing a greatest element and let Σ axiomatise the first-order theory of α. Let T be a tree satisfying the schemes El and Le_{Σ}. Then T satisfies the scheme De_{Σ}.

Proof Suppose that T satisfies the schemes El and $\operatorname{Le}_{\Sigma}$. Let $\varphi(x, \bar{z})$ be a formula with \bar{z} a (possibly empty) k-tuple of variables, and suppose that $T \models \pi_{\varphi}(\bar{c} / \bar{z})$ for some k-tuple of nodes \bar{c} from T. Then $\varphi(x, \bar{z})$ defines a path A in T with the parameters \bar{c} substituted for \bar{z}. Since for every node $u \in A$ we have that $T \models \varphi(u / x, \bar{c} / \bar{z})$ then it follows by the scheme El that there exists a leaf $a \in T$ such that $T \models \varphi(u / x, \bar{c} / \bar{z})$ for every $u<a$ and clearly $a \in A$. Now from the scheme $\operatorname{Le}_{\Sigma}$ we get that $T \models \sigma^{\leqslant x}(a / x)$ for every sentence $\sigma \in \Sigma$. Hence $a_{\geqslant}=A=(T ; \bar{c})^{\varphi}$ satifies σ and so $T \models \sigma^{\varphi}(\bar{c} / \bar{z})$. It follows that the scheme De_{Σ} holds in T.

QED
The next example shows that the scheme El does not generally follow from the scheme De_{Σ}. In it we make use of a sentence $\Phi_{\omega+1}$ which axiomatises the first-order theory of the ordinal $\omega+\mathbf{1}$. This sentence will be fully described in Section 7.1.

Example 6.25 Let T be the tree obtained from the binary ω-tree B_{ω} by attaching a copy of the linear order $\omega+\mathbf{1}$ to each of its nodes. Every path in T is either an ω-path or an $(\omega+\mathbf{1})$-path. Nodes lying high up on any of the $(\omega+\mathbf{1})$-paths will have only one immediate successor, whereas nodes belonging to any of the ω-paths will have three immediate successors.

The parametrically definable paths in T are precisely the $(\omega+\mathbf{1})$-paths. For let A be an ω-path in T, let \bar{c} be a (possibly empty) k-tuple of nodes in T, and let $\psi(x, \bar{z})$ be a formula with \bar{z} a k-tuple of variables, such that $(T ; \bar{c}) \models \psi(u / x, \bar{c})$ for all $u \in A$. Let $a \in A$ with $a \geqslant\left(A \cap\left(c_{i}\right) \geqslant\right)$ for all i. Let b be a node in T, different from a, with $b \geqslant\left(A \cap\left(c_{i}\right) \geqslant\right)$ for all i, and with b having the same level as a. In particular, $b \notin A$. From the structure of T it is clear that $(T ; \bar{c} a) \cong(T ; \bar{c} b)$. Hence $(T ; \bar{c}) \models \psi(b / x, \bar{c})$ and it follows that the formula $\psi(x, \bar{z})$ cannot possibly define the path A in T with the parameters \bar{c} substituted for \bar{z}. Hence the ω-paths in T are not parametrically definable, whereas the $(\omega+\mathbf{1})$-paths are all definable using a leaf belonging to the path as parameter. Therefore T satisfies the scheme $\operatorname{De}_{\Phi_{\omega+1}}$.
Now consider the formula

$$
\varphi(x):=\exists y_{1} \exists y_{2} \exists y_{3}\left(\bigwedge_{i \neq j} y_{i} \neq y_{j} \wedge \bigwedge_{i=1}^{3} s\left(x, y_{i}\right)\right)
$$

which holds for a node $u \in T$ when u has three distinct immediate successors. Hence $T^{\varphi}=B_{\omega}$ and for every node $u \in T$ with $T \models \varphi(u / x)$, there is a node $w \in T$ with $u<w$ and for which $T \models \varphi(w / x)$. However, there is no leaf $d \in T$ for which the set $d_{>}$contains a cofinal sequence of nodes satisfying the formula $\varphi(x)$. It follows that T does not satisfy the scheme El.

Chapter 7

Axiomatisations of ordinal trees

In this chapter we study the problem of axiomatising the first-order theory of the class of trees of which every path is isomorphic with the ordinal α with $\alpha<\omega^{\omega}$. We begin in Section 7.1 (The first-order theory of the ordinal α with $\alpha<\omega^{\omega}$) by describing the first-order theory of the ordinal α using an axiom system similar to the one in [24]. In Section 7.2 (Tails of ordinals) we establish some important results on tails of ordinals which are used later to establish results on almost α-trees. Section 7.3 (Some general observations) contains some results which are of general use. In Section 7.4 (Towards firstorder theories of α-trees) we determine the first-order theories of the classes of \mathbf{n}-trees for every finite ordinal \mathbf{n} as well as the first-order theory of the class of ω-trees. We also introduce the class of almost α-trees and show that this class is a proper subclass of the class of definably uniformly α-like trees. We obtain the result that every almost α-tree can be elementarily embedded in a pathwise uniformly α-like tree. Finally we examine what this elementary extension of the almost α-tree looks like in Section 7.5 (Almost $(\omega+1)$-trees and their extensions) for the case where $\alpha=\omega+\mathbf{1}$.

For convenience, we summarise the formulas which will be used frequently in this chapter:

Notation	Formula
λ_{n}	contains at least n elements
μ_{n}	contains at most n elements
Tr_{r}	transitivity
Co	connectedness
Ro	contains a root
Do	$\forall x \exists y$ (leaf $(y) \wedge x \leqslant y)$
D_{1}	downwards discreteness
D_{2}	upwards discreteness
D_{2}^{\prime}	weak upwards discreteness of tree $/$ upwards discreteness of
$\mathrm{D}_{2}^{\prime \prime}$	linear order
$\delta x \exists y(x<y)$	
$\delta(x)$	defines limit points
N_{1}	$\forall x \forall y\left((x<y \wedge \delta(x) \wedge \delta(y) \wedge \neg \exists z(\delta(z) \wedge x<z<y)) \rightarrow \Phi_{\omega}^{[x, y)}\right)$
N_{2}	$\forall x \exists y \exists z(\delta(y) \wedge \delta(z) \wedge y \leqslant x<z)$
Φ_{α}	axiomatises first-order theory of the ordinal α
A_{F}	defines class of forests
A_{T}	defines class of trees
A_{L}	defines class of linear orders
A_{W}	definable well-foundedness
De_{Σ}	parametrically definable paths satisfy Σ
Le_{Σ}	every path containing a leaf satisfies Σ

7.1 The first-order theory of the ordinal α with $\alpha<\omega^{\omega}$

It is known (see e.g. [24]) that for every ordinal α with $\alpha<\omega^{\omega}$, the firstorder theory of α can be axiomatised using a single sentence Φ_{α}. We briefly describe this axiomatisation here. The reader is also referred to [24, pp. 253262] in this regard. The axiom system presented here differs slightly from the one in [24].

7.1.1 Finite α

We first consider finite ordinals.
Proposition 7.1 For every $n \in \mathbb{N}^{+}$, the ordinal \mathbf{n} can be defined using the sentence

$$
\Phi_{\mathbf{n}}:=\bigwedge \mathrm{A}_{\mathrm{L}} \wedge \lambda_{n} \wedge \mu_{n}
$$

Proof Immediate.

QED

Proposition 7.2 For $n=1,2$ we have $\operatorname{qr}\left(\Phi_{\mathbf{n}}\right)=3$ and for $n \geqslant 3$ we have $\operatorname{qr}\left(\Phi_{\mathbf{n}}\right)=n+1$.

Proof Since qr $\left(\bigwedge \mathrm{A}_{\mathrm{L}}\right)=3$ and $\operatorname{qr}\left(\lambda_{n} \wedge \mu_{n}\right)=n+1$.
QED

7.1.2 Powers of ω

For α any order type, a linear order A is called α-like when $A \equiv \alpha$.
We next investigate the class of ω-like linear orders. Define the sentence

$$
\mathrm{D}_{2}^{\prime}: \forall x \exists y(x<y \wedge \forall z(\neg(x<z<y))) .
$$

The sentence D_{2}^{\prime} states that every element has an immediate successor.
Proposition 7.3 ([24]) The first-order theory of the ordinal ω can be axiomatised using the sentence

$$
\Phi_{\omega}:=\wedge A_{L} \wedge \operatorname{Ro} \wedge D_{1} \wedge D_{2}^{\prime}
$$

Proof See [24, p. 254].
QED
The class of models of the sentence Φ_{ω} consists of all linear orders having order type $\omega+\zeta \cdot \alpha$ for α any order type (see [24]). Moreover, $\omega+\zeta \cdot \alpha_{1} \equiv$ $\omega+\zeta \cdot \alpha_{2}$ for all order types α_{1} and α_{2}. In particular, $\omega \equiv \omega+\zeta \cdot \alpha$ for every order type α.

We now turn to powers of ω. For every $n \in \mathbb{N}^{+}$define the class $\mathcal{A}\left(\omega^{n}\right)$ of linear orders by induction as follows:
(i) $\mathcal{A}(\omega)$ consists of all linear orders with order type $\omega+\zeta \cdot \alpha$ for α any order type;
(ii) for $n \geq 2$ the class $\mathcal{A}\left(\omega^{n}\right)$ consists of all linear orders of the form

$$
\begin{equation*}
\sum_{k \in \omega} W_{k}+\sum_{i \in I}\left(\sum_{z \in \zeta} W_{z}^{i}\right) \tag{7.1}
\end{equation*}
$$

for I any linearly ordered set, and where $W_{k}, W_{z}^{i} \in \mathcal{A}\left(\omega^{n-1}\right)$ for all k, i and z.

Proposition 7.4 ([24]) Let A be an ordered set and let $n \in \mathbb{N}^{+}$. Then $A \in \mathcal{A}\left(\omega^{n}\right)$ if and only if $A \equiv \omega^{n}$.

Proof See [24, Proposition 13.25].
QED
Hence for every $n \in \mathbb{N}^{+}$the class $\mathcal{A}\left(\omega^{n}\right)$ consists of the class of ω^{n}-like linear orders. Since $\omega^{0}=\mathbf{1}$ then the class of ω^{0}-like linear orders consists of those linear orders which have a singleton set as domain. Hence the class of ω^{0}-like linear orders can be defined by the sentence Φ_{1}.

Proposition 7.5 ([24]) Let A be an ordered set and let $n \in \mathbb{N}^{+}$. The following conditions are equivalent:
(i) $A=\sum_{i \in V} V_{i}$ for some V and $\left\{V_{i}\right\}_{i \in V}$, where V is an ω^{n-1}-like linear order and V_{i} is a ω-like linear order for every $i \in V$;
(ii) $A=\sum_{i \in W} W_{i}$ for some W and $\left\{W_{i}\right\}_{i \in W}$, where W is an ω-like linear order and W_{i} is ω^{n-1}-like linear order for every $i \in W$.

Proof See [24, pp. 257-258].
QED
Define the formula

$$
\delta(x):=\forall y(y<x \rightarrow \exists z(y<z<x)) .
$$

The formula $\delta(x)$ defines limit points. A least element, if it exists, will satisfy the formula $\delta(x)$ and hence will be treated as a limit point.

Define the sentences

$$
\mathrm{N}_{1}: \forall x \forall y\left((x<y \wedge \delta(x) \wedge \delta(y) \wedge \neg \exists z(\delta(z) \wedge x<z<y)) \rightarrow \Phi_{\omega}^{[x, y)}\right)
$$

$$
\mathrm{N}_{2}: \forall x \exists y \exists z(\delta(y) \wedge \delta(z) \wedge y \leqslant x<z) .
$$

The sentence N_{1} states that the interval between every pair of successive limit points is ω-like. The sentence N_{2} states that every element is contained in an interval formed by two successive limit points.

Proposition 7.6 (See also [24].) Define inductively

$$
\begin{aligned}
& \gamma_{1}:=\operatorname{Ro} \wedge D_{1} \wedge D_{2}^{\prime} \text { and } \\
& \gamma_{n}:=\gamma_{n-1}^{\delta} \wedge N_{1} \wedge N_{2} \text { for } n \geqslant 2 .
\end{aligned}
$$

Then for $n \geqslant 2$ the first-order theory of the ordinal ω^{n} can be axiomatised using the sentence

$$
\Phi_{\omega^{n}}:=\bigwedge A_{\llcorner } \wedge \gamma_{n} .
$$

Proof It is clear that $\omega^{n} \models \Phi_{\omega^{n}}$ for every n with $n \geqslant 2$. Hence we need to show that if $A \models \Phi_{\omega^{n}}$ then $A \equiv \omega^{n}$ for every n with $n \geqslant 2$. The proof runs by induction on n. We already know that Φ_{ω} axiomatises the first-order theory of ω. For $k \geqslant 1$ assume that $\Phi_{\omega^{k}}$ axiomatises the first-order theory of ω^{k} and let A be a structure with $A \models \Phi_{\omega^{k+1}}$.

Since $A \models \bigwedge \mathrm{~A}_{\mathrm{L}}$ and the sentences in A_{L} express universal properties then $A^{\delta} \models \bigwedge A_{\mathrm{L}}$. Also $A \models \gamma_{k}^{\delta}$ and so $A^{\delta} \models \gamma_{k}$. Hence $A^{\delta} \models \Phi_{\omega^{k}}$ and by the induction hypothesis A^{δ} is ω^{k}-like.

Thus for every $x \in A^{\delta}$ there exists $y_{x} \in A^{\delta}$ such that y_{x} is the immediate successor to x in A^{δ}. Since $A \models \mathrm{~N}_{1}$ then the set $A_{x}:=\left\{z \in A: x \leqslant z<y_{x}\right\}$ is ω-like.

From the fact that $A \models \mathrm{~N}_{2}$ it then follows that A can be written as

$$
A=\sum_{x \in A^{\delta}} A_{x}
$$

where A^{δ} is ω^{k}-like and where A_{x} is ω-like for every $x \in A^{\delta}$. Using Lemma 7.5 we get that $A \in \mathcal{A}\left(\omega^{k+1}\right)$. By Proposition 7.4 this gives $A \equiv \omega^{k+1}$ as required.

QED

Proposition 7.7 (See also [24].) For $n \geqslant 1$ we have $\operatorname{qr}\left(\Phi_{\omega^{n}}\right)=2 n+1$.

Proof We use induction on n. First note that $\operatorname{qr}\left(\bigwedge A_{L}\right)=3, \operatorname{qr}(\operatorname{Ro})=2$, $\operatorname{qr}\left(\mathrm{D}_{1}\right)=3$ and $\mathrm{qr}\left(\mathrm{D}_{2}^{\prime}\right)=3$. Hence $\operatorname{qr}\left(\Phi_{\omega}\right)=3$. Moreover

$$
\operatorname{qr}\left(\gamma_{m-1}^{\delta}\right)=\operatorname{qr}\left(\gamma_{m-1}\right)+\operatorname{qr}(\delta)=\operatorname{qr}\left(\gamma_{m-1}\right)+2
$$

for every $m \geqslant 2$ and since $\operatorname{qr}\left(\mathrm{N}_{1}\right)=5$ and $\mathrm{qr}\left(\mathrm{N}_{2}\right)=5$ then $\mathrm{qr}\left(\Phi_{\omega^{2}}\right)=5$.
Next assume that $\operatorname{qr}\left(\Phi_{\omega^{k}}\right)=2 k+1$ for some k with $k \geqslant 2$. It follows that $\operatorname{qr}\left(\gamma_{k}\right)=2 k+1$, which gives

$$
\operatorname{qr}\left(\Phi_{\omega^{k+1}}\right)=\operatorname{qr}\left(\gamma_{k+1}\right)=\operatorname{qr}\left(\gamma_{k}^{\delta}\right)=2 k+3=2(k+1)+1
$$

as required.
QED

7.1.3 The general case

Finally we consider any ordinal α with $\alpha<\omega^{\omega}$ and where α is neither finite nor a power of ω. Assume that the Cantor normal form of such α is

$$
\begin{equation*}
\alpha=\omega^{n_{1}} \cdot a_{1}+\omega^{n_{2}} \cdot a_{2}+\ldots+\omega^{n_{k}} \cdot a_{k} \tag{7.2}
\end{equation*}
$$

where $n_{1}>n_{2}>\ldots>n_{k}$ and $a_{i} \neq 0$ for all i.
Proposition 7.8 ([24]) Let A be a linear order. Then A is α-like if and only if A has the form

$$
\left(W_{1}^{n_{1}}+\ldots+W_{a_{1}}^{n_{1}}\right)+\left(W_{1}^{n_{2}}+\ldots+W_{a_{2}}^{n_{2}}\right)+\ldots+\left(W_{1}^{n_{k}}+\ldots+W_{a_{k}}^{n_{k}}\right)
$$

where $W_{j}^{n_{i}}$ is an $\omega^{n_{i}}$-like linear order for all n_{i} and j.
Proof See [24, Theorem 13.26].
QED
Let ψ_{1}, ψ_{2} and ψ_{3} be the formulas

$$
\begin{aligned}
& \psi_{1}:=\bigwedge_{i=1}^{k} \bigwedge_{j=1}^{a_{i}-1}\left(x_{j}^{n_{i}}<x_{j+1}^{n_{i}}\right) \wedge \bigwedge_{i=1}^{k-1}\left(x_{a_{i}}^{n_{i}}<x_{1}^{n_{i+1}}\right) ; \\
& \psi_{2}:=\forall y\left(\bigvee_{i=1}^{k} \bigvee_{j=1}^{a_{i}-1}\left(x_{j}^{n_{i}} \leqslant y<x_{j+1}^{n_{i}}\right) \vee \bigvee_{i=1}^{k-1}\left(x_{a_{i}}^{n_{i}} \leqslant y<x_{1}^{n_{i+1}}\right) \vee x_{a_{k}}^{n_{k}} \leqslant y\right) ; \\
& \psi_{3}:=\bigwedge_{i=1}^{k} \bigwedge_{j=1}^{a_{i}-1} \Phi_{\omega^{n}}^{\left[x_{j}^{n_{i}}, x_{j+1}^{n_{i}}\right)} \wedge \bigwedge_{i=1}^{k-1} \Phi_{\omega^{n}}^{\left[x_{a_{i}}^{n_{i}} x^{n_{i}} x_{1}\right)} \wedge \Phi_{\omega^{n_{k}}}^{\geqslant x_{k}^{n_{k}}} .
\end{aligned}
$$

The formulas ψ_{1}, ψ_{2} and ψ_{3} have free variables $x_{j}^{n_{i}}$, where $1 \leqslant i \leqslant k$ and $1 \leqslant j \leqslant a_{i}$. The formula ψ_{1} states that the variables $x_{j}^{n_{i}}$ can be ordered as

$$
x_{1}^{n_{1}}<\ldots<x_{a_{1}}^{n_{1}}<x_{1}^{n_{2}}<\ldots<x_{a_{2}}^{n_{2}}<\ldots<x_{1}^{n_{k}}<\ldots<x_{a_{k}}^{n_{k}} .
$$

The formula ψ_{2} states that every element lies in one of the intervals as described in the formula which are determined by the variables $x_{j}^{n_{i}}$. The formula ψ_{3} states that each of the intervals determined by successive variables, as well as the interval at the end determined by the variable $x_{a_{k}}^{n_{k}}$, is $\omega^{n_{i}-\text { like }}$ for the appropriate value of i.

Proposition 7.9 (See also [24].) Let α be an ordinal of the form described in Equation (7.2). The first-order theory of α can be axiomatised using the sentence

$$
\Phi_{\alpha}:=\wedge \mathrm{A}_{\mathrm{L}} \wedge \exists \bar{x}^{n_{1}} \ldots \exists \bar{x}^{n_{k}}\left(\psi_{1} \wedge \psi_{2} \wedge \psi_{3}\right)
$$

where $\bar{x}^{n_{i}}=\left(x_{1}^{n_{i}}, \ldots, x_{a_{i}}^{n_{i}}\right)$ for every i with $1 \leqslant i \leqslant k$.
Proof From Proposition 7.8 and the way that Φ_{α} is constructed.
QED

Proposition 7.10 (See also [24].) For α of the form described in Equation (7.2) we have

$$
\operatorname{qr}\left(\Phi_{\alpha}\right)=2 n_{1}+a_{1}+\ldots+a_{k}+1
$$

Proof Since $\operatorname{qr}\left(\Phi_{\omega^{m_{1}}}\right)>\operatorname{qr}\left(\Phi_{\omega^{m_{2}}}\right)$ for $m_{1}>m_{2}$ and since $\operatorname{qr}\left(\Phi_{\omega^{m}}^{[x, y)}\right)=$ $\operatorname{qr}\left(\Phi_{\omega^{m}}\right)$ and $\operatorname{qr}\left(\Phi_{\omega^{m}}^{\geqslant x}\right)=\operatorname{qr}\left(\Phi_{\omega^{m}}\right)$ for every m we get that

$$
\operatorname{qr}\left(\Phi_{\alpha}\right)=a_{1}+\ldots+a_{k}+\operatorname{qr}\left(\Phi_{\omega^{n_{1}}}\right)
$$

and the result follows by Proposition 7.7.
QED
It need not be the case that $\operatorname{qr}\left(\Phi_{\alpha}\right)<\operatorname{qr}\left(\Phi_{\beta}\right)$ for $\alpha<\beta$. As an example, for n a positive integer we get that $\operatorname{qr}\left(\Phi_{\omega+\mathbf{n}}\right)=n+4, \operatorname{qr}\left(\Phi_{\omega \cdot n}\right)=n+3$ and $\operatorname{qr}\left(\Phi_{\omega^{2}}\right)=5$.

Proposition 7.11 Let $\alpha<\omega^{\omega}$ and let A be an α-like well-order. Then $A \cong \alpha$.

Proof We prove the result using induction on α. The result obviously holds for finite α.

If A is an ω-like well-order then $A \cong \omega+\zeta \cdot \gamma$ for some order type γ and A being well-ordered ensures that $\gamma=\mathbf{0}$. Hence $A \cong \omega$ so the result holds for $\alpha=\omega$.

Next let $m \geqslant 1$ and assume the result holds for $\alpha=\omega^{m}$. Let A be an ω^{m+1}-like well-order. By Proposition 7.4, A will have the form

$$
\sum_{k \in \omega} W_{k}+\sum_{i \in I}\left(\sum_{z \in \zeta} W_{z}^{i}\right)
$$

for some linearly ordered set I and where W_{k} and W_{z}^{i} are ω^{m}-like for all k, i and z. Since A is well-ordered then $I=\emptyset$. Moreover every W_{k} will be well-ordered so from the induction hypothesis, $W_{k} \cong \omega^{m}$ for every k. Hence $A \cong \omega^{m+1}$ and the result holds for $\alpha=\omega^{m+1}$.

Finally assume the result holds for $\alpha=\omega^{m}$ for every $m \in \mathbb{N}$. Now let A be a β-like well-order, where β has the form

$$
\beta=\omega^{n_{1}} \cdot a_{1}+\omega^{n_{2}} \cdot a_{2}+\ldots+\omega^{n_{k}} \cdot a_{k}
$$

with $n_{1}>n_{2}>\ldots>n_{k}$ and $a_{i} \neq 0$ for every i. By Proposition 7.8, A has the form

$$
\left(W_{1}^{n_{1}}+\ldots+W_{a_{1}}^{n_{1}}\right)+\left(W_{1}^{n_{2}}+\ldots+W_{a_{2}}^{n_{2}}\right)+\ldots+\left(W_{1}^{n_{k}}+\ldots+W_{a_{k}}^{n_{k}}\right)
$$

where $W_{j}^{n_{i}}$ is an $\omega^{n_{i}}$-like linear order for all n_{i} and j. Since A is well-ordered then every $W_{j}^{n_{i}}$ will also be well-ordered so by the induction hypothesis, $W_{j}^{n_{i}} \cong \omega^{n_{i}}$ for all n_{i} and j. It follows that $A \cong \beta$ and this completes the proof.

QED

7.2 Tails of ordinals

If B is a non-empty upwards convex subset of a linear order A then B is called a tail of A. Clearly if β is a tail of the ordinal α then β is also an ordinal with $\beta \leqslant \alpha$ and α can be written as $\alpha=\gamma+\beta$ for some ordinal γ.

Proposition 7.12 Let α be an ordinal with $\alpha<\omega^{\omega}$ and let β be a tail of α. Then $\operatorname{qr}\left(\Phi_{\beta}\right) \leqslant \operatorname{qr}\left(\Phi_{\alpha}\right)$.

Proof It can be seen by induction on k that if β is a tail of α with $\alpha=\omega^{k}$ for some k then $\beta=\omega^{k}$, in which case $\operatorname{qr}\left(\Phi_{\beta}\right)=\operatorname{qr}\left(\Phi_{\omega^{k}}\right)=\operatorname{qr}\left(\Phi_{\alpha}\right)$. Hence assume that α is not a power of ω. Let γ be an ordinal such that $\alpha=\gamma+\beta$ and let the Cantor normal forms of α, β and γ be

$$
\begin{aligned}
\alpha & =\omega^{q_{1}} \cdot a_{1}+\omega^{q_{2}} \cdot a_{2}+\ldots+\omega^{q_{k}} \cdot a_{k}, \\
\beta & =\omega^{r_{1}} \cdot b_{1}+\omega^{r_{2}} \cdot b_{2}+\ldots+\omega^{r_{m}} \cdot b_{m}, \\
\gamma & =\omega^{s_{1}} \cdot c_{1}+\omega^{s_{2}} \cdot c_{2}+\ldots+\omega^{s_{n}} \cdot c_{n},
\end{aligned}
$$

where $q_{1}>q_{2}>\ldots>q_{k}$ and $r_{1}>r_{2}>\ldots>r_{m}$ and $s_{1}>s_{2}>\ldots>s_{n}$ with $a_{i}, b_{i}, c_{i} \neq 0$ for all i.

It can be seen by induction that $\omega^{n_{1}}+\omega^{n_{2}}=\omega^{n_{2}}$ when $n_{1}<n_{2}$. From this fact it follows that

$$
\gamma+\beta=\sum\left\{\omega^{s_{i}} \cdot c_{i}: 1 \leqslant i \leqslant n \text { and with } s_{i} \geqslant r_{1}\right\}+\sum_{i=1}^{m} \omega^{r_{i}} \cdot b_{i} .
$$

Let c_{t} be the coefficient (possibly 0) of the term containing the power $\omega^{r_{1}}$ in the Cantor normal form expansion of γ. Since the Cantor normal form expansion of α is unique, this gives

$$
\begin{aligned}
r_{i} & =q_{k-m+i} \text { for } 1 \leqslant i \leqslant m, \text { and } \\
c_{t}+b_{1} & =a_{k-m+1}, \text { and } \\
b_{i} & =a_{k-m+i} \text { for } 2 \leqslant i \leqslant m
\end{aligned}
$$

Since $\operatorname{qr}\left(\Phi_{\omega^{r_{1}}}\right)=2 r_{1}+1 \leqslant 2 q_{1}+1=\operatorname{qr}\left(\Phi_{\omega^{q_{1}}}\right)$ then

$$
\begin{aligned}
\operatorname{qr}\left(\Phi_{\beta}\right) & =b_{1}+\ldots+b_{m}+\operatorname{qr}\left(\Phi_{\omega^{r_{1}}}\right) \\
& \leqslant a_{1}+\ldots+a_{k-m}+\left(c_{t}+b_{1}\right)+b_{2}+\ldots+b_{m}+\operatorname{qr}\left(\Phi_{\omega^{q_{1}}}\right) \\
& =a_{1}+\ldots+a_{k}+\operatorname{qr}\left(\Phi_{\omega^{q_{1}}}\right) \\
& =\operatorname{qr}\left(\Phi_{\alpha}\right)
\end{aligned}
$$

as required.
QED

Lemma 7.13 Let A be an ω^{n}-like linear order $(n \in \mathbb{N})$ and let B be a tail of A containing a least point. Then B is ω^{n}-like.

Proof We prove the result using induction on n. The case for $n=0$ is straightforward, while for $n=1$ the result follows from the fact that A will have the form $\omega+\zeta \cdot \alpha$ for some order type α.

Assume the result holds for ω^{k}-like linear orders (where $k \geqslant 1$) and let A be ω^{k+1}-like. From Proposition 7.4, A will have the form

$$
A=\sum_{m \in \omega} W_{m}+\sum_{i \in I}\left(\sum_{z \in \zeta} W_{z}^{i}\right)
$$

for I some linearly ordered set, and where W_{m} and W_{z}^{i} are ω^{k}-like for all m, i and z. It follows that B will have one of the forms

$$
B=W_{q}^{\star}+\sum_{m=q+1}^{\infty} W_{m}+\sum_{i \in I}\left(\sum_{z \in \zeta} W_{z}^{i}\right)
$$

for some $q \in \mathbb{N}$ and where W_{q}^{\star} is a tail of W_{q} containing a least point, or

$$
B=\left(W_{q}^{j}\right)^{\star}+\sum_{z \in \zeta, z>q} W_{z}^{j}+\sum_{i \in I, i>j}\left(\sum_{z \in \zeta} W_{z}^{i}\right)
$$

for some $j \in I$ and $q \in \zeta$ and where $\left(W_{q}^{j}\right)^{\star}$ is a tail of W_{q}^{j} containing a least point.

By the induction hypothesis, W_{q}^{\star} and $\left(W_{q}^{j}\right)^{\star}$ will be ω^{k}-like, so in both of the above cases, B can be written as an ω-like sum of ω^{k}-like linear orders. Hence B will have the form described in Equation (7.1) for an ω^{k+1}-like linear order, so B is ω^{k+1}-like as required.

QED

Proposition 7.14 Let A be a linear order and let B be a tail of A containing a least point. Suppose that A is α-like for some ordinal α with $\alpha<\omega^{\omega}$. Then there exists an ordinal β with β a tail of α and such that B is β-like.

Proof We have already proved the result in Lemma 7.13 for the case where α is a power of ω, so consider the case where the Cantor normal form of α is

$$
\alpha=\omega^{n_{1}} \cdot a_{1}+\omega^{n_{2}} \cdot a_{2}+\ldots+\omega^{n_{k}} \cdot a_{k}
$$

where $n_{1}>n_{2}>\ldots>n_{k}$ and with $a_{i} \neq 0$ for all i. Since A is α-like then by Proposition 7.8, A can be written in the form

$$
A=\sum_{i=1}^{k} \sum_{j=1}^{a_{i}} W_{j}^{n_{i}}
$$

where $W_{j}^{n_{i}}$ is an $\omega^{n_{i}}$-like linear order for every n_{i} and j. Let B be a tail of A containing a least point. It follows that

$$
B=\left(W_{m}^{n_{q}}\right)^{\star}+\sum_{j=m+1}^{a_{q}} W_{j}^{n_{q}}+\sum_{i=q+1}^{k} \sum_{j=1}^{a_{i}} W_{j}^{n_{i}}
$$

for some q and m with $1 \leqslant q \leqslant k$ and $1 \leqslant m \leqslant a_{q}$ and where $\left(W_{m}^{n_{q}}\right)^{\star}$ is a tail of $W_{m}^{n_{q}}$ containing a least point. By Lemma 7.13, $\left(W_{m}^{n_{q}}\right)^{\star}$ will be $\omega^{n_{q}-\text { like. }}$ Take β to be the ordinal

$$
\beta=\omega^{n_{q}} \cdot\left(a_{q}-m+1\right)+\sum_{i=q+1}^{k} \omega^{n_{i}} \cdot a_{i} .
$$

Then β is a tail of α and from Proposition 7.8, B is β-like.
QED
In particular, every tail having a least point of an ω-like linear order is also ω-like.

Proposition 7.15 Let α be an ordinal with $\alpha<\omega^{\omega}$. Let A be a linear order and let B_{1} and B_{2} be linear orders both having least points, and such that $A+B_{1} \equiv \alpha$ and $A+B_{2} \equiv \alpha$. Then $B_{1} \equiv B_{2}$.

Proof The result clearly holds for finite α. We prove the result for infinite α using induction on α.

First consider the case where $\alpha=\omega$. From Proposition 7.14 it follows that $B_{1} \equiv \omega \equiv B_{2}$.

We next show that if the result holds for an ordinal α then the result also holds for the ordinal $\alpha+\mathbf{1}$. Hence let α be an ordinal for which the result is true. If $A+B_{1} \equiv \alpha+\mathbf{1}$ and $A+B_{2} \equiv \alpha+\mathbf{1}$ then B_{1} and B_{2} must both have greatest points. Let B_{1}^{\prime} and B_{2}^{\prime} be the linear orders obtained respectively from B_{1} and B_{2} by removing their greatest points. Then we get $A+B_{1}^{\prime} \equiv \alpha$ and $A+B_{2}^{\prime} \equiv \alpha$ from which $B_{1}^{\prime} \equiv B_{2}^{\prime}$ by the inductive hypothesis. This in turn gives $B_{1}=B_{1}^{\prime}+\mathbf{1} \equiv B_{2}^{\prime}+\mathbf{1}=B_{2}$ as required.

Finally let α be a limit ordinal and suppose the result holds for all ordinals ξ with $\xi<\alpha$. We need to show that the result also holds for α. Let the Cantor normal form of α be

$$
\alpha=\omega^{n_{1}} \cdot a_{1}+\omega^{n_{2}} \cdot a_{2}+\ldots+\omega^{n_{k}} \cdot a_{k}
$$

where $n_{1}>n_{2}>\ldots>n_{k}$ and $a_{i} \neq 0$ for all i. Since $A+B_{1}$ is α-like then by Proposition 7.8 we can write

$$
A+B_{1}=\left(W_{1}^{n_{1}}+\ldots+W_{a_{1}}^{n_{1}}\right)+\ldots+\left(W_{1}^{n_{k}}+\ldots+W_{a_{k}}^{n_{k}}\right)
$$

where each of the linear orders $W_{j}^{n_{i}}$ is $\omega^{n_{i}}$-like. Hence we get for some p and q with $1 \leqslant p \leqslant k$ and $1 \leqslant q \leqslant a_{p}$ that

$$
\begin{aligned}
A & =\sum_{i=1}^{p-1} \sum_{j=1}^{a_{i}} W_{j}^{n_{i}}+\sum_{j=1}^{q-1} W_{j}^{n_{p}}+\left(W_{q}^{n_{p}}\right)^{-} \\
B_{1} & =\left(W_{q}^{n_{p}}\right)^{\star}+\sum_{j=q+1}^{a_{p}} W_{j}^{n_{p}}+\sum_{i=p+1}^{k} \sum_{j=1}^{a_{i}} W_{j}^{n_{i}}
\end{aligned}
$$

where $\left(W_{q}^{n_{p}}\right)^{-}$and $\left(W_{q}^{n_{p}}\right)^{\star}$ are linear orders such that $\left(W_{q}^{n_{p}}\right)^{-}+\left(W_{q}^{n_{p}}\right)^{\star}=$ $W_{q}^{n_{p}}$ and where $\left(W_{q}^{n_{p}}\right)^{\star}$ has a least point.

Since $A+B_{2}$ is α-like then using Proposition 7.8 it now follows that we can write

$$
B_{2}=\left(V_{q}^{n_{p}}\right)^{\star}+\sum_{j=q+1}^{a_{p}} V_{j}^{n_{p}}+\sum_{i=p+1}^{k} \sum_{j=1}^{a_{i}} V_{j}^{n_{i}}
$$

where each of the linear orders $V_{j}^{n_{i}}$ is $\omega^{n_{i}}$-like and where $\left(V_{q}^{n_{p}}\right)^{\star}$ is a linear order with a least point such that $\left(W_{q}^{n_{p}}\right)^{-}+\left(V_{q}^{n_{p}}\right)^{\star}$ is $\omega^{n_{p}}$-like.

Hence $\left(W_{q}^{n_{p}}\right)^{-}+\left(W_{q}^{n_{p}}\right)^{\star} \equiv \omega^{n_{p}} \equiv\left(W_{q}^{n_{p}}\right)^{-}+\left(V_{q}^{n_{p}}\right)^{\star}$ so by the inductive hypothesis we have $\left(W_{q}^{n_{p}}\right)^{\star} \equiv\left(V_{q}^{n_{p}}\right)^{\star}$ and since $W_{j}^{n_{i}} \equiv V_{j}^{n_{i}}$ for all i and j then it follows that $B_{1} \equiv B_{2}$ as required.

QED

7.3 Some general observations

Proposition 7.16 Let α be a successor ordinal with $\alpha<\omega^{\omega}$ and let T be a definably uniformly α-like tree. Suppose T contains only finitely many paths which are not parametrically definable. Then for every $n \in \mathbb{N}$ there exists a pathwise uniformly α-like tree S such that $S \equiv_{n} T$.

Proof Follows from Proposition 6.23 and the fact that the first-order theory of α can be axiomatised by the sentence Φ_{α}.

QED

Proposition 7.17 Let α be an ordinal with $\alpha<\omega^{\omega}$ and let T be a wellfounded pathwise uniformly α-like tree. Then T is an α-tree.

Proof Follows using Proposition 7.11.
QED

Proposition 7.18 Let α be an ordinal with $\alpha<\omega^{\omega}$ and let Σ be a finite theory which defines the class of pathwise uniformly α-like trees. Then the first-order theory of the class of α-trees can be axiomatised using the theory $\Sigma \cup A_{W}$.

Proof Let \mathcal{K} be the class of α-trees. We need to show that

$$
\operatorname{MOD}\left(\Sigma \cup \mathrm{A}_{\mathrm{W}}\right)=\operatorname{MOD}(\mathrm{TH}(\mathcal{K})) .
$$

Since every α-tree satisfies all of the sentences in the theory $\Sigma \cup A_{W}$ then it follows that $\operatorname{MOD}(\mathrm{TH}(\mathcal{K})) \subseteq \operatorname{MOD}\left(\Sigma \cup \mathrm{A}_{\mathrm{W}}\right)$.

Next let T satisfy the theory $\Sigma \cup \mathrm{A}_{\mathrm{W}}$ and let $\sigma \in \mathrm{TH}(\mathcal{K})$ with $\operatorname{qr}(\sigma)=k$. Assume that all of the sentences in Σ have quantifier rank at most m and let $n:=\max \{k, m\}$. By Theorem 6.3 there exists a well-founded tree S with $S \equiv_{n} T$. Hence S satisfies Σ so S is a pathwise uniformly α-like tree and being well-founded we get that S is an α-tree. This gives $S \models \sigma$ and so $T \models \sigma$. It follows that $T \in \operatorname{MOD}(\mathrm{TH}(\mathcal{K}))$ and this establishes the inclusion $\operatorname{MOD}\left(\Sigma \cup \mathrm{A}_{\mathrm{W}}\right) \subseteq \operatorname{MOD}(\mathrm{TH}(\mathcal{K}))$.

QED

7.4 Towards first-order theories of α-trees

7.4.1 The finite case

Proposition 7.19 Let n be a positive natural number. The class of \mathbf{n}-trees can be defined using the theory

$$
\Psi_{\mathrm{n}}:=\{\operatorname{Tr}, \mathrm{Co}, \mathrm{Do}\} \cup \mathrm{Le}_{\Phi_{\mathrm{n}}} .
$$

Proof It is clear that every \mathbf{n}-tree satisfies the theory $\Psi_{\mathbf{n}}$.
Next let T be a structure which satisfies the theory Ψ_{n}.
Let $u \in T$. From Do and Le $\Phi_{\Phi_{\mathbf{n}}}$ there exists a leaf $v \in T$ with $u \leqslant v$ and $T \models \Phi_{\mathbf{n}}^{\leqslant x}(v / x)$. Hence $v_{\geqslant} \models \Phi_{\mathbf{n}}$ so $v_{\geqslant} \cong \mathbf{n}$ and since $u \in v_{\geqslant}$then $u \nless u$. It follows that $T \models \mathrm{Ir}$.

Next let $u, v, w \in T$ with $v, w<u$. From Do and $\operatorname{Le}_{\Phi_{\mathrm{n}}}$ there again exists a leaf $z \in T$ with $z \geqslant \cong \mathbf{n}$ and such that $u \in z_{\geqslant}$. Since $u \leqslant z$ then from Tr we get $v, w<z$ so $v, w \in z \geqslant$. Since $\mathbf{n} \models$ To then $v \smile w$. It follows that $T \models \mathrm{ST}$ 。

Hence $T \models \wedge \mathrm{~A}_{\mathrm{T}}$ so T is a tree.
Finally let A be a path in T and let $u \in A$. Again by Do and $\mathrm{Le}_{\Phi_{\mathrm{n}}}$ there exists a leaf $v \in T$ with $v_{\geqslant} \cong \mathbf{n}$ and with $u \in v_{\geqslant}$. Since $u \geqslant \subseteq v_{\geqslant}$then $\left|u_{\geqslant}\right| \leqslant n$. It follows that $|A| \leqslant n$. Hence A contains a greatest element w and w will be a leaf. By Le $\Phi_{\Phi_{\mathbf{n}}}$ we get that $A=w \geqslant \mathbf{n}$.

Hence T is an \mathbf{n}-tree. QED

7.4.2 The class of ω-trees

Define the sentence
$\mathrm{D}_{2}^{\prime \prime}: \forall x \exists y(x<y)$.
Proposition 7.20 The class of pathwise uniformly ω-like trees can be defined using the theory

$$
\Psi_{\omega}:=A_{F} \cup\left\{\operatorname{Ro}, D_{1}, D_{2}, D_{2}^{\prime \prime}\right\}
$$

Proof If T is a pathwise uniformly ω-like tree then it is immediate that T satisfies the sentences in A_{F}. That the sentences Ro, $\mathrm{D}_{1}, \mathrm{D}_{2}$ and $\mathrm{D}_{2}^{\prime \prime}$ hold in T can be verified using the fact that every path in T is elementarily equivalent with ω and so will be of the form $\omega+\zeta \cdot \alpha$ for some order type α.

Next let T be a structure which satisfies the theory Ψ_{ω}. From Ro it follows that $T \models$ Co. Hence $T \models \wedge \mathrm{~A}_{\boldsymbol{T}}$ so T is a tree.

Let A be a path in T. We need to show that $A \equiv \omega$. Since A is a linear order then A satisfies all of the sentences in A_{L}. Since $T \models$ Ro then T contains a root which will also be a least node in A so $A \models$ Ro.

To show that $A \models \mathrm{D}_{1}$, let $x \in A$ be any node which has a predecessor belonging to A. Since $T \models \mathrm{D}_{1}$ then there exists $y \in T$ such that $y<x$, and there is no $z \in T$ with $y<z<x$. Since A is downwards convex this gives $y \in A$. Hence y is an immediate predecessor to x in A, so $A \models \mathrm{D}_{1}$.

Since $T \models \mathrm{D}_{2}^{\prime \prime}$ then T contains no leaves and since A is maximal total in T then it follows that every node in A has a successor from A. Let $x \in A$ be any node and let $y \in A$ be a successor to x. By the fact that $T \models \mathrm{D}_{2}$ there
exists $z \in T$ such that z is an immediate successor to x and $x<z \leqslant y$ which implies $z \in A$. Hence every node in A has an immediate successor from A so $A \models \mathrm{D}_{2}^{\prime}$.

Thus $A \models \Phi_{\omega}$ so $A \equiv \omega$. It follows that the tree T is pathwise uniformly ω-like.

QED

Theorem 7.21 The first-order theory of the class of ω-trees can be axiomatised using the theory

$$
\Psi_{\omega} \cup \mathrm{A}_{W} .
$$

Proof From Proposition 7.20 and Proposition 7.18.
QED

7.4.3 The class of almost α-trees

Definition 7.22 Let $A:=\left(A ;<_{A}\right)$ be a linear order and let $F:=\left(F ;<_{F}\right)$ be a forest. Then $A+F:=\left(|A+F| ;<_{A+F}\right)$ denotes the tree obtained by adding F to the end of A. Formally $A+F$ is defined as follows:
(i) $|A+F|:=A \cup F$ and
(ii) $<_{A+F}:=<_{A} \cup<_{F} \cup\{(x, y): x \in A$ and $y \in F\}$.

If $T:=\left(T ;<_{T}\right)$ is a tree and A is a path in T then $T+_{A} F:=\left(\left|T+{ }_{A} F\right| ;<\right)$ denotes the tree obtained from T by adding the forest F to the end of the path A. Formally $T+{ }_{A} F$ is defined as follows:
(i) $\left|T+{ }_{A} F\right|:=T \cup F$, and
(ii) $<:=<_{T} \cup<_{F} \cup\{(x, y): x \in A$ and $y \in F\}$.

Definition 7.23 Let α be an ordinal. A tree T is called an almost α-tree when T is definably uniformly α-like and when the following property holds:
A_{α} : for every path X in T which is not α-like, there exists a forest F such that
(i) the tree $X+F$ is pathwise uniformly α-like, and
(ii) $T \preceq T+_{X} F$.

If F is a forest satisfying the above two conditions then the tree $T+{ }_{x} F$ is called an α-completion of T with respect to the path X.

Part (ii) of the property A_{α} is, by the Tarski-Vaught criterion for elementary substructures (see [18, Proposition 4.31]), equivalent to the property that for every tuple \bar{c} in T, if the formula $\varphi(x, \bar{c})$ holds true in the tree $\left(T+{ }_{X} F ; \bar{c}\right)$ for some element a from $T+{ }_{X} F$, then $\varphi(x, \bar{c})$ already holds true in ($T ; \bar{c}$) for some element b from T.

Example 7.24 Let B_{ω} be the binary ω-tree and let A be any path in B_{ω}. Let G be the forest consisting of the set of nodes $\{a, b\}$ with $a \nsucc b$ in G. Let T be the tree obtained from B_{ω} by adding a copy of the forest G to the end of every path in B_{ω} other than the path A. The set A remains a path in T and A is not parametrically definable in T whereas every path in T different from A is parametrically definable. It follows that T is definably uniformly $(\omega+\mathbf{1})$-like. Clearly $A+G$ is pathwise uniformly $(\omega+\mathbf{1})$-like and $T \preceq T+{ }_{A} G$. Hence T is an almost $(\omega+\mathbf{1})$-tree and $T+{ }_{A} G$ is an $(\omega+\mathbf{1})$-completion of T with respect to the path A.

Let B_{ζ} be the binary ζ-tree and let B_{ζ}^{+}be the tree obtained from B_{ζ} by adding a copy of the forest G to the end of every path in B_{ζ}. The tree $A+B_{\zeta}^{+}$is pathwise uniformly $(\omega+\mathbf{1})$-like and it is easy to see that Player II has a winning strategy for the game $\mathrm{EF}_{n}\left((T ; \bar{c}),\left(T+{ }_{A} B_{\zeta}^{+} ; \bar{c}\right)\right)$, where \bar{c} is any tuple of nodes from T, hence $T \preceq T+{ }_{A} B_{\zeta}^{+}$. Therefore $T+{ }_{A} B_{\zeta}^{+}$is also an $(\omega+\mathbf{1})$-completion of T with respect to the path A. This shows that the choice of forest F for which the tree $T+{ }_{A} F$ is an $(\omega+\mathbf{1})$-completion of T with respect to the path A, is not unique.

Note that

$$
T \models \forall x \exists y(y \neq x \wedge \forall z(z<x \leftrightarrow z<y)) .
$$

Hence it is not sufficient to take F to consist of a single node if we require that $T \preceq T+{ }_{A} F$.

Next we have an example of a tree which is definably uniformly $(\omega+\mathbf{1})$-like but not an almost $(\omega+\mathbf{1})$-tree.

Example 7.25 Let T be the tree from Example 6.25 which we have already shown to be definably uniformly $(\omega+\mathbf{1})$-like. Every non-leaf node in T has either precisely one or precisely three immediate successors and if x is a node
with precisely one immediate successor then every non-leaf node y with $x<y$ also has precisely one immediate successor.

Let A be any ω-path in T and suppose F is a forest such that the tree $T+{ }_{A} F$ is an $(\omega+\mathbf{1})$-completion of T with respect to A. It follows that every path in F must have a stem of which every node in that stem has precisely three immediate successors, for suppose to the contrary that u is a node in F such that x has precisely one immediate successor for every $x \in F$ with $x<u$. Let

$$
\varphi(x, z):=x<z \wedge \exists y_{1} \exists y_{2} \exists y_{3}\left(\bigwedge_{i \neq j} y_{i} \neq y_{j} \wedge \bigwedge_{i=1}^{3} s\left(x, y_{i}\right)\right)
$$

Then $T+{ }_{A} F \models \Phi_{\omega}^{\varphi}(u / z)$ whereas $T \not \vDash \exists z \Phi_{\omega}^{\varphi}(z)$, a contradiction with the fact that $T \preceq T+{ }_{A} F$.

For every node x in T having precisely three immediate successors there exists a node y in T also having precisely three immediate successors and with $x<y$. Since $T \preceq T+{ }_{A} F$ then it follows that F contains a path B such that the set of nodes in the path $A+B$ in the tree $T{ }_{A} F$ having precisely three immediate successors has the form $\omega+\zeta \cdot \gamma$ for some order type γ. But the path $A+B$ contains a leaf b and since $\omega+\zeta \cdot \gamma \equiv \omega$ then $T+{ }_{A} F \models \Phi_{\omega}^{\varphi}(b / x)$ whereas $T \not \vDash \exists z \Phi_{\omega}^{\varphi}(z)$, a contradiction with the fact that $T \preceq T+{ }_{A} F$.

Hence T has no $(\omega+\mathbf{1})$-completion with respect to the path A so T is not an almost $(\omega+\mathbf{1})$-tree.

Let α be an ordinal with $\alpha<\omega^{\omega}$. By Corollary 6.21 the class of definably uniformly α-like trees is precisely the class of models of the theory

$$
\mathrm{A}_{\boldsymbol{T}} \cup \mathrm{De}_{\Phi_{\alpha}} .
$$

Hence we shift our attention to the property A_{α} in the study of almost α trees.

Proposition 7.26 Let α be an ordinal with $\alpha<\omega^{\omega}$. Let T be an almost α-tree and let b be any node in T. Then the subtree b_{\leqslant}of T is an almost β-tree for some ordinal β with $b_{>}+\beta \equiv \alpha$.

Moreover let X be a path in T with $b \in X$ and let Y be the path in b_{\leqslant} defined as $Y:=b_{\leqslant} \cap X$. If F is a forest such that $T+_{X} F$ is an α-completion of T with respect to the path X, then $b_{\leqslant}+_{Y} F$ is a β-completion of b_{\leqslant}with respect to the path Y.

Proof We consider two cases: firstly where b lies in a path which is parametrically definable in T, and secondly where none of the paths which contain b are parametrically definable in T.

Hence let A be a parametrically definable path in T with $b \in A$. Then $A \equiv \alpha$. By Proposition 7.14 there exists an ordinal β with $\beta<\alpha$ and such that the stem $\{x \in A: b \leqslant x\}$ is β-like. Clearly $b_{>}+\beta \equiv \alpha$. We will show that b_{\leqslant}is an almost β-tree.
b_{\leqslant}is definably uniformly β-like: Let B be a path defined in b_{\leqslant}by the formula $\varphi(x, \bar{y})$ with the parameters \bar{a} from b_{\leqslant}substituted for \bar{y}. Then the formula

$$
\varphi^{\geqslant z}(x, \bar{y}) \vee x<z
$$

defines the path $b_{>}+B$ in T with \bar{a} substituted for \bar{y} and b substituted for z. Hence $b_{>}+B \equiv \alpha$ and it follows from Proposition 7.15 that $B \equiv \beta$, as required.
b_{\leqslant}satisfies A_{β} : Let B be a path in b_{\leqslant}that is not β-like. Since $\{x \in A$: $b \leqslant x\} \equiv \beta$ and $b_{>}+\{x \in A: b \leqslant x\} \equiv \alpha$, it follows from Proposition 7.15 that the path $b_{>}+B$ in T is not α-like. Since T satisfies A_{α}, there exists a forest F such that $\left(b_{>}+B\right)+F$ is a pathwise uniformly α-like tree and $T \preceq T{ }_{b_{>}+B} F$.
$B+F$ is a pathwise uniformly β-like tree: Let C be a path in $B+F$. Then $b_{>}+C$ is a path in $\left(b_{>}+B\right)+F$ so $b_{>}+C \equiv \alpha$. From Proposition 7.15 it again follows that $C \equiv \beta$, as required.

Finally we show that $b_{\leqslant} \preceq b_{\leqslant}+_{B} F$:

$$
\text { Let }\left(b_{\leqslant}+_{B} F ; \bar{c}\right) \models \exists x \psi(x, \bar{c}) .
$$

Then $\left(T+_{b_{>}+B} F ; \bar{c} b\right)^{\geqslant b} \models \exists x \psi(x, \bar{c}) \quad\left(\right.$ since $\left(b_{\leqslant}+_{B} F ; \bar{c}\right)=$

$$
\left.\left(T+b_{>+B} F ; \bar{c} b\right)^{\geqslant b}\right)
$$

and so $\left(T+_{b_{>}+B} F ; \bar{c} b\right) \models(\exists x \psi(x, \bar{c}))^{\geqslant b}$.
This gives $\left(T+_{b_{>}+B} F ; \bar{c} b\right) \models \exists x\left(x \geqslant b \wedge \psi^{\geqslant b}(x, \bar{c})\right)$
hence $\left(T+_{b_{>}+B} F ; \bar{c} b\right) \models\left(x \geqslant b \wedge \psi^{\geqslant b}(x, \bar{c})\right)(d / x)$ for some $d \in T$ (since $\left.T \preceq T+_{b_{>}+B} F\right)$,
i.e. $\left(T+_{b_{>}+B} F ; \bar{c} b d\right) \models \psi^{\geqslant b}(d, \bar{c})$ and where $d \in b_{\leqslant}$.

Then $\left(T+_{b_{>}+B} F ; \bar{c} b d\right)^{\geqslant b} \models \psi(d, \bar{c})$
which gives $\left(b_{\leqslant}+_{B} F ; \bar{c} d\right) \models \psi(d, \bar{c}) \quad\left(\right.$ since $\left(T+_{b_{>}+B} F ; \bar{c} b d\right)^{\geqslant b}=$

$$
\left.\left(b_{\leqslant}+{ }_{B} F ; \bar{c} d\right)\right) .
$$

Hence $\left(b_{\leqslant}+{ }_{B} F ; \bar{c}\right) \neq \psi(d / x, \bar{c})$, as required.
Hence b_{\leqslant}is almost β-like. This concludes the case where b lies in a path that is parametrically definable in T.

Next consider the case where no path in T containing b is parametrically definable. First suppose that for every path Z in b_{\leqslant}the path $b_{>}+Z$ in T is α-like. Let A be any path in b_{\leqslant}. It follows from Proposition 7.14 that $A \equiv \beta$ for some ordinal β with $\beta<\alpha$ and from Proposition 7.15 it follows that $Z \equiv \beta$ for every path Z in b_{\leqslant}. Hence b_{\leqslant}is a pathwise uniformly β-like tree and therefore also an almost β-tree. It is clear that $b_{>}+\beta \equiv \alpha$.

Next suppose that for some path B in b_{\leqslant}, the path $b_{>}+B$ in T is not α-like. Since T satisfies the property A_{α}, there exists a forest F such that $\left(b_{>}+B\right)+F$ is a pathwise uniformly α-like tree and $T \preceq T+_{b_{>}+B} F$.

Let C be any path in F. The path $b_{>}+B+C$ in T is α-like and so, by Proposition 7.14, $B+C$ is β-like for some ordinal β with $\beta<\alpha$. Moreover $b_{>}+\beta \equiv \alpha$. We will show that b_{\leqslant}is an almost β-tree.
b_{\leqslant}contains no paths which are parametrically definable, for if Z were a path defined in b_{\leqslant}by the formula $\varphi(x, \bar{y})$ with the parameters \bar{a} substituted for \bar{y}, then $b_{>}+Z$ would be a path defined in T by the formula

$$
\varphi^{\geqslant z}(x, \bar{y}) \vee x<z
$$

with \bar{a} substituted for \bar{y} and b substituted for z, a contradiction with the fact that no path in T containing b is parametrically definable. Hence b_{\leqslant} is definably uniformly β-like and it remains to show that b_{\leqslant}satisfies the property A_{β}.

Let D be a path in b_{\leqslant}with $D \not \equiv \beta$. Since $b_{>}+B+C \equiv \alpha$ and $B+C \equiv \beta$ it follows from Proposition 7.15 that $b_{>}+D \not \equiv \alpha$. Since T satisfies the property A_{α}, there exists a forest G such that $\left(b_{>}+D\right)+G$ is a pathwise uniformly α-like tree and $T \preceq T+_{b_{>+D}} G$.
$D+G$ is pathwise uniformly β-like: if Z is any path in $D+G$ then $b_{>}+Z$ is a path in $\left(b_{>}+D\right)+G$ so $b_{>}+Z \equiv \alpha$. Since $b_{>}+B+C \equiv \alpha$ with $B+C \equiv \beta$ it follows by Proposition 7.15 that $Z \equiv \beta$.
$b_{\leqslant} \preceq b_{\leqslant}+_{D} G$: This can be seen using a similar argument as the one above where it is shown that $b_{\leqslant} \preceq b_{\leqslant}+_{B} F$.

This completes the proof.
QED
Recall that in ZFC every set can be well-ordered. Hence if \mathcal{A} is a set of paths in a tree then we can express \mathcal{A} in the form $\mathcal{A}=\left\{A_{i}: i \in \beta\right\}$ for β
some ordinal. If \mathcal{A} is infinite we may take β to be a limit ordinal. This is because every infinite successor ordinal can be written in the form $\gamma+\mathbf{n}$ for γ a limit ordinal and with $n \in \mathbb{N}^{+}$, so instead of well-ordering \mathcal{A} as $\gamma+\mathbf{n}$ we can well-order it as $\mathbf{n}+\gamma=\gamma$.

The following result allows us to elementarily extend an almost α-tree to a tree of which every path is elementarily equivalent to the ordinal α.

Theorem 7.27 Let T be an almost α-tree for α an ordinal with $\alpha<\omega^{\omega}$. For β some limit ordinal, let $\mathcal{A}=\left\{A_{i}: i \in \beta\right\}$ be the set of all paths in T which are not α-like, and for every $i(i \in \beta)$, let F_{i} be a forest such that $T+{ }_{A_{i}} F_{i}$ is an α-completion of T with respect to the path A_{i}. Define

$$
\begin{aligned}
& T_{\mathbf{0}}:=T \\
& T_{\xi}:=\bigcup_{i<\xi}\left(T+{ }_{A_{i}} F_{i}\right) \text { for } \mathbf{1} \leqslant \xi \leqslant \beta,
\end{aligned}
$$

i.e. T_{ξ} is the tree obtained from T by adding for every $i(i<\xi)$ the forest F_{i} to the end of the path A_{i}. Then T_{ξ} is an almost α-tree for every $\xi(\xi \leqslant \beta)$. Moreover for every $i(\xi \leqslant i<\beta)$ the tree $T_{\xi}+_{A_{i}} F_{i}$ is an α-completion of T_{ξ} with respect to the path A_{i}.

Proof We use induction on the set of ordinals ξ with $\xi \leqslant \beta$. Note that in order to show that the tree T_{ξ} satisfies the property A_{α}, it suffices to show for every $i(\xi \leqslant i<\beta)$ that $T_{\xi}+_{A_{i}} F_{i}$ is an α-completion of T_{ξ} with respect to the path A_{i}.

By assumption $T_{\mathbf{0}}$ is an almost α-tree and $T_{\mathbf{0}}+{ }_{A_{i}} F_{i}$ forms an α-completion of $T_{\mathbf{0}}$ with respect to the path A_{i} for every $i(0 \leqslant i<\beta)$.

Next let γ be an ordinal with $\gamma<\beta$ and suppose that T_{γ} is a definably uniformly α-like tree and that $T_{\gamma}{ }_{A_{i}} F_{i}$ forms an α-completion of T_{γ} with respect to the path A_{i} for every $i(\gamma \leqslant i<\beta)$. We need to show that $T_{\gamma+1}$ is also a definably uniformly α-like tree and that $T_{\gamma+1}+_{A_{i}} F_{i}$ forms an α-completion of $T_{\gamma+\boldsymbol{1}}$ with respect to the path A_{i} for every $i(\gamma+\mathbf{1} \leqslant i<\beta)$.

Consider the path A_{j} in $T_{\gamma+1}$ for some $j(\gamma+\mathbf{1} \leqslant j<\beta)$. Then $A_{j}+F_{j}$ is a pathwise uniformly α-like tree. Let a be a node in A_{j} with $a \notin A_{\gamma}$. Note that the subtree a_{\leqslant}of $T_{\gamma+1}$ is the same as the subtree a_{\leqslant}of T_{γ}. Let $Y:=\left\{x \in A_{j}: x \geqslant a\right\}$. Since T_{γ} is an almost α-tree with $T_{\gamma}+_{A_{j}} F_{j}$ an α-completion of T_{γ} with respect to the path A_{j}, we have by Proposition 7.26 that the tree a_{\leqslant}is an almost δ-tree for some ordinal δ with $a_{>}+\delta \equiv \alpha$
and $a_{\leqslant}+_{Y} F_{j}$ is a δ-completion of a_{\leqslant}with respect to the path Y in a_{\leqslant}. In particular $a_{\leqslant} \preceq a_{\leqslant}+_{Y} F_{j}$. Since $T_{\gamma+\boldsymbol{1}}+_{A_{j}} F_{j}$ can be seen as the result of replacing the subtree a_{\leqslant}of $T_{\gamma+1}$ with the tree $a_{\leqslant}+_{Y} F_{j}$, it follows from Proposition 5.18 that $T_{\gamma+\boldsymbol{1}} \preceq T_{\gamma+\boldsymbol{1}}+_{A_{j}} F_{j}$. Hence $T_{\gamma+\boldsymbol{1}}+_{A_{j}} F_{j}$ is an α completion of $T_{\gamma+1}$ with respect to the path A_{j}.

Since the class of definably uniformly α-like trees can be defined by the theory $\mathrm{A}_{\boldsymbol{T}} \cup \operatorname{De}_{\Phi_{\alpha}}$ and since T_{γ} is definably uniformly α-like and $T_{\gamma} \preceq T_{\gamma+\mathbf{1}}$, it follows that $T_{\gamma+1}$ is also definably uniformly α-like. Hence $T_{\gamma+1}$ is an almost α-tree.

Next consider the case where λ is a limit ordinal with $\lambda \leqslant \beta$. Suppose that for every ξ with $\xi<\lambda, T_{\xi}$ is a definably uniformly α-like tree and $T_{\xi}+{ }_{A_{i}} F_{i}$ forms an α-completion of T_{ξ} with respect to the path A_{i} for every i $(\xi \leqslant i<\beta)$. We need to show that the tree T_{λ} is definably uniformly α-like and that $T_{\lambda}+_{A_{i}} F_{i}$ forms an α-completion of T_{λ} with respect to the path A_{i} for every $i(\lambda \leqslant i<\beta)$.

First note that since the tree T_{ξ} satisfies the property A_{α} for every ξ $(\xi<\lambda)$, it follows that $\left\{T_{\xi}\right\}_{\xi<\lambda}$ is an elementary chain so

$$
T_{\tau} \preceq \bigcup_{\xi<\lambda} T_{\xi}=T_{\lambda}
$$

for every τ with $\tau<\lambda$.
It again follows that since the class of definably uniformly α-like trees can be defined using the theory $\mathrm{A}_{\boldsymbol{T}} \cup \mathrm{De}_{\Phi_{\alpha}}$ and since the tree $T_{\mathbf{0}}$ is definably uniformly α-like then the tree T_{λ} must also be definably uniformly α-like.

Next consider the path A_{j} in T_{λ} for some $j(\lambda \leqslant j<\beta)$. We already know that $A_{j}+F_{j}$ is a pathwise uniformly α-like tree. Let U be the set of nodes u in T_{λ} for which (i) $u \notin A_{j}$, and (ii) the immediate predecessor of u belongs to A_{j}, and (iii) $u \in A_{i}+F_{i}$ for some i with $i<\lambda$. For every ξ $(\xi<\lambda)$ and for every $u \in U$, define the trees

$$
\begin{aligned}
V_{u}^{\xi} & :=\left\{x \in T_{\xi}: u \leqslant x\right\}=\left\{x \in T_{\xi}+A_{j} F_{j}: u \leqslant x\right\}, \\
W_{u} & :=\left\{x \in T_{\lambda}: u \leqslant x\right\} .
\end{aligned}
$$

Now $V_{u}^{\xi} \preceq W_{u}$ for every $\xi(\xi<\lambda)$ and $u \in U$. To see this, let \bar{c} be a tuple of nodes in V_{u}^{ξ} and suppose that $\left(W_{u} ; \bar{c}\right) \vDash \exists x \varphi(x, \bar{c})$. Then $\left(T_{\lambda} ; \bar{c} u\right)^{\geqslant u} \models \exists x \varphi(x, \bar{c})$ so $\left(T_{\lambda} ; \bar{c} u\right) \models \exists x\left(x \geqslant u \wedge \varphi^{\geqslant u}(x, \bar{c})\right)$. Since $T_{\xi} \preceq T_{\lambda}$ this gives $\left(T_{\lambda} ; \bar{c} u\right) \models \varphi^{\geqslant u}(d / x, \bar{c})$ for some $d \in T_{\xi}$ with $d \geqslant u$. Hence
$\left(W_{u} ; \bar{c}\right) \models \varphi(d / x, \bar{c})$ with $d \in V_{u}^{\xi}$ and it follows by the Tarski-Vaught criterion for elementary substructures that $V_{u}^{\xi} \preceq W_{u}$.

Next we show that $T_{\xi} \preceq T_{\lambda}+{ }_{A_{j}} F_{j}$ for every ξ with $\xi<\lambda$. We know by the inductive hypothesis that $T_{\xi} \preceq T_{\xi}+{ }_{A_{j}} F_{j}$. The tree $T_{\lambda}+{ }_{A_{j}} F_{j}$ can be obtained from the tree $T_{\xi}+_{A_{j}} F_{j}$ by replacing the subtree V_{u}^{ξ} of $T_{\xi}+{ }_{A_{j}} F_{j}$ with the tree W_{u} for every $u \in U$. By Proposition 5.18 this gives $T_{\xi}+_{A_{j}} F_{j} \preceq T_{\lambda}+_{A_{j}} F_{j}$. Hence we get $T_{\xi} \preceq T_{\lambda}+{ }_{A_{j}} F_{j}$.

Finally let $\varphi(x, \bar{y})$ be a formula and let \bar{c} be a tuple of nodes in T_{λ} for which $\left(T_{\lambda}+_{A_{j}} F_{j} ; \bar{c}\right) \models \exists x \varphi(x, \bar{c})$. Then \bar{c} is a tuple of nodes in the tree T_{τ} for some $\tau(\tau<\lambda)$. Since $T_{\tau} \preceq T_{\lambda}+_{A_{j}} F_{j}$ we get that $\left(T_{\tau} ; \bar{c}\right) \models \varphi(d / x, \bar{c})$ for some $d \in T_{\tau}$ and since $T_{\tau} \preceq T_{\lambda}$ this then gives $\left(T_{\lambda} ; \bar{c}\right) \models \varphi(d / x, \bar{c})$ where $d \in T_{\lambda}$ also. By the Tarski-Vaught criterion for elementary substructures we therefore have that $T_{\lambda} \preceq T_{\lambda}+_{A_{j}} F_{j}$. Hence $T_{\lambda}+_{A_{j}} F_{j}$ forms an α-completion of T_{λ} with respect to the path A_{j}. It follows that T_{λ} is an almost α-tree.

This completes the induction argument.
QED

Corollary 7.28 Let T be an almost α-tree for α an ordinal with $\alpha<\omega^{\omega}$. There exists a pathwise uniformly α-like tree S for which $T \preceq S$.

Proof Take S to be the tree T_{β} as in Theorem 7.27.
QED
Let α be an ordinal with $\alpha<\omega^{\omega}$ and suppose we have a theory Δ which axiomatises the class of trees satisfying the property A_{α}. Then the theory

$$
\Delta \cup \operatorname{De}_{\Phi_{\alpha}}
$$

axiomatises the class of pathwise uniformly α-like trees. To see this first note that every pathwise uniformly α-like tree satisfies $\Delta \cup \mathrm{De}_{\Phi_{\alpha}}$. Next suppose T is a model of the theory $\Delta \cup \operatorname{De}_{\Phi_{\alpha}}$. It follows that $T \equiv T^{\prime}$ for some almost α-tree T^{\prime} and by Corollary $7.28, T^{\prime} \equiv S$ for some pathwise uniformly α-like tree S giving $T \equiv S$, as required.

7.5 Almost $(\omega+1)$-trees and their extensions

Let $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\bar{y}=\left(y_{1}, \ldots, y_{m}\right)$. A formula $\varphi(\bar{x})$ is called existential when $\varphi(\bar{x})$ has the form $\exists y_{1} \ldots \exists y_{m} \psi(\bar{x}, \bar{y})$ with $\psi(\bar{x}, \bar{y})$ a quantifier-free formula. Let \mathfrak{A} and \mathfrak{B} be structures and suppose that \mathfrak{A} is a substructure of \mathfrak{B}. Then \mathfrak{A} is called existentially closed in \mathfrak{B} if, for every existential
formula $\varphi(\bar{x})$, if $(\mathfrak{B} ; \bar{b}) \models \varphi(\bar{b})$ for some n-tuple of elements \bar{b} from $|\mathfrak{B}|$, then already $(\mathfrak{A} ; \bar{a}) \models \varphi(\bar{a})$ for some n-tuple of elements \bar{a} from $|\mathfrak{A}|$.

Every path in an almost $(\omega+\mathbf{1})$-tree is either an ω-like path or an $(\omega+\mathbf{1})$ like path. The easiest way to turn an ω-like path into an $(\omega+\mathbf{1})$-like path is to add a node to the end of the path although the tree so obtained need not be an elementary extension of the original tree. As the next result shows however, an almost $(\omega+\mathbf{1})$-tree will be existentially closed in the tree obtained from it by adding a node to the end of each of its ω-like paths.

Proposition 7.29 Let T be an almost $(\omega+\mathbf{1})$-tree and let T^{+}be the tree obtained from T by augmenting every ω-like path in T with a leaf. Then T is existentially closed in T^{+}.

Proof Let $\varphi(\bar{x})$ be a quantifier-free formula with $\bar{x}=\left(x_{1}, \ldots, x_{k}\right)$ and suppose that $T^{+} \models \varphi(\bar{a} / \bar{x})$ for some tuple of nodes $\bar{a}=\left(a_{1}, \ldots, a_{k}\right)$ from T^{+}. Let $a_{i_{1}}, \ldots, a_{i_{m}}$ be all those nodes from a_{1}, \ldots, a_{k} which belong to T and let $a_{j_{1}}, \ldots, a_{j_{n}}$ be all those nodes from a_{1}, \ldots, a_{k} which belong to $T^{+} \backslash T$. Obviously $a_{j_{1}}, \ldots, a_{j_{n}}$ must all be leaves and for every r the set $A_{j_{r}}:=\{x \in$ $T: x<a_{j_{r}}$ in $\left.T^{+}\right\}$forms an ω-like path in T.

For every $r(1 \leqslant r \leqslant n)$ and for every s for which $a_{s} \neq a_{j_{r}}$, let $b_{j_{r}, s}$ be the least node in T^{+}with the property that $b_{j_{r}, s} \in A_{j_{r}}$ and $b_{j_{r}, s} \nless a_{s}$. Such a node $b_{j_{r}, s}$ must exist for suppose first that $A_{j_{r}} \subseteq\left(a_{s}\right)_{>}$. Now if $s=i_{t}$ for some t then the set $A_{j_{r}}$ is not maximal total in T which contradicts the fact that $A_{j_{r}}$ is a path in T. And if $s=j_{t}$ for some t then it would mean that in the construction of T^{+}, the path $A_{j_{r}}$ in T was augmented with not one but two leaves $a_{j_{r}}$ and $a_{j_{t}}$, again a contradiction. It follows that there exists a node $b_{j_{r}, s}$ with the property that $b_{j_{r}, s} \in A_{j_{r}}$ and $b_{j_{r}, s} \nless a_{s}$. That we can find a least such $b_{j_{r}, s}$ is due to the fact that $A_{j_{r}}$ is an ω-like path.

Again since $A_{j_{r}}$ is ω-like then for every $r(1 \leqslant r \leqslant n)$ we can find a least node $b_{j_{r}} \in A_{j_{r}}$ for which $b_{j_{r}}>b_{j_{r}, s}$ for every s with $a_{s} \neq a_{j_{r}}$.

For every $i(1 \leqslant i \leqslant k)$ define

$$
c_{i}:=\left\{\begin{array}{l}
a_{i} \text { when } i=i_{t} \text { for some } i_{t}(1 \leqslant t \leqslant m) \\
b_{i} \text { when } i=j_{t} \text { for some } j_{t}(1 \leqslant t \leqslant n)
\end{array}\right.
$$

and let $\bar{c}=\left(c_{1}, \ldots, c_{k}\right)$.
We show that $T \models \varphi(\bar{c} / \bar{x})$ by showing, for all i and j with $1 \leqslant i, j \leqslant k$, that $a_{i}<a_{j}$ in T^{+}if and only if $c_{i}<c_{j}$ in T, and $a_{i}=a_{j}$ if and only if $c_{i}=c_{j}$.
$a_{i}<a_{j} \Leftrightarrow c_{i}<c_{j}$: First assume that $a_{i}<a_{j}$. The node a_{i} cannot be amongst $a_{j_{1}}, \ldots, a_{j_{n}}$ since then a_{i} would be a leaf in T^{+}and consequently $a_{i} \nless a_{j}$. Hence a_{i} must be a node amongst $a_{i_{1}}, \ldots, a_{i_{m}}$. If a_{j} is also a node amongst $a_{i_{1}}, \ldots, a_{i_{m}}$ then we get $c_{i}=a_{i}<a_{j}=c_{j}$. Hence consider the case where a_{j} is a node amongst $a_{j_{1}}, \ldots, a_{j_{n}}$. Then $a_{i} \in A_{j}$ and $b_{j, i} \in A_{j}$ hence $a_{i} \smile b_{j, i}$ and it follows that $a_{i} \leqslant b_{j, i}$. This gives $c_{i}=a_{i} \leqslant b_{j, i}<b_{j}=c_{j}$.

Next assume that $c_{i}<c_{j}$. Observe that the index i cannot be amongst j_{1}, \ldots, j_{n} since then we would have that $b_{i, j}<b_{i}=c_{i}<c_{j}$. Then if j is amongst i_{1}, \ldots, i_{m} we would further have $c_{j}=a_{j}$, while if j is amongst j_{1}, \ldots, j_{n} we would have $c_{j}=b_{j}<a_{j}$. In either case this would give $b_{i, j}<a_{j}$, a contradiction. Now if the indices i and j are both amongst i_{1}, \ldots, i_{m} then we get that $a_{i}=c_{i}<c_{j}=a_{j}$, and if i is amongst i_{1}, \ldots, i_{m} and j is amongst j_{1}, \ldots, j_{n} then since $c_{j} \in A_{j}$ we get $a_{i}=c_{i}<c_{j}<a_{j}$.
$a_{i}=a_{j} \Leftrightarrow c_{i}=c_{j}$: Let $a_{i}=a_{j}$ with $i \neq j$. Either both i and j must be amongst the indices i_{1}, \ldots, i_{m} or both i and j must be amongst the indices j_{1}, \ldots, j_{n}. If i and j are both amongst i_{1}, \ldots, i_{m} then $c_{i}=a_{i}=a_{j}=c_{j}$. If i and j are both amongst j_{1}, \ldots, j_{n} then from the way b_{i} and b_{j} are chosen we get $b_{i}=b_{j}$ so $c_{i}=b_{i}=b_{j}=c_{j}$.

Now let $c_{i}=c_{j}$ with $i \neq j$. If i is amongst i_{1}, \ldots, i_{m} and j is amongst j_{1}, \ldots, j_{n} then $b_{j, i}<b_{j}=c_{j}=c_{i}=a_{i}$ which contradicts the fact that $b_{j, i} \nless a_{i}$. Hence it cannot be that i is amongst i_{1}, \ldots, i_{m} and j is amongst j_{1}, \ldots, j_{n}. Next if i and j are amongst i_{1}, \ldots, i_{m} then $a_{i}=c_{i}=c_{j}=a_{j}$. Finally consider the case where both i and j are amongst j_{1}, \ldots, j_{n}. Suppose that $a_{i} \neq a_{j}$. Then $b_{i, j}<b_{i}=c_{i}=c_{j}=b_{j}<a_{j}$. This contradicts the fact that $b_{i, j} \nless a_{j}$ and so $a_{i}=a_{j}$, as required.

From the fact that the nodes c_{i} were chosen such that $c_{i}=a_{i}$ when $a_{i} \in T$, it now follows that if \bar{d} is a tuple of nodes from T and if $\psi(\bar{y}, \bar{z})$ is a quantifierfree formula such that $\left(T^{+} ; \bar{d}\right) \models \exists \bar{y} \psi(\bar{y}, \bar{d})$ then $(T ; \bar{d}) \models \exists \bar{y} \psi(\bar{y}, \bar{d})$. Hence T is existentially closed in T^{+}.

QED
Let T be an almost $(\omega+\mathbf{1})$-tree and let T^{+}be the tree obtained from T by augmenting every ω-like path in T with a leaf. Since T is existentially closed in T^{+}then there exists a tree S for which $T^{+} \subseteq S$ and $T \preceq S$ (see e.g. [22]). As the next two examples show, such a tree S need not be pathwise uniformly $(\omega+1)$-like.

Example 7.30 Let B_{ω} be the binary ω-tree and let B be the tree obtained from B_{ω} as follows. We assign labels (recall Section 4.1) to the paths in B_{ω}
by assigning the label (0) to the root of B_{ω} and for every node $x \in B_{\omega}$ we use the set $I_{x \geqslant}=\{0,1\}$ and fix $f_{x \geqslant}: S\left(x_{\geqslant}\right) \rightarrow I_{x \geqslant}$ to be any bijection. Then as in Example 4.4, for every path X in B_{ω} the label $\ell(X)$ of X corresponds a real number r with $0 \leqslant r \leqslant 1$. The tree B is taken as the result of adding a node to the end of every path X of B_{ω} of which the label $\ell(X)$ corresponds to a rational number r.

Let W be the tree constructed by taking the linear order ζ and at every point in ζ we attach a copy of the tree B. Thus W is a \mathcal{C}-tree, where $\mathcal{C}=\{\zeta, \zeta+\mathbf{1}\}$, in which every non-leaf node has precisely two immediate successors.

Finally we take T to be the tree B. Using an argument similar to the one used in Example 6.25 it can be seen that the parametrically definable paths in T are precisely the $(\omega+\mathbf{1})$-paths hence T is a definably uniformly $(\omega+\mathbf{1})$-like tree. Moreover it is easy to verify using an Ehrenfeucht-Fraïssé game that the tree obtained from T by adding a node to the end of any of its ω-paths is an elementary extension of T. Hence T satisfies the property $A_{\omega+1}$ and it follows that T is an almost $(\omega+\mathbf{1})$-tree.

Let T^{+}be the tree obtained from T by adding a node to the end of every ω-path in T. Then T^{+}is an $(\omega+\mathbf{1})$-tree of which every non-leaf node has precisely two immediate successors.

Construct the tree S from T^{+}as follows. For every leaf z in $T^{+} \backslash T$ we augment the stem $z_{>}$with a copy of the tree W by inserting a copy of W next to the leaf z, i.e. $x<w$ for every $x \in z_{>}$and $w \in W$ while $z \nsucc w$ for every $w \in W$. Let S be the tree so obtained. Note that S is a \mathcal{K}-tree for $\mathcal{K}=\{\omega+\mathbf{1}, \omega+\zeta, \omega+\zeta+\mathbf{1}\}$. In particular, S is not a pathwise uniformly $(\omega+1)$-tree.

Now $T^{+} \subseteq S$ and using an Ehrenfeucht-Fraïssé game it is easy to see that $(T ; \bar{c}) \equiv_{n}(S ; \bar{c})$ for every k-tuple \bar{c} in T and for every $n \in \mathbb{N}$. Hence $T \preceq S$.

The next example shows that the tree S need not be an end-extension of the tree T^{+}.

Example 7.31 Let B be the tree from Example 7.30. Let W be the tree consisting the linear order $Z:=\omega^{\star}$ with a copy of the tree B attached to every point in Z. Hence W is a \mathcal{C}-tree, where $\mathcal{C}=\{\zeta, \zeta+\mathbf{1}\}$, and every node in W has precisely two immediate successors, except for the greatest node in Z which has only one immediate successor, and the leaves in W which all have no successor.

As in Example 7.30, let T be the tree B. In Example 7.30 we showed that T is an almost $(\omega+\mathbf{1})$-tree. Let T^{+}be the tree obtained from T by adding a node to the end of every ω-path in T.

Construct S as follows. For every leaf z in $T^{+} \backslash T$ we (i) insert a copy of the tree W between z and $z_{>}$by changing the path $z_{>}+z$ in T^{+}to $z_{>}+Z+z$ with all the copies of W branching off from the points in Z as usual, and (ii) we adjoin a copy of the tree B to the end of the path $z_{>}+Z+z$ formed in (i). Take S to be the tree that so results. Hence every non-leaf node in S will have two immediate successors and S is a \mathcal{K}-tree with $\mathcal{K}=\{\omega+\mathbf{1}, \omega+\zeta, \omega+\zeta+\mathbf{1}\}$. In particular, S is not a pathwise uniformly $(\omega+\mathbf{1})$-tree

Then $T^{+} \subseteq S$ and using an Ehrenfeucht-Fraïssé game, it can be seen that $(T ; \bar{c}) \equiv_{n}(S ; \bar{c})$ for every k-tuple \bar{c} in T and for every $n \in \mathbb{N}$. Hence $T \preceq S$.

Remark 7.32 Let T be an almost $(\omega+\mathbf{1})$-tree, let T^{+}be the tree obtained from T by adding a node to each of its ω-like paths, and let S be any tree for which $T^{+} \subseteq S$ and $T \preceq S$. In the construction of S from T^{+}there are certain configurations of nodes which cannot be added to T^{+}to obtain S. Assume that S is a proper extension of T^{+}and let $s \in S \backslash T^{+}$. Some restrictions on the location of s relative to the nodes in T include the following:
(i) The node s cannot lie below the root of T. This follows from the fact that the formula $\operatorname{root}(x)$ defines the root of a tree and $T \preceq S$ hence the root of T is also the root of S.
(ii) The node s cannot lie above any leaf from T. This follows from the fact that the formula leaf (x) defines the set of leaves of a tree and $T \preceq S$ hence every leaf in T is also a leaf in S.
(iii) The nodes cannot lie between two nodes from T of which the one node is an immediate successor to the other node. This is because if $b_{1}, b_{2} \in T$ and b_{2} is an immediate successor to b_{1} then $\left(T ; b_{1}, b_{2}\right) \models s\left(b_{1}, b_{2}\right)$ and since $T \preceq S$ then $\left(S ; b_{1}, b_{2}\right) \models s\left(b_{1}, b_{2}\right)$ so b_{2} is an immediate successor to b_{1} in S also.
(iv) If T is finitely branching then s either extends a path from T or s is bounded above by nodes from T. Suppose to the contrary that $X \nless s$ for every path X from T and that $s \nless x$ for every node $x \in T$. Let $A:=\{x \in T: x<s$ in $S\}$ and note that A is a stem in T. Suppose T is n-branching from A. It follows from Proposition 4.9 that there exists
a set of nodes $H:=\left\{a_{1}, \ldots, a_{n}\right\}$ in the subtree $A_{<}$of T such that H spans $A_{<}$. The set H does not span the subtree $A_{<}$of S though since s belongs to the subtree $A_{<}$of S but $s \nsucc a_{i}$ for every i. Let $\bar{a}:=\left(a_{1}, \ldots, a_{n}\right)$. Then $(T ; \bar{a})$ satisfies the sentence

$$
\forall x \forall y\left(\bigwedge_{i=1}^{n} x<a_{i} \rightarrow\left(x<y \rightarrow \bigvee_{i=1}^{n} y \smile a_{i}\right)\right)
$$

but $(S ; \bar{a})$ does not. This contradicts the fact that $T \preceq S$.

Chapter 8

Concluding remarks

Trees are important structures occuring in many diverse fields of mathematics and computer science. A systematic study of their first-order theories, along the lines of what [24] does for linear orders, does not exist and much work remains to be done in this regard.

We have defined trees as consisting of a set of nodes with an order relation imposed on those nodes, but we have placed particular emphasis on the structure of the paths within the tree. First-order logic lacks the expressive capability to reliably capture the structure of these paths hence the general problem of studying the first-order theory of a tree based on knowledge of the first-order theory of the class of linear orders which comprise its paths is not an easy one.

We have defined eight classes of trees which arise naturally from a class of linear orders \mathcal{C} in terms of how the paths in those trees are related to the linear orders in the class \mathcal{C} and we have established all the set-theoretical relationships between these eight classes of trees as well as between their firstorder theories. We have also investigated the first-order theories of some of these classes of trees based on knowledge of the first-order theory of the class \mathcal{C}.

The particular case where \mathcal{C} consists of a single finitely axiomatisable ordinal merits special attention. We have investigated the first-order theory of the class of trees of which every path is isomorphic with the ordinal α for $\alpha<\omega^{\omega}$. For the case where α is finite or where $\alpha=\omega$ we have determined the first-order theory of this class. For the case where $\omega<\alpha<\omega^{\omega}$ we have introduced the notion of an almost α-tree and showed that every almost α tree can be elementarily extended in a natural way to a tree of which every
path satisfies the first-order theory of α.
We have also studied some general set-theoretical and logical properties of trees, specifically the broad problem of the axiomatisability of various classes of trees and the definability of various sets of nodes within a tree.

Some directions for further study include the following:

1. The general problem, for any axiomatisable class of linear orders \mathcal{C}, of axiomatising the first-order theories of all eight of the classes of \mathcal{C}-trees based on the first-order theory of the class \mathcal{C}.
2. For an arbitrary class of linear orders \mathcal{C}, investigating the transfer of logical properties, such as the decidability of the first-order theory of \mathcal{C}, to the first-order theories of the eight \mathcal{C}-classes of trees, and vice versa.
3. To axiomatise the first-order theory of the class of α-trees for α an ordinal with $\omega<\alpha<\omega^{\omega}$.
4. Further study of the definable subsets, notably the definable paths, of trees.
5. Studying trees using extensions of first-order logic which are still generally weaker than monadic second-order logic. Possible such languages include first-order logic with colours (see e.g. [10]), first-order logic with transitive closure (see e.g. [8]), and first-order logic with fixed points (also see e.g. [8]).

List of symbols

Symbol or notationPage where defined
$\mathfrak{A} \preceq_{n} \mathfrak{B}$ 5
$\mathbf{n}, \omega, \zeta, \eta, \lambda, \omega_{1}$ 6
L^{\star} 6
ZF, ZFC 6
\mathbb{N}^{+} 6
λ_{n}, μ_{n} 6
φ^{θ} 8
$(\mathfrak{A} ; \bar{a})^{\theta}$ 8
$\varphi^{(x, y)}, \varphi^{<x}$ etc. 9
$\llbracket(\mathfrak{A} ; \bar{a}) \rrbracket^{n}$ 10
$s(x, y)$ 13
$X<Y$ 13
$x \smile y$ 13
$x_{>}$etc. 14
$S(x)$ 15
(x, y) etc. 15
$X_{>}$etc. 16
[x] 19
$\beta(x, y)$ 21
[T] 21
$[X],[y]^{-1},[Y]^{-1}$ 21
$X \times Y$ 25
$X \times_{\operatorname{lex}} Y,\left(x_{1}, y_{1}\right)<_{\operatorname{lex}}\left(x_{2}, y_{2}\right)$ 25
$T \times{ }_{f} \mathcal{L}$ 25
$S(X)$ 32
$l(x)$ 32
$\ell(x), \ell(X)$ 32
$X \leqslant{ }_{\mathrm{p}} Y$ 33
$T_{x y}$ 38
\mathcal{C}-tree etc. 41
$\mathrm{EF}_{n}(\mathfrak{A}, \mathfrak{B})$ 46
$\mathrm{II}_{n}(\mathfrak{A}, \mathfrak{B})$ 46
$C(x)$ 46
Ir, Tr, ST, Co, To 48
A_{F}, A_{T}, A_{L} 48
$\operatorname{root}(x), \operatorname{leaf}(x)$ 48
level $_{\alpha}(x)$ 49
Do 49
$d_{k}(x, y)$ 49
$\rho_{F}(x, y)$ 50
$r_{k}(x, y)$ 50
$N_{k}(x)$ 50
$\mathrm{p}_{n}(x)$ 54
χ_{φ} 62
$A_{W}, A_{W D}$ 64
$\mathrm{D}_{1}, \mathrm{D}_{2}$ 66
Ro 71
De_{Σ} 78
El 79
Le_{Σ} 80
Φ_{α} 84
D_{2}^{\prime} 85
$\mathcal{A}\left(\omega^{n}\right)$ 85
$\delta(x)$ 86
$\mathrm{N}_{1}, \mathrm{~N}_{2}$ 86
$\psi_{1}, \psi_{2}, \psi_{3}$ 88
Ψ_{n} 95
$\mathrm{D}_{2}^{\prime \prime}$ 96
Ψ_{ω} 96
$A+F, T+{ }_{A} F$ 97
A_{α} 97

Bibliography

[1] R. Backofen, J. Rogers and K. Vijay-Shankar, A First-Order Axiomatization of the Theory of Finite Trees, Journal of Logic, Language and Information, vol. 4 (1995), pp. 5-39.
[2] P. Blackburn and M. Meyer-Viol, Linguistics, Logic and Finite Trees, Bulletin of the IGPL, vol. 2 (1994), pp. 3-29.
[3] D. Comer, The Ubiquitous B-Tree, Computing Surveys, vol. 11 (1979), pp. 121-137.
[4] J. Cummings and M. Foreman, The Tree Property, Advances in Mathematics, vol. 133 (1998), pp. 1-32.
[5] K. Doets, Completeness and Definability: Applications of the Ehrenfeucht Game in Second-Order and Intensional Logic, Ph.D. thesis, University of Amsterdam, 1987.
[6] K. Doets, Basic Model Theory, CSLI Publications \& The European Association for Logic, Language and Information, 1996.
[7] H.-D. Ebbinghaus, J. Flum and W. Thomas, Mathematical Logic, Springer, 1996.
[8] A. Gheerbrant and B. Ten Cate, Complete Axiomatizations of MSO, $F O\left(T C^{1}\right)$ and $F O\left(L F P^{1}\right)$ on Finite Trees, Proceedings of LFCS 2009 (S. Artëmov and A. Nerode, editors), Springer, 2009, pp. 180196.
[9] R. Goldblatt, Logics of Time and Computation, 2nd Edition, CSLI Publications \& The European Association for Logic, Language and Information, 1992.
[10] V. Goranko, Trees and Finite Branching, Proceedings of the 2nd Panhellenic Logic Symposium, 1999, pp. 91-101.
[11] V. Goranko, Temporal Logics with Reference Pointers and Computation Tree Logics, Journal of Applied Non-Classical Logics, vol. 10 (2000), pp. 221-242.
[12] V. Goranko and R. Kellerman, Classes and Theories of Trees Associated with a Class of Linear Orders, to appear in Logic Journal of the IGPL.
[13] V. Goranko and A. Zanardo, From Linear to Branching-Time Temporal Logics: Transfer of Semantics and Definability, Logic Journal of the $\boldsymbol{I G P L}$, vol. 15 (2007), pp. 53-76.
[14] Y. Gurevich, Monadic Second-Order Theories, Model-Theoretical Logics (J. Barwise and S. Feferman, editors), Springer, 1985, pp. 479506.
[15] Y. Gurevich and S. Shelah, To the Decision Problem for Branching Time Logic, Foundations of Logic and Linguistics: Problems and Their Solutions (G. Dorn and P. Weingartner, editors), Plenum, 1985, pp. 181-198.
[16] Y. Gurevich and S. Shelah, The Decision Problem for Branching Time Logic, The Journal of Symbolic Logic, vol. 50 (1985), pp. 668-681.
[17] A. Guttman, R-Trees: A Dynamic Index Structure For Spatial Searching, SIGMOD'84, Proceedings of Annual Meeting (B. Yormark, editor), ACM, 1984, pp. 47-57.
[18] S. Hedman, A First Course in Logic: An Introduction to Model Theory, Proof Theory, Computability, and Complexity, Oxford University Press, 2004.
[19] W. Hodges, A Shorter Model Theory, Cambridge University Press, 1997.
[20] T. Jech, Trees, The Journal Of Symbolic Logic, vol. 36 (1971), pp. 1-14.
[21] W. Just and M. Weese, Discovering Modern Set Theory: I. The Basics, Graduate Studies in Mathematics, vol. 8, AMS Bookstore, 1996.
[22] B. Poizat, A Course in Model Theory: An Introduction to Contemporary Mathematical Logic, Springer, 2000.
[23] M. Rabin, Decidability of Second-Order Theories and Automata on Infinite Trees, Transactions of the American Mathematical Society, vol. 141 (1969), pp. 1-35.
[24] J. Rosenstein, Linear Orderings, Academic Press, 1982.
[25] M. Rubin, The Reconstruction of Trees from their Automorphism Groups, Contemporary Mathematics, vol. 151, AMS Bookstore, 1993.
[26] M. Sabbadin and A. Zanardo, Topological Aspects of Branching-Time Semantics, Studia Logica, vol. 75 (2003), pp. 271-286.
[27] J. Schmerl, On \aleph_{0}-Categoricity and the Theory of Trees, Fundamenta Mathematicae, vol. 94 (1977), pp. 121-128.
[28] M. Stonebraker, Inclusion of New Types in Relational Database Systems, Proceedings of the Second International Conference on Data Engineering, IEEE Computer Society, 1986, pp. 262-269.
[29] M. Suslin, Problème 3, Fundamenta Mathematicae, vol. 1 (1920), p. 223.
[30] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison and M. Tommasi, Tree Automata Techniques and Applications, http://tata.gforge.inria.fr/, 2007.
[31] W. Thomas, Languages, Automata, and Logic, Handbook of Formal Languages, Vol. 3: Beyond Words, (G. Rozenberg and A. Salomaa, editors), Springer, 1997, pp. 389-455.
[32] S. Todorčević, Trees and Linearly Ordered Sets, Handbook of Set Theoretic Topology (K. Kunen and J.E. Vaughan, editors), NorthHolland, 1984, pp. 235-293.
[33] S. Todorčević and J. Väänänen, Trees and Ehrenfeucht-Fraïssé Games, Annals of Pure and Applied Logic, vol. 100 (1999), pp. 69-97.

Index

antichain, 14
Aronszajn tree, 40
binary tree, 34
branch, 15
branching
n-branching, 34
weakly n-branching, 68
boundedly, 34
weakly boundedly, 69
finitely, 34
bridge, 17
cartesian product, 25
categorical theory, 6
characteristic
formula, 10
index, 11
comparable nodes, 14
complete
linear order, 14
theory, 6
completion, 98
component, 14
condensation, 21
condensed tree, 24
connected, 14
convex, 15
subtree, 18
define, 7
dense, 14
discrete, 15
Ehrenfeucht-Fraïssé game, 46
emergent path, 53
equivalent formulas
n-equivalent, 6
existential formula, 104
existentially closed, 104
extend, 36
forest, 14
furcation, 17
height, 32
internal path, 54
irreflexive, 13
König's Lemma, 39
Kurepa tree, 40
label, 32
leaf, 15
least element, 31
level, 32
lexicographical product, 25
limit node, 32
linear order, 14
α-like, 85
litter, 36
minimal element, 31
neighbourhood, 50
node, 14
ordered set, 13
partial order, 14
path, 15
α-like, 41
α-path, 41
peripheral path, 54
predecessor, 13
product
f-product, 25
quantifier rank, 5
Rabin's Tree Theorem, 1
relativisation, 8
root, 14
segment, 15
subsegment, 36
siblings, 36
singular path, 53
span, 35
Splitting Lemma, 47
stem, 15
subtotal, 14
subtree, 18
successor, 13
node, 32
Suslin
line, 40
tree, 40
tail, 90
total, 14
transitive, 13
tree, 14
\mathcal{C}-classes, 41
n-ary, 34
almost α-tree, 97
twins, 36
well-founded, 31
definably, 64
well-ordered, 31
Zermelo-Fraenkel set theory, 6

[^0]: ${ }^{1}$ In the literature, partial orders are often defined as being ordered sets which are reflexive, transitive and antisymmetric. In such cases, ordered sets which are irreflexive and transitive are usually called strict partial orders.

[^1]: ${ }^{2}$ The notations $x<A$ and $A<B$ are defined on p. 13 .

[^2]: ${ }^{1}$ The formula π_{φ} is defined in Section 5.4.1.

[^3]: ${ }^{1}$ Recall that the formula $\beta(x, y)$, defined on p .21 , states that x and y belong to the same maximal bridge.

[^4]: ${ }^{2}$ Recall that the formula $\beta(x, y)$, defined on p .21 , states that x and y belong to the same maximal bridge.

[^5]: ${ }^{1}$ The tree T_{m-1} need not be well-founded hence we refrain from formulating the condition that the order type of the set $\left\{x \in T_{m-1}: x \leqslant b_{j, z}\right\}$ is at most \mathbf{m} by saying that the node $b_{j, z}$ has level at most \mathbf{m}.

