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Summary

Trees occur naturally in many mathematical settings as important partial

orders yet no systematic study of their first-order theories exists. We in-

vestigate some of the first-order theories of trees. The two problems which

motivate the thesis are (i) the first-order definability of sets within a given

tree, and (ii) the first-order definability and axiomatisability of particular

classes of trees.

Of particular interest is the correspondence between the first-order theory

of a tree and the first-order theory of the class of linear orders which comprise

the paths in the tree. For every class C of linear orders we introduce eight

classes of trees collectively called the C-classes of trees, the paths of which

are related in various natural ways to the linear orders in C. We completely

establish both the set-theoretical relationships between these eight classes

of trees as well as the relationships between the first-order theories of these

eight classes of trees. We also investigate some of the properties of these

first-order theories.

A special case is where the class C consists of a single ordinal α with

α < ωω since such ordinals are finitely axiomatisable. We obtain the first-

order theory of the class of trees where every path is isomorphic to the ordinal

α for α any finite ordinal and also for the case where α = ω. The remaining

cases are more difficult because of the existence of undefinable paths in the

tree. For the cases where ω < α < ωω we introduce the notion of an almost

α-tree and show that every almost α-tree can be elementarily extended in a

natural way to a tree of which every path, definable or undefinable, satisfies

the first-order theory of α. We also examine what this elementary extension

of the almost α-tree looks like for the case where α = ω + 1.

Throughout the thesis we also investigate various first-order properties

and theories of trees and establish some results in this regard.
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Chapter 1

Introduction

Trees occur naturally in many mathematical settings as important partial

orders. They are amongst the simplest relational structures which exhibit

nontrivial behaviour. Independence results in set theory frequently involve

constructions which make use of trees (see e.g. [4, 20]). Curiously some

set-theoretical results which seemingly have nothing to do with trees can be

rephrased in terms of trees, for example the Suslin conjecture which was orig-

inally formulated in terms of linear orders but which was later reformulated

very elegantly in terms of trees (see e.g. [20, 29]). The theory of automata

makes extensive use of trees (see e.g. [30]). Databases (see e.g. [3, 17, 28])

and formal grammars (see e.g. [1, 2]) are commonly modeled as trees. Trees

can be seen as models of theories of temporal logics with the paths in the

tree representing different histories (see e.g. [9, 11, 13, 15, 16, 26]).

The logical theories of linear orders are systematically studied in [24]. A

similar systematic study of the logical theories of trees has not been done.

It is known by Rabin’s Tree Theorem that the monadic second-order theory

of rooted binary trees with infinite paths is decidable and this result can

be extended to other classes of trees (see e.g. [14, 23, 31]). In this thesis

we investigate certain first-order theories of trees. We adopt a broad set-

theoretical definition of trees. We do not require that trees be finite, rooted,

discrete, finitely branching or well-founded.

The two questions which underly the thesis are (i) the first-order defin-

ability of sets within a given tree, and (ii) the first-order definability and

axiomatisability of particular classes of trees. In this regard some of the

important known results include the following:

• The first-order theory of well-founded trees is determined in [5].

1



CHAPTER 1. INTRODUCTION 2

• The first-order theory of finite ordered trees is determined in [1]. (An

ordered tree is a tree with an order relation imposed on the set of

immediate successors of every node.)

• The first-order theory of finitely branching trees is studied in [10, 27].

It is shown in [27] that every tree T has a weakly boundedly branching

subtree S with S �n T . Hence the class of trees is complete with

respect to the class of weakly boundedly branching trees, i.e. if σ is a

first-order sentence satisfiable in any tree then σ is satisfiable in some

weakly boundedly branching tree.

Of particular interest is the correspondence between the first-order theory

of a tree and the first-order theory of the class of linear orders which comprise

the paths in the tree. Hence we introduce, for an arbitrary class C of linear

orders, eight classes of trees, the paths of which are related to the linear orders

in C in various natural ways. These classes of trees are collectively called the

C-classes of trees. We completely establish the set-theoretical relationships

between these classes and also the relationships between their first-order

theories. We present these results in [12]. The idea of classifying trees in

terms of how their paths are related to the linear orders in a class of linear

orders C is also considered in [13].

The general problem of studying the C-classes of trees based on knowledge

of the first-order theory of the class C is difficult because the class C may

be an entirely arbitrary class of linear orders. Moreover we treat trees as

consisting of a set of nodes with an order relation imposed on those nodes,

so we are not able to quantify over undefinable sets of nodes, in particular

over undefinable paths, within the tree. Hence even when the class C is a

simple one, for example consisting of a single finitely axiomatisable linear

order, it may be difficult to use the first-order theory of C to establish results

about the first-order theory of a tree of which every path is drawn from C.
Still we investigate the problem of axiomatising the first-order theory of

the class of trees of which every path is isomorphic with the ordinal α for

α < ωω. We completely solve this problem for the cases where α is a finite

ordinal and for α = ω. The remaining cases are more difficult because of the

existence of undefinable paths in the tree. For the cases where ω < α < ωω we

introduce the notion of an almost α-tree. We then show that every almost α-

tree can be elementarily extended in a natural way to a tree of which every

path, definable or undefinable, satisfies the first-order theory of α. These
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results relating to the axiomatisation of the first-order theory of the class

of trees of which every path is isomorphic with the ordinal α will still be

submitted for publication.

Along the way we also investigate the first-order properties and theories

of trees and establish various results in this regard.

This thesis is structured as follows. In Chapter 2 (Some preliminar-

ies) we fix some notation and terminology used often in the text and give an

overview of relativisation of formulas and characteristic formulas.

Chapter 3 (General theory of trees) introduces trees from a set-

theoretical standpoint and investigates some of their basic properties and

behaviour. In Section 3.4 (Condensations) we introduce condensations of

trees, a generalisation of the notion of the condensation of a linear order

described for example in [24]. Condensations of trees give a natural way to

factorise a tree into its constituent bridges.

Chapter 4 (Some important classes of trees) examines, from a

set-theoretical perspective, well-founded trees in Section 4.1 (Well-founded

trees) and finitely branching trees in Section 4.2 (Finitely branching trees).

In Section 4.3 (Trees associated with a class of linear orders) we introduce

the eight C-classes of trees determined by a class of linear orders C in terms

of how the paths in those trees are related to the linear orders in C. We

completely determine the set-theoretical relationships between these eight

classes.

We then shift our focus to first-order definability within trees and the

first-order theories of trees. Chapter 5 (First-order definability and

trees) starts with some brief comments on Ehrenfeucht-Fräıssé games and

gives a first-order definition of the class of trees. In Section 5.3 (Nodes)

we establish that the expressive power of nodes improves with the height

of those nodes and we define neighbourhoods of nodes which allows us to

capture properties of trees which are locally true. In Section 5.4 (Paths)

we introduce path defining formulas. Singular and emergent paths are also

introduced and the notion of an emergent path is further refined into that of

internal and peripheral paths. The main result in this section is that within

certain trees every parametrically definable path can be defined using a single

node lying high up on that path as parameter. The chapter ends with a look

at the definability of subtrees and condensations.

Chapter 6 (First-order theories of trees) looks at the first-order
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theories of certain important classes of trees. In Section 6.1 (Well-founded

trees) we describe the construction used in [5] to prove that every definably

well-founded tree has a well-founded n-equivalent. In Section 6.2 (Finitely

branching trees) we show how it is possible in any tree to remove all but

finitely many components extending a stem so that the tree obtained is n-

equivalent to the original tree. This result is a special case of the result

in [27] that every weakly boundedly branching tree T has a subtree S for

which S �n T . In Section 6.3 (Finite trees) we axiomatise the first-order

theory of the class of finite trees by adapting the method used in [1] to

axiomatise the first-order theory of the class of finite ordered trees. In Section

6.4 (Condensations) we show how the first-order theory of a tree may be

determined using the first-order theory of its condensation and the first-

order theories of the maximal bridges in the tree. Finally Section 6.5 (The

C-classes of trees) completely establishes the relationships between the first-

order theories of the various C-classes of trees. We also investigate the general

problem of axiomatising the various C-classes of trees using the first-order

theory of the class C.
In Chapter 7 (Axiomatisations of ordinal trees) we study the prob-

lem of axiomatising the first-order theory of the class of trees of which every

path is isomorphic with the ordinal α with α < ωω. We begin in Section

7.1 (The first-order theory of the ordinal α with α < ωω) by describing the

first-order theory of the ordinal α using an axiom system similar to the one

in [24]. In Section 7.2 (Tails of ordinals) we establish some results on tails

of ordinals which are used later. In Section 7.4 (Towards first-order theories

of α-trees) we determine the first-order theories of the classes of n-trees for

every finite ordinal n as well as the first-order theory of the class of ω-trees.

We also introduce the class of almost α-trees and show that every almost

α-tree can be elementarily embedded in a pathwise uniformly α-like tree. Fi-

nally we examine what this elementary extension of the almost α-tree looks

like in Section 7.5 (Almost (ω + 1)-trees and their extensions) for the case

where α = ω + 1.



Chapter 2

Some preliminaries

We begin by fixing some notation and terminology used frequently in the text.

In Section 2.3 (Relativising a formula) we describe how to relativise a formula

to a definable subtructure of a structure and in Section 2.4 (Characteristic

formulas) we describe characteristic formulas which will allow us to formalise

the structure of trees up to n-equivalence.

For further information on linear orders, the reader is referred to the text

[24]. For further information on logic or model theory, the reader is referred

to [6, 7, 18, 19, 22].

2.1 Notation

Let A be a structure and let ϕ(x1, . . . , xn) be a first-order formula. The

domain of A is denoted as |A| or simply as A. Let c1, . . . , cn ∈ |A| and put

x̄ = (x1, . . . , xn) and c̄ = (c1, . . . , cn). Then ϕ(x1, . . . , xn) is also written

as ϕ(x̄). When evalutating the truth of ϕ in A when the elements ci are

substituted for xi for every i (1 6 i 6 n), we also denote the expression

A |= ϕ(c1/x1, . . . , cn/xn) as A |= ϕ(c̄/x̄). When enriching the signature of

A with c1, . . . , cn as parameters, we also denote (A; c1, . . . , cn) as (A; c̄) and

(A; c̄) |= ϕ(c1, . . . , cn) as (A; c̄) |= ϕ(c̄).

For ā = (a1, . . . , ak) and b̄ = (b1, . . . , bn), the notation āc indi-

cates the (k + 1)-tuple (a1, . . . , ak, c) and āb̄ indicates the (k + n)-tuple

(a1, . . . , ak, b1, . . . , bn).

The quantifier rank (the greatest number of nested quantifiers) of a first-

order formula ϕ is denoted as qr(ϕ). Elementary equivalence of structures A

5



CHAPTER 2. SOME PRELIMINARIES 6

and B is denoted as A ≡ B, and n-equivalence (equivalence with respect to

all sentences of quantifier rank at most n) of A and B is denoted as A ≡n B.

The notation A � B indicates that A is an elementary substructure of B

while A �n B indicates that

(i) A is a substructure of B, and

(ii) for every formula ϕ(x, ȳ) where ȳ is a k-tuple of variables and with

qr(ϕ) + k + 1 6 n, if

B |= ∃xϕ(x, ā/ȳ)

for some k-tuple of elements ā from A, then there exists b ∈ |A| such

that

B |= ϕ(b/x, ā/ȳ).

In particular, if A �n B then A ≡n B.

For Γ a finite theory, define
∧

Γ :=
∧
{γ : γ ∈ Γ}. For Γ any theory,

MOD(Γ) denotes the class of models of Γ. For C any class of structures,

TH(C) denotes the first-order theory of C.
Let A be a class of structures and let B ⊆ A. Then TH(A) is called

complete with respect to B when, for every sentence σ with A |= σ for some

A ∈ A, there exists B ∈ B with B |= σ.

For κ a cardinal, a theory Γ is called κ-categorical when Γ has precisely

one model of cardinality κ, up to isomorphism. A structure A is called κ-

categorical when TH(A) is κ-categorical.

The order type of a finite linear order consisting of n elements is denoted

as n. The order types of the linear orders (N;<), (Z;<), (Q;<) and (R;<)

are denoted respectively as ω, ζ, η and λ. ω1 denotes the order type of any

uncountable well-order of which every proper initial segment is countable.

For convenience, we will sometimes identify a linear order with its order

type. For example, the linear order (N;<) may be written simply as ω etc.

The reverse order of a linear order L is denoted as L?.

ZF denotes Zermelo-Fraenkel set theory and ZFC denotes Zermelo-

Fraenkel set theory with the axiom of choice.

The notation N+ indicates the set of positive integers.
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Define for every positive integer n the sentences

λn := ∃x1 . . . ∃xn

(∧
i 6=j

xi 6= xj

)
,

µn := ¬λn+1.

The sentence λn states that there are at least n elements and µn states

that there are at most n elements. The sentence λn ∧ µn states that there

are precisely n elements.

Using a signature containing the symbols = and <, the expressions x 6 y,

x 6< y and x < z < y are abbreviations respectively for x < y ∨ x = y,

¬ (x < y) and x < z ∧ z < y. The expression ∃! indicates unique existence.

The formula ∃!xϕ(x) may be seen as short for ∃x (ϕ(x) ∧ ∀y (ϕ(y)→ y = x)).

2.2 Definability without and with parame-

ters

Let A be a structure. Let c ∈ |A| be an element, let R ⊆ |A|n be a relation

and let f : |A|n → |A| be a function. Let ā be a k-tuple of elements from |A|
and let ȳ = (y1, . . . , yk).

(i) A first-order formula ϕ(x) defines c in A when

(A; c) |= ∀x (ϕ(x)↔ x = c) .

A formula ϕ(x, ȳ) defines c with parameters ā in A when ϕ(x, ā)

defines c in the structure (A; ā).

(ii) A first-order formula ϕ(x1, . . . , xn) defines R in A when

(A;R) |= ∀x1 . . . ∀xn (ϕ(x1, . . . , xn)↔ R(x1, . . . , xn)) .

A formula ϕ(x1, . . . , xn, ȳ) defines R with parameters ā in A when

ϕ(x1, . . . , xn, ā) defines R in the structure (A; ā).

Let B ⊆ |A| and define the unary relation R on |A| as R(x) if and only

if x ∈ B. A formula ϕ defines the set B (without or with parameters)

when ϕ defines R in A.



CHAPTER 2. SOME PRELIMINARIES 8

(iii) A first-order formula ϕ(x1, . . . , xn, xn+1) defines f in A when

(A; f) |= ∀x1 . . . ∀xn∀xn+1 (ϕ(x1, . . . , xn, xn+1)↔ f(x1, . . . , xn) = xx+1) .

A formula ϕ(x1, . . . , xn, xn+1, ȳ) defines f with parameters ā in A

when ϕ(x1, . . . , xn, xn+1, ā) defines f in the structure (A; ā).

2.3 Relativising a formula

Relativisations give a neat method for imposing first-order properties on

definable substructures of a structure. The following definition and results

are taken from [24, pp. 259-260].

Let A be any structure and let a1, . . . , ak ∈ |A|. Fix x̄ = (x1, . . . , xn),

ȳ = (y1, . . . , yk) and ā = (a1, . . . , ak).

Definition 2.1 ([24]) Let ϕ(x̄) and θ(u, ȳ) be any first-order formulas. The

relativisation of ϕ to θ is denoted as ϕθ (where ϕθ = ϕθ(x̄, ȳ)) and is defined

as follows:

(i) if ϕ is atomic then ϕθ := ϕ;

(ii) if ϕ = ¬ψ then ϕθ := ¬
(
ψθ
)
;

(iii) if ϕ = ψ1 ? ψ2 then ϕθ := ψθ1 ? ψ
θ
2, where ? is any of ∨, ∧, → or ↔;

(iv) if ϕ = ∃xψ then ϕθ := ∃x
(
θ(x, ȳ) ∧ ψθ

)
;

(v) if ϕ = ∀xψ then ϕθ := ∀x
(
θ(x, ȳ)→ ψθ

)
.

Note that if ϕ is quantifier-free then ϕθ contains the variables y1, . . . , yk
vacuously, while if ϕ contains quantifiers then the variables y1, . . . , yk will

appear explicitly in ϕθ.

Remark 2.2 ([24]) For ϕ and θ any first-order formulas, it can be seen

(using structural induction on formulas) that qr(ϕθ) = qr(ϕ) + qr(θ).

For θ(u, ȳ) any first-order formula, define

(A; ā)θ := {b ∈ |A| : (A; ā) |= θ(b/u, ā)} .
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Proposition 2.3 ([24]) Let ϕ(x̄) and θ(u, ȳ) be first-order formulas with

the tuples x̄ and ȳ disjoint. For any b1, . . . , bn ∈
∣∣∣(A; ā)θ

∣∣∣ and with b̄ =

(b1, . . . , bn),

A |= ϕθ
(
b̄/x̄, ā/ȳ

)
⇔ (A; ā)θ |= ϕ

(
b̄/x̄
)
.

Proof By structural induction on formulas. qed

Corollary 2.4 ([24]) Let σ be a first-order sentence and let θ(u, ȳ) be a

first-order formula. Then

A |= σθ (ā/ȳ) ⇔ (A; ā)θ |= σ.

Corollary 2.5 ([24]) Let σ be a first-order sentence and let θ(u) be a first-

order formula. Then

A |= σθ ⇔ Aθ |= σ.

Example 2.6 ([24]) Consider the formula

θ(u) := ∀v (v < u→ ∃w (v < w < u)) .

θ(u) states that u has no immediate predecessor. In the context of well-

orders, this means that u is a limit point.

Next consider the sentence

σ := ∀x∃y (x < y) .

Then

σθ = ∀x
(
∀v (v < x→ ∃w (v < w < x))→

∃y
(
∀v (v < y → ∃w (v < w < y)) ∧ x < y

))
.

By Corollary 2.5 the sentence σθ holds in a well-order A = (A;<) if and only

if A contains no greatest limit point.

We will make use of the following abbreviations:

θ ϕθ Aθ

y1 < u < y2 ϕ(y1,y2) A(y1,y2)

y1 6 u < y2 ϕ[y1,y2) A[y1,y2)

y1 < u 6 y2 ϕ(y1,y2] A(y1,y2]

y1 6 u 6 y2 ϕ[y1,y2] A[y1,y2]

θ ϕθ Aθ

u < y1 ϕ<y1 A<y1

u 6 y1 ϕ6y1 A6y1

y1 < u ϕ>y1 A>y1

y1 6 u ϕ>y1 A>y1
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2.4 Characteristic formulas

Characteristic formulas give a syntactic formalisation of the Ehrenfeucht-

Fräıssé game played on a pair of structures. The following definition and

results are taken from [5]. An excellent account of characteristic formulas

may also be found in [7].

Fix structures A and B. Let ā = (a1, . . . , ak) and b̄ = (b1, . . . , bk), where

a1, . . . , ak ∈ |A| and b1, . . . , bk ∈ |B|. Put x̄ = (x1, . . . , xk).

Definition 2.7 ([5]) For n ∈ N we define the formula J(A; ā)Kn (where

J(A; ā)Kn = J(A; ā)Kn(x̄)) inductively as follows:

(i) J(A; ā)K0 :=
∧{

ϕ(x̄) : ϕ an atomic or negated atomic

formula with A |= ϕ(ā/x̄)
}

;

(ii) J(A; ā)Km+1 :=
∧
ak+1∈|A| ∃xk+1J(A; āak+1)Km ∧

∀xk+1

∨
ak+1∈|A|J(A; āak+1)Km.

The formula J(A; ā)Kn is known as the n-characteristic of ā in A.

Lemma 2.8 ([5]) For n ∈ N the following hold:

(i) A |= J(A; ā)Kn (ā/x̄);

(ii) the formula J(A; ā)Kn has quantifier rank n.

Proof By induction on n. qed

Theorem 2.9 ([5]) For n ∈ N the following conditions are equivalent:

(i) (A; ā) ≡n
(
B; b̄

)
;

(ii) B |= J(A; ā)Kn
(
b̄/x̄
)
;

(iii) the formulas J(A; ā)Kn and J
(
B; b̄

)
Kn are equivalent.

Proof See [5, Theorem 1.6.3]. qed
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Corollary 2.10 For n ∈ N the following conditions are equivalent:

(i) A ≡n B;

(ii) B |= JAKn;

(iii) the sentences JAKn and JBKn are equivalent.

Proof Immediate from Theorem 2.9. qed

Hence the n-characteristics of empty tuples are canonical objects associ-

ated with classes of structures which are n-equivalent.

When working with a finite signature, there will be only finitely many

n-characteristics of k-tuples.

Theorem 2.11 ([5]) Let {Ai}i∈I be a class of structures over the same finite

signature. Let k, n ∈ N and for every i ∈ I, let āi be a k-tuple of elements

from |Ai|. There are only finitely many non-equivalent formulas in the set

{J(Ai; āi)Kn : i ∈ I}.

Proof Use induction on n. qed

The number of n-characteristics of empty tuples over a given finite sig-

nature is called the n-characteristic index of that signature.

Example 2.12 Consider the linear order ω := (N;<). Then

J(ω; (0, 0))K0 = x1 = x1 ∧ x2 = x2 ∧ x1 = x2 ∧ x2 = x1 ∧
¬(x1 < x1) ∧ ¬(x2 < x2) ∧ ¬(x1 < x2) ∧ ¬(x2 < x1)

and J(ω; (a1, a2))K0 is equivalent to J(ω; (0, 0))K0 when a1 = a2. Furthermore

J(ω; (0, 1))K0 = x1 = x1 ∧ x2 = x2 ∧ ¬(x1 = x2) ∧ ¬(x2 = x1) ∧
¬(x1 < x1) ∧ ¬(x2 < x2) ∧ x1 < x2 ∧ ¬(x2 < x1)

and J(ω; (a1, a2))K0 is equivalent to J(ω; (0, 1))K0 when a1 < a2. Finally

J(ω; (1, 0))K0 = x1 = x1 ∧ x2 = x2 ∧ ¬(x1 = x2) ∧ ¬(x2 = x1) ∧
¬(x1 < x1) ∧ ¬(x2 < x2) ∧ ¬(x1 < x2) ∧ x2 < x1

and J(ω; (a1, a2))K0 is equivalent to J(ω; (1, 0))K0 when a2 < a1.
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Next

J(ω; 0)K1 = ∃x2J(ω; (0, 0))K0 ∧ ∃x2J(ω; (0, 1))K0 ∧
∀x2

(
J(ω; (0, 0))K0 ∨ J(ω; (0, 1))K0

)
and

J(ω; 1)K1 = ∃x2J(ω; (1, 0))K0 ∧ ∃x2J(ω; (0, 0))K0 ∧ ∃x2J(ω; (0, 1))K0 ∧
∀x2

(
J(ω; (1, 0))K0 ∨ J(ω; (0, 0))K0 ∨ J(ω; (0, 1))K0

)
.

The formula J(ω; a1)K1 is equivalent to J(ω; 1)K1 when a1 > 1.

Finally we get

JωK2 = ∃x1J(ω; 0)K1 ∧ ∃x1J(ω; 1)K1 ∧ ∀x1

(
J(ω; 0)K1 ∨ J(ω; 1)K1

)
.

By Corollary 2.10, for any structure (L;<L), (L;<L) ≡2 ω if and only if

(L;<L) |= JωK2.



Chapter 3

General theory of trees

We begin our study of trees by defining some basic notions and we investigate

some of the structural properties of trees from a set-theoretical standpoint.

The reader may also consult [20, 21, 25, 32] in this regard. In Section 3.4

(Condensations) we introduce condensations of trees obtained by collapsing

every maximal bridge in a tree to a single point and we use this notion to

show how a tree can be factorised into the product of a simpler tree with a

class of linear orders which are associated with the nodes in that tree.

3.1 Definition of a tree

Let A be a non-empty set and let < be a binary relation on A. The structure

(A;<) is called an ordered set, and when there is no ambiguity, the ordered

set (A;<) will sometimes be written simply as A. If a < b we say that a is a

predecessor of b and that b is a successor to a. The qualifier immediate

indicates that there is no x in A for which a < x < b. Thus b is an immediate

successor to a when A |= s(a/x, b/y), where

s(x, y) := x < y ∧ ¬∃z (x < z < y) .

If B,C ⊆ A with x < y for all x ∈ B and y ∈ C then we write B < C, while

the notation a < B indicates that a < y for all y ∈ B, etc.

The relation < is irreflexive when x 6< x for all x ∈ A, and transitive

if, for all x, y, z ∈ A, whenever x < y and y < z then x < z. When < is both

13
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irreflexive and transitive then (A;<) is called a partial order.1

If a, b ∈ A are such that a < b or a = b or b < a, we say that a and b are

comparable, and this will be denoted as a ^ b. Otherwise, a and b are said

to be incomparable, and this will be denoted as a 6^ b. The property of

two nodes being comparable can be formalised using the first-order formula

x ^ y := x < y ∨ x = y ∨ y < x.

An ordered set of which all elements are pairwise incomparable is called

an antichain. From Zorn’s Lemma it follows that every antichain can be

extended to a maximal antichain.

The ordered set A is total when every two elements in A are comparable,

and subtotal when the set {y ∈ A : y < x} is total for every x ∈ A. A total

partial order is called a linear order.

A linear order A is called dense when for every x, y ∈ A with x < y there

exists z ∈ A with x < z < y. A is called complete when every non-empty

bounded subset of A has an infimum and a supremum.

A is connected when, for every x, y ∈ A, there exists z ∈ A such that

z 6 x and z 6 y. If A is not connected then it is called disconnected. A

maximal connected subset of A is called a component of A.

Definition 3.1 A subtotal partial order (T ;<) is called a forest. A con-

nected forest is called a tree.

In what is to follow, our definitions and results will be phrased mainly

within the context of trees. However, many of these definitions and results

apply also to forests by observing that every tree is a forest, and every forest

is a union of trees.

3.2 Nodes, paths and segments

3.2.1 Nodes and paths

The elements of a tree are called nodes. If a tree has a minimal node, then

that node is unique and is called the root of the tree. A tree containing a

1In the literature, partial orders are often defined as being ordered sets which are

reflexive, transitive and antisymmetric. In such cases, ordered sets which are irreflexive

and transitive are usually called strict partial orders.
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root is called a rooted tree. A maximal node of a tree, if it exists, is called

a leaf .

Given a tree T with a ∈ T , define

a> := {x ∈ T : x < a},
a> := {x ∈ T : x 6 a},
a< := {x ∈ T : a < x},
a6 := {x ∈ T : a 6 x}.

The sets a> and a> are linear orderings. The set a6 is a tree, while a< is

a forest but not necessarily a tree. The sets a>, a>, a< and a6 will also be

treated as substructures of T .

A maximal total set of nodes is called a path. Using Zorn’s Lemma, it

is easy to see that every total subset of a tree is contained in a path.

A tree T is called downwards discrete when every non-root node in T

has an immediate predecessor. T is called weakly upwards discrete when

every non-leaf node has an immediate successor, and upwards discrete

when, for every path X in T , every non-leaf node in X has an immediate

successor belonging to X. T is called weakly discrete when it is both

downwards discrete as well as weakly upwards discrete, and discrete when

it is both downwards discrete and upwards discrete.

For an upwards discrete tree T and for any node a ∈ T , we define the set

S(a) as consisting of all the immediate successors to a in T .

3.2.2 Segments

Let T be a tree and let A ⊆ T . The set A is called

(i) downwards convex when, for every x ∈ A, if y < x then y ∈ A;

(ii) upwards convex when, for every x ∈ A, if x < y then y ∈ A;

(iii) convex when, for every x, y ∈ A with x < y, if x < z < y then z ∈ A.

A total and convex subset of a tree is called a segment. A total and

downwards convex subset of a tree is called a stem. Hence a stem is simply

a downwards convex subset of a path. A subset B of a path A is called a

branch when, if x ∈ B and y ∈ A with x < y, then y ∈ B. For every node
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a ∈ T , the sets a> and a> are stems. The empty set vacuously constitutes a

segment, stem and branch.

Given a tree T and nodes a, b ∈ T , the intervals (a, b), (a, b], [a, b) and

[a, b] will be defined as usual, namely (a, b) := {x ∈ T : a < x < b} etc.

All these intervals are examples of segments, although not every segment has

this form. For example, consider a path of the form ζ · 3 and the segment

consisting of the second copy of ζ in that path, or a path of the form η and

the segment consisting of all rational numbers x with
√

2 < x <
√

3.

For T a tree and A a non-empty segment in T , we define the following

sets:2

A> := {x ∈ T : x < A},
A< := {x ∈ T : A < x}.

Proposition 3.2 Let T be a tree and let A and B be segments in T such

that A ∪ B is total and A ∩ B = ∅. Let a ∈ A and b ∈ B with a < b. Then

A < B.

Proof Put a1 := a and b1 := b. Suppose to the contrary that there exists

a2 ∈ A and b2 ∈ B with b2 < a2. Since A ∪ B is total then the nodes a1, a2,

b1 and b2 can be related to each other in the following ways:

b2 < a2 6 a1 < b1 giving a1 ∈ B,
b2 6 a1 < a2 6 b1 giving a1 ∈ B,
b2 6 a1 < b1 < a2 giving a1 ∈ B,
a1 < b2 < a2 6 b1 giving b2 ∈ A,
a1 < b2 6 b1 < a2 giving b2 ∈ A,
a1 < b1 < b2 < a2 giving b2 ∈ A.

In each case, the assumption that A ∩B = ∅ is violated. qed

Proposition 3.3 Let T be a tree and let A and B be segments in T with

A∪B total and with the sets {x ∈ T : A < x < B} and {x ∈ T : B < x < A}
empty. Then A ∪B is a segment.

2The notations x < A and A < B are defined on p. 13.
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Proof Let a, b ∈ A ∪ B with a < b and let a < c < b. We must show that

c ∈ A ∪ B. We may assume without loss of generality that a ∈ A\B and

b ∈ B\A. The are two cases to consider.

First, consider the case where A ∩ B 6= ∅, say d ∈ A ∩ B. If b 6 d then

from A being a segment we get b ∈ A, a contradiction. Hence d < b. Since T

is subtotal then c ^ d. Thus we either have a < c 6 d, in which case c ∈ A,

or d < c < b, in which case c ∈ B.

Next consider the case where A ∩ B = ∅. From Proposition 3.2 we get

A < B. Suppose to the contrary that c 6∈ A ∪B.

Let y ∈ B. If b 6 y then since T is transitive this gives c < y and so

c ^ y. If, on the other hand, y < b, then again c ^ y since T is subtotal.

Now if y 6 c then B being a segment gives c ∈ B, a contradiction. Hence

c < y and it follows that c < B.

Moreover, since T is subtotal and A < b then x ^ c for all x ∈ A. If

c 6 x then since A is a segment we get c ∈ A, a contradiction. Hence x < c

and so A < c.

But the set {x ∈ T : A < x < B} is empty. This contradiction shows

that c ∈ A ∪B. qed

3.2.3 Bridges and furcations

Definition 3.4 A segment A in a tree T is called a bridge when, for every

path X in T , either X ∩A = ∅ or X ∩A = A (i.e. A ⊆ X). A segment that

is not a bridge is called a furcation.

Thus a segment A is a furcation if there is a path B with ∅ 6= B∩A 6= A.

The empty set trivially constitutes a bridge.

Proposition 3.5 Let T be a tree and let A and B be bridges in T with

A ∩B 6= ∅. Then A ∪B is a bridge.

Proof Let C be a path with A ∩ B ⊆ C. Since A and B are bridges then

A,B ⊆ C hence A ∪ B is total. By Proposition 3.3 we get that A ∪ B is a

segment.

Let X be any path with X ∩ (A ∪B) 6= ∅, say X ∩ A 6= ∅. Then

X ∩A = A ⊇ A ∩B so that X ∩B 6= ∅, from which X ∩B = B. This gives

X ∩ (A ∪B) = X ∩ A ∪X ∩B = A ∪B, hence A ∪B is a bridge. qed



CHAPTER 3. GENERAL THEORY OF TREES 18

3.3 Subtrees

Definition 3.6 Let T = (T ;<) be a tree and let S ⊆ T be such that

(S;<�S) is a tree, where <�S is the relation < restricted to S. The structure

S = (S;<�S) is called a subtree of T .

Let T = (T ;<) be a tree and let S ⊆ T . Since irreflexivity, transitivity

and subtotalness are universal properties, then S = (S;<�S) satisfies these

properties automatically. Hence every subset of a tree forms a forest, and

the set S will form a subtree of T if and only if S is connected.

A subtree S of a tree T is called downwards convex (respectively up-

wards convex, convex) when the set S is downwards convex (respectively

upwards convex, convex) in T .

Example 3.7 Let T be a tree.

(a) For every node x, the set x6 forms a subtree of T , and every rooted

subtree of T has the form x6 for some x.

(b) Let S be an upwards convex subtree of T and define A := {x ∈ T :

x < S}. Since T is subtotal then A is total, and from the transitivity of T

it follows that A is downwards convex. Hence A is a stem in T and S = A>.

Every upwards convex subtree of T has the form X< for some stem X.

Proposition 3.8 Let T be a tree, let S be an upwards convex subtree of T ,

and let A be a path in T . Then S ∩ A is a path in S.

Proof Clearly S ∩ A is total. Let a ∈ S with a ^ x for all x ∈ S ∩ A.

Suppose there exists b ∈ S ∩ A with a < b. Since A is downwards convex

then a ∈ S ∩ A. Hence suppose a > S ∩ A and let c ∈ S ∩ A. Since S is

upwards convex then {x ∈ S ∩ A : x > c} = {x ∈ A : x > c}, from which it

follows that a > {x ∈ A : x > c} and hence a > A, a contradiction with the

fact that A is maximal total in T . It follows that S ∩ A is maximal total in

S, as required. qed

Proposition 3.9 Let T be a tree, let S be an upwards convex subtree of T ,

and let A be a path in S. Define B := {x ∈ T : x < S}. Then A ∪ B is a

path in T .
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Proof Since T is subtotal then B is total, and from the fact that A is total

together with the fact that B < A, A ∪B is total.

Next let a ∈ T with a ^ x for all x ∈ A∪B. If a ∈ S then a ∈ A since A

is maximal total in S. Hence assume a 6∈ S. Then a < A since S is upwards

convex. Let b ∈ S and c ∈ A. From the connectedness of S, there exists

d ∈ S with d 6 b, c. Hence d ∈ A and so a < d. Since d 6 b then a < b. It

follows that a ∈ B. Hence A ∪B is maximal total in T , as required. qed

3.4 Condensations

We now introduce condensations of trees, a notion roughly similar to that of

condensations of linear orderings as discussed for example in [24].

3.4.1 About maximal bridges

Proposition 3.10 Let T be a tree and let A be a bridge in T . Then A is

contained in a unique maximal bridge.

Proof Let A be a chain of maximal bridges with A ⊆ X for every X ∈ A
and put A0 := ∪A. Note that A0 is total and convex, and hence a segment.

Let B be a path with B ∩A0 6= ∅. Then B ∩A1 6= ∅ for some A1 ∈ A so

that B ∩A1 = A1 ⊇ A. Hence A ⊆ B from which B ∩X = X for all X ∈ A.

This gives

B ∩ A0 = B ∩ (∪A) = ∪{B ∩X : X ∈ A} = ∪{X : X ∈ A} = A0.

It follows that A0 is a bridge. From Zorn’s Lemma, A can therefore be

extended to a maximal bridge.

Next let C1 and C2 be maximal bridges with A ⊆ C1, C2. By Proposition

3.5 we get that C1 ∪C2 is a bridge, and by the maximality of C1 and C2 this

means C1 = C1 ∪ C2 = C2. qed

If A and B are maximal bridges in a tree T , then either A ∩ B = ∅ or

A = B. The set of maximal bridges in T forms a partition of the tree, and

the relation of two nodes in T belonging to the same maximal bridge forms

an equivalence relation on T .

Definition 3.11 For a ∈ T the maximal bridge in T containing a will be

denoted as [a].
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As with other sets of nodes, the notation [a] < [b] will indicate that x < y

for all x ∈ [a] and y ∈ [b] and [a] ^ [b] will indicate that [a] < [b] or [a] = [b]

or [b] < [a] etc.

Proposition 3.12 Let T be a tree and let a, b ∈ T .

(i) If a < b and [a] 6= [b] then [a] < [b].

(ii) If a 6^ b then x 6^ y for all x ∈ [a] and y ∈ [b].

Proof (i) Let A be a path in T with a, b ∈ A. Since [a] and [b] are bridges

then [a], [b] ⊆ A so that [a]∪ [b] is total. Since [a] 6= [b] then [a]∩ [b] = ∅. By

Proposition 3.2 this gives [a] < [b].

(ii) Follows from (i). qed

Corollary 3.13 Let T be a tree and let a, b ∈ T . Then a ^ b if and only if

[a] ^ [b].

Proof From Proposition 3.12. qed

Proposition 3.14 Let T be a tree with a, b ∈ T . The following conditions

are equivalent:

(i) there exists a bridge B such that a, b ∈ B;

(ii) [a] = [b];

(iii) for every path X in T , a ∈ X if and only if b ∈ X;

(iv) for every node x ∈ T , x ^ a if and only if x ^ b.

Proof (i) ⇔ (ii) Immediate.

(ii)⇒ (iii) Suppose [a] = [b]. Let A be a path with a ∈ A. Then [a] ⊆ A

and so b ∈ [b] ⊆ A which gives b ∈ A. It follows that for every path X, if

a ∈ X then b ∈ X. It can likewise be shown that for every path X, if b ∈ X
then a ∈ X.

(iii) ⇒ (ii) Suppose condition (iii) holds. If a = b then the result is

immediate, so assume a 6= b and let A be a path with a ∈ A. Then b ∈ A
and so a ^ b, say a < b. Consider the segment [a, b] and let X be any path

with X ∩ [a, b] 6= ∅. Then a ∈ X and so b ∈ X, from which [a, b] ⊆ X. It
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follows that [a, b] is a bridge with a, b ∈ [a, b]. By Proposition 3.10, [a, b] is

contained in a unique maximal bridge, from which it follows that [a] = [b].

(iii) ⇒ (iv) Suppose condition (iii) holds. Let c ∈ T with c ^ a and let

A be a path with c, a ∈ A. Then b ∈ A and so c ^ b. Hence for every x ∈ T ,

if x ^ a then x ^ b, and likewise for every x ∈ T , if x ^ b then x ^ a.

(iv) ⇒ (iii) Suppose condition (iv) holds. Let A be a path with a ∈ A.

Since x ^ a for every x ∈ A then x ^ b for every x ∈ A, from which b ∈ A.

Hence for every path X, if a ∈ X then b ∈ X, and likewise it can be shown

that if b ∈ X then a ∈ X. qed

Hence two nodes x and y belong to the same maximal bridge if and only

if they satisfy the formula

β(x, y) := ∀z (z ^ x↔ z ^ y) . (3.1)

The formula β determines an equivalence relation.

3.4.2 Condensations of trees

Definition 3.15 Let (T ;<) be a tree. Define [T ] := {[x] : x ∈ T} and for

[a], [b] ∈ [T ], define the relation < on [T ] in the usual way, namely [a] < [b] if

and only if x < y for all x ∈ [a] and y ∈ [b]. The structure ([T ];<) is called

the condensation of the tree T .

Thus the condensation of a tree is simply the quotient structure of that

tree generated by the relation of membership to the same maximal bridge.

The operator [·] defines a mapping

[·] : T → [T ].

For X ⊆ T , y ∈ [T ] and Y ⊆ [T ], we denote

[X] := {[x] ∈ [T ] : x ∈ X},
[y]−1 := {x ∈ T : [x] = y},

[Y ]−1 := {y ∈ T : [y] ∈ Y }.

Then X ⊆ [[X]]−1 and [[Y ]−1] = Y for all X ⊆ T and Y ⊆ [T ].

Proposition 3.16 For T any tree, [T ] is also a tree.
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Proof It is straightforward to check that [T ] is irreflexive, transitive, subto-

tal and connected. qed

Thus we will treat the elements of [T ] as nodes within [T ].

Example 3.17 Figure 3.1 shows a tree T together with its condensation [T ].

The bridges A1 through A6 are linear orders which may be infinite, and are

condensed respectively to the nodes [A1] through [A6] in [T ], so that [T ] is

finite.
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Figure 3.1: The condensation of a tree (see Example 3.17).

3.4.3 Preservation of structure

Proposition 3.18 Let T be a tree and let A ⊆ T .

(i) If A is an antichain then [A] is an antichain.

(ii) If A is total then [A] is total.

(iii) If A is maximal total in T then [A] is maximal total in [T ].

(iv) If A is convex in T then [A] is convex in [T ].

(v) If A is downwards convex in T then [A] is downwards convex in [T ].

(vi) If A is upwards convex in [T ] then [A] is upwards convex in [T ].

Proof (i), (ii): From Corollary 3.13.
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(iii): Let A be maximal total in T . Since A is total then [A] is total. Let

[b] ∈ [T ]\[A]. Then b 6∈ A so b 6^ c for some c ∈ A. This gives [b] 6^ [c] and

since [c] ∈ [A] then it follows that [A] is maximal total in [T ].

(iv): Let [a], [b] ∈ [A] and let x ∈ [T ] with [a] < x < [b]. Then a <

[x]−1 < b and [x]−1 ⊆ A. This gives x = [[x]−1] ∈ [A].

(v), (vi): Similar to (iv). qed

Proposition 3.19 Let T be a tree and let B ⊆ [T ].

(i) If B is total then [B]−1 is total.

(ii) If B is maximal total in [T ] then [B]−1 is maximal total in T .

(iii) If B is convex in [T ] then [B]−1 is convex in T

(iv) If B is downwards convex in [T ] then [B]−1 is downwards convex in T .

(v) If B is upwards convex in [T ] then [B]−1 is upwards convex in T .

Proof The proof is similar to that of Proposition 3.18. qed

Thus paths, segments and stems are preserved between a tree and its

condensation under the mapping [·] and its inverse. The next result shows

that branches are likewise preserved.

Proposition 3.20 Let T be a tree.

(i) If A is a branch in T then [A] is a branch in [T ].

(ii) If B is a branch in [T ] then [B]−1 is a branch in T .

Proof (i) Let A be a branch in T . Let B be a path in T with A ⊆ B and

with the property that for every x ∈ A, if y ∈ B with x < y, then y ∈ A.

Then [A] ⊆ [B] and from Proposition 3.18, [B] is a path in [T ]. Let x ∈ [A]

and y ∈ [B] with x < y, and let z ∈ [x]−1 and w ∈ [y]−1 with z ∈ A and

w ∈ B. Then z < w so w ∈ A. Hence y = [w] ∈ [A], and it follows that [A]

is a branch in [T ].

(ii) The proof is similar to that of (i), but using Proposition 3.19 instead

of Proposition 3.18. qed

A path A in a tree T is called singular (see also Definition 5.7) if there

exists a ∈ A such that a6 is total. Otherwise A is called emergent.
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Proposition 3.21 Let T be a tree and let A be a path in T . A is singular

if and only if [A] contains a greatest node.

Proof Let A be singular, let a ∈ A be such that a6 is total, and note that

a6 is a bridge. Suppose there exists [b] ∈ [A] such that [a] < [b]. Then a < b

which gives b ∈ a6 ⊆ [a] so [a] = [b], a contradiction. Thus [a] is the greatest

node of [A].

Conversely suppose [A] contains a greatest node [a]. Obviously a ∈ A.

Let b, c ∈ a6 (i.e. a 6 b, c). Then [a] 6 [b], [c]. This gives [b], [c] = [a] hence

b, c ∈ [a]. Thus b ^ c and so a6 is total, as required. qed

Thus a path A is emergent if and only if [A] does not contain a greatest

node.

A tree T is called well-founded (see also Section 4.1) when every non-

empty set of nodes from T contains a minimal node.

Corollary 3.22 Let T be a well-founded tree and let A be a path in T .

(i) A is singular if and only if the order type of [A] is a successor ordinal.

(ii) A is emergent if and only if the order type of [A] is a limit ordinal.

Proof From Proposition 3.21. qed

3.4.4 Condensed trees

Definition 3.23 A tree T is called condensed when T ∼= [T ].

Lemma 3.24 Let T be a tree. Then every non-empty bridge in the tree [T ]

consists of a single node.

Proof Let [a], [b] ∈ [T ] with [a] 6= [b]. Then a and b belong to different

maximal bridges in T . From Proposition 3.14 we may conclude, without

loss of generality, that there exists c ∈ T such that c ^ a and c 6^ b. By

Corollary 3.13 this gives that [c] ^ [a] and [c] 6^ [b], so that [a] and [b] belong

to different maximal bridges in [T ]. qed

Proposition 3.25 Let T be a tree. The following conditions are equivalent:
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(i) T is condensed;

(ii) T ∼= [S] for some tree S;

(iii) [x] = {x} for every x ∈ T .

Proof (i) ⇒ (ii) Let T be condensed. Then T ∼= [T ].

(ii) ⇒ (iii) Let T ∼= [S] for some tree S and let f : T → [S] be an

isomorphism. Let a, b ∈ T with a 6= b. Then f(a) 6= f(b) so by Lemma 3.24,

f(a) and f(b) belong to different maximal bridges in [S]. From Proposition

3.14 we may conclude, without loss of generality, the existence of c ∈ [S] such

that c ^ f(a) and c 6^ f(b). Since f is an isomorphism then f−1(c) ^ a

and f−1(c) 6^ b. Hence [a] 6= [b] and the result follows.

(iii) ⇒ (i) Assume that [x] = {x} for every x ∈ T , and verify that the

map given as x 7→ [x] defines an isomorphism from T to [T ]. qed

3.4.5 Products of trees with linear orderings

For sets A and B, the cartesian product of A and B is denoted as A×B.

Given partial orders A := (A;<A) and B := (B;<B), the lexicograph-

ical product of A and B is the partial order A ×lex B (with A ×lex B =

(A×B,<lex)), where for (x1, y1), (x2, y2) ∈ A×B,

(x1, y1) <lex (x2, y2) :⇔ x1 <A x2 or both x1 = x2 and y1 <B y2.

Definition 3.26 Let T = (T ;<T ) be a tree, let L = {(Li;<i) : i ∈ I} be a

class of linear orders, and let f : T → L be a function. The f-product of T

with L is the structure T ×f L = (|T ×f L| ;<), defined as follows:

(i) |T ×f L| :=
⋃
x∈T ({x} × |f(x)|);

(ii) for (x1, y1), (x2, y2) ∈ |T ×f L|,

(x1, y1) < (x2, y2) :⇔ x1 <T x2 or both x1 = x2 and y1 <f(x1) y2.

Remark 3.27 Suppose there exists L0 ∈ L such that f(x) = L0 for all

x ∈ T . Then T ×f L = T ×lex L0.
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Example 3.28 Consider the tree T as depicted in Figure 3.2 and let L :=

{ω, ω?}, where ω? is the reverse order (N;>) of ω. Define f : T → L as

f(x) =

{
ω? when x ∈ {a4, a6, a8},
ω otherwise.

For every i, let Ai be the linear order consisting only of the point ai. The

f -product of T with L is shown in Figure 3.2. The linear orders A, B, C

and D are as follows:

A := A1 ×lex ω + A2 ×lex ω + A3 ×lex ω ∼= ω · 3;

B := A4 ×lex ω
? + A5 ×lex ω ∼= ω? + ω = ζ;

C := A6 ×lex ω
? + A7 ×lex ω ∼= ω? + ω = ζ;

D := A8 ×lex ω
? ∼= ω?.

J
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A (∼= ω · 3)

B

(∼= ζ)

C (∼= ζ)

D (∼= ω?)

T : T ×f L:

Figure 3.2: The f -product of T with L (see Example 3.28).

Proposition 3.29 Let T be a tree, let L be a class of linear orders, and let

f : T → L be a function. Then T ×f L is a tree.

Proof Let (a, b) ∈ |T ×f L|. Since T and f(a) are both irreflexive then

a 6<T a and b 6<f(a) b. Hence (a, b) 6< (a, b). This shows that T ×f L is

irreflexive.

Next let (a1, b1), (a2, b2), (a3, b3) ∈ |T ×f L| with (a1, b1) < (a2, b2) and

(a2, b2) < (a3, b3). Then either a1 <T a2 or both a1 = a2 and b1 <f(a1) b2,

and either a2 <T a3 or both a2 = a3 and b2 <f(a2) b3. We have the following

possibilities:

a2 <T a3 a2 = a3, b2 <f(a2) b3

a1 <T a2 a1 <T a3 a1 <T a3

a1 = a2, b1 <f(a1) b2 a1 <T a3 a1 = a3, b1 <f(a1) b3
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In each case we get (a1, b1) < (a3, b3). It follows that T ×f L is transitive.

To show that T ×f L is subtotal, let (a1, b1), (a2, b2), (a3, b3) ∈ |T ×f L|
with (a1, b1), (a2, b2) < (a3, b3). Then either a1 <T a3 or both a1 = a3 and

b1 <f(a1) b3, and either a2 <T a3 or both a2 = a3 and b2 <f(a2) b3. We have

the following possibilities:

a2 <T a3 a2 = a3, b2 <f(a2) b3

a1 <T a3 a1 ^T a2 a1 <T a2

a1 = a3, b1 <f(a1) b3 a2 <T a1 a1 = a2, b1 ^f(a1) b2

Again in each case we get (a1, b1) ^ (a2, b2), and it follows that T ×f L is

subtotal.

Finally let (a1, b1), (a2, b2) ∈ |T ×f L|. Since T is connected then there

exists a3 ∈ T such that a3 6T a1, a2. Let b3 be any element in f(a3) such

that, if a3 = a1 then b3 6f(a1) b1, and if a3 = a2 then b3 6f(a2) b2. Then

(a3, b3) 6 (a1, b1), (a2, b2). It follows that T ×f L is connected. qed

Proposition 3.30 Let T be a tree. Let [T ] be the condensation of T and let

L := {[x] : x ∈ T} be the class of linear orders consisting of all the maximal

bridges in T . Let f : [T ]→ L be given by f([x]) = [x]. Then T ∼= [T ]×f L.

Proof Verify that the map x 7→ ([x], x) defines an isomorphism from T to

[T ]×f L. qed

Corollary 3.31 Every tree can be expressed in the form T ×f L for T a

condensed tree, L a class of linear orders, and f : T → L a function.

Proof From Proposition 3.30 and the fact that [T ] is condensed for every

tree T . qed

Lemma 3.32 Let T be a tree, let L be a class of linear orders, and let

f : T → L be a function. Let A ⊆ T and define B :=
⋃
x∈A ({x} × f(x)).

(i) A is total in T if and only if B is total in T ×f L.

(ii) A is convex (respectively downwards convex, upwards convex) in T

if and only if B is convex (respectively downwards convex, upwards

convex) in T ×f L.



CHAPTER 3. GENERAL THEORY OF TREES 28

It follows that A is a segment (respectively stem, branch) in T if and only if

B is a segment (respectively stem, branch) in T ×f L.

Proof (i) Straightforward.

(ii) Assume A is convex in T . Let (a1, b1), (a2, b2) ∈ B and let (a3, b3) ∈
|T ×f L| with (a1, b1) < (a3, b3) < (a2, b2). There are four possibilites which

are tabulated below:

a3 <T a2 a3 = a2, b3 <f(a3) b2

a1 <T a3 a3 ∈ A a3 ∈ A
a1 = a3, b1 <f(a1) b3 a3 ∈ A a3 ∈ A

In each case the fact that a3 ∈ A means that (a3, b3) ∈ B so B is convex in

T ×f L.

It is straightforward to see that A is convex in T when B is convex in

T ×f L.

The argument to show that downwards convexivity and upwards convex-

ivity is preserved between A and B is similar. qed

Lemma 3.33 Let T be a tree, let L be a class of linear orders, and let

f : T → L be a function. Let A ⊆ T and define B :=
⋃
x∈A ({x} × f(x)).

(i) A is a bridge in T if and only if B is a bridge in T ×f L.

(ii) A is a maximal bridge in T if and only if B is a maximal bridge in

T ×f L.

(iii) Every maximal bridge in T ×f L has the form
⋃
x∈X ({x} × f(x)) for

some maximal bridge X ⊆ T .

Proof (i) We know from Lemma 3.32 that A is a segment in T if and only

if B is a segment in T ×f L.

Assume A is a bridge in T . In order to show that B is a bridge in T ×f L
it suffices, by Proposition 3.14, to show that for every (a1, b1), (a2, b2) ∈ B

and (x, y) ∈ |T ×f L|, (x, y) ^ (a1, b1) if and only if (x, y) ^ (a1, b1). Hence

let (a1, b1), (a2, b2) ∈ B, say with (a1, b1) < (a2, b2), and let (x, y) ∈ |T ×f L|.
Suppose (x, y) ^ (a1, b1). We consider two cases:

Case 1: a1 = a2. If x 6= a1 then it is immediate that (x, y) ^ (a2, b2),

while if x = a1 then it follows that (x, y) ^ (a2, b2) from the fact that f(a1)

is a linear order.
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Case 2: a1 6= a2. Then a1 <T a2. If x = a1 then clearly (x, y) ^ (a2, b2)

while if x = a2 then (x, y) ^ (a2, b2) from the fact that f(a2) is a linear

order. If x 6= a1, a2 then since x ^T a1 and A is a bridge in T , x ^T a2

giving (x, y) ^ (a2, b2).

In each of the above cases we get that (x, y) ^ (a2, b2). An identical

argument shows that if (x, y) ^ (a2, b2) then (x, y) ^ (a1, b1). Hence B is a

bridge in T ×f L.

It is straightforward to see that if B is a bridge in T ×f L then A is a

bridge in T .

(ii) Follows from (i).

(iii) Let C ⊆ |T ×f L| be a maximal bridge with (a, b) ∈ C. Since [a] is

a maximal bridge in T then from (ii) we know that
⋃
x∈[a] ({x} × f(x)) is a

maximal bridge in T ×f L. Since (a, b) ∈
⋃
x∈[a] ({x} × f(x)) then it follows

that C =
⋃
x∈[a] ({x} × f(x)). qed

Corollary 3.34 Let T be a condensed tree, let L be a class of linear orders,

and let f : T → L be a function. For every x ∈ T , the set {x} × f(x) is a

maximal bridge in T ×f L, and every maximal bridge in T ×f L has the form

{x} × f(x) for some x ∈ T .

Proof From Proposition 3.25 and Lemma 3.33. qed

Proposition 3.35 Let T be a condensed tree, let L be a class of linear

orders, and let f : T → L be a function. The function g : [T ×f L] → T

defined as g([(x, y)]) = x for every [(x, y)] ∈ [T ×f L] is an isomorphism.

Proof Let [(a1, b1)], [(a2, b2)] ∈ [T ×f L] with [(a1, b1)] 6= [(a2, b2)]. Then

a1 6= a2 since by Corollary 3.34, {a1} × f(a1) and {a2} × f(a2) are maximal

bridges in T ×f L. Hence g([(a1, b1)]) = a1 6= a2 = g([(a2, b2)]) and so g is

injective.

Next let a ∈ T and b ∈ f(a). Then g([(a, b)]) = a hence g is surjective.

Finally, for [(a1, b1)], [(a2, b2)] ∈ [T ×f L], note that

g([(a1, b1)]) <T g([(a2, b2)]) ⇔ a1 <T a2

⇔ (a1, b1) < (a2, b2) and a1 6= a2

⇔ [(a1, b1)] < [(a2, b2)]

(from Proposition 3.12

and Corollary 3.34).
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Hence g is an isomorphism. qed



Chapter 4

Some important classes of trees

In this chapter we investigate some important classes of trees starting with

well-founded trees in Section 4.1 (Well-founded trees). We then move to

finitely branching trees in Section 4.2 (Finitely branching trees). The notion

of finite branching is usually studied in the context of trees which are well-

founded and discrete and admits problematic cases when applied to trees

which are not well-founded or discrete. We introduce a notion of finite

branching which appears to be consistent with the intuitive understanding

of finite branching and generalises well to trees which are not well-founded

or discrete. In Section 4.3 (Trees associated with a class of linear orders) we

introduce eight classes of trees determined by how the paths in those trees

relate to the linear orders in some class C of linear orders and we completely

establish the set-theoretical relationships between these eight classes of trees.

4.1 Well-founded trees

Let (A;<) be a partial order. An element a ∈ A is called the least element

of A if a 6 x for all x ∈ A. The element a is called a minimal element in

A if there exists no element x ∈ A for which x < a.

Definition 4.1 A linear order L is called well-ordered when every non-

empty subset of L contains a least element. A tree T is called well-founded

when every non-empty set of nodes from T contains a minimal node.

Proposition 4.2 Let T be a tree. Then T is well-founded if and only if

every path in T is well-ordered.

31
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Proof ⇒ Immediate.

⇐ Suppose T is not well-founded. Let {ai}i∈N be an infinite strictly

descending chain in T . Then {ai}i∈N can be extended to a path A which is

not well-ordered. qed

Proposition 4.3 Let T be a well-founded tree. Then T is upwards discrete.

Proof Assume T is well-founded. Let A be a path in T and let a ∈ A with

a not a leaf. Define B := {x ∈ A : x > a}. Then B contains a minimal

node b and b will be an immediate successor to a in A. Hence T is upwards

discrete. qed

Let T be a well-founded tree. For a non-empty segment A in T , let

S(A) be the set of minimal nodes in A<. Hence S(A) represents the set of

immediate successors to A. The level of a node a ∈ T , denoted l(a), is the

order type of the set a>. The node a is called a successor node when l(a)

is a successor ordinal. The node a is called a limit node when l(a) is a limit

ordinal. The supremum of the set {l(x) + 1 : x ∈ T} is called the height of

T .

The following describes a naming convention for refering to nodes and

paths in a well-founded tree T . For every stem X ⊆ T , let IX be a set such

that |S(X)| 6 |IX |, and let fX : S(X) → IX be an injective function. We

assign labels `(x) to nodes x in T as follows:

(i) The root of T is given the label (0).

(ii) If a is a successor node, let b be the node for which a ∈ S(b) and suppose

b has as its label the sequence b̄ of length γ. Then a is assigned as label

the sequence (b̄, fa>(a)) of length γ + 1.

(iii) If a is a limit node then a is assigned as label the sequence γ of length

l(a) + 1 which is defined as follows. For every node b with b < a, `(b)

is the initial subsequence of γ of length l(b) + 1. The last entry in γ is

fa>(a).

We can impose an order <L on labels by specifying that, for any two la-

bels `(x) and `(y) obtained from T , `(x) <L `(y) when `(x) is an initial

subsequence of `(y). Then if L is the set of all labels obtained from T , the

structures (L;<L) and (T ;<) are isomorphic under the function which maps

nodes in T to their respective labels in L.
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We can assign labels `(X) to paths X in T as follows. Let A be a path in

T and suppose A has order type α. Then A is assigned as label the sequence

γ of length α defined by the property that for every node b ∈ A, `(b) is the

initial subsequence of γ of length l(b) + 1.

Example 4.4 Let T be a binary tree of which every path is isomorphic with

ω. Clearly T contains ℵ0 many nodes. For every node x in T , let Ix> = {0, 1}
and, if y and z are the immediate successors to x with y located to the left

of z as T is depicted in Figure 4.1, define fx>(y) := 0 and fx>(z) := 1. This

gives a labeling of the nodes in T .

Under this labeling, every path in T has a binary sequence (0, x1, x2, . . .)

of length ω as its label, corresponding to the real number with binary repre-

sentation (0.x1x2 · · · )2. Hence T contains 2ℵ0 many paths. For ai = 0, note

that

(0, a1, . . . , ai, 1, 1, 1, . . .) 6= (0, a1, . . . , ai−1, 1, 0, 0, 0, . . .)

but

(0.a1 · · · ai111 · · · )2 = (0.a1 · · · ai−11000 · · · )2.

Hence the function which maps labels of paths in T to their corresponding

binary numbers in the interval [0, 1] is surjective but not injective.

r
r r

r r r raa
a

a a
a

a aa
a

(0)

(0, 0) (0, 1)

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1)

Figure 4.1: A labeling of the tree described in Example 4.4.

4.2 Finitely branching trees

The concept of finite branching of trees is studied in [27] and [10]. The

definitions used for finite branching in these two texts are roughly equivalent.

Here we will make use of a slightly broader notion of finite branching.



CHAPTER 4. SOME IMPORTANT CLASSES OF TREES 34

4.2.1 Definition of bounded branching

The notation X 6p Y indicates that for every y ∈ Y , there exists x ∈ X

such that x 6 y.

Definition 4.5 For n ∈ N, a tree T is called n-branching from the stem

A when, for every antichain X in T with A < X, there exists a set LX in T

with |LX | 6 n and such that A < LX 6p X.

T is called finitely branching from A if it is n-branching from A for

some n, and infinitely branching from A when it is not finitely branching

from A.

T is called n-branching when it is n-branching from each of its stems,

and boundedly branching when it is n-branching for some n. T is called

finitely branching when it is finitely branching from each of its stems.

We can also view a tree as being n-branching, finitely branching or in-

finitely branching from one of its nodes x by considering whether it is n-

branching, finitely branching or infinitely branching from the stem x>.

Clearly if a tree T is n-branching from a stem A, then T will be m-

branching from A for all m with m > n. The notion of n-branching also

applies to the empty stem, and if A is a path in T then Definition 4.5 yields

that T is 0-branching from A.

For n ∈ N, an upwards discrete tree is called n-ary when every node in

that tree has exactly n immediate successors. A 2-ary tree is called simply a

binary tree.

Example 4.6 (a) Consider the tree T obtained by taking the order type of

the rationals η and at every positive number in η, we attach another copy of

η (see Figure 4.2). Then T is infinitely branching from the node 0 located in

the copy of η with which we started.

(b) Consider the tree T obtained by taking the order ω+ ζ, and at every

node in the copy of ζ, we attach a copy of the order ω (see Figure 4.3). Then

T is infinitely branching from the stem consisting of the natural numbers in

the copy of ω in the path ω + ζ.

Proposition 4.7 Let T be a well-founded tree and let A be a stem in T .

Then T is n-branching from A if and only if |S(A)| 6 n.
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Figure 4.2: Depiction of the non-

finitely branching tree described in

Example 4.6(a).
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Figure 4.3: Depiction of the non-

finitely branching tree described in

Example 4.6(b).

Proof Let T be n-branching from A and note that S(A) is an antichain.

Hence there exists L with |L| 6 n and such that A < L 6p S(A). It follows

that S(A) ⊆ L hence |S(A)| 6 n.

Conversely assume |S(A)| 6 n and let G be an antichain with A < G.

Let a ∈ G and define B := {x : A < x 6 a}. Since T is well-founded then B

contains a least node b. From the definition of S(A) this gives b ∈ S(A) and

it follows that A < S(A) 6p G. Hence T is n-branching from A. qed

Definition 4.8 Let T be a tree and let A ⊆ T and B ⊆ T with B ⊆ A.

Then B is said to span A when, for every x ∈ A, there exists y ∈ B such

that y ^ x.

Proposition 4.9 Let T be a tree and let A be a stem in T . Then T is

n-branching from A if and only if there exists H ⊆ A< with |H| 6 n and

such that H spans A<.

Proof Suppose T is n-branching from A. Let G be a maximal antichain in

A< and let L be a set of nodes with |L| 6 n and such that A < L 6p G. Let

a ∈ A<. Then there exists b ∈ G such that b ^ a, and there exists c ∈ L
such that c ≤ b. It follows that c ^ a hence L spans A<.

Conversely, suppose H spans A< for some H ⊆ A< with |H| 6 n, and let

G be an antichain in A<. Then for every x ∈ G, there exists bx ∈ H such
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that bx ^ x. Take cx := min{x, bx} and let L := {cx : x ∈ G}. Then L

satisfies the condition A < L 6p G. Moreover |L| 6 n, for if |L| > n then

from the fact that |H| 6 n, there must exist x, y ∈ G with x 6= y, and b ∈ H
with b ^ x and b ^ y, such that cx = min{x, b} and cy = min{y, b} but

with cx 6= cy. Since G is an antichain this leads to a contradiction. Hence T

is n-branching from A. qed

4.2.2 Other notions of finite branching

We will now introduce the notions of finite branching used in [27] and [10]

and show that the notion of finite branching used in this text admits a smaller

class of trees than the notions of finite branching used in [27] and [10].

Let T be a tree and let C be a path in T , A a stem in T and B a branch

in T with A,B ⊆ C. If A and B are such that A ∪ B = C and A ∩ B = ∅
then A is called a stem of B and B is called a branch of A.

Two branches which share a stem A are called siblings with stem A.

A pair of siblings are called twins when their intersection is non-empty. A

set of siblings B which share the stem A are called a litter of A when B is

maximal with respect to the property that every two siblings in B are twins.

Remark 4.10 Let T be a tree, let A be a stem in T , and let {Bi}i∈I be the

set of all litters of A. Then the set {
⋃
Bi}i∈I forms a partition of the set A<.

Lemma 4.11 Let T be a tree, let A be a stem in T , and let B be a set of

branches of A. Then B is a litter of A if and only if
⋃
B is a component of

A<.

Proof Immediate. qed

We will make use of the following terminology. Let T be a tree and let

A and B be segments in T . If A < B and the set {x ∈ T : A < x < B} is

empty then B is said to extend A. If B ⊆ A then B is called a subsegment

of A. If B is a subsegment of A and the set {x ∈ A : x < B} is empty, then

B is called an initial subsegment of A.

Lemma 4.12 Let T be a tree and let A be a stem in T . If T is n-branching

from A then A has at most n litters in T .
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Proof Let T be n-branching from the stem A and let {Bi}i∈I be the set

of litters of A. Suppose |I| > n. For every i ∈ I, choose exactly one node

ai from the set
⋃
Bi and define G := {ai : i ∈ I}. Then G constitutes

an antichain so that there exists L with |L| 6 n and A < L 6p G. For

every i ∈ I, the set
⋃
Bi must contain at least one node from L, from which

|L| > n, a contradiction. Hence |I| 6 n. qed

Corollary 4.13 Let T be a tree that is n-branching from the stem A and

let {Bi}i∈I be a set of pairwise disjoint bridges in T which extend A. Then

|I| 6 n.

Proof If Bi and Bj are disjoint bridges which extend A then Bi and Bj are

contained within different litters of A. The result hence follows from Lemma

4.12. qed

The converse of Lemma 4.12 fails. For example, the stem A consisting of

the non-positive rationals in the starting copy of η in the tree described in

Example 4.6(a) has only one litter, but the tree is infinitely branching from

A. Likewise the stem consisting of the elements in the copy of ω in the path

ω + ζ in the tree described in Example 4.6(b) has only one litter, but again

the tree is infinitely branching from this stem. The next result gives a more

complete relationship between the branching behaviour of a stem and the

number of litters of that stem.

Proposition 4.14 Let T be a tree and let A be a stem in T . Then T is

n-branching from A if and only if the following two conditions are satisfied:

(i) A has at most n litters in T .

(ii) If B is a segment that extends A then B has an initial subsegment that

is a bridge.

Proof Let T be n-branching from the stem A. Condition (i) holds by Lemma

4.12. If B is a bridge then condition (ii) holds immediately, so consider the

case where B is a furcation. If B contains a least node a, then the set {a}
forms an initial subsegment of B that is a bridge. Hence consider the case

where B has no least node.

For every path X with ∅ 6= X ∩ B ( B, let aX ∈ X with aX > X ∩ B.

Let G be the set consisting of all these nodes aX and let G0 be a maximal
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antichain in G. Then A < G0 so there exists L with |L| 6 n and A < L 6p

G0. For every x ∈ L, let x− ∈ B be any node such that x− 6 x and put

b := min{x− : x ∈ L}. Then the set {x : A < x < b} is an initial subsegment

of B and a bridge.

Next let A be a stem in T and assume that conditions (i) and (ii) hold.

Let B1, . . . ,Bk be the litters of A and for each i with 1 6 i 6 k, let bi ∈
⋃
Bi

be any node. Then for each i, there exists a bridge Bi which is an initial

subsegment of the segment {x : A < x 6 bi}. For each i, let ai ∈ Bi be any

node and take H := {a1, . . . , ak}. Then H spans A< and since |H| = k 6 n

then T is n-branching from A by Proposition 4.9. qed

Let T be a tree and let a, b ∈ T . Define the set

Tab := {x ∈ T : if y ∈ T with y 6 a, b then y < x}.

Hence Tab = (a> ∩ b>)<.

Proposition 4.15 ([10]) Let T be a tree and let n be a positive natural

number. The following properties are equivalent:

(i) For every x, y ∈ T , the set Txy has at most n components.

(ii) For every stem X in T , X has at most n litters.

Proof For x, y ∈ T define the stem A(x, y) := {z ∈ T : z 6 x, y}. Then

Txy = (A(x, y))< and the result follows from Lemma 4.11. qed

Remark 4.16 Trees are defined in [27] and [10] as being ordered sets which

are irreflexive, transitive and subtotal, which coincides with the notion of

forest as introduced in this text.

Finite branching is defined in [27] as follows. A tree T is n-branching

when, for all x, y ∈ T , the set Txy has at most n components. A tree is

finite-branching when it is n-branching for some n.

Bounded branching is defined in [10] as follows. A tree T is boundedly

branching if there exists n ∈ N such that every stem has at most n litters.

Proposition 4.15 shows that the definition of finite-branching in [27] is

equivalent to the definition of boundedly branching in [10].

Lemma 4.12 together with Example 4.6 show that the notion of finitely

branching introduced in this text is a refinement of the notion of finite branch-

ing used in [27], and of the notion of boundedly branching used in [10]. The
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trees in Example 4.6 would be regarded as finite-branching using the defini-

tion of finite-branching in [27], and boundedly branching using the definition

of boundedly branching in [10]. These trees are not finitely branching in the

sense that we have defined the notion in this text.

4.2.3 Condensations of finitely branching trees

Lemma 4.17 Let T be a finitely branching tree. Then [T ] is well-founded.

Proof Suppose [T ] is not well-founded. Then there exists {bi}i∈N ⊆ [T ]

with bi+1 < bi for all i ∈ N. Let A := {x ∈ [T ] : x < {bi}i∈N} and B := {x ∈
[T ] : A < x 6 b0}. Then [A]−1 is a stem in T and [B]−1 is a segment in T

extending [A]−1. But every initial subsegment of [B]−1 is a furcation. From

Proposition 4.14, it follows that T is infinitely branching from [A]−1. qed

Proposition 4.18 Let T be a tree. Then T is n-branching if and only if [T ]

is well-founded and |S(X)| 6 n for every stem X in [T ].

Proof Let T be n-branching. Then by Lemma 4.17, [T ] is well-founded.

Next let A be a stem in [T ]. Then B := {[x]−1 : x ∈ S(A)} is a set of maximal

bridges (hence pairwise disjoint) which extend [A]−1 in T , so by Corollary

4.13, |B| 6 n hence |S(A)| 6 n.

Conversely, assume that [T ] is well-founded and that |S(X)| 6 n for every

stem X in [T ]. Let A be a stem in T . First consider the case where A ( [A]

and let a ∈ [A]\A. Then the set {a} spans A<. Next consider the case

where A = [A]. Treating [A] as a stem in [T ], for every x ∈ S([A]), let ax be

any node in [x]−1 and put B := {ax : x ∈ S([A])}. Then B spans A< and

|B| 6 n. From Proposition 4.9 we get that T is n-branching from A. qed

4.2.4 Branching behaviour and height of a tree

The branching behaviour and height of well-founded trees are related. The

reader is referred to [20] for a more detailed explanation of the results that

follow. We begin with a well-known result.

König’s Lemma: Let T be a well-founded tree of height ω that is finitely

branching. Then T contains a path which is isomorphic with ω.
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König’s Lemma is a theorem in ZFC but not in ZF. König’s Lemma can

be extended to the following result: if T is a well-founded tree of height ω1

and having the property that the set {x ∈ T : l(x) = α} is finite for every

order type α then T contains a path isomorphic with ω1.

Let κ be an infinite cardinal. A well-founded tree T is called a κ-Aronszajn

tree when

(i) T has height κ, and

(ii) for every order type α, |{x ∈ T : l(x) = α}| < κ, and

(iii) T contains no paths which are isomorphic with κ.

König’s Lemma states that there are no ℵ0-Aronszajn trees. The existence

of ℵ1-Aronszajn trees is a theorem of ZFC. For n ≥ 2 the existence of ℵn-

Aronszajn trees involves large cardinal assumptions.

A well-founded tree T of height ω1 is called a Kurepa tree when

|{x ∈ T : l(x) = α}| < ℵ1 for every order type α and when T contains at

least ℵ2 many paths which are isomorphic with ω1. The existence of Kurepa

trees is undecidable within ZFC.

A well-founded tree T of height ω1 is called a Suslin tree when T does not

contain paths which are isomorphic with ω1 and when T does not contain any

uncountable antichains. Hence a Suslin tree is an ℵ1-Aronszajn tree which

does not contain any uncountable antichains. The existence of Suslin trees

is undecidable within ZFC.

Let R be a complete dense linear order without endpoints and with the

property that every set of pairwise disjoint non-empty open intervals in R is

countable. If R is not isomorphic with λ (the order type of the reals) then

R is called a Suslin line. The existence of Suslin trees is equivalent to the

existence of Suslin lines.

4.3 Trees associated with a class of linear or-

ders

We now introduce several classes of trees which arise naturally from a class

of linear orders. The idea of classifying trees in terms of how their paths are

related to some class of linear orders is also considered in [13].
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4.3.1 Definition of C-classes of trees

Let α be an order type. A path A in a tree T is called an α-path when

A ∼= α. A is called an α-like path when A ≡ α.

Definition 4.19 Let C be a class of linear orders. A tree T is called a:

(i) C-tree when every path X in T is an α-path for some α ∈ C dependent

on X;

(ii) uniformly C-like tree (U-C-like tree) if T ≡ S for some C-tree S;

(iii) C-like tree if, for every n ∈ N, there is a C-tree S such that T ≡n S;

(iv) pathwise uniformly C-like tree (PU-C-like tree) if, for every path

X in T , there exists α ∈ C such that X ≡ α;

(v) pathwise C-like tree (P-C-like tree) if, for every path X in T and for

every n ∈ N, there exists α ∈ C such that X ≡n α;

(vi) definably C-tree (D-C-tree) if every parametrically definable path X

in T is an α-path for some α ∈ C dependent on X;

(vii) definably uniformly C-like tree (DU-C-like tree) if, for every para-

metrically definable path X in T , there exists α ∈ C such that X ≡ α;

(viii) definably C-like tree (D-C-like tree) if, for every parametrically de-

finable path X in T and for every n ∈ N, there exists α ∈ C such that

X ≡n α. Equivalently (since the language of trees has finite signature)

if every parametrically definable path in T is a model of the first-order

theory of C.

If C = {α} then T is simply called an α-tree, a uniformly α-like tree, etc.

The classes described above are collectively referred to as C-classes of trees.

We follow with six examples of trees and classes of linear orders which will

be used as counterexamples in the proof of Theorem 4.26.

Example 4.20 Let Bω+1 be the binary tree of which every path is isomor-

phic to the order type ω + 1. The tree Bω+1 is uncountable. Let T1 be any

countable elementary substructure of Bω+1 (the existence of such T1 follows

from the Downward Löwenheim-Skolem Theorem), and let C1 = {ω+ 1}. T1
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will be a binary tree not containing any finite paths, so every path in T1 will

be either an ω-path or an (ω + 1)-path. Moreover, T1 does actually contain

both ω-paths and (ω + 1)-paths. It follows that T1 can be seen as the result

of having removed an uncountable set of leaves from Bω+1.

T1 will contain paths which are not elementarily equivalent with ω + 1.

In fact, the ω-paths in T1 already fail to be 2-equivalent with ω + 1 since

they satisfy the sentence ∀x∃y (x < y).

Suppose ϕ(x, z̄) defines a path A in T1 with parameters c̄. Then (T1, c̄) |=
πϕ(c̄) and so (Bω+1, c̄) |= πϕ(c̄). Hence ϕ(x, z̄) defines a path in Bω+1 with pa-

rameters c̄ also. Now since every path in Bω+1 is an (ω+1)-path then we get

that (Bω+1, c̄) |= ∃x (leaf(x) ∧ ϕ(x, c̄)) and so (T1, c̄) |= ∃x (leaf(x) ∧ ϕ(x, c̄)).

Hence A will contain a leaf.

Thus every parametrically definably path in T1 will contain a leaf, and

since every path in T1 containing a leaf is parametrically definable using that

leaf as parameter, it follows that the parametrically definable paths in T1 are

precisely its (ω + 1)-paths.

Hence T1 is a uniformly (ω+1)-like tree, and also a definably (ω+1)-tree,

but neither an (ω + 1)-tree, nor a pathwise (ω + 1)-like tree.

Example 4.21 Let T2 be the tree indicated in Figure 4.4 and let C2 = {ω}.
Each of the two paths in T2 are parametrically definable and are elementarily

equivalent with ω. In any ω-tree, every parametrically definable set contains

a minimal node. The set of nodes in T2 defined by the formula

ϕ(x) = ∀y∀z (x < y ∧ x < z → y ^ z)

contains no minimal node. Thus T2 is a definably uniformly ω-like tree, but

not an ω-like tree.

Let σ1 be the sentence

σ1 := ∃uϕ(u)→ ∃u (ϕ(u) ∧ ∀w (w < u→ ¬ϕ(w)))

stating that the set defined by ϕ(x) contains a minimal node, where ϕ(x) is

defined as above. This sentence will be used further.

Example 4.22 Let T3 be the tree indicated in Figure 4.4 and let C3 = {n :

n ∈ N}. Both of the paths in T3 are parametrically definable. It is known

(e.g. [24]) that for every m there exists some sufficiently large n such that

ω + ω? ≡m n. However, ω + ω? 6≡ n for every n. In any definably uniformly
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Figure 4.4: The trees T2 and T3 described in Example 4.21 and Example

4.22.

C3-like tree, the set defined by the formula ϕ(x) from Example 4.21 will

contain a minimal node. However, the subset of T3 defined by ϕ(x) does not

contain a minimal node. Thus T3 is a definably C3-like tree, even a pathwise

C3-like tree, but neither a C3-like tree nor a definable uniformly C3-like tree.

Example 4.23 Let T4 be the linear order ω + ω? and let C4 = {n : n ∈ N}.
Again we note that there exists, for every m, some sufficiently large n such

that ω + ω? ≡m n, but that ω + ω? 6≡ n for every n.

Example 4.24 Let T5 be the binary tree of which every path is an ω-path

and take C5 = {ω + 1}. Note that T5 contains no parametrically definable

paths. Let σ2 be the sentence

σ2 := ∀x∃y (x 6 y ∧ leaf(y)) .

This sentence will be used further.

Example 4.25 Let T6 be the linear order ω + ζ and take C6 = {ω}. It is

known that ω ≡ ω + ζ.

4.3.2 Relationships between C-classes of trees

Theorem 4.26 Let C be a class of linear orders. The set-theoretical in-

clusions and non-inclusions which hold between the C-classes of trees are

presented in Figure 4.5.

Proof To begin with the inclusions, we will show that the class of C-like trees

is contained in the class of D-C-like trees. The argument to show that the

class of U-C-like trees is contained in the class of DU-C-like trees is similar.

The remaining inclusions are easy to verify.
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Let T be a C-like tree and let A be a path in T defined in (T ; c̄)

by the formula ϕ(x, c̄) for some tuple of nodes c̄ from T . Suppose that

A has n-characteristic τ . Then T |= πϕ(c̄/z̄) and T |= τϕ(c̄/z̄) hence

T |= ∃z̄ (πϕ(z̄) ∧ τϕ(z̄)).1 Since T is a C-like tree then there exists a C-
tree S for which S |= ∃z̄ (πϕ(z̄) ∧ τϕ(z̄)). Thus ϕ(x, d̄) defines a path B in

(S; d̄) for some tuple of nodes d̄ from S and B |= τ . But B is isomorphic

with some linear order C in C and so A ≡n C. It follows that T is a D-C-like

tree.

As an example of a non-inclusion demonstrated by a counterexample, we

show that the class of P-C-like trees is not always included in the class of

C-like trees. Note that the tree T2 from Example 4.21 is a P-C2-like tree, but

not a C2-like tree, where C2 is the class of linear orders defined in Example

4.21. This is because every C2-like tree must satisfy the sentence σ1 defined

in Example 4.21, while T2 does not satisfy σ1. Hence the class of P-C2-like

trees is not contained in the class of C2-like trees.

As an example of a non-inclusion obtained through transitive completion

in Figure 4.5, consider the claim that the class of P-C-like trees is not gen-

erally a subclass of the class of PU-C-like trees. If, to the contrary, the class

of P-C-like trees were a subclass of the class of PU-C-like trees for all classes

of linear orders C, then since the class of PU-C-like trees is also a subclass

of the class of DU-C-like trees for all classes C, we would get that the class

of P-C-like trees is a subclass of the class of DU-C-like trees for all classes C.
But this contradicts the fact that the tree T4 from Example 4.23 is a P-C4-like

tree, where C4 is defined in Example 4.23, but T4 is not a DU-C4-like tree.

This establishes the non-inclusion.

The remaining non-inclusions are easily verified. qed

Proposition 4.27 Let C consist of a single linear order. In addition to

the set-theoretical inclusions which have been shown to hold between the

C-classes of trees in Theorem 4.26, the following inclusions also hold:

(i) the class of P-C-like trees ⊆ the class of PU-C-like trees;

(ii) the class of D-C-like trees ⊆ the class of DU-C-like trees.

Consequently

(iii) the class of C-like trees ⊆ the class of DU-C-like trees;

1The formula πϕ is defined in Section 5.4.1.
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(iv) the class of P-C-like trees ⊆ the class of DU-C-like trees.

Proof Routine. qed
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Figure 4.5: Relationships between the C-classes of trees (see Theorem 4.26).

Inclusions X ⊆ Y are denoted as X → Y . Non-inclusions are indicated

by specifying a counterexample drawn from Examples 4.20 - 4.25 or, when

obtained through transitive completion of the diagram, by ×. There are no

downwards directed inclusions between any of the classes.



Chapter 5

First-order definability and

trees

We now shift our focus to the first-order theories of trees. In this chapter

we investigate the first-order definability of particular sets of nodes within a

tree. In Section 5.3 (Nodes) we show in the relevant trees that the expressive

power of nodes increases with the height of those nodes. We also introduce

neighbourhoods of nodes which can be useful for imposing properties which

are locally true on a tree. In Section 5.4 (Paths) we investigate paths which

are parametrically definable and shed some light on some of the reasons

why it may happen that a path is not parametrically definable. We also

show in the relevant trees that if a path is parametrically definable then

it can be defined using a node lying high up on the path. The remainder

of the chapter looks at elementary equivalence between trees obtained from

one another by substitution of a subtree in Section 5.5 (Subtrees) and by

constructions involving condensations in Section 5.6 (Condensations).

5.1 Ehrenfeucht-Fräıssé games on trees

The Ehrenfeucht-Fräıssé game of length n on a pair of structures A and B

will be denoted as EFn(A,B). The situation where Player II has a winning

strategy for this game will be denoted as IIn(A,B). For more information

on Ehrenfeucht-Fräıssé games the reader is referred to [6]. The paper [33]

investigates Ehrenfeucht-Fräıssé games played specifically on trees.

46
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For T a tree and x ∈ T , define the set

C(x) := T \x<

consisting of all nodes y in T such that y 6 x or y is incomparable with x.

The set C(x) will also be treated as a substructure of T .

The following is a well known result in the study of linear orders.

Proposition 5.1 (Splitting Lemma) ([24, Theorem 6.6]) Let L1 and L2

be linear orders. Then IIn+1(L1, L2) if and only if the following two conditions

are satisfied:

(i) for every a ∈ L1, there exists b ∈ L2 such that IIn(a>, b>) and

IIn(a<, b<);

(ii) for every b ∈ L2, there exists a ∈ L1 such that IIn(a>, b>) and

IIn(a<, b<).

Proof By induction on n. qed

This result generalises as follows to trees.

Proposition 5.2 Let T1 and T2 be trees. Then IIn+1(T1, T2) if and only if

the following two conditions are satisfied:

(i) for every a ∈ T1, there exists b ∈ T2 such that IIn((C(a); a) , (C(b); b))

and IIn(a<, b<);

(ii) for every b ∈ T2, there exists a ∈ T1 such that IIn((C(a); a) , (C(b); b))

and IIn(a<, b<).

Proof Let σ be a winning strategy for Player II for the game EFn+1(T1, T2).

Let a ∈ T1 and suppose the response of Player II in the game EFn+1(T1, T2),

using the strategy σ, where Player I chooses the node a ∈ T1 for his

first move, is the node b ∈ T2. Then IIn((T1; a) , (T2; b)). In particular,

IIn((C(a); a) , (C(b); b)) and IIn(a<, b<). This proves condition (i). The proof

of condition (ii) is similar.

Next assume that the conditions (i) and (ii) hold. We outline a winning

strategy for Player II for the game EFn+1(T1, T2). For his first move, suppose

Player I chooses the node a1 ∈ T1. According to condition (i), there exists
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b1 ∈ T2 such that IIn((C(a1); a1) , (C(b1); b1)) and IIn((a1)<, (b1)<). Player

II then responds by choosing the node b1 ∈ T2 for her first move.

Let σ1 and σ2 be winning strategies for Player II for the games

EFn((C(a1); a1) , (C(b1); b1)) and EFn((a1)<, (b1)<) respectively. Then Player

II plays her remaining n moves according to the strategies σ1 and σ2 as fol-

lows.

When Player I chooses for his i-th move the node ai ∈ C(a1) ⊆ T1

(respectively bi ∈ C(b1) ⊆ T2) then Player II responds with the node bi ∈
C(b1) ⊆ T2 (respectively ai ∈ C(a1) ⊆ T1) using the strategy σ1 and based

on the nodes that have already been played in C(a1) and C(b1).

And when Player I chooses for his i-th move the node ai ∈ (a1)< ⊆ T1

(respectively bi ∈ (b1)< ⊆ T2) then Player II responds with the node bi ∈
(b1)< ⊆ T2 (respectively ai ∈ (a1)< ⊆ T1) using the strategy σ2 and based on

the nodes that have already been played in (a1)< and (b1)<.

The case where Player I begins the game by choosing the node b1 ∈ T2 is

handled analogously using condition (ii) instead. qed

5.2 First-order definition of trees

The class of forests can be defined using the following first-order sentences:

Ir : ∀x (x 6< x);

Tr : ∀x∀y∀z (x < y ∧ y < z → x < z);

ST : ∀x∀y∀z (y < x ∧ z < x→ y ^ z).

Adding the sentence

Co : ∀x∀y∃z (z 6 x ∧ z 6 y)

gives a first-order definition of the class of trees. The class of all linear orders

can be first-order defined using the sentences Ir and Tr, together with the

sentence

To : ∀x∀y (x ^ y).

The set of sentences consisting of Ir, Tr and ST, which define the class of

forests, is denoted as AF, while the set of sentences AF ∪ {Co}, which defines

the class of trees, is denoted as AT. The set of sentences consisting of Ir, Tr

and To, which defines the class of linear orders, is denoted as AL.



CHAPTER 5. FIRST-ORDER DEFINABILITY AND TREES 49

5.3 Nodes

5.3.1 Some definable nodes

Roots and leaves can be defined using the respective formulas

root(x) := ∀y (x 6 y) ,

leaf(x) := ∀y (x 6 y → x = y) .

It is known (see [24] and also Section 7.1 below) that for every ordinal

α with α < ωω, there exists a first-order sentence Φα which axiomatises the

first-order theory of α, and Φα ≡ Φβ if and only if α = β. Hence the set of

nodes in a well-founded tree T having level α with α < ωω can be defined

using the formula

levelα(x) := Φ<x
α .

The next result shows that in well-founded trees T of height less than ωω,

the ability of nodes to define subsets of T improves with the level of those

nodes.

Proposition 5.3 Let T be a well-founded tree of height less than ωω. Let

A be a set of nodes in T definable using the formula ϕ(x, z̄) with parameters

c̄ from T substituted for z̄, where z̄ = (z1, . . . , zk) and c̄ = (c1, . . . , ck). For

every i, let di ∈ T with ci 6 di. Then there is a formula ψ(x, z̄) which defines

A with the parameters d̄ substituted for z̄, where d̄ = (d1, . . . , dk).

Proof For every i, suppose ci has level αi. Then ci can be defined in T using

the formula γi(y, z) := y 6 z ∧ levelαi(y) with the parameter di substituted

for z. Hence take

ψ(x, z̄) := ∀y1 . . . ∀yk

(
k∧
i=1

γi(yi, zi)→ ϕ(x, y1, . . . , yk)

)
.

qed

In particular, in well-founded trees of height less than ωω satisfying the prop-

erty

Do : ∀x∃y (leaf(y) ∧ x 6 y)

every parametrically definable set of nodes can be defined using leaves as

parameters. The sentence Do states that every node is dominated by a leaf.
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5.3.2 Neighbourhoods of nodes

Define the formulas

d0(x, y) := x = y,

d1(x, y) := s(x, y) ∨ s(y, x),

and for k > 2,

dk(x, y) := ∃z1 · · · ∃zk−1

(∧
i 6=j

zi 6= zj ∧ d1(x, z1) ∧
k−2∧
i=1

d1(zi, zi+1) ∧ d1(zk−1, y)

)
.

Let T be a tree and let a, b ∈ T . For k > 2, T |= dk(a/x, b/y) if and only

if a and b can be reached from one another by traversing exactly k− 1 nodes

along the order relation of T . It is easy to see that there is at most one value

of k for which T |= dk(a/x, b/y).

Let F be any set of nodes in T with the property that, for all u, v ∈ F ,

T |= dk(u/x, v/y) for some natural number k. For u, v ∈ F define ρF (u, v)

to be the unique natural number k for which T |= dk(u/x, v/y). Then ρF :

F 2 → R forms a metric on the set of nodes F . In particular, if T is an ω-tree

then ρT forms a metric on the entire set of nodes in T .

For k > 0 define the formula

rk(x, y) :=
k∨
i=0

dk(x, y).

For every a ∈ T we define the neighbourhood of a of radius k as the set

Nk(a) := {v ∈ T : T |= rk(a/x, v/y)}.

For a ∈ T and G := {v ∈ T : T |= di(a/x, v/y) for some i ∈ N} it is clear

that Nk(a) = {v ∈ T : ρG(a, v) 6 k}.

5.4 Paths

5.4.1 Path-defining formulas

For k ∈ N and ϕ(x, z̄) any formula with z̄ = (z1, . . . , zk), define the formula

πϕ(z̄) := ∃xϕ(x, z̄) ∧ ∀x∀y (ϕ(x, z̄) ∧ ϕ(y, z̄)→ x ^ y) ∧
∀x∀y (x < y ∧ ϕ(y, z̄)→ ϕ(x, z̄)) ∧ ¬∃x∀y (ϕ(y, z̄)→ y < x) . (5.1)
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If k = 0 then πϕ becomes a sentence. Moreover, it is clear that if ϕ has

quantifier rank n then πϕ has quantifier rank n+ 2.

The formula πϕ formalises the claim that the formula ϕ defines a path.

Proposition 5.4 Let T be a tree and let c̄ be a k-tuple of nodes from T . The

formula ϕ(x, z̄) (with z̄ = (z1, . . . , zk)) defines a path in T with parameters

c̄ substituted for z̄ if and only if T |= πϕ(c̄/z̄).

Proof Define A := {u ∈ T : (T ; c̄) |= ϕ(u/x, c̄)}.
If A is a path then it is straightforward to see that each of the four

conjuncts in (5.1) hold true in T with c̄ substituted for z̄.

Next assume that T |= πϕ(c̄/z̄). From the first conjunct in (5.1), A is

non-empty. From the second conjunct in (5.1), A is total.

Let B ⊆ T be total and with A ⊆ B. Let b ∈ B. By the fourth conjunct

in (5.1), there exists a ∈ A with b 6 a. The third conjunct in (5.1) then

gives that b ∈ A. Hence A = B. It follows that A is maximal total, hence A

is a path. qed

It follows that if T1 and T2 are trees with T1 ≡ T2 then a formula ϕ defines

a path in T1 if and only if ϕ defines a path in T2.

Proposition 5.5 Let T be a finitely branching tree which is well-founded

and in which every node has finite level. Let A be a path in T definable using

parameters c̄ = (c1, . . . , ck). Then there exists d ∈ A such that A is definable

using only d as parameter.

Proof We first show that the parameter ck can be replaced with a parameter

dk from A itself. Hence let ϕ(x, z̄) define A in T with c̄ substituted for z̄,

where z̄ = (z1, . . . , zk). Suppose ϕ has quantifier rank n and that ck has level

lk. Let

B :=
{
u ∈ T : T |= J(T ; c̄)Kn+2(c1/x1, . . . , ck−1/xk−1, u/xk)

and u has level lk

}
.

From the fact that T is finitely branching and that every node in T has finite

level it follows that B is finite. B can be defined in T using the formula

ξ(x, z1, . . . , zk−1) := J(T ; c̄)Kn+2(z1, . . . , zk−1, x) ∧ level lk(x)

with parameters c1, . . . , ck−1 substituted for z1, . . . , zk−1.
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Since (T ; c̄) |= πϕ(c̄) and (T ; c1, . . . , ck) ≡n+2 (T ; c1, . . . , ck−1, u) for every

u ∈ B then ϕ defines a path in T with c1, . . . , ck−1, u substituted for z1, . . . , zk.

Hence the formula

ζ(x, z1, . . . , zk−1) := ∃y (ξ(y, z1, . . . , zk−1) ∧ ϕ(x, z1, . . . , zk−1, y))

defines a downwards convex subtree T0 of T with the parameters c1, . . . , ck−1

substituted for z1, . . . , zk−1 and where T0 contains only finitely many paths,

amongst which is the path A.

Choose any dk ∈ A such that dk does not belong to any path in T0 other

than the path A. Then A can be defined in T using the formula

χ(x, z̄) := ζ(x, z1, . . . , zk−1) ∧ x ^ zk

with the parameters c1, . . . , ck−1, dk substituted for z1, . . . , zk. Hence we have

succeeded in replacing the parameter ck with a parameter dk from A.

Repeating this procedure for the parameters ck−1, . . . , c1, we eventually

obtain nodes d1, . . . , dk ∈ A and a formula χ′(x, z1, . . . , zk) which defines A in

T with the parameters d1, . . . , dk substituted for z1, . . . , zk. Suppose without

loss of generality that di 6 d1 for every i (i > 2) and that the level of di is

mi. Then di can be defined in T using the formula xi 6 z ∧ levelmi(xi) with

the parameter d1 substituted for z. It follows that A can be defined in T

using the formula

ψ(x, z) := ∀z2 . . . ∀zk

(
k∧
i=2

(
zi 6 z ∧ levelmi(zi)

)
→ χ′(x, z, z2, . . . , zk)

)

with d1 substituted for z. Hence take d = d1. qed

Lemma 5.6 Let T be a tree and let A be a path in T that is not paramet-

rically definable.

(i) For every a ∈ A and n ∈ N, there exists b ∈ A and c ∈ T\A with

b, c > a and such that b6 ≡n c6.

(ii) For every a ∈ A and n ∈ N, there exists b ∈ A and c ∈ T\A with

b, c > a and such that C(b) ≡n C(c).

Proof (i) Let a ∈ A and n ∈ N but suppose to the contrary that u6 6≡n v6
for every u ∈ A and for every v ∈ T\A with u, v > a. Let τ1, . . . , τm be
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all n-characteristics of empty tuples over the language of ordered sets. Let

U := {i : u6 |= τi for some u ∈ A with u > a}. Then for every u satisfying

u > a, we have that u6 |= τi for some i ∈ U if and only if u ∈ A. But then

A can be defined in T using the formula

ϕ(x, z) := x < z ∨ x > z ∧

(∨
i∈U

τ≥xi

)
with the parameter a substituted for z, a contradiction.

(ii) Note that for every d ∈ T , the subtree C(d) of T can be defined in

T using the formula

θ(w, y) := ¬ (y < w)

with the parameter d substituted for y. The proof is then similar to that of

part (i). qed

5.4.2 Singular and emergent paths

Definition 5.7 Let T be a tree and let A be a path in T . A is called

singular if there exists a ∈ A such that a6 is total. Otherwise the path A is

called emergent. If B is a set of paths in T with A 6∈ B and with A ⊆
⋃
B

then A is said to emerge from B.

For a more detailed analysis of singular and emergent paths, the reader

is referred to [13].

Example 5.8 Let T be the tree obtained by taking the linear order A := ω

and at each point in A, we adjoin a copy of ω (see Figure 5.1). Thus every

path in T is isomorphic with ω. The path A is an emergent path, while every

other path in T is singular.

It is immediate that every path containing a leaf must be singular.

Proposition 5.9 Let T be a tree and let A be a singular path in T . Then

A is parametrically definable.

Proof Let a ∈ A such that a6 is total. Then A can be defined in T using

the formula

ϕ(x, z) := x ^ z

with the parameter a substituted for z. qed
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Figure 5.1: Singular and emergent

paths (see Example 5.8).
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Figure 5.2: The formula pn (see

Example 5.12(a)).

Proposition 5.10 Let T be a tree satisfying the sentence Do. Every path in

T which is not parametrically definable emerges from a set of parametrically

definable paths from T .

Proof Let A be a path in T which is not parametrically definable. For every

x ∈ A there exists a leaf ax with ax 6∈ A. Let B := {(ax)> : x ∈ A}. Then B
is a set of parametrically definable paths and A emerges from B. qed

The notion of an emergent path can be further refined as follows. For every

n ∈ N+, define the formula1

pn(x) := ∀y1 . . . ∀yn

(
x 6 y1 6 y2 6 . . . 6 yn → β(x, y1) ∨

n−1∨
i=1

β(yi, yi+1)

)
.

For T a tree and a ∈ T we have that T |= pn(a/x) if and only if any strictly

ascending sequence of maximal bridges starting with the maximal bridge

[a] consists of at most n maximal bridges. Note that if T |= pn(a/x) then

T |= pm(a/x) for all m with m > n.

Definition 5.11 Let T be a tree and let A be a path in T . Then A is called

a peripheral path if there exists a ∈ A and n ∈ N+ such that, for every

u ∈ a6\A, we have T |= pn(u/x). Otherwise A is called an internal path.

1Recall that the formula β(x, y), defined on p. 21, states that x and y belong to the

same maximal bridge.
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Intuitively a path A in a tree T is peripheral when for some n ∈ N+,

nodes high up in A can be reached from the top-end of the tree by traversing

at most n maximal bridges along paths which branch off from A.

Example 5.12 (a) The tree depicted in Figure 5.2 shows the maximal

bridges where which the formula pn (n = 1, 2, 3) holds for nodes in those

bridges.

(b) The emergent path A in the tree depicted in Figure 5.1 is a peripheral

path.

(c) For every n ∈ N, let Bn denote the binary (n + 1)-tree (up to iso-

morphism), i.e. Bn is the binary tree of which every path is isomorphic to

the linear order n + 1. Let T be the tree obtained by taking the linear order

C := ω and at every point n in C, we adjoin the tree Bn, as shown in Figure

5.3. Then the path C is internal.

a a a
a a a

r
rr r rr rrr r

r r
C = ω

Bn

0

1

2

n

Figure 5.3: An internal path (see Example 5.12(c)).

Note that every singular path is vacuously peripheral.

Lemma 5.13 Let T be a tree and let n ∈ N+. The set T¬pn is downwards

convex in T .

Proof Let a ∈ T¬pn and let b < a. Hence T |= ¬pn(a/x) and since

¬pn(x) = ∃y1 . . . ∃yn
(
x 6 y1 6 y2 6 . . . 6 yn ∧ ¬β(x, y1) ∧

n−1∧
i=1

¬β(yi, yi+1)
)
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then from the transitivity of the relation < we get that T |= ¬pn(b/x). Hence

b ∈ T¬pn , as required. qed

Lemma 5.14 Let T be a tree and let n ∈ N+. Then T¬pn is a subtree of T .

Proof We need to show that T¬pn is connected. Let a, b ∈ T¬pn . From the

connectedness of T there exists c ∈ T such that c 6 a, b. From Lemma 5.13

we get c ∈ T¬pn , as required. qed

Intuitively the tree T¬pn is the tree that remains when all branches which

are contained within singular paths and which consist of at most n distinct

maximal bridges have been removed from T .

Peripheral paths are related to singular paths in the following way.

Lemma 5.15 Let T be a tree and let A be an emergent path in T that is

also peripheral. There exists n ∈ N+ such that A is a singular path in T¬pn .

Proof Since A is emergent then it follows that T |= ¬pm(u/x) for every

m ∈ N+ and for all u ∈ A and so A ⊆ T¬pm . From the fact that A is maximal

total in T it follows that A will be maximal total in T¬pm . Hence A is a path

in T¬pm for every m ∈ N+.

Since A is peripheral then there exists a ∈ A and n ∈ N+ such that

T |= pn(u/x) for every u ∈ a6\A. Hence u 6∈ T¬pn for every u ∈ a6\A.

It follows that the branch {x ∈ A : x > a} is total in T¬pn . Hence A is a

singular path in T¬pn . qed

Proposition 5.16 Let T be a tree and let A be a peripheral path in T .

Then A is parametrically definable in T .

Proof In the case where A is a singular path we have already demonstrated

that A is parametrically definable in T in Proposition 5.9. Hence assume A

is an emergent path in T . Then by Lemma 5.15, there exists n ∈ N+ such

that A is a singular path in T¬pn . From Proposition 5.9 we know that there

exists a ∈ A such that the formula ϕ(x, z) := x ^ z defines A in T¬pn with

the parameter a substituted for z. Hence the formula ϕ¬pn(x, z) defines A in

T with the parameter a substituted for z. qed
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5.5 Subtrees

The next result can also be found in [10].

Proposition 5.17 ([10]) Let T1 = (|T1| ;<T1) be a tree and let {Si : i ∈ I}
be a pairwise disjoint set of upwards convex subtrees of T1. For every i ∈ I,

let Ui = (|Ui| ;<Ui) be a tree with Si ≡n Ui. Let T2 be the tree obtained

from T1 by replacing every subtree Si with the tree Ui. Formally we define

T2 = (|T2| ;<T2) as follows:

- |T2| :=
(
|T1| \

⋃
i∈I |Si|

)
∪
⋃
i∈I |Ui|, and

- for x, y ∈ |T2|, x <T2 y if and only if one of the following conditions are

satisfied:

(i) x, y ∈ |T1| \
⋃
i∈I |Si| and x <T1 y, or

(ii) x, y ∈ |Ui| for some i and x <Ui y, or

(iii) x ∈ |T1| \ |Si| and y ∈ |Ui| for some i, and x <T1 z for some

z ∈ |Si|.

Then T1 ≡n T2. Consequently if Si ≡ Ui for every i ∈ I then T1 ≡ T2.

Proof A winning strategy for Player II for the game EFn(T1, T2) is as

follows. Whenever Player I chooses a node from |T1| \
⋃
i∈I |Si| (⊆ |T1|) or

from |T2| \
⋃
i∈I |Ui| (⊆ |T2|), then Player II responds by choosing the exact

same node from the tree not used by Player I for that move. And whenever

Player I chooses a node from |Si| (⊆ |T1|) or from |Ui| (⊆ |T2|) for some i, then

Player II selects a node using her winning strategy for the game EFn(Si, Ui),

and based on the nodes already played in Si and Ui. qed

When an upwards convex subtree of tree is replaced with an elementary

extension of that subtree, we have the following result.

Proposition 5.18 Let T1 = (|T1| ;<T1) be a tree and let {Si : i ∈ I} be a

pairwise disjoint set of upwards convex subtrees of T1. For every i ∈ I, let

Ui = (|Ui| ;<Ui) be a tree with Si � Ui. Let T2 be the tree obtained from T1

by replacing every subtree Si with the tree Ui as in Proposition 5.17. Then

T1 � T2.
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Proof Let c̄ be a tuple of nodes in T1 and let Si1 , Si2 , . . . , Sik be all those

trees from the set {Si : i ∈ I} which contain nodes from the tuple c̄. Suppose

without loss of generality that c̄ = c̄0c̄1 · · · c̄k where c̄j is a tuple of nodes from

Sij and where c̄0 is a tuple of nodes in |T1| \
⋃
i∈I |Si|. Hence we have that

Si ≡ Ui for all i with i 6= i1, . . . , ik, and (Sij ; c̄j) ≡ (Uij ; c̄j) for all j with

j = 1, . . . , k.

A winning strategy for Player II for the game EFn((T1; c̄), (T2; c̄)) is as fol-

lows. Whenever Player I chooses a node from |T1| \
⋃
i∈I |Si| (⊆ |T1|) or from

|T2| \
⋃
i∈I |Ui| (⊆ |T2|), then Player II responds by choosing the exact same

node from the structure not used by Player I for that move. Whenever Player

I chooses, for some i with i 6= i1, . . . , ik, a node from |Si| (⊆ |T1|), respectively

from |Ui| (⊆ |T2|), then Player II selects a node from |Ui|, respectively from

|Si|, using her winning strategy for the game EFn(Si, Ui), and based on the

nodes already played in Si and Ui. And finally, whenever Player I chooses,

for some j with j = 1, . . . , k, a node from
∣∣Sij ∣∣ (⊆ |T1|), respectively from∣∣Uij ∣∣ (⊆ |T2|), then Player II selects a node from

∣∣Uij ∣∣, respectively from
∣∣Sij ∣∣,

using her winning strategy for the game EFn
(
(Sij ; c̄j), (Uij ; c̄j)

)
, and based

on the nodes already played in Sij and Uij .

Hence (T1; c̄) ≡n (T2; c̄) and it follows that T1 � T2. qed

Proposition 5.19 Let T be a tree, let a ∈ T and let A be a path in the

tree a6 which is parametrically definable in a6. Then the path a> + A in T

is parametrically definable in T .

Proof Suppose the formula ϕ(x, z̄) defines the path A in a6 with parameters

c̄ from a6 substituted for z̄. Then the formula

ϕ>u(x, z̄u) ∨ x < u

defines a> + A in T with the parameters c̄a substituted for z̄u. qed

5.6 Condensations

Proposition 5.20 Let T be a tree, let L1 and L2 be classes of linear orders,

and let f : T → L1 and g : T → L2 be functions. Let n ∈ N and suppose

that for every x ∈ T , f(x) ≡n g(x). Then T ×f L1 ≡n T ×gL2. Consequently

if f(x) ≡ g(x) for every x ∈ T then T ×f L1 ≡ T ×g L2.
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Proof For every x ∈ T , let σx be a winning strategy for Player II for the

game EFn(f(x), g(x)). We will describe a winning strategy for Player II for

the game EFn(T ×f L1, T ×g L2).

Suppose the first i−1 moves of the game consist of the nodes a1, . . . , ai−1 ∈
|T ×f L1| and b1, . . . , bi−1 ∈ |T ×g L2|, where for every j (1 6 j 6 i− 1) the

nodes aj and bj have the form aj = (aj,1, aj,2) and bj = (bj,1, bj,2), with

aj,1, bj,1 ∈ T and with aj,2 ∈ f(aj,1) and bj,2 ∈ g(bj,1).

Suppose that for his i-th move, Player I chooses the node ai ∈ |T ×f L1|,
where ai = (ai,1, ai,2) with ai,1 ∈ T and ai,2 ∈ f(ai,1). Let aj1,1, . . . , ajk,1 be

all the nodes from amongst a1,1, . . . , ai−1,1 for which aj1,1, . . . , ajk,1 = ai,1.

Consider the game EFn(f(ai,1), g(ai,1)). Suppose that the first k moves of

the game consist of the elements aj1,2, . . . , ajk,2 ∈ f(ai,1) and bj1,2, . . . , bjk,2 ∈
g(ai,1). Suppose that, using the strategy σai,1 , the response of Player II when

Player I chooses for his (k + 1)-th move the element ai,2 ∈ f(ai,1) is that

Player II chooses the element bi,2 ∈ g(ai,1).

Let bi,1 = ai,1. For her i-th move of the game EFn(T ×f L1, T ×g L2),

Player II then chooses the node bi ∈ |T ×g L2| where bi = (bi,1, bi,2).

The case where Player I instead chooses some bi ∈ |T ×g L2| for his i-th

move is similar.

This choice of nodes will result in a win for Player II for the game

EFn(T ×f L1, T ×g L2) and the result follows. qed

Example 5.21 In part (a) of this example we show that two given trees T1

and T2 are elementarily equivalent. In part (b) we define a class of linear

orders L1 together with a function f : T1 → L1 and then show that there is

no function g : T2 → L1 for which T1×fL1 ≡ T2×gL1. We do this by showing

that for every class of linear orders L2 and for every function g : T2 → L2

such that T1 ×f L1 ≡ T2 ×g L2, it must be the case that L1 ( L2.

(a) Consider the trees T1 and T2 as depicted in Figure 5.4 and Figure

5.5. The tree T1 is obtained by taking the linear order A := ω and at the

i-th element ci−1 of A we attach the node c+
i−1. T2 is obtained by taking the

linear order B := ω + ζ and at every element x in B we attach the node x+.

Let di−1 be the i-th element in the copy of ω in B; then d+
i−1 is the node

attached to it.

Then T1 ≡ T2. The following describes a winning strategy for Player II

for the game EFn(T1, T2) with n ∈ N.

Let the first i−1 moves of the game consist of the nodes a1, . . . , ai−1 ∈ T1
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Figure 5.4: The tree T1 (see Ex-

ample 5.21(a)).
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Figure 5.5: The tree T2 (see Ex-

ample 5.21(a)).

and b1, . . . , bi−1 ∈ T2. For his i-th move, suppose Player I chooses the node

ai ∈ T1.

For any node x, define x− as follows: if x has the form x = y+ for some

node y then x− := y; otherwise x− := x. In other words, x− is the greatest

node in the path A or in the path B for which x− 6 x.

As is well known (see e.g. [24, Corollary 6.12]), ω ≡ ω+ ζ and so A ≡ B.

Thus Player II has a winning strategy for the game EFn(A,B). Suppose

that the first i − 1 moves of the game EFn(A,B) are a−1 , . . . , a
−
i−1 ∈ A and

b−1 , . . . , b
−
i−1 ∈ B. Using her winning strategy for the game EFn(A,B), in

response to Player I choosing for his i-th move the node a−i ∈ A, let Player

II choose the node b ?i ∈ B.

If ai has the form ai = x+ for some x then Player II’s i-th move in the

game EFn(T1, T2) is the node bi ∈ T2, where bi := (b ?i )+; otherwise Player

II’s i-th move is the node bi ∈ T2, where bi := b ?i .

The case where Player I chooses for his i-th move the node bi ∈ T2 is

similar.

(b) Let L1 := {n : n ∈ N+} and define f : T1 → L1 by specifying that

f(c0) = 2, f(ck) = 1 for every k ∈ N+, and f(c+
k ) = k + 1 for every k ∈ N.

The tree T1 ×f L1 is depicted in Figure 5.6. It consists of a path C

(isomorphic with ω) with the linear order n attached to the (n+1)-th element

of C.

We will now construct a class of linear orders L2 and a function g : T2 →
L2 such that T1 ×f L1 ≡ T2 ×g L2. In particular, for every such class L2 we
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(c+2 , 1)

(c+2 , 2)

C (∼= ω)

Figure 5.6: The tree T1 ×f L1 (see

Example 5.21(b)).
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(d2, 0)
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(d+0 , 0)

(d+1 , 0)

(d+1 , 1)

(d+2 , 0)

(d+2 , 1)

(d+2 , 2)

x+ ×lex (ω + ζ · α+ ω?)

(∼= ω + ζ · α+ ω?)

D (∼= ω + ζ)

Figure 5.7: The tree T2 ×f L2 (see

Example 5.21(b)).

will have L1 ( L2.

Clearly we will need 1,2 ∈ L2 with g(d0) = 2 and g(x) = 1 for every

x ∈ B with x 6= d0. Let

ϕ(x) := To>x ∧ ∀y
(
y < x→ ¬To>y

)
.

For every n > 1 we have

T1 ×f L1 |= ∃!x
(
ϕ(x) ∧ (λn ∧ µn)>x

)
.

It follows that we will need n ∈ L2 for every n > 3 and g(d+
k ) = k + 1

for every k ∈ N if we are to have T1 ×f L1 ≡ T2 ×g L2, and g(x+) 6= n for

every n ∈ N+ and with x any element in the copy of ζ in B.

As is well known (see e.g. [24, Exercise 6.11]), k ≡n ω + ζ · α + ω?

for k > 2n − 1 and for every order type α. Hence let L2 also contain the

class of order types {ω + ζ · α + ω? : α ∈ C} for some class C. Hence

L2 := {n : n ∈ N+} ∪ {ω + ζ · α + ω? : α ∈ C}.
For every element x in the copy of ζ in B, let g(x+) = ω + ζ · α + ω? for

some order type α ∈ C depending on x.

The tree T2 ×g L2 is depicted in Figure 5.7. It consists of a path D,

isomorphic with the linear order ω + ζ, with the linear order k attached to

the (k + 1)-th element of the copy of ω in D, and with some linear order
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x+ ×lex (ω + ζ · α + ω?) (isomorphic with ω + ζ · α + ω?) attached to every

element x in the copy of ζ in D.

We will now show that T1×f L1 ≡ T2×g L2. Fix n > 1 and note that for

all x ∈ A with x > c2n−2 we have x+×lex f(x+) ≡n ω+ω?, and for all x ∈ B
with x > d2n−2 we have x+×lex g(x+) ≡n ω+ω?. Let S1 be the tree obtained

from T1 ×f L1 by replacing the branch x+ ×lex f(x+) in T1 ×f L1 with the

linear order ω + ω? for every x ∈ A with x > c2n−2, and let S2 be the tree

obtained from T2 ×g L2 by replacing the branch x+ ×lex g(x+) in T2 ×g L2

with the linear order ω + ω? for every x ∈ B with x > d2n−2. It then follows

from Proposition 5.17 that T1 ×f L1 ≡n S1 and T2 ×g L2 ≡n S2.

Hence S1 can be seen as consisting of the linear order ω with the linear

order k attached to the (k + 1)-th element of ω for k 6 2n − 2 and with the

linear order ω+ω? attached to every other element of ω. The tree S2 can be

seen as consisting of the linear order ω + ζ with the linear order k attached

to the (k + 1)-th element of ω + ζ for k 6 2n − 2 and with the linear order

ω + ω? attached to every other element of ω + ζ. By modifying the winning

strategy empoyed by Player II for the game EFn(T1, T2) above, it is easy to

see that Player II also has a winning strategy for the game EFn(S1, S2) and

so S1 ≡n S2. Hence T1 ×f L1 ≡n T2 ×g L2 and the result follows.

For ϕ(x) any formula, define the sentence χϕ as2

χϕ := ∀x∃y (ϕ(y) ∧ β(x, y)) ∧ ∀x∀y (ϕ(x) ∧ ϕ(y) ∧ β(x, y)→ x = y) .

The sentence χϕ states that every maximal bridge contains exactly one node

satisfying the formula ϕ(x).

The next result shows that Tϕ ∼= [T ] if and only if T |= χϕ.

Proposition 5.22 Let T be a tree and let ϕ(x) be a formula. Consider the

function [·] : T → [T ] which maps nodes in T to their maximal bridges in

[T ] and let [·]�Tϕ be the restriction of [·] to the set Tϕ. Then [·]�Tϕ is an

isomorphism if and only if T |= χϕ.

Proof Straightforward using Proposition 3.12. qed

2Recall that the formula β(x, y), defined on p. 21, states that x and y belong to the

same maximal bridge.
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Example 5.23 Let T be a well-founded tree. Every maximal bridge in T

contains a unique minimal node hence [T ] is isomorphic to the tree formed

by these minimal nodes taken from each maximal bridge. It follows from

Proposition 3.14 that the condensation of T can be defined up to isomorphism

using the formula

ϕ(x) := ∀y (y < x→ ∃z (z ^ y ∧ z 6^ x)) .

Note that the root of T vacuously satisfies the formula ϕ(x).



Chapter 6

First-order theories of trees

We now look at the first-order theories of some important classes of trees. In

Section 6.1 (Well-founded trees) we describe the construction used in [5] to

prove that every definably well-founded tree has a well-founded n-equivalent.

In Section 6.2 (Finitely branching trees) we show how it is possible in any

tree to remove all but finitely many components extending a stem so that

the tree obtained is n-equivalent to the original tree. This result is a special

case of the result in [27] that every weakly boundedly branching tree T has

a subtree S for which S �n T . In Section 6.3 (Finite trees) we axiomatise

the first-order theory of the class of finite trees by adapting the method

used in [1] to axiomatise the first-order theory of the class of finite ordered

trees. In Section 6.4 (Condensations) we show how the first-order theory of a

tree may be determined using the first-order theory of its condensation and

the first-order theories of the maximal bridges in the tree. Finally Section

6.5 (The C-classes of trees) completely establishes the relationships between

the first-order theories of the various C-classes of trees. We also investigate

the general problem of axiomatising the various C-classes of trees using the

first-order theory of the class C.

6.1 Well-founded trees

A tree T is called definably well-founded when every parametrically defin-

able non-empty set of nodes in T contains a minimal element. The property

of being definably well-founded can be formalised using the scheme AW con-

64
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sisting of the sentences

∀z̄ (∃xϕ(x, z̄)→ ∃x (ϕ(x, z̄) ∧ ∀y (ϕ(y, z̄) ∧ y 6 x→ y = x)))

for all k ∈ N and for every formula ϕ(x, z̄) with z̄ = (z1, . . . , zk).

The dual of the property of well-foundedness in a tree states that every

non-empty set of nodes in the tree contains a maximal node. The property

that every parametrically definable non-empty set of nodes contains a max-

imal node can be formalised using the scheme AWD, where AWD consists of

the sentences

∀z̄ (∃xϕ(x, z̄)→ ∃x (ϕ(x, z̄) ∧ ∀y (ϕ(y, z̄) ∧ x 6 y → y = x)))

for all k ∈ N and for every formula ϕ(x, z̄) with z̄ = (z1, . . . , zk).

Proposition 6.1 Let T be a tree.

(i) If T satisfies the scheme AW (in particular when T is well-founded) then

T is upwards discrete.

(ii) If T satisfies the scheme AWD (in particular when T satisfies the dual

of the property of well-foundedness) then T is downwards discrete.

Proof (i) Let T satisfy the scheme AW. Let A be a path in T and let

a be a non-leaf node in A. Then there exists b ∈ A with a < b. Define

ϕ(x, z1, z2) := z1 < x 6 z2. The formula ϕ(x, z1, z2) defines the interval

(a, b] in T with the parameters a and b substituted for z1 and z2 respectively.

From AW this interval (a, b] contains a minimal node c which clearly satisfies

the condition that c ∈ A and c is an immediate succesor to a. Hence T is

upwards discrete.

(ii) Similar to (i). qed

Proposition 6.2 Let T be a tree.

(i) Suppose every path in T contains a leaf and T is downwards discrete. If

T satisfies the scheme AW then T satisfies the scheme AWD. If T is well-

founded then T satisfies the dual of the property of well-foundedness.

(ii) Suppose T is rooted and upwards discrete. If T satisfies the scheme

AWD then T satisfies the scheme AW. If T satisfies the dual of the

property of well-foundedness then T is well-founded.
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Proof (i) Suppose every path in T contains a leaf and T is downwards

discrete and let T satisfy the scheme AW. Let c̄ be a k-tuple of nodes in T

and let ϕ(x, z̄) be a formula with z̄ a k-tuple of variables and suppose that

the set A defined in T by ϕ(x, z̄) with the parameters c̄ substituted for z̄

is nonempty. In order to show that T satisfies the scheme AWD we need to

show that A contains a maximal node. If A contains a leaf then we are done

so assume A does not contain any leaves. Define

ψ(x, z̄) := ¬∃y (x 6 y ∧ ϕ(y, z̄)) ∧ ∃y (y < x ∧ ϕ(y, z̄)) .

The set B defined in T by ψ(x, z̄) with the parameters c̄ substituted for z̄ is

non-empty since it will contain a leaf and by the scheme AW it follows that

B contains a minimal node a. Since T is downwards discrete then a has an

immediate predecessor b and the node b clearly is a maximal element of A

as required.

A similar argument can be used to show that if T is well-founded then T

satisfies the dual of the property of well-foundedness.

(ii) Similar to (i). qed

It is worth noting that the property of a tree being downwards discrete

can be formalised using the sentence

D1 : ∀x (∃y (y < x)→ ∃y (y < x ∧ ∀z (¬ (y < z < x))))

and the property of a tree being upwards discrete can be formalised using

the sentence

D2 : ∀x∀y (x < y → ∃z (x < z 6 y ∧ ∀u (¬ (x < u < z)))).

The following result is taken from [5] where a detailed proof can also be

found. We will give an outline of the proof.

Theorem 6.3 ([5, Theorem 4.1]) Let T be a definably well-founded tree.

For every n ∈ N there is a well-founded tree S such that S ≡n T .

Proof The basic idea is to move up from the root of the tree and sys-

tematically replace subtrees which are not well-founded with well-founded

n-equivalents.

The first part of the proof consists of showing that if T is a definably

well-founded tree then for a, b ∈ T with a < b, there exists (R; β) with β
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a well-ordered interval in R and with all the components of R\β definably

well-founded and such that (a6\b6, [a, b)) ≡n (R; β). For let X be the set of

nodes b in T with the property that, if a < b then there exists (R; β) with

β well-ordered and with all the components of R\β definably well-founded

and with (a6\b6, [a, b)) ≡n (R; β), but suppose X 6= T . Let τ1, . . . , τk be the

characteristic formulas of rank n over the empty tuple which are satisfied in

trees (R; β) for which β is well-ordered and for which all the components of

R\β are definably well-founded. Assume that the sentences τi do not contain

the variables x and y and for each i, let τ ′i(x, y) be the formula obtained from

τi by replacing every instance of the expression β(u) with the expression

x 6 u < y. Let

θ(u, y1, y2) := y1 6 u ∧ ¬ (y2 6 u).

The formula θ(u, y1, y2) defines the set a6\b6 in (T ; a, b) with a substituted

for y1 and b substituted for y2. Then the formula

ϕ(y) := ∀x

(
x < y →

k∨
i=1

(τ ′i(x, y))
θ(u,x,y)

)

defines the set X in T . Hence T\X is definable and so contains a minimal

node b. Let a ∈ T with a < b be such that (a6\b6, [a, b)) does not have an

n-equivalent (R; β) of the required form. By the minimality of b together

with the fact that T is definably well-founded it follows that b does not have

an immediate predecessor. Hence let {aξ}ξ<α ⊆ [a, b) be cofinal in [a, b)

with a0 = a and aξ < aζ for ξ < ζ. For every ξ let (Rξ; βξ) be a tree

with βξ well-ordered and with all the components of Rξ\βξ definably well-

founded and with ((aξ)6\(aξ+1)6 ; [aξ, aξ+1)) ≡n (Rξ; βξ). Now take (R; β)

to be the tree obtained as the union of the trees (Rξ; βξ) by glueing the

segments βξ one after the other in ascending order of the index ξ. From its

construction, β will be well-ordered and all the components of R\β will be

definably well-founded, and it can be seen using an Ehrenfeucht-Fräıssé game

that (a6\b6, [a, b)) ≡n (R; β), as required. This completes the first part of

the proof.

Using this result, we can next show that if T is a definably well-founded

tree and if b ∈ T then there exists a tree R with c ∈ R and such that (i)

the interval c> is well-ordered, (ii) all the components of R\c> are definably

well-founded, and (iii) (T ; b) ≡n (R; c). This is done by first noting that,

being definably well-founded, T will be rooted. Then apply the result of the
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first part of the proof by taking a as the root of T and replacing (a6\b6, [a, b))
with an appropriate n-equivalent and take c = b so as to obtain R.

Using induction, we next extend this result to state the following: if T

is a definably well-founded tree and if B ⊆ T is finite then there exists a

tree R with C ⊆ R and such that (i) the interval c> is well-ordered for every

c ∈ C, (ii) every component of R\
(⋃

c∈C c>
)

is definably well-founded, and

(iii) (T ; b)b∈B ≡n (R; c)c∈C .

Finally we construct a sequence of trees T0, T1, . . . and a sequence of sets

A0, A1, . . . with Ai ⊆ Ti as follows. Take T0 := T and A0 := ∅. Then given

the tree Ti and set Ai for some i, the tree Ti+1 and set Ai+1 are obtained

as follows. For every component C in Ti\Ai choose B ⊆ C in such a way

that, for every c ∈ C there exists b ∈ B with (C; b) ≡n−1 (C; c), and with

B finite. This can be done since there are only finitely many characteristic

formulas of any given rank over any given tuple of variables. Then from

the previous result in the proof we know there is a tree C ′ and a set of

nodes B′ ⊆ C ′ such that (i) the interval b′> is well-ordered for every b′ ∈ B′,
(ii) every component of C ′\

(⋃
b′∈B′ b′>

)
is definably well-founded, and (iii)

(C; b)b∈B ≡n (C ′, b′)b′∈B′ . Then Ti+1 is obtained from Ti by replacing every

component C in Ti\Ai with the tree C ′ and Ai+1 is obtained as the union of

the set Ai together with the sets
⋃
b′∈B′ b′> for every set B′.

Then take S :=
⋃∞
i=1Ai where each set Ai is treated as a substructure of

the tree Ti. From the way the tree S is constructed it will be well-founded,

and it can be seen, using an Ehrenfeucht-Fräıssé game, that S ≡n T . That

this works relies on the fact that every Ai+1 was chosen to be large enough

as to capture all first-order behaviour up to n-equivalence in the structure

Ti\Ai. qed

Theorem 6.4 ([5]) The first-order theory of the class of well-founded trees

can be axiomatised using the theory

AT ∪ AW.

Proof Immediate from Theorem 6.3. qed

6.2 Finitely branching trees

Motivated by [27], we call a tree T weakly n-branching when, for every

x, y ∈ T , the set Txy has at most n components, and weakly boundedly
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branching when T is weakly n-branching for some natural number n. A

forest is called weakly n-branching when it has at most n components

and each of its components is weakly n-branching, and weakly boundedly

branching when it is weakly n-branching for some n.

Proposition 6.5 Let k be the n-characteristic index of the language with

equality and order. Let T be a tree and let a, b ∈ T be nodes for which

|Tab| > nk (in particular, when Tab is infinite). Then it is possible to remove

all but nk components from Tab so as to obtain a tree S for which S ≡n T .

Proof Let τ1, . . . , τk be the characteristic formulas of rank n over the empty

tuple. For every q with 1 6 q 6 k, we perform the following construction.

Let {Aqi}i∈Iq be the components in Tab for which Aqi |= τq. If |Iq| > n then

remove all but any n components in {Aqi}i∈Iq from T .

Once this construction has been done for every q, we are left with at most

nk components in Tab. Let S be the tree thus obtained. Then S ≡n T . To

see this consider the Ehrenfeucht-Fräıssé game EFn(T, S). We will describe

a winning strategy for Player II for this game.

Suppose the first j moves of the game consist of nodes a1, . . . , aj ∈ T

and b1, . . . , bj ∈ S. For every q with 1 6 q 6 k and for every i with

i ∈ Iq, let (aqi )1, . . . , (a
q
i )j(q,i) be the nodes already played from T for which

(aqi )1, . . . , (a
q
i )j(q,i) ∈ Aqi , and let (bqi )1, . . . , (b

q
i )j(q,i) be the corresponding

nodes played from S. Assume the game has been played such that for ev-

ery q and i, there exists Aqi′ for which the nodes already played from S and

belonging to Aqi′ are precisely (bqi )1, . . . , (b
q
i )j(q,i) ∈ A

q
i′ .

First consider the case where Player I selects, for his (j + 1)-th move, a

node t from T with t /∈ Tab. Since T\Tab = S\Tab then the identity map

determines a natural correspondence between nodes in T\Tab and S\Tab.
Player II hence responds for her (j + 1)-th move by choosing the node from

S corresponding to t. Likewise when Player I chooses for his (j+ 1)-th move

a node s from S with s 6∈ Tab, then Player II chooses the corresponding node

from T .

Next consider the case where Player I chooses, for his (j + 1)-th move, a

node t from T with t ∈ Tab. If t ∈ Aqi and if no node has yet been selected

from Aqi by either player for any of their earlier moves, then there exists Aqi′
in S from which no nodes have been played yet either. Using her winning

strategy for the game EFn(Aqi , A
q
i′), Player II then selects a node s from Aqi′

in response to the node t chosen by Player I from Aqi . Likewise when Player
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I selects a node s from S with s ∈ Aqi′ for some Aqi′ from which no nodes have

been played yet.

Finally consider the case where Player I chooses, for his (j + 1)-th move,

a node t from T with t ∈ Tab, where t ∈ Aqi , and for which the nodes already

played from Aqi are (aqi )1, . . . , (a
q
i )j(q,i). Player II responds by choosing a

node s from Aqi′ using her winning strategy for the game EFn(Aqi , A
q
i′), where

the first j(q, i) nodes played for this game are (aqi )1, . . . , (a
q
i )j(q,i) ∈ A

q
i and

(bqi )1, . . . , (b
q
i )j(q,i) ∈ A

q
i′ , and where the (j(q, i) + 1)-th move of Player I for

this game is t. Likewise when Player I selects a node s from S with s ∈ Aqi′
for some Aqi′ from which the nodes already played are (bqi )1, . . . , (b

q
i )j(q,i).

Clearly this strategy constitutes a winning strategy for Player II for the

game EFn(T, S) hence S ≡n T . qed

More generally, using this same technique, we can convert a tree T of

which only finitely many sets of the form Tab contain more than nk compo-

nents, into a weakly nk-branching tree S for which S ≡n T .

In [27], the following similar but substantially stronger result is proved

using the notion of nuclearity.

Theorem 6.6 ([27]) Let T be a tree and let n ∈ N. There exists a weakly

boundedly branching tree S with S �n T .

Proof The result is proved in [27, Lemma 2.5] for the class of forests (i.e. for

every forest T there is a weakly boundedly branching forest T1 with T1 �n T ).

From the proof of [27, Lemma 2.5], the result applies to trees as well: we

need to show that T1 is connected, so let a1, a2 ∈ T1. Using the notation in

the proof of [27, Lemma 2.5], it follows that a1, a2 ∈ Am for some m. Then

for some even j (j > m), there exists b ∈ Aj+1 with b 6 a1, a2. Hence b ∈ T1

and it follows that T1 is connected, as required. qed

In particular, every tree has a weakly boundedly branching n-equivalent

for n ∈ N.

Remark 6.7 If T is a finite tree then T itself satisfies the condition of being

weakly boundedly branching with T �n T . Hence consider the case where

T is infinite. From the proof of [27, Lemma 2.5], the tree S mentioned in

Theorem 6.6 will be infinite: using the notation in the proof of [27, Lemma

2.5] with S = T1, note that for odd j, we have b 6∈ Aj so that Aj+1 =

Aj ∪ {b} ) Aj. Hence T1 =
⋃
j∈NAj will be infinite.
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Example 6.8 Consider the tree T described in Example 4.6(a). Let σ be

the sentence

∃x∃y (x < y ∧ ∀z∀u (x 6 z < u 6 y → (∃v (z < v < u) ∧ ¬β(z, u)))) .

The sentence σ states that there exists a dense segment [x, y] with no two

distinct nodes from [x, y] belonging to the same bridge. Then T |= σ but

σ does not hold in any boundedly branching tree. Since qr(σ) = 5 then for

n > 5, there is no boundedly branching tree S with S ≡n T . Hence the

result of Theorem 6.6 does not hold for the stronger notion of a boundedly

branching tree.

Corollary 6.9 ([27]) The first-order theory of the class of trees is complete

with respect to the class of weakly boundedly branching trees.

Proof Follows from Theorem 6.6. qed

Theorem 6.10 ([27]) Let T be an ℵ0-categorical tree. The first-order theory

of T is decidable.

Proof See [27, Theorem 2.1]. qed

Theorem 6.11 ([27]) The first-order theory of the class of ℵ0-categorical

trees is complete with respect to the class of weakly boundedly branching

ℵ0-categorical trees.

Proof See [27, Theorem 2.8], where the result is proved for forests (i.e. the

first-order theory of the class of ℵ0-categorical forests is complete with respect

to the class of weakly boundedly branching ℵ0-categorical forests), but using

a slightly broader definition of ℵ0-categoricity (namely that a theory Γ is ℵ0-

categorical when Γ has, up to isomorphism, precisely one model of cardinality

less than or equal to ℵ0).

As in Theorem 6.6, the result again applies to trees, and using the nota-

tion in the proof of [27, Theorem 2.8], in the event that T is infinite, then T1

will be infinite as well, so that T1 will be ℵ0-categorical in the sense used in

this text. qed

Theorem 6.12 ([27]) Let T be an ℵ0-categorical tree. The first-order theory

of T is finitely axiomatizable if and only if T is weakly boundedly branching.

Proof See [27, Theorem 2.2]. qed
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6.3 Finite trees

Define the sentence

Ro : ∃x∀y (x 6 y)

which states the existence of a root.

In [1] they study trees using a language which includes an order relation

on the set of immediate successors of every node. The following result is

adapted from there.

Theorem 6.13 (See also [1].) The first-order theory of the class of trees of

which all paths are finite can be axiomatised using the theory

{Ir,Tr, ST,Ro,D2} ∪ AWD.

Proof Clearly every tree of which the paths are all finite satisfies the given

theory.

Let T be a model of the theory. We describe, for n ∈ N, the construction

of a tree S from the tree T having only finite paths and such that S ≡n T .

Let τ1, . . . , τk be all the characteristic formulas of rank n over empty

tuples. For every i (1 6 i 6 k) let ϕi(x) := τ>xi .

The first step in the construction of S is as follows. Let a0,0 be the

root of T (which exists since T satisfies the sentence Ro) and suppose that

(a0,0)6 |= τi0,0 . Then T |= ϕi0,0(a0,0/x), so by the scheme AWD there exists a

node b0,0 ∈ T maximal with the property that T |= ϕi0,0(b0,0/x), i.e. b0,0 is

maximal with the property that (b0,0)6 |= τi0,0 . Let T0 be the tree obtained

from T by replacing the subtree (a0,0)6 (which in this case equals T itself)

with the tree (b0,0)6. Then b0,0 is maximal in T0 with the property that

(b0,0)6 |= τi0,0 , and by Proposition 5.17, T0 ≡n T .

For m > 1, the (m+1)-th step of the construction now proceeds as follows.

Suppose we have obtained from the m-th step a tree Tm−1 such that, for every

node bj,z ∈ Tm−1 of which the order type of the set {x ∈ Tm−1 : x 6 bj,z}
is at most m, if (bj,z)6 |= τij,z then the node bj,z is maximal in Tm−1 with

the property that (bj,z)6 |= τij,z .
1 Let am,z ∈ Tm−1 be a node for which the

1The tree Tm−1 need not be well-founded hence we refrain from formulating the con-

dition that the order type of the set {x ∈ Tm−1 : x 6 bj,z} is at most m by saying that

the node bj,z has level at most m.
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order type of the set {x ∈ Tm−1 : x 6 am,z} is m + 1, and suppose that

(am,z)6 |= τim,z . Then T |= ϕim,z(am,z/x), so by the scheme AWD there exists

a node bm,z ∈ T with bm,z > am,z and maximal such that T |= ϕim,z(bm,z/x).

Hence bm,z is maximal in T with the property that (bm,z)6 |= τim,z .

Let Tm be the tree obtained from Tm−1 by replacing every subtree (am,z)6
of Tm−1 with the tree (bm,z)6. Then Tm satisfies the property that for every

node bj,z ∈ Tm of which the order type of the set {x ∈ Tm : x 6 bj,z} is

at most m + 1, if (bj,z)6 |= τij,z then the node bj,z is maximal in Tm with

the property that (bj,z)6 |= τij,z . By Proposition 5.17 we also have that

Tm ≡n Tm−1.

From the fact that there are only finitely many non-equivalent charac-

teristic formulas of rank n over empty tuples, it follows that the above con-

struction will terminate after finitely many steps to give a tree Tq such that

Tq ≡n T , and Tq will have the property that for every path X in Tq, every

node in X satisfies some formula ϕi(x), and every formula ϕi(x) is satisfied

by at most one node from X. Since there are only finitely many formulas

ϕi(x) then X will be finite. Hence take S = Tq. qed

Theorem 6.14 (See also [1].) The first-order theory of the class of finite

trees can be axiomatised using the theory

{Ir,Tr, ST,Ro,D2} ∪ AWD.

Proof Follows from Theorem 6.6 and Theorem 6.13. qed

6.4 Condensations

Theorem 6.15 Let T be a condensed tree, let L be a class of linear orders,

and let f : T → L be a function. Suppose we have the following:

- a theory Γ which defines T up to isomorphism;

- for every L ∈ L, a theory ΣL which axiomatises the first-order theory

of L;

- for every L ∈ L, a formula ϕL(x) such that for every a ∈ T ,

T |= ϕL (a/x) ⇔ f(a) = L;
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- a formula α(x) which defines in T ×f L a set of nodes consisting of

exactly one node from every maximal bridge of T ×f L.

Then the first-order theory of T ×f L can be axiomatised using the theory

{χα}
⋃
{γα : γ ∈ Γ}

⋃
{
∀y
(
α(y) ∧ ϕα

L (y)→ σ
β(x,y)
L (y)

)
: L ∈ L and σL ∈ ΣL

}
.

Proof We first show that T ×f L satisfies the theory. It is immediate that

T ×f L |= χα. From Proposition 5.22 the function

[·]�(T×fL)α : (T ×f L)α → [T ×f L]

is an isomorphism, and from Proposition 3.35 the function g : [T ×f L]→ T

given as g([(x, y)]) = x is an isomorphism. Let

h := g ◦
(

[·]�(T×fL)α
)
.

Thus h : (T ×f L)α → T with h((x, y)) = x for every (x, y) ∈ (T ×f L)α,

and h is an isomorphism.

Let γ ∈ Γ. Since Γ defines T then T |= γ hence (T ×f L)α |= γ so that

T ×f L |= γα.

Finally let L ∈ L and σL ∈ ΣL and suppose that T×fL |= α((a, b)/y) and

T ×f L |= ϕα
L ((a, b)/y) for some (a, b) ∈ |T ×f L|. Then (a, b) ∈ (T ×f L)α

so that (T ×f L)α |= ϕL((a, b)/y) hence T |= ϕL(h((a, b))/y). This gives

T |= ϕL(a/y) so f(a) = L.

From Corollary 3.34 we know that {a} × L is a maximal bridge in

T ×f L, and since (a, b) ∈ {a} × L then [(a, b)] = {a} × L. More-

over, (T ×f L; (a, b))β(x,y) = [(a, b)] and since {a} × L |= σL then we get

(T ×f L; (a, b))β(x,y) |= σL. This gives T ×f L |= σ
β(x,y)
L ((a, b)/y), as required.

Thus T ×f L is a model of the theory.

Next let S be a model of the theory. We need to show that S ≡ T ×f L.

Since S |= γα for all γ ∈ Γ then Sα ∼= T . Let g : T → Sα be an isomorphism.

Also since S |= χα then the function [·]�Sα : Sα → [S] is an isomorphism.

Hence the function ([·]�Sα) ◦ g : T → [S] is an isomorphism. Put h :=

([·]�Sα) ◦ g.

Let S = {[x] : x ∈ S} and let ι : [S] → S be given by ι([x]) = [x]. From

Proposition 3.30 we get that

S ∼= [S]×ι S ∼= T ×ι◦h S.
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Let L ∈ L and σL ∈ ΣL and let a ∈ T with f(a) = L and g(a) = b ∈ Sα ⊆
S. Since T |= ϕL(a/y) then Sα |= ϕL(g(a)/y) hence S |= ϕα

L (b/y). Also since

b ∈ Sα then S |= α(b/y). From the axioms this gives S |= σ
β(x,y)
L (b/y) and

since (S; b)β(x,y) = [b] then we get [b] |= σL.

It follows that (ι ◦ h)(a) = h(a) = [g(a)] = [b] ≡ L = f(a) and from

Proposition 5.20 we get that S ∼= T ×ι◦h S ≡ T ×f L. qed

6.5 The C-classes of trees

6.5.1 Relationships between FO theories of the C-
classes

Theorem 6.16 Let C be a class of linear orders. The set-theoretical inclu-

sions which hold between the first-order theories of the C-classes of trees are

summarised in Figure 6.1.

Proof Let σ ∈ TH(P-C-like trees) say with qr(σ) = n. Let T be a C-
like tree. Then T ≡n T0 for some C-tree T0. But T0 is also a P-C-like tree

hence T0 |= σ and so T |= σ. It follows that σ ∈ TH(C-like trees) and so

TH(P-C-like trees) ⊆ TH(C-like trees).

The following inclusions can be proven using a similar argument:

- TH(DU-C-like trees) ⊆ TH(C-like trees),

- TH(D-C-trees) ⊆ TH(C-like trees),

- TH(PU-C-like trees) ⊆ TH(C-like trees),

- TH(U-C-like trees) ⊆ TH(C-like trees),

- TH(PU-C-like trees) ⊆ TH(U-C-like trees),

- TH(P-C-like trees) ⊆ TH(U-C-like trees),

- TH(D-C-trees) ⊆ TH(U-C-like trees).

The inclusion TH(C-trees) ⊆ TH(U-C-like trees) is immediate.

The remaining inclusions follow from Theorem 4.26 and the accompany-

ing diagram in Figure 4.5.

We briefly discuss the non-inclusions shown in Figure 4.5. Consider for

example the non-inclusion TH(DU-C3-like trees) 6⊆ TH(P-C3-like trees). To

see this, let T be a DU-C3-like tree and suppose that T |= ϕ(a/x) for some

a ∈ T , where ϕ(x) is as in Example 4.22. Then a belongs to a singular, and

hence parametrically definable, path A, with A ≡ n for some n ∈ N. Hence

A will be finite. It follows that T |= σ1, where σ1 is as in Example 4.21, and
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so σ1 ∈ TH(DU-C3-trees). However, T3 is a P-C3-like tree with T3 6|= σ1, so

that σ1 6∈ TH(P-C3-like trees). This serves as a counterexample to establish

the non-inclusion TH(DU-C3-like trees) 6⊆ TH(P-C3-like trees).

A similar argument shows that TH(D-C2-trees) 6⊆ TH(PU-C2-like trees).

The non-inclusions which use the class C5 and the sentence σ2 from Ex-

ample 4.24 as counterexample are easily verified.

Finally, the non-inclusions obtained through completion are trivial. For

example, TH(C-trees) is not generally a subtheory of TH(D-C-trees), for if

it were, then using the fact that TH(PU-C-like trees) ⊆ TH(C-trees) for all

classes C, this would give TH(PU-C-like trees) ⊆ TH(D-C-trees) for all classes

C, contradicting the fact that TH(PU-C5-like trees) 6⊆ TH(D-C5-trees).

Likewise the theory TH(C-like trees) is not generally a subtheory of

the theory TH(D-C-trees), for if it were, then the theories TH(D-C-trees),

TH(C-like trees) and TH(U-C-like trees) would coincide for all classes C. But

this would contradict the fact that TH(C-trees) ⊆ TH(U-C-like trees) for all

classes C, while there exist classes C for which TH(C-trees) 6⊆ TH(D-C-trees).

The remaining non-inclusions can be shown by similar reasoning. qed

Proposition 6.17 Let C consist of a single linear order. In addition to

the set-theoretical inclusions which have been shown to hold between the

first-order theories of the C-classes of trees in Theorem 6.16, the following

inclusions also hold:

(i) TH(DU-C-like trees) ⊆ TH(D-C-like trees);

(ii) TH(DU-C-like trees) ⊆ TH(P-C-like trees);

(iii) TH(PU-C-like trees) ⊆ TH(P-C-like trees).

The remaining non-inclusions stay the same.

Proof Straightforward using Proposition 4.27. qed

6.5.2 Axiomatising the FO theories of the C-classes

We now investigate the first-order theories of some of the C-classes of trees.

In its most general form this problem is difficult because C is an arbitrary

class of linear orders. The next example shows that the class of C-trees need

not generally be first-order definable.



CHAPTER 6. FIRST-ORDER THEORIES OF TREES 77
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Figure 6.1: Relationships between the first-order theories of the C-classes

of trees (see Theorem 6.16). Inclusions X ⊆ Y are denoted as X → Y .

Non-inclusions are indicated by specifying a counterexample drawn from Ex-

amples 4.20 - 4.25 or, when obtained through transitive completion of the

diagram, by the symbol ×.
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Example 6.18 Let α be an ordinal with α > ω and let T be a binary α-tree.

Thus |T | > 2ℵ0 . From the Downward Löwenheim-Skolem Theorem it follows

that T has a countable elementary substructure S. In particular, S will not

be an α-tree. Thus the class of α-trees is not first-order definable.

Let Σ be the first-order theory of some class of linear orders. We define the

scheme DeΣ as consisting of the sentences

∀z̄ (πϕ(z̄)→ σϕ(z̄))

for every formula ϕ(x, z̄) (including formulas ϕ(x) for which the tuple z̄ is

empty) and for every sentence σ ∈ Σ. If Σ = {σ} then DeΣ is written simply

as Deσ. The scheme DeΣ states that every parametrically definable path

satisfies the theory Σ.

Theorem 6.19 Let C be a class of linear orders axiomatised by the theory

Σ. The class of definably C-like trees is precisely the class of models of the

theory

AT ∪ DeΣ.

Proof Let T be a definably C-like tree. It is immediate that T satisfies AT.

Let ϕ(x, z̄) be a formula with z̄ a k-tuple of variables (z̄ may be empty), let c̄

be a k-tuple of nodes in T , and let T |= πϕ(c̄/z̄). Then from Proposition 5.4

there is a path A defined in T by ϕ(x, z̄) with the parameters c̄ substituted

for z̄. But A |= σ for every σ ∈ Σ and A = (T ; c̄)ϕ so using Corollary 2.4,

T |= σϕ(c̄/z̄) for every σ ∈ Σ. It follows that T satisfies the scheme DeΣ.

Next let T be a structure which satisfies the theory AT ∪ DeΣ. Since

T satisfies AT then T is a tree. Let c̄ be a (possibly empty) k-tuple of

nodes in T and let A be a path defined in T using the formula ϕ(x, z̄) with

the parameters c̄ substituted for z̄, where z̄ is a k-tuple of variables. Then

T |= πϕ(c̄/z̄) hence T |= σϕ(c̄/z̄) for every σ ∈ Σ. But A = (T ; c̄)ϕ so from

Corollary 2.4, A |= σ for every σ ∈ Σ. Hence A ∈ MOD (TH (C)) and it

follows that T is a definably C-like tree. qed

Corollary 6.20 Let C be a class of linear orders axiomatised by the theory

Σ. Then the class of definably C-trees is precisely the class of models of the

theory

AT ∪ DeΣ.
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Proof By the fact that when C is axiomatisable then the class of definably

C-like trees coincides with the class of definably C-trees. qed

Corollary 6.21 Let C be a finite class of linear orders axiomatised by the

theory Σ. Then the class of definably uniformly C-like trees is precisely the

class of models of the theory

AT ∪ DeΣ.

Proof If C is finite then the class of definably C-like trees coincides with the

class of definably uniformly C-like trees. qed

Let El denote the scheme consisting of the sentences

∀z̄
(
∀x (ϕ(x, z̄)→ ∃y (x < y ∧ ϕ(y, z̄)))→

∃x
(

leaf(x) ∧ ∀y
(
y < x→ ∃u (y < u < x ∧ ϕ(u, z̄))

)))
for every formula ϕ(x, z̄) (including formulas ϕ(x) for which the tuple z̄ is

empty). The scheme El holds in a tree T when T has the property that if

A is a cofinal set of nodes in T then there exists a leaf a (an Elder) and a

subset B of A with B ⊆ a> such that B is cofinal in the set a>.

Example 6.22 Let T be the tree constructed by starting with the linear

order A := ω and at each positive element n ∈ A we attach the n-ary

(ω + 1)-tree B n
ω+1. Hence every path in T is an (ω + 1)-path except for the

path A which is an ω-path. The i-th node of the path A in T has i immediate

successors while every node not belonging to A but lying in the subtree B j
ω+1

has j immediate successors.

We will show that the scheme El holds in T . Let ϕ(x, z̄) be a formula

with z̄ an n-tuple of variables and let c̄ be an n-tuple of nodes in T . Let

{ai}i∈N be a sequence of nodes in T with ai < ai when i < j and suppose

that (T ; c̄) |= ϕ(ai/x, c̄) for all ai. We distinguish two cases.

First consider the case where, for some k, we have that ai 6∈ A when

i > k. Then the set {ai}i∈N is contained in an (ω + 1)-path B of T , so that

there is a leaf in B which is a successor to all of the nodes ai.

Next consider the case where {ai}i∈N ⊆ A. Suppose that the quantifier

rank of ϕ(x, z̄) is m. It is easy to see, for example by using an Ehrenfeucht-

Fräıssé game, that for some sufficiently large value of p, (T ; c̄ ap) ≡m (T ; c̄ u)
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for every non-leaf node u with u > ap. Hence there exists a sequence of nodes

{bi}p6i, i∈N ⊆ T\A with bi < bj for i < j and such that (T ; c̄) |= ϕ(bi/x, c̄)

for all bi. The set C := {ai : 0 6 i 6 p− 1} ∪ {bi : i > p} is contained in an

(ω + 1)-path B of T , so that there is a leaf in B which is a successor to all

of the nodes in C.

It follows that El holds in T .

For Σ any theory, LeΣ denotes the scheme consisting of the sentences

∀x (leaf(x)→ σ6x)

for every σ ∈ Σ. If Σ = {σ} then LeΣ is written simply as Leσ. The scheme

LeΣ states that every path containing a leaf satisfies the theory Σ.

If α is a linear order with a greatest point and α is axiomatised by the

theory Σ then the effect of the scheme LeΣ within an α-tree is to ensure that

every parametrically definable path is α-like.

Proposition 6.23 Let α be a linear order containing a greatest element and

suppose the sentence σ axiomatises the first-order theory of α. Let T be a

definably uniformly α-like tree containing only finitely many paths which are

not parametrically definable. Then for every n ∈ N there exists a pathwise

uniformly α-like tree S such that S ≡n T .

Proof It suffices to prove the result for large n so let n > qr(σ) + 1. Let

A1, . . . , Ak be the paths in T which are not parametrically definable and for

every i, let ai ∈ Ai be such that ai 6∈ Aj for all j with j 6= i. By Lemma 5.6

there exists, for every i, nodes bi ∈ Ai and ci ∈ T\Ai with bi, ci > ai such

that (bi)6 ≡n (ci)6.

Let S be the tree obtained by taking the tree T and for every i we re-

place the subtree (bi)6 of T with the tree Si := (ci)6. From the way S is

constructed, every path in S will contain a leaf hence every path in S is

definable using that leaf as parameter. Define

τ := ∀x
(
leaf(x)→ σ6x

)
.

i.e. {τ} = Leσ. Note that qr(τ) = qr(σ) + 1 6 n. By Proposition 5.17 we

get S ≡n T and since T satisfies τ then S also satisfies τ . Since every path

in S contains a leaf then it follows that every path in S satisfies σ hence S

is a pathwise uniformly α-like tree. qed
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Proposition 6.24 Let α be a linear order containing a greatest element and

let Σ axiomatise the first-order theory of α. Let T be a tree satisfying the

schemes El and LeΣ. Then T satisfies the scheme DeΣ.

Proof Suppose that T satisfies the schemes El and LeΣ. Let ϕ(x, z̄) be

a formula with z̄ a (possibly empty) k-tuple of variables, and suppose that

T |= πϕ(c̄/z̄) for some k-tuple of nodes c̄ from T . Then ϕ(x, z̄) defines a

path A in T with the parameters c̄ substituted for z̄. Since for every node

u ∈ A we have that T |= ϕ(u/x, c̄/z̄) then it follows by the scheme El that

there exists a leaf a ∈ T such that T |= ϕ(u/x, c̄/z̄) for every u < a and

clearly a ∈ A. Now from the scheme LeΣ we get that T |= σ6x(a/x) for every

sentence σ ∈ Σ. Hence a> = A = (T ; c̄)ϕ satifies σ and so T |= σϕ(c̄/z̄). It

follows that the scheme DeΣ holds in T . qed

The next example shows that the scheme El does not generally follow from

the scheme DeΣ. In it we make use of a sentence Φω+1 which axiomatises the

first-order theory of the ordinal ω + 1. This sentence will be fully described

in Section 7.1.

Example 6.25 Let T be the tree obtained from the binary ω-tree Bω by

attaching a copy of the linear order ω + 1 to each of its nodes. Every path

in T is either an ω-path or an (ω + 1)-path. Nodes lying high up on any

of the (ω + 1)-paths will have only one immediate successor, whereas nodes

belonging to any of the ω-paths will have three immediate successors.

The parametrically definable paths in T are precisely the (ω + 1)-paths.

For let A be an ω-path in T , let c̄ be a (possibly empty) k-tuple of nodes

in T , and let ψ(x, z̄) be a formula with z̄ a k-tuple of variables, such that

(T ; c̄) |= ψ(u/x, c̄) for all u ∈ A. Let a ∈ A with a > (A ∩ (ci)>) for all i. Let

b be a node in T , different from a, with b > (A ∩ (ci)>) for all i, and with b

having the same level as a. In particular, b 6∈ A. From the structure of T it is

clear that (T ; c̄ a) ∼= (T ; c̄ b). Hence (T ; c̄) |= ψ(b/x, c̄) and it follows that the

formula ψ(x, z̄) cannot possibly define the path A in T with the parameters

c̄ substituted for z̄. Hence the ω-paths in T are not parametrically definable,

whereas the (ω+1)-paths are all definable using a leaf belonging to the path

as parameter. Therefore T satisfies the scheme DeΦω+1 .

Now consider the formula

ϕ(x) := ∃y1∃y2∃y3

(∧
i 6=j

yi 6= yj ∧
3∧
i=1

s(x, yi)

)
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which holds for a node u ∈ T when u has three distinct immediate successors.

Hence Tϕ = Bω and for every node u ∈ T with T |= ϕ(u/x), there is a node

w ∈ T with u < w and for which T |= ϕ(w/x). However, there is no leaf

d ∈ T for which the set d> contains a cofinal sequence of nodes satisfying the

formula ϕ(x). It follows that T does not satisfy the scheme El.



Chapter 7

Axiomatisations of ordinal trees

In this chapter we study the problem of axiomatising the first-order theory

of the class of trees of which every path is isomorphic with the ordinal α

with α < ωω. We begin in Section 7.1 (The first-order theory of the ordinal

α with α < ωω) by describing the first-order theory of the ordinal α using an

axiom system similar to the one in [24]. In Section 7.2 (Tails of ordinals) we

establish some important results on tails of ordinals which are used later to

establish results on almost α-trees. Section 7.3 (Some general observations)

contains some results which are of general use. In Section 7.4 (Towards first-

order theories of α-trees) we determine the first-order theories of the classes

of n-trees for every finite ordinal n as well as the first-order theory of the

class of ω-trees. We also introduce the class of almost α-trees and show that

this class is a proper subclass of the class of definably uniformly α-like trees.

We obtain the result that every almost α-tree can be elementarily embedded

in a pathwise uniformly α-like tree. Finally we examine what this elementary

extension of the almost α-tree looks like in Section 7.5 (Almost (ω+ 1)-trees

and their extensions) for the case where α = ω + 1.

For convenience, we summarise the formulas which will be used frequently

in this chapter:

83
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Notation Formula

λn contains at least n elements

µn contains at most n elements

Tr transitivity

Co connectedness

Ro contains a root

Do ∀x∃y (leaf(y) ∧ x 6 y)

D1 downwards discreteness

D2 upwards discreteness

D
′
2 weak upwards discreteness of tree / upwards discreteness of

linear order

D
′′
2 ∀x∃y (x < y)

δ(x) defines limit points

N1 ∀x∀y
(

(x < y ∧ δ(x) ∧ δ(y) ∧ ¬∃z (δ(z) ∧ x < z < y))→ Φ
[x,y)
ω

)
N2 ∀x∃y∃z (δ(y) ∧ δ(z) ∧ y 6 x < z)

Φα axiomatises first-order theory of the ordinal α

AF defines class of forests

AT defines class of trees

AL defines class of linear orders

AW definable well-foundedness

DeΣ parametrically definable paths satisfy Σ

LeΣ every path containing a leaf satisfies Σ

7.1 The first-order theory of the ordinal α

with α < ωω

It is known (see e.g. [24]) that for every ordinal α with α < ωω, the first-

order theory of α can be axiomatised using a single sentence Φα. We briefly

describe this axiomatisation here. The reader is also referred to [24, pp. 253-

262] in this regard. The axiom system presented here differs slightly from

the one in [24].
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7.1.1 Finite α

We first consider finite ordinals.

Proposition 7.1 For every n ∈ N+, the ordinal n can be defined using the

sentence

Φn :=
∧

AL ∧ λn ∧ µn.

Proof Immediate. qed

Proposition 7.2 For n = 1, 2 we have qr(Φn) = 3 and for n > 3 we have

qr(Φn) = n+ 1.

Proof Since qr (
∧

AL) = 3 and qr(λn ∧ µn) = n+ 1. qed

7.1.2 Powers of ω

For α any order type, a linear order A is called α-like when A ≡ α.

We next investigate the class of ω-like linear orders. Define the sentence

D
′
2 : ∀x∃y (x < y ∧ ∀z (¬ (x < z < y))).

The sentence D
′
2 states that every element has an immediate successor.

Proposition 7.3 ([24]) The first-order theory of the ordinal ω can be ax-

iomatised using the sentence

Φω :=
∧

AL ∧ Ro ∧ D1 ∧ D
′
2.

Proof See [24, p. 254]. qed

The class of models of the sentence Φω consists of all linear orders having

order type ω + ζ · α for α any order type (see [24]). Moreover, ω + ζ · α1 ≡
ω+ ζ ·α2 for all order types α1 and α2. In particular, ω ≡ ω+ ζ ·α for every

order type α.

We now turn to powers of ω. For every n ∈ N+ define the class A(ωn) of

linear orders by induction as follows:
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(i) A(ω) consists of all linear orders with order type ω + ζ · α for α any

order type;

(ii) for n ≥ 2 the class A(ωn) consists of all linear orders of the form

∑
k∈ω

Wk +
∑
i∈I

(∑
z∈ζ

W i
z

)
(7.1)

for I any linearly ordered set, and where Wk,W
i
z ∈ A(ωn−1) for all k,

i and z.

Proposition 7.4 ([24]) Let A be an ordered set and let n ∈ N+. Then

A ∈ A(ωn) if and only if A ≡ ωn.

Proof See [24, Proposition 13.25]. qed

Hence for every n ∈ N+ the class A(ωn) consists of the class of ωn-like

linear orders. Since ω0 = 1 then the class of ω0-like linear orders consists of

those linear orders which have a singleton set as domain. Hence the class of

ω0-like linear orders can be defined by the sentence Φ1.

Proposition 7.5 ([24]) Let A be an ordered set and let n ∈ N+. The

following conditions are equivalent:

(i) A =
∑

i∈V Vi for some V and {Vi}i∈V , where V is an ωn−1-like linear

order and Vi is a ω-like linear order for every i ∈ V ;

(ii) A =
∑

i∈W Wi for some W and {Wi}i∈W , where W is an ω-like linear

order and Wi is ωn−1-like linear order for every i ∈ W .

Proof See [24, pp. 257-258]. qed

Define the formula

δ(x) := ∀y (y < x→ ∃z (y < z < x)) .

The formula δ(x) defines limit points. A least element, if it exists, will satisfy

the formula δ(x) and hence will be treated as a limit point.

Define the sentences

N1 : ∀x∀y
(

(x < y ∧ δ(x) ∧ δ(y) ∧ ¬∃z (δ(z) ∧ x < z < y))→ Φ
[x,y)
ω

)
;
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N2 : ∀x∃y∃z (δ(y) ∧ δ(z) ∧ y 6 x < z).

The sentence N1 states that the interval between every pair of successive limit

points is ω-like. The sentence N2 states that every element is contained in

an interval formed by two successive limit points.

Proposition 7.6 (See also [24].) Define inductively

γ1 := Ro ∧ D1 ∧ D
′
2 and

γn := γ δn−1 ∧ N1 ∧ N2 for n > 2.

Then for n > 2 the first-order theory of the ordinal ωn can be axiomatised

using the sentence

Φωn :=
∧

AL ∧ γn.

Proof It is clear that ωn |= Φωn for every n with n > 2. Hence we need

to show that if A |= Φωn then A ≡ ωn for every n with n > 2. The proof

runs by induction on n. We already know that Φω axiomatises the first-order

theory of ω. For k > 1 assume that Φωk axiomatises the first-order theory of

ωk and let A be a structure with A |= Φωk+1 .

Since A |=
∧

AL and the sentences in AL express universal properties then

Aδ |=
∧

AL. Also A |= γ δk and so Aδ |= γk. Hence Aδ |= Φωk and by the

induction hypothesis Aδ is ωk-like.

Thus for every x ∈ Aδ there exists yx ∈ Aδ such that yx is the immediate

successor to x in Aδ. Since A |= N1 then the set Ax := {z ∈ A : x 6 z < yx}
is ω-like.

From the fact that A |= N2 it then follows that A can be written as

A =
∑
x∈Aδ

Ax

where Aδ is ωk-like and where Ax is ω-like for every x ∈ Aδ. Using Lemma

7.5 we get that A ∈ A(ωk+1). By Proposition 7.4 this gives A ≡ ωk+1 as

required. qed

Proposition 7.7 (See also [24].) For n > 1 we have qr(Φωn) = 2n+ 1.
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Proof We use induction on n. First note that qr (
∧
AL) = 3, qr(Ro) = 2,

qr(D1) = 3 and qr(D
′
2) = 3. Hence qr(Φω) = 3. Moreover

qr(γ δm−1) = qr(γm−1) + qr(δ) = qr(γm−1) + 2

for every m > 2 and since qr(N1) = 5 and qr(N2) = 5 then qr(Φω2) = 5.

Next assume that qr(Φωk) = 2k+1 for some k with k > 2. It follows that

qr(γk) = 2k + 1, which gives

qr(Φωk+1) = qr(γk+1) = qr(γ δk ) = 2k + 3 = 2(k + 1) + 1

as required. qed

7.1.3 The general case

Finally we consider any ordinal α with α < ωω and where α is neither finite

nor a power of ω. Assume that the Cantor normal form of such α is

α = ωn1 · a1 + ωn2 · a2 + . . .+ ωnk · ak (7.2)

where n1 > n2 > . . . > nk and ai 6= 0 for all i.

Proposition 7.8 ([24]) Let A be a linear order. Then A is α-like if and only

if A has the form(
W n1

1 + . . .+W n1
a1

)
+
(
W n2

1 + . . .+W n2
a2

)
+ . . .+

(
W nk

1 + . . .+W nk
ak

)
where W ni

j is an ωni-like linear order for all ni and j.

Proof See [24, Theorem 13.26]. qed

Let ψ1, ψ2 and ψ3 be the formulas

ψ1 :=
k∧
i=1

ai−1∧
j=1

(
xnij < xnij+1

)
∧

k−1∧
i=1

(
xniai < x

ni+1

1

)
;

ψ2 := ∀y

(
k∨
i=1

ai−1∨
j=1

(
xnij 6 y < xnij+1

)
∨
k−1∨
i=1

(
xniai 6 y < x

ni+1

1

)
∨ xnkak 6 y

)
;

ψ3 :=
k∧
i=1

ai−1∧
j=1

Φ
[xnij , x

ni
j+1)

ωni ∧
k−1∧
i=1

Φ
[xniai, x

ni+1
1 )

ωni ∧ Φ
>x

nk
ak

ωnk .
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The formulas ψ1, ψ2 and ψ3 have free variables xnij , where 1 6 i 6 k and

1 6 j 6 ai. The formula ψ1 states that the variables xnij can be ordered as

xn1
1 < . . . < xn1

a1
< xn2

1 < . . . < xn2
a2
< . . . < xnk1 < . . . < xnkak .

The formula ψ2 states that every element lies in one of the intervals as de-

scribed in the formula which are determined by the variables xnij . The formula

ψ3 states that each of the intervals determined by successive variables, as well

as the interval at the end determined by the variable xnkak , is ωni-like for the

appropriate value of i.

Proposition 7.9 (See also [24].) Let α be an ordinal of the form described

in Equation (7.2). The first-order theory of α can be axiomatised using the

sentence

Φα :=
∧

AL ∧ ∃ x̄n1 . . . ∃ x̄nk
(
ψ1 ∧ ψ2 ∧ ψ3

)
where x̄ni =

(
xni1 , . . . , x

ni
ai

)
for every i with 1 6 i 6 k.

Proof From Proposition 7.8 and the way that Φα is constructed. qed

Proposition 7.10 (See also [24].) For α of the form described in Equation

(7.2) we have

qr(Φα) = 2n1 + a1 + . . .+ ak + 1.

Proof Since qr(Φωm1 ) > qr(Φωm2 ) for m1 > m2 and since qr(Φ
[x,y)
ωm ) =

qr(Φωm) and qr(Φ>xωm) = qr(Φωm) for every m we get that

qr(Φα) = a1 + . . .+ ak + qr(Φωn1 )

and the result follows by Proposition 7.7. qed

It need not be the case that qr(Φα) < qr(Φβ) for α < β. As an example,

for n a positive integer we get that qr(Φω+n) = n + 4, qr(Φω·n) = n + 3 and

qr(Φω2) = 5.

Proposition 7.11 Let α < ωω and let A be an α-like well-order. Then

A ∼= α.
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Proof We prove the result using induction on α. The result obviously holds

for finite α.

If A is an ω-like well-order then A ∼= ω + ζ · γ for some order type γ and

A being well-ordered ensures that γ = 0. Hence A ∼= ω so the result holds

for α = ω.

Next let m > 1 and assume the result holds for α = ωm. Let A be an

ωm+1-like well-order. By Proposition 7.4, A will have the form

∑
k∈ω

Wk +
∑
i∈I

(∑
z∈ζ

W i
z

)

for some linearly ordered set I and where Wk and W i
z are ωm-like for all k,

i and z. Since A is well-ordered then I = ∅. Moreover every Wk will be

well-ordered so from the induction hypothesis, Wk
∼= ωm for every k. Hence

A ∼= ωm+1 and the result holds for α = ωm+1.

Finally assume the result holds for α = ωm for every m ∈ N. Now let A

be a β-like well-order, where β has the form

β = ωn1 · a1 + ωn2 · a2 + . . .+ ωnk · ak

with n1 > n2 > . . . > nk and ai 6= 0 for every i. By Proposition 7.8, A has

the form(
W n1

1 + . . .+W n1
a1

)
+
(
W n2

1 + . . .+W n2
a2

)
+ . . .+

(
W nk

1 + . . .+W nk
ak

)
where W ni

j is an ωni-like linear order for all ni and j. Since A is well-ordered

then every W ni
j will also be well-ordered so by the induction hypothesis,

W ni
j
∼= ωni for all ni and j. It follows that A ∼= β and this completes the

proof. qed

7.2 Tails of ordinals

If B is a non-empty upwards convex subset of a linear order A then B is

called a tail of A. Clearly if β is a tail of the ordinal α then β is also an

ordinal with β 6 α and α can be written as α = γ + β for some ordinal γ.

Proposition 7.12 Let α be an ordinal with α < ωω and let β be a tail of

α. Then qr(Φβ) 6 qr(Φα).
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Proof It can be seen by induction on k that if β is a tail of α with α = ωk

for some k then β = ωk, in which case qr(Φβ) = qr(Φωk) = qr(Φα). Hence

assume that α is not a power of ω. Let γ be an ordinal such that α = γ + β

and let the Cantor normal forms of α, β and γ be

α = ωq1 · a1 + ωq2 · a2 + . . .+ ωqk · ak,
β = ωr1 · b1 + ωr2 · b2 + . . .+ ωrm · bm,
γ = ωs1 · c1 + ωs2 · c2 + . . .+ ωsn · cn,

where q1 > q2 > . . . > qk and r1 > r2 > . . . > rm and s1 > s2 > . . . > sn
with ai, bi, ci 6= 0 for all i.

It can be seen by induction that ωn1 + ωn2 = ωn2 when n1 < n2. From

this fact it follows that

γ + β =
∑{

ωsi · ci : 1 6 i 6 n and with si > r1

}
+

m∑
i=1

ωri · bi.

Let ct be the coefficient (possibly 0) of the term containing the power ωr1

in the Cantor normal form expansion of γ. Since the Cantor normal form

expansion of α is unique, this gives

ri = qk−m+i for 1 6 i 6 m, and

ct + b1 = ak−m+1, and

bi = ak−m+i for 2 6 i 6 m.

Since qr(Φωr1 ) = 2r1 + 1 6 2q1 + 1 = qr(Φωq1 ) then

qr(Φβ) = b1 + . . .+ bm + qr(Φωr1 )

6 a1 + . . .+ ak−m + (ct + b1) + b2 + . . .+ bm + qr(Φωq1 )

= a1 + . . .+ ak + qr(Φωq1 )

= qr(Φα)

as required. qed

Lemma 7.13 Let A be an ωn-like linear order (n ∈ N) and let B be a tail

of A containing a least point. Then B is ωn-like.

Proof We prove the result using induction on n. The case for n = 0 is

straightforward, while for n = 1 the result follows from the fact that A will

have the form ω + ζ · α for some order type α.
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Assume the result holds for ωk-like linear orders (where k > 1) and let A

be ωk+1-like. From Proposition 7.4, A will have the form

A =
∑
m∈ω

Wm +
∑
i∈I

(∑
z∈ζ

W i
z

)

for I some linearly ordered set, and where Wm and W i
z are ωk-like for all m,

i and z. It follows that B will have one of the forms

B = W ?
q +

∞∑
m=q+1

Wm +
∑
i∈I

(∑
z∈ζ

W i
z

)

for some q ∈ N and where W ?
q is a tail of Wq containing a least point, or

B = (W j
q )? +

∑
z∈ζ,z>q

W j
z +

∑
i∈I,i>j

(∑
z∈ζ

W i
z

)

for some j ∈ I and q ∈ ζ and where (W j
q )? is a tail of W j

q containing a least

point.

By the induction hypothesis, W ?
q and (W j

q )? will be ωk-like, so in both of

the above cases, B can be written as an ω-like sum of ωk-like linear orders.

Hence B will have the form described in Equation (7.1) for an ωk+1-like linear

order, so B is ωk+1-like as required. qed

Proposition 7.14 Let A be a linear order and let B be a tail of A containing

a least point. Suppose that A is α-like for some ordinal α with α < ωω. Then

there exists an ordinal β with β a tail of α and such that B is β-like.

Proof We have already proved the result in Lemma 7.13 for the case where

α is a power of ω, so consider the case where the Cantor normal form of α is

α = ωn1 · a1 + ωn2 · a2 + . . .+ ωnk · ak

where n1 > n2 > . . . > nk and with ai 6= 0 for all i. Since A is α-like then by

Proposition 7.8, A can be written in the form

A =
k∑
i=1

ai∑
j=1

W ni
j ,
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where W ni
j is an ωni-like linear order for every ni and j. Let B be a tail of

A containing a least point. It follows that

B = (W nq
m )? +

aq∑
j=m+1

W
nq
j +

k∑
i=q+1

ai∑
j=1

W ni
j

for some q and m with 1 6 q 6 k and 1 6 m 6 aq and where (W
nq
m )? is a tail

of W
nq
m containing a least point. By Lemma 7.13, (W

nq
m )? will be ωnq -like.

Take β to be the ordinal

β = ωnq · (aq −m+ 1) +
k∑

i=q+1

ωni · ai.

Then β is a tail of α and from Proposition 7.8, B is β-like. qed

In particular, every tail having a least point of an ω-like linear order is

also ω-like.

Proposition 7.15 Let α be an ordinal with α < ωω. Let A be a linear order

and let B1 and B2 be linear orders both having least points, and such that

A+B1 ≡ α and A+B2 ≡ α. Then B1 ≡ B2.

Proof The result clearly holds for finite α. We prove the result for infinite

α using induction on α.

First consider the case where α = ω. From Proposition 7.14 it follows

that B1 ≡ ω ≡ B2.

We next show that if the result holds for an ordinal α then the result also

holds for the ordinal α+ 1. Hence let α be an ordinal for which the result is

true. If A+B1 ≡ α+ 1 and A+B2 ≡ α+ 1 then B1 and B2 must both have

greatest points. Let B′1 and B′2 be the linear orders obtained respectively

from B1 and B2 by removing their greatest points. Then we get A+B′1 ≡ α

and A + B′2 ≡ α from which B′1 ≡ B′2 by the inductive hypothesis. This in

turn gives B1 = B′1 + 1 ≡ B′2 + 1 = B2 as required.

Finally let α be a limit ordinal and suppose the result holds for all ordinals

ξ with ξ < α. We need to show that the result also holds for α. Let the

Cantor normal form of α be

α = ωn1 · a1 + ωn2 · a2 + . . .+ ωnk · ak
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where n1 > n2 > . . . > nk and ai 6= 0 for all i. Since A + B1 is α-like then

by Proposition 7.8 we can write

A+B1 =
(
W n1

1 + . . .+W n1
a1

)
+ . . .+

(
W nk

1 + . . .+W nk
ak

)
where each of the linear orders W ni

j is ωni-like. Hence we get for some p and

q with 1 6 p 6 k and 1 6 q 6 ap that

A =

p−1∑
i=1

ai∑
j=1

W ni
j +

q−1∑
j=1

W
np
j +

(
W np
q

)−
B1 =

(
W np
q

)?
+

ap∑
j=q+1

W
np
j +

k∑
i=p+1

ai∑
j=1

W ni
j

where
(
W

np
q

)−
and

(
W

np
q

)?
are linear orders such that

(
W

np
q

)−
+
(
W

np
q

)?
=

W
np
q and where

(
W

np
q

)?
has a least point.

Since A + B2 is α-like then using Proposition 7.8 it now follows that we

can write

B2 =
(
V np
q

)?
+

ap∑
j=q+1

V
np
j +

k∑
i=p+1

ai∑
j=1

V ni
j

where each of the linear orders V ni
j is ωni-like and where

(
V
np
q

)?
is a linear

order with a least point such that
(
W

np
q

)−
+
(
V
np
q

)?
is ωnp-like.

Hence
(
W

np
q

)−
+
(
W

np
q

)? ≡ ωnp ≡
(
W

np
q

)−
+
(
V
np
q

)?
so by the inductive

hypothesis we have
(
W

np
q

)? ≡ (V np
q

)?
and since W ni

j ≡ V ni
j for all i and j

then it follows that B1 ≡ B2 as required. qed

7.3 Some general observations

Proposition 7.16 Let α be a successor ordinal with α < ωω and let T be a

definably uniformly α-like tree. Suppose T contains only finitely many paths

which are not parametrically definable. Then for every n ∈ N there exists a

pathwise uniformly α-like tree S such that S ≡n T .

Proof Follows from Proposition 6.23 and the fact that the first-order theory

of α can be axiomatised by the sentence Φα. qed
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Proposition 7.17 Let α be an ordinal with α < ωω and let T be a well-

founded pathwise uniformly α-like tree. Then T is an α-tree.

Proof Follows using Proposition 7.11. qed

Proposition 7.18 Let α be an ordinal with α < ωω and let Σ be a finite

theory which defines the class of pathwise uniformly α-like trees. Then the

first-order theory of the class of α-trees can be axiomatised using the theory

Σ ∪ AW.

Proof Let K be the class of α-trees. We need to show that

MOD(Σ ∪ AW) = MOD(TH(K)).

Since every α-tree satisfies all of the sentences in the theory Σ ∪ AW then it

follows that MOD(TH(K)) ⊆ MOD(Σ ∪ AW).

Next let T satisfy the theory Σ∪ AW and let σ ∈ TH(K) with qr(σ) = k.

Assume that all of the sentences in Σ have quantifier rank at most m and

let n := max{k,m}. By Theorem 6.3 there exists a well-founded tree S with

S ≡n T . Hence S satisfies Σ so S is a pathwise uniformly α-like tree and

being well-founded we get that S is an α-tree. This gives S |= σ and so

T |= σ. It follows that T ∈ MOD(TH(K)) and this establishes the inclusion

MOD(Σ ∪ AW) ⊆ MOD(TH(K)). qed

7.4 Towards first-order theories of α-trees

7.4.1 The finite case

Proposition 7.19 Let n be a positive natural number. The class of n-trees

can be defined using the theory

Ψn := {Tr,Co,Do} ∪ LeΦn .

Proof It is clear that every n-tree satisfies the theory Ψn.

Next let T be a structure which satisfies the theory Ψn.

Let u ∈ T . From Do and LeΦn there exists a leaf v ∈ T with u 6 v and

T |= Φ6xn (v/x). Hence v> |= Φn so v> ∼= n and since u ∈ v> then u 6< u. It

follows that T |= Ir.
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Next let u, v, w ∈ T with v, w < u. From Do and LeΦn there again exists

a leaf z ∈ T with z> ∼= n and such that u ∈ z>. Since u 6 z then from Tr

we get v, w < z so v, w ∈ z>. Since n |= To then v ^ w. It follows that

T |= ST.

Hence T |=
∧

AT so T is a tree.

Finally let A be a path in T and let u ∈ A. Again by Do and LeΦn there

exists a leaf v ∈ T with v> ∼= n and with u ∈ v>. Since u> ⊆ v> then

|u>| 6 n. It follows that |A| 6 n. Hence A contains a greatest element w

and w will be a leaf. By LeΦn we get that A = w> ∼= n.

Hence T is an n-tree. qed

7.4.2 The class of ω-trees

Define the sentence

D
′′
2 : ∀x∃y (x < y).

Proposition 7.20 The class of pathwise uniformly ω-like trees can be de-

fined using the theory

Ψω := AF ∪ {Ro,D1,D2,D
′′
2 }.

Proof If T is a pathwise uniformly ω-like tree then it is immediate that T

satisfies the sentences in AF. That the sentences Ro, D1, D2 and D
′′
2 hold in T

can be verified using the fact that every path in T is elementarily equivalent

with ω and so will be of the form ω + ζ · α for some order type α.

Next let T be a structure which satisfies the theory Ψω. From Ro it follows

that T |= Co. Hence T |=
∧

AT so T is a tree.

Let A be a path in T . We need to show that A ≡ ω. Since A is a

linear order then A satisfies all of the sentences in AL. Since T |= Ro then T

contains a root which will also be a least node in A so A |= Ro.

To show that A |= D1, let x ∈ A be any node which has a predecessor

belonging to A. Since T |= D1 then there exists y ∈ T such that y < x, and

there is no z ∈ T with y < z < x. Since A is downwards convex this gives

y ∈ A. Hence y is an immediate predecessor to x in A, so A |= D1.

Since T |= D
′′
2 then T contains no leaves and since A is maximal total in

T then it follows that every node in A has a successor from A. Let x ∈ A be

any node and let y ∈ A be a successor to x. By the fact that T |= D2 there
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exists z ∈ T such that z is an immediate successor to x and x < z 6 y which

implies z ∈ A. Hence every node in A has an immediate successor from A

so A |= D
′
2.

Thus A |= Φω so A ≡ ω. It follows that the tree T is pathwise uniformly

ω-like. qed

Theorem 7.21 The first-order theory of the class of ω-trees can be axioma-

tised using the theory

Ψω ∪ AW.

Proof From Proposition 7.20 and Proposition 7.18. qed

7.4.3 The class of almost α-trees

Definition 7.22 Let A := (A;<A) be a linear order and let F := (F ;<F )

be a forest. Then A + F := (|A+ F | ;<A+F ) denotes the tree obtained by

adding F to the end of A. Formally A+ F is defined as follows:

(i) |A+ F | := A ∪ F and

(ii) <A+F := <A ∪ <F ∪ {(x, y) : x ∈ A and y ∈ F}.

If T := (T ;<T ) is a tree and A is a path in T then T +A F := (|T +A F | ;<)

denotes the tree obtained from T by adding the forest F to the end of the

path A. Formally T +A F is defined as follows:

(i) |T +A F | := T ∪ F , and

(ii) < := <T ∪ <F ∪ {(x, y) : x ∈ A and y ∈ F}.

Definition 7.23 Let α be an ordinal. A tree T is called an almost α-tree

when T is definably uniformly α-like and when the following property holds:

Aα : for every path X in T which is not α-like, there exists a forest F such

that

(i) the tree X + F is pathwise uniformly α-like, and

(ii) T � T +X F .
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If F is a forest satisfying the above two conditions then the tree T +X F is

called an α-completion of T with respect to the path X.

Part (ii) of the property Aα is, by the Tarski-Vaught criterion for elemen-

tary substructures (see [18, Proposition 4.31]), equivalent to the property

that for every tuple c̄ in T , if the formula ϕ(x, c̄) holds true in the tree

(T +X F ; c̄) for some element a from T +X F , then ϕ(x, c̄) already holds true

in (T ; c̄) for some element b from T .

Example 7.24 Let Bω be the binary ω-tree and let A be any path in Bω.

Let G be the forest consisting of the set of nodes {a, b} with a 6^ b in G. Let

T be the tree obtained from Bω by adding a copy of the forest G to the end

of every path in Bω other than the path A. The set A remains a path in T

and A is not parametrically definable in T whereas every path in T different

from A is parametrically definable. It follows that T is definably uniformly

(ω+1)-like. Clearly A+G is pathwise uniformly (ω+1)-like and T � T+AG.

Hence T is an almost (ω+ 1)-tree and T +AG is an (ω+ 1)-completion of T

with respect to the path A.

Let Bζ be the binary ζ-tree and let B+
ζ be the tree obtained from Bζ

by adding a copy of the forest G to the end of every path in Bζ . The tree

A+B+
ζ is pathwise uniformly (ω+ 1)-like and it is easy to see that Player II

has a winning strategy for the game EFn
(
(T ; c̄) ,

(
T +A B

+
ζ ; c̄
))

, where c̄ is

any tuple of nodes from T , hence T � T +A B
+
ζ . Therefore T +A B

+
ζ is also

an (ω + 1)-completion of T with respect to the path A. This shows that the

choice of forest F for which the tree T +A F is an (ω + 1)-completion of T

with respect to the path A, is not unique.

Note that

T |= ∀x∃y (y 6= x ∧ ∀z (z < x↔ z < y)) .

Hence it is not sufficient to take F to consist of a single node if we require

that T � T +A F .

Next we have an example of a tree which is definably uniformly (ω+1)-like

but not an almost (ω + 1)-tree.

Example 7.25 Let T be the tree from Example 6.25 which we have already

shown to be definably uniformly (ω + 1)-like. Every non-leaf node in T has

either precisely one or precisely three immediate successors and if x is a node
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with precisely one immediate successor then every non-leaf node y with x < y

also has precisely one immediate successor.

Let A be any ω-path in T and suppose F is a forest such that the tree

T +AF is an (ω+1)-completion of T with respect to A. It follows that every

path in F must have a stem of which every node in that stem has precisely

three immediate successors, for suppose to the contrary that u is a node in

F such that x has precisely one immediate successor for every x ∈ F with

x < u. Let

ϕ(x, z) := x < z ∧ ∃y1∃y2∃y3

(∧
i 6=j

yi 6= yj ∧
3∧
i=1

s(x, yi)

)
.

Then T +A F |= Φϕ
ω(u/z) whereas T 6|= ∃zΦϕ

ω(z), a contradiction with the

fact that T � T +A F .

For every node x in T having precisely three immediate successors there

exists a node y in T also having precisely three immediate successors and

with x < y. Since T � T +A F then it follows that F contains a path B

such that the set of nodes in the path A + B in the tree T +A F having

precisely three immediate successors has the form ω + ζ · γ for some order

type γ. But the path A + B contains a leaf b and since ω + ζ · γ ≡ ω then

T +A F |= Φϕ
ω(b/x) whereas T 6|= ∃zΦϕ

ω(z), a contradiction with the fact that

T � T +A F .

Hence T has no (ω + 1)-completion with respect to the path A so T is

not an almost (ω + 1)-tree.

Let α be an ordinal with α < ωω. By Corollary 6.21 the class of definably

uniformly α-like trees is precisely the class of models of the theory

AT ∪ DeΦα .

Hence we shift our attention to the property Aα in the study of almost α-

trees.

Proposition 7.26 Let α be an ordinal with α < ωω. Let T be an almost

α-tree and let b be any node in T . Then the subtree b6 of T is an almost

β-tree for some ordinal β with b> + β ≡ α.

Moreover let X be a path in T with b ∈ X and let Y be the path in b6
defined as Y := b6∩ X. If F is a forest such that T +X F is an α-completion

of T with respect to the path X, then b6 +Y F is a β-completion of b6 with

respect to the path Y .
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Proof We consider two cases: firstly where b lies in a path which is paramet-

rically definable in T , and secondly where none of the paths which contain b

are parametrically definable in T .

Hence let A be a parametrically definable path in T with b ∈ A. Then

A ≡ α. By Proposition 7.14 there exists an ordinal β with β < α and such

that the stem {x ∈ A : b 6 x} is β-like. Clearly b> + β ≡ α. We will show

that b6 is an almost β-tree.

b6 is definably uniformly β-like: Let B be a path defined in b6 by the

formula ϕ(x, ȳ) with the parameters ā from b6 substituted for ȳ. Then the

formula

ϕ>z(x, ȳ) ∨ x < z

defines the path b>+ B in T with ā substituted for ȳ and b substituted for

z. Hence b> + B ≡ α and it follows from Proposition 7.15 that B ≡ β, as

required.

b6 satisfies Aβ: Let B be a path in b6 that is not β-like. Since {x ∈ A :

b 6 x} ≡ β and b> + {x ∈ A : b 6 x} ≡ α, it follows from Proposition 7.15

that the path b> + B in T is not α-like. Since T satisfies Aα, there exists

a forest F such that (b>+B) + F is a pathwise uniformly α-like tree and

T � T +b>+B F .

B + F is a pathwise uniformly β-like tree: Let C be a path in B + F .

Then b> + C is a path in (b> +B) + F so b> + C ≡ α. From Proposition

7.15 it again follows that C ≡ β, as required.

Finally we show that b6 � b6 +B F :

Let (b6 +B F ; c̄) |= ∃xψ(x, c̄).

Then (T +b>+B F ; c̄b)> b |= ∃xψ(x, c̄)
(
since (b6 +B F ; c̄) =

(T +b>+B F ; c̄b)> b
)

and so (T +b>+B F ; c̄b) |= (∃xψ(x, c̄))> b .

This gives (T +b>+B F ; c̄b) |= ∃x
(
x > b ∧ ψ> b(x, c̄)

)
hence (T +b>+B F ; c̄b) |=

(
x > b ∧ ψ> b(x, c̄)

)
(d/x) for some d ∈ T(

since T � T +b>+B F
)
,

i.e. (T +b>+B F ; c̄bd) |= ψ> b(d, c̄) and where d ∈ b6.
Then (T +b>+B F ; c̄bd)> b |= ψ(d, c̄)

which gives (b6 +B F ; c̄d) |= ψ(d, c̄)
(
since (T +b>+B F ; c̄bd)> b =

(b6 +B F ; c̄d)
)
.
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Hence (b6 +B F ; c̄) |= ψ(d/x, c̄), as required.

Hence b6 is almost β-like. This concludes the case where b lies in a path

that is parametrically definable in T .

Next consider the case where no path in T containing b is parametrically

definable. First suppose that for every path Z in b6 the path b> + Z in T

is α-like. Let A be any path in b6. It follows from Proposition 7.14 that

A ≡ β for some ordinal β with β < α and from Proposition 7.15 it follows

that Z ≡ β for every path Z in b6. Hence b6 is a pathwise uniformly β-like

tree and therefore also an almost β-tree. It is clear that b> + β ≡ α.

Next suppose that for some path B in b6, the path b> + B in T is not

α-like. Since T satisfies the property Aα, there exists a forest F such that

(b> +B) + F is a pathwise uniformly α-like tree and T � T +b>+B F .

Let C be any path in F . The path b> + B + C in T is α-like and so, by

Proposition 7.14, B + C is β-like for some ordinal β with β < α. Moreover

b> + β ≡ α. We will show that b6 is an almost β-tree.

b6 contains no paths which are parametrically definable, for if Z were a

path defined in b6 by the formula ϕ(x, ȳ) with the parameters ā substituted

for ȳ, then b> + Z would be a path defined in T by the formula

ϕ>z(x, ȳ) ∨ x < z

with ā substituted for ȳ and b substituted for z, a contradiction with the

fact that no path in T containing b is parametrically definable. Hence b6
is definably uniformly β-like and it remains to show that b6 satisfies the

property Aβ.

Let D be a path in b6 with D 6≡ β. Since b>+B+C ≡ α and B+C ≡ β it

follows from Proposition 7.15 that b>+D 6≡ α. Since T satisfies the property

Aα, there exists a forest G such that (b> +D) + G is a pathwise uniformly

α-like tree and T � T +b>+D G.

D+G is pathwise uniformly β-like: if Z is any path in D+G then b>+Z

is a path in (b> +D) + G so b> + Z ≡ α. Since b> + B + C ≡ α with

B + C ≡ β it follows by Proposition 7.15 that Z ≡ β.

b6 � b6 +D G: This can be seen using a similar argument as the one

above where it is shown that b6 � b6 +B F .

This completes the proof. qed

Recall that in ZFC every set can be well-ordered. Hence if A is a set of

paths in a tree then we can express A in the form A = {Ai : i ∈ β} for β
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some ordinal. If A is infinite we may take β to be a limit ordinal. This is

because every infinite successor ordinal can be written in the form γ + n for

γ a limit ordinal and with n ∈ N+, so instead of well-ordering A as γ + n we

can well-order it as n + γ = γ.

The following result allows us to elementarily extend an almost α-tree to

a tree of which every path is elementarily equivalent to the ordinal α.

Theorem 7.27 Let T be an almost α-tree for α an ordinal with α < ωω.

For β some limit ordinal, let A = {Ai : i ∈ β} be the set of all paths in T

which are not α-like, and for every i (i ∈ β), let Fi be a forest such that

T +Ai Fi is an α-completion of T with respect to the path Ai. Define

T0 := T,

Tξ :=
⋃
i<ξ

(T +Ai Fi) for 1 6 ξ 6 β,

i.e. Tξ is the tree obtained from T by adding for every i (i < ξ) the forest Fi
to the end of the path Ai. Then Tξ is an almost α-tree for every ξ (ξ 6 β).

Moreover for every i (ξ 6 i < β) the tree Tξ +Ai Fi is an α-completion of Tξ
with respect to the path Ai.

Proof We use induction on the set of ordinals ξ with ξ 6 β. Note that in

order to show that the tree Tξ satisfies the property Aα, it suffices to show

for every i (ξ 6 i < β) that Tξ +Ai Fi is an α-completion of Tξ with respect

to the path Ai.

By assumption T0 is an almost α-tree and T0+AiFi forms an α-completion

of T0 with respect to the path Ai for every i (0 6 i < β).

Next let γ be an ordinal with γ < β and suppose that Tγ is a definably

uniformly α-like tree and that Tγ +Ai Fi forms an α-completion of Tγ with

respect to the path Ai for every i (γ 6 i < β). We need to show that

Tγ+1 is also a definably uniformly α-like tree and that Tγ+1 +Ai Fi forms an

α-completion of Tγ+1 with respect to the path Ai for every i (γ+1 6 i < β).

Consider the path Aj in Tγ+1 for some j (γ + 1 6 j < β). Then Aj + Fj
is a pathwise uniformly α-like tree. Let a be a node in Aj with a 6∈ Aγ.

Note that the subtree a6 of Tγ+1 is the same as the subtree a6 of Tγ. Let

Y := {x ∈ Aj : x > a}. Since Tγ is an almost α-tree with Tγ +Aj Fj an

α-completion of Tγ with respect to the path Aj, we have by Proposition 7.26

that the tree a6 is an almost δ-tree for some ordinal δ with a> + δ ≡ α
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and a6 +Y Fj is a δ-completion of a6 with respect to the path Y in a6.

In particular a6 � a6 +Y Fj. Since Tγ+1 +Aj Fj can be seen as the result

of replacing the subtree a6 of Tγ+1 with the tree a6 +Y Fj, it follows from

Proposition 5.18 that Tγ+1 � Tγ+1 +Aj Fj. Hence Tγ+1 +Aj Fj is an α-

completion of Tγ+1 with respect to the path Aj.

Since the class of definably uniformly α-like trees can be defined by the

theory AT∪ DeΦα and since Tγ is definably uniformly α-like and Tγ � Tγ+1, it

follows that Tγ+1 is also definably uniformly α-like. Hence Tγ+1 is an almost

α-tree.

Next consider the case where λ is a limit ordinal with λ 6 β. Suppose

that for every ξ with ξ < λ, Tξ is a definably uniformly α-like tree and

Tξ +Ai Fi forms an α-completion of Tξ with respect to the path Ai for every i

(ξ 6 i < β). We need to show that the tree Tλ is definably uniformly α-like

and that Tλ +Ai Fi forms an α-completion of Tλ with respect to the path Ai
for every i (λ 6 i < β).

First note that since the tree Tξ satisfies the property Aα for every ξ

(ξ < λ), it follows that {Tξ}ξ<λ is an elementary chain so

Tτ �
⋃
ξ<λ

Tξ = Tλ

for every τ with τ < λ.

It again follows that since the class of definably uniformly α-like trees

can be defined using the theory AT ∪ DeΦα and since the tree T0 is definably

uniformly α-like then the tree Tλ must also be definably uniformly α-like.

Next consider the path Aj in Tλ for some j (λ 6 j < β). We already

know that Aj + Fj is a pathwise uniformly α-like tree. Let U be the set of

nodes u in Tλ for which (i) u 6∈ Aj, and (ii) the immediate predecessor of

u belongs to Aj, and (iii) u ∈ Ai + Fi for some i with i < λ. For every ξ

(ξ < λ) and for every u ∈ U , define the trees

V ξ
u := {x ∈ Tξ : u 6 x} = {x ∈ Tξ +Aj Fj : u 6 x},

Wu := {x ∈ Tλ : u 6 x}.

Now V ξ
u � Wu for every ξ (ξ < λ) and u ∈ U . To see this, let c̄

be a tuple of nodes in V ξ
u and suppose that (Wu; c̄) |= ∃xϕ(x, c̄). Then

(Tλ; c̄ u)>u |= ∃xϕ(x, c̄) so (Tλ; c̄ u) |= ∃x (x > u ∧ ϕ>u(x, c̄)). Since Tξ � Tλ
this gives (Tλ; c̄ u) |= ϕ>u(d/x, c̄) for some d ∈ Tξ with d > u. Hence
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(Wu; c̄) |= ϕ(d/x, c̄) with d ∈ V ξ
u and it follows by the Tarski-Vaught cri-

terion for elementary substructures that V ξ
u � Wu.

Next we show that Tξ � Tλ+AjFj for every ξ with ξ < λ. We know by the

inductive hypothesis that Tξ � Tξ+Aj Fj. The tree Tλ+Aj Fj can be obtained

from the tree Tξ +Aj Fj by replacing the subtree V ξ
u of Tξ +Aj Fj with the tree

Wu for every u ∈ U . By Proposition 5.18 this gives Tξ +Aj Fj � Tλ +Aj Fj.

Hence we get Tξ � Tλ +Aj Fj.

Finally let ϕ(x, ȳ) be a formula and let c̄ be a tuple of nodes in Tλ for

which
(
Tλ +Aj Fj; c̄

)
|= ∃xϕ(x, c̄). Then c̄ is a tuple of nodes in the tree Tτ

for some τ (τ < λ). Since Tτ � Tλ +Aj Fj we get that (Tτ ; c̄) |= ϕ(d/x, c̄)

for some d ∈ Tτ and since Tτ � Tλ this then gives (Tλ; c̄) |= ϕ(d/x, c̄) where

d ∈ Tλ also. By the Tarski-Vaught criterion for elementary substructures we

therefore have that Tλ � Tλ +Aj Fj. Hence Tλ +Aj Fj forms an α-completion

of Tλ with respect to the path Aj. It follows that Tλ is an almost α-tree.

This completes the induction argument. qed

Corollary 7.28 Let T be an almost α-tree for α an ordinal with α < ωω.

There exists a pathwise uniformly α-like tree S for which T � S.

Proof Take S to be the tree Tβ as in Theorem 7.27. qed

Let α be an ordinal with α < ωω and suppose we have a theory ∆ which

axiomatises the class of trees satisfying the property Aα. Then the theory

∆ ∪ DeΦα

axiomatises the class of pathwise uniformly α-like trees. To see this first note

that every pathwise uniformly α-like tree satisfies ∆ ∪ DeΦα . Next suppose

T is a model of the theory ∆∪DeΦα . It follows that T ≡ T ′ for some almost

α-tree T ′ and by Corollary 7.28, T ′ ≡ S for some pathwise uniformly α-like

tree S giving T ≡ S, as required.

7.5 Almost (ω+1)-trees and their extensions

Let x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , ym). A formula ϕ(x̄) is called existen-

tial when ϕ(x̄) has the form ∃y1 . . . ∃ym ψ(x̄, ȳ) with ψ(x̄, ȳ) a quantifier-free

formula. Let A and B be structures and suppose that A is a substructure

of B. Then A is called existentially closed in B if, for every existential
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formula ϕ(x̄), if
(
B; b̄

)
|= ϕ(b̄) for some n-tuple of elements b̄ from |B|, then

already (A; ā) |= ϕ(ā) for some n-tuple of elements ā from |A|.

Every path in an almost (ω+1)-tree is either an ω-like path or an (ω+1)-

like path. The easiest way to turn an ω-like path into an (ω + 1)-like path

is to add a node to the end of the path although the tree so obtained need

not be an elementary extension of the original tree. As the next result shows

however, an almost (ω+1)-tree will be existentially closed in the tree obtained

from it by adding a node to the end of each of its ω-like paths.

Proposition 7.29 Let T be an almost (ω + 1)-tree and let T+ be the tree

obtained from T by augmenting every ω-like path in T with a leaf. Then T

is existentially closed in T+.

Proof Let ϕ(x̄) be a quantifier-free formula with x̄ = (x1, . . . , xk) and

suppose that T+ |= ϕ(ā/x̄) for some tuple of nodes ā = (a1, . . . , ak) from

T+. Let ai1 , . . . , aim be all those nodes from a1, . . . , ak which belong to T

and let aj1 , . . . , ajn be all those nodes from a1, . . . , ak which belong to T+\T .

Obviously aj1 , . . . , ajn must all be leaves and for every r the set Ajr := {x ∈
T : x < ajr in T+} forms an ω-like path in T .

For every r (1 6 r 6 n) and for every s for which as 6= ajr , let bjr,s be

the least node in T+ with the property that bjr,s ∈ Ajr and bjr,s 6< as. Such

a node bjr,s must exist for suppose first that Ajr ⊆ (as)>. Now if s = it for

some t then the set Ajr is not maximal total in T which contradicts the fact

that Ajr is a path in T . And if s = jt for some t then it would mean that in

the construction of T+, the path Ajr in T was augmented with not one but

two leaves ajr and ajt , again a contradiction. It follows that there exists a

node bjr,s with the property that bjr,s ∈ Ajr and bjr,s 6< as. That we can find

a least such bjr,s is due to the fact that Ajr is an ω-like path.

Again since Ajr is ω-like then for every r (1 6 r 6 n) we can find a least

node bjr ∈ Ajr for which bjr > bjr,s for every s with as 6= ajr .

For every i (1 6 i 6 k) define

ci :=

{
ai when i = it for some it (1 6 t 6 m)

bi when i = jt for some jt (1 6 t 6 n)

and let c̄ = (c1, . . . , ck).

We show that T |= ϕ(c̄/x̄) by showing, for all i and j with 1 6 i, j 6 k,

that ai < aj in T+ if and only if ci < cj in T , and ai = aj if and only if

ci = cj.
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ai < aj ⇔ ci < cj: First assume that ai < aj. The node ai cannot be

amongst aj1 , . . . , ajn since then ai would be a leaf in T+ and consequently

ai 6< aj. Hence ai must be a node amongst ai1 , . . . , aim . If aj is also a node

amongst ai1 , . . . , aim then we get ci = ai < aj = cj. Hence consider the case

where aj is a node amongst aj1 , . . . , ajn . Then ai ∈ Aj and bj,i ∈ Aj hence

ai ^ bj,i and it follows that ai 6 bj,i. This gives ci = ai 6 bj,i < bj = cj.

Next assume that ci < cj. Observe that the index i cannot be amongst

j1, . . . , jn since then we would have that bi,j < bi = ci < cj. Then if j

is amongst i1, . . . , im we would further have cj = aj, while if j is amongst

j1, . . . , jn we would have cj = bj < aj. In either case this would give bi,j < aj,

a contradiction. Now if the indices i and j are both amongst i1, . . . , im then

we get that ai = ci < cj = aj, and if i is amongst i1, . . . , im and j is amongst

j1, . . . , jn then since cj ∈ Aj we get ai = ci < cj < aj.

ai = aj ⇔ ci = cj: Let ai = aj with i 6= j. Either both i and j must be

amongst the indices i1, . . . , im or both i and j must be amongst the indices

j1, . . . , jn. If i and j are both amongst i1, . . . , im then ci = ai = aj = cj. If i

and j are both amongst j1, . . . , jn then from the way bi and bj are chosen we

get bi = bj so ci = bi = bj = cj.

Now let ci = cj with i 6= j. If i is amongst i1, . . . , im and j is amongst

j1, . . . , jn then bj,i < bj = cj = ci = ai which contradicts the fact that

bj,i 6< ai. Hence it cannot be that i is amongst i1, . . . , im and j is amongst

j1, . . . , jn. Next if i and j are amongst i1, . . . , im then ai = ci = cj = aj.

Finally consider the case where both i and j are amongst j1, . . . , jn. Suppose

that ai 6= aj. Then bi,j < bi = ci = cj = bj < aj. This contradicts the fact

that bi,j 6< aj and so ai = aj, as required.

From the fact that the nodes ci were chosen such that ci = ai when ai ∈ T ,

it now follows that if d̄ is a tuple of nodes from T and if ψ(ȳ, z̄) is a quantifier-

free formula such that
(
T+; d̄

)
|= ∃ȳ ψ(ȳ, d̄) then

(
T ; d̄

)
|= ∃ȳ ψ(ȳ, d̄). Hence

T is existentially closed in T+. qed

Let T be an almost (ω + 1)-tree and let T+ be the tree obtained from

T by augmenting every ω-like path in T with a leaf. Since T is existentially

closed in T+ then there exists a tree S for which T+⊆ S and T � S (see e.g.

[22]). As the next two examples show, such a tree S need not be pathwise

uniformly (ω + 1)-like.

Example 7.30 Let Bω be the binary ω-tree and let B be the tree obtained

from Bω as follows. We assign labels (recall Section 4.1) to the paths in Bω
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by assigning the label (0) to the root of Bω and for every node x ∈ Bω we

use the set Ix> = {0, 1} and fix fx> : S(x>)→ Ix> to be any bijection. Then

as in Example 4.4, for every path X in Bω the label `(X) of X corresponds a

real number r with 0 6 r 6 1. The tree B is taken as the result of adding a

node to the end of every path X of Bω of which the label `(X) corresponds

to a rational number r.

Let W be the tree constructed by taking the linear order ζ and at every

point in ζ we attach a copy of the tree B. Thus W is a C-tree, where

C = {ζ, ζ + 1}, in which every non-leaf node has precisely two immediate

successors.

Finally we take T to be the tree B. Using an argument similar to the

one used in Example 6.25 it can be seen that the parametrically definable

paths in T are precisely the (ω + 1)-paths hence T is a definably uniformly

(ω + 1)-like tree. Moreover it is easy to verify using an Ehrenfeucht-Fräıssé

game that the tree obtained from T by adding a node to the end of any of

its ω-paths is an elementary extension of T . Hence T satisfies the property

Aω+1 and it follows that T is an almost (ω + 1)-tree.

Let T+ be the tree obtained from T by adding a node to the end of every

ω-path in T . Then T+ is an (ω + 1)-tree of which every non-leaf node has

precisely two immediate successors.

Construct the tree S from T+ as follows. For every leaf z in T+\T we

augment the stem z> with a copy of the tree W by inserting a copy of W

next to the leaf z, i.e. x < w for every x ∈ z> and w ∈ W while z 6^ w for

every w ∈ W . Let S be the tree so obtained. Note that S is a K-tree for

K = {ω + 1, ω + ζ, ω + ζ + 1}. In particular, S is not a pathwise uniformly

(ω + 1)-tree.

Now T+ ⊆ S and using an Ehrenfeucht-Fräıssé game it is easy to see that

(T ; c̄) ≡n (S; c̄) for every k-tuple c̄ in T and for every n ∈ N. Hence T � S.

The next example shows that the tree S need not be an end-extension of

the tree T+.

Example 7.31 Let B be the tree from Example 7.30. Let W be the tree

consisting the linear order Z := ω? with a copy of the tree B attached to

every point in Z. Hence W is a C-tree, where C = {ζ, ζ + 1}, and every node

in W has precisely two immediate successors, except for the greatest node

in Z which has only one immediate successor, and the leaves in W which all

have no successor.
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As in Example 7.30, let T be the tree B. In Example 7.30 we showed

that T is an almost (ω + 1)-tree. Let T+ be the tree obtained from T by

adding a node to the end of every ω-path in T .

Construct S as follows. For every leaf z in T+\T we (i) insert a copy of

the tree W between z and z> by changing the path z>+z in T+ to z>+Z+z

with all the copies of W branching off from the points in Z as usual, and (ii)

we adjoin a copy of the tree B to the end of the path z>+Z+z formed in (i).

Take S to be the tree that so results. Hence every non-leaf node in S will have

two immediate successors and S is a K-tree with K = {ω+1, ω+ζ, ω+ζ+1}.
In particular, S is not a pathwise uniformly (ω + 1)-tree

Then T+ ⊆ S and using an Ehrenfeucht-Fräıssé game, it can be seen that

(T ; c̄) ≡n (S; c̄) for every k-tuple c̄ in T and for every n ∈ N. Hence T � S.

Remark 7.32 Let T be an almost (ω+ 1)-tree, let T+ be the tree obtained

from T by adding a node to each of its ω-like paths, and let S be any tree for

which T+ ⊆ S and T � S. In the construction of S from T+ there are certain

configurations of nodes which cannot be added to T+ to obtain S. Assume

that S is a proper extension of T+ and let s ∈ S\T+. Some restrictions on

the location of s relative to the nodes in T include the following:

(i) The node s cannot lie below the root of T . This follows from the fact

that the formula root(x) defines the root of a tree and T � S hence

the root of T is also the root of S.

(ii) The node s cannot lie above any leaf from T . This follows from the fact

that the formula leaf(x) defines the set of leaves of a tree and T � S

hence every leaf in T is also a leaf in S.

(iii) The node s cannot lie between two nodes from T of which the one node is

an immediate successor to the other node. This is because if b1, b2 ∈ T
and b2 is an immediate successor to b1 then (T ; b1, b2) |= s(b1, b2) and

since T � S then (S; b1, b2) |= s(b1, b2) so b2 is an immediate successor

to b1 in S also.

(iv) If T is finitely branching then s either extends a path from T or s is

bounded above by nodes from T . Suppose to the contrary that X 6< s

for every path X from T and that s 6< x for every node x ∈ T . Let

A := {x ∈ T : x < s in S} and note that A is a stem in T . Suppose T is

n-branching from A. It follows from Proposition 4.9 that there exists
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a set of nodes H := {a1, . . . , an} in the subtree A< of T such that

H spans A<. The set H does not span the subtree A< of S though

since s belongs to the subtree A< of S but s 6^ ai for every i. Let

ā := (a1, . . . , an). Then (T ; ā) satisfies the sentence

∀x∀y

(
n∧
i=1

x < ai →

(
x < y →

n∨
i=1

y ^ ai

))

but (S; ā) does not. This contradicts the fact that T � S.



Chapter 8

Concluding remarks

Trees are important structures occuring in many diverse fields of mathematics

and computer science. A systematic study of their first-order theories, along

the lines of what [24] does for linear orders, does not exist and much work

remains to be done in this regard.

We have defined trees as consisting of a set of nodes with an order relation

imposed on those nodes, but we have placed particular emphasis on the

structure of the paths within the tree. First-order logic lacks the expressive

capability to reliably capture the structure of these paths hence the general

problem of studying the first-order theory of a tree based on knowledge of

the first-order theory of the class of linear orders which comprise its paths is

not an easy one.

We have defined eight classes of trees which arise naturally from a class

of linear orders C in terms of how the paths in those trees are related to

the linear orders in the class C and we have established all the set-theoretical

relationships between these eight classes of trees as well as between their first-

order theories. We have also investigated the first-order theories of some of

these classes of trees based on knowledge of the first-order theory of the class

C.
The particular case where C consists of a single finitely axiomatisable

ordinal merits special attention. We have investigated the first-order theory

of the class of trees of which every path is isomorphic with the ordinal α for

α < ωω. For the case where α is finite or where α = ω we have determined

the first-order theory of this class. For the case where ω < α < ωω we have

introduced the notion of an almost α-tree and showed that every almost α-

tree can be elementarily extended in a natural way to a tree of which every
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path satisfies the first-order theory of α.

We have also studied some general set-theoretical and logical properties of

trees, specifically the broad problem of the axiomatisability of various classes

of trees and the definability of various sets of nodes within a tree.

Some directions for further study include the following:

1. The general problem, for any axiomatisable class of linear orders C, of

axiomatising the first-order theories of all eight of the classes of C-trees

based on the first-order theory of the class C.

2. For an arbitrary class of linear orders C, investigating the transfer of

logical properties, such as the decidability of the first-order theory of C,
to the first-order theories of the eight C-classes of trees, and vice versa.

3. To axiomatise the first-order theory of the class of α-trees for α an

ordinal with ω < α < ωω.

4. Further study of the definable subsets, notably the definable paths, of

trees.

5. Studying trees using extensions of first-order logic which are still gener-

ally weaker than monadic second-order logic. Possible such languages

include first-order logic with colours (see e.g. [10]), first-order logic with

transitive closure (see e.g. [8]), and first-order logic with fixed points

(also see e.g. [8]).
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emergent path, 53

equivalent formulas

n-equivalent, 6

existential formula, 104

existentially closed, 104

extend, 36

forest, 14

furcation, 17

height, 32

internal path, 54

irreflexive, 13

König’s Lemma, 39

Kurepa tree, 40

label, 32

leaf, 15

least element, 31

level, 32

lexicographical product, 25

limit node, 32

linear order, 14

α-like, 85

litter, 36

minimal element, 31

neighbourhood, 50

119



INDEX 120

node, 14

ordered set, 13

partial order, 14

path, 15

α-like, 41

α-path, 41

peripheral path, 54

predecessor, 13

product

f -product, 25

quantifier rank, 5

Rabin’s Tree Theorem, 1

relativisation, 8

root, 14

segment, 15

subsegment, 36

siblings, 36

singular path, 53

span, 35

Splitting Lemma, 47

stem, 15

subtotal, 14

subtree, 18

successor, 13

node, 32

Suslin

line, 40

tree, 40

tail, 90

total, 14

transitive, 13

tree, 14

C-classes, 41

n-ary, 34

almost α-tree, 97

twins, 36

well-founded, 31

definably, 64

well-ordered, 31

Zermelo-Fraenkel set theory, 6


