
A Review of the Use of Copulas in Credit

Derivatives and the Development of

Alternative Methodologies1

Slavica Lazic

Under the Supervision of
Prof Coenraad Labuschagne and Dr Diane Wilcox

Programme in Advanced Mathematics of Finance
School of Computational and Applied Mathematics

University of the Witwatersrand

Private Bag 3
P O WITS 2050
Johannesburg
South Africa

E-mail: lazic.slavica@gmail.com

August 16, 2010

1A dissertation submitted to the Faculty of Science, University of the Witwatersrand,
Johannesburg, in fulfillment of the requirements for the Degree of Master of Science.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/39668001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Credit derivatives and their modelling have received a lot of attention in recent years.
Dependence between assets is a crucial property where the contingent payment de-
pends on a basket of underlying assets. Prior to the recent global economic crisis,
copulas had earned the reputation of being key tools for capturing this dependence.
However, their popularity has been subsequently lost. In this dissertation we will
examine the theory surrounding copulas and their usefulness when applied to mod-
elling credit derivatives. First, some general mathematical theory will be presented.
Following this introduction, we will look at various copulas that have been suggested
for the use in credit derivatives, such as the Gaussian copula, the t-copula and the
Archimedean family of copulas. We will discuss the features of these copulas that
may make them attractive for modelling credit derivatives. We will then turn our
attention to the pitfalls of copulas that may have caused their recent lack of popu-
larity. Finally, we will examine alternative models that have been put forward for
capturing this dependence in credit derivatives.
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Chapter 1

Introduction

1.1 Introduction

Credit derivatives have become crucial financial instruments in recent times. Their
development has been largely driven by the desire of financial institutions to hedge
their credit exposures. According to [12] their popularity stems from the fact that
they help financial firms to manage the credit risk on their books by dispersing parts
of the risk through the wider financial sector, thereby reducing the concentration of
risk. Major participants in the market for credit derivatives have been the banks,
insurance companies and investment funds.

It is mentioned in [22] that according to a 2002 survey by the British Bankers’
Association (BBA), the estimated size of the credit derivative market by the end
of that year was already $2 trillion. The survey identified the so-called single-name
credit default swaps (CDS) as accounting for almost half of the market volume at
that time. These credit-derivatives have been traded over-the-counter.

The market for CDSs written on larger corporations is fairly liquid. They are a
natural underlying security for many more complex credit derivatives, and models
for pricing portfolio-related credit derivatives are usually calibrated to these quoted
CDS spreads.

As financial innovation found its way into the market, credit derivatives became
more complex and were increasingly based on entire loan portfolios. As a direct
consequence of managing the risks of loan portfolios, a huge market for asset securi-
tisation, such as various types of collateralised debt obligations (CDO), has emerged.
With this development the mathematical modelling became increasingly complex.
In addition, the purpose to which credit derivatives were put had broadened to in-
clude maximising expected returns through speculation - a risky strategy for any
type of financial instrument.

According to [22] the roots of credit derivative modelling can be associated with the
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Chapter 1 §1.2 The Credit Crunch 3

Black and Scholes (1973) and Merton (1974) models. Credit risk has its foundations
in the development of option-pricing techniques and the application to the study of
corporate liabilities. The option-pricing literature, which views the bonds and stocks
issued by a firm as contingent claims on the assets of the firm, is the first to provide
a strong link between a statistical model describing default and an economic-pricing
model

Due to its nature, credit risk is rich with institutional details of the underlying
entity. However majority of the available models tend to deal with stylized versions
of credit risk. In addition, the pricing of CDOs and the analysis of portfolios of loans
or credit-risky securities lead to the question of modelling dependence between the
defaults. Dependence modelling is necessary in trying to understand the risk of
simultaneous defaults by entities on which the derivative is based. Such multiple
defaults can affect the stability of the financial system with profound effects on the
entire economy.

The market for credit derivatives had evolved so much that, according to [12], im-
mediately prior to the credit crunch of 2007-2009 CDOs overtook the CDSs and
became the most widely traded class of portfolio credit derivatives.

1.2 The Credit Crunch

The recent global financial crisis of 2007-2009 (also known as the credit crunch) has
been extensively analysed and there is much literature to be found on it. Generally
the literature is consistent in identifying the causes of the crisis. In a nutshell,
defaults on home-loans around 2006-2007 led to either foreclosure or sale of houses
to settle the mortgages. This sent the property prices declining, which in turn
was a catalyst for further foreclosure and forced sales, and lead to the collapse of
the United States’ housing bubble, which peaked in approximately 2005-2006. The
defaults upset the economic stability and damaged mortgage providers and other
financial institutions globally.

The first trigger of the crisis was the rising of interest rates in the United States.
Loan incentives based on easy initial terms and a long-term trend of rising housing
prices had initially encouraged borrowers to assume difficult mortgages in the belief
that they would be able to quickly refinance at more favourable terms. However,
once interest rates began to rise and housing prices started to drop moderately in
2006-2007, refinancing became more difficult causing a large increase on mortgage
defaults by the private sector. High default rates on “subprime” and adjustable rate
mortgages (ARM), began to increase quickly thereafter.

Further, it was the decline in confidence, doubts regarding solvency of banks and
mortgage institutions, and declines in credit availability that had an impact on
global stock markets, which suffered large losses during 2008. Critics argued that
credit rating agencies and investors failed to accurately price the risks involved
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with mortgage-related credit derivatives, and that governments did not adjust their
regulatory practices to address the evolution in financial markets.

At the same time as the housing and credit booms, the amount of financial instru-
ments such as the CDOs, which derived their value from mortgage payments and
housing prices, greatly increased. As the demand for these instruments increased,
more mortgages were issued and in turn more houses were sold. Often these instru-
ments were many times removed from the underlying assets, increasing complexity
reducing their transparency at the same time. But as housing prices declined, major
global financial institutions that had borrowed and invested heavily in the subprime
instruments reported significant losses. Defaults and losses on other loan types also
increased significantly as the crisis expanded from the housing market to other parts
of the economy. These losses impacted the ability of financial institutions to lend,
slowing economic activity. The total losses are estimated in trillions of U.S. dollars
globally.

1.3 The Role of Copulas

Modelling dependence between default events and between credit quality changes
is, in practice, one of the biggest challenges of credit risk models. The most obvious
reason for worrying about dependence is that it affects the distribution of loan
portfolio losses and is therefore critical in pricing and valuing instruments such as
the CDOs.

Prior to the financial crisis, copulas were one of the main tools for pricing and
valuing credit derivatives. They allowed for a great level of flexibility in modelling
the default behaviour of individual loans and still provided elegant solutions on a
portfolio level.

Their theory has been around since the 1950s, though it is commonly cited that [23]
was one of the first works applying copulas to the concept of defaults. In particular
it is the Gaussian copula which became a market model for pricing and valuing
instruments such as the CDOs.

With the financial crisis, fingers were pointed at the Gaussian copula for underes-
timating the risk of defaults in portfolio credit derivatives. Subsequently copulas
altogether lost their popularity in the modelling of credit derivatives. We’ll look at
the question of whether this loss of popularity is justified, as well as what are the
alternative methods of modelling credit derivatives and what these have to offer.

1.4 Research Objectives

There is a vast body of literature on the use of copulas in credit derivatives. As its
first goal, this dissertation sets out to familiarise the reader with the copula theory.
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It also undertakes to provide a detailed overview of the application of this theory to
credit derivatives, using specific examples found in the literature.

The next task that this dissertation tackles is to provide a comprehensive answer to
the question of why the sudden unpopularity of copulas altogether may have come
about.

Finally, on criticising any methodology one should be ready to provide alternative
solutions. With this in mind, the dissertation aims to provide a balanced review by
discussing these alternative methods found in the literature. The author sets out to
provide an insight into the evolution of credit derivative modelling and the direction
in which it is going.

Since the dissertation reviews a diverse body of literature, practical issues such as
simulation of results and computing times are not discussed.

1.5 Structure of the Dissertation

We first look at the various generic characteristics of credit derivatives in Chapter
2. The terminology commonly used in association with credit derivatives, as well
as some basic mathematical concepts, is introduced. Some of the main single-name
and basket credit derivatives are described. The relevant cashflows and the general
approaches to pricing each of these derivatives is discussed.

Chapter 3 is dedicated to the theory of copulas. We follow the layout of [27] and
start with some preliminary theory which will assist in defining the copula and
its properties. After introducing the copulas some special cases are investigated.
These will later assist us in recognising the features of various copulas. We compare
various measures of dependence between variables and discuss desirable traits of
these measures for our purposes. Lastly, we introduce a number of copula examples
that have been used throughout literature for modelling credit derivatives.

Having established the theory of copulas, Chapter 4 sets out detailed examples of
how copulas have been used in pricing and valuing credit derivatives on baskets of
securities. We investigate the processes assumed for the underlying single security
variables, such as time to default. Then we consider how these processes are brought
together to a multivariate framework by a copula. The chapter is finished off with
an examination of the drawbacks of using copulas for credit derivatives.

In order to provide a balanced review of the use copulas for valuing credit deriva-
tives, we turn our attention in Chapter 5 to the alternate models. The chapter
largely follows the chronological developments in credit derivative modelling and
draws comparisons between different approaches as well as with the copulas.



Chapter 2

Credit Derivatives, Definitions,
Prices

2.1 Introduction

One of the key risks taken on by investors in bonds or loans is credit risk - the risk
that the bond or loan issuer will default on the debt. To meet the need of investors
to hedge this risk, the market has developed instruments called credit derivatives.
They were originally introduced to protect banks and other institutions against
losses arising from default. As such they are instruments designed to off-load or
take on credit risk. Credit derivatives have been used widely by banks, portfolio
managers and corporate treasurers to enhance returns, trade credit for speculative
purposes and as hedging instruments, although the recent credit crisis has created
some reluctance in their use.

In simple words, credit risk or default risk (we will be using the terms interchange-
ably) is the risk that an obligor does not honour his/her payment obligations. De-
fault risk has some important properties peculiar to it, which may make its quanti-
tative modelling difficult, namely:

1. default events are rare and may occur unexpectedly; and

2. they may involve significant losses, but the size of these losses may not be
known before default.

2.2 Basic Terminology

As suggested above, a credit derivative is a derivative security that is primarily
used to transfer, hedge or manage credit risk, and hence whose payoff is materially

6



Chapter 2 §2.3 Different Types of Credit Derivatives 7

affected by this risk. When looking at different credit derivatives it is important to
consider the following items:

• Reference credit and the reference credit asset : Reference credit is the entity
(or entities) whose defaults trigger the credit events. The set of assets issued
by the reference credit is referred to as the reference credit asset. They are
needed for the determination of the credit event and for the calculation of
the recovery amount. Examples of reference credit assets include: residential
property, commercial property; motor vehicles and student loans.

• Definition of credit event : A credit event can refer to a number of events, such
as bankruptcy; failure to pay a certain obligation; repudiation; a rating down-
grade below a certain threshold; or firm restructuring. The affected payments
must exceed some pre-specified materiality threshold and the event must pre-
vail over a certain grace period. It is evident that any probability of default
on an instrument will depend on the exact definition of the credit event. For
this reason it is important to define precisely what will trigger the credit event
for the credit derivative in question.

• Assumption of recovery : Default may not necessarily result in the value of
reference assets dropping to zero. Their recovery value (usually expressed in
terms of a percentage of the notional asset value) is often used to determine
the payment under the credit derivative.

• Default payment : This item refers to the payments made if the default event
happens.

Of particular interest to our investigation are derivatives involving more than one
security. On a portfolio level there is a risk of clustering of defaults, when more
defaults occur jointly. We therefore need to refine the definition of credit or default
event further in relation to a group of securities. For example the default can be
specified to occur when the first security defaults (termed as first-to-default). Other
possibilities for the definition of default could be second-to-default, or when the total
loss on the basket of securities has exceeded a certain level.

2.3 Different Types of Credit Derivatives

Investment banks may offer their clients tailor-made solutions for their management
of credit risk. This gives rise to innovation and creation of many different kinds
of credit derivatives. However, the so-called vanilla instruments are still the most
widely traded, especially since the recent credit crisis. In this section we will describe
some of the common credit derivatives.
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2.3.1 Credit Default Swaps

A Credit Default Swap (CDS) is an agreement between two counterparties to ex-
change sets of cashflows. The protection buyer will pay a fee for the protection,
either at regular intervals or as a lump sum fee up front. In return, the protection
seller will pay the default payment to the protection buyer if a default event happens
during the term of the contract. This default payment is structured to replace the
loss that the lender would incur upon a specified credit event. If a default does
not occur up to the maturity of the default swap, the protection seller makes no
payment.

The default payment could be specified in a number of ways, for example:

• Physical delivery of one or several of the reference assets against a repayment
at par.

• Notional less post-default market value of the reference asset. This is referred
to as cash settlement. The difficulty with this specification is that it may be
hard to obtain a market value of an asset after it has defaulted.

• A pre-agreed fixed payoff, irrespective of the recovery rate (this is termed a
default digital swap).

The price of the default protection that needs to be paid by the protection buyer to
the protection seller is expressed as a rate called the credit default swap spread. The
fee amount is then the CDS spread multiplied by the notional, often adjusted for
the day count fraction, which takes into account conventions such as 360 day counts.
On other words the reglar fee payable for the CDS is the notional amount multiplied
by the spread. The first fee is usually payable at the end of the first period, and if
a default happens between two fee payment dates, the accrued fee up to the time of
the default must also be paid to the protection seller.

2.3.2 Collateralised Debt Obligation (CDO)

This is an instrument that securitises a basket of defaultable assets: loans, bonds,
mortgages or even credit default swaps (in which case the CDO is referred to as
synthetic CDO). Leading up to the recent credit crisis, synthetic CDOs became very
popular because the issuer could create a portfolio with exposure to defaultable
instruments without the requirement of owning them. An illustrative rationale for
the development of CDOs can be found in [22].

The main aim of CDOs is for financial institutions to transfer some of their credit
risk to investors and to free regulatory capital. The main advantage for investors is
the ability to invest in products they would not have access to otherwise or not be
permitted to invest in (which may enhance their portfolio diversification).
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The assets which are to be securitised are sold to a company called a Special Purpose
Vehicle (SPV), that is set up for this purpose. The sole purpose of the SPV is to
hold the collateral assets and issue securities backed by this collateral into the capital
markets. Investors are then offered the opportunity to invest in notes issued by this
company.

However, before they are issued, the assets are re-packaged into tranches according
to the level of perceived risk. Tranches are ranked by seniority and are defined by
the lower and upper attachments points. Senior debt tranche is the least risky for
investors. The mezzanine debt tranche has an intermediate risk level (there could be
more than one mezzanine tranche level in a CDO). The equity tranche is the most
risky for the investors. In return for its higher risk, the equity tranche provides the
largest coupons.

Investors with increasing risk aversion select progressively more senior tranches,
which provide correspondingly lower risk and returns. The order of payments re-
sulting from the cashflows from the collateral assets is determined by the seniority of
the tranches. The investors in the senior tranches have priority over the mezzanine
tranche investors, who in turn have priority over the equity tranche holders.

In return for receiving periodic coupon payments (sometimes also referred to as
premium payments), the investors will bear losses resulting from defaults of the
collateralised assets. A default causes the amount of assets to decrease. Investors
in a tranche with attachments level a% and detachment level d% will bear all losses
in the portfolio in excess of a% and up to d% of the initial portfolio value. When
tranches are issued they usually receive a credit rating by an independent credit
rating agency (e.g. S&P or Moody’s). Each tranche except the equity is rated. Prior
to the recent credit crunch, the senior tranche used to have a Aaa\AAA rating.

2.3.3 Credit Linked Notes

A Credit Linked Note (CLN) is a security which has an interest payment and a fixed
maturity structure similar to a vanilla bond. The performance of the note however,
including the maturity value, is linked to the performance of a specified underlying
asset or assets as well as that of the issuing entity.

A CLN is a combination of a credit derivative and a coupon bond that is sold as
a fixed package. The coupon payments (and sometimes also the repayment of the
principal) are reduced if a third party (the reference entity) experiences a default
during the lifetime of the contract, so the buyer of a credit-lined note is providing
the credit protection for the seller.
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2.4 Credit Derivative Pricing

In this section we will be looking into the pricing of CDS and CDO contracts. In each
case we will derive the cashflows for the protection buyer and protection seller’s legs
and then discuss how discounting and a suitable loss distribution would be applied
to arrive at a fair price.

First, we will define the notation and discuss some concepts we will be using in this,
as well as the following, chapters.

2.4.1 Notation and some Preliminary Concepts

Notation

The following notation will be used throughout this section:

• n is the number of assets included in the collateral portfolio backing a CDO,
or the number of reference assets for a CDS.

• Ni is the notional amount of the ith asset in the collateral portfolio.

• The total portfolio value is given by

N =
n∑

i=1

Ni.

• Ri is the assumed recovery rate of the ith asset in the collateral portfolio,
taking on values between 0 and 1. In the case where we are only dealing with
one asset or we are only concerned with the recovery rate of one default event
we denote its recovery rate simply by R. We will first assume that all recovery
rates are deterministic. However, this assumption will later be relaxed.

• T is the maturity of the contract measured in years from the date of issue.

• t0 = 0 is the contract initiation time.

• 0 < t1, t2, . . . , tz = T denotes the time points at which the CDS premiums are
paid.

• τi is the default stopping time for the ith asset with marginal default distribu-
tion

Fi(t) = P [τi ≤ t], t ≥ 0.

If we are only concerned with a single default event, we drop the subscript and
denote the default time by τ .
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• Si(t) is the corresponding survival function, i.e.

Si(t) = P [τi > t] = 1− Fi(t).

In [23] it is pointed out that risky bond spread curves or asset swap spreads
can be used to build so-called credit curves. A credit curve gives all marginal
conditional default probabilities over a number of years.

• r is the continuously compounded risk free rate of interest. We are assuming
it to be constant, though this assumption can be easily relaxed.

• B(0, t) is the time t = 0 price for a zero-coupon risk-free bond with maturity
value 1 at time t.

• p̃(0,T ) is the fair spread for the CDS or the CDO tranche. A fair spread is that
spread for which the value of the contract to both parties at inception is zero.
For a CDO this is the rate applied to the outstanding tranche notional. The
spread is dependent on the contract initiation time and its maturity.

• 1τi<t is the default indicator at time t for the ith asset in the collateral portfolio.
It is a counting process which jumps from 0 to 1 at the time of default of ith

asset. Another notation that will be used is Xi. So Xi = 1τi<t.

• The default event correlation between instruments i and j is generally given
by

ρi,j(t) = Corr
[
1τi<t, 1τj<t

]
.

Correlation between securities is one of key modelling aspects that we are
addressing in this dissertation.

Hazard Rate

A frequent approach to defining the default distribution is to specify it via a hazard
rate function, as done in [12], [22] and [31]. The hazard rate function gives the
instantaneous default probability for a security that has survived until a time t. It
is a conditional probability density function of the default time τ at exact time t,
and is of the form

λ(t) =
f(t)

1− F (t)
= −S

′(t)

S(t)
,

where S′(t) is the derivative of S(t) with respect to t. Then the survival function
can be expressed in terms of the hazard rate function

S(t) = e−
∫ t
0 λ(s)ds.

The default arrival in this case is an inhomogeneous Poisson process, i.e. λ(s) is a
deterministic function. The density for τ is then

f(t) = S(t)× λ(t).
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A typical assumption is that the hazard rate is a constant, λ, over a certain period,
such as a year. In this case the survival time follows an exponential distribution
with parameter λ and the default arrival follows a homogeneous Poisson process.
The survival probability over a time interval [x, x + t] for 0 ≤ t ≤ 1 can then be
expressed as

tpx = e−
∫ t
0 h(s)ds = e−λt = (px)

t, (2.1)

where px denotes the survival probability over the time interval [x, x+ 1].

In this setup modelling the default process is equivalent to modelling a hazard rate
function. The advantage of this method is that the hazard rate function model can
be easily adapted to more complicated situations, such as where there are several
types of default or where we would like to consider stochastic default fluctuations.
There are also a lot of similarities between the hazard rate function and the short
rate, so many modelling techniques for the short rate processes can be borrowed to
model the hazard rate function.

Probability Spaces and Filtrations

We will often consider a probability space (Ω,F , P ) and a random time to default
τ defined on this space. In other words τ will be an F-measurable random variable
taking values in [0,∞].

A filtration (Ft) on (Ω,F) is an increasing family {Ft : t ≥ 0} of sub-σ-algebras
of F : Ft ⊂ Fs ⊂ F for 0 ≤ t ≤ s < ∞. For a generic filtration (Ft) we set

F∞ = σ
(∪

t≥0Ft

)
. Filtrations are used to model the flow of information in a

random system. So Ft represents the state of knowledge of an observer at time t,
and A ∈ Ft is taken to mean that at time t the observer is able to determine if the
event A has occurred.

Poisson Process

Poisson processes, touched upon in the previous section, are frequently used in
modelling credit derivatives, most commonly in specifying the distribution of the
number of defaults at a certain time point.

Given a filtered probability space (Ω,F ,P, F ), a Poisson process M with intensity
λ ≥ 0 is the unique process satisfying the following properties:

• M0 = 0;

• M has independent increments; and

• P (Mt −Ms = k) =
(
(λ (t− s))k /k!

)
exp (−λ (t− s)) for k ∈M0 and t > s ≥

0.
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It is interesting to note that the constant hazard rate λ is the parameter of the
Poisson process. The construction of the Poisson process and its relationship with
the exponentially distributed random waiting times can be found in [22].

Cox Process

Another name for the Cox process is the double stochastic Poisson process. The
reason for this that the parameter λ in the Poisson process is now itself a stochastic
process {λt : t ≥ 0}.

Key Simplifying Assumptions

For simplicity, we will assume independence between default dates and interest rates.
Empirical evidence shows that this assumption is not realistic, however our focus is
on modelling the dependence between the default dates. Similarly, we assume that
the recovery rates on the underlying assets are independent from default times and
interest rates.

2.4.2 Credit Default Swaps

A CDS consists of two legs, one corresponding to the fee or premium payments and
the other to the contingent default payment. The present value of a credit default
swap can be viewed as the sum of the present values of its two legs. The par premium
is the premium that makes the present value of the two legs equal.

Cashflows Under Each Leg

The CDS premium payments paid by the CDS buyer at some general time ti, 1 ≤
i ≤ z, can be represented by

N × p̃(0,T ) × (ti − ti−1).

However, if default occurs before time ti only a fraction of the premium up to the
time of default will be made by the CDS buyer. This premium payment at default
can be expressed as

N × p̃(0,T ) × (τ − ti−1).

Looking now at the other leg, we can express the default payment made by the CDS
seller by

N × (1−R).



Chapter 2 §2.4 Credit Derivative Pricing 14

Let us denote the value of the CDS contract at some future time tf ≥ t0 by

ϕ(t0, tf , T ).

By construction the value of a fair CDS contract at initiation is equal to zero, i.e.
ϕ(t0, t0, T ) = 0. However as the credit risk of the reference credit changes over time,
the value of the CDS contract may increase or decrease.

Hedge-Based CDS Pricing (No-arbitrage pricing)

The principle of hedging or replication-based pricing is that if two portfolios have
equivalent future payoffs, then the current value of both of these portfolios must be
equal, else an arbitrage (risk-free profit) opportunity exists. This methodology is
useful to spot mispricings in the market because it only relies on the payoff com-
parisons, and the results are robust as they are independent of any assumed pricing
model. However, estimating future payoffs may not be a trivial exercise.

Firstly we need some simplifying assumptions about the default payment of a CDS:

• We assume that the default payment takes place at the time of default. The
time delay through grace periods, dealer polls, etc. is ignored.

• We assume that the defaultable bond issued by the reference credit is the only
deliverable asset of the CDS.

• We assume that the timing of the coupon payments and the CDS premium
payments coincides. The bond and CDS market day count conventions are
ignored.

The reasoning behind the use of a replicating strategy is that the purpose of the
CDS is to hedge the credit risk of a defaultable bond issued by the reference credit.
Thus a portfolio of a combined position in a defaultable bond and a CDS (written
on the same reference credit that issued the defaultable bond), should trade close
to the price of an equivalent default-free bond.

Replicating Strategy With Fixed-Coupon Bonds

This replicating strategy was presented in [33] and [10]. Consider two portfolios
that are constructed at t = 0 and unwound at t = T or at the time of default τ ,
whichever comes first.

Portfolio I The following is the composition of the portfolio:

• A long position in one defaultable coupon bond, which pays a coupon of c̃ at
0 < t1 < t2, . . . , tz = T and the principal N at maturity T .



Chapter 2 §2.4 Credit Derivative Pricing 15

• A long position in one CDS on this defaultable coupon bond, also maturing
at T , with a premium p̃(0,T ) ×N .

• If the reference entity defaults before T , the portfolio is immediately unwound
at the time of default.

Portfolio II The following is the composition of the portfolio:

• A long position in one default-free coupon bond, which pays a coupon of
c = c̃− p̃(0,T ) ×N at 0 < t1 < t2, . . . , tz = T and the principal at maturity T .

• If the reference entity defaults before T , the default-free bond is sold at time
of default τ .

The cashflows of the two portfolios are the same if a default does not occur before
T . If the payoffs at default are the same then, by the no-arbitrage argument, the
initial values of the portfolios will be the same. By equating these two initial values
we can calculate the par CDS spread p̃(0,T ).

However the payoffs of the two portfolios at the time of default are not equivalent.
In the case of Portfolio I we would get the recovery value NR from the defaultable
bond and a payment of N(1 − R) from the CDS, making the total payoff equal to
the notional value. However, under Portfolio II the default-free bond will be sold at
the time of default. There is no guarantee that its value will be equal to the notional
(par) value at the time of default. The term structure of interest rates is dynamic,
so even if the default-free bond was trading at par initially, there is no guarantee
that it will trade near par at any other time in the future, except at maturity T .
The value of the coupon-bearing bond will also vary in relation to the timing of the
coupons. Its value will increase with accrued interest in between the coupon dates
and then drop by the coupon amount c on the coupon payment date. For these
reasons this replication strategy is an approximate one.

Replicating Strategy with Floating-Coupon Bonds

We will now replace the default-free fixed coupon bond in the previous replication
strategy with a default-free floating coupon bond. A default-free floating coupon
bond pays a coupon ofN×L(ti−1, ti) at time ti and the principal valueN at maturity
T . The rate L(ti−1, ti) denotes the LIBOR (London Interbank Offered Rate) or a
similar interest rate for the interval [ti−1, ti]. LIBOR represents the interest rate
at which banks lend money to each other in Eurocurrency markets. It has been
common practice to use it as a floating default free interest rate, since the default
risk amongst banks was considered negligible, especially prior to the credit crisis,
compared to companies in other sectors.

In order to achieve matching payoffs in survival we also need to use a defaultable
bond that pays floating coupons. In order to match the initial value of the default-
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free bond, the defaultable bond needs to trade at par from the outset. Let us denote
its value at time t = 0 by D̃c̃′(0, T ) and the floating-rate coupon at time ti by
c̃′i = N(L(ti−1, ti) + ppar), where the par spread ppar is chosen such that the value
of the bond at issue is par.

Portfolio I The following is the composition of the portfolio:

• A long position in one defaultable floating-coupon bond, which pays a coupon
of c̃′i at 0 < t1 < t2, . . . , tz = T and the principal N at maturity T .

• A long position in one CDS on this defaultable coupon bond, also maturing
at T , with a spread of p̃(0,T ).

• If the reference credit defaults before T , the portfolio is unwound at time of
default, t = τ .

Portfolio II The following is the composition of the portfolio:

• A long position in one default-free floating-coupon bond, which pays a coupon
of N × L(ti−1, ti) at 0 < t1 < t2, . . . , tz = T and the principal N at maturity
T .

• If the reference entity defaults before T , the default-free bond is sold at time
of default t = τ .

By design, the initial values of these two portfolios are identical. However, similarly
to the replicating strategy using fixed-coupon bonds, the cashflows of the two portfo-
lios differ at default by the amount of the accrued interest on the default-free bond,
if default occurs between coupon payment dates. If default occurs in the interval
[ti−1, ti], the value of the default-free par bond is

Dc′(τ) = N × (1 + L(ti−1, ti)(τ − ti−1)),

while Portfolio I pays out a total of the notional amount N at default, leaving
N × L(ti−1, ti)(τ − ti−1) as a difference. Adjustments can be made to the notional
value of the CDS to compensate for this, though this difference is considered small.

Hence, the initial cashflows have been exactly matched and the default cashflows
have been approximately matched. The survival payoffs differ by the difference
between the CDS spread p̃(0,T ) and the par spread ppar. Thus, in order to avoid
arbitrage opportunities, these two payoffs must coincide, leading to

p̃(0,T ) = ppar.

Further details on this approach can be found in [33].

Problems with the Replicating Strategies
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Apart from the approximations and differences already discussed, the problem with
this methodology is that some of these replication instruments may not be available.
Most reference credits only issue fixed-coupon bonds, if they issue any bonds at all.
In some cases these bonds will contain call provisions or an equity convertibility
option, which makes them unsuitable as CDS replication instruments.

Bond Price Based CDS Pricing

From the market prices of defaultable securities, one can extract the market’s assess-
ment of the issuer’s default risk. By comparing the prices of an obligor’s defaultable
asset and a similar default-free asset, one can infer measurements (e.g. probability
of default) of the obligor’s credit risk. For further details, the reader is referred to
[33].

Pricing the CDS from its Fundamental Cashflows

This approach has been discussed in [22]. We need to make some assumptions
regarding the default intensity and the recovery rate on the reference asset. We will
assume that we can model the default intensity of the underlying reference security
as a Cox process with intensity process λ. The recovery rate R will be assumed
constant.

In order to simplify the expressions, we will assume that the reference bond has a
face value of 1. Its coupon dates are 0 < t1 < t2, . . . , tz = T and the maturity date
is T .

The principle of this methodology is to obtain explicit expressions for the present
value of the cashflows under each leg under the above assumptions. The par spread
p̃(0,T ), by its definition, is then obtained by equating the present values of each leg.

Since the protection buyer pays a premium p̃(0,T ) (the notional amount is 1) until
maturity or earlier default, the value for this leg can be expressed as:

V pb = E

[
T∑
i=1

e−r×i1{τ>i}p̃(0,T )

]

= p̃(0,T )E

[
T∑
i=1

exp(−
∫ i

0
(r + λs)ds)

]

= p̃(0,T )

T∑
i=1

B̃(0, i),

where B̃(0, i) denotes the time t = 0 price of a risky zero-coupon bond, maturing at
time ti, with zero recovery.
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The present value of the protection seller’s leg can be expressed as:

V ps = E
[
e−rτ1τ≤T (1−R)

]
= (1−R)E

[∫ T

0
λt exp

(
−
∫ t

0
(r + λsds)

)
dt

]
= (1−R)

∫ T

0
e−rt × E

[
λt exp

(
−
∫ t

0
λsds

)]
dt.

Since we are assuming independence between the default intensity and interest rates,
the expression can be further simplified to

V ps = (1−R)

∫ T

0
e−rt × E

[
− ∂

∂t
exp

(
−
∫ t

0
λsds

)]
dt

=

∫ T

0
B(0, t)

(
− ∂

∂t
S(t)

)
dt

= (1−R)

∫ T

0
λ̂(t)S(t)B(0, t)dt,

where λ̂ is the hazard rate of the survival distribution, i.e.

S(t) ≡ E
[
exp

(
−
∫ t

0
λsds

)]
≡ exp

(
−
∫ t

0
λ̂sds

)
.

By equating the values V pb and V ps we can solve for the par spread

p̃(0,T ) =
((1−R)

∫ T
0 λ̂(t)S(t)B(0, t)dt∑T
i=1 B̃(0, i)

=
(1−R)

∫ T
0 λ̂(t)S(t)B(0, t)dt∑T
i=1B(0, i)S(i)

.

The integral appears since we are considering the settlement exactly at the default
date. If instead we define the settlement as taking place on the same days as the
swap payments and we let

Q̂ (τ = i) = Q (τ ∈ (i− 1, i]) = S(i− 1)− S(i),

then the previous expression for the CDS premium becomes

p̃(0,T ) =
(1−R)

∑T
i=1B(0, i)Q̂ (τ = i)∑T

i=1B(0, i)S(i)
.

2.4.3 Pricing Credit Default Obligations

The following loss functions and the derivation for the par CDO spread can be found
in [4].
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Loss Functions

We define the default loss for instrument i as

Li(t) = (1−Ri)Ni1{τi<t},

with Ri being the corresponding assumed recovery rate. This expression also repre-
sents the default payment made by the CDS seller.
Then, the cumulative loss on the collateral portfolio at time t is given by

L(t) =

n∑
i=1

Li(t),

which is a pure jump process.

In the case of a CDO, we are interested in knowing how the total loss affects a
tranche with attachment level A = a%N and detachment level D = d%N . The
seniority of the tranche is defined by the relative location of the tresholds A and D.
For example, if A = 0, we are considering the equity tranche. Tranche [A,D] suffers
a loss at time t if and only if

A = a%N < L(t) ≤ d%N = D,

hence the cumulative loss LA,D(t) on a given tranche is

LA,D(t) =


0, if L(t) < A,
L(t)−A, if A ≤ L(t) ≤ D,
D −A, if L(t) ≥ D.

Equivalently, this can be written as

LA,D(t) = [L(t)−A]1{L(t)∈[A,D]} + [D −A]1{L(t)∈[D,NT ]}.

Note that the cumulative loss LA,D(t) is a pure jump process.

We will simplify the pricing problem by considering a homogeneous CDO, i.e. where
we have the same notional N and recovery rate R for all assets in the collateral
portfolio. Furthermore, we assume that the hazard rate λ is constant. We also
use a constant correlation matrix where the correlation between all assets is equal,
namely:

ρi,j =

{
ρ, if i ̸= j for 0 < ρ < 1,
1, if i = j.

Using these assumptions, let us define

L(t) = L(t)

N
.

The tranche loss then becomes:

LA,D(t) = N
{
[L(t)− a%n]1{L(t)∈[a%n,d%n]} + [d%n− a%n]1{L(t)∈[d%n,n]}

}
.
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CDO Spread

In order to price a CDO tranche, we first need to estimate the present value of
the tranche losses triggered by credit events during the lifetime of the tranche.
We express the default leg as the expected value of the default payment stream,
discounted from the time of default:

DL = E
[∫ T

0
B(0, t)dLA,D(t)

]
.

The default leg may be discretized as follows:

DL =

z∑
i=1

B(0, τi) [LA,D(τi)− LA,D(τi−1)] 1{τi≤T},

where τi denote the sorted default times during the contract term and LA,D(τ0) = 0.

The premium leg is the expected present value of the premium payments weighted
by the outstanding capital (original tranche amount less accumulated losses at each
payment date).

In the discrete case, the premium leg can be written as

PL = E

 z∑
j=1

p̃(0,T )B(0, tj) [D −A] 1{L(t)∈[0,A)} +

z∑
j=1

p̃(0,T )B(0, tj)[D − L(t)]1{L(t)∈[A,D]}

 ,
where D −A denotes the tranche size at inception and D − L(t) is the outstanding
tranche notional at time t ∈ [0, T ]. Times t1, . . . , tz are premium payment dates.

The formula can also be written as:

PL = E

N z∑
j=1

p̃(0,T )B(0, tj)min{max[d%n− L(tj), 0], d%n− a%n}

 .
Note that in the case of no defaults in the collateral pool (or up to a number of
defaults such that the accumulated losses are less than A), the discounted premium
is weighted by the total notional amount in the tranche. In the case of losses between
A and D, the reference notional amount is reduced accordingly, until it is equal to
0 when the cumulative losses exceed the upper threshold D. When the tranche is
wiped out, there are no more premium payments.

The par CDO spread is calculated by equating the present values of the two legs.
Hence

p̃(0,T ) =
E
[∫ T

0 B(0, t)dLA,D(t)
]

E
[
N
∑z

j=1B (0, ti)min{max[d%n− L(tj), 0], d%n− a%n}
] .
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Loss Distribution

So far we have not specified a loss distribution for different CDO tranches. This
distribution needs to reflect the information on loss probability of the whole basket
of securities as an entity. We have the same situation arising when valuing a CDS
on a basket of securities. It is crucial to model the dependence structure between
the securities correctly. This dependence will be the focus of the next two chapters
in our review of copulas. Alternative approaches will be reviewed in Chapter 5.



Chapter 3

Properties of Different Copulas

3.1 Introduction

Copulas have been identified as an important tool for capturing dependence between
random variables such as those representing underlying securities in a credit deriva-
tive payoff. The standard “operational” definition of a copula given in [13] is that a
copula is a multivariate distribution defined on the unit cube [0, 1]n, where n denotes
the number of variables or the dimension, with uniformly distributed marginals. It
is a natural definition suggested by Sklar’s theorem (which we will look at in this
chapter), whereby a copula can be derived from a multivariate distribution function
by transforming the univariate margins.

We will start this chapter by looking at the mathematical concepts that are needed
in defining copulas. We will then look at the definition and features of copulas, in
general. Special attention will be paid to various measures of dependence. Finally,
we will discuss some examples of copulas which have been used in literature on
credit derivatives, and discuss the features of these copulas which may make them
attractive for this purpose.

3.2 Preliminary Theory

The following theory, which will enable us to better define copulas and their prop-
erties, is presented in [27].

Definition 3.2.1. Let S1, S2, . . . , Sn be nonempty subsets of R, and let H be an
n-component real function such that DomH = S1 × S2 × · · · × Sn. Let B = [a, b] be
an n-box all of whose vertices are in DomH. Then the H-volume of B is given by

VH(B) =
∑

sgn(c)H(c),

22
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where the sum is taken over all vertices c of B, and by sgn(c) we mean

sgn(c) =

{
1, if ck = ak for an even number of k’s,
−1, if ck = ak for an odd number of k’s.

The mechanics of this formula is easier to see in a 2-dimensional example. Let
B = [x1, x2] × [y1, y2] be a rectangle whose vertices are in DomH. Then the H-
volume of B is

VH(B) = H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1).

The H-volume is equivalently the nth order difference of H on B. This, together
with the following two definitions, will later enable us to specify probabilities of
multivariate distributions.

Definition 3.2.2. An n-place real function H is n-increasing if

VH(B) ≥ 0

for all n-boxes B whose vertices lie in DomH.

Definition 3.2.3. Let DomH = S1 × S2 × · · · × Sn where each Sk has a smallest
element ak. Then H is said to be grounded if H(t) = 0 for all t in DomH such that
tk = ak for at least one k.

Next, we will need to define the margins of a multivariate function in relation to H:

Definition 3.2.4. If each Sk is nonempty and has a greatest element bk, then the
one-dimensional margins of H are the functions Hk given by DomHk = Sk and

Hk(x) = H(b1, . . . , bk−1, x, bk+1, . . . , bn)

for all x in Sk.

In a similar manner, higher dimensional margins can be defined by fixing fewer
places in H, i.e. by setting fewer function arguments to their largest elements.

Property 3.2.1. Let S1, S2, . . . , Sn be nonempty subsets of R, and let H be a
grounded n-increasing function with domain S1, S2, . . . , Sn. Then H is nondecreas-
ing in each argument, i.e. if (t1, . . . , tk−1, x, tk+1, . . . , tn) and (t1, . . . , tk−1, y, tk+1, . . . , tn)
are in DomH and x < y, then

H(t1, . . . , tk−1, x, tk+1, . . . , tn) ≤ H(t1, . . . , tk−1, y, tk+1, . . . , tn).

Definition 3.2.5. Let F be a distribution function. Then a quasi-inverse of F is
any function F (−1) with domain I such that
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1. if t is in RanF , then F (−1)(t) is any number x in R such that F (x) = t, i.e.
for all t in RanF ,

F (F (−1)(t)) = t;

2. if t is not in RanF , then

F (−1)(t) = inf {x|F (x) ≥ t} = sup {x|F (x) ≤ t} .

If F is strictly increasing, then the above definition leads to the ordinary inverse
function, which shall be denoted by F−1.

3.3 Basic Theory of Copulas

We are now ready to define a copula and consider some of its basic properties.
We will first define subcopulas as a certain class of grounded n-increasing functions
with margins, and then define copulas as subcopulas with domain In, in other words
where the domain of each margin is [0, 1].

Definition 3.3.1. An n-dimensional subcopula (or n-subcopula) is a function C ′

with the following properties:

1. DomC ′ = S1×S2× · · ·×Sn, where each Sk is a subset of In containing 0 and
1.

2. C ′ is grounded and n-increasing.

3. C ′ has (one-dimensional) margins C ′
k, k = 1, 2, . . . , n, which satisfy

C ′
k(u) = u for all u in Sk.

Definition 3.3.2. An n-dimensional copula (or n-copula) is an n-subcopula C
whose domain is In.

It is useful to note that for a given copula, the margins, as defined by Definition
3.3.2, are also themselves copulas.

We can rephrase the above Definitions 3.2.1 to 3.2.4 for the n-component real func-
tion with reference to copulas. An n-copula is a function C from In to I with the
following properties:

1. For every u in In, C(u) = 0 if at least one coordinate of u is 0.

2. If all coordinates of u are 1 except uk, then C(u) = uk.

3. For every a and b in In such that a ≤ b,

VC([a,b]) ≥ 0.
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We arrive at Sklar’s theorem which is central to the theory of copulas and is the
foundation of many of the applications, particularly in statistics. It highlights the
role that copulas play in the relationship between multivariate distribution functions
and their univariate margins.

Theorem 3.3.1. Sklar’s Theorem. Let H be an n-dimensional distribution func-
tion with margins F1, F2, . . . , Fn. Then there exists an n-copula C such that for all
xn in Rn,

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)).

If F1, F2, . . . , Fn are all continuous, then C is unique; otherwise, C is uniquely de-
termined on RanF1 ×RanF2 × · · · ×RanFn. The converse also holds.

Lemma 3.3.1. Let H be a joint distribution function with margins F and G. Then
there exists a unique subcopula C ′ such that

1. DomC ′ = RanF ×RanG,

2. For all x, y in R, H(x, y) = C ′(F (x), G(y)).

The proof of this lemma can be found in [27]. In the following corollary to Sklar’s
theorem, the link between multivariate and one-dimensional distribution functions
via copulas becomes clear.

Corollary 3.3.1. Let H, C, F1, F2, . . . , Fn be as defined in Sklar’s Theorem above
and let
F

(−1)
1 , F

(−1)
2 , . . . , F

(−1)
n be quasi-inverses of F1, F2, . . . , Fn, respectively. Then for

any u in In,

C(u1, u2, . . . , un) = H
(
F

(−1)
1 (u1), F

(−1)
2 (u2), . . . , F

(−1)
n (un)

)
.

From Sklar’s theorem and its corollary we see that, for continuous multivariate distri-
bution functions, the univariate margins and the multivariate dependence structure
can be separated, and this dependence structure can be specified by a copula.

Until now we have not specified the nature of the functions being discussed. For
the purposes of credit derivatives the functions that we will need to deal with will
be distribution functions of random variables (we will later discuss what these ran-
dom variables usually represent). All of the above definitions and results, including
Sklar’s theorem, can be equally applied for random variables defined on a common
probability space. We formalise this in the following theorem:

Theorem 3.3.2. Let X1, X2, . . . , Xn be random variables with distribution functions
F1, F2, . . . , Fn, respectively, and joint distribution function H. Then there exists a
copula C such that

1. DomC = F1 × F2 × · · · × Fn, where each Fk is a subset of I containing 0 and
1.
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2. C is grounded and n-increasing.

3. C has margins Ck, k = 1, 2, . . . , n which satisfy

Ck(u) = u, for all u in Fk.

We are now ready to look at some very specific copulas, whose properties will be
significant in understanding the limiting behaviours of many other types of copulas.
We begin with the Fréchet-Hoeffding bounds:

Definition 3.3.3. Fréchet-Hoeffding Bounds
If C ′ is any n-subcopula, then for every u in DomC ′

W (u) ≤ C ′(u) ≤M(u),

where

M(u) = min(u1, u2, . . . , un)

W (u) = max(u1 + u2 + · · ·+ un − n+ 1, 0).

Because every copula is a subcopula, the inequality above holds also for copulas.
The function M is known as the Fréchet-Hoeffding upper bound and is always itself
a copula. The function W is the Fréchet-Hoeffding lower bound. It is not a copula
for n > 2.

Proof. Here we will present the proof for a two-dimensional case, as set out in
[27].

Let (u, v) be an arbitrary point in DomC ′. Using the marginal distributions and
the fact that C ′ is 2-increasing, we can say C ′(u, v) ≤ C ′(u, 1) = u and C ′(u, v) ≤
C ′(u, 1) = u, which combines to give C ′(u, v) ≤ min(u, v). Furthermore,

VC′([u, 1], [v, 1]) ≥ 0

implies C ′(u, v) ≥ u + v − 1, which when combined with the requirement that
C ′(u, v) ≥ 0, yields C ′(u, v) ≥ max(u+ v − 1, 0). 2

Another type of copula that will prove very useful is the product copula:

Πn(u) = u1 × u2 × · · · × un.

We will later see that some copulas tend to Fréchet-Hoeffding bounds or the product
copula in the limit as their parameters tend to certain values.

We come to the following theorem, which is stated without proof in [27].

Theorem 3.3.3. For n ≥ 2, let X1, X2, . . . , Xn be continuous random variables.
Then
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1. X1, X2, . . . , Xn are independent iff the n-copula of X1, X2, . . . , Xn is Πn(X),
and

2. each of the random variables X1, X2, . . . , Xn is almost surely a strictly in-
creasing function of any of the other random variables iff the n-copula of
X1, X2, . . . , Xn is M(X).

It is worth noting that the first part follows from a well-known fact that X1, . . . , Xn

are independent if and only if H(x1, . . . , xn) = F1(x1)×· · ·×Fn(xn) for all x1, . . . , xn
in R.

For n = 2, the lower bound W itself is a copula and it can be seen that it is a bi-
variate distribution function of the random vector (U, 1− U), where U is uniformly
distributed on [0, 1]. In this case we say that W describes perfect negative depen-
dence. As suggested by the above theorem,M describes perfect positive dependence.

Theorem 3.3.4. Let C ′ be a subcopula. Then for every u and v in DomC ′,

∣∣C ′(v)− C ′(u)
∣∣ ≤ n∑

i=1

|vi − ui| .

Hence C ′ is uniformly continuous on its domain.

Next we will look at a concept called concordance ordering - a concept which will
be needed later when we define measures of dependence such as Kendall’s tau and
Spearman’s rho.

Definition 3.3.4. Concordance ordering
If C1 and C2 are copulas, we say that C1 is smaller than C2 and write C1 ≺ C2 if

C1(u1, u2, . . . , un) ≤ C2(u1, u2, . . . , un)

for all u1, u2, . . . , un in I.

Using this definition, together with Definition 3.3.3, we can say that W is smaller
than every copula and M is larger than every copula.

The theorems and definitions above imply that copulas display invariance under
strictly increasing transformations of individual components, keeping the depen-
dence between these components constant. The following theorem formalises this
very useful property.

Theorem 3.3.5. Strictly Increasing Transformations of Copulas.
Let X1, X2, . . . , Xn be continuous random variables with copula CX1,X2,...,Xn. If
α1, α2, . . . , αn are strictly increasing on RanX1, RanX2, . . . , RanXn, respectively,
then

Cα1(X1),α2(X2),...,αn(Xn) = CX1,X2,...,Xn .
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Here we will present the proof of this theorem for a 2-dimensional copula, as per
[27]. The proof for higher dimensions follows in a straight-forward manner.

Proof. Let F1 and F2 denote the distribution functions of X1 and X2; and G1

and G2 denote the distribution functions of α1(X1) and α2(X2). Because α1(X1)
and α2(X2) are strictly increasing,

Gk(x) = P [αk(Xk) ≤ x] = P [Xk ≤ α−1
k (x)] = Fk(α

−1
k (x))

for any k = 1, 2. Thus, for any x1, x2 in R

Cα1(X1),α2(X2)(G1(x1), G2(x2))

= P [α1(X1) ≤ x1, α2(X2) ≤ x2]

= P [X1 ≤ α−1
1 (x1), X2 ≤ α−1

2 (x2)]

= CX1,X2(F1(α
−1
1 (x1), F2(α

−1
2 (x2))

= CX1,X2(G1(x1), G2(x2)).

Because X1 and X2 are continuous, RanF1 = RanF2, from which it follows that

Cα1(X1),α2(X2) = CX1,X2 .

2

The following theorem, presented without proof, shows the simple transformations
of copulas where the functions are not strictly increasing.

Theorem 3.3.6. Let X and Y be continuous random variables with copula CXY .
Let α and β be strictly monotone on RanX and RanY , respectively.

1. If α is strictly increasing and β is strictly decreasing, then

Cα(X),β(Y )(u, v) = u− CXY (u, 1− v).

2. If α is strictly decreasing and β is strictly increasing, then

Cα(X),β(Y )(u, v) = v − CXY (1− u, v).

3. If α and β are both strictly decreasing, then

Cα(X),β(Y )(u, v) = u+ v − 1 + CXY (1− u, 1− v).

Note that in each case the form of the copula is independent of the particular choices
of α and β.

For some of the approaches to modelling credit derivatives the random variable of
interest will represent the lifetime of an asset being modelled. We will want to look
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at the survival (as opposed to default) beyond a certain time. We therefore define
the survival distribution and joint survival distributions:

F̄ (x) = P [X > x] = 1− F (x)

and

H̄(x, y) = P [X > x, Y > y]

= 1− F (x)−G(y) +H(x, y)

= F̄ (x) + Ḡ(y)− 1 + C(F (x), G(y))

= F̄ (x) + Ḡ(y)− 1 + C(1− F̄ (x), 1− Ḡ(y)).

From the above the natural definition of the survival copula Ĉ from I2 to I emerges
as

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v).

This definition can be easily extended to higher dimensions. The survival copula
couples the joint survival function to its univariate margins in the same way that a
copula connects the joint distribution function to its margins.

3.4 Symmetry

In this section we discuss the symmetry properties of random variable distributions,
particularly bivariate distributions, which will later be a tool in formulating some
important tail properties of copulas.

If X is a random variable and a is a real number, we say that X is symmetric about
a if for any x in R, we have

P [X − a ≤ x] = P [a−X ≤ x].

In other words X − a and a−X have the same distribution.

When dealing with bivariate distributions there exist different kinds of symmetry,
depending on how the two random variables relate to each other. Specifically, let X
and Y be random variables and let (a, b) be a point in R2:

1. (X,Y ) is marginally symmetric about (a, b) if X and Y are symmetric about
a and b, respectively.

2. (X,Y ) is radially symmetric about (a, b) if the joint distribution function of
X − a and Y − b is the same as the joint distribution function of a −X and
b− Y .
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3. (X,Y ) is jointly symmetric about (a, b) if the following pairs of random vari-
ables have a common distribution function: (X−a, Y − b), (X−a, b−Y ),(a−
X,Y − b) and (a−X, b− Y ).

The best known example of a radially symmetric distribution is the bivariate normal
distribution.

Theorem 3.4.1. Let X and Y be continuous random variables with joint distri-
bution function H and margins F and G, respectively. Let (a, b) be a point in R2.
Then (X,Y ) is radially symmetric about (a, b) if and only if

H(a+ x, b+ y) = H̄(a− x, b− y) for all (x, y) in R2.

Theorem 3.4.2. Let X and Y be continuous random variables with joint distribu-
tion function H, marginal distribution functions F and G, respectively, and copula
C. Further, suppose that X and Y are symmetric about a and b, respectively. Then
(X,Y ) is radially symmetric about (a, b) if and only if C = Ĉ, i.e. if

C(u, v) = u+ v − 1 + C(1− u, 1− v)

for all (u, v) in I2.

The proof can be found in [27].

A concept related to symmetry is exchangeability of random variables. Random
variables X and Y are said to be exchangeable if the vectors (X,Y ) and (Y,X) are
identically distributed.

Theorem 3.4.3. Let X and Y be continuous random variables with joint distribu-
tion function H, marginal distribution functions F and G, respectively, and copula
C. Then X and Y are exchangeable if and only if F = G and C(u, v) = C(v, u) for
all (u, v) in I2.

3.5 Dependence

When looking at credit derivatives which are defined with respect to more than
one reference credit asset, it is crucial to understand the dependence between these
assets. Focal to our interests will be the extreme value or tail properties, as this is
where we expect credit events to occur. There are various ways of defining measures
of dependence, which will be the focus of this section.

We start with the well-known statistic - the linear correlation coefficient :

Definition 3.5.1. Let X and Y be random variables with nonzero finite variances.
The linear correlation coefficient is defined as

ρ(X,Y ) =
Cov(X,Y )√

V ar(X)×
√
V ar(Y )

.
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The linear correlation coefficient is also known as Pearson’s correlation coefficient.
It is invariant under strictly increasing linear transformations:

ρ(αX + β, γY + δ) = sign(αγ)ρ(X,Y ).

The popularity of the linear correlation coefficient stems from the ease with which
they can be calculated, and the fact that they are the natural scalar measures of
dependence in elliptical distributions (e.g. multivariate normal and multivariate
t-distribution). However, most random variables are not jointly elliptically dis-
tributed. In modelling credit events we would choose to model a scenario using
heavy-tailed distributions such as the t2-distributions, in order to avoid understat-
ing the probability of a credit event occurring. In such cases the linear correlation
coefficient is not even defined because of infinite second moments. Also, as its name
suggests, the linear correlation coefficient can only capture linear dependence be-
tween variables.

We therefore turn our attention to two alternative measures of dependence discussed
in [13], [23] and [27], which are also suitable for nonelliptical distributions.

Definition 3.5.2. Kendall’s tau for random variables X and Y is defined as

τ(X,Y ) = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0],

where (X2, Y2) is an independent copy of (X1, Y1).

Kendall’s tau is the probability of concordance less the probability of discordance.
Note that the observations of random variables are concordant if (xi−xj)(yi−yj) > 0
and discordant if (xi − xj)(yi − yj) < 0. Informally, a pair of random variables is
concordant if “large” values of one variable tend to be associated with “large” values
of the other and “small” values of the one variable with “small” values of the other.

If X and Y are continuous random variables with copula C Kendall’s tau is given
by

τ(X,Y ) = 4

∫ ∫
[0,1]2

C(u, v)dC(u, v)− 1.

Now, once again, we let X and Y be two random variables with joint distribution
function H, margins F and G, and copula C. From these we take three independent
sample pairs (X1, Y1), (X2, Y2) and (X3, Y3). Spearman’s rho is defined to be pro-
portional to the probability of concordance minus the probability of discordance for
the two vectors (X1, Y1) and (X2, Y3) - i.e. a pair of vectors with the same margins,
but one vector has joint distribution function H, while the components of the other
are independent.

Definition 3.5.3. Spearman’s rho for random variables X and Y is defined as

ρS(X,Y ) = 3(P [(X1 −X2)(Y1 − Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]),

where (X1, Y1), (X2, Y2) and (X3, Y3) are independent copies.
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If X and Y are continuous random variables with copula C, Spearman’s rho is given
by

ρS(X,Y ) = 12

∫ ∫
[0,1]2

C(u, v)dudv − 3.

Although both Kendall’s tau and Spearman’s rho measure the probability of concor-
dance between random variables with a given copula, the values of ρ and τ are often
quite different. The following theorem sets the bounds for the relationship between
these two measures.

Theorem 3.5.1. Let X and Y be continuous random variables whose copula is
C and let τ and ρ denote, respectively, Kendall’s tau and Spearman’s rho for this
copula. Then

3τ − 1

2
≤ ρ ≤ 1 + 2τ − τ2

2
, τ ≥ 0, and

τ2 + 2τ − 1

2
≤ ρ ≤ 1 + 3τ

2
, τ < 0.

These bounds are illustrated and further discussed in [27].

We will now look at general features of a measure of concordance, as laid out in
[27]. If X and Y are continuous and are joined by the copula C, then Kendall’s tau
and Spearman’s rho satisfy the properties for a measure of concordance κ with the
following properties:

• κ is defined for every pair (X,Y ) of continuous random variables.

• −1 ≤ κX,Y ≤ 1, κX,X = 1 and κX,−X = −1.

• κX,Y = κY,X .

• If C and C̃ are copulas such that C ≺ C̃, then κC ≤ κC̃ .

• If (Xn, Yn) is a sequence of continuous random variables with copulas Cn and
if Cn converges pointwise to C, then lim

n→∞
κCn = κC .

In addition, as for the linear correlation coefficient, κ is invariant under strictly
increasing transformations of the random variables.

Copulas with perfect positive concordance measure (i.e. κC = 1) are often referred to
as comonotonic, while those with perfect negative concordance measure - κC = −1
- are referred to as countermonotonic. We have already encountered an example
of each: Fréchet-Hoeffding upper bound copula M is comonotonic; while Fréchet-
Hoeffding lower bound W is countermonotonic.



Chapter 3 §3.6 Common Copulas in Credit Derivatives 33

We can also look at tail dependence, which relates to the amount of dependence in
the upper-right-quadrant tail or lower-left-quadrant tail of a bivariate distribution.
Tail dependence will be a useful measure when looking at suitability of a particular
copula to use in credit derivatives, as credit events are expected to be rare. The
amount of tail dependence is invariant under strictly increasing transformations of
the random variables.

Definition 3.5.4. Let X and Y be random continuous variables with marginal dis-
tribution functions F and G. The coefficient of upper tail dependence is

dU = lim
u↗1

P [Y > G−1(u)|X > F−1(u)],

provided that the limit dU ∈ [0, 1] exists. Alternatively,

dU = lim
u↗1

(1− 2u+ C(u, u))/(1− u). (3.1)

In a similar manner, lower tail dependence can be defined as:

dL = lim
u↘0

C(u, u)/u.

3.6 Common Copulas in Credit Derivatives

We now turn our attention to specific copulas that have been covered in the literature
addressing the modelling of dependence for credit derivatives. In this chapter our
focus will not be on the underlying marginal distributions. However, it should be
noted that the underlying variables generally represent the values of reference credit
assets in relation to some threshold level or the times-to-default, which commonly
have exponential distributions with the parameter being generated by a hazard rate
function.

3.6.1 Gaussian Copula

Gaussian (or normal) copulas, from the family of elliptical copulas, are the most
widely mentioned copulas in literature. In his paper, [23] points out that many de-
fault correlation models, such as the CreditMetrics model, implicitly use the Gaus-
sian copula function

CGa
R (u) = Φn

(
Φ−1(u1),Φ

−1(u2), . . . ,Φ
−1(un)

)
,

where Φn has a correlation coefficient matrix R.

In the bivariate case the Gaussian copula can be expressed as

C(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π(1−R2
12)

1/2
× exp

(
−s

2 − 2R12st+ t2

2(1−R2
12)

)
dsdt.
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The most notable feature of the Gaussian copula is its lack of tail dependence. This is
a major draw-back in modelling credit events, since our interest is in an event which
we expect to be rare, i.e. in the tails of the distribution. The empirical evidence
has shown that security values display lower tail dependence, so that dependencies
increase in stressed market conditions.

3.6.2 t - Copulas

The following is a stochastic representation of an n-variate t-distribution with v
degrees of freedom; mean µ and covariance matrix v/(v− 1)Σ, can be found in [13].
We let

X =d µ+

√
v√
S
Z,

where µ ∈ Rn, S ∼ χ2
v and Z ∼ Nn(0,Σ) are independent.

The copula of X is

Ct
v,R(u) = tnv,R(t

−1
v (u1), t

−1
v (u2), . . . , t

−1
v (un)),

where Rij = Σij/
√

ΣiiΣjj and where tnv,R denotes the distribution function of
√
vY/

√
S, for which S ∼ χ2

v and Y ∼ Nn(0, R) are independent. The t-copulas
have upper and lower tail dependence (the coefficient is the same since this is an
elliptical copula), but the coefficient of tail dependence decreases as the degrees of
freedom increase. This is because the the t-distribution starts behaving increasingly
more like the Gaussian distribution as v is increased.

Both Gaussian and t-copulas are easily parametrised by the linear correlation matrix,
but only t-copulas yield dependence structures with tail dependence.

3.6.3 Marshall-Olkin Copulas

Marshall-Olkin copulas are discussed in [13] and [27]. We will discuss the bivariate
case in some detail.

We start with two components that are subject to shocks, which are fatal to one or
both components. Let X1 and X2 denote the lifetimes of the two components. It is
assumed that the shocks follow three independent Poisson processes with parameters
λ1, λ2, λ12 ≥ 0, depending on which component is affected. Then the times Z1, Z2

and Z12 of occurrence of these shocks are independent, exponential random variables
with parameters λ1, λ2 and λ12.

The joint survival probability is defined as:

S(x1, x2) = P (X1 > x1, X2 > x2)

= P (Z1 > x1)P (Z2 > x2)P (Z12 > max(x1, x2)).



Chapter 3 §3.6 Common Copulas in Credit Derivatives 35

After some algebraic simplification it can be shown that the survival copula for
X1, X2 has the following form:

Cα1,α2(u1, u2) = min(u1−α1
1 u2, u1u

1−α2
2 ),

where α1 = λ12/(λ1 + λ12) and α2 = λ12/(λ2 + λ12).

In the credit derivative context, we can see that the Marshall-Olkin copula would
be suitable for use in conjunction with the variables modelling time-to-default.

The various measures of dependence introduced earlier will give an indication of how
useful the Marshall-Olkin copulas may be for modelling dependent credit events:

• Spearman’s rho:

ρS(Cα1,α2) =
3α1α2

2α1 + 2α2 − α1α2
.

• Kendall’s tau:

τ(Cα1,α2) =
α1α2

α1 + α2 − α1α2
.

• Upper tail dependence:

dU = min(α1, α2).

It is evident that, by choosing appropriate values for α1 and α2, all the values in
the interval [0, 1] can be obtained for Spearman’s rho and Kendall’s tau, and also
different levels of upper tail dependence achieved.

A complication for higher dimensional Marshall-Olkin copulas is that a large number
of parameters is required. For an n-component system there are in total 2n −
1 shock processes, each in one-to-one correspondence with a nonempty subset of
{1, . . . , n}. It is pointed out in [13] that evaluating Kendall’s tau or Spearman’s
rho rank correlation matrices is easily achieved since the bivariate margins of a
Marshall-Olkin n-copula is a Marshall-Olkin 2-copula. However, given a (Kendall’s
tau or Spearman’s rho) rank correlation matrix we cannot in general obtain a unique
parametrisation of the copula. By setting the shock intensities for subgroups with
more than two elements to zero we can obtain a natural parametrisation of the
copula is this situation. However, this then means that the copula is restricted to
bivariate dependence.

3.6.4 Archimedean Copulas

Archimedean copulas have been widely discussed in the literature. Unlike the ellip-
tical copulas which are restricted to radial symmetry; these allow for a great variety
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of dependence structures and can be constructed with ease. In many financial ap-
plications (including credit derivative modelling) copulas are needed with a stronger
dependence between big losses than between big gains. We will first define a general
form of Archimedean copulas and then look at some examples. For a comprehensive
list of Archimedean copulas and their features refer to [27].

Definition 3.6.1. Let φ be a continuous, strictly decreasing function from [0, 1] to
[0,∞] such that φ(1) = 0, and let φ(−1) be the pseudo-inverse of φ. Let C be the
function from [0, 1]2 to [0, 1] given by

C(u, v) = φ(−1)(φ(u) + φ(v)). (3.2)

Then C is a copula iff φ is convex.

The function φ is called the generator of the copula. If φ(0) = ∞, we say that φ is a
strict generator. In this case φ(−1) = φ−1 and C is said to be a strict Archimedean
copula.

The above definition is naturally extended to n-dimensions as follows:

Cn(u) = φ(−1)(φ(u1) + φ(u2) + · · ·+ φ(un)),

where the superscript on C denotes dimension.

The following theorem is stated in [27] without proof. It gives elegant simplifications
for constructions of Archimedean copulas.

Theorem 3.6.1. Let C be an Archimedean copula with generator φ. Then:

1. C is symmetric; i.e. C(u, v) = C(v, u) for all u, v in I;

2. C is associative, i.e. C(C(u, v), w) = C(u,C(v, w)) for all u, v, w in I;

3. If c > 0 is any constant, then cφ is also a generator of C.

The associative property of the Archimedean copulas suggests how higher-dimensional
copulas can be constructed from the 2-dimensional ones. However, this method is
not always successful. The following theorem gives necessary and sufficient condi-
tions for the above function to be an n-copula.

Theorem 3.6.2. Let φ be a continuous strictly decreasing function from [0, 1] to
[0,∞] such that φ(0) = ∞ and φ(1) = 0, and let φ−1 denote the inverse of φ. If Cn

is a function from [0, 1]n to [0, 1] given by 3.2, then Cn is an n-copula for all n ≥ 2
if and only if φ−1 is completely monotone on [0,∞).

The following corollary shows that the generators suitable for extensions to arbitrary
dimensions of Archimedean 2-copulas correspond to copulas which can model only
positive dependence.
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Corollary 3.6.1. If the inverse φ−1 of a strict generator φ of an Archimedean
copula C is completely monotone, then C ≻ Π, i.e. C(u, v) ≥ uv for all u, v in
[0, 1].

For an Archimedean copula C with a given generator φ, the partial derivatives with
respect to xi and xj , i, j ≤ n, providing marginal distributions, are given by

Cxi(x) =
φ′(xi)

φ(C(x))

Cxi,xj (x) = −φ(xi)φ(xj)
φ′′(C(x))

(φ′(C(x)))3
.

We will now look at some examples of 2-dimensional Archimedean copulas found in
[13], which are frequently used in credit derivative modelling.

One-Parameter Gumbel Copula

The generator function is set to φ(u) = (− ln(u))θ for θ ∈ [1,∞), which, using
formula 3.2, leads to the following copula function:

Cθ(u, v) = exp
(
−
[
(− ln(u))θ + (− ln(v))θ

])1/θ
.

Setting the parameter θ to 1 gives rise to the product copula with independent
variables; while the copula approaches the Fréchet-Hoeffding upper bound as θ tends
to infinity (i.e. it displays perfect positive dependence).

Let us look at the tail dependence of the Gumbel copula. Applying the definition
of upper tail dependence per equation 3.1 we see that

dU = lim
u↗1

(1− 2u+ C(u, u))/(1− u)

= 2− lim
u↗1

21/θu2
1/θ−1

= 2− 21/θ.

Thus for θ > 1, Cθ has upper tail dependence. In a similar manner it can be shown
that the Gumbel copula has no lower tail dependence.

It can be shown that Kendall’s tau for this copula is

τ(U, V ) = 1− 1/θ. (3.3)



Chapter 3 §3.6 Common Copulas in Credit Derivatives 38

Clayton Copula

The generator function for the Clayton copula is φ(u) = (u−θ − 1)/θ, where θ ∈
[−1,∞)\ {0}. We thus obtain:

Cθ(u, v) = max

([
u−θ + v−θ − 1

]−1/θ
, 0

)
.

Setting θ = −1 gives the Fréchet-Hoeffding lower bound (i.e. perfect negative de-
pendence). The product copula is obtained in the limit as θ → 0, while in the limit
θ → ∞ the copula becomes the Fréchet-Hoeffding upper bound.

Clayton copula has no upper tail dependence. Its coefficient of lower tail dependence
is given by dL = 2−1/θ so the Clayton copula displays lower tail dependence for θ > 0.

Kendall’s tau for the Clayton copula is

τ(U, V ) = θ/(θ + 2). (3.4)

The two-parameter extension of the Clayton copula is usually referred to as the
generalised Clayton copula, and has the following form in the bivariate case:

Cθ,δ(u, v) =

((
(u−θ − 1)δ + (v−θ − 1)δ

)1/δ
+ 1

)−1/θ

.

The generator function for this copula is φ(u) = θ−δ(u−θ−1)δ, with the requirement
that θ ≥ 0 and δ ≥ 1. Its various dependence measures are given by the following
formulae:

τ(U, V ) =
(2 + θ)δ − 2

(2 + θ)δ

dU = 2− 21/δ

dL = 2−1/(θδ).

Frank Family

Here φ(u) = − ln e−θu−1
e−θ−1

where θ ∈ R\ {0}. So we have:

Cθ(u, v) = −1

θ
ln

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
.

Letting the parameter θ → −∞ produces the Fréchet-Hoeffding lower bound; the
limit as θ → 0 gives the product copula and, in the limit θ → ∞, gives the Fréchet-
Hoeffding upper bound. This is also the only family of Archimedean copulas with
radial symmetry. It is important to note that the Frank family of copulas does not
have tail dependence.
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Concluding Remarks of Archimedean Copulas

It is evident that the Archimedean copulas form a very flexible family of copulas.
Importantly, one can have only lower or upper tail dependence - a desirable feature
since empirical evidence has shown that assets do not display the same level of
dependence during market booms as they do during crashes. This family of copulas
also has the useful property of being able to be expressed in closed form.

However, for multivariate extensions there is lack of parameter choice. They are also
constrained in their dependence structure since all k-margins are identical - they are
distribution functions of n exchangeable U(0, 1) random variables.

3.6.5 Nested Archimedean Copulas

As mentioned in the previous section, while Archimedean copulas are a very flexible
family of copulas in the sense of various possible dependence structures, multivariate
extensions of the exchangeable Archimedean copulas still have identical k-margins
(where 2 ≤ k ≤ n) and hence the dependence structure between these margins is the
same. In the real world, securities will be correlated with each other to a different
extent, depending on various factors such as geographical location or the industry
sector. We would therefore like to be able to capture margins with different levels
of dependence, still within the tractable Archimedean copula framework.

By nesting the generators within an Archimedean copula, as put forward by [24], it
is possible to create non-exchangeable copulas that allow different degrees of depen-
dence between different margins. As discussed in section introducing Archimedean
copulas, and more specifically Corollary 3.6.1, the dependence within different bi-
variate margins will still be restricted to positive dependence.

A three-dimensional example of a nested Archimedean copula can be constructed
using two Archimedean generators, φ1 and φ2, as follows

C(u1, u2, u3) = φ1

(
φ−1
1 (u1) + φ−1

1 ◦ φ2

(
φ−1
2 (u2) + φ−1

2 (u3)
))
. (3.5)

Conditions that ensure that this is a copula are that the inverses of generators
φ1 and φ2 are completely monotonic decreasing functions, and the composition
φ2◦φ−1

1 : [0,∞] → [0,∞] is a completely monotonic increasing function. The nesting
can be applied arbitrarily deeply. Generalising to a d-dimensional construction for
d ≥ 2, we have

Cd (u1, . . . , ud+1;φ1, . . . , φd) = φ1

(
φ−1
1 (u1) + φ−1

1 (Cd−1 (u2, . . . , ud+1;φ2, . . . , φd))
)
,

where C1(u1, u2;φ) refers to the bivariate copula defined in equation 3.2, C2(u1, u2, u3;φ1, φ2)
is defined by equation 3.5, and so on.

An additional issue, pointed out in [24], that we need to consider is what generators
we can mix while ensuring that the conditions of our function being a copula are
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met. In the paper the generators discussed are of the same parametric family φ(·; θ)
for some parameter values θ1 and θ2. For many Archimedean generators, including
the Gumbel and Clayton generators discussed in [24], it may be verified that the
function φ−1

1 ◦ φ2 has completely monotonic derivative if and only if θ2 ≥ θ1.

The above condition does have an implication for the kind of dependence structure
that a nested Archimedean copula can capture. Suppose (U1, U2, U3) is a random
vector with multivariate distribution given by 3.5, where the generator is that for
a one-parameter Gumbel or Clayton copula. Then the pairs (U1, U2) and (U1, U3)
have bivariate marginal distributions that are Archimedean copulas with generator
φ(·; θ1) and the pair (U2, U3) is distributed according to an Archimedean copula with
generator φ(·; θ2). Referring to equations 3.3 and 3.4 for expressions of Kendall’s
tau, the requirement that θ1 ≤ θ2 means that the pair (U2, U3) is more concordant
than the pairs (U1, U2) and (U1, U3).



Chapter 4

Application of Copulas to
Credit Derivatives

4.1 Introduction

When applied to credit derivatives such as credit default obligations or credit default
swaps, copulas can provide a multivariate distribution of default times or some
default trigger values for the portfolio of securities underlying that derivative. We
can then use the expected value (conditional on some underlying information set)
of such a default indicator, together with some discount mechanism, to either price
or value the credit derivative.

Copulas can also be applied in the construction of risk measures by looking at the
distribution of losses of a portfolio of securities and reading-off percentiles of interest.
Furthermore, they can provide a useful tool for stress testing a variety of portfolios
for extreme moves in correlation.

Two general types of default correlation models have been widely suggested in the
literature: the reduced form models and the structural models. In brief, the reduced
form models assume that the default intensities for different companies follow corre-
lated stochastic processes. Structural models follow on from Merton’s (1974) model
and assume that a company defaults when the value of its assets falls below a certain
trigger level. Default correlation is introduced into a structural model by assuming
that the assets of different companies follow correlated stochastic processes. We will
also be discussing these models in more detail in Chapter 5 when we look at alter-
native models for credit derivative, while useful additional literature can be found
in [12].

However, both of the above models have been found to be computationally very
time consuming for valuing the types of instruments we are considering. This has led
market participants to model correlation using a factor copula model where the joint

41
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probability distribution for the times to default of many companies is constructed
using a common underlying factor.

One of the key issues with the copula framework is the shift in focus from modelling
dependency between default events up to a fixed time horizon (i.e. discrete variables)
to the dependency between continuous random variables representing defaults, and
this dependency not needing to be specified in respect of a specific time horizon.

In the sections that follow we will look at various approaches to modelling underlying
single-obligor default processes and build-up on this setup with examinations into
modelling dependencies between these obligors using a copula. Our focus will be on
methodology, rather than the results obtained in the literature. In order to provide
a balanced discussion, this will be followed by an analysis of possible drawbacks of
such applications of copulas.

4.2 Some General Assumptions

While empirical evidence shows otherwise, for simplicity we will assume indepen-
dence between default dates and interest rates. This is due to the fact that the most
important task we address is the modelling of dependence between default events
themselves. Similarly we generally assume that the recovery rates on the underlying
assets are independent of default times and interest rates.

To simplify the expressions we will generally work with homogeneous portfolios,
where all default probabilities are identical and where the asset correlation of any
two counterparties is the same. It is worth reminding the reader that the copula
theory, however, does not fall apart for non-homogeneous portfolios.

Finally, at time t = 0 all obligors are assumed to be in a non-default state.

4.3 From Individual to Correlated Default Probabilities
- First Steps in Copula Applications

The individual distribution functions Fi (t) of time until default τi (t) were intro-
duced in Chapter 2. Having laid out the theory of copulas in Chapter 3, we are now
ready to combine these functions into a single distribution function for defaults of
more than one obligor in a portfolio.

The Gaussian copula, starting with its mentions in [23], is the most common example
found in the literature, so it is fitting that we also take it as our starting point. As
we have seen in Chapter 3, the Gaussian copula can be expressed as

F (t1, t2, . . . , tn) = Φn

(
Φ−1(F1(t1)),Φ

−1(F2(t2)), . . . ,Φ
−1(Fn(tn))

)
,
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where the distribution function of ti is Fi; Φn is the n-dimensional normal cumulative
distribution function (for the n obligors) with correlation coefficient matrix Σ.

In order to value credit derivatives written on a portfolio, Monte Carlo simulation can
be used to obtain the distribution of default times. For each simulation performed
we would have one scenario of the correlated default times t1, t2, . . . , tn, from which
we can extract statistics of interest, for example the first-to-default time as t =
min(t1, t2, . . . , tn).

As a simple illustration of how the Gaussian copula can be applied we follow the
example provided in [23], where a two-year contract pays a nominal of 1 currency
unit if the first default occurs during the first two years. The hazard rate was
assumed to be a constant λ = 0.1 for 0 < t < ∞, in other words the default arrival
time followed a homogeneous Poisson process (see Chapter 2 for more detail on the
Poisson process). The pairwise default correlation was specified between the asset
values. If all the credits in the portfolio were independent, the hazard rate of the
minimum survival time T = min(τ1, τ2, . . . , τn) would have been

λT = λ1 + λ2 + · · ·+ λn = nλ.

The survival time of the first-to-default has a density function f(t) = λT × e−λT t,
so the value of the contract is given by

V =

∫ 2

0
1× e−rtf(t)dt =

∫ 2

0
e−rtλT × e−λttdt =

λT
r + λT

(
1− e−2×(r+λT )

)
,

where r is the risk-free discount rate.

4.4 Modelling Multiple Survival Times

4.4.1 Extension of the Hazard Rate to a Cox Process

In Chapter 2 we touched upon the set-up where the hazard rate for default arrivals
follows a non-negative, continuous, adapted stochastic process, i.e. a Cox process.
Under a Cox process the default time τ can be expressed either as

τ := inf

{
t :

∫ t

0
λsds ≥ θ

}
,

where θ is an exponential random variable of parameter 1, independent of the in-
tensity process, or as

τ := inf
{
t ≥ 0 : Ň > 0

}
,

where Ň is the Cox process and τ is a stopping time with respect to some filtration
generated by Ň .
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Under both Poisson and Cox assumptions, modelling a default process is equivalent
to modelling the intensity process.

In the next few sections we will be reviewing [21], where the assumption for this
setup is that we are given a complete probability space (ω,B, (Ft), P ).

4.4.2 Some Background Theory: From Poisson Towards Cox Pro-
cesses

We draw a sequence (θn) of independent exponential random variables of parameter
1 and define Tn as the partial sum of the first n terms of the sequence

Tn =

n∑
i=1

θi.

We also define the stochastic Poisson process of parameter 1:

Mt :=

∞∑
n=1

1{Tn≤t}.

Then M is a process with independent and stationary increments and for all t, Mt

follows a Poisson distribution of parameter t. The Poisson process M is a counting
process, often referred to as a Lévy process, whose jumps are equal to 1.

We then pick a right-continuous with left limits (càdlag) non-decreasing function Λ
such that Λ0 = 0, Λt < ∞ for all t and Λ∞ = ∞, and consider the time-changed
Poisson process

M̄t =MΛt .

This new process still has independent increments, but here M̄t − M̄s has a Poisson
distribution with parameter Λt − Λs, (s ≤ t). This is the inhomogeneous Poisson
process and Λ is called the intensity. The most common assumption for Λ is Λt =∫ t
0 λsds, where λs is referred to as a density.

The Cox process is obtained by letting Λ be stochastic. Formally, conditionally on
the knowledge of the intensity - that is the σ-field FΛ

∞ = σ(λt, t ≥ 0) - the Cox
Process M̄ is an inhomogeneous Poisson process of intensity Λ.

Conditioning on F∞ ∨ Ht, where Ht = σ(τ > s, s ≤ t) the filtration of the survival
process St = 1{τ>t}, we still have

P (τ > T |F∞ ∨Ht) = exp

(
−
∫ T

t
λsds

)
.

It can be seen that the default process 1{τ≤t} is a Cox process stopped at τ .
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4.4.3 Combining Multiple Survival Times Using Copulas

Using the above setting, the default time τi of each firm (1 ≤ i ≤ n, where n is the
number of firms) can be expressed as

τi := inf

{
t :

∫ t

0
λisds ≥ θi

}
,

where λis is the intensity of τi at time s, and θi is its threshold.

Multiple default times and the association between them can be introduced in three
different ways:

1. The intensity processes λis of different firms can be correlated. However, it
has been pointed out widely in the literature that correlating intensities does
not permit us to obtain a high level of dependence between the default times.
This is indeed a disadvantage since it has been observed in practice that default
times become increasingly more correlated in stressed market conditions.

2. The survival approach: the joint survival function can be specified via a sur-
vival copula, as in [23]

S (t1, . . . , tn) = P (τ1 > t1, . . . , τn > tn) = C̄τ1,...,τn (S1(t1), . . . , Sn(tn)) .

The relevant filtration then is defined by:

Gt := Ft ∨ σ (τi > s, s ≤ t, i = 1, . . . , n) = Ft ∨Ht.

3. The threshold approach: one can correlate the thresholds θi by assuming a
specific copula for them, e.g. a survival copula:

S(d1, d2, . . . , dn) = Pr(θ1 > d1, θ2 > d2, . . . , θn > dn)

= C̄θ1,θ2,...,θn(S1(d1), S2(d2), . . . , Sn(dn)),

where di are the threshold levels (usually constant although they can them-
selves be stochastic) Si is the survival function of θi and S is their joint survival
function.

Alternatively we can introduce a default countdown process γi(t) as follows

γi(t) := exp

(
−
∫ t

0
λisds

)
, (4.1)

and define the time to default for firm i as

τi := inf
{
t ≥ 0 : γit ≤ Ui

}
,

and since θi = − lnUi, the copula of Un = (U1, . . . , Un) is the same as the
survival copula of θ = (θ1, . . . , θn).

The relevant filtration to be considered is again defined by:

Gt := Ft ∨ σ(τi > s, s ≤ t, i = 1, . . . , n) = Ft ∨Ht.
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The relationship between the (survival) copula of default times and that joining the
thresholds, proved in [21], is:

C̄τ1,τ2,··· ,τn(S1(t1), . . . , Sn(tn)) = E
[
C̄θ1,θ2,...,θn

(
exp

(
−
∫ t1

0
λ1sds

)
, . . . , exp

(
−
∫ tn

0
λns ds

))]
.

We will assume deterministic intensities, under which the survival and threshold
approaches coincide:

C̄τ1,τ2,...,τn = C̄θ1,θ2,...,θn .

Let us denote the copula of the default times by Cτ and the copula of the thresholds
by Cθ.

In the general case, if Cθ = C⊥, Cτ is the product copula if and only if the intensity
processes are uncorrelated. One of the main differences between the two approaches
is that there are two sources of correlation in the threshold approach: correlation
between the intensity processes and correlation between the random thresholds.

4.4.4 Application of the Cox Process to Pricing and Risk Monitor-
ing a CDO

In this section we will review the practical example considered in [4]. It involves
a synthetic CDO called EuroStoxx50, which is composed of 50 single name credit
default swaps on credits that belong to the DJ EuroStoxx50 equity index. Each
reference credit has a notional equal to 10 million euros, making the total nomi-
nal amount of the collateral portfolio 500 million euros. This CDO comprises five
tranches with the standard prioritised scheme: super senior tranche notes are paid
before mezzanine and subsequent lower subordinations; after which any residual
equity tranches are paid (refer to Chapter 2 for more details on CDO structuring).

Application to Pricing

Since one cannot observe a time to default series, one is forced to use alternative
proxies to get the desired parameters both for the marginals and the copula itself.
Spreads of the single-name credit defaults swaps (CDSs), which can be observed in
the market, for each obligor were considered to be best proxies for such a task.

For the joint default behaviour the authors considered the Gaussian, Student t,
Clayton and Frank copulas. Although the suitability of the Gaussian copula to
default modelling has been questionable and recently proved inappropriate, is a
common starting point for copula analysis, beginning with [23]. Student t copula is a
natural next step due to its tail dependence and asymptotical behaviour which tends
towards the Gaussian copula. Clayton and Frank copulas are from the Archimedean
family of copulas, which have recently become popular. For more properties of each
of these copulas refer to Chapter 3.
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In order to get the simulations for each obligor’s time to default, it is assumed that
marginal densities follow an exponential distribution for which the hazard term has
been derived from the CDS curve at a particular date for each obligor. Each hazard
term is assumed as follows:

λt =
p̃(0, t)

1−R
,

where the recovery rate R is fixed to 30%, as is common practice in the market, and
p̃(0, t) represents the CDS spread at a given time t. The intensity process obtained
in this case is under the risk neutral measure, while using historical default rates
would lead to the process under a historical measure.

As mentioned in [4], the above relationship can be derived by considering the cash-
flows exchanged during a CDS and the fact that a fair valuation requires the total
amount of payment received by the protection seller to equal the expected loss the
seller would pay the buyer if a credit event occurs.

As discussed in Chapter 2, the relationship between the hazard rate and the cumu-
lative default probability is given by

F (t) = 1− exp

[
−
∫ t

0
λ(s)ds

]
. (4.2)

In the real world we cannot deduce the hazard rate for all periods of time, but only
for a finite set of times for which we have information on the CDS spread. In the
example considered there are three observed points implied by the single name CDS
premium at terms 1 year, 3 years and 5 years. In general, we can have N points in
time t1, t2, . . . , tN . Hence, the hazard rate function we obtain is a stepwise constant
function of time based on the observable values of λ.

Our cumulative distribution function for each obligor’s time to default becomes:

F (t) = 1− exp

−
k∑

j=1

λjδj

 ,

where hj = h(tj), δj = tj − tj−1 and

k =


1, if t ≤ t1
2, if t1 < t ≤ t2
...
N, if t > tN−1

This methodology has been used for each reference credit in the portfolio in order
to obtain the draws for each time to default, after having generated the draws from
the chosen copula.
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Application to Risk Monitoring

For risk monitoring, the recovery rate across the portfolio was also changed in [4]
into a random variable. It was generated from a Beta distribution, independent from
the times to default and interest rates. The Beta distribution has a range 0 ≤ x ≤ 1
and shape parameters v > 0, w > 0. Its density is given by:

xv−1(1− x)w−1

B(v, w)
,

where B(v, w) =
∫ 1
0 u

v−1(1 − u)w−1du. It is well-known that its mean is equal to
v/(v+w) and variance equal to vw/[v+w)2(v+w+1)]. The parameters v, w were
chosen by fixing the mean equal to 50% and variance equal to 30% (this data was
reported in a Moody’s study on recoveries from defaulted corporate bonds).

Various levels of VaR (value at risk) were computed for each tranche’s cumulative
loss and the results from different copulas were compared. The paper found that
more losses were simulated from the Student t copula than the Gaussian or the two
Archimedean copulas. The result is not surprising, especially when one notes that
the chosen degrees of freedom in [4] was 8 for the Student t copula. The lower the
degrees of freedom, the higher the tail dependence, increasing the probability of
multiple defaults. The Gaussian and Frank copulas do not have tail dependence. It
would be of interest to extend this investigation to the conditional tail expectations,
loss amounts or number of defaults.

4.4.5 Application of Modelling Survival Times to a Simple First-
to-Default Product

In this section we review the example considered by [21], namely a product that pays
one unit of currency is case of a default, where default is defined as first-to-default
of a portfolio of n assets. The stopping time is thus τ =

∧n
i=1 τi.

The default intensities were simulated with λit := (W i
t )

2 where Wn = (W1, · · · ,Wn)
is a vector of n correlated (Ft) Brownian motions with a correlation matrix denoted
by ρW .

In the case where the payoff happens at maturity T , we can write the expression for
the price at time t, where t < T and t < τ , as:

E
[
exp

(
−
∫ T

t
rsds

)
1{τ≤T}|Gt

]
= B(t, T )− E

[
exp

(
−
∫ T

t
rsds

)
1{τ>T}|Gt

]
,

where B(t, T ) is the default-free zero-coupon price of maturity T at time t so that

B(t, T ) = exp
(
−
∫ T
t rsds

)
. In the case of the survival approach it is not possible

to get simpler expressions. However, for the threshold approach one can obtain the
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following expression for the above expectation term on the right:

E
[
exp

(
−
∫ T

t
rsds

)
1{τ>T}|Gt

]

= E

exp(−∫ T

t
rsds

) Ĉθ
(
exp(−

∫ T
0 λ1sds), . . . , exp(−

∫ T
0 λns ds)

)
Ĉθ
(
exp(−

∫ t
0 λ

1
sds), . . . , exp(−

∫ t
0 λ

n
s ds)

) |Ft

 .
Here the copula considered by [21] is the Gaussian copula.

In case of a payoff at default, the threshold model requires an expression for condi-
tional density of τ given the filtration F∞ ∨Ht. First lets define

ξt(dv) = − ∂

∂v
P (τ > v|F∞ ∨Ht) dv = − ∂

∂v

Ĉθ
(
exp(−

∫ v
0 λ

1
sds), · · · , exp(−

∫ v
0 λ

n
s ds)

)
Ĉθ
(
exp(−

∫ t
0 λ

1
sds), · · · , exp(−

∫ t
0 λ

n
s ds)

)dv.
By substituting the above expression into the expectations above we can see that,
on {τ > t}

E
[
exp

(
−
∫ τ

t
rsds

)
1{τ≤T}|Gt

]
= E

[
E
[
exp

(
−
∫ τ

t
rsds

)
1{τ≤T}|F∞ ∨Ht

]
|Gt

]
= E

[∫ T

t
ξt(dv) exp

(
−
∫ v

t
rsds

)
|Ft

]
.

4.5 One Factor Models

One factor models are very widely used in the literature. Examples can be found
in [12], [23] and [31] among others. In these models the specification of direct rela-
tionships between each pair of securities can be avoided. This makes their approach
simple for dealing with a large number of names and leads to very tractable pricing
results.

We define a variable xj , 1 ≤ j ≤ n, by

xj = ajE +
√

1− a2jZj , (4.3)

where a2j ≤ 1, and E and Zj ’s have independent probability distributions with mean
0 and variance 1. The variable xj can be thought of as a default indicator variable for
the jth obligor. The dependence between obligors is captured through the common
factor E, which is the same for all j, while Zj is an idiosyncratic component affecting
only xj . For simplicity, it is usually assumed that all Zj ’s have the same probability
distribution. We can see that the correlation between xi and xj is aiaj . From this
relationship it follows that conditional on knowledge of E, the xj ’s are independent.
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We shall denote the cumulative probability distribution of xj by Fj , which is often
assumed to be normal.

Now, let us suppose that tj is the random variable representing time to default of
the jth obligor and that its cumulative probability distribution is Qj . It is generally
assumed that this distribution function is known. The copula model maps xj to tj
on a “percentile to percentile” basis. The point tj = t is mapped to xj = x, where

x = F−1
j [Qj(t)] .

What the copula model here achieves is to map the variables of interest (i.e. time
to default) into other more manageable variables and then defines a correlation
structure between those variables.

From equation 4.3 we have

Prob (xj < x|E) = Gj

[
x− ajE√
1− aj

]
,

where Gj is the cumulative probability distribution of Zj . It follows that

Qj (t|E) = Prob (tj < t|E) = Gj

F
−1
j [Qj(t)]− ajE√

1− a2j

 (4.4)

and the conditional probability that the obligor will survive beyond time t is

Sj (t|E) = 1−Gj

F
−1
j [Qj(t)]− ajE√

1− a2j

 .

The variable E contains the information about the default environment for the time
frame of the model. The realisation of E happens at time zero and governs the
default outcomes for the whole duration until expiry of the contract. This makes
the default environment constant for the whole life of the model - it does not evolve
with realisation of new information. This implies that there is no stochastic evolution
for hazard rates or CDS spreads in the model. Once E has been determined the
cumulative probability of default Qj is a known function of time.

When this model is used to value securities such as a CDO tranche we set up a
procedure to calculate expected cash flows on the tranche conditional on E and
then integrate over E to obtain the unconditional expected cashflows.

4.5.1 Gaussian One Factor Models

If E and Zj have standard normal distributions then the resulting copula is the
Gaussian copula, as set out in [23]. In this case xj also has a standard normal
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distribution so that Gj = Fj = Φ for all j, where Φ is the cumulative standard
normal distribution function.

The standard market model until recently was the one-factor Gaussian copula model
with constant pairwise correlations, constant CDO spreads, and constant default
intensities for all companies in the reference portfolio. A single recovery rate of 40%
was usually assumed. This made the calculations straightforward as the probability
of k or more defaults by time T conditional on the value of the factor E could be
calculated form a binomial distribution.

4.5.2 Alternative One Factor Models

While the Gaussian model is most commonly discussed in literature, empirical evi-
dence has proved that this is not the most suitable model to use for credit derivative
modelling. We will now look at how the one factor framework can be applied to
other copulas which may be more fitting for our purposes. We review the alternatives
presented in [3].

Stochastic Correlation

We use the following specification of the latent variables as a simple way of intro-
ducing stochastic correlation:

xi = Bi

(
ρE +

√
1− ρ2Zi

)
+ (1−Bi)

(
βE +

√
1− β2Zi

)
,

where Bi are Bernoulli random variables which assign probabilities to the two pos-
sible states for each latent variable - one corresponding to low correlation and the
other to high correlation. Parameters ρ and β are the correlation parameters, with
0 ≤ β ≤ ρ ≤ 1. We have factor exposure ρ with probability p and β with probability
1− p. Again, E and Zi are independent Gaussian random variables.

As before, we define the default times as τi = Q−1
i (Φ (xi)) for i = 1, . . . , n. The

default times are independent conditionally on E and can be written as

Prob(ti < t|E) = pΦ

(
−ρE +Φ−1(Qi(t))√

1− ρ2

)
+ (1− p)Φ

(
−βE +Φ−1(Qi(t))√

1− β2

)
.

As one may suspect, the two state model can be generalised to allow for fully stochas-
tic correlations as follows:

xi = ρ̃iE +
√

1− ρ̃2iZi,

where p̃1, . . . , p̃n are independent stochastic correlations.
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Student t Copula

In the Student t approach, our vector of interest (x1, . . . , xn) follows a Student t
distribution with v degrees of freedom, where xi =

√
WXi, andXi = ρE+

√
1− ρ2Zi

is the already-studied one factor Gaussian copula model. W is independent from
(X1, . . . , Xn) and follows an inverse Gamma distribution with parameters equal to
v
2 (or equivalently v

W follows a χ2
v distribution). The degrees of freedom v is a

parameter that would be determined using some goodness-of-fit test (see [4] for an
example).

If we denote the distribution function of the standard univariate Student t by tv, the
time until default for obligor i can be expressed as τi = Q−1

i (tv(xi)). Conditionally
on (E,W ) default times are independent and

Prob(ti < t|E,W ) = Φ

(
−ρE +W−1/2t−1

v (Qi(t))√
1− ρ2

)
.

What we have is a two factor model.

Double t Copula

This model is based on the same idea as the Gaussian one-factor copula model,
except that the common and idiosyncratic factors have t distributions. This captures
the property of heavier tails of distributions of asset values. It is not necessary for
the two t distributions to have the same degrees of freedom.

The latent variables have the following form

xi = ρ

(
v − 2

v

)1/2

E +
√

1− ρ2
(
v̄ − 2

v̄

)1/2

Zi,

where E and Zi are independent random variables following Student t distributions
with v and v̄ degrees of freedom respectively, and 0 ≤ ρ ≤ 1. As the Student distri-
bution is not stable under convolution, the xi’s do not follow Student distributions
- the corresponding copula is not a Student copula.

The default times are then given by: τi = Q−1
i (Fi(xi)) for i = 1, . . . , n where Fi is

the distribution function of xi. Then we have

Prob(ti < t|E) = tv

((
v̄

v̄ − 2

)1/2 F−1
i (Qi(t))− ρ

(
v−2
v

)1/2
E√

1− ρ2

)
.

Clayton Copula

In this model, the random variable denoting the common factor, E, follows a stan-
dard Gamma distribution with shape parameter 1/θ where θ > 0. Laplace trans-
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form, Ψ, is used to transform its probability density function. As the result of this
transform we obtain ψ(s) =

∫∞
0 f(x)e−sxdx = (1 + s)−1/θ.

The latent variables xi’s are defined as:

xi = ψ

(
− lnUi

E

)
, (4.5)

where U1, . . . , Un are independent uniform random variables, which are also inde-
pendent of E. As in the previous examples, the relationship between the default
times and corresponding latent variables is

τi = Q−1
i (xi). (4.6)

We have obtained a one factor representation with E as the common factor. Apply-
ing equations 4.5 and 4.6 together with the result of the Laplace transform we can
see that the conditional default probabilities can be expressed as:

Prob(ti < t|E) = exp
(
E × (1−Qi(t)

−θ)
)
.

Low levels of the latent variable are associated with shorter survival times. For this
reason, E is also referred to as a “frailty” factor.

In [3] it is highlighted that the joint distribution function of the xi’s is indeed the
Clayton copula with generator φ(t) = t−θ − 1 and copula form

Cθ(u1, . . . , un) = φ−1(φ(u1) + · · ·+ φ(un))

for any set of values (u1, . . . , un) ∈ [0, 1]n.

4.5.3 Extension to Many Factors

Although it is not often done in practice, the one factor model can be extended to
incorporate many common factors. The equation 4.3 becomes

xi = ai1E1 + ai2E2 + · · ·+ aimEm + Zi

√
1− a2i1 − a2i2 − · · · − a2im,

where a2i1+a
2
i2+· · ·+a2im < 1 and the Ej , 1 ≤ j ≤ m, have independent distributions

with zero mean and unit variance. The correlation between xi and xj is then ai1aj1+
ai2aj2 + · · ·+ aimajm. Equation 4.4 similarly becomes

Qi(t|E1, E2, · · · , Em) = Gi

F−1
i [Qi(t)]− ai1E1 − ai2E2 − · · · − aimEm√

1− a2i1 − a2i2 − · · · − a2im

 .
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4.5.4 Comparison of the One Factor Model Results to Market Data
of a kth to Default CDS

We now look at a specific application found in [19] which considers a 5-year kth

to default CDS on a basket of n = 10 reference entities in the situation where
the expected recovery rate, R, is 40%. The default probabilities are generated by
Poisson processes with constant default intensities, λi (1 ≤ i ≤ 10), so that the
survival probability for each entity is as per equation 2.1 of Chapter 2. In the base
case λi = 0.01 for all i and the correlation between all pairs of entities is 0.3.

The results of the various copulas were compared to the market prices as at 4 August
2004 of the CDS indices listed on the Dow Jones. In the base case a Gaussian copula
was used (i.e. E and Zi having standard normal distributions). The results were
compared against the following variations:

1. E has a t-distribution with 5 degrees of freedom and the Zi’s are normal;

2. E is normally distributed and the Zi’s have a t-distribution with 5 degrees of
freedom;

3. both E and the Zi’s have t-distributions with 5 degrees of freedom.

The last case of the double t copula was found to fit the market prices reasonably
well. However, one must bear in mind that the market conditions prevalent at
the time of the study were very different to the current market conditions or the
conditions at the time of the recent financial crisis. It would be interesting to see
what kind of results would have been obtained under these more recent conditions.

4.5.5 Comparison of the CDS and CDO Pricing Using One Factor
Models

In this section we review the examples found in [3]. The examples were artificial
in the sense that all the reference credits in the portfolio had the same single-name
CDS premiums and the same deterministic recovery rate. We do not focus on the
actual premium rates obtained, but rather the findings in the paper.

At this point it is worth noting that, as in most of the literature, a restriction is
imposed to the cases where a copula is a symmetric function with respect to its
coordinates (i.e. correlations between any two reference assets are the same).

Investigation of CDS Premiums

The first example in [3] compared the first-to-default and kth-to-default CDS pre-
miums for Gaussian, Student t and Clayton copulas, as well as the Marshall-Olkin
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copula. In the first part of the exercise the dependence parameters were set such
to obtain the same premium across models for n = 25 names; while in the second
case they were calibrated to ensure that it is the first-to-default premiums which are
equal for each model.

It was found that in the premiums obtained in both exercised are quite similar for the
Gaussian, Student t and Clayton copulas, while the Marshall-Olkin copula produced
materially different premiums. It would be interesting to investigate the extent to
which changing the degrees of freedom for the t copula would have affected these
results. In addition, given the departure from rest of the results, some investigation
may be warranted into whether it is the Marshall-Olkin copula which produced more
reliable results. Comparing these results against actual market data may have been
able to answer these questions. Intrestingly, the distribution of the default times
was not discussed in the paper.

Investigation of CDO Premiums

In this part of the investigation by [3], in order to compare the different pricing
models the dependence parameters were set such to obtain the same equity tranche
premiums. Once the equity tranches were matched, the premiums for the mezzanine
tranches were computed and compared across models. This procedure effectively
compares the tail behaviour of different copulas.

The Clayton and Student t copulas provided results that were in line with that of
the Gaussian model. As for the CDS premiums, the premiums computed under the
Marshall-Olkin copula were found to be fairly different, except for the extreme cases
of independence and comonotonicity. The double t model lies between these two
extremes, i.e. the Gaussian and Marshall-Olkin copulas.

The paper discusses the various investigations done to understand the underlying
driver for these differences. The two measures of dependence - Kendall’s tau and tail
dependence coefficients - were not able to provide an explanation for the similarities
and differences. In fact, for the tail dependence coefficients it was discovered that
the probability of default over the CDO’s lifetime did not actually lie in the tail,
making tail dependence irrelevant. However, it was found that the bivariate default
probabilities, Q(τi ≤ T, τj ≤ T ) for i ̸= j, are very close for the Gaussian, Clayton
and Student t copulas. They were stronger for the double t models and even stronger
for the Marshall-Olkin copula.

The different models were also tested for their ability to produce a smile on the
pricing tranches on the iTraxx CDO index, as can be observed in the market. The
parameters for each model were calibrated on the market quote for the [0− 3%]
equity tranche.

The Gaussian, Clayton and Student t copulas could not create the correlation smiles
implied by the index tranches. Marshall-Olkin copula created a smile, but the prices
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for the mezzanine tranches were underestimated, while those for the senior tranches
were overestimated. The stochastic correlation model provided a reasonable fit,
though it overestimated the mezzanine tranche premiums.

Concluding Remarks of the Pricing Exercise

As a conclusion, [3] found that any two models associated with the same distributions
of conditional joint default probabilities would lead to the same joint distribution
of default indicators and eventually to the same CDO premiums. The closeness of
default probabilities for the Gaussian, Clayton and Student t copulas would imply
that Clayton and Student t copulas would not provide a material improvement over
the Gaussian copula. This is a startling statement given the common argument that
the main failure of the Gaussian copula is the lack of tail dependence.

4.5.6 Implied Copula Approach for One Factor Models

It is possible to formulate the one factor model in terms of the conditional hazard
rates, instead of the conditional times to default, as set out in [18]. For this approach
we use the relationship between hazard rates and default times as specified in the
Cox process.

Per [18], we define hj(t|E) to be the hazard rate at time t for company j conditional
on the common background factor E. From equation 4.2 the relationship between
hj(t|E) and Qj(t|E) is

Qj(t|E) = 1− exp

[
−
∫ t

0
hj(τ |E)dτ

]
,

or equivalently

hj(t|E) =
dQj(t|E)/dt

1−Qj(t|E)
.

This equation can be applied together with equation 4.4 to calculate the hazard rate
as a function of time for alternative values of E. This conditional function of time
is generally referred to as the hazard rate path.

Hence, the one-factor copula model can imply a set of hazard rate paths. The
probability of each path occurring is determined by the probability distribution of
E. A problem found with the Gaussian copula is that it models the uncertainty
about the future hazard rate decreasing with time.

Each hazard rate path represents a future credit environment (FCE), and the set of
all possible hazard rate paths then forms the distribution of future credit environ-
ments (DFCE).
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As already discussed, a default model is often specified starting with the hazard rate
and its distribution. In [18] this specification of DFCE is taken as the starting point.
It is argued that the copula does not even need to be specified - it is implied by the
specification of the DFCE.

However, [18] acknowledges that there are potentially many different distributions
of future credit events that are consistent with the observed market data. Therefore
calibrating the model to the market data would lead to a degree of uncertainty
about the value of any non-standard contract, since it would be unclear which of
the possible implied copula models is the “correct” one.

4.5.7 Modelling Correlation Between the Default Rate and Recov-
ery Rate Using One Factor Models

Empirical evidence has shown that there is a strong negative correlation between
the default rate and the recovery at default. However, for simplicity this feature has
not generally been captured in modelling and, instead, the recovery rate is usually
set to a pre-specified constant (as already discussed, market participants tend to use
30% to 40%).

However, [19] had applied the one factor model to incorporate the probability dis-
tribution of the recovery rate. This recovery rate is automatically correlated with
the default rates through the factor model. Again, the common background factor
is E, for which the lower values indicate earlier defaults. The recovery rate R is
set to be positively dependent on E. In other words, higher values of E, which
indicate longer pre-default times, lead to higher recovery rates and so lower values
of loss-given-default.

A random variable xR is defined by:

xR = aRE +
√
1− a2RZR,

where a2R < 1 and ZR has a zero-mean, unit variance distribution that is independent
of E. The copula maps xR to the probability distribution of the recovery rate on
a percentile-to-percentile basis. If GR is the probability distribution for ZR, FR

is the unconditional probability distribution for xR, and QR is the unconditional
probability for R, then by 4.4

Prob (R < R∗|M) = GR

F−1
R [QR (R∗)]− aRE√

1− a2R


for some R∗ ∈ [0%, 100%].It was pointed out in [19] that the impact of the correlation
between the background factor and the recovery rate is significant, particularly for
senior tranches. Without the correlation these tranches are relatively “safe”. With
the correlation they are vulnerable to a bad year where probabilities of default are
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high and recovery rates are low. This is a significant feature of the model, backed
by empirical evidence.

When recovery rates are correlated with the probability of loss the expected loss
is increased if the default intensity is the same as in the uncorrelated case. As a
result the break-even rate for every tranche is increased with senior tranches more
seriously affected.

4.5.8 One Factor Model for the Grouped t Copula

We consider a portfolio of n obligors, where the systematic risk of each obligor is
explained by a set of risk factors. It is assumed that the marginals are normally
distributed, which is argued in [7] to be reasonable for a short time horizon T (in
the particular example outlined in [7] T is one month).

The asset value monthly log returns Yi for obligor each i are modelled according to
the following factor model:

Yi = aic
′
iE+

√
1− a2i siZi,

where E is the vector of monthly risk factor log returns (i.e. some macro-economic
variables) with a grouped t copula and normally distributed marginals. Also E [E] =
0 and Zi has a standard normal distribution independent of E. The parameters ci
are in the range [0, 1]. Analogously to the other one factor models, ai is the coefficient
of determination of systematic risk and si = V ar(Yi) = c′iCov (E) ci, 1 ≤ i ≤ n.
The distribution function of Yi is Fi(x) = Prob (Yi ≤ x).

In this set-up a default event for obligor i is defined to occur when the value of the
random variable Yi drops below a pre-specified default threshold for the obligor di,
i.e. when Yi ≤ di. Let p̃i be the (unconditional) probability of default for obligor
i, so that p̃i = Fi(di). It is common practice to obtain the estimates for p̃i from
some internal or external rating system. The conditional probability of default for
counterparty i given the risk factors E can then be written as

Qi(E) = P [Yi ≤ di|E] = Φ

 F−1
i (p̃i)− aic

′
iE√

1− a2i
√

c′iCov(E)ci

 ,

where Φ denotes the standard normal distribution function. The distribution func-
tion of Yi is unknown. A way around this is to work with the estimated conditional
probability of default Q̂i(E) obtained by replacing F−1

i (p̃i) in the equation above

by the empirical quantile F̂−1
i (p̃i).

To value the estimated future losses on a portfolio we need a default indicator.
Therefore, we introduce a state variable Xi for counterparty i at time T which
takes the values in {0, 1}: the value 1 represents the default state and value 0 the
non-default state. So Xi = 1 is and only if Yi ≤ di.
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The default model described above is applied to each single obligor in the credit
portfolio. Conditional on the realisation of a scenario E counterparty defaults are
simulated from independent Bernoulli distributions with parameters Q̂i(E). Let Ni

be the exposure of obligor i, 1 ≤ i ≤ n, and Ri its recovery rate. The assumption
made in [7] is that 1 − Ri is uniformly distributed on (0, 1), and hence effectively
that Ri is uniformly distributed.

The total credit loss under the realisation of scenario E can be expressed as

L̃ (E) =
n∑

i=1

Xi (E) (1−Ri)Ni,

which is an extension of the application in [3] covered in the earlier sections.

In practice the credit loss distribution can be obtained by a three stage procedure:

1. Simulation of the monthly risk factor log returns E from a grouped t-copula
with normal marginals;

2. For each obligor i, simulation of the conditional default indicator Xi(E) ∈
{0, 1} from a Bernoulli distribution with parameter Q̂i(E);

3. Estimation of the credit loss distribution over a large set of scenarios for E,
by integrating exposures and loss given default in the loss function L̃(E).

4.6 Modelling Shocks with Marshall-Olkin Copula

Marshall-Olkin copulas are associated with shock models, where shocks can be fatal
or non-fatal. The fatal shock model is simpler and is more often used in literature.
We will focus on its application as outlined in [13].

Consider n obligors, where each nonempty subset of obligors is assigned a shock
which is fatal to all components of that subset (i.e. it leads to default of all obligors
in the subset). Let O denote the set of all nonempty such subsets of {1, . . . , n}.
There are in total 2n − 1 shock processes, each in one-to-one correspondence with
a nonempty subset of {1, . . . , n}. Let X1, . . . , Xn denote the time-until-default of
each obligor, and assume that shocks assigned to different subsets o, o ∈ O follow
independent Poisson processes with intensities λo.

Let Zo, o ∈ O, denote the time of first occurrence of a shock event for o. Then the
occurrence times Zos are independent exponential random variables with parameters
λo, and the time until default Xj = min{o:j∈o} Zo for j = 1, . . . , n.

The random vector of the times to default (X1, . . . , Xn)
T has and n-dimensional

Marshall-Olkin distribution whose survival copula is a Marshall-Olkin n-copula.
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Alternatively we can apply the factor model to express each latent variable in terms
of a single common and idiosyncratic shocks. We thus have Xi = min(E,Zi), i =
1, . . . , n where E, Zi are independent exponentially distributed random variables
with parameters α, 1− α, α ∈ (0, 1). We have the survival copula

Ĉ (u1, . . . , un) = min (uα1 , . . . , u
α
n)

n∏
i=1

u1−α
i .

The default times are then defined as:

τi = S−1
i (exp (−min (E,Zi))) ,

where Si, 1 ≤ i ≤ n are the survival distributions of each obligor.

Again, default times are conditionally independent on E and the conditional survival
probabilities are given by

Prob(ti > τ |E) = 1E>lnSi(t) × Si(t)
1−α.

This model allows for simultaneous defaults with positive probability.

The fatal shock models can be extended to non-fatal shock models by introducing
Bernoulli random variables for each shock to represent the probability of the shock
event leading to a loss.

4.7 Dynamic Modelling Through Copulas

So far all the copula models we examined were static, in the sense that the default
environment (represented by the common factor E in the factor approach) was
defined at inception for the entire time horizon. In [32] an attempt is made to
specify default probabilities which evolve over time, within the copula models.

If the behaviour of the securities is correlated, then it is expected that upon default
of one security the probability of other securities defaulting increases immediately.
This new information will cause a jump in the default probabilities of the remaining
securities at the time of default of the first security (i.e. conditional probabilities of
survival are affected).

The approach proposed in [32] is to extend the intensity-based approach to incorpo-
rate default correlations through a copula, keeping the individual intensity dynamics
and model calibration unaffected. We will examine the theory put forward in the
following sections.

4.7.1 Preliminaries

The basic probability space for the model is
(
Ω, F̃ ,Q

)
. The sample space Ω is

assumed to be large enough to support all processes that are introduced. All sub-
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sequently introduced filtrations are subsets of F̃ and augmented by the zero-sets of
F̃ . The probability measure Q can - but need not - be a martingale measure for the
specific filtrations considered.

The background filtration (Gt)t∈[0,T ] represents the information about the develop-
ment of general market variables such as share prices, default-free interest rates or
exchange rates, and all default-relevant information except explicit information on
the occurrence or non-occurrence of defaults. Thus, (Gt)t∈[0,T ] can also contain in-
formation on credit spread movements and rating transitions (except for transitions
to “default”). It is analogous to the common background factor E of the factor
model, except for the notable difference that (Gt)t∈[0,T ] is not constant over [0, T ].

We assume that the time of default of obligor i, τi i = 1, . . . , n, is the first time when
the default countdown process γi(t) reaches the level of the trigger variable Ui:

τi := inf {t : γi(t) ≤ Ui} ,

where:

1. The default trigger variables Ui, i = 1, . . . , n are random variables on the unit
interval [0, 1]. Also σ(Ui) =: Ui is the information generated by knowledge of
Ui.

2. The default countdown process γi(t) is defined as per equation 4.1:

γi(t) := exp(−
∫ t

0
λi(u)du).

3. The pseudo-default intensity λi(t) is a nonnegative cádlág (continues á droite,
limites á gauche) stochastic process which is adapted to the filtration (Gt)t∈[0,T ]

of the background process. We denote Λi(t) :=
∫ t
0 λi(s)ds as the integral of

the intensity.

Furthermore we define the default and survival indicator processes Xi(t) := 1{τ≤t}
and Ii(t) := 1{τi>t} respectively. Filtration (F i

t )t∈[0,T ] is the augmented filtration
that is generated by Xi(t).

The process λi(t) is called pseudo default intensity because it coincides with the
default intensity of obligor i only in the “independence” case, or if information is
restricted to information about obligor i alone. In general, it will not be the default
intensity.

A crucial element of this set-up is the careful specification of the available informa-
tion, since different information will result in different default probabilities. In [32]
the following filtrations are further introduced:

Definition 4.7.1.
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1. Filtration (H̃i
t)t∈[0,T ] contains information about the default or survival of obligor

i up to time t, and complete information about the background process:

H̃i
t := σ(F i

t ∪ G).

2. Filtration (Hi
t)t∈[0,T ] contains information about the default or survival of obligor

i up to time t, and partial information about the background process up to time
t:

Hi
t := σ(F i

t ∪ Gt).

3. Filtration (H̃t)t∈[0,T ] reflects information about the defaults of all obligors until
t, and complete information about the background process:

H̃t = σ

(
n∪

i=1

H̃i
t

)
.

4. Filtration (Ht)t∈[0,T ] is the equivalent of (H̃t)t∈[0,T ], but with the information
on the background process restricted to [0, t] :

Ht = σ

(
n∪

i=1

Hi
t

)
.

5. Filtration (Ft)t∈[0,T ] contains only default information of all n obligors up to
time t :

(Ft)t∈[0,T ] = σ

(
n∪

i=1

F i
t

)
.

These filtrations enable us to model the intensity of the default process of one obligor
independent of the information about the default behaviour of the remaining n− 1
obligors. It can be seen that the default process Xi would have a different intensity
under the filtration (Hi

t)t∈[0,T ] than under (Ht)t∈[0,T ]. Accordingly, we need to define
different survival probabilities.

Definition 4.7.2. For each obligor i, i = 1, . . . , n define at time t, 0 ≤ t ≤ T :

1. the survival probability until T given the information (Hi
t)t∈[0,T ]:

S′
i(t, T ) := EQ[Ii(T )|Hi

t],

2. the survival probability until T given the information (H̃i
t)t∈[0,T ]:

S̃′
i(t, T ) := EQ[Ii(T )|H̃i

t].
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An assumption is also made that the default threshold Ui, i = 1, . . . , n, is uniformly
distributed on [0, 1] under (Q,Hi

0), and Ui is independent from G∞ under Q. Under
this assumption only themarginal distribution of the Ui is prescribed as the filtration
(Hi

t)t∈[0,T ] does not contain information about the other Uj , j ̸= i.

Under the above assumption, and given that τi > t, the survival probabilities are:

S̃′
i(t, T ) =

γi(T )

γi(t)
= e−

∫ T
t λi(s)ds,

S′
i(t, T ) = EQ

[
γi(T )

γi(t)
|Hi

t

]
= EQ[e−

∫ T
t λi(s)ds|Hi

t], (4.7)

which is a proposition proved in [32]. So we can express and define the intensity of
the default process through the survival probabilities.

The following proposition shows that λi is indeed the default intensity of obligor i if
the only information at hand is that concerning the general economic environment
and the particular obligor.

Proposition 4.7.1. The intensity of the default indicator process Xi(t) under the
filtration (Hi

t)t∈[0,T ] is

− ∂

∂T
S′
i(t, T )|T=t = 1{τ i>t}λi(t).

This proposition can be proved by the differentiation of 4.7. We have essentially
reduced the model to a standard default risk intensity-type model if the information
set is reduced to (Hi

t)t∈[0,T ].

4.7.2 Modelling Dependent Defaults

We now look at an application of dynamic intensity modelling discussed in 4.7. The
copula of joint defaults is still specified for a given time horizon, in other words as a
static framework. Dependence between the defaults of the n obligors is introduced
through the specification of the joint distribution of the random variables U1, . . . , Un.
We will see how the default intensity of an obligor is affected by the knowledge of
the default of another obligor.

The two copulas which are considered in [32] are the Gumbel and Clayton copulas.
They are commonly used examples of the Archimedean family of copulas. The exact
form of the Archimedean copula is specified through its generator function (refer to
Chapter 3 for more details). As we have already seen earlier, Gumbel copula has
upper tail dependence, while the Clayton copula has lower tail dependence.

For the Gumbel copula the default intensity λ̃i is:

λ̃i(t) =
ϕ′(γi)

C(γ)ϕ′(C(γ))
γiλi =

(
Λi

∥Λ∥θ

)θ−1

λi,
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where C denotes the (Gumbel) copula. In [32] it has been shown that the jump in
the default intensity of obligor i on the default of obligor j can be expressed as:

λ̃−j
i (t) =

(
−C(γ)ϕ

′′(C(γ))

ϕ′(C(γ))

)
λ̃i =

(
1 +

(θ − 1)

∥Λ∥θ

)
λ̃i,

where we denote ∥x∥θ :=
(∑n

i=1 |xi|θ
)1/θ

for the θ-norm in Rn and Λi(t) :=
∫ t
0 λi(s)ds.

Similarly, for the Clayton copula the default intensity is

λ̃i(t) =
ϕ′(γi)

C(γ)ϕ′(C(γ))
γiλi =

(
C(γ)

γi

)α

λi

and the jump in the intensity on obligor j’s default:

λ̃−j
i (t) =

(
−C(γ)ϕ

′′(C(γ))

ϕ′(C(γ))

)
hi = (1 + α)hi.

With the Clayton copula there is a constant jump in the default intensity (and
therefore a constant increase to the credit spread) by a factor (1 + α) at default
of another obligor j. While no defaults happen there is a drift correction to the
default intensity which has an effect of reducing these default intensities. One can
also directly obtain the distribution of default times.

For the Gumbel copula, the intensity parameter hi(t) depends on the factor Λi(t)
∥Λ(t)∥θ

,

which represents the dependence structure of the default times. This is the i-th
component of the cumulative intensity vector Λ, normalised to one in the θ-norm.
For constant pseudo-intensities λi, this factor will be constant, thus making the
model time-invariant before defaults. In contrast to this, the jump factor when a
default happens is not constant but approaches 1 as time proceeds, thus preventing
the default intensities from increasing without bound.

4.8 Discussion on the Drawbacks of Copulas

We have seen that copulas provide an elegant solution to a complex problem of
modelling the behaviour of a basket of securities or obligors. The methodology of
finding a solution is broken down into two steps: the first step deals with modelling
each obligor’s univariate marginal distribution; the second step consists of specifying
a copula, which summarizes all the dependencies between margins. We are provided
with the flexibility of being able to specify different marginal distributions for each
obligor.

However, no study of a model would be complete without highlighting its possible
pitfalls. Therefore the natural progression of our study of copulas is to examine the
aspects of which one needs to be aware if copulas are used for modelling dependencies
in credit derivatives.
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4.8.1 Estimation of Copulas

A natural question to pose when a copula model is being set-up is whether one should
first fully specify the univariate marginals or whether the whole model should be
specified is the same step. Apart from deciding on the form of univariate marginals
and the form of the copula (i.e. whether it should be for example Gaussian, Clayton,
or say Marshall-Olkin), the parameters for both need to be estimated. This question
is a central theme of [14], and we will look into its arguments in this section.

Let us assume that the true copula for our model belongs to a parametric family
C = {Cθ : θ ∈ Θ}, where Θ is the parameter space. We can use the maximum likeli-
hood methods (ML) to estimate consistent and asymptotically normally distributed
estimates of the parameter θ, which belong to the parameter space Θ. The test
can be specified in two different set-ups. The first method assumes our knowledge
of the parametric forms of the univariate marginal distributions. Each margin is
plugged into the likelihood function, which is then maximised with respect to pa-
rameter θ. Alternatively we can make no assumptions about the parametric form
of the marginals, and instead plug the univariate empirical cumulative distribution
functions into the likelihood function for a so-called semi-parametric method.

The first method depends on the correct specification of all the marginal distribu-
tions. This constraint may be too onerous, and could lessen the interest of working
with copulas. The semi-parametric estimation procedure, where margins are left
unspecified, does not suffer from this inconvenience but is less efficient to apply. In
addition there is no guarantee that the specified copula would be the most suitable
one for our modelling. Also the standard inference for independent and identically
distributed (i.i.d) data does not hold with time-dependent data. This means that
test statistics delivered by standard ML method under the usual assumption of i.i.d.
data should be handled with care.

The choice among possible copula specifications can also be done rigorously via so-
called goodness-of-fit (GOF) tests. A GOF test for multivariate distributions may
be set-out in two different ways:

• H0 : F = F0, against Ha : F ̸= F0, when the null hypothesis is simple, or

• H0 : F ∈ F , against Ha : F /∈ F , when the null hypothesis is composite.

Here F0 denotes some known cumulative distribution function, and F = {Fθ : θ ∈ Θ}
is some known parametric family of multivariate distribution functions.

In a one-dimensional framework the problem is relatively simple. It is pointed out
in [14] that by considering the transformation of a random variable Xi by its distri-
bution function Fi, the corresponding empirical process tends weakly to a uniform
Brownian bridge under the null hypothesis. For this a lot of well-known distribution-
free GOF statistics are available. In a multidimensional framework, it is more diffi-
cult to build distribution-free GOF tests because the law of transformed variable is
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no longer distribution-free.

In a similar manner, the GOF problem for copulas can be set out based on either of
the two assumptions:

• H0 : C = C0, against Ha : C ̸= C0, when the null hypothesis is simple, or

• H0 : C ∈ C, against Ha : C /∈ C, when the null hypothesis is composite.

Here, C0 denotes some known copula and C = {Cθ : θ ∈ Θ} is some known paramet-
ric family of copulas. The difficulty of applying the same method as for multivariate
distributions is that the univariate cumulative distribution functions Fjs are now
unknown.

In general, the GOF test for copulas has not yet been tackled rigorously to provide
reliable asymptotic estimates.

A possible approach is to perform a test for each marginal distribution separately
as a first step. If each marginal model is accepted, then a test of the whole multi-
dimensional distribution can be implemented. However, such a procedure is heavy,
and it is still necessary to deal with a multidimensional GOF test.

4.8.2 Too Much Choice Can Be a Bad Thing

A common argument in literature against the copula approach is that there are
almost too many copulas to choose from. This is the case even if we specify desirable
attributes of the copula for modelling dependence of credit derivatives, such as tail
dependence.

In fact there is an infinite number of one-factor copulas that can exactly fit observed
market prices. It is not clear how one would choose amongst these copulas to select
the “correct” model. However, the implications of choosing a particular copula come
to light when our chosen model is then used to model some non-standard contract,
or when we want to apply our model to extreme events such as probability of default.

Copulas, by their nature, are specified independently of the marginal distributions.
Therefore the knowledge of the parametric form of the marginals does not aid in the
specification of the copula. This approach may be considered as against the intuitive
understanding of the system to be modelled. Indeed, in [30] the author puts forward
a question “if one marginal is Gaussian and the other Student, should we use a
Gaussian copula or a t-copula?”. The fact that the answer to this question does not
come to mind immediately highlights the arbitrariness in the copula philosophy.
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4.8.3 Modelling Dependence

It is pointed out in [30] that the copula approach does not normally correspond
to any natural multivariate structure arising from some underlying dynamic. The
exception is the Marshall-Olkin copula which is associated with a system containing
components which are subject to certain shocks leading to failure of either or both
components. Some Archimedean copulas do arise naturally in shared frailty models
for dependent lifetimes, this being the origin of the Clayton copula in particular.

As already suggested in sections above, copulas do not enable us to model the
source of dependence or the common factor itself. Copulas give us the tools to
model dependence as a separate entity, but the set-up is not conducive to obtaining
insight into the cause of this dependence. In such a setting we are less likely to
understand dependence we are modelling and be aware of how it may evolve over
time.

4.8.4 Other Considerations

A commonly recognised main “unit” in modelling defaults is the hazard rate. While
copulas can also be specified with the hazard rate as the underlying default mech-
anism, the set-up prevents a dynamic evolution of the hazard rates or, for that
matter, credit spreads. An attempt at the dynamic modelling of hazard rates has
been made in [32], though the solution is cumbersome, and the model would need to
be manually adjusted on each obligor’s default. The copula model is inappropriate
for valuing contracts such as a one-year option on a five-year CDO because this
instrument depends on hazard rates between years one and five conditional on what
we observe happening during the first year.

Some attempts have been made to incorporate a dependence between the default
time and the recovery rate, as seen in [19]. However, while it is intuitive for depen-
dence to also exist between default probabilities and interest rates, models to date
have not tackled the inclusion of this dependence. Interest rates have been assumed
to be either constant or to be a deterministic function of time.

One of the main problems that must be kept in mind is that the copula and its
parameters are fitted to “normal” market conditions, and not the conditions of
interest for credit derivative modelling. We can only guess how our copula will
perform in default environments. However, as this is an issue of availability of data,
other approaches to modelling credit derivatives and dependencies between defaults
are also not immune to this shortcoming.



Chapter 5

Alternative Methods for
Capturing Dependence

5.1 Introduction

We have had an in-depth investigation into the theory of copulas and their appli-
cations to modelling dependent defaults, this being a crucial element of baskets of
credit-risky securities. Having identified in the last chapter the areas where copulas
are lacking, we now investigate other options available for modelling dependent de-
faults. This chapter presents some of these alternative modelling techniques covered
in the literature.

5.2 Some General Modelling Concepts

It has frequently been recognised, and specifically noted in [22], that, in general, the
mechanisms for obtaining dependence are all versions of three underlying themes:

• Default probabilities are influenced by common background variables which
are observable. As in all factor models, we then need to specify the joint
movements of the factors and how default probabilities depend on these factors.

• Default probabilities depend on unobserved background variables, and the
occurrence of an event causes updating of these latent variables, which in turn
causes a reassessment of the default probability of the remaining assets.

• There is a direct contagion in which a default event of one firm directly causes
a default of another firm or, in the least, a deterioration of credit quality of
this second firm.

68
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It is likely that we would need to calculate the distribution of the number of defaults
among a large collection of issuers, which is very cumbersome unless some sort
of homogeneity assumption is made. This naturally leads to the use of binomial
distributions. In fact, much of correlation modelling can be seen as variations of the
binomial distribution using mixture distributions.

The binomial distribution here provides a framework for studying the distribution
of the number of defaults over a pre-specified time horizon. In addition we introduce
the mixture distribution which randomizes the default probability within the bino-
mial, effectively creating dependence between the securities modelled. It mimics a
situation where a common background variable affects a collection of firms, as in the
factor model application to copulas (see Chapter 4 for details). It is important to
note here that the default probability will depend on the chosen time horizon. We
will discuss this model in more detail in the next section.

Throughout this chapter n represents the number of firms in our collection. The
default indicator of firm i is denoted by Xi and is equal to 1 if firm i defaults and 0
otherwise. The number of defaults is denoted by Mn so that

Mn = X1 + · · ·+Xn.

The default probability p̃ is itself a random variable, taking values in the interval
[0, 1], which is independent of all the Xi. For simplicity it is the same variable for
all Xi. Conditional on p̃ the random variables X1, X2, . . . , Xn are independent. For
large portfolios it is the distribution of p̃ which determines the loss distribution. The
more variability that there is in the mixture distribution, the more correlation there
is between default events, and hence the more weight there is in the tails of the loss
distribution.

5.3 The Mixture Model Approach

As mentioned above, mixture models introduce correlation between variables (which
in our case represent default indicators) through the stochastic modelling of the de-
fault probability. Given a specific realization of this default probability, the defaults
of individual firms are independent. We will discuss some examples of the mixture
models covered in [12].

Definition 5.3.1. Bernoulli mixture model Given a random variable Ψ, the
random vector Xn = (X1, . . . , Xn)

′ follows a Bernoulli mixture model with random
variable Ψ if there are functions pi : R → [0, 1], 1 ≤ i ≤ n, such that conditional
on Ψ the components of Xn are independent Bernoulli random variables satisfying
P (Xi = 1|Ψ = ψ) = pi (ψ).

Then for a specific default scenario xn = (x1, . . . , xn)
′ in {0, 1}n we have that

P (X = x|Ψ = ψ) =
n∏

i=1

pi (ψ)
xi (1− pi (ψ))

1−xi .
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The unconditional distribution of the default indicator vector Xn is obtained by
integrating over the distribution of the random variable Ψ. In particular, the default
probability of company i is given by p̄i = P (Xi = 1) = E (pi (Ψ)).

Since default is expected to be a rare event, it is possible to approximate Bernoulli
random variables with Poisson random variables in Poisson mixture models. With
this model a company may potentially default more than once in the period we are
analysing, however with a very low probability, especially if we keep the Poisson
parameters λi fairly small. We will use the notation X̃i ∈ {0, 1, 2, . . .} for the
counting random variable giving the number of defaults of company i. It is then
the random variables X̃i, 1 ≤ i ≤ n, that have Poisson distributions. The formal
definition parallels the definition of a Bernoulli mixture model.

Definition 5.3.2. Poisson mixture model Given p and Ψ as in Definition 5.3.1,

the random vector X̃n =
(
X̃1, . . . , X̃n

)′
follows a Poisson mixture model with ran-

dom variable Ψ if there are functions λi : R → (0,∞), 1 ≤ i ≤ n, such that
conditional on Ψ = ψ the random vector X̃n is a vector of independent Poisson
distributed random variables with rate parameter λi (ψ).

We define the random variable M̃ =
∑n

i=1 X̃i which, for small Poisson parameters λi,
approximately represents the number of defaulting companies. Given the realisation
of the random variable Ψ, M̃ it is the sum of conditionally independent Poisson
variables and therefore its distribution satisfies

P
(
M̃ = k|Ψ = ψ

)
= exp

(
−

n∑
i=1

λi (ψ)

)
(
∑n

i=1 λi (ψ))
k

k!
.

If X̃n follows a Poisson mixture model and we re-define our default indicators as
Xi = I{X̃≥1} then Xn follows a Bernoulli mixture model and the mixing variables

are related by pi (·) = 1− exp (−λi (·)).

Often a simplification is introduced to this set-up by making the probability func-
tions pi all identical. In this case the Bernoulli mixture model is said to be exchange-
able, since the random vector Xn is exchangeable. The number of defaults then has
a Binomial distribution with parameter Q := p1 (ψ).

The following mixing distributions of parameter Q are frequently used in Bernoulli
mixture models:

• Beta mixing distribution: here we assume that Q ∼ Beta (a, b) for some
parameters a > 0 and b > 0.

• Probit-normal mixing distribution: we set Q = Φ(µ+ σΨ) for Ψ ∼
N (0, 1), µ ∈ R and σ > 0, where Φ is the standard normal distribution
function. It turns out that this model can be viewed as a one-factor version of
the CreditMetrics model.
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• Logit-normal mixing distribution: we set Q = F (µ+ σΨ) for Ψ ∼
N (0, 1), µ ∈ R and σ > 0, where F (x) = (1 + exp (−x))−1 is the distribution
function of a so-called logistic distribution.

The tail of M̃ is essentially determined by the tail of the mixing variableQ. However,
once the default probability and default correlation have been chosen, the parametric
form of the mixing distribution is of minor importance.

The majority of useful threshold models can be represented as Bernoulli mixture
models. The following Lemma, which is proved in [12] shows the role of mixture
models within the threshold model framework.

Lemma 5.3.1. Let (V,D) be a threshold model for an n-dimensional random vector
Vn. If Vn has a p-dimensional conditional independence structure with conditioning
variable Ψ, then the default indicators Xi = I{Vi≤di1} follow a Bernoulli mixture
model with factor Ψ, where the conditional default probabilities are given by pi (ψ) =
P (Vi ≤ di1|Ψ = ψ).

CreditRisk+ has been an industry model for credit risk which was proposed by
Credit Suisse Financial Products in 1997. The model has the structure of a Poisson
mixture model, where the factor Ψ consists of s independent, gamma-distributed
random variables. The (stochastic) parameter λi (Ψ) of the conditional Poisson
distribution for firm i is given by λi (Ψ) = kiw

′
iΨ for a constant ki > 0. The

non-negative factor weights wi = (wi1, . . . , wis)
′ satisfy the criteria

∑
j wij = 1,

and s is the number of independent Ga (αj , βj)-distributed factors Ψ1, . . . ,Ψs with
parameters set to be αj = βj = σ−2

j for some σj > 0. This parametrization of the

gamma variables ensured that we have E (Ψj) = 1, var (Ψj) = σ2j and E (λi (Ψ)) =
kiE (w′

iΨ) = ki. Observe that in this model the default probability is given by

P (Xi = 1) = P
(
X̃i > 0

)
= E

(
P
(
X̃ > 0|Ψ

))
. Since X̃i is Poisson given Ψ, we

have that

E
(
P
(
X̃ > 0|Ψ

))
= E

(
1− exp

(
−kiw′

iΨ
))

≈ kiE
(
w′
iΨ
)
= ki,

where the approximation holds because ki is typically small. Hence ki is approxi-
mately equal to the default probability for firm i.

Then the distribution of M̃ =
∑n

i=1 X̃i is conditionally Poisson and satisfies

M̃ |Ψ = ψ ∼ Poi

(
n∑

i=1

kiw
′
iψ

)
.

While this model is simple to understand, one of the shortcomings of the mixture
model is that the assumption of homogeneity places some serious restrictions on the
portfolio. It is expected that companies in different industrial sectors, as well as
companies in different economies, have different default probabilities. The homo-
geneity assumption effectively reduces the scope of portfolios for which defaults can
be accurately modelled.
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5.4 A Contagion Model

Contagion models have become widely used in default modelling. The concept of
contagion means that once a firm defaults, it may bring down other firms with it.
We look into the model which incorporates contagion in a binomial-type model, as
described in [22] and [8].

In the general mixture model it is the common dependence on the background
variable p̃ that induces the correlation in the default events. While it is possible
in this model to obtain all correlations between 0 and 1, we need to assume large
fluctuations in p̃ to obtain a significant correlation. A more direct way that does
not push the marginal probabilities up as sharply, while still inducing correlation, is
to have direct contagion.

The model is constructed with us distinguishing between direct defaults and defaults
triggered through a contagion event. We thus introduce Yij - an “infection” variable
- which, when equal to 1, implies that default of firm i immediately triggers default
of firm j. Now let us assume that all Xi, Yij are independent Bernoulli variables
with P (Xi = 1) = p and P (Yij = 1) = q. Let the new combined default indicator
of firm i be given by

Zi = Xi + (1−Xi)

1−
∏
j ̸=i

(1−XjYji)

 .

This expression is equal to 1 either if there is a direct default of firm i (in other
words if Xi = 1) or if there is no direct default and the entire second term of the
sum is 0. This second term is 0 precisely when at least one of the factors Xj , Yji
is 1, which happens when firm j defaults and infects firm i. Now the number of
defaults is

Mn = Z1 + · · ·+ Zn.

One of the desirable features of this method is that we have constructed the model for
dependence using independent variables, which are easier to handle than dependent
variables. We shall see later in this chapter another model based on this approach.

5.5 Continuous Time Analogue of the Binomial Model

We can extend the stochastic one-period binomial model with identical default in-
tensities of firms into a continuous time model, as described in [22] . This model is
considered to be dynamic in a sense since the default intensity of the next firm to
default depends on the number of firms which have already defaulted.

We consider a state space 0, 1, . . . , n, where each state represents the number of
non-defaulted firms (n being the total number of firms). Assuming that only one
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firm can default at a time and that every firm has a default intensity λ, the intensity
of the first default among n firms is nλ. Therefore, we define the intensity of the
so-called pure death process going from state i to state i − 1 as λi,i−1 = iλ for
i = 1, . . . , n, and we let state 0 be the absorbing state. It is then easy to compute
the distribution of the number of firms alive at some future date t. If the starting
population is n then, since we can view each firm as having an exponential lifetime
with intensity parameter λ, the probability of there being k firms left at time t is(

n

k

)
exp (−kλt) (1− exp (−λt))n−k .

This expression corresponds to all the ways in which k firms survive and n−k firms
default within the given time period. Note the difference between the probability
of this process having k defaults and the probability that n Poisson processes with
intensity λ experience k defaults. The latter probability is larger since no firms leave
the population after a default.

It is also straightforward to include a common background variable variable just as
in the Cox setup: given an intensity process λ and assuming that, conditional on
the sample path of this process, we have

Pk,λ(t) =

(
n

k

)
exp

(
−k
∫ t

0
λsds

)(
1− exp

(
−
∫ t

0
λsds

))n−k

.

5.6 Intensity Correlation Through Factor Specification

One of the most common approaches to handling correlation between a large number
of issuers is to impose a factor structure on the default intensities. This approach
has also been the building block of copula work in [23] and we have looked at this
setup in Chapter 4.

The goal with the factor approach is to reduce the amount of parameter specification
by quantifying the part of the marginal intensity which comes from a set of common
factors when specifying the marginal distributions. A good introductory example
can be seen in [19], where the factor structure is introduced to model the value of
assets in a portfolio. When we impose a factor structure to default intensities, we
divide the structure of the intensity of an individual firm i into two independent
components, one coming from a common factor and one being idiosyncratic. In [22]
the following simple structure is set out:

λi(t) = vc(t) + vi(t).

The common factor vc can be split further into industry sector components and
general economy components, but each additional split introduces its own estimation
problems.
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If we apply this split in a Cox process setup we get the survival probability of an
issuer to be

P
(
τ i > T

)
= E

[
exp

(∫ T

0
λi(s)ds

)]
= E

[
exp

(∫ T

0
vi(s)ds

)]
E
[
exp

(∫ T

0
vc(s)ds

)]
,

where τ i is the default time of the ith obligor. The correlation between firms arises
because of the common intensity component. To avoid the problems with the lack of
homogeneity, we will need to consider pools of issuers whose marginal intensities and
whose split between global and idiosyncratic risk are similar enough to be grouped.
In this case we are back to a mixed binomial model in which, after conditioning on
the common factor, defaults are independent.

An example specification of systematic risk found in [22] is

dvct = κc (θc − vct ) dt+ σc
√
vctdW

c
t + dJc

t ,

where

Jc
t =

Nc
t∑

i=1

ϵci ,

and N c
t is a Poisson process with intensity lc ≥ 0 while (ϵi)

∞
i=1 is a sequence of

independent and identically distributed exponential random variables with mean
µc. This specification represents a mean-reverting Brownian motion process with
jumps of random sizes (given by a Poisson process) at random times (given by the
exponential random variable).

It is then common to assume that the idiosyncratic risk is specified in exactly the
same form, replacing all superscripts “c” by “i”. In particular, the driving Brownian
motions and the jump processes are independent. In this specification jumps in the
total intensity occur at a rate of

l = lc + li.

We let

ρ = lc/l

denote the fraction of jumps in the individual firm’s intensity that is due to common
jumps. It turns out that if one assumes that

κ := κc = κi, σ := σc + σi, and µ := µc + µi,

then the sum of two affine processes vi and vc is again an affine process with param-
eters κ, σ, µ as defined above and with jump rate and mean reversion level given
as

l = li + lc and θ = θi + θc.
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This means that as long as we keep these two sums constant, we can vary the con-
tribution from the systematic and idiosyncratic risk without changing the marginal
rate. With this we are effectively controlling the correlation of default rates without
having to resort to large variations of the background variable.

5.7 Reduced-Form Credit Risk Models

Structural models generally attempt to account at some level of detail for the events
leading to a default. A problem of the structural approach is that it is difficult in
such a model to deal systematically with the multiplicity of situations that can lead
to default. That is why structural models are sometimes viewed as unsatisfactory as
a basis for a practical modelling framework, particularly when multi-name products
such as nth to default swaps and collateralised debt obligations are involved.

Reduced-form models are more commonly used in practice on account of their
tractability and fewer assumptions being required regarding the nature of the debt
obligations involved and circumstances leading to default. Most reduced-form mod-
els are based on a random time of default, modelled as the time at which the integral
of a random intensity process first hits a certain critical level, this level itself being
an independent random variable.

Before we begin our review of various reduced-form models we introduce some nec-
essary mathematical concepts.

5.7.1 Mathematical tools

We consider a probability space (Ω,F , P ) and a random time to default τ defined
on this space. As usual, we denote F (t) = P (τ ≤ t) and S (t) := 1 − F (t) as the
corresponding survival probability function. Again we define the jump-to-default
indicator process (Xt) associated with τ by Xt = I{τ≤t} for t ≥ 0.

We assume that the only observable quantity is the random time τ or, equivalently,
the associated jump indicator process (Xt). The appropriate filtration is therefore
given by (Ht) with

Ht = σ ({Xu : u ≤ t}) .

By definition, τ is an (Ht)-stopping time, as {τ ≤ t} = {Xt = 1} ∈ Ht for all t ≥ 0;
moreover (Ht) is the smallest filtration with this property.

The following Lemma, stated without proof, lays out a useful way of expressing
expectations conditional on the filtration (Ht).

Lemma 5.7.1. Let τ be a random time with jump indicator process Xt = I{τ≤t} and
natural filtration (Ht). Then, for any integrable random variable V and any t ≥ 0,



Chapter 5 §5.7 Reduced-Form Credit Risk Models 76

we have

E
(
I{τ>t}V |Ht

)
= I{τ>t}

E (V ; τ > t)

P (τ > t)
.

Proposition 5.7.1. Let τ be a random time with absolutely continuous distribution
function F (t) and hazard-rate function λ (t). Then M̃t := Xt −

∫ t∧τ
0 λ (s) ds, t ≥ 0,

is an (Ht)-martingale, where H is a Ht-measurable random variable.

The proofs of Lemma 5.7.1 and Proposition 5.7.1 can be found in [12].

Additional information is typically generated by background processes, often mod-
elled as diffusions or continuous-time Markov chains, representing, for instance, eco-
nomic activity in a country or in an industry sector, risk-free interest rates or rating
transitions between the non-default states. Formally, we represent this additional
information by some filtration (Ft) on (Ω,F , P ).

This leads us to introduce a new filtration (Gt) by

Gt = Ft ∨Ht, t ≥ 0,

meaning that Gt is the smallest σ-algebra that contains Ft and Ht. Obviously τ is
an (Ht) stopping time and hence also a (Gt)-stopping time. In the context of credit
risk models the filtration (Gt) contains information about the background processes
and the occurrence or non-occurrence of default up to time t, and thus typically
corresponds to the information available to investors.

The following Lemma is stated without proof in [12].

Lemma 5.7.2. For every Gt-measurable random variable V there is some Ft-measurable
random variable Ṽ such that V I{τ>t} = Ṽ I{τ>t}.

In economic terms this Lemma tells us that before a default occurs all informa-
tion is generated by the background filtration (Ft). Now we turn to conditional
expectations with respect to Gt.

Lemma 5.7.3. For every integrable random variable V we have

E
(
I{τ>t}V |Gt

)
= I{τ>t}

E
(
I{τ>t}V |Ft

)
P (τ > t|Ft)

.

Note that Lemma 5.7.3 allows us to replace certain conditional expectations with
respect to Gt by conditional expectations with respect to background information
Ft.

Proof. E
(
I{τ>t}V |Gt

)
is Gt-measurable and zero on {τ ≤ t}. By Lemma 5.7.2

there is therefore an Ft-measurable random variable Z̃ such that E
(
I{τ>t}V |Gt

)
=

I{τ>t}Z̃. Since Ft ⊂ Gt, taking conditional expectations with respect to Ft yields

E
(
I{τ>t}V |Ft

)
= P (τ > t|Ft) Z̃.
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Hence Z̃ = E
(
I{τ>t}V |Ft

)
/P (τ > t|Ft), which proves the lemma. 2

We can extend the reduced-form models by replacing the usually deterministic haz-
ard rates with stochastically-modelled hazard rates. These are referred to as models
with doubly stochastic random times - also called conditional Poisson or Cox ran-
dom times in the literature. However, before we formally define doubly stochastic
random times, let us first introduce the cumulative hazard rate.

Definition 5.7.1. Cumulative hazard function. The function Λ (t) := − ln (S (t))
is called the cumulative hazard function of the random time τ . If F is absolutely
continuous with density f , then the corresponding hazard rate function is λ (t) :=
f (t) / (1− F (t)) = f (t) /S (t).

Definition 5.7.2. Doubly stochastic random times A random time τ is called
doubly stochastic with respect to the background filtration (Ft) if it admits the (Ft)-
conditional hazard-rate process (λt), if Λ(t) is strictly increasing, and if, for all
t > 0,

P (τ ≤ t|F∞) = P (τ ≤ t|Ft) .

The above conditioning means that, given the past values of the information process,
the future values do not contain any extra information for predicting the probability
that the default time τ occurs before some future time t.

We have seen in proposition 5.7.1 that the jump indicator process (Xt) can be turned
into an (Ht)-martingale if we subtract the process

∫ t∧τ
0 λ (s) ds. Here we generalize

this result to doubly stochastic random times.

Proposition 5.7.2. Let τ be a doubly stochastic random time with (Ft)-conditional
hazard-rate process (λt). Then M̃t := Xt −

∫ t∧τ
0 λsds is a (Gt)-martingale.

Given the set-up in this section, a non-negative (Gt)-adapted process (λt) is called
a (Gt)-martingale intensity process of the random time τ if M̃t := Xt −

∫ t∧τ
0 λsds is

a (Gt)-martingale.

In reduced-form credit risk models, (λt) is usually called the default intensity of the
default time τ . This martingale intensity is uniquely defined on {t < τ}.

We can also model doubly stochastic random times through a factor model with
hazard rate λt = h (Ψt) (under a risk-neutral measure Q). Here (Ψ) is some d-
dimensional process representing economic factors, which is adapted to the back-
ground filtration (Ft); h is a function from Rd to R+.

The risk-neutral default probability of a corporation can be estimated from credit-
spread data for bonds issued by that corporation. Market quotes for CDS spreads
can also be used to infer risk-neutral default probabilities.
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Martingale Modelling

In a complete market, the only thing that matters for the pricing of derivative
securities is the Q-dynamics of the traded underlying assets. When building a model
for pricing derivatives it is therefore a natural shortcut to model the objects of
interest - such as interest rates, default times and the price processes of traded
bonds - directly under some exogenously specified measure Q. This approach is
called martingale modelling.

Denoting by B (t) > 0 the default-free savings account and by Gt the information
available to investors at time t, we have the following formula for the price at time
t ≤ T of a security whose value at T is given by the Ft-measurable random variable
H ≥ 0:

Ht = B (t)EQ
(
B (T )−1H|Gt

)
.

Martingale modelling ensures that the resulting model is arbitrage free. However, as
pointed out in [12], it has two drawbacks. First, historical information is, to a large
extent, useless in estimating model parameters, as these may change in the transition
from real-world measure to equivalent martingale measure. Second, realistic models
for pricing credit derivatives are typically incomplete, so that one cannot eliminate
all risk by dynamic hedging. In those situations one is interested in the distribution
of the remaining risk under the actual risk measure P, so martingale modelling alone
is not sufficient. In summary, the martingale-modelling approach is most suitable
in situations where the market for underlying securities is reasonably liquid.

5.7.2 Pricing with Doubly Stochastic Default Times

We will follow the application set out in [12] and consider a firm whose default
time is given by a doubly stochastic random time as per Definition 5.7.2. The eco-
nomic background filtration represents the information generated by an arbitrage-
free and complete model for non-defaultable security prices. More precisely, let
(Ω,F , (Ft) ,Q) denote a filtered probability space, where Q is the equivalent mar-
tingale measure. Prices of default-free securities such as default-free bonds are
(Ft)-adapted processes. By (rt) we denote the default-free rate of interest and

{BtT }0≤t<T<∞ = exp
(
−
∫ T
t rsds

)
the default-free discount factor.

Let τ be the default time of some company under consideration and let Xt = I{τ≤t}
be the associated default indicator process. We set Ht = σ ({Xs : s ≤ t}) and Gt =
Ft ∨ Ht; we assume that default is observable and that investors have access to
the information contained in the background process (Ft), so that the information
available to investors at time t is given by Gt.

We consider a market for credit products which is liquid enough that we may use the
martingale-modelling approach, and we use Q as the pricing measure for defaultable
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securities. Finally, we assume that, under Q, the default time τ is a doubly stochastic
random time with background filtration (Ft) and hazard-rate process (λt).

In the following theorem, whose proof is presented in [12], we show that valuation of
payments in the event of default can be reduced to a pricing problem in a default-free
security market with adjusted default-free interest rate.

Theorem 5.7.1. Suppose that, under Q, the default time τ is doubly stochastic
with background filtration (Ft) and hazard-rate process (λt). Define Rs := rs + λs.
Let H be an FT -measurable promised payment which is made at time T if there
is no default. Let Zτ denote a recovery payment at the time of default τ , and
Z = (Zt)t≥0 be an (Ft)-adapted stochastic process. Assume that the random variables

exp
(
−
∫ t
t rsds

)
×|H| and

∫ T
t |Zsλs| exp

(
−
∫ T
t Rudu

)
are all integrable with respect

to Q. Then the following identities hold:

EQ
(
exp

(
−
∫ T

t
rsds

)
I{τ>T}H|Gt

)
= I{τ>t}EQ

(
exp

(
−
∫ T

t
Rsds

)
H|Ft

)
, (5.1)

EQ
(
I{τ>t} exp

(
−
∫ τ

t
rsds

)
ZτI{τ≤T}|Gt

)
= I{τ>t}EQ

(∫ T

t
Zsλs exp

(
−
∫ s

t
Rudu

)
ds|Ft

)
.

(5.2)

Proof. The integrability conditions ensure that all conditional expectations are
well defined. We start with the pricing formula 5.1 for the vulnerable claim. Define

the FT -measurable random variable H̃ := exp
(
−
∫ T
t rsds

)
H. We obtain, using a

result in [12] on modelling under conditional expectations of additional information,
that

EQ
(
H̃I{τ>T}|Gt

)
= I{τ>t}EQ

(
exp (− (ΛT − Λt)) H̃|Ft

)
.

Using the relation ΛT −Λt =
∫ T
t λsds and the definition of H̃, we immediately obtain

that the right-hand side equals I{τ>t}EQ
(
exp

(
−
∫ T
t Rsds

)
H|Ft

)
.

Next we turn to 5.2. We obtain from Lemma 5.7.3 that

EQ
(
I{τ>t} exp

(
−
∫ τ

t
rsds

)
ZτI{τ≤T}|Gt

)
(5.3)

= I{τ>t}
EQ (I{τ>t} exp

(
−
∫ τ
t rsds

)
ZτI{τ≤T}|Ft

)
P (τ > t|Ft)

.

Now note that

P (τ ≤ t|FT ) = 1− exp

(
−
∫ t

0
λsds

)
,
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so the conditional density of τ given FT equals fτ |FT
(t) = λt exp

(
−
∫ t
0 γsds

)
. Hence

EQ
(
I{τ>t} exp

(
−
∫ τ

t
rsds

)
ZτI{τ≤T}|FT

)
=

∫ T

t
exp

(
−
∫ s

t
rudu

)
Zsλs exp

(
−
∫ s

0
λudu

)
ds

= exp

(
−
∫ t

0
λudu

)∫ T

t
Zsλs exp

(
−
∫ s

t
Rudu

)
ds.

Therefore we obtain, using iterated conditional expectations, that

EQ
(
I{τ>t} exp

(
−
∫ τ

t
rsds

)
ZτI{τ≤T}|Ft

)
= exp

(
−
∫ t

0
λudu

)
EQ
(∫ T

t
Zsλs exp

(
−
∫ s

t
Rudu

)
ds|Ft

)

the identity 5.2 follows because of 5.3.
2

5.7.3 Affine Models

We now turn our focus to ways of evaluating the conditional expectations of equa-
tions 5.1 and 5.2. In most models where default is modelled by a doubly stochas-
tic random time, (rt) and (λt) are modelled as functions of some p-dimensional
Markovian state variable process (Ψt) with state price given by the domain D ⊂
Rp. In this set-up Rt := rt + λt is of the form Rt = R (Ψt) for some function
R : D ⊆ Rp → R+, and the natural background filtration is given by (Ft) =
σ ({Ψs : s ≤ t}). Hence we have to compute conditional expectations of the form

E
(
exp

(
−
∫ T
t R (Ψs) ds

)
g (ΨT ) |Ft

)
for a generic g : D ⊂ Rp → R+. Since (Ψt) is

a Markov process, this conditional expectation is given by some function f (t,Ψt)
of time and current value Ψt of the state variable process.

Defining the economic factor process (Ψt) is thus a crucial part of the model, and
one given a fair amount of attention in the literature. Where it is assumed that (Ψt)
is given by a one-dimensional diffusion process, it is the unique solution of the SDE

dΨt = µ (Ψt) dt+ σ (Ψt) dWt, Ψ0 = ψ ∈ D, (5.4)

with the state space given by the domain D ⊂ R. Here (Wt) is a standard, one-
dimensional Brownian motion on some filtered probability space (Ω,F ,P, (Ft)), and
µ and σ are continuous functions from D to R, respectively R+.
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Another very popular affine model is the square-root diffusion model proposed by [6]
as a model of the short rate of interest. In this model (Ψt) is given by the solution
of the SDE

dΨt = κ
(
θ̄ −Ψt

)
dt+ σ

√
ΨtdWt, Ψ0 = ψ > 0

for parameters κ, θ̄, σ > 0 and state space D = [0,∞). Here (Ψt) is a mean reverting
process: if Ψt deviates from the mean-reversion level θ̄, the process is pulled back
towards θ̄. Moreover, if the mean reversion is sufficiently strong relative to the
volatility, the trajectories never reach zero.

We also briefly discuss an extension of the basic model 5.4, where the economic
factor process (Ψt) follows a diffusion with jumps. Adding jumps to the dynamics
of (Ψt) is considered consistent with phenomena observed in practice, in addition to
which it provides more flexibility for modelling default correlations in models with
conditionally independent defaults. Here we assume that (Ψt) is the unique solution
of the SDE

dΨt = µ (Ψt) dt+ σ (Ψt) dWt + dZt, Ψ0 = ψ ∈ D. (5.5)

The process (Zt) is a pure jump process whose jump intensity at time t is equal to
λZ (Ψt) for some function λZ : D → R+ and whose jump-size distribution has degrees
of freedom v on R. Intuitively this means that given the trajectory (Ψt (ω))t≥0 of the
factor process, (Zt) jumps at the jump times of an inhomogeneous Poisson process
with time-varying intensity λZ (t,Ψt); the size of the jumps has degrees of freedom
v.

We look at the example of a jump-diffusion model for CDO pricing given in [9].
There the dynamics of (Ψt) are given by

dΨt = κ
(
θ̄ −Ψt

)
dt+ σ

√
ΨtDWt + dZt, (5.6)

for parameters κ, θ̄, σ > 0. The jump process (Zt) has a constant jump intensity
greater than zero and exponentially distributed jump sizes with parameter 1/µ.
Following [9], this model is sometimes called a basic affine jump diffusion model.
Note that these assumptions imply that the mean v is equal to µ and that v has
support [0,∞), so that (Ψt) has only upward jumps. Hence the existence of a
solution to 5.6 follows from the existence of solutions in the pure diffusion case.

5.7.4 Conditionally Independent Defaults

Introduction

The simplest reduced-form models for portfolio credit risk are models with condi-
tionally independent defaults. In this class default times are independent given the
realization of some observable economic background process, much like the factor
models discussed earlier in this chapter as well as in Chapter 4. These models are
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also essentially an extension of the static Bernoulli mixture models introduced earlier
in this chapter.

Throughout our analysis we restrict ourselves to models without simultaneous de-
faults. As we are working with continuous-time models, this assumption is realistic.

As in the previous sections (Ft) represents our background filtration, typically gen-
erated by some observable process (Ψt) representing economic factors. Moreover,
we introduce the filtrations {Hi

t}, 1 ≤ i ≤ n, (Ht) and (Gt) by

Hi
t = σ ({Xs,i : s ≤ t}) ,Ht = Hi

t ∨ · · · ∨ Hn
t and Gt = Ft ∨Ht.

Here {Hi
t} is the filtration generated by default observation for obligor i alone; (Ht)

is the filtration generated by default observation for all the obligors; (Gt) contains
default information for all the obligors and observable background information and
thus represents the information available to investors at time t. Often (Ht) is called
the internal filtration generated by the default times τi, 1 ≤ i ≤ n.

Conditionally Independent Default Times

Although we have already been using the term, let us now formalize the definition
of conditionally independent default times, as laid out in [12].

Definition 5.7.3. Given a probability space (Ω,F ,P) with background filtration (Ft)
and random default times τ1, . . . , τn, the τi are conditionally independent doubly
stochastic random times if

• each of the τi is a doubly stochastic random time with background filtration
(Ft) and (Ft)-conditional hazard-rate process (λt,i); and

• the random variables τ1, . . . , τn are conditionally independent given F∞, i.e.
we have, for all t1, . . . , tn > 0

P (τ1 ≤ t1, . . . , τn ≤ tn|F∞) =

n∏
i=1

P (τi ≤ ti|F∞) .

The following lemma, stated without proof in [12], gives properties of the first default
time T1.

Lemma 5.7.4. Let τ1, . . . , τn be conditionally independent doubly stochastic random
times with hazard-rate processes (λt,1) , . . . , (λt,n). Then T1 is a doubly stochastic
random time with (Ft)-conditional hazard-rate process λ̄t :=

∑n
i=1 λt,1, t ≥ 0.

Note that we have already seen this concept while we were studying the pure death
process as the continuous analogue of the mixture binomial model. However, here
we have more flexibility due to the fact that hazard rates are not required to be
identical.



Chapter 5 §5.7 Reduced-Form Credit Risk Models 83

The following proposition shows that, for conditionally independent defaults, mar-
tingale intensities and hazard rates coincide.

Proposition 5.7.3. Let τ1, . . . τn be conditionally independent doubly stochastic ran-
dom times with hazard rate processes (λt,1) , . . . , (λt,n). Then the process M̃t,i :=

Xt,i−
∫ t∧τi
0 λs,ids is a (Gt)-martingale, with (Gt) representing the information avail-

able to investors at time t.

Suppose that τ1, . . . , τn are conditionally independent doubly stochastic random
times. Consider a single-name credit product with maturity T whose pay-off H
depends only on the default history of firm i and on the evolution of default-free
security prices. This product is thus Gi

T -measurable. A typical example is a vul-
nerable claim of the form H = I{τi>T}V for an FT -measurable random variable V .
The conditional independence of τi and τj for i ̸= j means that default information
of obligor j ̸= i is of no use in predicting the default of obligor i. This enable us to
say that

EQ
(
exp

(
−
∫ T

t
rsds

)
H|Gi

t

)
= EQ

(
exp

(
−
∫ T

t
rsds

)
H|Gt

)
, t ≤ T,

where (rt) is the Ft-adapted default-free short rate. Hence pricing formulas for
single-name credit products obtained in a single-firm model with doubly stochastic
default time remain valid in a portfolio model with conditionally independent default
times. If we go beyond conditional independence this is no longer true.

In most models with conditionally independent defaults, hazard rates are modelled
as linear combinations of independent affine diffusions, possibly with jumps. A
typical model is as follows:

λt,i = λi0 +

p∑
j=1

λijΨ
syst
t,j +Ψid

t,i, 1 ≤ i ≤ n. (5.7)

Here
(
Ψsyst

t,j

)
, 1 ≤ j ≤ p, and

(
Ψid

t,i

)
, 1 ≤ i ≤ n, are basic affine jump diffusions as

in 5.5. The factor weights λij , 0 ≤ j ≤ p, are non-negative constants. Obviously,(
Ψsyst

t

)
represents the common or systematic factors, whereas

(
Ψid

t,i

)
is an idiosyn-

cratic factor process affecting only the hazard rate of obligor i. Note that the weight
of the idiosyncratic factor can be incorporated into the parameters of the dynamics
of
(
Ψid

t

)
, so we do not need an extra factor weight. Throughout this section we as-

sume that the background filtration is generated by
(
Ψsyst

t

)
and

(
Ψid

t,i

)
, 1 ≤ i ≤ n.

In practical applications of the model, the current value of these processes is derived
from observed prices of defaultable bonds.

However, it is often claimed that the default correlation values (i.e. Pearson corre-
lation coefficient) which can be attained in models with conditionally independent
defaults are too low compared with empirical default correlations.
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An Application of Conditionally Independent Default Times to First-to-
Default Swaps

Finally, as an application we review an example in [12] which involves the pricing
of first-to-default swaps in models with conditionally independent defaults. We
consider a portfolio of n firms. Premium payments on the swap are due at N points
in time 0 < t1 < . . . < tN =: T . Provided that the time of first default T1 > ti,
the premium at time ti is of the form p (ti − ti−1) for some spread p; at T1 premium
payments stop. For simplicity we neglect accrued premium payments at time of
default. The default payment occurs at time T1 provided T1 < T .

We assume that the payment depends on the identity ξ1 of the first defaulting
firm, where ξm ∈ {1, . . . , n} denotes the identity of the m-th firm to default, but is
otherwise deterministic. In other words, there are constants l1, . . . , ln such that the
default payment is equal to li if T1 < T and ξ1 = i. As usual, the fair spread p̃ of the
swap is the value of p such that at t = 0 the default payment leg and the premium
payment leg have the same value.

Since, in practice, first-to-default swaps are always priced relative to traded single-
name CDSs, it is natural to adopt the martingale-modelling approach. We assume
that under the equivalent martingale measureQ the default times τi are conditionally
independent doubly stochastic random times with hazard rates of the form 5.7.
Further, the risk-free short rate (rt) is also assumed to be of the form 5.7. In this
set-up, for generic swap spread p the value of the premium payment equals

V prem =
N∑
i=1

EQ
(
exp

(
−
∫ ti

0
rsds

)
I{T1>ti}

)
p (ti − ti−1) .

Using Theorem 5.7.1 and Lemma 5.7.4 we get

EQ
(
exp

(
−
∫ tn

0
rsds

)
I{T1>tn}

)
= EQ

(
exp

(
−
∫ tn

0

(
rs +

n∑
i=1

λs,i

)
ds

))
.

For hazard rates and a risk-free short rate of the form 5.7 this can be expressed as

a product of expectations of the form EQ
(
exp

(
−c
∫ ti
0 Ψsds

))
for some constant c

and a one-dimensional affine jump diffusion (Ψt). So the premium payments can be
computed using the methods developed for the affine models.

Next we turn to the default payments. We have

V def =
n∑

i=1

liEQ
(
exp

(
−
∫ T1

0
rsds

)
I{T1≤T}I{ξ1=i}

)
.

We begin by computing

EQ
(
exp

(
−
∫ T1

0
rsds

)
I{T1≤T}I{ξ1=i}|F∞

)
.
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Conditioning on T1 we obtain that this equals∫ T

0
exp

(
−
∫ t

0
r (s) ds

)
Q (ξ1 = i|T1 = t,F∞) fQT1|F∞

(t) dt, (5.8)

where fQT1|F∞
(t) is the Q-density of T1 given F∞. By Lemma 5.7.4 we know that

fQT1|F∞
(t) = λ̄ (t) exp

(
−
∫ t

0
λ̄ (t) ds

)
.

Moreover, it can be shown that

Q (ξ1 = i|T1 = t,F∞) = λi (t) /λ̄ (t) .

Hence 5.8 equals
∫ T
0 λi (t) exp

(
−
∫ t
0

(
r (s) + λ̄ (s)

)
ds
)
dt. To compute the value of

V def we thus have to compute EQ
(∫ T

0 λt,i exp
(
−
∫ t
0 rs + λ̄sds

)
dt
)
. If the default

payments li are all identical, the first-to-default swap can be priced like a single-
name CDS, with the hazard rate of the default time given by

(
λ̄t
)
; this follows

immediately from Lemma 5.7.4.

In certain special cases higher-order default swaps can be evaluated analytically.
However, in most cases that are practically relevant one has to use Monte Carlo
simulation.

5.7.5 Default Contagion in Reduced-Form Models

Default Contagion and Default Dependence

A more sophisticated model for dependent defaults includes models with interacting
intensities. A common feature of these models is the presence of a default contagion,
where the conditional default probability of a non-defaulted firms jump (usually
upwards) given the additional information that some other firm has defaulted. This
would happen through the jumps in their default intensities at the default times of
other firms in the portfolio. Modelling default contagion might help to explain the
clustering of defaults around economic recessions.

Let us denote the ordered default times by T0 < T1 < · · · < Tn, where T0 = 0 and
Tm = min{τi : τi > Tm−1, 1 ≤ i ≤ n} for 1 ≤ m ≤ n. The identity of the firm
defaulting at time is denoted by Tm, where ξm ∈ {1, . . . , n}. We can then set

Am = {1 ≤ i ≤ n : Xi (Tm) = 0} = {1, . . . , n}\{ξ1, . . . , ξm}

to represent the set of non-defaulted firms immediately after time Tm.

Martingale intensities. We start with a general result which characterizes the mar-
tingale default intensities of dependent default times. In specifying the filtration
we use, we assume that investors only have access to the default history of firms
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in the portfolio under consideration, i.e. we are interested in martingale proper-
ties with respect to the internal filtration (Ht). Note that Ht can be described as
Ht = σ ({(TN , ξN ) : 1 ≤ j ≤ N}), with ξi, 1 ≤ i ≤ n being the identity of the i-th to
default firm. This coincides with the general abstract definition of the σ-algebra of
events observable up to some stopping time.

The following theorem on the martingale default intensities is given without proof
in [12]:

Theorem 5.7.2. Consider default times τ1, . . . , τn and denote by (Ht) the corre-
sponding internal filtration. Suppose that for every 0 ≤ m ≤ n − 1 and every

i ∈ {1, . . . , n} there is a random mapping g
(m)
i : Ω × R+ → R+ measurable with

respect to the σ-algebra HTm ⊗ B (R+), such that

P (Tm+1 − Tm ≤ s, ξm+1 = i|HTm) (ω) =

∫ s

0
g
(m)
i (ω, u) du, 1 ≤ i ≤ n.

Then the martingale default intensity of default indicator (Xt,i) with respect to (Ht)
is given by

λt,i (ω) =
g
(m)
i (ω, t− Tm)

P (Tm+1 > t|Htm) (ω)
, tm < t ≤ Tm+1. (5.9)

The form 5.9 for the martingale intensity is quite natural. If investors observe only
past and present defaults, they obtain significant new information only at time points
T1 (ω) , . . . , Tm (ω). Hence we expect the martingale default intensity (λt,i) of some
firm i ∈ Am (a surviving firm) to evolve in a deterministic fashion for t ∈ (Tm, Tm+1]
and to change with the random arrival of new information at Tm+1.

We need to note that in general the marginal hazard rates λi (t) ̸= λt,i, t > 0, where

λi (t) = lim
h→0

1

h
P (τi ≤ t+ h|τi > t) .

Hence λt (t) gives the instantaneous default probability of firm i given τi > t, whereas
λt,i gives the instantaneous default probability given τi > t and the default history
of all other firms in the portfolio. With (conditionally) independent defaults on
the other hand, the additional information about the default history of firms j ̸= i
in the portfolio is of no use in predicting the default time of firm i, and we have
λt,i = λi (t).

Conditional survival functions. Let Tm ≤ t < Tm+1 for some 0 ≤ m ≤ n − 1. We
would like to compute the conditional survival function Sτi|Ht

for some firm i ∈ Am.
To simplify the notation we assume from now on that the indices have been permuted
in such a way that Ac

m = {1, . . . ,m} and Am = {m + 1, . . . , n}, i.e. the defaulted
firms correspond to the first m firms in our index set. Put τ̃1 = (τ1, . . . , τm)′ and
τ̃2 = (τm+1, . . . , τn)

′. As an intermediate step we consider Sτ̃2|τ̃1 (t1, . . . , tn−m|τ̃1),
the conditional survival function of the last n − m firms given the vector of the
default times of the first m firms.

We have the following lemma, whose proof is given in [12].



Chapter 5 §5.7 Reduced-Form Credit Risk Models 87

Lemma 5.7.5. Assume that the vector (τ1, . . . , τn) has a density. Then

Sτ̃2|τ̃1 (t1, . . . , tn−m|τ1, . . . , τm) =
∂m

∂t1...∂tm
S (τ1, . . . , τm, t1, . . . , tn−m)

∂m

∂t1...∂tm
S (τ1, . . . , τm, 0, . . . , 0)

.

Finally, we turn to the conditional survival function Sτi|Ht
. At time t default infor-

mation consists of the vector τ̃1 of the default times of the firms from Ac
m and of

the atom B := {τ̃2 > t}. Hence we have, for i ∈ {m + 1, . . . , n} and T ≥ t, using
Lemma 5.7.5, that

Sτi|Ht
(T ) = P (τi > T |B, τ̃1)

=
P (τi > T, τ̃2 > t|τ̃1)

P (τ̃2 > t|τ̃1)

=
∂m

∂t1...∂tm
S (τ1, . . . , τm, t, . . . , T, . . . , t)

∂m

∂t1...∂tm
S (τ1, . . . , τm, t, · · · , t . . . , t)

.

Application of Default Contagion to Pricing a First-to-Default Swap

Our example will follow the one laid out in [12]. In line with the common approach
we assume that the risk-free short rate r (t) ≥ 0 is deterministic. Again B (t) =

exp
(∫ t

0 r (s) ds
)

denotes the default-free savings account. Premiums are due at

times 0 < t1 < . . . < tN = T , provided that no default has yet occurred. If T1 < T
and, specifically if ξ1 = i, there is a default payment equal to the constant li. In this
set-up the value at time t = 0 of the default payment leg, paid by the CDS seller,
equals

V def =

n∑
i=1

liEQ
(
B (τi)

−1 I{τi=T1}I{τi≤T}

)
.

If we condition on the time to i-th default τi, we get, for each term of this sum,

EQ
(
B (τi)

−1 I{T1=τi}I{τi≤T}

)
=

∫ T

0
B (t)−1Q (τi = T1|τi = t) fi (t) dt,

where fi (t) is the marginal density of τi. Now Lemma 5.7.5 yields

Q (τi = T1|τi = t) = Q (τj > t for all j ̸= i|τi = t) = − 1

fi (t)

∂S

∂ti
(t, . . . , t) ,

from which we obtain

V def = −
n∑

i=1

li

∫ T

0
B (t)−1 ∂S

∂ti
(t, . . . , t) dt.
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Note that, by definition, Q (T1 > t) = S (ti, . . . , ti); hence the value at t = 0 of the
premium payments (assuming a generic swap spread p) is given by

V prem = p

N∑
i=1

B (ti)
−1 (ti − ti−1)S (ti, . . . ti) .

Default Contagion and Interacting Intensities

In copula models the dependence structure of the default times is exogenously spec-
ified; the form of the resulting default contagion can then be deduced from the
model. In models with interacting intensities, on the other hand, the impact of de-
faults on the default intensities of surviving firms is exogenously specified; the joint
distribution of the default times is then endogenously derived. The main drawback
of models with interacting intensities is the fact that the marginal distribution of
individual default times is typically not available in closed form.

In models with interacting intensities the martingale default intensity of firm i be-
longing to a given portfolio is given by an exogenously specified function λi (t,Yt) of
time and the current state Yt of the portfolio. The dependence on the current state
of the portfolio is the major innovation of the model; in this way the counterparty
credit risk can be modelled explicitly. It is straightforward to extend the model to
stochastic default intensities of the form λi (Ψt,Yt) for some observable background
process (Ψt).

It is convenient to model the default indicator process (Xt) in a model with inter-
acting intensities as a time-inhomogeneous continuous-time Markov chain.

Continuous-time Markov chains. A time-inhomogeneous continuous-time Markov
chain (Yt) on a finite space S is characterized by non-negative and bounded transi-
tion rate functions λ (t,y,x), x, y ∈ S, x ̸= y, t ≥ 0, with the following interpreta-
tion. Fix t ≥ 0 and let T := inf{s ≥ t : Ys ̸= Yt}, i.e. T gives the time of the first
jump of the chain after time t. Define, for y ∈ S,

λ (t,y,y) := −
∑

x∈S,x̸=y

λ (t,y,x) , t ≥ 0,

and denote by Ht := σ ({Ys : s ≤ t}) the internal filtration of the chain. Then

P (T > s|Ht) = P (T > s|Yt) = exp

(∫ s

t
λ (u,Yt,Yt) du

)
, s ≥ t.

In the special case of a time-homogeneous Markov chain where the transition rate
functions are independent of time, givenHt, the random variable (T − t) (the waiting
time for the next jump after time t) is thus Exp (−λ (Yt,Yt)) distributed.

Construction of interacting intensities via Markov chains. Now we turn to the formal
construction of models with interacting intensities. Set S := {0, 1}n and define, for
x ∈ S and i ∈ {1, . . . , n}, the state xi by xij = xj for j ∈ {1, . . . , n}\i and xii = 1−xi,



Chapter 5 §5.7 Reduced-Form Credit Risk Models 89

i.e. xi is constructed from x by flipping the ith coordinate. Given non-negative and
bounded functions λi : [0,∞) × S → R+, for 1 ≤ i ≤ n, we define the default
indicator process (Xt) as a time-inhomogeneous continuous-time Markov chain with
state space S and transition rates

λ (t,x,y) =

{
I{xi=0}λi (t,x) , if y = xi for some i ∈ {1, . . . , n},
0, otherwise.

The above relation implies that the chain can jump only to those neighbouring states
Xi

t that differ from the current state Xt by exactly one default. There are no joint
defaults. If Xi

t = 0, the probability that firm i defaults in the small time interval
[t, t+ h), i.e. the probability of jumping to the neighbouring state Xi

t in [t, t+ h),
is approximately equal to hλi (t,Xt).

The definition of (Xt) suggests that (λi (t,Xt)) is the martingale default intensity
of firm i. The transition probabilities of the chain (Xt) are given by

p (t, s,x,y) := P (Xs = y|Xt = x) ,x,y ∈ S, 0 ≤ t ≤ s <∞.

Models for the default intensities. The functions λi (t,x) are an essential ingredient
in any model with interacting intensities. We look at several specifications proposed
in the literature, such as [20], that study a model with stochastic background pro-
cess (Ψt), but with a restriction to special form of interacting intensities called the
primary-secondary framework. This concept is along similar principles to those in
the contagion models that we have examined earlier in the chapter.

In this framework firms are divided into two classes: primary and secondary. The
default intensity of primary firms depends only on (Ψt); the default intensity of
secondary firms depends on (Ψt) and on the default state of the primary firms. This
simplifying assumption facilitates the mathematical analysis of the model.

Here is a specific example from the paper with n = 2. The background process (Ψt)
is the short rate of interest (rt). The default intensities are then given by

λ1 (rt,Xt) = a10 + a11rt and λ2 (rt,Xt) = a20 + a21rt + a22I{Xt,1=1},

so company one is a primary firm and company two is a secondary firm. However,
under the primary-secondary framework, cyclical default dependence, such as a sit-
uation where the default intensity of firm i is affected by the default of firm j ̸= i,
and vice versa, cannot be modeled.

Similarly, [34] sets out a model where the whole portfolio enters an “enhanced risk
state” after the first default. Default intensities of the form

λi (t,Xt) = a0 + a1I{X ̸=0}, i ∈ {1, . . . , n}, a0, a1 > 0

are used. Hence, at the first default time T1, the default intensities of the surviving
firms jump from a0 to a0 + a1. The assumption of identical default intensities
for all firms implies that the portfolio is homogeneous, i.e. that the default times
(τ1, . . . , τn) are exchangeable.
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5.8 Information-Based Approaches Using Brownian Bridges

5.8.1 Some More Mathematical Concepts

In the above sections we have already seen the background information processes
being explicitly specified. In [2] the credit risk model is build around the market
filtration modelling. This is the paper that we will review in this section.

The background information process is assumed to be generated by one or more
independent market information processes. Each such information process carries
partial information about the values of the market factors that determine future
cashflows.

This framework satisfies an overall dynamic consistency condition that makes it
suitable as a basis for practical modelling situations where frequent recalibration
may be necessary.

Here, the reduced-form credit risk models were taken as a starting point. However,
in [2] it was recognised that crucial information is lost with the use of these models.
Namely, they do not adequately take into account the fact that defaults are typically
associated directly with a failure in the delivery of a contractually agreed cash flow.
Reduced-form models also do not allow for the modelling of the rise and fall of credit
spreads.

The key assumption made about cashflows of the underlying instruments is that
partial information about each such cashflow is available to market participants at
earlier times. However, a Gaussian noise process, conditioned to vanish at the time
of the required cashflow, is disguising this information.

We specify the probability space (Ω,F ,Q) with filtration {Ft}0≤t<∞. The prob-
ability measure Q is the risk-neutral measure, and {Ft} is market filtration. All
asset-price processes and other information-providing processes accessible to market
participants are adapted to {Ft}.

Absence of arbitrage is assumed as well as the existence of a pricing kernel, which
ensure the existence of a unique risk-neutral measure, even though the market may
be incomplete. Again we use the default-free discount bond system in its general

form {BtT }0≤t<T<∞ = exp
(
−
∫ T
t rsds

)
. It follows that if the integrable random

variable HT represents a cash flow occurring at T , then its value Ht at any earlier
time t is given by

Ht = BtTE [HT |Ft] .

Of course, being a random variable, the true value of HT is not known until time T ;
that is, HT is FT -measurable, but not Ft-measurable for t < T . However we assume
that partial information regarding the value of HT is available at earlier times. This
information will in general be imperfect. The paper assumes the following form for
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the {Ft}-adapted process:

ξt = σHT t+ βtT .

The process {ξt} is referred to as amarket information process. The process {βtT }0≤t≤T

is a standard Brownian bridge on the time interval [0, T ]. This means that it is a
Gaussian process satisfying β0T = 0 and βTT = 0. In addition E [βtT ] = 0 and
E [βsTβtT ] = s (T − t) /T for all s, t satisfying 0 ≤ s ≤ t ≤ T . It is also assumed
that {βtT } is independent of HT , and thus represents pure noise. Market partici-
pants do not have direct access to {βtT }; that is to say {βtT } is not assumed to be
adapted to {Ft}.

The motivation for the use of a bridge process to represent the noise is laid out
as follows. It is assumed that initially all available market information is taken
into account in the determination of the price; which includes a priori probabilities
of any credit events. As time passes the variance of the Brownian bridge steadily
increases for the first half of its trajectory, reflecting uncertainty increasing about
the final outcome. Eventually, however, the variance falls to zero at the maturity of
the underlying, as its true value is revealed.

The parameter σ in this model represents the rate at which the true value of HT is
revealed. Thus, if σ is low the market information process comprises a lot of noise
until close to the maturity of the asset; on the other hand, if σ is high true infor-
mation about HT is revealed quickly. This enables the use of inaccessible stopping
times to be avoided.

The paper assumes that the only market information available about HT at times
earlier than T comes from observations of {ξt}. Specifically, if we denote by Fξ

t the
subalgebra of Ft generated by {ξs}0≤s≤t, then the simplifying assumption made is

that {Ft} = {Fξ
t }.

Our aim is to determine the price-process {StT }0≤t≤T for a credit-risky asset with
payout HT , i.e.

StT = BtTHtT ,

where HtT denotes the conditional expectation of the asset payout:

HtT = E
[
HT |Fξ

t

]
.

5.8.2 Baskets of Credit-Risky Bonds

The first application we will examine is that of a basket of correlated bonds with
various maturities. For simplification a set of digital bonds is considered and the
notation of the bonds will be labelled in chronological order with respect to maturity.
So HT1 denotes the payoff of the bond that expires first; HT2 (T2 ≥ T1) the payoff
of the bond that matures after T1; and so on.
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The paper proposes to model this set of dependent random variables in terms of
an underlying set of independent market factors. To achieve this let X denote the
random variable associated with the payoff of the first bond: HT1 = X. The random
variableX takes on the values {1, 0} with a priori probabilities {p, 1−p}. The payoff
of the second bond HT2 can then be represented in terms of three independent
random variables: HT2 = XX1 + (1 −X)X0. Here X0 takes the values {1, 0} with
the probabilities {p0, 1 − p0}, and X1 takes the values {1, 0} with the probabilities
{p1, 1− p1}.

Since these random variables are independent, the a priori probability that the
second bond does not default is p0+p (p1 − p0). To represent the payoff of the third
bond four additional independent random variables need to be introduced:

HT3 = XX1X11 +X (1−X1)X10 + (1−X)X0X01 + (1−X) (1−X0)X00.

The market factors {Xij}i,j=0,1 here take the values {0, 1} with probabilities {pij , 1−
pij}.

Extending the above representation, the payoff expression for a generic bond in the
basket is:

HTn+1 =
∑

{kj}=1,0

Xω(k1)X
ω(k2)
k1

X
ω(k3)
k1k2

· · ·Xω(kn)
k1k2...kn−1

Xk1k2...kn−1kn .

Here, for any random variable X we define Xω(0) = 1−X and Xω(1) = X.

In general, if we have a basket of n digital bonds with arbitrary a priori default
probabilities and correlations, we can introduce 2n − 1 independent digital random
variables to represent the n correlated random variables associated with bond payoff.

One advantage of the decomposition into independent market factors is that the
analytical tractability for pricing of the basket is retained. We have already seen a
variation of this type of modelling in the contagion models with infection variables,
earlier in the chapter. The idea is also not dissimilar to the concept of shocks used
in the Marshall-Olkin copulas.

We also have 2n−1 independent Brownian bridges to represent the noise associated
with the independent market factors:

ξk1k2...knt = σk1k2...knXk1k2...knt+ βk1k2...kntTn+1
.

The number of independent factors grows rapidly with the number of bonds in the
portfolio. As a consequence, a market that consists of correlated bonds is in general
highly incomplete. This fact provides an economic justification for the creation of
products such as CDSs and CDOs that enhance the “hedgeability” of such portfolios.

A possible approach to contain the number of independent factors required in this
model is to apply some level of nesting, where bonds with similar features are
grouped together. The model can then be applied at multiple levels, along the
same principles as the nested Archimedean copulas we investigated in an earlier
chapter.
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5.8.3 Homogeneous Baskets

The number of independent factors can be reduced for homogeneous baskets of
digital bonds, where each bond matures at time T . Our goal is to model default
correlations in the portfolio, and in particular to model the flow of market informa-
tion concerning default correlation. Let us write HT for the payoff at time T of this
homogeneous portfolio, and set

HT = n−X1 −X1X2 −X1X2X3 − · · · −X1X2 . . . Xn,

where the random variables {Xj}j=1,2,...,n, each taking the values {0, 1}, are assumed
to be independent. Thus if X1 = 0, then HT = n; if X1 = 1 and X2 = 0, then
HT = n− 1; if X1 = 1, X2 = 1, and X3 = 0, then HT = n− 2; and so on. If we use
the notation pj = Q(Xj = 1) and qj = Q(Xj = 0) for j = 1, 2, . . . , n, then we can
see that Q(HT = n) = q1, Q(HT = n− 1) = p1q2, Q(HT = n− 2) = p1p2q3 and so
on.

Resulting from this setting, we can see that if p1 << 1 but p2, p3, . . . , pk are large,
then our environment is that of low default probability and high default correlation;
in other words the probability of a default occurring in the portfolio is small, but
conditional on at least one default occurring, the probability of several defaults is
high.

We again introduce a set of independent information processes {ηjt } defined by

ηjt = σjXjt+ βjtT ,

where {σj}j=1,2,...,n are parameters, and {βjtT }j=1,2,...,n are independent Brownian
bridges. The market filtration {Ft} is generated collectively by {ηj}j=1,2,...,n, and
for the portfolio value HT = BtTE [HT |Ft] we have

HtT = BtT [n− Et [X1]− Et [X1]Et [Xn]− · · · − Et [X1]Et [X2] . . .Et [Xn]] . (5.10)

Each of the conditional expectations appearing here for Xj , j = 1, . . . , n, taking the
values {0, 1}, can be calculated as follows:

Q
(
Xj = xi|ηjt

)
=

piρ (ηt|Xj = xi)∑
i piρ (ηt|Xj = xi)

,

where the conditional density function ρ (η|Xj = xi), η ∈ R, for the random variable
ηt is defined by the relation

Q (ηt ≤ x|Xj = xi) =

∫ x

−∞
ρ (η|Xj = xi) dη.

We then use the fact that conditional on Xj = xi the random variable ηt is normally
distributed with mean σxit and variance t (T − t) /T to obtain

ρ (η|Xj = xi) =
1√

2πt (T − t) /T
exp

(
−1

2

(η − σxit)
2

t (T − t) /T

)
.
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This then leads to

Q
(
Xj = xi|ηjt

)
=

pi exp
[

T
T−t

(
σxiηt − 1

2σ
2x2i t

)]
∑

i pi exp
[

T
T−t

(
σxiηt − 1

2σ
2x2i t

)] ,
which can then be directly used in the expectations of equation 5.10.

The resulting dynamics for {Ht} can then be used to describe the evolution of
correlations in the portfolio. For example, if Et [X1] is low and Et [X2] is high, then
the conditional probability at time t of a default at time T is small; whereas if Et [X1]
were to increase suddenly, then the conditional probability of two or more defaults
at time T would rise as a consequence.

5.9 Gamma Information Processes and Modelling Cu-
mulative Losses

5.9.1 Introduction

We now look at a variation of the above concept of modelling losses in the framework
of information processes. We will examine the model in [1], where the accumulation
processes are modelled using Gamma bridges.

As usual, the time period [0, T ] is fixed. At time T a contract pays a random
cashflow HT , which is assumed to be positive and represents the terminal value
of some accumulation process. The value process for HT at 0 ≤ t ≤ T is given
by {St}, and the filtration representing the flow of information available to market
participants is represented by {Ft}. The pricing measure is Q. Then the expression
for the value process is

St = BtTE [HT |Ft] .

It is assumed that {Ft} is generated by an aggregate claims process {ξt}, where for
each t the variable ξt represents the totality of claims known at t to be payable at
T . The paper assumes that {ξt} takes the form

ξt = HTγtT , (5.11)

where {γtT } is a gamma bridge over [0, T ], independent of HT . The claims process
can thus be decomposed into the “signal” HT and an independent “noise” {γtT }.
This product representation of the gamma information process can be considered
natural, since many properties of the Brownian bridge that hold additively have
multiplicative analogues for gamma bridges. We will formally introduce the gamma
bridge process in the next two sections.
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5.9.2 Gamma Processes and Associated Martingales

We fix a probability space (Ω,F ,Q), where Q is the risk-neutral measure. By a
standard gamma process {γt}0≤t<∞ on (Ω,F ,Q) with growth rate m (which has
units of inverse time), we mean a process with independent increments such that
γ0 = 0, and such that the random variable γt has a gamma distribution with mean
and variance mt. In other words, writing Q[γt ∈ dx] = g(x)dx, the density of γt is

g(x) = 1{x>0}
xmt−1e−x

Γ [mt]
.

Here Γ [a] =
∫∞
0 xa−1e−xdx is the gamma function. Using the well-known identity

Γ [a+ 1] = aΓ [a], we obtain E [γt] = mt, justifying the interpretation of m as the
mean growth rate.

It can be also shown that var [γt] = mt, and from the independent increments
property it follows that cov [γt, γu] = mt for u ≥ t. Also, γu−γt is gamma distributed
with parameterm (u− t). This implies that the increments of {γt} have a stationary
probability law in the sense that γu+h − γt+h has the same distribution as γu − γt.
In addition, {γt −mt} and {(γt −mt)2 −mt} are martingales.

To add flexibility to the gamma processes, the paper introduces the “scaled” gamma
processes with a separate parameter for growth rate µ and spread σ. This is a
process {Γt}0≤t<∞ with independent increments such that Γ0 = 0 and such that Γt

has a gamma distribution with mean µt and variance σ2t. Defining m = µ2/σ2 and
κ = σ2/µ, we have µ = κm and σ2 = κ2m. One can think of m as a “standardized
growth rate”, and κ as a scale. The density of Γt is given by

Q [Γt ∈ dx] = 1{x>0}
κ−mtxmt−1e−x/κ

Γ [mt]
dx. (5.12)

If {Γt} is a scaled gamma process with standardized growth rate m and scale κ,
then {κ−1Γt} is a gamma process with growth rate m.

5.9.3 Properties of a Gamma Bridge Process

Let {γt}0≤t<∞ be a standard gamma process with growth rate m, and for fixed time
horizon T define the process {γtT }0≤t<T by setting γtT = γt/γT . Obviously γ0T = 0
and γTT = 1. The process {γtT } is referred to as the standard gamma bridge over
[0, T ] associated with {γt}. It can be shown that the random variable γtT has a beta
distribution, i.e. if Q [γtT ∈ dy] = f(y)dy then

f(y) = 1{0<y<1}
ymt−1 (1− y)m(T−t)−1

B [mt,m (T − t)]
,

where B [a, b] = Γ [a] Γ [b] /Γ [a+ b] =
∫ b
a y

a−1 (1− y)b−1 dy is known as the beta
function. One can deduce that E [γtT ] = t/T and that var [γtT ] = t (T − t) /T 2 (1 +mT ).
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So the expectation of γtT does not depend on the growth rate m, and the variance
of γtT decreases with increasing m.

A useful property proved in [1] is that if {γt}0≤t<∞ is a standard gamma process,
then the random variables γt/γT and γT are independent for 0 ≤ t ≤ T .

The gamma process {γt} has the Markov property, which means that for a > 0

Q [γt < a|γs, γs1 , γs2 , . . . , γsn ] = Q [γt < a|γs] ,

for all t ≥ s ≥ s1 ≥ s2 ≥ · · · ≥ sn ≥ 0 and for all n ≥ 1. By a similar argument it
can be seen that the gamma bridge is Markovian, so that

Q
[
γt
γT

< a| γs
γT
,
γs1
γT

,
γs2
γT

, · · ·
]
= Q

[
γt
γT

< a| γs
γT

]
.

5.9.4 Valuation of Aggregate Claims

The objective is to calculate the value at t of a contract that pays HT at T . It
is assumed that HT is strictly positive and integrable continuous random variable.
The value St of the contract at t ≤ T is given by St = BtTE [HT |Ft], where Ft =
σ ({ξs}0≤s≤t).

The paper shows that the aggregate claims process {ξt}0≤t≤T has the Markov prop-
erty, which means that

Q [ξt < a|Fs] = Q [ξt < a|ξs]

for all s, t such that 0 ≤ s ≤ t ≤ T . Given this and the fact that HT is FT -
measurable, the expression for St can be simplified to take the form

St = BtTE [HT |ξt] .

Applying the the distribution function of the gamma bridge, it can be seen that the
above formula amounts to

St = BtT

∫∞
ξt
p(x)x2−mT (x− ξt)

m(T−t)−1 dx∫∞
ξt
p(x)x1−mT (x− ξt)

m(T−t)−1 dx
,

where p(x) is the density of HT . The result follows by the use of the conditional
density process for HT , {πt (x)}, and the Bayes formula:

πt (x) =
p (x) ρ (ξt|HT = x)∫∞

0 p (x) ρ (ξt|HT = x) dx
,

where ρ (ξt|HT = x) is the conditional density for ξt.
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We are in a position to price a simple credit contract CtT that pays at T an amount
equal to the total loss incurred by the portfolio, in excess of some threshold K. The
expression is given by

CtT = BtT

∫ ∞

0
(x−K)+ πt (x) dx = BtT

∫∞
ξt

(x−K)+ p (x)x1−mT (x− ξt)
m(T−t)−1 dx∫∞

ξt
p (x)x1−mT (x− ξt)

m(T−t)−1 dx

for t < T and by CTT = (XT −K)+. This means that once a time t has been
reached such that ξt ≥ K, then CuT = Su − BuTK for t ≤ u ≤ T ; in other words
when a sufficient number of credit events has occurred, the option is sure to expire
in-the-money. It is straightforward to see that the pay-off function can be adjusted
to accommodate a segregation of the loss allocation into tranches, hence enabling
us to price CDOs.

5.9.5 Gamma-Distributed Terminal Gains

When the terminal aggregate loss HT is gamma distributed with mean κmT and
variance κ2mT for some κ, [1] shows that the value process {St} has a particularly
simple structure. Let {γt} be a standard gamma process with rate m and let {γtT }
be the associated bridge. Then HT and κγT have the same distribution; but since
γT and {γtT } are independent, {HTγtT } and {κγTγtT } have the same probability
law. Therefore {ξt} has the same law as {κγt} and hence is a Q-gamma process with
scale κ and standard growth rate m.

Although the Q-gamma process has independent increments, the cumulative gains
process 5.11 has dependent increments. In particular, for the covariance of ξs and
ξt − ξs in the general case we have

cov [ξs, ξt − ξs] =
ms (t− s)

T (mT + 1)
E
[
H2

T

]
− s (t− s)

T 2
(E [HT ])

2 .

Hence a necessary condition for independent increments is given by (E [HT ])
2 =

mTvar [HT ].

The value process for various claims in the Q-gamma model can be worked out
explicitly. Using the density of HT given by 5.12 and carrying out the integration,
it can be shown that the expression for the value process is:

St = BtT (ξt + κm (T − t)) .

Next we move onto working out the value of a call-type option or a CDO tranche
with a threshold K. In the Q-gamma model we have CtT = BtTE

[
(ξT −K)+ |ξt

]
,

and hence by use of the independent increments property we deduce that

CtT = BtT

∫ ∞

(K−ξt)/κ
(κz + ξt −K)

zm(T−t)−1e−z

Γ [m (T − t)]
dz

= BtT

[
κ
Γ [m (T − t) + 1, (K − ξt) /κ]

Γ [m (T − t)]
− (K − ξt)

Γ [m (T − t) , (K − ξt) /κ]

Γ [m (T − t)]

]
,
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where Γ [a, z] =
∫∞
z xa−1e−xdx denotes the incomplete gamma integral.

The paper points out that the theory put forward here can be developed further to
take into account multiple cash flows, families of interdependent assets, and filtra-
tions of greater complexity. Each asset is defined by a series of one or more cash
flows, each such cash flow being dependent on a set of one or more independent
market factors (X-factors). Each X-factor has an associated information process,
which may be of the Brownian bridge type or the gamma bridge type, or some gen-
eralization thereof; and the market filtration is taken to be generated collectively by
this set of information processes.

5.9.6 Factor Model Framework

Another recent application of the gamma processes which is gaining popularity is in
the modelling of an underlying asset value in a structural model. Here the value St
at time t is assumed to follow

St = S0 exp (−Γ (t;m,κ) + µt) ,

where Γ (t;m,κ) denotes the scaled gamma process and µ = m ln
(
1 + κ−1

)
.

The correlation between different assets in the basket is then introduced through
a factor model, where the gamma process for each asset is modelled as a combina-
tion of a common global gamma process and an independent idiosyncratic process.
The total intensity rate m is divided into the global intensity αm and the idiosyn-
cratic intensity (1− α)m, where α captures the dependence between securities. The
gamma process of the ith entity is then represented by

Γi (t) = Γg (t;αm, κ) + Γi (t; (1− α)m,κ, ) ,

where Γg (t;αm, κ) is the common global gamma process and Γi (t; (1− α)m,κ) is
the idiosyncratic gamma process.

A common simplification is to use the standard gamma process, instead of the scaled
one, in other words to set κ = 1.

Apart from desirable qualities, such as the Markovian property of the gamma pro-
cess, the source and extent of correlation is more transparent than in many other
models. We are also in the familiar, well-researched, framework of factor models.

5.10 Coupled Stochastic Differential Equations

We now revisit the multivariate distribution theory with another approach that al-
lows for heterogeneous marginals, as presented in [30]. This approach is to consider
multivariate distributions as arising naturally from coupled stochastic differential
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equations (SDEs), rather than being artificially imposed by a copula. The pa-
per considers a first step of the approach based on the equilibrium situation. The
marginals here are one of the classic Pearson family of distributions. Fokker-Planck
equations are used to associate the distributions to the corresponding SDEs.

Fokker-Planck equation describes the time evolution of a probability density function
and is also known as the Kolmogorov forward equation. In one spatial dimension x,
the Fokker-Planck equation for a process with drift µ(xt, t) and diffusion Σ(xt, t) is
defined as

∂

∂t
f (x, t) = − ∂

∂x
(µ (xt, t) f (x, t)) +

∂2

∂x2
(Σ (xt, t) f (x, t)) .

The Fokker-Planck equation can be used for computing the probability densities of
stochastic differential equations. Consider the Itô stochastic differential equation

dXt = µ (Xt, t) dt+ σ (Xt, t) dWt,

where Xt ∈ Rn is the state and Wt ∈ Rn is a standard n-dimensional Wiener
process. If the initial distribution is X0 distributed f(x, 0), then the probability
density f(x, t) of the state Xt is given by the Fokker-Planck equation with the drift
µi (x, t) and diffusion terms

Σij (x, t) =
1

2

∑
k

σik (x, t)σ
T
kj (x, t) .

In general, it is recognised that considering an approach to multivariate distributions
based on coupled SDEs is a complicated time-dependent problem.

5.10.1 The Quantilized Fokker-Planck Equation

The starting point of the approach is the univariate SDE

dxt = µ (xt, t) dt+Σ(xt, t) dWt, (5.13)

where Wt is a standard Brownian motion. Let f (x, t) denote the associated time-
dependent probability density function. The quantile function Q (u, t) associated
with this density function is defined by the condition∫ Q(u,t)

−∞
f (x, t) dx = u

and satisfies various conditions associated with density functions and the Fokker-
Planck equation. The required results are the non-linear ordinary differential equa-
tion (ODE)

∂2Q (u, t)

∂u2
= −∂ log (f (Q (u, t) , t))

∂Q

(
∂Q (u, t)

∂u

)2

and the quantilized Fokker-Planck equation (QFPE) in the form

∂Q

∂t
= µ (Q, t)− 1

2

∂Σ2

∂Q
+

1

2
Σ2 (Q, t)

(
∂Q (u, t)

∂u

)−2 ∂2Q (u, t)

∂u2
. (5.14)
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5.10.2 Stochastic Equilibrium and the Pearson Family

The system defined in equation 5.13 is said to be in stochastic equilibrium if the
density is time-independent. Then the quantile function is also time-independent
and satisfies the non-linear ODE arising from equation 5.14, with the coefficients
of the SDE also assumed to be time-independent. With some computation we can
obtain the following equation

Σ−2 (Q)

(
dΣ2

dQ
− 2µ (Q)

)
= −∂ log (f (Q))

∂Q
.

Now, Pearson’s distributions are linked to choices of density function for which, for
constants a, b, c, m we have

−∂ log (f (Q))

∂Q
=

Q−m

a+ bQ+ cQ2
.

Combining the above two conditions, we can see that we are interested in that
collection of SDEs for which

Σ−2 (Q)

(
dΣ2

dQ
− 2µ (Q)

)
=

Q−m

a+ bQ+ cQ2
. (5.15)

5.10.3 Reconstructing Pearson Distributions from SDE’s

The above equation is a differential constraint on allowable drift and volatility func-
tions. It is necessary to find solutions of the constraint that will generate solutions of
the equilibrium equations that are stable and, for practical purposes, arise naturally
from a variety of initial conditions.

A few examples of Pearson’s types are given in [30], including the Gaussian and the
Student t. We will use the one-sided exponential case as an example, as presented
in the paper. Here m = c = a = 0, making the right-hand side of equation 5.15 a
constant. One can come up with diverse plausible choices for the drift and volatility,
though not all of it will generate a stable equilibrium. A natural choice is the SDE
for the CIR interest rate model:

dxt =
1

2
Σ2
0 (1− λxt) dt+Σ0

√
xtdWt,

which has the remaining Pearson parameter b = λ−1, which is also the mean of the
equilibrium exponential distribution, with density

f (x) = λe−λx.

5.10.4 The Bivariate Case

A natural means of construction of a bivariate or multivariate system with any of
the Pearson marginals is to write down a coupled set of SDEs where the dependency
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arises from the correlation in the underlying Brownian motions. So in the bivariate
case we should consider the pair of SDEs

dx1t = µ1 (x1t, t) dt+Σ1 (x1t, t) dW
1
t

dx2t = µ2 (x2t, t) dt+Σ2 (x2t, t) dW
2
t ,

where

E
[
dW 1

t dW
2
t

]
= ρ̂dt,

and ρ̂ denotes the underlying correlation of the Brownian motions. The Fokker-
Planck equation for the joint density function can be specified from the above equa-
tions. For the equilibrium case we have the following two-dimensional PDE:

∂

∂x1

[
−µ1f +

1

2

∂

∂x1

(
Σ2
1f
)]

+
∂

∂x2

[
−µ2f +

1

2

∂

∂x2

(
Σ2
2f
)]

+
∂

∂x1

∂

∂x2
(ρ̂Σ1Σ2f) = 0.

5.10.5 Application with a Fat-Tailed Distribution

If one marginal is Gaussian and the other Student, taking the first variable to be
Student with degrees of freedom v, the equilibrium PDE comes out to be

∂

∂x1

[(
1− 1

v

)
x1f +

∂

∂x1

((
1 +

x21
v

)
f

)]
+

∂

∂x2

[
x2f +

∂f

∂x2

]
+2ρ̂

∂

∂x1

∂

∂x2

(
f

√
1 +

x21
v

)
= 0,

and the associated SDE for simulation of the correlated system is

dx1t = −1

2
Σ2
0

(
1− 1

v

)
x1tdt+Σ0

√
1 +

x21t
v
dW 1

t ,

dx2t = −1

2
Σ2
0x2tdt+Σ0dW

2
t .

We have already recognised the appropriateness of fat-tailed distributions in mod-
elling default events.



Chapter 6

Conclusion

6.1 What Happened to the Copulas?

Having looked at the theory of copulas, their applications to credit derivatives, some
drawbacks, as well as alternative methods of modelling credit derivatives of asset
portfolios, one may be excused for still wanting to ask “what exactly happened to
the copulas?”.

The recent global financial crisis brought to light the lack in the understanding and
the shortcomings of existing credit risk modelling, especially that of dependent de-
faults. The Gaussian copula was to blame for underestimating default probabilities
through the lack of extreme event dependence. And the empirical evidence showed
that this finger-pointing was justified.

However, as [25] points out, even such an apparently inadequate model as the Gaus-
sian copula does assign some probability to the extreme events, whether it is of the
order of 0.1% or 5%. For sound financial institutions that aim to maintain a AA or
A rating these probabilities are large enough to take note of the risks. It it argued
in the paper that it was a matter of management decision whether to treat those
probabilies as large enough to warrant more stringent risk management and capital
provision, or to willingly take the risks and ride the wave.

We have also seen in this dissertation the variety of copulas available for modelling
credit derivatives. Their features are also equally varied, including the strength of
dependence of defaults in extreme circumstances. So while the Gaussian copula may
be written off as a feasible model for credit derivatives, there seems to be no reason
to put for example the Clayton copula in the same corner.

A simple answer to the above question may therefore be that copulas simply lost
their popularity and their trustworthiness, following an inappropriate choice for the
credit derivatives.
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6.2 What Conclusions Can We Draw?

We have identified the main drawbacks of copulas in this dissertation. However, it
was also noted that other models come with their warnings. It is a natural feature of
any model to have its simplifications and pitfalls, and is by no means an indication
that the model is not appropriate.

Perhaps one of the most useful lessons from this dissertation is the identification of
the pitfalls of each model. This creates an awareness of the possible limitations of
the results obtained and the necessary caution with which these results should be
interpreted.

Essentially we understand that we cannot have a perfect model for portfolio credit
derivatives. But we need to be aware what are the key features that the model
should have, and then what are the desirable features of lesser importance. Tail
dependency, as we have learnt, is a key feature.

A difficult task is also created by the scarcity of data. Even with the recent credit
crisis most of the data available is in respect of the normal market conditions. No
models are immune to this problem. In addition, there is the question of how does
one account for the fact that credit events have recently happened - does one adjust
the default probabilities or is this a validation of the a priori probabilities?

It has become common knowledge that complex derivatives are more difficult to
price, no matter what model is used. They are more difficult to understand and
are often many times removed (e.g. CDO squared) from the underlying assets. In
addition, the models for dealing with such derivatives are usually still calibrated
using prices of the more common credit derivatives, such as single name CDSs.

Following the credit crunch one may be warranted in pondering whether credit
derivatives have a future. Nevertheless, the need for transferring credit risk is still
present. So credit derivatives are here to stay. The question is whether their use will
still extend to speculative purposes. The purpose to which these instruments are
put will drive the demand for the specific type of credit derivatives in the market,
which will in turn dictate the importance of modelling dependence or some other
characteristics.

In addition the need to understand the credit risk, with its dependencies, is greater
than ever. This is the case regardless of whether there is a high demand for portfolio-
based credit derivatives. The credit risk models of dependent defaults contribute to
improved understanding of this area.
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6.3 Further Research Directions

We have learnt some significant lessons on credit derivative modelling since the
copula days, in particular the fact that the models such as the Gaussian copula
tend to understate the probability of multiple defaults. We are well aware that a
credit derivative model needs to have heavy tails. We can also probably agree that
a desirable model would take into account some information process and model the
evolution of the default probabilities. And, more importantly, the chosen model
should support our understanding of the source of dependence, by allowing some
modelling of this common source itself.

However we are still largely back at the drawing board. A new, robust model is
urgently needed. It will be of great interest to hear the reasons for a particular new
market model arising and how its pricing for more complex derivatives compares to
the models used to date.

One of the elements that should also be tackled is the dependence between default
rates and inflation or interest rates. All the models that we looked at so far have
assumed independence between these variables, although it is intuitively obvious that
the probabilities of institutional defaults are linked to these economic indicators.

There is also much to be seen with regards to the future use and nature of credit
derivatives themselves and the instruments that will become commonly traded in
the market.

Lastly, there is an increasing emphasis on risk management and suitable capital
allocation. In the past this has been mainly driven by the regulatory authorities
and the development of the Basel II accord, issued by the Basel Committee on
Banking Supervision. However, since the financial crisis there is an increased buy-in
from the financial institutions themselves. The methodology applied to modelling
dependence between credit derivatives translates very well for applications to risk
management and capital allocation.
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