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ABSTRACT 

 

In recent years there has been much progress in understanding and defining the key 

protein structure-function relationships that mediate Human Immunodeficiency Virus 

(HIV-1) entry into host CD4+ cells.  This process involves fusion of the virus and host 

cell membranes, following engagement of corresponding viral (gp120) and target 

(CD4) receptor proteins.  Binding of gp120 to CD4 triggers extensive conformational 

changes in gp120, exposing binding sites for the co-receptor proteins (CCR5 or 

CXCR4), and facilitating insertion of gp41, the viral fusion protein, into the target cell 

membrane.  Following insertion of gp41, oligomerisation of fusogenic domains on 

gp41 is thought to drive the juxtaposition of the virus and host cell and fusion of their 

membranes. Recent reports suggest that detergent-resistant membrane domains, 

known as lipid rafts, play a crucial role in orientating the receptor molecules during 

this step of HIV-1 infection.  Lipid rafts are typically rich in cholesterol, sphingolipids 

and GPI-anchored proteins, and are biophysically distinct from the glycerophosolipid 

bilayer, which constitutes the bulk of mammalian cell membranes.  The role of lipid 

rafts in virus entry, however, is still controversial, and further experimentation is 

needed to define their importance in this regard.  To provide insight into the role of 

lipid rafts during HIV-1 entry, we evaluated the natural distribution of the host receptor 

proteins in HIV-1 target cells (U87.CD4.CCR5/CXCR4).  CD4 was detected in membrane 

samples fractionated by sucrose density gradient centrifugation using 

immunoblotting techniques, while CCR5 and CXCR4 were detected on whole cells by 

fluorescence microscopy.  We then used a primary CCR5-utilising subtype C HIV-1 

isolate (FV5) to characterise dynamic changes in the distribution of these receptors 

and gp41 during viral entry in real-time.  Viral fusion assays were set up by inoculating 
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target cells with FV5 at 23 ºC, a temperature that allows HIV-1 attachment, but is non-

permissive for advancement of the fusion reaction.  This prefusogenic form of the 

virus-host receptor complex is defined as the temperature-arrested state (TAS).  We 

found that, under normal, uninfected conditions, CD4, CCR5 and CXCR4 are 

distributed throughout both raft and non-raft microdomains on the U87 cell surface, 

and there is little evidence for any significant redistribution of these receptors into 

lipid rafts during the HIV-mediated fusion reaction.  Interestingly, we observed a 

change in the structure of CD4 during the fusion process, which could describe a 

functionally important event in HIV-1 entry, or be related to compromises in the 

integrity of the virally-infected membranes.  Moreover, we discovered that gp41 is 

capable of membrane insertion and oligomerisation at TAS, in contrast to previous 

reports that suggest the fusion peptide is not capable of breaching the membrane at 

this temperature.  Our results provide valuable novel insights into the HIV-1 subtype C 

entry process, and the involvement of lipid rafts in this stage of the viral lifecycle, that 

may be relevant to novel therapy and immunogen design. 
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CHAPTER 1: INTRODUCTION 
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1.1 HIV and AIDS 

 

1.1.1 Human Immunodeficiency Virus and the Global AIDS Epidemic 

 

Acquired Immune Deficiency Syndrome (AIDS) was first recognized as a disease in 1981 by 

the United States Centers of Disease Control (CDC, 1981).  It is characterised by a 

depression in cellular immunity due to a decline in CD4-positive (CD4+) T-lymphocytes 

(Gottlieb et al., 1981).  Homosexual or bisexual males, intravenous drug users, Haitian 

immigrants to the United States of America, haemophiliacs treated with blood transfusions, 

and heterosexuals belonging to a high-risk sexual behaviour group and infants born to 

parents in this group were reported to be at risk for AIDS (CDC, 1982).  This specific group of 

affected patients, as well as the increasing incidence of the disease, led scientists to suggest 

that AIDS was caused by an infectious agent that could be transmitted sexually or by blood 

contact (CDC, 1982; Gallo et al., 1984).  

 

The Human Immunodeficiency Virus (HIV) is now known to be the causative agent of AIDS 

(Barre-Sinoussi et al., 1983; Gallo et al., 1984).  The virus was initially isolated from patients 

showing AIDS or AIDS-like symptoms.  It was shown to be a retrovirus and was initially 

suspected of being related to the human T-cell leukaemia virus (HTLV-I) family (Barre-

Sinoussi et al., 1983).  Later, it was also shown to have similarities with lymphadenopathy-

associated virus (LAV) and HTLV-III (Levy et al., 1984; Popovic et al., 1984).  Eventually, in 

1986, this AIDS-associated virus was designated the Human Immunodeficiency Virus (Coffin 

et al., 1986; Palca, 1986).  Evidence then surfaced that a second, less virulent HIV existed 
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(Clavel et al., 1987; Marlink et al., 1994).  The nomenclature of HIV was then changed and 

separated into HIV-1 and HIV-2.  

 

There are approximately 33 million people living with HIV worldwide, with the number of new 

infections reported annually decreasing from 3 million in 2001 to 2.7 million in 2007.  The 

number of children, under the age of 15, infected annually is 370 000, which has been 

declining since 2002.  The number of annual AIDS deaths of children under the age of 15 

has also been dropping.  This is thought to be largely due to the expansion of mother-to-child 

transmission prevention strategies.   Globally, Sub-Saharan Africa still remains the region 

that is most affected by HIV and AIDS, accounting for 67% of all people living with HIV and 

for 72% of total AIDS deaths in 2007.  Moreover, almost 90% of children infected with HIV 

live in Sub-Saharan Africa1. 

 

At present there is no vaccine or cure for HIV-1 infection, although a variety of therapeutic 

agents have been developed against the major proteins involved in the different stages of the 

HIV-1 lifecycle.  Current standard treatment for HIV-1 infection is termed highly active 

antiretroviral therapy (HAART) (Turpin, 2003; Barbaro et al., 2005), which involves a 

combination of at least two of the reverse transcriptase (RT) inhibitors plus either a protease 

(PR) inhibitor or another RT inhibitor.  These drugs are, however, expensive and often have 

serious toxic side effects.  In addition, the virus has the potential to mutate and become 

resistant to the drugs.  For these reasons, the development of alternative therapeutic/vaccine 

approaches is an ongoing priority [Reviewed in (Broder, 2010)].     

 

 

                                                 
1
 UNAIDS. ‘Report on the Global HIV/AIDS Epidemic 2008: The Executive 

Summary’,.<www.unaids.org> [Accessed May 2009].   
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1.1.2 Genomic Organisation and Classifications of HIV-1 

 

HIV-1 is a lentivirus that is classed as a T-lymphotropic retrovirus (Barre-Sinoussi et al., 

1983).  During replication, this retrovirus is able to perform a multitude of biochemical 

functions with an approximately 9.5 kb genome comprising only nine genes (Figure 1.1), 

encoding at least sixteen proteins (Leitner et al., 2005).  Three of the nine genes encode 

structural proteins (gag, pol, env), two have regulatory functions (tat, rev), and four have 

been designated accessory genes (vif, vpr, vpu, nef) (Leitner et al., 2005).  Of the genes 

encoding structural proteins, gag encodes the capsid, nucleocapsid and viral matrix proteins, 

pol encodes protease, reverse transcriptase, RNase H and integrase proteins, and env 

codes for the surface glycoprotein gp120 and the transmembrane glycoprotein gp41 (Leitner 

et al., 2005). 

 

   

 

Figure 1.1: Schematic representation of the HIV-1 genome.  Figure adapted from Peterlin 

and Luciw (Peterlin and Luciw, 1988).  

 

HIV-1 has been shown to be closely related to the Simian Immune Deficiency Viruses (SIVs) 

found in chimpanzees and it is believed that it is from these SIVs that HIV-1 originally 

diverged (Peeters et al., 1989; Eigen and Nieselt-Struwe, 1990; Gao et al., 1999).  HIV-1, 

has over many years, become genetically diverse and has been classified phylogenetically 
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into three distantly related groups2 (Robertson et al., 2000; http://www.hiv.lanl.gov/, 2009).  

Group M is the ‘major’ group that is responsible for the global pandemic and phylogenetic 

analysis of the envelope (env) and core (gag) genes has identified at least eight genetic 

subtypes within this group (A, B, C, D, F, G, H, J, K) (Robertson et al., 2000).  Group O is the 

‘outlier’ group, the viruses of which have been found in low prevalence in West and Central 

Africa, as well as in Europe (De Leys et al., 1990; Charneau et al., 1994).  Group N is the 

non-M/non-O group and is a rare form of HIV-1 found in Africa (Simon et al., 1998).  

Numerous circulating recombinant forms (CRFs) have also been identified within group M, 

which result from the genomes of different subtypes within the same patient recombining 

(Robertson et al., 2000). 

 

1.1.3 Structure and Life-Cycle of HIV-1 

 

The typical mature HIV-1 virion consists of an envelope, a core and a matrix (Figure 1.2).  

The envelope is a lipid bilayer that encapsulates the matrix and core of the virus (Goto et al., 

1998).  Embedded in this bilayer are surface projections comprised of the gp120 surface 

glycoprotein and the gp41 transmembrane protein (Leis et al., 1988).  A matrix shell lines the 

inner surface of the viral membrane and is made up of p17 matrix protein (MA) (Leis et al., 

1988; Marx et al., 1988; Goto et al., 1990; Rao et al., 1995).  In the centre of the virus is the 

conical capsid core particle, comprising the p24 capsid protein (CA), which encapsulates the 

viral RNA, nucleocapsid protein (NC), protease (PR), reverse transcriptase (RT) and 

integrase (IN), as well as the accessory proteins nef, vif and vpr (Gelderblom et al., 1987; 

Goto et al., 1990; Gelderblom, 1991). 

                                                 
2
 ‘”Los Alamos HIV Sequence Database.” <http://.hiv.lanl.gov/> [Accessed intermittently throughout 

2007-2009].  
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Figure 1.2: Structure of a mature HIV-1 virion. 

 

The replication cycle of HIV-1 (Figure 1.3) involves the initial entry of the virus into the host 

cell via receptor-mediated endocytosis (Maddon et al., 1986) or cell fusion (Stein et al., 

1987).  The viral core is then released into the cytoplasm of the host cell and 

disruption/uncoating of the viral capsid takes place (Grewe et al., 1990).  Reverse 

transcription of the viral RNA then occurs, where double-stranded viral cDNA is synthesized 

by the reverse transcriptase protein (Fassati and Goff, 2001).  The newly synthesized viral 

cDNA then forms a preintegration complex (PIC) containing viral DNA and integrase (IN), as 

well as matrix (MA) and reverse transcriptase proteins (Farnet and Haseltine, 1991; 

Bukrinsky et al., 1993).  PICs are transported through the cytoplasm and into the nucleus, 

using ATP (Bukrinsky et al., 1992), via the cellular cytoskeleton, specifically dynein and the 

microtubule network (McDonald et al., 2002).  Once inside the nucleus, integration of the 
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PICs into the host cell’s genome takes place, which is catalyzed by the IN enzyme 

(Bowerman et al., 1989; Farnet and Haseltine, 1990). 

 

Once integration is complete, viral messenger RNA (mRNA) is transcribed and transported 

out of the nucleus (Arya et al., 1985; Feinberg et al., 1986; Nabel and Baltimore, 1987; Tong-

Starksen et al., 1987) and the mRNA is translated into viral proteins.  Doubly spliced, short 

viral RNA species are translated into the viral accessory proteins tat, rev and nef.  Full-length 

and singly spliced, long transcripts direct the synthesis of gag, pol and env (Muesing et al., 

1985; Sanchez-Pescador et al., 1985), which are then assembled into viral particles together 

with genomic HIV RNA.  The virion matures during budding and release from the host cell 

surface and then goes on to infect other cells (Varmus, 1988; Goto et al., 1990). 
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Figure 1.3: HIV-1 lifecycle. 



 9 

1.2 Entry of HIV-1 into Host Cells 

 

1.2.1 General Overview of the Entry Process 

 

The current model of HIV-1 viral entry describes the coordinated action of the HIV surface 

envelope glycoprotein (Env) complex and receptors on the host cell (McDougal et al., 1986; 

Berger et al., 1999; Doms and Moore, 2000).  HIV-1 entry into host cells is initiated by the 

interaction of the gp120 surface glycoprotein on the virus and the CD4 receptor on the host 

cell surface (Dalgleish et al., 1984; Klatzmann et al., 1984; Maddon et al., 1986; McDougal et 

al., 1986).  This interaction triggers conformational changes in Env that expose gp120 

chemokine co-receptor binding sites (Sattentau and Moore, 1991; Trkola et al., 1996; 

Kolchinsky et al., 2001).  The two main chemokine co-receptors utilized by HIV-1 are CCR5 

and CXCR4 (Alkhatib et al., 1996; Berson et al., 1996; Deng et al., 1996; Dragic et al., 1996; 

Feng et al., 1996).  Upon gp120-co-receptor binding, further conformational changes occur 

that result in the exposure of the gp41 N-terminal fusion peptide, believed to be due to 

shedding of the gp120 subunit caused by the interactions of the gp120 V3 loop with the co-

receptor (Moore et al., 1990; Hart et al., 1991; Sattentau et al., 1993; Jones et al., 1998; 

Huang et al., 2005).  The gp41 fusion peptide penetrates the host cell surface, and this leads 

to the fusion of the viral and host cell membranes and internalisation of the viral capsid 

(Chan et al., 1997; Tan et al., 1997; Weissenhorn et al., 1997).  
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1.2.2 Host Cell Proteins Involved in HIV-1 Entry and Membrane Fusion 

 

1.2.2.1 CD4 Receptor 

 

The CD4 (cluster of differentiation 4) receptor is a T-cell surface glycoprotein that associates 

with major histocompatibility complex (MHC) class II molecules on the surface of antigen-

presenting cells to mediate an efficient cellular immune response (Doyle and Strominger, 

1987; Gay et al., 1987; Sleckman et al., 1987).  It is a 55 kDa protein that consists of an 

extracellular segment composed of four tandem immunoglobulin-like VJ regions or domains, 

a transmembrane domain and a cytoplasmic segment (Maddon et al., 1985; Clark et al., 

1987; Maddon et al., 1987). 

 

In the mid-80s, it was discovered that CD4 was involved in HIV-1 infection and AIDS, by 

acting as a target for the interaction with the envelope glycoprotein of HIV-1 and therefore 

serving as a cellular receptor for HIV-1 entry (Dalgleish et al., 1984; Klatzmann et al., 1984; 

Maddon et al., 1986; McDougal et al., 1986).  Structures for the N-terminal two domains 

(Figure 1.4) (Ryu et al., 1990; Wang et al., 1990), as well as the entire extracellular segment 

of CD4 (Wu et al., 1997) have been established.  These structures have enabled the 

determination of the residues on CD4 important for gp120 binding.  It has been shown that 

the gp120 binding site on CD4 is situated in the N-terminus of the first extracellular domain 

(Arthos et al., 1989; Moebius et al., 1992) and involves the Phe43 residue of CD4 ‘reaching 

up’ into a large, recessed hydrophobic cavity on gp120 (Arthos et al., 1989; Kwong et al., 

1998). 
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Figure 1.4: Ribbon representation of CD4 (PDB File 1CDH).  Domain 1 is shown in red 

and domain 2 in blue.  The Phe43 residue responsible for gp120 binding is shown in stick 

representation (green) in the first extracellular domain of the CD4 protein.  Structure was 

created using PyMOL. 

 

1.2.2.2 CCR5 and CXCR4 Co-receptors 

 

CXCR4 (Feng et al., 1996), ubiquitously expressed on most haematopoietic cell types,  and 

CCR5 (Raport et al., 1996; Samson et al., 1996), mainly expressed on peripheral blood-

derived dendritic cells, T cells and macrophages, are chemokine receptors that belong to the 

family of seven transmembrane-spanning G protein-coupled receptors.  Chemokine 

receptors are defined by their ability to signal upon binding one or more members of the 
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chemokine superfamily of chemotactic cytokines (Premack and Schall, 1996; Baggiolini et 

al., 1997; Yoshie et al., 1997; Luster, 1998; Zlotnik et al., 1999).  Feng et al first identified 

CXCR4 as a chemokine receptor that acted as a co-receptor for T cell line-tropic HIV-1 entry 

(Feng et al., 1996).  Lu et al thereafter showed how the first and second extracellular loops of 

CXCR4 were specifically important for gp120 binding and HIV-1 entry (Lu et al., 1997).  It 

was then established that CCR5 also acted as a co-receptor for HIV-1 entry, when it became 

apparent that macrophage-tropic HIV-1 viral isolates infected cells using CCR5 as a co-

receptor (Alkhatib et al., 1996; Deng et al., 1996; Dragic et al., 1996).  It has since been 

determined that it is specifically the second and third extracellular loops of this chemokine 

receptor that are important in its role as an HIV-1 entry co-receptor (Alkhatib et al., 1997).  

Dual-tropic viruses have also been shown to exist that can infect both T- and macrophage 

cell lines (Valentin et al., 1994), using either CXCR4 or CCR5 co-receptors.   

 

1.2.3 Viral Proteins Involved in HIV-1 Entry and Membrane Fusion 

 

The envelope glycoprotein (gp120/gp41) is initially synthesized as a gp160 precursor 

(Muesing et al., 1985; Ratner et al., 1985; Wain-Hobson et al., 1985) which, in the 

endoplasmic reticulum, is proteolytically processed into gp120 and gp41 (Veronese et al., 

1985) by the cellular protease furin (Gu et al., 1995).  A non-covalent gp120-gp41 complex is 

then positioned on the viral membrane surface (Chatterjee et al., 1992) where the entire 

gp120 glycoprotein is exposed, anchored to the virus membrane by the gp41 

transmembrane subunit (Berman et al., 1988) (Figure 1.2).  Functional, fusogenic Env 

glycoproteins exist as trimers on the viral membrane surface (Weiss et al., 1990).    
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1.2.3.1 gp120 

 

gp120 is a highly glycosylated and conformationally flexible protein consisting of a recessed 

and inaccessible conserved core region and five variable regions (V1-V5), which exhibit 

extensive sequence heterogeneity among different viral isolates (Modrow et al., 1987; 

Leonard et al., 1990; Profy et al., 1990; Kwong et al., 1999).  X-ray crystallography of gp120 

demonstrates how the core of this protein is folded into two major domains (Figure 1.5) 

(Kwong et al., 1998). The domains consist of an inner domain (with respect to the N- and C- 

termini), from which the V1/V2 loop extends, and a stacked double-barrel outer domain, 

which includes the V4 and V5 loops (Kwong et al., 1998). These two domains are linked by a 

four-stranded ‘bridging sheet’ (Kwong et al., 1998). 

 

 

Figure 1.5: Ribbon representation of gp120 (PDB 1GC1).  The bridging sheet is shown in 

red.  Structure was created using PyMOL. 
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Conserved residues on gp120 important for CD4 binding include Trp432, Trp427, Thr257, 

Asp368, Asp457, and Glu370 (Cordonnier et al., 1989; Olshevsky et al., 1990; Kwong et al., 

1998; Wyatt et al., 1998; Kwong et al., 1999).  Co-receptor binding and specificity has been 

shown to be determined by the V3 loop of gp120 (Hwang et al., 1991; Speck et al., 1997; 

Huang et al., 2005).  Binding of gp120 to CD4 and CXCR4/CCR5 then leads to the shedding 

of gp120, exposing the fusion peptide of the gp41 protein (Moore et al., 1990; Hart et al., 

1991; Sattentau et al., 1993; Jones et al., 1998).    

       

1.2.3.2  gp41 

 

The structure of the HIV-1 gp41 transmembrane protein has also been extensively 

documented.  Most of the data accumulated has described the intermediate and post-fusion 

states of the protein.  This transmembrane protein (domain structure shown in Figure 1.6) 

consists of a hydrophobic fusion peptide (FP) located on the N-terminus (Gallaher, 1987; 

Gallaher et al., 1989), followed by a N-terminal ‘heptad repeat’ (N-HR) and C-terminal 

‘heptad repeat’ (C-HR) core structure (Lu et al., 1995; Chan et al., 1997).  The Env protein is 

anchored to the viral membrane by a tryptophan-rich transmembrane domain region and a 

C-terminal cytoplasmic tail (Gallaher et al., 1989).  
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Figure 1.6: Schematic representation of gp41 domains.  FP = Fusion Peptide, PTM = 

Proximal to Transmembrane Region, TM = Transmembrane Domain, CT = Cytoplasmic Tail.  

Adapted from Ingallinella et al. (Ingallinella et al., 2009).    

 

Peptides corresponding to the N- and C- terminal regions of the gp41 ectodomain were 

originally used to generate a stable, soluble gp41 complex (Lu et al., 1995).  These peptides, 

designated N-51 and C-43 respectively, were shown to form a stable, alpha-helical trimer, 

when mixed together.  Lu et al proposed that the N-51 peptide ‘forms an interior, parallel, 

homotrimeric, coiled-coil core, against which three C-43 helices pack in an antiparallel 

fashion’ (Lu et al., 1995).  They further suggested that this complex is the core that leads to 

the fusogenic structure of the HIV-1 envelope (Lu et al., 1995).  Chan et al later identified 

longer N- and C-  terminal regions of gp41, designated N36 and C34 (Figure 1.7) (Chan et 

al., 1997). 

 

1.2.3.3 gp41 and the Fusion Process  

 

X-ray crystallography has elucidated the mechanism by which gp41 drives membrane fusion 

(schematic representation shown in Figure 1.8) (Weissenhorn et al., 1997).  Weissenhorn et 

al showed how the fusion peptide, which is located at the N-terminus of gp41, inserts into the 

target membrane.  The insertion of the fusion peptide leads to the formation of a ‘pre-hairpin 

intermediate’ (Chan and Kim, 1998).  This pre-hairpin intermediate consists of the two-
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heptad repeat (HR) regions of gp41, N-HR (inserted into the target membrane) and C-HR 

(anchored to the virus membrane) (Liu et al., 2003).  A labile fusion pore is then believed to 

form before the pre-hairpin intermediate self-assembles into a thermostable 6-helix bundle 

(Skehel and Wiley, 2000; Markosyan et al., 2003).  The formation of the six-helix bundle 

occurs when the three N-HRs form a parallel, coiled-coil core and the three C-HRs move in 

between the N-HRs in an antiparallel fashion (Tan et al., 1997; Weissenhorn et al., 1997).  

This reaction pulls the HIV-1 membrane and the target cell into close proximity therefore 

allowing for fusion to occur (Weissenhorn et al., 1997). 

 

 

 

Figure 1.7: Representation of the coiled coil structure of gp41.  Blue ribbons represent 

N36 and pink ribbons represent C34.  Taken from Chan et al. (Chan et al., 1997). 
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Figure 1.8: Schematic representation of HIV-1 fusion process.  Adapted from Koshiba 

and Chan (Koshiba and Chan, 2003). 

 

The kinetics of HIV/SIV Env-mediated membrane fusion have been extensively studied using 

fusogenic envelope glycoproteins expressed on the surface of cells (effector cells) interacting 

with target cells bearing CD4 and appropriate co-receptor (Lifson et al., 1986).  A precise 

measurement of such kinetics was obtained using dye-transfer assays (Dimitrov et al., 1991; 

Weiss et al., 1996; Munoz-Barroso et al., 1998; Kliger et al., 2001; Lineberger et al., 2002).  

These assays demonstrate the rapid nature of the fusion process, which is believed to be 

completed in a time of 20-30 minutes after establishment of the pre-hairpin intermediate 

(Weiss et al., 1996).   

 

Further insights into gp41 and the fusion process have been gained by the study of 

temperature dependent fusion intermediates (Munoz-Barroso et al., 1998; Melikyan et al., 

2000; Gallo et al., 2001; Golding et al., 2002; Gallo et al., 2004; Mkrtchyan et al., 2005).  

Intermediate stages of the HIV-1 fusion process have been captured by coincubating effector 

(E) cells that express fusion proteins on their surfaces and target (T) cells that express 

appropriate receptors on their surfaces at a temperature (23 °C), which is slightly below that 

needed to induce fusion.  This state is known as a temperature-arrested stage (TAS) 
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(Melikyan et al., 2000) and represents the point at which gp120 is engaged with CD4 and the 

co-receptor (CXCR4/CCR5), prior to formation and maturation of the fusion pore (Melikyan et 

al., 2000).  Increasing the temperature up to 37 ºC then initiates the fusion process.  TAS has 

been used to assess Env interactions with co-receptors and to demonstrate the delay in the 

late re-folding of gp41 that drives fusion (Mkrtchyan et al., 2005).  It has also been utilized to 

assess entry inhibitor and neutralizing antibody interactions with Env (Munoz-Barroso et al., 

1998; Gallo et al., 2001; Golding et al., 2002), as well as to review six-helix bundle and pore 

formation during fusion (Melikyan et al., 2000; Gallo et al., 2004).  Most recently, TAS has 

been implemented in tracking single virus particle entry via endocytosis, where it was shown 

that complete HIV-1 fusion occurred in endosomes and that direct viral fusion with the host 

cell membrane does not progress past the lipid mixing step (Miyauchi et al., 2009).   

   

1.3 Lipid Rafts 

 

Accumulating evidence suggests that certain specialized, plasma membrane components, 

lipid rafts, play a fundamental role in the HIV-1 entry process.    These localized regions of 

elevated cholesterol within the cellular membrane are believed to be ‘hijacked’ by HIV-1 and 

utilized by the virus in both the entry and budding stages of the lifecycle.  There are 

numerous studies showing that HIV-1 buds out of the target cell through these lipid raft 

microdomains [reviewed in (Campbell et al., 2001; Suomalainen, 2002; Chazal and Gerlier, 

2003)].  It is also thought that HIV-1 utilizes lipid rafts in the trafficking or sequestering of CD4 

and/or the co-receptors to the point of HIV-1 attachment (Del Real et al., 2002; Nguyen and 

Taub, 2002; Viard et al., 2002).  The latter hypothesis concept is controversial, however, as 

conflicting evidence has been published (Popik et al., 2002; Percherancier et al., 2003; Popik 

and Alce, 2004).  
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1.3.1 What are Lipid Rafts? 

 

The importance of the structure and function of lipid rafts and their role in many biological 

systems is only beginning to be discovered, and still remains controversial.  A great deal of 

interest surrounds the idea of lipid raft microdomains being present in the cellular membrane, 

particularly with regard to detection techniques employed.  This has led to the questioning of 

the existence of lipid rafts by some investigators (Jacobson and Dietrich, 1999; Edidin, 2001) 

and is still an issue of ongoing debate.  It is now generally accepted that the cell membrane 

does not exist as a homogeneous lipid matrix, as initially described by the fluid mosaic model 

(Singer and Nicolson, 1972).  Instead, specialized lipid domains, lipid rafts (Rietveld and 

Simons, 1998), have been shown to exist in membranes.  Lipid rafts  are specific detergent-

resistant plasma membrane microdomains that are enriched in cholesterol, sphingolipids, 

glycosylphosphatidylinositol (GPI)-anchored proteins and acetylated signalling molecules 

(Schroeder et al., 1998).   

 

Sphingolipids are excluded from the cholesterol-poor fluid liquid crystalline (LC) 

glycerophospholipid (GPL) bilayer because their acyl chains have a much higher melting 

temperature than GPLs and are therefore found in much closer association with each other.  

GPLs are found in a loosely packed disordered state (Thompson and Tillack, 1985).  

Sphingolipids can therefore organise into specific, cholesterol-rich entities, which form a 

liquid-ordered (LO) phase creating lipid raft domains that are situated in and around the more 

GPL-rich bulk of the plasma membrane (Figure 1.9) (Ahmed et al., 1997).  These properties 

of lipid rafts render them resistant to detergent solubilization (Yu et al., 1973).  They are 

therefore often also referred to detergent-resistant-membranes (DRMs) and have been 



 20 

isolated from eukaryotic cells by treating the cells with detergents such as Triton-X 100 or Brij 

98 (Brown and Rose, 1992; Schroeder et al., 1998; Holm et al., 2003).   

 

 

 

Figure 1.9: Diagram showing organisation of lipid rafts within cell membranes. 

 

1.3.2 Biological Relevance of Lipid Rafts 

 

Several studies have shown that the association of specific membrane proteins with lipid 

rafts is functionally and physiologically significant (Simons and Ikonen, 1997; Brown and 
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London, 1998).  It has been shown that transmembrane protein receptors associate with lipid 

rafts during transmembrane signalling events in some haematopoietic cells (Arni et al., 1996; 

Rodgers and Rose, 1996; Field et al., 1997; Germain, 1997; Isakov, 1997; Kabouridis et al., 

1997; Deans et al., 1998).  Signalling is also triggered by the clustering or ligation of cell-

surface GPI-anchored proteins, which occurs across lipid rafts, particularly, in 

haematopoietic cells (Thompson and Tillack, 1985; Stefanova and Horejsi, 1991; Brown and 

Rose, 1992; Cinek and Horejsi, 1992) and neurons (Olive et al., 1995; Zisch et al., 1995).  

The importance of rafts in exocytic and endocytic transport routes, regulated secretary 

pathways, cytoskeletal connections, protein transportation between endosomes and the 

Golgi, and intercompartmental lipid trafficking has been reviewed by Brown and London, 

1998; and Ikonen, 2001 (Brown and London, 1998; Ikonen, 2001).    

 

Rafts act as a portal for the entry as well as the assembly and budding of various pathogens.  

Certain viruses utilize lipid rafts during the entry step of their lifecycles, including simian 

forest virus and SV40 (Phalen and Kielian, 1991; Nieva et al., 1994).  Viruses have also been 

shown to assemble and bud out of cells through rafts, such as influenza virus, where the 

virus exits by assembling viral glycoproteins in lipid rafts and trafficking to the point of viral 

budding at the cell membrane (Zurcher et al., 1994; Keller and Simons, 1998).  Rous 

sarcoma virus (Ochsenbauer-Jambor et al., 2001), murine leukemia virus (Li et al., 2002), 

measles virus (Manie et al., 2000) and Ebola virus (Bavari et al., 2002) have also been 

shown to utilize lipid rafts for assembly and budding.  Certain bacteria and their toxins exploit 

lipid rafts to gain entry into their hosts, for example, Escherichia coli (Baorto et al., 1997), 

aerolysin toxin (Abrami et al., 1998), cholera toxin (Tran et al., 1987), and Shiga toxin 

(Sandvig et al., 1996).  Cholera toxin (CT) utilizes lipid rafts for entry into target cells by 

binding to the receptor ganglioside GM1, which acts specifically in the CT signal transduction 

pathway by coupling CT with lipid raft microdomains (Badizadegan et al., 2000).  GM1 
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ganglioside allows for the endocytosis and transport of CT into Golgi cisternae and 

endoplasmic reticulum (Badizadegan et al., 2000). Diseases suggested to be associated with 

lipid rafts include prion diseases (Taraboulos et al., 1995; Vey et al., 1996; Naslavsky et al., 

1997; Klein et al., 1998; Naslavsky et al., 1999) and Alzheimer’s disease (Golde and 

Eckman, 2001; Kakio et al., 2001; Riddell et al., 2001; Kakio et al., 2002).   

 

1.3.3 Lipid Rafts and HIV 

 

Like several other pathogens which involve lipid rafts during their replication cycles, an 

increasing amount of evidence suggests that HIV-1 also utilizes lipid rafts in both entry into 

and budding from host cells.       

 

1.3.3.1 Budding of HIV 

 

The budding of HIV-1 out of infected T cells through lipid rafts has been described in detail.  

Nguyen et al were the first to demonstrate that HIV-1 incorporates the raft-specific 

ganglioside, GM1, as well as GPI-linked proteins Thy-1 and CD59 (Nguyen and Hildreth, 

2000).  These observations were made using confocal microscopy, which demonstrated that 

viral proteins co-localized with GM1, Thy-1 and CD59.  It was further shown that the HIV-1 

matrix (MA) protein and gp41 were found in detergent-resistant, GPI-linked protein-rich 

fractions, upon membrane fractionation by centrifugation.  These results confirmed the 

association of HIV-1 proteins with lipid rafts and it was proposed that budding occurs through 

the cholesterol- and sphingolipid-rich domains of the host cell membrane (Nguyen and 

Hildreth, 2000).  These findings were confirmed by Ono et al, who demonstrated that 
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cholesterol depletion significantly impairs virus infectivity by interfering with the budding 

process (Ono and Freed, 2001).  Furthermore, studies have shown that another important 

function of rafts is to provide a platform for stable binding of Gag to the host cell membrane 

and for efficient Gag multimerization (Bhattacharya et al., 2004; Bhattacharya et al., 2006; 

Ono et al., 2007).  Lipid rafts are therefore an important cellular component in supporting the 

assembly and budding process of HIV-1 [reviewed in (Campbell et al., 2001; Suomalainen, 

2002; Chazal and Gerlier, 2003)]. 

 

1.3.3.2 Entry of HIV 

 

While the role of rafts in the HIV-1 budding process is well documented and in agreement, 

the involvement of lipid rafts in HIV-1 entry is poorly understood due to contrasting results 

obtained from different research groups. 

 

Nguyen et al have demonstrated that CXCR4 localizes to lipid rafts by disrupting one of the 

main raft components, cholesterol, using β-cyclodextrin (BCD), which is a chemical known to 

deplete cholesterol by cleavage of the hydrophobic bonds (Nguyen and Taub, 2002).  

Depletion of cholesterol in various T cell lines prevented binding of the chemokine ligand, 

SDF-1, to its natural receptor, CXCR4.  This suggests that cholesterol and lipid raft integrity 

are important for correct CXCR4 functioning.  These findings are consistent with those of 

Viard et al, who showed that cholesterol is required for HIV-1 Env-mediated fusion (Viard et 

al., 2002).  Del Real et al also claim that a non-raft CD4 mutant prevents X4 and R5 HIV-1 

infection of CD4+ T cells (Del Real et al., 2002).  Yet further evidence for lipid raft 

involvement in HIV-1 entry was suggested by Shu et al, who suggest that gp41 interacts 

preferentially with lipid rafts (Shu et al., 2000).  This group found that six-helix bundle 
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formation occurs in the presence of lipid rafts rather than in the GPL-rich membrane 

environment (Shu et al., 2000).   

  

In contrast, Popik et al have published slightly conflicting results in that it was initially shown 

that productive entry of X4 and R5 HIV-1 into CD4+ T cells does require the presence of 

intact lipid rafts (Popik et al., 2002).  Moreover, it has recently been shown that CD4 receptor 

localized to non-raft membrane microdomains also supports HIV-1 entry (Popik and Alce, 

2004).  A novel raft-localizing marker in the membrane-proximal cytoplasmic domain of CD4, 

namely the RHRRR motif, was identified by this group.  When this motif was substituted with 

alanine residues, CD4 was redirected to non-raft membranes and was still capable of 

efficiently supporting HIV-1 entry (Popik and Alce, 2004).  In addition, Percherancier et al 

suggest that CD4 and CCR5 do not need to associate with lipid rafts in order for HIV-1 entry 

into target cells to occur (Percherancier et al., 2003).  These studies reiterate the importance 

of identifying and understanding the exact function/s that lipid rafts play in HIV-1 entry into 

target cells. 

 

1.3.3.3 Therapeutic Applications 

 

The recent insights into the role of rafts in HIV-1 infection have sparked interest into the use 

of rafts as a potential drug target.  The entry stage of the HIV-1 lifecycle has proven to be a 

potentially successful area for HIV-1 drug development, and more recently lipid rafts have 

been explored as a possible target for the prevention of HIV-1 entry into target cells.  The 

first well characterised agent to be developed in the new class of fusion inhibitors (FI) is the 

C-peptide inhibitor, T20 (Wild et al., 1994).  There are also a number of co-receptor inhibitors 

and gp120-attachment inhibitors currently undergoing clinical trials.  A promising lipid raft 
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inhibitor, SP-01A, has recently completed Phase III clinical trials3.  This inhibitor acts by 

reducing intracellular cholesterol and biosynthesis of corticosteroid, which inhibits the 

organisation of lipid rafts in the cellular membrane.  This ultimately prevents binding of gp120 

with CCR5/CXCR4 and inhibits fusion, as well as having effects on HIV-1 budding.   

 

1.4 Project Perspective 

 

1. Use of primary subtype C viral isolates to study membrane receptor dynamics in 

real time 

 

This study aims to gain further insights into the roles played by raft and non-raft membrane 

microdomains in HIV-1 membrane fusion by examining the distribution and re-organisation of 

the primary HIV-1 and host-cell receptors (gp41, CD4, CXCR4 and CCR5) between these 

domains during real-time viral infection.  So far, studies of the HIV-1 membrane fusion 

mechanism have utilized cell-cell fusion protocols (Dimitrov et al., 1991; Weiss et al., 1996; 

Munoz-Barroso et al., 1998; Kliger et al., 2001; Lineberger et al., 2002).  Here we aim to 

quantify the dynamic localization of primary HIV-1 and host cell receptors during real-time 

infection with primary viral isolates.  

 

 

 

 

                                                 
3
 Samaritan Pharmaceuticals. “SPA-01A HIV Drug.” 2009. <http://www.samaritanpharma.com> 

[Accessed June-October 2009].   
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2. Establishment of TAS and an assessment of the effect of this on raft involvement 

in HIV-1 entry 

 

In order to achieve these outcomes, we describe fusion experiments conducted by arresting 

the viral fusion process at the temperature-arrested state (TAS), by preincubating U87 host 

cells with HIV-1 subtype C primary viral isolates at 23 ºC (Mkrtchyan et al., 2005).  We 

assess the localization of CD4, CCR5, CXCR4 and gp41 at TAS and 3 hours post-TAS and 

observe any changes in the distribution of the receptors and gp41 at these time points.  To 

assess any possible changes, lipid raft and total membrane isolations were performed on 

infected cells at the two time points.  Specific antibody detection methods have been 

implemented to detect the various receptors and gp41.  In addition, we describe the cloning, 

expression and purification of gp41, to act as a positive control for immunochemical detection 

of membrane-bound gp41, as well as the cloning and mammalian expression of gp160 to 

confirm the insertion of gp41 into the host cell membrane.   

 

These studies provide novel qualitative insights into the redistribution of host cell and virus 

receptors during the early phases of membrane fusion, and the functional significance of lipid 

rafts during HIV-1 entry that may be relevant to novel therapy and vaccine design.  
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CHAPTER 2: MATERIALS AND METHODS 
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2.1 Cell Culture 

 

U87.CD4.CCR5 (U87 R5) and U87.CD4.CXCR4 (U87 X4) cell lines were obtained through 

the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH.  These 

cell lines are derived from the U87MG (Human Glioblastoma) cell line, and stably express 

CD4 and CXCR4 or CCR5.  The cells were maintained in Dulbecco’s Modified Eagle Medium 

(DMEM) (Sigma-Aldrich; Steinheim, Germany) supplemented with 15% heat-inactivated fetal 

calf serum (FCS) (Gibco; Grand Island, USA), L-Glutamine (2 mM) (Gibco; Grand Island, 

USA), Penicillin (50 U/ml) and Streptomycin (50 U/ml)  (Gibco; Grand Island, USA), G418 

(500 µg/ml) (Calbiochem; Darmstadt, Germany), and Puromycin (1 µg/ml) (Sigma-Aldrich; 

Steinheim, Germany).  Human Embryonic Kidney (HEK) 293T cells (Invitrogen; Carlsbad, 

CA) were maintained in DMEM supplemented with 10% FCS and L-Glutamine (2 mM). 

 

2.2 Cloning of gp41- and gp160-Expression Plasmids 

 

gp41-encoding DNA was amplified by PCR and gp160-encoding DNA was excised from a 

synthetic plasmid template (pGA4-gp160), and both fragments were subcloned into the 

protein expression vector, pTriEx-3 (Novagen; Darmstadt, Germany)  , which is capable of 

mediating the expression of protein from sequences inserted into the pTriEx multiple cloning 

site in mammalian, insect and bacterial cells.  The resulting recombinant expression 

plasmids (pTriEx-gp41 and pTriEx-gp160) were used to produce and purify gp41 

recombinant protein (expressed in E. coli) and transfect mammalian cells, respectively.   
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2.2.1 PCR Amplification of gp41-Encoding DNA 

 

Amplification of full length gp41 DNA was performed using a synthetic plasmid template, 

pGA4-gp160, containing a gp160 codon optimized sequence derived from the HIV-1 subtype 

C isolate, FV3 (accession number DQ382362) (GENEART; Regensburg, Germany).  The 

FV3 viral isolate was isolated from an HIV-positive AIDS patient admitted to the 

Johannesburg AIDS Clinic, and propagated, sequenced and characterised phenotypically by 

others in our laboratory (Connell et al., 2008). 

 

Primers for this reaction were designed and synthesized according to the codon optimized 

gp160 sequence (Inqaba Biotech, Pretoria, Gauteng, South Africa).  The gp41 forward primer 

(5’ ATATCCATGGCCGTGGGCATCGGAG 3’) and the gp41 reverse primer (5’ 

ATATCTCGAGCAGCAGGGCGGCCTCAAAG 3’) both included 5’-terminal restriction 

endonuclease recognition sequences (Xho I and Nco I respectively) to facilitate subsequent 

cloning procedures into the pTriEx-3 vector (Appendix B). 

 

Direct PCR of the gp41-encoding region was performed using a High Fidelity Expand PLUS 

PCR System (Roche; Mannheim, Germany). pGA4-gp160 DNA (approximately 50 ρg/µl) was 

added to a 100 µl PCR reaction mix, containing 1 x Expand HiFiPLUS Reaction Buffer with 1.5 

mM MgCl2, 200 µM dNTPs, 0.4 µM of each gp41 forward and reverse primers and 2.5 U of 

Expand HiFiPLUS Enzyme Blend.  All PCR reactions were carried out using an Applied 

Biosystems GeneAmp PCR System 9700 (Applied Biosystems; Foster City, CA).  An initial 

hot start at 94 ºC for 3 minutes was followed by a set of 40 cycles with each cycle comprising 

a denaturation step of 94 ºC for 30 seconds, an annealing step of 60 ºC for 45 seconds and 

an elongation step of 72 ºC for 3 minutes.  Upon completion of the final cycle, a single 10 
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minute elongation step followed at 72 ºC.  Thereafter reactions were cooled to 4 ºC and 

maintained at this temperature until analysed by gel electrophoresis, or stored at -20 ºC.  

After analysis of the PCR products on a 0.8% agarose gel (Appendix A2), successful PCR 

reactions were purified using a HighPure PCR Product Purification Kit (Roche; Mannheim, 

Germany), according to the manufacturer’s instructions. 

 

2.2.2 Preparation of gp160-Encoding DNA for Cloning 

 

A double restriction digest reaction was set up with the restriction endonucleases Xho I and 

Bsp HI (Pag I) (Fermentas; Ontario, Canada) in order to excise the gp160-encoding DNA 

from the pGA4-gp160 plasmid.  Restriction reactions contained Xho I (20 U), Bsp HI (20 U), 

1 X Fermentas Buffer O, and pGA4-gp160 DNA (1 µg) and were incubated at 37 ºC for 3 

hours.  The resulting pGA4-gp160 fragments resolved on a 0.8% agarose gel and the gp160-

encoding DNA was excised and purified using a MinElute Gel Extraction Kit (Qiagen; Hilden, 

Germany), according to the manufacturer’s instructions. The concentration of the purified 

gp160 DNA was measured spectrophotometrically (Nanodrop Technologies Inc; Wilmington, 

DE) and stored at -20 ºC until used in ligation reactions. 

 

2.2.3 Generation of Recombinant gp41- and gp160-Expression Vectors 

 

The amplified gp41 fragment/excised gp160 fragment were sub-cloned into the protein 

expression vector pTriEx-3 (Novagen; Darmstadt, Germany) (Appendix B). This vector 

incorporates three different promoters controlling the expression of protein from sequences 
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inserted into the pTriEx-3 multiple cloning site. This arrangement allows the expression of 

recombinant proteins in bacterial, insect or mammalian cells. 

 

2.2.3.1 Digestion and Ligation of pTriEx and gp41/gp160 Fragments 

 

The pTriEx-3 vector was prepared for cloning procedures as per methods outlined in 

Appendix A1.4.  Both the pTriEx-3 vector DNA and the amplified gp41 were digested with the 

restriction endonucleases Xho I and Nco I (Fermentas; Ontario, Canada).  Restriction 

reactions contained Xho I (20 U), Nco I (20 U), 1 X Fermentas Tango Buffer, and pTriEx-3 

DNA (2 µg) or gp41 DNA (2 µg) and were incubated at 37 ºC for 3 hours.  The digested 

pTriEx-3 vector and gp41 inserts were then resolved on a 0.8% agarose gel, excised and 

purified using a MinElute Gel Extraction Kit (Qiagen; Hilden, Germany) according to the 

manufacturer’s instructions.  gp160-encoding DNA fragments were prepared as per section 

2.2.2.  Purified vector and insert DNA concentrations were measured spectrophotometrically 

and stored at -20 ºC until used in ligation reactions. 

 

Ligation reactions were carried out using a Fermentas T4 DNA Ligase Kit (Fermentas; 

Ontario, Canada) and contained T4 DNA Ligase (1 U), 1 X T4 DNA Ligase Buffer, pTriEx-3 

vector DNA (50 ng) and either gp41 insert DNA (50 ng) for pTriEx-gp41 or gp160 insert DNA 

(125 ng) for pTriEx-gp160 and were set up and incubated overnight at 16 ºC.  5 µl of the 

ligation mix was then used to transform competent E. coli (DH5α) bacterial cells. 
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2.2.3.2 Colony Screening Procedures 

 

Colonies on positive ligation plates were selected under sterile conditions and cultured in LB 

Broth containing ampicillin (100 µg/ml).  Cultures were incubated overnight at 37 ºC in a 

shaking incubator. 

 

Initial screening was performed by PCR using a Promega PCR Master Mix (Promega; 

Madison, WI).  Overnight cultures were diluted 1:10 and used in a 20 µl PCR reaction 

containing 1 X Promega PCR Master Mix and the gp41 forward and gp41 reverse primers 

described in section 2.2.1.  PCR conditions described in section 2.2.1 were used for the 

amplification of gp41-encoding DNA and PCR products were resolved on a 0.8% agarose gel 

and visualised under UV light.  

 

The integrity of the clones positive for gp41-/gp160-insertion by PCR was then checked by 

performing restriction digestion analysis (Appendix B).  Recombinant plasmids were isolated 

from overnight cultures using a Sigma GenEluteTM Plasmid Miniprep Kit (Sigma-Aldrich; 

Steinheim, Germany), according to the manufacturer’s instructions.  pTriEx-gp41 and pTriEx-

gp160 were linearised with Xho I and Bam HI, respectively (Fermentas; Ontario, Canada), in 

order to get an accurate estimation of the size of the plasmid containing the insert.  A double 

digestion with restriction endonucleases Xho I and Nco I or Xho I and Xba I (Fermentas; 

Ontario, Canada) was performed on pTriEx-gp41 or pTriEx-gp160, respectively, in order to 

excise the gp41-/gp160-encoding DNA fragment from the pTriEx-3 vector.   All digestion 

reactions were incubated at 37 ºC for 3 hours.  Digested products, undigested plasmid and 

empty plasmid were then resolved on a 0.8% agarose gel (see section 2.4) and visualised 

under UV light. 
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2.2.3.3 Sequencing of pTriEx-gp41 and pTriEx-gp160 

 

From the panel of recombinant pTriEx-gp41 and pTriEx-gp160 clones, one clone for each 

was selected for sequence analysis.  Replica plates of the positive ligation plates were made 

by streaking 5 µl of the overnight cultures onto agar plates containing ampicillin (100 µg/ml) 

under sterile conditions.  These colonies were used for sequence analysis.  PTF 

(5’GTTATTGTGCTGTCTCATC3’) and PTR (5’TCGATCTCAGTGGTATTTGTG3) primers 

corresponding to sequences immediately flanking the pTriEx-3 multiple cloning site were 

used to sequence the gp41 and gp160 clones.  In addition to the PTF and PTR primers, 

primers corresponding to internal regions of the gp160-encoding fragments, gp160CO FV3 

F1 (5’GCTGATCAACTGCAACAC3), ’gp160CO FV3 F2 (5’CTGCAGTGTCGGATCAAG3’), 

gp160CO FV3 R1 (5’GATCTTGATGTACCACAG3’) and gp160CO FV3 R2 

(5’AGATCTCGGTCTTGTTCTC3’) were also used to sequence the gp160 clone due to its 

larger size.  All primers were synthesized by Inqaba Biotech (Pretoria, Gauteng, South 

Africa).  Sequencing reactions were set up by Dr Maria Papathanosopoulos and thereafter 

sequencing was conducted by The HIV Genotyping Laboratory (University of the 

Witwatersrand Medical School, Johannesburg, South Africa).  Sequences were assembled, 

edited and analysed using Sequencher v4.6 (GeneCodes, Ann Arbor, MI).         

 

2.3 Expression of gp41 in Bacterial Cell Culture 

 

BL21 (DE3) pLysS Singles Competent Cells (Novagen; Darmstadt, Germany) were 

transformed under sterile conditions with recombinant pTriEx-gp41.  After overnight 

incubation at 37 ºC on agar plates containing ampicillin (100 µg/ml) and chloramphenicol (35 
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µg/ml) (Calbiochem; Darmstadt, Germany) (Appendix A1), a single colony was selected 

under sterile conditions and used to inoculate 5 ml of LB Broth containing ampicillin (100 

µg/ml) and chloramphenicol (35 µg/ml).  These cultures were incubated overnight at 37 ºC in 

a shaking incubator. 

 

The following morning, the cultures were split between two tubes and diluted 1:10 with LB 

Broth containing the appropriate antibiotics.  The cultures were further incubated at 37 ºC in 

a shaking incubator to stimulate log phase growth for approximately 1 hour.  Once the A600 

measurement reached approximately 0.3, Isopropyl-β-D-thiogalactopyranoside (IPTG) 

(Roche; Mannheim, Germany) was added to a final concentration of 2.5 mM in order to 

induce protein expression.  IPTG was omitted from negative control cultures.  Cultures were 

incubated for a further 4 hours at 37 ºC in a shaking incubator and 500 µl samples were 

collected from each culture at 1 hour intervals.  The 500 µl samples were centrifuged at 2000 

x g for 20 minutes.  The pellets were resuspended in 50 µl of Phosphate Buffered Saline 

(PBS) (Sigma-Aldrich; Steinheim, Germany) and 50 µl of 2 X Treatment Buffer (Appendix 

A8), incubated at 80 ºC for 3 minutes and stored at -20 ºC until analysed for the presence of 

gp41 by SDS-PAGE and Western Blotting (Appendices A6 and A8). 

 

2.4 Protein Purification and Concentration of gp41 

 

2.4.1 Analysis of Protein Solubility 

  

Before final purification of recombinant gp41, the solubility of the expressed protein was 

assessed.  Expression of gp41 in BL21 cells was confirmed as described in section 2.5 and 
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thereafter the gp41-induced culture was centrifuged at 2000 x g for 20 minutes.  The 

supernatant was collected and designated S1.  The pellet was resuspended in lysis buffer 

(20 mM Na-Phosphate Buffer pH 7.8, 100 mM KCl, 1mM EDTA, 2mM β-mercaptoethanol, 

1% Nonidet P-40) containing 1 X Complete protease inhibitor (Roche; Mannheim, Germany) 

(Appendix A4), snap-frozen in liquid nitrogen and then thawed at 37 ºC.  Thereafter, the 

sample was sonicated on ice for three rounds of 15 second pulses and centrifuged at 10000 

x g for 5 minutes.  The supernatant, containing soluble protein was collected and designated 

S2.  The insoluble pellet was resuspended in lysis buffer containing 8 M urea (Appendix A4) 

and designated S3.  Samples were stored at -20 ºC until analysed via SDS-PAGE and 

Western Blotting. 

 

2.4.2 Preparation of Protein Samples to be Purified 

 

Two tubes containing 200 ml of gp41-induced BL21 cell culture each were centrifuged at 

2000 x g for 20 minutes and the pellet resuspended in 10 ml lysis buffer containing 1 X 

Complete protease inhibitor.  The samples were then snap-frozen in liquid nitrogen, thawed 

at 37 ºC and sonicated on ice as described.  Sonicated samples were centrifuged at 2000 x g 

for 20 minutes, the supernatants were collected and imidazole was added to the 

supernatants to a final concentration of 10 mM (lysate). 

 

2.4.3 Preparation of Columns 

 

Nickel-charged iminodiacetate-sepharose 6B resin (kindly prepared and donated by Dr 

Wolfgang Prinz) was used to purify the recombinant gp41 protein.  This is made possible by 
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the presence of a His-Tag on the recombinant gp41 protein, which binds to the nickel-

charged sepharose.  Two tubes containing 2 ml of the above mentioned bead solution each 

were washed with 30 ml of dH2O and centrifuged at 3220 x g for 5 minutes. 10 ml of a 0.1 M 

NiSO4 solution was added to each tube, which were incubated at room temperature on a 

shaker for 10 minutes.  The tubes were centrifuged at 3220 x g for 5 minutes and the 

supernatant removed.  Beads were washed and centrifuged twice at 3220 x g for 5 minutes 

and thereafter equilibrated with 10 ml of equilibration buffer (20 mM Na-Phosphate Buffer, 

100 mM NaCl, 2 mM β-mercaptoethanol, 0.1 mM EDTA) containing 10 mM imidazole  

(Appendix A4).  They were centrifuged again and the supernatant was removed.  

  

2.4.4 Purification Procedure 

 

Purification of recombinant gp41 protein was performed using a batch procedure.  The 

lysates (10 ml) were added to the beads (2 ml) and incubated overnight at 4 ºC on a shaker.  

After the overnight incubation, the beads were centrifuged at 3220 x g for 5 minutes and the 

supernatant was collected (flow-through).  The beads were then washed three times with 10 

ml of wash buffer (20 mM Na-Phosphate Buffer ph 7.8, 100 mM NaCl, 2 mM β-

mercaptoethanol, 0.1 mM EDTA) containing 10 mM imidazole and thereafter a further three 

times with 10 ml of wash buffer containing 50 mM imidazole.  The protein was eluted in 1 ml 

of equilibration buffer containing 500 mM imidazole, by centrifuging at 3220 x g for 5 minutes 

at 4 ºC and collecting the supernatants.  100 µl samples were taken from the lysate, the flow-

through, all the washing steps and the elution for analysis by SDS-PAGE and Western 

Blotting. 
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2.4.5 Concentration of Recombinant gp41 

 

The purified gp41 samples were pooled and dialysed in 1 L of PBS overnight at 4 ºC, using 

SnakeSkin® Pleated Dialysis Tubing (Pierce; Rockford, IL).  The following day the protein 

was further dialysed for 2 hours at 4 ºC in 1 L of fresh PBS.  The dialysed protein was then 

concentrated using Amicon® Ultra-15 Centrifugal Filter devices (Molecular Weight cut off 10 

kDA) (Millipore; Billerica, MA), according to the manufacturer’s instructions and stored at -80 

ºC until analysed via SDS-PAGE and Western Blot.  Western Blot analysis was achieved 

using the F-240 antibody (NIH AIDS Research and Reference Reagent Program, Division of 

AIDS, NIAID, NIH), which recognizes the LGIWGCSGKLICTT epitope located in the 

membrane-proximal region (MPER) of the gp41 protein.  The purity of the recombinant gp41 

was assessed via Coomassie and Silver Staining (Appendix A7).  

 

2.5 Expression of gp160 in Mammalian Cell Culture 

 

HEK 293T cells were transfected with recombinant pTriEx-gp160 using CaCl2 (Appendix A3).  

The concentration of pTriEx-gp160 DNA was measured spectrophotometrically and diluted to 

20 µg in dH20 to a final volume of 450 µl (143 µl of pTriEx-gp160 DNA + 307 µl of dH20).  50 

µl of CaCl2 solution (2.5 M) and 500 µl of HEPES solution (Appendix A3) were then added to 

the DNA solution and the complexes were incubated at room temperature for 20 minutes 

before being added to the cells.  Transfection complexes containing no DNA were also used 

as negative controls.  Cells were incubated with the transfection complexes overnight at 37 

ºC with CO2 levels strictly set at 5%.  After the overnight incubation, the medium was 



 38 

removed and 10 ml of fresh medium was added.  Total membrane and lipid raft isolations 

were performed 72 hours after transfections (see sections 2.6 and 2.7).  

 

2.6 Total Membrane Isolation 

 

Membrane isolation was performed by sucrose gradient centrifugation according to methods 

described by Alexander et al, with minor adjustments (Alexander et al., 2004).  

Approximately 6 X 106 U87 X4 and U87 R5 cells or transfected HEK 293T cells were 

centrifuged for 5 minutes at 200 x g and resuspended in 400 µl of flotation buffer (25 mM 

Tris-HCl pH 7.4, 150 mM NaCl, 5 mM EDTA, 10 mM β-Glycerol phosphate Disodium salt 

Pentahydrate, 30 mM NaPO4).  Thereafter the cells were lysed by three cycles of freeze-

thawing in liquid nitrogen and a 37 °C water bath.  Nuclei and unbroken cells were 

centrifuged at 2000 x g for 5 minutes and the supernatant was collected (S1).  The pellet was 

washed with 100 µl of flotation buffer, centrifuged again at 2000 x g for 5 minutes and the 

resulting supernatant (S2) was added to S1.  Combined supernatants were adjusted to 80% 

sucrose in a volume of 2 ml, which was layered at the bottom of an SW41 Beckman 

centrifuge tube (Beckman Coulter Inc; Fullerton, CA).  Layers of 65% (5.5 ml) and 10% (4.5 

ml) sucrose solutions (in flotation buffer) were added gently to the top of the 80% sucrose 

sample and the tubes were centrifuged using a Beckman Coulter OptimaTM L-80 XP 

Ultracentrifuge (Beckman Coulter Inc; Fullerton, CA) at 35000 rpm for 18 hours at 4 °C.  1 ml 

fractions were gently removed from the top of the gradient and stored at –20 °C until 

analysed by SDS-PAGE, Western Blotting and Immuno-Slot Blotting (see section 2.9).   
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2.7 Lipid Raft Isolation 

 

Lipid rafts were isolated by sucrose gradient centrifugation according to the methods 

described by Triantafilou et al, with minor modifications (Triantafilou et al., 2004).  

Approximately 6 X 106 U87 X4 and U87 R5 cells or transfected HEK 293T cells were 

centrifuged for 5 minutes at 200 x g and resuspended in 400 µl of flotation buffer containing 

1% Triton X-100 and incubated on ice for 1 hour.  Nuclei and unbroken cells were 

centrifuged at 2000 x g for 5 minutes and the supernatant was collected (S1).  The pellet was 

washed with 100 µl of flotation buffer containing 1% Triton X-100, centrifuged at 2000 x g for 

5 minutes and the resulting supernatant (S2) was added to S1.  This was then adjusted to 

45% sucrose in a final volume of 2 ml, which was layered at the bottom of an SW41 

Beckman centrifuge tube (Beckman Coulter Inc; Fullerton, CA).  Layers of 30% (5.5 ml) and 

5% (4.5 ml) sucrose solutions (in flotation buffer) were then gently added on top of the 45% 

sucrose sample and the tubes were centrifuged using a Beckman Coulter OptimaTM L-80 XP 

Ultracentrifuge at 35000 rpm for 18 hours at 4 °C.  1 ml fractions were gently removed from 

the top of the gradient and stored at –20 °C until analysed by SDS-PAGE, Western Blotting 

and Immuno-Slot Blotting. 

 

2.8 Western Blot Analysis 

 

Proteins were transferred from SDS-PAGE gels onto Hybond-C nitrocellulose membrane 

(Amersham Biosciences UK Limited; Little Chatfont, Buckinghamshire, England) using a 

Trans-Blot SD Semi-Dry Transfer Cell System (Bio-Rad; Hercules, CA).  Following protein 

transfer, the membrane was blocked in 5% fat free milk powder solution in Tris-buffered 
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saline (TBS) containing 0.1% Tween-20 (T-TBS).  The membrane was then probed with 

either anti-transferrin (250 ng/ml or 300 ng/ml), anti-tubulin (200 ng/ml or 250 ng/ml), anti-

CD4 (70 ng/ml or 100 ng/ml), anti-CXCR4 (200 ng/ml), anti-CCR5 (200 ng/ml) or anti-F-240 

(2 µg/ml or 4 µg/ml) primary antibodies and thereafter with either anti-mouse, anti-human or 

anti-goat secondary antibodies conjugated with horseradish peroxidase (HRP) (details 

outlined in Appendix A8).  Detection of protein was performed by standard 

chemiluminescence methods (Appendix A9).      

 

2.9 Immuno-Slot Blot Analysis 

 

100 µl of each sample was diluted in 200 µl of flotation buffer.  Membrane and lipid raft 

fractions were slotted onto nitrocellulose membrane using a slot blot apparatus (Schleicher 

and Schuell; Dassel, Germany) and blocked with 5% fat free milk powder solution in T-TBS.  

The membrane was then washed three times with T-TBS and incubated for 1 hour with a 

cholera toxin subunit B (recombinant) horseradish peroxidase (HRP) conjugate (CT-B) 

solution (1 µg/ml) (Molecular Probes, Oregon, USA) at room temperature on the bench top.  

The membrane was washed three times with T-TBS and analysed by standard 

chemiluminescence methods. 
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2.10 Fluorescence Microscopy Analysis of Co-receptor Localization 

 

2.10.1 Cell Preparation on Chamber Slides 

 

Fluorescence experiments were carried out using a Lab-Tek® II Chamber Slide System 

(Nunc; Naperville, IL).  Approximately 1 X 105 U87 R5 or U87 X4 cells were seeded onto the 

chamber slides 24 hours prior to antibody staining.  The following day, the growth medium 

was removed and the chambers were gently washed three times with PBS at room 

temperature.  The cells were fixed onto the chamber slides using 3% formaldehyde solution 

(Appendix A10) for 15 minutes at room temperature.  The fixative was then removed and the 

chambers were gently washed three times with PBS at room temperature.  Thereafter, the 

chamber slides were blocked for 10 minutes at room temperature, using PBS containing 

0.5% BSA (Appendix A10).  The blocking buffer was removed and the chamber slides were 

probed with either a FITC-labelled anti-transferrin, Alexa Fluor 488 conjugated CT-B, PE-

labelled anti-CXCR4 or PE-labelled anti-CCR5 antibody overnight at 4 ºC (details outlined in 

Appendix A10).  After the overnight incubation, the antibodies were removed and the slides 

were gently washed three times with PBS containing 0.5% BSA at room temperature.  The 

nuclei were then stained using 4’, 6 diamidino-2-phenylindole (DAPI) solution (100 ηg/ml) 

(Sigma-Aldrich; Steinheim, Germany), for 10 minutes at 4 ºC in the dark, and the chambers 

were once again gently washed three times with PBS at room temperature.  The chambers 

were removed and cover slips were mounted onto the slides using FluorSave Reagent 

(Calbiochem; Darmstadt, Germany).  The slides were stored at 4 ºC in the dark for a 

minimum of 1 hour before visualisation. 
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2.10.2 Visualisation of Slides under Fluorescence Microscope 

 

Slides were visualised using an Olympus IX71 Fluorescence Microscope System (Olympus; 

Center Valley, PA) and images were captured using the analySIS LS Research Olympus 

Imaging Software System (Olympus; Center, PA).  The PE-labelled antibodies were excited 

at 590 nm and the emitted light collected at 617 nm.  The red fluorescence was detected with 

the standard Alexa Fluor 546 filter set.  The FITC-labelled antibody and the Alexa Fluor 488-

conjugated antibody were excited at 494 nm and the emitted light collected at 518 nm.  DAPI 

was excited at 345 nm and the emitted light collected at 455 nm.  All slides were viewed and 

images captured using the 60 X objective. 

 

2.11 Infections and Fusion Studies 

 

In order to conduct the fusion experiments, viruses were needed to be amplified in order to 

saturate U87 X4/R5 cells with enough virus to ensure successful fusion events occurred and 

to ensure successful detection of gp41 with the monoclonal antibody, F-240.  Two 

representative HIV-1 subtype C viral isolates, FV3 and FV5, which have previously been 

isolated and propagated in our laboratory, were used to infect U87 X4 and U87 R5 cells 

respectively. 
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2.11.1 Infections 

 

2.11.1.1 Amplification of Virus 

 

Viral stocks were amplified by successive infections of cells in 25 cm2, 75 cm2 and 175 cm2 

cell culture flasks (Nunc; Naperville, IL).  Briefly, U87 X4 and U87 R5 cells were seeded into 

the cell culture flasks and once cells reached approximately 60% confluency, they were 

infected with the FV3 (TCID50= 5 x 108) and FV5 (TCID50 = 5 x 109 ) viral stocks, respectively.  

Infections were allowed to proceed for 5 days, following removal of the original inoculum after 

24 hours and replacement with fresh medium.  200 µl samples were collected every second 

day for analysis (by p24 antigen ELISA).  Supernatants were harvested and stored at -80 ºC 

on day 5.  These samples were used for p24, viral load as well as SDS-PAGE and Western 

Blot analysis.  

 

2.11.1.2 Post-Infection Analyses 

 

Viral replication was confirmed by the presence of p24 antigen in the harvested 

supernatants.  This was ascertained using a Beckman CoulterTM HIV-1 p24 Antigen EIA kit 

(Beckman Coulter Inc; Fullerton, CA) according to the manufacturer’s instructions.  In 

addition, to corroborate p24 measurements and enable MOI estimations for fusion 

experiments, viral titres (expressed as particles/ml) were calculated by viral load testing at 

the PCR laboratory (University of the Witwatersrand Medical School, Johannesburg, South 

Africa).  To confirm the presence and relative quantity of FV3/FV5 gp41, SDS-PAGE and 
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Western Blot analysis was performed on samples of the virus-containing supernatants using 

the monoclonal antibody, F-240. 

 

2.11.2 Fusion Studies 

 

Fusion experiments were performed according to methods described by Mkrtchyan et al, with 

adjustments (Mkrtchyan et al., 2005).  U87 R5 cells were seeded either into 25 cm2 cell 

culture flasks, each containing 5 ml of growth medium, or onto Lab-Tek® II Chamber Slides, 

each containing 2 ml of growth medium.  Once cells reached approximately 70% confluency, 

the growth medium was removed and 5 ml/2 ml fresh medium was added to each 

flask/chamber.  Cells were incubated with the fresh medium for a minimum of 30 minutes.  

Thereafter, cells were pre-incubated at 23 ºC for a further 30 minutes in order for cell cultures 

to adjust to the lowered temperature to be used for the fusion experiments.  This temperature 

has been found to permit gp120-CD4 receptor engagement, but is non-permissive for fusion 

of the viral and host cell membranes (Mkrtchyan et al., 2005).  Once U87 R5 cells were 

equilibrated at 23 ºC, they were infected with approximately 250 viral particles/cell of 

amplified FV5 virus (Appendix C) and incubated at 23 ºC for 2 hours to synchronize infecting 

virions at the temperature-arrested stage (TAS).  Thereafter, flasks/chamber slides were 

transferred back to 37 ºC and incubated for a further 3 hours, to allow for completion of the 

fusion process.  Uninfected cells were used throughout these experiments as negative 

controls. Total membrane and lipid raft isolations (described in sections 2.6 and 2.7) were 

performed on all cells grown in cell culture flasks, from both the TAS and the 3 hours post-

TAS stages, and thereafter samples were subjected to SDS-PAGE and Western Blot 
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analysis.  Fluorescence microscopy analysis (described in section 2.10) was performed on 

all cells grown on the chamber slides, from both the TAS and the 3 hours post-TAS stages.    
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CHAPTER 3: RESULTS 
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3.1 Generation of Recombinant gp41- and gp160-Expression 

Vectors 

 

The generation of a gp41-expression vector (pTriEx-gp41) was performed in order to 

produce and purify a recombinant subtype C gp41 protein as an immunoblotting control.  

Further, a vector (pTriEx-gp160) expressing the gp160 envelope in transfected mammalian 

cells, was used to pilot the extraction and immunodetection of the corresponding, membrane-

embedded gp41 protein.  Full length gp41-encoding DNA was amplified from a plasmid 

template containing a codon optimized gp160 sequence derived from the HIV-1 subtype C 

isolate, FV3 (pGA4-160).  PCR primers were designed in order for the gp41 gene to be 

amplified and cloned in the pTriEx-3 plasmid.    A 1 kb band, resolved on a 0.8% agarose gel 

(Figure 3.1 A), confirmed that PCR amplification was successful.  

 

Double-digested gp41 PCR product and gp160-encoding DNA were inserted into the multiple 

cloning site of the double-digested pTriEx-3 plasmid at a 1:5 molar ratio of vector: insert.  In 

order to confirm that the inserts and the vector were successfully ligated, PCR was 

performed on colonies from the ligation plates that were incubated overnight in LB Broth.  For 

both gp41 and gp160, the gp41 primers were used and positive PCR reactions were shown 

by the presence of a 1 kb DNA product on a 0.8% agarose gel (Figure 3.1 B).   

 

After PCR confirmation, recombinant plasmids were isolated from LB Broth and their integrity 

was confirmed by restriction digestion analysis.  gp41-pTriEx plasmids were linearised with 

Xho I, which yielded a DNA product of approximately 6 kb (Figure 3.1 C, Lane 3) , and the 

insert was excised from the plasmid using Xho I and Nco I, which yielded two DNA products 
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of approximately 1 kb and 5 kb (Figure 3.1 C, Lane 4).  Likewise, gp160-pTriEx plasmids 

were linearised with a Bam HI, which yielded a DNA product of approximately 7.5 kb (Figure 

3.1 D, Lane 2).  The insert was excised from the plasmid using Xho I and Xba I, yielding two 

DNA products of approximately 2.9 kb and 4.6 kb (Figure 3.1 D, Lane 3). Xba I was used in 

the excision of the gp160 insert as Nco I and Bsp HI do not reconstitute a recognizable 

restriction site even though they do form compatible sticky ends.  The Xba I restriction site is 

situated outside the 3’ extremity of the insert and this, therefore, yielded a slightly larger DNA 

product compared to the expected 2.5 kb size of the insert and a slightly smaller pTriEx-3 

product compared to the normal size of 5 kb (Restriction Maps in Appendix B). 

 

Plasmids containing the correct size of gp41 and gp160 inserts were sequenced, which 

confirmed that the inserts were in the correct orientation, in the correct reading frame and 

that no mutations had been generated during amplification.  DNA sequences of the gp41 and 

gp160 clones were aligned against the FV3 codon optimized gp160 sequence (Appendix C).  

Amino acid sequences were also aligned and key domains, as well as important gp41 

monoclonal antibody epitopes, were identified and highlighted (Figure 3.2).   
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Figure 3.1: Agarose gel electrophoresis of PCR products and restriction digestion 
analysis.  All DNA samples were resolved on a 0.8% agarose gel, and visualised under UV 
light.  (A) Purified gp41 PCR products.  (B) Representative agarose gel of PCR 
screening.  Colonies selected from plates containing E. coli cells transformed with ligation 
mixes were grown overnight and subjected to PCR using gp41-specific primers. Generation 
of a 1 kb DNA fragment implied positive recombination between pTriEx-3 vector and gp41 or 
gp160 insert DNA.  Representative digestion restriction analysis of (C) recombinant pTriEx-
gp41 and (D) recombinant pTriEx-gp160 vectors. 
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                    *        20         *        40         *        60         *        80         *       100       

FV3 gp160 : MRVMGTQRNCQQWWIWGILGFWMLMICNGGNLWVTVYYGVPVWKEAKTTLFCASDAKAYEKEVHNVWATHACVPTDPNPQEMKLRNVTENFNMWKNDMVD : 100 

gp160     : MRVMGTQRNCQQWWIWGILGFWMLMICNGGNLWVTVYYGVPVWKEAKTTLFCASDAKAYEKEVHNVWATHACVPTDPNPQEMKLRNVTENFNMWKNDMVD : 100 

gp41      : ---------------------------------------------------------------------------------------------------- :   - 

                                                                                                                       

                                                                                                                       

                     *       120         *       140         *       160         *       180         *       200       

FV3 gp160 : QMNEDIISLWDESLKPCVKLTPLCVTLNCSDVTYNATNATNNTTTTTHNTTETTPYAKISNITDDMKNCSFNVTTGLRDKRKQESALFYRLDIIPLNGNK : 200 

gp160     : QMNEDIISLWDESLKPCVKLTPLCVTLNCSDVTYNATNATNNTTTTTHNTTETTPYAKISNITDDMKNCSFNVTTGLRDKRKQESALFYRLDIIPLNGNK : 200 

gp41      : ---------------------------------------------------------------------------------------------------- :   - 

                                                                                                                       

                                                                                                                       

                     *       220         *       240         *       260         *       280         *       300       

FV3 gp160 : ENSSEYRLINCNTSTIRQACPKVSFDPIPIHYCAPAGFAILKCNDKTFNGTGPCHDVSTVQCTHGIKPVVSTQLLLNGSLAEEEIVIRSENLTNNAKIII : 300 

gp160     : ENSSEYRLINCNTSTIRQACPKVSFDPIPIHYCAPAGFAILKCNDKTFNGTGPCHDVSTVQCTHGIKPVVSTQLLLNGSLAEEEIVIRSENLTNNAKIII : 300 

gp41      : ---------------------------------------------------------------------------------------------------- :   - 

                                                                                                                       

                                                                                                                       

                     *       320         *       340         *       360         *       380         *       400       

FV3 gp160 : VHLNESVEIKCSRPGNNTRKSVRIGIGRGQTFYATGKVIGDIRQAHCNVSREAWNKTLEKVKRKLGEHFPNSTITFNHSSGGDLEITTHSFNCRGEFFYC : 400 

gp160     : VHLNESVEIKCSRPGNNTRKSVRIGIGRGQTFYATGKVIGDIRQAHCNVSREAWNKTLEKVKRKLGEHFPNSTITFNHSSGGDLEITTHSFNCRGEFFYC : 400 

gp41      : ---------------------------------------------------------------------------------------------------- :   - 

                                                                                                                       

                                                                                                                       

                     *       420         *       440         *       460         *       480         *       500       

FV3 gp160 : NTSDLFKDNITITNSTNNTVITLQCRIKQIINMWQRAGQAIYAPPIRGNITCNSNITGLLLTRDGGKDNKTNNENKTEIFRPGGGDMRDNWRSELYKYKV : 500 

gp160     : NTSDLFKDNITITNSTNNTVITLQCRIKQIINMWQRAGQAIYAPPIRGNITCNSNITGLLLTRDGGKDNKTNNENKTEIFRPGGGDMRDNWRSELYKYKV : 500 

gp41      : ---------------------------------------------------------------------------------------------------- :   - 

 

                                                                                                  

                          end gp120, beginning gp41                                                                                             

                     *       520         *       540         *       560         *       580         *       600       

FV3 gp160 : VEIKPLGIAPTTAKRRVVEREKRAVGIGAVLLGFLGAAGSTMGAASITLTAQARQVLSGIVQQQSNLLRAIEAQQHMLQLTVWGIKQLQARVLALERYLQ : 600 

gp160     : VEIKPLGIAPTTAKRRVVEREKRAVGIGAVLLGFLGAAGSTMGAASITLTAQARQVLSGIVQQQSNLLRAIEAQQHMLQLTVWGIKQLQARVLALERYLQ : 600 

gp41      : -----------------------AVGIGAVLLGFLGAAGSTMGAASITLTAQARQVLSGIVQQQSNLLRAIEAQQHMLQLTVWGIKQLQARVLALERYLQ :  59 

                                                                                                                       

                                                                                                                       

                     *       620         *       640         *       660         *       680         *       700       

FV3 gp160 : DQQLLGIWGCSGKLICTTAVPWNSSWSNRNYSDIWDNMTWMQWDGEISNYTNIIYQLLEESQIQQEKNEKDLLALDSWNSLWNWFSITKWLWYIKIFIMI : 700 

gp160     : DQQLLGIWGCSGKLICTTAVPWNSSWSNRNYSDIWDNMTWMQWDGEISNYTNIIYQLLEESQIQQEKNEKDLLALDSWNSLWNWFSITKWLWYIKIFIMI : 700 

gp41      : DQQLLGIWGCSGKLICTTAVPWNSSWSNRNYSDIWDNMTWMQWDGEISNYTNIIYQLLEESQIQQEKNEKDLLALDSWNSLWNWFSITKWLWYIKIFIMI : 159 

                                                                                                                       

                                                                                                                       

                     *       720         *       740         *       760         *       780         *       800       

FV3 gp160 : IGGLVCLRIIFAVISLVNRVRQGYSPLSFQTLTPSPRDLDRLRGIEEEGGEQDRDRSIRLVSGFLPIVWDDLRSLCLFSYHRLRDFILIVVRAVELLGRS : 800 

gp160     : IGGLVCLRIIFAVISLVNRVRQGYSPLSFQTLTPSPRDLDRLRGIEEEGGEQDRDRSIRLVSGFLPIVWDDLRSLCLFSYHRLRDFILIVVRAVELLGRS : 800 

gp41      : IGGLVCLRIIFAVISLVNRVRQGYSPLSFQTLTPSPRDLDRLRGIEEEGGEQDRDRSIRLVSGFLPIVWDDLRSLCLFSYHRLRDFILIVVRAVELLGRS : 259 

                                                                                                                       

                                                                                              

                     *       820         *       840         *       860         *            

FV3 gp160 : SLRGLQRGWEALKFLGNLVQYWGLELKKSAINLLDTIAIAVAEGTDRIIEFIQRFCRAILNIPTRIRQGFEAALL : 875 

gp160     : SLRGLQRGWEALKFLGNLVQYWGLELKKSAINLLDTIAIAVAEGTDRIIEFIQRFCRAILNIPTRIRQGFEAALL : 875 

gp41      : SLRGLQRGWEALKFLGNLVQYWGLELKKSAINLLDTIAIAVAEGTDRIIEFIQRFCRAILNIPTRIRQGFEAALL : 334 

                                                                                              

 

 

gp160 Alignment Key: 

 

• Signal Peptide 

• gp120 Variable Region 1 V1 

• gp120 Variable Region 2 V2 

• gp120 Variable Region 3 V3 

• gp120 Variable Region 4 V4 

• gp120 Variable Region 5 V5 

• Fusion Peptide 

• gp41 Coiled-Coil Peptide 

Sequence N34 

• gp41 Coiled-Coil Peptide 

Sequence C28 

• gp41 Transmembrane Domain 

• gp41 Cytoplasmic Tail 

• F-240 Monoclonal Antibody 

Epitope 

• 2F5 Monoclonal Antibody 

Epitope 

• 4E10 Monoclonal Antibody 

Epitope 

 

 

 

 

Figure 3.2: Amino acid sequence alignment of gp41 and gp160 clones.  Sequences of 
gp41 and gp160 clones were aligned and compared to the FV3 codon optimized gp160 
sequence.  Amino acid sequences of gp160 and gp41 showed 100% similarity to the codon 
optimized sequence.  Highlighted sections show the different domains of the gp160 protein; 
also shown are the epitopes of several important monoclonal antibodies that bind gp41, two 
of which have broadly neutralising activities (2F5, 4E10).   
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3.2 Expression and Purification of gp41    

 

Recombinant gp41 was expressed in BL21 pLysS E. coli cells and purified by affinity 

chromatography procedures, whereby the His-Tag included in the cloned gp41 sequence 

was able to bind to nickel-charged beads.  This protein (designated gp41-6xHis) was utilized 

as a positive control for gp41 recognition by the monoclonal antibody, F-240, during viral 

fusion experiments.  Expression of the gp41-6xHis protein was assessed over a 4 hour 

period, following induction with IPTG.  Expressed gp41 was detected by Western Blot 

analysis using the F-240 antibody (Figure 3.3 A), which recognizes the gp41 epitope, 

LGIWGCSGKLICTT. 

 

The solubility of the expressed gp41-6xHis was then assessed and it was found that a 

significant amount of the protein was present in the soluble form (Figure 3.3 B, Lane 5).  This 

was unexpected as other studies have shown that most recombinant gp41 proteins are 

expressed as forms that need to be solubilized with agents such as urea and guanidine-HCL 

(Wingfield et al., 1997; Krell et al., 2004; Penn-Nicholson et al., 2008).  The reasons for this 

are unclear, but this observed atypical solubility could be due to different folding patterns of 

the recombinant protein, which may or may not be sequence-specific.  Solubility could 

possibly arise from the masking or shielding of the insoluble domains of gp41-6xHis by the 

soluble domains during folding, therefore making the protein more hydrophilic.  Such 

shielding could be influenced by intramolecular associations, whereby the hydrophobic 

domains are masked by the hydrophilic domains during oligomerisation and six-helix bundle 

formation.  Intermolecular associations could also play a role in producing a soluble form of 

gp41 due to the proteins aggregating in such a manner as to shield the hydrophobic regions.  
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The purification of the soluble protein was performed by affinity chromatography using a 

nickel-charged iminodiacetate-sepharose 6B resin, to bind a C-terminal poly-histidine tag on 

the recombinant gp41-6xHis.  The efficiency of gp41-6xHis binding and elution was shown by 

Western Blot analysis using the F-240 antibody (Figure 3.3 C), and Coomassie and Silver 

Stain analysis confirmed the purity of concentrated recombinant gp41-6xHis (Figures 3.3 D 

and E). 

 

gp41-6xHis appeared to exist in three different forms (probably monomers, dimers and 

trimers) which were seen through Western Blot analysis.  The monomer was seen as a 26 

kDa protein band, which is smaller than the predicted size of 41 kDa.  The ‘dimer’ was 

observed as a 75 kDa protein band and the ‘trimer’ as a 127 kDa protein band.  While 

unexpected, these observations are consistent with previously published data, which has 

shown that recombinant gp41 readily olgimerises into highly stable dimeric and trimeric forms 

that are resistant to denaturation during denaturing PAGE (Frey et al., 2008).  The sizes we 

obtained, however, are slightly different to those found in the previously published literature.  

This has been suggested to be due to the complex folding and strong hydrophobic bonds 

formed during gp41 oligomerisation.  The positive control utilized throughout these 

experiments is an E. coli derived recombinant gp41 protein containing the immunodominant 

regions of gp41, which resolves at the predicted 41 kDa on SDS-PAGE gels (obtained from 

RPC Diagnostic Systems Ltd., Russia).  This is most likely due to the fact the protein was 

purified and stored in urea, a chaotropic agent used to disrupt strong inter- and 

intramolecular hydrophobic protein interactions. 
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Figure 3.3: Analysis of gp41 expression, solubility and purification.  gp41 expression  
studies were carried out in BL21 pLysS E. coli cells induced with 2.5 mM IPTG.  The 
solubility of expressed gp41 was assessed and the protein was purified by batch preparation 
using nickel-charged iminodiacetate-sepharose 6B resin.  (A) Western Blot analysis of 
gp41 expression.  T0: Point at which IPTG was added.  T1: 1 hr-post induction.  T2: 2 hrs-
post induction.  T3: 3 hrs-post induction.  T4: 4 hrs-post induction; 1: Induced samples.  2: 
Uninduced samples.  3: Negative control.  (B) Western Blot analysis of gp41 solubility.  
(C) Western Blot analysis of batch purification of gp41.  Wash 1: 10 mM imidazole.  
Wash 2: 50 mM imidazole.  gp41 eluted in 150 mM imidazole.  (D) Coomassie Staining and 
(E) Silver Staining.  Samples were resolved on 10% SDS-PAGE gels to assess the purity of 
concentrated gp41.             
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3.3 Expression of gp160 

 

HEK 293T cells were transfected with recombinant pTriEx-gp160 in order to assess the 

efficiency of the extraction and detection of gp41 in isolated total membrane/raft fractions 

using monoclonal antibody F-240.  The isolated total membrane and lipid raft fractions were 

pooled for this experiment (See Figure 3.4 for diagram showing the flotation procedure).  

Pool 1 corresponds to fractions 1-3, pool 2 to fractions 4-6, pool 3 to fractions 7-9 and pool 4 

to fractions 10-12.  This was done as it had already been ascertained that these pooled 

fractions consistently showed the same results, therefore allowing for more rapid 

optimization.  Pooled samples were resolved on 10% SDS-PAGE gels and Western Blot 

analysis was performed using the monoclonal antibody F-240 (Figure 3.5).  Results showed 

that two bands of approximately 43 kDa and 160 kDa, ostensibly representing the gp41 and 

gp160 proteins respectively, localized to membrane fraction 2.  The corresponding bands 

were seen in fraction 4 of the lipid raft samples.  This further confirmed membrane 

localization of gp160, as membrane-bound proteins would be located in the bottom sucrose 

fraction when treated with detergent, since they would no longer possess the buoyancy of 

the membrane to allow for flotation in the sucrose gradient.  No bands of similar sizes were 

seen in the untransfected raft and membrane samples.  These results indicated that the 

isolation and detection of gp41 expressed on the surface of cells by density-gradient 

centrifugation and Western Blot techniques respectively, was successful. 
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Figure 3.4: Diagram showing the principle of membrane flotation by sucrose density 
gradient centrifugation.  Lysed cell samples (snap-frozen and thawed for total membrane 
isolations and treated with Triton X-100 for lipid raft isolations) are layered at the bottom of a 
centrifuge tube and upon centrifugation, the buoyancy of the membranes causes migration 
through the density gradient.  Proteins associated with membrane or lipid raft domains co-
migrate in this manner and proteins not bound to these domains remain at the bottom of the 
sucrose gradient.  
 
 
 

    
 

Figure 3.5: Western Blots showing gp160 expression in HEK 293T cells.  HEK 293T 
cells were transfected with pTriEx-gp160.  Lipid raft and membrane domains of transfected 
and untransfected cells were extracted and pooled samples were resolved on 10% SDS-
PAGE gels.  Western blot analysis was then performed using the F-240 antibody. 
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3.4 Analysis of Membrane Domain Localization of HIV-1 Receptor 

Proteins CD4, CCR5 and CXCR4 in Uninfected Cells 

 

3.4.1 Western Blot Analysis of CD4, CCR5 and CXCR4 Receptors 

 

U87 X4 and U87 R5 cells were used for the analysis of receptor protein localization in 

membrane and lipid raft domains.  Lipid raft and total membrane fractions were isolated by 

density-gradient centrifugation and the collected fractions were resolved on 10% SDS-PAGE 

gels.  Western Blot analysis was then performed on the fractions using a transferrin (TFR) 

antibody to detect the TFR non-raft marker, a tubulin (TUB) antibody to detect the TUB 

cytoplasmic marker, a CD4 antibody to detect CD4 (Figure 3.6), the CXCR4 antibody to 

detect X4 and the CCR5 antibody to detect R5 (Appendix F).  Slot Blot analysis was also 

performed on the 12 raft and 12 membrane fractions using the cholera toxin sub-unit B HRP 

conjugate antibody to detect the GM1 ganglioside lipid raft marker, as this lipid is too small, 

and perhaps too hydrophobic, to be resolved on a SDS-PAGE gel (Figure 3.6).  Cholera 

toxin was used, as it is well known that this bacterial toxin naturally binds to GM1 ganglioside 

in order for entry into its host cell and therefore it acts as a good detection method when 

conjugated to HRP for Western Blot analysis.  

 

GM 1 ganglioside was detected mostly in raft fractions 3, 4 and 5 (Figure 3.6 A and B, Lanes 

3, 4 and 5), which is consistent with its role as a fundamental structural component of raft 

microdomains.  As expected, smaller amounts were also seen in the total membrane 

fractions, illustrating the constituent contribution of rafts to the membrane bilayer (Figure 3.6 

A and B, Lanes 4 and 5).  TFR was detected predominantly in total membrane fraction 5 and 
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in fractions 10-12 of the raft gradients, consistent with it being a non-raft, membrane-bound 

protein (Figure 3.6 A and B, Lanes 5, 10, 11 and 12).  TUB was detected in fractions 10, 11 

and 12 of the raft and total membrane extractions, confirming a cytoplasmic localization 

(Figure 3.6 A and B, Lanes 10, 11 and 12).  A small amount of TUB was seen in total 

membrane fractions 5 and 6, which probably results from partial association and flotation 

with the inner portion of the cell membrane (Figure 3.6 A and B, Lanes 5 and 6).  The CD4 

receptor was detected in both the raft and total membrane fractions 4 and 5, showing an 

equal distribution between the two domains (Figure 3.6 A and B, Lanes 4 and 5), which is 

consistent with previously published literature (Del Real et al., 2002; Kozak et al., 2002; 

Popik et al., 2002; Percherancier et al., 2003; Popik and Alce, 2004).  The U87 X4 cells and 

U87 R5 cells showed similar patterns of distribution for all the above mentioned proteins, 

although expression levels appeared to be higher in the U87 R5 cells as compared to the 

U87 X4 cells (Figure 3.6 B and A, respectively).  The reasons for this are unclear, but could 

be due to a difference in cell line and the different co-receptors influencing the expression of 

CD4 on the cell surface, as the number of cells used for the lipid raft and total membrane 

extractions were the same in both cell lines.  

 

The lipid raft and total membrane fractions were pooled as described in section 3.3 for the 

Western Blot analysis of co-receptor localization (Appendix F).  Despite several reports in the 

literature describing successful detection of CXCR4 and CCR5 in U87 cells by Western Blot, 

overall, the results of our experiments were disappointing.  Our Western Blot analysis 

showed variable results as there was a high degree of non-specificity and cross-reactivity of 

the antibodies to the proteins.  The reasons for such variation could be due to these seven-

transmembrane-domain proteins being too hydrophobic for Western Blot analysis, making it 

difficult to obtain consistent results.  Also, the available antibodies for this type of detection 

are possibly of poor quality.  These experiments were repeated numerous times in order to 
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optimize co-receptor detection by Western Blot, however these attempts were unsuccessful.  

A decision was therefore taken to analyse CXCR4 and CCR5 membrane domain localization 

by fluorescence microscopy.  While our original objective was to obtain a quantitative 

assessment of receptor localization within membrane microdomains, and fluorescence 

microscopy is a more qualitative method of analysis, the latter has been widely utilized in 

detecting CXCR4 and CCR5 in cell membranes (Manes et al., 2000; Kozak et al., 2002; 

Popik et al., 2002; Viard et al., 2002; Percherancier et al., 2003; Nguyen et al., 2005). 
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Figure 3.6: Slot- and Western Blots of U87 X4 and U87 R5 raft and membrane 
extractions.  12 Fractions collected from raft and membrane extractions, performed on 7 x 
106 U87 X4/R5 cells, were analysed via Slot Blot procedures to detect the raft marker, GM 1 
ganglioside, and via Western Blot procedures to detect the membrane marker, TFR, the 
cytoplasmic marker, TUB, and the membrane receptor, CD4.  (A) Raft and membrane 
extractions of U87 X4 cells and (B) Raft and membrane extractions of U87 R5 cells.  
The same volume of each fraction was resolved on 10% SDS-PAGE gels/loaded onto the 
Slot Blot apparatus and extractions were all done on the same amount of U87 X4/R5 cells, 7 
x 106 cells.        
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3.4.2 Fluorescence Microscopy Analysis of CXCR4 and CCR5 Receptors 

 

U87 X4 and U87 R5 cells were fixed onto microscope slides and stained with various 

antibodies in order to assess whether these receptors naturally co-localized with membrane 

or lipid raft domains (Figures 3.7 and 3.8).  Cells were stained with DAPI in order to visualise 

cell nuclei in blue.  The co-receptors were probed with Phycoerythrin-conjugated antibodies 

(X4-PE or R5-PE) in order to visualise X4 and R5 in red.  The membrane and lipid rafts were 

stained green with anti-TFR-FITC and CT-B-Alexa Fluor 488 conjugates, respectively.  

Images were then merged and yellow areas showed co-localization of the co-receptors with 

the membrane and/or raft markers.  Controls included cells stained with DAPI only and cells 

stained with DAPI and X4-PE for U87 R5 cells or R5-PE for U87 X4 cells, which controlled 

for the specificity of antibody recognition.  Cells were also stained with DAPI, the membrane 

or lipid raft marker and X4-PE for U87 R5 cells or R5-PE for U87 X4 cells, which controlled 

for the interference between the different antibodies.  This method of qualitative assessment 

of co-localization has been widely used in many studies (Manes et al., 2000; Kozak et al., 

2002; Popik et al., 2002; Viard et al., 2002; Percherancier et al., 2003; Nguyen et al., 2005).  

As in the case of our co-localization studies, frequently, images of green and red 

fluorophores labelling different proteins are overlapped and assessed for the predominance 

of yellow pixels in the combined image.  This then indicated whether or not there was an 

interaction between the proteins.   

 

Images of cells stained with anti-TFR-FITC merged with the corresponding anti-

CXCR4/CCR5-PE-stain revealed diffuse and extensive yellow colouration of the cell surface 

(Figures 3.7 and 3.8, Row B I, Panel 4).  The same results were seen for images of cells 

stained with anti-CT-Alexa Fluor 488 merged with the corresponding co-receptor stain 
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(Figures 3.7 and 3.8, Row B II, Panel 4).  Insofar as the resolution of the channel-merging 

methodology of fluorescence microscopy is concerned, it appears that CXCR4 and CCR5 

are, under normal conditions, found in close association with both raft and non-raft 

membrane domains in U87 cells.  However, CCR5 seems to associate with rafts to a lesser 

extent than that of CXCR4 (See arrows in Figures 3.7 and 3.8, Row B II, Panel 4).  Our 

results are in agreement with Viard et al and Popik et al, who show that these receptors are 

distributed in a diffuse manner throughout the cellular membrane, under normal, 

unstimulated conditions (Popik et al., 2002; Viard et al., 2002).  In contrast, others have 

shown exclusive localization of the co-receptors to lipid raft microdomains (Manes et al., 

2000; Nguyen et al., 2005), while some studies suggest non-raft localization of CXCR4 and 

CCR5 (Kozak et al., 2002; Percherancier et al., 2003).  The reasons for this are unclear, but 

could be due to differences in experimental procedures or different cell lines and antibodies 

used. 
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Figure 3.7: Localization of CXCR4 receptor in U87 membrane and lipid raft domains.  U87 X4 cells were fixed onto slides and probed with 
fluorophore-conjugated antibodies to assess representative localization of the X4 receptor using fluorescence microscopy.  Scale bars 
represent 50 microns (600X).  (A) Control slides.  Panel 1: Cells stained with DAPI only, no antibody.  Panel 2: Cells probed with R5-PE 
antibody only.  Panel 3: Cells probed with R5-PE and TFR-FITC (TFR green fluorescence=membrane domain marker) antibodies.  Panel 4: 
Cells probed with R5-PE and CT-Alexa Fluor 488 (GM 1 ganglioside green fluorescence=lipid raft marker) antibodies.  (B) Slides showing 
CXC4 localization.  Panel 1: DAPI.  Panel 2: TFR-FITC (Top) or CT-Alexa Fluor 488 (Bottom).  Panel 3: X4-PE.  Panel 4: Merged images 
show co-localization in yellow.   
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Figure 3.8: Localization of CCR5 receptor in U87 membrane and lipid raft domains. U87 R5 cells were fixed onto slides and probed with 
fluorophore-conjugated antibodies to assess representative localization of the R5 receptor using fluorescence microscopy.  Scale bars 
represent 50 microns (600X).  (A) Control slides.  Panel 1: Cells stained with DAPI only, no antibody.  Panel 2: Cells probed with X4-PE 
antibody only.  Panel 3: Cells probed with X4-PE and TFR-FITC (TFR green fluorescence=membrane domain marker) antibodies.  Panel 4: 
Cells probed with X4-PE and CT-Alexa Fluor 488 (GM 1 ganglioside green fluorescence=lipid raft marker) antibodies.  (B) Slides showing 
CCR5 localization.  Panel 1: DAPI.  Panel 2: TFR-FITC (Top) or CT-Alexa Fluor 488 (Bottom).  Panel 3: R5-PE.  Panel 4: Merged images 
show co-localization in yellow. 
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3.5 HIV-1 and Fusion Studies 

 

We infected U87 X4 and U87 R5 cell lines with two primary subtype C viral isolates in order 

to assess the localization of host cell receptors CD4, CXCR4 and CCR5, as well as the HIV-

1 envelope protein gp41, during the early stages of viral and host membrane fusion.  

Specifically, we were interested in the redistribution of viral and host cell membrane 

receptors during the fusion process that might shed light on the importance of lipid rafts in 

HIV-1 entry. 

 

3.5.1 Amplification of FV3 and FV5 Viral Isolates 

 

In order to conduct the fusion studies, cells needed to be infected with extremely high viral 

titres.  This was in order for cells to be saturated with virus to ensure successful fusion 

events would occur, as well as for allowing successful detection of the gp41 protein with the 

F-240 monoclonal antibody.  After viruses were cultured, Western Blot, viral load, and p24 

results all confirmed successful amplification of the FV5 virus (Figure 3.9, Appendix D and 

Appendix E).  FV5 gp41 was successfully detected by the monoclonal antibody F-240 and its 

levels increased significantly from the time of viral input to the time of supernatant harvest 

(day 5), showing that amplification of the FV5 had taken place (Figure 3.9, Lanes 6 and 7).  

Furthermore, viral load quantification (Appendix E) and p24 results (Appendix D) confirmed 

an increase in FV5 particle production.   

 

In contrast, the FV3 virus was not successfully amplified as active infection was not observed 

for this viral isolate by p24 analysis, which showed no productive infection by this virus in the 
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cell cultures over the 5-day incubation period (Appendix D).  This was consistent with the 

viral load assay, which failed to detect increased viral RNA in the cell culture (Appendix E), 

and Western Blot analysis, which showed no detectable particle-associated FV3 gp41 in 

these samples (Figure 3.9, Lanes 3 and 4).  Collectively, these data show that the 

amplification of FV3 was unsuccessful, and repeated attempts to amplify FV3 failed.  The 

reasons for this are unclear, but could be due to the loss of viability of FV3, or possibly that 

the inoculum viral titres were high, causing cell death.  Storage conditions of the FV3 viral 

stocks could have also played a role in not maintaining viability.   It was therefore decided to 

carry out fusion experiments with FV5 infections in the U87 R5 cells only.    

 

 

 

 
Figure 3.9:  gp41 Western Blot analysis of FV3 and FV5 virus-containing supernatants 
following amplification in U87 X4 and U87 R5 cell, respectively.  Viral amplification was 
performed in order to obtain high titres of virus for fusion experiments.  U87 X4 cells were 
infected with CXCR4-utilising FV3 viral isolate and U87 R5 cells were infected with CCR5-
utilising FV5 viral isolate.  Supernatant samples were taken 5 days post-infection and 
analysed by SDS-PAGE and Western Blotting using the anti-gp41 antibody, F-240. Negative 
Control: U87 X4/R5 cell growth medium. 
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3.5.2 Fusion Studies 

 

U87 R5 cells were infected with an MOI of approximately 250 FV5 viral particles/cell.  TAS 

was established in order to synchronize gp120-CD4 attachment, and to assess the 

distribution of CD4, CCR5 and gp41 at TAS and 3 hours post-TAS.   Lipid raft and total 

membrane isolations were then performed on cells at each time point (if in cell culture flasks) 

or the cells on the microscope slides were fixed with 3% formaldehyde.  In order to confirm 

successful infection under the conditions employed, one cell culture flask and one 

microscope slide of cells infected with the virus, were incubated for a further 4 days and 

samples were analysed by p24 ELISA (Appendix D). 

 

Western Blot analysis was performed on the fractionated U87 R5 raft and total membrane 

samples to assess CD4 (Figure 3.10) and gp41 (Figures 3.10 and Appendix G) localization in 

these cells at TAS and 3 hours post-TAS.  In parallel, control samples that were not infected 

were also assessed (designated NVC).  The TFR membrane marker and TUB cytoplasmic 

marker showed the expected distribution within the non-raft and cytoplasmic domains.  

However there was a slight shift in the relative abundance of these proteins within the 

different fractions between TAS and 3 hours post-TAS, which could be temperature-

dependent.  In addition, there was an interesting redistribution of the GM1 ganglioside from 

the expected raft microdomain in the NVC samples to the majority of the lipid being detected 

in the total membrane microdomain upon the addition of the FV5 virus at 3 hours post TAS.  

The reason for this redistribution is unclear, but possibly reflects a disruption of the 

membrane lipid structure by gp41 upon insertion of the fusion peptide and maturation of the 

fusion pore.      
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CD4 and gp41, in the FV5-infected samples at TAS and 3 hours post-TAS, appear to localize 

with the total membrane fractions, with little or no detectable levels evident in the raft 

fractions, respectively.  These results are in agreement with previous findings that CD4 

localization within the raft microdomains is not needed for successful HIV-1 entry in host cells 

(Percherancier et al., 2003; Popik and Alce, 2004).  Others suggest, however, that CD4 and 

gp41 localize to raft microdomains upon fusion (Kozak et al., 2002; Viard et al., 2002; Chan 

et al., 2005; Chen et al., 2009).  CD4 shows localization with both lipid rafts and total 

membrane domains at TAS and 3 hours post TAS in the NVC samples, which is consistent 

with the initial studies performed on the natural localization of CD4 (Figure 3.6).  However, 

the intensity of the bands is significantly less than those seen in the initial localization 

studies.  The reason for this is probably due to the fact that the number of cells used for the 

fusion experiments was approximately 50 % less than that used for the initial localization 

studies.  Infections took place on the cells at 70 % confluency and thereafter, approximately 

10-20 % of those cells experienced cell death, possibly due to the changes in temperature or 

the large amount of virus added.  Intriguingly, the addition of the FV5 virus appeared to 

induce a conformational or structural change in CD4, suggested by the detection of two 

species of the protein by CD4 Western Blotting (Figure 3.10, Row 4, FV5 Membrane 

Fractions 4 and 5).  One of these species could represent a particular cleavage product 

involved in gp120-induced signalling through CD4, or a metastable conformational 

intermediate involved in membrane fusion.  Similar CD4 signalling pathways have been 

documented, for example Zap-70 (Chan et al., 1991) or Lck signalling (Holdorf et al., 2002) 

during T cell receptor (TCR) signal transduction, yet structural rearrangements of the 

receptor have not been shown.  This pattern of migration was also seen for TUB, however, 

and suggests that the virus specifically changes the structure of these two proteins.  To our 

knowledge, this is the first report of such a change induced by the addition of a primary viral 

isolate to cells in culture to assess the HIV-1 fusion process.  
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Fluorescence microscopy analysis of the CCR5 co-receptor during the fusion studies showed 

diffuse distribution of receptor in both the membrane and lipid raft domains at TAS and 3 

hours post TAS (Figures 3.11 and 3.12).  In the presence of virus, CCR5 did appear to 

cluster to a greater extent with the non-raft microdomains compared to the raft microdomains 

(Figures 3.11 and 3.12, Rows III and IV, Panel 4).  Although, more localized patches of 

CCR5 were noted within the lipid raft domains, compared to the more diffuse pattern found in 

the non-raft domains (see arrows in Figures 3.11 and 3.12, Row III, Panel 4 to compare).  

This would suggest that upon gp120-CD4 engagement, although there is still a diffuse 

distribution of CCR5 on the cell surface, there is slight redistribution of the receptor into 

localized lipid raft patches.  In addition, at 3 hours post-TAS the association of CCR5 with the 

non-raft microdomains in the FV5-infected cells seemed to increase as compared to that 

seen at TAS.  Published reports on CCR5 membrane localization during the fusion process 

are minimal and in disagreement.  Percherancier et al suggest that CCR5 localization within 

lipid raft microdomains is not essential for HIV-1 entry, whereas Popik et al state that the 

association of CCR5 with rafts is necessary for successful fusion and entry of HIV-1 into 

target cells (Popik et al., 2002; Percherancier et al., 2003).    
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Figure 3.10: Slot Blot and Western Blot analysis of FV5 fusion studies.  U87 R5 cells were infected with the FV5 viral isolate (FV5) or left 
uninfected, as a non-virus control (NVC).  Infections were then left to incubate at 23 ° C for 2 hours (TAS), to allow for gp120-CD4 engagement, 
and then for a further 3 hours at 37 ° C (3 hrs post TAS) to allow for fusion to occur.  TAS and 3 hrs post TAS infections were subjected to lipid 
raft and membrane extractions, and collected fractions were resolved on 10% SDS-PAGE gels.  Western Blots were performed using the 
appropriate antibodies to detect localization of the CD4 receptor and gp41. 
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Figure 3.11: Localization of CCR5 receptor in lipid raft domains.  U87 R5 cells were seeded onto microscope slides and infected with the 
FV5 viral isolate.  Uninfected cells served as a negative control (NVC).  Slides were incubated at 23 °C for 2 hours (TAS), to allow for gp120-
CD4 engagement, and thereafter for 3 hours at 37 °C (3 hours post-TAS), to allow for fusion to occur.  At the end of each incubation point, cells 
were fixed onto the slides, stained and representative images are shown in this figure.   1: DAPI.  2: CT-B-Alexa Fluor 488.  3: R5-PE. 4: 
Merged images showed co-localization in yellow.  Arrows indicate co-localized CCR5 and lipid raft patches.  
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Figure 3.12: Localization of CCR5 receptor in membrane domains.  U87 R5 cells were seeded onto microscope slides and infected with 
the FV5 viral isolate. Uninfected cells served as a negative control (NVC).  Slides were incubated at 23 °C for 2 hours (TAS), to allow for 
gp120-CD4 engagement, and thereafter for 3 hours at 37 °C (3 hours post-TAS), to allow for fusion to occur.  At the end of each incubation 
point, cells were fixed onto the slides, stained and representative images are shown in this figure.  1: DAPI.  2: TFR-FITC.   3: R5-PE.  4: 
Merged images showed co-localization in yellow.  Arrows indicate diffuse interactions between CCR5 and non-raft domains.  
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CHAPTER 4: DISCUSSION 
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4.1 Cloning of gp41- and gp160-encoding DNA 

 

A recombinant gp41-expression vector (pTriEx-gp41) was generated in order to express 

and purify a recombinant subtype C gp41 protein (derived from viral isolate FV3).  This 

was used to control for the detection of gp41 extracted in membrane fractions isolated 

from FV3- and FV5-infected cell cultures, using the monoclonal antibody F-240.  In 

parallel, a recombinant gp160-expression vector (pTriEx-gp160) was generated in order 

to assess the efficient recovery and detection of membrane-bound gp41, when expressed 

in mammalian cell culture.  The generation of both gp41- and gp160-recombinant 

expression vectors, utilizing a plasmid template containing a codon optimized gp160 

sequence derived from the FV3 viral isolate (pGA4-gp160) was successful (Figure 3.1), 

and sequence analysis confirmed the integrity of the FV3 gp41- and gp160-encoding 

sequences (Figure 3.2).    

 

4.2 gp41 Recombinant Protein 

 

The expression of gp41-6xHis from pTriEx-gp41 expression vector was induced in 

transformed BL21 pLysS E. coli cells and culture lysates from these cells tested positive 

for the presence of gp41 in time course induction experiments by Western Blot analysis 

(Figure 3.3).  These experiments confirmed efficient expression of, and immunochemical 

detection of this protein using the monoclonal antibody, F-240.  The positive control used 

in all the Western Blot analyses of gp41 expression and purification is an E. coli derived 

recombinant gp41 protein (from a subtype B viral isolate) containing the immunodominant 

regions of gp41, which resolves at 41 kDa on SDS-PAGE gels.   
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The solubility of the expressed gp41-6xHis protein was then assessed and it was noted 

that the majority of the protein was recoverable in a soluble form (Figure 3.3, Lane 5).  

This observation was unexpected and surprising, as other literature describes 

recombinant gp41 as a predominantly insoluble protein at neutral pH (Lu et al., 1995), 

which is thought to be due to highly hydrophobic residues located within the 

transmembrane domain and cytoplasmic tail regions of the protein (Gallaher et al., 1989; 

Scholz et al., 2005).  Soluble Env protein has been documented, but with modifications.  

These modifications include the routine deletion of hydrophobic residues (Weissenhorn et 

al., 1996; Wingfield et al., 1997; Qiao et al., 2005; Frey et al., 2008; Noah et al., 2008), 

refolding of the purified protein at an acidic pH (<3.5) (Wingfield et al., 1997; Krell et al., 

2004) and adding various ‘solubility tags’ to gp41 constructs to increase the solubility of 

purified recombinant protein (Scholz et al., 2005; Noah et al., 2008; Penn-Nicholson et 

al., 2008).   

 

The reasons for our findings are unclear; however it is possible that complex folding 

patterns and oligomerisation of gp41 produces species with unexposed hydrophobic 

regions.  In support of this, the purified recombinant gp41 appeared to exist in 

monomeric, dimeric and trimeric forms, suggested by the presence of three separate 

bands of molecular weights 26 kDa, 75 kDa and 127 kDa detected by Coomassie, Silver 

Stain and Western Blot analyses (Figure 3.3).  This is consistent with published data 

showing that, even under denaturing conditions, gp41 migrates as three separate bands 

on SDS-PAGE gels (Weissenhorn et al., 1996; Frey et al., 2008).  Differences in 

sequence could possibly affect the folding patterns of gp41, and thereby influence the 

solubility of the protein.  Alternatively, inconsistencies between published literature and 

our work could be due to differences in expression systems, none of which mimic the true 

environment of expressed gp41 protein.  Western Blot analysis of purified gp41 also 

confirmed the detectability of the recombinant protein with monoclonal antibody, F-240, 
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demonstrating the feasibility of viral particle-associated gp41 detection using the same 

methods.  

 

4.3 gp160 Expression in HEK 293T Cells 

 

To confirm the ability to recover membrane-associated gp41 from cells using density-

gradient centrifugation and to detect the protein using the immunochemical methods 

described, expression of gp160 in HEK 293T cells was assessed by transfecting cells 

with the pTriEx-gp160 expression vector and isolating lipid raft and membrane fractions 

from the transfected cells.  gp160 expression was successfully detected in the isolated 

membrane fractions using Western Blot procedures with the F-240 antibody (Figure 3.5).  

Similar gp160 expression studies have been performed by others, where various Env 

constructs have been used to transfect HEK 293T cells and lipid raft isolations and 

Western Blot analyses have been performed (Chan et al., 2005; Chen et al., 2009).  

These pilot expression studies establish that the use of the Western Blot detection 

methods described, using the monoclonal antibody F-240, was successful and suggest 

that such methods were feasible for the detection of membrane-bound gp41 in the virus-

cell fusion experiments. 

      

4.4 Receptor Localization in Membrane Domains 

 

In order to determine the natural localization of CD4, CCXR4 and CCR5 receptors in cell 

membrane domains, U87 X4 and U87 R5 cells were subjected to total membrane and 

lipid raft extractions by sucrose density centrifugation.  Cell membranes are naturally 

buoyant when the cells are lysed and subjected to sucrose density-gradient centrifugation 
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and therefore migrate to a density equal to that represented by between 10-65% sucrose 

in aqueous solution (Figure 3.4).  Lipid rafts migrate to between 5-30% sucrose 

concentrations in aqueous solution (Figure 3.4).  Western Blot analysis was performed on 

the fractions collected from the extractions (Figure 3.6).  To determine that the raft and 

total membrane extractions were successful and that we correctly isolated the respective 

membrane components, we checked the localization of markers with well-established 

membrane domain distribution.  Antibodies against transferrin (TFR) and tubulin (TUB) 

were used to confirm correct fractionation of membrane and cytoplasmic components, 

respectively.  The GM1 ganglioside lipid raft marker was detected most efficiently using 

Slot Blot analysis, and this detected GM1 ganglioside was mostly in raft fractions 3, 4 and 

5, consistent with its role as a structural component of raft microdomains.  TFR was 

detected predominantly in membrane fraction 5 and in fractions 10-12 of the raft 

gradients, consistent with it being a membrane-bound protein.  TUB was detected in the 

bottom fractions of the raft and membrane extractions, confirming a predominant 

cytoplasmic localization.  Collectively, these data confirm that lipid raft and membrane 

extractions were successful, and we efficiently isolated the correct membrane domain 

components. 

 

4.4.1 CD4 Localization 

 

CD4 was shown to be naturally located in both lipid raft and non-raft microdomains on the 

surface of uninfected U87 X4 and U87 R5 cells (Figure 3.6).  Similar Western Blot 

analyses have been performed by others to determine the localization of CD4 in cell 

membranes.  When compared to our results, these show the same pattern of CD4 

distribution in detergent-resistant and detergent-soluble fractions following lipid raft 

extractions (Del Real et al., 2002; Kozak et al., 2002; Popik et al., 2002; Percherancier et 
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al., 2003; Popik and Alce, 2004).  The experimental procedures, however, differ from 

those utilized in our experiments and the published literature only focuses on discussing 

CD4 localization within lipid raft domains.  It is clear from our results, however, that a 

substantial amount of CD4 also exists in non-raft microdomains in the cell line tested 

(U87), under natural conditions.  

 

4.4.2 CXCR4 and CCR5 Localization 

 

After several attempts, using different approaches, we were unable to detect CXCR4 and 

CCR5 receptors isolated by membrane flotation using immunochemical procedures. 

These findings were surprising and disappointing, as there are several published reports 

describing the successful detection of CXCR4 and CCR5 using Western Blot analysis 

(Manes et al., 2000; Kozak et al., 2002; Popik et al., 2002; Viard et al., 2002; 

Percherancier et al., 2003; Nguyen et al., 2005).  Despite following the methodologies 

articulated in these reports closely, in general, variable results were obtained each time 

the experiments were repeated with a high degree of non-specificity and cross-reactivity 

noted for the antibodies that were used (Appendix E).  The reasons for this are still 

unclear, and our assumption is that our inability to detect CXCR4 and CCR5 by 

immunoblotting procedures is related the hydrophobic properties of these seven-

transmembrane domain chemokine receptors, making it difficult to obtain consistent 

results via Western Blot detection.  Another possibility could be that the quality of the 

antibodies used was poor, most likely due to poor epitope specificity.  

 

Because of the difficulties experienced in detecting these two proteins by immunoblotting 

procedures, a decision was made to characterise CXCR4 and CCR5 localization using 

fluorescence microscopy (Figures 3.7 and 3.8).  While using microscopic methods of 

detection deviated from our original purpose of obtaining a quantitative assessment of co-
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receptor localization during real-time virus fusion, it was anticipated that they would 

nonetheless be able to give valuable insights in this context.  Moreover, fluorescence 

microscopy is a well-documented and well-accepted detection method for cell surface 

receptors and provides a platform for localization analysis of these receptors in the 

different membrane microdomains without manipulating the cells as intrusively as is 

needed in the case of Western Blot analysis.  Co-localization studies of CXCR4 and 

CCR5 with the TFR membrane marker and the GM1 ganglioside lipid raft marker 

revealed that, under normal conditions, CXCR4 and CCR5 were found in close 

association with both raft and non-raft membrane domains in U87 cells.  While expression 

on the cell surface appeared to be diffuse for both receptors, in our hands CCR5 seemed 

to associate with lipid rafts to a lesser extent than that seen for CXCR4, as suggested by 

more red colouration seen in the merged panel of U87 R5 cells probed with R5-PE and 

CT-Alexa Fluor 488 (see arrows in Figure 3.8, Row B II, Panel 4), as compared to more 

yellow colouration seen in the merged panel of U87 X4 cells probed with X4-PE and CT-

Alexa Fluor 488 (see arrow in Figure 3.7, Row B II, Panel 4). 

 

Fluorescence microscopy studies performed by others on the localization of CXCR4 and 

CCR5 within the raft/non-raft microdomains have generated contrasting results.  Manes 

et al show that, under normal conditions, CXCR4 is located in lipid raft microdomains on 

the cell surface of 293-CD4 cells (Manes et al., 2000), while Nguyen et al show that the 

localization of this protein in lipid rafts only occurs in the presence of CD4 on the surface 

of Jurkat cells (Nguyen et al., 2005).  Kozak et al, however, show that CXCR4 does not 

co-localize with lipid rafts using immunoblotting procedures on H9 and U87 X4 cells 

(Kozak et al., 2002).  When assessing CCR5 distribution, under normal conditions, by 

both Western Blot and fluorescence microscopy analysis, Popik et al show some co-

localization with lipid rafts on the surface of PM1 T cells (Popik et al., 2002), whereas 

Percherancier et al state that CCR5 is not located in lipid raft microdomains on A3.01 T 

cells (Percherancier et al., 2003).  The fluorescence microscopy studies on the 
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localization of the G-protein coupled receptors have generally made use of a technique 

called ‘patching’.  Patching involves the artificial aggregation of the lipid raft microdomains 

with various proteins or raft-specific antibodies before carrying out the co-localization 

studies using fluorescence microscopy in order to concentrate proteins associated with 

lipid rafts into distinct areas or patches.  This artificial aggregation or ‘patching’ technique 

probably compromises the aim of trying to assess the natural distribution of this receptor 

on the cell surface (Popik et al., 2002).   

 

Consistent with our results, Viard et al show that CXCR4 is distributed in a diffuse manner 

using Western Blot analysis on human peripheral blood T lymphocytes and state that 

fluorescence microscopy found CXCR4 to be randomly distributed on the surface of 

unstimulated CEM cells (Viard et al., 2002).  Popik et al do suggest, however, that both 

CXCR4 and CCR5 are constitutively, yet not exclusively associated with lipid raft 

microdomains (Popik et al., 2002).  Percherancier et al also show an even distribution of 

CCR5 over the plasma membrane prior to raft ‘patching’ and upon induced aggregation it 

seems that CCR5 is excluded from the lipid raft microdomains during fluorescence 

microscopy analysis (Percherancier et al., 2003).  Collectively, our data are in agreement 

with Viard et al, Popik et al and Percherancier et al and suggest that under normal, 

unstimulated conditions, CXCR4 and CCR5 are randomly and diffusely distributed within 

both lipid raft and non-raft microdomains. 

          

4.5 HIV-1 and Fusion Studies 

 

To our knowledge, this is the first study to document the use of infectious HIV-1 subtype 

C primary viral isolates in viral-cell fusion assays to assess the redistribution of viral and 

host cell receptors during the fusion process, in real time.  Our aim was to shed light on 

the importance of lipid rafts for HIV-1 by examining the dynamics of virus and host cell 
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receptor localization during the membrane fusion process.  Our results augment those 

generated by other studies which have made use of pseudotyped viruses, recombinant 

gp120 or gp41 proteins, or cell-cell fusion assays to study receptor localization (Manes et 

al., 2000; Del Real et al., 2002; Kozak et al., 2002; Popik et al., 2002; Viard et al., 2002; 

Nguyen and Taub, 2003; Percherancier et al., 2003; Popik and Alce, 2004) and provide 

new insights into the dynamic distribution of gp41, CD4 and CCR5 upon viral entry into 

target cells.   

 

The use of the ‘temperature-arrested state’ (TAS) (incubation of cells at 23 ºC at 

inoculation) during fusion studies was a critical component of our analyses.  TAS allows 

for the synchronization of the viral entry process, by stalling the fusion process 

immediately after CD4- and co-receptor-engagement (Melikyan et al., 2000).  Increasing 

the temperature to 37 ºC then enables initiation of active membrane fusion, maturation of 

the fusion pore and entry of HIV-1 into the target cell (Melikyan et al., 2000).  TAS has 

been utilized as a technique to study the kinetics of viral fusion (Melikyan et al., 2000; 

Golding et al., 2002; Buzon et al., 2005; Mkrtchyan et al., 2005), as well as analysing the 

various gp41 conformations associated with viral fusion with the host cell membrane 

(Melikyan et al., 2000; Gallo et al., 2001; Melikyan et al., 2006)  It has also been useful in 

studying the localization of host cell receptors upon fusion (Manes et al., 2000; Del Real 

et al., 2002; Popik et al., 2002; Nguyen and Taub, 2003). 

 

4.5.1 Amplification of FV3 and FV5 

 

We amplified HIV-1 subtype C primary viral stocks that had been previously propagated, 

maintained and characterised in our laboratory, to high viral titres.  This enabled us to 

perform infections using an MOI of 250, such that detectable amounts of fusion events 

would take place and allow for the successful detection of gp41.  The X4-tropic FV3 viral 
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isolate and R5-tropic FV5 viral isolate were amplified in the U87 X4 and U87 R5 cell lines, 

respectively.  Amplification was detected by p24 ELISA (Appendix D), viral load 

measurements (Appendix E) and Western Blot analysis with the F-240 antibody (Figure 

3.9). 

 

The FV5 virus was shown to amplify successfully under the cell culture conditions 

employed, as seen by p24, viral load and Western Blot analyses.  In contrast, the FV3 

virus was not successfully amplified.  Active infection was not noted with p24 ELISA 

detection and a decrease in the viral load measurements were observed, as compared to 

the original amount of input virus.  Western Blot analysis showed a marked decrease in 

the amount of gp41 detected over time and repeated attempts at amplify FV3 were 

unsuccessful.  The reasons for the unsuccessful amplification of FV3 are unclear, but 

could possibly be due to the death of U87 X4 cells, as original input virus titre was too 

high, therefore compromising productive infection in these cells.  Another possibility is 

that the FV3 virus was unable to infect the U87 X4 cells due to a loss of viability of the 

viral stocks used, perhaps through inactivation during long-term storage.  Our fusion 

experiments were thus limited to those performed on the FV5 viral isolate and ongoing 

work by others in our laboratory aims to optimize the FV3 viral amplification procedure, in 

order to obtain a more comprehensive insight into CD4 and CCR5 as well as CXCR4 

redistribution on the cell surface during fusion.  

 

 4.5.2 gp41, CD4 and CCR5 Receptor Localization During HIV-1 Fusion 

 

Our fusion experiments involved infection of U87 R5 cells using the primary HIV-1 isolate 

FV5.  We focussed on the dynamic localization of viral gp41, CD4 and CCR5 in raft and 

non-raft membrane domains during the early phases of virus attachment and membrane 

fusion.  FV5 virus was added to U87 cells and incubated at 23 ºC for 2 hours to 
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synchronize all infectious viral particles on the surface of host cells at TAS.  Thereafter, 

the temperature was increased to 37 ºC for a further 3 hours to allow for fusion to 

proceed.  Localization of gp41, CD4 (by Western Blotting following membrane 

fractionation) (Figure 3.10) and CCR5 (by fluorescence microscopy) (Figures 3.11 and 

3.12) was assessed at both TAS and 3 hours post-TAS, and changes in the distribution of 

these proteins were evaluated. 

 

4.5.2.1 gp41 Localization at TAS and 3 Hours Post-TAS 

 

Western Blot analysis showed gp41 associated with non-raft microdomains on the target 

cell membrane, at both TAS and 3 hours post-TAS, using the monoclonal antibody F-240 

(Figure 3.10, gp41 Panel 4, Membrane Fractions Lanes 5 and 6).  Published data utilizing 

various synthetic peptides derived from the N-terminal fusion peptide of gp41 consistently 

show that gp41 readily associates with phospholipid bilayers such as those which occur 

on the plasma membrane (Kliger et al., 1997; Korazim et al., 2006; Moreno et al., 2007).  

The finding that gp41 is already associated with the target cell membrane at TAS is 

interesting, as it is thought that membrane insertion of gp41 occurs only at 37 ºC 

(Melikyan et al., 2000; Mkrtchyan et al., 2005).  It has, however, been noted that at TAS, 

gp41 is likely to be exposed (Melikyan et al., 2000; Gallo et al., 2001), as gp120 has 

already undergone extreme conformational changes that accompany CD4 and 

CXCR4/CCR5 engagement.  In contrast, our results indicate that gp41 is already inserted 

into the membrane at TAS, and possibly already engaged in the process of six-helix 

bundle formation.  This is suggested by the protein resolving at a different size to that 

seen for the gp160 expression studies and the FV5 viral amplification Western Blot 

analysis.  It appears to resolve at a size of approximately 75 kDa, a size similar to that of 

one of the oligomeric forms of gp41 seen during the purification stages of our 
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recombinant gp41-6xHis protein (Discussed in section 4.2).  At 3 hours post-TAS, there is 

a noticeable increase in gp41 in fraction 5 of the total membrane samples, compared with 

the amount at TAS, where the majority of gp41 is found in fraction 6.  Moreover, while the 

amount of membrane-associated gp41 at 3 hours post-TAS appears to be greater than 

that at TAS, which is likely to result from maturation of the gp41 folding process at the 

thermodynamically permissive 37 ºC, the conditions for membrane insertion of gp41 

appear to be satisfied at TAS.  These findings provide significant insight into the process 

by which gp41 inserts into the host cell membrane, forms the six-helix bundle and drives 

membrane fusion.  The fact that gp41 is associated with the target cell membrane at TAS, 

could have possible implications for vaccine developments.  In particular, epitopes 

previously thought to be inaccessible at this stage, may be targetable earlier in the fusion 

process than previously believed.  Moreover, these results, taken together with kinetic 

studies on the fusion process, could yield useful information in further understanding the 

pathogenesis of HIV-1 entry and help to further the development of potential HIV-1 

entry/fusion inhibitors.       

 

4.5.2.2 CD4 Localization at TAS and 3 Hours Post-TAS 

 

Upon the addition of virus, and eventual fusion of viral and host cell membranes, there 

appears to be no evidence for significant CD4 redistribution to lipid raft microdomains.  

Western Blot analysis of the raft fractions collected after lipid raft isolations show CD4 

located entirely in the detergent soluble fractions (seen in raft fractions 10, 11 and 12, 

Figure 3.10). This confirmed the localization of CD4 to the non-raft fractions, as seen by 

the bands detected on the Western Blots for the total membrane isolations (Figure 3.10).  

Our findings are consistent with Percherancier et al and Popik et al, who showed that 

CD4 localization in non-raft membrane microdomains supported HIV-1 entry 
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(Percherancier et al., 2003; Popik and Alce, 2004).  However, other studies show that 

CD4 segregated to lipid raft microdomains on the cell surface is required for HIV-1 fusion 

and entry into the host cell (Kozak et al., 2002; Viard et al., 2002).  However, all of the 

above mentioned studies used pseudotyped HIV-1 virus and HIV-1 envelope 

glycoprotein-mediated cell-cell fusion assays to assess the localization of CD4 upon viral-

host cell membrane fusion, whereas we performed virus-host cell membrane fusion 

experiments to obtain our results.  The majority of these papers also confirm localization 

results by depleting the cholesterol on the cell surface using, for example, methyl-β-

cyclodextrin, which is a chemical agent known to deplete cholesterol (Percherancier et 

al., 2003; Popik and Alce, 2004).  We did not employ this technique, and so it should be 

noted that any further investigations would benefit from cholesterol depletion assays, as it 

provides for an important control when assessing the importance of lipid rafts in HIV-1 

infection.  

 

Interestingly, CD4 extracted from infected cells at both TAS and 3 hours post-TAS, 

resolved on the SDS-PAGE gels as two bands of slightly different sizes (Figure 3.10, 

Panel 4, FV5 Membrane Fractions).  This was unexpected and none of the published 

literature has reported such a result.  The significance of this intriguing observation is 

unclear, but could possibly be due to protein cleavage induced by fusion, perhaps in the 

down regulation pathway of CD4 in HIV-1 infected cells.  Another possibility could be that 

the virus influences the host cell membrane in such a way that causes the CD4 receptor 

to exist as a metastable conformational intermediate involved in membrane fusion and, 

under the denaturing conditions implemented, resolves as two separate domains.  CD4 

signalling events, similar to the pathway utilized by HIV-1, have been reported and 

involve Zap-70 (Chan et al., 1991) or Lck signalling (Holdorf et al., 2002) during TCR 

signal transduction.  It has been shown that CD4 acts as a co-receptor during the 

regulation of T cell signalling (Konig et al., 1992; Konig et al., 1995), however, structural 

changes of this receptor during these signalling events has not been documented.  TUB, 
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however, also existed as two separate species upon the addition of FV5.  None of the 

published reports utilize direct primary virus and host cell fusion assays and so any 

effects that the virus may have on the host cell, and particularly on the receptors, were 

not seen in the results of these reports (Percherancier et al., 2003; Popik and Alce, 2004). 

Further work would be required in order to pinpoint the specific reason for this interesting 

result. 

 

During Western Blot analysis of the fusion studies, it was noted that the GM1 ganglioside 

lipid raft marker also appeared to undergo redistribution upon the addition of FV5 to the 

U87 R5 cell cultures (Figure 3.10).  The reasons for this surprising observation are 

unclear.  However, we surmise that this could reflect lipid redistributions caused by the 

virus and consequent destabilization of the host cell membrane upon insertion of gp41 

into the cell membrane.  A relative increase in the amount of GM1 ganglioside in 

membrane fraction 5 was apparent at 3 hours post-TAS in samples from the FV5-infected 

total membrane isolation fractions (Figure 3.10, Panel 1, FV5 Membrane Fractions, Lane 

5).  Various groups have explored the mechanisms by which gp41 destabilizes the host 

cell membrane during fusion (Kliger et al., 1997; Pereira et al., 1997; Korazim et al., 2006; 

Moreno et al., 2007).  These groups utilize synthetic gp41 N-terminal fusion peptides to 

conduct functional and structural characterisations on the interactions of the gp41 fusion 

peptide with the target plasma membrane.  The documented results suggest that gp41 is 

able to permeabilize or destabilize the host cell membrane by rupturing the permeability 

barrier and allowing for fusion to occur by the formation of a fusion pore (Kliger et al., 

1997; Pereira et al., 1997; Korazim et al., 2006; Moreno et al., 2007).  These results could 

possibly explain why we observed redistribution of the GM1 ganglioside within the cell 

membrane microdomains upon FV5-induced fusion.  Moreover, these results possibly 

support the idea that gp41 insertion into the target cell membrane causes changes in the 

migration patterns of the CD4 and TUB domains during SDS-PAGE and Western Blot 
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analysis, again suggesting interference of the virus with the host cell membrane and its 

receptors.                 

         

4.5.2.3 CCR5 Localization at TAS and 3 Hours Post-TAS 

 

When assessing CCR5 localization via fluorescence microscopy, it was discovered that 

this receptor seemed to cluster to a greater extent with non-raft microdomains as 

compared to lipid raft microdomains, upon FV5-cell membrane fusion (Figures 3.11 and 

3.12).  While there was evidence of localized patches of CCR5 within the lipid raft 

microdomains (see arrows on Figure 3.11, Row III, Panel 4) the association with non-raft 

microdomains generally appeared more extensive (see arrows on Figure 3.12, Rows III 

and IV, Panel 4).  Taking into account the qualitative and subjective nature of this type of 

data analysis, it is difficult to state whether there appears to be any significant 

redistribution of CCR5 during HIV-1 fusion.  It can, however, be said that CCR5 does not 

exclusively localize with either raft or non-raft microdomains, but rather is diffusely 

distributed within non-raft microdomains and more localized patches of the receptor are 

seen in the lipid raft microdomains, during the HIV-1 fusion process. 

 

Published data describing CCR5 localization to raft or non-raft microdomains during the 

fusion process is inconsistent (Popik et al., 2002; Percherancier et al., 2003).  For 

example, Percherancier et al state that HIV-1 entry into T cells is not dependent on CCR5 

localization in lipid raft microdomains (Percherancier et al., 2003), whereas Popik et al 

suggest that CCR5 association with lipid rafts is needed for successful fusion and entry of 

HIV-1 into target cells (Popik et al., 2002).  Both groups utilized pseudotyped viruses to 

carry out the fusion experiments, and performed both Western Blot and fluorescence 

microscopy analysis to obtain the results described above.  It is clear, when taking our 

results together with the published data into account, that further, and more standardized, 
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analysis is needed to obtain a comprehensive description of the dynamics of CCR5 

localization during HIV-1 membrane fusion. 

     

4.5.2.4 Additional Comments on Fusion Studies 

 

Firstly, the number of cells used for the lipid raft and total membrane isolations was 

markedly lower than the number of cells used in the initial experiments to determine the 

natural distribution of the host cell receptors and membrane domain markers.  This was 

due to the requirement, for optimal viral infection, of a cell confluency of approximately 

60%.  In addition, there is significant cytotoxicity associated with infecting cell cultures 

with high viral titres, such as those used in this study.  This is likely to have compromised 

the efficiency of receptor recovery from the infected cell cultures, as was suggested by 

the decrease in intensity of the protein bands seen on the Western Blot figures of 

samples isolated during fusion studies (Compare Figures 3.6 and 3.10).  Secondly, co-

receptor localization studies could have benefited from the possible use of cell lines 

stably expressing tagged CXCR4 and CCR5, or by immunoprecipitation studies and 

possibly ELISA or flow cytometry analyses.  In addition, Z-sectioning using confocal 

microscopy could have been applied to better resolve the areas of co-localization within 

the lipid raft domains.  Such experiments could contribute to a more quantitative and 

comprehensive assessment of the dynamic localization of the co-receptors during HIV-1 

membrane fusion.    

 

Another limitation to these fusion studies is that only receptor-mediated membrane fusion 

of HIV-1 is accounted for.  It has been shown, however,  that HIV-1 can also gain entry 

into the host cell via endocytosis, which was recently detailed by Miyauchi et al (Miyauchi 

et al., 2009).  These results suggest that complete HIV-1 fusion occurred in endosomes 

and that viral fusion directly with the host cell membrane did not progress past the lipid 
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mixing step.  The use of time-resolved imaging of single viruses during the fusion/entry 

process of HIV-1 allowed for the above mentioned results to be obtained.  This method 

was similar to the one used by ourselves to track the fusion process in real time using 

single, primary viral isolates.   Such findings are controversial, as it has been widely 

accepted that the receptor-mediated fusion pathway is the preferred process by which 

HIV-1 enters the cell, and could have interesting consequences for the interpretation of 

the HIV-1 fusion process in the future.  The utilization of this entry pathway by HIV-1 

could possibly explain the inconsistent data reported for receptor localization by various 

authors. 

 

4.6 Concluding Remarks 

 

In conclusion, this study has provided valuable insights into the HIV-1 subtype C entry 

process and the involvement that lipid rafts play in this stage of the viral lifecycle by 

analysing virus-host cell membrane fusion, in real time.  These fusion studies provide 

evidence that there is no apparent requirement for CD4 and/or gp41 to associate with 

lipid raft microdomains.  Secondly, CCR5 is diffusely distributed in both lipid raft and non-

raft microdomains, whether in uninfected cells or at TAS and 3 hours post-TAS in infected 

cells.  Our findings suggest, however, that lipid rafts are possibly important in the 

sequestration of CCR5 to the point at which gp120 engages CD4, but more evidence, of 

a quantitative nature, is needed to confirm this suggestion as our results were only of a 

qualitative nature. Some interesting observations included the possible cleavage or 

degradation of CD4 and the possible destabilization of the plasma membrane upon the 

addition of the FV5 primary viral isolate.  The fact that gp41 appears to begin 

oligomerisation at TAS was also an unexpected, yet fascinating observation.  To our 

knowledge, none of the above mentioned interesting findings have been documented 
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before, using a single virus-cell fusion assay to assess the real-time rearrangements 

occurring within the host cell membrane upon fusion.  Further work is needed on the 

analysis of the corresponding distribution of CXCR4, in order to incorporate these findings 

into insights made for CD4 and CCR5, and to consolidate a theory of the role of lipid rafts 

during HIV-1 infection.   
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Appendix A: Standard Protocols and Recipes 

 

A1 Bacterial Cell Culture 

 

A1.1 Solutions for Bacterial Culture  

 

• A1.1.1 Luria-Bertani (LB) Broth (1 L) 

 

10 g of tryptone powder (Oxoid Inc; Basingstoke, Hampshire, England), 5 g of yeast 

extract powder (Biolab; Wadeville, Gauteng, South Africa) and 5 g of NaCl were 

dissolved in dH2O to a final volume of 1 L.  The broth was autoclaved (121 ºC, 1 

kg/cm2, 20 minutes) and stored at room temperature until use.  

 

• A1.1.2 Agar Plates 

 

3 g of agar powder was added to 200 ml of LB Broth prior to autoclaving.  After 

autoclaving, the solution was allowed to cool to approximately 55 ºC before the 

addition of appropriate antibiotics, poured into 90 mm Petri dishes and allowed to set. 

 

• A1.1.3 Ampicillin Stock (100 mg/ml) 

 

1 g of ampicillin (Sigma-Aldrich; Steinheim, Germany) was dissolved in 70% ethanol 

to a final volume of 10 ml and stored at -20 ºC until use.  
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• A1.1.4 Chloramphenicol Stock (35 mg/ml) 

 

350 mg of chloramphenicol (Calbiochem; Darmstadt, Germany) was dissolved in 70% 

ethanol to a final volume of 10 ml and stored at -20 ºC until use. 

 

• A1.1.1.5 Transformation Buffer (100 mM CaCl2, 10 mM PIPES-HCl, 15% Glycerol, pH 

7.0) 

 

1.4702 g of CaCl2.2H2O, 0.3024 g of PIPES (Boehringer Mannheim; GmbH, 

Germany) and 15 ml of glycerol were mixed with dH20 to a final volume of 100 ml.  

The pH of the solution was adjusted to 7.0 using 10 M NaOH, it was then autoclaved 

and stored at -20 ºC until use. 

 

A1.2 Preparation of Competent DH5α Cells 

 

100 ml of LB Broth was inoculated with 5 µl of glycerol stock DH5α cells (Novagen; 

Darmstadt, Germany), under sterile conditions.  The culture was incubated overnight at 

37 ºC in a shaking incubator.  The overnight culture was diluted 1:10 in LB and grown for 

a further 2-3 hours at 37 ºC in a shaking incubator to stimulate log phase growth.  Once 

the A600 measurement reached approximately 0.4, the culture was centrifuged at 300 x g 

for 10 minutes at 4 ºC in order to pellet the cells.  The supernatant was discarded and the 

pellet was resuspended in 10 ml of ice cold transformation buffer per 50 ml of culture and 

incubated on ice for 20 minutes.  The cells were then pelleted again at 300 x g for 10 

minutes at 4 ºC.  The supernatant was discarded and the pellet was resuspended in 1 ml 

of ice cold transformation buffer.  100 µl aliquots were made of the competent cells, which 

were stored at -80 ºC until use. 
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A1.3 Transformation of Competent E. coli Cells  

 

0.5 µl of plasmid DNA or 5 µl of ligation reaction was added to 50 µl of competent E. coli, 

and the suspension was incubated on ice for 20-25 minutes.  A mock transformation was 

also set up, containing no DNA, and this served as a negative control.  Cells were then 

heat shocked at 42 ºC for 30 seconds and immediately put back on ice for a further 2 

minutes.  Each transformation reaction was spread onto an agar plate, under sterile 

conditions, and incubated overnight at 37 ºC.  Agar plates seeded with transformed DH5α 

cells contained 100 µg/ml ampicillin, whereas agar plates inoculated with transformed 

BL21 pLysS cells contained both 100 µg/ml ampicillin and 35 µg/ml chloramphenicol. 

 

A1.4 Plasmid Preparations of pTriEx-3 and pGA4-gp160 

 

50 µl of competent DH5α bacterial cells (Novagen; Darmstadt, Germany) were 

transformed with 0.5 µl of pTriEx-3 plasmid (approximately 1 µg/µl) (Appendix A1) or 0.5 

µl of pGA4-gp160 plasmid (Appendix B) (approximately 50 ng/µl) (GENEART; 

Regensburg, Germany) (Appendix A1), plated out onto ampicillin-positive agar plates and 

incubated overnight at 37 ºC.  A single colony was selected and used to inoculate Luria-

Bertani Broth (LB Broth) containing ampicillin (100 µg/ml) (Sigma-Aldrich; Steinheim, 

Germany), under sterile conditions (Appendix A1).  The cultures were incubated overnight 

at 37 ºC in a shaking incubator.  The pTriEx-3 plasmid or pGA4-gp160 plasmid was then 

isolated from the overnight culture using the Sigma GenEluteTM Plasmid Maxiprep Kit 

(Sigma-Aldrich; Steinheim, Germany) according to the manufacturer’s instructions.  

Isolated plasmids were resolved on 0.8% agarose gels and visualised under UV light. 

 

 



 94 

A2 Agarose Electrophoresis 

 

 A2.1 Solutions for Agarose Electrophoresis 

 

• A2.1.1 0.5 M EDTA (pH 8.0) 

 

93.05 g of EDTA powder was dissolved in dH20 to a final volume of 500 ml. The pH of 

the solution was adjusted to 8.0 using 10 M NaOH.  It was then autoclaved and stored 

at room temperature until use. 

 

• A2.1.2 50 X TAE Buffer 

 

242 g of Tris base, 57.1 ml of glacial acetic acid and 100 ml of 0.5 M EDTA were 

mixed with dH20 to a final volume of 1 L and stored at room temperature until use.  

Immediately before use, the solution was diluted to 1 X TAE by mixing 20 ml of 50 X 

TAE with 980 ml of dH20. 

 

• A2.1.3 6 X DNA Loading Buffer 

 

10 mM of Tris-HCl (Merck kGaA; Darmstad, Germany), 0.03% bromophenol blue, 60 

% glycerol and 60 mM EDTA were combined and HCl was used to pH the solution to 

7.6.  This solution was stored at -20 ºC until use. 
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A2.2 Preparation of Agarose Gels 

 

0.8% agarose gels were prepared by adding 0.8 g of agarose powder to 100 ml of 1 X 

TAE Buffer (diluted from 50 X stock solution) (Appendix A2.1.2).  The mixture was then 

heated until the agarose powder had dissolved; prior to pouring the gels, 0.5 µg/ml of 

ethidium bromide (Promega; Madison, WI) was added.  Gels were poured into a Bio-Rad 

Gel Chamber System (Bio-Rad; Hercules, CA) and allowed to set. 

    

A2.3 Electrophoresis Procedure 

 

Gels were run in a Bio-Rad Gel Tank System (Bio-Rad; Hercules, CA) submerged in 1 X 

TAE buffer (Appendix A2.1.2) to allow for even heat conduction.  All DNA samples, 

controls and the Quick-LoadTM 1 kb DNA Ladder (New England Biolabs; Ipswich, MA) 

were mixed with DNA Loading Buffer (Appendix A2.1.3).  Gels were then run at maximum 

current and at 30 V as samples exited the wells, and thereafter at 60 V until samples had 

adequately resolved.  DNA bands on the gels were visualised and images captured under 

UV light using the VersadocTM Imaging System (Bio-Rad; Hercules, CA) and the Quantity 

One Version 4.6.1 Software Programme (Bio-Rad; Hercules, CA) .   
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A3 Mammalian Cell Culture 

 

A3.1 Solutions for CaCl2 Transfections 

 

• A3.1.1 2 X HEPES Solution (280 mM NaCl, 50 mM HEPES, 1.5 mM Na2HPO4, pH 

7.1) 

 

0.817 g of NaCl, 0.6 g of HEPES powder and 0.011 g of Na2HPO4 were dissolved in 

dH20 to a final volume of 50 ml.  The pH of the solution was adjusted using 10 M 

NaOH, thereafter the solution was filter sterilized using 0.22 µM Acrodisc® 25 mm 

syringe filters (Pall Corporation; Ann Arbor, MI) and stored at -20 ºC in 5 ml aliquots 

until use.  

 

• A3.1.2 2.5 M CaCl2  Solution 

 

91.85 g of CaCl2.2H20 was dissolved in dH20 to a final volume of 250 ml.  The solution 

was then filter sterilized and stored at -20 ºC in 10 ml aliquots until use. 

 

A3.2 CaCl2 Transfection Protocol  

 

24 hours prior to transfection, 1.5 X 106 HEK 293T cells were seeded in 25 cm2 cell 

culture flasks.  1 hour prior to transfection, growth medium was removed from flasks and 

2 ml of fresh growth medium was added.  Transfection complexes were then added to the 

cells in a drop-wise manner, swirled gently for even distribution, and flasks were placed in 

a 37 ºC incubator to allow for transfections to proceed. 
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A4 Protein Purification 

 

A4.1 Solutions for Protein Purification 

 

• A4.1.1 Na-Phosphate Buffer (200 mM, pH 7.8) 

 

500 mM stock solutions of NaH2PO4 (A) and Na2HPO4 (B) were prepared. 

For solution A: 39.003 g of powder dissolved in dH20 to a final volume of 500 ml. 

For solution B: 44.498 g of powder dissolved in dH20 to a final volume of 500 ml. 

Thereafter, 38 ml of solution A and 162 ml of solution B were mixed with dH20 to a 

final volume of 1 L. 

 

• A4.1.2 Lysis Buffer (20 mM Na-Phosphate Buffer pH 7.8, 100 mM KCl, 1mM EDTA, 2 

mM β-mercaptoethanol, 1% Nonidet P-40) 

 

50 ml of 200 mM stock Na-Phosphate Buffer, 0.7455 g of KCl, 70.5 µl of β-

mercaptoethanol, 1 ml of 0.5 M stock EDTA and 5 ml of Nonidet P-40 were mixed 

with dH20 to a final volume of 500 ml.  This solution was freshly prepared each time 

before use. 

 

• A4.1.3 8 M Urea in Lysis Buffer 

 

14.4 g of urea (Calbiochem; Darmstadt, Germany) was dissolved in lysis buffer to a 

final volume of 30 ml.  This solution was freshly made up each time before use. 
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• A4.1.4 0.1 M NiSo4 Solution 

 

2.63 g of NiSO4 was dissolved in 100 ml of dH20 and stored at 4 ºC until use. 

 

• A4.1.5 Equilibration Buffer (20 mM Na-Phosphate Buffer ph 7.8, 100 mM NaCl, 2 mM 

β-mercaptoethanol, 0.1 mM EDTA) 

 

50 ml of 200 mM stock Na-Phosphate Buffer, 2.922 g of NaCl, 70.5 µl of β-

mercaptoethanol and 100 µl of 0.5 M stock EDTA were mixed with dH20 to a final 

volume of 500 ml.  This solution was freshly prepared each time before use. 

 

• A4.1.6 500 mM Imidazole Solution 

 

1.702 g of imidazole powder was dissolved in equilibration buffer to a final volume of 

50 ml.  This solution was stored at 4 ºC until use. 

 

A4.2 Preparation of Columns for Purification Procedure 

 

Nickel-charged iminodiacetate-sepharose 6B resin (kindly prepared and donated by Dr 

Wolfgang Prinz) was used to purify the recombinant gp41 protein.  This was possible by 

the expression of a C-terminal His-Tag on the recombinant gp41 protein, which binds to 

the nickel-charged sepharose.  Two tubes containing 2 ml of the above mentioned bead 

solution each were washed with 30 ml of dH2O and centrifuged at 3220 x g for 5 minutes. 

10 ml of 0.1 M NiSO4 solution was added to each tube and incubated at room 

temperature on a shaker for 10 minutes.  The tubes were centrifuged at 3220 x g for 5 

minutes and the supernatant removed.  The beads were washed and centrifuged twice at 

3220 x g for 5 minutes and thereafter equilibrated with 10 ml of equilibration buffer (20 
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mM Na-Phosphate Buffer, 100 mM NaCl, 2 mM β-mercaptoethanol, 0.1 mM EDTA) 

containing 10 mM imidazole (diluted 1:50 from 500 mM stock solution) (Appendix A4).  

They were centrifuged again and the supernatant was removed.   

 

A5 Cell Counting 

 

Cell counts were determined by tryptan blue exclusion using a haemocytometer.  The 

cells were diluted 1:10 with 0.4% Trypan Blue Solution (Sigma-Aldrich; Steinheim, 

Germany) and an average number of cells counted in each block of the haemocytometer 

was obtained.  This average was then multiplied by the dilution factor (10) and divided by 

the volume of the haemocytometer (0.1cm X 0.1cm X 0.001cm = 1 X 10-4 cm3) to give the 

amount of cells/ml.  This was then multiplied by the total volume of cells collected to 

obtain the final amount of cells.  

 

A6 SDS-PAGE 

 

A6.1 Solutions for SDS-PAGE  

 

• A6.1.1 4 X Running Gel Buffer (1.5 M Tris-HCL, pH 8.8) 

 

36.3 g of Tris-HCl was dissolved in dH20 to a final volume of 200 ml.  HCl was used to 

adjust the pH of the solution and thereafter it was stored at 4 ºC, in the dark, until use. 
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• A6.1.2 4 X Stacking Gel Buffer (0.5 M Tris-HCl, pH 6.8) 

 

3 g of Tris-HCl was dissolved in dH20 to a final volume of 50 ml.  HCl was used to 

adjust the pH of the solution and thereafter it was stored at 4 ºC, in the dark, until use. 

 

• A6.1.3 10% Sodium Dodecyl Sulphate (SDS) 

 

10 g of SDS was dissolved in dH20 to a final volume of 100 ml.  This solution was 

stored at room temperature until use. 

 

• A6.1.4 10% Ammonium Persulphate (APS) 

 

0.1 g of APS was dissolved in dH20 to a final volume of 1 ml.  This solution was made 

up freshly each time before use. 

 

• A6.1.5 Running Gels (4 gels) 

 

12 ml of Monomer Solution (Sigma-Aldrich; Steinheim, Germany), 11.23 ml of 4 X 

Running Gel Buffer, 450 µl of 10% SDS and 21.3 ml of dH20 were combined.  Just 

prior to pouring the gels, 225 µl of 10% APS and 15 µl of Tetramethylethylene-

diamine (TEMED) (Sigma-Aldrich; Steinheim, Germany), were added to the solution. 

 

• A6.1.6 Stacking Gels (4 gels) 

 

1.99 ml of Monomer Solution (Sigma-Aldrich; Steinheim, Germany), 3.75 ml of 4 X 

Stacking Gel Buffer, 150 µl of 10% SDS and 9 ml of dH20 were combined.  Just prior 
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to pouring the gels, 75 µl of 10% APS and 10 µl of TEMED (Sigma-Aldrich; Steinheim, 

Germany), were added to the solution. 

 

• A6.1.7 2 X Treatment Buffer (0.125 M Tris-HCl, 4% SDS, 20% v/v Glycerol, 0.2 M 

DTT, 0.02% Bromophenol Blue, pH 6.8) 

 

2.5 ml of 4 X Stacking Gel Buffer, 4 ml of 10% SDS, 2 ml of glycerol, 2 mg of 

bromophenol blue (Saarchem; Merck Chemicals, Wadeville, Gauteng, South Africa) 

and 0.31 g of dithiothreitol (DTT) were mixed with dH20 to a final volume of 10 ml.  

This solution was stored at -20 ºC in 500 µl aliquots until use. 

 

• A6.1.8 5 X Treatment Buffer (pH 6.8) 

 

0.305 g of Tris-HCl, 1 g of SDS, 5 ml of glycerol, 0.2% bromophenol blue and 10% β-

mercaptoethanol were mixed with dH20 to a final volume of 10 ml.  HCl was used to 

adjust the pH of this solution and thereafter it was stored in 1 ml aliquots at -20 ºC 

until use. 

 

• A6.1.9 10 X Tank Buffer 

 

30.28 g of Tris-HCl, 144.13 g of glycine and 10 g of SDS were mixed with dH20 to a 

final volume of 1 L.  This solution was stored at room temperature until use. 
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A6.2 Preparation of SDS-PAGE Gels 

 

SDS-PAGE gels were assembled using the Hoefer Gel Casting System (Hoefer Scientific 

Instruments; San Francisco, CA).  Briefly, the casting chamber was assembled and 

sealed, the running gel solution was added to the chambers and a layer of isopropanol 

was added to seal and level out the gels.  Once set, the isopropanol was rinsed off and 

the stacking gel solution was added and allowed to set.  

 

A6.3 Electrophoresis Procedure 

 

Gels were run under denaturing conditions using the Hoefer Gel System (Hoefer 

Scientific Instruments; San Francisco, CA) submerged in 1 X Tank Buffer to allow for 

even heat conduction.  All protein samples and controls were mixed with either 2 X 

Treatment Buffer or 5 X Treatment Buffer, incubated at 80 ºC for 3 minutes to allow for 

protein denaturation and loaded into the wells of the gels.  Prestained Protein Marker, 

Broad Range (6-175 kDa) (New England Biolabs; Ipswich, MA) was used for molecular 

weight calculation.   Gels were run at 10 mA per gel through the stacking gel and at 25 

mA per gel to resolve the samples.  
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A7 Staining Procedures 

 

A7.1 Solutions for Staining Procedures 

 

• A7.1.1 Coomassie Staining Solution 

 

0.25 g of Coomassie® Brilliant Blue R250 (Sigma-Aldrich; Steinheim, Germany) was 

dissolved in 500 ml of methanol, 100 ml of acetic acid and 400 ml of dH20.  This 

solution was stored at room temperature until use. 

 

• A7.1.2 Destaining Solution 1 (40% Methanol, 7% Acetic Acid) 

 

400 ml of methanol, 70 ml of acetic acid and 530 ml of dH20 were mixed and stored at 

room temperature until use. 

 

• A7.1.3 Destaining Solution 2 (5% Methanol, 7% Acetic Acid) 

 

50 ml of methanol, 70 ml of acetic acid and 880 ml of dH20 were mixed and stored at 

room temperature until use. 

 

A7.2 Protocols for Staining Procedures  

 

• A7.2.1 Coomassie Staining 

 

SDS-PAGE gels were stained with Coomassie® Brilliant Blue R-250 (Sigma-Aldrich; 

Steinheim, Germany) overnight at room temperature with gentle shaking.  The gels were 
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destained for 3 hours with Destaining Solution 1 and then for a further 30 minutes with 

Destaining Solution 2, both at room temperature with shaking.  Protein bands were then 

visualised and images captured under white light using the VersadocTM Imaging System 

(Bio-Rad; Hercules, CA) and the Quantity One Version 4.6.1 Software Programme (Bio-

Rad; Hercules, CA).   

 

• A7.2.2 Silver Staining 

 

SDS-PAGE gels were fixed in a 40% Methanol and 10 % Acetic Acid solution for 1 hour 

at room temperature with shaking.  Thereafter gels were silver stained using the Bio-Rad 

Silver Stain Kit (Bio-Rad; Hercules, CA), according to the manufacturer’s instructions. 

Protein bands on the gels were then visualised and images captured as described. 

 

A8 Western- and Immuno-Slot Blotting 

 

A8.1 Solutions for Western Blotting 

 

• A8.1.1 Transfer Buffer 

 

200 ml of methanol, 100 ml of 10 X Tank Buffer and 700 ml of dH20 were mixed and 

stored at room temperature until use. 
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A8.2 Solutions for both Western Blotting and Immuno-Slot Blotting 

 

• A8.2.1 10 X Tris-Buffered Saline (TBS) (pH 7.4) 

 

160 g of NaCl, 4 g of KCl and 60 g of Tris-HCl were dissolved in dH20 to a final 

volume of 2 L.  HCl was used to adjust the pH of the solution and thereafter it was 

autoclaved.  This solution was stored at room temperature until use. 

 

• A8.2.2 T-TBS 

 

Just before use, 10 X TBS was diluted 1:10 with dH20 and Tween 20 added to a final 

concentration of 0.1% (v/v). 

 

A8.3 Western Blotting Procedures 

 

SDS-PAGE gels and nitrocellulose membrane were equilibrated in Transfer Buffer and 

placed on the Trans-Blot apparatus.  Transfer conditions were set at maximum voltage 

and between 40-180 mA (depending of number of gels being transferred) for 1 hour and 

15 minutes.  Following protein transfer, nitrocellulose membrane was blocked in 5% fat 

free milk powder solution in T-TBS (made from a 10 X TBS stock) for 1 hour or 3 hours at 

room temperature with shaking.  The milk powder solution was then rinsed off with T-TBS 

and the nitrocellulose membrane was probed with a primary antibody (See Table A1).  

Incubation was either for 1 hour at room temperature on the bench top, or for 2 hours at 

room temperature or overnight at 4 ºC with shaking.  The nitrocellulose membrane was 

then washed 3 times, for 5 minutes or 10 minutes each, with T-TBS on a shaker in order 

to remove any unbound antibody.  Secondary antibody probing was then performed for 1 

hour at room temperature on the bench top (See Table A1).  The nitrocellulose 
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membrane was washed, as described above, in order to remove any unbound secondary 

antibody before protein detection. 

 

Protein detection was performed by standard chemiluminescence methods.  Bands were 

visualised and images captured using the VersadocTM Imaging System (Bio-Rad; 

Hercules, CA) and the Quantity One Version 4.6.1 Software Programme (Bio-Rad; 

Hercules, CA) as described by the manufacturer. 

 

Table A1:  Table of Antibodies used in Western Blotting 

ANTIBODY 
STARTING 
CONCENTRATION 

SECONDARY 
ANTIBODY USED 

SUPPLIER 

PURIFIED MOUSE 
ANTI-
TRANSFERRIN 
RECEPTOR 
MONOCLONAL 
ANTIBODY (TFR) 

250 ΜG/ML ANTI-MOUSE 
BD BIOSCIENCES 
PHARMINGEN; 
BELGIUM 

ANTI-α-TUBULIN 
(BOVINE), MOUSE 
IGG1, 
MONOCLONAL 
236-10501 (TUB) 

200 ΜG/ML ANTI-MOUSE 
MOLECULAR 
PROBES; OREGON, 
USA 

MONOCLONAL 
MOUSE ANTI-
HUMAN CD4, 
CLONE MT310 
(CD4) 

100 ΜG/ML ANTI-MOUSE 
DAKOCYTOMATION; 
DENMARK 

CKR-5 (D-6): SC-
17833 (CCR5) 

200 ΜG/ML ANTI-GOAT 

SANTA CRUZ 
BIOTECHNOLOGY 
INC; SANTA CRUZ, 
CA 

FUSIN (C-20): SC-
6190 (CXCR4) 

200 ΜG/ML ANTI-GOAT 

SANTA CRUZ 
BIOTECHNOLOGY 
INC; SANTA CRUZ, 
CA 
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HIV-1 GP41 
MONOCLONAL 
ANTIBODY F240 

2 MG/ML ANTI-HUMAN 

NIH AIDS 
RESEARCH AND 
REFERENCE 
REAGENT 
PROGRAM, DIVISION 
OF AIDS, NIAID, NIH 

ECLTM ANTI-
MOUSE IGG, HRP 
LINKED WHOLE 
ANTIBODY (FROM 
SHEEP) 
SECONDARY 
ANTIBODY 

UNKNOWN N/A 

AMERSHAM 
BIOSCIENCES UK 
LIMITED; LITTLE 
CHATFONT, 
BUCKINGHAMSHIRE, 
ENGLAND 

ECLTM ANTI-
HUMAN IGG, HRP 
LINKED WHOLE 
ANTIBODY (FROM 
SHEEP) 
SECONDARY 
ANTIBODY 

UNKNOWN N/A 

AMERSHAM 
BIOSCIENCES UK 
LIMITED; LITTLE 
CHATFONT, 
BUCKINGHAMSHIRE, 
ENGLAND 

PEROXIDASE-
CONJUGATED 
AFFINIPURE 
DONKEY ANTI-
GOAT IGG 

0.8 MG/ML N/A 

JACKSON 
IMMUNORESEARCH 
LABORATORIES; 
WEST GROVE, PA 

 

A9 Standard Chemiluminescence Methods 

 

Equal volumes of Stable Peroxide Solution and Luminol/Enhancer Solution from the 

SuperSignal West Pico Chemiluminescent Substrate Kit (Pierce; Rockford, IL, USA) 

were mixed and added to nitrocellulose membrane for 5 minutes at room temperature on 

the bench top. 
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A10 Fluorescence Microscopy Analysis 

 

A10.1 Solutions for Fluorescence Microscopy Analysis 

 

• A10.1.1 3% Formaldehyde Solution 

 

1 ml of 37% stock formaldehyde solution was mixed with PBS (Sigma-Aldrich; 

Steinheim, Germany), in a glass beaker, to a final volume of 12.33 ml (1:12.33 

dilution).  This solution was freshly made up each time before use. 

 

• A10.1.2 PBS Containing 0.5% BSA 

 

0.25 g of Bovine Serum Albumin (BSA) was dissolved in PBS (Sigma-Aldrich; 

Steinheim, Germany) to a final volume of 50 ml.  This solution was stored at 4 ºC until 

use. 

 

A10.2 Antibodies used for Fluorescence Microscopy Analysis 

 

Table A2: Table of Antibodies used for Fluorescence Detection 

ANTIBODY COLOUR OF 
FLUORESCENCE 

SUPPLIER 

FITC-LABELLED MOUSE 
ANTI-HUMAN CD71 (TFR) 

GREEN 
BD BIOSCIENCES 

PHARMINGEN; BELGIUM 

CHOLERA TOXIN 
SUBUNIT B 

(RECOMBINANT ALEXA 
FLUOR® 488 

CONJUGATE, 100 UG) 

GREEN 
INVITROGEN; 

CARLSBAD, CA 
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PE-LABELLED ANTI-
HUMAN CD184 (CXCR4) 

RED 
BD BIOSCIENCES 

PHARMINGEN; BELGIUM 

PE-LABELLED ANTI-
HUMAN CD195 (CCR5) 

RED 
BD BIOSCIENCES 

PHARMINGEN; BELGIUM 
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Appendix B: Restriction Map Diagrams 
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Appendix C:  Nucleotide Sequence Alignment of gp160 and gp41 
Clones 
 

There appeared to be one silent mutation, at position 2094, in both the gp160 and gp141 

clones (highlighted in green).  

                                                                                                                        

                     *        20         *        40         *        60         *        80         *       100        

CONSENSUS : ATGAGGGTGATGGGCACCCAGCGGAACTGCCAGCAGTGGTGGATCTGGGGCATCCTGGGCTTTTGGATGCTGATGATCTGCAACGGCGGCAACCTGTGGG :  100 

GP160     : ATGAGGGTGATGGGCACCCAGCGGAACTGCCAGCAGTGGTGGATCTGGGGCATCCTGGGCTTTTGGATGCTGATGATCTGCAACGGCGGCAACCTGTGGG :  100 

GP41      : ---------------------------------------------------------------------------------------------------- :    - 

                                                                                                                        

                                                                                                                        

                     *       120         *       140         *       160         *       180         *       200        

CONSENSUS : TGACCGTGTACTACGGCGTGCCCGTGTGGAAAGAGGCCAAGACCACCCTGTTCTGCGCCAGCGACGCCAAGGCCTACGAGAAAGAGGTGCACAACGTCTG :  200 

GP160     : TGACCGTGTACTACGGCGTGCCCGTGTGGAAAGAGGCCAAGACCACCCTGTTCTGCGCCAGCGACGCCAAGGCCTACGAGAAAGAGGTGCACAACGTCTG :  200 

GP41      : ---------------------------------------------------------------------------------------------------- :    - 

                                                                                                                        

                                                                                                                        

                     *       220         *       240         *       260         *       280         *       300        

CONSENSUS : GGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAAATGAAGCTGCGGAACGTGACCGAGAACTTCAACATGTGGAAGAACGACATGGTGGAC :  300 

GP160     : GGCCACCCACGCCTGCGTGCCCACCGACCCCAACCCCCAGGAAATGAAGCTGCGGAACGTGACCGAGAACTTCAACATGTGGAAGAACGACATGGTGGAC :  300 

GP41      : ---------------------------------------------------------------------------------------------------- :    - 

                                                                                                                        

                                                                                                                        

                     *       320         *       340         *       360         *       380         *       400        

CONSENSUS : CAGATGAACGAGGACATCATCAGCCTGTGGGACGAGAGCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTGACCCTGAACTGCAGCGACGTGACCT :  400 

GP160     : CAGATGAACGAGGACATCATCAGCCTGTGGGACGAGAGCCTGAAGCCCTGCGTGAAGCTGACCCCCCTGTGCGTGACCCTGAACTGCAGCGACGTGACCT :  400 

GP41      : ---------------------------------------------------------------------------------------------------- :    - 

                                                                                                                        

                                                                                                                        

                     *       420         *       440         *       460         *       480         *       500        

CONSENSUS : ACAACGCCACCAATGCCACCAACAATACCACCACCACAACCCACAACACCACCGAGACCACCCCCTACGCCAAGATCAGCAACATCACCGACGACATGAA :  500 

GP160     : ACAACGCCACCAATGCCACCAACAATACCACCACCACAACCCACAACACCACCGAGACCACCCCCTACGCCAAGATCAGCAACATCACCGACGACATGAA :  500 

GP41      : ---------------------------------------------------------------------------------------------------- :    - 

                                                                                                                        

                                                                                                                        

                     *       520         *       540         *       560         *       580         *       600        

CONSENSUS : GAACTGCAGCTTCAACGTGACCACCGGCCTGCGGGACAAGCGGAAGCAGGAAAGCGCCCTGTTCTACCGGCTGGACATCATCCCCCTGAACGGCAACAAA :  600 

GP160     : GAACTGCAGCTTCAACGTGACCACCGGCCTGCGGGACAAGCGGAAGCAGGAAAGCGCCCTGTTCTACCGGCTGGACATCATCCCCCTGAACGGCAACAAA :  600 

GP41      : ---------------------------------------------------------------------------------------------------- :    - 

                                                                                                                        

                                                                                                                        

                     *       620         *       640         *       660         *       680         *       700        

CONSENSUS : GAGAACAGCAGCGAGTACCGGCTGATCAACTGCAACACCAGCACCATCAGACAGGCTTGCCCCAAGGTGTCCTTCGACCCCATCCCCATCCACTACTGCG :  700 

GP160     : GAGAACAGCAGCGAGTACCGGCTGATCAACTGCAACACCAGCACCATCAGACAGGCTTGCCCCAAGGTGTCCTTCGACCCCATCCCCATCCACTACTGCG :  700 

GP41      : ---------------------------------------------------------------------------------------------------- :    - 

                                                                                                                        

                                                                                                                        

                     *       720         *       740         *       760         *       780         *       800        

CONSENSUS : CCCCTGCCGGCTTCGCCATCCTGAAGTGCAACGACAAGACCTTCAACGGCACCGGCCCCTGCCACGACGTGAGCACCGTGCAGTGCACCCACGGCATCAA :  800 

GP160     : CCCCTGCCGGCTTCGCCATCCTGAAGTGCAACGACAAGACCTTCAACGGCACCGGCCCCTGCCACGACGTGAGCACCGTGCAGTGCACCCACGGCATCAA :  800 

GP41      : ---------------------------------------------------------------------------------------------------- :    - 

                                                                                                                        

                                                                                                                        

                     *       820         *       840         *       860         *       880         *       900        

CONSENSUS : GCCCGTGGTGTCCACCCAGCTGCTGCTGAACGGCAGCCTGGCCGAGGAAGAGATCGTGATCAGAAGCGAGAACCTGACCAACAATGCCAAGATCATCATC :  900 

GP160     : GCCCGTGGTGTCCACCCAGCTGCTGCTGAACGGCAGCCTGGCCGAGGAAGAGATCGTGATCAGAAGCGAGAACCTGACCAACAATGCCAAGATCATCATC :  900 

GP41      : ---------------------------------------------------------------------------------------------------- :    - 

                                                                                                                        

                                                                                                                        

                     *       920         *       940         *       960         *       980         *      1000        

CONSENSUS : GTGCACCTGAACGAGAGCGTGGAGATCAAGTGCAGCAGGCCCGGCAACAACACCCGGAAGAGCGTGCGGATCGGCATCGGCAGGGGCCAGACCTTTTACG : 1000 

GP160     : GTGCACCTGAACGAGAGCGTGGAGATCAAGTGCAGCAGGCCCGGCAACAACACCCGGAAGAGCGTGCGGATCGGCATCGGCAGGGGCCAGACCTTTTACG : 1000 

GP41      : ---------------------------------------------------------------------------------------------------- :    - 

                                                                                                                        

                                                                                                                        

                     *      1020         *      1040         *      1060         *      1080         *      1100        

CONSENSUS : CCACCGGCAAGGTGATCGGCGACATCAGGCAGGCCCACTGCAACGTGAGCCGGGAGGCCTGGAACAAGACCCTGGAAAAGGTGAAACGGAAGCTGGGCGA : 1100 

GP160     : CCACCGGCAAGGTGATCGGCGACATCAGGCAGGCCCACTGCAACGTGAGCCGGGAGGCCTGGAACAAGACCCTGGAAAAGGTGAAACGGAAGCTGGGCGA : 1100 

GP41      : ---------------------------------------------------------------------------------------------------- :    - 

                                                                                                                        

                                                                                                                        

                     *      1120         *      1140         *      1160         *      1180         *      1200        

CONSENSUS : GCACTTCCCCAACAGCACCATCACCTTCAACCACAGCAGCGGCGGAGACCTGGAAATCACCACCCACAGCTTCAACTGCAGGGGCGAGTTCTTCTACTGC : 1200 

GP160     : GCACTTCCCCAACAGCACCATCACCTTCAACCACAGCAGCGGCGGAGACCTGGAAATCACCACCCACAGCTTCAACTGCAGGGGCGAGTTCTTCTACTGC : 1200 

GP41      : ---------------------------------------------------------------------------------------------------- :    - 

                                                                                                                        

                                                                                                                        

                     *      1220         *      1240         *      1260         *      1280         *      1300        

CONSENSUS : AATACCAGCGACCTGTTCAAGGACAATATCACCATCACCAACAGCACAAACAACACCGTGATCACCCTGCAGTGTCGGATCAAGCAGATTATCAATATGT : 1300 

GP160     : AATACCAGCGACCTGTTCAAGGACAATATCACCATCACCAACAGCACAAACAACACCGTGATCACCCTGCAGTGTCGGATCAAGCAGATTATCAATATGT : 1300 

GP41      : ---------------------------------------------------------------------------------------------------- :    - 

                                                                                                                        

                                                                                                                        

                     *      1320         *      1340         *      1360         *      1380         *      1400        

CONSENSUS : GGCAGAGAGCCGGCCAGGCCATCTACGCCCCTCCCATCCGGGGCAATATCACCTGCAACTCCAATATCACAGGCCTGCTGCTGACCCGGGACGGCGGCAA : 1400 

GP160     : GGCAGAGAGCCGGCCAGGCCATCTACGCCCCTCCCATCCGGGGCAATATCACCTGCAACTCCAATATCACAGGCCTGCTGCTGACCCGGGACGGCGGCAA : 1400 

GP41      : ---------------------------------------------------------------------------------------------------- :    - 

                                                                                                                        

                                                                                                                        

                     *      1420         *      1440         *      1460         *      1480         *      1500        
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CONSENSUS : GGACAACAAGACCAACAACGAGAACAAGACCGAGATCTTCCGGCCTGGCGGCGGAGATATGCGGGACAACTGGCGGAGCGAGCTGTACAAGTACAAGGTG : 1500 

GP160     : GGACAACAAGACCAACAACGAGAACAAGACCGAGATCTTCCGGCCTGGCGGCGGAGATATGCGGGACAACTGGCGGAGCGAGCTGTACAAGTACAAGGTG : 1500 

GP41      : ---------------------------------------------------------------------------------------------------- :    - 

                                                                                                                        

                                                                                                                        

                     *      1520         *      1540         *      1560         *      1580         *      1600        

CONSENSUS : GTGGAGATTAAGCCCCTGGGCATCGCTCCCACCACCGCCAAGCGGCGGGTGGTGGAGCGGGAGAAGCGGGCCGTGGGCATCGGAGCCGTGCTGCTGGGCT : 1600 

GP160     : GTGGAGATTAAGCCCCTGGGCATCGCTCCCACCACCGCCAAGCGGCGGGTGGTGGAGCGGGAGAAGCGGGCCGTGGGCATCGGAGCCGTGCTGCTGGGCT : 1600 

GP41      : ---------------------------------------------------------------------GCCGTGGGCATCGGAGCCGTGCTGCTGGGCT :   31 

                                                                                                                        

                                                                                                                        

                     *      1620         *      1640         *      1660         *      1680         *      1700        

CONSENSUS : TCCTGGGAGCCGCCGGAAGCACAATGGGGGCCGCCAGCATCACCCTGACCGCCCAGGCCAGGCAGGTGCTGTCCGGCATCGTGCAGCAGCAGAGCAACCT : 1700 

GP160     : TCCTGGGAGCCGCCGGAAGCACAATGGGGGCCGCCAGCATCACCCTGACCGCCCAGGCCAGGCAGGTGCTGTCCGGCATCGTGCAGCAGCAGAGCAACCT : 1700 

GP41      : TCCTGGGAGCCGCCGGAAGCACAATGGGGGCCGCCAGCATCACCCTGACCGCCCAGGCCAGGCAGGTGCTGTCCGGCATCGTGCAGCAGCAGAGCAACCT :  131 

                                                                                                                        

                                                                                                                        

                     *      1720         *      1740         *      1760         *      1780         *      1800        

CONSENSUS : GCTGCGGGCTATCGAGGCCCAGCAGCATATGCTCCAGCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGGGTGCTGGCCCTGGAAAGATACCTGCAG : 1800 

GP160     : GCTGCGGGCTATCGAGGCCCAGCAGCATATGCTCCAGCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGGGTGCTGGCCCTGGAAAGATACCTGCAG : 1800 

GP41      : GCTGCGGGCTATCGAGGCCCAGCAGCATATGCTCCAGCTGACCGTGTGGGGCATCAAGCAGCTGCAGGCCCGGGTGCTGGCCCTGGAAAGATACCTGCAG :  231 

                                                                                                                        

                                                                                                                        

                     *      1820         *      1840         *      1860         *      1880         *      1900        

CONSENSUS : GACCAGCAGCTCCTGGGCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCGCCGTGCCCTGGAACAGCAGCTGGTCCAACCGGAACTACAGCGACA : 1900 

GP160     : GACCAGCAGCTCCTGGGCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCGCCGTGCCCTGGAACAGCAGCTGGTCCAACCGGAACTACAGCGACA : 1900 

GP41      : GACCAGCAGCTCCTGGGCATCTGGGGCTGCAGCGGCAAGCTGATCTGCACCACCGCCGTGCCCTGGAACAGCAGCTGGTCCAACCGGAACTACAGCGACA :  331 

                                                                                                                        

                                                                                                                        

                     *      1920         *      1940         *      1960         *      1980         *      2000        

CONSENSUS : TCTGGGACAACATGACCTGGATGCAGTGGGACGGCGAGATCTCCAACTACACCAACATTATCTACCAGCTCCTCGAAGAGAGCCAGATCCAGCAGGAAAA : 2000 

GP160     : TCTGGGACAACATGACCTGGATGCAGTGGGACGGCGAGATCTCCAACTACACCAACATTATCTACCAGCTCCTCGAAGAGAGCCAGATCCAGCAGGAAAA : 2000 

GP41      : TCTGGGACAACATGACCTGGATGCAGTGGGACGGCGAGATCTCCAACTACACCAACATTATCTACCAGCTCCTCGAAGAGAGCCAGATCCAGCAGGAAAA :  431 

                                                                                                                        

                                                                                                                        

                     *      2020         *      2040         *      2060         *      2080         *      2100        

CONSENSUS : GAACGAGAAGGACCTGCTCGCTCTGGACAGCTGGAACAGCCTGTGGAACTGGTTCAGCATCACCAAGTGGCTGTGGTACATCAAGATCTTCATCATGATC : 2100 

GP160     : GAACGAGAAGGACCTGCTCGCTCTGGACAGCTGGAACAGCCTGTGGAACTGGTTCAGCATCACCAAGTGGCTGTGGTACATCAAGATCTTCATTATGATC : 2100 

GP41      : GAACGAGAAGGACCTGCTCGCTCTGGACAGCTGGAACAGCCTGTGGAACTGGTTCAGCATCACCAAGTGGCTGTGGTACATCAAGATCTTCATTATGATC :  531 

                                                                                                                        

                                                                                                                        

                     *      2120         *      2140         *      2160         *      2180         *      2200        

CONSENSUS : ATCGGCGGCCTGGTCTGCCTGCGGATCATCTTCGCCGTGATCAGCCTGGTGAACAGAGTGCGGCAGGGCTACAGCCCCCTGAGCTTCCAGACCCTGACCC : 2200 

GP160     : ATCGGCGGCCTGGTCTGCCTGCGGATCATCTTCGCCGTGATCAGCCTGGTGAACAGAGTGCGGCAGGGCTACAGCCCCCTGAGCTTCCAGACCCTGACCC : 2200 

GP41      : ATCGGCGGCCTGGTCTGCCTGCGGATCATCTTCGCCGTGATCAGCCTGGTGAACAGAGTGCGGCAGGGCTACAGCCCCCTGAGCTTCCAGACCCTGACCC :  631 

                                                                                                                        

                                                                                                                        

                     *      2220         *      2240         *      2260         *      2280         *      2300        

CONSENSUS : CCTCCCCCAGGGACCTGGACCGGCTGAGGGGCATCGAGGAAGAGGGCGGCGAGCAGGACCGGGACAGATCCATCCGGCTGGTGTCCGGCTTCCTGCCCAT : 2300 

GP160     : CCTCCCCCAGGGACCTGGACCGGCTGAGGGGCATCGAGGAAGAGGGCGGCGAGCAGGACCGGGACAGATCCATCCGGCTGGTGTCCGGCTTCCTGCCCAT : 2300 

GP41      : CCTCCCCCAGGGACCTGGACCGGCTGAGGGGCATCGAGGAAGAGGGCGGCGAGCAGGACCGGGACAGATCCATCCGGCTGGTGTCCGGCTTCCTGCCCAT :  731 

                                                                                                                        

                                                                                                                        

                     *      2320         *      2340         *      2360         *      2380         *      2400        

CONSENSUS : CGTGTGGGACGACCTGCGGAGCCTGTGCCTGTTCAGCTACCACCGGCTGAGAGACTTCATCCTGATCGTGGTGCGCGCCGTGGAGCTGCTGGGGCGGAGC : 2400 

GP160     : CGTGTGGGACGACCTGCGGAGCCTGTGCCTGTTCAGCTACCACCGGCTGAGAGACTTCATCCTGATCGTGGTGCGCGCCGTGGAGCTGCTGGGGCGGAGC : 2400 

GP41      : CGTGTGGGACGACCTGCGGAGCCTGTGCCTGTTCAGCTACCACCGGCTGAGAGACTTCATCCTGATCGTGGTGCGCGCCGTGGAGCTGCTGGGGCGGAGC :  831 

                                                                                                                        

                                                                                                                        

                     *      2420         *      2440         *      2460         *      2480         *      2500        

CONSENSUS : AGCCTGCGGGGCCTGCAGAGAGGCTGGGAGGCCCTGAAGTTCCTGGGCAACCTGGTGCAGTACTGGGGCCTGGAACTGAAGAAGAGCGCCATCAACCTGC : 2500 

GP160     : AGCCTGCGGGGCCTGCAGAGAGGCTGGGAGGCCCTGAAGTTCCTGGGCAACCTGGTGCAGTACTGGGGCCTGGAACTGAAGAAGAGCGCCATCAACCTGC : 2500 

GP41      : AGCCTGCGGGGCCTGCAGAGAGGCTGGGAGGCCCTGAAGTTCCTGGGCAACCTGGTGCAGTACTGGGGCCTGGAACTGAAGAAGAGCGCCATCAACCTGC :  931 

                                                                                                                        

                                                                                                                        

                     *      2520         *      2540         *      2560         *      2580         *      2600        

CONSENSUS : TGGACACCATCGCCATCGCCGTGGCCGAGGGCACCGACCGGATCATCGAGTTCATCCAGCGGTTCTGCCGGGCCATTCTGAACATCCCCACCCGGATCCG : 2600 

GP160     : TGGACACCATCGCCATCGCCGTGGCCGAGGGCACCGACCGGATCATCGAGTTCATCCAGCGGTTCTGCCGGGCCATTCTGAACATCCCCACCCGGATCCG : 2600 

GP41      : TGGACACCATCGCCATCGCCGTGGCCGAGGGCACCGACCGGATCATCGAGTTCATCCAGCGGTTCTGCCGGGCCATTCTGAACATCCCCACCCGGATCCG : 1031 

                                                                                                                        

                                             

                     *      2620             

CONSENSUS : GCAGGGCTTTGAGGCCGCCCTGCTG : 2625 

GP160     : GCAGGGCTTTGAGGCCGCCCTGCTG : 2625 

GP41      : GCAGGGCTTTGAGGCCGCCCTGCTG : 1056 
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Appendix D: p24 Results for Infections and Fusion Experiments   

 

 

 

 

 

Figure D1: p24 analysis of (A) FV3 and FV5 infections for amplification of virus for 
fusion experiments, and (B) FV5 infections in flasks and on slides for confirmation 
of infection during fusion experiments.  1: Cell growth medium before the addition of 
virus.  2: T0 (Immediately after virus was added to cells).  3: T1 (24 hours post-infection).  
4: T3 (72 hours post-infection).  5: T5 (120 hours post-infection). 
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Appendix E: Viral Load Calculations 

 

Virus-containing cell culture supernatants were diluted 1:4000 with cell growth medium.  

The determined viral load for this FV5 amplified isolate was 3.2 X 105 viral particles/ml.  

This was then multiplied by the dilution factor (4000) and a final viral load of 1.28 X 109 

viral particles/ml was achieved.  Approximately 5 X 106 U87 R5 cells were infected with 

the FV5 viral isolate.  The cells were infected with 1 ml of the FV5 viral supernatant, 

which amounts to 256 viral particles/cell.   

 

Appendix F: Western Blot Analysis of CXCR4 and CCR5 

Membrane Domain Localization 

 

 

 

 

Figure F1: Western Blot analysis of CXCR4 and CCR5 receptor localization.  Lipid 
raft and membrane extractions were performed on U87 X4 and U87 R5 cells and samples 
were pooled.  Pooled samples were resolved on 10% SDS-PAGE gels and subjected to 
Western Blotting using (A) X4 and (B) R5 antibodies.  R2: Raft fraction 2.  R4: Raft 
fraction 4.  M2: Membrane fraction 2.  M4: Membrane fraction 4.  
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Appendix G: Western Blot Analysis of gp41 During Fusion 

Experiments 

 

Full Western Blot images of gp41 detection during fusion experiments to show 

oligomerisation of the membrane-inserted HIV-1 protein.  

 

 
 
 
Figure G1:  Western Blot analysis of gp41 localization from FV5 fusion studies.  
U87 R5 cells were infected with the FV5 viral isolate (FV5) or left uninfected, as a non-
virus control (NVC).  Infections were then left to incubate at 23 ° C for 2 hours (TAS), to 
allow for gp120-CD4 engagement, and then for a further 3 hours at 37 ° C (3 hrs post 
TAS) to allow for fusion to occur.  TAS and 3 hrs post TAS infections were subjected to 
lipid raft and membrane extractions, and collected fractions were resolved on 10% SDS-
PAGE gels.  Western Blots were performed using the F-240 antibody to detect any shift in 
localization of the gp41. 
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Appendix H: Ethics Waiver and Biosafety Clearance 

 

An ethics waiver was issued for this study, reference number W-CJ-091211-1-Revised 

080130-1, which was handed into the faculty with all other relevant forms.  The Biosafety 

clearance certificate number is 20090704. 
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