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ABSTRACT 
 
The underground mine at AngloGold Ashanti Obuasi Mine in Ghana currently transports about 

175,000 tpm from four shafts to the mill. Two major shafts, Kwesi Mensah Shaft (KMS) and Kwesi 

Renner Shaft (KRS) handle about 85-90% of this total tonnage. Transfer of ore from all the shafts to 

the mill is largely by means of contractor trucks. The mill is approximately 2.8 km and 1.5 km by 

road from KMS and KRS shafts respectively. Earlier plans to introduce a surface conveyor to the 

mill were found not to be economically viable largely due to the lower production level prevailing at 

that time. The objectives at that time were to decrease cost, improve availability and security, and to 

limit the numerous problems associated with contractor trucking.  

  

The current Business Plan indicates a phased increase in the underground production from 175,000 

tpm up to 220,000 tpm. The extra tonnage is to feed the new Tailings Sulphide Plant (TSP), located 

adjacent to the existing mill. With the plan to increase underground production, and the need to 

decrease cost and improve efficiency against the current financial downturn, this project serves to 

review the four ore transfer options that link the shafts to the mill. The options are the continued 

usage of contractor trucks, purchase mine-owned trucks, use surface or underground conveyors. The 

factors to be used in the selection process were categorised under economic, environmental and 

technical parameters. Secondly the options were multiple and consequently the appropriate selection 

method was the Analytic Hierarchy Process (AHP). This is a Multiple Criteria Decision Making 

(MCDM) methodology which is a widely used technique. The AHP is a very simple, structured and 

easily understandable method in which both non-numerical and numerical data are considered in the 

selection processes with multiple options, where the need for optimization is paramount. 

 

The overall observation by the experts’ favoured surface conveyors. However, the issue of capital in 

the present regime of the Obuasi mine, makes it quite difficult to obtain management approval in the 

immediate future. The surface conveyor however, has the potential to make adequate returns. From 

the financial analysis showing a six to ten year payback period in a mining environment, other forms 

of finance could be considered. Alternatively, the next highest ranking option, which is contractor 

trucking could be used but with two contractors. This would introduce competition which could 

improve cost and availability. This is the first time that a more structured approach has been used for 

equipment selection at Obuasi. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Statement of the problem 

The underground mine at Obuasi currently transports about 175,000 tpm from four shafts to the mill. 

Two major shafts, Kwesi Mensah Shaft (KMS) and Kwesi Renner Shaft (KRS) handle about 85-90% 

of this total tonnage. Transfer of ore from all the shafts to the mill is largely by means of contractor 

trucks. The mill is approximately 2.8 km and 1.5 km by road from KMS and KRS shafts 

respectively. 

 

Earlier plans to introduce surface conveyors from the two major shafts to the mill were found not to 

be economically viable largely due to the lower production levels prevailing at that time. The 

objectives at that time were to decrease cost, improve availability and security, and to limit the 

numerous problems associated with contract trucking. 

 

The current Life of Mine (LOM) Business Plan indicates a phased increase in the underground 

production from present levels of 175,000 tpm to about 220,000 tpm. The extra tonnage is to feed the 

new Tailings Sulphide Plant (TSP) that is under construction close to the Sulphide Treatment Plant 

(STP). With the plan to increase underground production and the need to optimise cost and 

efficiency, this project serves to review the four ore transfer options that would link the shafts to the 

mill which are: 

 

a. Continued use of contractor trucks 

b. Mine to purchase own trucks 

c. Install surface conveyor 

d. Install underground conveyor 

 

The current contract truck haulage system suffers from frequent breakdowns and has low truck 

availability. However, the company’s inability to terminate the contract is based on the fact that there 

are few truck haulage contractors available with the required fleet size.  Engaging new haulage 
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contractors from outside the mining area may come at a higher cost. However, there is the 

opportunity to split the contract into two and reduce risk of availability and induce competition 

between two different contractors instead of sticking to one contractor. Besides, there are safety 

concerns with the big trucks moving through the town roads, and threats from fluctuating energy 

prices and theft due to illegal miners stealing from the trucks. The need for an alternative ore transfer 

system is thus paramount.  

 

The current economic down-turn has impacted on all major industrial sectors. The mining industry 

has suffered similarly, and Obuasi mine’s operating costs have consequently been increasing, though 

with the gold price improving slightly minimizing the impact. Obuasi mine’s main competitive 

advantage for improved operational performance lies in increasing production and reducing cost. To 

solve this two-pronged issue, an optimal ore transfer with improved availability and efficient cost 

performance is required.  

 

This evaluation has helped in the selection of the appropriate transfer system for ore delivery to the 

mill. Secondly, it has put into context all issues associated with environmental, security, cost 

effectiveness, labour issues, risk and availability factors, which will sustain the high production rate 

envisaged and the expected cost reduction. 

 

1.2 Objective of research report 

The objectives of the ore transfer system evaluation were: 

1) To analyze environmental, security, risk and availability issues with the proposed increase in 

production. 

2) To comparatively assess the best ore transfer system for the mine using several criteria for 

comparison. 

3) To identify the most cost effective ore transfer system. 

 

1.3 Methodology and scope of work 

The methods used to achieve the objectives include: 

 Description of problem and definition of evaluation criteria, such as capacity, capital cost, 

availability, operational cost, security and safety. 
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 Data collection on each of the four options for each of the criteria mentioned above. The 

sources of information include contractors, the mine and technical journals. 

 Analysis of each alternative using the Analytical Hierarchy Process (AHP) methodology. 

 Selection of the best alternative based on the AHP. 

 

1.4 Reasons for using AHP 

The selection of equipment in mining is a multi-tasked purpose involving several decision-making 

criteria that can be technical, economic and environmental in nature. This type of problem falls under 

Multiple Criteria Decision Making (MCDM). MCDM refers to making decisions in the presence of 

multiple, usually conflicting criteria  

  

The broad categories of MCDA methods so far identified include ELECTRE (Elimination and 

Choice Translating Reality), PROMETHEE (Preference Ranking Organisation Method for 

Enrichment Evaluation), MAUT (Multiple-Attribute Utility) and AHP (Analytical Hierarchy Process 

and Analytic Network Process (ANP) (Almeida, Alencar and Miranda, 2005; Varlan and Le Paillier, 

1999). The methods can be classified according to the type of information given and the salient 

feature of the information whether it is ordinal (involves linguistic scales such as non-numerical 

scales such as low or high) or cardinal scale information (when involving real numbers). Linguistic 

scales can be assigned numerical values for example low may be 1-3 and high may be 7-10 on a 1-10 

scale). ELECTRE and PROMETHEE methods are applicable to ordinal scale information while 

MAUT and AHP are applied when the information is cardinal.   

 

The AHP was selected over other MCDA methods in this study for three main reasons. Firstly, the 

method has significant advantages which are:  

• Detection of inconsistent judgements and estimation of degree of inconsistency (Coyle, 

2004). The AHP is supported by easy-to-use commercially available software packages such 

as Expert Choice ® (Geldermann and Rentz, 2005).  

• The AHP can rank alternatives in the order of their effectiveness when conflicting objectives 

or criteria have to be met. 
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The AHP is thus a very simple, and understandable method when both non-numerical and numerical  

data are considered in selection  processes with multiple options where the need for optimisation is 

paramount. Equipment selection is one of the prominent problems of mining engineering. Mining 

Engineers have to make difficult decisions at the equipment selection stage because the decisions in 

the equipment selection will radically influence the economic life of any mining scenario. So, the 

decision-maker can evaluate the subjective criteria in the problem of equipment selection. The 

decision-maker wants to maximise more than one objective criterion at equipment selection stage. 

Among the number of alternatives, the most suitable equipment must be selected according to 

objectives and alternatives. MCDM applications can help the decision-maker to reach the optimal 

solution for the equipment selection. In the mining industry, MCDM methods can be applied for 

equipment selection because the process includes subjective and objective criteria affecting the 

selection of equipment among alternatives.  

 

The Analytic Hierarchy Process (AHP) is one of such structured techniques for dealing with such 

multiple decision processes. Rather than prescribing a "correct" decision, the AHP helps the 

decision- makers to find the one that best suits their needs and their understanding of the problem. 

 

Based on mathematics and psychology, the AHP was developed by Thomas L. Saaty in the 1970s 

and has been extensively studied and refined since then. The AHP provides a comprehensive and 

rational framework for structuring a decision problem,  representing and quantifying its elements, 

relating those elements to overall goals and evaluating alternative solutions. It is used around the 

world in a wide variety of decision situations, in fields such as government, business, industry, 

healthcare and education. 

 

1.5 Organisation of the research project 

The research project was organised under six main chapters: Chapter 1 contains a statement of the 

problem, objectives of the research report, methodology and scope and text organisation. Chapter 2 

gives the general information about the mine. Chapter 3 is the literature review; Chapter 4 outlines 

the data collection and the field data analysis; Chapter 5 deals with the usage of AHP analysis 

process in selecting the best option. Chapter 6 discusses the various outcomes and the report finally 

ends with Chapter 7 on conclusions and recommendations.   
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CHAPTER 2 
 

INFORMATION ABOUT ANGLOGOLD ASHANTI OBUASI MINE 
 

2.1 Location of the mine 

Obuasi, the capital of the Adansi West Municipality is located on latitude 6.19° N and longitude 

1.66° W. It is about 57 km south of Kumasi in the Ashanti Region and about 270 km north-west of 

Accra the capital city of Ghana. Obuasi can be accessed by rail, road and air by helicopter. The 

current concession area of the mine is approximately 480 km2.  Figure 2.1 shows the location of 

Obuasi.  
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Figure 2.1 Map of Ghana showing the location of Obuasi 
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2.2 Brief history of the AngloGold Ashanti, Obuasi Mine  

Until towards the end of the 19th century when Joseph E. Ellis and Chief Joseph E. Biney who were 

two Fante merchants from the Cape Coast, and their accountant, Joseph P. Brown crossed the River 

Pra into the kingdom of Adansi, Ashanti had its gold mined by the local gold seekers or “galamsey” 

for the local chiefs.  

In March 1890, the partners negotiated the mining concession for 25,900 ha (100 square miles) of 

land in the Obuasi District. Among the foothills of the Moinsi and Kusa ranges, between the rivers 

Oda and Offin, they laid claim to what was and still is, one of the world’s richest goldfields (Ayensu, 

1997). Ashanti Goldfields Corporation Limited was founded in 1897 to develop a mining concession 

in the area of the operations at Obuasi. In 1969, Ashanti became a wholly-owned subsidiary of 

Lonrho Plc (later Lonmin Plc; a UK-listed company which at that time had interests in mining, hotels 

and general trade in Africa). On the 19th of August 1974, Ashanti Goldfields Company Limited 

(Ashanti) was incorporated. 

 

The government of Ghana acquired 20% of Ashanti from Lonmin in exchange for the extension of 

Ashanti's mining lease over its concession area. In 1972, the government of Ghana formed a 

Ghanaian company to take over the assets, business and functions formerly carried out by Ashanti, 

holding 55% of the outstanding shares. 

AngloGold Ashanti was formed on 26th April 2004, following the business combination of 

AngloGold Limited (AngloGold) with Ashanti.  

2.3 Mine ownership 

The mine is now owned by AngloGold Ashanti which holds majority shares and the Ghana 

Government with the minority share. Headquartered in Johannesburg (South Africa), AngloGold 

Ashanti is an international company with a portfolio of long-life, relatively low-cost assets and 

differing ore-body types in key gold producing regions. The company's 22 operations are located in 

10 countries namely; Argentina, Australia, Brazil, Ghana, Guinea, Mali, Namibia, South Africa, 

Tanzania and the United States of America. In addition AngloGold Ashanti also undertakes extensive 

exploration activities. The combined Proven and Probable Ore Reserves of the group amounted to 79 

million ounces of gold as at 31st December, 2008 (AngloGold Ashanti Annual Report, 2008). 
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AngloGold Ashanti is listed with the following listing codes; Johannesburg (ANG), New York (AU), 

Australia (AGG) and Ghana (AGA and AADS), London Stock Exchange (AGD), Euro next Paris 

(VA) and Euro next Brussels (ANG) security exchanges.  

2.4 Topography 

The topography of Obuasi consists of undulating landscape with prominent ridges. The hills rise to a 

height of about 290 m above sea level, the highest being at the Moinsi and Kusa ranges.  

 
2.5 Climate and vegetation 

The concession is in the tropical rain forest region of Ghana that is characterised by long rainy 

periods from March to August peaking between June and July, averaging 178.5 mm per month. This 

is followed by brief periods of dryness with occasional rain from September to November.  The 

average yearly rainfall is about 119.2 mm. The region is associated with moderate average 

temperatures ranging between 25 ºC (minimum) and 34.5 ºC (maximum). 

2.6 Geological information on the mine 
The AngloGold Ashanti Obuasi Mine is located in the Ashanti belt which stretches from Axim (west 

coast) to beyond Konongo (Ashanti). It is part of a prominent belt of Precambrian volcano-

sedimentary and igneous rocks, which extend for a distance of about 250 km long and are about 40 

km wide, in a north east, south-west trend.  The belt consists of the Lower Birimian (Northeastern), 

the Tarkwaian, and the Upper Birimian formations, which occupy the southeastern portion of the 

mine.  A notable feature about this portion of the belt is that the synclinal Tarkwaian rocks 

unconformably overlie the Birimian which is intruded by granitoids, with superficial deposits 

covering it (Kesse, 1985.) 

 

There are three major mineralized trends in the concession from which gold is produced. These are 

the Main Trend, the Gyabunsu Trend and the Binsere Trend.  The zone between the Upper and the 

Lower Birimian, constitute the main trend, which is made up of the Obuasi fissure, the Cote d’Or 

shear, the Main reef, and other minor shears such as, the Ashanti and the 12/74 fissures. The Obuasi 

fissure dips at about 65º to a depth of about 165 m towards the west and stretches over 8 km.  The 

Cote d’Or shear dips flatter than the Obuasi fissure averaging 55o and lies to the east of the Obuasi 

fissure.  In the central portion of the mine, the two shears join at about 1300 m below surface, and are 
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predominantly made up of quartz with massive graphitic associations.  The combined Obuasi fissure 

and the Cote d’Or shear constitute the Main Reef fissure (Bell and Little, 1991). 

2.7 Ore types 
The five main ore types in Obuasi are quartz veins, sulphide ore, transition ore, oxide ore and 

primary ore (Amanor and Gyapong, 1989). These are briefly described below. 

2.7.1 Quartz veins 
This is mainly quartz with free gold in lesser amounts of various metal sulphides, such as iron, zinc 

and copper.  They are generally fine grained and occasionally visible to the naked eye.  

2.7.2 Sulphide ore 
This ore includes gold in the crystal structure of a sulphide material. The gold is extremely fine 

grained and locked up in arsenopyrite crystals. Smaller arsenopyrite crystals come with higher 

grades. The sulphide ore is generally refractory. 

2.7.3 Transition ore 
These are partially oxidised sulphide ores, hard to process due to their structure, and thus generally 

associated with lower recoveries than sulphide and oxide ores. 

2.7.4 Oxide ore 
When chemical decomposition occurs, sulphide ore degenerates into oxidised material.  In Obuasi, 

weathering activities can degrade surface and near-surface sulphides, to a depth of 30 m to 40 m, 

depending on the topography and other factors. 

2.7.5 Primary ore 
This is non-weathered component of non-refractory granitoid mineralization. It is not oxidised. 

  

2.8 Mine operation 

The Obuasi mine is currently dominated by underground mining with many production divisions 

(Figure 2.2). Mining dates back more than 100 years and still has potential to go beyond another 25 

years according to the current LOM business plan. Various mining methods are being used 

underground but the most productive is the open stoping method. Production is currently steady at 

about 175,000 tpm and plans are in place to step it up above 200,000 tpm. Further details of the 

mining operations are found in section 4.2. 
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Figure 2.2 Vertical projection of Obuasi Mine showing major mining blocks, open pits, shaft 
systems and infrastructure 

 

2.9 Underground Material Transport. 

Transport of material mined in Obuasi is by horizontal (hauling) and vertical (hoisting) transport. 

Horizontal haulage of ore underground at Obuasi Mine is by LHDs and dump trucks, rail transport 

(Locomotives) and belt conveyors. The mine is about 8 km along strike and 1.5 km (50 Level) deep. 

However major production and development activities are within the 20 Level to 38 Level with 30m 

intervals between levels. The major tramming levels are 20 Level, 26 Level, 41 Level and 50 Level 

(Figure 2.2). The most important major haulage level currently is 41 Level. It handles about 60-70% 

of total mine ore and waste. It has a 3 ft (1m) guage rail line and uses 20-tonne bottom dump trucks.  

 

Vertical handling of ore from underground is through raises and shafts. The mine has six shafts along 

the 8 km stretch for both material and men handling. Two of the shafts (Ellis and Adansi) at the 

extreme north of the mine have low production and are being decommissioned. GCS shaft is also for 

men transportation only. This leaves only the 3 major shafts for ore and waste handling to surface.  

Of the 3 shafts, Sansu which is located at the extreme south of the mine is  limited to 16 Level ( 

about 450m depth)  and has a maximum capacity of 22, 000 tonnes per month (264,000 tpa), KRS 

(together with Brown Sub-vertical shaft, BSVS) and KMS are the only shafts that  hoist from 50 

Level. They are located at the centroid of current production set-up, and are rated at 78,000 tpm 
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(936,000 tpa) and 135,000 tpm (1,620,000 tpa) hoist capacities respectively.  The two shafts, hoist 

about 85-90% of total mine material.   

Further expansions have been planned for the two shafts to hoist up to 100% of underground 

production and also to meet the projected production increase from the current 175,000 tpm to about 

220,000 tpm. Hence the urgent need to review and optimise the surface ore handling system from the 

two shafts to the ROM pad. KMS shaft hoists most of its ore and waste from 41 Level and has a 

crusher on 43 Level. KRS and BSVS shafts are connected on 26 and 27 Levels.   

 

2.10 Surface Material Transport  

Ore from KMS and KRS mine is presently conveyed to the Sulfide Treatment Plant (STP) by means 

of trucks. The trucking system is under a haulage contract. The KMS-STP contract is being handled 

by A.J FANJ Ltd, whilst KRS-STP haulage is being undertaken by RAK CAMWAY Ltd. Contract 

haulage forms about 30% of mining cost.  The companies use trucks with sizes ranging from 30 to 45 

tonnes. Fleet sizes and varying truck availability are some of the issues that impact on ore 

production.  

 

The haulage distance from KMS to STP, which passes through the community road network, is about 

2.8 km.  That of KRS is about 1.5 km. However straight distance which would be the choice for the 

underground or surface conveyors from the two shafts are about 2.04 km and 1.24 km respectively. 

Figure 2.3 shows the distances from KMS and KRS to STP. Haulage of ore is one of the cost 

components of mine operations and this project seeks to compare the current contract trucking 

system from the two major shafts to the mill with other alternatives namely company buying own 

trucks, installing surface or underground conveyors. The objective is to assess which option would 

enable the mine to achieve the most cost-effective ore handling system with the projected production 

increase.    
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Figure 2.3 Obuasi location showing distances from KMS and KRS to STP pad 

 
2.11 Treatment Process - Sulphide Treatment Plant 

Currently, Obuasi mine operates two mills, the Sulfide Treatment Plant (STP) and the Tailing 

Treatment Plant (TTP). A third mill, Tailing Sulphide Plant (TSP) is about to be commissioned in 

2010. The TSP is expected to treat both underground ore and reclaimed tailings from the tailings 

dams. It has a capacity of about 180,000 tonnes per month and is expected to have improved 

recovery of about 40% instead of the existing 25% by the TTP. The TSP is to replace the existing 

TTP facility. 

 

The STP processes sulphide refractory ore and consists of crushing, milling, flotation and stirred 

tank bio-oxidation of the flotation concentrate. Flotation tailings and bio-oxidised concentrate are 

leached in CIL facilities. The stirred tank bio-oxidation facility is the largest of its kind in the 

world and has been operating successfully since startup in 1994. Its capacity is close to 200,000 

tonnes per month and together with the TSP would handle the planned increase in underground 

tonnage. The sulphides consist of arsenopyrite, pyrite and some pyrrhotite. The Tailing Treatment 

Plant also has 200,000 tonnes per month capacity. It processes material that is hydraulically 

reclaimed from old dams and consists of CIL facilities.  

 

The planned increase in production augments the need for an efficient ore handling system. 

Various forms are being considered in the research report and the literature review in the next 

chapter addresses the concerns on the various optimisation methodologies and handling options.  
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CHAPTER 3 
 

LITERATURE REVIEW 
 
3.1 Literature Review 
 
Cost continues to be a challenge to many investment decisions. On the order hand, it has helped to 

fuel many innovative schemes which have enabled many companies to survive the current financial 

downturn. The current global downturn has resulted in rising cost and low demand for commodities. 

Many, especially in the mining sector, have faced severe consequences. To survive, many of such 

companies and corporations have initiated many schemes and optimisation methodologies to 

surmount the impact of the downturn. The objective and choice of some of these methodologies for 

the optimisation process are being reviewed as part of this research report. Alternative surface ore 

transfer options are also reviewed, leading to the focus on trucking and conveyor systems.    

 

Survival may be the driving force for most mine optimisation strategies, but another aspect of these 

innovations is to keep companies’ financial books healthy, ensure growth and generate adequate 

returns for the shareholders. Additionally, a major benefit of such growth strategies is for long term 

viability through continuous focus on optimisation in good times as well as in bad times. As quoted 

in Wallace (2009, p10), Tim Horsley said “A thorough study can provide compelling ways of 

streamlining a mine’s current operations and would provide a life-of-mine optimisation model which 

can be periodically updated, and optimisations re-run with minimal effort. Keeping such a model 

current provides a valuable tool for scenario analysis planning and allows a mine operator to react 

very quickly to changing circumstances”. This is the real worth of mine optimisation. 

 

Mine optimisation may be defined as putting together a portfolio of assets in such a way that “return 

is maximised for a given risk level, or risk is minimised for a given expected return level or to 

modify to achieve maximum efficiency in time or cost” (Investorwords, 2009). This description fits 

in well with the objective of this research report, to optimise the current ore transport system between 

the KMS (and KRS) shafts and the processing plant (STP).  
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Optimisation of mine transport is essential because the transport of ore or waste forms a crucial part 

of a mining operation. Besides exploration and other indirect activities, the three salient mining 

activities are drilling and blasting, ore/waste handling or transport and processing. Material handling 

serves as a linkage to the two other major processes and also forms part of the main mining activities. 

In essence, optimisation of this process is a step towards major mine improvement strategy and 

operational efficiency. As quoted in Wallace (2009, p10), Tim Horsley said “mine optimisation 

doesn’t need to take a lot of time or be an expensive exercise, but it has very real potential to add 

significant value, sometimes in the order of hundreds of millions of dollars over the life of an 

operation”   

 

Underground ore is transported by means of vertical and/or horizontal transport systems. Once on 

surface, conveyor or truck arrangements are usually the systems used to transport the ore to the 

treatment plants.  Other innovative systems include transfer through pipes where the material is 

already in slurry form. The transportation of ore from the loading point to the disposal point has 

always been a critical activity and one of the most vital cost components of mining operations. 

Indeed, mine haulage has been observed to be as high as 30% of the entire mine’s cost (Narayana, 

2009). Over the years, significant technological and systematic improvements have been undertaken 

to optimise mining haulage by balancing costs and performance. Truck haulage and conveyors are 

systems that have successfully stood the test of time. Other forms of ore/waste mine transport 

systems include rail transport, pipe lines for slurry type materials and in lesser cases, mono rail 

transport. The decision to use either trucks or conveyor systems is not at all easy. The advantage of 

the truck system is its flexibility and mobility such as when mines develop into new, more distant 

parts of a deposit, which would be prohibitively expensive to move a fixed conveyor system. 

However in this research the loading and dumping points are fixed.  

 

Conveyors require electricity to run, but are however more efficient in terms of energy consumption 

and less vulnerable to cost fluctuations. While these large conveyor operations may compete with 

trucks in certain conditions, most surface mines are still served by excavators with truck haulage.  In 

another research by Frizzell (1980) a high angle conveying system was incorporated into three 

hypothetical mining operations. The associated haulage and crushing costs for each system were 

compared with similar costs for a conventional truck haulage system. The results showed 10% to 
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15% return on investment after taxes. The savings are due in part to the reduction in the number of 

trucks, resulting in lower total fuel consumption and truck operating costs, thus making the mine less 

sensitive to fuel cost fluctuations and availability (Frizzell, 1980).  High angle conveyor systems in 

open pit mining and conveyors in general offer many advantages over the traditional truck-only-

haulage systems, including (Santos, 2002):  

(1)  Superior energy efficiency  

(2)  Less dependency on petroleum products  

(3)  Less sensitivity to inflation  

(4)  Less labour  

(5)  Less excavation for the amount of ore recovered 

(6)  Less ramp construction and maintenance costs.  

 

On the other hand, off-road trucks are the most flexible means of transport in surface mining, but 

very poor in energy efficiency. In summary, conveyors are much more economical, but less flexible 

and limited with respect to the transportable lump size (Benecke,2008). 

 

Technological improvements in trucking have taken place in terms of size, operational capability and 

efficiency. Truck sizes have been on the increase over the past 40 years, with 50-tonne, 70-tonne and 

+100-tonne trucks currently in use in some major mines with better operational efficiency in the 

areas of cost and productivity. At Obuasi mine these changes and technological improvements are far 

from reality as major manufacturers’ facilities are distant from site. This makes spares supply 

availability and taking advantage of model changes a challenge. Thus Obuasi mine has to contend 

with the local contract haulage trucks available which are smaller in size and a challenge both 

environmentally and operationally.  

  

Conveyor development has advanced over the years with the introduction of high angle conveyor 

systems to suit the various surface mining operations. Goodyear Engineering Products has developed 

Easyrider conveyor belt cover that can reduce belt operating costs by up to 12%. It has used 

innovative low-rolling resistant rubber cover compound that enables the conveyor to minimise 

energy consumption. Easyrider recovers its shape more quickly than conventional rubber 

compounds. The belts can move more efficiently over idlers, reducing the amount of energy required 
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to run the system. It manages pulley indentation, which can consume 60% of the power on a long 

horizontal conveyor system. The conveyor uses the low-rolling resistant technology, which was 

developed for truck tyres designed to improve fuel economy. It operates more efficiently and creates 

less heat thus extending belt life. The technology can also produce savings for the long operations 

(Colish, 2006). 

 

According to Ganguli (1979), a sizable portion of the overall mining costs comes from ore handling. 

Material handling equipment selection is an important function in the design of a material handling 

system, and thus a crucial step for facilities planning. Using proper material handling equipment can 

enhance the production process, provide effective utilisation of manpower, increase production, and 

improve system flexibility. The importance of material handling equipment selection cannot 

therefore be overlooked. However, with the wide range of material handling equipment available 

today, determination of the best equipment alternative for a given production scenario is not an easy 

task. Material handling accounts for 30-75% of the total cost of a product, and efficient material 

handling can be responsible for reducing the manufacturing system operations cost by 15-30% (Sule, 

1994). These values underscore the importance of material handling costs as an element in improving 

the cost structure of a product. The determination of a material handling system involves both the 

selection of suitable material handling equipment, and the assignment of material handling 

operations to each individual piece of equipment. Hence, material handling system selection can be 

defined as the selection of material handling equipment to perform material handling operations 

within a given working area considering all aspects of the products to be handled (Sujono and 

Lashkari, 2005). 

 

One of the parameters that provide minimum cost for the targeted production in a mine is the 

suitability of the equipment selected. Moreover, equipment selection directly affects pit design and 

production planning. In open pit mining and surface ore/waste transfer, equipment selection is made 

according to many factors related to the ore and mining conditions. These factors can be qualitative 

and quantitative in nature. The main purpose of equipment selection is to choose the optimum and 

cost-effective equipment by installing a decision-support system, which can analyse various and 

complex factors. The term optimum here implies that the equipment selected must comply with the 

mining conditions or constraints and meet the basic requirements and preferences of the mine 
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(Bascetin, 2003; Samata, Sarkar, and Mukherjee, 2002). Various types of equipment selection 

models are available for optimisation purposes. These models are life cycle cost analysis (Sharmma, 

1999), net present value analysis (Sevim and Sharma, 1991), linear breakeven model (Cebesoy, 

1997), linear programming (Petty, 2001) and decision making tools such as reliability analysis, 

knowledge based expert systems and analytic hierarchy processes (Denby, 1990; Tam, 2001).  

 

The most important factors for the selection of surface mining equipment may broadly be classified 

into three major categories namely technical, economic and environmental. These categories were 

used in the research report. The technical issues were identified as site or deposit parameters, 

organisational culture, adaptability to change, production performance, operator capability, 

machinery life, performance monitoring facilities, administration, manufacturer’s reputation, delivery 

lead time and warranty, reliability of machinery, employee participation in the decision-making 

process (maintenance and operation), drive system (hydraulic/ electric/mechanical), maintainability, 

power source required (diesel/electric), available training facilities, auxiliary machines required, 

general supervision required, logistics support or management, degree of automation, operating 

condition, level of safety, and ease of configuration. The environmental factors considered include 

aesthetics, emissions, and noise levels. The economic indicators which were all financial in nature 

include capital, operating cost, labour, operating unit cost, and fuel cost (Samata, Sarkar, and 

Mukherjee, 2002). All the individual factors in all three categories add up to 31. However, most of 

these were aggregated into 15 sub-criteria which is also the maximum number required by the 

Canadian Conservation Institute (CCI) AHP model (Canadian Conservation Institute, 2005). The 

basic principle in equipment selection is to define the degree of priority or governing factors among 

the ones given above and then determine the matching equipment and the alternatives to these 

parameters comparatively. 

 

In most instances, however, it is difficult to determine the equipment meeting all the requirements 

stated (Aykul, 2009). In such cases a Multi-criteria Decision Making (MCDM) methodology, such as 

AHP becomes handy  for the optimisation of the selection process. The selection of equipment in 

mining is a multi-tasked purpose involving several decision-making criteria in areas that are 

technical, economic and environmental in nature. MCDM refers to making decisions in the presence 
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of multiple, usually conflicting criteria (Chen, 2006). The broad categories of MCDM methods so far 

identified for equipment selection and the reasons for choosing AHP are as stated in Section 1.4.  

 

 Equipment selection is one of the prominent problems of mining engineering. Mining engineers 

have to make difficult decisions at the selection stage because the decisions in the equipment 

selection will radically influence the economic life of any mining operation. Musingwini and Minnitt 

(2008) proposed the preferential use of AHP for mining engineering problems which are multi 

criteria in nature as the most cost-effective solution. 

Users of the AHP first decompose their decision problem into a hierarchy of more easily 

comprehended sub-problems, each of which can be analysed independently. The elements of the 

hierarchy can relate to any aspect of the decision problem, tangible or intangible, carefully measured 

or roughly estimated, well- or poorly-understood, or anything at all that applies to the decision at 

hand. 

Once the hierarchy is built, the evaluators systematically evaluate its various elements by comparing 

them to one another two at a time. In making the comparisons, the evaluators can use concrete data 

about the elements, or they can use their judgments about the elements' relative meaning and 

importance. It is the essence of the AHP that human judgments, and not just the underlying 

information, can be used in performing the evaluations (Saaty, 2008).  

The AHP converts these evaluations to numerical values that can be processed and compared over 

the entire range of the problem. A numerical weight or priority is derived for each element of the 

hierarchy, allowing diverse and often incommensurable elements to be compared to one another in a 

rational and consistent way. This capability distinguishes the AHP from other decision making 

techniques. In the final step of the process, numerical priorities are calculated for each of the decision 

alternatives. These numbers represent the alternatives' relative ability to achieve the decision goal, so 

they allow a straightforward consideration of the various courses of action. The highest ranking 

alternative based on the weighting is then selected.  
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3.2 The Analytic Hierarchy Process 
 
The AHP used is based on 4 main axioms which are (Wikipedia:Analytic Hierarchy Process, 2006): 
 

.Defining a goal and setting up a hierarchy of the alternatives and criteria/sub-criteria.  

.Pair-wise comparison of these alternatives under any criterion on a reciprocal ratio scale. 

      .Assessing consistency of pair-wise comparisons.  

      .Computing the relative weights of each alternative.  

 

The AHP enables a person to make pair-wise comparisons of importance between decision criteria 

with respect to a scale, and the consistency of those comparisons. For example in a pair-wise 

comparison if one says "I like apples more than oranges", "I like oranges more than bananas", then, 

"I like bananas more than apples", would make the pair-wise judgments inconsistent but, “I like 

apples more than bananas” would make the pair-wise judgments consistent. 

 

 In the AHP, before computing the weights based on pair-wise judgments, the degree of 

inconsistency is measured by the Consistency Ratio. According to (Saaty, 1980), the acceptable 

maximum threshold ratio is 0.1. The AHP uses various mathematical techniques such as eigen value, 

mean transformation, or row Geometric mean for its computation. The technique employed in this 

research report is the eigen value for computing the weights under the AHP in this research report. 

Since the comparisons are carried out through personal or subjective judgments, some degree of 

inconsistency is expected. To guarantee that the judgments are consistent, the final AHP operation 

called consistency verification, which is regarded as one of the advantages of AHP is incorporated. 

The intent is to measure the degree of consistency among the pair-wise comparison by computing the 

Consistency Ratio (CR). If it is found that the CR exceeds the threshold limit, which is 10%, the 

decision makers should review and revise the pair-wise comparison. Once the pair-wise comparisons 

are carried out in every level, and prove to be consistent, the judgment can then be synthesized to 

find the priority ranking of each alternative and its attributes.  
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3.3 Application of Analytic Hierarchy Process 

Equipment used in ore transfer or transportation systems is a resource input into the ore production 

process. Selection of an ore transfer system is therefore a resource allocation decision. AHP has been 

instrumental in numerous resource allocation decisions – some involving billions of dollars. The 

following list demonstrates the versatility of the AHP process in decision making in various areas of 

decision-making: 

 

i)  British Columbia Ferry Corporation in Canada (B.C. Ferries), uses AHP in the selection of 

products, suppliers and consultants. B.C. Ferries is a provincial crown corporation that provides 

passenger and vehicle ferry service to 42 ports of call throughout coastal British Columbia. Its 40 

vessels operate all year round and carry more than 22 million passengers and 8 million vehicles 

annually. Carol Wyatt, Manager of Purchasing, Planning and Technical Services uses AHP for 

many different applications including determining the 10 best sources of fuel which is the single 

largest expense for B.C. Ferries; contracting professional services such as legal, banking, insurance 

brokers, and ship designers; evaluating major computer systems; selecting service providers such as 

grocery suppliers, and vending and video game companies; hiring consultants; and evaluating 

various product offerings (Forman and Gass, 2002). 

 

ii)  National Aeronautic and Space Administration (NASA)/ Department of Energy (DOE) 

decision conference to recommend a power source for the first lunar outpost used AHP to consider 

criteria such as safety, performance, reliability, and flexibility in evaluating alternatives ranging 

from photo-voltaic cell farms to nuclear reactors (Forman and Gass, 2002). 

 

iii) Car designers on the General Motors' Advanced Engineering Staff use AHP to evaluate 

design alternatives, perform risk management, and arrive at the best and most cost-effective 

automobile designs (Forman and Gass,2002). 

 

 

iv) Dessureault and Scoble (2000) used AHP in a mine to decide whether to purchase new drill-

monitoring technology, maintain status quo, or retrain drillers and surveyors to work more 

productively and safely. The three alternatives were compared on the basis of six criteria. 
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v) Karadogan, Kahriman and Ozer (2008) used AHP based fuzzy multiple attribute decision-

making methodology to select the most suitable underground method for the Ciftalan Lignite Mine 

in Turkey. Five possible mining methods were compared on the basis of 18 criteria. 

 

vi) Ataei (2005) used AHP to select the best location of an alumina-cement plant in Iran. Five 

possible locations were compared on the basis of five criteria. 

 

vii) Kazakidis, Mayer and Scoble (2004) used AHP based Expert Choice ® software to model 

mining scenarios for selecting the best rockbolt support system from 14 possible rockbolt support 

systems on the basis of ten criteria. They also used it to improve tunneling advance rates based on 

seven criteria. 

 

Other AHP applications include the following (Musingwini and Minnitt, 2008): 

• the performance evaluation of line managers for promotion. 

• performance evaluation of operating shafts,  

• ranking of projects competing for funding, 

• measuring company performance on Mining Score Card in meeting the requirements 

of the Mining Charter in South Africa. 

• comparison of different ore haulage systems, 

• evaluation of different support systems for production stopes. 

 

In conclusion, the literature review has established the importance of material handling in many 

industries as well as its significant role in the mining sector and the challenge it presents to 

management. As a major cost factor, the review has shown that the optimisation of the ore handling 

systems has enormous benefits. The methodology is also important as the critical factors to be 

considered may involve technical, economic and environmental issues. Approaches that include 

more than one measure of performance in the evaluation process are termed multi-attribute or multi-

criteria decision methods. Examples of such methods include AHP, ELECTRE, MAUT and 

PROMETHEE. The AHP was chosen to analyse the transport system from the KMS Shaft to the 

processing plant for reasons stated in Section 1.4 and is expected to provide an optimal ore transfer 
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system for the Obuasi mine. The mine has been in operation for more than 100 years and definitely 

has used one form of ore transfer or the other. To attempt to use AHP to evaluate the ore transfer 

system would primarily require a detailed description of the Obuasi operation. This is done in the 

subsequent chapter. 
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CHAPTER 4 
 

MINE OPERATION AND ORE PRODUCTION TRANSFER OPTIONS 
 

4.1 General Mine Operations 

Obuasi Mine has been operating a dual ore transfer system using conveyors and trucks. This dual 

conveyor/truck transport system is the most prevalent ore transfer system in most mining 

establishments. The choice between the two has largely been dependent on economic, technical and 

environmental factors.  

 

Obuasi mine used to transfer ore to the decommissioned Pompora Treatment Plant (PTP) by a 1 km 

long conveyor stretching from Ellis Shaft in the extreme north of the mine to PTP which was also 

located in the north section of the mine. Trucking at that time was on a minor scale. Trucking 

actually increased on the mine at the start of the open pit operation and the transfer of ore to the STP. 

The STP is located at the south section of the mine close to the open pit operation. During that time 

Obuasi mine operated a fleet of 12 trucks and 6 loaders (Figure 4.1). 

  

 
 

Figure 4.1 Assembly of some of Obuasi open pit machinery in 1999                                          

(Photo Courtesy Mining Technology 1999) 

 

After about 10 years of operation of the open pit, reserves at near surface were exhausted and 

operations gradually decreased. A number of the open pit trucks were then used in tandem with other 
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mine-owned trucks which were purposely dedicated to the underground operations to transfer ore 

from the shaft to the plants. With the closure of the PTP as part of a strategic decision process for the 

mine, all the mined ore would be transferred to the STP.  The few mine-owned trucks and some of 

the remaining open pit trucks were used. The mine-owned trucks consisted of Astra trucks of 30 

tonne capacity. These hauled underground ore from the 4 shafts to the STP plant. Tonnage levels 

were about 1,500,000 tonnes per annum. The fleet size was about 20 trucks. The longest distance at 

that time was from the Ellis shaft to the STP plant which is about 9 km and the haulage route passed 

through the township. The shortest routes were between KRS and KMS shafts which were also the 

shafts hoisting the bulk of the underground ore. The mine-owned trucks were also used for waste 

disposal and many other haulage activities.  

 
After the year 2000 the mine faced a series of financial difficulties in raising much needed capital for 

its growth strategy. The open pits were near exhaustion at Obuasi and underground production had to 

be increased to make up for the ounces shortfall. The only option available at that time at the Obuasi 

mine to meet the increasing underground production was to employ contract haulage trucking 

system. The contract haulage trucking system is still employed to move ore from the KMS shaft to 

the processing plant (STP).  

 

4.2 Underground Mine Operations 

 

The Obuasi mine ore production is predominantly from underground mining. Surface mining 

operations are on old stockpiles or tailing dams. Actual surface mining is on a very small scale. The 

underground mining operation is divided into two sections namely, North and South mines. Each is 

managed by a Mine Manager, reporting to the General Manager Mining. Mining operations began 

around 1897 around the Northern part of the mine (the oldest and deepest) and expanded from a 

production rate of about 4,500 tonnes per year in 1907, to approximately 880, 000 tonnes per year in 

the early 1980’s.  The tonnage from the underground operations increased from 1.14 million tonnes 

per annum in 1994 to 2.5 million tonnes per annum in 2001 but fell to 2.2 million tonnes in 2005. 

Average grades also dropped from above 10.5 g/t to 7.90 g/t over the period between 1995 and 2005. 

Production has since been steady at this level. Future production targets are however expected to 

increase to about 2.5 million tonnes per annum in 2015 and remain stable afterwards (Figure 4.2). 
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Production within this period would largely be sourced from the deeper portion of the mine (Deeps 

Project – Level 2), which is beyond current infrastructure.  

 

 
               

Figure 4.2 Obuasi Mine-U/G Production (tpa) 

 

Currently the range of mining methods employed across the mine includes mechanised open stoping 

(accounting for 60% of total mine ore production), sub-level retreat and reclamation (accounting for 

20% of total mine ore production), mechanised cut and fill (accounting for 5% of total mine ore 

production), and stope preparation (accounting for 15% of total mine ore production). 

 

 

4.3 Underground Material Transport. 

Transport of material mined in Obuasi is by both horizontal transport (hauling) and vertical transport 

(hoisting). These are discussed below. 

 

4.3.1 Horizontal 

Horizontal haulage of ore underground at the mine is by LHDs and dump trucks (Figure 4.3), rail 

transport (locomotives) and belt conveyors. The main tramming levels are the 20 Level, 26 Level, 41 

Level and 50 Level. The most important major haulage level currently is the 41 Level. It handles 

about 60-70% of total mine ore and waste. It has a 3 ft (1m) gauge rail line and uses 20 tonne bottom 

dump trucks (Figure 4.4).  
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Figure 4.3  A Scoop loading into a dump truck underground 

 
 

Figure 4.4   20-tonne bottom dump loco truck on 41 Level 

 

4.3.2 Vertical 

Vertical handling of ore from underground is through raises and shafts. The mine has six active 

shafts. Two of the shafts (Ellis and Adansi) on the extreme north of the mine have low production 

and are being decommissioned. Production from this area will be transferred to the KMS shaft 

(Figure 4.5). Another shaft, GCS, is also for men riding only. The remaining 3 shafts are used for ore 
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and waste handling to surface.  Of the 3 shafts, Sansu which is located at the extreme south of the 

mine is  limited in depth to 16 Level ( about 450m depth)  and has a maximum capacity of 22, 000 

tonnes per month (264,000 tpa). KRS (together with BSVS –internal shaft) and KMS shafts are the 

only shafts that can hoist from 50 Level. They are located approximately at the centroid of current 

production set-up, and are rated 78,000 tpm (936,000 tpa) and 135,000 tpm (1,620,000 tpa) 

respectively.  The two shafts together hoist about 85-90% of total mine material.   

 
 Figure 4.5 A view of Kwesi Mensah Shaft (KMS) from the west. 

 
Further shaft upgrades have been planned for the two shafts to hoist up to 100% of underground 

production and also to meet the projected production increase from the current 175,000 tpm to about 

220,000 tpm. There is therefore the urgent need to review and optimise the surface ore handling 

system from the two shafts to the STP mill pad. KMS shaft hoists most of its ore and waste from 44 

Level with a crusher on 43 Level. The main haulage is on 41 Level. KRS and BSVS shafts are 

connected on 26-27 Levels.   
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Table 4.1 KMS skip configuration data 

Storage Bin capacity 1000 tonnes
Skip Bucket Factor 12.02 tonnes
Skip Cycle Time 3 mins from 44 Level to Surface
No. of Skips /Hour 20 Skips
Current Opearting Max capacity 125,000/month
Desired Capacity of Conveyor system 150,000/month

KMS Data

 
 

 

4.3.3 Ore characteristics  

 

Tests conducted on the ore samples revealed that the material is very abrasive with a maximum 

abrasive index of 150 on the ASTM scale. The ore has an angle of repose of 38° and angle of 

surcharge of 23°. The maximum lump size of the material is about 350 mm with a weight of 122 kg. 

The bulk density of the material is 2.75 g/cm3 (2750 kg/m3) and average moisture content of 5%. 

 

4.4 Surface Material Transport - Trucks 

 

Ore from KMS and KRS shafts is presently conveyed to the STP mill by means of trucks. The 

trucking system is under a haulage contract. The KMS-STP contract is being handled by A. J. FANJ 

Ltd, whilst the KRS-STP haulage is contracted to RAK CAMWAY Ltd. Contract haulage takes 

about 30% of mining cost.  The companies use trucks with sizes ranging from 25 to 40 tonnes (Table 

4.2). Effective payloads are about 10% lower than the rated nominal capacities. Truck models 

include Benz, Astra and Iveco. Some use Deutz engines. They are all rear dump trucks (Figure 4.6). 

The cycle time between KMS shaft and the pad is about 40 minutes over a distance of 2.8 km. Fleet 

sizes and varying truck availability are some of the issues that impact on production. About 6-8 

trucks are ideally required. Though the contract trucking systems is beset with numerous problems 

namely pollution from noise, dust and smoke, frequent breakdowns, and escalating cost, safety 

concerns on the roads, fuel shortages, however the vital considerations are its convenience, 
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flexibility, and protection of the mine from equipment obsolescence. An additional advantage is the 

low initial capital required.   

 

Table 4.2  FANJ Trucks Data 

TRUCK 
NUMBERS 

CONTRACT 
NO. 

GROSS 
WEIGHT 

TARE 
WEIGHT 

NET 
 WEIGHT 

 C2173 TONNES TONNES TONNES 
AS 9688Z  48.43 15.80 32.63 
AS 9094Z  45.73 16.55 29.18 
AS 9692Z  48.31 15.55 32.76 
AS 9095Z  58.47 16.95 41.52 
AS 9693Z  48.03 15.80 32.23 
AS 4234W  39.76 13.05 26.71 
AS 7552Z  55.60 15.95 39.65 

 

 

 
Figure  4.6 Contract truck at the KMS loading bin 
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The haulage distance from the KMS shaft to STP mill, is about 2.8 km and the haulage route passes 

through the company and community road network.  That of KRS is about 1.5 km. However straight 

distances from the two shafts to the mill which would be used in designing an underground conveyor  

are about 2.04 km and 1.24 km respectively. Figure 2.3 shows the distances from KMS and KRS 

shafts to the STP mill. Haulage of ore is one of the cost components of mine operations and this 

project seeks to compare the current contract trucking system from the two major shafts to the mill 

with other alternatives namely company buying own trucks, installing surface or underground 

conveyors. The objective is to assess which option would enable the mine to achieve the most cost 

effective ore handling system with the projected increase in production.    

    

 4.5 Surface Material Transport - Conveyors 

 

The mine has used and continues to use conveyors in some aspects of the ore/waste transfer 

system. They have been used both on surface and underground. A belt conveyor system (Figure 

4.7) is used for transporting materials from a start point to an end point by driving an endless belt 

that is tensioned over a set of idlers. The idlers are sufficiently spaced to give adequate support to 

the belt. A successful design of a conveyor belt must begin with an accurate consideration of the 

characteristics of the materials to be conveyed.  

 
                                        Figure 4.7 Components of a belt conveyor  (Anon, 1979) 

 

Some of the important characteristics affecting a conveyor system include angle of repose, angle 

of surcharge, material density, the physical and chemical nature of the ore material.  Conveyors 

offer continuous transfer of the material subsequently giving comparatively higher availability 

and utilization.  
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The mine has previously installed an underground conveyor on 32 Level. This used to run from 

the center of the mine to the extreme north for a distance of 3km to the Ellis shaft. This was also 

supported by another conveyor on surface running from the Ellis Shaft to the North processing 

plant. In view of the fact that reserves in the north section of the mine have been depleted most 

of these structures have been decommissioned. The north Processing Plant (PTP) has now been 

replaced by the Bio-oxidation plant which is at the South section end of the mine. Currently 

conveyors continue to be used on a very small scale in the transfer of ore/waste to the shafts and 

to the surface bins. 

 

4.5.1 Conveyor Options 

The KMS shaft to STP is the route transferring about 65-70% of total underground ore and is the 

one being used for this research report. The outcome could however be applied to both shafts. 

The options available include surface conveyors or underground conveyors. The surface 

conveyors could also be overhead, or ground conveyors. The general models referenced includes 

conventional and cable belt types. The proposed conveyor for the options under consideration 

will be a 1,200mm wide belt conveyor with a designed output of 650 tph. The conveyor will start 

from the KMS load-out bins and follow the haul road to the STP ROM pad area.   

4.5.1.1 Option -1 Underground Conveyors 

The reason for the consideration of underground conveyors is the security threats to surface 

conveyors, disruption to surface routes, and aesthetics issues. Additionally the underground 

conveyors are expected to be the shortest in terms of distance to the plant and largely have no 

topographical challenges. 

 

This is expected to impact on the capital required as a development drive would have to be 

developed to link the two points. The major challenges are the means to transfer the ore back to 

underground conveyor once hoisted. This could be by surface to underground raises and also at 

the plant a ramp to the stock pile as the outlet. It is however expected that the restricted area 

would impact on accessibility and ease of maintenance. 

 

4.5.1.2 Option 2 Surface Conveyors 
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In most surface operations conveyors are often used for ore transportation. In situations of high 

demands on productivity, lower operating cost, long distance, high topographical challenges, 

high environmental concerns and availability of initial capital then conveyors are the best choice. 

However if loading points and dumping points often change then they become a major 

constraint. The loading and dumping points between the KMS shaft and the STP mill are fixed. 

The distance is 2.4 km. This is longer than that for the underground conveyor option but shorter 

than the trucking routes. The conveyors could either be overhead or on the ground.  

 

4.5.1.3 Option 2a - Ground Level Conveyor  

Option 2a considers a ground-level conveyor system with a total length of 1.7 km supported on 

concrete footings. The conveyor will be covered, with walkways and wire mesh fence on either 

side. Long patrol and service roads that are 3m wide by 1.7km long would be provided on one 

side of the conveyor. The conveyor and the service roads would be fenced along the entire length 

with 2.7m high chain-link topped with razor wire. 

 

4.5.1.4 Option 2b - Overhead Conveyor  

The overhead conveyors (Figure 4.8), with a total length of 1.7 km , will be fully enclosed, with 

walkways on either side and supported on trestles to give a clearance varying from 3m - 12m. A 

total of seven sections with varied lengths quoted by Continental Conveyor Ltd were used to 

develop the cost estimates for the optimal route. 
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Figure 4.8 Overhead conveyor model at Obuasi mine (Old AngloGold Ashanti Structure) 

 

With the increased tonnage at KMS shaft, it is envisaged that the following problems associated  

with truck haulage are going to be more pronounced. These are namely: 

• Frequent breakdowns and disruption to production 

• Truck movement through town to the processing plant and associated delays. 

• Illegal miners jumping into moving trucks to steal ore for illegal processing, which  

has resulted in four deaths to date. 

• Increase of fuel consumption and corresponding cost due to increased haulage distances. 

 

It is on the basis of these that the optimisation is being undertaken to bring into perspective the 

different dimensions in the selection of alternative transport system which could enhance 

management’s drive to increase production and improve profitability. The different selection 

criteria (which are 15 in number) which encompass technical, environmental and economic are 

multi-criteria in nature and require optimisation techniques of a multi-criteria nature. An 

appropriate technique, the AHP was used to evaluate the optimal ore transfer system as discussed 

in Chapter 5. 
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CHAPTER 5 
 

RESULTS AND DATA ANALYSIS 
 

5. 1 Results and Data Analysis 
  
In the choice of a transfer system between KMS shaft and the processing plant, the Sulphide 

Treatment Plant (STP), the goal is to select the optimal ore transfer system based on the following 

identified criteria and sub-criteria (Figures 5.1 and 5.2) 

 
                            GOAL AREA                                 ALTERNATIVES                              CRITERIA                               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.1 AHP Hierarchy for Obuasi ore transfer system 
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Figure 5.2 AHP model for optimal ore transport system selection 

Based on the research that was conducted, a significant amount of information was gathered on the 

alternatives. The information was divided into three main areas, which formed the main criteria for 

comparing the ore transport systems. The three major areas are technical parameters, economic and 

environmental factors as shown by Figures 5.1 and 5.2. 
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Subsequent to the above, a questionnaire (Appendix 1, p57) was developed to obtain mine 

practitioners opinions in ranking and weighting the criteria and sub-criteria that would be used in 

comparing the ore transfer systems. One part dealt specifically with the weighting while the second 

dealt with the ranking. This questionnaire was then issued to practitioners.  The practitioners team 

was composed of five members who are often involved in equipment selection on the mine. Of these 

five practitioners, two are Mine Planning Engineers from the Technical Department. Each one of 

them has more than ten years of experience in mine planning. Two practitioners are Production 

Managers from the Mining department. The last practitioner is the Engineering Manager of the mine. 

Thus, they have sufficient experience in equipment selection and are qualified to assign pair-wise 

comparison judgments for the proposed AHP model. The opinions expressed by them in their 

judgments are considered to be representative of the company in evaluating the equipment selection 

criteria and the selection requirements. The data obtained from responses to the questionnaires was 

put into a spreadsheet and the geometric average response was obtained.  

                                 
Table 5.1 and Table 5.2 show the list of sub-criteria and alternative ore transfers and their codes: 

 

Table 5.1 Criteria names and codes 
  

CODE CRITE RIA 
C1 Production 
C2 Flexibility 
C3 Safety 
C4 Ease of setup 
C5 Topography 
C6 Availability 
C7 Spares supply 
C8 Repair Easiness 
C9 Durability 
C10 Capital cost 
C11 Energy cost 
C12 Maintenance cost 
C13 Operational unit cost 
C14 Emissions levels 
C15 Noise  levels 
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In order to rate the alternatives Saaty (1978a; 1978b) uses a hierarchical pair-wise comparison 

between attributes and/or objectives and then solves them with eigen vectors of the reciprocal 

matrices. The scale (Table 5.3) used is the one proposed. 

 

 

Table 5.2 Ore transfer alternatives codes  
 

Code Alternatives 
CT Contract Trucking 
MT Mine-owned Trucking 
SC Surface Conveyor 

UG Underground Conveyor
 

 

In the hierarchy, the matrix of the upper nodes corresponds to level zero (the comparison of criteria) 

while the other correspond to level one. The construction of the square reciprocal matrices is 

performed by asking the decision maker to compare criterion i with criterion j represented by the 

value aij, with respect to two particular criteria. The other values are assigned as follows: (a) aji = 

1/aij; (b) aii = 1. For this report, Saaty’s reciprocal matrices are as shown in Table 5.4. 

 

Table 5.3 Relative judgement scale 

Relative Importance  Value1 
Equal importance/quality  1 
Somewhat more important/better  3 
Definitely more important/better  5 
Much more important/better  7 
Very much more important/better  9 

 
 
 
The maximum eigen value and eigen vector was used to solve the reciprocal matrices (Tables 5.4 and 

5.5). The eigen vector corresponding to the maximum eigen value is a cardinal ratio scale for the 

elements compared. The eigen vectors are then normalised to ensure consistency. After obtaining the 

normalized eigen vectors for each matrix, the vectors of the upper level became the members of the 

                                                 
1 The numbers 2, 4, 6, and 8 are half way positions between the values in the table. 
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full matrix of weights of alternatives for each criterion (Table 5.6). This last matrix of vectors is then 

multiplied by the matrix of weights of the criteria comparison (the eigenvector of the criteria 

comparison) Table 5.7. The intermediate results are as shown: 

 
 
 

Table 5.4 Sub-criteria comparison matrix for the weights (for matrix B) 
 

  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
C1 1 6 1/9 5 1 1/3 1/3 1 1/3 1/9 3 3 2 1 1 
C2 1/6 1 1/9 4 2 1/3 1/3 1 1/3 1/6 1 1/7 1/3 1/4 1/6 
C3 9 9 1 9 9 6 6 9 9 8 9 7 5 6 8 
C4 1/5 1/4 1/9 1 2 1/5 1/2 ½ 1/3 1/6 1/2 1/4 1/5 1/5 1/6 
C5 1 1/2 1/9 1/2 1 1/5 1/5 ¼ 1/6 1/8 1/4 1/5 1/6 1/5 1/6 
C6 3 3 1/6 5 5 1 3 4 2 1/2 3 2 1 1/2 1/6 
C7 3 3 1/6 2 5 1/3 1 2 1 1/6 2 1 1 1/6 1/4 
C8 1 1 1/9 2 4 1/4 1/2 1 1/4 1/6 1/3 1/4 1/6 1/5 1/6 
C9 3 3 1/9 3 6 1/2 1 4 1 1/6 2 1/2 1/4 1/4 1/4 
C10 9 6 1/8 6 8 2 6 6 6 1 5 4 3 1/2 1/2 
C11 1/5 1/2 1/9 2 6 1/2 2 4 1/2 1/2 1 1/2 1/3 1/2 1/2 
C12 1/5 1/2 1/9 4 5 1/6 1 4 1 1/3 2 1 3 1/4 1/4 
C13 1/6 1 1/7 2 5 1/4 1 4 1/3 1/4 1 2 1 1/6 1/4 
C14 1 4 1/6 5 5 2 6 5 4 2 4 3 2 1 1/4 
C15 1 6 1/8 6 6 6 4 6 4 2 4 3 2 4 1 
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Table 5.5 Matrix tables for criterion and alternatives comparison (for matrix A) 

CT MT SC UG CT MT SC UG CT MT SC UG
CT 1 4 1/6 1/3 CT 1 1/4 5 6 CT 1 1/2 1/5 1/3
MT 1/4 1 1/6 1/4 MT 4 1 6 8 MT 2 1 1/5 1/3
SC 6 6 1 2 SC 1/6 1/6 1 2 SC 5 5 1 8
UG 3 1/4 1/2 1 UG 1/6 1/6 1/2 1 UG 3 3 1/8 1

CT MT SC UG CT MT SC UG CT MT SC UG
CT 1 3 6 8 CT 1 1 1/5 1/8 CT 1 4 1/5 1/4
MT 1/3 1 5 7 MT 1 1 1/5 1/8 MT 1/4 1 1/4 1/4
SC 1/6 1/5 1 2 SC 1/2 1/2 1 1/2 SC 5 4 1 3
UG 1/6 1/6 1/8 1 UG 8 5 1 1 UG 4 4 1/3 1

CT MT SC UG CT MT SC UG CT MT SC UG
CT 1 2 1/4 1/2 CT 1 2 1/4 1 CT 1 2 1/3 1/2
MT 1/2 1 1/2 1 MT 1/2 1 1/3 1 MT 1/2 1 1/3 1/3
SC 4 2 1 2 SC 4 3 1 3 SC 3 3 1 2
UG 2 1 1/2 1 UG 1 1 1/3 1 UG 2 3 1/2 1

CT MT SC UG CT MT SC UG CT MT SC UG
CT 1 6 6 6 CT 1 1 1/4 1/2 CT 1 4 1/4 1
MT 1/6 1 3 6 MT 1 1 1/2 1/2 MT 1/4 1 1/6 1/2
SC 1/6 1/3 1 2 SC 4 2 1 3 SC 4 6 1 3
UG 1/6 1/6 1/2 1 UG 2 2 1/3 1 UG 1 2 1/3 1

CT MT SC UG CT MT SC UG CT MT SC UG
CT 1 3 1/6 1/4 CT 1 2 1/8 1/8 CT 1 1 1/2 1/8
MT 1/3 1 1/6 1/4 MT 1/2 1 1/8 1/8 MT 1 1 1/2 1/8
SC 6 6 1 3 SC 8 8 1 1/2 SC 2 2 1 1/5
UG 4 4 1/3 1 UG 8 8 2 1 UG 8 8 5 1

Operating unit cost Emissions levels Noise levels

Spares supply Repair Easiness Durability

Capital cost Energy cost Maintenance cost

Flexibility SafetyProductivity

Ease of setup Topography Availability

 
 
 

The final result is obtained by considering the normalised vectors for criteria comparisons, for each 

alternative (level 1 of hierarchy-MATRIX A, Table 5.6 ) as belonging to the same matrix and then 

multiplying it by the criterion weights (level zero of hierarchy –MATRIX B, Table 5.7 ), which are 

given by the criteria comparison normalised vector (Table 5.8) . 
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Table 5.6  Criteria-alternative comparison weights (Matrix A) 

   

  
   

Table 5.7  Criteria comparison weights (Matrix B) 
   

Prod Flex Safety Ease Topo Avail Spares Repair Dura Capital Energy Maint Unit Emiss Noise

5 2 28 1 1 6 4 2 2 13 3 4 3 9 12

5.836 6.025 10.599

Technical Economics Environmental

 
   

Table 5.8 Criteria alternative comparison weights (Matrix A x B) 

Prod Flex Safety Ease Topo Avail Spares Repair Dura Capital Energy Maint Unit Emiss Noise

CT 72 57 218 78 8 90 71 37 33 791 45 84 39 64 96

MT 33 121 319 43 8 47 70 28 22 302 55 32 22 45 96

SC 273 18 1723 12 39 317 181 104 90 125 167 235 188 343 182

UGC 145 11 545 7 69 174 90 32 57 80 82 73 90 482 812

Matrix A X B

 
 

Prod Flex Safety Ease Topo Avail Spares Repair Dura Capital Energy Maint Unit Emiss Noise

CT 14 28 8 56 7 14 17 18 17 61 13 20 11 7 8

MT 6 59 11 31 7 7 17 14 11 23 16 8 7 5 8

SC 52 9 61 8 31 51 44 52 44 10 48 55 56 37 15

UGC 28 5 19 5 56 28 22 16 28 6 24 17 27 52 68

Criteria comparison  for each  alternative (Matrix B)

   
   

   
   

Table 5.9 Criteria alternative comparison–overall results   
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5.1 Summary Results 
 
The results (Table 5.9) show that Alternative SC, with 41%, has the highest value and is thus the 

most optimal ore transfer system between KMS and the processing plant according to the experts 

ranking. The next is the UGC, with 29%, while CT and MT follow with 17% and 12% respectively. 

Thus Alternative SC is the best choice. A summary table of all the AHP results showing the various 

scoring, estimated weights and final ranking is shown below (Table 5.10). 

 

Table 5-10 AHP summary table 
 

TECHNICAL % ECONOMIC % ENVIRONMENTAL % OVERALL  %

CT 663 13% 959 40% 160 8% 1782 18%

MT 690 13% 411 17% 141 7% 1242 13%

SC 2757 53% 715 30% 526 25% 3997 41%

UGC 1131 22% 325 13% 1294 61% 2750 28%
5,241                         2,410                                               2,120  9,771                   

OVERALL RESULTS
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Weight CT MT SC UG C.R
Productivity 5.2 14 6 52 28 0.008

Flexibility 2.1 28 59 9 5 0.074
Safety 28.2 8 11 61 19 0.148

Ease of setup 1.4 56 31 8 5 0.005
Topography 1.2 7 7 31 56 0.002
Availability 6.3 14 7 51 28 0.165

Spares supply 4.1 17 17 44 22 0.095
Repair easiness 2.0 18 14 52 16 0.036

Durability 4.2 17 11 44 28 0.026

699           713           2,854        1,193       
Capital cost 13.0 61 23 10 6 0.122
Energy cost 3.5 13 16 48 24 0.044

Maintenance cost 4.2 20 8 55 17 0.036
Operating unit cost 3.4 11 7 56 27 0.083

959 411 715 325

Emissions levels
9.3 7 5 37 52 0.046

Noise levels
11.9 8 8 15 68 0.002

160           141           526            1,294       

1,818        1,265        4,094        2,812       
18% 13% 41% 28%

0.102

Te
ch
ni
ca
l

Ec
on
om

ic
En
vi
ro
nm

en
ta
l

Technical Score

Economic  Score

Environmental Score

Overall Score
 

 
 
 
 
 
The summary above gives the overall process ranking and weighting and the final results using the 

Canadian Conservation Institute (CCI) AHP Matrix Model and steps in the “Requirement 

Prioritisation study (Mead, 2006; appendix II). The Consistency Ratio (CR) of 0.102 is on the 

borderline and is acceptable. The CR for the individual criterion also ranges from 0.002 to 0.165. 

This confirms a high degree of consistency in the analysis. The CR values were obtained from 

Canadian Conservation Institute (CCI) AHP Matrix Model using values from the reciprocal matrix 

Tables 5.4 and 5.5.  
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Thus the subjective evaluation of the selection of an optimal ore transfer system as conducted is seen 

as slightly inconsistent as the CR is above the threshold of 0.10. However, according to (Saaty, 

1980), consistency up to 0.20 could be tolerated.  In summary therefore this approach is quite 

consistent,  structured and  intuitive.   
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CHAPTER 6 
 

DISCUSSION 
 

6.1 Introduction  
 

Analysis of the results indicated that many of the ore transfer options obtained high points with 

respect to the environment criterion. Historically, environmental issues have not been something of 

great concern at Obuasi mine, however with the current global environmental and climate-change 

awareness, the experts have attached greater importance to it. 

 

Table 5.7 showed that the weighting assigned for the three main criteria by the various experts. As 

can be seen, the environmental criterion was considered to be more important than the other two 

criteria. The economic criterion was considered second highest in terms of importance while the 

technical criterion was considered to be the least important.  

 

In Table 5.6, the average weights of the sub-criteria are shown. From the average weighting table, it 

can be clearly seen that quite a few of the sub-criteria obtained relatively high values. These included 

safety, capital cost, and noise. The availability of the transfer options and the rate of production or 

productivity followed closely behind with one less point between them. These issues represent the 

areas of greatest concern for the experts, or stated differently, are the most important issues for the 

experts. This is followed by durability and spares availability. The latter is also very important since 

even though being very safe and cost effective, the lack of spares could cripple the entire transfer 

arrangement selected. Environment has the highest weighting compared to economic and technical 

criteria in the weighting and this importance is carried through into the overall results.  

6.2 Technical  

Starting at the top with the technical criterion which has an average weighting of 5.836, it is to be 

noted that the nine sub-criteria have a relatively even distribution with the exception of safety. This 

indicates that the elements in the sub-criteria are considered relatively of equal importance in 

comparison to each other. Safety of the transfer system has the highest weighting in the sub-criterion 

suggesting that it is more important than the others. The next streams of sub-criteria which are fairly 
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equally ranked are availability, productivity and durability in their order of importance.  Apart from 

these, the others following at the lower end of the weighting appear to be of equal importance.  

 

With respect to the first sub-criteria, safety of the system as was expected, was assigned the highest 

score. Conveyors in this regard were highly rated over trucks, with surface conveyors being the best 

of the options (Table 5.8).  

  

The next highest technical sub-criterion was availability. Again conveyors far outweighed trucks, 

with surface conveyors obtaining the highest score. This assertion as observed by the experts is 

confirmed in many reference manuals. The next technical sub-criterion is the production rate or 

productivity. This is a very important issue for Obuasi Mine as the strategic direction is to increase 

production and also decrease cost. The scoring reflects the need for this change if the improved 

production is to be achieved. Conveyors were given generally higher scores than trucks.  

Generally trucking has not fared well at Obuasi Mine leading to regular model changes as could be 

observed with contracting fleets and even the few mine-owned trucks. The concern borders on 

durability, which is the next higher scoring on the technical list.  This fact was expressed in the 

experts scoring where conveyors received a very high score while trucking generally received 

significantly lower scores.  

 

The issue of spares availability and ease of repair are thought to be very essential, considering that 

manufacturing centers are far from the mine site and received a lower weight ranking. On the sub-

criteria, the scoring by the experts on transfer options were fairly average, yet surface conveyors had 

the highest. 

 

The scoring for the sub-criterion flexibility is very interesting as it came out lower than generally 

expected. This is supposed to be the highest scoring points of any type of trucking system and a very 

key issue. However based on the fact that the disposal points and receiving points are fixed, 

flexibility was rated lower as the fifth in the technical weighting. Trucking as expected received the 

highest scoring and for the first time in the analysis mine trucking was above contract trucking. This 

may be due to the experts observation of the other uses which mine trucking could be put to when 

not in use for ore delivery. 
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The next two final technical sub-criteria are repair easiness and topography, with the later being the 

least weighted. These follow similar and expected trend with conveyors being the best favoured in 

terms of easiness of repairs and surface conveyors having a slight edge. On topography the scores 

from the experts did not follow the normal line of thinking expected. The alternatives were basically 

ranked the same with conveyors in a marginal lead. Underground conveyors were rather the highest 

with the view that they could be developed amidst any type of terrain. The general assertion that 

favours conveyors is their ability to transport material along uneven slopes that exceed the dynamic 

stability of the transported material. This should have earned the conveyor system a relatively higher 

score.  

6.3 Economic  

The economic criterion should have been considered significantly more important than the technical 

criterion, however the margin of ranking was minimal. In looking at the individual sub-criteria, it can 

be seen that some of the sub-criteria, especially capital, have the highest overall weighting. The 

general expectation is that the overall values in the economic sub-criteria should in some respect be 

of more significant importance than technical. However, this does not seem to be the case according 

to ranking by the 5 experts. They are almost equally ranked. The highest in the economic sub-criteria 

is capital. This also ranks as the second highest in the 15 listed sub-criteria.  

 

The issue of capital has been the bane of the failure/success of most major projects at Obuasi as in 

any other business entity. Huge initial capital demands become draw backs on most projects, whereas 

stage by stage or stepwise capital expense profile attracts favourable support. This is one of the stark 

differences between financing trucks and conveyors. With the rather tight capital structure on the 

mine, the trucking option had a higher scoring. This view is supported by the experts. The scoring is 

more than double that of the conveyor options, with the contract truck haulage highly favoured in the 

experts’ scoring.  

 

On the contrary, the other sub-criteria within the economic criteria are showing a higher scoring for 

the conveyor options. These are basically within the operational realm, which include energy cost, 

maintenance cost, and total unit operating cost. The scoring for the alternatives favoured the 

conveyors, showing almost a double. The highest rating was still the surface conveyor in the 
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analysis. According to (Schmidt, 2001) the ton-kilometer cost of transport by belt conveyor may be 

as low as one-tenth the cost by haul truck.   

6.3 Environmental  

 The environmental criterion, as was commented earlier, has the highest weighting of the three 

criteria. The environmental impacts of mining operations have become more important in recent 

times. Accordingly, these impacts are gradually becoming an important factor in the choice of 

equipment for mining operations. In material handling operations in mines, belt conveyor systems 

are generally considered to be more environmentally friendly than off-highway truck systems. The 

highest score in the sub-criteria were within the environmental area. The highest weighed sub-

criterion is noise followed by the only other environmental sub-criterion, emission levels. These are 

almost equally ranked with capital. Unfortunately only two sub-criteria could be considered though 

there were other sub-criteria such as aesthetic / visual, but as indicated earlier the Canadian 

Conservation Institute AHP Matrix Model (CCI AHP) that was used limited the matrices to only 15 

sub-criteria.  

 

The noise and emissions sub-criteria received an almost twice as large a score as from the experts for 

both underground and surface conveyors over contract and mine-owned trucks. The latter 

alternatives scoring were fairly similar on the lower scale. The highest scoring from the experts was 

underground conveyors. This is logical and follows conventional expectations.   

  

6.5 Overall Assessment 

 

Table 5.9 and Table 5.10 detail the compiled results of the AHP. In terms of the technical criteria, the 

maximum score for this is 5,241 with an average weight of 582. It is clear that surface conveyors 

scored the highest at 53%. This is followed by underground conveyors, at 22%. The trucking 

alternatives under technical have the same scoring by the experts at 13%. 

  

In the economic section, it can be seen that the transfer system with the highest economic score is 

contract trucking. This is followed by surface conveyors. At the tail end are mine-owned trucks and 

underground conveyors which closely obtained identical economic scores. The leading transfer 



 
 
 

55 
 

system for the economic criterion, contract trucking, obtained high scores for its low initial capital, 

however, it received lower scores for operational cost.  

 

In the environmental criteria, there was a wide disparity in the weighted response over the two major 

alternatives. Trucking had the least scoring. This was less than 10% while conveyors were high at 

above 20%. The major contributory factor is the peculiar location of Obuasi mine. About 25% of the 

KMS shaft to the Processing plant access route links up with the community roads. This has both 

safety and environmental risks. The surface conveyors would however be installed either over land 

or on stilts. Because of the obvious topographical advantage it could circumvent the high intervening 

slopes to link the KMS shaft to the plant. The underground conveyor would not encounter any of 

such challenges. Besides, its transfer would be the shortest in terms of distance between the two 

points. These benefits could have augmented the environmental scoring for the underground 

conveyors by the experts to a highest score of 61%. 

 

The move for change is seemingly obvious with the analysis so far, barring any contingencies in the 

mine set-up and current strategic thinking. Besides plans to increase production from underground, 

discussions are underway to reduce the current mine footprint. This would further limit the number 

of active hoisting shafts to effectively two, which are KMS and KRS. The KMS shaft which is the 

one being used for the current research would subsequently have to improve in efficiency if the mine 

is to match the increase in production from current capacity of 175,000 tpm to above 220,000 tpm. 

KMS shaft would then have to hoist about 5,000 tpd. Technically, this is slightly below the economic 

limit required for conveyor installation. The minimum daily production tonnage is 5,000 tpd for 

conveyors (Fernie, 1996). On the contrary, haulage distance from the shaft to the plant is 2.8 km. 

This is also more than the 1 km minimum economic requirement to change from truck or rail haulage 

to conveyor system (Altoff, 1996).  

 

In support of this research, financial assessments made gave the following results. The current 

contract haulage trucking system at a rate of $1.26 per tonne and a projected 5% annual increment 

resulted in a cumulative haulage cost of $22.0 million in nine years. However, estimated project cost 

for conventional overhead conveyor is about $12.32 million. This gives a payback between 9 to 10 

years. A ground level conveyor is estimated to cost $8.95 million also with a payback 6 to 7 years.  
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The availability of capital continues to be a major issue at Obuasi mine and this tends to stifle growth 

and initiation of such turn-around projects. This obviously makes truck haulage the panacea for the 

short term but is strategically not cost effective. Mine-owned trucking system has also been tried but 

lack of appropriate maintenance regime, overhead cost and labour issues do not make it a desirable 

choice either.  

 

For effective implementation of the conveyor system, appropriate financing arrangement would be 

required or alternatively a Build, Operate and Transfer (BOT) system could be considered to 

facilitate this initiative.  

 

Finally, an observation made was that in terms of the number of sub-criteria, the technical criterion 

had nine sub-criteria; the economic criterion had four while the environmental criterion had two sub-

criteria. It is believed these differences could have affected the results. In hindsight, it is realized that 

under these circumstances, the criteria and sub-criteria could be kept relatively even to avoid double 

accounting for the weight of a criterion.  

6.6 Summary  

The overall observation by the experts under the technical criterion favoured surface conveyors. The 

high point scoring areas were safety, production rate, availability, spare supply and repair easiness, 

and durability. Thus close to 70% of the nine sub-criteria favoured the surface conveyor, and the 

underground as the next favourite. In terms of economic criteria, the experts chose the contract 

trucking system. This is quite in line as the financial strain is very low and labour issues, 

maintenance, and availability are more of external factors to the mine management. The difference in 

scoring was however minimal as it lost ground in the areas of operating cost, which was expected.  

  

Environmental issues also favoured underground conveyors with a very wide margin. Overall  

though the scoring for the three criteria favoured different alternatives, the final choice as per the 

analysis is surface conveyors.  
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CHAPTER 7 

 

CONCLUSION 

 
7.0 Conclusion 
 
Obuasi Mine underground production of 6,000 tpd is considered to be within the small to medium 

capacity range. The current strategy is to increase production as part of the cost management process 

to ensure growth and future share holder value. Key to this is an efficient surface ore transfer system 

from the shaft to the plant. This has been the objective of this research report. The AHP methodology 

used is quite consistent, structured and intuitive and helped to identify the strengths and weakness of 

each alternative under the three main criteria and the 15 sub-criteria. The overall observation by the 

experts favoured surface conveyors, however, the issue of capital in the present regime of the Obuasi 

mine, makes it difficult to encourage management approval within the immediate future. On the 

contrary with the current Turn-Around-Project (TAP) and transformation exercise on-going it is 

hoped that the company would be able to generate sufficient profits to self-fund these worthwhile 

investments. Alternatively as the surface conveyor has the potential to make adequate returns, from 

the financial analysis showing a six to ten year payback period in a mining environment, other forms 

of finance could be considered to undertake the project. Alternatively, the trucking system could be 

considered as the second best option but with the introduction of additional haulage contractors to 

induce competition, improve availability and possibly reduce cost. However, the issue of colluding 

among the contractors could also be an issue.  

 

The proposed AHP model is generally applicable to any selection process in mining operations. 

However, using the AHP model, the criteria for equipment selection are clearly identified and the 

process is structured systematically. This enables decision-makers to examine the strength and 

weakness of each system using the pair-wise comparison. Moreover, the use of the AHP model can 

significantly reduce the time and effort in decision making and also has the potential to improve the 

selection process. The AHP model developed in this paper could be used as a basis for implementing 

future equipment selection for the mine particularly load-haul-and-dump systems. This is however 

the first time a more structured approach has been used for equipment selection at Obuasi.
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Questionnaire-Trucks and conveyors. 
 
As part of a research, this questionnaire is to aid in selecting the best way to transfer ore from the KMS 

shaft to STP mill. The methodology in use is the Analytical Hierarchy Process (AHP) which uses pairwise 

comparison in making the best choice.  

The Subcriteria pairwise comparison is to provide an insight of which criteria e.g. productivity, durability 

(i.e. A or B) has higher advantage over the other and to what intensity (1-9). Write A or B in the first box 

depending on which one you think has higher advantage. Write 1, 3, 5, 7 or 9 in the second box showing 

intensity by using the scale in table one as guide. 

The alternatives include: 

1. C.T  -Contractor trucks 

2. M.T -Mine own trucks 

3. S.C  -Surface conveyors 

4. U/G-Underground conveyors 

 
Attributes  
Productivity of the system               High work output efficiency and effectiveness of the method is desired.                        
Flexibility of the system                   A method that can adapt to changes in tonnage is preferred.                                          
Safety in operation                           Assurance of protection from harmful and dangerous situations  
Easiness of set up                              Proven to be easily made ready for use and requiring less time and technical effort 
Topography                                      Ability to maneuver up and down relatively steep or shallow land slopes is required.    
Availability of system                       less breakdowns with higher work efficiency is desired.                                                 
Spare parts supply                            One with readily available spare parts is desired. 
Repair easiness                                 A method that is not difficult to repair is preferred. 
Durability                                          Strong and long lasting method is necessary. 
Capital Cost                                      Lowest capital for purchase is desired.                                            
Energy cost                                       Minimal cost of fuel or electricity is necessary. 
Maintenance cost                             Least cost for repairs and maintenance is desired 
Unit cost                                            Least cost per tonne of ore moved is required. 
Jobs/labour                                       Least labour cost is desired.                
Emissions levels                                Lowest risk of Harmful emissions and gases to the environment is good.                      
Noise Levels                                      Least loud and unpleasant sound emitted into the surrounding environment is 
desired.                                             
Aesthetic/Visuals                              Least visual impact to the environment is good.                         

 
 
GOAL: selection of optimal transport system for the transfer of ore from KMS to STP. 
 
The fundamental scale of pairwise comparison. 

 1 Equal importance Two elements contribute equally to the objective. 

3 Moderate importance Experience and judgement slightly favour one over the 
other. 

5 Strong importance Experience and judgement strongly favour one over the 
other. 

7 Very strong importance One element is favoured very strongly over another; its 
dominance is demonstrated in practice. 

9 Extreme  importance The evidence favouring one element over another is of 
highest possible order of affirmation. 
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A B Higher 
advantage 
(A or B)

Intensity 
(1,3,5,7 / 
9)

Higher 
advantage 
(A or B)

Intensity 
(1,3,5,7 / 
9)

Higher 
advantage 
(A or B)

Intensity 
(1,3,5,7 / 
9)

Higher 
advantage 
(A or B)

Intensity 
(1,3,5,7 / 
9)

Higher 
advantage 
(A or B)

Intensity 
(1,3,5,7 / 
9)

Higher 
advantage 
(A or B)

Intensity 
(1,3,5,7 / 
9)

Flexibility Productivity B 6 A 1 B 6 B 7 B 6 B 6
Safety Productivity A 9 A 9 A 9 A 9 A 9 A 1/9
Ease of setup Productivity B 5 A 1 B 5 B 5 B 5 B 5
Topography Productivity B 1 B 5 B 1 A 5 B 1 B 1
Availability Productivity A 3 A 1 A 3 A 5 A 3 A 1/3
Spares supply Productivity A 3 A 5 A 3 A 1 A 3 A 1/3
Repair Easiness Productivity A 1 A 3 A 1 B 3 A 1 A 1
Durability Productivity A 3 A 3 A 3 A 3 A 3 A 1/3
Capital cost Productivity A 9 B 7 A 9 A 9 A 9 A 1/9
Energy cost Productivity B 3 B 7 B 3 A 3 B 3 B 3
Maintenance cost Productivity B 3 B 7 B 3 B 3 B 3 B 3
Unit cost Productivity B 2 B 7 B 2 A 1 B 2 B 2
Emissions Productivity A 1 A 7 A 1 B 7 A 1 A 1
Noise Productivity A 1 A 7 A 1 B 7 A 1 A 1
Safety Flexibility A 9 A 9 A 9 A 9 A 9 A 1/9
Ease of setup Flexibility B 4 B 5 B 4 A 1 B 4 B 4
Topography Flexibility B 2 B 7 B 2 A 5 B 2 B 2
Availability Flexibility A 3 A 1 A 3 A 5 A 3 A 1/3
Spares supply Flexibility A 3 A 5 A 3 A 1 A 3 A 1/3
Repair Easiness Flexibility A 1 A 3 A 1 B 3 A 1 A 1
Durability Flexibility A 3 A 3 A 3 A 3 A 3 A 1/3
Capital cost Flexibility A 6 B 3 A 6 A 9 A 6 A 1/6
Energy cost Flexibility B 1 B 3 B 1 A 1 B 1 B 1
Maintenance cost Flexibility B 7 B 3 B 7 A 1 B 7 B 1/7
Unit cost Flexibility B 3 B 3 B 3 A 3 B 3 B 1/3
Emissions Flexibility A 4 A 7 A 4 B 1 A 4 A 1/4
Noise Flexibility A 6 A 7 A 6 B 3 A 6 A 1/6
Ease of setup Safety B 9 B 9 B 9 B 1 B 9 B 9
Topography Safety B 9 B 9 B 9 B 3 B 9 B 9
Availability Safety B 6 B 9 B 6 B 9 B 6 B 6
Spares supply Safety B 6 B 9 B 6 B 9 B 6 B 6
Repair Easiness Safety B 9 B 9 B 9 B 3 B 9 B 9
Durability Safety B 9 B 9 B 9 B 3 B 9 B 9
Capital cost Safety B 8 B 9 B 8 B 9 B 8 B 8
Energy cost Safety B 9 B 9 B 9 B 9 B 9 B 9
Maintenance cost Safety B 7 B 9 B 7 B 7 B 7 B 7
Unit cost Safety B 5 B 9 B 5 B 9 B 5 B 5
Emissions Safety B 6 B 9 B 6 B 9 B 6 B 6
Noise Safety B 8 B 7 B 8 B 5 B 8 B 8
Topography Ease of setup A 2 B 7 A 2 A 9 A 2 A 2
Availability Ease of setup A 5 A 9 A 5 A 5 A 5 A 1/5
Spares supply Ease of setup B 2 A 5 B 2 B 9 B 2 B 1/2
Repair Easiness Ease of setup A 2 A 3 A 2 A 9 A 2 A 1/2
Durability Ease of setup A 1.3 A 3 A 1.3 A 3 A 1.3 A 1 1/3
Capital cost Ease of setup A 6 B 3 A 6 A 7 A 6 A 1/6
Energy cost Ease of setup B 2 B 3 B 2 A 1 B 2 B 1/2
Maintenance cost Ease of setup B 4 B 3 B 4 A 1 B 4 B 1/4
Unit cost Ease of setup B 5 B 3 B 5 A 3 B 5 B 1/5
Emissions Ease of setup A 5 A 7 A 5 A 9 A 5 A 1/5
Noise Ease of setup A 6 A 7 A 6 A 5 A 6 A 1/6
Availability Topography A 5 A 7 A 5 A 7 A 5 A 1/5
Spares supply Topography A 5 A 7 A 5 A 5 A 5 A 1/5
Repair Easiness Topography A 4 A 7 A 4 A 1 A 4 A 1/4
Durability Topography A 6 A 7 A 6 A 3 A 6 A 1/6
Capital cost Topography A 8 A 7 A 8 A 5 A 8 A 1/8
Energy cost Topography A 4 A 7 A 4 A 3 A 4 A 1/4
Maintenance cost Topography A 5 A 7 A 5 A 3 A 5 A 1/5
Unit cost Topography A 6 A 7 A 6 A 3 A 6 A 1/6
Emissions Topography A 5 A 7 A 5 A 1 A 5 A 1/5
Noise Topography A 6 A 7 A 6 A 5 A 6 A 1/6
Spares supply Availability B 3 B 1 B 3 B 9 B 3 B 3
Repair Easiness Availability B 4 B 3 B 4 B 5 B 4 B 4
Durability Availability B 2 B 3 B 2 B 3 B 2 B 2
Capital cost Availability B 2 B 5 B 2 A 3 B 2 B 1/2
Energy cost Availability B 3 B 5 B 3 A 1 B 3 B 3
Maintenance cost Availability B 2 B 5 B 2 B 3 B 2 B 2
Unit cost Availability B 1 B 5 B 1 B 5 B 1 B 1
Emissions Availability A 2 A 7 A 2 B 1 A 2 A 1/2
Noise Availability A 6 A 9 A 6 B 5 A 6 A 1/6
Repair Easiness Spares supply B 2 B 3 B 2 B 5 B 2 B 2
Durability Spares supply B 1 B 3 B 1 A 1 B 1 B 1
Capital cost Spares supply A 6 B 3 A 6 A 7 A 6 A 1/6
Energy cost Spares supply B 2 B 3 B 2 A 3 B 2 B 2
Maintenance cost Spares supply A 1 B 3 A 1 A 7 A 1 A 1
Unit cost Spares supply B 1 B 3 B 1 A 3 B 1 B 1
Emissions Spares supply A 6 A 7 A 6 B 1 A 6 A 1/6
Noise Spares supply A 4 A 7 A 4 B 5 A 4 A 1/4
Durability Repair A 4 A 3 A 4 A 1 A 4 A 1/4
Capital cost Repair A 6 B 3 A 6 A 5 A 6 A 1/6
Energy cost Repair A 3 A 3 A 3 A 1 A 3 A 1/3
Maintenance cost Repair A 4 A 3 A 4 A 3 A 4 A 1/4
Unit cost Repair A 6 A 3 A 6 A 9 A 6 A 1/6
Emissions Repair A 5 A 7 A 5 A 5 A 5 A 1/5
Noise Repair A 6 A 7 A 6 A 3 A 6 A 1/6
Capital cost Durability A 6 A 3 A 6 A 3 A 6 A 1/6
Energy cost Durability B 2 B 3 B 2 A 3 B 2 B 2
Maintenance cost Durability B 2 B 3 B 2 A 1 B 2 B 1/2
Unit cost Durability B 4 B 3 B 4 B 1 B 4 B 1/4
Emissions Durability A 4 A 7 A 4  B 3 A 4 A 1/4
Noise Durability A 4 A 7 A 4 A 3 A 4 A 1/4
Energy cost Capital cost B 5 B 1 B 5 B 9 B 5 B 5
Maintenance cost Capital cost B 4 B 1 B 4 B 5 B 4 B 4
Unit cost Capital cost B 3 A 1 B 3 B 5 B 3 B 3
Emissions Capital cost A 2 A 7 A 2 B 5 A 2 A 1/2
Noise Capital cost A 2 A 7 A 2 B 1 A 2 A 1/2
Maintenance cost Energy cost A 3 A 1 A 3 A 3 A 3 A 1/3
Unit cost Energy cost A 2 B 1 A 2 A 5 A 2 A 1/2
Emissions Energy cost B 2 A 7 B 2 B 9 B 2 B 1/2
Noise Energy cost A 3 A 7 A 3 B 1 A 3 A 1/3
Unit cost Maintenance B 2 B 3 B 2 B 3 B 2 B 1/2
Emissions Maintenance A 2 A 7 A 2 B 3 A 2 A 1/2
Noise Maintenance A 3 A 7 A 3 A 3 A 3 A 3
Emissions Unit cost A 4 A 7 A 4 B 3 A 4 A 1/4
Noise Unit cost A 4 A 7 A 4 A 1 A 4 A 1/4
Noise Emissions A 4 A 7 A 4 A 5 A 4 A 1/4

EXPERT  5 SUMMARY

SUB‐CRITERIA PAIRWISE COMPARISON BY EXPERTS

EXPERT  1 EXPERT  2 EXPERT  3 EXPERT  4
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SUB-CRITERIA COMPARISON MATRIX

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 Scores Product Ratio
C1 1 6 1/9 5 1 1/3 1/3 1 1/3 1/9 3 3 2 1 1 5.2% 0.88 16.9172
C2 1/6 1 1/9 4 2 1/3 1/3 1 1/3 1/6 1 1/7 1/3 1/4 1/6 2.1% 0.33 15.8652
C3 9 9 1 9 9 6 6 9 9 6 9 7 5 6 8 28.2% 5.43 19.2726
C4 1/5 1/4 1/9 1 2 1/5 1/2 1/2 1/3 1/6 1/2 1/4 1/5 1/5 1/8 1.4% 0.23 16.6828
C5 1 1/2 1/9 1/2 1 1/5 1/5 1/4 1/6 1/8 1/4 1/5 1/6 1/5 1/6 1.2% 0.22 17.9832
C6 3 3 1/6 5 5 1 3 4 2 1/2 3 2 1 1/2 1/6 6.3% 1.10 17.5835
C7 3 3 1/6 2 5 1/3 1 2 1 1/6 2 1 1 1/6 1/4 4.1% 0.71 17.2976
C8 1 1 1/9 2 4 1/4 1/2 1 1/4 1/6 1/3 1/4 1/6 1/5 1/6 2.0% 0.34 16.7002
C9 3 3 1/9 3 6 1/2 1 4 1 1/6 2 1/2 1/4 1/4 1/4 4.2% 0.74 17.5314
C10 9 6 1/6 6 8 2 6 6 6 1 5 4 3 1/2 2 13.0% 2.43 18.7159
C11 1/5 1/2 1/9 2 6 1/2 2 4 1/2 1/2 1 1/2 1/3 1/2 1/2 3.5% 0.61 17.4063
C12 1/5 1/2 1/9 4 5 1/6 1 4 1 1/3 2 1 3 1/4 1/4 4.2% 0.65 15.4660
C13 1/6 1 1/7 2 5 1/4 1 4 1/3 1/4 1 2 1 1/6 1/4 3.4% 0.54 16.0078
C14 1 4 1/6 5 5 2 6 5 4 2 4 3 2 1 1/4 9.3% 1.67 17.9154
C15 1 6 1/8 8 6 6 4 6 4 1/2 4 3 2 4 1 11.9% 2.12 17.8663

CI 0.16
CR=CI/RI 0.1025

NORMALISED COMPARISON MATRIX

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

C1 0.030 0.134 0.039 0.085 0.014 0.017 0.010 0.019 0.011 0.009 0.079 0.108 0.093 0.066 0.069

C2 0.005 0.022 0.039 0.068 0.029 0.017 0.010 0.019 0.011 0.014 0.026 0.005 0.016 0.016 0.011

C3 0.273 0.201 0.354 0.154 0.129 0.299 0.183 0.174 0.298 0.494 0.236 0.251 0.233 0.395 0.550

C4 0.006 0.006 0.039 0.017 0.029 0.010 0.015 0.010 0.011 0.014 0.013 0.009 0.009 0.013 0.009

C5 0.030 0.011 0.039 0.009 0.014 0.010 0.006 0.005 0.006 0.010 0.007 0.007 0.008 0.013 0.011

C6 0.091 0.067 0.059 0.085 0.071 0.050 0.091 0.077 0.066 0.041 0.079 0.072 0.047 0.033 0.011

C7 0.091 0.067 0.059 0.034 0.071 0.017 0.030 0.039 0.033 0.014 0.053 0.036 0.047 0.011 0.017

C8 0.030 0.022 0.039 0.034 0.057 0.012 0.015 0.019 0.008 0.014 0.009 0.009 0.008 0.013 0.011

C9 0.091 0.067 0.039 0.051 0.086 0.025 0.030 0.077 0.033 0.014 0.053 0.018 0.012 0.016 0.017

C10 0.273 0.134 0.059 0.103 0.114 0.100 0.183 0.116 0.198 0.082 0.131 0.144 0.140 0.033 0.138

C11 0.006 0.011 0.039 0.034 0.086 0.025 0.061 0.077 0.017 0.041 0.026 0.018 0.016 0.033 0.034

C12 0.006 0.011 0.039 0.068 0.071 0.008 0.030 0.077 0.033 0.027 0.053 0.036 0.140 0.016 0.017

C13 0.005 0.022 0.051 0.034 0.071 0.012 0.030 0.077 0.011 0.021 0.026 0.072 0.047 0.011 0.017

C14 0.030 0.089 0.059 0.085 0.071 0.100 0.183 0.097 0.132 0.165 0.105 0.108 0.093 0.066 0.017

C15 0.030 0.134 0.044 0.137 0.086 0.299 0.122 0.116 0.132 0.041 0.105 0.108 0.093 0.263 0.069

First, a summary of five experts pair-wise comparison was obtained by averaging the comparison. This was used in 

filling the 15x15 matrix table (Table ). The data from the table was then averaged by normalized columns to 

estimate the eigenvector of the matrix, which represents the criterion distribution. This was done by computing the 

sum of the columns in the matrix and divided each value in the matrix by the column sum. The output is the

normalized matrix. 

 

To determine the score of each requirement, average the row in the normalized matrix by dividing each row sum by 

the number of requirements. The score of each requirement is the percentage that the requirement adds to the

requirements' total value.  

The consistency index/random index (CI/RI) ratio was used to check the consistency of the results To compute the 
CI/RI ratio, the following steps were taken:1 

1) Calculate the product of the pair-wise comparison matrix and the vector of scores.  
2) Calculate the ratios.  
3) Calculate the calculate the consistency index (CI) with the formula "=(average (Y2:Y10) - n) /(n-1)." The 

value n is the number of requirements or sub-criteria.  
4) Calculate the CI/RI score. The RI is the average value of the CI, if the entries in the pair-wise comparison 

matrix were chosen at random. Because the number of sub-criteria is 15, the RI is 1.59.  

1Requirements Prioritization Case Study Using AHP Nancy R. Mead, Software Engineering Institute ;Copyright © 

2006, 2008 Carnegie Mellon University, 2006‐09‐23; Updated 2008‐09‐18 
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