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Abstract

A key problem in financial mathematics is modelling the volatility skew observed in options markets.
Local volatility methods, which is one approach to modelling skew, requires the construction of a volatil-
ity surface to reconcile discretely observed market data and dynamics. In this thesis we propose a new
method to construct this surface using radial basis functions. Our results show that this approach is
tractable and yields good results. When used in a local volatility context these results replicate the ob-
served market prices. Testing against a skew model with known analytical solution shows that both prices
and hedging parameters are acurately reconstructed, with best case average relative errors in pricing of
0.0012. While the accuracy of these results exceeds those reported by spline interpolation methods, the
solution is critically dependent upon the quality of the numerical solution of the resultant local volatility
PDE’s, heuristic parameter choices and data filtering.
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Chapter 1

Synopsis

The Black-Scholes option pricing formula introduced in Black and Scholes [1973] revolutionised the way
the financial markets priced, hedge and understood derivatives, and in particular, options. It provided an
analytical framework which allowed for the extraction of prices as well as the risks or sensitivity of the
price to the various parameters used to determine price.

So influential was the equation that options were said to exist in a “Black-Scholes” world, and often
behaved in the idealistic Black-Scholes manner. The real issue was whether this ideal behaviour was
justified, as, in the derivation of this formula, Black and Scholes [1973] made several simplifying as-
sumptions. The downside of not modelling behaviour accurately would be significant risk taken on by
the buyer or seller of the option, often without knowledge.

Despite what theoretical models may tell us, ultimately the price of financial instruments such as options
are determined by the market - that is the price which market participants are willing to buy and sell them
for. After the 1987 Black Monday Wall Street crash there was a noticable change in the trading price of
options [Rubinstein 1994]. One of the key pricing parameters in the Black-Scholes model is the volatility
- or the expected standard deviation of the underlying assets returns. When this number was backed out
from the option prices using the Black-Scholes formula it was noted that it varied across different options
with the same underlying, and when plotted on a graph against the strike price of these options formed a
characteristic “skew” or “smile” shape. This however, does not seem intuitively correct as the volatility
should only depend on the underlying asset. This phenomenon is known as the volatility smile problem
and its existence suggests that the Black-Scholes model, in its original form is not structually able to
acurately describe option prices and their dynamics.

The purpose of this research is to present an approach to price options more accurately given the smile
problem. Previous solutions can be divided into two categories - both of which relax the assumption
made by Black-Scholes that volatility be constant. Stochastic volatility models add an additional source
of randomness to the model (volatility itself is allowed to vary stochastically over time). Local volatility
models on the other hand make use of a volatility function or surface which describes the volatility over
different maturities and underlying asset prices.

The solution presented in this thesis falls in the local volatility realm. Key to the solution of local
volatility models is the determination of this local volatility function by calibration using observed market
prices. More precisely, this thesis presents an approach to construct a function or surface by calibration
of observed prices to market data.

The approach presented makes use of radial basis function sets as interpolators. Radial basis functions
are widely used sets of functions which are particularly useful in interpolating data and are widely used
in both pattern recognition and surface interpolation. Application of radial basis function interpolation is
complicated by the non-linear nature of the problem. The points on the surface are not directly observable
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but instead need to be backed out. As the error of the interpolated surface needs to minimise the error
between observed and interpolated values - reducing the problem to a non-linear optimisation problem.

This work is largely based on that by Lagnado and Osher [1997a] and Coleman et al. [1999]. For
these reasons, the tests and results presented align closely with work presented in Lagnado and Osher
[1997a] and Coleman et al. [1999] for purpose of proper comparison. The results show that the radial
basis function approach to reconstruction of the local volatility surface is a valid one, and the framework
established in this thesis has significant potential to extract accurate solutions.

The thesis introduces the reader to options and their pricing in theory and practice in Chapter 2 - which
will also explore the key assumptions made in the derivation of the Black-Scholes model. The first
part of Chapter 3 introduces this smile phenomenon and suggests possible reasons for its existence.
This is followed by a discussion on approaches to pricing options in the presence of the smile. A brief
introduction to radial basis functions and the basic theory surrounding them is presented in Chapter 4,
followed by a full description of the proposed method in Chapter 5. Finally, Chapter 6 presents results
and Chapter 7 provides analysis of these results.
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Chapter 2

Introduction - Options and option trading
in a Black-Scholes world

Financial options have, over the past few years, jumped to prominence in the global financial market-
place. Their ability to transfer and diversify risk, provide leverage and form the base of highly structured
products has seen them emerge as critical instruments, actively traded on regulated markets the world
over. However, despite the relative sophistication of pricing and risk analysis options have been around
for centuries. Haug and Taleb [2008] provides a good discussion on options in a historical setting.

An option is a contract between two parties which gives, as the name suggests, one party the option to
either sell or buy an underlying asset at a given price on a given day in the future. That is, the buyer of
an option has the right but not the obligation to exercise the option to deliver the underlying asset. Call
options give the buyer the right to buy the underlying asset at a certain price (strike price), on a certain
date (maturity date) and put options give the option buyer the right to sell stock at the strike price on the
maturity date to the counter party.

As an example assume a person purchases from a counter party a 1 year call option with a strike price of
x. The person now has the right, but not the obligation, to buy the underlying asset in 1 year at a price
of x. Assume that on the maturity date, 1 year later, the underlying asset is valued at more than x. The
option holder would be able to exercise the option and take delivery of an instrument valued at greater
than x for only x. Hence, if he immediately sold the asset after exercising, he would make a profit of
the excess between the asset value and x. However, if the underlying instrument is worth less than the
strike price x, the option buyer would not exercise as he would be paying x for an asset worth less than
x. He would therefore abandon the option losing only the payment that was made upfront. This example
shows that the owner of a call option makes money if the underlying asset is above the strike and goes
up in value, and a downside loss of the premium should the underlying asset price be less than the strike
at expiry. Figure 2.1 shows the profile of a call option at maturity.

A similar idea holds for a put option, except the holder of the put option makes a profit if the underlying
asset price falls below the strike and loses premium if it is above the strike, as indicated in Figure 2.2.
This gives rise to one of the more important uses for options - protection. An investor might have shares
in a company that are worth x per share. If the investor is worried that the share may go down over the
next year he can buy a put with a strike of x and a maturity of 1 year. This contract guarantees that he will
be able to sell his shares in the company at x in 1 year even if the share price is lower than x. This and
other strategies will be discussed in following chapters as they play a key role in the smile phenomenon
that this dissertation explores.

The key question, at the crux of this research is how to value and model the options during their life.

9



Figure 2.1: The payoff of a call option at expiry

Figure 2.2: The payoff of a put option at expiry

2.1 The Black-Scholes model

Even though option traders have been able to price and manage option risk for centuries, it wasn’t until
the seminal work of Black and Scholes [1973] that the option world really took off. Black and Scholes
[1973] introduced the famous Black-Scholes option valuation model to the world which gave, not only
a fair theoretical price based on key assumptions, but also a strategy which allowed an option to be
replicated using a portfolio of the underlying asset. This meant that option traders didn’t have to hold
directional option risk but could hedge it out using the underlying asset and a dynamic strategy.

The derivation given below, taken largely from Hull [2006], gives an insight into the approach and
assumptions made by Black and Scholes [1973].

The first of these assumptions is that the underlying asset price is lognormally distributed and follows
geometric Brownian motion. That is, given an asset price S, with standard deviation σ and expected drift
µ, the asset price follows the stochastic process

dS = µSdt+ σSdz (2.1)

over time t, where dz is a Wiener process (a stochastic process with a mean of 0 and a variance of 1).
The validity of this assumption will be scrutinised in later chapters.
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As the underlying is assumed to follow this process it should suggest the price of an option should be a
function of both S and t. One very important result in stochastic calculus, known as Ito’s lemma, shows
that given a process

dx = a(x, t)dt+ b(x, t)dz (2.2)

a function G of x and t follows the process

dG =

(
∂G

∂x
a+

∂G

∂t
+

1
2
∂2G

∂x2
b2
)
dt+

∂G

∂x
bdz. (2.3)

Using this result and applying it to Equation 2.1 results in

df =

(
∂f

∂S
µS +

∂f

∂t
+

1
2
∂2f

∂S2
σ2S2

)
dt+

∂f

∂S
Sdz, (2.4)

where f is the price of an option. Discretising 2.1 and 2.4 gives

∆S = µS∆t+ σS∆z (2.5)

and

∆f =

(
∂f

∂S
µS +

∂f

∂t
+

1
2
∂2f

∂S2
σ2S2

)
∆t+

∂f

∂S
S∆z. (2.6)

This leads to the second key assumption of Black and Scholes [1973]. They show the existence of a
portfolio of derivatives and underlying assets that would eliminate the Wiener process dz. This portfolio
consists of a sale of 1 derivative and the simultaneous purchase of ∂f

∂S of the underlying asset. The value
of this portfolio, Φ, is given by

Φ = −1f +
∂f

∂S
S. (2.7)

Key to this idea is that the number of units in the underlying asset needed to maintain the relationship
given by Equation 2.7 is a continuous function which varies according to the price of the underlying asset
and derivative - this again becomes an important point for discussion in later chapters.

Discretising Equation 2.7 gives

∆Φ = −1∆f +
∂f

∂S
∆S. (2.8)

Substituting in values for ∆S and ∆f from Equations 2.5 and 2.6 respectively results in

∆Φ =

(
∂f

∂t
− 1

2
∂2f

∂S2
σ2S2

)
∆t. (2.9)

Now, because the Wiener process (randomness) has been eliminated this portfolio is riskless - it has a
defined return. An important principle in finance is that riskless portfolios or instruments should always
return the risk free rate, r. r is generally defined as the rate which investors will earn by placing money
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on deposit without assuming risk or the rate they will pay to borrow money assuming they pose no risk to
the lender (in practice, banks charge a spread on either side so these rates are never equal). Assume the
portfolio, Φ will return x with absolute certainty to an investor. If x is greater than r then the investor can
borrow money at r, use this to fund the purchase of the portfolio and earn x - resulting in a risk free profit.
Similarly if x is lower than r, the investor can sell the portfolio and lose x, and put the money earned
from selling the portfolio and put it on deposit and earn r, again resulting in a risk free profit. These
riskless opportunities are known as arbitrage. The only value for x where arbitrage wouldn’t be possible
is if r = x. Therefore for no arbitrage to exist in a market (another assumption made by Black-Scholes)
riskless portfolios should always return the risk free rate, r.

With this knowledge, our portfolio Φ, over ∆t should return

∆Φ = rΦ∆t (2.10)

Substituting in for Φ and ∆Φ from Equations 2.7 and 2.9 respectively gives

(
∂f

∂t
− 1

2
∂2f

∂S2
σ2S2

)
∆t = r

(
−f +

∂f

∂S
S

)
∆t. (2.11)

Rearranging Equation 2.11 results in

∂f

∂t
+ rS

∂f

∂S
+

1
2
σ2S2 ∂

2f

∂S2
= rf, (2.12)

which is the celebrated equation of Black and Scholes [1973].

The boundary conditions can be easily determined by the arguments presented earlier in this chapter. For
a call option at expiry the option is worth the difference between the current underlying asset price, S,
and the strike price, K, if S > K and 0 otherwise. This translates to a boundary condition of

fT = max(ST −K, 0), (2.13)

where ST is the asset price at maturity. Again, a similar argument can be used for a put option resulting
in the put boundary condition

fT = max(K − ST , 0). (2.14)

The Black-Scholes equation shows that inputs required for modeling an option are the underlying asset
price, S, the strike K, the maturity T , the risk free rate, r, and the volatility, σ. All these parameters are
directly observable except for the volatility. It is this parameter which plays such an important role in the
model, that will be the main focus of investigation in this dissertation.

2.2 Option risks - The Greeks

Not only does the Black-Scholes model provide a valuation framework for options over their lifetime
but also the risks and effects of changes in the various parameters. The sensitivity of the option value
to changes in asset price, time, volatility, risk free rates, various second and higher order sensitivities
as well as cross sensitivities, collectively known as Greeks for reasons which will be become apparent,
allow the option market participant to build up a rich view of the risks faced.
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2.2.1 Delta

The delta is probably the most important greek and relates the change in an underlying asset price to the
change in the option price. It is defined by

∆ =
∂f

∂S
(2.15)

and has the profile shown in Figure 2.3.

Figure 2.3: The delta profile of a call option

The delta is a key component in the replicating portfolio given by Equation 2.7 which was used to
derive the Black-Scholes equation. The delta therefore gives the number of units of the underlying asset
required to replicate (and thus hedge) an option at a point in time.

2.2.2 Theta

Theta relates the change in option value to the change in time to expiry. It is often known as option decay
as it describes the value the option loses at each time step closer to expiry. It is given by

Θ =
∂f

∂t
(2.16)

and has the profile shown in Figure 2.4. The profile shows that options suffer from the greatest time
decay when the underlying asset is around the spot and this decay is accelerated the closer the option
gets to expiry.

2.2.3 Vega

One of the most important Greeks to options traders is vega which gives the change in option value as
volatility of the underlying instrument changes. This importance is due to option traders being essentially
traders of volatility, a concept which will be explored in the next section. Vega is given by equation 2.17
and has the profile shown in figure 2.5.

V =
∂f

∂σ
. (2.17)
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Figure 2.4: The theta profile of a call option

Figure 2.5: The vega profile of a call option

From the profile it can be seen that the closer the underlying asset price to the strike and the further the
option is from maturity, the higher the effect of volatility on the price. This observation will become
crucial when determining volatility surfaces.

2.2.4 Gamma

Gamma is the most important of the second order Greeks. It relates the change in the delta to the change
in the underlying asset price - effectively giving a measure of error in the hedging ratio as the underlying
asset price moves. This is critical for a trader who wants to know how sensitive his hedge is to error and
what the likely effects to his profit and loss are due to this error. It is a second order derivative given by

Γ =
∂

∂S

∂f

∂S
. (2.18)

The profile given by Figure 2.6 shows a strong similarity to the Theta - a relationship which will be used
to properly understand ideas of volatility trading in the next section.
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Figure 2.6: The gamma profile of a call option

2.3 The realities of option trading: Implied volatility

The option market can be roughly divided into two sets of participants - price takers and market makers.
Price takers are generally large institutional investors like pension, mutual and hedge funds. They use
options to put together strategies based on their views on the direction of the underlying asset price
movements. Price takers are so called because they will approach market makers who will give them a
price which they are prepared to sell and a price at which they are prepared to buy the option at.

While price takers are taking views on the path of the underlying asset price over the life of the option,
market makers do not want to be bound by this and therefore need to find a way of hedging out this risk.
This can be achieved either by selling or buying options with similar characteristics which offset their
positions or by creating a delta hedged portfolio using the dynamic strategy developed by Black-Scholes.

Bossu et al. [2005] provide an intuitive understanding of the implications of this delta hedging strategy.
They show that a delta hedged portfolio’s profit and loss can be broken down into three key elements -
profit and loss from gamma (hedging error), profit and loss from Theta or time decay and vega, profit
and loss from changing volatility. This gives an equation for daily profit and loss, PL, of

PL =
1
2

ΓS2(∆S)2 + Θ(∆t) + V (∆σ). (2.19)

Now assuming that volatility is constant (the same assumption made by Black and Scholes [1973]) results
in

PL =
1
2

ΓS2(∆S)2 + Θ(∆t). (2.20)

Bossu et al. [2005] provide a derivation showing the relationship between Θ and Γ to be

Θ = −1
2

ΓS2σ2. (2.21)

Substituting this into Equation 2.20 and rearranging gives

PL =
1
2

ΓS2

[(
∆S
S

)2

− σ2∆t

]
. (2.22)
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(
∆S
S

)2
can be interpreted as the one day variance of the asset price and the second term σ2∆t the daily

volatility that the option is valued at. Traders refer to the volatility which is used to price an option as
the implied volatility, as it is the volatility implied by the price of an option. Equation 2.22 shows that
the profit and loss from a delta hedged portfolio is effectively the difference between realised volatility
in the underlying asset and the volatility which was used to price the option at, weighted by the gamma
of the option.

It follows that if traders expect realised volatility to be high over the term of the option they will set the
implied volatility they use to price options higher and lower if they expect the realised volatility to be
lower over the period. As all parameters of option pricing, except the volatility are directly observable
it is common practice for traders to simply quote the volatility which they value the option at. Traders,
thus, only have control over this volatility variable. As such, the volatility is used to represent risk - a
trader who believes there is increased risk in selling an option will simply increase the volatility, and
decrease it when there is risk in buying it. Implied volatility is therefore a measure of future expected
volatility and option risk - a far cry from simply the standard deviation of the underlying asset prices.
This concept is key for understanding the volatility skew.
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Chapter 3

The volatility smile problem

In a Black-Scholes world it is expected that when the implied volatilities of different options contracts on
the same underlying asset are compared, they would be equal – the model assumes a constant volatility
independent of strike price and maturity. In practice however this is not the case. Figure 3.1 shows the
implied volatilities of European call options on the S&P index plotted against their corresponding strike
prices.

Figure 3.1: The volatility skew of S&P index call options

This characteristic shape, known as the volatility skew or volatility smile, suggests that traders use dif-
ferent implied volatilities for options with different strikes. This has a number of implications. Firstly,
as the expected future variance of an underlying assets price should be independent of option strikes,
it suggests that the market disagrees with the Black-Scholes model of option risk. Figure 3.1 suggests
that option sellers expect higher levels of risk for options, the lower they are struck with respect to the
current underlying asset price levels. This phenomenon is not limited to options with differing strikes
but, as Figure 3.2 shows, the volatility skew of options with varying maturities also differs. This may
be explained by the expectation that future realised variance would certainly change depending on time
horizon - something which Black-Scholes does not take into account. This dependence on time, known
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as term structure, combines with the skew (dependence on strike price) to form a volatility surface,
illustrated in Figure 3.3.

Figure 3.2: The volatility skews of S&P index options with varying maturities

Figure 3.3: The volatility surface of S&P index options

It must be remembered, though, that options are traded in liquid markets and the observations of skew
and term structure may also be due to market structure and dynamics. As an example, if there is a very
high demand for put options struck lower than the current underlying asset price, economics of supply
and demand would dictate that there should be upward price pressure. This chapter will examine both
structural flaws in Black-Scholes and the behavorial reasons that give rise to volatility skew and term
structure, and show some of the varied approaches used to model this behavior.
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3.1 Causes of volatility skew and term structure

3.1.1 Structural flaws in Black-Scholes

Underpinning Black-Scholes are the assumptions made in its derivation. The first of these assumptions
is the stochastic process governing asset prices given in Equation 2.1 suggesting lognormal distributions
with a constant standard deviation. Investigations, however, have shown that, the assumption that volatil-
ity is constant is a flawed one. Volatility is heteroskedastic - volatility itself is volatile with periods of
higher volatility and periods of lower volatility [Risk Glossary 2006] and varies stochastically over time.
The second problem with the assumed stochastic process is that it does not incorporate the observed
leptokurtosis in asset price distributions - taller peaks and fatter tails [Risk Glossary 2006]. Figure 3.4
shows the difference between the lognormal distribution assumed by Black-Scholes, and the more accu-
rate leptokurtic distributions. This can be interpreted to mean that large movements in underlying assets
are more likely than Black-Scholes model predicts introducing additional risk to a trader.

Figure 3.4: Lognormal distributions with and without kurtosis

Another key assumption of Black-Scholes is the ability to hedge an option using a replicating portfolio
of the underlying asset (delta hedging). As was shown in Chapter 2, the delta is a continuous function of
option value and underlying asset price. This portfolio needs to be adjusted on a continuous basis, which,
in practice, is impossible due to transaction costs associated with trading the underlying asset. This
inability to constantly maintain the hedged portfolio introduces error into the delta hedged portfolio.
This error is magnified by the Gamma, or the change in delta as the underlying asset price moves -
something which option traders need to be wery of as stock prices tend to jump around in large discrete
moves, resulting in large hedging errors and hence losses. This was highlighted in dramatic fashion in
the 1987 stock market crash which shed light on the large model risks involved in option trading.

3.1.2 Behavorial explanations of the skew

Ederington and Guan [2002] suggests that structural problems in the Black-Scholes model can’t be the
only reason options markets exhibit skew. Rubinstein [1994] shows that the volatility skew only become
prominent after the 1987 crash. To properly understand the risk of large movements Table 3.1 shows an
example of the effects of a 20% downward jump in the price of an underlying asset on various hedged
option portfolios. For each of these portfolios the option trader has sold 100 call options and bought the
required units of underlying assets to make sure the portfolios are hedged without error. We assume a
volatility of 30%, a risk free rate of 10%, and a maturity of 0.25 years. Assume that the underlying asset
price is worth $100 before the jump and $80 afterwards. As the option trader has sold the call options
they become worth less as the underlying asset price drops and he makes money. However, units in the
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underlying asset were purchased to hedge this, and these units lose $20’s in value. Coupled with the
hedging error resulting from being unable to instantaneously hedge the position results in a net loss to
the option trader. Table 3.1 shows the increase in loss to the options with lower strike. Options traders
protect themselves against the increased risk by increasing the implied volatility and hence charging
more for options struck lower - producing a skew.

Strike Gain on options Loss on hedge Total loss
$110 $74.62 -$504.60 -$429.98
$105 $183.50 -$1006.10 -$822.60
$100 $385.31 -$1659.10 -$1,273.79
$95 $692.60 -$2271.20 -$1,578.60

Table 3.1: Loss as a result of a downward jump across various portfolios

The increased fear of crashes after 1987 is a phenomenon known as crashaphobia. Not only does this
produce skew because of option traders increasing implied volatility but also because it has increased
awareness that crashes do happen and thus, there is higher demand for puts which are struck at low
prices as protection against crashes. This pressure on supply and demand also pushes up the price giving
higher implied volatilities. This gives rise the the characteristic shapes seen in different markets. Option
markets where equity indices are the underlying asset usually exhibit skew, as seen in Figure 3.5, because
of the need to protect against downward price movements. Foreign exchange markets however can move
dramatically in both directions - in any given currency pair either currency is subject to downward shocks,
meaning the pair instrument can experience large movements in both directions. These markets exhibit
more of a smile like structure seen in Figure 3.6.

Figure 3.5: Characteristic skew shape of Equity Index Options

3.2 Approaches to modelling the volatility surface

3.2.1 Jump-diffusion models

Merton [1976] was one of the first to provide a framework for valuation of options which can accom-
modate skew. This was achieved by relaxing the requirement that asset prices move continuously and,
instead, provides a model which uses a stochastic process that has discrete jumps in conjunction with
continuous changes. This is achieved by defining a new stochastic process given by Equation 3.1 where
λ is the average number of discrete jumps per year, k is the average size of those jumps as a percentage
of the underlying asset price and dp is a Poisson process:
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Figure 3.6: Characteristic smile shape of a currency options

dS = (r − λk)Sdt+ σdz + dp. (3.1)

Merton [1976] shows that, for the special case when the size of the jumps are normally distributed the
price of an option is given by

∞∑
n=0

(
e−λ(1+k)T (λ(1 + k)T )n

n!
fn

)
(3.2)

where fn are the corresponding Black-Scholes option prices. Introducing discrete jumps has the effect of
introducing leptokurtosis into the distribution. This model is best suited to modeling assets which exhibit
a smile rather than skew as both tails of the distribution have increased probability [Hull 2006].

3.2.2 Stochastic volatility

One of the approaches gaining a large following in the financial world is that of stochastic volatility.
Stochastic volatility models are two-factor models in that they capture two sources of randomness, the
stochastic nature of the underlying asset price and that of the volatility. In general, stochastic volatility
models use a stochastic process given in Equation 3.3 where the variance V follows a stochastic process
of its own:

dS = µSdt+
√
V dz. (3.3)

Heston [1993] provides one of the more popular stochastic volatility models. It assumes V follows the
process

dV = θ(w − v)dt+ ξ
√
V dB, (3.4)

where w is the long term mean of volatility, θ is a measure of the reversion of volatility to w, ξ is the
measure of the volatility of volatility or heteroskedascity and dB is a Wiener process which is correlated
to dz in Equation with some correlation coefficient. This correlation coefficient is important as it suggests
that the sources of randomness which drive both the stock price movements and changes in volatility are
correlated.

Similar approaches are taken by Hull and White [1987] and Hagan et al. [2002]. The SABR approach of
Hagan et al. [2002] is quickly becoming a standard approach for modeling volatility skew.
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3.2.3 Local volatility models

Dupire [1994] shows that if we have the implied volatility σ(K, t) for all possible K and t then we can
create a unique process

dS = µdt+ σ(S, t)SdW (3.5)

where σ(S, t) can be uniquely determined from market prices, which, when incorporated into the Black-
Scholes model

∂V

∂t
+ rS

∂V

∂S
+

1
2
σ(S, t)2S2∂

2V

∂S2
= rV (3.6)

yields more accurate market prices. In reality however the implied volatility is not available for all
possible strikes and maturities and as such the problem of determining σ(K, t) from the sparse data
becomes ill-posed, which can lead to instability. The result is the reduction of the local volatility surface
approach to that of a non-parametric regression problem.

Rubinstein [1994] introduced the implied binomial tree approach, which takes the volatility skew or
σ(S) into account but suffers because of the failure to incorporate the term structure of volatility into
the model. This is addressed in the implied trinomial tree approach of Dupire [1994] but this approach
suffers from a lack of robustness because of the ill-posed nature of the problem [Jackson et al. 1998].

Lagnado and Osher [1997a] propose an approach to deal with this ill-posed nature. Making use of a
technique known as Tykhonov regularization they propose the inverse optimisation problem of finding
σ(K, t) such that

n∑
i=1

(vi(σ(S, t))− vi)2 + λ‖∇σ(S, t)‖ (3.7)

is minimised, where vectors v and v are the the calculated price of the option and the observed market
price respectively, λ is a constant and n is the number of data points. They use a gradient-descent
optimisation method to minimise the function in Equation 3.7 which results in severe limitations. Both
Jackson et al. [1998] and Coleman et al. [1999] highlight the large computational expense of solving this
large scale optimisation problem. It is for this reason that both Jackson et al. [1998] and Coleman et al.
[1999] propose the use of splines to fit a smooth surface to the available data, reducing the scale of the
optimisation problem significantly.
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Chapter 4

Radial basis functions

Nonparametric regression attempts to find a suitable continuous function which approximates the set of
known data points. That is, a function S(x) : <n 7→ < is found such that S(xi) ≈ yi for i = 1 . . . n.

One popular approach to constructing such a function is to take a linear combination of basis functions
such that:

S(x) =
m∑
i=1

wiϕi(x). (4.1)

Basis functions of a function space are the functions which can, in linear combination, represent any
function in that functional space. This approach to regression essentially reduces the problem down to
finding the basis functions ϕi(x) and their associated weights, wi. This thesis focuses on the choice of a
specific basis set called radial basis functions to approximate the local volatility function.

4.1 Radial basis functions

Radial basis functions are functions which take the form of Equation 4.2.

ϕ(x, c) = ϕ(‖x− c‖). (4.2)

That is, the value of the function depends only on the distance of the point x from the center point of the
function, c. The distance function is usually defined as the Euclidean norm [Baxter 1992].

There are three common types of radial basis functions – the Gaussian (4.3), the multiquadratic (4.4) and
the thin plate spline (4.5):

ϕ(‖x− c‖) = e−β‖x−c‖2 , (4.3)

ϕ(‖x− c‖) = (‖x− c‖2 + β2)
1
2 , (4.4)

ϕ(‖x− c‖) = ‖x− c‖2 log(‖x− c‖). (4.5)
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The choice of radial basis function type is largely problem dependent as each has unique characteristics
which may make it more suitable for some problems. The Gaussian function is said to be locally respon-
sive as the value of the function decays quickly to 0 as it gets further from the center, c [Orr 1996]. This
behavior is represented in Figure 4.1 which shows a one dimensional Gaussian function with β = 1 and
c = 0. Franke [1982] shows that approximations using Gaussian functions is highly dependent on the
value of the width parameter β, which needs to be found.

Figure 4.1: A 1D Gaussian function with c = 0 and β = 1

Multiquadratics are globally responsive – their value does not decay to 0 as distance from the center,
c, increases [Orr 1996]. This is illustrated in Figure 4.2 which shows a one dimensional multiquadratic
function with β = 1 and c = 0. Franke [1982] indicates that approximations using multiquadratic
functions are less sensitive to the value of the width parameter β.

Figure 4.2: A 1D multiquadratic function with c = 0 and β = 1

The thin plate spline function is a commonly used function for two dimensional regression – due mainly
to it’s physical interpretation. The function is a solution to the biharmonic equation (∇2)2 = 0 and
physically represents a surface which passes through a given set of data points with the minimum amount
of “bending energy” – a highly desirable property for smooth surfaces. An additional advantage of the
thin plate spline is that there is no width parameter which needs to be found. This reduces the complexity
and increases efficiency of the problem significantly.

For the purposes of this research all three of these radial basis function types will be compared and
contrasted as to their suitability in finding an accurate approximation of the local volatility surface.
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4.2 Approximation using radial basis functions

It is clear from earlier discussion that there are several parameters which need to be found when con-
structing a linear approximation model. Of key importance is the weight vector, w. The most common
approach to finding the weight vector is the method of least squares. In least squares the weight vec-
tor is chosen such that it minimises the sum of the squared errors between the known values and those
predicted by the model. That is, given the model

S(x) =
m∑
j=1

wjϕj(x), (4.6)

and known data points

(xi, fi) for i = 1 . . . n, (4.7)

w is found to minimise

n∑
i=1

[fi − S(xi)]
2, (4.8)

which, after substitution, gives

n∑
i=1

fi − m∑
j=1

wjϕj(xi)

2

. (4.9)

The problem with this approach is that no assumption is made about the requirements of the function
between the known data points. As the system may be over specified this leads to the possibility of
over-fitting. Figure 4.3 shows a curve set to a set of data points. Even though it is evident that the data
points are more likely to represent a linear relationship, as shown in Figure 4.4, the function in Figure
4.3 may be a better solution to the standard least squares approach.

Figure 4.3: A set of data points and an over-fitted function

The problem of overfit can be solved using an approach known as ridge regression developed by Hoerl
[1962]. This approach has been shown to be equivalent to Tikhonov regularisation [Tikhonov 1963]
which is used by Lagnado and Osher [1997b] in their approach to recovering the local volatility surface.
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Figure 4.4: A set of data points with the likely, correct, function

The idea is to add an additional term to the regression problem, given in Equation 4.9, which penalises
large weights – the effect being the reduction in variance of the surface. This results in the minimisation
of Equation 4.10 over w:

n∑
i=1

fi − m∑
j=1

wjϕj(xi)

2

+ λ
m∑
j=1

w2
j . (4.10)

4.2.1 The optimal weight vector

To solve this minimisation problem, the standard approach of setting the first derivative to zero and
solving for w, is used [Orr 1996]:

d

dw

 n∑
i=1

fi − m∑
j=1

wjϕj(xi)

2

+ λ
m∑
j=1

w2
j

 = 0. (4.11)

To make the solution of this equation easier the derivative of the jth equation can be found

2
n∑
i=1

(fi − wjϕj(xi))ϕj(xi) + 2λwj = 0. (4.12)

Rearranging results in

n∑
i=1

fiϕj(xi)−
n∑
i=1

wjϕj(xi)ϕj(xi) + λwj = 0. (4.13)

This implies

ϕT
1 f−ϕT

1 ϕ1w1 + λw1 = 0,
ϕT

2 f−ϕT
2 ϕ2w2 + λw2 = 0,

...
ϕT
mf−ϕT

mϕmwm + λwm = 0.

(4.14)
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With

Φ =


ϕ1(x1) ϕ2(x1) · · · ϕm(x1)
ϕ1(x2) ϕ2(x2) · · · ϕm(x2)
ϕ1(x3) ϕ2(x3) · · · ϕm(x3)

...
. . .

...
ϕ1(xn) ϕ2(xn) · · · ϕm(xn)

 (4.15)

ϕj =


ϕj(x1)
ϕj(x2)
ϕj(x3)

...
ϕj(xn)

 , f =


f1

f2

f3
...
fn

 and w =


w1

w2

w3
...
wn


we get


ϕT

1

ϕT
2

ϕT
3
...

ϕT
m

 f− ΦTΦw + λw = 0 (4.16)

given that ϕiϕj = 0, i 6= j. Rearranging results in

ΦT f = ΦTΦw− λw =
(
ΦTΦ− λI

)
w. (4.17)

Solving for w, the optimal weight vector, gives

w =
(
ΦTΦ− λIm

)−1
ΦT f. (4.18)

4.3 Model specification

Finding the optimal weight vector depends on knowledge of the set of functions, their parameters and
the regularisation parameter λ. The non-linear relationship between w and the model specifying set
leaves two choices - impose a set of functions, their parameters and λ on the system using heuristics and
knowledge of the problem, or, use a non-linear optimisation algorithm to find the optimal set.

4.3.1 The heuristic approach

Taking a heuristic approach requires the development of an intuitive feeling of how model parameters
affect the regression, and a clear understanding of the geometry of the specific regression problem being
solved.

The first decision that needs to be taken is the choice of radial basis function type. Intuitively the thin
plate spline seems to be the natural choice as it’s physical interpretation matches the problem of volatility
surface reconstruction. Franke [1982] finds that thin plate splines perform well, showing minimum error
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and significant smoothness, on 2 dimensional surface reconstruction problems. The additional advantage
of thin plate splines is that it requires one less parameter to be found - there is no width parameter β.

Franke [1982] also found the multi quadratic to be successful at interpolating 2 dimensional surfaces.
Both Baxter [1992] and Franke [1982] shows the multi-quadratics relative insensitivity to the choice of
centers, c.

This is in contrast to the most popular of radial basis function types - the gaussian. Franke [1982] finds
it very sensitive to the choice of c, a view which is supported by Baxter [1992]. The problem with
the Gaussian is that it is bounded (it decays to 0 very quickly) and, as described earlier, only locally
responsive while both thin plate splines and multi-quadratics are unbounded and globally responsive.
This means that it may be necesarry to have a large set of Gaussian functions to adequately cover and
describe the full problem domain.

Part of this research, however, is to investigate which of these functions is more appropriate for recovery
of the volatility surface and, as such, all will be tested and compared.
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Chapter 5

Reconstructing the local volatility surface
using radial basis functions

The approach taken in this dissertation follows that of Coleman et al. [1999] closely, except radial basis
functions are used instead of splines to represent the local volatility function. That is, a function

σ(S, t) =
m∑
j=1

wjhj(x) (5.1)

with h a set of m radial basis functions and wj a set of corresponding weights, is found that satisfies

min
σ(S,t)

n∑
i=1

[vi(σ(S, t))− vBS(fi)]
2 . (5.2)

vBS(f) in Equation 5.2 is the set of n observed Black-Scholes prices and vi(σ(S, t)) is the option price
at S and t given by

∂V

∂t
+ rS

∂V

∂S
+

1
2
σ(S, t)2S2∂

2V

∂S2
= rV. (5.3)

Should the generated surfaces suffer from overfit and become unstable Tikhonov regularisation can be
used resulting in the problem

min
σ(S,t)

n∑
i=1

[vi(σ(S, t))− fi]2 + λ
m∑
j=1

wj . (5.4)

Equations 5.2 and 5.4 are non-linear least-squares minimisation problems which pose significant com-
putational challenges.

5.1 Simplifying assumptions

A number of simplifying assumptions and heuristics are used to reduce the scale of the optimisation
presented in Equation 5.2. Firstly we assume that the set of m radial basis functions, h in Equation
5.1 are known, and that their positioning (centers) are fixed. A range of function sets are used to try
and establish the best choice for the local volatility problem. The result of this assumption is to reduce
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the optimisation problem to find the optimal weight vector w. Secondly, we assume that, if Tikhonov
regularisation is needed, the regularisation parameter, λ, is chosen using trial and error - a procedure
which finds the optimal λ given the non-linear nature of the problem is out of the scope of this thesis.

5.2 The procedure

An outline for recovering the local volatility function is presented below. Procedures for each of the key
steps will be covered in detail.

Given the function set h and observed market data f we need to:

• Find an initial weight vector w0

Then iteratively,

• Evaluate the cost function given in Equation 5.2

• Using an optimisation algorithm update the optimal weight vector

• Repeat until convergence

5.2.1 The initial weight vector

Experimentation found that the whole procedure was very sensitive to initial choice of weight vector. To
solve this and generate a surface of realistic volatilities a simple method is used. We find an initial w0

such that the implied volatilities of observed market data f are interpolated using the appropriate radial
basis function set h. That is, we solve

minw0

n∑
i=1

fi − m∑
j=1

w0jhj(xi)

2

+ λ
m∑
j=1

w2
0j (5.5)

This provides an initial weight vector w0 that gives a volatility surface that is reasonable. Equation 5.5
is a linear least squares optimisation problem, and as such is solved using methods set out in Chapter 4.

5.2.2 Evaluating the cost function

Key to the evaluation of the cost function

CF = min
σ(S,t)

p∑
i=1

[vi(σ(S, t))− fi]2 + λ
n∑
i=1

wi (5.6)

is the solution of option prices vi(σ(S, t)) for each observation point. This is done by solving

∂v

∂t
+ rS

∂v

∂S
+

1
2
σ(S, t)2S2 ∂

2v

∂S2
= rv (5.7)

This research takes a finite difference approach, in particular, the Crank-Nicolson method, to solve Equa-
tion 5.7. This was chosen due to its relative simplicity, and, its good convergence properties. The Crank-
Nicolson scheme has an error term of O(h2) [Chistensen and Munk 2004]. To achieve this the solution
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space is first discretised into N spatial and M temporal points of size k and h respectively. That is, the
time interval [0;T ] is discretised by

ti = ih ∀ i ∈ [0...M ] (5.8)

and

the space interval [0;Smax] is discretised by

Sj = jk ∀ j ∈ [0...N ] (5.9)

Using central differences we can define

∂v

∂S
' v(S + k, t)− v(S − k, t)

2k
=
vi,j+1 − vi,j−1

2k
(5.10)

and
∂2v

∂S2
' v(S + k, t)− 2v(S, t) + v(S − k, t)

k2
=
vi,j+1 − 2vi,j + vi,j−1

k2
(5.11)

Crank-Nicolson uses an average of the forward and backward differences for the time derivative ∂V
∂t . The

forward difference is given by

∂v

∂t
' v(S, t+ h)− v(S, t)

h
=
vi+1,j − vi,j

h
(5.12)

and the backward difference is given by

∂v

∂t
' v(S, t)− v(S, t− h)

h
=
vi,j − vi−1,j

h
(5.13)

Substituting these approximations into Equation 5.7 results in

ai,jvi,j−1 + bi,jvi,j + ci,jvi,j+1 = −ai,jvi+1,j−1 + (4− bi,j)vi+1,j − ci,jvi+1,j+1, (5.14)

where
ai,j =

1
2
h
[
rj − σ2(Sj , ti)j2

]
,

bi,j = 2 + h
[
r + σ2(Sj , ti)j2

]
,

ci,j = −1
2
h
[
rj + σ2(Sj , ti)j2

]
. (5.15)

Equation 5.14 can be expressed in matrix notation as



bi,1 ci,1 0 0 0 · · · 0
ai,2 bi,2 ci,2 0 0 · · · 0
0 ai,2 bi,2 ci,2 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 ai,M−2 bi,M−2 ci,M−2

0 · · · 0 0 0 ai,M−1 bi,M−1





vi,1
vi,2
vi,3

...

...
vi,M−2

vi,M−1


=



di+1,1

di+1,2

di+1,3
...
...

di+1,M−2

di+1,M−1


(5.16)
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where

di+1,j = vi+1,j for j = 2, 3, ...,M − 2,
di+1,1 = vi+1,1 − ai,1vi,0,

di+1,M−1 = vi+1,M−1 − cM−1vi,M .
(5.17)

From this, it can be seen that the solution of Equation 5.7, and hence v (σ(S, t)), requires the solution
of N , M − 1 ×M − 1 systems of equations. As the cost function requires n solutions, this poses a
significant computational challenge, and efficient implementation is key.

5.3 Implementation considerations

A naive evaluation of the cost function would require nN inversions of an (M − 1)× (M − 1) matrix.
This, however, can be reduced in a number of ways. Firstly, a solution of Equation 5.16 yields the value
of an option for a given strike, over a number of different underlying prices and times. This means that
we only need to generate a solution for each unique strike in our cost function and then use a simple table
lookup to retrieve the correct price.

Secondly, and more importantly, we can take advantage of the tridiagonal structure of the coefficient ma-
trix of Equation 5.16. The Thomas algorithm provides a solution which is linear in run time complexity.
Given the system


b1 c1 · · · 0

a2 b2 c2
...

...
. . .

0 · · · an bn



x1

x2
...
xn

 =


d1

d2
...
dn

 (5.18)

the solution matrix x is given by

xn = d′n
xi = d′n − c′nxi+1 for i = n− 1, n− 2, ...1

(5.19)

where

c′i =

{ c1
b1

i = 1,
ci

bi−c′i−1ai
i = {2, 3, ..., n− 1} ,

d′i =


d1
b1

i = 1,
di−d′i−1ai
bi−c′i−1ai

i = {2, 3, ..., n− 1} .

(5.20)

5.4 The optimisation algorithms

5.4.1 The Nelder-Mead Simplex algorithm

The basic idea behind the Nelder-Mead, or Simplex algorithm is the creation and evolution of a simplex
of points on the cost function surface to find the minimum. A simplex is a polotype with n + 1 vertices
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in n dimensions. The vertices of this polotype are evaluated and adjusted using several simple rules
depending on the geometry of the function being searched.

The first stage of the Nelder-Mead algorithm is creating the simplex. Suppose the function f(x) over x
where x is a vector of length n. The Nelder-Mead algorithm generates a simplex of n + 1 points and
orders them such that

f(x1) ≤ f(x2) ≤ ... ≤ f(xn+1). (5.21)

The simplex is then evolved using a simple reflection operation. A new vertex, xr, is created by

xr = x0 + α(x0 − xn−1) (5.22)

where x0 is the centre of gravity of the n best points and α is a reflection coefficient, usually chosen
to be 1. f(xr) is then evaluated, and, if it is found to be better than f(xn+1) but worse than f(x1),
i.e, f(x1) ≤ f(xr) ≤ f(xn+1) then f(xr) replaces f(xn+1) and the process is repeated. If, however,
f(xr) ≤ f(x1), an expansion operation is performed, and if f(xn+1) ≤ f(xr), a contraction operation
is performed.

The intuitive idea behind an expansion is that, as a good solution was found along the direction of the
reflection, the search should be continued along that line in hope of improving further. The expansion
operation is thus given by

xe = x0 + γ(x0 − xn−1) (5.23)

where γ is the expansion parameter, which is usually chosen to be 2. If f(xe) > f(xr), a new simplex
is created by replacing f(xn+1) by f(xe) and the whole process is repeated on this new simplex.

Contraction assumes that the algorithm has stepped over a good solution, and needs to shorten the step
to accomodate. The contraction operation is given by

xc = x0 + ρ(x0 − xn−1) (5.24)

where ρ is the contraction coefficient, usually given by 1
2 . Again, this is evaluated against f(xr) and

replaces it in the simplex if better.

Finally if all of these fail to produce a better point, the whole simplex is shrunk by

xi = x1 + δ(xi − x1) ∀i ∈ {2, 3, ..., n+ 1} (5.25)

with the shirnk coefficient, δ. The algorithm repeated on this new simplex. The whole process is repeated
until convergence is achieved.

5.4.2 Trust region optimisation

Trust region methods, instead of optimising over a complex cost function f(x), approximate the function
over a region around a point x (called the trust region) and attempt to find a step s such that f(x + s) <
f(x) to minimise this new approximated function. Traditionally, the approximated function, q is chosen
to be the first two terms of a Taylor series expansion around x. Thus we try to find a step s such that
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q(s) ≈ sT g + 1
2sTHs

subject to ‖Ds‖ ≤ ∆
(5.26)

is minimized, where g is the gradient of f at x,H is the Hessian matrix,D is a diagonal scaling matrix and
∆ is a postive scalar. The function being minimized is quadratic, which is easily minimized. A further
enhancement can be made by using an observation made by Byrd et al. [1988] that optimising over only
2 dimensions of s is often sufficient to arrive at the minimum. In Byrd et al. [1988] and Mathworks
[2008] s1 is chosen to be the direction of −g and s2 is chosen to be the solution to H.s2 = −g. The
result of these approximations is to reduce the minimization problem to a two-dimensional quadratic
approximation over a region. Once s has been found f(x + s) can be evaulated and if it is shown to be a
better solution, x is updated to be x + s.

The size of the trust region about x is controlled through ∆. The implementation used in this research
uses the Preconditioned Conjugate Gradient approach of Coleman and Verma [1998].

5.4.3 Implementation of the optimisation algorithms

For purposes of efficiency and simplicity it was decided that implementations in the Matlab Optimisation
Toolbox would be used. A full description of the exact implementation and specification of algorithms
and heuristics can be found in Mathworks [2008]. Tolerances for the optimisation algorithm were set
at 10−8 for the change in function value. In addition to this there was a limit of 10000 iterations set to
prevent considerable runtimes.
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Chapter 6

Experiments and results

The methods developed in Chapter 5 are tested on two test problems - one with an analytical solution
and the other a practical, real-world example. This chapter presents results from both these problems.
For comparison purposes, we use the same test problems presented in Coleman et al. [1999], Lagnado
and Osher [1997a] and Kim et al. [2006]. Again for consistency several measures of performance are
used. Firstly, the average absolute error at each of the n known data points in pricing given by

AverageError =
1
n

n∑
i=1

|vi(σ)− fi|, (6.1)

where v(σ) is the price at data point i and fi is the observed Black-Scholes price. The maximum absolute
error observed at the data points (Equation 6.4) is also given:

MaxError = Max (|vi(σ)− fi|) ,∀i = 1 . . . n. (6.2)

Relative errors are given by

AverageError =
1
n

n∑
i=1

|vi(σ)− fi|
|fi|

, (6.3)

and

MaxError = Max

( |vi(σ)− fi|
|fi|

)
,∀i = 1 . . . n. (6.4)

Examination of the behavior of the key Greeks are presented to given an insight into the stability of the
approach, along with a simple visual inspection of the reconstructed surface to judge smoothness. For
purposes of performance evaluation the number of optimisation algorithm iterations is presented, and,
given the rough complexity analysis presented in Chapter 5, the number of calls to the cost function.

6.1 A problem with an analytical solution

Cox and Ross [1976] shows that if an underlying asset follows the process

dS = µdt+ σ(S, t)SdW (6.5)
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where

σ(S, t) = σ0S
β−2

2 , (6.6)

then the value of a call option on the underlying asset is given by

C = Ste
−tQ

(
2y, 2 +

2
2− β

, 2x
)
−Ke−rt

(
1−Q

(
2x,

2
2− β

, 2y
))

(6.7)

where

y = k̄k2−β,

x = k̄S2−β
t e(r−1)(2−β),

k̄ = 2r
σ2
0(2−β)[er(2−β)t−1] ,

(6.8)

and Q(z; v, k) is the complimentary noncentral Chi-square distribution function.

Keeping with Lagnado and Osher [1997a] and Coleman et al. [1999] we set σ0 = 15 and β = 0 resulting
in the local volatility function

σ(S, t) =
15
S
. (6.9)

Using this, option values are calculated on the strikesK = [80; 84; 88; 92; 96; 100; 104; 108; 112; 116; 120]
and maturities T = [0; 1]. An initial underlying price of 100 and a risk free rate of 0.05 is used. Ap-
proximate surfaces using the various function sets are generated such that σ(K,T ) = 0.15 to get initial
weight vectors with centres placed at each of the observation points.

The radial basis function approach is then run using discretisation parameters of h = 0.01 and k = 1.
Results using the Nelder-Mead optimisation, with Gaussian, multiquadratic and thin plate spline function
sets are presented in Table 6.1.

Radial Basis
Function

Average
Absolute
Error

Maximum
Absolute
Error

Average
Relative
Error

Maximum
Relative
Error

Iterations

Cost
Function
Evalua-
tions

Lambda

Gaussian 1.1779 2.2212 0.3771 0.9972 5850 7719 10
Multi quadratic 0.0043 0.0085 0.0031 0.0312 8093 10000 0.2

Thin plate spline 0.0011 0.0040 0.0012 0.0175 3659 4698 0.01

Table 6.1: Summarised results using the Nelder-Mead algorithm

It is clear from these results that the thin plate spline performs well closely followed by the multiquadratic
while the Gaussian performs poorly. These results are backed up by Figures 6.2, 6.3 and 6.4 which show
smooth well defined surfaces which closely resemble the known volatility function (given in Figure 6.1)
for both the thin plate spline and the multiquadratic and a very unstable surface for the Gaussian.

The problem is rerun using the Trust Region optimisation method. Results are presented in Table 6.2.
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Figure 6.1: Local volatilty surface defined by σ(S, t) = 15
S

Radial Basis
Function

Average
Absolute
Error

Maximum
Absolute
Error

Average
Relative
Error

Maximum
Relative
Error

Iterations

Cost
Function
Evalua-
tions

Lambda

Gaussian 0.8529 1.7064 0.3024 0.9999 52 1219 10
Multi quadratic 0.0007 0.0052 0.0012 0.0228 21 506 0.2

Thin plate spline 0.0012 0.0038 0.0012 0.0165 5 138 0.01

Table 6.2: Summarised results using the Trust-Region algorithm
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Figure 6.2: Reconstructed local volatility surface using a Gaussian function set and the Nelder-Mead
optimisation method
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Figure 6.3: Reconstructed local volatility surface using a multi quadratic function set and the Nelder-
Mead optimisation method
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Figure 6.4: Reconstructed local volatility surface using a thin plate spline function set and the Nelder-
Mead optimisation method
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Figure 6.5: Reconstructed local volatility surface using a Gaussian function set and the Trust Region
optimisation method

Again, the thin plate spline and multiquadratics are the best performers, showing very accurate results,
with the Gaussian a distant third. The respective surfaces are given in Figures 6.5, 6.6 and 6.7. Signifi-
cantly, the accuracy has been increased and the number of function evaluations has decreased, showing
that the trust region method achieves faster convergance, and, as expected is more suited to this problem.

6.1.1 Stability of the Greeks

As discussed in earlier chapters, the Greeks, or sensitivities of the option to changes in various parameters
are of key importance to traders and risk managers. It is therefore essential that any model that is used
for option pricing and risk investigation be able to produce stable and accurate sensitivities. Figure 6.8
shows a comparison of four of the key Greeks: delta, gamma, vega and theta using the local volatility
model generated using the thin plate spline function set and Trust Region optimistion with the Greeks of
the analytical solution. In both instances, Greeks were determined using central differences. This shows
how accurately the sensitivities are reproduced by the approach taken in this thesis, and further reinforces
the radial basis function approach a valid one.
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Figure 6.6: Reconstructed local volatility surface using a multi quadratic function set and the Trust
Region optimisation method
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Figure 6.7: Reconstructed local volatility surface using a thin plate spline function set and the Trust
Region optimisation method

43



Figure 6.8: A comparison of the Greeks
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6.2 A Real-world problem: Reconstructing the volatility surface of S&P
500 index options

Following Coleman et al. [1999] the practical problem of reconstructing the volatility surface of options
on the S&P 500 index is tackled. Observed implied volatilities, from October 2005, are given in Table
6.3. An index level (underlying asset price) of $590 and a risk free rate of 6% is used.

Maturity (in years) Strike
$501.5 $531 $560.5 $590 $619.5 $649 $678.5 $708 $767 $826

0.175 0.190 0.168 0.133 0.113 0.102 0.097 0.120 0.142 0.169 0.200
0.425 0.177 0.155 0.138 0.125 0.109 0.103 0.100 0.114 0.130 0.150
0.695 0.172 0.157 0.144 0.133 0.118 0.104 0.100 0.101 0.108 0.124
0.94 0.171 0.159 0.149 0.137 0.127 0.113 0.106 0.103 0.100 0.110

1 0.171 0.159 0.150 0.138 0.128 0.115 0.107 0.103 0.099 0.108
1.5 0.169 0.160 0.151 0.142 0.133 0.124 0.119 0.113 0.107 0.102
2 0.169 0.161 0.153 0.145 0.137 0.130 0.126 0.119 0.115 0.111

Table 6.3: Implied volatilities for the S&P 500 index during October 2005

This problem is first attempted using a subset of the known volatilities at the points t = [0.175; 0.695; 1; 2]
and S = [531; 590; 649; 708; 826]. The discretisation parameters used for the Crank-Nicholson scheme
are h = 0.01 and k = 1. This results in 5 Crank-Nicholson solutions on the grid size 200× 2478 in the
worst case, per evaluation of the cost function.

Results of generation of the initial weight vector w using the heuristic described in Chapter 5 are shown
for Gaussian, multi quadratic and thin plate spline function sets in Figures 6.9, 6.10 and 6.11 respectively.
The figures show that the multi quadratic appears to provide the most stable initial condition.

Optimisation was first performed using the Simplex algorithm described in Chapter 5. Even though the
multi quadratic has the best initial solution, the thin plate spline outperforms it in terms of both accuracy
and performance. The Gaussian function performs significantly more poorly than either multi quadratics
or thin plate splines in both accuracy and performance - it showed the highest error and took the longest
to converge. Table 6.4 summaries the results. Figures 6.12, 6.13 and 6.14 show the generated local
volatility surfaces of the Gaussian, multi quadratic and thin plate splines respectively. Visual inspection
reveals that the surfaces produced by the multi quadratic and thin plate spline function sets are smooth,
and similar with some noticable differences at the boundaries. The Gaussian surface appears unstable
- something backed up by the poor performance. Following Coleman et al. [1999] a constant volatility
approach is also tested where the volatility is set to the average of the observed volatilities and prices
generated using the Crank-Nicholson scheme. The average pricing error for the constant volatility was
2.1772 with a maximum error of 5.3871. All three function sets in our example are more accurate than
the constant volatility approach.

Radial Basis
Function

Average
Absolute
Error

Maximum
Absolute
Error

Average
Relative
Error

Maximum
Relative
Error

Iterations

Cost
Function
Evalua-
tions

Lambda

Gaussian 0.5420 2.3598 0.22701 1 7939 10000 0
Multi quadratic 0.1797 0.7816 0.2045 1 7927 10000 0

Thin plate spline 0.1430 0.5573 0.1741 1 7861 10000 0

Table 6.4: Summarised results using the Nelder-Mead algorithm
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Figure 6.9: Interpolation results of the initial weight vector using a set of Gaussian functions

Figure 6.10: Interpolation results of the initial weight vector using a set of multi quadratic functions
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Figure 6.11: Interpolation results of the initial weight vector using a set of thin plate spline functions

The same problem was rerun, using the same parameters, but using the Trust Region optimisation algo-
rithm described in Chapter 5. The results show a significant increase in accuracy and, more significantly,
performance. Again, the thin plate spline function set proved the more accurate, closely followed by
the multi quadratic set. The Gaussian set again performed poorly in comparison to the other two. Table
6.5 summarises the results and Figures 6.15, 6.16 and 6.17 show the generated local volatility surfaces.
Again visual inspection reveals smooth, stable surfaces.

Radial Basis
Function

Average
Absolute
Error

Maximum
Absolute
Error

Average
Relative
Error

Maximum
Relative
Error

Iterations

Cost
Function
Evalua-
tions

Lambda

Gaussian 0.3896 1.5536 0.1970 1 476 10017 0
Multi quadratic 0.1484 0.5050 0.1919 1 123 2604 0

Thin plate spline 0.1296 0.5272 0.1751 1 476 10017 0

Table 6.5: Summarised results using the Trust Region algorithm

To examine the effect of size of the set of centers and their positioning we rerun the problem using an
increase function set size. We place a function center at every known data point - that is the sets t =
[0.175; 0.425; 0.695; 0.94; 1; 1.5; 2] and S = [501.50; 531; 560.5; 590; 619.5; 649; 678.5; 708; 767; 826].
The discretisation parameters used for the Crank-Nicholson scheme are again h = 0.01 and k = 1. This
results in 10 Crank-Nicholson solutions on the grid size 200× 2478 in the worst case, per evaluation of
the cost function. Figures 6.18, 6.19 and 6.20 show results of the creation of the initial weight vectors of
the Gaussian, multiquadratic and thin plate spline function sets respectively.

Results showed an expected degradation in performance, but significant improvement of the accuracy.
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Figure 6.12: Reconstructed local volatility surface using a Gaussian function set and the Nelder-Mead
optimisation method

48



Figure 6.13: Reconstructed local volatility surface using a multi quadratic function set and the Nelder-
Mead optimisation method
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Figure 6.14: Reconstructed local volatility surface using a thin plate spline function set and the Nelder-
Mead optimisation method
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Figure 6.15: Reconstructed local volatility surface using a Gaussian function set and the Trust Region
optimisation method
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Figure 6.16: Reconstructed local volatility surface using a multi quadratic function set and the Trust
Region optimisation method
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Figure 6.17: Reconstructed local volatility surface using a thin plate spline function set and the Trust
Region optimisation method
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Figure 6.18: Interpolation results of the initial weight vector using a set of Gaussian functions with a
larger set of centres

Figure 6.19: Interpolation results of the initial weight vector using a set of multi quadratic functions with
a larger set of centres
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Figure 6.20: Interpolation results of the initial weight vector using a set of thin plate spline functions
with a larger set of centres

Again the thin plate spline set showed the best performance. Significantly, the Gaussian set was much
more in comparable with the thin plate spline and multi quadratic sets. This suggests that the performance
of the approach is highly dependent on the function set and its placement. The results are summarised in
Table 6.6.

Visual examination of Figures 6.21, 6.22 and 6.23 reveal that all sets are smooth and seem stable. While
the Gaussian and thin plate spline function sets required no smoothing, the multi quadratic approach
was over determined with the larger function set, and as a result required a smoothing factor to avoid
overfitting.

Radial Basis
Function

Average
Absolute
Error

Maximum
Absolute
Error

Average
Relative
Error

Maximum
Relative
Error

Iterations

Cost
Function
Evalua-
tions

Lambda

Gaussian 0.1149 0.4100 0.1551 1 140 10011 0
Multi quadratic 0.1432 0.4955 0.1832 1 140 10011 0.4

Thin plate spline 0.1027 0.4108 0.1612 1 140 10011 0

Table 6.6: Summarised results using the Trust Region algorithm with an increased function set size
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Figure 6.21: Reconstructed local volatility surface using a Gaussian function set and the Trust Region
optimisation method
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Figure 6.22: Reconstructed local volatility surface using a multi quadratic function set and the Trust
Region optimisation method
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Figure 6.23: Reconstructed local volatility surface using a thin plate spline function set and the Trust
Region optimisation method
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Chapter 7

Discussion and future research

Results presented in Chapter 6 show the radial basis function approach to be both acceptably accurate and
tractable. Our results show that both thin plate splines and multiquadratics perform well, while Gaussian
function sets generally perform poorly - this finding backs up observations by Franke [1982]. Both the
analytical and realistic “real world” problem compare favourably with results presented by Coleman et
al. [1999] and Lagnado and Osher [1997a]. Table 7.1 below compares the analytical problem results
with those of Coleman et al. [1999] and shows that more accurate results have been achieved using the
radial basis function approach. Comparison with the numerical test is difficult, as there is no analytical
solution available.

Method Average Relative Error Max Relative Error
Gaussian RBF (Nelder-Mead) 0.37708 0.9972

Multi quadratic RBF (Nelder-Mead) 0.0031 0.0312
Thin plate spline RBF (Nelder-Mead) 0.0012 0.0175

Gaussian RBF (Trust-Region) 0.3024 1
Multi quadratic RBF (Trust Region) 0.0012 0.0228

Thin plate spline RBF (Trust-Region) 0.0012 0.0165
Coleman et al. [1999] Spline Interpolation 0.0021 0.0078

Table 7.1: Comparison of radial basis function and spline interpolation approaches for the analytical
problem

The research shows that careful consideration needs to be given to the number and placement of the
centre points in order to avoid overfitting. With careful choices of these function sets and regularisation
parameters smooth and accurate surfaces can be generated.

Interestingly we find significant variations on the boundary of the surfaces, as can be seen in Figure 7.1.
This can be explained by two observations. Firstly, the greek vega discussed in earlier chapters, shows
that options which are struck near the current underlying price are more greatly affected by volatility
than those struck further away. Thus, changes in the volatility surface in regions far from the underlying
price have little effect on the value of the cost function, and given the error tolerances, are negligible.
This instability at the boundary is an effect also documented by Lagnado and Osher [1997a]. This
research found that relative error was low in significant areas, while in areas which are insignificant (low
vega regions are those which are far away from the current underlying price, and close to maturity) the
relative error spikes. The fact that high relative error occurs only in insignificant areas again reinforces
the approach as a valid one. Figure 7.1 shows the relative error profile of the thin plate spline approach
on the numerical example - the error spikes where the strike price is far away from the current underlying
price and close to maturity.
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Figure 7.1: Relative error profile of the thin plate spline approach on the numerical example

The second effect is due to the lack of knowledge of the surface outside of the region described by the
observable points, while the finite difference approach requires values in regions outside this area of
knowledge be used - this leads to variability at the boundaries which eventually stablises.

Experimentation has shown clearly that the ability to solve the numerical pricing problem quickly and
accurately is at the crux of this problem. Results presented here are limited by the error in the numerical
finite difference scheme. Decreasing the size in the discretisation, while making the solution more accu-
rate, significantly decreases the speed and makes the whole procedure of recovering the local volatility
surface prohibitively expensive. It is therefore proposed tha future research be conducted to investigate
approaches to either speeding up the finite difference scheme or, perhaps more importantly, finding a
different numerical pricing scheme which has better convergence properties.

One of the main short comings of this research was control over the regularisation parameter, λ, which
is employed to reduce overfitting. The approach taken was one of trial and error which certainly did not
produce optimal results. While the regularisation is easy to find in a linear setting (see Orr [1996]) it
is a much more challenging problem in this non-linear case. Further research should be conducted to
investigate the interaction of the function set and the regularisation parameter and endeavours made to
find a solution which recovers an optimal regularisation factor.

With a accurate and fast numerical pricing scheme and an optimal recovery of the regularisation param-
eter we believe that the radial basis function approach to recovering the local volatility surface will be a
robust one.
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Chapter 8

Conclusion

This research has shown the significant computational challenge of reconstructing the lcoal volatility
surface. Despite this, the radial basis function approach has been shown to be viable. The research
shows that

• Radial basis functions, and in particular, thin plate splines are capable of producing accurate,
smooth local volatility surfaces.

• Error estimates are of comparable scale to the spline interpolation method presented by Coleman
et al. [1999]

• Given a sufficiently robust, tractable and efficient optimisation algorithm such as the trust-region
method used in this research, solutions can be generated in a reasonable and practical amount of
time

Despite the success of this research, it is perhaps the problems and pitfalls which have been identified
for further investigation which may prove most useful

• Reconstruction is entirely dependent on an approach to quickly and accurately solve the discre-
tised general Black-Scholes equation. Crank-Nicholson has been shown to have limitations in this
regard.

• Accurate solutions are very sensitive to the function set and the placement of this set in the solution
space. This research used both heuristic and trial and error for this purpose. An automated solution
would be highly beneficial.

• One significant problem encountered in this research was the inability to accurately determine the
smoothing co-efficient, λ. Combined with the function set, a robust solution to reconstruction of
local volatility surfaces would require optimal recovery of this parameter.

We believe this research has provided grounding and a framework for the exploration of using radial
basis functions to recovery local volatilty surfaces. While by no means complete and robust, we believe
it has shown significant potential exists.
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Appendix A

Source Code

A.1 Train a volatility surface

function vs = trainSurface(StrikesTrain, MaturitiesTrain, VolsTrain, NNType, h,k,
SMax, T, ActualValsTrain, optOptions, StrikesTest, MaturitiesTest,
ActualValsTest)

%Train a volatility surface

InitialNetwork = TrainRBFNetwork(StrikesTrain, MaturitiesTrain, VolsTrain, NNType,
'GCV');

switch (NNType)
case 'G'

distMatrix = DistanceSurfaceG(h,k,T,SMax*3,InitialNetwork);
case 'MQ'

distMatrix = DistanceSurfaceMQ(h,k,T,SMax*3,InitialNetwork);
case 'TPS'

distMatrix = DistanceSurfaceTPS(h,k,T,SMax*3,InitialNetwork);
end

%CF = @(weights) (CostFunctionAnalytical(weights, distMatrix, SMax, T, h, k,
StrikesTest, MaturitiesTest, ActualValsTest));

CF = @(weights) (CostFunctionNumerical(weights, distMatrix, SMax, T, h, k,
StrikesTest, MaturitiesTest, ActualValsTest));

%CF = @(weights) (CostFunctionNumericalNM(weights, distMatrix, SMax, T, h, k,
StrikesTest, MaturitiesTest, ActualValsTest));

%CF = @(weights) (CostFunctionAnalyticalNM(weights, distMatrix, SMax, T, h, k,
StrikesTest, MaturitiesTest, ActualValsTest));

optimalWeights = lsqnonlin(CF,InitialNetwork.Weights,[],[],optOptions);
%optimalWeights = fminsearch(CF,InitialNetwork.Weights,optOptions);
vs = VolSurface(distMatrix,optimalWeights);
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A.2 Numerical example cost function

function f = CostFunction(input, DistMatrix, SMax, T, h, k, Strikes, Maturities,
ActualVals)

%Cost function for the numerical problem

S = 1;
r = 0.05;
lambda = 0;
weights = input;
vols = VolSurface(DistMatrix, weights);
totalWeight = 0;
count = 1;

for j = 1:length(Strikes)
p = CrankN(max(Maturities),Strikes(j),r,'Call',vols(:,1:SMax*2/k - 1));

for i = 1:length(Maturities)
price = p(round(S/k) , round(Maturities(i)/h) + 1);
f(count) = price - ActualVals(j,i);
count = count + 1;

end
end

f(count) = lambda*sum(abs(weights));
end

A.3 Analytical example cost function

function f = CostFunction(input, DistMatrix, SMax, T, h, k, Strikes, Maturities,
ActualVals)

%Cost function for the analytical problem

S = 100; r = 0.05;
lambda = 0.01;
weights = input;
vols = VolSurface(DistMatrix, weights);
count = 1;

for j = 1:length(Strikes)
p = CrankNA(max(Maturities),Strikes(j),r,'Call',vols(:,1:SMax*3/k - 1));

for i = 1:length(Maturities)
price = p(round(S/k) , round(Maturities(i)/h) + 1);
f(count) = price - ActualVals(j,i);
count = count + 1;

end
end

f(count) = lambda*sum(abs(weights));
end

65



A.4 Generate the distance surfaces, used in calculation of the volatility
surface

function f = DistanceSurface(h, k, T, SMax,RBFNetwork)

%Generate a distance surface for the gaussian function

M = round(T/h);
N = round(SMax/k);
nc = RBFNetwork.Centres;
w = RBFNetwork.Width;

dist = zeros(M,N,length(nc));
for i = 1:M

for j = 1:N
for ii = 1:length(nc)

dist(i,j,ii) = sqrt(((j-1)*k -nc(ii,1)).ˆ2 + ((i-1)*h - nc(ii,2)).ˆ2);
dist(i,j,ii) = exp(-0.5*(dist(i,j,ii)./w).ˆ2);

end
end

end
f = dist;

function f = DistanceSurface(h, k, T, SMax,RBFNetwork)

%Generate a distance surface for the Multiquadratic function

format long;
M = round(T/h);
N = round(SMax/k);
nc = RBFNetwork.Centres;
w = RBFNetwork.Width;
dist = zeros(M,N,length(nc));

for i = 1:M
for j = 1:N

for ii = 1:length(nc)
dist(i,j,ii) = sqrt(((j-1)*k -nc(ii,1)).ˆ2 + ((i-1)*h - nc(ii,2)).ˆ2);
dist(i,j,ii) = sqrt(dist(i,j,ii).ˆ2 + w);

end
end

end
f = dist;
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function f = DistanceSurface(h, k, T, SMax,RBFNetwork)

%Generate a distance surface for the Thin Plate Spline function

format long;
M = round(T/h);
N = round(SMax/k);
nc = RBFNetwork.Centres;
w = RBFNetwork.Width;
dist = zeros(M,N,length(nc));

for i = 1:M
for j = 1:N

for ii = 1:length(nc)
dist(i,j,ii) = sqrt(((j-1)*k -nc(ii,1)).ˆ2 + ((i-1)*h - nc(ii,2)).ˆ2);
if dist(i,j,ii) 6= 0

dist(i,j,ii) = dist(i,j,ii).ˆ2*log(dist(i,j,ii));
end

end
end

end
f = dist;

A.5 Generate a volatility surface from a distance surface and weights

function f = VolSurface(DistanceSurface, w)

%Take the generated distance surface and weights and generate a volatility
%surface

dsSize = size(DistanceSurface);
vol = zeros(dsSize(1),dsSize(2));
vol = reshape(reshape(DistanceSurface,[],length(w))*w,[dsSize(1),dsSize(2)]);
f = vol;
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A.6 Crank Nicholson for the generalised Black-Scholes PDE

function f = CrankN(T,E,r,optionType,vols)

%Crank-Nicholson solution of the generalised Black-Scholes equation

SMax = 1.4*2;
h = 0.01; k = 0.02;

M = round(T/h);
N = round(SMax/k);

f = zeros(N-1,M+1);
bu = zeros(N-1,M+1);
bl = zeros(N-1,M+1);

for i = 1:N-1
f(i,1) = max([i*k - E, 0]);

end;

for j = 1:M
bl(N-1,j+1) = SMax - E*exp(-r*j*h);

end;

newSol = zeros(N-1,1);

for i = 0:M-1

j = 1:N-1;

a = 0.5*r*h*j + -1*(h/4).*(vols(i+1,:).ˆ2).*(j.ˆ2);
b = 1 - 0.5*r*h.*j + 0.5*h.*(vols(i+1,:).ˆ2).*(j.ˆ2) + 0.5*r*h;
c = -1*(h/4).*(vols(i+1,:).ˆ2).*(j.ˆ2);
aBar = (h/4).*vols(i+1,:).ˆ2.*j.ˆ2;
bBar = 1 - 0.5*r*h.*j - 0.5*h.*(vols(i+1,:).ˆ2).*(j.ˆ2) - 0.5*r*h;
cBar= 0.5*r*h.*j + (h/4).*(vols(i+1,:).ˆ2).*(j.ˆ2);
G(1) = bBar(1)*f(1,i+1) + cBar(1)*f(2,i+1);

for ii = 2:N-2
G(ii) = aBar(ii)*f(ii-1,i+1) + bBar(ii)*f(ii,i+1) + cBar(ii)*f(ii+1,i+1);

end
G(N-1) = aBar(N-1)*f(N-2,i+1) + bBar(N-1)*f(N-1,i+1);

sol = G' + aBar(1)*bu(:,i+2) + cBar(N-1)*bl(:,i+2) - a(1)*bu(:,i+2)
- c(N-1)*bl(:,i+2);

cprime(1) = c(1)/b(1);
dprime(1) = sol(1)/b(1);
for ii = 2:N-1

cprime(ii) = c(ii)/(b(ii) - cprime(ii-1)*a(ii));
dprime(ii) = (sol(ii) - dprime(ii-1)*a(ii))/(b(ii) - cprime(ii-1)*a(ii));

end;

newSol(N-1) = dprime(N-1);

for ii = N-1:-1:2
newSol(ii-1) = dprime(ii-1) - cprime(ii-1)*newSol(ii);

end
f(:,i+2) = newSol;

end
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A.7 Train a linear RBF Network, used to generate initial solutions

function RBFNetwork = TrainRBFNetwork(Strikes, Maturities, Volatilities,
RadialFunction, ErrorFunction)

%Train a LINEAR RBF Network

count = 1;

for i = 1:length(Strikes)
for j = 1:length(Maturities)

X(count,:) = [Strikes(i) Maturities(j)];
y(count) = Volatilities(j,i);
count = count + 1;

end
end

[w r err] = OptimalParameters(X, y, X, RadialFunction, ErrorFunction);

RBFNetwork.TrainingX = Strikes;
RBFNetwork.TrainingY = Maturities;
RBFNetwork.TrainingInput = Volatilities;
RBFNetwork.RadialFunction = RadialFunction;
RBFNetwork.ErrorFunction = ErrorFunction;
RBFNetwork.Weights = w;
RBFNetwork.Centres = X;
RBFNetwork.Width = r;
RBFNetwork.Err = err;
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A.8 Find the optimal parameters of a linear radial basis function approx-
imation

function [optW optR err] = OptimalParameters(X, y, C, RadialFunction, ErrorFunction)

%Generate the set of optimal parameters for a linear radial basis function
%eDistance is the euclidean distance between two points
%Gaussian, multiQuadratic and thinPlateSpline are the respective radial
%basis functions

X=X';
C=C';
y=y';
m = length(C);
p = length(y);
err = 20000000;
optR = 0;

for r = 0:0.05:1
for i = 1:m

for j = 1:p
switch RadialFunction

case 'G'
H(j,i) = Gaussian(eDistance(X(:,j),C(:,i)), r);

case 'MQ'
H(j,i) = multiQuadratic(eDistance(X(:,j),C(:,i)), r);

case 'IMQ'
H(j,i) = 1/multiQuadratic(eDistance(X(:,j),C(:,i)), r);

case 'TPS'
H(j,i) = thinPlateSpline(eDistance(X(:,j),C(:,i)));

end

end
end

l = 1;
lold = 0;

while (abs(l - lold) > 0.00001)
lold = l;
lambda = l*ones(1,m);
Lambda = diag(lambda);
invA = inv(transpose(H)*H + Lambda);
P = eye(p) - H*invA*transpose(H);
w = invA*transpose(H)*y;
l = (transpose(y)*P*P*y*trace(invA - l*(invA)ˆ2))/(transpose(w)*invA*w*trace(P));

end

switch ErrorFunction
case 'GCV'

mse = p*y'*P*P*y / Trace(P)ˆ2;
end

if mse < err
err = mse;
optR = r;
optW = w;

end
end
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A.9 CEV model - used in the analytical example

function res = CallValue(r,a,Beta,spot,tau,sigma,strike)

%CEV model for analytical solution

ks = kstar(r,a,sigma,Beta,tau);
xs = xstar(ks,spot,r,a,Beta,tau);
format long;
Sum1=0;
Sum2=0;
for i = 0:100

Sum1 = Sum1 + (exp(-xs)*(xsˆi)*gammainc(ks*strikeˆ(2-Beta),i+1+(1/(2-Beta)),
'upper'))/gamma(i+1);

Sum2 = Sum2 + (exp(-xs)*(xsˆ(i+(1/(2-Beta))))*gammainc(ks*strikeˆ(2-Beta),
i + 1, 'upper'))/gamma(i+1 + 1/(2-Beta));

end

res = spot*exp(-a*tau)*Sum1 - strike*exp(-r*tau)*Sum2

function res = kstar(r, a, sigma, Beta,tau)
res = 2*(r-a)/((sigmaˆ2)*(2-Beta)*(exp((r-a)*(2-Beta)*tau) - 1));

function res = xstar(kstar, Spot, r, a, Beta, tau)
res = kstar*(Spotˆ(2-Beta))*exp((r-a)*(2-Beta)*tau);
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