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ABSTRACT 
 
Software to analyse the combustion and energy release characteristics of fuels was 

designed and developed. The software was used to investigate the characteristics of 

diesel fuels at varying loads by performing thermodynamic analysis techniques and 

displaying the results.  

 

The software performed the analysis directly according to the objectives as to which it 

was designed for. It obtained the same energy release curves and other energy 

modelling characteristics as compared to the original software. The software was also 

found to increase the power of analysis through its improved analysis components. 

 

The results obtained for the diesel tests appear to be representative of all speeds and 

loads showing the typical behaviour expected, indicating that the engine and the data 

analysis techniques performed by the software are consistent and correct. It is 

apparent that the trends obtained follow the expected patterns and are complementary 

of each other, demonstrating the absence of any major problems. 

 

The software will be used to further the research into alternative fuels and will make 

the analysis process more efficient and less time consuming.  
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1. Introduction  
 
 
 
The purpose of internal combustion engines is to produce mechanical power from the 

chemical energy contained in the fuel. In internal combustion engines, as distinct from 

external combustion engines, this energy is released by burning or oxidizing the fuel 

inside the engine. The fuel-air mixture, before combustion, and the burned products, 

after combustion, are the actual working fluids. The work transfers, which provide the 

desired power output, occur directly between these working fluids and the mechanical 

components of the engine.  

 

The fuels have had a major impact on engine development. The earliest engines used 

for generating mechanical power burned gas. Gasoline and lighter fractions of crude 

oil, became available in the late 1800s and various types of carburetors were 

developed to vaporize the fuel and mix it with air. Before 1905 there were few 

problems with gasoline, though compression ratios were low (4 or less) to avoid 

knock, the highly volatile fuel made starting easy and gave good cold weather 

performance. A serious crude oil shortage developed however, and to meet the five 

fold increase in gasoline demand between 1907 and 1915, the yield from crude had to 

be raised [1]. In recent times the increase in global growth with emerging markets 

such as China and India have once again increased the demand for crude oil. This, 

together with geo-political tensions, have caused the price of crude oil to sky rocket. 

A third complication of oil resource depletion is also becoming a concern. 

 

Alternative fuel research has always been a formality; however with world events 

dictating a higher sense of urgency, this research has become imperative. Billions of 

dollars are being invested by car manufacturers, governments and energy companies 

to replace current energy fuel resources with an alternative. The focus of this research 

project is exactly this. More advanced analytical software is required to perform this 

research. The advancement of computer technology has made this possible. 

 

The author of this research project has developed a software package directly focused 

on the analytical processes of alternative fuel research. The software has been written 
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in Java. Java is the latest computer language technology and is platform independent. 

The package can run on any operating system from linux, to windows, to cell phones.  

 

The software was not only designed to perform the thermodynamic analysis but to 

represent it in a professional format. Analysis is a very crucial part of the research but 

the way it is presented is exceptionally important. This is so because one can have all 

the information and evidence in the world but if it is not properly communicated, it 

will all be worthless. As a result the software has been developed to have powerful 

graphic and reporting features. 

 

The software package, named Combustion Analysis software (CAS), was used to 

analyse the combustion characteristics of diesel. This was an appropriate fuel to test 

the software on because of the extensive research already done on the fuel. The results 

using the newly developed software can then be directly compared for accuracy and 

validity and was found to have fulfilled these requirements. 

 

The software package will allow for improved research with more time being spent on 

actual research outcomes rather than on optimization of the processes and 

mechanisms in order to reach these outcomes. The software is intended to develop a 

solution to the current problem of future oil shortages and environmental concerns. 

The software will be extremely useful and beneficial for future research and 

developments. 
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1.1 Objectives 
 
The primary objectives of this study are defined as follows: 

 

• To develop a software application that analyses the characteristics of a 

compression ignition engine using alternative fuelling 

• To consolidate and compare the results with work carried out previously at the 

School to further the understanding of the fuel combustion characterisitics. 

• To obtain additional analytical and presentable data for future research work. 

• To develop software that analyses the combustion and energy release 

characteristics of alternative fuels. 

 

A secondary objective of the research is: 

 

• To use the newly developed software to perform analysis and obtain data on 

diesel fuel resulting from the testing of a compression ignition engine. 
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2. Literature Survey 

 

2.1 Combustion in Compression-Ignition Engines 

 

Combustion engines are divided into two basic categories according to their 

combustion chamber design, 

 

• Direct Injection (DI) engines, which have a single open combustion 

chamber  into which fuel is injected directly. 

• Indirect Injection (IDI) engines, where the chamber is divided into two 

regions and the fuel is injected into the “pre-chamber” which is 

connected to the main chamber via a nozzle or one or more orifices. 

IDI engine designs are only used in the smallest engine sizes.[1] 

 

2.1.1 Direct Injection Systems 

 

In the largest engines, where the mixing rate requirements are least stringent, 

quiescent direct-injection systems of the type shown in figure 2.1a are used. 

The momentum and energy of the injected fuel jets are sufficient to achieve 

adequate fuel distribution and rates of mixing with the air. Additional 

organised air motion is required. The combustion chamber shape is usually a 

shallow bowl in the crown of the piston, and a single multihole injector is 

used. [1] 

 

As engine size decreases, increasing amounts of air swirl are used to achieve 

faster fuel-air mixing rates. Air swirl is generated by suitable design of the 

inlet port. The swirl can be increased as the piston approaches top dead centre 

by forcing the air toward the cylinder axis, into a bowl-in-piston type of 

combustion chamber. Figure 2.1b and c shows the two types of DI engine with 

swirl, with a centrally located multihole injector nozzle. Here the design goal 

is to the amount of liquid fuel which impinges on the piston cup walls to a 

minimum. Figure 2.1c shows most of the fuel is deposited on the piston bowl 

walls.[1] 
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Figure 2.1: Common types of direct-injection compression ignition  

    systems[1] 

 

 

2.1.2 Indirect-Injection Systems 

 

Inlet generated air swirl, despite amplification in the piston cup, has not 

provided sufficiently high fuel-air mixing rates for small high-speed diesel 

engines such as those used in automobiles. Indirect-injection (IDI) or divided 

chamber engine systems have been used instead, where the vigorous charge 

motion required during fuel injection is generated during the compression 

stroke. Two broad classes of IDI systems can be defined: (1) swirl chamber 

systems and (2) pre-chamber systems, as illustrated in Fig 2.2a and b, 

respectively. During compression, air is forced from the main chamber above 

the piston into the auxillary chamber, through the nozzle orifice, or set of 

orifices. Thus, toward the end of compression, a vigorous flow in the auxillary 

chamber is set up. In swirl chamber systems the connecting passage and 

chamber are shaped so that this flow within the auxillary chamber rotates 

rapidly.[1] 
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Fuel is usually injected into the auxillary chamber at lower injection-system 

pressure than is typical of DI systems through a pintle nozzle as a single spray. 

Combustion starts in the auxillary chamber. The pressure rise associated with 

the combustion forces fluid back into the main chamber where the jet issuing 

from the nozzle entrains and mixes with the chamber air. The glow plug 

shown on the right of the pre-chamber in Figure 2.2 is a cold starting aid. The 

plug is heated prior to starting the engine to ensure ignition of fuel early in the 

engine cranking process.[1] 

 

 

 

Figure 2.2: Two common types of small indirect injection engine 

combustion systems (a) swirl chamber (b) turbulent chamber. [1] 

 

 

 

2.1.3 Fuel Spray behaviour 

 

Different spray configurations are used in the different compression ignition 

engines. The simplest configuration involves multiple sprays injected into 

quiescent air in the largest-size diesels (Figure 2.1 a). Each liquid jet atomises 

into drops and ligaments at the exit from the nozzle orifice. The spray entrains 

air, spreads out, and slows down as the mass flow in the spray increases. The 

droplets on the outer edge of the spray evaporate first, creating a fuel-vapour 

air mixture sheath around the liquid-containing core. The highest velocities are 

on the jet axis. The equivalence ratio is highest on the centreline, decreasing to 
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zero at the spray boundary. Once the sprays have penetrated to the outer 

regions of the combustion chamber, they interact with the chamber walls. The 

spray is then forced to flow tangentially along the wall. Eventually the sprays 

from multi-hole nozzles interact with one another. Figure 2.3 shows diesel fuel 

sprays interacting with the cylindrical outer wall of disc-shaped combustion 

chamber in a rapid compression machine, under typical diesel-injection 

conditions. The cylinder wall causes the spray to split with about half flowing 

circumferentially in either direction. Adjacent sprays then interact forcing the 

flow radially inward toward the chamber axis.[22] 

 

 

                             

Figure 2.3: The outer vapour boundary of diesel fuel spray with the 

cylindrical wall of the combustion chamber [22]  

 

 

A schematic of the spray pattern, which results when a fuel jet is injected  

radially outward into a swirling flow, is shown in figure 2.4. As a result 

of there being relative motion in both radial and tangential directions  

between the initial jet and the air, the structure of the jet is more complex. As  

the spray entrains air and slows down it becomes increasingly bent toward the 

swirl direction. Under the same injection conditions it will penetrate less with 

 swirl than without swirl. An important feature of the spray is the large vapour 

 containing region downstream of the liquid containing core.[22] 
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Figure 2.4:  Fuel Spray injected radially outward from the chamber 

axis in swirling air flow. [22] 

 

 

2.1.4 Atomization 

 

Under diesel injection conditions, the fuel jet usually forms a cone-shaped 

spray at the nozzle exit. This type of behaviour is classified as the atomization 

break up regime, and it produces droplets with sizes very much less than the 

nozzle exit diameter. This behaviour is different from other modes of liquid jet 

break-up. At low jet velocity, break-up is due to the unstable growth of surface 

waves caused by surface tension and results in drops larger than the jet  

diameter. As jet velocity is increased, forces due to the relative lead to drop 

sizes of the order of the jet diameter. This is called the first wind induced 

break-up regime. A further increase in jet velocity results in break-up 

characterized by divergence of the jet spray after an intact or undisturbed 

length downstream of the nozzle. In this second wind-induced break-up 

regime, the unstable growth of  short-wavelength waves induced by the 

relative motion between the liquid and surrounding air produces droplets 

whose average size is much less than the jet diameter. Further increases in jet 

velocity lead to break-up in the atomization regime, where the break-up of the 

outer surface of the jet occurs at, or before , the nozzle exit plane and results in 

droplets whose average diameter is much smaller than the nozzle diameter. 
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Aerodynamic interactions at the liquid-gas interface appear to be one major 

component of the atomization mechanism in this regime.[1] 

 

 

2.1.5 Spray and Flame Structure 

 

The structure of each fuel spray is that of a narrow liquid-containing core 

surrounded by a much larger gaseous-jet containing fuel vapour. The fuel 

concentration in the core is extremely high. Local fuel-air equivalence ratios 

near the nozzle of order 10 have been measured during the ignition period.  

Fuel concentrations within the spray decrease with increasing radial and axial 

position at any given time, and with time at a fixed location once injection has 

ended. The fuel distribution within the spray is controlled largely by turbulent-

jet mixing processes. Fuel vapour concentration contours determined from 

interferometric studies of unsteady vaporizing diesel like sprays, confirm this 

gaseous turbulent jet like structure of the spray, with its central liquid 

containing core which evaporates relatively quickly once fuel injection ends.  

Flame development , along mixture contours close to stoichiometric, occurs 

rapidly as indicted in figure 2.5. [1] 

 

 

                              

 

 

Figure 2.5: Tracings of outer boundary of liquid fuel spray and flame from 

   a rapid compression ignition engine [1] 

 



University of the Witwatersrand 

 

 10 

 

Initially this is thought to be due to spontaneous ignitions of regions close to 

the first ignition site due to the temperature rise associated with the strong 

pressure wave which emanates from each ignition site due to local rapid 

chemical energy release. Also, spontaneous ignition at additional sites on the 

same spray, well separated from the original ignition location, can occur.[1] 

 

Gas sampling data indicate that the burned gases within the flame enveloped 

spray are only partially reacted and may be fuel rich. Figure 2.6 shows CO and 

CO2 concentration contours determined from rapid acting sample valve 

measurements from the combustion chamber of a large quiescent chamber 

two-stroke cycle diesel engine. The contour maps shown correspond to the 

centreline of one of the five injected fuel sprays. Injection commenced at 17º 

BTC and ended about 5º BTC. Ignition occurred at 8º BTC. The contours at 3º 

BTC show high CO concentrations in the burned gases which now occupy 

most of the spray region, indicating locally very fuel-rich conditions. Later, at 

12 º ATC, fuel injection has ceased, this rich core has moved outward to the 

piston bowl wall, and combustion within the expanded spray region is much 

more complete. This oxidation of CO, as air is entrained into the spray region, 

mixes, burns and releases substantial additional chemical energy.[1] 

 

 

 

 

Figure 2.6: Contours of constant CO and CO2 concentration in a 

plane [1] 
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2.2  The fuel properties of alcohol and basic principles of engine 
conversion 

 

2.2.1 Introduction to alcohols  

 

The alcohols are fuels of the family of the oxygenates. As is known to some, 

the alcohol molecule has one or more oxygen molecules, which contributes to 

the combustion. The alcohols are named accordingly to the basic molecules of 

hydrocarbon which derives from them: Methanol (CH3 OH); Ethanol 

(C2H5OH); Propanol (C3H7OH); Butanol (C4H9OH). Theoretically, any of the 

organic molecules of the alcohol family can be used as a fuel. The list is 

somehow more extensive, however, only two of the alcohols are technically 

and economically suitable as fuels for internal combustion engines. These 

alcohols are those of the simplest molecular structure, i.e., Methanol and 

Ethanol. [2] 

- Methanol is produced by a variety of process, the most common are 

 as follows: Distillation of wood; Distillation of coal; Natural gas and 

 petroleum gas. [4] 

-  Ethanol is produced mainly from biomass transformation, or 

 bioconversion. It can also be produced by synthesis from  petroleum 

 or mineral coal.[3] 

Economic reasons dictate, however, the process which can produce the alcohol 

at the minimum cost. Each country around the world has found the best 

compromise in the production of an alternative fuel to replace petrol. Of 

special significance, especially for countries with large areas of land like 

former USSR, USA, China and Brazil, are the methods of production of 

ethanol from bio-mass conversion. In this process, it can be said that solar 

energy is stored in the plants by the photosynthesis process. Ethanol from a 

bio-conversion is therefore "solar energy in a liquid state". [3] 

Ethyl alcohol, or ethanol has been used in Germany and France as early as 

1894 by the then incipient industry of internal combustion engines. Brazil has 

utilized ethanol as a fuel since 1925. By that time, the production of ethanol 
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was 70 times bigger than the production and consumption of petrol. There 

have been times when the push for alternatives to petrol were more vigorous, 

mainly dictated by strategic and economic reasons. It is interesting to note that 

in Brazil, there was an intense use of ethanol in the year 1930, 1940, 1950, 

1958, and 1973. Unfortunately, petroleum has always been considered 

abundant, almost limitless in availability. It was cheap and versatile, so the 

industry has always been very keen in the intensive use of this apparently 

miraculous fuel. All the development effort was toward the use of petrol and 

so the engines were developed for this fuel. [3] 

In those countries with large territorial areas, ethanol has been the alternative 

fuel choice to replace petrol. The reason is the fact that alcohol is a renewable 

source of energy. Currently, ethanol is produced from sugar beets and from 

molasses. A typical yield is 72.5 liters of ethanol per tonne of sugar cane. 

Modern crops yield 60 tonnes of sugar cane per hector of land. An area of 

1km2 of sugar cane crop can yield 6000 tonnes per year in a tropical country 

like Brazil. Other crops can be used for the production of ethanol. In China, 

for instance, it has been demonstrated that sweet sorghum ("Shennong No.2 

sweet sorghum) can yield 267.4 liters of ethanol per Mu. It has also been 

shown that 1 tonne of corn can produce nearly 300 liters of alcohol. [4] 

 

 

2.2.2 Conversion of diesel engines  

 

When diesel engines are converted to alcohols, some properties of gasoline, diesel and 

alcohol should be concerned. Table 1 shows the properties of the fuels .There are 

several methods for converting a diesel engine to alcohol to be discussed. [2] 
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Table 1:  Some properties of fuels [2] 

 Gasoline Diesel Methanol Ethanol 

1. Cetane number - 50 5 8 

2. Octane number 96 - 112 107 

3. Auto-ignition tempt. ° C 371 315 446 390 

4. Latent heat of vaporization (KJ/Kg) 349 220 1177 914 

5. Lower heating value (KJ/Kg) 4400 42600 19945 26700 

 
 
A. Cetane number and cetane improving additive 
 

For a fuel to burn in a diesel engine, it must have a high cetane number or ability to 

self-ignite at high temperatures and pressures. There exists a significant difference 

among gasoline, diesel and alcohol in terms of cetane number and auto ignition. A 

high cetane number leads to a short ignition delay period, whereas a low cetane 

number results in a long ignition delay period. From table 3.2.1, it can be seen that 

alcohols have lower cetane numbers than that of diesel, which is not desired when 

diesel engines are converted to alcohol. Fortunately, some additives, an example of 

which is nitrate glycol, can increase the cetane number of alcohols. This means that 

ignition delay period will become short, which will reduce tendency to cause a diesel 

knock. However, a too short ignition delay period will cause a lower rate of heat 

release which is not wanted. [9] 

 

B. Alcohol-diesel emulsions 
 

Because alcohols have limited solubility in diesel, stable emulsion must be formed 

that will allow it to be injected before separation occurs. Hydroshear emulsification 

unit can be used to produce emulsions of diesel-alcohol. However, the emulsion can 

only remain stable for 45 seconds. And, 12% alcohol (energy basis) is the maximum 

percentage. In addition, this kind of method has several problems which are as 



University of the Witwatersrand 

 

 14 

follows: 1).Specific fuel consumption at low speed increases; 2).High cost; 

3).Instability. Therefore, other methods are developed. [9] 

 

C. Fumigation 
 
 

Fumigation is a process of introducing alcohol into the diesel engine (up to 50%) by 

means of a carburettor in the inlet manifold. At the same time, the diesel pump 

operates at a reduced flow. In this process, diesel fuel is used for generating a pilot 

flame and alcohol is used as a fumigated fuel. Two points should be noted in using 

this method. At low loads, quantity of alcohol must be reduced to prevent misfire .On 

the other hand, at high loads, quantity of alcohol must also be reduced to prevent pre-

ignition. [2] 

 

D. Dual injection 
 
 

In a dual injection system, a small amount of diesel is injected as a pilot fuel for 

ignition source and a large amount of alcohol is injected as main fuel. It must be noted 

that the pilot fuel must be injected prior to injection of alcohol. Some ideal results can 

be achieved when this method is used. Thermal efficiency is better. At the same time, 

NOx emission is lower. Moreover, CO emissions and HC emissions are the same, 

however, the system requires two fuel pumps, thus, leading to a high cost. Meanwhile, 

alcohol needs additives for lubricity. [2] 

 

E. Heated surfaces 

 

Alcohol can ignite with hot surfaces. For this reason, glow-plugs can be utilized as a 

source of ignition for alcohol. In this system, specific fuel consumption depends on 

glow-plug positions and temperatures. It must be noted that the temperature of glow-

plugs must vary with load. However, the glow-plug becomes inefficient at a high 

load. In addition, the specific fuel consumption is higher than that of diesel. [2] 
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F. Spark-ignition 

 

When a spark plug is used, diesel engines can be converted to an Otto cycle engine. In 

this case, the compression ratio should be reduced, from 16: 1 to 10.5: There are two 

types of this kind of conversion. They are as follows:  

Type 1: The original fuel injection system is maintained. Alcohol needs an additive 

for lubricity (Nitride glycol). Besides, both distributor and sparkplug need to be 

installed, thus leading to a high cost of conversion. It is critical to adjust an ideal 

injection and spark-time for this kind of conversion. [7] 

Type 2: Original fuel injection is eliminated. But, a carburettor, a spark-plug and a 

distributor need to be installed, which increases the cost of conversion. In this 

conversion, spark timing is critical. [7] 

Both the type 1 and type 2 conversions’ have a lower thermal efficiency than that of 

diesel. 

 

G. Neat methanol for diesel cycle 

 

Figure 2.7 shows the basic principle of this conversion in this system, methanol is 

introduced to the combustion chamber through two separated accesses. One methanol 

mixture is passed through an inlet manifold over an exhaust-heated aluminum bed 

(h=70%) heated to 400 ° C. Another methanol mixture ,with 2% castor oil as additive, 

is injected into the combustion chamber. In the first access, dimethyl ether is produced 

from methanol. The DME reacts at a normal diesel engine compression temperature 

and raises the gas temperature above the ignition temperatures of methanol .It acts as 

a pilot fuel; In the second access, no additive to the methanol is to be converted to 

DME. A 2% castor oil content, is added in order to improve lubricity. In this system, 

the thermal efficiency is better than that of diesel. Furthermore, ignition delay period 

is reduced, which leads to a decrease in the rate of the pressure rising. This means that 

the engine has no diesel "knock" and has a smoother combustion. At the same time, 

the peak pressure is 18% higher than that of diesel. Fortunately, this can be 
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compensated by retarding the injection timing. The problem of this conversion is that 

DME conversion becomes poor at high speed and at low loads due to the drops of the 

exhaust gas temperature. Pilot flow (DME) which is critical, depends on load and 

speed, and less upon temperature. At a high speed, a fuel pump runs out of the design 

point. [2] 

.  

 

 

 

 

Figure. 2.7:  Basic principle of this conversion [2] 
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2.3 Review of Ethanol in Compression Ignition Engine 

Stringent emission legislation all over the world has led to the search for alternative 

fuels for I.C. Engines. The major pollutants from a diesel engine are oxides of 

nitrogen (NOx), smoke and particulate matter. Concentration is very much focused on 

compression ignition engines because they have been recognised as the most ideal 

power plants in transportation, industrial and agricultural sectors, due to their high 

fuel efficiency. But their major disadvantage is the production of exhaust particulates 

which have to face increasingly stringent regulation. [11] 

The difficulty in meeting the increasingly stringent limitations on particulate and NOx 

emissions has stimulated interest in ethanol-fueled compression ignition engines 

because ethanol diffusion flames produce virtually no soot. Unfortunately ethanol 

does not have suitable ignition properties under typical diesel conditions because the 

temperatures and pressures characteristic of the diesel engines causes a longer ignition 

delay while using ethanol. Therefore, in order to make use of ethanol in a diesel 

engine, either a system to improve the ignition quality of ethanol or a system of some 

ignition aids is necessary. The following describes the various systems of using 

ethanol in diesel engines. [14] 

2.3.1 Techniques of Using Ethanol in Diesel Engines 

There are various techniques by which ethanol can be used as a fuel in compression 

ignition engines. The techniques are 

• Solution  

• Fumigation  

• Dual Injection  

• Spark Ignition  

• Ignition Improvers  

• Surface Ignition  

The easiest method by which ethanol could be used is in the form of solutions, but 

ethanol has limited solubility in diesel. As a result ethanol/diesel solutions are 

restricted to small percentages (typically 20%). This problem of limited solubility has 
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been overcome by emulsions which have the capability of accommodating larger 

displacement of diesel up to 40% by volume. But the major drawbacks of emulsions 

are the cost of emulsifiers and poor low temperature physical properties. [19] 

Fumigation is a method by which ethanol is introduced into the engine by carburating 

or vapourising the ethanol into the intake air stream and about 50% of the fuel energy 

can be derived from ethanol under road load conditions. This method requires 

addition of a carburettor or a vapouriser along with a separate fuel tank, lines and 

controls. Also the distribution of ethanol would be uneven as the diesel intake 

manifolds are not designed to handle two phase flows. [13] 

Dual injection is a method by which nearly 90% displacement of diesel by ethanol is 

possible. The drawbacks of this method include the complexity and expense of a 

second injection system and a second fuel tank and system. Fuel injection pumps and 

injectors to handle neat ethanol have not yet been developed. Also converting to dual 

injection requires, space in the combustion chamber be available for a second injector 

at a location where the injector can be effective.  [16]  

Spark ignition of neat ethanol in diesel engine provides a way of displacing 100% of 

diesel. A spark plug and the associated ignition system components must be added to 

the engine. Room must be available for spark plugs in the cylinder head and its 

location is also important for proper plug cooling. [16] 

Another method of using neat ethanol is to increase their cetane numbers sufficiently 

with ignition-improving additives to ensure that compression ignition will occur. This 

method saves the expense and complexity of engine component changes, but adds in 

fuel cost. [16] 

Surface ignition is another method of using 100% ethanol in diesel engines. Surface 

ignition occurs when the temperature of the air-fuel mixture adjacent to a hot surface 

exceeds its self ignition limit.  [16] 
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2.3.2  Dual Fuel Mode 

In the dual fuel mode in a conventional diesel engine the energy release by 

combustion comes about partly from the combustion of either carburated or manifold 

injected alternative fuel, while the diesel fuel continues to provide throughout, 

through timed cylinder injection, the remaining part of the energy release. Ideally, in 

relation to the alternative supply there is a need for optimum variation in the diesel 

fuel quantity used any time so as to provide the best performance over the whole load 

range desired. The main aim is to minimise the use of diesel fuel due to environmental 

reasons and maximise its replacement by alternative fuel throughout the load and 

speed ranges. The dual fuel engine is an ideal multifuel engine that can operate 

effectively on a wide range of fuels with the flexibility of operating it as a 

conventional diesel engine. [15] 

Some of the distinct advantages associated with dual fuel operation are longer engine 

life, potential cleaner operation and long lasting lubricants with fewer filter changes. 

However, dual fuel operation also has certain limitations like the requirement of 

simultaneous availability of two or more fuels which can bring about increased 

complexity in controls and additional cost. Moreover, a serious problem associated 

with dual fuel engine is the relatively poor light load and idling performance 

associated with low efficiency and inferior emission characteristics. The principle of 

injecting a small quantity of diesel fuel is to auto-ignite the diesel vapour, so that 

flames produced by diesel-air mixture burns the lean homogeneous charge available 

in the rest of the combustion chamber. This behaviour of the engine affects the 

performance of dual fuel engines at light loads adversely.  [15] 

The introduction of the fuel with the inlet air, even in very small quantities, can also 

have a significant effect on the cylinder charge during compression, affecting 

markedly the processes of pre-ignition and subsequent combustion of the pilot and the 

cylinder charge. This deterioration in performance to a large extent depends on the 

pilot quantity injected, the fumigated fuel being used, operating conditions and the 

engine employed. In some cases even idling or light load operation becomes totally 

impaired, with certain fuels and engines. [15] 
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In addition to the above problems, the problem of knock is encountered when very 

high outputs are desired. Thus, a serious practical barrier is set for the maximum load 

that can be achieved for any engine with any fuel. [15] 

The use of alcohol in the dual fuel mode shows the following observations when 

compared to diesel: [15] 

1. Brake thermal efficiency increases at high loads.  

2. Carbon monoxide and hydrocarbon formation increases.  

3. No significant effect on carbon monoxide and hydrocarbons with water 

content and type of alcohol used.  

4. NOx and particulate matter reduces.  

5. NOx emissions decreases with higher water content in alcohol.  

6. Ignition delay increases at all operating conditions.  

7. Higher water content of alcohol lengthens delay period.  

8. Delay period for methanol fuels are longer than those of ethanol fuels.  

9. Methanol produce lower NOx and particulates than ethanol.  

10. Maximum displacement of diesel is only 80% of the total fuel energy in 

conventional engines and 85% in the LHR engine.  

2.3.3 Ignition Improvers 

Ethanol has too low an ignition quality for use in a diesel engine. The step towards " 

adapting the fuel to the engine " is to increase the ignition quality of ethanol such that 

it is sufficient for all operating conditions. This is done by adding ignition improvers 

to ethanol or by the introduction of ignition improvers that have very low self ignition 

temperatures, into the intake manifold. [12] 

Most of the effective ignition improvers that are added to improve the cetane rating 

are nitrogen based compounds, which can aggravate NOx emissions. Isoamyl nitrate, 

Ethyl nitrate, Butyl nitrate, Di-Ethylene Glycol Di-Nitrate (DEGDN), Tri-Ethylene 

Glycol Di-Nitrate (TEGDN) and Kerobrisol are some good ignition improvers. [12] 

Other ignition improvers like Di-Methyl ether (DME) and Di-Ethyl ether (DEE) that 

have very low self ignition temperatures and wider flammability limits are introduced 
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in a small quantity into the intake manifold, that mixes with the combustion air. This 

mixture would begin a slow combustion in the compression stroke forming a pool of 

species and raising the temperature and pressure inside the engine cylinder. This 

would create an ideal environment for igniting the subsequently injected ethanol. [12] 

The summary of observations made on using ignition improved alcohol fuels in diesel 

engines are as follows: [12] 

1. The concentration of DEE required for stable combustion of alcohol varies 

from 59% by mass at no load to less than 1% at full load.  

2. Fuel injection system modified to accommodate extra volume of 

fuel.Compared to normal diesel operation the following observations are 

made:  

3. Thermal efficiency is higher.  

4. Unburn’t hydrocarbon emissions are higher.  

5. Carbon monoxide emissions remain unchanged.  

6. NOx emissions are lower.  

7. No soot formation.  

8. Ignition delay longer.  

9. Aldehyde emissions doubled with ethanol and methanol.  

10. Ethanol exhibits lower aldehydes than methanol.  

2.3.4 Surface Ignition 

The hot surface assisted ignition concept is commonly applied to overcome the low 

temperature starting problem in diesel engines. Introducing extremely low cetane 

fuels like ethanol, require an extended application of the hot surface as continuous 

ignition assistance. The function of the hot surface is to provide favourable local 

ignition condition, followed by flame propagating through the fuel air mixture to 

establish a stable diffusion flame. [23] 

Surface ignition occurs when the temperature of the air-fuel mixture adjacent to the 

hot surface exceeds its self ignition limit. The minimum surface temperature needed 

for this kind of ignition depends on both physical and chemical properties of the fuel 

to be ignited and the operating conditions prevailing inside the combustion chamber 
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as well. Material and exposure of the hot surface have also gained some importance. 

[23] 

The hot surface may be provided by concentrating/accumulating the heat of 

combustion at a position on the piston top or by supplying external energy to the 

heating elements inside the combustion chamber. Hot surface ignition making use of 

glow plugs is not a new concept as it is being used in IDI diesel engines to overcome 

cold starting problems. [23] 

Following are the observations made on using alcohol in hot surface ignition engine: 

1. Ignition characteristics of ethanol affected by fuel amount, injection timing, 

position and length of glow plug, glow plug temperature and water content in 

ethanol.  

2. Engine speed, fuel injection timing and position of the glow plugs have a 

strong effect on the ignition characteristics.  

3. Combustion difficulties appear as the load decreases, making idling 

impossible.  

4. Glow plug surface temperature for proper ignition is around 850oC.  

5. Brake thermal efficiency is comparable to that of diesel.  

6. Higher carbon monoxide and hydrocarbon emissions.  

7. Larger reduction in NOx emissions.  

8. Soot free combustion.  

9. Quieter operation.  

10. Longer ignition delay.  
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2.3.5  Spark Ignition 

To accomplish the smooth operation of an engine, combustion must spread smoothly 

throughout the combustion chamber. This is accomplished in a gasoline engine by 

having a homogeneous mixture in the cylinder ignited by means of a spark. On the 

other hand, the heterogeneous mixture in a diesel engine, when using high cetane 

fuels, combustion depends upon simultaneous auto ignition at different locations 

rather than a flame propagation. However, when using low cetane fuels like alcohol in 

a diesel engine with spark ignition, the flame propagate from the flame nucleus fast 

enough to achieve smooth combustion and rapidly induce auto ignition in the rest of 

the mixture. Thus, for spark assisted diesel, smooth operation depends upon the 

formation of air vapour mixture through which the flame can propagate. [7] 

The combustion processes in a spark assisted alcohol engine takes place as follows: 

a. Ignition and initial flame kernel development away from spark gap along the 

peripheral, near stoichiometric region of the fuel plume closest to the spark 

gap, 

b. Initial flame propagation along adjacent fuel spray plumes, and 

c. Continued flame propagation along fuel spray plumes followed by 

compression ignition occurring in the peripheral regions of the fuel spray 

plumes not yet in contact with the flame which results in multipoint ignition 

and rapid heat release.  

The literature survey made on spark plug assisted alcohol operation shows the 

following points as made compared to diesel operation: [7] 

1. Proper timing of both injection and ignition is vital for ignition of 

alcohol fuel.  

2. Injection timing to be advanced.  

3. Higher efficiency at full load.  

4. More unburnt hydrocarbons.  

5. Reduced NOx and noise.  

6. Shorter ignition delay.  

7. Lower maximum pressure, temperature and rate of pressure rise.  
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2.3.6  Catalytic Combustion 

The possibility of using a combustion catalyst on the surface of the glow plug could 

also be of great significance to the use of ethanol in diesel engines. Catalysts coating 

not only increases the rate at which chemical reactions take place but at the same time 

decrease the minimum temperatures needed for the reactions to take place. Therefore 

if the glow plug surface can be used as a catalyst for ignition, lower temperatures 

would be required thereby reducing the energy requirements for proper operation and 

also increase the lifetime of the glow plugs. Also the presence of a catalyst in the 

combustion chamber could affect emissions as well. [11] 

Normally, catalytic ignition occurs at temperatures several hundred degrees celsius 

lower than the gas phase ignition temperature for the same combustible mixture. At 

low temperatures as in region 1, the reaction rate is controlled by surface kinetics with 

the reaction rate increasing exponentially with catalyst temperature. As temperature 

increases, the reaction rate becomes so high that the reaction is limited by the mass 

transfer between the gas and the surface. This regime shown in region 2, is called the 

mass diffusion controlled region and the heterogeneous kinetics play a secondary role 

in determining the reaction rate. Finally further increase in temperature results in gas 

phase reactions as shown in region 3. In this region, catalytic reactions occur 

simultaneously with heterogeneous reactions. [11] 

To obtain maximum performance from a catalytic combustion system, the materials 

should ideally have the following properties : 

1. The catalyst coating should be capable of igniting fuel/air mixtures at 

the lowest possible temperature i.e., low "light off " temperatures.  

2. The catalyst coating should be able to operate at temperatures in excess 

of 1750 K without thermal degradation or complexing of the materials.  
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2.3.7  Selection of Catalyst Materials 

There are two classes of catalyst coating materials available, one is metal oxides and 

the other one is noble metals. Metal oxide catalysts are made from the oxides of the 

transition metals. Among the metal oxides, only those with refractory properties have 

potential combustion applications. Noble metal catalysts appear to be more promising 

for combustion applications because, metal oxides have lower activities, higher light 

off temperatures and are more prone to thermal sintering and sulphur poisoning. But 

the disadvantages of noble metals for actual engine applications are their exclusively 

high cost and limited high temperature durability. [8] 

However, since the catalysts activity is not necessarily a limiting factor under the 

expected mass transport limited conditions the effectiveness of metal oxide catalysts 

could be as great as that of noble metals. The summary of observations made on the 

utilisation of alcohol in diesel engines with catalyst coated glow plug are given below: 

[8] 

1. Platinum and palladium are used as coating materials on glow plugs.  

2. Reduction in glow plug temperature of 1000 K using platinum and 150 K 

using palladium.  

3. Palladium has better combustion characteristics than platinum.  

4. NOx emissions are slightly higher for platinum and slightly lower for 

palladium compared to diesel.  

5. Lesser aldehyde emissions in the case of platinum and palladium compared to 

diesel.  

6. Platinum and palladium catalyst coating on exhaust valves reduces glow plug 

temperatures by approximately 400 K.  

7. Palladium catalyst produce more carbon monoxide, lower hydrocarbons and 

less NOx than platinum.  
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2.3.8 Low Heat Rejection Engine 

Adiabatic engine implies a no heat loss engine, as adiabatic process is defined as a no-

heat loss process since the combustion chamber walls have no thermal capacity or 

inertia. But, under such imaginary cases, there would be no heat flow relative to the 

cylinder walls. The ways and means of realisation of such a combustion chamber are 

not realistic in practice. On the other hand, the insulated combustion chamber either 

partially or wholly can be assumed to have a large thermal capacity or inertia in such 

a way that the surfaces of the combustion chamber remain at a constant temperature 

throughout the operation. Such an engine is called a Low Heat Rejection (LHR) 

engine. In the development of LHR engine, the reduction of heat loss to the coolant 

system has always been of considerable interest to engine designers since, this would 

reduce the cost, weight, power requirement and size of the cooling system. In LHR 

engine the combustion chamber is insulated with high temperature materials which 

makes the engine operate at hotter environment with less heat transfer. The 

components that are normally insulated include piston, cylinder head, valves, cylinder 

liner, and exhaust ports. It is expected that additional power and improved efficiency 

is possible with engine insulated because thermal energy that is normally lost to the 

cooling water and exhaust gas is converted to useful power through the use of turbo 

machinery and high temperature materials The air from the atmosphere, enters into 

the compressor first and then enters the insulated combustion chamber where 

combustion takes place and useful energy is extracted. The high temperature and high 

pressure exhaust gas is then expanded through two turbine wheels to extract as much 

as possible the remaining energy. Of the two turbine wheels, one is used to drive the 

compressor and the other one is connected by gears to the engine crankshaft thereby 

increasing the useful power output of the engine. [8] 

2.3.9 Conclusion 

Ethanol can be used as a fuel for compression ignition engine however with major 

modifications to the engine depending on the technique employed. 
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2.4 Biodiesel Fuel  

Biodiesel could be an excellent renewable fuel for diesel engines. It is derived from 

vegetable oils that are chemically converted into biodiesel. As the name implies, it is 

similar to diesel fuel except that it is produced from crops commonly grown, 

including canola, soybean, sunflower and safflower. These crops are all capable of 

producing several gallons of fuel per acre that can power an unmodified diesel engine. 

Vegetable oil is converted into biodiesel through a chemical process that produces 

methyl or ethyl ester. After washing and filtering it is usable as an alternate renewable 

fuel. [15] 

2.4.1 Biodiesel  

Biodiesel is composed of long-chain fatty acids with an alcohol attached, often 

derived from vegetable oils. It is produced through the reaction of a vegetable oil with 

methyl alcohol or ethyl alcohol in the presence of a catalyst. Animal fats are another 

potential source. Commonly used catalysts are potassium hydroxide (KOH) or sodium 

hydroxide (NaOH). The chemical process is called transesterification which produces 

biodiesel and glycerin. Chemically, biodiesel is called a methyl ester if the alcohol 

used is methanol. If ethanol is used, it is called an ethyl ester. They are similar and 

currently, methyl ester is cheaper due to the lower cost for methanol. Biodiesel can be 

used in the pure form, or blended in any amount with diesel fuel for use in 

compression ignition engines. Figure 2.8 shows basic transesterification technology. 

[15] 

 

Figure 2.8:  Basic Transesterification technology [15] 
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The transesterification process of converting vegetable oils to biodiesel is shown in 

figure 2.9. The “R” groups are the fatty acids, which are usually 12 to 22 carbons in 

length. The large vegetable oil molecule is reduced to about 1/3 its original size, 

lowering the viscosity making it similar to diesel fuel. The resulting fuel operates 

similar to diesel fuel in an engine. The reaction produces three molecules of an ester 

fuel from one molecule of vegetable oil. 

 

     Figure 2.9:  Transesterification of vegetable oils. [15] 

 

Some properties of various fuels are shown in Table 2. They include diesel fuel, 

biodiesel, and vegetable oil. The main differences between diesel fuel, an ester fuel, 

and vegetable oil are the viscosity, cetane number and heat of combustion. The 

viscosity of a fuel is important because it affects the atomization of the fuel being 

injected into the engine combustion chamber. A small fuel drop is desired so complete 

combustion occurs. A high viscosity fuel, such as raw vegetable oil, will produce a 

larger drop of fuel in an engine combustion chamber which may not burn as clean as a 

fuel that produces a smaller drop. Unburned oxidized fuel will build up in the engine 

around valves, injector tips and on piston sidewalls and rings. Previous NDSU tests 

using sunflower and other oils mixed with diesel fuel found significant buildup on 

piston sidewalls, stuck rings and in a few cases, broken rings. Biodiesel has a 

viscosity much closer to diesel fuel than vegetable oil. This helps produce a much 

smaller drop, which burns cleaner.  
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Table 2:  Fuel properties [14] 

Type Fuel Weight Heat of  Cetan  Viscosity  
    Combustion Number Centistokes 
  Lbs./gal. BTU/gal     
No. 2 diesel 100% 7.05    140,000.00  48 3 
 Biodiesel (B100)         
Methyl or ethyl ester 7.3    130,000.00  55 5.7 
B20 mix (20/80) 7.1    138,000.00  50 3.3 
Raw vegetable oil 7.5    130,000.00  35 to 45 40 to 50 

 

Cetane rating varies considerably among the listed fuels (table 2) and is a measure of 

the self-ignition quality of the fuel. No. 2 diesel fuel usually has a cetane rating 

between 45 and 50 while vegetable oil is 35 to 45. Biodiesel is usually 50 to 60. The 

ignition quality affects engine performance, cold starting, warm up and engine 

combustion roughness. Cetane rating is related to the volatility of the fuel where more 

volatile fuels have higher ratings. A high cetane fuel also may lead to incomplete 

combustion and smoke if the fuel ignites too soon by not allowing enough time for the 

fuel to mix with air for complete combustion. [14] 

The energy content of the fuels also vary. No. 2 diesel fuel typically contains about 

140,000 BTU's per gallon while vegetable oil and biodiesel contain about 130,000 

BTU/gal. A "BTU" stands for British Thermal Unit which is defined as the energy 

required to raise the temperature of water one degree fahrenheit. Fuels with a high 

heat of combustion will usually produce more power per pound of fuel than fuels with 

lower energy. As a result, an engine using a lower energy fuel will require more fuel 

to produce the same power as diesel fuel. As a result of the lower energy content, 

biodiesel will require about 1.1 gallons of fuel to do the same work as a gallon of 

diesel fuel. [15] 
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2.4.2 Engine Studies  

Several studies show biodiesel can run in a conventional diesel engine for an extended 

time. Researchers have run diesel engines in pickups, city buses, large trucks and 

tractors on various mixes of biodiesel/diesel fuel. These mixtures have ranged from 

2/98% (B2), 20/80% (B20) up to 100%(B100). The results of these studies look very 

promising. [20] 

Standard diesel engines will operate on 100% biodiesel. In cold weather, biodiesel 

begins to cloud and thicken at about 30F. Biodiesel thickens at warmer temperatures 

than No. 2 diesel fuel, but additives are available that will lower the pour point. Pour 

point is the point at which flow of the fuel ceases. Mixing biodiesel with No.1 diesel 

as is currently done with No. 2 will lower the pour point. Installing an in-tank or fuel 

line heater may also be needed to keep the fuel flowing in cold weather. A blend of 

biodiesel/diesel fuel has a lower pour point than 100% biodiesel, but gelling may still 

occur unless care as mentioned earlier is taken. [20] 

New lower diesel engine emission requirements that dictate a reduction of sulfur in 

fuel is causing a reduction in the lubricating ability of fuel. This will shorten the 

operating life of the injection system and engine. Biodiesel blends, even at low rates 

(2%), indicate improved lubricating ability over diesel which should reduce wear and 

extend fuel system and engine life. [16] 

Studies show that some older engine fuel systems (engines built prior to 1993) may 

show fuel pump seal deterioration. They may have rubber or nitrile seals in the fuel 

pump and fuel system that could fail if 100% biodiesel is used. It may be best to 

replace them with Viton or other non-rubber seals if 100% biodiesel is used. A blend 

of 20% biodiesel can be used in older engines with no changes, but it is recommended 

to watch for leaks. Also, biodiesel studies indicate some cleaning action of the fuel 

system, so a fuel filter may need replacement soon after switching to biodiesel. [18] 
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2.4.3 Biodiesel and Air Pollution  

Research with biodiesel show reductions in several contributors to air pollution. Table 

3 is a summary of engine tests completed at the University of Idaho.  

These tests were performed with a 100% and a 20% mix of ethyl and methyl ester of 

rapeseed oil. There were reductions in most emission components except for an 

increase in nitrous oxide. Biodiesel use could provide reductions in several air 

pollutants. This could provide significant improvements in cities where air quality is a 

concern. [10] 

 

Table 3: Engine emission results from the University of Idaho [10] 

__________________________________________________________ 

Emission               100% Ester Fuel (B100)             20/80 Mix (B20)  

_____________________________________________________________________ 

Hydrocarbons                 - 52.4%                           -19.0%  

Carbon Monoxide           - 47.6%                           -26.1%  

Nitrous Oxides               - 10.0%                            -3.7%  

Carbon Dioxide               + 0.9%                             +.7%  

Particulates                      + 9.9%                            -2.8%  

_____________________________________________________________________ 

 

 

 

2.4.4 Mixing and Storage of Biodiesel  

Biodiesel mixes well with diesel fuel in any proportion and stays blended even in cold 

temperatures. A storage study completed over a 24-month period found that biodiesel 

tends to store about as well as diesel fuel. This study found that engine power 

decreased about 2% and viscosity, density, peroxide and acid value increased for 

biodiesel. Usually it is recommended not to store biodiesel longer than 6 months or at 

the most, a year. This recommendation is similar to diesel fuel storage periods. [17] 
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2.4.5 Potential Fuel From Oil Crops  

In 2001, about 2.1 million acres of soybeans were produced in the state of North 

Dakota with an average yield of about 33 bushels per acre. Soybeans contain about 

18% oil so the average oil production per acre is about 49 gallons. If this oil were 

converted to an ester fuel, more than 100 million gallons of fuel could be produced. 

Other oil crops grown in the state could be used to produce additional fuel. Table 4 

shows the production potential of biodiesel from the main oil crops grown in North 

Dakota. [21] 

Every gallon of vegetable oil will produce about 1 gallon of biodiesel. The total 

input/output energy ratio shows a very positive return. For every BTU of energy used 

to produce the crop and process the oil, about 3.3 BTU's is produced as fuel. [21] 

 

Table 4:  Potential fuel from North Dakota oil crops (2001) [21] 

_____________________________________________________________________ 

Crop          Acres in State         Yield             Oil          Gallons  

_____________________________________________________________________ 

                      (millions)                         (%)         (per Acre)  

Soybean              2.1              33 bu/acre            18              49  

Sunflower           1.1              1400 lb/ac            44              84  

Canola                1.2              1300 lb/ac             43              76 

_____________________________________________________________________ 
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3 The Combustion Analysis Software Design 

 

3.1 System Overview 

 

The world’s fossil fuel resources are depleting and a need to use 

alternative fuels is becoming very essential for the future. As a result a 

comprehensive software package is needed to analyse all areas of 

energy release within internal combustion engines. The software has 

thus been designed to form the core of this “alternative fuel” research.  

In order for it to be effective it has been designed to be flexible. The 

CAS (Combustion Analysis Software) can be configured for differing 

engine sizes, environment conditions, i.e. ambient temperature, as well 

as differing fuel properties. The users also have a choice of which form 

of analysis they want to perform, ranging from the “air standard cycle” 

to “Weinberg” analysis. The user is able to select multiple forms of 

analysis from multiple engine tests done by different engines, fuels and 

engine speeds.  

 

The graphical objects of the software, extend this flexibility further by 

allowing the user to select which plots one wishes to view. These plots 

can be viewed independently or superimposed on one another. Any 

area of the graph can be zoomed in or out and the scales of the axes 

can be adjusted as seen fit. The look and feel of the graphical data can 

also be adjusted for reporting purposes. 

 

The CAS software has a reporting module. This module allows the 

user to generate comprehensive reports extending from engine raw data 

all the way up to the calculated energy release data. The reports can be 

presented in PDF Format or simple text format. They also can be 

exported to csv, html(for ease of posting on the internet) or excel 

format for further analysis. Due to the confidentiality of the analysis 

performed, the CAS software package has the following security 

optionality: 
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• All export formats can be password protected with a choice of 

40 bit or 128 bit encryption. 

• The CAS software package has login security, and only users 

with administrator access can add, delete and edit users from 

the system. 

 

CAS has been designed with user friendliness and ease of use in mind. 

In fact all the user is required to do is to configure which engine tests 

and forms of analysis one requires and at a push of a button, a 

complete set of analytical and graphical data is automatically created. 

The user will then have a large variety of reports at his/her disposal 

with accurate results. 

 

The following “use cases” describe and identify the key parts of the 

CAS software design. 

 

3.2 Uses Cases 

 

 3.2.1 Use Case Summary 

   

  The following use cases have been identified: 

 

• Login – this use case authenticates a user with the system so 

that access to other functions can be provided. 

• Load new data- this allows the user to convert and perform 

energy modelling analysis on a newly performed engine test. 

• Load saved data – Allows the user to perform energy 

modelling analysis on previously converted data. 

• View plots – This use case allows users to select which plots to 

be displayed as well as to modify the plots. 

• View Data – This use case allows the user to view and 

generate a report of all raw and calculated data. 
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• Memory Manager – This use case allows the user to delete 

engine tests that have been loaded into the system and to 

increase or decrease the “engine tests” limit. It allows the user 

to fully utilise the memory capabilities of the PC on which the 

software is running. For example if the PC has a large amount 

of ram, the user can set the “engine test” limit up to the 

maximum and many different tests can be compared and 

viewed at once. 

• Add user – Adds a new user to the system. ( Administrator 

only) 

• Delete User – Deletes a user from the system (Administrator 

only) 

• Edit user -  Edits a users profile ( Administrator only). 

 

Figure 3.1 illustrates the above use cases. 
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Figure 3.1:  Use Case Diagram 

 

The actual use cases that follow, are written according to the UML (unified 

modelling language) specification. This specification ensures a global standard 

in which use cases are written. 

 

3.2.2 Login Use Case 

 

• Actors 

 Student and administrator 

  

 

Login 
 

Load New Data 
 

Load  Data 
 

View plots 
 

View Data 
 

Administrator Student 

Memory Manager 

Add User 
 

Edit User 
 

Delete User 
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• Primary Goal 

To authenticate a user with the system so that access to other functions 

can be provided. 

 

 

• Pre-Conditions 

None. 

 

• Post Conditions 

User logged on and access to appropriate functions granted 

 

• Primary Success Scenario 

1. The system prompts for a username. 

2. The actor enters a username. 

3. The system prompts for a password. 

4. The actor enters a password. 

5. The system validates the username and password and 

logs the user on. 

 

• Alternative Courses 

5.1 The username is unknown 

5.1.1 The system displays a message indicating 

“Login details are incorrect” . 

5.1.2 Continue from 1. 

 

5.2 The password is incorrect. 

5.2.1 The system displays a message indicating 

“Login details are incorrect”. 

5.2.2 Continue from 1. 

 

• Notes 

1. User names must be unique 
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 3.2.3 Load New Data Use Case  

 

  

• Actors 

   

       Administrator and student 

 

• Primary Goal 

   

To retrieve technical engine data from an external DLL (Dynamic Link 

Library) and perform thermodynamic analysis on the data. 

 

• Pre-Conditions 

 

       Actor must be logged on. 

 

• Post Conditions 

 

      None. 

 

• Primary Success Scenario 

 

1. Actor selects the “Load New Data” option. 

2. System executes external DLL and pauses until external DLL 

completes its task. 

3. DLL prompts user for engine test file. 

4. Actor selects file. 

5. DLL plots an overlaid Pressure trace graph of all the cycles read into 

the system. 

6. Actor selects the best cycle.  

7. System retrieves technical engine data  

8. System prompts actor for fuel type, engine dimensions and application 

parameters. 
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9. Actor enters parameters 

10. System prompts actor for the combustion analysis function to be 

performed. 

11. Actor selects a function. 

12. System performs the selected function and stores the manipulated data. 

• Alternate Courses 

 

4.1     Actor selects an incorrect file. 

4.1.1 System displays a message indicating “Incorrect file type 

selected”. 

4.1.2 Continue from step 3.  

9.1.   Actor enters incorrect parameters. 

    9.1.1. System displays a message indicating “Incorrect parameters 

entered, please re-enter” 

    9.1.2.     Continue from step 8.          

 

 3.2.4 Load Data Use Case  

 

  

• Actors 

   

       Administrator and student 

 

• Primary Goal 

   

To retrieve technical engine data from a previously converted and saved 

raw file and perform thermodynamic analysis on the data. 

 

• Pre-Conditions 

 

Actor must be logged on. Load new Data use case must have been 

performed. 

• Post Conditions 
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      None. 

 

• Primary Success Scenario 

 

1. Actor selects the “Load Data” option. 

2. System prompts user for the saved engine test cycle. 

3. Actor selects the file. 

4. System retrieves technical engine data  

5. System prompts actor for fuel type, engine dimensions and application 

parameters. 

6. Actor enters parameters 

7. System prompts actor for the combustion analysis function to be 

performed. 

8. Actor selects a function. 

9. System performs the selected function and stores the manipulated data. 

• Alternate Courses 

 

3.1     Actor selects an incorrect file. 

3.1.1 System displays a message indicating “Incorrect file type 

selected”. 

3.1.2 Continue from step 2.  

6.1.   Actor enters incorrect parameters. 

      6.1.1. System displays a message indicating “Incorrect parameters 

entered, please re-enter” 

             6.1.2.     Continue from step 5. 

 

  

 

 

• Notes      

The difference between this use case and the “Load new data”   use 

case is that the cycle selection made by the user from the external DLL 
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is not carried out. This is because there is a file that has been saved 

previously, containing the already selected cycle. The advantage of this 

is that the user can continuously load this file and perform different 

combustion functions on the same cycle. The actor is then able to 

compare all the analysis formed, on the same cycle, on one graph. 

 

3.2.5 View Plots Use Case 

 

• Actors 

Student and Administrator. 

 

• Primary Goal 

To display graphical data of saved manipulated data 

 

• Pre-Conditions 

Load New Data use case or Load Data Use Case 

 

• Post Conditions 

None. 

 

• Primary Success Scenario 

1. System prompts user for graph selection. 

2. User selects graphs. 

3. System plots graphs. 

4. User selects area to zoom. 

5. System zooms by required percentage. 

6. User selects axis range. 

7. System prompts user for range. 

8. Actor enters range. 

9. System alters plot. 

• Alternate Courses 

8.1 Actor enters incorrect range. 
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8.1.1 System displays a message indicating “Incorrect                

range entered, please re-enter values”. 

8.1.2 Continue from step 7. 

 

3.2.6 View Data Use Case 

 

• Actors 

Student and Administrator. 

 

• Primary Goal 

To generate reports of raw and manipulated data. 

 

• Pre-Conditions 

Load New Data use case or Load Data Use Case 

 

• Post Conditions 

None. 

 

• Primary Success Scenario 

1. System prompts user for report of choice. 

2. Actor selects a report. 

3. System retrieves and displays data. 

4. Actor selects “generate report”. 

5. System generates report. 

6. Actor selects “Save as PDF”. 

7. System prompts for file name. 

8. Actor enters file name. 

9. System prompts for title. 

10. Actor enters title. 

11. System prompts for author 

12. Actor enters author. 

13. System prompts user for password protection. 

14. Actor selects password protection option. 
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15. System prompts for 40 bit or 128 bit encryption. 

16. Author enters 128 bit. 

17. System prompts for password and confirmation of password. 

18. Actor enters password twice. 

19. Actor selects ok. 

20. System saves report in PDF format. 

• Alternate Courses 

8.1 Actor enters incorrect file name. 

8.1.1 System displays a message indicating “Incorrect                

file name entered, please re-enter”. 

8.1.2 Continue from step 7. 

  18.1 Actor confirms password incorrectly 

18.1.1 System displays a message indicating “The passwords 

entered do not match, please reenter” 

18.1.2 Continue from step 17. 

 

 

3.2.7 Memory Limit Use Case 

 

• Actors 

Student and Administrator. 

 

• Primary Goal 

To manage memory constraints of the program 

 

• Pre-Conditions 

None 

 

• Post Conditions 

None. 

 

• Primary Success Scenario 
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1. System displays a real time, RAM (random access memory 

graph). 

2. System displays current default memory limit. 

3. System displays the loaded test cycles. 

4. Actor increases memory limit. 

5. Actor selects “OK”. 

6. System saves the new memory limit. 

 

• Alternate Courses 

None. 

 

3.2.8 Delete Loaded Cycle  Use Case 

 

• Actors 

Student and Administrator. 

 

• Primary Goal 

To delete a previously loaded cycle. 

 

• Pre-Conditions 

Load new Data Use Case or Load Data Use Case 

 

• Post Conditions 

None. 

 

• Primary Success Scenario 

1. System displays a real time, RAM (random access memory 

graph). 

2. System displays current default memory limit. 

3. System displays the loaded test cycles. 

4. Actor selects a test cycle to delete. 

5. Actor selects “OK”. 

6. System deletes the selected cycle. 
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• Alternate Courses 

None. 

 

3.2.9 Add New User Use Case 

 

• Actors 

Administrator. 

 

• Primary Goal 

To add a new user so as access to CAS functionality can be obtained. 

 

• Pre-Conditions 

User with administrator rights must be logged in 

 

• Post Conditions 

None. 

 

• Primary Success Scenario 

1. System displays current users and their details. 

2. Actor selects add. 

3. System prompts for user name. 

4. Actor enters a user name. 

5. System prompts for password. 

6. Actor enters password. 

7. System prompts for confirmation of password. 

8. Actor re-enters password. 

9. System prompts for administrator rights. 

10. Actor does not tick administrator rights. 

11. Actor selects “OK”. 

12. System saves new user to the database. 

 

• Alternate Courses 
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4.1 Actor enters an existing user name. 

4.1.1 System displays a message indicating “The user name 

entered already exists, please choose another user 

name”. 

4.1.2 Continue from step 3. 

  8.1 Actor confirms password incorrectly 

8.1.1 System displays a message indicating “The passwords 

entered do not match, please reenter” 

8.1.2 Continue from step 5. 

 

3.2.10 Edit User Use Case 

 

• Actors 

Administrator. 

 

• Primary Goal 

To edit an existing user’s details 

 

• Pre-Conditions 

User with administrator rights must be logged in 

 

• Post Conditions 

None. 

 

• Primary Success Scenario 

1. System displays current users and their details. 

2. Actor selects a user to edit. 

3. Actor selects “Edit”. 

4. System displays username, password and admission rights for 

the selected user. 

5. Actor enters a new password. 

6. System prompts for confirmation of password. 

7. Actor re-enters password. 
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8. Actor selects “OK”. 

9. System saves the altered user details to the database. 

 

• Alternate Courses 

  7.1 Actor confirms password incorrectly 

7.1.1 System displays a message indicating “The passwords 

entered do not match, please reenter” 

7.1.2 Continue from step 6. 

 

3.2.11 Edit User Use Case 

 

• Actors 

Administrator. 

 

• Primary Goal 

To delete an existing user. 

 

• Pre-Conditions 

User with administrator rights must be logged in 

 

• Post Conditions 

None. 

 

• Primary Success Scenario 

1. System displays current users and their details. 

2. Actor selects a user to delete. 

3. Actor selects “Delete”. 

4. System deletes the selected user. 

 

 

• Alternate Courses 

None 
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3.3 Object Orientated Programming 

 

The CA software was designed for ease of use and ease of function additivity. 

As more research is carried out in the future using the CA software, more and 

more functionality will be required. It is impossible to predict what 

functionality may be required in the future and for this reason the software was 

designed to be adaptable to adding new features. In order for this adaptability 

to be simple to do, the software had to be designed in such away that anyone 

with a bit of programming knowledge could easily interpret the code and 

hence add on to it. To make this code easy to understand and re-use, it has 

been written using object orientation. 

 

The concepts of object orientation stems back to the way we perceive life. We 

see everything as objects, for example a pair of scissors is an object, a piece of 

paper is also an object. When we cut the piece of paper, it is not us cutting the 

paper it is the scissors cutting the paper. Therefore if we had to write this 

above process in object oriented code it would go as follows. The first object 

would  be the human being, with a method called “pick up scissors” ,”pick up 

paper” and “press scissors”. The second object would be the scissors itself 

which would have a method in it called “cut paper”. The sequence of events 

would be as follows. 

 

1. Human “Pick up scissors” 

2. Human “Pick up paper” 

3. Human “Press Scissors” 

4. Scissors “cut Paper” 

 

These sequence of events are not only logical but they make sense, i.e. a pair 

of scissors would not know how to pick itself up or pick up a piece of paper. 

The human object could only be able to do that. Likewise a human can not cut 

a piece of paper, only the scissors object could do that. This is where the 

power of object orientation comes in. If a programmer  is looking at this code 

for the first time, they would know exactly how to interpret it and add to it as 
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it has been written in a way that a person would carry out events in every day 

life. 

 

Object-oriented programming (OOP) is a programming language model 

organized around "objects" rather than "actions" and data rather than logic. 

Historically, a program has been viewed as a logical procedure that takes input 

data, processes it, and produces output data. The programming challenge was 

seen as how to write the logic, not how to define the data. Object-oriented 

programming takes the view that what we really care about are the objects we 

want to manipulate rather than the logic required to manipulate them. 

Examples of objects range from human beings (described by name, address, 

and so forth) to buildings and floors (whose properties can be described and 

managed) down to the little widgets on your computer desktop (such as 

buttons and scroll bars).  

The section that follows (3.3.2)  identifies all the objects required for 

manipulation and how they relate to each other, an exercise often known as 

data modelling. Then in section (3.3.3) the defined objects are generalized  as 

a class of objects (think of Plato's concept of the "ideal" chair that stands for 

all chairs) and define the kind of data it contains and any logic sequences that 

can manipulate it. Each distinct logic sequence is known as a method. A real 

instance of a class is called again an "object" or, in some environments, an 

"instance of a class." The object or class instance is what the computer runs. 

Its methods provide computer instructions and the class object characteristics 

provide relevant data. One “communicates” with objects - and they 

communicate with each other - with well-defined interfaces called messages.  

The concepts and rules used in object-oriented programming provide these 

important benefits:  

• The concept of a data class makes it possible to define subclasses of 

data objects that share some or all of the main class characteristics. 

Called inheritance, this property of OOP forces a more thorough data 

analysis, reduces development time, and ensures more accurate coding.  
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• Since a class defines only the data it needs to be concerned with, when 

an instance of that class (an object) is run, the code will not be able to 

accidentally access other program data. This characteristic of data 

hiding provides greater system security and avoids unintended data 

corruption.  

• The definition of a class is reuseable not only by the program for which 

it is initially created but also by other object-oriented programs (and, 

for this reason, can be more easily distributed for use in networks).  

• The concept of data classes allows a programmer to create any new 

data type that is not already defined in the language itself.  

3.3.1 Layers 

 

The software was designed to have three main distinct layers of objects. These 

layers are: 

 

1. The Front End Gui (Graphical User Interface) Layer. This layer is 

where all the objects that display data are situated. For example the 

objects that plot graphs are situated in this layer. These objects have 

one sole purpose and that is to display information and allows one to 

navigate to the information one wants to view, and that is all. They 

perform no data manipulation or data storage at all. Data manipulation 

is performed by objects situated in the “ Business Layer”. 

2. The Business Layer. The objects situated in the business layer perform 

the “business” or manipulation required. For example these objects 

will perform everything from Weinberg analysis up to calculating 

pressures, volumes and temperatures. They do not store or display the 

data, only manipulate it.  Once the data has been manipulated it is 

stored in the objects situated in the “data layer”. 

3. The Data Layer. As the name implies, these are the objects which are 

responsible for storing the data, once it has been manipulated. Their 

primary functionality is to receive the manipulated data from the 

business layer objects and store it until it is required by the Front End 

Gui layer objects. The Data Layer Objects pass on the data to the Front 
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End Gui objects for display purposes. Once the user has viewed the 

data, the Front End Gui objects loose this data, however if the data is 

required to be viewed again the Data Layer Objects still have it stored 

in memory. 

 

The layers are designed to maximize the concepts of object orientation. This is 

because it makes sense to group objects that perform a similar task into one 

layer. This not only makes the code easier to understand but also easier to 

read.  The following diagrams illustrate the three main layers described above 

including the external packages of the java language which the objects in each 

layer would use: 
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 Figure 3.2: Front End Gui Layer 
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Figure 3.3:  The Business Layer 
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Figure 3.4:  The Data Layer 
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3.3.2 Data Modeling (Sequence Diagrams) 

 

Data Modeling is the process by which the “Objects” that perform the 

requirements of the use cases are identified and the method flow between the 

objects are decided upon. The final result is a blue print that together with the 

class diagrams (in section 3.3.3) are used to write the code. The use cases are 

the user requirements, the data modeling and class diagrams are the 

architectural drawings that are used to build the software program. The 

Sequence Diagrams (data modeling) that follow are the sequence diagrams 

that were created using the requirements outlined in the use cases in section 

3.2. 

 

The actual data Models that follow are written according to the UML (unified 

modelling language) specification. This specification ensures a global standard 

in which data models are written. 

 

A.  The Login Sequence Diagram 

  

This data model was created using the Login Use case (3.2.2). It  

describes the objects and method flow that authenticates a user with the 

system so that access to other functions can be provided. Figure 3.5 

illustrates the data model. 
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Actor

LogInPanel SecurityController UserCatalog DataStorer Database User UserDetails MainGui Observer

User

Password

OK

LogIn

logIn(user,password)

logIn(user,password)

getUser(user,password)

getUser(user,password)

UserDetails

UserDetails

User

User

getUserName()

"name"

"Successfully logged in"

OK

create(SecurityController)

subscribe()

checkPermissions

getPermissions()

true

viewMenuEnabler

Combustion Analysis Options Displayed

 

 

  Figure 3.5: Login Sequence diagram 
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B.  The Load Saved Data Sequence Diagram 

   
This data model was created using the Load Data Use case (3.2.4). 
These objects and method flow allow the user to convert and perform 
energy modeling analysis on a saved engine test. The following three 
diagrams describe it. 

Actor

MainGui OpenFileGui JFileChooser Controller HRCAEnergyP DataExtractor PCDataInputStream EngineDataP EngineData HRCASelectionPanel

"Load Data"

getFileChooser()

jFileChooser

"di080835.raw"
getSelectedFile()

File

setPath(path,fileName)

initialise()

loadNewData()

reaDataFilePath(path)

read(ca,0,40)

String

readByte()

bytes

readFloat()

float

createEngineData()

EngineData

populate()

getEngineData()

EngineData

getAllEngineConstants()

constants

add(EngineDataPanel)

add(HRCASelectionPanel)

HRCAEnginePanel

"Weinberg"

OK

OK()

OK()

 

Figure 3.6a:  Load Saved Data Sequence Diagram 1   
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Actor

HRCAEnginePanel EngineDataPanel HRCASelectionPanel Controller EngineData Observer MainGui PlotDataCatalog HRCAEnergyManipulator
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setCycleSelection("weinberg")
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manipulate()
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prepareVars(engineData)
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  Figure 3.6b:  Load Saved Data Sequence Diagram 2 
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Actor
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  Figure 3.6c:  Load Saved Data Sequence Diagram 3 
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The difference between this data model and the “Load new data”   data 

model (in section C) is that the cycle selection made by the user from 

the external DLL is not carried out. This is because there is a file that 

has been saved previously, containing the already selected cycle. The 

advantage of this is that the user can continuously load this file and 

perform different combustion functions on the same cycle. The actor is 

then able to compare all the analysis formed, on the same cycle, on one 

graph. The difference is in the first sequence diagram,where the 

method “getRawFile()” makes the call to the external DLL. The 

methods that follow are identical. Refer to figure 3.7 

 

C.  The Load New Data Sequence Diagram 

   
This data model was created using the Load New Data Use case 

(3.2.3). These objects and method flow allow the user to convert and 

perform energy modelling analysis on a newly performed engine test. 

The following three diagrams describe it. 
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Actor

MainGui OpenFileGui JFileChooser Controller HRCAEnergyP DataExtractor PCDataInputStream EngineDataP EngineData HRCASelP

"Load Data"

getFileChooser()

jFileChooser

"di080835.raw"
getSelectedFile()

File

setPath(path,fileName)

initialise()

loadNewData()

reaDataFilePath(path)
read(ca,0,40)

String

readByte()

bytes

readFloat()

float

createEngineData()

EngineData

populate()

getEngineData()

EngineData

getAllEngineConstants()

constants

add(EngineDataPanel)

add(HRCASelectionPanel)

HRCAEnginePanel

"Weinberg"

OK

OK()

OK()

CombustDll

getRawFile("path")

 

 

  Figure 3.7a:  Load New Data Sequence Diagram 1 
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Actor

HRCAEnginePanel EngineDataPanel HRCASelectionPanel Controller EngineData Observer MainGui PlotDataCatalog HRCAEnergyManipulator

ok()

saveSelections()

setCycleSelection("weinberg")

setSelectionPanel(this)
ok()

setEngineDataConstants

setAmbientT(t)

setClearanceVolume(vol)

setCarbons(c)

setCalorificValue(v)

setBoulDiameter(d)

setBore(bore)

setAngleInc(angle)

setFuelFlow(f)

setCylinders(c)

setCylinderCapacity(cap)

setConrod((m)

setHydrogens(h)

setStroke(s)

subscriberPerfom(GeneralEvent)

perform()

plotMenuEnabled()

dataMenuEnabled()

manipulate()
hasLimitBeenReached()

"false"

performManipulation()

manipilate(engineData()

getAllEngineData()
Data

getMinMaxPressure(0,"min")

calculateDerivPressure(array,EngineData,1)

prepareVars(engineData)

lnPV()

saveManipulatedData()

ManipulatedDataFactory

setWeinberg(true)

 

 

 

  Figure 3.7b:  Load New Data Sequence Diagram 2 
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Actor

HRCAEnginePanel EngineDataPanel Controller EngineData HRCAEnergyManipulator PlotDataCatalog ManipulatedDataFactory PlotDataHandler

AirStandard()

FirstLaw()

getAllEngineData()

EngineData

weinberg()

loadData()

recordAllData()

reset()

addPlotData(this)

instantiate()

getManipulatedData()

ManipulatedDataFactory

getFileName()

"name"

getCycleSelection()

"cycle"

sortType()

loadGeneralPlotInfo()

loadVariableInfo()

loadEnergyReleaseInfo()
True

dispose

 

 

  Figure 3.7c:  Load New Data Sequence Diagram 3 
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D.  The View Plots Sequence Diagram 

   
This data model was created using the View Plots Use case (3.2.5). 
These objects and method flow allows users to select which plots to be 
displayed as well as to modify the plots. 
 

Actor

MainGui MainPlotterGui GraphPanel PlotDataCatalog TreePanel TreeInfo CombinedGraphPanel PlotDataCatalogPlotDataHandler ChartFactory

viewPlots()

loadPlots()

instantiate()

instantiatePlotPanels()

instantiate()

getLatestPlotData()

PlotDataHandler

instantiate(GraphPanel)

jbInit()

loadGeneralAnalysisTree()

loadCombustTree()

loadVariablePlotsTree()

addToSplitPanes()

MainPlotterGui

Combined Plots

CombinedPlotsTreeSelection

Cumulative Apparent Energy vs Crank Angle
toString()

"cumApparentEnergy"

"Crank Angle"

plotCombust(Cummul,Crank)

createCombustScatterPlot(x,y,true)

createCombustFirstChart(x,y)

getData()

getAllPlotData()

this

getXAxisData(CumAppEnergy)

cumAppEnergy

getYAxis("Crank Angle")

crankAngle

createXYChart(titles,data)

Chart

addChart

GraphDisplayed

 
 

 Figure 3.8: View Plots Sequence Diagram 
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E.  The View Data Sequence Diagram 

   
This data model was created using the View Data Use case (3.2.6). 
These objects and method flow allows the user to view and generate a 
report of all raw and calculated data. 

 

Actor

MainGui ResultsDisplay Observer RetrievDataP ManipDP EnergyModP ConstP PlotDataCat PlotCP Controller ManipDFactory

viewData

loadViewableData()

create(controller,false)

subscribe(this)

add

create(controller,this)

create(controller,this)

getManipulatedData()

create(controller,this)

getManipulatedData()

create(controller)

getAllPlotData()

vector of data

create(vector,JPPanel)

populate()

add

ViewableDataChoices

"Display Apparent Energy Data"

loadApparentEnergyData()

getCumulativeHeatTransfer()

Array

getRateApparentEnergy()

Array

 
 
  Figure 3.9a:  View Data Sequence Diagram 
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Actor

ResultsDisplay EnergyModellingSpiltPane TableDataDisplay ReportGenerator JReport PreviewFrame

loadTable(Array,name,ApparentEnergy.xml)

setXmlFile(xml)

Data Displayed

Generate Report

previewReport(dataTableModel)

parseReport(URL)

parseReport(URL)

JReport

setData(DataTableModel)

create(JReport)

Report Displayed

 

 

  Figure 3.9b:  View Data Sequence Diagram 2 
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F.  The Memory Limit Sequence Diagram 
 
This data model was created using the Memory Limit Use case (3.2.7). 
These objects and method flow allows the user to administrate the PC’s 
memory . 
 

Actor

MainGui MemoryManagerPanel MemoryUsage RunTime PlotDataCatalog

File

MemoryManager

loadMemoryManager()

create()

populateLimitBox()

create()

freeMemory()

long

totalMemory()

long

addTotalObs()

addTotalObs()

addMemoryUsage()

loadTable()

getAllPlotData()

this

Displayed

Memory Limit = 3

OK

OK()

changeLimit(3)

stopMemoryObservation()

stop()

 
 
 Figure 3.10:  Memory Manager Sequence Diagram  
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G.  The Delete Loaded Cycle  Sequence Diagram 
 
This data model was created using the Memory Limit Use case (3.2.8). 
These objects and method flow allows the user to delete previous 
loaded cycles from the PC’s Random Access Memory . 

 

Actor

MainGui MemoryManagerPanel MemoryUsage RunTime PlotDataCatalog

File

MemoryManager

loadMemoryManager()

create()

populateLimitBox()

create()

freeMemory()

long

totalMemory()

long

addTotalObs()

addTotalObs()

addMemoryUsage()

loadTable()

getAllPlotData()

this

Displayed

Cycle "di050204.raw" Selected

OK

OK()

removeDeletedObject(di050204.raw)

stopMemoryObservation()

stop()

 
 
  Figure 3.11: Delete Loaded Cycle  Sequence Diagram 
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H.  The Add User Sequence Diagram 
 
This data model was created using the Add User Use case (3.2.9). 
These objects and method flow Adds a new user to the system. ( 
Administrator only) 
 

Actor

MainGui Observer UserPanel User SecurityController UserCatalog DataStorer Database

Edit

UserManager

loadUserManager

create(SecController)

Display Options

UserManager

add

perform()

subscriberPerform()

addUser()

create(SController)

"Peter"

"password"

admin rights

OK

saveChanges()

validate(Password)

setUsername()

setPassword("Password")

setPermission()

createNewUser(user)

createNewUser(user)

createNewUser(user)

createNewUser(user)

true

true

true

true

"Added Successfully"

subscriberPerform()

perform()

loadTable()

getAllUsers()
getAllUsers()

getAllUsers()
getAllUsers()

vector

vector
vector

vector
"Details"

  Figure 3.12:  Add User Sequence diagram 
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I.  The Delete User Sequence Diagram 
 
This data model was created using the Delete User Use case (3.2.10). 
These objects and method flow deletes a user from the system.     
(Administrator only) 

 

Actor

MainGui Observer SecurityController UserCatalog DataStorer Database

Edit

UserManager

loadUserManager

create(SecController)

Display Options

UserManager

"Peter"

deleteUser(user)

deleteUser(user)

deleteUser(user)

deleteUser(user)

"Deleted Successfully"

subscriberPerform()

perform()

loadTable()

getAllUsers()

getAllUsers()

getAllUsers()

getAllUsers()

vector

vector

vector

vector

"Details"

Delete

User

getUserName()

"name"

getPassword()

"Pass"

 
  Figure 3.13: Delete User Sequence Diagram 
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J. The Edit User Sequence Diagram 
 
This data model was created using the Delete User Use case (3.2.11). 
These objects and method flow allows a users details to be edited. 
(Administrator only) 

 

Actor

MainGui Observer UserPanel User SecurityController UserCatalog DataStorer Database

Edit

UserManager

loadUserManager

create(SecController)

Display Options

UserManager

"Peter"

perform()

subscriberPerform()

create(user,SController)

change password to "Pass"

OK

saveChanges()

validate(Password)

setUsername()

setPassword("Password")

setPermission()

updateUser(user)
updateUser(user)

updateUser(user)

updateUser(user)

true

true

true

true

"Updated Successfully"

subscriberPerform()

perform()

loadTable()

getAllUsers()
getAllUsers()

getAllUsers()
getAllUsers()

vector

vector
vector

vector
"Details"

edit

loadUserDetails()

getUserName()
"name"

getPassword()

"password"

getPermissions()

"admin"

 
  Figure 3.14: Edit User Sequence Diagram 
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3.3.3 The Class Diagrams (The High Level Architectural Design) 
 

The class diagram is core to object-oriented design.  It describes the types of 

objects in the system and the static relationships between them. The core 

element of the class diagram is the class.  In an object oriented system, classes 

are used to represent entities within the system; entities that often relate to real 

world objects. The following section describes the three main Class groups 

used in the CAS application. It is a high level blue print such that an overall 

picture of the design is achieved. 

The three main class diagram groups discussed are the 

- The front end layer, classes 

- The business layer, classes 

- The data layer, classes 

 i.   The Front End Layer Classes 

Figure 3.15 is a representation of the Class diagram structure used in the 

front end layer of the system. The super class “JPPanel” inherits all the 

functionality of the Java JPanel  object. It contains the reporting and xml 

objects required to preview reports. It also outlines the graphing methods 

that will be overridden to generate the graphical display. 

The constants panel class inherits all the functionality of the “JPPanel” 

superclass. The power of this specific object oriented design allows the 

“ConstantsPanel” class to make use of the reporting functionality without 

duplication and extend this functionality for its unique specific use. This 

objects primary function is to display all constant data used in the 

thermodynamic analysis of CAS and to generate a printable report of this 

data. 
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Figure 3.15:   Class Diagram of Front End Layer 
 
 
The “GraphPanel” class also inherits the “JPPanel” functionality, however 

instead of extending the reporting functionality, it overrides the graphical 

display methods. It’s primary use is to perform thermometer, gauge, general 

and combustion graphical plots. Again duplication is avoided and a refinement 

of the JPPanel graphical methods is performed in this class. This class also 

makes use of the basic reporting functionality already implemented in JPPanel, 
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however does not need to refine it in the way required by the ConstantsPanel 

class. Again duplication of the reporting functionality is avoided and better 

efficiency is achieved in this way. 

 

The next three classes namely the “EnergyModellingSplitPane”,the 

“ManipulatedDataSplitPane” and the “RetrievedDataSplitPane” all inherit the 

JPPanel superclass. Their main focus is to display data grouped into three 

main regions for display. Firstly the energy modeling data calculated in the 

business logic, secondly the manipulated data also calculated in the business 

logic and lastly the retrieved data obtained directly from the sensors 

surrounding the combustion engine. Again the reporting logic is used and 

refined in a different way to the “ConstantsPanel” reports. 

 

As can be seen all the Classes mentioned above perform similar tasks but in 

different ways. The way in which the objects have been designed allow for 

reuse of code without duplication as well as unique refinement of 

functionality. This results in improved efficiency and simplicity allowing for 

benefits in two key areas. Firstly it allows for ease of future development if 

extra functionality is required and secondly improves system performance. 

 

 

ii. The Business Layer Classes  

 

These are the classes that perform all the complex thermodynamic algorithms. 

The classes have been structured into “specialists”. Taking a real life example 

to describe what is meant by “specialist”, would be a Dermatologist. A 

dermatologist is only concerned with the skin and as a result knows everything 

there is to know about the skin. The business layer has specialists of its own, 

namely the: 

 

(i) JPMathematics class 

(ii)  DataManipulator class 

(iii)  WeinbergManipulator class 

(iv) GulderPerfectCombustionManipulator class 
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(v) HRCAEnergyManipulator class 

 

- The JPMathematics class specializes in mathematical routines from 

interpolation to trigonemtric functions. If the CAS program 

requires two numbers to be multiplied together, the JPMathematics 

class will perform it. Its sole purpose is to act as the mathematician. 

 

 

Figure 3.16: The JPMathematics Class Diagram 

 

- The DataManipulator class is the general data specialist. It 

performs all the pressure and volume calculations, from Cylinder 

pressure calculations to Injector Lift calculations. If the program 

needs to perform any kind of analysis using pressure or volumes, it 

uses this “specialist”. 
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 Figure 3.17: The DataManipulator Class Diagram 

- The WeinbergManipulator class is the Weinberg Analysis 

specialist. Is sole purpose is to perform the Weinberg data 

modeling algorithms. 
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 Figure 3.18: The WeinbergManipulator Class Diagram 

- The GulderPerfectCombustionManipulator class is as the name 

implies, it specializes in the Gulder Cycle and perfect combustion 

algorithms. 
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Figure 3.19: The GulderPerfectCombustionManipulator Class Diagram 

 

- The last of the specialists is the HRCAEnergyManipulator. This 

class performs the First Law and Air standard cycle calculatons. 

 

 Figure 3.20: The HRCAEnergyManipulator Class Diagram 

The power of object oriented programming now comes into play in the way 

these specialists interact with one another. Imagine a whole family of 
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academics from the great grandfather being the Mathematician straight down 

to the great grandson being the HRCA Energy specialist. Wouldn’t it be great 

if the great grandson could inherit all the skills and knowledge of his 

predecessors. This is exactly the way the CAS software has been written. 

Figure 3.21 illustrates how this is done. 

  

     

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 3.21: Business Layer Classes 

 

 
 
  
  JPMATHEMATICS 
 

 
 
  
  DATAManipulator 
 

 
 
  
        WeinbergManipluator 
 

 
 
  

GulderPerfectCombustionManipulator 
 

 
 
  

HRCAEnergyManipulator 
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The DataManipuator Class inherits all the functionality from the JPMathematics class. 

The WeinbergManipulator class inherits all the functionality of the DataManipulator 

class. Hence the WeinbergManipulator can perform all the functionality of the 

previous two classes as well as its own functionality. The HrcaEnergyManipulator 

inherits from all the classes above it hence creating the great grandson described 

earlier. The HrcaEnergyManipulator is the super “specialist”. The power of this 

structure is that you keep all the analytics to their respective specialists however 

reference it from one point via the HrcaEnergyManipulator. 

 

iii. The Data Layer  Classes  

 

The data layer can be split up into two classifications  of classes, namely those which 

transfer data to be stored and those which actually store the data. The two most 

important data transfer classes in CAS are the DataExtractor and the DataStorer 

classes. 

 

- The DataExtractor class is used to extract data from the sensors that monitor 

the engine and store it in the EngineData class. 

  

 

 

Figure 3.22: The DataExtractor Class Diagram 

 

- The DataStorer class is used to transfer users of the system to and from the 

database during log in and new user creation. The data storer stores the user 

information in a Database class which in turn gets transferred to a Microsoft 

access database. 
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Figure 3.23: The DataStorer Class Diagram 

 

The two most important classes used to store data in CAS are the EngineData and the 

UserDetails classes. These objects get passed around and used by many objects within 

the program. Essentially what they are, are a kind of container with information that 

can be easly accessed from. These classes can be compared to a  briefcase carried 

around and opened when information is required. 

 

- The EngineData class stores all the information obtained from the engine 

sensors and is transferred around the business logic. The classes in the 

business logic use it to obtain information to be used in the thermodynamic 

algorithms. 
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  Figure 3.24: The EngineData Class Diagram 

 

- The UserDetails class is used as a container for all the information about the 

current user logged in as well as all the other users which have been added to 

the system database. Whenever a user is added or edited this object is 

transferred around the business layer and altered accordingly. This object is 

also used by the Database object to obtain the information about the user to be 

stored to the database. 

 

 

 Figure 3.25: The UserDetails Class Diagram 
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4   EXPERIMENTAL EQUIPMENT  

The engine testing facility is located in the Mechanical Engineering 

Laboratories inside the North-East Engineering building at the University of 

the Witwatersrand. The diesel engine as well as all additional equipment needed 

for performance testing is described in this section. The calibration procedure of 

the instruments as well as the calibration results can be found in Appendix A. 

4.1   Test engine 

The compression ignition engine used for testing was a water cooled Lister 

Petter PH2W engine. Typically, such an engine would be used in pumping or 

power generation applications. It is a naturally aspirated, two cylinder, four-

stroke, direct injection diesel engine with a power rating of 12,2 kW at 2 000 

rpm. Additional specifications are listed in the table below and the engine is 

shown in Figure 4.1. 

Table 4.1:  Petter PH2Wengine specifications 

Bore 
 

87,74 mm 
 

Stroke 
 

110,00mm 
 Continuous Power Rating at 2 000 rpm 

 
12,2kW 
 

Displacement 
 

1 330 cm3 
 Compression Ratio 

 
16,5 : 1 
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Figure 4.1:  Petter PH2W test unit 

4.2    Fuel system 

The engine is to be run on diesel fuel. Each injector is supplied with its own 

pump, which runs directly off the engine. Additionally a dual rack connects the 
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two pumps to ensure uniform fuel supply to both cylinders. The injector and 

valve specifications are tabulated below. 

Table 4.2:  Injector and valve specifications 

INJECTOR OPENING PRESSURE 
 
900 to 1 099 rpm 
 

                 137- 
 

1 52 bar 
 1 1 00 to 2 000 rpm 

 
                    197- 
 

2 1 7 bar 
  

 INJECTOR TIMING 
 
Up to 1 650 rpm 
 

24° 
 

BTDC 
 

1 65 1 to 2 000 rpm 
 

28° 
 

BTDC 
 

 
 VALVE TIMING 
 Inlet valve open 
 

13,5°BTDC 
 

Inlet valve close 
 

38,5° 
 

ABDC 
 

Exhaust valve open 
 

38,5° 
 

BBDC 
 

Exhaust valve close 
 

13,5° 
 

ATDC 
 

A tank was mounted approximately two meters above the pumps. Placing the 

tank above the pumps allows the fuel to be gravity fed into the injector pumps and 

removed the necessity of installing a fuel supply pump.  

The fuel supply to a cylinder  can be cut off instantaneously by means of an 

inline solenoid valve. Hence, a motoring cycle test can be performed, i.e. the 

fuel is cut from cylinder one while the other cylinder is left to fire and data is 

recorded from the starved cylinder. The data captured from two consecutive 

cycles, one firing and the other motoring could then be overlaid for further 

analysis. The scope of this research did not include running motoring tests. 

The factory installed governor had been removed previously to enable any 

desired combination of speed and load settings to be tested, in the range 

between 1 100 to 2 000 rpm. The removal of the governor necessitated the 

introduction of a safety mechanism. This is provided by means of the above 

mentioned solenoid valve. As soon as the engine speed exceeds 2 100 rpm the 

safety trip mechanism cuts the fuel to the engine. 
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Figure 4.2:  Detail of injector and pressure transducer configuration 

4.3    Dynamometer 

The engine was loaded by means of a water-cooled eddy current dynamometer 

coupled to the output shaft. The eddy-current dynamometer makes use of a 

lever system that induces a voltage in a load cell, which makes use of strain 

gauges mounted in a Wheatstone Bridge configuration. 

4.4   Instrumentation 

To be able to analyse the engine performance, a number of parameters had to 

be monitored and subsequently captured. The parameters examined can be divided 

into steady state and dynamic. A description of the instruments used to capture this 

data will be given followed by a discussion of the data acquisition system used to 

store, convert and analyse the raw data. 
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4.4.1    Steady state parameters 

The steady state parameters and their setup are discussed briefly in this section. 

These parameters do not vary significantly as long as the engine speed and 

load are kept constant. 

Temperatures: Due to the large temperature ranges to be measured K-Type 

thermocouples were used during testing. The following temperatures were 

gauged. 

>  Ambient temperature: A number of subsequent calculations require the 

exact ambient air temperature. 

>   Air  inlet temperature:  This reading corresponds to that of the ambient 

air temperature, except that the thermocouple was housed in the supply 

air duct. 

>   Cooling water temperature: Both cooling water inlet and outlet 

temperatures were measured. 
  

Torque: A load transfer arm was fixed to the dynamometer housing, which 

induces a strain in four strain gauges arranged in a Wheatstone Bridge 

configuration. The voltage signal from the bridge was amplified before it was fed 

into the data acquisition system. 

Fuel flowmeter: The fuel flow was measured by means of an analogue 

Pierburg fuel flowmeter, the output was amplified and then fed to the data 

acquisition system.  

Atmospheric pressure: A barometer measured the ambient pressure. The signal 

sent by the pressure transducer was amplified before it was input into the data 

acquisition system. 
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Airflow:  The airflow rate was calculated by monitoring the pressure drop 

across an(. orifice plate mounted in the inlet air duct. Pressure tappings 

downstream measure the pressure, which was read by a digital 

micromanometer in millimetres of water. This pressure drop was used to 

calculate the air flowrate using the calibration equation derived for the particular 

orifice plate being used. 

Engine speed: A frequency to voltage converter was attached to the AVL 

crank angle marker, which determined engine speed. 

4.4.2    Dynamic variables 

A brief discussion of the measured dynamic variables is outlined in this section. 

Cylinder pressure: Cylinder one was fitted with a Kistler 6121A1 high-

pressure piezoelectric pressure transducer. To prevent the transducer from 

overheating, it was housed in a water jacket, which was supplied continuously 

with cold water. The transducer output was first fed into a charge amplifier and 

then recorded by the data acquisition system. The captured data from this 

cylinder allows a cylinder pressure trace to be obtained. 

Injector pressure: A pressure transducer was located in the fuel line between 

the fuel pump and injector one. The transducer output was fed into a Kistler 

charge amplifier and then recorded by the data acquisition system. This data 

was used to calculate the injection point during testing and plot the graph of 

Injector Pressure versus Crank Angle. 

Degrees Crank Angle (°CA) and Top Dead Centre (TDC): The position of 

the crank was recorded using an optical crank angle encoder that generates a 

pulse every 0,2° crank angle. This signal was used to drive the external clock of 

the data acquisition system. A second pulse is generated at TDC. These two 

signals were recorded on two separate channels. See figure below. 
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Figure 4.3:  A  Crank Angle Marker 

4.5   Data acquisition system 

The data acquisition system is divided into two sections, a hardware and a software 
part. 

The High Speed Acquisition System allows one to capture large amounts of data at 

high speeds. The system provides for six dynamic channel inputs as well as the 

external clock and trigger. An Analogue-to-Digital card supports each dynamic 

channel. The six dynamic channels have a sampling rate of up to 1,25 MHz.  

This is a higher than required sampling rate, as at a speed of 1 750 rpm and a pulse 

for every 0,2 degree crank angle a maximum of approximately 105 kHz is 

attained. The channel allocation is tabulated below. 
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Table 4.3:  Dynamic channel allocation 

Channel Number 
 

Description 
 

1 
 

Trigger 
 

2 
 

Fuel Line/Injector Pressure 
 

3 
 

Cylinder Pressure 
 

4 
 

Not used 
 5 

 
Degrees Crank Angle (°CA) 
 

6 
 

Top Dead Centre (TDC) 
 

A separate analogue input unit  is also connected to the rear panel by means of a 

RS232 cable. A total of sixteen steady state input slots are available on this unit. 

Channels 1 to 8 are BNC connections, while channel 9 to 16 are thermocouple 

connections with cold junction compensation. The steady state connections are 

tabulated below. 

Table 4.4:  Steady state channel allocation 

Channel Number 
 

Description 
 

Units 
 

2 
 

Fuel Flow 
 

g/s 
 3 

 
Barometric pressure 
 

bar 
 4 

 
Airflow 
 

mmH2O 
 

5 
 

Speed 
 

rpm 
 7 

 
Load 
 

Nm 
 9 

 
Ambient Temperature 
 

°C 
 

10 
 

Inlet Cat. Temperature 
 

°C 
 

11 
 

Outlet Cat. Temperature 
 

°C 
 

12 
 

Air Temperature 
 

°C 
 

13 
 

Water Inlet Temperature 
 

°C 
 

14 
 

Water Outlet Temperature 
 

°C 
 

A table with the steady state calibration values is listed in Appendix A. A 

schematic wiring diagram of both the dynamic and steady state channels can be 

found in Appendix B. 
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The steady state input voltages were converted by the system software to 

corresponding values in real time, that were hence displayed on the screen while 

testing took place. The real time display of the measured variables was used to 

determine if the engine had settled at the required operating condition. 

Data is captured once triggered. This may be done by setting the required engine 

speed range in the software or by forcing the trigger manually. Channel one 

was used as the triggering channel. All other channels were ascribed as slaves to 

this channel and thus were triggered simultaneously. 

The data from the dynamic channels could be viewed once the system was 

triggered. Plots of the dynamic channels versus Degree Crank Angle were 

displayed on the screen. This allowed for real time diagnostics to be performed. 

Once the test data had been deemed to be satisfactory it was stored and the next 

set of data could be captured. 

4.6   Emission equipment 

The engine emissions measured were NOX, CO2, CO, THC and O2 as well as 

smoke concentration. Due to these different exhaust gases being analysed a 

number of different analysers had to be used. A brief description of the Signal 

Gas Analyser, Oxygen Meter and Hartridge Smoke Meter follow. 

4.6.1    Signal Gas Analyser 

The gas analysis system comprises of several units that are mounted in a 

common casing. The unit measures CO, CO2, oxides of nitrogen (NOX) and levels 

of unburned hydrocarbons (THC). The system comprises of five different 

components: 

>   Signal Series 200 SM Gas Cooler and Dryer (Model 202): The 

Cooler/Dryer unit is designed to remove water vapour from the wet gas 

stream. 

>   Signal  7 000 M GFIR CO Analyser:     The analyser uses an  
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 infrared filter correlation technique using gas-filled optical filters to 

 determine the amount of CO present 

. >   Signal 7 000 M GFIR C02 Analyser: The CO2 analyser also uses an 

 infrared filter correlation technique using gas-filled optical  filters to 

 determine the amount of CO2 present in the exhaust gases. 

>   Signal 4 000 VM Heated Vacuum NO Analyser:    The NOX analyser 

uses the principle of chemiluminescence's to detect the presence of both 

NO and NO2. 

>   Signal 3 000 Heated Total Hydrocarbon (THC) Analyser: The THC 

analyser uses flame ionisation to detect volatile substances in the gas 

stream. 

This equipment requires precise start-up, calibration and shutdown procedures 

to be followed for correct operating results. A computer with customised 

software was connected to the analyser unit. 

The operating procedures for the gas analyser as well as a user manual to 

capture the emission data can be found in Appendix C. 
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Figure 4.4:  Emission analyser unit 
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4.7    Oxygen Meter 

A Servomex Oxygen Analyser, type OA 250, measures levels of oxygen in the exhaust 

emissions. The emissions are tapped off and are fed through a filter to remove 

particulates and then passed through copper sulphate crystals to purge the emissions of 

excess moisture before being fed into the analyser. The unit displays the percentage of 

oxygen present in the exhaust gas. 

4.8    Hartridge Smoke Meter 

A Hartridge Smoke Meter MK3 measures the exhaust smoke density. This unit works on 

a comparative basis by comparing the opacity of the smoke to a clean air sample. The 

opacity is determined by passing the emissions over a photoelectric cell, which 

measures the density of the gas in Hartridge Smoke Units (HSU). 

4.9   Software 

The additional software programs used to analyse the data are discussed briefly below.  

4.9.1    Conversion program 

The data acquisition system stores the captured data as a .dat file. These .dat files are 

then used by the software developed for this research project for data analysis . The 

Borland Pascal conversion program (Conver) converts this information for the data 

analysis package (CAS – Combustion Analysis Software) to perform various routines. 

CAS has dynamic link library (dll) to the conver program and is kicked off behind the 

scenes without the user being aware that they are using two completely separate 

programs written in two different computer languages. CAS then performs the 

thermodynamic analysis on the converted data and  displays the data numerically as 

well as graphically. Various versions of Conver exist for the different fuels used during 

testing. Al l  dynamic as well as steady state variables are converted and stored in a new 

.raw file. Some preliminary calculations are also done, such as the calculation of the 

fuel injection point, equivalence ratio and air/fuel ratio. 
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4.9.2    Combustion Analysis Package (CAS) 

 

CAS is the software package developed for this research project. General 

thermodynamic analysis and energy release analysis are performed in CAS. The 

program is split into Five main sections. The five sections are the following: 

 

 

a. General Analysis. This sections has the following plots. 

> Cylinder Pressure  

> Injector Pressure 

> Ln (p)/p1 

> Ln (v)/v1 

> Derivative of Injector Pressure 

> Derivative of Cylinder Pressure 

 

All these variables and the variables in the next four sections can be plotted against 

either Crank Angle, Temperature or lnV/V1 

b. Property Cycles analysis. This section has the following plots. 

> Gamma 

> Rs 

> Cp 

> Temperature 

> Total Energy 

> Entropy 

c. Apparent Energy analysis. This section has the following plots. 

> Cumulative Apparent energy 

> Rate of Apparent Energy 

d. Heat Transfer analysis. This section has the following plots. 
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> Cumulative Heat Transfer 

> Rate of Heat Transfer 

e. Mass Burned analysis. This section has the following plots. 

> Cumulative Mass Burned 

> Rate of Mass Burned 

 

The program automatically displays injection point, ignition point, speed, load, maximum 

injection pressure and TDC. CAS has very powerful reporting and memory management 

tools. This is described in the user Manual in Appendix C. 
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5   EXPERIMENTAL PROCEDURE 

 

Al l  tests performed followed the procedure outlined below to ensure 

experimental repeatability and compatibility. However, before any testing could 

commence the measuring systems to be used had to be calibrated and a number of 

preliminary tests were run in order to  ensure  proper functioning of the engine,  

auxil iary equipment and controlling equipment. The equipment that required 

calibration included the eddy current dynamometer, the fuel meter and orifice plate, 

oxygen meter, tachometer and the thermocouples used to measure air, water as well 

as exhaust gas temperatures. The orifice plate and the AVL injector pressure 

transducer had been calibrated previously and thus were not calibrated before these 

tests. 

5.1   Calibration of instrumentation 

The instrumentation was calibrated before testing to obtain the relevant calibration 

equations to be used in the data acquisition system. The detailed calibration 

procedures and results are given in Appendix A. 

A regression analysis was performed on the calibration data points to obtain the 

correlation of the data to that of a first order polynomial fitted to these points. It 

was noted that the lowest regression coefficient of determination was determined to 

be 0,9968, which indicated that the graphs followed a near perfectly linear trend as 

well as fitting tightly to this line. Thus, the calibration equations obtained could be 

used with a high degree of certainty. 
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 5.2   Testing procedure 

 Once calibration of the instruments was completed, a number of preliminary tests 

were conducted to determine that all instruments and software were functioning as 

intended. 

 The research conducted was segmented into a distinct direction namely 

developing Combustion Analysis Software to analyse the engine performance  for 

diesel fuel. The data obtained was recorded with the purpose of comparing general-

purpose performance parameters  for  diesel fuels. 

 The testing procedure is based on running the engine at a constant speed and taking  

tests at varying loads. The load is controlled by an eddy current dynamometer. Load 

increments of approximately 5 Nm were chosen and the tests were started from 5 Nm 

and the load was increased to the maximum load condition per speed. Three testing 

 speeds were chosen namely 1 350, 1 550 and 1 750 rpm. 

 The following procedure was developed by previous researchers at the School and 

was followed for each set of tests: 

 >   Switch on the emission analyser uni t  at least three-quarters of an hour before 

testing is to be commenced, as the analyser uni t  needs to reach the correct 

operating temperatures. Once the unit  has reached the required temperature, follow 

the calibration procedure outlined in Appendix C. 

 >   All other instruments need to be switched on well prior to commencement of 

testing. This was done in order to allow all electronic components to reach steady 

state operating conditions. 
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 >   The computers needed to be switched on and the relevant test software containing 

the correct calibration constants opened. Follow the set-up procedure given in 

Appendix C for each program to ensure correct data capture. 

 >   The engine was warmed up on diesel fuel, by allowing it to run for a couple of 

minutes at a low load. Additionally during warm up all instruments were checked to 

see if they were measuring correctly. 

 >   Connect the Oxygen Servomex Analyser to the copper sulphate crystal filter. 

 >   Once the engine had reached operating temperature it was brought up to the 

selected testing speed. At the testing speed emissions were observed and once they 

had stabilised, readings were recorded every second for a 50 second period. A 

second shorter test of thirty seconds was then captured to verify as a backup and to 

assure that the good data had been taken. 

 >   The cylinder pressure was monitored continuously. The transducer is prone to 

clogging and hence all recorded data with an incorrect pressure reading was 

ignored, as it was meaningless. Once it was noticed that the pressure trace reduced 

in magnitude the tests were stopped and the transducer cleaned.  

>   Once the desired speed had been reached, the data analysis system triggered the 

capture of data. The program gives the user the options of accept or reject the 

captured test. Hence, after evaluating the worth of the displayed numerical data and 

graphs the user could save or reject the test. The test data is written to the 

predefined directory. At every speed, at least four readings were taken for each load 

setting.  

>   The data acquisition program records data such as fuel flow, airflow, various 

temperatures and pressures.  

>  As a backup, all other instrument readings were recorded manually.  

>   The same procedure was followed for all tests conducted. 
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>   Once testing was completed, the engine is shut down and the purge and shutdown 

procedure for the emission equipment commenced. For more detail on these 

procedures, see Appendix C. 

>   The copper sulphate crystals were dried and the Signal Gas Analyser filters were 

cleaned. 

>   The recorded data was subsequently analysed. 
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6. Discussion 
 
 This chapter uses the newly developed software to analyse the 

 characteristics of  diesel fuelling.  

 

 Diesel tests were performed at increments of 200 rpm starting at 1350 rpm 

 and ending at 1750 rpm. The load was increased by approximately  5 Nm up to 

 full load for all speeds. 

 

 The newly developed software captures 9 consecutive engine cycles for a 

 single test. One of these cycles can be selected for analyses or all of them can 

 be combined as a mean value for the test. The software can load 10 of 

 these kinds of tests into memory to be compared against each other. The 

 software can produce reports and graphic data on the performance and energy 

 release of the fuel.  

 

 The engine test selected for the discussion was a test done at a load of 55 Nm 

 and a speed of 1550 rpm. Other tests were also used to compare differing 

 loads and speeds. This chapter discusses the results  obtained using the new 

 software developed for this research project. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



University of the Witwatersrand 

 

 102 

6.1 Cylinder Pressure 
 

Cylinder pressure traces form an effective way to analyse the combustion 

process in an engine.  It indicates important phases in an engine’s combustion 

cycle, namely pressure rise, injection point, vapourisation dips and ignition 

points.  

 

Pressure rise translates into work produced by an engine. This pressure rise is 

an indicator of the rate of energy release by the combustion fuel within the 

combustion chamber. This rate of energy release has a direct influence on the 

power produced as well as the efficiency of the engine. The peak pressure is 

influenced by a number of factors including compression ratio, load, 

volumetric efficiency, fuel heating value and fuel quality. [1] 

 

The graph in figure 6.1 shows the pressure within the cylinder as a function of 

crank angle (CA) in degrees. The process of one complete combustion process 

will be described in four stages. The first stage illustrates a rise in cylinder 

pressure due to the commencement of cylinder compression. This cylinder 

compression is as a result of the piston “upward” motion resulting in the 

cylinder contents being compressed. 

 

The second stage illustrated by the letter “J” on the graph, indicates the 

injection point. At this point, fuel is injected into the cylinder. There is a slight 

decrease in the slope of the graph as a result of the vaporisation of some of the 

injected fuel. The period between the injection point and the following ignition 

point, is known as the ignition delay. During the ignition delay, the fuel has 

mixed with air. 

 

The third stage, known as the rapid combustion phase, occurs when the fuel is 

ignited. This point is indicated by the letter “G” on the graph. The slope 

discontinuity then ends as the fuel is combusted causing a sharp increase in the 

gradient of the graph as the maximum pressure is reached just after top dead 

centre (TDC). This sharp pressure rise is caused by the combustion of the fuel. 

Maximum efficiency occurs when the pressure rise is as close as possible to 
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TDC. In this test, work was maximised with a minimum amount of negative 

work. If the steep gradient and maximum pressure occur before TDC, a large 

amount of negative work is done by the engine. In this graph, the location of 

the ignition point and the completion of combustion with respect to the CA, 

indicate near optimal combustion timing. 

 

 

 

Figure 6.1: Cylinder Pressure vs. Crank Angle for a load of 55 NM. 

 

The transducer is connected to the combustion chamber by means of a narrow 

passage. This results in resonance in the passage as shown at maximum 

pressure. 
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The fourth phase is the expansion phase. The volume within the cylinder 

increases and the pressure drops gradually to EVO, where the pressure is 

slightly greater than at the start of the cycle. During this phase, the rate of 

pressure increase due to combustion is less than the rate of pressure decrease 

due to the piston returning  to bottom dead centre (BDC). 

 

 

6.1.2 The Effects of Increased Load 
 

The graph below (Figure 6.2) corresponds to two tests. The first (the red line, 

here on referred to as Line A) is for a load of 7.2 Nm. and the second (the 

green line, here on referred to as line B) is for a load of 55 Nm. Both tests 

were performed with engine speeds of 1550 rpm. 

 

 As can be seen, an increase in load results in an increase in maximum 

cylinder pressure. This is to be expected as an increased load requires more 

power to maintain a constant speed. The ignition point on Line A is at 357.9 

°CA and on line B it is at 355.1 °CA, hence the higher the load the shorter the 

ignition delay. This is due to the fact that at higher loads there are higher 

temperatures within the cylinder thus resulting in the ignition point being 

reached sooner. 
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Figure 6.2:  Cylinder Pressure vs. Crank Angle for Differing Loads 

 

 

6.1.3` The Effects of Increased Speed 
 

To analyse the effects of an increase in engine speed, two tests were selected. 

In figure 6.3, the red line represents an engine speed of 1356 rpm and the 

green line represents an engine speed of 1554 rpm, both with a load of 23 Nm.  

 

As can be seen the higher the engine speed the lower the maximum pressure. It 

is also noted that the position of maximum pressure occurs slightly further 

away from TDC with higher engine speeds. Once TDC has been passed, the 

expansion stroke commences reducing the pressure exerted on the entrapped 

gas by the piston, although combustion still takes place. On the other hand, the 
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rate of pressure increase, due to combustion, is less than the rate of pressure 

decrease due to the piston returning to BDC, thus decreasing the maximum 

pressure obtained with increasing speed. 

 

 

 

Figure 6.3:  Cylinder Pressure vs. Crank Angle for Differing Speeds 
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6.2 Injector Pressure 
 

The injection pressure trace, shown below, is a typical trace of an injection 

cycle.  At the start of injection, a steep pressure rise can be seen, peaking at a 

maximum pressure of 280 bar. After the injection point “J”, the residual 

pressure rapidly dissipates. The pressure dissipates because the fuel has 

already been injected hence resulting in the pressure subsiding. 

 

 

 

Figure 6.4: Injector Pressure vs. Crank Angle for a load of 55 Nm. 
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6.2.1 The Effects of Increased Load 
 

The overall pressure within a cylinder with a higher load is greater. As 

mentioned before, an increased load requires a greater performance to 

maintain a constant speed. Therefore the initial pressure (shown on the graph 

below) is higher as a result.  This leads to the conclusion that the pressure 

trace for differing loads is almost identical, the only difference is that a higher 

load results in a vertical shift as a result of a higher initial pressure. 

 

 

 

Figure 6.5:  Injector Pressure vs. Crank Angle for a load of      

  55 Nm and 7 Nm at an Engine Speed of 1550 rpm. 
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6.3 Cylinder Temperature 
 

The temperature versus CA traces form a similar shape to the cylinder 

pressure traces. This is to be expected as temperature is directly proportional 

to pressure. [8] 

 

Upon inspection of the graph below, there is a rise in temperature as the 

compression stroke commences. At injection point there is a discontinuity in 

the gradient with a flatter slope. This indicates a decrease in the rate of the 

temperature rise, due to the vaporisation of injected fuel. 

 

The slope gradient steepens considerably after the fuel ignition point, as a 

result of the combustion of the fuel. The maximum temperature occurs within 

an average of 5 ºCA degrees after the point of maximum pressure. 

 

The expansion stroke sees a drop in temperature as the pressure decreases. 
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Figure 6.6: Cylinder Temperature vs. Crank Angle for a load of          

    55 Nm at an Engine Speed of 1550 rpm 

 

 

6.3.1 The Effects of Increased Load  
 

At higher loads, more energy is released to maintain equivalent speeds. As a 

result a higher maximum temperature is reached with higher loads. 
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Figure 6.7:   Temperature vs. Crank Angle for a load of      

  55 Nm and 7 Nm and an Engine Speed of 1550 rpm. 

 

 

6.4 Energy Release 
 

The graph below is a plot of the energy release versus crank angle. The two 

plots depict the total cumulative energy release and the apparent energy 

release. The total cumulative energy release contains a heat transfer 

adjustment. 

 

 

 

 



University of the Witwatersrand 

 

 112 

 

 

Figure 6.8:   Energy Release vs. Crank Angle for a load of 55 Nm. 

 

At the start of the compression cycle it is noticed that the energy release has an 

almost horizontal line. This indicates that a near adiabatic compression took 

place. The energy trace then starts to taper downwards. This is due to energy 

absorption from the system from a endothermic reaction which occurs just 

before the energy release stage occurs. Again the ignition delay between the 

injection and ignition point results in a further decline as a result of 

vaporisation. 

 

Initially combustion is short and lasts for only a few CA degrees. The fastest 

rate of energy release occurs here as can be seen by the steepness of the slope. 

Energy is released partly before and partly after TDC indicating correct 

ignition timing, thus minimising negative work. 
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 As the compression stroke comes to an end, the energy release graph levels 

off.  Here the combustion phase shows a decreasing energy release rate.  

 

As the expansion stroke takes place it is observed that less energy is released. 

This is because energy is being absorbed and the curves start to diverge at this 

point due to the heat transfer correction.  

 

Figure 6.9 indicates plots of the apparent energy release for loads of 55 Nm 

and 7 Nm respectively. As is to be expected, the amount of energy supplied by 

the fuel increases with load and therefore the energy release also increases 

with load. 

 

Not all the energy released is converted to brake power. There is energy lost to 

heat transfer and the formation of exhaust products. At low load the number of 

incomplete combustion products is relatively small, producing a high 

combustion efficiency. Increasing the load also increases the amount of 

incomplete combustion products. This is explained by the level of oxygen in 

the cylinder. For higher load there is insufficient oxygen to complete the 

combustion products thus resulting in a lower combustion efficiency. It is 

observed that the plot of the lower load has smaller energy absorption on the 

expansion stroke. [1] 
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Figure 6.9:  Overlaid Plot of Energy Release vs. Crank Angle for a  

  load of 55 Nm and 7 Nm respectively. 

 

 

 

6.5 Indicated mean effective pressure and brake power 
 

Indicated mean effective pressure (Imep) is related to the power output of the 

engine, therefore brake power is discussed with it. Imep is defined as the 

indicated average constant pressure exerted on the piston during the expansion 

stroke, which will produce the same amount of work as the actual pressure 

during the compression and expansion strokes.  
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Figure 6.10: Plot of imep vs. Equivalence ratio at a speed of   

   1550 rpm and a load of 55 Nm. 

 

Figure 6.10 and figure 6.11 follow similar parabolic trends and have a R2  

term of close to unity. It is evident that the imep and brake power increased 

with the addition of fuel until the reaction between the air and fuel released an 

optimum amount of energy, indicated by the peak. More fuel could be added 

at this optimum point, however the maximum pressures will either level off or 

drop depending on the amount of extra fuel added. Thus air is the limiting 

factor and is governed by the cylinders’ displacement volume. The amount of 

air inducted into a diesel engine remains the same for a given speed, even 

when the load is increased. Thus the maximum imep is reached when the 

fuel/air mixture is most effectively combusted. 
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Figure 6.11:    Plot of Brake Power vs. Equivalence ratio at a   

  speed of 1550 rpm and a load of 55Nm. 

 

 

6.6 Indicated specific fuel consumption 
 

The minimum indicated specific fuel consumption (isfc) is reached when all 

the fuel in the cylinder is most effectively consumed. As can be seen in figure 

6.12, the minimum isfc is reached with lean mixtures as opposed to maximum 

imep being reached with a rich mixture.  

 

Inspection of the graph indicates that load increases until a point where the 

maximum amount of fuel is burned. If the load increases further, not enough 

air comes into contact with the fuel and hence the isfc rises again.  
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Figure 6.12:    Plot of isfc vs. Equivalence ratio at a speed of   

   1550 rpm and a load of 55Nm. 

 

6.7 Volumetric and fuel conversion efficiency 
 

Upon inspection of figure 6.13, the fuel conversion efficiency increases with 

increasing load reaching a maximum of 30.4 % before tapering off. It is 

apparent that the engine has a better fuel conversion efficiency for leaner 

air/fuel mixtures. 

 

The volumetric efficiency of an engine is defined as the ratio of the actual 

mass of air inducted by the engine on the intake stroke to the theoretical mass 

of air that should have been inducted by filling the piston-displacement 

volume with air at atmospheric temperature and pressure. As noted from 

figure 6.14, the ratio of actual to theoretical air mass drawn into the cylinder 

decreases with increasing load. A typical hyperbolic trend is followed. 
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Figure 6.13:    Plot of Fuel Conversion efficiency vs.    

  Equivalence ratio at a speed of 1550 rpm and a load of 55Nm. 
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Figure 6.14:    Plot of Volumetric Conversion efficiency vs.   

 Equivalence ratio at a speed of 1550 rpm and a load of 55 Nm. 
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The lowest volumetric efficiency is reached at maximum load, this can be 

ascribed to the fact that the wall temperatures are higher, making the air less 

dense and thus allowing a smaller volume of air into the cylinder. 
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7. Conclusion 
 

The combustion analysis software (CAS) performed the analysis directly 

according to the objectives for which it was designed. The results obtained for 

the diesel tests appear to be representative of all speeds and loads showing the 

typical behaviour expected, indicating that the engine and the data analysis 

techniques performed by the software CAS are consistent and correct. It is 

apparent that the trends obtained follow the expected patterns and are 

complementary of each other, demonstrating the absence of any major 

problems. The picture created using the newly designed software is 

summarised as follows: 

 

- CAS was written in the latest computer language java and can run on 

any platform  namely windows, linux, unix etc. It can also be adapted 

to run on PDA’s. 

 

- The plots of cylinder pressure indicated the stages of combustion as 

expected. It was noted that the maximum cylinder pressures increased 

with increasing load. It was also noted that the ignition delays became 

shorter as the load was increased. It was concluded that the maximum 

pressures occurred just after TDC indicating maximum efficiency with 

minimal negative work done. The maximum pressures were found to 

be less with a higher engine speed and this was explained by the fact 

that these maximum pressures occurred closer to the expansion stroke. 

 

- The injector fuel line pressure graphs for differing loads were 

comparable. It was concluded that the injector fuel line pressure traces 

for differing loads were almost identical, the only difference being that 

a higher load results in an upward parallel shift due to a higher initial 

pressure. 
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- The cylinder temperature had similar trends. Again they followed the 

expected stages of the combustion process. The maximum cylinder 

temperatures increased as load increased. The main reason for this 

increase in temperature comes about as a result of the increased 

amount of fuel being injected into the combustion chamber as the load 

is increased.  

 

- The energy release graphs showed that near adiabatic compression 

took place initially. Energy was released partly before and partly after 

TDC hence leading to the fact that the engine had correct ignition 

timing. It was noted that the energy curves started to divert at the start 

of the expansion stroke due to the heat transfer adjustment. Again it is 

realised that the engine releases more energy with higher loads to 

maintain the same speed, however there are more incomplete 

combustion products due to oxygen shortages and higher loads. 

 

- The oxygen constraint was again highlighted when analysing the brake 

power and indicated mean effective pressure (imep). Adding more fuel  

at higher loads, increased the brake power and imep until a point when 

more oxygen was needed. It was found that air is the limiting factor 

and is governed by the cylinders’ displacement volume. Thus the 

maximum imep is reached when the fuel/air mixture is most effectively 

combusted. 

 

- Indicated specific fuel consumption (isfc) was found to be optimal for 

lean fuel mixtures as opposed to imep being optimal with rich fuel 

mixtures. It was found that as the load increased, a point was reached 

where all the fuel would not be burnt. If the load was increased further, 

not enough air came into contact with the fuel and the isfc would begin 

to rise.  
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- As with isfc it was found that maximum fuel conversion efficiency was 

reached with lean fuel/air mixtures. The lowest volumetric efficiency 

was found to occur at maximum load, and this was concluded to be the 

case because of the fact that the wall temperatures are higher, making 

the air less dense and thus allowing a smaller volume of air into the 

cylinder. 

 

The CAS software can be used to further the research into alternative fuels and makes 

the analysis process more efficient and less time consuming. CAS also increases the 

power of analysis through its improved analysis components. 
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Appendix A 
 
Fuel Flow Meter Calibration Procedure 
 

• Using an electronic scale and a clean container, the fuel is to be bled from the fuel 

line leading to the engine. 

• The time taken to collect a certain amount of fuel in the container on the scale is 

recorded using a stopwatch. Usually the time interval is set at about 2 minutes. 

• The mass of the fuel collected is then also recorded. 

• The input voltage to the data acquisition system is measured by means of a 

voltmeter and this is also noted. 

• The fuel flow is increased for each consecutive reading.   The scale of the flow 

meter has a maximum of 12 1/hr and therefore the readings are randomly selected at 

approximately 11/hr intervals. These readings are also recorded. 

• All the above mentioned recordings are listed in table Al. 

• After plotting the fuel mass flow rate (g/s) vs. the voltage output of the flow 

meter, a linear curve fit is fitted to the data points from which the calibration 

equation constants may be obtained. 

• The results of the calibration are shown in figure Al. 

Table A1:  Fuel Flow Meter Calibration 
 
 
 

Flow Meter Output 
 

 
 Reading 

 
Up(V) 
 

Average (V) 
 

Fuel Mass 
(g) 
 

Time (s) 
 

Fuel Mass 
Flow (g/s) 
 

Fuel Flow 
(l/hr) 
 
  1 0.029 0.029 0.0 0.0 

 
0.0 

2 0.459 0.459 50.0 184.0 0.271 0.8 
3 0.864 0.864 80.0 151.0 0.529 1.8 
4 1.540 1.540 125.2 130.0 0.963 3.2 
5 2.114 2.114 175.4 134.0 1.308 4.4 
6 2.388 2.388 190.6 127.0 1.500 5.0 
7 2.881 2.881 255.7 140.4 1.821 6.2 
8 3.225 3.225 270.0 133.0 2.030 7.0 
9 3.618 3.618 300.5 131.5 2.285 7.8 
10 4.058 4.058 315.1 123.6 2.549 8.8 
11 4.585 4.585 361.1 125.0 2.888 10.0 
12 4.808 4.808 380.7 126.0 3.021 10.6 
13 5.308 5.308 426.3 128.0 3.330 11.8 
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   Average Flow meter Output (V)   

 

Figure Al:   Fuel Flow Meter Calibration Results 

 
 
Load Cell Calibration Procedure 

• Mass pieces are suspended from the static torque arm of the dynamometer 

in random intervals. These masses are recorded for calibration purposes. 

• The input voltage to the data acquisition system from the load cell is 

measured using a voltmeter. These measurements are then also noted. 

• The process is done for increasing and decreasing loads on the torque arm. 

After which the increasing and decreasing voltage readings are then averaged. 

• The calculated torque is then plotted against the average output voltage of the 

load cell and a linear curve is then fitted to the plotted data points. 

• The above measurements are recorded in table A2 and plotted in figure A2. 

 

 

 

 1.000 5.000 6.000 4.000 3.000 2.000 

y = 0.6321x- 0.0133 
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Table A2:  Load Cell Calibration 

Load Cell Calibration:  

Amplifier voltage: SVolts Torque Arm Length = 0.4003m 

 Load Cell Output  

Reading 

 

Mass 

(kg) 

Up(V) 

 

Down (V) 

 

Average (V) 

 

Torque (Nm) 

(g = 9.78549) 

Torque (Nm) 

(g = 9.8) 

1 0.000 3.760 3.755 3.758 0.000 0.000 

2 0.616 3.862 3.970 3.916 2.413 2.417 

3 1.616 4.199 4.312 4.256 6.330 6.339 

4 3.887 4.990 5.098 5.044 15.226 15.248 

5 4.884 5.352 5.435 5.394 19.131 19.160 

6 8.212 6.509 6.641 6.575 32.167 32.215 

7 9.209 6.870 6.963 6.917 36.073 36.126 

8 10.484 7.339 7.412 7.376 41.067 41.128 

9 11.481 7.671 7.729 7.700 44.973 45.039 

10 
 

12.756 
 

8.110 
 

8.193 
 

8.152 
 

49.967 
 

50.041 
 11 

 
13.753 
 

8.457 
 

8.511 
 

8.484 
 

53.872 
 

53.952 
 12 

 
15.022 
 

8.833 
 

8.862 
 

8.848 
 

58.843 
 

58.930 
 13 

 
16.019 
 

9.048 
 

9.072 
 

9.060 
 

62.749 
 

62.842 
 14 

 
17.156 
 

9.092 
 

9.087 
 

9.090 
 

67.202 
 

67.302 
 15 

 
18.153 
 

9.000 
 

9.000 
 

9.000 
 

71.108 
 

71.213 
  

 
 
 
 



University of the Witwatersrand 
 

 129 

 
 

Figure A2: Load Cell Calibration Results 
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Calibration of Cylinder pressure transducer: 

The cylinder pressure was measured by means of Kistler piezo-electric transducer. The 

output from the pressure transducer was to be amplified, using a charge amplifier. The 

amplifier has settings for mechanical units per volt and for sensitivity. 

The pressure transducer/amplifier output was calibrated using a Budenberg pressure 

tester. The tester uses oil subjected to a known pressure, this pressure is then applied 

to the transducer and the output is calibrated against the known pressure. 

The calibration procedure was as follows: 

 

>   The pressure transducer and its housing were fitted to the Budenberg  tester.  

 

>   The 10 mechanical units per volt were selected on the charge  amplifier. 

>   To measure the output a digital voltmeter was connected to the output of the 

charge amplifier. 

>   The charge amplifier was zeroed. 

>   The calibration was done by first increasing the pressure and then decreasing 

the applied pressure. 

>   For each increment, the output was recorded. The recorded data can be 

 viewed below. 
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Table A3:  Calibration table of cylinder pressure transducer 

Reading 

 

Applied 

pressure 

Applied 

pressure 

Output up 

 

Output down 

 

Average 

output 

 (Psi) (Bar) (Volts) (Volts) (Volts) 

1 0 0 0.080 0.120 0.100 

2 100 6.895 0.6119 0.623 0.621 

3 200 13.790 1.326 1.280 1.303 

4 300 20.684 2.010 1.996 2.003 

5 400 27.579 2.876 2.680 2.778 

6 500 34.474 3.430 3.380 3.405 

7 600 41.369 4.110 4.080 4.095 

8 700 48.263 4.830 4.800 4.815 

9 800 55.158 5.510 5.510 5.510 

10 900 62.053 6.270 6.240 6.255 

11 1000 68.948 6.960 6.960 6.960 

12 1100 75.842 7.700 7.700 7.700 

 

 

 

Figure A3: Calibration plot of cylinder pressure transducer 
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Speed calibration; 

Unlike the other instruments, the engine speed could be calibrated using a two-point 

calibration technique. 

>   An offset of 2.5 mechanical units had been established, which represents the y-

intercept of the assumed linear curve. 

>   Two further speed settings were chosen and their voltage output recorded.  This could be 

done due to the residual error present in the analog revolution meter. 

Table A4:  Calibration table of revolution meter 

RPM Voltage 

0 0.009 

546 1.842 

Using 2.5 as the offset and the values from the m can be calculated: 

M = (546+2.5)/1.842 = 297.77 
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Airflow calibration:  

The pressure difference across the orifice plate, situated in the inlet duct, was used to 

obtain the airflow. The pressure drop was measured by a micromanometer, whose 

output voltage was fed into the data acquisition system. A linear curve was fitted to 

the data points. 

>   With the engine running and having let it stabilise at a random speed setting, 

take pressure readings across the orifice plate. These values wil l  be displayed 

in millimetres of water. 

>   Voltage readings are to be taken from the data acquisition system. 

>   The results are tabulated and then plotted. A linear curve is fitted to the data to 

determine the calibration constants. 

Table A5:  Calibration table of airflow meter 

Pressure Voltage 

(mm H2O) (V) 

25.7 1.349 

44.6 2.231 

54.9 2.752 

58.9 2.99 

65.6 3.289 

74.7 3.745 

78.9 3.963 

85.9 4.308 
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Figure A4: Calibration Plot of airflow meter 
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Appendix B 

 
 
Figure B1: Wiring Diagram of dynamic channel data acquisition system 
 
 
 
 

 
 
 
Figure B2: Steady state channel data acquisition system 
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Appendix C 
 
Combustion Analysis Software 
 
The following is a user manual for the Combustion Analysis Software (CAS) 

developed for this research project by the author. The software has powerful 

security and analysis tools which will be described below. 

 

1. CAS Security 

 

 CAS has been developed with user security in mind. There are two 

 levels of security, namely administrator access and normal access. 

 Administrator access allows the user to add, edit and delete users from 

 the system. Normal user access allows the user to use all the features 

 offered by CAS, except the user administrator features offered by the 

 software. 

 Once the CAS software is initialised a Login prompt screen is displayed 

 (refer to figure C1). Here the user is prompted for their user name and 

 password. 

     

Figure C1: Login Screen 
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 Upon incorrect log in, the user is required to re-enter their log in details. 

 Once Logged in, the main CAS graphical user interface (GUI) is 

 displayed (see Figure C2).  As can be seen, the main GUI has menu 

 options at the top and shortcuts to these menu options in the form of 

 action buttons in the centre of the gui. On the right hand side is a route 

 tracker which indicates the progress made while using the software. 

 

 

 

Figure C2: CAS Main GUI 

  

 If the user, currently logged on, has administrator rights, the User 

 shortcut button, and the User Manager menu option will be active as 

 shown above. If the user then requires to add, delete or edit a user, 

 they can either select the option from the shortcut bar or from the menu 

 option. 

 

 This then brings up the User Manager GUI as shown in Figure C 3. As 

 illustrated below, the administrator can view the user name, password 

 and permissions of the users loaded onto the system. The user “jp” 

 below, has normal permissions as opposed to admin rights and will 

 hence not be able to access the user manager GUI. 

 

 To add a new user, press the “Add” action button. This brings up the 

 “Add User” Gui. On this GUI, a username and password is required. 

 There is also another security measure where the user is prompted to 

 re- type the password. If the passwords don’t match, the new user will 

 not be entered into the system. 
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Figure C3: The Combust User Manager GUI 

 

 

 

 

Figure C4: The Add New User GUI 

 

 If the “Admin Rights” check box is ticked, the new user will have 

 administrator rights. Once the new user details have been entered 

 press the “OK” button and the new user will be entered into the system. 

 If the “Cancel” button is pressed, the system returns to the User 

 Manager Panel.  
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 To edit a user, tick next to the user which requires editing and press 

 the “edit” button. This brings up the “Edit User Gui”. Only the users 

 password and admin rights can be edited, not their user name. Once 

 editing is completed, select the “OK” button and the details will be 

 saved. 

 

 

 

Figure C5: The Edit User GUI 

 

 To delete a user, select the user to be deleted on the User Manager 

 GUI and press “delete”. The user will then be deleted from the system. 

 

2. Configuring Engine Settings 

 

 CAS is configured for three engine types namely, PH2, PH2W and 

 Petrol. To change any of these engine settings go to edit on the main 

 menu and then select “Engine Settings”.  The Engine Settings Manager 

 GUI is then shown (see Figure C6). On this gui, the three engine 

 settings can be seen. These can be edited. Once edited click the 

 “Save” action button and the new settings will be applied. 
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Figure C5i: The Engine Settings GUI 

 

3. Loading New Data 

 

 To Load new Data press either the “New Data” shortcut button, or 

 choose the “Load New Data” option from the File menu. Once selected, 

 a four step wizard is displayed. In step 1 the wizard asks which engine 

 type the analysis is to be performed on. Select the engine type and 

 then press the “Select Test” action button.  
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Figure C6: Step 1 Engine Type Selection GUI 

 

 

 Step 2 then allows the .dat file, produced by the Data Acquisition 

 Software, to be selected. Upon selection, the dynamic link library within 

 the system automatically executes the Conver program. Here the user 

 is prompted to select if the test performed was either motoring or firing, 

 as well as to indicate which engine setting was used. Then press the 

 “Process File” action button. The software reads the .dat file  and plots 

 an overlaid plot of Cylinder Pressure vs. Crank Angle from all the 

 channels used. The user can either select a pressure trace from 

 one channel or average a group of Channels. Once decided, press the 

 “Convert Data” button. This the converts the .dat file into a .raw file to 

 be used by CAS. The Conver program is then terminated and Step 3 is 

 illustrated. 
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Figure C7: Step 2 The Conver Program GUI 

  

 

 In Step 3 the user is prompted to select the Heat release Analysis to be 

 performed, by CAS, on the Converted data. Once selected, press the 

 “OK” action button and the analysis is automatically performed and 

 saved.  

 

 Step 4 is a continuity selection. Here the user has a choice of viewing 

 Plots or Reports ( discussed later) or Loading another cycle (discussed 

 next) or Loading  a New  File. If the user selects the Load New File 

 option, the same four steps are repeated on a different test. The user 

 can select up to ten different tests to be compared against one another. 
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Figure C8: Step 3 The Heat Release analysis Selection Gui 

 

 

 

Figure C9: Step 4 The Continuity Selection GUI 
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4. Loading Saved Data 

 

 This option is exactly the same as the “Load New Data” option 

 previously described, however there is one difference. This option skips 

 step 2. In other words it allows you to perform a different Heat release 

 analysis on a file which has already been converted to a .raw file. In 

 order to select this option you can either press the “Saved Data” short 

 cut action button or select the “Load Saved Data” option from the File 

 Menu. This option can be repeated when you select the “Load Another 

 Cycle” radio button in step 4, as shown in Figure C9. 

 

5. Viewing Plots 

 

 Once a new cycle has been loaded or a saved raw file has been 

 loaded, the View Plots feature is enabled. To view plots one can either 

 press the “Plots” action button or select the “Plots” from the View Menu 

 at the top of the main GUI. The plots can also be viewed in step 4 of 

 the wizard. 

 

 The Plot Viewer Gui, displays the plots and has two tabs. The second 

 tab (The Combined Combust Plots tab) allows the user to view all the 

 tests selected on one overlaid plot. The Y axis shown in figure C10 

 allows the user to view plots in the categories of General analysis, 

 Property Cycles analysis, Apparent energy, Heat Transfer and Mass 

 burned. The X axis shown below, allows the user to plot any of the Y 

 axis categories against Crank Angle, Temperature and ln V/V1. The 

 user just selects the Y axis plot and X axis plot desired and CAS 

 automatically generates the plot.  
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Figure C10: The plot Viewer Gui 

 

 The first tab (The Individual Combust Plots Tab) allows the user to view 

 the plots exactly the same way as in the second tab, except it plots the 

 different loaded tests individually and not overlaid. As can be seen in 

 Figure C11, the user can flip between tests by selecting the desired 

 engine test or cycle from the drop down box. The corresponding plot is 

 then automatically displayed. 
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Figure C11: The Plot Viewer Gui Displaying the Individual Combust Plot’s 

Tab 

 

Each graph is fully customisable. In order to customise the plots, right click on 

the graph and follow the menu options. The following options are available: 

 

- Chart Properties. This allows the user to alter three main chart 

properties namely the Chart Legend, the Plot and an Other 

Category. In the Chart  Legend the user can alter the Outline, the 

series font, the background and the legend colours. Under the Plot 

properties the user can alter the domain axis, range axis and the 

appearance. Under the Other properties, the user can alter the 

general background colour of the graph as well as the series stroke 

and colours. 
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- The Save AS option. This option as the name implies allows the 

selected plot to be saved to the hard drive. 

 

- The Print option. Allows the user to select a printer to print the 

graph to. 

 

- The Zoom in , Zoom out and Auto Range functions can be applied 

to either the x-Axis or y-Axis individually or to both simultaneously. 

Figure C12 illustrates this. 

 

 

 

 

 

Figure C12: The Plot Viewer Gui illustrating the Zoom In feature 
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6. Viewing Data 

 

 Once a new cycle has been loaded or a saved raw file has been 

 loaded, the View Data feature is enabled. To view the data reports, one 

 can either press the “View Data” action button or select the “View Data” 

 option from the View Menu at the top of the main GUI. The data can 

 also be viewed in step 4 of the wizard. 

 

 The Data viewer Gui displays the following Tabs, and each tab has a

 drop down box allowing the user to select which cycle or engine test’s 

 data, they wish to view (Shown in Figure C13) 

 

- The constant Data tab. The information displayed here, ranges from 

the fuel type to the calculated mechanical efficiency data. Shown in 

figure C13.  

 

 

Figure C13: The Data Viewer GUI illustrating the Constant Data Tab and 

Drop down Engine Test Selection box 

 

- The Retrieved Data Tab. This tab displays all the unprocessed data 

retrieved from the Conver program. 
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- The Energy Modelling Tab. This tab displays the manipulated data 

under the categories Property Cycles, Apparent energy, Heat 

Transferred and Mass Burned. 

 

- The Manipulated Data Tab. This tab displays the Cylinder 

Pressures and Volumes, Injector Pressure and LnP, LnV and Crank 

Angle Data. 

 

 CAS has a report generating tool which can automatically format all the 

 data in each of these tabs for professional report display purposes. To 

 generate a report, click on the “Generate Report” action button.  This 

 automatically generates the report illustrated in figure C14. 

 

 The report generated has a selection of features.  If the File Menu is 

 selected the report can be saved as a text file, PDF Format, exported 

 to excel for editing purposes, exported to html format for web uploading 

 as well as exported to csv format. The report can also simply be printed 

 with the option to change the page setup. 

 

 If the report is saved under any of the following formats, a few features 

 can be selected when saving (see Figure C15).  The user can select a 

 title and author for the report. The user also has the option to add 

 security to the report. For a lower level of security, the report can be 

 password protected with 40 bit encryption, or if a higher level of 

 security is required, it can be saved with 128 bit encryption. Additional 

 security can be added to specific features of the report, such as 

 allowing printing, copying, usage of screen readers, modification of 

 contents etc. 
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Figure C14: Generated Report of the Constant Data Tab 

 

 

 



University of the Witwatersrand 

 

 152 

 

 

 Figure C15: Security Features when saving the Generated Report. 

 

 The navigation menu on the Print Preview Gui of the report (See Figure 

 C14), allows the navigation between the various pages of the report. 

 The report also has zooming functionality allowing the user to adjust 

 the percentage zoom applied to the report. 

 

7.  The Memory Manager 

 

 The memory manager can be selected by pressing the “Memory” 

 action button on the main gui (see figure C2) or selecting the Memory 

 Manager option under the File menu.  

 

 The memory manager allows the user to delete loaded tests and 

 increase or decrease the maximum amount of tests that can be loaded 

 by the system. This is important because each test utilises the 

 computer’s random access memory (RAM). Therefore being able to 

 control the amount of tests loaded in the CAS system allows better 

 utilisation of the PC’s RAM. 
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Figure C16: Combust Memory manager GUI 

 

 The engine test limit, in CAS, can be changed by selecting the limit 

 from the Memory Limit drop down box shown in figure C16. As can be 

 seen CAS displays a real time memory usage graph. This gives a live 

 update on the PC’s memory usage.  

 

 In order to delete a test, select the test in the Memory Manager GUI 

 and press the “OK” Action button. This erases the manipulated data, of 

 the test, from memory. 
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Data Acquisition Software 

Once the computers and all the instruments have been switched on, then the 

preparation for saving test data may begin. Be sure to start the PC without the 

network cable plugged in. This is to ensure that the DOS conversion programmes run 

smoothly without any interference. The following procedure outlines the steps 

involved when setting up the directories to which the test data should be stored in the 

Windows  software package such that the DOS conversion programmes may locate the 

data files for conversion. 

•    Once Windows has started up, double click on the icon that reads "Shortcut to 

Engine Test." This will open up the operating window of the Engine testing 

programme. 

•    In this window on the menu bar, click the File button and scroll down to "Test 

Data Directory" and click on this button. 

•   Now select the directory path as D:\PH2W\{Folder} and then click the OK 

button. The entry {Folder} is to be replaced with whichever folder the data is to 

be stored in. This is usually a month for example aug06 (i.e. August 2006 as used 

for this project). 

•    Then click on the Settings button on the menu bar and scroll down to "Test 

Settings" (or just click on the icon with the screw driver, spanner and hammer). 

This will open the "Speedwave Channel Settings" window. 

•   Next, click on the Test Settings label. This will enable the operator to select the 

test settings for the specific test rig in operation. 

•   In the space for Test Engineer, select the desired test setting. For this project, 

click on the far left icon on the menu bar to open the desired test rig setting. The 

location of the test setting for this project may be found in C:\Program 

Files\Tlc\Engine TestXdata. Once in this directory, select the Petter PH2W file and 

then click the OK button. 

•   Make sure that the Storage Option settings are for Multi-Event and that the 

Saving Method is in DOS Compatible Format. 

•    The steady state channel trigger settings are to be set to the desired speed 

and tolerance band. 
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• The Test Filename is to be set as {fuel type} {date} {month} {test 

number} for example, ed230834   The codes for the fuel type can be found 

in table Cl. 

Table Cl: Test Filename Codes 

Fuel Type 

 

Code 

 Diesel di 

Dimethyl Ether (DME) dme 

Methanol / DME md 

Ethanol / DME ed 

Motoring 

 

mo 

 

• Now check to see that the steady state channel settings are correct 

according to all calibration factors and instrumentation settings.   To do this 

click on the Steady State Channels label 

• Once this has been done, click on the icon with the lightning bolt to open 

theArmSystem_l window. 

• Here two sets of graph axes are shown.   The graphs show the traces of 

the top dead centre (TDC) (graph 6), injector pressure (graph 2), cylinder 

pressure (graph3), trigger (graph 1) and injector lift (graph 4).   To view 

each of the graphs separately, click the Strip Graphs icon on the menu 

bar.  To refresh the graphs click the Redraw Graph icon on the menu 

bar.   To activate a graph just click the number of the respective channels 

above each graph axis window. 

• Once the trigger has been activated, the operator is given the choice as 

to Accept Test, Ignore Test or Cancel Test. 

 

Once testing is complete then the PC is restarted in the Command Prompt 

mode. This is done to be able to print graph traces from within the DOS 

conversion programmes. 

 



U
n

iv
er

si
ty

 o
f t

h
e 

W
itw

a
te

rs
ra

n
d

 
  

1
5

6

A
pp

en
di

x 
D

 

Ta
bl

e 
D

1:
 

T
ab

le
 of

 1
35

0 
rp

m
 d

ie
se

l p
er

fo
rm

an
ce

 re
su

lts
 

T
LC

 T
es

t 
 

S
pe

ed
 

 
Lo

ad
 

 
B

ra
ke

 P
ow

e
r 

 
In

di
ca

te
d 

 
In

di
ca

te
d 

 
im

ep
 

 
bm

ep
 

 
E

qu
iv

al
en

c
e 

A
ir/

F
ue

l 
 

A
ir 

F
lo

w
 

 
F

ue
l F

lo
w
 

 
F

ue
l C

on
v 

 
is

fc
 

 
bs

fc
f 

 
In

j 
P

oi
nt

 
 

Ig
n 

P
oi

nt
 

 
Ig

n 
D

el
ay

 
 

N
am

e 
(r

pm
) 

(N
m

) 
(k

W
) 

W
o

rk
/C

yc
le

d
 (

J)
 

P
ow

er
  

(M
P

a)
 

(M
P

a)
 

R
at

io
 

R
at

io
 

(g
/s

) 
(g

/s
) 

E
ff

(%
)
 

(k
g/

J)
 (

kg
/J

) 
(°

C
A

) 
(°

C
A

) 
(°

C
A

) 
di

 2
02

00
 

13
53

.2
 

5.
0 

0.
71

5 
14

6.
1 

3.
29

6 
0.

22
0 

0.
04

8 
0.

25
9 

57
.7

9 
14

.2
77
 

0.
25

 
6.

6 
7.

50
E  

3.
50

E-
07

 
34

0.
0 

35
6.

9 
16

.9 
di

 2
02

04
 

13
53

.2 
14

.0 
1.

98
9 

18
4.

2 
4.

15
3 

0.
27

7 
0.

13
3 

0.
32

2 
46

.6
3 

13
.9

85
 

0.
30

 
15

.2 
7.

20
E  

1.
50

E-
07

 
34

0.
0 

35
5.

3 
15

.3 
di

 2
02

10
 

1 
35

6.
0 

23
.4 

3.
32

2 
23

3.
7 

5.
28

2 
0.

35
1 

0.
22

1 
0.

38
9 

38
.7

4 
14

.0
3 

0.
36

 
21

.0 
6.

90
E  

1.
10

E-
07

 
34

0.
0 

35
5.

9 
15

.9 
di

 2
02

13
 

 
13

56
.0 

 
29

.1 
 

4.
13

6 
 

26
7.

4 
 

6.
04

4 
 

0.
40

2 
 

0.
27

5 
 

0.
43

 
 

34
.7

4 
 

13
.9

85
 

 
0.

40
 

 
23

.6 
 

6.
70

E
-0

8 
9.

70
E

-0
8 

 
34

0.
0 

 
35

5.
5 

 
15

.5 
 

di
 2

02
19

 
13

56
.0 

36
.9 

5.
23

7 
29

6.
2 

6.
69

3 
0.

44
5 

0.
34

9 
0.

49
4 

30
.2

8 
13

.7
92
 

0.
46

 
26

.4
 

6.
80

E  
8.

70
E-

08
 

34
0.

0 
35

5.
1 

15
.1 

di
 2

02
23

 
13

53
.2 

42
.5 

6.
13

4 
32

7.
7 

7.
39

0 
0.

49
3 

0.
40

1 
0.

56
2 

26
.6

6 
13

.7
17
 

0.
51
 

26
.8 

7.
00

E  
8.

50
E-

08
 

34
0.

0 
35

4.
1 

14
.1 

di
 2

02
26

 
13

53
.2 

50
.6 

7.
17

2 
36

7.
0 

8.
27

6 
0.

55
2 

0.
47

8 
0.

62
9 

23
.9

6 
13

.5
96
 

0.
57

 
29

.0 
6.

90
E  

7.
90

E-
08

 
34

0.
0 

35
3.

7 
13

.7 
di

 2
02

29
 

13
56

.0 
55

.7 
7.

90
4 

38
8.

7 
8.

78
4 

0.
58

5 
0.

52
6 

0.
70

2 
21

.3
1 

13
.5

51
 

0.
64

 
28

.5 
7.

20
E  

8.
00

E-
08

 
34

0.
0 

35
4.

1 
14

.1 
di

 2
02

35
 

13
56

.0 
57

.9 
8.

28
0 

38
9.

4 
8.

80
1 

0.
58

6 
0.

54
8 

0.
78

3 
19

.0
9 

13
.4

44
 

0.
70

 
26

.8 
8.

00
E  

8.
60

E-
08

 
34

0.
0 

35
3.

3 
13

.3 
di

 2
02

38
 

13
56

.0 
61

.4
 

8.
71

7 
41

6.
6 

9.
41

5 
0.

62
6 

0.
58

0 
0.

91
1 

16
.3

9 
13

.2
74
 

0.
81
 

24
.7 

8.
60

E  
9.

30
E-

08
 

34
0.

0 
35

4.
5 

14
.5 

di
 2

02
42

 
 

13
58

.8 
 

62
.6 

 
8.

90
2 

 
43

8.
7 

 
9.

93
5 

 
0.

66
0 

 
0.

59
1 

 
1.

00
8 

 
14

.8
1 

 
1 

3.
33

6 
 

0.
90

 
 

22
.7 

 
9.

10
E

-0
8 

1 
.O

O
E-

07 
 

34
0.

0 
 

35
4.

3 
 

14
.3 

 
    T

LC
 T

es
t 

 
P

re
ss

u
re
 

 
B

ef
or

e 
C

at
. 

 
A

fte
r 

C
at

. 
 

M
ax

 P
re

ss
ur

e 
 

P
os

iti
on

 o
f 

 
M

ax
 

 
P

os
iti

on
 o

f 
 

M
ec

ha
ni

ca
l 

 
IT

E
 

 
B

T
E
 

 
V

ol
 

 
A

m
bi

e
nt

 
 

M
an

ifo
ld

 A
ir

 
 

In
je

ct
o

r 
 

N
am

e 
A

tm
. (

kP
a)

 
T

em
p.

 (C
C

) 
T

em
p.

 (
°C

) 
(M

P
a)

 
P

m
ax

 (
°C

A
) 

Te
m

p.
 (K

) 
T

m
ax

 (
°C

A
) 

E
ffi

ci
en

cy
 (

%
) 

(%
) 

(%
) 

E
ff
(%

)
 T

em
p.

 (
°C

) 
T

em
p.

 (
°C

) 
P

re
ss

ur
e

 (
M

P
a)
 

di
 1

20
20

0 
82

.5 
16

0.
7 

19
5.

2 
4.

83
 

36
1.

4 
12

32
.8 

36
7.

0 
21

.7
 

30
.6 

6.
6 

94
.6 

26
.4 

27
.1 

11
2.

4 
di

 1
20

20
4 

82
.5 

19
0.

6 
24

0.
3 

5.
19

 
36

1.
2 

1 
34

0.
4 

36
6.

6 
47

.9
 

31
.8 

15
.2 

93
.5 

27
.4
 

29
.9 

10
6.

7 
d

i!2
0

21
0 

82
.5 

22
7.

3 
28

5.
8 

5.
71
 

36
5.

6 
14

73
.3 

36
6.

2 
62

.9
 

33
.5 

21
.0 

93
.4
 

28
.3 

30
.0
 

10
2.

3 
di

 1
20

2 
13
 

82
.5 

25
6.

7 
31

7.
9 

6.
00

 
36

5.
2 

1 
54

4.
0 

37
0.

2 
68

.4
 

34
.4 

23
.6 

93
.1 

28
.8 

30
.4
 

98
.5 

di
 1

 2
02

 1
 9 

82
.5 

30
5.

7 
35

3.
6 

6.
16

 
36

4.
6 

16
18

.4 
36

8.
2 

78
.2
 

33
.7 

26
.4 

91
.8 

29
.2 

31
.9 

10
0.

0 
di

 1
20

22
3 

82
.5
 

34
1.

0 
38

8.
9 

6.
49

 
36

5.
0 

16
97

.6 
36

9.
2 

82
.2 

32
.9 

26
.8 

91
.5 

29
.9 

32
.4
 

95
.7 

di
 1

20
22

6 
82

.5 
39

5.
9 

43
7.

7 
6.

63
 

36
4.

2 
17

69
.9 

36
9.

0 
86

.7 
33

.5 
29

.0 
90

.7 
30

.3 
33

.3 
99

.9 
di

 1
20

22
9 

82
.5 

43
8.

0 
49

2.
3 

6.
75
 

36
4.

8 
18

17
.6 

37
0.

2 
90

.0
 

31
.7 

28
.5 

90
.2 

30
.7 

33
.8 

97
.6 

di
!2

02
35

 
82

.5 
47

6.
8 

54
6.

3 
6.

74
 

36
4.

0 
18

26
.0 

37
1.

8 
93

.5 
28

.7 
26

.8 
89

.5 
31

.6 
35

.3 
97

.6 
di

!2
02

38
 

82
.5 

50
4.

7 
66

0.
9 

6.
79

 
36

5.
2 

18
89

.1 
37

2.
6 

92
.6
 

26
.7 

24
.7 

88
.3 

32
.3 

36
.7 

92
.3 

di
 1

 2
02

42
 

 
82

.5 
 

50
8.

1 
 

77
1.

1 
 

6.
94

 
 

36
6.

6 
 

1 
93

 1
 .4 

 
37

4.
4 

 
89

.6 
 

25
.3 

 
22

.7 
 

88
.1 

 
33

.3 
 

37
.2 

 
92

.3 
 



U
n

iv
er

si
ty

 o
f t

h
e 

W
itw

a
te

rs
ra

n
d

 
  

1
5

7

Ta
bl

e 
D

2:
 

T
ab

le
 o

f 1
55

0 
rp

m
 d

ie
se

l p
er

fo
rm

an
ce

 re
su

lts
 

T
LC

 T
es

t 
 

S
pe

ed
 

 
Lo

ad
 

 
B

ra
ke

 P
ow

e
r 

 
In

di
ca

te
d 

 
In

di
ca

te
d 

 
im

ep
 

 
bm

ep
 

 
E

qu
iv

al
e

nc
e 

 
A

ir/
F

ue
l 

 
A

ir 
F

lo
w
 

F
ue

l 
F

lo
w
 

F
ue

l C
on

v 
 

is
fc
 

 
bs

fc
f 

 
In

j 
P

oi
nt

 
 

Ig
n 

P
oi

nt
 

 
Ig

n 
D

el
ay

 
 

N
am

e 
(r

pm
) 

(N
m

) 
(k

W
) 

W
or

k/
C

vc
le

 (
J)

 
P

ow
er

 (
kW

) 
(M

P
a)

 
(M

P
a)

 
R

at
io
 

R
at

io
 

(g
/s

) 
(g

/s
) 

E
ff

(%
)
 

(k
g/

J)
 

(k
g/

J)
 

(°
C

A
) 

(°
C

A
) 

(°
C

A
) 

di
05

02
02
 

15
50

.9 
7.

2 
1.

17
0 

15
0.

8 
3.

89
8 

0.
22

7 
0.

06
8 

0.
27

8 
53

.8
8 

15
.8

24
 

0.
29

 
9.

1 
7.

50
E-

08
 

2.
50

E-
07

 
34

0.
0 

35
7.

7 
17

.7 
di

05
02

07
 

15
50

.9 
14

.3 
2.

33
0 

19
0.

7 
4.

92
9 

0.
28

7 
0.

13
6 

0.
31
 

48
.3

2 
15

.6
93
 

0.
32

 
16

.5 
6.

60
E-

08
 

1 
.4

0E
-0

7 
34

0.
0 

35
7.

5 
17

.5 
di

05
02

08
 

15
53

.7 
22

.5 
3.

65
6 

23
8.

7 
6.

18
0 

0.
35

9 
0.

21
2 

0.
36

7 
40

.9
0 

15
.5

75
 

0.
38

 
22

.0 
6.

20
E-

08
 

1 
.O

O
E-0

7 
34

0.
0 

35
7.

1 
17

.1 
di

05
02

15
 

15
53

.7 
28

.0 
4.

55
8 

26
4.

1 
6.

83
8 

0.
39

7 
0.

26
5 

0.
41

3 
36

.2
2 

15
.4

82
 

0.
43

 
24

.5 
6.

30
E-

08
 

9.
40

E-
08

 
34

0.
5 

35
7.

3 
16

.8 
di

05
02

18
 

 
15

53
.7 

 
37

.0 
 

6.
02

1 
 

31
1.

7 
 

8.
07

3 
 

0.
46

9 
 

0.
35

0 
 

0.
49

8 
 

30
.0

1 
 

15
.3

48
 

 
0.

51
 

 
27

.0 
 

6.
30

E
-0

8 
 

8.
50

E
-0

8 
 

34
1.

0 
 

35
6.

60
 

 
15

.6 
 

di
05

02
20
 

15
56

.5 
43

.0
 

7.
00

5 
35

2.
5 

9.
14

4 
0.

53
0 

0.
40

6 
0.

54
6 

27
.4

1 
15

.2
13
 

0.
55

 
29

.0 
6.

10
E-

08
 

7.
90

E-
08

 
34

1.
0 

35
5.

70
 

14
.7 

di
05

02
24
 

15
56

.5 
50

.4
 

8.
22

0 
37

8.
2 

9.
81

1 
0.

56
9 

0.
47

7 
0.

61
 

24
.4

8 
15

.1
86
 

0.
62

 
30

.4 
6.

30
E-

08
 

7.
50

E-
08

 
34

1.
0 

35
5.

70
 

14
.7 

di
05

02
30
 

15
56

.5 
55

.0
 

8.
96

2 
41

0.
8 

10
.6

56
 

0.
61

8 
0.

52
0 

0.
72

 
20

.7
3 

15
.1

18
 

0.
73

 
28

.2 
6.

80
E-

08
 

8.
10

E-
08

 
34

2.
0 

35
5.

90
 

13
.9 

di
05

02
33
 

15
59

.3 
58

.4
 

9.
53

1 
43

0.
2 

11
.1

79
 

0.
64

7 
0.

55
2 

0.
81

3 
18

.4
1 

14
.9

68
 

0.
81
 

26
.9 

7.
30

E-
08

 
8.

50
E-

08
 

34
2.

5 
35

5.
30
 

12
.8 

di
05

02
39
 

15
59

.3 
61

.6
 

10
.0

54
 

43
6.

5 
11

.3
43
 

0.
65

6 
0.

58
2 

0.
97

4 
15

.3
4 

14
.9

55
 

0.
97

 
23

.7 
8.

60
E-

08
 

9.
70

E-
08

 
34

2.
5 

35
4.

70
 

12
.2 

di
05

02
40
 

 
15

59
.3 

 
62

.1 
 

10
.1

45
 

 
42

5.
7 

 
1 

1 
.0

62
 

 
0.

64
0 

 
0.

58
7 

 
1.

19
 

 
12

.5
6 

 
14

.8
58
 

 
1.

18
 

 
19

.7 
 

1.
10

E
-0

7 
 

1.
20

E
-0

7 
 

34
3.

0 
 

35
4.

90
 

 
11

.9 
 

  T
LC

 T
e

st 
 

P
re

ss
ur

e 
 

B
e

fo
re

 C
a

t. 
 

A
fte

r 
C

a
t. 

 
M

a
x 

P
re

ss
ur

e 
 

P
os

iti
o

n 
o

f 
 

M
a

x 
 

P
os

iti
o

n 
o

f 
 

M
ec

ha
ni

ca
l 

 
IT

E
 

 
B

T
E
 

 
V

o
l 

 
A

m
b

ie
nt
 

 
M

an
ifo

ld
 A

ir
 

 
In

je
ct

o
r 

 
N

a
m

e 
A

tm
. 

(k
P

a
) 

T
e

m
p.

 (
°C

) 
T

e
m

p.
 (

°C
) 

(M
P

a
) 

P
m

a
x 

(°
C

A
) 

Te
m

p.
 (K

) 
T

m
a

x 
(°

C
A

) 
E

ffi
ci

en
cy

 (%
) 

(%
) 

(%
) 

E
ff

(%
) 

T
e

m
p.

 (
°C

) 
T

e
m

p.
 (

°C
) 

P
re

ss
ur

e
 (

M
P

a
) 

di
05

02
02
 

82
.0 

17
8.

8 
21

4.
0 

4.
79

 
36

3.
4 

12
57

.4
 

37
0.

2 
30

.0 
30

.4 
9.

1 
92

.1 
26

.4 
29

.0
 

91
.6
 

di
05

02
07
 

81
.5 

21
0.

2 
26

4.
0 

5.
06

 
36

4.
0 

13
36

.4 
37

0.
2 

47
.3 

34
.8 

16
.5 

91
.3 

27
.4 

31
.4
 

86
.7 

di
05

02
08
 

81
.1 

24
6.

9 
31

1.
0 

5.
51
 

36
3.

8 
14

94
.2 

36
9.

4 
59

.2 
37

.2 
22

.0 
90

.4 
28

.3 
32

.4
 

80
.9 

di
05

02
15
 

81
.1 

28
5.

2 
33

7.
0 

5.
68

 
36

3.
0 

15
36

.5 
36

8.
8 

66
.7 

36
.7 

24
.5 

89
.9 

28
.8 

33
.3 

76
.6 

di
05

02
18
 

81
.1 

33
8.

1 
38

1.
0 

6.
02

 
36

6.
8 

16
6.

3.
5 

36
8.

0 
74

.6
 

36
.2 

27
.0 

89
.1 

29
.2 

33
.8 

75
.7 

di
05

02
20
 

81
.1 

38
5.

6 
42

4.
0 

6.
26

 
36

6.
4 

17
69

.9 
36

9.
2 

76
.6
 

37
.8 

29
.0 

88
.2 

29
.9 

34
.8 

71
.4 

di
05

02
24
 

 
81

.1 
 

43
1.

2 
 

47
2.

0 
 

6.
47

 
 

36
5.

8 
 

17
91

.9 
 

36
8.

6 
 

83
.8 

 
36

.3 
 

30
.4 

 
88

 
 

30
.3 

 
35

.3 
 

71
.4
 

 
di

05
02

30
 

81
.1 

49
2.

4 
54

0.
0 

6.
67

 
36

6.
4 

18
79

.6 
37

0.
8 

84
.1 

33
.5 

28
.2 

87
.6 

30
.7 

37
.2 

66
.8 

di
05

02
33
 

 
81

.1 
 

53
2.

6 
 

60
5.

0 
 

6.
77

 
 

36
5.

8 
 

19
31

.1 
 

37
0.

2 
 

85
.3 

 
31

.5 
 

26
.9 

 
86

.6 
 

31
.6 

 
37

.7 
 

69
.0
 

 
di

05
02

39
 

83
.5 

56
0.

1 
78

5.
0 

6.
86

 
36

5.
8 

19
61

.6 
37

1.
8 

88
.6 

26
.7 

23
.7 

86
.5 

32
.3 

38
.6 

71
.4
 

di
05

02
40
 

 
83

.5 
 

54
8.

3 
 

77
9.

0 
 

6.
77

 
 

36
6.

0 
 

19
66

.5 
 

37
0.

4 
 

91
.7 

 
21

.4 
 

19
.7 

 
86

 
 

33
.3 

 
39

.6 
 

64
.3 

 

 



U
n

iv
er

si
ty

 o
f t

h
e 

W
itw

a
te

rs
ra

n
d

 
  

1
5

8

Ta
bl

e 
D

3:
 

 T
ab

le
 o

f 1
75

0 
rp

m
 d

ie
se

l p
er

fo
rm

an
ce

 re
su

lts
 

T
LC

 T
es

t 
 

S
pe

ed
 

 
Lo

ad
 

 
B

ra
ke

 P
ow

e
r 

 
In

di
ca

te
d 

 
In

di
ca

te
d 

 
im

ep
 

 
bm

ep
 

 
E

qu
iv

al
e

nc
e 

A
ir/

F
ue

l 
 

A
ir 

F
lo

w
 

 
F

ue
l F

lo
w
 

 
F

ue
l 

C
on

v 
is

fc
 

 
bs

fc
f 

 
In

j 
P

oi
nt

 
 

Ig
n 

P
oi

nt
 

 
Ig

n 
D

el
ay

 
 

N
am

e 
(r

pm
) 

(N
m

) 
(k

W
) 

W
or

k/
C

vc
le

 (
J)

 P
ow

er
 (

kW
) 

(M
P

a)
 

(M
P

a)
 

R
at

io
 

R
at

io
 

(g
/s

) 
(g

/s
) 

E
ff

(%
)
 (

kg
/J

) 
(k

g/
J)

 
(°

C
A

) 
(°

C
A

) 
(°

C
A

) 
di

06
02

01
 

17
48

.6 
6.

7 
1.

22
9 

16
9.

2 
4.

93
2 

0.
25

5 
0.

06
3 

0.
24

5 
61

.1
2 

17
.7

61
 

0.
29

 
9.

7 
5.

90
E-

08
 2

.4
01

 --
07

 
3
4
1
.0
 

 
35

8.
5 

17
.5 

di
06

02
07
 

 
17

51
.4 

 
13

.5 
 

2.
47

3 
 

19
8.

2 
 

5.
78

6 
 

0.
29

8 
 

0.
12

7 
 

0.
3 

 
49

.7
9 

 
17

.8
76
 

 
0.

36
 

 
15

.8 
 

6.
20

E
-0

8 
 

1.
50

E
-0

7 
 

34
1.

0 
 

35
8.

7 
 

17
.7 

 
di

06
02

08
 

17
51

.4 
22

.3 
4.

09
9 

25
6.

4 
7.

48
5 

0.
38

6 
0.

21
1 

0.
36

5 
40

.9
8 

17
.7

72
 

0.
43

 
21

.7 
5.

80
E  

1.
10

E-
07

 
34

2.
0 

35
8.

1 
16

.1 
di

06
02

14
 

17
51

.4 
27

.3 
5.

00
3 

27
4.

3 
8.

00
8 

0.
41

3 
0.

25
8 

0.
41

8 
35

.7
0 

17
.6

1 
0.

49
 

23
.3 

6.
20

E-
08

 9
.9

0E
-0

8 
34

2.
0 

35
7.

9 
15

.9 
di

06
02

20
 

17
51

.4 
37

.4
 

6.
86

6 
32

1.
0 

9.
37

1 
0.

48
3 

0.
35

4 
0.

54
3 

27
.5

0 
17

.3
98
 

0.
63

 
24

.9 
6.

80
E-

08
 9

.2
0E

-0
8 

34
2.

00
 

35
7.

30
 

1 
5.

3 
di

06
02

24
 

17
54

.2 
43

.1 
7.

91
8 

38
0.

2 
11

.1
16
 

0.
57

2 
0.

40
7 

0.
64

1 
23

.3
3 

17
.1

6 
0.

74
 

24
.7 

6.
60

E-
08

 9
.3

0E
-0

8 
34

2.
50
 

35
6.

70
 

14
.2 

di
06

02
27
 

17
54

.2 
50

.5 
9.

27
5 

43
3.

8 
12

.6
83
 

0.
65

2 
0.

47
7 

0.
78

3 
19

.1
1 

17
.1

48
 

0.
90

 
23

.7 
7.

10
E-

08
 9

.7
0E

-0
8 

34
2.

50
 

35
5.

90
 

13
.4 

di
06

02
34
 

 
17

57
.0 

 
52

.8 
 

9.
72

0 
 

43
8.

0 
 

12
.8

26
 

 
0.

65
9 

 
0.

49
9 

 
0.

95
4 

 
15

.6
8 

 
16

.9
43
 

 
1.

08
 

 
20

.6 
 

8.
40

E
-0

8 
 

1.
10

E
-0

7 
 

34
3.

00
 

 
35

5.
30
 

 
12

.3 
 

 T
LC

 T
es

t 
 

P
re

ss
ur

e 
 

B
ef

or
e 

C
at

. 
 

A
fte

r 
C

at
. 

 
M

ax
 P

re
ss

ur
e 

 
P

os
iti

on
 o

f 
 

M
ax

 
 

P
os

iti
on

 o
f 

 
M

ec
ha

ni
ca

l 
 

IT
E

 
 

B
T

E
 

 
V

ol
 

 
A

m
bi

en
t 

 
M

an
ifo

ld
 

A
ir

 
In

je
ct

or
 

 
N

am
e 

A
tm

. (
kP

a)
 

T
em

p.
 (

°C
) 

T
em

p.
 (

°C
) 

(M
P

a)
 

P
m

ax
 (

°C
A

) 
T

em
p.

 (
K

) 
T

m
ax

 (
°C

A
) 

E
ffi

ci
en

cy
 (

%
) 

(%
) 

(%
) 

E
ff 

(%
) 

T
em

p.
 (

°C
) 

T
em

p.
 (

°C
) 

P
re

ss
ur

e 
(M

P
a)

 
di

06
02

01
 

84
.0 

19
1.

6 
24

1.
0 

4.
92

 
36

4.
4 

12
88

.1 
37

1.
0 

24
.9 

38
.9 

9.
7 

91
.6 

28
.4
 

30
.4 

48
.9
 

di
06

02
07
 

84
.0 

21
3.

1 
26

7.
8 

5.
18
 

36
5.

2 
13

62
.4 

37
1.

6 
42

.7 
37

 
15

.8 
92

.1 
28

.8
 

30
.9 

78
.5 

di
06

02
08
 

84
.0 

25
1.

8 
31

2.
9 

5.
43

 
36

5.
2 

14
61

.0 
37

1.
6 

54
.8 

39
.6 

21
.7 

91
.6 

2
9
.3
 

31
.4 

74
.3 

di
06

02
14
 

84
.0 

28
5.

6 
34

0.
4 

5.
62

 
36

5.
2 

15
63

.8 
37

2.
0 

62
.5 

37
.3 

23
.3 

90
.7 

2
9
.7
 

32
.4 

73
.8 

di
06

02
20
 

83
.5 

36
9.

0 
41

6.
7 

6.
08

 
36

5.
2 

16
96

.1 
37

0.
2 

73
.3 

34
.0 

24
.9 

89
.6 

2
8
.4
 

30
.9 

71
.4 

di
06

02
24
 

83
.5 

45
7.

2 
50

1.
0 

6.
34

 
36

7.
0 

18
23

.9 
37

5.
2 

71
.2 

34
.7 

24
.7 

88
.3 

2
9
.3
 

32
.9 

72
.8 

di
06

02
27
 

83
.5 

52
7.

2 
58

7.
6 

6.
91
 

36
6.

6 
19

64
.4 

37
3.

0 
73

.1 
32

.4 
23

.7 
88

.2 
30

.5
 

32
.9 

76
.6 

di
06

02
34
 

 
83

.5 
 

58
2.

1 
 

80
0.

8 
 

6.
82
 

 
36

7.
2 

 
19

81
.0 

 
37

2.
2 

 
75

.8 
 

27
.2 

 
20

.6 
 

87
.0 

 
33

.6
 

 
34

.3 
 

71
.7 

 

 


