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ABSTRACT 

A project aimed at the development of a robot-based patient positioning system for 

high-precision proton radiotherapy is underway at iThemba LABS. Part of the project 

included the development of a portal digital x-ray imaging device that would be used 

to verify the patient treatment set-up. The imaging device consisted of a scintillation 

screen, front surface mirror and a high-resolution charged-couple device (CCD) 

camera. The total costs for the device were about 7 times less expensive than a 

commercial amorphous silicon flat panel detector. To improve the efficiency of the 

system, the CCD chip and scintillation screen were chosen so that the wavelength of 

the light from the screen closely matched the wavelength at which the CCD sensor 

has the maximum quantum efficiency. The digital images compared favourably with 

those of x-ray film. Although the digital images were of lower resolution due to the 

finite resolution of the CCD chip, they were considered satisfactory. The use of pixel 

binning allowed for the use of lower exposure settings when compared to exposure 

settings for un-binned images. This resulted in a reduction of patient dose without 

significantly compromising image quality. The device would not be used for 

diagnostic purposes, but only to verify patient position at treatment setup. As such, the 

digital images would be compared against digitally reconstructed radiographs (DRRs) 

of the fields and/or the treatment position, which are created from the treatment 

planning Computed Tomography (CT) images. In general, the spatial resolution of the 

DRRs is also comparably lower than digital x-ray images, as the resolution of the 

DRRs is limited to the voxel size of the CT images. 
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CHAPTER 1 INTRODUCTION  
 

A project that was initially funded by a Technical Co-operation Programme of the 

International Atomic Energy Agency (IAEA), is underway at iThemba LABS 

(Laboratory for Accelerator Based Sciences). iThemba LABS is the only facility in 

the world that offers both proton and neutron therapy, and is the only particle therapy 

facility in Africa. This project was aimed at the development of a patient positioning 

system for high-precision proton radiotherapy. The project included the development 

of a portal radiographic system to verify the patient position in a setup for proton 

therapy. This report describes the work done in developing the device to allow the 

acquisition of digital x-ray images of the patient.  

 

Proton therapy is considered a very effective treatment modality in the treatment of 

cancer lesions close to critical anatomical structures. Its success is due to the 

characteristic Bragg peak in the depth-dose curve of the proton beam. The Bragg peak 

is followed by a steep dose fall off to zero dose and as a result, the tumors can be 

accurately treated whilst completely sparing normal tissue behind the distal edge of 

the beam. It is essential that the patient be correctly and precisely positioned with 

respect to the proton beam, to ensure the accurate delivery of the dose to the treatment 

volume. Any misalignment of the beam and the volume being treated might be 

detrimental to the patients. Missing the treatment target volume, even partially, 

reduces the tumor control probability and increases the normal tissue complication 

probability (Herman et al., 2000). Several studies have been conducted to validate and 

determine the importance of eliminating treatment set-up errors (Goitein, 1985; 

Lomax et al., 2001). 
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Currently at iThemba LABS, a stereophotogrammetry (SPG) system is used to assist 

in positioning the patient undergoing proton therapy. Stereophotogrammetry 

techniques have their origins in procedures for land surveying to compute a 

three-dimensional view (a 3-D model) of the objects of interest, based on a pair of 

stereo images. Stereo images are two graphical representations of the same area taken 

from different view angles; however, the views must be at some relatively large angle 

to each other. The clinical SPG system cross-references reflective makers on the 

patient mask and compares the current position of the markers with the position of the 

markers from the treatment plan as computed by the treatment planning system. The 

position of the patient is then adjusted accordingly using a computer that controls the 

motorized treatment chair in which the patient sits. The position of the patient relative 

to the beam line also has to be checked before treatment can commence. To verify 

that the patient is positioned correctly, portal x-ray films are taken, which are then 

compared to a reference image. The reference image can be a simulation film or 

digitally reconstructed radiograph (DRR); the latter is constructed from a series of 

Computed Tomography (CT) images of the patient (Herman et al., 2001; Boyer et al., 

1992). A simulation film is a radiographic film taken of the patient during the 

simulation of the treatment. A digitally reconstructed radiograph, DRR, is a two-

dimensional x-ray image of detected primary photon intensity, which can be formed 

from the 3D volumetric CT data by ray-tracing from the source to an (imaginary) 

detector plane. Resolution is limited by the finite slice width of the CT scans, which is 

generally much larger than the in-slice spatial resolution. 

 

Figure 1.1-1 shows how the DRR is calculated from the transit dose. Transit dose is a 

measure of the primary radiation transmitted through the patient and measured at a 
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point on the central ray at some point beyond the patient.The point xd, yd is a general 

point in the DRR at which the detected signal is D(xd, yd, A), within a field size of A. 

The transit dose is computed at a general point r, in the irradiated  part of the patient. 

R(r, xd, yd) is the radiological thickness from r to (xd, yd), which is equivalent to the 

distance travelled by the x-ray beam from entry to exit of the patient. The point e is 

where the beam from the source S exits the patient . A truly 3D treatment planning 

system can generate a digital radiograph (also known as the portal image) by ray 

tracing from the x-ray source S through the CT data. This ray tracing takes account of 

the ray divergence and differential photon attenuation. The DRR is given by  

 

RIIInyxDRR wyxdd dd
µ== )(),( ,0  ,                                  1.1 

 

where I0 is the photon intensity from the source, and wµ is the linear attenuation 

coefficient of water (computed for the effective diagnostic energy of the CT scanner, 

between 50 keV and 120 keV), and 
dd yxI ,  is the detected primary-photon intensity 

given by  









∆−= ∑

i

ielyx II
dd

σρ ,0, exp  .                                         1.2 

σ  is the photon attenuation cross section, ∆ is the CT voxel size iel ,ρ  is the electron 

density in the ith voxel and the sum is over all the voxels which lie on the ray from 

the source to the element xd, yd of the detector. By definition the radiological thickness 

R is  

∑ ∆= rel

ielR ,ρ   ,                                                    1.3 

Where rel

iel ,ρ  is the electron density of the ith voxel relative to that of water. 



 

 4 

 

The computation of a DRR (Webb, 1993 and Webb, 1997) from a series of CT slices 

in the chest region of the patient is shown in Figure 1.1-1.  

 

 

Figure 1.1-1 An illustration of how CT data is aquired and used to calculate the 

digitally reconstructed radiograph (DDR) [Modified image from Webb, 1997] 

At iThemba LABS the verification x-ray images are currently obtained from a 

diagnostic x-ray tube, which when it is being used, is aligned with the proton beam 

axis. The patient is positioned between the x-ray tube and the x-ray film, which is also 

in the beam path, with the x-ray tube upstream with respect to the patient. However in 

the long run, portal x-ray films are expensive, and their processing and interpretation 

is labour intensive and time consuming. In addition, x-ray films are manually 

compared against DRRs and simulation films, a process that can be highly subjective, 

unreliable and inefficient. Potentially a more efficient and cost effective x-ray 
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imaging system can be implemented if a digital device for acquiring the x-ray images 

replaces the x-ray films. 

 

The imaging device that has been developed consists of a scintillation screen, front 

surface mirror and a high-resolution charged-couple device (CCD) camera, which 

captures the radiographic images formed on the scintillation screen. Previous work 

was done on the selection of the scintillation screen and camera to be used in the 

construction of the imaging device (Renema, 1999; Ryneveld, 1995). The Rarex 

G-130 (Gd2O2S:Tb) scintillation screen together with the Apogee AP47p camera was 

chosen. The scintillation screen gave a relatively high light output compared to other 

screens that were tested previously, and the wavelength of the emitted light closely 

matched the wavelength for which the CCD of the Apogee AP47p camera has the 

maximum quantum efficiency. Some of the properties of the Rarex G-130 are shown 

in Table 1.1-1 below. 

 

Table 1.1-1 Rarex G-130 scintillation screen properties [From Lätti, 2000] 

Composition Emission 

efficiency 

Deposition 

density 

(mg/cm
2
) 

Phosphor 

thickness 

(mm) 

Visual 

screen 

resolution 

(lp/mm) 

Wavelength 

peak 

(nm) 

Gd2O2S:Tb 16 % 129.2 0.53 5.0 545 

 

 

The images were then viewed on the display of the computer to which the CCD 

camera was connected. Essentially, there were two main aspects to the development 

of the imaging device. The first was to carry out a series of tests to characterize the 
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optical part of the imaging system.  These optical tests were carried out to establish 

appropriate design parameters, which would give a suitable compromise between the 

compactness and the best optical characteristics of the x-ray imaging device. The 

second aspect in the development of the device was to determine the performance of 

the device. Investigations were also done to see how to improve the imaging device. 

These included the use of an anti-scatter grid and corrections for distortion caused by 

the optical system. 

 

1.1 Motivation for the Project 

One of the main reasons for not purchasing a commercially available amorphous 

silicon flat panel detector for the patient position verification system was financial 

constraints. Large amorphous silicon detectors were significantly more expensive than 

the proposed camera-based system. A rough estimate showed that for the proposed 

camera system, the cost for the camera with lens, front surface mirror, scintillation 

screen and other fabrication costs, would be about R70 000. An amorphous silicon 

flat panel detector meeting the proposed system requirements would be in the region 

of about R500 000, which was almost 7 times more expensive than the digital camera 

system. 

 

Another disadvantage with the use of amorphous silicon detectors was that, there was 

little data available to show how susceptible these detectors were to radiation damage 

when used in a proton therapy environment. In the event of the CCD camera being 

damaged by exposure to radiation, it would be considerably cheaper to replace the 

CCD sensor, compared to replacing the entire amorphous silicon detector. 
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The use of a digital imaging system allows x-ray images to be obtained in a very short 

time, unlike x-ray film, which requires a substantial amount of time to develop, store 

and maintain. With the camera system, the images were obtained in digital form, thus 

enabling computerized comparisons with DRRs. Digital radiography in general has 

the potential of improving image quality, reducing patient dose, improving data 

storage and retrieval, and reducing cost by eliminating the use of film (Giger and Doi, 

1984). Unlike film, digital images allow for the implementation and application of 

image processing tools, such as contrast enhancement and image fusion. Film has the 

disadvantage that it has a fixed slope of the “characteristic curve”, which limits 

contrast optimisation (Althof et al., 1996). 

 

There are however two drawbacks for a digital system. The digital images from 

camera-based imaging systems are generally of lower resolution and are subject to 

distortions due to the optical lens system. In the development of this imaging device 

the resolution was quantified, and corrections were made for the distortions. 

 

The main work in the development of the imaging device involved:  

(i) Optimising the design that gave the best compromise between the optical 

characteristics and the compactness of the device.  

(ii) Developing software and techniques to correct for or minimize the effects of lens 

distortion, as well as the biasing, dark current and sensitivity variations in the CCD. 

(iii) Determining the x-ray imaging characteristics of the device and the lowest 

exposure to the patient whilst maintaining adequate image quality. 

(iv) Determining the shielding requirements for the camera. 

(v) Studying the effects of veiling glare. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Lens Coupled Systems 

The imaging device developed was a lens-coupled system, which used a CCD chip as 

the detector. The device also utilised a scintillation screen, which provided the light 

image that was focused by the lens onto the CCD. Karellas et al. (1992) investigated 

the physical characteristics of a CCD image detector and its use in digital imaging. 

They suggested the use of a faster lens, or fibre optic coupling, as a means of 

improving the lens coupling efficiency. The speed of a lens refers to the maximum 

aperture diameter, or minimum f-number of a photographic lens, where the f-number 

is inversely proportional to the diameter of the lens. A lens with a larger maximum  

aperture diameter is a fast lens because it allows more light to the focal plane, 

allowing a faster shutter speed. A lens may be referred to as "fast" or "slow" 

depending on its maximum aperture compared to other lenses of similar focal length 

designed for a similar film format. Yu and Boone (1997) provided a derivation for the 

calculation of lens coupling efficiency. The optical coupling efficiency of the lens can 

be defined as the ratio of the optical energy incident upon the detector to the optical 

energy from the scintillator. Historically, calculations of lens coupling efficiency 

made assumptions as to whether the emission properties of the scintillator were 

Lambertian (i.e. light is equally emitted over all angles) or point radiators. Lambertian 

emitters obey Lambert’s cosine law, which states that the radiant intensity emitted in 

any direction from a unit radiating surface falls off as the cosine of the angle between 

the normal to the surface and the direction of the radiation. The radiant intensity of 

such a surface is maximum normal to the surface and decreases in proportion to the 

cosine of the angle from the normal. This is described by 
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N = Nocosθ ,                      2.1 

where N is the radiant intensity, No is the radiance normal to an emitting surface and θ 

is the angle between the viewing direction and the normal to the surface. It is 

generally accepted that every point on the surface of a scintillating screen emits light 

as if it were a uniform point source. Such a surface is regarded as an extended 

diffusing surface, which obeys Lambert’s law (Liu et al., 1994).  

 

 However, there are different  classes of scintillators that are available. Yu and Boone 

(1997) suggested a more broadly applicable equation, which is useful for computing 

lens-coupling efficiency under more general conditions, without making assumptions 

about the emission characteristics of the scintillator. Liu et al. (1994) examined 

common lens coupling efficiency equations, and emphasised their proper use and 

associated parameters in the estimation of the signal-to-noise ratio (SNR). SNR in 

general is a measure of signal strength (which has the desired information) relative to 

background noise (Harwood, 2007). In image processing, the SNR of an image is 

usually defined as the ratio of the mean pixel value to the standard deviation of the 

pixel values (Rangayyan, 2005).  

 

Giakoumakis and Miliotis (1985) investigated the angular distribution of the light 

emission from scintillation screens, and how this affected the calculation of the 

modulation transfer function (MTF) of a system using such a screen. In general the 

MTF is a two-dimensional function expressed in terms of either a two-dimensional 

frequency vector k as MTF(k), or orthogonal frequencies u and v as MTF(u,v) (Beutel 

et al., 2000). The modulation transfer function can be defined as the ratio of the 

spatial frequencies of the image over the spatial frequencies of the input object being 
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imaged. The MTF describes the ability of the system to record the spatial frequencies 

(Oakley, 2003). Giakoumakis and Miliotis’ observations showed that the light emitted 

by phosphor screens deviated considerably from the Lambertian distribution. Errors 

arising from ignoring the real angular distribution could introduce uncertainties of 

±5-% to ±25 % in calculations of the light flux emitted and the absolute efficiency. 

They provided an equation, which was fitted to experimental data that gave a better 

estimate of the angular distribution of the light emitted from the scintillating screen. 

 

Partridge et al. (1999) have investigated the optical scattering within camera-based 

electronic portal imaging devices. Their results suggested that the main source of 

optical scattering is multiple reflections between the scintillation screen and the 45° 

mirror. They found that for large radiation fields the scatter could be 20 % of the 

primary scintillator light intensity. To remove the optical scattering they proposed 

using a louvre grid (privacy screen) placed on the surface of the scintillation screen. 

This method has an advantage over deconvolution methods in that no calculations are 

required and all the scattering reduction is achieved optically. The use of the 

antiscatter grid was shown to effectively remove the optical scattering but introduced 

a uniform attenuation of about 25 %. The inclusion of the grid did not contribute to 

structured noise, and seemed to have very little effect on spatial resolution. 

 

2.2 Lens Distortions 

It is well known that the use of a lens introduces some distortion in imaging. Liu et al. 

(2000) highlighted the significance of the presence of geometrical distortions in 

position-dependent procedures, where errors introduced by both radial and tangential 
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distortion, reduced the spatial accuracy of lens-coupled CCD systems. They suggested 

a method to correct for radial distortion, which used a polynomial transformation 

technique. The radial position of each pixel and the tangential offset component were 

corrected by applying two sets of N-order polynomials: 

L++++=′ 4

4

3

3

2

21 θθθθθ aaaa ,                                   2.2 

L++++=′ 4

4

3

3

2

21 ρρρρρ bbbb ,                             2.3 

where, ai and bi are the distortion coefficients, and a feature point on the distorted 

image was specified by the polar coordinate ),( θρ  and the point on the distortion-free 

image was denoted as ),( θρ ′′ . 

 

X-ray images of a grid wire placed in front of the scintillation screen were taken, and 

using digital image processing techniques, the image was then corrected for 

distortion. They found that a fourth order polynomial gave better results, although in 

theory a higher order polynomial gives less residual error. However, such higher order 

polynomials can cause unstable solutions. This approach could be adopted as part of 

the quality assurance of the imaging device. The method for correcting for lens 

distortion, which was used in this work, required the camera to be removed from the 

rest of the imaging device. This method was initially used before the construction  of 

the box housing the camera, and no subsequent camera calibration were done; it was 

noted that a less cumbersome method could have been used. With the use of a 

calibration wire grid, as used by Liu et al. (2000), there would be no need for the 

camera to be removed from the rest of the device to obtain the lens distortion 

coefficients. 
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2.3 Radiographic Imaging Systems 

Fujita et al. (1989) presented techniques to evaluate a commercial radiographic 

imaging system. They investigated the system response determined by the 

characteristic curves, the spatial resolution given by the modulation transfer function 

(MTF) and the noise analysis from the Wiener spectra. The Wiener spectrum 

represents the level of noise as a function of the spatial frequency and is similar to the 

MTF. Just as the ability of an imaging system to record an image contrast decreases as 

the object’s spatial dimension becomes smaller and smaller, the ability of the system 

to record noise fluctuations decreases as the fluctuations become smaller and smaller 

in their spatial extent. The Wiener spectrum describes the noise amplitude as a 

function of spatial frequency and equals the Fourier Transform (FT) of the 

autocorrelation function in a uniformly exposed radiographic image. The 

autocorrelation function provides a measure of the correlation between noise 

fluctuations that occur at two different points in an image. In general, it is a function 

of the spatial distance between the points Ax and Ay, (both in x direction and y 

direction) and is thus two-dimensional in nature. The autocorrelation for a separation 

Ax in the x direction is calculated by multiplying the reconstructed value at a point 

x,y, r(x,y), by the value r(x + Ax,y) at x + Ax,y, to form the product r(x,y) × r(x + 

Ax,y). The autocorrelation function is then determined by averaging the product over 

all values of x and y throughout the image. The autocorrelation function of the noise is 

related to the Wiener spectrum also known as the noise power spectrum (Hanson, 

1998 and Oakley, 2003). One way of estimating the autocorrelation for a given noise 

image is to first estimate the noise power spectrum and then calculate its inverse FT. 

Since the autocorrelation function may be calculated from the noise power spectrum, 

and vice versa, both of these methods provide equivalent and complete descriptions of 
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the correlations present in the noise (Hanson, 1981 and Wagner, 1976). Fujita et al. 

(1989) found that for exposures less than about 2.58 × 10−8 C/kg, quantum mottle was 

dominant. Quantum mottle is mottle that is caused by the statistical fluctuation of the 

number of photons absorbed by the scintillating screens to form the light image. At 

high exposures, system intrinsic noise such as structure mottle of the imaging plate 

and electronic noise was dominant. Giger and Doi (1984) investigated the effect of 

various digital parameters on the MTF of a digital imaging radiographic system. 

 

2.4 Veiling Glare 

Seibert et al. (1984) investigated the theoretical derivation of a point spread function 

that describes the veiling glare in x-ray image intensifiers, i.e. the scatter of electrons 

and light photons within an x-ray image intensifier. The scatter resulted in a 

degradation of the low-frequency response of the acquired image. Electrons and light 

produced from brighter areas, corresponding to regions of high transmission of the 

detected x-ray projection, migrated to the adjacent darker regions of low transmission. 

The theoretical methods for deriving the analytic point spread function (PSF) were 

confirmed with experiments. The experimental measurements were performed using 

various sized lead disks centrally located on the image receptor, giving a calculated 

contrast ratio as a function of disk radius. A simplification of the analytical form of 

the PSF gave an easy method relating contrast ratios to the parameterisation of the 

proposed PSF for an image intensifier. Seibert et al. (1985) also investigated the 

removal of the effects of veiling glare from images using mathematical deconvolution 

techniques. Fujita et al. (1985) noted that they had to collimate the x-ray beam to a 

small area to avoid the contribution of veil glare for their measurements using slits. 
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2.5 Patient Exposure and Dosimetry in Radiology 

Motz and Danos (1978) examined the quantitative relationship between the image 

information content and the patient exposure. The information content was expressed 

in terms of spatial resolution and the number of greyscale levels required for detection 

of the structure of interest to the radiologist. They suggested that with the use of 

image processing and contrast enhancement tools, it should be possible to determine 

the patient exposure from the image information content desired by the radiologist, 

rather than the imaging requirements as in the case of film. X-ray film contains a 

considerable amount of image information, which cannot be detected by the human 

eye because of variations in film density that are below the visibility threshold. With 

image processing tools, it is possible to retrieve all this information even in low 

contrast images, which would normally be below the visibility threshold. Motz and 

Danos’ (1978) results showed that for all subject thicknesses greater than 5 cm, a single 

exposure kilovoltage (between 40 kV and 70 kV) with adequate filtration, together 

with image enhancement and anti-scatter techniques could be used. They also 

recommended the use of antiscatter techniques in radiographic procedures to increase 

the image information content without necessarily increasing exposure. 

 

Tapiovaara et al. (1999) investigated the effects of x-ray tube potential, beam 

filtration and antiscatter grids on patient dose and image quality in paediatric 

fluoroscopy. They highlighted the importance of optimizing the imaging techniques 

for digital radiographic systems so that their advantage over conventional systems 

could be fully utilized, a view that was also supported by Carlsson and Chan (1999). 

Tapiovaara et al. suggested an optimal technique that minimizes the absorbed dose in 

the patient with a constraint on constant image quality, where image quality was 
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expressed in terms of the signal to noise ratio, and not equal to input phosphor 

brightness. Contrary to the use of the automatic brightness control system of 

conventional x-ray machines, which are designed to increase the tube potential with 

patient thickness, their results suggest the most dose efficient tube voltage is almost 

independent of patient thickness, with an x-ray tube potential of  50-kV and 0.25 mm 

copper added filter resulting in dose savings of about 50 %. Their technique makes 

use of heavy filtration, thus requiring high tube loading, with tube loading increasing 

by a factor as much as 7 times compared to reference conditions of 70 kV and the 

basic 2.7 mm aluminium added filtration. They also showed that the interpretation of 

dose efficiency was dependent on the dosimetric quantity that was used, namely 

effective dose, mean phantom dose and air kerma. Dose efficiency can be taken to 

refer to the overall efficiency and is a product of geometric efficiency, quantum (also 

called capture efficiency) and charge conversion efficiency (Bronzino, 2000). The 

overall efficiency of the system should be high to minimize the patient radiation dose.  

 

Geometric efficiency refers to the area of the detector sensitive to radiation as a 

fraction of the total exposed area. Quantum efficiency refers to the fraction of incident 

x-rays on the detector that are absorbed and contribute to the measured signal. 

Quantum efficiency is discussed in Appendix C. Conversion efficiency refers to the 

ability to accurately convert the absorbed x-ray signal into an electrical signal. To 

convert the photo-generated charges that are collected in the CCD pixels into a 

measurable quantity (e.g. a voltage signal), the CCD sensors employ an output node 

and a read-out circuitry to perform this function. The charges that are generated from 

incident photons are collected in the pixels and transferred across the CCD register 

before they can be converted into a voltage, which can be amplified before 



 

 16 

transmission. The performance of this conversion stage is evaluated in terms of the 

charge conversion efficiency, which is expressed as the voltage per unit charge (Li 

and Nathan, 2005).  

 

The effective dose is the sum of the weighted equivalent doses for all irradiated 

tissues or organs. Its is given by the expression  

 

∑
Τ

⋅= TT HwE ,                                                    2.4 

  

where HT is the equivalent dose in tissue or organ, T, and wT is the tissue weighting 

factor representing the proportionate detriment (stochastic) of tissue, T, when the 

body is irradiated uniformly. The tissue weighting factor takes into account the 

relative detriment of each organ and tissue including the different mortality and 

morbidity risks from cancer, the risk of severe hereditary effects for all generations, 

and the length of life lost due to these effects (NCRP, 1993 and ICRP, 1996). 

 

The mean phantom dose, is the mean absorbed dose in the phantom and is given by  
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where mT is the mass of the phantom and 
dm

d
D

ε
=  is the absorbed dose in the mass 

element, dm (ICRP 1996). 

 

 

Air kerma is kerma in a given mass of air. It is the kinetic energy released per unit 

mass of a volume of air when it is irradiated by an x-ray beam. It is a measure of the 

amount of radiation energy actually deposited in or absorbed in a unit mass of air. 
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Kerma, K, is defined as the quotient of dEtr by dm, where dEtr is the sum of the initial 

kinetic energies of all the charged ionizing particles liberated by uncharged ionizing 

particles in a volume element of mass dm, thus:  

dm

dE
K tr= .                                                        2.6 

The unit of kerma is joule per kilogram (J/kg) which is also the gray (Gy). 

 

In determining the most dose efficient imaging technique, Tapiovaara et al. (1999) 

showed how the dose-to-information conversion factor (SNR
2
 /dose) versus tube 

potential curves varied when the dosimetric quantity was changed, as indicated in 

Figure 2.5-1. 

 
Figure 2.5-1 The effect of various dosimetric quantities in the dose-to-

information conversion factor, SNR
2
/dose. SNR

2
/mean dose in the phantom [µGy-

1
]; SNR

2
/effective dose (µSv-1]; SNR2

/entrance air kerma (without backscatter) [µGy-
1
]. [Image from Tapiovaara, 1999]. 

The imaging performance was evaluated in terms of SNR
2
/dose, where the maximum 

in a given imaging task identifies the most dose-efficient imaging technique for that 

task. 
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CHAPTER 3 METHODOLOGY 
 

All measurements were done using the Apogee Camera, model AP47P, camera serial 

number A2804 and CCD serial number 01063-09-19. The CCD chip on the Apogee 

AP47p camera is a midband CCD from E2V Technologies. The CCD chip has an 

array size of 1024 × 1024 pixels and has a quantum efficiency of almost 92 % at the 

peak emission wavelength of the Rarex G-130 scintillation screen (about 545 nm) as 

shown in Figure 3.1-1.  

 

 

Figure 3.1-1 The spectral response of the CCD47-10 High Performance AIMO 

Back thinned CCD Sensor. [Image from E2V Technologies, 2002] 
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 A Nikon Nikkor, 35 mm, f/14, lightweight, ultra-high speed, wide-angle lens was 

used. The lens had 9 elements in 7 groups, and had an actual focal length of 36 mm. 

Spherical, astigmatism and coma aberrations are well corrected for in this lens, by the 

manufacturer, to ensure uniformly sharp images of high contrast over the entire image 

plane even at full aperture. It has a minimum focus distance of 0.3 m, a nine-blade 

diaphragm with a minimum f-stop of 16 and a picture angle of 62°. The application of 

multilayer antireflective coating on the air-to-glass lens surface minimizes flare and 

ghost, suggesting improved contrast and natural colour rendition (Nikon Corporation). 

Lens flare and ghost are image artefacts which, when taking images near a strong 

light source might not necessarily be in the image. Flare is non-image-forming light in 

a camera due to the reflection of light from any surface such as that of the lens, lens 

mount or the interior of a camera. Flare is not an aberration, and manifests in a 

number of ways including coloured patches, ghost images, haloes, or a haze over the 

entire image. Flare can be caused by reflections at air/glass interfaces, at the lens 

barrel, at the diaphragm blades, at the film, or scattering at impurities within the glass, 

or even camera light leakage. Multi-coatings of the lens greatly reduced the 

magnitude of reflections at the air/glass interfaces of lens elements, but the 

performance of a coating is not constant over the spectrum and depends on the angle 

of incidence. When the outline shape of localized flare resembles the shape of the 

limiting aperture, it is identified as a ghost image. A ghost image is an undesirable 

image typically of the camera diaphragm opening. It is a form of flare spot and may 

be removed or reduced by use of an efficient lens hood (Stroebel and Zakia (1993)). 

 

Measurements were done to characterize the optical system. The shortest possible 

exposures were 0.02 s, due to limitations of the electromechanical shutter (Apogee 
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Instruments Inc). As a result, an exposure time of 0.025 s was chosen to allow for the 

use of more f-stops without saturating the pixels when using room lighting. The 

software used to capture the images was MaxIm DL/CCD, which ran on a Windows 

platform. The images were saved using the commonly used formats such as JPEG and 

BMP, but the default format was the FITS (Flexible Image Transport System). The 

FITS format has extensive support for header information to describe the image and 

the equipment used. More importantly, it saves the image information in raw format 

that does not involve loss of information due to compression of data. 

 

3.1 Calibration Frames (Dark, Flat and Bias Frame) 

Calibration frames (bias frame, dark frame and flat frame) were taken to correct for 

different CCD effects. Each pixel had a different bias level when it was read from the 

CCD. A bias frame is a zero-length exposure with the shutter closed that is subtracted 

from each image to account for the electronic offset. Dark current produced by 

thermal effects accumulates at different rates in every pixel, and can lead to large 

amounts of noise in the image if not compensated for. Dark current can be eliminated 

or minimised by operating the CCD chip at temperatures below ambient temperature. 

Cooling can either be done by using a liquid nitrogen dewar or by Peltier cooling. The 

type of cooling depends on the integration time and minimum acceptable signal-to-

noise ratio; the CCD chip in this work was cooled by Peltier cooling. To prevent 

thermal shock, the temperature of the CCD must be ramped up or down very slowly, 

allowing about 15 minutes for the required temperature to be reached. The effect of 

dark current can be reduced by subtracting a dark frame from the image. A dark frame 

is an equal exposure of the same exposure time as the image to be taken, with the 

shutter closed, at the same thermoelectric cooler temperature as the light field. It 
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shows the thermal signal contribution to each image from the CCD itself. Dark frames 

were taken by covering the camera and lens with a thick black cloth, which was 

folded to reduce the light reaching the camera. It was then determined how the dark 

current varied with temperature.  

 

A flat frame is an image of an exposure from a uniform source of light. The flat-field 

frame accounts for the artefacts in the optical path such as vignetting and dust 

particles on the lens, as well as differences in light sensitivity of each pixel. 

Vignetting is the blockage of light rays by a surface other than the aperture and occurs 

towards the corners of the image. It results from a mismatch between the optical pupil 

and the field of view of the lens, which may cause the corners of the image field to be 

darker than the rest of the image. The field of view is the viewable area of the object 

that fills the camera’s sensor, which for this work is the CCD chip. The size of the 

sensor’s active area, together with the working distance between the scintillation 

screen and the camera’s lens, and the optical properties of the lens (in particular the 

focal length), are important factors in determining the field of view. Generally, under 

similar conditions, larger sensors give larger field of views. On the other hand, if the 

lens is not able to support a large CCD chip size a “tunnel effect” results, caused by 

vignetting with the edges of the field being darker.  

 

The flat frame does not need to be the same exposure length as the normal image, but 

its pixel values should be about a third of the saturation value in order to have a good 

signal-to-noise ratio (Diffraction Limited, 2000). If the pixel values are too high or 

too low this might not improve the quality of the image, or worse, it might even 

degrade the image quality. A white paper with dimensions greater than 30 × 30 cm2
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on a black board was used, with the camera at the working distance. Flat images taken 

using ambient room lighting did not result in a uniform image. A diode ring with 

green high intensity light emitting diodes (LEDs) was then used. These LEDs where 

chosen because the CCD was more sensitive to green light. The diode ring was placed 

around the camera lens. The resultant light falling on the white paper was not uniform 

as each diode formed a distinctive circular light field of its own. Two 150W halogen 

filament lamps on either side of camera were then used to uniformly illuminate the 

white paper, to give a slightly more uniform image. Instead of calibrating the entire 

optical system it was then decided to calibrate “just the camera”, using a method 

suggested in the MaxIm DL user manual. This was done by making use of a 17.5 cm 

long black opaque tube of diameter 7.5 cm. One end of the tube was covered with 

white photocopy paper. The lens was removed from the camera and a tube was then 

placed in front of the camera, where the lens would have been. Exposures were taken 

which produced a brightness level of about 30 % of the saturation value. The flat 

frame was dark-subtracted, normalized and then divided into each image. 

 

3.2 Working Distance and the Depth of Field 

The working distance that would allow the image to be covered as much as possible 

by the object, was then determined. The working distance is the distance from the 

front of the lens to the object under inspection, and in our application the object is the 

scintillation screen. For a given lens, the working distance must be chosen so that the 

image of the object maximally covers the CCD array. The scintillation screen was  

30 × 30 cm2
, and this was accepted as the dimensions of a typical object. Images were 

taken with the camera at different distances from the object until a distance was 
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reached that had the object covering almost the whole image. This distance was taken 

to be the working distance. The working distance was used as a guide for the overall 

dimensions of the “test rig”. The “test rig” was designed in the form of an “L” shape, 

and the camera was mounted on it. It consisted of a movable flat metal panel, whose 

plane was at a 45° angle to the mirror, with the camera mounted on rails as shown in 

Figure 3.2-1. Alongside the rails was a fixed graduated linear scale to indicate the 

distance moved by the camera. A white paper with a 30 × 30 cm2
 square drawn on it 

was placed on the flat panel. The panel was positioned such that the 30 × 30 cm2
 

square drawing would cover the image. The appropriate position of the camera was 

noted and this was taken as the zero position. At this position the distance of the 

camera to the mirror plus the distance of the panel to the mirror corresponded to the 

working distance. For information on the depth of field refer to section C.2 of 

Appendix C. 
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Figure 3.2-1 A test rig for doing the optical test for the CCD Camera 

 

The position of the panel and the camera was adjusted, with images taken at different 

panel and camera positions. For fixed panel and mirror positions, the camera positions 

were then adjusted until a position was reached that had the object (30 × 30 cm2
 

square) covering almost the whole image. The distance from panel to mirror was 

determined to be 375 mm, and the distance from mirror to the center of camera was 

taken to be 549 mm, giving a working distance of 924 mm. The required minimum 

mirror size was 220 mm × 220 mm. 

 

To focus the camera a white disc (2 cm in diameter) on a black background was 

placed in the centre of the flat panel. The full-width at half maximum (FWHM) of the 
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disc was measured (using the MaxIm DL/CCD software) from images taken of the 

white disc. The FWHM was used as an indication of how sharply focused the image 

was. FWHM is a simple measure of the width of a distribution, and was obtained 

using a built-in tool in MaxIm DL/CCD software. When the camera is focused the 

white disc would appear bright (indicated by large maximum pixel value) whereas an 

image of the white disc when the lens is completely out of focus, will be blurred. The 

lens focus was adjusted by trial and error until a minimum value of FWHM was 

reached with the largest maximum pixel value. At this minimum value of the FWHM 

the camera was said to be focused. After the camera was focused, the resolution was 

then quantified using bar charts, similar to the one shown in Figure 3.2-2.  

 

 

Figure 3.2-2 Diagram showing the Bar chart test pattern 
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Images of different bar charts were taken. The images were taken at a fixed camera 

position. On reaching the bar chart with the smallest line pairs that could be resolved, 

the camera was then moved to establish the depth of field. The depth of field is the 

amount of object movement (in and out of focus), which is allowable to maintain 

acceptable image focus. It gives an indication of how sensitive the system is to 

defocusing. The camera was moved as close as possible to the mirror in small 

increments. At each incremental displacement, images of the line pairs was obtained. 

The camera was moved up to a point where the line pairs could not be resolved.  

 

3.3 Characterisation of Apogee AP47p Camera 

Initial exposures indicated that there were variations in exposures captured under the 

same conditions. Tests were done to confirm the performance specifications of the 

AP47p camera as per the data sheet given in Appendix A. The tests used were those 

in Appendix B as given by Apogee Instruments Inc. (Apogee Instruments, Inc.). 

Measurements were done with the CCD temperature set to –20 °C, except for the dark 

count which was done at –27 °C, which was the temperature indicated on the data 

sheet. 

 

3.3.1 Exposure Variation 

Three methods were used to acquire flat field images to determine if there was any 

variation in the flat field images. The camera was set to focus at an object at infinity. 

A series of at least 5 flat field measurements were taken with different illuminations. 
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To vary the illumination reaching the camera lens, a different number of sheets of 

paper were placed on top of the lens hood of the camera. Exposures of 0.1 seconds 

were made. 

 

The second method involved the camera facing a white background. A light source, 

whose intensity could be varied using a potentiometer dial, was used to illuminate the 

room. Nine equally spaced dial positions were marked, ranging from position 0 

(brightest dial setting) to position 8 (dimmest dial setting). For the flat field, the dial 

position 5 was used. The third method entailed taking a sequence of flat frames with 

the set-up as shown in Figure 3.3-1. A light source was made to shine on the white 

ceiling to obtain a uniform light field, and the camera was placed upright facing the 

ceiling. A paper covering was then placed in front of the camera lens. The third 

method was the method of choice. 

 

 

Figure 3.3-1 A diagram showing the set-up of the light source and the camera. 

 

The camera was then focused manually. A “bar chart” test pattern (similar to the one 

shown in Figure 3.2-2) was used as the object to be imaged; it was placed at a 
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distance of about 86 cm from the camera. Images for varying room illumination were 

then taken.  

 

3.3.2 Linearity 

The camera linearity was also verified, where linearity was defined as how 

consistently the CCD responded to light over its well depth. The well depth is the 

number of electrons that can be accumulated in each pixel, a typical value being 

100-000 with a minimum of 60 000, measured at 253 K and 20 kHz CCD readout 

speed. The camera was set up as before with only one sheet of paper placed over the 

camera opening, to produce a uniform light. Exposures were taken for times of 0.0 s 

to 1.0 s in increments of 0.1 sec, 1.0 s to 2.0 s in increments of 0.2 s and 2.0 s to 5.0 s 

in increments of 0.5 sec. 

 

3.3.3 Signal Variance, Gain 

The signal variance was then measured. The method for determining the system’s 

gain in electrons per ADU was used with the camera set-up shown in Figure 3.3-6. 

The number of photons per ADU indicates how many photoelectrons are required to 

increase the pixel value by one count. A photoelectron is produced whenever a photon 

is detected by the pixel. The method involved taking multiple exposures with 

increasing light, with an exposure time of 0.1 sec. A bias frame was also taken. 

Standard deviation and mean count data were collected for each image. The variances 

were then plotted against the net mean signal values. The net mean signal value from 

the multiple exposures for a particular light intensity was the mean value minus the 

mean bias value. The slope of the line represented the gain of the system. The mean 

and standard deviation values were obtained with the cursor positioned at the center 
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of the image for a region of interest (ROI) of radius 20 pixels (this is the maximum 

radius that the software allowed), as suggested in the method from Apogee (see 

Appendix B). The bias level was determined by the mean value of the cursor 

positioned in the center of the bias frame.  

 

3.3.4 System Noise 

To determine the system noise, two bias frames were obtained with the CCD 

temperature set at –20 °C. The standard deviation was obtained from the difference of 

the two bias frames, which was calculated from the region of interest at the center of 

the frames. The product of the gain and the standard deviation was taken as the noise 

in units of electrons.  

 

3.4 Lens Coupling Efficiency 

The imaging device uses a lens, which couples the scintillating screen and the CCD 

chip. The lens coupling efficiency 2g  was calculated from equation 3.1 
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T is the bulk transmittance of the lens, which is the ratio of the photon energy passing 

into the image domain to the photon energy falling into the lens aperture at the object 

domain, m is the system geometrical magnification factor, and F# is the f-number of 

the lens. For a more detailed explanation on lens coupling, refer to section C.4 of 

Appendix C.            
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3.5 Resolution 

The spatial resolution of an imaging system is the ability of the system to distinguish 

between two points as separate and distinct, as they become smaller and closer 

together. The closer they are, with the image still showing them as separate objects 

the better the spatial resolution.  Spatial resolution is sometimes referred to simply as 

the resolution. The spatial resolution, expressed in line pairs per millimeter, can be 

measured with a test object or by the modulation transfer function (MTF). The 

modulation transfer function indicates the contrast transfer of an image through the 

system at different frequencies. A test object consisting of a series of regularly spaced 

bars and spaces will give an indication of the resolution that can be resolved with the 

system.  

 

In general, the spatial resolution of the digital image is limited by the pixel size of the 

CCD chip. For a given detector technology the spatial resolution is inversely 

proportional to the pixel size and is defined as the Nyquist limit which states that the 

maximum resolution is equal to the inverse of twice the pixel size in millimeters. The 

system resolution is given by: 

 

sizepixelEffective
resolutionSystem

×
=
2

1
  .                     3.2 

 

The units for system resolution are line pairs per millimeter (lp/mm). The effective 

pixel size is determined by the field of view (FOV), divided by the number of pixels 

on the CCD chip 
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pixelsofNumber

viewofField
sizepixelEffective =  ,                        3.3 

and the system resolution therefore becomes 

 

viewofField

pixelsofNumber
resolutionSystem

×
=

2
 .                        3.4 

 

The system resolution is directly proportional to the number of pixels on the CCD 

chip and inversely proportional to the field of view. More information on the field of 

view is given in section C.3 of Appendix C. 

 

The prototype of the imaging device is shown in Figure 3.5-1  

 

 

 

Figure 3.5-1 The digital x-ray imaging device with a phantom in place 
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The theoretical system resolution was determined from the number of pixels and the 

field of view. The modulation transfer function for the digital camera system was 

determined by implementing the edge exposure technique. Exposures of a 3 mm thick 

lead disc were taken. Using the “line profile” tool for MaxIm DL, the pixel values 

were obtained by tracing the digital image across the disc edge. This was done to 

obtain the edge spread function (ESF). The ESF was then smoothed and the central 

difference method was used to obtain the LSF. Taking the modulus of the Fourier 

Transform gives the MTF of the system. The MTF is obtained from the LSF by using 

a Fourier Transform function (FFT) and is given by: 

 

( ) { })x(LSFFFTMTF =ω
 .   3.5 

 

The Modulation Transfer function MTF(ω), is the line spread function represented in 

the frequency domain ω where x is the measured distance along the ‘line profile’. The 

Matlab program was used to calculate the MTF.  

 

To determine the resolution of diagnostic film in comparison, exposures of a 3 mm 

thick lead disc placed in front of the film cassette holder were taken. The processed 

film was then scanned using a high-resolution flat bed scanner. A “line profile” was 

obtained by making a trace on the digital image across the disc edge. This was done to 

obtain the edge spread function (ESF), from which the MTF was calculated giving the 

resolution at 2 % modulation transfer.  
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3.6 Exposure Synchronisation Card 

An electronic card was designed at iThemba LABS to synchronize the mouse click 

event for the camera to capture an image, and for the x-ray tube to expose. The block 

diagram for the card is shown in Figure 3.6-1 

 

 

Figure 3.6-1 A block diagram for micro controller card 

 

When the “fire button” was pressed for the x-ray tube to expose, the card allowed a 

mouse-click signal to be sent to the computer controlling the camera, so that the x-ray 

image was captured at the same time the exposure occurred. 

 

3.7 Correction for Lens Distortion 

A method was determined to correct for lens distortion. The method used a set of 

images of a “checker grid” comprising of alternating black and whites squares much 

like a chessboard, for different camera orientations, i.e. at different angles to the 
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“checker grid”. These images were used to determine the internal and external camera 

parameters, which were then used to undistort the images. A Matlab toolbox by 

Bouguet (2004) was used to determine the camera parameters, which are the focal 

plane, coordinates of principle point, coordinates of the camera center in the world 

coordinate frame and the orientation of the camera coordinate frame. The toolbox 

allowed images of a checkerboard to be captured with the camera at different 

orientations. A corner extraction engine was able to detect the checker square and 

showed the predicted grid in the absence of distortion.  Should the predicted corners 

not be close to the real image corners, the user was able to manually input a guess for 

the first order lens distortion coefficient (kc). In practice this value is between –1 and 

1. The values used here for the distortion coefficient were only used to help with the 

corner extraction and did not affect the main calibration step, as they are neither used 

as the final distortion coefficients nor were they used as the initial guess of the true 

distortion coefficients. For severely distorted images, manual corner extraction was 

possible. The calibration was done in two steps. The first step comprised initialisation, 

which was then followed by non-linear optimisation. Bouguet (2004) states that the 

initialization step computes a closed-form solution for the calibration parameters. The 

non-linear optimisation step minimized the total reprojection error (in the least 

squares sense) over all the calibration parameters. The reprojection error is an error 

corresponding to the image distance between a projected point and a measured one. It 

is used to quantify how closely an estimate of a 3D point recreates the point's true 

projection. Bouguet (2004) states that the optimisation was done by iterative gradient 

descent with explicit (closed-form) computation of the Jacobian Matrix of the inverse 

transform of the pixel coordinates. Once the calibration had been done it was possible 

to analyse the reprojection error and see which points had the corresponding large 
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reprojection error in pixels (where the pixel error was the standard deviation of the 

reprojection error in pixels in both the x and y directions respectively). In cases where 

the corners had been badly extracted the user was able to recompute the corners of the 

specific images using different window sizes.  

 

A Matlab routine was initially written to correct the images for distortion. The 

distortion correction for this routine was based on an approach using control points 

obtained from a reference image. The reference image was an image of a checker 

board of known spacing between the white and black squares. The “ideal” coordinate 

position of the control points (x, y) are obtained by considering the corners of the 

squares in the center of the image, as these were assumed to be undistorted. The pixel 

coordinates (x,y) undergo geometric distortion to produce an image with coordinates 

(u, v). The distortion was then modeled using the following bilinear equations: 

4321 cxycycxcu +++=                                              3.6 

8765 cxycycxcv +++=                                           3.7 

Taking 4 pairs of control point coordinates we get: 
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Which can be written as  

[ ] [ ][ ]CMYX =′′                                                     3.9 

To solve for the bilinear coefficients c1, ……, c8, equation 3.9 becomes 
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[ ] [ ] [ ]YXMC ′′= −1
                                                  3.10 

 To assign the grey level value to the pixel(x, y) in the corrected image bilinear 

interpolation was used. The interpolation was done between the four pixels nearest to 

)~,~( vu  in the distorted image as shown in Figure 3.7-1.  

 

Figure 3.7-1  A diagram illustrating bilinear interpolation 

The gray-level was given by equation  

dvcubvauvuf iiiiii +++=),( ,                                  3.11 

where ),( ii vuf  is the grey value at position ),( ii vu . The interpolation coefficients (a, 

b, c, d) are found by solving equation 3.12 
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The grey level to assign pixel ),( yx in the reconstructed image is then calculated  

using equation 3.13 

dvucvbuayxf +++= ~~~~),(                             3.13 

 . ),( yx  
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3.8 Optical Scatter 

Experiments similar to those discussed by Partridge et al. (1999) were done to 

determine the effects of optical scattering. The experiments required the use of 

material with a surface finish, which had a reflectance similar to that of the 

scintillation screen. A number of sheeting materials made from either plastic or paper, 

which were assumed to have a similar reflectance as the scintillation screen, were 

collected. The plastic and paper samples were white in colour all having a smooth 

finish that was similar to that of the scintillation screen. Non-destructive Zygo 

interferometery tests (an alternative to using an integrating sphere) were conducted on 

the scintillation screen and samples of the different sheeting materials to determine 

their reflecting properties.  

 

The specular reflectance as indicated in Figure 3.8-1, is a surface property of the 

material, namely the refractive index and the surface roughness (Bhushan, 1999). 

Surface roughness scatters the reflected light, thus affecting reflectance. The 

correlation between specular reflectance, R, and the surface roughness, σ, is described 

by (Beckmann and Spizzichino, 1963)  
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where θI is the angle of incidence measured with respect to the sample normal and R 

is the specular reflectance. The total  reflectance R0 is given by  

0

0
P

P
R S=  ,                                                    3.15 
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where PS is the total backscattered light power, and P0 is the incident light power 

(Hummel et al., 1995) 

 

Figure 3.8-1 An illustration of the components of a light reflection model, 

showing incoming light and outgoing diffuse, directional diffuse, and specular 

reflections 

 

3.8.1 Zygo Experiment 

A MetroPro Zygo interferometer was used to determine the reflectance of the various 

white paper and plastic samples. The interferometry used a helium light source with a 

wavelength of about 632 nm, which was the same order as the light emitted by the 

scintillation screen.  

 

To determine the surface properties of the samples, the following parameters were 

used: the maximum peak-to-valley height (PV), the root-mean-square (RMS) 

roughness, the arithmetical mean deviation (Ra). The maximum peak-to-valley height 

(PV) was taken as the absolute value between the highest and lowest peaks and is 

given by the expression PV = RP + RV, where RP is the maximum distance between the 

highest point and the mean, and RV is the minimum distance between the lowest point 

and the mean, as indicated in Figure 3.8-2 
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Figure 3.8-2 An illustration of the Maximum peak-to valley height 

 

The root-mean-square (RMS) roughness was the measured height deviations taken 

within the evaluation length or area and measured from the mean linear surface. The 

mean linear surface is defined such that equal “areas” of the surface lie above and 

below it. The arithmetic mean deviation (Ra) was the average roughness or deviation 

of all points from a plane fitted to the test part of the surface, as shown in Figure 

3.8-3. 

 

 
Figure 3.8-3 An illustration of the arithmetic mean deviation 

 

3.8.2 Optical Scatter Experiments 

Experiments to determine the optical scattering, similar to those discussed by 

Partridge et al.(1999) were conducted. Strips of width 1.5 cm, 3 cm, 6 cm, 10 cm and 

20 cm were used. The strips were placed in contact with the screen along the central 
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axes in both the GT (in-plane) direction and the AB (cross-plane) direction (as 

indicated previously in Figure_3.5-1). Two sets of strips were used, one being made 

of paper from which sample 6 was cut from and the other of plastic from which 

sample 7 was cut from. Measurements of the scattered light were made by taking a 

line profile along the center of the strip, on the x-ray images taken with the different 

strips in place.  

 

To determine optical scatter for different field sizes of 10 cm × 10 cm, 

15-cm-×-15-cm, 20 cm × 20 cm and 25 cm × 25 cm, masks were placed in front of the 

scintillation screen instead of varying the radiation field output. An exposure setting 

of 77 kV, 250-mA and 50 ms was used for an exposure of 0.2 seconds, for a field size 

of 35 cm × 35 cm, which was chosen to cover the front of the imaging device.  

 

3.8.2.1 Anti-Scatter Grid 

To prevent scattered light emitted by the scintillation screen from reflecting back onto 

the screen, Partridge et al. (1999) suggested the use of a louvre computer “privacy 

filters” from 3M Corporation, which are normally used on computer screens. The film 

is composed of thin opaque strips with a pitch of about 0.1 mm, embedded in a 

polycarbonate matrix. The film has a transmission of 75 % normal to sheet, which 

reduces to 35 % at an angle of 15° and cut off completely at 30°. The 3M louvre film 

was placed in direct contact with the scintillation screen and a 1.5 mm strip was 

placed between the scintillation screen and the film. To determine the glare, line 

profiles were extracted from the central axis. Filtered images of the skull phantom 

were also obtained and these were compared to the images without the filter.  
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3.9 X-ray Imaging and Pixel Binning 

The use of pixel binning can be employed to reduce the dose to the patient. Pixel 

binning is a technique that increases the sensitivity of the CCD. The technique allows 

for adjacent pixels to be summed together into a “super pixel” (as illustrated in Figure 

3.9-1), which has better signal to noise ratio. 

 

 

Figure 3.9-1 An illustration showing pixel binning. This effectively increases the 

pixel size while also increasing the sensitivity. 

 

For the 13 mm × 13 mm CCD having 13 × 13 µm2
 square pixels a binning of 2 × 2 

would give a “super pixel” of 26 × 26 µm2
; a binning of 3 × 3 would give a “super 

square pixel” of 39 × 39 µm2
 and so on. 

 

X-ray images of a human skull filled and covered with wax were obtained using the 

imaging device. A series of exposures were taken for different binning settings. 

Exposures for binning settings of 1 × 1, 2 × 2, 3 × 3 up to 6 × 6 were made to 

determine the effect of pixel binning. To give an indication of the effect of body tissue 

on the image quality, a series of exposures were done for varying thicknesses of 

perspex slabs mimicking body tissue, with a maximum thickness of 6 cm placed in 

front of the skull phantom. 
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3.10  Shielding (MCNPX) 

The CCD camera would be used in a radiation environment. As a result, the housing 

for the camera should shield the camera against scattered x-rays, neutrons and proton 

irradiation and against secondary gamma-ray exposure. The appropriate shielding for 

the camera was verified by carrying out Monte Carlo simulations. In general, Monte 

Carlo codes are software algorithms used for solving various kinds of computational 

problems by using random number generators. The MCNPX (Monte Carlo N-Particle 

eXtended) software, from Los Alamos National Laboratory was used for the shielding 

simulations. MCNPX is a general-purpose Monte Carlo radiation transport computer 

code that can be used to transport nearly all sub–atomic particle types, to nearly all 

energies, and to nearly all applications (Hendricks et al., 2005). It uses the latest 

nuclear cross section libraries and uses physics models for particle types and energies 

where tabular data are not available. 

 

The geometry for the MCNPX simulation consisted of the horizontal proton beam line 

with its beam elements such as the energy degrader, range modulator, multi-wire 

ionization chamber, ionization chamber, dose monitor chambers, and collimator, as 

shown in Figure 3.10-1 below. The beam components indicated in Figure 3.10-1 were 

made of the materials in Table 3.10-1. 
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Table 3.10-1 Properties of materials used for the beam components. 

Material Density Atomic fraction Weight fraction 

Lead 11.3   

Phelonic resin 1.07 7 (carbon) 

6 (Hydrogen) 

2 (Oxygen) 

 

Graphite 1.86   

Brass 8.90   

Standard concrete 2.45  0.529 (oxygen) 

0.001 (carbon) 

0.016 (sodium) 

0.034 (aluminium) 

0.337 (silicon) 

0.002 (magnesium) 

0.073 (potassium) 

0.0044 (calcium) 

0.014 (iron) 

  Steel 7.80  0.005 ( carbon) 

0.995 (Iron) 

Water 1.00 2 (hydrogen) 

1 (oxygen) 

 

Perspex 1.18 5 (carbon) 

8 (hydrogen 

2 oxygen 

 

Air 0.001225   

 

 The proton beam had a Gaussian energy distribution with a mean energy of 200 MeV 

and the FWHM of 1.2MeV, a 10-cm-×-10-cm fixed brass collimator and a patient 

collimator with a diameter of 5 cm were used, these being the last two collimators in 

the beam set-up. 

 

To simulate the patient the geometry also included a 30-×-30-×-30-cm3
 water 

phantom, whose center was positioned at the isocenter. The geometry also included 

the x-ray imaging device, which was positioned 2 m from the isocenter in the beam 
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direction, with the center  of the CDD sensor 2 m above the axis of the beam line, 

simulating the position the device could be in when the beam is in the treatment vault.  

 

Figure 3.10-1 Illustration showing the relative positions of the various beam 

elements that were included in the Monte Carlo simulations 

The geometry for the imaging device is shown in Figure 3.10-2. The device was 

constructed from 3.5 mm thick aluminium. It also included a 10 mm thick steel casing 

that was attached to the box in which the camera was housed. The simulations were 

conducted to determine whether additional shielding was required for the protection 

of the CCD chip. The simulations were done on a Microsoft Windows computer with 

a 1.86 GHz Intel processor. 

 

Figure 3.10-2 An illustration of the geometry of the x-ray imaging device. 
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CHAPTER 4 RESULTS AND DISCUSSION 
 

4.1 Calibration Frames (Dark, Flat and Bias Frame) 

The variation in the dark current with temperature was determined. This was done by 

plotting the average pixel values against temperature, without considering the bias 

offset. A plot was also done with the bias offset for a range of temperatures as shown 

in Figure 4.1-1. Bias current variation with temperature was also determined.  
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Figure 4.1-1 The variation of bias current with temperature (Values used are for 

corrected images.) 

It was noticed that for the dark and bias frames the images had a “shading/gradient 

effect” getting lighter from top to bottom; the cause of which could not be determined 

The brightness gradients could be due to a slight build-up of thermal charge in the 

vertical registers during image download from the CCD. The biasing was changed but 
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this did not affect the observed “gradient effect”. Typical images from some of these 

frames are shown in Figure 4.1-2 to Figure 4.1-4. 

  
(a) 
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(b) 

 

Figure 4.1-2 (a) A typical flat frame. (Temperature is at –20
o
C) (b) An 

illustration of a line profile of flat frame 

  

Figure 4.1-3 A typical bias frame. (Temperature is at –20
o
C) 
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Figure 4.1-4 A typical dark frame. (Temperature is at –20
o
C) 

It can be seen that for the flat frames there is an increase in brightness (an increase of 

about 43%) in the centre of the image. This effect could be due to vignetting. 

 

When taking measurements for establishing the variation of dark current with 

temperature, both corrected and un-corrected images were used. The un-corrected 

images were the raw images for which bias, flat and dark frames were not applied. 

The calibration frames were applied on the corrected images. The plots for the two 

sets of images are shown in Figure 4.1-5 to Figure 4.1-7. The pixel value is the read 

out from the CCD as a voltage of the order of microvolts per electron. The voltage is 

proportional to the charge produced by thermal processes occurring in the chip 

collected. The thermally produced charge gives rise to dark current. 
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Variation of Dark Current w ith Temperature (Uncorrected)
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Figure 4.1-5 The variation of dark current with temperature. (The values used are 

for uncorrected images.) 
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Figure 4.1-6 The variation of dark current with temperature. (The values used are 

for corrected images.) 
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Normalised to 18 degrees celsius
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Figure 4.1-7 The variation of dark current with temperature. (The values used are 

for un- corrected images normalized to 18 
o
C, which was taken to be the ambient 

temperature.)  

It can be seen that below –5-
o
C, any further decrease in temperature does not result in 

a significant decrease in pixel value. The temperature of, –20 
o
C was taken to be the 

operational temperature for all subsequent images. 

 

4.2 Working Distance and the Depth of Field (DOF) 

When the camera is focused the image of a 2 cm diameter white disc on a black 

background would appear bright (indicated by large maximum pixel value) whereas 

the image when the lens is completely out of focus, will be blurred. The lens focus 

was adjusted by trial and error until a minimum value of FWHM was reached with the 

largest maximum pixel value. At this minimum value of the FWHM, the camera was 

said to be focused. Figure 4.2-1 shows how the FWHM varied as the camera was 

moved once it was focused. This was expected as it correlates with the DOF 
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measurements which allow for the camera to remain focused for slight movements 

towards and away from the object in focus. 

Variation of FWHM with Distance 
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Figure 4.2-1 The variation of FWHM with distance using a 2 cm white disc. 

 

After the camera was focused, the resolution was then quantified using bar charts. 

The distance at which all the line pairs could be resolved was measured to be 0.86 m. 

 

Initially a white disc on a black background was used to determine DOF. However, 

this method was abandoned, as the results were not conclusive as shown by the 

variation in the maximum pixel values in Figure 4.2-2. The variation was random, and 

was therefore abandoned as a measure to determine whether the camera was focused. 
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Maximum Pixel Values at different Camera Positions
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Figure 4.2-2 The variation of maximum pixel value with distance. 

 

The calculated DOF for the various aperture f-stops with the lens focused at a distance 

of 0.86 m (which is different from the working distance of 0.924 m), is shown in 

Figure 4.2-3. The values for the near focus and far focus shown in Figure 4.2-3 and 

Table 4.2-1 were calculated for the lens focal length of 36 mm, and the  calculated 

circle of confussion of 1.0627-× 10-5 (in 35 mm terms) (see Appendix C). The range 

for the near focus is indicated by the orange region, with the yellow region indicating 

the range for the far focus. The depth of field was the sum of the orange and yellow 

region. It can be seen that at bigger f-numbers the camera is easier to focus, as the 

range at which it remains in focus is longer. 
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Figure 4.2-3 An illustration of DOF for the various f-stops 

 

Table 4.2-1 shows the calculated values for the hypofocal distance, near focus and far 

focus at different apertures, which gives an indication of the DOF. Table 4.2-1 is a 

tabulated form of Figure 4.2-5. 

 

Table 4.2-1 Calculated values for hypofocal distance, near focus and far focus at 

different apertures. 

Aperture 

Hyperfocal Distance 

(m) 

Near 

Focus(m) 

Far Focus 

(m) 

1.4 87.11 0.88 0.90 

2.0 60.98 0.88 0.90 

2.8 43.56 0.87 0.91 

4.0 30.49 0.87 0.92 

5.6 21.78 0.86 0.93 

8.0 15.24 0.84 0.95 

11.0 11.09 0.83 0.97 
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4.3 Characterisation of Apogee AP47p Camera 

4.3.1 Exposure Variation 

A series of flat frames were taken. On visually inspecting the histograms for the flat 

frames, there generally appeared to be no significant shift in the position of the 

histogram profile or a change in the shape when comparing flat frames of similar 

exposure settings and illuminations. However there were instances (5 cases out of the 

200 exposures taken, which are referred to as Flat1, Flat2 etc), where there appeared 

to be a notable variation of the histogram profile, with the most noticeable variation 

being that shown in Figure 4.3-1 and Figure 4.3-2. Figure 4.3-1 is typical of the other 

195 exposures that were taken. The mean pixel value differs by 0.22 % and the 

standard deviation differs by 0.05 %, with the only notable difference being in the 

maximum pixel value with that for Flat3, which was about 58-% higher. It could not 

be determined why there was a shift in the histogram for Flat3, or any of the other 

histograms in the 5 incidences, furthermore the manufacturer does not give a 

specification for this failure rate. 

 

Figure 4.3-1 An illustration of the flat frame, Flat1, with photons per ADU 

setting of 10. 
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Figure 4.3-2 An illustration of the Flat frame, Flat3, with photons per ADU 

setting of 10. 

A plot of the histograms is shown in Figure 4.3-3. The plot of Flat2 and Flat3 is 

typical of the other 195 flat frames that were taken. The full width at half maximum 

of Flat1 is about 33 % bigger than that of Flat3. From the plots in Figure 4.3-3, it 

seemed as if the exposure time was more than double that of Flat2 and Flat3. This 

could have been due to the electro-mechanical shutter not responding fast enough to 

give the required exposure time of 0.1 seconds. 
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Figure 4.3-3 A plot of flat frame histograms 
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4.3.2 Linearity 

The linearity of the camera is shown in Figure 4.3-4. A plot of the pixel value in 

electrons against exposure time in seconds was linear and regression resulted in a 

coefficient of determination of 0.9995. The error in the data was of the order of 1.4 %. 
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Figure 4.3-4 A plot of the system linearity. 

 

4.3.3 Signal Variance, Gain 

As seen in Figure 4.3-5, the measured gain was 0.7 compared to that reported on the 

data sheet of 1.3. The bias level was for information only and was determined by the 

mean value of the cursor positioned in the center of the bias frame. The mean value 

obtained was 1372-±5 compared to 2310 on the Test Data Sheet.  
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Figure 4.3-5 A plot of the signal variance 

 

This difference was probably due to the simplified method of measurement. 

 

4.3.4 System Noise 

The product of the gain and the standard deviation was taken as the noise, in units of 

electrons. The standard deviation of the difference of the two bias frames was 

calculated to be 1.5, giving a noise level of 1.1 ±0.1 electrons. The standard deviation 

on the data sheet was given as 5.1, with a noise level of 6.4, differing by a factor of 

almost 6. 

 

There was no agreement between the results from the measurements with those 

reported on the “Test Data Sheet” as shown in Table 4.3-1. The measured parameters 

were generally much lower than those stated in the data sheet. The discrepancy might 

arise from the different test conditions in which the measurements were conducted. 

This could not be confirmed by Apogee. 
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Table 4.3-1 Comparison of results from Camera Test Data Sheet with those from 

measurements.  

System Noise 
 

Data Sheet Measurement 

GAIN 1.3 0.7 

SDEV  5.1 1.5 

n(e-) 6.4 1.1 

   

Bias Level Setting 2310 1372 

   

Dark count   

Net Count (e/s) 0.56 0.24 

 

 

4.4 Lens Coupling Efficiency 

The lens coupling efficiency was calculated using the maximum aperture of f/1.4, a 

CCD imaging area of 13.3 mm × 13.3 mm, scintillating area projected onto CCD i.e. 

the field of view as 300 mm × 300 mm, the demagnification m = 13.3/300 = 0.044 

and taking T = 0.8. The lens coupling efficiency was calculated to be 8.4 %. 

Assuming T = 1, which is the maximum attainable bulk transmission, the efficiency is 

given as 2g = 10.5 %. 

 

It has been suggested that the light capture efficiency of the system can be greatly 

improved by using other optical coupling devices such as fibre optic reducers. An 

option for fibre-optic coupling is available for the CCD chip that was used.  
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4.5 Resolution 

The theoretical system resolution was determined from the number of pixels and the 

field of view. The CCD consisted of an array of 1024 by 1024 pixels. For a field of 

view of 300 × 300-mm
2
 the system resolution was 1.7 lp/mm. The system resolution 

could be increased by reducing the field of view, and this can be achieved by 

shortening the distance between the scintillating screen and the camera.  

 

Using the “line profile” tool for MaxIm DL, the edge spread function (ESF) was 

obtained. The ESF is shown in Figure 4.5-1.  
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Figure 4.5-1 A plot of the measured edge spread function for the digital x-ray 

image. 

The line-spread function (LSF) obtained from the ESF is shown in Figure 4.5-2. 
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Figure 4.5-2 A plot of the line spread function obtained from the ESF for the 

digital x-ray image. 

 The MTF of the system is shown in Figure 3.5-3. The frequency scale on the x-axis is 

determined by the theoretical maximum resolution with increments according to the 

number of points used for obtaining the Fourier transform (Lätti, 2000). The 

theoretical maximum resolution was calculated to be 1.7 lp/mm.  
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Figure 4.5-3 The modulation transfer function of the digital imaging system. 
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The maximum resolution was read off from the graph in Figure 4.5-3 at 2 % 

modulation transfer, which gave a value of about 1.51 lp/mm, this was comparable to 

the theoretical value. The MTF at 2 % approximates the limiting visual resolution, 

which is related to the eye's ability to distinguish the low contrast difference between 

the peaks and valleys in the presence of image noise. 

 

The resolution of diagnostic film in comparison, was determined by the MTF which 

was calculated from the ESF. The maximum resolution for the diagnostic film was 

determined to be 10.0 lp/mm. Compared to film the digital system is of a lower 

resolution. 

 

4.6 Correction for Lens Distortion 

The Matlab routine to correct the images for distortion that was written, gave 

unsatisfactory results as it increased the distortion further.  The routine provided by 

Bouguet was therefore used to undistort the images. It can be seen from Figure 4.6-1 

that the radial distortion was more dominant, with the tangential component being 

very small and thus it did not contribute significantly to the complete distortion 

model. The points at the corners of the image are displaced by as much as 5 pixels, 

which was the maximum displacement. For an image area of 30 cm × 30 cm, this 

corresponds to a displacement of 1.46 mm. 

 

A visual representation of the effect of the distortion on the pixel image is also shown 

in Figure 4.6-1. The figure shows a complete distortion model incorporating both the 

tangential and radial components to fourth order. The arrows represent the effective 
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displacement of a pixel induced by the lens distortion with the number indicating the 

displacement in pixel units. 

 

Figure 4.6-1 A graphical representation of the distortion model incorporating the 

tangential and radial distortion.  

An image that was corrected using the distortion model is shown in Figure 4.6-2 

together with the original image and the subtraction image.  
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                                 (a)      (b) 

 
            (c) 

Figure 4.6-2 An illustration showing the correction for lens distortion.  

(a) Original checker board with lens distortion  

(b) Checker board image that has been corrected for lens distortion,  

(c)The subtraction  image 

 A skull image that was corrected using the distortion model is shown in Figure 4.6-3 

together with the original image and the subtraction image. 
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   (a)           (b) 

 

                        (c) 

 

Figure 4.6-3 An illustration showing the correction for lens distortion, for a skull 

x-ray image.  

(a) The original x-ray image with the lens distortion  

(b) X-ray image that has been corrected for lens distortion,  

(c) The resultant subtraction  image of image with distortion and one that has been 

corrected for lens distortion  
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From the subtraction image it can be seen that there is little difference between the 

distorted image and the one that has been corrected for lens distortion. The histogram 

of the subtraction image is shown in Figure 4.6-4, where the minimum pixel value is 

shown to be zero and the maximum is 94. 

 

 

Figure 4.6-4 The histogram for the subtraction of the distorted and un-distorted 

images shown in Figure 4.6-3.  

 

4.7 Zygo Experiment 

The tests from the MetroPro Zygo interferometer provided a surface profile of the 

samples as shown in Figure 4.7-1. 
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Figure 4.7-1 The surface analysis using the MetroPro Zygo interferometer. Top 

left  window shows a 2D map of the 3D topography of the surface as shown in the 

window on the right. The bottom left window shows the surface profile for a line 

across the surface, and the bottom right window shows the  map of the diffraction 

patterns. 

The samples of the white paper and plastic used for the tests were about 1 cm × 2 cm. 

The PV gave an indication of the texture of the sample, whilst the RMS roughness and 

Ra gave an indication of the optical properties of the sample, such as how the surface 

scatters light. PV, RMS and Ra values give an indication of how the various surfaces 

reflect light. Surfaces that had similar reflectance would have similar PV, RMS and Ra 

values. Gloss or specular reflectance (sometimes referred to as sheen or luster) are 

surface properties of a material, which are the refractive index and surface roughness 

(Bhushan, 1999). Zygo interferometry provides a method to quantify surfaces 

spatially.  
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Table 4.7-1 Values of PV( PVσ ), RMS( rmsσ ) and Ra ( Raσ )for the samples in µµµµm. 

 
PVσ  rmsσ  Raσ  

Sample 1 (Paper) 19.54 2.19 1.72 

Sample 2 (Paper) 5.87 0.37 0.27 

Sample 3 (Plastic) 19.50 3.62 3.00 

Sample 4 (Plastic) 16.54 2.41 1.97 

Sample 5 (Plastic) 2.865 0.27 0.208 

Sample 6 (Paper) 31.859 4.94 4.000 

Sample 7 (Plastic) 11.232 1.50 1.208 

Scintillation Screen 11.417 1.68 1.328 

 

It can be seen from Table 4.7-1 that sample 7 had similar characteristics to the 

scintillation screen. The plastic sheeting from which sample 7 was taken, was used for 

the optical scattering experiments.  

 

4.8 Optical Scatter Experiments 

It was assumed that because primary light from the scintillator was blocked 

completely, any measurable light from the strip would be due to reflected scattered 

light only. As the size of the strips decreased the measured scatter was expected to 

converge to a value, being the scattered light signal expected along the central axis if 

no strip was present. This value could however not be determined from the results that 

were obtained in (Figures 4.8-1 to 4.8-4) by taking a line profile along the center of 

the strip on the images. 
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Figure 4.8-1 The effect of paper strip width on measured optical scatter. The 

profiles were taken in the AB direction. 
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Figure 4.8-2 The effect of paper strip width on measured optical scatter. The 

profiles were taken in the GT direction. 
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Figure 4.8-3 The effect of plastic strip width on measured optical scatter. The 

profiles were taken in the GT direction. 
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Figure 4.8-4 The effect of plastic strip width on measured optical scatter. The 

profiles were taken in the AB direction. 
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There was no convergence to a particular value as was expected. The graphs in Figure 

4.8-1 to Figure 4.8-4 were expected to be comparable to those obtained by Partridge 

et al. (1999), as indicated in Figure 4.8-5. It was expected that as the width of the 

strips decreased the graphs for the line profiles would converge to a value close to that 

when no strips were presents. Since the strips that were used were of two completely 

different materials, i.e. that of paper and plastic, it can be seen that the scatter for the 

paper was about 40 % while that for the plastic was about 30 %. The scintillation 

screen was far from the mirror, which may have contributed to a reduction in the 

contribution of scatter (Lätti, 2000). This might also explain why the different mask 

sizes had little effect on the measured data. 

 

Figure 4.8-5 The effect of measurement strip width on measured optical scatter. 

The measurements were taken with a 600 mm × 450 mm 6 MV beam using the high-

speed imager. Signal converges on the ‘ideal’ value as strip width is reduced. Profiles 

are taken in the GT direction. [Image from Partridge et al., 1999] 

 A plot of the scatter against the field mask, to determine optical scatter for different 

field sizes is show in Figure 4.8-6. It can be seen that there was a linear relation 

between the peak scatter and the mask size. 
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Figure 4.8-6 The maximum scatter as a function of mask area. 

Figure 4.8-3 shows the measured results for the different mask sizes in the GT 

direction; these plots are similar to those that were obtained in the AB direction. 

 
Figure 4.8-7 The measured optical scatter on the central axis in the GT direction 

of imager for a range of mask sizes 
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From Figure 4.8-7 the appearance of “horns” can be seen at the edges of the masks, 

and could have been due to jaggedness of the edges. The method to determine optical 

scatter described by Partridge et al. (1999) could not be verified. Different beam 

energies were used. The results obtained from the two dissimilar materials (that of 

paper sample and that of plastic sample) were similar even though the results from the 

Zygo experiment indicated that the materials were different. Further analysis of the 

optical scattering is required.  

 

4.8.1 Anti-Scatter Grid 

The effects of a filter to prevent glare were examined  

It can be seen from Figure 4.8-8 that the glare was significantly reduced when the 

“privacy filter” was used. 

 

 
Figure 4.8-8 The effect of adding an anti-scatter grid. 

 A comparison between the filtered images of the skull phantom and those without the 
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comparing images taken with and without the filter as seen in Figure 4.8-9. The 

windowed subtraction image (difference image) is also shown.  

 

   
                      (a)                                           (b)                                         (c) 

Figure 4.8-9 (a) An image of skull with the ‘privacy filter’ (b) An image of skull 

without the ‘privacy filter’ (c) Difference image 

The histogram for the subtraction image of the skull is shown in Figure 4.8-6. The 

figure shows discrete lines instead of a continuous distribution as expected. This 

could be due to how the software selects the histogram bin size, which was not 

established. Although Figure_4.8-8 showed a reduction in glare this was not evident 

in the subtraction image in Figure 4.8-9 (c). 

 

 

Figure 4.8-10 A histogram of the subtraction image of the skull (taken with the 

use of the ‘privacy filter’ from image of skull without the ‘privacy filter’  
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4.9  X-ray Imaging and Pixel Binning 

X-ray images of a human skull filled and covered with wax were obtained using the 

imaging device are shown in Figure 4.9-1. The digital images were obtained at two 

different exposure settings and also on x-ray film. Digital imaging allows for the 

setting of a different greyscale window to selectively determine what information is 

viewed. 

    
                 (a)       (b)      (c) 

Figure 4.9-1 An illustration of digital x-ray images compared to a film x-ray 

image 

(a) A digital x-ray image of the skull. Exposure settings: 85 kV, 200 mA, 160 ms 

Binning scheme of 2 (512× 512)   

(b) A digital x-ray image of the skull. Exposure settings: 77 kV, 250mA, 160 ms 

Binning scheme of 2 (512× 512) 

(c)  A film image of the skull. Exposure settings: 77 kV, 250 mA, 63 ms. The image 

was digitized using a flatbed scanner  

 

When comparing the digital x-ray image in Figure 4.9-1 (a) with the DRR in Figure 

4.9-2, it can be seen that the digital x-ray image quality is satisfactory for image 

registration. 
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                          (a)                                                                (b) 

Figure 4.9-2 An illustration of the digitally reconstructed radiograph of the skull 

from 5 mm slice thickness. (a) The posterior view of the skull (b) The right lateral 

view of the skull. 

 

4.9.1  Pixel Binning 

 

Figure 4.9-3 shows the effects of pixel binning. It was noted that for the same kVp 

settings, less mAs was required to get the same image contrast, i.e. the mAs decreased 

by a factor of two for each increase in binning. When the images for different binning 

settings were compared for the same image size it was noted that images with a pixel 

binning of up to 3_×_3 could be used, despite the fact that increasing pixel size 

decreased the resolution. 
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Figure 4.9-3 An illustration showing the effects of pixel binning. The image size in 

pixels is indicated in brackets. (Images are for the same kV setting, with skull having 

wax) 

(a) Skull Image 5 × 5 binning (204 × 204 ), Exposure setting of 85 kV, 8 mAs 

(b) Skull Image 4 × 4 binning (256 × 256 ), Exposure setting of 85 kV, 10 mAs 

(c) Skull Image 3 × 3 binning (341 × 341), Exposure setting of 85 kV,  20 mAs 

 

Table 4.9-1 indicates the exposure settings that were required to achieve images that 

were comparable to film. The use of higher kV values was required to reduce the mAs 

that was used for the digital x-ray images. Pixel binning of 2 × 2, giving an image size 

of 512 × 512 pixels gave a better image that a binning of 1 × 1 with an image size of 

1024 × 1024 pixels. When using a binning of 1 × 1 it took about 38 s to download the 

image for viewing on the computer screen, whilst that of a binning of 2 × 2 took about 

11 s.  
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Table 4.9-1 Exposure settings for different binning schemes and film. 

 kVp mA ms mAs 

Binning 1 × 1 100 160 500 80 

Binning 2 × 2 85 200 160 32 

Binning 3 × 3 77 250 80 20 

Film 77 250 63 16 

 

Varying the thicknesses of perspex slabs mimicking body tissue gave an indication of 

the effect of body tissue on the image quality. Figure 4.9-4 (b) shows an exposure of a 

skull with 6 cm of perspex in front of it. The same exposure settings were used in both 

images in Figure 4.9-4 (a) and (b), to demonstrate the effect of the Perspex on its own. 

There was a slight deterioration in the image with 6 cm of perspex in front of it, which 

suggests that even if the skull consisted of varying muscle and fat tissue, reasonably 

good x-ray images could still be obtained.  

 

The subtraction image is also shown in Figure 4.9-4 (c). The image shows the 

difference between the two images, this difference is probably due to the change in 

the energy spectrum of the x-rays as a result of the filtration from the perspex. 
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  (a)           (b)          (c) 

Figure 4.9-4 An illustration showing the effect of Perspex slab in front skull;     

(a) A skull with no perspex in front Exposure setting: 95 kV, 200 mA, 100 ms.              

(b) A skull with 6 cm perspex in front, Exposure setting: 95 kV, 200 mA, 100 ms, with 

binning of 2 × 2.                                                                                                              

(c) An image resulting from subtracting image with no Perspex from that with 6 cm of 

Perspex. 

 

4.10  Shielding (MCNPX ) 

The MCNPX simulations were of 20 million histories, and took a computer time of 

5778.50 minutes. The Tally type 4 (F4) was used; it gave the flux averaged over a 

region of interest in units of particles/cm
2
 (Pelowitz, 2005). Flux to dose conversion 

factors were used to convert the particle flux to dose equivalence rate, with the units 

for dose equivalence rate being µSv/h. These factors were obtained from ICRP 

(1996). The publication provides conversion coefficients for use in radiological 

protection against external radiation. A patient dose equivalence rate of 4.587 × 10-4 

µSv/h was determined. Of the 20 million histories only 12 protons were detected in 

the region of interest where the CCD chip would be located. Considering a beam 

current of 200 nA, the neutron dose equivalence rate was 1.096 µSv/h with a relative 

error of 2.88 % at one standard deviation. The equivalent dose rate for protons was 
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greater than the equivalent dose rate for neutrons; however the proton results had an 

error of greater than 50% and are therefore not reliable (Pelowitz, 2005). The photon 

dose equivalence rate was 1.644 µSv/h with a relative error of 0.20 % at one standard 

deviation. The results for the dose equivalence rate for electrons were unreliable as 

they had an error of 24_%. Although no specifications in a radiation environment are 

provided by the CCD manufacturer; a fluence of 2 × 1011 neutrons/cm2
 creates a 

noticeable effect on a typical CCD (Rybka et al., 2004). 8.021 × 109 neutrons/cm2 

would give a neutron dose equivalence rate of 1.096 µSv/h,, which is less by a factor 

of 25. The camera shielding is therefore adequate, and no extra shielding is required. 
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CHAPTER 5 CONCLUSION 

A camera-based imaging device that is comparably much cheaper than an amorphous 

silicon flat panel was developed and tested. To optimize the efficiency of the system, 

the CCD chip and scintillation screen were chosen so that the wavelength of the light 

from the screen closely matched the wavelength for which the CCD sensor has the 

greatest quantum efficiency.  The use of the device allowed for x-ray images to be 

obtained in a shorter time, compared to developing film. With the camera system, the 

images are obtained in digital form, thus allowing for the use of image processing 

tools, such as contrast enhancement and image fusion. 

 

The camera was operated at a temperature of –20 
o
C to reduce the effects of dark 

current. The calibration frames were used to calibrate the images that were taken. 

Although the contribution of the lens distortion was small, the images were corrected 

for lens distortion by using the MatLab routine by Bouget (2004).  

 

The results obtained by Partridge et al. (1999) could not be reproduced. The results 

might be improved if the strips and field masks were made from the same material as 

the scintillation screen; a substitute was used in the work because of the prohibitive 

costs of the scintillation screen. There was no apparent improvement in the image 

quality with the use of the privacy screen, as the benefit of the reduced scatter (which 

should improve the contrast resolution) is undone by the fact there is also an 

attenuation of the primary signal. Its use was not justified as it reduced the light 

coupling efficiency even further. Although no work was done on image registration 

(image fusion), as this was beyond the scope of this work, when comparing the digital 
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x-ray images (obtained from the imaging device) with the DDRs, it was seen that the 

digital images were satisfactory. The calculated resolution for film was about seven 

times better than the resolution of the device. However, the resolution of the digital 

images were satisfactory for the purposes of this work (the images would be used for 

comparison with DRRs). The field of view was chosen to include the whole area of 

the scintillation screen, however by reducing the field of view, the resolution could be 

increased. The measured parameters for the pixel binning of two was the preferred 

choice as this gave a better image than a binning of one. Some of the fine structures 

that were visible in images with binning of two, were not visible in those with binning 

of one, even after adjusting the window levels. The use of pixel binning allowed for 

the use of lower exposure settings when compared to exposure settings for un-binned 

images; this resulted in a reduction of patient dose. From the Monte Carlo 

simulations, no extra shielding was required for the camera. 

 

Future work might include looking at the development of a phantom similar to the Las 

Vegas phantom for QA purposes. Investigations can also be carried out to look into 

the optical fibre coupling for the CCD as the chip does allow for such a coupling. The 

CCD is equipped with a fibre optic plate in front of the sensor area coupled via a fibre 

optical taper to the scintillation screen with fibre optic output window. This allows the 

light to be transmitted directly from the scintillation screen to the CCD chip. Fibre 

optics offers excellent resolution and reduces contrast loss due to stray light (Karellas 

et al., 1992). However, the costs involved in purchasing the optical fibre coupling 

would have to be considered. Optical fibre coupling has the potential for using a 

lower exposure setting which leads to a further reduction in the dose to the patient, 

and improvement in image quality. 
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APPENDIX B.  
 

CAMERA TEST METHODS 
The following document is from the Apogee Instruments Inc. website 

(http://www.ccd.com/ccd105.html)  

The following data sheet is typical of that prepared by Apogee Instruments for each of its imaging 

cameras. Some of the measurements here are done by design, and some are performed on each 

camera in production. In this course, each test will be described and, where appropriate, tips will be 

given for performing these tests yourself. It is recommended that you familiarize yourself with the other 

subjects in CCD University before reviewing the subject of testing. These tests are important indicators 

of camera quality and they fulfill the commitment we have to our customers for substantiating the claims 

we make before the purchase. 
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Gain 

 

 

 

The first section of data lists the gain of the system in electrons per count, also referred to as 

electrons/ADU. For a gain of 2.4, 10,000 counts of signal would equate to 24,000 photons of 

light. The gain figure is determined in section 6, and it will be discussed there. The standard 

deviation was obtained from the difference of two bias frames taken at -5 degrees C, 

calculated by software from a region of interest (ROI) near the center of the frame. The 

product of the gain and standard deviation is noise in electrons. A word of caution: Shutters 

can leak light. The camera should be well sealed and in a very dark room when this is done.  

 

Linearity 
 

 
 

Linearity is a measure of how consistently the CCD responds to light over its well depth. For 

example, if a 1-second exposure to a stable light source produces 1000 electrons of charge, 

10 seconds should produce 10,000 electrons of charge. The deviation from this straight line is 

a measure of non-linearity. Dark count build-up over time has also been used by some, but 

we do not endorse this as a valid way to determine linearity. You can perform this test 

yourself to a reasonable degree.  

 

Try this procedure:  

 

1. Place the camera upright in a room with no windows and a stable light source. A 

fluorescent light will work. Position the light so that it casts indirect light on the ceiling above 

the camera.  

 

2. Cut out a piece of plain white paper and place it over the camera opening.  
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3. Take exposures with the camera in even increments from zero until the camera saturates. 

Plot the counts on the Y axis and the time on the X axis. The counts can be converted to 

electrons by multiplying by the gain of the system. The line should be reasonably straight 

throughout the well depth of the sensor.  

 
4. A word of warning. If you are using a camera with a fast shutter that can go to 0.02 

seconds, increments down to 0.1 seconds should produce results virtually free from shutter 

uncertainty. If you are using the ultra slow shutters only capable of 0.1 second exposures, 

then the increments of time should be larger (0.5 seconds). Try and keep the entire test very 

short (less than 5 seconds) and keep the camera as cold as possible to minimize dark count 

induced error. For Kodak KAF-0400 sensors at -5° C and 0.1-second increments for a total of 

3.0 seconds to saturation, dark count is not a signficant factor. Under these conditions, very 

good linearity results can be obtained.  

 
 
Bias Level 
 

 

 

The bias level is shown on the Apogee Instruments data sheets for information only. It is the 

mean bias level taken from the statistics box on a raw bias frame discussed above during 

system noise calculations.  

 

Dark Count 
 

 

 

Dark count is a function of the CCD characteristics and the temperature of the CCD. The dark 

count will double with a rise of 5-6 degrees C. A simple way to determine dark count is to take 

a 60-second dark frame (a 60-second exposure with the shutter closed) at a temperature of -

5° C. Determine the mean value of the pixels within a region of interest near the center of the 

frame. Next, take a bias frame and again determine the mean value. The dark count then 

becomes: (Dark - Bias)/60*system gain in electrons/second. A word of caution: Shutters can 

leak light. The camera should be well sealed and in a very dark room when this is done.  

 
Temperature Stability 
 

 
 

Temperature stability data given in the data sheets starts with a measure of the maximum 

temperature delta that can be achieved from an ambient temperature of +25 °C. This 

maximum delta will often be greater than the difference between your ambient temperature 

and the operating temperature.  
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The zero/scale numbers are those used by the software in interpreting the data coming from 

the temperature control subsystem. They are listed as a reference only. The Apogee 

Instruments temperature control system is independent of the computer and software once 

the system is enabled and desired temperature given. The computer can be reset, other 

programs can be run, and the camera-control software can be exited and re-entered without 

influencing camera temperature.  

Another feature of this temperature control system is the automatic ramp times to cold 

temperature and back to ambient. Once any desired temperature is programmed, the descent 

and ascent rate is controlled by the electronics. This limits the rate of change to the CCD, 

thus preventing premature failure due to excessive temperature shock. On the chart below, 

15-20 minutes passes before the temperature ramps to the desired value of about -7 degrees 

C. The camera-control software reports current temperature by reading a status port on the 

temperature controller, but there is some noise in the reading of this temperature. For user 

information on the current state of the controller, this noise does not present a problem. For 

testing of real temperature stability, we directly monitor the temperature sensor telemetry. 

Unless you have electronics expertise and a precision voltmeter, we do not recommend you 

do this test yourself. If you do, there is a monitor point on the C contoller board. 

 

 

Signal Variance 
 

 

The signal variance method of determining system gain in electrons per ADU is the most 

difficult of the tests discussed here, but can be repeated by anyone who follows the procedure 

outlined. This method is one where multiple exposures are taken with increasing light. 

Standard deviation and mean count data is collected for each image. The standard deviation 

numbers are each squared, then plotted with the net mean (mean - bias) numbers. The slope 

of the line represents the gain of the system. The test setup is very much like that discussed 

for the linearity test above. There are error sources in this simplified measurement and better 

methods exist for determining gain. This description is used for simplicity to better describe 

the concept.  
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Try the following procedure:  

1. Set up the conditions as you did for the linearity test. The light will probably have to 

be brighter.  

2. Stack several sheets (8-10) of plain white paper over the camera.  

3. Take a bias frame. Record the mean and standard deviation from the cursor box 

positioned in the middle of the frame.  

4. Remove a sheet of paper. Take a 0.1 second exposure.  

5. Record the mean and standard deviation from the cursor box positioned in the middle 

of the frame.  

6. Repeat steps 4-5 until the paper is gone or the image saturates.  

7. Create 2 more columns next to the data you've recorded. In one column record the 

square of the standard deviation data you recorded earlier. In the other column, 

subtract the bias mean from each mean you recorded. Your data should now look 

something like:  

 

All that remains is to plot the net signal on the Y axis and the SD2 data on the X axis. Draw a 

straight line through the data to make the best possible fit. To determine the slope, pick 2 

points along the line. The slope will be (Ypoint 1 - Ypoint 2)/(Xpoint 1 - Xpoint 2). For example 

in this case, the two points might be net signal numbers of 6000 and 0, and variance numbers 

of 2560 and 60. So (6000-0)/(2560-60) = 2.4 electrons per ADU (Analog to Digital Unit) or 

count.  
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APPENDIX C. 

C.1 Quantum Efficiency 

 

Quantum efficiency gives an indication of how efficiently incident photons are 

detected. It is the ratio of the number of detected electrons to the product of the 

incident photons multiplied by the number of electrons each photon can be expected 

to generate, for example light photons generate one electron-hole pair. In silicon an 

energy of 3.65 eV, which is the binding energy of an electron, is required to produce 

one electron hole. The energy, E, of the incident photons is given by  

λ
24.1

=E  [eV].     C1.1 

Here λ  is the photon wavelength in millimetres (mm). 

 

The number of collected electrons per pixel per second, Ne, for wavelengths greater 

than 300 µm is given by 

QEAPN e ×××××= λ101003.5  ,    C1.2 

where P is the optical power density [µWcm
-2
], A is the pixel area [cm

2
], λ is the 

wavelength [µm] and QE is the quantum efficiency in percent, (SITe, 2003).  

 

The quantum efficiency is generally a function of the wavelength and temperature, 

and is given by 

λ0int Φ
=

Tq

chQ
QE n  ,                                                C1.3       

where nQ is the number of minority carriers, h  is Planck’s constant, c  is the speed of 

light, q is unit charge, intT  is integration time, 0Φ  is the incoming photon flux, and λ  

is the wavelength of the light. Associated with the quantum efficiency is the spectral 
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response, R, which is defined as the ratio of the output current, outI , of the sensor to 

the incoming photon flux, 0Φ . The spectral response provides a measure of the output 

response of the CCD image sensor due to an optical input signal. The output current is 

given by 

intT

Q
I n
out = .                                               C1.4 

The response is expressed as  

0int Φ
=
T

Q
R n .                                             C1.5 

Substituting equation C1.5 into equation C1.3, gives quantum efficiency as a function 

of spectral response 

λq
chR

QE =   ,                                         C1.6 

QE is specified at different frequencies, and typically the QE in the visible region 

peaks at about 650 nm (Li and Nathan, 2005). 

 

Related to quantum efficiency is the detective quantum efficiency, which is an 

absolute measure of the efficiency of the real detector compared to that of the ideal 

detector. It is defined as (Munro  et al., 1990), 

    DQE = (SNROUT /SNRIN )
2
 ,                 C1.7 

where SNROUT indicates output signal to noise ratio of the radiation detector and 

SNRIN the signal to noise ratio associated with the radiation beam. The detective 

quantum efficiency can be employed as an overall measure of image quality. When 

considering the two types of detectors, the integrating and quantum detector, the DQE 

for an integrating system, intDQE , is given by 
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))((
1

2int

in

m

NQE

QE
DQE

σ
+

=  ,                              C1.8 

where Nin is the number of incident photons and 2

mσ  represents the standard deviation 

of measurements. For a quantum detector, where the charges are not integrated and 

individual pulses are counted the DQE is given by 










∆
−









∆
−=

t

NQE

t

NQE
QEDQE inin

quant

))()((
exp

))()((
1

2

ττ
 ,      C1.9 

where τ is detector’s dead time, and t∆  is the measurement time. From equations 

C1.8 and C1.9 the maximum DQE possible for the detector is given by QE; the 

quantum efficiency sets the physical limit of any detector (Ahmed, 2007). It can be 

seen that the DQE of an integrating detector increases with incident photon intensity 

while it’s the opposite for the quantum detector, this is show in Figure C-1. 

 

Figure C-1 The variation of detective quantum efficiencies with respect to 

incident number of photons for integrating and quantum detectors. [Image from 

Ahmed, , (2007)] 

 

The DQE is a measurement of the real performance of an imaging system considering 

all the stages involved in producing the final image. In an ideal imaging system 100% 
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of the x-ray quanta that reach the detector would be used to create the image, but this 

is not the case in a real imaging system. In a real system the signal obtained will not 

be entirely made up of just the signal generated by the quanta, but to some varying 

degree will also be made up of noise. Other factors such as the amount of contrast in 

the image are also considered when calculating the DQE, as a high contrast image 

will be less affected by noise (Oakley J., 2003). For a system with ideal noise 

properties, the quantum efficiency, QE(f), will be equal to the DQE(f) (at f=0), where 

f is spatial frequency (Bushberg J.T.et al, 2002 and Guerra A.D., 2004). Ideal (white) 

noise is an idealized noise process having a power spectral density that is constant 

over all frequencies. The term white is used to describe such noise based on the fact 

that the spectrum of white light is constant over all frequencies in the visible range 

(Whitaker J. C., 1996 and Taylor N. T., 1993) 

 

C.2 Depth of Field 

A great depth of field would make the system less susceptible to defocusing. Depth of 

field is strongly dependent on the working distance. It is also dependent on the lens 

focal length, aperture size and focus distance. When an object is at the exact distance 

at which the lens is focused, all the points on the object would form points on the 

image plane. As the object moves out of focus, these points grow and become circles. 

These circles are referred to as circles of confusion, which become larger the further 

out of focus the object is. However, there is a point at which the eye is unable to 

resolve these circles. When determining the size at which the circle of confusion 

becomes visible, the rule of thumb was to take it to be 1/1730
th
 the size of the 

diagonal of the image (Collins, 2005). The depth of focus was determined by 

calculating the near and far focus limit. The near focus limit, FN, is given by 



 

 - 12 - 

)( LDH

DH
FN −+

×
=  .      C2.1 

The far focus limit, FF, is given by 

      
)( LDH

DH
FF −−

×
=  ,                 C2.2 

 where H is the hyperfocal distance, D is the distance at which the lens is focused, and 

L is the lens focal length. Equation C2.1 and C2.2 are derived by considering a 

symmetrical lens as illustrated in Figure C-2, with the subject at distance D in focus at 

image distance I. Point objects at distances FF and FN would be in focus at image 

distances IF and IN, respectively; at image distance I, they are imaged as blur spots.  

Figure C-2.  The depth of field for symmetrical lens 

 

The depth of field is affected by the aperture stop diameter f; when the blur spot 

diameter is equal to the acceptable circle of confusion d, the near and far limits of 

DOF are at FN and FF. From similar triangles, 

f

d

I

II

N

N =
−

 ,                   C2.3 

f

d

I

II

F

F =
−

  .                                     C2.4 

 The f-number F# is related to the lens focal length L and the aperture diameter f by 
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f

L
F# =  .                      C2.5 

Substituting into the previous equations gives 

               
)( # dFL

IL
I N ×−

×
=  ,                   C2.6 

                        
)( # dFL

IL
I F ×+

×
=  .    C2.7 

 The image distance I is related to an object distance O by the thin-lens equation 

                    
LIO

111
=+  .               C2.8 

Substituting into the two previous equations gives the near and far limits of DOF: 

      
))(( #

2

2

LDdFL

LD
FN −×+

×
= ,   C2.9 

      
))(( #

2

2

LDdFL

LD
FF −×−

×
=  .   C2.10 

 Setting the far limit of DOF FF to infinity and solving for the focus distance D gives 

            L
dF

L
HD +

×
==

#

2

,     C2.11 

where H is the hyperfocal distance. Setting the subject distance to the hyperfocal 

distance and solving for the near limit of DOF gives 

   
22

)( #

2
HLdFL

FN =
+×

=  .    C2.12 

For any practical value of H, the focal length is negligible in comparison, so that 

dF

L
H

×
≈

#

2

 .                                               C2.13 

Substituting the approximate expression for hyperfocal distance into the formulae for 

the near and far limits of DOF gives 
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)( LDH

DH
FN −+

×
=  ,     C2.14 

        
)( LDH

DH
FF −−

×
=  .           C2.15  

The hyperfocal distance allows for the greatest DOF to be obtained. If the lens is set 

to focus at the hyperfocal distance this gives the maximum depth of field from half 

the hyperfocal distance to infinity. 

 

C.3 Field of View 

The field of view is the viewable area of the object that fills the camera’s sensor, 

which for this work is the CCD chip. The size of the sensor’s active area, together 

with the working distance between the scintillation screen and the camera’s lens, and 

the optical properties of the lens (in particular the focal length), are important factors 

in determining the field of view. Generally, under similar conditions, larger sensors 

give larger field of views. On the other hand, if the lens is not able to support a large 

CCD chip size a “tunnel effect” results, caused by vignetting with the edges of the 

field being darker. Another aspect of the optical system is the depth of field, which 

gave an insight into the focusing ability of the system. 

 

C.4 Lens Coupling Efficiency 

Work done by Yu and Boone (1997) and Liu et al. (1994) on lens coupling efficiency 

will now be considered. The benefit of systems having a scintillating screen coupled 

to a detector through a lens is that a relatively small photo-detector can form an image 
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from a large region of the scintillator by demagnification. However, with 

demagnification there is a potential for large light losses, which may cause a 

secondary quantum sink and leads to a reduction in quantum efficiency. A 

demagnifying optical coupling results in the loss of spatial resolution, which is 

inversely proportional to the demagnification between the image plane and the CCD 

focal plane (Karellas et al., 1992).  

 

 

Figure C-3 A schematic diagram of a lens coupled imaging system. 

  

The lens coupling efficiency for a generalised case, as shown in Figure C-3, without 

taking into account the emission characteristics of the scintillating screen, in terms of 

spherical coordinates is given by 
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Here 2g  is the lens coupling efficiency. T is the bulk transmittance of the lens, which 

is the ratio of the photon energy passing into the image domain to the photon energy 
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falling into the lens aperture at the object domain. θ is the polar angle and f(θ) is the 

normalized angular distribution for the radiance of the scintillation screen. The angle 

at which the angular distribution of the radiance was normalised to, was taken to be at 

0°. To obtain the normalized angular distribution, the angular distribution of the 

radiance was divided by the radiance at a particular angle; in this case at the 0° angle 

as shown in Figure C-4. Since f(θ) is typically measured for a given screen, a simple 

analytic expression for this function is usually not available. Numerical methods are 

therefore used to evaluate the integrals in Equation C4.1 (Yu and Boone, 1997). φ is 

the azimuthal angle and θmax is the polar angle that the marginal ray makes with the 

optical axis.  

 

Figure C-4 The normalized radiance as a function of angle is shown for two 

different scintillating screens Gd2O2S:Tb and FFP (fiber optical scintillating 

faceplate) The angular distribution is normalized to the radiance at the angle of 0°. 

[Image from Yu and Boone (1997)]  

 

Assuming a Lambertian source for the scintillation screen, f(θ) ≡ 1, equation C4.1  

reduces to 
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From the geometry illustrated in Figure C-3, it follows that 

       
22

2

max

2

)2/(

)2/(
)(sin

oSd

d

+
=θ ,  C4.3 

where d is the diameter of the lens, and So is the distance between the screen and the 

lens. From the lens equation, 

                                      
fSS io

111
=+   ,     C4.4 

where Si is the distance between the lens and the CCD, and f is the focal length of the 

lens in Figure C-3. Taking m as the system geometrical magnification factor,  

m = Si /So; and F# as the f-number of the lens, F# = f/d. Substituting m and F# into 

equation C4.1, C4.2 and C4.4 gives 
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Assuming a point source as shown in Figure C-5 the lens coupling efficiency is given 

by 
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where αmax is the meridian angle in the screen that the marginal ray makes with the 

optical axis. 
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 Figure C-5  An illustration of assumption of point source. Light photons 

propagate across the boundary between the phosphor screen and the air, and Snell’s. 

law was applied to get the relationship between the angle α in the screen and the 

angle θ  in the air. 

When the angle αmax is small, then 
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 From Snell’s law ns sin(αmax) = na sin(θmax), where ns is the refractive index of the 

screen, na is the refractive index of the air, na ≈ 1. Equation C4.7 becomes  
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Here the tangent is substituted for the sine, which is valid for small angles. By 

substituting the parameters m and F# into equation C4.4 and equation C4.8, the 

equation becomes 
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The assumptions for g2 are that the marginal ray angle is small (θmax ≤ 10°), and there 

is negligible light attenuation within the screen (Yu and Boone, 1997 and Liu et al., 

1994). 

Liu et al. (1994) suggest that for a well-designed multi-piece photographic lens, a 

good estimate for T is T = 70 %- 80 %, Yu and Boone have taken it to be unity. The 

demagnification factor is given by m, it is the ratio of the object to the image size. The 

f-number of the lens is given by F#, it is the quotient of focal length of the lens, f, 

divided by effective diameter of the lens, d and ns is the refractive index of the screen.  

 

If the lens coupling efficiency is known, the signal to noise ratio can be determined by 

the approximation (Liu et al., 1994) 
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NSNR iη  ,                    C4.10        

where η is the quantum efficiency of the scintillating screen. η is a quantity defined as 

the fraction of photons hitting the surface of the scintillating screen, that will produce 

an electron–hole pair.  Ni is the x-ray photon flux (number of x-ray photons per pixel 

at the entrance of the scintillating screen), g3 is the quantum efficiency of the CCD 

(electrons/photon), g2 is the optical coupling efficiency of the lens, and g1 is x-ray 

light conversion factor of the screen. The product 321 ggg is the total quantum gain of 

the imaging system, whose units are those of electrons produced in the CCD per x-ray 

photon absorbed in the scintillating screen. 

 

 For large values of 321 ggg  the equation becomes (Liu et al., 1994) 

iNSNR η=  ,          C4.11 



 

 - 20 - 

 this represents a perfect x-ray quantum-noise-limited system. For values of 321 ggg  

smaller than about 10, the SNR of the system is dominated by the low efficiency of 

the lens. Equation C4.9 is a monoenergetic approximation of the SNR equation, 

which assumes the lens-coupled CCD imaging chain obeys Poisson statistics. The 

equation is used to determine whether an imaging system is x-ray quantum noise 

limited or not. Quantum noise may also occur in electronic circuits.  It is noise that 

arises when the finite number of particles that carry energy, such as electrons in an 

electronic circuit or photons in an optical device, is small enough to give rise to 

detectable statistical fluctuations in a measurement. It represents the fundamental 

limit of the achievable signal-to-noise ratio of an optical system. A quantum noise 

limited system is a system wherein the minimum detectable signal is limited by the 

quantum noise.  

 

C.5 Lens Distortion 

Distortion arises from the fact that transverse magnification may be a function of the 

off-axis image distance. This causes the different areas of the lens to have different 

focal lengths and different magnifications as shown in Figure C-6, where the object 

plane is at O, Q is the general off-axis point, E′ is a point in image space where the 

central ray of the beam crosses the optical axis, E is a point in object space where the 

central ray of the beam crosses the optical axis, Q  is the real image point, Q′ is the 

Gaussian image point, O′ is the axis image point, η ′ is the real image height, and η ′  

is the Gaussian image height.  
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When distortion is present, the point Q is imaged on the Gaussian image plane but not 

on the expected Gaussian position. In paraxial optics (Gaussian optics), the Gaussian 

image plane is the plane conjugate to the object plane in the absence of aberrations; it 

can be computed from Newton’s lens equation if the object position is known. 

Gaussian optics is also known as first-order optics, and arises from the basic 

approximations sin φ � φ, tan φ � φ, and cos φ � 1, which leads to Snell's law. 

These approximations greatly simplify ray tracing and lens formulas, but they do 

restrict the angles the light rays make with the optical axis to rather small values of 

20° or less.  

 

Figure C-6  An illustration of the distortion aberration [Image from Smith and 

Atchison, 1997] 

 

Lens distortion does not degrade the quality of the image in terms of sharpness or 

focus, but affects the shape of the image. Both radial and tangential distortion is 

possible. Geometrical distortion causes a change in shape, which results in pincushion 
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or barrel distortions as illustrated in Figure C-7. Radial lens distortion is an alteration 

in magnification from the center of the field to any point in the field, measured in a 

radial direction from the center of the field. It is usually expressed as a polynomial 

function of the radial distance from the point of symmetry (usually coinciding with 

the principal point). There are two major types of radial distortion. The first one is a 

negative displacement also called barrel distortion. Barrel distortion occurs when 

points are moved from their correct position towards the center of the image. The 

second type of radial distortion is a positive displacement, which occurs when points 

are displaced further away from the optical axis. This type is also called pincushion 

distortion. Barrel distortion is common for wide-angle lenses and pincushion 

distortion for narrow angle lenses (Jedlička and Potůčková, 2007; Mikhail  M.E. et al, 

2001). Some radial distortion is inherent in most optical systems, but can be reduced 

by proper design. 

 

Figure C-7 An illustrations of geometrical distortions introduced by the lens.    

(a) A checkerboard like grid without distortion; (b) Pincushion distortion; (c) Barrel 

distortion. 

 

The tangential distortion (also known as decentering distortion) is due to lack of 

centering (decentering) of lens elements along the optical axis, and other 

manufacturing defects in a compound lens. It results in the displacement of image 
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points perpendicular to the radius from the center of the field. One of the effects of 

tangential distortion is that a straight line passing through the center of the field may 

be recorded as a weakly curved line as shown in Figure C-8.  

 

 

Figure C-8  an illustration of tangential distortion: A straight line passing through 

the center (optical axis) of the field is recorded as a weakly curved line. In this 

schematic, the dashed lines show the undistorted geometrical pattern and the solid 

lines represent the distorted pattern. [Image from Liu. et al. (2000)] 

 

Tangential distortion is usually an order of magnitude less than radial distortion and 

varies less with focus, much less than radial distortion, as indicated by the distortion 

profiles shown in Figure C-9. Camera calibration researhers have argued and 

experimentally verified that radial distortion is the dominant distortion effect (Zhuang 

and Roth, 1996) 
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(a) 

 

 

(b) 

 

Figure C-9 (a)The radial distortion profile for a digital camera set at different 

focal length. (b) The decentering distortion profile for a digital camera set at 

different focal length. 

 

 

For our system, the captured images needed to be corrected for image distortions. 

Because of the shape of the lenses and the imperfections, which arise during the 

manufacturing process, the lenses exhibit lens distortion. Lens aberrations cannot be 

completely avoided in optical design, with commercially available relay lenses having 

distortion errors in the range of 1 to 3 %, (Liu et al., 2000), for zoom lenses this figure 

is higher. Various correction methods can be applied to minimize lens distortion. 
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Lenses generally have curved surfaces and therefore project world points in a 

somewhat spherical surface instead of a plane. To correct for lens distortion a 

distortion model can be used that models how the distortion occurs on the image. 

However to conceptualise this, a camera model may be constructed to give an 

indication of the workings of a camera from which a method can be devised to do the 

necessary corrections for the distortions. 

 

C.6 Projective Camera Model 

A camera can be represented by a matrix, which maps homogenous coordinates of a 

3D world point to homogeneous coordinates of the image point on a 2D image plane 

(Hecht, 2001). For a point (x, y, z) in 3D space, the homogeneous coordinates are a 4-

vector representation 
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1
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of the point. CCD cameras are usually modelled using a 

specialized and simple camera model based on the pinhole camera. Figure C-10 

illustrates the projection of points in space onto a plane at z = f, with this plane being 

called the image plane or focal plane. 

 

Figure C-10 The pinhole camera geometry. C is the camera center and p the 

principal point. The camera center is placed at the coordinate origin, with the image 

plane placed in front of the camera center.[Image from Hartley  and Zisserman, 

2000] 
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A point in space with coordinates x = (X, Y, Z)
T
 is mapped to the point on the image 

plane where a line joining the point x to the center of projection meets the image 

plane. The column vector x is given by the transpose of the row vector (X, Y, Z). By 

similar triangles, the point (X, Y, Z)
T
 is mapped to the point (fX/Z, fY/Z, f )T on the image 

plane. This gives the mapping 

TT ZfYZfXZYX )/,/(),,( a   .            C6.1 

In terms of homogeneous vectors, the central projection is expressed in matrix form as  
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This can be expressed as  

    x = PX  ,                         C6.3 

where X is the world point represented by the homogeneous 4-vector (X, Y, Z, 1)
T
, x is 

a homogeneous 3-vector for the image point, and P represents the 3 × 4 homogeneous 

camera projection matrix. The more general form of equation C6.2, which takes into 

account whether the origin of the coordinates in the image plane is at the principal 

point is given by 
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where (px, px)
T
 are the coordinates of the principal point. The concise form of equation 

C6.4 is given as 



   

 - 27 - 

   x = K ][ 0Ι  x cam ,     C6.5 

where ][ 0Ι  represents an augmented matrix divided up into a 3 × 3 block, which is 

the identity matrix together with a column vector (which in this case is a zero vector). 

The augmented matrix of a matrix is obtained by combining two matrices. Given the 

matrices A and B:  

 

















=

333231

232221

131211

aaa

aaa

aaa

A  ,     

















=

3

2

1

b

b

b

B                                      C6.6 

then, the augmented matrix [A|B] is written as: 
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The x cam  in equation C6.7 emphasizes that the camera is assumed to be located at the 

origin of a Euclidean coordinate system, and K is known as the camera calibration 

matrix, which is given by  
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The world coordinate frame and the camera coordinate frame are related through a 

rotation and a translation. A point in the camera coordinate frame can be written as  
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where C
~
 represents the coordinates of the camera center in the world coordinate 

frame, and R is a 3 × 3 rotation matrix representing the orientation of the camera 

coordinate frame. The equation C6.9 can then be written as  

x = KR[I | -C
~
] X ,    C6.10 

where X is now in the world coordinate frame. It can be seen that the general pinhole 

camera, P = KR[I | -C
~
], has 9 degrees of freedom: 3 for K (the elements f, px, px,  

which are called the internal camera parameters),  3 for R, and 3 for C
~
. The entities R 

and C
~
 represent the external camera parameters. External (extrinsic) parameters 

define location and orientation of camera reference frame with respect to world frame, 

while internal (intrinsic) parameters define pixel coordinates of image points with 

respect to coordinates in camera reference frame. 

 

The pinhole camera is for the ideal situation where there is no distortion. However, 

this is not the case with real cameras as they always have some degree of distortion. A 

distortion model was used as a basis for the correction of lens distortion. 

 

C.7 Distortion Model 

As mentioned above, the pinhole projection camera model is for ideal situations 

where there is no lens distortion. Under ideal (undistorted) pinhole projection the 

image coordinates can be denoted by ( yx ~,~ ), measured in units of focal length. For a 

point x we get 

( yx ~,~ , 1)
T
 =  ][ 0Ι  x cam   ,                               C7.1 
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where xcam is the 3D point in camera coordinates given in C6.9. The undistorted point 

is linked to the projected point by a radial displacement.  

 

The radial distortion can then be represented by  
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where ( yx ~,~ ) is the ideal image position (which obeys linear projection); ( dx , yd) is 

the actual image position after radial distortion; r~ is the radial distance 22 ~~ yx +  

from the center for radial distortion; L( r~ ) is a distortion factor, which is a function of 

the radius r~ only. 

 

To correct for the radial distortion, the following can be used to give the corrected 

pixel coordinates 

 ))((ˆ
cc xxrLxx −+=   ))((ˆ

cc yyrLyy −+=  ,  C7.3 

where (x ,y) are the measured coordinates, ( yx ˆ,ˆ ) are the corrected coordinates, and 

),( cc yx  is the center of the radial distortion, and 222 )()( cc yyxxr −+−= . The 

coordinates ( yx ˆ,ˆ ) are then related to the coordinates of the 3D world point by a linear 

projective camera by using this correction.  

 

The function L(r) is defined by positive values of r with L(0) = 1. This function can 

be approximated by the Taylor expansion .........1)( 3

3

2

21 ++++= rrrrL κκκ  , 

whose coefficients {κ1, κ2, κ3,……., xc, yc} are taken to be part of the interior 

calibration of the camera. Using an iterative algorithm such as Levenberg-Marquardt 
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(Hartley and Zisserman, 2000;  Triggs et al., 2000), the function maybe computed by 

minimizing a cost based on the deviation from a linear mapping.  

In the distortion model used by Bouguet, both radial and tangential distortions are 

considered. The model is based on the ‘plumb-line’ model (also known as the Brown-

Conrady model) which was proposed by Brown (1966). This technique for 

determining radial and decentering distortions for a particular focus setting of a lens is 

based on the principle that in a perspective projection a straight line in object space 

should project as a straight line into the image space. Any deviations from linearity 

can be attributed to radial and decentering distortions in the lens. In his early 

experiments, Brown suspended thin plumblines from the ceiling in a laboratory, 

thereby providing the title to this method. However, the lines do not have to be 

vertical, merely straight. In  model the expression C7.2 becomes  
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where kc is a 5 × 1 vector , which has the radial and tangential distortions, x is a point 

in space, and where dx is the tangential distortion vector: 
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The final pixel coordinates xpixel = (xp;yp) of the projection of the point x on the image 

plane is:  
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Here f, which is a 2 × 1 vector of the focal length in pixels, is given by 



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
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2

1

f

f
f , αc is 

the skew coefficient defining the angle between the length, x, and width, y, of the 

pixel axes (it is usually assumed that the pixels are rectangular, and thus skew is 

assumed to be zero), c is the principle point ),( yx cc . 

Therefore, the 5-vector kc contains both radial and tangential distortion coefficients. It 

can be seen from equation C7.4 that the coefficient of 6
th
 order radial distortion term 

is the fifth entry of the vector kc. 


