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Abstract 

In a river, the local hydraulics, channel form and in-stream vegetation are 

interdependent. Although water, sediment and vegetation processes interact, they 

respond individually to flow characteristics at different spatial and temporal scales. 

This study employs a modelling approach that is based on the tendency of river 

systems to self-organise and produce emergence (emergent structures) in scale 

hierarchies. A hierarchical modelling strategy is proposed that arranges separate 

models describing vegetation and sediment dynamics at their appropriate scales, with 

their interaction described through feedback between the models.  

Prediction of the river state at time scales of decades, over a range of spatial scales, is 

required for ecological river management to be more effective. However, river systems 

are complex, with complexity rooted deep in the river processes of water, sediment and 

vegetation holding implications for their modelling. Dealing with complexity in river 

geomorphological modelling is vital for achieving reliable predictions over decades, 

especially when considering that small-scale processes must be described to achieve 

this. Description of small-scale river form is not only required for river habitat 

management, but also affects the rates at which river form at larger scales changes. 

Hierarchy and non-linear theory provide a way to deal with the complexity of rivers by 

separating the river system into parts, and enabling these parts to interact.  

Appropriate models and modelling methodologies were chosen or developed to 

represent the effect of interacting river processes of water, sediment and reeds at the 

progressively nested (largest) reach scale, the channel-type scale and (smallest) 

geomorphological-unit scale.  

Existing water flow models at the reach scale and the next largest channel-type scale 

are used. The reach scale water flow model solves one-dimensional (1-D) Saint-Venant 

equations whereas the channel-type scale water flow model is governed by two-

dimensional (2-D) Saint-Venant equations.  

The water flow model at the smallest organisational level chosen for modelling is the 

geomorphological-unit scale. Water flow at the geomorphological-unit scale is not 

based on the actual physics of water flow, but it does account for the smaller scale 

variability of the water distribution.  
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The sediment model at the reach scale employs the Exner equation of sediment 

continuity in combination with gravel-bed-load transport equations to determine 

changes in bed elevation. At the channel-type scale, a Cellular Automaton (CA) model 

describes sediment transport through a river. The CA represents the river as a lattice of 

cells and predicts the volume of sediment stored in the cells. The sediment distribution 

obtained from the CA model describes the habitat for reeds. At the geomorphological-

unit scale, a combination of existing formulations is used to predict the dimensions and 

growth of bed-forms representing sediment dynamics.  

The vegetation models at the reach scale and the channel-type scale were developed 

specifically to describe dynamics of common reeds or Phragmites Australis. Reeds 

were chosen for modelling because of the large role they play as geomorphological 

modifiers. The reach scale model predicts the distribution of reed populations along the 

lateral river bank gradient whereas the channel-type scale reed model is a CA model 

that predicts the expansion of reed patches. The vegetation model at the 

geomorphological-unit scale is an existing model describing the growth of reeds by 

integrating finite differential equations of reed biomass growth.  

River process interactions affect river geomorphology across these organisational 

levels. The models are integrated to provide feedback within a hierarchical modelling 

structure. Process models simulating sediment, water and vegetation dynamics within a 

specific organisational level are coupled through sharing the same spatial scale. Models 

of the same process producing patterns at various organisational levels are linked to 

share model information across organisational levels. Trans-organisational modelling 

linkage allows models to share outputs which provide boundary conditions and values 

for model parameters at specific locations within the modelling domain. A hierarchical 

framework allows prediction of small-scale geomorphology and accounts for its 

variability at the large scale. 

The modelling strategy is demonstrated by simulations based on hypothetical scenarios 

of a gravel-bed river. The effect of sediment size and frequency of the flood event 

moving sediment, together with typical channel geometry, is shown for these. The 

modelling was computationally very intensive.  
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Results show that models focusing on only one organisational level can have very 

different outputs from those produced by trans-organisational modelling. The 

difference is due to emergence produced by dynamic small-scale processes that 

manifest at large scales.  

Emergence was found in changing flow resistance coefficients obtained from smaller 

scale modelling. The flow resistance affected the river bed elevation at the reach scale. 

Emergence was indicated by the channel aggrading more for modelling with the 

inclusion of the effect of smaller scale river process interactions than without it.  

 These small-scale process interactions include water flow affected by bed-forms and 

reeds. Bed-forms and reeds affected energy loss significantly and provided a strong 

coupling between the flow and the river bed elevation. Hierarchical modelling 

therefore allows for reliable river geomorphology modelling over a decadal time scale 

by describing river complexity more realistically.  
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1.1 Introduction 

1.1.1 River management  

River management is multi-objective, inherently interdisciplinary and is concerned with a 

range of spatial and temporal scales. There is a range of ways in which river managers can 

effect change in rivers. The introduction of environmental values has led to a shift from 

reactive river engineering to proactive sustainable management of rivers over decadal time 

scales. However, in order to manage rivers, decision-makers need to know how their 

actions will affect other components of the complex, interconnected systems involving 

water, sediment and biota. Managers need to consider effects of vegetation biomass 

change and changing land use on sediment deposition rates and channel plan form change. 

Managers need to understand what effect changes in timing and magnitude of water flows 

have on ecosystem productivity and biodiversity. To reduce uncertainty, river managers 

require prediction of the behaviour of the river patterns arising at various scales. 

The complexity of rivers is well illustrated by the problems experienced by the Kruger 

National Park (KNP)  in managing the Sabie River. Development in the Sabie River 

catchment changes flow and sediment regimes of the river (Birkhead and James, 2000), 

making it more difficult for management to keep to its vision: “To maintain biodiversity in 

all its natural facets and fluxes to provide human benefits, in a manner that detracts as little 

as possible from the wilderness qualities of the KNP”. The changes in sediment and flow 

regimes lead to adjustments to river geomorphology with associated changes in aquatic 

and riparian fauna and flora (Birkhead and James, 2000). There is intense pressure on KNP 

management to understand and conserve the natural role of aquatic systems in the Park 

(Rogers and Bestbier, 1997).  

Chapter 1  –  Introduction –  The need for 

trans-organisational  model l ing 
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Management of the Sabie River is further complicated by a highly diverse and mixed 

bedrock alluvial geomorphological structure (van Niekerk et al, 1995). The high degree of 

patchiness of different geomorphic units plays an important interactive role in influencing 

species distribution patterns (Hupp and Osterkamp, 1985). The general sequence of 

succession in KNP rivers progresses by open water and rock areas being occupied by 

sediment which is colonised by reeds, followed by bushes and finally by trees 

(Rogers, 2002).   

Phragmites reeds play a large role as a geomorphological modifier within rivers in the 

KNP. In the Sabie River, for example, there is a high diversity of geomorphological 

features due to a mixture of alluvial sediment and bedrock characteristics and a variable 

flood regime. Among these geomorphic features are sediment bars which are often 

colonised by reeds (Nicolson, 1999). When floods pass through bars covered with 

Phragmites reeds the shear stresses on the bars will not be as high as with unvegetated bars 

and they will therefore not erode (James et al, 2001a). Reeds and other herbaceous 

vegetation are pioneer species and provide a suitable habitat for the establishment of tree 

species (van Niekerk and Heritage, 1993). As a consequence, reeds are modelled in this 

study.  

1.1.2 Geomorphological prediction 

River geomorphology is founded on the shapes or forms observed in rivers. The prediction 

of the state of river geomorphology caused by modified land and water use is becoming 

increasingly important in environmental management of rivers. Modified amounts of 

sediment flowing into rivers, the flow regime and riparian vegetation cover can greatly 

affect the river form on a decadal scale. River geomorphology affects the river ecology 

through changes in riverine habitat (Nicolson, 1999). Habitat and biota are affected and, in 

turn, affect river processes over a range of scales (Nestler et al, 2005; Dollar et al, 2007). 

Biological response may be directly related to habitat at various scales 

(Heritage et al, 1997) in which discharge is manifest as flow depth, velocity and boundary 

shear stress (James et al, 2001a). Prediction of river state at timescales of decades is 

required for ecological river management to be effective (Hooke et al, 2005).  
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The prediction period, however, is limited firstly through uncertainty about the water and 

land use and secondly through the feedback that smaller scale changes have on larger scale 

events, which becomes increasingly unknown over longer prediction periods. The size of 

evolving bed-forms or whether there will, in fact, be vegetation growing in a reach in 

future years, for example, can greatly affect river geomorphology. Knowledge about such 

geomorphic modifiers decreases for prediction further into the future. Currently, predictive 

capability regarding habitat is satisfactory at small spatial scales (metres) but insufficient at 

large time scales (decadal) because of river complexity. The complexity of river processes 

prevents current prediction at a large scale from including the effect of smaller scale 

variability. In that sense, river complexity also hinders the possibility of deriving smaller 

scale habitat from large-scale river form and therefore makes habitat difficult to predict 

over larger time scales. This study employs a 10 year period over which simulations were 

made to show that the hierarchical modelling strategy can improve modelling at these large 

temporal scales.   

1.2 Aim 

1.2.1 Motivation for study 

Patterns forming at slow and large scales are constructed and organised by the interaction 

of many small and fast processes (Zhang et al, 2004). For example, the movement of 

sediment particles, which are observed at a resolution of milliseconds and millimetres, 

determines bed-form dynamics on the bed observed at a resolution of minutes and 

centimetres. At even larger scales, sediment movement determines where sandbars are 

formed. These are observed at a resolution of hours and metres. At still larger scales, 

sediment movement determines the channel plan form observed at a resolution of days and 

tens of metres.  

Although the individual components of rivers can in themselves be complex, it is easier to 

describe them individually. A river in its whole however, is more than the sum of the parts 

and new or hidden properties may emerge that cannot be readily predicted from its basic 

components (Haschenburger and Souch, 2004). For example, the movement of sediment 
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grains under the action of water sets up distinct bed-forms. The bed-forms affect water 

flow to result ultimately in a particular channel pattern or arrangement, which in turn 

affects how the grains within a river move. It is these emerging patterns that cannot be 

discerned from the movement of sediment grains only. In order to simulate the behaviour 

of rivers, it is necessary to understand not only how the individual parts behave in 

isolation, but also how they interact, to determine the behaviour of the whole river 

(Malanson, 1999; Michaelides and Wainwright, 2004). 

To determine the behaviour of a river as a whole it is necessary to account for feedback 

between organisational levels (Spedding, 1997; Harrison, 2001; Richards, 2001). 

Figure 1.1 identifies a range of organisational levels and their related processes. The 

diagram implies feedback between successive scales (Richards, 2001) and concerns 

smaller scale heterogeneity affecting larger-scale modelling (Albert, 2000). 

 

 

 

 

 

 

 

 

  

 

Figure 1.1 Representation of fluvial and ecological processes at different 

organisational levels of rivers (Richards, 2001) 
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Better geomorphological prediction depends not only on how well modelling describes the 

patterns at a particular organisational level but also on how well feedback from higher or 

lower organisational levels can be incorporated (Dollar et al, 2007). Processes can be 

unified across scales via so-called nested models, which link models of similar river 

processes but describe patterns at different scales, to share model output (Paola, 2001; 

Lenaerts et al, 2002). This can be achieved by the dynamical hierarchies concept, where 

higher-order structures are a product of the interactions and properties of the lower-level 

components (Lenaerts et al, 2002; Dollar et al, 2007). Organisational models may produce 

spatial patterns which affect the way regularities at higher levels emerge (Harrison, 2001) 

and can be linked through models describing emergent structures, as described in 

section 2.4 (Lane and Richards, 1997). This concept is reinforced by Harrison (2001), who 

states that rivers, as dissipative geomorphological systems, adjust form over various scales 

through emergent structures affecting one another.  

1.2.2 Objectives 

The aim of this study is to show that models providing feedback in a hierarchical 

modelling framework deal better with the complexity of river morphodynamics than 

disconnected scale-specific models. A hierarchical modelling framework allows process 

interactions over various scales to be integrated by links that are able to transmit feedback 

between models logically. It allows effective use of models representing small-scale 

process to explain events at the larger spatio-temporal scales where much 

geomorphological prediction for environmental management is required. Hence, 

modelling frameworks set up a coherent way to allow non-linear processes of water 

sediment and vegetation to interact over a range of scales. The objective of this study is to 

link models within a hierarchical modelling framework to simulate river form for a period 

of 10 years.  

River morphodynamics are simulated to include Phragmites reeds interacting with water 

and sediment processes, modelled using a hierarchical strategy. Patterns produced by these 

process interactions at a range of scales are described by process models which are 

progressively nested to account for smaller scale variability while still allowing interacting 

processes at similar scales to provide feedback. The complexity of rivers necessitates 
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separate models for sediment water flow and vegetation processes at various scales to 

allow “real time” up-scaling, which is achieved by allowing models representing 

large-scale processes (kilometres and years) to affect smaller scale process models (metres 

and seconds) continuously, through boundary conditions. Small-scale models influence 

material flows of larger scale models by adjusting model parameters.  

In order to achieve these aims, the specific objectives are:  

1) To determine appropriate models and modelling methodologies to represent the effect 

of interacting river processes of water, sediment and vegetation at various organisational 

levels; 

2) To further the predictive capability of river geomorphological modelling by developing 

an approach that incorporates the feedback amongst processes across organisational levels.  

1.2.3 Approach 

The hierarchical modelling strategy that allows trans-scale linkage of water sediment and 

vegetation processes is shown in Figure 1.2 and proceeds as follows: 

1) At the reach scale, a water flow model drives a sediment model predicting bed 

elevation. The bed elevation is fed back to the water flow model to determine the 

resulting water flow distribution. The new bed elevations from the sediment model 

together with the monthly flow depths from the water flow model are used. A reed 

model at the same scale is used to determine the reed population distribution after 

every year.  

2) At the channel-type scale, a detailed flow model drives the sediment model, which 

predicts new bed elevations, updated in the water flow model to result in a new flow 

distribution. The reed patch dynamics, determined at the same scale, affects the 

resistance to water flow.  

3) At the geomorphological-unit scale, an interpolated flow distribution allows bed 

sedimentary characteristics to be estimated by a sediment model. At the same scale a 

reed model determines reed growth according to the weather. 

4) The water flow model at the reach scale provides the boundary conditions for the water 

flow model to determine the intermediate flow distribution at the channel-type scale. 
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Similarly, the sediment model at the reach scale provides the initial template for 

predicting bed elevations at the channel-type scale. The reed model at the same scale 

predicts the manner in which patches of reeds expand, based on the available habitat 

provided by the reach scale reed model. 

5) The water flow model at the channel-type scale provides boundary conditions to 

determine the intermediate flow distribution at the geomorphological-unit scale. The 

grain size is also transferred to lower organisational levels to determine sedimentary 

characteristics. 

6) The reed model at the channel-type scale predicts the expansion of reed patches 

according to biomass growth determined at the geomorphological-unit scale. The 

modelled sedimentary characteristics at the geomorphological-unit scale affect shear 

stresses which are averaged to determine flow resistance for water flow modelling at 

the channel-type scale. 

7) The shear stresses due to flow resistance at the channel-type scale are further averaged 

to determine flow resistance values for water flow modelling at the reach scale. 

 

 

 

 

 

 

 

 

Figure 1.2 Representation of the hierarchical modelling strategy used to incorporate 

feedback between models across organisational levels   
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Rivers are complex systems existing in states somewhere between order and disorder. 

Order refers to the patterns arising from a multitude of processes. Ripples on the river bed 

arising from sediment processes constitute such patterns, for example. It is by virtue of the 

development of such patterns that rivers are not completely chaotic, and a measure of 

predictability does exist. Patterns arise as the river approaches stability, which is a function 

of the availability, movement and organisation of water, sediment and vegetation through 

time. The effect of these patterns is non-linear. 

Non-linearity implies that it is difficult to create a model that would describe patterns 

observed over a wide range of scales. It is easier to break the river system up into different 

parts and have a model for each part, but ignoring their interactions would result in 

incomplete description  of the whole-system behaviour. Hierarchy and non-linear theory 

provide a way to deal with the complexity of rivers by breaking up the river system into 

parts and allowing these parts to interact.  

This chapter reviews what is thought of as complexity and exactly why rivers are 

considered to be complex systems. It discusses how models of rivers unravel river 

complexity and how complexity theory can help to achieve reliable river modelling.  

2.1 Complexity and modelling 

The root meaning of the word complexity is “interfolded” or “braided together”, implying 

that a complex system is not easy to understand. Gell-Mann (1994) studied complexity and 

set out to find out what constitutes a complex system. He defined the term “crude 

complexity” as simply the length of description. If a complex system, for example, were 

described using words, it would take a great number of words to describe that system and 

all its attributes. The greater the number of words, the higher the crude complexity of the 

Chapter 2 – River complexity  
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system. When a part of the system is well understood, the length of description of that part 

can be shortened into a single concept or even a single word.  

 “Effective complexity” is the length of description using the separate parts already 

shortened.  Effective complexity is a good way to determine how complex the system 

models really are and is discussed in more detail below (Gell-Mann, 1994).  

Models demonstrate a scientific understanding. While a complex system is an open 

system, models usually describe only a part of the system (Cilliers, 2001). Often 

mathematical equations are used to explain the part of a system using dependent variables 

given independent variables. Gell-Mann (1994) gives the example of an ecologist counting 

trees of a species used as independent variables. The ecologist may realise that for much 

less effort, groups of these trees could be counted and would still provide the data 

necessary to verify the model. Even large patches of tree species can be counted and still 

verify the model. It is, therefore, necessary to specify a level of detail up to which the 

system is described, whilst ignoring the finer details. This is known as coarse-graining. 

Coarse-graining adapts the dependent variables, enabling the model to be more easily 

described mathematically. Such a model is still able to explain how the system is 

understood.  

The way the model is coarse-grained will therefore result in some information being lost 

but it would add to the understanding of the system since the effective complexity is 

reduced. Effective complexity involves two aspects of a model. The first is how difficult it 

is to formulate the model for the part of the system it is coarse-grained to describe. The 

second is how difficult it is to apply the model practically. Both become more difficult as 

the system moves to an intermediate point between order and disorder and therefore 

increases the effective complexity (Figure 2.1). 

A brief model can sometimes describe a whole range of dynamic patterns. Compression of 

patterns into a brief model is much easier for a very ordered system since one river 

arrangement would not differ significantly from another. If the behaviour were very 

disordered, patterns would not have to be reproduced and a brief model would also be 

enough to recreate the same, almost random, behaviour (Gell-Mann, 1994). The ripple and 
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dune geometry model, described in section 5.8, for predicting the development of bed-

forms from initial to an equilibrium state uses only a small number of equations. No more 

than a few equations are used because of the ordered nature of bed-form behaviour. 

However, their disordered nature produced by their varied and changing geometry makes 

it difficult to reduce the number of equations. The model therefore has high effective 

complexity. 

 

 

 

 

 

Figure 2.1 A diagram showing the effective complexity varying as the system moves 

towards a state between order and disorder 

A model may use only simple equations but the program procedure to run that equation 

may produce complex behaviour (Wolfram, 1984). For example, the Cellular Automata 

modelling, described in section 5.5, used to model sediment bar dynamics, uses a simple 

sediment routing formulation according to local bed slopes. The disordered nature of sand 

bar development as flow moves in many directions makes it very hard to apply this simple 

formulation and requires much computer code. The model therefore also has high effective 

complexity. 

2.2 Reasons for river complexity 

The complexity of a system increases as the number of interacting processes increases 

(Cilliers, 2001). Rivers are complex since their behaviour involves many processes. 

“Process” in rivers refers to the dynamic series of actions or operations producing a 

particular river arrangement or distribution of biota (Habersack, 2000). 
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In a river, the water, sediment and vegetation processes interact. Vegetation and river form 

determine hydraulic conditions for a given discharge; hydraulic conditions and river form 

define habitat for vegetation establishment and growth; vegetation and hydraulics 

determine form by controlling the movement, trapping and storing of sediment 

(Figure 2.2) (Jordanova and James, 2003; Michaelides and Wainwright, 2004).  

 

 

 

 

 
Figure 2.2 Schematic showing sediment-hydraulics-vegetation interaction 

(James et al, 2001a) 

Patterns produced by sediment, hydraulics and vegetation processes can be observed over 

many scales within a river (Montgomery, 1999). Scale determines the units appropriate for 

observing patterns. It is characterised by grain and extent, and defines the upper and lower 

limits of resolution of the scale at which the model explains the process dynamics 

(Dollar et al, 2007). Figure 2.3 illustrates bed-forms observed at an extent of about 1 metre 

and a grain not much larger than 10 centimetres. Making the grain too large or extent too 

small will result in no distinguishable pattern being discerned.  

 

 

 
Figure 2.3 Ripples observed at a particular scale 
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planform patterns such as meandering or bar development. Stand-alone models for 

sediment dynamics do not exist over the entire range of scales over which these patterns 

are discerned. Increasing the extent therefore requires an increase in the number of models 

necessary to describe all the patterns that will be observed as a result 

(Haschenburger and Souch, 2004). In order to simulate the full range of river behaviour, 

separate models have to represent patterns produced by processes at all required scales 

(Lenaerts et al, 2002). 

Hence, the effective complexity of rivers at a particular scale is high but increases even 

more as the extent increases and the grain decreases. Including interacting processes 

increases the effective complexity of rivers even more. The effects of these process 

interactions at the larger scales are non-linear. Non-linearity indicates that what happens at 

a smaller scale cannot be summed to produce larger scale effects, i.e. superposition does 

not apply. Non-linearity is prescribed by complex systems (Cilliers, 2001) and is outlined 

in section 2.4.  

2.3 Hierarchical description 

Hierarchies are useful devices for organising models at various spatial and temporal scales 

or organisational levels (Wu and David, 2002). Hierarchy theory allows aspects of rivers to 

fit into naturally occurring levels that share similar time and space scales and interact in 

systematic ways (Jewitt and Görgens, 2000; Harrison, 2001; Favis-Mortlock, 2004). The 

higher levels are characterised by high perspective and low detail and the lower levels, by 

low perspective and high detail (Lane and Richards, 1997; Jewitt and Görgens, 2000). At 

coarse scales the effects of local heterogeneity are averaged out or coarse-grained, so that 

patterns appear to be more predictable (Wiens, 1998). Patterns forming at a particular scale 

within the hierarchy constitute an organisational level (O’Neill et al, 1989; 

Dollar et al, 2007) as shown by Figure 2.4.  

Macro-reaches can be defined as stretches of river where flow and sediment regime 

influences are sufficiently uniform to result in similar channel-types. Within macro-reaches 

are a variety of channel-types (such as braided or meandering) and within each channel-
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type are geomorphic units (Thorp et al, 2006). A channel-type is characterised by a 

particular combination of geomorphic units (van Niekerk and Heritage, 1993) and 

assumed to be representative of all similar stretches of the river. A geomorphic unit is a 

sedimentary or bedrock structure forming a feature in the river channel, e.g. a pool or a bar. 

 

 

 

 

 

 

 

 
 

Figure 2.4 Hierarchical descriptions of levels of organisation that characterise the 

geomorphological, hydrological and ecological subsystems of a river 

(Dollar et al, 2007) 
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(Barrett et al, 1997), and describes a plant population as a collection of interbreeding 

plants. Vegetation responses are observed at the spatial and temporal scales considered 

important by the experts studying them. At one extreme end of resolution, vegetation could 

be described as simply absent or present and at the other end by the number and size of 

individuals of a particular species and their location within the reach. It is also not practical 

to model vegetation dynamics at time steps as small as hours because the changes in 

vegetation structure would be too small to have significant effects on river form. 

Sensitivity analyses show that processes at very small time scales (such as plant growth) 
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Drainage Basin 

Macro-reach 

Channel Type 

Geomorphic Unit 

Particle Cluster 

Individual Particle 

Geomorphology 

Occurrence 

Volume 

Discharge 

Velocity 

Turbulence 

Hydrology 

Landscape 

Ecosystem 

Community 

Organism 

Ecology 



 

 14 

and temporal scales and can easily be related to both vegetation and sediment 

organisational models. 

Hierarchical descriptions can be integrated within a hierarchical framework as illustrated in 

Figure 2.5, which integrates different river processes to describe river form dynamics at 

various organisational levels.  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Representation of river form linked through a hierarchical framework 

(adapted from Sear et al. 1995) 

The extent of a lower organisational level is represented at the grain of a higher 

organisational level. The organisational levels important for decadal geomorphology 
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scale because at these temporal scales these organisational levels have the most tangible 

effects on geomorphological change. These organisational levels, however, should be 

adaptable and not fixed because pattern determines scale and not the other way around 

(Cilliers, 2001). 

2.4 Non-linearity of river processes 

2.4.1 Up-scaling  

Up-scaling allows transference of small-scale variability to make large-scale predictions 

(Spedding, 1997). Up-scaling is needed for river management to assess the overall ecology 

and not just at the scales where important biotic aspects are observed (Habersack, 2000).  

Statistical up-scaling focuses on how best to represent the spatial variability of small-scale 

properties at the large scales, taking advantage of strongly linearizable smaller scale 

properties. Statistical up-scaling embeds or reflects small-scale process effects but does not 

explain the relevant processes. Statistical up-scaling produces simple lumped models 

which may not be sufficient to capture the complexity produced by interacting river 

processes. Such models may agree with spatial behaviour but temporally still be unable to 

estimate geomorphological change to a consistently high level of accuracy (Haff, 1996). 

This is primarily due to the non-linear large-scale effects of these small-scale river 

processes. The non-linearity of river geomorphology is indicated through the presence of 

self-organisation and emergence within river systems (Haff, 1996). Self-organisation and 

emergence form part of non-linear theory used to characterise complex systems 

(Wu and David, 2002; Bogena and Diekkrüger, 2002).  

A more effective up-scaling method than statistical up-scaling is presented in this study. 

This method uses a hierarchical modelling approach which is a “real time” up-scaling 

where small-scale processes are are simulated concurrently and interact with the large-

scale ones. This dynamic up-scaling approach uses the spatially averaged numerical 

outputs of models representing small-scale process.  
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2.4.2 Self-organisation 

De Wolf and Holvoet (2004) proposed a working definition for self-organisation: “Self-

organisation is a dynamical and adaptive process where systems acquire and maintain 

structure themselves, without external control.” 

Self-organisation in rivers is closely related to the equilibrium concept 

(De Wolf and Holvoet, 2004). Equilibrium of river form is maintained by energy 

dissipation to tend to a point where the inputs and outputs of mass and energy into system 

are equal (Graf, 1988). The destabilisation of rivers typically occurs when the balance 

between controlling factors becomes altered. The controlling factors are discharge, 

sediment load, size of bed material, vegetation (riparian and/or upland species) and slope. 

Any change in these controlling factors may result in new river form tending towards a 

new equilibrium state. It sets up a series of concurrent adjustments to seek a new 

equilibrium (Leopold et al, 1964). Hack (1960), used the term "dynamic equilibrium", 

referring to a system in which there is a continuous inflow of materials where the form or 

character of the system remains unchanged. Energy-dissipating functions are dependent on 

flow resistance coefficients, which adjust the river system’s ability to balance the inputs 

and outputs of water and sediment (Phillips, 1996).  

In the self-organised state of a fluvial system, the outflow would be equal to the inflow 

with no change in river form patterns. Pushing the fluvial system into disequilibrium 

causes the inflow and outflow of sediment to become different and adjust river form 

patterns. The adjustment would be rapid at first but would slow down as the system moved 

towards a self-organised state.  

Self-organisation of river form can be observed at various organisational levels 

(Thorne and Welford, 1994; Eaton et al, 2004) such as drainage networks, slope 

morphology and bed-forms (Phillips, 1996). At the geomorphological-unit scale, ripples or 

dunes self-organise under the action of flowing water. A constant flow of water and 

sediment for long enough will cause bed-forms eventually to develop a constant length and 

height (Raudkivi, 1997). The bed-form might still move but the length would remain the 

same. This dynamic quality is referred to as “self-organised criticality”. Self-organised 
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criticality can be considered as a dynamic state of the pattern, describing the whole system, 

which maintains itself at a critical point (Bak, 1996, Fonstad and Marcus, 2003).  

Bars may also self-organise critically by migrating within a channel. They may still appear 

to move but the amount of sediment stored in the system remains unchanged 

(Huang et al, 2004). At higher organisational levels, river geometry such as width, depth, 

sinuosity and longitudinal grain size distribution also self-organise critically (Stølum 1996; 

Sapozhnikov and Foufoula-Georgiou, 1996). It has been noted by Paola (2001) that this 

dynamic behaviour of river form stabilises as vegetation colonises the resulting template.  

2.4.3 Emergence and emergent structures 

Emergence of river form patterns is important at various organisational levels 

(Church, 1996). An emergent phenomenon is seen as a large-scale, group behaviour of a 

system, which does not seem to have any clear explanation in terms of the system’s 

constituent parts (Schweber, 1993; Darley, 1993). De Wolf and Holvoet (2004) proposed a 

working definition for emergence: “A system exhibits emergence when there are coherent 

emergents at the macro-level that dynamically arise from the interactions between the parts 

at the micro-level. Such emergents are novel with respect to the individual parts of the 

system.” 

A river may be considered as an emergent phenomenon. From a purely reductionist point 

of view, a river could be viewed as a continually fed flow of water molecules. It would not 

be considered a river but rather water molecules in motion. To view the river in this light 

would deny opportunities to increase the understanding of the river in its entirety, since 

much of the explanatory power would be lost. Such an opportunity would be to describe 

the river as used by its biota. To its biological inhabitants the river is a persistent feature of 

their environment. The river’s emergence therefore lies not in the materials that drive the 

process but rather in the collection of processes that exists (Abbott, 2005).  
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De Wolf and Holvoet (2004) compared self-organisation to emergence and noted that a 

process can be characterised by self-organisation or emergence or both. Self-organisation 

is mostly associated with emergence. Emergence can exist without self-organisation when 

there is a micro-macro effect but no increase in order. Self-organisation can exist alone 

when there is an increase in order but no micro-macro effect. There are few similarities 

between emergence and self-organisation, other than that both arise from dynamic 

processes over time. Together, they constitute an emergent structure and can be used to 

integrate the many parts of complex systems (De Wolf and Holvoet, 2004; 

Inamdar, 2006). Micro-forms self-organise length and height to change flow resistance that 

emerges at larger scales. Bed-forms therefore display both self-organisation and 

emergence and can be considered to be emergent structures.  

In rivers, emergent structures arise within organisational levels. Self-organisation at a 

lower level can affect self-organisation at a higher level through emergent structures. An 

example is the self-organisation of sediment bars observed at the channel-type scale. The 

manner in which a bar self-organises or arranges depends on the effect that other bars and 

vegetation within the same channel have on water flow, i.e. bars and vegetation provide 

feedback to create a particular pattern within the channel. Hence, when the system is 

viewed at the higher organisational level or, in this case, the channel-type scale, a 

particular pattern emerges that is made up of sediment bars self-organising towards an 

equilibrium state and becoming constant if controlling factors also remain constant. It is 

this emergent pattern that allows the channel-type to be classified. Figure 2.6 shows the 

feedback between river processes at a lower level allowing patterns at the larger scale to 

emerge.  

From a reductionist point of view, river form can also be considered to be made up of 

sediment particles. However, that would exclude the way in which these particles are 

ordered. Observation of sediment organisation at increasing scales reveals the emergence 

of ordered patterns including bed-form, sediment bar and planform patterns. These patterns 

are discerned at various scales and can be described from the top down, using emergent 

laws. Baas and Emmeche (1997) summarised emergent laws as the general principles of 

the regularities produced by emergent structures.  Ripple and dune formation on river beds, 
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for example, is an emergent phenomenon. These bed-form patterns can be described by 

emergent laws such as van Rijn’s (1984) empirical equations. These laws are used to 

predict the length and height of bed-forms and the time it would take for these bed-forms 

to develop. An emergent property stemming from micro-forms is roughness, which 

determines how larger scale water flow is affected.  

 

 

 

 

 

 

 

 

Figure 2.6 Process models linked to produce self-organisation and emergence 

(an emergent structure) at a particular organisational level (Adapted from 

Baas and Emmeche, 1997) 

2.5 Conclusion 

Dealing with complexity in river geomorphological modelling is vital to achieve reliable 

predictions over decadal time scales, especially when considering that small-scale 

processes are required to achieve this. It is largely the interacting processes of water, 

sediment and vegetation that contribute to river complexity. The non-linearity of river 

process interactions means that modelling has to allow for emergent structures at various 

organisational levels. It is therefore necessary to investigate the details of these interacting 

processes and the particulars of the feedbacks that affect river form.  
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The aim of this study is to further the predictive capability of geomorphological modelling 

by developing an approach that is able to deal with the complexity associated with rivers. 

In order to make better predictions over decadal time scales, the interactions across scales 

must be considered. The hierarchical modelling strategy links emergent structures forming 

at various organisational levels by using the coarse-grained predictions of water flow 

resistance at smaller scales to make predictions at larger scales. The predictions of material 

flows of water, sediment and biomass at larger scales form the boundary conditions around 

which the smaller scale predictions are made.  

The following chapter describes river processes and the feedbacks affecting river 

geomorphology, in order to determine the modelling that is required.  
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River process interactions affect river geomorphology in various ways. These river 

processes include sediment, vegetation and water dynamics. Knowledge of these processes 

is essential for assessing the complexity of rivers and dealing with complexity is essential 

for making reliable predictions over decadal time scales. This chapter details process 

interactions that should be included in river geomorphological modelling used for 

prediction of river form and habitat at a decadal time scale.  

3.1 Vegetation dynamics 

3.1.1 Riparian vegetation  

Rivers and streams, along with their adjacent floodplain areas, are referred to as riparian 

ecosystems. Riparian systems have been noted for their resilience, i.e. their ability to 

recover quickly from disturbance (Gecy and Wilson, 1990). Riparian species have 

developed response mechanisms, which allow them to adapt to a rapidly changing 

geomorphology. Even if a flood deposits a layer of sediment carried from upstream, the 

trees and reeds can quickly put out new shoots in this layer and continue growing on the 

same site (Rountree et al, 2000). 

Riparian zones have considerable impact on the flow resistance and transport of sediment 

and therefore on the geomorphology (Baptist et al, 2002). At the reach scale, the flow 

regime is the primary source of disturbance in riparian zones and is considered to be the 

driving force behind riparian vegetation persistence and survival (Junk et al, 1989). A flow 

regime can be defined by its main components of magnitude, frequency, duration, timing 

and rate of change of discharge. Any flow regime has a natural range of variation in these 

five characteristics, due to seasonal or inter-annual variation in runoff (Poff et al, 1997). 

Other factors influencing riparian vegetation are channel hydraulics, fluvial 

Chapter 3  -  Processes  a ffect ing river 

geomorphology 
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geomorphology and geotechnical considerations (Pollowy, 1998). As such, riparian zones 

are diverse and complex biophysical systems subject to disturbances at various scales.   

The riparian corridor acts as a dissipative structure resisting water flow over various scales. 

Riparian vegetation contributes to the dissipation of the kinetic energy of floods through its 

high flow resistance to water flow. The role of the vegetation in determining overall flow 

resistance is of great importance (Bren, 1993). Dissipative effects of riparian vegetation 

during floods vary with the discharge and appear to vary according to the width of the 

riparian corridor in comparison with the channel width (Baptist et al, 2002).  

Riparian vegetation controls hydraulic processes at the geomorphological-unit scale 

(Darby, 1999). The flow field in the river adjusts to the vertical and horizontal structures of 

the riparian vegetation (Tabacchi et al, 2000). This local control of riparian vegetation on 

water flow gives it the ability to entrap and retain sediment. Sediment deposition in turn 

provides sites for riparian-vegetation colonisation (Fetherston et al, 1995).  

3.1.2 Vegetation establishment and succession 

At the geomorphological-unit scale, water flow influences vegetation dynamics by 

providing, or limiting, opportunities for processes such as seed production and dispersal, 

germination, survival and growth. Vegetation interacts with hydrological processes from 

the earliest stages of plant succession and can have significant impacts on hydraulic 

processes, particularly during periods of low flow, as well as at the beginning or at the end 

of flood periods (Thorne et al, 1997). 

Disturbances initiated by floods of different magnitudes are fundamental influences on 

riparian vegetation. At the macro-reach scale, extreme floods act to reorganise the physical 

river template by eroding and depositing sediment, readjusting channel geometry and 

redistributing nutrients. Extreme floods also destroy established riparian vegetation and 

deposit woody debris (Parsons et al, 2003).  

At smaller scales, frequent flooding discourages the establishment of terrestrial vegetation 

by surface erosion and scour and by the physiological effects of inundation 

(Gregory et al, 1991). The timing of floods is critical for successful plant performance and 
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most species tend to have a lower flooding tolerance during growth periods 

(Siebel and Blom, 1998). Thus, event timing is the critical parameter for the hydraulic 

response of riparian vegetation to flood events. The survival of riparian vegetation 

therefore depends significantly on elevation above the active channel of the river 

(Stromberg et al, 1993).  

Through influencing river flow, geomorphology strongly influences spatial patterns of 

riparian vegetation (James et al, 1996). Other factors include light and nutrient availability, 

soil texture, and biotic properties of the soil. Riparian vegetation demonstrates a 

downstream zonation, which is greatly affected by the specific characteristics of the 

substrate present (du Plessis, 1997). Soils differ in their ability to support plant life in the 

riparian environment. The varying hydrologic settings of riparian environments (repeated 

flooding and drying), can destroy soil structure in silt and clay soils. When this happens 

soils may become too dense, not allowing seeds to germinate, or to persist even if they 

germinate, because the new roots are unable to penetrate through the compacted soil 

(Pollowy, 1998).  

Seeds are transported and dispersed readily by wind and water and opportunistically 

colonise areas of the channel that are abandoned or exposed at low flows (Johnson, 2000). 

However, hydrology limits what plants will grow and where. It is known, for example, that 

water levels required for successful establishment may be quite different from optimum 

conditions for subsequent survival and growth and that the response to water levels may 

vary among species (Mahoney and Rood, 1998). Vegetation that is not removed while 

young, when the plants can be uprooted or buried by even minor flows, becomes stronger 

and increasingly resistant to erosion and removal by the flow (Tal et al, 2003). 

Periods of drought lead to a reduction in flows that would otherwise flush out vegetation in 

its early stages (Johnson, 2000). Droughts cause dropping of the water table, which favours 

the establishment of vegetation that may not grow under normal conditions 

(Rountree et al, 2001). The colonisation of newly deposited sediments by vegetation helps 

to sustain high moisture levels in the upper sediment layers during dry periods 

(Tabacchi et al, 2000). 
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3.1.3 Flow resistance of vegetation 

At the channel-type scale, riparian vegetation succession determines the way hydraulic 

processes are affected. A narrow strip of trees with sharp boundaries is expected to 

increase turbulence at the internal and external edges, thus enhancing the resistance to flow 

when the water level rises. A patchy, heterogeneous vegetation profile may distribute 

resistance to transverse flow, increasing the lateral spatial extent of turbulence 

(Tabacchi et al, 2000). Vegetation affecting the roughness of a channel may also influence 

channel change by altering the way in which sediment is moved through a reach, since it 

influences the velocity of the flow and the amount of energy available for transporting 

sediment (Dawson and Charlton, 1988).  

The factors which influence the roughness of vegetation at both the channel-type scale and 

the geomorphological-unit scale include: 

n the height of vegetation relative to depth of flow (Dawson and Roberson, 1985), 

n the diameter, shape and surface texture of plant stems and leaves 

(Kouwen and Li, 1980), 

n the height and stiffness coefficient which is a composite parameter that includes the 

density, elasticity, shape and flexibility of the vegetation 

(Fathi-Maghadam and Kouwen, 1997), 

n the form resistance and the dimensions of the plant patch (Petryk and Bosmajian, 1975) 

and 

n the distribution and density of stems within the plant patch 

(Petryk and Bosmajian, 1975).  

Roughness can be extremely dynamic and change significantly in a short space of time 

(Dawson and Charlton, 1988). The roughness of plants changes as water velocity changes. 

Increasing velocity first leads to a rippled pattern in the vegetation with some turbulence 

and then to flattening of plants with a reduction in turbulence. Patchy vegetation of 

differing height and flexibility increases the variability of the roughness coefficient 

(Bromley et al, 1997).  
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3.1.4 Large Woody debris 

Coarse or large woody debris in rivers presents large roughness elements that divert 

flowing water and influence the scour and deposition of sediment. Dead logs can initiate 

the formation of mid-channel bars (Malanson and Butler, 1990) or create a change in river 

form through log jams which cause the backing up of water in pools known as debris 

dams. Woody debris may cause significant channel migration or widening, and increase 

sediment storage. However, the geomorphic effects of woody debris vary with river size 

(Zimmerman et al, 1967). 

Large woody debris in rivers results from trees that fall on banks or hillslopes. Processes 

that initiate tree-fall include windthrow, bank erosion, channel avulsion, tree mortality, 

mass wasting and land-use practices, such as logging (Nakamura and Swanson, 1993). In-

channel debris affects the flow resistance, channel bank-stability, sediment routing and 

storage (Gregory, 1992).   

3.2 Sediment dynamics 

3.2.1 Sediment movement  

River hydraulics affects sediment transport processes, causing changes in channel form at 

various scales (Richardson and Simons, 1976). Hydraulics is the branch of physics dealing 

with the mechanics of water and is concerned with the energy of moving water. In rivers, 

hydraulics is the main driver of sediment transport causing erosion or deposition 

(Pollowy, 1998). Sediment movement takes place through the action of hydraulic forces on 

single grains of the riverbed. At the micro scale, a condition is reached where a few grains 

here and there begin to move if water flow velocity over a flat surface of loose grains is 

gradually increased (Raudkivi, 1976). Generally, at higher velocities, transport of sediment 

occurs. 

Changes in magnitude, duration, and timing of river flows affect sediment movement. 

Sediment movement includes erosion, transport and deposition, which may be discrete, 

episodic or continuous in time and isolated, patchy or uniform in space depending on the 

scales of observation used. Sediment transport capacity of a river is determined by the 
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channel competence and the physical properties of the bed material (size, density and 

shape) (Richardson and Simons, 1976).   

Various factors affecting sediment transport are given in Table 3.1. A storm of given 

magnitude may transport a large volume of sediment, as suspended and bed-load material, 

whereas a later storm of the same magnitude, may transport less sediment, owing to the 

other controlling factors being modified by the first storm (van Sicle and Beschta, 1983).  

The flow and transport processes in a river are governed by the geomorphology and the 

supply of water and sediment from the catchment. The supply of sediment from the 

catchment varies spatially and temporally. External inputs will depend on the degree of 

weathering and the frequency of overland and gully flow providing sediment to the river. 

Vegetative cover in the catchment also determines the sediment load delivered to the 

channel (Nicolson, 1999).  

Table 3.1 Factors affecting sediment transport (Heritage and van Niekerk, 1995) 

Discharge regime Flow volumes 

Flow frequency 

Flow duration 

Sediment supply  Land degradation rates 

Sediment translocation 

In-channel storage 

Channel competence Channel roughness 

Channel slope  

Channel shape 

 

Once sediment has entered the channel, it is generally transported slowly downstream in a 

sporadic manner by a number of separate flow events of varying magnitude. The transport 

of sediment through a river reach depends on discharge and will therefore vary 

considerably through natural hydrological variations (Birkhead et al, 1998). Changes to the 

supply of sediment or the transport capacity of a river will eventually result in bed levels 

rising as sediment builds up, or falling as sediment is removed. Local inputs from bank 
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collapse or disruption of a channel storage area may lead to release and movement of 

previously stationary material downstream (Meigh, 1987). 

The unsteadiness in bed-load transport rates has resulted in the identification of discrete 

quasi-periodic bed-load pulses (Hoey and Sutherland, 1991). Gomez (1991) regards 

pulsing as distinct temporal fluctuations in the transport rate, which need not be of 

statistically significant regularity. These regular pulses may reflect the development of 

dynamic sediment waves with length scales equivalent to the channel width 

(Griffiths, 1993) and are associated with scour and fill phenomena (Ashmore, 1988; 

Whiting et al, 1998). Unsteady transport also occurs at the scale of instantaneous particle 

interactions with the flow at temporal and spatial scales corresponding with turbulence 

(Williams, 1990). Such spatial and temporal organisation in bed-load may result in subtle 

temporal changes in bed elevation and bed roughness, which may modify local hydraulic 

conditions (Seminara et al, 1996). 

3.2.2 Erosion and deposition 

Erosion occurs when water flow removes particles from the riverbank and/or riverbed. 

Erosion processes depend on the geotechnical properties of bank and bed material, for 

example the presence or absence of cohesion and the other parameters (Thorne, 1990).  

River bank erosion drives temporal changes in river planform. Increasing hydraulic shear 

or increasing bank erodibility should result in increased rates of bank erosion and lateral 

river migration. River channels will naturally migrate because of erosion on the outside of 

bends and deposition on the inside. Through these processes, the meanders will migrate 

downstream at a rate controlled by the water’s energy, the ability of the bank and bed 

material to resist erosion, bank height and the radius of curvature of the meander. Variables 

such as topography, geology and vegetation govern bank erosion (Howard, 1984).  

Bed erosion can destabilise riverbanks by oversteepening the slope and undermining the 

bank toe, particularly after the level of the active channel incises below the root zone of the 

riparian vegetation, and/or after the channel erodes down to a more resistant substrate. The 

combination of increased energy within the channel and reduced bank-stability often leads 
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to rapid bank erosion. Toe erosion refers to all incidents of bank undermining and collapse 

due to water flow (ISPG, 2002).  

Local scour is erosion at a specific location that is greater than erosion found at other 

nearby locations of the riverbed or bank. Local scour can occur on both the channel bank 

and bed (Simons and Senturk, 1992).  

Deposition is the progressive accumulation of in-channel sediment resulting in increased 

channel bed elevation. Deposition is a response to channel system changes that reduces the 

channel’s capacity to transport the sediment delivered to it. Generally, this occurs as result 

of increased sediment supply, increased grain size or diminished stream power (transport 

capacity). 

Erosion and deposition produce sorting of sediment. Since most riverbeds consist of grains 

with a broad range of size fractions, sorting can produce variable sediment grading along 

the river. Transported sediment generally increases in volume downstream but decreases in 

particle size. In an erosion process, fine particles are entrained more easily and the bed 

surface will become progressively coarser. Ultimately, an armour coat of large particles is 

formed, stopping further degradation. During the deposition process layers of sediment 

will be deposited on the bed surface and the bed surface will be progressively finer. Local 

variations in geology and bank material, as well as depositional patterns, may result in 

highly variable sediment character (du Plessis, 1997). 

3.2.3 River bank-stability 

Channel-width adjustment occurs in a wide variety of geomorphic contexts and is usually 

accompanied by changes in other morphological parameters, such as channel depth, 

roughness, bed material composition, riparian vegetation, energy slope and channel 

planform. The processes responsible for width adjustment are diverse and the adjustment 

process itself displays a wide variety of spatial and temporal patterns. 

Channel-width increase occurs through mass failure, resulting from bank instability. Mass 

failure usually occurs by a combination of fluvial erosion of intact bank material and mass 

failure under gravity followed by basal clean-out of disturbed material. Mass failure is the 
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downward movement of large and intact masses of soil and rock. It occurs when the down-

slope shear stress (weight) exceeds the shear strength (resistance to weight) of the earth 

material. Shear stress is the driving force from gravity and/or loads acting on the slope. 

Shear strength is the characteristic of soil (cohesive bonds between particles and 

aggregates), rock and root structure. Any cause that increases the shear stress or, 

conversely, decreases the shear strength will cause a mass failure. Most mass failures are 

triggered by water saturating a slide-prone slope (Turner and Schuster, 1996). 

Furthermore, mass failure can occur in combination with other mechanisms of failure such 

as toe erosion or subsurface entrainment (ISPG, 2002). 

Bank drainage enhances bank-stability and is effected by riparian vegetation; vegetated 

banks are drier and better drained than unvegetated banks (Thorne, 1990). Vegetation can 

also contribute to bank-stability through canopy interception and evapotranspiration. These 

effects lead to drier, better-drained banks with reduced bulk unit weight, as well as lower 

positive pore pressures (Simon and Collison, 2002). 

A critical condition for bank failure usually occurs during rapid draw-down of the water 

surface elevation on the riverside of the bank. The reason for this is that the riverbank 

might become saturated during high-flow conditions and that the phreatic surface of the 

infiltrated water in the bank does not recede at the same rate as the water level in the river. 

This leads to excess pore water pressures within the soil of the bank weakening the soil 

and providing cause for bank failure (Pollowy, 1998; Parkinson et al, 2003). 

Riparian vegetation often enhances river bank-stability (Gregory, 1992). Vegetation effects 

on riverbank-stability, however, are complex and vegetation cannot be classed as simply a 

benefit or liability without detailed consideration of other factors, including the processes 

responsible for retreat or advance, bank material properties and bank geometry and the 

type, age, density and health of vegetation (Thorne, 1990). 

3.2.4 Vegetation-sediment interaction 

Vegetation is an important agent in influencing fluvial geomorphology and sedimentary 

processes because it affects local hydraulics that determine sediment transport. Vegetation 

offers local resistance to flow by increasing drag and reducing velocity, thus decreasing the 
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shear stress available for erosion and transport (Carollo et al, 2002; 

Jordanova and James, 2003). As vegetation slows water down, the tendency for sediment 

to settle under the action of gravity increases and leads to build-up of sedimentary features 

(Dawson and Charlton, 1988).  

Vegetation changes flow patterns and alters the way in which sediment moves down 

through the channel (Nicolson, 1999). In-stream vegetation is therefore very effective in 

promoting sediment deposition (Abt et al, 1994) since vegetation decreases the erosive 

force of water (Pollowy, 1998). Boundary shear stress is proportional to the square of near-

bank velocity. Vegetation therefore reduces soil erodibility by retarding near-bank flow, 

which reduces forces of drag and lift on the bank surface. Vegetation also damps 

turbulence, which induces velocities 3x the mean for short sweeps (Smith, 1976). 

Vegetation plays an important role in trapping fine material carried as wash load. Wash 

load is sediment carried by the river, which is finer than that commonly found in the bed. 

Wash load deposition can be significant on vegetated banks where dense strands or stalks 

and stems damp turbulence and filter out fine material. The addition of fine materials may 

increase the cohesion of the sedimentary deposits (Thorne, 1990). 

Vegetation can grow dense root networks that bind sedimentary features and resist plant 

removal by flood scour (Nilsson et al, 1989). Thus, vegetation acts as a sediment trap and 

confines erodible sediment particles; when the velocities do become higher the sand that 

would have been eroded is now kept in place. Vegetation also reinforces the soil to 

increase its apparent cohesion (Waldron, 1977; Hicken and Nanson, 1984). 

Deep-rooted plants associated with woody vegetation are able to withstand larger erosive 

forces than grass and reed species can. More woody trees grow in areas where erosion 

represents the dominant morphogenic force. In comparison, shallow-rooted species are 

usually associated with areas of deposition; these species have roots that grow with the 

accumulation of sediment (Haslam, 1978).  
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3.3 River form 

3.3.1 Effect of flooding on river form 

Floods may produce devastating impacts or only minor geomorphological changes. 

Geomorphological changes caused by floods are related to the magnitude of discharge and 

frequency of occurrence. Large floods are assocated with much greater shear stress and 

stream power per unit boundary relative to the available resistance. They cause large-scale 

channel modification or floodplain stripping. In zones where high shear stresses occur, 

erosion may result with minimal geomorphic impacts occurring elsewhere 

(Magilligan et al, 1998; Parsons et al, 2003).  

At the reach scale, the availability of sediment and the sequence of events may be as 

important as flood magnitudes in determining the effects of flooding. Extreme floods are 

also important geomorphologically because of their ability to erode the cohesive sediment 

deposited as  consolidated sediment at the macro-reach scale (Birkhead et al, 1998).  

At the channel-type scale, increased flooding may result in channel incision. Channel 

incision involves the progressive lowering of the channel bed relative to its floodplain 

elevation. Increased roughness can reduce conveyance over parts of the channel and force 

the flow into a smaller area (Johnson, 1994). Increased roughness may result in higher 

flow depths which can lead to greater flood potential as well as increased bed degradation 

(Tsujimoto and Kitamura, 1996).  

3.3.2 Vegetation-river form interaction 

Vegetation plays a key role in stabilising riverbanks, dissipating energy and maintaining a 

stable channel form. Vegetation colonises large areas of the sedimentary features in rivers 

and plays an active role in determining the river form. Interrelationships of riparian 

vegetation and river form are often illustrated through the width-to-depth ratio of river 

channels. One of the most striking changes that occurs with increasing vegetation is a 

substantial reduction in the channel width, which can reduce the channel capacity and 

increase the risk of flooding (Eschner et al, 1983). Also, increased vegetation density is 

typically linked to a decrease in bank erosion and lateral migration rates (Smith, 1976). 
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Bank-vegetated channels are narrower and deeper than unvegetated channels 

(Charlton et al, 1978). The width-to-depth ratios of rivers cutting through woodland are 

generally lower than those channels cutting through grassland (Zimmerman et al, 1967). 

This can be attributed to the root depths of trees being deeper than those of grass, and 

increased resisting shear stress on the channel beds (Gregory, 1992).   

At the macro-reach scale, vegetation has been recognized as a primary control on river 

planform, particularly as a determinant of whether a river will adopt a braided or single-

thread pattern (Millar, 2000). For instance, vegetation is used to alter the stream flow 

direction and induce meandering in straight degraded river channels 

(Rowntree and Dollar, 1999). The vegetation around a bend effectively reduces erosion 

and induces bank accretion and lateral migration (Beeson and Doyle, 1995). Studies have 

shown that overall behaviour of the system correlates with vegetation type or density, 

shifting between a single-thread channel and a multi-thread system as vegetation changes 

(Goodwin, 1996; Ward and Tockner, 2000). 

Vegetation responds to changes in river form (James et al, 1996), so that vegetation 

survival is significantly related to elevation. At the reach scale, the river form represents an 

obvious environmental gradient, as flood duration decreases with increasing elevation. 

Significant relationships have been found between vegetation distribution and the elevation 

of the morphological features in rivers (Gill, 1970; van Coller et al, 1997). Since such 

gradients represent changes in flooding frequency and duration as well as water 

availability, hydrology underlies these distribution patterns (Franz and Bazzaz, 1977; 

Nicolson, 1999). Spatial distribution patterns of riparian plant species depend on the 

interactions of hydrogeomorphic processes of the river with the topography 

(Hupp and Osterkamp, 1985). These vegetation distribution patterns are often described in 

relation to the strong vertical and lateral gradients, which characterise these riparian 

systems (Gregory et al, 1991). 

At the channel-type scale, vegetation distribution patterns are associated with 

geomorphological-units of channel bars, channel shelves, the floodplain and terraces 

(Hupp, 1988). The geomorphological-units thus strongly influence spatial patterns of 
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riparian vegetation but riparian vegetation also influences the evolution of geomorphic 

units. At similar scales vegetation affects river form through river bank-stability. 

Vegetation increases river bank-stability through root binding of the earth and increases the 

threshold shear stress needed to erode the sediment. Roots add tensile strength and 

elasticity, which help to distribute stresses, thus enhancing the bulk shear strength of the 

soil. Root-permeated soil, therefore, makes up a composite material that has enhanced 

strength (Thorne, 1990; Simon and Collison, 2002) although this effect remains poorly 

quantified (Micheli and Kirchner, 2002). Woody vegetation may also lead to instability of 

banks due to undercutting: although woody vegetation has deeper root systems than grassy 

vegetation has, the shallow roots of grasses increase surface shear strength and therefore 

enhance bank-stability (du Plessis, 1997). 

The heterogeneity in the geomorphological structure controls vegetation development 

(Kalliola and Puhakka, 1988) and is reflected in the distribution of different vegetation 

types (Gregory et al, 1991). The establishment of different vegetation types and their 

growth is closely related to the geomorphic environment (van Coller, 1993; 

van Coller and Rogers, 1996), often showing patterns of vegetation zonation 

(Furness and Breen, 1980). Some species germinate only in particular geomorphic 

environments (van Coller, 1993).   

3.3.3 Effect of geology on river form 

The form of a river is influenced to a large degree by the underlying geology and bedrock 

lithologies which determine whether rivers are predominantly bedrock or sediment 

controlled. The geology often produces complex fluvial geomorphological structures as a 

result of variable sediment deposition and erosion occurring down the course of the river in 

response to variable channel gradients resulting from different bedrock lithologies 

(Raudkivi, 1976; van Niekerk et al, 1996; Rountree et al, 2001).  

The bedrock controls introduce additional variability into rivers owing to the sharp gradient 

changes upstream and downstream of the bedrock controls. Additional bedrock influence on 

geomorphological-units is present in such channels which will have an effect on both the 
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vegetation and hydrological characteristics of the bedrock influenced sections of the river 

(Rountree et al, 2000).  

The geology of the catchment determines to a large degree whether the river is bedrock-

controlled or alluvial only. Bedrock-controlled river reaches are those which have 

substantial proportions of the boundary exposed to bedrock, or are covered by a veneer 

which is largely mobilised during high flows, so that underlying bedrock geometry strongly 

influences patterns of flow hydraulics and sediment movement (Tinkler and Wohl, 1998).  

Alluvial reaches generally have smaller water surface slopes than bedrock reaches. These 

reaches contain sediment which may be eroded. The sediment size determines to a large 

degree whether a river will be straight, braided or meandering. Alluvial reaches which are 

fed by large amounts of coarse sediment develop unstable, wide, often braided channels, 

whereas those with a limited coarse sediment supply develop stable, much narrower, often 

meandering channels (Harvey, 1990). The mechanism of braiding streams involves multiple 

channels that intertwine in a pattern and quickly rearrange themselves. In some braided 

systems, a large number of channels forms an intricate arrangement that changes in an 

apparently random way while maintaining a statistically steady state (Paola and Foufoula-

Georgiaou, 1991). Mid-channel bars are common on many active meandering gravel-bed 

rivers. High stream power, unconsolidated banks, non-uniform flow, bed topography and 

rapid rates of erosion and deposition characterise gravely braided rivers. Sediment supply 

may be the most important control of channel pattern (Carson, 1984).  

Channel responses in alluvial reaches can often be attributed to distinct causes. These 

include channel migration, incision, lateral migration and avulsion 

(Brewer and Lewin, 1998), which are most commonly observed in alluvial systems that 

are free to adjust their channel boundaries. 

In comparison with alluvial reaches, bedrock reaches accomodate morphological change at 

very slow rates to increased levels of shear stress and stream power. High-magnitude flood 

events may effect limited wear and polish but not large morphological change. The slope is 

almost certainly well in excess of alluvial reaches. A relatively steep mean gradient is 
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consistent with the typical coexistence of gravel-bed and bedrock reaches and lateral or 

transverse bars along the channel (Tinkler and Wohl, 1998). 

The gradient of the river is arrested upstream of the bedrock outcrop, although when it 

flows over the bedrock outcrop, the local gradient may become very steep. Such outcrops 

are known as bedrock controls, since they exert a local controlling influence on the 

gradient of both upstream and downstream alluvial sections of the river. Velocity is 

increased owing to the steeply sloping bedrock outcrop, and sediment load decreased 

because much is deposited in the low-gradient, slow-flowing backwaters upstream of the 

bedrock outcrop (James et al, 1996).   

Transport capacity of grains over hard surfaces is larger than over loose grains of the same 

size as those in motion. Bedrock therefore increases sediment transport owing to rebound 

of sediment grains on hard bedrock. Unlike what takes place when grains impact on other 

grains of similar size, much of the momentum of the impacting grains is not lost to 

frictional losses and small displacement of bed grains. As a result, downstream transition 

from bedrock to alluvial bed can often be abrupt because of the sudden loss of mobility 

(Howard, 1987). 

3.3.4 Bar formation  

There are three main causes of bar formation at the channel-type scale: a decrease in shear 

stress, the widening of the channel and tributary entrances. These factors all cause a flow 

divergence. Channel conditions that are likely to lead to stationary bars appear to be 

heterogeneous, coarse bed-load material, steep channel gradients, and shallow depths 

(Lisle et al, 1991).   

A combination of the following factors contributes to the  creation of these deposits and 

prevents bar-head erosion (Lisle et al, 1991):  
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n Coarse particles are carried into zones of decreasing boundary shear stress and are 

selectively deposited to form a highly armoured surface layer.  

n Shallow submergence of coarse particles further decreases their mobility. 

n Mutual interference between large grains concentrated by sorting and deposition 

enhances further accumulations.  

Most mid-channel bars are a result of flow divergence (i.e. channel widening causing loss 

of energy and deposition of a small shoal which divides the channel in two). Flow 

divergence is often caused by an obstruction, e.g. a log or tree (Hicken, 1984), or resistant 

coarse deposits, typically at the head of a bar. Figure 3.7 illustrates the sequence of mid-

channel bar development. The resistant coarse deposits deflect flow and sediment transport 

around the bar and thereby stop bed-load transport over the bar surface downstream 

(Figure 3.7 - A).  

There is usually a spatial gradation in size from the upstream to the downstream end, but 

this is less marked in early stages of bar development when material is very coarse and in 

latter stages when it is predominantly sand (Figure 3.7 - B) (Hooke, 1997). 

Vegetation influences and is influenced by the sedimentology and sedimentation of a bar. 

A bar provides conditions for the establishment and growth of vegetation, i.e. the 

occurence of vegetation is the result of the bar as well as the cause. However, vegetation 

does play a role in the subsequent growth and development of existing bars that have been 

colonised (Figure 3.7 - C) (Hicken, 1984). Without vegetative stabilisation bars may form 

in the river and later be eroded by high flows. Bars will not be eroded until the vegetation 

has died or been stripped out by floods (Figure 3.7 - D) (Rowntree, 1991).   
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Figure 3.7 Mid-channel bar formation (Hooke, 1997) 

Over a period of several years, depending on the channel, flow on one side of a mid-

channel bar may become more dominant and the bar can evolve assymetrically to become 

a side bar (Figure 3.8) (Hooke, 1997). 

Many types or variations of bars can be present in a river at the same time. The variations 

reflect their positions within the channel (i.e. mid-channel or side), their stages of 

development, and their shapes (i.e. whether they are longitudinal or transverse). Bar type 

depends on sediment supply and river gradient (Hooke, 1997).  

 

 

A - Coarse lag stalls at flow expansion     B - Obstacle to flow promotes deposition 

C - Bank erosion leads to bar emergence      D - Bar stabilised by fines and vegetation 
 process repeated in anabranches 
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Figure 3.8 Different types of alluvial bar. Increasing stability from mid-channel bar 

to scroll bar (Hooke, 1997) 

3.4 Conclusion 

This chapter reviews river processes and the feedbacks affecting river geomorphology in 

order to arrive at fuller description, and thus highlights the complexity of river systems. 

Rivers can be considered as complex because not only do they include many interacting 

processes, but these processes interact to change river geomorphology at various spatial 

and temporal scales. The river processes of water sediment and vegetation are complex in 

themselves, holding implications for their modelling.  

The organisational levels associated with a hierarchical description of rivers which are 

identified to be important for decadal prediction are the reach scale, channel-type scale and 

the geomorphological-unit scale. Apart from extreme floods resetting riparian corridors at 

the macro-reach scale, the organisational levels mainly associated with changes in river 

form at a decadal time scale are observed at the reach scale, the channel-type scale and the 

geomorphological-unit scale.  

 

Mid-channel bar Alternate bars 

Point bars Scroll bar 
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To model geomorphic changes over decades, the processes that must be described include: 

n Flood flows at the reach scale   

n Vegetation establishment and growth at the geomorphological-unit scale, vegetation 

succession at the channel-type scale and vertical distribution of vegetation at the reach 

scale 

n Resistance to water flow at various scales since different vegetation and channel 

competence characteristics come into effect at different scales   

n Erosion and deposition processes, using appropriate sediment transport rates 

appropriate to various spatial scales including local scour at the geomorphological-unit 

scale 

n Bar formation caused by flow diversion and therefore flow in two directions as well as 

sediment bar formation dynamics at the channel-type scale 

n The effect of vegetation on flow resistance, particularly at the channel-type scale since 

vegetation plays a large role in flow diversion and sediment trapping 

n Bedrock affecting river form  

n Geomorphological-unit scale sediment characteristics affecting water flow and 

therefore also sediment transport rates 

n River bank-stability, especially when cohesion plays a role in bank substrate 

The following chapter explains how these individual processes can be modelled. River 

geomorphological modelling has to allow for feedback between interacting processes. 

Chapter 6 provides evidence of the extent to which feedback of interacting processes is 

included in modelling. 
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This chapter discusses modelling used in river geomorphology. It reviews the available 

modelling methods and details of modelling identified processes at particular scales in 

order to select the best model for each organisational level for each individual process 

affecting river form. Since these processes are complex in themselves, the best models are 

those that simplify the dynamics they simulate but still provide realistic results. The review 

identifies the most suitable models for predicting river form change over decadal time 

scales and the gaps where suitable modelling of particular processes at particular scales 

does not exist. Where suitable modelling does not exist, the review guides the selection of 

the most appropriate modelling method and provides insight on the type of model 

formulations required.  

More detail is given to certain existing models, including the following: 

1) Models not employed in this study but deemed to be important, as ascertained in 

Chapter 3, for realistic modelling of river geomorphology over decades. These include 

3-D CFD modelling, seedling recruitment modelling and bank-stability modelling. 

2) Those adapted to provide the models used in this study, for example the braided river 

model of Murray and Paola (1994). 

4.1 Modelling methods 

4.1.1 Physical modelling  

Modelling of river processes and interactions may be carried out using physical modelling 

techniques. In river geomorphology, scaled physical models have been used primarily to 

investigate sediment processes. Physical models allow the development of channel patterns 

and the effects of flow structure and bed-load transport on channel geometry to be studied. 

Physical models allow water flow and sediment movement to be examined in detail over 

Chapter 4  –  Geomorphological  

model l ing 
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short reaches. Sediment processes that can effectively be simulated in a physical model 

with a movable bed  include suspended load, bed-load, density currents, scour and 

deposition, and channel shifting, widening and meandering. Physical models can also be 

applied in studies of the feedback between channel morphology and bed-load transport, in 

mechanisms of anabranch avulsion and processes of fine-grained sediment deposition 

(Julien, 2002).  

Experiments can be carried out in miniature laboratory models or scaled physical models 

to reproduce a river system at a small scale. Scaled physical models allow complex natural 

processes to be investigated in a controlled and simplified environment. In order to create a 

realistic physical model of the river system, scaling must be applied to ensure that the 

system characteristics are correctly represented. Scaling is based on the concept that 

complete similarity between model and prototype is achieved when the model displays 

geometric, kinematic, and dynamic similitude.  

One example of physical modelling application is micro-scale loose bed hydraulic models. 

The United States Army Corps of Engineers has developed micro-models which are 

extremely small physical models. Such a model consists of five components: a hydraulic 

flume, a model-channel insert, an electronic flow controller, synthetic bed sediment and 

pervious steel mesh, for replicating dikes and other river-training structures representing 

the reach to be studied. Flow and sediment are recirculated though a submersible pump 

(Gains and Maynord, 2001). 

Such micro-models have been used for channel response studies, such as establishing 

suitable alignment, depth and width for navigation channels. Other channel response 

studies include improving flow conditions at bridges for example. These studies, however, 

focus mainly on reducing maintenance in river channels. The models are also used to 

evaluate the likelihood of success of various channel control alternatives to obtain a desired 

channel configuration. They are also used to identify the overall flow patterns and channel 

form so that both surface velocity distributions and associated channel adjustment, are 

obtained (Gains and Maynord, 2001).  
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Since hierarchical modelling can be applied contextually only as computer programmes, 

physical modelling serves mainly as a tool for calibration and verification of computer 

programs. Physcial models may provide data sets for computer programmes using, for 

example,  rule-based models or artificial neural networks to make predictions. 

4.1.2 Numerical modelling 

Numerical models are developed to mimic the behaviour of natural systems as accurately 

as possible and allow representation of natural phenomena observed at a particular scale. 

This involves the construction of a numerical model based on a hypothesis, using 

identified variables and simplifying assumptions and boundary conditions 

(Thomas and Huggett, 1980). The primary source of error in numerical model predictions 

are the assumptions that are required to express the model mathematically. Numerical 

modelling demands a great deal of knowledge about these processes. 

The identification of the appropriate variables for inclusion in a numerical model and the 

relationships between those variables is, to a certain degree, an inductive process. 

Dependent variables form the output obtained from relationships with independent 

variables or events that appear to contribute to explaining the phenomenon 

(Baker and Twidale, 1991). The model is calibrated to get dependent variables to be 

consistent with measured variables of the system. This is followed by verification to 

compare model predictions with field and experimental data (Thomas and Huggett, 1980).  

Numerical models describe river processes using equations varying from relatively simple 

to highly complicated relationships, accounting for a wide range of interactions and 

organisational levels. River geometry and other parameters representing the river system 

also vary from very simplistic to highly complicated. An appropriate intersection of 

process and environment description is obtained to provide realistic simulations and model 

simplicity (Michaelides and Wainwright, 2004). 

A numerical model is often presented as a sequence of procedures allowing one spatial or 

temporal step to be followed logically by another. The accuracy and reliability of 

numerical models applied to river geomorphology depends largely on the effectiveness of 

the numerical methods employed and the user’s experience and skill. One application of 
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numerical models in representing fluvial systems is known as Computational Fluid 

Dynamics, which is discussed in detail in the following section. 

4.1.3 Computational fluid dynamics 

Computational Fluid Dynamics (CFD) models are used to simulate increasingly 

complicated cases. They represent flow and sediment dynamics in 1, 2 and 3 dimensions 

and simulate detailed processes such as non-equilibrium transport of sediment with non-

uniform composition exchange between bed-load and suspended-load sediment movement 

in unsteady flow. CFD models can predict changes in bed elevation resulting from spatial 

differences in the predicted sediment flux fields, which are computed through numerical 

solution of the sediment continuity equation. The sediment continuity equation is usually 

simplified by neglecting either the longitudinal or the transverse sediment flux difference 

terms. These simplifications allow these models to describe phenomena at larger scales 

more realistically but limit their validity at smaller scales. For example, stream-wise and 

transverse sediment flux terms are significant in describing near-bank and bed topography 

changes at the geomorphological-unit scale (Darby and Thorne, 1992).  

One-dimensional (1-D) models are used mainly to simulate long-term sediment transport 

processes in the general flow direction and are generally applied at the reach scale. Two-

dimensional (2-D) and three-dimensional (3-D) models are used in studying local and 

detailed phenomena at the channel-type scale or the geomorphological-unit scale. 

Depth-averaged 2-D models resolve horizontal variations and provide many more details 

like the influence of changing cross-sections and irregular side boundaries. These are used 

for solving many practical problems over shorter river stretches, such as flow around 

sediment bars or near structures. 

Many CFD models include grain-size sorting modelling, which employs the mixing layer 

theory. The mixing layer is the layer of bed material where sediment transport, for given 

grain-size of bed material and flow condition, occurs. The mixing layer or the active layer 

interacts with the bed surface or the inactive layer. During a deposition process some 

sediment particles will leave the active layer and enter the inactive layer. During the scour 

process, some particles originally in the inactive layer will enter the active layer. 
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According to this procedure, the thickness of the active layer is set equal to a preselected 

number of layers times the geometric mean of the largest size class used in the simulation. 

The active layer is defined as the bed material layer that can be worked or sorted through 

by the action of the flowing water (Lee and Hsieh, 2003). 

1-D sediment routing procedures ignore transverse sediment fluxes and require various 

assumptions concerning the distribution of predicted changes in bed elevation across the 

channel cross-section (ASCE, 1998a). For example, Osman (1985) assumed that the bed 

level change is distributed evenly over the entire cross-section. In contrast, 

Alonso and Combs (1986), utilized various assumptions to distribute the scour and fill of 

sediment more realistically across the section.   

Kassem and Chaudhry (2002) developed a 2-D model to predict the time variation of bed 

deformation in alluvial channel beds. The model uses depth-averaged unsteady water flow 

equations along with the sediment continuity equation. It employs a body-fitted coordinate 

system and uses an unsteady flow equation. The effective stresses associated with the flow 

equations are modelled by using a constant eddy viscosity approach. The model was used 

to investigate the process of evolution and stability of bed deformation in circular bends 

with uniform particle size. 

Recently, several 3-D models for water flow and sediment transport have been developed. 

Some of these 3-D models also have the capability to predict the evolution of the channel 

bed. van Rijn (1987) proposed a quasi-3-D model in which the sediment transport is 

calculated in 3-D, while the horizontal mean flow is obtained solving the 2-D depth-

averaged flow equations. His model assumes a vertical logarithmic velocity profile, which 

is valid only for gradually varying open channel flow. Gessler et al. (1999) developed a 

mobile-bed module for sand rivers. It accounted for the movement of non-uniform 

sediment mixtures through bed-load and suspended load. Their model is also capable of 

simulating bed evolution processes, such as aggradation scour and bed-material sorting.  

Wu et al. (2000a) proposed a fully non-hydrostatic 3-D finite volume model, which 

included modules for both the suspended sediment and bed-load transport. Their modelling 

of the bed-load improved on the non-equilibrium method proposed by van Rijn (1987). 
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Wu et al. (2000a) also produced a 3-D CFD model solving the full Reynolds-averaged 

Navier-Stokes equations. The model simulated suspended-load transport through the 

general convection-diffusion equation with an empirical settling-velocity term. Bed-load 

transport is simulated with a non-equilibrium method and the bed deformation is obtained 

from an overall mass-balance equation. The suspended-load model is tested for channel 

flow situations with net entrainment from a loose bed and with net deposition. 

CFD modelling is the most accurate way of modelling the complicated flow phenomena of 

water and sediment in rivers. However, it is very computationally intensive and the 

required computational effort increases with the increasing amount of detail that the 

models have to account for at decreasing scales. Numerical cellular automaton (CA) 

models of fluvial geomorphology are simplified or relaxed adaptations of the equations 

and numerical solutions of CFD modelling. This increases the speed at which these models 

run and therefore considerably increases computational efficiency. This also allows 

numerical CA models to be applied at larger scales. The increase in computational speed 

and simplicity also allows these models to include sediment processes between cells, 

allowing river form at smaller scales to be accounted for (Coulthard et al, 2007).  

4.1.4 Rule-based modelling 

In rule-based models, the interactions between components of a system are not based 

strictly on established equations, but also, or exclusively, on rules that can take several 

forms. Rule-based models can be: 1) abstractions of basic physical laws; 2) syntheses of 

analyses, models, or observations of dynamics at scales smaller than those treated in the 

model; 3) based on observations of the natural system on relatively large scales; and/or 4) 

based on physical insight and intuition (Murray, 2003). Rule-based models enable the use 

of many variables, and because of their coarse-grained nature they can be used to describe 

general trends at large scale. By temporarily setting aside variables that are significant at 

smaller scales, they serve as powerful tools for general interrelationships at larger scales 

(Ebert and Mitchell, 1975). Rule-based modelling is therefore most appropriate for 

modelling vegetation dynamics at larger scales. Rule-based models are qualitative but, 

owing to the computational nature of the hierarchical strategy employed in this study, they 
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have to make quantitative descriptions. Expert systems are used to make quantitative 

descriptions.  

An expert system is a computer-based system that employs rule-based modelling to reason 

using expert knowledge. Expert systems are built primarily for making the experience, 

understanding and problem solving capabilities of the expert in a particular subject area 

available to the non-expert. A typical layout of an expert system consists of a knowledge 

base, a database and an inference engine. The inference engine assigns a numerical value 

to the rule variables to allow computation of an expert's prediction 

(Anderson and McNeil, 1992). A fuzzy expert system is an expert system that uses fuzzy 

logic for inference of the rules (Klir and Yuan, 1995).  

Fuzzy logic is viewed as a formal mathematical theory for the representation of uncertainty 

and deals with the concept of partial truth or truth-values between "completely true" and 

"completely false" (Bezdek, 1993). Fuzzy models allow working with imprecise or 

“fuzzy” information and exist in the form of rules (Kaufmann and Gupta, 1985). A fuzzy 

expert system is shown in Figure 4.9.  

 

 

 

  

 

 

 

Figure 4.9 Fuzzy expert system (Passino and Yurkovich, 1998) 

Artificial neural networks (ANN) offer an approach different from rule-based modelling. 

They try to provide a tool that programs itself and learns on its own. Neural networks are 

Rule-base 

Inference 
mechanism 

Crisp numerical 
inputs 

Fuzzified inputs 

Fuzzy conclusions 
Crisp numerical 
outputs 

Fuzzification Defuzzification 



 

 47 

structured to provide the ability to solve problems without the benefits of an expert. They 

can seek patterns in data and are self-learning mechanisms which don't require the 

traditional expertise on formulating models for prediction (Anderson and McNeil, 1992).  

ANN allow predictions to be made based on a data set. Such a data set includes the 

information that can characterize the problem. It also requires an adequately sized data set 

to both train and test the network. Note, however, that they involve an empirical skill and 

intuitive feel to create an appropriate network to allow predictions to accord with data. 

With an understanding of the basic nature of the problem to be solved, a decision on 

creating the network can be made (Anderson and McNeil, 1992). 

ANNs have been applied to larger scale geomorphological problems concerning prediction 

of catchment sediment yield (Sarangi and Bhattacharyaa, 2004),  landslides 

(Ermini et al, 2005) and river network charactertics (Strobl and Forte, 2007). ANN are not 

used in this study but would offer a good way to make large-scale predictions of vegetation 

population dynamics if a good data set were available.  

4.1.5 Cellular Automata modelling 

A cellular automata (CA) model consists of a cellular grid where the state of each cell is 

updated in time steps, according to a set of simple deterministic local interactions, relating 

the state of the cell to adjacent or neighbouring cells. The local interactions can be 

described with numerical formulations (e.g. Murray and Paola, 1994)  or can be rule-based 

(e.g. Chen et al. 2000). The state of each cell changes in each time step, according to the 

imposed rules involving states of neighbouring cells.   

CA modelling simulates spatial pattern formation, which arises from the interaction 

described by rules defining tansfer between the cells (Packard and Wolfram, 1985). The 

application of these local rules creates larger scale patterns, which are not apparent when 

examining the rules for the interactions between cells. Although the concept of CA models 

is basic, the interaction between the cells can give rise to complex non-linear behaviour 

(Wolfram, 1984) and can demonstrate highly realistic physical behaviour 

(Malanson, 1999). Wolfram (1984) identified five key factors which briefly define cellular 

automata:  
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n They consist of discrete cells  

n They evolve in discrete time steps  

n Each cell can take on a finite set of possible states  

n The state of each cell evolves according to the same deterministic laws 

n The laws for cell evolution depend only on interactions with immediately neighbouring 

cells  

CA models are inherently spatial and are an effective means of simulating 

geomorphological processes that change through time. CA models can represent self-

organising processes within a 2-D framework or lattice of grid cells. The spatial nature of 

geomorphological processes and the ease of applying gridded data are well suited to CA 

models.  

Favis-Mortlock (1996) used a CA model to investigate the evolution of rill networks. The 

rill model described by him shows a degree of self-organisation by forming a channel 

network. The model simulates the impact of individual raindrops or ‘run-off packets’ on a 

semi-arid hillslope. These packets of rainfall erode the hillslope according to a stream 

power law and are routed to the lowest neighbour. Simulated planform and rill spacing 

compare well with field measurements.  

Luo et al. (2003) described a simple CA model that simulates first order processes 

associated with sediment erosion. The model describes sediment erosion by iteratively 

applying a set of simplified rules to individual cells of a digital topographic grid. The 

model implements a rainfall event of a random size at a random location within a grid. 

Runoff from the rainfall event moves sediment from each cell to its lowest neighbour 

according to a sediment transport equation. This transport rate is dependent on the 

elevation difference between two adjacent cells. The model allows both erosion and 

deposition of sediment, depending on the difference between sediment input and output of 

a cell. When all runoff from a rainfall event has been routed across the grid a new 

rainstorm with a random area is applied at another random location and the whole process 

is repeated (Luo et al, 2003). 
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Jimmenez-Hornero et al. (2003) described a 2-D CA model that is coupled with a 

Bathnagar, Groos, and Krook (BGK) version of the lattice Bolzmann model. The erosion 

and transport components of the model are coupled to the water flow. If the flow at any 

point is high, solid particles will be picked up and displaced, whereas if the velocity is low, 

the particles will either settle or remain at rest. Once flow is established, the number of 

particles that do not leave the site is determined on the basis of a probability calculated 

from the velocity components.  

4.2 River process modelling 

4.2.1 Sediment transport and bed evolution 

3-D CFD modelling 

In chapter 3, sediment and water processes at the geomorphological-unit scale were 

identified as important for prediction of river geomorphology at decadal time scales. 

Three-dimensional (3-D) CFD modelling provides what are considered state-of-the-art 

means to simulate fluvial processes at these smaller scales. The large computational effort 

needed to solve the 3-D  CFD modelling equations described in this section has resulted in 

the use of alternative, less computationally-intensive modelling to account for 

geomorphological-unit scale sediment and water processes.  

Wang and Weiming (2004) provided details of 3-D model equations for river 

sedimentation and morphology modelling. A 3-D flow field can be described by the 

following Reynolds-averaged continuity and Navier-Stokes equations:  

(4.1) 

(4.2) 

where ui (i=1, 2, 3) are the velocity components. Fi includes the external forces, including 

the gravity force per unit volume, p is the pressure and τij are the turbulent stresses, which 

is determined by using a turbulence model. ρ is the fluid density. 
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For the shallow water flow, the pressure is assumed hydrostatic and all the vertical 

components of fluid acceleration can be ignored, yielding the quasi 3-D governing 

equations as 

                                                                                                                (4.3) 

   

(4.4) 

 

                        (4.5) 

where u, v and w are the velocities in the x, y and z directions respectively and f is the 

Coriolis coefficient. 

The hydrostatic pressure assumption brings significant simplification to the full 3-D 

problem of equations (4.1) and (4.2). However, this assumption is valid only for gradually 

varying open-channel flows. A full 3-D model without the hydrostatic pressure assumption 

is used in the regions of the rapidly varying flows, such as flows around bridge piers. The 

3-D models developed by Wang and Adeff (1986), and Casulli and Cheng (1992) are 

based on the hydrostatic pressure assumption while those developed by Wu et al. (2000a), 

and Jia et al. (2001), are not. 

The turbulent shear stresses in 2-D and 3-D models are determined by turbulence models. 

Most of the common turbulence model for river flow is based on the Bossinesq’s eddy 

viscosity concept: 

                                                                                       (4.6)  

where k is the turbulent kinetic energy, which is omitted in the zero-equation turbulence 

models. vt is the eddy viscosity usually determined by the parabolic eddy viscosity model, 

the mixing length model or the linear k-ε turbulence model (Wang and Weiming, 2004). 

The 3-D flow drives the sediment transport as shown in Figure 4.10. The sediment 

transport is divided into suspended-load and bed-load, and hence the flow domain is 
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divided into a bed-load layer with a thickness δb and the suspended load layer above it with 

a thickness h – δb. The exchange of sediment between the two layers is through downward 

sediment flux (deposition) at a rate of Dbk and upward flux (entrainment) from the bed-load 

layer at a rate of Ebk. The distribution of the sediment concentration in the suspended-load 

layer is determined by the following convection-diffusion equation: 

 

 
  

 

 

 

 

Figure 4.10 Flow configuration (Wang and Weiming, 2004) 

  

                              (4.7)  

 

where ck is the local concentration j of the k-th size class of suspended load. ωsk is the 

settling velocity. δj3 is the Kronecker delta with j = 3 indicating the vertical direction. At 

the free surface, the vertical sediment flux is zero and hence the condition applied is: 

                                                        (4.8) 

 

At the lower boundary of the suspended sediment layer, the deposition rate is Dbk = ωskcbk 

while the entrainment rate Ebk is: 
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where cbk is the equilibrium concentration at the reference level z = zb + δ, which needs to 

be determined using an empirical relation. 

The bed change can be determined by the exchange equation: 

(4.10) 

where Ls is the non-equilibrium adaptation length for bed-load transport and qb* is the 

bed-load transport under equilibrium conditions. The bed-load transport qb is simulated 

using a formulation which is a function of flow hydraulics, bed composition and upstream 

sediment supply. These bedload transport formulations have varying levels of complexity 

in simulating non-equilibrium transport (Rahuel and Holly, 1989; Wu et al, 2000a; 

Wu and Vieira, 2002). 

The overall sediment mass-balance equation integrated over the water depth h is 

(4.11) 

 

(4.12) 

 

(4.13) 

where Ctk is the depth-averaged sediment concentration; and qtkx and qtky are the 

components of the total-load sediment-transport in x- and y-directions with αbx and αby 

being the direction cosines of the bed shear stress (Wang and Weiming, 2004). 

Local scour  

Determination of local scour or scour at the geomorphological-unit scale is a highly 

complicated 3-D flow problem and requires the use of the 3-D CFD modellng equations 

described above because of the ability to present detailed flow characteristics required at 

this scale. These flow characteristics include downward flow, localized pressure gradient 

fluctuations, vorticity and turbulence intensity. 
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Richardson and Panchang (1998) obtained local scour by firstly, modelling the water flow 

field around an obstacle. The flow field provides the bed shear stress used to assess the 

potential erosion. The shape and size of the scour hole were predicted by including 

movement of the bed-load which forms a new geometry after some iteration. 

Olsen and Melaaen (1993) simulated the scour process around a cylinder. They calculated 

sediment concentration for the bed elements with van Rijn’s (1987) deterministic formula. 

Based on continuity for the bed sediment, erosion and deposition are calculated. 

Olsen and Melaaen’s approach does not predict the scour hole depth when it reaches 

equilibrium. Olsen (1996) corrected this and used bed shear stress to compute the bed 

changes over a long time step with steady flow. This gave a scour hole shape very similar 

to what was obtained in a physical model study.  

Hoffmans and Booij (1993) presented a scour model for the flow in a trench based on the 

solution of the 2-D Reynolds equation and the convection-diffusion sediment transport 

equation. The stochastic method proposed by van Rijn (1987) computed bed-load and 

suspended-load.  

FHWA (1995) used appropriate sediment transport capacity formulas formulated 

especially for scour modelling, in conjunction with 1-D, 2-D and even 3-D flow models, to 

predict the maximum scour depth at the structures. These models simulate the details of 

the erosion process around in-stream structures especially under unsteady flow conditions. 

Empirical formulas determined the scour caused by particular in-stream structures 

(FHWA, 1995). Jia et al. (2001) and Wu and Wang (2004) provide examples of existing 

sediment transport formulas that simulate local scour near in-stream structures. 

4.2.2 Channel sedimentology and planform 

At the reach scale to the channel-type scale, the river is continuously evolving as fluvial 

sediments are transported through a moving bed or through suspended sediment transport. 

Numerical models account for sediment stores which adjust to changes in flow and 

sediment regimes causing channel aggradation and degradation. Models at these same 

scales simulate environmental sedimentology of river environments and stream planform 

characteristics.   
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Channel aggradation and degradation 

Channel aggradation and degradation is often modelled numerically using both width- and 

depth-averaged 1-D or 2-D models over a grid of cells. At each time step, transport 

capacity of the existing bed grain size distribution and sediment supply are used to 

compute the bed elevation and new grain size distribution. Operating over larger temporal 

and spatial scales there are a number of models designed to describe the river geometry 

and channel elevation change. These models are not concerned with the fine detail but only 

the general position and size of the channel.  

Wiele and Franseen (2000) described a model that predicts the effects of variations in 

water discharge and sediment supply on deposition rates and magnitude. The model 

determines the effect of channel shape when aggradation and degradation changes occur. 

The model was developed to study bank erosion, bar formation and stability in gravel-bed 

rivers and has subsequently been extended to include suspended sediment transport. 

The flow field is calculated with the vertically-averaged momentum and continuity 

equations for open channel flow. The model employs a 3-D advection-diffusion related to 

the local shear velocity quantifying the turbulent mixing. The product of the velocity and 

suspended sediment concentration is integrated vertically to calculate the local suspended 

sediment discharge. Calculation of the sediment transported as bedload includes the effect 

of local bed slope on transport rates. In areas with sufficient sediment thickness, local 

roughness and skin friction are calculated using the method of Bennett (1995) that relates 

bed-form dimensions to flow conditions and sediment size. In areas with little or no 

sediment, local channel roughness is calculated as a function of the spatial variability in the 

channel topography. Local change in bed elevation is then calculated using sediment 

continuity. The system is fully coupled as the bed changes induced by deposition or 

erosion affect the flow which, in turn influences sediment transport 

(Wiele and Franseen, 2000).  
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Braided river models 

Traditionally, researchers have opted for physical models to study braiding in gravel-bed 

rivers. Parker et al. (1982) performed experiments to model the transport mechanism of 

poorly sorted gravel at a scale of 1:10. Ashmore (1988) used small-scale physical models 

to examine channel forms and processes in braided gravel streams. He conducted 

laboratory modelling of braided river morphology and bed-load transport in river trays. 

Hoey and Sutherland (1991) developed a generic model at a scale of between 1:30 and 

1:50 to examine braided channel morphology and bed-load transport of braided gravel-bed 

streams. Leddy et al. (1993) studied mechanisms of anabranch avulsion using a 1:20 scale 

model of the braided gravel-bed. Warburton and Davies (1994) determined variability in 

bed-load transport and channel morphology, in a 1:50 braided river model.  

Murray and Paola (1994) modelled braiding using a simple non-linear relationship 

between flow strength and sediment transport with sediment flux increasing linearly with 

flow strength. The elevation of each cell is changed as sediment is moved downstream, cell 

by cell. Murray and Paola’s model organises itself to form a visually realistic simulation of 

a braided channel. Flow strength is measured by bed shear stress, velocity, or the stream-

power index, which is discharge multiplied by slope. Murray and Paola’s model is a CA 

model that predicts braiding based on how river form and flow pattern interact through 

mutual feedback. During each time step, water is routed downstream from row to row 

within a rectangular grid. Water flow in a cell Qo is distributed among the three 

downstream neighbour cells i as a function of the topographic gradients Si: 

(4.14) 

where Qi is the discharge from the cell in question into cell i and the sum is over the 

downstream neighbours. If none of the three downstream immediate neighbours is lower 

in elevation, the water is distributed to all three cells in a similar way, with more water 

flowing where the slopes are least negative (Murray and Paola, 1997). 

Sediment transport fluxes Qsi are calculated as function of flow gradient and discharge 

described by: 
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(4.15) 

where K, Cs and m are constants. m is based on empirical data on sediment transport 

according to stream power using reach-averaged slopes. Th is a sediment transport 

threshold. Since water depth is not defined in the model, Murray and Paola (1997) used 

bed slope as an approximation to water surface slope. Cs, however, still allows water to 

flow over regions with negative bed slopes causing sediment transport. Bed evolution 

occurs as cells in the model grid, representing the bed surface, change elevation 

(Murray, 2003).  

In order for the sediment-transport process to maintain its dynamic behaviour indefinitely, 

a gravity-driven component of sediment transport that moves noncohesive sediment down 

lateral slopes was introduced. This is accounted for by a ‘lateral transport’ rule, based on 

that of Parker (1984), where sediment flux per unit width qsl is transported down lateral 

slopes Sl: 

(4.16) 

 µ is the dynamic coefficient of Coulomb friction, r is the ratio of lift to drag, τc is the 

critical value of bed shear stress τ, and qs is the flow-driven sediment flux per unit width.  

Figure 4.11 shows the routing of water and sediment fluxes, described above, to and from 

a given cell. The model produced a constantly migrating channel whose form and 

magnitude remain similar, displaying a form of dynamic equilibrium. The model also 

produces a non-linear sediment discharge, predicting pulses of sediment even though the 

water discharge is constant. The model predictions compared well with a laboratory-

modelled river (Murray and Paola, 1997). 
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Figure 4.11 Water and sediment routing in the Murray and Paola (1994) braid 

model. A given cell receives and distributes water from its neighbouring cells. Water 

flux is shown by blue arrows, direct sediment flux by yellow arrows and lateral 

sediment transport by brown arrows 

More recently, braiding has been modelled using the shallow water approximation of the 

Navier-Stokes equations (Murray, 2003). McArdell and Faeh (2001) developed a model 

that produces braiding including the emergence of mid-channel bars to form flow-dividing 

islands. They solved partial differential equations for water flow in a complex, radically 

changing channel, using ‘wetting and drying’ of model nodes. These flow equations were 

coupled to a sediment transport equation.  

Meander models 

A few analytical models have been developed to predict the bed deformation in river 

bends. These models include that of Kikkawa et al. (1976), 

Zimmermann and Kennedy (1978), and Odgaard (1981). Such models are based on the 

balance of the dominant forces acting on a sediment particle moving along a radically 

inclined bed. The forces are fluid drag and particle submerged weight. When these forces 

become equal, an equilibrium transverse bed slope is achieved. These analytical models, 

Qi 
Qsi 
qsl 
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however, are applicable only to relatively simple bend flow conditions and do not provide 

the time variation of bend development.  

A number of 2-D numerical models have been developed for computing bed deformation 

in meandering channels. These include those of Struiksma et al. (1985), and 

Shimizu and Itakura (1989). The numerical model developed by 

Shimizu and Itakura (1989) is used for the computation of time-independent 2-D bend 

deformation in alluvial rivers. Their model can be applied to channel geometry that can be 

modelled as a series of circular bends with constant width (Struiksma et al, 1985). In 

addition, their model is applicable only to steady flow conditions. 

Shimizu and Itakura (1989) developed a 2-D model to calculate bed variation in channels 

under steady flow conditions. In their model, the governing equations of flow and 

sediment transport are solved in a cyclical coordinate system, which is valid only for a 

specific geometry. 

Johannesson and Parker (1989), presented a physically-based model for meander 

dynamics, which was used to predict meander wavelength. Howard (1996) combined a 

meander evolution model based on that of Johannesson and Parker (1989) with a 

floodplain sedimentation model. He used this model to investigate the interaction between 

meander bend migration and floodplain sedimentation, and lithology. Stølum (1996) used 

a similar meander model to study the self-organising properties of an evolving meander 

train. He showed that such a system evolves towards a state of self-organised criticality 

resulting in sinuosity fluctuating through time. Nagata et al. (2000) presented a model that 

can be used to investigate both bed deformation and bankline shifting in 2-D meander plan 

form. The basic equations are used in a moving boundary-fitted coordinate system. They 

included a new formulation for non-equilibrium sediment transport to reproduce the 

channel processes.  

Demuren and Rodi (1986) used 3-D simulations of the flow in meandering channels. 

Demuren (1989) extended this work to calculate suspended sediment transport. 

Demuren (1991) included a simple model for bed-load transport and calculated the flow 

and sediment transport in a 180-degree laboratory channel bend. Olsen (2003) used a fully 
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3-D non-hydrostatic model to predict the formation of the meandering pattern in an 

initially straight alluvial channel. His algorithm accounts for wetting and drying caused by 

channel erosion and deposition. Modules for both the suspended load and the bed-load 

were incorporated into the code. 

4.2.3 Modelling stable channel morphology  

River form, at the reach scale to the channel-type scale, can depend largely on riverbank 

failures and the long-term stability of riverbanks. There are various models that simulate 

the mechanisms whereby channel processes cause bank collapse. Such models predict the 

location of erosion and the rate of bankline shifting at critical locations.  

Bank-stability modelling 

The modelling employed in this study applies to non-cohesive sediment where the stability 

of the bank is accounted for by a simple formulation based on the angle of repose of 

sediments. Bank-stability modelling is important for realistic modelling of river 

geomorphology, as determined in Chapter 3, to include the effect of cohesion of fine 

grained sediments and the roots of vegetation. 

Simon and Curini (1998) and Simon et al. (1999) produced a model to determine the 

stability of riverbanks. Their model is based on the wedge failure type models of 

Osman and Thorne (1988) and Simon et al. (1991). The model of 

Osman and Thorne (1988) employs an algorithm to analyse the stability of banks and 

calculates the factor of safety between the forces that drive and resist mass-bank failure. 

The model accounts for the geotechnical properties of the bank material, including soil 

shear strength (cohesion, angle of internal friction and unit weight) and positive and 

negative pore-water pressure (Simon and Curini, 1998; Simon et al, 1999). In addition to 

positive and negative pore-water pressure, the model incorporates layered soils, changes in 

soil unit weight based on moisture content and external confining pressure from 

streamflow (Simon and Curini, 1998). Simon et al. (2000) proposed a more sophisticated 

bank-stability and toe erosion model, which considers wedge-shaped bank failures with 

several distinct bank material layers and user-defined bank geometry.  
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The wedge failure analysis entails use of the Mohr Coulomb Limit Equilibrium Criterion 

for the saturated portion of the wedge and the Fredlund et al. (1978) criterion for the 

unsaturated portion. In the unsaturated portion of the bank pores are filled with water and 

with air so that pore-water pressure is negative. The difference (µa - µw) between the air 

pressure µa and the water pressure in the pores µw represents matric-suction ψ. The 

increase in shear strength due to an increase in matric suction is described by the angle φb. 

Incorporating this effect into the standard Mohr Coulomb equation produces 

(Fredlund et al, 1978):  

           (4.17) 

where Sr is shear stress at failure, (σ - µa) is net normal stress on the failure plane at failure. 

The value of φb
 is generally between 10º and 20º, and increases with the degree of 

saturation. It attains a maximum value of φ’ under saturated conditions. The effects of 

matric suction on shear strength are reflected in the apparent or total cohesion c’ term. 

Negative pore-water pressures (positive ψ) in the unsaturated zone provide an apparent 

cohesion over and above the effective cohesion, and thus, greater shearing resistance. In 

addition to this static model, there is also a dynamic version that uses a time series of pore-

water pressure values to calculate the factor of safety (Simon et al, 1999). The model was 

run using the simulated flow conditions as a driving input. The predicted bank profile was 

calculated on a daily basis and imported into the bank-stability model so that the stability 

of both the initial and the predicted bank profile could be assessed. 

The bank-stability model used by Simon et al. (2003) incorporates the hydraulic effects of 

bank-toe erosion which increases the applicability and accuracy of the model in predicting 

critical conditions. A 2-D hydrology model is used to evaluate the effect of the simulated 

flow regime on streambank pore-water pressures. The bank-stability and toe-erosion 

model is used to investigate the effects of high flows on bank-toe scour and resulting bank 

geometry.  

The bank-stability and toe-erosion model predicts the change in channel geometry that will 

result from exposure of bank and toe materials to flows of a given stage and duration. It 

( ) ( ) b
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calculates erosion of cohesive soils using an excess shear-stress approach from the model 

of Partheniades (1965): 

ε = k(τo – τc)a
                                                            (4.18) 

where ε is the erosion rate in m/s. k is an erodibility coefficient in m3/N/s; (τo – τc) is the 

excess shear stress in Pa. τo is the average bed shear stress in Pa. τc is the critical shear stress 

in Pa; and a is an exponent (often assumed = 1.0). The measure of material resistance to 

hydraulic stresses is a function of both τc and k. k can be estimated as a function of τc 

(Hanson and Simon, 2001): k = 0.1τc-0.5     (4.19) 

Resistance of non-cohesive materials is a function of surface roughness and particle size 

(weight) and is expressed in terms of the Shields criterion (Simon et al, 2003). 

River widening and bank erosion modelling 

Bank erosion is the primary cause of river channel widening and meandering 

(Chang, 1980a). Many models make use of process-based and/or probabilistic bank-

stability models to estimate the locations and sizes of active bank failures along streams 

(Darby and Thorne, 1996a). Inclusion of a method to predict the hydraulic shear erosion of 

cohesive bank materials is important in width-adjustment modelling because erosion 

directly influences the rate of retreat of the banks and also steepens the bank profile and 

promotes retreat. Widening models that attempt to account for river erosion of cohesive 

bank materials are often based on empirically based methods (i.e. 

Arulanandan et al, 1980).  

Models of non-cohesive bank erosion employ sediment transport models in the near-bank 

zone, causing widening of river banks with homogeneous vertical structure. One such 

model is that of Li and Wang (1994), which simulates the bank erosion mechanism using a 

heuristic procedure. When bank slope exceeds the angle of repose of the boundary 

materials, a heuristic slumping model maintains an angle of repose onto the flow plain 

surface. Sediment above the failure plane is removed downslope, forming a deposit with a 

linear upper surface.  
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Most cohesive bank width adjustment modelling approaches have been based solely on 

analysis of planar failures. Mass failure of cohesive bank material, however, is 

discontinuous. Mass wasting algorithms for cohesive banks include that of Osman (1985), 

who accounts for the bank profile geometry associated with natural eroding river banks 

that are destabilised through a combination of lateral erosion and bed degradation 

(ASCE, 1998b). Darby and Thorne (1996b) developed a numerical model of bank erosion 

that introduces rotational slip and planar failure of the bank and applied it to model the 

geomorphological behaviour of a natural river. 

4.2.4 Equilibrium approaches  

Existing methods describing equilibrium river morphology entail the use of regime theory, 

power laws, extremal hypotheses and tractive force methods to describe a river at the 

macro-reach to the reach scale. These have been used to predict equilibrium river 

geometries. In general, width adjustment occurs simultaneously with changes in river 

geometry, roughness, slope, channel pattern etc. These adjust as the river approaches a 

dynamic state of equilibrium. Definition of the various forms of equilibrium is dependent 

upon the spatial and temporal scale under which the river is considered (Graf, 1988).  

Regime theory and Power law approach 

Regime theory is based on the tendency of a river system to obtain an equilibrium state 

under constant environmental conditions. Regime theory is based on empirical equations 

derived from regression of observed stable channel properties, such as width, depth, slope 

and meander length on flow and sediment properties. The theory suggests that principal 

channel characteristics remain stable for a period of years and that a change in the 

hydrologic or sediment regime results in erosion or deposition. River reaches that are “in 

regime” are able to move their sediment load through the system without net erosion or 

deposition and do not change their average shape and dimensions unless the long-term 

flow regime changes (Hey, 1997).  

Geomorphologists have used data from natural rivers and laboratory flumes to develop 

power law hydraulic relations between channel top width, average depth, average velocity 

and bank full discharge (Leopold and Maddock, 1953). The regime equations of 
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Lindley (1919) and Blench (1969), are the most widely known. Semi-analytical work by 

Julien and Wargadalam (1995), has attempted to refine the regime approach within a 

framework based on the governing principles of open channel flow. These hydraulic 

geometry relations described adjustable characteristics of the river in terms of independent 

and dependent variables when the river is neither aggrading nor degrading. Rivers 

described as being "in regime" are considered "stable". Equations describing river 

geometry for stable mobile gravel-bed rivers were presented by Hey and Thorne (1986). 

Additional equations and discussion on stable river morphology were presented by 

Hey (1997).  

Regime theory does not provide dimensionally homogeneous equations and their validity 

is limited to the catchments and data from which they were derived. Regime theory can 

give large errors when equations are applied to conditions that differ from those for which 

they were derived. Furthermore, regime equations are applicable to systems that have 

achieved equilibrium between sediment and water flow conditions (Brownlie, 1983). 

Extremal hypothesis approach 

Extremal hypotheses argue that a river moves towards a state that is the most efficient. 

Although such a state may never be reached, a river is constantly adjusting itself in that 

direction (Chang, 1985). Extremal hypotheses predict channel geomorphology, using 

equations for sediment transport and alluvial friction in combination with a third 

relationship to predict regime or equilibrium geometry. The third relationship is used to 

maximize or minimize a parameter, such as stream power, energy dissipation rate or 

sediment concentration.  

Extremal hypotheses that have been introduced and tested include minimum entropy 

production (Leopold and Langbein, 1962; Langbein, 1964), minimum energy dissipation 

rate (e.g. Brebner and Wilson, 1967; Yang and Song, 1979; Yang et al, 1981; 

Song and Yang, 1982; Yang, 1987), maximum sediment transporting capacity 

(e.g. Pickup, 1976; Farias, 1995; Qing Huang et al, 2002), minimum stream power 

(Chang, 1979; Chang, 1980a; Chang, 1980b; Millar and Quick, 1993; 

Millar and Quick, 1998), maximum friction factor (Davies and Sutherland, 1980; 
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Davies and Sutherland, 1983), and minimum Froude number (Jia, 1990; 

Yalin and Silva, 1999; Yalin and Silva, 2000).  

Extremal hypotheses represent a general principle within the fluvial system and allow the 

selection of a single preferred cross-section out of many possibilities. The theoretical 

justification of extremal hypotheses lacks convincing physical explanation. The predictions 

based on extremal hypotheses, however, agree with a wide range of observations 

(Knighton, 1998). 

Tractive force methods 

Tractive force or mechanistic methods use the basic laws of mechanics to obtain 

expressions that specify the geometry of stable channel cross-sections. The theory is 

founded on a fluid momentum balance to obtain the boundary shear stress and stability 

criterion for the sediment particles that make up the channel perimeter. Tractive force 

methods assume that the channel is straight, that there is negligible secondary flow and that 

sediment is non-cohesive and does not vary within the channel. With these assumptions a 

cosine profile is predicted for the stable cross-section (ASCE, 1998b).  

4.2.5 Modelling spatial vegetation interaction 

For effective river management to be achieved it is important to model not only riparian 

vegetation dynamics but how the vegetation dynamics affects its habitat. Modelling 

riparian vegetation is different from modelling vegetation that is not riparian in that it is 

subject to a continually changing geomorphology and hydraulic regime. However, the 

resources that vegetation requires for establishment are the same. These resources include 

available sunlight, water, substrate and substances present in the soil. Plants use the 

resources available to sprout, survive, grow, and reproduce themselves and the resources 

also affect how the different individuals compete for them (Bandini and Pavesi, 2004). 

Most spatio-temporal vegetation models are described using partial differential equations 

(Berger and Hildenbrandth, 2000) but Chen et al. (2000) showed that the CA approach is 

good for modelling vegetation.  
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There are several examples of models predicting vegetation adjustment to alterations of 

hydrological regimes in regulated rivers (Rood and Mahoney, 1990; Auble et al, 1994; 

Richter et al, 1997; Friedman and Auble, 1999). These models are usually generated from 

long-term data of the reaction of vegetation dynamics to hydrological variation 

(Johansson and Nilsson, 2002). The interaction of riparian vegetation on its habitat, 

however, is less known.  

Riparian vegetation changes its habitat by changing sediment transport indirectly owing to 

its effects on flow resistance. Sediment transport equations that describe sediment transport 

through vegetation are sparse because the interaction between sediment transport and 

riparian vegetation is to a large degree unknown. The effects of vegetation on sediment 

transport are validated by field and laboratory measurements to inform numerical 

modelling (Houwing et al, 2002; Madsen et al, 2001; Teeter et al, 2001; Jordanova and 

James, 2003).   

Seedling recruitment modelling 

The vegetation modelling used in this study does not require detailed seedling recruitment 

modelling but, as discussed in Chapter 3, this process is an important process when 

vegetation establishment occurs primarily through seedlings and therefore it is described 

here in more detail.  

Scott et al. (1996) developed a seedling recruitment model that predicts establishment and 

survival conditions necessary for cottonwood seedlings. The model determines the effects 

that hydraulic and geomorphic processes in river channels have on seedling recruitment. 

The model takes account of the physical requirements for seedling recruitment so that 

establishment occurs on sites that are bare, moist and relatively safe from physical 

disturbance.  

The recruitment model couples with descriptions of geomorphological processes such as 

meandering, narrowing and flood deposition to produce different spatial and temporal 

patterns of riparian forest. The model deals with sediment deposition and erosion, which 

often produce or remove recruitment sites (Auble and Scott, 1998). 
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The operation of the model is illustrated below. The illustrations use typical bank geometry 

to show how tree recruitment patterns arise. Combinations of flood disturbance and 

suitable moisture conditions each year are produced in the wetted zone set out by summer 

peak flow and late summer base flow. No year-to-year change occurs when seedlings 

germinate in a zone adjacent to the channel which is disturbed by flooding (Figure 4.12) 

(Auble and Scott, 1998). 

Some combination of flow variability and channel change that is different from the No 

Year-to-year change case in Figure 4.12 is necessary to produce successful tree 

recruitment. Peak floods produce bare, moist surfaces that are high above the channel bed 

and therefore relatively safe from future fluvial disturbance. Figure 4.13 shows a scenario 

resembling low flow years where flooding does not affect seedling establishment. 

Figure 4.14 shows the inclusion of geomorphological change in model predictions 

(Auble and Scott, 1998).  

 

 

 

 

 

 

 

Figure 4.12 No year-to year change in seedling recruitment due to germination 

falling in a zone where flooding occurs (Auble and Scott, 1998) 
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Figure 4.13 Seedling establishment in a zone where germination is unaffected by 

flooding and drought (Auble and Scott, 1998) 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.14 Inclusion of geomorphological change affecting seedling germination 

(Auble and Scott, 1998) 
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Growth and mortality modelling 

Growth and mortality modelling of riparian vegetation applies to the geomorphological-

unit scale but in a special version of the GSTARS growth and mortality modelling is 

upscaled to represent the vegetation state at larger scales. GSTARS is a geomorphological 

code and will be discussed in more detail in the following section. The vegetation model is 

an addition to the 1-D simulation of river hydraulics, sediment transport and 

erosion/deposition of the GSTARS model. The model simulates the processes of 

vegetation growth and mortality as a function of species type, changing river stage, 

groundwater level, rate of root growth and the potential for scour velocity.  The model 

assumes that vegetation will begin to grow at all points above the wetted channel that are 

free of existing vegetation (Wiele and Franseen, 1999). 

The model applies a species-dependent growth rate to the plant roots and stem and tracks 

the root depth in relation to the groundwater level. If root growth is such that the roots stay 

below a falling capillary fringe caused by groundwater lowering, then the model assumes 

the vegetation can continue to grow. Otherwise, the model assumes that vegetation dies 

from desiccation. The model also takes account of the plant mortality due to drowning, 

velocity scour and burial. Furthermore, the model accounts for the initial vulnerability of 

seedlings becoming more resistant to plant stresses with time (Wiele and Franseen, 1999). 

Cellular Automaton vegetation modelling 

Currently, the application of CA modelling is used mainly to model the growth and spatial 

evolution of single plant species at the channel-type scale. For example, 

Aassine and El Jaý (2002), developed an approach based on coupling of a local model for 

simulation of vegetation growth with a spatial evolution of vegetation described by CA 

modelling. The model takes account of local biomass growth, using partial differential 

equations. For describing the spatial evolution of vegetation, a CA model is used that 

employs ‘transition rules’. For each cellular automaton, the ‘transition rules’ describe how 

the local growth dynamics affect space–time evolution of vegetation 

(Aassine and El Jaý, 2002). 
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Bandini and Pavesi (2004) however, presented a two-dimensional (2-D) CA model that 

simulates the evolution of heterogeneous plant populations, which include different 

perennial species in woods and forests. They used CA to model the interactions among 

single individuals and their associated competition for the resources available. 

Baltzer et al. (1998) also used CA to study vegetation dynamics of entire populations. 

Rule-based vegetation modelling 

Baptist and Mosselman (2002) developed a rule-based model to determine the succession 

of three riparian vegetation types and the flow resistance caused by the vegetation at the 

reach scale. The model employs knowledge rules that are obtained from literature reviews. 

The knowledge rules are based on the suitability of environmental factors for vegetation 

growth and on directions and rates of vegetation succession. The rules are applied to every 

cell in a computational grid. The model predicts the path and rate of succession of the 

vegetation based on inundation time, the grazing intensity and changing river 

geomorphology. The input variable specified for inundation time includes the effects of 

inundation frequency and groundwater level (Baptist and Mosselman, 2002).  

The vegetation mosaic is subdivided into low-lying, middle-lying and high-lying 

inundation classes based on their inundation time. Hence, changing geomorphology in the 

river changes the inundation classes of the vegetated cells leading to a shift in the way that 

succession takes place (Baptist et al, 2002). 

Sediment transport and vegetation 

To date, studies for the effect of vegetation were mainly at the geomorpological-unit scale 

based on modelling of the drag force of vegetation and its effect on the bed shear stress 

(Li and Shen, 1973; Tsujimoto, 1999; Bing et al, 2001). Laboratory analyses that were 

done on sediment transport through vegetation include Abt et al. (1994), 

Prosser et al. (1995) and Jordanova and James (2003).  

Baptist (2003) carried out a laboratory experiment in which turbulence characteristics and 

sediment transport were measured through submerged flexible vegetation. Measured 

profiles of velocity and turbulence were analysed and simulated with a 1-D flow model to 



 

 70 

obtain estimates of the bed shear stress. The analysis of the bed level profiles gave rise to 

the hypothesis that the sediment transport through vegetation is mainly in the form of 

suspended transport. The increased turbulence levels in between the vegetation are capable 

of picking up the sediment more effectively and thus bringing the sediment in suspension 

(Baptist, 2003). 

4.3 Geomorphic modelling codes 

4.3.1 One-dimensional codes 

One-dimensional (1-D)  sediment transport models have become increasingly useful 

predictive tools to assess aggradation and degradation within channels. Where long-term 

predictions are required numerical models are the only way to simulate aggradation and 

degradation of the channel bed (Rathburn and Wohl, 2001). The 1-D models CCHE1D, 

FLUVIAL-12, HEC-6 and CONCEPTS apply at the reach to channel-type scale and are 

discussed below. 

CCHE1D  

The CCHE1D sediment transport model has been widely applied to the simulation of 

general sediment transport in rivers and reservoirs. CCHE1D simulates unsteady flow and 

nonuniform sediment transport in channel networks and can handle sediment selection, 

bed material hiding, exposing and armouring. This model can predict channel aggradation 

and degradation patterns as well as the sediment transport characteristics. CCHE1D 

simulates channel widening by modelling the river erosion at bank toes and the consequent 

bank mass failures. 

The CCHE1D sediment transport model adopts the non-equilibrium approach for the total-

load transport. The flow and sediment calculations are decoupled but a coupled procedure 

is adopted in the sediment module to solve the nonuniform sediment transport, bed change 

and bed material sorting equations simultaneously. The sediment transport capacity can be 

determined from the formula of Wu et al. (2000b), the SEDTRA module 

(Garbrecht et al, 1995), the modified Ackers and White formula 
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(Proffit and Sutherland, 1983) and the modified Engelund and Hansen formula 

(Wu and Vieira, 2002).  

FLUVIAL–12 

FLUVIAL-12 is an erodible boundary model that can model changes in bed elevation as 

well as channel width and topography induced by channel curvature. This model has five 

major components (Chang, 1998): 

n Water routing, 

n Sediment routing, 

n Changes in channel width, 

n Changes in channel bed profile, 

n Lateral migration of the channel. 

The sediment routing component for the FLUVIAL-12 model has the following major 

features (Chang, 1998):  

n Computation of sediment transport capacity using a suitable formula for the physical 

conditions.  

n Determination of actual sediment discharge by making corrections for sorting and 

diffusion.  

n Upstream conditions for sediment inflow. 

HEC-6 

HEC-6 (Thomas and Prashum, 1977) is one of the most widely used commercially 

available sediment transport models. The model predicts scour and deposition within rivers 

and reservoirs. In river applications, HEC-6 simulates uniform changes in riverbed 

elevation over the entire width of the channel to account for erosion and deposition under 

subcritical flow. The model does not simulate lateral channel changes such as meander 

migration or lateral changes in bed slope. The governing equations in HEC-6 include the 

energy equation and conservation of mass for water and sediment. The model takes into 

account the effects of sediment gradation.   

HEC-6 makes use of a discharge hydrograph, which is presented as a sequence of steady 

flows of variable duration. Water surface profiles are calculated for each flow using the 
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standard-step method to solve the energy and continuity equations. Friction loss is 

calculated by Manning's equation and expansion and contraction losses can be calculated. 

Geometry of the river system is represented by cross-sections which are specified by 

coordinate points and the distances between cross-sections. HEC-6 raises or lowers cross-

section elevations to reflect deposition and scour. 

Using continuity of sediment bed elevation changes are calculated with respect to time 

along the study reach. Inflowing sediment loads are related to water discharge using 

sediment-discharge curves. Sediment loads are provided at the upstream boundaries of the 

river reach, tributaries and local inflow points. HEC-6 allows a different gradation at each 

cross-section. Sediment is routed downstream for each time step after the backwater 

computations are made.  

CONCEPTS 

The National Sedimentation Laboratory has developed the Conservational Channel 

Evolution and Pollutant Transport System (CONCEPTS) to simulate the evolution of 

rivers. CONCEPTS simulates unsteady 1-D flow, graded sediment transport and bank-

erosion processes in river channels. CONCEPTS includes varying boundary roughness 

along a cross-section. It can predict the dynamic response of flow and sediment transport 

to in-stream hydraulic structures and computes channel evolution by determining bed 

elevation changes and channel widening. CONCEPTS simulates transport of cohesive and 

cohesionless sediments, both in suspension and on the bed, and selectively by size classes. 

For graded bed material, the sediment-transport rates depend on the bed material 

composition. For cohesive bed, material erosion rates are calculated following an excess 

shear-stress approach. The deposition rate is based on local shear stress and particle fall 

velocity (Langendoen, 2000).  

CONCEPTS simulates channel-width adjustment by incorporating the fundamental 

physical processes responsible for bank retreat: firstly river erosion or entrainment of bank-

material particles by flow, and secondly, bank mass failure due to gravity. Bank material 

may be cohesive or non-cohesive and may comprise numerous soil layers. CONCEPTS 
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performs stability analyses of planar slip failures and cantilever failures of overhanging 

banks (Langendoen, 2000).  

4.3.2 Multi-dimensional codes 

Multi-dimensional models employ 2-D and 3-D and helical flow modelling coupled with 

mobile bed calculation. Helical flow is represented by quasi-2-D models which employ the 

stream tube concept developed to reflect the effect of lateral variations of the channel 

geometry. The following multi-dimensional models are discussed below: CCHE2D; 

GSTARS2.0; SEC-HY11 and Mike 21C. These models apply to the channel-type scale.  

CCHE2D 

CCHE2D is a depth-averaged 2-D model for flow and sediment transport in rivers. Similar 

to CCHE1D, CCHE2D includes nonuniform sediment transport modelling and bed 

material hiding, exposing and armouring. The model is able to simulate channel widening 

and meandering by considering the effect of secondary flow on main flow and sediment 

movement.  

CCHE2D has two versions. One is based on EEM (Efficient Element Method) and the 

other FVM (Finite Volume Method). In both versions of CCHE2D, the nonuniform total-

load transport is simulated using the non-equilibrium approach. The sediment transport 

capacity is determined by the formula of van Rijn (1987), the formula of Wu et al (2000b), 

the SEDTRA module (Garbrecht et al, 1995), the modified Ackers and White formula 

(Proffit and Sutherland, 1983), or the modified Engelund and Hansen formula 

(Wu and Vieira, 2002). The effect of secondary flow on the main flow and sediment 

transport in curved channels is considered in both versions.  

The EEM-based version adopts a fully decoupled procedure for flow and sediment 

transport while the FVM-based version adopts the semi-coupled procedure similar to that 

used in CCHE1D model. The FVM-based CCHE2D model is capable of simulating the 

geomorphological change because of vegetation growth in the river. The vegetation effects 

are considered by including the drag force in the momentum equations and by the 

generation and dissipation of turbulent energy in the k-ε equations.  
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GSTARS2.0 

The GSTARS computer model (Generalized Stream Tube model for Alluvial River 

Simulation) was first developed by Molinas and Yang (1986), to simulate the flow 

conditions in a semi-2-D manner and the change of channel geometry in a semi-3-D 

manner. The governing equations are based on energy and conservation of mass for water 

and sediment. GSTARS is able to specify the number of stream tubes at each cross-section 

(Rathburn and Wohl, 2001).The GSTARS model was revised and enhanced by 

Yang et al. (1998) to be released as GSTARS 2.0.  

GSTARS 2.0 is a quasi-2-D model that utilizes a stream tube concept to accommodate 

differential scour and deposition over the width of a cross-section. It employs stream tubes 

as conceptual tube-like surfaces whose walls are defined by streamlines. In GSTARS, 

hydraulic parameters and sediment routing computations are made for each stream tube, 

allowing the position and width of each stream tube to change. In this way, vertical and 

lateral variations in cross-sectional elevation are simulated.  

Sediment routing, bed sorting and armouring computations are performed independently 

for each stream tube. The model has 13 transport functions for particle sizes ranging from 

clay to silt, sand, and gravel, including non-equilibrium transport and flows with a high 

concentration of wash load. The model is able to predict variations in channel width 

according to the theory of total stream power minimization (Chih and Francisco, 1998). 

Mike 21C 

Mike 21C is a generalised numerical modelling system for the simulation of the 

hydrodynamics of vertically homogenous flows and for the simulation of sediment 

transport. Mike 21C predicts a 2-D free surface and sediment transport in rivers where an 

accurate description of flow along the banks as well as helical 3-D flow is important. The 

model can for example deal with sedimentation of water intakes, outlets, bridge tunnels 

and pipeline crossings.  

Helical flow is calculated in connection with sediment transport to enable prediction of 

bend scour, confluence scour and in formation of point bars as well as alternating bars. The 
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model allows for both bed-load and suspended-load transport. After each time step, the 

eroded bank material is included in the solution of sediment continuity equation 

(http://www.dhigroup.com/Software/WaterResources/MIKE21C.aspx).  

4.4 Conclusion 

This chapter gives a review of various modelling methods that can be used to describe 

river processes and existing models of river processes at various organisational levels. 

CFD modelling in this study will be employed for water flow at various scales but 

numerical CA modelling will be employed to model sediment and vegetation 

processes at the channel-type scale to add flexibility to the modelling, which is 

required for the hierarchical strategy employed. CFD modelling of water flow at this 

scale provides the required accuracy and therefore it would not be necessary to develop a 

rule-based model, for example, to determine water flow at the channel-type scale. 

Rule-based modelling would be most suitable for vegetation population modelling at 

the reach scale but for vegetation growth dynamics at the geomorphological-unit 

scale, numerical modelling is more appropriate. The models used and developed within 

this study are described in Chapter 5.  

The river geomorphological modelling packages reviewed in this chapter do not consider 

all the processes which affect river form, especially vegetation. These modelling packages 

also do not consider many of the processes operating at various organisational levels and 

therefore lack the predictive capability for river form at decadal time scales. Not only is 

small-scale river form required for river habitat management, but it also affects the rates at 

which river form changes at larger scales.  

Effective integration of models for various interacting processes at various scales has to 

allow for feedback, which is vital for accurate simulation of rivers over a decade. Few 

models simulate interactively the impacts of flow on plants in river channels and their 

feedback effects (Hooke et al, 2005). Modelling integration is discussed in Chapter 6. 

http://www.dhigroup.com/Software/WaterResources/MIKE21C.aspx)
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In this chapter, each of the hierarchically nested models representing sediment, water and 

vegetation processes is described. Models are chosen or developed to apply at the reach 

scale, the channel-type scale and geomorphological-unit scale. These models have to be 

linked to allow feedback between models. Figure 5.1 illustrates the process models 

described in this chapter and also the feedback between these process models. 

Trans-scale modelling linkage refers to the feedback across organisational levels and is 

applied through roughness coefficients and boundary conditions. A critical aspect of trans-

scale linkage is to determine flow resistance coefficients. These resistance coefficients are 

specific to the models chosen to represent water at various organisational levels used in 

this study. Flow resistance formulations also have to incorporate the effect of sediment and 

vegetation processes on water flow. Trans-scale linkage therefore requires further 

explanation and is discussed in the following chapter.  

Existing water flow models at the reach scale and the channel-type scale are used. The 

reach scale water flow model solves one-dimensional (1-D) Saint-Venant equations 

whereas the channel-type scale water flow model is governed by two-dimensional (2-D) 

Saint-Venant equations. The water flow model at the geomorphological-unit scale is not 

based on the actual physics of water flow but does account for the smaller scale variability 

of the water distribution.  

The sediment model at the reach scale employs the Exner equation of sediment continuity 

in combination with the gravel-bed-load transport equations to determine changes in bed 

elevation. For the channel-type scale, a cellular automaton (CA) model was developed 

using the modelling concept of Murray and Paola (1994). At the geomorphological-unit 

scale, a combination of existing formulations is used to predict the dimensions and growth 

of bed-forms representing sediment dynamics.  

Chapter 5  –  Hierarchical  model l ing 
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Figure 5.1 Hierarchical models of sediment, water and vegetation processes across the 

reach scale, channel-type scale and geomorphological-unit scale. Downward arrows 

represent feedback through boundary conditions and upward arrows represent 

feedback through model parameters. Horizontal arrows represent feedback between 

water, sediment and reed processes 

In this study a shallow gravel-bed river was chosen to be modelled, which allows the 

important river process of river bank-stability, as outlined in Chapter 3, to be simplified. 

Another important river process identified in Chapter 3 is local scour, which is ignored 

within the modelling in this study. Local scour is a process at the geomorphological-unit 

scale which requires great computational effort and since the hierarchical modelling is 

inherently computationally intensive, local scour is ignored.  Ignoring local scour may be 

acceptable since it is caused by the acceleration of flow and by vortices resulting from flow 

around an obstruction and it will therefore be assumed that no obstructions are present in 

the modelling scenarios.  

The vegetation models at the reach scale and the channel-type scale were developed 

specifically to describe dynamics of common reeds or Phragmites Australis. Reeds were 

chosen for representing the effect of vegetation because of the large role they play as 
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geomorphological modifiers. This is a large simplification but is justified because the goal 

of this thesis, which is to deal with river complexity in order to make reliable predictions, 

will nevertheless be achieved. The reach scale model predicts the distribution of reed 

populations along the river bank gradient whereas the channel-type scale reed model is a 

CA model that predicts the expansion of patches within the population. The vegetation 

model at the geomorphological-unit scale is an existing model describing the growth of 

Phragmites Australis by integrating finite differential equations for biomass growth.  

The spatial modelling resolution is 100 m for the reach scale, 5 m for the channel-type 

scale and 0.25 m for the geomorphological-unit scale. The models are decoupled and run 

at asynchronous time steps. Table 5.1 gives typical time steps used by each of the 

individual models. 

Table 5.1 Typical time steps used in the modelling at the various organisational levels 

for the vegetation, water and sediment hierarchies 

 Vegetation 
organisational 

hierarchy 

Water 
organisational  

Hierarchy 

Sediment 
organisational  

hierarchy 
Reach scale 1 year 15 seconds 1 minute 
Channel-type scale 20 days 0.2 seconds 5 seconds 
Geomorphological-
unit scale 

1 day - 0.1 second 

 

Model equations and procedures were implemented in a MS-Excel workbook with Visual 

Basic for Applications (VBA). Modelling code is provided in the Appendixes.  

5.1 Reach scale water flow  

5.1.1 One-dimensional Saint-Venant equations 

The dynamic model is governed by the 1-D Saint-Venant equations for open-channel 

flows with low sediment concentration:      

           

          (5.1) 0=+
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          (5.2) 

where x and t are the spatial and temporal axes respectively; A is the flow area; Q is the 

flow discharge; y is water surface elevation; g is the gravitational acceleration; and Sf is the 

friction slope.  

5.1.2 Flow resistance 

The friction slope is defined as 

          (5.3) 

in which R, and n are respectively, the hydraulic radius and Manning’s roughness 

coefficient. The Manning’s n is stored at each computational node representing a cross-

section within the reach.  

5.1.3 The MacCormack method for solving 1-D flow  

The equations are solved using the MacCormack method for solving finite difference 

equations. The MacCormack method is explicit, so that the value of each variable is 

calculated entirely from previously calculated values (Chaudhry, 1993).  

Using the MacCormack method, each variable is calculated twice for each time step. In the 

first calculation, called the predictor step, depth, y*, and velocity, u*, are calculated with 

backward differences with respect to both x and t. In the second calculation, called the 

corrector step, depth, y** and velocity, u** are calculated using forward differences of the 

predictor step with respect to x and backward differences of the predictor step with respect 

to t. The final values are the arithmetic mean of the predictor and corrector values. 

The following equations are given by Chaudhry (1993) and have been de-composed into 

finite difference equations: 
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          (5.6) 

          (5.7) 

          (5.8)  

 
5.1.4 Stability Condition 

The time interval ∆t and distance step ∆x is determined to ensure stability. The stability 

condition for most explicit finite difference methods is stated as: 

          (5.9) 

where Cn is the Courant Number (Chaudhry, 1993), and c is calculated from:  

          (5.10) 

Stability is ensured by increasing ∆x or decreasing ∆t for a maximum value of the 

numerator  u + c.  

5.2 Reach scale sediment flow and bed elevation 

5.2.1 Model overview 

The 1-D reach scale sediment model computes the change in river bed elevation η, based 

on total bed material load. The reach has length L over which bed sediment with grain size 

D and submerged specific gravity s is transported. Initially the channel has a uniform slope 

S. The bed elevation at the downstream end is assumed to be fixed. Changing the sediment 

feed rate Gtf at the upstream end forces bed elevations to aggrade or degrade to move 

toward an equilibrium state over time t.  

5.2.2 Intermittency 

Most geomorphological change occurs during floods and flooding, which typically occurs 

only over a small portion of time throughout a year (Figure 5.2). This portion of time is 
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referred to as the Intermittency If of the river (Paola et al, 1992). Intermittency allows the 

time step to be increased to provide the total period over which the bed elevation changes. 

After averaging over many floods, the relation between cumulative time in which the river 

has been in flood tf and actual time t is      (5.11) 

The model is driven by input provided by the 1-D water flow model, which simulates the 

flood flows. These floods are episodic events and their duration, together with 

intermittency, determines their effect at the decadal time scales.   

 

 

 

 

 

Figure 5.2 Idealised hydrograph associated with intermittency 

5.2.3 Bed elevation computation  

The Exner equation of sediment continuity takes the form 

(5.12) 

where qb refers to the bed-load sediment transport rate during flooding, η denotes bed 

elevation, λp denotes the porosity of the bed deposit and t denotes time. Averaging over 

many floods, equation (5.12) is changed to 

(5.13) 

The numerical solution scheme for the Exner equation is described below.  
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5.2.4 Numerical solution scheme for the Exner equation 

Figure 5.2 shows the numerical solution scheme for solving the finite difference form of 

the Exner equations. The reach is assumed to have length L and divided into M 

sub-reaches, each with length ∆x which is given by 

          (5.14) 

A ghost node is introduced to provide boundary conditions for backward difference 

applications. 

 

 

 

Figure 5.3 Numerical solution scheme for the Exner equation of sediment continuity 

This defines M + 1 node with the positions 

(5.15) 

as noted in Figure 5.3. The initial bed elevations ηi are given as 

          (5.16) 

SI denotes the initial bed slope of the river. η is determined at all nodes allowing 

computation of the Shields number τ∗ at all nodes using equation (5.35). From the known 

values of τi
∗ the sediment transport rate qb,i can be computed from equation (5.22). The 

new bed elevation at the next time step is then given from a discretized version of 

equation (5.13).  

          (5.17) 
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(5.18) 

In equation (5.18), au is a coefficient that can be set between 0 and 1. The setting au = 1 

yields a pure upwinding scheme, which gives stability at the cost of accuracy. au = 0.5 

yields a central difference scheme, which gives accuracy at the cost of stability.  

5.2.5 Sediment feed 

The bed-load sediment transport rate qb in m2/s is associated with the annual sediment 

yield Gt in tons/year given as        

          (5.19) 

where ta denotes the number of seconds in a year. Similarly, specifying the sediment feed 

rate Gtf at the upstream end of the river gives qb as: 

          (5.20) 

5.2.6 Sediment transport  

The model implements the surface-based bed-load transport equations of 

Wilcock and Crowe (2003) developed for gravel-bed rivers described below. The 

equations and procedures recognise the role of the armour layer in regulating bed-load 

transport rates. The sediment transport include equations used apply the surface grain-size 

characteristics as inputs.  

The bed-load transport relations use a dimensionless parameter W* as a function of the 

transport stage  

          (5.21) 

where τ* is the Shields stress and τ*r is the reference Shields stress that produces a small but 

measurable transport rate. Bed-load transport rate per unit width qb is determined 
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(5.22) 

where s is the specific gravity of sediment determined from 

(5.23) 

where ρs is the density of sediment taken as 2650 kg/m3, ρ is the density of water.  

U* is the shear velocity determined from: 

(5.24) 

where D50 is the midpoint of the distribution corresponding to the value for which half the 

sediment is finer is the median grain size. W* is is determined from relations described in 

section 5.2.8. 

5.2.7 Grain size calculation 

Representative samples of the bed surface-layer are required in order to develop a 

cumulative frequency distribution of the available grain sizes. Sample values are entered 

into the model as a cumulative frequency distribution of the percentage of particles finer 

than a given size D in millimetres.  

For convenience, a Ф-scale is also used to represent grain size. The Ф-scale varies with the 

base 2 logarithm of the grain size: 

  Ф = log2D                                    (5.25)  

where D is in millimetres.  

The model calculates transport rates on the basis of discrete values of the grain size 

distribution Di where the subscript i refers to an individual percentile of the grain size 

distribution. Sediment transport parameters are calculated from the full grain size 

distribution of the sample using individual values for each size class. Let D1, D2, …, DN+1 

be the grain sizes associated with each of the N size classes, and let f1, f2, …, fN+1 be the 

fraction of the mass represented in each size class. The mean values of Di , Ф i and fi for 

each class are calculated as follows: 

ρ
ρs= s 

( ) *
50

* 1 τgDU −= s
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                              ,                                ,                       ,    (5.26a,b,c) 

here the subscripts i and i + 1 refer to adjacent size classes. The values obtained from 

equation (5.25) are used to estimate additional parameters,              ,   

and             ,                   (5.27a,b) 

whereΦ is the arithmetic mean in Ф units, Dg is the geometric mean grain size in 

millimetres, σ is the arithmetic standard deviation in Ф units and σg is the geometric 

standard deviation in millimetres. 

5.2.8 The surface-based relation of Wilcock and Crowe (2003) 

Wilcock and Crowe (2003) developed a transport relation based on the full grain size 

distribution of the bed surface including the sand. This relation includes an additional 

function that accounts for the non-linear effect of sand content on gravel transport rates. 

The basic form of the equation is as follows 

    for        (5.28) 

     for        (5.29) 

where     ,       (5.30a,b) 

and an empirical function that accounts for the variation in sand content 

(5.31) 

where Fs is the percent of sand on the bed surface. 

The exponent in the hiding function b is calculated from 

          (5.32) 

where D is the mean grain size of the bed surface. The reference shear stress for D is found 

using the Shields stress relation 

           (5.33) 

b

i
rri D

D








=

50
50ττ

35.1<φ

( )gD
r

r 1
*

−
=

s
ττ







 −+

=

D
D

b
i5.1exp1

67.0

Ψ
gD 2=

σσ 2=g

1+= iii DDD ii fff −= +1
2

1++
= ii ΦΦΦ

( ) i
N

i i fΦΦ
2

1∑ =
−=σ

∑
=

=
N

i
ii fΦΦ

1

∑
=

=
N

i
irir f

1

ττ

( )sr F20exp015.0021.050 −+=τ



 

 86 

5.2.9 Computation of the shear stress 

The normal-flow formulation for boundary shear stress τb and Shields number (Shields 

stress) τ∗ are the parameters used to compute sediment transport where  

          (5.34) 

and  

(5.35) 

where Sf is the friction slope and d is the flow depth.  

In order to calculate Sf the water surface elevation y average flow velocity U and bed slope 

S are required at each computational node i at interval distance Δx for the reach described 

by a numerical solution scheme.  

 

(5.36) 

Values for these variables are obtained from the 1-D flow model described above.  

5.3 Reach scale reed population dynamics 

5.3.1 Model overview 

The population distribution of common reeds (Phragmites Australis) up the river bank 

gradient at the reach scale is predicted by a fuzzy expert system. Fuzzy-rule-based 

modelling is well suited to prediction of the patterns of reed populations at the reach scale 

as affected by the flow regime since it is able to ignore the variation produced by smaller 

scale reed dynamics.  

The model takes advantage of reed population data obtained by experienced scientists, as 

shown in Figure 5.4. The data are converted into a rule base for describing reed biomass 

affected by various flow regimes and related numerically using fuzzy logic. Fuzzy logic 

provides realistic numerical values for prediction, using rules that describe a dataset. It 

fb gdSU ρρτ == 2*

S
Δx

g
Uy

g
Uy

S

i
i

i
i

if +








+−








+

=

−
−

+
+

2
22

2
1

1

2
1

1

g

f

g

b

RD
dS

RgD
==∗

ρ
τ

τ



 

 87 

provides a way of transforming linguistic variables such as the words “Low”, “Medium” 

and “Large” into numerical results. 

Fuzzy-rule-based modelling extends the dataset to be generally applicable to intermediate 

and wider ranges of circumstances. This is especially important given that reeds at 

different elevations up along the river bank are affected differently by the same flow 

regime. The model also applies fuzzy-rule-based modelling to the prediction of reed 

biomass for flow regimes that are not included in the dataset. 

The model runs at an annual time step and determines the percentage maximum biomass 

density of reeds that can potentially grow in a particular substrate. Hence, the reed biomass 

that can potentially grow at a given elevation on the river bank is determined. Rules are 

developed based on the maximum biomass density specified in the dataset. The maximum 

biomass density used in the model is particular to substrate within the reach and is 

specified by the user.  

 

 

 

 

 

 

Figure 5.4 Reed growth according to seasonal variation of water level in relation to 

ground level. Shoots are not drawn to scale (Karunaratne et al, 2003) 

Fuzzy logic is applied through the inference process. The general inference process 

proceeds in three steps: Fuzzification, Inference and Defuzzification. The inference 

procedure is outlined below. 
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The model utilizes relationships for reed biomass density (kgDWT/m2) and the yearly flow 

regime, which is represented by the yearly average flow and flow variability. The flow 

regime reflects the effect of the climatic regime (precipitation and temperature) and 

catchment controls on runoff on riparian vegetation. Under harsh flow conditions, reeds 

become stressed and develop to only a fraction of the full potential biomass density. Flow 

variability plays a role in reed expansion by supplying reeds on different elevations with 

water. Reeds require periodic inundation to supply water and nutrients to alluvial substrate 

of the bar. Variable flow depth is also important for seedling establishment  at various 

elevations. 

The average flow depths determined by the 1-D water flow model for every month of the 

year provide the mean yearly flow depth Have. These monthly average flows are also used 

for obtaining the coefficient of variance, COVH  (COVH = standard variance of flow depth/ 

Have). The COVH is useful when comparing data obtained for different flow regimes. The 

resultant COVH is compared with that obtained from the data set using the inference 

procedure as set out by fuzzy logic.  

The approach is novel and provides convincing outputs for reach scale reed population 

dynamics. This model has not been verified. Verification would require a wider range of 

flow variability and a longer period over which reed biomass is grown in the laboratory. 

The model also requires verification in terms of the maximum biomass density for a 

particular substrate.  
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5.3.2 Inference procedure 

Fuzzification 

To perform inference, each rule must first be quantified with fuzzy logic. It allows 

conversion of numerical inputs into fuzzy membership functions. This process is termed 

fuzzification. Under fuzzification, the membership functions defined by the input variables 

are applied to their actual values to determine the degree of truth for a condition. To 

specify rules, linguistic descriptions were obtained from expert knowledge, which are 

needed for the inputs and their characteristics (Passino and Yurkovich, 1998). It is 

necessary to define appropriate membership functions for the input- and output variables to 

construct the rule base and to specify the fuzzy operators as well as the methods for 

calculating rule response and defuzzification. All of the membership functions assigned to 

each input variable are combined to form a single fuzzy membership function for each 

output variable (Klir and Folger, 1987).   

Inference 

In the inference step, it is first required to determine the extent to which each rule is 

relevant to the current situation as characterised by the inputs. That is, the applicability of 

each rule is determined together with the conclusions reached. Based on the applicability 

of the individual rules the response of the system is calculated 

(Passino and Yurkovich, 1998). 

Next, all the rules are checked for their degree of truth (DOT). In the inference sub-

process, the truth-value for the condition of each rule is computed and applied to the 

conclusion part of each rule. This results in one fuzzy membership function to be applied 

to each output variable for each rule. For the evaluation of the fuzzy AND-operator in the 

rules the Min-Inference Method is used. The Min-Inference Method uses the lowest 

membership that is achieved for any condition within a given rule (Fischer et al, 2003). 

The output membership function is cut off at a height corresponding to the DOT computed 

as the minimum DOT for all the rule conditions. Different rules usually return different 

DOTs relating to different conclusions. In order to combine all these individual results, the 

fuzzy membership functions for the conclusions must be known (Klir and Folger, 1987). 
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Defuzzification  

Owing to the overlap of fuzzy input variables several rules with different DOTs can apply 

to a given condition. Therefore, a Defuzzification Method is specified, which defines how 

the conclusions of the corresponding THEN-parts are aggregated. Defuzzification Methods 

transform fuzzy outputs into crisp values (Schneider and Jorde, 2003). 

In the model, the Centre Of Gravity (COG) method is used. In the COG method, the crisp 

value of the output variable is computed by finding the variable value of the COG of the 

membership function for the fuzzy value. If the output membership functions are not 

symmetric, then their centres, which are needed in the computation of the COG, will 

change depending on the membership value of the premise 

(Passino and Yurkovich, 1998). Simple geometry shows that the distance to the centre is 

 3
wLL crest +

=
            (5.37) 

for an asymmetrical triangle which peaks at 1 and has a width of w, shown in Figure 5.5. 

 

 
 

 
 

 

 

 
Figure 5.5 Asymmetrical triangle, which peaks at 1 and has a width of w 

The distance to the centre of the area formed when the triangle is chopped off at a height of 

h is equal to Lcentre as shown in Figure 5.6. 
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Figure 5.6 Diagram indicating the distances to the centre of gravity 

where 

              (5.38) 

The height h is the value of the DOT that is applicable to a conclusion, where 

             (5.39) 

             (5.40) 

             (5.41) 

and  

             (5.42) 

The centre of gravity method computes the crisp value to be 

             (5.43) 
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5.3.3 Reed biomass-elevation data 

Deegan et al. (2007) ran an experiment to determine variations in biomass (gDWT) of P. 

Australis subjected to different water levels fluctuating at different elevations. They 

applied four amplitude fluctuations: Static; ±0.15 m; ±0.30; and ±0.45 with water levels at 

0.2; 0.4; and 0.6 m above bottom of an experimental pond. The results are shown in 

Figure 5.7. The data set shown in Table 5.2 which is used to develop rules for a fuzzy logic 

model were obtained directly from Figure 5.7. The dataset indicates the percentages of 

biomass obtained and maximum potential biomass taken as 400 gDWT. The experiment 

ran for 100 days. 

 

 

 

 

 

 

 

Figure 5.7 Final biomass (gDWT) of reeds after being subjected to four amplitudes of 

water level fluctuation (static, 15, 30 and 45 cm) at three elevations (20, 40 and 60 cm) 

(Deegan et al, 2007) 
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Table 5.2 Data set used to determine the rule base for finding the percentage of total 

biomass density given average flow depth and flow variability 

Data 
line 

Have (m) COVH 
(%) 

Min Biomass density 
(gDWT) 

Max 

1 0.01 0 112 232 360 
2 0.01 1108 52 188 296 
3 0.01 2216 152 212 236 
4 0.01 3323 48 116 152 
5 0.2 0 212 288 440 
6 0.2 55 104 244 384 
7 0.2 111 224 272 304 
8 0.2 166 72 136 176 
9 0.4 0 216 328 416 
10 0.4 28 140 256 332 
11 0.4 55 304 400 440 
12 0.4 83 244 292 316 
13 0.6 0 176 244 280 
14 0.6 18 176 248 292 
15 0.6 37 232 332 456 
16 0.6 55 268 308 340 
17 0.8 0 52 80 92 
18 0.8 14 56 92 112 
19 0.8 28 72 140 192 
20 0.8 42 64 80 88 
21 1 0 20 36 40 
22 1 11 36 60 68 
23 1 22 36 72 96 
24 1 33 8 12 12 
25 1.2 0 20 28 32 
26 1.2 9 12 16 20 
27 1.2 18 4 4 8 
28 1.2 28 0 0 0 

 

5.3.4 Rule-base 

The relationships between biomass density, Have and COVH are expressed as rules 

describing reed growth according to flow regime. Linguistic variables define rules to form 

the knowledge base of the system. These variables as used in the rules are divided into 

low-resolution states appropriate to model the reeds at the reach scale.  
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The rules are usually of form: “if A, then B” where A and B are fuzzy membership 

functions, which in turn specifies to what degree a statement would be true 

(Klir and Yuan, 1995). A forms the condition that describes to what degree the rule 

applies, while B is the conclusion that assigns a membership function to the output 

variable. 

Membership functions are used to quantify linguistic variables. Membership functions 

consist of fuzzy numbers. They have a peak or plateau with a maximum membership of 1. 

The membership function is increasing towards the peak and decreasing away from it. The 

value zero is used to represent complete non-membership. The value one is used to 

represent complete membership and a value in between represents an intermediate degree 

of truth (DOT) (Kaufmann and Gupta, 1985). The values obtained from the data in Table 

5.2 are used to determine the range and DOT of the membership function for the 

conclusion to the rules.  

Table 5.3 shows the rules used.  The first rule provides that if Have = “Very Low” and 

COVH = “Zero” then the membership for % maximum biomass density starts with 

DOT = 0 at 28 %, DOT = 1 at 58 % and ends with DOT = 0 at 90 %. 

For the most part, the definition of a membership function is subjective rather than 

objective. At the very least, experts simply draw or otherwise specify different 

membership curves appropriate to a given problem. Membership functions are defined 

using fuzzy numbers with a variety of different shapes (Schneider and Jorde, 2003). 

The percentage of maximum reed density as a conclusion is, therefore, described by 

linguistic variables. The number of rules used depends on the number of linguistic 

variables. The rules allow precise as well as imprecise information as input data to be 

processed (Klir and Folger, 1987). The number of linguistic variables can be related to the 

time step that is used in the model. The smaller the time step, for example, the smaller the 

observed changes in reed cover would be and the greater would be the number of linguistic 

variables. An increase in the number of linguistic variables leads to an increase in the 

number of rules. 
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Table 5.3 Rule base for finding the percentage of total biomass density given average 

flow depth and flow variability 

Rules Have (m) COVH (%) 
Range of 

% maximum 
biomass density 

DOT of 1 for % 
maximum biomass 

density 
1 Very Low Zero 28 to 90 58 
2 Very Low Low 13 to 74 47 
3 Very Low Medium 38 to 59 53 
4 Very Low High 12 to 38 29 
5 Very Low Zero 53 to 110 72 
6 Very Low Low 26 to 96 61 
7 Very Low Medium 56 to 76 68 
8 Very Low High 18 to 44 34 
9 Low Zero 54 to 104 82 
10 Low Low 35 to 83 64 
11 Low Medium 76 to 110 100 
12 Low High 61 to 79 73 
13 Average Zero 44 to 70 61 
14 Average Low 44 to 73 62 
15 Average Medium 58 to 114 83 
16 Average High 67 to 85 77 
17 High Zero 13 to 23 20 
18 High Low 14 to 28 23 
19 High Medium 18 to 48 35 
20 High High 16 to 22 20 
21 Very High Zero 5 to 10 9 
22 Very High Low 9 to 17 15 
23 Very High Medium 9 to 24 18 
24 Very High High 2 to 3 3 
25 Very High Zero 5 to 8 7 
26 Very High Low 3 to 5 4 
27 Very High Medium 1 to 2 1 
28 Very High High 0 to 0 0 

 

To derive the maximum potential biomass density from values for given conditions (Have, 

COVH), first the truth-values of the IF-parts are computed. Figure 5.8 shows the fuzzy 

membership function used for Have and includes what the imprecise expressions “Very 

low” or “High”, mean numerically. The information that is used to describe change in 

potential reed population distribution has linguistic variables such as “Very Low” Have 

which is between 0.01 and 0.4 or “High” Have  which is between 0.6 and 1.0.  
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Figure 5.8 Membership functions for Average Yearly Water Flow Depth 

The model applies variable membership functions as values for COVH as Have increases. 

The membership function for COVH therefore changes to specify new values for the 

linguistic variables of “Zero”, “Low”, “Medium” and “Large” appropriate to Have as for 

example shown in Figure 5.9 and Figure 5.10. 

 

 

 

 

Figure 5.9 Membership function for flow variability (COVH) for Have = “Very High” 

 

 

 

 

Figure 5.10 Membership function for flow variability (COVH) for Have = “Very Low” 

The result for each rule is therefore a DOT between 0 and 1, which is obtained for each of 

the applicable rules.  

Flow variability

0

1

0 5 10 15 20 25 30 35 40
Coefficient of variation (%)

D
eg

re
e 

of
 tr

ut
h

Zero
Low 
Meduim
High

Flow variability

0

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Coefficient of variation (%)

D
eg

re
e 

of
 tr

ut
h

Zero
Low 
Meduim
High

Average monthly water flow depth 

0

1

0 0.2 0.4 0.6 0.8 1 1.2
H ave  (m)

D
eg

re
e 

of
 tr

ut
h Very Low

Low 
Average

High
Very High



 

 97 

5.3.5 Model Output 

In order to show a typical output from the reach scale reed model at a given cross-section 

in the river, the following inputs for monthly water flow depths in Table 5.4 were used as 

an example. The model uses the Have and COVH obtained from these data to determine the 

percentage of the maximum biomass density that can possibly grow at a given elevation.  

Table 5.4 Monthly flow depths at a point within the reach and associated Yearly 

Average and Covariance 

Month 
z (m) 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Have COVH 

0 1.8 1.7 1.6 1.4 1.3 1.3 1.4 1.6 1.6 1.7 1.8 1.8 1.58 12 
1.0 0.8 0.7 0.6 0.4 0.3 0.3 0.4 0.6 0.6 0.7 0.8 0.8 0.58 33 

The monthly water flow depths are measured from the bottom of the river bed at z = 0 

which gives Have = 0.58 m and COVH = 33 % at elevation z = 1 m above bed. The 

applicable membership for Have = 0.58 m is shown in Figure 5.11. 

For Low yearly flow depths a DOT = 0.08 is obtained and for Average yearly flow depths 

the DOT = 0.92. Figure 5.11 shows the membership function for Flow variability 

interpolated linearly according COVH and the rules shown in Table 5.3. The minimum, 

maximum and peak values for the membership of each conclusion to the applicable rules 

in Table 5.3 are obtained by linear interpolation using Have and the data in Table 5.2. 

The rules in Table 5.3 show that for Low yearly flow depth and Low flow variability Rule 

10 applies and for Low yearly flow depth and Medium flow variability Rule 11 applies. 

The range of the applicable membership of flow variability for Rule 10 starts at COVH = 0 

to COVH = 36.9 with DOT = 1 at COVH = 18.5. COVH for DOT = 1 are determined from 

linearly interpolating the values from data lines 10 and 14 in Table 5.2 based on Have lying 

between 0.4 m and 0.6 m. Similarly, the membership range is obtained from data lines 9, 

13, 11 and 15. Figure 5.12 shows that for Low flow variability a DOT = 0.24 is obtained 

and for Medium flow variability the DOT = 0.76. Rules 14 and 15 apply in the same way 

for Average yearly flow depth.  
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Figure 5.11 Membership function for Average yearly water flow depth. The DOTs 

for Have = 0.58 m are indicated by the dashed line 

 

 

 

Figure 5.12 Membership function for Flow variability associated with Have = 0.58 m.  

The DOTs for COVH of 33 % are indicated by the dashed line 

COVH = 33 % at elevation above bed z = 1 m gives, for Average yearly flow depth, a 

DOT = 0.16 for flow variability being Low and a DOT = 0.84 for flow variability being 

Medium. Figure 5.13 shows the membership function for the % of maximum biomass 

which is the conclusion to the applicable rules.  

Rule 10 provides a minimum DOT of 0.08 and a membership range of % of maximum 

biomass ranging between 54.1 and 103.9 with DOT = 1 at 81.9.  The values are obtained 

from data lines 9, 13, 10, 14, 11 and 15. Rule 11 also gives a minimum DOT of 0.08 where 

Rules 14 and 15 gives minimum DOTs of 24 and 76 respectively. Defuzzification of these 

values gives Reed biomass of 66.7 % of the Maximum Reed biomass as shown in Figure 

5.14. 

Figure 5.14 illustrates a typical output from the reach scale reed model at 0.25 m intervals 

up along the river bank. The dataset provided a maximum potential biomass of 400 gDWT 

which gives a maximum biomass of 268 gDWT allowed to grow at z = 1 m above the river 

bed. 
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Figure 5.13 Membership function for % Maximum reed biomass associated with 

Have = 0.58 m and COVH = 33 % 

 

 

 

 

 

 

 

 

Figure 5.14 Typical model output providing the vertical distribution of percentage of 

the maximum Phragmites biomass density along the river bank. In the example 

above, a value of 66.7 % of the maximum possible biomass obtained at elevation 

above river bed z = 1 m 

River bank 
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5.4 Channel-type scale water flow  

The water flow model at the channel-type scale provides average flow depth and the 

magnitude and direction of velocities in two dimensions (2-D). The model drives the 

sediment model, which in turn determines the distribution and flow of sediment 

accordingly. The model employs 2-D Saint-Venant equations and accounts for the 

resistance to flow specific to the channel-type scale.  

5.4.1 2-D Saint-Venant equations 

(5.44) 

(5.45) 

 
(5.46) 

where H is the height of the water surface, U and V is the depth average velocities in the x 

and y directions. The friction terms, τxx, τxy, τyy, Sfx and Sfy are described below. 

The Saint-Venant equations in the form of classical finite differences equations are solved 

using the MacCormack integration scheme. This method ensures second order precision in 

both space and time. It is written for a staggered grid, ensuring a resolution that is suited to 

mass and momentum conservation. The MacCormack integration scheme for 2-D water 

flow simulation on staggered mesh is described below.  

5.4.2 Bed friction modelling 

The hydraulic head losses due to bed friction, Sfx and Sfy, are expressed as energy slope 

components in the x and y directions. The friction slope terms depend on the bed shear 

stresses which are assumed to be related to the magnitude and direction of the depth 

averaged velocity. In the x direction, for example: 

(5.47) 
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where τbx is the bed shear stress in the x direction and cs is the nondimensional Chézy 

coefficient. cs is related to the effective roughness height ke of the boundary and the depth 

of flow d (Steffler and Blackburn, 2002) using:  

           (5.48) 

ke is dependent on grain size and bed-form size which is obtained from models at the 

geomorphological-unit scale. The formulations used to determine ke are described in 

section 6.3.2. 

5.4.3 Turbulent shear stress modelling 

Depth-averaged transverse turbulent shear stresses are modelled with a Boussinesq type 

eddy viscosity formulation. For the depth-averaged shear stresses, the Boussinesq 

assumption is expressed by the following equation: 

          (5.49) 

 

(5.50) 

 

          (5.51) 

where υt is the eddy viscosity coefficient. The turbulent kinetic energy k is estimated 

through the transport equation: 

k = cd / cu (vt / ld)        (5.52) 

where ld  is the turbulence length-scale. ld is assumed to be proportional to the water depth 

d: 

ld = 0.1 d         (5.53) 

where cu = 0.09 and cd = 0.17 are constants (Nadaoka and Yagi, 1998).  
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The eddy viscosity coefficient νt is assumed to be composed of three components: a 

constant, a bed shear generated term, and a transverse shear generated term. 

          (5.54) 

where ε1, ε2 and ε3 are user-definable coefficients. 

The default value for ε1 is 0. This coefficient is used to stabilize the solution for very 

shallow flows when the second term in equation (5.54) may not adequately describe νt for 

the flow. The default value for ε2 is 0.5 but values of 0.2 to 1.0 are reasonable. Since most 

river turbulence is generated by bed shear, this term is usually the most important. For 

deep flow, or flows with high transverse velocity gradients, transverse shear may be the 

dominant turbulence generation mechanism. When strong recirculation regions are 

important examples, ε3 becomes important. The third term is essentially a 2-D horizontal 

mixing length model. The mixing length is assumed to be proportional to the depth of 

flow. A typical value for ε3 is 0.1 (Steffler and Blackburn, 2002). 

5.4.5 The MacCormack Method for solving 2-D flow 

The spatial discretisation makes use of a staggered "marker-and-cell" (MAC) mesh 

(Harlow and Welsh, 1965). Figure 5.15 presents the MacCormack scheme for solving 2-D 

flow. The MAC mesh allows the velocities U and V to be defined for positions situated at a 

middle distance between the points where the bed level z are defined. These values zb are 

given for points located at the centre of squares formed by 4 points where the water-level 

value z is defined. This location enables an easy estimation of the bed level value at any 

point of interest (z, U, V), using a linear interpolation method. The MAC mesh provides a 

good coupling between the velocities and the water depth ensuring a very good mass and 

momentum conservation (Ferziger and Peric, 1996). The discretisation includes associated 

stability criterion and boundary conditions. 

In order to facilitate the programming, the fractional indices from Figure 5.15 are replaced 

by entire values. Additionally, the value of the viscosity, υt is defined at the same locations 

as the water level z. 
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Each equation described above is then discretised with a computational cell centred on the 

location where the value varying with the time is defined. The first order derivatives in the 

momentum equations are written using in alternation a forward and a backward difference 

operator, corresponding respectively to the predictor and the corrector steps of the 

MacCormack scheme. The first order derivatives in the continuity equation and the second 

order derivatives (diffusion terms) are written using centred difference operator. The value 

of a variable is interpolated from adjacent values (Bousmar, 2002). 

 

 

 

 

 

 

 
 

 

Figure 5.15 Staggered "MAC" mesh definition for 2-D shallow-water flow modelling 

Accordingly, the discretised continuity equation (5.44) writes at the node (i, j): 
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where HU
i,j  and HV

i,j stands for interpolated values of the water-depth at the definition 

points of U and V : 
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and where the temporal derivative               becomes           , as the bed level zb remains 

constant.  

The momentum equations (5.45) and (5.46) and the shear-stress equation (5.47) are 

discretised in a similar way. For the predictor step (forward difference operator), these 

equations write:  
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(5.59) 

where the values of Sfxi,j and Sfyi,j are estimated using equations (5.49), (5.50) and (5.51) 

with the velocity values (Ui,,j, Vm
i,,j) and (Um

i,j,Vi,j) respectively; 
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m

ji UUUUU      (5.60) 

          (5.61) 

          (5.62) 

HZ
i,j and HB

i,j stands for interpolated values of the water-depth at the definition points of z 

and zb: 

(5.63) 

(5.64) 

The discretisation of the turbulent kinetic-energy transport equation (5.54) is obtained 

similarly centred on the z point: 
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(5.65) 

The 2-D MacCormack scheme employs the following condition (Yulistiyanto, 1997): 

 

(5.66) 

The no-slip condition is used to assign a zero velocity value at the wall and provides a 

fictitious node behind the wall. The value Uj=-1 at this fictitious node is obtained thanks to 

Taylor-series developments (Peyret and Taylor, 1983) that give 

(5.67) 

where Uwall = 0 is the velocity at the wall. 

5.5 Channel-type scale bar evolution  

5.5.1 Sediment routing 

The channel-type scale bar evolution model is a cellular automaton model which routes 

sediment based on numerical rules for the sediment storage states of upstream and 

downstream cells. A certain volume of cohesionless sediment is fed into the first row of 

cells representing the upstream end of the river. The amount of sediment fed into the 

model depends on the sediment inflow rate and the time step that is specified by the user. 

The sediment inflow rate is obtained from the reach scale sediment model described 

above. Sediment moves cell-by-cell according to sediment flow relationships between 

cells. Figure 5.16 shows the procedure for routing sediment. 
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The flow chart in Figure 5.16 shows the modelling procedure. The model requires water 

flow velocity, flow depth, height differences between upstream and downstream cells, 

sediment inflow, local slope and 2-D flow direction for each cell in the cellular grid. Each 

cell in the grid receives a sediment inflow starting upstream. The water flow velocity and 

depth are used to determine the potential sediment that can be stored within the cell or 

storage state Ss. The Ss for the cell together with the sediment inflow from the upstream 

cells and height differences between upstream and downstream cells are used to determine 

how much sediment would flow out of the specific cell. The out-flowing sediment is 

allocated to the downstream cells according to local slope. This is repeated for all the cells 

within the cellular grid. The procedure is repeated for the next time step and is carried out 

for the duration of the flood.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 Flow chart of the procedure for the sediment model at the channel-type 

scale 
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Iteration begins when sediment enters the upstream end of the cellular grid and ends when 

outflow has been calculated for the cells at the downstream end of the grid. There is no net 

loss or gain of sediment as sediment remains budgeted for during simulation. Sediment is 

routed along the flow direction within a computational cell. Figure 5.17 shows sediment 

routed in the direction of the flow moving sediment from upstream cells to three 

downstream neighbours.  

 
 

 

 

 

 

 

 

 

 

Figure 5.17 Movement of sediment through a cell in a rectangular gridded 

computational domain 

5.5.2 Sediment allocation according to local slope 

The amount of sediment that will flow from the upstream to a downstream cell depends on 

the fraction of the local slope between the upstream and downstream cell and the sum of 

the slopes of all the downstream cells to which sediment would flow 

(Murray and Paola, 1994). Downstream from a cell may be in any direction following the 

direction of water flow as simulated by the 2-D flow model described above.  

Direction of flow 
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           (5.68)  

SOi is the sediment flow to a particular downstream cell. Outflow is the total sediment that 

flows from an upstream cell. mi, mi+1 and mi+2 are the weighted factors indicating relative 

slope values. When considering the three downstream cells to which sediment may 

possibly flow, a lower downstream cell will have a larger fraction of the total outflow from 

the upstream cell allocated to it.  

In rivers, water can flow uphill when the surface slope is positive and there is enough 

momentum (Murray and Paola, 1994). This means that if one or more of the slopes are 

negative, flow of sediment may still occur. Because slopes can be negative, sediment 

moving towards upstream cells is achieved by adding the lowest negative slope to the other 

slopes, making the lowest slope equal to zero and other slopes positive. The sediment 

outflow for uphill flow is then allocated the same way as for when flow is simply 

downhill, i.e. according to the fraction that the slope to the downstream cell makes to the 

total of all the downstream cells. 

5.5.3 Sediment storage 

Sediment storage is ideal for modelling sediment organisation at the channel-type scale 

since sediment supply is often limited. Sediment flow is determined based on how much 

sediment can potentially be stored.  

Sediment Continuity states that the input from upstream and the sediment transport Qs can 

be used to solve the change in storage ΔStorage: 

(5.69) 

James et al. (2001b) introduced an alternative modelling method that applies sediment 

continuity as an inverted equation: 

          (5.70) 

This form of the equation requires sediment input from upstream and a calculated storage 

to determine the amount of outflow. It allows for lower resolution modelling to be used to 

make predictions at much coarser scales.  
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The volume of sediment that can potentially be stored in a cell or ΔStorage is related to the 

flow depth and shear velocity in that cell. It is therefore possible to determine the storage 

state Ss after a given time, based on the amount of sediment removed from a cell. The 

sediment inflow and Ss are used to determine the full possible outflow to a downstream cell 

as shown in Figure 5.18.  

 

 

 

 

Figure 5.18 Sediment outflow determined from the Storage State Ss and the sediment 

inflow for a given cell 

The Ss is the elevation difference between the upstream and the downstream cells 

disregarding sediment flowing in and after sediment has flowed out. The Ss is determined 

from the change in cell volume after sediment is removed according to a bed-load transport 

equation to arrive at the lowest possible elevation of the cell after a time step Δt used by the 

cellular model.  

          (5.71) 

where qb is the bed-load transport in m2/s and Δx are the cell length and width in metres. It 

is assumed the effect of the energy slope remains unchanged during Δt. 

qb is determined by the Bagnold equation (Bagnold, 1980). The Bagnold equation applies 

since it represents a statement of the bulk displacement of sediment by the shearing action 

of the water. The Bagnold equation is described below. The formulation simplifies to such 

a degree the actual physics of the grain movements under the influence of water flow that 

it can be regarded as no more than a scale correlation.  
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5.5.4 Bagnold’s empirical bed-load formula 

The Bagnold empirical bed-load formula is used to predict the amount of sediment that 

will be transported within a computational cell described in section 5.5.1. His bedload 

formulation reads as follows (Martin and Church, 2000): 

          (5.72) 

where  

(5.73) 

wherein ib is specific bedload transport rate in kg/m/s, s is the specific gravity of sediment, 

ω = ρgdSU = τU is specific stream power, ρ is fluid density, g is the acceleration of 

gravity, d is flow depth, Se is the energy gradient of the flow, U is the mean velocity of the 

flow, τ is shear stress exerted by the fluid at the bed. ωo is critical specific stream power, D 

is characteristic particle size denoted in mixtures by D50.  

          (5.74) 

(τ*)c is the Shields entrainment number. The threshold stream power for bedload transport, 

ωo depends on depth and grain size. The value of ωo critically affects the transport rate as it 

dictates the lowest value of stream power at which transport is detected. 

The volumetric bedload transport rate is determined as: 

          (5.75) 

where p is the porosity of the bed material. 

5.5.5 Angle of repose 

After a model iteration, the angle of repose rule is implemented (Nield et al, 2002) in order 

to simulate bank erosion and not allowing unnatural steep slopes to develop. The angle of 

repose is the critical angle at which sediment moves down hill. The model allows 

avalanches to occur so that height differences between cells are lower than the angle of 

repose stipulates. Each cell collapses, allowing sediment to move to neighbouring cells and 
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slopes between neighbouring cells to be at the angle of repose. This angle of repose rule is 

not implemented within cells occupied by reeds, in order to simulate cohesion provided by 

roots. van Rijn (1993) provided angle of repose values for stable channels as seen in 

Table 5.5.  

Table 5.5 Angle of repose for various sediment sizes (van Rijn, 1993) 

Sediment size (D) 
(mm) 

Angle of 
repose 

(degrees) 
< 1 30-35 
5 32-37 
10 35-40 
50 37-42 

> 100 40-45 

5.6 Channel-type scale reed expansion  

5.6.1 Model overview 

The reed model at the channel-type scale combines both the top-down effect of the flow 

regime as well as the bottom-up effect of reed growth determined by the climate. It is a 

cellular automaton model that predicts expansion of reeds according to their propensity to 

spread primarily by growth of surface runners and underground rhizomes. Expansion 

occurs through interactions based on biomass density of reeds among cells within a 

cellular grid. The model attempts to deal with Phragmites growth as characterised by 

(Philips and Field, 2005): 

1) Initial establishment 

2) Unrestricted development 

3) Restricted development by water or other patches of Phragmites 

Expansion accords with a specific reed front advancement rate. Reed front advancement 

rates were obtained from a Phragmites patch study done by 

Avarez-Cobelas and Cirujano (2007). They gave reed front advancement rates as high as 9 

m/month for the summer to as low as 0.3 m/month in winter. The time step is determined 

from the Reed front advancement rate and the cell length Δt.  
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Δt = Δx/(Reed front advancement rate)     (5.76) 

Reed expansion depends on the growth rate. If the threshold biomass density is reached 

within Δt, the associated reed front advancement rate will be achieved. Hence, reeds would 

expand to neighbouring cells at every time step should the reeds grow denser than the reed 

density threshold within that time step.  

The reed model at the geomorphological-unit scale provides the growth rate specific to the 

time of year. The growth rate is specific to a cell because the onset of reed growth for each 

cell may be different. Cells may therefore be at different stages of the growth cycle 

affecting their expansion rate. In addition to the growth cycle, the air temperatures, 

radiation for photosynthesis and sun angle for a particular month of the year give rise to 

variable growth rates and thus variable expansion rates.  

The effect that water level fluctuations in the river have on reed expansion is provided by 

the reach scale reed model, giving the percentage of maximum reed density for a particular 

cell elevation. The maximum reed density is specified by the user. By limiting the biomass 

density within a cell, the threshold biomass density may not be reached and so reed 

expansion halts. 

5.6.2 Model outputs 

Particular cell elevations provided in a sediment bar simulation at the channel-type scale 

provides a particular arrangement of maximum possible biomass density. For each of the 

5 by 5 m cells, a maximum possible biomass density is obtained using the result of the 

reach scale reed model. The outputs of the reach scale model provided in Figure 5.14 

multiplied by a maximum reed biomass density of 6 kg/m2 dry weight were used for 

determining the maximum possible densities shown in Figure 5.20. Reed expansion was 

simulated according to the maximum possible densities and the elevation above the river 

resulting from the sediment distribution given in Figure 5.19.  

Figure 5.21 shows a sequence of simulated reed expansion given for the maximum reed 

biomass allowed for the cells shown in Figure 5.20. The top down constraints from the 

reach scale reed model are also evident in confining reed expansion. Depending on the 
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time of year and when growth within a cell started, the reed biomass within that cell will 

grow at a rate provided by the geomorphological-unit scale reed model. The modelling in 

this study used the temperature values shown in Table 5.6 as indication of summer and 

winter months. 

 

 

 

 

 

 

 

Figure 5.19 Sediment distribution provided by a simulation of the sediment model at 

the channel-type scale 

Table 5.6 Monthly average daily temperature 

 

 

 

 

 

 

 

 

 

 

Month 
Daily Average 
Temperature T 

(C˚) 
1 4 
2 8 
3 10 
4 14 
5 18 
6 20 
7 22 
8 20 
9 18 
10 16 
11 11 
12 6 
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Irradiance, sun angle and average daily temperature specified to change every month 

therefore affects the reed growth rate at a particular time of year.  These values are 

described in further detail in section 5.9.3, because they are specific to the reed growth 

model at the geomorphological-unit scale. Figure 5.21 shows that biomass density and 

biomass expansion decrease during the winter months because irradiance, sun angle and 

average daily temperature are lower. 

 

 

 

 

 

 

 

 

 

Figure 5.20 Maximum potential biomass for given cell elevations 

The growth events also occur at different times of the year, resulting in an even more 

varied growth rate. This growth rate determines how fast the threshold biomass density of 

2.6 kg/m2 dry weight within a cell is reached and therefore how fast expansion occurs. 

Figure 5.21 illustrates this, with reed expansion decreasing during winter months at the end 

of the year. Once this threshold density is reached, rhizome biomass is transferred to 

neighbouring cells with smaller biomass densities. 
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Figure 5.21 Typical reed expansion at the channel-type scale. Rapid growth of reeds 

during summer months increases biomass density quickly, allowing expansion, which 

slows down during winter months when reed growth decreases. Expansion occurs 

after a biomass density of 2.6 kg/m2 dry weight is reached 
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The model only simulates expansion of reeds assuming no occurrences of reed removal 

through mortality, washout and being covered with sediment. These can be implemented 

by the user. The modelling in this study does not require a mechanism for removing 

biomass in cells since the biomass will start as stripped out and it will be assumed that no 

extreme flood, which may remove reed biomass from the reach, will occur during the 

period of simulation.  

5.7 Geomorphological-unit scale water flow  

5.7.1 Model overview 

The geomorphological-unit scale water flow model uses boundary conditions provided in 

terms of flow velocities and depths by the 2-D water model at the channel-type scale to 

interpolate flow velocities and depths at a 0.25 m resolution.  

Spatial variability of flow at small scales produces non-linear changes to resistance to flow 

emerging at larger scales (Bathurst, 1982). It is therefore necessary to predict the water 

flow distribution at the geomorphological-unit scale. State-of-the-art models of bed-forms 

and skin friction require detailed flow modelling to make predictions 

(Coleman et al, 2006), since roughness depends on both the geometry of bed-forms and 

skin friction. The bed-forms and skin friction modelling used in this study do not require 

detailed three-dimensional (3-D) water flow modelling such as that described in section 

4.2.1. Bed-form and skin friction is estimated from larger scale flow characteristics, which 

for determining river evolution over decadal time scales is acceptable.  

A steady state was therefore assumed to produce simple finite difference equations that are 

solved iteratively, using the residual method. The Jacobi residual method was used to 

interpolate intermediate values for the flow distribution. These values are used to 

determine the bed-form for each 0.25 by 0.25 m cell at the geomorphological-unit scale 

(Section 5.8). The method is described below. 

The water flow distribution determined using this method is a first step toward reliable 

simulation for water flow at the geomorphological-unit scale. The model has the ability to 
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deal with obstacles such as large boulders or a tree by treating the obstacle as a boundary 

and specifying boundary flow characteristics. 

5.7.2 The residual method  

Two-dimensional steady-state flow is solved by assuming that the flow characteristics 

between adjacent cells vary linearly.  

 

 
 

 
 

 

 

  

 

 

Figure 5.22 Volume element of a general interior cell i,j for two-dimensional flow in 

rectangular coordinates 

The flow characteristics at an interior cell then simplify to:  

          (5.77) 

Initial approximate values are given to Xi,j. At each stage in order to make further iteration, 

each Xi,j is updated. Updating proceeds sequentially. The updated value X’
i,j is based on the 

previous iterate, where X denotes flow depth, d, velocities, U and, V in the x and y 

directions. The model can be extended to three-dimensional flow in such a way that the 

interior nodes have six neighbouring nodes instead of four and introducing velocity W in 
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the z direction. It would also require boundary conditions specified at the water surface and 

bed. 

5.8 Geomorphological-unit scale bed-form development 

The bed-form geometry is determined for each 0.25 by 0.25 m cell at the 

geomorphological-unit scale from the shear stress obtained from the water flow model 

described above. Coleman et al. (2005) formulated a power law relating bed-form 

geometry (lengths or heights) to time, assuming that flow is sub-critical.   

           

          (5.78) 

The relation describes ripple or dune growth with time to approach equilibrium size at 

equilibrium time te with P denoting ripple or dune length Lb or height Hb. i refers to initial 

state of the bed-form. The exponent γ for bed-form length:   

          (5.79) 

and bed-form height:  

          (5.80) 

where 

           (5.81) 

D is characteristic particle size denoted in mixtures by the median grain size D50. The 

initial length is given by Coleman and Melville (1996): 

          (5.82) 

and initial bed-form height is determined from (Engelund and Hansen, 1967): 

          (5.83) 
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dLbe 33.7=

f represents the flow resistance due to the sediment grains and is determined by the 

Colebrook-White formula for turbulent flow (Chanson, 1999) expressed by the following 

equation. 

(5.84) 

 

Ripples:          (5.85) 

 

Dunes:          (5.86) 

where equilibrium bed-form height, Hbe  

          (5.87) 

 

and equilibrium bed-form length, Lbe 

          (5.88) 

where  

          (5.89) 

           (5.90) 

           (5.91) 

and 

          (5.92) 

(Chanson, 1999).  

(τ*)c is the Shields entrainment number determined by the following relations 

(Cao et al, 2006): 
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          (5.93) 

For  Rs < 6.61     (5.94) 

For  Rs > 282.84    (5.95) 

For  6.61 > Rs > 282.84  (5.96) 

 

5.9 Geomorphological-unit scale reed growth  

5.9.1 Model overview 

The reed model at the geomorphological-unit scale provides reed biomass density to the 

channel-type scale reed model, which is used to simulate reed cover expansion. This model 

also provides the flow resistance attributes (stem spacing and diameter), which is 

correlated to the shoot biomass determined in the model. The flow resistance formulations 

are described in section 6.3.2. 

The model of Asaeda and Karunaratne (2000) was selected to model the growth of a 

monospecific stand of P. Australis. Biomass of shoots, inflorescence, roots, old rhizomes 

and new rhizomes were described using finite differential equations:  
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          (5.100) 

          (5.101) 

where Ba and ba are biomasses in gram ash-free dry weight with a representing subscripts 

sht, rhi, n, rt, and p which are shoots, rhizomes, newly-formed rhizomes, roots and 

panicles, respectively. kfrac and pfrac are the fractions of contribution of the current 

photosynthesis and accumulated shoot dry matter to the formation of panicles. Rhif is the 

mobilization of stored material from rhizome to roots and shoots during the initial stage of 

growth. xfrac is the fraction of Rhif allocated for root growth and the rest for shoots. yfrac is 

the fraction of shoot assimilates for old rhizomes.  

The factor fa is made 1 when a growth event occurs or 0 when the event ends. For 

example, frhi = 1 when rhizomes dynamics occur. The occurrence of growth events and 

parameter values are given in Figure 5.23 and Table 5.7 respectively. The equations were 

solved using the Fourth order Runge-Kutta integration. 

 

 

 

 

 

 

Figure 5.23 Growth events and average air temperature used as inputs to the reed 

growth model  
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Table 5.7 Parameters used in the reed growth model at geomorphological-unit scale 

(Asaeda and Karunaratne, 2000) 

Parameter Value Units 
Maximum specific growth rate of roots at 20C° (gm) 0.007 gg-1 per day 
Specific respiration rate of roots at 20C° (Rsht) 0.007 gg-1 per day 
Specific respiration rate of shoots at 20C° (Rrt) 0.002 gg-1 per day 
Specific respiration rate of old rhizomes at 20C° (Rrhi) 0.002 gg-1 per day 
Specific respiration rate of new rhizomes at 20C° (Rn) 0.003 gg-1 per day 
Specific respiration rate of panicles at 20C° (Rp) 0.003 gg-1 per day 
Specific mortality rate of shoots from tb-tp at 20C° (γsht) 0.0025 gg-1 per day 
Specific mortality rate of shoots from tp-ts at 20C° (γsht) 0.003 gg-1 per day 
Specific mortality rate of shoots after ts at 20C° (γsht) 0.1 gg-1 per day 
Specific mortality rate of panicles from tp-ts at 20C° (γp) 0.003 gg-1 per day 
Specific mortality rate of panicles after ts at 20C° (γp) 0.04 gg-1 per day 
Specific mortality rate of roots at 20C° (γrt) 0.0002 gg-1 per day 
Specific mortality rate of old rhizomes at 20C° (γrhi) 0.0002 gg-1 per day 
Specific mortality rate of new rhizomes at 20C° (γn) 0.0002 gg-1 per day 
Fraction of current photosynthesis translocation to below ground structures (εph) 0.42  
Fraction of shoot assimilates translocation to below ground structures (εsht) 0.026  
Fraction of shoot assimilates translocation for old rhizomes (yfrac) 0.6  
Fraction of shoot assimilates translocation for inflorescence (pfrac) 0.0003  
Fraction fo current photosynthesis translocation to inflorescence (kfrac) 0.025  
Fraction of shoot biomass for elongation (qfrac) 0.41  
Fraction mobilized from rhizomes for root formation (xfrac) 0.1  

Maximum specific net daily photosynthesis rate at 20C° (Pm) 0.33 
mg CO2 gm-2 per 
day 

Half saturation constant of age for shoot photosynthesis (Kage) 125 d 

Half saturation constant of PAR for shoot photosynthesis (KPAR) 1E+07 
micmol m-2 per 
day 

Half saturation constant of age for root growth (Krt) 50 d 
Temperature constant (θ) 1.09  
Conversion constant of carbon dioxide to ash-free dry weight (kco) 0.65 gg-1 CO2 

 

5.9.2 Model closures 

Model parameters are satisfied by the following equations 

(Asaeda and Karunaratne, 2000): 

          (5.102) 

where αrhi is the specific transfer rate of rhizome biomass and T is daily average 

temperature in C˚ shown in Figure 5.23. 

( )Rhif Brhi
T

rhi -= α 20
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          (5.103) 

The supply of photosynthesized material for root growth Grt is given by 

          (5.104) 

where gm is the maximum specific growth rate of roots at 20 C ;̊ Krt is the half saturation 

coefficient of root age, and Agert is the age of roots in days from the start of root growth. 

          (5.105) 

          (5.106) 

A constant shoot elongation rate was assumed, even though it increases from the start of 

the growing season until the end of the rapid growth period and then declines. The shoot 

elongation per day in metres is given by 

          (5.107) 

where q is the fraction of biomass contributed to shoot elongation from each layer. 

Net plant photosynthesis was assumed to be restricted by irradiance, mean air temperature 

and the age of assimilatory apparatus. Nutrient stress was ignored. The net daily plant 

photosynthesis (gm−2 per day) is given by a form of the Michaelis–Menten equation: 

          (5.108) 

where Phsht is the photosynthesis of shoots (gm−2 per day) and Pm is the maximum specific 

net daily photosynthesis rate of the plant top at 20˚C in the absence of light and nutrient 

limitations. kco is the conversion constant of carbon dioxide to ash-free dry weight. IPAR is 

the photosynthetically active radiation. Agesht is the age of shoots from the start of growth, 

and KPAR and KAGE are the half saturation coefficients of Photosynthetically Active 

Radiation (PAR) and age, respectively. IPAR is the PAR in the open and IPAR is the PAR in 

the stand, i.e. 

          (5.109) 
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where kli is the light extinction coefficient and LAI is the Leaf Area Index. 

 IPAR = 0.45(Global radiation)      (5.110) 

The following relationship between leaf biomass Bleaf  and shoot biomass Bshto were used to 

calculate the LAI in the plant stand. 

Bleaf = 0.25Bshto        (5.111) 

where Bleaf  is the leaf biomass. 

(5.112) 

The relationship between the kli and the sun elevation, θ was obtained from 

Karunaratne et al. (2003): 

kli = -0.0008 θ 2 + 0.0706 θ  -  0.4       (5.113) 

The inputs for sun angle θ and Global radiation used in the model are provided in 

Table 5.8. 

Table 5.8 Monthly global radiation and sun angle inputs to the reed growth model 

 

 

 

 

 

 

 

Month Global radiation 
(micromol /m2 per day) 

Sun Angle θ 
(degrees) 

January 106398000 55 
February 92460000 58 
March 73416000 61 
April 53590000 64 
May 38042000 67 
June 30130000 70 
July 36248000 67 

August 45816000 64 
September 63526000 61 

October 80638000 58 
November 96232000 55 
December 106398000 52 

021013550 .. = leafBLAI
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5.9.3 Model Output 

In the beginning of the growth year, each 5 by 5 m cell at the channel-type scale occupied 

by reeds has a certain amount of Root and Rhizome Biomass. The Rhizome Biomass 

allows growth of the other biomass variables of Root, Newly formed rhizomes, Shoot and 

Panicle according to the individual growth events. The Shoot Biomass is especially 

important for the flow modelling in this study, since it gives an indication of resistance to 

flow that the reeds will have.  

Figure 5.24 and Figure 5.25 show a typical output for reed biomass throughout the year for 

a particular cell. It is assumed that no expansion occurs and therefore no exchanges of 

Rhizome Biomass to and from neighbouring cells. The reeds in this cell are growing at 

100 % of their maximum potential biomass and are not constrained in terms of the flow 

regime. The initial rhizome biomass value impacts on reed growth, as indicated by the 

difference in biomass in Figure 5.24 and Figure 5.25. 

 

 

  

 

 

 

 

 

 

Figure 5.24 Typical model output showing seasonal variation of Phragmites biomass 

(ash free dry weight) of shoots, inflorescence, roots, old rhizomes and new rhizomes 
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Figure 5.25 Geomorphological-unit scale reed model output with a change in initial 

rhizome biomass 

5.10 Conclusion 

Models for water flow, sediment and reed processes at each organisational level were 

developed to represent the most important aspects of rivers required for decadal prediction 

of the river state. At the reach scale, bed-elevation is simulated using sediment continuity 

according to water flow determined by a 1-D flow model and associated flow resistance. A 

fuzzy-rule-based model predicts the reed population distribution at the same scale. The 

sediment model at this scale is driven by flood flows which is responsible for the most 

significant geomorphological changes to the river channel, whereas the reed model is 

affected by the flow regime. At the channel-type scale a cellular automata model for both 

sediment routing and reed expansion is used. This sediment model simulates bar dynamics 

driven by a 2-D flow model as affected by the dynamic state of reed patches described by 

the reed expansion model. The changing reed state influences sediment behaviour in each 

episodic sediment model application through its effect on flow resistance. At the 
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geomorphological-unit scale, a sediment model predicts the geometry of bed-forms 

through a statistical approach but accounts for dynamic behaviour using a power law 

describing the bed-form evolution with respect to time. The water flow model at this scale 

interpolates the water flow distribution obtained by the flow model at the channel-type 

scale to produce a flow distribution which is used to drive bed-form development also at 

the geomorphological-unit scale. The reed model at the geomorphological-unit scale 

describes the growth of reed biomass using finite difference equations. 
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Chapter 2 shows that a river system can be divided up into parts in order to better deal with 

its complexity and non-linearity. The parts reflect different river processes and the scales at 

which these processes operate. These parts interact and have to be integrated to provide 

feedback within a hierarchical modelling structure. 

Modelling integration entails specifying the location for feedback. Process models 

simulating sediment, water and vegetation dynamics within a specific organisational level 

can be coupled since they share the same spatial scale. Models of the same process, 

producing patterns at various organisational levels, are linked to share model information 

across organisational levels.  

This chapter gives examples of coupled models of interacting processes to provide 

feedback at the same scale, and integration of the same processes to provide feedback 

across scales. The latter is more difficult since the integration involves parameterisation 

and the imposing of boundary conditions to allow congruency of the particular river 

process across scales.  

6.1 Process coupling 

Process interactions (between sediment, water and vegetation) within the same spatial 

extent (physical domain) can be achieved by selecting a particular spatial grain.  

Dollar et al. (2007) used a flow chain model to represent river processes at a particular 

spatial scale. Note that their flow chain model concept was originally intended to cross 

organisational levels. The flow chain model in Figure 6.1 was adapted to represent the 

effect that sediment and vegetation dynamics have on river geomorphology within a 

specific organisational level. The three interacting sub-systems of vegetation, water flow 

Chapter 6 –  Organisational  model l ing 

integration 
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and sediment are linked at an appropriate organisational level, to enable solution of the 

problem of vegetation affecting sediment dynamics, which produces changes in river form. 

 

 

 

 

 

 

 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1 A flow chain model, representing the integration of models providing 

output associated with a particular organisational level. The models are linked to 

provide feedback between sediment, water flow and vegetation processes 

(after Dollar et al, 2007) 

The connection between models for river flow, sediment organisation and riverine 

vegetation is made for each organisational level. All of these models in Figure 6.1 have the 

same spatial extent, representing processes at the appropriate organisational level. In order 
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to predict changes in river form when affected by vegetation, the sediment dynamics 

driven by water flow has to be incorporated. The sediment model, therefore, has to 

produce sediment organisation patterns resulting from river flow at the same spatial scales, 

where patterns for vegetation dynamics also affect these sediment patterns.  

Figure 6.1 indicates that riparian vegetation dynamics is a responder to the weather, the 

flow regime and river form. Water flow dynamics is a responder to vegetated channel form 

driven by discharge. Sediment dynamics responds to river form and is driven by the flow 

distribution. An example is the evolution of a sediment bar in a river at the channel-type 

scale. The bar may form the substrate for reeds to grow on. The reeds slow down water 

flow velocities on and around it. This creates an opportunity for sediment to be deposited 

on and around the bar, allowing the bar to grow in order to create more substrate on which 

the reeds can become established. A further increase in reeds on that bar may further 

increase the size of the bar. However, feedback from the water flow may result as an 

increase in the bar size decreases the flow area, which may possibly increase flow strength, 

which may in turn erode the bar. The bar will therefore self-organise to reach a constant 

size under constant flow conditions.  

Hierarchical modelling enables models for the interacting processes of water, sediment and 

vegetation to allow feedback between them at various points in time. The temporal scales 

between the models of vegetation and sediment dynamics can differ considerably. The use 

of asynchronous time steps allows the models to simulate important processes at time 

scales appropriate to those processes and not at some predetermined arbitrary time scale. 

However, the prerequisite for including the effect of processes that are described at 

dissimilar temporal scales is that they can provide feedback at the same spatial scale 

(Bendix, 1994).  

Baptist and Mosselman (2002) coupled processes of sediment, water and vegetation to 

predict the medium- to long-term developments of geomorphology, vegetation and fish 

habitats for secondary channels in the Rhine River. In this study, state-of-the-art models for 

2-D flow model and morphodynamics were used in combination with a rule-based 

vegetation model that is coupled to the spatial output to predict vegetation types, 
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succession and flow resistance. Coupling has been made between the changing flow 

resistance of vegetation and its effects on the hydrodynamics and morphodynamics. The 

hydrodynamics and morphodynamics are computed using a 2-D application of the 

numerical model Delft3D. Delft3D is a two-dimensional (2-D) and three-dimensional 

(3-D) flow and sediment transport model for tidal and riverine problems. The changing 

flow resistance is fed back to Delft3D, to account for the changes in vegetation 

composition (Baptist and Mosselman, 2002). 

In the model, the flow resistance of vegetation is defined in terms of a Nikuradse 

equivalent roughness height ke in metres. The flow resistance of each vegetation type in a 

grid cell is calculated by the weighted average of the roughness height with its percentage 

cover as weights. The succession of vegetation and its resulting change in flow resistance 

results in a change in flow velocities for a given discharge. The model in turn predicts 

changes in river geomorphology from the changing flow velocities in the river. The model 

results showed a gradual increase of forest cover bringing about increased roughness and 

producing aggradation in the river (Baptist et al, 2002).  

Chen (2004) developed a cellular automata model that simulates algal blooms. Algal 

blooming is affected by hydrodynamic, physical, chemical and biological processes and 

species physiology. These factors are input into a fuzzy logic model using ecological rules 

for interactions between cells. The fuzzy logic model predicts algal biomass on the basis of 

the calculated nutrient concentrations, using the linked water quality and hydrodynamic 

modules of Delft3-WAQ. Delft3-WAQ is used for tidal and coastal flow and water quality 

prediction and determines the fate of nitrogen and phosphorus concentrations within a 

cellular grid. The combined CA and fuzzy logic model determines algal growth and spread 

by including nutrient processes and uptake as assimilated by algae (Chen, 2004).  

6.2 Trans-scale linkage  

Models representing behaviour of a process at multiple organisational levels can share 

model outputs by linking them across scales. This trans-scale linkage allows incorporation 

of behaviour for the same process at different organisational levels.  
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The multiblock algorithm described by Wang and Weiming (2004) resembles model 

coupling using such principles. The multiblock method divides the solution domain into 

several sub-domains, or blocks, and generates a structured mesh for each individual sub-

domain independently. The governing equations are solved block by block. During the 

solution process, the information updated at each time step or iteration step is transferred 

between the blocks. The interface treatment and information exchange between blocks are 

important and affect the solution accuracy and computation efficiency. The multiblock 

algorithm is often used with parallel computation (Wang and Weiming, 2004). Trans-scale 

linkage refers to this parallel computation using the multiblock algorithm. It allows model 

parameters to be continuously updated, using information from higher and lower 

organisational level blocks.  

Figure 6.2 represents trans-scale linkage of models at various organisational levels. It 

requires links through parameters and boundary conditions that describe spatial 

phenomena of lower-level organisational models. This linkage is described in more detail 

in the following section. The number of arrows refers to the amount of spatial detail 

required for a particular organisational level i.e. the number of dimensions required for 

water flow modelling. Grain and extent for higher and lower organisational level models 

have to overlap to couple Lagrangian reference frameworks creating a new synthesis.  

Similarly, trans-scale linkage of biological systems is found in Micro-Macro Link theory. 

According to the Micro-Macro Link theory, behaviour at the individual level generates 

higher-level structures (bottom-up process), which feed back to the lower level (top-

down), reinforcing the producing behaviour either directly or indirectly (Conte et al, 2006). 

Vegetation is modelled on the same principles. Trans-scale integration of models for 

vegetation allows connecting of habitat units over space and time between organisational 

levels. For example, biomass growth according to the weather (lower organisational level) 

is determined within available habitat according to the river flow regime (higher 

organisational level) within the vegetation hierarchy. 
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Macro-reach scale 
Spatial extent - 10000m 
Spatial grain - 1000m 

Reach scale 
Spatial extent - 1000m 
Spatial grain - 100m 

Channel-type scale 
Spatial extent - 100m 
Spatial grain - 10m 

Geomorphological-unit scale 
Spatial extent - 10m 
Spatial grain - 1m 

Micro scale 
Spatial extent - 1m 
Spatial grain - 0.1m 
 
 
 

Figure 6.2 Representation of trans-scale linkage where information produced by 

models representing the same physical processes (sediment, water and vegetation) 

at various organisational levels is shared. The grain of the higher-level model 

forms the extent of the lower-level model 

Wang and Weiming, (2004) suggested coupling of one-dimensional (1-D), two-

dimensional (2-D) and three-dimensional (3-D) water and sediment models. Note that 

water and sediment models are coupled at the same scale but that 1-D, 2-D and 3-D 

models are linked across scales. Trans-scale linkage entails conserving the flow flux, 

momentum and energy as well as sediment flux, bed change and bed material 

gradation at interfaces between model subdomains. This approach can be used to apply 

1-D models and 2-D models to examine change over a whole domain, and then a 

physical model for a detailed study of local problems of critical importance. The 

computational models provide boundary conditions for the physical model 

(Wang and Weiming, 2004). 
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Wu and Vieira, (2002) integrated CCHE1D and the catchment models AGNPS and 

SWAT. This integrated catchment-channel modelling system includes three 

components: landscape analysis, catchment modelling and channel simulation. The 

landscape analysis program is used to extract the channel network and its 

corresponding sub-catchments based on the elevation data from a Digital Elevation 

Model. The catchment models compute daily runoff and sediment yield for each sub-

catchment. The channel model simulates the flow and sediment routing in the channel 

network using the boundary conditions provided by the catchment models 

(Wang and Weiming, 2004).  

Bdour and Papanicolaou (2003) also integrated catchment process models with river 

process models. Their approach incorporates information regarding catchment and in-

stream process interactions with a sediment transport model. Sediment influx and 

upland soil erosion from the catchment is obtained using the Geospatial Interface of 

Water Erosion Prediction Project model (GeoWEPP). GeoWEPP determines sediment 

load into the river and the upstream boundary condition for in-stream sediment 

transport modelling. The outcomes from GeoWEPP are coupled with a 2-D numerical 

model that predicts multifractional sediment transport, bed evolution and grain size 

distribution changes in mountain streams. Hence, the modelling system does not only 

perform detailed 2-D sediment transport but forms part of a coupled system of 

numerical models. These models also include models that simulate hydrologic and 

hydrodynamic phenomena from local to sub-regional to regional scale 

(Bdour and Papanicolaou, 2003).  

6.3 Modelling integration 

6.3.1 Scale dependent variability of roughness 

Coarse-graining is achieved by averaging process outcomes at increasing scales. 

Coarse-graining can be applied to make models simple because high frequency 

contributions of lower scale process to the higher scale process will be eliminated by 

the averaging operation (Kavvas, 1999). Kavvas (1999) argued that coarse-graining 

allows a clearer view of an individual river process at a particular scale by eliminating 

the high frequency contributions of the smaller scale process by the averaging 
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operation. Therefore, the resulting models are free from the effects of the high 

frequency components of smaller scale processes and can still be quite simple.  

When processes that are effective over longer time-scales and larger space-scales are 

dominant, the detail of high-frequency process variation at shorter time-scales and 

smaller space-scales is capable of incorporation through model parameters 

(Lane and Richards, 1997). Model parameters can therefore be determined through 

upward integration of small-scale processes to represent temporal fluctuations in small-

scale patterns. Harrison (2001) stated that by integrating high-frequency and short-

wavelength variables of a many-body system, parameters are able to describe the 

dynamics within large-scale systems. This is done through ‘‘coarse-graining’’. For 

example, real time measurements of shear stress caused by the flow of water can 

fluctuate considerably over lengths in the order of millimetres and the time steps used 

by a water flow model. Larger scale flow models would use a roughness coefficient to 

determine the coarse-grained average to represent the shear stress caused by the flow of 

water at the resolution used by the model. Therefore, the average shear stress at the 

lower organisational level can be used to determine the flow resistance factor for a 

higher organisational level.  

River models use friction and sedimentary characteristics for parameterisation 

representing the spatial environment over which water flows. Lane (2005) implies that 

the resistance coefficients used in water flow modelling represent the topography over 

which water flows that has to be calibrated, rather than having any meaning in the 

value itself. For example a Manning's n value in one model may be different from a 

Manning's n in another even though both predict the same flow phenomena. The 

difference lies in the resolutions for which the models apply. As the spatial scale of 

consideration changes, the amount of topography that must be dealt with implicitly 

changes.  

Bathurst (1982) related various flow resistance coefficients to flow conditions and 

noted that a "single roughness size may not allow for the full resistance effects of a 

change in bed material size. This is because the wake eddies which are shed by the 

elements and which interact with the flow turbulence depend on the absolute size of the 

elements". With this in mind, flow resistance coefficients do have meaning in terms of 

the magnitude of the shear stress resisting the flow of water. It is assumed that the 
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average shear stress over a model extent can be carried up to higher organisational 

levels to determine the flow resistance coefficients at the grain of these higher 

organisational levels. 

It is typical for flow resistance to change constantly for a particular location in a river. 

Flow resistance changes as a result of: the geological condition, such as sediment size 

and distribution and bed rock outcrops; channel geometry, such as depth and width; 

longitudinal profile, such as geomorphological-units (slope, riffles, pools, etc.) and the 

stream patterns (meandering, straight and braided); and vegetation distribution, such as 

patchiness and flow-retarding attributes (leaves and stems). These factors determine the 

rates at which flow resistance adjusts through all the organisational levels considered. 

Therefore, changing flow resistance due to factors varying at lower organisational 

levels has to be coarse-grained to account for flow resistance at higher organisational 

levels. Accounting for changing alluvial bed flow resistance is still very new. 

6.3.2 Flow resistance formulations 

Flow resistance at the geomorphological-unit scale 

The shear stress at the geomorphological-unit scale is partitioned by the sum of the 

shear stress caused by the grain and form resistance.  

Grain (or "skin") resistance is due to the presence of small, distributed irregularities 

such as bed-substrate. The average of the skin friction shear stress over model extent at 

the geomophological-unit scale is calculated with the dimensionless Darcy–Weisbach 

friction coefficient f (Chanson, 1999): 

          (6.1) 

where V is the depth-average flow velocity, no is the number of cells within the 

modelling domain for which water flow is computed, ρ is the density of water, f 

represents the flow resistance due to the sediment grains and is determined by the 

Colebrook-White formula for turbulent flow (Chanson, 1999) expressed by equation 

(5.84). 

Form resistance due to the larger-scale internal deformation in the flow field is imposed 

by channel bed irregularities such as bed-forms. Shear stress as a result of form 

resistance due to the modelled 2-D bed-forms is determined using: 

no
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          (6.2) 

where        and      respectively are the average height and length of the bed-form 

determined at the extent of the geomorphological-unit scale (Chanson, 1999). 

The average shear stress over the extent at the channel-type scale, τo, is often 

considered to be composed of linearly additive components of shear stress attributable 

to these different aspects of flow resistance (Chanson, 1999). The total shear stress at 

geomorphological-unit scale: 

          (6.3) 

Flow resistance at the channel-type scale 

The friction slope depends on the bed shear stress which is assumed to be related to the 

magnitude and direction of the depth–average velocity (Steffler and Blackburn, 2002). 

The resistance model is based on the non-dimensional Chézy coefficient cs. 

          (6.4) 

by rearranging 

          (6.5) 

cs is related to the effective flow resistance height ke of the boundary and the depth of 

the flow through (Steffler and Blackburn, 2002) using:  

           (6.6) 

Hence, ke for a computational cell at the channel-type scale can be determined from cs. 

          (6.7)  

Flow resistance at the reach scale 

Substituting the Manning equation into the Du Buoys Equation (τo = ρgdSf) produces 

shear stress which varies linearly with the square of velocity. The end result is shear 

stress expressed as a function of Manning's n (Chaudhry, 1993): 
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          (6.8) 

in which R is hydraulic radius, A is flow area, Q is flow discharge and g is gravitational 

acceleration. To find Manning's n for each cross-section at reach scale, the average 

shear stress at the extent of the channel-type is determined from an average ke and d 

(Steffler and Blackburn, 2002): 

 

          (6.9) 

Manning’s n as flow resistance coefficient at the reach scale is 

          (6.10) 

 

Flow resistance by reeds  

A simple resistance relationship for flow velocity was used to represent flow through 

emergent reeds (Jordanova et al, 2006). 

                                                                 (6.11) 

in which F  is a resistance coefficient dependent on stem diameter Dstem, stem spacing a 

and drag coefficient CD. 

The following relationship for F has been derived for the conditions listed in Table 6.1: 

                                                    (6.12) 

Table 6.1 Range of variables for which the resistance equation (6.12) is applicable 

(Jordanova et al, 2006) 

 

 

 

Variable Range 
Discharge, q (m3s-1m-1) 0.005-0.5 
Bed slope, S 0.0005-0.002 
Stem diameter, D (mm) 5.0-20.0 
Stem spacing, a (m) 0.05-0.1 
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The drag coefficient CD depends on the stem size and shape and the Reynolds number 

Re expressed in terms of stem diameter Dstem. 

                                                                      (6.13) 

The relationship between CD, and stem Reynolds number Re can be represented by 

CD = α Reβ                                                              (6.14) 

Best-fit values of coefficients α and β for the experimental conditions are listed in 

Table 6.2. 

Table 6.2 Values of α and β coefficients for estimation of the drag coefficient as a 

function of the stem Reynolds number (Jordanova et al, 2006) 

Description α β 
Stem only 30.3 -0.38 
3 – 6 leaves 999.58 -0.80 
Fully Foliage 209.9 -0.58 
Upper limit 1241.2 -0.79 
Lower limit 10.35 -0.28 
Average 114.79 -0.62 

 

6.3.3 Boundary conditions 

Boundary conditions are the constraints that a larger scale and more slowly changing 

environment imposes on a smaller scale and faster acting process. Over the temporal 

grain used to model these small-scale processes, boundary conditions supplied by 

larger scale models are assumed to be stationary since they change so slowly that they 

appear to stand still. Lower-level organisational models describe process reactions 

within the boundary conditions (defined by process models at higher levels of 

organisation) and result in a product that defines the template for process models at the 

next lower-level. 

υ
VDstem=Re
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Organisational models share boundary conditions in two ways. In the first, models at 

higher organisational levels provide the rates of material flows at the upstream and 

downstream ends of the computational domain of the lower organisational level model. 

For this modelling, material flows are water, sediment and reed biomass. In the second, 

large-scale models provide the template or modelling sub-domain where smaller scale 

model descriptions apply. The grain of higher-level organisational models is related to 

the lower organisational levels by providing spatial information such as average slope. 

Thus, river features at higher organisational levels determine the location at which 

lower-level organisational models make predictions. For example, the deviation of 

elevation of the riverbed at the reach scale forms the average elevation around which 

sandbar dynamics at the channel-type scale is modelled. The elevation of such a 

sandbar would in turn represent the average around which bed-forms elevations 

fluctuate at the geomorphological-unit scale. 

6.3.4 Linkage procedure 

Flow chain models of sediment, water and vegetation processes are shown in 

Figure 6.3, which illustrates the modelling linkage. The organisation levels selected are 

the reach scale, channel-type scale and the geomorphological-unit scale. The models 

are linked, providing feedback across these organisational levels.  

The linkage modelling procedure is illustrated in Figure 6.4 to Figure 6.8 and proceeds 

as follows: 

1) At the reach scale, the monthly flow depths from the water flow model are used by 

the reed model to determine the reed population distribution after every year. The 

reach scale reed distribution model determines a maximum biomass density for a 

given elevation on the river bank. The 1-D water flow model predicts the monthly 

flow depths from which the coefficient of variance and average yearly flow depth 

is determined and used to predict the maximum biomass density growing at a given 

elevation. 

2) The reed model at the channel-type scale predicts the manner in which patches of 

reeds expand within a cellular grid, based on the bed elevations of cells and the 

corresponding maximum biomass density provided by the reach scale reed model. 

3) The 1-D water flow model at the reach scale provides the boundary conditions for 

the water flow at the channel-type scale. The intermediate 2-D depth-average flow 
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distribution at the grain of the channel-type scale is determined given the average 

flow velocity and depth, at the grain of the reach scale, forming the boundary 

conditions. The 1-D water flow model also provides the inputs to the sediment 

model at the reach scale. 

Vegetation organisational 
hierarchy 

Water organisational  
hierarchy 

Sediment organisational  
Hierarchy 

Reach scale 
 
 
 
 
 
 
 
 
 
 
 

  

Channel-type scale 
 
 
 
 
 
 
 
 
 

  

Geomorphological-unit 
scale 
 
 
 
 
 
 
 

  

Figure 6.3 Hierarchical modelling integration of sediment, water and vegetation 

processes across the reach scale, channel-type scale and geomorphological-unit 

scale. Arrows represent feedback through provision of model inputs, boundary 

conditions and parameters 
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4) The bed elevation determined by the reach scale sediment model is fed back to the 

1-D water flow model and determines the resulting water flow distribution. The 

reach scale sediment model provides the template on which sediment bars and 

erosion at the channel type scale are determined. The same model also provides the 

grain size to the sediment models at the channel-type and geomorphological-unit 

scale. 

5) The reed model at the channel-type scale predicts the expansion of reed patches 

according to biomass growth determined at the geomorphological-unit scale. 

6) The reed patch dynamics model provides the flow resistance to water flow through 

cells occupied by reeds. 

7) At the grain of geomorphological-unit scale, the flow distribution is interpolated, 

allowing bed-form length and height to be estimated by the sediment model. The 

coarse-grained shear stress at the extent of the geomorphological-unit scale is used 

to determine the effective roughness height ke at the grain of the channel-type scale. 

8) The bed-form length and height also affect flow resistance values determined at the 

grain of the channel-type scale.  

9) The resulting ke values are used in the 2-D water flow model simulations. The 

sediment and water models at the geomorphological-unit scale run 3 times by 

specifying the interval for running the modelling procedure to allow the ke values to 

be updated. 

10) The 2-D depth-average velocity and flow depth drives the sediment bar model. The 

same model provides the boundary conditions at the extent of the 

geomorphological-unit scale. The shear stresses due to flow resistance at the extent 

of the channel-type scale are further coarse-grained to determine flow resistance 

values at the grain of the reach scale. 

11) The sediment bar model predicts new cell elevations, which are updated in the 2-D 

water flow model to result in a new 2-D flow distribution. In so doing, these 

models are providing continuous feedback. The same model also provides the 

template for predicting bed-forms at the geomorphological-unit scale. 

12) The coarse-grained shear stresses due to the flow resistance channel-type scale 

provide the Manning’s n values at the grain of the reach scale used by the 1-D 

water flow model to determine the new flow distribution. 
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Figure 6.4 Sub-procedure for water flow modelling at the reach scale 
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Figure 6.5 Sub-procedures for reed and sediment modelling at the reach scale 
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Figure 6.6 Sub-procedures for reed and water flow modelling at the channel-type 

scale 
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Figure 6.7 Sub-procedures for sediment modelling at the channel-type scale and 

reed modelling at the geomorphological-unit scale 
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Figure 6.8 Sub-procedures for water flow and sediment modelling at the 

geomorphological-unit scale 
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feedback between them. The models are linked to share outputs which provide 

boundary conditions and values for model parameters at specific locations within the 

modelling domain. A hierarchical framework allows prediction of small-scale 

geomorphology and accounts for its variability at the large-scale.  
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River geomorphological modelling was performed to show the effects of dynamic 

processes regarding the interaction of sediment, water and reeds at various scales for a 

period of 10 years. An important aspect of the modelling is to simulate sequences of 

events and conditions and to incorporate feedback so that the changes in 

geomorphology from one event have an influence upon the impact of the next event.  

Great algorithmic effort is needed for the numerical solutions to the model equations 

representing the river processes. Model integration therefore proved very 

computationally intensive because feedback between models at different organisational 

levels was required. 1 run took approximately 1 week. Because the computational cost 

of the hierarchical modelling approach is so high, only 3 river geomorphological 

scenarios were modelled. The points in time when feedback is transferred to higher 

organisational levels were selected to be effective and representative, but were reduced 

to save on the computational demand.  

The sequence of model feedback proceeded as follows. The geomorphological-unit 

scale reed model is called up for every cell and time step of the channel-type scale reed 

model. After 6 months of a reed patch simulation at the channel-type scale, the 

sediment and water flow models at the same scale are called on to simulate a 30 minute 

flood event.  These models provide boundary conditions for the models at the 

geomorphological-unit scale. The water flow and sediment models at 

geomorphological-unit scale are called up 3 times during the 30 minute flood flow 

simulation to supply coarse-grained flow resistance values at the grain of the channel-

type scale. Each time new flow resistance values are determined, the resulting water 

flow distribution at the channel-type scale is simulated to drive the sediment model at 

the same scale for another interval of the flood duration. This is repeated for each of the 

100 m sections over a 2000 m reach. The average of the 3 times when the coarse-

grained shear stresses are obtained for water flow runs at the channel-type scale are 

used to determine Manning’s n values. The new Manning’s n values are used in the 

Chapter 7  –  Model l ing resul ts  
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reach scale water flow runs for the following year. The reach scale water flow 

distribution drives the sediment model and reed model at the same scale. After every 

yearly run, the outputs of all 3 reach scale models are used as boundary conditions by 

lower organisational level models.  

All the modelling scenarios are on essentially the same hypothetical river but with two 

significant differences. Scenario 1 has a larger sediment feed rate than scenarios 2 and 

3. Scenario 3 includes the effect of bedrock. Modelling results are compared for the 

cases where flow resistance is linked across organisational levels and the case where no 

linkage is made, but a typical flow resistance value is used. The simulation was rerun 

without integrated smaller scale modelling using the resulting Manning’s n values from 

simulations with integrated small scale models.   

7.1 Modelling Scenarios 

In order to set up realistic modelling scenarios, the regime method of 

Julien and Wargadalam (1995) was used to determine general channel geometry. The 

method allows determination of the river geometry providing average flow depth h in 

metres and channel top width W in metres for bank full flow conditions given channel 

slope S, median grain size D50 in metres and dominant discharge Q in m3/s. The 

following channel geometry relations were used:  

          (7.1) 

          (7.2) 

where          (7.3) 

A typical Entrenchment Ratio (Rosgen, 1994) for a gravel-bed river was chosen. The 

Entrenchment Ratio provides a measure of how deep the river runs through the valley. 

The Entrenchment Ratio is defined as the Flood-Prone Width divided by the top width 

W where the Flood-Prone Width is taken to be twice the bank full depth h. Given the 

Entrenchment Ratio, the channel lateral slope Sl was determined. The model assumes a 

trapezoidal shaped channel. Figure 7.1 shows the variables describing the channel 

geometry. 

( ) ( ) ( )h Q D Sm m m m= + + − +0 2 2 5 6
50
6 5 6 1 5 6. / /

( ) ( ) ( ) ( ) ( )W Q D Sm m m m m m= + + − + − − +133 2 4 5 6
50

4 5 6 1 2 5 6. / / /

( )m h D= 1 12 2 50/ ln . /
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Figure 7.1 Schematic showing variables describing the channel dimensions. A 

trapezoidal channel was assumed 

River type B4 described by Rosgen (1996) was used for representation by this 

modelling. This stream type is narrow, moderately entrenched, occasionally well 

vegetated and the channel material is dominated by gravel with lesser amounts of 

cobble and sand (Rosgen, 1996).  

It was assumed that the flood responsible for moving most of the sediment at a steady 

discharge Qf lasted for 30 minutes, as shown in Figure 7.2. This flood duration does not 

involve the Intermittency value If and was chosen purely for computational reasons. 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Flow regime specified for the particular modelling scenarios 
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The following values were used to determine and describe the channel dimensions for  

inputs in the modelling: 

 

 

 

 

 

The above values are used for description of the initial river state. The objective was to 

examine the effect of much larger average flows on river form. Larger flow in reality 

can, and often do, result from numerous river and catchment alterations (dams, levees, 

channelization, land use changes, etc.). Qf drives the sediment model at the reach scale 

whereas the initial state of the river has been based on Q. The monthly flows in Table 

7.1 were used by the 1-D flow model to determine the monthly flow depth used by the 

reed model.  

Table 7.1 Monthly discharges input data into the 1-D water flow model to predict 

the monthly flow depths used by reach scale reed model to predict the maximum 

biomass density growing at a given elevation 

Month Average 
monthly 

discharge 
(m3/s) 

January 170 
February 150 
March 130 
April 110 
May 100 
June 110 
July 120 

August 130 
September 140 
October 150 

November 160 
December 170 

 

Qf  = 300 m3/s 
If  = 0.06 

Q  = 18 m3/s 
D50 = 0.011 m 

S = 0.004 m/m 
h = 0.70 m 

W = 25.0 m 
Entrenchment ratio = 1.6 
Flood prone width = 40.0 m 

Side slope = 0.088 m/m 
Bed width = 10.2 m 
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The following parameters were implemented in the cellular automata reed model to 

predict the expansion of reeds at the channel-type scale: 

Reed front advancement rate = 7  m/month 
Time step (∆t) = 21  days 

Maximum reed density = 6  kg DWT/m2 
Reed density before expansion occurs = 2.6  kg DWT/m2 

Figure 7.3 shows the representative particle size distribution for both feed and substrate 

for the river type chosen to model, as obtained from Rosgen (1996) and input into the 

reach scale sediment model. 

The 3 scenarios were modelled using the attributes provided above except that a 

sediment feed rate of 3×10-4 m2/s per unit width was specified for scenario 1 whereas 

3×10-6 m2/s was specified for scenarios 2 and 3.  

Scenario 3 incorporated the effect of bedrock. Bedrock was specified at 2 metres below 

the sediment surface at the start of simulation and random bedrock outcrops shown in 

Figure 7.4 were implemented to allow for the heterogeneity that is associated with 

bedrock at the channel-type scale. 

 

 

 

 

 

 

 

 

 

Figure 7.3 Grain size distribution for feed and substrate typical for the stream 

type modelled (Rosgen, 1996). The initial D50 of 0.011 m is indicated 
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Figure 7.4 Bedrock outcrops specified for scenario 3 

A manning’s n value of 0.029 was used to provide an initial estimate and is typical of 

gravel-bed rivers (Yen, 1991). This value was used for the first year of simulation, after 

which linked smaller scale water flow models provided values for Manning’s n. Two 

simulation were performed which did not include smaller scale modelling integration. 

The Manning’s n of 0.029 was used throughout for the first. A second simulation was 
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performed which not include smaller scale modelling integration using the Manning’s 

n values obtained from year 10 for the run that did include smaller scale modelling. 

The resulting elevations are shown in Figure 7.10, Figure 7.13 and Figure 7.17. 

7.2 Results and discussion 

The unvarying sediment and water flow input or the reach scale sediment modelling 

for scenario 1 resulted in the bed elevation of the 2000 metre reach self-organizing at a 

100 m resolution. The gradual decrease in bed elevation change as the river moves to 

an equilibrium state is shown in Figure 7.5 and Figure 7.6, indicating self-organisation.  

 

 

 

 

 

 

 

Figure 7.5 Self-organisation of bed elevations for scenario 1 at the reach scale. 

Self-organisation at the channel-type scale is shown for the hatched section in 

Figure 7.8 

t = 1yr
t = 2yr
t = 3yr
t = 4yr
t = 5yr
t = 6yr
t = 7yr
t = 8yr
t = 9yr
t = 10yr
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Figure 7.6 Self-organisation of bed elevations for scenario 2 at the reach scale. 

Self-organisation at the channel-type scale is shown for the hatched section in 

Figure 7.9 

The resulting bed slope affects the flow depth, which determines the maximum 

potential reed biomass that can possibly grow at a given elevation as shown in 

Figure 7.7. The available reed habitat on the bank determined by the reach scale reed 

model is given as the maximum potential reed biomass that can grow at a given 

elevation on the river bank. The reach scale reed model therefore determines how the 

reeds could expand, which in turn affects how sediment at the channel-type scale 

organises. Simulating the growth of reeds at the geomorphological-unit scale allows 

determination of the properties of higher-level reed patches so that population 

distribution patterns emerge. The kinks at the upstream ends of the reaches are due to 

boundary conditions which affect the flow model used to predict the monthly flow 

depths for the reed model.  
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Figure 7.7 The available reed habitat on the river bank lying on the entire area 

above the green line determined by the reach scale reed model for 

scenario 1 and 2 

Within the 100 by 100 m modelling domain representing the river at the channel-type 

scale, the process models describe interactions between water and sediment for every 5 

by 5 m cell. Figure 7.8 and Figure 7.9 show that, as with bed elevations at the reach 

scale, the constant sediment and water inflow for the 30 minute event results in bed 

elevation changing towards a self-organized state. The bed elevations changed rapidly 

initially and slowed down to change much less from 15 to 30 minutes. The 2-D river 

flow was updated every 5 minutes, adjusting to the changing bed elevations to reach a 

steady state.   

 

 

 

Scenario 1 – year 1 

Scenario 2 – year 1 

Scenario 1 – year 10 

Scenario 2 – year 10 
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Figure 7.8 Self-organisation of bed elevation for scenario 1 at the channel-type 

scale. The river between 900 m and 1000 m is shown for a 30 minute flood event 

beginning at 4 years and 6 months. The blue lines indicate the velocity vectors of 

the water flow and are placed at the water surface 

The lower-level self-organisation affected the higher-level self-organisation through 

material (sediment, water and biomass) flow, which implies the existence of emergent 

structures. More specifically, the smaller scale processes such as reed growth and bed-

form development, which determine flow resistance, produce emergence. Following 

from the water flow models at lower levels, shear stress resisting water flow is 

aggregated at the reach scale, producing new Manning’s n values. These new 

Manning’s n values affect reach scale water flow and therefore reach scale sediment 

flow. The resulting water flow depth and velocity are transferred as boundary 

conditions to smaller scale models to again affect the shear stresses resisting water flow 

at these smaller scales.  

t = 4 years, 6 months and 5 minutes t = 4 years, 6 months and 10 minutes 

t = 4 years, 6 months and 15 minutes t = 4 years, 6 months and 30 minutes 
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Figure 7.9 Self-organisation of bed elevation for scenario 2 between 900 m and 

1000 m beginning at 4 years and 6 months 

 

 

 

 

 

Figure 7.10 Initial and 10 year reach scale bed elevations for scenario 1 with and 

without integrated smaller scale models. Details of the modelling results at the 

channel-type scale are shown for the hatched section in Figure 7.12 

Final bed elevation for scenario 1

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Distance (m) 

El
ev

at
io

n 
(m

)  

Initial
Not integrated
Integrated models
Not integrated rerun

t = 4 years, 6 months and 5 minutes t = 4 years, 6 months and 10 minutes 

t = 4 years, 6 months and 15 minutes t = 4 years, 6 months and 30 minutes 



 

 160 

Figure 7.11 shows Manning’s n values determined from lower organisational level 

modelling with an initial Manning’s n of 0.029 for gravel-bed rivers obtained in 

literature. The increased reed cover is shown in Figure 7.12, Figure 7.15 and 

Figure 7.19 is generally associated with increased flow resistance.  

 

 

 

 

Figure 7.11 Reach scale Manning’s n values along the river after every year for 

scenario 1 obtained from integrated smaller scale models. Details of the modelling 

results at the channel-type scale are shown for the hatched section in Figure 7.12 

The increasing reed cover resulted in increasing flow resistance, which in turn 

increases the shear stress opposing water flow at the channel-type scale and manifests 

as larger Manning’s n values at the reach scale. The larger Manning’s n values results 

in water backing up, producing different flow conditions at the reach scale, which in 

turn provides the boundary conditions for flow modelling at the channel-type scale. 

The emergence of flow resistance at the reach scale is therefore a result of constant 

feedback from lower-level models.  
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Figure 7.12 The yearly modelled river between distance 900 m and 1000 m for 

scenario 1 

t = 3 years, 6 months and 30 minutes t = 4 years, 6 months and 30 minutes 

t = 5 years, 6 months and 30 minutes t = 6 years, 6 months and 30 minutes 

t = 7 years, 6 months and 30 minutes t = 8 years, 6 months and 30 minutes 

t = 9 years, 6 months and 30 minutes t = 10 years, 6 months and 30 minutes 

t = 1 year 6 months and 30 minutes t = 2 years, 6 months and 30 minutes 

n = 0.021 n = 0.021 

n = 0.021 n = 0.022 

n = 0.022 n = 0.023 

n = 0.023 n = 0.023 

n = 0.029 n = 0.021 
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Variability in the water flow distribution forced by varying sediment bars, reeds and 

bedrock at the cross-sections produce variable Manning’s n values. This is especially 

evident for scenario 3, where significantly larger Manning’s n values resulted at the top 

of the reach (0 to 700 m) where bedrock outcrops are higher and larger.  

Figure 7.13 also shows a large difference in the bed elevation obtained after the 10 year 

modelling period. Figure 7.14 shows the adjusted Manning’s n values for scenario 2 at 

the reach scale, which was obtained from integrated smaller scale models. 

 

 

 

 

 

Figure 7.13 Initial and 10 year bed elevations for scenario 2 with, and without 

integrated smaller scale models. Details of the modelling results at the channel-

type scale are shown for the hatched section in Figure 7.15 

 

 

 

 

 

Figure 7.14  Reach scale Manning’s n values for scenario 2 obtained from 

integrated smaller scale models. Details of the modelling results at the channel-

type scale are shown for the hatched section in Figure 7.15 
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Figure 7.15 The yearly modelled river between distance 500 m and 600 m for 

scenario 2 

n = 0.025 

n = 0.023 

t = 4 years, 6 months and 30 minutes 

t = 5 years, 6 months and 30 minutes t = 6 years, 6 months and 30 minutes 

t = 7 years, 6 months and 30 minutes t = 8 years, 6 months and 30 minutes 

t = 9 years, 6 months and 30 minutes t = 10 years, 6 months and 30 minutes 

t = 1 year 6 months and 30 minutes t = 2 years, 6 months and 30 minutes 

t = 3 years, 6 months and 30 minutes 

n = 0.023 n = 0.025 

n = 0.025 

n = 0.025 n = 0.024 

n = 0.027 n = 0.027 
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The modelling accounts for the self-organisation of bed-forms from initial geometry to 

geometry following the flood event. Bed-form sizes have been determined for each of 

the cells within the sediment model at the channel-type scale. The bed-forms were 

allowed to grow towards their equilibrium sizes throughout the storm event to affect 

the equivalent roughness or ke values, which affects the flow distribution at the 

channel-type scale. The non-linear effect of increasing bed-form size on shear stresses 

resisting water flow in turn affects organisation of the bed elevation at the channel-type 

scale.  

Changes in the water flow distribution affected bed-form size in such a way that 

bedrock, reeds and river bed elevation changes all contributed. Figure 7.16 shows 

scenario 3 with bedrock influencing water flow at the channel-type scale. 

 

 

 

 

 

 

Figure 7.16 Illustration of bedrock influencing 2-D water flow at the channel-type 

scale. The modelled river between distance 500 m and 600 m for scenario 3 is 

shown 

Figure 7.17 shows the results of simulations with and without integrated smaller scale 

models for scenario 3. No significant difference in the bed elevation at the reach scale 

was obtained after 10 years. The bedrock constrained any significant difference in bed 

elevation. Figure 7.17 shows the bedrock below the bed because it is outcropping 

locally above this level. Figure 7.18 shows Manning’s n values which are larger in the 

upstream part of the river owing to bedrock influence being more pronounced. 
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Figure 7.17 Initial and 10 year bed elevations for scenario 3 with, and without 

integrated smaller scale models. Details of the modelling results at the channel-

type scale are shown for the hatched section in Figure 7.19 

 

 

 

 

 

Figure 7.18  Reach scale Manning’s n values for scenario 3 obtained from 

integrated smaller scale models. Details of the modelling results at the channel-

type scale are shown for the hatched section in Figure 7.19 

Figure 7.19 illustrates how changing Manning’s n values at the reach scale correspond 

to the changing geomorphology at the channel-type scale as affected by bedrock. The 

effect of bedrock is distinct in the way sediment and reeds, at the channel-type scale, 

are organised in Figure 7.22 and Figure 7.24. This distinction appears in the Manning’s 

n values at the reach scale obtained. The effect of bedrock is illustrated in scenario 3, 

producing a wider, shallower river configuration. The difference in scenario 1 lies in 

the reeds that are encroaching more on the river channel and causing the channel to 

become more incised. 

Manning's n  for Scenario 3

0.020

0.022

0.024

0.026

0.028

0.030

0 200 400 600 800 1000 1200 1400 1600 1800 2000
(m)

t = 1yr

t = 2yr
t = 3yr

t = 4yr
t = 5yr

t = 6yr
t = 7yr

t = 8yr
t = 9yr

t = 10yr

Final bed elevation for scenario 3

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Distance (m) 

E
le

va
tio

n 
(m

)  

Bedrock
Initial
Not integrated
Integrated models
Not integrated rerun



 

 166 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.19 The yearly modelled river between distance 500 m and 600 m for 

Scenario 3 

t = 4 years, 6 months and 30 minutes 

t = 5 years, 6 months and 30 minutes t = 6 years, 6 months and 30 minutes 

t = 7 years, 6 months and 30 minutes t = 8 years, 6 months and 30 minutes 

t = 9 years, 6 months and 30 minutes t = 10 years, 6 months and 30 minutes 

t = 1 year 6 months and 30 minutes t = 2 years, 6 months and 30 minutes 

t = 3 years, 6 months and 30 minutes 

n = 0.023 n = 0.024 

n = 0.028 n = 0.028 

n = 0.027 n = 0.027 

n = 0.027 n = 0.027 

n = 0.029 n = 0.022 
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Figure 7.20 shows that all scenarios produced general increases in Manning’s n from 

year 2. Reeds and bed-form size have increased. The resulting increase in shear stresses 

resisting flow at the channel-type scale was aggregated at the reach scale to present 

larger Manning’s n values. Flow continuity at the channel-type scale was not strictly 

preserved. The flow resistance formulations accounting for reeds that were 

implemented in the 2-D water flow model resulted in flow being slightly less than that 

set out by the boundary conditions supplied by the 1-D flow model. This difference in 

water flow is increased as the flow velocities are reduced with greater reed cover. 

Preservation of flow continuity is expected to yield increased flow velocities and shear 

stresses in areas of little or no reed cover. Thus, the magnitudes of Manning’s n values 

obtained may have been larger. 

 

 

 

 

 

Figure 7.20  Reach scale Manning’s n values for all the modelling scenarios after 

year 2 and year 10. The scenarios gave significantly different Manning’s n values. 

Details of the modelling results at the channel-type scale are shown for the 

hatched section in Figure 7.22, Figure 7.23 and Figure 7.24 

The Manning’s n values for scenario 2 and 3 were larger than for Scenario 1, since 

different flow patterns resulted from the influence of bed-forms, bedrock and reeds. 

Bed-form size depends on grain size, shown in Figure 7.21, and its effect on shear 

stress resisting water flow gives larger Manning’s n values at the upper part of the 

reach where grain sizes are higher. In general, the reach is coarsening for all the 

scenarios because the fines are removed during flood events. This coarsening occurs at 

a much slower rate for scenario 1 because a larger amount of sediment was fed to the 

reach. Grain size for scenario 1 has not reached an equilibrium state, as indicated by the 

sudden decrease in grain size for reach distance 600 m to 800 m along the river reach. 
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Figure 7.21 Downstream variation of D50 for modelling scenarios initially and for 

year 10. Details of the modelling results at the channel-type scale are shown for 

the hatched section in Figure 7.22, Figure 7.23 and Figure 7.24 

The similar grain-size distributions obtained for scenarios 1 and 2 show the connection 

between Manning’s n and grain size. Grain size affects the dimensions of bed-forms 

and therefore also contributes to shear stress caused by the resistance to water flow. 

This effect is translated to reach scale modelling to affect the Manning’s n. 

Figure 7.22, Figure 7.23 and Figure 7.24 show the extent to which the river behaviour 

can differ for smaller sediment inflow and bedrock influence. It would not be easy to 

find a statistical up-scaling of flow resistance to account for the interactions of these 

smaller scale processes at larger scales, which requires detailed and explicit modelling. 

The modelling cannot be verified because no data set exists for geomorphology over 

the wide range of spatial and temporal scales required for modelling verification. The 

aim is not to provide exact predictions of river bed elevations at precise positions, but 

to give the type of impact and order of magnitude, and the approximate type of spatial 

distribution. The focus is not on the models themselves but on demonstrating the effect 

of trans-scale interactions and whether the modelling can allow for self-organisation 

and emergence, which are necessary to achieve prediction that is accurate.  

River bed elevation was predicted over a range of organisational levels which is 

important for river habitat management. The model can simulate ‘what if’ scenarios to 

examine the effect that management decisions have on habitat conditions at various 

resolutions. 
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Figure 7.22 The modelled river for scenario 1 between 400 m and 1000 m showing 

the template provided by the reach scale sediment model and flow depth provided 

by the reach scale water flow model 

t = 10 years 

t = 2 years 
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Figure 7.23 Modelled river scenario 2 between 400 m and 1000 m  

t = 10 years 

t = 2 years 
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Figure 7.24 Modelled river scenario 3 between 400 m and 1000 m  

t = 10 years 

t = 2 years 



 

 172 

Figure 7.8 to Figure 7.30 show the elevations of selected 100 m channel reaches as 

sediment self-organises. The associated reed height, water velocity and effective flow 

resistance height ke distribution at the end of flood flow modelling of year 4 are shown. 

Eventhough the effective flow resistance height ke remain similar thoughout the flood 

flow modelling, its variablity changes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.25 Reed height (m) and bed elevation (m) distribution for the flood flow 

modelling of scenario 1 in year 4. The river between 900 m and 1000 m is shown.  
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Figure 7.26 Velocity (m/s) and effective flow resistance height ke (m) distribution 

for the flood flow modelling of scenario 1 in year 4. The river between 900 m and 

1000 m is shown.  
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Figure 7.27 Reed height (m) and bed elevation (m) distribution for the flood flow 

modelling of scenario 2 in year 4. The river between 900 m and 1000 m is shown.  
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Figure 7.28 Velocity (m/s) and effective flow resistance height ke (m) distribution 

for the flood flow modelling of scenario 2 in year 4. The river between 900 m and 

1000 m is shown.  
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Figure 7.29 Reed height (m) and bed elevation (m) distribution for the flood flow 

modelling of scenario 3 in year 4. The river between 500 m and 600 m is shown.  
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Figure 7.30 Velocity (m/s) and effective flow resistance height ke (m) distribution 

for the flood flow modelling of scenario 3 in year 4. The river between 500 m and 

600 m is shown.  
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To further the discussion on the findings of this study, it was compared to that of 

Hooke et al. (2005) who developed one of the most sophisticated contributions to river 

modelling at the time. The modelling simulated the interaction of flows with sediment 

and vegetation and the outcomes in terms of erosion, deposition, morphology, sediment 

cover, vegetation cover and plant survival at decadal time scales. Their modeling 

focused primarily on interactions at the channel-type scale (100 m channel reach).  

Hooke et al. (2005) scaled down reach scale water flow modellling to the channel-type 

scale, by interpolating cross-sectional velocities to the cells in which vegetation were 

modelled. Similarly, catchment sediment loading was applied to each cell in order to 

determine erosion or deposition without routing sediment through the channel reach. 

The water flow modelling of Hooke et al. (2005) used Manning’s n values from 

literature, which as shown above, may be different to those obtained from smaller scale 

modelling.  

The following vegetation related processes were included in the modelling of Hooke et 

al. (2005) but not in modelling of this study:  

n Expansion of various vegetation groups (herbs, shrubs and phreatophytes); 

n Removal and burial of vegetation; 

n Substrate moisture modelling. 

Hooke et al. (2005) used up scaled parameters for vegetation growth and stress 

processes allowing vegetation model application at the channel-type scale. 

Hooke et al. (2005) included sediment size distribution at the channel-type scale 

through a 2 layer model by which a thin deposited layer is underlain by the original 

size of material. In this study, sediment size distribution is not modelled at the channel-

type scale but rather scaled down linearly from the sediment size distribution produced 

at the reach scale. If sediment size distribution modelling at the channel-type scale were 

included in the modelling of this study, more realistic variability of the effective flow 

resistance height ke and bed-form size would be achieved. These would impact on the 

Manning’s n values determined at the reach scale. 
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Table 5.8 to Table 7.4 give the average bed-form length, bed-form height, skin shear 

stress, bed-form shear stress  and effective flow resistance height ke for selected 100 m 

channel reaches determined for the yearly flood flow modelling of all scenarios.  

Table 7.2 Average values for water flow and channel sediment attributes that 

impact on Manning’s n values for scenario 1 between 900 m and 1000 m at 

various points in time  

Time 
Average 
bed-form 
length (m) 

Average bed-
form height 

(mm) 

Average 
shear stress 
τo (N/m2) 

Average 
effective flow 

resistance 
height ke (mm) 

Manning's 
n 

t = 1 yr 1.79 64 57 106 0.029 
t = 2 yr 1.98 79 42 125 0.021 
t = 3 yr 2.00 72 28 127 0.021 
t = 4 yr 1.84 63 38 127 0.021 
t = 5 yr 2.02 65 55 122 0.021 
t = 6 yr 1.97 60 39 127 0.022 
t = 7 yr 1.94 58 84 120 0.022 
t = 8 yr 1.93 69 56 112 0.023 
t = 9 yr 1.93 53 79 116 0.023 
t = 10 yr 1.95 53 97 118 0.023 

 

Grain size for scenario 1 between 900 m and 1000 m remain similar throughout the 

simulation giving small change in the avererage bed-form size of the channel reach. 

The Manning’s n values indicate no direct dependence on the the smaller scale water 

flow and channel sediment attributes. The variability of these attributes and the 

interaction of water flow with increased reed cover give rise to the increasing 

Manning’s n values.  

The modelling of Hooke et al. (2005) can simulate the effects of floods upon river 

form and the interaction with vegetation. However, the entire river is connected so that 

changes in one channel reach can affect adjustment in another, which in turn provides a 

feedback mechanism whereby the original river response predicted by Hooke et al. 

(2005) may be altered. At a decadel time scale, the boundary conditions to the 

modelling of Hooke et al. (2005) may therefore change considerably. For example, the 

initial response to base level lowering owing to a decrease in sediment load, as in 

scenarios 2 and 3, may lead to river degradation. This degradation leads to larger bed-

forms because grain size and water depth increases. The modelling results given in 
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Table 7.3 and Table 7.4 show that these larger bed-forms ad to the resulting larger 

Manning’s n values. The larger Manning’s n values amounts to a decrease in water 

flow velocity which reduces degradation at the reach scale.  

Table 7.3 Average values for water flow and channel sediment attributes that 

impact on Manning’s n values for scenario 2 between 900 m and 1000 m at 

various points in time  

Time 
Average 
bed-form 
length (m) 

Average bed-
form height 

(mm) 

Average 
shear stress 
τo (N/m2) 

Average 
effective flow 

resistance 
height ke (mm) 

Manning's 
n 

t = 1 yr 2.01 73 67 149 0.029 
t = 2 yr 2.23 86 71 154 0.021 
t = 3 yr 2.44 100 56 196 0.023 
t = 4 yr 2.40 104 55 184 0.023 
t = 5 yr 2.71 124 89 250 0.025 
t = 6 yr 2.77 138 101 196 0.025 
t = 7 yr 2.85 118 125 261 0.025 
t = 8 yr 2.89 118 89 219 0.024 
t = 9 yr 2.94 114 93 254 0.027 
t = 10 yr 2.94 119 100 256 0.027 

 

Table 7.4 Average values for water flow and channel sediment attributes that 

impact on Manning’s n values for scenario between 500 m and 600 m at various 

points in time  

Time 
Average 
bed-form 
length (m) 

Average bed-
form height 

(mm) 

Average 
shear stress 
τo (N/m2) 

Average 
effective flow 

resistance 
height ke (mm) 

Manning's 
n 

t = 1 yr 2.23 88 71 179 0.029 
t = 2 yr 2.54 107 110 218 0.022 
t = 3 yr 2.64 123 99 196 0.023 
t = 4 yr 2.62 132 120 244 0.025 
t = 5 yr 2.93 184 147 306 0.028 
t = 6 yr 2.97 204 129 196 0.028 
t = 7 yr 3.07 236 160 304 0.027 
t = 8 yr 3.06 221 112 306 0.027 
t = 9 yr 3.01 203 126 277 0.027 
t = 10 yr 2.94 199 91 286 0.027 

 

Degradation of the river at the reach scale, as in scenarios 2 and 3, increases the 

sediment inflow at the channel-type scale. The sediment transport rates simulated at the 
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reach scale is shown in Figure 7.31 to Figure 7.33. The channel-type scale sediment 

model uses these rates for the upstream sediment inflows. 

 

 

 

 

 

Figure 7.31 Reach scale sediment transport rates along the river after every year 

for scenario 1 

 

 

 

 

 

Figure 7.32 Reach scale sediment transport rates along the river after every year 

for scenario 2  

 

 

 

 

 

Figure 7.33 Reach scale sediment transport rates along the river after every year 

for scenario 3 
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The increased sediment inflow at the channel-type scale coupled with the slope 

flattening owing to the past degradation, result in sediment build up at the same 

organisational level. Sediment build up at the channel-type scale will in turn impact on 

sediment bar dynamics and therefore vegetation distribution. Such multiple responses 

is referred to as complex response (Schumm, 1977) which requires the inclusion of 

contributions from processes at various organisational levels. The hierarchical strategy 

presented in this study allows for precise contributions of each of these processes to be 

included in modeling river adjustment. Modelling the interaction of these processes 

coupled with the potential to deal with complex response makes effective river 

management achievable. 

7.3 Conclusion 

Simulation included the interaction of channel components including sediment, water, 

reeds and bedrock at various organisational levels. The effect of sediment size and 

frequency of the flood event moving sediment, together with typical channel geometry, 

is provided for the scenarios chosen for modelling.  

The sediment feed rate specified for scenario 1 was much higher than that for 

scenarios 2 and 3. Decreases in sediment feed rates occur, for example, after the 

construction of a dam. Dams also affect flow discharges but the effect on river 

geomorphology has not been considered in this study because of the computational 

cost of the modelling. It may, however, be expected that larger flows would be required 

to transport larger amounts of sediment going into the river system. Thus, larger flows 

may have an effect on geomorphology similar to that of lower sediment feed rates. 

Emergence was indicated by the channel aggrading more for modelling with, than 

without the inclusion of the effect of smaller scale river process interactions. 

Emergence was also found in changing flow resistance to affect the river bed elevation 

at the reach scale. The changing flow resistance resulted from small-scale processes 

such as water flow affected by bed-forms or reeds. Bed-forms and reeds affected the 

energy loss to a large extent and provided a strong coupling between the flow and the 

river bed elevation. 
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Up-scaling using statistical formulations to account for small-scale models may, as 

shown above, not be suitable for dealing with river complexity for decadal prediction 

becaue interacting processes may greatly influence river dynamics at larger scales. The 

non-linearity of the effects of small-scale processes necessitates hierarchical modelling, 

as opposed to providing a statistical account at the larger scale. Smaller scale processes 

such as sediment bar development and reed expansion have to be modelled explicitly 

in order to allow for the non-linearity produced by these process interactions which, as 

substantiated by Chapter 2, is the requirement for dealing better with river complexity. 

Reliable estimation of Manning`s n values is required for realistic prediction of the 

river bed elevation at the reach scale. At the reach scale, the Manning’s n values 

include the resistance to water flow caused by the bed characteristics, bar forms and 

reed cover at smaller scales. The Manning’s n values are strongly dependent on the 

roughness formulations used in the smaller scale modelling. The accuracy of these flow 

resistance formulations is crucial because they affect the shear stresses opposing the 

water flow which is subsequently used in determining the Manning’s n values. Smaller 

than expected Manning’s n values obtained in the modelling could be attributed to flow 

continuity that was not strictly preserved across organisational levels.   

Analysis showed that the flow resistance has a significant effect on the river bed 

elevation at reach scale. The use of a Manning`s n value of 0.029 along the reach 

yielded significantly different bed elevations in comparison with the use of the final 

Manning’s n values obtained from integrated smaller scale modelling. The 

determination of Manning’s n values throughout the simulation is essential because the 

bed characteristics, bar forms and reed cover, which affect the Manning’s n values, 

constantly undergo changes during simulation. The Manning’s n values influence the 

rates at which smaller scale processes adjust and hence also the distributions of water, 

sediment and reeds. These distributions, therefore, affect and are affected by the 

Manning’s n values. These distributions emerge as the habitat which is of interest to 

river managers. Therefore, the habitat predicted over decades using Manning’s n values 

that are not determined from smaller scale modelling is questionable. 

The hierarchical modelling approach proposed in this study could allow collaboration 

across disciplinary boundaries. Detailed qualitative and quantitative models existing in 

many fields of study can be integrated using such a hierarchical modelling strategy. It 
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is suggested that this modelling framework could be applied to a variety of complex 

adaptive systems (CAS) on earth. These earthly systems connect life whereby one 

system emerges to others. Models of low-level fast processes and high-level slow 

processes that are detailed to each specialty field may slot into one another by 

confirming rates and providing boundary conditions for material flows.  

The continued improvement in computing power would decrease constraint placed on 

the number of organisational levels that may be included in the modelling. At the same 

time, greater demands will be placed on the data requirements of such integrated 

modelling systems. Real world data-sets that encompasses the perspectives of all 

considered organisational levels will be required for validation of both individual 

process models and integrated modelling. Regardless of the model integration used, the 

limitations of an individual model and their subsequent inherent uncertainties with 

respect to predicting the behavior of these complex systems, should be recognized. 

Such considerations are critical in the future development of CAS modelling to cope 

with issues and problems associated with human-environment interactions.  

Hierarchical modelling allows more realistic prediction of river geomorphology after a 

decade since emergence and self-organisation is dealt with. The modelling showed that 

incorporating emergent structures provides the basis for dealing with the non-linearity 

of river processes across organisational levels, assuming that the models are reliable as 

stand-alone models.   
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The prediction of river geomorphology at a decadal time scale using modelling is 

essential for effective river management. Realistic model predictions at decadal time 

scales require smaller scale variability to be integrated into larger scale modelling. The 

variability is attributed to processes that can be hierarchically organised based on the 

spatial scales at which they operate. At a decadal time scale, the spatial scale that 

extends across the organisational levels of the reach scale, the channel-type and the 

geomorphological-unit scale, is deemed important. The small-scale variability caused 

by riparian vegetation growth, for example, influences reach scale river 

geomorphology at a decadal time scale. Trans-organisational feedback translates such 

variability to higher organisational levels but also constrains variability according to the 

limits imposed by patterns at higher organisational levels.  

River processes affecting river geomorphology are complex in nature. The main 

drivers for river geomorphological change include sediment, water and vegetation 

processes. These processes produce patterns that affect river geomorphology across the 

various organisational levels. River complexity demands lengthier model descriptions 

to explain the formation of patterns. The model descriptions are lengthened in order to 

include feedback from interacting processes and the non-linearity of the effects of these 

processes.  

Riparian vegetation change is often neglected in studies. However, it plays a major role 

in affecting resistance to water flow. Riparian vegetation change has, as a result, a 

significant impact on river morphodynamics. Reed growth, in particular, is regarded as 

a major geomorphological agent, for example, in the Sabie River in the Kruger 

National Park. Hence, Phragmites was chosen to represent the riparian vegetation 

processes required in this modelling.  

A review of current geomorphological modelling was carried out in order to select 

models which best represent river processes of water, sediment and vegetation at the 

Chapter 8  –  Conclusion 
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various organisational levels. On the basis of the review, the following models at the 

respective organisational levels were used:  

§ At reach scale:  

§ a 1-D water flow model, 

§ the Exner equation to determine longitudinal bed elevation and grain size 
distribution, and 

§ a fuzzy-rule-based model for Phragmites population distribution. 

§  At channel-type scale:  

§ a 2-D water flow model, 

§ a cellular automata model for sediment routing, and 

§ a cellular automata model for Phragmites expansion. 

§ At geomorphological-unit scale:  

§ a steady-state flow variability model, 

§ a power law equation in combination with statistical bed-form geometry 
relations, and 

§ partial differential equations for Phragmites biomass growth.  

The models at various organisational levels were integrated through stipulating the 

bottom-up model parameters and the top-down boundary conditions. Particular 

consideration of the flow resistance coefficients was required in order to include the 

feedback between interacting processes in the modelling. This trans-organisational 

feedback enabled flow resistance parameters at the various organisational levels to be 

determined simultaneously. The flow resistance coefficients at higher organisational 

levels were determined using coarse-grained shear stresses which resist water flow at 

smaller scales.  

A gravel-bed river reach of 2 kilometres was modelled. Model simulations were 

carried out for 3 scenarios: an aggradating reach and a degradating reach and a 

degradating bedrock reach. The modelling outputs achieved were at spatial resolutions 

of 100 metres, 5 metres and 0.25 metres for the reach scale, the channel-type scale and 

the geomorphological-unit scale respectively.  

Non-linearity is characterised by self-organisation and emergence. This non-linearity 

that exists at each organisational level is dealt with by trans-organisational modelling, 

as indicated by the results. The changes in reed state influence sediment behaviour in 
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each periodic model application. At the reach scale, the bed elevation self-organised 

according to flooding simulated using the 1-D water flow model. At the channel-type 

scale, sediment bars self-organised according to the 2-D water flow model distribution 

which is affected by the patchiness of reeds. Similarly, the modelled water flow 

distribution allowed the prediction of bed-form self-organisation at the 

geomorphological-unit scale. The patchiness of reeds self-organises within the 

boundary conditions supplied by the reach scale population distribution at a rate and 

density supplied by reed biomass growth at the geomorphological-unit scale. The 

effects of the constantly changing bed-forms, sediment bars and reed state are 

translated across organisational levels to affect flow resistance at the reach scale. This 

flow resistance in turn affects the rate of self-organisation of the bed elevation. Hence, 

emergence of small-scale variability at higher organisational levels was achieved.  

The results differ significantly for modelling with trans-organisational feedback and 

that without. This difference is a result of the emergence produced by small-scale 

dynamic processes at larger scales. The modelling results clearly illustrate changing 

riparian vegetation habitat at various organisational levels. The modelling, therefore, 

enables river managers to predict the changes in habitat for riverine biota. Trans-

organisational feedback allows the habitat at a particular organisational level to be 

adjusted within the modelling so that the associated changes in habitat at other scales 

can be included in decision-making. Stripping of reeds that occurs during extreme 

flooding, for example, may be explored. 

Further development of the modelling includes verification of the reed models at the 

reach scale and the channel-type scale and of the sediment model at the channel-type 

scale. The CFD models used may employ more sophisticated numerical solving 

techniques to allow improved computing efficiency and accuracy. More efficient 

programming code in general will increase computation speed, allowing more frequent 

accounts of the effects of smaller scale processes. The modelling can also include more 

detail in terms of the river processes at various organisational levels, such as scour at 

the geomorphological-unit scale and river bank stability at the channel-type scale. The 

preservation of flow continuity across various organisational levels through the 

application of boundary conditions requires greater effort. This will improve flow 

resistance estimations determined at larger scales. Trans-organisational modelling is set 
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in a robust hierarchical framework which can be used to incorporate additional river 

modifiers, including water quality, fauna and flora.  

The modelling added the effect of smaller scale variability which statistical up-scaling 

cannot account for, owing to the non-linearity of river processes. The non-linearity of 

the river processes is addressed through the linkage of models within a progressively 

nested hierarchical modelling structure. The modelling dealt with the added complexity 

produced by multiple interacting river processes, such as the effect of riparian 

vegetation on water flow and water flow feedback on sediment. The hierarchical 

modelling structure allows for congruent and concurrent interaction of models that 

represent river processes at various organisational levels. Alone, each model tells a 

single story; together, they can simulate river morphodynamics. 
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Appendix A - One-dimensional water flow model code 
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Appendix B – Reach scale sediment flow and self-organisation model code 
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Appendix C - Reach scale reed community model code 
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Appendix D - Two-dimensional water flow model code 
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Appendix E – Channel-type scale bar evolution model code 
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Appendix F – Channel-type scale reed expansion model code
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Appendix G – Geomorphological-unit scale water flow code 



 

 227 

Appendix H – Geomorphological-unit scale bed-form development model 
code 
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Appendix I – Reed growth at geomorphological-unit scale model code 


