A Framework for Abstracting
Complexities in Service Delivery

Platforms

Rolan Christian

A thesis submitted to the Faculty of Engineering, University of the Witwatersrand, Johan-

nesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy.

Johannesburg, July 2009

Declaration

I declare that this thesis is my own, unaided work, except where otherwise acknowledged.
It is being submitted for the degree of Doctor of Philosophy in the University of the Witwa-
tersrand, Johannesburg. It has not been submitted before for any degree or examination in

any other university.

Signed this 17*" day of July 2009

Rolan Christian.

Abstract

The telecommunication (telco) and Information Technology (IT) industries are converging
into a single highly competitive market, where service diversity is the critical success factor.
To provide diverse services, the telco network operator must evolve the traditional voice ser-
vice centric network into a generic service centric network. An appropriate, but incomplete,
architecture for this purpose is the Service Delivery Platform (SDP). The SDP represents
an I'T-based system that simplifies access to telco capabilities using services. SDP services
offer technology independent interfaces to external entities. The SDP has vendor-specific
interpretations that mix standards-based and proprietary interfaces to satisfy specific re-
quirements. In addition, SDP architectural representations are technology-specific. To be
widely adopted the SDP must provide standardised interfaces. This work contributes to-
ward SDP standardisation by defining a technology independent and extendable architec-
ture, called the SDP Framework. To define the framework we first describe telecom-IT
convergence and a strategy to manage infrastructure integration. Second, we provide back-
ground on the SDP and its current limitations. Third, we treat the SDP as a complex system
and determine a viewpoint methodology to define its framework. Fourth, we apply view-
points by extracting concepts and abstractions from various standard-based telecom and
IT technologies: the Intelligent Network (IN), Telecommunication Information Network-
ing Architecture (TINA), Parlay, enhanced Telecommunications Operations Map (eTOM),
Service Oriented Architecture (SOA) and Internet Protocol Multimedia Subsystem (IMS).
Fifth, by extending the concepts and abstractions we define the SDP framework. The frame-
work is based on a generic business model and reference model. The business model shows
relationships between SDP, telco and external entities using business relationships points.
The reference model extends the business model by formalising relationships as reference
points. Reference points expand into interfaces exposed by services. Applications orches-
trate service functions via their interfaces. Service and application distribution is abstracted
by middleware that operates across business model domains. Services, interfaces, appli-
cations and middleware are managed in Generic Service Oriented Architectures (GSOA).
Multiple layered GSOAs structure the SDP framework. Last, we implement the SDP frame-
work using standard-based technologies with open service interfaces. The implementation

proves framework concepts, promotes SDP standardisation and identifies research areas.

1i

Acknowledgements

The following research was performed under the auspices of the Center for Telecommuni-
cations Access and Services (CeTAS) at the University of the Witwatersrand, Johannesburg,
South Africa. This center is funded by Telkom SA Limited, Vodacom, Siemens Telecom-
munications and the Department of Trade and Industrys THRIP programme. This financial

support was much appreciated.

I thank God for my many blessings. I thank my role model and supervisor Prof. Hu Han-
rahan for his support and guidance during the duration of this research project. I also thank
my colleagues at CeTAS for their valuable inputs during this research. Last, I thank both

my parents, brother and fiance for their love, support and patience.

il

Contents

Declaratio i
[Abstract ii
|Acknowledgements| iii
[Contents iv
List of Figures xii
[List of Tables| xvii
[List of Abbreviations| xix
(1__Introduction| 1
[1.1 Convergence]l i i it 3
[I.2 Service Centric Networks| 5
1.2.1 X neration ekl . 5

(L.2.2 Service Orientated Architecturel 7

[1.2.3 Service Delivery Platform| 9

|1.3 Problem Statement, Aim and Objectives| 11
(.4 Outlineof Thesis| 12

v

2 Convergence|

[2.1 = The Process of Separation and Integration|
[2.2 Implications of Convergence|
2.2.1 BusinessModels|
[2.2.2 Network Technologies|
.23 Service Platforms|.
[2.2.4 Application Environments|
[2.2.5 Management Systems|o
2.3 SDP as a Strategy for Convergence|.
...................................

B Timitations
App h| . e
[3.2.1 Requirements|
3.3 Complex Systems| e e e
[3.3.1 Managing Complexity|

3.4 Modeling Complexity|

3.5 SDP Framework Development|
...................................

[Perspectives on the SDP from Legacy Standards: IN and TINA]

A1

Intelligent Network| .

11

Requirements|

14

15

17

18

19

21

23

23

25

27

29

31

32

32

33

34

35

37

40

41

i4.1.3 Reusable Concepts|, 44
414 Contributionto SDPfromINl. 46
4.1.5 Evaluation of SDP Conceptual Model| 47
¥.2 Telecommunication Information Network Architecturel 50
4.2.1 Requirements| 50
B22 Architecturel. 52
i4.2.3 Reusable Concepts|, 54
424 Contribution to the SDPfrom TINA| 55
¥.2.5 Evaluation of SDP Business Model and Architecture| 58
4 UMMALY| . . v v v v v e 60

[5Perspectives on the SDP from Service Platform Standards: Parlay and Par- |

[TayX] 61

[5.1 Requirements| e e e e e 62
02 Architecture] 63
Parlay| 64

B22 Parfay X 65

[5.3 Reusable Concepts| 68
[5.4 Contribution to the SDP from Parlay and Parlay X|. 70

5.5 Evaluation of SDP Business Model, Reference Model and Architecture] . . 75

|6 Perspectives on the SDP from Management Framework Standards: TMN, |
[TOM and eTOM 79

vi

6.1

Requirements| L

6. 1.1 TMN

6.12 TOM|

6.13 elTOMI.

621 TMNl

622 TOM|

623 eTOMI|.

6.3

Reusable Concepts|

(6.4

Contribution to the SDP from TMN, TOM and eTOM].

[6.4.1 Defining a Complete and Managed SDP Architecturef.

Evaluation of SDP Business Model and Archi rel ...

Perspective on the SDP from an Enterprise Standard: SOA|

1A

Requirements|

[7.2.2 Enterprise SOA|.

73

Reusable Concepts|

[7.5

Evaluation of SDP Business Model, Reterence Model and Architecture]

[7.5.1 SDP offering a Web Services SOA|.

vii

|8 Perspective on the SDP from a Converged Standard: IMS|

[8.1 Requirements|
B2 Architecturel
8.2.1 Functional Architecturel

rvice Platform Archi el ...

[8.3 Reusable Concepts|
8.4 Contribution to the SDP fromthe IMS|
(8.5 Evaluation of SDP Reference model and Architecturel

8.6 Summary| e e e e e e e e e

{9 Defining the SDP Framework|

01

Definition and Requirements|

Infrastructure Integration|

9.1.2 Service-oriented System| L Lo,

9.1.5 Overall Management|

Archi ral

I 8

viii

0.4 Summary| e 154

{10 Proving the SDP Framework| 156
[(10.1 IPTV Service Description|. 157
[[02 BusinessModell 158
[10.3 Formalising Interactions| 160
[10.4 Services, Interfaces and SDP Framework|. 160
[10.5 Mapping Standard-based Technologies|. 164

(10.5.1 Alternatives| 165

{10.6 SDP and IPTV Service Implementation| 166
[[0.6.1 Interactions viaAPI§ 167
[10.6.2 Building, Deployment and Stmulation| 174
MO7 ReSUllSl. . . o o ottt e e 175
0.8 Summary| 177

11 ntribution of our SDP Framewor 178
[11.1 Summary of Results|. 178
1.2 Conclusion| e 180
1.3 Future Workl 181

[11.3.1 Development Process|. 181
[11.3.2 Information Viewpoint| 182
|11.3.3 Resource Oriented Viewpoint| 182
[11.3.4 Creating Service Deliver Platforms| 183
[11.3.5 Importance of Standardised Middleware| 184

ix

[References| 185

|A° Mapping to the SDP Framework| 197
[A.T_Standards-based Architectures] 197
[A.2 Product-based Architectures| 198

[B~ Message Sequence Charts for IPTV Service 209
[B.I_Web Service and SCF Interactions] 209

B.1.1 IPTV Service Registration| 210
[B.1.2 End-User Service Location, Registration and Deregistration| 211
[B.1.3 Media Provider Registration| 213

IB.1.4 Application Provider Content Location, Registration and Deregis- |

| ationl v . e e e e e e e e e e e e e e e e 215
[B.1.5 SDP and Enterprise Policy Management|. 217

[B.1.6 End-User Account Management| 221

IB.1.7 End-Use Payments| 223

IB.1.8 End-User Pay Per View Part 1| 224

B.1.9 End-User Pay Per View Part2[. 226

IB.1.10 End-User Presence and Availability| 227

1.11 _End-User M n [PT m., 229

B.1.13 End-User Ends an [PTV Call

[B.1.14 Interactive End-User Messaging| 234

B.1.15 Provide End-User with IPTV Help|. 236

2.1 I reofthe SCS|

[B.2.2 Accessing OSS/BSS and Network Session Capabilities|

IB.2.3 Accessing Presence and Call Control Network Capabilities|

B.2.4 Accessing Messaging and Audio Content Network Capabilities|

|C Lessons Learned from the SDP Proof of Concept|

|C.1 Benefits of an Integrated Development Environment|.

X1

. 243

246

246

246

249

250

List of Figures

1.~ An Abstract NGN Representation| 6
[1.2° A SOA Representation| 8
{1.3° Proposed SDP Architecture| 9
[2.1 ~ Convergence of Infrastructure] 16
2.2 Example of a Converged Networks Business Model| 18
2.3 Evolution to a Softswitch Architecturel 20
2.4 Service Platform Architecturesl L. 22
[2.5 TMN Architecture, TOM Framework and eTOM Framework| 24
[2.6 Proposal for a SDP Reference Model with Reference Points|. 27
2.7 Complexity of Convergence| 28
(3.1 Expanded SDP Interpretation| 30
3.2 Simplified Systems Life Cycle| 34
[3.3 Abstracting Complex Software-based Systems|. 37
|3.4 Approach to Develop SDP Framework| 39
4.1 IN Requirements Classification| 43
4.2 IN Conceptual Model| 44
|4.3 SDP and its Environment represented as a Conceptual Model| 46

Xii

4.5 Simplified TINA Service and Network Resource Architectures (Interfaces

not shown)|. e 52
4.6 Reusing TINA Concepts forthe SDP|. 55
[5.1 Parlay Reference Model| 62
[5.2 Parlay Architecture| 64
[5.3 Parlay X Architecture| 67
15.4 Generic SDP Business Model derived from Parlay Reference Model| 70
5.5 SDP Reference Model derived from Parlay Reference Model| 71

[5.6 SDP and its Environment derived from Parlay and Parlay X Architectures| . 74

|6.1 Telco Management Business Models| 81
[6.2 TMN Logical and Functional Architecture| 84
6.3 TOM Business Process Frameworkl. 85
(6.4 Instances of the eTOM Framework and TNAl 87
[6.5 SDPBusiness Models]. 91

[6.7 A Managed SDP and its Environment| 95
[Z1__SOA Business and Reference Models| 102
[/.2 Web Service Standard-based SOAs|. 104
[7.3 Enterprise SOA Representation| 106
[7.4 Generic SOA Representation| 108

DP Busin nd Reference Models|. 109
[7.6 SDP and its Environment represented as Integrated GSOAs| 110

xiii

[8.1 Evolutionof Telco Networkl 117
[8.2 Simplified Portion of the IMS Reference Model 119
(8.3 IMS Functional Architecturel Lo 121
[8.4 IMS Service Platform Architecture Synthesised from IMS Standards| 123
[8.5 SDP Models based on IMS Concepts|. 127
8.6 SDP Architectures based on Generic IMS and SOA Concepts|. 129

1__SDP Servi nd Interfaces| 136
9.2 SDP Business Models|. 000000 139
9.3 SDP Reference Modell 140
(9.4 SDP Management Architecture with Interfaces| 142
[9.5 Structuring a SDP Architecture using Layers and Domains| 144
[9.6 Structuring a SDP Architecture using Planes| 146
9.7 Example TechnologyMap| 147
9.8 SDP Framework Layers and Domains| 149

(9.9 SDP and 1ts Environment: Expressing the Full Layers of the SDP Framework|150

9.10 SDP Framework Planes| 151

X1V

{10.5 SDP Framework with Simple Services Enabling IPTV| 163

[10.6 Using Parlay and IMS Standards to implementa SDP| 165
[10.7 Starting a Data Session for Streaming Content| 169
|10.8 Pausing a Data Session Streaming Content| 170
[10.9 Resuming and Stopping a Data Session Streaming Content| 172
{10.10S1mulating Network Data Session Manipulation| 173
[10.11Deployment of SDP Implementation| 174
|11.1 Example SDP Development Process using Viewpoints| 181
[A.1 Ericsson SDP Architecture| L. 203
[A.2 Hewlett Packard SDP Architecturel 203
[A3 IBM SDP Architecturel 204
[A4 Microsoft SDP Architecturel Lo 204
[B.1 Registration of IPTV Service| 210
IB.2 Service Provider and End-User Registration Model| 211
IB.3 End-User Message Sequences| 212
IB.4 Registration of Media Provider{ 214
IB.5 Media Provider and Application Provider Registration Model| 215
[B.6 Application Provider Message Sequences| 216
[B.7 Create and Obtain Policy Information| 218
IB.8 RemoveaPolicyl 220
[B.9 Obtain Account Balance and History| 222
[B.10 Pay End-User Account| 223

XV

[B.11 Pay Per View for Pre-booking Content| 225

[B.12 Pay Per View After Viewing Content| 226
[B.13 Update and Obtain End-User Presence Status| 228
|B.14 Setup Two Party Call Between End-User and Friend|. 230
IB.15 Checking Status of Two Party IPTV Callf. 231
[B.16 Ending an IPTV Call between Two Parties| 233
[B.17 Messaging between Two IPTV End-Users| 235
[B.18 Using the Interactive [IPTV Help| 237
[B.19 SCS with Protocol Adaptors|, 239
[B.20 SCS to SIP mappings for OSS/BSS and Data Sessions| 240
[B.21 SCS to SIP mappings for Presence and Call Control| 242
IB.22 SCS to SIP mappings for Messaging and Interactive Audio Delivery| 244
|C.1 Using CORBA Portable Interceptors| 248

XVvi

List of Tables

1.~ Summary of telecom-I'T Convergence| 4
4.1 Comparison of Conceptual Models| 48
4.2 Comparison of TINA and SDP concepts and architectures|. 59
[5.1 Comparison of Parlay and SDP Concepts and Architectures|. 76
[6.1 Comparison of Management standards and the SDP Management Architecture| 97
{7.1 ~Comparison of SOA the SDP Architectures| 113
[8.1 Comparison of IMS and SDP Architectures| 131
9.1 Examples of Middleware Technologies for SDP Architectures| 148
9.2 Mapping IMS onto the SDP Framework| 155
[10.1 SDP Deployment|, 175
|A.1 Mapping IN/TMN onto the SDP Framework| 199
|A.2 Mapping TINA onto the SDP Framework| 200
|[A.3 Mapping eTOM onto the SDP Framework| 201
|A.4 Mapping JAIN onto the SDP Framework|. 202
|IA.5 Mapping the Ericsson SDP Architecture onto the SDP Framework| 205
|A.6 Mapping the Hewlett Packard SDP Architecture onto the SDP Framework| . 206
|A.7 Mapping the IBM SDP Architecture onto the SDP Framework| 207

XVii

|A.8 Mapping the Microsoft SDP Architecture onto the SDP Framework| 208

XVviil

List of Abbreviations

AAA

Authentication, Authorization, and Accounting

API

Application Programming Interface

ATM

Asynchronous Transfer Mode

BGCF

Border Gateway Control Function

BPEL

Business Process Execution Language

BSS

Business Support Systems

CAMEL

Customised Application for Mobile Enhanced Logic

CCF

Charging Collection Function

CMIP

Common Management Information Protocol

CORBA

Common Object Resource Broker Architecture

CRM

Customer Relation Management

CSCF

Call Session Control Functional

DPE

Distributed Processing Environment

DSL

Digital Subscriber Line

EAI

Enterprise Application Integration

ERP

Enterprise Resource Planning

ESB

Enterprise Service Bus

eTOM

enhanced Telecommunication Operations Map

GGSN

Gateway GPRS Support Nodes

GPRS

General Packet Radio Service

GSM

Global System for Mobile Communications

GSOA

Generic Service Oriented Architecture

HLR

Home Location Registry

HSS

Home Subscriber Server

HTTP

Hyper Text Transfer Protocol

ICT

Information and Communication Technology

IDE

Integrated Development Environment

IDL

Interface Definition Language

IMS

Internet Protocol Multimedia Subsystem

IM-SSF

IP Multimedia Service Switching Function

XiX

IN Intelligent Network

IP Internet Protocol

IPTV Interactive Personalised Tele-Vision
IT Information Technology

IVR Interactive Voice Response Unit
JAIN Java API for Integrated Network
JRE Java Runtime Environment

MF Mediation Function

MGCF | Media Gateway Control Function
MGW Media Gateway

MPLS Multiple Path Label Switching
MREFC Media Resource Function Controller
MRFP Media Resource Function Processor
NEF Network Element Function

NGN Next Generation Network

NGOSS | New Generation Operations Systems and Software
OCF Online Charging Function

OMA Open Mobile Alliance

OMG Object Management Group

ORB Object Resource Broker

OSF Operations System Functions

0SS Operational Support Systems

PDF Policy Decision Function

PSTN Public Switched Telephone Network
QAF Q Adaptor Function

RTP Real Time Protocol

SAG Service Agreement Group

SCE Service Creation Environment

SCF Service Capability Feature

SCIM Service Capability Interaction Manager
SCP Service Control Point

SCS Service Capability Server

SCP Service Control Function

SDP Service Delivery Platform

SGW Signalling Gateway

SIBS Service Independent Building Blocks
SID Shared Information and Datal

XX

SIP Session Initiation Protocol

SME Service Management Environment

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SS7 Signalling System Number 7

SSF Service Switching Function

TCP Transport Control Protocol

TDM Time Division Multiplexor

TINA Telecommunication Information Network Architecture
TMN Telecommunication Management Network

TNA Technology Neutral Architecture

TOM Telecommunication Operations Map

UDDI Universal Description, Discovery and Integration
UE User Equipment

UML Unified Modelling Language

UMTS Universal Mobile Telephone System

VLR Visiting Location Registry

WSDL Web Service Description Language

XX1

Chapter 1

Introduction

Traditional telecommunication company (telco) networks provide basic, reliable, secure and
quality voice communication between millions of customers. These networks include both
fixed Public Switched Telephone Network (PSTN) and wireless Global System for Mobile
Communications (GSM) cellular network. Overlay networks have enabled additional ser-
vices, such as free-phone, voice-mail, messaging and pre-payment communication to be
provided. Examples of overlay networks include the Signalling System Number 7 (SS7) [[1]]
to provide signalling support and the Intelligent Network (IN) [2] to provide services. Each
network adds its own complex mixture of hardware, software and communication protocols

to the base telco network.

Other traditional networks include the enterprise and broadcasting networks. These net-

works use various technologies to deliver their services to their customers. For example:

e Enterprises use Information Technology (IT) based platforms to create applications
and services. These platforms deliver services using a limited intelligence and un-
reliable packet-based transport, that is, the Internet or Intranets. Enterprise services
are used by customers with intelligent devices. The platforms and devices manage

end-to-end reliability, security and quality over the Internet.

e Broadcasters provide content-based services to customers using their own wired and
wireless networks. Traditional broadcaster services are both unidirectional and bidi-
rectional. However, these bidirectional services provide limited interactivity. In ad-
dition, some services provide limited customisation. In this work we do not focus on

broadcast networks.

Historically, the telco, enterprise and broadcasting networks operate in separate domains.

Each domain is administered by an authority. This authority regulates each network domain

and ensures that each network operates within its domain and abides by various policies and

rules.

Currently, each network is influenced by similar threats and opportunities in their respective

domains. The threats and opportunities include the following:

Transport innovations: new and improved systems enable interworking between vari-
ous transport networks. These include interworking between the telco’s circuit-mode

PSTN and the Internet’s packet-based transport network.

Software innovations: various I'T-based systems aid service development, deployment
and management. In addition, these software systems provide mechanisms to support

and simplify network and customer management.

Customer requirements: customers demand basic and advanced services that sup-
port their professional and social lives. The services function independently of the

customer device and location, but remains dependent on customer preferences.

Advanced services: new services combine traditional voice with content, such as
video or information. Services are customisable and adaptable to various stimuli,
such as presence, availability, location and device capabilities. Also, advanced and

legacy services are delivered over any network.

Relaxed regulations: both technology dependent and independent factors influence
regulative policies, such as transport networks and customer requirements. Hence,
authorities define new or altered policies to break boundaries between various net-
work domains. As a result, regulators aim to foster an open, fair, competitive and

multi-service environment [3]].

Service-oriented environment: creation of a Information and Communication Tech-
nology (ICT) environment. The ICT environment represents the merging of various
network domains into a single, competitive and service centric domain. Within the
ICT environment operators integrate various information and communication-based

technologies into their networks to support a variety of services.

The telco aims to manage threats and opportunities by adapting its network to provide ad-

vanced customer services and deliver them across heterogenous transport networks. There-

fore, telco network operators are embracing the current evolutionary trend of Convergence.

1.1 Convergence

Convergence manifests itself in many ways. In this work, we focus on a particular aspect
of convergence that is telecom-IT convergence. This form of convergence integrates tra-
ditionally separate telco and I'T-based networks to provide a multi-service platform, that
supports the creation, deployment, management and delivery of communication, informa-
tion and content-based services across diverse transport networks. These services provide
single to multimedia-based functionality, such as normal telephony, information browsing
and interactive television. Thus, integrated telco and IT-based networks are able to benefit
within the ICT environment, by providing plentiful services across varied technologies to

satisfy customer needs.

Telecom-IT convergence is a complex undertaking since each network constitutes mixtures
of systems that must interoperate. These systems are standard-based or proprietary and
are dependent on specific technologies. As a result, various forms of convergence exist
between telco and IT networks. By extending the convergence model of [4] we list the
following forms of telecom-IT convergence. Also, these forms of telecom-IT convergence

are summarised in Table [l 1]

e Device convergence: customers use a single device on various access networks, to

consume multiple types of services.

e Transport convergence: interworking circuit mode networks and packet-based net-
works, including access and edge networks. Network interworking is managed by
a multi-service network that is able to deliver any services across any interworked

network.

e Functional convergence: diverse network functions interwork to support service de-

livery and management, such as billing.

e Service convergence: diverse network functions are abstracted and combined into
reusable network services. These services provide application developers with open,

managed, secure and technology neutral interfaces to network capabilities.

e Application convergence: integrate various types of application functionality and
content to provide services to customers. Also, applications use network capabili-

ties by accessing and combining network service interfaces.

e Content convergence: represents the managed collection of content providers, who
provision their content using network capabilities. In addition, the network treats
content similarly to a resource that is accessible to applications via network services,

network functions, transport networks and customer devices.

Telecoms IT Broadcasting

Applications | Applications enhance tele- | Applications enhanced by | Applications providing

and com services. Seen in the | communications. value added access to

Content IN. content.

Converged applications provide a diverse range of services, that provide either voice, infor-
mation, content or integrated forms of media.

Services Telecom type services are | Internet type services such | Generic services used for
real-time and voice-based. | as e-mail and web brows- | accessing and consuming
Provides limited data ser- | ing. Both real-time and de- | content.
vices such as messaging. layed but information rich.

Converged services represent abstract forms of network functionality. Integrating multiple
services creates converged applications.

Functions Supports delivery of tele- | Provides limited intelli- | Provides needed function-
com services to customers | gence that is used to deliver | ality to encode/decode con-
on telco networks. Sup- | services across transport | tent for delivery across
ports billing and network | networks to customer | transport networks to cus-
interworking. terminals. tomers.

Converged functions provide a stable base that enables applications and services to operate
over varied network infrastructure. Also, ensures service delivery across varied transport
networks.

Infrastructure | Circuit mode and packetac- | Interworking of multiple | Varied networks.
cess and core networks. packet-based networks.

Converged infrastructures represent a collection of diverse networks that are integrated via
a multi-service network. Includes capabilities of customer device.

Table 1.1: Summary of telecom-IT Convergence

Already, enterprise networks are evolving to manage some forms of convergence. For ex-
ample, enterprises are providing Internet-based services that combine multiple forms of
functionality and media, such as multiparty voice communication, short messaging, video
streaming and information browsing. These Internet services are increasing in usage and

popularity, by both fixed and mobile Internet and telco customers.

To respond to Internet-based services, the telco may promote its own “Internet-like” ser-
vices that are enhanced by using telco network capabilities. For example, these telco ser-
vices operate over reliable, secure and quality transport networks. In addition, telco services
may provide added functionality based on fixed and mobile customer terminals. Hence,
these Internet-like services provide the telco with an alternate revenue stream to the con-

stant voice service revenues [J]].

The current stage of telco evolution includes telecom-IT convergence. Hence, the evolved
telco network must enable content and service delivery using any or all underlying func-

tions, transport networks and devices. However, underlying network complexities must be

hidden from the application providing the customer service. As a result, the telco network

must become service centric.

1.2 Service Centric Networks

We use the concept of a service centric network to describe a network that provides an abun-
dance of services to its customers, independent of the underlying network details. These
details include diverse interworking transport networks, varied customer terminals, trans-
mission of protocols, distribution of network capabilities and resources and varied network

service implementations.

Services provided by service centric networks include basic services, such as voice, and
advanced services, such as real-time television streaming. Service centric networks provide
an environment for any service to be created, maintained and managed. In addition to

services, these networks also manage content needed by services.

To support service creation, service centric networks abstract the underlying complexities
of converged networks, such as integrated transport networks, functions and services. In
addition, service centric networks abstract customer domain complexities, such as devices
and location. These abstractions are represented as generic and reusable software-based
services that are incorporated into applications. It is these applications that provide basic

and advanced services to customers.

A variety of service centric network architectures exist. We describe three specific architec-
tures, the Next Generation Network (NGN) [6]], Service Oriented Architecture (SOA) [7]]
and Service Delivery Platform (SDP) [§]].

1.2.1 Next Generation Network

The NGN concept is defined by [9]] as a packet-based network providing a variety of ser-
vices, such as telco and Internet services, using various quality of service enabled transport
technologies and service-oriented functions that are abstractions of underlying transport

technologies [6].

Based on the above definition, the NGN aims to support the evolution of the telco circuit
switched networks into a packet-based all purpose service centric network. In addition, the

NGN concept guides integration of telco networks with and other network types.

[Application Provider Layer]

— =

Application Layer
Open, secure,
#> """"""" > standardised and

managed Interface

Network Service Layer]

==

Network Layer

Customers

~—/

Figure 1.1: An Abstract NGN Representation

Adapting the NGN definition, the NGN exhibits the following characteristics:

1. provides a quality assured packet-based transport that interworks with other net-

works, such as the PSTN and Internet;

2. delivers telco and Internet-based services to fixed and mobile customers over its

packet transport;

3. separates network independent service related functions from underlying transport

technologies;

4. offers controlled open access to network service functions to both customers and

application providers; and

5. facilitates the provision of services from application providers to customers.

Based on these characteristics, the NGN supports most forms of convergence.

The NGN breaks with traditionally closed telco network architectures and business models.
By providing managed open access, the NGN enables the telco to partner with diverse
entities, such as application developers or other network operators. Application developers
may be external IT-using enterprises that create services for telco customers. Thus, opening
of the telco network increases the number of connections the network has and therefore the

network’s value increases [10].

A NGN architecture is shown in Figure [I.1] In the figure, the application provider layer
contains external IT-based infrastructure used by telco partners to create and support ap-
plications. The application layer houses applications developed by external IT-using en-
terprises. These applications invoke telco network resources and capabilities via network

service interfaces. The network service layer contains a diverse range of network services

that expose access to telco network capabilities via their technology neutral interfaces. The

network layer houses the physical equipment that constitutes the telco network.

The NGN architecture also shows a customer domain that intersects the application, net-
work service and network layers. As a result, each layer contributes applications, network
services and equipment to the customer domain. This enables customers to access the NGN

and various telco or Internet-based services.

The NGN representation in Figure is highly abstract and does not dictate technology
choices for its implementation. Although, network operators must consider using standard-
ised technologies to implement each NGN layer to ensure interworking with other NGNs.

An example technology that can be used to implement parts of the NGN is the SOA.

1.2.2 Service Orientated Architecture

Enterprises manage convergence by focusing on integration of IT systems, rather than de-
veloping new systems [[11]]. These IT systems provide the needed functions to satisfy busi-
ness processes. In addition, IT systems may belong to the enterprise or external partners.
These IT systems are technology and distributed dependent. The Service Orientated Archi-

tecture (SOA) is therefore defined to ease integration of diverse and distributed systems.

The SOA represents an architecture and set of standardised technologies that enable enter-
prise resources to be used on demand and exposed to customers and external partners [12].
The SOA fulfills these properties by managing a collection of reusable and technology neu-
tral services [13]]. These services are called web services and they each abstract enterprise
resources, such as applications, databases, devices, transport networks and other web ser-

vices.

The collection of web services represents a service repository. Services, within the reposi-
tory, are reusable in multiple application development efforts. Thus, web service function-

ality is orchestrated into applications that automate business processes.

A SOA representation is shown in Figure[I.2] The figure illustrates various entities, such
as web services, applications and a service registry. The SOA entities may be programmed
using different technologies. But, to ensure interoperability between the communicating en-
tities, standards-based SOA technologies are used. These standardised technologies include

the following:

Application Resources @
N O @&

< Interface

<= Interface <Interface

Enterprise Resources § g @ &) @
e

Transports

Figure 1.2: A SOA Representation

e Web Service Description Language (WSDL) [14]: describes the location and func-

tionality provided by the web service.

e Universal description, discovery and integration (UDDI) [15]: provides the mecha-

nisms required for applications to find web service WSDLs.

e Simple Object Access Protocol (SOAP) [[16]]: enables technology-neutral communi-

cation between UDDI databases, applications and web services.

e Hyper Text Transfer Protocol(HTTP) [[17]: provides the means to transport SOAP

across networks.

In the figure, web services publish their description in WSDL to the service registry. Obtain-
ing the web service description occurs using one of two methods. First, during application
development the web service description is discovered from the registry. Using the descrip-
tion, developers incorporate the web service functions into the application implementation.
Second, during run-time applications dynamically discover the web service description and
invoke the corresponding web service functions. All discovery and invocation communica-
tion occurs using SOAP and HTTP.

The technologies used for the SOA are standardised. However, the SOA is locked into us-
ing these Internet-based technologies only. Also, some of these technologies are not fully
mature. Therefore, the SOA is not an adequate candidate for evolving the telco network
into a service-centric network, that manages the various forms of telecom-IT convergence.
However, the telco network may reuse SOA concepts to offer generic telco services to enter-
prises. The enterprises may use these services to create “telecoms-enhanced” applications

for their own customers or telco customers.

\%>Web services
t

ﬂ Service Exposure Layer
AAA

Service Content
0SS Execution Delivery
Platform Platform

Interfaces K‘ Network Abstraction Layer

Q Converged Netwo(rl;s
N >
E’ 5

i

Figure 1.3: Proposed SDP Architecture

Another architecture that builds upon both NGN and SOA is the SDP.

1.2.3 Service Delivery Platform

The Service Delivery Platform (SDP) is designed specifically for delivering services to users
of communications technologies [[18]]. The SDP uses telecoms, I'T or content-based capabil-
ities to deliver services to customers, independent of network technologies. These services
include number translation, click-to-dial, location based services, virtual call centres and IT

type services, such as mobile gaming [§]].

A proposed SDP architecture that is adapted from [8] is illustrated in Figure This SDP
representation is based on common vendor product functions and constitutes functional
abstractions, that simplify complexities within a telco network. These abstractions and their

functions are:

1. Service Creation Environment (SCE) and Management Environment (SME): is used
by internal application developers to create applications that access telecom capabil-

ities independent of network technologies.

2. Service Exposure Layer: provides external application developers with access to
generic and reusable services that abstract applications contained in lower platforms.

As an example, this layer may be SOA-based and contain web services.

3. Service Execution Platform: hosts various applications that provide telco, Internet

and content-based services to customers.

4. Content Delivery Platform: manages the provision and delivery of content to cus-
tomers using content-based services. Content is stored in media repositories that are

accessible via interfaces.

5. Network Abstraction Layer: provides a technology-neutral set of capabilities that

enable the delivery and management of services across converged networks.

6. Management Platforms: integrate into all layers and platforms, so as to administer
the SDP. Each SDP abstraction has access to management resources and capabilities,

such as the Operational and Business Support Systems (OSS/BSS).

Based on the definition and proposed architecture, the SDP aims to provide a complete man-
aged environment that offers various service abstractions to external application developers.
These abstractions simplify underlying telecom systems and technologies. However, the

proposed SDP representation has disadvantages:

1. Choosing implementation technologies for each SDP abstraction is difficult. The
interfaces must be standardised so as to promote SDP interworking. Also, the tech-

nologies must provide relevant abstractions and support SDP management.

2. Customer-related abstractions are not defined. In addition, the platforms or layers
do not simplify customer related activities. For instance, access, service provisioning

and customer to service signalling is not abstracted.

3. The architecture provides a single abstracted view on the SDP. Missing SDP views
include business and domain models, functional groupings, information distributions
and application logic relationships. The missing views must provide more abstrac-

tions that are structured using specific architectures.

4. Access to telecom management facilities is provided by proprietary interfaces. In
addition, how the SDP itself is managed is not defined. Similar to points 1 and 3, a
management architecture is required that is implementable using technologies with

standard-based interfaces.

As a result of these limitations, network operators build or buy custom SDP solutions that
enable them to create limited services. These SDP implementations are diverse and follow
no agreed or standardised interpretation. This inevitably leads to SDP solutions being de-
pendent on various technologies that are standards-based and proprietary. This effects the
openness of the SDP and interoperability between other SDP solutions. Therefore, solving

these and other SDP limitations is the focus of this research.

10

1.3 Problem Statement, Aim and Objectives

The convergence trend produces various telecoms and IT service-centric network architec-
tures, such as the NGN, SOA and SDP. These architectures may be used to evolve telco
voice-centric networks into service-centric networks. Each architecture provides varying
abstractions to hide convergence and network complexities. We consider the SDP the most
generalised approach for evolving the telco network into a service-centric network and to

benefit from convergence. However, the SDP is not standardised.

The SDP concept demands abstractions to simplify various complexities. These abstrac-
tions must be structured and their implementations standards-based. Hence, this research
responds to the question: what are the convergence and network complexities that can be
simplified by the SDP and what architectures, abstractions and interfaces must be devel-
oped to aid this simplification? Based on this problem statement we pose the following

sub-questions:

1. Who are the external IT-using enterprises that benefit from the development of a
standard-based SDP?

2. What is the SDP business model used to manage the business relationships between

telco and external I'T-using enterprises?

3. How does the SDP enforce standard-based interactions between the telco and external

IT-using enterprises to satisfy business relationships?

4. What are the services that the SDP defines to abstract telco network resources and

capabilities?

5. What are the service interfaces that the SDP must expose to external IT-using enter-

prises?

6. How must the architecture in Figure [I.3) be elaborated or simplified to promote a
standard-based SDP.

7. What design pattern do we use to structure the SDP architecture such that it is tech-

nology neutral and extendable?

8. How do we incorporate OSS/BSS into the SDP architecture such that we promote a
standard-based SCE and SME?

Our research aims to answer these questions and as a result define a SDP framework that

contains various levels of abstraction. The framework and its abstractions simplify various

11

complexities and guide telco network evolution into a SDP. The objective of the framework
is to also promote SDP standardisation where possible using established standards. This is
achieved by applying the framework to create technology, distribution and implementation
independent SDP architectures. The generic architectures motivate the use of standard-
based fechnologies to implement the SDP. By using standard-based technologies, the SDP
becomes truly open to diverse I'T using enterprises and their applications. Also, the SDP can
access and use converged network capabilities, including customer devices. Hence, being

standard-based ensures interoperability between SDP implementations.

We aim to prove the concept of the SDP framework by developing a SDP architecture and

implementing some of its parts using standard-based technologies.

1.4 Outline of Thesis

Telecom-IT convergence has implications on both telco and IT-based networks. A major
implication is the interworking between telco and IT systems. This interworking requires
new converged systems to be developed. These new systems are complex since they must
perform both telecom and I'T-based functions. One such system is the SDP. A methodology
is used to develop complex systems by defining their architectures using various viewpoints.

In chapters 2 and 3 we define telecom-IT convergence and a viewpoint methodology.

e Chapter 2: we describe telecom-IT convergence as a complex process. We define the
process and discuss its implication on both telco and IT-based networks. In addition,

we define a strategy to manage telecom-IT convergence.

o Chapter 3: we discuss complex systems, their development and their relation to defin-
ing the SDP framework. We elaborate on reusable tools that manage complexity
and contribute to the definition of the SDP framework. In addition, we explain the

methodology used to define the SDP framework.

Various legacy and current standards in telecoms and IT are useful in conceptualising and
defining the SDP. These standards contribute towards uncovering SDP requirements, ab-
stractions for the framework and reusable interfaces to implement the framework. As a
result, each of these standards provide a specific viewpoint on the SDP and the develop-

ment of its framework. In chapters 4 to 8 we examine such standards.

e Chapter 4: we define a perspective on the SDP by using legacy Intelligent Net-
work (IN) [2] and Telecommunication Information Network Architecture (TINA) [[19]]

12

standards.

e Chapter 5: we define a perspective on the SDP by using the Parlay [20] service plat-

form standards.

o Chapter 6: we define a perspective on the SDP by using management framework stan-
dards, such as Telecommunication Management Network (TMN) [21]], Telecommu-
nication Operations Map (TOM) [22] and enhanced Telecommunication Operations
Map (eTOM) [23].

e Chapter 7: we define a perspective on the SDP by using the enterprise SOA standard.

e Chapter 8: we define a perspective on the SDP by using the Internet Protocol Multi-
media Subsystem (IMS) [24] standard.

Results from the viewpoints on the SDP include various abstractions. These abstractions
represent the building blocks that structure the SDP framework. In addition, these building
blocks are technology neutral and may be implemented using any suitable telecoms and
IT-based technologies. Chapters 9 and 10 represent the synthesis of these abstractions into

the SDP framework and a proof of concept implementation.

e Chapter 9: we define the SDP framework by integrating concepts obtained from all
perspectives. The framework is defined using stages containing abstraction and ar-

chitectures. We also compare some SDP interpretations to the framework.

e Chapter 10: we prove the concepts of the SDP framework by defining a SDP archi-
tecture and implementing its parts. For the implementation we use service interfaces

provided by various standards-based technologies.

e Chapter 11: we discuss the contribution of the framework to SDP standardisation. In

addition, we summarise our results and present recommendations for future work.

13

Chapter 2

Convergence

In this research we focus on telecom-IT network convergence. A definition of telecom-IT
convergence is integrating reliable telco voice (and data) services with information (and
media) capabilities supported by IT and the Internet [25]. This form of convergence is
evident in the SDP architecture, shown in Figure The SDP architecture incorporates
both content delivery and telco services, and exposes these capabilities to enterprises using
IT-based mechanisms. In addition, the SDP architecture uses network capabilities provided

by converged telco, IT and Internet networks.

For the telco, telecom-IT convergence implies the provision of simple and converged ser-
vices to customers over the telco network, I'T-based enterprise networks and Internet. Sim-
ple services include normal telephony, messaging and information browsing, while con-
verged services integrate combinations of voice, media and information. Telecom-IT con-
vergence also implies the use of IT-based mechanisms by the telco to develop, deliver and

manage services.

Convergence aims to allow telco and IT network infrastructures to interwork. We define
infrastructure as the arrangement, distribution and connection of hardware and software
required to provide services. However, heterogeneous telco and IT-based infrastructures
hinder convergence, for example, circuit and packet-based transport networks for deliver-
ing services across telco networks and the Internet respectively. We interpret telecom-IT
convergence as a process that allows interoperability between telco and I'T-based infrastruc-

tures, such that numerous services are delivered to customers.

14

2.1 The Process of Separation and Integration

Telco networks contain a diverse infrastructure. Each infrastructure contains various lev-
els of functionality, such as network services, network functions and transport networks.
Traditionally telco infrastructure is separated into vertical silos. Each silo represents an in-
dependent system that provides limited services by using specific network capabilities. In
addition, a silo operates on a particular transport network. Examples of silos include both

legacy fixed and mobile telco PSTN/IN service platforms.

The vertical nature of telco network infrastructure is caused by environmental factors, such
as business drivers, regulations, technologies and customer requirements. However, as en-
vironmental factors change, the telco network evolves. The current evolution aims to sup-
port interworking between telco network infrastructure and IT-based infrastructure, that is,
telecom-IT convergence. To provide infrastructure interworking, the telco decomposes its

silos by horizontally separating their common functions into layers.

Infrastructure functions are decoupled from their physical representation into abstract enti-
ties. As a result, the complexity of the infrastructure is decomposed into manageable and
reusable functional entities. In addition, functional entities focus on particular areas of the
network infrastructure. For example, Figure implies the use of layers to horizontally
separate network abstraction and service exposure functionality. These sets of functionality
abstract access to network capabilities, services and content. The figure also uses a platform
layer to separate service execution and content delivery functionality. This functionality ab-

stracts access to telco services and content used by services.

Within a layer, functions enable horizontal integration of telco and I'T-based infrastructure.
For example, Figure shows the integration of platforms with OSS/BSS and content
repositories, via interfaces. Also, the figure shows converged networks that contain inte-
grated telco transport networks, I'T-based transport networks and Internet. The integration
of these networks is achieved by horizontally interworking circuit mode and packet-based

transport networks.

Layers also enable vertical integration of telco and IT-based infrastructure, by using their
functions as points of integration. For example, Figure uses the exposure layer as a
point of integration between IT-based applications and telco network capabilities. Also, the
network abstraction layer is a point of integration between applications/content and con-
verged networks. The platform layer provides the interworking between service exposure

and network abstraction layers.

15

Business
Model
Layer

[BM BM BM
S

) \&—/

i i i
L 28 Yy N\ [¥
(|.T) Apps and
AC AC AC Content
Apps/Content Laver
o S e S
QOS, | Softvyare
< |
reliable, | — — — — | Services \SS SS SS | Sigylgfs
secure /‘ g il IO M sl I My v
I —1 I— Network
NT NT NT | | Transport
Transport T T Layer
Telco IT Other
(TeIco) Domain Domain Domains
(a) Separation and Integration (b) Horizontal and Vertical Convergence

Figure 2.1: Convergence of Infrastructure

A representation of infrastructure separation and integration, adapted from [26], is illus-
trated in Figure The figure depicts converged infrastructure that is horizontally
separated into reliable, secure and quality of service guaranteed transport networks, that
expose functionality using abstract network services. The infrastructure is also horizon-
tally separated into application and content delivery functions. These functions vertically
integrate with the transport networks by using network services. The figure applies to the

convergence of enterprise IT solutions with telco networks.

By applying the separation and integration process to telco and IT infrastructures we present
Figure The figure is derived from [26l 27]]. The figure depicts three vertically sep-
arated network domains: telco, IT and other (may include broadcaster networks). Across
each domain, common independent functionality is separated into horizontal layers. These
layers being applications/content, software-based services and transport networks. The fig-
ure shows horizontal integration across layers. Also, the figure uses the services layer as a

point of integration between layers.

As a result of applying both forms of integration, Figure illustrates two types of

telecom-IT convergence:

e Vertical Convergence: represents vertical integration between layers within the same
domain. For example, the telco integrates its internal legacy systems and new sys-
tems, such as integrating PSTN and IN platforms with new service platforms, content

stores, management facilities and high-speed transport networks.

16

e Horizontal Convergence: represents horizontal integration within layers, across dif-
ferent domains. For example, telco voice applications integrate with external content-
based applications provided by IT using enterprises. Also, telco services may inte-
grate with services located in external enterprises. This form of convergence also
applies to the integration of transport networks, such as the telco and Internet. As a
result, integrated transport networks support the integration of applications, content

and services across network domains.

In Figure business models are horizontally integrated. This integration illustrates
the convergence of business activities between telco and IT networks. The main activity fo-
cuses on providing services to customers. Hence, telco and IT business models are joining,
such that service development, deployment and delivery is shared across multiple network
domains. The figure does not show management applications and services, but they are
contained in each domain and layer. These applications and services may also integrate

vertically and horizontally.

Both horizontal and vertical convergence are realised by interworking networks’ software
and transport technologies. For example, integrating different signalling protocols, switch-
ing technologies, application implementations and content. However, this integration has

various implications on the telco network.

2.2 Implications of Convergence

Telecom-IT convergence has the following implications:

e Telco and IT business models must integrate into value chains, with both benefiting

from the development and delivery of services to customers.
e Circuit and packet switching must interoperate, to reliably transmit any form of data.
e Signaling protocols must interwork across networks to support service delivery.

e Service platforms must operate independent of the underlying network technologies

and provide functionality to diverse application developers.

e Application development technologies must provide tools to support application cre-

ation, independent of the service platform that applications access.

e Management systems, such as OSS/BSS, must administer mixtures of terminals,

transport networks, services and application technologies, across diverse networks.

17

(O]
| Broker

Application
Provider

Customer

Content
Provider

_{ Network Operator J
- J

Figure 2.2: Example of a Converged Networks Business Model

We describe each of these convergence implications in the following sections.

2.2.1 Business Models

Offering a diverse range of services is essential within the ICT environment. To support
service development the telco opens the network to a variety of external ard party enter-
prises. Examples of these enterprises include service providers, application developers or
content providers. With this opening, telco and enterprise partnerships are formed. The
aim of these partnerships is to support the creation and delivery of a variety of services to
customers. As a result, new and innovative business models are established. An example of

a converged business model is shown in Figure[2.2]

The business model depicts the following entities:

1. Network Operator: provides connectivity and access to its network resources and

capabilities to other entities in the business model.

2. Application Providers: invoke common network functions to enhance applications
that provide value added services to customers. These services include basic voice,

video streaming, multimedia conference and mobile gaming.

3. Content Providers: manages, sells and delivers content needed by application de-
velopers. Two categories of content exist. First, traditional content such as voice
announcements used by an Interactive Voice Response Unit (IVR). Second, new con-
tent needed by specialised services, such as images, audio, video, music, multimedia

or information.

4. Brokers: enable interactions between business entities. For instance, a broker retails

18

services from application providers to customers. Also, brokers retail content from

content providers to application providers.

5. Customers: are individuals or enterprises that subscribe, consume and pay for ser-

vices.

With this model a value chain is created, where all partners benefit. For instance, appli-
cation providers access abundant network functions to create “felecoms-enabled” applica-
tions. Also, content providers access network functions to delivery content to a variety of
consumers. Via brokers, application providers access diverse content managed by content
providers. Using the telco network and brokers, application providers sell their services to

a large customer market.

Based on the above business model and scenarios, brokers are key to a converged busi-
ness model [28]]. Brokers provide a single point of access between multiple customers,
application providers and content providers. Brokers therefore further promote interactions
between entities in the converged business model. As a result, brokers contribute to service

delivery. The telco network operator benefits from the increased activity in its network.

The business model benefits internal and external application development by providing
access to connectivity and network functionality. This functionality is reusable and reduces
time and cost in both internal and external application development [18]]. Also, integrating
more partners into the business model ultimately connects more entities to the network,

thereby increasing the network’s value [10].

The business model is generic. By remaining generic the business model entities may be
decomposed into additional business partners that participate in specific business roles. For
instance, application providers may be decomposed into service providers that sell services
to customers. These service providers act on behalf of application providers, who only cre-
ate the service. The business model is also dynamic and can easily evolve when influenced

by the convergence process.

We define various business models for the SDP in ChaptersH], [5} [6]and [/

2.2.2 Network Technologies

Categories of emerging network technologies include user and network transmission meth-
ods, network elements, service, application and management protocols and platforms. Ex-

amples of network technologies are:

19

Softswitch Architecture
Legacy Network Switch / App Server »
5
App Server ._/ a
o | AP l—%
IS =3
kol I | Signaling |l . @
& Switching = Gateway |] Softswitch g
a t 3
Transport A/\ 5y
(=]
| Media o

\ Gateway /

Figure 2.3: Evolution to a Softswitch Architecture

1. Customer Access: increased bandwidth provided by fixed and wireless mechanisms,
such as Digital Subscriber Line (DSL) [29] and Universal Mobile Telephone Sys-
tem (UMTS) [30]. Technologies like these enable complex services to be offered and

delivered over the network to users with intelligent devices [31].

2. Transport Switching: includes legacy circuit-orientated Time Division Multiplex-
ing (TDM) switching. Also, virtual circuit packet-orientated Asynchronous Trans-
fer Mode (ATM) [32] and Multiple Path Label Switching (MPLS) [33] are used to

transport various types of data including protocols.

3. Transport and Signalling Protocols: the Internet Protocol (IP) [34] is used to transport
various forms of data across both telco and IT networks. The IP also transports sig-
nalling protocols such as Transport Control Protocol (TCP) [35], Real Time Protocol
(RTP) [36] and Session Initiation Protocol (SIP) [37] across networks. These sig-
nalling protocols are used to support different services on both telco and IT networks,

such as voice, web browsing and video streaming.

Convergence requires the abstraction of complex, heterogenous and integrated network
technologies, to enable service development. As a result, the softswitch [38]] is defined. The
softswitch enables different signalling and switching technologies to interoperate and reli-
ably transmit any form of data. Therefore, the softswitch delivers services across different
networks. Also, the softswitch enables application development, independent of network

technologies.

The softswitch architecture adapted from [39] is shown in Figure The architecture
illustrates evolution from proprietary closed switching environments to the softswitch pro-
moting open and standardised interfaces to network functionality. The softswitch archi-
tecture represents a functional decomposition of the network into the following functional

abstractions:

20

e Media Gateway: is controlled by the softswitch and manages connections between

different transport networks, such as telco data networks, PSTN and the Internet.

e Signaling Gateway: translates protocol messages originating from one network into

other network specific protocol messages and transports them to the softswitch.

e Softswitch: contains logic for signaling, call processing and controls the media gate-
way. Also, it provides application servers with open, standardised and abstract inter-

faces to network functions.

e Application Server: houses applications that uses the softswitch interface to access
network functionality. These functions enable service delivery to customers on vari-
ous networks. An application server may be administered outside the network by an

external enterprise, such as an application provider.

Softswitch specific protocols are used to communicate between the softswitch abstractions.
Examples of these protocols include the set of Signaling Transport (SIGTRAN) [40] proto-
cols and the Media Gateway Control (MEGACO) [41] protocol.

The softswitch and associated protocols provide the basis for other forms of networks to be
created, such as the Internet Protocol Multimedia Subsystem (IMS) [24]. The IMS reuses
softswitch functional abstractions, but decomposes them further and integrates Internet pro-
tocols into its packet-based network. The Internet protocols include SIP and Diameter [42].

We discuss IMS concepts that are applicable to the SDP framework in Chapter[8}

The softswitch architecture provides a foundation of concepts that aid telecom-IT conver-
gence. These concepts and principles include decomposition of the telco network into vari-
ous high level functional abstractions. These abstractions collectively represent a new open,
secure and standardised network environment. These concepts also support the converged
business model, since it promotes network openness to external enterprises. In addition,
the abstractions are technology independent, such that they hide network integration and

simplify service development and delivery.

2.2.3 Service Platforms

Traditionally, service platforms are specific to the networks they work on, such as the IN
and Customised Application for Mobile Enhanced Logic (CAMEL) [43] for the PSTN and
GSM respectively. By contrast, convergence requires the separation of service platforms
from the underlying network specifics. Also, service platforms must promote reusability of

network capabilities and resources in service development, but remain network neutral.

21

() Cr) Cn) ()
Parlay X
API
@ I @ 0 ws ws

Parlay X Gateway

[SS-UAP}f—(Usm H SSM H UsMm)
Service Architecture Parlay

Standardised AP|
%> APIs
ooy (osm)—(eor) (e) () E@@%é@
Network Resource Architecture Gateway
— I~

Protocols

Converged Networks

(a) TINA Service and Network Architectures (b) Parlay and Parlay X Architectures

Customer Service Architecture

Figure 2.4: Service Platform Architectures

The first form of network abstraction in service platforms are evident in the planes of the
IN conceptual model. Though the IN provides abstraction, they are limited. As a result,
IN application developers must be knowledgable in telecoms call states and call processing.
Service platforms, based on extended IN concepts, aim to ease service development inde-
pendent of underlying network complexities. The most influential in promoting thinking
on service platforms are the legacy Telecommunication Information Networking Architec-

ture (TINA) [19] and current Parlay [20] service platforms.

The TINA standards define a service architecture [44] and network resource architecture [45]].
Both architectures are complete and rich with principles, concepts, computational objets and
associated data structures. For instance, the architectures promote the separation of service
and network related functions into abstract and reusable objects. Examples of objects in-
clude a service session manager and communication session manager. These objects and
their data structures are reused in service development, deployment and delivery. An overall
representation of both TINA architectures are shown in Figure The figure does not

show all computational objects.

The Parlay Group [20] defines two service platform architectures containing Application
Programming Interfaces (APlIs), that promote opening of telco networks to external IT using
enterprises. These architectures are Parlay and Parlay X. Parlay groups APIs into Service
Capability Features (SCF), while Parlay X uses web services [7]. Each API defines objects
and data structures to describe how authorised applications use network functions to de-
liver voice, information or multimedia services to customers on converged networks. Also,
APIs abstract network complexity, such as transport networks and protocols, for application

developers. An abstract representation of both architectures are shown in Figure|2.4(b)
The TINA, Parlay and Parlay X standards provide a wealth of reusable principles, concepts,

22

objects and data structures. For example, these standards abstract service and network com-
plexities into architectural layers that constitute software-based objects. In addition, the
layered abstractions simplify network complexities and promote external access to network
capabilities and resources. All these reusable parts contribute to the definition of service

platform architectures that support telecom-IT convergence.

We discuss IN, TINA, Parlay and Parlay X (including SOA) service platform concepts that
are applicable to the SDP framework in Chaptersd} [5and[7}

2.2.4 Application Environments

To benefit from convergence, telco service platforms must be accessible by a range of appli-
cation development environments. Application providers typically use development envi-
ronments such as .Net [46] or Java [47]]. These technologies contain execution environments
and provide standards-based APIs, that further abstract telco and IT network technologies.
These technologies include service platforms, such as Parlay and Parlay X. Hence, these
technologies provide software-based developer fools to support application development.
However, the onus is on the application provider to determine the appropriate technolo-
gies needed to support their specific business, service and customer requirements and telco

network provider.

2.2.5 Management Systems

The telco must manage network and service activities, such as:

business relationships and processes defined by a converged business model;

physical equipment implementing platforms and transport networks;

signalling systems that control transport networks and service delivery;

services used in application development;

functions used for accessing network capabilities; and

services used by customers and internal users.

To aid telco management, various management frameworks may be implemented. These
frameworks include the Telecommunications Management Network (TMN) [21]], Telecom-
munications Operations Map (TOM) [22]] and Enhanced Telecommunications Operations
Map (eTOM) [23]].

23

Work Station
Functions

Operations
System
Functions

Business >—|-O
Management
Layer Customer Interface Management —
Processes

Service
Management]
Layer

/Fulfillment ~ Assurance _ Billing 2

Network
Managemen
Layer

Element
Managemen
Layer

Service Development and Operations

|
| Processes

Network and System Management
Processes

Mediation
Functions

Network
Element
and Adapter
Functions

Information System Management Processes

Network Element Management
Processes

Network and IT

(a) TMN Layers and Functions (b) TOM Layers and Domains

Network
Elements

Strategy, Infrastructure | |Operations, Fulfillment,
and Product Assurance and Billing

Market, Product and Customer ‘
T

Service
IT

‘ Resource (Application, Computing and Network) ‘
IT
‘ Supplier/Partner ‘

Supplier/Partner

‘ Enterprise Management ‘

Stakeholders, Employees, Other

(c) eTOM Layers and domains

Figure 2.5: TMN Architecture, TOM Framework and eTOM Framework

TMN was intended to manage the legacy IN, SS7 and PSTN. Similar to the IN, the TMN
is an overlay network that integrates with telco network elements. Each network element
provides management functions that are executed during management events. Management
functions are abstracted into simpler service and business oriented functions. As a result,
TMN structures these functions into a layered architecture. When management events oc-
cur, management functions are executed across the architecture layers. Examples of man-
agement functions include mediation, operations, service and business functions. The TMN

architecture is illustrated in Figure

TOM simplifies the complexity of implementing TMN and provides a framework that aids
the development of OSS/BSS architectures and implementations. The TOM framework
uses a customer and service oriented approach to telco management. In addition, TOM
reuses the TMN layered and functional hierarchy approach. However, TOM defines various

business processes within each layer. Each business process is activated by inputs and

24

produces outputs, that are inputs for other processes. As a result, a chain of processes or
process flows represent an end-fo-end management activity [21)]. Each business process
is grouped into a process flow domain. Three domains exist: service fulfillment, service

assurance or service billing. The TOM framework is illustrated in Figure|2.5(b)

Currently, the eTOM framework is used to define OSS/BSS for the NGN, within the context
of convergence. eTOM is derived from TMN and TOM. However, eTOM incorporates the
role of the Internet in managing the telco, its services and customers. eTOM is defined in
various stages, called process levels. Initial process levels define abstract layers and do-
mains. These abstractions are then further decomposed into business processes. Additional
decomposition produces more detail on business processes. An abstract representation of
the eTOM framework is shown in Figure

The eTOM framework is used to build distributed I'T-based systems that provide telco OS-
S/BSS. These systems are large and complex since they administer all parts of the telco
network and enable Internet access to specific telco network management capabilities. Cur-
rently, the New Generation Operations Systems and Software (NGOSS) [48] initiative in-
corporates the eTOM framework into a guiding methodology to create telco OSS/BSS. The
NGOSS methodology provides additional frameworks that identify shared information and
technology neutral architectures for the OSS/BSS.

TMN, TOM and eTOM prescribe the abstraction of the telco network into simpler manage-
able parts. These parts are structured using architectural styles, such as layers and domains.
However, TOM and eTOM identify business processes within their respective architectures.
Business processes represent abstracted forms of management services that are provided by
OSS/BSS platforms. In addition, some business processes are accessible by the customer
and the telco partners. These frameworks and their processes contribute to the development

of OSS/BSS platforms required to manage telecom-IT convergence.

We discuss TMN, TOM and eTOM concepts that are applicable to the SDP framework in
Chapter|[6]

2.3 SDP as a Strategy for Convergence

The convergence process and its resulting implications illustrate the complexity faced by
telco network operators. This includes the formation of converged value chains and busi-
ness relationships between partners. Also, fechnology choices that enable convergence are
numerous and varied. Though some technologies are standardised and promote interoper-

ability, each provide various levels of abstraction to manage internal and external network

25

integration and service delivery.

Therefore, we address the question: what is the strategy of the telco to manage and benefit
from telecom-IT convergence? The telco’s strategy is to define a generic business model that
can accommodate various external roleplayers. These players being other telcos or IT-using
enterprises. By extending the generic business model the telco define specific value chains.
Within these value chains the telco and the various external roleplayers define business
objectives. Business objectives are satisfied by enabling telco infrastructure and external
infrastructure to interwork. To enable this interworking the telco must evolve its network
into a service centric network that uses the SDP as an infrastructure integration mechanism

as suggested in Figure[I.3] Hence, the SDP must manage telecom-IT convergence.

The SDP enables telco infrastructure integration with I'T-based infrastructures by adhering
to the convergence process, that is, it defines points of integration across the telco infras-
tructure. These points of integration provide external roleplayers with access to a collection
of software-based services. These services abstract telco infrastructure complexities and

can be used for application development and content delivery.

The SDP has no agreed definition nor is it standardised. This poses a problem since exter-
nal IT-using enterprises that access multiple SDP implementations do not have consistent
access to a set of standard-based services. As a result, points of integration on the telco in-
frastructure are not standardised. Diverse SDP implementations also hinder interoperability
between each other, since their points of integration are not standardised. This research
proposes an approach to standardisation by defining reference points as SDP points of in-
tegration. Reference points prescribe a formal specification that is adhered to by their im-
plementations. Hence, multiple SDP implementations that conform to their reference point

specifications expose standard-based services and are interoperable.

To fully enable network integration, a collection of reference points are required for the telco
infrastructure. These reference points formalise integration relationships between telco and
external IT-based roleplayers. The roleplayers external infrastructure is abstracted as in-
dependent service entities that use SDP services. These entities may relate to converged

business model entities.

An example set of reference points, structured within a SDP reference model, are shown
in Figure[2.6] In the figure, service entities using the SDP via reference points are content
providers and application providers. The SDP also uses reference points to abstract network
capabilities and resources, such as transport networks, OSS/BSS and customer terminals.
Based on various forms of convergence, we classify reference points as either horizontal

or vertical. In this research we focus on reference points offered by the SDP. We name

26

..... Rop--=-- App se-e-Rpp-----
A Provider O~

—Rc SDP Ros=— oSS

Customer BSS

| Content R -
Provider [~7OD

.| Transports |........,|

Figure 2.6: Proposal for a SDP Reference Model with Reference Points

these reference points service oriented reference points. Two horizontal service oriented

reference points are:

e Rog - customer to SDP.

e Ros - OSS/BSS to SDP.
Three vertical service oriented reference points are:

e R 4g - application provider to SDP.
e Rpg - transport networks to SDP.

e RRpg - content provider to SDP.

By decomposing service oriented reference points we produce details on the SDP that im-

plement telco and IT infrastructure integration.

The remaining reference points define integration relationships between roleplayers, their
infrastructure and telco infrastructure. The Rc4 and Ron reference points define the cus-
tomer relationship with the application provider and transport respectively. The Ro4, Rop
and Roy reference points define the OSS/BSS relationships with the application provider,

content provider and transport networks respectively.

2.4 Summary

In this chapter we discussed convergence between telco and IT infrastructures. We defined
convergence as a process that separates infrastructure according to its functions performed,
so as to identify points of integration. These points of integration enable infrastructure to

converge. Using the convergence process, we have separated network infrastructures into

27

Parlay X, Parlay,
IMS, eTOM, TMN

External IT using
Partner Management - Enterprises

Service Management Network Services
9 - and Data

Network Functions
Customer,

Terminal and
Network
Management

Parlay X,
Parlay, IMS,
TINA, IN

IMS, Softswitch,
TINA, IN

SIP

DiffServ RTP
MPLS TDM

Fibre WDM

Figure 2.7: Complexity of Convergence

abstract layers and domains. Based on these abstractions, we have defined vertical and hori-
zontal convergence occurring within and across network domains respectively. We have also
described the implications of convergence on telco infrastructure. These include creation
of value chains and integrating signalling, transport networks, service platforms, applica-
tion environments and management systems. Associated with these implications we have
described technologies and their architectures that contribute to telecom-IT convergence.
These technologies contribute to the complexity of telecom-IT convergence. Figure [2.7]
illustrates these technologies against the various areas of the telco network. Due to conver-
gence complexities we have defined a strategy for the telco, that is, development of the SDP
as an integration mechanism between telco and IT-based infrastructures. We defined the
SDP to provide points of integration that are formalised as a set of reference points. These
reference points are structured within a reference model. The reference model entities re-
late to converged networks business model entities shown in Figure [2.2] Reference points
are implementable as a set of abstract services. These services enable IT integration with
telco network capabilities and resources. Hence, the SDP abstracts lower network related
technologies and structures higher service related areas, that are shown in Figure[2.7] To fill

out the detail we examine several existing standards in the following chapters:

Chapter [IN and TINA.
Chapter[5} Parlay and Parlay X.
Chapter[6; TMN, TOM and eTOM.
Chapter[7; SOA.

Chapter 8 IMS.

28

Chapter 3

Managing the Complexity of the Service
Delivery Platform

The SDP has been located in its working environment in Figure [2.6]but is, at this stage, a
concept that is not yet standardised. As a result, it has many interpretations that produce
varied definitions, designs and implementations. Each interpretation focuses on specific
requirements, such as service creation using web services [[7]], content management and
consolidating billing platforms. These interpretations also use diverse technologies to im-

plement the SDP.

A popular interpretation, from [8]], defines a limited set of requirements that prescribe the
SDP as:

e managing service creation, provisioning, execution and billing;
e supporting the delivery of services in a network and device-independent manner;

e providing a single standardised point for application developers to find and use di-

verse services and content; and

e providing external developers, such as IT-using enterprises, with open and secure

access to telco network capabilities.

Building on these requirements, we define the SDP as “a distributed IT-based system that
abstracts telco network capabilities into generic services that are accessible across telco,
enterprise and Internet networks and promotes the development, delivery and management

of various customer services”. In this work we use this definition for the SDP.

Accompanying the above requirements is an SDP architecture that is defined in [8]] and

illustrated in Figure [I.3] In this work, we provide additional detail on the architecture

29

Parlay/Parlay X Distribution
Plane

‘ Service Exposure Layer ‘ SCE
+Parlay Parlay+

Service Content
0SS Execution X% Delivery SME
Platform Platform
Parlay/Parlay X/JAIN/
OMA/IMS
BSS Network Abstraction Layer
Web Web

Services Services
Protocols

\ 2
Converged Networks

Figure 3.1: Expanded SDP Interpretation

to include interfaces, implementation technology mappings and a distribution plane. The
added interfaces illustrate the communication between layers, platforms and telco resources.
The technology mappings reuse existing telecom standards to show implementation choices
for each interface, layer and platform. The distribution plane abstracts the distribution of

the SDP and integration with other telco platforms. The expanded architecture is shown in

Figure[3.1]

In the figure we illustrate existing standard-based technologies and APIs implementing plat-
form and layer communication. For example, both Parlay and Parlay X [20] implement the
service exposure layer API. However, Parlay also implements the network abstraction layer,
execution platform and content delivery platform APIs. In addition, the network abstraction

layer API is implemented using the standards-based technologies such as:

e Parlay X,
e Java API for Integrated Networks (JAIN) [49],
e Open Mobile Alliance (OMA) Service Environment [50, 51]] and

o Internet Protocol Multimedia Subsystem (IMS) [24]].

In Figure[3.1|no suitable standardised technologies are defined to implement OSS/BSS, SCE
and SME APIs. Also, communication across the service execution and content delivery
platforms use proprietary APIs. We identify the need for standard-based APIs as X’s in the
figure.

30

3.1 Limitations

The SDP architecture in Figure[I.3]is derived from various products, such as [52] 53] 54, 53]
56,157], and is influenced by their specific requirements and architectures. In addition, the
products use mixtures of telecom, IT and broadcasting technologies to implement the SDP.
These technologies are both proprietary and standards-based. Hence, the SDP architecture

in Figure|l.3|is a generalisation of common functions offered by various products.

The SDP in Figure|l.3|is incomplete, since layers and platforms require further decomposi-
tion to uncover additional functionality. These functions may include additional layers that
manage information contained in various data-stores. Also, platforms may be decomposed

to show additional components that manage distribution, security and replication of data.

The architecture does not provide an appropriate device (customer) domain. As a result,
communication between device, SDP and converged networks are not managed. Also, con-
tent provider platforms or layers are not shown; rather, their infrastructure is directly inte-
grated into the SDP. Hence, communication between content providers and SDP are also

not managed or shown.

Additional abstractions are defined by decomposing the SDP architecture in Figure |1.3
These abstractions may provide details on business entities or implementation specifics.
Also, subsets of abstractions may be structured into specific architectures, such as a business
model or functional schematic. Hence, the architecture is limited since it provides a single

abstract view on the SDP.

Figure shows the SDP architecture in Figure being implemented using proprietary
and standards-based technologies and APIs. However, different APIs implement a single
platform or layer. In addition, proprietary web-based APIs are used to expose OSS/BSS
functionality to layers and platforms. By using mixtures of standards-based and proprietary
technologies inconsistency among SDP implementations occur. Thus, SDP implementa-

tions are not portable across converged networks and services are not portable across SDPs.

The SDP is a distributed platform that operates within a distributed environment. This envi-
ronment is supported by a distribution plane. The plane supports communication between
diverse implementations of layers, platforms, services and APIs. However, [8] does not pro-

vide detail on the distribution of the SDP, the distribution plane and its technology choices.

31

3.2 Approach

To overcome current SDP limitations we require a common base of concepts. These con-
cepts contribute towards a generic SDP definition, set of requirements and an architecture.
These concepts are void of any technology biases and promote the standardisation of the

SDP. To defined and encapsulate these concepts we develop the SDP framework.

Traditionally, a framework provides a generic, extendable and supporting structure that de-
scribes a set of concepts, principles, rules, methods and technologies used to complete a
specific task or process [158,159]. For the SDP, we define its framework as providing a tech-
nology neutral foundation of reusable concepts and structures on which SDPs are designed,
developed and implemented. To provide these capabilities the SDP framework prescribes

various requirements.

3.2.1 Requirements

Like the convergence process, the SDP framework separates complexities from current SDP
interpretations and simplifies then into varying abstractions. These abstractions are technol-
ogy neutral and defined in an implementation and distribution independent manner. Hence,

the SDP framework does not specify technologies, but rather service-oriented abstractions.

The framework contains various levels of abstractions that are integrated together to form
a SDP architecture. Integrating abstractions is done in a generic manner. This maintains
implementation and distribution independence. Hence, the SDP architecture is technology

neutral and structures the various service-oriented concepts.

By applying the SDP framework, an architecture of abstractions is created. Some abstrac-
tions are generic, while others are specific to the SDP. Generic abstractions may be decom-
posed, extended or reduced to uncover particular SDP details. For instance, data processing
abstractions may be grouped, decomposed and structured within a data-oriented SDP archi-
tecture. Therefore, the SDP framework and its resulting architecture are highly extensible,

due to its technology neutrality.

The SDP framework represents a tool for managing the complexity of SDP development
and therefore telecom-IT convergence. Complexity is abstracted into a generic architecture
based on the SDP framework. This architecture provides varying levels of detail on the
SDP that are technology independent. Therefore, the framework abstracts technological

concerns without obscuring important SDP concepts.

32

To develop the SDP framework we treat the SDP as a complex system. As a result, we reuse

and extend complex system concepts to define the SDP framework.

3.3 Complex Systems

Like the telco network, the SDP is a complex system. Complex systems are defined as a
complicated interworking of components that share a common purpose [60]. The purpose
of a system is based on the problem the system solves. Thus, the SDP contains a variety of
heterogenous components that aim to provide various telco, IT and content-based services

to fixed and mobile customers in a reliable, secure and quality assured manner.

Some system components are not monolithic entities, rather they are complex systems them-
selves. These components are known as “systems of systems” [61] or “subsystems” [60,
62]. Similarly, SDP components represent complex subsystems, since they simplify and
integrate multiple network components to manage telecom-IT convergence. Hence, SDP

subsystems provide service-oriented functionality.

Complex systems and their components have various properties. These properties are
shared by the SDP and its components. For instance, components interact to fulfil the
system’s purpose. Interactions are formalised using relationships [62]. Examples of re-
lationships include producer-consumer, client-server and peer-to-peer. These relationships
define rules, policies and attributes to limit or enhance the functionality of interacting com-
ponents. Hence, relationships structure and formalise interactions between components.

Therefore, formalised relationships between SDP components aids its standardisation.

Like other complex telco systems, the SDP is an open [62,[63]] system in the sense that it in-
teracts with its environment of converged telecom-IT networks through standard interfaces.
SDP and environment interactions include the exchange of data, protocols, API invocations
and execution of business processes. By being open the SDP is also a dynamic [62] sys-
tem. Dynamic systems contain components that interact with their environment. These
interactions may cause components to change in many ways. For example, a call control

component’s state may change due to interactions with customers in the environment.

Systems engineering concepts are used to define a complex system’s components, such that
they satisfy system properties. These concepts are applicable to the SDP and the develop-

ment of its framework.

33

Stage 2:

2.1 Abstract Design of Functions
2.2 Optimise

2.3 Analyse

2.4 Verification via Iteration

Stage 1:

1.1 Initial Need

1.2 Conceptual Design of
Requirements

1.3 Research

1.4 Verification via
iteration

Stage 3:

3.1 Detailed Design of
Prototype

3.2 Test

3.3 Evaluate

3.4 Verification via iteration

Evolution of System
and Development

Stage 5:
5.1 Maintenance
5.2 Retirement
5.3 Reuse in new
system development

4.1 Construction
4.2 Deployment

Figure 3.2: Simplified Systems Life Cycle

3.3.1 Managing Complexity

An approach used to manage system complexity is abstraction. Abstraction is defined as “a
way to do decomposition productively by changing the level of detail to be considered.” [64].
Thus, abstraction enables one to hide or focus on certain details so as to simplify a system
and its components. Using abstraction provides a perspective on the system by hiding or

focusing on specific system details.

Examples of abstractions include functional decomposition, reference points, layers, do-
mains, planes, services and interfaces. These abstractions are used to describe generic con-
cepts found in various telco network standards. For instance, [26} |65} 66] use abstractions
to structure generic concepts contained in various telco transport networks, switching and

service platform standards.

Various fields of research use abstraction to develop large complex systems. For example,
[63]] defines a systems thinking approach that uses abstraction to decompose a system into
various parts, with each part being further decomposed. In modern systems engineering
approaches abstraction is used within a process called the system life cycle [60]. The life
cycle defines various stages that enable the systems and its parts to be defined, developed

and deployed.

A simplified representation of a system’s life cycle, derived from [62]], is shown in Fig-
ure [3.2] In the figure, initial stages provide functional abstractions by decomposing the
system according to the functions performed. Latter stages of the life cycle provide an im-
plementation by specifying technology details a maintenance strategy. Each stage provides

a specific perspective on the system and its development. Within each stage abstraction is

34

used to hide or express details applicable to the specific perspective. For example, initial
stages focus more on functional characteristics of the system, while latter stages focus on

technological realisation of the system.

Tools such as methodologies, methods and models are used to abstract system details [67].
These tools complement the systems life cycle and its stages. Methodologies represent a
grouping of methods used to solve a problem or develop a system. Methods define a logical
process that is applied on a system to decompose it into specific abstractions. By applying
a method a model is produced. A model illustrates a specific level of abstraction on the

complex system by structuring its abstractions.

The system life cycle and its stages are implementable using various methodologies. How-
ever, in this research we use the system life cycle as an overall methodology to develop
complex systems, such as the SDP. In addition, we incorporate methods as stages of the
system life cycle to define system abstractions. These abstractions are structured into mod-

els.

3.4 Modeling Complexity

In the system life cycle, [60] defines models as producing architectures. Architectures
represent the abstract linking, organisation, structuring and decomposition of the system
and its parts [60, (68, 69]. Architectures are the most crucial element to managing telco
system complexity [65]]. In addition, architectures may be used to structure a specific system

perspective, that is, arrange its abstractions.

Since the SDP is an IT-based system [8]], its architecture is founded on software-based
concepts and produces varying levels of software-based abstractions. Due to the I'T-based

nature of the SDP, we focus on software-based architectures for the SDP framework.

Software-based architecture is defined as the “structure or structures of the system, which
comprises software elements, the externally visible properties of those elements, and their
relationships™ [68]]. Within the telco domain, [70] defines software-based architectures as

being reusable, extendable and separated from technology concerns.

Various types of software-based architectures exist that satisfy the above properties and are
applicable within the systems life cycle. For example, [71]] defines four generic categories
that software architectures fit into with specially coined names, that is:

1. Decision: architecture is used as a strategy to manage a system under development.

35

This architecture is defined during the initial stages of the system life cycle and rep-

resents a highly abstract representation of the system.

2. Languag abstract architecture representing the system’s generic structure. This

architecture is defined within the initial stages of the system life cycle.

3. Literature: system architecture that is reusable in other system developments. This
architecture is defined by previous system life cycles, but provides reusable abstrac-

tions that are applicable to other system architectures.

4. Blueprint: represents an implementation-specific architecture that describes a sys-
tem’s technological realisation. This architecture is defined during the latter stages of

the system life cycle.

In this typology, the SDP framework represents a technology neutral architecture that is
both language and literature based. As a language, the SDP framework provides a common
technology-neutral architecture that is used throughout SDP development. In addition, the
architecture provides a generic overview of the SDP’s structure. As literature, the SDP
provides a technology neutral foundation of concepts and abstractions that are reusable in
other service-oriented systems architecture. Also, the architecture is extendable to suit other
system architectures. In both cases the SDP framework satisfies the generic architecture

properties.

Software-based architectures are defined by applying various viewpoints (or perspectives)
on the complex software-based system. Similar to abstraction, viewpoints express the “sep-
aration of concerns* [72]] of a particular software-based system. Thus, a viewpoint focuses
on particular system concerns while hiding others, so as to define abstractions and structure
associated architectures. Viewpoints are similar to methods since their application produces
a level of system abstraction contained within a model. Hence, viewpoints may be used as

stages of a system life cycle.

In various domains viewpoints are defined to aid system development. These viewpoints
are contained within a standardised methodology that is applied to system development.
Examples of viewpoints and their methodologies include the Reference Model for Open
Distributed Processing (RM-ODP) [[72]], Model Driven Architecture (MDA) [73] and the

NGOSS [48] initiative. These viewpoints may be used as stages of a system’s life cycle.

Viewpoints are chosen before system development starts. According to [74], viewpoints are

chosen based on the following system properties:

'"Language is not used in the sense of a programming lanuage

36

Complex
Software-based
System

Architecture

Viewpoint Architecture /

Figure 3.3: Abstracting Complex Software-based Systems

e Environment: includes the relationships between the larger system containing the

system under development.

o Business Drivers: the business objectives the system aims to satisfy within its envi-

ronment.

e Organisation: the inherent functions and properties of the system prescribed by the

controlling organisation.

e Technology: the requirements for the system implementation.

We integrate methodology, method, viewpoint, model and architecture concepts in Fig-
ure[3.3] The figure shows a methodology containing various methods, called viewpoints.
Applying viewpoints to the software-based system produces abstractions that are contained

within a model, that is, software-based architecture.

By applying these software architecture concepts for complex systems, we present the ap-
proach used to define the SDP framework. The approach defines various viewpoints on
the SDP. Each viewpoint considers a specific standard-based technology that contributes
abstractions towards the SDP framework. Within each viewpoint we use the abstractions
to structure a technology neutral SDP architecture. These architectures contribute towards

solving the problems identified in Chapter|[l]Section[I.3]

3.5 SDP Framework Development

The SDP framework provides varied levels of abstractions that are structured into an ar-
chitecture. Based on properties of telecom architectures, the SDP framework must reuse

other standards-based telecom architectures to reduce SDP complexity. The framework

37

must also be generic, reusable and extendable. The framework must be implementable us-
ing any standardised telecom and IT technologies, hence, its design must remain technology

independent. In addition, the architecture must promote SDP standardisation.

For the SDP framework to define generic SDP concepts and the associated architecture we
require viewpoints. To define the viewpoints we determine its environmental, business,

organisational and technological properties:

e Environment: the SDP operates within a converged ICT market and operates across
telco, IT and Internet networks. This market is regulated and provides an open, com-
petitive and service-rich environment. As a result, the SDP may partner with various

other enterprises, such as I'T-using enterprises and content providers.

e Business Drivers: the SDP provides services to customers. These services deliver
both single-media and multimedia services. In addition, services are used by various
3rd parties, such as application developers, content providers and brokers. Also, the

SDP simplifies service related business and operational process for the telco and its

partners.

e Telecom-based Organisation: the SDP is defined by the telco to leverage existing
systems and enhances them with I'T-based functionality. In addition, the SDP is telco
grade. The SDP is able to expose telco network capabilities to ard parties using

IT-based technologies. As result, the SDP supports and delivers a varied range of

services to telco customers and partners.

e Technology: the SDP is standards-based. As a result, multiple SDP implementations
are operable across converged networks. Also, services are easily portable across
SDP implementations. Hence, SDP specifications are technology neutral and imple-

mentable using a variety of standardised technologies.

From the above properties we define the following technology neutral viewpoints, that are
helpful in simplifying specific SDP complexities, extracting abstractions and structuring
various architectures. These viewpoints are also influenced by various existing standard-
based telecom and IT architectures. These architectures provide a wealth of concepts and

abstractions that can be extracted and extended to the development of the SDP framework.

e [egacy Perspective: includes legacy telco architectures that contribute to the SDP

concept. This viewpoint relates to the SDP organisation property.

e Services Perspective: reuses current service platform architectures to uncover SDP

concepts. This viewpoint relates to the SDP business property.

38

2. Service Platform Perspective

2.1 Parlay X Web services Gateway
2.2 Parlay Service Capability
Function Gateway

3. Management Persepctive
1. Legacy Perspective
1.1 Intelligent Networks (IN)

1.2 Telecom Information
Network Architecture (TINA)

3.1 Telecom Management
Network (TMN)

3.2 Telecom Operations
Map (TOM)

3.3 enhance Telecom
Operations Map (eTOM)

Development of SDP
Framework

7. Beyond...

7.1. Standardised SDP
solutions managing telco-IT
convergence

7.2 Reuse framework for
new service platforms.

4. |T-based Perspective

4.1 Web Services and their Service
Oriented Architecture (SOA)

6.1 Technology
Neutral Framework

5.1 IP Multimedia
Subsystem (IMS)

6. Standardised Perspective

5. Converged Perspective

Figure 3.4: Approach to Develop SDP Framework

e Management Perspective: extracts generic concepts from management architectures
and aims to incorporate them into the SDP framework. This viewpoint relates to the

SDP environment and organisation properties.

o External IT-based Perspective: integrates I'T-based architecture concepts into the SDP

framework. This viewpoint relates to the SDP business and organisation properties.

e Converged Perspective: uncovers generic service-oriented concepts from a current
telco network architecture that aims to manage telecom and Internet convergence.

This viewpoint relates to the SDP environment property.

All viewpoints review standards-based technologies. To adhere to the SDP technology prop-
erty, we extract technology neutral concepts and architectures from each technology and

integrate them into the SDP framework.

Besides the SDP framework, the perspectives represent a time-line of architectures and tech-
nologies that contribute to the current SDP concept. As a result, we group the perspectives

into a SDP development methodology shown in Figure

In the figure the sixth perspective represents the integration of the generic concepts and
abstractions obtained from previous perspectives into the SDP framework. The remaining
perspective illustrates the reuse of the SDP framework for the development of SDP imple-

mentations or other service-oriented systems.

39

3.6 Summary

In this chapter we have discussed the current SDP interpretation. We have highlighted this
interpretation’s definition, requirements and architecture. Also, we have identified its lim-
itations such as technology dependence and lack of standardisation. We have defined the
SDP framework as the solution to these limitations. The framework aims to simplify the
complexity of developing a SDP. We have shown the SDP is a complex system. Also,
we have reused system engineering concepts to define the approach used to develop the
SDP framework. We have discussed concepts such as abstraction, models, methods and
methodologies. In addition, we provided a systems life cycle approach to encapsulate these
concepts. We have also shown architecture as an important tool that contributes to manag-
ing SDP complexities and developing the SDP framework. We have discussed viewpoints
as a means to create architectures. We have associated models to architectures, viewpoints
to methods and methodology to the system life cycle. Based on SDP properties we have
defined a set of viewpoints, that is, legacy, services, management, I'T-based and converged
perspectives. These viewpoints form the basis for chapters 4 to 8. The viewpoints extract
generic and technology neutral concepts from various telecom and IT standards. Concepts
are structured into appropriate architectures. Integrating concepts and architectures rep-
resents the SDP framework. This framework is the essential step toward answering the
problem and subproblems stated in Chapter|[l|Section

40

Chapter 4

Perspectives on the SDP from Legacy
Standards: IN and TINA

Traditionally, telco services are implemented in software that is tightly coupled with switch-
ing hardware. This results in both standardised and proprietary software and hardware being
developed by different vendors. As a result, customer services are limited and developed
slowly. Also, service and network administration is a complex task that is managed by in-
tegrating additional vendor software and hardware into the network. Thus, the traditional
telco is faced with highly integrated vendor-specific solutions that limit service develop-

ment, delivery and management.

To overcome the above limitations, the telco network operator requires a simpler approach
for service creation, management and delivery. Hence, the need for service and network
separation, supporting flexible service and network integration. This results in service
software being separated, to a certain degree, from switching hardware and placed on a

dedicated service network.

The Intelligent Network (IN) was defined to aid in the development of a separate but inte-
grated service network. With further innovation and use of middleware-based technologies
the Telecommunication Information Network Architecture (TINA) was defined, but not de-
ployed by telcos. Both IN and TINA share similarities with the SDP, such as their service
requirements. In the following sections we discuss the IN, TINA and their contributions to
the SDP and its framework with the objective of uncovering abstractions that contribute to

a technology neutral SDP architecture.

41

4.1 Intelligent Network

The IN aims at enabling the “provision of services independent of the service/network im-
plementation in a multi-vendor environment” [2]]. IN services are predominantly voice-
based in switched circuit networks. Also, the IN shares telco properties such as being

reliable, secure, managed and providing the necessary quality of service.

The IN strives for vendor independence by removing service implementations from switch-
ing hardware and placing them on a separate overlay service network. The service network
operates over circuit-mode transport networks and is exposed to external parties, such as
service developers. Though contemplated in the IN standards, network exposure to external

parties is not fully defined in the IN.

The IN is implemented as a distributed service platform that promotes customer service
development independent of the underlying telco infrastructure implementations. This in-
dependence is gained by abstracting telco infrastructure capabilities into reusable software-
based service logic. The service logic is integrated to create customer service implementa-
tions. Also, the IN supports the delivery of these services to customers on telco transport

networks.

4.1.1 Requirements

The IN aims at enabling the separation of generic service logic from vendor-specific hard-
ware, with the intention of integrating both in an effective and technology independent
manner. As a result, the IN provides the glue between services and network resources, with

little or no emphasis placed on open external access. These IN properties are illustrated in

Figure[d.1]

The figure depicts the IN as a point of integration between services and network resources.
Thus, the IN is used by both service developers and the network operator. As a result, the IN
must satisfy both service requirements and network requirements. As defined in [2], both

service and network requirements are based on:

e service creation: service providers create service logic that makes use of network
capabilities and resources, such as establish connections and play announcements.
The network operator provides service creators with programmable access to these

network capabilities and resources.

e service management: service providers require network resources to make provision

42

External Access Servic_:e
Requirements Requirements
T T

IN Platform

Switching and
Transports

Figure 4.1: IN Requirements Classification

Network
Requirements

for new services and to manage new services, such as user profiles and billing. The
network operator provides these network capabilities and may offer external access

to these capabilities.

e service processing: service providers require the network to correctly process service
logic and network resources, so as to deliver services to customers. The network op-
erator supports this processing, by ensuring network resources are used appropriately

and provide necessary service functionality.

e network management: the network operator requires the complete administrations

and management of services, IN platform and network resources.

e network interworking: the network operator requires service usage to be independent

of the customers access and network.

To satisfy both service and network requirements (but not management), a reference model
is defined, that is, the IN conceptual model. The IN definition, concepts and architecture is

encapsulated in the conceptual model.

4.1.2 Architecture

The conceptual model represents a reference architecture for the IN. Also, it provides a
foundation for the definition of IN standards. As a result, IN-compliant architectures are
derived from the conceptual model and adhere to its principles. Hence, the IN conceptual
model represents a meta-architecture or framework that is used in the development of IN-
based systems. Hence, the IN conceptual model is the main contribution of the IN to the

definition of the SDP and its framework.

The IN conceptual model provides different perspectives on the IN. These perspectives are

applied to the IN in a fop-down approach. Each perspective is represented as a plane that

43

Plane

o, CO-GGO(E)Co8), s
Functional (Software)

Plane J AN PN . . A

Service [Servwce e e j
- 7 PR
. 4 . - . .

Distributed
Functional
Plane

Egﬁ'}cal Protocols
v
(@) PsTN, ISDN, GSM, SS7... Compleixty
N (Hardware)
B

Figure 4.2: IN Conceptual Model

contributes to the structure of the IN. The IN conceptual model is illustrated in Figure

The figure depicts the various planes:

e Service Plane: defines capabilities offered by the IN platform as abstract service fea-
tures that integrate to form customer services. This plane does not define service

feature or customer service implementations.

e Global Functional Plane: defines reusable service logic called Service Independent
Building Blocks (SIBs). An integrated chain of SIBs implement a service feature.

Hence, a collection of integrated SIBS implement a customer service.

o Distributed Functional Plane: defines distributed telco functions used to implement
SIBS. Functions are contained within functional entities. Functional entities imple-

ment SIBS by communicating via information flows to execute specific functions.

e Physical Plane: defines a strict mapping of functional entities to specific physical net-
work elements. The plane also provides distribution and implementation details on
the functional entities and their information flows. For example, INAP [75] imple-

ments the functional entity information flows.

4.1.3 Reusable Concepts

The IN increases the intelligence, rather than switching levels in the telco infrastructure [76]].
The global functional and distributed functional planes are examples of this intelligence.
The added intelligence abstracts the complexity of infrastructure technologies and distribu-

tion that are represented as physical elements in the physical plane.

44

The collection of planes represents the increase in separation between telco infrastructure,
its capabilities and customer services. This separation enables customer service creation to
be independent of the underlying infrastructure technologies. Also, this separation enables

customer services to use infrastructure capabilities.

One of the IN philosophies is the standardisation of SIBs [[77]. The standardisation pro-
motes additional separation and independence between telco infrastructure and customer
service definitions. For instance, changes to infrastructure do not effect SIB definitions and
therefore do not effect service feature and customer service definitions. As an example, the
charging SIB hides the network-specific mechanisms for writing billing tickets. However,
telco infrastructure must provide the needed functions to implement SIBs. Therefore, con-
formance to SIB standards is achieved by providing necessary functions to implement SIB

definitions.

Each plane of the conceptual model provides a different perspective on the IN. The service
and global functional planes provide service-oriented views on the IN [78]. In these views
technology and distribution of the telco infrastructure is hidden. The service plane enables
service developers to verify the needed capabilities (service features) for a customer service.
In the global functional plane developers view the integration of SIBs as the implementation

of service features to create customer services.

The distributed functional and physical planes provide a function-oriented view on the IN.
In this view, only functional entities and their functions, as offered by physical elements,
are perceived. The functional entities and their functions represent capabilities offered by
physical elements. This view also provides details on the technology and distribution of

functional entities and physical elements.

Though customers are connected to the telco via its transport networks, customers perceive
their interactions are with their services. The distributed functional and physical planes

support this communication between customer and service.

An integrated managed environment is proposed for the IN. This managed environment is
based on Telecommunications Management Network (TMN) [21] concepts. The general
TMN architecture provides management layers that are incorporated into the IN planes.
However, in practice vendors use non-TMN based solutions to manage the IN. The TMN

and its contribution to the SDP is discussed in Chapter 6]

45

Customer
Service
Definition

Application ¥

Plane Application
£ F X nterfaces

Generic]
Service @35 GS, Abstraction
Plane @ @% q @ %oﬂwme)
N LG 2 W
ervice
Component sc S(C SC scC E
Plane

ARG 7 O

P

Plane =

Technollogy/Disllribution Specific

Infrastructure : . '

Complexity
(Hardware)

Figure 4.3: SDP and its Environment represented as a Conceptual Model

4.1.4 Contribution to SDP from IN

We reuse some of the IN conceptual model concepts, with variations, to define a SDP archi-
tecture. The variations are influenced by SDP requirements and current software paradigms,
such as APIs. The SDP architecture is called the SDP conceptual model and is shown in
Figure The architecture structures the SDP within an environment. The SDP interacts

with this environment using its service APIs.

The SDP conceptual model represents a viewpoint on the SDP that illustrates various tech-
nology neutral abstractions. These abstractions include the use top-down layered planes that
provide perspectives on the SDP. Contained in these planes are numerous service building
block and network function abstractions, that separate service intelligence from network
specifics. We extend these service and functional abstractions to allow easier access to their

capabilities. The SDP conceptual model is illustrated in Figure 4.3

In Figure customer services are defined by external application developers. The ser-
vice definition documents the interactions between customer and service, as well as the
capabilities required from the telco to implement the customer service. Once completed,
the customer service definition is implemented as an application in the application plane.
Thus, unlike the IN conceptual model’s service plane the application plane contains the

actual customer service implementation.

Applications use telco network capabilities by orchestrating generic services (GS). Generic
services provide simplified access to telco network capabilities via their implementation
independent interfaces. Generic services vary according to the telco network capabilities

they simplify. For example, services may provide telecom, content or management-oriented

46

functions. All generic services are grouped into the generic service plane. This plane

supports the generic services and their interfaces that are exposed and used by applications.

Generic services abstract access to complex service components (SC) that invoke telco in-
frastructure resources and capabilities. Service component functionality is offered via an
API. Thus, service components represent a common point of integration used to access
telco network capabilities. Service components are housed in the service component plane.
Thus, generic services, service components and their APIs provide greater levels of separa-

tion and network abstraction than the IN conceptual model SIBs.

Underlying telco infrastructure contains distributed, standardised and proprietary systems
that are implemented and connected using various technologies. These systems provide
the solid foundation of reusable resources and capabilities. To enable technology and
distribution-independent access to these resources and capabilities, their functions are ab-
stracted into services, named service functions (SF). Service functions offer their functional-
ity to service components via an API. Also, service functions communicate amongst them-
selves to satisfy service component requests. Hence, the result of service function commu-
nication is the execution of functions on telco infrastructure. Service functions and their
communication is limited to the service function plane. Therefore, unlike the IN conceptual
model’s functional entities the communicating service functions contribute to the imple-

mentation of the service components; rather than implement the service components.

In the SDP conceptual model, telco infrastructure is contained within physical elements and
are connected on transport networks. These physical elements are managed in an infrastruc-
ture plane that enables their technology and distribution dependent functions to be accessed

and used by service functions.

4.1.5 Evaluation of SDP Conceptual Model

By extending the IN conceptual model concepts to the SDP we have defined a concep-
tual viewpoint. This viewpoint defines various abstractions that are structured in the SDP
conceptual model. The abstractions contribute to the definition of the SDP framework.
We evaluate the SDP conceptual model against the generic concepts extracted from the IN
conceptual model. In addition, the evaluation provides answers to the questions posed in
Chapter [I] Section [I.3] We also present the comparison between IN and SDP conceptual
models in Table

The SDP conceptual model identifies external IT-using enterprises that use SDP services

to create or enhance applications. These applications provide services to customers. No

47

IN Conceptual Model SDP Conceptual Model

Plane Description Plane Description

Service customer services described by | Application customer services are described and im-
integrating service feature de- plemented by an enterprise. This is ex-
scriptions. No implementation. ternal to the telco and SDP.

Global building blocks (SIBs) define | Generic application implementations use

Functional | reusable service logic. Chains | Service generic services via technology inde-
of SIBs implement service fea- pendent interfaces.
ture descriptions and therefore | Service service components offer an API to ac-
customer services. Component cess service related telco network capa-

bilities.

Distributed | implement SIBs using dis- | Service service functions offer an API to ac-

Functional | tributed functional entities | Function cess telco infrastructure specific capa-
that execute functions via bilities and resources. Also, service
information flows. functions implement a communication

Physical functional entities map to phys- mechanism to interact and satisfy ser-
ical elements that implement vice component request.
their functions using specific | Infrastructure | connected and technology and distribu-
technologies. Also, specific tion specific telco systems provide ser-
protocols implement functional vice functions with access to their spe-
entity information flows. cific functions.

Table 4.1: Comparison of Conceptual Models

business model is defined to accompany the SDP conceptual model, since the conceptual

model limits business entities to external application developers.

We use the concept of planes as a design pattern to structure a SDP architecture, that is
the SDP conceptual model. The SDP conceptual model uses planes to expose additional
SDP details than the proposed SDP architecture, shown in Figure[I.3] Like the IN, the SDP
conceptual model planes hide technology and distribution details of their applications or
services. As a result, the SDP conceptual model inherits these technology and distribution
neutral properties. In the conceptual model service related planes increase the levels of
intelligence in the telco. Also, these service related planes are layered according to their
level abstraction. For example, higher service planes abstract complex intelligence of lower
planes, such that simpler access to telco network capabilities is provided to external devel-

opers.

The SDP conceptual model’s hierarchy of planes and abundant services increase the sepa-
ration and independence between telco infrastructure and application implementations. For
example, applications using generic services are decoupled from the telco infrastructure.
Thus, the telco infrastructure is adequately abstracted by the various levels of SDP services.

All SDP services further support this infrastructure independence by providing access to

48

their functions using implementation independent interfaces. Generic services expose their
interfaces to application developers, while using less abstract service component interfaces.
Service components use complex interfaces exposed by service functions to access telco
infrastructure capabilities. Thus, the SDP conceptual model only exposes generic service
interfaces to external IT-using enterprises, since they provide the most abstract access to

telco infrastructure capabilities.

Similar to the IN, the SDP must implement its services and planes using standards. By
implementing standards further independence of applications and telco infrastructure is
gained. As a result, the telco conforms to these standards and ensures infrastructure can
support standardised services. Also, developers benefit from standardised services and in-
terfaces since they have a constant repository of reusable services for application develop-
ment. Also, with standardised services and interfaces interactions between telco and exter-
nal IT-using enterprises becomes standard-based. Candidate standards for generic services
and their interfaces is Parlay X, while Parlay may implement service components and their
interfaces. Also, the IMS [24] may implement a set of service functions, where SIP [37]]
implements horizontal service function communication. Additional standards may be used
to implement remaining service functions and their communications. As a result, service
planes may be implemented as distributed platforms that support the implementation of

these standards.

Like the IN conceptual model, there are two perspectives created by the SDP conceptual
model. The application, generic service and service component planes provide a service-
oriented perspective on the SDP. For instance, customers view the telco as offering ser-
vices (applications) and perceive they interact with these services directly. Also, developers
view the generic service plane as a resource of generic services with interfaces to orches-
trate into applications. The developer’s view is limited to the generic service plane, while
the telco is able to view all planes. For example, the telco views the service component
plane as a resource of service components with APIs to orchestrate into generic services.
The telco also views the service function plane as a resource of service functions with APIs
to orchestrate into services components. In these service-oriented views service technolo-

gies, implementations and distribution is hidden by the planes and service interfaces.

The service function plane and infrastructure plane provides a functional-oriented view on
the SDP. In this view the telco perceives the infrastructure plane as a resource of technology

and distribution specific capabilities to be abstracted and integrated into services functions.

The SDP conceptual model incorporates the telco OSS/BSS, such that each plane and its

services are managed within a management environment. Like the IN conceptual model,

49

a managed environment administers applications accessing generic services, service inter-
actions, all services and telco infrastructure. Each plane contributes functionality to the
management environment. For instance, a service component plane implementation may
provide management functionality to administer service components. Also, services in all
service planes may abstract OSS/BSS functionality that is used in this management envi-
ronment. Like the IN and TMN a separate management architecture may be defined, based
on the SDP conceptual model. The management architecture may reuse the SDP conceptual
model’s technology neutral planes, services and interfaces. Thus, the management architec-

ture may promote standard-based SCE and SME using the planes’ services and interfaces.

4.2 Telecommunication Information Network Architecture

The IN reduced development time of new voice services, however, lack of complete stan-
dardisation especially for service creation and management results in IN systems being
proprietary-based [[79]. In addition, the IN does not include advances made in computing,
information processing and multimedia. By incorporating these advances into the telco
network new types of services, besides voice, are possible. Hence, to benefit from new
technologies, overcome IN limitations and foster a complete and standardised telecommu-
nication system, TINA [19] was defined in the 1990s. We examine TINA to develop a

conceptual perspective on the SDP.

4.2.1 Requirements

As defined in [80]], TINA provides a collection of concepts, principles and architectures that
support the design, development and deployment of voice, information, multimedia and
management services. In addition, TINA enables these services to operate over heteroge-

nous transport networks and computing platforms through strong abstraction.

TINA focuses on software-based concepts and architectures. These architectures contain
a wealth of reusable components that simplify various service-oriented complexities, such
as service creation, testing, subscription, consumption and management. Also, TINA ab-
stracts complexities introduced by the telco network, such as ensuring reliability, security

and distribution, using software-based distributed computing technologies.

To define these concepts and architectures, TINA applies the RM-ODP [72] development
process. By using RM-ODP, TINA is defined using various viewpoints. Applying each

viewpoint produces various concepts and abstractions that are structured using a business

50

Broker

Bkr Bkr Bkr Bkr Bkr

Ret . 3Pty | 3rd Party Service
Consumer Retailer Provider
RtR 3Pty
TCon TCon ConS ConS TCon
Connectivity

Provider

CSLN LNFed

Figure 4.4: TINA Business Model

model and two architectures. The business model captures TINA’s requirements, while the
other architectures structure service and network abstractions. The TINA business model is
illustrated in Figure

The TINA business model defines communicating business entities that benefit from using
a TINA-based service platform. These entities collectively use the TINA-based platform

for various activities. These entities and their functions are:

e Consumer: locates, subscribes, consumes and pays for services offered by a retailer

of service provider.

e Retailer: provides services to various consumers on behalf of itself or service providers.

ard Party Service Provider: develops services that are offered by retailers to various

consumers.

e Broker: is used by all entities to locate each other and their offered services. For

instance, consumers locate retailers via brokers.

e Connectivity Provider: provides the underlying network resources and capabilities,

such as reliable and secure transport networks.

These business entities also specify the business domains a TINA-based platform must op-

erate across. For example, customer business entities operator within the customer domain.

In the business model, entities communicate to fulfill their activities. These modes of com-
munication are formalised as reference point relationships. Reference points promote TINA
standardisation by specifying the interactions between business entities. Thus, conformance

to reference points ensures different TINA implementations are interoperable. TINA defines

51

Distributed Processing Environment
[User Domain Reatiler Domain Provider Domain User Domain
© [
2 ;
f= =
[} Access 8
£ Session
[} PA UA PeerA UA PeerA PA >
> =
I ===l L e e ad St ==d =l =d S S
% =
SF SF @
S [o] [s] L |8
© Service g
‘E’ P/C/USM P/CIUSM P/CIUSM P/C/IUSM Session)
» || || -
Connectivity Provider Domain cation | |
TCSM 4 CSMF csM TCSM Communication
o Session
9]
O - —————1) O — L ——
© -
| CCF cc Fce Connectivity
€ Session z
[0} P I | O] 1 [0]
£ E
A LNC LNC S
®© =
< Py
= LayerNetvor | |5
= o
- c
Q 3
2 TLA ™ TcMm TLA ®
©
B == R R . —lo==— - 1 :
- CPECP NMLCP NMLCP NMLCP CPECP Subnetwork 7
c L
-0 = = o ___ — _ ______ - =3
c £ o <
Qg 0 @
£ o> ‘ EMLCP ‘ ‘ EMLCP ‘ ‘ EMLCP ‘ ‘ EMLCP ‘ Subnetwork
o gS
w g eeee==d L= == e ==
‘ NE ‘ ‘ NE ‘ ‘ NE ‘ ‘ NE ‘ ‘ NE ‘ ‘ NE ‘ ‘ NE ‘ ‘ NE ‘ INetwors
Elements

Figure 4.5: Simplified TINA Service and Network Resource Architectures (Interfaces not

shown)

a service and network architecture by decomposing its business model, reference points and
associated entities into components. This decomposition results from the RM-ODP compu-

tational viewpoint.

4.2.2 Architecture

TINA constitutes two standardised architectures: a service architecture defined in [44]] and
network resource architecture defined in [45]]. The service architecture structures various
component based service-oriented abstractions, while the network resource architecture
structures component based network related abstractions. Both architectures are illustrated
in Figure The figure is derived from [44! 45, 66].

Both service and network architectures define software-based components containing rich
data structures. TINA components also specify implementation independent inferfaces.
These interfaces hide component implementations and support component communication.
These interfaces implement business model reference points and therefore promote TINA
standardisation. Component interfaces and their communication are not shown in the figure

due to their complexity.

52

In the service architecture, components are divided into access and service session cate-
gories. Access session components enable the customer to locate and activate services. Ser-
vice session components provide the service to customers and support customer to service

interactions.

Network resource architecture components support service architecture components by de-
livering connection services across diverse transport networks. The network resource archi-
tecture components abstract the complexity of communication, connectivity and network
elements. Components abstracting customer equipment are also defined. Similar to ser-
vice architecture components, the network resource architecture components operate across

various domains.

Based on the TINA standards Figure[d.5]divides both architectures into various layers, such
as service session, communication and connectivity layers. We add the access session layer
to the figure. In addition to these layers, TINA defines management layers. These are
the service management, network management and element management layers. Within
all management layers, both service and network components expose management func-
tionality via their interfaces. These management functions are invoked by management

applications to perform service, connection, fault and accounting management.

Layers are extended across functional domains. These domains correlate to the business
entities identified in the TINA business model (shown in Figure [4.4). Functional domains
imply various complexities, such as ensuring components operate over various technologies,
across distributed domains and with diverse component implementations. Fortunately, stan-
dardised and implementation-neutral interfaces ensure interworking of components. Hence,
interfaces enable interoperability of components across various domains. However, to pro-
vide the necessary technology and distribution independence, middleware is used. Middle-
ware is defined as a set of software abstractions (services) used to hide various complexities
associated with distribution systems, such as heterogenous hardware, diverse operating sys-

tems, numerous programming languages and diverse transport networks [81]].

TINA supports service and network components by using a distributed computing mecha-
nism. The mechanism supports technology, distribution and implementation independence
of components and is named the Distributed Processing Environment (DPE). The DPE is a
concept describing software-based middleware that contains generic and reusable services.
These middleware services are used by components since they abstract underlying network
complexities. The Object Management Group (OMG) [82] provides an open and stan-
dardised implementation for the TINA DPE, called the Common Object Request Broker
Architecture (CORBA) [83]].

53

4.2.3 Reusable Concepts

TINA provides various forms of abstraction that are reusable in the definition of the SDP
and its framework. For instance, the business model represents a collection of requirements
and entities that interact within a TINA environment. Also, the business model defines busi-
ness domains that TINA operates across. Most importantly, the business model promotes

standardisation by formalising business entity relationships as reference points.

Another form of abstraction used by TINA is that of separation. TINA applies the principle
of separation by dividing itself into two perspectives, that are structured into service and
network-oriented architectures [84]. The separation principle is also applied within these
architectures, for example, the separation of service communication into access and service
sessions. The principle is also applied to the network-oriented architecture since it separates

communication and connectivity concepts from physical networks.

The TINA architectures are decomposable into layers [85] that group and manage compo-
nents. The components represent abstract forms of reusable customer, service and network
functionality. In addition, components separate access to their functionality by providing
interfaces. Interfaces are technology neutral and hide component distribution and imple-
mentation details. Interfaces also expose component management functionality that is used
by management systems and processes. TINA guarantees interoperability of component

implementations since all interfaces are standardised.

The use of middleware is “one of the key assumptions made in the TINA architecture” [85]].
Middleware abstracts technology concerns, such as implementation and distribution com-
plexities. Also, middleware abstracts the interworking of TINA with legacy telco systems.
As defined in [78]], the DPE may abstract IN platforms. Hence, the DPE may be considered
an extra plane that is added to the IN conceptual model. As a result, the DPE represents a
service-oriented middleware plane that abstracts lower telco network capabilities into ser-

vices.

Middleware services also provide management functionality to administer components.
For example, some DPE implementations perform component life cycle management [45]].
Management services and other middleware-based services are accessible and used by all

components operating within the management plane.

54

Middleware Plane

Service Application Content

Sestormer _platform_ _Provider___Provider_
I I 1 1

Application Layer

! [] | +In(erfaoe I Il |
1 L1 I 1 l A
itk Provider ————, Generic Service Layer
| I N [Interface = — — — — ——
| | (] R e S YT
| Res
|
I ————
SDP] [PE=nioniod | +\nterface I
1 - L

Res Retailer) Network Abstraction Layer

[| Interf: |
. i Lo !

Network Element Layer

Rsn

|
|
|
|
|
|
Customer (Broker/ |
|
|
|
|
|
|

—————— NETEES | i T T T T T T T T T NetworkOperator | T T T

(a) Generic SDP Business Model (b) SDP and its Environment derived from TINA Architec-
derived from TINA Business Model tures

Figure 4.6: Reusing TINA Concepts for the SDP

4.2.4 Contribution to the SDP from TINA

By reusing and extending the generic TINA concepts, independent of any technology bias,

we derive a SDP business model and architecture. The business model and architecture are
shown in Figure

A SDP business model, shown in Figure is derived from the TINA business model
shown in Figure[4.4] The business model clearly demarcates the SDP and identifies its roles.
The SDP business model does not define a stand-alone broker or retailer, but condenses
the TINA business model’s broker and retailer roles into the SDP. By performing these
two business roles, the SDP is a central business entity within the business model. The

remaining TINA business model’s entities are reused but vary in roles and responsibilities.

3rd 31‘d

As a retailer, the SDP offers services to customers and various party providers.
party providers use SDP services to create or enhance customer services. Customers use
SDP services to access customer services. Hence, the SDP conforms to the classical TINA
retailer business role. As a broker, the SDP offers broker-related services to customers
to locate, subscribe, consumer and pay for other services. Also, providers use the SDP’s
broker-related services to locate other service-offering entities within the business model. In
TINA, the broker role is distributed across various access session components, connection
layer components and the DPE. Thus, unlike TINA the SDP centralises the broker role

within its business model.

Numerous providers are catered for in the derived SDP business model. For example,
providers may include application providers or content providers. Application providers

use SDP services to create single-media or multimedia-based services that are delivered to

55

customers. Content providers use SDP services to create applications that either supply
content to support application providers or deliver content-based services to customers. In
the SDP business model customers may be individuals or enterprises that provide services
to individuals. Thus, the SDP business model providers and customers relate to the TINA

business model’s 314 party service provider and consumer respectively.

In addition to customers and providers, the SDP abstracts the complexity of the underlying
telco network. These include the telco network resources and capabilities. These network
abstractions are implemented as various SDP services. Thus, unlike the TINA business
model the SDP business model includes a network rich with capabilities; rather than just

connectivity.

Similar to the TINA business model, the SDP business model defines reference point re-
lationships between business entities to promote standardisation. In the business model,

reference points to the SDP are considered that is:

e Rpg: provider (application or content) to SDP relationship.
e Rcg: customer to SDP relationship.

e Rgn: network to SDP relationship.

The generic SDP business model, its entities and reference points may be decomposed to
cater for specific SDP requirements. With further decomposition of the generic business
model we define a SDP within its environment shown in Figure[4.6(b)| The figure structures
the SDP and its environment as an architecture that is derived from the TINA architectures
shown in Figure In the SDP architecture we use the concept of layers to separate SDP

functionality. These layers are:

e application layer: houses applications developed by providers. Also, includes con-
tent and content processing applications managed by content providers. These ap-
plications provide similar functions as the components contained in the TINA access
session and service session layers. Thus, the application layer is similar but not iden-

tical to the TINA 31d party service provider.

e generic services layer: groups services that provide generic functionality such as sub-
scription and session management. These services are used by provider applications.
TINA does not define separate generic services for its service architecture, but sim-
ilar service functionality is distributed across its access session and service session
layer components. For instance, the generic services layer represents a more detailed

splitting of the SSM logic from the lower network communication logic.

56

e network services layer: exposes telco network resource and capability functions.
These services offer their functionality independently of technologies. These ser-
vices provide similar abstractions as components found in the TINA communication
session layer. For example, the network services layer represents the strict decoupling

between higher layer services and lower CSM logic.

e network abstraction layer: provides a single point of integration between abstract
network services and physical network resources and capabilities. These services ab-
stract the complexity of underlying telco network systems. These services provide
relatively simpler abstractions than components found in TINA network resource ar-

chitecture’s connectivity session, layer network and subnetwork layers.

e network elements layer: represents the physical network systems that are used to
support and deliver services to customers across converged networks. This layer is

similar to the TINA network element layer.

Lower SDP architecture layers expose their services to higher layers using technology neu-
tral interfaces. As with TINA components, the SDP services hide their implementation and
distribution behind their interfaces. These interfaces also abstract access to the service func-
tionality. Service interfaces implement the SDP business model’s reference points, so as to
promote standardised communication between business entities. This is also seen in TINA

with its component interfaces implementing its business model reference points.

Services and their interfaces, contained within the SDP architecture layers, are distributed
across domains. Like TINA, these domains represent areas of functional division that relate
to the business model entities. Thus, the SDP architecture layers are distributed across
customer, SDP (service platform), network and provider (application and content) domains.
These domains relate to the SDP business model entities shown in Figure These
domains are decomposable into other specific domains, such as a network access, edge
and core domains. In addition, an OSS/BSS domain may be extracted from the network
domain. Abstracting the complexities associated with technologies, implementations and

distribution found in the SDP architecture is the middleware plane.

The middleware plane hides technology, implementation and distribution concerns from all
applications and SDP services. For instance, the middleware plane supports service commu-
nication across layers and domains. In addition, the plane hides implementation details of
communicating services. Also, the plane abstracts transport networks and generic function-
ality provided by some of the underlying telco network systems. These network systems
may include other service platforms, middleware and databases. The middleware plane

also provides its own services that are used by other services and applications in the SDP

57

architecture. Like all SDP services, the middleware plane also promotes technology inde-
pendence by offering implementation independent interfaces to its own services. Therefore,

the SDP middleware plane provides functionality similar to the TINA DPE.

4.2.5 Evaluation of SDP Business Model and Architecture

By extracting, extending and applying the generic TINA concepts to the SDP we have de-
fined a conceptual viewpoint. This viewpoint defines various abstractions that are structured
in the SDP business model and architecture. The abstractions contribute to the definition
of the SDP framework. We evaluate the SDP business model and architecture against the
generic concepts extracted from TINA. In addition, the evaluation provides answers to the
questions posed in Chapter[I|Section[I.3] We also present a comparison between TINA and
SDP concepts and architectures in Table

The SDP business model represents a collection of SDP requirements. In addition, it il-
lustrates the role players involved in the converged telecom-IT environment. The business
model also promotes interoperability between SDP implementations by enforcing reference
point relationships between the various role players. Reference points promote standardisa-
tion of the SDP and its interactions with customers, providers and telco network. Therefore,
customers have universal access to their services, applications are portable across SDP im-

plementations and SDP implementations are portable across telco networks.

The SDP architecture shown in Figure represents the decomposition of the business
model into functional layers and domains. Layers and domains represent design patterns
used to structure the SDP architecture independently of technologies. Layers group hi-
erarchies of SDP services, while domains distribute layers and their services across the
converged telco-IT networks. Both layers and domains may be separated into more spe-
cific layers and domains. The SDP architecture identifies additional layers and introduces

domain distribution to the proposed SDP architecture, shown in Figure

Like TINA components, the numerous SDP services represent strong abstractions of telco
network functionality. In addition, some services abstract customer-related functions. All
SDP services communicate in a distribution and technology independent manner, by us-
ing their implementation independent interfaces. These interfaces support communication
across layers and domains. Service interfaces also provide authorised access to a com-
ponent’s management functionality. This enables management systems, such as the telco
OSS/BSS, to administer SDP services. However, service interfaces must be standardised

since they implement business model reference points.

58

TINA SDP
Business Technology neutral representation. Encapsulates system’s requirements. Defines business
Model entities and domains that the system operates across. Unlike TINA, the SDP does not use
an explicit broker or retailer.
Service Access Session: Components | SDP Application Layer and Generic Service
Architecture | abstract service access. Architecture | Layer: Contains 3rd party provider
Service Session: Components applications and content that use
abstract service usage. generic services via their interfaces.
Network Communication Session: Network Service Layer: Contains ser-
Resource Components abstract customer- vices that abstract network resource and
Architecture | service communication. capability functions.
Connectivity Session: Compo- Network Abstraction Layer: Con-
nents abstract network connec- tains services that abstract underlying
tivity required for service. telco network resources and capabili-
Layer Network: Components ties. Provides a single and standard-
abstract the network delivering ised point of integration between SDP
the service. services and the converged telco-IT net-
Subnetwork: Components ab- works.
stract network subnetworks.
Subnetwork: Components ab-
stract subnetwork elements.
Network Element: Defines Network Element Layer: Translates
physical network elements used higher layer technology independent re-
to provision services. quests to technology dependent oper-
ations on telco network elements and
systems.
Distributed | Distributes layers and their contents across areas of operation, such as the customer do-
Domains main. May be decomposed into additional domains.
Middleware | Abstracts distribution, technol- | Middleware | Abstracts distribution, technology and
ogy and telco systems. Imple- telco systems. Represented as a tech-
mented is CORBA-based. nology neutral plane.

Table 4.2: Comparison of TINA and SDP concepts and architectures

To promote standardisation, service interfaces may be fully defined or implemented using
existing service platform standards. For example, services contained within the generic and
network service layers may implement their interfaces using Parlay, OMA or JAIN. How-
ever, services contained within the network abstraction layer may implement their interfaces
using protocols such as SIP or SOAP [16]].

The SDP middleware plane also represents a design pattern for structuring the SDP archi-
tecture. The middleware plane hides service and network distributions. Also, the middle-
ware plane is technology independent and abstracts telco network technologies. Hence, the

middleware plane ensures communication between services independent of their underlying

59

computing technology, location and programming. In addition, the middleware plane pro-
vides services with interfaces that are used by SDP services, customers and providers. Some
of these middleware services abstract underlying telco network systems, such as legacy
service platforms, databases and other forms of middleware. In addition, the middleware
services abstract management systems, such as the telco OSS/BSS. Therefore, by using
standardised middleware plane service interfaces, the SDP architecture promotes standard-
based interaction between telco OSS/BSS, SCE and SME.

4.3 Summary

In this chapter we presented contributions of legacy service platform standards to the SDP
and its framework. We showed the IN conceptual model as providing a hierarchy of planes
for the SDP framework. Planes separate and group specific services and network functions.
These services and functions are abstractions that simplify access to the telco infrastructure.
Also, abstractions provide technology neutral interfaces, enabling them to communication
across planes. In addition, planes abstract distribution of communicating services and func-
tions. We also applied TINA concepts to the SDP and defined a generic business model,
that captures requirements and business domains. We decomposed the business model into
a SDP architecture. The architecture used layers to separate and group SDP services. Ser-
vices provide technology neutral interfaces to their functions. Layers and services are dis-
tributed across functional domains. The SDP architecture also used a middleware plane,
containing a collection of services that abstract distribution, technology and telco network
systems. Middleware services are used across all layers and domains via their technology
neutral interfaces. Therefore, by reusing generic concepts from both IN and TINA we pre-
sented technology, implementation and distribution neutral abstractions and architectures

that contribute to the SDP framework.

60

Chapter 5

Perspectives on the SDP from Service

Platform Standards: Parlay and Parlay X

The IN is a legacy service platform standard that is deployed across many telco networks,
while TINA represents a historical conceptual service platform standard that is not de-
ployed. Currently, newer service platform standards contribute to the evolution of the telco
network. These newer service platforms aim to manage and benefit from telecom-IT con-
vergence. Popular examples of these service platforms are based on the Parlay [20] set of

standards.

The Parlay group standardises a set of Application Programming Interfaces (APIs) that
promote the opening of the telco network to external IT infrastructures. The APIs enable the
full capabilities of the underlying telco network to be invoked using IT-based technologies
and mechanisms. Hence, APIs enable application developers to create traditional telco

voice-oriented services by exploiting telco network resources and capabilities [84].

With telecom-IT convergence, new telco network capabilities and resources are available.
These new capabilities are offered by service platforms, media repositories and packet-
based transport networks. As a result, the Parlay APIs further support application developers
in the creation of communication, information and content-based services, that are offered
to both consumers and enterprises [86l]. Hence, Parlay supports the creation of single-
media and multimedia-based services that are delivered across converged networks to a

broad range of customers.

61

Enterprise

Operator

R4 | R6

Client
Application
I—R1J |—R2—|
Framework Framework oA Serwgg Service
Administrator SCF ’ Captilliy Supplier
Feature (SCF)
I RS EAS I

Protocols
Converged Network

Figure 5.1: Parlay Reference Model

5.1 Requirements

As defined by [87], Parlay prescribes a variety of requirements for its APIs. For instance,
APIs provide programmable access to all telco network functionality. Hence, software-
based applications incorporate telco network functionality just as they would other forms
of IT-based functionality. Also, APIs are implementable using diverse I'T-based technolo-
gies, since they must be accessible by a variety of IT-using enterprises. The APIs abstract
network functionality, such that telco network complexities are hidden from application
developers. These complexities include network protocols, transport networks and distribu-
tion. In addition, the APIs provide an appropriate level of security since they open the telco

network to external enterprises.

Based on these requirements, Parlay defines a reference model containing various interact-
ing entities. The model is shown in Figure In the figure, relationships between entities
are defined, such that requirements are fulfilled. These relationships are specified using the

standardised Parlay APIs. These reference model entities are:

e Enterprise Operator: represents an I'T-using enterprise that is external to the telco.

This entity requires access to telco network capabilities for its applications.

e Client Application: represents external I'T-based applications that use telco network
capabilities to provide services to customers. These applications may belong to the

enterprise operator.

e Service Capability Feature (SCF): are software-based services that implement logic

required to access underlying telco network capabilities.

62

e Framework SCF: represents a specialised SCF that provides administrative func-
tions, such as SCF subscription, application authorisation and enterprise manage-
ment. Also, provides broker functionality such as enabling applications to discover

and locate other SCFs.

o Framework Administrator: represents a management entity that manages the frame-

work SCF. This entity may be the telco or an external enterprise.

e Service Supplier: represents a type of management entity that develops SCFs and
registers them with the framework, for use with applications. This entity may be the

telco or an external enterprise.

The reference model interfaces are used to formalise entity relationships. For instance,
interface R1 is used to authenticate client applications with the framework. Authorised
applications access network capabilities via the SCFs, using interface R2. Interface R3 is
used to locate and manage SCFs that have registered with the framework. This supports
authorised client applications to locate SCFs via the framework. Using interface R4, enter-
prises register their applications with the framework, for use with SCFs. Also, enterprises
use this interface to subscribe for SCFs that are used by their applications. The enterprise
manages its SCF subscriptions via interface R4. By using interface R5, service suppliers
register their SCFs with the framework. Interface R6 enables enterprise operators to invoke
SCF capabilities.

In the reference model, interfaces R5 and R6 are to be standardised using the Parlay APIs.
In addition, interfaces managing the administration of framework, applications and SCFs
are not standardised. These administrative interfaces do not relate to the public telco net-
work, but rather to private enterprises that administer applications and SCFs. Hence, these

interfaces are not be managed by the Parlay APIs.

Based on the reference model a Parlay architecture is defined.

5.2 Architecture

The Parlay architecture defines and structures various abstractions that make use of the
standard-based APIs. The main objective of the architecture is to promote the use of telco
network capabilities by external IT-using enterprises, via the Parlay APIs. Also, the Parlay
architecture provides a foundation on which other service-oriented standards are defined.
In the following sections we discuss the Parlay architecture and its extension, the Parlay X

architecture.

63

Customer Domain

Parla
Customer N y Application
invokes Application initiates service
app Server
A

Enterprise Domain

Telco Domain

Jake uoneolddy

Johke eo1neS

‘ SCS Logic

Parlay Gateway (SCS)

%> Protocols

Customer 5 .
invokes etwork event
e |::> Converged Networks initiates app
service

Figure 5.2: Parlay Architecture

Jahe yiompaN

5.2.1 Parlay

The Parlay architecture is illustrated in Figure[5.2] and is derived from [88,[89]. In the figure,
the architecture contains a Parlay application server and Parlay gateway. The application
server hosts various client applications and operates within the enterprise domain. Client

applications access functionality offered by the Parlay gateway via the Parlay APIs.

The Parlay gateway is contained within the telco domain and is also known as the Service
Capability Server (SCS). The gateway houses various SCFs that implement and expose the
Parlay APIs. Examples of the SCFs and their associated APIs are:

o Framework SCF [90]: exposes the framework API to applications. Also, administers
all other SCFs that have registered with it and performs various management and

security functions.

e Generic Call Control SCF [91]]: exposes the generic call control API, enabling appli-

cations to make, manipulate and manage calls within the telco network.

o User Interaction SCF [92f]: exposes the user interaction API and enables applications
to interact with customers using Interactive Voice Response (IVR) units, in a technol-

ogy neutral manner.

e Mobility SCF [93]: exposes the mobility API, enabling applications to query the

location of a customer’s terminal.

Additional APIs are defined that enable applications to perform various functions, such as
multiparty and multimedia call control, query customer terminal capabilities, control data

sessions and manage customer accounts and presence information.

64

In Figure the Parlay gateway (or SCS) contains software-based logic. When invoked
by applications, SCFs invoke SCS logic interfaces to fulfil application requests. The SCS
logic manages the interworking between SCFs and network specific functions. Hence, the
SCS logic translates SCF requests into protocol messages that are used to invoke network
functions. However, the SCS logic is unstructured and limited in standardisation. Examples

of structured abstractions for the SCS logic are defined in [49 94, 935].

In addition to the Parlay architecture, Figure illustrates how applications are invoked
to provide customer services. First, on deployment applications may register with some
SCFs for notification of specific network events. The network events may occur when a
customer, within the customer domain, initiates a network service. When the event occurs,
notifications are delivered to the appropriate SCFs, via the SCS. As a result, the SCF notifies
the appropriate application to provide the customer service. Second, customers within the
customer domain may directly access client applications and invoke a particular service.

Once invoked, applications use SCFs to fulfill customer requests.

Parlay APIs are defined in a implementation neutral representation. As a result, APIs are
implementable using a variety of technologies. Also, APIs are represented in a distribution
independent manner, though they are invoked across enterprise and telco networks. Parlay
promotes the use of standard-based technologies to implement its APIs. The use of stan-
dards ensure interoperability between different application and API implementations. In
addition, the technologies must manage the distribution of the SCS, SCFs and applications.
Parlay recommends CORBA-based technologies to implement APIs and hide implementa-

tion and distribution details.

Parlay APIs abstract functionality provided by underlying telco network protocols [96].
These APIs define abundant methods with rich data structures that are used by applications
to invoke protocol functionality. As a result, Parlay-based applications that use the APIs
have greater control over telco network functions. However, this implies application devel-
opers must have knowledge of telco network concepts to take full advantage of the APIs
and the network capabilities [96]. Therefore, creating Parlay applications is complex due to

the richness of the APIs and telco network knowledge that is required.

To simplify the complexity of the Parlay APIs, Parlay defines the Parlay X set of APIs.

5.2.2 Parlay X

IT-using enterprises require simple interfaces to access and use telco network capabilities.

These interfaces must be void of any telco network details, such as protocols. As a result,

65

Parlay defines the Parlay X APIs. These APIs simplify access and usage of the Parlay APIs
and telco network functions. The Parlay X APIs are based on Internet technologies, called

web services [[7]. We discuss web services in Chapter[z

Parlay X APIs specify fewer methods, simpler data structures and simpler interaction mod-
els than the Parlay APIs. The API methods expose the generic service-oriented functionality
offered by the underlying telco network resources and capabilities. For example, the APIs
provide methods to setup a simple two-party call using phone numbers that are managed
within a simple data structure. As a result, the Parlay X APIs provide less control over telco

network capabilities than the Parlay APIs.

Though less expressive than Parlay, the Parlay X APIs provide an acceptable level of ab-
straction for accessing network resources and capabilities. In addition, APIs are defined
using Internet-based technologies. As a result, IT using enterprises and Internet-based ap-
plication developers form the target market for Parlay X APIs [97]]. The APIs enable devel-
opers to enhance their existing applications with telco network capabilities, or create new
applications. Also, the APIs easily integrate with their existing IT infrastructure, such as
their application platforms. Hence, Parlay X enables a diverse range of IT-based application
developers to easily create applications, that benefit from using telco network resources and

capabilities.

The Parlay X architecture is shown in Figure[5.3] and is derived from [98]. In the figure, the
architecture consists of a Parlay X application server, Parlay X gateway and Parlay gateway.
The Parlay X application server hosts various client applications and operates within the
enterprise domain. These applications access functionality offered by the Parlay X gateway

using the Parlay X APIs. The gateway is contained within the telco domain.

The Parlay X gateway houses various web services. Web services represent software-based
logic that implement and expose the Parlay X APIs. Applications invoke web services
via their interfaces to access network functions. Web services invoke Parlay APIs to fulfil
application requests. Hence, Parlay X APIs simplify access and usage of the Parlay APIs.

Numerous web services are defined to abstract the Parlay APIs. For example:

e Third party call web service [99]: enables external applications to initiate a call be-
tween customers, on the telco network. This web service simplifies the various Parlay

call control APIs.

e Audio call web service [100]: enables applications to deliver audio to customers.

This web service simplifies the Parlay user interaction API.

e Terminal location web service [101]: enables applications to obtain the location of

66

Customer
Domain

|::> Parllay .x Application
Application Initiates
Client invokes Server service

app ~
/ J\ Enterprise Domain

Parlay X API Telco Domain

I\

/
Parlay
Application WS
Server
S

Jake uoneoyddy

l Parlay X Gateway
%: I\ Parlay API §
NJ ~1 8
- o
‘ Frame ‘ SCF ‘ ‘ SCF ‘ H
work
| |
‘ SCS Logic
.
Parlay Gateway (SCS)
ﬁ:lz Protocols

JaheT lompaN

Converged Networks

Figure 5.3: Parlay X Architecture

a customer’s terminal. This web service simplifies the Parlay mobility management
APL

Additional Parlay X APIs are defined and provide functionality such as, messaging, media
streaming and presence management. However, Parlay X does not define a framework web
service that abstracts the Parlay framework API. Since, Parlay X is based on web services,
Internet-based mechanisms are proposed to provide framework-like functionality. One such
mechanism is a Universal Description, Discovery and Integration (UDDI) [15] registry, that
registers web services and enables applications to locate web services in a secure manner.

We discuss these and other web service technologies in Chapter/[7}

In Figure web services are contained in the Parlay X gateway that interworks Parlay X
applications and the Parlay SCFs. Therefore, web services may be considered Parlay client
applications, since they invoke SCFs via the Parlay APIs. However, Parlay X standards also
enable web services to directly use the converged network capabilities. This is only possible
if the network resources and capabilities can directly communicate with the web services
using Internet-based protocols. Some applicable network resources include the I'T-based
OSS/BSS.

In addition to the Parlay X architecture, Figure[5.3]illustrates how Parlay X applications are
invoked to provide customer services. Customers can access Parlay X applications using
Internet-based technologies and invoke application functionality directly. Once invoked, the
applications may use web services, via the Parlay X APIs, to access network capabilities
to fulfil customer service requests. Also, web services may directly invoke the appropriate

network functions to fulfil the customer request.

67

Parlay X APIs are defined in an implementation neutral representation. However, Parlay X
promotes the use of web service technologies to implement the APIs. These technologies

are discussed in Chapter|[7}

5.3 Reusable Concepts

Parlay shares many concepts with the TINA service platform [87]. Some concepts include
business modeling, abstraction through separation, standardised interfaces and hiding dis-
tribution complexities. These concepts are shared with Parlay X, since it is an extension
of Parlay. As a result, both Parlay architectures provide generic and reusable concepts that
benefit the SDP.

The Parlay reference model represents a business model containing interacting business en-
tities using formalised relationships. In this business model, the framework SCF represents
a service retailer that provides enterprise customers and their client applications with access
to services (SCFs) [89]. The framework SCF also provides broker functionality since it
enables enterprise customers to locate services. The reference model formalises business
relationships between entities using specialised reference points called interfaces. The in-
terfaces are implemented using the standardised Parlay APIs. The interfaces may also be
implemented using the standard-based Parlay X APIs. For instance, web services repre-
sent services that are used by enterprise customers and their web-based client applications.

However, Parlay X does not standardise a retailer, such as the Parlay framework.

Parlay uses the concept of separation to define its architectures. Both Parlay and Parlay X
separate service-oriented capabilities from the underlying telco network into generic ser-
vices. These services are the SCFs and web services. Services provide access to network
capabilities by implementing the standard-based Parlay and Parlay X APIs. These APIs rep-
resent the decomposition of interfaces R1, R2, R3 and R4 of the Parlay reference model,
shown in Figure However, both Parlay and Parlay X APIs do not implement adminis-
tration interfaces, that are used by the framework administrator and service supplier. These
interfaces enable management applications to administer Parlay and Parlay X gateways.

These administration interfaces require standardisation.

Parlay and Parlay X APIs are implemented and exposed by SCF and web services respec-
tively. Web services manage the translation between Parlay X and Parlay API invocations
and between Parlay X API invocations and Internet-based protocols. Hence, web services
provide a point of integration between applications, Parlay and network functions. Parlay

SCFs manage the translation between Parlay API invocations and underlying converged

68

network protocols. However, the SCFs use the SCS logic to manage the interworking with
the underlying network. Hence, the combination of SCFs and SCS logic provides a point of

integration between applications (including web services) and network protocols.

Both Parlay and Parlay X APIs are implementation independent. As a result, various pro-
gramming languages may be used to implement the APIs, SCFs, web services and appli-
cations. The APIs are also distribution independent. As a result, implemented SCFs and
web services may be distributed across service platforms and the telco network, but re-
main accessible to applications. Hence, applications may invoke Parlay or Parlay X APIs

independent of their implementation or location.

In both Parlay architectures applications, web services, SCFs and the network are modeled
as separate horizontal layers. Layers are structured hierarchically with Parlay X forming
the topmost layer, Parlay forming the middle layer and the network forming the bottom-
most layer. Each layer simplifies lower layers, such that the complexity of the underlying
network protocols are abstracted. Layers’ services vertically communicate via the Parlay
and Parlay X APIs. Service communication also occurs horizontally within layers, via ser-
vice interfaces. For example, client applications may be invoked by customer applications,

across the application layer.

Though not formalised in the Parlay standards, the Parlay architectures operate across var-
ious domains. These domains include the enterprise domain, where client applications re-
side. The enterprise domain is separate from the telco since it contains the enterprise op-
erators infrastructure. A telco domain is also defined and contains the Parlay and Parlay X
gateways. In addition, the telco domain contains the network resources and capabilities.
Customers access applications within the customer domain. The customer domain may

include individuals, enterprises or other telcos.

SCFs, web services and applications operate across multiple domains. Domains imply a
distributed environment that SCFs, web services and applications must operate across. As
a result, Parlay promotes the use of distributed processing technologies to abstract the com-
plexity of distribution. These technologies provide software-based mechanisms to hide dis-
tribution and implementation of services and applications from each other. Hence, these
technologies enable service and application implementations to communicate, in a distri-
bution and technology independent manner. We generalise the distributed processing tech-

nologies as a middleware plane.

69

Service
Consumer

RSC
|
SDP
Customer —Rcs— (Retailer/ —Rsp—
Broker)

RNS

Service
Provider

Network

Provider

Figure 5.4: Generic SDP Business Model derived from Parlay Reference Model

5.4 Contribution to the SDP from Parlay and Parlay X

We reuse and extend the generic and technology neutral Parlay and Parlay X concepts to

define a SDP business model, reference model and architecture.

The SDP business model is illustrated in Figure|>.4|and is derived from the Parlay reference
model shown in Figure The model is abstract and illustrates the SDP performing the
business roles of a service retailer and service broker. As a result, the SDP provides services
to various business entities. Also, business entities use the SDP to locate services. The

entities that interact with the SDP include:

e Service Providers: perform OSS/BSS specific functions with the SDP. For instance,
service providers use SCE and SME to create and manage their own services, that are
integrated into the SDP and contribute to the SDP’s service repository. This business

entity is similar to the service supplier in the Parlay reference model.

e Service Consumers: represent application providers who create applications by locat-
ing and consuming specific services offered by the SDP. Consumers orchestrate ser-
vices into their applications that are used by customers. This business entity is similar

to the enterprise operator and client applications in the Parlay reference model.

e Customers: use SDP services to locate and access applications. These applications

provide customer services. This entity is lacking in the Parlay reference model.

e Network Provider: provides the underlying network resources and capabilities re-
quired by SDP services to support application development and customer service
deliver. This business entity is abstracted by the SCFs in the Parlay reference model.
Also, the Parlay reference model does promote a standardised interface between the

SCFs and this business entity.

70

App/Content
Provider
T
Rsc
(Rer) (Res)
SDP (Retailer/Broker) I I
Retailer R | Service R SDP L (Renam
Admin AT Retailer RS Services Shdmin Service
I Ree Provider
RRC (RRP
|
R Customer
Customer RAIMITT Service
—Rcs Retailer
RNS

Figure 5.5: SDP Reference Model derived from Parlay Reference Model

Business interactions between entities in the SDP business model are defined using business
relationships. These relationships prescribe rules and contracts between the SDP and busi-
ness entities. For instance, the Rgc relationship defines access and usage permissions of
services by service consumers. The Rgp relationship specifies rules for service providers
to deploy their services using the SDP. In addition, the Ry relationship regulates use of
network resources and capabilities by the SDP and services. Also, the Rcg relationship

defines usability of the SDP by customers.

The SDP business model is decomposable into a reference model. An example reference
model is shown in Figure The reference model is also derived from the Parlay reference
model shown in Figure The reference model decomposes the SDP business model en-
tity into additional components, that support the business relationships. These components

include:

e Service Retailer: represents a component of the SDP business entity. This component
provides services to service consumers’ applications. Thus, it provides functionality
similar to the Parlay framework SCF. In the SDP reference model we show service

consumers as application or content providers.

e SDP Services: represent a diverse range of services that are created and managed by
service providers. Some SDP services may provide service consumers with simple
access to network capabilities, while others provide services to customers. Thus, SDP

services represent abstractions of Parlay SCFs and Parlay X web services.

e Customer Service Retailer: enables customers to locate and use customer services,
via the service retailer. These customers are not enterprise operators or their client

application, but are similar to end-users of applications or TINA consumers.

71

e Retailer administrator: provides administrative functionality to manage the SDP re-

tailers. This entity is similar to the Parlay reference model’s framework administrator.

In the reference model, relationships between SDP business entity components are stan-
dardised as reference points before they are implemented using standard-based APIs. For
example, the Rpg reference point promotes standardised interactions between the service
retailer and SDP services. These interactions enable the service retailer to locate SDP ser-
vices for service consumers. This reference point relates to the R3 interface of the Parlay
reference model. The Rr¢ reference point standardises communication between the service
retailer and customer service retailer. This communication enables the customer service re-
tailer to locate customer services. There are no interfaces in the Parlay reference model
that corresponds to this reference point. The R 44,,i, enables the SDP to manage its retail-
ers. This reference point relates to the nonstandardised interface between the framework

administrator and framework SCF in the Parlay reference model.

Business relationships between SDP business entity components and external business en-
tities are also formalised as reference points. These reference points share names with the
business relationships, that is, Rsc, Rsp, Rys and Rog. These reference points promote
standard-based communication between the SDP and external entities, including the con-
verged networks and IT-using enterprises. However, the Rgc and Rgp reference points are
decomposed into more specific reference points, since they interact with the SDP compo-
nents. The Rgc business relationship is divided into the Rpr and Rpg reference points.
The Rpp reference point standardises interactions between service consumers and the ser-
vice retailer. These interactions enable consumers to locate and register to use SDP services.
Also, consumers may register their applications for use by customers. This reference point
corresponds to the Parlay reference model’s 1 and 1?4 interfaces. The R pg reference point
standardises interactions between service consumers, their applications and SDP services.
Hence, this reference point standardises usage of SDP services and therefore, the underly-
ing network capabilities. This reference point relates to the Parlay reference model’s R2

and RG6 interfaces.

The Rgp reference point is divided into the Rrpp and Rg Agmin reference points. The Rrp
standardises communication between the service retailer an service provider. As a result,
diverse service providers can register their services with the service retailer, in a consis-
tent manner. This reference point is similar to the 5 interface of the Parlay reference
model. The Rgaqmin standardises interactions between the service supplier and their ser-
vices. Hence, service providers manage their services, while they are deployed in the SDP.

This reference point relates to the nonstandardised interface between the service supplier

72

and SCFs in the Parlay reference model. The Rcg standardises interactions between cus-
tomers and the customer service retailer. These interactions enable customers to locate and
register to use applications that provide specific customer services. This reference point has

no corresponding interface in the Parlay reference model.

Like Parlay, the SDP reference points in Figure are implemented as generic interfaces.
Interfaces express functionality offered by the business entity components. For example,
SDP services offer external IT-using enterprises interfaces, that expose the service-oriented
capabilities of the underlying network. Also, these SDP service interfaces express function-
ality independent of telco details, such as protocols. Other interfaces describe functionality
to support communication between business entity components. All interfaces are defined
in an implementation neutral manner, such that they are implementable using a variety of

technologies.

All interfaces are implemented and exposed using services. As a result, each business entity
component contains services that implement and expose their appropriate interfaces. For
example, the service retailer contains retailer services that enable application developers to
locate SDP services. Also, the customer service retailer contains its own retailer services
that enable it to locate, subscribe and access applications, on behalf of customers. The SDP

service entity contains a diverse collection of services. These services are of the following

types:

e Application services: expose simple interfaces to service consumers to access net-
work capabilities. However, some application services may not expose interfaces but

provide services to customers.

e Generic services: provide interfaces for application services to invoke the service-

oriented capabilities of the underlying network resources.

e Network services: provide interfaces for generic services to invoke network functions

independent of their technologies.

Some of the above SDP services may be created and managed by external service providers.
For example, Figure [5.5| shows a service provider interacting with the SDP to deploy and

manage its own services.

Services and their interfaces implementing the SDP reference model are managed in a SDP
architecture illustrated in Figure The SDP architecture is derived from the Parlay and
Parlay X architectures shown in Figure[5.2]and Figure The architecture represents the

SDP within an environment of entities that invoke SDP service interfaces.

73

Middleware Plane

Customer App Provider Content Provider
Domain Domain Domain SDP Domain
l_ - =" r - ="

[Application Layer

| I i Service I ; I
Provider Domain |
1 | [——= 1 1

Application Service Layer

e

Generic Service Layer

N N N N N

Network Resource Layer

[Network Service Layer

Figure 5.6: SDP and its Environment derived from Parlay and Parlay X Architectures

The SDP architecture separates services into horizontal layers that are hierarchically organ-
ised based on their level of abstraction. The application layer contains applications that
consume application services. These applications may belong to application or content
providers The application service layer houses the various types of application services.
These services may be implemented as Parlay SCFs or Parlay X web services. The generic
service layer contains generic services. These services may be implemented as Parlay SCFs.
The network service layer groups network services. The network services may be imple-
mented as part of the Parlay SCS logic. The network resource layer houses the converged
network resources and capabilities, such as transport networks, OSS/BSS and data stores.
These resources are invoked by the network services. All service layers expose their service

interfaces to layers higher in the SDP architecture.

If Parlay X web services are used to implement the application service layer, we may re-
move the generic service and network service layers. As a result, the web services can
communicate directly with the appropriate network resources. Thus, the SDP architecture

can be reduced to accommodate the Parlay X architecture shown in Figure

In addition to layers, the SDP architecture defines domains. Domains represent functional
divisions across the SDP architecture. The SDP architecture defines domains that corre-
spond to the business entities that interact with the SDP business entity and components.
Hence, services derived from the business entities operate within their associated domains.
However, SDP services are accessed and used across multiple domains. SDP services pro-
vide their functionality across various domains by using their interfaces. For example,
Figure [5.6] shows application services are accessible via their interfaces, by applications

contained in the application provider or content provider domains. Also, service providers

74

access generic service, via their interfaces, from within their domain when creating and

testing their own application services.

Like Parlay and Parlay X, middleware is essential to the SDP architecture. The SDP uses
middleware mechanisms to abstract the distribution of applications and services across vari-
ous domains. The middleware mechanisms also contain functionality to support implemen-
tation and distribution independence of service interfaces. The SDP middleware abstracts
underlying technology details, such as computing platforms that host applications and ser-
vices. Also, the middleware abstracts transport networks used to deliver application and
service communications. In the SDP architecture middleware mechanisms are abstracted
as a middleware plane. In Figure the middleware plane encapsulates all layers and

domains, such that implementation, distribution and technology details are abstracted.

5.5 Evaluation of SDP Business Model, Reference Model and

Architecture

By applying the generic Parlay and Parlay X concepts to the SDP we have defined a telecom
service-oriented viewpoint. This viewpoint defines various abstractions that are structured
in the SDP business model, reference model and architecture. The abstractions contribute
to the definition of the SDP framework. We evaluate the SDP business model, reference
model and architecture against the generic concepts extracted from Parlay and Parlay X. In
addition, the evaluation provides answers to the questions posed in Chapter [I| Section [I.3]

We also present the comparison between Parlay, Parlay X and SDP in Table

The SDP business model justifies the development of the SDP by a telco. That is, the SDP
manages and benefits from telecom-IT convergence, by providing diverse services to exter-
nal IT-using enterprises. The business model remains generic so as to cater for many types
of enterprises (business entities). Interactions between SDP and enterprises define business
relationships and their roles in these relationships. The most predominant role between SDP
and enterprises is that of service provider and service consumer respectively. However, the
business model also shows the SDP as a service consumer that deploys services on behalf

of external service providers.

The SDP reference model adds detail on the business model, such as the internal compo-
nents that constitute the SDP business entity. Also, the reference model shows examples of
enterprises that interact with the SDP components. Some of these enterprises are service

consumers, such as application developers, content providers and customers. In addition

75

Layer cation Layer

Service Layer

Parlay X Parlay SDP Description
Reference Model Business model | Defines telco and IT-based business entities and
the business relationships between them.

Reference Decomposes business entities and formalises
Model business relationships as reference points.

Web Applica- Application Contains IT-based applications that access net-

tion Layer Layer work capabilities to provide customer services.

Web Services | CORBA Appli- | Application Defines simple services that provide access to

network capabilities, via technology neutral in-
terfaces. Some application services may not ex-

pose interfaces, but provide customer services.

Service Capability

Function Layer

Generic Ser-

vice Layer

Contains services with interfaces that simplify
access to the service-oriented capabilities of the

underlying network.

Network Ser-

vice Layer

Contains services with interfaces that promote

access to the underlying network functions.

Network Resource Layer (telco, IT-using enter- Represents the integrated collection of network

prise and Internet) resources and capabilities that are technology,

implementation and distribution specific.

Distributed Domains Represent areas of division across the SDP ar-
chitecture. Domains relate to business entities

found in the business/reference model.

Middleware

Plane

Proto-

CORBA Supports application and service communica-

cols tion by abstracting their implementation, distri-

bution and technology details.

Table 5.1: Comparison of Parlay and SDP Concepts and Architectures

to service consumers, the reference model shows service providers, who deploy their ser-
vices with the SDP. The reference model promotes standardised interactions between SDP
components, external enterprises and network using reference points. The reference model
reference points are implementable as service interfaces. Thus, the SDP and enterprises
implement reference points using numerous services that expose specific interfaces. As a
result, interfaces expose SDP capabilities to enterprises in a standardised manner, but, en-
sure the inner-workings of the SDP components are hidden. Service interfaces express SDP
capabilities independently of network technologies, making them easier to use when pro-
gramming new applications. Also, service interfaces are implementation and distribution
neutral, such that diverse application implementations may use their functions across vari-
ous locations. Thus, the abundant SDP services and their interfaces provide varying levels

of abstraction of the telco network resources and capabilities.

The SDP services and interfaces are structured within an architecture using layer, domain

and plane design patterns. Unlike the proposed SDP architecture shown in Figure[l.3] this

76

SDP architecture is technology neutral and uses service interfaces to promote SDP standard-
isation. These SDP architecture layers and groups services as a hierarchy of abstractions
that simplify access and usage of the underlying network resources. The various service
interfaces enable standardised communication within and across layers. Also, services and
their interfaces enable consistent access to the SDP and the underlying network capabilities.
For example, application services provide a point of integration between external applica-
tions and generic services. The network services provide a point of integration between
generic services and the converged network resources. The generic services translate be-
tween application service invocations and network service invocations. Some SDP services
also provide a means for customers to locate applications that provide diverse functionality.
Hence, these SDP services support a standardised point of integration between customers
and external applications. The SDP service interfaces ensure these points of integration re-
main technology neutral, by hiding details of the service implementation, distribution and

underlying network technologies.

The SDP architecture represents a distributed platform, since its layers operate across mul-
tiple domains. Services are distributed across these domains, but remain within their as-
sociated layers. Service interfaces enable their distribution to be abstracted, to some de-
gree. However, the middleware plane design pattern enables service distribution to be fully
abstracted. Also, the middleware plane provides functionality to abstract application and
service implementations and distribution. For example, the middleware plane abstracts di-

VErse:

e computing platforms that host applications and services;
e software implementations of applications and services; and

o transport links used to deliver application and service communications.

As a result, the middleware plane abstracts various complexities, such that application de-
velopment and service execution is simplified. Thus, the middleware plane provides a point
of integration between applications, services and their networked computing platforms. The
SDP architecture defines the middleware plane independently of technologies. Hence, the
middleware plane may be implemented using a single technology or an integration of many

technologies.

Both Parlay and Parlay X do not provide standardised APIs that completely abstract telco
OSS/BSS capabilities. This is also evident in the Parlay reference model’s nonstandardised
interfaces involving the framework administrator and service supplier. As a result, our

derived SDP business model, reference model and architecture does not incorporate the

7

telco OSS/BSS or external enterprises’ SCE and SME. These issues are resolved in chapter
Chapter|6]

5.6 Summary

In this chapter we presented contributions of current service platform standards to the SDP
and its framework. We reused generic concepts from both Parlay and Parlay X standards.
These concepts where extracted from the Parlay reference model and Parlay and Parlay X
architectures. By reusing concepts from the Parlay reference model we defined a SDP busi-
ness model that motivates the business case for the SDP. Also, we decomposed the business
model into a SDP reference model with reference points, to promote SDP standardisation.
Like Parlay and Parlay X, we reused the concept of standard-based service interfaces to
implement reference points. For example, service interfaces hide the complexity of net-
work technologies from applications. Also, the service interfaces are implementation and
distribution independent. We decomposed the reference model into a SDP architecture, that
grouped and structured SDP services into horizontal layers. Also, we used domains to dis-
tributed the layers across various functional areas. We incorporated a technology neutral
middleware plane to hide implementation, distribution and technology complexities from
services and applications. Therefore, by reusing generic Parlay concepts we presented tech-

nology neutral abstractions and an architecture that contributes to the SDP framework.

78

Chapter 6

Perspectives on the SDP from Management
Framework Standards: TMN, TOM and
eTOM

Telco network infrastructure contains varied integrated systems. Each system is distributed
across the telco network and uses diverse technologies to interoperate with each other. The
networked collection of systems support the telco business, that is, the development and de-
livery of customer services. The telco uses specialised systems to manage its infrastructure
and customer services. These systems are the operations and business support systems (OS-
S/BSS).

OSS/BSS form a crucial part of the telco infrastructure. OSS ensures the effective opera-
tion of the telco infrastructure parts, such as switches, routers, databases, service platforms
and customer terminals. The BSS manages telco business objectives by defining and im-
plementing business processes. For instance, business processes define logic to deploy ser-
vices, perform network configuration and bill customers. The OSS and BSS are integrated

such that the operation of the telco infrastructure satisfies business objectives.

With convergence effecting both telco business and infrastructure, its traditional OSS/BSS
is changing. The OSS must manage integration of legacy telco systems with new telco, IT
and Internet-based systems. The OSS must manage the opening of the telco infrastructure to
various external partners. Also, the OSS must manage old and new types of services that are
defined, deployed and maintained by the telco. In relation, the BSS must manage existing
business processes, but support new processes that enable the telco to benefit from telco,
IT and Internet convergence. For example, telco business processes must satisfy business
objectives that include external partners, such as application developers, content providers

and other telcos.

79

Various tools are defined to aid development of a telco OSS/BSS that manages telecom-IT
convergence. In this chapter we discuss tools, such as the Telecommunication Manage-
ment Network (TMN) [21], Telecommunication Operations Map (TOM) [22] and Enhanced
Telecommunication Operations Map (eTOM) [23]]. These standards provide a wealth of
generic and reusable concepts that focus on the operations and business management of
telco infrastructure. Hence, these concepts aid the development of the SDP framework,

since the SDP must manage telecom-IT convergence.

6.1 Requirements

6.1.1 TMN

Legacy telco infrastructure provides voice services to customers over limited transport net-
works. For example, the IN is used to create and execute voice-based services, while the
PSTN is used to deliver IN services across circuit-mode transport networks. To manage
legacy telco infrastructure the TMN is defined. The TMN represents a separate and dedi-
cated management network that integrates with the IN/PSTN and other TMN:Ss, to provide
various management functions [[102} 21]]. As defined in [[103]], TMN functions aim to fulfil

the following requirements:

Fault Management: detect, isolate, report and correct errors found in telco infrastruc-

ture.

e Configuration Management: adjust properties of telco infrastructure systems, so as to

control their operation.

e Accounting Management: collect diverse information, based on service/network us-

age by customers, and adjust billing records.

e Performance Management: monitor and adjust telco infrastructure system properties,

such that they operate efficiently.

e Security Management: enables the creation, modification and application of various
security policies that ensure authorised access to management functions and informa-

tion.

We define a TMN business model, shown in Figure [6.1(a)} that summarises TMN require-
ments. The business model illustrates separate TMNs managing separate networks using
standard-based protocols. In addition, standard-based protocols are used to integrate both

networks and their corresponding TMNSs.

80

CUEETER omplementa
Suppliers Provider
Business + /0/
External }‘

reference points
Telco A ! Telco B P $ ' Service !
| Intermediary Service

. Provider "
TMN TMN Customer Seivice Eioyoey
Provider {
Business

+ l + reference points Function/
Protocols | i o

I Other Provider
IN/PSTN IN/PSTN Providers || | ~ ——{ Software/.....

(a) TMN Business Model (b) TOM Business Model (c) €TOM Value Network

Figure 6.1: Telco Management Business Models

6.1.2 TOM

The TMN represents a legacy approach to define a telco OSS/BSS. The TMN aims to sat-
isfy limited OSS/BSS requirements by defining network-oriented services, functions and
protocols. In addition, the TMN provides incomplete standardisation, with implementations

using proprietary mechanisms [[104]. To overcome these limitations, the TOM is defined.

TOM represents a standardised business process framework that is used to develop telco
OSS/BSS. TOM defines various business processes, with each describing activities that a
telco OSS/BSS must support. These business processes are highly abstract and encapsulate
the telco OSS/BSS requirements. By linking various business processes together, specific
telco business objectives are satisfied. Consequently, the fulfillment of business processes
influence the operation of the telco infrastructure. Based on [22]], TOM and its business

processes fulfil requirements, such as:

e End-to-end automation of business and operation activities, for example, automation

of service creation, deployment, delivery and billing.

e Promote customer and service centricity, rather than network centricity. This enables
business processes to focus on telco OSS/BSS requirements, rather than the underly-

ing network technologies.

o Incorporate external partners into the telco business model, such that partners use
services offered by the telco. Partners perceive the telco as a service provider. For
example, partners use telco services to supply their own services to customers. In
addition, some partners use telco services to provide content to enhance customer

services.

o Administer distributed and diverse management information, obtained from heteroge-

nous telco infrastructure systems.

e Reuse legacy OSS/BSS capabilities, since they manage existing telco infrastructure

81

systems.

e Ensure interoperability between different telco OSS/BSS implementations.

The TOM requirements are summarised in a business model that is defined in [22]] and
shown in Figure The model defines the telco service provider, customers, suppliers
and other provider business entities. Examples of suppliers include application developers,
while other providers include content providers. All business entities are involved in various
business relationships, called business reference points. Business reference points promote
standardised management interactions between telco, customers, suppliers and providers.

These interactions contribute to the definition of the TOM business processes.

6.1.3 ¢TOM

The eTOM is defined due to refinement of the TOM standard. The eTOM shares proper-
ties, requirements and business processes with TOM. However, eTOM enhances TOM by
managing the effects of telecom, IT and Internet convergence on the telco OSS/BSS. As a
result, eTOM defines additional business processes that manage the integration of telco OS-
S/BSS with external IT-based enterprise infrastructures and the Internet. In addition, eTOM
defines business processes that promote improvement of internal telco activities. Hence,

eTOM provides a more complete approach to develop telco OSS/BSS.

The eTOM business model is defined in [23] and shown in Figure The business
model is generic and illustrates a network of telco, enterprises and customers involved in
various business relationships, called business reference points. Like TOM, these business
reference points promote standardised interactions between business entities, that contribute
towards the definition of eTOM business processes. In the figure, the business entities and

their functions are:

e Service Provider: represents a telco that purchases products or services from various
entities in the business model. Also, the telco sells services to entities in the business

model.

e Customer: is an individual or enterprise that subscribes, consumes and pays for cus-

tomer services.

e Hardware/Software Provider: sells products to the business model’s providers. These

products are then integrated into the providers infrastructure.

e External Service Provider: is an external telco or enterprise that uses the service

provider’s services to create, execute, enhance, deliver or manage its own customer

82

services. In addition, the service provider may use external service providers’ services

to create, execute, enhance, deliver or manage its own customer services.

e Complimentary Provider: represents an external enterprise that adds value to the ser-
vice provider’s customer services. For example, this provider may represent a media
broadcaster who offers content to the service provider, for use in new customer ser-

vices.

e Function/Process Provider: represents an enterprise that performs functions or even
business processes on behalf of the service provider. For example, a function may

include selling customer services to customers.

e Intermediary: is an enterprise that takes on the role of a broker. For instance, the
broker enables business entities to locate each other for the purpose of buying or

selling services, products or content.

eTOM is used in conjunction with other standard and technology neutral tools to aid the
development of telco OSS/BSS. These tools include the Shared Information and Data Model
(SID) [10S] and Technology Neutral Architecture (TNA) [106]]. The collection of these
tools form part of a OSS/BSS development life cycle named the New Generation Operations
Systems and Software (NGOSS) [48]].

6.2 Architecture

6.2.1 TMN

The TMN functional and logical architecture is defined in [[21]] and shown in Fi igure[@ The
architecture uses management layers to group functional entities based on their management
capabilities. All lower layer functions are accessed and used by higher layer functions. The
business management layer groups business Operations System Functions (OSF) that man-
age the telco business as a whole. This function obtains simple management information
and uses management capabilities from lower layers to satisfy telco business objectives.
The service management layer contains a service OSF that administers service oriented as-
pects of the telco infrastructure. For example, the function provisions IN-based services for

customers, by using lower network functions.

The network management layer houses a network OSF that provides a holistic view of the
telco network and abstracts details such as subnetworks and network elements. For example,

the network OSF is used to configure the network when a new service is being deployed.

83

Telco Domain A Telco Domain B

Business
Management Layer

Service
Management Layer

Network
Management Layer

Element
Management Layer

(MF |

T
'Non-TMN

|
}

@ | m @ Network Element
| Layer
|

Figure 6.2: TMN Logical and Functional Architecture

The element management layer provides an element OSF that fulfills network adminis-
tration by managing one or more network elements. The network element layer contains
various functions that abstract access to a network element’s management capabilities. For
instance, Network Element Functions (NEF) abstract network element management capa-
bilities, while Q-Adaptor Functions (QAF) abstract functions or network elements that do
not adhere to TMN standards. In addition, Mediation Functions (MF) are used by element
OSFs to abstract information obtained from multiple QAFs and/or NEFs. In addition, MFs
may be used, throughout the TMN architecture, by higher layer OSFs to abstract informa-

tion from multiple lower layer functions.

The TMN architecture shows interworking of TMN-compliant telcos. This interworking oc-
curs across distributed telco infrastructure. TMN recommends interworking occur between
service, network and element management layers, via the corresponding OSFs. Thought not
depicted in the figure, the TMN architecture formalises all functional entity communication
using reference points. Reference points enforce TMN standardisation by specifying the
details of entity communication using protocols. For instance, the complex standard-based
Common Management Information Protocol (CMIP) [107] is used to transport manage-
ment information between implemented management functions. As a result, conformance

to protocol specifications ensures interoperability between TMN implementations.

6.2.2 TOM

Unlike TMN, TOM represents a business process framework, rather than a management
network architecture. The TOM framework structures business processes required by a

telco to satisfy its business objectives. The TOM framework is defined in [22] and shown
in Figure[6.3]

84

Customer

‘ Customer Interface Management Processes }—

Fulfilment ; ! Assurance Billin:

Problem
Handling

Customer QoS
Management

Invoicing &

Order Handling ‘ Collections. ‘ [—

‘ Sales ‘

Customer Care Processes

Service
Planning &
Development

Service
Problem
Management

Service
Configuration

Service Quality
Management

Rating and
Discounting —

Service Development and Operations Processes
T

Network
Maintenance &
Restoration

Network
Inventory
Management

Network
Planning &
Development

Network

Provisioning Management

‘ Network Data ‘

Network and Systems Management Processes
1 bl
|
‘ Network Element Management Processes }—

Physical Network and Information Technology

Figure 6.3: TOM Business Process Framework

Information Systems Management Processes

Various business processes are defined in TOM. These business processes are grouped
within functional layers that relate to the TMN management layers [108]]. The customer
care layer contains processes that aim to fulfil customer-oriented requests. This layer is
similar to the TMN service management layer. Access to processes in the customer care
layer are managed via a customer interface, such as a web portal. As a result, a customer
interface management layer is defined. This layer houses business processes that admin-
ister the customer interface. The TOM also uses a service development and operations
layer to house service-oriented business processes. These processes enable telco service
management, independent of underlying telco network details. This layer also provides

functionality similar to the TMN service management layer.

The network and systems management layer contains business processes that are used to sat-
isfy the functions contained within the service development and operations process layer.
This layer and its processes abstract the underlying complexity of network elements and
their rich management information. This layer provides functionality similar to the TMN
network management layer. To fulfil the network and systems management processes,
network element management processes are defined. These processes are managed and
grouped within the network element management layer. Like the TMN element manage-
ment layer, the TOM network element management layer provides a consistent management
interface to the underlying network elements. Integrated into all layers is the information
systems management processes. These processes are not fully defined by TOM, but aim to

manage the various information systems that implement the TOM business processes.

Each layer and their business processes contribute to one or more end-to-end process flows.

85

Process flows prescribe the linked execution of business processes across layers to fulfil
business, service and customer requirements. We describe these process flows as end-to-
end domains in the TOM. TOM defines three service-oriented domains, that is, service
fulfillment, assurance or billing. The service fulfillment domain groups business processes
that are used to support the delivery of services to customers. Service assurance includes
business processes that maintain the appropriate levels of service reliability, performance
and security. The service billing domain includes business processes that manage all aspects
of service charging and customer billing. As shown in Figure some business processes
may overlap across two domains. Hence, some business processes are used in more than

one end-to-end process flow.

TOM defines interactions between business processes based on inputs to a business process
and the corresponding output. An output for a business process may represent and input to

another business process. A business process may invoke another business process:

horizontally within the same layer and domain;

horizontally within the same layer, but across different domains;

vertically across different layers, but within the same domain; or

vertically across different layers and domains.

6.2.3 eTOM

Like TOM, the eTOM defines a framework of business processes that aim to satisfy telco
business objectives. These objectives are customer and service oriented. Also, eTOM aims
to enhance telco OSS/BSS to benefit from telecom, IT and Internet convergence. As a
result, eTOM defines additional business processes, layers and process flow domains. The
eTOM framework is defined in [22] and shown in Figure This figure illustrates an
abstract version of the eTOM framework. More decomposed representations of eTOM and

its business processes are defined in [23].

Like TOM, eTOM groups business processes into layers, according to their management
capabilities. The market, product and customer layer contains business processes that pro-
vide marketing management and customer relationship management functions. The ser-
vices layer houses business process that provide service-oriented management capabilities,
such as service configuration. The resource layer groups business processes that adminis-
ter the telco’s diverse infrastructure. For example, resource business processes are used to

configure transport networks. The supplier and partner layer contains business processes

86

e T
e —

< Customer =

Strategy Infrastruc- Products | | Operations | | Fulfilment Assurance Billing

‘ Market, Product and Customer

Service

[T [T [T [T [T [T
Supplier/Partners
I'T I'T I'T I'T I'T I'T

‘ Resource (application, computing and network)

P o .

Business Processes

0SS Applications

OSS Framework Services

Basic Framework Services

< Supplier/Partners >
R T —————= q q
— Basic Mechanisms —

[Enterprise Management] |

(a) eTOM Level 0 Business Process Framework (b) TNA Model

Palicy and Security

Shared Information and Data

Figure 6.4: Instances of the eTOM Framework and TNA

that manage interactions with telco partners, such as content providers or other telcos. The
e¢TOM also defines an enterprise management layer. This layer contains business processes
that manage the internal activities of the telco. These processes are used or influenced by

the telco employees, shareholders and stakeholders.

Similar to TOM, eTOM business processes contribute to one or more end-to-end process
flows that are grouped within domains. These domains are distributed across all eTOM
layers. €TOM defines a strategy domain that links and executes business processes used
in defining and tracking the telco business strategies. The infrastructure domain involves
business processes required to manage the life cycle of telco infrastructure. The product do-
main uses business processes required to manage the life cycle of telco services. Like TOM,
¢TOM reuses the service fulfillment, assurance and billing domains. However, eTOM de-
fines an additional operations domain containing business processes, that support the service
fulfillment, assurance and billing domains business processes. For example, the operations
domain business processes provide information required by the service billing domain busi-

ness processes.

As part of the NGOSS, eTOM represents an important tool in defining a telco OSS/BSS.
The eTOM prescribes the business processes required to fulfil telco business objectives.
These business processes are described at a high level of abstraction and encompass cus-
tomer and service-oriented requirements. However, other tools are used within the NGOSS
to transform the eTOM business processes into the implemented telco OSS/BSS. These
tools are the SID and TNA. SID is used to model vital information required by the eTOM
business processes [109]]. For example, interacting business processes are decomposed into
information processing objects. These objects properties are also described in detail using

SID. In addition, SID specifies object interactions using information flows.

87

Once defined, the eTOM and SID models are used to aid the definition of the telco OS-
S/BSS architecture. This architecture is the TNA. The TNA is used to design and structure
the telco OSS/BSS independently of technologies [106]]. Also, the TNA structures the OS-
S/BSS as a distributed system. A TNA representation is defined by [110,[111]] and shown in
Figure The architecture shows the basic components that constitute the structure of
an NGOSS compliant OSS/BSS. The architecture uses layers to group various capabilities
and functions. The topmost layer contains the eTOM business processes that are used to
satisfy business objectives. The OSS application layer offers business processes access to
legacy and new telco OSS/BSS capabilities. The OSS applications fulfil their requirements
by using services offered by a OSS framework. The OSS framework is structured using two
layers, that is, the OSS framework services layer and basic framework services layer. The
OSS framework layer provides OSS specific services such as logging, trading and audit-
ing services to OSS applications [[112]. The basic framework services layer contains basic
capabilities required to support OSS framework services, such as registration, naming and

location services [112]. OSS applications may invoke either framework layers’ services.

Since the TNA is a distributed system, capabilities are required to abstract distribution of
business processes and framework services. Providing the distribution independence is the
basic mechanism layer. The basic mechanism layer provides a layer of abstraction between
the OSS applications, OSS framework and telco infrastructure. Hence, OSS applications
and OSS framework services invoke infrastructure functions via the basic mechanisms layer.
The basic mechanism also contains capabilities to abstract access to underlying OSS/BSS
and telco infrastructure systems. This layer is implementable as a transport mechanism,
using various technologies such as the web services [7] Enterprise Service Bus (ESB) or
CORBA’s [83] Object Request Broker (ORB).

Accessed and used across all layers in the TNA, is the policy/security functions and the
shared information and data repositories. The policy/security functions ensure each layer
and its contents operates in accordance to rules and regulations defined by the telco. The
shared information and data repositories administer diverse information and data used by
layers’ services and functions. Hence, the appropriate information and data is securely and

easily accessible by the authorised services and functions throughout any layer of the TNA.

eTOM business processes, SID information processing objects and the corresponding TNA
components are implementable using various technologies. Currently, implementations use

web service [[7] technologies. We discuss web services in Chapter[z

88

6.3 Reusable Concepts

TMN, TOM and eTOM define requirements that a telco OSS/BSS must satisfy. These
requirements are structured using a business model, containing interacting business entities.
These interactions represent relationships between the business entities. All relationships
are standardised using reference points. Consequently, TOM and eTOM decompose their
business entities and reference points into standardised interacting business processes, that

support their business relationships.

Generic and reusable services are defined by the management architectures, thought in dif-
ferent forms. TMN defines management functions that are integrated to form management
applications. These functions are complex with protocols supporting their communica-
tion. Also, functions and protocols are network dependent. TOM and eTOM use abstract
business processes as services that manage telco infrastructure, business partnerships and
ultimately business objectives. Business processes interact using information flows that are
network and technology neutral. Thus, business processes as services hide the underlying

complexity of the OSS/BSS implementation and the telco infrastructure.

Layers are used as a modeling tool to simplify the complexity of the management architec-
tures. In TMN, TOM and eTOM, layers are used to separate the various services according
to the functions they provide. As a result, a hierarchy of service abstracts is created. For
example, TMN layers management functions with business and service functions forming
the higher layers and network and element functions forming the lower layers. Also, TOM
layers its business processes according to their capabilities. For instance, business processes
involving customers form the topmost layer, while network-oriented business processes
form lower layers. eTOM uses a similar layering scheme as TOM. However, the eTOM
layers its partner-oriented business processes at the bottom, since partner interactions may

be required to fulfil higher business, service or network-oriented business process requests.

Each of the management architecture’s layers contain varying functions. In these architec-
tures higher layer functions abstract access to lower layer functions. For example, TMN’s
service management layer contains service management functions that abstract access to
lower network management functions and their information. Also, when an eTOM cus-
tomer layer business process is executed its output may invoke lower service layer business
processes. Some of the architectures layers expose access to their functions. This is seen
in TOM and eTOM layers that expose business processes to customers, with eTOM also

exposing business processes to diverse partners.

Interaction between management functions occur within and across layers. In TMN com-

munication between functions are formalised using reference points. These reference points

89

promote standardisation since they are decomposed into complex protocol specifications.
Both TOM and eTOM specify business reference points between business entities contained
in their business model. These reference points are decomposed into interactions between
various business processes. By applying the SID to the eTOM business processes, informa-
tion required for these interactions are formalises as APIs. These APIs also contribute to
the definition of the TNA.

TMN, TOM and eTOM use domains in their architectures to illustrate the distributed nature
of the telco OSS/BSS. For instance, the business models and architectures show the telco
interacting with various external partners, via its OSS/BSS. These partners may operate as
external telcos or IT-using enterprises. However, TOM and eTOM show the internal dis-
tribution of business processes across the telco OSS/BSS by using process flow domains.
These domains represent the grouping of business processes across layers that aim to ful-
fil specific business objectives. The process flow domains also indicate business process

implementations may be distributed across the telco OSS/BSS.

The telco management standards abstract the complexity of their implementations and dis-
tribution to various degrees. TMN uses complex protocols to abstract implementation of
management functions. However, these protocols do not abstract distribution of the func-
tions. The eTOM’s corresponding TNA promotes the use of middleware to abstract the var-
ious underlying complexities of implementing the distributed telco OSS/BSS. In addition,
the TNA uses middleware to abstract integration of various technology specific OSS/BSS
vendor products. This middleware is the product of the both TNA’s OSS framework layers

and the basic mechanism layer.

As middleware, the OSS framework layers provide generic and reusable services that enable
business processes and OSS applications to locate each other and invoke their functions.
Also, the OSS framework layers contribute middleware services that provide OSS-specific
functionality to business processes and OSS applications. Some of these middleware ser-
vices provide functionality such as to monitor underlying elements and log interactions
between software components. As middleware, the basic mechanism provides the reliable,
secure and guaranteed transportation of requests between business processes and OSS ap-
plications. Also, the basic mechanism integrates with telco infrastructure systems, therefore
enabling OSS applications to invoke telco infrastructure management functions. Therefore,
the TNA middleware abstracts the distribution and technologies used to implement the OS-
S/BSS business processes, applications and telco infrastructure. As a result, the middleware
provides the needed capabilities to support the business, service and customer-oriented per-

spectives on the telco and its OSS/BSS, by abstracting various underlying complexities.

90

|
Service Terminal Media :
Subscriber Producer Broadcaster |
|
T I |
| % -
| | |
- —O— 4 Partner . . i
: Sol? O Application :

| Eamies Developer

1

Provider)

Business

q

|

Reference Points Service |
Consumer [N |

|

|

|

|

|

|

N
]
SDP] AN c fivit Credit Card
Customer —0— (Service : (,);r:zsicdgrly FF”aer)em
Provider) B ovcel
|
(a) Generic SDP Business Model (b) Example of a Specific SDP Business Model

derived from TMN, TOM and eTOM

Business Models

Figure 6.5: SDP Business Models

6.4 Contribution to the SDP from TMN, TOM and eTOM

We reuse the generic TMN, TOM and eTOM (including TNA) concepts to define a SDP
business model and management architecture. The SDP business model is shown in Fig-
ure Also, the SDP business model is derived from the TMN, TOM and eTOM busi-
ness models. The SDP business model is highly abstract and extendable to accommodate

TMN, TOM and eTOM business models.

The SDP business model defines three business entities that are crucial to the telco business
and network operation. These entities are customers, partners and the SDP itself. The SDP
represents the telco service platform that exposes various management services to customers
and partners. Thus, the SDP business entity is similar to the service provider found in the
TOM and eTOM business models.

Customers represent business entities that use the SDP for access to telco, IT and Internet-
based services. Some of these services provide customer and service management func-
tionality, such as customer registration, service subscription and service configuration. The
customer entity may be decomposed into more specific business entities. For example, cus-
tomers may include other service provider enterprises, who subscribe and resell services to
individuals or other enterprises. The customer business entity is similar to customers found

in the TOM and eTOM business models.

SDP partners are diverse, ranging from application providers, content providers, connec-
tivity providers and even terminal manufacturers. Partners use the SDP and its services
to develop and manage customer services. In addition, the partners use SDP services to

manage their business relationship with the telco. For example, content providers use SDP

91

services to register their content with the SDP. In addition, application provides use SDP
services to charge customers for using their customer services. Thus, the partner business
entity represents an abstraction of numerous business entities found in both TOM and eTOM
business models. For example, partners include suppliers, intermediaries and complimen-

tary providers.

Like TOM and eTOM business models, the SDP business model structures interactions be-
tween business entities using business reference points. However, for the SDP business
model we use more abstract representations for reference points, called business relation-
ship points. These business relationship points describe the allowed behaviour between
business entities. For example, business relationship points are defined as formal contracts
between SDP and telco partners. These contracts specify details and the terms and condi-
tions of the interactions. Like the business entities, these business relationship points are
decomposable. An example of a decomposed business model is shown in Figure
In the figure we decompose the customer and partner business entities. Decomposed cus-
tomers include a service subscriber and service consumer. Decomposed partners include
terminal manufacturers, media broadcasters, application developers, a credit card payment
provider and a connectivity provider. The figure also shows numerous business relation-
ship points between the SDP and the decomposed customers and partners. However, unlike
TOM and eTOM we only consider business relationship points involving the SDP (service

provider).

Based on the generic SDP business model, we define a SDP management architecture shown
in Figure [6.6, The SDP management architecture is derived from the TMN, TOM and
eTOM architectures. The SDP management architecture structures the SDP within an en-
vironment containing various management entities. By invoking APIs, the environment’s

entities are able to use management capabilities offered by the SDP.

The SDP management architecture decomposes business entities and their business rela-
tionship points into business processes, management services, management functions and
APIs. In the management architecture, layers are used to group the various business pro-
cesses, management services and management functions. The business process layer con-
tains generic business processes, used by the telco to manage business, service, customer,
partner and network operations. These processes are also accessed and invoked by cus-
tomers and partners that are involved in business relationships with the telco. The man-
agement service layer contains abstract management functionality that is used by business
processes to fulfil telco, customer or partner requests. These applications represent the
full capabilities of the telco OSS/BSS. The management function layer contains complex
management functions that enable the underlying telco infrastructure systems to be used in

satisfying telco business objectives. The management architecture also defines a converged

92

Middleware Plane

/R Y R
Il Internal Domains Business
Process

Layer

Partner —

+AP' Domain |_|
-% Management
g Services
a — Partner
E +API | Domain
o
B
3
o

Management

Q D Functions
+ Protocols Panngr [
Domain ||

Converged
00
Infrastructure

Figure 6.6: SDP and its Environment derived from TMN, TOM and eTOM Architectures

infrastructure layer that represents the management resources and capabilities offered by
the underlying networks. This layer includes telco, IT and Internet-based networks. Inter-

actions and communication between layers are supported using their contents APIs.

The SDP management architecture uses domains to distribute management functions across
telco infrastructure, customer terminals and partner infrastructure. These domains relate
to the SDP business model’s entities, that is, customers and providers. The TMN also
use domains to distribute its architecture, while TOM and eTOM use domains to group
their business processes into end-to-end process flows. The SDP management architecture
shown in Figure [6.6] illustrates examples of customer domains and multiple partner do-
mains. The customer domain expands across all layers, since the customer terminal may
contain management services or functions that invoke functionality in the corresponding
SDP management architecture layers. The partner domains vary depending on the type of
partner and functionality required by the partner. For example, an application provider may
require access to service subscription business processes. Also, the application provider
may provide billing information to telco management services. As a result, the application
provider domain overlaps onto the business process and management service layers. Other
types of partners may require access to lower layer management capabilities. For example,
connectivity providers may require access to telco networks, but also provide routing infor-
mation to management functions. Hence, the connectivity provider domain overlaps onto
the management function and network layers. In the SDP management architecture we also
show partners that use all SDP management capabilities. As a result, some partner domains

extend across all architectural layers.

Besides partner domains, the SDP management architecture illustrates internal domains
located within most layers. Like TOM and eTOM process flows, the SDP management
architecture uses internal domains to represent groupings of various SDP management ca-
pabilities. Internal domains group specific SDP management capabilities such that they are

used in completing specific business, service, customer or network management activities.

93

For example, business processes that aid service billing may be grouped into an internal
service billing domain. The corresponding management services and functions that aid
these business processes are also grouped into the internal service billing domain. Some
of the business processes, management services and management functions may also be
distributed across external customer or partner domains. Hence, internal domains may span

across multiple layers and external domains of the SDP architecture.

Borrowing concepts from eTOM and TNA, we use a middleware plane to support the dis-
tributed nature of the SDP management architecture. The middleware plane encompasses
all SDP capabilities, layers and domains. The middleware plane hides the distribution of
management functions contained in all layers and domains. As a result, business processes,
applications, services and the telco infrastructure systems interact independently of their
physical location. In addition, the middleware plane provides implementation indepen-
dence, by abstracting the technologies used to realise layers’ capabilities. Hence, the mid-
dleware plane hides technology specifics of business processes, applications, services and

the telco infrastructure systems, but helps in exposing their technology neutral APIs.

Like the TNA framework layers, the middleware plane provides its own services. These
services provide management functions that are used across all of the SDP’s layers. For
example, these services enable SDP management capabilities to operate across a distributed
environment, by abstracting computing platforms and transport networks that constitute the
telco infrastructure and OSS/BSS. Also, these services may abstract access to legacy telco
OSS/BSS system functions. The middleware services offer access to their functions by

exposing technology neutral interfaces (APIs).

6.4.1 Defining a Complete and Managed SDP Architecture

In Figure [6.7] we illustrate a complete SDP architecture that incorporates the SDP man-
agement architecture layers. The figure also shows a managed SDP contained within its

environment. The SDP uses its various service interfaces to interact with its environment.

The SDP architecture in Figure [6.7] extends management layers to interwork with non-
management layers. These non-management layers are the exposed services layer, appli-
cation service layer and network function layer. The exposed services layer houses SDP
services that are used by external telco partners to deliver content to customers. Also, these
services are used by telco partners in application development, execution and delivery. The
application service layer contains application services that support the exposed services.
Application services provide exposed services with simplified access to underlying telco

network resources and capabilities. The network function layer houses network functions

94

‘ External Partners and/or Customers ‘

API
Middleware Plane

SDP
Data

Exposed Business
Processes

+ API + API

Application Services Management Services BSS

%> API %> API %

Network Functions Management Functions BSS

I I
| Protocols |

Exposed Services

SDP
Data

Idv
I1dv

SDP
Data

‘ Converged Network Infrastructure ‘

Figure 6.7: A Managed SDP and its Environment

that support application services. The network functions provide application services with

access to the rich functions offered by the telco’s physical network elements.

Vertical communication between the exposed services, application services and network
functions occur via their APIs. Additional service APIs are also used to enable horizontal
communication with the management layers. We name these APIs service management
APIs. Exposed services and business process layers communicate via their service man-
agement APIs. For instance, this communication ensures usage of exposed services trigger
various billing, monitoring or security business processes. Application service and manage-
ment services layers also communicate via their service management APIs. For example,
management services may detect and halt application services from accessing unavailable
or faulty network functions. Network function and management function layers communi-
cate via their service management APIs. As an example, network functions may request
management functions to configure transport networks so as to deliver content with the

appropriate quality of service.

The SDP architecture extends all layers to include data services that are accessible via their
APIs. Two types of data services are defined: OSS/BSS data services and SDP data ser-
vices. OSS/BSS data services manage abundant OSS/BSS data required in the execution
of business processes, management services and management functions. The SDP data ser-
vices are used across all non-management layers and provides data used in the execution of

expose services, application services and network functions.

Like the SDP management architecture, the complete SDP architecture uses a middleware
plane to abstract service implementations and their distribution. Thus, the SDP architecture
does not indicate the domain distribution of layers. Also, Figure [6.7]shows the middleware
plane abstracting the underlying technologies used to implement each layer, its services and
their APIs.

95

6.5 Evaluation of SDP Business Model and Architecture

By extracting, extending and applying the generic TMN, TOM and eTOM concepts to the
SDP we have defined a management-oriented viewpoint. This viewpoint defines various
management abstractions that are structured in the SDP business model and management ar-
chitecture. The management abstractions contribute to the definition of the SDP framework.
We evaluate the SDP business model and management architecture against the generic con-
cepts extracted from TMN, TOM and eTOM. In addition, the evaluation provides answers
to the questions posed in Chapter[I| Section[I.3] We also present the comparison between
TMN, TOM, eTOM and the SDP management architecture in Table

The SDP business model illustrates management requirements that the SDP must satisfy.
These include supporting business relationships with multiple diverse partners and cus-
tomers. Hence, the business model defines business requirements, describes telco/SDP
business objectives and enforces the telco business strategy within the converged telecom,
IT and Internet market. In addition, the business model enables the SDP to focus on satis-
fying customers and partners by using its services. The business model formalises business
relationships between SDP, telco, customers and partners using business relationship points.
These business relationship points standardise interactions between various business enti-

ties. Both business entities and business relationship points are extendable.

The SDP uses its vast repository of services to implement business relationship points. The
collection of services represent the SDP’s business processes, management applications
and management services. These services represent the capabilities offered by the SDP to
satisfy business requirements, objectives and strategy. Various services are offered to cus-
tomers and partners. Also, services are used internally to simplify access to management
functions offered by telco infrastructure. Services expose their functionality via their APIs.
Service APIs are rich since they express management functionality offered by the SDP. In
addition, the APIs enable the vast amounts of telco management information to be obtained,
simplified, structured and used. Therefore, SDP services and their APIs further contribute
to the standardisation of business entity interactions since they implement business relation-

ship points.

Standard-based service APIs promote SDP standardisation. Interoperability between SDP,
partner and customer infrastructures is made easier with standard-based SDP service APIs.
Also, customers and partners may easily move between SDP implementations if it exposes
standard-based service APIs. Service APIs simplify access and usage of the underlying

network resources, since resources communicate using complex standard-based protocols.

96

TMN TOM/eTOM SDP Description
Business Limited to tel- | Business Model with reference Summarises requirements. For-
Model cos only points between various cus- malises relationships. Also,
tomers and partners. promotes standardisation when
implementing reference points.
Layers Business Layer | TOM/eTOM- Business Pro- | Contains business processes
based Business | cess Layer that are accessible by customers
Processes and partners.
Service Layer Management Contains management services
SID and TNA) .
Service Layer that provide access to OSS/BSS
derived OSS .
o functions.
Applications -
Network Layer Provides the common
Management .
Element Layer . standard-based interface to the
Function Layer .
Network Ele- technology specific OSS/BSS
ment Layer capabilities.
IN/PSTN Network Re- | Network Re- | Represents the complex under-
sources source Layer lying converged systems that
must be managed.
Domains Limited telco | Internal and external domains Distributes layers internally and
domains that include diverse partners externally across telco SDP and
and customers enterprise infrastructure.
Middleware | Complex TNA Frame- | Middleware Provides a mechanism and ser-
Protocols work and Basic | Plane and | vices that abstracts complexi-
Mechanism Services ties of implementation, distri-
bution and technology.

Table 6.1: Comparison of Management standards and the SDP Management Architecture

Hence, standard-based service APIs provide consistent access to lower network manage-

ment capabilities, independently of network technologies.

The SDP management architecture shown in Figure [6.6] uses layer, domain and plane de-
sign patterns to structure SDP services and their APIs. This architecture expresses the
management functionality of the SDP. As a result, it extends the proposed SDP architecture
in Figure by using SDP services and their APIs to promote standard-based interactions
with telco OSS/BSS and partner SCE/SME.

In the SDP management architecture layers are used to group SDP services into various
management categories. These categories are business processes, management services and
management functions. As a result, layers separate SDP management capabilities into a
service hierarchy. Layers at the top of this hierarchy simplify access to lower layers. Also,
higher layers simplify information obtained from lower layers and network systems. Hence,

customers and partner access SDP capabilities using services found at the topmost business

97

process layer. Layers at the bottom of the hierarchy are used to administer telco infras-
tructure systems. Each of the architectures’ layers are highly generic and may be further
decomposed into more specific layers. For example, as in TOM and eTOM the business pro-
cess layer may constitute specific customer, service and network oriented business process
layers. These new layers separate and group business processes according to the customer,

service or network management capabilities they provide.

Domains distribute SDP services and layers across various telco and I'T-based infrastruc-
tures. Some external infrastructures may belong to partners and customers. For example,
partners include IT-using enterprises, such as application developers. Also, customer in-
frastructure includes the diverse customer terminals or IT-based enterprises that operate on

behalf of customers.

The middleware plane is used throughout the SDP management architecture to ensure dis-
tribution and implementation complexities are hidden from customers, partners and SDP
services across all layers and domains. Also, the middleware plane abstracts interactions
between customers, partner and SDP services by hiding computing platforms and trans-
port networks used to deliver communications. The middleware plane provides a wealth
of reusable services that extend the management functionality offered by the SDP. For ex-
ample, middleware services may be used to locate and register for SDP services. Also,
some middleware services may be used to enforce usage policies for partners accessing
SDP service. Middleware services are accessed across all layers and domains by using their

technology neutral APIs.

The additional SDP architecture shown in Figure [6.7] consolidates SDP management ser-
vices with other types of SDP services. For example, a single layer may be used to house
exposed services and business processes, since they are invoked by external partner applica-
tions. Also a layer containing both application services and management services represents
a point of integration with converged network resources and capabilities. Combining net-
work functions and management functions into a single layer provides a consistent interface
to access network functions and manage physical network elements. The SDP architecture
also identifies APIs between management SDP services and non-management SDP ser-
vices. These APIs promote standard-based communication between the SDP services. In
addition, the SDP architecture identifies management and non-management data that is ac-
cess via SDP data services contained in the various layers. These SDP data services also
provide APIs to their functionality. These data service APIs promote standard-based access
to OSS/BSS and SDP data.

98

6.6 Summary

In this chapter we presented contributions of telco OSS/BSS standards to the SDP and its
framework. We reused generic concepts from the TMN, TOM and eTOM (TNA) stan-
dards. By reusing these concepts we defined a SDP business model and management ar-
chitecture. The SDP business model contains abstract business entities involved in busi-
ness relationships. We formalised the business relationships using generalised reference
points called business relationship points. Similar to reference points, business relationship
points promote SDP standardisation. The business relationship points are realised using
SDP services, that expose access to their functions using implementation and distribution
independent APIs. We presented various types of SDP services that aid telco business
and operations management. The SDP management architecture uses horizontal layers and
vertical domains to distribute SDP services across various internal and external functional
areas. These divisions extend into external infrastructures. We used a middleware plane to
hide distribution complexities of SDP services, when accessed via their APIs from various
external infrastructures. We defined the middleware plane to provide a variety of manage-
ment services that are accessible across all layers and domains. We consolidated the SDP
management architecture into a more complete SDP architecture. The SDP architecture
uses common layers to group both management services and non-management services be-
longing to the SDP. The architecture also identified SDP data services that must be added
to layers, so as to abstract access to both OSS/BSS and SDP specific data. We also used
a middleware plane to abstract various distribution complexities in the SDP architecture.
Therefore, by reusing generic TMN, TOM and eTOM concepts we presented technology

neutral abstractions and architectures that contribute to the SDP framework.

99

Chapter 7

Perspective on the SDP from an Enterprise
Standard: SOA

The public telco network provides voice and data services to its customers by using het-
erogenous technologies. These technologies include voice service platforms, circuit-mode
transport networks and specific customer terminals. However, the telco also operates as an
enterprise. Similar to other private enterprises, the telco uses I7-based solutions to manage

its operations and business.

Traditional private enterprise networks support networked IT solutions to automate busi-
ness processes, such as Customer Relation Management (CRM) and Enterprise Resource
Planning (ERP) solutions. IT is also used to extend the business to customers and business
partners. For example, customer services are delivered over the Internet and communication
with partner IT solutions occur using Enterprise Application Integration (EAI) middleware.

Many of the IT solutions are either standards-based or proprietary.

Both telco and enterprise networks operate in distinct markets, are regulated to differing
extents and provide their own specialised services to customers and partners. In addition,
each network uses specific infrastructure to develop, deploy, deliver and manage its services.
Currently, both telco and enterprise networks, their infrastructures, customer requirements,

business markets and regulations are converging.

To manage and benefit from convergence the enterprise uses the Service Oriented Architec-
ture (SOA), while the telco aims to use the SDP. The SOA simplifies the integration of new
and legacy IT solutions, so as to satisfy new business process requirements [[113]. Also, the
SOA is based on the web service [7] technology standards. Though technology-based, most
of the SOA concepts are technology independent. In addition, these concepts are applicable
to the SDP, since they both aim to manage convergence. Hence, we extract and reuse the

generic technology neutral SOA concepts to define an IT enterprise perspective on the SDP.

100

7.1 Requirements

As defined by [7], the SOA represents a distributed system architecture that describes the
structure of an enterprise’s converged infrastructure. The SOA illustrates this structure as a

wealth of interacting services that have the following properties. SOA services:

e abstract functions provided by infrastructure resources and capabilities in a technol-

ogy neutral manner;
e communicate via technology-neutral message flows;
e may be distributed across diverse networks; and

e describe and expose their capabilities in a technology-neutral manner.

Hence, these service properties must be satisfied for a SOA to be defined by an enterprise.

Currently, the SOA is the web services [7] architecture. As a result, the SOA’s services
are defined as web services. These web services abstract access to enterprise infrastructure
functions, such as data stores, communication buses and legacy applications. Also, web ser-
vices define their functions in a technology neutral interface, using the XML-based WSDL.
Communication between web services occurs using messages conveyed in the technology
neutral SOAP protocol. Also, these web services may reside internally or externally across

the enterprise infrastructure.

The SOA supports the basic business model shown in Figure The business model
is derived from [7]]. In the business model, three business entities are defined: a service
provider, service consumer and service broker. The service provider represents an enterprise
that creates web services to abstract its infrastructure’s hardware and software capabilities.
The service broker is used by the service provider to register its web services location and
interfaces. The broker is used by the service consumer to find the appropriate web service
and interface. Once found, the service consumer invokes the service provider’s web service
interface. The service broker and consumer may be external or internal to the enterprise.
We represent interactions between business entities as business relationship points. These

business relationship points formalise business interactions between the business entities.

The business model shown in Figure is highly abstract. Most enterprises incorporate
this SOA business model by identifying service providers, consumers and brokers in their
own business model. Once identified, the enterprise can define the interactions or business
relationship points between the business entities. The business model describes only the

business objectives of the enterprise. To realise the business model, the enterprise must

101

External 3rd
Reg————m— Party
Provider
Service Broker Res
Consumer . Resource
/\ (web, phone) —Rer— Enterprise —Rce—) Supplier
© ?’o |
Rlpp
Service R Service Partner R
Consumer C Provider Service P8
Provider
(a) Service-Oriented Business Model (b) Example of a Service-Oriented Reference Model

Figure 7.1: SOA Business and Reference Models

implement the various services. To initiate the implementation, the business model is de-

composed into a reference model. An example reference model is shown in Figure|7.1(b)

The example reference model is defined by decomposing the business model’s business
entities and business relationship points to reflect additional details on the enterprise, its
customers and partners. Business entities are decomposed into business objects. Business
objects represent components of a business entity that interact with other objects in the busi-
ness model. In the reference model the service provider is decomposed into the enterprise
and partner service provider. The service broker business entity is decomposed into the
external 374 party provider business object. Also, the service consumer business entity is
decomposed into the consumer and resource supplier business objects. The correspond busi-
ness relationship points between the business entities are also decomposed into reference
points. Reference points promote standardised communication between business objects,
by formalising their interactions. In the reference model, their are one-to-one mappings of
business relationship points to reference points. However, we define the additional Rpp
reference point to formalise interactions between two service providers business objects,

that is, the enterprise and partner service provider.

With business objects and reference points defined, the reference model is further decom-
posed. Business objects are decomposed into web services that are offered to other business
objects. Reference points are decomposed into the corresponding web service interfaces.
The interfaces describe functions provided by the web services. Hence, execution of vari-
ous web services via their interfaces contribute to the fulfillment of the business objectives

defined by the business model.

102

Various benefits are gained by an enterprise implementing a SOA. For instance, the use
of web services enables faster application development [114]], since web services are eas-
ily orchestrated via their interfaces into applications. Also, the SOA and its web services
decrease infrastructure complexity, enable reuse of existing infrastructure functions and
support integration with external infrastructures [[115]. Hence, the SOA enables enterprise
agility, by restructuring legacy enterprise infrastructure into a communicating network of

web services [116].

7.2 Architecture

For the SOA, two forms of architectures exist. First is the standard-based web services SOA

and second the enterprise SOA.

7.2.1 Web Services SOA

The SOA is illustrated in Figure[7.2(a)l This architecture relates to the SOA business model
described previously. Web services are created by a service provider, that uses a Universal
Description Discovery Integration (UDDI) [15] service registry to publish a description of
its web service interface. The interface is described using WSDL. When a service requestor
requires a web service’s functionality, the requestor uses the UDDI registry to find the ap-
propriate interface description. Once obtained, the requestor will use information contained
in the description to bind to the web service and use its functionality. Once bound to the
web service, the service requestor uses SOAP messages to invoke the web service func-
tions, as defined by its interface description. All SOAP messages are transported using
HTTP. Based on the architecture, the web services interface implements the SOA reference

model’s reference points.

We provide additional structure and detail on the SOA shown in Figure This ex-
tended architecture is shown in Figure In the figure, we use layers to separate the
components of the SOA. The top most layer contains applications that use web services
to invoke enterprise infrastructure functions. The service layer contains the web service
registry and web services that are accessible to applications. The generic service layer con-
tains enterprise infrastructure capabilities that are invoked by web services. The function
layer contains abstractions of infrastructure resources, such as billing systems, databases
or legacy applications. These functions are used by the generic services to fulfil web ser-
vice requests. The lowest layer contains the physical enterprise infrastructure resources and

capabilities.

103

Customer Service Broker .
Domain Domain Service Requestor Domain

Resurce
Layer

r |
| Client Server | Application
| App App | Layer
| |
| : | | Interfaces __— -/)_ -0~
: - 7 —— e wpp——
| 0 | service
|
Service | T
| [I Interfaces | /1
| [I | | |
| I I I Generic
| [I | service
| | | (] | Layer
| I i Interfaces /|\ [\ !
! h H AR 7T T\ !
| hn I |
| 1 | Function
! I Layer
Service | I I |
Requestor Provider | I I Interfaces | | !
I]] T] T I
| ’ !
| |
| |

/1]

(a) Web Service SOA (b) Extended Web Service SOA

Service Provider Domain

Figure 7.2: Web Service Standard-based SOAs

In Figure we also show domains that applications and web services must operate
across. These domains correspond to the business entities that are defined in the SOA
business model. For example, applications operate in the service requestor domain, but
access web services located in the service provider domain. Also, the architecture includes a
customer domain with customer applications, who invoke server applications located in the
service requestor domain. The use of domains in the architecture reinforces the distributed
nature of the SOA. Hence, the SOA must implement mechanisms to manage the various

complexities that are introduced by distribution.

We define the extended SOA to support horizontal communication between entities within
the same layer but across different domains. For instance, client applications may invoke
a server application within the application layer, but across customer and service requestor
domains. Also, we define vertical communication between entities located across different
layers and domains, such as service requestor applications invoking service provider web
services. Most horizontal and vertical communication occurs via interfaces that are internal
to a layer or externally exposed by a layer. For example, the service layer exposes web
service interfaces to applications. Also, within the service layer the registry service com-
municates with web services via their interfaces. Some lower layer interfaces are highly
complex and use protocols or technology specific mechanisms to communicate. Examples
of complex interfaces include those exposed by the underlying technology specific enter-

prise infrastructure.

The architecture in Figure |[7.2(b) illustrates two web service deployments across the en-
terprise. First, web services are used to directly interface with the physical enterprise re-

sources. As a result, these web services and their interfaces abstract complex interactions

104

with the enterprise capabilities. Second, web services are used to abstract legacy and new
software-based enterprise applications and services contained in the generic service layer.
These applications and services are also complex to use, since their interfaces are technol-
ogy diverse. As a result, these applications and service interfaces require simplification
to access and use their functions in a technology consistent manner. Hence, web services
abstract the complexity of these existing enterprise applications and services using its inter-
face. Examples of both deployments are seen in telecom standards, such as Parlay X that is
described in Chapter 5]

In addition to telecom standards, vendors employ both deployment options for their SDP
products. That is, vendors provide web service interfaces to their SDP solutions, such
that web services hide the underlying complexity of the software components and physical
hardware. As a result, there is a growth in popularity for web services to be used in telco
SDPs. This popularity has also spread to the development of other telco enterprise solutions,

such as web service interfaces for OSS/BSS systems.

7.2.2 Enterprise SOA

Enterprises require agility to benefit from convergence opportunities. However, legacy IT
solutions, fused with specific technologies, hinder agility. The legacy solutions represent a
collection of automated business processes. To simplify these solutions and gain agility, the
SOA is used. The objective of using the SOA in an enterprise, is to support an enterprise-
wide transformation, where independence of new and legacy technologies are gained from
implemented business processes [113]]. This is achieved by wrapping legacy solution func-
tions into web services. These web services enable a substantial amount of enterprise in-

frastructure investment to be reused.

The SOA satisfies most business process management requirements [116]. For example,
it abstracts existing management system functions into reusable web services. Some web
services may be created by the enterprise or bought from vendors. With web services de-
fined, the enterprise may quickly create new business processes and implemented them as
applications. Hence, business processes are implemented as a collection of web services
that execute in a predefined order. Existing technologies, such as the Business Process Exe-
cution Language (BPEL) [1177], may be used to create these business process applications.
The SOA and its web services may also be used to improve or streamline existing business

processes.

Both web service and enterprise SOAs are distributed within and across diverse infrastruc-

ture. However, both SOAs enforce distribution independence. The web services SOA uses

105

Web Services
Web Service

Alnterface
App]

ESB
| | Interfaces

| [
[{@ @ <§> <§>> @ <§ <§> @ ESB (with servicesD

| | | Technology

| | Specific Interfaces
T T
Enterprise,
Service Internet, Telco
CRM Platforms DBMS Network

Enterprise Infrastructure Resources and Capabilities

Figure 7.3: Enterprise SOA Representation

complex mechanisms to provide limited distribution independence. These mechanisms in-
clude UDDI registries and web-based protocols. However, the enterprise SOA provides a
dedicated mechanism to support distribution and technology independence. This mecha-
nism is generalised as the Enterprise Service Bus (ESB). ESBs support web services by
providing a range of functionality to enhance web service deployments and operations. For

instance, [[118]] defines ESBs to provide:

e a scalable, high performance, robust and secure I'T-based platform;

e standards-based communication mechanisms that connects applications, web service

and infrastructure functions;

e real-time and reliable connectivity between enterprise infrastructure, the Internet,

telco networks, applications and web services;

e data transformation, such that communication between different application and web

service implementations are achieved; and

e support portability of applications and web services across various platforms and
ESBs.

In addition to the above properties, ESBs provide services that are used to support applica-
tions and web services. These ESB services may provide functionality to resemble a UDDI
registry, manage underlying communication mechanisms and configure physical enterprise
equipment. ESB services may be implemented as web services that offer access to their

capabilities via their interfaces.

We illustrate the enterprise SOA in Figure[7.3] As shown in the architecture, the ESB ab-
stracts the various layers and domains of the extended web services SOA. Thus, the ESB
enables the enterprise to perceive a collection of web services, independently of their loca-

tion, implementation and infrastructure technologies.

106

7.3 Reusable Concepts

The SOA business model uses basic business entities to manage and benefit from conver-
gence. In addition, the business model formalises interactions between business entities
using business relationship points. These points define business contracts between the busi-
ness entities. The SOA business model is generic and extendable to include various enter-
prise customers and partners. Also, the SOA business model structures and visualises the

enterprise’s business objectives. These objectives are satisfied by implementing the SOA.

The SOA reference model that is derived from the business model, provides an important
milestone in realising a SOA implementation. The decomposition of the business entities
and business relationship points illustrates separation and abstraction of enterprise infras-
tructure capabilities. This is achieved by decomposing business entities into objects that
provide a variety of services. Also, the business relationship points are decomposed into
reference points that formalise services’ interfaces. These interfaces structure and formalise
communication between the various business objects. Hence, the reference model ensures
business objectives are satisfied by defining the required service interfaces and promoting

their standardisation.

Both web service and enterprise SOAs are derived from the SOA reference model and pro-
vide a service-oriented perspective on the enterprise. Each SOA uses web services to ab-
stract capabilities from enterprise infrastructure. These web services enable easier access
to infrastructure capabilities. Also, web services may be used to abstract existing enter-
prise applications and services. However, these SOAs are tightly coupled with web service
technologies, specifically WSDL, SOAP and HTTP. We extract the generic concepts from
the web service and enterprise SOAs without being bound to the particular technologies.
As a result, we define the Generic SOA (GSOA). A GSOA representation is illustrated in

Figure

The GSOA is a distributed system architecture containing serving entities, called services.
These services offer functionality defined as technology independent interfaces. Applica-
tions access service functionality by orchestrating service interfaces, independently of lo-
cation and implementation. Both applications and services are supported by a distribution
mechanism, called the distribution plane. In Figure the GSOA services abstract access
and usage of the underlying enterprise infrastructure resources and capabilities. Also, ser-
vices hide details of their implementations using their implementation neutral interfaces.
Hence, service implementations may be accessed consistently via their interfaces, by vari-
ous application implementations. The figure also shows the GSOA distribution plane hiding

technology details of the underlying network and systems from the various applications and

107

Application | — —1|- —— Application
Apphcallon Appl\catlon
Interface Interface

Distribution Plane

CRM/ Service Enterprise, Internet,
‘ Platforms U DBMS U Telco Network

ERP
Enterprise Infrastructure Resources and Capabilities

Service
Interfaces

Technology
Specific
Interfaces

Figure 7.4: Generic SOA Representation

services. The distribution plane also provides its own services that may be used by applica-

tions and services to fulfil their functions.

Based on Figure the GSOA services are used for abstracting access to new and legacy
databases, CRM and ERP solutions. This abstraction is also encountered when implement-
ing the SDP in the presence of legacy OSS/BSS technologies and solutions. Thus, a GSOA
is suitable for abstracting the telco OSS/BSS because of the large amount of services it
provides. Also, GSOA services may be used to abstract access to new and legacy telco ser-
vice platforms, such as the IN. These services support application development, such that
new customer services may be created. Thus, a GSOA is also suitable for abstracting the
telco service platforms because of the large amount of services that application developers

require.

Since it is technology neutral, The GSOA and its concepts are reusable by any enterprise
and implemented using different technologies. For example, the web service and enterprise
SOAs are specialised forms of the GSOA. As a result, the GSOA may be used to structure

a SDP architecture.

7.4 Contribution to the SDP from the SOA

We reuse the generic SOA concepts to define a SDP business model. In addition, we de-
compose the business model to define a SDP reference model. We also use the GSOA to
structure a SDP architecture. The SDP business model is shown in Figure|/.5(a)

The SDP business model is derived from the SOA business model shown in Figure|/.1(a)
The SDP business model shows four main business entities. These entities are the SDP

itself, external providers, the telco and customers. The SDP business entity performs two

108

rd
~Rep—— 3 P_arty — — —-Rca— — — 1 App Provider — — — -Roa— — — ¢
Provider
Rps Rrs
Res— SDP R
Customer ——Rcs— SDP © o8 0SS
‘ BSS

| Ros
Rrs ‘

| Content
Provider

~Rcrq Transports ————— Ror———---

(a) Generic SDP Business Model (b) SDP Reference Model derived from SOA Reference
derived from SOA Business Model Model

Figure 7.5: SDP Business and Reference Models

business roles. First, the SDP is a service provider that provides services to other business
entities. Second, the SDP is a service broker that aids business entities to locate services
offered across the business model. The 3'd party provider business entity performs the role
of a service consumer that uses SDP services to provide additional functionality to both SDP
and its customers. The telco business entity performs the role of a service provider since
it represents the available telco infrastructure that the SDP services abstract. The customer
performs the role of a service consumer that uses the SDP and its services to locate, consume

and pay for customer services.

We decompose the SDP business model to illustrate the various business objects and refer-
ence points that promote the standardisation of the SDP. The SDP reference model is shown
in Figure and derived from both SDP business model and SOA reference model,
shown in Figure In the reference model we decompose business entities into busi-
ness objects and business relationship points into reference points. However, we focus only

on reference points that include the SDP business objects.

In the SDP reference model, we decompose the ard party provider into application and con-
tent providers that use SDP services. Both application and content providers are essential to
the SDP since they create and enhance customers services. The Rpp business relationship
point is decomposed into the R4g and Rpg reference points to formalise communication
with application providers content provides respectively. The telco business entity is also
decomposed into telco transport networks and the OSS/BSS. Transport networks are re-
quired by the SDP to deliver customer services. The OSS/BSS is critical to the SDP since
it contains the telco business processes and manages the telco infrastructure. The reference

model decomposes the Rg7 business relationship point into the Rrg and Rpg reference

109

App App App

Open Plane

App
ddy

ddy

App

Network Plane

Proxy Plane
(Service » ? ?
4
oy
[+]
o
]
QO
3
@
:QOIMQS: % %
sue|d juswabeuepy

Figure 7.6: SDP and its Environment represented as Integrated GSOAs

points to formalise communication with the telco transport networks and OSS/BSS respec-
tively. The customer and SDP business entities remain constant. However, these entities
may be decomposed if the telco requires. The customer interacts with the SDP via the R¢g
reference point. All reference points are implemented as SDP services with the appropriate
interfaces. We structure the SDP services and their interfaces within a SDP architecture, by

using the GSOA concept.

A SDP architecture based on the SDP business model and SDP reference model is shown in
Figure[7.6] The architecture shows the SDP within its environment using GSOAs. The SDP
architecture structures numerous SDP services and their interfaces. Different SDP services
are identified based on the the telco infrastructure capabilities they abstract. Hence, SDP
services are similar to SOA web services. As a result, the SDP architecture also groups
services according to the different telco infrastructure capabilities they abstract. To structure
and manage the collection of SDP services for different infrastructure capabilities, multiple

GSOAs are used. Thus, the SDP architecture represents the integration of these GSOAs.

The GSOAs used for the SDP architecture contain services that wrap generic functionality
from both legacy and new network resources, service platforms, customer devices and man-
agement systems of the telco infrastructure. Also, each of the GSOAs constituting the SDP
implement one of its reference model’s reference points. Also, business objects involved
in a reference point relationship view the SDP as offering a single GSOA with numerous

services, that hide underlying complexities.

110

In the SDP architecture, telco OSS/BSS functionality is wrapped into management ser-
vices. These services implement telco operations and business processes, such as CRM,
billing and network management. As a result, management services must use functional-
ity provided by the network resources and service platforms. The products of integrating
management services are management applications. Management applications and services
are housed in a GSOA we call the Management GSOA. This GSOA implements the Rpg

reference point.

Telco network resource functionality is wrapped into network services. Network service
functionality includes manipulating traffic, configuring elements, processing protocols and
managing network specific events. Also, network services may use management services
offered by the management GSOA. The products of integrating network services are net-
work applications. Network applications and services constitute a GSOA we call the Net-

work Resource GSOA. This GSOA implements the Rpg reference point.

The SDP architecture shows service platform functionality being wrapped into felco ser-
vices. Telco services simplify access to new and legacy platforms, such as IN. Telco ser-
vices provide generic functionality to establish connections, coordinate sessions, manage
state and manipulate databases. Telco services provide an abstracted interface to network
services. Also, telco services may use management services offered by the management
SOA. Telco services are contained in a GSOA we call the Telco GSOA. This GSOA imple-

ments the R 45 reference point.

Integrating both telco and management services, by application developers, into converged
applications may be complex and time consuming. Also, developing new telco applications
may be complex when reusing legacy platforms. In addition, content providers require sim-
ple functionality to register their content with the SDP. Hence, simpler services are needed
to support application developers and content providers. To satisfy these requirements con-
verged services are provided. Converged service functionality includes subscribing for ser-
vices, registering content, making any call, streaming content and charging an account.
Telco applications, converged applications and converged services constitute a GSOA we
call the Open GSOA. This GSOA extends the R 4g reference point and enables the Rpg

reference point.

The SDP architecture enables customers to access the appropriate GSOA and applications.
Though customers are external to the telco, their devices may contain customer applications
that aid in providing access to the SDP. Customer applications may use services offered by
the device to communicate with SDP services contained across the various GSOAs. These
are customer services that provide functionality to authenticate the customer, establish con-

nections and process signalling protocols. Customer applications and services are housed

111

in a GSOA we call the Customer GSOA. This GSOA implements the R¢ g reference point.

Adhering to the GSOA, distribution planes are used in the SDP architecture to provide ser-
vices and applications with distribution independence. Also, distribution planes provide
implementation, transport and technology independence. In the SDP architecture, the man-
agement GSOA is supported by the Management Plane. The network resource GSOA is
supported by the Network Plane. The telco GSOA is supported by the Telco Plane. The
customer GSOA is supported by the Proxy Plane. The open GSOA is supported by the
Open Plane. The open plane provides external enterprises, such as application develop-
ers, content providers or customers, access to open GSOA applications and services. The
GSOAs’ distribution planes are interconnected via their services. This interconnection also

contributes to the implementation of the SDP reference model’s reference points.

7.5 Evaluation of SDP Business Model, Reference Model and

Architecture

By extracting, extending and applying the generic SOA concepts to the SDP we have de-
fined an enterprise service-oriented viewpoint. This viewpoint defines various abstractions
that are structured in the SDP business model, reference model and architecture. The ab-
stractions contribute to the definition of the SDP framework. We evaluate the SDP business
model, reference model and architecture against the generic concepts extracted from the
SOA. In addition, the evaluation provides answers to the questions posed in Chapter|l|Sec-
tion[1.3] We also present the comparison between web service SOA, enterprise SOA, GSOA
and the SDP architecture in Table[7]

The SDP business model enables the identification of business entities that interact with the
SDP. These business entities are diverse and include various I'T-using enterprises, customers
and other telcos. For example, the business model may cater for fixed and mobile customers
and telcos. In addition, IT-using enterprises may include service brokers, content brokers,
connectivity providers and device manufacturers. Hence, the SDP business model is generic

and may be easily extended to satisfy a telco’s SDP requirements.

The SDP reference model is used to specify interactions between the various business model
entities. These interactions are defined by decomposing business entities and business re-
lationship points. As a result, the reference model defines business objects and reference
points that formalise interactions between business entities. The reference points are im-
portant since they promote the standardisation of interactions between the business objects.

For the SDP we motivate the use of services and their interfaces to implement reference

112

Web Services | Enterprise SOA | GSOA SDP
SOA
Business Web Services based Inherits generic con- | Based on SDP require-
Model cepts from the web ser- | ments.
vices business model.
Reference Derived from web services Inherits generic con- | Based on decomposi-
Model business model. cepts from the web ser- | tion of SDP business
vices reference model. model.
Services Web services based All components of the architecture are technol-
Interfaces WSDL based ogy and implementation neutral.
Applications | BPEL and others
Architecture | Based on web services Technology Neutral Integration of multiple
GSOA:s.
Layers Application Abstracted by Used as a building open SOA
Service middleware block to structure
Generic layers telco SOA
Function network SOA
Resource
Domains Derived from | Abstracted by | Used as a building | Customer and Manage-
business enti- | middleware block to structure | ment SOAs.
ties. domains
Middleware | SOAP and | Uses ESB- | Distribution planes Uses GSOAs with
HTTP based technolo- integrated distribution
gies planes.
Table 7.1: Comparison of SOA the SDP Architectures
points.

The SDP architecture provides a service-oriented perspective on the SDP by defining ser-
vices with interfaces to implement reference points. The architecture defines numerous ser-
vices that abstract the abundant telco infrastructure. For instance, management, customer,
service platform and network-oriented services are defined. Each service provides an inter-
face to its functionality. These interfaces hide the service implementation and distribution
details. As aresult, diverse application implementations may orchestrate distributed service
interfaces to provide specific functionality. The SDP architecture groups applications and
each type of service into their own GSOA. Each of the GSOAs used are technology neutral.

The SDP architecture also inherits this technology neutral property.

The SDP architecture does not use layers and domains as a design pattern to structure its
services; rather it uses multiple GSOAs. However, the SDP architecture uses its GSOAs
to abstract layers and their distribution across domains. For instance, the open, telco and

network GSOAs show the layered hierarchy of service abstractions. Also, the customer and

113

management GSOAs abstract the distributed customer and OSS/BSS domains. Communi-
cation across layers and domains is abstracted by the GSOAs service interfaces and their
interconnected distribution planes. Thus, the GSOA provides an abstraction that is used to

structure layers and domains for the SDP architecture.

Another benefit of using the GSOA to structure the SDP architecture is its distribution plane.
The distribution plane contributes middleware functionality to the SDP architecture. Each
of the GSOAs that constitute the SDP architecture, use distribution planes to abstract the
distribution of applications, services and telco infrastructure functions. In addition, the
distribution plane aids in hiding the implementation of applications and services from each
other. The distribution plane also hides the underlying technologies that implement the

communication mechanisms required to link applications, services and telco infrastructure.

The SDP architecture presented here drastically extends the proposed SDP architecture
shown in Figure [I.3] For instance, the SDP architecture is technology neutral and uses
service interfaces to promote SDP standardisation. These service interfaces also promote
standard-based interworking between telco and external IT-based infrastructure, such as
telco OSS/BSS and application developers SCE/SME. Also, the use of GSOAs provides a
highly abstract structure for the SDP that is decomposable into layers, domains and even

technology specific platforms.

7.5.1 SDP offering a Web Services SOA

Providing IT-using enterprises with applications and services is an untapped revenue stream
for the telco [12]]. Consequently, a requirement for the SDP is to promote the integration be-
tween enterprise and telco infrastructures, that is, support telecom-IT convergence. Hence,
the SDP plays a role in generating revenue from enterprises for the telco. To enable this
integration, the SDP offers one of its GSOA’s to enterprises. This offered GSOA is the open
GSOA. As a result, enterprises may outsource application or service development tasks to
the telco. These applications and services are hosted by the SDP. Thus, the telco benefits
from promoting itself as a SOA compliant outsourcer to enterprises [119]]. The open GSOA
must be implemented using web services, such that IT-using enterprises easily integrate with
the telco infrastructure. However, the lower GSOAs of the SDP may be implemented using
various other technologies. Thus, the open GSOA hides the underlying implementation of

the SDP and telco infrastructure from these I'T-using enterprises.

Figure summarises the above scenario of SDP and SOA integration. The figure illus-
trates the SDP integrating the legacy IN Service Control Point (SCP) and new solutions op-

erating over packet based telco networks. Also, the SDP provides an “enterprise SOA-like”

114

Telco Enterprise
Domain Domain

A
>

[SOA]—|—[SOA]

Abstraction

Complexity

<

Figure 7.7: Telco and Enterprise Convergence

environment that enables telco and enterprise integration. The figure illustrates integration
of networks being most complex, since they require integration via protocols. However, the
figure illustrates integration of SOAs being least complex, since they use simple software-
based web services, web service interfaces and ESBs. The figure also illustrates the increase
of abstractions from networks to SOA. These abstractions represent services that simplify

access and usage of telco infrastructure functions.

7.6 Summary

In this chapter we presented contributions of current a enterprise platform standard to the
SDP and its framework. We reused generic concepts from the SOA standard. These con-
cepts where extracted from the web services and enterprise SOAs. By reusing these con-
cepts we defined a SDP business model, reference model and architecture. In both SDP
business model and reference model we separated telco infrastructure according to its func-
tions. We also defined reference points to formalise integration of these functions with ex-
ternal IT-using enterprises. We defined a SDP architecture from both SDP business model
and reference model. The SDP architecture represents the collective of diverse services.
Each of the services expose interfaces that implement reference points. To structure the
architecture’s services and interfaces across layers and domains, we use the GSOA. We
defined the GSOA by extracting technology independent concepts from the various SOAs,
such that implementation technologies and distribution mechanisms may be chosen and not
imposed. The GSOA represents containers for services and applications. Applications or-
chestrate service interfaces. The GSOA abstracts service and application distributions by
using its distribution plane as middleware. Therefore, by reusing generic SOA concepts we
presented technology neutral abstractions and an architecture that contributes to the SDP

framework.

115

Chapter 8

Perspective on the SDP from a Converged
Standard: IMS

The telco network is a complex and distributed mass of transport links, service platforms,
management systems and business solutions. Many network parts are implemented using
telecoms’ standards and technologies. Also, network parts may be proprietary solutions
obtained from vendors. With progressive changes in technologies, standards, vendor so-
lutions, customer requirements and telco business requirements the telco network continu-
ously evolves. This evolution occurs within stages that define specific requirements. The
result of satisfying each stage and its requirements is the decomposition of the telco net-
work into various functional entities [[120]. The evolution of the telco network is illustrated
in Figure

The telco network started with processor controlled PSTN switches. The switching hard-
ware was tightly couple with service logic. This coupling limited service creation and pro-
vision. As aresult, the first evolution stage required quick service creation and provisioning.
As aresult, the IN and CAMEL standards are defined. These standards define a distributed
service platform, containing generic and reusable service building blocks used in service
creation. Also, the standards define network functions required to support these building

blocks. The network functions abstract the underlying network resources and capabilities.

The second stage aims to overcome IN/CAMEL limitations, so as to further improve ser-
vice creation and provisioning. As a result, standards-based service platforms such as TINA
were defined. TINA defines generic reusable software-based components that are used for
customer service development. Also, TINA offers managed access of their components to
external 314 parties. Thus, both telco and external partners may host customer services.
TINA components operate across middleware that was implemented by computing plat-

forms. These computing platforms abstract access to network resources and capabilities.

116

Not Standardised > w
— s
E (IMS Service Layer,, ﬁ
g Manage telecom-IT
8 Parlay x (SOA) Convergence
§ Parlay
=z Softswitch
o
= TINA
S
O N — Time

Figure 8.1: Evolution of Telco Network

The third stage aims to support interoperability between heterogenous transport networks,
such as telco transport networks and the Internet. To fulfil these requirements, the softswitch
standards are defined. The softswitch decomposes the traditional switch into functional en-
tities that promote protocol and media conversion between telco networks and the Internet.
For example, telephony services can originate and terminate on both telco network and In-
ternet. The softswitch functional entities also promote the development of standards-based
service platforms, such as Parlay and Parlay X. Services supported by service platforms
may use softswitch capabilities to invoke common telco network facilities. Also, by using

softswitch capabilities services may be delivered across telco networks and the Internet.

The fourth stage requires the convergence between telco, Internet and I'T-based enterprise
networks and services. As a result, the telco deploys packet-based networks that incorporate
standard-based Internet protocols, such as IP. Also, [[121] defines the IP Multimedia Subsys-
tem (IMS) [24] standard. The IMS further decomposes the telco network and softswitch and
introduces new functional entities that communicate using standard Internet protocols. The
functional entities support new, old and current service platforms, such as SIP application

servers, IN/CAMEL and Parlay gateways.

The current evolution stage aims to fulfil previous stages’ requirements but centres on ser-
vice platforms, like the SDP, that access and use the IMS network functions. Hence, the
current evolution stage aims to structure and standardise the SDP while reusing existing
network standards. In the following sections we discuss the IMS and its contribution to the
definition of the SDP and its framework, with the objective of uncovering abstractions that

constitute a technology neutral SDP architecture.

117

8.1 Requirements

The IMS is standardised by [121]] and focuses on the evolution of the mobile telco and its
network functions into a multimedia communication system. The IMS also evolves network
functions to support mobile telco and Internet interoperability by using Internet protocols.
The network functions support call/session signalling, transport network interworking, re-
source management and invoking service platforms. The network functions also support
the delivery of IP multimedia services across the mobile telco’s packet-switched network.
However, by removing some of the network functions and their terminal mobility capabil-
ities the IMS may be used in the fixed telco network. Thus, the IMS is applicable across

both fixed and mobile telco networks.

The IMS is a packet-based network that is overlayed onto existing packet bearer networks.
It integrates with existing telco networks, such as the General Packet Radio Service (GPRS)
access network. It uses the GPRS network functions to enable customer access to the IMS.
The IMS decomposes most of the remaining telco network functions, to offer more specific
functionality. For example, the IMS extracts capabilities from the softswitch and defines
additional signalling and media gateway functions. The IMS supports telecom-Internet
interoperability by integrating Internet protocols into telco network functions. For instance,

SIP, Diameter, HTTP and other Internet protocols are used by the telco network functions.

The IMS provides functions to support customer mobility between various circuit-mode
networks and packet-based networks that are controlled by different network operators.
The IMS functions also support service, customer and network signalling. Other limited
IMS mechanisms contribute to end-to-end quality of service negotiations, charging, security
and customer service subscription management. Thus, the IMS is considered a signalling
overlay network that provides functions contributing to the overall operation of the telco

network and delivery of services to customers.

The IMS aims to satisfy customer, service and network requirements [122]. For instance,
the IMS supports customer access, registration and mobility. Also, service requirements
include subscription management, access control, session control, service interworking and
addressing. Network requirements include supporting service requirements, customer mo-
bility and network interworking. Other requirements and IMS properties, as defined in
[123]], include:

e logical separation of signalling transport from bearer transport;

e providing multimedia services using Internet applications, services and protocols;

118

0Oss
CCF —H BSS

M

BGCF

(o] o [
Rf

Figure 8.2: Simplified Portion of the IMS Reference Model

e non standardisation of customer services, rather customer services are developed by

numerous external developers;
e multimedia services based on session control over IP;

e logical and physical separation of domains, such as home and visited network do-

mains;

e physical mobility management provided by the access network, while the IMS com-

ponents manages mobile users seamless access to their home network services;
e provide application servers that are internal and external to the telco; and

o online and off-line charging, where a customer may be billed based on various aspects

of the service usage, such as service type, session period, media usage and terminating

party.

As described in [24]], the IMS defines various functional entities by decomposing telco net-
work elements and integrating them with Internet technologies. Some of the functional
entities are shown in Figure We describe these and other functional entities in Sec-
tion[8.2.1] The functional entities abstract complexities of using legacy and new transport
networks, signalling networks, data stores, service platforms and OSS/BSS. In addition,
these functional entities communicate amongst each other to fulfil IMS requirements. The
collection of these functional entities and their interactions are structured within a reference
model. The reference model formalises complex relationships between functional entities
using reference points. The full IMS reference model with reference points is given in [[123]].
A simplified portion of this reference model with reference points is shown in Figure [8.2]
With decomposition of the functional entities and reference points, IMS architectures are
defined.

119

8.2 Architecture

We represent an IMS architecture using two separate models. The first architecture, shown
in Figure [8.3] structures all the IMS functional entities defined in [123]. The functional
entities include those shown in Figure The second architecture, shown in Figure

structures a service platform architecture for the IMS.

8.2.1 Functional Architecture

The IMS functional architecture illustrates the various functional entities that are required
to implement the IMS. Also, the architecture implements the reference model’s reference
points using standardised telecom and Internet protocols. Examples of protocols include
SIP, Diameter, Megaco [41] and Real Time Protocol (RTP) [36]. These protocols are used
for call/session signalling, authorisation control, bearer control and streaming media respec-

tively.

In Figure[8.3] we use domains to illustrate the distributed nature of the IMS. These domains
are the customer, partner and telco domains. Functional entities operate across these do-
mains. For instance, SIP-based user equipment (UE) signals directly to a proxy call session
control functional entity (P-CSCF), that manages customer-to-IMS signalling. Additional
functional entities are defined to administer the interworking between converged transport
networks, that is, the border gateway control function (BGCF). Also, entities control media,
signalling, protocol and transport interworking between circuit and packet-based networks.
These are the media gateway control function (MGCF), signalling gateway (SGW) and me-
dia gateway (MGW). The delivery of media across transport networks is also controlled
by the media resource function controller (MRFC) and media resource function proces-
sor (MRFP). Functional entities, such as the online charging function (OCF) and charging
collection function (CCF), are used to abstract the telco OSS/BSS charging capabilities.
These functional entities are used by various other entities to report and obtain billing infor-
mation. All functional entities communicate using the SIP or Diameter protocols. Diameter
is used for communication with the telco OSS/BSS and home subscriber server (HSS) func-

tional entities.

In the IMS, two functional entities are used to support various service platforms. These
entities are the HSS and serving call session control function (S-CSCF). The HSS is a central
data management function that administers service and network-related data. Examples
of HSS data include legacy mobility management data and per user IN service type data.

Hence, the HSS represents a converged service data source within the IMS. The S-CSCF

120

Partner Domain Customer Domain

Service Platforms

SIP
‘ P-CSCF }—{ e

|
|
|
|
|
|
gl oss
§: BSS ‘ ‘ :
8| CCF }7 ‘ MGCF ‘ ‘ MRFP ‘ ‘ PDF ‘ |
©
| I
| |
| SGW |
|
: Circuit-mode
| Transports M- Packet-based Transports and GPRS
| MGW Access Network

Figure 8.3: IMS Functional Architecture

provides limited intelligence for the IMS at the call-session signalling level. It satisfies SIP

requests from customers by interacting with various SIP application servers.

IMS functional entities represent abstractions of telco network functions. Functional entities
implement reference points, using protocols, so as to enable access to network functions. As
a result, functional entities are used in developing and delivering customer services. These
customer services are defined, developed, deployed and managed within an IMS service

platform architecture.

8.2.2 Service Platform Architecture

Unlike the functional architecture, the IMS does not define a fully structured service plat-
form architecture. Rather, it proposes a limited service layer [124]. The service layer
contains a collection of SIP Application Servers (SIP AS) that host SIP-based applications.
SIP applications process SIP messages obtained from functional entities. Also, SIP appli-
cations generate SIP messages intended for the functional entities. The service layer uses
SIP to implement the ISC reference point shown in Figure[8.2] Some SIP applications also
communicate with functional entities using Diameter and CAMEL related protocols. These

protocols implement the Sh and Si reference points also shown in Figure[8.2]

The IMS service layer abstracts access to the HSS and S-CSCF functional entities by pro-
viding a foundation of functionality, that is used by service platforms. The IMS standards
prescribe only three service platforms that can be used: a SIP-based service platform, a
CAMEL service environment and a Parlay Gateway. SIP-based service platforms contribute

additional SIP application servers to the IMS service layer. Applications contained in these

121

servers provide a variety of services to customers. For the IMS the CAMEL service envi-
ronment delivers traditional voices services to customers. The standards produced by [121]]
define intermediate layers that enable translation between CAMEL protocols and SIP. The
Parlay Gateway supports internal and external application servers that host numerous cus-
tomer services. Applications contained in these servers access Parlay Gateway SCFs via
their APIs. The standards produced by [121] also define intermediate layers that enable
SCFs to use the IMS service layer capabilities. Thus, the CAMEL service environment and
Parlay Gateway use their intermediate layers to simplify the ISC, Sh and Si reference point

implementations.

Based on the IMS standards for the three types of service platforms ([[125} [126} 127}, [128],
129]), we synthesise an IMS service platform architecture. This architecture is illustrated
in Figure The figure illustrates the IMS functional entities, such as those shown in
Figure[8.2] towards the bottom layers. The IMS service layer is depicted as SIP application
servers above the functional entities. Also, the figure shows the ISC, Sh and Si reference
points being implemented as SIP, Diameter and CAMEL protocol communication between
service layer and functional entities. Crosses in the figure illustrate non-standard reference
points implemented with non-standard protocols. The remaining parts of the figure express
the richness of the service platforms that constitute the IMS service platform architecture.
For instance, grey boxes represent components that house applications, while yellow boxes

represent service functions.

In Figure the service layer interworks with CAMEL and Parlay service platforms. To
support integration with the CAMEL, an IP Multimedia Service Switching Function (IM-
SSF) is defined. The IM-SSF contains a SIP application server that manages conversions
between SIP messages and basic call state model detection points. A modified CAMEL
service switching function (imenSSF) is also defined to perform detection point process-
ing. The communication between SIP application service and imcnSSF is not standardised.
The imenSSF communicates with a modified CAMEL service control function (gsmSCF)
that hosts application logic used to provide customer services. The gsmSCF resembles an

application server that is accessed via the IMS functional entities.

The IMS service platform architecture also shows the service layer integrating with a Parlay
service platform named the Service Capability Server (SCS). The SCS contains Service Ca-
pability Features (SCF), SCS-logic and a SIP application server. The SIP application server
enables Parlay and IMS interworking by converting between SIP messages and SCS-logic
requests. However, this communication is not standardised. The SCS-logic also integrates
with the CAMEL gsmSCEF, by converting between SCS-logic requests and CAMEL proto-

cols. However, this interworking is also not standardised.

122

Partner Domain Customer Domain

Lapi
[SCFs]
API'I'
E [SCS logic]
: T
=R I;’fj
éE’E gsmSCF :
3! Fear:
2! ¥ IM-SSF :
E imcnSSF
[sipas | [spas || [sias] [spas |
[f f f
sip DMICAP

Tusc) (Shisi)

Call and Session Control:
|I-CSCF, SLF, PDF, BGCF, MGCF, SGW, IM-MGW,
MRFC, MRF, CCF, ECF, CGF (home) and P-CSCF(visited)

-l-lp

Transports (PSTN, GSM, GPRS, MPLS, Internet, Other...) }:

Figure 8.4: IMS Service Platform Architecture Synthesised from IMS Standards

In Figure standard APIs are used between the SCS-logic, SCFs and Parlay-based ap-
plication servers. These APIs are technology neutral and hide implementations of the SCS
parts. The APIs offer telco and external partners standardised access to SCFs, that hide
details of the IMS functional entities [123]]. APIs are used by client applications residing in
Parlay-based application servers. Thus, APIs enable easier customer service development
by promoting reuse of SCFs. Client applications, in the customer domain, also use an unde-
fined API to interact with Parlay-based application servers located in both telco and partner
domains. To support the distributed use of the APIs a distribution mechanism is used, such
as CORBA.

By using Parlay, a Parlay X service platform can be incorporated into the IMS service
platform architecture. As illustrated in Figure the Parlay X service platform contains a
collection of web services (WS). Web services simplify access to SCFs using standardised
implementation independent APIs. These APIs are exposed to external partner applications
residing on Parlay X based application servers. Web services use the SCFs by invoking
Parlay-based applications. The communication between web services and Parlay-based
applications are not standardised. Also, client applications in the customer domain use
an undefined API to interact with Parlay X based application servers. Both standard and

undefined APIs are supported by web services-based protocols, such as SOAP and HTTP.

123

In addition, ESBs may be used to hide the distribution of the Parlay X web services and

applications.

The IMS standards identify an additional mechanism used to access and deliver customer
services. This is the Service Capability Interaction Manager (SCIM). The SCIM is in-
cluded in the IMS service architecture shown in Figure Though not fully defined, the
SCIM aims to manage interactions between diverse application servers [125]. Therefore,
we assume the SCIM orchestrates multiple application invocations across multiple appli-
cation servers, so as to provide a customer service. For example, [[130] uses the SCIM to
orchestrate multiple SIP application invocations. Also, [131] uses the SCIM to translate
web service invocations into multiple SIP application invocations. This is not shown in Fig-
ure We assume the application servers managed by the SCIM are of various types and
within the telco domain. Similarly to other service platforms, the SCIM interworks with the
functional entities using a SIP application server. However, due to the limited SCIM def-
inition, communication between application servers is undefined. Also, customer services

hosted across the application servers are accessed by customers via the functional entities.

The IMS also uses stand-alone SIP application servers to host SIP-based applications. These
SIP application servers are contained within the telco domain and their applications use the
functional entities directly. Customers access their services, provided by SIP applications,
via the IMS functional entities. In the IMS service architecture SIP application servers

providing customer services are included in the IMS service layer.

The IMS service platform architecture represents a complex mesh of SIP-based application
servers and various service platforms. These service platforms are standards-based. How-
ever, the IMS service architecture identifies non-standardised interfaces between the IMS
service layer and the various service platforms. In addition, non-standardised interfaces
are identified within some of the service platform architectures. By abstracting the com-
plex structure of the IMS service platform architecture and its non-standardised interfaces
we can extract generic concepts that are applicable to the SDP and its framework. In a
similar approach concepts can be extracted from the IMS reference model and functional

architecture.

8.3 Reusable Concepts

The reference model in [123] and summarised in Figure[S8.2] provides a functional perspec-
tive on the IMS. This functional perspective focuses on adapting Internet-based call and

session control capabilities for use within the telco network. As a result, functional entities

124

are defined to support these new capabilities within the telco network. These functional
entities provide a range of functions such as customer, network and service oriented func-
tions. Some functional entities are borrowed from existing Internet-based architectures and
deployed in the telco network. However, new functional entities are also required. These

functional entities abstract new or existing telco network functions.

The reference model in [[123]] shows the complex interactions between functional entities re-
quired to satisfy IMS requirements. In the reference model functional entity interactions are
formalised using reference points. The reference points formalise the relationships between
functional entities and promote their standardisation. Reference points are abstract and im-
plementation, technology and distribution independent. For example, reference points may
define system viewpoints that produce architectures. Alternatively, reference points may
define implementations using specific protocols or APIs. Thus, reference points are used to

promote the standardisation of any relationship.

Our functional architecture shown in Figure|[8.3]also provides a functional perspective on the
IMS. In this perspective we organise the structure of the IMS reference model to illustrate
the interactions of functional entities across domains. These domains indicate the distribu-
tion of functional entities across the telco network and customer terminals. Also, a partner
domain is used to indicated external access to service platforms that use IMS functional en-
tities. The functional architecture also implements reference model reference points using
protocols such as SIP and Diameter. These protocols enforce standardised communication
between functional entities. In addition, these protocols support the new call and session

control capabilities gained by the telco network.

The IMS service layer provides a limited service-oriented perspective that aims to link func-
tional entities with various service platforms. Our service platform architecture provides a
more complete service-oriented perspective on the IMS by showing what is possible be-
tween the IMS service layer and various service platforms. We decompose the IMS service
layer and the various service platform architectures to contain generic reusable services,
that abstract access to the IMS functional entities. These services represent reusable build-
ing blocks used in application development. The execution of these applications provide
customer services. The services are diverse and provide a range of functionality. Like the
functional architecture the service platform architecture formalises interactions between the
various services and applications. These interactions are implemented using standard-based
interfaces. The interfaces are less complex than network protocols and defined as imple-

mentation and distribution independent APIs.

We extend the service-oriented perspective on the IMS by structuring our IMS service plat-

form architecture using layers and domains. The various service platforms that constitute

125

the IMS service platform architecture are decomposed into numerous layers. Layers con-
tain either services or applications. The lower layers closest to the functional entities contain
services that abstract access to functional entities via their interfaces. Higher layers contain
services with interfaces that abstract access to lower layer services. These higher layer ser-
vices offer their interfaces to internal and external applications contained in an application
layer. Both application and service layers are distributed across domains. These domains

are equivalent to those defined in the IMS functional architecture.

We identify another reusable concept from our IMS service platform architecture. This
concept being middleware. Service interfaces are implemented as APIs that operate across
distributed domains. For example, Parlay SCFs are invoked by applications contained in
the partner domain. The use of middleware ensures that distribution is hidden from external
applications invoking service via their interfaces and services invoking each other via their
interfaces. Also, Parlay SCFs provide a form of middleware since their APIs hide details
of the ISC, Sh and Si reference point implementations. Therefore, the SCF APIs represent

service-oriented capabilities that make use of the network-oriented IMS functional entities.

8.4 Contribution to the SDP from the IMS

By reusing and applying the generic IMS concepts we present a SDP reference model and
architecture. The SDP reference model is shown in Figure[8.5(a)l The SDP reference model
is derived by generalising the IMS service platform architecture. We use layers, domains
and reference points to structure the reference model. As a result, the reference model also

illustrates the SDP within its environment.

In the SDP reference model, layers are used as a primary abstraction tool to group and
structure applications, services and network functions contained across the SDP and telco.
We generalise the Parlay and Parlay X application server used in the IMS service platform
architecture as an external application layer. This layer contains ard party applications cre-
ated by application providers. These applications use services offered by the exposure layer
or application service layer to fulfil their requirements. The exposure layer contains generic
services that enable the basic telco network capabilities to be invoked. Thus, the exposure
layer abstracts the Parlay X Gateway. The exposure layer services use services contained
within the application layer to invoke telco network capabilities. The application layer also
contains applications. This layer’s services and applications use the complex services of-
fered by the application service layer to fulfil their functions. Thus, the application layer
abstracts the capabilities provided by a Parlay application server. The application service

layer contains complex services that enable the full capabilities of the telco network to be

126

Provider Domain Customer Domain

TRea “TRex

Exposure
Layer

Telco Domain

PPl Pl
Interface Interface

Service
Interfaces

Network Service
Layer

Distribution Plane (Middleware Bus)
Technology

[[
Specific

Interfaces
. N ' <34 Telco, IT, s
Network Function Network Function N 5] ;?g Internet E"I']
Layer Layer N @ SIS ~ Networks

e ——— o l_ —— e ——— —— — - Telco Infrastructure Resources and Capabilities

|
|
|
|
|
|
|
|
|
|
|
R |
AC
: @— -- —0— - {Application} - O -— {Application]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

(a) SDP and its Environment derived from IMS Ser- (b) GSOA Detailing Generic Concepts

vice Platform Architecture

Figure 8.5: SDP Models based on IMS Concepts

invoked. Thus, the application service layer generalises the Parlay Gateway.

The network service layer represents a point of integration between the various higher appli-
cation and service layers and the underlying network capabilities and resources. As a result,
the network service layer provides services that invoke the appropriate network functions.
Thus, the network service layer abstracts the IMS service layer. The network function layer
contains the various telco network functions. These functions may also be located on the
customer device. Therefore, the network function layer may contain call and session control

functions similar to those offered by the IMS functional entities.

The reference model distributes layers across various functional areas by using domains.
These domains specify areas of interest that services must operate within. Domains pre-
scribe additional decomposition of layers to include distributed communication of services.
The domains shown in Figure are equivalent to those used throughout the IMS refer-
ence model, functional architecture and service platform architecture. The customer domain
represents the customer device or terminal, that enables the customer to access and use the
various applications and services offered by the SDP. The partner domain represents an ex-

ternal 374

party. For example, partners include application provider enterprises that require
access to telco network capabilities and resources to deliver content or create customer ser-
vices. The telco domain represents the area in which the SDP operates. In this domain, the

SDP has access to the various telco network functions.

127

Within the SDP reference model, reference points promote standardised communication
between service and functional abstractions, that are contained within layers and distributed
across domains. For instance, the R4 and Rgx reference points formalise communication
between the telco and external IT-based infrastructures. The Rrc, Rac and Rpc reference
points standardise communication between the customer, applications and the network. The
Rx 4, Ras and Rgg reference points promote standardised communication within the SDP
and between its various services. Also, the Rgp reference point defines communication
between the SDP services and converged network functions. This reference point demands
greater standardisation than the current ISC reference point. By decomposing or implement-
ing the various reference points, additional service-oriented details on the SDP are revealed.

Hence, a SDP architecture can be defined.

To structure the SDP architecture we reuse the GSOA concept defined in Chapter[]] As
determined, the GSOA is used to define service platform architectures independent of tech-
nology, distribution and implementation details. This is achieved by using the GSOA as a
reusable building block that manages various services, applications, interfaces, infrastruc-
ture and their distribution. Hence, multiple GSOAs are used to manage the various customer
applications, partner applications, SDP applications, SDP services, network functions and
all corresponding interfaces. In addition, the GSOAs are used to structure the SDP reference
model’s layers and abstract the distributed domains using their distribution planes. Hence,
multiple GSOAs decompose the SDP reference model’s reference points and support the
communication of application, services and functions between layers and across domains,

using their interfaces.

We illustrate the GSOA, used for decomposing the SDP reference model, in Figure
This representation is similar to the GSOA shown in Figure In the figure, applica-
tions provide customer services, via their interfaces. Also, numerous service interfaces
are defined and easily accessible by applications. Services access underlying infrastructure
resources and capabilities via infrastructure interfaces. To enable technology, implementa-
tion and distribution independence of application, service, and infrastructure interfaces, the
distribution plane is used. However, in this GSOA representation the distribution plane pro-
vides a technology neutral middleware bus. The middleware bus contains its own middle-
ware services that are accessible to applications, services and infrastructure via interfaces.
Some of these middleware services may be used to simplify access to infrastructure func-
tions. As a result, the middleware’s services and their interfaces represent the abstraction of

infrastructure resources and capabilities.

A SDP architecture structured using GSOAs is shown in Figure In the architecture,
layers are represented using multiple GSOAs. Since layers are hierarchically structured,

their associated GSOAs are also layered and simplify access to each other. This illustrates

128

Provider Domain Customer Domain Provider Domain Customer Domain

e e e — — — — —— R

bb

Telco Domain
Telco Domain

App\icallon GSOA

SCaRR:

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Appllcanon Service GSOA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

VOSO Jowoisng

g8 &5

Network Service GSOA

ddy

T RE T

Network Functlon GSOA

ddos $Ly

(a) SDP Architecture (b) Alternative SDP Architecture

ddy

Figure 8.6: SDP Architectures based on Generic IMS and SOA Concepts

GOSA applications, services and middleware abstracting other GSOAs. The GSOAs with
their service interfaces implement the various reference points. The service exposure GSOA
implements the R 4 and Rgx reference points. By implementing the R 4 reference point,
the service exposure GSOA uses its service interfaces to simplify access to complex services
hosted in the application service GSOA. The application GSOA implements the R x 4 refer-
ence point, while the application service GSOA implements the R 45 reference point. The
network service GSOA and network function GSOA implement the Rggs and Rgp refer-
ence points respectively. The layered GSOAs with the aid of their service interfaces also

implement the Rpc, Rac and Rpo reference points into the customer domain.

Since the GSOAs are generic, they may be used to restructure the SDP architecture. An
alternative SDP architecture, shown in Figure illustrates the use of GSOAs within
domains. The figure shows a unified customer GSOA with services that abstract resources
and capabilities found within the customer domain. Similar to the properties of the GSOAs
in Figure the customer GSOA services abstract other GSOAs, their services, ap-
plications and functions found within the provider and telco domains. Hence, the customer
GSOA and its service interfaces implement the Rrc, R ac and R ¢ inter-domain reference

points.

129

8.5 Evaluation of SDP Reference model and Architecture

By applying the generic IMS concepts, in particular the service platform options, to the SDP
we have defined functional and service-oriented viewpoints. Both viewpoints contribute ab-
stractions that are structured in the SDP reference model and architecture. The abstractions
contribute to the definition of the SDP framework. We evaluate the SDP reference model
and architecture against the generic concepts extracted from the IMS. In addition, the eval-
uation provides answers to the questions posed in Chapter[I| Section We also present
the comparison between the IMS architectures and the SDP architecture in Table[8.1]

We do not define a SDP business model using the generic IMS concepts. However, the IMS
derived SDP reference model incorporates some business model concepts and properties.
The SDP reference model encapsulates the requirements of the SDP. Examples of these
requirements include, supporting customer service development and management by pro-
viding generic services to various external IT-using enterprises. These SDP services must
support customers in locating, registering, consuming and paying for customer services.
Like a business model, the reference model defines relationships between external partners,
customers and the SDP. However, the reference model promotes standardised communica-
tion between SDP, customers and external partners using reference points. In addition, the

reference model does not enforce specific technologies to implement reference points.

The SDP reference model provides a functional perspective, since it aids the definition of
SDP functions. These functions are represented as a collection of applications, SDP ser-
vices and network functions that use their interfaces to implement reference points. In
this perspective, the reference model uses layers to structure the various SDP services, ap-
plications and network functions. The layers illustrate the relationship between the SDP
services, applications and network functions. In addition, layers model the hierarchy of
abstraction from complex network functions to simple services contained in the reference
model’s service exposure layer. Besides layers, the reference model uses domains to dis-
tribution applications, SDP services and network functions. Domains show applications,
services and functions being invoked across various locations that are internal and external

to the telco.

By decomposing the reference model into a SDP architecture we provide a service-oriented
perspective. The SDP architecture manages the various applications, services and network
functions within GSOAs. Thus, GSOAs represent the design pattern used to structure the
SDP architecture. The GSOAs ensure technology, implementation and distribution inde-
pendence. As a result, the SDP architecture remains technology neutral. The GSOAs fully

implement the reference model’s reference points without enforcing specific technologies.

130

IMS SDP
Reference Defines functional entities and their in- | Defines collections of applications, ser-
Model teractions using reference points. vices and functions contained in layers,
distributed across domains and interact-
ing via reference points.
Architecture Web service based application server Partner GSOA
Layers Parlay X Gateway Service Exposure GSOA
SIP AS and Parlay Application Server Application GSOA
SCIM and Parlay SCS Application Service GSOA
IM-SSF and SIP AS Network Service GSOA
Network Functions (CSCFs, PDF, ...) Network Function GSOA
Network Elements
Domains Distributes layers across customer, external 3rd party and telco functional areas.
Middleware ESBs Provided by various GSOA middleware
CORBA buses. These buses are technology and
Protocols implementation neutral.

Table 8.1: Comparison of IMS and SDP Architectures

In addition, the GSOAs structure the layers and abstract the distributed domains using their
distribution planes. Hence, application and service communication is fully managed and
abstracted by the SDP using the GSOAs. The SDP architecture also shows higher layer
GSOAs abstracting lower layer GSOAs. For example, lower GSOA service interfaces are
abstracted by higher layer GSOA services. Also, the GSOAs supports service communica-

tion within a layer, via service interfaces.

Each GSOA provides a technology neutral distribution plane that is represented as a mid-
dleware bus. This plane abstracts technologies and hides distribution complexities from
applications, services and functions. Also, the distribution plane also provides middleware
services that are accessible via their interfaces. These middleware services may be used
by SDP services to access network resources and capabilities. The GSOAs’ distribution
planes may be implemented using various technologies, such as web service based ESBs
or CORBA. Hence, the GSOAs provide generic middleware functionality that ensures the

SDP architecture remains void of any technologies.

The SDP architecture presented here overcomes many limitations of the proposed SDP
architecture shown in Figure [I.3] For instance, we use functional layers that expose tech-
nology neutral interfaces to services or network functions. These interfaces consistently
implement reference points and promote standardisation of the SDP. For example, some
service interfaces provide access to network functions that abstract telco OSS/BSS capa-
bilities. These service interfaces promote standardised access between telco OSS/BSS and

external SME/SCE. We also use domains to separate the SDP across multiple functional

131

areas. We include a customer domain such that customer access to the SDP is specified.

8.6 Summary

In this chapter we presented contributions of a current telco network standard to the SDP
and its framework. We reused generic concepts from the IMS standard. Concepts where ex-
tracted from the IMS reference model and a derived functional architecture. We also synthe-
sised an IMS service platform architecture that contributed all the generic service-oriented
concepts to the SDP. By reusing these concepts we defined a SDP reference model and
architecture. By removing technologies from the synthesised IMS service platform archi-
tecture, we defined a SDP reference model. This model contains applications, services and
network functions that are structured within layers. The layers are also distributed across
functional domains. Interactions between layers and across domains are formalised using
reference points, to promote standardised communication. We defined the SDP architecture
by elaborating the reference model, using the GSOA concept. We used multiple layered
GSOAs to define the SDP architecture. These layered GSOAs structured SDP applications,
services, functions and their interfaces. Lower layer GSOAs manage service (or network
function) interfaces and provide higher layer GSOAs access to these interfaces. Together,
GSOAs and their service interfaces implemented various reference model reference points.
GSOAs were also used to abstract domains by using their distribution planes as middleware
buses. GSOAs are generic, technology, implementation and distribution neutral. This en-
sured technology neutrality of the SDP from reference model to architecture. Therefore, by
reusing generic IMS concepts with the GSOA we presented technology neutral abstractions

and an architecture that contributes to the SDP framework.

132

Chapter 9

Defining the SDP Framework

In the previous chapters we have discussed telecom and enterprise standards. Each of these
standards share similar service requirements with the SDP. The most prevalent requirement
being the creation, delivery and management of customer services using telco and I'T-based
infrastructure. The standards that we have reviewed satisfy this requirement by defining
concepts and abstractions to simplify the complexity of modifying or extending the telco
and IT-based infrastructures. These concepts and abstractions include a range of business

models, reference models and architectures.

The extraction of concepts from the TINA, Parlay, management and SOA standards have
produced generic SDP business models. The business models demarcate the various telco
and I'T-using enterprise roleplayers that benefit from interacting with the SDP. Also, numer-
ous business relationships are specified between the SDP and roleplayers. The SDP business
models derived from generic TINA, TMN, TOM and eTOM concepts formalise business re-
lationships and promote standardised communication between the roleplayers. SDP service

interfaces are identified to provide standardised communication between roleplayers.

The SDP business models derived from Parlay and SOA concepts are further decomposed
into SDP reference models. A SDP reference model is also derived from generic IMS con-
cepts. The reference models use reference points to promote standardised communication
between the SDP, telco-based infrastructure and external IT-based infrastructure. Refer-
ence points are elaborated into interfaces that are exposed by a variety of SDP services.
Therefore, the reference model formalises the integration between telco and IT-based in-

frastructures by using service-oriented reference points.

The generic concepts obtained from the reviewed standards have contributed to the devel-
opment of various SDP architectures. The SDP architectures are also based on correspond-
ing business models and/or reference models. The architectures show the SDP contained

within an environment that operates across various telco and IT-based infrastructures. The

133

architectures illustrates layering of SDP services according to the level of abstraction their
interfaces provide. Services are also distributed across domains, but distribution is hid-
den by middleware planes. All SDP architectures are technology neutral. However, the
architectures promote the use of standards-based technologies to implement their service

interfaces.

The management, SOA and IMS derived SDP architectures provide different approaches
to structuring the SDP within its environment. The SDP architecture derived from TMN,
TOM and eTOM concepts models abstractions required to manage the operation of the SDP
and its services. The SDP architecture derived from SOA concepts shows the versatility of
the GSOA to structure SDPs. This is also illustrated in the SDP architecture derived from
generic IMS concepts. The IMS derived SDP architecture uses GSOAs to layer applications,
services and middleware. Also, the GSOAs represent the elaboration of reference points
found in the IMS derived SDP reference model.

By extending the previous chapters concepts and abstractions we define the SDP framework.
We do this by revisiting the SDP definition and elaborating on key SDP requirements. The
concepts and abstractions are used to satisfy the SDP requirements. As a result, we define a
complete SDP business model and reference model. Also, we structure the SDP framework

as an architecture illustrating the SDP within its environment.

9.1 Definition and Requirements

We define the SDP as a “a distributed IT-based system that abstracts telco network capabil-
ities into generic services that are accessible across telco, enterprise and Internet networks
and promotes the development, delivery and management of various customer services”.
Using our definition we define the SDP requirements in the following sections. These re-

quirements provide answers to the questions posed in Chapter|[I]Section|[I.3]

9.1.1 Infrastructure Integration

We need the SDP to simplify interworking between traditionally separate telco infrastruc-
ture systems. Also, we need the SDP to simplify telco and I'T-based infrastructure interwork-
ing. Many vendor-based SDP products, such as [56], promote improved telco infrastructure
interworking to streamline various telco activities. These products also provide proprietary
solutions that interwork specific telco systems and external IT-based systems. However, in

the previous chapters we have derived technology neutral SDP architectures that promote

134

standardised infrastructure interworking. For instance, all derived SDP architectures pro-
vide layers of abstractions that simplify access to telco network resources and capabilities.

These abstractions are exposed to I'T-based systems.

All derived SDP architectures define and layer abstractions by first separating telco net-
work functions from their complex physical representations. These network functions sim-
plifies access to telco infrastructure parts. Some functions include setting-up connections,
negotiating transport QoS, configuring device capabilities and updating billing databases.
Separated functions are complex to use since they remain technology and distribution spe-
cific. To solve this problem, the SDP architectures abstract network functions into reusable,
technology-neutral and distribution-neutral software-based services. These services pro-
vide functionality, such as make multiparty calls, obtain customer location, manage service

profiles, send and receive messages and query customer accounts.

SDP services enable standardised access to all telco infrastructure parts for various activ-
ities, such as decreasing service development effort, improving network management and
streamlining business and operational processes. In addition, SDP services are offered to
external I'T-based infrastructures. Enterprises may use SDP services to enhance their exist-
ing applications or create new applications. Thus, SDP services support integration between

telco and IT-based infrastructures.

9.1.2 Service-oriented System

We need SDP services to expose their functionality to external I'T-based infrastructure. Also,
we need to classify the different types of SDP services that have been identified in the

previous chapters’ SDP architectures.

SDP services use generic mechanisms to offer access to their functionality. These mech-
anisms are called inferfaces. Interfaces prescribe, in an implementation and distribution
independent manner, what functionality a service offers. Therefore, applications using ser-
vice interfaces are not constrained to specific implementation and distribution technologies.

[8] and [55]] recommend a service offer the following interfaces:

e consumption interface - exposes a service’s available functionality.
e management interface - used for service administration.

e client interface - enables a service to use other services consumption and management

interfaces.

135

‘ Applications H

Consumption Interfaces

Management Interfaces

Consumption
Interface

[T
e

Client R
Interface Network resources and capabilities

Management [J Client Interfaces
Interface

(a) SDP Service Inter- (b) Types of SDP Services

faces

Figure 9.1: SDP Services and Interfaces

We illustrate these interfaces in Figure|9.1(a)

These interfaces have been used to access layers of services that constitute our derived SDP
architectures. For example, in our SOA derived SDP architecture lower service layers offer
consumption interfaces to higher layer applications and services. Though not specified in
any of our derived SDP architectures, higher layer services may use client interfaces to
access lower layer services on their consumption interfaces. In the TMN, TOM and eTOM
derived SDP architecture we have illustrated layers of services that expose management
interfaces. These services are invoked on their management interfaces by management

services or management applications.

SDP services contain functionality that abstract complex infrastructure functions. Since nu-
merous functions exist within the telco network, a number of services are created. Within
the SDP, we define two categories of services: building block services and composite ser-
vices. We illustrate these different types of SDP services Figure In the figure we
show building block services as simplifying access to network functions. Building block
services also perform distinctive tasks and do not interwork with other building block ser-
vices. These building block services are used in our derived SDP architectures. For ex-
ample, the Parlay derived SDP architecture shown in Figure uses generic services as

building block services to simplify access to network functions.

Figure|9.1(b)|shows composite services interworking with one or more building block ser-
vices to further simplify access to infrastructure functions. In addition, composite services

may provide new functionality by integrating multiple composite services and simplifying

136

their use. The nested nature of composite services is finite. Thus, composite services are
defined until no further simplification is gained or no unique functionality is defined. Like
building block services, composite services are used in our derived SDP architectures. For
example, the Parlay derived SDP architecture shown in Figure[5.6]uses application services

as composite services to simplify access to generic services.

9.1.3 Business Model

We need a business model for the SDP to accommodate diverse customers, external I'T-using

enterprises and other telcos.

The SDP sustains a business environment [[132] that supports the convergence of various
business entities. Within the business environment the SDP defines business relationships
between diverse business entities. Business entities and their relationships are structured
into a business model. In previous chapters we have derived numerous SDP business mod-
els. All the derived business models identify business entities that use the SDP for its
services. These business entities are IT-using enterprises such as application developers and
content providers. Also, some business entities include individuals or enterprise that access
applications and content. As a result, we generalise these business entities as customers of
the SDP.

In the SDP business environment customers play various business roles. These roles are
extracted from the derived SDP business models in the previous chapters. Three com-
mon types of customer roles are provider, consumer and broker. The SDP itself plays the
provider role since it provides services to consumers and brokers. In some cases the SDP
may take on the consumer role since it consumes services offered by other providers. For
example, the Parlay derived business model shows the SDP consuming services that are of-
fered by external service providers. These services contribute to the SDP’s own repository

of services.

The provider role is also fulfilled by business entities such as application developers, content
providers and the telco. These providers are prevalent in all the derived SDP business mod-
els. Application providers provision diverse applications to consumers. Content providers
provide content to be used by applications. The telco provides SDP services with access
to diverse network functions. The network functions expose telco transport capabilities and
OSS/BSS capabilities. The application and content provider business entities also fulfil
the consumer role. For example, application providers orchestrate SDP services to create
applications, while content provides use SDP services to deliver content across the telco

network. The telco may also fulfil the consumer role. For example, some network functions

137

may invoke SDP services so as to notify the SDP of changes in the network.

Other business entities that fulfil the consumer role include individuals or enterprises that
act on behalf of individuals. These business entities subscribe, use and pay for applications
that are managed or accessed via the SDP. These applications provide business entities with
telephony, multimedia or data services. Business entities that take on the consumer role
may also consume SDP services to subscribe, configure, access and use applications. In
addition, these business entities may use SDP services to manage their personal profiles,

service subscriptions and billable accounts.

Business entities that fulfil the broker role aim to support interactions between consumers
and providers within the SDP business environment. Brokers are incorporated in various
business models. For example, [53] 55 154] and [130] promote the use of brokers with
their SDP solutions. We have also used brokers in our TINA, Parlay, SOA and eTOM
derived SDP business models. In these derived SDP business models we have used the
SDP business entity as an all purpose broker. The objective of the broker is to use SDP
services to create applications. These applications differ from other applications, since they
offer functionality to both consumers and providers. For example, consumers use broker
applications to find applications offered by application providers. This example implies
application providers have already used broker applications to register their applications

and intend to provide these applications to consumers.

A generic SDP business model is shown in Figure The generic SDP business model
condenses the previous chapters’ SDP business models by showing relationships between
customers that fulfil the consumer, provider and broker roles. The relationships between
customers are structured using business relationship points. The concept of business rela-
tionship points has been reused from TINA, Parlay, SOA and eTOM derived SDP business

models. The business relationship points in the generic SDP business model are:

BR¢p - consumer to broker relationship.

BRpgp - broker to provider relationship.

BRcp - consumer to provider relationship

BRcc - consumer to consumer relationship.

BRpp - broker to broker relationship.

BRpp - provider to provider relationship.

Within the generic SDP business model, the SDP may perform the roles of a broker and

provider. As a provider, the SDP offers services to consumers and other providers. Hence,

138

BREg—l
Content
Broker

k)

Application
Provider

BRg;

. . Service BR, Service BR;
SDP Business Environment Broker B! Provider
BRgs |

BR BR
T
Service End
Subscriber %BRCC_' Users

BRcs BRsp
BRec BRor | |
BRgp BRcp BRce BRep BRpp BRep
Consumer BR Provider I I I I I
CcP SDP and Connectivity Provider (Telco)

(a) Generic SDP Business Model (b) Decomposed SDP Business Model

Figure 9.2: SDP Business Models

the SDP supports the BRcp and B Rpp business relationship points. Also, as a broker the
SDP supports interactions between customers and providers. Hence, the SDP supports the

BRcp and BRpp business relationship points.

The above business model is generic and may be decomposed to reveal detailed entities and
relationships within the SDP business environment. A detailed SDP business model, derived
from the generic model, is shown in Figure The figure illustrates the decomposition
of customers. For instance, the consumer is decomposed into a service subscriber and end-
user. Numerous providers are also defined, such as connectivity, application, service and
content providers. In addition, various brokers, such as service and content brokers, are

introduced into the business model.

In Figure most business relationship points are used between the business entities.
For example, the B R p business relationship point specifies service subscribers may ob-
tain a list of services from service brokers. The BR¢p relationship enables the service
subscriber to register for selected services from a service provider. In addition, the BRc¢
relationship allows end-users to use services that service subscribers have registered to use.
End-users are allowed to consume services from their appropriate service providers, via the
BRcp relationship. Also, the BRcp relationship defines interactions enabling end-users
to access their associated connectivity provider. The BRpp business relationship point
enables service providers to offer services on behalf of application providers. The vari-
ous provider interactions are structured using the BRpp relationship. For example, this
relationship enables application providers to access and use content provisioned by con-
tent providers. The B Rpp business relationship point allows service providers or content
providers to register their services or content with the appropriate brokers. We also define
a BRpp business relationship point between content brokers. This enables content brokers

to search for content registered with other content brokers.

139

App/Service
Provider
T
Ras
—R SDP R
End-User/| © S oss
Subscriber| R BSS
DS
Rrs 1
| Resource
Provider
Transports

Figure 9.3: SDP Reference Model

As shown in the business models, business relationship points enable convergence of busi-
ness objectives between diverse business entities. Hence, the relationship points would be
defined as rules and policies to ensure converged business objectives are achieved. The SDP
and its services provide the required functionality to implement and enforce these business
relationship points. However, SDP services must ensure standardised interactions between
telco, SDP and its various customers. This standardisation ensures managed and consistent

interactions between the SDP and all its customers.

9.1.4 Reference Model

We need a reference model for the SDP that uses reference points to promote standard-
ised interactions between the SDP and its customers. Interactions between the SDP and its
customers are specified as business relationship points. These business relationship points
prescribe interactions that are allowed and not allowed. In a SDP reference model business
relationship points are formalised as reference points. Reference points are implemented
as SDP service interfaces. These interfaces being the consumption, client and management
interfaces. Also, interfaces are exposed by either building block or composite SDP ser-
vices. Thus, a SDP reference model formalises the SDP and customer interactions using

standardised SDP service interfaces.

The SDP reference model shown in Figure [9.3| confirms the reference model proposed in
Chapter[2| Figure[2.6] The reference model is also similar to the SOA derived SDP reference
model shown in Figure The SDP reference model contains all of the entities and
reference points used in other derived SDP reference models. These entities include end-

users, application providers, content providers, service providers and the telco network.

Figure [9.3] shows the basic entities required by the SDP to standardise its services. These
entities fulfil one or more of the consumer, provider or broker roles, defined in the previous
SDP business model. Also, business relationship points are now formalised as reference

points between the various reference model entities. The transport networks and OSS/BSS

140

entities belong to the telco. Transport networks include legacy and new communication
infrastructure and their associated network functions. The OSS/BSS includes management
systems and functions that administer the transport infrastructure. These entities provide the
SDP with access to telco transport and OSS/BSS functions. The reference model also shows
external entities interacting with the SDP via its services. These entities include end-users,
service subscribers, application providers, service providers and resource providers. End-
users represent individuals that use SDP services to access applications. Subscribers rep-
resent external enterprises that act on behalf of many end-users. Application providers use
SDP services to create applications that are used by end-users. Application providers also
include brokers since they provide applications to end-users, other application providers,
service providers and resource providers. Service providers provide services that are used
by the SDP. Resource providers use SDP services to contribute data to support applica-
tion providers. As a result, resource providers may include media distributors, television

broadcasters and advertising companies that deliver content to end-users.

The reference model promotes standardised interactions between the SDP and various enti-
ties by defining reference points. These reference points are similar to those defined in our
SOA derived SDP architecture. These include the horizontal Rcg and Rog reference points
and the vertical R 49, R1g and Rpg reference points. These interactions are realised using
SDP service interfaces. Thus, the SDP reference model provides a means to standardise

access and usage of services between telco, SDP and its customers.

9.1.5 Overall Management

We require the SDP to incorporate telco OSS/BSS functions such that standard-based SCE
and SME are defined. The SDP incorporates the telco OSS/BSS by defining services that ab-
stract its functions. These services can be classified as management services. Management
services provide functionality, such as configuring transport networks, adjusting consumer
terminal properties and administering customer services. These management services are
used via their consumption interfaces by management applications. Management applica-
tions orchestrate management service interfaces to implement telco business processes. As
an example, a complete set of telco business processes are defined by the eTOM that is dis-
cussed in Chapter|6] Also, limited management services and interfaces used to implement
eTOM are defined by [133]].

Management service interfaces contribute to the implementation of the R 4 g reference point
shown in previous reference model. The reference model promotes the standardisation of
these management service interfaces. Thus, various internal and external SCE and SME

may use these management service interfaces to have consistent access to telco OSS/BSS

141

Management Plane

Business Process p— N Management Applications
Management \ Mn P
(o]

Service —— N Management
Management \J Mn Services
Cl Cl
Function o N OSS/BSS
Management \ Mn _ Functions
o]

Resource N 0SS/BSS
Management Cl U Mn Resources

Figure 9.4: SDP Management Architecture with Interfaces

capabilities. We have already derived a SDP management architecture using TMN, TOM
and eTOM to illustrate business processes and management services. We extend the derived
SDP management architecture to show more detailed layers and the management service

interfaces. The extended management architecture is shown in Figure

The extended SDP management architecture shows a hierarchy containing management
applications, management services, OSS/BSS functions and resources. Management appli-
cations use their client interfaces (Cl) to access management services via their consumption
interfaces (Co). Management applications represent business processes. Management ser-
vices use their client interfaces to access OSS/BSS functions via their consumption inter-
faces. OSS/BSS functions use their client interfaces to access OSS/BSS resources via their
consumption interfaces. These management applications, services, functions and resources
are used to manage telco operations, as well as telco business objectives. However, the

extended SDP management architecture shows how the SDP is also managed.

The extended SDP architecture shows interconnected management layers containing admin-
istrative services. The business process management layer contains services that administer
management applications via their management interface (Mn). The service management
layer contains services that administer management services via their management inter-
face. The function management layer contains services that administer OSS/BSS functions
via their management interface. The resource management layer contains services that ad-
minister OSS/BSS resources via their management interface. The administrative services
ensure the SDP satisfies traditional telco network “quality requirements” [69] such as high

availability, security, reliability, scalability and fault tolerance.

142

9.1.6 Architectural Structure

We need an architecture for the SDP that is defined using various design patterns. Unlike the
proposed SDP architecture shown in Figure[l.3] the new SDP architecture uses technology
neutral design patterns to structure the various SDP services. By structuring the services,
the new architecture implements SDP reference model reference points as service interfaces.
In addition, the new architecture satisfies the SDP business model’s business relationship
points, by interacting with external IT-using enterprises. Thus, the new SDP architecture

supports telco and IT infrastructure interworking, that is, telecom-IT convergence.

We have uncovered technology neutral design patterns from the previous chapters’ derived

SDP architectures. These design patterns are layers, domains, planes and GSOAs.

Layers:

We use layers as a primary modeling tool to structure the SDP architecture. Layers provide
a means to horizontally group and structure a collection of related entities, such as SDP
services. As a result, layers separate varying levels of functionality. Within layers enti-
ties communicate via the client-server or peer-to-peer paradigm. Examples of layers used
with telecom and IT-based architectures are numerous. Architectures use layers to model

switching levels and service levels [76]. We illustrate layers in a SDP architecture shown in

Figure[9.5]

In the figure we model switching levels as Network Resource Layers. These layers group
physical network elements and their network-oriented functions that are abstracted by the
SDP and its services. For the SDP, service levels are modeled as Intelligent Service Lay-
ers. These layers group SDP services and applications. These service layers’ services are

realised as either building block services (BBS) or composite services (CS).

Service layers use lower resource layers, by accessing their technology-specific functions.
Service layers simplify access to these functions by using their technology-neutral service
interfaces. Thus, service layers hide the complexities of using lower resource layers. Be-
sides abstracting lower resource layers, service layers simplify each other. For instance,
multiple service layers are hierarchically structured with topmost service layers simplify-
ing access to lower service layers. Some service layers are also specific. For example,
data stores located in a resource layer may have their functions abstracted by services in a
separate intelligent service layer. As a result, this separate service layer may provide only

data-centric services.

143

Provider/Broker Domain

Client
[Server App

I 1

OINcIIONONON
5

Bt ol

BBS BBS

N

Consumer Access Core 0SS/BSS
Domain Domain Domain Domain

Intelligent Service Layers

Telco Domain

Network Resource Layers
)

Figure 9.5: Structuring a SDP Architecture using Layers and Domains

Domains:

We use domains as a secondary modeling tool to structure the SDP architecture. Domains
are used in many standardised telecom and IT architectures. Domains represent areas of
division across the telco network by ownership and functions. Division by ownership relates
domains to the various entities that are defined in the SDP business model. As a result,
services, applications and functions residing in a domain may belong to a specific business
entity. Division by function implies that implemented services, interfaces, applications and

functional entities operate across physically distributed equipment and locations.

Domains vertically structure the distribution of layers and their content among areas of
interest [69]. We illustrate domains in the SDP architecture shown in Figure [9.5] In the
figure resource and service layers intersect various domains. These domains include cus-
tomer, provider/broker, telco, access, core and OSS/BSS domains. Services, applications or
functions contained within layers communicate synchronously and asynchronously across
one or more domains. For instance, some application and services communicate vertically
across layers but within the same domain. Also, client and server applications communicate
horizontally across domains but within the same layer. Horizontal communication may also

occur between network functions contained within a layer.

Similar capabilities, such as services, applications and functions, contained in various layers
are grouped into specific domains. For example, all capabilities on the customer device are
grouped within the customer domain. Also, an external enterprise that develops applications

manages its capabilities within an application provider domain.

144

Planes:

Specific layers and domains may be grouped together to focus on particular SDP concerns.
Focusing on all intelligent service layers and their distribution across domains, centres on
creating applications via SDP service interfaces. In addition, these grouping may involve
permutations of intelligent service layers and various domains. These groupings are man-
aged with the help of an abstraction tool called planes. Planes are reused in many telecom
architectures to abstract complexities, such as lower architectural layers, their contents, im-

plementations and domain distributions.

Based on the previous chapter outcomes, we use a particular type of plane to structure
the SDP. This plane provides middleware based functionality and is called the middleware
plane. The middleware plane provides generic mechanisms to support distributed commu-
nication across the SDP, telco and its customers. In addition, the middleware plane supports
both horizontal and vertical communication between services, application and functions that
contribute to the SDP. Thus, the middleware plane abstracts one or more layers and their

distribution across one or more domains.

By providing the middleware plane, complexities associated with distribution are hidden.
For instance, the middleware plane enables distributed services to communicate indepen-
dently of their location. To enable these interactions the middleware plane provides mech-
anisms to abstract underlying communication and computing infrastructure. This infras-
tructure may include the telco transport networks and other supporting systems. In addition
to abstracting infrastructure, the distribution plane hides implementation details of services
and applications. As a result, diverse services may interact with each other and be invoked
by diverse application implementations. Thus, the middleware plane hides various com-
plexities of the SDP, so as to simplify relationships and interactions between SDP, services,

applications, functions, telco and its customers.

An illustration of planes used in modeling a SDP architecture is shown in Figure [9.6] In
the figure, planes group layers according to their similarities. This is evident in the service
middleware plane abstracting all intelligent service layers. Also, some layers may operate
within distinct planes. For instance, layers abstracting service control functionality are
grouped into a control plane. The figure also defines a management plane that intersect

all layers and planes. Hence, all layers, their contents and planes are managed.

145

Provider/Broker Domain
Application Plane ﬁ}
O I] | N\

& | H - I | N\ S

g $ A] 1 AN '

g (= =N [=N § = =N i = =N §

Q

2

I

Q

(7]

k=

[} . .

2 Service Middleware Plane DE)

Q

= > c

- ©
¢ 5
g a

0 [} 8

g | H | H | | w— i =3 K

3 i : i : i | 1 i}

@ Q

o

5 H Control Plance 3

» I v I T A\

& | | \

~ (A DA | v T

o

H Resource Plane

(9]

z H ' '

Consumer Access ! Core 0SS/BSS
Domain Domain Domain Domain

Figure 9.6: Structuring a SDP Architecture using Planes

Generic Service Oriented Architectures:

The GSOA is an outcome of our SOA derived SDP architecture discussed in Chapter[7} It
encompasses technology neutral concepts that are extracted from the web service SOA and
enterprise SOA. We use the GSOA as a technology neutral design pattern to structure service

platform architectures. For example, GSOAs structure our IMS derived SDP architecture.

The GSOA represents a container for services and applications. In the GSOA, services
define interfaces that abstract access to other services, infrastructure functions or physical
systems. The services expose their interfaces to applications. Application orchestrate ser-
vice interfaces to provide specific functionality. The GSOA provides a distribution plane
that services and application operate across. The distribution plane hides various complex-
ities from services and applications. For instance, the distribution of services and applica-
tions are hidden from each other. Also, the computing infrastructure supporting service and

application communication is abstracted.

GSOAs can be used to elaborate reference points in reference models. As a result, GSOAs
contribute towards formalising relationships between reference model entities. Multiple
GSOAs can be used to replace layers that are structured according to their level of abstrac-
tion. Thus, GSOAs can be layered to mimic abstraction hierarchies. GSOAs abstract the
distribution of layers across domains by using it distribution plane. As a result, GSOAs hide
distribution complexities if used to structure distributed systems. The GSOA can be used
to replace middleware-based planes in service platform architectures. This is possible since

the GSOA distribution plane provides middleware capabilities.

146

! 1

OoMG
IDL

Java, er "

CH+, e

Protocols CORBA [Services] [SIP] [Other J
AN

A ﬁlﬂ OTA Elm
() ()

Figure 9.7: Example Technology Map

9.1.7 Standards-based Implementation

We need technologies to implement SDP architectures. In previous chapters we have de-
rived SDP architectures to be void of any technological influences. As aresult, these SDP ar-
chitectures are implementable using a variety of technologies. However, these technologies
must satisfy the other SDP requirements and implement SDP services, interfaces, applica-
tions, middleware and functions. We motivate the use of open standards-based technologies

for implementing the SDP.

By using open standards, SDP implementations remain consistent and interoperable. How-
ever, vendors may choose to implement the SDP using some proprietary technologies. If
so, vendors must implement at least two parts of the SDP using open standards: the top-
most north-facing service interface and bottommost south-facing service interface. The
north-facing interface represents the consumption interfaces of services exposed to cus-
tomers. Basic functionality exposed by these interfaces support application development
and resource provisioning. Hence, standardised north-facing interfaces promote portability

of applications and content across SDP implementations.

The SDP’s bottommost south-facing interface represents the client interface of services that
have access to telco network resources and capabilities. These resources and capabilities
include telco transport networks, OSS/BSS, databases and media gateways. These inter-
faces enable SDP services to invoke network functions independently of technologies and
distribution. Hence, standardised south-facing interfaces enable portability of SDP imple-
mentations across different telco networks. As a result, different vendor SDPs may be

consistently used across various telco networks.

A variety of technologies are available to implement the SDP, its service and interfaces. We

illustrate an example technology map, in Figure[9.7] showing available technology choices

147

Complexities Middleware Technologies
ASE/ROSE/TCAP | RPC | RMI | CORBA | SOAP | Internet (DNS, DHCP,..)

Distribution Vv Vv V4 Vv Vv Vv
Location Vv Vv V4 Vv Vv V4
Implementation Vv V4 Vv Vv Vv V4
Transaction Vv Vv

Synchronisation Vv V4 Vv

Quality of Service Vv

Scalability Vv Vv

Security Vv Vv

Fault Tolerance Vv

Table 9.1: Examples of Middleware Technologies for SDP Architectures

for the SDP. In the figure, the Unified Modelling Language (UML) [134] is used to de-
scribe and model the SDP services independent of technologies. The UML is converted
into various types of implementation neutral representations, such as Interface Definition
Language (IDL) [82] or WSDL. These representations are implemented using various tech-
nologies, such as C++, Java. Some representations are also implemented using complex

protocols, such as the SIP.

Many of the above technologies are incorporated into existing standardised telecom and
IT-based solutions, such as TINA, Parlay and the Open Mobile Alliance (OMA) [50] Ser-
vice Environment [51]]. The existing solutions are also included in newer standards such as
the IMS service layer. All these solutions provide standardised services that may be easily
incorporated into a SDP implementation. In addition, the above standards specify technolo-
gies for their implementations. For instance, diverse middleware technologies are used to
implement their services, applications and interfaces. We present a list of middleware tech-
nologies used by these standards in Table The table illustrates middleware technologies
and examples of the various complexities they abstract. A blank table entry indicates the

middleware does not abstract that complexity.

9.2 Architecture

Based on the SDP business model, reference model, definition and requirements, we de-
rive a SDP architecture. This architecture represents the SDP framework since it is highly
generic and extendable. Hence, it provides concepts and the structural foundation for other
SDP architectures to be defined. The architecture is defined using service, interface, layer,

domain and plane abstractions.

148

>
\
|
|
/
N\
|
|
J

Application | }_: |
Layer 1
= 0o
Service | | | |
Layer | E |
! |

|

Jip

20T T
|

U)

: Enterprise

Service Platform

End User
=
Subscriber

(G B0 aDg, 1! .

== :4 :4 53 :4 gg == 5;8 I

e | L NEENEET B8R
Y - R L __

Figure 9.8: SDP Framework Layers and Domains

In Figure we provide a simplified view of the SDP framework using layers and do-
mains. In this model we use four layers to depict the basic functionality contained within
the SDP. These four layers are generalisations of layers identified in the previous chap-
ters IN, TINA, Parlay, eTOM, SOA and IMS derived SDP architectures. The application
layer contains telco and external enterprise applications that access SDP services. The ser-
vice layer contains SDP services, with some exposing interfaces to external enterprises. The
function layer contains telco network functions that provide the underlying capabilities used
by some SDP services. The resource layer contains physical elements that provide a variety

of telco network functions.

In addition to layers, the model uses functional domains to distribute the layers and their
contents. The domains correspond to the business model entities and reference model en-
tities that benefit from interacting with the SDP. The end-user domain represents the con-
sumer of customer services. The subscriber domain is a special telco or external IT-using
enterprise that operates on behalf of the end-user. This enterprise provides the mechanisms
to enable end-users to subscribe, locate, consume and pay for customer services. The con-
nectivity provider domain is also a telco or external enterprise that provides the underlying
communication mechanisms required by end-users to access their customer services. The
converged network domain illustrates an integrated collection of networking resources and
capabilities. These networks include telco, IT and Internet networks. The service plat-
form domain represents the heart of the SDP, that is, it contains the collection of distributed
services with their interfaces. The OSS/BSS domain represents the telco management plat-
forms that manage the SDP and are reused by SDP services. The enterprise domain rep-
resents external IT-using enterprises that use SDP services. The enterprise domain may

include application developers, service brokers and media broadcasters.

To provide a fuller representation of the SDP framework we use Figure The figure
shows the SDP exposing numerous service interfaces to entities within its environment.
These service interfaces are managed within the appropriate layers. In the figure we de-
compose the SDP application and service layers, since they represent the core of the SDP.

The figure shows the SDP with three application and service layers. These are the simple,

149

(Simple Applications)

<—— Simple API

Simple Services

——————————— Intermediate API

C Intermediate Applications

Complex Applications

[Intermediate Services)

l

|
Complex Services j

%> Service Function API

Service Functions

%> Resource Function API

Complex API

Resource Functions

#> Protocol-based Interface

Physical Resources]

N

Figure 9.9: SDP and its Environment: Expressing the Full Layers of the SDP Framework

intermediate and complex application and service layers. The simple application layer con-
tains applications that use the simple service layer. These applications do not use the full
capabilities of the network since the simple services provide a highly abstracted view on
the available network resources and capabilities. The intermediate application layer con-
tains applications that use the intermediate service layer. The intermediate applications
use network functionality via the intermediate services, that abstract limited complexities
of the network resources. The complex application layer contains rich applications that
use the complex service layer. Complex services enable the full capabilities of the under-
lying network to be invoked by complex applications. Hence, complex services provide
limited abstractions of the underlying network resources and capabilities. In addition to
these application and service-oriented layers, the SDP framework decomposes the function
layer into service function and resource functions layers. The service function layer exposes
service-oriented capabilities to complex services, while the resource function layer provides

network specific capabilities to implement the higher service functions.

The figure shows each of the service layers exposing consumption interfaces or APIs. These
APIs are used by other layers. For instance, simple applications only have access to simple
services via the simple API. The intermediate service layer API is used by both intermediate
applications and simple services. Simple services use this API to fulfil requests from simple
applications. Also, the complex service layer API is used by both complex applications and
intermediate services. This complex API is used by intermediate services to fulfil requests
from intermediate applications and simple services. Within the service layers internal APIs
may also be defined by their services. These internal APIs include client and management

interfaces. However, we do not show these internal interfaces in the figure. Lower interfaces

150

Middleware
Plane

2
Apps o &
s %
o o
c| ©
Services 2 €
3|5
= ()
|

Functions =

Resources

Figure 9.10: SDP Framework Planes

are also shown in Figure [9.9 These interfaces include APIs for both service and resource
functions. In addition, a protocol-based interface is used to access the underlying converged

network resources and capabilities.

Service interfaces promote the standardisation of the SDP by implementing the reference
points of the SDP reference model, shown in Figure [9.3] However, service interfaces are
used between layers, across domains and within layers. Hence, reference points are also
implemented across layers and domains. This implies service interfaces are accessed and
used across these layers and domains. For example, the horizontal Rcg reference point is
implemented across the application layers and the end-user and subscriber domains. The
horizontal Rpg reference point is implemented across the function layers and between the
service platform and OSS/BSS domains. The vertical R45 and Rpg reference points are
implemented across the application, function and resource layers. In addition, these refer-
ence points are implemented across the enterprise and converged network domains. The
vertical Rrg reference point is implemented across the function and resource layers. Also,
the connectivity and converged network domains contribute to the implementation of this

reference point.

We further provide detail on the SDP framework by adding planes. Planes are used to ab-
stract service distribution across domains and the underlying technologies used to support
this distribution. In addition, planes abstract implementations, such that diverse service,
applications and functions may communicate via their interfaces. We illustrate the SDP
framework planes in Figure [9.10} In the figure, we use a single middleware plane to ab-
stract both distribution and technologies within the SDP. This plane may also contain man-
agement capabilities, such as services that administer the operation of each layer across the

appropriate domains.

151

9.2.1 Using the GSOA Building block

In the previous chapters we have identified and used the GSOA as a building block for
defining service platform architectures. In addition, we have shown the GSOA to be multi-
functional design pattern, that is, it elaborates reference points, layers and domains. In
addition, it provides abstractions to hide distribution complexities. Hence, to complete the
SDP framework we integrate multiple GSOAs into the SDP’s structure. The completed SDP
framework, using the GSOAs, are shown in Figure m

In the figure, GSOAs are used to manage the various SDP services and their interfaces. Also,
the GSOAs manage the diverse range of applications and converged network infrastructure.
Each layer of the SDP framework is structure as a GSOA, using the distribution plane as a
middleware bus. Hence, we have simple, intermediate and complex middleware that cuts
across various domains. In addition, the GSOA and its middleware is used to structure
the lower distributed function and resource layers. The figure illustrates the middleware
as segmented across the various domains. However, the segmented middleware integrates
using horizontal internal interfaces that support all communication across, SDP, IT-using

enterprises, end-users and other telcos.

The GSOA’s contain the various applications, services, functions and resources. In addition,
it manages access to these entities via their interfaces. As shown in Figure the entities
communicate independent of their layer and domain. For example, communication occurs
vertically and horizontally across multiple layers and multiple domains. This communi-
cation is supported by the various middleware. The GSOAs are also used to manage the
layer specific resources, such as service information. This is achieved by integrating infor-
mation repositories onto the middleware bus and exposing its functionality as distribution,

technology and implementation neutral service interfaces.

The SDP framework benefits from using the GSOA since it structures layers and abstracts
the functional distribution of these layers. In addition, it provides a manageable container
for layer specific applications, services, functions and resources. Also, like layers the
GSOAs abstract lower GSOAs. The SDP framework inherits GSOA properties, that is,
it is technology, implementation and distribution neutral. As a result, the SDP framework

may be implemented using various technologies that are standard-based.

152

End-User Domain Subscriber Domain Service Platform Domain Enterprise Domain

° H—O—ﬂ P—O—H 5 complexSepjice Middeware
' 7

[——
=

]
m]

| >~

11
e — b (oo) o [omim)
]|

1]
o

Service Funthion Middleware

——
- —
» L

———————— = = ,——————— e —
N (
| N) gy | 7
|
| f
| 7 11 |
o 1A | - o o
: }—IQ—I{ H—Q-:—{ Slmp\le Seivicg Middieware D> :
]| AN
| I]
|) ~ .
l I ' !
: f]| 1 10 L ~ |
I El H.Q_l.‘ W Intermediate ServiceDM\ddlewaDre H—Q—H g> |
i 7/ | : | N ~ |
i - | | ~ — — , ; |
Client App |— — _I T —>[Server App ~>[Service] |
|
i " b | | | i |
| |
| |
| |
| |
|
|
|
|

Service
Function

Resource Function Middleware

Resource
Function

Resource
Function

0
|
| Resource
i Function
./ 7
| ' 5
|
|

[5] [5] 5 vy
§ o }-r()—'-{ o ’—()—H Resouré:e Middleware o

|
|
| L | =
| : | — — —F JI/ : :\ ~
| Resource |> Resource | | Resource - _y.| Resource — Resource
\ —_— ~— s\ 4

________ -
Connectivity Provider Domain Converged Network Domain 0OSS/BSS Domain

Figure 9.11: Complete SDP Framework

9.3 Results

The SDP framework represents the visualisation of a collection of SDP concepts, princi-
ples and abstractions. The various concepts include a business model to encompass the
SDP’s business objectives, that is, creation, delivery and management of customer services
by various external IT-using enterprises. A corresponding reference model is also used to
ensure that all external access to the SDP is formalised. Also, the reference model ensures
SDP’s access to converged network resources and capabilities are also formalised. The SDP
framework, as presented in Figure satisfies SDP requirements and is based on the SDP
business and reference models. In addition, the framework is highly generic and may be ex-
tended, reduced or decomposed. However, any framework modification must adhere to the

SDP concepts and principles.

The SDP framework benefits from using GSOAs. The GSOAs ensure distribution, tech-
nology and implementation independence that is inherited by the framework. The GSOAs
are used across all layers and domains of the framework. As a result, the SDP framework
presents a consistent structure using GSOA abstractions, such as services, interfaces and
middleware. The GSOA middleware planes used in the SDP framework provide essential
mechanisms to manage the various SDP services, applications, functions and resources. In

addition, the middleware mechanisms may provide additional functionality that contribute

153

to the SDP framework.

The SDP framework is generic. To illustrate this property we map existing standards onto
the various layers, domains and GSOAs. We use Tuble[9.2]to illustrate an example mapping
of the IMS onto the SDP framework. In the table empty slots indicate the IMS does not
provide abstractions or standardised components to satisfy the SDP framework. Additional
mappings of both standardised and proprietary SDP architectures onto our SDP framework

are illustrated in Appendix[A]

9.4 Summary

In this chapter we glued together various concepts, principles and abstractions from previ-
ous chapters into the SDP and its framework. As a result, we defined the SDP and provided
a list of requirements. All requirements are void of any biases, such as technology or vendor.
These requirements included a business model to motivate the business case for the SDP.
The business model also showed the endless possibilities for business relationships between
SDP, telco and diverse external IT-using enterprises. We illustrated a generic reference
model that promotes standardised communication between the business entities. The stan-
dardisation across the reference model is achieved using the SDP services’ interfaces. We
have shown SDP services offering client, consumption and management interfaces. Also,
we have classified SDP service into building block and composite categories. To visualise
the various concepts and principles uncovered in the SDP requirements, we defined the
SDP framework. The framework consists of multiple application and service layers. These
layers form the core of the SDP. We showed the various forms of interfaces between the ap-
plication and service layers. These interfaces provide standardised communication required
within the SDP reference model. We used domains to distribute the SDP framework layers
and illustrate the distributed nature of the SDP. We incorporated a distribution plane to man-
age the complexities associated with distribution. To manage the collection of abstractions
within the SDP framework we used the GSOA. The GSOAs provided the container for lay-
ers, their applications, services and interfaces. In addition, the GSOAs provided the means
to manage distribution using middleware abstractions. We also showed the SDP framework
inheriting the distribution, technology and implementation neutral properties of the GSOA.
Thus, by reusing concepts, principles and abstractions from a wide range of standard-based

technologies we defined the SDP framework to promote SDP standardisation.

154

S[020301d QIEMI[PPIAL 20INOSY
MO PUE MDS | NVY PUB NSDS ‘NSDD S32IN0SY
IRl dIS dIS QIEMI[PPIAl UONOUN,] 20IN0SAY
" dDD IOd ADS d40Dd pue 4DDOIN ddd PUe ADSD-d SUOTOUN] 92IN0SAY
I9)owel(] pue JIS QIEMI[PPIJA UOTIOUN AJTAIIS
SSH pue 4TS “S4DSO suondun SJTAISS
I9)owel(] pue JIS dIS AIEMI[PPIA 2J1AIRS X3[dwo)
SV dIS pue NIDS
‘ASSINI ‘SDS $901A19g xo[dwo)
SV dIS pue JDSws3 d0 dIS sddy xorduro)
paseq gSH pue VOS ‘VEI0D ‘TINA STEMIPPIA 9OTAISS 9JBIPIULIAUL
SIDS SIDS SOOTAIOS 9JRTPAULIAIU]
ddy Aefreq ddy Aepreq sddy orerpaunoyuy
paseq-gSH pue VOS AIEMO[PPIIA 921AIS d[dwrg
SOOTAIOS GOM X Aefied $901AI0S d[dwrg
sddy x Aejreq sddy oidwrg
SToMION IOpIAOIg
osudiojuyg SS9/SSO wIoje[d Q0IAIS paSIaauo)) K)IATIOQUUOD) loquosqng | Ies() pug — surpwo(g [ssafin |

QINONIYOIY WIOJB[J AIOAI[(] 9JIAIOS OLIUAD)

Table 9.2: Mapping IMS onto the SDP Framework

155

Chapter 10

Proving the SDP Framework

To prove the concepts of the SDP framework we define an application that operates across
the SDP and provides a service to end-users. The application is created by an application
provider who is an IT-using enterprise. The application uses content provisioned by a me-
dia provider. The application is enhanced by a service provider to provision a service to
end-users. As a result, the service is used by end-users, who obtain access via their service
provider. Supporting the application provider, service provider, and end-users are the SDP
and its services. In addition, the telco supports all entities by providing transport connectiv-

ity and access to converged network capabilities.

We propose to implement a content delivering application that combines voice, video, pres-
ence and messaging services into one advanced service. We name this service Interactive
Personalised Tele-Vision (IPTV). The service aims to deliver real-time or on-demand tele-
vision content to end-users. In addition, IPTV enables end-users to use presence related

telephony and messaging while viewing their content.

To implement both SDP and IPTV service, we use the following approach. First, we de-
scribe the IPTV service requirements. Second, we define the SDP business and reference
models that support the IPTV service. Third, we determine services and interfaces required
to fulfil business relationships, reference points and IPTV functions. These services are
mapped onto the SDP framework GSOAs. Fourth, rather than rebuilding these services
and interfaces we reuse existing standard-based technologies to implement the SDP frame-
work GSOAs. Fifth, we detail interactions across the framework involving the IPTV service
and SDP services. Last, we show details of the implemented SDP and IPTV service on a

physical network.

156

IPTV Service IPTV Service

View TV
Guide

«uses»

«uses»

«uses» v v
Call N Get Buddy
Buddies Status
Message «uses»
Buddies

IPTV .

End-User

Record TV Get IPTV
Help

Figure 10.1: IPTV Use Cases

Register

Deregister

Check
Balance

IPTV End-User

Account
History

b) 0) () 0 G

Account

10.1 TPTYV Service Description

The IPTV service is described from the perspective of the end-users. Hence, we define use
cases describing interactions between end-users and the IPTV service. The IPTV use cases

are shown in Figure[I0.1] These use cases and their descriptions are:

Register: the end-user requests access to the IPTV service. End-users provide their details,

such as name, address and bank account details.

Deregister: registered end-users do not require access to the IPTV service. Also, end-users

are not billed for the IPTV service anymore.

Login: end-users access the IPTV service by providing usernames and passwords. Once

authenticated they are allowed to access the IPTV service.

Logout: end-users request deactivation of the IPTV service, however, they remain sub-

scribed to the service.

Check Account: an end-user requests their account details, such as account details or bal-

ance.
Account History: the end-user requests their entire account history.

Pay Account: end-users submit payment towards their IPTV account using various means,

such as inputting voucher numbers or credit card details.

Pay Per View: an end-user’s account is charged when viewing or recording special types

of television content.

157

View Television Guide: end-users request a list of available television content.

Play, Stop and Pause: end-users control the delivery of television content to their device.
The end-user may start, pause or stop television content. The end-user may also be

charged for requesting special content. Hence, we include the pay per view use case.

Record: end-users request the service to store live television content to view at a later
stage. This scenario may involve billing the end-user. Hence, we include the pay per

ViEW use case.

Get Buddy Status: the service obtains presence information for one or more of the end-
user’s friends. These friends are also registered to use the IPTV service. Examples of

presence status includes busy, online, away and do not disturb.
View Buddy Status: the end-user requests the status of one or more friends.

Invite Buddy: end-users invite one or more friends to watch television. Only friends that

have an available presence status may join.

Call Buddy Use: end-users initiate a call between themselves and their friends. These
calls may be normal voice calls or advanced multimedia calls. Only friends with an

available presence status may join the call.
Message Buddy: end-users send messages to their available friends.
Set My Status: end-users set their presence status.

Get IPTV Help: at any time the end-user may require help using the service. Hence, end-
users activate an interactive tutorial and follow its voice prompt to troubleshoot ser-

vice related problems.

10.2 Business Model

To show business entities involved in providing the IPTV service, we illustrate a specific
SDP business model in Figure[I0.2] This business model is derived from the generic SDP
business model, shown in Figure

The figure shows all SDP customers, that is, consumers, providers and brokers involved in
providing the IPTV service. Customers include an IPTV application provider, who creates
the application to deliver content from a content source. The application provider uses a
content broker to locate diverse content sources. The content sources are managed by media

providers. The IPTV application is enhanced by a service provider, to enable consumer

158

——BRe——— Service Content |
l_ Broker _l Broker
BRcs BRlap BTEF’
Service IPTV IPTV
Subscriber —BRcp— Service —BRp— App
Provider Provider
BRee
BR
BRee i BRee
BRcc BRcp
BRpp BRPP
IPTV Media
User Provider
BRcp BRpp
__‘ Telco (SDP and Connectivity) }—

Figure 10.2: SDP Business Model Supporting IPTV

access to an IPTV service. The service provider provisions the IPTV service to service
brokers. Service brokers enable consumers to locate the IPTV service. These consumers

include individual end-users or service subscribers, who act on behalf of many end-users.

The SDP business model uses all business relationship points to specify business objectives
shared between the various customers. For the SDP and IPTV service, the business relation-
ship points specify policies for the business entity interactions. Examples of these policies

include:

e [PTV application providers are allowed to access content provisioned by multiple

media providers.
e Media providers may register their content with multiple content brokers.

e IPTV end-users are allowed to subscribe for the IPTV service from service providers,

but not application providers.

e Service brokers are allowed to offer the IPTV service to both service subscribers and
end-users. However, service subscribers may not re-offer the service to other service

subscribers.

e The connectivity provider must provide the required QoS to stream content to the
IPTV end-user. If the appropriate QoS cannot be guaranteed the IPTV end-user must

be notified and provided with alternative means of streaming content.

159

IPTV App Service Service/
N . Content
Provider Provider
Brokers
|
Rrs
End-User
or —Rc SDP Ros— o9
’ BSS
Subscriber | |
RNS RDS
| |
Media
Transports Provider

Figure 10.3: SDP Reference Model for IPTV

10.3 Formalising Interactions

The SDP must support the various business relationships to deliver the IPTV service to
end-users. These relationships are implemented as numerous interactions between busi-
ness entities. Also, interactions are formalised to ensure consistency and interoperability
between the various consumers, providers and brokers. To determine these interactions we
derive a SDP reference model. The reference model is based on the generic SDP reference
model shown in Figure[9.3] The derived SDP reference model is shown in Figure[I0.3]

The reference model only shows reference points being used by the SDP to support the
IPTV service. In the reference model, the R g reference point is crucial for supporting
IPTV the application provider, service provider and brokers. Also, the Rpg reference point
is required to ensure management and delivery of content by the media provider. The Rpg
reference point is also required to enable IPTV end-user access to their billing details and to
be billed for using the service. The Ry g reference point is required, such that the SDP uses
converged network capabilities to deliver the IPTV service and content to end-users. The

Rcg reference point enables the SDP to communicate with the IPTV end-user, if required.

To specify these interactions we formalise them as interfaces that are exposed by SDP ser-
vices. In addition, services implementing interfaces contribute logic to satisfy the business
relationship policies. To determine these interfaces and associated services we use the SDP

framework.

10.4 Services, Interfaces and SDP Framework

For the IPTV service, we use the SDP as the IPTV service provider, service broker and con-

tent broker. Hence, SDP service interfaces are required to support these roles and satisfy the

160

associated business relationship policies. However, the SDP must also provide diverse ser-
vice interfaces for the external IPTV application provider and media provider. These service

interfaces aid in IPTV application development and content management respectively.

To uncover the required SDP services and interfaces, we define the use cases shown in
Figure The use cases illustrate functions required by the SDP to perform service
provider, service broker and content broker roles. In addition, the use cases show functions
provided by the SDP to satisfy external application and media providers. The use cases and

their descriptions are:

Set User Presence: the IPTV application changes end-user presence information stored by
the SDP.

Get User Presence: the IPTV application requests end-user presence information from the
SDP.

Setup Call: the IPTV application requests a normal or multiparty voice/video call to be

setup between end-users.
Send Message: the IPTV application requests a message be sent to an end-user.

Find Content: the IPTV application requests a list of specific content from content broker,

who is the SDP. The application may query details on content contained in the list.

Deliver Content: the IPTV application requests the delivery of content from a media source

to end-users. The content includes audio, video and data.

Register Content: the media provider application registers itself as a content provider with
the SDP (content broker). In addition, the application provides information about
its available content, such as location, format, description, time of availability and

length.

Manage Content: the media provider application updates its available content informa-
tion that has been registered with the SDP. The media provider application may also

remove content from its registration or add new content.

Register Services: the IPTV service provider, who is also the SDP, uses an application to

register its IPTV service, such that end-users can locate, register and use it.

Manage Subscribers: the IPTV service provider application requests registration of end-
users to access and use the IPTV service. The application may also deregister end-

users and verify login information.

161

Service Delivery Platform

Set User
Presence

Manage
Subscribers

Manage
Accounts

Get User
Presence

Service Provider
Role

IPTV Service
Provider

Send

Message Service

Find Me
Services

Service Broker

IPTV App Rl

Provider IPTV End-User/

Service Subscriber
Register

Content

]
] o

Manage
Content

Deliver
Content

Content Broker Role Media Provider

Figure 10.4: SDP Specific Use Cases

Manage Accounts: the IPTV service provider application obtains information about end-
users billable accounts. The application may also modify these accounts, such as

billing end-users for delivery of special content.

Find Me Services: the end-user application requests the SDP, who is also a service bro-
ker, to obtain a list of available services, such as the IPTV service. The end-user

application also obtains details on the available services in the list.

Based on these use cases and the previous SDP reference model, business model and IPTV

use cases, we define the SDP to provide the following services:

presence service: provides an interface that manages end-users presence information.

call service: provides and interface that enables application to invoke classical and en-

hanced telephony services.
messaging service: enables messaging functions to be performed on its interface.

stream service: enables applications to invoke its interface, so as to delivery content from

a media source to end-users.

content management service: exposes an interface for applications to register, manage

and locate content.

162

End-User Domain Subscriber Domain Service Platform Domain Enterprise Domain
________ N ST /'__________________________\ (gt N
(End-User [| IPTV Service Ll IPTV. Media]
| IPTV App . - Provider App 1T Provider App | { Provider App) |
|
¢ N W o |
: [Simple Service Middleware T |
H o | 0 1 o I
|)| |)| 1
I L | | |
i L , | |
I L | Lo |
I Lo | | |
I = | P |
! | | Lot |
| HH I Intermediate Service Middleware |
! B I |
i u i |
| Fo h—oT{ Complex Service Middleware H-o-Y |
I L , o
)
| | \ : N __ >
| | N e e \
i HH H—o—‘-{ Service Function Middleware h'O'H I
i .
i Lo | Lo |
| I ! ol |
| Service - | 1 [Senice | [Service Service | Service || | Service Service
i Function - 177" Function | | Function Function Function | 1" Function Function | |
| | e F———————F——__ZS= F ——/ | i |
! | ! W = = smooy == | |
| o4 h—()—H Resource Function Middleware |
I o o T |
)	o)				
Resource		[Resource]	Resource	Resource	y [[Resouce] Resource
Function 1 Functon	-} 1] Functon Functon [***}"[*[Functon Function				
:		Lo] l !			
Resource Middleware Fof					
: D - - I					
o . » I i					
=1 == ==					
NC__T===__ \ooo==- N NCTTo. __ o—oo_
Connectivity Provider Domain Converged Network Domain 0SS/BSS Domain

Figure 10.5: SDP Framework with Simple Services Enabling IPTV

service management service: provides an interface to enable end-user applications to lo-

cate the IPTV service offered by a service provider.

subscription service: provides an interface for the IPTV service provider application to

register, deregister and verify login details of end-users.

billing service: its interface abstracts access to telco OSS/BSS functionality, such as charg-

ing end-users and providing account management.

We present the identified SDP services and their interfaces within the SDP framework.
This SDP framework is shown in Figure In the figure, we contain these services in
the simple GSOA. This enables IPTV and media provider applications to use converged
network capabilities at a high level of abstraction. As a result, the providers do not require

extensive telco network knowledge.

To complete the framework we require intermediate and complex services. Also, lower
layer functions must be present with their associated physical resources. However, rather
than building all GSOAs and physical resources, we reuse existing technologies. These
technologies must provide open standard-based service interfaces that are applied across all
GSOA layers of the SDP framework.

163

10.5 Mapping Standard-based Technologies

To implement the SDP framework and provide the IPTV service, we use the standardised
IMS and Parlay set of technologies. We use both Parlay and Parlay X APIs to provide
service interfaces for the service layer GSOAs. The IMS functional entities provide lower
layer abstractions of existing physical network resources. These network resources being
the Gateway GPRS Support Nodes (GGSN), media gateways, signaling gateways, media
stores and existing telco billing systems. The SDP framework with mappings of Parlay,
Parlay X and IMS are shown in Figure[10.6]

The IMS functional entities are used to implement both resource function GSOA and ser-
vice function GSOA. For the resource functions the Policy Decision Function (PDF), Me-
dia Gateway Controller Function (MGCF), Breakout Gateway Function and Media Re-
source Function Processor (MRFP) are used. In the OSS/BSS domain, the IMS provides
the Charging Gateway Function (CGF). For the service functions the IMS provides the
proxy, interrogating and serving Call Session Control Functions (CSCFs) and Home Sub-
scriber Server (HSS). The IMS also provides end-user, media processing and OSS/BSS
service functions, such as the SIP user equipment (UE), Media Resource Function Con-
troller (MRFC) and Charging/Event Collection Function (CCF/ECF) respectively. The IMS
service functions invoke resource functions using protocols, such as SIP and Diameter [42].
These protocols hide limited distribution complexities. Hence, the IMS protocols provide

implementations of the resource and service function GSOA middleware planes.

The IMS also contributes SIP application servers to the realisation of the complex GSOA.
However, we use the Parlay SCS to encapsulate these SIP application servers. Thus, the
Parlay SCS implements the complex GSOA. The intermediate GSOA is implemented using
the Parlay SCFs. The SCFs represent services that expose their capabilities using APIs.
Both SCS and SCFs are implemented using CORBA-based middleware. CORBA abstracts
numerous distribution complexities using standard-based middleware services. Hence, it

provides a rich implementation for the intermediate and complex GSOA middleware planes.

To abstract the Parlay-based intermediate GSOA, the Parlay X APIs are used. These APIs
are implemented as web services. Hence, the simple GSOA is implemented using web
service technologies. By using web services, the simple GSOA’s middleware plane is im-
plemented as an ESB. The ESB abstracts distribution complexities associated with the web
services. Using the web services across the ESB are various web-based applications, such

as the IPTV application and media provider application.

164

End-User Domain Subscriber Domain Service Platform Domain Enterprise Domain
P ~ e
)L
)|
1|

End-User
IPTV App

\ IPTV Service y /L
Ll

Provider App

ESB-based Middleware

Content
: Presence
Delivery,

Protocol-based Middleware

|
|
| SGSN/ Billing
{ GGSN System

Connectivity Provider Domain Converged Network Domain 0SS/BSS Domain

Billing
System

Figure 10.6: Using Parlay and IMS Standards to implement a SDP

10.5.1 Alternatives

In Parlay X, web services may be used to directly access network resources and capabili-
ties [135)]. Thus, as an alternative the SDP framework may use Parlay X to access service
functions rather than SCFs. In this alternative the intermediate and complex GSOA layers
are collapsed into the simple service GSOA. Also, we may completely remove Parlay X
as the simple GSOA layer. As a substitute we may use a Parlay-based intermediate GSOA
layer to promote application creation and exposure of network abstractions to external en-

terprises.

Similarly to manipulating GSOA layers, we may alter SDP framework domains. For in-
stance, the service subscriber domain may be removed if the end-user is within his/her home
IMS network. Hence, the P-CSCF and resources are removed and not accessed from the
customer domain. Also, a telco may assume the access provider role for end-users. In addi-
tion, the telco may provide the OSS/BSS capabilities to bill the end-users for accessing and
consuming services. The telco may also provide IMS functions and network resources that
contributes to the converged network domain. As a result, the access provider, converged

network and OSS/BSS domains may merge into a single telco domain.

165

Mapping of other standardised technologies to the SDP framework may require manipula-
tion of GSOA layers and distributed domains. As a result, specific SDP architectures are
created based on these manipulations. Though incorporating technologies, these derived ar-

chitectures inherit the generic concepts, principles and abstractions of the SDP framework.

10.6 SDP and IPTYV Service Implementation

As shown in Figure we identify existing Parlay X web services and Parlay SCFs that
support the development of the IPTV service. We also provide recommendations for new

web services, SCFs and SCS logic to support the IPTV service.

A collection of Parlay X web services are identified to provide the IPTV functions. These

web services also abstract the necessary Parlay SCFs. These web services are the:

e payment [136]] web service that simplifies the charging [13/] SCF.

e account management [138]] web service that simplifies the account management [[139]]
SCF.

e short message [140] web service that simplifies the user interaction [141] SCF.
e audio call [100] web service that also simplifies the user interaction SCF.

3rd party call [99] web service that simplifies the multi-party call control [142] SCF;

presence [143] web service that simplifies the presence and availability SCF [[144]].

No suitable web services are defined to provide subscription management, service manage-
ment, content management and content delivery functions needed by the SDP and IPTV
service. However, Parlay defines a framework SCF [90] that provides some subscription
and service management functions. Also, Parlay uses a data session control SCF [1435] to
manage data sessions, that may be modified to stream content. Hence, we identify new sub-
scription management and service management web services that abstract the framework
SCF. We also define a content delivery web service to abstract the modified data session
control SCF.

Parlay defines a policy management SCF [[146] that is used by the telco or external enter-
prise to define and enforce business rules and contracts. Policies may be defined to regulate
SCF usage. Hence, policies control content delivery, locating of services/content, making

calls, sending messages and service billing. Hence, we motivate the use of the policy SCF

166

to manage business relationships between the SDP, IPTV application provider and media
provider. However, no Parlay X web service is defined to abstract the policy management
SCF. This policy management web service enables application and media providers to de-
fine their own policies or view telco defined policies. As a result, we identify the policy
management web service to be added to the SDP, to fulfil its requirements and IPTV func-

tions.

ESB middleware is used to abstract the distribution of the Parlay X web services. How-
ever, ESB solutions include both standardised and proprietary technologies. Hence, we
only incorporate standard-based technologies that are used in ESBs, to hide web service
distribution complexities. These included basic web services technologies and protocols,
such as XML, SOAP and HTTP. As a result, the Parlay X web services use a limited ESB

that does not provide additional middleware functionality.

The Parlay SCS, implementing the complex GSOA, enables conversion between Parlay SCF
invocations and protocols used to communicate with the IMS functional entities. However,
there is a lack of standardisation on the SCS API and the conversion of most SCF invoca-
tions to SIP or Diameter protocols. As a result, we add new methods to the limited SCS API
and provide a proprietary implementation. In addition, we create a CORBA-based network
simulator that hides lower IMS functions and facilitates communication with SCS on its
API. The simulator contains distributed SCS clients. These clients simulate network events

and communicate with the Parlay SCS across the various SDP framework domains.

10.6.1 Interactions via APIs

The interactions between the standard-based web services, SCFs and SCS APIs follow those
defined in the Parlay X, Parlay and IMS standards. Examples of these interactions are shown

in Appendix|B|

Defining the subscription and policy management web service APIs, by abstracting the
framework SCF and policy SCF APIs, is a complex task. As a result, we provide rec-
ommendations and example sequence diagrams showing these web services and SCFs in
Appendix [B| In the appendix we also provide recommendations for the content manage-
ment web service API and associated media management SCF API. In addition, we provide
example sequence diagrams showing their interactions. In Appendix [B| we provide rec-
ommendations and sequence diagrams for an extended SCS that manages SIP conversions

required to satisfy most SCF invocations.

In this section we show, as an example, interactions between the new content delivery web

167

service and modified data session control SCF. We also show interactions between SCS and

SCS clients that simulate data session network events.

In Figure[I0.7)we show the end-user initiating the delivery of television content to his/her

terminal. The interactions between the applications, web service and SCF using their APIs

are as follows:

10.

11.

12.

13.

14.

15.

. The end-user requests to watch a television programme from the IPTV service provider.

The service provider requests the IPTV application provider to start the television

programme on the end-user device.

. The IPTV application provider invokes the newly defined deliver content web service

to start a data session between the end-user and media source.
The web service creates a data session callback object.

The web service invokes the data session control SCF using this new method, to create

a abstract representation of the data session.
The SCEF creates the data session object.

The web service sets the charge plan for this session, based on the policies defined

for accessing and delivering the required content.

. The web service requires notification of any changes to the data session.

. The web service requests the connection of the end-user (client) to the data session.

The data session object requests the SCS to create the physical data session in the
converged network and connect the end-user. The web service is informed that the

client is being connected.

The web service requests the connection of the media source (server) to the data

session.

The data session object requests the SCS to connect the media source to the physical

data session. The web service is informed that the server is being connected.
Once both client and server are connected, the SCS informs the data session object.

The data session object informs the web service callback object that a successful data

session is created.

The callback object informs the web service that a television programme is being

delivered to the end-user.

168

asuods:

J]

E (1on1es/UBI0) SoYOBUL0D EI |
I

JBuipuad,

(19n18s) bayosuuoo "z|

:- T bupued,

(Jansaspual|0) mumomccoo vl
1

Junjay,

a1 premio), ‘g1 |
|
|
|
|
|
|
|

asuodsayuolssague)s

(yua110) bayyoauuod gl

Junja,

1
bayuoissagejeqgasiniadns:

]
I
I
|
1
1
I
1
1
1
“
(ua10) bayyosuuoo ' !
\
8
1

1
ue|gebieyguoissageleqies “/

uoissagpjeald ‘g
|

]

MU

I /]

}senbayuoissague)ls ‘¢

jsonbayA pels ' |

,
|
|
|
WE‘ asuodsoyAL1elS b

ToBEUB[ONU0D
UoIssaseeqdr40S 0Sa

TORSSeSerEa
VarpoT ddy

TOpIACId SOINIBS ALdI

ddy ALdl JosN-puld

Figure 10.7: Starting a Data Session for Streaming Content

In Figure [[0.8] we show the end-user pausing the delivery of television content to his/her

terminal. The interactions between the applications, web service and SCF using their APIs

are as follows:

1. The end-user requests the IPTV service provider to pause the current television pro-

gramme.

169

[2]
2 R r _____ I S
o I
] I 3
14 | 14
] | 3]
@ 1 @
< =] c
(8 ;
S <]
(8] c (&)
] ol]
® Q,)
- =1 =]
© ! ©
o I -1
I .
w ©
N y
e [e
& 1
il 1
0
A ! Q
@ | 14
@ 1 8
al 1
! g
! o
! (8]
1
o 1 g
] 7]
o ! «
o ! o
@ o N
c ! ™~
[o SI
= i or~"— """~ ——- 21 - ----|___ oo
E @ < =
g b Eal [
o > | @
9 ® H c
4 Q H o
i N a
< < | «
1 <
! he)
!)
1
3 ! 5
g i Ea
§ .
E vl/ ©
g
4 |-———--- fommmm
& 1
2 |
(2] -
|
2| 2 @
% E S
al = o
5] al
['4 2
c 21
S x,
2 1
@ 2
[} ?
» »
] 2!
] 01
3 @
© £
Q Bl
© Qi
I
g g
=] <
o Q9
9] a
14 ol
L ol
[t .
@ >
,_ a '5\
3 3 @l
3| Q EX
& o a!
gl
88 |- =
2|
& 3 S
o »
2|3 gl
a S S
v 7]
> oyl
2 i
@ > |
7] =
= ©
© g|
5 Q. m:
= 3
; i
3|
3
=]
o
2
i

Figure 10.8: Pausing a Data Session Streaming Content

. The service provider requests the IPTV application provider to pause the current tele-

vision programme being delivered to the end-user device.

. The IPTV application provider invokes the newly defined deliver content web service

to pause the data session between the end-user and media source.

. The web service invokes the data session object using this new method, to pause the

data session.

. The data session object requests the SCS to pause the data session in the network.

170

Once the data session is paused, the SCS informs the data session object.
The data session object informs the web service on its callback object.

The callback object informs the web service of the successful pause request. The

response is forwarded to the various applications and end-user.

In Figure[10.9 we show the end-user resuming and stopping the delivery of television con-

tent to his/her terminal. The interactions between the applications, web service and SCF

using their APIs are as follows:

1.

10.

11.

12.

The end-user requests the IPTV service provider to resume the paused television pro-

gramme.

The service provider requests the IPTV application provider to resume the currently

paused television programme being delivered to the end-user device.

The IPTV application provider invokes the newly defined deliver content web service

to resume the data session between the end-user and media source.

The web service invokes the data session object using this new method, to resume the

paused data session.

The data session object requests the SCS to resume the data session in the network.
Once the data session is resumed, the SCS informs the data session object.

The data session object informs the web service on its callback object.

The callback object informs the web service of the successful resume request. The

response is forwarded to the various applications and end-user.

The end-user requests the IPTV service provider to stop the current television pro-

gramme.

The service provider requests the IPTV application provider to stop the current tele-

vision programme being delivered to the end-user device.

The IPTV application provider invokes the deliver content web service to stop the

data session between the end-user and media source.

The web service invokes the data session object using its existing release method, to
stop the data session. The web service may also delete its callback object, since it is

no longer being used.

171

7
B e e
al

6. resumeConnecRes|
13. release

5. resumeConnecReq
pending

DSC SCF:IpD:

resumeConnecRes

4. resumeQonnecReq
T
|
|
|
|
|
|
irn
3
|
|
|
|
7.
ease

=
8."
K= -

12. rel

‘forward response

1

DC

resumeSessionResponse
11. endSessionRequest

I

I
o
Fl
=4
@
14
c
L2
»
@
@
/]
]
£
H
@
o
2
[x)

2. resumeTvRequest
resumeTvResponse

IPTV Service Provider
App
I
I
I
I
I
I}
T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ponse

10. stopTvResquest

1. resumeTvRequest
resumeTvRes;

i

End-User IPTV A

Figure 10.9: Resuming and Stopping a Data Session Streaming Content

13. The data session object requests the SCS to stop the data session in the network and

release all used resources.

In Figure[10.10|we show the SCS and data session SCS client interactions. The data session
SCS client forms part of our network simulator that abstracts lower network events and

interactions. The interactions between SCS and data session SCS client APIs are as follows:

1. The SCS requests the simulator to create a data session and attached a client to the

session.

2. The simulator simulates the session setup and the attachment of a client using its

address.

172

10.

11.

12.

13.

14.

N N
scs SCS Client (Data Session,

1 1. connecReq (client) i
I I

2. Simulate: create
PDP context and

3. connecRes (client) connect to client

e
4. connecReq (server)
5. Simulate: create
connection to server
6. connecRes (Server)
e ,,,,,,,,,,,,,,,,,,,,,,,,,
7. pauseConnecReq
e ,,,,,,,,,,,,,,,,,,,,,,,,,

10. resumeConnecReq

11. Simulate: resume

data session
12. resumeConnecRes

13. relase

14. Simulate: release
data session resources

> 8. Simulate: pause
9. pauseConnecRes data session

Figure 10.10: Simulating Network Data Session Manipulation

The simulator informs the SCS of the successful creation of a data session and at-

tached client.

The SCS requests the simulator to attach a server to an existing data session.
The simulator simulates the attachment of the server using its address.

The simulator informs the SCS of the successful attachment of a server.

The SCS requests the simulator to pause an existing data session, such that both client

and server cannot communicate across the session.

. The simulator simulates the session being paused.

The simulator informs the SCS that the data session is paused.

The SCS requests the simulator to resume and existing data session that has been

paused.

The simulator simulates the resuming of a session, such that client and server may

communicate.
The simulator informs the SCS that the data session has been resumed.
The SCS requests the simulator to stop and release an existing data session.

The simulator simulates the disconnection of the client and server from the data ses-

sion and the release of network resources used by the data session.

173

Web Parlay X
Gateway
d
IPTV Application
Provider Domain
Q @? Telco Service
u Platform Domain
‘ IP/MPLS Core
Converged Network y
IPTV Client
Application
> Service Subscriber g
Domain u
% I
S *5
& Connectivity

Provider Doman

IPTV Service
Customer Doman

IPTV Service
Provider Domain

(Y

Converged
Network and
0Ss/BSS
Domains

Call Control
Simulator

0SS/BSS
Simulator

Figure 10.11: Deployment of SDP Implementation

10.6.2 Building, Deployment and Simulation

To implement applications and Parlay X web service we use the Java [47] programming
language. Also, we use Java related products, such as the Netbeans [[147] integrated devel-
opment environment (IDE) to manage coding and Sun application server [[148] to house the
Parlay X web services, IPTV service provider application and IPTV provider application.
The Java programming language provides an implementation of CORBA. Hence, the Parlay

SCFs, SCS and network simulator (SCS clients) implementation is also Java-based.

The application, web service, SCF, SCS and SCS client software is implemented and de-
ployed in the Wits University convergence laboratory [149]. The laboratory provides a
diverse networking infrastructure to support the SDP and IPTV service software imple-
mentation. The software is distributed across the laboratories network equipment. This
distribution is illustrated in the network diagram shown in Figure

The diagram shows the division of the network, equipment and software across the SDP
framework domains. We show the converged network supporting an IP-based transport
network. Also, the network diagram shows various servers containing the SCS clients.
These clients simulate OSS/BSS, call control, data session and IVR functionality. We use

multiple web servers to host the IPTV service provider application, application provider

174

Client or Server IP Address Machine Name Software
CORBA Naming Ser- | 192.168.40.2 Zion - Windows Server | Java Runtime Environ-
vice ment (JRE)
Parlay Gateway | 192.168.40.2 Zion - Windows Server | JRE
(SCF/SCS)
Parlay X Gateway | 192.168.40.3 Matrix - Windows | Java Application Server using
(Web Services) Server JRE
Network Simulators 192.168.40.4 Neo - Windows Server | JRE
Service Provider Appli- | 192.168.40.5 Trinity - Windows | Java Application Server using
cation Server JRE
Application Provider | 192.168.40.6 Agent Smith - Win- | Java Application Server using
Application dows Server JRE
End-User Application 192.168.40.7 Morpheus - Windows | JRE

Desktop

Table 10.1: SDP Deployment

application and Parlay X gateway. The Parlay gateway is contained within an application
server. In addition, the diagram shows the end-users with fixed and mobile connectivity to

a service subscriber.

We detail the equipment, their contained software and network addresses in Table [[0.1]
However, additional details on the SDP and IPTV service implementation and deployment
is given in Appendix[C} This appendix describes lessons learned using web services and
CORBA for the SDP.

10.7 Results

The SDP implementation satisfies the business model and business relationship points. The
SDP performs the service provider, service broker and content broker roles. The SDP takes
on multiple roles since it uses its abundant services to easily satisfy these responsibilities
and the associated business relationships. Also, by performing these roles the SDP remains
the locus of control in the business model. For instance, the SDP manages external access
to its services and therefore the converged network resources and capabilities. As a result,
the SDP defines policies that manage business relationships with the external enterprises.

Also, the SDP ensures adherence to these policies.

The SDP implementation uses technologies to realise the framework’s layered and domain
distributed GSOAs. These technologies include Parlay X web services, Parlay SCFs and

IMS functional entities. The implemented GSOAs consistently map to reference points

175

of the SDP reference model. The reference points promote standardised interactions be-
tween SDP, telco, end-users and external enterprised. However, to fully implement refer-
ence points some Parlay X and Parlay APIs were modified. In addition, some new interfaces

were identified. Thus, the SDP implementation realises reference points by:

e using existing standard-based interfaces to implement a GSOA service interfaces;

e modifying existing standard-based interfaces to provide the required level of abstrac-

tion when implementing GSOA service interfaces; and

e creating new interfaces to implement GSOA service interfaces and promoting their

standardisation.

The SDP implementation used all framework GSOA layers and distributed domains. How-
ever, the choice of technologies enables us to create alternative SDP architectures by col-
lapsing layers or joining domains. For example, using Parlay X web services to overlap
the intermediate and complex GSOA layers. The modification of the SDP framework into
specific architectures illustrates its versatility. In addition, derived architectures retain the

framework’s concepts, principles and abstractions.

By implementing the SDP and IPTV application using Parlay X, Parlay and IMS, we have
evaluated their use for standardising the SDP and providing various service interfaces. We
illustrated many gaps within these technologies interfaces for the SDP. Hence, additional
specification is required to ensure a complete standards-based SDP using Parlay X, Parlay
and IMS. However, we may evaluate other technologies by mapping their standard-based
interfaces to the framework’s GSOAs service interfaces and defining an application that

makes full use of these interfaces.

Therefore, the SDP framework provides a technology neutral foundation of concepts and
abstractions that enables the creation of SDP architectures. These architectures are imple-
mentable using a variety of standard-based technologies that provide open service inter-
faces. In addition, the framework enables the evaluation of the technologies interfaces for

a standards-based SDP implementation.

176

10.8 Summary

In this chapter we defined an SDP framework implementation that supports a IPTV service.
We defined the requirements for the IPTV service using various use cases. The SDP im-
plementation was based on a business model that defined various business entities, relation-
ships and policies to support the IPTV service. A reference model was also used to identify
reference points that the SDP implementation must formalise and implement. These refer-
ence points are elaborated as GSOAs contained in our SDP framework. We also used use
cases to identify services that the GSOAs must provide to implement the reference points.
The GSOAs were mapped to standard-based technologies. These technologies were the web
services based Parlay X, CORBA-based Parlay and SIP-based IMS. These technologies pro-
vided implementations for the GSOAs middleware planes. Each technology provided open
standard-based interfaces that mapped to GSOA service interfaces. However, we showed
that these interfaces did not completely support the IPTV service and therefore did not aid in
fulfilling business relationships and implementing reference points. As a result, we defined
new web services and SCF interfaces. Also, we modified existing SCF interfaces to provide
the required level of abstraction needed to support the IPTV service. We also implemented
our own network simulator to manage Parlay and IMS interworking, since their interactions
are not fully standardised. The SDP and IPTV service implementation was deployed on a
physical network. The implementation proved the SDP framework concepts by showing
the benefits of using the technology, implementation and distribution neutral framework to

promote SDP standardisation.

177

Chapter 11

Contribution of our SDP Framework

This work set out describing the current trend of convergence between telco and IT-based
enterprise networks. A major benefit of telecom-IT convergence is the development of a
IT-based service platform that supports development, delivery and management of diverse
services across telco and enterprise infrastructures. Current service platforms that support
telecom-IT convergence are limited and based on proprietary technologies. In addition,
the service platforms provide limited abstractions to hide complexities associated with con-
vergence. We used the SDP concept to model a service platform framework that provides
numerous abstractions and promotes SDP standardisation. The SDP framework was defined
from different perspectives on standardised technologies, that are used in both telco and IT

networks.

11.1 Summary of Results

From all perspectives we uncovered the concept of separation between service platforms and
network functions. This separation ensured network intelligence is used independently of
underlying network technologies. Also, the use of open standards for both service platforms

and network functions maintain this separation.

We also uncovered numerous abstractions from all the perspectives. These include busi-
ness models that justify external enterprise access to the SDP. By decomposing the business
models we uncovered reference models with reference points. Reference points promote
standardised interactions between the SDP and external enterprises, customers and the un-

derlying network.

We found service abstractions to expose interfaces to implement reference points. Service

interfaces expose diverse functionality to entities, while services implement logic to satisfy

178

their interfaces. Service interfaces are technology, implementation and distribution neutral.
We determined that these interface properties enabled diverse application implementations

to access services.

Services and their interfaces are modeled into horizontal layers that are distributed across
various domains. We found multiple layers are defined to structure services, based on
their level of abstraction. Also, each layer exposes their service interfaces to higher lay-
ers. Hence, layers access each others functions by using their service interfaces. We also
determined layers that expose their service interfaces to external enterprises represent points
of integration between telco and IT-based infrastructures. This promotes standards-based

telecom-IT convergence.

Another key abstraction found is the middleware plane that hides the distribution of layers
and their services. The middleware plane abstracts numerous complexities associated with
distribution, such as diverse software implementations, heterogenous computing platforms
and unreliable communication links. We found that the middleware plane provides a wealth
of services that are also standardised via their interfaces. These middleware services are

used to support the operation and management of SDP services.

From the enterprise perspective we found a technology neutral container that embodies all
the concepts and abstractions we uncovered. This container is the Generic Service Ori-
ented Architecture (GSOA). From the converged perspective we used the GSOA to define
a SDP architecture void of technology, implementation and distribution. The SDP architec-
ture used GSOAs to implement reference points. Also, the GSOAs abstracted each other
since they are horizontally layered and accessible via their service interfaces. The GSOA

middleware planes abstracted the various distribution complexities.

We defined the SDP framework to represent a generic and extendable SDP architecture.
The SDP framework is based on a business model and reference model, showing business
relationships and reference points between SDP, telco, customers and external IT-using en-
terprises. To realise business relationships and reference points, the framework integrated
multiple GSOAs. The framework used three GSOAs to model varying levels of services and
their interfaces. In addition, we used GSOAs to model lower layer network functions and
resources. Domains were used to distribute the framework GSOASs across customer, telco
and enterprise areas. These domains related to the entities defined in the SDP business and
reference models. However, the framework used the GSOA middleware planes to provide a

bus-like abstraction, to hide distribution complexities.

We implemented the SDP framework to support an application that delivered content to end-

users. The implementation was based on mapping technologies, with open standard-based

179

service interfaces, to the GSOAs. In addition, we implemented the GSOA middleware
planes using standard-based technologies, such as CORBA. To fully support the applica-
tion and SDP we motivated the standardisation of new service interfaces. By mapping
the technologies we showed how the SDP framework layers and domains may be altered to
accommodate specific service interfaces. These modifications produced specific SDP archi-
tectures that inherited and maintained the framework concepts. This showed the versatility
of the SDP framework.

11.2 Conclusion

This work contributes a way of thinking about the SDP, such that network and telecom-IT
convergence complexities are simplified. This way of thinking is captured in the SDP frame-
work. The framework represents generalised concepts extracted from many SDP perspec-
tives, found in telecom, IT and Internet standards. The various SDP concepts are structured
as abstractions. The SDP framework contains various layers of abstractions that are mod-

eled as technology, implementation and distribution neutral building blocks called GSOAs.

The framework satisfied its objective to promote SDP standardisation. This is achieved by
applying the framework to create technology, distribution and implementation independent
SDP architectures. Also, the framework motivated the use of standard-based technologies
with open interfaces to implement SDP architectures. By using standard-based technolo-
gies, the SDP provided open access to diverse IT-using enterprises and their applications.
Standard-based technologies and interfaces enabled the SDP to consistently access con-
verged network capabilities, including customer devices. Also, being standard-based en-

sured interoperability between various SDP implementations.

We proved the framework concepts by implementing a SDP using specific technologies
with standard-based service interfaces. For the implementation we mapped existing service
interfaces to most of the SDP reference points. However, additional standard-based ser-
vice interfaces were required to implement the remaining reference points. The absence of
standards for these SDP reference points illustrates the need and context for new standards
to be developed. As a result, we created new interfaces to fully support the SDP and im-
plement remaining reference points. Both existing and new service interfaces satisfied all
reference points and therefore promoted SDP standardisation. Hence, the framework en-
abled us to evaluate standardised technologies and their service interfaces for use in a SDP
implementation. In addition, the framework identified the need for new standard-based ser-
vice interfaces to be developed and used in SDP implementations. The framework may also

be used to test whether vendor solutions adequately implement the required SDP reference

180

Business Viewpoint

Domain Models,

Functional Reference Model,
Viewpoint Use Cases,
SDL,
| Robustness, [
Sequence
Service Oriented and
Viewpoint Component
Diagrams
Information
Oriented Viewpoint
Defi
efine I I
| | 3
| 1 @
a
Resource Oriented S
Viewpoint Q
P Class and ~
Deployment
| Diagrams,
UML Profiles
Technology
Viewpoint
Develop
Implementation SR, ReiEs,
ple " Switches, Access —
Viewpoint . h
Points, Terminals
Deploy

Figure 11.1: Example SDP Development Process using Viewpoints

points.

Therefore, the SDP framework provides a significant contribution towards full SDP stan-

dardisation.

11.3 Future Work

Based on the development of the SDP framework and proof of concept we recommend the

following future work.

11.3.1 Development Process

We recommend the creation of a SDP development process that uses the generic SDP busi-
ness model, reference model and framework to create standard-based SDP implementations.
The development process should provide various viewpoints that enable a SDP architecture
to created and implemented. We present an example illustration of a development process
in Figure[I1.1] The figure shows the viewpoints and associated modeling tools that may be

used to capture viewpoint results.

In the figure, the business viewpoint determines the SDP’s business model and business

181

relationships. The functional viewpoint defines the functional and non-functional require-
ments of the SDP to support various external applications. A reference model may be used
here to model and formalise SDP functions. The service-oriented viewpoint defines services
and interfaces required to fulfil functional and business viewpoints. The viewpoint uses the
SDP framework to structure a specific SDP architecture. The information viewpoint defines
interface and policy details that satisfy reference points and business relationships. The
resource-oriented viewpoint chooses specific standardised technologies to be mapped to the

SDP architecture. The architecture may be manipulated to accommodate the technologies.

The technology viewpoint decomposes the complete SDP architecture into a more tech-
nology specific design. The technology specific design may include details on protocols,
software environments, required equipment, networking requirements and management sys-
tems. The implementation viewpoint defines the physical deployment of the SDP imple-

mentation on a network.

11.3.2 Information Viewpoint

An information viewpoint on the SDP is essential since SDP services and external applica-
tions rely heavily on diverse forms of information. This information may be stored across

the various SDP, telco, customer, enterprise and converged network.

The information viewpoint must identify various information abstractions that are scattered
across the SDP framework. Each GSOA layer houses one or more information abstractions
that are accessed by services and applications. As an example, we used CORBA middleware
to house Parlay SCF location information that was accessed by web services across the
intermediate GSOA.

The information viewpoint must also identify generic SDP services that provide access to
the information abstractions. These information-oriented services must offer interfaces that
simplify access to diverse information. Also, these SDP service interfaces must abstract
access to lower GSOA information sources, such as an IMS HSS. As an example, we used
the CORBA naming service to provide web services with access to Parlay SCF location

information stored in the intermediate GSOA middleware plane.

11.3.3 Resource Oriented Viewpoint

The resource oriented viewpoint on the SDP enables the identification of existing standards-

based technologies to implement SDP reference points. These technologies provide service

182

interfaces that realise the abstract service interfaces identified in the service-oriented view-
point. However, some reference points may not obtain suitable standards to implement their
specifications. As a result, the resource oriented viewpoint enables us to identify standards
that are required to fully implement a SDP. For instance, we recommend standards be de-
fined to implement the Rcg reference point, since no suitable standards exist. These new
standards would enable consistent communication between end-users and the SDP. Like the
Rcg reference point, no suitable standard exists to implement Rpg reference point. These
new standards will enable SDP and OSS/BSS communication via standard-based service

interfaces.

The resource oriented viewpoint enables evaluation of standards that implement SDP refer-
ence points. For instance, the Rrg reference point may be implemented using the IMS and
SIP. However, the IMS does not fully standardise communication between service platforms
and network functional entities. As a result, a more complete IMS standard is required to
provide the SDP with consistent and unified access to telco network resources and capabil-
ities. Also, both Parlay and Parlay X implement the Rpg reference point using service in-
terfaces that expose functionality to resource providers. These service interfaces are limited
to content delivery and do not support content management. Additional service interfaces
may be defined to strengthen the Parlay and Parlay X APIs. Therefore, gaps identified in

existing standards used for the SDP represent additional research areas.

11.3.4 Creating Service Deliver Platforms

The SDP framework provides the foundation for any SDP architecture. These architec-
tures may be defined by mapping standard-based technologies to the framework’s GSOAs
services, their interfaces, applications and supporting middleware planes. Also, these tech-
nology mappings may alter the framework’s layers or domains to produce the final SDP

architecture.

We motivate the design and implementation of various SDP architectures using the frame-
work and mixtures of standard-based technologies. Also, we recommend evaluating imple-
mentations based on the appropriateness of their service interfaces within the SDP architec-
ture. The SDP implementations may also result in the creation of specific applications that
provide a new and innovative end-user services. These services may combine telco, IT and

Internet functionality.

This proposed work may also contribute standard-based SDP architectures for the NGN.

183

11.3.5 Importance of Standardised Middleware

The middleware planes defined for the SDP framework’s GSOAs provide necessary func-
tions to abstract distribution complexities. The middleware planes extend functionality
across the SDP framework domains. Hence, we motivate the standardisation of middleware
technologies for the SDP. By promoting standardisation of middleware, their implementa-

tions become interoperable and even interchangeable.

The technologies used to implement the SDP framework middleware planes, must provide
technology, implementation and distribution neutral services. These services hide and man-
age the various distribution complexities associated with a distributed system. In addition,
these standard-based services contribute functionality to enhance SDP services and external

enterprise applications.

Currently standards-based middleware technologies exist, such as CORBA. However, CORBA
is complex to use and operate. In contrast the simple web services middleware, the ESB, is
mostly proprietary. Hence, the ESB and its related technologies require additional standard-
isation. Also, interoperability between these different middleware technologies requires
standardisation. However, middleware standardisation should be future proof, such that

new middleware technologies easily interwork with legacy middleware.

184

References

[1]

(2]

[3]

[4]

[6]

[7]

[9]

[10]

ITU-T, “Specifications of Signalling System No. 7: Introduction to CCITT Signalling
System No. 7,” Recommendation Q.700, March 1993.

ITU-T, “Principles of Intelligent Networks,” Recommendation 1.312/Q.1201, Octo-
ber 1992.

W. Hahn and R. Cowles, “Government Involvement will be a Problem Through
2004, Strategic Planning: Research Note SPA-21-4211, Gartner Group, 56 Top Gal-
lant Road, Stamford, CT 06904, November 2003.

A.C.Arnbak, “Technology Trends and their Implications for Telecom Regulation,” in
Telecom Reform Principles, Policies and Regulatory Practices (W.H. Melody, ed.),
pp. 67-81, Technical University of Denmark, Lyngby, Denmark, 1997. ISBN: 87-
7381-071-1.

L. Corrigan, “The Need for Comprehensive Partner Management in the Mobile Ser-
vice Environment,” White Paper, Mobile Cohesion, 8b Weavers Court, Linfield Road,
Belfast BT12 SGH.

ITU-T, “Definition of NGN.” Last accessed 01/12/2007, http://www.itu.int, Novem-
ber 2004.

D. Booth et al, “Web Services Architecture,” Working Group Note, W3C Web Ser-
vices Architecture Working Group, February 2004.

The Moriana Group, “Service Delivery Platforms and Telecom Web Services.” A
Moriana Thought Leader Report, Section A: Executive Summary, Last accessed

01/12/2007, http://www.morianagroup.com, June 2004.
ITU-T, “ITU-T Home Page.” Last accessed 01/12/2007, http://www.itu.int/ITU-T.

B.Tilly and B.Briscoe, “Metcalfe’s Law is Wrong,” IEEE Spectrum, pp. 26-31, July
2006. Last accessed 01/12/2007, http://www.spectrum.ieee.org/jul06/4109.

185

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

L. Rising and D. C. Schmidt, Design Patterns in Communication Software. The Pitt
Building, Trumpington Street, Cambridge, UK: Press Syndicate of the University of
Cambridge, 2001.

A. Lundqvist, “Connected Enterprise,” in Business Summit, Parlay Meeting, Osaka,
Japan, November 2005.

G. Parkins, “A Service Orientated Architecture for Telecom Services,” in KeyNote
Session, 9™ International Conference on Intelligence in Service Delivery Networks
(ICIN) 2004, Bordeaux, France, October 2004.

E. Christensen et al, “Web Services Description Language (WSDL) 1.1,” Tech. Rep.
1.1, World Wide Web Consortium (W3C), March 2001.

The OASIS UDDI Working Group, “The OASIS UDDI Home Page.” Last accessed
01/12/2007, http://www.uddi.org.

M. Gudgin et al, “SOAP Version 1.2 Part 1: Messaging Framework,” Recommenda-
tion, W3C, June 2003.

R. Fielding et al, “Hypertext Transfer Protocol — HTTP/1.1,” Request For Comments
(RFC) 2068, IETF Network Working Group, January 1997.

B. Balabaskaran, “Development of New Services with a Service Delivery Platform
(SDP).” Service Delivery Platforms and Telecom Web Services, A Moriana Group
Thought Leader Report, Section B: Thought Leadership, Last accessed 01/12/2007,

http://www.morianagroup.com, June 2004.

The TINA Consortium (TINA-C), “The TINA Home Page” Last accessed
01/12/2007, http://www.tinac.com.

The Parlay Group, “The Parlay Home Page” Last accessed 01/12/2007,
http://www.parlay.org.

ITU-T, “Principles of Telecommunications Management Network,” Recommenda-
tion M.3010, May 1996.

TeleManagement Forum, “Telecommunications Operations Map,” Specification
GB910, March 2000.

Telemanagement Forum, “eTOM The Business Process Framework,” Tech. Rep.
GB921, October 2001.

3GPP, “Technical Specification Group Services and Systems Aspects; Network Ar-
chitecture (Release 7),” Technical Specification TS 23.002 V7.0.0, December 2005.

186

[25] J. Soref and D. Troughton, “The Real Meaning of Convergence.” Service
Delivery Platforms and Telecom Web Services, A Moriana Group Thought
Leader Report, Section B: Thought Leadership, Last accessed 01/12/2007,

http://www.morianagroup.com, June 2004.

[26] D. G. Messerschmitt, “The Prospects for Computing Communications Convergence,’
in Invited Papers, Munchner Kreis Conference Vision 21: Perspectives for the Infor-

mation and Communication Technology, Munich, Germany, November 1999.

[27] A.Henten et al, “The Next Step for Telecom Regulation: ICT Convergence Regulation
or Multisector Utilities Regulation,” The South African Journal of Information and

Communication, no. 3, 2003.

[28] FE. Bosco et al, “Service Broker: Identifying a New Role in the Mobile Services Pro-
visioning Value Chain,” in Innovation in Business, pp. 333-337, 9*" International

Conference on Intelligence in Service Delivery Networks, October 2004.

[29] The DSL Forum, “The DSL Forum Home Page.” Last accessed 01/12/2007,

http://www.dslforum.org.

[30] ETSI, “Universal Mobile Telecommunications System; Requirements for the UMTS
Terrestrial Radio Access system (UTRA) (UMTS 21.01 version 3.0.1),” Technical
Report TR 101 111 V3.0.1, October 1997.

[31] N. Wilkinson, Next Generation Network Services. West Sussex, England: John Wiley
and Sons, Ltd, 2002.

[32] The ATM Forum, “The ATM Forum Home Page.” Last accessed 01/12/2007,

http://www.atmforum.com.

[33] The MPLS Forum, “The MPLS Forum Home Page.” Last accessed 01/12/2007,

http://www.mplsforum.org.

[34] S. Deering et al, “Internet Protocol Version 6 (IPv6) Specification,” Request For
Comment (RFC) 2460, IETF Network Working Group, December 1998.

[35] 1. Postel, “Transmission Control Protocol,” Request For Comment (RFC) 793, Infor-

mation Sciences Institute University of Southern California, September 1981.

[36] H. Schulzrinne et al, “RTP: A Transport Protocol for Real-Time Applications,” Re-
quest For Comments (RFC) 3550, IETF Network Working Group, July 2003.

[37] J. Rosenberg et al, “SIP: Session Initiation Protocol,” Request For Comments (RFC)
3261, IETF Network Working Group, June 2001.

187

[38] The International Packet Communication Consortium, “The International
Packet Communication Consortium Home Page.” Last accessed 01/12/2007,

http://www.packetcomm.org.

[39] F. D. Ohrtman. JR, Softswitch: Architecture for VolP. Networking Professional, New
York. USA: McGraw-Hill, 2003.

[40] The SIGTRAN Working Group, “The SIGTRAN Home Page.” Last accessed
01/12/2007, http://www.sigtran.org.

[41] N. Greene et al, “Media Gateway Control Protocol Architecture and Requirements,’
Request For Comments (RFC) 2850, IETF Network Working Group, April 2000.

[42] P. Calhoun et al, “Diameter Base Protocol,” Request For Comments (RFC) 3588,
IETF Network Working Group, September 2003.

[43] ETSI, “Digital Cellular Telecommunications System (Phase 2+); Customised Appli-
cations for Mobile network Enhanced Logic (CAMEL) Phase 2; Stage 2,” Technical
Specification 101 441 v.6.7.0, ETSI, August 2000.

[44] C. Abarca et al, “Service Architecture,” TINA-C Deliverable 5.0, Telecommunica-

tions Information Networking Architecture (TINA) Consortium, June 1997.

[45] C. Abarca et al, “Network Resource Architecture,” TINA-C Deliverable 3.0,
Telecommunications Information Networking Architecture (TINA) Consortium,
February 1997.

[46] M. Corporation, “.Net Framework Home Page.” Last accessed 01/12/2007,

http://msdn2.microsoft.com/en-us/netframework/.

[47] Sun Microsystems, “Java Home Page” Last accessed 01/12/2007,
http://java.sun.com/.

[48] TMF, “NGOSS Lifecycle and Methodology,” Tech. Rep. GB927, Release 4.3, Version
1.3, TeleManagement Forum, November 2004.

[49] Sun Microsystems, “JSLEE and the JAIN Initiative.” Last accessed 01/12/2007,
http://java.sun.com/products/jain/, 2007.

[50] Open Mobile Alliance (OMA), “OMA Home Page.” Last accessed 01/12/2007,
http://www.openmobilealliance.org, 2007.

[51] OMA, “OMA Service Environment,” Specification V1.0.2, August 2005.

[52] Appium Home Page, “Appium.”’ Last accessed 01/12/2007, http://www.appium.com.

188

[53] Erricsson, “Service Delivery Platforms.” Last accessed 01/12/2007,
http://www.ericsson.com/, 2006.

[54] IBM, “IBM Service Provider Delivery Environment: A Technical Overview,” IBM
Telecommunication Industry White Paper, http://ibm.com/industries/telecom/spde,
May 2005.

[55] Microsoft, “Enabling Service Delivery using the Microsoft Connected Framework,’
White Paper, http://www.microsoft.com, January 2005.

[56] SDP Alliance, “Service Delivery Platform.” Last accessed 01/12/2007,
http://sdpalliance.mobilitydatasystems.com/.

[57] Hewlett-Packard, “Service Delivery Platform.” Last accessed 01/12/2007,
http://www.hp.com, 2007.

[58] CERN Engineering Data Management Service, “CERN Engineer-
ing Data Management Service Glossary.” Last accessed 01/12/2007,
http://cedar.web.cern.ch/CEDAR/glossary.html, 2001.

[59] Oxford University Press, “Oxford English Dictionary.” Last accessed 01/12/2007,

http://www.oup.com.

[60] A.P. Sage andJ. E. Armstrong Jr, Introduction to Systems Engineering. Wiley Series
In Systems Engineering, New York, USA: John Wiley and Sons, Inc, 2000.

[61] S. Graupner et al, “A Framework for Organizing Complex Systems,” Internal Pa-
per HPL-2001-24, Hewlett-Packard Company, HP Laboratories, Palo Alto, February
2001.

[62] B. S. Blanchard and W. J. Fabrycky, Systems Engineering and Analysis. Industrial
and Systems Engineering, New Jersey, USA: Prentice Hall, third edition ed., 1998.

[63] P. Checkland, Systems Thinking, Systems Practice. New York, USA: John Wiley and
Sons, Ltd, 1981.

[64] B. Liskov and J. Guttag, Abstraction Specification in Program Development. The
MIT Electrical Engineering and Computer Science Series, The MIT Press, Cam-
bridge, Massachusetts: The MIT Press with the McGraw-Hill Book Company, sec-
ond ed., 1987.

[65] D. G. Messerschmitt, “Complexity Management: A Major Issue for Telecommunica-
tions,” (Stranford University, Palo Alto, CA), pp. 169-180, International Conference

on Communications, Computing, Control and Signal Processing, June 1995.

189

[66]

[67]
[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

H. E. Hanrahan, “A Comparative Study of Telecommunication Architectures:
Methodology and Case Studies,” South African Telecommunication Network and
Applications Conference (SATNAC) 2003, September 2003.

L. R. Hoos, Systems Analysis in Public Policy. University of California Press, 1972.
L. Bass et al, Software Architecture in Practice. Addison-Wesley, second ed., 2003.

J. Bosch, Design and Use of Software Architectures. Software Engineering / Software
Architecture, Addison-Wesley, 2000.

G. Mustapic et al, “Real World Influences on Software Architecture- Interviews with
Industrial Systems Experts,” IEEE Working Conference on Software Architectures,
Oslo, Norway, June 2004.

K. Smolander, “Four Metaphors of Architecture in Software Organizations: Finding
out the Meaning of Software Architecture,” in ISESE "02: Proceedings of the 2002
International Symposium on Empirical Software Engineering, pp. 211-221, IEEE
Computer Society, October 2002.

ISO/IEC 10746-1, “Open Distributed Processing Reference Model Part 1:
Overview,” ITU-T Recommendation, May 1995.

J. Miller et al, “MDA Guide Version 1.0.1,” Specification omg/2003-06-01, The Ob-
ject Management Group, June 2003.

K. Smolander et al, “What Is Included in Software Architecture? A Case Study in
Three Software Organizations,” in ECBS ’02: Proceeding of the 9th IEEE Interna-
tional Conference on Engineering of Computer-Based Systems, pp. 131-138, IEEE
Computer Society, 2002.

ITU-T, “General Aspects of the Intelligent Network Application Protocol,” Recom-
mendation Q.1208, September 1997.

J. Thorner, Intelligent Networks. Artech House Telecommunications Library, 685
Canton Street, Norwood, MA, 02062: Artech House Publishers INC., 1994.

J. Zuidweg, Next Generation Intelligent Networks. Telecommunications, Artech
House INC,685 Canton Street, Norwood, MA 02062: Artech House Publishers,
2002.

T. Magendanz and R. P. Zeletin, Intelligent Netwoks. Brekshire House, 168-173 High
Holborn, London WCIV 7AA, UK: International Thomson Computer Press, 1996.

190

[79] R. T. Sanders, “Service-Centred Approach to Telecom Service Development,” in
Adaptable Networks and Teleservices, IFIP WG6.7 Workshop and EUNICE Sum-
mer School, Norwegian University of Science and Technology, Trondheim, Norway,
September 2002.

[80] M. Chapman and S. Montesi, “Overall Concepts and Principles of TINA,” TINA-C
Deliverable 1.0, Telecommunications Information Networking Architecture (TINA)

Consortium, February 1995.

[81] G. Coulouris, J. Dollimore and T. Kindberg, Distributed Systems: Concepts and De-

sign. International Computer Science Series, Addison-Wesley, third ed., 2001.

[82] The Object Management Group (OMG), “The OMG Home Page.” Last accessed
01/12/2007, http://www.omg.org.

[83] O.M.G, “Common Object Request Broker Architecture: Core Specification,” Formal
Version 3.0.3, March 2004.

[84] M. Mampaey, “TINA for Services and Advanced Signalling and Control in Next Gen-
eration Networks,” IEEE Communications Magazine, pp. 104-110, October 2000.

[85] C. Smith, “Applying TINA-C Service Architecture to the Internet and Intranets,’
in Global Convergence of Telecommunications and Distributed Object Computing,
pp- 4-12, TINA 97, Santiago, Chile, November 1997.

[86] Z. Lozinski, “Parlay: A Report to Members”” Last accessed 01/12/2007,
http://www.parlay.org, November 2003.

[87] R. Jain et al, Programming Converged Networks, vol. Wiley-Interscience of Com-

puter Science. John Wiley and Sons, Inc, 2005.

[88] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part
1: Overview (Parlay 5),” ETSI Standard 202 915-1 V1.1.1, April 2004.

[89] M. Unmehopa, Parlay/OSA from Standards to Reality. John Wiley and Sons, Ltd,
2006.

[90] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part
3: Framework (Parlay 5),” ETSI Standard 203 915-3 V1.2.1, January 2007.

[91] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part
4: Call Control; Sub-part 2: Generic Call Control SCF (Parlay 4),” ETSI Standard
202 915-4-2 V1.2.2, August 2003.

[92] ETSI, “Open Service Access (OSA),; Application Programming Interface (API); Part
5: User Interaction SCF (Parlay 4),” ETSI Standard 202 915-5 V1.2.1, August 2003.

191

[93] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part
6: Mobility SCF (Parlay 4),” ETSI Standard 202 925-6 V1.2.1, August 2003.

[94] S. Guo, F. Yang and J. Chen, “Open Integrated Intelligent Network: A universal
Service Platform,” in Circuits and Systems, pp. 74-77, Asia-Pacific Conference on

Circuits and Systems, Tianjin, China, 2000.

[95] K. Chung and Y. Choi, “An Interworking Mechanism between SCFs and Protocols in
the Open Service Gateway,” in Communications, pp. 1-5, Asia-Pacific Conference

on Communications, Busan, Korea, August 2006.

[96] The Parlay Group: Web Services Working Group, “Parlay Web Services Architecture
Comparison,” Tech. Rep. 1.0, October 2002.

[97] 1. Popoft, “Parlay/OSA 101, in Education Seminar, Parlay/OSA Americas Confer-
ence, Boston USA, October 2005.

[98] The Parlay Group: Web Services Working Group, “Parlay Web Services Overview,”
Tech. Rep. 1.0, October 2002.

[99] ETSI, “Open Service Access (OSA); Parlay X Web Services; Part 2: Third Party Call
(Parlay X 2),” Standard 202 391-2 v1.2.1, December 2006.

[100] ETSI, “Open Service Access (OSA), Parlay X Web Services, Part 11: Audio Call
(Parlay X 2),” Standard 202 391-11 v1.2.1, December 2006.

[101] ETSI, “Open Service Access (OSA); Parlay X Web Services, Part 9: Terminal Loca-
tion (Parlay X 2),” Standard 202 391-9 v1.2.1, December 2006.

[102] A. Pras, B. Beijnum and R. Sprenkels, “Introduction to TMN,” CTIT Technical Re-
port 99-09, University of Twente, the Netherlands, 1999.

[103] ITU-T, “Management Framework For Open Systems Interconnection (OSI) For
CCITT Applications,” Recommendation x.700, September 1992.

[104] M. Azmoodeh et al, “Evaluation of TMN Status, OSS/TMN Deployment,” Main Re-
port 812-GI, EURESCOM, December 1999.

[105] TMF, “TeleManagement Forum SID Web Page.” Last accessed 01/12/2007,

http://www.tmforum.org/browse.aspx?catID=1684.

[106] TMF, “TeleManagement Forum TNA Web Page.” Last accessed 01/12/2007,

http://www.tmforum.org/browse.aspx?catID=1685.

[107] ITU-T, “Information Technology, Open Systems Interconnection, Common Manage-
ment Information Protocol Specification for CCITT Applications,” Recommendation
x.711, ITU-T, October 1991.

192

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

H. Hanrahan, Network Convergence. John Wiley and Sons, Ltd, 2007.

TMF, “NGOSS and Shared Information Model,” Last accessed 01/12/2007,
http://www.tmforum.org/browse.aspx?catID=1684, Data Sheet, TeleManagement
Forum, November 2005.

R. Swinarski, “TeleManagement Forum: NGOSS Architecture Overview,” Presenta-

tion, TMF, April 2003. http://www.tmforum.org.

J. L. Fleck, “Overview of the Structure of the NGOSS Architecture,” White Paper,
Hewlett Packard, May 2003.

J. Strassner et al, “TMF White Paper on NGOSS and MDA,” White Paper 1.0, Tele-

Management Forum, Novemeber 2003.

D. Sprott, “Service Oriented Architecture: An Introduction for Managers,” CBDI
Forum and Roadmap Report, Last accessed 01/12/2007, http://www.cbdiforum.com,
May 2005.

E. A. Marks, “Build a Better Enterprise Application,” Network Magazine, vol. 19 (8),
August 2004.

K. Channabasavaiah and K. Holley, “Migrating to a Service-Oriented Architecture,’
White Paper G224-7298-00, IBM, April 2004.

B. Silver, “Agile to the Bone,” Intelligent Enterprise, vol. 8, February 2005.

T. Andrews et al, “Business Process Execution Language for Web Services,” Specifi-
cation 1.1, BEA Systems, May 2003.

S. Craggs, “Best-of-Breed ESBs,” White Paper, Enterprise Application Integration
(EAI) Industry Organization, June 2003.

W. Andrews, “SOA has Impact on Application Development Outsourcing,” Strategic
Planning: Research Note (SPA-22-5494), Gartner Group, Last accessed 01/12/2007,
http://www.gartner.com, April 2004.

J. Egli, “IMS: A Journey not a Leap.” http://www.convergedigest.com, Last accessed
01/12/2007, September 2005.

314" Generation Partnership Project (3GPP), “3GPP Home Page.” Last accessed
01/12/2007, http://www.3gpp.org.

3GPP, “Technical Specification Group Services and System Aspects; Service require-
ments for the Internet Protocol (IP) multimedia core network subsystem; Stage 1

(Release 7),” Technical Specification TS 22.228 V7.3.0, December 2005.

193

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

3GPP, “Technical Specification Group Services and System Aspects; IP Multimedia
Subsystem (IMS); Stage 2 (Release 7),” Technical Specification TS 23.228 V7.2.0,
December 2005.

C. Gourraud et al, “The IMS Application Layer(s),” in Challenges for the IMS,
pp. 2-7, 10" International Conference on Intelligence in Service Delivery Networks
(ICIN), Bordeaux, France, May 2006.

3GPP, “Technical Specification Group Core Network; IP Multimedia (IM) Session
Handling; IM Call Model; Stage 2 (Release 6),” Technical Specification TS 23.218
V6.2.0, September 2004.

3GPP, “Technical Specification Group Core Network; Open Service Access (OSA);
Application Programming Interface (API) Mapping for Open Service Access; Part 4:
Call Control Service Mapping, Subpart 4: Multiparty Call Control ISC (Release 6),’
Technical Specification TS 29.998-04-4 V6.0.4, December 2004.

3GPP, “Technical Specification Group Core Network; Open Service Access (OSA);
Application Programming Interface (API) Mapping for OSA; Part 4: Call Control
Service Mapping; Subpart 1: API to CAP Mapping (Release 6),” Technical Specifi-
cation TS 29.998-04-1 V6.0.0, December 2004.

3GPP, “Technical Specification Group Core Network; Open Service Access (OSA);
Application Programming Interface (API) Mapping for OSA; Part 5: User Inter-
action Service Mapping; Subpart 1: API to CAP Mapping (Release 6),” Technical
Specification TS 29.998-05-1 V6.0.0, December 2004.

3GPP, “Technical Specification Group Core Network; Open Service Access (OSA);
Application Programming Interface (API) Mapping for OSA; Part 6: User Location
- User Status Service Mapping to MAP (Release 6),” Technical Specification TS
29.998-06 V6.0.0, December 2004.

V. Radhakrishnan et al, “PIAF: An Application Framework for Unlocking IMS En-
gendered Network Capabilities,” in Programming Models for the IMS, pp. 165-170,
10" International Conference on Intelligence in Service Delivery Networks (ICIN),
Bordeaux, France, May 2006.

M. Brenner, “From Collision to Cooperation,” IEC News Letter, vol. 2, August 2007,
Last accessed 01/12/2007, http://www.iec.org.

G. Deckers, “Cost Down, Revenues Up: SDP Business Case,” in Business Aspects of
Service Convergence, pp. 178-183, 10" International Conference on Intelligence in

Service Delivery Networks (ICIN), Bordeaux, France, May-June 2006.

194

[133] TMF OSS/J Home Page, “OSS through Java Initiative.” Last accessed 01/12/2007,
http://www.tmforum.org, 2006.

[134] O. M. G. (OMG), “Unified Modelling Language (UML) Resource Page.” Last ac-
cessed 01/12/2007, http://www.uml.org.

[135] The Parlay Group: The Parlay X Working Group, “Parlay APIs 4.0 Parlay X Web
Services White Paper,” Tech. Rep. 1.0, December 2002.

[136] ETSI, “Open Service Access (OSA); Parlay X Web Services, Part 6: Payment (Parlay
X 2),” ETSI Standard 202 391-6 V1.2.1, December 2006.

[137] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part
12: Charging SCF (Parlay 5),” ETSI Standard 203 915-12 V1.2.1, Januray 2007.

[138] ETSI, “Open Service Access (OSA); Parlay X Web Services, Part 7: Account Man-
agement (Parlay X 2),” ETSI Standard 202 391-7 V1.2.1, December 2006.

[139] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part
11: Account Management SCF (Parlay 5),” ETSI Standard 203 915-11 V1.2.1, Ja-
nuray 2007.

[140] ETSI, “Open Service Access (OSA); Parlay X Web Services; Part4: Short Messaging
(Parlay X 2),” ETSI Standard 202 391-4 V1.2.1, December 2006.

[141] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part
5: User Interaction SCF (Parlay 5),” ETSI Standard 203 915-5 V1.2.1, Januray 2007.

[142] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part
4: Call Control; Sub-part 3: Multi-Party Call Control SCF (Parlay 5),” ETSI Stan-
dard 203 915-4-3 V1.2.1, Januray 2007.

[143] ETSI, “Open Service Access (OSA); Parlay X Web Services; Part 14: Presence (Par-
lay X 2),” ETSI Standard 202 391-14 V1.2.1, December 2006.

[144] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part
14: Presence and Availability Management SCF (Parlay 5),” ETSI Standard 203
915-14 V1.2.1, Januray 2007.

[145] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part
8: Data Session Control SCF (Parlay 5),” ETSI Standard 203 915-8 V1.2.1, Januray
2007.

[146] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part
13: Policy Management SCF (Parlay 5),” ETSI Standard 203 915-13 V1.2.1, January
2007.

195

[147] Netbeans, “Netbeans Home Page.” Last accessed 01/12/2007,

http://www.netbeans.org.

[148] Sun Microsystems, “Sun Java System Application Server 9.1 Last accessed

01/12/2007, http://www.sun.com/software/products/appsrvr/.

[149] Wits University Convergence Lab, “Wits Convergence Lab Home Page.” Still under

construction, http://www.ee.wits.ac.za/comms.

196

Appendix A

Mapping to the SDP Framework

To show the flexibility of the SDP framework, we map both standard-based and proprietary
technologies onto its GSOAs. In these mappings we show gaps in existing technologies that
must be standardised to fully support the SDP. These gaps may motivate additional research

into the standardisation of the SDP.

A.1 Standards-based Architectures

In Table we map IN/TMN architectures [2,[21]] onto the SDP framework. In Table @],
we map the TINA architecture [44, 45] onto the SDP framework. In Table we map
the eTOM framework [23]] onto the SDP framework. In Table we map the Java API
for Integrated Networks (JAIN) [49] architecture onto the SDP framework. The JAIN ar-
chitectures has not been discussed in this work. However, it provides an architecture that

combines both IN and Parlay.

The standard-based technologies provide fuller mappings than the proprietary solutions.
The IN/TMN mapping shows a legacy SDP focusing on complex services and the required
functions. TINA provides an end-to-end mapping onto the SDP framework that extensively
uses middleware to support a variety of rich components. The eTOM mapping looks limited,
but focuses on providing simple services to abstract the entire OSS/BSS domain and its
intersecting layers. The JAIN mapping provides a SDP, by implementing existing telecom
and IT standards using the Java programming language and tools. This mapping also shows

the integration of Java specific components and technologies with the SDP.

197

A.2 Product-based Architectures

In Figure we show the Ericsson SDP architecture [33]]. In Table we map the Er-
icsson SDP architecture onto the SDP framework. In Figure [A.2] we show the HP SDP
architecture [57]]. In Table @, we map the HP SDP architecture onto the SDP framework.
In Figure|A.3] we show the IBM SDP architecture [54]]. In Table[A.7] we map the IBM SDP
architecture onto the SDP framework. In Figure we show the Microsoft SDP architec-
ture [53]. In Table[A.8, we map the Microsoft SDP architecture onto the SDP framework.

All the proprietary technology mappings show limited details, since they use mixtures of
standardised and proprietary technologies to implement framework layers. Also, many of
these proprietary solutions provide implementations for the service platform, OSS/BSS do-
mains and their intersecting layers. Hence, these solutions do not provide a complete end-

to-end mapping.

198

dINNS dVNI QIEMI[PPIJA 1IN0SIY
SJUQWIAH IoMIdN | JYS dSS dds ‘dDS YoIMS yoNums suoydorag, $90IN0SIY
QIEMI[PPIAl UOTOUN] 90INOSY
(s4S0O) 49N 400 dvDID 400 dvID 40D suonounj 331n0say
QIEMI[PPIAl UOT)OUN,] IJTAIOS
daDS AVINS (s4SO) ANS dSS JdS ‘dds d0S dMI suonoun a3IAIRS
QIeMIPPIIA 901A10S Xo[dwo)
sdis S901AIRS xo[dwo))
0130] 99IAIAS [BQO[D) sddy xoidwo)
QIEMI[PPIA 9JTAIDS 9JBIPIUWLIAIU]
SOOIAIOS QJBIPOULIOIU]
sddy arerpowrojuy
QIEMI[PPIA 901A10S o[dwrg
soo1AI0S o1dwIg
SOINJBAJ puUL SAJIAINS sddy odurg
JI0MION IopIAOI]
osudiayuyg SS9/SSO wLIoJIe[d 901AIOS Pag1oAuo) Aanoouuo) | 1equosqng | I9s) pug — swwwo(/sufiv T

QINOANIYIIY WIOJIB[J AISAI[(] 9JIAIDS OLISUID)

Table A.1: Mapping IN/TMN onto the SDP Framework

199

S[000301 SNOLIEA

QIEMOTPPIIA] 92IN0SAY

juowdmbyg SurjiomiaN paIngrIsiq pue snoudsoIaloH

S$2INOSAY

(4dQ) yuswuoItAuy Surssad01q pANqIusI(] paseq-vaI0D

QIEMI[PPIA UOTIOUN,] 90IN0SAY

| | | dD “NDL ‘WL ON'T dD VL suonoung 92mosay
(Ad() uowuonAUy SUISSI0IJ PAINGIISI] PAseq-VIIOD QIRMI[PPIA UOHIOUN] ITAIDS
| | | 00d D0 10D suonoun, aIAIRS
(Ad) uowuonAuy SUISSI00Id PAINGIISI] Paseq-VIIOD QIRMI[PPIA 01AIS X3[dwo))
ANSD ‘WSO ANSD ‘WSO ANSD ‘WSO NSOL soo1a10g Yo[dwio)
sddy xoidwo)
(Ad() uowuonAug SUISSI001d PAINGIISI] Paseq-VIIOD QIRMI[PPIA SOIAIDS SIRIPIULIDIU]
V0 4S ‘NSS SN V0 S ‘WSS NSNd v VI vd $ODIAIOG dJEIpOULIAIU]
Wsn Wsn dvnss dvnse sddy arerpouriojup
QIEMI[PPIA 014108 a[dwrg
soo1ATag ordwrg
sddy orduuig
JIOMIIN IOPIAOI]
osudiaiug SS9/SSO WIOJIR[J 90IAIDS pasSioauo)) £1anoouuo) | Iequosqng 1980) pug — swwwocy /swfiv 1

AINOANIYOIY WIOJIR[J AIOAI[Q(J 9ITATIS OLIUD)

Table A.2: Mapping TINA onto the SDP Framework

200

QTEMIPPIA 20INOSAY

T ddd ‘IO

S3DINOSIY

QIEMAPPIA UOTIOUN,] 90IN0SAY

suonduny 32IN0SAY

QIEMA[PPIA UOTIOUN,] AITATIS

suonoduny I301AIRS

QIEMI[PPIA 991AIAS Xo[dwo)

s10)depy 20Inosay

$991A10S xo[dwo)

sddy xoidwop

QIEMI[PPIIA 9OTAIOS 9JRIPAULINU]

T INY VEI0D SOOIAIOS SIRIPIULINU]
SOOIAIS HHTI sddy ojerpawrajug
dsd QIBMI[PPIIA 991AIRS o[dwirg

SOOIATOS GOM

$901A10S o[dwurg

$38S3001d ssaulsng

sddy oidwig

asudiouyg

SS4/SSO

wIoJIe[d 9OTAISS

SI0MION
pag1aauo)

Iop1AOIg

K)ATIOQUUOD)

Ioquosqng

19s() pug

— surwo(/s4afin |

QINJOANIYOIY WIOPL[J AISAI[(] 9ITAIOS OLIOUD)

Table A.3: Mapping eTOM onto the SDP Framework

201

S[000}01J SNOTIBA

QIEMATPPIIA 90IN0SOY

S E TN SIUQWIATH YTOMION [eUTWIRY, S90INOSAY
QIEMI[PPIA UOTIOUN,] A0INOSY

suoTIOUN,] 90IN0SAY

QIEMI[PPIA UONOUN,] 9JTATIS

suoTOUN, 9JTAIS

JaT1SI WAL 2IEMI[PPIIA 991AIDS Xa[duwo)

s10)depy 90IN0SY snozewnN 21D dAIiN S901AI0S X9[dwo)
(gds) syoorg Surpping 991A10S sddy xoidwo)
TN VEI0D “GSH St yons pasn oq AeUI oIema[ppIWl SNOLIBA QIEMI[PPIA OTAIOS 9JRIPAUWLISIUT

el HSTl dINCL SIOIAISS 9JBIpIULIaIU]
sqra sddy eaer sddy arerpowrojuy

gSH Ue Se [ons ‘aIemo[ppIiul paseq-yYOS

QIBMI[PPIIA 90TAIS odurg

SOOIAIOS GO

$901AI0S o[dwurg

ddy 9o1A105 g

ddy 901110 g

sddy ordwig

asudiouyg

S$S4/SSO

wIoJIe[d 9OTAISS

SI0MION
pag1aauo)

Iop1a0lq

K)ATIOQUUOD)

Ioquosqng

19 pug

— swwwo(/suafinT T

QINJOANIYOIY WIOPR[J AISAI[(] 9OTAIOS OLIQULD)

Table A.4: Mapping JAIN onto the SDP Framework

202

I Content Domain \ | Service Domain A
N |
| Content Iy Service I
1 Content 5 1 Creation Services
creation 1 . 1
7 IDE, Testing Tools
\ \ 7
—_——_——
/ \ \\
! = | Content-Delivery. Service Provider Common
| 1 Support Functions Support Functions 2 |
1 Client Content Management, Media ST T SUPPQ” 1
I SMS, | DB, DRM, Transcoding - 9 Functions 1 |
| omws, | 1 I
WAP, I 1 1
I http, 1 oooo : - Provisioning
1 IVR, Presentation oooo Service Control - Data access 1 Business Support |
1 PoC & rendering OoooO and Execution - Device management 1 \ Domain /
pplications - Service Catalogue 1 —— -
! End-user —Chvarglng T —_————
\ Domain - 0&M /
_—— - Identity management 1 1
Service Enabler Integration 1 I !
1 | Operations |
1 Support 1
Common Service Enablers 1 _D‘_’mi‘”_ ,
SMS-C, MMC, Location Server, Streaming Server, IN, Presence, Instant Messaging, PoC 1
7
| T T I T TN 4
Figure A.1: Ericsson SDP Architecture
o .. . T
3 Applications—end-user services <
5 g
. N
@ Network Services Messaging and Information and Business Operations g
Collaboration Entertainment -
Service Delivery Platform
Common framework
5 I _ = ©
g2 $e
G| oovice monagement Content mancgement g5
=T S 2
o 2 3 3
=)
g g _ B &
S = Q
a
«Q
El
2 Service enablers
4 m
_ g 3
s @
Y
62
- @
Network Assets L 5 8
Q ¢
a0
o S
v @
=
~

I T TR

Figure A.2: Hewlett Packard SDP Architecture

203

Devices

Network delivery Services brokerage User services
Owned by Owned by
_ platform owner | third party
I
NGN Local !
g applications/ | !
content .
1
1
Common !
c,, :
-
1
1
: Remote
|| applications/
1| content
1
1

| Fulfillment | | Service level | | Billing

Services management

Figure A.3: IBM SDP Architecture

055/BSS New Services
Enablement | e
Business Collaborative Infotainment | Media mCommerce v ‘ M2M ‘
Billing and rating communications
Marketing and offer =
management Support Services
Service developrment | Partner self-service ‘ | Operator self-service ‘ | Customer self-service ’
and management
e Service Creation Service Deployment Service Execution
development and ; Security/ Session
management | SDK | ‘ Purposing ‘ identity management
management = o
; rchestrati
deﬁg opp?nglﬁlgnd | Code development | ‘ Provisioning ‘
management Resource QoS
management Profile
CRM management
- Subscriber
Service - Device
Service management catalog - Network
and operations - Partner
Resource Management
management and — - - ;
operations | Administration | | Configuration ‘ | Metering | ‘ Alerts | ‘ Reporting ‘

Supplier/PRM

Financial and assets
HR management
Enterprise quality

management,
processes, and IT

planning and

architecture

Content Enablement Network Enablement

Device Enablement

Content Content ‘ Messaging } | Mobility | | Device management ‘
digitization approval

DRM Publication/ ‘ Location ‘ I Call control ‘ | Device adaptation l
delivery

Data session
control

Charging ‘
Notifications

Aggregation/
syndication

| User interface management ‘

Network

Figure A.4: Microsoft SDP Architecture

204

QIEMOTPPIIA 92IN0SAY

W0 d9d
‘WD ‘Surig

S$2INOSIAY

QIBMI[PPIIA UONdUN 32INOSAY

SUONdUN 2IN0SAY

QIEMI[PPIAl UOT)OUN,] AOTAIOS

SI9[qeUH 9OIAIOS UOWWO))

suoroun,j 9JIAIOS

QIEMIPPIIA 201A10S Xo[dwo)

uoneISaIu] I9[qeuy 9OIAIOS

S901AI9G x9[dwo)

sddy xordwo)

uonnddxXy

QIRMI[PPIJA 90IAIOS JRIPIUWLIAU]

suonoun,j

j10ddng uowrwo)

2 [01IUO)) AJIAIS

‘FuLIopudY ‘UoNBIUISAIJ

SOOTAIOG JUI[D)

SOOTAIOS 9JBTPAWLIAIUT

sddy juarD sddy orerpourioyuy
QIEMIPPIIA 29TATRS ordwurg
$901A10G o[dwirg
suonjouny 11oddng apraoig
QOIAIIS/KIDAT[(T JUAUOD) sddy opdurg
sqo1A10g ddy PRNNEING Iopraoig
asudioyuyg SS9/SSO wiIoje[d AITARS pag1oau0) ANAIIOQUUOD) | 19QUIOSQNS 19s pug — surwo(y /s4fing |

QINJOANIYOIY WIOPL[J AISAT[(] 9ITAIOS OLIOUAL)

Table A.5: Mapping the Ericsson SDP Architecture onto the SDP Framework

205

QTEMAPPITA 90INOSTY

$32IN0SAY

QIEMA[PPIA] UOTIOUN,] A0INOSY

SuonduUNy 32.IN0SAY

*quowaSeuRA 901AI9S ‘Surdrey) Juasioauo) ‘qreduadQ dH

QIEMA[PPIJA] UOTIOUN,] AITATIS

suonduny 3A01AIS

sa13ojouyod} Areyoridoid pue sprepuels Jo SQIMIXIN

QIEMI[PPIA 901AI0S Xo[dwo)

SIO[qRUF 9OTAIOS

$901AIOS xo[dwo))

sddy xo[dwo)

sar3ojouyoa} Arejoridoid pue sprepuels Jo SQIMIXIA

QIRMIPPIJA 9OTAIOS SJRIPIULIAU]

SI9[QBUH 9OIAIOS

SOOIAIQS Q)BIPAULIOIU]

sddy orerpowrojuy

sa13o010uyd9) Arejoradord pue sprepue)s Jo SQINIXIN

QIEMI[PPIIA 2JTATRS J[durrg

JIomauwrerd uowwoy)

$901AI0S o[dwurg

suonyeorddy

SOOIAIOS

sddy odwrg

asudiguyg

S$S4/SSO

WIoJIe[d 9OTAIOS

JI0MION
pa31aauo)

Iop1A0Ilq

K)1AT}IOQUUOD)

Ioquosqng

Ias() pug

— surwo(y /s4fing |

QINJOANIYOIY WIOPR[J AISAT[(] OTAIOS OLIQULD)

Table A.6: Mapping the Hewlett Packard SDP Architecture onto the SDP Framework

206

QIEMAPPIIA 90IN0STY

SQ0TA(T S90INOSAY
QIEMA[PPIJA] UOTIOUN,] A0INOSY
SuOTIOUN,] 90INOSAY
QIEMI[PPIA UOTIOUN,] 9JTATIS
suoTOUN,] 9JTAISS
sar3ojouyoa) Arejoridord pue sprepuels Jo SQIMIXIN QIBMI[PPIIA 01AIRS Xo[dwo))
SQOBJIOIUT YIIM SIS[qRUF UOWWO)) S901AI0S X9[dwo)
7 sddy xo[dwo)
sar3ojouyo9) Arejerzdoid pue sprepue)s Jo SQINJXTIA QIEMA[PPIIA] OTATIS IBIPOULIAU]
SQOBJIOIUT YIIM SIS[qRUF UOWWO)) SQOTAIOG Q)RIPAUWIAIU]
7 sddy orerpowrojuy
sa13ojouyoa} Areyoridord pue sprepuels Jo SQIMIXIN QIBMI[PPIA 991AIRS o[dwiIS
SQOBJIOIUI YIIM SIS[qRUH UOWO)) soo1A10G 9[dwrg
juayuo)/sddy joway juayuo)/sddy [eoo1 suonjeorddy sddy odwig
NI0MIN IOPIAOIg
osudiguyg SS9/SSO ULIOJ)e[d 9OTAIOS paSIoAuo)) KIATIOQUUOD) | 1OQLIOSQNS Ias() pug — swwwo(/suafinT T

QINJOJNIYOIY WLIOJIR[J ATOAI[(] IOIAIQS OLISUID)

Table A.7: Mapping the IBM SDP Architecture onto the SDP Framework

207

QTEMIPPIA 20INOSIY

SDINOSIY

QTEMIPPIA UOTIOUN,] 90IN0SAY

SUOTOUN 92IN0SIY

QIEMI[PPIA UOT)OUN,] IITAIOS

suonduny 3J1AIRS

QIEMIPPIIA 29TATOS Xordwio))

JusuId[qeuyg

JUSUWIA[qRUF 90TAQ(] “STOMIAN ‘TUUO0))

$991A10S xo[dwo))

sddy xoidwo)

sonriqedes JuowaSeuey sopraold Ing pauyopun

QIEMI[PPIIA 90TAIOS 9JRIPIUWLINIU]

Juowe[qeuy

uonnoaxy Juowko[de(‘UONEII) AIAIOS

SOOIAIOS QJBIPOULISIU]

sddy orerpourojuy

4SH Paseq-vOS

QIEMI[PPIIA 99TATRS o[dwurg

JuaWIR[qeUy $901A19G 1oddng soo1AI0S o[dwuIg
SQOIAIOS MAN SQOIATOS MAN sddy oidwig
JI0MION IopIaold
asudioyuyg SS9/SSO wiIoje[d AJIAIRS pasdiaauo) ANAIIOOUUOD) | I9QUIOSQNS | J19s() pug — suwwo(/s4afin |

QINJORNIYOIY WO AIQAI[(QOIAIOS OLISUID)

Table A.8: Mapping the Microsoft SDP Architecture onto the SDP Framework

208

Appendix B

Message Sequence Charts for IPTV Service

In this appendix we show additional message sequence diagrams for the SDP proof of con-
cept. We show interactions between the Parlay SCS and IMS functional entities. As a
result, we map SCS API invocations to SIP messages. We use our extended SCS API since
its current interface is not fully standardised. We also show the Parlay SCFs invoking the
extended SCS APL.

We illustrate interactions between Parlay X web services and the Parlay SCFs. These in-
teractions occur across web service and SCF APIs. We extend specific SCFs to provide
additional capabilities to satisfy the SDP proof of concept. These capabilities are reflected
in new or enhanced SCF APIs. As aresult, we abstract access to these SCF APIs by defining
new web service APIs. The new web service APIs ensure an appropriate level of abstraction

is exposed to external IT-using enterprises.

The following message sequences only specify the application, web service, SCF and SCS
API methods. We do not provide detail on the method parameters, since these may be rich
data structures. Also, for the SCS and IMS mappings we only provide recommendations

for SIP message extensions. We do not give detail on the contents of the new SIP messages.

B.1 Web Service and SCF Interactions

In this section we provide details on the interactions between external providers, end-users
and the SDP.

209

IPTV Service Provider ServMngt WS: Frmk SCF:IpFw Frmk SCF: IpService Frmk SCF: IpService
App ServiceReqister ServiceRegistration ContractMngt ProfileMngt

T T
: 1.registerServiceRequest : i Register IPTV i i
2.registerServiceSubType _ | Service URI i i
i i

1

1

1

1

h

3.announceServiceAvaiIabiIity:[‘

for the IPTV service. Also, profile
/L'J enables end-user registration.

I

]
4.createServiceContract

Create a basic Service Profile ﬁ

5.createServiceProfile

6.assign

registerServiceResponse

I
I
1
I
I
I
[l
I
I
I
I
i
I
and subscribe for the IPTV service !
I

ommee

Ready for end-users to locate ﬁ

Figure B.1: Registration of IPTV Service

B.1.1 IPTYV Service Registration

Currently, the Parlay framework provides limited subscription-oriented APIs. These APIs
enable one or more SCFs to be registered with the framework. However, we enhance these
APIs to enable service providers to register their end-user services with the framework. In
addition, we abstract the richness of these APIs into a newly defined Parlay X service man-
agement web service API. The web service API simplifies access to the framework service
management capabilities. In Figure [B.1} we show the following interactions involving the

extended framework APIs and new service management web service APIs:

1. The service provider wishes to register its IPTV service with the SDP. The service
provider may pass the URI of its IPTV service as one of the method parameters. In
addition, the service provider may provide information or a word list describing the

service its offering.

2. The web service requests the framework to register this service. The framework de-

tects an end-user service is being registered and not a SCF.

3. The web service requests the framework to make this service visible to other entities,

such as service brokers or end-users.

4. The web service requests the framework to create a service contract for the service

provider.

5. The web service requests the framework to create a basic service profile for the IPTV

service, within its service contract.

6. The web service requests the framework to associates the services provider’s contract

and profile. The web service returns successfully to the service provider.

210

Service Provider
Service Contract,
IPTV Service MMS Service
Profile Profile

Service Service
Agreement Agreement
Group Group

Figure B.2: Service Provider and End-User Registration Model

In Figure we reuse the framework’s service contract and service profile abstractions.
However, we reuse these abstractions differently, since we are registering end-user services
and not SCFs. We show the modified service contract and service profile abstractions in
Figure In the figure, the service contract contains service provider registration infor-
mation. This contract recognises the service provider as a provider of end-user specific
services. The service provider’s IPTV service is also registered within the service contract
as an IPTV service profile. The service provider may have multiple service profiles for dif-
ferent end-user services. For example, a service provider may have a single service contract

that contains an IPTV service profile, MMS service profile and telephony service profile.

The IPTV service profile contains a service agreement group (SAG). The SAG is used to
house one or more end-user registrations. These end-users have successfully registered to
use the IPTV service. The end-user registration contains information such as username,

password, account details and phone number.

B.1.2 End-User Service Location, Registration and Deregistration

In Figure[B.3] we use the service management web service to abstract the service discovery
capabilities of the framework SCF. The frameworks’ IpServiceDiscovery API is used used
to locate other SCFs. We extend this API to provide end-user service discovery. This

enables end-users to locate the registered IPTV service.

In the figure, we extend the framework’s client application registration capabilities to in-
clude end-user registrations. These capabilities are exposed by a new IpEndUserManage-
ment APIL. This interface inherits some methods from the framework’s existing IpClien-
tAppManagement API. The new API enables the service provider to populate its IPTV

service profile with a SAG and end-user subscriptions. We also extend the framework to

211

T T T

IPTV Service Provid Frmk SCF: IpServi
End-User IPTV App erxlce TS ServMngt WS:Broker Frmk SCF: IpAccess A Discovecervlce
I
I
L

| 1 findMeServiceRequest

T
|
: i
2.obtainInterface |

g
Return URI of 3.listServiceTypes

IPTV service
offered by Service
provider, that is SDP

I
5.discoverService

I 1
findMeServiceResponse ! !

I
I
I
i
i
} 4.describeServiceTypes
|
|
|
|

Ermk SCF: IpEnd

1 I
| |
| | SubMngt WS:UserMngt
| |
I |
I |
I |

Frmk SCF:IpEndUserMngt UserlnfoQuer:
UserintoQuery
T T '\
6. registerForServiceRequest } } \ N

| |

7. registerEndUserRequest | | Similar to
- | IpClient-

8.createEndUserSub ! AppMngt

9.createSAG

10.addSAGmembers “174 If no IPTV SAG then
create one, else
use existing SAG.

registerEndUserResponse

registerForServiceResponse

=

=
11.loginToServiceRequest

-

12.checkEndUserDetailsRequest_ |

13.describeEndUserSub

> 14. "verify details"

checkEndUserDetailsResponse

loginToServiceResponse

I I
15.deregisterFromServiceRequest

Retains end-user info,

|
|
|
|
|
|
|
} if user re: registers

T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i
16.deregisterEndUserRequest |
I

17.removeSAGmembers _ 1~

deregisterEndUserResponse

e I
I
I

=

deregisterFrom | K-~ ""-TTTTo oo oo oo T
ServiceResponse |

Figure B.3: End-User Message Sequences

provide an IpEndUserInfoQuery API that enables end-user subscription information to be
retrieved. We abstract access to the new framework APIs by defining a new Parlay X based

subscription management web service APL

In Figure[B.3|the interactions are as follows:

1. The end-user requests the service management web service to locate a television ser-

vice. The end-user may provide additional details on the service it requires.
2. The web service requests access to the service discovery interface on the framework.

3. The web service requests the framework to list services that match the end-user’s
request. The framework determines an end-user service list is required and not a SCF

list.

4. The web service requests the framework to provide additional details on a specific
service that it has found to match the user request. This service being the IPTV

service.

212

10.

11.

12.

13.

14.

15.

16.

17.

The web service requests the framework to provide the location of the IPTV service.

This may represent a URI. The web service returns the location to the end-user.

Using the URI, the end-user registers with the IPTV service provider by providing

personal information.

. The service requests the subscription management web service to store the registra-

tion information in its service contract and IPTV service profile.
The web service requests the framework to create a new end-user subscription.

If this is the first subscription, the web service requests the framework to create a new
SAG to hold the end-user subscription. The SAG is stored as part of the IPTV service
profile.

The web service requests the framework to add a new end-user subscription to the
SAG. Once completed the web service returns successfully to the service provider,

who forwards the result to the end-user.
The end-user logs into the IPTV service by providing his/her username and password.

The service requests the subscription management web service to verify the end-
user’s username and password stored in his registration. This information is contained
in the IPTV service profile SAG.

The web service requests the framework to obtain the end-user subscription informa-

tion from the IPTV service profile SAG.

The web service extracts the end-user’s username and password and verifies if it is
correct. The web service returns the result to the service provider, who forwards the

result to the end-user.
At some point the end-user may deregister with the IPTV service provider.

The service requests the subscription management web service to deregister the end-

user by removing him/her from the SAG.

The web service requests the framework to remove the end-user subscription from the
IPTV service profile SAG. The web service returns a successful deregistration result

to the service provider, who forwards the result to the end-user.

B.1.3 Media Provider Registration

Similar to the previous service registration, service location and end-user subscription, we

reuse the Parlay framework’s capabilities to mange content registration, content location

213

Frmk SCF:IpFwContent Frmk SCF: IpContent Frmk SCF: IpContent

Content Mngt WS:Broker Registration ContractMngt ProfileMngt

Media Provider App
T

T
i
1 1.registerContentRequest : { |

i i
i I L
7 | . j | .)
i Register IPTV Create a basic Content Profile.
2. terContent ! ! " L

// fegisterzonten L Content App ! Different Profiles limit what

3.announceContentAvaiIabiIityj % ! content providers can use.
i
|
|

Pass URI of media T
provider app, and details ’
of what content it offers /U

i
| 5.createContentProfile .
T T
} 6.assign } j ‘
T T
registerContentResponse i i i
----------------- , i | !

T
4.createContentContract

Figure B.4: Registration of Media Provider

and application provider registration.

In Figure we extend the frameworks SCF registration capabilities to include content
registration. These new capabilities are exposed by new IpFwContentRegistration, IpCon-
tentContractManagement and IpContentProfileManagement APIs. These new APIs are
similar to the framework’s existing IpFwServiceRegistration, IpServiceContractManage-
ment and IpServiceProfileManagement APIs. The new APIs provide methods that enable
media providers to register themselves as content providers with the framework. Also, me-
dia providers may register their various content sources with the framework. We abstract
access to the framework’s new content registration capabilities using a new Parlay X based

content management web service APIL.

In Figure[B.4the interactions are as follows:

1. The media provider wishes to register its diverse television content with the SDP. The
service provider passes a URI of an application that manages access to its content
sources. In addition, the service provider may provide information or a word list

describing its offered content.

2. The web service requests the framework to register this media provider as a con-
tent provider, using its application and content list. The framework detects a content

provider is being registered and not a SCF.

3. The web service requests the framework to make this content visible to other entities,

such as application providers.

4. The web service requests the framework to create a content contract for the media

provider.

5. The web service requests the framework to create a basic content profile, within its

content contract, describing the media provider’s offered television content.

6. The web service requests the framework to associates the media provider’s content

214

Media
Provider Content
Contract

Television
Content Profile

Ring Tone
Content Profile

Content
Agreement

Content
Agreement

Figure B.5: Media Provider and Application Provider Registration Model

contract and television content profile. The web service returns a successful outcome

to the media provider.

In Figure we again reuse the framework’s service contract and service profile abstrac-
tions. However, these abstractions are now content-oriented, since we are registering con-
tent and not SCFs. We show the content contract and content profile abstractions in Fig-
ure[B.5] In the figure, the content contract contains media provider registration information.
This implies the media provider is registered with the framework as a provider of televi-
sion content. The media provider’s television content is also registered within the content
contract as a content profile. The profile contains the location of the application providing
access to the television content source(s). The media provider may have multiple content
profiles for different content types. For example, a media provider may have a single con-
tent contract that contains a television content profile, picture content profile and ring tone

content profile.

The television content profile contains a content agreement group (CAG). The CAG is used
to house one or more application provider registrations. These application providers have
successfully registered to use the television content. The application provider registration

contains information such as username, password, account details and address.

B.1.4 Application Provider Content Location, Registration and Deregistra-

tion

In Figure [B.6| we enhance the framework’s SCF discovery capabilities to include content

discovery. The content has already been registered using its new content registration APIs,

215

Frmk SCF: IpContent

Media Provider App Content Mngt WS:Broker Frmk SCF: IpAccess Prcayan

IPTV Provider App ‘

! i

! 1 .IocateCpntentRequest ! 1
! |
|

|

2.obtainInterface

i -
Return URI of 3.listContentTypes

media app

T
4.describeContentTypes
T

5.discoverContent

| T
| locateContentResponse }
77777777777777777 R |

I
|
!
I
' Content Mngt WS: Ermk SCF:IpApp
I
I
|

Subscription ProviderMngt
I I~
6. registerForContentRequest | ' '
| | Similar to
7. registerAppProviderRequest } 1 IpClient-
| AppMngt
8.createAppProviderSub :
9.createCAG
<
10.addCAGmembers
~
. registerAppProviderResponse >
registerFor Ko==mmmmmmmmmm e If no CAG then
ContentResponse create one, else
D iR use existing CAG.

12.deregisterAppProviderRequest

I

I

I

I I

: : | |
I I

11.deregisterForContentRequest ; !
I I

i i

I

13.removeCAGmembers _ |

Retains provider info,

deregisterFor | K-~~~ ""T-T-TTToToo o
! if provider re-registers

ContentResponse |
I

I
I
I
I
I
]
I
I
I
]
I
I
]
I
I
I
Q
5
jo3
&
@
)
>
kel
e}
o
3
<
<
5
A
[}
1]
o
o
]
2
[}
1
!
I
1

Figure B.6: Application Provider Message Sequences

discussed previously. The content discovery capabilities are exposed by a new IpContent-

Discovery API. This API is similar to the framework’s existing IpServiceDiscovery API.

In the figure, we also extend the framework’s client application registration capabilities to
include application provider registrations. These capabilities are exposed by a new IpApp-
ProviderManagement API. This interface is similar to the framework’s existing IpClien-
tAppManagement API. The new API enables the media provider to populate its television
content profile with a CAG and application provider subscriptions. We abstract access to

the new framework APIs by using the content management web service APL

The Figure[B.6|we show the following interactions:

1. The IPTV application provider requests the content management web service to lo-
cate television content offered by a media provider. In its request, the application

provider may provide specific details on the content it requires.

2. The web service requests access to the new content discovery interface on the frame-

work.

3. The web service requests the framework to list content that match application provider’s

request.

216

10.

11.

12.

13.

The web service requests the framework to provide additional details on specific con-
tent that it has found to match the application provider’s request. This content being

the television content.

The web service requests the framework to return the location of the media provider
application, that will provide access to the television content. This location is repre-

sented as an URI. The web service returns the location to the application provider.

Using the URI, the application provider registers with the media provider. The appli-

cation provider provides various information in this request.

The media provider application requests the content management web service to store

the registration information in its television content profile CAG.

. The web service requests the framework to create a new application provider sub-

scription.

If this is the first subscription, the web service requests the framework to create a new

television content profile CAG to hold the subscription information.

The web service requests the framework to add the new application provider subscrip-
tion to the television content profile CAG. Once completed the web service returns

the result to the media provider, who forwards the result to the application provider.
At some point the application provider may deregister with the media provider.

The media provider requests the content management web service to deregister the
application provider by removing its subscription from the television content profile
CAG.

The web service requests the framework to remove the application provider subscrip-
tion from the media provider’s television content profile CAG. The web service re-
turns a successful deregistration result to the media provider, who forwards the result

to the application provider.

B.1.5 SDP and Enterprise Policy Management

In Figure [B.7] we define a new Parlay X based policy management web service API. This

API abstracts access to the existing policy management SCF API. Application providers,

media providers and service providers use the web service to view SDP policies. Also, the

web service API enables external entities to create their own policies to manage access to

their services and content. The figure shows the following interactions:

217

asuodsayAoljodieb

I
|
”
|
! Lol Ayduss, 61 A
I
|
I

7 ﬁ 1sIuonovIeb gl

Isiuonipuodieb /)

| 1senbayAoljodieb ‘gl

S ¢
asuodsayAoljodaieald

UOIOBSUBL | JILUWOD G|,

[L

1SIUOHOVISS P
1

1sruopuoDIes gl
1

I

I

|

T

I

I

T

I

I

1 I
i i
uonoyelesso || |
; |
1 I
I

|

I

I

|

I

I

|

T

I

I

|

|

uolIPUODBIEaId §

Mau ‘g

a|nyeleald /

Mau g
I

dnoigajeasd g
|

foijod adwis
e sajeal)

MU

ulewoQgajeald ¢

uonoesuel| Jejs 'z |

I I ! ! | I I !

oY

ddy ssauisng
TopiAcId 10 00[8 1L

urewoq

Figure B.7: Create and Obtain Policy Information
218

management web service. The request includes structured information describing the

new policy.

1. An enterprise or SDP application requires a new policy to be created, via the policy
policy.

3. The web service creates a new policy domain, relating to the entity that requires the

2. The web service starts a new policy transaction with the policy SCF.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A new policy domain object is created.

The web service creates a new policy group, within the domain, to hold the details of

the new policy.

A new group object is created.

The web service creates a new rule, within the group, to define the policy.

A new rule object is created.

The web service creates a new condition, within the rule.

A new condition object is created.

The web service creates a new action that is invoked when the condition is satisfied.
A new action object is created.

A new condition list is created that defines the conditions to be satisfied to invoke a

specific action.

A new action list is created that defines the actions to invokes when conditions are

satisfied.

The web service commits this policy to the SCF. A response is returned to the external

entity or telco.

An external or SDP application requests information about a policy that has been
created. This request is made on a different API exposed by the policy management

web service.

The web service invokes the SCF to obtain condition details that constitute the re-

quested policy.

The web service invokes the SCF to obtain corresponding actions details that relate

to the policy conditions.

The web service constructs a simplified representation of the policy details and returns

this information to the requesting entity.

In Figure[B.8| we use the policy management web service API to remove policies. The web

service API enables policies to only be deleted by those who defined them. These policies

are managed by the policy management SCF. The figure shows the following interactions:

1.

The requesting entity requires the deletion of a specific policy.

219

L |

i aj1ep "9
i
I

f

"S8I}IJUd SSBUISN(JaYJ0 UM
pajeroosse salijod suleyuod i Ji
pajelep AlIny @q jou Aepy

/ |
/ |

UONOBSUEI | JIWWOD "¢

1
| |jelep ¢l
I

Q1919p "0}

d919p '8

! ulewoganowal ‘||

dnoioenowsas ‘6
i

s|nyerowal *,

uoipuoDBAOWal 'G
I

asuodsayAoljodalsjep

|
|
I
T
i
I
! ajoep | I
i : | i £oijod sjdwis
i i | W uonoyeAowsal ‘¢ e sejeleq
| | | 1
i | i m m i UOIJOBSURI] 1IB)S 2 "
! 1 I | | '
m m m ! ! ! m 1senbayAolodeleep 'L |
1 L 1
Uonoy Tonpuoy 3y danoig urewoq IBUN ddysseusng

Ad10d4dr 7338 Adtod

AJ10d4dr 308 Adtod

Ao1od4dr 7308 Adtod

AJ1o4dr 39S Adtod AJ1oddr 39S Adtod

Ad1o4dr 39S Adtod

TSPIAOId 10 038 L

Figure B.8: Remove a Policy

2. The web service starts a new policy transaction with the policy SCF.

3. The web service removes the actions associated with the policy conditions.

4. The actions are removed and the action object is destroyed.

220

5. The web service removes the conditions associated with the policy.

6. The conditions are removed and the condition object is destroyed.

7. The web service removes the rule associated with the policy.

8. The rule object is destroyed.

9. The web service removes the policy group associated with policy to be deleted.
10. The policy group object is destroyed, if their are no other rules store in that group.
11. The web service removes the domain associated with the policy group.

12. The domain object is destroyed, if there are no more groups stored in that domain.

13. The web service commits these removal actions to the SCF. A response is returned to

the external entity or telco.

B.1.6 End-User Account Management

In Figure we use the existing Parlay X based account management web service API.
This API abstracts access to the account management SCF API. The IPTV service provider
uses this web service to manage their end-users’ accounts. The figure shows the following

interactions:

1. The end-user requires his/her account balance.

2. The IPTV service provider requests the end-user’s balance from the account manage-

ment web service.

3. The web service creates a new callback object. The web service requests this object

to obtain the end-user’s balance.

4. The web service callback object requests the end-user’s balance from the account

management SCF.
5. The SCF requests the SCS to obtain the end-user’s balance.
6. The SCS returns the end-user’s balance to the SCF.
7. The SCF returns the end-user’s balance to the web service callback object.

8. The callback object returns the end-user’s balance to the web service. The web service

returns the result to the service provider, who forwards it to the end-user.

221

J]

r; 7 soyAolsIHUONOESUEL | BABL}RI "Gl

E soyfolsIHUONOESUBI | 9ABLIR) “P|.

: Bapusd, T ~

»

Juinmai,

“bayhossiHuoRoBSURI [aASLIBI €|

bayAoLsiHUONOESURI | 9ABIIRI “ZL

JAoisiy piemioy, gL

: T suodsoukiorines
»

‘pauinjal si
o118 Ue pue asuodsal ou Ji JNoBWI} AN
‘ddyd| uo asuodsai 3oeq||ed 10} JeAL

Juinai,

‘(enoge
98S) MaU d¥ew uay} pajealo
jou Jabeuepyunoooyddyd) J|

bayAossiHuonoeSUEI | 9ABIRI "L |

1senbayAioysiHieb 0L

asuodsayAiosiHooe

!_________
i

asuodsayaouelegiob

: ““““ Bupusd, " ~

bayeouejeghianb ‘g

bayeoueieghianb ‘¢

,O0UB[E] PIEMIOY, '8

\\\\\\\\\\\\\\\ S

Juinal,

‘pauinjal si
JoWs Ue pue asuodsal ou Ji NoBWIN AN
‘ddyd| uo asuodsal 3oeq||ed 1) Jep

bayeouejeghionb / mau "¢

1sanbayeouelegyeb ‘'z

sanbayAIoisiHooE 6

asuodsayeouejegooe

Jsanbayjeouejegooe *|

ToBEUBIUNGI0YAdyd[0ib0 | ddy

daay

ddy 18sN-pug ALdl

JSpIAOI 33IAI8S Aldl

Figure B.9: Obtain Account Balance and History

9. The end-user requires his/her account history.

10. The IPTV service provider requests the end-user’s account history from the account

management web service.

11. The web service reuses its existing callback object or creates one if none is available.

The web service requests its callback object to obtain the end-user’s account history.

12. The web service callback object requests the end-user’s account history from the

account management SCF.

13. The SCF requests the SCS to obtain the end-user’s account history.

222

IPTV Service
Provider App

AM WS:Account
Management

AM SCF:lp
AccountManager

App Logic:IpApp

IPTV End-User App AccountManager

SCs

1. payAccRequest

T
|
I
I
i
|
2. balanceUpdateRequest !

3. updateBalanceReq

4. updateBalanceReq
If IPAppAccountManager not ﬁ » 5. updateBalanceReq

created then make new (see
above).

"pending”

“return”

1
Koo

"return”

|
S e i
| | 6. updateBalanceRes
Wait for callback response on IpApp. We |
timeout if no response and an error is returned. \ 7. updateBalanceRes
<

8. "forward balance” ‘

balanceUpdateResponse
le—

T
1
1
X |
1

|
! |
|
i i !
i | | !
payAccResponse ! ! ! H
o | l l !

Figure B.10: Pay End-User Account

14. The SCS returns the end-user’s account history to the SCF.
15. The SCF returns the end-user’s account history to the web service callback object.

16. The callback object returns the end-user’s account history to the web service. The

web service returns the result to the service provider, who forwards it to the end-user.

B.1.7 End-Use Payments

In Figure[B.10] we again use the account management web service API. The IPTV service
provider uses this web service to manage their end-user payments. The figure shows the

following interactions:

1. The end-user requires to make a payment towards his account using his/her credit

card or IPTV payment vouchers.

2. The IPTV service provider requests the web service to update its end-users account

balance.

3. The web service creates or uses an existing callback object to update the end-user’s

account balance.

4. The web service callback object requests the account management SCF to update the

end-user’s account balance.

5. The SCF requests the SCS to update the end-user’s account balance.

223

The SCS returns a successful update has been made to the end-user’s account balance.
the SCF returns the successful result to the web service callback object.

the callback object returns the result to the web service. The web service returns the

result to the service provider, who forwards it to the end-user.

B.1.8 End-User Pay Per View Part 1

In Figure [B.11] we use the existing Parlay X payment web service APIL. This web service

API simplifies access to the Payment SCF. The IPTV service provider uses the payment web

service to charge end-user accounts for viewing special IPTV content. The figure shows the

following interactions:

1.

10.

The end-user requests a the television guide from the service provider. The guide will

indicate content that requires payment and those that are free to view.

The service provider requests a list of available television content from the IPTV

service provider.

The application provider requests the content list from the media provider. The media
provide returns the list to the application provider. The list is returned to the service

provider, who generates the television guide and returns the guide to the end-user.

The end-user selects a television programme to watch. This programme is not free

and requires payment.

. The service provider requests the payment web service to charge the end-user’s ac-

count for the content.

The web service creates a callback object to manage asynchronous responses from

the payment SCF.

The web service requests the payment SCF to create a charging session to modify the

end-user’s account.

. The new charging session object is created in the SCF.

. We add this method to the SCF API, to allow the web service access to the newly

created charging session’s interface.

The web service informs the charging session to reserve an amount from the end-

user’s account, such that he/she can watch the selected content.

224

,asuodsal
plemioy, |

JBuipuad,

:

bayjunowyensesal *| |

SoYuUNOWaAISsal ‘gl

asuodsayjunowyaAIasal

uo asuodsal Yoeq|[ed 1o} Nep

‘pauinjal S| 1olle ue pue

Mou ‘g

Joyuoissagbuibieyndyeb 6
)
|
|

uolssagbulbieypsiesio */

I
|
| asuodsal ou yi Jnoswiy apn-ddyd]
I
|
I
]

I}
Mau ‘9
T

Jsenbayjunowyaalesal g

asuodsaymaino] Aed

)|
@l

I i)
ArI0S OHO

A4S OHD

o] T TBIEUD

UIBIBGOBWNOA
BAIBSTYSM LINd

\\\\\\\\\\\\\\\\ ¢
asuodsay}sIjuauoDiah

JsenbayisIfusjuoDieb ¢

asuodsayapIinHA | MaIA

189NboyepPINOALMBIA 7

1sanbaymainoAed

asuodsayepINOA | MaIA

159NboYopPINOALMOIA | |
I

ddy

ToPIROIG SOTES AL

ddy 15N-pUT ALdl

Figure B.11: Pay Per View for Pre-booking Content

11. The SCF requests the SCS to reserve the amount from the end-user’s account.

The SCS informs the SCF that the amount has been reserved.

12.

13. The SCF informs the web service on its callback object.

14. The callback object informs the web service that the amount is reserved. The web

service informs the service provider, who then informs the end-user. Now the delivery

of the content is started.

225

@ —
B b F----- -
12]) N
o | »
¢ ! 4
= | = o
5 o | 5 a
9] c ! <) 3
S 5 ! = °
e [
< G i g -
o) Q el o
[}) [7] -
= o© °
9 L ! .
=k < 0
2
5 \’/) A —
1 5 S O e _
ol & — N
I| g ! 0
g I 3
Ol ! ['4
| =
c
| >
I]
I £
|]
o
= g ‘ 5
9 14 | ©
7l = :
o) c | © Q
3| = /
& 3 |)
__________ N e R . PR
= £ 3! L <
g | = o
g < L © =
(&) 8 T 2 o
|
o S
? | <%
o) | a
S o
L
| B
A ©
|] g
S
o [= L
2l g - E
ol £ .
| L [€5 |~
x| S N 29
g% 777777777 c¢ 4 o T
g3 B ° 5 @ | B
Eg [0} m% 23 [}
o =1 c 2 c >
o S 6 o | =4
Q [o RN Q| O
4 Q@ S 14
c [| c
S 2 4 5
= X o c | =
© ERs o ©
c 8« =l g
o =2 . I
n © 5O EI @0
o] S0 @ o}
4 o O C 8' x
© SES I ©
o =2 x| @
s To® > ! @
o =2 c [}
Y . -S .
8|
48 o N2 ©
He t-———— L [
N E T 0P
Ak - / I 8o
alq 7 Q o5
Q @ » o
> S [T]
o Q| n O
o o G ©® =
x T o ! L »m
= o & & TR}
S E o > xm
2 8% ‘s !
@ £ o 9:
3 = FEo) @
Q| [
3 - 4 Yo
g € g
uj @ O
= o5
a

Figure B.12: Pay Per View After Viewing Content

B.1.9 End-User Pay Per View Part 2

In Figure we again use the payment web service API to complete the charging of the

end-user account for watching specific content. The figure shows the following interactions:

1. The end-user completes or cancels watching the television programme.

2. The service provider requests the payment web service to complete charging the end-

user’s account.

3. The web service requests the payment SCF to debit the reserved amount off the end-

user’s account, for watching the specific television content.

226

10.

The SCF requests the SCS to debit the reserved amount off the end-user’s account.
The SCS informs the SCF that the reserved amount has been debited.

The SCF informs the web service on its callback object that the reserved amount has
been debited.

The callback object informs the web service. The web service informs the service

provider, who then informs the end-user.

. Since the content delivery and the charging session has been completed, the IPTV

service provider requests the web service to release all resources used to charge the

end-user’s account.

. The web service requests the payment SCF to release all resource used to charge the

end-user’s account. The web service may also delete its callback object.

The SCF requests the SCS to release resources used to charge the end-user’s account.

B.1.10 End-User Presence and Availability

In Figure[B.13] we use the existing Parlay X presence and availability web service API. This

web service API simplifies access to the presence and availability SCF. The IPTV applica-

tion provider uses the presence web service to manage end-user presence and availability

for IPTV, telephony and messaging services. The figure shows the following interactions:

. The end-user updates his/her presence.

The IPTV service provider notifies the application provider of the change in end-user

presence.

The application provider requests the presence web service to store the end-user’s

presence within the SDP.

The web service requests the presence and availability SCF to update the end-user’s

presence in the SDP.

. The SCF requests the SCS to update the end-user’s presence in a presence database.

The end-user requests his/her friend’s presence status.

The IPTV service provider requests the application provider for the presence status

of the end-user’s friend.

227

fungeirene uinjay,

||||||||| rIIIIIIIIIIIIIIIIIW

Lungelrene uinjal,

I
i Augeneayiet o)
|
|
|

1)

T
|
|
|
|
|

Aunqelenyysb -6
I

mo:mwmh,n_\ﬁ_acmv_«@w ‘G
|
|
|
|
|
|
|
|
|
|
|
|
|

il

asuodsay
9ouasaldiasnieb

_
' Jsenbay

I soussaidiosnyeb g
,

soussaighiuapes v 7 ﬁ

S Sy -

asuodsaysnielsAppng

IIIIIIIIIIIIIII IW
asuodsaysnie}sAppng

ysanbayysiignd ‘¢ 7 ﬁ

1sanbaysniejsAppng ‘2

1sanbaysnieisAppng ‘9

F--

jsanbaysniejgajepdn ‘g 7 ﬁ
_ jsenbaysnieygajepdn 1| LA
1

ddy

)|
@l

MAETEAYYJaT 308 Wvd

BoUBSBIJAINMUBPINYJAr 308 WVd

-SM NVd ddy J8piAcid ALdI

sV A TS PUI AL
TopIRoId SOINIBS AL 'V 8SN-PUI ALdI

Figure B.13: Update and Obtain End-User Presence Status

8. The application provider requests the web service to obtain the presence status of the

end-user’s friend.

9. The web service requests the SCF to obtain the presence status of the end-user’s

friend.

10. The SCF requests the SCS to obtain the presence status of the end-user’s friend(s).

Once obtained the presence is returned to the end-user, via the SCF, web service,

application provider and service provider.

228

B.1.11 End-User Makes an IPTV Call

In Figure we use the existing Parlay X third party call web service APIL. This web

service simplifies access to the multiparty call control SCF. We do not provide any exten-

sions for this SCF. The IPTV application provider uses the third party call web service to

setup and manage calls between end-users registered and using the IPTV service. The figure

shows the following interactions:

1.

10.

11.

12.

13.

14.

15.

The end-user requests a call be setup with his friend. The friends presence indicates

that he/she can answer the call.

The IPTV service provider requests the application provider to setup the call.

. The application provider requests the third party call web service to setup the call

between the two parties.

The web service creates a call leg callback object for the end-user (Party A).

. The web service creates a call leg callback object for the end-user’s friend (Party B).

The web service requests the SCF to create a call object.
The call object is created.

We add this method to the multiparty call control SCF API, to allow the web service

access to the newly created call object’s interface.

The web service requests the call object to create a call leg object for the end-
user (Party A) in the SCF.

The call leg object is created.

The web service requests the call object to create a call leg object for the end-user’s
friend (Party B) in the SCF.

The call leg object is created.

The web service requests notifications from the end-user call leg object about changes
in its call state. The web service requests the end-user call leg object to route the call

to the end-user across the converged network.

The end-user call leg object requests the SCS to route the call in the network to the

end-user.

The web service requests notifications from the friend call leg object about changes
in its call state. The web service requests the friend call leg object to route the call to

the friend across the converged network.

229

LJuinjal,

b e
|
|
I
I
I
I
|
|
I
I
I
I
|
|
I
I
I
I
|
|
|
I
I
I
I
|

|
I
I
I
I
|
|
I
I
I
I
|
N2

(g Aed) bayeinos / bayuodeyiueas G|

Wuinjal,

(v Aued) bayainos / baypodayiuans ‘gl

Bajlepaiealo 'L |

Bajlepaiealo 6

mau “/

$90dINd3ab -8

|[eD9)e8I0 "9

IIIIIIIIIIIII W
asuodsay|epaew

g 10dN

V-T10dN

ddyd[oi60] ddy

ddyd[o160] ddy

S OdWAr40S SdW

jsenbay|leDayew ‘¢

||||||||||||| 3
asuodsayAppng|es

ysenbayAppng|ed 'z

\\\\\\\\\\\\\ v%
asuodsayAppngileo

led ALd
a|qelieny si Ap

| 10}
png

1senbayAppngleo ‘|

TIBOAYEdPIYL'SM OdL

ddy J8piroid ALdI

% R

ToPIROId SIS ALl

ddy 185N-pu3 ALdl

Figure B.14: Setup Two Party Call Between End-User and Friend

16. The friend call leg object requests the SCS to route the call in the network to the

friend (Party B). While the call is being setup the web service informs the IPTV

application provide that the call is in progress. This information is also returned to

the service provider, who also informs the end-user.

230

asuodsay

uonewlou||eDieb

jsenbay

J]

soypodayiuans 4

/7 ; (g Aued) wmw_t,oammégw ‘G
|

|
I
|

soyuodayjuans °|
I

/7 ; (v AHed) seypodayjuans g
| I

LJUBAS pIBMIOY, 'E

8-T0dWAr30S OdW

V-TOdINAI 43S OdA

uopjewJou||eD3eb ‘6

asuodseysniels|ied

Jsenbaysnielg|ies ‘g

....... 3
asuodsaysnieisAppng|ed

}sanbaysnjeysAppngiieo /.

EOAHBGPIUL'SM OdL

qdy JpIAoId AL

ddy

ToPIACId SOIAIBS ALl

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ddy 18sn-pug ALdl

Figure B.15: Checking Status of Two Party IPTV Call

End-User Checks on IPTV Call Status

B.1.12

In Figure [B.15] we again use the third party call web service API to view the status of

call being setup between the two end-users using the IPTV service. The figure shows the

following interactions:

231

1. The SCS informs the SCF’s end-user call leg object that the call has been setup be-

tween the end-user in the network.

2. The call leg object forwards this result to the web service on its end-user call leg

callback object.
3. The end-user call leg callback object forwards this result to the web service.

4. The SCS informs the SCF’s friend call leg object that the call has been setup between
the friend in the network. Now the end-user and friend are connected to the call and

both start communicating.

5. The friend call leg object forwards this result to the web service on its friend call leg

callback object.
6. The end-user call leg callback object forwards this result to the web service.

7. At any point in time during the setup of the call, the end-user may request the IPTV

service provider for the state of the call.
8. The service provide requests the application provider for the state of the call.

9. The application provider requests the third party call web service for the state of the
call. The web service may return waiting, in progress or Party A/B busy as call state
information. This information is returned to the application provider. The application
provider returns this result to the service provider, who forwards the result to the

end-user.

B.1.13 End-User Ends an IPTV Call

In Figure [B.16] we again use the third party call web service API to end a call that has
been setup between two end-users using the IPTV service. The figure shows the following

interactions:

1. The end-user requests the call with his friend to be ended.
2. The IPTV service provider requests the application provider to end the call.

3. The application provider requests the third party call web service to end the call be-

tween the two parties.
4. The web service deletes its end-user call leg callback object.

5. The web service deletes the friend call leg callback object.

232

17
£)_ _____
@l

10. release

8. release

Q
(2}
(]
o
[
________________________ P e
o
(0]
172}
©
Q<
[
9 =
S ~
W l____
Q|
12
4
o
= 2
o
[I
8lal ;]
9
o
g
<
Q
(2}
©
- o
g 2 e
g 3 -
= - ©
S I o]
8 ©
w
g 2
h ko]
[0}
kel
<~
- I
|73 8 I
] 2
o 8\
Q & !
x Q|
S &
= |
i) 8 I
[= 5 !
m_ c |
. mb

2. endCallBuddy
Request
endCallBuddy
Response

IPTV Service Provider
App
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ¢

|
|
|
|
|
|
|

1. endCallBuddy
Request
endCallBuddy
Response

IPTV End-User A|

Figure B.16: Ending an IPTV Call between Two Parties

. The web service requests the multiparty call control SCF release all resources used
to setup and maintain the call. The web service returns a successful release result
to the application provider. The application provider returns the result to the service

provider, who also informs the end-user.
. The SCF requests its end-user call leg object to release network resources.

. The end-user call leg object requests the SCS to release network resources used to

setup and maintain the call on the end-user side.

. The SCF requests its friend call leg object to release network resources.

233

10.

The friend call leg object requests the SCS to release network resources used to setup

and maintain the call on the end-user’s friend side.

B.1.14 Interactive End-User Messaging

In Figure we use the existing Parlay X SMS web service API. This web service API

simplifies access to the user interaction SCF. The IPTV application provider uses the SMS

web service to send and receive messages between end-users registered and using the IPTV

service. The figure shows the following interactions:

1.

10.

11.

The end-user requests the IPTV service provider to send a message to his/her friend

that is available to read this message.

The service provider requests the application provider to deliver this message to the

end-user’s friend.

The application provider requests the SMS web service to send the message to the

end-user’s friend.

The web service creates a callback object that manages asynchronous communication

with the user interaction SCF.

The web service requests the user interaction SCF to create a new user interaction

object in the SCF.

The new user interaction object is created.

. We add this method to the user interaction SCF API, to allow the web service access

to the newly created user interaction object’s interface.

The web service requests the user interaction object to send the message to the end-

user’s friend.

The user interaction object requests the SCS send the message to the end-user’s
friend. The SCS returns a pending result to the SCF. The SCF forwards this result to
the web service. The web service also returns the result to the application provider.

The application provider informs the service provider, who also informs the end-user.

The end-user’s friend may reply to this message after a period of time. The SCS sends

the reply message to the user interaction object.

The user interaction object informs the web service of this reply on its user interaction

callback object.

234

; | | | | | |
| | | | | |
| | | | | |

T | | | | |

\ asesjal | 4 ﬁ | | _ _ i
| + + 1 1
| | T ewemior | | |]
| | | | | 1
” _ ” _ /; _ Jobessaw piemioy, _
| | | ‘pases|al aJe s}0a[qo 403 | |
W _ W ‘annjoeu si uojssas Buibessaw §| /; _ Lobessaw piemioy, _ _
| | | | |
| i W i JoBessaw premioy, | i i
| | | | | | L
| | | ; Tammwme pIEMIOY, “ZL | | |
| _ : - : | | L N
W ; _ mmm6®=ooﬁi<ot:ucww L _ W _ asuodsayabessa
—>5 | i , o ikt — Appngpuas
h;wwmﬁw=oov:<0t:ncwm ol ! | i | asuodsayabessay
, ! ! ! 0 N 1 Appngpues
| | | | asuodsaySINSpUSS
e e - —>
” ” el
\\\\\\\\\\\\\\\ > " i
JBupuad, ! i
| |
| |
| |
| | |
| baysjjoopuyolUIpUSs ‘6 | '
| i boyioeli0opuyojuIpULS ‘g
| | | |
| T
| JuNIdpeb L
| |
| i mau g i
| | T t
I ! ! |Nd8eaud 'g
| ! | [L
| ‘pajeald ale |Nd| sjdnnw | i Mau “f ‘a|qelene s|
” ‘se1ppnq ajdninuw BuiBessaw J ” i ,) . abessow au)
| _ ! ! | ISONDOYUSNSPUSS g Buinledas Appng
| | | |
W _ W ‘408 IN pue o160| dde dnjes _ ﬂwwwwwm_wmwww.ws_
| | | ‘ |
| ! | ﬂg uay) ‘ebessaw Jsiiy 8y} sI sIu §| ! Jsenbeyabessapy

|
i
| Appngpuss °|,
|
|

Figure B.17: Messaging between Two IPTV End-Users
235

ddy
SOS g

TopIACId 99IAIBS ALdI

ddy 1sN-puz ALdl

The web service forwards the message to the application provider. The application

12. The user interaction callback object returns the reply message to the web service.

provider informs the service provider, who also informs the end-user, of the reply

message.

13. After a period of time the end-user and friend may not send messages to each other.
Hence, the web service requests the SCF’s user interaction object to release resources

used to facilitate messaging.

14. The user interaction object requests the SCS to also release any resources used to

deliver the previous messages.

B.1.15 Provide End-User with IPTV Help

In Figure we use the existing Parlay X audio call web service API. This web service
API also simplifies access to the user interaction SCF. The IPTV application provider uses
the audio call web service to deliver audio to the end-user, based on interactive responses
obtained from the end-user. The pairing of the audio and interactive responses represents

the interactive IPTV help service. The figure shows the following interactions:

1. The end-user requests the service provider to start the interactive help service. In
parallel a two party call is set up between the end-user and audio source, such as an
IVR.

2. The service provider requests the application provider start the interactive help ser-

vice.

3. The application provider requests the audio call web service to play a specific audio
message to the end-user. This initial audio message signals the start of the interactive

tutorial.

4. The web service creates a new user interaction callback object to manage asyn-

chronous communication with the SCF.

5. The web service requests the user interaction SCF to create a new user interaction

call object.
6. The new user interaction call object is created.

7. We add this method to the user interaction SCF API, to allow the web service access

to the newly created user interaction call object’s interface.

8. The web service requests the user interaction call object to deliver the specific audio

message and collect any input from the end-user.

236

L

asesjal "0z ‘ ﬁ

oseajal ‘6l

oj919p ‘gl

jsanbayabessspus "/ | ‘ ﬁ

1sanbaydjaHolpnydols .oL ﬁ

‘djay oipne pus

0} sjuem jus|)

_ 1senbaydjaHolpnydos .mFC
I

i

S8YI09||0QpUYPUSS 0L

JBuipuad,

bay108]|00PUYOUIPUSS 6 7

1senbay
abessa|yoipnyAeld |
JUBAS plemioy, ‘gl
.JUsAe piemioy, |
T
; ; $8Y}09||0QpUYpUSS “| | |
| i i
] I I
| | N N S
_ “ “ asuodsay
||||||||||| lmmmmmomooomooooloooooo oo oo oo abessapjoipnyAeid
| Juinal, |
i i
I I
I I
I I
I I
I I
I I
I I
! !
i | baYI09|I0DPUYOLUIPUSS '8
| | |
T
JouNIdpab L
I
Mau ‘9 i
lleginaieasd g
| Mmau
I
_ 1sanbay

wiay} ajejueisul ‘psyeald
jou ale s}08[qo 408 4

abessa|\oipnyAeld ‘¢

‘ases|al uay) oipne
aJow ou §| ‘Induj Jasn
uo paseq olpne asooyQ

asuodsaydjaHolpnyAed

\\\\\\\\\\ b
asuodsaydjaHolpnyAe|d

ysenbaydjaHolipnyAeld ‘'z

‘dnjes usaq aney
sba) ||eo e swnsse ap\

jsanbaydjaHoipnyAed “|

1
1
1
1
1
1
ddv

JI3pIACId AIMIBS AL

ddy 18SN-PUT ALdI

Figure B.18: Using the Interactive IPTV Help

9. The user interaction call object requests the SCS to deliver specific audio from the

IVR to the end-user and to collect any input from the end-user. While this may take

time to complete, the SCS returns a pending result to the SCF’s user interaction call
237

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

object. The SCF returns the pending result to the web service. The result is then

forwarded, via the application and service provider, to the end-user
The SCS returns some end-user input to the SCF’s user interaction call object.

The user interaction call object forwards this input to the web service’s user interac-

tion callback object.
The user interaction callback object forwards this end-user input to the web service.
The web service forwards this input to the application provider.

Based on the end-user input, the application provider determines which audio should
be delivered next. The application provider then requests the web service to deliver

the audio.

The user may request the stoppage of the interactive help service from the IPTV

service provider. Also, the two party call between end-user and IVR is ended.

The service provider requests the application provider to stop the interactive help

service.

The application provider requests the audio call web service to stop the delivery of

audio to the end-user.
The web service deletes its user interaction callback object.

The web service requests the SCF’s user interaction call object to release resources

used to deliver the audio to the end-user.

The user interaction call object requests the SCS to release network resources used to

deliver the audio to the end-user.

B.2 SCS and IMS Interactions

We defined a SCS API and implementation that interworked with SCS clients to simulate

data session, IVR, OSS/BSS and call control network events. The message sequences be-
tween SCS and the data session SCS client is shown in Chapter [I0] Figure The

message sequences between the remaining OSS/BSS, IVR and call control SCS clients and

SCS are similar to the data session SCS client.

The SCS client simulators were created since mappings between the SCS API and SIP-

based IMS functions are not fully standardised. However, during the design and imple-

mentation of the SDP proof of concept we uncovered some SCS to SIP mappings. These

238

ﬁmp'

MAP INAP SOAP
Adaptor Adaptor Adaptor

SCs
Protocol Adapators

SIP Server/
Adpator
(B2BUA)

Signalling Network >
(IMS Functions)

ﬁ Converged Networks
(Telco, Enterprise, Internet)
T, e — e — — = == T = — — >
= @
& 0

Figure B.19: SCS with Protocol Adaptors

mappings support our SDP implementation and the IPTV service. These mappings are illus-
trated using message sequence diagrams. Also, these diagrams provide recommendations

for SIP message extensions.

B.2.1 Structure of the SCS

In Figure we provide the architectural structure of the SCS. The figure shows the SCS
exposing a north-facing interface to SCFs. Inside the SCS are various protocol adaptors.
One of these adaptor’s is represented as a SIP server. This SIP server is used communicate
with the IMS functional entities and the end-user SIP user agents (UA). We also use UAs to

represent IMS entities on media sources.

B.2.2 Accessing OSS/BSS and Network Session Capabilities

In Figure we show interactions between the SCS, OSS/BSS, media sources and end-
users using SIP. These interactions are initiated by various Parlay SCFs. In the figure we
provide recommendations for new SIP messages that allow OSS/BSS functions to be in-
voked. We reuse existing SIP messages to create data sessions across the converged net-

work. However, we add new SIP messages to manipulate these data sessions.

In Figure we show the following interactions:

1. Account management and charging SCFs request the SCS to invoke various network

functions that manage end-user accounts.

2. The SCS invokes the OSS/BSS functions using new SIP messages. These messages

239

retrieveTransactionHistoryReq,
updateBalanceReq,

SCs 0OSS/BSS Media Store End-User - UA
1. quesryBalanceReq,
|
|
1

reserveAmountReq, 2. "account request”

debitAmountReq,

release 3. "account response" U
e ,,,,,,,,,,,,,,,,

"return response"|

4.connecReq |

7. connecRes

8. connecReq

Create PDP contexts
via GGSN. Set charge

plan and session created.
10. OK l_f/ :
e 77777777777777777777777777777777777 |

11. connecRes

Session description negotiated, Session and
Content delivery Started

12. pauseConnecReq,

resumeConnecReq,

release

e

13. "pause, stop, end"
1

"return response"|

Figure B.20: SCS to SIP mappings for OSS/BSS and Data Sessions

must contain the needed information to invoke the OSS/BSS functions. As an al-
ternative the Diameter protocol may be extended to provide these end-user account

management capabilities.
3. The OSS/BSS functions return a result to the SCS using a new SIP message.

4. The data session control SCF requests the SCS to create a network data session with

the end-user attached to it.
5. The SCS reuses the SIP Invite message to setup the end-user’s half of the data session.

6. The first half of the data session is now created since the SIP OK message is returned

from the end-user’s UA.
7. The SCS returns a response to the data session control SCF.

8. The data session control SCF requests the SCS to create a network data session with

a media source attached to it.

9. The SCS reuses the SIP Invite message to setup the media source’s half of the data

session.

10. The second half of the data session is now created since the SIP OK message is

returned from the media source.

11. The SCS returns a response to the data session control SCF.

240

12. The data session control SCF requests the SCS to manipulate the existing network

data session.
13. The SCS uses new SIP messages to manipulate the end-user’s half of the data session.
14. The end-user’s half of the data session is altered since the SIP OK message is returned.

15. The SCS uses new SIP messages to manipulate the media source’s half of the data

session.

16. The media source’s half of the data session is now altered since the SIP OK message
is returned. Once completed, the SCS returns a response to the data session control
SCF.

B.2.3 Accessing Presence and Call Control Network Capabilities

In Figure[B.21| we show interactions between the SCS, presence server and end-users using
SIP. These interactions are initiated by various Parlay SCFs. In the figure we provide rec-
ommendations for new SIP messages that allow presence information to be obtained. We
reuse existing SIP messages to setup calls between multiple end-users across the converged

network.

In Figure we show the following interactions:

1. The presence and availability SCF requests the SCS to update an end-user’s presence

information on the presence and availability (PAM) server.

2. The SCS uses the existing SIP Publish message to update end-user’s presence status

on the PAM server.

3. The presence and availability SCF requests the SCS to obtain an end-user’s presence

information from the PAM server.

4. The SCS uses a new SIP message to request the PAM server for the end-user’s pres-

ence status.

5. The PAM server uses a new SIP message to return the end-user’s presence status. The

presence status is returned to the SCF, via the SCS.

6. The multiparty call control SCF requests the SCS to be informed of changes in a call
leg being setup between an end-user’s (Party A) UA.

7. The multiparty call control SCF requests the SCS to route the call to the end-user’s (Party
A) UA.

241

SCs PAM Server End-User A - UA End-User B - UA

1. setldentityPresence | | |
1

I
i | i
1 ‘ 2. Publish ! ! !
| | 1
3. getAvailability | ; |
| | |
4. "calculate availability" | 1 :
| | |
|
5. "return availability" M } :
.. B ‘ |
return response’ ! ! 1
e L | | :
| | ! |
| 1 1 |
6. eventReportReq : 1 1 :
| | | |
| |
7. routeReq } } :
1
| |
8. Invite ! i
- I
9. eventReportReq } U i
| 1
10. routeReq | | !
| | |
! 11. Invite ! !
1 1 1
| |
| | U
12. OK| D :
Ko-mmmmmmmmmm o s :
13. eventReportRes I | |
| |
6 ”””””””” | | !
; 14. OK ! m
Ke—mmmm e - fomm - qmmmmmmm -
15. eventReportRes ! ! |
Cmmm e L | | :
I | [I
| | [|
1 I | 1
16. release ! i | !
I | | |
17. Bye| | !
1 1 |
18. OK| ”U !
R ; !
19. release | | |
I | 1
| 20. Bye i !
| | |
1 21.0K 1 u
e tommmmm - - Hmmmmmmm -

10.

11.

12.

13.

14.

Figure B.21: SCS to SIP mappings for Presence and Call Control

The SCS uses the SIP Invite message to setup the call leg involving the end-user’s (Party
A) UA.

The multiparty call control SCF requests the SCS to be informed of changes in a call
leg being setup between an end-user’s (Party B) UA.

The multiparty call control SCF requests the SCS to route the call to the end-user’s (Party
B) UA.

The SCS uses the SIP Invite message to setup the call leg involving the end-user’s (Party
B) UA.

The first end user (Party A) call leg has been setup and the SIP OK message is received
by the SCS.

The SCS returns a response to the multiparty call control SCF.

The second end user (Party B) call leg has been setup and the SIP OK message is
received by the SCS.

242

15.

16.

17.

18.

19.

20.

21.

The SCS returns a response to the multiparty call control SCF.

Once the call is completed or ended, the multiparty call control SCF requests the SCS

to release all resources used to support the call on the first end-user’s (Party A) UA.

The SCS uses the SIP Bye message to end the call on the first end-user’s (Party A)
UA.

The call is ended on the first end-user’s (Party A) UA, since the SIP OK message was

received.

The multiparty call control SCF requests the SCS to release all resources used to

support the call on the second end-user’s (Party B) UA.

The SCS uses the SIP Bye message to end the call on the second end-user’s (Party B)
UA.

The call is ended on the second end-user’s (Party B) UA, since the SIP OK message

was received.

B.2.4 Accessing Messaging and Audio Content Network Capabilities

In Figure[B.22] we show interactions between the SCS, IVR and end-users using SIP. These

interactions are initiated by various Parlay SCFs. In the figure we reuse existing SIP mes-

sages to enable messages and audio to be delivered end-users across the converged network.

In Figure we show the following interactions:

. The user interaction SCF requests the SCS to send a message to an end-user (Party

B).

The SCS uses the SIP Message message to send the message to the end-user (Party
B).

The user interaction SCF requests the SCS to send another message to another end-

user (Party C).

The SCS uses the SIP Message message to send the message to the end-user (Party
O).

In response, the end-user (Party C) uses his/her UA to send a message using the SIP

Message. This message is returned to the user interaction SCF via the SCS.

243

End-User B - UA

End-User C - UA

1. sendAndCollectinfo !
I

I
;
4. Message
|
T
|
|
|
|
I
|

2. Message

3. sendAndCollectinfo

|

I

|

I

i

! 5. Message D
e [

"return message" !

7. Bye

Message session closed /I_J
due to inactivity of

message communication.

|

|

1

I

y The SCS sets up an audio !

9. Invite N 1

call to stream audio. :

i i

1 I . I

1 | 11. Invite |

1 | 1

i | 12. 0K i

1 I 1
1 é‘ ________________ T T T T T T T T T T T T T TTT T T T T T T T T T

1 1

13. sendAndCollectinfo

"return message”

6.

10.

11.

Figure B.22: SCS to SIP mappings for Messaging and Interactive Audio Delivery

After some time, the end-user (Party B) also uses his/her UA to send a message using

the SIP Message. This message is returned to the user interaction SCF via the SCS.

Since no more messages are being sent, the SCS releases resources used to deliver

messages to end-user (Party B). The SCS reuses the SIP Bye message.

Since no more messages are being sent, the SCS releases resources used to deliver

messages to end-user (Party C). The SCS reuses the SIP Bye message.

During the activation of the IPTV interactive help service, the multiparty call control
SCF requests the SCS to setup an audio call between an end-user (Party A) and IVR.

The SIP Invite message is used to setup the audio call between the end-user.

The audio call is setup since the SIP OK message is received by the SCS from the
end-user (Party A).

The multiparty call control SCF requests the SCS to complete the setting up of the

audio call. The SIP Invite message is used to setup the call between the IVR.

244

12.

13.

14.

15.

The audio call is setup since the SIP OK message is received by the SCS from the

IVR. Now the appropriate audio can be delivered to the end-user.

The user interaction SCF requests the SCS to play a specific audio file that is heard
by the end-user (Party A).

The SCS uses the SIP Message message to inform the IVR to play a specific audio
file, that is heard by the end-user.

As a result of hearing the audio, the end-user inputs some key on his/her terminal.
The key generates a audio tone that is captured by the IVR across the audio session.
The IVR returns this input using the SIP Message message to the SCS. The SCS
forwards this end-user input to the SCF.

245

Appendix C

Lessons Learned from the SDP Proof of
Concept

C.1 Benefits of an Integrated Development Environment

The Java programming language and tools supported the quick development of the SDP
proof of concept. In addition, we used a popular integrated development environments (IDE)
to support Java development. We found the Netbeans IDE to be effective and efficient when
creating the Java-based SDP proof of concept. This IDE simplified development tasks and
provided Java-oriented developer tools and support. Also, the IDE helped with web service

development, but not deployment (discussed later).

C.2 Richness of CORBA

The standard-based CORBA middleware abstracted various distribution complexities in our
SDP proof of concept. It supported communication across the distributed SDP services,
including the SCFs, SCS and SCS clients. Also, CORBA provided various middleware ser-
vices to support the distributed SDP services. One vital middleware service was the naming
service that enabled distributed applications and SDP services to easily locate each other.
However, on deployment each distributed application and service had to be provided with
the location information of the naming service. This eased redeployment of components

across different servers and network areas.

CORBA provided another middleware service called the portable interceptor service. The

portable interceptor service is part of the CORBA middleware. This service’s capabilities

246

were inherited by our own SDP interceptor service, so as to intercept requests made on
SCF, SCS and SCS client APIs. As a result, we were able to verify if the correct methods
were being invoked with the correct parameter values on the SDP service APIs. With the
help of the CORBA interceptor service, our SDP interceptor service also intercepted the
corresponding replies from SCS clients, SCS and the SCFs. This enabled us to verify if the
correct information was being returned by the SDP services. Hence, the interceptor service

contributed to the testing of our SDP’s distributed services.

In Figure we illustrate another example of using the portable interceptor service within
the SDP. This example is generic and uses the SDP interceptor service to uphold telco
policies and log SCF and SCS usage information in the telco OSS/BSS. In the figure we

show the following interactions:

1. The SDP interceptor service registers with the CORBA portable interceptor service.
2. The SDP interceptor service registers for notifications of requests on specific SCFs.

3. The SDP interceptor service registers for notifications of replies made by specific
SCFs.

4. An application invokes a request on a web service.

5. The web service makes a request on a specific SCF. However, this request is inter-

cepted by the CORBA portable interceptor service.

6. The CORBA portable interceptor service determines that the SDP interceptor service

requires notification of these SCF requests. A notification is sent.

7. The SDP interceptor service requests the Policy SCF to decide whether the applica-

tion and web service are allowed to use the current SCF.

8. The Policy SCF informs the SDP interceptor service that the SCF request is allowed

to be used by the application and web service.

9. The SDP interceptor service informs the CORBA portable interceptor service to allow

the the request to continue.
10. The CORBA portable interceptor service forwards the request to the appropriate SCF.
11. The SCF invokes the SCS.
12. The SCS returns a result to the SCF.
13. The SCF perceives the result to be returned to the web service. However, the CORBA

portable interceptor service intercepts the response to the web service.

247

CORBA: Portable SDP: Interceptor
InterceptorService Service
! 1

! 1. registorWithService !

2. registorForRequests

3. registorForResponses

App Web Service
i
I

4. webServiceRequest i

5. scfRequest

Policy SCF

6. scfRequestintercepted

9. continueSCFRequest

10. scfRequest _ |

13. scfResponse

1
14. scfResponselntercepted

0OSS/BSS

17. continueSCFResponse

18. scfResponse

19. webServiceResponse

14.

15.

16.

17.

18.

19.

Figure C.1: Using CORBA Portable Interceptors

The CORBA portable interceptor service determines that the SDP interceptor service

requires notifications of these SCF replies. A notification is sent.

The SDP interceptor service requests the OSS/BSS to log the information contained
in the SCF response.

The OSS/BSS successfully logs the response information and informs the SDP inter-

ceptor service of this result.

The SDP interceptor service informs the CORBA portable interceptor service to allow

the response to be delivered.
The CORBA portable interceptor service forwards the response to the web service.

The web service returns a response to the application.

248

C.3 Problems with Web Services

In contrast to the CORBA-based SCFs, SCS and simulators, we faced many problems with
the web service programming, deployment, testing and ESB middleware. Some of these

problems are as follows:

e Web service interfaces (WSDL) did not provide a complete abstraction of their dis-
tribution and location. This increased the complexity of redeploying web services on
different application servers across the network. To overcome this problem we used
the Netbeans IDE to copy the web service project to a portable storage drive. We
then used Netbeans to copy the project from the portable drive to a location on the
target server. However, the various inconsistencies in the web service’s code had to

be corrected to reflect the changes in its distribution.

e The stateless property of web services provided a challenge. For example, web ser-
vices had to continuously poll SCFs for call status and end-user presence information.
There is no solution for this problem since we could not find standards-based solu-

tions for asynchronous web services.

e The ESB middleware bundled in the application servers provided proprietary func-
tionality. This included middleware services that exposed functions to Java-specific
mechanisms, such as Java message queues. Hence, our web service implementations

could not operate across any other ESB middleware.

e Each application server required detailed knowledge of the network and its configu-
ration, such as proxy and host list. This information must detail elements that can be

reached with or without the use of proxies.

e Due to configurations the application servers required redeployment of web services
after each simulation. It proved too time consuming to reconfigure the server, since

the documentation and configuration files are complex to understand and use.

Therefore, web service middleware is complex and provided limited standard-based func-
tionality. Also, the middleware did not provide additional benefits to our web service im-

plementations and SDP proof of concept.

249

Appendix D

Source Code

The implementation of the SDP framework can be found on the accompanying compact

disc. The disc contains a README.txt file describing in detail the contents of the disc.

250

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	 Introduction
	Convergence
	Service Centric Networks
	Next Generation Network
	Service Orientated Architecture
	Service Delivery Platform

	Problem Statement, Aim and Objectives
	Outline of Thesis

	 Convergence
	The Process of Separation and Integration
	Implications of Convergence
	Business Models
	Network Technologies
	Service Platforms
	Application Environments
	Management Systems

	SDP as a Strategy for Convergence
	Summary

	 Managing the Complexity of the Service Delivery Platform
	Limitations
	Approach
	Requirements

	Complex Systems
	Managing Complexity

	Modeling Complexity
	SDP Framework Development
	Summary

	 Perspectives on the SDP from Legacy Standards: IN and TINA
	Intelligent Network
	Requirements
	Architecture
	Reusable Concepts
	Contribution to SDP from IN
	Evaluation of SDP Conceptual Model

	Telecommunication Information Network Architecture
	Requirements
	Architecture
	Reusable Concepts
	Contribution to the SDP from TINA
	Evaluation of SDP Business Model and Architecture

	Summary

	 Perspectives on the SDP from Service Platform Standards: Parlay and Parlay X
	Requirements
	Architecture
	Parlay
	Parlay X

	Reusable Concepts
	Contribution to the SDP from Parlay and Parlay X
	Evaluation of SDP Business Model, Reference Model and Architecture
	Summary

	 Perspectives on the SDP from Management Framework Standards: TMN, TOM and eTOM
	Requirements
	TMN
	TOM
	eTOM

	Architecture
	TMN
	TOM
	eTOM

	Reusable Concepts
	Contribution to the SDP from TMN, TOM and eTOM
	Defining a Complete and Managed SDP Architecture

	Evaluation of SDP Business Model and Architecture
	Summary

	 Perspective on the SDP from an Enterprise Standard: SOA
	Requirements
	Architecture
	Web Services SOA
	Enterprise SOA

	Reusable Concepts
	Contribution to the SDP from the SOA
	Evaluation of SDP Business Model, Reference Model and Architecture
	SDP offering a Web Services SOA

	Summary

	 Perspective on the SDP from a Converged Standard: IMS
	Requirements
	Architecture
	Functional Architecture
	Service Platform Architecture

	Reusable Concepts
	Contribution to the SDP from the IMS
	Evaluation of SDP Reference model and Architecture
	Summary

	 Defining the SDP Framework
	Definition and Requirements
	Infrastructure Integration
	Service-oriented System
	Business Model
	Reference Model
	Overall Management
	Architectural Structure
	Standards-based Implementation

	Architecture
	Using the GSOA Building block

	Results
	Summary

	 Proving the SDP Framework
	IPTV Service Description
	Business Model
	Formalising Interactions
	Services, Interfaces and SDP Framework
	Mapping Standard-based Technologies
	Alternatives

	SDP and IPTV Service Implementation
	Interactions via APIs
	Building, Deployment and Simulation

	Results
	Summary

	 Contribution of our SDP Framework
	Summary of Results
	Conclusion
	Future Work
	Development Process
	Information Viewpoint
	Resource Oriented Viewpoint
	Creating Service Deliver Platforms
	Importance of Standardised Middleware

	References
	 Mapping to the SDP Framework
	Standards-based Architectures
	Product-based Architectures

	 Message Sequence Charts for IPTV Service
	Web Service and SCF Interactions
	IPTV Service Registration
	End-User Service Location, Registration and Deregistration
	Media Provider Registration
	Application Provider Content Location, Registration and Deregistration
	SDP and Enterprise Policy Management
	End-User Account Management
	End-Use Payments
	End-User Pay Per View Part 1
	End-User Pay Per View Part 2
	End-User Presence and Availability
	End-User Makes an IPTV Call
	End-User Checks on IPTV Call Status
	End-User Ends an IPTV Call
	Interactive End-User Messaging
	Provide End-User with IPTV Help

	SCS and IMS Interactions
	Structure of the SCS
	Accessing OSS/BSS and Network Session Capabilities
	Accessing Presence and Call Control Network Capabilities
	Accessing Messaging and Audio Content Network Capabilities

	 Lessons Learned from the SDP Proof of Concept
	Benefits of an Integrated Development Environment
	Richness of CORBA
	Problems with Web Services

	 Source Code

