
A Framework for Abstracting
Complexities in Service Delivery
Platforms

Rolan Christian

A thesis submitted to the Faculty of Engineering, University of the Witwatersrand, Johan-

nesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy.

Johannesburg, July 2009

Declaration

I declare that this thesis is my own, unaided work, except where otherwise acknowledged.

It is being submitted for the degree of Doctor of Philosophy in the University of the Witwa-

tersrand, Johannesburg. It has not been submitted before for any degree or examination in

any other university.

Signed this 17th day of July 2009

Rolan Christian.

i

Abstract

The telecommunication (telco) and Information Technology (IT) industries are converging

into a single highly competitive market, where service diversity is the critical success factor.

To provide diverse services, the telco network operator must evolve the traditional voice ser-

vice centric network into a generic service centric network. An appropriate, but incomplete,

architecture for this purpose is the Service Delivery Platform (SDP). The SDP represents

an IT-based system that simplifies access to telco capabilities using services. SDP services

offer technology independent interfaces to external entities. The SDP has vendor-specific

interpretations that mix standards-based and proprietary interfaces to satisfy specific re-

quirements. In addition, SDP architectural representations are technology-specific. To be

widely adopted the SDP must provide standardised interfaces. This work contributes to-

ward SDP standardisation by defining a technology independent and extendable architec-

ture, called the SDP Framework. To define the framework we first describe telecom-IT

convergence and a strategy to manage infrastructure integration. Second, we provide back-

ground on the SDP and its current limitations. Third, we treat the SDP as a complex system

and determine a viewpoint methodology to define its framework. Fourth, we apply view-

points by extracting concepts and abstractions from various standard-based telecom and

IT technologies: the Intelligent Network (IN), Telecommunication Information Network-

ing Architecture (TINA), Parlay, enhanced Telecommunications Operations Map (eTOM),

Service Oriented Architecture (SOA) and Internet Protocol Multimedia Subsystem (IMS).

Fifth, by extending the concepts and abstractions we define the SDP framework. The frame-

work is based on a generic business model and reference model. The business model shows

relationships between SDP, telco and external entities using business relationships points.

The reference model extends the business model by formalising relationships as reference

points. Reference points expand into interfaces exposed by services. Applications orches-

trate service functions via their interfaces. Service and application distribution is abstracted

by middleware that operates across business model domains. Services, interfaces, appli-

cations and middleware are managed in Generic Service Oriented Architectures (GSOA).

Multiple layered GSOAs structure the SDP framework. Last, we implement the SDP frame-

work using standard-based technologies with open service interfaces. The implementation

proves framework concepts, promotes SDP standardisation and identifies research areas.

ii

Acknowledgements

The following research was performed under the auspices of the Center for Telecommuni-

cations Access and Services (CeTAS) at the University of the Witwatersrand, Johannesburg,

South Africa. This center is funded by Telkom SA Limited, Vodacom, Siemens Telecom-

munications and the Department of Trade and Industrys THRIP programme. This financial

support was much appreciated.

I thank God for my many blessings. I thank my role model and supervisor Prof. Hu Han-

rahan for his support and guidance during the duration of this research project. I also thank

my colleagues at CeTAS for their valuable inputs during this research. Last, I thank both

my parents, brother and fiance for their love, support and patience.

iii

Contents

Declaration i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures xii

List of Tables xvii

List of Abbreviations xix

1 Introduction 1

1.1 Convergence . 3

1.2 Service Centric Networks . 5

1.2.1 Next Generation Network . 5

1.2.2 Service Orientated Architecture 7

1.2.3 Service Delivery Platform . 9

1.3 Problem Statement, Aim and Objectives 11

1.4 Outline of Thesis . 12

iv

2 Convergence 14

2.1 The Process of Separation and Integration 15

2.2 Implications of Convergence . 17

2.2.1 Business Models . 18

2.2.2 Network Technologies . 19

2.2.3 Service Platforms . 21

2.2.4 Application Environments . 23

2.2.5 Management Systems . 23

2.3 SDP as a Strategy for Convergence . 25

2.4 Summary . 27

3 Managing the Complexity of the Service Delivery Platform 29

3.1 Limitations . 31

3.2 Approach . 32

3.2.1 Requirements . 32

3.3 Complex Systems . 33

3.3.1 Managing Complexity . 34

3.4 Modeling Complexity . 35

3.5 SDP Framework Development . 37

3.6 Summary . 40

4 Perspectives on the SDP from Legacy Standards: IN and TINA 41

4.1 Intelligent Network . 42

4.1.1 Requirements . 42

v

4.1.2 Architecture . 43

4.1.3 Reusable Concepts . 44

4.1.4 Contribution to SDP from IN . 46

4.1.5 Evaluation of SDP Conceptual Model 47

4.2 Telecommunication Information Network Architecture 50

4.2.1 Requirements . 50

4.2.2 Architecture . 52

4.2.3 Reusable Concepts . 54

4.2.4 Contribution to the SDP from TINA 55

4.2.5 Evaluation of SDP Business Model and Architecture 58

4.3 Summary . 60

5 Perspectives on the SDP from Service Platform Standards: Parlay and Par-
lay X 61

5.1 Requirements . 62

5.2 Architecture . 63

5.2.1 Parlay . 64

5.2.2 Parlay X . 65

5.3 Reusable Concepts . 68

5.4 Contribution to the SDP from Parlay and Parlay X 70

5.5 Evaluation of SDP Business Model, Reference Model and Architecture . . 75

5.6 Summary . 78

6 Perspectives on the SDP from Management Framework Standards: TMN,
TOM and eTOM 79

vi

6.1 Requirements . 80

6.1.1 TMN . 80

6.1.2 TOM . 81

6.1.3 eTOM . 82

6.2 Architecture . 83

6.2.1 TMN . 83

6.2.2 TOM . 84

6.2.3 eTOM . 86

6.3 Reusable Concepts . 89

6.4 Contribution to the SDP from TMN, TOM and eTOM 91

6.4.1 Defining a Complete and Managed SDP Architecture 94

6.5 Evaluation of SDP Business Model and Architecture 96

6.6 Summary . 99

7 Perspective on the SDP from an Enterprise Standard: SOA 100

7.1 Requirements . 101

7.2 Architecture . 103

7.2.1 Web Services SOA . 103

7.2.2 Enterprise SOA . 105

7.3 Reusable Concepts . 107

7.4 Contribution to the SDP from the SOA . 108

7.5 Evaluation of SDP Business Model, Reference Model and Architecture . . 112

7.5.1 SDP offering a Web Services SOA 114

vii

7.6 Summary . 115

8 Perspective on the SDP from a Converged Standard: IMS 116

8.1 Requirements . 118

8.2 Architecture . 120

8.2.1 Functional Architecture . 120

8.2.2 Service Platform Architecture . 121

8.3 Reusable Concepts . 124

8.4 Contribution to the SDP from the IMS . 126

8.5 Evaluation of SDP Reference model and Architecture 130

8.6 Summary . 132

9 Defining the SDP Framework 133

9.1 Definition and Requirements . 134

9.1.1 Infrastructure Integration . 134

9.1.2 Service-oriented System . 135

9.1.3 Business Model . 137

9.1.4 Reference Model . 140

9.1.5 Overall Management . 141

9.1.6 Architectural Structure . 143

9.1.7 Standards-based Implementation 147

9.2 Architecture . 148

9.2.1 Using the GSOA Building block 152

9.3 Results . 153

viii

9.4 Summary . 154

10 Proving the SDP Framework 156

10.1 IPTV Service Description . 157

10.2 Business Model . 158

10.3 Formalising Interactions . 160

10.4 Services, Interfaces and SDP Framework 160

10.5 Mapping Standard-based Technologies . 164

10.5.1 Alternatives . 165

10.6 SDP and IPTV Service Implementation 166

10.6.1 Interactions via APIs . 167

10.6.2 Building, Deployment and Simulation 174

10.7 Results . 175

10.8 Summary . 177

11 Contribution of our SDP Framework 178

11.1 Summary of Results . 178

11.2 Conclusion . 180

11.3 Future Work . 181

11.3.1 Development Process . 181

11.3.2 Information Viewpoint . 182

11.3.3 Resource Oriented Viewpoint . 182

11.3.4 Creating Service Deliver Platforms 183

11.3.5 Importance of Standardised Middleware 184

ix

References 185

A Mapping to the SDP Framework 197

A.1 Standards-based Architectures . 197

A.2 Product-based Architectures . 198

B Message Sequence Charts for IPTV Service 209

B.1 Web Service and SCF Interactions . 209

B.1.1 IPTV Service Registration . 210

B.1.2 End-User Service Location, Registration and Deregistration 211

B.1.3 Media Provider Registration . 213

B.1.4 Application Provider Content Location, Registration and Deregis-

tration . 215

B.1.5 SDP and Enterprise Policy Management 217

B.1.6 End-User Account Management 221

B.1.7 End-Use Payments . 223

B.1.8 End-User Pay Per View Part 1 . 224

B.1.9 End-User Pay Per View Part 2 . 226

B.1.10 End-User Presence and Availability 227

B.1.11 End-User Makes an IPTV Call . 229

B.1.12 End-User Checks on IPTV Call Status 231

B.1.13 End-User Ends an IPTV Call . 232

B.1.14 Interactive End-User Messaging 234

B.1.15 Provide End-User with IPTV Help 236

x

B.2 SCS and IMS Interactions . 238

B.2.1 Structure of the SCS . 239

B.2.2 Accessing OSS/BSS and Network Session Capabilities 239

B.2.3 Accessing Presence and Call Control Network Capabilities 241

B.2.4 Accessing Messaging and Audio Content Network Capabilities . . 243

C Lessons Learned from the SDP Proof of Concept 246

C.1 Benefits of an Integrated Development Environment 246

C.2 Richness of CORBA . 246

C.3 Problems with Web Services . 249

D Source Code 250

xi

List of Figures

1.1 An Abstract NGN Representation . 6

1.2 A SOA Representation . 8

1.3 Proposed SDP Architecture . 9

2.1 Convergence of Infrastructure . 16

2.2 Example of a Converged Networks Business Model 18

2.3 Evolution to a Softswitch Architecture . 20

2.4 Service Platform Architectures . 22

2.5 TMN Architecture, TOM Framework and eTOM Framework 24

2.6 Proposal for a SDP Reference Model with Reference Points 27

2.7 Complexity of Convergence . 28

3.1 Expanded SDP Interpretation . 30

3.2 Simplified Systems Life Cycle . 34

3.3 Abstracting Complex Software-based Systems 37

3.4 Approach to Develop SDP Framework . 39

4.1 IN Requirements Classification . 43

4.2 IN Conceptual Model . 44

4.3 SDP and its Environment represented as a Conceptual Model 46

xii

4.4 TINA Business Model . 51

4.5 Simplified TINA Service and Network Resource Architectures (Interfaces

not shown) . 52

4.6 Reusing TINA Concepts for the SDP . 55

5.1 Parlay Reference Model . 62

5.2 Parlay Architecture . 64

5.3 Parlay X Architecture . 67

5.4 Generic SDP Business Model derived from Parlay Reference Model 70

5.5 SDP Reference Model derived from Parlay Reference Model 71

5.6 SDP and its Environment derived from Parlay and Parlay X Architectures . 74

6.1 Telco Management Business Models . 81

6.2 TMN Logical and Functional Architecture 84

6.3 TOM Business Process Framework . 85

6.4 Instances of the eTOM Framework and TNA 87

6.5 SDP Business Models . 91

6.6 SDP and its Environment derived from TMN, TOM and eTOM Architectures 93

6.7 A Managed SDP and its Environment . 95

7.1 SOA Business and Reference Models . 102

7.2 Web Service Standard-based SOAs . 104

7.3 Enterprise SOA Representation . 106

7.4 Generic SOA Representation . 108

7.5 SDP Business and Reference Models . 109

7.6 SDP and its Environment represented as Integrated GSOAs 110

xiii

7.7 Telco and Enterprise Convergence . 115

8.1 Evolution of Telco Network . 117

8.2 Simplified Portion of the IMS Reference Model 119

8.3 IMS Functional Architecture . 121

8.4 IMS Service Platform Architecture Synthesised from IMS Standards 123

8.5 SDP Models based on IMS Concepts . 127

8.6 SDP Architectures based on Generic IMS and SOA Concepts 129

9.1 SDP Services and Interfaces . 136

9.2 SDP Business Models . 139

9.3 SDP Reference Model . 140

9.4 SDP Management Architecture with Interfaces 142

9.5 Structuring a SDP Architecture using Layers and Domains 144

9.6 Structuring a SDP Architecture using Planes 146

9.7 Example Technology Map . 147

9.8 SDP Framework Layers and Domains . 149

9.9 SDP and its Environment: Expressing the Full Layers of the SDP Framework150

9.10 SDP Framework Planes . 151

9.11 Complete SDP Framework . 153

10.1 IPTV Use Cases . 157

10.2 SDP Business Model Supporting IPTV . 159

10.3 SDP Reference Model for IPTV . 160

10.4 SDP Specific Use Cases . 162

xiv

10.5 SDP Framework with Simple Services Enabling IPTV 163

10.6 Using Parlay and IMS Standards to implement a SDP 165

10.7 Starting a Data Session for Streaming Content 169

10.8 Pausing a Data Session Streaming Content 170

10.9 Resuming and Stopping a Data Session Streaming Content 172

10.10Simulating Network Data Session Manipulation 173

10.11Deployment of SDP Implementation . 174

11.1 Example SDP Development Process using Viewpoints 181

A.1 Ericsson SDP Architecture . 203

A.2 Hewlett Packard SDP Architecture . 203

A.3 IBM SDP Architecture . 204

A.4 Microsoft SDP Architecture . 204

B.1 Registration of IPTV Service . 210

B.2 Service Provider and End-User Registration Model 211

B.3 End-User Message Sequences . 212

B.4 Registration of Media Provider . 214

B.5 Media Provider and Application Provider Registration Model 215

B.6 Application Provider Message Sequences 216

B.7 Create and Obtain Policy Information . 218

B.8 Remove a Policy . 220

B.9 Obtain Account Balance and History . 222

B.10 Pay End-User Account . 223

xv

B.11 Pay Per View for Pre-booking Content . 225

B.12 Pay Per View After Viewing Content . 226

B.13 Update and Obtain End-User Presence Status 228

B.14 Setup Two Party Call Between End-User and Friend 230

B.15 Checking Status of Two Party IPTV Call 231

B.16 Ending an IPTV Call between Two Parties 233

B.17 Messaging between Two IPTV End-Users 235

B.18 Using the Interactive IPTV Help . 237

B.19 SCS with Protocol Adaptors . 239

B.20 SCS to SIP mappings for OSS/BSS and Data Sessions 240

B.21 SCS to SIP mappings for Presence and Call Control 242

B.22 SCS to SIP mappings for Messaging and Interactive Audio Delivery 244

C.1 Using CORBA Portable Interceptors . 248

xvi

List of Tables

1.1 Summary of telecom-IT Convergence . 4

4.1 Comparison of Conceptual Models . 48

4.2 Comparison of TINA and SDP concepts and architectures 59

5.1 Comparison of Parlay and SDP Concepts and Architectures 76

6.1 Comparison of Management standards and the SDP Management Architecture 97

7.1 Comparison of SOA the SDP Architectures 113

8.1 Comparison of IMS and SDP Architectures 131

9.1 Examples of Middleware Technologies for SDP Architectures 148

9.2 Mapping IMS onto the SDP Framework 155

10.1 SDP Deployment . 175

A.1 Mapping IN/TMN onto the SDP Framework 199

A.2 Mapping TINA onto the SDP Framework 200

A.3 Mapping eTOM onto the SDP Framework 201

A.4 Mapping JAIN onto the SDP Framework 202

A.5 Mapping the Ericsson SDP Architecture onto the SDP Framework 205

A.6 Mapping the Hewlett Packard SDP Architecture onto the SDP Framework . 206

A.7 Mapping the IBM SDP Architecture onto the SDP Framework 207

xvii

A.8 Mapping the Microsoft SDP Architecture onto the SDP Framework 208

xviii

List of Abbreviations

AAA Authentication, Authorization, and Accounting

API Application Programming Interface

ATM Asynchronous Transfer Mode

BGCF Border Gateway Control Function

BPEL Business Process Execution Language

BSS Business Support Systems

CAMEL Customised Application for Mobile Enhanced Logic

CCF Charging Collection Function

CMIP Common Management Information Protocol

CORBA Common Object Resource Broker Architecture

CRM Customer Relation Management

CSCF Call Session Control Functional

DPE Distributed Processing Environment

DSL Digital Subscriber Line

EAI Enterprise Application Integration

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

eTOM enhanced Telecommunication Operations Map

GGSN Gateway GPRS Support Nodes

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

GSOA Generic Service Oriented Architecture

HLR Home Location Registry

HSS Home Subscriber Server

HTTP Hyper Text Transfer Protocol

ICT Information and Communication Technology

IDE Integrated Development Environment

IDL Interface Definition Language

IMS Internet Protocol Multimedia Subsystem

IM-SSF IP Multimedia Service Switching Function

xix

IN Intelligent Network

IP Internet Protocol

IPTV Interactive Personalised Tele-Vision

IT Information Technology

IVR Interactive Voice Response Unit

JAIN Java API for Integrated Network

JRE Java Runtime Environment

MF Mediation Function

MGCF Media Gateway Control Function

MGW Media Gateway

MPLS Multiple Path Label Switching

MRFC Media Resource Function Controller

MRFP Media Resource Function Processor

NEF Network Element Function

NGN Next Generation Network

NGOSS New Generation Operations Systems and Software

OCF Online Charging Function

OMA Open Mobile Alliance

OMG Object Management Group

ORB Object Resource Broker

OSF Operations System Functions

OSS Operational Support Systems

PDF Policy Decision Function

PSTN Public Switched Telephone Network

QAF Q Adaptor Function

RTP Real Time Protocol

SAG Service Agreement Group

SCE Service Creation Environment

SCF Service Capability Feature

SCIM Service Capability Interaction Manager

SCP Service Control Point

SCS Service Capability Server

SCP Service Control Function

SDP Service Delivery Platform

SGW Signalling Gateway

SIBS Service Independent Building Blocks

SID Shared Information and Datal

xx

SIP Session Initiation Protocol

SME Service Management Environment

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SS7 Signalling System Number 7

SSF Service Switching Function

TCP Transport Control Protocol

TDM Time Division Multiplexor

TINA Telecommunication Information Network Architecture

TMN Telecommunication Management Network

TNA Technology Neutral Architecture

TOM Telecommunication Operations Map

UDDI Universal Description, Discovery and Integration

UE User Equipment

UML Unified Modelling Language

UMTS Universal Mobile Telephone System

VLR Visiting Location Registry

WSDL Web Service Description Language

xxi

Chapter 1

Introduction

Traditional telecommunication company (telco) networks provide basic, reliable, secure and

quality voice communication between millions of customers. These networks include both

fixed Public Switched Telephone Network (PSTN) and wireless Global System for Mobile

Communications (GSM) cellular network. Overlay networks have enabled additional ser-

vices, such as free-phone, voice-mail, messaging and pre-payment communication to be

provided. Examples of overlay networks include the Signalling System Number 7 (SS7) [1]

to provide signalling support and the Intelligent Network (IN) [2] to provide services. Each

network adds its own complex mixture of hardware, software and communication protocols

to the base telco network.

Other traditional networks include the enterprise and broadcasting networks. These net-

works use various technologies to deliver their services to their customers. For example:

• Enterprises use Information Technology (IT) based platforms to create applications

and services. These platforms deliver services using a limited intelligence and un-

reliable packet-based transport, that is, the Internet or Intranets. Enterprise services

are used by customers with intelligent devices. The platforms and devices manage

end-to-end reliability, security and quality over the Internet.

• Broadcasters provide content-based services to customers using their own wired and

wireless networks. Traditional broadcaster services are both unidirectional and bidi-

rectional. However, these bidirectional services provide limited interactivity. In ad-

dition, some services provide limited customisation. In this work we do not focus on

broadcast networks.

Historically, the telco, enterprise and broadcasting networks operate in separate domains.

Each domain is administered by an authority. This authority regulates each network domain

1

and ensures that each network operates within its domain and abides by various policies and

rules.

Currently, each network is influenced by similar threats and opportunities in their respective

domains. The threats and opportunities include the following:

• Transport innovations: new and improved systems enable interworking between vari-

ous transport networks. These include interworking between the telco’s circuit-mode

PSTN and the Internet’s packet-based transport network.

• Software innovations: various IT-based systems aid service development, deployment

and management. In addition, these software systems provide mechanisms to support

and simplify network and customer management.

• Customer requirements: customers demand basic and advanced services that sup-

port their professional and social lives. The services function independently of the

customer device and location, but remains dependent on customer preferences.

• Advanced services: new services combine traditional voice with content, such as

video or information. Services are customisable and adaptable to various stimuli,

such as presence, availability, location and device capabilities. Also, advanced and

legacy services are delivered over any network.

• Relaxed regulations: both technology dependent and independent factors influence

regulative policies, such as transport networks and customer requirements. Hence,

authorities define new or altered policies to break boundaries between various net-

work domains. As a result, regulators aim to foster an open, fair, competitive and

multi-service environment [3].

• Service-oriented environment: creation of a Information and Communication Tech-

nology (ICT) environment. The ICT environment represents the merging of various

network domains into a single, competitive and service centric domain. Within the

ICT environment operators integrate various information and communication-based

technologies into their networks to support a variety of services.

The telco aims to manage threats and opportunities by adapting its network to provide ad-

vanced customer services and deliver them across heterogenous transport networks. There-

fore, telco network operators are embracing the current evolutionary trend of Convergence.

2

1.1 Convergence

Convergence manifests itself in many ways. In this work, we focus on a particular aspect

of convergence that is telecom-IT convergence. This form of convergence integrates tra-

ditionally separate telco and IT-based networks to provide a multi-service platform, that

supports the creation, deployment, management and delivery of communication, informa-

tion and content-based services across diverse transport networks. These services provide

single to multimedia-based functionality, such as normal telephony, information browsing

and interactive television. Thus, integrated telco and IT-based networks are able to benefit

within the ICT environment, by providing plentiful services across varied technologies to

satisfy customer needs.

Telecom-IT convergence is a complex undertaking since each network constitutes mixtures

of systems that must interoperate. These systems are standard-based or proprietary and

are dependent on specific technologies. As a result, various forms of convergence exist

between telco and IT networks. By extending the convergence model of [4] we list the

following forms of telecom-IT convergence. Also, these forms of telecom-IT convergence

are summarised in Table 1.1.

• Device convergence: customers use a single device on various access networks, to

consume multiple types of services.

• Transport convergence: interworking circuit mode networks and packet-based net-

works, including access and edge networks. Network interworking is managed by

a multi-service network that is able to deliver any services across any interworked

network.

• Functional convergence: diverse network functions interwork to support service de-

livery and management, such as billing.

• Service convergence: diverse network functions are abstracted and combined into

reusable network services. These services provide application developers with open,

managed, secure and technology neutral interfaces to network capabilities.

• Application convergence: integrate various types of application functionality and

content to provide services to customers. Also, applications use network capabili-

ties by accessing and combining network service interfaces.

• Content convergence: represents the managed collection of content providers, who

provision their content using network capabilities. In addition, the network treats

content similarly to a resource that is accessible to applications via network services,

network functions, transport networks and customer devices.

3

Telecoms IT Broadcasting

Applications

and

Content

Applications enhance tele-

com services. Seen in the

IN.

Applications enhanced by

communications.

Applications providing

value added access to

content.
Converged applications provide a diverse range of services, that provide either voice, infor-

mation, content or integrated forms of media.

Services Telecom type services are

real-time and voice-based.

Provides limited data ser-

vices such as messaging.

Internet type services such

as e-mail and web brows-

ing. Both real-time and de-

layed but information rich.

Generic services used for

accessing and consuming

content.

Converged services represent abstract forms of network functionality. Integrating multiple

services creates converged applications.

Functions Supports delivery of tele-

com services to customers

on telco networks. Sup-

ports billing and network

interworking.

Provides limited intelli-

gence that is used to deliver

services across transport

networks to customer

terminals.

Provides needed function-

ality to encode/decode con-

tent for delivery across

transport networks to cus-

tomers.
Converged functions provide a stable base that enables applications and services to operate

over varied network infrastructure. Also, ensures service delivery across varied transport

networks.

Infrastructure Circuit mode and packet ac-

cess and core networks.

Interworking of multiple

packet-based networks.

Varied networks.

Converged infrastructures represent a collection of diverse networks that are integrated via

a multi-service network. Includes capabilities of customer device.

Table 1.1: Summary of telecom-IT Convergence

Already, enterprise networks are evolving to manage some forms of convergence. For ex-

ample, enterprises are providing Internet-based services that combine multiple forms of

functionality and media, such as multiparty voice communication, short messaging, video

streaming and information browsing. These Internet services are increasing in usage and

popularity, by both fixed and mobile Internet and telco customers.

To respond to Internet-based services, the telco may promote its own “Internet-like” ser-

vices that are enhanced by using telco network capabilities. For example, these telco ser-

vices operate over reliable, secure and quality transport networks. In addition, telco services

may provide added functionality based on fixed and mobile customer terminals. Hence,

these Internet-like services provide the telco with an alternate revenue stream to the con-

stant voice service revenues [5].

The current stage of telco evolution includes telecom-IT convergence. Hence, the evolved

telco network must enable content and service delivery using any or all underlying func-

tions, transport networks and devices. However, underlying network complexities must be

4

hidden from the application providing the customer service. As a result, the telco network

must become service centric.

1.2 Service Centric Networks

We use the concept of a service centric network to describe a network that provides an abun-

dance of services to its customers, independent of the underlying network details. These

details include diverse interworking transport networks, varied customer terminals, trans-

mission of protocols, distribution of network capabilities and resources and varied network

service implementations.

Services provided by service centric networks include basic services, such as voice, and

advanced services, such as real-time television streaming. Service centric networks provide

an environment for any service to be created, maintained and managed. In addition to

services, these networks also manage content needed by services.

To support service creation, service centric networks abstract the underlying complexities

of converged networks, such as integrated transport networks, functions and services. In

addition, service centric networks abstract customer domain complexities, such as devices

and location. These abstractions are represented as generic and reusable software-based

services that are incorporated into applications. It is these applications that provide basic

and advanced services to customers.

A variety of service centric network architectures exist. We describe three specific architec-

tures, the Next Generation Network (NGN) [6], Service Oriented Architecture (SOA) [7]

and Service Delivery Platform (SDP) [8].

1.2.1 Next Generation Network

The NGN concept is defined by [9] as a packet-based network providing a variety of ser-

vices, such as telco and Internet services, using various quality of service enabled transport

technologies and service-oriented functions that are abstractions of underlying transport

technologies [6].

Based on the above definition, the NGN aims to support the evolution of the telco circuit

switched networks into a packet-based all purpose service centric network. In addition, the

NGN concept guides integration of telco networks with and other network types.

5

 Network Service Layer

Network Layer

 Application Layer
Open, secure,
standardised and
managed Interface

Application Provider Layer

Cu
sto

me
rs

Figure 1.1: An Abstract NGN Representation

Adapting the NGN definition, the NGN exhibits the following characteristics:

1. provides a quality assured packet-based transport that interworks with other net-

works, such as the PSTN and Internet;

2. delivers telco and Internet-based services to fixed and mobile customers over its

packet transport;

3. separates network independent service related functions from underlying transport

technologies;

4. offers controlled open access to network service functions to both customers and

application providers; and

5. facilitates the provision of services from application providers to customers.

Based on these characteristics, the NGN supports most forms of convergence.

The NGN breaks with traditionally closed telco network architectures and business models.

By providing managed open access, the NGN enables the telco to partner with diverse

entities, such as application developers or other network operators. Application developers

may be external IT-using enterprises that create services for telco customers. Thus, opening

of the telco network increases the number of connections the network has and therefore the

network’s value increases [10].

A NGN architecture is shown in Figure 1.1. In the figure, the application provider layer

contains external IT-based infrastructure used by telco partners to create and support ap-

plications. The application layer houses applications developed by external IT-using en-

terprises. These applications invoke telco network resources and capabilities via network

service interfaces. The network service layer contains a diverse range of network services

6

that expose access to telco network capabilities via their technology neutral interfaces. The

network layer houses the physical equipment that constitutes the telco network.

The NGN architecture also shows a customer domain that intersects the application, net-

work service and network layers. As a result, each layer contributes applications, network

services and equipment to the customer domain. This enables customers to access the NGN

and various telco or Internet-based services.

The NGN representation in Figure 1.1 is highly abstract and does not dictate technology

choices for its implementation. Although, network operators must consider using standard-

ised technologies to implement each NGN layer to ensure interworking with other NGNs.

An example technology that can be used to implement parts of the NGN is the SOA.

1.2.2 Service Orientated Architecture

Enterprises manage convergence by focusing on integration of IT systems, rather than de-

veloping new systems [11]. These IT systems provide the needed functions to satisfy busi-

ness processes. In addition, IT systems may belong to the enterprise or external partners.

These IT systems are technology and distributed dependent. The Service Orientated Archi-

tecture (SOA) is therefore defined to ease integration of diverse and distributed systems.

The SOA represents an architecture and set of standardised technologies that enable enter-

prise resources to be used on demand and exposed to customers and external partners [12].

The SOA fulfills these properties by managing a collection of reusable and technology neu-

tral services [13]. These services are called web services and they each abstract enterprise

resources, such as applications, databases, devices, transport networks and other web ser-

vices.

The collection of web services represents a service repository. Services, within the reposi-

tory, are reusable in multiple application development efforts. Thus, web service function-

ality is orchestrated into applications that automate business processes.

A SOA representation is shown in Figure 1.2. The figure illustrates various entities, such

as web services, applications and a service registry. The SOA entities may be programmed

using different technologies. But, to ensure interoperability between the communicating en-

tities, standards-based SOA technologies are used. These standardised technologies include

the following:

7

Transports

Enterprise Resources

Application Resources

App

Registry
Web

Service
1. Publish WSDL

2.
 G
et
 W
SD
L

3. Invoke service

Interface

Interface Interface

Figure 1.2: A SOA Representation

• Web Service Description Language (WSDL) [14]: describes the location and func-

tionality provided by the web service.

• Universal description, discovery and integration (UDDI) [15]: provides the mecha-

nisms required for applications to find web service WSDLs.

• Simple Object Access Protocol (SOAP) [16]: enables technology-neutral communi-

cation between UDDI databases, applications and web services.

• Hyper Text Transfer Protocol(HTTP) [17]: provides the means to transport SOAP

across networks.

In the figure, web services publish their description in WSDL to the service registry. Obtain-

ing the web service description occurs using one of two methods. First, during application

development the web service description is discovered from the registry. Using the descrip-

tion, developers incorporate the web service functions into the application implementation.

Second, during run-time applications dynamically discover the web service description and

invoke the corresponding web service functions. All discovery and invocation communica-

tion occurs using SOAP and HTTP.

The technologies used for the SOA are standardised. However, the SOA is locked into us-

ing these Internet-based technologies only. Also, some of these technologies are not fully

mature. Therefore, the SOA is not an adequate candidate for evolving the telco network

into a service-centric network, that manages the various forms of telecom-IT convergence.

However, the telco network may reuse SOA concepts to offer generic telco services to enter-

prises. The enterprises may use these services to create “telecoms-enhanced” applications

for their own customers or telco customers.

8

Figure 1.3: Proposed SDP Architecture

Another architecture that builds upon both NGN and SOA is the SDP.

1.2.3 Service Delivery Platform

The Service Delivery Platform (SDP) is designed specifically for delivering services to users

of communications technologies [18]. The SDP uses telecoms, IT or content-based capabil-

ities to deliver services to customers, independent of network technologies. These services

include number translation, click-to-dial, location based services, virtual call centres and IT

type services, such as mobile gaming [8].

A proposed SDP architecture that is adapted from [8] is illustrated in Figure 1.3. This SDP

representation is based on common vendor product functions and constitutes functional

abstractions, that simplify complexities within a telco network. These abstractions and their

functions are:

1. Service Creation Environment (SCE) and Management Environment (SME): is used

by internal application developers to create applications that access telecom capabil-

ities independent of network technologies.

2. Service Exposure Layer: provides external application developers with access to

generic and reusable services that abstract applications contained in lower platforms.

As an example, this layer may be SOA-based and contain web services.

3. Service Execution Platform: hosts various applications that provide telco, Internet

and content-based services to customers.

4. Content Delivery Platform: manages the provision and delivery of content to cus-

tomers using content-based services. Content is stored in media repositories that are

accessible via interfaces.

9

5. Network Abstraction Layer: provides a technology-neutral set of capabilities that

enable the delivery and management of services across converged networks.

6. Management Platforms: integrate into all layers and platforms, so as to administer

the SDP. Each SDP abstraction has access to management resources and capabilities,

such as the Operational and Business Support Systems (OSS/BSS).

Based on the definition and proposed architecture, the SDP aims to provide a complete man-

aged environment that offers various service abstractions to external application developers.

These abstractions simplify underlying telecom systems and technologies. However, the

proposed SDP representation has disadvantages:

1. Choosing implementation technologies for each SDP abstraction is difficult. The

interfaces must be standardised so as to promote SDP interworking. Also, the tech-

nologies must provide relevant abstractions and support SDP management.

2. Customer-related abstractions are not defined. In addition, the platforms or layers

do not simplify customer related activities. For instance, access, service provisioning

and customer to service signalling is not abstracted.

3. The architecture provides a single abstracted view on the SDP. Missing SDP views

include business and domain models, functional groupings, information distributions

and application logic relationships. The missing views must provide more abstrac-

tions that are structured using specific architectures.

4. Access to telecom management facilities is provided by proprietary interfaces. In

addition, how the SDP itself is managed is not defined. Similar to points 1 and 3, a

management architecture is required that is implementable using technologies with

standard-based interfaces.

As a result of these limitations, network operators build or buy custom SDP solutions that

enable them to create limited services. These SDP implementations are diverse and follow

no agreed or standardised interpretation. This inevitably leads to SDP solutions being de-

pendent on various technologies that are standards-based and proprietary. This effects the

openness of the SDP and interoperability between other SDP solutions. Therefore, solving

these and other SDP limitations is the focus of this research.

10

1.3 Problem Statement, Aim and Objectives

The convergence trend produces various telecoms and IT service-centric network architec-

tures, such as the NGN, SOA and SDP. These architectures may be used to evolve telco

voice-centric networks into service-centric networks. Each architecture provides varying

abstractions to hide convergence and network complexities. We consider the SDP the most

generalised approach for evolving the telco network into a service-centric network and to

benefit from convergence. However, the SDP is not standardised.

The SDP concept demands abstractions to simplify various complexities. These abstrac-

tions must be structured and their implementations standards-based. Hence, this research

responds to the question: what are the convergence and network complexities that can be

simplified by the SDP and what architectures, abstractions and interfaces must be devel-

oped to aid this simplification? Based on this problem statement we pose the following

sub-questions:

1. Who are the external IT-using enterprises that benefit from the development of a

standard-based SDP?

2. What is the SDP business model used to manage the business relationships between

telco and external IT-using enterprises?

3. How does the SDP enforce standard-based interactions between the telco and external

IT-using enterprises to satisfy business relationships?

4. What are the services that the SDP defines to abstract telco network resources and

capabilities?

5. What are the service interfaces that the SDP must expose to external IT-using enter-

prises?

6. How must the architecture in Figure 1.3 be elaborated or simplified to promote a

standard-based SDP.

7. What design pattern do we use to structure the SDP architecture such that it is tech-

nology neutral and extendable?

8. How do we incorporate OSS/BSS into the SDP architecture such that we promote a

standard-based SCE and SME?

Our research aims to answer these questions and as a result define a SDP framework that

contains various levels of abstraction. The framework and its abstractions simplify various

11

complexities and guide telco network evolution into a SDP. The objective of the framework

is to also promote SDP standardisation where possible using established standards. This is

achieved by applying the framework to create technology, distribution and implementation

independent SDP architectures. The generic architectures motivate the use of standard-

based technologies to implement the SDP. By using standard-based technologies, the SDP

becomes truly open to diverse IT using enterprises and their applications. Also, the SDP can

access and use converged network capabilities, including customer devices. Hence, being

standard-based ensures interoperability between SDP implementations.

We aim to prove the concept of the SDP framework by developing a SDP architecture and

implementing some of its parts using standard-based technologies.

1.4 Outline of Thesis

Telecom-IT convergence has implications on both telco and IT-based networks. A major

implication is the interworking between telco and IT systems. This interworking requires

new converged systems to be developed. These new systems are complex since they must

perform both telecom and IT-based functions. One such system is the SDP. A methodology

is used to develop complex systems by defining their architectures using various viewpoints.

In chapters 2 and 3 we define telecom-IT convergence and a viewpoint methodology.

• Chapter 2: we describe telecom-IT convergence as a complex process. We define the

process and discuss its implication on both telco and IT-based networks. In addition,

we define a strategy to manage telecom-IT convergence.

• Chapter 3: we discuss complex systems, their development and their relation to defin-

ing the SDP framework. We elaborate on reusable tools that manage complexity

and contribute to the definition of the SDP framework. In addition, we explain the

methodology used to define the SDP framework.

Various legacy and current standards in telecoms and IT are useful in conceptualising and

defining the SDP. These standards contribute towards uncovering SDP requirements, ab-

stractions for the framework and reusable interfaces to implement the framework. As a

result, each of these standards provide a specific viewpoint on the SDP and the develop-

ment of its framework. In chapters 4 to 8 we examine such standards.

• Chapter 4: we define a perspective on the SDP by using legacy Intelligent Net-

work (IN) [2] and Telecommunication Information Network Architecture (TINA) [19]

12

standards.

• Chapter 5: we define a perspective on the SDP by using the Parlay [20] service plat-

form standards.

• Chapter 6: we define a perspective on the SDP by using management framework stan-

dards, such as Telecommunication Management Network (TMN) [21], Telecommu-

nication Operations Map (TOM) [22] and enhanced Telecommunication Operations

Map (eTOM) [23].

• Chapter 7: we define a perspective on the SDP by using the enterprise SOA standard.

• Chapter 8: we define a perspective on the SDP by using the Internet Protocol Multi-

media Subsystem (IMS) [24] standard.

Results from the viewpoints on the SDP include various abstractions. These abstractions

represent the building blocks that structure the SDP framework. In addition, these building

blocks are technology neutral and may be implemented using any suitable telecoms and

IT-based technologies. Chapters 9 and 10 represent the synthesis of these abstractions into

the SDP framework and a proof of concept implementation.

• Chapter 9: we define the SDP framework by integrating concepts obtained from all

perspectives. The framework is defined using stages containing abstraction and ar-

chitectures. We also compare some SDP interpretations to the framework.

• Chapter 10: we prove the concepts of the SDP framework by defining a SDP archi-

tecture and implementing its parts. For the implementation we use service interfaces

provided by various standards-based technologies.

• Chapter 11: we discuss the contribution of the framework to SDP standardisation. In

addition, we summarise our results and present recommendations for future work.

13

Chapter 2

Convergence

In this research we focus on telecom-IT network convergence. A definition of telecom-IT

convergence is integrating reliable telco voice (and data) services with information (and

media) capabilities supported by IT and the Internet [25]. This form of convergence is

evident in the SDP architecture, shown in Figure 1.3. The SDP architecture incorporates

both content delivery and telco services, and exposes these capabilities to enterprises using

IT-based mechanisms. In addition, the SDP architecture uses network capabilities provided

by converged telco, IT and Internet networks.

For the telco, telecom-IT convergence implies the provision of simple and converged ser-

vices to customers over the telco network, IT-based enterprise networks and Internet. Sim-

ple services include normal telephony, messaging and information browsing, while con-

verged services integrate combinations of voice, media and information. Telecom-IT con-

vergence also implies the use of IT-based mechanisms by the telco to develop, deliver and

manage services.

Convergence aims to allow telco and IT network infrastructures to interwork. We define

infrastructure as the arrangement, distribution and connection of hardware and software

required to provide services. However, heterogeneous telco and IT-based infrastructures

hinder convergence, for example, circuit and packet-based transport networks for deliver-

ing services across telco networks and the Internet respectively. We interpret telecom-IT

convergence as a process that allows interoperability between telco and IT-based infrastruc-

tures, such that numerous services are delivered to customers.

14

2.1 The Process of Separation and Integration

Telco networks contain a diverse infrastructure. Each infrastructure contains various lev-

els of functionality, such as network services, network functions and transport networks.

Traditionally telco infrastructure is separated into vertical silos. Each silo represents an in-

dependent system that provides limited services by using specific network capabilities. In

addition, a silo operates on a particular transport network. Examples of silos include both

legacy fixed and mobile telco PSTN/IN service platforms.

The vertical nature of telco network infrastructure is caused by environmental factors, such

as business drivers, regulations, technologies and customer requirements. However, as en-

vironmental factors change, the telco network evolves. The current evolution aims to sup-

port interworking between telco network infrastructure and IT-based infrastructure, that is,

telecom-IT convergence. To provide infrastructure interworking, the telco decomposes its

silos by horizontally separating their common functions into layers.

Infrastructure functions are decoupled from their physical representation into abstract enti-

ties. As a result, the complexity of the infrastructure is decomposed into manageable and

reusable functional entities. In addition, functional entities focus on particular areas of the

network infrastructure. For example, Figure 1.3 implies the use of layers to horizontally

separate network abstraction and service exposure functionality. These sets of functionality

abstract access to network capabilities, services and content. The figure also uses a platform

layer to separate service execution and content delivery functionality. This functionality ab-

stracts access to telco services and content used by services.

Within a layer, functions enable horizontal integration of telco and IT-based infrastructure.

For example, Figure 1.3 shows the integration of platforms with OSS/BSS and content

repositories, via interfaces. Also, the figure shows converged networks that contain inte-

grated telco transport networks, IT-based transport networks and Internet. The integration

of these networks is achieved by horizontally interworking circuit mode and packet-based

transport networks.

Layers also enable vertical integration of telco and IT-based infrastructure, by using their

functions as points of integration. For example, Figure 1.3 uses the exposure layer as a

point of integration between IT-based applications and telco network capabilities. Also, the

network abstraction layer is a point of integration between applications/content and con-

verged networks. The platform layer provides the interworking between service exposure

and network abstraction layers.

15

QoS,
reliable,
secure

Services

(I.T)

(Telco)

Apps/Content

Transport

(a) Separation and Integration

AC

SS

NT

AC

SS

NT

AC

SS

NT

Apps and
Content
Layer

Software
Services

Layer

Network
Transport

Layer

Telco
Domain

Other
Domains

BM BM BM
Business

Model
Layer

IT
Domain

(b) Horizontal and Vertical Convergence

Figure 2.1: Convergence of Infrastructure

A representation of infrastructure separation and integration, adapted from [26], is illus-

trated in Figure 2.1(a). The figure depicts converged infrastructure that is horizontally

separated into reliable, secure and quality of service guaranteed transport networks, that

expose functionality using abstract network services. The infrastructure is also horizon-

tally separated into application and content delivery functions. These functions vertically

integrate with the transport networks by using network services. The figure applies to the

convergence of enterprise IT solutions with telco networks.

By applying the separation and integration process to telco and IT infrastructures we present

Figure 2.1(b). The figure is derived from [26, 27]. The figure depicts three vertically sep-

arated network domains: telco, IT and other (may include broadcaster networks). Across

each domain, common independent functionality is separated into horizontal layers. These

layers being applications/content, software-based services and transport networks. The fig-

ure shows horizontal integration across layers. Also, the figure uses the services layer as a

point of integration between layers.

As a result of applying both forms of integration, Figure 2.1(b) illustrates two types of

telecom-IT convergence:

• Vertical Convergence: represents vertical integration between layers within the same

domain. For example, the telco integrates its internal legacy systems and new sys-

tems, such as integrating PSTN and IN platforms with new service platforms, content

stores, management facilities and high-speed transport networks.

16

• Horizontal Convergence: represents horizontal integration within layers, across dif-

ferent domains. For example, telco voice applications integrate with external content-

based applications provided by IT using enterprises. Also, telco services may inte-

grate with services located in external enterprises. This form of convergence also

applies to the integration of transport networks, such as the telco and Internet. As a

result, integrated transport networks support the integration of applications, content

and services across network domains.

In Figure 2.1(b), business models are horizontally integrated. This integration illustrates

the convergence of business activities between telco and IT networks. The main activity fo-

cuses on providing services to customers. Hence, telco and IT business models are joining,

such that service development, deployment and delivery is shared across multiple network

domains. The figure does not show management applications and services, but they are

contained in each domain and layer. These applications and services may also integrate

vertically and horizontally.

Both horizontal and vertical convergence are realised by interworking networks’ software

and transport technologies. For example, integrating different signalling protocols, switch-

ing technologies, application implementations and content. However, this integration has

various implications on the telco network.

2.2 Implications of Convergence

Telecom-IT convergence has the following implications:

• Telco and IT business models must integrate into value chains, with both benefiting

from the development and delivery of services to customers.

• Circuit and packet switching must interoperate, to reliably transmit any form of data.

• Signaling protocols must interwork across networks to support service delivery.

• Service platforms must operate independent of the underlying network technologies

and provide functionality to diverse application developers.

• Application development technologies must provide tools to support application cre-

ation, independent of the service platform that applications access.

• Management systems, such as OSS/BSS, must administer mixtures of terminals,

transport networks, services and application technologies, across diverse networks.

17

Application
Provider

Network Operator

Content
Provider

Broker

Customer

Figure 2.2: Example of a Converged Networks Business Model

We describe each of these convergence implications in the following sections.

2.2.1 Business Models

Offering a diverse range of services is essential within the ICT environment. To support

service development the telco opens the network to a variety of external 3rd party enter-

prises. Examples of these enterprises include service providers, application developers or

content providers. With this opening, telco and enterprise partnerships are formed. The

aim of these partnerships is to support the creation and delivery of a variety of services to

customers. As a result, new and innovative business models are established. An example of

a converged business model is shown in Figure 2.2.

The business model depicts the following entities:

1. Network Operator: provides connectivity and access to its network resources and

capabilities to other entities in the business model.

2. Application Providers: invoke common network functions to enhance applications

that provide value added services to customers. These services include basic voice,

video streaming, multimedia conference and mobile gaming.

3. Content Providers: manages, sells and delivers content needed by application de-

velopers. Two categories of content exist. First, traditional content such as voice

announcements used by an Interactive Voice Response Unit (IVR). Second, new con-

tent needed by specialised services, such as images, audio, video, music, multimedia

or information.

4. Brokers: enable interactions between business entities. For instance, a broker retails

18

services from application providers to customers. Also, brokers retail content from

content providers to application providers.

5. Customers: are individuals or enterprises that subscribe, consume and pay for ser-

vices.

With this model a value chain is created, where all partners benefit. For instance, appli-

cation providers access abundant network functions to create “telecoms-enabled” applica-

tions. Also, content providers access network functions to delivery content to a variety of

consumers. Via brokers, application providers access diverse content managed by content

providers. Using the telco network and brokers, application providers sell their services to

a large customer market.

Based on the above business model and scenarios, brokers are key to a converged busi-

ness model [28]. Brokers provide a single point of access between multiple customers,

application providers and content providers. Brokers therefore further promote interactions

between entities in the converged business model. As a result, brokers contribute to service

delivery. The telco network operator benefits from the increased activity in its network.

The business model benefits internal and external application development by providing

access to connectivity and network functionality. This functionality is reusable and reduces

time and cost in both internal and external application development [18]. Also, integrating

more partners into the business model ultimately connects more entities to the network,

thereby increasing the network’s value [10].

The business model is generic. By remaining generic the business model entities may be

decomposed into additional business partners that participate in specific business roles. For

instance, application providers may be decomposed into service providers that sell services

to customers. These service providers act on behalf of application providers, who only cre-

ate the service. The business model is also dynamic and can easily evolve when influenced

by the convergence process.

We define various business models for the SDP in Chapters 4 , 5, 6 and 7.

2.2.2 Network Technologies

Categories of emerging network technologies include user and network transmission meth-

ods, network elements, service, application and management protocols and platforms. Ex-

amples of network technologies are:

19

Signaling
Gateway Softswitch

Media
Gateway

App Server Standardised Interfaces

Legacy Network Switch

Softswitch Architecture

Pr
op

rie
tar

y

Switching

App Server

Transport

Figure 2.3: Evolution to a Softswitch Architecture

1. Customer Access: increased bandwidth provided by fixed and wireless mechanisms,

such as Digital Subscriber Line (DSL) [29] and Universal Mobile Telephone Sys-

tem (UMTS) [30]. Technologies like these enable complex services to be offered and

delivered over the network to users with intelligent devices [31].

2. Transport Switching: includes legacy circuit-orientated Time Division Multiplex-

ing (TDM) switching. Also, virtual circuit packet-orientated Asynchronous Trans-

fer Mode (ATM) [32] and Multiple Path Label Switching (MPLS) [33] are used to

transport various types of data including protocols.

3. Transport and Signalling Protocols: the Internet Protocol (IP) [34] is used to transport

various forms of data across both telco and IT networks. The IP also transports sig-

nalling protocols such as Transport Control Protocol (TCP) [35], Real Time Protocol

(RTP) [36] and Session Initiation Protocol (SIP) [37] across networks. These sig-

nalling protocols are used to support different services on both telco and IT networks,

such as voice, web browsing and video streaming.

Convergence requires the abstraction of complex, heterogenous and integrated network

technologies, to enable service development. As a result, the softswitch [38] is defined. The

softswitch enables different signalling and switching technologies to interoperate and reli-

ably transmit any form of data. Therefore, the softswitch delivers services across different

networks. Also, the softswitch enables application development, independent of network

technologies.

The softswitch architecture adapted from [39] is shown in Figure 2.3. The architecture

illustrates evolution from proprietary closed switching environments to the softswitch pro-

moting open and standardised interfaces to network functionality. The softswitch archi-

tecture represents a functional decomposition of the network into the following functional

abstractions:

20

• Media Gateway: is controlled by the softswitch and manages connections between

different transport networks, such as telco data networks, PSTN and the Internet.

• Signaling Gateway: translates protocol messages originating from one network into

other network specific protocol messages and transports them to the softswitch.

• Softswitch: contains logic for signaling, call processing and controls the media gate-

way. Also, it provides application servers with open, standardised and abstract inter-

faces to network functions.

• Application Server: houses applications that uses the softswitch interface to access

network functionality. These functions enable service delivery to customers on vari-

ous networks. An application server may be administered outside the network by an

external enterprise, such as an application provider.

Softswitch specific protocols are used to communicate between the softswitch abstractions.

Examples of these protocols include the set of Signaling Transport (SIGTRAN) [40] proto-

cols and the Media Gateway Control (MEGACO) [41] protocol.

The softswitch and associated protocols provide the basis for other forms of networks to be

created, such as the Internet Protocol Multimedia Subsystem (IMS) [24]. The IMS reuses

softswitch functional abstractions, but decomposes them further and integrates Internet pro-

tocols into its packet-based network. The Internet protocols include SIP and Diameter [42].

We discuss IMS concepts that are applicable to the SDP framework in Chapter 8.

The softswitch architecture provides a foundation of concepts that aid telecom-IT conver-

gence. These concepts and principles include decomposition of the telco network into vari-

ous high level functional abstractions. These abstractions collectively represent a new open,

secure and standardised network environment. These concepts also support the converged

business model, since it promotes network openness to external enterprises. In addition,

the abstractions are technology independent, such that they hide network integration and

simplify service development and delivery.

2.2.3 Service Platforms

Traditionally, service platforms are specific to the networks they work on, such as the IN

and Customised Application for Mobile Enhanced Logic (CAMEL) [43] for the PSTN and

GSM respectively. By contrast, convergence requires the separation of service platforms

from the underlying network specifics. Also, service platforms must promote reusability of

network capabilities and resources in service development, but remain network neutral.

21

Transports

Service Architecture

Network Resource Architecture

as-UAP

ss-UAP

UA

CSM

IA

UA

SF

CCF TM

C
u

s
to

m
e

r
S

e
rv

ic
e

 A
rc

h
it

e
c

tu
re

CC

IA

Standardised

APIs

USM SSM USM

PA

TCSM

CPE

Protocols

(a) TINA Service and Network Architectures

App

Converged Networks

App

SCF SCF

SCF

App

WSWS

App

WSWS

Parlay X Gateway

Parlay X

API

SCF

SCF

WSWS

Parlay

API

Parlay

Gateway

Protocols

(b) Parlay and Parlay X Architectures

Figure 2.4: Service Platform Architectures

The first form of network abstraction in service platforms are evident in the planes of the

IN conceptual model. Though the IN provides abstraction, they are limited. As a result,

IN application developers must be knowledgable in telecoms call states and call processing.

Service platforms, based on extended IN concepts, aim to ease service development inde-

pendent of underlying network complexities. The most influential in promoting thinking

on service platforms are the legacy Telecommunication Information Networking Architec-

ture (TINA) [19] and current Parlay [20] service platforms.

The TINA standards define a service architecture [44] and network resource architecture [45].

Both architectures are complete and rich with principles, concepts, computational objets and

associated data structures. For instance, the architectures promote the separation of service

and network related functions into abstract and reusable objects. Examples of objects in-

clude a service session manager and communication session manager. These objects and

their data structures are reused in service development, deployment and delivery. An overall

representation of both TINA architectures are shown in Figure 2.4(a). The figure does not

show all computational objects.

The Parlay Group [20] defines two service platform architectures containing Application

Programming Interfaces (APIs), that promote opening of telco networks to external IT using

enterprises. These architectures are Parlay and Parlay X. Parlay groups APIs into Service

Capability Features (SCF), while Parlay X uses web services [7]. Each API defines objects

and data structures to describe how authorised applications use network functions to de-

liver voice, information or multimedia services to customers on converged networks. Also,

APIs abstract network complexity, such as transport networks and protocols, for application

developers. An abstract representation of both architectures are shown in Figure 2.4(b).

The TINA, Parlay and Parlay X standards provide a wealth of reusable principles, concepts,

22

objects and data structures. For example, these standards abstract service and network com-

plexities into architectural layers that constitute software-based objects. In addition, the

layered abstractions simplify network complexities and promote external access to network

capabilities and resources. All these reusable parts contribute to the definition of service

platform architectures that support telecom-IT convergence.

We discuss IN, TINA, Parlay and Parlay X (including SOA) service platform concepts that

are applicable to the SDP framework in Chapters 4, 5 and 7.

2.2.4 Application Environments

To benefit from convergence, telco service platforms must be accessible by a range of appli-

cation development environments. Application providers typically use development envi-

ronments such as .Net [46] or Java [47]. These technologies contain execution environments

and provide standards-based APIs, that further abstract telco and IT network technologies.

These technologies include service platforms, such as Parlay and Parlay X. Hence, these

technologies provide software-based developer tools to support application development.

However, the onus is on the application provider to determine the appropriate technolo-

gies needed to support their specific business, service and customer requirements and telco

network provider.

2.2.5 Management Systems

The telco must manage network and service activities, such as:

• business relationships and processes defined by a converged business model;

• physical equipment implementing platforms and transport networks;

• signalling systems that control transport networks and service delivery;

• services used in application development;

• functions used for accessing network capabilities; and

• services used by customers and internal users.

To aid telco management, various management frameworks may be implemented. These

frameworks include the Telecommunications Management Network (TMN) [21], Telecom-

munications Operations Map (TOM) [22] and Enhanced Telecommunications Operations

Map (eTOM) [23].

23

OSF OSF

OSF OSF

OSF OSF

Business
Management

Layer

Service
Management

Layer

Network
Management

Layer

Element
Management

Layer

OSF

MF

NEFQAF

OSF

WSF

NEF

WSF

Network
Element

and Adapter
Functions

Mediation
Functions

Operations
System

Functions

Work Station
Functions

NENE NENetwork
Elements

(a) TMN Layers and Functions

Network and IT

Fulfillment Assurance Billing

Customer Interface Management
Processes

Network Element Management
Processes

Customer Care Processes

Service Development and Operations
Processes

Network and System Management
Processes

Inf
orm

ati
on

 S
ys

tem
 M

an
ag

em
en

t P
roc

es
se

s

(b) TOM Layers and Domains

Strategy, Infrastructure
and Product

Operations, Fulfillment,
Assurance and Billing

Market, Product and Customer

Service

Resource (Application, Computing and Network)

Supplier/Partner

Supplier/Partner

Customer

Enterprise Management

Stakeholders, Employees, Other

(c) eTOM Layers and domains

Figure 2.5: TMN Architecture, TOM Framework and eTOM Framework

TMN was intended to manage the legacy IN, SS7 and PSTN. Similar to the IN, the TMN

is an overlay network that integrates with telco network elements. Each network element

provides management functions that are executed during management events. Management

functions are abstracted into simpler service and business oriented functions. As a result,

TMN structures these functions into a layered architecture. When management events oc-

cur, management functions are executed across the architecture layers. Examples of man-

agement functions include mediation, operations, service and business functions. The TMN

architecture is illustrated in Figure 2.5(a).

TOM simplifies the complexity of implementing TMN and provides a framework that aids

the development of OSS/BSS architectures and implementations. The TOM framework

uses a customer and service oriented approach to telco management. In addition, TOM

reuses the TMN layered and functional hierarchy approach. However, TOM defines various

business processes within each layer. Each business process is activated by inputs and

24

produces outputs, that are inputs for other processes. As a result, a chain of processes or

process flows represent an end-to-end management activity [21]. Each business process

is grouped into a process flow domain. Three domains exist: service fulfillment, service

assurance or service billing. The TOM framework is illustrated in Figure 2.5(b).

Currently, the eTOM framework is used to define OSS/BSS for the NGN, within the context

of convergence. eTOM is derived from TMN and TOM. However, eTOM incorporates the

role of the Internet in managing the telco, its services and customers. eTOM is defined in

various stages, called process levels. Initial process levels define abstract layers and do-

mains. These abstractions are then further decomposed into business processes. Additional

decomposition produces more detail on business processes. An abstract representation of

the eTOM framework is shown in Figure 2.5(c).

The eTOM framework is used to build distributed IT-based systems that provide telco OS-

S/BSS. These systems are large and complex since they administer all parts of the telco

network and enable Internet access to specific telco network management capabilities. Cur-

rently, the New Generation Operations Systems and Software (NGOSS) [48] initiative in-

corporates the eTOM framework into a guiding methodology to create telco OSS/BSS. The

NGOSS methodology provides additional frameworks that identify shared information and

technology neutral architectures for the OSS/BSS.

TMN, TOM and eTOM prescribe the abstraction of the telco network into simpler manage-

able parts. These parts are structured using architectural styles, such as layers and domains.

However, TOM and eTOM identify business processes within their respective architectures.

Business processes represent abstracted forms of management services that are provided by

OSS/BSS platforms. In addition, some business processes are accessible by the customer

and the telco partners. These frameworks and their processes contribute to the development

of OSS/BSS platforms required to manage telecom-IT convergence.

We discuss TMN, TOM and eTOM concepts that are applicable to the SDP framework in

Chapter 6.

2.3 SDP as a Strategy for Convergence

The convergence process and its resulting implications illustrate the complexity faced by

telco network operators. This includes the formation of converged value chains and busi-

ness relationships between partners. Also, technology choices that enable convergence are

numerous and varied. Though some technologies are standardised and promote interoper-

ability, each provide various levels of abstraction to manage internal and external network

25

integration and service delivery.

Therefore, we address the question: what is the strategy of the telco to manage and benefit

from telecom-IT convergence? The telco’s strategy is to define a generic business model that

can accommodate various external roleplayers. These players being other telcos or IT-using

enterprises. By extending the generic business model the telco define specific value chains.

Within these value chains the telco and the various external roleplayers define business

objectives. Business objectives are satisfied by enabling telco infrastructure and external

infrastructure to interwork. To enable this interworking the telco must evolve its network

into a service centric network that uses the SDP as an infrastructure integration mechanism

as suggested in Figure 1.3. Hence, the SDP must manage telecom-IT convergence.

The SDP enables telco infrastructure integration with IT-based infrastructures by adhering

to the convergence process, that is, it defines points of integration across the telco infras-

tructure. These points of integration provide external roleplayers with access to a collection

of software-based services. These services abstract telco infrastructure complexities and

can be used for application development and content delivery.

The SDP has no agreed definition nor is it standardised. This poses a problem since exter-

nal IT-using enterprises that access multiple SDP implementations do not have consistent

access to a set of standard-based services. As a result, points of integration on the telco in-

frastructure are not standardised. Diverse SDP implementations also hinder interoperability

between each other, since their points of integration are not standardised. This research

proposes an approach to standardisation by defining reference points as SDP points of in-

tegration. Reference points prescribe a formal specification that is adhered to by their im-

plementations. Hence, multiple SDP implementations that conform to their reference point

specifications expose standard-based services and are interoperable.

To fully enable network integration, a collection of reference points are required for the telco

infrastructure. These reference points formalise integration relationships between telco and

external IT-based roleplayers. The roleplayers external infrastructure is abstracted as in-

dependent service entities that use SDP services. These entities may relate to converged

business model entities.

An example set of reference points, structured within a SDP reference model, are shown

in Figure 2.6. In the figure, service entities using the SDP via reference points are content

providers and application providers. The SDP also uses reference points to abstract network

capabilities and resources, such as transport networks, OSS/BSS and customer terminals.

Based on various forms of convergence, we classify reference points as either horizontal

or vertical. In this research we focus on reference points offered by the SDP. We name

26

ROS

RAS

RNS

RCS

ROD

RONRCN

RCA ROA

RDS

Transports

App
Provider

OSS
BSSCustomer

SDP

Content
Provider

Figure 2.6: Proposal for a SDP Reference Model with Reference Points

these reference points service oriented reference points. Two horizontal service oriented

reference points are:

• RCS - customer to SDP.

• ROS - OSS/BSS to SDP.

Three vertical service oriented reference points are:

• RAS - application provider to SDP.

• RNS - transport networks to SDP.

• RDS - content provider to SDP.

By decomposing service oriented reference points we produce details on the SDP that im-

plement telco and IT infrastructure integration.

The remaining reference points define integration relationships between roleplayers, their

infrastructure and telco infrastructure. The RCA and RCN reference points define the cus-

tomer relationship with the application provider and transport respectively. The ROA, ROD

and RON reference points define the OSS/BSS relationships with the application provider,

content provider and transport networks respectively.

2.4 Summary

In this chapter we discussed convergence between telco and IT infrastructures. We defined

convergence as a process that separates infrastructure according to its functions performed,

so as to identify points of integration. These points of integration enable infrastructure to

converge. Using the convergence process, we have separated network infrastructures into

27

IP

MPLS

DiffServ

TDM

RTP
SIP

SOAP

WDM
3G

WiFi

ADSLCable

Satellite

Network Functions

H323

Fibre

Network Services
and DataService Management

Partner Management

IMS, Softswitch,
TINA, IN

Parlay X,
Parlay, IMS,

TINA, IN

Parlay X, Parlay,
IMS, eTOM, TMN

Customer,
Terminal and

Network
Management

External IT using
Enterprises

Figure 2.7: Complexity of Convergence

abstract layers and domains. Based on these abstractions, we have defined vertical and hori-

zontal convergence occurring within and across network domains respectively. We have also

described the implications of convergence on telco infrastructure. These include creation

of value chains and integrating signalling, transport networks, service platforms, applica-

tion environments and management systems. Associated with these implications we have

described technologies and their architectures that contribute to telecom-IT convergence.

These technologies contribute to the complexity of telecom-IT convergence. Figure 2.7

illustrates these technologies against the various areas of the telco network. Due to conver-

gence complexities we have defined a strategy for the telco, that is, development of the SDP

as an integration mechanism between telco and IT-based infrastructures. We defined the

SDP to provide points of integration that are formalised as a set of reference points. These

reference points are structured within a reference model. The reference model entities re-

late to converged networks business model entities shown in Figure 2.2. Reference points

are implementable as a set of abstract services. These services enable IT integration with

telco network capabilities and resources. Hence, the SDP abstracts lower network related

technologies and structures higher service related areas, that are shown in Figure 2.7. To fill

out the detail we examine several existing standards in the following chapters:

Chapter 4: IN and TINA.

Chapter 5: Parlay and Parlay X.

Chapter 6: TMN, TOM and eTOM.

Chapter 7: SOA.

Chapter 8: IMS.

28

Chapter 3

Managing the Complexity of the Service
Delivery Platform

The SDP has been located in its working environment in Figure 2.6 but is, at this stage, a

concept that is not yet standardised. As a result, it has many interpretations that produce

varied definitions, designs and implementations. Each interpretation focuses on specific

requirements, such as service creation using web services [7], content management and

consolidating billing platforms. These interpretations also use diverse technologies to im-

plement the SDP.

A popular interpretation, from [8], defines a limited set of requirements that prescribe the

SDP as:

• managing service creation, provisioning, execution and billing;

• supporting the delivery of services in a network and device-independent manner;

• providing a single standardised point for application developers to find and use di-

verse services and content; and

• providing external developers, such as IT-using enterprises, with open and secure

access to telco network capabilities.

Building on these requirements, we define the SDP as “a distributed IT-based system that

abstracts telco network capabilities into generic services that are accessible across telco,

enterprise and Internet networks and promotes the development, delivery and management

of various customer services”. In this work we use this definition for the SDP.

Accompanying the above requirements is an SDP architecture that is defined in [8] and

illustrated in Figure 1.3. In this work, we provide additional detail on the architecture

29

Figure 3.1: Expanded SDP Interpretation

to include interfaces, implementation technology mappings and a distribution plane. The

added interfaces illustrate the communication between layers, platforms and telco resources.

The technology mappings reuse existing telecom standards to show implementation choices

for each interface, layer and platform. The distribution plane abstracts the distribution of

the SDP and integration with other telco platforms. The expanded architecture is shown in

Figure 3.1.

In the figure we illustrate existing standard-based technologies and APIs implementing plat-

form and layer communication. For example, both Parlay and Parlay X [20] implement the

service exposure layer API. However, Parlay also implements the network abstraction layer,

execution platform and content delivery platform APIs. In addition, the network abstraction

layer API is implemented using the standards-based technologies such as:

• Parlay X,

• Java API for Integrated Networks (JAIN) [49],

• Open Mobile Alliance (OMA) Service Environment [50, 51] and

• Internet Protocol Multimedia Subsystem (IMS) [24].

In Figure 3.1 no suitable standardised technologies are defined to implement OSS/BSS, SCE

and SME APIs. Also, communication across the service execution and content delivery

platforms use proprietary APIs. We identify the need for standard-based APIs as X’s in the

figure.

30

3.1 Limitations

The SDP architecture in Figure 1.3 is derived from various products, such as [52, 53, 54, 55,

56, 57], and is influenced by their specific requirements and architectures. In addition, the

products use mixtures of telecom, IT and broadcasting technologies to implement the SDP.

These technologies are both proprietary and standards-based. Hence, the SDP architecture

in Figure 1.3 is a generalisation of common functions offered by various products.

The SDP in Figure 1.3 is incomplete, since layers and platforms require further decomposi-

tion to uncover additional functionality. These functions may include additional layers that

manage information contained in various data-stores. Also, platforms may be decomposed

to show additional components that manage distribution, security and replication of data.

The architecture does not provide an appropriate device (customer) domain. As a result,

communication between device, SDP and converged networks are not managed. Also, con-

tent provider platforms or layers are not shown; rather, their infrastructure is directly inte-

grated into the SDP. Hence, communication between content providers and SDP are also

not managed or shown.

Additional abstractions are defined by decomposing the SDP architecture in Figure 1.3.

These abstractions may provide details on business entities or implementation specifics.

Also, subsets of abstractions may be structured into specific architectures, such as a business

model or functional schematic. Hence, the architecture is limited since it provides a single

abstract view on the SDP.

Figure 3.1 shows the SDP architecture in Figure 1.3 being implemented using proprietary

and standards-based technologies and APIs. However, different APIs implement a single

platform or layer. In addition, proprietary web-based APIs are used to expose OSS/BSS

functionality to layers and platforms. By using mixtures of standards-based and proprietary

technologies inconsistency among SDP implementations occur. Thus, SDP implementa-

tions are not portable across converged networks and services are not portable across SDPs.

The SDP is a distributed platform that operates within a distributed environment. This envi-

ronment is supported by a distribution plane. The plane supports communication between

diverse implementations of layers, platforms, services and APIs. However, [8] does not pro-

vide detail on the distribution of the SDP, the distribution plane and its technology choices.

31

3.2 Approach

To overcome current SDP limitations we require a common base of concepts. These con-

cepts contribute towards a generic SDP definition, set of requirements and an architecture.

These concepts are void of any technology biases and promote the standardisation of the

SDP. To defined and encapsulate these concepts we develop the SDP framework.

Traditionally, a framework provides a generic, extendable and supporting structure that de-

scribes a set of concepts, principles, rules, methods and technologies used to complete a

specific task or process [58, 59]. For the SDP, we define its framework as providing a tech-

nology neutral foundation of reusable concepts and structures on which SDPs are designed,

developed and implemented. To provide these capabilities the SDP framework prescribes

various requirements.

3.2.1 Requirements

Like the convergence process, the SDP framework separates complexities from current SDP

interpretations and simplifies then into varying abstractions. These abstractions are technol-

ogy neutral and defined in an implementation and distribution independent manner. Hence,

the SDP framework does not specify technologies, but rather service-oriented abstractions.

The framework contains various levels of abstractions that are integrated together to form

a SDP architecture. Integrating abstractions is done in a generic manner. This maintains

implementation and distribution independence. Hence, the SDP architecture is technology

neutral and structures the various service-oriented concepts.

By applying the SDP framework, an architecture of abstractions is created. Some abstrac-

tions are generic, while others are specific to the SDP. Generic abstractions may be decom-

posed, extended or reduced to uncover particular SDP details. For instance, data processing

abstractions may be grouped, decomposed and structured within a data-oriented SDP archi-

tecture. Therefore, the SDP framework and its resulting architecture are highly extensible,

due to its technology neutrality.

The SDP framework represents a tool for managing the complexity of SDP development

and therefore telecom-IT convergence. Complexity is abstracted into a generic architecture

based on the SDP framework. This architecture provides varying levels of detail on the

SDP that are technology independent. Therefore, the framework abstracts technological

concerns without obscuring important SDP concepts.

32

To develop the SDP framework we treat the SDP as a complex system. As a result, we reuse

and extend complex system concepts to define the SDP framework.

3.3 Complex Systems

Like the telco network, the SDP is a complex system. Complex systems are defined as a

complicated interworking of components that share a common purpose [60]. The purpose

of a system is based on the problem the system solves. Thus, the SDP contains a variety of

heterogenous components that aim to provide various telco, IT and content-based services

to fixed and mobile customers in a reliable, secure and quality assured manner.

Some system components are not monolithic entities, rather they are complex systems them-

selves. These components are known as “systems of systems” [61] or “subsystems” [60,

62]. Similarly, SDP components represent complex subsystems, since they simplify and

integrate multiple network components to manage telecom-IT convergence. Hence, SDP

subsystems provide service-oriented functionality.

Complex systems and their components have various properties. These properties are

shared by the SDP and its components. For instance, components interact to fulfil the

system’s purpose. Interactions are formalised using relationships [62]. Examples of re-

lationships include producer-consumer, client-server and peer-to-peer. These relationships

define rules, policies and attributes to limit or enhance the functionality of interacting com-

ponents. Hence, relationships structure and formalise interactions between components.

Therefore, formalised relationships between SDP components aids its standardisation.

Like other complex telco systems, the SDP is an open [62, 63] system in the sense that it in-

teracts with its environment of converged telecom-IT networks through standard interfaces.

SDP and environment interactions include the exchange of data, protocols, API invocations

and execution of business processes. By being open the SDP is also a dynamic [62] sys-

tem. Dynamic systems contain components that interact with their environment. These

interactions may cause components to change in many ways. For example, a call control

component’s state may change due to interactions with customers in the environment.

Systems engineering concepts are used to define a complex system’s components, such that

they satisfy system properties. These concepts are applicable to the SDP and the develop-

ment of its framework.

33

Figure 3.2: Simplified Systems Life Cycle

3.3.1 Managing Complexity

An approach used to manage system complexity is abstraction. Abstraction is defined as “a

way to do decomposition productively by changing the level of detail to be considered.” [64].

Thus, abstraction enables one to hide or focus on certain details so as to simplify a system

and its components. Using abstraction provides a perspective on the system by hiding or

focusing on specific system details.

Examples of abstractions include functional decomposition, reference points, layers, do-

mains, planes, services and interfaces. These abstractions are used to describe generic con-

cepts found in various telco network standards. For instance, [26, 65, 66] use abstractions

to structure generic concepts contained in various telco transport networks, switching and

service platform standards.

Various fields of research use abstraction to develop large complex systems. For example,

[63] defines a systems thinking approach that uses abstraction to decompose a system into

various parts, with each part being further decomposed. In modern systems engineering

approaches abstraction is used within a process called the system life cycle [60]. The life

cycle defines various stages that enable the systems and its parts to be defined, developed

and deployed.

A simplified representation of a system’s life cycle, derived from [62], is shown in Fig-

ure 3.2. In the figure, initial stages provide functional abstractions by decomposing the

system according to the functions performed. Latter stages of the life cycle provide an im-

plementation by specifying technology details a maintenance strategy. Each stage provides

a specific perspective on the system and its development. Within each stage abstraction is

34

used to hide or express details applicable to the specific perspective. For example, initial

stages focus more on functional characteristics of the system, while latter stages focus on

technological realisation of the system.

Tools such as methodologies, methods and models are used to abstract system details [67].

These tools complement the systems life cycle and its stages. Methodologies represent a

grouping of methods used to solve a problem or develop a system. Methods define a logical

process that is applied on a system to decompose it into specific abstractions. By applying

a method a model is produced. A model illustrates a specific level of abstraction on the

complex system by structuring its abstractions.

The system life cycle and its stages are implementable using various methodologies. How-

ever, in this research we use the system life cycle as an overall methodology to develop

complex systems, such as the SDP. In addition, we incorporate methods as stages of the

system life cycle to define system abstractions. These abstractions are structured into mod-

els.

3.4 Modeling Complexity

In the system life cycle, [60] defines models as producing architectures. Architectures

represent the abstract linking, organisation, structuring and decomposition of the system

and its parts [60, 68, 69]. Architectures are the most crucial element to managing telco

system complexity [65]. In addition, architectures may be used to structure a specific system

perspective, that is, arrange its abstractions.

Since the SDP is an IT-based system [8], its architecture is founded on software-based

concepts and produces varying levels of software-based abstractions. Due to the IT-based

nature of the SDP, we focus on software-based architectures for the SDP framework.

Software-based architecture is defined as the “structure or structures of the system, which

comprises software elements, the externally visible properties of those elements, and their

relationships” [68]. Within the telco domain, [70] defines software-based architectures as

being reusable, extendable and separated from technology concerns.

Various types of software-based architectures exist that satisfy the above properties and are

applicable within the systems life cycle. For example, [71] defines four generic categories

that software architectures fit into with specially coined names, that is:

1. Decision: architecture is used as a strategy to manage a system under development.

35

This architecture is defined during the initial stages of the system life cycle and rep-

resents a highly abstract representation of the system.

2. Language1: abstract architecture representing the system’s generic structure. This

architecture is defined within the initial stages of the system life cycle.

3. Literature: system architecture that is reusable in other system developments. This

architecture is defined by previous system life cycles, but provides reusable abstrac-

tions that are applicable to other system architectures.

4. Blueprint: represents an implementation-specific architecture that describes a sys-

tem’s technological realisation. This architecture is defined during the latter stages of

the system life cycle.

In this typology, the SDP framework represents a technology neutral architecture that is

both language and literature based. As a language, the SDP framework provides a common

technology-neutral architecture that is used throughout SDP development. In addition, the

architecture provides a generic overview of the SDP’s structure. As literature, the SDP

provides a technology neutral foundation of concepts and abstractions that are reusable in

other service-oriented systems architecture. Also, the architecture is extendable to suit other

system architectures. In both cases the SDP framework satisfies the generic architecture

properties.

Software-based architectures are defined by applying various viewpoints (or perspectives)

on the complex software-based system. Similar to abstraction, viewpoints express the “sep-

aration of concerns“ [72] of a particular software-based system. Thus, a viewpoint focuses

on particular system concerns while hiding others, so as to define abstractions and structure

associated architectures. Viewpoints are similar to methods since their application produces

a level of system abstraction contained within a model. Hence, viewpoints may be used as

stages of a system life cycle.

In various domains viewpoints are defined to aid system development. These viewpoints

are contained within a standardised methodology that is applied to system development.

Examples of viewpoints and their methodologies include the Reference Model for Open

Distributed Processing (RM-ODP) [72], Model Driven Architecture (MDA) [73] and the

NGOSS [48] initiative. These viewpoints may be used as stages of a system’s life cycle.

Viewpoints are chosen before system development starts. According to [74], viewpoints are

chosen based on the following system properties:
1Language is not used in the sense of a programming lanuage

36

Figure 3.3: Abstracting Complex Software-based Systems

• Environment: includes the relationships between the larger system containing the

system under development.

• Business Drivers: the business objectives the system aims to satisfy within its envi-

ronment.

• Organisation: the inherent functions and properties of the system prescribed by the

controlling organisation.

• Technology: the requirements for the system implementation.

We integrate methodology, method, viewpoint, model and architecture concepts in Fig-

ure 3.3. The figure shows a methodology containing various methods, called viewpoints.

Applying viewpoints to the software-based system produces abstractions that are contained

within a model, that is, software-based architecture.

By applying these software architecture concepts for complex systems, we present the ap-

proach used to define the SDP framework. The approach defines various viewpoints on

the SDP. Each viewpoint considers a specific standard-based technology that contributes

abstractions towards the SDP framework. Within each viewpoint we use the abstractions

to structure a technology neutral SDP architecture. These architectures contribute towards

solving the problems identified in Chapter 1 Section 1.3.

3.5 SDP Framework Development

The SDP framework provides varied levels of abstractions that are structured into an ar-

chitecture. Based on properties of telecom architectures, the SDP framework must reuse

other standards-based telecom architectures to reduce SDP complexity. The framework

37

must also be generic, reusable and extendable. The framework must be implementable us-

ing any standardised telecom and IT technologies, hence, its design must remain technology

independent. In addition, the architecture must promote SDP standardisation.

For the SDP framework to define generic SDP concepts and the associated architecture we

require viewpoints. To define the viewpoints we determine its environmental, business,

organisational and technological properties:

• Environment: the SDP operates within a converged ICT market and operates across

telco, IT and Internet networks. This market is regulated and provides an open, com-

petitive and service-rich environment. As a result, the SDP may partner with various

other enterprises, such as IT-using enterprises and content providers.

• Business Drivers: the SDP provides services to customers. These services deliver

both single-media and multimedia services. In addition, services are used by various

3rd parties, such as application developers, content providers and brokers. Also, the

SDP simplifies service related business and operational process for the telco and its

partners.

• Telecom-based Organisation: the SDP is defined by the telco to leverage existing

systems and enhances them with IT-based functionality. In addition, the SDP is telco

grade. The SDP is able to expose telco network capabilities to 3rd parties using

IT-based technologies. As result, the SDP supports and delivers a varied range of

services to telco customers and partners.

• Technology: the SDP is standards-based. As a result, multiple SDP implementations

are operable across converged networks. Also, services are easily portable across

SDP implementations. Hence, SDP specifications are technology neutral and imple-

mentable using a variety of standardised technologies.

From the above properties we define the following technology neutral viewpoints, that are

helpful in simplifying specific SDP complexities, extracting abstractions and structuring

various architectures. These viewpoints are also influenced by various existing standard-

based telecom and IT architectures. These architectures provide a wealth of concepts and

abstractions that can be extracted and extended to the development of the SDP framework.

• Legacy Perspective: includes legacy telco architectures that contribute to the SDP

concept. This viewpoint relates to the SDP organisation property.

• Services Perspective: reuses current service platform architectures to uncover SDP

concepts. This viewpoint relates to the SDP business property.

38

1.1 Intelligent Networks (IN)

1.2 Telecom Information

Network Architecture (TINA)

3.1 Telecom Management

Network (TMN)

3.2 Telecom Operations

Map (TOM)

3.3 enhance Telecom

Operations Map (eTOM)

5.1 IP Multimedia

Subsystem (IMS)

4.1 Web Services and their Service

Oriented Architecture (SOA)

Development of SDP

Framework

1. Legacy Perspective

3. Management Persepctive

2. Service Platform Perspective

2.1 Parlay X Web services Gateway

2.2 Parlay Service Capability

Function Gateway

4. IT-based Perspective

5. Converged Perspective

6.1 Technology

Neutral Framework

6. Standardised Perspective

7.1. Standardised SDP

solutions managing telco-IT

convergence

7.2 Reuse framework for

new service platforms.

7. Beyond...

Figure 3.4: Approach to Develop SDP Framework

• Management Perspective: extracts generic concepts from management architectures

and aims to incorporate them into the SDP framework. This viewpoint relates to the

SDP environment and organisation properties.

• External IT-based Perspective: integrates IT-based architecture concepts into the SDP

framework. This viewpoint relates to the SDP business and organisation properties.

• Converged Perspective: uncovers generic service-oriented concepts from a current

telco network architecture that aims to manage telecom and Internet convergence.

This viewpoint relates to the SDP environment property.

All viewpoints review standards-based technologies. To adhere to the SDP technology prop-

erty, we extract technology neutral concepts and architectures from each technology and

integrate them into the SDP framework.

Besides the SDP framework, the perspectives represent a time-line of architectures and tech-

nologies that contribute to the current SDP concept. As a result, we group the perspectives

into a SDP development methodology shown in Figure 3.4.

In the figure the sixth perspective represents the integration of the generic concepts and

abstractions obtained from previous perspectives into the SDP framework. The remaining

perspective illustrates the reuse of the SDP framework for the development of SDP imple-

mentations or other service-oriented systems.

39

3.6 Summary

In this chapter we have discussed the current SDP interpretation. We have highlighted this

interpretation’s definition, requirements and architecture. Also, we have identified its lim-

itations such as technology dependence and lack of standardisation. We have defined the

SDP framework as the solution to these limitations. The framework aims to simplify the

complexity of developing a SDP. We have shown the SDP is a complex system. Also,

we have reused system engineering concepts to define the approach used to develop the

SDP framework. We have discussed concepts such as abstraction, models, methods and

methodologies. In addition, we provided a systems life cycle approach to encapsulate these

concepts. We have also shown architecture as an important tool that contributes to manag-

ing SDP complexities and developing the SDP framework. We have discussed viewpoints

as a means to create architectures. We have associated models to architectures, viewpoints

to methods and methodology to the system life cycle. Based on SDP properties we have

defined a set of viewpoints, that is, legacy, services, management, IT-based and converged

perspectives. These viewpoints form the basis for chapters 4 to 8. The viewpoints extract

generic and technology neutral concepts from various telecom and IT standards. Concepts

are structured into appropriate architectures. Integrating concepts and architectures rep-

resents the SDP framework. This framework is the essential step toward answering the

problem and subproblems stated in Chapter 1 Section 1.3.

40

Chapter 4

Perspectives on the SDP from Legacy
Standards: IN and TINA

Traditionally, telco services are implemented in software that is tightly coupled with switch-

ing hardware. This results in both standardised and proprietary software and hardware being

developed by different vendors. As a result, customer services are limited and developed

slowly. Also, service and network administration is a complex task that is managed by in-

tegrating additional vendor software and hardware into the network. Thus, the traditional

telco is faced with highly integrated vendor-specific solutions that limit service develop-

ment, delivery and management.

To overcome the above limitations, the telco network operator requires a simpler approach

for service creation, management and delivery. Hence, the need for service and network

separation, supporting flexible service and network integration. This results in service

software being separated, to a certain degree, from switching hardware and placed on a

dedicated service network.

The Intelligent Network (IN) was defined to aid in the development of a separate but inte-

grated service network. With further innovation and use of middleware-based technologies

the Telecommunication Information Network Architecture (TINA) was defined, but not de-

ployed by telcos. Both IN and TINA share similarities with the SDP, such as their service

requirements. In the following sections we discuss the IN, TINA and their contributions to

the SDP and its framework with the objective of uncovering abstractions that contribute to

a technology neutral SDP architecture.

41

4.1 Intelligent Network

The IN aims at enabling the “provision of services independent of the service/network im-

plementation in a multi-vendor environment” [2]. IN services are predominantly voice-

based in switched circuit networks. Also, the IN shares telco properties such as being

reliable, secure, managed and providing the necessary quality of service.

The IN strives for vendor independence by removing service implementations from switch-

ing hardware and placing them on a separate overlay service network. The service network

operates over circuit-mode transport networks and is exposed to external parties, such as

service developers. Though contemplated in the IN standards, network exposure to external

parties is not fully defined in the IN.

The IN is implemented as a distributed service platform that promotes customer service

development independent of the underlying telco infrastructure implementations. This in-

dependence is gained by abstracting telco infrastructure capabilities into reusable software-

based service logic. The service logic is integrated to create customer service implementa-

tions. Also, the IN supports the delivery of these services to customers on telco transport

networks.

4.1.1 Requirements

The IN aims at enabling the separation of generic service logic from vendor-specific hard-

ware, with the intention of integrating both in an effective and technology independent

manner. As a result, the IN provides the glue between services and network resources, with

little or no emphasis placed on open external access. These IN properties are illustrated in

Figure 4.1.

The figure depicts the IN as a point of integration between services and network resources.

Thus, the IN is used by both service developers and the network operator. As a result, the IN

must satisfy both service requirements and network requirements. As defined in [2], both

service and network requirements are based on:

• service creation: service providers create service logic that makes use of network

capabilities and resources, such as establish connections and play announcements.

The network operator provides service creators with programmable access to these

network capabilities and resources.

• service management: service providers require network resources to make provision

42

Figure 4.1: IN Requirements Classification

for new services and to manage new services, such as user profiles and billing. The

network operator provides these network capabilities and may offer external access

to these capabilities.

• service processing: service providers require the network to correctly process service

logic and network resources, so as to deliver services to customers. The network op-

erator supports this processing, by ensuring network resources are used appropriately

and provide necessary service functionality.

• network management: the network operator requires the complete administrations

and management of services, IN platform and network resources.

• network interworking: the network operator requires service usage to be independent

of the customers access and network.

To satisfy both service and network requirements (but not management), a reference model

is defined, that is, the IN conceptual model. The IN definition, concepts and architecture is

encapsulated in the conceptual model.

4.1.2 Architecture

The conceptual model represents a reference architecture for the IN. Also, it provides a

foundation for the definition of IN standards. As a result, IN-compliant architectures are

derived from the conceptual model and adhere to its principles. Hence, the IN conceptual

model represents a meta-architecture or framework that is used in the development of IN-

based systems. Hence, the IN conceptual model is the main contribution of the IN to the

definition of the SDP and its framework.

The IN conceptual model provides different perspectives on the IN. These perspectives are

applied to the IN in a top-down approach. Each perspective is represented as a plane that

43

SF SF SF

SIB SIB

SDF
SCF

SSF
SRF

SDP
SCP

SSP
IVR

Protocols

SIBSIB SIB

Service
Plane

Global
Functional
Plane

Distributed
Functional
Plane

Physical
Plane

Service

Information Flows

Abstraction
(Software)

Compleixty
(Hardware)

PSTN, ISDN, GSM, SS7...

Figure 4.2: IN Conceptual Model

contributes to the structure of the IN. The IN conceptual model is illustrated in Figure 4.2.

The figure depicts the various planes:

• Service Plane: defines capabilities offered by the IN platform as abstract service fea-

tures that integrate to form customer services. This plane does not define service

feature or customer service implementations.

• Global Functional Plane: defines reusable service logic called Service Independent

Building Blocks (SIBs). An integrated chain of SIBs implement a service feature.

Hence, a collection of integrated SIBS implement a customer service.

• Distributed Functional Plane: defines distributed telco functions used to implement

SIBS. Functions are contained within functional entities. Functional entities imple-

ment SIBS by communicating via information flows to execute specific functions.

• Physical Plane: defines a strict mapping of functional entities to specific physical net-

work elements. The plane also provides distribution and implementation details on

the functional entities and their information flows. For example, INAP [75] imple-

ments the functional entity information flows.

4.1.3 Reusable Concepts

The IN increases the intelligence, rather than switching levels in the telco infrastructure [76].

The global functional and distributed functional planes are examples of this intelligence.

The added intelligence abstracts the complexity of infrastructure technologies and distribu-

tion that are represented as physical elements in the physical plane.

44

The collection of planes represents the increase in separation between telco infrastructure,

its capabilities and customer services. This separation enables customer service creation to

be independent of the underlying infrastructure technologies. Also, this separation enables

customer services to use infrastructure capabilities.

One of the IN philosophies is the standardisation of SIBs [77]. The standardisation pro-

motes additional separation and independence between telco infrastructure and customer

service definitions. For instance, changes to infrastructure do not effect SIB definitions and

therefore do not effect service feature and customer service definitions. As an example, the

charging SIB hides the network-specific mechanisms for writing billing tickets. However,

telco infrastructure must provide the needed functions to implement SIBs. Therefore, con-

formance to SIB standards is achieved by providing necessary functions to implement SIB

definitions.

Each plane of the conceptual model provides a different perspective on the IN. The service

and global functional planes provide service-oriented views on the IN [78]. In these views

technology and distribution of the telco infrastructure is hidden. The service plane enables

service developers to verify the needed capabilities (service features) for a customer service.

In the global functional plane developers view the integration of SIBs as the implementation

of service features to create customer services.

The distributed functional and physical planes provide a function-oriented view on the IN.

In this view, only functional entities and their functions, as offered by physical elements,

are perceived. The functional entities and their functions represent capabilities offered by

physical elements. This view also provides details on the technology and distribution of

functional entities and physical elements.

Though customers are connected to the telco via its transport networks, customers perceive

their interactions are with their services. The distributed functional and physical planes

support this communication between customer and service.

An integrated managed environment is proposed for the IN. This managed environment is

based on Telecommunications Management Network (TMN) [21] concepts. The general

TMN architecture provides management layers that are incorporated into the IN planes.

However, in practice vendors use non-TMN based solutions to manage the IN. The TMN

and its contribution to the SDP is discussed in Chapter 6.

45

Application
Plane Application

Generic
Service
Plane

Service
Component
Plane

Service
Function
Plane

Infrastructure
Plane

SF
SFSFSF

SF

Abstraction
(Software)

Complexity
(Hardware)

Customer
Service
Definition

SC

GSGS
GS GS GS GS

SCSC SC SC SC

Interfaces

API

API

Technology/Distribution Specific

Figure 4.3: SDP and its Environment represented as a Conceptual Model

4.1.4 Contribution to SDP from IN

We reuse some of the IN conceptual model concepts, with variations, to define a SDP archi-

tecture. The variations are influenced by SDP requirements and current software paradigms,

such as APIs. The SDP architecture is called the SDP conceptual model and is shown in

Figure 4.3. The architecture structures the SDP within an environment. The SDP interacts

with this environment using its service APIs.

The SDP conceptual model represents a viewpoint on the SDP that illustrates various tech-

nology neutral abstractions. These abstractions include the use top-down layered planes that

provide perspectives on the SDP. Contained in these planes are numerous service building

block and network function abstractions, that separate service intelligence from network

specifics. We extend these service and functional abstractions to allow easier access to their

capabilities. The SDP conceptual model is illustrated in Figure 4.3.

In Figure 4.3, customer services are defined by external application developers. The ser-

vice definition documents the interactions between customer and service, as well as the

capabilities required from the telco to implement the customer service. Once completed,

the customer service definition is implemented as an application in the application plane.

Thus, unlike the IN conceptual model’s service plane the application plane contains the

actual customer service implementation.

Applications use telco network capabilities by orchestrating generic services (GS). Generic

services provide simplified access to telco network capabilities via their implementation

independent interfaces. Generic services vary according to the telco network capabilities

they simplify. For example, services may provide telecom, content or management-oriented

46

functions. All generic services are grouped into the generic service plane. This plane

supports the generic services and their interfaces that are exposed and used by applications.

Generic services abstract access to complex service components (SC) that invoke telco in-

frastructure resources and capabilities. Service component functionality is offered via an

API. Thus, service components represent a common point of integration used to access

telco network capabilities. Service components are housed in the service component plane.

Thus, generic services, service components and their APIs provide greater levels of separa-

tion and network abstraction than the IN conceptual model SIBs.

Underlying telco infrastructure contains distributed, standardised and proprietary systems

that are implemented and connected using various technologies. These systems provide

the solid foundation of reusable resources and capabilities. To enable technology and

distribution-independent access to these resources and capabilities, their functions are ab-

stracted into services, named service functions (SF). Service functions offer their functional-

ity to service components via an API. Also, service functions communicate amongst them-

selves to satisfy service component requests. Hence, the result of service function commu-

nication is the execution of functions on telco infrastructure. Service functions and their

communication is limited to the service function plane. Therefore, unlike the IN conceptual

model’s functional entities the communicating service functions contribute to the imple-

mentation of the service components; rather than implement the service components.

In the SDP conceptual model, telco infrastructure is contained within physical elements and

are connected on transport networks. These physical elements are managed in an infrastruc-

ture plane that enables their technology and distribution dependent functions to be accessed

and used by service functions.

4.1.5 Evaluation of SDP Conceptual Model

By extending the IN conceptual model concepts to the SDP we have defined a concep-

tual viewpoint. This viewpoint defines various abstractions that are structured in the SDP

conceptual model. The abstractions contribute to the definition of the SDP framework.

We evaluate the SDP conceptual model against the generic concepts extracted from the IN

conceptual model. In addition, the evaluation provides answers to the questions posed in

Chapter 1 Section 1.3. We also present the comparison between IN and SDP conceptual

models in Table 4.1.

The SDP conceptual model identifies external IT-using enterprises that use SDP services

to create or enhance applications. These applications provide services to customers. No

47

IN Conceptual Model SDP Conceptual Model

Plane Description Plane Description

Service customer services described by

integrating service feature de-

scriptions. No implementation.

Application customer services are described and im-

plemented by an enterprise. This is ex-

ternal to the telco and SDP.

Global

Functional
building blocks (SIBs) define

reusable service logic. Chains

of SIBs implement service fea-

ture descriptions and therefore

customer services.

Generic

Service

application implementations use

generic services via technology inde-

pendent interfaces.

Service

Component

service components offer an API to ac-

cess service related telco network capa-

bilities.

Distributed

Functional

implement SIBs using dis-

tributed functional entities

that execute functions via

information flows.

Service

Function

service functions offer an API to ac-

cess telco infrastructure specific capa-

bilities and resources. Also, service

functions implement a communication

mechanism to interact and satisfy ser-

vice component request.

Physical functional entities map to phys-

ical elements that implement

their functions using specific

technologies. Also, specific

protocols implement functional

entity information flows.

Infrastructure connected and technology and distribu-

tion specific telco systems provide ser-

vice functions with access to their spe-

cific functions.

Table 4.1: Comparison of Conceptual Models

business model is defined to accompany the SDP conceptual model, since the conceptual

model limits business entities to external application developers.

We use the concept of planes as a design pattern to structure a SDP architecture, that is

the SDP conceptual model. The SDP conceptual model uses planes to expose additional

SDP details than the proposed SDP architecture, shown in Figure 1.3. Like the IN, the SDP

conceptual model planes hide technology and distribution details of their applications or

services. As a result, the SDP conceptual model inherits these technology and distribution

neutral properties. In the conceptual model service related planes increase the levels of

intelligence in the telco. Also, these service related planes are layered according to their

level abstraction. For example, higher service planes abstract complex intelligence of lower

planes, such that simpler access to telco network capabilities is provided to external devel-

opers.

The SDP conceptual model’s hierarchy of planes and abundant services increase the sepa-

ration and independence between telco infrastructure and application implementations. For

example, applications using generic services are decoupled from the telco infrastructure.

Thus, the telco infrastructure is adequately abstracted by the various levels of SDP services.

All SDP services further support this infrastructure independence by providing access to

48

their functions using implementation independent interfaces. Generic services expose their

interfaces to application developers, while using less abstract service component interfaces.

Service components use complex interfaces exposed by service functions to access telco

infrastructure capabilities. Thus, the SDP conceptual model only exposes generic service

interfaces to external IT-using enterprises, since they provide the most abstract access to

telco infrastructure capabilities.

Similar to the IN, the SDP must implement its services and planes using standards. By

implementing standards further independence of applications and telco infrastructure is

gained. As a result, the telco conforms to these standards and ensures infrastructure can

support standardised services. Also, developers benefit from standardised services and in-

terfaces since they have a constant repository of reusable services for application develop-

ment. Also, with standardised services and interfaces interactions between telco and exter-

nal IT-using enterprises becomes standard-based. Candidate standards for generic services

and their interfaces is Parlay X, while Parlay may implement service components and their

interfaces. Also, the IMS [24] may implement a set of service functions, where SIP [37]

implements horizontal service function communication. Additional standards may be used

to implement remaining service functions and their communications. As a result, service

planes may be implemented as distributed platforms that support the implementation of

these standards.

Like the IN conceptual model, there are two perspectives created by the SDP conceptual

model. The application, generic service and service component planes provide a service-

oriented perspective on the SDP. For instance, customers view the telco as offering ser-

vices (applications) and perceive they interact with these services directly. Also, developers

view the generic service plane as a resource of generic services with interfaces to orches-

trate into applications. The developer’s view is limited to the generic service plane, while

the telco is able to view all planes. For example, the telco views the service component

plane as a resource of service components with APIs to orchestrate into generic services.

The telco also views the service function plane as a resource of service functions with APIs

to orchestrate into services components. In these service-oriented views service technolo-

gies, implementations and distribution is hidden by the planes and service interfaces.

The service function plane and infrastructure plane provides a functional-oriented view on

the SDP. In this view the telco perceives the infrastructure plane as a resource of technology

and distribution specific capabilities to be abstracted and integrated into services functions.

The SDP conceptual model incorporates the telco OSS/BSS, such that each plane and its

services are managed within a management environment. Like the IN conceptual model,

49

a managed environment administers applications accessing generic services, service inter-

actions, all services and telco infrastructure. Each plane contributes functionality to the

management environment. For instance, a service component plane implementation may

provide management functionality to administer service components. Also, services in all

service planes may abstract OSS/BSS functionality that is used in this management envi-

ronment. Like the IN and TMN a separate management architecture may be defined, based

on the SDP conceptual model. The management architecture may reuse the SDP conceptual

model’s technology neutral planes, services and interfaces. Thus, the management architec-

ture may promote standard-based SCE and SME using the planes’ services and interfaces.

4.2 Telecommunication Information Network Architecture

The IN reduced development time of new voice services, however, lack of complete stan-

dardisation especially for service creation and management results in IN systems being

proprietary-based [79]. In addition, the IN does not include advances made in computing,

information processing and multimedia. By incorporating these advances into the telco

network new types of services, besides voice, are possible. Hence, to benefit from new

technologies, overcome IN limitations and foster a complete and standardised telecommu-

nication system, TINA [19] was defined in the 1990s. We examine TINA to develop a

conceptual perspective on the SDP.

4.2.1 Requirements

As defined in [80], TINA provides a collection of concepts, principles and architectures that

support the design, development and deployment of voice, information, multimedia and

management services. In addition, TINA enables these services to operate over heteroge-

nous transport networks and computing platforms through strong abstraction.

TINA focuses on software-based concepts and architectures. These architectures contain

a wealth of reusable components that simplify various service-oriented complexities, such

as service creation, testing, subscription, consumption and management. Also, TINA ab-

stracts complexities introduced by the telco network, such as ensuring reliability, security

and distribution, using software-based distributed computing technologies.

To define these concepts and architectures, TINA applies the RM-ODP [72] development

process. By using RM-ODP, TINA is defined using various viewpoints. Applying each

viewpoint produces various concepts and abstractions that are structured using a business

50

Figure 4.4: TINA Business Model

model and two architectures. The business model captures TINA’s requirements, while the

other architectures structure service and network abstractions. The TINA business model is

illustrated in Figure 4.4.

The TINA business model defines communicating business entities that benefit from using

a TINA-based service platform. These entities collectively use the TINA-based platform

for various activities. These entities and their functions are:

• Consumer: locates, subscribes, consumes and pays for services offered by a retailer

of service provider.

• Retailer: provides services to various consumers on behalf of itself or service providers.

• 3rd Party Service Provider: develops services that are offered by retailers to various

consumers.

• Broker: is used by all entities to locate each other and their offered services. For

instance, consumers locate retailers via brokers.

• Connectivity Provider: provides the underlying network resources and capabilities,

such as reliable and secure transport networks.

These business entities also specify the business domains a TINA-based platform must op-

erate across. For example, customer business entities operator within the customer domain.

In the business model, entities communicate to fulfill their activities. These modes of com-

munication are formalised as reference point relationships. Reference points promote TINA

standardisation by specifying the interactions between business entities. Thus, conformance

to reference points ensures different TINA implementations are interoperable. TINA defines

51

Connectivity Provider Domain

User Domain Reatiler Domain User Domain

as-UAP

PA

IA

UA

SF

IA

UA

SSM

P/C/USM P/C/USM

ss-UAP ss-UAP

as-UAP

PAPeerA

TCSM TCSMCSMF CSM

CCF CC FCC

LNC

TM

LNC

TCMTCMTLA TLA

CPECPCPECP NMLCP

EMLCP

NMLCP

NENENENENE

Access

Session

Service

Session

Communication

Session

EMLCP EMLCP

Connectivity

Session

Layer Network

Subnetwork

Subnetwork

Network

Elements

Distributed Processing Environment

Provider Domain

PeerA

P/C/USM

SSM

SF

P/C/USM

NENENE

EMLCP

NMLCP

Figure 4.5: Simplified TINA Service and Network Resource Architectures (Interfaces not

shown)

a service and network architecture by decomposing its business model, reference points and

associated entities into components. This decomposition results from the RM-ODP compu-

tational viewpoint.

4.2.2 Architecture

TINA constitutes two standardised architectures: a service architecture defined in [44] and

network resource architecture defined in [45]. The service architecture structures various

component based service-oriented abstractions, while the network resource architecture

structures component based network related abstractions. Both architectures are illustrated

in Figure 4.5. The figure is derived from [44, 45, 66].

Both service and network architectures define software-based components containing rich

data structures. TINA components also specify implementation independent interfaces.

These interfaces hide component implementations and support component communication.

These interfaces implement business model reference points and therefore promote TINA

standardisation. Component interfaces and their communication are not shown in the figure

due to their complexity.

52

In the service architecture, components are divided into access and service session cate-

gories. Access session components enable the customer to locate and activate services. Ser-

vice session components provide the service to customers and support customer to service

interactions.

Network resource architecture components support service architecture components by de-

livering connection services across diverse transport networks. The network resource archi-

tecture components abstract the complexity of communication, connectivity and network

elements. Components abstracting customer equipment are also defined. Similar to ser-

vice architecture components, the network resource architecture components operate across

various domains.

Based on the TINA standards Figure 4.5 divides both architectures into various layers, such

as service session, communication and connectivity layers. We add the access session layer

to the figure. In addition to these layers, TINA defines management layers. These are

the service management, network management and element management layers. Within

all management layers, both service and network components expose management func-

tionality via their interfaces. These management functions are invoked by management

applications to perform service, connection, fault and accounting management.

Layers are extended across functional domains. These domains correlate to the business

entities identified in the TINA business model (shown in Figure 4.4). Functional domains

imply various complexities, such as ensuring components operate over various technologies,

across distributed domains and with diverse component implementations. Fortunately, stan-

dardised and implementation-neutral interfaces ensure interworking of components. Hence,

interfaces enable interoperability of components across various domains. However, to pro-

vide the necessary technology and distribution independence, middleware is used. Middle-

ware is defined as a set of software abstractions (services) used to hide various complexities

associated with distribution systems, such as heterogenous hardware, diverse operating sys-

tems, numerous programming languages and diverse transport networks [81].

TINA supports service and network components by using a distributed computing mecha-

nism. The mechanism supports technology, distribution and implementation independence

of components and is named the Distributed Processing Environment (DPE). The DPE is a

concept describing software-based middleware that contains generic and reusable services.

These middleware services are used by components since they abstract underlying network

complexities. The Object Management Group (OMG) [82] provides an open and stan-

dardised implementation for the TINA DPE, called the Common Object Request Broker

Architecture (CORBA) [83].

53

4.2.3 Reusable Concepts

TINA provides various forms of abstraction that are reusable in the definition of the SDP

and its framework. For instance, the business model represents a collection of requirements

and entities that interact within a TINA environment. Also, the business model defines busi-

ness domains that TINA operates across. Most importantly, the business model promotes

standardisation by formalising business entity relationships as reference points.

Another form of abstraction used by TINA is that of separation. TINA applies the principle

of separation by dividing itself into two perspectives, that are structured into service and

network-oriented architectures [84]. The separation principle is also applied within these

architectures, for example, the separation of service communication into access and service

sessions. The principle is also applied to the network-oriented architecture since it separates

communication and connectivity concepts from physical networks.

The TINA architectures are decomposable into layers [85] that group and manage compo-

nents. The components represent abstract forms of reusable customer, service and network

functionality. In addition, components separate access to their functionality by providing

interfaces. Interfaces are technology neutral and hide component distribution and imple-

mentation details. Interfaces also expose component management functionality that is used

by management systems and processes. TINA guarantees interoperability of component

implementations since all interfaces are standardised.

The use of middleware is “one of the key assumptions made in the TINA architecture” [85].

Middleware abstracts technology concerns, such as implementation and distribution com-

plexities. Also, middleware abstracts the interworking of TINA with legacy telco systems.

As defined in [78], the DPE may abstract IN platforms. Hence, the DPE may be considered

an extra plane that is added to the IN conceptual model. As a result, the DPE represents a

service-oriented middleware plane that abstracts lower telco network capabilities into ser-

vices.

Middleware services also provide management functionality to administer components.

For example, some DPE implementations perform component life cycle management [45].

Management services and other middleware-based services are accessible and used by all

components operating within the management plane.

54

SDP

(Broker/

Retailer)

Provider

Network

Customer

RPS

RCS

RSN

(a) Generic SDP Business Model

derived from TINA Business Model

Network Element Layer

Network Abstraction Layer

Network Services Layer

Generic Service Layer

Application Layer

Interface

Interface

Interface

Interface

Customer
Service

Platform
Application

Provider

Content

Provider

Middleware Plane

Network Operator

(b) SDP and its Environment derived from TINA Architec-

tures

Figure 4.6: Reusing TINA Concepts for the SDP

4.2.4 Contribution to the SDP from TINA

By reusing and extending the generic TINA concepts, independent of any technology bias,

we derive a SDP business model and architecture. The business model and architecture are

shown in Figure 4.6.

A SDP business model, shown in Figure 4.6(a), is derived from the TINA business model

shown in Figure 4.4. The business model clearly demarcates the SDP and identifies its roles.

The SDP business model does not define a stand-alone broker or retailer, but condenses

the TINA business model’s broker and retailer roles into the SDP. By performing these

two business roles, the SDP is a central business entity within the business model. The

remaining TINA business model’s entities are reused but vary in roles and responsibilities.

As a retailer, the SDP offers services to customers and various 3rd party providers. 3rd

party providers use SDP services to create or enhance customer services. Customers use

SDP services to access customer services. Hence, the SDP conforms to the classical TINA

retailer business role. As a broker, the SDP offers broker-related services to customers

to locate, subscribe, consumer and pay for other services. Also, providers use the SDP’s

broker-related services to locate other service-offering entities within the business model. In

TINA, the broker role is distributed across various access session components, connection

layer components and the DPE. Thus, unlike TINA the SDP centralises the broker role

within its business model.

Numerous providers are catered for in the derived SDP business model. For example,

providers may include application providers or content providers. Application providers

use SDP services to create single-media or multimedia-based services that are delivered to

55

customers. Content providers use SDP services to create applications that either supply

content to support application providers or deliver content-based services to customers. In

the SDP business model customers may be individuals or enterprises that provide services

to individuals. Thus, the SDP business model providers and customers relate to the TINA

business model’s 3rd party service provider and consumer respectively.

In addition to customers and providers, the SDP abstracts the complexity of the underlying

telco network. These include the telco network resources and capabilities. These network

abstractions are implemented as various SDP services. Thus, unlike the TINA business

model the SDP business model includes a network rich with capabilities; rather than just

connectivity.

Similar to the TINA business model, the SDP business model defines reference point re-

lationships between business entities to promote standardisation. In the business model,

reference points to the SDP are considered that is:

• RPS : provider (application or content) to SDP relationship.

• RCS : customer to SDP relationship.

• RSN : network to SDP relationship.

The generic SDP business model, its entities and reference points may be decomposed to

cater for specific SDP requirements. With further decomposition of the generic business

model we define a SDP within its environment shown in Figure 4.6(b). The figure structures

the SDP and its environment as an architecture that is derived from the TINA architectures

shown in Figure 4.5. In the SDP architecture we use the concept of layers to separate SDP

functionality. These layers are:

• application layer: houses applications developed by providers. Also, includes con-

tent and content processing applications managed by content providers. These ap-

plications provide similar functions as the components contained in the TINA access

session and service session layers. Thus, the application layer is similar but not iden-

tical to the TINA 3rd party service provider.

• generic services layer: groups services that provide generic functionality such as sub-

scription and session management. These services are used by provider applications.

TINA does not define separate generic services for its service architecture, but sim-

ilar service functionality is distributed across its access session and service session

layer components. For instance, the generic services layer represents a more detailed

splitting of the SSM logic from the lower network communication logic.

56

• network services layer: exposes telco network resource and capability functions.

These services offer their functionality independently of technologies. These ser-

vices provide similar abstractions as components found in the TINA communication

session layer. For example, the network services layer represents the strict decoupling

between higher layer services and lower CSM logic.

• network abstraction layer: provides a single point of integration between abstract

network services and physical network resources and capabilities. These services ab-

stract the complexity of underlying telco network systems. These services provide

relatively simpler abstractions than components found in TINA network resource ar-

chitecture’s connectivity session, layer network and subnetwork layers.

• network elements layer: represents the physical network systems that are used to

support and deliver services to customers across converged networks. This layer is

similar to the TINA network element layer.

Lower SDP architecture layers expose their services to higher layers using technology neu-

tral interfaces. As with TINA components, the SDP services hide their implementation and

distribution behind their interfaces. These interfaces also abstract access to the service func-

tionality. Service interfaces implement the SDP business model’s reference points, so as to

promote standardised communication between business entities. This is also seen in TINA

with its component interfaces implementing its business model reference points.

Services and their interfaces, contained within the SDP architecture layers, are distributed

across domains. Like TINA, these domains represent areas of functional division that relate

to the business model entities. Thus, the SDP architecture layers are distributed across

customer, SDP (service platform), network and provider (application and content) domains.

These domains relate to the SDP business model entities shown in Figure 4.6(a). These

domains are decomposable into other specific domains, such as a network access, edge

and core domains. In addition, an OSS/BSS domain may be extracted from the network

domain. Abstracting the complexities associated with technologies, implementations and

distribution found in the SDP architecture is the middleware plane.

The middleware plane hides technology, implementation and distribution concerns from all

applications and SDP services. For instance, the middleware plane supports service commu-

nication across layers and domains. In addition, the plane hides implementation details of

communicating services. Also, the plane abstracts transport networks and generic function-

ality provided by some of the underlying telco network systems. These network systems

may include other service platforms, middleware and databases. The middleware plane

also provides its own services that are used by other services and applications in the SDP

57

architecture. Like all SDP services, the middleware plane also promotes technology inde-

pendence by offering implementation independent interfaces to its own services. Therefore,

the SDP middleware plane provides functionality similar to the TINA DPE.

4.2.5 Evaluation of SDP Business Model and Architecture

By extracting, extending and applying the generic TINA concepts to the SDP we have de-

fined a conceptual viewpoint. This viewpoint defines various abstractions that are structured

in the SDP business model and architecture. The abstractions contribute to the definition

of the SDP framework. We evaluate the SDP business model and architecture against the

generic concepts extracted from TINA. In addition, the evaluation provides answers to the

questions posed in Chapter 1 Section 1.3. We also present a comparison between TINA and

SDP concepts and architectures in Table 4.2.

The SDP business model represents a collection of SDP requirements. In addition, it il-

lustrates the role players involved in the converged telecom-IT environment. The business

model also promotes interoperability between SDP implementations by enforcing reference

point relationships between the various role players. Reference points promote standardisa-

tion of the SDP and its interactions with customers, providers and telco network. Therefore,

customers have universal access to their services, applications are portable across SDP im-

plementations and SDP implementations are portable across telco networks.

The SDP architecture shown in Figure 4.6(b) represents the decomposition of the business

model into functional layers and domains. Layers and domains represent design patterns

used to structure the SDP architecture independently of technologies. Layers group hi-

erarchies of SDP services, while domains distribute layers and their services across the

converged telco-IT networks. Both layers and domains may be separated into more spe-

cific layers and domains. The SDP architecture identifies additional layers and introduces

domain distribution to the proposed SDP architecture, shown in Figure 1.3.

Like TINA components, the numerous SDP services represent strong abstractions of telco

network functionality. In addition, some services abstract customer-related functions. All

SDP services communicate in a distribution and technology independent manner, by us-

ing their implementation independent interfaces. These interfaces support communication

across layers and domains. Service interfaces also provide authorised access to a com-

ponent’s management functionality. This enables management systems, such as the telco

OSS/BSS, to administer SDP services. However, service interfaces must be standardised

since they implement business model reference points.

58

TINA SDP

Business

Model

Technology neutral representation. Encapsulates system’s requirements. Defines business

entities and domains that the system operates across. Unlike TINA, the SDP does not use

an explicit broker or retailer.

Service

Architecture

Access Session: Components

abstract service access.

SDP

Architecture

Application Layer and Generic Service

Layer: Contains 3rd party provider

applications and content that use

generic services via their interfaces.

Service Session: Components

abstract service usage.

Network

Resource

Architecture

Communication Session:

Components abstract customer-

service communication.

Network Service Layer: Contains ser-

vices that abstract network resource and

capability functions.

Connectivity Session: Compo-

nents abstract network connec-

tivity required for service.

Network Abstraction Layer: Con-

tains services that abstract underlying

telco network resources and capabili-

ties. Provides a single and standard-

ised point of integration between SDP

services and the converged telco-IT net-

works.

Layer Network: Components

abstract the network delivering

the service.

Subnetwork: Components ab-

stract network subnetworks.

Subnetwork: Components ab-

stract subnetwork elements.

Network Element: Defines

physical network elements used

to provision services.

Network Element Layer: Translates

higher layer technology independent re-

quests to technology dependent oper-

ations on telco network elements and

systems.

Distributed

Domains

Distributes layers and their contents across areas of operation, such as the customer do-

main. May be decomposed into additional domains.

Middleware Abstracts distribution, technol-

ogy and telco systems. Imple-

mented is CORBA-based.

Middleware Abstracts distribution, technology and

telco systems. Represented as a tech-

nology neutral plane.

Table 4.2: Comparison of TINA and SDP concepts and architectures

To promote standardisation, service interfaces may be fully defined or implemented using

existing service platform standards. For example, services contained within the generic and

network service layers may implement their interfaces using Parlay, OMA or JAIN. How-

ever, services contained within the network abstraction layer may implement their interfaces

using protocols such as SIP or SOAP [16].

The SDP middleware plane also represents a design pattern for structuring the SDP archi-

tecture. The middleware plane hides service and network distributions. Also, the middle-

ware plane is technology independent and abstracts telco network technologies. Hence, the

middleware plane ensures communication between services independent of their underlying

59

computing technology, location and programming. In addition, the middleware plane pro-

vides services with interfaces that are used by SDP services, customers and providers. Some

of these middleware services abstract underlying telco network systems, such as legacy

service platforms, databases and other forms of middleware. In addition, the middleware

services abstract management systems, such as the telco OSS/BSS. Therefore, by using

standardised middleware plane service interfaces, the SDP architecture promotes standard-

based interaction between telco OSS/BSS, SCE and SME.

4.3 Summary

In this chapter we presented contributions of legacy service platform standards to the SDP

and its framework. We showed the IN conceptual model as providing a hierarchy of planes

for the SDP framework. Planes separate and group specific services and network functions.

These services and functions are abstractions that simplify access to the telco infrastructure.

Also, abstractions provide technology neutral interfaces, enabling them to communication

across planes. In addition, planes abstract distribution of communicating services and func-

tions. We also applied TINA concepts to the SDP and defined a generic business model,

that captures requirements and business domains. We decomposed the business model into

a SDP architecture. The architecture used layers to separate and group SDP services. Ser-

vices provide technology neutral interfaces to their functions. Layers and services are dis-

tributed across functional domains. The SDP architecture also used a middleware plane,

containing a collection of services that abstract distribution, technology and telco network

systems. Middleware services are used across all layers and domains via their technology

neutral interfaces. Therefore, by reusing generic concepts from both IN and TINA we pre-

sented technology, implementation and distribution neutral abstractions and architectures

that contribute to the SDP framework.

60

Chapter 5

Perspectives on the SDP from Service
Platform Standards: Parlay and Parlay X

The IN is a legacy service platform standard that is deployed across many telco networks,

while TINA represents a historical conceptual service platform standard that is not de-

ployed. Currently, newer service platform standards contribute to the evolution of the telco

network. These newer service platforms aim to manage and benefit from telecom-IT con-

vergence. Popular examples of these service platforms are based on the Parlay [20] set of

standards.

The Parlay group standardises a set of Application Programming Interfaces (APIs) that

promote the opening of the telco network to external IT infrastructures. The APIs enable the

full capabilities of the underlying telco network to be invoked using IT-based technologies

and mechanisms. Hence, APIs enable application developers to create traditional telco

voice-oriented services by exploiting telco network resources and capabilities [84].

With telecom-IT convergence, new telco network capabilities and resources are available.

These new capabilities are offered by service platforms, media repositories and packet-

based transport networks. As a result, the Parlay APIs further support application developers

in the creation of communication, information and content-based services, that are offered

to both consumers and enterprises [86]. Hence, Parlay supports the creation of single-

media and multimedia-based services that are delivered across converged networks to a

broad range of customers.

61

Enterprise

Operator

Client

Application

Service

Capability

Feature (SCF)

Framework

SCF

R4

R3

Converged Network

Protocols

R1 R2

Framework

Administrator

Service

Supplier

R6

R5

Figure 5.1: Parlay Reference Model

5.1 Requirements

As defined by [87], Parlay prescribes a variety of requirements for its APIs. For instance,

APIs provide programmable access to all telco network functionality. Hence, software-

based applications incorporate telco network functionality just as they would other forms

of IT-based functionality. Also, APIs are implementable using diverse IT-based technolo-

gies, since they must be accessible by a variety of IT-using enterprises. The APIs abstract

network functionality, such that telco network complexities are hidden from application

developers. These complexities include network protocols, transport networks and distribu-

tion. In addition, the APIs provide an appropriate level of security since they open the telco

network to external enterprises.

Based on these requirements, Parlay defines a reference model containing various interact-

ing entities. The model is shown in Figure 5.1. In the figure, relationships between entities

are defined, such that requirements are fulfilled. These relationships are specified using the

standardised Parlay APIs. These reference model entities are:

• Enterprise Operator: represents an IT-using enterprise that is external to the telco.

This entity requires access to telco network capabilities for its applications.

• Client Application: represents external IT-based applications that use telco network

capabilities to provide services to customers. These applications may belong to the

enterprise operator.

• Service Capability Feature (SCF): are software-based services that implement logic

required to access underlying telco network capabilities.

62

• Framework SCF: represents a specialised SCF that provides administrative func-

tions, such as SCF subscription, application authorisation and enterprise manage-

ment. Also, provides broker functionality such as enabling applications to discover

and locate other SCFs.

• Framework Administrator: represents a management entity that manages the frame-

work SCF. This entity may be the telco or an external enterprise.

• Service Supplier: represents a type of management entity that develops SCFs and

registers them with the framework, for use with applications. This entity may be the

telco or an external enterprise.

The reference model interfaces are used to formalise entity relationships. For instance,

interface R1 is used to authenticate client applications with the framework. Authorised

applications access network capabilities via the SCFs, using interface R2. Interface R3 is

used to locate and manage SCFs that have registered with the framework. This supports

authorised client applications to locate SCFs via the framework. Using interface R4, enter-

prises register their applications with the framework, for use with SCFs. Also, enterprises

use this interface to subscribe for SCFs that are used by their applications. The enterprise

manages its SCF subscriptions via interface R4. By using interface R5, service suppliers

register their SCFs with the framework. Interface R6 enables enterprise operators to invoke

SCF capabilities.

In the reference model, interfaces R5 and R6 are to be standardised using the Parlay APIs.

In addition, interfaces managing the administration of framework, applications and SCFs

are not standardised. These administrative interfaces do not relate to the public telco net-

work, but rather to private enterprises that administer applications and SCFs. Hence, these

interfaces are not be managed by the Parlay APIs.

Based on the reference model a Parlay architecture is defined.

5.2 Architecture

The Parlay architecture defines and structures various abstractions that make use of the

standard-based APIs. The main objective of the architecture is to promote the use of telco

network capabilities by external IT-using enterprises, via the Parlay APIs. Also, the Parlay

architecture provides a foundation on which other service-oriented standards are defined.

In the following sections we discuss the Parlay architecture and its extension, the Parlay X

architecture.

63

A
p
p
lic
a
tio
n
 L
a
y
e
r

S
e
rv
ic
e
 L
a
y
e
r

N
e
tw
o
rk
 L
a
y
e
r

Figure 5.2: Parlay Architecture

5.2.1 Parlay

The Parlay architecture is illustrated in Figure 5.2, and is derived from [88, 89]. In the figure,

the architecture contains a Parlay application server and Parlay gateway. The application

server hosts various client applications and operates within the enterprise domain. Client

applications access functionality offered by the Parlay gateway via the Parlay APIs.

The Parlay gateway is contained within the telco domain and is also known as the Service

Capability Server (SCS). The gateway houses various SCFs that implement and expose the

Parlay APIs. Examples of the SCFs and their associated APIs are:

• Framework SCF [90]: exposes the framework API to applications. Also, administers

all other SCFs that have registered with it and performs various management and

security functions.

• Generic Call Control SCF [91]: exposes the generic call control API, enabling appli-

cations to make, manipulate and manage calls within the telco network.

• User Interaction SCF [92]: exposes the user interaction API and enables applications

to interact with customers using Interactive Voice Response (IVR) units, in a technol-

ogy neutral manner.

• Mobility SCF [93]: exposes the mobility API, enabling applications to query the

location of a customer’s terminal.

Additional APIs are defined that enable applications to perform various functions, such as

multiparty and multimedia call control, query customer terminal capabilities, control data

sessions and manage customer accounts and presence information.

64

In Figure 5.2, the Parlay gateway (or SCS) contains software-based logic. When invoked

by applications, SCFs invoke SCS logic interfaces to fulfil application requests. The SCS

logic manages the interworking between SCFs and network specific functions. Hence, the

SCS logic translates SCF requests into protocol messages that are used to invoke network

functions. However, the SCS logic is unstructured and limited in standardisation. Examples

of structured abstractions for the SCS logic are defined in [49, 94, 95].

In addition to the Parlay architecture, Figure 5.2 illustrates how applications are invoked

to provide customer services. First, on deployment applications may register with some

SCFs for notification of specific network events. The network events may occur when a

customer, within the customer domain, initiates a network service. When the event occurs,

notifications are delivered to the appropriate SCFs, via the SCS. As a result, the SCF notifies

the appropriate application to provide the customer service. Second, customers within the

customer domain may directly access client applications and invoke a particular service.

Once invoked, applications use SCFs to fulfill customer requests.

Parlay APIs are defined in a implementation neutral representation. As a result, APIs are

implementable using a variety of technologies. Also, APIs are represented in a distribution

independent manner, though they are invoked across enterprise and telco networks. Parlay

promotes the use of standard-based technologies to implement its APIs. The use of stan-

dards ensure interoperability between different application and API implementations. In

addition, the technologies must manage the distribution of the SCS, SCFs and applications.

Parlay recommends CORBA-based technologies to implement APIs and hide implementa-

tion and distribution details.

Parlay APIs abstract functionality provided by underlying telco network protocols [96].

These APIs define abundant methods with rich data structures that are used by applications

to invoke protocol functionality. As a result, Parlay-based applications that use the APIs

have greater control over telco network functions. However, this implies application devel-

opers must have knowledge of telco network concepts to take full advantage of the APIs

and the network capabilities [96]. Therefore, creating Parlay applications is complex due to

the richness of the APIs and telco network knowledge that is required.

To simplify the complexity of the Parlay APIs, Parlay defines the Parlay X set of APIs.

5.2.2 Parlay X

IT-using enterprises require simple interfaces to access and use telco network capabilities.

These interfaces must be void of any telco network details, such as protocols. As a result,

65

Parlay defines the Parlay X APIs. These APIs simplify access and usage of the Parlay APIs

and telco network functions. The Parlay X APIs are based on Internet technologies, called

web services [7]. We discuss web services in Chapter 7.

Parlay X APIs specify fewer methods, simpler data structures and simpler interaction mod-

els than the Parlay APIs. The API methods expose the generic service-oriented functionality

offered by the underlying telco network resources and capabilities. For example, the APIs

provide methods to setup a simple two-party call using phone numbers that are managed

within a simple data structure. As a result, the Parlay X APIs provide less control over telco

network capabilities than the Parlay APIs.

Though less expressive than Parlay, the Parlay X APIs provide an acceptable level of ab-

straction for accessing network resources and capabilities. In addition, APIs are defined

using Internet-based technologies. As a result, IT using enterprises and Internet-based ap-

plication developers form the target market for Parlay X APIs [97]. The APIs enable devel-

opers to enhance their existing applications with telco network capabilities, or create new

applications. Also, the APIs easily integrate with their existing IT infrastructure, such as

their application platforms. Hence, Parlay X enables a diverse range of IT-based application

developers to easily create applications, that benefit from using telco network resources and

capabilities.

The Parlay X architecture is shown in Figure 5.3, and is derived from [98]. In the figure, the

architecture consists of a Parlay X application server, Parlay X gateway and Parlay gateway.

The Parlay X application server hosts various client applications and operates within the

enterprise domain. These applications access functionality offered by the Parlay X gateway

using the Parlay X APIs. The gateway is contained within the telco domain.

The Parlay X gateway houses various web services. Web services represent software-based

logic that implement and expose the Parlay X APIs. Applications invoke web services

via their interfaces to access network functions. Web services invoke Parlay APIs to fulfil

application requests. Hence, Parlay X APIs simplify access and usage of the Parlay APIs.

Numerous web services are defined to abstract the Parlay APIs. For example:

• Third party call web service [99]: enables external applications to initiate a call be-

tween customers, on the telco network. This web service simplifies the various Parlay

call control APIs.

• Audio call web service [100]: enables applications to deliver audio to customers.

This web service simplifies the Parlay user interaction API.

• Terminal location web service [101]: enables applications to obtain the location of

66

Frame-

work

SCS Logic

SCF SCF

Parlay

Application

Server

Parlay Gateway (SCS)

…...

Parlay API

…...

Converged Networks

Parlay X

Application

Server

WS WS WS WS

Client invokes

app

Application

Initiates

service

Parlay X Gateway

Parlay X API

Enterprise Domain

Telco Domain

Customer

Domain A
p
p
lic
a
tio
n
 L
a
y
e
r

S
e
rv
ic
e
 L
a
y
e
r

N
e
tw
o
rk
 L
a
y
e
r

Protocols

Figure 5.3: Parlay X Architecture

a customer’s terminal. This web service simplifies the Parlay mobility management

API.

Additional Parlay X APIs are defined and provide functionality such as, messaging, media

streaming and presence management. However, Parlay X does not define a framework web

service that abstracts the Parlay framework API. Since, Parlay X is based on web services,

Internet-based mechanisms are proposed to provide framework-like functionality. One such

mechanism is a Universal Description, Discovery and Integration (UDDI) [15] registry, that

registers web services and enables applications to locate web services in a secure manner.

We discuss these and other web service technologies in Chapter 7.

In Figure 5.3, web services are contained in the Parlay X gateway that interworks Parlay X

applications and the Parlay SCFs. Therefore, web services may be considered Parlay client

applications, since they invoke SCFs via the Parlay APIs. However, Parlay X standards also

enable web services to directly use the converged network capabilities. This is only possible

if the network resources and capabilities can directly communicate with the web services

using Internet-based protocols. Some applicable network resources include the IT-based

OSS/BSS.

In addition to the Parlay X architecture, Figure 5.3 illustrates how Parlay X applications are

invoked to provide customer services. Customers can access Parlay X applications using

Internet-based technologies and invoke application functionality directly. Once invoked, the

applications may use web services, via the Parlay X APIs, to access network capabilities

to fulfil customer service requests. Also, web services may directly invoke the appropriate

network functions to fulfil the customer request.

67

Parlay X APIs are defined in an implementation neutral representation. However, Parlay X

promotes the use of web service technologies to implement the APIs. These technologies

are discussed in Chapter 7.

5.3 Reusable Concepts

Parlay shares many concepts with the TINA service platform [87]. Some concepts include

business modeling, abstraction through separation, standardised interfaces and hiding dis-

tribution complexities. These concepts are shared with Parlay X, since it is an extension

of Parlay. As a result, both Parlay architectures provide generic and reusable concepts that

benefit the SDP.

The Parlay reference model represents a business model containing interacting business en-

tities using formalised relationships. In this business model, the framework SCF represents

a service retailer that provides enterprise customers and their client applications with access

to services (SCFs) [89]. The framework SCF also provides broker functionality since it

enables enterprise customers to locate services. The reference model formalises business

relationships between entities using specialised reference points called interfaces. The in-

terfaces are implemented using the standardised Parlay APIs. The interfaces may also be

implemented using the standard-based Parlay X APIs. For instance, web services repre-

sent services that are used by enterprise customers and their web-based client applications.

However, Parlay X does not standardise a retailer, such as the Parlay framework.

Parlay uses the concept of separation to define its architectures. Both Parlay and Parlay X

separate service-oriented capabilities from the underlying telco network into generic ser-

vices. These services are the SCFs and web services. Services provide access to network

capabilities by implementing the standard-based Parlay and Parlay X APIs. These APIs rep-

resent the decomposition of interfaces R1, R2, R3 and R4 of the Parlay reference model,

shown in Figure 5.1. However, both Parlay and Parlay X APIs do not implement adminis-

tration interfaces, that are used by the framework administrator and service supplier. These

interfaces enable management applications to administer Parlay and Parlay X gateways.

These administration interfaces require standardisation.

Parlay and Parlay X APIs are implemented and exposed by SCF and web services respec-

tively. Web services manage the translation between Parlay X and Parlay API invocations

and between Parlay X API invocations and Internet-based protocols. Hence, web services

provide a point of integration between applications, Parlay and network functions. Parlay

SCFs manage the translation between Parlay API invocations and underlying converged

68

network protocols. However, the SCFs use the SCS logic to manage the interworking with

the underlying network. Hence, the combination of SCFs and SCS logic provides a point of

integration between applications (including web services) and network protocols.

Both Parlay and Parlay X APIs are implementation independent. As a result, various pro-

gramming languages may be used to implement the APIs, SCFs, web services and appli-

cations. The APIs are also distribution independent. As a result, implemented SCFs and

web services may be distributed across service platforms and the telco network, but re-

main accessible to applications. Hence, applications may invoke Parlay or Parlay X APIs

independent of their implementation or location.

In both Parlay architectures applications, web services, SCFs and the network are modeled

as separate horizontal layers. Layers are structured hierarchically with Parlay X forming

the topmost layer, Parlay forming the middle layer and the network forming the bottom-

most layer. Each layer simplifies lower layers, such that the complexity of the underlying

network protocols are abstracted. Layers’ services vertically communicate via the Parlay

and Parlay X APIs. Service communication also occurs horizontally within layers, via ser-

vice interfaces. For example, client applications may be invoked by customer applications,

across the application layer.

Though not formalised in the Parlay standards, the Parlay architectures operate across var-

ious domains. These domains include the enterprise domain, where client applications re-

side. The enterprise domain is separate from the telco since it contains the enterprise op-

erators infrastructure. A telco domain is also defined and contains the Parlay and Parlay X

gateways. In addition, the telco domain contains the network resources and capabilities.

Customers access applications within the customer domain. The customer domain may

include individuals, enterprises or other telcos.

SCFs, web services and applications operate across multiple domains. Domains imply a

distributed environment that SCFs, web services and applications must operate across. As

a result, Parlay promotes the use of distributed processing technologies to abstract the com-

plexity of distribution. These technologies provide software-based mechanisms to hide dis-

tribution and implementation of services and applications from each other. Hence, these

technologies enable service and application implementations to communicate, in a distri-

bution and technology independent manner. We generalise the distributed processing tech-

nologies as a middleware plane.

69

SDP

(Retailer/

Broker)

Service

Consumer

Customer RCS
Service

Provider

Network

Provider

RSC

RSP

RNS

Figure 5.4: Generic SDP Business Model derived from Parlay Reference Model

5.4 Contribution to the SDP from Parlay and Parlay X

We reuse and extend the generic and technology neutral Parlay and Parlay X concepts to

define a SDP business model, reference model and architecture.

The SDP business model is illustrated in Figure 5.4 and is derived from the Parlay reference

model shown in Figure 5.1. The model is abstract and illustrates the SDP performing the

business roles of a service retailer and service broker. As a result, the SDP provides services

to various business entities. Also, business entities use the SDP to locate services. The

entities that interact with the SDP include:

• Service Providers: perform OSS/BSS specific functions with the SDP. For instance,

service providers use SCE and SME to create and manage their own services, that are

integrated into the SDP and contribute to the SDP’s service repository. This business

entity is similar to the service supplier in the Parlay reference model.

• Service Consumers: represent application providers who create applications by locat-

ing and consuming specific services offered by the SDP. Consumers orchestrate ser-

vices into their applications that are used by customers. This business entity is similar

to the enterprise operator and client applications in the Parlay reference model.

• Customers: use SDP services to locate and access applications. These applications

provide customer services. This entity is lacking in the Parlay reference model.

• Network Provider: provides the underlying network resources and capabilities re-

quired by SDP services to support application development and customer service

deliver. This business entity is abstracted by the SCFs in the Parlay reference model.

Also, the Parlay reference model does promote a standardised interface between the

SCFs and this business entity.

70

Customer

Retailer

Admin

Customer

Service

Retailer

SDP (Retailer/Broker)

Converged Networks

RCS

RRAdmin RRS
Service

Provider

RNS

RRAdmin

RRC

App/Content

Provider

(RRP)

(RSAdmin)

(RPR) (RPS)

Service

Retailer

SDP

Services

RSC

RSP

Figure 5.5: SDP Reference Model derived from Parlay Reference Model

Business interactions between entities in the SDP business model are defined using business

relationships. These relationships prescribe rules and contracts between the SDP and busi-

ness entities. For instance, the RSC relationship defines access and usage permissions of

services by service consumers. The RSP relationship specifies rules for service providers

to deploy their services using the SDP. In addition, the RNS relationship regulates use of

network resources and capabilities by the SDP and services. Also, the RCS relationship

defines usability of the SDP by customers.

The SDP business model is decomposable into a reference model. An example reference

model is shown in Figure 5.5. The reference model is also derived from the Parlay reference

model shown in Figure 5.1. The reference model decomposes the SDP business model en-

tity into additional components, that support the business relationships. These components

include:

• Service Retailer: represents a component of the SDP business entity. This component

provides services to service consumers’ applications. Thus, it provides functionality

similar to the Parlay framework SCF. In the SDP reference model we show service

consumers as application or content providers.

• SDP Services: represent a diverse range of services that are created and managed by

service providers. Some SDP services may provide service consumers with simple

access to network capabilities, while others provide services to customers. Thus, SDP

services represent abstractions of Parlay SCFs and Parlay X web services.

• Customer Service Retailer: enables customers to locate and use customer services,

via the service retailer. These customers are not enterprise operators or their client

application, but are similar to end-users of applications or TINA consumers.

71

• Retailer administrator: provides administrative functionality to manage the SDP re-

tailers. This entity is similar to the Parlay reference model’s framework administrator.

In the reference model, relationships between SDP business entity components are stan-

dardised as reference points before they are implemented using standard-based APIs. For

example, the RRS reference point promotes standardised interactions between the service

retailer and SDP services. These interactions enable the service retailer to locate SDP ser-

vices for service consumers. This reference point relates to the R3 interface of the Parlay

reference model. The RRC reference point standardises communication between the service

retailer and customer service retailer. This communication enables the customer service re-

tailer to locate customer services. There are no interfaces in the Parlay reference model

that corresponds to this reference point. The RAdmin enables the SDP to manage its retail-

ers. This reference point relates to the nonstandardised interface between the framework

administrator and framework SCF in the Parlay reference model.

Business relationships between SDP business entity components and external business en-

tities are also formalised as reference points. These reference points share names with the

business relationships, that is, RSC , RSP , RNS and RCS . These reference points promote

standard-based communication between the SDP and external entities, including the con-

verged networks and IT-using enterprises. However, the RSC and RSP reference points are

decomposed into more specific reference points, since they interact with the SDP compo-

nents. The RSC business relationship is divided into the RPR and RPS reference points.

The RPR reference point standardises interactions between service consumers and the ser-

vice retailer. These interactions enable consumers to locate and register to use SDP services.

Also, consumers may register their applications for use by customers. This reference point

corresponds to the Parlay reference model’s R1 and R4 interfaces. The RPS reference point

standardises interactions between service consumers, their applications and SDP services.

Hence, this reference point standardises usage of SDP services and therefore, the underly-

ing network capabilities. This reference point relates to the Parlay reference model’s R2

and R6 interfaces.

The RSP reference point is divided into the RRP and RSAdmin reference points. The RRP

standardises communication between the service retailer an service provider. As a result,

diverse service providers can register their services with the service retailer, in a consis-

tent manner. This reference point is similar to the R5 interface of the Parlay reference

model. The RSAdmin standardises interactions between the service supplier and their ser-

vices. Hence, service providers manage their services, while they are deployed in the SDP.

This reference point relates to the nonstandardised interface between the service supplier

72

and SCFs in the Parlay reference model. The RCS standardises interactions between cus-

tomers and the customer service retailer. These interactions enable customers to locate and

register to use applications that provide specific customer services. This reference point has

no corresponding interface in the Parlay reference model.

Like Parlay, the SDP reference points in Figure 5.5 are implemented as generic interfaces.

Interfaces express functionality offered by the business entity components. For example,

SDP services offer external IT-using enterprises interfaces, that expose the service-oriented

capabilities of the underlying network. Also, these SDP service interfaces express function-

ality independent of telco details, such as protocols. Other interfaces describe functionality

to support communication between business entity components. All interfaces are defined

in an implementation neutral manner, such that they are implementable using a variety of

technologies.

All interfaces are implemented and exposed using services. As a result, each business entity

component contains services that implement and expose their appropriate interfaces. For

example, the service retailer contains retailer services that enable application developers to

locate SDP services. Also, the customer service retailer contains its own retailer services

that enable it to locate, subscribe and access applications, on behalf of customers. The SDP

service entity contains a diverse collection of services. These services are of the following

types:

• Application services: expose simple interfaces to service consumers to access net-

work capabilities. However, some application services may not expose interfaces but

provide services to customers.

• Generic services: provide interfaces for application services to invoke the service-

oriented capabilities of the underlying network resources.

• Network services: provide interfaces for generic services to invoke network functions

independent of their technologies.

Some of the above SDP services may be created and managed by external service providers.

For example, Figure 5.5 shows a service provider interacting with the SDP to deploy and

manage its own services.

Services and their interfaces implementing the SDP reference model are managed in a SDP

architecture illustrated in Figure 5.6. The SDP architecture is derived from the Parlay and

Parlay X architectures shown in Figure 5.2 and Figure 5.3. The architecture represents the

SDP within an environment of entities that invoke SDP service interfaces.

73

Figure 5.6: SDP and its Environment derived from Parlay and Parlay X Architectures

The SDP architecture separates services into horizontal layers that are hierarchically organ-

ised based on their level of abstraction. The application layer contains applications that

consume application services. These applications may belong to application or content

providers The application service layer houses the various types of application services.

These services may be implemented as Parlay SCFs or Parlay X web services. The generic

service layer contains generic services. These services may be implemented as Parlay SCFs.

The network service layer groups network services. The network services may be imple-

mented as part of the Parlay SCS logic. The network resource layer houses the converged

network resources and capabilities, such as transport networks, OSS/BSS and data stores.

These resources are invoked by the network services. All service layers expose their service

interfaces to layers higher in the SDP architecture.

If Parlay X web services are used to implement the application service layer, we may re-

move the generic service and network service layers. As a result, the web services can

communicate directly with the appropriate network resources. Thus, the SDP architecture

can be reduced to accommodate the Parlay X architecture shown in Figure 5.3.

In addition to layers, the SDP architecture defines domains. Domains represent functional

divisions across the SDP architecture. The SDP architecture defines domains that corre-

spond to the business entities that interact with the SDP business entity and components.

Hence, services derived from the business entities operate within their associated domains.

However, SDP services are accessed and used across multiple domains. SDP services pro-

vide their functionality across various domains by using their interfaces. For example,

Figure 5.6 shows application services are accessible via their interfaces, by applications

contained in the application provider or content provider domains. Also, service providers

74

access generic service, via their interfaces, from within their domain when creating and

testing their own application services.

Like Parlay and Parlay X, middleware is essential to the SDP architecture. The SDP uses

middleware mechanisms to abstract the distribution of applications and services across vari-

ous domains. The middleware mechanisms also contain functionality to support implemen-

tation and distribution independence of service interfaces. The SDP middleware abstracts

underlying technology details, such as computing platforms that host applications and ser-

vices. Also, the middleware abstracts transport networks used to deliver application and

service communications. In the SDP architecture middleware mechanisms are abstracted

as a middleware plane. In Figure 5.6, the middleware plane encapsulates all layers and

domains, such that implementation, distribution and technology details are abstracted.

5.5 Evaluation of SDP Business Model, Reference Model and
Architecture

By applying the generic Parlay and Parlay X concepts to the SDP we have defined a telecom

service-oriented viewpoint. This viewpoint defines various abstractions that are structured

in the SDP business model, reference model and architecture. The abstractions contribute

to the definition of the SDP framework. We evaluate the SDP business model, reference

model and architecture against the generic concepts extracted from Parlay and Parlay X. In

addition, the evaluation provides answers to the questions posed in Chapter 1 Section 1.3.

We also present the comparison between Parlay, Parlay X and SDP in Table 5.1.

The SDP business model justifies the development of the SDP by a telco. That is, the SDP

manages and benefits from telecom-IT convergence, by providing diverse services to exter-

nal IT-using enterprises. The business model remains generic so as to cater for many types

of enterprises (business entities). Interactions between SDP and enterprises define business

relationships and their roles in these relationships. The most predominant role between SDP

and enterprises is that of service provider and service consumer respectively. However, the

business model also shows the SDP as a service consumer that deploys services on behalf

of external service providers.

The SDP reference model adds detail on the business model, such as the internal compo-

nents that constitute the SDP business entity. Also, the reference model shows examples of

enterprises that interact with the SDP components. Some of these enterprises are service

consumers, such as application developers, content providers and customers. In addition

75

Parlay X Parlay SDP Description

Reference Model Business model Defines telco and IT-based business entities and

the business relationships between them.

Reference

Model

Decomposes business entities and formalises

business relationships as reference points.

Web Applica-

tion Layer

Application

Layer

Contains IT-based applications that access net-

work capabilities to provide customer services.

Web Services

Layer

CORBA Appli-

cation Layer

Application

Service Layer

Defines simple services that provide access to

network capabilities, via technology neutral in-

terfaces. Some application services may not ex-

pose interfaces, but provide customer services.

Service Capability

Function Layer

Generic Ser-

vice Layer

Contains services with interfaces that simplify

access to the service-oriented capabilities of the

underlying network.

Network Ser-

vice Layer

Contains services with interfaces that promote

access to the underlying network functions.

Network Resource Layer (telco, IT-using enter-

prise and Internet)

Represents the integrated collection of network

resources and capabilities that are technology,

implementation and distribution specific.

Distributed Domains Represent areas of division across the SDP ar-

chitecture. Domains relate to business entities

found in the business/reference model.

Proto-

cols
CORBA Middleware

Plane

Supports application and service communica-

tion by abstracting their implementation, distri-

bution and technology details.

Table 5.1: Comparison of Parlay and SDP Concepts and Architectures

to service consumers, the reference model shows service providers, who deploy their ser-

vices with the SDP. The reference model promotes standardised interactions between SDP

components, external enterprises and network using reference points. The reference model

reference points are implementable as service interfaces. Thus, the SDP and enterprises

implement reference points using numerous services that expose specific interfaces. As a

result, interfaces expose SDP capabilities to enterprises in a standardised manner, but, en-

sure the inner-workings of the SDP components are hidden. Service interfaces express SDP

capabilities independently of network technologies, making them easier to use when pro-

gramming new applications. Also, service interfaces are implementation and distribution

neutral, such that diverse application implementations may use their functions across vari-

ous locations. Thus, the abundant SDP services and their interfaces provide varying levels

of abstraction of the telco network resources and capabilities.

The SDP services and interfaces are structured within an architecture using layer, domain

and plane design patterns. Unlike the proposed SDP architecture shown in Figure 1.3, this

76

SDP architecture is technology neutral and uses service interfaces to promote SDP standard-

isation. These SDP architecture layers and groups services as a hierarchy of abstractions

that simplify access and usage of the underlying network resources. The various service

interfaces enable standardised communication within and across layers. Also, services and

their interfaces enable consistent access to the SDP and the underlying network capabilities.

For example, application services provide a point of integration between external applica-

tions and generic services. The network services provide a point of integration between

generic services and the converged network resources. The generic services translate be-

tween application service invocations and network service invocations. Some SDP services

also provide a means for customers to locate applications that provide diverse functionality.

Hence, these SDP services support a standardised point of integration between customers

and external applications. The SDP service interfaces ensure these points of integration re-

main technology neutral, by hiding details of the service implementation, distribution and

underlying network technologies.

The SDP architecture represents a distributed platform, since its layers operate across mul-

tiple domains. Services are distributed across these domains, but remain within their as-

sociated layers. Service interfaces enable their distribution to be abstracted, to some de-

gree. However, the middleware plane design pattern enables service distribution to be fully

abstracted. Also, the middleware plane provides functionality to abstract application and

service implementations and distribution. For example, the middleware plane abstracts di-

verse:

• computing platforms that host applications and services;

• software implementations of applications and services; and

• transport links used to deliver application and service communications.

As a result, the middleware plane abstracts various complexities, such that application de-

velopment and service execution is simplified. Thus, the middleware plane provides a point

of integration between applications, services and their networked computing platforms. The

SDP architecture defines the middleware plane independently of technologies. Hence, the

middleware plane may be implemented using a single technology or an integration of many

technologies.

Both Parlay and Parlay X do not provide standardised APIs that completely abstract telco

OSS/BSS capabilities. This is also evident in the Parlay reference model’s nonstandardised

interfaces involving the framework administrator and service supplier. As a result, our

derived SDP business model, reference model and architecture does not incorporate the

77

telco OSS/BSS or external enterprises’ SCE and SME. These issues are resolved in chapter

Chapter 6.

5.6 Summary

In this chapter we presented contributions of current service platform standards to the SDP

and its framework. We reused generic concepts from both Parlay and Parlay X standards.

These concepts where extracted from the Parlay reference model and Parlay and Parlay X

architectures. By reusing concepts from the Parlay reference model we defined a SDP busi-

ness model that motivates the business case for the SDP. Also, we decomposed the business

model into a SDP reference model with reference points, to promote SDP standardisation.

Like Parlay and Parlay X, we reused the concept of standard-based service interfaces to

implement reference points. For example, service interfaces hide the complexity of net-

work technologies from applications. Also, the service interfaces are implementation and

distribution independent. We decomposed the reference model into a SDP architecture, that

grouped and structured SDP services into horizontal layers. Also, we used domains to dis-

tributed the layers across various functional areas. We incorporated a technology neutral

middleware plane to hide implementation, distribution and technology complexities from

services and applications. Therefore, by reusing generic Parlay concepts we presented tech-

nology neutral abstractions and an architecture that contributes to the SDP framework.

78

Chapter 6

Perspectives on the SDP from Management
Framework Standards: TMN, TOM and
eTOM

Telco network infrastructure contains varied integrated systems. Each system is distributed

across the telco network and uses diverse technologies to interoperate with each other. The

networked collection of systems support the telco business, that is, the development and de-

livery of customer services. The telco uses specialised systems to manage its infrastructure

and customer services. These systems are the operations and business support systems (OS-

S/BSS).

OSS/BSS form a crucial part of the telco infrastructure. OSS ensures the effective opera-

tion of the telco infrastructure parts, such as switches, routers, databases, service platforms

and customer terminals. The BSS manages telco business objectives by defining and im-

plementing business processes. For instance, business processes define logic to deploy ser-

vices, perform network configuration and bill customers. The OSS and BSS are integrated

such that the operation of the telco infrastructure satisfies business objectives.

With convergence effecting both telco business and infrastructure, its traditional OSS/BSS

is changing. The OSS must manage integration of legacy telco systems with new telco, IT

and Internet-based systems. The OSS must manage the opening of the telco infrastructure to

various external partners. Also, the OSS must manage old and new types of services that are

defined, deployed and maintained by the telco. In relation, the BSS must manage existing

business processes, but support new processes that enable the telco to benefit from telco,

IT and Internet convergence. For example, telco business processes must satisfy business

objectives that include external partners, such as application developers, content providers

and other telcos.

79

Various tools are defined to aid development of a telco OSS/BSS that manages telecom-IT

convergence. In this chapter we discuss tools, such as the Telecommunication Manage-

ment Network (TMN) [21], Telecommunication Operations Map (TOM) [22] and Enhanced

Telecommunication Operations Map (eTOM) [23]. These standards provide a wealth of

generic and reusable concepts that focus on the operations and business management of

telco infrastructure. Hence, these concepts aid the development of the SDP framework,

since the SDP must manage telecom-IT convergence.

6.1 Requirements

6.1.1 TMN

Legacy telco infrastructure provides voice services to customers over limited transport net-

works. For example, the IN is used to create and execute voice-based services, while the

PSTN is used to deliver IN services across circuit-mode transport networks. To manage

legacy telco infrastructure the TMN is defined. The TMN represents a separate and dedi-

cated management network that integrates with the IN/PSTN and other TMNs, to provide

various management functions [102, 21]. As defined in [103], TMN functions aim to fulfil

the following requirements:

• Fault Management: detect, isolate, report and correct errors found in telco infrastruc-

ture.

• Configuration Management: adjust properties of telco infrastructure systems, so as to

control their operation.

• Accounting Management: collect diverse information, based on service/network us-

age by customers, and adjust billing records.

• Performance Management: monitor and adjust telco infrastructure system properties,

such that they operate efficiently.

• Security Management: enables the creation, modification and application of various

security policies that ensure authorised access to management functions and informa-

tion.

We define a TMN business model, shown in Figure 6.1(a), that summarises TMN require-

ments. The business model illustrates separate TMNs managing separate networks using

standard-based protocols. In addition, standard-based protocols are used to integrate both

networks and their corresponding TMNs.

80

IN/PSTN

TMN

IN/PSTN

TMN

Protocols

Telco A Telco B

(a) TMN Business Model (b) TOM Business Model (c) eTOM Value Network

Figure 6.1: Telco Management Business Models

6.1.2 TOM

The TMN represents a legacy approach to define a telco OSS/BSS. The TMN aims to sat-

isfy limited OSS/BSS requirements by defining network-oriented services, functions and

protocols. In addition, the TMN provides incomplete standardisation, with implementations

using proprietary mechanisms [104]. To overcome these limitations, the TOM is defined.

TOM represents a standardised business process framework that is used to develop telco

OSS/BSS. TOM defines various business processes, with each describing activities that a

telco OSS/BSS must support. These business processes are highly abstract and encapsulate

the telco OSS/BSS requirements. By linking various business processes together, specific

telco business objectives are satisfied. Consequently, the fulfillment of business processes

influence the operation of the telco infrastructure. Based on [22], TOM and its business

processes fulfil requirements, such as:

• End-to-end automation of business and operation activities, for example, automation

of service creation, deployment, delivery and billing.

• Promote customer and service centricity, rather than network centricity. This enables

business processes to focus on telco OSS/BSS requirements, rather than the underly-

ing network technologies.

• Incorporate external partners into the telco business model, such that partners use

services offered by the telco. Partners perceive the telco as a service provider. For

example, partners use telco services to supply their own services to customers. In

addition, some partners use telco services to provide content to enhance customer

services.

• Administer distributed and diverse management information, obtained from heteroge-

nous telco infrastructure systems.

• Reuse legacy OSS/BSS capabilities, since they manage existing telco infrastructure

81

systems.

• Ensure interoperability between different telco OSS/BSS implementations.

The TOM requirements are summarised in a business model that is defined in [22] and

shown in Figure 6.1(b). The model defines the telco service provider, customers, suppliers

and other provider business entities. Examples of suppliers include application developers,

while other providers include content providers. All business entities are involved in various

business relationships, called business reference points. Business reference points promote

standardised management interactions between telco, customers, suppliers and providers.

These interactions contribute to the definition of the TOM business processes.

6.1.3 eTOM

The eTOM is defined due to refinement of the TOM standard. The eTOM shares proper-

ties, requirements and business processes with TOM. However, eTOM enhances TOM by

managing the effects of telecom, IT and Internet convergence on the telco OSS/BSS. As a

result, eTOM defines additional business processes that manage the integration of telco OS-

S/BSS with external IT-based enterprise infrastructures and the Internet. In addition, eTOM

defines business processes that promote improvement of internal telco activities. Hence,

eTOM provides a more complete approach to develop telco OSS/BSS.

The eTOM business model is defined in [23] and shown in Figure 6.1(c). The business

model is generic and illustrates a network of telco, enterprises and customers involved in

various business relationships, called business reference points. Like TOM, these business

reference points promote standardised interactions between business entities, that contribute

towards the definition of eTOM business processes. In the figure, the business entities and

their functions are:

• Service Provider: represents a telco that purchases products or services from various

entities in the business model. Also, the telco sells services to entities in the business

model.

• Customer: is an individual or enterprise that subscribes, consumes and pays for cus-

tomer services.

• Hardware/Software Provider: sells products to the business model’s providers. These

products are then integrated into the providers infrastructure.

• External Service Provider: is an external telco or enterprise that uses the service

provider’s services to create, execute, enhance, deliver or manage its own customer

82

services. In addition, the service provider may use external service providers’ services

to create, execute, enhance, deliver or manage its own customer services.

• Complimentary Provider: represents an external enterprise that adds value to the ser-

vice provider’s customer services. For example, this provider may represent a media

broadcaster who offers content to the service provider, for use in new customer ser-

vices.

• Function/Process Provider: represents an enterprise that performs functions or even

business processes on behalf of the service provider. For example, a function may

include selling customer services to customers.

• Intermediary: is an enterprise that takes on the role of a broker. For instance, the

broker enables business entities to locate each other for the purpose of buying or

selling services, products or content.

eTOM is used in conjunction with other standard and technology neutral tools to aid the

development of telco OSS/BSS. These tools include the Shared Information and Data Model

(SID) [105] and Technology Neutral Architecture (TNA) [106]. The collection of these

tools form part of a OSS/BSS development life cycle named the New Generation Operations

Systems and Software (NGOSS) [48].

6.2 Architecture

6.2.1 TMN

The TMN functional and logical architecture is defined in [21] and shown in Figure 6.2. The

architecture uses management layers to group functional entities based on their management

capabilities. All lower layer functions are accessed and used by higher layer functions. The

business management layer groups business Operations System Functions (OSF) that man-

age the telco business as a whole. This function obtains simple management information

and uses management capabilities from lower layers to satisfy telco business objectives.

The service management layer contains a service OSF that administers service oriented as-

pects of the telco infrastructure. For example, the function provisions IN-based services for

customers, by using lower network functions.

The network management layer houses a network OSF that provides a holistic view of the

telco network and abstracts details such as subnetworks and network elements. For example,

the network OSF is used to configure the network when a new service is being deployed.

83

Business

Management Layer

Service

Management Layer

Network

Management Layer

Element

Management Layer

Network Element

Layer

OSF

OSF

OSF

NEF

OSF

NEF

MF

OSF

OSF

OSF

OSF

QAF NEF

Telco Domain A Telco Domain B

Non-TMN

Figure 6.2: TMN Logical and Functional Architecture

The element management layer provides an element OSF that fulfills network adminis-

tration by managing one or more network elements. The network element layer contains

various functions that abstract access to a network element’s management capabilities. For

instance, Network Element Functions (NEF) abstract network element management capa-

bilities, while Q-Adaptor Functions (QAF) abstract functions or network elements that do

not adhere to TMN standards. In addition, Mediation Functions (MF) are used by element

OSFs to abstract information obtained from multiple QAFs and/or NEFs. In addition, MFs

may be used, throughout the TMN architecture, by higher layer OSFs to abstract informa-

tion from multiple lower layer functions.

The TMN architecture shows interworking of TMN-compliant telcos. This interworking oc-

curs across distributed telco infrastructure. TMN recommends interworking occur between

service, network and element management layers, via the corresponding OSFs. Thought not

depicted in the figure, the TMN architecture formalises all functional entity communication

using reference points. Reference points enforce TMN standardisation by specifying the

details of entity communication using protocols. For instance, the complex standard-based

Common Management Information Protocol (CMIP) [107] is used to transport manage-

ment information between implemented management functions. As a result, conformance

to protocol specifications ensures interoperability between TMN implementations.

6.2.2 TOM

Unlike TMN, TOM represents a business process framework, rather than a management

network architecture. The TOM framework structures business processes required by a

telco to satisfy its business objectives. The TOM framework is defined in [22] and shown

in Figure 6.3.

84

In
fo
rm
a
ti
o
n
 S
y
s
te
m
s
 M
a
n
a
g
e
m
e
n
t
P
ro
c
e
s
s
e
s

Figure 6.3: TOM Business Process Framework

Various business processes are defined in TOM. These business processes are grouped

within functional layers that relate to the TMN management layers [108]. The customer

care layer contains processes that aim to fulfil customer-oriented requests. This layer is

similar to the TMN service management layer. Access to processes in the customer care

layer are managed via a customer interface, such as a web portal. As a result, a customer

interface management layer is defined. This layer houses business processes that admin-

ister the customer interface. The TOM also uses a service development and operations

layer to house service-oriented business processes. These processes enable telco service

management, independent of underlying telco network details. This layer also provides

functionality similar to the TMN service management layer.

The network and systems management layer contains business processes that are used to sat-

isfy the functions contained within the service development and operations process layer.

This layer and its processes abstract the underlying complexity of network elements and

their rich management information. This layer provides functionality similar to the TMN

network management layer. To fulfil the network and systems management processes,

network element management processes are defined. These processes are managed and

grouped within the network element management layer. Like the TMN element manage-

ment layer, the TOM network element management layer provides a consistent management

interface to the underlying network elements. Integrated into all layers is the information

systems management processes. These processes are not fully defined by TOM, but aim to

manage the various information systems that implement the TOM business processes.

Each layer and their business processes contribute to one or more end-to-end process flows.

85

Process flows prescribe the linked execution of business processes across layers to fulfil

business, service and customer requirements. We describe these process flows as end-to-

end domains in the TOM. TOM defines three service-oriented domains, that is, service

fulfillment, assurance or billing. The service fulfillment domain groups business processes

that are used to support the delivery of services to customers. Service assurance includes

business processes that maintain the appropriate levels of service reliability, performance

and security. The service billing domain includes business processes that manage all aspects

of service charging and customer billing. As shown in Figure 6.3, some business processes

may overlap across two domains. Hence, some business processes are used in more than

one end-to-end process flow.

TOM defines interactions between business processes based on inputs to a business process

and the corresponding output. An output for a business process may represent and input to

another business process. A business process may invoke another business process:

• horizontally within the same layer and domain;

• horizontally within the same layer, but across different domains;

• vertically across different layers, but within the same domain; or

• vertically across different layers and domains.

6.2.3 eTOM

Like TOM, the eTOM defines a framework of business processes that aim to satisfy telco

business objectives. These objectives are customer and service oriented. Also, eTOM aims

to enhance telco OSS/BSS to benefit from telecom, IT and Internet convergence. As a

result, eTOM defines additional business processes, layers and process flow domains. The

eTOM framework is defined in [22] and shown in Figure 6.4(a). This figure illustrates an

abstract version of the eTOM framework. More decomposed representations of eTOM and

its business processes are defined in [23].

Like TOM, eTOM groups business processes into layers, according to their management

capabilities. The market, product and customer layer contains business processes that pro-

vide marketing management and customer relationship management functions. The ser-

vices layer houses business process that provide service-oriented management capabilities,

such as service configuration. The resource layer groups business processes that adminis-

ter the telco’s diverse infrastructure. For example, resource business processes are used to

configure transport networks. The supplier and partner layer contains business processes

86

(a) eTOM Level 0 Business Process Framework

Business Processes

Resources

OSS Applications

OSS Framework Services

Basic Framework Services

Basic Mechanisms

(b) TNA Model

Figure 6.4: Instances of the eTOM Framework and TNA

that manage interactions with telco partners, such as content providers or other telcos. The

eTOM also defines an enterprise management layer. This layer contains business processes

that manage the internal activities of the telco. These processes are used or influenced by

the telco employees, shareholders and stakeholders.

Similar to TOM, eTOM business processes contribute to one or more end-to-end process

flows that are grouped within domains. These domains are distributed across all eTOM

layers. eTOM defines a strategy domain that links and executes business processes used

in defining and tracking the telco business strategies. The infrastructure domain involves

business processes required to manage the life cycle of telco infrastructure. The product do-

main uses business processes required to manage the life cycle of telco services. Like TOM,

eTOM reuses the service fulfillment, assurance and billing domains. However, eTOM de-

fines an additional operations domain containing business processes, that support the service

fulfillment, assurance and billing domains business processes. For example, the operations

domain business processes provide information required by the service billing domain busi-

ness processes.

As part of the NGOSS, eTOM represents an important tool in defining a telco OSS/BSS.

The eTOM prescribes the business processes required to fulfil telco business objectives.

These business processes are described at a high level of abstraction and encompass cus-

tomer and service-oriented requirements. However, other tools are used within the NGOSS

to transform the eTOM business processes into the implemented telco OSS/BSS. These

tools are the SID and TNA. SID is used to model vital information required by the eTOM

business processes [109]. For example, interacting business processes are decomposed into

information processing objects. These objects properties are also described in detail using

SID. In addition, SID specifies object interactions using information flows.

87

Once defined, the eTOM and SID models are used to aid the definition of the telco OS-

S/BSS architecture. This architecture is the TNA. The TNA is used to design and structure

the telco OSS/BSS independently of technologies [106]. Also, the TNA structures the OS-

S/BSS as a distributed system. A TNA representation is defined by [110, 111] and shown in

Figure 6.4(b). The architecture shows the basic components that constitute the structure of

an NGOSS compliant OSS/BSS. The architecture uses layers to group various capabilities

and functions. The topmost layer contains the eTOM business processes that are used to

satisfy business objectives. The OSS application layer offers business processes access to

legacy and new telco OSS/BSS capabilities. The OSS applications fulfil their requirements

by using services offered by a OSS framework. The OSS framework is structured using two

layers, that is, the OSS framework services layer and basic framework services layer. The

OSS framework layer provides OSS specific services such as logging, trading and audit-

ing services to OSS applications [112]. The basic framework services layer contains basic

capabilities required to support OSS framework services, such as registration, naming and

location services [112]. OSS applications may invoke either framework layers’ services.

Since the TNA is a distributed system, capabilities are required to abstract distribution of

business processes and framework services. Providing the distribution independence is the

basic mechanism layer. The basic mechanism layer provides a layer of abstraction between

the OSS applications, OSS framework and telco infrastructure. Hence, OSS applications

and OSS framework services invoke infrastructure functions via the basic mechanisms layer.

The basic mechanism also contains capabilities to abstract access to underlying OSS/BSS

and telco infrastructure systems. This layer is implementable as a transport mechanism,

using various technologies such as the web services [7] Enterprise Service Bus (ESB) or

CORBA’s [83] Object Request Broker (ORB).

Accessed and used across all layers in the TNA, is the policy/security functions and the

shared information and data repositories. The policy/security functions ensure each layer

and its contents operates in accordance to rules and regulations defined by the telco. The

shared information and data repositories administer diverse information and data used by

layers’ services and functions. Hence, the appropriate information and data is securely and

easily accessible by the authorised services and functions throughout any layer of the TNA.

eTOM business processes, SID information processing objects and the corresponding TNA

components are implementable using various technologies. Currently, implementations use

web service [7] technologies. We discuss web services in Chapter 7.

88

6.3 Reusable Concepts

TMN, TOM and eTOM define requirements that a telco OSS/BSS must satisfy. These

requirements are structured using a business model, containing interacting business entities.

These interactions represent relationships between the business entities. All relationships

are standardised using reference points. Consequently, TOM and eTOM decompose their

business entities and reference points into standardised interacting business processes, that

support their business relationships.

Generic and reusable services are defined by the management architectures, thought in dif-

ferent forms. TMN defines management functions that are integrated to form management

applications. These functions are complex with protocols supporting their communica-

tion. Also, functions and protocols are network dependent. TOM and eTOM use abstract

business processes as services that manage telco infrastructure, business partnerships and

ultimately business objectives. Business processes interact using information flows that are

network and technology neutral. Thus, business processes as services hide the underlying

complexity of the OSS/BSS implementation and the telco infrastructure.

Layers are used as a modeling tool to simplify the complexity of the management architec-

tures. In TMN, TOM and eTOM, layers are used to separate the various services according

to the functions they provide. As a result, a hierarchy of service abstracts is created. For

example, TMN layers management functions with business and service functions forming

the higher layers and network and element functions forming the lower layers. Also, TOM

layers its business processes according to their capabilities. For instance, business processes

involving customers form the topmost layer, while network-oriented business processes

form lower layers. eTOM uses a similar layering scheme as TOM. However, the eTOM

layers its partner-oriented business processes at the bottom, since partner interactions may

be required to fulfil higher business, service or network-oriented business process requests.

Each of the management architecture’s layers contain varying functions. In these architec-

tures higher layer functions abstract access to lower layer functions. For example, TMN’s

service management layer contains service management functions that abstract access to

lower network management functions and their information. Also, when an eTOM cus-

tomer layer business process is executed its output may invoke lower service layer business

processes. Some of the architectures layers expose access to their functions. This is seen

in TOM and eTOM layers that expose business processes to customers, with eTOM also

exposing business processes to diverse partners.

Interaction between management functions occur within and across layers. In TMN com-

munication between functions are formalised using reference points. These reference points

89

promote standardisation since they are decomposed into complex protocol specifications.

Both TOM and eTOM specify business reference points between business entities contained

in their business model. These reference points are decomposed into interactions between

various business processes. By applying the SID to the eTOM business processes, informa-

tion required for these interactions are formalises as APIs. These APIs also contribute to

the definition of the TNA.

TMN, TOM and eTOM use domains in their architectures to illustrate the distributed nature

of the telco OSS/BSS. For instance, the business models and architectures show the telco

interacting with various external partners, via its OSS/BSS. These partners may operate as

external telcos or IT-using enterprises. However, TOM and eTOM show the internal dis-

tribution of business processes across the telco OSS/BSS by using process flow domains.

These domains represent the grouping of business processes across layers that aim to ful-

fil specific business objectives. The process flow domains also indicate business process

implementations may be distributed across the telco OSS/BSS.

The telco management standards abstract the complexity of their implementations and dis-

tribution to various degrees. TMN uses complex protocols to abstract implementation of

management functions. However, these protocols do not abstract distribution of the func-

tions. The eTOM’s corresponding TNA promotes the use of middleware to abstract the var-

ious underlying complexities of implementing the distributed telco OSS/BSS. In addition,

the TNA uses middleware to abstract integration of various technology specific OSS/BSS

vendor products. This middleware is the product of the both TNA’s OSS framework layers

and the basic mechanism layer.

As middleware, the OSS framework layers provide generic and reusable services that enable

business processes and OSS applications to locate each other and invoke their functions.

Also, the OSS framework layers contribute middleware services that provide OSS-specific

functionality to business processes and OSS applications. Some of these middleware ser-

vices provide functionality such as to monitor underlying elements and log interactions

between software components. As middleware, the basic mechanism provides the reliable,

secure and guaranteed transportation of requests between business processes and OSS ap-

plications. Also, the basic mechanism integrates with telco infrastructure systems, therefore

enabling OSS applications to invoke telco infrastructure management functions. Therefore,

the TNA middleware abstracts the distribution and technologies used to implement the OS-

S/BSS business processes, applications and telco infrastructure. As a result, the middleware

provides the needed capabilities to support the business, service and customer-oriented per-

spectives on the telco and its OSS/BSS, by abstracting various underlying complexities.

90

Customer

SDP

(Service

Provider)

Partner

Business

Reference Points

(a) Generic SDP Business Model

derived from TMN, TOM and eTOM

Business Models

Service

Subscriber

SDP

(Service

Provider)

Connectivity

Provider

Service

Consumer

Terminal

Producer

Media

Broadcaster

Application

Developer

Credit Card

Payment

Provider

(b) Example of a Specific SDP Business Model

Figure 6.5: SDP Business Models

6.4 Contribution to the SDP from TMN, TOM and eTOM

We reuse the generic TMN, TOM and eTOM (including TNA) concepts to define a SDP

business model and management architecture. The SDP business model is shown in Fig-

ure 6.5(a). Also, the SDP business model is derived from the TMN, TOM and eTOM busi-

ness models. The SDP business model is highly abstract and extendable to accommodate

TMN, TOM and eTOM business models.

The SDP business model defines three business entities that are crucial to the telco business

and network operation. These entities are customers, partners and the SDP itself. The SDP

represents the telco service platform that exposes various management services to customers

and partners. Thus, the SDP business entity is similar to the service provider found in the

TOM and eTOM business models.

Customers represent business entities that use the SDP for access to telco, IT and Internet-

based services. Some of these services provide customer and service management func-

tionality, such as customer registration, service subscription and service configuration. The

customer entity may be decomposed into more specific business entities. For example, cus-

tomers may include other service provider enterprises, who subscribe and resell services to

individuals or other enterprises. The customer business entity is similar to customers found

in the TOM and eTOM business models.

SDP partners are diverse, ranging from application providers, content providers, connec-

tivity providers and even terminal manufacturers. Partners use the SDP and its services

to develop and manage customer services. In addition, the partners use SDP services to

manage their business relationship with the telco. For example, content providers use SDP

91

services to register their content with the SDP. In addition, application provides use SDP

services to charge customers for using their customer services. Thus, the partner business

entity represents an abstraction of numerous business entities found in both TOM and eTOM

business models. For example, partners include suppliers, intermediaries and complimen-

tary providers.

Like TOM and eTOM business models, the SDP business model structures interactions be-

tween business entities using business reference points. However, for the SDP business

model we use more abstract representations for reference points, called business relation-

ship points. These business relationship points describe the allowed behaviour between

business entities. For example, business relationship points are defined as formal contracts

between SDP and telco partners. These contracts specify details and the terms and condi-

tions of the interactions. Like the business entities, these business relationship points are

decomposable. An example of a decomposed business model is shown in Figure 6.5(b).

In the figure we decompose the customer and partner business entities. Decomposed cus-

tomers include a service subscriber and service consumer. Decomposed partners include

terminal manufacturers, media broadcasters, application developers, a credit card payment

provider and a connectivity provider. The figure also shows numerous business relation-

ship points between the SDP and the decomposed customers and partners. However, unlike

TOM and eTOM we only consider business relationship points involving the SDP (service

provider).

Based on the generic SDP business model, we define a SDP management architecture shown

in Figure 6.6. The SDP management architecture is derived from the TMN, TOM and

eTOM architectures. The SDP management architecture structures the SDP within an en-

vironment containing various management entities. By invoking APIs, the environment’s

entities are able to use management capabilities offered by the SDP.

The SDP management architecture decomposes business entities and their business rela-

tionship points into business processes, management services, management functions and

APIs. In the management architecture, layers are used to group the various business pro-

cesses, management services and management functions. The business process layer con-

tains generic business processes, used by the telco to manage business, service, customer,

partner and network operations. These processes are also accessed and invoked by cus-

tomers and partners that are involved in business relationships with the telco. The man-

agement service layer contains abstract management functionality that is used by business

processes to fulfil telco, customer or partner requests. These applications represent the

full capabilities of the telco OSS/BSS. The management function layer contains complex

management functions that enable the underlying telco infrastructure systems to be used in

satisfying telco business objectives. The management architecture also defines a converged

92

Middleware Plane

Converged

Network

Infrastructure

Management

Functions

Management

Services

Business

Process

Layer

API

API

Protocols

C
u
s
to
m
e
r
D
o
m
a
in

Partner

Domain

Partner

Domain

Partner

Domain

Internal Domains

Figure 6.6: SDP and its Environment derived from TMN, TOM and eTOM Architectures

infrastructure layer that represents the management resources and capabilities offered by

the underlying networks. This layer includes telco, IT and Internet-based networks. Inter-

actions and communication between layers are supported using their contents APIs.

The SDP management architecture uses domains to distribute management functions across

telco infrastructure, customer terminals and partner infrastructure. These domains relate

to the SDP business model’s entities, that is, customers and providers. The TMN also

use domains to distribute its architecture, while TOM and eTOM use domains to group

their business processes into end-to-end process flows. The SDP management architecture

shown in Figure 6.6 illustrates examples of customer domains and multiple partner do-

mains. The customer domain expands across all layers, since the customer terminal may

contain management services or functions that invoke functionality in the corresponding

SDP management architecture layers. The partner domains vary depending on the type of

partner and functionality required by the partner. For example, an application provider may

require access to service subscription business processes. Also, the application provider

may provide billing information to telco management services. As a result, the application

provider domain overlaps onto the business process and management service layers. Other

types of partners may require access to lower layer management capabilities. For example,

connectivity providers may require access to telco networks, but also provide routing infor-

mation to management functions. Hence, the connectivity provider domain overlaps onto

the management function and network layers. In the SDP management architecture we also

show partners that use all SDP management capabilities. As a result, some partner domains

extend across all architectural layers.

Besides partner domains, the SDP management architecture illustrates internal domains

located within most layers. Like TOM and eTOM process flows, the SDP management

architecture uses internal domains to represent groupings of various SDP management ca-

pabilities. Internal domains group specific SDP management capabilities such that they are

used in completing specific business, service, customer or network management activities.

93

For example, business processes that aid service billing may be grouped into an internal

service billing domain. The corresponding management services and functions that aid

these business processes are also grouped into the internal service billing domain. Some

of the business processes, management services and management functions may also be

distributed across external customer or partner domains. Hence, internal domains may span

across multiple layers and external domains of the SDP architecture.

Borrowing concepts from eTOM and TNA, we use a middleware plane to support the dis-

tributed nature of the SDP management architecture. The middleware plane encompasses

all SDP capabilities, layers and domains. The middleware plane hides the distribution of

management functions contained in all layers and domains. As a result, business processes,

applications, services and the telco infrastructure systems interact independently of their

physical location. In addition, the middleware plane provides implementation indepen-

dence, by abstracting the technologies used to realise layers’ capabilities. Hence, the mid-

dleware plane hides technology specifics of business processes, applications, services and

the telco infrastructure systems, but helps in exposing their technology neutral APIs.

Like the TNA framework layers, the middleware plane provides its own services. These

services provide management functions that are used across all of the SDP’s layers. For

example, these services enable SDP management capabilities to operate across a distributed

environment, by abstracting computing platforms and transport networks that constitute the

telco infrastructure and OSS/BSS. Also, these services may abstract access to legacy telco

OSS/BSS system functions. The middleware services offer access to their functions by

exposing technology neutral interfaces (APIs).

6.4.1 Defining a Complete and Managed SDP Architecture

In Figure 6.7 we illustrate a complete SDP architecture that incorporates the SDP man-

agement architecture layers. The figure also shows a managed SDP contained within its

environment. The SDP uses its various service interfaces to interact with its environment.

The SDP architecture in Figure 6.7 extends management layers to interwork with non-

management layers. These non-management layers are the exposed services layer, appli-

cation service layer and network function layer. The exposed services layer houses SDP

services that are used by external telco partners to deliver content to customers. Also, these

services are used by telco partners in application development, execution and delivery. The

application service layer contains application services that support the exposed services.

Application services provide exposed services with simplified access to underlying telco

network resources and capabilities. The network function layer houses network functions

94

Exposed Services

Network Functions

Exposed Business

Processes

Management Functions

External Partners and/or Customers

Application Services Management Services

A
P
I

A
P
I

API

Protocols

API

Middleware Plane

A
P
I

SDP Data

OSS/

BSS

Data

OSS/

BSS

Data

SDP Data

SDP

Data

SDP

Data

API

API

API

Converged Network Infrastructure

OSS/

BSS

Data

SDP

Data

Figure 6.7: A Managed SDP and its Environment

that support application services. The network functions provide application services with

access to the rich functions offered by the telco’s physical network elements.

Vertical communication between the exposed services, application services and network

functions occur via their APIs. Additional service APIs are also used to enable horizontal

communication with the management layers. We name these APIs service management

APIs. Exposed services and business process layers communicate via their service man-

agement APIs. For instance, this communication ensures usage of exposed services trigger

various billing, monitoring or security business processes. Application service and manage-

ment services layers also communicate via their service management APIs. For example,

management services may detect and halt application services from accessing unavailable

or faulty network functions. Network function and management function layers communi-

cate via their service management APIs. As an example, network functions may request

management functions to configure transport networks so as to deliver content with the

appropriate quality of service.

The SDP architecture extends all layers to include data services that are accessible via their

APIs. Two types of data services are defined: OSS/BSS data services and SDP data ser-

vices. OSS/BSS data services manage abundant OSS/BSS data required in the execution

of business processes, management services and management functions. The SDP data ser-

vices are used across all non-management layers and provides data used in the execution of

expose services, application services and network functions.

Like the SDP management architecture, the complete SDP architecture uses a middleware

plane to abstract service implementations and their distribution. Thus, the SDP architecture

does not indicate the domain distribution of layers. Also, Figure 6.7 shows the middleware

plane abstracting the underlying technologies used to implement each layer, its services and

their APIs.

95

6.5 Evaluation of SDP Business Model and Architecture

By extracting, extending and applying the generic TMN, TOM and eTOM concepts to the

SDP we have defined a management-oriented viewpoint. This viewpoint defines various

management abstractions that are structured in the SDP business model and management ar-

chitecture. The management abstractions contribute to the definition of the SDP framework.

We evaluate the SDP business model and management architecture against the generic con-

cepts extracted from TMN, TOM and eTOM. In addition, the evaluation provides answers

to the questions posed in Chapter 1 Section 1.3. We also present the comparison between

TMN, TOM, eTOM and the SDP management architecture in Table 6.1.

The SDP business model illustrates management requirements that the SDP must satisfy.

These include supporting business relationships with multiple diverse partners and cus-

tomers. Hence, the business model defines business requirements, describes telco/SDP

business objectives and enforces the telco business strategy within the converged telecom,

IT and Internet market. In addition, the business model enables the SDP to focus on satis-

fying customers and partners by using its services. The business model formalises business

relationships between SDP, telco, customers and partners using business relationship points.

These business relationship points standardise interactions between various business enti-

ties. Both business entities and business relationship points are extendable.

The SDP uses its vast repository of services to implement business relationship points. The

collection of services represent the SDP’s business processes, management applications

and management services. These services represent the capabilities offered by the SDP to

satisfy business requirements, objectives and strategy. Various services are offered to cus-

tomers and partners. Also, services are used internally to simplify access to management

functions offered by telco infrastructure. Services expose their functionality via their APIs.

Service APIs are rich since they express management functionality offered by the SDP. In

addition, the APIs enable the vast amounts of telco management information to be obtained,

simplified, structured and used. Therefore, SDP services and their APIs further contribute

to the standardisation of business entity interactions since they implement business relation-

ship points.

Standard-based service APIs promote SDP standardisation. Interoperability between SDP,

partner and customer infrastructures is made easier with standard-based SDP service APIs.

Also, customers and partners may easily move between SDP implementations if it exposes

standard-based service APIs. Service APIs simplify access and usage of the underlying

network resources, since resources communicate using complex standard-based protocols.

96

TMN TOM/eTOM SDP Description

Business

Model

Limited to tel-

cos only

Business Model with reference

points between various cus-

tomers and partners.

Summarises requirements. For-

malises relationships. Also,

promotes standardisation when

implementing reference points.

Layers Business Layer TOM/eTOM-

based Business

Processes

Business Pro-

cess Layer

Contains business processes

that are accessible by customers

and partners.

Service Layer
SID and TNA

derived OSS

Applications

Management

Service Layer

Contains management services

that provide access to OSS/BSS

functions.

Network Layer
Management

Function Layer

Provides the common

standard-based interface to the

technology specific OSS/BSS

capabilities.

Element Layer

Network Ele-

ment Layer

IN/PSTN Network Re-

sources

Network Re-

source Layer

Represents the complex under-

lying converged systems that

must be managed.

Domains Limited telco

domains

Internal and external domains

that include diverse partners

and customers

Distributes layers internally and

externally across telco SDP and

enterprise infrastructure.

Middleware Complex

Protocols

TNA Frame-

work and Basic

Mechanism

Middleware

Plane and

Services

Provides a mechanism and ser-

vices that abstracts complexi-

ties of implementation, distri-

bution and technology.

Table 6.1: Comparison of Management standards and the SDP Management Architecture

Hence, standard-based service APIs provide consistent access to lower network manage-

ment capabilities, independently of network technologies.

The SDP management architecture shown in Figure 6.6 uses layer, domain and plane de-

sign patterns to structure SDP services and their APIs. This architecture expresses the

management functionality of the SDP. As a result, it extends the proposed SDP architecture

in Figure 1.3 by using SDP services and their APIs to promote standard-based interactions

with telco OSS/BSS and partner SCE/SME.

In the SDP management architecture layers are used to group SDP services into various

management categories. These categories are business processes, management services and

management functions. As a result, layers separate SDP management capabilities into a

service hierarchy. Layers at the top of this hierarchy simplify access to lower layers. Also,

higher layers simplify information obtained from lower layers and network systems. Hence,

customers and partner access SDP capabilities using services found at the topmost business

97

process layer. Layers at the bottom of the hierarchy are used to administer telco infras-

tructure systems. Each of the architectures’ layers are highly generic and may be further

decomposed into more specific layers. For example, as in TOM and eTOM the business pro-

cess layer may constitute specific customer, service and network oriented business process

layers. These new layers separate and group business processes according to the customer,

service or network management capabilities they provide.

Domains distribute SDP services and layers across various telco and IT-based infrastruc-

tures. Some external infrastructures may belong to partners and customers. For example,

partners include IT-using enterprises, such as application developers. Also, customer in-

frastructure includes the diverse customer terminals or IT-based enterprises that operate on

behalf of customers.

The middleware plane is used throughout the SDP management architecture to ensure dis-

tribution and implementation complexities are hidden from customers, partners and SDP

services across all layers and domains. Also, the middleware plane abstracts interactions

between customers, partner and SDP services by hiding computing platforms and trans-

port networks used to deliver communications. The middleware plane provides a wealth

of reusable services that extend the management functionality offered by the SDP. For ex-

ample, middleware services may be used to locate and register for SDP services. Also,

some middleware services may be used to enforce usage policies for partners accessing

SDP service. Middleware services are accessed across all layers and domains by using their

technology neutral APIs.

The additional SDP architecture shown in Figure 6.7 consolidates SDP management ser-

vices with other types of SDP services. For example, a single layer may be used to house

exposed services and business processes, since they are invoked by external partner applica-

tions. Also a layer containing both application services and management services represents

a point of integration with converged network resources and capabilities. Combining net-

work functions and management functions into a single layer provides a consistent interface

to access network functions and manage physical network elements. The SDP architecture

also identifies APIs between management SDP services and non-management SDP ser-

vices. These APIs promote standard-based communication between the SDP services. In

addition, the SDP architecture identifies management and non-management data that is ac-

cess via SDP data services contained in the various layers. These SDP data services also

provide APIs to their functionality. These data service APIs promote standard-based access

to OSS/BSS and SDP data.

98

6.6 Summary

In this chapter we presented contributions of telco OSS/BSS standards to the SDP and its

framework. We reused generic concepts from the TMN, TOM and eTOM (TNA) stan-

dards. By reusing these concepts we defined a SDP business model and management ar-

chitecture. The SDP business model contains abstract business entities involved in busi-

ness relationships. We formalised the business relationships using generalised reference

points called business relationship points. Similar to reference points, business relationship

points promote SDP standardisation. The business relationship points are realised using

SDP services, that expose access to their functions using implementation and distribution

independent APIs. We presented various types of SDP services that aid telco business

and operations management. The SDP management architecture uses horizontal layers and

vertical domains to distribute SDP services across various internal and external functional

areas. These divisions extend into external infrastructures. We used a middleware plane to

hide distribution complexities of SDP services, when accessed via their APIs from various

external infrastructures. We defined the middleware plane to provide a variety of manage-

ment services that are accessible across all layers and domains. We consolidated the SDP

management architecture into a more complete SDP architecture. The SDP architecture

uses common layers to group both management services and non-management services be-

longing to the SDP. The architecture also identified SDP data services that must be added

to layers, so as to abstract access to both OSS/BSS and SDP specific data. We also used

a middleware plane to abstract various distribution complexities in the SDP architecture.

Therefore, by reusing generic TMN, TOM and eTOM concepts we presented technology

neutral abstractions and architectures that contribute to the SDP framework.

99

Chapter 7

Perspective on the SDP from an Enterprise
Standard: SOA

The public telco network provides voice and data services to its customers by using het-

erogenous technologies. These technologies include voice service platforms, circuit-mode

transport networks and specific customer terminals. However, the telco also operates as an

enterprise. Similar to other private enterprises, the telco uses IT-based solutions to manage

its operations and business.

Traditional private enterprise networks support networked IT solutions to automate busi-

ness processes, such as Customer Relation Management (CRM) and Enterprise Resource

Planning (ERP) solutions. IT is also used to extend the business to customers and business

partners. For example, customer services are delivered over the Internet and communication

with partner IT solutions occur using Enterprise Application Integration (EAI) middleware.

Many of the IT solutions are either standards-based or proprietary.

Both telco and enterprise networks operate in distinct markets, are regulated to differing

extents and provide their own specialised services to customers and partners. In addition,

each network uses specific infrastructure to develop, deploy, deliver and manage its services.

Currently, both telco and enterprise networks, their infrastructures, customer requirements,

business markets and regulations are converging.

To manage and benefit from convergence the enterprise uses the Service Oriented Architec-

ture (SOA), while the telco aims to use the SDP. The SOA simplifies the integration of new

and legacy IT solutions, so as to satisfy new business process requirements [113]. Also, the

SOA is based on the web service [7] technology standards. Though technology-based, most

of the SOA concepts are technology independent. In addition, these concepts are applicable

to the SDP, since they both aim to manage convergence. Hence, we extract and reuse the

generic technology neutral SOA concepts to define an IT enterprise perspective on the SDP.

100

7.1 Requirements

As defined by [7], the SOA represents a distributed system architecture that describes the

structure of an enterprise’s converged infrastructure. The SOA illustrates this structure as a

wealth of interacting services that have the following properties. SOA services:

• abstract functions provided by infrastructure resources and capabilities in a technol-

ogy neutral manner;

• communicate via technology-neutral message flows;

• may be distributed across diverse networks; and

• describe and expose their capabilities in a technology-neutral manner.

Hence, these service properties must be satisfied for a SOA to be defined by an enterprise.

Currently, the SOA is the web services [7] architecture. As a result, the SOA’s services

are defined as web services. These web services abstract access to enterprise infrastructure

functions, such as data stores, communication buses and legacy applications. Also, web ser-

vices define their functions in a technology neutral interface, using the XML-based WSDL.

Communication between web services occurs using messages conveyed in the technology

neutral SOAP protocol. Also, these web services may reside internally or externally across

the enterprise infrastructure.

The SOA supports the basic business model shown in Figure 7.1(a). The business model

is derived from [7]. In the business model, three business entities are defined: a service

provider, service consumer and service broker. The service provider represents an enterprise

that creates web services to abstract its infrastructure’s hardware and software capabilities.

The service broker is used by the service provider to register its web services location and

interfaces. The broker is used by the service consumer to find the appropriate web service

and interface. Once found, the service consumer invokes the service provider’s web service

interface. The service broker and consumer may be external or internal to the enterprise.

We represent interactions between business entities as business relationship points. These

business relationship points formalise business interactions between the business entities.

The business model shown in Figure 7.1(a) is highly abstract. Most enterprises incorporate

this SOA business model by identifying service providers, consumers and brokers in their

own business model. Once identified, the enterprise can define the interactions or business

relationship points between the business entities. The business model describes only the

business objectives of the enterprise. To realise the business model, the enterprise must

101

Service

Consumer

Service Broker

Service

Provider

R
C
B

R
P
B

RCP

(a) Service-Oriented Business Model

Consumer

(web, phone)

External 3rd

Party

Provider

Enterprise

RPB

RCP
Resource

Supplier
RCP

Partner

Service

Provider

RPP

RPB

RCB

(b) Example of a Service-Oriented Reference Model

Figure 7.1: SOA Business and Reference Models

implement the various services. To initiate the implementation, the business model is de-

composed into a reference model. An example reference model is shown in Figure 7.1(b).

The example reference model is defined by decomposing the business model’s business

entities and business relationship points to reflect additional details on the enterprise, its

customers and partners. Business entities are decomposed into business objects. Business

objects represent components of a business entity that interact with other objects in the busi-

ness model. In the reference model the service provider is decomposed into the enterprise

and partner service provider. The service broker business entity is decomposed into the

external 3rd party provider business object. Also, the service consumer business entity is

decomposed into the consumer and resource supplier business objects. The correspond busi-

ness relationship points between the business entities are also decomposed into reference

points. Reference points promote standardised communication between business objects,

by formalising their interactions. In the reference model, their are one-to-one mappings of

business relationship points to reference points. However, we define the additional RPP

reference point to formalise interactions between two service providers business objects,

that is, the enterprise and partner service provider.

With business objects and reference points defined, the reference model is further decom-

posed. Business objects are decomposed into web services that are offered to other business

objects. Reference points are decomposed into the corresponding web service interfaces.

The interfaces describe functions provided by the web services. Hence, execution of vari-

ous web services via their interfaces contribute to the fulfillment of the business objectives

defined by the business model.

102

Various benefits are gained by an enterprise implementing a SOA. For instance, the use

of web services enables faster application development [114], since web services are eas-

ily orchestrated via their interfaces into applications. Also, the SOA and its web services

decrease infrastructure complexity, enable reuse of existing infrastructure functions and

support integration with external infrastructures [115]. Hence, the SOA enables enterprise

agility, by restructuring legacy enterprise infrastructure into a communicating network of

web services [116].

7.2 Architecture

For the SOA, two forms of architectures exist. First is the standard-based web services SOA

and second the enterprise SOA.

7.2.1 Web Services SOA

The SOA is illustrated in Figure 7.2(a). This architecture relates to the SOA business model

described previously. Web services are created by a service provider, that uses a Universal

Description Discovery Integration (UDDI) [15] service registry to publish a description of

its web service interface. The interface is described using WSDL. When a service requestor

requires a web service’s functionality, the requestor uses the UDDI registry to find the ap-

propriate interface description. Once obtained, the requestor will use information contained

in the description to bind to the web service and use its functionality. Once bound to the

web service, the service requestor uses SOAP messages to invoke the web service func-

tions, as defined by its interface description. All SOAP messages are transported using

HTTP. Based on the architecture, the web services interface implements the SOA reference

model’s reference points.

We provide additional structure and detail on the SOA shown in Figure 7.2(a). This ex-

tended architecture is shown in Figure 7.2(b). In the figure, we use layers to separate the

components of the SOA. The top most layer contains applications that use web services

to invoke enterprise infrastructure functions. The service layer contains the web service

registry and web services that are accessible to applications. The generic service layer con-

tains enterprise infrastructure capabilities that are invoked by web services. The function

layer contains abstractions of infrastructure resources, such as billing systems, databases

or legacy applications. These functions are used by the generic services to fulfil web ser-

vice requests. The lowest layer contains the physical enterprise infrastructure resources and

capabilities.

103

Service

Registry

Service

Requestor

Service

Provider

F
in
d

(C
o
m
pi
le
 T
im
e) P

ub
lish

(R
un
 T
im
e
)

Bind

(Run Time)

Enterprise

(a) Web Service SOA

IVRPC DB ERP

Registry WS

Application

Layer

Service

Layer

Generic

Service

Layer

Function

Layer

Resurce

Layer

Interfaces

Interfaces

Interfaces

Client

App

WS WSWS

Server

App

DBCRM

WS

Customer

Domain

Service Broker

Domain Service Requestor Domain

Service Provider Domain

Interfaces

(b) Extended Web Service SOA

Figure 7.2: Web Service Standard-based SOAs

In Figure 7.2(b), we also show domains that applications and web services must operate

across. These domains correspond to the business entities that are defined in the SOA

business model. For example, applications operate in the service requestor domain, but

access web services located in the service provider domain. Also, the architecture includes a

customer domain with customer applications, who invoke server applications located in the

service requestor domain. The use of domains in the architecture reinforces the distributed

nature of the SOA. Hence, the SOA must implement mechanisms to manage the various

complexities that are introduced by distribution.

We define the extended SOA to support horizontal communication between entities within

the same layer but across different domains. For instance, client applications may invoke

a server application within the application layer, but across customer and service requestor

domains. Also, we define vertical communication between entities located across different

layers and domains, such as service requestor applications invoking service provider web

services. Most horizontal and vertical communication occurs via interfaces that are internal

to a layer or externally exposed by a layer. For example, the service layer exposes web

service interfaces to applications. Also, within the service layer the registry service com-

municates with web services via their interfaces. Some lower layer interfaces are highly

complex and use protocols or technology specific mechanisms to communicate. Examples

of complex interfaces include those exposed by the underlying technology specific enter-

prise infrastructure.

The architecture in Figure 7.2(b) illustrates two web service deployments across the en-

terprise. First, web services are used to directly interface with the physical enterprise re-

sources. As a result, these web services and their interfaces abstract complex interactions

104

with the enterprise capabilities. Second, web services are used to abstract legacy and new

software-based enterprise applications and services contained in the generic service layer.

These applications and services are also complex to use, since their interfaces are technol-

ogy diverse. As a result, these applications and service interfaces require simplification

to access and use their functions in a technology consistent manner. Hence, web services

abstract the complexity of these existing enterprise applications and services using its inter-

face. Examples of both deployments are seen in telecom standards, such as Parlay X that is

described in Chapter 5.

In addition to telecom standards, vendors employ both deployment options for their SDP

products. That is, vendors provide web service interfaces to their SDP solutions, such

that web services hide the underlying complexity of the software components and physical

hardware. As a result, there is a growth in popularity for web services to be used in telco

SDPs. This popularity has also spread to the development of other telco enterprise solutions,

such as web service interfaces for OSS/BSS systems.

7.2.2 Enterprise SOA

Enterprises require agility to benefit from convergence opportunities. However, legacy IT

solutions, fused with specific technologies, hinder agility. The legacy solutions represent a

collection of automated business processes. To simplify these solutions and gain agility, the

SOA is used. The objective of using the SOA in an enterprise, is to support an enterprise-

wide transformation, where independence of new and legacy technologies are gained from

implemented business processes [113]. This is achieved by wrapping legacy solution func-

tions into web services. These web services enable a substantial amount of enterprise in-

frastructure investment to be reused.

The SOA satisfies most business process management requirements [116]. For example,

it abstracts existing management system functions into reusable web services. Some web

services may be created by the enterprise or bought from vendors. With web services de-

fined, the enterprise may quickly create new business processes and implemented them as

applications. Hence, business processes are implemented as a collection of web services

that execute in a predefined order. Existing technologies, such as the Business Process Exe-

cution Language (BPEL) [117], may be used to create these business process applications.

The SOA and its web services may also be used to improve or streamline existing business

processes.

Both web service and enterprise SOAs are distributed within and across diverse infrastruc-

ture. However, both SOAs enforce distribution independence. The web services SOA uses

105

CRM
Service

Platforms

App

Web Services
Web Service

Interface

ESB (with services)

ESB

Interfaces

Enterprise Infrastructure Resources and Capabilities

Technology

Specific Interfaces

DBMS

Enterprise,

Internet, Telco

Network

Figure 7.3: Enterprise SOA Representation

complex mechanisms to provide limited distribution independence. These mechanisms in-

clude UDDI registries and web-based protocols. However, the enterprise SOA provides a

dedicated mechanism to support distribution and technology independence. This mecha-

nism is generalised as the Enterprise Service Bus (ESB). ESBs support web services by

providing a range of functionality to enhance web service deployments and operations. For

instance, [118] defines ESBs to provide:

• a scalable, high performance, robust and secure IT-based platform;

• standards-based communication mechanisms that connects applications, web service

and infrastructure functions;

• real-time and reliable connectivity between enterprise infrastructure, the Internet,

telco networks, applications and web services;

• data transformation, such that communication between different application and web

service implementations are achieved; and

• support portability of applications and web services across various platforms and

ESBs.

In addition to the above properties, ESBs provide services that are used to support applica-

tions and web services. These ESB services may provide functionality to resemble a UDDI

registry, manage underlying communication mechanisms and configure physical enterprise

equipment. ESB services may be implemented as web services that offer access to their

capabilities via their interfaces.

We illustrate the enterprise SOA in Figure 7.3. As shown in the architecture, the ESB ab-

stracts the various layers and domains of the extended web services SOA. Thus, the ESB

enables the enterprise to perceive a collection of web services, independently of their loca-

tion, implementation and infrastructure technologies.

106

7.3 Reusable Concepts

The SOA business model uses basic business entities to manage and benefit from conver-

gence. In addition, the business model formalises interactions between business entities

using business relationship points. These points define business contracts between the busi-

ness entities. The SOA business model is generic and extendable to include various enter-

prise customers and partners. Also, the SOA business model structures and visualises the

enterprise’s business objectives. These objectives are satisfied by implementing the SOA.

The SOA reference model that is derived from the business model, provides an important

milestone in realising a SOA implementation. The decomposition of the business entities

and business relationship points illustrates separation and abstraction of enterprise infras-

tructure capabilities. This is achieved by decomposing business entities into objects that

provide a variety of services. Also, the business relationship points are decomposed into

reference points that formalise services’ interfaces. These interfaces structure and formalise

communication between the various business objects. Hence, the reference model ensures

business objectives are satisfied by defining the required service interfaces and promoting

their standardisation.

Both web service and enterprise SOAs are derived from the SOA reference model and pro-

vide a service-oriented perspective on the enterprise. Each SOA uses web services to ab-

stract capabilities from enterprise infrastructure. These web services enable easier access

to infrastructure capabilities. Also, web services may be used to abstract existing enter-

prise applications and services. However, these SOAs are tightly coupled with web service

technologies, specifically WSDL, SOAP and HTTP. We extract the generic concepts from

the web service and enterprise SOAs without being bound to the particular technologies.

As a result, we define the Generic SOA (GSOA). A GSOA representation is illustrated in

Figure 7.4.

The GSOA is a distributed system architecture containing serving entities, called services.

These services offer functionality defined as technology independent interfaces. Applica-

tions access service functionality by orchestrating service interfaces, independently of lo-

cation and implementation. Both applications and services are supported by a distribution

mechanism, called the distribution plane. In Figure 7.4, the GSOA services abstract access

and usage of the underlying enterprise infrastructure resources and capabilities. Also, ser-

vices hide details of their implementations using their implementation neutral interfaces.

Hence, service implementations may be accessed consistently via their interfaces, by vari-

ous application implementations. The figure also shows the GSOA distribution plane hiding

technology details of the underlying network and systems from the various applications and

107

Application

Service

Interfaces

Application

Distribution Plane

Application

Interface

Application

Interface

CRM/

ERP

Service

Platforms

Enterprise Infrastructure Resources and Capabilities

DBMS
Enterprise, Internet,

Telco Network

Service Service Service

Technology

Specific

Interfaces

Service

Figure 7.4: Generic SOA Representation

services. The distribution plane also provides its own services that may be used by applica-

tions and services to fulfil their functions.

Based on Figure 7.4, the GSOA services are used for abstracting access to new and legacy

databases, CRM and ERP solutions. This abstraction is also encountered when implement-

ing the SDP in the presence of legacy OSS/BSS technologies and solutions. Thus, a GSOA

is suitable for abstracting the telco OSS/BSS because of the large amount of services it

provides. Also, GSOA services may be used to abstract access to new and legacy telco ser-

vice platforms, such as the IN. These services support application development, such that

new customer services may be created. Thus, a GSOA is also suitable for abstracting the

telco service platforms because of the large amount of services that application developers

require.

Since it is technology neutral, The GSOA and its concepts are reusable by any enterprise

and implemented using different technologies. For example, the web service and enterprise

SOAs are specialised forms of the GSOA. As a result, the GSOA may be used to structure

a SDP architecture.

7.4 Contribution to the SDP from the SOA

We reuse the generic SOA concepts to define a SDP business model. In addition, we de-

compose the business model to define a SDP reference model. We also use the GSOA to

structure a SDP architecture. The SDP business model is shown in Figure 7.5(a).

The SDP business model is derived from the SOA business model shown in Figure 7.1(a).

The SDP business model shows four main business entities. These entities are the SDP

itself, external providers, the telco and customers. The SDP business entity performs two

108

Customer

3
rd
 Party

Provider

RCS

RPB

RCP

Telco

RST

RCT

SDP

(a) Generic SDP Business Model

derived from SOA Business Model

App Provider

OSS

BSS

Transports

Content

Provider

RCA

RCS

RCT ROT

ROD

RTS

RDS

RAS

ROA

ROSSDP

(b) SDP Reference Model derived from SOA Reference

Model

Figure 7.5: SDP Business and Reference Models

business roles. First, the SDP is a service provider that provides services to other business

entities. Second, the SDP is a service broker that aids business entities to locate services

offered across the business model. The 3rd party provider business entity performs the role

of a service consumer that uses SDP services to provide additional functionality to both SDP

and its customers. The telco business entity performs the role of a service provider since

it represents the available telco infrastructure that the SDP services abstract. The customer

performs the role of a service consumer that uses the SDP and its services to locate, consume

and pay for customer services.

We decompose the SDP business model to illustrate the various business objects and refer-

ence points that promote the standardisation of the SDP. The SDP reference model is shown

in Figure 7.5(b) and derived from both SDP business model and SOA reference model,

shown in Figure 7.1(b). In the reference model we decompose business entities into busi-

ness objects and business relationship points into reference points. However, we focus only

on reference points that include the SDP business objects.

In the SDP reference model, we decompose the 3rd party provider into application and con-

tent providers that use SDP services. Both application and content providers are essential to

the SDP since they create and enhance customers services. The RPB business relationship

point is decomposed into the RAS and RDS reference points to formalise communication

with application providers content provides respectively. The telco business entity is also

decomposed into telco transport networks and the OSS/BSS. Transport networks are re-

quired by the SDP to deliver customer services. The OSS/BSS is critical to the SDP since

it contains the telco business processes and manages the telco infrastructure. The reference

model decomposes the RST business relationship point into the RTS and ROS reference

109

App App

Open Plane

Telco Plane

Network Plane

App

Service Service Service

Service ServiceServiceApp

A
p
p

A
p
p

S
e
rv
ic
e

S
e
rv
ic
e

S
e
rv
ic
e

M
a
n
a
g
e
m
e
n
t P
la
n
e

A
p
p

A
p
p

S
e
rv
ic
e

S
e
rv
ic
e

S
e
rv
ic
e

Service

Device

P
ro
x
y
 P
la
n
e

CRM/

ERP

Service Service Service Service

Figure 7.6: SDP and its Environment represented as Integrated GSOAs

points to formalise communication with the telco transport networks and OSS/BSS respec-

tively. The customer and SDP business entities remain constant. However, these entities

may be decomposed if the telco requires. The customer interacts with the SDP via the RCS

reference point. All reference points are implemented as SDP services with the appropriate

interfaces. We structure the SDP services and their interfaces within a SDP architecture, by

using the GSOA concept.

A SDP architecture based on the SDP business model and SDP reference model is shown in

Figure 7.6. The architecture shows the SDP within its environment using GSOAs. The SDP

architecture structures numerous SDP services and their interfaces. Different SDP services

are identified based on the the telco infrastructure capabilities they abstract. Hence, SDP

services are similar to SOA web services. As a result, the SDP architecture also groups

services according to the different telco infrastructure capabilities they abstract. To structure

and manage the collection of SDP services for different infrastructure capabilities, multiple

GSOAs are used. Thus, the SDP architecture represents the integration of these GSOAs.

The GSOAs used for the SDP architecture contain services that wrap generic functionality

from both legacy and new network resources, service platforms, customer devices and man-

agement systems of the telco infrastructure. Also, each of the GSOAs constituting the SDP

implement one of its reference model’s reference points. Also, business objects involved

in a reference point relationship view the SDP as offering a single GSOA with numerous

services, that hide underlying complexities.

110

In the SDP architecture, telco OSS/BSS functionality is wrapped into management ser-

vices. These services implement telco operations and business processes, such as CRM,

billing and network management. As a result, management services must use functional-

ity provided by the network resources and service platforms. The products of integrating

management services are management applications. Management applications and services

are housed in a GSOA we call the Management GSOA. This GSOA implements the ROS

reference point.

Telco network resource functionality is wrapped into network services. Network service

functionality includes manipulating traffic, configuring elements, processing protocols and

managing network specific events. Also, network services may use management services

offered by the management GSOA. The products of integrating network services are net-

work applications. Network applications and services constitute a GSOA we call the Net-

work Resource GSOA. This GSOA implements the RTS reference point.

The SDP architecture shows service platform functionality being wrapped into telco ser-

vices. Telco services simplify access to new and legacy platforms, such as IN. Telco ser-

vices provide generic functionality to establish connections, coordinate sessions, manage

state and manipulate databases. Telco services provide an abstracted interface to network

services. Also, telco services may use management services offered by the management

SOA. Telco services are contained in a GSOA we call the Telco GSOA. This GSOA imple-

ments the RAS reference point.

Integrating both telco and management services, by application developers, into converged

applications may be complex and time consuming. Also, developing new telco applications

may be complex when reusing legacy platforms. In addition, content providers require sim-

ple functionality to register their content with the SDP. Hence, simpler services are needed

to support application developers and content providers. To satisfy these requirements con-

verged services are provided. Converged service functionality includes subscribing for ser-

vices, registering content, making any call, streaming content and charging an account.

Telco applications, converged applications and converged services constitute a GSOA we

call the Open GSOA. This GSOA extends the RAS reference point and enables the RDS

reference point.

The SDP architecture enables customers to access the appropriate GSOA and applications.

Though customers are external to the telco, their devices may contain customer applications

that aid in providing access to the SDP. Customer applications may use services offered by

the device to communicate with SDP services contained across the various GSOAs. These

are customer services that provide functionality to authenticate the customer, establish con-

nections and process signalling protocols. Customer applications and services are housed

111

in a GSOA we call the Customer GSOA. This GSOA implements the RCS reference point.

Adhering to the GSOA, distribution planes are used in the SDP architecture to provide ser-

vices and applications with distribution independence. Also, distribution planes provide

implementation, transport and technology independence. In the SDP architecture, the man-

agement GSOA is supported by the Management Plane. The network resource GSOA is

supported by the Network Plane. The telco GSOA is supported by the Telco Plane. The

customer GSOA is supported by the Proxy Plane. The open GSOA is supported by the

Open Plane. The open plane provides external enterprises, such as application develop-

ers, content providers or customers, access to open GSOA applications and services. The

GSOAs’ distribution planes are interconnected via their services. This interconnection also

contributes to the implementation of the SDP reference model’s reference points.

7.5 Evaluation of SDP Business Model, Reference Model and
Architecture

By extracting, extending and applying the generic SOA concepts to the SDP we have de-

fined an enterprise service-oriented viewpoint. This viewpoint defines various abstractions

that are structured in the SDP business model, reference model and architecture. The ab-

stractions contribute to the definition of the SDP framework. We evaluate the SDP business

model, reference model and architecture against the generic concepts extracted from the

SOA. In addition, the evaluation provides answers to the questions posed in Chapter 1 Sec-

tion 1.3. We also present the comparison between web service SOA, enterprise SOA, GSOA

and the SDP architecture in Table 7.1.

The SDP business model enables the identification of business entities that interact with the

SDP. These business entities are diverse and include various IT-using enterprises, customers

and other telcos. For example, the business model may cater for fixed and mobile customers

and telcos. In addition, IT-using enterprises may include service brokers, content brokers,

connectivity providers and device manufacturers. Hence, the SDP business model is generic

and may be easily extended to satisfy a telco’s SDP requirements.

The SDP reference model is used to specify interactions between the various business model

entities. These interactions are defined by decomposing business entities and business re-

lationship points. As a result, the reference model defines business objects and reference

points that formalise interactions between business entities. The reference points are im-

portant since they promote the standardisation of interactions between the business objects.

For the SDP we motivate the use of services and their interfaces to implement reference

112

Web Services

SOA

Enterprise SOA GSOA SDP

Business

Model

Web Services based Inherits generic con-

cepts from the web ser-

vices business model.

Based on SDP require-

ments.

Reference

Model

Derived from web services

business model.

Inherits generic con-

cepts from the web ser-

vices reference model.

Based on decomposi-

tion of SDP business

model.

Services Web services based All components of the architecture are technol-

ogy and implementation neutral.Interfaces WSDL based

Applications BPEL and others

Architecture Based on web services Technology Neutral Integration of multiple

GSOAs.

Layers Application Abstracted by

middleware

Used as a building

block to structure

layers

open SOA

Service

Generic telco SOA

Function network SOA

Resource

Domains Derived from

business enti-

ties.

Abstracted by

middleware

Used as a building

block to structure

domains

Customer and Manage-

ment SOAs.

Middleware SOAP and

HTTP

Uses ESB-

based technolo-

gies

Distribution planes Uses GSOAs with

integrated distribution

planes.

Table 7.1: Comparison of SOA the SDP Architectures

points.

The SDP architecture provides a service-oriented perspective on the SDP by defining ser-

vices with interfaces to implement reference points. The architecture defines numerous ser-

vices that abstract the abundant telco infrastructure. For instance, management, customer,

service platform and network-oriented services are defined. Each service provides an inter-

face to its functionality. These interfaces hide the service implementation and distribution

details. As a result, diverse application implementations may orchestrate distributed service

interfaces to provide specific functionality. The SDP architecture groups applications and

each type of service into their own GSOA. Each of the GSOAs used are technology neutral.

The SDP architecture also inherits this technology neutral property.

The SDP architecture does not use layers and domains as a design pattern to structure its

services; rather it uses multiple GSOAs. However, the SDP architecture uses its GSOAs

to abstract layers and their distribution across domains. For instance, the open, telco and

network GSOAs show the layered hierarchy of service abstractions. Also, the customer and

113

management GSOAs abstract the distributed customer and OSS/BSS domains. Communi-

cation across layers and domains is abstracted by the GSOAs service interfaces and their

interconnected distribution planes. Thus, the GSOA provides an abstraction that is used to

structure layers and domains for the SDP architecture.

Another benefit of using the GSOA to structure the SDP architecture is its distribution plane.

The distribution plane contributes middleware functionality to the SDP architecture. Each

of the GSOAs that constitute the SDP architecture, use distribution planes to abstract the

distribution of applications, services and telco infrastructure functions. In addition, the

distribution plane aids in hiding the implementation of applications and services from each

other. The distribution plane also hides the underlying technologies that implement the

communication mechanisms required to link applications, services and telco infrastructure.

The SDP architecture presented here drastically extends the proposed SDP architecture

shown in Figure 1.3. For instance, the SDP architecture is technology neutral and uses

service interfaces to promote SDP standardisation. These service interfaces also promote

standard-based interworking between telco and external IT-based infrastructure, such as

telco OSS/BSS and application developers SCE/SME. Also, the use of GSOAs provides a

highly abstract structure for the SDP that is decomposable into layers, domains and even

technology specific platforms.

7.5.1 SDP offering a Web Services SOA

Providing IT-using enterprises with applications and services is an untapped revenue stream

for the telco [12]. Consequently, a requirement for the SDP is to promote the integration be-

tween enterprise and telco infrastructures, that is, support telecom-IT convergence. Hence,

the SDP plays a role in generating revenue from enterprises for the telco. To enable this

integration, the SDP offers one of its GSOA’s to enterprises. This offered GSOA is the open

GSOA. As a result, enterprises may outsource application or service development tasks to

the telco. These applications and services are hosted by the SDP. Thus, the telco benefits

from promoting itself as a SOA compliant outsourcer to enterprises [119]. The open GSOA

must be implemented using web services, such that IT-using enterprises easily integrate with

the telco infrastructure. However, the lower GSOAs of the SDP may be implemented using

various other technologies. Thus, the open GSOA hides the underlying implementation of

the SDP and telco infrastructure from these IT-using enterprises.

Figure 7.7 summarises the above scenario of SDP and SOA integration. The figure illus-

trates the SDP integrating the legacy IN Service Control Point (SCP) and new solutions op-

erating over packet based telco networks. Also, the SDP provides an “enterprise SOA-like”

114

PSTN

SOA SOA

SCP

Telco
Domain

Enterprise
Domain

A
bs

tr
ac

tio
n

C
om

pl
ex

ity

IP IP

SDP

Figure 7.7: Telco and Enterprise Convergence

environment that enables telco and enterprise integration. The figure illustrates integration

of networks being most complex, since they require integration via protocols. However, the

figure illustrates integration of SOAs being least complex, since they use simple software-

based web services, web service interfaces and ESBs. The figure also illustrates the increase

of abstractions from networks to SOA. These abstractions represent services that simplify

access and usage of telco infrastructure functions.

7.6 Summary

In this chapter we presented contributions of current a enterprise platform standard to the

SDP and its framework. We reused generic concepts from the SOA standard. These con-

cepts where extracted from the web services and enterprise SOAs. By reusing these con-

cepts we defined a SDP business model, reference model and architecture. In both SDP

business model and reference model we separated telco infrastructure according to its func-

tions. We also defined reference points to formalise integration of these functions with ex-

ternal IT-using enterprises. We defined a SDP architecture from both SDP business model

and reference model. The SDP architecture represents the collective of diverse services.

Each of the services expose interfaces that implement reference points. To structure the

architecture’s services and interfaces across layers and domains, we use the GSOA. We

defined the GSOA by extracting technology independent concepts from the various SOAs,

such that implementation technologies and distribution mechanisms may be chosen and not

imposed. The GSOA represents containers for services and applications. Applications or-

chestrate service interfaces. The GSOA abstracts service and application distributions by

using its distribution plane as middleware. Therefore, by reusing generic SOA concepts we

presented technology neutral abstractions and an architecture that contributes to the SDP

framework.

115

Chapter 8

Perspective on the SDP from a Converged
Standard: IMS

The telco network is a complex and distributed mass of transport links, service platforms,

management systems and business solutions. Many network parts are implemented using

telecoms’ standards and technologies. Also, network parts may be proprietary solutions

obtained from vendors. With progressive changes in technologies, standards, vendor so-

lutions, customer requirements and telco business requirements the telco network continu-

ously evolves. This evolution occurs within stages that define specific requirements. The

result of satisfying each stage and its requirements is the decomposition of the telco net-

work into various functional entities [120]. The evolution of the telco network is illustrated

in Figure 8.1.

The telco network started with processor controlled PSTN switches. The switching hard-

ware was tightly couple with service logic. This coupling limited service creation and pro-

vision. As a result, the first evolution stage required quick service creation and provisioning.

As a result, the IN and CAMEL standards are defined. These standards define a distributed

service platform, containing generic and reusable service building blocks used in service

creation. Also, the standards define network functions required to support these building

blocks. The network functions abstract the underlying network resources and capabilities.

The second stage aims to overcome IN/CAMEL limitations, so as to further improve ser-

vice creation and provisioning. As a result, standards-based service platforms such as TINA

were defined. TINA defines generic reusable software-based components that are used for

customer service development. Also, TINA offers managed access of their components to

external 3rd parties. Thus, both telco and external partners may host customer services.

TINA components operate across middleware that was implemented by computing plat-

forms. These computing platforms abstract access to network resources and capabilities.

116

E
v
o
lu
ti
o
n
 (
S
e
rv
ic
e
 P
la
tf
o
rm
s
)

TimeIN

TINA

Softswitch

Parlay

Parlay X (SOA)

IMS Service Layer

SDPNot Standardised

Manage telecom-IT

Convergence

Figure 8.1: Evolution of Telco Network

The third stage aims to support interoperability between heterogenous transport networks,

such as telco transport networks and the Internet. To fulfil these requirements, the softswitch

standards are defined. The softswitch decomposes the traditional switch into functional en-

tities that promote protocol and media conversion between telco networks and the Internet.

For example, telephony services can originate and terminate on both telco network and In-

ternet. The softswitch functional entities also promote the development of standards-based

service platforms, such as Parlay and Parlay X. Services supported by service platforms

may use softswitch capabilities to invoke common telco network facilities. Also, by using

softswitch capabilities services may be delivered across telco networks and the Internet.

The fourth stage requires the convergence between telco, Internet and IT-based enterprise

networks and services. As a result, the telco deploys packet-based networks that incorporate

standard-based Internet protocols, such as IP. Also, [121] defines the IP Multimedia Subsys-

tem (IMS) [24] standard. The IMS further decomposes the telco network and softswitch and

introduces new functional entities that communicate using standard Internet protocols. The

functional entities support new, old and current service platforms, such as SIP application

servers, IN/CAMEL and Parlay gateways.

The current evolution stage aims to fulfil previous stages’ requirements but centres on ser-

vice platforms, like the SDP, that access and use the IMS network functions. Hence, the

current evolution stage aims to structure and standardise the SDP while reusing existing

network standards. In the following sections we discuss the IMS and its contribution to the

definition of the SDP and its framework, with the objective of uncovering abstractions that

constitute a technology neutral SDP architecture.

117

8.1 Requirements

The IMS is standardised by [121] and focuses on the evolution of the mobile telco and its

network functions into a multimedia communication system. The IMS also evolves network

functions to support mobile telco and Internet interoperability by using Internet protocols.

The network functions support call/session signalling, transport network interworking, re-

source management and invoking service platforms. The network functions also support

the delivery of IP multimedia services across the mobile telco’s packet-switched network.

However, by removing some of the network functions and their terminal mobility capabil-

ities the IMS may be used in the fixed telco network. Thus, the IMS is applicable across

both fixed and mobile telco networks.

The IMS is a packet-based network that is overlayed onto existing packet bearer networks.

It integrates with existing telco networks, such as the General Packet Radio Service (GPRS)

access network. It uses the GPRS network functions to enable customer access to the IMS.

The IMS decomposes most of the remaining telco network functions, to offer more specific

functionality. For example, the IMS extracts capabilities from the softswitch and defines

additional signalling and media gateway functions. The IMS supports telecom-Internet

interoperability by integrating Internet protocols into telco network functions. For instance,

SIP, Diameter, HTTP and other Internet protocols are used by the telco network functions.

The IMS provides functions to support customer mobility between various circuit-mode

networks and packet-based networks that are controlled by different network operators.

The IMS functions also support service, customer and network signalling. Other limited

IMS mechanisms contribute to end-to-end quality of service negotiations, charging, security

and customer service subscription management. Thus, the IMS is considered a signalling

overlay network that provides functions contributing to the overall operation of the telco

network and delivery of services to customers.

The IMS aims to satisfy customer, service and network requirements [122]. For instance,

the IMS supports customer access, registration and mobility. Also, service requirements

include subscription management, access control, session control, service interworking and

addressing. Network requirements include supporting service requirements, customer mo-

bility and network interworking. Other requirements and IMS properties, as defined in

[123], include:

• logical separation of signalling transport from bearer transport;

• providing multimedia services using Internet applications, services and protocols;

118

ISC

Mi

Cx

Sh,Si

Mg

Gm

Rf

Rf

Rf

Bi

Application
Server

BGCF

HSS

MGCF

UE

CSCF CCF OSS
BSS

Figure 8.2: Simplified Portion of the IMS Reference Model

• non standardisation of customer services, rather customer services are developed by

numerous external developers;

• multimedia services based on session control over IP;

• logical and physical separation of domains, such as home and visited network do-

mains;

• physical mobility management provided by the access network, while the IMS com-

ponents manages mobile users seamless access to their home network services;

• provide application servers that are internal and external to the telco; and

• online and off-line charging, where a customer may be billed based on various aspects

of the service usage, such as service type, session period, media usage and terminating

party.

As described in [24], the IMS defines various functional entities by decomposing telco net-

work elements and integrating them with Internet technologies. Some of the functional

entities are shown in Figure 8.2. We describe these and other functional entities in Sec-

tion 8.2.1. The functional entities abstract complexities of using legacy and new transport

networks, signalling networks, data stores, service platforms and OSS/BSS. In addition,

these functional entities communicate amongst each other to fulfil IMS requirements. The

collection of these functional entities and their interactions are structured within a reference

model. The reference model formalises complex relationships between functional entities

using reference points. The full IMS reference model with reference points is given in [123].

A simplified portion of this reference model with reference points is shown in Figure 8.2.

With decomposition of the functional entities and reference points, IMS architectures are

defined.

119

8.2 Architecture

We represent an IMS architecture using two separate models. The first architecture, shown

in Figure 8.3, structures all the IMS functional entities defined in [123]. The functional

entities include those shown in Figure 8.2. The second architecture, shown in Figure 8.4,

structures a service platform architecture for the IMS.

8.2.1 Functional Architecture

The IMS functional architecture illustrates the various functional entities that are required

to implement the IMS. Also, the architecture implements the reference model’s reference

points using standardised telecom and Internet protocols. Examples of protocols include

SIP, Diameter, Megaco [41] and Real Time Protocol (RTP) [36]. These protocols are used

for call/session signalling, authorisation control, bearer control and streaming media respec-

tively.

In Figure 8.3, we use domains to illustrate the distributed nature of the IMS. These domains

are the customer, partner and telco domains. Functional entities operate across these do-

mains. For instance, SIP-based user equipment (UE) signals directly to a proxy call session

control functional entity (P-CSCF), that manages customer-to-IMS signalling. Additional

functional entities are defined to administer the interworking between converged transport

networks, that is, the border gateway control function (BGCF). Also, entities control media,

signalling, protocol and transport interworking between circuit and packet-based networks.

These are the media gateway control function (MGCF), signalling gateway (SGW) and me-

dia gateway (MGW). The delivery of media across transport networks is also controlled

by the media resource function controller (MRFC) and media resource function proces-

sor (MRFP). Functional entities, such as the online charging function (OCF) and charging

collection function (CCF), are used to abstract the telco OSS/BSS charging capabilities.

These functional entities are used by various other entities to report and obtain billing infor-

mation. All functional entities communicate using the SIP or Diameter protocols. Diameter

is used for communication with the telco OSS/BSS and home subscriber server (HSS) func-

tional entities.

In the IMS, two functional entities are used to support various service platforms. These

entities are the HSS and serving call session control function (S-CSCF). The HSS is a central

data management function that administers service and network-related data. Examples

of HSS data include legacy mobility management data and per user IN service type data.

Hence, the HSS represents a converged service data source within the IMS. The S-CSCF

120

Service Platforms

HSS

P-CSCF

I-CSCFS-CSCF

BGFC

SGW

IM-

MGW

Circuit-mode

Transports

MGCF

MRFC

MRFP PDF

OCF

OSS/

BSS

CCF

Partner Domain Customer Domain

T
e
lc
o
 D
o
m
a
in

SIP

UE

Packet-based Transports and GPRS

Access Network

Figure 8.3: IMS Functional Architecture

provides limited intelligence for the IMS at the call-session signalling level. It satisfies SIP

requests from customers by interacting with various SIP application servers.

IMS functional entities represent abstractions of telco network functions. Functional entities

implement reference points, using protocols, so as to enable access to network functions. As

a result, functional entities are used in developing and delivering customer services. These

customer services are defined, developed, deployed and managed within an IMS service

platform architecture.

8.2.2 Service Platform Architecture

Unlike the functional architecture, the IMS does not define a fully structured service plat-

form architecture. Rather, it proposes a limited service layer [124]. The service layer

contains a collection of SIP Application Servers (SIP AS) that host SIP-based applications.

SIP applications process SIP messages obtained from functional entities. Also, SIP appli-

cations generate SIP messages intended for the functional entities. The service layer uses

SIP to implement the ISC reference point shown in Figure 8.2. Some SIP applications also

communicate with functional entities using Diameter and CAMEL related protocols. These

protocols implement the Sh and Si reference points also shown in Figure 8.2.

The IMS service layer abstracts access to the HSS and S-CSCF functional entities by pro-

viding a foundation of functionality, that is used by service platforms. The IMS standards

prescribe only three service platforms that can be used: a SIP-based service platform, a

CAMEL service environment and a Parlay Gateway. SIP-based service platforms contribute

additional SIP application servers to the IMS service layer. Applications contained in these

121

servers provide a variety of services to customers. For the IMS the CAMEL service envi-

ronment delivers traditional voices services to customers. The standards produced by [121]

define intermediate layers that enable translation between CAMEL protocols and SIP. The

Parlay Gateway supports internal and external application servers that host numerous cus-

tomer services. Applications contained in these servers access Parlay Gateway SCFs via

their APIs. The standards produced by [121] also define intermediate layers that enable

SCFs to use the IMS service layer capabilities. Thus, the CAMEL service environment and

Parlay Gateway use their intermediate layers to simplify the ISC, Sh and Si reference point

implementations.

Based on the IMS standards for the three types of service platforms ([125, 126, 127, 128,

129]), we synthesise an IMS service platform architecture. This architecture is illustrated

in Figure 8.4. The figure illustrates the IMS functional entities, such as those shown in

Figure 8.2, towards the bottom layers. The IMS service layer is depicted as SIP application

servers above the functional entities. Also, the figure shows the ISC, Sh and Si reference

points being implemented as SIP, Diameter and CAMEL protocol communication between

service layer and functional entities. Crosses in the figure illustrate non-standard reference

points implemented with non-standard protocols. The remaining parts of the figure express

the richness of the service platforms that constitute the IMS service platform architecture.

For instance, grey boxes represent components that house applications, while yellow boxes

represent service functions.

In Figure 8.4, the service layer interworks with CAMEL and Parlay service platforms. To

support integration with the CAMEL, an IP Multimedia Service Switching Function (IM-

SSF) is defined. The IM-SSF contains a SIP application server that manages conversions

between SIP messages and basic call state model detection points. A modified CAMEL

service switching function (imcnSSF) is also defined to perform detection point process-

ing. The communication between SIP application service and imcnSSF is not standardised.

The imcnSSF communicates with a modified CAMEL service control function (gsmSCF)

that hosts application logic used to provide customer services. The gsmSCF resembles an

application server that is accessed via the IMS functional entities.

The IMS service platform architecture also shows the service layer integrating with a Parlay

service platform named the Service Capability Server (SCS). The SCS contains Service Ca-

pability Features (SCF), SCS-logic and a SIP application server. The SIP application server

enables Parlay and IMS interworking by converting between SIP messages and SCS-logic

requests. However, this communication is not standardised. The SCS-logic also integrates

with the CAMEL gsmSCF, by converting between SCS-logic requests and CAMEL proto-

cols. However, this interworking is also not standardised.

122

SIP AS

IM-SSF

AS

AS

AS

Partner Domain

T
el

co
 D

om
ai

n

API

CAP

WS

SCIM

IP

SIP

API

API

Customer Domain

IP

Client
App

SIP
UE

AS

Transports (PSTN, GSM, GPRS, MPLS, Internet, Other...)

API

Client
App

SIP AS

SCS

SIP AS

imcnSSF

gsmSCF

x

xAS

SIP AS

Call and Session Control:
I-CSCF, SLF, PDF, BGCF, MGCF, SGW, IM-MGW,

MRFC, MRF, CCF, ECF, CGF (home) and P-CSCF(visited)

SCFs

SCS logic

API

API

Other

OSS
BSS

Other

S-CSCF HSS

SIP
(ISC)

DM/CAP
(Sh/Si)

Figure 8.4: IMS Service Platform Architecture Synthesised from IMS Standards

In Figure 8.4, standard APIs are used between the SCS-logic, SCFs and Parlay-based ap-

plication servers. These APIs are technology neutral and hide implementations of the SCS

parts. The APIs offer telco and external partners standardised access to SCFs, that hide

details of the IMS functional entities [123]. APIs are used by client applications residing in

Parlay-based application servers. Thus, APIs enable easier customer service development

by promoting reuse of SCFs. Client applications, in the customer domain, also use an unde-

fined API to interact with Parlay-based application servers located in both telco and partner

domains. To support the distributed use of the APIs a distribution mechanism is used, such

as CORBA.

By using Parlay, a Parlay X service platform can be incorporated into the IMS service

platform architecture. As illustrated in Figure 8.4, the Parlay X service platform contains a

collection of web services (WS). Web services simplify access to SCFs using standardised

implementation independent APIs. These APIs are exposed to external partner applications

residing on Parlay X based application servers. Web services use the SCFs by invoking

Parlay-based applications. The communication between web services and Parlay-based

applications are not standardised. Also, client applications in the customer domain use

an undefined API to interact with Parlay X based application servers. Both standard and

undefined APIs are supported by web services-based protocols, such as SOAP and HTTP.

123

In addition, ESBs may be used to hide the distribution of the Parlay X web services and

applications.

The IMS standards identify an additional mechanism used to access and deliver customer

services. This is the Service Capability Interaction Manager (SCIM). The SCIM is in-

cluded in the IMS service architecture shown in Figure 8.4. Though not fully defined, the

SCIM aims to manage interactions between diverse application servers [125]. Therefore,

we assume the SCIM orchestrates multiple application invocations across multiple appli-

cation servers, so as to provide a customer service. For example, [130] uses the SCIM to

orchestrate multiple SIP application invocations. Also, [131] uses the SCIM to translate

web service invocations into multiple SIP application invocations. This is not shown in Fig-

ure 8.4. We assume the application servers managed by the SCIM are of various types and

within the telco domain. Similarly to other service platforms, the SCIM interworks with the

functional entities using a SIP application server. However, due to the limited SCIM def-

inition, communication between application servers is undefined. Also, customer services

hosted across the application servers are accessed by customers via the functional entities.

The IMS also uses stand-alone SIP application servers to host SIP-based applications. These

SIP application servers are contained within the telco domain and their applications use the

functional entities directly. Customers access their services, provided by SIP applications,

via the IMS functional entities. In the IMS service architecture SIP application servers

providing customer services are included in the IMS service layer.

The IMS service platform architecture represents a complex mesh of SIP-based application

servers and various service platforms. These service platforms are standards-based. How-

ever, the IMS service architecture identifies non-standardised interfaces between the IMS

service layer and the various service platforms. In addition, non-standardised interfaces

are identified within some of the service platform architectures. By abstracting the com-

plex structure of the IMS service platform architecture and its non-standardised interfaces

we can extract generic concepts that are applicable to the SDP and its framework. In a

similar approach concepts can be extracted from the IMS reference model and functional

architecture.

8.3 Reusable Concepts

The reference model in [123] and summarised in Figure 8.2 provides a functional perspec-

tive on the IMS. This functional perspective focuses on adapting Internet-based call and

session control capabilities for use within the telco network. As a result, functional entities

124

are defined to support these new capabilities within the telco network. These functional

entities provide a range of functions such as customer, network and service oriented func-

tions. Some functional entities are borrowed from existing Internet-based architectures and

deployed in the telco network. However, new functional entities are also required. These

functional entities abstract new or existing telco network functions.

The reference model in [123] shows the complex interactions between functional entities re-

quired to satisfy IMS requirements. In the reference model functional entity interactions are

formalised using reference points. The reference points formalise the relationships between

functional entities and promote their standardisation. Reference points are abstract and im-

plementation, technology and distribution independent. For example, reference points may

define system viewpoints that produce architectures. Alternatively, reference points may

define implementations using specific protocols or APIs. Thus, reference points are used to

promote the standardisation of any relationship.

Our functional architecture shown in Figure 8.3 also provides a functional perspective on the

IMS. In this perspective we organise the structure of the IMS reference model to illustrate

the interactions of functional entities across domains. These domains indicate the distribu-

tion of functional entities across the telco network and customer terminals. Also, a partner

domain is used to indicated external access to service platforms that use IMS functional en-

tities. The functional architecture also implements reference model reference points using

protocols such as SIP and Diameter. These protocols enforce standardised communication

between functional entities. In addition, these protocols support the new call and session

control capabilities gained by the telco network.

The IMS service layer provides a limited service-oriented perspective that aims to link func-

tional entities with various service platforms. Our service platform architecture provides a

more complete service-oriented perspective on the IMS by showing what is possible be-

tween the IMS service layer and various service platforms. We decompose the IMS service

layer and the various service platform architectures to contain generic reusable services,

that abstract access to the IMS functional entities. These services represent reusable build-

ing blocks used in application development. The execution of these applications provide

customer services. The services are diverse and provide a range of functionality. Like the

functional architecture the service platform architecture formalises interactions between the

various services and applications. These interactions are implemented using standard-based

interfaces. The interfaces are less complex than network protocols and defined as imple-

mentation and distribution independent APIs.

We extend the service-oriented perspective on the IMS by structuring our IMS service plat-

form architecture using layers and domains. The various service platforms that constitute

125

the IMS service platform architecture are decomposed into numerous layers. Layers con-

tain either services or applications. The lower layers closest to the functional entities contain

services that abstract access to functional entities via their interfaces. Higher layers contain

services with interfaces that abstract access to lower layer services. These higher layer ser-

vices offer their interfaces to internal and external applications contained in an application

layer. Both application and service layers are distributed across domains. These domains

are equivalent to those defined in the IMS functional architecture.

We identify another reusable concept from our IMS service platform architecture. This

concept being middleware. Service interfaces are implemented as APIs that operate across

distributed domains. For example, Parlay SCFs are invoked by applications contained in

the partner domain. The use of middleware ensures that distribution is hidden from external

applications invoking service via their interfaces and services invoking each other via their

interfaces. Also, Parlay SCFs provide a form of middleware since their APIs hide details

of the ISC, Sh and Si reference point implementations. Therefore, the SCF APIs represent

service-oriented capabilities that make use of the network-oriented IMS functional entities.

8.4 Contribution to the SDP from the IMS

By reusing and applying the generic IMS concepts we present a SDP reference model and

architecture. The SDP reference model is shown in Figure 8.5(a). The SDP reference model

is derived by generalising the IMS service platform architecture. We use layers, domains

and reference points to structure the reference model. As a result, the reference model also

illustrates the SDP within its environment.

In the SDP reference model, layers are used as a primary abstraction tool to group and

structure applications, services and network functions contained across the SDP and telco.

We generalise the Parlay and Parlay X application server used in the IMS service platform

architecture as an external application layer. This layer contains 3rd party applications cre-

ated by application providers. These applications use services offered by the exposure layer

or application service layer to fulfil their requirements. The exposure layer contains generic

services that enable the basic telco network capabilities to be invoked. Thus, the exposure

layer abstracts the Parlay X Gateway. The exposure layer services use services contained

within the application layer to invoke telco network capabilities. The application layer also

contains applications. This layer’s services and applications use the complex services of-

fered by the application service layer to fulfil their functions. Thus, the application layer

abstracts the capabilities provided by a Parlay application server. The application service

layer contains complex services that enable the full capabilities of the telco network to be

126

Provider Domain

REA REX

REC

RXA

RAS

RSS

RSF

RFC

RAC

External Application

Layer

Network Function

Layer

Network Service

Layer

App Service Layer

App Layer

Exposure

Layer

External Application

Layer

Network Function

Layer

App Layer

Customer Domain

T
e
lc
o
 D
o
m
a
in

(a) SDP and its Environment derived from IMS Ser-

vice Platform Architecture

Application

Service

Interfaces

Application

Distribution Plane (Middleware Bus)

Application

Interface

Application

Interface

Telco Infrastructure Resources and Capabilities

Service

Technology

Specific

Interfaces

Service

Telco, IT,

Internet

Networks

ServiceService

(b) GSOA Detailing Generic Concepts

Figure 8.5: SDP Models based on IMS Concepts

invoked. Thus, the application service layer generalises the Parlay Gateway.

The network service layer represents a point of integration between the various higher appli-

cation and service layers and the underlying network capabilities and resources. As a result,

the network service layer provides services that invoke the appropriate network functions.

Thus, the network service layer abstracts the IMS service layer. The network function layer

contains the various telco network functions. These functions may also be located on the

customer device. Therefore, the network function layer may contain call and session control

functions similar to those offered by the IMS functional entities.

The reference model distributes layers across various functional areas by using domains.

These domains specify areas of interest that services must operate within. Domains pre-

scribe additional decomposition of layers to include distributed communication of services.

The domains shown in Figure 8.5(a) are equivalent to those used throughout the IMS refer-

ence model, functional architecture and service platform architecture. The customer domain

represents the customer device or terminal, that enables the customer to access and use the

various applications and services offered by the SDP. The partner domain represents an ex-

ternal 3rd party. For example, partners include application provider enterprises that require

access to telco network capabilities and resources to deliver content or create customer ser-

vices. The telco domain represents the area in which the SDP operates. In this domain, the

SDP has access to the various telco network functions.

127

Within the SDP reference model, reference points promote standardised communication

between service and functional abstractions, that are contained within layers and distributed

across domains. For instance, the REA and REX reference points formalise communication

between the telco and external IT-based infrastructures. The REC , RAC and RFC reference

points standardise communication between the customer, applications and the network. The

RXA, RAS and RSS reference points promote standardised communication within the SDP

and between its various services. Also, the RSF reference point defines communication

between the SDP services and converged network functions. This reference point demands

greater standardisation than the current ISC reference point. By decomposing or implement-

ing the various reference points, additional service-oriented details on the SDP are revealed.

Hence, a SDP architecture can be defined.

To structure the SDP architecture we reuse the GSOA concept defined in Chapter 7. As

determined, the GSOA is used to define service platform architectures independent of tech-

nology, distribution and implementation details. This is achieved by using the GSOA as a

reusable building block that manages various services, applications, interfaces, infrastruc-

ture and their distribution. Hence, multiple GSOAs are used to manage the various customer

applications, partner applications, SDP applications, SDP services, network functions and

all corresponding interfaces. In addition, the GSOAs are used to structure the SDP reference

model’s layers and abstract the distributed domains using their distribution planes. Hence,

multiple GSOAs decompose the SDP reference model’s reference points and support the

communication of application, services and functions between layers and across domains,

using their interfaces.

We illustrate the GSOA, used for decomposing the SDP reference model, in Figure 8.5(b).

This representation is similar to the GSOA shown in Figure 7.4. In the figure, applica-

tions provide customer services, via their interfaces. Also, numerous service interfaces

are defined and easily accessible by applications. Services access underlying infrastructure

resources and capabilities via infrastructure interfaces. To enable technology, implementa-

tion and distribution independence of application, service, and infrastructure interfaces, the

distribution plane is used. However, in this GSOA representation the distribution plane pro-

vides a technology neutral middleware bus. The middleware bus contains its own middle-

ware services that are accessible to applications, services and infrastructure via interfaces.

Some of these middleware services may be used to simplify access to infrastructure func-

tions. As a result, the middleware’s services and their interfaces represent the abstraction of

infrastructure resources and capabilities.

A SDP architecture structured using GSOAs is shown in Figure 8.6(a). In the architecture,

layers are represented using multiple GSOAs. Since layers are hierarchically structured,

their associated GSOAs are also layered and simplify access to each other. This illustrates

128

Provider Domain Customer Domain

T
e

lc
o

 D
o

m
a
in

Partner GSOA

Service Exposure GSOA

 Network Function GSOA

App App

Interfaces

Interfaces

Interfaces

Network Service GSOA

Application Service GSOA

Interfaces

 Application GSOA

Interfaces

Service Service Service Service

AppService

Service Service Service Service

Service Service Service Service

Function Function Function

(a) SDP Architecture

Provider Domain Customer Domain

T
e
lc
o
 D

o
m
a
in

Interfaces

 Network Function GSOA

Network Service GSOA

Application Service GSOA

Partner GSOA

Service Exposure GSOA

App

Interfaces

C
u
s
to
m
e
r G

S
O
A

App

Service Service

Service

Application GSOA

Service

Interfaces

Service Service

Service Service

Interfaces

Function Function

Interfaces

Service

A
p
p

A
p
p

Interfaces

Service

(b) Alternative SDP Architecture

Figure 8.6: SDP Architectures based on Generic IMS and SOA Concepts

GOSA applications, services and middleware abstracting other GSOAs. The GSOAs with

their service interfaces implement the various reference points. The service exposure GSOA

implements the REA and REX reference points. By implementing the REA reference point,

the service exposure GSOA uses its service interfaces to simplify access to complex services

hosted in the application service GSOA. The application GSOA implements the RXA refer-

ence point, while the application service GSOA implements the RAS reference point. The

network service GSOA and network function GSOA implement the RSS and RSF refer-

ence points respectively. The layered GSOAs with the aid of their service interfaces also

implement the REC , RAC and RFC reference points into the customer domain.

Since the GSOAs are generic, they may be used to restructure the SDP architecture. An

alternative SDP architecture, shown in Figure 8.6(b), illustrates the use of GSOAs within

domains. The figure shows a unified customer GSOA with services that abstract resources

and capabilities found within the customer domain. Similar to the properties of the GSOAs

in Figure 8.6(a), the customer GSOA services abstract other GSOAs, their services, ap-

plications and functions found within the provider and telco domains. Hence, the customer

GSOA and its service interfaces implement the REC , RAC and RFC inter-domain reference

points.

129

8.5 Evaluation of SDP Reference model and Architecture

By applying the generic IMS concepts, in particular the service platform options, to the SDP

we have defined functional and service-oriented viewpoints. Both viewpoints contribute ab-

stractions that are structured in the SDP reference model and architecture. The abstractions

contribute to the definition of the SDP framework. We evaluate the SDP reference model

and architecture against the generic concepts extracted from the IMS. In addition, the eval-

uation provides answers to the questions posed in Chapter 1 Section 1.3. We also present

the comparison between the IMS architectures and the SDP architecture in Table 8.1.

We do not define a SDP business model using the generic IMS concepts. However, the IMS

derived SDP reference model incorporates some business model concepts and properties.

The SDP reference model encapsulates the requirements of the SDP. Examples of these

requirements include, supporting customer service development and management by pro-

viding generic services to various external IT-using enterprises. These SDP services must

support customers in locating, registering, consuming and paying for customer services.

Like a business model, the reference model defines relationships between external partners,

customers and the SDP. However, the reference model promotes standardised communica-

tion between SDP, customers and external partners using reference points. In addition, the

reference model does not enforce specific technologies to implement reference points.

The SDP reference model provides a functional perspective, since it aids the definition of

SDP functions. These functions are represented as a collection of applications, SDP ser-

vices and network functions that use their interfaces to implement reference points. In

this perspective, the reference model uses layers to structure the various SDP services, ap-

plications and network functions. The layers illustrate the relationship between the SDP

services, applications and network functions. In addition, layers model the hierarchy of

abstraction from complex network functions to simple services contained in the reference

model’s service exposure layer. Besides layers, the reference model uses domains to dis-

tribution applications, SDP services and network functions. Domains show applications,

services and functions being invoked across various locations that are internal and external

to the telco.

By decomposing the reference model into a SDP architecture we provide a service-oriented

perspective. The SDP architecture manages the various applications, services and network

functions within GSOAs. Thus, GSOAs represent the design pattern used to structure the

SDP architecture. The GSOAs ensure technology, implementation and distribution inde-

pendence. As a result, the SDP architecture remains technology neutral. The GSOAs fully

implement the reference model’s reference points without enforcing specific technologies.

130

IMS SDP

Reference

Model

Defines functional entities and their in-

teractions using reference points.

Defines collections of applications, ser-

vices and functions contained in layers,

distributed across domains and interact-

ing via reference points.

Architecture

Layers

Web service based application server Partner GSOA

Parlay X Gateway Service Exposure GSOA

SIP AS and Parlay Application Server Application GSOA

SCIM and Parlay SCS Application Service GSOA

IM-SSF and SIP AS Network Service GSOA

Network Functions (CSCFs, PDF, ...) Network Function GSOA

Network Elements

Domains Distributes layers across customer, external 3rd party and telco functional areas.

Middleware ESBs Provided by various GSOA middleware

buses. These buses are technology and

implementation neutral.

CORBA

Protocols

Table 8.1: Comparison of IMS and SDP Architectures

In addition, the GSOAs structure the layers and abstract the distributed domains using their

distribution planes. Hence, application and service communication is fully managed and

abstracted by the SDP using the GSOAs. The SDP architecture also shows higher layer

GSOAs abstracting lower layer GSOAs. For example, lower GSOA service interfaces are

abstracted by higher layer GSOA services. Also, the GSOAs supports service communica-

tion within a layer, via service interfaces.

Each GSOA provides a technology neutral distribution plane that is represented as a mid-

dleware bus. This plane abstracts technologies and hides distribution complexities from

applications, services and functions. Also, the distribution plane also provides middleware

services that are accessible via their interfaces. These middleware services may be used

by SDP services to access network resources and capabilities. The GSOAs’ distribution

planes may be implemented using various technologies, such as web service based ESBs

or CORBA. Hence, the GSOAs provide generic middleware functionality that ensures the

SDP architecture remains void of any technologies.

The SDP architecture presented here overcomes many limitations of the proposed SDP

architecture shown in Figure 1.3. For instance, we use functional layers that expose tech-

nology neutral interfaces to services or network functions. These interfaces consistently

implement reference points and promote standardisation of the SDP. For example, some

service interfaces provide access to network functions that abstract telco OSS/BSS capa-

bilities. These service interfaces promote standardised access between telco OSS/BSS and

external SME/SCE. We also use domains to separate the SDP across multiple functional

131

areas. We include a customer domain such that customer access to the SDP is specified.

8.6 Summary

In this chapter we presented contributions of a current telco network standard to the SDP

and its framework. We reused generic concepts from the IMS standard. Concepts where ex-

tracted from the IMS reference model and a derived functional architecture. We also synthe-

sised an IMS service platform architecture that contributed all the generic service-oriented

concepts to the SDP. By reusing these concepts we defined a SDP reference model and

architecture. By removing technologies from the synthesised IMS service platform archi-

tecture, we defined a SDP reference model. This model contains applications, services and

network functions that are structured within layers. The layers are also distributed across

functional domains. Interactions between layers and across domains are formalised using

reference points, to promote standardised communication. We defined the SDP architecture

by elaborating the reference model, using the GSOA concept. We used multiple layered

GSOAs to define the SDP architecture. These layered GSOAs structured SDP applications,

services, functions and their interfaces. Lower layer GSOAs manage service (or network

function) interfaces and provide higher layer GSOAs access to these interfaces. Together,

GSOAs and their service interfaces implemented various reference model reference points.

GSOAs were also used to abstract domains by using their distribution planes as middleware

buses. GSOAs are generic, technology, implementation and distribution neutral. This en-

sured technology neutrality of the SDP from reference model to architecture. Therefore, by

reusing generic IMS concepts with the GSOA we presented technology neutral abstractions

and an architecture that contributes to the SDP framework.

132

Chapter 9

Defining the SDP Framework

In the previous chapters we have discussed telecom and enterprise standards. Each of these

standards share similar service requirements with the SDP. The most prevalent requirement

being the creation, delivery and management of customer services using telco and IT-based

infrastructure. The standards that we have reviewed satisfy this requirement by defining

concepts and abstractions to simplify the complexity of modifying or extending the telco

and IT-based infrastructures. These concepts and abstractions include a range of business

models, reference models and architectures.

The extraction of concepts from the TINA, Parlay, management and SOA standards have

produced generic SDP business models. The business models demarcate the various telco

and IT-using enterprise roleplayers that benefit from interacting with the SDP. Also, numer-

ous business relationships are specified between the SDP and roleplayers. The SDP business

models derived from generic TINA, TMN, TOM and eTOM concepts formalise business re-

lationships and promote standardised communication between the roleplayers. SDP service

interfaces are identified to provide standardised communication between roleplayers.

The SDP business models derived from Parlay and SOA concepts are further decomposed

into SDP reference models. A SDP reference model is also derived from generic IMS con-

cepts. The reference models use reference points to promote standardised communication

between the SDP, telco-based infrastructure and external IT-based infrastructure. Refer-

ence points are elaborated into interfaces that are exposed by a variety of SDP services.

Therefore, the reference model formalises the integration between telco and IT-based in-

frastructures by using service-oriented reference points.

The generic concepts obtained from the reviewed standards have contributed to the devel-

opment of various SDP architectures. The SDP architectures are also based on correspond-

ing business models and/or reference models. The architectures show the SDP contained

within an environment that operates across various telco and IT-based infrastructures. The

133

architectures illustrates layering of SDP services according to the level of abstraction their

interfaces provide. Services are also distributed across domains, but distribution is hid-

den by middleware planes. All SDP architectures are technology neutral. However, the

architectures promote the use of standards-based technologies to implement their service

interfaces.

The management, SOA and IMS derived SDP architectures provide different approaches

to structuring the SDP within its environment. The SDP architecture derived from TMN,

TOM and eTOM concepts models abstractions required to manage the operation of the SDP

and its services. The SDP architecture derived from SOA concepts shows the versatility of

the GSOA to structure SDPs. This is also illustrated in the SDP architecture derived from

generic IMS concepts. The IMS derived SDP architecture uses GSOAs to layer applications,

services and middleware. Also, the GSOAs represent the elaboration of reference points

found in the IMS derived SDP reference model.

By extending the previous chapters concepts and abstractions we define the SDP framework.

We do this by revisiting the SDP definition and elaborating on key SDP requirements. The

concepts and abstractions are used to satisfy the SDP requirements. As a result, we define a

complete SDP business model and reference model. Also, we structure the SDP framework

as an architecture illustrating the SDP within its environment.

9.1 Definition and Requirements

We define the SDP as a “a distributed IT-based system that abstracts telco network capabil-

ities into generic services that are accessible across telco, enterprise and Internet networks

and promotes the development, delivery and management of various customer services”.

Using our definition we define the SDP requirements in the following sections. These re-

quirements provide answers to the questions posed in Chapter 1 Section 1.3.

9.1.1 Infrastructure Integration

We need the SDP to simplify interworking between traditionally separate telco infrastruc-

ture systems. Also, we need the SDP to simplify telco and IT-based infrastructure interwork-

ing. Many vendor-based SDP products, such as [56], promote improved telco infrastructure

interworking to streamline various telco activities. These products also provide proprietary

solutions that interwork specific telco systems and external IT-based systems. However, in

the previous chapters we have derived technology neutral SDP architectures that promote

134

standardised infrastructure interworking. For instance, all derived SDP architectures pro-

vide layers of abstractions that simplify access to telco network resources and capabilities.

These abstractions are exposed to IT-based systems.

All derived SDP architectures define and layer abstractions by first separating telco net-

work functions from their complex physical representations. These network functions sim-

plifies access to telco infrastructure parts. Some functions include setting-up connections,

negotiating transport QoS, configuring device capabilities and updating billing databases.

Separated functions are complex to use since they remain technology and distribution spe-

cific. To solve this problem, the SDP architectures abstract network functions into reusable,

technology-neutral and distribution-neutral software-based services. These services pro-

vide functionality, such as make multiparty calls, obtain customer location, manage service

profiles, send and receive messages and query customer accounts.

SDP services enable standardised access to all telco infrastructure parts for various activ-

ities, such as decreasing service development effort, improving network management and

streamlining business and operational processes. In addition, SDP services are offered to

external IT-based infrastructures. Enterprises may use SDP services to enhance their exist-

ing applications or create new applications. Thus, SDP services support integration between

telco and IT-based infrastructures.

9.1.2 Service-oriented System

We need SDP services to expose their functionality to external IT-based infrastructure. Also,

we need to classify the different types of SDP services that have been identified in the

previous chapters’ SDP architectures.

SDP services use generic mechanisms to offer access to their functionality. These mech-

anisms are called interfaces. Interfaces prescribe, in an implementation and distribution

independent manner, what functionality a service offers. Therefore, applications using ser-

vice interfaces are not constrained to specific implementation and distribution technologies.

[8] and [55] recommend a service offer the following interfaces:

• consumption interface - exposes a service’s available functionality.

• management interface - used for service administration.

• client interface - enables a service to use other services consumption and management

interfaces.

135

Service

Consumption

Interface

Client

Interface

Management

Interface

(a) SDP Service Inter-

faces

BBS BBS BBSBBS

CS CS

CS

Network resources and capabilities

Client Interfaces

Management Interfaces

Consumption Interfaces

Applications

(b) Types of SDP Services

Figure 9.1: SDP Services and Interfaces

We illustrate these interfaces in Figure 9.1(a).

These interfaces have been used to access layers of services that constitute our derived SDP

architectures. For example, in our SOA derived SDP architecture lower service layers offer

consumption interfaces to higher layer applications and services. Though not specified in

any of our derived SDP architectures, higher layer services may use client interfaces to

access lower layer services on their consumption interfaces. In the TMN, TOM and eTOM

derived SDP architecture we have illustrated layers of services that expose management

interfaces. These services are invoked on their management interfaces by management

services or management applications.

SDP services contain functionality that abstract complex infrastructure functions. Since nu-

merous functions exist within the telco network, a number of services are created. Within

the SDP, we define two categories of services: building block services and composite ser-

vices. We illustrate these different types of SDP services Figure 9.1(b). In the figure we

show building block services as simplifying access to network functions. Building block

services also perform distinctive tasks and do not interwork with other building block ser-

vices. These building block services are used in our derived SDP architectures. For ex-

ample, the Parlay derived SDP architecture shown in Figure 5.6 uses generic services as

building block services to simplify access to network functions.

Figure 9.1(b) shows composite services interworking with one or more building block ser-

vices to further simplify access to infrastructure functions. In addition, composite services

may provide new functionality by integrating multiple composite services and simplifying

136

their use. The nested nature of composite services is finite. Thus, composite services are

defined until no further simplification is gained or no unique functionality is defined. Like

building block services, composite services are used in our derived SDP architectures. For

example, the Parlay derived SDP architecture shown in Figure 5.6 uses application services

as composite services to simplify access to generic services.

9.1.3 Business Model

We need a business model for the SDP to accommodate diverse customers, external IT-using

enterprises and other telcos.

The SDP sustains a business environment [132] that supports the convergence of various

business entities. Within the business environment the SDP defines business relationships

between diverse business entities. Business entities and their relationships are structured

into a business model. In previous chapters we have derived numerous SDP business mod-

els. All the derived business models identify business entities that use the SDP for its

services. These business entities are IT-using enterprises such as application developers and

content providers. Also, some business entities include individuals or enterprise that access

applications and content. As a result, we generalise these business entities as customers of

the SDP.

In the SDP business environment customers play various business roles. These roles are

extracted from the derived SDP business models in the previous chapters. Three com-

mon types of customer roles are provider, consumer and broker. The SDP itself plays the

provider role since it provides services to consumers and brokers. In some cases the SDP

may take on the consumer role since it consumes services offered by other providers. For

example, the Parlay derived business model shows the SDP consuming services that are of-

fered by external service providers. These services contribute to the SDP’s own repository

of services.

The provider role is also fulfilled by business entities such as application developers, content

providers and the telco. These providers are prevalent in all the derived SDP business mod-

els. Application providers provision diverse applications to consumers. Content providers

provide content to be used by applications. The telco provides SDP services with access

to diverse network functions. The network functions expose telco transport capabilities and

OSS/BSS capabilities. The application and content provider business entities also fulfil

the consumer role. For example, application providers orchestrate SDP services to create

applications, while content provides use SDP services to deliver content across the telco

network. The telco may also fulfil the consumer role. For example, some network functions

137

may invoke SDP services so as to notify the SDP of changes in the network.

Other business entities that fulfil the consumer role include individuals or enterprises that

act on behalf of individuals. These business entities subscribe, use and pay for applications

that are managed or accessed via the SDP. These applications provide business entities with

telephony, multimedia or data services. Business entities that take on the consumer role

may also consume SDP services to subscribe, configure, access and use applications. In

addition, these business entities may use SDP services to manage their personal profiles,

service subscriptions and billable accounts.

Business entities that fulfil the broker role aim to support interactions between consumers

and providers within the SDP business environment. Brokers are incorporated in various

business models. For example, [53, 55, 54] and [130] promote the use of brokers with

their SDP solutions. We have also used brokers in our TINA, Parlay, SOA and eTOM

derived SDP business models. In these derived SDP business models we have used the

SDP business entity as an all purpose broker. The objective of the broker is to use SDP

services to create applications. These applications differ from other applications, since they

offer functionality to both consumers and providers. For example, consumers use broker

applications to find applications offered by application providers. This example implies

application providers have already used broker applications to register their applications

and intend to provide these applications to consumers.

A generic SDP business model is shown in Figure 9.2(a). The generic SDP business model

condenses the previous chapters’ SDP business models by showing relationships between

customers that fulfil the consumer, provider and broker roles. The relationships between

customers are structured using business relationship points. The concept of business rela-

tionship points has been reused from TINA, Parlay, SOA and eTOM derived SDP business

models. The business relationship points in the generic SDP business model are:

• BRCB - consumer to broker relationship.

• BRBP - broker to provider relationship.

• BRCP - consumer to provider relationship

• BRCC - consumer to consumer relationship.

• BRBB - broker to broker relationship.

• BRPP - provider to provider relationship.

Within the generic SDP business model, the SDP may perform the roles of a broker and

provider. As a provider, the SDP offers services to consumers and other providers. Hence,

138

Consumer Provider

BRCB BRBP

BRCP

BRCC BRPP

Broker

BRBB

SDP Business Environment

(a) Generic SDP Business Model

End

Users

Service

Subscriber

BRCP

BRCC

Service

Broker

BRCB BRCP

BRBP
Application

Provider

BRBP BRPP

BRPP

BRPP

Content

Provider

BRPP

BRPP

BRBP

BRBP

BRBPBRCP

SDP and Connectivity Provider (Telco)

BRCP

Service

Provider

BRBB

Content

Broker

(b) Decomposed SDP Business Model

Figure 9.2: SDP Business Models

the SDP supports the BRCP and BRPP business relationship points. Also, as a broker the

SDP supports interactions between customers and providers. Hence, the SDP supports the

BRCB and BRBP business relationship points.

The above business model is generic and may be decomposed to reveal detailed entities and

relationships within the SDP business environment. A detailed SDP business model, derived

from the generic model, is shown in Figure 9.2(b). The figure illustrates the decomposition

of customers. For instance, the consumer is decomposed into a service subscriber and end-

user. Numerous providers are also defined, such as connectivity, application, service and

content providers. In addition, various brokers, such as service and content brokers, are

introduced into the business model.

In Figure 9.2(b), most business relationship points are used between the business entities.

For example, the BRCB business relationship point specifies service subscribers may ob-

tain a list of services from service brokers. The BRCP relationship enables the service

subscriber to register for selected services from a service provider. In addition, the BRCC

relationship allows end-users to use services that service subscribers have registered to use.

End-users are allowed to consume services from their appropriate service providers, via the

BRCP relationship. Also, the BRCP relationship defines interactions enabling end-users

to access their associated connectivity provider. The BRPP business relationship point

enables service providers to offer services on behalf of application providers. The vari-

ous provider interactions are structured using the BRPP relationship. For example, this

relationship enables application providers to access and use content provisioned by con-

tent providers. The BRBP business relationship point allows service providers or content

providers to register their services or content with the appropriate brokers. We also define

a BRBB business relationship point between content brokers. This enables content brokers

to search for content registered with other content brokers.

139

ROS

RAS

RTS

RCS

RDS

Transports

App/Service
Provider

OSS
BSS

End-User/
Subscriber

SDP

Resource
Provider

Figure 9.3: SDP Reference Model

As shown in the business models, business relationship points enable convergence of busi-

ness objectives between diverse business entities. Hence, the relationship points would be

defined as rules and policies to ensure converged business objectives are achieved. The SDP

and its services provide the required functionality to implement and enforce these business

relationship points. However, SDP services must ensure standardised interactions between

telco, SDP and its various customers. This standardisation ensures managed and consistent

interactions between the SDP and all its customers.

9.1.4 Reference Model

We need a reference model for the SDP that uses reference points to promote standard-

ised interactions between the SDP and its customers. Interactions between the SDP and its

customers are specified as business relationship points. These business relationship points

prescribe interactions that are allowed and not allowed. In a SDP reference model business

relationship points are formalised as reference points. Reference points are implemented

as SDP service interfaces. These interfaces being the consumption, client and management

interfaces. Also, interfaces are exposed by either building block or composite SDP ser-

vices. Thus, a SDP reference model formalises the SDP and customer interactions using

standardised SDP service interfaces.

The SDP reference model shown in Figure 9.3 confirms the reference model proposed in

Chapter 2 Figure 2.6. The reference model is also similar to the SOA derived SDP reference

model shown in Figure 7.5(b). The SDP reference model contains all of the entities and

reference points used in other derived SDP reference models. These entities include end-

users, application providers, content providers, service providers and the telco network.

Figure 9.3 shows the basic entities required by the SDP to standardise its services. These

entities fulfil one or more of the consumer, provider or broker roles, defined in the previous

SDP business model. Also, business relationship points are now formalised as reference

points between the various reference model entities. The transport networks and OSS/BSS

140

entities belong to the telco. Transport networks include legacy and new communication

infrastructure and their associated network functions. The OSS/BSS includes management

systems and functions that administer the transport infrastructure. These entities provide the

SDP with access to telco transport and OSS/BSS functions. The reference model also shows

external entities interacting with the SDP via its services. These entities include end-users,

service subscribers, application providers, service providers and resource providers. End-

users represent individuals that use SDP services to access applications. Subscribers rep-

resent external enterprises that act on behalf of many end-users. Application providers use

SDP services to create applications that are used by end-users. Application providers also

include brokers since they provide applications to end-users, other application providers,

service providers and resource providers. Service providers provide services that are used

by the SDP. Resource providers use SDP services to contribute data to support applica-

tion providers. As a result, resource providers may include media distributors, television

broadcasters and advertising companies that deliver content to end-users.

The reference model promotes standardised interactions between the SDP and various enti-

ties by defining reference points. These reference points are similar to those defined in our

SOA derived SDP architecture. These include the horizontal RCS and ROS reference points

and the vertical RAS , RTS and RDS reference points. These interactions are realised using

SDP service interfaces. Thus, the SDP reference model provides a means to standardise

access and usage of services between telco, SDP and its customers.

9.1.5 Overall Management

We require the SDP to incorporate telco OSS/BSS functions such that standard-based SCE

and SME are defined. The SDP incorporates the telco OSS/BSS by defining services that ab-

stract its functions. These services can be classified as management services. Management

services provide functionality, such as configuring transport networks, adjusting consumer

terminal properties and administering customer services. These management services are

used via their consumption interfaces by management applications. Management applica-

tions orchestrate management service interfaces to implement telco business processes. As

an example, a complete set of telco business processes are defined by the eTOM that is dis-

cussed in Chapter 6. Also, limited management services and interfaces used to implement

eTOM are defined by [133].

Management service interfaces contribute to the implementation of the RAS reference point

shown in previous reference model. The reference model promotes the standardisation of

these management service interfaces. Thus, various internal and external SCE and SME

may use these management service interfaces to have consistent access to telco OSS/BSS

141

Business Process

Management

Service

Management

Function

Management

Resource

Management

Management Applications

Management

Services

OSS/BSS

Functions

OSS/BSS

Resources

Management Plane

MnCl

Cl Cl

Co Co

MnCl

Cl Cl

Co Co

MnCl

Cl Cl

Co Co

MnCl

Figure 9.4: SDP Management Architecture with Interfaces

capabilities. We have already derived a SDP management architecture using TMN, TOM

and eTOM to illustrate business processes and management services. We extend the derived

SDP management architecture to show more detailed layers and the management service

interfaces. The extended management architecture is shown in Figure 9.4.

The extended SDP management architecture shows a hierarchy containing management

applications, management services, OSS/BSS functions and resources. Management appli-

cations use their client interfaces (Cl) to access management services via their consumption

interfaces (Co). Management applications represent business processes. Management ser-

vices use their client interfaces to access OSS/BSS functions via their consumption inter-

faces. OSS/BSS functions use their client interfaces to access OSS/BSS resources via their

consumption interfaces. These management applications, services, functions and resources

are used to manage telco operations, as well as telco business objectives. However, the

extended SDP management architecture shows how the SDP is also managed.

The extended SDP architecture shows interconnected management layers containing admin-

istrative services. The business process management layer contains services that administer

management applications via their management interface (Mn). The service management

layer contains services that administer management services via their management inter-

face. The function management layer contains services that administer OSS/BSS functions

via their management interface. The resource management layer contains services that ad-

minister OSS/BSS resources via their management interface. The administrative services

ensure the SDP satisfies traditional telco network “quality requirements” [69] such as high

availability, security, reliability, scalability and fault tolerance.

142

9.1.6 Architectural Structure

We need an architecture for the SDP that is defined using various design patterns. Unlike the

proposed SDP architecture shown in Figure 1.3, the new SDP architecture uses technology

neutral design patterns to structure the various SDP services. By structuring the services,

the new architecture implements SDP reference model reference points as service interfaces.

In addition, the new architecture satisfies the SDP business model’s business relationship

points, by interacting with external IT-using enterprises. Thus, the new SDP architecture

supports telco and IT infrastructure interworking, that is, telecom-IT convergence.

We have uncovered technology neutral design patterns from the previous chapters’ derived

SDP architectures. These design patterns are layers, domains, planes and GSOAs.

Layers:

We use layers as a primary modeling tool to structure the SDP architecture. Layers provide

a means to horizontally group and structure a collection of related entities, such as SDP

services. As a result, layers separate varying levels of functionality. Within layers enti-

ties communicate via the client-server or peer-to-peer paradigm. Examples of layers used

with telecom and IT-based architectures are numerous. Architectures use layers to model

switching levels and service levels [76]. We illustrate layers in a SDP architecture shown in

Figure 9.5.

In the figure we model switching levels as Network Resource Layers. These layers group

physical network elements and their network-oriented functions that are abstracted by the

SDP and its services. For the SDP, service levels are modeled as Intelligent Service Lay-

ers. These layers group SDP services and applications. These service layers’ services are

realised as either building block services (BBS) or composite services (CS).

Service layers use lower resource layers, by accessing their technology-specific functions.

Service layers simplify access to these functions by using their technology-neutral service

interfaces. Thus, service layers hide the complexities of using lower resource layers. Be-

sides abstracting lower resource layers, service layers simplify each other. For instance,

multiple service layers are hierarchically structured with topmost service layers simplify-

ing access to lower service layers. Some service layers are also specific. For example,

data stores located in a resource layer may have their functions abstracted by services in a

separate intelligent service layer. As a result, this separate service layer may provide only

data-centric services.

143

BBSBBS

Consumer

Domain

Access

Domain

Core

Domain

OSS/BSS

Domain

T
e
lc
o
 D
o
m
a
in

Client

App

Provider/Broker Domain

In
te
lli
g
e
n
t
S
e
rv
ic
e
 L
a
y
e
rs

N
e
tw
o
rk
 R
e
s
o
u
rc
e
 L
a
y
e
rs

BBS

BBS BBS

CSCS

CS CS CSCS CS

Server App

Figure 9.5: Structuring a SDP Architecture using Layers and Domains

Domains:

We use domains as a secondary modeling tool to structure the SDP architecture. Domains

are used in many standardised telecom and IT architectures. Domains represent areas of

division across the telco network by ownership and functions. Division by ownership relates

domains to the various entities that are defined in the SDP business model. As a result,

services, applications and functions residing in a domain may belong to a specific business

entity. Division by function implies that implemented services, interfaces, applications and

functional entities operate across physically distributed equipment and locations.

Domains vertically structure the distribution of layers and their content among areas of

interest [69]. We illustrate domains in the SDP architecture shown in Figure 9.5. In the

figure resource and service layers intersect various domains. These domains include cus-

tomer, provider/broker, telco, access, core and OSS/BSS domains. Services, applications or

functions contained within layers communicate synchronously and asynchronously across

one or more domains. For instance, some application and services communicate vertically

across layers but within the same domain. Also, client and server applications communicate

horizontally across domains but within the same layer. Horizontal communication may also

occur between network functions contained within a layer.

Similar capabilities, such as services, applications and functions, contained in various layers

are grouped into specific domains. For example, all capabilities on the customer device are

grouped within the customer domain. Also, an external enterprise that develops applications

manages its capabilities within an application provider domain.

144

Planes:

Specific layers and domains may be grouped together to focus on particular SDP concerns.

Focusing on all intelligent service layers and their distribution across domains, centres on

creating applications via SDP service interfaces. In addition, these grouping may involve

permutations of intelligent service layers and various domains. These groupings are man-

aged with the help of an abstraction tool called planes. Planes are reused in many telecom

architectures to abstract complexities, such as lower architectural layers, their contents, im-

plementations and domain distributions.

Based on the previous chapter outcomes, we use a particular type of plane to structure

the SDP. This plane provides middleware based functionality and is called the middleware

plane. The middleware plane provides generic mechanisms to support distributed commu-

nication across the SDP, telco and its customers. In addition, the middleware plane supports

both horizontal and vertical communication between services, application and functions that

contribute to the SDP. Thus, the middleware plane abstracts one or more layers and their

distribution across one or more domains.

By providing the middleware plane, complexities associated with distribution are hidden.

For instance, the middleware plane enables distributed services to communicate indepen-

dently of their location. To enable these interactions the middleware plane provides mech-

anisms to abstract underlying communication and computing infrastructure. This infras-

tructure may include the telco transport networks and other supporting systems. In addition

to abstracting infrastructure, the distribution plane hides implementation details of services

and applications. As a result, diverse services may interact with each other and be invoked

by diverse application implementations. Thus, the middleware plane hides various com-

plexities of the SDP, so as to simplify relationships and interactions between SDP, services,

applications, functions, telco and its customers.

An illustration of planes used in modeling a SDP architecture is shown in Figure 9.6. In

the figure, planes group layers according to their similarities. This is evident in the service

middleware plane abstracting all intelligent service layers. Also, some layers may operate

within distinct planes. For instance, layers abstracting service control functionality are

grouped into a control plane. The figure also defines a management plane that intersect

all layers and planes. Hence, all layers, their contents and planes are managed.

145

BBSBBS

Consumer

Domain

Access

Domain

Core

Domain

OSS/BSS

Domain

T
e
lc
o
 D
o
m
a
in

Client

App

Provider/Broker Domain

In
te
lli
g
e
n
t
S
e
rv
ic
e
 L
a
y
e
rs

N
e
tw
o
rk
 R
e
s
o
u
rc
e
 L
a
y
e
rs

BBS

BBS BBS

CSCS

CS CS CSCS CS

Server AppApplication Plane

Service Middleware Plane

Control Plance

Resource Plane

M
a
n
a
g
e
m
e
n
t P
la
n
e

Figure 9.6: Structuring a SDP Architecture using Planes

Generic Service Oriented Architectures:

The GSOA is an outcome of our SOA derived SDP architecture discussed in Chapter 7. It

encompasses technology neutral concepts that are extracted from the web service SOA and

enterprise SOA. We use the GSOA as a technology neutral design pattern to structure service

platform architectures. For example, GSOAs structure our IMS derived SDP architecture.

The GSOA represents a container for services and applications. In the GSOA, services

define interfaces that abstract access to other services, infrastructure functions or physical

systems. The services expose their interfaces to applications. Application orchestrate ser-

vice interfaces to provide specific functionality. The GSOA provides a distribution plane

that services and application operate across. The distribution plane hides various complex-

ities from services and applications. For instance, the distribution of services and applica-

tions are hidden from each other. Also, the computing infrastructure supporting service and

application communication is abstracted.

GSOAs can be used to elaborate reference points in reference models. As a result, GSOAs

contribute towards formalising relationships between reference model entities. Multiple

GSOAs can be used to replace layers that are structured according to their level of abstrac-

tion. Thus, GSOAs can be layered to mimic abstraction hierarchies. GSOAs abstract the

distribution of layers across domains by using it distribution plane. As a result, GSOAs hide

distribution complexities if used to structure distributed systems. The GSOA can be used

to replace middleware-based planes in service platform architectures. This is possible since

the GSOA distribution plane provides middleware capabilities.

146

Java,
C++,
Protocols

UML

OMG
IDL WSDL

CORBA Web
Services

Parlay Parlay XOMA

SIP

TINA

IMS

eTOM/
OSS/j

Other

...

Figure 9.7: Example Technology Map

9.1.7 Standards-based Implementation

We need technologies to implement SDP architectures. In previous chapters we have de-

rived SDP architectures to be void of any technological influences. As a result, these SDP ar-

chitectures are implementable using a variety of technologies. However, these technologies

must satisfy the other SDP requirements and implement SDP services, interfaces, applica-

tions, middleware and functions. We motivate the use of open standards-based technologies

for implementing the SDP.

By using open standards, SDP implementations remain consistent and interoperable. How-

ever, vendors may choose to implement the SDP using some proprietary technologies. If

so, vendors must implement at least two parts of the SDP using open standards: the top-

most north-facing service interface and bottommost south-facing service interface. The

north-facing interface represents the consumption interfaces of services exposed to cus-

tomers. Basic functionality exposed by these interfaces support application development

and resource provisioning. Hence, standardised north-facing interfaces promote portability

of applications and content across SDP implementations.

The SDP’s bottommost south-facing interface represents the client interface of services that

have access to telco network resources and capabilities. These resources and capabilities

include telco transport networks, OSS/BSS, databases and media gateways. These inter-

faces enable SDP services to invoke network functions independently of technologies and

distribution. Hence, standardised south-facing interfaces enable portability of SDP imple-

mentations across different telco networks. As a result, different vendor SDPs may be

consistently used across various telco networks.

A variety of technologies are available to implement the SDP, its service and interfaces. We

illustrate an example technology map, in Figure 9.7, showing available technology choices

147

Complexities Middleware Technologies

ASE/ROSE/TCAP RPC RMI CORBA SOAP Internet (DNS, DHCP,..)

Distribution
√ √ √ √ √ √

Location
√ √ √ √ √ √

Implementation
√ √ √ √ √ √

Transaction
√ √

Synchronisation
√ √ √

Quality of Service
√

Scalability
√ √

Security
√ √

Fault Tolerance
√

Table 9.1: Examples of Middleware Technologies for SDP Architectures

for the SDP. In the figure, the Unified Modelling Language (UML) [134] is used to de-

scribe and model the SDP services independent of technologies. The UML is converted

into various types of implementation neutral representations, such as Interface Definition

Language (IDL) [82] or WSDL. These representations are implemented using various tech-

nologies, such as C++, Java. Some representations are also implemented using complex

protocols, such as the SIP.

Many of the above technologies are incorporated into existing standardised telecom and

IT-based solutions, such as TINA, Parlay and the Open Mobile Alliance (OMA) [50] Ser-

vice Environment [51]. The existing solutions are also included in newer standards such as

the IMS service layer. All these solutions provide standardised services that may be easily

incorporated into a SDP implementation. In addition, the above standards specify technolo-

gies for their implementations. For instance, diverse middleware technologies are used to

implement their services, applications and interfaces. We present a list of middleware tech-

nologies used by these standards in Table 9.1. The table illustrates middleware technologies

and examples of the various complexities they abstract. A blank table entry indicates the

middleware does not abstract that complexity.

9.2 Architecture

Based on the SDP business model, reference model, definition and requirements, we de-

rive a SDP architecture. This architecture represents the SDP framework since it is highly

generic and extendable. Hence, it provides concepts and the structural foundation for other

SDP architectures to be defined. The architecture is defined using service, interface, layer,

domain and plane abstractions.

148

Application

Layer

Service

Layer

Function

Layer

Resource

Layer

E
n
d
 U
s
e
r

S
u
b
s
c
ri
b
e
r

C
o
n
n
e
c
ti
v
it
y

P
ro
v
id
e
r

C
o
n
v
e
rg
e
d

N
e
tw
o
rk

S
e
rv
ic
e
 P
la
tf
o
rm

O
S
S
 a
n
d

B
S
S

E
n
te
rp
ri
s
e

Figure 9.8: SDP Framework Layers and Domains

In Figure 9.8 we provide a simplified view of the SDP framework using layers and do-

mains. In this model we use four layers to depict the basic functionality contained within

the SDP. These four layers are generalisations of layers identified in the previous chap-

ters IN, TINA, Parlay, eTOM, SOA and IMS derived SDP architectures. The application

layer contains telco and external enterprise applications that access SDP services. The ser-

vice layer contains SDP services, with some exposing interfaces to external enterprises. The

function layer contains telco network functions that provide the underlying capabilities used

by some SDP services. The resource layer contains physical elements that provide a variety

of telco network functions.

In addition to layers, the model uses functional domains to distribute the layers and their

contents. The domains correspond to the business model entities and reference model en-

tities that benefit from interacting with the SDP. The end-user domain represents the con-

sumer of customer services. The subscriber domain is a special telco or external IT-using

enterprise that operates on behalf of the end-user. This enterprise provides the mechanisms

to enable end-users to subscribe, locate, consume and pay for customer services. The con-

nectivity provider domain is also a telco or external enterprise that provides the underlying

communication mechanisms required by end-users to access their customer services. The

converged network domain illustrates an integrated collection of networking resources and

capabilities. These networks include telco, IT and Internet networks. The service plat-

form domain represents the heart of the SDP, that is, it contains the collection of distributed

services with their interfaces. The OSS/BSS domain represents the telco management plat-

forms that manage the SDP and are reused by SDP services. The enterprise domain rep-

resents external IT-using enterprises that use SDP services. The enterprise domain may

include application developers, service brokers and media broadcasters.

To provide a fuller representation of the SDP framework we use Figure 9.9. The figure

shows the SDP exposing numerous service interfaces to entities within its environment.

These service interfaces are managed within the appropriate layers. In the figure we de-

compose the SDP application and service layers, since they represent the core of the SDP.

The figure shows the SDP with three application and service layers. These are the simple,

149

Simple Applications

Intermediate Applications

Complex Applications

Simple Services

Intermediate Services

Complex Services

Service Functions

Resource Functions

Physical Resources

Simple API

Intermediate API

Complex API

Service Function API

Resource Function API

Protocol-based Interface

Figure 9.9: SDP and its Environment: Expressing the Full Layers of the SDP Framework

intermediate and complex application and service layers. The simple application layer con-

tains applications that use the simple service layer. These applications do not use the full

capabilities of the network since the simple services provide a highly abstracted view on

the available network resources and capabilities. The intermediate application layer con-

tains applications that use the intermediate service layer. The intermediate applications

use network functionality via the intermediate services, that abstract limited complexities

of the network resources. The complex application layer contains rich applications that

use the complex service layer. Complex services enable the full capabilities of the under-

lying network to be invoked by complex applications. Hence, complex services provide

limited abstractions of the underlying network resources and capabilities. In addition to

these application and service-oriented layers, the SDP framework decomposes the function

layer into service function and resource functions layers. The service function layer exposes

service-oriented capabilities to complex services, while the resource function layer provides

network specific capabilities to implement the higher service functions.

The figure shows each of the service layers exposing consumption interfaces or APIs. These

APIs are used by other layers. For instance, simple applications only have access to simple

services via the simple API. The intermediate service layer API is used by both intermediate

applications and simple services. Simple services use this API to fulfil requests from simple

applications. Also, the complex service layer API is used by both complex applications and

intermediate services. This complex API is used by intermediate services to fulfil requests

from intermediate applications and simple services. Within the service layers internal APIs

may also be defined by their services. These internal APIs include client and management

interfaces. However, we do not show these internal interfaces in the figure. Lower interfaces

150

T
e
c
h
n
o
lo
g
y
 P
la
n
e

D
is
tr
ib
u
ti
o
n
 P
la
n
e

Resources

Functions

Services

Apps

Middleware

Plane

Figure 9.10: SDP Framework Planes

are also shown in Figure 9.9. These interfaces include APIs for both service and resource

functions. In addition, a protocol-based interface is used to access the underlying converged

network resources and capabilities.

Service interfaces promote the standardisation of the SDP by implementing the reference

points of the SDP reference model, shown in Figure 9.3. However, service interfaces are

used between layers, across domains and within layers. Hence, reference points are also

implemented across layers and domains. This implies service interfaces are accessed and

used across these layers and domains. For example, the horizontal RCS reference point is

implemented across the application layers and the end-user and subscriber domains. The

horizontal ROS reference point is implemented across the function layers and between the

service platform and OSS/BSS domains. The vertical RAS and RDS reference points are

implemented across the application, function and resource layers. In addition, these refer-

ence points are implemented across the enterprise and converged network domains. The

vertical RTS reference point is implemented across the function and resource layers. Also,

the connectivity and converged network domains contribute to the implementation of this

reference point.

We further provide detail on the SDP framework by adding planes. Planes are used to ab-

stract service distribution across domains and the underlying technologies used to support

this distribution. In addition, planes abstract implementations, such that diverse service,

applications and functions may communicate via their interfaces. We illustrate the SDP

framework planes in Figure 9.10. In the figure, we use a single middleware plane to ab-

stract both distribution and technologies within the SDP. This plane may also contain man-

agement capabilities, such as services that administer the operation of each layer across the

appropriate domains.

151

9.2.1 Using the GSOA Building block

In the previous chapters we have identified and used the GSOA as a building block for

defining service platform architectures. In addition, we have shown the GSOA to be multi-

functional design pattern, that is, it elaborates reference points, layers and domains. In

addition, it provides abstractions to hide distribution complexities. Hence, to complete the

SDP framework we integrate multiple GSOAs into the SDP’s structure. The completed SDP

framework, using the GSOAs, are shown in Figure 9.11.

In the figure, GSOAs are used to manage the various SDP services and their interfaces. Also,

the GSOAs manage the diverse range of applications and converged network infrastructure.

Each layer of the SDP framework is structure as a GSOA, using the distribution plane as a

middleware bus. Hence, we have simple, intermediate and complex middleware that cuts

across various domains. In addition, the GSOA and its middleware is used to structure

the lower distributed function and resource layers. The figure illustrates the middleware

as segmented across the various domains. However, the segmented middleware integrates

using horizontal internal interfaces that support all communication across, SDP, IT-using

enterprises, end-users and other telcos.

The GSOA’s contain the various applications, services, functions and resources. In addition,

it manages access to these entities via their interfaces. As shown in Figure 9.11, the entities

communicate independent of their layer and domain. For example, communication occurs

vertically and horizontally across multiple layers and multiple domains. This communi-

cation is supported by the various middleware. The GSOAs are also used to manage the

layer specific resources, such as service information. This is achieved by integrating infor-

mation repositories onto the middleware bus and exposing its functionality as distribution,

technology and implementation neutral service interfaces.

The SDP framework benefits from using the GSOA since it structures layers and abstracts

the functional distribution of these layers. In addition, it provides a manageable container

for layer specific applications, services, functions and resources. Also, like layers the

GSOAs abstract lower GSOAs. The SDP framework inherits GSOA properties, that is,

it is technology, implementation and distribution neutral. As a result, the SDP framework

may be implemented using various technologies that are standard-based.

152

 Simple Service Middleware

Client App Server App Content

Service Service ServiceService

Service

Function

Service

Function

Service

Function

Service

Function

Service

Function

Resource

Function

Resource

Function

Resource

Function
Information

Resource

Function

Resource Resource Resource ResourceResource

Information

Information

Service Function Middleware

Resource Function Middleware

Resource Middleware

 Intermediate Service Middleware

ServiceService

Complex Service Middleware

Client App Server App ContentServiceService

Client App Server App Content

Service

ServiceService

Service

Server App

End-User Domain Subscriber Domain Service Platform Domain Enterprise Domain

Connectivity Provider Domain Converged Network Domain OSS/BSS Domain

Figure 9.11: Complete SDP Framework

9.3 Results

The SDP framework represents the visualisation of a collection of SDP concepts, princi-

ples and abstractions. The various concepts include a business model to encompass the

SDP’s business objectives, that is, creation, delivery and management of customer services

by various external IT-using enterprises. A corresponding reference model is also used to

ensure that all external access to the SDP is formalised. Also, the reference model ensures

SDP’s access to converged network resources and capabilities are also formalised. The SDP

framework, as presented in Figure 9.11, satisfies SDP requirements and is based on the SDP

business and reference models. In addition, the framework is highly generic and may be ex-

tended, reduced or decomposed. However, any framework modification must adhere to the

SDP concepts and principles.

The SDP framework benefits from using GSOAs. The GSOAs ensure distribution, tech-

nology and implementation independence that is inherited by the framework. The GSOAs

are used across all layers and domains of the framework. As a result, the SDP framework

presents a consistent structure using GSOA abstractions, such as services, interfaces and

middleware. The GSOA middleware planes used in the SDP framework provide essential

mechanisms to manage the various SDP services, applications, functions and resources. In

addition, the middleware mechanisms may provide additional functionality that contribute

153

to the SDP framework.

The SDP framework is generic. To illustrate this property we map existing standards onto

the various layers, domains and GSOAs. We use Table 9.2 to illustrate an example mapping

of the IMS onto the SDP framework. In the table empty slots indicate the IMS does not

provide abstractions or standardised components to satisfy the SDP framework. Additional

mappings of both standardised and proprietary SDP architectures onto our SDP framework

are illustrated in Appendix A.

9.4 Summary

In this chapter we glued together various concepts, principles and abstractions from previ-

ous chapters into the SDP and its framework. As a result, we defined the SDP and provided

a list of requirements. All requirements are void of any biases, such as technology or vendor.

These requirements included a business model to motivate the business case for the SDP.

The business model also showed the endless possibilities for business relationships between

SDP, telco and diverse external IT-using enterprises. We illustrated a generic reference

model that promotes standardised communication between the business entities. The stan-

dardisation across the reference model is achieved using the SDP services’ interfaces. We

have shown SDP services offering client, consumption and management interfaces. Also,

we have classified SDP service into building block and composite categories. To visualise

the various concepts and principles uncovered in the SDP requirements, we defined the

SDP framework. The framework consists of multiple application and service layers. These

layers form the core of the SDP. We showed the various forms of interfaces between the ap-

plication and service layers. These interfaces provide standardised communication required

within the SDP reference model. We used domains to distribute the SDP framework layers

and illustrate the distributed nature of the SDP. We incorporated a distribution plane to man-

age the complexities associated with distribution. To manage the collection of abstractions

within the SDP framework we used the GSOA. The GSOAs provided the container for lay-

ers, their applications, services and interfaces. In addition, the GSOAs provided the means

to manage distribution using middleware abstractions. We also showed the SDP framework

inheriting the distribution, technology and implementation neutral properties of the GSOA.

Thus, by reusing concepts, principles and abstractions from a wide range of standard-based

technologies we defined the SDP framework to promote SDP standardisation.

154

G
en

er
ic

Se
rv

ic
e

D
el

iv
er

y
Pl

at
fo

rm
A

rc
hi

te
ct

ur
e

↓
L

a
y
er

s/
D

om
a
in

s
→

E
nd

U
se

r
Su

bs
cr

ib
er

C
on

ne
ct

iv
ity

Pr
ov

id
er

C
on

ve
rg

ed

N
et

w
or

k

Se
rv

ic
e

Pl
at

fo
rm

O
SS

/B
SS

E
nt

er
pr

is
e

Si
m

pl
e

A
pp

s
Pa

rl
ay

X
A

pp
s

Si
m

pl
e

Se
rv

ic
es

Pa
rl

ay
X

W
eb

Se
rv

ic
es

Si
m

pl
e

Se
rv

ic
e

M
id

dl
ew

ar
e

SO
A

an
d

E
SB

-b
as

ed

In
te

rm
ed

ia
te

A
pp

s
Pa

rl
ay

A
pp

Pa
rl

ay
A

pp

In
te

rm
ed

ia
te

Se
rv

ic
es

SC
Fs

SC
Fs

In
te

rm
ed

ia
te

Se
rv

ic
e

M
id

dl
ew

ar
e

R
M

I,
C

O
R

B
A

,S
O

A
an

d
E

SB
ba

se
d

C
om

pl
ex

A
pp

s
SI

P
U

E
gs

m
SC

F
an

d
SI

P
A

S

C
om

pl
ex

Se
rv

ic
es

SC
S,

IM
SS

F,

SC
IM

an
d

SI
P

A
S

C
om

pl
ex

Se
rv

ic
e

M
id

dl
ew

ar
e

SI
P

SI
P

an
d

D
ia

m
et

er

Se
rv

ic
e

Fu
nc

tio
ns

C
SC

Fs
,S

L
F

an
d

H
SS

Se
rv

ic
e

Fu
nc

tio
n

M
id

dl
ew

ar
e

SI
P

an
d

D
ia

m
et

er

R
es

ou
rc

e
Fu

nc
tio

ns
P-

C
SC

F
an

d
PD

F
M

G
C

F
an

d
B

G
C

F
SC

F,
E

C
F,

C
G

F,
...

R
es

ou
rc

e
Fu

nc
tio

n
M

id
dl

ew
ar

e
SI

P
SI

P
D

ia
m

et
er

R
es

ou
rc

es
G

G
SN

,S
G

SN
an

d
R

A
N

SG
W

an
d

M
G

W

R
es

ou
rc

e
M

id
dl

ew
ar

e
Pr

ot
oc

ol
s

Table 9.2: Mapping IMS onto the SDP Framework

155

Chapter 10

Proving the SDP Framework

To prove the concepts of the SDP framework we define an application that operates across

the SDP and provides a service to end-users. The application is created by an application

provider who is an IT-using enterprise. The application uses content provisioned by a me-

dia provider. The application is enhanced by a service provider to provision a service to

end-users. As a result, the service is used by end-users, who obtain access via their service

provider. Supporting the application provider, service provider, and end-users are the SDP

and its services. In addition, the telco supports all entities by providing transport connectiv-

ity and access to converged network capabilities.

We propose to implement a content delivering application that combines voice, video, pres-

ence and messaging services into one advanced service. We name this service Interactive

Personalised Tele-Vision (IPTV). The service aims to deliver real-time or on-demand tele-

vision content to end-users. In addition, IPTV enables end-users to use presence related

telephony and messaging while viewing their content.

To implement both SDP and IPTV service, we use the following approach. First, we de-

scribe the IPTV service requirements. Second, we define the SDP business and reference

models that support the IPTV service. Third, we determine services and interfaces required

to fulfil business relationships, reference points and IPTV functions. These services are

mapped onto the SDP framework GSOAs. Fourth, rather than rebuilding these services

and interfaces we reuse existing standard-based technologies to implement the SDP frame-

work GSOAs. Fifth, we detail interactions across the framework involving the IPTV service

and SDP services. Last, we show details of the implemented SDP and IPTV service on a

physical network.

156

Login

Logout

Register

Deregister

Check

Balance

Pay

Account

Account

History

Pay Per

View

IPTV End-User

View TV

Guide

Play TV

Stop TV

Pause TV

IPTV

End-User

View Buddy

Status

Invite

Buddies

«uses»

Set My

Status

Get Buddy

Status

Call

Buddies

Message

Buddies

«uses»

Get IPTV

Help

«uses»

«uses»

«uses»

«uses»

Record TV

IPTV Service IPTV Service

Figure 10.1: IPTV Use Cases

10.1 IPTV Service Description

The IPTV service is described from the perspective of the end-users. Hence, we define use

cases describing interactions between end-users and the IPTV service. The IPTV use cases

are shown in Figure 10.1. These use cases and their descriptions are:

Register: the end-user requests access to the IPTV service. End-users provide their details,

such as name, address and bank account details.

Deregister: registered end-users do not require access to the IPTV service. Also, end-users

are not billed for the IPTV service anymore.

Login: end-users access the IPTV service by providing usernames and passwords. Once

authenticated they are allowed to access the IPTV service.

Logout: end-users request deactivation of the IPTV service, however, they remain sub-

scribed to the service.

Check Account: an end-user requests their account details, such as account details or bal-

ance.

Account History: the end-user requests their entire account history.

Pay Account: end-users submit payment towards their IPTV account using various means,

such as inputting voucher numbers or credit card details.

Pay Per View: an end-user’s account is charged when viewing or recording special types

of television content.

157

View Television Guide: end-users request a list of available television content.

Play, Stop and Pause: end-users control the delivery of television content to their device.

The end-user may start, pause or stop television content. The end-user may also be

charged for requesting special content. Hence, we include the pay per view use case.

Record: end-users request the service to store live television content to view at a later

stage. This scenario may involve billing the end-user. Hence, we include the pay per

view use case.

Get Buddy Status: the service obtains presence information for one or more of the end-

user’s friends. These friends are also registered to use the IPTV service. Examples of

presence status includes busy, online, away and do not disturb.

View Buddy Status: the end-user requests the status of one or more friends.

Invite Buddy: end-users invite one or more friends to watch television. Only friends that

have an available presence status may join.

Call Buddy Use: end-users initiate a call between themselves and their friends. These

calls may be normal voice calls or advanced multimedia calls. Only friends with an

available presence status may join the call.

Message Buddy: end-users send messages to their available friends.

Set My Status: end-users set their presence status.

Get IPTV Help: at any time the end-user may require help using the service. Hence, end-

users activate an interactive tutorial and follow its voice prompt to troubleshoot ser-

vice related problems.

10.2 Business Model

To show business entities involved in providing the IPTV service, we illustrate a specific

SDP business model in Figure 10.2. This business model is derived from the generic SDP

business model, shown in Figure 9.2(a).

The figure shows all SDP customers, that is, consumers, providers and brokers involved in

providing the IPTV service. Customers include an IPTV application provider, who creates

the application to deliver content from a content source. The application provider uses a

content broker to locate diverse content sources. The content sources are managed by media

providers. The IPTV application is enhanced by a service provider, to enable consumer

158

BRCP

BRCP

BRBP

BRPP

BRPP

BRPP

BRPP

BRPP

BRBP

BRCP

BRCB BRBP

BRCC BRCP

BRBP

BRBP

IPTV

User

Service

Subscriber

Service

Broker

IPTV

App

Provider

Media

Provider

Content

Broker

Telco (SDP and Connectivity)

IPTV

Service

Provider

Figure 10.2: SDP Business Model Supporting IPTV

access to an IPTV service. The service provider provisions the IPTV service to service

brokers. Service brokers enable consumers to locate the IPTV service. These consumers

include individual end-users or service subscribers, who act on behalf of many end-users.

The SDP business model uses all business relationship points to specify business objectives

shared between the various customers. For the SDP and IPTV service, the business relation-

ship points specify policies for the business entity interactions. Examples of these policies

include:

• IPTV application providers are allowed to access content provisioned by multiple

media providers.

• Media providers may register their content with multiple content brokers.

• IPTV end-users are allowed to subscribe for the IPTV service from service providers,

but not application providers.

• Service brokers are allowed to offer the IPTV service to both service subscribers and

end-users. However, service subscribers may not re-offer the service to other service

subscribers.

• The connectivity provider must provide the required QoS to stream content to the

IPTV end-user. If the appropriate QoS cannot be guaranteed the IPTV end-user must

be notified and provided with alternative means of streaming content.

159

End-User

Or

Subscriber
SDP

Transports
Media

Provider

IPTV App

Provider

OSS

BSS

RAS

RNS RDS

RCS ROS

Service

Provider

Service/

Content

Brokers

Figure 10.3: SDP Reference Model for IPTV

10.3 Formalising Interactions

The SDP must support the various business relationships to deliver the IPTV service to

end-users. These relationships are implemented as numerous interactions between busi-

ness entities. Also, interactions are formalised to ensure consistency and interoperability

between the various consumers, providers and brokers. To determine these interactions we

derive a SDP reference model. The reference model is based on the generic SDP reference

model shown in Figure 9.3. The derived SDP reference model is shown in Figure 10.3.

The reference model only shows reference points being used by the SDP to support the

IPTV service. In the reference model, the RAS reference point is crucial for supporting

IPTV the application provider, service provider and brokers. Also, the RDS reference point

is required to ensure management and delivery of content by the media provider. The ROS

reference point is also required to enable IPTV end-user access to their billing details and to

be billed for using the service. The RNS reference point is required, such that the SDP uses

converged network capabilities to deliver the IPTV service and content to end-users. The

RCS reference point enables the SDP to communicate with the IPTV end-user, if required.

To specify these interactions we formalise them as interfaces that are exposed by SDP ser-

vices. In addition, services implementing interfaces contribute logic to satisfy the business

relationship policies. To determine these interfaces and associated services we use the SDP

framework.

10.4 Services, Interfaces and SDP Framework

For the IPTV service, we use the SDP as the IPTV service provider, service broker and con-

tent broker. Hence, SDP service interfaces are required to support these roles and satisfy the

160

associated business relationship policies. However, the SDP must also provide diverse ser-

vice interfaces for the external IPTV application provider and media provider. These service

interfaces aid in IPTV application development and content management respectively.

To uncover the required SDP services and interfaces, we define the use cases shown in

Figure 10.4. The use cases illustrate functions required by the SDP to perform service

provider, service broker and content broker roles. In addition, the use cases show functions

provided by the SDP to satisfy external application and media providers. The use cases and

their descriptions are:

Set User Presence: the IPTV application changes end-user presence information stored by

the SDP.

Get User Presence: the IPTV application requests end-user presence information from the

SDP.

Setup Call: the IPTV application requests a normal or multiparty voice/video call to be

setup between end-users.

Send Message: the IPTV application requests a message be sent to an end-user.

Find Content: the IPTV application requests a list of specific content from content broker,

who is the SDP. The application may query details on content contained in the list.

Deliver Content: the IPTV application requests the delivery of content from a media source

to end-users. The content includes audio, video and data.

Register Content: the media provider application registers itself as a content provider with

the SDP (content broker). In addition, the application provides information about

its available content, such as location, format, description, time of availability and

length.

Manage Content: the media provider application updates its available content informa-

tion that has been registered with the SDP. The media provider application may also

remove content from its registration or add new content.

Register Services: the IPTV service provider, who is also the SDP, uses an application to

register its IPTV service, such that end-users can locate, register and use it.

Manage Subscribers: the IPTV service provider application requests registration of end-

users to access and use the IPTV service. The application may also deregister end-

users and verify login information.

161

Get User

Presence

Send

Message

Set User

Presence

Setup

Call

IPTV App

Provider

Media Provider

Find

Content

Deliver

Content

Register

Content

Manage

Content

Content Broker Role

Service Provider

Role

Service Delivery Platform

IPTV Service

Provider

Manage

Subscribers

Service Broker

Role

IPTV End-User/

Service Subscriber

Find Me

Services

Manage

Accounts

Register

Service

Figure 10.4: SDP Specific Use Cases

Manage Accounts: the IPTV service provider application obtains information about end-

users billable accounts. The application may also modify these accounts, such as

billing end-users for delivery of special content.

Find Me Services: the end-user application requests the SDP, who is also a service bro-

ker, to obtain a list of available services, such as the IPTV service. The end-user

application also obtains details on the available services in the list.

Based on these use cases and the previous SDP reference model, business model and IPTV

use cases, we define the SDP to provide the following services:

presence service: provides an interface that manages end-users presence information.

call service: provides and interface that enables application to invoke classical and en-

hanced telephony services.

messaging service: enables messaging functions to be performed on its interface.

stream service: enables applications to invoke its interface, so as to delivery content from

a media source to end-users.

content management service: exposes an interface for applications to register, manage

and locate content.

162

Simple Service Middleware

Service Function Middleware

Resource Function Middleware

Resource Middleware

Intermediate Service Middleware

Complex Service Middleware

IPTV Service

Provider App

IPTV

Provider App

End-User

IPTV App

Service

Function

Service

Function

Service

Function

Service

Function

Service

Function

Service

Function

Service

Function

Resource

Function

Resource

Function

Resource

Function

Resource

Function

Resource

Function

Resource

Function

Resource

Function

Resource Resource ResourceResource Resource ResourceResource

Media

Provider App

Subscription Presence Call

Service

Manager
Billing Message

Stream

Content

Content

Manager

End-User Domain Subscriber Domain Service Platform Domain Enterprise Domain

Connectivity Provider Domain Converged Network Domain OSS/BSS Domain

Figure 10.5: SDP Framework with Simple Services Enabling IPTV

service management service: provides an interface to enable end-user applications to lo-

cate the IPTV service offered by a service provider.

subscription service: provides an interface for the IPTV service provider application to

register, deregister and verify login details of end-users.

billing service: its interface abstracts access to telco OSS/BSS functionality, such as charg-

ing end-users and providing account management.

We present the identified SDP services and their interfaces within the SDP framework.

This SDP framework is shown in Figure 10.5. In the figure, we contain these services in

the simple GSOA. This enables IPTV and media provider applications to use converged

network capabilities at a high level of abstraction. As a result, the providers do not require

extensive telco network knowledge.

To complete the framework we require intermediate and complex services. Also, lower

layer functions must be present with their associated physical resources. However, rather

than building all GSOAs and physical resources, we reuse existing technologies. These

technologies must provide open standard-based service interfaces that are applied across all

GSOA layers of the SDP framework.

163

10.5 Mapping Standard-based Technologies

To implement the SDP framework and provide the IPTV service, we use the standardised

IMS and Parlay set of technologies. We use both Parlay and Parlay X APIs to provide

service interfaces for the service layer GSOAs. The IMS functional entities provide lower

layer abstractions of existing physical network resources. These network resources being

the Gateway GPRS Support Nodes (GGSN), media gateways, signaling gateways, media

stores and existing telco billing systems. The SDP framework with mappings of Parlay,

Parlay X and IMS are shown in Figure 10.6.

The IMS functional entities are used to implement both resource function GSOA and ser-

vice function GSOA. For the resource functions the Policy Decision Function (PDF), Me-

dia Gateway Controller Function (MGCF), Breakout Gateway Function and Media Re-

source Function Processor (MRFP) are used. In the OSS/BSS domain, the IMS provides

the Charging Gateway Function (CGF). For the service functions the IMS provides the

proxy, interrogating and serving Call Session Control Functions (CSCFs) and Home Sub-

scriber Server (HSS). The IMS also provides end-user, media processing and OSS/BSS

service functions, such as the SIP user equipment (UE), Media Resource Function Con-

troller (MRFC) and Charging/Event Collection Function (CCF/ECF) respectively. The IMS

service functions invoke resource functions using protocols, such as SIP and Diameter [42].

These protocols hide limited distribution complexities. Hence, the IMS protocols provide

implementations of the resource and service function GSOA middleware planes.

The IMS also contributes SIP application servers to the realisation of the complex GSOA.

However, we use the Parlay SCS to encapsulate these SIP application servers. Thus, the

Parlay SCS implements the complex GSOA. The intermediate GSOA is implemented using

the Parlay SCFs. The SCFs represent services that expose their capabilities using APIs.

Both SCS and SCFs are implemented using CORBA-based middleware. CORBA abstracts

numerous distribution complexities using standard-based middleware services. Hence, it

provides a rich implementation for the intermediate and complex GSOA middleware planes.

To abstract the Parlay-based intermediate GSOA, the Parlay X APIs are used. These APIs

are implemented as web services. Hence, the simple GSOA is implemented using web

service technologies. By using web services, the simple GSOA’s middleware plane is im-

plemented as an ESB. The ESB abstracts distribution complexities associated with the web

services. Using the web services across the ESB are various web-based applications, such

as the IPTV application and media provider application.

164

ESB-based Middleware

Protocol-based Middleware

Protocol-based Middleware

Protocol-based Middleware

CORBA-based Middleware

CORBA-based Middleware

IPTV Service

Provider App

IPTV Provider

App

End-User

IPTV App

Display

Service

Media

Manage

Service Service

SCS

Client
SCS

SCS

Client

I-CSCF S-CSCF HSSSIP UE CCF ECF

PDF MRFP BGFC
Resource

Function

Resource

Function
CGF

SGSN/

GGSN
Resource ResourceTerminal

Billing

System

Billing

System
Resource

Media

Provider App

Record

Service

Input

Manager

P-CSCF MRFC

MGCF
Resource

Function

SCS

Client

SCS

Client

SCS

Client

Payment
Short

Message

Audio

Call

Presence

3rd Party

Call

UI SCF

Policy

SCF
PAM SCF

MPCC

SCF

Account

SCF

Charging

SCF

Media

Mngt SCF
DSC

SCF

Subscription

Framework

SCF

Policy

Mngt

Account

Mngt

Content

Mngt

Content

Delivery

Service

Mngt

End-User Domain Subscriber Domain Service Platform Domain Enterprise Domain

Connectivity Provider Domain Converged Network Domain OSS/BSS Domain

Figure 10.6: Using Parlay and IMS Standards to implement a SDP

10.5.1 Alternatives

In Parlay X, web services may be used to directly access network resources and capabili-

ties [135]. Thus, as an alternative the SDP framework may use Parlay X to access service

functions rather than SCFs. In this alternative the intermediate and complex GSOA layers

are collapsed into the simple service GSOA. Also, we may completely remove Parlay X

as the simple GSOA layer. As a substitute we may use a Parlay-based intermediate GSOA

layer to promote application creation and exposure of network abstractions to external en-

terprises.

Similarly to manipulating GSOA layers, we may alter SDP framework domains. For in-

stance, the service subscriber domain may be removed if the end-user is within his/her home

IMS network. Hence, the P-CSCF and resources are removed and not accessed from the

customer domain. Also, a telco may assume the access provider role for end-users. In addi-

tion, the telco may provide the OSS/BSS capabilities to bill the end-users for accessing and

consuming services. The telco may also provide IMS functions and network resources that

contributes to the converged network domain. As a result, the access provider, converged

network and OSS/BSS domains may merge into a single telco domain.

165

Mapping of other standardised technologies to the SDP framework may require manipula-

tion of GSOA layers and distributed domains. As a result, specific SDP architectures are

created based on these manipulations. Though incorporating technologies, these derived ar-

chitectures inherit the generic concepts, principles and abstractions of the SDP framework.

10.6 SDP and IPTV Service Implementation

As shown in Figure 10.6, we identify existing Parlay X web services and Parlay SCFs that

support the development of the IPTV service. We also provide recommendations for new

web services, SCFs and SCS logic to support the IPTV service.

A collection of Parlay X web services are identified to provide the IPTV functions. These

web services also abstract the necessary Parlay SCFs. These web services are the:

• payment [136] web service that simplifies the charging [137] SCF.

• account management [138] web service that simplifies the account management [139]

SCF.

• short message [140] web service that simplifies the user interaction [141] SCF.

• audio call [100] web service that also simplifies the user interaction SCF.

• 3rd party call [99] web service that simplifies the multi-party call control [142] SCF;

• presence [143] web service that simplifies the presence and availability SCF [144].

No suitable web services are defined to provide subscription management, service manage-

ment, content management and content delivery functions needed by the SDP and IPTV

service. However, Parlay defines a framework SCF [90] that provides some subscription

and service management functions. Also, Parlay uses a data session control SCF [145] to

manage data sessions, that may be modified to stream content. Hence, we identify new sub-

scription management and service management web services that abstract the framework

SCF. We also define a content delivery web service to abstract the modified data session

control SCF.

Parlay defines a policy management SCF [146] that is used by the telco or external enter-

prise to define and enforce business rules and contracts. Policies may be defined to regulate

SCF usage. Hence, policies control content delivery, locating of services/content, making

calls, sending messages and service billing. Hence, we motivate the use of the policy SCF

166

to manage business relationships between the SDP, IPTV application provider and media

provider. However, no Parlay X web service is defined to abstract the policy management

SCF. This policy management web service enables application and media providers to de-

fine their own policies or view telco defined policies. As a result, we identify the policy

management web service to be added to the SDP, to fulfil its requirements and IPTV func-

tions.

ESB middleware is used to abstract the distribution of the Parlay X web services. How-

ever, ESB solutions include both standardised and proprietary technologies. Hence, we

only incorporate standard-based technologies that are used in ESBs, to hide web service

distribution complexities. These included basic web services technologies and protocols,

such as XML, SOAP and HTTP. As a result, the Parlay X web services use a limited ESB

that does not provide additional middleware functionality.

The Parlay SCS, implementing the complex GSOA, enables conversion between Parlay SCF

invocations and protocols used to communicate with the IMS functional entities. However,

there is a lack of standardisation on the SCS API and the conversion of most SCF invoca-

tions to SIP or Diameter protocols. As a result, we add new methods to the limited SCS API

and provide a proprietary implementation. In addition, we create a CORBA-based network

simulator that hides lower IMS functions and facilitates communication with SCS on its

API. The simulator contains distributed SCS clients. These clients simulate network events

and communicate with the Parlay SCS across the various SDP framework domains.

10.6.1 Interactions via APIs

The interactions between the standard-based web services, SCFs and SCS APIs follow those

defined in the Parlay X, Parlay and IMS standards. Examples of these interactions are shown

in Appendix B.

Defining the subscription and policy management web service APIs, by abstracting the

framework SCF and policy SCF APIs, is a complex task. As a result, we provide rec-

ommendations and example sequence diagrams showing these web services and SCFs in

Appendix B. In the appendix we also provide recommendations for the content manage-

ment web service API and associated media management SCF API. In addition, we provide

example sequence diagrams showing their interactions. In Appendix B, we provide rec-

ommendations and sequence diagrams for an extended SCS that manages SIP conversions

required to satisfy most SCF invocations.

In this section we show, as an example, interactions between the new content delivery web

167

service and modified data session control SCF. We also show interactions between SCS and

SCS clients that simulate data session network events.

In Figure 10.7 we show the end-user initiating the delivery of television content to his/her

terminal. The interactions between the applications, web service and SCF using their APIs

are as follows:

1. The end-user requests to watch a television programme from the IPTV service provider.

2. The service provider requests the IPTV application provider to start the television

programme on the end-user device.

3. The IPTV application provider invokes the newly defined deliver content web service

to start a data session between the end-user and media source.

4. The web service creates a data session callback object.

5. The web service invokes the data session control SCF using this new method, to create

a abstract representation of the data session.

6. The SCF creates the data session object.

7. The web service sets the charge plan for this session, based on the policies defined

for accessing and delivering the required content.

8. The web service requires notification of any changes to the data session.

9. The web service requests the connection of the end-user (client) to the data session.

10. The data session object requests the SCS to create the physical data session in the

converged network and connect the end-user. The web service is informed that the

client is being connected.

11. The web service requests the connection of the media source (server) to the data

session.

12. The data session object requests the SCS to connect the media source to the physical

data session. The web service is informed that the server is being connected.

13. Once both client and server are connected, the SCS informs the data session object.

14. The data session object informs the web service callback object that a successful data

session is created.

15. The callback object informs the web service that a television programme is being

delivered to the end-user.

168

D
C
 W

S
:S
e
s
s
io
n
M
a
n
a
g
e
r

E
n
d
-U
s
e
r
IP
T
V
 A
p
p

IP
T
V
 S
e
rv
ic
e
 P
ro
v
id
e
r

A
p
p

S
C
S

IP
T
V
 P
ro
v
id
e
r
A
p
p

1
.
s
ta
rt
T
v
R
e
q
u
e
s
t

2
.
s
ta
rt
T
v
R
e
q
u
e
s
t

3
.
s
ta
rt
S
e
s
s
io
n
R
e
q
u
e
s
t

D
S
C
 S
C
F
:I
p
D
a
ta
S
e
s
s
io
n

C
o
n
tr
o
lM
a
n
a
g
e
r

5
.
c
re
a
te
S
e
s
s
io
n

D
S
C
 S
C
F
:I
p
D
a
ta
S
e
s
s
io
n

6
.
n
e
w

9
.
c
o
n
n
e
c
tR
e
q
 (
c
lie
n
t)

1
0
.
c
o
n
n
e
c
tR
e
q
 (
c
lie
n
t)

"p
e
n
d
in
g
"

A
p
p
 L
o
g
ic
:I
p
A
p
p

D
a
ta
S
e
s
s
io
n

"r
e
tu
rn
"

1
1
.
c
o
n
n
e
c
R
e
q
 (
s
e
rv
e
r)

1
4
.
c
o
n
n
e
c
R
e
s
 (
c
lie
n
t/
s
e
rv
e
r)

1
5
.
"f
o
rw
a
rd
 r
e
s
p
o
n
s
e
"

s
ta
rt
S
e
s
s
io
n
R
e
s
p
o
n
s
e

s
ta
rt
T
v
R
e
s
p
o
n
s
e

s
ta
rt
T
v
R
e
s
p
o
n
s
e

8
 .
s
u
p
e
rv
is
e
D
a
ta
S
e
s
s
io
n
R
e
q

7
.
s
e
tD
a
ta
S
e
s
s
io
n
C
h
a
rg
e
P
la
n

4
.
n
e
w

1
2
.
c
o
n
n
e
c
R
e
q
 (
s
e
rv
e
r)

"p
e
n
d
in
g
"

"r
e
tu
rn
"

1
3
.
c
o
n
n
e
c
R
e
s
 (
c
lie
n
t/
s
e
rv
e
r)

Figure 10.7: Starting a Data Session for Streaming Content

In Figure 10.8 we show the end-user pausing the delivery of television content to his/her

terminal. The interactions between the applications, web service and SCF using their APIs

are as follows:

1. The end-user requests the IPTV service provider to pause the current television pro-

gramme.

169

A
p
p
 l
o
g
ic
:I
p
A
p
p
D
a
ta
S
e
s
s
io
n

D
C
 W

S
:S
e
s
s
io
n
M
a
n
a
g
e
r

E
n
d
-U
s
e
r
IP
T
V
 A
p
p

IP
T
V
 S
e
rv
ic
e
 P
ro
v
id
e
r

A
p
p

S
C
S

IP
T
V
 P
ro
v
id
e
r
A
p
p

1
.
p
a
u
s
e
T
v
R
e
q
u
e
s
t

2
.
p
a
u
s
e
T
v
R
e
q
u
e
s
t

3
.
p
a
u
s
e
S
e
s
s
io
n
R
e
q
u
e
s
t

D
S
C
 S
C
F
:I
p
D
a
ta
S
e
s
s
io
n

4
.
p
a
u
s
e
C
o
n
n
e
c
R
e
q

5
.
 p
a
u
s
e
C
o
n
n
e
c
R
e
q

"p
e
n
d
in
g
"

7
.
p
a
s
u
e
C
o
n
n
e
c
R
e
s

8
.
"f
o
rw
a
rd
 r
e
s
p
o
n
s
e
"

p
a
u
s
e
S
e
s
s
io
n
R
e
s
p
o
n
s
e

p
a
u
s
e
T
v
R
e
s
p
o
n
s
e

p
a
u
s
e
T
v
R
e
s
p
o
n
s
e

"r
e
tu
rn
"

6
.
p
a
u
s
e
C
o
n
n
e
c
R
e
s

Figure 10.8: Pausing a Data Session Streaming Content

2. The service provider requests the IPTV application provider to pause the current tele-

vision programme being delivered to the end-user device.

3. The IPTV application provider invokes the newly defined deliver content web service

to pause the data session between the end-user and media source.

4. The web service invokes the data session object using this new method, to pause the

data session.

5. The data session object requests the SCS to pause the data session in the network.

170

6. Once the data session is paused, the SCS informs the data session object.

7. The data session object informs the web service on its callback object.

8. The callback object informs the web service of the successful pause request. The

response is forwarded to the various applications and end-user.

In Figure 10.9 we show the end-user resuming and stopping the delivery of television con-

tent to his/her terminal. The interactions between the applications, web service and SCF

using their APIs are as follows:

1. The end-user requests the IPTV service provider to resume the paused television pro-

gramme.

2. The service provider requests the IPTV application provider to resume the currently

paused television programme being delivered to the end-user device.

3. The IPTV application provider invokes the newly defined deliver content web service

to resume the data session between the end-user and media source.

4. The web service invokes the data session object using this new method, to resume the

paused data session.

5. The data session object requests the SCS to resume the data session in the network.

6. Once the data session is resumed, the SCS informs the data session object.

7. The data session object informs the web service on its callback object.

8. The callback object informs the web service of the successful resume request. The

response is forwarded to the various applications and end-user.

9. The end-user requests the IPTV service provider to stop the current television pro-

gramme.

10. The service provider requests the IPTV application provider to stop the current tele-

vision programme being delivered to the end-user device.

11. The IPTV application provider invokes the deliver content web service to stop the

data session between the end-user and media source.

12. The web service invokes the data session object using its existing release method, to

stop the data session. The web service may also delete its callback object, since it is

no longer being used.

171

D
C
 W

S
:S
e
s
s
io
n
M
a
n
a
g
e
r

E
n
d
-U
s
e
r
IP
T
V
 A
p
p

IP
T
V
 S
e
rv
ic
e
 P
ro
v
id
e
r

A
p
p

S
C
S

IP
T
V
 P
ro
v
id
e
r
A
p
p

D
S
C
 S
C
F
:I
p
D
a
ta
S
e
s
s
io
n

1
.
re
s
u
m
e
T
v
R
e
q
u
e
s
t

2
.
re
s
u
m
e
T
v
R
e
q
u
e
s
t

3
.
re
s
u
m
e
S
e
s
s
io
n
R
e
q
u
e
s
t

1
3
.
re
le
a
s
e

4
.
re
s
u
m
e
C
o
n
n
e
c
R
e
q

7
.
re
s
u
m
e
C
o
n
n
e
c
R
e
s

8
.
"f
o
rw
a
rd
 r
e
s
p
o
n
s
e
"

re
s
u
m
e
S
e
s
s
io
n
R
e
s
p
o
n
s
e

re
s
u
m
e
T
v
R
e
s
p
o
n
s
e

re
s
u
m
e
T
v
R
e
s
p
o
n
s
e

9
.
s
to
p
T
v
R
e
s
q
u
e
s
t

1
2
.
re
le
a
s
e

5
.
re
s
u
m
e
C
o
n
n
e
c
R
e
q

"p
e
n
d
in
g
"

"r
e
tu
rn
"

1
0
.
s
to
p
T
v
R
e
s
q
u
e
s
t

1
1
.
e
n
d
S
e
s
s
io
n
R
e
q
u
e
s
t

6
.
re
s
u
m
e
C
o
n
n
e
c
R
e
s

A
p
p
 l
o
g
ic
:I
p
A
p
p
D
a
ta
S
e
s
s
io
n

A
p
p
lo
g
ic
:I
p
A
p
p
D
a
ta
S
e
s
s
io
n

Figure 10.9: Resuming and Stopping a Data Session Streaming Content

13. The data session object requests the SCS to stop the data session in the network and

release all used resources.

In Figure 10.10 we show the SCS and data session SCS client interactions. The data session

SCS client forms part of our network simulator that abstracts lower network events and

interactions. The interactions between SCS and data session SCS client APIs are as follows:

1. The SCS requests the simulator to create a data session and attached a client to the

session.

2. The simulator simulates the session setup and the attachment of a client using its

address.

172

SCS
SCS Client (Data Session)

1. connecReq (client)

4. connecReq (server)

7. pauseConnecReq

2. Simulate: create

PDP context and

connect to client

5. Simulate: create

connection to server

8. Simulate: pause

data session

10. resumeConnecReq

11. Simulate: resume

data session

13. relase

14. Simulate: release

data session resources

3. connecRes (client)

6. connecRes (Server)

9. pauseConnecRes

12. resumeConnecRes

Figure 10.10: Simulating Network Data Session Manipulation

3. The simulator informs the SCS of the successful creation of a data session and at-

tached client.

4. The SCS requests the simulator to attach a server to an existing data session.

5. The simulator simulates the attachment of the server using its address.

6. The simulator informs the SCS of the successful attachment of a server.

7. The SCS requests the simulator to pause an existing data session, such that both client

and server cannot communicate across the session.

8. The simulator simulates the session being paused.

9. The simulator informs the SCS that the data session is paused.

10. The SCS requests the simulator to resume and existing data session that has been

paused.

11. The simulator simulates the resuming of a session, such that client and server may

communicate.

12. The simulator informs the SCS that the data session has been resumed.

13. The SCS requests the simulator to stop and release an existing data session.

14. The simulator simulates the disconnection of the client and server from the data ses-

sion and the release of network resources used by the data session.

173

IP/MPLS Core

(Converged Network)

Service Subscriber

Domain

IPTV Service

Provider Domain

IPTV Application

Provider Domain

Telco Service

Platform Domain

Converged

Network and

OSS/BSS

Domains

IPTV Client

Application

Web

Server

Web

Server

Parlay X

Gateway
Parlay

Gateway

Data Session

Simulator

OSS/BSS

Simulator

Call Control

Simulator

IVR

SimulatorIPTV Service

Customer Doman

Connectivity

Provider Doman

Figure 10.11: Deployment of SDP Implementation

10.6.2 Building, Deployment and Simulation

To implement applications and Parlay X web service we use the Java [47] programming

language. Also, we use Java related products, such as the Netbeans [147] integrated devel-

opment environment (IDE) to manage coding and Sun application server [148] to house the

Parlay X web services, IPTV service provider application and IPTV provider application.

The Java programming language provides an implementation of CORBA. Hence, the Parlay

SCFs, SCS and network simulator (SCS clients) implementation is also Java-based.

The application, web service, SCF, SCS and SCS client software is implemented and de-

ployed in the Wits University convergence laboratory [149]. The laboratory provides a

diverse networking infrastructure to support the SDP and IPTV service software imple-

mentation. The software is distributed across the laboratories network equipment. This

distribution is illustrated in the network diagram shown in Figure 10.11.

The diagram shows the division of the network, equipment and software across the SDP

framework domains. We show the converged network supporting an IP-based transport

network. Also, the network diagram shows various servers containing the SCS clients.

These clients simulate OSS/BSS, call control, data session and IVR functionality. We use

multiple web servers to host the IPTV service provider application, application provider

174

Client or Server IP Address Machine Name Software

CORBA Naming Ser-

vice

192.168.40.2 Zion - Windows Server Java Runtime Environ-

ment (JRE)

Parlay Gateway

(SCF/SCS)

192.168.40.2 Zion - Windows Server JRE

Parlay X Gateway

(Web Services)

192.168.40.3 Matrix - Windows

Server

Java Application Server using

JRE

Network Simulators 192.168.40.4 Neo - Windows Server JRE

Service Provider Appli-

cation

192.168.40.5 Trinity - Windows

Server

Java Application Server using

JRE

Application Provider

Application

192.168.40.6 Agent Smith - Win-

dows Server

Java Application Server using

JRE

End-User Application 192.168.40.7 Morpheus - Windows

Desktop

JRE

Table 10.1: SDP Deployment

application and Parlay X gateway. The Parlay gateway is contained within an application

server. In addition, the diagram shows the end-users with fixed and mobile connectivity to

a service subscriber.

We detail the equipment, their contained software and network addresses in Table 10.1.

However, additional details on the SDP and IPTV service implementation and deployment

is given in Appendix C. This appendix describes lessons learned using web services and

CORBA for the SDP.

10.7 Results

The SDP implementation satisfies the business model and business relationship points. The

SDP performs the service provider, service broker and content broker roles. The SDP takes

on multiple roles since it uses its abundant services to easily satisfy these responsibilities

and the associated business relationships. Also, by performing these roles the SDP remains

the locus of control in the business model. For instance, the SDP manages external access

to its services and therefore the converged network resources and capabilities. As a result,

the SDP defines policies that manage business relationships with the external enterprises.

Also, the SDP ensures adherence to these policies.

The SDP implementation uses technologies to realise the framework’s layered and domain

distributed GSOAs. These technologies include Parlay X web services, Parlay SCFs and

IMS functional entities. The implemented GSOAs consistently map to reference points

175

of the SDP reference model. The reference points promote standardised interactions be-

tween SDP, telco, end-users and external enterprised. However, to fully implement refer-

ence points some Parlay X and Parlay APIs were modified. In addition, some new interfaces

were identified. Thus, the SDP implementation realises reference points by:

• using existing standard-based interfaces to implement a GSOA service interfaces;

• modifying existing standard-based interfaces to provide the required level of abstrac-

tion when implementing GSOA service interfaces; and

• creating new interfaces to implement GSOA service interfaces and promoting their

standardisation.

The SDP implementation used all framework GSOA layers and distributed domains. How-

ever, the choice of technologies enables us to create alternative SDP architectures by col-

lapsing layers or joining domains. For example, using Parlay X web services to overlap

the intermediate and complex GSOA layers. The modification of the SDP framework into

specific architectures illustrates its versatility. In addition, derived architectures retain the

framework’s concepts, principles and abstractions.

By implementing the SDP and IPTV application using Parlay X, Parlay and IMS, we have

evaluated their use for standardising the SDP and providing various service interfaces. We

illustrated many gaps within these technologies interfaces for the SDP. Hence, additional

specification is required to ensure a complete standards-based SDP using Parlay X, Parlay

and IMS. However, we may evaluate other technologies by mapping their standard-based

interfaces to the framework’s GSOAs service interfaces and defining an application that

makes full use of these interfaces.

Therefore, the SDP framework provides a technology neutral foundation of concepts and

abstractions that enables the creation of SDP architectures. These architectures are imple-

mentable using a variety of standard-based technologies that provide open service inter-

faces. In addition, the framework enables the evaluation of the technologies interfaces for

a standards-based SDP implementation.

176

10.8 Summary

In this chapter we defined an SDP framework implementation that supports a IPTV service.

We defined the requirements for the IPTV service using various use cases. The SDP im-

plementation was based on a business model that defined various business entities, relation-

ships and policies to support the IPTV service. A reference model was also used to identify

reference points that the SDP implementation must formalise and implement. These refer-

ence points are elaborated as GSOAs contained in our SDP framework. We also used use

cases to identify services that the GSOAs must provide to implement the reference points.

The GSOAs were mapped to standard-based technologies. These technologies were the web

services based Parlay X, CORBA-based Parlay and SIP-based IMS. These technologies pro-

vided implementations for the GSOAs middleware planes. Each technology provided open

standard-based interfaces that mapped to GSOA service interfaces. However, we showed

that these interfaces did not completely support the IPTV service and therefore did not aid in

fulfilling business relationships and implementing reference points. As a result, we defined

new web services and SCF interfaces. Also, we modified existing SCF interfaces to provide

the required level of abstraction needed to support the IPTV service. We also implemented

our own network simulator to manage Parlay and IMS interworking, since their interactions

are not fully standardised. The SDP and IPTV service implementation was deployed on a

physical network. The implementation proved the SDP framework concepts by showing

the benefits of using the technology, implementation and distribution neutral framework to

promote SDP standardisation.

177

Chapter 11

Contribution of our SDP Framework

This work set out describing the current trend of convergence between telco and IT-based

enterprise networks. A major benefit of telecom-IT convergence is the development of a

IT-based service platform that supports development, delivery and management of diverse

services across telco and enterprise infrastructures. Current service platforms that support

telecom-IT convergence are limited and based on proprietary technologies. In addition,

the service platforms provide limited abstractions to hide complexities associated with con-

vergence. We used the SDP concept to model a service platform framework that provides

numerous abstractions and promotes SDP standardisation. The SDP framework was defined

from different perspectives on standardised technologies, that are used in both telco and IT

networks.

11.1 Summary of Results

From all perspectives we uncovered the concept of separation between service platforms and

network functions. This separation ensured network intelligence is used independently of

underlying network technologies. Also, the use of open standards for both service platforms

and network functions maintain this separation.

We also uncovered numerous abstractions from all the perspectives. These include busi-

ness models that justify external enterprise access to the SDP. By decomposing the business

models we uncovered reference models with reference points. Reference points promote

standardised interactions between the SDP and external enterprises, customers and the un-

derlying network.

We found service abstractions to expose interfaces to implement reference points. Service

interfaces expose diverse functionality to entities, while services implement logic to satisfy

178

their interfaces. Service interfaces are technology, implementation and distribution neutral.

We determined that these interface properties enabled diverse application implementations

to access services.

Services and their interfaces are modeled into horizontal layers that are distributed across

various domains. We found multiple layers are defined to structure services, based on

their level of abstraction. Also, each layer exposes their service interfaces to higher lay-

ers. Hence, layers access each others functions by using their service interfaces. We also

determined layers that expose their service interfaces to external enterprises represent points

of integration between telco and IT-based infrastructures. This promotes standards-based

telecom-IT convergence.

Another key abstraction found is the middleware plane that hides the distribution of layers

and their services. The middleware plane abstracts numerous complexities associated with

distribution, such as diverse software implementations, heterogenous computing platforms

and unreliable communication links. We found that the middleware plane provides a wealth

of services that are also standardised via their interfaces. These middleware services are

used to support the operation and management of SDP services.

From the enterprise perspective we found a technology neutral container that embodies all

the concepts and abstractions we uncovered. This container is the Generic Service Ori-

ented Architecture (GSOA). From the converged perspective we used the GSOA to define

a SDP architecture void of technology, implementation and distribution. The SDP architec-

ture used GSOAs to implement reference points. Also, the GSOAs abstracted each other

since they are horizontally layered and accessible via their service interfaces. The GSOA

middleware planes abstracted the various distribution complexities.

We defined the SDP framework to represent a generic and extendable SDP architecture.

The SDP framework is based on a business model and reference model, showing business

relationships and reference points between SDP, telco, customers and external IT-using en-

terprises. To realise business relationships and reference points, the framework integrated

multiple GSOAs. The framework used three GSOAs to model varying levels of services and

their interfaces. In addition, we used GSOAs to model lower layer network functions and

resources. Domains were used to distribute the framework GSOAs across customer, telco

and enterprise areas. These domains related to the entities defined in the SDP business and

reference models. However, the framework used the GSOA middleware planes to provide a

bus-like abstraction, to hide distribution complexities.

We implemented the SDP framework to support an application that delivered content to end-

users. The implementation was based on mapping technologies, with open standard-based

179

service interfaces, to the GSOAs. In addition, we implemented the GSOA middleware

planes using standard-based technologies, such as CORBA. To fully support the applica-

tion and SDP we motivated the standardisation of new service interfaces. By mapping

the technologies we showed how the SDP framework layers and domains may be altered to

accommodate specific service interfaces. These modifications produced specific SDP archi-

tectures that inherited and maintained the framework concepts. This showed the versatility

of the SDP framework.

11.2 Conclusion

This work contributes a way of thinking about the SDP, such that network and telecom-IT

convergence complexities are simplified. This way of thinking is captured in the SDP frame-

work. The framework represents generalised concepts extracted from many SDP perspec-

tives, found in telecom, IT and Internet standards. The various SDP concepts are structured

as abstractions. The SDP framework contains various layers of abstractions that are mod-

eled as technology, implementation and distribution neutral building blocks called GSOAs.

The framework satisfied its objective to promote SDP standardisation. This is achieved by

applying the framework to create technology, distribution and implementation independent

SDP architectures. Also, the framework motivated the use of standard-based technologies

with open interfaces to implement SDP architectures. By using standard-based technolo-

gies, the SDP provided open access to diverse IT-using enterprises and their applications.

Standard-based technologies and interfaces enabled the SDP to consistently access con-

verged network capabilities, including customer devices. Also, being standard-based en-

sured interoperability between various SDP implementations.

We proved the framework concepts by implementing a SDP using specific technologies

with standard-based service interfaces. For the implementation we mapped existing service

interfaces to most of the SDP reference points. However, additional standard-based ser-

vice interfaces were required to implement the remaining reference points. The absence of

standards for these SDP reference points illustrates the need and context for new standards

to be developed. As a result, we created new interfaces to fully support the SDP and im-

plement remaining reference points. Both existing and new service interfaces satisfied all

reference points and therefore promoted SDP standardisation. Hence, the framework en-

abled us to evaluate standardised technologies and their service interfaces for use in a SDP

implementation. In addition, the framework identified the need for new standard-based ser-

vice interfaces to be developed and used in SDP implementations. The framework may also

be used to test whether vendor solutions adequately implement the required SDP reference

180

Deploy

Define

Develop

Technology

Viewpoint

Service Oriented

Viewpoint

Resource Oriented

Viewpoint

Business Viewpoint

Functional

Viewpoint

Class and

Deployment

Diagrams,

UML Profiles

Domain Models,

Reference Model,

Use Cases,

SDL,

Robustness,

Sequence

and

Component

Diagrams

F
e
e
d
b
a
c
k

Implementation

Viewpoint

Information

Oriented Viewpoint

Figure 11.1: Example SDP Development Process using Viewpoints

points.

Therefore, the SDP framework provides a significant contribution towards full SDP stan-

dardisation.

11.3 Future Work

Based on the development of the SDP framework and proof of concept we recommend the

following future work.

11.3.1 Development Process

We recommend the creation of a SDP development process that uses the generic SDP busi-

ness model, reference model and framework to create standard-based SDP implementations.

The development process should provide various viewpoints that enable a SDP architecture

to created and implemented. We present an example illustration of a development process

in Figure 11.1. The figure shows the viewpoints and associated modeling tools that may be

used to capture viewpoint results.

In the figure, the business viewpoint determines the SDP’s business model and business

181

relationships. The functional viewpoint defines the functional and non-functional require-

ments of the SDP to support various external applications. A reference model may be used

here to model and formalise SDP functions. The service-oriented viewpoint defines services

and interfaces required to fulfil functional and business viewpoints. The viewpoint uses the

SDP framework to structure a specific SDP architecture. The information viewpoint defines

interface and policy details that satisfy reference points and business relationships. The

resource-oriented viewpoint chooses specific standardised technologies to be mapped to the

SDP architecture. The architecture may be manipulated to accommodate the technologies.

The technology viewpoint decomposes the complete SDP architecture into a more tech-

nology specific design. The technology specific design may include details on protocols,

software environments, required equipment, networking requirements and management sys-

tems. The implementation viewpoint defines the physical deployment of the SDP imple-

mentation on a network.

11.3.2 Information Viewpoint

An information viewpoint on the SDP is essential since SDP services and external applica-

tions rely heavily on diverse forms of information. This information may be stored across

the various SDP, telco, customer, enterprise and converged network.

The information viewpoint must identify various information abstractions that are scattered

across the SDP framework. Each GSOA layer houses one or more information abstractions

that are accessed by services and applications. As an example, we used CORBA middleware

to house Parlay SCF location information that was accessed by web services across the

intermediate GSOA.

The information viewpoint must also identify generic SDP services that provide access to

the information abstractions. These information-oriented services must offer interfaces that

simplify access to diverse information. Also, these SDP service interfaces must abstract

access to lower GSOA information sources, such as an IMS HSS. As an example, we used

the CORBA naming service to provide web services with access to Parlay SCF location

information stored in the intermediate GSOA middleware plane.

11.3.3 Resource Oriented Viewpoint

The resource oriented viewpoint on the SDP enables the identification of existing standards-

based technologies to implement SDP reference points. These technologies provide service

182

interfaces that realise the abstract service interfaces identified in the service-oriented view-

point. However, some reference points may not obtain suitable standards to implement their

specifications. As a result, the resource oriented viewpoint enables us to identify standards

that are required to fully implement a SDP. For instance, we recommend standards be de-

fined to implement the RCS reference point, since no suitable standards exist. These new

standards would enable consistent communication between end-users and the SDP. Like the

RCS reference point, no suitable standard exists to implement ROS reference point. These

new standards will enable SDP and OSS/BSS communication via standard-based service

interfaces.

The resource oriented viewpoint enables evaluation of standards that implement SDP refer-

ence points. For instance, the RTS reference point may be implemented using the IMS and

SIP. However, the IMS does not fully standardise communication between service platforms

and network functional entities. As a result, a more complete IMS standard is required to

provide the SDP with consistent and unified access to telco network resources and capabil-

ities. Also, both Parlay and Parlay X implement the RDS reference point using service in-

terfaces that expose functionality to resource providers. These service interfaces are limited

to content delivery and do not support content management. Additional service interfaces

may be defined to strengthen the Parlay and Parlay X APIs. Therefore, gaps identified in

existing standards used for the SDP represent additional research areas.

11.3.4 Creating Service Deliver Platforms

The SDP framework provides the foundation for any SDP architecture. These architec-

tures may be defined by mapping standard-based technologies to the framework’s GSOAs

services, their interfaces, applications and supporting middleware planes. Also, these tech-

nology mappings may alter the framework’s layers or domains to produce the final SDP

architecture.

We motivate the design and implementation of various SDP architectures using the frame-

work and mixtures of standard-based technologies. Also, we recommend evaluating imple-

mentations based on the appropriateness of their service interfaces within the SDP architec-

ture. The SDP implementations may also result in the creation of specific applications that

provide a new and innovative end-user services. These services may combine telco, IT and

Internet functionality.

This proposed work may also contribute standard-based SDP architectures for the NGN.

183

11.3.5 Importance of Standardised Middleware

The middleware planes defined for the SDP framework’s GSOAs provide necessary func-

tions to abstract distribution complexities. The middleware planes extend functionality

across the SDP framework domains. Hence, we motivate the standardisation of middleware

technologies for the SDP. By promoting standardisation of middleware, their implementa-

tions become interoperable and even interchangeable.

The technologies used to implement the SDP framework middleware planes, must provide

technology, implementation and distribution neutral services. These services hide and man-

age the various distribution complexities associated with a distributed system. In addition,

these standard-based services contribute functionality to enhance SDP services and external

enterprise applications.

Currently standards-based middleware technologies exist, such as CORBA. However, CORBA

is complex to use and operate. In contrast the simple web services middleware, the ESB, is

mostly proprietary. Hence, the ESB and its related technologies require additional standard-

isation. Also, interoperability between these different middleware technologies requires

standardisation. However, middleware standardisation should be future proof, such that

new middleware technologies easily interwork with legacy middleware.

184

References

[1] ITU-T, “Specifications of Signalling System No. 7: Introduction to CCITT Signalling

System No. 7,” Recommendation Q.700, March 1993.

[2] ITU-T, “Principles of Intelligent Networks,” Recommendation I.312/Q.1201, Octo-

ber 1992.

[3] W. Hahn and R. Cowles, “Government Involvement will be a Problem Through

2004,” Strategic Planning: Research Note SPA-21-4211, Gartner Group, 56 Top Gal-

lant Road, Stamford, CT 06904, November 2003.

[4] A.C.Arnbak, “Technology Trends and their Implications for Telecom Regulation,” in

Telecom Reform Principles, Policies and Regulatory Practices (W.H. Melody, ed.),

pp. 67–81, Technical University of Denmark, Lyngby, Denmark, 1997. ISBN: 87-

7381-071-1.

[5] L. Corrigan, “The Need for Comprehensive Partner Management in the Mobile Ser-

vice Environment,” White Paper, Mobile Cohesion, 8b Weavers Court, Linfield Road,

Belfast BT12 5GH.

[6] ITU-T, “Definition of NGN.” Last accessed 01/12/2007, http://www.itu.int, Novem-

ber 2004.

[7] D. Booth et al, “Web Services Architecture,” Working Group Note, W3C Web Ser-

vices Architecture Working Group, February 2004.

[8] The Moriana Group, “Service Delivery Platforms and Telecom Web Services.” A

Moriana Thought Leader Report, Section A: Executive Summary, Last accessed

01/12/2007, http://www.morianagroup.com, June 2004.

[9] ITU-T, “ITU-T Home Page.” Last accessed 01/12/2007, http://www.itu.int/ITU-T.

[10] B.Tilly and B.Briscoe, “Metcalfe’s Law is Wrong,” IEEE Spectrum, pp. 26–31, July

2006. Last accessed 01/12/2007, http://www.spectrum.ieee.org/jul06/4109.

185

[11] L. Rising and D. C. Schmidt, Design Patterns in Communication Software. The Pitt

Building, Trumpington Street, Cambridge, UK: Press Syndicate of the University of

Cambridge, 2001.

[12] A. Lundqvist, “Connected Enterprise,” in Business Summit, Parlay Meeting, Osaka,

Japan, November 2005.

[13] G. Parkins, “A Service Orientated Architecture for Telecom Services,” in KeyNote

Session, 9th International Conference on Intelligence in Service Delivery Networks

(ICIN) 2004, Bordeaux, France, October 2004.

[14] E. Christensen et al, “Web Services Description Language (WSDL) 1.1,” Tech. Rep.

1.1, World Wide Web Consortium (W3C), March 2001.

[15] The OASIS UDDI Working Group, “The OASIS UDDI Home Page.” Last accessed

01/12/2007, http://www.uddi.org.

[16] M. Gudgin et al, “SOAP Version 1.2 Part 1: Messaging Framework,” Recommenda-

tion, W3C, June 2003.

[17] R. Fielding et al, “Hypertext Transfer Protocol – HTTP/1.1,” Request For Comments

(RFC) 2068, IETF Network Working Group, January 1997.

[18] B. Balabaskaran, “Development of New Services with a Service Delivery Platform

(SDP).” Service Delivery Platforms and Telecom Web Services, A Moriana Group

Thought Leader Report, Section B: Thought Leadership, Last accessed 01/12/2007,

http://www.morianagroup.com, June 2004.

[19] The TINA Consortium (TINA-C), “The TINA Home Page.” Last accessed

01/12/2007, http://www.tinac.com.

[20] The Parlay Group, “The Parlay Home Page.” Last accessed 01/12/2007,

http://www.parlay.org.

[21] ITU-T, “Principles of Telecommunications Management Network,” Recommenda-

tion M.3010, May 1996.

[22] TeleManagement Forum, “Telecommunications Operations Map,” Specification

GB910, March 2000.

[23] Telemanagement Forum, “eTOM The Business Process Framework,” Tech. Rep.

GB921, October 2001.

[24] 3GPP, “Technical Specification Group Services and Systems Aspects; Network Ar-

chitecture (Release 7),” Technical Specification TS 23.002 V7.0.0, December 2005.

186

[25] J. Soref and D. Troughton, “The Real Meaning of Convergence.” Service

Delivery Platforms and Telecom Web Services, A Moriana Group Thought

Leader Report, Section B: Thought Leadership, Last accessed 01/12/2007,

http://www.morianagroup.com, June 2004.

[26] D. G. Messerschmitt, “The Prospects for Computing Communications Convergence,”

in Invited Papers, Munchner Kreis Conference Vision 21: Perspectives for the Infor-

mation and Communication Technology, Munich, Germany, November 1999.

[27] A. Henten et al, “The Next Step for Telecom Regulation: ICT Convergence Regulation

or Multisector Utilities Regulation,” The South African Journal of Information and

Communication, no. 3, 2003.

[28] F. Bosco et al, “Service Broker: Identifying a New Role in the Mobile Services Pro-

visioning Value Chain,” in Innovation in Business, pp. 333–337, 9th International

Conference on Intelligence in Service Delivery Networks, October 2004.

[29] The DSL Forum, “The DSL Forum Home Page.” Last accessed 01/12/2007,

http://www.dslforum.org.

[30] ETSI, “Universal Mobile Telecommunications System; Requirements for the UMTS

Terrestrial Radio Access system (UTRA) (UMTS 21.01 version 3.0.1),” Technical

Report TR 101 111 V3.0.1, October 1997.

[31] N. Wilkinson, Next Generation Network Services. West Sussex, England: John Wiley

and Sons, Ltd, 2002.

[32] The ATM Forum, “The ATM Forum Home Page.” Last accessed 01/12/2007,

http://www.atmforum.com.

[33] The MPLS Forum, “The MPLS Forum Home Page.” Last accessed 01/12/2007,

http://www.mplsforum.org.

[34] S. Deering et al, “Internet Protocol Version 6 (IPv6) Specification,” Request For

Comment (RFC) 2460, IETF Network Working Group, December 1998.

[35] J. Postel, “Transmission Control Protocol,” Request For Comment (RFC) 793, Infor-

mation Sciences Institute University of Southern California, September 1981.

[36] H. Schulzrinne et al, “RTP: A Transport Protocol for Real-Time Applications,” Re-

quest For Comments (RFC) 3550, IETF Network Working Group, July 2003.

[37] J. Rosenberg et al, “SIP: Session Initiation Protocol,” Request For Comments (RFC)

3261, IETF Network Working Group, June 2001.

187

[38] The International Packet Communication Consortium, “The International

Packet Communication Consortium Home Page.” Last accessed 01/12/2007,

http://www.packetcomm.org.

[39] F. D. Ohrtman. JR, Softswitch: Architecture for VoIP. Networking Professional, New

York. USA: McGraw-Hill, 2003.

[40] The SIGTRAN Working Group, “The SIGTRAN Home Page.” Last accessed

01/12/2007, http://www.sigtran.org.

[41] N. Greene et al, “Media Gateway Control Protocol Architecture and Requirements,”

Request For Comments (RFC) 2850, IETF Network Working Group, April 2000.

[42] P. Calhoun et al, “Diameter Base Protocol,” Request For Comments (RFC) 3588,

IETF Network Working Group, September 2003.

[43] ETSI, “Digital Cellular Telecommunications System (Phase 2+); Customised Appli-

cations for Mobile network Enhanced Logic (CAMEL) Phase 2; Stage 2,” Technical

Specification 101 441 v.6.7.0, ETSI, August 2000.

[44] C. Abarca et al, “Service Architecture,” TINA-C Deliverable 5.0, Telecommunica-

tions Information Networking Architecture (TINA) Consortium, June 1997.

[45] C. Abarca et al, “Network Resource Architecture,” TINA-C Deliverable 3.0,

Telecommunications Information Networking Architecture (TINA) Consortium,

February 1997.

[46] M. Corporation, “.Net Framework Home Page.” Last accessed 01/12/2007,

http://msdn2.microsoft.com/en-us/netframework/.

[47] Sun Microsystems, “Java Home Page.” Last accessed 01/12/2007,

http://java.sun.com/.

[48] TMF, “NGOSS Lifecycle and Methodology,” Tech. Rep. GB927, Release 4.3, Version

1.3, TeleManagement Forum, November 2004.

[49] Sun Microsystems, “JSLEE and the JAIN Initiative.” Last accessed 01/12/2007,

http://java.sun.com/products/jain/, 2007.

[50] Open Mobile Alliance (OMA), “OMA Home Page.” Last accessed 01/12/2007,

http://www.openmobilealliance.org, 2007.

[51] OMA, “OMA Service Environment,” Specification V1.0.2, August 2005.

[52] Appium Home Page, “Appium.” Last accessed 01/12/2007, http://www.appium.com.

188

[53] Erricsson, “Service Delivery Platforms.” Last accessed 01/12/2007,

http://www.ericsson.com/, 2006.

[54] IBM, “IBM Service Provider Delivery Environment: A Technical Overview,” IBM

Telecommunication Industry White Paper, http://ibm.com/industries/telecom/spde,

May 2005.

[55] Microsoft, “Enabling Service Delivery using the Microsoft Connected Framework,”

White Paper, http://www.microsoft.com, January 2005.

[56] SDP Alliance, “Service Delivery Platform.” Last accessed 01/12/2007,

http://sdpalliance.mobilitydatasystems.com/.

[57] Hewlett-Packard, “Service Delivery Platform.” Last accessed 01/12/2007,

http://www.hp.com, 2007.

[58] CERN Engineering Data Management Service, “CERN Engineer-

ing Data Management Service Glossary.” Last accessed 01/12/2007,

http://cedar.web.cern.ch/CEDAR/glossary.html, 2001.

[59] Oxford University Press, “Oxford English Dictionary.” Last accessed 01/12/2007,

http://www.oup.com.

[60] A. P. Sage and J. E. Armstrong Jr, Introduction to Systems Engineering. Wiley Series

In Systems Engineering, New York, USA: John Wiley and Sons, Inc, 2000.

[61] S. Graupner et al, “A Framework for Organizing Complex Systems,” Internal Pa-

per HPL-2001-24, Hewlett-Packard Company, HP Laboratories, Palo Alto, February

2001.

[62] B. S. Blanchard and W. J. Fabrycky, Systems Engineering and Analysis. Industrial

and Systems Engineering, New Jersey, USA: Prentice Hall, third edition ed., 1998.

[63] P. Checkland, Systems Thinking, Systems Practice. New York, USA: John Wiley and

Sons, Ltd, 1981.

[64] B. Liskov and J. Guttag, Abstraction Specification in Program Development. The

MIT Electrical Engineering and Computer Science Series, The MIT Press, Cam-

bridge, Massachusetts: The MIT Press with the McGraw-Hill Book Company, sec-

ond ed., 1987.

[65] D. G. Messerschmitt, “Complexity Management: A Major Issue for Telecommunica-

tions,” (Stranford University, Palo Alto, CA), pp. 169–180, International Conference

on Communications, Computing, Control and Signal Processing, June 1995.

189

[66] H. E. Hanrahan, “A Comparative Study of Telecommunication Architectures:

Methodology and Case Studies,” South African Telecommunication Network and

Applications Conference (SATNAC) 2003, September 2003.

[67] I. R. Hoos, Systems Analysis in Public Policy. University of California Press, 1972.

[68] L. Bass et al, Software Architecture in Practice. Addison-Wesley, second ed., 2003.

[69] J. Bosch, Design and Use of Software Architectures. Software Engineering / Software

Architecture, Addison-Wesley, 2000.

[70] G. Mustapic et al, “Real World Influences on Software Architecture- Interviews with

Industrial Systems Experts,” IEEE Working Conference on Software Architectures,

Oslo, Norway, June 2004.

[71] K. Smolander, “Four Metaphors of Architecture in Software Organizations: Finding

out the Meaning of Software Architecture,” in ISESE ’02: Proceedings of the 2002

International Symposium on Empirical Software Engineering, pp. 211–221, IEEE

Computer Society, October 2002.

[72] ISO/IEC 10746-1, “Open Distributed Processing Reference Model Part 1:

Overview,” ITU-T Recommendation, May 1995.

[73] J. Miller et al, “MDA Guide Version 1.0.1,” Specification omg/2003-06-01, The Ob-

ject Management Group, June 2003.

[74] K. Smolander et al, “What Is Included in Software Architecture? A Case Study in

Three Software Organizations,” in ECBS ’02: Proceeding of the 9th IEEE Interna-

tional Conference on Engineering of Computer-Based Systems, pp. 131–138, IEEE

Computer Society, 2002.

[75] ITU-T, “General Aspects of the Intelligent Network Application Protocol,” Recom-

mendation Q.1208, September 1997.

[76] J. Thörner, Intelligent Networks. Artech House Telecommunications Library, 685

Canton Street, Norwood, MA, 02062: Artech House Publishers INC., 1994.

[77] J. Zuidweg, Next Generation Intelligent Networks. Telecommunications, Artech

House INC,685 Canton Street, Norwood, MA 02062: Artech House Publishers,

2002.

[78] T. Magendanz and R. P. Zeletin, Intelligent Netwoks. Brekshire House, 168-173 High

Holborn, London WCIV 7AA, UK: International Thomson Computer Press, 1996.

190

[79] R. T. Sanders, “Service-Centred Approach to Telecom Service Development,” in

Adaptable Networks and Teleservices, IFIP WG6.7 Workshop and EUNICE Sum-

mer School, Norwegian University of Science and Technology, Trondheim, Norway,

September 2002.

[80] M. Chapman and S. Montesi, “Overall Concepts and Principles of TINA,” TINA-C

Deliverable 1.0, Telecommunications Information Networking Architecture (TINA)

Consortium, February 1995.

[81] G. Coulouris, J. Dollimore and T. Kindberg, Distributed Systems: Concepts and De-

sign. International Computer Science Series, Addison-Wesley, third ed., 2001.

[82] The Object Management Group (OMG), “The OMG Home Page.” Last accessed

01/12/2007, http://www.omg.org.

[83] O.M.G, “Common Object Request Broker Architecture: Core Specification,” Formal

Version 3.0.3, March 2004.

[84] M. Mampaey, “TINA for Services and Advanced Signalling and Control in Next Gen-

eration Networks,” IEEE Communications Magazine, pp. 104–110, October 2000.

[85] C. Smith, “Applying TINA-C Service Architecture to the Internet and Intranets,”

in Global Convergence of Telecommunications and Distributed Object Computing,

pp. 4–12, TINA 97, Santiago, Chile, November 1997.

[86] Z. Lozinski, “Parlay: A Report to Members.” Last accessed 01/12/2007,

http://www.parlay.org, November 2003.

[87] R. Jain et al, Programming Converged Networks, vol. Wiley-Interscience of Com-

puter Science. John Wiley and Sons, Inc, 2005.

[88] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part

1: Overview (Parlay 5),” ETSI Standard 202 915-1 V1.1.1, April 2004.

[89] M. Unmehopa, Parlay/OSA from Standards to Reality. John Wiley and Sons, Ltd,

2006.

[90] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part

3: Framework (Parlay 5),” ETSI Standard 203 915-3 V1.2.1, January 2007.

[91] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part

4: Call Control; Sub-part 2: Generic Call Control SCF (Parlay 4),” ETSI Standard

202 915-4-2 V1.2.2, August 2003.

[92] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part

5: User Interaction SCF (Parlay 4),” ETSI Standard 202 915-5 V1.2.1, August 2003.

191

[93] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part

6: Mobility SCF (Parlay 4),” ETSI Standard 202 925-6 V1.2.1, August 2003.

[94] S. Guo, F. Yang and J. Chen, “Open Integrated Intelligent Network: A universal

Service Platform,” in Circuits and Systems, pp. 74–77, Asia-Pacific Conference on

Circuits and Systems, Tianjin, China, 2000.

[95] K. Chung and Y. Choi, “An Interworking Mechanism between SCFs and Protocols in

the Open Service Gateway,” in Communications, pp. 1–5, Asia-Pacific Conference

on Communications, Busan, Korea, August 2006.

[96] The Parlay Group: Web Services Working Group, “Parlay Web Services Architecture

Comparison,” Tech. Rep. 1.0, October 2002.

[97] J. Popoff, “Parlay/OSA 101,” in Education Seminar, Parlay/OSA Americas Confer-

ence, Boston USA, October 2005.

[98] The Parlay Group: Web Services Working Group, “Parlay Web Services Overview,”

Tech. Rep. 1.0, October 2002.

[99] ETSI, “Open Service Access (OSA); Parlay X Web Services; Part 2: Third Party Call

(Parlay X 2),” Standard 202 391-2 v1.2.1, December 2006.

[100] ETSI, “Open Service Access (OSA); Parlay X Web Services; Part 11: Audio Call

(Parlay X 2),” Standard 202 391-11 v1.2.1, December 2006.

[101] ETSI, “Open Service Access (OSA); Parlay X Web Services; Part 9: Terminal Loca-

tion (Parlay X 2),” Standard 202 391-9 v1.2.1, December 2006.

[102] A. Pras, B. Beijnum and R. Sprenkels, “Introduction to TMN,” CTIT Technical Re-

port 99-09, University of Twente, the Netherlands, 1999.

[103] ITU-T, “Management Framework For Open Systems Interconnection (OSI) For

CCITT Applications,” Recommendation x.700, September 1992.

[104] M. Azmoodeh et al, “Evaluation of TMN Status, OSS/TMN Deployment,” Main Re-

port 812-GI, EURESCOM, December 1999.

[105] TMF, “TeleManagement Forum SID Web Page.” Last accessed 01/12/2007,

http://www.tmforum.org/browse.aspx?catID=1684.

[106] TMF, “TeleManagement Forum TNA Web Page.” Last accessed 01/12/2007,

http://www.tmforum.org/browse.aspx?catID=1685.

[107] ITU-T, “Information Technology, Open Systems Interconnection, Common Manage-

ment Information Protocol Specification for CCITT Applications,” Recommendation

x.711, ITU-T, October 1991.

192

[108] H. Hanrahan, Network Convergence. John Wiley and Sons, Ltd, 2007.

[109] TMF, “NGOSS and Shared Information Model,” Last accessed 01/12/2007,

http://www.tmforum.org/browse.aspx?catID=1684, Data Sheet, TeleManagement

Forum, November 2005.

[110] R. Swinarski, “TeleManagement Forum: NGOSS Architecture Overview,” Presenta-

tion, TMF, April 2003. http://www.tmforum.org.

[111] J. L. Fleck, “Overview of the Structure of the NGOSS Architecture,” White Paper,

Hewlett Packard, May 2003.

[112] J. Strassner et al, “TMF White Paper on NGOSS and MDA,” White Paper 1.0, Tele-

Management Forum, Novemeber 2003.

[113] D. Sprott, “Service Oriented Architecture: An Introduction for Managers,” CBDI

Forum and Roadmap Report, Last accessed 01/12/2007, http://www.cbdiforum.com,

May 2005.

[114] E. A. Marks, “Build a Better Enterprise Application,” Network Magazine, vol. 19 (8),

August 2004.

[115] K. Channabasavaiah and K. Holley, “Migrating to a Service-Oriented Architecture,”

White Paper G224-7298-00, IBM, April 2004.

[116] B. Silver, “Agile to the Bone,” Intelligent Enterprise, vol. 8, February 2005.

[117] T. Andrews et al, “Business Process Execution Language for Web Services,” Specifi-

cation 1.1, BEA Systems, May 2003.

[118] S. Craggs, “Best-of-Breed ESBs,” White Paper, Enterprise Application Integration

(EAI) Industry Organization, June 2003.

[119] W. Andrews, “SOA has Impact on Application Development Outsourcing,” Strategic

Planning: Research Note (SPA-22-5494), Gartner Group, Last accessed 01/12/2007,

http://www.gartner.com, April 2004.

[120] J. Egli, “IMS: A Journey not a Leap.” http://www.convergedigest.com, Last accessed

01/12/2007, September 2005.

[121] 3rd Generation Partnership Project (3GPP), “3GPP Home Page.” Last accessed

01/12/2007, http://www.3gpp.org.

[122] 3GPP, “Technical Specification Group Services and System Aspects; Service require-

ments for the Internet Protocol (IP) multimedia core network subsystem; Stage 1

(Release 7),” Technical Specification TS 22.228 V7.3.0, December 2005.

193

[123] 3GPP, “Technical Specification Group Services and System Aspects; IP Multimedia

Subsystem (IMS); Stage 2 (Release 7),” Technical Specification TS 23.228 V7.2.0,

December 2005.

[124] C. Gourraud et al, “The IMS Application Layer(s),” in Challenges for the IMS,

pp. 2–7, 10th International Conference on Intelligence in Service Delivery Networks

(ICIN), Bordeaux, France, May 2006.

[125] 3GPP, “Technical Specification Group Core Network; IP Multimedia (IM) Session

Handling; IM Call Model; Stage 2 (Release 6),” Technical Specification TS 23.218

V6.2.0, September 2004.

[126] 3GPP, “Technical Specification Group Core Network; Open Service Access (OSA);

Application Programming Interface (API) Mapping for Open Service Access; Part 4:

Call Control Service Mapping; Subpart 4: Multiparty Call Control ISC (Release 6),”

Technical Specification TS 29.998-04-4 V6.0.4, December 2004.

[127] 3GPP, “Technical Specification Group Core Network; Open Service Access (OSA);

Application Programming Interface (API) Mapping for OSA; Part 4: Call Control

Service Mapping; Subpart 1: API to CAP Mapping (Release 6),” Technical Specifi-

cation TS 29.998-04-1 V6.0.0, December 2004.

[128] 3GPP, “Technical Specification Group Core Network; Open Service Access (OSA);

Application Programming Interface (API) Mapping for OSA; Part 5: User Inter-

action Service Mapping; Subpart 1: API to CAP Mapping (Release 6),” Technical

Specification TS 29.998-05-1 V6.0.0, December 2004.

[129] 3GPP, “Technical Specification Group Core Network; Open Service Access (OSA);

Application Programming Interface (API) Mapping for OSA; Part 6: User Location

- User Status Service Mapping to MAP (Release 6),” Technical Specification TS

29.998-06 V6.0.0, December 2004.

[130] V. Radhakrishnan et al, “PIAF: An Application Framework for Unlocking IMS En-

gendered Network Capabilities,” in Programming Models for the IMS, pp. 165–170,

10th International Conference on Intelligence in Service Delivery Networks (ICIN),

Bordeaux, France, May 2006.

[131] M. Brenner, “From Collision to Cooperation,” IEC News Letter, vol. 2, August 2007,

Last accessed 01/12/2007, http://www.iec.org.

[132] G. Deckers, “Cost Down, Revenues Up: SDP Business Case,” in Business Aspects of

Service Convergence, pp. 178–183, 10th International Conference on Intelligence in

Service Delivery Networks (ICIN), Bordeaux, France, May-June 2006.

194

[133] TMF OSS/J Home Page, “OSS through Java Initiative.” Last accessed 01/12/2007,

http://www.tmforum.org, 2006.

[134] O. M. G. (OMG), “Unified Modelling Language (UML) Resource Page.” Last ac-

cessed 01/12/2007, http://www.uml.org.

[135] The Parlay Group: The Parlay X Working Group, “Parlay APIs 4.0 Parlay X Web

Services White Paper,” Tech. Rep. 1.0, December 2002.

[136] ETSI, “Open Service Access (OSA); Parlay X Web Services; Part 6: Payment (Parlay

X 2),” ETSI Standard 202 391-6 V1.2.1, December 2006.

[137] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part

12: Charging SCF (Parlay 5),” ETSI Standard 203 915-12 V1.2.1, Januray 2007.

[138] ETSI, “Open Service Access (OSA); Parlay X Web Services; Part 7: Account Man-

agement (Parlay X 2),” ETSI Standard 202 391-7 V1.2.1, December 2006.

[139] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part

11: Account Management SCF (Parlay 5),” ETSI Standard 203 915-11 V1.2.1, Ja-

nuray 2007.

[140] ETSI, “Open Service Access (OSA); Parlay X Web Services; Part 4: Short Messaging

(Parlay X 2),” ETSI Standard 202 391-4 V1.2.1, December 2006.

[141] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part

5: User Interaction SCF (Parlay 5),” ETSI Standard 203 915-5 V1.2.1, Januray 2007.

[142] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part

4: Call Control; Sub-part 3: Multi-Party Call Control SCF (Parlay 5),” ETSI Stan-

dard 203 915-4-3 V1.2.1, Januray 2007.

[143] ETSI, “Open Service Access (OSA); Parlay X Web Services; Part 14: Presence (Par-

lay X 2),” ETSI Standard 202 391-14 V1.2.1, December 2006.

[144] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part

14: Presence and Availability Management SCF (Parlay 5),” ETSI Standard 203

915-14 V1.2.1, Januray 2007.

[145] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part

8: Data Session Control SCF (Parlay 5),” ETSI Standard 203 915-8 V1.2.1, Januray

2007.

[146] ETSI, “Open Service Access (OSA); Application Programming Interface (API); Part

13: Policy Management SCF (Parlay 5),” ETSI Standard 203 915-13 V1.2.1, January

2007.

195

[147] Netbeans, “Netbeans Home Page.” Last accessed 01/12/2007,

http://www.netbeans.org.

[148] Sun Microsystems, “Sun Java System Application Server 9.1.” Last accessed

01/12/2007, http://www.sun.com/software/products/appsrvr/.

[149] Wits University Convergence Lab, “Wits Convergence Lab Home Page.” Still under

construction, http://www.ee.wits.ac.za/comms.

196

Appendix A

Mapping to the SDP Framework

To show the flexibility of the SDP framework, we map both standard-based and proprietary

technologies onto its GSOAs. In these mappings we show gaps in existing technologies that

must be standardised to fully support the SDP. These gaps may motivate additional research

into the standardisation of the SDP.

A.1 Standards-based Architectures

In Table A.1, we map IN/TMN architectures [2, 21] onto the SDP framework. In Table A.2,

we map the TINA architecture [44, 45] onto the SDP framework. In Table A.3, we map

the eTOM framework [23] onto the SDP framework. In Table A.4, we map the Java API

for Integrated Networks (JAIN) [49] architecture onto the SDP framework. The JAIN ar-

chitectures has not been discussed in this work. However, it provides an architecture that

combines both IN and Parlay.

The standard-based technologies provide fuller mappings than the proprietary solutions.

The IN/TMN mapping shows a legacy SDP focusing on complex services and the required

functions. TINA provides an end-to-end mapping onto the SDP framework that extensively

uses middleware to support a variety of rich components. The eTOM mapping looks limited,

but focuses on providing simple services to abstract the entire OSS/BSS domain and its

intersecting layers. The JAIN mapping provides a SDP, by implementing existing telecom

and IT standards using the Java programming language and tools. This mapping also shows

the integration of Java specific components and technologies with the SDP.

197

A.2 Product-based Architectures

In Figure A.1, we show the Ericsson SDP architecture [53]. In Table A.5, we map the Er-

icsson SDP architecture onto the SDP framework. In Figure A.2, we show the HP SDP

architecture [57]. In Table A.6, we map the HP SDP architecture onto the SDP framework.

In Figure A.3, we show the IBM SDP architecture [54]. In Table A.7, we map the IBM SDP

architecture onto the SDP framework. In Figure A.4, we show the Microsoft SDP architec-

ture [55]. In Table A.8, we map the Microsoft SDP architecture onto the SDP framework.

All the proprietary technology mappings show limited details, since they use mixtures of

standardised and proprietary technologies to implement framework layers. Also, many of

these proprietary solutions provide implementations for the service platform, OSS/BSS do-

mains and their intersecting layers. Hence, these solutions do not provide a complete end-

to-end mapping.

198

G
en

er
ic

Se
rv

ic
e

D
el

iv
er

y
Pl

at
fo

rm
A

rc
hi

te
ct

ur
e

↓
L

a
y
er

s/
D

om
a
in

s
→

E
nd

U
se

r
Su

bs
cr

ib
er

C
on

ne
ct

iv
ity

Pr
ov

id
er

C
on

ve
rg

ed

N
et

w
or

k

Se
rv

ic
e

Pl
at

fo
rm

O
SS

/B
SS

E
nt

er
pr

is
e

Si
m

pl
e

A
pp

s
Se

rv
ic

es
an

d
fe

at
ur

es

Si
m

pl
e

Se
rv

ic
es

Si
m

pl
e

Se
rv

ic
e

M
id

dl
ew

ar
e

In
te

rm
ed

ia
te

A
pp

s

In
te

rm
ed

ia
te

Se
rv

ic
es

In
te

rm
ed

ia
te

Se
rv

ic
e

M
id

dl
ew

ar
e

C
om

pl
ex

A
pp

s
G

lo
ba

ls
er

vi
ce

lo
gi

c

C
om

pl
ex

Se
rv

ic
es

SI
B

S

C
om

pl
ex

Se
rv

ic
e

M
id

dl
ew

ar
e

Se
rv

ic
e

Fu
nc

tio
ns

IW
F

SC
F,

SD
F,

SR
F,

SS
F

SM
F

(O
SF

s)
SM

A
F,

SC
E

F

Se
rv

ic
e

Fu
nc

tio
n

M
id

dl
ew

ar
e

R
es

ou
rc

e
Fu

nc
tio

ns
C

C
F,

C
C

A
F

C
C

F
C

C
A

F,
C

C
F

N
E

F
(O

SF
s)

R
es

ou
rc

e
Fu

nc
tio

n
M

id
dl

ew
ar

e

R
es

ou
rc

es
Te

le
ph

on
e

Sw
itc

h
Sw

itc
h

SC
P,

SD
P,

SS
P,

SR
P

N
et

w
or

k
E

le
m

en
ts

R
es

ou
rc

e
M

id
dl

ew
ar

e
IN

A
P

SN
M

P

Table A.1: Mapping IN/TMN onto the SDP Framework

199

G
en

er
ic

Se
rv

ic
e

D
el

iv
er

y
Pl

at
fo

rm
A

rc
hi

te
ct

ur
e

↓
L

a
y
er

s/
D

om
a
in

s
→

E
nd

U
se

r
Su

bs
cr

ib
er

C
on

ne
ct

iv
ity

Pr
ov

id
er

C
on

ve
rg

ed

N
et

w
or

k

Se
rv

ic
e

Pl
at

fo
rm

O
SS

/B
SS

E
nt

er
pr

is
e

Si
m

pl
e

A
pp

s

Si
m

pl
e

Se
rv

ic
es

Si
m

pl
e

Se
rv

ic
e

M
id

dl
ew

ar
e

In
te

rm
ed

ia
te

A
pp

s
as

U
A

P,
ss

U
A

P
U

SM
U

SM

In
te

rm
ed

ia
te

Se
rv

ic
es

PA
IA

,U
A

PU
SM

,S
SM

,S
F,

U
A

PU
SM

,S
SM

,S
F,

U
A

In
te

rm
ed

ia
te

Se
rv

ic
e

M
id

dl
ew

ar
e

C
O

R
B

A
-b

as
ed

D
is

tr
ib

ut
ed

Pr
oc

es
si

ng
E

nv
ir

on
m

en
t(

D
PE

)

C
om

pl
ex

A
pp

s

C
om

pl
ex

Se
rv

ic
es

T
C

SM
C

SM
,C

SM
F

C
SM

,C
SM

F
C

SM
,C

SM
F

C
om

pl
ex

Se
rv

ic
e

M
id

dl
ew

ar
e

C
O

R
B

A
-b

as
ed

D
is

tr
ib

ut
ed

Pr
oc

es
si

ng
E

nv
ir

on
m

en
t(

D
PE

)

Se
rv

ic
e

Fu
nc

tio
ns

C
C

F,
C

C
,F

C
C

Se
rv

ic
e

Fu
nc

tio
n

M
id

dl
ew

ar
e

C
O

R
B

A
-b

as
ed

D
is

tr
ib

ut
ed

Pr
oc

es
si

ng
E

nv
ir

on
m

en
t(

D
PE

)

R
es

ou
rc

e
Fu

nc
tio

ns
T

L
A

,C
P

L
N

C
,T

M
,T

C
M

,C
P

R
es

ou
rc

e
Fu

nc
tio

n
M

id
dl

ew
ar

e
C

O
R

B
A

-b
as

ed
D

is
tr

ib
ut

ed
Pr

oc
es

si
ng

E
nv

ir
on

m
en

t(
D

PE
)

R
es

ou
rc

es
H

et
er

og
en

ou
s

an
d

D
is

tr
ib

ut
ed

N
et

w
or

ki
ng

E
qu

ip
m

en
t

R
es

ou
rc

e
M

id
dl

ew
ar

e
V

ar
io

us
Pr

ot
oc

ol
s

Table A.2: Mapping TINA onto the SDP Framework

200

G
en

er
ic

Se
rv

ic
e

D
el

iv
er

y
Pl

at
fo

rm
A

rc
hi

te
ct

ur
e

↓
L

a
y
er

s/
D

om
a
in

s
→

E
nd

U
se

r
Su

bs
cr

ib
er

C
on

ne
ct

iv
ity

Pr
ov

id
er

C
on

ve
rg

ed

N
et

w
or

k

Se
rv

ic
e

Pl
at

fo
rm

O
SS

/B
SS

E
nt

er
pr

is
e

Si
m

pl
e

A
pp

s
B

us
in

es
s

Pr
oc

es
se

s

Si
m

pl
e

Se
rv

ic
es

W
eb

Se
rv

ic
es

Si
m

pl
e

Se
rv

ic
e

M
id

dl
ew

ar
e

E
SB

In
te

rm
ed

ia
te

A
pp

s
J2

E
E

Se
rv

ic
es

In
te

rm
ed

ia
te

Se
rv

ic
es

C
O

R
B

A
,R

M
I,

...

In
te

rm
ed

ia
te

Se
rv

ic
e

M
id

dl
ew

ar
e

C
om

pl
ex

A
pp

s

C
om

pl
ex

Se
rv

ic
es

R
es

ou
rc

e
A

da
pt

or
s

C
om

pl
ex

Se
rv

ic
e

M
id

dl
ew

ar
e

Se
rv

ic
e

Fu
nc

tio
ns

Se
rv

ic
e

Fu
nc

tio
n

M
id

dl
ew

ar
e

R
es

ou
rc

e
Fu

nc
tio

ns

R
es

ou
rc

e
Fu

nc
tio

n
M

id
dl

ew
ar

e

R
es

ou
rc

es
C

R
M

,E
R

P,
...

R
es

ou
rc

e
M

id
dl

ew
ar

e

Table A.3: Mapping eTOM onto the SDP Framework

201

G
en

er
ic

Se
rv

ic
e

D
el

iv
er

y
Pl

at
fo

rm
A

rc
hi

te
ct

ur
e

↓
L

a
y
er

s/
D

om
a
in

s
→

E
nd

U
se

r
Su

bs
cr

ib
er

C
on

ne
ct

iv
ity

Pr
ov

id
er

C
on

ve
rg

ed

N
et

w
or

k

Se
rv

ic
e

Pl
at

fo
rm

O
SS

/B
SS

E
nt

er
pr

is
e

Si
m

pl
e

A
pp

s
W

eb
Se

rv
ic

e
A

pp
W

eb
Se

rv
ic

e
A

pp

Si
m

pl
e

Se
rv

ic
es

W
eb

Se
rv

ic
es

Si
m

pl
e

Se
rv

ic
e

M
id

dl
ew

ar
e

SO
A

-b
as

ed
m

id
dl

ew
ar

e,
su

ch
as

an
E

SB

In
te

rm
ed

ia
te

A
pp

s
Ja

va
A

pp
s

E
JB

s

In
te

rm
ed

ia
te

Se
rv

ic
es

J2
M

E
,J

2S
E

J2
E

E

In
te

rm
ed

ia
te

Se
rv

ic
e

M
id

dl
ew

ar
e

V
ar

io
us

m
id

dl
ew

ar
e

m
ay

be
us

ed
su

ch
as

E
SB

,C
O

R
B

A
,R

M
I,

...

C
om

pl
ex

A
pp

s
Se

rv
ic

e
B

ui
ld

in
g

B
lo

ck
s

(S
B

B
)

C
om

pl
ex

Se
rv

ic
es

M
ID

P,
C

L
D

C
N

um
er

ou
s

R
es

ou
rc

e
A

da
pt

or
s

C
om

pl
ex

Se
rv

ic
e

M
id

dl
ew

ar
e

JV
M

JS
L

E
E

Se
rv

ic
e

Fu
nc

tio
ns

Se
rv

ic
e

Fu
nc

tio
n

M
id

dl
ew

ar
e

R
es

ou
rc

e
Fu

nc
tio

ns

R
es

ou
rc

e
Fu

nc
tio

n
M

id
dl

ew
ar

e

R
es

ou
rc

es
Te

rm
in

al
N

et
w

or
k

E
le

m
en

ts
C

R
M

,E
R

P,
...

R
es

ou
rc

e
M

id
dl

ew
ar

e
V

ar
io

us
Pr

ot
oc

ol
s

Table A.4: Mapping JAIN onto the SDP Framework

202

2005-04-2734

Ericsson Service Delivery Platform

End-user
Domain

Business Support
Domain

Operations
Support
Domain

ERP

CRM

O&M

Billing

IP Infrastructure

Common Service Enablers
SMS-C, MMC, Location Server, Streaming Server, IN, Presence, Instant Messaging, PoC

Core Network

Client
SMS,
MMS,
WAP,
http,
IVR,
PoC

Common
Support
Functions

- Provisioning
- Data access
- Device management
- Service Catalogue
- Charging
- O&M
- Identity management

Presentation
& rendering

Content Domain

Content
creation

Service Domain

Service
Creation

IDE, Testing Tools
ServicesContent

Service Enabler Integration

Service Control
and Execution

Applications

Content Delivery
Support Functions

Content Management, Media
DB, DRM, Transcoding

Service Provider
Support Functions
SLA, Service Catalogue

Figure A.1: Ericsson SDP Architecture

Applications—end-user services

Network Services Messaging and
Collaboration

Information and
Entertainment

Business Operations

H
P Bazaar

D
igital m

edia
platform

Enterprises, content/
service providers

Service Delivery Platform

User interaction and presentation

Device management Content management

Platform support functions

Third party framework

Common framework

Service enablers

Network services

Network gateways

Off-network services

Service control Service interaction Service profile NEP and third
party assets

Network Assets

Fixed Mobile Broadband

D
evices

H
P O

penview

adaptive m
anagem

ent

8

Figure 1: HP SDP overview

HP Service Delivery
Platform blueprint
The HP Service Delivery Platform is broken out into four
logical sub-segments:

• Applications

• Common Framework

• Service Enablers

• Network Assets

Each sub-segment delivers a piece of the solution that
ultimately allows for the creation, integration, validation,
and delivery of services to consumers. The relationships
between each are discussed in detail below.

Applications
This SDP sub-segment addresses the creation, validation,
and hosting of end-user services. HP offers worldwide
consulting services that can help network operators
design a service delivery ecosystem that most effectively
meets their specific market requirements.

Service development can be performed either internally or
externally using the SDP blueprint. HP SDP uses common
service development toolsets that support Parlay, Parlay-X,
.NET, Java, Web Services and SIP capabilities—that make
it simple for developers to integrate telecom and IT function-
ality into their applications and core business processes.

HP offers a common methodology for extending service
development to third parties. Third party services are
hosted on carrier-grade application servers (A/S) and
tested/validated on the platform prior to deployment in
the service provider’s ecosystem. Validating services both
optimizes and benchmarks resource utilization, reducing
service provider risk against overload and reducing costs.

HP, along with our valued solution partners, offers many
pre-integrated, off-the-shelf services that operators can
deploy today on the HP SDP to immediately begin gener-
ating revenues. These include Network, Messaging &
Collaboration, Information and Entertainment, and
Business Operations services.

Network Services focus on commercial and emergency
location-based, intelligent network and voice over packet
services. The Messaging and Collaboration area encom-
passes instant messaging, short messaging, multimedia
messaging, conferencing, push-to-x, and next generation
voicemail applications. Information and Entertainment
services tie together applications into more sophisticated
end-user services that create a richer, more enjoyable
consumer experience—the kind of customer experience
that increases service usage and reduces churn. Business
Operations services combine simple services into more
sophisticated end-user services that enable enterprise
customers to share information and operate more effectively.

Figure A.2: Hewlett Packard SDP Architecture

203

IBM Service Provider Delivery Environment: A technical overview
Page 4

IBM Service Provider Delivery Environment: A technical overview
Page 5

Figure 1: High level view of the SPDE framework

Devices Network delivery Services brokerage User services

NGN

PSTN

PLMN

Common
enabler

Local
applications/
content

Fulfillment Service level Billing

Services management

Northbound interfaces

Eastbound interfaces

W
estbound interfaces

Southbound interfaces

Common
enabler

Common
enabler

Remote
applications/
content

Owned by Owned by
platform owner third party

A single organization can play any or all of these roles. Most likely, service

providers will mix all three. The basic scenario would work like this:

• An application or content owner publishes its new offering using a method

such as Web services.

• Web services notifies the service delivery platform provider about the

new offering.

• When a customer surfs to the service delivery platform and purchases the

application or content, Web services creates the subscription and notifies

the network service provider and the application/content owner about the

service request.

• The owner of the application or content provisions the resources required

to provide the new customer with the service.

• Meanwhile, the network service provider provisions the network to ensure

that the service is delivered with the required quality of service (QoS),

security and other management metrics. (The service owner can be either

a third party or the network and platform delivery providers.)

Figure A.3: IBM SDP Architecture

Enabling Service Delivery Using the Microsoft Connected Services Framework 12

identifier (SID) data model definition. If a standard does not exist for a service then Connected
Services Framework uses a Web service interface rather than an SBE.

Service Creation Environment
Connected Services Framework leaf and composite services in the service catalog can be
assembled by software developers into new composite services using the service creation
environment. The service creation environment simplifies the creation of new services and
reduces the time-to-market. This environment of Connected Services Framework includes
templates and plug-ins for Microsoft Visual Studio® that enables a developer to build compelling
composite applications.

Microsoft Connected Services Framework Environments
Figure 4 shows how Connected Services Framework provides the following environments:

• Service creation

• Service deployment

• Service execution

• Service management

Figure 4: Connected Services Framework environments

Figure A.4: Microsoft SDP Architecture

204

G
en

er
ic

Se
rv

ic
e

D
el

iv
er

y
Pl

at
fo

rm
A

rc
hi

te
ct

ur
e

↓
L

a
y
er

s/
D

om
a
in

s
→

E
nd

U
se

r
Su

bs
cr

ib
er

C
on

ne
ct

iv
ity

Pr
ov

id
er

C
on

ve
rg

ed

N
et

w
or

k

Se
rv

ic
e

Pl
at

fo
rm

O
SS

/B
SS

E
nt

er
pr

is
e

A
pp

Se
rv

ic
es

Si
m

pl
e

A
pp

s
C

on
te

nt
D

el
iv

er
y/

Se
rv

ic
e

Pr
ov

id
e

Su
pp

or
tF

un
ct

io
ns

Si
m

pl
e

Se
rv

ic
es

Si
m

pl
e

Se
rv

ic
e

M
id

dl
ew

ar
e

In
te

rm
ed

ia
te

A
pp

s
C

lie
nt

A
pp

s

In
te

rm
ed

ia
te

Se
rv

ic
es

C
lie

nt
Se

rv
ic

es
Pr

es
en

ta
tio

n,
R

en
de

ri
ng

,

Se
rv

ic
e

C
on

tr
ol

&

E
xe

cu
tio

n

C
om

m
on

Su
pp

or
t

Fu
nc

tio
ns

In
te

rm
ed

ia
te

Se
rv

ic
e

M
id

dl
ew

ar
e

C
om

pl
ex

A
pp

s

C
om

pl
ex

Se
rv

ic
es

Se
rv

ic
e

E
na

bl
er

In
te

gr
at

io
n

C
om

pl
ex

Se
rv

ic
e

M
id

dl
ew

ar
e

Se
rv

ic
e

Fu
nc

tio
ns

C
om

m
on

Se
rv

ic
e

E
na

bl
er

s

Se
rv

ic
e

Fu
nc

tio
n

M
id

dl
ew

ar
e

R
es

ou
rc

e
Fu

nc
tio

ns

R
es

ou
rc

e
Fu

nc
tio

n
M

id
dl

ew
ar

e

R
es

ou
rc

es
B

ill
in

g,
C

R
M

,

E
R

P,
O

&
M

R
es

ou
rc

e
M

id
dl

ew
ar

e

Table A.5: Mapping the Ericsson SDP Architecture onto the SDP Framework

205

G
en

er
ic

Se
rv

ic
e

D
el

iv
er

y
Pl

at
fo

rm
A

rc
hi

te
ct

ur
e

↓
L

a
y
er

s/
D

om
a
in

s
→

E
nd

U
se

r
Su

bs
cr

ib
er

C
on

ne
ct

iv
ity

Pr
ov

id
er

C
on

ve
rg

ed

N
et

w
or

k

Se
rv

ic
e

Pl
at

fo
rm

O
SS

/B
SS

E
nt

er
pr

is
e

Si
m

pl
e

A
pp

s
Se

rv
ic

es
A

pp
lic

at
io

ns

Si
m

pl
e

Se
rv

ic
es

C
om

m
on

Fr
am

ew
or

k

Si
m

pl
e

Se
rv

ic
e

M
id

dl
ew

ar
e

M
ix

tu
re

s
of

st
an

da
rd

s
an

d
pr

op
ri

et
ar

y
te

ch
no

lo
gi

es

In
te

rm
ed

ia
te

A
pp

s

In
te

rm
ed

ia
te

Se
rv

ic
es

Se
rv

ic
e

E
na

bl
er

s

In
te

rm
ed

ia
te

Se
rv

ic
e

M
id

dl
ew

ar
e

M
ix

tu
re

s
of

st
an

da
rd

s
an

d
pr

op
ri

et
ar

y
te

ch
no

lo
gi

es

C
om

pl
ex

A
pp

s

C
om

pl
ex

Se
rv

ic
es

Se
rv

ic
e

E
na

bl
er

s

C
om

pl
ex

Se
rv

ic
e

M
id

dl
ew

ar
e

M
ix

tu
re

s
of

st
an

da
rd

s
an

d
pr

op
ri

et
ar

y
te

ch
no

lo
gi

es

Se
rv

ic
e

Fu
nc

tio
ns

Se
rv

ic
e

Fu
nc

tio
n

M
id

dl
ew

ar
e

H
P

O
pe

nC
al

l,
C

on
ve

rg
en

tC
ha

rg
in

g,
Se

rv
ic

e
M

an
ag

em
en

t,.
..

R
es

ou
rc

e
Fu

nc
tio

ns

R
es

ou
rc

e
Fu

nc
tio

n
M

id
dl

ew
ar

e

R
es

ou
rc

es

R
es

ou
rc

e
M

id
dl

ew
ar

e

Table A.6: Mapping the Hewlett Packard SDP Architecture onto the SDP Framework

206

G
en

er
ic

Se
rv

ic
e

D
el

iv
er

y
Pl

at
fo

rm
A

rc
hi

te
ct

ur
e

↓
L

a
y
er

s/
D

om
a
in

s
→

E
nd

U
se

r
Su

bs
cr

ib
er

C
on

ne
ct

iv
ity

Pr
ov

id
er

C
on

ve
rg

ed

N
et

w
or

k

Se
rv

ic
e

Pl
at

fo
rm

O
SS

/B
SS

E
nt

er
pr

is
e

Si
m

pl
e

A
pp

s
A

pp
lic

at
io

ns
L

oc
al

A
pp

s/
C

on
te

nt
R

em
ot

e
A

pp
s/

C
on

te
nt

Si
m

pl
e

Se
rv

ic
es

C
om

m
on

E
na

bl
er

s
w

ith
in

te
rf

ac
es

Si
m

pl
e

Se
rv

ic
e

M
id

dl
ew

ar
e

M
ix

tu
re

s
of

st
an

da
rd

s
an

d
pr

op
ri

et
ar

y
te

ch
no

lo
gi

es

In
te

rm
ed

ia
te

A
pp

s

In
te

rm
ed

ia
te

Se
rv

ic
es

C
om

m
on

E
na

bl
er

s
w

ith
in

te
rf

ac
es

In
te

rm
ed

ia
te

Se
rv

ic
e

M
id

dl
ew

ar
e

M
ix

tu
re

s
of

st
an

da
rd

s
an

d
pr

op
ri

et
ar

y
te

ch
no

lo
gi

es

C
om

pl
ex

A
pp

s

C
om

pl
ex

Se
rv

ic
es

C
om

m
on

E
na

bl
er

s
w

ith
in

te
rf

ac
es

C
om

pl
ex

Se
rv

ic
e

M
id

dl
ew

ar
e

M
ix

tu
re

s
of

st
an

da
rd

s
an

d
pr

op
ri

et
ar

y
te

ch
no

lo
gi

es

Se
rv

ic
e

Fu
nc

tio
ns

Se
rv

ic
e

Fu
nc

tio
n

M
id

dl
ew

ar
e

R
es

ou
rc

e
Fu

nc
tio

ns

R
es

ou
rc

e
Fu

nc
tio

n
M

id
dl

ew
ar

e

R
es

ou
rc

es
D

ev
ic

es

R
es

ou
rc

e
M

id
dl

ew
ar

e

Table A.7: Mapping the IBM SDP Architecture onto the SDP Framework

207

G
en

er
ic

Se
rv

ic
e

D
el

iv
er

y
Pl

at
fo

rm
A

rc
hi

te
ct

ur
e

↓
L

a
y
er

s/
D

om
a
in

s
→

E
nd

U
se

r
Su

bs
cr

ib
er

C
on

ne
ct

iv
ity

Pr
ov

id
er

C
on

ve
rg

ed

N
et

w
or

k

Se
rv

ic
e

Pl
at

fo
rm

O
SS

/B
SS

E
nt

er
pr

is
e

Si
m

pl
e

A
pp

s
N

ew
Se

rv
ic

es
N

ew
Se

rv
ic

es

Si
m

pl
e

Se
rv

ic
es

Su
pp

or
tS

er
vi

ce
s

E
na

bl
em

en
t

Si
m

pl
e

Se
rv

ic
e

M
id

dl
ew

ar
e

SO
A

-b
as

ed
E

SB

In
te

rm
ed

ia
te

A
pp

s

In
te

rm
ed

ia
te

Se
rv

ic
es

Se
rv

ic
e

C
re

at
io

n,
D

ep
lo

ym
en

t,
E

xe
cu

tio
n

E
na

bl
em

en
t

In
te

rm
ed

ia
te

Se
rv

ic
e

M
id

dl
ew

ar
e

U
nd

efi
ne

d
bu

tp
ro

vi
de

s
M

an
ag

em
en

tc
ap

ab
ili

tie
s

C
om

pl
ex

A
pp

s

C
om

pl
ex

Se
rv

ic
es

C
on

te
nt

,N
et

w
or

k,
D

ev
ic

e
E

na
bl

em
en

t
E

na
bl

em
en

t

C
om

pl
ex

Se
rv

ic
e

M
id

dl
ew

ar
e

Se
rv

ic
e

Fu
nc

tio
ns

Se
rv

ic
e

Fu
nc

tio
n

M
id

dl
ew

ar
e

R
es

ou
rc

e
Fu

nc
tio

ns

R
es

ou
rc

e
Fu

nc
tio

n
M

id
dl

ew
ar

e

R
es

ou
rc

es

R
es

ou
rc

e
M

id
dl

ew
ar

e

Table A.8: Mapping the Microsoft SDP Architecture onto the SDP Framework

208

Appendix B

Message Sequence Charts for IPTV Service

In this appendix we show additional message sequence diagrams for the SDP proof of con-

cept. We show interactions between the Parlay SCS and IMS functional entities. As a

result, we map SCS API invocations to SIP messages. We use our extended SCS API since

its current interface is not fully standardised. We also show the Parlay SCFs invoking the

extended SCS API.

We illustrate interactions between Parlay X web services and the Parlay SCFs. These in-

teractions occur across web service and SCF APIs. We extend specific SCFs to provide

additional capabilities to satisfy the SDP proof of concept. These capabilities are reflected

in new or enhanced SCF APIs. As a result, we abstract access to these SCF APIs by defining

new web service APIs. The new web service APIs ensure an appropriate level of abstraction

is exposed to external IT-using enterprises.

The following message sequences only specify the application, web service, SCF and SCS

API methods. We do not provide detail on the method parameters, since these may be rich

data structures. Also, for the SCS and IMS mappings we only provide recommendations

for SIP message extensions. We do not give detail on the contents of the new SIP messages.

B.1 Web Service and SCF Interactions

In this section we provide details on the interactions between external providers, end-users

and the SDP.

209

IPTV Service Provider

App

ServMngt WS:

ServiceRegister

Frmk SCF: IpService

ContractMngt

1.registerServiceRequest

Frmk SCF:IpFw

ServiceRegistration

2.registerServiceSubType

3.announceServiceAvailability

registerServiceResponse

Register IPTV

Service URI

4.createServiceContract

Frmk SCF: IpService

ProfileMngt

5.createServiceProfile

6.assign

Create a basic Service Profile

for the IPTV service. Also, profile

enables end-user registration.

Ready for end-users to locate

and subscribe for the IPTV service

Figure B.1: Registration of IPTV Service

B.1.1 IPTV Service Registration

Currently, the Parlay framework provides limited subscription-oriented APIs. These APIs

enable one or more SCFs to be registered with the framework. However, we enhance these

APIs to enable service providers to register their end-user services with the framework. In

addition, we abstract the richness of these APIs into a newly defined Parlay X service man-

agement web service API. The web service API simplifies access to the framework service

management capabilities. In Figure B.1, we show the following interactions involving the

extended framework APIs and new service management web service APIs:

1. The service provider wishes to register its IPTV service with the SDP. The service

provider may pass the URI of its IPTV service as one of the method parameters. In

addition, the service provider may provide information or a word list describing the

service its offering.

2. The web service requests the framework to register this service. The framework de-

tects an end-user service is being registered and not a SCF.

3. The web service requests the framework to make this service visible to other entities,

such as service brokers or end-users.

4. The web service requests the framework to create a service contract for the service

provider.

5. The web service requests the framework to create a basic service profile for the IPTV

service, within its service contract.

6. The web service requests the framework to associates the services provider’s contract

and profile. The web service returns successfully to the service provider.

210

Service Provider

Service Contract

IPTV Service

Profile

MMS Service

Profile

Service

Agreement

Group

Service

Agreement

Group

End-

User

End-

User

End-

User

Figure B.2: Service Provider and End-User Registration Model

In Figure B.1, we reuse the framework’s service contract and service profile abstractions.

However, we reuse these abstractions differently, since we are registering end-user services

and not SCFs. We show the modified service contract and service profile abstractions in

Figure B.2. In the figure, the service contract contains service provider registration infor-

mation. This contract recognises the service provider as a provider of end-user specific

services. The service provider’s IPTV service is also registered within the service contract

as an IPTV service profile. The service provider may have multiple service profiles for dif-

ferent end-user services. For example, a service provider may have a single service contract

that contains an IPTV service profile, MMS service profile and telephony service profile.

The IPTV service profile contains a service agreement group (SAG). The SAG is used to

house one or more end-user registrations. These end-users have successfully registered to

use the IPTV service. The end-user registration contains information such as username,

password, account details and phone number.

B.1.2 End-User Service Location, Registration and Deregistration

In Figure B.3, we use the service management web service to abstract the service discovery

capabilities of the framework SCF. The frameworks’ IpServiceDiscovery API is used used

to locate other SCFs. We extend this API to provide end-user service discovery. This

enables end-users to locate the registered IPTV service.

In the figure, we extend the framework’s client application registration capabilities to in-

clude end-user registrations. These capabilities are exposed by a new IpEndUserManage-

ment API. This interface inherits some methods from the framework’s existing IpClien-

tAppManagement API. The new API enables the service provider to populate its IPTV

service profile with a SAG and end-user subscriptions. We also extend the framework to

211

IPTV Service Provider

App
End-User IPTV App ServMngt WS:Broker Frmk SCF: IpAccess

Frmk SCF: IpService

Discovery

1.findMeServiceRequest

2.obtainInterface

3.listServiceTypes

4.describeServiceTypes

5.discoverService

findMeServiceResponse

Return URI of

IPTV service

offered by Service

provider, that is SDP

6. registerForServiceRequest

SubMngt WS:UserMngt

7. registerEndUserRequest

Frmk SCF:IpEndUserMngt

8.createEndUserSub

9.createSAG

If no IPTV SAG then

create one, else

use existing SAG.

10.addSAGmembers

registerEndUserResponse

registerForServiceResponse

15.deregisterFromServiceRequest

16.deregisterEndUserRequest

17.removeSAGmembers

deregisterEndUserResponse
deregisterFrom

ServiceResponse

Retains end-user info,

if user re-registers

11.loginToServiceRequest

12.checkEndUserDetailsRequest

Frmk SCF: IpEnd

UserInfoQuery

13.describeEndUserSub

14. "verify details"

checkEndUserDetailsResponse

loginToServiceResponse

Similar to

IpClient-

AppMngt

Figure B.3: End-User Message Sequences

provide an IpEndUserInfoQuery API that enables end-user subscription information to be

retrieved. We abstract access to the new framework APIs by defining a new Parlay X based

subscription management web service API.

In Figure B.3 the interactions are as follows:

1. The end-user requests the service management web service to locate a television ser-

vice. The end-user may provide additional details on the service it requires.

2. The web service requests access to the service discovery interface on the framework.

3. The web service requests the framework to list services that match the end-user’s

request. The framework determines an end-user service list is required and not a SCF

list.

4. The web service requests the framework to provide additional details on a specific

service that it has found to match the user request. This service being the IPTV

service.

212

5. The web service requests the framework to provide the location of the IPTV service.

This may represent a URI. The web service returns the location to the end-user.

6. Using the URI, the end-user registers with the IPTV service provider by providing

personal information.

7. The service requests the subscription management web service to store the registra-

tion information in its service contract and IPTV service profile.

8. The web service requests the framework to create a new end-user subscription.

9. If this is the first subscription, the web service requests the framework to create a new

SAG to hold the end-user subscription. The SAG is stored as part of the IPTV service

profile.

10. The web service requests the framework to add a new end-user subscription to the

SAG. Once completed the web service returns successfully to the service provider,

who forwards the result to the end-user.

11. The end-user logs into the IPTV service by providing his/her username and password.

12. The service requests the subscription management web service to verify the end-

user’s username and password stored in his registration. This information is contained

in the IPTV service profile SAG.

13. The web service requests the framework to obtain the end-user subscription informa-

tion from the IPTV service profile SAG.

14. The web service extracts the end-user’s username and password and verifies if it is

correct. The web service returns the result to the service provider, who forwards the

result to the end-user.

15. At some point the end-user may deregister with the IPTV service provider.

16. The service requests the subscription management web service to deregister the end-

user by removing him/her from the SAG.

17. The web service requests the framework to remove the end-user subscription from the

IPTV service profile SAG. The web service returns a successful deregistration result

to the service provider, who forwards the result to the end-user.

B.1.3 Media Provider Registration

Similar to the previous service registration, service location and end-user subscription, we

reuse the Parlay framework’s capabilities to mange content registration, content location

213

Media Provider App Content Mngt WS:Broker
Frmk SCF: IpContent

ContractMngt

1.registerContentRequest

Frmk SCF:IpFwContent

Registration

2.registerContent

3.announceContentAvailability

registerContentResponse

4.createContentContract

Frmk SCF: IpContent

ProfileMngt

5.createContentProfile

6.assign

Pass URI of media

provider app, and details

of what content it offers

Register IPTV

Content App

Create a basic Content Profile.

Different Profiles limit what

content providers can use.

Figure B.4: Registration of Media Provider

and application provider registration.

In Figure B.4, we extend the frameworks SCF registration capabilities to include content

registration. These new capabilities are exposed by new IpFwContentRegistration, IpCon-

tentContractManagement and IpContentProfileManagement APIs. These new APIs are

similar to the framework’s existing IpFwServiceRegistration, IpServiceContractManage-

ment and IpServiceProfileManagement APIs. The new APIs provide methods that enable

media providers to register themselves as content providers with the framework. Also, me-

dia providers may register their various content sources with the framework. We abstract

access to the framework’s new content registration capabilities using a new Parlay X based

content management web service API.

In Figure B.4 the interactions are as follows:

1. The media provider wishes to register its diverse television content with the SDP. The

service provider passes a URI of an application that manages access to its content

sources. In addition, the service provider may provide information or a word list

describing its offered content.

2. The web service requests the framework to register this media provider as a con-

tent provider, using its application and content list. The framework detects a content

provider is being registered and not a SCF.

3. The web service requests the framework to make this content visible to other entities,

such as application providers.

4. The web service requests the framework to create a content contract for the media

provider.

5. The web service requests the framework to create a basic content profile, within its

content contract, describing the media provider’s offered television content.

6. The web service requests the framework to associates the media provider’s content

214

Media

Provider Content

Contract

Television

Content Profile

Ring Tone

Content Profile

Content

Agreement

Group

Content

Agreement

Group

App

Provider

App

Provider

App

Provider

Figure B.5: Media Provider and Application Provider Registration Model

contract and television content profile. The web service returns a successful outcome

to the media provider.

In Figure B.4, we again reuse the framework’s service contract and service profile abstrac-

tions. However, these abstractions are now content-oriented, since we are registering con-

tent and not SCFs. We show the content contract and content profile abstractions in Fig-

ure B.5. In the figure, the content contract contains media provider registration information.

This implies the media provider is registered with the framework as a provider of televi-

sion content. The media provider’s television content is also registered within the content

contract as a content profile. The profile contains the location of the application providing

access to the television content source(s). The media provider may have multiple content

profiles for different content types. For example, a media provider may have a single con-

tent contract that contains a television content profile, picture content profile and ring tone

content profile.

The television content profile contains a content agreement group (CAG). The CAG is used

to house one or more application provider registrations. These application providers have

successfully registered to use the television content. The application provider registration

contains information such as username, password, account details and address.

B.1.4 Application Provider Content Location, Registration and Deregistra-
tion

In Figure B.6, we enhance the framework’s SCF discovery capabilities to include content

discovery. The content has already been registered using its new content registration APIs,

215

Content Mngt WS:

Subscription

Media Provider AppIPTV Provider App Content Mngt WS:Broker Frmk SCF: IpAccess
Frmk SCF: IpContent

Discovery

1.locateContentRequest

2.obtainInterface

3.listContentTypes

4.describeContentTypes

5.discoverContent

locateContentResponse

Return URI of

media app

6. registerForContentRequest

7. registerAppProviderRequest

Frmk SCF:IpApp

ProviderMngt

8.createAppProviderSub

9.createCAG

If no CAG then

create one, else

use existing CAG.

10.addCAGmembers

registerAppProviderResponse
registerFor

ContentResponse

11.deregisterForContentRequest

12.deregisterAppProviderRequest

13.removeCAGmembers

deregisterAppProviderResponse
deregisterFor

ContentResponse

Retains provider info,

if provider re-registers

Similar to

IpClient-

AppMngt

Figure B.6: Application Provider Message Sequences

discussed previously. The content discovery capabilities are exposed by a new IpContent-

Discovery API. This API is similar to the framework’s existing IpServiceDiscovery API.

In the figure, we also extend the framework’s client application registration capabilities to

include application provider registrations. These capabilities are exposed by a new IpApp-

ProviderManagement API. This interface is similar to the framework’s existing IpClien-

tAppManagement API. The new API enables the media provider to populate its television

content profile with a CAG and application provider subscriptions. We abstract access to

the new framework APIs by using the content management web service API.

The Figure B.6 we show the following interactions:

1. The IPTV application provider requests the content management web service to lo-

cate television content offered by a media provider. In its request, the application

provider may provide specific details on the content it requires.

2. The web service requests access to the new content discovery interface on the frame-

work.

3. The web service requests the framework to list content that match application provider’s

request.

216

4. The web service requests the framework to provide additional details on specific con-

tent that it has found to match the application provider’s request. This content being

the television content.

5. The web service requests the framework to return the location of the media provider

application, that will provide access to the television content. This location is repre-

sented as an URI. The web service returns the location to the application provider.

6. Using the URI, the application provider registers with the media provider. The appli-

cation provider provides various information in this request.

7. The media provider application requests the content management web service to store

the registration information in its television content profile CAG.

8. The web service requests the framework to create a new application provider sub-

scription.

9. If this is the first subscription, the web service requests the framework to create a new

television content profile CAG to hold the subscription information.

10. The web service requests the framework to add the new application provider subscrip-

tion to the television content profile CAG. Once completed the web service returns

the result to the media provider, who forwards the result to the application provider.

11. At some point the application provider may deregister with the media provider.

12. The media provider requests the content management web service to deregister the

application provider by removing its subscription from the television content profile

CAG.

13. The web service requests the framework to remove the application provider subscrip-

tion from the media provider’s television content profile CAG. The web service re-

turns a successful deregistration result to the media provider, who forwards the result

to the application provider.

B.1.5 SDP and Enterprise Policy Management

In Figure B.7, we define a new Parlay X based policy management web service API. This

API abstracts access to the existing policy management SCF API. Application providers,

media providers and service providers use the web service to view SDP policies. Also, the

web service API enables external entities to create their own policies to manage access to

their services and content. The figure shows the following interactions:

217

T
e
lc
o
 o
r
P
ro
v
id
e
r

B
u
s
in
e
s
s
 A
p
p

P
o
lic
y
 M
n
g
t
W
S
:

B
ro
k
e
r

P
o
lic
 S
C
F
:
Ip
P
o
lic
y

M
n
g
r

P
o
lic
 S
C
F
:
Ip
P
o
lic
y

D
o
m
a
in

P
o
lic
 S
C
F
:
Ip
P
o
lic
y

G
ro
u
p

P
o
lic
 S
C
F
:
Ip
P
o
lic
y

R
u
le

P
o
lic
 S
C
F
:
Ip
P
o
lic
y

C
o
n
d
it
io
n

P
o
lic
 S
C
F
:
Ip
P
o
lic
y

A
c
ti
o
n

1
.
c
re
a
te
P
o
lic
y
R
e
q
u
e
s
t

3
.
c
re
a
te
D
o
m
a
in

4
.
n
e
w

C
re
a
te
s
 a

s
im
p
le
 p
o
lic
y

c
re
a
te
P
o
lic
y
R
e
s
p
o
n
s
e

5
.
c
re
a
te
G
ro
u
p

6
.
n
e
w

7
.
c
re
a
te
R
u
le

8
.
n
e
w

9
 c
re
a
te
C
o
n
d
it
io
n

1
0
.
n
e
w

1
1
.
c
re
a
te
A
c
ti
o
n

1
2
.
n
e
w

2
.
s
ta
rt
T
ra
n
s
a
c
ti
o
n

1
3
.
s
e
tC
o
n
d
it
io
n
L
is
t

1
4
.
s
e
tA
c
ti
o
n
L
is
t

1
5
.
c
o
m
m
it
T
ra
n
s
a
c
ti
o
n

P
o
lic
y
 M
n
g
t
W
S
:P
ro
v
id
e
r

1
6
.
g
e
tP
o
lic
y
R
e
q
u
e
s
t

1
7
.
g
e
tC
o
n
d
it
io
n
L
is
t

1
8
.
g
e
tA
c
ti
o
n
L
is
t

1
9
.
"s
im
p
lf
y
 i
n
fo
"

g
e
tP
o
lic
y
R
e
s
p
o
n
s
e

Figure B.7: Create and Obtain Policy Information

1. An enterprise or SDP application requires a new policy to be created, via the policy

management web service. The request includes structured information describing the

new policy.

2. The web service starts a new policy transaction with the policy SCF.

3. The web service creates a new policy domain, relating to the entity that requires the

policy.

218

4. A new policy domain object is created.

5. The web service creates a new policy group, within the domain, to hold the details of

the new policy.

6. A new group object is created.

7. The web service creates a new rule, within the group, to define the policy.

8. A new rule object is created.

9. The web service creates a new condition, within the rule.

10. A new condition object is created.

11. The web service creates a new action that is invoked when the condition is satisfied.

12. A new action object is created.

13. A new condition list is created that defines the conditions to be satisfied to invoke a

specific action.

14. A new action list is created that defines the actions to invokes when conditions are

satisfied.

15. The web service commits this policy to the SCF. A response is returned to the external

entity or telco.

16. An external or SDP application requests information about a policy that has been

created. This request is made on a different API exposed by the policy management

web service.

17. The web service invokes the SCF to obtain condition details that constitute the re-

quested policy.

18. The web service invokes the SCF to obtain corresponding actions details that relate

to the policy conditions.

19. The web service constructs a simplified representation of the policy details and returns

this information to the requesting entity.

In Figure B.8, we use the policy management web service API to remove policies. The web

service API enables policies to only be deleted by those who defined them. These policies

are managed by the policy management SCF. The figure shows the following interactions:

1. The requesting entity requires the deletion of a specific policy.

219

T
e
lc
o
 o
r
P
ro
v
id
e
r

B
u
s
in
e
s
s
A
p
p

P
o
lic
y
 M
n
g
t
W
S
:

P
ro
v
id
e
r

P
o
lic
y
 S
C
F
:
Ip
P
o
lic
y

M
n
g
r

P
o
lic
y
 S
C
F
:
Ip
P
o
lic
y

D
o
m
a
in

P
o
lic
y
 S
C
F
:
Ip
P
o
lic
y

G
ro
u
p

P
o
lic
y
 S
C
F
:
Ip
P
o
lic
y

R
u
le

P
o
lic
y
 S
C
F
:
Ip
P
o
lic
y

C
o
n
d
it
io
n

P
o
lic
y
 S
C
F
:
Ip
P
o
lic
y

A
c
ti
o
n

1
.
d
e
le
te
P
o
lic
y
R
e
q
u
e
s
t

D
e
le
te
s
 a

s
im
p
le
 p
o
lic
y

d
e
le
te
P
o
lic
y
R
e
s
p
o
n
s
e

2
.
s
ta
rt
T
ra
n
s
a
c
ti
o
n

3
.
re
m
o
v
e
A
c
ti
o
n

5
.
re
m
o
v
e
C
o
n
d
it
io
n

1
3
.
c
o
m
m
it
T
ra
n
s
a
c
ti
o
n

4
.
d
e
le
te

6
.
d
e
le
te

7
.
re
m
o
v
e
R
u
le

8
.
d
e
le
te

9
.
re
m
o
v
e
G
ro
u
p

1
0
.
d
e
le
te

1
1
.
re
m
o
v
e
D
o
m
a
in

1
2
.
d
e
le
te

M
a
y
 n
o
t
b
e
 f
u
lly
 d
e
le
te
d

if
 i
t
c
o
n
ta
in
s
 p
o
lic
ie
s
 a
s
s
o
c
ia
te
d

w
it
h
 o
th
e
r
b
u
s
in
e
s
s
 e
n
ti
ti
e
s
.

Figure B.8: Remove a Policy

2. The web service starts a new policy transaction with the policy SCF.

3. The web service removes the actions associated with the policy conditions.

4. The actions are removed and the action object is destroyed.

220

5. The web service removes the conditions associated with the policy.

6. The conditions are removed and the condition object is destroyed.

7. The web service removes the rule associated with the policy.

8. The rule object is destroyed.

9. The web service removes the policy group associated with policy to be deleted.

10. The policy group object is destroyed, if their are no other rules store in that group.

11. The web service removes the domain associated with the policy group.

12. The domain object is destroyed, if there are no more groups stored in that domain.

13. The web service commits these removal actions to the SCF. A response is returned to

the external entity or telco.

B.1.6 End-User Account Management

In Figure B.9, we use the existing Parlay X based account management web service API.

This API abstracts access to the account management SCF API. The IPTV service provider

uses this web service to manage their end-users’ accounts. The figure shows the following

interactions:

1. The end-user requires his/her account balance.

2. The IPTV service provider requests the end-user’s balance from the account manage-

ment web service.

3. The web service creates a new callback object. The web service requests this object

to obtain the end-user’s balance.

4. The web service callback object requests the end-user’s balance from the account

management SCF.

5. The SCF requests the SCS to obtain the end-user’s balance.

6. The SCS returns the end-user’s balance to the SCF.

7. The SCF returns the end-user’s balance to the web service callback object.

8. The callback object returns the end-user’s balance to the web service. The web service

returns the result to the service provider, who forwards it to the end-user.

221

IP
T

V
 E

n
d

-U
s

e
r

A
p

p
IP

T
V

 S
e

rv
ic

e
 P

ro
v

id
e

r

A
p

p
A

M
 W

S
:A

c
c

o
u

n
tM

a
n

a
g

e
m

e
n

t

1
.

a
c

c
B

a
la

n
c

e
R

e
q

u
e

s
t

A
p

p
 L

o
g

ic
:I

p
A

p
p

A
c

c
o

u
n

tM
a

n
a

g
e

r

2
.

g
e

tB
a

la
n

c
e

R
e

q
u

e
s

t

3
.

n
e

w
 /

 q
u

e
ry

B
a

la
n

c
e

R
e

q

A
M

 S
C

F
:I

p
A

c
c

o
u

n
tM

a
n

a
g

e
r

4
.

q
u

e
ry

B
a

la
n

c
e

R
e

q

S
C

S

5
.

q
u

e
ry

B
a

la
n

c
e

R
e

q

"p
e

n
d

in
g

"

"r
e

tu
rn

"

"r
e

tu
rn

"

6
.

q
u

e
ry

B
a

la
n

c
e

R
e

s

7
.

q
u

e
ry

B
a

la
n

c
e

R
e

s

8
.

"f
o

rw
a

rd
 b

a
la

n
c

e
"

g
e

tB
a

la
n

c
e

R
e

s
p

o
n

s
e

a
c

c
B

a
la

n
c

e
R

e
s

p
o

n
s

e

W
a

it
 f

o
r

c
a

llb
a

c
k

 r
e

s
p

o
n

s
e

 o
n

 I
p

A
p

p
.

W
e

 t
im

e
o

u
t

if
 n

o
 r

e
s

p
o

n
s

e
 a

n
d

 a
n

 e
rr

o
r

is
 r

e
tu

rn
e

d
.

9
.

a
c

c
H

is
to

ry
R

e
q

u
e

s
t

1
0

.
g

e
tH

is
to

ry
R

e
q

u
e

s
t

1
2

.
re

tr
ie

v
e

T
ra

n
s

a
c

ti
o

n
H

is
tr

o
y

R
e

q

1
3

.
re

tr
ie

v
e

T
ra

n
s

a
c

ti
o

n
H

is
tr

o
y

R
e

q

If
 I

p
A

p
p

A
c

c
o

u
n

tM
a

n
a

g
e

r
n

o
t

c
re

a
te

d
 t

h
e

n
 m

a
k

e
 n

e
w

 (
s

e
e

a
b

o
v

e
).

1
1

.
re

tr
ie

v
e

T
ra

n
s

a
c

ti
o

n
H

is
tr

o
y

R
e

q

"p
e

n
d

in
g

"

"r
e

tu
rn

"

1
4

.
re

tr
ie

v
e

T
ra

n
s

a
c

ti
o

n
H

is
tr

o
y

R
e

s

1
5

.
re

tr
ie

v
e

T
ra

n
s

a
c

ti
o

n
H

is
tr

o
y

R
e

s

1
6

.
"f

o
rw

a
rd

 h
is

to
ry

"

a
c

c
H

is
to

ry
R

e
s

p
o

n
s

e

g
e

tH
is

to
ry

R
e

s
p

o
n

s
e

W
a

it
 f

o
r

c
a

llb
a

c
k

 r
e

s
p

o
n

s
e

 o
n

 I
p

A
p

p
.

W
e

 t
im

e
o

u
t

if
 n

o
 r

e
s

p
o

n
s

e
 a

n
d

 a
n

 e
rr

o
r

is
 r

e
tu

rn
e

d
.

"r
e

tu
rn

"

Figure B.9: Obtain Account Balance and History

9. The end-user requires his/her account history.

10. The IPTV service provider requests the end-user’s account history from the account

management web service.

11. The web service reuses its existing callback object or creates one if none is available.

The web service requests its callback object to obtain the end-user’s account history.

12. The web service callback object requests the end-user’s account history from the

account management SCF.

13. The SCF requests the SCS to obtain the end-user’s account history.

222

IPTV End-User App
IPTV Service

Provider App

AM WS:Account

Management

1. payAccRequest

App Logic:IpApp

AccountManager

2. balanceUpdateRequest

3. updateBalanceReq

AM SCF:Ip

AccountManager

4. updateBalanceReq

SCS

5. updateBalanceReq
If IpAppAccountManager not

created then make new (see

above).

6. updateBalanceRes

7. updateBalanceRes

8. "forward balance"

balanceUpdateResponse

payAccResponse

"pending"

"return"

"return"

Wait for callback response on IpApp. We

timeout if no response and an error is returned.

Figure B.10: Pay End-User Account

14. The SCS returns the end-user’s account history to the SCF.

15. The SCF returns the end-user’s account history to the web service callback object.

16. The callback object returns the end-user’s account history to the web service. The

web service returns the result to the service provider, who forwards it to the end-user.

B.1.7 End-Use Payments

In Figure B.10, we again use the account management web service API. The IPTV service

provider uses this web service to manage their end-user payments. The figure shows the

following interactions:

1. The end-user requires to make a payment towards his account using his/her credit

card or IPTV payment vouchers.

2. The IPTV service provider requests the web service to update its end-users account

balance.

3. The web service creates or uses an existing callback object to update the end-user’s

account balance.

4. The web service callback object requests the account management SCF to update the

end-user’s account balance.

5. The SCF requests the SCS to update the end-user’s account balance.

223

6. The SCS returns a successful update has been made to the end-user’s account balance.

7. the SCF returns the successful result to the web service callback object.

8. the callback object returns the result to the web service. The web service returns the

result to the service provider, who forwards it to the end-user.

B.1.8 End-User Pay Per View Part 1

In Figure B.11, we use the existing Parlay X payment web service API. This web service

API simplifies access to the Payment SCF. The IPTV service provider uses the payment web

service to charge end-user accounts for viewing special IPTV content. The figure shows the

following interactions:

1. The end-user requests a the television guide from the service provider. The guide will

indicate content that requires payment and those that are free to view.

2. The service provider requests a list of available television content from the IPTV

service provider.

3. The application provider requests the content list from the media provider. The media

provide returns the list to the application provider. The list is returned to the service

provider, who generates the television guide and returns the guide to the end-user.

4. The end-user selects a television programme to watch. This programme is not free

and requires payment.

5. The service provider requests the payment web service to charge the end-user’s ac-

count for the content.

6. The web service creates a callback object to manage asynchronous responses from

the payment SCF.

7. The web service requests the payment SCF to create a charging session to modify the

end-user’s account.

8. The new charging session object is created in the SCF.

9. We add this method to the SCF API, to allow the web service access to the newly

created charging session’s interface.

10. The web service informs the charging session to reserve an amount from the end-

user’s account, such that he/she can watch the selected content.

224

P
M
T
 W
S
:R
e
s
e
rv
e

V
o
lu
m
e
C
h
a
rg
in
g

A
p
p
 L
o
g
ic
:I
p
A
p
p

C
h
a
rg
in
g
S
e
s
s
io
n

C
H
G
 S
C
F
:I
p

C
h
a
rg
in
g
M
a
n
a
g
e
r

C
H
G
 S
C
F
:I
p

C
h
a
rg
in
g
S
e
s
s
io
n

IP
T
V
 E
n
d
-U
s
e
r
A
p
p

IP
T
V
 S
e
rv
ic
e
 P
ro
v
id
e
r

A
p
p

S
C
S

IP
T
V
 P
ro
v
id
e
r
A
p
p

1
.
v
ie
w
T
V
G
u
id
e
R
e
q
u
e
s
t

2
.
v
ie
w
T
V
G
u
id
e
R
e
q
u
e
s
t

v
ie
w
T
V
G
u
id
e
R
e
s
p
o
n
s
e

v
ie
w
T
V
G
u
id
e
R
e
s
p
o
n
s
e

4
.
p
a
y
T
o
V
ie
w
R
e
q
u
e
s
t

5
.
re
s
e
rv
e
A
m
o
u
n
tR
e
q
u
e
s
t

6
.
n
e
w

8
.
n
e
w

1
0
.
re
s
e
rv
e
A
m
o
u
n
tR
e
q

1
1
.
re
s
e
rv
e
A
m
o
u
n
tR
e
q

7
.
c
re
a
te
C
h
a
rg
in
g
S
e
s
s
io
n

9
.
g
e
tI
p
C
h
a
rg
in
g
S
e
s
s
io
n
R
e
f

"p
e
n
d
in
g
"

"r
e
tu
rn
"

1
2
.
re
s
e
rv
e
A
m
o
u
n
tR
e
s

1
3
.
re
s
e
rv
e
A
m
o
u
n
tR
e
s

1
4
.
"f
o
rw
a
rd

re
s
p
o
n
s
e
"

W
a
it
 f
o
r
c
a
llb
a
c
k
 r
e
s
p
o
n
s
e
 o
n

Ip
A
p
p
.W
e
 t
im
e
o
u
t
if
 n
o
 r
e
s
p
o
n
s
e

a
n
d
 a
n
 e
rr
o
r
is
 r
e
tu
rn
e
d
.

re
s
e
rv
e
A
m
o
u
n
tR
e
s
p
o
n
s
e

p
a
y
T
o
V
ie
w
R
e
s
p
o
n
s
e

M
e
d
ia
 P
ro
v
id
e
r
A
p
p

3
.
g
e
tC
o
n
te
n
tL
is
tR
e
q
u
e
s
t

g
e
tC
o
n
te
n
tL
is
tR
e
s
p
o
n
s
e

Figure B.11: Pay Per View for Pre-booking Content

11. The SCF requests the SCS to reserve the amount from the end-user’s account.

12. The SCS informs the SCF that the amount has been reserved.

13. The SCF informs the web service on its callback object.

14. The callback object informs the web service that the amount is reserved. The web

service informs the service provider, who then informs the end-user. Now the delivery

of the content is started.

225

P
M
T
 W
S
:R
e
s
e
rv
e

V
o
lu
m
e
C
h
a
rg
in
g

A
p
p
 L
o
g
ic
:I
p
A
p
p

C
h
a
rg
in
g
S
e
s
s
io
n

C
H
G
 S
C
F
:I
p

C
h
a
rg
in
g
S
e
s
s
io
n

IP
T
V
 E
n
d
-U
s
e
r
A
p
p

IP
T
V
 S
e
rv
ic
e

P
ro
v
id
e
r
A
p
p

S
C
S

2
.
c
h
a
rg
e
R
e
s
e
rv
a
ti
o
n
R
e
q
u
e
s
t

3
.
d
e
b
it
A
m
o
u
n
tR
e
q

4
.
d
e
b
it
A
m
o
u
n
tR
e
q

6
.
d
e
b
it
A
m
o
u
n
tR
e
s

7
.
"f
o
rw
a
rd
 r
e
s
p
o
n
s
e
"

c
h
a
rg
e
R
e
s
e
rv
a
ti
o
n
R
e
s
p
o
n
s
e

8
.
re
le
a
s
e
R
e
s
e
rv
a
ti
o
n
R
e
q
u
e
s
t

9
.
re
le
a
s
e

1
0
.
re
le
a
s
e

1
.
s
to
p
T
v
R
e
q
u
e
s
t

C
lie
n
t
w
a
tc
h
e
d
 m
e
d
ia

o
r
c
a
n
c
e
lle
d
 s
tr
e
a
m
.

R
e
le
a
s
e
s
 O
S
S
-

B
S
S
 r
e
s
o
u
rc
e
s
.

p
e
n
d
in
g
"

"r
e
tu
rn
"

W
a
it
 f
o
r
c
a
llb
a
c
k
 r
e
s
p
o
n
s
e
 o
n
 I
p
A
p
p
.

W
e
 t
im
e
o
u
t
if
 n
o
 r
e
s
p
o
n
s
e
 a
n
d
 a
n
 e
rr
o
r

is
 r
e
tu
rn
e
d
.

5
.
d
e
b
it
A
m
o
u
n
tR
e
s

s
to
p
T
v
R
e
s
p
o
n
s
e

Figure B.12: Pay Per View After Viewing Content

B.1.9 End-User Pay Per View Part 2

In Figure B.12, we again use the payment web service API to complete the charging of the

end-user account for watching specific content. The figure shows the following interactions:

1. The end-user completes or cancels watching the television programme.

2. The service provider requests the payment web service to complete charging the end-

user’s account.

3. The web service requests the payment SCF to debit the reserved amount off the end-

user’s account, for watching the specific television content.

226

4. The SCF requests the SCS to debit the reserved amount off the end-user’s account.

5. The SCS informs the SCF that the reserved amount has been debited.

6. The SCF informs the web service on its callback object that the reserved amount has

been debited.

7. The callback object informs the web service. The web service informs the service

provider, who then informs the end-user.

8. Since the content delivery and the charging session has been completed, the IPTV

service provider requests the web service to release all resources used to charge the

end-user’s account.

9. The web service requests the payment SCF to release all resource used to charge the

end-user’s account. The web service may also delete its callback object.

10. The SCF requests the SCS to release resources used to charge the end-user’s account.

B.1.10 End-User Presence and Availability

In Figure B.13, we use the existing Parlay X presence and availability web service API. This

web service API simplifies access to the presence and availability SCF. The IPTV applica-

tion provider uses the presence web service to manage end-user presence and availability

for IPTV, telephony and messaging services. The figure shows the following interactions:

1. The end-user updates his/her presence.

2. The IPTV service provider notifies the application provider of the change in end-user

presence.

3. The application provider requests the presence web service to store the end-user’s

presence within the SDP.

4. The web service requests the presence and availability SCF to update the end-user’s

presence in the SDP.

5. The SCF requests the SCS to update the end-user’s presence in a presence database.

6. The end-user requests his/her friend’s presence status.

7. The IPTV service provider requests the application provider for the presence status

of the end-user’s friend.

227

P
A
M
 S
C
F
:I
p
P
A
M
Id
e
n
ti
ty
P
re
s
e
n
c
e

P
A
M
 W

S
:P
re
s
e
n
c
e
S
u
p
p
lie
r

IP
T
V
 E
n
d
-U
s
e
r
A
p
p

IP
T
V
 S
e
rv
ic
e
 P
ro
v
id
e
r

A
p
p

IP
T
V
 P
ro
v
id
e
r
A
p
p

1
.
u
p
d
a
te
S
ta
tu
s
R
e
q
u
e
s
t

2
.
u
p
d
a
te
S
ta
tu
s
R
e
q
u
e
s
t

3
.
p
u
b
lis
h
R
e
q
u
e
s
t

S
C
S

4
.
s
e
tI
d
e
n
ti
ty
P
re
s
e
n
c
e

5
.
s
e
tI
d
e
n
ti
ty
P
re
s
e
n
c
e

8
.
g
e
tU
s
e
rP
re
s
e
n
c
e

R
e
q
u
e
s
t

6
.
b
u
d
d
y
S
ta
tu
s
R
e
q
u
e
s
t

7
.
b
u
d
d
y
S
ta
tu
s
R
e
q
u
e
s
t

P
A
M
 S
C
F
:I
p
P
A
M
A
v
a
ila
b
ili
ty

9
.
g
e
tA
v
a
ila
b
ili
ty

1
0
.
g
e
tA
v
a
ila
b
ili
ty

"r
e
tu
rn
 a
v
a
ila
b
ili
ty
"

"r
e
tu
rn
 a
v
a
ila
b
ili
ty
"

g
e
tU
s
e
rP
re
s
e
n
c
e

R
e
s
p
o
n
s
e

b
u
d
d
y
S
ta
tu
s
R
e
s
p
o
n
s
e

b
u
d
d
y
S
ta
tu
s
R
e
s
p
o
n
s
e

Figure B.13: Update and Obtain End-User Presence Status

8. The application provider requests the web service to obtain the presence status of the

end-user’s friend.

9. The web service requests the SCF to obtain the presence status of the end-user’s

friend.

10. The SCF requests the SCS to obtain the presence status of the end-user’s friend(s).

Once obtained the presence is returned to the end-user, via the SCF, web service,

application provider and service provider.

228

B.1.11 End-User Makes an IPTV Call

In Figure B.14, we use the existing Parlay X third party call web service API. This web

service simplifies access to the multiparty call control SCF. We do not provide any exten-

sions for this SCF. The IPTV application provider uses the third party call web service to

setup and manage calls between end-users registered and using the IPTV service. The figure

shows the following interactions:

1. The end-user requests a call be setup with his friend. The friends presence indicates

that he/she can answer the call.

2. The IPTV service provider requests the application provider to setup the call.

3. The application provider requests the third party call web service to setup the call

between the two parties.

4. The web service creates a call leg callback object for the end-user (Party A).

5. The web service creates a call leg callback object for the end-user’s friend (Party B).

6. The web service requests the SCF to create a call object.

7. The call object is created.

8. We add this method to the multiparty call control SCF API, to allow the web service

access to the newly created call object’s interface.

9. The web service requests the call object to create a call leg object for the end-

user (Party A) in the SCF.

10. The call leg object is created.

11. The web service requests the call object to create a call leg object for the end-user’s

friend (Party B) in the SCF.

12. The call leg object is created.

13. The web service requests notifications from the end-user call leg object about changes

in its call state. The web service requests the end-user call leg object to route the call

to the end-user across the converged network.

14. The end-user call leg object requests the SCS to route the call in the network to the

end-user.

15. The web service requests notifications from the friend call leg object about changes

in its call state. The web service requests the friend call leg object to route the call to

the friend across the converged network.

229

T
P
C
 W

S
:T
h
ir
d
P
a
rt
y
C
a
ll

IP
T
V
 E
n
d
-U
s
e
r
A
p
p

IP
T
V
 S
e
rv
ic
e
 P
ro
v
id
e
r

A
p
p

IP
T
V
 P
ro
v
id
e
r
A
p
p

1
.
c
a
llB
u
d
d
y
R
e
q
u
e
s
t

2
.
c
a
llB
u
d
d
y
R
e
q
u
e
s
t

3
.
m
a
k
e
C
a
llR

e
q
u
e
s
t

A
p
p
 L
o
g
ic
:I
p
A
p
p

M
P
C
L
-A

A
p
p
 L
o
g
ic
:I
p
A
p
p

M
P
C
L
-BM
P
C
 S
C
F
:I
p
M
P
C
C
M
a
n
a
g
e
r

S
C
S

M
P
S
 S
C
F
:I
p
M
P
C

6
.
c
re
a
te
C
a
ll

7
.
n
e
w

8
.
g
e
tI
p
M
P
C
R
e
f

9
.
c
re
a
te
C
a
llL
e
g

M
P
C
 S
C
F
:I
p
M
P
C
L
-A

M
P
C
 S
C
F
:I
p
M
P
C
L
-B

4
.
n
e
w

5
.
n
e
w

1
0
.
n
e
w

1
1
.
c
re
a
te
C
a
llL
e
g

1
2
.
n
e
w

1
3
.
e
v
e
n
tR
e
p
o
rt
R
e
q
 /
 r
o
u
te
R
e
q
 (
P
a
rt
y
 A
)

1
4
.
ro
u
te
R
e
q

1
5
.
e
v
e
n
tR
e
p
o
rt
R
e
q
 /
 r
o
u
te
R
e
q

(P
a
rt
y
 B
)

1
6
.
ro
u
te
R
e
q

m
a
k
e
C
a
llR

e
s
p
o
n
s
e

c
a
llB
u
d
d
y
R
e
s
p
o
n
s
e

c
a
llB
u
d
d
y
R
e
s
p
o
n
s
e

B
u
d
d
y
 i
s
 A
v
a
ila
b
le

fo
r
IP
T
V
 c
a
ll.

"p
e
n
d
in
g
"

"r
e
tu
rn
"

"p
e
n
d
in
g
"

"r
e
tu
rn
"

Figure B.14: Setup Two Party Call Between End-User and Friend

16. The friend call leg object requests the SCS to route the call in the network to the

friend (Party B). While the call is being setup the web service informs the IPTV

application provide that the call is in progress. This information is also returned to

the service provider, who also informs the end-user.

230

T
P
C
 W
S
:T
h
ir
d
P
a
rt
y
C
a
ll

IP
T
V
 E
n
d
-U
s
e
r
A
p
p

IP
T
V
 S
e
rv
ic
e
 P
ro
v
id
e
r

A
p
p

IP
T
V
 P
ro
v
id
e
r
A
p
p

A
p
p
 L
o
g
ic
:I
p
A
p
p

M
P
C
L
-A

A
p
p
 L
o
g
ic
:I
p
A
p
p

M
P
C
L
-B

S
C
S

M
P
C
 S
C
F
:I
p
M
P
C
L
-A

M
P
C
 S
C
F
:I
p
M
P
C
L
-B

2
.
e
v
e
n
tR
e
p
o
rt
R
e
s

(P
a
rt
y
 A
)

1
.
e
v
e
n
tR
e
p
o
rt
R
e
s

4
.
e
v
e
n
tR
e
p
o
rt
R
e
s

5
.
e
v
e
n
tR
e
p
o
rt
R
e
s

(P
a
rt
y
 B
)

3
.
"f
o
rw
a
rd
 e
v
e
n
t"

6
.
"f
o
rw
a
rd
 e
v
e
n
t"

7
.
c
a
llB
u
d
d
y
S
ta
tu
s
R
e
q
u
e
s
t

8
.
c
a
llS
ta
tu
s
R
e
q
u
e
s
t

9
.
g
e
tC
a
llI
n
fo
rm
a
ti
o
n

R
e
q
u
e
s
t

g
e
tC
a
llI
n
fo
rm
a
ti
o
n

R
e
s
p
o
n
s
e

c
a
llS
ta
tu
s
R
e
s
p
o
n
s
e

c
a
llB
u
d
d
y
S
ta
tu
s
R
e
s
p
o
n
s
e

Figure B.15: Checking Status of Two Party IPTV Call

B.1.12 End-User Checks on IPTV Call Status

In Figure B.15, we again use the third party call web service API to view the status of

call being setup between the two end-users using the IPTV service. The figure shows the

following interactions:

231

1. The SCS informs the SCF’s end-user call leg object that the call has been setup be-

tween the end-user in the network.

2. The call leg object forwards this result to the web service on its end-user call leg

callback object.

3. The end-user call leg callback object forwards this result to the web service.

4. The SCS informs the SCF’s friend call leg object that the call has been setup between

the friend in the network. Now the end-user and friend are connected to the call and

both start communicating.

5. The friend call leg object forwards this result to the web service on its friend call leg

callback object.

6. The end-user call leg callback object forwards this result to the web service.

7. At any point in time during the setup of the call, the end-user may request the IPTV

service provider for the state of the call.

8. The service provide requests the application provider for the state of the call.

9. The application provider requests the third party call web service for the state of the

call. The web service may return waiting, in progress or Party A/B busy as call state

information. This information is returned to the application provider. The application

provider returns this result to the service provider, who forwards the result to the

end-user.

B.1.13 End-User Ends an IPTV Call

In Figure B.16, we again use the third party call web service API to end a call that has

been setup between two end-users using the IPTV service. The figure shows the following

interactions:

1. The end-user requests the call with his friend to be ended.

2. The IPTV service provider requests the application provider to end the call.

3. The application provider requests the third party call web service to end the call be-

tween the two parties.

4. The web service deletes its end-user call leg callback object.

5. The web service deletes the friend call leg callback object.

232

T
P
C
 W

S
:T
h
ir
d
P
a
rt
y
C
a
ll

IP
T
V
 E
n
d
-U
s
e
r
A
p
p

IP
T
V
 S
e
rv
ic
e
 P
ro
v
id
e
r

A
p
p

IP
T
V
 P
ro
v
id
e
r
A
p
p

1
.
e
n
d
C
a
llB
u
d
d
y

R
e
q
u
e
s
t

2
.
e
n
d
C
a
llB
u
d
d
y

R
e
q
u
e
s
t

3
.
e
n
d
C
a
llR

e
q
u
e
s
t

A
p
p
 L
o
g
ic
:I
p
A
p
p

M
P
C
L
-A

A
p
p
 L
o
g
ic
:I
p
A
p
p

M
P
C
L
-B

S
C
S

M
P
S
 S
C
F
:I
p
M
P
C

6
.
re
le
a
s
e

M
P
C
 S
C
F
:I
p
M
P
C
L
-A

M
P
C
 S
C
F
:I
p
M
P
C
L
-B

4
.
d
e
le
te

5
.
d
e
le
te

7
.
re
le
a
s
e

8
.
re
le
a
s
e

1
0
.
re
le
a
s
e

9
.
re
le
a
s
e

e
n
d
C
a
llR

e
s
p
o
n
s
e

e
n
d
C
a
llB
u
d
d
y

R
e
s
p
o
n
s
e

e
n
d
C
a
llB
u
d
d
y

R
e
s
p
o
n
s
e

Figure B.16: Ending an IPTV Call between Two Parties

6. The web service requests the multiparty call control SCF release all resources used

to setup and maintain the call. The web service returns a successful release result

to the application provider. The application provider returns the result to the service

provider, who also informs the end-user.

7. The SCF requests its end-user call leg object to release network resources.

8. The end-user call leg object requests the SCS to release network resources used to

setup and maintain the call on the end-user side.

9. The SCF requests its friend call leg object to release network resources.

233

10. The friend call leg object requests the SCS to release network resources used to setup

and maintain the call on the end-user’s friend side.

B.1.14 Interactive End-User Messaging

In Figure B.17, we use the existing Parlay X SMS web service API. This web service API

simplifies access to the user interaction SCF. The IPTV application provider uses the SMS

web service to send and receive messages between end-users registered and using the IPTV

service. The figure shows the following interactions:

1. The end-user requests the IPTV service provider to send a message to his/her friend

that is available to read this message.

2. The service provider requests the application provider to deliver this message to the

end-user’s friend.

3. The application provider requests the SMS web service to send the message to the

end-user’s friend.

4. The web service creates a callback object that manages asynchronous communication

with the user interaction SCF.

5. The web service requests the user interaction SCF to create a new user interaction

object in the SCF.

6. The new user interaction object is created.

7. We add this method to the user interaction SCF API, to allow the web service access

to the newly created user interaction object’s interface.

8. The web service requests the user interaction object to send the message to the end-

user’s friend.

9. The user interaction object requests the SCS send the message to the end-user’s

friend. The SCS returns a pending result to the SCF. The SCF forwards this result to

the web service. The web service also returns the result to the application provider.

The application provider informs the service provider, who also informs the end-user.

10. The end-user’s friend may reply to this message after a period of time. The SCS sends

the reply message to the user interaction object.

11. The user interaction object informs the web service of this reply on its user interaction

callback object.

234

S
M
S
 W
S
:S
m
s
N
o
ti
fi
c
a
ti
o
n
M
a
n
a
g
e
r

IP
T
V
 E
n
d
-U
s
e
r
A
p
p

IP
T
V
 S
e
rv
ic
e
 P
ro
v
id
e
r

A
p
p

IP
T
V
 P
ro
v
id
e
r
A
p
p

1
.
s
e
n
d
B
u
d
d
y

M
e
s
s
a
g
e
R
e
q
u
e
s
t

2
.
s
e
n
d
B
u
d
d
y

M
e
s
s
a
g
e
R
e
q
u
e
s
t

3
.
s
e
n
d
S
M
S
R
e
q
u
e
s
t

U
I
S
C
F
:I
p
U
IM
a
n
a
g
e
r

A
p
p
 L
o
g
ic
:I
p
A
p
p
U
I

4
.
n
e
w

5
.
c
re
a
te
U
I

U
I
S
C
F
:I
p
U
I

6
.
n
e
w

7
.
g
e
tI
p
IU
R
e
f

8
.
s
e
n
d
In
fo
A
n
d
C
o
lle
c
tR
e
q

S
C
S

9
.
s
e
n
d
In
fo
A
n
d
C
o
lle
c
tR
e
q

If
 m
e
s
s
a
g
in
g
 m
u
lt
ip
le
 b
u
d
d
ie
s
,

m
u
lt
ip
le
 I
p
U
I
a
re
 c
re
a
te
d
.

If
 t
h
is
 i
s
 t
h
e
 f
ir
s
t
m
e
s
s
a
g
e
,
th
e
n

s
e
tu
p

a
p
p
 l
o
g
ic
 a
n
d
 U
I
S
C
F
.

"p
e
n
d
in
g
"

"r
e
tu
rn
"

s
e
n
d
S
M
S
R
e
s
p
o
n
s
e

s
e
n
d
B
u
d
d
y

M
e
s
s
a
g
e
R
e
s
p
o
n
s
e

s
e
n
d
B
u
d
d
y

M
e
s
s
a
g
e
R
e
s
p
o
n
s
e

B
u
d
d
y
 r
e
c
e
iv
in
g

th
e
 m
e
s
s
a
g
e

is
 a
v
a
ila
b
le
.

1
0
.
s
e
n
d
In
fo
A
n
d
C
o
lle
c
tR
e
s

1
1
.
s
e
n
d
In
fo
A
n
d
C
o
lle
c
tR
e
s

1
2
.
"f
o
rw
a
rd
 m
e
s
s
a
g
e
"

"f
o
rw
a
rd
 m
e
s
s
a
g
e
"

"f
o
rw
a
rd
 m
e
s
s
a
g
e
"

"f
o
rw
a
rd
 m
e
s
s
a
g
e
"

1
3
.
re
le
a
s
e

If
 m
e
s
s
a
g
in
g
 s
e
s
s
io
n
 i
s
 i
n
a
c
ti
v
e
,

S
C
F
 o
b
je
c
ts
 a
re
 r
e
le
a
s
e
d
.

1
4
.
re
le
a
s
e

Figure B.17: Messaging between Two IPTV End-Users

12. The user interaction callback object returns the reply message to the web service.

The web service forwards the message to the application provider. The application

235

provider informs the service provider, who also informs the end-user, of the reply

message.

13. After a period of time the end-user and friend may not send messages to each other.

Hence, the web service requests the SCF’s user interaction object to release resources

used to facilitate messaging.

14. The user interaction object requests the SCS to also release any resources used to

deliver the previous messages.

B.1.15 Provide End-User with IPTV Help

In Figure B.18, we use the existing Parlay X audio call web service API. This web service

API also simplifies access to the user interaction SCF. The IPTV application provider uses

the audio call web service to deliver audio to the end-user, based on interactive responses

obtained from the end-user. The pairing of the audio and interactive responses represents

the interactive IPTV help service. The figure shows the following interactions:

1. The end-user requests the service provider to start the interactive help service. In

parallel a two party call is set up between the end-user and audio source, such as an

IVR.

2. The service provider requests the application provider start the interactive help ser-

vice.

3. The application provider requests the audio call web service to play a specific audio

message to the end-user. This initial audio message signals the start of the interactive

tutorial.

4. The web service creates a new user interaction callback object to manage asyn-

chronous communication with the SCF.

5. The web service requests the user interaction SCF to create a new user interaction

call object.

6. The new user interaction call object is created.

7. We add this method to the user interaction SCF API, to allow the web service access

to the newly created user interaction call object’s interface.

8. The web service requests the user interaction call object to deliver the specific audio

message and collect any input from the end-user.

236

A
C
 W

S
:P
la
y
A
u
d
io

IP
T
V
 E
n
d
-U
s
e
r
A
p
p

IP
T
V
 S
e
rv
ic
e
 P
ro
v
id
e
r

A
p
p

IP
T
V
 P
ro
v
id
e
r
A
p
p

1
.
p
la
y
A
u
d
io
H
e
lp
R
e
q
u
e
s
t

2
.
p
la
y
A
u
d
io
H
e
lp
R
e
q
u
e
s
t

3
.
p
la
y
A
u
d
io
M
e
s
s
a
g
e

R
e
q
u
e
s
t

U
I
S
C
F
:I
p
U
IM

a
n
a
g
e
r

A
p
p
 L
o
g
ic
:I
p
A
p
p
U
IC
a
ll

4
.
n
e
w

5
.
c
re
a
te
U
IC
a
ll

U
I
S
C
F
:I
p
U
IC
a
ll

6
.
n
e
w

7
.
g
e
tI
p
IU
R
e
f

8
.
s
e
n
d
In
fo
A
n
d
C
o
lle
c
tR
e
q

S
C
S

9
.
s
e
n
d
In
fo
A
n
d
C
o
lle
c
tR
e
q

1
0
.
s
e
n
d
A
n
d
C
o
lle
c
tR
e
s

1
1
.
s
e
n
d
A
n
d
C
o
lle
c
tR
e
s

1
2
.
"f
o
rw
a
rd
 e
v
e
n
t"

1
3
.
"f
o
rw
a
rd
 e
v
e
n
t"

1
9
.
re
le
a
s
e

2
0
.
re
le
a
s
e

C
h
o
o
s
e
 a
u
d
io
 b
a
s
e
d
 o
n

u
s
e
r
in
p
u
t.
 I
f
n
o
 m
o
re

a
u
d
io
 t
h
e
n
 r
e
le
a
s
e
.

1
7
.
e
n
d
M
e
s
s
a
g
e
R
e
q
u
e
s
t

C
lie
n
t
w
a
n
ts
 t
o

e
n
d
 a
u
d
io
 h
e
lp
.

1
5
.
s
to
p
A
u
d
io
H
e
lp
R
e
q
u
e
s
t

1
6
.
s
to
p
A
u
d
io
H
e
lp
R
e
q
u
e
s
t

1
4
.
p
la
y
A
u
d
io
M
e
s
s
a
g
e

R
e
q
u
e
s
t

1
8
.
d
e
le
te

If
 S
C
F
 o
b
je
c
ts
 a
re
 n
o
t

c
re
a
te
d
,
in
s
ta
n
ti
a
te
 t
h
e
m

W
e
 a
s
s
u
m
e
 a
 c
a
ll
le
g
s

h
a
v
e
 b
e
e
n
 s
e
tu
p
.

"p
e
n
d
in
g
"

"r
e
tu
rn
"

p
la
y
A
u
d
io
M
e
s
s
a
g
e

R
e
s
p
o
n
s
e

p
la
y
A
u
d
io
H
e
lp
R
e
s
p
o
n
s
e

p
la
y
A
u
d
io
H
e
lp
R
e
s
p
o
n
s
e

Figure B.18: Using the Interactive IPTV Help

9. The user interaction call object requests the SCS to deliver specific audio from the

IVR to the end-user and to collect any input from the end-user. While this may take

time to complete, the SCS returns a pending result to the SCF’s user interaction call

237

object. The SCF returns the pending result to the web service. The result is then

forwarded, via the application and service provider, to the end-user

10. The SCS returns some end-user input to the SCF’s user interaction call object.

11. The user interaction call object forwards this input to the web service’s user interac-

tion callback object.

12. The user interaction callback object forwards this end-user input to the web service.

13. The web service forwards this input to the application provider.

14. Based on the end-user input, the application provider determines which audio should

be delivered next. The application provider then requests the web service to deliver

the audio.

15. The user may request the stoppage of the interactive help service from the IPTV

service provider. Also, the two party call between end-user and IVR is ended.

16. The service provider requests the application provider to stop the interactive help

service.

17. The application provider requests the audio call web service to stop the delivery of

audio to the end-user.

18. The web service deletes its user interaction callback object.

19. The web service requests the SCF’s user interaction call object to release resources

used to deliver the audio to the end-user.

20. The user interaction call object requests the SCS to release network resources used to

deliver the audio to the end-user.

B.2 SCS and IMS Interactions

We defined a SCS API and implementation that interworked with SCS clients to simulate

data session, IVR, OSS/BSS and call control network events. The message sequences be-

tween SCS and the data session SCS client is shown in Chapter 10, Figure 10.10. The

message sequences between the remaining OSS/BSS, IVR and call control SCS clients and

SCS are similar to the data session SCS client.

The SCS client simulators were created since mappings between the SCS API and SIP-

based IMS functions are not fully standardised. However, during the design and imple-

mentation of the SDP proof of concept we uncovered some SCS to SIP mappings. These

238

SCS

MAP

Adaptor

SIP Server/

Adpator

(B2BUA)

INAP

Adaptor

SOAP

Adaptor ...

API

Protocol Adapators

Converged Networks

(Telco, Enterprise, Internet)

Signalling Network

(IMS Functions)

SIP UA SIP UA

Figure B.19: SCS with Protocol Adaptors

mappings support our SDP implementation and the IPTV service. These mappings are illus-

trated using message sequence diagrams. Also, these diagrams provide recommendations

for SIP message extensions.

B.2.1 Structure of the SCS

In Figure B.19, we provide the architectural structure of the SCS. The figure shows the SCS

exposing a north-facing interface to SCFs. Inside the SCS are various protocol adaptors.

One of these adaptor’s is represented as a SIP server. This SIP server is used communicate

with the IMS functional entities and the end-user SIP user agents (UA). We also use UAs to

represent IMS entities on media sources.

B.2.2 Accessing OSS/BSS and Network Session Capabilities

In Figure B.20, we show interactions between the SCS, OSS/BSS, media sources and end-

users using SIP. These interactions are initiated by various Parlay SCFs. In the figure we

provide recommendations for new SIP messages that allow OSS/BSS functions to be in-

voked. We reuse existing SIP messages to create data sessions across the converged net-

work. However, we add new SIP messages to manipulate these data sessions.

In Figure B.20, we show the following interactions:

1. Account management and charging SCFs request the SCS to invoke various network

functions that manage end-user accounts.

2. The SCS invokes the OSS/BSS functions using new SIP messages. These messages

239

1. quesryBalanceReq,

retrieveTransactionHistoryReq,

updateBalanceReq,

reserveAmountReq,

debitAmountReq,

release

SCS OSS/BSS End-User - UAMedia Store

2. "account request"

3. "account response"

"return response"

9. Invite

10. OK

11. connecRes

12. pauseConnecReq,

resumeConnecReq,

release 13. "pause, stop, end"

15. "pause, stop, end"

14. OK

16. OK

"return response"

Session description negotiated, Session and

Content delivery Started

Create PDP contexts

via GGSN. Set charge

plan and session created.

8. connecReq

4. connecReq

5. invite

6. OK

7. connecRes

Figure B.20: SCS to SIP mappings for OSS/BSS and Data Sessions

must contain the needed information to invoke the OSS/BSS functions. As an al-

ternative the Diameter protocol may be extended to provide these end-user account

management capabilities.

3. The OSS/BSS functions return a result to the SCS using a new SIP message.

4. The data session control SCF requests the SCS to create a network data session with

the end-user attached to it.

5. The SCS reuses the SIP Invite message to setup the end-user’s half of the data session.

6. The first half of the data session is now created since the SIP OK message is returned

from the end-user’s UA.

7. The SCS returns a response to the data session control SCF.

8. The data session control SCF requests the SCS to create a network data session with

a media source attached to it.

9. The SCS reuses the SIP Invite message to setup the media source’s half of the data

session.

10. The second half of the data session is now created since the SIP OK message is

returned from the media source.

11. The SCS returns a response to the data session control SCF.

240

12. The data session control SCF requests the SCS to manipulate the existing network

data session.

13. The SCS uses new SIP messages to manipulate the end-user’s half of the data session.

14. The end-user’s half of the data session is altered since the SIP OK message is returned.

15. The SCS uses new SIP messages to manipulate the media source’s half of the data

session.

16. The media source’s half of the data session is now altered since the SIP OK message

is returned. Once completed, the SCS returns a response to the data session control

SCF.

B.2.3 Accessing Presence and Call Control Network Capabilities

In Figure B.21, we show interactions between the SCS, presence server and end-users using

SIP. These interactions are initiated by various Parlay SCFs. In the figure we provide rec-

ommendations for new SIP messages that allow presence information to be obtained. We

reuse existing SIP messages to setup calls between multiple end-users across the converged

network.

In Figure B.21, we show the following interactions:

1. The presence and availability SCF requests the SCS to update an end-user’s presence

information on the presence and availability (PAM) server.

2. The SCS uses the existing SIP Publish message to update end-user’s presence status

on the PAM server.

3. The presence and availability SCF requests the SCS to obtain an end-user’s presence

information from the PAM server.

4. The SCS uses a new SIP message to request the PAM server for the end-user’s pres-

ence status.

5. The PAM server uses a new SIP message to return the end-user’s presence status. The

presence status is returned to the SCF, via the SCS.

6. The multiparty call control SCF requests the SCS to be informed of changes in a call

leg being setup between an end-user’s (Party A) UA.

7. The multiparty call control SCF requests the SCS to route the call to the end-user’s (Party

A) UA.

241

SCS End-User A - UA End-User B - UAPAM Server

2. Publish

1. setIdentityPresence

3. getAvailability

4. "calculate availability"

5. "return availability"

"return response"

6. eventReportReq

7. routeReq

8. Invite

9. eventReportReq

10. routeReq

11. Invite

12. OK

14. OK

13. eventReportRes

15. eventReportRes

16. release

17. Bye

19. release

20. Bye

18. OK

21. OK

Figure B.21: SCS to SIP mappings for Presence and Call Control

8. The SCS uses the SIP Invite message to setup the call leg involving the end-user’s (Party

A) UA.

9. The multiparty call control SCF requests the SCS to be informed of changes in a call

leg being setup between an end-user’s (Party B) UA.

10. The multiparty call control SCF requests the SCS to route the call to the end-user’s (Party

B) UA.

11. The SCS uses the SIP Invite message to setup the call leg involving the end-user’s (Party

B) UA.

12. The first end user (Party A) call leg has been setup and the SIP OK message is received

by the SCS.

13. The SCS returns a response to the multiparty call control SCF.

14. The second end user (Party B) call leg has been setup and the SIP OK message is

received by the SCS.

242

15. The SCS returns a response to the multiparty call control SCF.

16. Once the call is completed or ended, the multiparty call control SCF requests the SCS

to release all resources used to support the call on the first end-user’s (Party A) UA.

17. The SCS uses the SIP Bye message to end the call on the first end-user’s (Party A)

UA.

18. The call is ended on the first end-user’s (Party A) UA, since the SIP OK message was

received.

19. The multiparty call control SCF requests the SCS to release all resources used to

support the call on the second end-user’s (Party B) UA.

20. The SCS uses the SIP Bye message to end the call on the second end-user’s (Party B)

UA.

21. The call is ended on the second end-user’s (Party B) UA, since the SIP OK message

was received.

B.2.4 Accessing Messaging and Audio Content Network Capabilities

In Figure B.22, we show interactions between the SCS, IVR and end-users using SIP. These

interactions are initiated by various Parlay SCFs. In the figure we reuse existing SIP mes-

sages to enable messages and audio to be delivered end-users across the converged network.

In Figure B.22, we show the following interactions:

1. The user interaction SCF requests the SCS to send a message to an end-user (Party

B).

2. The SCS uses the SIP Message message to send the message to the end-user (Party

B).

3. The user interaction SCF requests the SCS to send another message to another end-

user (Party C).

4. The SCS uses the SIP Message message to send the message to the end-user (Party

C).

5. In response, the end-user (Party C) uses his/her UA to send a message using the SIP

Message. This message is returned to the user interaction SCF via the SCS.

243

SCS End-User B - UA End-User C - UAEnd-User A - UA

1. sendAndCollectInfo

2. Message

3. sendAndCollectInfo

4. Message

5. Message

6. Message

"return message"

"return message"

7. Bye

8. Bye

Message session closed

due to inactivity of

message communication.

IVR

11. Invite

12. OK

The SCS sets up an audio

call to stream audio.

Audio delivery session created

10. OK

9. Invite

13. sendAndCollectInfo

14. Message

15. Message

"return message"

Figure B.22: SCS to SIP mappings for Messaging and Interactive Audio Delivery

6. After some time, the end-user (Party B) also uses his/her UA to send a message using

the SIP Message. This message is returned to the user interaction SCF via the SCS.

7. Since no more messages are being sent, the SCS releases resources used to deliver

messages to end-user (Party B). The SCS reuses the SIP Bye message.

8. Since no more messages are being sent, the SCS releases resources used to deliver

messages to end-user (Party C). The SCS reuses the SIP Bye message.

9. During the activation of the IPTV interactive help service, the multiparty call control

SCF requests the SCS to setup an audio call between an end-user (Party A) and IVR.

The SIP Invite message is used to setup the audio call between the end-user.

10. The audio call is setup since the SIP OK message is received by the SCS from the

end-user (Party A).

11. The multiparty call control SCF requests the SCS to complete the setting up of the

audio call. The SIP Invite message is used to setup the call between the IVR.

244

12. The audio call is setup since the SIP OK message is received by the SCS from the

IVR. Now the appropriate audio can be delivered to the end-user.

13. The user interaction SCF requests the SCS to play a specific audio file that is heard

by the end-user (Party A).

14. The SCS uses the SIP Message message to inform the IVR to play a specific audio

file, that is heard by the end-user.

15. As a result of hearing the audio, the end-user inputs some key on his/her terminal.

The key generates a audio tone that is captured by the IVR across the audio session.

The IVR returns this input using the SIP Message message to the SCS. The SCS

forwards this end-user input to the SCF.

245

Appendix C

Lessons Learned from the SDP Proof of
Concept

C.1 Benefits of an Integrated Development Environment

The Java programming language and tools supported the quick development of the SDP

proof of concept. In addition, we used a popular integrated development environments (IDE)

to support Java development. We found the Netbeans IDE to be effective and efficient when

creating the Java-based SDP proof of concept. This IDE simplified development tasks and

provided Java-oriented developer tools and support. Also, the IDE helped with web service

development, but not deployment (discussed later).

C.2 Richness of CORBA

The standard-based CORBA middleware abstracted various distribution complexities in our

SDP proof of concept. It supported communication across the distributed SDP services,

including the SCFs, SCS and SCS clients. Also, CORBA provided various middleware ser-

vices to support the distributed SDP services. One vital middleware service was the naming

service that enabled distributed applications and SDP services to easily locate each other.

However, on deployment each distributed application and service had to be provided with

the location information of the naming service. This eased redeployment of components

across different servers and network areas.

CORBA provided another middleware service called the portable interceptor service. The

portable interceptor service is part of the CORBA middleware. This service’s capabilities

246

were inherited by our own SDP interceptor service, so as to intercept requests made on

SCF, SCS and SCS client APIs. As a result, we were able to verify if the correct methods

were being invoked with the correct parameter values on the SDP service APIs. With the

help of the CORBA interceptor service, our SDP interceptor service also intercepted the

corresponding replies from SCS clients, SCS and the SCFs. This enabled us to verify if the

correct information was being returned by the SDP services. Hence, the interceptor service

contributed to the testing of our SDP’s distributed services.

In Figure C.1 we illustrate another example of using the portable interceptor service within

the SDP. This example is generic and uses the SDP interceptor service to uphold telco

policies and log SCF and SCS usage information in the telco OSS/BSS. In the figure we

show the following interactions:

1. The SDP interceptor service registers with the CORBA portable interceptor service.

2. The SDP interceptor service registers for notifications of requests on specific SCFs.

3. The SDP interceptor service registers for notifications of replies made by specific

SCFs.

4. An application invokes a request on a web service.

5. The web service makes a request on a specific SCF. However, this request is inter-

cepted by the CORBA portable interceptor service.

6. The CORBA portable interceptor service determines that the SDP interceptor service

requires notification of these SCF requests. A notification is sent.

7. The SDP interceptor service requests the Policy SCF to decide whether the applica-

tion and web service are allowed to use the current SCF.

8. The Policy SCF informs the SDP interceptor service that the SCF request is allowed

to be used by the application and web service.

9. The SDP interceptor service informs the CORBA portable interceptor service to allow

the the request to continue.

10. The CORBA portable interceptor service forwards the request to the appropriate SCF.

11. The SCF invokes the SCS.

12. The SCS returns a result to the SCF.

13. The SCF perceives the result to be returned to the web service. However, the CORBA

portable interceptor service intercepts the response to the web service.

247

SDP: Interceptor

Service

CORBA: Portable

InterceptorService

1. registorWithService

App Web Service

SCF SCS

4. webServiceRequest

5. scfRequest

11. scsRequest

12. scsResponse

13. scfResponse

19. webServiceResponse

2. registorForRequests

3. registorForResponses

18. scfResponse

10. scfRequest

6. scfRequestIntercepted
Policy SCF

7. isRequestAllowed

8. requestAllowed

9. continueSCFRequest

14. scfResponseIntercepted
OSS/BSS

15. logResponse

16. responseLogged

17. continueSCFResponse

Figure C.1: Using CORBA Portable Interceptors

14. The CORBA portable interceptor service determines that the SDP interceptor service

requires notifications of these SCF replies. A notification is sent.

15. The SDP interceptor service requests the OSS/BSS to log the information contained

in the SCF response.

16. The OSS/BSS successfully logs the response information and informs the SDP inter-

ceptor service of this result.

17. The SDP interceptor service informs the CORBA portable interceptor service to allow

the response to be delivered.

18. The CORBA portable interceptor service forwards the response to the web service.

19. The web service returns a response to the application.

248

C.3 Problems with Web Services

In contrast to the CORBA-based SCFs, SCS and simulators, we faced many problems with

the web service programming, deployment, testing and ESB middleware. Some of these

problems are as follows:

• Web service interfaces (WSDL) did not provide a complete abstraction of their dis-

tribution and location. This increased the complexity of redeploying web services on

different application servers across the network. To overcome this problem we used

the Netbeans IDE to copy the web service project to a portable storage drive. We

then used Netbeans to copy the project from the portable drive to a location on the

target server. However, the various inconsistencies in the web service’s code had to

be corrected to reflect the changes in its distribution.

• The stateless property of web services provided a challenge. For example, web ser-

vices had to continuously poll SCFs for call status and end-user presence information.

There is no solution for this problem since we could not find standards-based solu-

tions for asynchronous web services.

• The ESB middleware bundled in the application servers provided proprietary func-

tionality. This included middleware services that exposed functions to Java-specific

mechanisms, such as Java message queues. Hence, our web service implementations

could not operate across any other ESB middleware.

• Each application server required detailed knowledge of the network and its configu-

ration, such as proxy and host list. This information must detail elements that can be

reached with or without the use of proxies.

• Due to configurations the application servers required redeployment of web services

after each simulation. It proved too time consuming to reconfigure the server, since

the documentation and configuration files are complex to understand and use.

Therefore, web service middleware is complex and provided limited standard-based func-

tionality. Also, the middleware did not provide additional benefits to our web service im-

plementations and SDP proof of concept.

249

Appendix D

Source Code

The implementation of the SDP framework can be found on the accompanying compact

disc. The disc contains a README.txt file describing in detail the contents of the disc.

250

	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	 Introduction
	Convergence
	Service Centric Networks
	Next Generation Network
	Service Orientated Architecture
	Service Delivery Platform

	Problem Statement, Aim and Objectives
	Outline of Thesis

	 Convergence
	The Process of Separation and Integration
	Implications of Convergence
	Business Models
	Network Technologies
	Service Platforms
	Application Environments
	Management Systems

	SDP as a Strategy for Convergence
	Summary

	 Managing the Complexity of the Service Delivery Platform
	Limitations
	Approach
	Requirements

	Complex Systems
	Managing Complexity

	Modeling Complexity
	SDP Framework Development
	Summary

	 Perspectives on the SDP from Legacy Standards: IN and TINA
	Intelligent Network
	Requirements
	Architecture
	Reusable Concepts
	Contribution to SDP from IN
	Evaluation of SDP Conceptual Model

	Telecommunication Information Network Architecture
	Requirements
	Architecture
	Reusable Concepts
	Contribution to the SDP from TINA
	Evaluation of SDP Business Model and Architecture

	Summary

	 Perspectives on the SDP from Service Platform Standards: Parlay and Parlay X
	Requirements
	Architecture
	Parlay
	Parlay X

	Reusable Concepts
	Contribution to the SDP from Parlay and Parlay X
	Evaluation of SDP Business Model, Reference Model and Architecture
	Summary

	 Perspectives on the SDP from Management Framework Standards: TMN, TOM and eTOM
	Requirements
	TMN
	TOM
	eTOM

	Architecture
	TMN
	TOM
	eTOM

	Reusable Concepts
	Contribution to the SDP from TMN, TOM and eTOM
	Defining a Complete and Managed SDP Architecture

	Evaluation of SDP Business Model and Architecture
	Summary

	 Perspective on the SDP from an Enterprise Standard: SOA
	Requirements
	Architecture
	Web Services SOA
	Enterprise SOA

	Reusable Concepts
	Contribution to the SDP from the SOA
	Evaluation of SDP Business Model, Reference Model and Architecture
	SDP offering a Web Services SOA

	Summary

	 Perspective on the SDP from a Converged Standard: IMS
	Requirements
	Architecture
	Functional Architecture
	Service Platform Architecture

	Reusable Concepts
	Contribution to the SDP from the IMS
	Evaluation of SDP Reference model and Architecture
	Summary

	 Defining the SDP Framework
	Definition and Requirements
	Infrastructure Integration
	Service-oriented System
	Business Model
	Reference Model
	Overall Management
	Architectural Structure
	Standards-based Implementation

	Architecture
	Using the GSOA Building block

	Results
	Summary

	 Proving the SDP Framework
	IPTV Service Description
	Business Model
	Formalising Interactions
	Services, Interfaces and SDP Framework
	Mapping Standard-based Technologies
	Alternatives

	SDP and IPTV Service Implementation
	Interactions via APIs
	Building, Deployment and Simulation

	Results
	Summary

	 Contribution of our SDP Framework
	Summary of Results
	Conclusion
	Future Work
	Development Process
	Information Viewpoint
	Resource Oriented Viewpoint
	Creating Service Deliver Platforms
	Importance of Standardised Middleware

	References
	 Mapping to the SDP Framework
	Standards-based Architectures
	Product-based Architectures

	 Message Sequence Charts for IPTV Service
	Web Service and SCF Interactions
	IPTV Service Registration
	End-User Service Location, Registration and Deregistration
	Media Provider Registration
	Application Provider Content Location, Registration and Deregistration
	SDP and Enterprise Policy Management
	End-User Account Management
	End-Use Payments
	End-User Pay Per View Part 1
	End-User Pay Per View Part 2
	End-User Presence and Availability
	End-User Makes an IPTV Call
	End-User Checks on IPTV Call Status
	End-User Ends an IPTV Call
	Interactive End-User Messaging
	Provide End-User with IPTV Help

	SCS and IMS Interactions
	Structure of the SCS
	Accessing OSS/BSS and Network Session Capabilities
	Accessing Presence and Call Control Network Capabilities
	Accessing Messaging and Audio Content Network Capabilities

	 Lessons Learned from the SDP Proof of Concept
	Benefits of an Integrated Development Environment
	Richness of CORBA
	Problems with Web Services

	 Source Code

