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Abstract

A comparison of two numerical methods - finite difference and Adomian

decomposition method (ADM) - to solve a variety of fractional partial dif-

ferential equations that occur in finance are investigated. These fractional

partial differential equations fall into the class of Lévy models. They are

known as the Finite Moment Log Stable (FMLS), CGMY and the extended

Koponen (KoBol) models. Convergence criteria for these models under the

numerical methods are studied. ADM fails to accurately price a claim writ-

ten on these models. However, the finite difference scheme works well for the

FMLS and KoBol models.
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Chapter 1

Introduction

Undoubtedly the most well known model for pricing financial derivatives is

the Black-Merton-Scholes model. This model is relatively simplistic and as

such, has some drawbacks when it comes to pricing financial derivatives. The

major drawback, as will be discussed later in this chapter, is its inability to

accurately price out the money instruments.

To counter this, a large number of other models have been introduced.

These models are more complicated however have the advantage of being

able to more accurately price financial instruments. This thesis looks at three

such models: Finite Moment Log Stable (FMLS), CGMY (named after its

authors: Carr, Geman, Madan, Yor) and KoBol (extended Koponen) Models.
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To price a financial instrument that follow any of these models, it is re-

quired to solve a fractional partial differential equation (FPDE). This thesis

looks at and compares two of the most popular methods for solve FPDEs,

namely the finite difference scheme and the Adomian decomposition method

(ADM).

This chapter outlines three main concepts that this thesis deals with:

financial derivatives, Lévy processes and fractional partial differential equa-

tions. These concepts will be discussed individually in detail in later chapters.

1.1 Financial Derivatives

There lies an immense amount of interest and literature on the pricing of

financial derivatives. A financial derivative is an instrument whose price

depends on, or is derived from, the value of another asset [1]. Often, this

underlying asset is a stock.

In modern times, the number of variations of financial derivatives available

is practically limitless. Among the most common are the European call and

European put options:
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Let St be the value of a stock at time t. Denote a European call option

by c[St, T − t, K] which gives the holder the right, but not the obligation to

buy St for a predetermined price known as the strike price, K, set at t at

some future date T [1]. Denote a European put option by p[St, T − t, K]

which gives the holder the right, but not the obligation to sell St for a prede-

termined price known as the strike price, K, set at t at some future date T [1].

The concept of financial derivatives is not new. There are references that

show that they have roots dating to the time of the ancient Greek civiliza-

tion where farmers used derivatives to lock onto a price to sell their crops at

a future date [2]. Thus, regardless of market conditions, Greek farmers were

able to ensure that their crops were sold for a set price.

While there remains some historical debate as to the exact date of the cre-

ation of financial derivatives, it is well accepted that the first attempt at

modern derivative pricing began with the work of Charles Castelli [3] pub-

lished in 1877. Castelli’s book was a general introduction to concepts such as

hedging and speculative trading, but it lacked mathematical rigor. Twenty

three years later, Louis Bachelier offered the earliest known analytical method

for option pricing in a work entitled Théorie de la spéculation [4]. This work

was a step in the right direction. However he modeled the changes of stock
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prices via Brownian motion - a model that allows stock prices to become neg-

ative and produced option prices that exceeded the price of the underlying

stock.

Following that, a number of other papers extended Bacheliers work, most

notably by Paul Samuelson [5], Richard Kruizenga [6], A. James Boness [7]

and Osborne [8]. Osborne’s contribution was important as he was the first

to introduce the concept of modeling stock price movements using geometric

Brownian motion. He justified his approach based on the Weber-Fechner

law, which states that people perceive the intensity of stimuli on a log scale

rather than a linear scale. But it wasn’t until 1973 with the introduction

of the Black-Merton-Scholes equation that a significant breakthrough in the

subject of option pricing was put forward.

1.2 The Black-Merton-Scholes World

In 1969, Fischer Black and Myron Scholes got an idea that would change the

world of finance forever. The central idea of their paper revolved around the

discovery that one did not need to estimate the expected return of a stock

in order to price an option written on that stock. By changing measure, one
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could use the risk free rate instead and perfectly price the option under the

proposed model [1, 9]. By 1973 Black and Scholes, with the help of Robert

C. Merton, had written and proposed a first draft of their to-be famous pa-

per to the Journal of Political Economy for publication, but it was rejected.

A second rejection occurred at the hands of the Review of Economics and

Statistics. However with the help of Merton, Miller and Eugene Fama they

were able to review and modify the paper so that eventually it was accepted

by the Journal of Political Economy in 1973 [9]. Both Robert Merton and

Myron Scholes were awarded a Nobel Prize in economics in 1997. Fischer

Black had died of throat cancer in 1994 and was thus not eligible for the

award. It is perhaps a cruel twist of fate that the highly influential figure of

Merton is often absent from the naming of the Black-Merton-Scholes equa-

tion, as his input was an invaluable contribution to the work of Black and

Scholes.

Since then, the impact that the paper has had on modern economy has

been great. Despite the shortcomings of the Black-Merton-Scholes pricing

framework, which will soon be discussed, it remains up until today as the

most influential and most widely used method to price options.

This groundbreaking work assumed that the stock price, St, followed a log-
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normal distribution (geometric Brownian motion) [1, 9]. That is:

dSt = µStdt + σStdZt, (1.2. 1)

where µ > 0, the drift, is the expected continuously compounded rate of

return from holding St; σ > 0 is the volatility of returns from holding St; and

dZt is the Brownian motion increment which is assumed to have a Gaussian

distribution. That is dZt ∼ N(0, dt). Note that using Ito’s formula (see

appendix A) (1.2. 1) could alternatively be written as

dln(St) = (µ− 1

2
σ)dt + σdZt. (1.2. 2)

Under the assumption of (1.2. 1), Black, Merton and Scholes derived

a partial differential equation (PDE) to solve for the value of a financial

derivative V (S, t) depending on an underlying asset S at time t to be [1, 9]:

rV (S, t) =
∂V (S, t)

∂t
+ rS

∂V (S, t)

∂S
+

1

2
σ2S2∂2V (S, t)

∂S2
, (1.2. 3)

where r is the risk-free rate of interest.
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The fact that we can replace the unknown µ by the market observable r

forms the crux of the Black-Merton-Scholes equations and allows for dy-

namic hedging to occur. Equivalent to (1.2. 3), using x = ln(St) the PDE

can be written as:

rV (x, t) =
∂V (x, t)

∂t
+

1

2
σ2∂2V (x, t)

∂x2
+ (r − 1

2
σ2)

∂V (x, t)

∂x
. (1.2. 4)

The beauty of the Black-Merton-Scholes model lies in its simplicity. It

is possible to find closed form solutions for the price of a European call or

European put option [1, 9].

1.3 Introduction to Lévy Processes

When first introduced, the Black-Merton-Scholes model was blindly accepted.

Their model wasn’t just a model, it was the model for pricing derivatives.

However, the East Asian and Russian financial crisis of 1997 exposed the

weaknesses of the model. The likelihood of an extreme movement in the

stock price is higher in the real world than the Black-Merton-Scholes model

suggests. Further, the model assumes that the path that a stock price follows

is continuous whereas in reality stock prices can jump. Scholes and Merton
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suffered greatly when this event happened, as their company, LTCM, lost

4.6 billion dollars. Today, this incident is frequently quoted in texts as one

of the prime examples of the importance of risk management in financial

institutions [10].

To overcome this, a number of more complicated models have been pro-

posed. One possibility is to assume a two factor model. Such models have

the same form as (1.2. 1) but allow σ to follow a stochastic process [11]. The

other popular alternative, on which this thesis focuses, is to assume a model

of the Lévy family for the evolution of the stock price [12, 13, 14]. These

models are also known as jump processes.

This thesis deals with three particular Lévy models which have been pro-

posed in the literature, namely the FMLS, CGMY and KoBol models [14].

1.4 Introduction to Fractional Partial Differ-

ential Equations

Recall that in the Black-Merton-Scholes case, the solution to value a deriva-

tive V (x, t) required the solving of a partial differential equation given by (1.2.
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4). However, in the case of the above mentioned Lévy models, the solution

to V (x, t) is given by a fractional partial differential equation (FPDE)[14].

The use of FPDEs has applications in finance [15, 16, 17] and in other areas.

In recent years, they have been used to describe a number of processes in

many fields including fluid mechanics, biology, hydrodynamics, solid state

physics and optical fibers [18, 19, 20, 21, 22]. Such processes are related

to equations where diffusion occurs slower or more rapidly that under nor-

mal conditions. Fractional partial differential equations are an extension of

fractional calculus where the order of the derivative is allowed to take on

non-integer values.

1.5 Numerical Approximations to Solve FPDEs

In general, it is not possible to find an exact solution to an FPDE. However,

there are a variety of numerical methods that can be used to get approxi-

mate solutions. This thesis considers two such methods: the finite difference

scheme and ADM.

The finite difference method extends the classical finite difference scheme



1.5 Numerical Approximations to Solve FPDEs 17

for PDEs to fractional order [23, 24]. Adomian decomposition method solves

FPDEs via a power series expansion [25, 26]. Both of these methods have

advantages and disadvantages, which will be explored in this thesis.

This thesis will delve into each of the aforementioned concepts in detail.

While other papers look at solving FPDEs using a specific approximation,

this paper will compare two of the most well known methods for solving

FPDEs. Furthermore, the thesis focuses both on the models and the numer-

ical methods used to solve them. Most of the literature focuses on either one

or the other, meaning that this thesis gives a clear, complete and detailed

picture of the work - ideal for any practitioners in the field who are looking

to incorporate new models into their derivative pricing methodologies.

The thesis is organised as follows: Chapter 2 sets up the mathematical frame-

work for the thesis. The concepts of fractional calculus, Lévy processes and

the FPDEs that this thesis deals with are explored. The numerical methods

used in this thesis to solve the FPDEs (finite difference schemes and ADM)

are derived. Chapter 3 explores the numerical solution obtained when solving

the required FPDEs. Chapter 4 contains concluding remarks.



Chapter 2

Mathematical Framework

This chapter looks at the details of the mathematics required in this thesis.

Fractional calculus and Lévy processes are discussed. The specific Lévy pro-

cesses that this thesis deals with are then discussed as well as using Fourier

transformations to get an FPDE to solve for the price of a financial deriva-

tive. Finally, the numerical methods used to solve these FPDEs are derived

in detail.

For details on stochastic calculus the reader is referred to appendix A of

this thesis.
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2.1 Fractional Calculus

Recall that V (x, t) represents the value of a financial derivative depending

on x = ln(S) at time t, where S is the underlying asset. The solution to

V (x, t) when using one of the mentioned Lévy models is given by a fractional

partial differential equation. In this section, the basic concepts of fractional

calculus and the fractional derivative is outlined. For a detailed analysis of

the subject see [15, 27].

The origins of fractional calculus date back to the same time as the invention

of classical calculus. Fractional calculus generalises the concept of differenti-

ation and integration a step furthermore by allowing non-integer order.

The idea was first raised by Leibniz in 1695 when he wrote a letter to

L’Hospital where he said: ‘Can the meaning of derivatives with integer order

to be generalized to derivatives with non-integer orders?’ To this L’Hospital

replied with a question of his own:‘What if the order will be 1
2
?’ To this, Leib-

niz said:‘It will lead to a paradox, from which one day useful consequences

will be drawn.’ - [30].

This was indeed the case. The concept of a fractional derivative is not intu-
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itive. The operator d1/2/dx1/2 is difficult to quantify. However, the growth

in the field of fractional calculus has been vast with many mathematicians

contributing to its growth. Most notably Riemann, Liouville, Caputo, Let-

nikov, Grunwald and Weyl - see [15, 28]. In fact, the fractional derivative is

termed the Riemann-Liouville derivative after its major contributors.

As we shall see, fractional calculus has strong links with Fourier transforma-

tions. Grunwalds formula allows for the linearisation of fractional derivative,

making it easier to work with in some cases.

What follows is an outline of how the fractional derivative is defined. In

fact, we start out the definition of this operator using the integral. Let l be

an integer. Then the lth order integration of a function f(x) is given by

f [l](x) =

∫ x

a

dx1

∫ x1

a

dx2...

∫ xl−1

a

dxlf(xl), (2.1. 1)

where a is a constant. By using Cauchy’s formula for repeated integration,

equation (2.1. 1) can be written as

f [l](x) =
1

(l − 1)!

∫ x

a

f(y)

(x− y)1−l
dy. (2.1. 2)
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To extend (2.1. 2) to a non-integer order, γ, the Γ function that generalizes

the factorial function for non-integer values is invoked to obtain

aJ
γ
x f(x) = f [γ](x) =

1

Γ(γ)

∫ x

a

f(y)

(x− y)1−γ
dy. (2.1. 3)

Equation (2.1. 3) is known as the left Riemann-Liouville fractional integral

of order γ. The left Riemann-Liouville fractional derivative is defined by

aD
γ
xf(x) =

∂γf(x)

∂+xγ
=

∂ξ

∂xξ
f [ξ−γ] =

1

Γ(ξ − γ)

∂ξ

∂xξ

∫ x

a

f(y)

(x− y)γ+1−ξ
dy,

(2.1. 4)

where ξ is the smallest integer greater than γ. The right sided Riemann-

Liouville derivative is obtained by switching the limits of integration in (2.1.

1):

xD
γ
b f(x) =

∂γf(x)

∂−xγ
=

1

Γ(ξ − γ)

∂ξ

∂xξ

∫ b

x

f(y)

(x− y)γ+1−ξ
dy, (2.1. 5)

where b is a constant. These definitions are easily extended to the case

where a = −∞ and b = ∞. The fact that we have defined two fractional

derivatives, left and right, seems unintuitive. However, it is simply a direc-
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tional component in the same way that with classical calculus we can define

the left and right sided derivative of a function.

To better understand the mechanics of Adomian decomposition which will

later be discussed, it is useful to introduce some properties of the operators

J and D. Let α’, β’ > 0, m′ − 1 < α′ 6 m′ and γ′ > −1. Then:

0J
α′
x 0J

β′
x f(x) = 0J

α′+β′
x f(x) (2.1. 6)

0J
α′
x xγ′ =

Γ(γ′ + 1)

Γ(γ′ + α′ + 1)
xγ′+α′ (2.1. 7)

0J
α′
x 0D

α′
x f(x) = f(x)−

m′−1∑

k=0

fk(0)

k!
xk (2.1. 8)

2.2 The Lévy Process

Recall that geometric Brownian motion fails to capture some essential dy-

namics of real stock price changes. As a result, many alternative models

have been proposed in an attempt to better price financial derivatives. These
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models can be subdivided into two categories: Parametric models and non-

parametric models. For a detailed description of Lévy processes, the reader

is referred to [12, 13].

In parametric models, we specify the functional form of the underlying as-

set. For example, the Black-Merton-Scholes model is parametric as we as-

sume that the stock changes according to geometric Brownian motion. These

models have three classifications. They either assume a continuous diffusion

process with deterministic volatility, allow volatility to be a stochastic pro-

cess of its own, or assume a model with jumps. The latter is the case with

Lévy models.

Another alternative has been to create a mapping principle that switches

between distributions [31].

The non-parametric approach consists of extrapolating the model from the

market data [32]. The name given to this method is the expansion method

as one infers the different terms of the expansion and can then reconstitute

the distribution.

The parametric method is by far better documented and well studied in
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the literature. Most notably, Lévy processes have been very successful in

capturing the dynamics of stock price changes.

Lévy processes have long been used in finance. In fact, Brownian motion

falls into the class of Lévy processes. Recall that this was the model pro-

posed by Bachelier in 1900. However, the first attempt to model stock price

data using an exponential non-Gaussian process was put forward by Man-

delbrot [33] in 1963. He noticed that the log of relative price changes showed

evidence of a long tailed distribution. He thus proposed that the Brown-

ian motion component should be replaced by an α-stable Lévy motion with

α < 2. This creates a model where stock prices change only by jumps. The

parameter α plays an important role in Lévy processes. The case 1 < α < 2

represents superdiffusion, where particles spread faster than in the classical

case. The case 0 < α < 1 represents subdiffusion, where particles spread

slower than in the classical case. For a detailed description of the parameter

α and its role in diffusive processes the reader is referred to [34].

A few years later in 1967, Press proposed an exponential Lévy process that

was non-stable [35]. He used a Brownian motion component and indepen-

dently a compound Poisson process with independent normally distributed

jumps to model log-stock price changes.
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Since then, a whole host of other Lévy models have been proposed. Perhaps

the most popular one not examined in this thesis is the variance gamma

model introduced by Madan and Seneta [36] in 1990. This model is a pure

jump process.

What follows is a mathematical definition of the Lévy process.

Definition: let (Ω,F ,F,P) be a filtered probability space, that satisfies

the usual condition.

A cádlág, adapted, real valued stochastic process L = (Lt)t>0 with L0 = 0 is

called a Lévy process if the following conditions hold:

(i) L has independent increments. That is, Lt − Ls is independent of Fs

for any 0 6 s < t 6 T .

(ii) L has stationary increments. That is, for any s, t > 0 the distribution of

Lt+s − Lt does not depend on t.

(iii) L is stochastically continuous. That is, for every t, ε > 0 : lims→t P (|Lt−

Ls| > ε) = 0.
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Brownian motion is a Lévy process. In fact, it is the only Lévy process

with continuous sample paths.

The family of Lévy processes is huge, however, there is a compact character-

isation. That is, a time dependent random variable Xt is a Lévy process if

and only if it has independent stationary increments with a log characteristic

function given by the Lévy-Khintchine representation:

lnE[eiηXt ] = tψ(η) = κitη − 1

2
σ2tη2 + t

∫

R−{0}
(eiηx − 1− iηH(x))W (dx),

(2.2. 9)

where κ ∈ R, σ > 0, H(x) is a truncation function and the Lévy measure

W satisfies:

∫

R
min(1, x2)W (dx) < ∞. (2.2. 10)

The function, ψ is called the characteristic exponent of the Lévy process

and is important when using Fourier transformations. A Lévy process can

be seen as a combination of three processes. A drift component, a Brownian

motion process and a jump component. These three aspects are completely
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determined by the Lévy-Khintchine triplet: (κ, σ2,W ). The measure, W ,

is responsible for the frequency and magnitude of the jumps. If W can be

written as W (dx) = w(x)d(x) then w(x) is called the Lévy density.

Recall that Black-Merton-Scholes assumed that St followed (1.2. 2). that

is:

d ln(St) = (µ− 1

2
σ)dt + σdZt, (2.2. 11)

and that the main finding of Black, Merton and Scholes was that one did

not need to estimate µ to price a derivative. In fact, under a suitable change

of measure, one could replace µ with the market observable risk-free rate r.

Mathematically,

d ln(St) = (r − 1

2
σ)dt + σdZQt , (2.2. 12)

where dZQt is the increment of the Brownian motion under what is called

the risk neutral measure.

When pricing under a Lévy model, the Brownian motion component is re-
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placed with a Lévy component. So the resulting stochastic differential equa-

tion becomes:

d ln(St) = µdt + dLPt , (2.2. 13)

where the superscript P of dLPt indicates that we are using a measure where

µ needs to be estimated from the real world. This is often called the real

world measure or the historical measure. As with the Black-Merton-Scholes

case, it is now necessary to change to the risk neutral measure. However,

this model is an incomplete market model. An incomplete market allows

for different prices of an asset in different states of the world. In the Black-

Merton-Scholes world, the market model was complete and thus there was

one unique risk neutral measure. However, in the case of the Lévy model

this is not the case.

A variety of ways have been proposed to pick the risk neutral measure in the

Lévy world case including the minimal measure, the Esscher measure, the

variance optimal measure and the minimal entropy measure - see [37, 38].

This thesis assumes an approach whereby a change of measure keeps the stock

price process within the Lévy family of models. Under this assumption, the

risk neutral log-stock price process becomes:
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d ln(St) = (r − v)dt + dLQt , (2.2. 14)

where v is the convexity adjustment that plays a similar role to the 1
2
σ2

term in (2.2. 12) where the Black-Merton-Scholes framework was used.

Geometric Brownian motion is a Lévy process and can be retrieved by the

above Lévy framework by choosing the Lévy-Khintchine triplet:(0,σ2,0).

2.3 Fourier Transformations

The connection between Fourier transforms and Lévy processes rests on the

following result: if the log-stock process follows (2.2. 14) where the charac-

teristic exponent of the Lévy process Lt is given by ψ(η) then the Fourier

transform,

f(η) =

∫ ∞

−∞
eiηxf(x)dx = F{f(x)}, (2.3. 15)

of the value of a European option V (η, T ) written on a stock St satisfies:
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∂V (η, t)

∂t
= (r + iη(r − v)− ψ(−η))V (η, t), (2.3. 16)

with boundary condition V (η, T ) = Π(η, T ).

Equation (2.3. 16) holds for all Lévy processes with finite exponential mo-

ments - i.e. ψ exists - see [14] for a proof of this result. This result will be

used in the next section where we apply the Fourier transform to 3 specific

models to obtain the FPDE to solve for the price of a European derivative,

V (x, t).

2.4 The FMLS, CGMY and KoBol Processes

The FMLS, CGMY and KoBol models all fall into the class of Lévy models.

We focus on the convergence of these models in this thesis under different

numerical approximations. If we assume any of these models for our stock

price movement and then use the Fourier transform given by (2.3. 16), we

end up with a FPDE which must be solved to get V (x, t).

These Lévy processes followed after the significant work of Mandelbrot who

was discussed in earlier sections. Based on his work, Koponen, Boyarchenko
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and Levendorskîı, introduced the log-stable (LS) process. However, the LS

model had infinite variance which made it mathematically difficult to work

with. As a result it was proposed to modify the process by introducing a

dampening effect in the tails. This ensured finite moments and gave rise

to the KoBol process. Finally, Carr, Geman, Madan and Yor proposed the

popular CGMY model which has become a widely accepted and used model

for equity pricing [13, 14, 39].

For an LS (log-stable) process, the Lévy density is given by:

wLS(x) =





Dq|x|−1−α x < 0

Dpx−1−α x > 0

, (2.4. 17)

where D > 0, p, q ∈ [−1, 1], p + q = 1 and 0 < α 6 2. As already stated

above, his process has infinite variance making it mathematically difficult to

work with. With p = 0 and q = 1 we can transform the process into what is

known as the FMLS process. This process is interesting as it can only incur

downward jumps. This is easily seen by looking at the Lévy density at p = 0

and q = 1. By applying the Fourier transformation given by (2.3. 16) the

resulting FPDE for the price of a European claim is given by
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∂V (x, t)

∂t
+ (r +

1

2
σα sec(

απ

2
))

∂V (x, t)

∂x
− 1

2
σα sec(

απ

2
)
∂αV (x, t)

∂+xα
= rV (x, t),

(2.4. 18)

for α 6= 1. By truncating the tail of the LS distribution we obtain two

more tractable Lévy processes, the first one being the CGMY process.

The Lévy density for the CGMY process is given by:

wCGMY (x) =





C e−G|x|
|x|1+Y x < 0

C e−M|x|
|x|1+Y x > 0

, (2.4. 19)

where C > 0, G > 0, M > 0 and Y 6 2. The parameter C is a measure

of the overall activity level while G and M control the exponential decay of

the left and right tails. The distribution is symmetric when G = M .

The resulting FPDE for the price of a European claim is then given by:

∂V (x, t)

∂t
+(r−v)

∂V (x, t)

∂x
+CΓ(−Y )eMx ∂Y (e−MxV (x, t))

∂−xY
+CΓ(−Y )e−Gx ∂Y (eGxV (x, t))

∂+xY

= (r + CΓ(−Y )[MY + GY ])V (x, t), (2.4. 20)

where v = CΓ(Y )[(M − 1)Y −MY + (G + 1)Y −GY ].
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The second process that results from truncating the tails of the LS distri-

bution is the KoBol process. The Lévy density is given by

wKoBol(x) =





Dq|x|−1−αe−λ|x| x < 0

Dpx−1−αe−λx x > 0

, (2.4. 21)

where D > 0, λ > 0, p, q ∈ [−1, 1], p + q = 1 and 0 < α 6 2. The

parameter λ controls the decay of the exponent. p and q control the skewness,

and D is a measure of the overall activity level. The resulting FPDE for the

price of a European claim is then given by:

∂V (x, t)

∂t
+(r−v−λα(q−p))

∂V (x, t)

∂x
+

1

2
σα[peλx ∂α(e−λxV (x, t))

∂−xα
+qe−λx ∂α(eλxV (x, t))

∂+xα
]

= (r +
1

2
σαλα)V (x, t) (2.4. 22)

where v = 1
2
σα[p(λ− 1)α + q(λ + 1)α − λα − αλα−1(q − p)].

There is no explicit solution to any of the resulting FPDEs. Hence a nu-

merical method must be applied to get a solution. This thesis will consider

and compare the finite difference scheme and the Adomian decomposition

method.
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2.5 Numerical Methods to Solve FPDEs

FPDEs have become an increasingly popular way of modeling a real world

process in many fields including finance. The past three decades have been

particularly interesting with FPDEs playing an important role in modeling

processes in Fluid Flow, Solute Transport or Dynamical Processes in Self-

Similar and Porous Structures, Diffusive Transport, Material Viscoelastic

Theory, Electromagnetic Theory, Dynamics of Earthquakes, Control The-

ory of Dynamical Systems, Optics and Signal Processing, Bio-Sciences, Eco-

nomics, Geology, Astrophysics, Probability and Statistics and Chemical Physics

to name a few [18]. The fact that so many fields have benefited from the

increasing popularity of FPDEs goes to show that despite their unintuitive

mathematical definition, many natural real life processes do in fact follow

such models.

FPDEs allow us to model processes where diffusion occurs at rates that

normal derivatives cannot capture. Another key element to FPDEs is that

they can model processes which require long memories in times. This key

attribute is lacking in normal diffusion models.

As FPDEs have played a more meaningful role in mathematics over the past
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few decades, it has been necessary to come up with methods to solve them.

In general it is not possible to find the exact solution of an FPDE. However

a number of useful and efficient methods have been proposed in the literature.

This thesis looks at two such methods to solve FPDEs in detail. The fi-

nite difference scheme and the Adomian decomposition method.

2.5.1 The Finite Difference Scheme

Finite difference schemes are a powerful and intuitive way to solve PDEs.

In essence, we discretise the differential operators d/dx and d/dt and move

forward (or backward) in time in small steps to solve for a PDE at a specified

time.

Note first that all the FPDEs derived in the previous section are of the

form:

∂V (x, t)

∂t
+A

∂V (x, t)

∂x
+B(x)

∂α(f(x)V (x, t))

∂+xα
+C(x)

∂α(h(x)V (x, t))

∂−xα
+DV (x, t) = 0

(2.5. 23)

This thesis uses a forward in time implicit finite difference scheme to solve
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(2.5. 23). We can then specifically solve (2.4. 18), (2.4. 20) and (2.4. 22).

The first step is to define the usual framework when dealing with PDEs.

That is, for L 6 x 6 R and a finite time interval [0, T ]. The terminal

condition for the FPDE is given by V (x, T ) = s(x). In Section 4, this

scheme and ADM will be used to price a European call option using the

derived FPDE. In the case of a European call, s(x) = max(ex −K, 0) where

K is the strike price. Further, the boundary conditions are V (L, t) = 0 and

V (R, t) = b(R, t). Discretise the time interval [0, T ] into m equal pieces of size

∆t so that m∆t = T . Discretise the interval [L,R] into n + 1 equal pieces of

size ∆x so that n∆x = R. To abbreviate notation, let Vi,j = V (L+i∆x, j∆t)

where i = 0, 1, 2, ..., n and j = 1, 2, ..., m. The same notation will be used

for any function that is either a function of x or t. Note also that as per

the convergence criteria derived by Meerschaert, Tadjeran and Scheffler, we

require 1 6 α 6 2 for convergence when dealing with the methods provided

for the finite difference scheme [23].

The first two terms and the last term are easily discretised as they have no

fractional component and thus can be treated as normal. The time derivative

is thus discretised as
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∂V (x, t)

∂t

]

x=L+i∆x,t=j∆t

≈ Vi,j+1 − Vi,j

∆t
. (2.5. 24)

The second term in (2.5. 23) is discretised via

A
∂V (x, t)

∂x

]

x=L+i∆x,t=j∆t

≈ A
Vi+1,j − Vi−1,j

2∆x
, (2.5. 25)

and the last term is simply DVi,j.

What is left now is to discretise the two fractional derivatives. The method-

ologies used to do so are taken from Tadjeran, Meerschaert and Scheffler from

their relatively new paper, where they use a Crank-Nicholson type scheme

with a local truncation error of O((∆t)2) + O(∆x) that solves a right sided

FPDE [23]. Another paper by Tadjeran and Meerschaert then extends this

to the left sided FPDE [24].

A result of fundamental importance to the finite difference scheme to solve

an FPDE is the left-shifted and right-shifted Grunwald formula. The right-

shifted Grunwald formula is given by
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∂α(f(x)V (x, t))

∂+xα
=

1

Γ(−α)
lim

N→∞
1

qα
(1)

N∑

k=0

Γ(k − α)

Γ(k + 1)
f(x−(k−1)q(1))V (x−(k−1)q(1), t),

(2.5. 26)

where N is a positive integer and q(1) = x−L
N

. Equation (2.5. 26) is of

importance in fractional calculus as it allows us to linearise the fractional

derivative. This result is used to estimate the spatial α-order fractional

derivative. Analogously, the left shifted Grunwald formula is defined by

∂α(h(x)V (x, t))

∂−xα
=

1

Γ(−α)
lim

N→∞
1

qα
(2)

N∑

k=0

Γ(k − α)

Γ(k + 1)
h(x+(k−1)q(2))V (x+(k−1)q(2), t),

(2.5. 27)

where N is a positive integer and q(2) = R−x
N

.

It is convenient to replace the Γ functions in (2.5. 26) and (2.5. 27) by

the ’normalized’ Grunwald weights:

gα,k = (−1)k (α)(α− 1)...(α− k + 1)

k!
(2.5. 28)

for k = 1, 2, 3, ... and gα,0 = 1.
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The next step is to discretise the Grunwald formula by defining the right

and left fractional partial differential operators, respectively.

δ+
α,x(fiVi,j) =

1

(∆x)α

i+1∑

k=0

gα,kfi−k+1Vi−k+1,j (2.5. 29)

and

δ−α,x(hiVi,j) =
1

(∆x)α
.

n−i+1∑

k=0

gα,khi+k−1Vi+k−1,j (2.5. 30)

Notice that (2.5. 29) is simply a discretised version of (2.5. 26) and (2.5.

27) is simply a discretised version of (2.5. 29).

All the terms of (2.5. 23) can now be discretised. Using all the pieces

derived above, a Crank-Nicholson type scheme to solve (2.5. 23) is obtained

for i = 1, 2, 3, ..., n− 1:

Vi,j+1 − Vi,j

−∆t
+ A

Vi+1,j − Vi−1,j

2∆x
+

Bi

2
[δ+

α,x(fiVi,j+1) + δ+
α,x(fiVi,j)]+

Ci

2
[δ−α,x(hiVi,j+1) + δ−α,x(hiVi,j)] + DVi,j = 0 (2.5. 31)

The negative in front of ∆t arises as we have a terminal boundary condition
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but are using a forward in time scheme; hence the direction needs to be

reversed. The boundary conditions imply that V0,j+1 = 0, Vn,j+1 = bn,j+1.

Rearranging and writing in matrix form yields:

(I − P −Q)V j+1 = (A + P + Q)V j + zj+1 (2.5. 32)

where I is an n + 1× n + 1 identity matrix,

P =




0 0 0 0 ... 0 0

gα,2f0η1 gα,1f1η1 gα,0f2η1 0 ... 0 0

gα,3f0η2 gα,2f1η2 gα,1f2η2 gα,0f3η2 ... 0 0

... ... ... ... ... ... ...

gα,n−1f0ηn−2 gα,n−2f1ηn−2 gα,n−3f3ηn−1 gα,n−4f4ηn−1 ... gα,0f0ηn−2 0

gα,nf0ηn−1 gα,n−1f1ηn−1 gα,n−2f2ηn−1 gα,nf3ηn−1 ... gα,1fn−1ηn−1 gα,0fnηn−1

0 0 0 0 ... 0 0




(2.5. 33)

with ηi = Bi∆t
2(∆x)α ,
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Q =




0 0 0 0 ... 0 0

gα,0h0θ1 gα,1h1θ1 ... gα,n−3hn−3θ1 gα,n−2hn−2θ1 gα,n−1hn−1θ1 gα,nhnθ1

0 gα,0h1θ2 ... gα,n−4hn−3θ2 gα,n−3hn−2θ2 gα,n−2hn−1θ2 gα,n−1hnθ2

... ... ... ... ... ... ...

0 0 ... gα,0hn−3θn−2 gα,1hn−2θn−2 gα,2hn−1θn−2 gα,3hnθn−2

0 0 ... 0 gα,0hn−2θn−1 gα,1hn−1θn−1 gα,2hnθn−1

0 0 0 0 ... 0 0




(2.5. 34)

with θi = Ci∆t
2(∆x)α ,

A =




0 0 0 0 ... 0 0 0 0

−A∆t
2∆x

1 + D∆t A∆t
2∆x

0 ... 0 0 0 0

0 −A∆t
2∆x

1 + D∆t A∆t
2∆x

... 0 0 0 0

... ... ... ... ... ... ...

0 0 0 0 ... −A∆t
2∆x

1 + D∆t A∆t
2∆x

0

0 0 0 0 ... 0 −A∆t
2∆x

1 + D∆t A∆t
2∆x

0 0 0 0 ... 0 0 0 0




(2.5. 35)

and
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zj+1 = [0, 0, 0, ..., 0, 0, bn,j+1]
′ (2.5. 36)

Subject to Vi,0 = si. Provided (I − P −Q) is invertible,

V j+1 = (I − P −Q)−1[(A + P + Q)V j + zj+1] (2.5. 37)

solves (2.5. 23).

2.5.2 Adomian Decomposition Method

Recently a large amount of interest has been placed on Adomian decomposi-

tion to solve a variety of mathematical problems. These include problems in

physics, turning point problems, boundary value problems, algebraic equa-

tions and many other areas of applied mathematics [40, 41]. The method

was introduced in the 1980s by Adomian [42].

The method involves splitting an equation into linear and non-linear parts,

and then decomposing the solution into an infinite series. This series has to

be truncated for practical purposes but by adding more terms it is possible

to get arbitrarily close to the exact solution in a specific domain.
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The convergence of the series has been thoroughly tested for a variety of

problems by many authors. They have been found to converge quickly and

with high accuracy on a specific domain - see for example [40, 41]. Further,

ADM often yields to exact solution.

This thesis will outline the method in general and will then look at solv-

ing the problem for an equation of the form (2.5. 23).

Consider the following nonlinear equation:

0D
α′
t V (x, t) + LV (x, t) + NV (x, t) = g(x, t), (2.5. 38)

with t > 0 where L is a linear operator, N is a nonlinear operator and

g(x, t) is a source term. 0D
α′
t is the Riemann-Liouville fractional derivative

defined in the previous section. Using property (2.5. 30) and applying 0J
α′
t

to both sides of (2.5. 38) yields:

V (x, t) = V (x, 0) + 0J
α′
t g(x, t)− 0J

α′
t [LV (x, t) + NV (x, t)], (2.5. 39)
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provided 0 < α′ 6 1. The case α′ > 1 is easily incorporated by using (2.5.

38), however in the case of (2.5. 23) we require α′ = 1 as the time component

of the FPDEs given by (2.4. 18), (2.4. 20) and (2.4. 22) are all of order 1.

ADM requires that the solution of V (x, t) be decomposed into an infinite

series as

V (x, t) =
∞∑

n=0

Vn(x, t). (2.5. 40)

The difficulty lies in calculating the nonlinear component in (2.5. 39).

This is done via

NV =
∞∑

n=0

An. (2.5. 41)

where An are the so-called Adomian polynomials which were constructed

by Adomian [42]. The Adomian polynomial An can be used to calculate all

forms of nonlinearity and are given by

An =
1

n!

[
dn

dλn
N(

n∑
c=0

λcVc)

]

λ=0

. (2.5. 42)
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By substituting (2.5. 40) and (2.5. 41) into both sides of (2.2. 12) the

solution of V (x, t) in terms of ADM is given by:

∞∑
n=0

Vn(x, t) = V (x, 0)+0J
α′
t g(x, t)−0J

α′
t [L(

∞∑
n=0

Vn(x, t))+
∞∑

n=0

An]. (2.5. 43)

From this equation, the iterates are calculated in the following recursive

way:

V0(x, t) = V (x, 0) + 0J
α′
t g(x, t),

V1(x, t) = −0J
α′
t [LV0 + A0],

V2(x, t) = −0J
α′
t [LV1 + A1],

...

Vn(x, t) = −0J
α′
t [LVn−1 + An−1]. (2.5. 44)
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Finally the approximate solution of V (x, t) denoted by φn(x, t) is then

given by:

φn(x, t) =
n∑

k=0

Vk(x, t) (2.5. 45)

Now to apply the ADM derived above to (2.5. 23). Note first that in the

case of (2.5. 23) we solve the FPDE subject to a given terminal condition

V (x, T ) = s(x) = max(ex −K, 0). This is easily incorporated into the ADM

formalisation provided above. As shall be seen, the Grunwald formula will

once again be vital to estimate the fractional derivate. First, multiply both

sides of (2.5. 23) by −T J1
t to obtain:

V (x, t) = V (x, T )−(T J1
t )

[
A

∂V (x, t)

∂x
+B(x)

∂α(f(x)V (x, t))

∂+xα
+C(x)

∂α(h(x)V (x, t))

∂−xα

+DV (x, t) = 0
]
, (2.5. 46)

⇒ V (x, t) = V (x, T )+

∫ T

t

[
A

∂V (x, t)

∂x
+B(x)

∂α(f(x)V (x, t))

∂+xα
+C(x)

∂α(h(x)V (x, t))

∂−xα

+DV (x, t) = 0
]
dt. (2.5. 47)
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The next step is to recall that the right and left sided Grunwald formulas

given by (2.5. 26) and (2.5. 27) can be used to calculate the right and left

fractional derivatives. For practical purposes it is not possible to allow the

summations of the right and left sided Grunwald formula to go to infinity so

they must be truncated at some ‘large’ integers N1 and N2, respectively.

Using this and decomposing the solution of V (x, t) as per the requirements

of ADM, the solution of V (x, t) is then given by:

V (x, t) =
∞∑

n=0

Vn(x, t) = s(x) +

∫ T

t

[
A

∞∑
n=0

∂Vn(x, t)

∂x

+
B(x)

qα
(1)

N1∑

k=0

gα,kf(x− (k − 1)q(1))
∞∑

n=0

Vn(x− (k − 1)q(1), t)

+
C(x)

qα
(2)

N2∑

k=0

gα,kh(x + (k− 1)q(2))
∞∑

n=0

Vn(x + (k− 1)q(2), t) + D

∞∑
n=0

Vn(x, t)
]
dt.

(2.5. 48)

The final step is to calculate Vn recursively as:

V0(x, t) = s(x)

V1(x, t) =

∫ T

t

[
A

∂s(x)

∂x
+ Ds(x)
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+
B(x)

qα
(1)

N1∑

k1=0

gα,k1f(x− (k1 − 1)q(1))s(x− (k1 − 1)q(1))+

C(x)

qα
(2)

N2∑

k1=0

gα,k1h(x + (k1 − 1)q(2))s(x + (k1 − 1)q(2))
]
dt,

V2(x, t) =

∫ T

t

[
A

∂V1(x, t)

∂x
+ DV1(x, t)

+
B(x)

qα
(1)

N1∑

k2=0

gα,k2f(x− (k2 − 1)q(1))V1(x− (k2 − 1)q(1), t)+

C(x)

qα
(2)

N2∑

k2=0

gα,k2h(x + (k2 − 1)q(2))V1(x + (k1 − 1)q(2), t)
]
dt,

...

Vn(x, t) =

∫ T

t

[
A

∂Vn−1(x, t)

∂x
+ DVn−1(x, t)

+
B(x)

qα
(1)

N1∑

kn=0

gα,knf(x− (kn − 1)q(1))Vn−1(x− (kn − 1)q(1), t)+

C(x)

qα
(2)

N2∑

kn=0

gα,knh(x + (kn − 1)q(2))Vn−1(x + (kn − 1)q(2), t)
]
dt. (2.5. 49)

As ADM decomposes the series into an infinite sum, it is necessary to

truncate the series at some point N∗. Thus, the approximate solution to

solve (2.5. 23) via ADM is given by:
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φN∗(x, t) =
N∗∑

k=0

Vk(x, t), (2.5. 50)

where Vk is calculated according to (2.5. 49). The size of N∗ which guar-

antees accurate solutions varies depending on the problem. Practitioners are

best advised to use a measure such as the relative or absolute error to de-

termine convergence. Another important factor to consider is computational

power as time for convergence of this method can grow exponentially with

N∗.

This chapter derived the pure mathematical framework for pricing a deriva-

tive under three specific Lévy models using FPDEs. However, when using

numerical methods it is important to look at how well they work for a specific

problem, where they converge and what their advantages and disadvantages

are. The next chapter deals with this difficult problem.



Chapter 3

Application of Numerical

Methods to the Derived FPDEs

3.1 Introduction

This section looks at applying the finite difference method and ADM to the

FPDEs derived in Section 2.4. The numerical methods are used to solve a

simple European call option written on a stock St.
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3.2 No Arbitrage Bounds

Recall that a European call option gives the owner the right, but not the

obligation to buy a unit of stock, St, for a pre-specified amount, K, known

as the strike price. The payoff at maturity, T , and hence the terminal bound-

ary condition is max(ST −K, 0) or max(ex −K, 0) for x = lnSt . The price

of a European call option at time t is denoted by c[St, T − t; K].

The reason for picking such a well studied derivative, as opposed to a more ex-

otic structure, is that the European call option is a well understood financial

product. When working with a numerical method it is difficult, if not impos-

sible, to work out how good the solution is. When working with a well known

object such as a European call, the task of doing so becomes easier. Firstly,

one can compare the solution to the closed form Black-Merton-Scholes solu-

tion. Secondly, there are no-arbitrage bounds that must hold when pricing

an option. If these bounds are violated, then there has been a mistake in

pricing. These no arbitrage bounds are independent of the pricing model

used.

The principle of no arbitrage states that for every terminal payoff that is

positive with some probability, but is always nonnegative, has a positive
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price [1]. In simpler terms, assuming no arbitrage insures that there are no

free lunches in that one cannot start out with no money and construct a

portfolio to make riskless money. In reality arbitrage opportunities do exist,

however supporters of the no arbitrage principle will argue that these doors

of opportunity are open for very small periods of time so that they may as

well be ignored.

The no arbitrage bounds set by such an option:

c[S0, T ; K] 6 S0, (3.2. 1)

and

c[S0, T ; K] > max(0, S0 −Ke−rT ). (3.2. 2)

It is easy to see why (3.2. 1) and (3.2. 2) must hold under the no arbitrage

principle.

If (3.2. 1) were false then one could buy the share and sell the call op-

tion. The total cost for doing this is c[S0, T ; K] − S0 > 0. If the owner of
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the call chooses to exercise at time T , the net value is ST − (ST −K) > 0. If

there is no exercise at time T , then the total value of the portfolio is ST > 0.

In either case, an arbitrage would occur.

To show that (3.2. 2) must hold under the no arbitrage principle, consider

two portfolios. The first one: long a forward contract with delivery price

equal to K written on S0. Then the initial value of this contract at time zero

is S0 −Ke−rT .

The second portfolio: buy a European call option with strike price K at a

cost c[S0, T ; K]. At time T , if ST < K, the first portfolio is worth ST−K < 0

and the second portfolio is worth 0.

If ST > K, then the first portfolio is worth ST − K > 0 and the second

portfolio is also worth ST −K > 0. The second portfolio dominates the first

portfolio in all states of the world, thus c[S0, T ; K] > S0 − Ke−rT in a non

arbitrage world.

Lastly, note that c[S0, T ; K] > 0 as a European call option is always pays

out at least nothing, its value must always remain positive.
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If any of the above inequalities does not hold then there is a problem with

the numerical method and convergence has failed.

Convergence of the European call is now tested via the finite difference

scheme and the Adomian decomposition method. The parameters chosen

for the option are r = 0.1, T = 1/2 and K = 80. The computer used to run

the code for both the finite difference scheme and ADM used a 2.2GHz duo

processor, with 2GB RAM.

3.3 Convergence Under the Finite Difference

Scheme

For the finite difference scheme, b(R, t) = eR − Ke−r(T−t). The following

graphs were generated using Matlab, chosen for its powerful vector handling

functionality.

There are three measures of error used in this section. The maximum abso-

lute error between the second last solution vector and the last solution vector

- mathematically, max |V T
∆t
−1 − V T

∆t
|. This measure is not a solution con-

vergence measure, as the scheme could converge but to the wrong solution.
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It can however be used to measure the erraticness of the solution. Erratic

solutions would exhibit large differences between consecutive time steps.

The maximum absolute error between the final solution vector, V T
∆t

and the

Black-Merton-Scholes solution evaluated at time T for i∆x, i = 0, 1, 2, ..., n,

and the maximum error between the final solution vector, V T
∆t

and the

arbitrage bound max(eL+i∆x − Ke−rT , 0), i = 0, 1, 2, ..., n. In this the-

sis we will refer to these errors as MAXABSERROR MODELNAME,

MAXABSERROR MODELNAME BMS and

MAXABSERROR MODELNAME ARBBOUND, respectively, where MODELNAME =

FMLS, KoBol, CGMY . Note that the use relative error measures are im-

possible as there are a large number of 0 entries when the call option is far

out the money.
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Figure 3.1: Finite Difference, FMLS FPDE, T = 0.5, r = 0.1, K = 80, σ =

0.95, various α.



3.3 Convergence Under the Finite Difference Scheme 57

As Figure 3.1 shows, α → 2 ⇒ the FMLS FPDE converges to the Black-

Merton-Scholes PDE and (2.4. 18) becomes the Black-Merton-Scholes PDE.

In fact, they are almost equal when α = 1.8. Furthermore we get the follow-

ing error measure outputs:

Error Measure for FMLS FPDE with varying α

α MAXABSERROR FMLS MAXABSERROR FMLS BMS

1.1 0.067 12.58

1.3 0.051 5.24

1.8 0.048 1.5

1.99 0.049 0.26

As can be seen for the output of MAXABSERROR FMLS, in all cases

the FMLS FPDE converged to a solution as we get values that are small.

Further, as expected the difference between the Black-Merton-Scholes solu-

tion and the FMLS solution is close to zero when α = 1.99 and increases as

α decreases.
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Figure 3.2: Finite Difference, FMLS FPDE, T = 0.5, r = 0.1, K = 80, α =

1.1, various σ.

The following summarises the error measures:
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Error Measure for FMLS FPDE with varying σ

σ MAXABSERROR FMLS MAXABSERROR FMLS ARBBOUND

0.01 0.017 0.65

0.1 0.022 3.44

0.5 0.046 12.33

0.95 0.050 20.01

As Figure 3.2 illustrates, as σ decreases, the price of both the Black-Merton-

Scholes solution and the FMLS solution tend to max(S0 − Ke−r(T−t), 0).

Buying an in-the-money call will be similar in price to a forward with deliv-

ery price K and an out the money call will have no value. When σ is large,

both solutions get larger to account for the extra uncertainty. The scheme

has good convergence to a solution for different values σ as we again obtain

maximum absolute errors that are small.
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Figure 3.3: Finite Difference, KoBol FPDE, T = 0.5, r = 0.1, K = 80, α =

1.5, σ = 0.35, λ = 5, various p.
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Error Measure for KpBol FPDE with varying p

p MAXABSERROR KoBol MAXABSERROR KoBol BMS

0.5 0.000024 2.15

0.7 0.00016 32.18

0.9 0.00030 51.52

The parameter p controls the skewness of the KoBol density, with p = 1 ⇒

the distribution is maximally skewed to the right. We see this effect in Figure

3.3. As the error measure summary above shows, as p increases so the so-

lution of the KoBol deviates further from the Black-Merton-Scholes solution

because of larger added skewness. The scheme converged to a solution as the

error measure MAXABSERROR KoBol shows.
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Figure 3.4: Finite Difference, KoBol FPDE, T = 0.5, r = 0.1, K = 80, α =

1.5, λ = 3 , p = 0.5, various σ.
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Error Measure for KoBol FPDE with varying σ

σ MAXABSERROR KoBol MAXABSERROR KoBol ARBBOUND

0.01 0.000017 1.06

0.1 0.000016 1.20

0.5 0.000030 6.45

0.95 0.000049 12.74

The parameter σ has the same effect on the KoBol FPDE as with the FMLS

FPDE as Figure 3.4 and the summary above show.

The KoBol FPDE has good convergence bounds. It explodes when we

choose ‘extreme’ values for σ or λ. The scheme failed to converge for λ < 0.5,

λ > 15, σ < 0.05 and σ > 10. This restriction is not too large a hindrance, as

regular markets would not require such extreme inputs. In regular markets

for example 0.2 < σ < 0.5 is usual.
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Figure 3.5: Finite Difference, CGMY FPDE, T = 0.5, r = 0.1, K = 80, C

= 3, G = 1, M = 1 , Y = 1.1.
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Figure 3.6: Finite Difference, CGMY FPDE, T = 0.5, r = 0.1, K = 80, C

= 1, G = 2.5, M = 2.5 , Y = 1.1.

The scheme, when applied to the CGMY FPDE, was extremely unstable

and falls way outside the no arbitrage bounds. Empirical evidence suggest
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that C ∈ [0, 300], G,M ∈ [20, 150], Y ∈ [−1, 1.8] [39], so this model would

be impossible to implement under this scheme for any realistic situation.

Note that in Figure 3.5 MAXABSERROR CGMY = 1.010 and in Figure

3.6 MAXABSERROR CGMY = 0.052. These values are small, indicating

that the scheme has converged, however it has obviously converged to the

incorrect solution.

As can be seen from the output, these models can produce option premium

values which are very different from Black-Merton-Scholes model. Another

important feature is that the Black-Merton-Scholes model always produces

option premium values which are similar in shape. This is because there is

only one parameter in the Black-Merton-Scholes formula, namely σ. How-

ever, Lévy models have between two and four parameters. As already stated,

this can be viewed as both an advantage and a disadvantage. However, as the

output shows, Lévy models have the ability to produce models with differing

shapes. This suggests that if good market data is available, these models

could be calibrated to produce option price curves that take into account a

variety of different market factors, making them more accurate.

This section compared the individual models under different parameter

values. Another aspect which practitioners are concerned with is a compar-
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ison of the different models under the same conditions to see how different

the outputs they produce are. In this case, it is very difficult to compare the

models as they have a different parameter structure. We could fix α and σ

for the FMLS FPDE, but this leaves us with having to choose p and λ in the

Kobol case. However, we do not know which values to pick to make it equiv-

alent to the FMLS FPDE. In the case of the CGMY model the problem is

compounded further as there is only one parameter, Y which is similar to α,

which we can use. Practitioners are thus advised to calibrate all three models

using actual market data, and then compare the model solution to the actual

real life data to see which model produces the most accurate output.

3.4 Convergence Under Adomian Decompo-

sition Method

Unfortunately, the use of ADM to price financial derivatives is severely re-

stricted. The reason for this is twofold. Firstly, ADM works in a small

interval from the termination date, T - in the case of the CGMY model,

T > 0.1 is problematic. This means that derivatives with long maturity can-

not be valued using ADM.
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Secondly, and far more critically, with the exception of the forward contract

which has a linear payoff (and is easily priced without the use of any model)

financial derivatives all have terminal payoff functions which are piecewise

linear, and are thus not differentiable everywhere. This is because they use

either the min or max function (as seen in the previous chapters) which

means that there is a point of non-differentiability at the kink of the graph.

This is a massive problem when using ADM.

Further, recall that ADM is a Taylor series approximation to the solution,

which means that it uses polynomials as its building blocks to approximate

the solution. As most financial derivatives have piecewise linear terminal

conditions, using polynomials to estimate the solution is inappropriate.

In [43] Bohner and Zheng look at using ADM to solve the simple Black-

Merton-Scholes PDE given by (1.2. 3). They assume that the terminal

function has derivatives of all orders. This assumption has little practical

value.

Further, ADM is extremely computationally intensive for this specific prob-

lem. The reason being that the number of summations and differentiations

for Vn(x, t) increases exponentially with n. Using N∗ > 2 with N1 = 100 is
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not viable and requires hours of processing time.

Firstly, to demonstrate that as T increases, the solution becomes unsta-

ble, consider using the FMLS model to price a simple forward contract with

terminal payoff ST − K. Such a derivative is easily priced and ANY non-

arbitrage model should produce V (x, t) = S0 − Ke−rT . Here, N∗ = 1 and

N1 = 1000. As the payoff is linear it is not necessary to use N∗ > 1.

To show this, consider Table 3.1 that looks at the norm |(S0 − Ke−rT ) −

φ1(S0, 0)| for S0 = 120. This is the absolute difference between the exact

solution and the approximate ADM solution. Notice that as T increases, the

difference between the absolute error between the exact solution and the ap-

proximate solution increases. This is also illustrated visually in Figures 3.7

and 3.8. Recall that φN∗ represents the approximate solution of the solution

using ADM, where N∗ represents the number of terms in the approximate

summation:
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ADM to Solve FMLS FPDE for Forward Contract

T S0 −Ke−rT φ1(S0, 0) |(S0 −Ke−rT )− φ1(S0, 0)|

10 90.5696 125.87 35.3

1 40.08 40.0859 0.0059

0.1 40.796 40.8587 0.06289

0.01 47.613 48.587 0.974

Table 3.1: FMLS FPDE
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Figure 3.7: ADM, FMLS FPDE, T = 0.01, r = 0.1, K = 80, σ = 0.35,

α = 1.5, L = −6, N1 = 100, N∗ = 1.
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Figure 3.8: ADM, FMLS FPDE, T = 10, r = 0.1, K = 80, σ = 0.35, α = 1.5,

L = −6, N1 = 100, N∗ = 1.
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Similar results hold for the KoBol and CGMY FPDE as seen by Tables

3.2 and 3.3 and Figures 3.9, 3.10, 3.11 and 3.12:

ADM to Solve KoBol FPDE for Forward Contract

T S0 −Ke−rT φ1(S0, 0) |(S0 −Ke−rT )− φ1(S0, 0)|

10 90.5696 473.585 383.0154

1 40.08 40.4336 0.0059

0.1 40.796 44.3359 0.35364

0.01 47.613 83.3585 35.74549

Table 3.2: KoBol FPDE
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Figure 3.9: ADM, KoBol FPDE, T = 0.01, r = 0.1, K = 80, σ = 0.35,

α = 1.5, L = −6, R = 6, N1 = 100, N∗ = 1, λ = 3, p = 0.6.
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Figure 3.10: ADM, KoBol FPDE, T = 10, r = 0.1, K = 80, σ = 0.35,

α = 1.5, L = −6, R = 6, N1 = 100, N∗ = 1, λ = 3, p = 0.6.
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ADM to Solve CGMY FPDE for Forward Contract

T S0 −Ke−rT φ1(S0, 0) |(S0 −Ke−rT )− φ1(S0, 0)|

10 90.5696 2012.01 19211.44

1 40.08 41.972 1.89204

0.1 40.796 59.7201 18.9241

0.01 47.613 237.201 189.588

Table 3.3: CGMY FPDE
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Figure 3.11: ADM, CGMY FPDE, T = 0.01, r = 0.1, K = 80, C = 1 ,

Y = 1.5, L = −6, R = 6, N1 = 100, N∗ = 1, G = 2, M = 2.
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Figure 3.12: ADM, CGMY FPDE, T = 10, r = 0.1, K = 80, C = 1 , Y = 1.5,

L = −6, R = 6, N1 = 100, N∗ = 1, G = 2, M = 2.
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Now, to illustrate the effect that the non-differentiability of the terminal

condition has, suppose one tried to price a call option using ADM. The

following output was generated with T = 0.1 for the FMLS, KoBol and

CGMY FPDEs, respectively,
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Figure 3.13: ADM, FMLS FPDE, T = 0.1, r = 0.1, K = 80, σ = 1, α = 1.5,

L = −6, N1 = 100, N∗ = 1.
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Figure 3.14: ADM, KoBol FPDE, T = 0.1, r = 0.1, K = 80, σ = 1, α = 1.5,

L = −6, R = 6, N1 = 100, N∗ = 1, λ = 3, p = 0.6.
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Figure 3.15: ADM, CGMY FPDE, T = 0.1, r = 0.1, K = 80, C = 1 ,

Y = 1.5, L = −6, R = 6, N1 = 100, N∗ = 1, G = 2, M = 2.
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As can be seen from Figures 3.13, 3.14 and 3.15, there is a kink in the

approximate solution at 80. As already stated, this behavior is a result of

the non-differentiability at ST = 80 of the terminal function max(ST −K, 0).

As can be seen from the output, the finite difference method obtains good

convergence for two of the proposed models. However, ADM fails for all

three. Reasons for this as well as concluding remarks are discussed in the

next chapter.



Chapter 4

Concluding Remarks

This thesis compared three Lévy models, and two methods of approximating

their solution. Lévy models tend to be mathematically difficult to work with.

They require more parameters than the Black-Merton-Scholes model. This

means that more estimation and market calibration is needed. They also

produce a problem of intractability and moments that do not exist. Finally,

whereas with the Black-Merton-Scholes model one could sometimes obtain

closed form solutions to price derivatives, this is not the case with Lévy

processes and even the most simple structures need numerical approxima-

tions to obtain solutions. Such methods have convergence problems and are

computationally intensive. This means that with Lévy models, more time is
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required to price derivatives and the real time necessity of option pricing is

not always viable.

Lévy models become FPDEs when pricing financial derivatives. Two nu-

merical methods were explored to solve FPDEs: the finite difference scheme

and ADM.

ADM is simply not suited to deal with the problem of solving financial deriva-

tives. Adomian decomposition method requires terminal or initial functions

which are differentiable. Furthermore, these functions need to be able to be

built up from polynomials. This is not the case when dealing with practi-

cally every traded financial instrument, which tend to have piecewise linear

terminal functions.

Finite difference schemes on the other hand work well in comparison. The

case of the CGMY model is disappointing. However the FMLS and KoBol

models are promising.

The FMLS model in particular had excellent convergence. Convergence was

achieved for a wide variety of different values of α and σ. The scheme never

failed to converge, even for extreme values. Furthermore, convergence oc-
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curred very rapidly - a few seconds at most. This model could easily be

implemented in a practical sense.

The KoBol model was also very encouraging, although not to the extent

of the FMLS model. This model showed good convergence as long as λ and

σ were not chosen to be too extreme. Large values, as seen in the previous

chapter, resulted in the solution blowing up and breaking the no arbitrage

bounds. The parameter p however, could be chosen to be very large or very

small and good convergence was still attained. Recall that p controls the

skewness of the distribution. This is advantageous as this model will hold

well in markets going through skewed phases, whereas Black-Merton-Scholes

fails to deal with such situations. From a time-to-price point of view, this

model held up well. Convergence was attained a little slower than the FMLS.

When convergence was not attained, the scheme could be adjusted by making

∆t smaller. This led to more accurate results but also an increased amount

of time for the solution to be obtained. In few cases, this could take up to

an hour. This model would also hold up well in practical situations.

In conclusion, ADM is not suited to approximate any of these models. CGMY

under the finite difference scheme is also impossible. However, the FMLS and

KoBol models are very promising. If sufficient market data is available to
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calibrate the model then, using these processes is highly recommended.



Chapter 5

Appendix

5.1 Appendix A - Stochastic Calculus

What follows is an outline of results for stochastic calculus required for this

thesis. An advanced explanation of stochastic calculus is beyond the scope of

this work. The reader is asked to refer to [44, 45] for a detailed explanation

of the subject. Stochastic calculus is built from a number of definitions, each

relying on the previous one.

Definition: let Ω be an arbitrary set. A set A of subsets of Ω is called

a σ-algebra if the following hold:
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(i) Ω ∈ A,

(ii) A ∈ A ⇒ Ac = Ω− A ∈ A,

(iii) An ∈ A ⇒ ⋃
n∈NAn ∈ A.

The pair (Ω,A) for which A is a σ-algebra is called a measureable space.

Definition: for any set C of subsets of Ω the smallest σ-algebra A which

contains C can be defined and is denoted by σ(C).

Perhaps the most important of all σ-algebras is the Borel σ-algebra defined

as follows:

Definition: if (E ,O) is a tautological space, where O is the set of open

sets in E , then σ(O) is called the Borel σ-algebra.

Often E is chosen to be R.

Definition: given a measureable space, (Ω,A), a function P : A → R is

called a probability measure and the triplet (Ω,A,P) is called a probability

space if the following axioms are satisfied:
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(i) P[A] > 0 for all A ∈ A,

(ii) P[Ω] = 1,

(iii) An ∈ A disjoint ⇒ P[
⋃

n An] =
∑

n P[An].

Definition: a map X from a measureable space (Ω,A) to another mea-

sureable space (D,B) is called B-measureable if X−1(B) ∈ A for all B ∈ B

Definition: a function X : Ω → R is called a random variable if it is a

measureable map from (Ω,A) to (R,B) where B is the Borel σ-algebra of R.

Definition: a set {Xt}t∈T of random variables defines a stochastic process.

The index t usually refers to time.

Definition: let (Ω,F) be a σ-algebra. Then a filtration F is a family {Ft} of

increasing σ-algebras on (Ω,F) with Ft ∈ F. If we have a set Ω, a σ-algebra

of subsets of Ω, F , and a probability measure P defined on elements of F

such that

F0 ⊂ F1 ⊂ F2 ⊂ ... ⊂ FT = F ,



5.1 Appendix A - Stochastic Calculus 91

then (Ω,F ,F,P) is called a filtered probability space.

The property that a filtration is increasing is necessary as it implies that

information is not forgotten. As one moves through time, one knows the

stock price now, as well as what is was at every point in the past.

Definition: a stochastic process, {Xt}t∈T , is called adapted if for all t, Xt is

Ft measureable.

This means that at any time t, Ft contains all the information about Xt.

In reality, the properly that a stochastic process is adapted is too weak and

further conditions are required. Often, it is necessary to assume a process is

cádlág as well.

Definition: a stochastic process, {Xt}t∈T , is cádlág if its paths are right

continuous with left limits everywhere with a probability of one.

Definition: a filtration is called right continuous if Ft+ = Ft where

Ft+ =
⋂
s>t

Fs.

The intuitive explanation of this definition is that any information known
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immediately after t is also known at t. This is a standard assumption when

dealing with filtrations and referred to as the usual condition.

Definition: Brownian motion, {Bt} is a stochastic process with the fol-

lowing properties:

(i) B0 = 0

(ii) Bt −Bs is independent of Fs for 0 6 s < t 6 T ,

(iii) Bt −Bs ∼ N(0, t− s),

(iv) Bt for t > 0 are continuous functions of t.

The main tool to solve stochastic differential equation is Ito’s formula

which is a stochastic analog of the fundamental theorem of calculus. This

was used implicitly to move from (1.2. 1) to (1.2. 3). Ito’s formula is given

below:

Let Xt be defined by dXt = µtdt + σtdZt (Xt is called an Ito process). Let

u(t, x) be a function that is twice continuously differentiable is x and once

continuously differentiable in t. Define Ut = u(Xt, t). The {Ut} is an Ito

process that satisfies:

dUt = ux(Xt, t)dXt + ut(Xt, t)dt +
1

2
uxx(Xt, t)σ

2
t dt. (5.1. 1)
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We conclude this section with the important Girsanov’s theorem which

allows us to change measure when dealing with stochastic processes:

given a filtered probability space (Ω,F ,F,P) and let {Bt} be a Brownian

motion on this space. Let θt be a process adapted to Ft. Define

BQ
t =

∫ t

0

θsds + Bt,

and

M(t) = e−
∫ t
0 θsdBs− 1

2

∫ t
0 θ2

sds,

where

Q(F ) =

∫

F

M(T )dP, for all F ∈ F .

Then under Q, BQ
t is a Brownian motion.
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in physics, Proceedings of the International Workshop held in Nice, June

27-30, 1994. Lecture Notes in Physics, 450, Springer-Verlag, Berlin 1995.

[22] E. Barkai, R. Metzler and J. Klafter, From continuous time random

walks to the fractional Fokker-Plank equation, Phys. Rev, 61, 132-138,

2000.

[23] M. M. Meerschaert, C. Tadjeran and H.P. Scheffler, A second-order

accurate numerical approximation for the fractional diffusion equation,

Journal of Computational Physics, 213, 205-213, 2006.



BIBLIOGRAPHY 97

[24] M. M. Meerschaert and C. Tadjeran, Finite difference approximations

for two-sided space-fractional partial differential equations, Applied

Numerical Mathematics,56, 80-90, 2006.

[25] S. Saha Ray , R.K. Bera, An approximate solution of a nonlinear frac-

tional differential equation by Adomian decomposition method, Appl.

Math. Comp., 167, 561-571, 2005.

[26] W. Chen and Z. Lu, An algorithm for Adomian decomposition method,

Appl. Math. Comp., 159, 221-235, 2004.

[27] R. Gorenflo, Fractional calculus: Integral and Differential Equations of

Fractional Order, International Centre for Mechanical Sciences, 1996.

[28] H. Weyl, Mathematics and Logic, American Mathematical Monthly, 53,

2-13, 1946.

[29] L. Debnath, D. Bhatta Fractional Calculus and its Applications, (CRC

Press, 2006.)

[30] L. Debnath, D. Bhatta, Fractional Calculus and its Applications,

[31] M.R. Hardy, A Regime-Switching Model of Long-Term Stock Returns,

North American Actuarial Journal, 2001.



BIBLIOGRAPHY 98

[32] R. Cont, Beyond Implied Volatility: Extracting information from options

prices, Econophysics: an Emerging Science, 1998.

[33] B. Mandelbrot, The variation of certain speculative prices, The Journal

of Business of the University of Chicago, 36, 394-419, 1963.

[34] S.C Kou, X. Sunney Xie, Generalized Langevin Equation with Fractional

Gaussian Noise: Subdiffusion within a Single Protein Molecule, Physical

Review Letters, 93, 2004.

[35] S.J. Press, A Compound Events Model for Security Prices, Journal of

Business, 40, 1967.

[36] D.B. Madam, E. Seneta, The Variance Gamma (V.G.) Model for Share

Market Returns, Journal of Business, 63, 1990.

[37] Y. Miyahara, Martingale measures for geometric Lévy process models ,
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