
 
 

The Influence of Genetic 
Variation in PSIP1 on 
HIV-1 Infectivity in 

Black South Africans 
 
 
 

 
 
 
 

Nikki Gentle 
 
 

A dissertation submitted to the Faculty of Science, 
University of the Witwatersrand in fulfillment of the 

requirements for the degree of Master of Science 
 
 
 
  Johannesburg, 2009 



 ii

Declaration 
 
 
 
 
 
I, Nikki Gentle, declare that this dissertation is my own work. It is being 

submitted in fulfillment of the requirements for the degree of Master of Science at 

the University of the Witwatersrand, Johannesburg. It has not been submitted 

before for any degree or examination at any other university.  

 

 

 

 

…………………………………….. 

(Signature of candidate) 

 

On this the………………..day of the....................month in the 

year……………….. 

 

 
 
 
 
 
 
 
 
 
 
 



 iii

Dedication 
 

To my family 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 



 iv

Table of Contents 
 
 
DECLARATION     …………………………………………………………… ii 
 
DEDICATION         ...……………………………………………………….…iii 
 
TABLE OF CONTENTS   ………......................................................................iv 
 
LIST OF FIGURES     …………………………………………………………vii 
 
LIST OF TABLES      …………………………………………………….…… ix 
 
LIST OF ABBREVIATIONS……………………………………………………x 
 
 
ABSTRACT     ………………………………………………………………     1 
 
 
CHAPTER ONE - INTRODUCTION  
 
 
1.1 HIV-1 Integration    ………………………………………………….       3 
1.2 HIV-1 Integrase     …………………………………………………...       4 
1.3 LEDGF/p75      ………………………………………………………       7 
1.4 The Role of LEDGF/p75 in HIV-1 Integration  ……………………..       8 
1.5 PSIP1    ………………………………………………………………       9 
1.6 DNA Polymorphisms    ……………………………………………....     10 

1.6.1 Regulatory Polymorphisms     ………………………..     11 
1.7 Linkage disequilibrium and haplotype Structure    …………………..     13 

1.7.1 The importance of identifying LD patterns and haplotype 
structure    …………………………………………….     13 

1.7.2 Using LD and haplotype structure to define  
Populations    …………………………………………     15 

1.8 Genetic Variation and Human Demographic History………………...     16 
1.9 Genetic Variation in Africans          ………………………………......    17 
  1.9.1 The influence of the Bantu expansion   ………………     18 
  1.9.2 Genetic variation in South Africans  …………………     20 
1.10 Genetic Variation and Disease  ………………………………………     22 
  1.10.1 Genetic variation and HIV-1    ……………………….     24 
1.11 Problem Identification and Objectives  ………………………………     26 
 
 
 
 
 
 
 



 v

CHAPTER TWO – MATERIALS AND METHODS 
 
2.1 Samples    ……………………………………………………………      28 
2.2 DNA Extractions     …………………………………………………       29 
2.3 Detection of Variation Within PSIP1 by Direct Sequencing ……….       30 

2.3.1 Detection of variation within the upstream  
non-coding region    …………………………………      31 

2.3.2 Detection of variation within the intronic regions  
of the DNA-binding domain   ……………………….      31 

2.3.3 Detection of the variation within the intronic regions  
of the IBD   ………………………………………….       32 

2.4 Genotyping  …………………………………………………………       33 
  2.4.1 PCR-RFLP   …………………………………………      34 
  2.4.2 Allele-specific PCR  ………………………………...      37 
  2.4.3 Pyrosequencing™    …………………………………      43 
2.5 Data Analysis     ……………………………………………………..      46 
  2.5.1 Estimation of gene frequencies by gene counting  ….      46 
  2.5.2 Test for Hardy-Weinberg equilibrium   ……………..      47 
  2.5.3 Estimation of linkage disequilibrium  ………………       48 
  2.5.4 Haplotype analysis   ………………………………...       50 
 
 
 
 
CHAPTER THREE – RESULTS 
 
3.1 Detection of Variation in PSIP1 by Direct Sequencing   ……………      51 

3.1.1 Detection of variation within the upstream  
non-coding region    …………………………………      51 

3.1.2 Detection of variation within the DNA-binding  
domain    …………………………………………….       52 

3.1.3 Detection of variation within the IBD    …………….       53 
3.2 Genotyping     ……………………………………………………….       55 

3.2.1 Genotyping of the deletion within the upstream non-coding 
region  ……………………………………………….       55 

3.2.2 Genotyping of the 5bp deletion within the IBD  ……       57 
3.2.3 Genotyping of the adjacent SNPs within the  

DNA-binding domain   ………………………………      59 
3.3 Estimation of Linkage Disequilibrium  ……………………………..       62 
3.4 Estimation of Gene Frequencies  ……………………………………      63 

3.4.1 Differences between the general population and  
HIV+ sample groups     ………………………………      63 

3.4.2 Differences between the ethnic groups   …………….      64 
3.5 Haplotype Analysis     ……………………………………………….      68 
 
 
 
 



 vi

CHAPTER FOUR – DISCUSSION 
 
 
Discussion       ………………………………………………………………       71 
 
 
 
REFERENCES    ……………………………………………………………      88 
 
 
 
APPENDIX I        ……………………………………………………………        I 
 
APPENDIX II       ……………………………………………………………     IV 
 
APPENDIX III   …………………………………………………………….        V 
 
 
 
 
 
ACKNOWLEDGEMENTS    ………………………………………………       VI 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vii

List of Figures 
 

Figure 1 A schematic representation of the genome of the  

HIV-1 provirus    ………………………………………….2 

 

Figure 1.2.1 The domain structure of HIV-1 integrase, highlighting 

the key residues of the catalytic site and those involved 

 in binding LEDGF/p75…………………………………...5 

 

Figure 1.2.2 The interaction between HIV-1 IN and LEDGF/p75…......6 

 

Figure 1.3 The domain structure of LEDGF/p75……………………..7 

 

Figure 2.4.1 A schematic representation of a RFLP-PCR assay………34 

 

Figure 2.4.1.1 The restriction map generated when a 5bp deletion at  

position + 41 796 is both present and absent in a 621bp 

fragment of the IBD……………………...........................36 

 

Figure 2.4.2 A schematic representation of the principles involved in  

the design of an allele-specific PCR assay………………37 

 

Figure 3.1.1 PCR amplification of the upstream non-coding region in 

preparation for sequencing………………………………51 

 

Figure 3.1.2.1 PCR amplification of the DNA-binding domain in  

preparation for sequencing………………………………52 

 

Figure 3.1.2.2 Chromatograms showing two adjacent SNPs present  

within the DNA-binding domain………………………...53 

 

 



 viii

Figure 3.2.1  Allele-specific PCR amplification of an insertion within  

the upstream non-coding region………………………….56 

 

Figure 3.2.2.1 PCR amplification of a 621bp fragment of the IBD in 

preparation for restriction digestion……………………...57 

 

Figure 3.2.2.2 The restriction fragments generated when a 621bp  

fragment of the IBD is digested with MboI……………...58 

 

Figure 3.2.3.1  PCR amplification of a 227bp fragment of the DNA- 

binding domain in preparation for Pyrosequencing™…..59 

 

Figure 3.2.3.2 The programs generated during Pyrosequencing™……..60 

 

Figure 3.5  Median-joining network of the haplotypes present in 

   the black South African population……………………...70 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 



 ix

List of Tables 
 

Table 2.3 Primers used to amplify the three regions of PSIP1 selected  

for sequencing……………………………………………………33 

 

Table 2.4.2 Primers used for allele-specific genotyping……………………...42 

 

Table 3.1 The genetic variation detected within PSIP1 through direct  

sequencing ……………………………………………………….54 

 

Table 3.2 A summary of the genotyping data collected at all four  

polymorphic positions …………………………………………...61 

 

Table 3.3 The results of linkage analysis showing the D, |D’| and r2  

values for pairwise LD between each of the four genotyped  

sites, as calculated using LDA v. 1.0…………………………….62 

 

Table 3.4.1 The genotype frequencies at each of the four polymorphic  

positions, in both the general population and HIV+ samples…….63 

 

Table 3.4.2 The minor allele frequencies at each of the four polymorphic  

sites, in the ethnic groups represented in this study ……………..65 

 

Table 3.4.4 The genotype and minor allele frequencies at all four  

polymorphic positions, in the four macrogroups generated  

by pooling genotyping data from the nine ethnic groups  

represented in this study……….....................................................67 

 

Table 3.5 The estimated haplotype frequencies in each of the four  

macrogroups generated by pooling genotyping data from  

the nine ethnic groups represented in this study, as calculated 

using PHASE 2.1…………………………………………...........69 



 x

List of Abbreviations 
 

 

AIDS  acquired immune deficiency syndrome 

AMP  adenosine monophosphate 

AP-1  activating protein complex 

APS  ammonium persulphate 

ARG  AIDS restricting gene 

ATP  adenosine triphosphate 

bp  base pair 

CCR5  chemokine receptor 5 

CD/CV common disease/common variant 

Cl  chlorine 

cm  centimeter 

CR  charged region 

DNA  deoxyribonucleic acid 

dNTP  dinucleotide triphosphate  

EDTA  ethylene diamine tetra-acetic acid 

E2F  E2F transcription factor 2 

g  gram 

G6PD  Glucose-6-phosphate dehydrogenase 

GF  genotype frequency 

GRE  glucocorticoid response element 

HCl  hydrogen chloride 

HDGF  hepatoma-derived growth factor 

HIV  human immunodeficiency virus 

HSE  heat shock element 

IBD  integrase binding domain 

IN  integrase 

Indel  insertion/deletion polymorphism 

IRF  interferon regulatory factor 

kb  kilobase 



 xi

kDa  kilodalton 

LD  linkage disequilibrium 

LEDGF lens epithelial-derived growth factor 

LTR  long terminal repeat 

MAF  minor allele frequency 

Mg  magnesium 

MgCl  magnesium chloride 

mg  milligram 

ml  millilitre 

mM  millimolar  

MRCA  most recent common ancestor 

mRNA  messenger RNA 

mtDNA mitochondrial DNA 

NADPH nicotinamide adenine dinucleotide phoshosphate 

NaCl  sodium chloride 

NaOH  sodium hydroxide 

NF-κB  nuclear factor of kappa light chain enhancer of activated B-cells 

ng  nanogram  

NLS  nuclear localization signal 

Oct-1  octamer transcription factor 1  

PCR  polymerase chain reaction 

PIC  pre-integration complex 

PPi  pyrophosphate 

PSIP1  PC4 and SFRS1 interacting protein 

PWWP proline-tryptophan-tryptophan-proline  

RAO  recent out of Africa 

RFLP  restriction fragment length polymorphism 

RNA  ribonucleic acid 

RT  reverse transcriptase 

SDS  sodium dodecyl sulphate 

SNP  single nucleotide polymorphism 

SP-1  transcription factor SP-1 



 xii

SRE  serum response element 

STAT  signal transducer and activator of transcription 

STRE  stress-related regulatory element 

TBE  Tris-boric acid-EDTA buffer 

TBS  transcription factor binding site 

TFIID  transcription factor II D 

TGF-β  transforming growth factor beta 

TIE  TGF-β inhibitory element 

Tm  melting temperature 

Tris  tris(hydroxymethyl)aminomethane 

µg  microgram 

µl  microlitre 

µM  micromolar 

UTR  untranslated region 

UV  ultra violet  

V  volt 

VDR/RXR vitamin D receptor/retinoic acid X receptor 



 1

Abstract 

 

Genetic variation plays an important role in determining an individual’s 

susceptibility to infectious disease. PSIP1 encodes LEDGF/p75, which stably 

associates with the core domain of HIV-1 integrase via a highly-conserved 

integrase binding domain (IBD) located in its C-terminal. Through this 

interaction, the protein tethers HIV-1 IN to chromosomes at sites corresponding to 

regions of high LEDGF/p75-mediated transcription. Genetic variation within 

PSIP1 was identified and characterized in black South Africans to establish 

whether variation in this influences an individual’s susceptibility to HIV infection. 

PCR assays were designed to amplify regions within the upstream non-coding 

region, IBD and DNA-binding domains of the gene and selected polymorphisms 

were then genotyped using allele-specific PCR, RFLP-PCR and 

Pyrosequencing™ assays. Three insertion-deletion (indel) and eight single 

nucleotide polymorphisms (SNP) where identified through sequencing. Four of 

the SNPs had been recorded previously, while the seven other polymorphisms had 

not and appear to be unique to our population. Differences in allelic and genotypic 

frequencies where found between the various ethnic groups represented in this 

study, which were reflected in the underlying haplotype structure within this gene, 

suggesting that genetic substructure exists within the black South African 

population. Differences in allele and genotype frequencies were also seen between 

HIV+ individuals and the general population. Thus variation within PSIP1 may 

influence an individual’s susceptibility to HIV-1 infectivity and/or rate of disease 

progression.  
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Chapter 1 

Introduction 
 
Human immunodeficiency virus-1 (HIV-1), a member of the lentiviridae family of 

retroviruses, infects CD4+ cells, causing acquired immune deficiency syndrome 

(AIDS) (Barre-Sinoussi et al., 1983; Popovic et al., 1984; Levy et al., 1984). 

Thus, like other lentiviruses, HIV is able to infect non-dividing, terminally 

differentiated cells, a property that distinguishes them from oncoretroviruses. 

Effective infection of these cells by the virus requires that the virus’ RNA genome 

(Figure 1.1) be reverse transcribed into cDNA that can be stably incorporated into 

the DNA of the host cell (Bushman et al., 1990).    

 

 

5’ 3’U3U3 U5U5 RR

LTR gag

pol

vif

vpr

vpu env nef

rev tat

5’ 3’U3U3 U5U5 RR

LTR gag

pol

vif

vpr

vpu env nef

rev tat  
 

 

 

Figure 1: A schematic representation of the genome of the HIV-1 provirus. 

The ~9kb genome contains nine genes that encode fifteen proteins.  
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Reverse transcription of the viral RNA into cDNA is performed by the viral 

reverse transcriptase (RT), within a complex known as the reverse transcription 

complex (Fassati and Goff, 2001). The synthesis of a minus-strand DNA from the 

virus’ plus-strand RNA is followed by synthesis of a plus-strand DNA 

complementary to the minus-strand, resulting in the formation of a blunt-ended, 

double-stranded DNA molecule. This product of reverse transcription then 

remains in the cytoplasm as part of the viral pre-initiation complex (PIC) (Miller 

et al., 1997). 

 

The HIV-1 PIC is a nucleoprotein complex containing the newly synthesized 

double-stranded viral cDNA, several viral proteins (including reverse 

transcriptase, integrase, matrix and nucleocapsid) and a number of the host’s 

cellular proteins. The PIC is essential for integration of the viral cDNA into the 

host chromosome and is initially assembled in the cytoplasm of the host cell, but 

later imported into the nucleus (Miller et al., 1997).  

 

1.1 HIV-1 Integration 

The process of viral integration takes place within the PIC and involves two 

enzymatic reactions, both catalyzed by the viral integrase. The first is referred to 

as 3’ processing and is characterized by the removal of a GT dinucleotide from 

the 3’ end of each of the viral long terminal repeats (LTRs). These GT 

dinucleotides are adjacent to a highly conserved CA dinucleotide. This reaction 

takes place while the PIC is still in the cytoplasm (Pauza, 1990; Engelman et al.; 

1991).  
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The second reaction, strand transfer, takes place following nuclear import of the 

PIC and is initiated following nucleophilic attack of the 5’ end of the host’s DNA 

by the 3’ hydroxyl groups of the viral DNA. This attack is directed at two 

phosphodiester bonds located on either side of the major groove of the host’s 

DNA. Nucleophilic attack is followed by a transesterification reaction, in which 

the 3’ ends of the viral DNA (carrying the conserved CA dinucleotides) are 

ligated to the 5’ ends of the host’s DNA (Engelman et al., 1991; Bushman and 

Craigie, 1991).  

 

Following strand transfer, the 5’ ends of the viral DNA remain unattached to the 

3’ ends of the host’s DNA, and as a result are flanked by two 5-nucleotide gaps 

and two unmatched AC dinucleotides (Bushman and Craigie, 1991). Cleavage of 

the unpaired dinucleotides from the 5’ ends of the viral DNA and repair of the 

gaps by the host’s DNA repair enzymes complete the integration process (Yoder 

and Bushman, 2000). 

 

1.2 HIV-1 Integrase 

HIV-1 integrase (IN) is a 32-kDa protein, encoded by the viral pol gene, and is 

initially present as part of a large Gag-Pol polyprotein. Maturation of the IN 

protein is achieved by cleavage of the precursor by the viral protease. The mature 

protein consists of three domains (Figure 1.2.1), namely an N-terminal domain, a 

core catalytic domain (containing the enzyme’s catalytic site) and an α-helical, 

arginine/lysine-rich C-terminal domain (Engelman et al., 1993). IN predominantly 

accumulates in the nucleus of human cells and stably associates with condensed 

chromosomes during mitosis (Maertens et al., 2003).  
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Figure 1.2.1: The domain structure of HIV-1 integrase, highlighting the key 

residues of the catalytic site and those involved in binding 
LEDGF/p75. Residues D64, D166 and E152 are responsible for 
coordinating magnesium ions in the catalytic centre. The remaining 
residues shown are located in the pocket at the p75/IN dimer 
interface. 

 

 

 

 

It has been demonstrated that in the nucleus, HIV-1 IN is present in complex with 

the host-encoded protein identified as lens epithelium-derived growth 

factor/transcriptional co-activator 75 (LEDGF/p75), which forms a component of 

the PIC. This interaction between HIV-1 IN and LEDGF/p75 (Figure 1.2.2) 

involves the formation of a symmetrical complex consisting of a pair of IN 

tetramers in association with two subunits of LEDGF/p75 (Cherepanov et al., 

2003; 2005a; 2005b). 
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Figure 1.2.2: The interaction between HIV-1 IN and LEDGF/p75. (A) The 
overall structure of the tetrameric HIV-1 IN-LEDGF/p75 complex. 
IN chains A and B are shown in blue and purple, respectively, and 
the LEDGF/p75 subunits are shown in red. The side chains of the 
DDE catalytic centre residues are shown in orange. (B) The key 
residues involved in the interaction between HIV-1 IN and 
LEDGF/p75. IN chains A and B are shown in blue and green, 
respectively, and a single LEDGF/p75 subunit is shown in pink. 
Both figures were made with Swiss PDB Viewer, using Protein 
Data Base crystal structure file 2B4J (www.pdb.org).  

 

1.3 LEDGF/p75 

LEDGF/p75 is a ubiquitously expressed 60 kDa protein, consisting of 530 amino 

acids arranged in a number of functional domains (Figure 1.3) (Ge et al., 1998a; 

Nishizawa et al., 2001). The protein is a member of the hepatoma-derived growth 

factor (HDGF) family and like all HDGF-related proteins, contains a PWWP       

(Pro-Trp-Trp-Pro) motif in its N-terminal domain (Figure 1.3) that can mediate 

both protein-protein and DNA-binding interactions (Nakamura et al., 1994; 

Ishimoto et al., 1997). Proteins containing PWWP domains are capable of 

mediating the protein-protein interactions involved in the regulation of chromatin 

structure, suggesting a role for these proteins in the regulation of transcriptional 

processes (Stec et al., 2000; Ge et al., 2004).   

 

IBDPWWP CR1 CR2 CR3AT

NLS

C-Terminal

1 94 146 178 208 267 325 430 530

IBDPWWP CR1 CR2 CR3AT

NLS

C-Terminal

1 94 146 178 208 267 325 430 530  

 

Figure 1.3: The domain structure of LEDGF/p75. The amino acid residues at 
the boundaries of each domain are also shown. 
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A functional nuclear localization signal (NLS) and a pair of AT hooks have also 

been identified in this protein (Figure 1.3) (Cherepanov et al., 2004; Maertens et 

al., 2004; Vanegas et al., 2005). AT hooks mediate the binding of proteins to AT-

rich DNA regions (Aravind and Landsman, 1998). These, together with the 

PWWP domain and NLS (Figure 1.3), form a tripartite DNA-binding motif. This 

conserved tripartite element is necessary and sufficient to mediate the binding of 

this protein to DNA in vitro. Additional charged regions in the N-terminus (CR1, 

CR2 and CR3) (Figure 1.3) further enhance the binding activity of the DNA 

binding motif (Llano et al., 2006a).  

 

The region of the LEDGF/p75 protein that has excited the most interest, however, 

is its C-terminal domain (Figure 1.3), which contains a highly-conserved 

integrase-binding domain (IBD) (Cherepanov et al., 2004) that binds JPO2 

(Maertens et al., 2006; Bartholomeeusen et al., 2007) and lentiviral integrases, 

including HIV-1 IN (Cherepanov 2007).  

 

1.4 The Role of LEDGF/p75 in HIV-1 Integration 

The association between LEDGF/p75 and HIV-1 IN is formed between the IBD 

within the C-terminal of LEDGF/p75 and the catalytic core domain of IN 

(Cherepanov et al., 2004; 2005a; 2005b). This association prevents proteosomal 

degradation of HIV-1 IN (Llano et al., 2004b) and provides a means whereby IN 

may be tethered to host chromosomes (Maertens et al., 2003; Emiliani et al., 

2005) at AT-rich regions within LEDGF/p75-regulated genes (Ciuffi et al., 2005; 

Hombrouck et al., 2007; Shun et al., 2007; Marshall et al., 2007).  
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LEDGF/p75 is able to perform this function because while it binds to IN via its C-

terminal IBD (Cherepanov et al., 2003), it binds DNA though a tripartite DNA 

binding domain located in its N terminal (Llano et al., 2006a). As a result, both 

ends of LEDGF/p75 must be present and functional for HIV-1 IN to associate 

with chromosomes (Llano et al., 2006b; Shun et al., 2007). 

 

LEDGF/p75 has also been shown to interact with the INs of a wide range of other 

lentiviruses (Llano et al., 2004a; Busshots et al., 2005; MacNeil et al., 2006; 

Cherepanov, 2007; Marshall et al., 2007) and like HIV-1, these viruses have all 

shown a preference for integrating into transcriptional units (Schröder et al., 2002; 

Ciuffi et al., 2005; Crise et al., 2005; MacNeil et al., 2006; Marshall et al., 2007). 

Conversely, LEDGF/p75 does not interact with non-lentiviral INs (Llano et al., 

2004a; Busshots et al., 2005; Cherepanov, 2007), which display very different 

integration preferences (Mitchell et al., 2004; Narezkina et al., 2004; Barr et al., 

2005; Lewinski et al., 2006). Collectively, these data suggest that the 

LEDGF/p75-IN interaction is the primary cellular determinant of lentiviral 

integration site selection.   
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1.5 PSIP1 

LEDGF/p75 is encoded by PSIP1, which maps to chromosome 9p22.2 (Singh et 

al., 2000). This 46 923bp gene consists of sixteen exons and encodes five 

transcripts (www.ensembl.org), of which only two (LEDGF/p75 and an 

alternatively splice product, p52) have been identified as functional proteins (Ge 

et al., 1998a; Nishizawa et al., 2001). p52 shares 325 N-terminal residues with 

LEDGF/p75, but has a unique 8bp C terminus that does not contain an IBD (Ge et 

al., 1998a; 1998b) and as a result, does not associate with HIV-1 IN.  

  

Analysis of the gene’s promoter region has revealed it is a TATA-less promoter 

with three transcriptional start sites - a major site (an A at position +1) and two 

minor sites (a G at +35 and a C at +55) (Singh et al., 2002). TATA-less promoters 

display different mechanisms of transcription initiation than other promoter 

elements such as initiator sequences (Inrs) (Martinez et al., 1994) and Sp-1 

binding sites (Smale et al., 1990) are required to recruit TFIID to the promoter 

(Crawford et al., 1999). To this end, a wide variety of putative regulatory 

elements have also been identified within the promoter, including AP1, HSE, 

STRE, SRE, E2F1, IRF-2, IRF-1, GRE, VDR/RXR, NF-κB, SP1, TGF-ß 

inhibitory (TIE), STAT and Oct1 elements (Singh et al., 2002; Magana-Arachchi 

et al., 2003). Because LEDGF/p75 binds to HSE and STRE elements in the 

promoters of several stress-related genes, the presence of these elements in the 

promoter of PSIP1 suggests the gene may be self-regulating (Sharma et al., 2000; 

Shinotara et al., 2002; Singh et al., 2002) 
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1.6 DNA Polymorphisms 

DNA sequence polymorphisms are defined as genetic variations for which the 

most common allele occurs at a frequency of less than 99% in a given population 

(Knight, 2005) Single nucleotide polymorphisms (SNPs) are by far the most 

common form of human genetic variation, occurring on average every 1 000bp 

across the genome, and constituting an estimated 90% of all genetic variation 

(Collins et al., 1998; The International SNP Map Working Group, 2001). Much 

time has been devoted to the discovery and study of these polymorphisms, with 

the result that a dense SNP map of the human genome is now available (The 

International SNP Map Working Group, 2001)  

 

Insertion-deletion polymorphisms (indels) are a second, less common type of 

variation, which together with SNPs constitute the major mutational processes 

driving gene evolution (Taylor et al., 2004). While a great deal of time and effort 

has been devoted to the characterization and genotyping of SNPs, little is known 

about the frequency of indels and the mechanisms whereby they arise. This can 

largely be attributed to the fact that they are predominantly deleterious mutations 

and often produce unstable phenotypic effects that prevent them from becoming 

fixed within a population, making them difficult to detect and characterize. 

However, recent estimates suggest these polymorphisms constitute as much as 15-

18% of the genetic variation within the human genome and could be useful as 

genetic markers (Dawson et al., 2002; Weber et al., 2002; Bhangale et al., 2005; 

Mills et al., 2006). 
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1.6.1 Regulatory Polymorphisms 

Traditionally, studies have focused on identifying polymorphisms within the 

coding regions of genes. This strategy is based on the premise that these 

polymorphisms were most likely to have a functional effect on the given protein. 

However recently, in light of the discovery that allelic differences in gene 

expression exist within and between individuals, interest has been renewed in 

identifying and characterizing regulatory polymorphisms (Yan et al., 2002; 

Cheung et al., 2003; Morley et al., 2004; Pastinen et al., 2004). These 

polymorphisms generally alter gene expression at the level of transcription, 

mRNA stability or translation and are usually located within the 5’ and 3’ 

untranslated regions (UTRs), enhancer and repressor elements, intronic and 

intergenic regions, at splice junctions and within promoters (Buckland, 2006).  

 

Of particular interest are polymorphisms located in the 5’ region immediately 

upstream of genes. This region is often the site of the gene’s proximal promoter 

and as such, is usually a rich source of elements involved in the initiation and 

regulation of transcription – including RNA polymerase II binding sites, binding 

sites for a number of elements involved in the formation of the transcription 

initiation complex and transcription binding sites (TBSs) (Buckland et al., 2005; 

Buckland, 2006). Polymorphisms within any of these cis-acting elements (e.g. a 

TBS) which alter their sequence are of particular interest, as these are considered 

most likely to produce an alteration in gene expression by preventing the binding 

of the relevant trans-acting element (e.g. the transcription factor).   
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However, the mechanisms involved in gene expression and regulation are vast, 

complex and often poorly understood; with the expression of any given gene 

being under the control of a variety of cis- and trans-acting elements, which often 

act in concert to exert their effects. Thus, the influence of a polymorphic variant 

within a cis-acting element may be masked by that of another variant in a related 

trans-acting element (or vice versa), often making it difficult to positively identify 

a single allelic variant as being the causative agent of a difference in gene 

expression. As a result, focus has shifted towards characterizing linkage 

disequilibrium (LD) in the regions surrounding possible regulatory 

polymorphisms and identifying haplotypes that may be associated with changes in 

gene expression (Knight, 2005; Buckland, 2006).  

 

1.7 Linkage Disequilibrium and Haplotype Structure  

Individuals who carry a particular allele at one polymorphic locus have generally 

been found to carry specific alleles at other nearby variable sites on the same 

chromosome. This non-random correlation between neighboring polymorphisms 

is referred to as linkage disequilibrium (LD) (Lewontin, 1964) and the 

combinations of alleles arising as a result of these non-random associations are 

referred to as haplotypes (Gabriel et al., 2002). LD is created when a new 

mutation arises on a chromosome carrying a particular allele at a nearby 

polymorphic locus. This new mutation disrupts the existing haplotype structure of 

the chromosome in question and creates a new haplotype along this chromosome. 

This haplotype in turn, is transmitted to subsequent generations until it too is 

disrupted by mutation or recombination (Ardlie et al., 2002; Gabriel et al., 2002).  
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1.7.1 The Importance of Identifying LD Patterns and Haplotype Structure 

Because LD between neighboring polymorphisms reflects haplotypes descended 

from ancestral chromosomes (Reich et al., 2001), variations in the extent and 

distribution of LD across the human genome offer invaluable insight into both the 

genealogical and demographic history of the human population (Ardlie et al., 

2002). This is highlighted by a number of studies which have detected LD 

patterns consistent with migration, population expansion and admixture and have 

used these findings to trace the path of human evolution and draw conclusions 

about the major migratory events which have helped to shape modern patterns of 

genetic variation, both within and between populations (Quintana-Murci et al., 

1999; Ingman et al., 2000; Alonso and Armour, 2001; Salas et al., 2004). 

 

The elucidation of LD patterns and haplotype structure across the genome is also 

an important component to identifying loci involved in the development of 

disease (Tishkoff and Verrelli, 2003). Because a dense genome-wide map of SNPs 

and other variation is now available (The International SNP Map Working Group, 

2001; Mills et al., 2006), differences in LD patterns and haplotype structure can 

now also be used to identify loci involved in the development of disease indirectly 

by detecting LD between these disease-associated loci and nearby genetic 

markers, for which genotyping data are available (Reich et al., 2001; Gabriel et 

al., 2002).  
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1.7.2 Using LD and Haplotype Structure to Define Populations  

While it is well established that comparison of LD patterns and haplotype 

structure within and between populations provides a useful tool for the elucidation 

of human genealogical and demographic history and identifying loci involved in 

the development of disease (Reich et al., 2001; Gabriel et al., 2002), the criteria 

selected to define population boundaries remains a contentious issue. Perhaps the 

most hotly contested of these is the issue surrounding the use of race or ethnicity 

as a basis for genetic classification. Evidence has been presented for both sides of 

this argument (Tishkoff and Kidd, 2004; Jorde and Wooding, 2004; Mountain and 

Risch; 2004) and while some studies reveal that certain loci exhibit signatures of 

selection that can be correlated with traditional concepts of race, the majority of 

the evidence based on LD patterns and haplotype structure suggests that 

geographical distribution and ancestry may be more useful parameters for 

defining population boundaries (Rosenberg et al., 2002; Lane et al., 2002;  

Ramachandran et al., 2005; Li et al., 2008).   

 

These studies have shown that individuals (regardless of race or ethnic 

background) who share geographical ancestry exhibit similar patterns of LD and 

haplotype structure - more so than individuals of the same race or ethnic group 

from geographically distinct locations (Rosenberg et al., 2002; Ramachandran et 

al., 2005; Li et al., 2008). This would then imply that some knowledge of both 

global and regional demographic history is necessary to interpret LD patterns and 

haplotype structure detected within specific populations when in search of disease 

susceptibility loci (Tishkoff and Verrelli, 2003). 
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1.8 Genetic Variation and Human Demographic History 

While several models of human evolution have been proposed (Tishkoff and 

Williams, 2002; Excoffier, 2002), the most widely accepted of these, the recent 

out of Africa (RAO) model, proposes that all modern humans are descended from 

a common Homo sapiens ancestor that evolved in Africa 100 000-200 000 years 

ago (Stringer and Andrews, 1988; Armour et al., 1996; Ingman et al., 2000). All 

non-African populations then arose as a result of the migration of one or more 

groups of these ancestral humans through East Africa into Asia 44 000-200 000 

years ago (Quintana-Murci et al., 1999, Macualay et al., 2005). Following the 

migration out of Africa, the non-African population expanded rapidly and spread 

(Alonso and Armour, 2001; Zhivotovsky et al., 2003), supplanting any and all 

archaic Homo populations still present outside of Africa (such as the 

Neanderthals), with little or no admixture (Nordborg, 1998; Serre et al., 2004; 

Plagnol and Wall, 2006).  

 

This model has received overwhelming support from a number of studies based 

on autosomal (Tishkoff et al., 1996; Zietkiewicz et al., 1997; Tishkoff et al., 

1998; Tishkoff et al., 2000) mitochondrial (mtDNA) (Chen et al., 1995; Ingman et 

al., 2000; Macaulay et al., 2005) Y-chromosomal (Seielstad et al., 1999; 

Underhill et al., 2000; Hammer et al., 2001) and X-chromosomal (Armour et al., 

1996; Hammer et al., 1997; Kaessermann et al., 1999) DNA variation, which 

have highlighted the different patterns of variation present in non-African 

populations relative to African populations.  
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Africans have the largest number of population-specific alleles and the variation 

present in non-African populations is only a subset of the variation present in 

African populations (Armour et al., 1996; Watson et al., 1997; Zietkiewicz et al., 

1997; Kidd et al., 1998), which is consistent with the hypothesis that all non-

African populations are derived from a small, ancestral group of individuals who 

migrated to Asia through East Africa 44 000-200 000 years ago (Quintana-Murci 

et al., 1999; Macaulay et al., 2005).  

 

Africans also typically display lower levels of LD than non-African populations, 

with the result that African populations carry a greater number of haplotypes 

(Reich et al., 2001; Gabriel et al., 2002). This has largely been ascribed to the fact 

that African populations have always maintained a larger effective population size 

than non-African populations, which have been subject to extensive genetic drift 

as a consequence of having undergone bottleneck and founder effects following 

the migration out of Africa. This has allowed more time (i.e. more generations) 

for LD to decay as a result of mutation and recombination (Stoneking et al., 1997; 

Kidd et al., 1998; Reich and Goldstein, 1998; Relethford and Jorde, 1999; 

Scozzari et al., 1999).  This again can be attributed to the initial migration out of 

Africa (Quintana-Murci et al., 1999; Macaulay et al., 2005). 
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1.9 Genetic Variation in Africans 

The differences in genetic variation seen between African- and non-African 

populations can thus be seen as a testament to how migratory events can have far-

reaching consequences with regard to the shaping of variation patterns both within 

and between populations. Other migratory events within Africa, prior to and 

following the exit of non-African populations out of northeast Africa, have also 

had a significant impact on shaping African genetic diversity patterns (Tishkoff 

and Williams, 2002; Zhivotovsky et al., 2003; Henn et al., 2008). Perhaps the 

most significant of these events was the migration of Bantu-speaking West 

Africans into eastern and southern African 1 500-3 000 years ago (Scozzari et al., 

1999; Salas et al., 2002; Tishkoff and Williams, 2002).  

 

1.9.1 The Influence of the Bantu Expansion 

Based on archeological evidence, the Bantu expansion is proposed to have 

originated in the Cross River Valley of Central Africa, moving first into the Great 

Lakes region of eastern Africa and subsequently into southern Africa (Salas et al., 

2002; Tishkoff and Williams, 2002; Tishkoff and Verrelli; 2003). The 

archeological evidence is well supported by patterns of mtDNA (Soodyall et al., 

1996; Chen et al., 2000; Salas et al., 2002; Gonder et al., 2007; Tishkoff et al., 

2007) and Y-chromosomal (Passarino et al., 1998; Scozzari et al., 1999; Hammer 

et al., 2001) variation. However, slight discrepancies exist between the findings of 

these studies, suggesting that males and females may have contributed differently 

to shaping the patterns of variation present in modern Africans. 
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Mitochondrial DNA variation can be classified into several (often geographically 

distinct) haplogroups (Gonder et al., 2007). While all of these haplogroups are 

present in Africans populations, 3 main mitochondrial lineages (namely L1, L2 

and L3) can be clearly distinguished (Salas et al., 2002; Tishkoff and Williams, 

2002). The L1 lineage is the most ancient lineage of these and includes the most 

recent common ancestor (MRCA) of human mtDNA (Ingman et al., 2000; Salas 

et al., 2002). L1 is thought to then have given rise to the L2 and L3 lineages 60 

000-103 000 years ago (Chen et al., 1995; Watson et al., 1997; Chen et al., 2000). 

This is supported by the observation that both the L2 and L3 lineages carry only a 

subset of the variation found in the L1 lineage. All non-African populations are 

descended from a subgroup of the L3 lineage (and thus carry only a subset of the 

variation found in this lineage) (Chen et al., 1995; Gonder et al., 2007). 

 

 L1 can be further subdivided into several subclades, which show distinct 

geographical distributions. The most common of these subclades, L1a, is common 

in East, Central and southeast Africa but is virtually absent in North, West and 

southern Africa. L1b on the other hand is most frequent in West Africa (and 

regions of North and Central Africa), but is rarely found in East, southeast or 

southern Africa. L1c occurs primarily in Central Africa, while L1d is common in 

the Khoisan people of southern Africa and is found at much lower frequencies in 

southeast and East Africa (Chen et al., 2000; Salas et al., 2002; Gonder et al., 

2007; Tishkoff et al., 2007). These observations are consistent with the view that 

the L1 lineage arose in East Africa and spread into other parts of Africa as a result 

of a series of migratory events. 
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L2 is commonly subdivided into four main subclades, namely L2a-d. L2 is 

proposed to have originated in West Africa and then spread to southeast Africa 

during the Bantu expansion. This view is supported by the observation that L2a is 

common in southeast Africa, while L2b, -c and –d are most common in West and 

Central Africa (Chen et al., 2000; Salas et al., 2002). The subclades of the L3 

lineage also show distinct geographical distributions that suggest this lineage 

arose in East Africa (where it is most frequent) and then spread into West, Central 

and southern Africa (Watson et al., 1997; Salas et al., 2002). 

 

Y-chromosomal data also supports the view of a common ancestry between East 

Africans and southern African Khoisan populations (Seminò et al., 2002), despite 

the vast distances separating these populations. When combined with observations 

that specific Y chromosomal haplotypes are common in both East Africans and 

West Africans, while other haplotypes are common to both southern Africans and 

West Africans (Passarino et al., 19998; Scozzari et al., 1999); it becomes clear 

that the Bantu expansion was a defining event in the demographic history of the 

African continent, which helped to shape present day patterns of genetic variation 

in sub-Saharan Africans.  
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1.9.2 Genetic Variation in South Africans  

The South African population is composed of a wide range of linguistic groups. 

Bantu languages (Zulu, Xhosa, Pedi, Tswana, Southern Sotho, Tsonga, Swazi, 

Venda and Ndebele) comprise eight of the eleven official languages of South 

Africa and the country is also home to the Kung and Khwe Khoisan-speaking 

populations. Studies aiming to characterize mtDNA and Y-chromosomal variation 

in the Kung and Khwe (Passarino et al., 1998; Scozzari et al., 1999; Chen et al., 

2000; Salas et al., 2002; Seminò et al., 2002; Gonder et al., 2007; Tishkoff et al., 

2007) have revealed distinct genetic differences between these populations, 

despite the similarities in their linguistic patterns. While the Kung share notable 

similarities with other Khoisan-speaking populations in East Africa (Chen et al., 

2000; Salas et al., 2002; Knight et al., 2003; Tishkoff et al., 2007), the Khwe 

show closer affinity with West African Bantu-speaking populations (Chen et al., 

2000; Salas et al., 2002; Gonder et al., 2007).  

 

The genetic affinities of the Bantu-speaking populations, however, are less clear. 

A study by Lane et al. (2002) based on both autosomal and Y-chromosomal data 

revealed substructure exists within South African Bantu-speaking populations and 

that commonalities in linguistic patterns are not necessarily reflected at the genetic 

level. The Bantu languages spoken in South Africa all belong to the southern 

branch of the eastern Bantu-speaking linguistic group, but these languages can be 

subdivided into a further three language groups, namely Sotho/Tswana, Nguni and 

Venda (Lane et al., 2002).  
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The Nguni language group comprises Zulu, Xhosa and Tsonga speakers and 

members of this group constitute more than 40% of the South African population. 

The Sotho/Tswana language group is comprised of Southern Sotho, Tswana and 

Pedi speakers and its members represent approximately 25% of the population. 

While members of both these groups understand the languages spoken by other 

members within the group, the differences between the two groups prevent them 

from understanding each other. Venda speakers represent a very small percentage 

of the population and this language is distinct from both Sotho/Tswana and Nguni 

languages (Lane et al., 2002). 

 

The study by Lane et al. (2002) found that while Sotho/Tswana speakers show 

similar patterns of variation that correlate with their linguistic patterns, the same 

could not be said for speakers of Nguni languages. Zulu and Xhosa speakers 

showed very similar patterns of variation to each other; but were distinctly 

different from Tsonga speakers, despite the linguistic similarities displayed by the 

three groups. The Tsonga were rather found to resemble the Venda genetically, a 

pattern attributable to shared demographic history between these two groups 

(Lane et al., 2002). These findings thus provide further evidence to support the 

idea that demographic history can have an important influence on the shaping of 

patterns of genetic variation. 
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1.10 Genetic Variation and Disease  

It is now well established that genetic variation plays an important role in 

determining an individual’s susceptibility to disease (Tishkoff and Verrelli, 2003). 

Because a dense genome-wide map of SNPs and other variation is now available 

(The International SNP Map Working Group, 2001; Mills et al., 2006), 

differences in LD patterns and haplotype structure can now also be used to 

identify loci involved in the development of disease by detecting LD between 

these loci and nearby genetic markers (Reich et al., 2001; Gabriel et al., 2002).  

 

While the Common Disease/Common Variant (CD/CV) hypothesis proposes that 

the genetic factors underlying common diseases will be reflected by a few 

common alleles that are present in high frequency across all populations 

(Chakravarti, 1999); recent findings suggest complex diseases may be influenced 

by susceptibility alleles at many loci, present at different frequencies in 

geographically distinct populations (Pritchard, 2001; Pritchard and Cox, 2002). 

These geographical restrictions in frequency may be as result of mutation, 

recombination, migratory events, genetic drift, population expansion or 

differential exposure to selective pressures (Tishkoff and Verrelli, 2003). 

Regulatory polymorphisms have been identified as being particularly important in 

determining susceptibility to complex disease, as the presence of these 

polymorphisms within a gene results in differences in gene expression within and 

between populations at the affected locus (Knight, 2005; Buckland, 2006).   
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A classic example of how differences in allele frequencies that arise as a result of 

geographically restricted selective pressures can influence susceptibility to 

complex disease is that of the influence of variation at the Glucose-6-phosphate 

dehydrogenase (G6PD) locus on an individual’s susceptibility to malaria. The 

enzyme encoded by this gene is involved in glucose metabolism and is 

responsible for generating nicotinamide adenine dinucleotide phosphate 

(NADPH) in red blood cells (Verrelli et al., 2002).  

 

A variety of G6PD variants, with varying levels of enzyme activity, have been 

identified and classified on the basis of their electrophoretic mobility (Verrelli et 

al., 2002). The B variant, which has normal enzyme activity, has been identified 

as the ancestral allele and has a worldwide distribution. However, variants A, A- 

(both restricted to sub-Saharan Africa) and Med (found in North African, Middle 

Eastern and Mediterranean populations) result in enzyme deficiencies and the 

distributions of these deficiency variants are restricted to regions with past and 

present histories of high malaria incidence (Vulliamy et al., 1992; Beutler, 1994; 

Ruwende et al., 1995, 1998; Tishkoff et al., 2001; Verrelli et al., 2002).  

 

Only the A- variant, which has only 12% enzyme activity, is thought to offer a 

protective effect against malaria caused by Plasmodium falciparum (Ruwende et 

al., 1995; Tishkoff et al., 2001). This variant is the result of a single amino acid 

substitution in exon 4 of G6PD and is always associated with the amino acid 

change that gives rise to the A variant, which has 85% enzyme activity (Vulliamy 

et al., 1992; Verrelli et al., 2002).  
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While pairwise LD is low between these and neighbouring polymorphisms 

(Verrelli et al., 2002), analysis of the entire gene has revealed distinct haplotypes 

that characterize each variant and result in the varying levels of enzyme 

deficiency (Tishkoff et al., 2001). This has led to the suggestion that selection 

favours the resulting enzyme deficiency, rather than the specific allelic variants 

responsible (Verrelli et al., 2002). As a result, these alleles have been maintained 

at relatively high frequencies by balancing selection, despite in some cases being 

associated with haemopathologies (Vulliamy et al., 1992; Beutler, 1994; Tishkoff 

et al., 2001; Verrelli et al., 2002).  

 

1.10.1 Genetic Variation and HIV-1 

The influence of genetic variation on an individual’s susceptibility to HIV 

infection and rate of disease progression has been clearly highlighted by the 

identification and characterization of several AIDS restriction genes (ARGs) 

(O’Brien and Nelson, 2004). Many of these genes encode products that are 

involved in viral entry into the cell, immune recognition and antigen presentation, 

and as a result, polymorphic variations in these genes can have profound effects 

on host-pathogen interactions (Winkler et al., 2004).   
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Perhaps the best characterized of these ARGs is the gene encoding CCR5, a major 

chemokine co-receptor for HIV-1 strain R5. A rare 32bp deletion within the open 

reading frame of this gene (∆32) which results in a non-functional protein offers a 

protective effect against HIV-1 infection. Individuals homozygous for the ∆32 

allele are highly resistant to HIV-1 infection and individuals who are 

heterozygous at this position show delayed disease progression (Dean et al., 

1996). The distribution of this allele is restricted to European populations, with its 

highest frequencies seen in Scandinavian populations (Gonzalez et al., 2001).  

 

Several regulatory polymorphisms, some of which increase an individual’s 

susceptibility to HIV-1 or rate of disease progression, while others confer a 

protective effect, have subsequently also been identified within this gene as its 

promoter has been well characterized both in terms of the variation present and 

underlying haplotype structure (Martin et al., 1998; Carrington et al., 1999; 

O’Brien and Nelson, 2004). These findings further emphasize the importance of 

LD patterns and haplotype structure in determining an individual’s susceptibility 

to complex disease. 
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1.11 Problem Identification and Objectives 

African populations, and sub-Saharan populations in particular, are the most 

genetically diverse in the world and variation within all non-African populations 

represents only a subset of that present in Africans (Armour et al., 1996; Watson 

et al., 1997; Zietkiewicz et al., 1997). Furthermore, while distinct differences in 

variation patterns exist between African and non-African populations (Reich et 

al., 2001; Gabriel et al., 2002), differences in variation also exist between 

geographically distinct African populations (Watson et al., 1996; Scozzari et al., 

1999; Chen et al., 2000, Salas et al., 2004). Because genetic variation has been 

shown to influence an individual’s susceptibility to disease, an understanding of 

these inter-population differences could be useful in determining which loci are 

responsible for the development of disease (Tishkoff and Williams, 2002; 

Tishkoff and Verrelli, 2003). 

 

Much has been done to identify and characterize variation in non-African 

populations, such that LD patterns and haplotype structure in these populations 

are well understood (Reich et al., 2001; Gabriel et al., 2002). However, little work 

has been done to characterize African specific variation, both within and between 

distinct populations (Tishkoff and Williams, 2002; Tishkoff and Verrelli, 2003). 

So much so, that the extent to which African populations differ from each other 

genetically remains unclear (Lane et al., 2002). 
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The aim of this investigation was to identify and characterize genetic variation 

within PSIP1 in black South Africans. This gene encodes LEDGF/p75, a protein 

that interacts with HIV-1 integrase (Cherepanov et al., 2003; 2005a; 2005b) and 

thereby determines the integration site selection for this virus (Llano et al., 2004a; 

Busshots et al., 2005; MacNeil et al., 2006; Cherepanov, 2007; Marshall et al., 

2007). Because of the direct interaction between these two proteins, it has been 

suggested that alterations in the expression of this protein could influence an 

individual’s susceptibility to HIV infection and/or rate of disease progression 

(Llano et al., 2004b; Vandegraaff et al., 2006; Zielske and Stevenson, 2006; 

Vandekerckhove et al., 2006; Llano et al., 2006b).  

 

Genetic variation within this gene was identified and characterized in both HIV+ 

individuals and individuals whose HIV status was unknown. Genotyping was 

performed at four polymorphic sites, using one of three genotyping techniques, 

and LD and haplotype analysis was performed using the genotyping data 

generated to try and correlate variation patterns with disease susceptibility. 

Because of the known substructure present in the black South African population 

(Lane et al., 2002), efforts were also made to identify signatures of population 

substructure at this locus. 
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Chapter 2 
 
Materials and Methods 
 
2.1 Samples 

Genomic DNA from whole blood samples was used during the course of this 

investigation to detect and characterize genetic variation within PSIP1. All 

samples were aseptically collected in ethyldiaminetetraacetic acid (EDTA)-

containing tubes, under an ethics clearance certificate obtained from the Human 

Research Ethics Committee at the University of the Witwatersrand (Appendix II). 

The sample set was comprised of 97 samples collected from HIV+ individuals at 

the Themba Lethu Clinic at Helen Joseph Hospital under informed consent and  

39 samples (hereafter referred to as the general population samples), which had 

previously been collected from staff and students of Wits University whose HIV 

status is unknown. 

 

For each sample group, affiliation with language groups was determined by  

asking participants to complete a short questionnaire (Appendix III) that requested 

details of their place of birth and the home language spoken by the subject, their 

parents and grandparents. All nine South African Bantu language groups were 

represented, with 63 % of the sample reporting a single language in three 

generations. More than one language group occurred in 31% of the sample and       

6 % did not know the languages spoken by their relatives. The most common 

languages spoken were Zulu, followed by Xhosa, Southern Sotho, Tswana, Pedi, 

Tsonga and the others.  
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The HIV+ positive samples were also accompanied by a short patient history that 

included details about viral load and CD4+ counts, date of diagnosis, history of 

HIV infection and history of any secondary infections (e.g. tuberculosis or 

pneumonia).  

 

2.2 DNA Extractions 

The HIV+ whole blood samples used for all genotyping procedures were 

centrifuged at 2 500 x g for ten minutes, separating them into three distinct 

fractions. Genomic DNA was then extracted from the leukocytes (buffy coat 

layer) using the QIAmp® DNA Blood Mini Kit, according to the manufacturer’s 

instructions (Qiagen). This kit uses DNA-adsorbing silica-gel membrane spin 

column technology. The buffy coat layer was treated with proteinase K (20mg/ml) 

and RNase A (100mg/ml) to remove any protein and RNA contaminants. The 

leukocytes were lysed with a SDS-containing lysis buffer and the DNA was then 

precipitated in ethanol (96-100%), eluted in elution buffer (10mM Tris-Cl; 0.5mM 

EDTA; pH 9.0) and stored at -20°C. 

 

To confirm the success of the extraction procedure, agarose gel electrophoresis 

was performed using a 1.0% agarose gel, containing 0.3g of agarose in 30ml of    

1 x TBE (89mM Tris, 89mM Boric acid and 2mM EDTA) and stained using  

ethidium bromide (10µg/ml). Gels were electrophoresed in 1 x TBE at 7V/cm for 

approximately 90 minutes and visualized under UV light. The purity and 

concentration of each sample was then determined using the NanoDrop ND-1000 

Spectrophotometer (ISOGEN). 
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2.3 Detection of Variation within PSIP1 by Direct Sequencing 

Selected non-coding regions within PSIP1 were amplified using the polymerase 

chain reaction (PCR) (Saiki et al., 1988). Portions of the upstream non-coding 

region and intronic regions of the DNA-binding domain and IBD were selected 

for sequencing because variations within these regions may disrupt putative 

regulatory elements and could thus potentially influence gene expression. 

Additionally, non-coding regions are more informative for the identifying 

signatures of population substructure and admixture, as these regions are less 

likely to be subject to selection (Tishkoff and Verrelli, 2003). 

 

For each region, primers were designed (Table 2.3) and reaction conditions were 

optimized to obtain a single fragment of the desired size, at yields sufficient to 

perform sequencing reactions. Conditions including the annealing temperature, 

the annealing- and extension times, DNA- and primer concentrations and the 

number of cycles used were varied in an attempt to achieve the desired product. 

PCR products from 20 of the general population samples were then sent to Inqaba 

BioTec for automated Sanger sequencing (Sanger et al., 1977). The 

chromatograms obtained were edited and analyzed using Sequencher® version 

4.5 (Gene Codes Corporation) and the sequence data obtained for each region was 

compared with a reference sequence obtained from the Ensembl database 

(www.ensembl.org) to identify any polymorphisms within these regions. The 

sequences were also aligned with a corresponding reference sequence from Pan 

troglodytes, also obtained from the Ensembl database (www.ensembl.org), in 

order to infer the ancestral allele.  
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2.3.1 Detection of Variation within the Upstream Non-coding Region 

A 721bp fragment of the upstream non-coding region of PSIP1 was amplified in 

preparation for sequencing using the primers LEDF and LEDGuR (Table 2.3).  

PCR was performed in a reaction volume of 50µl, containing 2X PyroStartTM Fast 

PCR Master Mix (0.05u/µl hot start Taq DNA polymerase, PCR buffer, 4mM 

MgCl and 0.4mM of each of the four dNTPs) (Fermentas), 1µM of each of the 

primers and 20-100ng of template DNA. The amplification reaction consisted of 

initial denaturation at 95.0°C for 60 seconds, followed by 38 cycles of 

denaturation at 95.0°C for 1 second, annealing at 55.0°C for 8 seconds and 

extension at 72.0°C for 50 seconds, with a final extension at 72.0°C for 10 

seconds. 

 

To ensure a fragment of the correct size was obtained in quantities sufficient for 

sequencing, the PCR product was electrophoresed on a 1% agarose gel in 1X TBE 

buffer at 7V/cm for 45 minutes. The remainder of the PCR product was then 

purified and sequenced in both directions by Inqaba Biotec, using the sequencing 

primers LEDGF-INTL (5’CCCTTCGCATTTTGCATT3’) and LEDGF-INTR 

(5’TCCCCAAGTTCGCTTTA3’).  
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2.3.2 Detection of Variation within the DNA-Binding Domain  
 
A 566 bp fragment of intron 5 of PSIP1 was amplified in preparation for 

sequencing using the primers SeqIF5-6 and SeqIR5-6 (Table 2.3). PCR was 

performed in a reaction volume of 50µl, containing 2X PCR Master Mix (0.05u/µl 

Taq DNA polymerase, PCR buffer, 4mM MgCl and 0.4mM of each of the four 

dNTPs) (Fermentas), 1µM of each of the primers and 20-100ng of template DNA. 

The amplification reaction consisted of initial denaturation at 94.0°C for                

5 minutes, followed by 35 cycles of denaturation at 94.0°C for 30 seconds, 

annealing at 61.0°C for 45 seconds and extension at 72.0°C for 90 seconds, with a 

final extension at 72.0°C for 5 minutes. 

 

To ensure only a fragment of the correct size was obtained, the PCR product was 

electrophoresed on a 1% agarose gel in 1X TBE buffer at 7V/cm for 40 minutes. 

The remainder of the PCR product was then purified and sequenced in the forward 

direction by Inqaba Biotec, using the primer SeqIF5-6 (Table 2.3). 

 

2.3.3 Detection of Variation within the Intronic Regions of the IBD 
 
A 970bp fragment of intron 12 of PSIP1 had previously been amplified by Miss 

Daniella Grantcharov using the primers INTL and INTR (Table 2.3) and 

sequenced in both directions by Inqaba Biotec. A total of 52 chromatograms were 

available for analysis. These were edited, analyzed and aligned with a reference 

sequence obtained from the Ensembl Genome Browser (www.ensembl.org) using 

Sequencher® version 4.5 (Gene Codes Corporation), in order to identify any 

possible polymorphisms.   
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Table 2.3: Primers used to amplify the three regions of PSIP1 selected for 
sequencing. All primers were designed using the web-based tool, 
Primer3 (Rozen et al., 2000) and subjected to a BLAST search 
(Altschul et al., 1990) to ensure their target specificity.  

 

Primer 
Name: 

 

 
Sequence: 

 

Tm
1 

(°C): 
GC 

Content 
(%): 

Fragment
Size (bp): 

 
LEDF 

LEDGuR 
 

 
GCCCAAACTCACATCCTATCTAAA 

CGACCAACTGTTTACCGAGAGA 
 

 
61.15 
62.67 

 

 
41.67 
50.00 

 
 

721 

 
SeqIF5-6 
SeqIR5-6 

 

 
CAGTACCAACTGCTGCCTCA 

GCACTCAAAGTTTAATTCGATGG 
 

 
62.45 
59.20 

 
55.00 
39.13 

 
 

566 

 
INTL2 
INTR2 

 

 
CACTGCATGTTGCTTTTCTCA 
CAGTCCTGGCAAATGGTTTA 

 
58.66 
58.35 

 
42.86 
45.00 

 
 

970 

 

1 Tm represents the melting temperature of the primer. 
2 Primers which had previously been available. 

 

 

 

2.4 Genotyping 

Depending on the nature of the polymorphism in question, one of three 

genotyping methods (RFLP-PCR, allele-specific PCR and Pyrosequencing™) was 

employed to establish the allele and genotype frequencies of these polymorphisms 

within the sample set. 
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2.4.1 PCR-RFLP 

Polymorphisms which result in either the introduction or abolition of the 

recognition sequence of a type II restriction enzyme provide a means whereby 

these polymorphisms may be genotyped, as only one of the possible allelic 

variants will render the sequence resistant to digestion by the enzyme. Following 

PCR amplification of the region of interest, subsequent digestion of the PCR 

product with the given enzyme will result in fragments of different sizes, 

depending on which of the allelic variants are present. In this way, a distinction 

can then be made between homozygous and heterozygous individuals based on 

the results of agarose gel electrophoresis (Figure 2.4.1) (Deng, 1989). Another 

restriction site, which is present regardless of the genotype at the polymorphic site 

in question, is usually included in the assay design. This serves as a control for the 

assay, confirming the efficacy of the restriction enzyme. 
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B. 
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Figure 2.4.1: A schematic representation of a RFLP-PCR assay. (A) Different 
restriction fragments will be generated based on which of the two 
polymorphic variants is present. (B) The patterns that should be 
detected by gel electrophoresis after digestion with the restriction 
enzyme of choice. In this way, the different genotypes can be 
identified by the different electrophoretic patterns they produce. 

 

2.4.1.1 Genotyping of the 5bp Deletion within Intron 13 of the IBD 

A 621 bp fragment of intron 13 was amplified in preparation for restriction 

digestion using the primers IBDL (5’GCATGTTGCTTTTCTCAACCAC3’) and 

IBDR (5’ACAAAATTCAAAGAATCCACATGAC3’). PCR was performed in a 

reaction volume of 20µl, containing 2X PCR Master Mix (0.05u/µl Taq DNA 

polymerase, PCR buffer, 4mM MgCl and 0.4mM of each of the four dNTPs) 

(Fermentas), 1µM of each of the primers and 20-100ng of template DNA. The 

amplification reaction consisted of initial denaturation at 94.0°C for 5 minutes, 

followed by 35 cycles of denaturation at 94.0°C for 30 seconds, annealing at 

55.0°C for 45 seconds and extension at 72.0°C for 90 seconds, with a final 

extension at 72.0°C for 5 minutes.  
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A restriction digest was then performed, in order to determine the genotype at this 

position (Figure 2.4.1.1). Digestion was performed in a 30µl reaction volume; 

consisting of 15µl of PCR product, 10x Buffer R (Fermentas) and 5U MboI, 

incubated for 14 hours at 35°C. The digestion product was then electrophoresed 

on a 4% agarose gel in 1X TBE buffer at 7V/cm for 3 hours and genotypes were 

recorded based on the electrophoresis patterns observed. 
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Figure 2.4.1.1: The restriction map generated when a 5bp deletion at 
position + 41 796 is both present and absent in a 621bp 
fragment of the IBD. When the deletion is present, an 
additional MboI restriction site is introduced and a different 
restriction map is generated. 
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2.4.2 Allele-specific PCR 
 
This technique involves the use of three primers (two forward primers and a 

common reverse primer, or vice versa); rather than two, as is necessary for 

conventional PCR. The two forward (or reverse) primers are designed to differ by 

a single base at the final or penultimate positions of their 3’ ends, so that each 

primer can detect and amplify only one of  two possible allelic variants. In each 

case, if the allele the primer is designed to detect is present, amplification of the 

desired product will occur; whereas if the allele the primer is designed to detect is 

not present in a given sequence, a mismatch will result and little or no 

amplification will be observed. Genotypes may then be scored based on the 

presence or absence of a PCR product following electrophoresis (Figure 2.4.1.2) 

(Newton et al., 1989; Wu et al., 1989).  
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D. 
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Figure 2.4.2: A schematic representation of the principles involved in the 
design of an allele-specific PCR assay. (A-C) In each case, 
two separate reactions are performed – each with a different 
allele-specific primer. In this way, only the allelic variant 
corresponding to the primer used will be amplified. (D) The 
genotyped may then be identified based on the presence or 
absence of a PCR product.   

 

2.4.2.1 Genotyping of the Insertion within the Upstream Non-coding Region 

Initially, an assay using two allele-specific forward primers (UpInW and UpInM) 

and a common reverse primer (LEDGuR) (Table 2.4.2) was designed to genotype 

an insertion within the promoter region of PSIP1 at position -417. In attempting to 

optimize the two reactions, parameters such as the annealing temperature, the 

annealing- and extension times, primer concentrations and the number of cycles 

used were repeatedly varied. All optimization procedures were performed using 

samples of known genotype as a control. However, because optimal specificity of 

these reactions could not be achieved, it was later deemed necessary to redesign 

the assay. 
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Rather, a new assay involving two allele-specific reverse primers (UpstrmWT and 

UpstrmMT) and a common forward primer (LEDGuF) (Table 2.4.2) was 

designed. Genotyping reactions were performed in a reaction volume of 10µl, 

containing 2X PCR Master Mix (0.05u/µl Taq DNA polymerase, PCR buffer, 

4mM MgCl and 0.4mM of each of the four dNTPs) (Fermentas), 1µM of each of 

the primers and 20-100ng of template DNA. Both reactions were performed under 

identical cycling conditions - namely initial denaturation at 94.0°C for 5 minutes, 

followed by 30 cycles of denaturation at 94.0°C for 30 seconds, annealing at 

64.5°C for 45 seconds and extension at 72.0°C for 90 seconds, with a final 

extension at 72.0°C for 5 minutes and both resulted in the formation of a 415bp 

fragment. The PCR product was then electrophoresed on a 1% agarose gel in 1X 

TBE buffer at 7V/cm for 40 minutes.  

 

2.4.2.2 Genotyping of SNPs within Intron 5 of the DNA-Binding Domain 

Initially an attempt was made to genotype two adjacent SNPs within intron 5 by 

means of two separate allele-specific assays. In the case of the SNP at position 

+31 040, two allele-specific forward primers (31 040T and 31 040C) were 

designed in conjunction with a common reverse primer (31 040R) (Table 2.4.2); 

while in the case of the SNP at +31 041, two allele-specific reverse primers       

(31 041T and 31 041C) were designed with a common forward primer (31 041F) 

(Table 2.4.2). The assay for genotyping the SNP at position +31 041 was later 

redesigned to include a new allele-specific primer (041T – 

5’TAAAAATAAAGCTAATATTCTTGATGCA3’), designed to replace 31 041T.  
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Parameters including the annealing temperature, the annealing and extension 

times, primer concentrations and the number of cycles used were repeatedly 

varied in an effort to optimize the conditions for both these reactions. Similarly, 

all optimization procedures were performed using samples of known genotypes. 

However, once again, it was determined that this technique was unsuitable for 

genotyping these particular SNPs and that an alternative technique, namely 

Pyrosequencing™, would have to be explored.  

 

 

2.4.2.3 Genotyping of a 2bp Deletion within Intron 12 of the IBD 

An allele-specific assay was also designed to genotype a 2bp deletion at position 

+41 780 within intron 12 of the IBD. Because of the presence of another 5bp 

deletion within 20bp of this polymorphism, the only option available was to 

design the reverse primers (IBDd and IBDtt) to be allele-specific, with a common 

forward primer (INTR) (Table 2.4.2). The aforementioned PCR parameters were 

varied and optimization procedures were performed using samples of known 

genotype; but again, this technique was found to be unsuitable for genotyping this 

particular polymorphism. Unfortunately, because of the presence of other 

polymorphisms in the region surrounding this deletion, alternative primers could 

not be designed and genotyping of this site could ultimately not be performed.   
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Table 2.4.2:  Primers used for allele-specific genotyping. All primers were 
designed using the web-based tool, Primer3 (Rozen et al., 2000) 
and subjected to a BLAST search (Altschul et al., 1990) to ensure 
their target specificity. 

 

Primer 
Name: 

 

 
Sequence: 

 

Tm
1 

(°C):
GC 

Content 
(%): 

 

Fragment
Size (bp):

 
UpInW 
UpInM 

LEDGuR 
 

 
AAACCTCCCCACCCTGGA 
AACCTCCCCACCCTGGG 

CGACCAACTGTTTACCGAGAGA 
 

 
62.68
63.17
62.67

 

 
61.11 
70.59 
50.00 

 
414 
414 

 
UpstmWT 
UpstmMT 
LEDGuF 

 

 
GATTCATGTTCTTGTATCGTTTCCA 
ATTCATGTTCTTGTATCGTTTCCC 
ACATTGTACCACCTACCAGCTCCT 

 

 
59.66
59.44
64.57

 
36.00 
37.50 
50.00 

 
415 
415 

 
31040T 
31040C 
31040R 

 

 
GTGTAATCACATACTTTGTTCTCCATAT
GTGTAATCACATACTTTGTTCTCCATAC

GCAGGTCGTCCTCTTTTAGG 
 

 
60.22
61.69
62.45

 

 
32.14 
35.71 
55.00 

 
387 
387 

 
31041T 
31041C 
31041F 

 

 
AAATAAAGCTAATATTCTTGATGCA 

ATAAAGCTAATATTCTTGATGCG 
CCCATCTCCTCCTTTGTCT 

 

 
54.74
55.64
62.45

 
24.00 
30.43 
55.00 

 
417 
415 

 
 

 
IBDtt 
IBDd 
INTR 

 
 

 
CAGTACTGCATTTATAGCTTCATCTTTT 
CAGTACTGCATTTATAGCTTCATCTTA 

CAGTCCTGGCAAATGGTTTA 
 
 

 
60.22
60.22
58.35

 
32.14 
25.93 
45.00 

 
666 
665 

 

1 Tm represents the melting temperature of the primer. 
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2.4.3 PyrosequencingTM  

PyrosequencingTM (Ronaghi et al., 1996) is a sequencing method based on the 

real-time detection of the pyrophosphate (PPi) released during the synthesis 

reaction catalyzed by DNA polymerase. Automated solid-phase 

Pyrosequencing™ (Ronaghi et al. , 1998) employs a four-enzyme system that 

involves Klenow DNA polymerase from Escherichia coli, ATP sulfurylase from 

Saccharomyces cerevisiae (yeast), luciferase from Photinus pyralis (the North 

American firefly) and apyrase from Solanum tuberosum (potato tubers).  

 

An pre-amplified PCR product is generally first rendered single-stranded 

(although double-stranded PCR product may also serve as a template for 

Pyrosequencing™) and incubated in a microtiter plate (which is under constant 

agitation) with these four enzymes, APS (the substrate for ATP sulfurylase), D-

luciferin (the substrate for luciferase), as well as a short sequencing primer. Each 

of the four deoxynucleotides is then sequentially added to the reaction mixture in 

a predetermined order by an inkjet cartridge. When the correct nucleotide is added 

to reaction mixture the primer is extended by DNA polymerase and PPi (of equal 

molarity to the incorporated deoxynucleotide) is released (Ronaghi et al., 1998). 

 

            DNA polymerase 
(a) (DNA)n + dXTP       →       (DNA)n + 1 + PPi 

 

 This PPi is then converted to ATP by the sulfurylase (Ronaghi et al., 1998).  

 

                ATP sulfurylase 
(b) PPi +APS      →      ATP + SO2-

4 
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The ATP generated by this reaction is then utilized by luciferase to produce light 

(Ronaghi et al., 1998),                   luciferase 

(c) ATP + luciferin + O2   →   AMP + PPi 
  

which is detected by a CCD camera and used by computer software to generate a 

pyrogram. ATP is also utilized by apyrase to degrade any non-incorporated 

deoxynucleotides (Ronaghi et al., 1998). 

               apyrase 
(d) ATP + dXTP   →   AMP and dXMP + 4Pi 

 

2.4.3.1 Genotyping of the SNPs within Intron 5 of the DNA-Binding Domain 

Pyrosequencing™ was used to genotype the adjacent SNPs at positions +31 040 

and +31 041. A 227bp fragment was amplified by PCR, using PSIPfor 

(5’GACGGGGACACCGCTGCTCGTTTATGTGTTAGTTGCAGTGTAATCAC

A3’) and PSIPrev (5’GTCTATGGTAACGTTGAGTTCAAG3’). Both primers 

were designed by Dr. Zane Lombard using PSQ™ Assay Design Software. The 

forward primer was designed to include an additional 23bp oligonucleotide tag, 

which is complementary to the sequence of a universal biotin-labeled primer 

(Aydin et al., 2005). A sequencing primer (PSIPseq – 

5’AAAGCTAATATTCTTGATGC3’), positioned immediately adjacent to the 

SNPs of interest, was also designed by Dr. Lombard.  

 

PCR was performed in a reaction volume of 50µl, with a reaction mixture 

consisting of 2X PCR Master Mix (0.05u/µl Taq DNA polymerase, PCR buffer, 

4mM MgCl and 0.4mM of each of the four dNTPs) (Fermentas), 0.2µM of both 

the reverse and universal primers, 0.02µM of the tagged forward primer and       
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20-100ng of template DNA. Optimized cycling conditions involved initial 

denaturation at 94.0°C for 5 minutes, followed by 30 cycles of denaturation at 

94.0°C for 30 seconds, annealing at 60.0°C for 45 seconds and extension at 

72.0°C for 90 seconds, with a final extension at 72.0°C for 5 minutes. 

 

A total volume of 40µl of PCR product was required for each Pyrosequencing™ 

reaction. The PCR products were immobilized to streptavidin sepharose beads in 

the presence of binding buffer (10mM Tris-HCl, 2M NaCl, 1mM EDTA, 1% 

Tween 20), before strand separation was performed by transferring the templates 

between 70% ethanol, denaturation solution (0.2M NaOH) and washing solution 

(10mM Tris-Acetate, pH 7.6). Sequencing primer annealing was then performed 

by heating the templates and primer at 80°C in the presence of annealing buffer 

(20mM Tris-Acetate, 2mM Mg-Acetate) for 3 minutes.   

 

Sequencing was performed with the PSQTM 96MA Instrument (Pyrosequencing 

AB), using the PSQ™ 96 SNP Reagent Kit (Biotage). Sequencing was performed 

at 28°C in a volume of 50µl. Because the sequence surrounding the SNPs was 

known, deoxynucleotides were added sequentially and the sequencing primer was 

extended for only 5 bases. Pyrograms were generated and genotypes were 

detected using PSQ™ 96MA SNP v.2.1 software (Pyrosequencing AB). All 

computationally derived and any ambiguous genotypes were confirmed by manual 

base-calling.  
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2.5 Data Analysis 

2.5.1 Estimation of Gene Frequencies by Gene Counting 

For each biallelic, polymorphic locus under investigation, the frequencies of each 

of the three possible genotypes were determined as a proportion of the total 

sample size. These genotype frequencies were then used to estimate the allele 

frequencies at each of the polymorphic loci (Ceppellini et al., 1955).  

 

In this way, assuming x, y and z represent the number of individuals carrying the 

genotypes A1A1, A2A2 and A1A2 in a population of size of n; the frequencies of 

each of the genotypes may then be calculated as: 

 
Frequency of genotype A1A1 = x   

         n    
 

Frequency of genotype A2A2 = y   
                               n 
 

Frequency of genotype A1A2 = z   
                              n   
 

Thus in a population of size n, where each individual carries two alleles; the 

frequencies of alleles A1 and A2 may be calculated from the genotype frequencies 

using the formulae: 

Frequency of allele A1 = 2x + z   
          2n 

and  
 

Frequency of allele A2 = 2y + z   
          2n 
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2.5.2 Test for Hardy-Weinberg Equilibrium 

Independently published calculations by Hardy and Weinberg demonstrated that 

within populations of sexually reproducing diploid species, genotype frequencies 

reach equilibrium after one generation of random mating and fertilization - 

provided selection and migration have no effect on the genotypes in question; and 

these equilibrium frequencies persist throughout several generations unless a force 

powerful enough to alter the allele frequencies arises (Crow, 1986). 

 

Thus in a population in Hardy-Weinberg equilibrium, at a given biallelic, 

polymorphic locus the frequencies of alleles A1 and A2 (hereafter denoted as p and 

q, respectively) can be used to estimate the expected frequencies of the three 

possible genotypes A1A1, A2A2 and A1A2; which will then be given by p2, q2 and 

2pq, respectively (Crow, 1986), from 

p2 + 2pq + q2 

In order to establish if the population deviated significantly from Hardy-Weinberg 

equilibrium at the polymorphic positions under investigation, a χ2 test for 

goodness-of-fit was performed to compare the genotype frequencies observed 

within the population with those expected under Hardy-Weinberg conditions: 

 

χ2 = Σ (o – e)2 

        e 
 

where o represents the observed genotype number and e represents the expected 

genotype number. 
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The tests were performed with 1 degree of freedom and at a significance level of  

α = 0.05. Thus for values of p<0.05, the null hypothesis is rejected and the data is 

not seen to deviate significantly from Hardy-Weinberg equilibrium (Crow, 1986).  

 

When multiple individual χ2 tests were performed, a sequential Bonferroni test 

(Rice, 1988) was subsequently performed. This technique makes allowances for 

the fact that when multiple tests are performed, the significance level selected 

must be adjusted accordingly to control the overall type-1 error rate.  

 

2.5.3 Estimation of linkage disequilibrium 

Pairwise LD refers to the non-random association of alleles at two separate loci on 

the same chromosome (Wall and Pritchard, 2003). Consider two loci - each with 

two alleles (A1, A2, B1 and B2), with frequencies p1, q1, p2 and q2, respectively. If 

these result in four gametic types, namely A1B1, A1B2, A2B1 and A2B2, with 

frequencies g1, g2, g3 and g4, respectively then the linkage disequilibrium 

parameter D may be calculated using the formula (Lewontin, 1988): 

 

D = g1 – p1p2 

 

If D = 0 then the alleles at the two loci are randomly associated; but if D > 0 or    

D < 0, the association between the alleles at the two loci is non-random and they 

are said to be in linkage disequilibrium (Lewontin, 1988; Weiss and Clark, 2002). 
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However, D is very heavily dependent on allele frequency. So much so that the 

largest value D can take (Dmax) is  the smaller of p1q2 or p2q1 if D is positive or the 

smaller of p1p2 or q1q2 if D is negative (Lewontin, 1988; Weiss and Clark, 2002). 

Thus Lewontin’s co-efficient (D’) (Lewontin, 1964), given by: 

 

D’ = D 
        Dmax 

 

is considered to be a more robust measure for quantifying linkage disequilibrium, 

as this parameter is less dependent on allele frequency (Lewontin, 1988). 

 

An additional measure of LD is Pearson’s correlation (r2), which is calculated 

from the formula: 

r2    =      D2 
              p1q1p2q2 
 

Under a standard model of selectively neutral evolution, the expected value of r2 

is 1/(4Nc + 1), where N is the effective population size and c is the recombination 

rate between the two loci (Pritchard and Przeworski, 2001). Additionally, the 

sample size required to detect statistically significant LD is inversely proportional 

to r2 (Pritchard and Przeworski, 2001). Thus this parameter not only provides a 

means whereby LD may be quantified, but also supplies useful information about 

population history and the significance of the data itself. 

 

Calculation of D, D’ and r2 values was performed using Linkage Disequilibrium 

Analyzer (LDA) version 1.0 (Ding et al., 2003). 
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2.5.4 Haplotype Analysis 

While LD analysis is a useful tool for studying patterns of genetic variation, the 

picture presented by the data can often be noisy and erratic. A better impression 

can be obtained by identifying the underlying haplotype structure of the 

chromosomal region of interest (Daly et al., 2001). Haplotypes can be defined as 

consecutive sites between which there is little or no evidence of historical 

recombination, as determined by calculation of pairwise LD (Gabriel et al., 2002; 

Wall and Pritchard, 2003).  

 

Haplotype analysis was performed using the software package, PHASE 2.1 

(Stephens et al., 2001), which uses a coalescence-based Markov-chain Monte 

Carlo approach, based on a pseudo-Gibbs sampler, to statistically infer phase and 

reconstruct haplotypes from genotyping data (Niu, 2004). Only samples with 

complete genotyping data at all four polymorphic positions were used for 

haplotype analysis. In cases where individuals were heterozygous at more than 

one position, the most common haplotype pairing was selected as the assigned 

haplotype pair. Haplotype phase could not be determined for one of the HIV+ 

samples, which was excluded from further analysis. 
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Chapter 3 

Results 
3.1 Detection of Variation in PSIP1 by Direct Sequencing 

3.1.1 Detection of Variation within the Upstream Non-coding Region 

Direct sequencing of a 721bp fragment (Figure 3.1.1) of the upstream non-coding 

region of PSIP1 in twenty of the general population samples in both the forward 

and reverse directions led to the identification of a single variable site, the 

insertion of a G at position -417. Only one individual was found to be 

homozygous for the insertion, while ten individuals were identified as being 

heterozygous at this position. The minor allele was fairly frequent. The G allele 

was present in the Pan troglodytes sequence and is therefore likely to be the 

ancestral allele.  

721 bp
1 000 bp

750 bp

500 bp
250 bp

1 2 3 4 5 6 7

721 bp
1 000 bp

750 bp

500 bp
250 bp

1 2 3 4 5 6 71 2 3 4 5 6 7

 

Figure 3.1.1: PCR amplification of the upstream non-coding region in 
preparation for sequencing. The resulting 721bp fragment 
was visualized on a 1% agarose gel. Lanes 3-6 show the 
amplified PCR product, while lane 2 is a GeneRulerTM 1kb 
DNA ladder (Fermentas) and lane 7 shows the negative “no 
DNA” control. 
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3.1.2 Detection of Variation within the DNA-Binding Domain 

Direct sequencing of a 566bp fragment of the DNA-binding domain (Figure 

3.1.2.1) revealed the presence of seven variable sites, with minor allele 

frequencies ranging between 0.03 and 0.48 (Table 3.1). Two of the sites identified 

(at positions +31 040 and +31 041) were located immediately adjacent to each 

other (Figure 3.1.2.2). While both were present as T/C variants, C was the minor 

allele at position +31 040, while T was found to be the minor allele at position 

+31 041. No individuals were homozygous for the minor allele at positions      

+30 816, +30 846, +30 903 and +31 041, while only one individual was 

homozygous for the minor allele at position +31 040. The ancestral allele 

corresponded to the major allele at positions +30 816, +30 846, +30 903 and +31 

040; and corresponded to the minor allele at positions +30 830, +31 041 and +31 

097.  

1 2 3 4 5 6 7 8 9
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250 bp

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9
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Figure 3.1.2.1: PCR amplification of the DNA-binding domain in 
preparation for sequencing. The resulting 566bp fragment 
was visualized on a 1% agarose gel. Lanes 3-8 show the 
amplified PCR product, while lane 2 is a GeneRulerTM 1kb 
DNA ladder (Fermentas) and lane 9 shows the negative “no 
DNA” control. 
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       A.           B.   

        

NN

 

       C.            D. 
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Figure 3.1.2.2: Chromatograms showing two adjacent SNPs present within 
the DNA-binding domain. The different genotypes can be 
identified based on the different fluorescence patterns 
generated by the sequencing software. (A) An individual 
homozygous for the major alleles at both loci. (B) An 
individual heterozygous at the first locus and homozygous 
for the major allele at the second. (C) An individual 
homozygous for the major allele at the first locus and 
heterozygous at the second. (D) An individual homozygous 
for the minor allele at the first locus and homozygous for 
the major allele at the second. 

 

3.1.3 Detection of Variation within the IBD 

Analysis of sequencing data obtained for a 970bp fragment of the IBD revealed 

the presence of a single SNP (+42 357 (C/T) and two deletions (at positions     

+41 780 and +41 796), located within 20bp of each other (Table 3.1). Both 

deletions were absent in the Pan troglodytes sequence, while the C was found to 

be the ancestral allele at the SNP position. No individuals were homozygous for 

the minor allele at any of the three positions. In the case of the SNP, the minor 

allele was present in four heterozygous individuals, while the minor allele was 

only present in one heterozygous individual for both of the deletions.  
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Table 3.1: The genetic variation detected within PSIP1 through direct 
sequencing. Genotype and minor allele frequencies for each of the 
sites are given, as well as the χ2- and P values for the goodness of 
fit of the data to Hardy-Weinberg equilibrium. 

 
 

Polymorphism 
Position 1 

 

 
Genotype 

 
n 

 
Genotype 
Frequency 

 
Minor 
 Allele 

Frequency 
 

 
- 417 

 
 

-/- 
-/G 
G/G 

9 
10 
1 

0.45 
0.50 
0.05 

 
 

0.30 

 
+ 30 816 

G/G 
G/C 
C/C 

 

12 
8 
0 

0.60 
0.40 
0.00 

 
 

0.20 

 
+ 30 830 

G/G 
G/A 
A/A 

 

5 
12 
3 

0.25 
0.60 
0.15 

 
 

0.45 

 
+30 846 

A/A 
A/C 
C/C 

 

19 
1 
0 

0.95 
0.05 
0.00 

 
 

0.03 

 
+30 903 

G/G 
G/C 
C/C 

 

18 
2 
0 

0.90 
0.10 
0.00 

 
 

0.05 

 
+31 040 

T/T 
T/C 
C/C 

 

15 
4 
1 

0.75 
0.20 
0.05 

 
 

0.15 

 
+31 041 

C/C 
C/T 
T/T 

 

16 
4 
0 

0.80 
0.20 
0.00 

 
 

0.10 

 
+31 097 

A/A 
A/T 
T/T 

 

4 
13 
3 

0.20 
0.65 
0.15 

 
 

0.48 

 
+41 780 

TT/TT 
TT/- 
-/- 
 

24 
3 
0 

0.89 
0.11 
0.00 

 
 

0.06 

 
+41 796 

TCTTA/TCTTA 
TCTTA/- 

-/- 
 

26 
1 
0 

0.96 
0.04 
0.00 

 
 

0.02 

 
+42 357 

 
 

C/C 
C/T 
T/T 

18 
4 
0 

0.82 
0.18 
0.00 

 
 

0.09 

 
1 Positions are given relative to the start of transcription. 
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3.2 Genotyping 

3.2.1 Genotyping of the Insertion within the Upstream Non-coding Region 

Allele-specific PCR was used to genotype the insertion at position -417 (Figure 

3.2.1) in 136 samples (Appendix I). Two separate reactions were performed, each 

designed to amplify only one of the possible allelic variants at this position. 

Genotypes were then assigned based on the presence or absence of a PCR product 

following each reaction. Reaction conditions were optimized using samples of 

known genotype (based on the results of direct sequencing) and in each case, a 

“no DNA” negative control was included to preclude any false positives as a 

result of DNA contamination. As an additional control, the procedure was 

repeated using thirty randomly-selected samples (approximately 20% of the total 

sample size), to confirm the accuracy and specificity of both genotyping reactions. 

The results obtained confirmed that the previously recorded genotypes were 

accurate.  

 

A total of sixteen individuals were found to be homozygous for the minor allele, 

while 52 individuals were heterozygous at this position. The minor allele 

frequency at this position was 0.31 (Table 3.2), a value similar to that obtained 

from analysis of the direct sequencing data. The population sample did not deviate 

significantly from Hardy-Weinberg equilibrium at this position (Table 3.2).  
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A. 

1 2 3 4 5 6 7 8 9 10 1211 13 14 15

414 bp

2 000bp
850 bp
400 bp

100 bp

1 2 3 4 5 6 7 8 9 10 1211 13 14 151 2 3 4 5 6 7 8 9 10 1211 13 14 15

414 bp414 bp

2 000bp
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400 bp

100 bp

2 000bp
850 bp
400 bp

100 bp
 

B. 

1 2 3 4 5 6 7 8 9 10 1211 13 14 15

2 000bp
850 bp
400 bp

100 bp

414 bp

1 2 3 4 5 6 7 8 9 10 1211 13 14 151 2 3 4 5 6 7 8 9 10 1211 13 14 15

2 000bp
850 bp
400 bp

100 bp

2 000bp
850 bp
400 bp

100 bp

414 bp414 bp

 

 

Figure 3.2.1: Allele-specific PCR amplification of an insertion within the 
upstream non-coding region. Two separate reactions are 
performed, each resulting in the amplification of one of the two 
allelic variants. Genotypes were resolved based on the presence or 
absence of a 414bp PCR product in each or both of the reactions. 
The products of both reactions were visualized on a 1% agarose 
gel. (A) The PCR product produced when the insertion is absent. 
(B) The PCR product produced when the insertion is present. (A 
and B) lanes 3-14 show the results of the respective allele-specific 
PCR reactions, while lane 15 shows the “no-DNA” negative 
control and lane 2 is a FastRuler™ Middle Range DNA Ladder 
(Fermentas). 

 

 



 58

3.2.2 Genotyping of the 5bp Deletion within the IBD 

A RFLP-PCR assay was designed to genotype the 5bp deletion at position        

+41 796 within the IBD. First, conventional PCR was used to amplify a 621bp 

fragment of the IBD (Figure 3.2.2.1). Then, a restriction digest was performed to 

confirm whether or not the deletion was present, based on the presence or absence 

of an additional MboI restriction site. Genotypes were assigned based on the 

restriction profile obtained (Figure 3.2.2.2). 

 

2 000bp

850 bp

400 bp

100 bp

621 bp

1 2 3 4 5 6 7

2 000bp2 000bp

850 bp850 bp

400 bp400 bp

100 bp100 bp

621 bp621 bp

1 2 3 4 5 6 71 2 3 4 5 6 7

 

 

Figure 3.2.2.1: PCR amplification of a 621bp fragment of the IBD in 
preparation for restriction digestion. The PCR product was 
visualized on a 1% agarose gel. Lanes 3 -6 show the 
amplified PCR product, while lane 2 is a FastRulerTM 
Middle Range DNA ladder (Fermentas) and lane 7 shows 
the “no-DNA” negative control.  

 



 59

1 2 3 4 5 6 7 8

750 bp

500 bp

250 bp

621 bp

70 bp

211 bp

340 bp

405 bp

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8
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500 bp

250 bp

621 bp

70 bp

211 bp

340 bp

405 bp

 

 

Figure 3.2.2.2: The restriction fragments generated when a 621bp fragment 
of the IBD is digested with MboI. When 5bp are deleted at 
position +41 796 an additional restriction site is introduced. 
The genotype at this position can then be determined by the 
different restriction profiles produced by digestion. The 
restriction digest was resolved on a 4% agarose gel. Lanes 
2, 3, 4 and 6 show individuals in which the deletion is 
absent, while lane 5 shows an individual heterozygous for 
the deletion. Lane 7 shows the undigested “no enzyme” 
control and lane 1 is a GeneRulerTM 1kb DNA ladder 
(Fermentas). 

 
 

Genotyping of the deletion at position +41 796 was performed in a total of 122 

samples (Appendix I). No individuals homozygous for the deletion were found 

within this population, but fifteen heterozygotes were identified. The minor allele 

was found to be quite rare, with a frequency of only 0.06. The population sample 

did not deviate significantly from Hardy-Weinberg equilibrium at this position 

(Table 3.2). 
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3.2.3 Genotyping of the Adjacent SNPs within the DNA-Binding Domain  

Pyrosequencing™ was used to genotype two adjacent SNPs at positions +31 040 

and +31 041 within the DNA-binding domain. Initially, a 227bp PCR fragment 

was amplified (Figure 3.2.3.1). Genotypes were then assigned based on the 

differential fluorescence patterns generated by the sequencing reaction (Figure 

3.2.3.2). Genotyping of both SNPs was performed in 126 samples (Appendix I). 

While only six individuals were homozygous for the minor allele at both 

positions, almost twice as many individuals were found to be heterozygous at 

position +31 040 than at position +31 041. Consequently, the minor allele was 

more frequent at position +31 040 than +31 041. The population sample did not 

deviate from Hardy-Weinberg equilibrium at position +31 040, but did deviate 

significantly at position +31 041 with P = 0.03 (Table 3.2). However, correction 

for multiple tests revealed this deviation was not significant at the table-wide level 

(P<0.01).   

1 2 3 4 5 6 7

227 bp

100 bp

200 bp

300 bp

400 bp

1 2 3 4 5 6 7

227 bp

100 bp

200 bp

300 bp

400 bp

 

Figure 3.2.3.1: PCR amplification of a 227bp fragment of the DNA-
binding domain in preparation for Pyrosequencing™. The 
PCR product was visualized on a 3% agarose gel. Lanes 2-
6 show the amplified PCR product, while lane 7 shows the 
“no DNA” control and lane 1 is a Quick Load 100bp DNA 
Ladder (New England Biolabs). 
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A.     B. 

     
                          
C.      D. 

    
                          
              E. 

 
                   

 
 
 
Figure 3.2.3.2: The pyrograms generated during Pyrosequencing™. (A-E) 

Each of the genotype profiles obtained is shown. 
Sequencing was performed in the reverse direction, thus all 
genotype are given in the reverse complement with the 
genotype at position +31 041 given first and then that at 
position +31 040.  

 

 

A/A G/G

G/G A/A G/G G/G 

G/G A/G A/G A/A 
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Table 3.2: A summary of the genotyping data collected at all four 
polymorphic positions using allele-specific PCR, RFLP-PCR and 
Pyrosequencing™ assays. The genotypes, numbers of individuals 
genotyped, genotype and allele frequencies, χ2 and P values are 
given for each position. 

 
 

 
Polymorphism 

Position 1 
 

 
Genotype 

 
n 

 
Genotype 
Frequency 

Minor  
Allele 

Frequency 
 

 
χ2 

Value: 2 

 

 
P  

Value 

 
- 417 

 
 

-/- 
-/G 
G/G 

 

68 
52 
16 

0.50 
0.38 
0.12 

 
 

0.31 

 
 

1.48 
 

 
 

0.22 

 
+31 040 

T/T 
T/C 
C/C 

 

76 
44 
6 

 

0.60 
0.35 
0.05 

 
 

0.22 

 
 

0.01 
 

 
 

0.92 

 
+31 041 

C/C 
C/T 
T/T 

 

94 
26       
6 

0.75 
0.21 
0.05 

 
 

0.15 

 
 

4.74 
 

 
 

0.03 

 
+41 796 

TCTTA/TCTTA 
TCTTA/- 

-/- 
 

107 
15 
0 

0.88 
0.12 
0.00 

 
 

0.06 

 
 

0.52 
 

 
 

0.47 

 

1 Positions are given relative to the start of transcription. 

2 χ2 values were calculated with 1 degree of freedom and at a significance level of α = 0.05. 
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3.3 Estimation of Linkage Disequilibrium 

While all the alleles were found to be in linkage disequilibrium, the degree 

of non-random association was not very strong between any of the four 

polymorphic sites. D and |D’| values indicated that LD was strongest 

between the SNP at position + 31 040 and the 5bp deletion at + 41 796 and 

weakest between +31 040T/C and the insertion in the upstream non-coding 

region, while r2 values indicated that the strongest association was between 

the adjacent SNPs at +31 040 and 31 041 and the weakest association was 

between the SNP at +31 041 and the 5bp deletion at + 41 796. Interestingly, 

all three of these measures indicated that very low LD between the adjacent 

SNPs at +31 040 and +31 041.  

 
 
Table 3.3: Results of linkage analysis showing the D, |D’| and r2 values 

for pairwise LD between each of the four genotyped sites, as 
calculated using LDA v. 1.0 (Ding et al., 2003). 

 
 

+31 040 
 

+31 041 +41 796 

D |D’| r2 D |D’| r2 D |D’| r2 

 
SNP Position 1 

 

 
-0.03 

 
0.08 

 
0.0009  

 
0.30 

 
0.38 

 
0.06 

 
0.14 

 
0.20 

 
0.01 

 
-417 

 
  

0.24 
 

0.26 
 

0.05 
 

0.34 
 

0.41 
 

0.04 
 

+31 040 
 

 
-0.01 

 
0.07 

 
0.0001  

 
+31 041 

 
 

1 Positions are given relative to the start of transcription. 
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3.4 Estimation of Gene Frequencies 

3.4.1 Differences between the General Population and HIV+ Groups 

In an effort to establish if a possible association exists between variation in 

PSIP1 and HIV-1 infectivity, the genotype frequencies at each of the four 

polymorphic positions were compared between the general population and 

HIV+ sample groups (Table 3.4.1). The two groups did not significantly 

differ from each other at positions -417, +31 041 and +41 796. There was, 

however, a significant difference between the two groups at position +31 

040, where the heterozygote frequency in the HIV+ group was more than 

twice that observed in the general population.  

 

Table 3.4.1: The genotype frequencies at each of the four polymorphic 
positions, in both the general population and HIV+ samples. 
The number of individuals genotyped and P values for 
Fisher’s exact test are also given for each group. 

 
 

General Population 
 

 
HIV+ Positive 

 
SNP 

Position1 

 

 
 

Genotype 
 

n 
 

Genotype 
Frequency 

 

 
n 

 
Genotype 
Frequency 

 

 
P 

Value 

 
 

-417 
 

 
-/- 
-/G 
G/G 

 

 
16 
20 
3 

 
0.41 
0.51 
0.08 

 
52 
32 
13 

 
0.54 
0.33 
0.13 

 
 

0.15 

 
 

+31 040 
 

 
T/T 
T/C 
C/C 

 

 
29 
7 
3 

 
0.74 
0.18 
0.08 

 
47 
37 
3 

 
0.54 
0.43 
0.03 

 

 
 

0.01 

 
 

+31 041 
 

 
C/C 
C/T 
T/T 

 

 
30 
7 
2 

 
0.77 
0.18 
0.05 

 
64 
19 
4 

 
0.74 
0.22 
0.05 

 
 

0.94 
 

 
+41 796 

 

 
TCTTA/TCTTA 

TCTTA/- 
-/- 
 

 
36 
3 
0 

 
0.92 
0.08 
0.00 

 
71 
12 
0 

 
0.86 
0.14 
0.00 

 
 

0.38 

 

1 Positions are given relative to the start of transcription. 
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3.4.2 Differences between the Ethnic Groups  

A comparison of the allele frequencies (Table 3.4.2) was made between the 

different ethnic groups represented in this study. Ethnic classification was 

based on the home language spoken by the individual in question and their 

immediate family. The comparison was conducted using 86 individuals who 

reported a single language spoken by their relatives for three generations, in 

both their maternal and paternal lineages and 50 individuals with uncertain 

lineages. Zulu speakers comprised 41% of the sample, while five of the 

ethnic groups (Venda, Tsonga, Swazi, Pedi and Ndebele) were represented 

by fewer than ten individuals (Table 3.4.2).  

 

The minor allele frequency of the Zulu group at position -417 was lower 

than that of the Xhosa, Tswana and Sotho, who showed similar 

distributions. At position +31 040 the Zulu and Tswana showed similar 

frequencies, while the Xhosa and Sotho had similar frequencies that were 

lower than those of the other two groups. At position +31 041, the frequency 

distribution was similar for the Zulu, Tswana and Sotho, but was lower in 

the Xhosa. The Zulu and Sotho had identical frequencies at position +41 

796, while the Xhosa and Tswana showed higher frequencies at this 

position. The group comprising individuals of mixed or unknown lineage 

had a virtually identical frequency distribution to the Zulu group at all four 

polymorphic positions. 
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Table 3.4.2: The minor allele frequencies at each of the four polymorphic 
sites, in five of the ethnic groups represented in this study. 
Only groups comprising more than ten individuals are given.  

 
 

Minor Allele 
Frequency 

 

 
 

Language 
Group 

 

 
 

n 
 

-417 
 

 
+31 040 

 
+31 041 

 
+41 796 

 
Zulu 

 

 
35 

 
0.29 

 
0.27 

 
0.15 

 
0.05 

 
Xhosa 

 

 
13 

 
0.42 

 
0.14 

 
0.05 

 
0.13 

 
Tswana 

 

 
10 

 
0.50 

 
0.28 

 
0.17 

 
0.20 

 
Sotho 

 

 
13 

 
0.46 

 
0.17 

 
0.17 

 
0.05 

 
Other1 

 

 
50 

 
0.25 

 
0.25 

 
0.15 

 
0.05 

 

1 Group comprising individuals who had parents or grandparents who spoke 
   different languages or who did not know the languages spoken by their relatives. 

 

 
 

While the sampling distribution in this study was fairly representative of the 

population from which the sample was drawn, the sample sizes of several of 

the groups were too small to be sufficiently informative. The samples were 

thus pooled into four macrogroups according to the findings of Lane et al. 

(2002). Group 1 comprised all individuals from all nine ethnic groups with 

complete genotyping data at all four of the polymorphic positions. Group 2 

comprised only individuals who reported Zulu as their home language in 

three generations. Group 3 comprised all individuals who reported Zulu or 

Xhosa as their home language and that of their relatives and group 4 

comprised all individuals who reported Tswana, Pedi or Sotho as the home 

language of them and their relatives.  
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A comparison of the allele frequencies between the macrogroups (Table 

3.4.4) revealed minor allele frequencies were similar between groups 2 and 

3 at all four polymorphic positions. Allele frequencies in group 1 were 

similar to those in groups 2 and 3. However, allele frequencies in group 4 

differed from those of the other three groups, at all four polymorphic 

positions. Interestingly, the allele frequencies in group 1 were equal to the 

average of those in groups 3 and 4 at positions +31 040 and +31 041.  

 

A similar trend was observed when genotype frequencies were compared 

(Table 3.4.4). The frequencies in group 1 were similar to those in groups 2 

and 3. However, frequencies in group 4 differed from those of the other 

three groups, at all four polymorphic positions. This pattern was particularly 

evident at positions +31 040 and +31 041. The four macrogroups did not 

deviate significantly from Hardy-Weinberg equilibrium at three of the 

polymorphic positions, but did deviate significantly from Hardy-Weinberg 

equilibrium at position +31 041. However, correction for multiple tests 

revealed this deviation was not significant at the table-wide level (P<0.01).   
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3.5 Haplotype Analysis 
 
PHASE 2.1 (Stephens et al., 2001) was used to construct the haplotype 

structure surrounding the four polymorphic sites genotyped and to 

determine the frequencies of these haplotypes in the four population 

groups under investigation (Table 3.5). A total of sixteen possible 

haplotypes were identified in group 1 (which comprised of individuals 

from all of the nine ethnic groups represented) and all these haplotypes 

were also present in groups 2 and 3. However, only thirteen possible 

haplotypes were identified in the 26 individuals comprising group 4.  

 

Analysis of the haplotype frequencies (Table 3.5) in each of the groups 

revealed the frequency distributions were virtually identical between 

groups 1, 2 and 3, with the ATCB haplotype being the most common and 

the ATTD haplotype being the most infrequent in all three groups. 

However, group 4 showed slightly different frequencies of the ACCB, 

ITCD and ITTB haplotypes. Additionally, while ATCB was still the most 

common haplotype in this population group, the ITTD haplotype (rather 

than ATTD) was the most infrequent haplotype in this group. A median 

joining network (Figure 3.5.1) was constructed using the haplotypes 

identified in group 1. This network had a cuboidal shape, rather than a 

tree-like structure, indicating there have been high levels of recombination 

and/or recurrent mutation between the polymorphisms.  
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Table 3.5: The estimated haplotype frequencies in each of the four 
macrogroups generated by pooling genotyping data from 
the nine ethnic groups represented in this study, as 
calculated using PHASE 2.1. (Stephens et al., 2001). 

 
 

Haplotype Frequency 
 

 
Haplotype1 

 Group 1 
 

Group 2 Group 3 Group 4 

ATCB 
 

0.45 0.43 0.43 0.40 

ATCD 
 

0.02 0.02 0.03 0.02 

ATTB 
 

0.05 0.04 0.03 0.04 

ATTD 
 

<0.01 <0.01 <0.01 0.00 

ACCB 
 

0.11 0.16 0.13 0.07 

ACCD 
 

0.01 <0.01 0.01 0.02 

ACTB 
 

0.03 0.04 0.03 0.03 

ACTD 
 

<0.01 <0.01 <0.01 0.00 

ITCB 
 

0.20 0.20 0.23 0.23 

ITCD 
 

0.01 <0.01 <0.01 0.05 

ITTB 
 

0.05 0.03 0.03 0.08 

ITTD 
 

<0.01 <0.01 <0.01 <0.01 

ICCB 
 

0.04 0.03 0.03 0.03 

ICCD 
 

<0.01 <0.01 <0.01 <0.01 

ICTB 
 

0.02 0.03 0.02 0.02 

ICTD 
 

<0.01 <0.01 <0.01 0.00 

 

1 I and D represent the presence of an insertion and deletion, respectively. A and B correspond to  
   their absence.   
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Figure 3.5.1 Median-joining network of the haplotypes present in the black 

South African population, constructed using Network 4.5.1.0. I and 
D represent the presence of an insertion and deletion, respectively. 
A and B correspond to their absence. Only haplotypes present at 
frequencies greater than 0.01 were used to construct the network. 
Each circle represents a haplotype and the mutations differentiating 
between them are shown in red. Circles are coloured according to 
haplotype frequency, with frequencies >0.20 in red, <0.20 in 
purple, <0.10 in blue and ≤0.05 in green. 
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Chapter 4 

Discussion 
Direct sequencing of three regions of PSIP1, spanning a total of 2 257bp, in 

twenty individuals revealed the presence of eleven variable sites. Five of these 

sites had previously been identified, while the remaining six had not 

(www.ensembl.org). These novel polymorphisms may thus be unique to African 

populations. This further illustrates the observation that Africans have the largest 

number of population-specific alleles and that the variation present in non-African 

populations is only a subset of the variation present in African populations 

(Armour et al., 1996; Tishkoff et al., 1996; Watson et al., 1997; Kidd et al., 1998; 

Tishkoff et al., 2000).  

 

A 721bp fragment of the upstream non-coding region contained one 

polymorphism, an indel at position -417. No variation had previously been 

detected in this region. This polymorphism was originally classified as an 

insertion based on comparison with the human reference sequence used in this 

study (www.ensembl.org). However, when this region was aligned with the 

reference sequence from Pan troglodytes the site was found to be monomorphic 

for the G allele in chimpanzees. Thus, assuming the G allele corresponds to the 

ancestral allele, this indel can be seen as representative of a deletion event rather 

than an insertion. It should be noted, however, that only one chimpanzee sequence 

was used to infer the state of the ancestral allele and this therefore may not be 

reflective of the variation within this gene in chimpanzees.  
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Seven variable sites were identified within a 566bp fragment of the DNA-binding 

domain, with minor allele frequencies ranging between 0.03 and 0.48. Four of 

these SNPs (30 830G/A, 30 846A/C, 31 040T/C and 31 097A/T) had previously 

been reported, while the remaining three (30 816G/C, 30 903G/C and 31 041C/T) 

had not. Conversely, an additional SNP (31 115T/C) which had previously been 

identified within this region was not found in the population under investigation. 

When aligned with the reference sequence from Pan troglodytes, the chimpanzee 

site was monomorphic and corresponded to the major allele at three of the 

polymorphic positions (+30 816G/C, +30 846A/C and +30 903G/C) and the 

minor allele at three others (+30 830G/A, +31 041C/T and +31 097A/T). 

However, the chimpanzee sequence was also polymorphic at position +31 040. 

Therefore, the state of the ancestral allele could not be inferred for this 

polymorphism. The fact that this position is polymorphic in both humans and 

chimpanzees could suggest that this polymorphism has been maintained in both 

species as a result of selection acting on this locus or another site that is in linkage 

disequilibrium with this one. 

 

A further two deletions (2bp at position +41 780 and 5bp at position +41 796) and 

another SNP (+42 357T/C) were identified within a 970bp fragment of the IBD. 

The SNP had previously been reported, while the two deletions had not. No 

individuals were found to be homozygous for the minor allele at any of the three 

sites. Aligning this region with the corresponding region in Pan troglodytes 

revealed that at the SNP position the P. troglodytis sequence was monomorphic 

for the C allele, while both deletions are not present in chimpanzees.  
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Unlike the other polymorphisms identified in this study, the SNP within the IBD 

occurs within an exonic region of the gene. As a result, this polymorphism is 

subject to different selective and evolutionary forces. The SNP is found within a 

codon encoding an asparagine residue, but because it occurs at the third “wobble” 

position of the codon it does not alter the coding sequence. Given that this 

synonymous SNP has previously been identified in non-African populations, it is 

probably the result of a point mutation that occurred prior to the migration of non-

Africans out of Africa. The deletions on the other hand appear to be unique to 

African populations and, as such, are probably much more recent products of 

deletion events in African populations. Alternatively these deletions may have 

occurred prior to the migration of non-African populations out of Africa and may 

later have been lost due to random genetic drift or the effects of natural selection. 

While it is impossible to positively rule out either explanation, given the very low 

frequencies of the minor alleles observed at both these positions, the former 

scenario seems more likely.  

 

While the majority of the polymorphisms detected in this study were SNPs, three 

deletions were also identified within the three regions sequenced. This is 

consistent with recent findings which suggest that indels may represent as much 

as 15-18% of the genetic variation within the human genome (Dawson et al., 

2002; Weber et al., 2002; Bhangale et al., 2005; Mills et al., 2006). However, 

these studies are based on whole-genome analyses which estimate that indels 

occur every 7-10kb across the genome. Given that only 2 257bp were sequenced 

during this study this number then seems unusually high. When one considers that 
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a number of other indels have been identified in other non-coding regions of the 

gene (www.ensembl.org), it would seem that this gene appears to have a 

propensity for insertion-deletion polymorphisms.  

 

While a great deal of time and effort has been devoted to the characterization and 

genotyping of SNPs, little is known about the frequency of indels and the 

mechanisms whereby they arise. Most often the presence of these mutations can 

be explained by Streisinger’s “strand-slippage” hypothesis (Streisinger et al., 

1966). This theory proposes that indel mutations arise as a result of a strand 

slippage event during DNA replication that generates a misaligned intermediate 

with one or more unpaired nucleotides. Provided the unpaired nucleotide(s) avoid 

post-replicative repair mechanisms, an insertion or deletion is generated 

depending on whether the unpaired nucleotide was located in the primer or 

template strand, respectively. These replicative errors tend to occur at a higher 

frequency in sequence regions characterized by homopolymeric repeats 

(Streisinger and Owen, 1985). More recent NMR and crystallographic studies 

have provided structural support for this theory by demonstrating that 

conformational changes in DNA that orient the template strand at right angles to 

the primer-template junction during the interaction with DNA polymerase disrupt 

the van der Waals contacts and hydrogen bonds that ensure the correct base is 

added to the growing daughter strand (Garcia-Diaz and Kunkel, 2006).  
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In light of findings which show that DNA sequence complexity has an important 

role to play in influencing local DNA conformation, much has been done to try 

and characterize the sequences surrounding indels in an effort to identify possible 

“hotspots” of indel formation (Krawczak and Cooper, 1991; Cooper and 

Krawczak, 1991; Krawczak et al., 2000; Chuzhanova et al., 2002; Kondrashov 

and Rogozin, 2004; Ball et al., 2005). As a result, a variety of sequence elements 

can be implicated in the formation of short insertions and deletions, several of 

which include direct repeats, inverted repeats and palindromic elements.  

 

The influence of direct repeats on indels can be explained by a modified version 

of Streisinger’s “strand-slippage” hypothesis (Krawczak and Cooper, 1991). This 

theory may provide a possible explanation for the formation of the deletions at 

positions -417 and +41 780, which both represent deletions of repetitive bases, but 

does not account for the deletion at position +41 796. Inverted repeats and 

palindromic elements on the other hand influence indel formation in a slightly 

different manner. These sequences often produce secondary structures like hairpin 

loops during replication which may be excised by the DNA replication repair 

enzymes, resulting in the formation of either a deletion or an insertion depending 

on which DNA strand is involved (Krawczak et al., 2000; Chuzhanova et al., 

2002; Kondrashov and Rogozin, 2004; Ball et al., 2005). This mechanism of indel 

formation may account for the 5bp deletion at position +41 796, which is flanked 

by inverted TGA repeats.  
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Four of the polymorphic sites were selected and genotyped using three different 

genotyping methods. While ultimately Pyrosequencing™ was used to genotype 

the adjacent SNPs within the DNA-binding domain, initially an attempt was made 

to genotype these SNPs using two allele-specific PCR reactions. This technique 

involves the use of different primers, which differ by a single base at the final or 

penultimate positions of their 3’ ends, to detect the different allelic variants 

present at a given polymorphic position. If the allele the primer is designed to 

detect is present, amplification of the desired product will occur, whereas if the 

allele the primer is designed to detect is not present at a given position, a 

mismatch will result and little or no amplification will be observed (Newton et al., 

1989; Wu et al., 1989).  

 

The success of this technique is thus heavily dependent on the decreased ability of 

Taq DNA polymerase to extend mismatched bases at the 3’ end of an 

oligonucleotide primer (Newton et al., 1989; Wu et al., 1989; Sarkar et al., 1990; 

Huang et al., 1992; Ayyadevara et al., 2000) due to its lack of 3’ to 5’ 

exonuclease activity (Tindall and Kunkel, 1988). However, the ability of Taq 

polymerase to extend mismatches is not decreased to the same extent for all base 

pairs, as the resulting changes in the thermodynamic parameters that govern these 

reactions are different for each of the mismatched pairs (Newton et al., 1989; 

Kwok et al., 1990; Huang et al., 1992; Ayyadevara et al., 2000). The complexity 

of this situation is further compounded by the influence of the base immediately 

5’ to the mismatch on these same thermodynamic parameters (Breslauer et al., 

1986; Mendelman et al., 1989; SantaLucia et al., 1996).  



 X

While little consensus has been reached as to precisely what extent each mismatch 

pair reduces the efficiency of extension by Taq polymerase, several patterns have 

emerged. Firstly, the efficiency of mismatch extension is significantly increased 

when the 3’ terminal base of the primer is an A or T (Kwok et al., 1990; 

Ayyadevara et al., 2000). Secondly, purine-pyrimidine and pyrimidine-purine 

mismatches are extended with greater efficiency that purine-purine or pyrimidine-

pyrimidine mismatches (Newton et al., 1989; Huang et al., 1992). Thus, given 

that the mismatches involved at position +31 040 were T (primer)·G(template) 

and C·A, while those involved at position +31 041 were A·C and G·T, it becomes 

clear why allele-specific PCR was not a plausible option for genotyping these 

SNPs.  

 

Allele-specific PCR was also initially used in an attempt to genotype the indel at 

position +41 780 within the IBD. At this position, a TT pair was deleted from a 

homopolymeric stretch of four Ts, resulting in the presence of either two or four 

Ts. As a result, allelic discrimination at this position was impossible as local 

misalignment of the primer and template during the polymerase reaction (Kunkel, 

1990) resulted in extension of both primers, regardless of which allelic variant 

(either two Ts or four) was present. Thus this technique was again deemed to be 

inappropriate to genotype the polymorphism at this position.  
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However, despite these two instances where this technique was not the 

appropriate choice, allele-specific PCR was successfully used to genotype the 

indel at position -417 in the upstream non-coding region. The accuracy of the 

genotyping data obtained at this position was confirmed by comparing it with the 

sequencing data and by repeating several of the samples at random to confirm the 

two reactions concur. Thus while there are limitations to the use of allele-specific 

PCR for genotyping purposes, when all factors are carefully reviewed and 

considered during the design of an assay, this technique can provide accurate and 

reliable genotyping data. 

 

The genotype and allele frequencies observed following genotyping corresponded 

well with those seen in the sequencing data and the population sample did not 

deviate significantly from Hardy-Weinberg equilibrium at three of the four 

positions. According to the standard chi-squared test for goodness-of-fit the 

population sample did deviate significantly from Hardy-Weinberg equilibrium at 

position +31 041 (P<0.05). However, this observation reflects the results of an 

individual significance test and makes no allowances for the fact that when 

multiple tests are performed, the significance level selected must be adjusted 

accordingly to control the overall type-1 error rate (Rice, 1988). Subsequent 

correction for multiple tests revealed this deviation was not significant at the 

table-wide level (P<0.01).   
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It is now well established that genetic variation plays an important role in 

determining an individual’s susceptibility to complex disease (Tishkoff and 

Verrelli, 2003). The influence of genetic variation on an individual’s susceptibility 

to HIV infection and rate of disease progression has been clearly highlighted by 

the identification and characterization of several AIDS restriction genes (ARGs) 

(O’Brien and Nelson, 2004). Because LEDGF/p75 interacts directly with HIV-1, 

tethering it to chromosomes (Maertens et al., 2003; Emiliani et al., 2005)  at AT-

rich regions within LEDGF/p75-regulated genes (Ciuffi et al., 2005; Hombrouck 

et al., 2007; Shun et al., 2007; Marshall et al., 2007), the genotype frequencies at 

each of the four polymorphic positions were compared between the general 

population and HIV+ sample groups in an effort to establish whether a possible 

association exists between variation in PSIP1 and HIV-1 infectivity. The two 

groups did not significantly differ from each other at three of the four 

polymorphic sites. There was however a significant difference between the two 

groups at position +31 040, where the frequency of heterozygotes observed in the 

HIV+ group was twice that in the general population. This could indicate that this 

polymorphism may influence an individual’s susceptibility to HIV-1 infection or 

rate of disease progression or may be linked to another as yet unidentified 

susceptibility allele. In the absence of another control group of individuals known 

to be HIV-, one can only speculate that the minor allele at this position may 

provide a protective effect against HIV-1 infection and that in the heterozygous 

state this allele may perhaps slow the rate of HIV-1 disease progression.  
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Several studies have demonstrated that changes in LEDGF/p75 expression levels 

do result in differential patterns of HIV-1 integration (Llano et al., 2004b; 

Vandegraaff et al., 2006; Zielske and Stevenson, 2006; Vandekerckhove et al., 

2006; Llano et al., 2006b), but consensus has not been reached as to whether or 

not this has a corresponding effect on HIV-1 susceptibility. One such study has 

shown that HIV-1 infectivity is decreased in cells expressing LEDGF/p75 mutants 

defective for DNA-binding (Ciuffi et al., 2006). Given that the SNP at +31 040 is 

located within an intronic region of the DNA-binding domain, if this allele is in 

fact linked to HIV-1 susceptibility, it would most likely exert its influence at the 

regulatory level. In which case, this polymorphism may affect mRNA expression 

levels by affecting splicing (possibly resulting in truncated protein defective for 

DNA-binding) or at the level of mRNA stability. 

 

However before conclusions can be drawn about disease association, it is 

necessary to have at least some understanding of the regional demographic history 

which has helped to shape patterns of genetic variation at this locus (Tishkoff and 

Verrelli, 2003). This is necessary because if population substructure is present, it 

is possible to detect spurious associations between arbitrary markers with no 

physical linkage to susceptibility loci and a disease phenotype (Pritchard and 

Rosenberg, 1999). Intronic polymorphisms are particularly useful for detecting 

population substructure, as they are subject to less stringent functional constraints 

and are thus more selectively neutral (Tishkoff and Verrelli, 2003).  
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As a result, allele frequencies were compared between the different ethnic groups 

represented in this study in order to establish if population substructure has had an 

influence on shaping patterns of genetic variation in the black South African 

population. Zulu speakers comprised 41% of the sample, Xhosa- and Sotho 

speakers each comprised 15%, Tswana speakers comprised 9% and the remaining 

five ethnic groups (Venda, Tsonga, Swazi, Pedi and Ndebele) each comprised less 

than 6% of the sample. While the sampling distribution in this study was fairly 

representative of the population from which the sample was drawn, the sample 

sizes of several of the groups were too small to be sufficiently informative. 

Groups comprising fewer than ten individuals were thus excluded from 

comparative analysis. 

 

The four remaining ethnic groups showed differences in allele frequency to each 

other and the group comprising individuals of mixed or unknown ancestry at all 

four polymorphic positions. This supports the findings of Lane et al. (2002), that 

the black South African population does show distinct differences between the 

representative ethnic groups. Consistent with their findings, the Tswana and Sotho 

groups showed similar allele frequencies at two of the four positions, suggesting 

these population groups share a common ancestry that corresponds to their shared 

linguistic patterns. However while Lane et al. (2002) found the Zulu and Xhosa 

shared similar patterns of variation, the allele frequency distribution between these 

two groups in this study differed at all four polymorphic positions. This 

inconsistency may however, simply be a consequence of the relatively small 

sample sizes available for study in this investigation. 
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In order to reduce errors based on small sample sizes the samples were pooled 

into four macrogroups according to the findings of Lane et al. (2002). A 

comparison of the allele frequencies between the macrogroups revealed minor 

allele frequencies were similar between groups 2 (Zulu speakers) and 3 (Zulu and 

Xhosa speakers). This is consistent with the findings of Lane et al. (2002) that 

Zulu and Xhosa speakers show similar patterns of variation to each other. Allele 

frequencies in group 1 (comprising individuals from all nine ethnic groups) were 

also similar to those in groups 2 and 3. This unsurprising as Zulu and Xhosa 

speakers collectively comprised 37% of group 1. However, allele frequencies in 

group 4 (Tswana, Sotho and Pedi speakers) differed from those of the other three 

groups at all four polymorphic positions, again consistent with the findings of 

Lane et al. (2002) that Sotho/Tswana speakers have different patterns of variation 

to those of Zulu and Xhosa speakers. Another interesting trend was observed by 

comparing allele frequencies between the four macrogroups at positions +31 040 

and +31 041. At these positions, the allele frequencies in group 1 were equal to 

the average of those in groups 3 and 4. This pattern is generally considered to be 

indicative of population substructure (Hartl and Clark, 1989) and thus suggests 

that group 1 (which is representative of the black South African population) is 

comprised of several subpopulations, which include groups 3 and 4, in accordance 

with the findings of Lane et al. (2002).  
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Further evidence for population substructure was provided by comparison of the 

genotype frequencies. When structured populations with different allele 

frequencies and that do not deviate from Hardy-Weinberg equilibrium are pooled, 

the resulting pooled population sample will display a reduction in heterozygosity 

relative to the subpopulations from which it is derived. This phenomenon is 

referred to as the Wahlund effect and often results in the pooled population 

sample deviating significantly from Hardy-Weinberg equilibrium (Hartl and 

Clark, 1989). The Wahlund effect can thus account for the observation that group 

1 did deviate significantly from Hardy-Weinberg equilibrium at position +31 041, 

while the other three groups did not. However, this reduction in heterozygosity is 

dependent on the variance in allele frequencies between the subpopulations 

comprising the pooled population sample. Thus, if the allele frequencies in the 

two population samples do not differ dramatically, the reduction in heterozygosity 

will be insufficient to significantly alter the Hardy-Weinberg genotypic ratios 

(Hartl and Clark, 1989). This then accounts for why the four macrogroups did not 

deviate significantly from Hardy-Weinberg equilibrium at position +31 040, 

despite the clear evidence for population substructure at this position. The four 

macrogroups also did not deviate significantly from Hardy-Weinberg equilibrium 

at positions -417 and +41 796, but there was no evidence for the population 

substructure at either of these positions.  
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Signatures of population substructure can also be observed in LD patterns, which 

can also indicate genetic drift, population growth, admixture, migration, natural 

selection, variations in recombination and mutation rates and gene conversion 

(Ardlie et al., 2002). While population substructure increases LD within each of 

the population groups comprising a larger subdivided population (Pritchard, 

2001), LD is decreased within this larger population as its quantification is 

confounded by the divergent patterns of LD present in each of the smaller 

subgroups (Tishkoff and Verrelli, 2003).  

 

Numerous studies have shown that LD in Africans extends over shorter distances 

than it does in non-African populations (Kidd et al., 1998; Tishkoff et al., 1998; 

Tishkoff et al., 2000; Reich et al., 2001; Gabriel et al., 2002). This has largely 

been attributed to the fact that African populations have always maintained a 

larger effective population size than non-African populations (Tishkoff et al., 

1996; 1998; 2000). Nonetheless, these studies propose that LD in Africans can 

extend over 3-10kb (Collins et al., 1999; Reich et al., 2001; Gabriel et al., 2002). 

However, these studies are based on variation within Yoruban populations that 

have been shown to be genetically distinct from South African populations 

(Soodyall et al., 1996; Chen et al., 2000; Salas et al., 2002; Gonder et al., 2007; 

Tishkoff et al., 2007). Studies within our own population have revealed that LD in 

South African Bantu speakers extends over even shorter distances (Heitkamp et 

al., personal communication).  
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In this instance, linkage analysis revealed that while all the alleles were found to 

be in linkage disequilibrium, the degree of non-random association was not very 

strong between any pair of the four polymorphic sites. Therefore since the 

polymorphisms at positions -417 and +41 796 are further than 40kb apart it is 

unsurprising that LD is not very strong between these sites. However, the fact that 

similarly low values of LD were observed between the SNPs at positions +31 040 

and +31 041 is unexpected. These SNPs are adjacent to each other and as such it 

is unlikely that LD between these sites has been heavily influenced by 

recombination. Rather, given that the SNP at +31 041 appears to have very 

different allelic distributions within the different ethnic groups represented in this 

study, the low levels of LD between these two SNPs may reflect population 

substructure within the black South African population. 

 

Elucidation of the haplotype structure underlying the variation present in the four 

macrogroups identified sixteen haplotypes in groups 1, 2 and 3 and these occurred 

at roughly the same frequency across all three groups. However only thirteen of 

these haplotypes were present in group 4 and three of these had frequencies that 

differed from those in the other groups. These differences in haplotype frequency 

reflect both the low levels of LD between the different pairs of polymorphisms 

and the differences in the allele frequencies observed between the groups. These 

results thus concur with those based on the analysis of genotype and allele 

frequencies and support the view that population substructure exists within the 

black South African population. 
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The median-joining network constructed based on the most frequent haplotypes 

observed assumed a cuboidal shape, which is often indicative of high levels of 

recombination and/or recurrent mutation. As seen from the LD analysis, it is 

likely that recombination has played a role in breaking down ancestral haplotypes 

in this region. This is especially likely between the indel at -417 and the other 

polymorphisms (which are separated by more than 30kb). However, the SNPs at 

+31 040 and +31 041 are immediately adjacent to each other, yet the ancestral 

haplotype structure surrounding these polymorphisms has been broken down 

dramatically. In this instance recurrent mutation seems a more likely explanation. 

 

Considering the nature of the polymorphisms in question and the mechanisms 

involved in their formation, it seems unlikely that the two indels could have 

occurred more than once and thus they are unlikely to have been subject to back 

mutation (Tishkoff et al., 1996). However, nucleotide substitutions can occur 

more than once and have been known to back mutate. Since the SNP at position 

+31 040 has previously been identified in both non-African populations and in 

Pan troglodytes, suggesting that this polymorphism may have been maintained 

within the population for some length of time. Thus it seems that if back mutation 

has indeed occurred within this gene, the SNP at position +31 041 provides the 

most likely candidate. Given the strong evidence for population substructure at 

this position, the back mutation event probably occurred within one of the 

subpopulations comprising the black South African population. This would also 

account for the very different allele frequencies seen between the various 

subpopulations at this position. 
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So what effect does the presence of population substructure present in the black 

South African population have on the power of this study to detect an association 

between genetic variation patterns and an individual’s susceptibility to HIV-1 

infection? The primary danger involved in looking for disease associations in 

substructured populations is that substructure can confound LD analysis by 

inflating D’ and r2 values. This can result in spurious associations between a 

disease phenotype and arbitrary markers that have no real physical link to 

causative loci. This is particularly a problem when sampling of case and control 

samples is done without any regard to ethnicity, so that these groups then contain 

different frequencies of each ethnic group and subsequent pooling of samples 

results in different allele and genotype frequency distributions (Pritchard and 

Rosenberg, 1999).  

 

However, in this study no such inflation of LD was evident. Rather, the opposite 

effect was observed. Also the HIV+ (case) and general population samples 

(control) used were very similar in terms of their ethnic composition, ensuring the 

effects produced by pooling the data in these groups were similar for both groups. 

Thus with these measures in place to reduce the type-1 error rate, the association 

detected at +31 040 may indeed reflect more than just a spurious association. And 

when coupled with the knowledge that this SNP has previously been identified in 

both non-African populations and in Pan troglodytes and thus probably represents 

an ancestral mutation that has been maintained within the human population since 

before the divergence between humans and chimpanzees, it appears plausible that 

genetic variation at this position may be linked to HIV-1 infectivity. 



 XXI
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Appendix 1 

Figure A.1: Raw genotyping data obtained using the allele-specific PCR, 
RFLP-PCR and Pyrosequencing™ assays 

 
Sample Genotype Genotype Genotype Genotype HIV-1 Assigned Haplotype 

No. at -417 at + 31 040 at + 31 041 at +41 796 Status Pairs1 

       
206 _G TT CC TCTTA/TCTTA Unknown ATCB ITCB 
207 GG TT CT TCTTA/_ Unknown ITCD ITTB 
208 _/_ TT CC TCTTA/TCTTA Unknown ATCB ATCB 
209 _G TC CC TCTTA/TCTTA Unknown ATCB ICCB 
210 _G TT CT TCTTA/TCTTA Unknown ATCB ITTB 
211 _/_ TT CC TCTTA/TCTTA Unknown ATCB ATCB 
212 _/_ TT CC TCTTA/TCTTA Unknown ATCB ATCB 
213 _/_ TT CC TCTTA/TCTTA Unknown ATCB ATCB 
214 _/_ TT CC TCTTA/TCTTA Unknown ATCB ATCB 
215 _/_ TT CC TCTTA/TCTTA Unknown ATCB ATCB 
216 _G CC TT TCTTA/TCTTA Unknown ATCB ITCB 
217 _G TT CT TCTTA/TCTTA Unknown ATCB ITTB 
218 _G TT CT TCTTA/TCTTA Unknown ATCB ITTB 
219 _/_ TT CC TCTTA/TCTTA Unknown ATCB ATCB 
221 _G TT CC TCTTA/TCTTA Unknown ATCB ITCB 
222 _G TT CC TCTTA/TCTTA Unknown ATCB ITCB 
223 _/_ TC CC TCTTA/TCTTA Unknown ATCB ACCB 
224 _/_ TT CC TCTTA/TCTTA Unknown ATCB ATCB 
225 _G TT CC TCTTA/TCTTA Unknown ATCB ITCB 
226 _G TT CC TCTTA/_ Unknown ATCB ITCD 
227 GG TT CT TCTTA/TCTTA Unknown ITCB ITTB 
228 GG CC TT TCTTA/TCTTA Unknown ICTB ICTB 
229 _G CC CC TCTTA/TCTTA Unknown ACCB ICCB 
230 _G TT CT TCTTA/TCTTA Unknown ATCB ITCD 
231 _G TT CC TCTTA/TCTTA Unknown ATCB ITCB 
232 _G TT CC TCTTA/TCTTA Unknown ATCB ITCB 
233 _G TT CC TCTTA/TCTTA Unknown ATCB ITCB 
234 _G TT CT TCTTA/TCTTA Unknown ATCB ITTB 
235 _/_ TC CC TCTTA/TCTTA Unknown ATCB ACCB 
236 _G TT CC TCTTA/TCTTA Unknown ATCB ITCB 
237 _/_ TT CC TCTTA/TCTTA Unknown ATCB ATCB 
238 _G TC CC TCTTA/TCTTA Unknown ACCB ITCB 
239 _/_ TT CC TCTTA/TCTTA Unknown ATCB ATCB 
240 _/_ TC CC TCTTA/_ Unknown ATCD ACCB 
241 _/_ TT CC TCTTA/TCTTA Unknown ATCB ATCB 
242 _/_ TT CC TCTTA/TCTTA Unknown ATCB ATCB 
243 _G TC CC TCTTA/TCTTA Unknown ATCB ICCB 
244 _G TT CC TCTTA/TCTTA Unknown ATCB ITCB 
245 _/_ TC CC TCTTA/TCTTA Unknown ATCB ACCB 
300 _G TT CC  HIV+   
301 _/_ TT CC TCTTA/TCTTA HIV+ ATCB ATCB 
302 _/_ TC CC  HIV+   
304 _/_ TC CC TCTTA/TCTTA HIV+ ATCB ACCB 



 LII

305 _/_ TC CC TCTTA/_ HIV+ ATCD ACCB 
307 _/_ CC TT TCTTA/TCTTA HIV+ ACTB ACTB 
308 _G TT CC TCTTA/TCTTA HIV+ ATCB ITCB 
309 _G TT CC TCTTA/TCTTA HIV+ ATCB ITCB 
310 _G TT CC TCTTA/TCTTA HIV+ ATCB ITCB 
311 _/_ TC CC TCTTA/TCTTA HIV+ ATCB ACCB 
312 _/_ TC CT TCTTA/TCTTA HIV+ ATCB ACTB 
313 _/_ TC CC TCTTA/TCTTA HIV+ ATCB ACCB 
314 _/_ TT CC TCTTA/TCTTA HIV+ ATCB ATCB 
316 _/_ TC CC TCTTA/TCTTA HIV+ ATCB ACCB 
317 _G TT CC TCTTA/TCTTA HIV+ ATCB ITCB 
318 GG TT CC TCTTA/TCTTA HIV+ ITCB ITCB 
319 _/_ TT CC TCTTA/TCTTA HIV+ ATCB ATCB 
320 _/_ TC CC TCTTA/_ HIV+ ATCB ACCD 
321 _G CC TT TCTTA/TCTTA HIV+ ACTB ICTB 
322 _/_ TT CC TCTTA/TCTTA HIV+ ATCB ATCB 
323 _/_ TC CC TCTTA/TCTTA HIV+ ATCB ACCB 
324 _/_ TT CT TCTTA/TCTTA HIV+ ATCB ATTB 
325 _/_ TT CC TCTTA/TCTTA HIV+ ATCB ATCB 
326 GG TT CC TCTTA/TCTTA HIV+ ITCB ITCB 
327 _/_ TT CC TCTTA/_ HIV+ ATCB ATCD 
328 _/_ TT CC  HIV+   
329 _G TT CC  HIV+   
330 _/_ TT CC TCTTA/TCTTA HIV+ ATCB ATCB 
331 _/_ TT CT TCTTA/TCTTA HIV+ ATCB ATTB 
332 _/_ TT CC TCTTA/TCTTA HIV+ ATCB ATCB 
333 _/_ TT CC TCTTA/TCTTA HIV+ ATCB ATCB 
334 _/_ TT CC TCTTA/TCTTA HIV+ ATCB ATCB 
335 _/_ TT CC TCTTA/TCTTA HIV+ ATCB ATCB 
336 _G TC CC TCTTA/TCTTA HIV+ ACCB ITCB 
337 _/_ TT CC  HIV+   
338 _G TT CC TCTTA/TCTTA HIV+ ATCB ITCB 
339 _/_ TT CC TCTTA/TCTTA HIV+ ATCB ATCB 
340 _G TC CC TCTTA/TCTTA HIV+ ACCB ITCB 
341 _/_ TC CC TCTTA/_ HIV+ ATCD ACCB 
342 _G TC CC TCTTA/TCTTA HIV+ ATCB ICCB 
343 _/_ TC CC TCTTA/TCTTA HIV+ ATCB ACCB 
344 _/_ TC CT TCTTA/TCTTA HIV+ ATCB ACTB 
345 _G TC CC TCTTA/TCTTA HIV+ ATCB ICCB 
346 _G TC CC TCTTA/_ HIV+ ATCB ITTB 
347 _G TT CT TCTTA/TCTTA HIV+ ATCB ITTB 
348 _/_ TT CC TCTTA/TCTTA HIV+ ATCB ATCB 
349 _G TT CC TCTTA/TCTTA HIV+ ATCB ITCB 
350 GG TT CT TCTTA/TCTTA HIV+ ITCB ITTB 
352 _G TT CC TCTTA/TCTTA HIV+ ATCB ITCB 
353 _/_ TC CC  HIV+   
354 _/_ TC CC  HIV+   
355 _G TT CT TCTTA/TCTTA HIV+ ATCB ITTB 
356 GG CC TT TCTTA/_ HIV+ ICTB ICTD 
357 _G TT CT TCTTA/TCTTA HIV+ ATCB ITTB 
358 _G TC CC TCTTA/TCTTA HIV+ ATCB ICCB 
359 GG TT CC TCTTA/TCTTA HIV+ ITCB ITCB 



 LIII

360 GG TT CC TCTTA/TCTTA HIV+ ITCB ITCB 
361 GG TT CT TCTTA/TCTTA HIV+ ITCB ICCB 
362 GG TC CC TCTTA/TCTTA HIV+ ITCB ICCB 
263 _G TT CC TCTTA/TCTTA HIV+ ATCB ITCB 
364 GG TT CC TCTTA/_ HIV+ ITCB ITCD 
366 _/_ TT CC  HIV+   
367 _/_ TC CC  HIV+   
368 _/_ TC CC  HIV+   
369 _G TT CT TCTTA/TCTTA HIV+ ATCB ITTB 
370 _/_ TC CC TCTTA/TCTTA HIV+ ATCB ACCB 
371 GG   TCTTA/TCTTA HIV+   
372 _/_   TCTTA/TCTTA HIV+   
373 _G TT TT TCTTA/TCTTA HIV+ ATTB ITTB 
374 _/_ TC CT TCTTA/TCTTA HIV+ ATCB ACTB 
375 _G TC CC TCTTA/TCTTA HIV+ ATCB ITTB 
377 _G TC CC TCTTA/_ HIV+   
378 _G TT CC TCTTA/_ HIV+ ATCB ITCD 
379 _G TT CT TCTTA/TCTTA HIV+ ATCB ITTB 
380 GG TT CT TCTTA/TCTTA HIV+ ITCB ITTB 
381 _/_ TT CC TCTTA/TCTTA HIV+ ATCB ATCB 
382 _/_ TC CC TCTTA/TCTTA HIV+ ATCB ACCB 
383 _/_ TT CT TCTTA/TCTTA HIV+ ATCB ATTB 
384 _/_ TC CT TCTTA/TCTTA HIV+ ATCB ACTB 
385 _G TC CT TCTTA/TCTTA HIV+ ATTB ICCB 
386 _/_ TC CT TCTTA/TCTTA HIV+ ATCB ACTB 
387 _G TC CT TCTTA/_ HIV+   
388 _G TC CC TCTTA/TCTTA HIV+ ACCB ITCB 
389 _/_ TC CC TCTTA/TCTTA HIV+ ATCB ACCB 
390 _/_ TC CC TCTTA/TCTTA HIV+ ATCB ACCB 
391 _/_ TT CC TCTTA/TCTTA HIV+ ATCB ATCB 
392 _/_   TCTTA/TCTTA HIV+   
393 _G TT CC TCTTA/TCTTA HIV+ ATCB ITCB 
394 GG TC CC  HIV+   
395 _/_   TCTTA/TCTTA HIV+   
396 GG    HIV+   
397 _/_   TCTTA/_ HIV+   
398 _G   TCTTA/TCTTA HIV+   
399 _/_    HIV+   
400 _/_   TCTTA/_ HIV+   
402 _G TC CT TCTTA/TCTTA HIV+ ATTB ICCB 

 
 
 

1 I and D represent the presence of an insertion and deletion, respectively. A and B correspond to  
   their absence.   
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Figure A.1: Ethics clearance certificate obtained from the Human Research 
Ethics Committee at the University of the Witwatersrand 
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Appendix III 
 

 
 

 
Figure A.2: Questionnaire completed by blood donation volunteers, detailing 

their linguistic history and, where applicable, history of HIV-1 
infection. 
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