CHARACTERIZATION OF MUTANTS AND SPLICE VARIANTS OF HEPATITIS B VIRUS ISOLATED FROM SOUTH AFRICAN BLACK HEPATOCELLULAR CARCINOMA PATIENTS.

Michelle Skelton

Thesis submitted in compliance for the requirements for the degree of Doctor of Philosophy in the Faculty of Health Sciences at the University of the Witwatersrand

Johannesburg 2009

DECLARATION

I, Michelle Skelton declare that this thesis is my own work. It is be being sub- for the degree of Doctor of Philosophy in the University of the Witwaters Johannesburg. It has not been submitted before for any degree or examinate this or any other University.	srand,
day of(month), 2009	

DEDICATION

I dedicate this thesis to my dear and late grandparents

Lydia Deist, Mary Skelton and Frederick Deist.

PRESENTATIONS

 Conference: Cancer Research UK Beatson International Cancer Conference, pg 115, Scotland, UK.

Poster: Michelle Skelton, Gerald C Kimbi, Anna Kramvis and Michael C. Kew (2005). Characterization of hepatitis B virus mutants in hepatocellular carcinoma in southern Africa.

Workshop: South African-Swedish Research Partnership (SIDA/NRF)
 Workshop Phylogenetic analysis of Hepatitis viruses found in Southern
 Africa relative to those from other geographic regions of the world. UWC,
 Cape Town, South Africa (2006).

Presentation: Characterization of hepatitis B virus mutants in hepatocellular carcinoma in southern Africa.

 MRC review of the Molecular Hepatology Research Unit in Johannesburg (27 June 2006).

Presentation: Characterization of hepatitis B virus mutants in hepatocellular carcinoma in southern Africa.

 Symposium: Hepatitis B Virus Genotypes ~ from an academic question to the clinic (July 2008).

Presentation: Subgenotype A1 splice variants and mutants isolated from serum of South Africa hepatocellular carcinoma patients.

ABSTRACT

Hepatitis B virus (HBV) infection is endemic in Africa. As many as 98% of black Africans are infected during their lives and about 10% (65 million) have chronic HBV infection, which is the cause of 70-80% of all hepatocellular carcinoma (HCC) cases. Despite this high prevalence of HBV and the high incidence of HCC in Africa, relatively few complete HBV genomes from African HCC cases have been deposited in international data bases. In order to gain a clearer understanding of the role of genetic variants and mutants in the development of HCC, the complete genomes of HBV isolated from southern African HCC patients were amplified and molecularly characterized. HBV DNA was extracted from the serum forty HBsAgpositive HCC patients. Twenty six complete genomes were successfully amplified, cloned and sequenced from nine HCC patients.

Phylogenetic analyses of the complete genomes and the individual open reading frames of HBV isolates from the HCC patients, led to the classification of all the isolates within subgenotype A1. No isolates belonging to subgenotype A2 and genotype D were identified, even though these genotypes/subgenotypes have been shown to circulate in South Africa. Three patients contained the uncommon combination of serological subtype *ayw*1 in the subgenotype A1 strain. This combination has been found previously in South Africa and the Phillipines.

Seventy-eight percent of the patients carried HBV strains with the double basic core promoter (BCP) mutation (1762T/1764A), previously shown to reduce HBeAg expression. Furthermore, complete genome sequence analysis has revealed a complex combination of mutations, which include at least three or five of these residues 1753C1762T1764A1766T1768A1809T1812T occurring as the dominant

HBV strains isolated from 5/9 HCC patients. These mutations have previously been shown to regulate gene expression at various levels, to enhance viral replication and simultaneously decrease HBeAg expression.

All five HBV genomes isolated from one patient contained novel complex BCP rearrangements, which introduced 2 HNF1 and 1 putative HNF3 transcription factor binding sites. These mutations can enhance viral replication and simultaneously abolish HBeAg expression at a transcriptional level. Furthermore, truncated core proteins would be expressed from 4/5 isolates and none would express wild-type HBx. Several mutations were identified in the pre-S/S genes of 2/5 isolates, which would result in the expression of novel 3' truncated medium surface proteins (MHBs^t) and large surface proteins (LHBs^t). The majority of the mutations would contribute to hepatocyte pathogenesis and transformation by activating cell proliferating pathways.

Two patients also contained rare HBV variants not previously identified in HBV strains from southern Africa. These included an HBV splice variant and a poly (dA) variant from patient 10 and patient 6, respectively. These variants occurred in combination with other isolates within the respective patients.

The envelope genes were characterised in a total of 18 HCC patients, the pre-S gene of HBV contained deletions in 72% of the patients. Deletions across pre-S1/pre-S2, pre-S2 initiation codon mutations with internal deletions, and S gene nonsense mutations were prevalent. Mutated envelope proteins have been shown to accumulate within the hepatocyte endoplasmic reticulum (ER) and are a characteristic histopathological hallmark of HCC known as ground glass

hepatocytes. HBV induced ER stress has been shown to dysregulate several cell cycle regulatory pathways, which contribute to HCC.

In addition several novel LHBs^t and MHBs^t have been described. These potential transactivators require further investigation. The HBV mutations described in this study have been associated with increased risk for HCC.

Despite the obvious heterogeneity HBV displays within and between patients, there are common characteristics shared between the HBV variants which emerge during the development of HCC. These include the BCP and pre-C (1753C1762T1764A1766T1768A1809T1812T) mutations and the pre-S/S mutations. These mutations are able to affect HBV replication and gene expression, and may work synergistically to promote liver dysfunction and HCC.

ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor, Professor Michael Kew. His enthusiasm towards my project has been a source of encouragement. He has taken much time and care in editing my thesis. He has provided invaluable criticism through his combined experience and expertise in clinical and molecular hepatitis research. It is an honour to be associated with such an accomplished leader in the field of hepatitis and cancer research.

I would also like to thank my co-supervisor, Professor Anna Kramvis, affectionately known as, Anna. This project was her brainchild. Anna is a visionary in the field of molecular evolution of HBV and I am proud to be her student. Thank you for your idealism and pursuit for excellence. You have encouraged me to thrash out every aspect of this thesis and I appreciate that.

I would like to thank the staff and friends in the Molecular Hepatology Research Unit at the University of the Witwatersrand. A special thanks to Roshni Desai for always being pleasant and carrying out her responsibilities timeously so that projects could run smoothly. Alice Chen, my dear friend thank you for your support. To Gerald Kimbi whose work laid the foundation for my research.

A warm thank you to my friends and colleagues at the University of Cape Town where I spent a considerable time writing and analysing data. Thank you for embracing me and helping me through a difficult time. A special thanks to Professor Iqbal Parker, Dr Sharon Prince, Widaad Zemanay, Catherine Whibley, Dr Virna Leaner and Gama Bandawe.

A huge thanks to my Dad for his love, patience, financial support and just being there. Mom, you appear to be the number one fan of this huge endeavour called my PhD. Thank you for all the faith you have in me, it has truly made all the difference. Thank you both for caring so much for me.

Thank you to all my family and friends who have always believed in me, it is much appreciated.

I would like to thank the National Research Foundation and the Poliomyelitis Research Foundation for their financial support.

TABLE OF CONTENTS

CHAPTER 1

1.0	INTRODUCTION	1
1.1	THE FAMILY OF HEPADNAVIRIDAE	4
1.2	VIRAL STRUCTURE	4
1.3	VIRAL GENOME	6
1.4	HBV TRANSCRIPTS	8
1.5	VIRAL GENE PRODUCTS	9
1.5.1	SURFACE PROTEINS	9
1.5.2	CORE GENE PRODUCTS	15
1.5.3	POLYMERASE	16
1.5.4	HBx PROTEIN	17
1.6	VIRAL CIS-ELEMENT	17
1.6.1	PROMOTERS AND ENHANCERS	17
1.6.2	THE ENCAPSIDATION SIGNAL	22
1.6.3	THE POLYADENYLATION SIGNAL	22
1.7	HBV LIFE CYCLE	23
1.8	IMMUNO-PATHOGENESIS OF HBV INFECTION	28
1.8.1	TRANSMISSION	28
1.8.2	PATHOGENESIS OF HBV INFECTION	28
1.8.3	ACUTE HEPATITIS	29
1.8.4	CHRONIC (PERSISTENT) HEPATITIS	30
1.8.5	HEPATOCELLULAR CARCINOMA	32
1.9	HBV GENOTYPES: MOLECULAR CHARACTERISTICS AND	
	GLOBAL DISTRIBUTION	33
1.9.1	GENOTYPE A	37
1.9.2	GENOTYPE B	37
1.9.3	GENOTYPE C	38
1.9.4	GENOTYPE D	38
1.9.5	GENOTYPE E	38
1.9.6	GENOTYPE F	39
1.9.7	GENOTYPE G	39
1.9.8	GENOTYPE H	40
1.10	HBV SEQUENCE VARIATION	40
1.10.1	HBV GENOTYPES AND DISEASE PROGRESSION	41
1.10.2	HBV MUTANTS AND DISEASE PROGRESSION	43
1 10 2 1	CORE PROMOTER AND ENHANCER II REGION	43

1.10.2.2	PRECORE AND CORE GENE	45
1.10.2.3	X GENE	46
1.10.2.4	POLYMERASE REGION	48
1.10.2.5	THE PRE-S AND SURFACE REGION	49
1.11	PRE-S FAMILY OF TRANSACTIVATORS	53
1.12.	SPLICE VARIANTS AND VARIANTS WITH INTERNAL POLY	
	(dA) TAILS	54
1.13	HBV DNA INTEGRATION	55
1.14	THE HBx TRANSACTIVATOR	55
1.15	RECOMBINANTS	56
1.16	HBV SEQUENCE VARIATION IN SOUTHERN AFRICA	57
1.17	AIMS AND ORGANIZATION OF STUDY	60
0114075		
CHAPTE	H 2 MATERIALS AND METHODS	00
2.0.	SUBJECTS AND SERUM SAMPLES	
2.1		63
2.2	DNA EXTRACTION, AMPLIFICATION, CLONING	0.5
2.2.1	AND SEQUENCINGDNA EXTRACTION	
2.2.1	DNA AMPLIFICATION	
2.2.2.1	COMPLETE GENOME AMPLIFICATION	
2.2.2.1	SUB-GENOMIC AMPLIFICATION	
2.2.2.3	SEMI-NESTED POLYMERASE CHAIN REACTION (PCR)	
2.2.3	DETECTION OF AMPLICONS	
2.2.3	CLONING OF AMPLICONS	
2.2.4	DNA SEQUENCING	
2.3.1	MANUAL SEQUENCING	
2.3.1.1	PREPARATION OF PCR TEMPLATES	
2.3.1.2	PREPARATION OF PLASMID DNA	
2.3.1.3	PRIMER ANNEALING AND LABELLING REACTION	
2.3.2	AUTOMATED SEQUENCING	
2.4	PHYLOGENETIC ANALYSES	
2.5	CONSTRUCTION OF SURFACE GENE	7 0
0	EXPRESSION VECTORS	75
2.6	PREPARATION OF THE PRE-S/S GENE FRAGMENTS	
2.7	LIGATION REACTION	
2.8	SUB-CLONING STRATEGY	
-		

2.9	CELL CULTURE	. 79
2.9.1	CELL LINE	.79
2.9.2	SUBCULTURE AND STOCKS	.79
2.9.3	MYCOPLASMA TEST	.80
2.10	CALCIUM PHOSPHATE TRANSFECTION	.81
2.11	DETECTION OF B-GALACTOSIDASE	.82
2.12	DOXORUBICIN TREATMENT	.82
2.13	PROTEIN PURIFICATION	.83
2.13.1	CELL LYSATE PREPARATION	.83
2.13.2	PROTEIN QUANTITATION	.83
2.14	WESTERN BLOT ANALYSIS	.84
2.14.1	SODIUM DODECYL SULFATE POLYACRYLAMIDE GEL	
	ELECTROPHORESIS (SDS-PAGE)	.84
2.14.2	TRANSFER	.84
2.14.3	PONCEAU S (MEMBRANE) AND COOMASSIE BLUE	
	(GEL) STAINS	84
2.14.4	PRIMARY ANTIBODY	85
2.14.5	SECONDARY ANTIBODY	85
2.14.6	MEMBRANE STRIPPING	86
2.15	CASPASE 3 ASSAY	86
2.16	PLASMID DNA EXTRACTIONS FROM BACTERIAL CELLS	87
2.17	PREPARATION OF COMPETENT BACTERIAL CELLS	88
CHAPTE	R 3	
3.0	RESULTS	89
3.1	SEQUENCE CHARACTERISTICS AND PHYLOGENETIC	
	ANALYSIS OF HBV FROM BLACK SOUTHERN AFRICAN	
	HEPATOCELLULAR CARCINOMA PATIENTS	89
3.1.1	AMPLIFICATION, CLONING AND SEQUENCING	89
3.1.2	PHYLOGENETIC ANALYSIS	91
3.1.3	COMPARISON OF AMINO ACID SEQUENCES OF SUBGENOT	YPE A1
	HBV ISOLATES FROM HCC PATIENTS WITH THOSE FROM	
	ASYMPTOMATIC, CHRONIC CARRIERS, ACUTE HEPATITIS	
	PATIENTS AND FULMINANT HEPATITIS PATIENTS	100
3.1.4	COMPARISON OF NUCLEOTIDE SEQUENCES OF SUBGENO	ГҮРЕ
	A1 HBV ISOLATED FROM HCC PATIENTS WITH ISOLATES FF	ROM
	ASYMPTOMATIC CHRONIC CARRIERS, ACUTE AND FULMINA	ANT
	HEPATITIS PATIENTS BELONGING TO SUBGENOTYPE A1	105

3.2	SIMULTANEOUS ALTERATIONS IN THE BASIC CORE	
	PROMOTER, CORE GENE AND SURFACE GENE	108
3.2.1	PCR AND CLONING	108
3.2.2	FULL GENOME STRUCTURE	111
3.2.3	STRUCTURE OF THE BCP MUTATION	111
3.2.3.1	DELETION, INSERTION AND DUPLICATION	111
3.2.3.2	INITIATION SITES AND TA-RICH MOTIFS	112
3.2.3.3	TRANSCRIPTION FACTOR BINDING SITES	112
3.2.4	X-GENE MUTATIONS AND PREDICTED PROTEIN	
	EXPRESSION	113
3.2.5	CORE GENE MUTATIONS AND PREDICTED	
	PROTEIN EXPRESSION	113
3.2.6	SURFACE GENE MUTATIONS	114
3.3	IDENTIFICATION AND MOLECULAR CHARACTERIZATION	
	OF RARE HBV VARIANTS IN HEPATOCELLULAR	
	CARCINOMA	126
3.3.1	HBV ISOLATED FROM PATIENT 6	128
3.3.1.1	GENOME HETEROGENEITY	131
3.3.1.2	STRUCTURE OF TYPE I GENOME	131
3.3.1.3	PREDICTED PROTEIN SEQUENCE	132
3.3.2	HBV ISOLATED FROM PATIENT 10	133
3.3.2.1	GENOME HETEROGENEITY	136
3.3.2.2	STRUCTURE OF THE TYPE I GENOME	136
3.3.2.3	PREDICTED PROTEIN SEQUENCE	137
3.3.3	PHYLOGENETIC ANALYSIS	138
3.4	CHARACTERISATION OF PRE-S MUTATIONS	
	IN HBV ISOLATED FROM HCC PATIENTS	140
3.4.1	PRE-S MUTATIONS	140
3.4.2	PRE-S MUTATION PATTERN AND HETEROGENEITY	141
3.4.3	C-TERMINALLY (3') TRUNCATED PRE-S/S GENE MUTANTS	143
3.4.4	PHYLOGENETIC ANALYSIS	142
3.5	FUNCTIONAL ANALYSIS OF MUTANT PRE-S/S GENES	152
CHAPTE	ER 4	
4.0	DISCUSSION	157
4.1	SEQUENCE CHARACTERISTICS AND PHYLOGENETIC	
	ANALYSIS OF HBV FROM BLACK SOUTHERN AFRICAN	
	HEPATOCELLULAR CARCINOMA PATIENTS	157

4.1.1	HBV HETEROGENEITY	157
4.1.2	GENETIC RELATEDNESS AND PREDICTIVE MARKERS FO	R
	HCC	158
4.1.3	SUBGENOTYPE A1 CHARACTERISTICS AND SIGNATURE	SEQUENCES
		165
4.1.4	MUTATIONS IN HBV PRE-C GENE AND BCP IN HCC IN	
	SOUTHERN AFRICA	168
4.1.5	CONCLUSION	173
4.2	SIMULTANEOUS ALTERATIONS IN THE BASIC CORE	
	PROMOTER, CORE GENE AND SURFACE GENE	174
4.2.1	HBV HETEROGENEITY WITHIN PATIENT 18	174
4.2.2	PREVALENCE OF THE COMPLEX BCP MUTATIONS	175
4.2.3	HOMOLOGOUS RECOMBINATION MEDIATED BY	
	TOPOISOMERASE I	178
4.2.4	BCP REARRANGEMENTS	184
4.2.5	THE CORE GENE AND PRODUCTS	187
4.2.6	THE PRE-S/S GENE AND PRODUCTS	188
4.2.7	THE X-GENE AND PRODUCTS	189
4.2.8	CUMULATIVE EFFECT OF MULTIPLE MUTATIONS IN	
	ALL THE ORFS	190
4.2.9	CONCLUSION	191
4.3	IDENTIFICATION OF RARE HBV VARIANTS IN	
	HCC	
4.3.1.	HBV HETEROGENEITY IN PATIENT 6 AND PATIENT 10	_
4.3.2.	THE POLY (dA) VARIANT	
4.3.2.1	GENOME STRUCTURE AND REPLICATION STRATEGY	
4.3.2.2	RECOMBINANT PROTEINS	
4.3.3	HBV SPLICE VARIANT	
4.3.3.1	GENOME STRUCTURE	
4.3.3.2	RECOMBINANT PROTEINS	-
4.3.3.3	HBV SPLICE VARIANTS AND HCC	
4.3.4	CONCLUSION	199
4.4	CHARACTERISATION OF PRE-S/S GENE MUTANTS	
	IN HCC IN BLACK SOUTHERN AFRICANS	
4.4.1	PREVALENCE AND DISEASE	
4.4.2	THE PRE-S1 AND PRE-S2 REGIONS	
4.4.3	PRE-S1/S2 MUTANTS AND GGHS	205

4.4.4	NOVEL TRANSACTIVATORS	205
4.4.5	CELL CYCLE REGULATORY PATHWAYS AFFECTED BY	
	ΔPRE-SLHBS/MHBS	208
4.4.6	CONCLUSION	209
4.5	MUTANT PRE-S/S GENES AND THE CELL CYCLE	
	REGULATORY PATHWAYS	210
4.5.1	CONCLUSION	215
CHAPTE	ER 5	
5.0	GENERAL CONCLUSION	216
ΔΡΡΕΝΓ	DICES	220
	DIX A: SOLUTIONS AND REAGENTS	
	DIX B: Figure B1	
	-	
KEFEKE	NCES	233

LIST OF FIGURES

Figure 1.1	Geographical distribution of chronic hepatitis B virus Infection	3
Figure 1.2A	Diagrammatic representation of a Dane particle or	
	complete HBV virion. The envelope is made up of	
	LHBs, MHBs and SHBs	5
Figure 1.2B	Filamentous sub-viral particle, which are mainly made up	
_	of SHBs and MHBs	5
Figure 1.2C	Spherical viral particle is composed mainly	
	of SHBs and MHBs	5
Figure 1.3	Organization of the HBV genome	7
Figure 1.4	A schematic representation of the HBV surface proteins	12
Figure 1.5	Transmembrane topology of the HBV envelope proteins	14
Figure 1.6	Core promoter/Enhancer II region	21
Figure 1.7A	The HBV life cycle	25
Figure 1.7B	Representation of viral replication	26
Figure 1.8	Outline of HBV-induced disease and the prevalences	
	of the various sequelae characteristic of southern Africans	29
Figure 1.10	The 'a' determinant of the HBsAg occurring within the major	
	hydrophilic loop	52
Figure 2.1	Flow diagram of methodology	64
Figure 3.1	Dendrogram based on the complete genomes of 24 genotype A1	
	isolates from HCC and representative sequences from	
	subgenotype A1, A2 and the 7 remaining genotypes	94
Figure 3.2	Dendrogram based on the complete polymerase	
	genes of 24 subgenotype A1 isolates from HCC and	
	representative sequences from subgenotype A1, A2	
	and the 7 remaining genotypes	95
Figure 3.3	Dendrogram based on the complete pre-C/Core genes	
	of 24 subgenotype A1 isolates from HCC and representative	
	sequences from subgenotype A1, A2 and the 7 remaining	
	genotypes	96
Figure 3.4	Dendrogram based on the complete surface genes of 24	
	subgenotype A1 isolates from HCC and representative	
	sequences from subgenotype A1, A2 and the 7	
	remaining genotypes	97
Figure 3.5	Dendrogram based on the complete X-genes of 24	

	subgenotype genotype AT isolates from HCC and representative	
	sequences from subgenotype A1, A2 and the 7	
	remaining genotypes98	}
Figure 3.6	Comparison of amino acid residues of S, polymerase and	
	X-ORFs of subgenotype A1 isolates from HCC patients,	
	asymptomatic chronic carriers, acute hepatitis patients	
	and fulminant hepatitis patients10)1
Figure 3.7	Comparison of nucleic acid sequences of the cis-acting	
	elements of subgenotype A1 isolates from HCCs,	
	asymptomatic chronic carriers and acute hepatitis patients.	
	Dots indicate amino acid identity10)3
Figure 3.8	PCR amplicons and plasmid DNA restriction digest of HBV clones	
	derived from patient 1810)9
Figure 3.9	Full-genome structure of five HCC 18 clones with genome	
	lengths determined by complete sequence analysis11	0
Figure 3.10	Nucleotide sequence of the BCP (nt 1741-nt 1849) genotype A11	5
Figure 3.10.A	Initiation sites of the precore (pre-C) mRNA and pregenomic	
	(pg) RNA are shown as horizontal arrows and initiators (Inr) are	
	shown in italics. The BCP contains four AT-rich domains	
	(TA1-TA4). The positions of the 13 nucleotide deletion and the	
	45 nucleotide insertion are indicated11	5
Figure 3.10.B	Reorganization of the AT-rich domains in BCP for all five clones.	
	TA2 motifs are shown in bold and a new motif TATTA and	
	TTAAATATTA are underlined11	5
Figure 3.10.C	Two 27 nucleotide repeats are underlined and are made up of a	
	recombination of overlapping adjacent sequences, demonstrated	
	by the overlapping triangles11	5
Figure 3.11	Nucleotide sequence of the Core promoter showing transcription	
	factor binding sites11	7
Figure 3.12	Predicted X protein amino acid sequences expressed	
	from mutants11	9
Figure 3.13	Structure of the core gene mutation12	20
Figure 3.14	Chromatogram produced following automated sequencing	
	of the core gene of HBV isolated from patient 1812	2
Figure 3.15	HBV full-length PCR amplicons from patient DNA	
	resolved on 1% agarose gels stained with ethidium bromide12	27
Figure 3.16	Pvull restriction digestion products of cloned HBV resolved on a 1%	

	agarose gel128
Figure 3.17	Full-genome structure of 6 clones derived from HCC
	patient 18 determined using sequence analysis129
Figure 3.17.A	At the top is a schematic presentation of the genome
	structure with four overlapping reading frames and the
	relevant cis-elements, including the basic core promoter (BCP),
	direct repeat 1 (DR1), direct repeat 2 (DR 2), polyadenylation
	signal (poly A). The poly (dA) tail is shown in the rectangular
	box, followed by a large deletion illustrated with the broken
	line and dots129
Figure 3.17.B	Chromatograph of clone 6.1 HBV DNA sequence obtained
	using primer T3129
Figure 3.18	Amino acid sequence of the recombinant protein generated for the
	core-polymerase ORF of the poly (dA) variant
Figure 3.19	Molecular structure of three HBV genomes isolated from HCC
	patient 10 determined by complete sequence analysis134
Figure 3.19.A	At the top is a schematic presentation of the genome structure
	with four overlapping reading frames and the relevant <i>cis</i> -elements.
	The basic core promoter (BCP), direct repeat 1 (DR1) and direct
	repeat 2 (DR 2). The large deletion is illustrated with the broken
	line and dots
Figure 3.19B	Deletion boundary sequences of genome 10.17 were aligned
	to the consensus sequences for the 5' – splice site (MAG/GTRAGT),
	the 3' splice site (YAG/G), and the branch site (YNYYRAY)
	(Jackson, 1991). The branch site and polypyrimidine tract are
	indicated, non-negotiable nucleotides are shown in bold
Figure 3.20	Amino acid sequence of the recombinant protein generated for the
	core-polymerase ORF of the splice variant
Figure 3.21	Dendrogram based on the complete X-genes of 26
	subgenotype genotype A1 isolates from HCC and
	representative sequences from subgenotype A1, A2 and the
	7 remaining genotypes139
Figure 3.22.A	Amino acid sequence alignment of the preS1 region144
Figure 3.22.B	Amino acid sequence alignment of the preS1 region 145
Figure 3.23	Schematic presentation of pre-S mutation patterns found
	in the southern African HBV subgenotype A1 isolates149

Figure 3.24	Schematic presentation of LHB, LHB 3' truncated mutants (LHBs ^t) and MHB 3' truncated mutants (MHBs ^t)150
Figure 3.25	Dendrogram based on the complete surface genes of 47 subgenotype genotype A1 isolates from HCC and representative sequences from subgenotype A1, A2 and the 7 remaining genotypes
Figure 3.26	Schematic presentation of the preS/S gene constructs (pre-S variants)
Figure 3.27A	Transfection efficiency measure in parallel using X-gal staining155
Figure 3.27B	p21 ^{Waf-1} western blot analysis155
Figure 3.27C	Caspase 3 activity155
Figure 4.1.	Proposed model of Topoisomerase I-mediated recombination in the HBV strains isolated from patient 18180

.

LIST OF TABLES

Table 1.1.	HBV Transcripts8
Table 1.2.	Genotype Variations34
Table 1.3.	Geographical Distribution of Genotypes and Subgenotypes36
Table 2.1.	PCR Primers and conditions used for amplification67
Table 2.2.	Primers used for sequencing74
Table 2.3.	Ligation Reaction Components77
Table 2.4.	Surface gene expression vectors79
Table 2.5.	Calcium Phosphate transfection components81
Table 2.6.	Antibodies used in the Western Blot Analysis86
Table 3.1.1.	PCR and Cloning HBV Data of HCC Patients90
Table 3.1.2.	Mean pair-wise DNA divergence (%) of complete genome
	sequences and individual ORFs of subgenotype A1
	in different patient groups93
Table 3.1.3.	Mutations within the cis-acting regulatory elements found in
	subgenotype A1 HCC patients106
Table 3.1.4.	Core promoter and precore mutations occurring in complete
	genomes of HCC patients in the current study107
Table 3.2.1.	Mutations in the cloned HBV genomes detected by sequence
	analysis124
Table 3.4.1.	Deletions in the pre-S domain and nucleotide position147
Table 3.4.2	Mutations within the Virion Morphogenesis Domain (aa 103-124) 148

LIST OF ABBREVIATIONS

ε encapsidation signal

aa amino acid

ALT Alanine aminotransferase

APC Antigen presenting cell

ASC Asymptomatic chronic carrier

AS Asymptomatic chronic carrier (pertaining to figures)

ASHV Arctic squirrel hepatitis B virus

bp base pair

BCP Basic core promoter

BQW Best quality water

cccDNA Covalently closed circular DNA

COR Cohesive overlap region

COUP-TF Chicken ovalbumin upstream promoter transcription factor

CURS Core upstream regulatory sequence

DHBV Duck hepatitis B virus

DNA Deoxyribonucleic Acid

DNAML DNA maximum likelihood

DR1 Direct repeat one

DR2 Direct repeat two

ERK Extracellular signal-regulated kinase

ENHI Enhancer one

ENHII Enhancer two

ER Endoplasmic reticulum

ESLD End stage live disease

GGH Ground glass hepatocyte

GHSV Ground squirrel hepatitis B virus

HBcAg Hepatitis B core antigen

HBeAg Hepatitis B e antigen

HBsAg Hepatitis B surface antigen

HBV Hepatitis B virus

HCC Hepatocellular carcinoma

HHBV Heron hepatitis B virus

HNF Hepatocyte nuclear factor

IFN Interferon

IPTG isopropyl-beta-D-thiogalactopyranoside

kb kilobase

LB Luria-Bertini broth

LHBs Large surface proteins

LHBs^t Truncated large surface proteins

MAPK Mitogen activated protein kinase

MHBs Medium surface proteins

MHBs^t Truncated medium surface proteins

mRNA messenger RNA

Myr Myristoylation

NEIGHBOR neighbour-joining

NG N-glycosylation

NRE Negative regulatory element

OG O-glycosylation

ORF Open reading frame

PCR Polymerase chain reaction

PK Protein kinase

PKC Protein kinase C

Pol polymerase

Poly A polyadenylation signal

PPAR α peroxisome proliferator activated receptor α

PHYLIP phylogeny inference package

RT reverse transcriptase

RXR α retinoid X receptor α

SHBs Small (major) surface proteins

TBP TATA binding protein

TP terminal protein

Top I Topoisomerase I

TR2 Human testicular receptor 2

URR Upstream regulatory element

UV Ultraviolet

WHO World Health Organization

WHV Woodchuck hepatitis B virus

WMHBV Woolly Monkey hepatitis B virus

YMDD Tyrosine, Methionine, Aspartic acid, Aspartic acid

YIDD Tyrosine, Isoleucine, Aspartic acid, Aspartic acid

YVDD Tyrosine, Valine, Aspartic acid, Aspartic acid