
 

 

 

 

 

NDI – BASED NEUROCONTROLLER FOR UNMANNED COMBAT AERIAL 

VEHICLES DURING AERIAL REFUELLING 

 

 

 

 

 

 

 

 

 

 

 

Aarti Panday 

 

 

A research report submitted to the Faculty of Engineering and the Built Environment, 

University of the Witwatersrand, in partial fulfilment of the requirements for the degree 

of Master of Science in Engineering 

 

 

Johannesburg, 2008 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/39666464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 i 

Declaration 

 

I declare that this research report is my own unaided work and all other material has been 

referenced. It is being submitted for the Degree of Master of Science at the University of 

the Witwatersrand, Johannesburg. It has not been submitted before for any degree or 

examination at any other University.  

 

 

 

 

__________________________ 

Aarti Panday 

 

 

________________day of ____________________(year)____________ 

 

 

 



 ii 

Abstract 

 

The success of Unmanned Combat Aerial Vehicles (UCAVs) requires further 

developments in the field of automated aerial refuelling (AAR) and control systems. AAR 

aircraft models identified thus far do not take the centre of gravity (cg) position 

movement into account during refuelling. A six-degree-of-freedom aircraft model was 

combined with a moving cg model for refuelling. The equations of motion for the aircraft 

in flight refuelling showed the aircraft dynamics to be coupled in the longitudinal and 

lateral-directional planes when the cg had moved away from the reference point. 

Applying assumptions specific to the flight conditions, simplified equations of motion 

were derived. Modal analysis of four cases for the linearised aircraft model during aerial 

refuelling was conducted. This revealed that the increase in mass was favourable to the 

stability of the Dutch Roll mode, but the mode did become more oscillatory initially as 

mass was increased, but as the cg moved forward, the mode became less oscillatory. The 

opposite was observed with the Phugoid mode. The Short Period Oscillation (SPO) 

decomposed into two first order modes during refuelling and these remained unchanged 

during the refuelling process.  Three radial basis function (RBF) neural networks 

(RBFNN) were developed and trained to approximate the inverse plant dynamics and 

predicted commanded deflections of the elevator, aileron and rudder. Training data 

required for the network was randomly generated and the desired rates and commanded 

control surface deflections were computed. The training error was the smallest in the 

elevator deflection required during refuelling. A basic nonlinear dynamic inversion (NDI) 

controller without a neural network (NN) was designed for the aircraft. The performance 

of this controller was not satisfactory. The RBF was combined with the NDI to form a 

RBFNN-based controller. The longitudinal NDI RBFNN-based controller was less 

sensitive to modelling errors than the base NDI controller. The lateral NDI RBFNN-based 

controller’s performance was worse than the longitudinal controller, but showed potential 

as a technique for future consideration. Including the variation of aircraft inertia in the 

model has been recommended as further work, as well as exploring other neural network 

topologies in the NDI NN controller. 
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1 Introduction 

1.1 Background and Motivation 

1.1.1 Unmanned Combat Aerial Vehicles 

 

Attempts at unmanned flight were made before the Wright brothers designed their 

successful piloted vehicle. Since the Wright brothers’ success in 1903, manned flight has 

dominated the aviation scene.  Alongside manned airplane development, unmanned 

airplane development continued, but was not given the same detailed attention as manned 

aircraft design. It took many years for the merit in an air force having a successful 

unmanned aerial vehicle (UAV) to be realised. (Clark, 2000) 

 

In recent times, the Pioneer UAV (Figure 1.1) was used in tactical intelligence operations 

in Iraq in 1991. The Pioneer was successfully used for gunfire spotting. Since the first 

conflict in Iraq, the Pioneer has been used in operations in Haiti, Somalia, the Balkans, 

and Afghanistan (Sanders, 2003; Bone and Bolkom, 2003; Pardesi, 2005) 

 

Figure 1.1: Pioneer UAV 

 

In Afghanistan, the Predator UAV (Figure 1.2) started performing armed reconnaissance 

missions. Prior to this, it was used in Kosovo in 1995 for surveillance. In 2003, it was 

equipped with Hellfire air-to-ground missiles to destroy mobile radar units and to attack 

high-value targets in Iraq. Armed strike and close air support were new capabilities for 

the UAV. It has worked together with F/A-18 Hornets’ to locate targets. The Predator 

UAV was also put to use during a rescue mission of a U.S. Army prisoner-of-war. 

(Pardesi, 2005; Bone and Bolkcom, 2003) 
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Figure 1.2: Predator UAV 

 

Starting off as an experimental system, the Global Hawk UAV (Figure 1.3) made its 

debut in the skies over Afghanistan in 2001. It is one of the largest and most expensive 

UAVs produced to date. It is a high-altitude, long-endurance (HALE) platform, and 

became the first UAV to make a trans-Pacific flight from California to Australia. Flying 

at 65 000 ft, it provided more than 15 000 images in operations over Afghanistan. In Iraq, 

the Global Hawk’s capabilities were highlighted when it was able to identify targets 

during severe sandstorms (Pardesi 2005; Bone and Bolkcom, 2003). 

 

 

Figure 1.3: Global Hawk UAV 

 

The cases cited above only prove that UAVs represent a transformational technology that 

has indeed changed the way wars have been fought in recent times. The effectiveness of 

UAVs in these modern conflicts has highlighted the immense advantage of having an 

unmanned platform as part of a military arsenal. Unmanned flight has come a long way 

since early developments from World War I through to the cutting edge systems available 

today UAV systems are now being developed in countries all over the world. Many air 
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forces throughout the world have actively taken steps in fully evaluating a UAV/UCAV 

concept (Wilson, 2005) 

 

The evolution of unmanned platforms is apparent since roles other than intelligence, 

surveillance and reconnaissance were now being considered. One mission identified for 

UCAVs is the suppression of enemy air defences (SEAD) mission. This is considered to 

be the most dangerous mission for a manned fighter. The X-45, the first unmanned 

system specifically designed for combat operations, made aviation history on the 18th of 

April 2004 when it dropped a weapon from its internal weapons bay, hitting a ground 

target, while flying at 35 000 ft at a speed of Mach 0.67. Its missions include electronic 

attack, SEAD, intelligence, surveillance, reconnaissance, and deep strike. The next stage 

in this program would be multi-vehicle co-ordinated operations. The X-45 is an example 

of a from-the-ground-up UCAV, where the aircraft has been designed specifically for the 

purpose of unmanned combat. Other UCAV options include the converted concept, where 

traditional fighters such as the F-16 or F-117 are converted to UCAVs for the purpose of 

fulfilling the SEAD mission or for demonstrating enabling technologies. (Clark, 2000; 

Pardesi, 2005) 

 

1.1.2 Automated Aerial Refuelling 

 

Recently, significant efforts have been devoted to increase the flight endurance and 

payload of UAVs as is evident with the performance of the Global Hawk and Predator. 

Extended endurance has been achieved due to progress made in propulsion and 

aerodynamics without the need for a pilot in the system. One of the major limitations of 

UAVs currently, is the lack of an in-flight-refuelling capability as is present in manned 

aircraft. An air force having unmanned vehicles that can refuel in the air would have the 

advantage of a greatly extended endurance and the ability to respond to a threat thousands 

of miles away. Without a man in the cockpit and with an aerial refuelling capability, the 

endurance of the aircraft would only be limited by routine maintenance. The in-flight-

refuelling capability will take away the extra time needed for the UAV to land, refuel and 

redeploy, and would greatly reduce the logistical trail involved in operation. This 

capability will allow the UCAV to take off with a larger payload thereby allowing new 

operational capabilities to be explored. The extended endurance offered by the aerial 

refuelling capability would give a battle ready UCAV endurance in weeks, months, and 
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possibly even years (Withrow, 2004; Fravolini et. al., 2003; Pardesi, 2005; Thompson, 

1998; Clark, 2000; Vendra et. al,. 2007; Ollero and Merino, 2004; Jin et. al., 2006). 

 

From a control point of view, manned in-flight-refuelling is known to be a difficult task 

for a pilot, and becomes greatly difficult when performed autonomously. Many years of 

testing is needed before in-flight-refuelling becomes a reality. NASA Dryden Flight 

Research Centre has initiated an automated aerial refuelling research project based on 

flight testing using a hose and drogue system. Flight data will be used in the development 

of a refuelling system. Also, flight tests will assist in setting up simulation models which 

will be used in the refuelling system development. The manoeuvres identified for flight 

test were specifically chosen to isolate the change in drogue position as a function of 

flight condition, hose and drogue type, tanker type and weight, receiver type and tanker-

receiver manoeuvring. The next stage in this effort is to use the validated hose and drogue 

model in control law design. (Withrow, 2004; Hansen et. al., 2004). 

 

1.1.3 Control 

 

A study conducted in Australia identified that autonomous control is a core technology 

that will ensure success in future UAV/UCAV development. In a separate study, 

command and control were identified as technologies that will have to be further 

developed and are crucial to the success of future UCAVs. Airfoils, engines and weapons 

systems have been sufficiently developed and now the focus of technology development 

must change to these crucial areas. Shortcomings of command and control systems will 

lead to the failure of achieving a SEAD capability within a UCAV platform. The focus of 

research must now change so as to assist in building new, efficient and robust 

technologies that are required to make UCAVs operational as fast as possible (Clark, 

2000; Wong and Bill, 1998). 

 

Since the performance and success of UAVs depend on control; advanced and reliable 

control systems are needed. In a conventional aircraft controller, states are measured by 

sensors and are compared to desired states after conditioning. The control input required 

for the aircraft is based on the error between the measured and desired. The controller 

responds by supplying the aircraft with actuator control inputs to minimise the error. 

While this sounds like a relatively simple process, when implemented, tuning the 
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controller poses a challenge. Selection of the correct gains required by the controller 

affects the system response and stability. With degradation in controller performance, 

gains need to be re-tuned. Also, the gains are dependent on the operating conditions of the 

aircraft, should these change, new gains are required. Re-tuning controller gains is not 

practical and is time consuming (Soares et. al., 2006).  

 

In addition, traditional controller design usually involves complex and extensive 

mathematical analysis, which implies high cost and cannot guarantee a good performance 

level in the whole flight envelope. Assuming linear and time invariant dynamics requires 

gains to be scheduled as functions of the nominal flight condition in a conventional flight 

controller. It could happen that in certain flight conditions, the performance of such 

systems can deteriorate due to unmodelled effects and nonlinearities present in the flight 

dynamics. Gain scheduling has been used to deal with nonlinear elements present in 

aircraft dynamics, provided the gain scheduling parameters vary slowly compared with 

the dynamic response of the aircraft. This process has worked well but with increased 

capabilities and performance requirements for modern aircraft, traditional controllers 

often do not offer acceptable performance (Reiner et. al., 1996; Gili and Battipede, 2001; 

Lane and Stengel, 1988). 

 

Neural network and fuzzy logic control schemes have been put forward as a valid means 

to overcome most of the typical limitations of classical control techniques and to solve 

complex control problems. Adaptive control offers an alternative to completely re-

designing a control system for these changes (Gili and Battipede, 2001; Dufrene, 2004; 

Soares et. al., 2006). 

 

Nonlinear dynamic inversion control laws can also be used to overcome limitations by 

conventional controllers. The advantage provided by the NDI control law is the ability to 

directly command specific state variables. This controller has a more accurate 

representation of forces and moments due to large state and control perturbations. These 

controllers, however, are susceptible to errors arising from the inversion of the plant 

dynamics. Research has shown that neural networks can be used to overcome this issue in 

dynamic inversion controllers. The neural network cancels inversion errors by learning 

the approximate inverse plant dynamics (McFarland 2000; Lane and Stengel, 1988). 
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The NDI-NN scheme proved to be effective over a wide range of applications and is 

summarised (Gili and Battipede, 2001):  

� systems operating in regimes characterized by highly nonlinear aerodynamics; 

� systems displaying multi-time scale behaviour and thus rapidly varying nonlinear 

dynamics;  

� systems characterized by a high degree of uncertainty; and  

� systems demanding the maintenance of a certain level of handling qualities even 

after failures in actuation channels. 

 

1.2 Literature Review 

1.2.1 Modelling and Simulation of AAR  

 

Aerial refuelling can be done in one of two ways – either with a flying boom or with a 

probe and drogue. In flying boom method, a stiff tube is manually operated from the 

tanker aircraft and the problem here is that the UCAV must be able to maintain a relative 

displacement with the tanker. The boom is docked by human operator onboard the tanker. 

In the probe and drogue option, the tanker lets out a flexible hose with the drogue at the 

end. The UAV has to insert the probe into the drogue for refuelling to take place. Again 

here, the problem is relative displacement and orientation (Pollini et. al., 2003). 

Extensive simulation work is underway to ensure that AAR capability would be 

integrated on the X-45 UCAV. Wind tunnel tests have already been performed using a 

generic UAV with vehicles used in the USAF and Navy. Tests will soon be conducted 

with the X-45 in the wind tunnel (Blake, 2003). Side by side, flight demonstrations have 

been successfully conducted in evaluating the feasibility of certain technologies in UAV 

AAR applications. Data from flight tests will help to determine safe refuelling speeds, 

tanker interference and the use of new advanced methods for precise positioning. The 

data will also be used in developing a control algorithm specifically in AAR. (Withrow, 

2004)  

 

Pollini et. al. (2003) developed a simulation set-up of a virtual benchmark for AAR of 

UAVs using the probe and drogue method. The group presents a vision-based algorithm, 

which is capable of estimating the relative displacement and orientation of the UAV. In 

simulating the AAR, aerodynamic interference between the receiver and tanker was 
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modelled, as well as the flexibility of the refuelling hose, and the vision system 

equipment was taken into account. Aircraft modelling was based on simple point mass 

approximations with wake effects due to receiver and tanker incorporated. The AAR 

process was modelled as described due to the focus area being the vision system.  

 

Two of the most significant factors that would affect the UAV dynamics during aerial 

refuelling are (Dogan et. al., 2005): 

� time varying mass and inertia properties  

� wind effect due to tanker’s trailing vortices 

 

Dogan et. al. (2005) set up a refuelling model that focused on the effect of the trailing 

wake vortex of the tanker on the receiver aircraft. The equations of motion in a uniform 

wind field were derived. But, the vortex induced wind field acting on the receiver aircraft 

is non-uniform. Thus, the non-uniform induced wind components and gradients were 

approximated by using equivalent uniform wind and gradients. This approximation 

allows for a computationally efficient implementation of the modelling of the close 

proximity effects of the receiver and tanker aircraft. The equations of motion of the 

receiver aircraft were derived in terms of the position and orientation of the receiver 

relative to the tanker aircraft. The velocity vector of the receiver was the sum of the 

velocity of the aircraft relative to the surrounding air and the velocity of the air relative to 

an inertial reference frame. The modelling of the AAR did not take the aircraft mass 

change during refuelling into account.   

 

Ochi and Kominami (2005) conducted simulation and control studies for the case of 

automatic aerial refuelling using two methods: line-of-sight angle control, and 

proportional navigational control. The modelling of the AAR was based on linear aircraft 

modelling, but nonlinearity was introduced into the simulation via the kinematic and 

geometric relations between the receiver and tanker. Wind turbulence was modelled; 

however, effects of changing mass were ignored.  

 

Fravolini et. al. (2003) focused on the control and design of modelling tools for AAR 

using nonlinear tanker (B747) and receiver (F-4) aircraft models. The research focused 

largely on the accurate modelling of the GPS and vision system, as such, standard rigid 

body, fixed mass aircraft modelling was considered with turbulence being included.     
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Considering safety and accidents, the study of Zhu and Meguid (2007) examined the 

dynamics of an aerial hose-and-drogue refuelling system focusing on cable tension, tow 

point disturbance and vortex wake effects due to the presence of the cable.  A finite 

element method was used in this analysis, where the aerial refuelling hose-and-drogue 

system was idealized as a generalized aerial cable towed system with a prescribed motion 

at the tow point. As such the pertinent parameters identified in this study were the drag, 

weight and mechanical properties of the cable; the drag and weight of the towed body; the 

prescribed motion at the tow point; the disturbance at the towed body due to the coupling 

between the drogue and the probe, and the vortex wake behind the tanker aircraft. 

 

A large effort has been channelled to specifically research issues related to finding the 

relative distance between the tanker and the UAV. A simulation study of the UAV aerial 

refuelling problem has been set up by Vendra et. al. (2007) and aspects of a machine 

vision based automated refuelling algorithm has been researched. A feature extraction 

algorithm which is used to detect and correctly identify features like corners on the tanker 

airframe was investigated. This was used to find the relative distance and orientation 

between the tanker and the UAV aircraft, assuming the position of the detected features in 

the tanker reference frame is constant and known. Dell’Aquila et. al. (2007) investigated 

a machine vision position sensing system for the problem of docking for UAV aerial 

refueling. The results indicate that it is possible to use image processing algorithms in 

real-time with off-the-shelf hardware to obtain accurate relative tanker-UAV position and 

orientation estimations. Point matching, as part of a machine vision based approach to 

aerial refueling, was investigated by Mammarella et. al., (2008). Algorithms were 

compared and implemented in a simulation environment specifically developed for the 

study of machine vision methods.  

 

1.2.2 NDI and NN Control Techniques in the Context of Aircraft 

Applications  

 

Hunt et. al. (1992) conducted a survey focusing on the use of neural networks in the fields 

of modelling, identification and control of nonlinear systems. It was identified that neural 

networks can be used in the field of control for the following reasons: 

� Nonlinear systems – A neural network has the ability to approximate arbitrary 

nonlinear mapping. 
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� Parallel distributed processing – The highly parallel structure of a neural network 

allows parallel implementation. Thus, a neural network based scheme can be 

considered more fault tolerant than conventional schemes.  

� Learning and adaptation – A neural network is trained using past data from the 

system. The network can be adapted on-line.  

� Multivariable systems – A neural network is able to process many inputs and 

many outputs – very good application for multivariable systems.  

 

A comparative study within the field of neural control for aircraft used seven control 

techniques with a scheduled dynamic inversion controller as the baseline (Steinberg, 

2001). The study, amongst other objectives, sought to track a linear desired performance 

model for different types of single and multiaxis manoeuvres.  The aircraft used in the 

simulation was the F-18. The controllers compared are:  

� dynamic inversion (DI) controller,  

� indirect adaptive controller (IAC),  

� backstepping adaptive controller (BAC),  

� neural network controller (NNC),  

� variable structure controller (VSC),  

� model predictive controller (MPC), and a  

� fuzzy logic controller (FLC). 

 

Results were divided into small, medium and large manoeuvres (eg. φ = 5º, 60 º and 

180º). For medium manoeuvres, the controllers had comparable performance except the 

VSC and FLC which give worse results. The FLC converged the slowest to zero steady 

state error. In the large manoeuvres scenario, the FLC performs much better and the VSC 

still records the highest errors. The controller giving the best results was the MPC. The 

FLC, MPC, BAC and VSC controllers had increased actuator usage over the DI scheme. 

It was found that the DI controller was fairly robust and that it was difficult to develop 

another scheme that could exceed its performance overall. In the case of simulating flight 

failures, the adaptive approaches performed better than the conventional DI controller 

(Steinberg, 2001).   

 

Li et. al. (2001) proposed a neurocontroller design for nonlinear fighter aircraft high angle 

of attack manoeuvre using a fully tuned radial basis function network. The study uses an 

on-line control method with a feedback-error-learning strategy where all the parameters 
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of the network will be updated, ensuring that the system dynamics are captured quickly. 

A growing radial basis function network (GRBFN) was used to approximate the inverse 

dynamics of the F-16 aircraft. A baseline control was established in the form of a 

conventional proportional controller based on a linearised model which gave good 

performance for the linear model. However, when implemented in the six-degree-of-

freedom model, the tracking performance became poor. Using a RBF network with a 

fixed amount of neurons, the results were found to be inferior to that of the GRBFN. The 

GRBFN had fewer neurons than the fixed RBF network. Results showed that the neural 

control outputs change when commands are executed – this demonstrated the learning 

process of the network.  

 

A model reference direct adaptive neural control system for the F-8 aircraft was studied 

by Suresh et. al. (2006). A neural network with a linear filter was trained offline using 

backpropagation through a time learning algorithm to approximate the unknown control 

law. The offline trained system acts as a starting point for the online adaptation for 

different flight scenarios. The model reference direct adaptive neural control (MRDANC) 

system was compared to a dynamic inversion controller and a radial basis function 

controller.  The MRDANC was able to improve the system damping and the tracking 

ability of the aircraft. An uncertainty of 70% was added to the plant model and control 

surface losses were also modelled by a 70% uncertainty in the control matrix. The online 

adaptation was observed in the results, as the controller adapted to the new situations. The 

MRDANC controller had the ability to track a commanded signal under model error and 

control surface loss. The dynamic inversion and radial basis function network worked 

well up to an uncertainty of 30% in the model. When stretched to a 40% model error, 

these controllers had oscillatory output, but settled eventually. After comparing the mean 

square errors, the proposed controller performs better. 

 

Kaneshige et. al. (2000) devised a generic flight control system using neural techniques. 

The controller eliminates the use of extensive gain scheduling and explicit identification. 

The neural network approach brought together direct adaptive control and dynamic 

inversion. The controller uses pre-trained and on-line learning neural networks and 

reference models to specify the desired handling qualities. The pre-trained networks give 

the aerodynamic and control characteristic estimates that are required for the inversion. 

The on-line learning networks are used to compensate for errors and adapt to changes in 

the aircraft dynamics. This then results in consistent handling qualities throughout the 
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flight envelope for various aircraft types. The controller was tested on commercial 

transport types, high performance military aircraft and hypersonic aircraft. Simulations 

showed that the generic flight controller was effective for all three cases. The flight 

control system performance was comparable to that of the actual control systems of each 

aircraft.  

 

Fuzzy logic has emerged as a technique for controlling a plant through the feedback 

control loop. A fuzzy controller is less sensitive to variations in the plant than a 

conventional controller. The use of fuzzy logic gives an almost generic flight control 

system that may eliminate the use of gain scheduling. A conventional controller refers to 

a PID controller that uses gain scheduling. 

Nikolos et. al. (2003) investigated the roll control of a UAV using fuzzy logic. A simple 

kinematics model was developed to simulate the NEARCHOS UAV’s roll motion. This 

model was validated against actual flight data. A Mamdani type fuzzy controller was 

developed and implemented. The control system is capable of handling multiple inputs 

and but the output is a single state variable. The fuzzy logic system attempted to follow a 

number of predefined desired trajectories. The controller was able to follow the paths 

with only a small deviation. The good results in this study are a motivation to investigate 

a longitudinal behaviour of the aircraft using a similar controller. 

An adaptive predictor-corrector control strategy was developed as part of the NASA 

Intelligent Flight Control System (IFCS) Program for the F-15 aircraft (Battipede et. al., 

2003). This strategy was based on a reference model direct inverse scheme comprising, 

two adaptive neural networks used to identify the forward and inverse F-15 model. 

Controller performance was obtained at areas where the state variables vary within a wide 

portion of the flight envelope. The controller performance does not diminish when the 

aircraft changes flight condition – this was due to the compensation of the neural 

networks. The computation was found to be intense and a large computer processor was 

required to get results. 

 

Doitsidis et. al. (2004) applied fuzzy logic to the autonomous navigation of small UAVs. 

A two-module fuzzy Mamdani controller was developed and was made up of the altitude 

module and the latitude-longitude module with an error calculating block for controller 

parameter tuning and flight adjustment purposes. The controller design was modular and 

can be applied to any air vehicle. Simulations showed that the controller performed 
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adequately well. But it was discovered that once the UAV reached its desired altitude, 

oscillations in the z-axis appeared. This was attributed to the controller design being 

based on a human pilot model and not on flight performance observations. Tuning will 

provide better results.  

 

Won et. al. (1999) have used fuzzy logic to design a controller for a supermanoeuvrable 

version of the F-18 aircraft in a high angle of attack manoeuvre. The design incorporated 

PID control with sliding control under the fuzzy logic framework incorporating gain 

scheduling with multilayered fuzzy rules. They included the nonlinear aerodynamic 

characteristics of the airplane as well as thrust vector controls in their analysis. The angle 

of attack response shows that the fuzzy control results are comparable to those of the 

design goals and was effective for going between low, intermediate and high dynamic 

pressure regions. It was also shown that at low dynamic pressure, thrust vectoring was 

more effective than elevator control. It was also found that fuzzy implementation of such 

a system took a much shorter time than if a more conventional approach were to be used.  

It was concluded that a fuzzy controller would be suitable for control of a 

supermanoeuvrable aircraft at high angle of attack.  The adaptability of the fuzzy 

controller to sudden changes in operating conditions was demonstrated. 

 

Thampi et. al. (2002) proposed using multiple adaptive controllers in aircraft control to 

avoid issues of gain scheduling throughout the flight envelope. This study uses multiple 

models to identify the system over the whole flight envelope, where switching between 

models occurs according to the change in aircraft dynamics. The research showed that 

multiple model based controllers do well in tracking the desired signal, since the aircraft 

dynamics is known at each point. 

 

The ducted fan UAV is an emerging technology under the American Defence Advanced 

Research Projects Agency program. An unaugmented ducted fan has nonlinear dynamic 

characteristics, and is unstable and susceptible to disturbances. A nonlinear dynamic 

inversion controller has been proposed to overcome the floor flying qualities of the UAV 

(Spaulding et. al., 2005). The controller approach used was found to be adequate in that 

the complex vehicle dynamics were reduced to that of a simple integrator, which was able 

to cover the entire flight envelope without the need for gain scheduling.   
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1.2.3 Current Study 

 

Literature consulted (Dogan et. al., 2005; Ochi and Kominani, 2005; Pollini et. al., 2003; 

Fravolini et. al., 2003) have all considered the aircraft centre of gravity as being a fixed 

parameter. Much effort has been channelled to specifically research issues related to 

finding the relative distance between a tanker and a UAV (Vendra et. al., 2007; 

Dell’Aquila et. al., 2007; Mammarella et. al., 2008). Insufficient attention has been given 

to simulation and fundamental modelling of the receiver vehicle during refuelling. The 

current study looks into the control of a UCAV for the case of in-flight-refuelling 

specifically taking the cg movement into account. 

 

Studies conducted by Won et. al. (1999) highlighted shortcomings of the fuzzy logic 

controller when applied to a supermanoeuvrable aircraft. These were overcome using a 

PID control algorithm, but then required gain scheduling. A conventional controller used 

in aircraft applications assumes that the dynamics are linear and time invariant about a 

nominal flight condition. Controller gains are scheduled to be functions of these flight 

conditions. But, due to the effects of unmodelled dynamics in the system, the 

performance of such control systems become non-optimal.  The use of dynamic inversion 

eliminates the need for a gain scheduled controller. A dynamic inversion control law 

allows state variables to be commanded directly. Dynamic inversion control as applied by 

Spaulding et. al. (2005), and Steinberg (2001) has been successful.  But, dynamic 

inversion is vulnerable to modelling and inversion errors. Using a neural network based 

control design would assist in overcoming these errors in addition to addressing 

unmodelled dynamics and parametric uncertainty. 

 

Kaneshige et. al. (2000), Li et. al. (2001) and Battipede et. al. (2003) make use of online 

neural networks in order for the controller to be able to adapt to changes in the aircraft 

dynamics and to be applicable throughout the entire flight envelope. This study focuses 

on a specific case in the aircraft flight envelope, namely, the automated aerial refuelling 

case.  It is unnecessary at this stage to consider using an online network as the neural 

network in this study is trained offline to simply invert the plant dynamics.  When 

considering a very wide operating envelope, the online network has been shown to be 

effective, but as highlighted in the study of Battipede et. al. (2003), intense computation 

is required for this option.   
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A GRBFN was proposed by Li et. al. (2001). This was done in order to capture the 

aircraft dynamics over a wide operating range. Again, since this study looks at a specific 

case in a possibly large operating envelope, a simple RBF network will be sufficient to 

use in this study. 

 

1.3 Thesis Objectives 

 

The main objective of the study is to investigate the suitability of using a nonlinear 

dynamic inversion controller with a neural network for a UCAV during aerial refuelling. 

 

The following sub-objectives for the research have been defined: 

1. To combine a nonlinear 6 DOF flight model for a converted UCAV  with a cg travel 

model for the automated aerial refuelling flight condition  

2. To numerically simulate the behaviour of the aircraft based on the developed model 

3. To validate the model using existing data 

4. To combine a radial basis function neural network for plant inversion with a 

nonlinear dynamic inversion controller 

 

1.4 Thesis Outline 
 

The aircraft mathematical model is discussed in Chapter 2. General equations of motion 

for an aircraft are presented. Thereafter assumptions used in this study are discussed and 

the equations are written for the specific case of flight refuelling. In Chapter 3, the 

mathematical considerations behind the control system used in this research are explored. 

The nonlinear dynamic inversion control formulation is given. The radial basis function 

neural network is explained. Chapter 4 discusses how the models from Chapters 2 and 3 

were synthesised and implemented in the Matlab/Simulink environment. In Chapter 5, the 

model used is validated against existing data. The results are presented and discussed in 

Chapter 6. This chapter is further organised into a discussion of the inherent aircraft 

behaviour during refuelling, and a discussion of the controlled aircraft behaviour. Finally, 

Chapter 7 concludes the study and further work is recommended. 
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2 Aircraft Mathematical Model 

2.1 Aircraft Six-Degree-of-Freedom Nonlinear Equations of 
Motion 

 

The aircraft mathematical model with the inclusion of the effects of change in cg position 

is adopted from Pedro (1992). It is consistent with the equations in Etkin and Reid (1994) 

and Stevens and Lewis (1992) when these effects are neglected. The twelve aircraft 

equations of motion are broken down into four sets, as given below (Pedro, 1992): 

 

Force Equations 

( ) ( ) ( ) ( )
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zyx
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2

22

2

1
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                       ... (2.1) 
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2
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( ) ( ) ( ) ( )
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                           ... (2.3) 

Moment Equations 
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( ) ( ) ( ) ( )
( ) ( ) ( )
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Kinematic Equations 

( )θφθφφ tancostansin rqp ++=&                                        ... (2.7) 

φφθ sincos rq −=&                                                        ... (2.8) 

( ) θφφψ seccossin rq +=&                                                   ... (2.9) 

 

Navigation Equations 

( )
( )ψφψθφ

φφψθφ

ψθ

sinsincossincos

sincoscossinsin
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=

w
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uxE
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                                       ... (2.10) 

( )
( )ψφψθφ

ψφψθφ
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cossinsinsincos

coscossinsinsin

sincos

−+

++

=

w

v

uyE
&

                                             ... (2.11) 

( ) ( )θφθφθ coscoscossinsin wvuzE ++−=&                                    ... (2.12) 

 

where: 

( )22

0 ccxx zymII ++=                                                              ... (2.13) 

( )22

0 ccyy zxmII ++=                                                              ... (2.14) 

( )22

0 cczz yxmII ++=                                                             ... (2.15) 

ccxyxy ymxII +=
0

                                                                ... (2.16) 

ccxzxz zmxII +=
0

                                                                ... (2.17) 

ccyzyz zmyII +=
0

                                                              ... (2.18) 

cx mxS =                                                                        ... (2.19) 

cy myS =                                                                        ... (2.20) 

cz mzS =                                                                        ... (2.21) 

cgcgc xxx
ref

−=                                                                 ... (2.22) 
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cgcgc yyy
ref

−=                                                                ... (2.23) 

cgcgc zzz
ref

−=                                                             ... (2.24) 

[ ]T

ccc zyx ,,r
c

=                                                          ... (2.25) 

 

0xI ,
0yI ,

0zI ,
0xyI ,

0xzI  and 
0yzI  are the aircraft moments and products of inertia before 

refuelling occurs. 

The cg position vector is rc and is illustrated in Figure 2.1. 
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Figure 2.1: Aircraft axes with displacement vector of cg 

 

The thrust component axes transformations from engine axes to body axes are indicated 

in Figure 2.2. 
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Figure 2.2: Axes and transformation angles for thrust components 

 

The aerodynamic components of the force and moment equations are given in parametric 

form (Morelli, 1998): 

( ) ( )qCCC
qxexx
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( ) ( ) ( )xcgxcgCqCCC refzqmemm −++= ~, αδα                   ... (2.30) 
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Each function is defined below.  
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The values of constants a0 to s5 are given in Morelli (1998). 

 

The angle of attack, α, the sideslip angle, β, and the total speed, V are calculated from:  


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222
wvuV ++=                                                    ... (2-54) 

 

The thrust is modelled as a function of air density, total speed and throttle position and 

coefficients (A, B, C) specific to the engine (Pedro and Bigg, 2005) 

( )
MAXT

TCBVAVT
δ

δ

ρ

ρ
++








= 2

7.0

0

                                        ... (2.55) 

where: A = -2.338; B = 574; and C = 65260. The constants A B and C are typical to a 

turbofan engine. 

 

Examining the equations of motion as has been described, it is observed that there is 

coupling between the lateral-directional and longitudinal motions via Sx, Sy, and Sz. The 

force in the X-direction is seen to be dependent on the yaw acceleration and square of 

yaw rate via the centre of gravity position. The Y-direction force is a function of the roll 

acceleration due to the centre of gravity being misaligned with the reference cg. Similarly 

with the Z-direction force, coupling exists between the longitudinal and lateral-directional 

variables.  

 

The moment equations also show very interesting cross coupling of terms related via the 

centre of gravity position. The yaw and roll moments have dependence on rate of change 

of vertical and forward speed respectively. All three moments have contributions from the 

mass of the aircraft due to the cg having changed position from the reference.  

  

2.2 Flight Refuelling Model 
 

For the UCAV configuration of the F-16, there are two 600 gallon tanks on each wing 

(Eshel, 2004) as depicted in Figure 2.3. 
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Figure 2.3: F-16 External fuel tank arrangement 

 

This gives a total mass of 4290 kg of fuel. The fuelling rate for the F-16 is 10 000 lb of 

fuel in 7 minutes, that is, 10.886 kg/s (Koch, 2005). Based on this, the total time taken to 

refuel the F-16 external tanks is 395 s. Note, before refuelling, the F-16 mass is 9299 kg 

(Stevens and Lewis, 1992). 

 

Figure 2.4 shows the cg of the aircraft and the cg of the fuel added into the external tanks.  
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Figure 2.4: Layout of wing/external fuel tank 
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The new overall cg position is therefore given by the following relation: 

( )

aircraftfuel

aircraftfuel

mm

cm
D

m

+

−×+× 35.01
2

                                             ... (2.56) 

where 0.35 refers to the nominal cg position (see Figure 2.4). 

 

2.3 Simplified Mathematical Model used for Aerial 
Refuelling Simulation 

2.3.1 Assumptions 

 

� The rate of fuel use during the refuelling period was negligible compared to the 

rate of fuel inflow.  

� The mass moments of inertia of the aircraft remained constant throughout the 

refuelling period. 

� Only the variation of the cg along the x-axis is considered 

00 =⇒= yc Sy                                                   ... (2.57) 

00 =⇒= zc Sz                                                    … (2.58) 

� The line of action of thrust force is assumed to be aligned in the plane of the 

aircraft cg, and thus gives no contribution to the force in the y-direction and z-

direction; neither does it contribute to any of the aerodynamic moments, i.e.: 

0== TYTZ ϕϕ                                                         ... (2.59) 

0== TT yz                                                          ... (2.60) 

� The gyroscopic effects of engine spinning rotors are negligible, i.e.: 

0≈TTI ω                                                        ... (2.61) 

� Using body axes, the plane Cxz is a plane of symmetry i.e.:  

0== xyyz II                                                      ... (2.62) 
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2.3.2 Final Equations 

 

After applying the assumptions, the final equations can be written: 

Force Equations 
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Moment Equations 
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Kinematic Equations 

( )θφθφφ tancostansin rqp ++=&                                     ... (2.69) 
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( ) θφφψ seccossin rq +=&                                             ... (2.71) 

Navigation Equations 
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( )ψφψθφ

φφψθφ

ψθ

sinsincossincos

sincoscossinsin

coscos

++

−+

=

w

v

uxE
&

                             ... (2.72) 

( )
( )ψφψθφ

ψφψθφ

ψθ

cossinsinsincos

coscossinsinsin

sincos

−+

++

=

w

v

uyE
&

                               ... (2.73) 

( ) ( )θφθφθ coscoscossinsin wvuzE ++−=&                   ... (2.74) 

 



 24 

2.4 Trimmed Solution to Equations of Motion and Modal 
Analysis 

2.4.1 Trimmed Solution 

 

“An aircraft is in trimmed, equilibrium flight when its velocity is fixed and its pitch and 

roll angles are unchanging” (Stengel, 2004). 

 

The trim problem is to find the control settings that yield a steady flight condition. The 

object is to set the vector Eq. (2.75) to zero 

( ) 0,, == wuxxd ddf&                                                   ... (2.75) 

by the proper choice of control u subject to the constant values of xd and disturbance w, 

where  

[ ]T
rqpwvu ,,,,,=dx                                                    ... (2.76) 

 

The remaining components, 

 [ ]T

k zyx ψθφ ,,,,,=x                                                 ... (2.77) 

may be treated as fixed or free parameters  

 

The desired trim condition can be specified by various combinations of velocity and angle 

components. With conventional δe, δa, δr, δT, a typical specification would be V, γ, β and 

ϕ. θ and φ would be free to take the necessary values. The trim variables and attitude 

angles specify the corresponding u, v, w, p, q, and r. Although they are free variables, θ 

and µ do not change unless forced to do so i.e., an adjustment rule is required. That rule is 

provided by incorporating the free variables in the control vector; hence u is (Stengel, 

2004): 

[ ]µδδθδδ ,,,,, raTe

∆

=u                                          ... (2.78) 

 

Trim equations were set up to find the trimmed values of u, v, w, α, δe, β, δa, δr, and δT, 

during the refuelling period. In general, trim, the following conditions must be satisfied: 

000

000

===

===

totaltotaltotal

totaltotaltotal

NML

ZYX
                              ... (2.79) 

 



 25 

0sin

0tan

0222

=−

=−

=++−

V

v

u

w

wvuV

β

α                                 ... (2.80) 

where: 

αsinmgTXX aerototal ++=                                             ... (2.81) 

φθ sincosmgYY aerototal −=                                             ... (2.82) 

φθ coscosmgZZ aerototal +=                                           ... (2.83) 

aerototal LL =                                                           ... (2.84) 

φθ coscoscaerototal mgxMM −=                                         ... (2.85) 

φθ sincoscaerototal mgxNN +=                                           ... (2.86) 

 

The aerodynamic forces, Xaero, Yaero and Zaero and moments Laero, Maero, and Naero are given 

by 

xaero SCVX
25.0 ρ=                                                    ... (2.87) 

yaero SCVY 25.0 ρ=                                                    ... (2.88) 

zaero SCVZ
25.0 ρ=                                                   ... (2.89) 

laero SbCVL
25.0 ρ=                                                   ... (2.90) 

maero ScCVM
25.0 ρ=                                                 ... (2.91) 

naero SbCVN
25.0 ρ=                                                  ... (2.92) 

 

2.4.2 Modal Analysis 

 

Modal analysis arises from observing the behaviour of the uncontrolled aircraft, meaning, 

the motion of the aircraft with the controls locked in position. While an aircraft is in 

steady flight, it can be subjected to a momentary disturbance of various kinds. Here, the 

behaviour of the motion is analysed after the disturbance. The required dynamic 

behaviour of an aircraft is an important issue to consider, as disturbances in a steady 

flight condition must be small for a vehicle to be acceptable for use. The small 
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disturbance properties (i.e., the natural modes) must be kept to an acceptably small level, 

by automatic control, in the case of the UCAV (Etkin and Reid, 1996). 

 

The small disturbance equations are of the form: 

cfxAx ∆+∆=∆&                                                         ... (2.93) 

As mentioned earlier, the controls are locked and hence this vector is zero, leaving: 

xAx ∆=∆&                                                                ... (2.94) 

This is a first-order differential equation to which the solution has the form: 

( ) t
et

λ
0xx =                                                               ... (2.95) 

x0 is the eigenvector and λ is the eigenvalue of the system. 

Since any of the eigenvalues of the system can provide a solution to the equation 

xAx ∆=∆&  and since the system is linear, the general solution is: 

( ) ( )∑=
i

ii
tt λexp0xx                                                     ... (2.96) 

Each solution of ( ) t
et

λ
0xx =  is called a natural mode. In general,  

nin ωλ ±=                                                              ... (2.97) 

Depending on whether λ has an imaginary part and on the sign of n, four modes can be 

described. 

Certain parameters are useful in giving the dynamic properties of the aircraft. These are 

the damped frequency, the damping ratio, settling time, period and the time constant. The 

equations used to evaluate these parameters are given below: 

Damped frequency (rad.s
-1

):  

( )22
nnd += ωω                                                          ... (2.98) 

 

Damping ratio: 

d

n

ω
ζ −=                                                                  ... (2.99) 

 

Settling time (s):  

ζω ×
=

d

st
4

                                                          ... (2.100) 
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Period(s):  

n

T
ω

π2
=                                                            ... (2.101) 

 

Time constant (s):  

ζω
τ

×
=

d

1
                                                                ... (2.102) 
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3 Controller Implementation 

3.1 Nonlinear Dynamic Inversion 
 

In general, aircraft dynamics can be expressed as follows:  

( )ux,x F=&                                                                 ... (3.1) 

( )xy H=                                                                  ... (3.2) 

where x is the state vector, u is the control vector, and y is the output vector. Rewriting 

Eq. (3.1) 

( ) ( )uxgxfx +=&                                                          ... (3.3) 

where f and g are nonlinear state and control distribution functions respectively. The 

control law can be found by 

( ) ( )[ ]xfxxgu 1 −= −
&                                            ... (3.4) 

under the assumption that g(x) is invertible for all values of x.  

 

The aircraft is to be commanded to specified states, x. But the rates of these states will be 

specified, desx& . Substituting this into Eq. (4.4) gives: 

( ) ( )[ ]xfxxgu 1 −= −
des

&                                           ... (3.5) 

 

It is important to note that perfect inversion is not always possible. The assumption that 

g(x) may be invertible for all x may not necessarily be true. When there are more states 

than controls, inversion will not be possible. On the other hand, if g(x) is invertible and is 

small, the control inputs become large, thus leading to actuator saturation.   

 

Taking the nonlinear characteristics of aircraft motion into account, the equations are: 

( ) ( )[ ]
2

2

22

xzzx

xzzyz

xzzx

zyxxz

xzzx

xzz

III

qrIIII

III

pqIIII

III

NILI
p

−

−−
+

−

+−
+

−

+
=&         ... (3.6) 

( ) ( )[ ]221
prIprIIM

I
q xzxz

y

−+−+=&                                           ... (3.7) 

( ) ( )[ ]
2

2

22

xzzx

xzyxx

xzzx

zyxxz

xzzx

xxz

III

pqIIII

III

pqIIII

III

NILI
r

−

−−
+

−

+−
+

−

+
=&                      ... (3.8) 
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For the case of dynamic inversion, the moments L, M and N are assumed to be linear with 

respect to aerodynamic derivatives (Ito et. al., 2002). 

rLpLLLLL rpra ra
++++= δδβ δδβ                                           ... (3.9) 

eq e
MqMMM δα δα ++=                                                 ... (3.10) 

rNpNNNNN rpra ra
++++= δδβ δδβ                                   ... (3.11) 

 

Substituting Eq. (3.9) – (3.11) in Eq (3.6) – (3.8): 

( )
( ) ( )

( ) 















−+−

−+−

−+

















−

−

+

































+







































=

















−

pqIIqrI

prIIprI

qrIIpqI

II

Iy

II

r

a

e

NN

M

LL

r

q

p

NNN

MM

LLL

r

q

p

yxxz

xzxz

zyxz

zxz

xzx

ra

e

ra

rp

q

rp

22

1

0

00

0

0

00

0

00

000

00

δ

δ

δβ

α

δδ

δ

δδ

β

α

β

&

&

&

         .... (3.12) 

 

Inverting Eq. (3.5) and using the commanded, desired and measured values, one obtains: 

( )
( ) ( )

( ) 























−+−

−+−

−+

















−

−

−





















































−

































=

















−

−

measmeas

yx

measmeas

xz

measmeas

xz

measmeas

xz

measmeas

zy

measmeas

xz

zxz

xzx

meas

rp

q

rp

descmd

r

a

e

qpIIrqI

rpIIprI

rqIIqpI

II

Iy

II

r

q

p

NNN

MM

LLL

r

q

p

NN

M

LL

ra

e

ra

22

1

1

0

00

0

00

000

00

0

00

0 β

α

δ

δ

δ

β

α

β

δδ

δ

δδ

&

&

&

... 

(3.13) 

 

The complete dynamic inversion scheme is represented in Figure 3.1 
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Figure 3.1: Overall dynamic inversion control block diagram (Ito et. al., 2002) 

3.1.1 Command Inverter 

 

Rate commands are needed as inputs to the desired dynamics block. The command 

inverter block changes displacement commands into rate commands so that displacement 

commands can be directly implemented.  

 

The rates of roll, pitch and yaw are given by Etkin (1996): 

































−

−

=

















ψ

θ

φ

φθφ

φθφ

θ

&

&

&

coscossin0

sincoscos0

sin01

r

q

p

                                       ... (3.14) 

 

Substituting commanded values in Eq (3.14) with 0=cmdψ&  gives: 


























−

=

















cmd

cmd

cmd

cmd

cmd

r

q

p

θ

φ

φ

φ
&

&

sin0

cos0

01

                                            ... (3.15) 

 

Thus: 

cmdcmd

dt

d
p φ=  and  








= cmdcmd

dt

d
q θφcos                                   ... (3.16) 

 

The function linking θcmd
 to angle of attack, α, sideslip angle, β, bank angle, φ and flight 

path angle, γ is given as: (Ito et. al., 2002) 
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( ) ( )
( ) 














−

+−+
= −

γ

γγ
θ

22

222

1

sin

sinsin
tan

cmd

cmdcmdcmdcmd

cmd

a

baba
                 ... (3.17) 

where 

βαα coscos cmdcmd =                                                      ... (3.18) 

βαφβφ cossincossinsin
cmdcmdcmdcmd

b +=                             ... (3.19) 

3.1.2 Desired Dynamics 

 

The desired dynamics block uses a proportional element to map the rate commands to 

desired acceleration terms (Ito et. al., 2002) (see Figure 3.2 ). 

 
 

Kωωωω 

xcmd 

x 

+ 

- 

cmdx&  

 

 

Figure 3.2: Proportional desired dynamics case 

 

The term Kω sets the bandwidth of the response. It also amplifies the error between the 

commanded state and its feedback term.  

 

3.2 RBF Network Training and Optimisation  
 

outputs 

basis 

functions 

inputs 

φ0 

bias 

φ1 
φM 

x1 
xd 

y1 yc 

 

Figure 3.3: Radial basis function network 
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The radial basis function has originated from techniques for performing exact 

interpolation of a set of data points in a multi-dimensional space. This problem requires 

every input vector to be mapped exactly onto the corresponding target vector (Bishop, 

1995). A schematic representing the network is shown in Figure 3.3.   

 

Consider mapping from a d-dimensional space x to a one-dimensional target space t. The 

data set consists of N input vectors x
n
, with corresponding targets t

n
. The aim is to find a 

function h(x) such that 

( ) nn
txh =    Nn ,....,1=                               ... (3.20) 

 

The RBF approach introduces a set of N basis functions, one for each data point that has 

the form ( )nxx −φ , where φ(·) is a nonlinear function. The nth function depends on the 

distance
nxx − . The output of the mapping is taken as a linear combination of the basis 

functions 

( ) ( )∑ −=
n

n

n xxxh φω                                                  ... (3.21) 

 

This has the same form of a generalised linear discriminant function. The interpolation 

conditions (Eq. (3.20)) can be written in matrix form as: 

tw =Φ                                                                 ... (3.22) 

where  

t≡t
n
 , w ≡ωn                                                                         ... (3.23) 

and the square matrix Φ has elements  

( )n

nn xx −=Φ φ'
                                                      ... (3.24) 

Provided the inverse matrix Φ-1exists Eq. (3-22) can be solved giving 

tw
1−Φ=                                                             ... (3.25) 

 

When the weights in Eq. (3.21) are set to the values given by Eq. (3.25), the function h(x) 

is a continuous differentiable surface which passes exactly through each data point 

(Bishop, 1995).  
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In the exact interpolation algorithm, many properties of the interpolation function are 

insensitive to the precise form of the nonlinear function φ(·). There are several functions 

that have been identified to use, but the most common is the Gaussian function: 

( ) 







−=

2

2

2
exp

σ
φ

x
x                                                  ... (3.26)  

where σ is a factor that controls the smoothness properties of the interpolating function. 

The Gaussian is a localised basis function with the following property: 

0→φ as ∞→x                                                 ... (3.27) 

 

Revisiting the point that the surface passes exactly through each data point, the exact 

interpolating function for noisy data is usually a highly oscillatory function and is 

undesirable. Another drawback of the exact interpolation method is that the number of 

basis functions is the same as the number of patterns in the data set. In the case of large 

data sets, the mapping function is very costly to evaluate. 

 

By introducing the following modifications, a smooth interpolating function in which the 

number of basis functions is determined by the complexity of the mapping rather than the 

size of the data set can be found (Bishop, 1995): 

� The number M of basis functions need not be the same as the number of data 

points N. M is much less than N 

� Basis function centres are not constrained to be given by the input data vectors. 

Suitable centres are determined as part of the training process 

� A common σ is replaced by σj for each basis function. This parameter is also 

determined during training 

� Bias parameters are included in the linear sum, compensating for the difference 

between the average value over the data set of the basis function activations and 

corresponding average of the targets.  

 

Taking these changes into account, the following form of the radial basis function neural 

network mapping is obtained: 

( ) ( )∑
=

+=
M

j

kjkjk wxwxy
1

0φ                                           ... (3.28) 

wk0 can be absorbed into the summation by including an extra basis function, φ0, for 

which the activation is set to 1. In the case of the Gaussian basis function, 
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( )












 −
−=

2

2

2
exp

j

j

j

x
x

σ

µ
φ                                             ... (3.29) 

x is the d-dimension input vector with elements xi, and µj is the vector determining the 

centre basis function φj and has elements µji. This is illustrated in Figure 3.3. 

 

Radial basis functions have the property of best approximation. This means that in the set 

of approximating functions, there is one that has minimum approximating error for any 

function to be approximated.  

 

The radial basis function has a two-stage training procedure. In the first stage, the 

parameters governing the basis functions are determined (µj, σj) using fast unsupervised 

methods. This means methods that only use the input data ({x
n
}) and not the target data. 

The basis functions are then kept fixed while the second layer weights are found in the 

second part of training. This is usually the solution to a linear problem and is also fast. 

Assuming that the basis function parameters are chosen, the optimisation of the second 

layer weights can be discussed (Bishop, 1995). 

Considering the RBF network mapping of Eq. (3.28), the bias parameters are absorbed 

into the weights to give: 

( ) ( )∑
=

=
M

j

jkjk xwxy
0

φ                                                          ... (3.30) 

In matrix notation, this is: 

 φWxy =)(                                                                        ... (3.31) 

with W = wkj and φ = φj 

Since the basis functions are fixed, the network is equivalent to a single layer network. 

The weights can be optimised by the minimisation of a suitable error function. It is 

convenient to consider the sum-of-squares error (Bishop, 1995): 

( ){ }2

2

1
∑∑ −=

n k

n

k

n

k txyE .                                                     ... (3.32) 

where tk
n is the target value for output unit k when the network is presented the input 

vector xn. 

The error function is a quadratic function of the weights, and so its minimum can be 

found in terms of a set of linear equations.  The weights are determined by  

TW
TTT Φ=ΦΦ                                                       ... (3.33) 

where (T)nk= tk
n
 and (ΦΦΦΦ)nj = φj(x

n
) 
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The formal solution to the weights is given by  

TW
T *Φ=                                                           ... (3.34) 

where Φ*
 is the pseudo-inverse of Φ. 

 

Equation 3.33 is solved using singular value decomposition, avoiding problems of ill 

conditioning. Poor scaling of matrices leads to ill conditioning. The second layer weights 

are found by fast linear matrix inversion techniques.  

 

3.3 Combined NDI-RBF 
 

Applying the methodology described specifically to the nonlinear dynamic inversion, the 

state vector, x, control vector, u, and output vector y, is given as: 

( )
( )
( )

( )

12

4

3

2

1

121

,,

,,

,,

,,

],...,[ ℜ∈



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
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





=





















==

X

X

X

X

hyx

rqp

wvu

xxx

T

EE

T

T

T

T

ψθφ
                               ... (3.35) 

[ ] ( ) 4

41

,,
,..., ℜ∈








=








==

TT

T

reaT
uuu

δ

δ

δ

δδδ
                                ... (3.36) 

[ ] [ ] 4

41 ,,,,..., ℜ∈==
TT

qpyyy γβ                                       ... (3.37) 

( )ThrqpVFX δδθφβα ,,,,,,,,,,11 =&                                      ... (3.38) 

( )ThrqpVFX δδβα ,,,,,,,,22 =&                                          ... (3.39) 

( )ψθφ ,,,,,33 rqpFX =&                                                    ... (3.40) 

( )ψθφ ,,,44 VFX =&                                                         ... (3.41) 

 

Equation (3.40) is solved simultaneously for the control inputs, (δa, δe, δr), needed to 

achieve the commanded accelerations (Pashikar et. al., 2007; Spaulding et. al., 2005; Ito 

et. al, 2002): 

[ ] ( )T

T

rea XhrqpVK δβαδδδ ,,,,,,,, 22
&=                            ... (3.42) 

where the commanded accelerations 2X&  are given by: 

[ ] [ ]T

comcomcom

T
rqprqpX &&&&&&& ==2                                ... (3.43) 
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Full state feedback with measurements u, v, w, p, q, r,φ,θ, and ψ is assumed. The desired 

inverse functions, K2, in Eq. (3.42) can be replaced by a neural network to obtain the 

neuro-controller architecture: 

[ ] ( )
( )T

T

T

Td

r

d

e

d

a

XhrqpVww

XhrqpVNN

δβα

δβαδδδ

,,,,,,,,ˆˆˆ

,,,,,,,,

22202

22

&

&

Φ+=

=
              ... (3.44) 

where w02, w2,  ΦΦΦΦ2 represent estimates of the network bias terms, the RBF weight vector 

and the basis functions vector respectively. 

 

3.4 Additional Definitions 

3.4.1 Controllability and Observability  

 

The dynamical system BuAxx +=& , is said to be state controllable if, for any initial 

state x(0) = x0, at any time t1 > 0 and any final state x1, there exists an input u(t) such that 

x(t1) = x1. Otherwise the system is said to be uncontrollable.  

 

One method to check if a system is state controllable is to define the controllability 

matrix: 

[ ]BABAABBC
n 12

...
−=                                        ... (3.45) 

If and only if C has rank n (where n is the number of states), then the system is state 

controllable. The rank of a matrix is equal to the number of non-zero singular values of 

the matrix, that is, the number of linearly independent rows or columns of a full matrix 

(Skogestad and Postlethwaite, 1996). 

 

The dynamical system DuCxyBuAxx +=+= ,& , is said to be state observable if, for 

any time t1 >0, the initial state x(0)  = x0 can be determined from the time history of the 

input u(t) and the output y(t) in the interval [0, t1]. Otherwise the system is said to be 

unobservable. To check if a system is state observable, one can define the observability 

matrix: 



















=

−1

...
n

CA

CA

C

O                                                         ... (3.46) 
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The dynamical system is state observable if and only if the observabilty matrix has rank n 

(where n is the number of states) (Skogestad and Postlethwaite, 1996). 

 

This means that if a system is controllable, it can be brought from any initial state to a 

final state within a finite amount of time by its inputs, u. Also, a system is observable if, 

by measuring the output y(t) over a period of time, the values of all the individual states  

can be obtained. Controllability and oberservability are dependant on the number of 

states, observations, and inputs. 

 

3.4.2 Condition Number 

 

The condition number of a matrix is defined as the ratio between the maximum and 

minimum singular values: 

( ) ( ) ( )GGG σσγ /=                                                ... (3.47) 

 

An in-depth discussion on singular value decomposition is found in Skogestad and 

Postlethwaite (1996). 

 

A matrix having a large condition number indicates that it is ill conditioned. This number 

is dependant on the scaling of the inputs and outputs. The condition number is used as an 

input-output controllability measure. When the condition number is small, the 

multivariable effects of uncertainty are likely to be minimal (Skogestad and 

Postlethwaite, 1996). 
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4 Simulation 

4.1 System Parameters 
 

The properties (mass, inertia, and geometry) of the F-16 aircraft are listed in Table 4-1, 

while its aerodynamic control surface properties and deflection conventions are given in 

Table 4-2.   

 

Table 4-1: Aircraft mass, inertia and geometry properties 

 Parameter Value 

m Vehicle mass (kg) 9299 

b Wing span (m) 9.14 

S Wing area (m
2
) 27.87 

c  Mean aerodynamic chord (m) 3.41 

Ix Roll moment of inertia (kg.m2) 12874.8 

Iy Pitch moment of inertia (kg.m
2
) 75673.3 

Iz Yaw moment of inertia (kg.m2) 85551.8 

Ixz Product of inertia (kg.m2) 1331.4 

Ixy Product of inertia (kg.m
2
) 0 

Iyz Product of inertia (kg.m2) 0 

 

Table 4-2: Aerodynamic control surface properties 

Symbol 
Command 

Name 

Deflection 

Limit 
Rate Limit 

Time 

Constant 

Positive Sign 

Convention 
Effect 

δe Elevator ±25º 60º/s 
0.0495 

sec lag 

Trailing edge 

down 

Negative 

pitching 

moment 

δa Aileron ±21.5º 80º/s 
0.0495 

sec lag 

Right wing 

trailing edge 

down 

Negative rolling 

moment 

δr Rudder ±30º 120º/s 
0.0495 

sec lag 

Trailing edge 

left 

Negative 

yawing moment, 

positive rolling 

moment 
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The state variables defined in the study were the following: 

� velocity, V (ms-1) 

� angle of attack, α (deg) 

� sideslip angle, β (deg) 

� roll angle, φ (deg) 

� pitch angle, θ, (deg) 

� yaw angle,  ψ (deg) 

� roll rate, p (degs-1) 

� pitch rate, q (degs
-1

) 

� yaw rate, r (degs
-1

) 

� north displacement, xE (m) 

� east displacement, yE (m) 

� altitude, h = -zE (m) 

� power (%) 

 

The control variables were as follows: 

� throttle setting, δT  (-) 

� elevator deflection, δe (deg) 

� aileron deflection, δa (deg) 

� rudder deflection, δr (deg) 

 

Four output variables were selected. These variables cover both the longitudinal and 

lateral modes 

� pitch rate, q (degs-1) 

� flight path angle, γ (deg) 

� sideslip angle, β (deg) 

� roll angle, φ (deg) 

 

4.2 Determination of System Matrices (A,B,C,D) 

 

Huo’s (2003) program was modified to determine the system matrices. Flight conditions 

were chosen for both the cruise and the refuelling. These were used in conjunction with 
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the state and control trimmed conditions as well as the derivative of the state equations to 

give the system matrices as the output.  

4.3 Trim Program  

 

The trim equations developed in Chapter 2 for the in-flight refuelling were implemented 

in an m-file in Matlab. The trimmed variables solved for were: α, β u, v, w, δe,  δa, δr, δT. 

 

An initial guess for the trimmed states was chosen 

 [ ]Traewvu δδδδβα ,,,,,,,, 000000 =x                                             ... (4-1) 

 

This was used to solve the objective function made up of: 

000

000

===

===

totaltotaltotal

totaltotaltotal

NML

ZYX
                              ... (4-2) 

 

0sin

0tan

0222

=−

=−

=++−

V

v

u

w

wvuV

β

α                                   ... (4-3) 

 

The formulation of Xtotal, Ytotal, Ztotal Ltotal, Mtotal, and Ntotal has already been discussed in 

Chapter 2. 

 

The solution of the trimmed states was used as the commanded states in the nonlinear 

dynamic inversion scheme. 

 

4.4 RBF Training 

 

The radial basis function network was trained and set up in an m-file. The final trained 

neural network was called from Simulink via a Matlab function block. Three radial basis 

function neural networks were set up in Matlab using the Netlab Toolbox developed by 

Ian Nabney (2002). The individual networks consisted of 75 neurons and were trained 

over 5000 cycles each. The Gaussian activation function was used. The number of 
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neurons was selected to give the smallest training/prediction errors while taking 

computational constraints into account.  

 

The inputs in each neural network were: 

� 
measα  

� 
measβ  

� 
meas

p  

� 
meas

q  

� 
measr  

� 
des

p&  

� 
des

q&  

� 
desr&  

� cgx  

 

Three single outputs were defined in each network 

� δe 

� δa 

� δr 

 

Values for the 9 input variables were generated in Simulink using the random number 

generator set within the designed limits of the state variables. This was the basis of the 

training data. These randomly generated inputs were used in the Eq (3.13). 

 

α, β, p, q, r and cg position were used to find the dimensional moments stability 

derivatives 
a

L
δ

, 
r

Lδ ,  
e

M δ , 
a

Nδ ,  
r

Nδ  , Lβ, Lp, Lr, Mα, Mq, Nβ, Lp, Lr. Having all the 

required parameters, Eq (3.13) was then solved for δe, δa, δr.    

 

At this point, a complete set of inputs 

[ ]
cg

desdesdesmeasmeasmeasmeasmeas xrqprqp &&&βα  can give a complete 

set of outputs [ ]rae δδδ . Thus, the neural network could be trained to invert the plant 

dynamics to provide the correct command deflections to maintain the aircraft is steady 

flight.  
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4.5 Simulink Model 
 

The model built in the Simulink environment was based on the work of Meyer (2005). 

Meyer had built a model for the purposes of controlling an aircraft for the landing phase 

while experiencing adverse weather conditions. The model was modified to consider the 

case of controlling the UCAV during aerial refuelling. 

 

The following blocks were implemented in Simulink: 

� Flight conditions 

� ISA atmosphere model 

� Equations of motion 

− Forces due to mass 

− Forces due to thrust 

− Aerodynamic forces 

� Trim function  

� Command inverter 

� Desired dynamics 

� Dynamic Inversion 

� Time lag 

� Auxiliary block 

 

The thrust deflection, δT, used in the Simulink model is not part of the dynamic inversion, 

but rather comes from the requirement to keep the aircraft in steady flight and is used as 

an output from the trim program.  

 

The complete Simulink model for the nonlinear dynamic inversion controller with neural 

network is shown in Figure 4.1 
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Figure 4.1: Complete Simulink model for NDI based neurocontroller 
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4.6 Complete Controller Model 

  

 

 

Reference 
Model 

NDI-Based 
Neurocontroller 

Sensors 

Aircraft 
State (x) 

Error Command 
Input (xd) 

+ - 

u = [δδδδa δδδδe δδδδr δδδδT]
T 

Output (y) 
Nonlinear 
Aircraft 
Model 

 

Figure 4.2: Overall controller model 

 

A global view of the controller can be seen in Figure 4.2. xd is the commanded states 

(input to reference model) of the aircraft. This is compared to the state variables in the 

feedback loop, and the error is sent to the dynamic inversion neural network controller. 

Manipulations are performed in the controller block (command inversion, desired 

dynamics and nonlinear inversion), and the output signal, u, is fed into the nonlinear 

plant. The output is y.  

 

  

Adaptive 
control? 

Initialise 
variables and 

constants 

Perform trim 
analysis for 
refuelling 

NDI controller 
without neural 

network  

YES 

NO 

NDI combined with 
NN controller – 
longitudinal & 

lateral  

Trained neural 
network  

Perform trim & 
stability analysis for 

refuelling 

 

Figure 4.3: Simulation flow diagram 
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The simulation flow is outlined in Figure 4.3. In order to control the UCAV, all variables 

that require specifying and constants are initialised in Matlab. Thereafter, for the flight 

condition trim/modal and stability analysis are performed. If adaptive control is required, 

the trained neural network can be used. In the case of no neural network being simulated, 

then no further processing is required in order to perform the control.  
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5 Model Validation 

5.1 Aircraft Trim Conditions 
 

The aircraft model used in the present study was validated against two aircraft cruise 

cases from Stevens and Lewis (1992). The aircraft cruise speed in both cases was 153 m/s 

and the altitude used in the validation was 0 m, that is, sea level. The distinguishing factor 

between the two cases was the centre of gravity position, the first case having a cg 

position of 0.3 c , and the second case cg position was 0.38 c  

 

The validation data is presented in Table 5-1. Both sets of data are presented alongside 

each other as well as the Matlab generated data to compare the accuracy of the aircraft 

model. The trimmed state variables as well as the trimmed control variables are also 

given. 

 

Table 5-1: Comparison of trimmed aircraft conditions 

   cg = 0.3 c  cg = 0.38 c  

    Simulated 

Results 

Stevens & 

Lewis 

Simulated 

Results 

Stevens & 

Lewis 

V m/s 153 153 153 153 

α deg 2.257 2.257 2.028 2.028 

β deg -6.217e-015 2.349e-07 3.316e-011 3.1e-08 

φ deg 0 0 0 0 

θ deg 2.257 2.257 2.028 2.028 

p deg/s 0 0 0 0 

q deg/s 0 0 0 0 

r deg/s 0 0 0 0 

δT - 0.14851 0.1485 0.13256 0.1325 

δe deg -1.930 -1.931 -0.056 -0.056 

δa deg 1.715e-015 -7.0e-08 -9.388e-012 -5.1e-07 

δr deg -1.686e-014 8.3e-7 8.102e-011 4.3e-06 
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The results of the Matlab simulation and the cited values are the same up to three decimal 

places in some cases. Some of the values (viz. the sideslip angle, aileron deflection and 

rudder deflection) are extremely small, and can be considered to be zero. Thus, the model 

is accurate in estimating the trim conditions. 

 

5.2 Eigenvalues 
 

The eigenvalues were found and compared for the single case of the aircraft in cruise at a 

speed of 153 m/s at sea level with a forward cg of 0.3 c . The eigenvalues are given in 

Table 5-2 and are compared for all longitudinal and lateral modes. 

 

Table 5-2: Comparison of eigenvalues 

  Simulated Results Stevens & Lewis 

Short Period -1.2906 ± 1.2679i -1.2904 ± 1.4922i 

Phugoid -0.0097 ± 0.0689i -0.0087± 0.0740i 

Dutch Roll -0.4291 ± 3.2521i -0.4399 ± 3.220i 

Spiral -0.0021 -0.00128 

Roll -3.6168 -3.601 

  

The comparison shows that the accuracy for the short period mode, Dutch roll and roll 

mode lies to two decimal places at the most, while the spiral mode and the Phugoid are in 

the same region of values. The discrepancies are not large enough to cause the model to 

be inaccurate, and the model will be deemed sufficient to analyse the behaviour of the F-

16 accurately. 

 

5.3 Dynamic Behaviour 
 

In addition to validating the trimmed data and eigenvalues, the accuracy of the dynamic 

behaviour was also considered. As with the eigenvalues above, a single case is considered 

here for the model validation. This is the same as given above for the eigenvalues with 

the F-16 flying at a cruise speed of 153 m/s at sea level with a forward cg of 0.3 c . The 

dynamic parameters are presented in Table 5-3 and are compared for the short period, 

Phugoid, and Dutch roll modes. 
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Table 5-3: Comparison of dynamic parameters 

 Simulated Results Stevens & Lewis Error [%] 

Dynamic 

Parameter 

ζ [-] T [s] ζ [-] T [s] ζ [-] T [s] 

Short 

Period 

0.7133 4.96 0.628 4.21 13.60 15.04 

Phugoid 0.1496 88.35 0.117 84.9 27.8 3.85 

Dutch Roll 0.1308 1.93 0.135 1.95 3.11 1.02 

  

The damping coefficients and periods are compared. The Dutch roll mode is the most 

accurate, with the short period following, and the Phugoid is the least accurate. The 

values are not exact but they are in the same range. The model can still be considered 

accurate in the estimation of the dynamic behaviour. The discrepancy in the values given 

above arises directly from the slight disagreement between the eigenvalues given by 

Matlab and those found in Stevens and Lewis. 
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6 Results and Discussion 

6.1 Inherent Behaviour 
 

The frequency response plot of the UCAV is shown in Figure 6.1 at the start of refuelling 

 
 q 

γγγγ 

ββββ 

φφφφ 

 

Figure 6.1: Frequency response plot of UCAV – start of refuelling 

 

In multi-input multi-output (MIMO) systems, the maximum singular values need to be 

small at high frequencies for good stability robustness (Stevens and Lewis, 1992). One 

observes good stability robustness. At low frequencies, the condition number of the 

aircraft is high indicating that inherently the plant can pose some control problems. The 

rank of the controllability and observability matrices were found to be 10 for the cg 

position considered, indicating that all states of the system were observable and 

controllable at the onset of refuelling. 

 

Figure 6.2 shows the four cases chosen to be analysed during the flight refuelling process. 

The cg has a parabolic shape variation with mass (Figure 6.2). The initial mass, when 

fuelling starts, was taken as 9298.6 kg with the cg at 0.35. The maximum cg position was 

found to be 0.406. 
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Case 1 

Case 2 

Case 3 

Case 4 

 

Figure 6.2: Cases considered in refuelling inherent behaviour analysis 

 

Table 6-1 gives the changing eigenvalues of the aircraft for the four cases considered. 

 

Table 6-1: Eigenvalue movement during refuelling  

Mode Case 1 Case 2 Case 3 Case 4 

Longitudinal 

Mode 

-1;-0.0014 -1;-0.0015 -1;-0.0015 -1;-0.0015 

Dutch Roll -0.271±2.45i -0.278±2.37i -0.287±2.38i -0.347±2.67i 

Spiral -0.00491 -0.00536 -0.00488 -0.00172 

Phugoid -0.0193±0.118i -0.00855±0.1i -0.0083±0.093i -0.122±0.056i 

Roll -1.8 -2.18 -2.21 -1.5 

 

The Dutch roll movement in Table 6-1 shows that as the mass increases, the poles move 

further into the left hand plane, the mode gets more stable as mass is introduced to the 

system. The movement of the poles below the real axis along the imaginary axis shows 

that initially the mode becomes less oscillatory, but when the cg passes the turning point 

and starts to decrease again, the mode becomes more oscillatory again. The Phugoid 

mode pole movement in Table 6-1 shows that as the mass is increased the eigenvalue 

becomes closer to the imaginary axis and then moves left again. This mode can be viewed 
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to be less stable initially. The mode becomes more oscillatory as the aircraft mass 

increases. 

 

The SPO decomposed into two first order modes and remains largely unchanged 

throughout the flight refuelling process. The decomposition of the SPO can be attributed 

to the addition of mass into the system, as well as an aft cg. When mass is introduced 

steadily and the cg moves further aft, the results show that the longitudinal dynamics are 

affected. In the model validation, (Chapter 5), results were presented for a forward cg 

position (Table 5-2) with no refuelling. However, when examining the eigenvalues for 

sea-level cruise (no refuelling) as described earlier considering an aft cg, a similar trend is 

observed with the short period dynamics as seen in Table 6-2. Table 6-2 gives the 0.3 c  

results from Table 5-2 compared to the 0.38 c  eigenvalues for the oscillatory modes. The 

decomposed longitudinal mode eigenvalues for nominal cruise at sea level with cg at 0.38 

are -1 and -0.0019. This is similar to that presented in Table 6-1 for the refuelling case.   

 

Table 6-2: Comparison of eigenvalues for forward and aft cg positions  

  0.3 c   0.38 c  

Short Period -1.2906 ± 1.2679i Longitudinal mode -1; -0.0019 

Phugoid -0.0097 ± 0.0689i Phugoid -0.0110 + 0.1138i 

Dutch Roll -0.4291 ± 3.2521i Dutch Roll -0.4045 - 3.0098i 

 

 

The dynamic behaviour of the aircraft is presented in Table 6-3.  

 

Table 6-3: Natural frequencies, damping coefficients and settling times 

 ωωωωd 

[rad/s] 

ζζζζ T 

[s] 

ts 

[s] 

Phugoid [cg case 1] 

[cg case 2] 

[cg case 3] 

0.120 

0.100 

0.0933 

0.161 

0.085 

0.089 

52.360 

62.832 

63.084 

207.25 

467.83 

481. 93 

Dutch Roll [cg case 1] 

[cg case 2] 

[cg case 3] 

[cg case 4] 

2.460 

2.390 

2.400 

2.700 

0.110 

0.117 

0.120 

0.129 

2.56 

2.65 

2.64 

2.35 

14.76 

14.39 

13.94 

11.52 
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 ωωωωd 

[rad/s] 

ζζζζ T 

[s] 

ts 

[s] 

Spiral [cg case 1] 

[cg case 2] 

[cg case 3] 

[cg case 4] 

0.0049 

0.0054 

0.0049 

0.0017 

1 

1 

1 

1 

- 

- 

- 

- 

814.668 

746.268 

819.672 

2326 

Roll [cg case 1] 

[cg case 2] 

[cg case 3] 

[cg case 4] 

1.80 

2.18 

2.21 

1.50 

1 

1 

1 

1 

- 

- 

- 

- 

2.22 

1.84 

1.81 

2.67 

Decomposed Longitudinal [1] 

Decomposed Longitudinal [2] 

1.00 

0.014 

1 

1 

- 

- 

4.00 

2857 

 

Table 6-3 shows the change in dynamic parameters as the aircraft is refuelled. The 

damping of the Phugoid mode decreases as the cg moves rearward to the maximum point 

at cg position three. After the turning point of case three, the cg starts to move forward. 

This causes the damping to increase again. The natural frequency decreases first as the cg 

moves to case two and three. This means that the mode gets less oscillatory. After the 

turning point when case four is reached, the natural frequency increases again.  

 

The Dutch roll mode, which is a fast mode, has damping that is moderate compared to 

other modes. The damping of the aircraft in this mode is seen to steadily increase as the 

mass increases. The natural frequencies however, decrease and then increase again, 

showing a less oscillatory to more oscillatory transition.  

 

For the spiral mode, the damping increases and then decreases again as the maximum cg 

point is reached. The roll mode shows the heaviest damping which steadily decreases as 

the aircraft mass is increased.  

 

The aircraft trim conditions change with the mass of the aircraft as the vehicle is 

refuelled. The longitudinal control surfaces constantly need to change their position in 

order to maintain steady level flight. Considering the case of cruise, all trimmed lateral 

variables are zero and unchanging, so only the longitudinal trimmed variable change with 

mass will be shown.  
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The aircraft trimmed angle of attack variation with aircraft mass is plotted in Figure 6.3. 

The trimmed angle of attack has a half-parabolic variation with change in mass.  
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Figure 6.3: Refuelling trimmed     αααα change with mass 

 

The elevator deflection required to trim the aircraft changes with mass (see Figure 6.4). 

The elevator deflection required follows the same trend as the change in cg position. 
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Figure 6.4: Refuelling trimmed elevator deflection change with mass 
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As the aircraft mass changes the aircraft throttle position will change to keep the aircraft 

in steady flight. This is shown in Figure 6.5. A higher throttle deflection is required as 

mass increases. 
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Figure 6.5: Refuelling trimmed throttle position change with mass 

 

Figure 6.6 shows the variation of the forward speed, u, with the aircraft mass. The 

required aircraft forward speed decreases as the mass increases 
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Figure 6.6 Refuelling trimmed forward speed, u, change with mass 
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6.2 Controlled Behaviour 

6.2.1 Neural Network Training 

 

In order for the neural networks to learn the inverted dynamics of the aircraft as described 

in Chapter 3 and Chapter 4, data was generated as shown in Figure 6.7 for the measured 

α, β, p, q, r, φ, and ψ. The figure shows data for only αmeas.  Random data of the form in 

Figure 6.7 was used for all the other variables mentioned. This data served as the inputs 

to the dynamic inversion equations, and was used together with the desired rates p, q, and 

r as explained previously.   
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Figure 6.7: Neural network training data – ααααmeas 

 

The neural network comprising 75 neurons was trained over 5000 cycles and the 

characteristics are summarised in Table 6-4. The weights and centres are large arrays and 

are not repeated here. 

 

Table 6-4: Characteristics of RBF used in study  

Netlab Toolbox Variable Description Value 

actfn hidden unit activation function ‘gaussian’ 

outfn output error function ‘linear’ 

nwts total number of weights and biases 826 

c centres 75×9 array 
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Netlab Toolbox Variable Description Value 

wi squared widths 1×75 array 

w2 second layer weight matrix 75×1 array 

b2 second layer bias vector 6138.4 

 

The networks were tested after training and predictions were compared with the actual 

values. The neural network errors are plotted in Figure 6.8 to Figure 6.10 for the elevator, 

aileron and rudder respectively. The elevator prediction was the most accurate. The error 

in prediction of the elevator deflection reached a maximum of just over 1%. However, for 

the aileron and rudder, excessively high errors were found in certain instances. Errors of 

6000% in the aileron prediction and 200% in the rudder prediction can be considered as 

single outliers. The average of the errors in the aileron prediction was 5.8% and in the 

rudder prediction 0.5 %. This means that the majority of the results are reasonable. 

However, the neural network is liable to make any erroneous prediction up to 6000% and 

200% of the original value.  
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Figure 6.8: Neural network error in predicting commanded elevator deflection 

 

 

Figure 6.9: Neural network error in predicting commanded aileron deflection 
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Figure 6.10: Neural network error in predicting commanded rudder deflection 
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6.2.2 Nonlinear Dynamic Inversion Controller without Neural 
Network 

 

Before the neural network results can be analysed, the conventional DI controller results are 

presented. Figure 6.11 shows the UCAV state variables over the refuelling period.  

 

Figure 6.11: Controlled state variables – NDI without NN 

 

The aircraft angle of attack is not constant, nor can the controller maintain the aircraft at a 

constant altitude and speed during the refuelling period. No change is observed in the pitch 

rate, sideslip angle, and roll angle. The commanded control surface deflections are shown in 

Figure 6.12. These are found to be very small and insufficient to keep the aircraft in steady 

flight.  
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δδδδe 

δδδδr 

 

Figure 6.12: Commanded control surface deflections – NDI with no NN 

 

The time domain results presented show that the performance of this controller is inadequate. 

This can be attributed to the use of the aerodynamic model of Ito et. al. (2002) in conjunction 

with Morelli (1998). In order to invert the plant dynamics, Eq. (3.9) to (3.11) of Ito et. al. 

(2002) has to be used, whereas the aerodynamic coefficients required for the force and 

moment integration are calculated using Morelli’s (1998) Eq. (2.26) to (2.32). The higher 

order terms in Eq. (2.26) to (2.32) which have cross coupling between longitudinal and lateral 

variables are not present in the dynamic inversion. In order to calculate the Euler angles and 

body rates for the inversion, Eq. (2.26) to Eq. (6.32) are used. In the inversion, the model has 

changed, and it is clear that this controller is not sensitive to changes in the aircraft model.  

 

6.2.3 Longitudinal Nonlinear Dynamic Inversion Controller with 
Neural Network 

 

The DI controller coupled with the NN shows excellent results. All states are maintained as 

constant during the 400 seconds duration of the flight refuelling (see Figure 6.13). The 

elevator deflection required to maintain steady flight is shown in Figure 6.14. This variation 

is well within the physical limits of the elevator actuator. The results here can be attributed to 

the low inversion error of the trained neural network. The results also show that the controller 
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with the NN is less sensitive to the model of Ito et. al. (2002) and Morelli (1998) as explained 

earlier. The NN is trained using the model of Ito et. al. (2002) and is implicitly used in this 

controller.   

 

Figure 6.13: Controlled state variables vs. time – Longitudinal NDI-based neurocontroller 

 

This result compared to the basic NDI controller with no NN ties up with the conclusions of 

Li et. al. (2001). The neural controller was able to overcome modelling errors which posed a 

challenge to the NDI controller without the NN.  
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Figure 6.14: δδδδe vs. time – Longitudinal NDI-based neurocontroller 

 

6.2.4 Lateral Nonlinear Dynamic Inversion Controller with Neural 
Network 

 

The results of the lateral controller are promising. The sideslip angle shown in Figure 6.15 

does not stay steady, a small deviation is observed. The sideslip angle quickly steadies to a 

fixed value thereafter. However all other states are steady throughout the refuelling. The 

aileron and rudder deflections are shown in Figure 6.16 and Figure 6.17. These are within the 

physical limits. The aileron deflection was observed to be unaffected by the refuelling 

process/mass increase of the aircraft. The rudder deflection followed a similar trend to that of 

the elevator in Figure 6.14. It is also observed that the commanded aileron and rudder 

deflections are non zero. This is to maintain the sideslip angle that was observed in Figure 

6.15. The adequate performance of the lateral neural controller over the plain DI controller 

can also be attributed to the addition of the RBF network, which is less sensitive to model 

errors as described earlier. 
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Figure 6.15: Controlled state variables vs. time – Lateral NDI-based neurocontroller 
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Figure 6.16: δδδδa vs. time – Lateral NDI-based neurocontroller 

 

 

Figure 6.17: δδδδr vs. time – Lateral NDI-based neurocontroller 
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7 Conclusions and Recommendations 

7.1 Conclusions 
 

The background leading to the modern day UCAV, as well as issues surrounding current 

developments has been researched and presented.  

� UAVs/UCAVs have been identified to be an essential part of a nation’s defence 

arsenal.  

� Using automated aerial refuelling (AAR), the modern UCAV can achieve extended 

endurances.  

� Studies also highlighted that the success of an unmanned vehicle lies in the 

application of neural network control techniques, which are being widely researched 

as they offer many solutions to the limitations of classical control.  

  

For the in-flight-refuelling model, a nonlinear six-degree-of-freedom model including the 

centre of gravity movement during refuelling was built. Published data verified the accuracy 

of the aircraft model. 

 

Modal analysis of the aircraft during refuelling was done. 

� When refuelling, the cg variation with increasing mass was found to be parabolic. 

� For the Dutch roll mode, as refuelling occurs, the mode is initially less oscillatory, 

but as the mass increases further, the cg starts to move forward again and the Dutch 

roll mode becomes more oscillatory. 

� The opposite is observed with the Phugoid mode. 

� The increase in mass pushes the eigenvalues further into the left plane – increased 

stability is achieved with the higher mass. 

� The aircraft trim conditions change as the mass is increased.  

 

A dynamic inversion controller with no neural network was used initially. With respect to the 

nonlinear dynamic inversion controller without neural networks, the following can be 

concluded: 

� The performance of the controller was not satisfactory. 
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� This is attributed to the difference in aerodynamic models (Ito et. al., 2002; Morelli, 

1998) used to evaluate the aerodynamic forces in the 6 DOF model and in the 

inversion. 

� This controller was not sensitive to model discrepancies. 

 

After implementing the dynamic inversion controller with the radial basis function network, 

the following can be concluded: 

� The error in the elevator prediction was the lowest. 

� The longitudinal DI controller with NN gave excellent results. 

� Control surface deflections were within the physical limits of the aircraft. 

�  The lateral DI controller with NN showed promising results. 

� Results are dependent on the training of the neural network via the number of 

neurons used. 

 

Finally, it can be concluded that a nonlinear dynamic inversion controller with a neural 

network can be applied to control a UCAV during aerial refuelling. 

 

7.2 Recommendations for Future Work 
 

The following recommendations are made for future work: 

1. Investigate the dynamic inversion scheme using a multi-layered-perceptron neural 

network architecture. 

2. Model the effects of the changing inertia tensor in the 6 DOF model. 

3. Aerodynamic effects of tanker-receiver can be added in the dynamic model. 

4. Use of historical data to train neural networks instead of random data. 

5. Consider implementation of on-line neural network in the nonlinear dynamic 

inversion controller. 

6. Explore the idea of suitably combining the longitudinal and lateral controller. 
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