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ABSTRACT

Cellular neural networks (CNNs) have been adopted in the spatio-temporal processing

research field as a paradigm of complexity. This is due to the ease of designs for com-

plex spatio-temporal tasks introduced by these networks. This has led to an increase

in the adoption of CNNs for on-chip VLSI implementations. This dissertation proposes

the use of a Cellular Neural Network to model, detect and classify objects appearing in

multiple object scenes. The algorithm proposed is based on image scene enhancement

through anisotropic diffusion; object detection and extraction through binary edge de-

tection and boundary tracing; and object classification through genetically optimised

associative networks and texture histograms. The first classification method is based

on optimizing the space-invariant feedback template of the zero-input network through

genetic operators, while the second method is based on computing diffusion filtered

and modified histograms for object classes to generate decision boundaries that can be

used to classify the objects. The primary goal is to design analogic algorithms that

can be used to perform these tasks. While the use of genetically optimized associative

networks for object learning yield an efficiency of over 95%, the use texture histograms

has been found very accurate though there is a need to develop a better technique for

histogram comparisons. The results found using these analogic algorithms affirm CNNs

as well-suited for image processing tasks.
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Chapter 1

Introduction

1.1 Artificial Object Modeling and Complexity

The human visual system is equipped with a highly intelligent technique to segment

and distinguish between multiple objects appearing in one visual scene. With this tech-

nique, the human eye can perform segmentation and extraction, classification, tracking

and recognition tasks to a very high degree of accuracy. There are however limitations

in this accurate system, which are normally a result of the state of the human brain,

which is prone to the disturbances such as emotional reactions, tiredness etc. With

these disturbances it becomes a challenge for a human eye to monitor a visual task or

process constantly while making correct decisions at all times. For this reason, science

and engineering have found it important to model the behaviour and processing tech-

niques employed in the human visual system through Artificial Intelligence (AI) and

visual capturing tools implemented into an artificial visual processor.

As industrialization of engineering processes grows, it is accompanied by the grow-

ing need to monitor the processes through visual robots capable of detecting errors

and defects that can hamper productivity in the process. The visual robots also serve

as a quality assurance method as defective materials and/or erroneous behaviour in

the process are detected as they happen and corrected before they impact on prof-

its/performance. The use of these online visual tools also provide an added advantage

in case the raw material of the process could have been reusable if the process was

1
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stopped just in time the material becomes defective.

The recent growth in urbanization, land cover/use changes, climatic changes and in-

creased security surveillance require highly intelligent and sophisticated tools for anal-

ysis and study. For these tasks to be carried out, there is a need to perform object

detection, segmentation, extraction or classification. This is achieved through the de-

sign of models that accurately represent the object artificially. Object modeling for

visual processing in a computer is a complex process that require certain mathematical

formulation to describe the dynamics of the object. This dissertation will address the

following challenges:

(i) designing a mathematical model that represent the dynamics of the object. The

model must capture most of the object’s features such as shape, colour and texture.

This include the ability to map the object spatial data on a one-to-one bases with

the model,

(ii) creating a model sensitive to small changes in the object’s features(i.e. high spatial

and temporal resolutions in the model),

(iii) creating a model less intensive in mathematical computations (i.e. reducing model

complexity and designing a model easy to understand),

(iv) restricting the system to consume a reasonable amount of memory and CPU time,

and

(v) creating a model that is adaptive.

1.2 AI Approaches to Object Modeling

Modeling objects for image processing tasks has been part of an ongoing research.

Though presently advanced and simplified, image processing has been classified as one

of the most complex spatio-temporal processes. Traditionally, the nonlinear spatio-

temporal computing was achieved by 32-bit floating point digital calculations on non-

linear Partial Differential Equations (PDEs); this is a complex problem to solve even

with digital supercomputers [1]. There are several disadvantages that are inherent in

linear PDE methods, these include mathematical intensiveness and the difficulty in
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achieving an accurate mapping of the spatial and temporal parameters of the model to

those of the problem being modeled [1].

AI approaches have been seen to yield advantages over classical mathematical ap-

proaches, with the overall performance of over 90% in visual computing tasks [2]. Among

these techniques is the application of Artificial Neural Networks (ANN), Fuzzy logics,

Markov Random Fields (MRF) and agent-based models to capture the object features

into the model. The inherent problems with the use of these methods are the complexity

of the algorithms and the sacrifice in processing speed when Very Large Scale System

Integration (VLSI) chips are implemented [3]. An integration of on-chip sensors and

array computers to process real time signals originating from space distributed sources

(e.g. images and videos) using traditional neural architectures such as the Hopfield

Networks and Kohonen’s Self-Organized Feature-Mapping (SOFM) algorithms presents

implementation difficulties as these architectures are not well suited to nonlinear spatio-

temporal computing [3][4].

In view of the above, more focus was directed to the design of analog-based processors

with analogic instead of digital computational capabilities. A major breakthrough came

in 1988, when Chua and Yang [5] presented their work on a Cellular Neural Networks

(CNNs) architecture.

1.3 CNNs as a Platform for Spatio-temporal Processing

Cellular Neural Networks are composed of cells that are coupled together to form a

dynamic nonlinear array. Each cell in the array is a dynamical system on its own

and exhibits a specific behaviour that is related to the neighbouring cells through rules

defined between each cell and its neighbours. In the initial formulation of the model,

CNNs are defined as a model of complexity [6]. The formulation was also inspired by the

model of universal complexity from the smallest particle of matter, the cell, in which it

is argued that the complexity of the universe can be made easier through understanding

the behaviour of a cell, i.e modeling and computing the dynamics of the cell and using

coupling rules between cells to propagate the overall dynamical behavior of the cells

forming the universe [7].

Due to its array nature, the CNN model gives a platform of computation for data that is
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distributed in both space and time, i.e. spatio-temporal data. CNNs are analogic arrays,

possessing both the fast computing nature of analog circuits and the logic nature that

defines the circuit rules in their digital counterparts. Each cell in a CNN array is a

processor, this makes CNNs more suited to parallel and synchronous processing and

hence the ideal candidates for VLSI implementation. A CNN cell is only coupled with

its neighbours, thus suggesting that the processing in the network is local and hence the

decreased mathematical computation and model complexity. There is also a one-to-one

mapping between a CNN cell and the pixel on the image being modeled [8]. Amongst

many other advantages, the behaviour of the CNN can be easily altered by changing the

coupling rules modeled as the cloning template of the CNN. Figure 1.1 shows a CNN

array with cell interactions [9].

Figure 1.1: A CNN array with 9 neighbouring Cells [9]

1.4 Contribution to Research

The main contribution of this dissertation is on the formulation of an approach to

solve the spatio-temporal problem of object modeling for the purpose of detection,
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segmentation, extraction and classification in multiple object scenes with emphasis to

reduce model complexity, increase computational speed and create an easy-to-implement

method of training and classification using CNNs. To achieve this contribution we

address the problems stated in section 1.1. The inspiration to undertake this research

was derived from an observation that most existing spatio-temporal solutions do not

address the problem of complexity of the model. There is also a rising need to implement

visual processing tasks on-chip, which in turn demands that the model complexity is

reduced in order to work in harmony with the chip resources. The reduction of the model

complexity involves choosing a modeling technique that best suits the application, and

the best algorithm that increases memory efficiency and computational speed while

maintaining high accuracy. For this reason, Cellular Neural Networks (CNN) were

chosen as a platform for computing. Through examining the reported work in the

field of CNNs, it was noted that there has not been more focus on the methods of

handling classification of multiple objects/features appearing on one image scene [63].

The available work only lay foundations as to how isolated objects can be classified, but

however does not take into account that learning object features may be more effective

if the environment in which the object appears in is taken into account. This document

formulates the techniques in the Cellular Neural Network domain that can be used to

achieve models of the objects and the application of optimisation techniques to improve

the model performance for applications in object detection, extraction and classification

based on multiple object scenes.

1.5 Objectives

This document proposes the methods of handling object modeling and computation

in multiple object scenarios for the purpose of detection, segmentation, extraction and

classification. Within this main objective, there are several sub-objectives that must

be fulfilled. The following are the sub-objectives through which the main objective is

achieved:

(a) define multiple object classification in terms of modeling and complexity. This

gives answers to the possible causes of model complexity and how artificial intel-

ligent techniques can be employed to reduce the complexity.
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(b) device techniques through which an efficient object model can be achieved and

accounted for. This follows an exploration of possible CNN techniques that can

be integrated to yield an algorithm that can solve the problem defined on the

point above. This involves evaluation of certain approaches and the adoption of

others owing to their suitability and applicability to spatio-temporal modeling.

(c) formulate optimisation techniques that best optimizes the object models achieved

by the chosen modeling technique. Selecting the best method for optimization

implies the achievement of a global solution that best captures all the object

traits. A selection of an inadequate method result in the solution trapped in local

maxima.

(d) to create an easy-to-implement algorithm for the training and classification of

objects modeled using CNNs. This will serve to indicate the possible advantages

of the choice of CNNs as the proper model for the application of object detection,

extraction and classification.

(e) design an object-based algorithm that consists of reusable parts for all tasks i.e.

segmentation, extraction and classification. This means that a task that is required

by both CNN based image processing tasks is implemented in a polymorphic

approach.

(f) integrate all the algorithm parts into a single analogic framework that defines how

multiple object scenarios are handled using CNNs.

(g) develop a proof-of-concept application that demonstrates the strength of the al-

gorithm proposed in this research work. This objective seeks to demonstrate how

the proposed methods can be applied to solve practical problems.

(h) develop an analysis procedure that is to be used to determine the performance of

the model. Here the accuracy, efficiency and resource intensiveness of the proposed

methods are determined in order to numerically scale their performance.
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1.6 Chapters and their Respective Contribution

This dissertation is organized into chapters each serving one or more objectives detailed

above. While Chapter 2 builds up a background required to understand the main

direction of this research, the rest of the chapters build up the solution to the problem

of multiple object scenario handling, with each chapter focusing on a specific building

block of the entire solution proposed. The following is a brief discussion on the content

and objectives of each chapter:

1. Chapter 2 gives a thorough background to CNNs. In this chapter the CNN

architecture and its dynamics are presented. The suitability of the architecture to

the spatio-temporal applications is explored and its limitations in general. This

will involve a look at some practical images and their corresponding CNN models.

2. Chapter 3 The objective of this chapter is to formulate and present a series of

CNN based image processing tasks that allow the object to be separated from the

background and other objects in the image without altering its features. In order

to achieve this we employ image processing methods such as nonlinear diffusion,

CNN based thresholding and edge detection. A successful extraction technique

leads to the image model that can be used during learning and classification.

3. Chapter 4 presents various strategies that can be used to select the features

that best represent the object being studied. This chapter deals mainly with how

the object features are represented as sets of stable memories and stored in the

CNN templates. This chapter also presents the types of CNN networks that can

be used for learning object features. Several features that are regarded as more

distinctive to objects will also be examined. Of this we study texture through

texture histograms and apply heuristics to design bounds for texture classes.

4. Chapter 5 is an integration of all the chapters above into analogic algorithms that

can be used to train the CNN to classify objects. The algorithm proposed here is

general and can be adopted to different application scenarios. Two algorithms are

proposed, namely (1) genetically optimized CNNs for feature learning and texture

histograms for boundary conditions design for class objects.
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5. Chapter 6 gives an introduction to some practical examples where the proposed

algorithms are applicable. Example 1 is a practical application of the algorithm

designed during this research and submitted to the International Association of

Science and Technology for Development(IASTED). This example is in the clas-

sification of satellite sensed data using genetically optimized CNNs. Another

example presented is on the use of diffusion filtered and modified histograms to

perform texture based classification of objects based on multiple texture object

scenes. This chapter further details the analysis procedure to be used to evaluate

the performance of the algorithms proposed in this document. The procedure in-

volves setting up certain standards of acceptability for any algorithm in this case

by looking at measures of efficiency such as memory utilisation, processing time,

percentage accuracy and applicability in real world problems.

6. Chapter 7 summarizes all the chapters by looking back at the goals set in section

1.5. It further details the impact of this research to the modern world and paves

way to challenges in this research that require further investigation. The chapter

also gives the weight of the material covered in this research in terms of originality

and referencing.



Chapter 2

CNNs in Image Processing

2.1 Local Processing, Coupling and Nonlinear Dynamics

In the introduction of the CNNs a paradigm of complexity, a CNN is defined as a regular

array of MXN dimensions composed of nonlinear units with only local interaction

within a neighbourhood radius [5,6]. The most distinctive features of this model are [8]:

1. local processing, which ensures that all cell interactions are local (i.e. within

each cell and its neighbours). This decreases the complexity of the model.

2. coupling, defines the rules of cell interactions within the neighbouring cells. The

behavior of the network is altered by changing these rules. The complexity of the

model increases if there is no coupling in the network. Uncoupled cells in an array

can present chaos and instability. The relational rules for mapping input and

output becomes difficult to model and define when there is no inter-relationships

between local cells [9].

3. nonlinear dynamics, define the nature of the processing elements, the cells.

“dynamic” implies the dependency of the cells on the state of the neighbouring

cells, while “nonlinear” defines the nature of the output activation caused by the

Chua-Yang’s choice of the piecewise-linear function.

In analogy to the universe, local processing describes the dynamics and functioning of

the smallest building blocks of matter, the cells, while coupling defines the the influence

9
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that neighbouring cells have on the state of the cell and propagation of the cell behaviour

throughout the entire universe to give it an overall dynamic behavior. Through coupling

and local interaction, the dynamics of very complex nonlinear systems can be modeled

and analysed. Section 2.2 introduces one of such models for complexity introduced by

Chua and Yang in [5].

2.2 The Chua-Yang CNN Model

The idea proposed by Chua and Yang to address the problem of complexity was to

use an array of dynamical cells to process a large amount of data in real time [1].

Processing data in real time require analog processors, while processing large amounts

of data may require parallel synchronous processors. This supports their choice of a

cellular array wherein each cell is an analog processor that serves as an input-output

stage of the network. In order to control the behaviour of the model with respect

to the dynamic range and stability, Chua and Yang apply logic theory that is widely

used in digital circuits. This result into a computer that possesses both the speed and

computational power of analogue and digital circuits, which is presently known as the

Analogic Computer [10].

In the original Chua-Yang model, the neighbourhood, r, of a dynamical cell in the i -th

row and the j -th column, termed Cij , on an M X N CNN array is defined by:

N r
ij = { Ckl|max{|k − i|, |l − j|} ≥ r; 1 ≤ k ≤ N1, 1 ≤ l ≤ N2} (2.1)

where r is a positive integer, and i and j are row and column indexes respectively

[5,6,7,10].

Each cell of the CNN has a continuous valued state variable x, an input variable u,

and the output y. The nonlinear dynamics of the CNN is defined by the following set

of equations:

C
dxij(t)

dt
= − 1

R
xij(t) +

∑
CklεN

r
ij

A(i, j; k, l)ykl(t) +
∑

CklεN
r
ij

B(i, j; k, l)ukl + Iij

and

yij(t) =
1
2
(|xij(t) + 1| − |xij(t)− 1|) (2.2)
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where C and R are integral constants of the system, xij is the state of a cell, I is an

independent bias constant, and yij is the activation function [5,7].

The matrices A and B that operate on the input and the output respectively are called

the Cloning Templates or the CNN Kernel. The former acts as feedback template and

the latter as an input control template [5,8,10]. The cloning template represented by A

and B may be linear or nonlinear, space variable or invariable depending on the appli-

cation. The output function of the CNN is chosen based on the desired application of

the CNN. [5] and [10] lists the following output activation functions and their areas of

application:

1. piecewise-linear model - shown in equation 2.2.

2. nonlinearity model - most applicable to on-chip VLSI

3. hyperbolic function - used for training applications where the learning follows the

gradient descent rule.

The activation functions described above are as shown in Figure 2.1.

Figure 2.1: The learning functions used in the CNN output activation:(a) the piecewise-
linear model, (b) the nonlinearity model and (c) the tangential hyperbolic function [9]

The neural feedback capability of the CNN as controlled by the cloning templates is

as shown in Figure 2.2 which shows a block diagram model of a cell, also known as a

neuron. The neuron model as seen in the figure has dynamics that are dependent on
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Figure 2.2: The block diagram depicting the signal flow on a CNN Cell [11]

coupling rules set on the templates A and B.

The number of parameters used to set these rules is determined by the r-neighbourhood

chosen for the design. For example, a CNN with neighbourhood r = 1 require 9 param-

eters for both matrices A and B, while the neighbourhood of r = 2 require 25 coupling

parameters per template operator. Generally the number of parameters in the template

can be derived from (2r+1)×(2r+1), where r is the neighbourhood chosen for the net-

work [5,8,10]. The network complexity increases with the increase in r. Some examples

of r-neighbourhood architectures are shown in Figure 2.3.

Figure 2.3: The r-neighbourhood representation in the CNN architecture. The dark
cells represent the relationship that is considered in achieving a CNN model [10].
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2.2.1 CNN Classes

The most categorizing parameter of a CNN is the cloning template . With alteration

of the cloning template, a wide range of CNNs with unique behaviours are defined.

However, Chua and Roska define three classes from which all the subclasses inherit

their behaviour [10].

(a). Zero-Feedback or Feedforward CNNs

A CNN that belongs to this class is defined by the following equation:

C
dxij(t)

dt
= − 1

R
xij(t) +

∑
CklεN

r
ij

B(i, j; k, l)ukl + Iij (2.3)

This class is characterized by an uncoupled behaviour between the input of the network

and the corresponding output. The signal flow system structure associated with the cell

forming this type of network is shown in Figure 2.4.

Figure 2.4: The system structure depicting the signal flow of the zero-feedback CNN
cell [10]

(b). Zero-Input CNNs

A CNN belonging to this class is defined by equation 2.4. This network does not take

any input as there is no input control template (i.e the B template is zero). The input
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is supplied to the network as a state signal.

C
dxij(t)

dt
= − 1

R
xij(t) +

∑
CklεN

r
ij

A(i, j; k, l)ykl(t) + Iij (2.4)

The signal flow model followed by a cell belonging to this class is as shown in Figure

2.5.

Figure 2.5: The system structure depicting the signal flow of the zero-input CNN cell
[10]

(c). Uncoupled CNNs

These networks are defined by equation 2.5. Only the contribution made by that par-

ticular cell is fed back to the input. This networks are uncoupled as the effects of the

neighbouring cells are ignored when computing the cell dynamics.

dxij(t)
dt

= −xij(t) + a00ykl(t) +
∑

CklεN
r
ij

B(i, j; k, l)ukl + Iij (2.5)

where a00 is the template parameter that represents the contribution of that individual

cell to the overall output of the CNN.

The signal flow associated with cells of this class is shown in figure 2.6.

2.2.2 Space Invariant CNNs

Generally, both coupled and uncoupled CNNs can have both time and space variable

templates. This means that the nature of coupling between a cell and its neighbour is



15

Figure 2.6: The system structure depicting the signal flow of the uncoupled CNN cell
[10]

spatially distributed following certain mathematical constraints. The majority of real

life applications require that the coupling distribution between the cells in the entire

network is invariant, thus demanding that the network template parameters are space

invariant [10]. Space invariant networks represent a set networks with cloning template

parameters that do not change throughout the propagation of cellular dynamics in the

entire array. The matrices in equation 2.6 represent the type of template associated

with these networks [12].

A =


a1 a2 a3

a4 a5 a6

a7 a8 a9

 , B =


b1 b2 b3

b4 b5 b6

b7 b8 b9

 (2.6)

where a and b are constant values.

2.2.3 Associative Memories in CNN

The goal of associative memories is to store features or attributes of the input for later

recollection. A network that has the potential to store attributes of the input is vital

in applications such as recognition and classification. For example, in image processing

the raw image data is expressed as a set of pixel values that map onto some domain
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that may represent an edge or some other features that distinctively characterize the

object or one of its class. The goal of an associative processor in this case is to asso-

ciate any other input that it has never learned with the one of its kind that has been

learned. Generation of associative memories in the CNN architecture means the design

of coupling rules between each cell and its neighbours that can be stored as kernel maps

(template) for the recollection of a particular input pattern [13].

There are several methods of implementing associative memories in CNNs. Szolgay

et al [14] propose a fixed point learning method for associative memory design with

space varying templates. The design is based on the autonomous (Zero-input) CNN

model defined in section 2.2.1. The method is based on computing the cost function

that provides the best convergence speed. During learning the equilibrium state of a cell

should be located outside the region of saturation. For this condition to be sufficient,

the magnitude of the equilibrium point is evaluated by equation 2.7.

En
ij = AT

ij .p
n
ij + Iij .y

n
ij : En

ij ≤ E ≤ 1 (2.7)

where n = 1, , , , p;i = 1, , ,M ;j = 1, , , N and E is the constant around which magnitude

of an equilibrium point of a cell is set.

With the satisfaction of the condition in equation 2.7, Szolgay et al uses the Herbial

Lerning Rule to compute the matrix Aij using a weighting factor Wn
ij of the nth pattern

as shown in equation 2.8.

Aij =
p∑

n=1

Wn
ij .p

n
ij (2.8)

Using the Zero-input network, Liu and Lu [15] propose a procedure for the synthesis of

space invariant CNN templates. The design algorithm is based on the eigenstructure

method where a set matrices representing cloning template parameters of the Network

are derived through singular value decomposition. The method is implemented with a

view of the perceptron learning algorithm to ensure convergence at an optimal solution

(i.e. termination of algorithm with stable memories)
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The synthesis procedure for this approach is based on the discrete time CNN model

with the following set equations:

ẋ = −xij + Tij,klsat(x) + Iij where yij = sat(x) (2.9)

where A is chosen to be an identity matrix, Tij,kl is the feedback cloning template and

Iij is the threshold or bias current.

There are several comparisons that can be drawn between the CNN associative model

and its Hopfield counterpart. While the weights of the hopfield network are computed

through a herbian rule, the CNN learning is not limited to any specific rule. The

Hopfield model operates asynchronously, whereas the CNN model can operate in a syn-

chronous mode. Due to local connectivity, the interconnection matrix that is required

to store the stable memories in the CNN is very small. A fully connected hopfield net-

work require more space to store all interconnection weights between the inputs, hidden

layers and the output(s). This comparison is illustrated further in figure 2.7 where the

two networks are compared.

Figure 2.7: (a) A fully Hopfield Network and (b) a 3 X 3 CNN network. A Hopfield of
n = 9 has a total of 729 interconnections, while a CNN of n = NXM = 9 for M =
N = 3, r = 3 has a total of 289 interconnections

2.3 The CNN Analogic Algorithm

Analogic algorithms define the processing methods based on analog and logic computing.

An analogic algorithm entails a combination or sequence of CNN operators required to
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solve a complex problem in real time. For example, the necessary steps required to

perform CNN-based image morphology are implemented as a series of CNN operators.

Analogic algorithm implies the application of one or more CNN space and/or time

variant/invariant template(s) to an input in a predefined sequence and time to generate

a spatio-temporal solution. These algorithms are key to the formulation of a CNN based

solution to spatio-temporal problems. By altering the cloning templates of a network

at specific times and order, the input parameters are processed into some output that

is required for the application on the next processing stage. In [10], an example of an

analogic algorithm that implements non-separable XOR boolean function is designed as

shown in Figure 2.8. In this they show that the XOR can be implemented as a set of

sequential analogic expressions each applying a specific template. The primary building

blocks of the analogic algorithm herein explored are the logic NOT, logic AND and logic

OR which are given by the templates in equations 2.10, 2.11 and 2.12.

Figure 2.8: The analogic algorithm showing how a non-separable Boolean function XOR
is implemented [10]
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(i). The logic NOT

A =


0 0 0

0 1 0

0 0 0

 , B =


0 0 0

0 −2 0

0 0 0

 , I = 0 (2.10)

(ii). The logic AND

A =


0 0 0

0 2 0

0 0 0

 , B =


0 0 0

0 2 0

0 0 0

 , I = −2 (2.11)

(iii). The logic OR

A =


0 0 0

0 2 0

0 0 0

 , B =


0 0 0

0 2 0

0 0 0

 , I = 2 (2.12)

2.4 The Adoption of the CNN Architectures for Image

Processing

Image processing involves the manipulation of the visual and non-visual aspects of an

image with a goal of extracting and studying the information contained in it. Image

processing is a well developed field and has found application in areas such as visual

quality inspection, tracking, pattern recognition and visual classification. Though ar-

tificial intelligent models have been found to be more accurate, most of them do not

address the problem of complexity, memory and computational speed. The emergence

of CNNs have introduced a paradigm of solving complex image processing problems

with increased computational speed and reduction of memory utilisation [1].

Since inception, the CNN architecture has been actively researched for application to

spatio-temporal processing and industries have witnessed the realisation of VLSI-based

visual processors. The simplicity of the CNN architecture has attracted more research

for applicability in visual computing. Highly complex image models have been designed

using CNNs, for example the CNN retina model [16][17], the DNA microprocessor arrays
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[1] and Cellular Wave Computers for Brain-like Spatial-temporal Sensory Computing

[18]. Wang et al [19] investigated the use of CNNs to perform object segmentation

in image sequence, taking advantage of the image statistical data. That is, by map-

ping the image spatial domain to its statistical domain, a robust image segmentation

method can be achieved even in cases of changing background. Szabo and Szolgay [20]

have described an analogic-based (CNN) diffusion algorithm for segmentation of image

by performing CNN-based binary mathematical morphology. The use of bayesian tech-

niques combined with CNNs has also been proposed by many researchers. Milanova,

Elmaghraby and Rubin [11] have discussed the MRF-based method which takes ad-

vantage of the Maximum of a posteriori (MAP) and the CNN energy function. This

method also tries to map the CNN model of an image onto its statistical representation.

There are many CNN templates that exist to handle the image segmentation in different

imaging environments.

Various methods of using CNNs in feature extraction and classification have also been

reported in many publications. Rekeczky et al [21] have developed a framework for

a cellular (visual) sensor computer which performs feature detection based on terrain

classification; and motion analysis based on navigation parameter estimation. In [22]

and [23], Rekeczky et al also detail a method of feature extraction by computing topo-

graphic feature maps from video terrain flows, feature selection by Principal Component

Analysis (PCA) and Decision Trees; and feature classification using Nearest Neighbor

Family (NNF) methods.

Optimization techniques have also been deployed to enhance techniques of feature detec-

tion in CNN architectures. Vandewalle and Dellaert [24] outline a method for automatic

design of CNNs using Genetic Algorithms (GAs) to perform image feature detection.

In order to perform classification using CNN templates, a synthesis of autoassociative

memory (as in the case of Hopfield Networks) is essential. CNN associative memory for

feature recall and classification purposes is achieved through design procedures that try

to mimic the nature of associative recall in Hopfield Networks. [14,15,24] and [25] pro-

pose a variety of methods such as GAs, fixed-point learning and eigenstructure methods

which can be used in template design for associative memories.

These applications unleash CNNs as networks highly suited for complex systems mod-

eling and analysis. In Chapter 3, the use of these networks to derive models for objects
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embedded in multiple object scenarios is explored. The accurate models in these case

are achieved through accurate detection, segmentation and extraction of the object from

the scene in order to study the object in isolation.



Chapter 3

Multiple Object Scenario

Modeling using CNNs

This chapter forms the base of the proposed algorithms for dealing with object modeling

in multiple object scenes. For the purpose of this chapter, a definition of a “multiple

object” scene is outlined first, with emphasis to the inherent complexities in modeling

objects in multiple object views. This chapter extends the available methods for the

designing analogic algorithms that are suitable for this task. The first step required

for a successful model is the filtering stage that normalizes the image and enhance

the pixel intensities to ensure consistency. Various techniques of image filtering are

introduced. The importance of computing statistical tools such as mean, variance,

diffusion and threshold images is also evaluated. The object model is considered accurate

if it successfully leads to an accurate extraction of that object from the scene. In this

chapter, the focus is mainly on the development of analogic algorithms that output the

extracted object. These algorithms are based on the image operators mentioned herein

(i.e. mean, variance etc). With a successful extraction algorithm, a CNN model of the

object can be achieved.

3.1 Defining a Multiple Object Scene

Consider the problem of learning about one object which can appear at various locations

in an image. The object is in the foreground, with a background behind it. This

22
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background can either be fixed for all training images, or vary from image to image.

The two key issues that must be dealt with are pixels being modeled as foreground or

background, and the problem of transformations of the object [26][27]. A multi-object

scene may be very difficult to model as the background may cause pixel infringements

with the objects, and the objects themselves may cause pixel continuity with one another

such that the edges are not detectable. It is also important to note that a background

can be any feature that is of no interest in the main scene. This introduces an interesting

notion that complicates this problem further, which allows the background to vary on

a single scene. A human eye is capable of performing detection and segmentation of

the object in varying background scenes. For comparison purpose, the algorithm used

in modeling and detecting images on a multiple object scene in this case must have the

ability to deal with background changes as in the human eye. Thus to approximate this,

a method that operates on individual image pixels than one that assumes average pixel

intensities over the image area is required. For this reason Cellular Neural Networks

are chosen due to their ability to map each processing unit of the network to a pixel in

the image. In Figure 3.1, a multiple object scene with objects in a black background is

shown, while in Figure 3.2 a different scene wherein an object is defined as a feature of

interest and any other feature that is not being studied is treated as a background.

Figure 3.1: An example of a multiple object scene using objects spatially distributed in
the foreground of the image
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Figure 3.2: An example of a multiple object scene with features/objects where the
background depends on the feature/objects of interest [28]

3.2 Image Preparation

Image-capturing devices and surrounding environment may lead to corruption of the

image with additive Gaussian, in which case the filters are required for noise reduction

and image enhancement [29]. There are techniques available for designing these filters

using CNN architecture.

The mean image is computed through linear diffusion applied to a coupled AB-type

CNN network [31-33][41-44]. Equations 3.1 and 3.2 represent the AB-type CNN model

and the diffusion type template that is used to derive the mean image in the CNN

model, respectively.

ẋ = −x +
∑

A(ij; kl)ykl +
∑

B(ij; kl)ukl + Iij (3.1)

A =


a b a

b 0 b

a b a

 , B =


a b a

b 0 b

a b a

 (3.2)
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where 0 ≤ a, b ≤ 1

The variance of the image in the CNN domain is computed through the average dif-

ference method implemented as a nonlinear B-type template or the Laplace [32]. The

network of this type is as represented in equation 3.3.

ẋij = −xij +
∑

B(ij; kl)(∆ukl) +
∑

B̂(ij; kl)(∆ukl) + Iij (3.3)

where B̂ is the nonlinear input control template.

The CNN template associated with the architecture defined by equation 3.3 is shown

in equation 3.2.

Bb =
1
n


1 1 1

1 0 1

1 1 1

 ,

b = [interp pnum x1y1, x2y2 . . . xnyn] (3.4)

where A = 0, Â = 0, nε< > 1 is the scaling factor, interp is the interpolation method

(i.e. piecewise constant or piecewise linear), pnum is the number of points and x1y1

. . .xnyn are the interpolation points.

Figures 3.3 and 3.4 show the results of mean an variance of the image using the templates

discussed above for a = 0.1, b = 0.15 and n = 16.

3.3 CNN Image Processors

3.3.1 Constrained Diffusion

Partial Differential Equations (PDEs) based methods have been used in the past to

perform a variety of image processing tasks such as smoothing and restoration. The

simplest and easily achievable PDE method for these tasks is the linear diffusion [33]
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Figure 3.3: An image scene with multiple texture objects

Figure 3.4: The mean and variance results computed using the space distributed tem-
plates in equations 3.2 and 3.2. (a) and (b) show the mean images at λ = 0.3 and
λ = 0.7 respectively, and (c) and (d) show variance images using average difference and
nonlinear deferential equation methods

model. However, PDE-based methods for edge detection and segmentation are com-

putationally intensive and often present implementation difficulties [29]. A solution to

this came with the introduction of a nonlinear diffusion method for adaptive smoothing

by Perona and Malik [34], called Constrained Diffusion. Through constrained diffu-

sion, the image is (1) smoothed using linear diffusion, and (2) the pixels are clipped

so that the variation is within a desired threshold through a non-linear constraint step

[35]. The realisation of the nonlinear constraint is a result of further research on the

initial proposal by Perona and Malik, which led to the development of a “variational

regularization method for global edge detection”[29], termed Constrained Anisotropic
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Diffusion [36-38]. A CNN model representing this type of diffusion method is defined

by the following set of equations.

D̂ =


0 Φ 0

Φ 0 Φ

0 Φ 0

 , Φ = g∆vxx

g =

{
1− |∆vxx|/2K if |∆vxx| < 2K

0 otherwise
, B = β(.)(3.5)

There are two ways in which anisotropic diffusion can be realised in the CNN domain.

These are dependent on the type of constraint that is adopted (i.e. linear or non-linear

constraint). The following methods are used for the design of linearly and nonlinearly

constrained anisotropic diffusion [30].

(i). Nonlinear, Linearly Constrained Anisotropic Diffusion

This type of nonlinear diffusion employs the use of a linear constraint. This is done

by performing pixel intensity averaging through a B-type template and scaling the B-

template using a linear constraint. The constraint is chosen by the implementer. The

output of the average difference network is then used as a bias to a nonlinear D-type

diffusion template [30]. This is demonstrated through the following steps:

Step 1 : Pixel intensity averaging through a B-type template.

A = 0, B =
1
n


1 1 1

1 0 1

1 1 1

 (3.6)

where n is the scaling factor for linear diffusion.

Step 2 : Scaling the B-template using the constraint and applying the average intensity
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image computed in Step 1 as a bias to perform a nonlinear diffusion.

B =
1

4× constr


constr

4
constr

2
constr

4
constr

2 constr constr
2

constr
4

constr
2

constr
4

 (3.7)

where constr is a constant linear constraint.

Using the output of Step 1 and the template B resulting from the constraint, the

nonlinear diffusion is computed using the nonlinear D-type template.

anisoD =


0.5 1.0 0.5

1.0 0.0 1.0

0.5 1.0 0.5


anisod = [interp pnum px1py1, px2, py2 . . . pxn, pyn intspec] (3.8)

where px1, py1 . . . pxn, pyn are interpolation coordinates and intspec is the interaction

specification [30].

The diagram in Figure 3.5 shows the flow associated with this analogic algorithm.

(ii). Nonlinear, nonlinearly Constrained Anisotropic Diffusion

This method employs a nonlinear constraint. In this algorithm, the median image is

computed using the uncoupled nonlinear D-type template with a00 = 1. The constraint

here is determined by the bias current I of the network. The median image is then used

as a bias image to compute nonlinear diffusion using the same equation as in equation

3.8[30][41-44]. The following are the necessary steps required to achieve this algorithm:

Step 1 : Median Filtering through uncoupled nonlinear D-type template.

a00 =


0 0 0

0 1 0

0 0 0

 , Dd =
1
n


1 1 1

1 0 1

1 1 1

 ,

d = [interp pnum (px1, py1) (px2, py2) intspec],
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Figure 3.5: Flow diagram representing the nonlinear, linearly constrained anisotropic
diffusion

I = constr (3.9)

where 0 > n > 1.

Step 2 : Using the median image acquired in Step 1 as a bias image to compute the

nonlinearly constrained and diffused image. The nonlinear diffusion used here is the

same as one represented in equation 3.8. The diagram in Figure 3.6 shows the flow

associated with this analogic algorithm.

3.3.2 Adaptive Thresholding

Adaptive thresholding is one of the most essential steps in image detection. Threshold-

ing determines which pixel intensities in a scene represent the characteristic patterns

that can be separated in subsequent steps simply by thresholding the image enhanced

using one of the procedures discussed in section 3.3.1. In simple terms, thresholding

means driving all pixels to black that are above a given threshold value ϑ while leaving

all others white or vice versa [39]. It is also known from Chapter 2 that the amount of

current on the CNN network is controlled by the voltage controlled current source I. In

analogy to this, the pixel intensity in the CNN model of the image is controlled by the
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Figure 3.6: Flow diagram representing the nonlinear, nonlinearly constrained
anisotropic diffusion

CNN bias current I. Thus, we set the bias current as the threshold. CNN-based adaptive

thresholding is performed using both static and dynamic locally adaptive thresholding

methods. The following defines each of these procedures and show how they are imple-

mented into CNN templates:

(a). For static adaptive thresholding, we scale the input control template B of the

CNN network appropriately in accordance with the threshold ϑ set for the application.

In achieving this we make use of an AB-type CNN [30][41-44].

A =


0 0 0

0 3 0

0 0 0

 , B =
1

(4× ϑ)


ϑ
4

ϑ
2

ϑ
4

ϑ
2

ϑ
4

ϑ
2

ϑ
4

ϑ
2

ϑ
4

 , I = −ϑ (3.10)

where ϑ is the constant threshold set for the application.
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(b). For dynamic adaptive thresholding, the following AB-template is used.

A =


0 a 0

a 2a a

0 a 0

 , B =


1
2α α 1

2α

α 4α α
1
2α α 1

2α

 , I = −ϑ (3.11)

where 0 ≥ a ≥ 1, 0 ≥ α ≥ 1 and ϑ is the constraint.

This technique is based on the adaptive morphology technique that is proposed by

Rekeczky et al [29] as an approach to Bubble/Debris image enhancement.

3.3.3 CNN-based Object Detection, Segmentation and Extraction Strate-

gies

Object detection result as a consequence of a better threshold that suppresses the back-

ground into black or white pixels. A success in the thresholding method yields better

results when an object has to be defined as a set of connected pixels of intensities above

a certain threshold. The segmentation technique visits the original or enhanced image

scene to locate the pixels that represent the objects. The representation of the seg-

mented objects rely on the nature of the thresholding used above. There is a variety of

methods for implementing CNN-based edge detection and segmentation. In this case

two methods, namely linear and nonlinear template based methods will be explored.

1. (a). Linear Edge Detector - Since a CNN model is already nonlinear, what is linear

about this type of detector is the cloning template that describes the behaviour

of the network. The implementation of this type of detector is achieved through

the use of the uncoupled AB-type templates. By decoupling each pixel from the

neighbouring pixels, its influence in the network is studied in isolation. This

allows for the method to determine whether the pixel forms the object or the

object edge accordingly with the required threshold. The templates of this type

are represented by the set of matrices in equation 3.12.

A =


0 0 0

0 2a 0

0 0 0

 , B =


1
4a

1
4a

1
4a

1
4a 2a 1

4a
1
4a

1
4a

1
4a

 , I = − 3
4a

(3.12)
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where a is normally chosen to be greater than 1.

2. (b). Nonlinear Edge Detector - This detector is based on a nonlinear AB-type

network [30][41-44]. This detection technique yields enhanced edges of the object

through further image smoothing. It inherits this behaviour from the nonlinear

diffusion techniques discussed in section 3.3.1, which are used for image filtering

and enhancement. In this case a nonlinear B-type input control template is applied

to an object as shown in equation 2.

Bb =


a a a

a 0 a

a a a

 ,

b = [interp pnum (x1, y1), (x2, y2) . . . intspec] (3.13)

where 0 ≥ a ≥ 1

With all object edges detected, an extraction of the object based on the permutations

of the edges is performed. For the purpose of simplicity, it will be assumed that that all

the objects in the multi-object scene do not have holes. This allows for implementation

of hole filling for holes that appear inside the trace of an object edge. The extraction is

done on the original CNN enhanced image.

3.4 The Analogic Algorithm for Object Extraction in Mul-

tiple Object Scenarios

In this section, the algorithm proposed to handle multiple object extraction is presented.

This algorithm is formulated as a combination of the CNN image processors discussed

in section 3.3. The design of this algorithm is also inspired by the algorithm proposed

in [29]. This algorithm is extended to perform extraction of enhanced objects for the

purpose of learning and classification. It is based on constrained anisotropic diffusion

with adaptive local thresholding and 8-connected edge detection.
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3.4.1 The Proposed Algorithm

The algorithm involves computing the mean and variance of the image to get a bias map

to be used for adaptive thresholding, this technique was adopted from [29]. The object is

smoothed and enhanced using constrained anisotropic diffusion. While the superposition

of mean and variance yields a bias map for adaptive thresholding, the output of the

constrained anisotropic diffusion is used as an input image for this stage. The output

of the adaptive thresholding is used to perform segmentation. From the output of the

edge detector, all permutations of the object edges are extracted through boundary

tracing and hole filling. By mapping the traced boundaries and the permutations onto

the CNN enhanced image of the original scene, all pixels within the boundaries forming

the object are extracted. Figure 3.7 shows the flow of the proposed algorithm.

Figure 3.7: Proposed extraction algorithm: Constrained anisotropic diffusion with adap-
tive thresholding

3.4.2 A Practical Example

This section demonstrates the extraction ability of the algorithm herein proposed through

an example. The example is a scene with multiple coins of different sizes and prints



34

as shown in Figure 3.1. The extraction algorithm is applied to the scene to extract all

objects appearing in it such that each object is viewed in isolation. The results are as

shown in Figure 3.8. The objects are shown in the order of appearance in the input

image. The efficiency and accuracy of extraction of the objects from the scene has a

profound impact on the CNN model of the objects. If the extraction algorithm cannot

successfully extract the object, the learning of object features is hampered.

Figure 3.8: Objects Extracted using the proposed extraction algorithm



Chapter 4

Feature Selection and Extraction

Strategies for CNN Classification

Models

The performance of a classification method relies on the art of gathering the most unique

attributes of the learned object. This art can be derived from both mathematical and

analytical methods. In this chapter, some feature extraction strategies are formulated

based on existing theories. Some existing methods will be adopted based on their per-

formance in the field of multiple object learning and classification. The methodologies

for gathering, analysing and manipulating object features to create decision boundaries

are also formulated. This chapter will first outline the strategies used to create decision

boundaries and then further introduces methods of extracting features such as texture,

shape and colour with reference to the storage and representation in the CNN domain.

4.1 Signature Filtering and Decision Boundaries

Features gathered from different objects representing one class must be checked for

consistency and uniqueness [23]. This is to avoid listing features that are only local to an

object as global features representing a class. The procedure formulated in [23] involves

defining threshold values for an acceptable standard deviation and mean between two

35
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signatures. For a signature to be unique in a class, it must have a standard deviation

and mean unique to the class. This ensures that all signatures containing the same

features as those already learned are ignored. Thus,

Scaling all signatures belonging to a class, we use

stddev(Xsb) < thres1mean(Xsb) (4.1)

where Xsb represent the measured signature Xs belonging to class b.

For each class, ensure that the mean for each specific measurement varies within a de-

fined range. This means that any measurement Xs of with a mean outside the threshold

range of a class does not belong to that particular class.

Mean(Xsc)−Mean(X̂sc) < thres2 (4.2)

where X̂sc is a new measurement belonging to class c.

In [23] a strategy for feature selection for supervised learning algorithms is also pre-

sented. This is done by predefining the required classes and capturing the most distinc-

tive features for each class. A strict discrimination of features in the classes is designed

to avoid conflicts. Thus,

arg max
s |(mean(Xsa)−mean(Xsb)| > thres3 (4.3)

and for signatures belonging to one class a:

arg max
s |(mean(Xsa)−mean(X̂sa)| > thres4 (4.4)

where X̂sa is a new measurement belonging to class a.

These techniques have been adopted and modified to suit this application. Of great

importance is the procedure of storing this information [47]. For complex processing

the patterns or signatures must be stored in the CNN network itself. We explore how

features can be stored as stable memories in the CNN architecture.
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4.2 Texture Measurement Methods

Texture is a description of the spatial arrangement of color or intensities in an image

or a selected region of an image [48]. While edges and image lines are visual aspects of

the image, texture is the statistical measure of intensity distribution in the image. The

most common aspects of textures that are normally encountered are size or granularity

(e.g. sand versus pebbles versus boulders), directionality (e.g. stripes versus sand),

random or regular (e.g. sawdust versus woodgrain; stucko versus bricks) and spatial

arrangement of texels [48]. The process of segmenting texels in real images is quite

difficult. As a result, numeric quantities or statistics that describe a texture are used.

Several measures of texture are described below:

(i) First Order Measures - These techniques measure the edge density and direction

of the texels in one texture. The number of pixels representing the texture in one

specific area carries information about how busy that area is [48]. The character-

ization of the texture in that specific area is done by computing the direction of

the edges. This procedure follows the steps below:

Step 1. Compute the edgeness of the texture per unit area.{
p|gradientmag(p) ≥ threshold|

}
A

where p is a pixel forming a texel and A is the unit area.

Step 2. Compute Magnitude and Directions histograms and develop heuristic

for measurements.

Hist = (Histmag,Histdir)

where Histmag and Histdir are magnitude and direction histograms, respectively.

(ii) Statistical Measures - This is the best model for most natural textures [48]. Sta-

tistical filters are used to measure the first order grey level metrics of a texture

based on histograms. Gabor filters [49] are then used to get a strong response

(frequency) at points in an image where there are components that locally have a

particular spatial frequency and orientation.
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4.2.1 CNN Template Design for Texture Analysis

In chapter 2, it was shown that the behaviour of a CNN is influenced by the convolution

kernels A, B and I which are commonly referred to as the Cloning Templates. For

a CNN network to successfully extract features and store them for a later recall, the

Cloning Templates must capture the features of the object, which include texture. There

are various CNN templates that can be used to achieve this, but the simplest and to

implement is the linear AB-type template. For most spatio-temporal processes, the

templates are required to be space invariant. In [41], a template that can be used in

a texture classification problem when the number of different examined textures is, for

instance, more than 10 and the input textures have the same flat grayscale histograms

is designed. The template parameters are set as shown in equation 4.5:

A =



4.21 −1.56 1.56 3.36 0.62

−2.89 4.53 −0.23 3.12 −2.89

2.65 2.18 −4.68 −3.43 −2.81

3.98 1.56 −1.17 −3.12 −3.20

−3.75 −2.18 3.28 2.19 −0.62


,

B =



4.06 −5 0.39 2.11 −1.87

3.90 0.31 −1.95 4.84 −0.31

0 −4.06 0.93 −0.31 0.46

−0.62 −5 2.34 0.62 −1.87

3.59 −0.93 0.15 2.81 −1.87


, z = −5 (4.5)

As highlighted above, this template is only suitable for a certain class of textures. The

templates remain fixed for any data input, thus suggesting that the method is not

adaptive and hence cannot be conveniently used for general classification purposes. We

explore other methods of designing adaptive cellular neural networks that can be used

to capture spatio-temporal properties of objects.

4.2.2 Histogram Based Texture Learning Methods

Histograms store important information about the texels in the object [48]. This infor-

mation is normally represented by the amplitudes of the histogram or the distribution.
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By performing further histogram modification and diffusion filtering, more distinctive

image features can be learned [53][54]. A drawback in this approach is a lack of a better

method to compare histograms. There are several heuristics that can be use to com-

pare histograms. One is to determine the highest intensity amplitude in the histogram

and the number of bins with such intensity in the object. The idea here is that all

textures that exhibit the same behavior or pattern will have the same amplitudes cen-

tered around the same number of bins per intensity. This idea is demonstrated below

through some texture examples. Consider 3 classes of textures shown in the Figures 4.1

to 4.7. For demonstration purposes, we will call the textures Class 1, Class 2 and Class

3 respectively.

Figure 4.1: Class 1 Texture: (a) and (b) are two texture objects used to learn the
histogram behaviour of Class 1 textures. Edited from the columbia image database [54]

Analysis

From figure 4.10, it is possible to create the decision boundaries based on the modi-

fied and diffusion filtered histogram features in each of the classes. Each texture class

exhibit a specific and unique order of the magnitudes of the pixel intensities. The distri-

bution of the intensities is also a distinctive factor. Class 1 textures have their highest

intensity magnitudes centered just above 200 bins, while Class 2 textures have their

highest magnitudes below 100 bins. While Class 2 only have one intensity magnitude

centred below 100 bins, Class 1 textures have two magnitudes centred just after 100 and

150 bins respectively. Class 3 textures have two intensity magnitudes centered at just

above 100 and 200 bins respectively with a relationship that can be generally described
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Figure 4.2: Histograms Associated with Class 1 Object (a) textures

Figure 4.3: Histograms Associated with Class 1 Object (b) textures
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Figure 4.4: Class 2 Texture: (a) and (b) are two texture objects used to learn the
histogram behaviour of Class 2 textures. Edited from the columbia image database [54]

Figure 4.5: Histograms Associated with Class 2 Object (a) textures
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Figure 4.6: Histograms Associated with Class 2 Object (b) textures

Figure 4.7: Class 3 Texture: (a) and (b) are two texture objects used to learn the
histogram behaviour of Class 3 textures. Edited from the columbia image database [54]
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Figure 4.8: Histograms Associated with Class 3 Object (a) textures

Figure 4.9: Histograms Associated with Class 3 Object (b) textures
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by I100+ ≥ 3
2I200+. Based on these results, the following boundary rules can be de-

signed for each class. We first define Imax1 and Imax2 as the first and the second highest

texel intensities measured through the histogram modification of the texture histograms.

Class 1 Textures:

-Imax1 is located at p > 200

-Imax2 is located at p < 100

-|Imax2| < |12Imax1

Class 2 Textures:

-Imax1 is located at p < 100

-Imax2 is located at p < 100 or Imax2 = 0

-For Imax2 6= 0 : |Imax2| ≥ |12Imax1|

Class 3 Textures:

-Imax1 is located at p > 200

-Imax2 is located at p > 100

-|Imax2 ≥ 3
4Imax1

These decision rules can be implemented into an algorithm that can be used to classify

textures into the 3 classes defined here. The underlying drawback in using this method

is that it is manual and nonadaptive. When a new class of texture needs to be created,

the decision boundaries have to be setup manually. Also, the texture pattern may be too

complicated for one to set up operating conditions that best describes that texture. An

ideal method for this should be adaptive and easy to train. The algorithm for designing

the decision rules should be embedded in the method itself. For this reason, in section

4.4 we propose a new method that best suits this application.
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Object (a) Object (b)

Object (a) Object (b)

Object (a) Object (b)

CLASS 1

CLASS 2

CLASS 3

Figure 4.10: Comparison Diagram for Modified and Diffusion filtered histograms for the
3 texture classes. The shaded circles indicate unique features captured through these
types of histograms
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4.3 Template Synthesis Procedures For Learning Object

Features

In the design of associative memories for learning the spatio-temporal properties of

objects, one has to take into account that the template values are the main feature

database of a class. Template design can be very complex as all template values have

to be calculated or estimated to result in the required coupling between the cells. The

templates have to store the most significant features of the object. Liu and Lu [15]

have designed a procedure through which a space invariant template can be synthesised.

They apply the eigenstructure method in which the nonlinear CNN equations are solved

by singular value decomposition procedure to manipulate the template parameters.

The algorithm is based on the uncoupled associative network represented by the set

of equations in 4.6.

ẋij = −a00xij +
∑

T (ij, kl)yij + Iij

yij = sat(xij) (4.6)

The challenge is to design the feedback cloning template T (ij, kj) such that it properly

represents the stable memories of the feature vectors learned for the object. This pro-

cedure is summarized as follows [15, 50-52]:

1. Choose Vectors βi for i = 1, . . . , n and a diagonal matrix A such that:

A = diag(a1, a2, . . . , ai) and,

Aβi = µαi where αi are stable memories and µ is a constant (µ ≥ max(a))

2. We compute the nx(m− 1) matrix Y = (y1, . . . , ym−1) = (α1, . . . , αm−1, αm)

3. The next step is to use singular value decomposition to solve the matrices Y =

USV T T , where U and V are unitary matrices and S is a diagonal matrix with the

singular values of Y on its diagonal.

4. Compute

T+ = [T+
ij ] =

∑
i(ui)(ui)T for i = 0, . . . , p, and

T− = [T−ij ] =
∑

i(ui)(ui)T for i = p + 1, . . . , n

5. Choose a positive value for parameter τ and compute
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T = µT+ + τT+ and I = µαm − Tαm

6. Then α1, ...., αm will be stored as memory vectors in the system 4.6.

This procedure yields a template T (ij, kl) which is symmetric and stable [15].

4.4 Feature Selection and Learning using Genetically Op-

timized CNNs

In this method, we propose the use of genetic algorithms to create stable memories that

store the features of the object. It is proposed that using the simplest CNN architecture,

the template parameters that best captures the features of the input can be estimated

through genetic algorithms. The method is based on optimising the parameters of the

kernel matrix (or cloning template) of the associative network described in chapter 2. In

practice, it may not be sufficient for the algorithm to be restricted into capturing certain

input traits modeled as deterministic rules or mathematical equations. An algorithm

that successfully selects the features without human intervention may yield better results

as there is no mathematical restrictions to govern the selection procedure. The selection

based on genetic algorithm tries to achieve this in practice.

4.4.1 Genetic Algorithms(GAs)

The main challenge that any optimization technique faces is termination at an optimal

solution that describes the global behavior of a process. During optimization, a poor

optimization method can get trapped in the local maxima, which may not be the best

solution in the solution space. This problem is common to most linear optimization

solutions.

Genetic Algorithms inherit their origins from the Darwinian theories of evolution [24,37,55-

59]. In this theory, the survival of a gene is a result of natural selection through fitness.

This natural process is achieved by applying certain genetic operators such as crossover

and mutation. Through these operators new genes that adapt to the competition en-

vironment are created, therefore getting rid of unfit genes that do not optimize the

solution.

Artificial GAs are based on stochastic sampling methods that increase the probability of
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finding an optimal solution by creating somewhat controlled random searches through

the entire solution space. The following describes the steps involved in these algorithms

[58]:

BEGIN

1. Randomly create an initial population beginning at an initial generation. i.e.

P (g) @ g = 0.

2. for each population P (g), evaluate each population member (chromosome)

using the defined fitness evaluation function E possessing the knowledge of

the competition environment.

3. using genetic operators such as inheritance, mutation and crossover, alter

P (g) to produce P (g + 1) from the fit chromosomes in P (g).

4. repeat steps (2) and (3) for the maximum number of generations G ≥ g,

while recording the best population of all the generations.

END

An accurate model of the fitness function using mathematical formula that carries the

knowledge of the competition environment is essential to the evaluation of the chromo-

somes. A poorly designed fitness test will sacrifice the accuracy in the selection and

may lead to incorrect selection of genes. There is also a need to ensure that the system

is stable . A bounded input result into a bounded output (i.e. BIBO stability), thus

suggesting the need to control the bounds for all chromosomes that the GAs can gen-

erate.

GAs have been used to solve complex problems wherein the learning environment does

not provide proper decision boundaries.

4.4.2 Integrating GAs into the CNN Architecture

The Zero-Input CNN (autoassociative) is chosen as the platform of computation for

the spatio-temporal properties of the objects. The method proposed here is based on

optimizing the feedback template to approximate the input Ukl that is supplied to the

CNN as a state image. Using GAs, the output of a zero-input network is continuously
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modified until it matches the state image. The GA uses the evaluation function E as

a measure of how closely the input and the output images of the CNN are matched

through the template T (i, j; k, l) (derived from equation 4.6). The function E is the

error between the input and the output image. Given:

Ẋ = −X +
∑

T (ij, kl)Y + Iij

as the associative CNN network, the goal is to find the best T (ij; kl) that captures

the input traits and the bias Iij required for the pixel intensities to be approximated.

This concept is illustrated by the diagram in figure 4.11. Creating the next generation,

fitness = 1 − cost(T, I) is used to determine if the population has a high survival

possibility. The fitness evaluation function is computed as the square error between the

CNN output and the input training image. The square error is calculated to ensure

that only the magnitudes of the errors are considered. This is shown in equation 4.7:

Figure 4.11: The Proposed CNN associative model based on GA optimization
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E = −
∑

(Yij − Uij)2 (4.7)

where Yij is the output of the CNN and Uij is the training image (i.e. a small CNN

image containing details about the feature(s) characterizing a class). GA evaluation

technique is based on ensuring the highest value possible for the evaluation function

(i.e. finding chromosomes that maximise E). However, in this case it is required that

the smallest value possible be the optimal solution (i.e. reduced error). To ensure that

GA minimizes the error, error equation is negated such that the maximum possible

solution achievable in the network is zero.

With the CNN architecture adopted in this algorithm and a 3X3 template, the to-

tal number of parameters that need to be stored is 10, 9 of which represent a 3 X 3

convolution kernel Tij,kl and one represents the CNN bias Iij . It is well known that GA

performance decreases when searching in large parameter space as it becomes computa-

tionally challenging to iterate through all elements and observing their contribution to

the overall solution [38]. It thus becomes important to limit the number of parameters

that require optimization. Also, it has been reported in [38] that a CNN based on a

3X3 network has the ability to capture enough information on the training data.

The set of matrices in equation 4.8 represents a model of the chromosomes generated

by GAs and used to create a CNN kernel [62]:

T (i, j; k, l) =


seed(1) seed(2) seed(3)

seed(4) seed(5) seed(6)

seed(7) seed(8) seed(9)

 ,

Iij = seed(10) (4.8)

The GA solution bounds for the elements in matrices Tij,kl and Iij must be set in order

to have result in a bounded output (i.e. bounds [−x; +x] where −x and +x respectively

denotes the lowest and the highest chromosome values expected in the generations).



Chapter 5

The Analogic Algorithms for

Object Detection and

Classification in Multiple Object

Scenarios

This Chapter is the integration of all chapters that build up the basis of the proposed

algorithms. In this chapter, both the learning and classification methods based on the

discussions and propositions made in chapter 4 are developed. The main building blocks

of the learning and classification algorithms proposed in this case are the object extrac-

tion from a multiple object scene, feature extraction and learning; and the classification

of learned features into predefined classes. Two feature selection strategies for multiple

object scenes are proposed, namely (1) feature learning through GA optimization and

(2) texture learning through histograms.

The first method is based on designing autoassociative memories in the CNN model

and optimizing feature learning using GAs. This is achieved through the use of a zero-

input CNNs and genetically optimized, space-invariant cloning templates. For GAs to

efficiently optimize the kernel matrices of the CNN, the number of kernel parameters

51
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that require GA modification should be small. The choice of the autonomous CNN net-

work facilitates the reduction of parameters in the kernel as the network only requires

the feedback template and the bias current to be set up. With the choice of a 3X3

network, the number of chromosomes required by the GA is reduced to 10.

The second approach that is proposed in this research is based on the comparisons

of the diffusion filtered(DF) and modified(MD) histograms generated for each object

texture. The shape and the locations of maximum intensities for different textures in

the DF and MD histograms are different. This information is used to design decision

boundaries for each texture class. A procedure for designing class boundaries by exam-

ining specific features in the histograms is proposed and outlined.

Firstly, this chapter introduces the spatio-temporal learning algorithm based on 3 stages,

namely the preprocessing stage that removes gaussian noise and enhance the image, the

object extraction technique that is based on boundary tracing and hole filling meth-

ods and the spatio-temporal learning of features in the object is done and the features

therein are grouped into categories or classes. As these parts have already been dis-

cussed in the chapters above, the discussions in this chapter will mainly be centered on

how they integrate to form a complete classification algorithm. Finally, the classification

algorithm proposed for this application is outlined.

5.1 Classification Using CNN Associative Memories and

GAs

5.1.1 The Extraction and Training Algorithms

An efficient algorithm for spatio-temporal learning is one that learns the most distin-

guishing features of the object from the environment in which the object appears in. If

the object appears in a different environment alone, the algorithm should possess the

knowledge to be able to detect the object. Taking this into account, the extraction

of the object in order to learn it separately from the environment becomes the first

step of the learning algorithm. The learning algorithm proposed here first implements
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an analogic technique that filters out the noise and extract the object from a multiple

object environment before learning takes place. This is an important step as objects

in natural scenes do not often appear in the image alone. The extraction algorithm is

based on anisotropic diffusion and adaptive thresholding discussed in section 3.3.1 and

3.3.2 respectively. The second part of the algorithm is training the CNN associative

architecture for extraction and storage of input features as stable memories in cloning

templates. The training is implemented as a recursive genetic learning approach that

truncates the learning error towards an optimal solution (i.e globally stable memories).

This algorithm is summerised by the flow diagram in figure 5.1. The learning algorithm

can be described as follows:

1. For a 3X3 network, start off with a gene population of 10 and generation 1. -

estimate T (ij, kl) and I(ij) such that Y = U .

2. Evaluate the genes using the evaluation function E = Y − U where Y is the

output of the CNN and U is the training set. The smallest value of E indicates

the similarity between the input and the output, and thus the optimal stable

memories that must be stored in T (ij, kl) and I(ij)

3. The process must be repeated for a number of n generations, while the genetic

operators such as crossover and mutations are applied to yield the population for

the next generation.

4. A class is a set of template parameters that represent learned features of objects

with a similar behaviour (i.e. T (ij, kl) and I(ij) that are generated for each class).

Consider a multiple object image shown as an input of the learning algorithm in figure

5.2, the image is transformed for feature learning as shown by the optical flow in the

processing stages of the proposed algorithm.
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5.2 Texture-based Feature Extraction Using DF and MD

Histograms

The concept of using histograms to perform classification tasks was outlined in sec-

tion 4.2.2. Using diffusion filtered and modified histograms, different texel intensity

magnitudes in the object are detected. The number of bins with the highest texel in-

tensities in the histogram also represent how repetitive the texture pattern is. The

number of non-zero intensity magnitudes represent the unevenness of that texture and

the repetitiveness of each intensity. There are no established rules known in research for

comparing different histograms. In this section, various heuristics are used to formulate

a method for designing boundary conditions for each class based on the information

captured in the DF and MD histograms.

Using the CNN model, the training objects are extracted from a scene and enhanced

through CNN analogic algorithms for nonlinear diffusion and then MD and DF his-

tograms are generated. The histograms for each of the textures are then compared to

generate the decision boundaries that can be used to classify the textures. To generate

the decision boundaries, three highest texel intensities and their respective number of

bins are determined from the histograms and this information is compared for all ob-

jects in the same texture class. The bounds for the maximum intensities and number of

bins per area A of a certain texture are determined and the information is then stored

as class features.

Heuristics for Designing Texture-based Class Boundaries

From the illustrative DF histogram in Fig 5.3, we define:

-Imax3, Imax1 and Imax1 as the first, second and third highest intensities measured by

the histogram for a particular texture object. Imax3 > Imax2 > Imax1

-nbin is the number of bins with a particular texel intensity in the image per predefined

area A

-pos defines the bounds of an intensity magnitude in terms of number of bins

-nomax2 the boolean indicator for Imax2 measurements
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-nomax1 the boolean indicator for Imax1 measurements

-n is a constant multiplier between texel intensities

-For A Class X texture shown in figure 5.3

• Imax2 > n ∗ Imax3. This condition determines the difference factor between the

highest and second highest intensities in the texture image.

• For Imax3: 0.75∗nbin < pos < nbin. The condition gives the bounds for number

of bins with highest maximum intensities in area A.

• For Imax2: 0.5∗nbin < pos < 0.75∗nbin. This condition is necessary to determine

the bounds for number of bins with Imax2 intensities

• If Imax2 == 0 : nomax2 = 0 else nomax2 = 1. This condition is necessary for

textures with only 1 non-zero intensity magnitudes.

• If Imax1 == 0 : nomax1 = 0 else nomax1 = 1. This condition is necessary for

textures with only 2 non-zero intensity magnitudes.

• Repeat these steps for other texture classes by studying the intensities and their

locations in the histograms and setting the parameters above accordingly.

The texture based feature learning approach outlined above is summerised in the flow

diagram shown in figure 5.4.

5.3 Classification Algorithm

The input of the classification is a multi-object scenario that has not been encountered

before. The entire image is passed into each class template for processing. The classi-

fication only require a constrained anisotropic diffusion filtering stage for noise removal

and enhancement of the image. An object belonging to Class A, for example, is only

visible if the template representing Class A features is applied, and so is for the rest of

the classes. Any object in the multiple object scene belonging to a class other than that

of the applied template is suppressed into a black background. The objects appear as a

set of white pixels distributed in the multiple object image. Colour coding can also be
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Figure 5.3: A Typical diffusion filtered histogram

used to mark objects belonging to one class.

As in the training algorithm for the first method proposed, the classification algorithm

uses the associative CNN. The input image is applied to the network as a state image.

In summary, the classification algorithm applies an input multiple object image into:

Ẋ = −X +
∑

TA ∗ Y + IA (5.1)

where X is the state image set to the input image (X = U), TA and IA are template

parameters representing Class A and Y is a binary image representing the location of

objects belonging to Class A as white pixels in a black background.

In the second method, the classification applies a histogram generator to get DF and MD

histograms, and then uses the stored decision boundaries to classify the object. Thus,

for a three class problem the classification algorithm generates three images from the

multiple object input image, with each image showing a display of objects belonging to

that class as a set of white pixels. The diagram in figure 5.5 represents the algorithmic

and optical flows of this classification algorithm.
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Chapter 6

Application Examples and

Analysis

In this chapter, application examples using the proposed algorithms are presented. The

first algorithm is applied to the field of satellite data modeling for landuse/cover classi-

fication purposes. In the resent past, there has been an increase in research for satellite

data interpretation. This is due to the increasing need to study the global phenom-

ena such as global warming, urbanization, climatic changes and land cover and land

use pattern changes. This is also yielded by the cheap availability of satellite data for

public use. Satellite sensing technologies have also improved significantly in the past,

now yielding satellite sensors with very high spatial, spectral and temporal resolutions.

Landsat have launched landsat 7 satellite that provides geographical data for the United

States Geographical Survey (USGS). The second algorithm is applied to a scene with

4-class texture objects. The Histogram modification is done and the decision bound-

aries for each class are established. The objects are then classified using the boundaries

formulated.
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6.1 Application Example 1: Satellite Data Classification

using Genetically Optimized CNNs

In this example the proposed method is applied to a landsat 7 scene in order to char-

acterize and classify the land cover features of a scene located in the source of the

Nile river, Jinja, Uganda. The purpose is to classify the scene features into built-up,

vegetation and water areas. This example appears in [62] that was published during

this research. The input image to the algorithm presented in figure 5.1 in the previous

chapter is as shown in figure 6.1.

Figure 6.1: The source of the river nile, Jinja: 2001 Landsat 7 scene (row 171 and row
60) with built-up, vegetation and water areas [28]

The resulting cloning templates for each class as found from the algorithm are shown in

equations 6.1 to 6.3. In the equations, TB, TV and TW are the space invariant cloning

templates generated by the GA algorithm for the built-up, vegetation and water areas

respectively.
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TB(ij, kl) =


−0.952 −2.985 3.083

4.500 3.997 3.906

−4.019 0.367 0.367

 , IB =
(
−4.0305

)
(6.1)

TV (ij, kl) =


−1.198 −5.587 −5.035

−1.430 −3.997 −0.063

−3.024 −5.556 −6.003

 , IV =
(
−5.654

)
(6.2)

TW (ij, kl) =


−3.520 3.111 3.282

1.543 2.835 2.352

1.690 1.540 −0.845

 , IW =
(
−7.9453

)
(6.3)

When these templates are applied to the input image in figure 6.1, the classification

images shown in 6.2, 6.3 and 6.4 are found.

Figure 6.2: Extracted built-up areas using the proposed GA optimized associative CNNs

A possible application for this is in the field of environmental studies, wherein the

relationships between different land cover features can be compared through images.

Example of these relationships are depicted by images 6.5, 6.6 and 6.7 that can be used
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Figure 6.3: Extracted vegetation areas using the proposed GA optimized associative
CNNs

Figure 6.4: Extracted water areas using the proposed GA optimized associative CNNs
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to study the relationships built-up vs vegetation, vegetation vs water, and Build-up vs

water respectively. These studies have yielding results in formulating regulatory laws

for governing and monitoring the environment.

Figure 6.5: Built-up areas versus Vegetation areas
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Figure 6.6: Vegetation areas versus Water areas

Figure 6.7: Built-up areas versus Water areas
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6.2 Application Example 2: Texture Classification using

DF and MD Histograms

Consider an image shown in figure 6.8. There are four texture classes in the image

as shown by the arrows. The histograms representing each texture class are shown in

figures 6.9, 6.10, 6.11 and 6.12.

Figure 6.8: 4-Class Texture objects scene

Figure 6.9: Class 1 MD and DF histograms

The classification images for each class are shown in figure 6.13. The objects that are

circled in the images are those incorrectly classified.
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Figure 6.10: Class 2 MD and DF histograms

Figure 6.11: Class 3 MD and DF histograms

Figure 6.12: Class 4 MD and DF histograms



69

Class 1

Class 2

Class 3

Class 4

Figure 6.13: Classification images generated by decision boundaries based on DF and
MD histograms
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6.3 Analysis

Cellular Neural networks were introduced in Chapters 1 and 2 as a paradigm for com-

plexity. In this dissertation, a method of computing and understanding the spatio-

temporal properties of multiple object scenes was proposed, making use of CNNs as a

platform for computing. This chapter attempts to justify the suitability of CNNs for

spatio-temporal processing tasks through the analysis of the results from application

examples presented in sections 6.1 and 6.2. First the analysis procedure to be used is

presented, followed by the analysis of results from each example. The last section draws

the differences between CNN architectures and a well-known Hopfield network as a way

of demonstrating a number of advantages inherent in the use of the CNN the model in

spatio-temporal processing.

6.3.1 Analysis Procedure

In this section, the procedure to evaluate the performance of the solution proposed

for multiple object scenario is developed. The following aspects will be considered to

develop an analysis procedure:

• Architectural Efficiency - This test will measure the efficiency of the architec-

ture used in modeling the problem that this research has embarked to solve. The

aspects of architecture that are of concern are the simplicity of the model, integra-

tion suitability for on-chip spatio-temporal solutions, scalability and synchronous

processing.

• Memory efficiency and learning ability - This procedure will evaluate the

computational speed for both learning and classification algorithms.

• Processing Accuracy and Efficiency - Here the error rate of the proposed

solution is measured and the efficiency of the algorithm calculated based on the

application example presented in Chapter 6.

• Comparison with other network architectures - In this procedure the CNN

is compared with its counterparts based on established theories and limitations
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6.3.2 Analysis of the Results

(a). The Architectural Efficiency of the CNN Model

CNNs are analog processors. In comparison with their digital counterparts, analog pro-

cessors have been found to be very fast computers. The challenge in analog processing

is to establish decision rules based on signal levels. CNNs achieve this by using logic

rules that are common to digital processing. Thus, CNNs provide the best of both

worlds, i.e the fast processing speed of the analog world, and the accurate decision rules

of the digital world. Each single cell of the CNN is a processing unit, which means that

more data can be processed faster all at once. This puts CNNs in a good position in

the race to parallel processing. CNNs are based on local processing, requiring only few

data to be stored to achieve the model. The local processing nature puts cellular neural

networks as ideal candidates for on-chip Very Large Scale Integration (VLSI).

(b). Memory Usage and Learning Ability

Assuming a common AB-type network based on a 3 x 3 template, there are only 19

elements that require permanent storage in the CNN representation. These are the A,

B, and I kernel matrices that defines the behaviour of the network. However, a net-

work adopted for processing multiple object scenarios in this research is an associative

network which only requires 10 elements of the kernel matrix for representation. This

further reduces the memory usage, making the CNN the most ideal candidate for on-

chip integration. Also, the processing power of this network is two-fold. On one hand

there is its analogic nature, and on the other there is the parallelism. The combination

of these makes the CNN model have the computing power of a supercomputer.

With little memory required for CNN model representation, the CNN still possess a

high learning ability. This is achieved by developing only local interactions that best

represent the overall behavior of the network. The a 3x3 CNN is normally enough to

capture the most distinguishing features of the object. The graph in figure 6.14 shows

the learning curves for the GA-based learning algorithm in the application example

presented in chapter 6.
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Figure 6.14: Learning curves of the GA-based algorithm

(c). Processing Accuracy and Efficiency of the Model

Using the results from the application example in sections 6.1 and 6.2, the classifica-

tion error can be calculated. By mapping the classification images generated by the

algorithm proposed the number of pixels incorrectly classified can be obtained. The

mappings are done by computing images that represent the relationships “builtup vs

vegetation”, “vegetation vs water” and “builtup vs water images”. From these rela-

tionships, an image that represent clashing pixels is generated. Pixel clashes in the

relationship images represent a classification error from either one of the classifier tem-

plates belonging to the classes being compared. The images in figures 6.15, 6.16 and

6.17 show the error pixels in black and their exact locations in the input study image.

The number of error pixels per each comparison of the classification images is as follows:

-Builtup Area VS Vegetation Area = 2189 error pixels

-Vegetation Area VS Water Area = 1734 error pixels

-Builtup Area VS Water = 48 error pixels

From the error pixels, the classification error of the algorithm can be calculated. By
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Figure 6.15: Error pixels in the classification of Built Area vs Vegetation Area

Figure 6.16: Error pixels in the classification of Vegetation Area vs Water Area



74

Figure 6.17: Error pixels in the classification of Built Area vs Water Area

labeling these pixels as error pixels in the image, it is automatically implied that all

the other pixels in the image are correctly classified, so the classification error is then

calculated as the percentage of the error pixels in the total image as follows:

1. Built vs Vegetation

% error = (
no. of error pixels

Total image pixels
) ∗ 100 =

2189
90601

∗ 100 = 2.4%

2. Vegetation vs Water

% error = (
no. of error pixels

Total image pixels
) ∗ 100 =

1734
90601

∗ 100 = 1.91%

3. Builtup vs Water

% error = (
no. of error pixels

Total image pixels
) ∗ 100 =

28
90601

∗ 100 = 0.03%

4. Thus, from the error estimations in points 1, 2 and 3 the overall efficiency is calcu-

lated as
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% efficiency = 100− 2.4 + 1.91 + 0.03
3

= 98.6%

In view of the results shown by error and efficiency calculations, it can be concluded that

CNNs optimized with GAs are well suited to the spatio-temporal classification problems.

It is also important that this accuracy is achieved with reduced architectural complexity,

increased computational speed, one-to-one mapping between pixels and neurons and a

cheap analog circuit ready for on-chip integration.

6.3.3 Efficiency of the texture-based approach

The efficiency of classification of textures based on histograms is hindered by the lack

of a more precise method of comparing histograms. The task of designing boundary

conditions for each class is done as a manual process. This may not be accurate as

the performance is highly dependent on the ability of the designer to capture global

relationships between objects of same textures. There is a need to design an AI based

tool for capturing the histogram relationships that govern a class of objects with a

certain texture. This method will eliminate locally optimal designs and the errors

introduced by the use of common heuristics in the class designs. However, classification

of object based on textures remain a very effective tool provided that accurate boundary

conditions are captured from the histograms.

From the results provided in section 6.2, it is has been shown that the method is effective

as 4 out of 15 objects were correctly classified. By redesigning the bounds to represent

the global behaviour of texel intensities per area, all objects can be correctly classified.

6.4 Comparison with other Network Models

We now compare the CNN model that was studied and applied in this dissertation with

the well known Hopfield model. This is done in the spirit of demonstrating some advan-

tages of the CNN model over the hopfield architecture in spatio-temporal processing.

Below are some few comparisons that can be drawn between the CNN and the Hopfield

model.
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Table 6.1: Comparison of the CNN and the Hopfield Models.

Area CNN Hopfield

Network Connectiv-

ity

Local Global

Operating mode Synchronous mode Asynchronous

Associative Memo-

ries

Coupling rules set by tem-

plate synthesis procedures or

Optimization

Weights are computed by the

Hebb rule

Processing Circuitry Analog circuit Digital Circuit

Processing Elements Cells Nodes

Spatio-temporal

Mapping

One-to-one with image pixels Depends on representation

Number of Inputs vs

Network Nodes

A CNN of n = NXM =

9 for M = N = 3, r = 3 has

a total of 289 interconnections

A Hopfield Network of n = 9

has a total of 729 interconnec-

tions

Template symmetry No assumption about tem-

plate symmetry

Template is required to be

symmetric



Chapter 7

Conclusion, Discussions and

Recommendations

7.1 On Suitability of the CNN to Spatio-temporal Pro-

cessing

Using the CNN model, it has been illustrated in this dissertation that a complex system

can be modeled using an associative network. The model only requires few elements and

is mathematically easy. Through achieving the model of a cell that best represent the

data structure and its patterns in the network, a complex environment is reduced into

a model easy to understand and compute. In this dissertation, we chose autonomous

CNNs as the platform for modeling the spatio-temporal properties of objects. The model

has led to a proper extraction of the objects and the ease of formulation for learning

methods. An accuracy of 98% in the classification problem outlined in section 6 indicates

that these networks have high performance in spatio-temporal environments. There is

also a notable difference in structural constituents between the CNNs and the Hopfield

as tabulated in Table 6.1 of section 6. This has yielding factors in terms of computa-

tional speed, memory usage and implementation difficulties. These further motivates

the adoption of CNNs by many researchers as an image processing platform. Through

this research, the powerful processing nature of the CNN has been demonstrated.
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7.2 On Feature Learning and Classification

Like any other network, the CNN performance in classification also require further opti-

mization to terminate at a global solution for each class of objects. This document has

proposed the use of Genetic Algorithms to optimize autoassociative CNNs to perform

learning of spatio-temporal features. It is important to note that most of the feature

learning algorithms known in research are instructed by a user program to capture

certain specific features (measured through mathematical computations) of the object.

The proposed algorithm using GAs in this research does not make this assumption. It

however allows the learning algorithm to extract any feature(s) from the object that

best distinguish it from the rest. This presents an advantage in cases where there may

not be a better mathematical model for extracting features. We single out one statisti-

cal feature extractor that is worth noting, this is the texture histograms. Though this

method requires a lot of manual computations in forming decision boundaries for object

classes, it remains effective. With accurate class design all the objects in a multiple

object scene can be correctly classified.

The efficiency of the CNN network also lies in the ability to implement analogic algo-

rithms. This means that certain templates required in more than one processing stages

can be reused whenever the need arise. These analogic algorithms take place at pixel

level and hence are applied in accordance with the required or existing coupling rules

on the network. This very nature of CNNs makes them more easier to design and scale

according to the application requirements.

7.3 Research Contribution

This section serves as a reaffirmation of the contributions stated in section 1.4. The

algorithms developed on chapters 4 and 5 yield a solution which reduces model com-

plexity, increases the computational speed as well as the easy-to-implement training

algorithm for samples to be detected. This document has outlined various advantages

of CNNs over classic image processing methods. Also, this research work has also ad-

dressed a solution of modeling with multiple image scenes. By learning each object from

its surrounding environment (i.e. in a multiple image scene of its existence), the object

appearing in a multiple image scene can be easily detected and classified. The solutions
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proposed in this research are applicable to industrial processing tasks such as visual

quality inspection, surveillance and monitoring as well as geographical data analysis.

This research proposes an efficient way of handling scenes with more than one object

belonging to different classes.

7.4 Future Work and Recommendations

Though the algorithm proposed in this dissertation was reported to be efficient, there

are areas of concern that require further research. The accuracy of Genetic Algorithms

has shown a decrease when the need to use templates with neighbourhoods greater than

2 arise. While templates with more parameters may capture more data on the input,

they cannot be optimized using GAs unless the parameters are reduced by setting some

to constant values. Setting some parameters to constant values may sacrifice the tem-

plate’s feature capturing abilities, while leaving them as variables for GA optimization

may result in a large GA solution space that may not terminate at optimal templates.

Arriving at a trade-off between these two is a matter of further research.

There is also the need to devise a standardized method for histogram comparisons in

texture-based feature extractions. Histograms provide more important aspects about

textures on the image, thus a better way of establishing texture classes will be in support

of the strength of histograms in this field.
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