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ABSTRACT

Recent financial crises have highlighted the sensitivity and vulnerability of financial markets

to inflation, which reduces the value of money and affects the net returns of financial instru-

ments. In response to this, investors who are concerned with maintaining their investment’s

purchasing power rather than its market value are resorting to inflation linked (IL) products

to hedge their inflation risk. Consequently, the inflation market has been rapidly growing for

the last decade and has further great potential growth worldwide. It is highly probable that

inflation linked derivatives will eventually be as common as conventional products. Another

cause of the inflation market boost is the growing extension of the time frame of financial

transactions, which has generated an increase in inflation expectation; since 1980 the av-

erage time to maturity of long-dated transactions went from one decade to three decades.

This is, in part, due to the ageing population in the developed world. This research inves-

tigates some alternative models in order to improve the match between model prices and

observed prices in the American and South African inflation markets. It takes into account

the relative illiquidity of IL products. The main tools used are Lévy distributions, macroe-

conomic factors, no-arbitrage and pricing kernel models. Lévy processes can replicate the

behaviour of the return innovations of a wide range of financial securities. Adding a stochas-

tic time change to the Lévy process randomises the market clock, thus generating stochastic

volatilities, higher stochastic return moments and eventually stochastic skewness. These are

observed stylised facts most conventional models do not achieve. Moreover, in contrast to

the hidden factor approach, each Lévy process component and its stochastic time change

can readily be assigned an economic meaning. This explicit economic mapping facilitates

the interpretation of current models and provides a more intuitive approach to building

new models that capture other observed behaviours. Finally, Lévy processes also provide

tractable formulas for derivative pricing and market estimations. In general, inflation is a

consequence of macroeconomic factors. Exogenous dynamics of the most significant of these

factors are used to deduce the endogenous inflation dynamics in some of the considered

models. In these cases, the calibration of the pricing kernel models requires little historical



data on IL derivatives. In fact, the required macroeconomic historical data is easily available

because of the current national and international legislation.

Key words: market illiquidity, inflation linked products, Lévy processes, pricing kernel,

macroeconomic factors.
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Preface

For the last decades major economies worldwide have been experiencing a constantly increasing

inflation rate. Combined with historically low interest rates and high money growth (more than

18% per year for China [74]), these place the Central Banks far behind the current inflation/interest

rate curve. Moreover, if Central Banks fight inflation by raising interest rates, their currency will

strengthen, but they will lose market shares. The fact that inflation is rising and should keep

increasing steadily for the coming years, if not decades; has led to the introduction of a new type of

financial instrument.

Instead of preserving the investment’s (nominal) value, these instruments guarantee its purchasing

power throughout the years at a certain threshold. These securities are termed inflation linked (IL)

or inflation indexed (II) derivatives and have their payoff linked to a price index, i.e. the prices of

goods and services.

Furthermore, IL securities are often more profitable than their corresponding nominal (i.e. conven-

tional) counterparts. This is because inflation expectation is mostly non-negative (especially for long

maturities e.g. 10, 20 years and more) due to fluctuations in supply and demand. For example1 not

long ago a “normal” car had no air-conditioner, nor CD player. Nowadays, because “most” recent

cars have both air conditioning and CD (and even MP3) players they are more expensive; that is

inflation. In the meantime, wages did not necessary follow; thus to buy a car people take credit.

Since future money gets used today, the amount of money available today is “virtually” increased.

But, from the time value of money, R100 moved back to today is not “really” worth R100 today.

Hence disrupting the equilibrium between overall value of money in circulation and overall value

of “goods” being produced. To restore this equilibrium, the intrinsic value (purchasing power) of

money needs to be devaluated. This imbalance gets propagated in other sectors like oil, food, etc.
1These are simplified examples, an extensive coverage can be found in Economics books and on the web [105].

1
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Assuming the features of a car didn’t change over time, again because of technological evolution in

the car production system, over time, more cars get produced during a given period of time. Hence

supply “exceeds” demand, to restore the equilibrium between supply and demand, the price of cars

should go down. If this happened, the car industry will not get rewarded for their achievements.

Thus they won’t be aiming for constant improvement. In the previous example setting to maintain

the equilibrium between supply and demand, the price of new cars should be identical to old ones’

(without air conditioning and player) and the same problem is faced. Governments generally imple-

ment schemes to maintain the prices of services and goods “almost” constant, thus contributing to

inflation.

The major drawback of the inflation market is its relative illiquidity just as the interest rate market

at its beginning. And similarly, to the latter market, the inflation market should experience a fast

growth in the coming years; eventually rejoining the interest rate market among the key components

of the financial world.

Mathematical models in Finance literature and those used by investors are mainly based on Brownian

motion although it is known that real-life financial data provides a different statistical behaviour

than that implied by these models [8, 27, 109, 55, 9]. Recent empirical studies [48, 35] have proven

that Lévy processes are better distributions than the normal distribution for models in Finance in

general and for returns distribution in particular, because of their accuracy and flexibility. Moreover,

Lévy processes do not only improve the fit of the distribution, but they give a more realistic and

intuitive picture of the price movements at the microstructure level [46]. This study investigates

how general Lévy processes can be applied to the inflation market’s models.

The emphasis in this study lies on the application of Lévy processes in inflation models, particularly

the pricing of IL bonds, swaps, caps and floors. In this process, both no-arbitrage and pricing kernel

models are considered. In pricing kernel models, the main question is the modelling of the stochastic

process governing the prices of contingent claims. An alternative approach to compensating for

market illiquidity is through macroeconomic factors specification, which is not exclusive of previous

approaches.

Here is a brief overview of each chapter. Chapter 1 briefly surveys some aspects of inflation and

existing inflation derivative models. Chapter 2 reviews generalised hyperbolic distributions and

Lévy processes’ characteristics, with focus on how Lévy processes can be used to generalise the

classical structural approach due to Merton [83]. Chapter 3 generalises the Heath Jarrow Morton
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(HJM) approach proposed by Jarrow and Yildirim [71] for IL products’ pricing and later extended

by Hinnerich [63] for marked point processes. Moreover, the new framework is used to price IL

swaps, caps and floors.

Chapters 4 and 5 introduce two pricing kernel frameworks. The former framework built by Hughston

and Macrina [68] is a stochastic monetary economy structure to price IL securities. While the latter

chapter does a reverse engineering [8] of the nominal and real pricing kernels from bond prices (IL

and nominal) and inflation. The latter model is an improvement on the previous model because

it does not use the agent’s utility functions, thus avoiding the widely documented discrepancies

between representative agent theories and observed asset prices [61].

Chapter 6 starts via an empirical study of the inflation market’s data both for the South African and

the American markets. Note that the former market is in a developing country, i.e. more illiquid

than the latter market which is in a developed country. The study looks at the Lévy distributions

fit against the normal distribution fit. It comes out that there is always at least a Lévy distribution

that performs better than the normal distribution. Moreover, Lévy distributions have more degrees

of freedom than their Gaussian counterpart thanks to their increased number of parameters, which

make them more flexible and robust for calibration purposes. In the second part, Chapter 6 provides

calibration tools used in the other chapters for option prices’ calibration.



Chapter 1

Inflation Modelling

As of December 2003 there had been eleven issuances of Treasury Inflation Protected Securities

(TIPS) by the US treasury. TIPS are meant to preserve the purchasing power of investors instead

of the nominal value of their investment. Since their first appearance in the 18th century, it is only

during the last decade that they have become more and more popular. Almost non-existent in 2001,

the inflation market grew to about e50bn notional through the broker market in 2004, doubling its

value in 2003 [72].

Inflation is a persistent increase in the price of products and services; it is synonym to a persistent

decline in the purchase power of money. The opposite price’s movement, a decrease in the price of

products is called deflation. Although deflation might seem desired, inflation and deflation conflict

with the Central Bank objective to stabilize prices through their monetary policy.

Definition 1.1. Inflation (resp. deflation) is defined as the relative increase (resp. decrease) of the

level of the consumer price index over a period of time.

The generalized and constant rise in the prices of goods has generated a growing interest for products

whose value is linked to a price index and thus “indirectly” to inflation. These instruments are

referred to as inflation linked (IL) or inflation indexed (II) derivatives. They are meant to preserve

an investor’s purchasing power at a certain level throughout the years. This is achieved by linking

their pay-off to the growth rate of prices.

The present chapter gives an overview of the inflation market and existing frameworks for IL deriva-

tives pricing. Section 1.1 describes the inflation market and its main players. Section 1.2 reviews

the most commonly traded IL instruments and their main features. And finally, Section 1.3 presents

4
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some existing frameworks for the pricing of IL products.

1.1 Inflation Market

Inflation is a measure of the variation of the price of a predefined basket of goods and services. Obvi-

ously, the composition of this reference basket greatly impacts the value of the inflation. According

to the basket’s components and their respective weight, a variety of inflation indexes has been de-

fined. Examples of inflation indexes are the Consumer Price Index (CPI), the Retail Price Index

(RPI), the Euro-zone Harmonised Index of Consumer Prices (Euro-HICP) and the Gross Domestic

Product (GDP).

Usually inflation is not high enough to be noticed over a short period of time. Nevertheless a

straightforward computation shows that if over 30 years we have an averaged inflation of 1% per

annum, then R100 at initial time will have the purchasing power of R74 and only R48 if inflation

averages 2.5%. Taking a look at the South African CPI (+11.7% y/y in May 2008 [98]) and the

US CPI (+0.8% in May 2008 [106]), there is reason to be concerned by inflation especially in South

Africa (SA).

(a) SA annual CPI (2000 = 100) 1960− 2005 (b) Ghana annual CPI (2000 = 100) 1964− 2005

Figure 1.1 Evolution of the annual South African and Ghanian CPI [104].

(a) US annual CPI (2000 = 100) 1960− 2005 (b) UK annual CPI (2000 = 100) 1960− 2005

Figure 1.2 Evolution of the annual UK and US CPI [104].

Figures 1.1 and 1.2 present the CPI evolution over about forty years for some developed (UK, USA)
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and emerging (Ghana, SA) countries. Note that these CPI are all normalised at 100 in 2000. As

was expected, the lowest growth rate of 557% in 45 years is in a developed country, US; and the

highest growth rate of 4048287% in 41 years is observed in an emerging country, Ghana. The

Ghanian inflation is more than 7000 times the American inflation over a longer period of time.

Moreover, the inflation rate of 1444% over 45 years for UK is still almost 3000 times smaller than

that of Ghana. This is without including the high inflation rate observed during the last years which

should impact more emerging countries because they do not have in place the structure to efficiently

perform inflation rate targeting. South Africa whose economy can be said to be in-between that of

a developed country and an emerging country has an inflation rate of 4152% in 45 years which is

only about three times that of UK. However, looking at the estimations in the previous paragraph,

there is still reason to be worried. These statistics suggest that developed countries should hedge

their inflation risk and emerging countries must hedge their inflation risk.

A financial product exists and persists because of the supply and demand. This implies two cor-

responding groups of players, respectively payers/issuers and receivers/investors. Governments and

private corporations constitute the main IL products issuers [38]; while the main investors in IL

derivatives are pension funds and retail investors.

1.1.1 IL Products Issuers

Inflation indexed products issuers should have some IL liabilities whose risk they want to share

through IL products. Some of the countries issuing IL securities had high inflation prior to this

initiative (Mexico and Brazil with respectively 114.8% and 69.2% during the 1950s and 1960s hy-

perinflation period), but that was not the case for most.

Government

A government might issue IL products for several reasons. Firstly, a government can influence

inflation (by reducing public cost through public debt’s interest rate or premium) and thus benefit

from issuing IL bonds. Secondly, IL bonds are adjusted to inflation whereas the conventional nominal

bonds bear the risk of loosing value in real terms over time due to inflation. Another way to see this

is through the fact that the conventional nominal interest rate on government’s bonds is similar to

the real interest rate plus inflation. This relationship is referred to as the Fisher hypothesis1.
1See Equation 1.1
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For instance, suppose that a government can issue either conventional nominal bonds with yield 8%

or IL bonds with a real yield of 3% with the same maturity. The features of these two bonds imply

that the market expectation of inflation over the lifetime of the bonds is 5%. However, if the realised

inflation turns out to be 3%, then the government will just have a debt of 6% to repay with IL bonds

as opposed to a “fixed” 8% with conventional bonds. In the event that inflation turns out higher

than what had been expected, conventional bond issuance would of course have been the cheaper

alternative.

Secondly, given that a government can influence inflation, issuance of inflation-indexed securities

is a proof of its determination to fight inflation. In case of inflation, investors can transfer their

losses through the purchased IL bonds. The involved risks taken by the government shows its firm

intention to dampen inflation. Besides, the government’s performance in controlling inflation can be

gauged through IL products which provide a direct measure of real interest rate necessary to some

decision makers. Prior to the issuance of IL securities in the US there was no direct means to study

real interest rates [32].

Private Corporations

Private sector entities elect to issue indexed rather than nominal debt mainly for identical reasons

as governments. Corporate treasurers judging that the expected inflation (as priced by the market)

is too high will consider the issuance of inflation-indexed bonds more attractive. Moreover, the

diversification of the company’s debt portfolio implied by IL derivatives issuance and the improved

risk-return characteristics is also very appealing [38].

The main non-governmental issuers of IL products are insurance companies. Due to the increasing

risk of inflation and diminishing pension2 payments, insurance companies have started selling IL

products to take over some if not all of the inflation risk from their customers [111].

1.1.2 IL Products Investors

With the global aging of the world’s population, pension funds and the saving system they represent

is becoming capital for the economy. The key variable for any pension plan beneficiary is not the

nominal amount of the pension payment, but the purchasing power guaranteed thereof.

In a standard contribution pension plan, the plan member bears a considerable risk due to inflation.
2See next section 1.1.2.
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A distinct feature of pension funds, when compared to other financial institutions such as banks

for example, is the very long maturity of their liabilities [49]. The typical duration of pension fund

liabilities currently lies over a period of 30 years or more during which the pension benefit acquiring

power might diminish. In fact, many plan members may not be aware that the benefits they will

obtain from a classical, non-IL pension plan may not be sufficient to carry their expenses in the

future, as price levels may have increased due to inflation. A simple calculation shows that an

annual inflation rate of 1.5% over 30 years will reduce the real value of R100, 000 then to R63, 546.

It therefore makes sense to link pension products to inflation.

At an individual level, IL products or structured products can also be used by agents in the market

to hedge the risk due to inflation.

1.2 Inflation Products

The most commonly traded inflation linked securities are bonds, swaps, caps and floors. This section

reviews the main attributes of these instruments. A more detailed covering of IL securities can be

found in [72, 38].

To lighten the text, the nominal currency in this section will be the South African ZAR or R.

1.2.1 Inflation Linked Bonds

A conventional (nominal) bond Pn(t, T ) represents the value at time t of an instrument that pays

R1 at maturity T . The corresponding IL bond PIL(t, T ) represents the value (in ZAR) at time t of

an instrument that pays RI(T ) at maturity T . If the IL bond’s pay-off is measured in unit of I(t)

at time t, then it also pays 1 at T . When ignoring the units, its pay-off is similar to that of the

nominal bond.

When an IL bond’s value is divided by the price index, the corresponding real bond’s value is

obtained:

Pr(t, T ) =
PIL(t, T )
I(t)

,

where the unit of a real bond, Pr(t, T ), is goods and services.

Though real bond’s value can be deduced from IL bond’s (nominal) value, only nominal and IL

bonds are effectively traded on the market. Moreover, although IL bonds are quoted on the market

in term of real yield, real bonds only exist by construction and are abstract.
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If rn(t) is the nominal interest rate, then under the risk neutral measure Q

Pn(t, T ) = EQ
t

[
exp

(
−
∫ T

t

rn(s)ds

)]
.

Similarly, if rr(t) is the real interest rate, then under Q

Pr(t, T ) = EQ
t

[
exp

(
−
∫ T

t

rr(s)ds

)]
,

and the inflation linked bond is defined by

PIL(t, T ) = Pr(t, T )I(t).

A first order approximation of the relationship between the interest rates, under the nominal risk

neutral measure, is given by the following equation known as the Fisher equation3 [86]:

rn(t, T ) = rr(t, T ) + iet (t, T ), (1.1)

where rn(t, T ) (resp. rr(t, T )) is the nominal (resp. real) interest rate for the time interval [t, T ] and

iet (t, T ) is the expected inflation rate over [t, T ] at time t.

The difference between the nominal and inflation yields is referred to as the inflation breakeven rate or

inflation compensation. From the Fisher equation, the breakeven rate is a “good” approximation of

the expected inflation. However, the relationship between nominal and real yield is more complicated

and better estimated using the expectation hypothesis according to which

rn(t) = rr(t) + iet (t, T ) + PrIL(t),

where PrIL(t) is the inflation risk premium. It is the additional return IL issuers need to pay on

nominal bonds compared with IL bonds and depends on the volatility of inflation (higher volatil-

ity leads to higher premium) and risk-averseness of investors (the more risk-averse the higher the

premium) [38].

Similarly to the interest rate market whose participants’ pool is expanded beyond traders in interest

rate through other interest rate derivatives (swaps, caps, floors, etc); IL derivatives have added

flexibility to the inflation market and given new opportunities to investors.
3The full relationship between the nominal and real interest rates is restated in Equation 5.6 with a detailed

derivation.
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1.2.2 Zero-Coupon Inflation Swaps

Zero-coupon inflation swaps are considered the building block of the inflation market because of

their simplicity, their transparency and the new investment opportunities they generate [38]. A

zero-coupon inflation swap can be used to convert a nominal bond into a corresponding IL bond or

to preserve the purchasing power of its notional with respect to a given inflation index.

By locking in a zero-coupon inflation swap, the participants agree to exchange the change in the

inflation index over a period [t, T ] against a specified compounded interest rate. If t is the contract

signature date (i.e. It is known at the signature of the contract), then the swap is spot starting. If

t is instead a future date (i.e. It not yet known), then the swap is forward starting.

Let N denote the notional of the swap. There is no cash flow initially. At maturity T , the payer pays

the net increase in inflation over the swap’s life N
[
IT
It
− 1
]
. The receiver pays the fixed amount

corresponding to a predefined annual compound rate b, N
[
(1 + b)T−t − 1

]
. The rate b is referred

to as the breakeven swap rate and quoted in the market.

1.2.3 Year-on-Year Swap

The year-on-year (y-o-y) inflation swap is a variant of the zero-coupon swap with multiple payments

(typically annually) over the term of the contract. Let [Ti−1, Ti] denote a sub-period of an y-o-y

inflation swap with notional N . At Ti, the swap payer pays N
[
IT
It
− 1
]

and receives N
b

p
where b

is a pre-agreed zero coupon rate and p its annual periodicity.

1.2.4 Inflation Caps, Floors and Swaptions

Inflation caps, floors and swaptions are inflation volatility products. Inflation caps and floors are

mainly use to set boundaries of an investment’s pay-off (i.e. limit losses or benefit). For example

along with an IL bond, an IL floor on the notional is usually bought as protection against eventual

deflation.

An inflation cap (resp. floor) is a collection of caplets (resp. floorlets) each of which is a call

(resp. put) on a zero-coupon swap. A caplet (resp. floorlet) pays the difference with respect to a

(compounded) strike in case inflation turns out to be higher (resp. lower) than this pre-specified

strike. A caplet written over the period [t, T ] with notional N and strike K pays a maturity

Pay-off = N max
[
α

(
IT
It
− 1−K

)
, 0
]
,
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where α = 1 for a caplet and α = −1 for a floorlet.

Just as inflation swaps, IL caps and floors can be spot starting or forward starting.

A swaption is an option to enter into a forward starting inflation swap (zero-coupon, year-on-year,

etc) at a pre-specified coupon.

1.3 Inflation Models

Inflation has an analogy both with interest rates and Foreign Exchange (FOREX) [23, 67]. Given

the diversity of methods existing to model these two, some “good” approaches were just tailored

to IL securities. Most of the IL pricing frameworks use either the foreign currency analogy or the

pricing kernel. These methodologies are respectively similar to the short-rate and the pricing kernel

for interest rate derivatives. This section starts by a brief review of common interest rate models

which are later implicitly used in the foreign currency analogy and pricing kernel frameworks.

1.3.1 Interest Rate Approach

Because of its similarities to the interest rate (defined as a percentage increment to an index) inflation

models were first tailored to interest rate models. This subsection is entirely based on the paper by

Fischer Black [18].

At the beginning of inflation theory, it was either modeled as a normal, a lognormal or a square root

process. Using a normal process, the volatility of the change in the interest rate does not depend

on the rate, though it may depend on time. When a lognormal distribution is used, the volatility

of the fractional change in the interest rate does not depend on the rate. And with the square root

process, the ratio of the variance of the change in the interest rate to the rate does not depend on

the rate, so the volatility of the change in the rate is proportional to the square root of the rate at

a given time. Of course, mean reversion can be inserted in any of the previous models.

The normal process implies that as the rate goes toward zero, the interest rate volatility does not

decline. This contradicts the observed fact that volatility seems to decline with the rate, but it could

be considered as an acceptable flaw. Apart from this deficiency, in a normal distribution the nominal

interest rate has a non-zero probability of being negative. Though inflation can be negative, the

nominal rate is always non-negative. After all, people can hold currency: they would rather keep

currency under their mattresses than hold instruments bearing negative interest rates.
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The lognormal process assumes that the nominal rate is non-negative, especially that it is always

non-zero. However, in the 1930s the US nominal interest rate fell to zero and there are other such

historical cases. Furthermore, a lognormal distribution implies that as the rate approaches zero the

volatility falls very rapidly. Whereas, from market observations when the volatility falls, it does not

seem to fall this rapidly.

The square root process is the most complex of all three and is halfway between the normal and the

lognormal. The short rate will be non-zero if the mean reversion is quite strong or the short rate

drift is large enough. However, when none of these conditions is satisfied, it is possible for the rate

to become zero, we then have to decide whether zero is a reflecting barrier or an absorbing barrier.

Assuming that zero is a reflecting barrier implies that the rate will “bounce” at zero while if zero is

an absorbing barrier, we must assign a probability for the rate becoming positive again; thus having

more complexity. Of the three alternatives, the absorbing barrier seems the most realistic [18].

1.3.2 Foreign Exchange Approach

The Foreign Exchange (FOREX) approach to modelling inflation is the most used nowadays. It is

based on the foreign currency analogy in which real and nominal rates are assimilated to currencies

in respectively the foreign and domestic economies, and the CPI is similar to the exchange rate [23].

The reference framework to price IL securities is due to Jarrow and Yildirim [71]. The following

subsections present this model and extension by Mercurio [81] and Belgrade-Benhamou-Koehler [14].

Jarrow and Yildirim Model

The most quoted foreign currency analogy implementation is due to Jarrow and Yildirim [71] and

is based on a Heath-Jarrow-Morton (HJM) model. In analogy with the HJM model of foreign

currency they build a three-factor, arbitrage-free term structure model by modeling the dynamics of

the real and nominal instantaneous forward interest rates and the inflation. The underlying sources

of randomness are allowed to be correlated and the instantaneous forward rates are fitted to the

market data.

Under the real world filtered probability space (Ω,F , (Ft)t≥0,P), the Jarrow and Yildirim model is
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described by:

dfn(t, T ) = αn(t, T )dt+ ςn(t, T )dWn

dfr(t, T ) = αr(t, T )dt+ ςr(t, T )dWr

dI(t) = I(t)µ(t)dt+ σII(t)dWI

with I(0) = I0 > 0, and

fx(0, T ) = fMx (0, T ), x ∈ {n, r}

where

i. f(t, T ) represents an instantaneous forward rate with maturity T at t and I(t) represents the

inflation rate at time t;

ii. The Brownian motions (Wk), with k = n, r, I standing respectively for nominal, real and infla-

tion, have correlation ρn,r, ρn,I and ρr,I ;

iii. αn, αr, µ are adapted processes;

iv. ςn, ςr are deterministic functions;

v. σI is a positive constant;

vi. fMn (0, T ), fMr (0, T ) are the nominal and real instantaneous forward rates observed in the market

at time 0 for maturity T respectively.

Hence Jarrow and Yildirim assumed both nominal and real (instantaneous) rates to be normally

distributed under their respective risk neutral measures. Then using the no-arbitrage principle and

taking forward rate volatilities of the form4 σk(t, T ) = σke
−ak(T−t) with k = n, r, they proved that

the real and nominal rates are Ornstein-Uhlenbeck5 processes under the nominal measure Qn, and

that the inflation index I(t), at each time t, is lognormally distributed under Qn.

Since the real and nominal rates evolve following a Gaussian distribution, closed form solutions

can be computed. However, this model has several drawbacks such as the difficulty to estimate

parameters from market data and the possibility of interest rate becoming negative.
4For statistical reasons.
5i.e. of the form drt = −θ(rt − µ)dt+ σdWt; where θ, µ, σ are parameters and Wt denotes a Brownian motion.
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Mercurio Market Model

Mercurio [81] proposed two variants of market models as an alternative to JY [71] and equivalent

to Belgrade et al. [14] for pricing year on year inflation indexed swaps (YYIIS). Resorting to the

lognormal LIBOR model, the first market model considers the nominal and the real rates to follow

a lognormal distribution and the forward inflation index to follow geometric Brownian motion. The

YYIIS price is a function of the nominal and real forward rates’ (instantaneous) volatilities and

their correlations, for each cash flows payment time; the correlations between real forward rates and

forward inflation indices, again for each cash flows payment time. This YYIIS pricing formula is

more complicated both in terms of input parameters and in terms of the calculations involved than

the JY one. Nevertheless, it can be solved using numerical integration and, as is typical in a market

model, the input parameters can be determined more easily than in the JY approach. But this

new formula still depends on the volatility of real rates which may be hard to estimate. Given this

deficiency, Mercurio developed a second market model to overcome this estimation issue [81].

He obtained a pricing formula for YYIIS combining the advantage of a fully-analytical formula

with that of a market-model approach which does not depend on the real rates volatility anymore.

The price of YYIIS depends on the (instantaneous) volatilities of the forward inflation indexes and

their correlations, the (instantaneous) volatilities of nominal forward rates and the instantaneous

correlations between forward inflation indices and nominal forward rates. The drawback of this model

is that it is based in a rough approximation for long maturities, especially when the correlations

between forward rates and inflation are non zero; the formula is exact when these correlations are

zero [81].

Mercurio has shown that these three models produced similar results when calibrating with market

data although they differed when away-from-the-money6 instruments are considered [81].

A consolidated practice in all developed options markets is to include some kind of smile effect

when simultaneously pricing caps with different strikes; to achieve this Mercurio and Moreni [82] as

in Heston [62] introduce stochastic volatility in the forward CPI dynamics under the spot LIBOR

measure. The cap prices obtained are a good approximation of the model’s price.
6Not at-the-money, i.e. either in-the-money or out-of-the-money.
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Belgrade-Benhamou-Koehler Model

The Belgrade-Benhamou-Koehler (BBK) [14] model was designed precisely to solve, using the no-

arbitrage principle, the two major disadvantages of the JY model: the lack of link between zero

coupon bonds and year-on-year swaps and the non-observable parameters. This model has two

main objectives; to be simple (i.e. to have only few parameters) and to be robust (i.e. to replicate

market prices). The main assumption made by BBK is that the market model for inflation considers

forward inflation index returns as a diffusion with deterministic volatility structure. Under the risk

neutral probability measure Q, this index follows geometric Brownian motion with deterministic

drift and volatility. In their paper, they consider three different functional forms of volatility (con-

stant, exponentially decaying and adjusted exponentially). They present a method to parametrize

the volatility structure to include the market data of caps/floors. They also perform a convexity

adjustment of the inflation swaps derived from the difference of martingale measures between the

numerator and the denominator. Given that it is not possible to estimate implicit correlations from

the market data, they suggest some boundary conditions which for certain model hypotheses (for

example constant volatility structure) give unrealistic results. This model is more suited in markets

where there is enough information from zero-coupon and year-on-year swaps. It is important to be

aware that to derive the model some approximations were done in the process so the solution is not

exact. Another drawback of this model is that it is computationally intensive.

1.3.3 Macro-finance models

Because the JY framework is based on the HJM model, it can only perform cross-sectional fitting

and thus can not estimate the inflation risk premium. However, this limitation can be overcome

by using a macro-finance model of the term structure. Such a model is characterised by the fact

that it uses macroeconomic factors to improve the coherence between the model output and the

observed term structure on the market. Such models form a subclass of the affine term structure

models (i.e. tractability and closed form solutions for asset pricing under certain restrictions). A

macro-finance model can, in general, estimate both the correlation between the real and nominal

interest rates and the risk premium “endogenously”. These models differ by the complexity used to

include the macroeconomic factors in the conventional short rate models. This subsection provides

a brief overview of their general properties based on Piazzesi [6].

In a no-arbitrage framework holding a zero coupon bond over a certain period of time [t, T ] is
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equivalent to the return of an average risk free short term rate during the same period under the

risk neutral measure Q:

P (t, T ) = EQ

[
exp

(
−
∫ T

t

r(s)ds

)]
, (1.2)

where P (t, T ) is the price of a zero coupon bond of maturity T at any time t ∈ [0, T ]. The two main

components of this model are:

i. the change of measure from the real world P, where the input data is measured and the risk

neutral measure Q, where the pricing is actually done because of the properties it has and;

ii. the short rate dynamics.

For an affine model the short rate is of the form

r(t) = R(xt) , with xt ∈ D ⊂ Rn,

where R(x) is affine and xt is an affine diffusion process under Q and the solution of a stochastic

differential equation of the form

dxt = µ(xt)dt+ σ(xt)dWt where Wt is a standard Brownian motion.

Under some regularity conditions, the corresponding guessed closed form solution for pricing zero

coupon bonds is affine in the state variables and of the form:

P (t, T ) = exp [A(t, T )−B(t, T )xt] ,

with some restrictions on A(t, T ) and B(t, T ). Solving this system of equations gives the short rates

dynamics. The change of measure is obtained through the pricing kernel and hence the model is

complete.

The pricing kernel or stochastic discount factor π = (πt)t≥0 is defined by

P (t, T ) =
E[πT ]
πt

∀ t ∈ [0, T ].

With the short rate model attributes presented, let us discuss the macroeconomic side of the model.

The short rate’s dynamics is modelled because it drives the entire yield curve through Equation (1.2).

From a macroeconomic point of view the short rate can be governed by the Taylor rule [101, 5]. The

Taylor rule gives the interest rate change a central bank should make in response to a divergence in

inflation or economic growth. The less complex Fisher equation can also be used to introduce the
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macroeconomic factors [4, 30]. Making the assumption that agents maximise their utility is also part

of the macroeconomic model and translates the reactions to the central bank behavior, the inflation

gap (difference between the realized inflation and the expected inflation), etc. The specificity of each

micro-finance model is observable through the way the macroeconomic variables are inserted in the

term structure model.

1.3.4 Stochastic monetary economy models

Similarly to the micro-finance models described in the previous subsection, the “stochastic monetary

economy models” proposed by Hughston and Macrina [68] use macroeconomic factors and the pricing

kernel to price IL securities. However, the latter framework does not assume linearity7 of the macro-

finance models; instead, it assumes a positive “nominal” interest rate and the underlying pricing

kernel that was advocated for by Flesaker and Hughston (FH) [54].

Assuming Nt is the conventional numéraire, the corresponding pricing kernel is given by πt =
ρt
Nt

in

the real world probability measure8, where (ρt)t≥0 denotes the Radon-Nikodym density martingale

transforming the real world measure into the risk neutral measure. The latter equation implies that

under the real probability measure the asset price process multiplied with the pricing kernel process

is a martingale. The process (πt)t≥0 is a decreasing and positive supermartingale (i.e. πt ≥ πt+h

with h > 0) thus ensures interest rate positivity.

The IL framework built by Hughston and Macrina is based on the assumption that inflation is a

purely monetary phenomenon. Thus the influence of fluctuations in wages, supply and demand,

foreign exchange and employment, etc. on inflation is not treated directly, but is rather reflected in

the change of the rates of consumption and money supply, and the liquidity benefit of money supply.

In a discrete time9 model, let the nominal money supply, the aggregate consumption and the nominal

liquidity benefit be denoted respectively by ({Mi}i≥0), ({ki}i≥1) and ({λi}i≥0). At time ti, the real

benefit (in units of goods and services) provided by the money supply is defined by [68]

li =
λiMi

Ci
for i ≥ 0.

Considering a wealth function of the form

W = E

[
N∑
n=0

πn(Cnkn + λnMn)

]
,

7i.e. that the models form a subclass of affine term structure models.
8This formula is fulling derived in Chapter 4
9The formulas in continuous time have also been derived and are similar to those obtained in discrete time.
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where U(·, ·) is a bivariate utility function, the CPI ({Ci}i≥0), pricing kernel ({πi}i≥0) and fair price

of IL instruments (H = {Hi}i≥0) are determined by maximising a consumer investor’s function of

the form

J = E

[
N∑
n=0

e−γtnU(kn, ln)

]
.

Example 1. (i) Considering a log-separable utility function of the form

U(x, y) = A ln (x) +B ln (y),

where A and B are two non-negative constants; the pricing kernel, the CPI and the pricing

formula for an IL security are respectively

Cn =
A

B

λnMn

kn
;

πn =
Be−γtn

µλnMn
;

H0 = λ0M0e
−γtjE

[
Hj

λjMj

]
.

(ii) Considering p, q ∈] −∞, 1]\{0}, two non-negative constants A and B, and a separable power

utility function of the form

U(x, y) =
A

p
xp +

B

q
yq,

gives

Cn =
(
A

B

)1−q
λnMn

k
(1−q)/(1−p)
n

;

πn =
B

1
1−q

A
q

1−q

k
q

1−q (1−p)
n

µλnMn
;

H0 =
λ0M0

k
q(1−p)/(1−q)
0

e−γtjE

[
Hjk

q(1−p)/(1−q)
j

λjMj

]
.

Note that the formulas obtained are not directly functions of any IL derivative’s price on the market.

Therefore, this pricing methodology could be a solution to pricing IL products with inflation market

illiquidity. The performances of this framework are further investigated in Chapter 4.

1.3.5 Calibration

The most commonly used data for calibration is that of US market because of its quality (the Federal

Reserve publishes constant maturity US treasury bond yield data) and its time span, which is longer
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than for most of other countries. Even though there are not zero coupon bond rates available on

the market, they can be deduced from market data. The common technique is through a bootstrap

and an interpolation of coupon bearing bonds (and eventually swaps) often ignoring the seasonality;

however this manipulation can introduce some measurement errors.

There is no standard estimation method since estimating both yield and macro data is dependent on

the number of parameters assumed in the model. Nevertheless in order to simplify the calculations,

researchers usually impose all restrictions on the parameters before the estimation process; this can

reduce the number of parameters to compute (e.g. symmetry in a matrix).

Apart from US data, this study also uses South African data to evaluate the performances of the

models both in a developed economy and a developing economy. All the models are based on Lévy

processes (see Chapter 2) to improve the fit. The parameter estimation is mainly done with the

maximum likelihood method. Chapter 6 presents in detail the calibration process.



Chapter 2

The Lévy Process Framework

Lévy processes are basically processes with stationary and independent increments. They are an

excellent tool to model distributions in mathematical finance for four main reasons. First, they are

the simplest class of processes with jumps. The latter become more obvious the smaller the time step

considered between market observations. Second, they are part of both semimartingales and Markov

processes with an additional robust mathematical structure. Third, some important processes like

Brownian motion, Poisson process, stable and self-decomposable processes are special cases of Lévy

processes. Finally, they have been successfully applied to mathematical finance, Physics and other

fields both for research and practical usage [7, 70].

This chapter starts by reviewing elements of Lévy processes in Section 2.1. The remaining sections

are devoted to more advanced topics for option pricing. Sections 2.2 and 2.3 present the Itô formula

for Lévy processes, the Girsanov change of measure and other tools which will be used later on.

Section 2.4 describes the General Hyperbolic (GH) distribution and other subclasses considered for

the calibration. Finally, Section 2.5 examines option valuation using the Fast Fourier transform [26].

A more detailed presentation, both mathematical and practical, can be found in [70, 88, 35].

2.1 Lévy Processes

The following basic assumption is made throughout this thesis.

Assumption 1. Let (Ω,F ,F,P) with F = (Ft)t≥0 be a filtered probability space satisfying the usual

conditions, that is:

20
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(i) (Ω,F ,P) is complete.

(ii) All the null sets of F are contained in F0, i.e. all impossible events are known beforehand.

(iii) F is a right continuous filtration:

Fs ⊂ Ft ⊂ F are σ-algebra for s, t ∈ R+, s ≤ t, and Ft =
⋂
s>t

Fs for all t ≥ 0.

Furthermore, assumption is made that

F = σ

⋃
t≥0

Ft


This allows to specify a change of probability measure from P to Q by giving the density process

(Zt)t≥0, where Zt =
dQ
dP

∣∣∣∣
Ft
.

The following definition of Lévy processes is from Applebaum (2004).

Definition 2.1. An adapted stochastic process X = (Xt)t≥0 on a filtered probability space (Ω,F ,F,P)

taking values on Rd such that X0 = 0 is called a Lévy process if:

(i) X has increments independent of the past, i.e. Xt−Xs is independent of Fs for 0 ≤ s < t <∞.

(ii) X has stationary increments, i.e. the distribution of Xs+t − Xs does not depend on s or

equivalently Xs+t −Xs
d= Xt where d= stands for the equality in distribution.

(iii) Xt is continuous in probability or stochastically continuous, i.e.

∀ t ≥ 0, ∀ ε > 0 lim
s→t

P [|Xt −Xs| > ε] = 0.

If the process X satisfies all the previous conditions, then it can be shown (See Theorem 30 in [93])

that there exists a transformation Y = (Yt)t≥0 of X = (Xt)t≥0 (i.e. P(Yt 6= Xt) = 0 for all t ≥ 0)

with the following property

(iv) For almost every ω ∈ Ω, the function t 7−→ X(t, w) is càdlàg (from the French “continue à

droite, limite à gauche”) that is everywhere right-continuous with left limit.

This transformation is again a Lévy process. Because this transformation is always possible, the

latter condition is generally included among the characteristics of a Lévy process.

Definition 2.2. 1. Processes meeting only conditions (i) and (ii) are called processes with station-

ary independent increments (PIIS) [70].
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2. Processes meeting conditions (i), (iii) and (iv) are called time-inhomogeneous Lévy processes.

Example 2. (i) A standard Brownian motion in Rd is a Lévy process.

(ii) The Poisson process (Nt)t≥0 with intensity λ > 0 is a Lévy process with values in N∪{0} such

that

P(Nt = n) =
(λt)n

n!
e−λt.

Definition 2.3. A probability distribution X is said to be infinitely divisible if for any positive integer

n, there exists n independent and identically distributed (i.i.d.) random variables Yi, i = 1, 2, · · · , n,

such that Y1 + Y2 + · · ·+ Yn has distribution X.

If (Xt)t≥0 is a Lévy process, the distribution of Xt, for any t > 0 is infinitely divisible. Hence Xt

can be decomposed into n i.i.d. parts each having the same distribution with appropriately scaled

parameters.

The characteristic function of a Lévy process X is of the form

E[eiz·Xt ] = etψX(z), z ∈ Rd

where ψX(·) : Rd → R is the corresponding characteristic exponent. Since the log-characteristic

function is linear in t and Xt is infinitely divisible, the distribution of Xt is fully determined by the

distribution of X1.

Definition 2.4. Let (Xt)t≥0 be a Lévy process on Rd. The jump size at time t ≥ 0 is defined by

∆Xt = Xt −Xt−.

Considering the family of Borel sets B(Rd), the Poisson random measure µ : R+ × Rd × Ω → R is

defined for every U ∈ B(Rd) whose closure does not contain 0 by

µ(t, U) = µ(t, U, ω) =
∑

s:0<s≤t

χU (∆Xs),

where the indicator or characteristic function with respect to U , χU is defined by

χU (x) =

 1, x ∈ U

0, x /∈ U

with U ⊂ Rd. In other words, µ(t, U) is the number of jumps of size ∆Xs ∈ U which occur before

or at time t. Henceforth, the randomness parameter ω will be omitted among functions’ parameters

as in the previous equation.
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Definition 2.5. Let (Xt)t≥0 be a Lévy process on Rd, then the measure ν : Rd → R defined by

ν(A) = E [#{t ∈ [0, 1]} : ∆Xt 6= 0,∆Xt ∈ A] , A ∈ B(Rd)

is called Lévy measure. It might be interpreted as the average number of jumps per unit time of the

underlying processes (See [35] Equation (3.10)).

An infinite-activity process is one with an infinite number of jumps in any finite time interval. For

an infinite-activity process, ν(A) remains finite for A such that 0 /∈ A. An infinite-activity process,

with measure ν, has a finite number of jumps on Rd \ {0}, but may have an infinite number of

jumps with measure zero. The sum of jumps becomes an infinite series. The integrability conditions

imposed in the next theorem, guarantee the convergence of this infinite series.

Theorem 2.6 (The Itô-Lévy decomposition). If X is a Lévy process on Rd, then for every t ≥ 0,

Xt has the decomposition:

dXt = αdt+ dWt +
∫
|z|≥R

zµ(dt, dz) +
∫
|z|<R

z(µ− π)(dt, dz) (2.1)

with

• the constant R ∈ [0,∞]. In financial literature, R = 1 is commonly used for simplification.

• the vector α ∈ Rd.

• the random factor (Wt)t≥0 is a d-dimensional Brownian motion with covariance matrix c.

• the Poisson random measure µ on R+ × R \ {0} has compensator π(dt, dz) = ν(dz)dt such as∫
Rd

(|z|2 ∧ 1)ν(dz) <∞.

The previous theorem splits a Lévy process into respectively a deterministic component (predictable

part), a pure Brownian motion (random part), a Poisson integral (the large jumps) and a com-

pensated Poisson integral (the small jumps). The first two parts constitute a Brownian motion

with drift which is the continuous part of the Lévy process. Similarly, the last two parts form the

discontinuous part of the process.

Note that the Brownian motion and Poisson measure are independent.

The triplet (c, ν, α) is called the Lévy characteristics triplet (or for short Lévy triplet) of X. By

Corollary II.4.19 in [70], Lévy process are semimartingales and their characteristics are deterministic.
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The previous decomposition of Lévy processes can be extended to the case when its parameters are

time and space dependent in the form

dXt = α(t)dt+ β(t)dWt +
∫

R
γ(t, z)µ̄(dt, dz) (2.2)

where

µ̄(dt, dz) =

 (µ− π)(dt, dz), |z| < R

µ(dt, dz), |z| ≥ R

for some constant R ∈ [0,∞]. Such processes are referred to as Itô-Lévy processes.

2.2 Itô Formula for Lévy Processes

The dynamics of a sufficiently smooth function of Lévy processes can be deduced from those of

the underlying processes through Itô’s formula. This section reviews the Itô formula for Itô-Lévy

processes and other closely related results that are of great use afterwards.

Theorem 2.7 (The one-dimensional Itô formula [88]). Let (Xt)t≥0 be a real valued Itô-Lévy process

of the form

dXt = α(t)dt+ β(t)dWt +
∫

R
γ(t, z)µ̄(dt, dz) (2.3)

where

µ̄(dt, dz) =

 µ(dt, dz)− ν(dz)dt, |z| < R

µ(dt, dz), |z| ≥ R

for some constant R ∈ [0,∞].

Let f ∈ C1,2(R2) and Y = (Yt)t≥0 such that Yt = f(t,Xt), then the dynamics of the Itô-Lévy process

Yt are given by

dYt =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt) [α(t)dt+ β(t)dWt] +

1
2
β2(t)

∂2f

∂x2
(t,Xt)dt

+
∫
|z|<R

{
f (t,Xt− + γ(t, z))− f (t,Xt−)− ∂f

∂x
(t,Xt−) γ(t, z)

}
π(dt, dz)

+
∫

R
{f (t,Xt− + γ(t, z))− f (t,Xt−)} µ̄(dt, dz).

The following corollaries give some applications of Itô’s formula for some simple functions. These

functions are largely encountered in financial Mathematics as will be seen later on.
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Corollary 2.8. Let X = (Xt)t≥0 denote a strictly positive real valued Itô-Lévy process with dynamics

given by

dXt = α(t)dt+ β(t)dWt +
∫

R
γ(t, z)µ̄(dt, dz).

The Lévy process Y = (Yt)t≥0 defined by Yt =
1
Xt

for t ≥ 0 has dynamics

dYt = −Y 2
t

[
α(t)− β2(t)Yt

]
dt− Y 2

t β(t)dWt +
∫
|z|<R

{
Yt−

1 + γ(t, z)Yt−

−Yt− + Y 2
t−γ(t, z)

}
π(dt, dz) +

∫
R

{
Yt−

1 + Yt−γ(t, z)
− Yt−

}
µ̄(dt, dz).

Proof. Consider f(t,Xt) =
1
Xt

, then
∂f

∂t
= 0,

∂f

∂x
= − 1

X2
t

and
∂2f

∂2x
=

2
X3
t

. By the one-

dimensional Itô formula (Theorem 2.7)

dYt = − 1
X2
t

[α(t)dt+ β(t)dWt] +
1
2
β2(t)

2
X3
t

dt+
∫

R
{f (t,Xt− + γ(t, z))− f (t,Xt−)} µ̄(dt, dz)

+
∫
|z|<R

{
f (t,Xt− + γ(t, z))− f (t,Xt−) +

1
X2
t−
γ(t, z)

}
π(dt, dz)

= − 1
X2
t

[α(t)dt+ β(t)dWt] + β2(t)
1
X3
t

dt+
∫
|z|<R

{
1

Xt− + γ(t, z)
− 1
Xt−

+
1

X2
t−
γ(t, z)

}
π(dt, dz)

+
∫

R

{
1

Xt− + γ(t, z)
− 1
Xt−

}
µ̄(dt, dz)

= − 1
X2
t

[
α(t)− β2(t)

1
Xt

]
dt− 1

X2
t

β(t)dWt +
∫
|z|<R

{
1

Xt− + γ(t, z)
− 1
Xt−

+
1

X2
t−
γ(t, z)

}
π(dt, dz)

+
∫

R

{
1

Xt− + γ(t, z)
− 1
Xt−

}
µ̄(dt, dz)

= −Y 2
t

[
α(t)− β2(t)Yt

]
dt− Y 2

t β(t)dWt +
∫
|z|<R

{
Yt−

1 + γ(t, z)Yt−
− Yt− + Y 2

t−γ(t, z)
}
π(dt, dz)

+
∫

R

{
Yt−

1 + Yt−γ(t, z)
− Yt−

}
µ̄(dt, dz).

Corollary 2.9. Let X = (Xt)t≥0 denote an Itô-Lévy process with dynamics given by

dXt

Xt−
= α(t)dt+ β(t)dWt +

∫
R
γ(t, z)µ̄(dt, dz).

Now consider the process Y = (Yt)t≥0 defined by Yt =
1
Xt

for t ≥ 0, then the dynamics of Yt are

dYt
Yt−

=
[
−α(t) + β2(t)

]
dt+

∫
|z|<R

γ2(t, z)
1 + γ(t, z)

π(dt, dz)− β(t)dWt −
∫

R

γ(t, z)
1 + γ(t, z)

µ̄(dt, dz).
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Proof. Consider f(t,Xt) =
1
Xt

, then
∂f

∂t
= 0,

∂f

∂x
= − 1

X2
t

and
∂2f

∂2x
=

2
X3
t

. By the one-

dimensional Itô formula

dYt = −Xt

X2
t

[α(t)dt+ β(t)dWt] +
1
2
X2
t β

2(t)
2
X3
t

dt

+
∫
|z|<R

{
f (t, (1 + γ(t, z))Xt−)− f (t,Xt−) +

1
X2
t−
Xtγ(t, z)

}
π(dt, dz)

+
∫

R
{f (t, (1 + γ(t, z))Xt−)− f (t,Xt−)} µ̄(dt, dz)

dYt = −Xt

X2
t

[α(t)dt+ β(t)dWt] +
1
2
X2
t β

2(t)
2
X3
t

dt+
∫
|z|<R

{
1

Xt−

1
1 + γ(t, z)

− 1
Xt−

+
1

X2
t−
Xtγ(t, z)

}
π(dt, dz) +

∫
R

{
1

Xt−

1
1 + γ(t, z)

− 1
Xt−

}
µ̄(dt, dz)

= − 1
Xt

[α(t)dt+ β(t)dWt] + β2(t)
1
Xt
dt+

∫
|z|<R

{
1

Xt−

1
1 + γ(t, z)

− 1
Xt−

+
1
Xt
γ(t, z)

}
π(dt, dz) +

∫
R

{
1

Xt−

1
1 + γ(t, z)

− 1
Xt−

}
µ̄(dt, dz).

Thus

dYt = − 1
Xt

[α(t)dt+ β(t)dWt] + β2(t)
1
Xt
dt+

1
Xt

∫
|z|<R

{
1

1 + γ(t, z)
− 1 + γ(t, z)

}
π(dt, dz)

+
1
Xt

∫
R

{
1

1 + γ(t, z)
− 1
}
µ̄(dt, dz).

From Yt =
1
Xt

,

dYt
Yt−

= − [α(t)dt+ β(t)dWt] + β2(t)dt+
∫
|z|<R

{
1

1 + γ(t, z)
− 1 + γ(t, z)

}
π(dt, dz)

+
∫

R

{
1

1 + γ(t, z)
− 1
}
µ̄(dt, dz)

dYt
Yt−

= − [α(t)dt+ β(t)dWt] + β2(t)dt+
∫
|z|<R

γ2(t, z)
1 + γ(t, z)

π(dt, dz)−
∫

R

γ(t, z)
1 + γ(t, z)

µ̄(dt, dz)

=
[
−α(t) + β2(t)

]
dt− β(t)dWt +

∫
|z|<R

γ2(t, z)
1 + γ(t, z)

π(dt, dz)−
∫

R

γ(t, z)
1 + γ(t, z)

µ̄(dt, dz).

Corollary 2.10. Let X = (Xt)t≥0 denote an Itô-Lévy process with dynamics given by

dXt

Xt−
= α(t)dt+ β(t)dWt +

∫
R
γ(t, z)µ̄(dt, dz).
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Now consider the process Y = (Yt)t≥0 defined by Yt = lnXt for t ≥ 0, then the dynamics of Yt are

dYt =
[
α(t)− 1

2
β2(t)

]
dt+

∫
|z|<R

{ln[1 + γ(t, z)]− γ(t, z)}π(dt, dz)

+β(t)dWt +
∫

R
ln[1 + γ(t, z)]µ̄(dt, dz).

Proof. Consider f(t,Xt) = lnXt, then
∂f

∂t
= 0,

∂f

∂x
=

1
Xt

and
∂2f

∂2x
= − 1

X2
t

. By the one-

dimensional Itô formula

dYt =
Xt−

Xt
[α(t)dt+ β(t)dWt]−

1
2
β2(t)

X2
t−
X2
t

dt

+
∫
|z|<R

{
ln [Xt− +Xt−γ(t, z)]− lnXt− −

1
Xt
Xt−γ(t, z)

}
π(dt, dz)

+
∫

R
{ln [Xt− +Xt−γ(t, z)]− lnXt−} µ̄(dt, dz)

= α(t)dt+ β(t)dWt −
1
2
β2(t)dt+

∫
|z|<R

{ln [1 + γ(t, z)]− γ(t, z)}π(dt, dz)

+
∫

R
ln [1 + γ(t, z)] µ̄(dt, dz)

since X is càdlàg. Thus

dYt =
[
α(t)− 1

2
β2(t)

]
dt+

∫
|z|<R

{ln [1 + γ(t, z)]− γ(t, z)}π(dt, dz)

+β(t)dWt +
∫

R
ln [1 + γ(t, z)] µ̄(dt, dz).

Next follows a generalisation of Itô’s formula which allows the derivative function to depend on

multiple processes.

Theorem 2.11 (The multi-dimensional Itô formula). Let X = (Xt)t≥0 ⊂ Rn be an n-dimensional

Itô-Lévy process of the form:

dXt = α(t, ω)dt+ β(t, ω)dWt +
∫

Rl
γ(t, z, ω)µ̄(dt, dz),

where α : [0, T ] × Ω → Rn, β : [0, T ] × Ω → Rn×m and γ : [0, T ] × Rl × Ω → Rn×l are adapted

processes such that the integrals exist. Here Wt is an m-dimensional Brownian motion and

µ̄(dt, dz)τ = [µ̄1(dt, dz1), · · · , µ̄l(dt, dzl)]

=
[
µ1(dt, dz1)− χ|z1|<R1π1(dt, dz1), · · · , µl(dt, dzl)− χ|zl|<Rlπl(dt, dzl)

]
where (µj)1≤j≤l are independent Poisson random measures with respective compensator (πj)1≤j≤l

coming from l independent (1 dimensional) Lévy processes and (·)τ denotes the transpose.
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Note that each column γ(k) of the n× l matrix γ = [γij ] depends on z only through the kth coordinate

zk, i.e

γ(k)(t, z) = γ(k)(t, zk), with z = (z1, · · · , zl) ∈ Rl.

In particular, for i = 1, ..., n,

dXi(t) = αi(t)dt+
m∑
j=1

βij(t)dW
j
t +

l∑
j=1

∫
R
γij(t, zj)µ̄j(dt, dzj).

Let f ∈ C1,2 ([0, T ],Rn) and Y = (Yt)t≥0 such that Yt = f(t,Xt), then

dYt =
∂f

∂t
(t,Xt) dt+

n∑
i=1

∂f

∂xi
(t,Xt) [αi(t)dt+ βi(t)dWt] +

1
2

n∑
i,j=1

(ββτ )ij
∂2f

∂xi∂xj
(t,Xt) dt

+
l∑

k=1

∫
|zk|<Rk

{
f
(
t,Xt− + γ(k)(t, z)

)
− f (t,Xt−)−

n∑
i=1

∂f

∂xi
(t,Xt−) γ(k)

i (t, z)

}
πk(dt, dzk)

+
l∑

k=1

∫
R

{
f
(
t,Xt− + γ(k)(t, z)

)
− f (t,Xt−)

}
µ̄(dt, dz)

where γ
(k)
i = γik is the ith component of γ(k) ∈ Rn which is the kth column of the n × l matrix

γ = [γij ].

The next corollaries apply the multidimensional Itô formula to some particularly useful functions.

Corollary 2.12. Let

dXi(t) = αi(t)dt+ βi(t)dWt +
∫

R
γi(t, z)µ̄(dt, dz); i = 1, 2

be two Itô-Lévy processes. Then the process (Zt)t≥0 defined by Zt = X1(t)X2(t) has P-dynamics:

dZt =
[
α1(t)X2(t) + α2(t)X1(t) + β1(t)β2(t) +

∫
R
γ1(t, z)γ2(t, z)ν(dz)

]
dt

+ [β1(t)X2(t) + β2(t)X1(t)] dWt

+
∫

R
[γ2(t, z)X1(t−) + γ1(t, z)X2(t−) + γ1(t, z)γ2(t, z)] µ̄(dt, dz).
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Proof. Applying Theorem 2.11 with f(t,X1, X2) = X1(t)X2(t)

dZt = X2(t) [α1(t)dt+ β1(t)dWt] +X1(t) [α2(t)dt+ β2(t)dWt] +
1
2

[β1(t)β2(t) + β2(t)β1(t)]dt

+
∫

R
{[X1(t−) + γ1(t, z)] [X2(t−) + γ2(t, z)]−X1(t−)X2(t−)

−X2(t−)γ1(t, z)−X1(t−)γ2(t, z)}π(dt, dz)

+
∫

R
{[X1(t−) + γ1(t, z)] [X2(t−) + γ2(t, z)]−X1(t−)X2(t−)} µ̄(dt, dz)

=
[
α1(t)X2(t) + α2(t)X1(t) + β1(t)β2(t) +

∫
R
γ1(t, z)γ2(t, z)ν(dz)

]
dt

+ [β1(t)X2(t) + β2(t)X1(t)] dWt

+
∫

R
[γ2(t, z)X1(t−) + γ1(t, z)X2(t−) + γ1(t, z)γ2(t, z)] µ̄(dt, dz).

Corollary 2.13. Let

dXi(t)
Xi(t−)

= αi(t)dt+ βi(t)dWt +
∫

R
γi(t, z)µ̄(dt, dz); i = 1, 2

be two Itô-Lévy processes under the statistical probability measure P. Now consider the process

Z = (Zt)t≥0 defined by Zt = X1(t)X2(t), then its P-dynamics are:

dZt
Zt−

= [α1(t) + α2(t) + β1(t)β2(t)] dt+
∫

R
γ1(t, z)γ2(t, z)π(dt, dz) + [β1(t) + β2(t)] dWt

+
∫

R
[γ1(t, z) + γ2(t, z) + γ1(t, z)γ2(t, z)] (µ− π)(dt, dz).

Proof. Applying Theorem 2.11 with f(t,X1, X2) = X1(t)X2(t)

dZt = X2(t) [X1(t)α1(t)dt+X1(t)β1(t)dWt] +X1(t) [X2(t)α2(t)dt+X2(t)β2(t)dWt]

+
1
2

[β1(t)X1(t)β2(t)X2(t) + β2(t)X2(t)β1(t)X1(t)]dt

+
∫

R
{[X1(t−) +X1(t)γ1(t, z)] [X2(t−) +X2(t)γ2(t, z)]−X1(t−)X2(t−)

−X2(t−)X1(t)γ1(t, z)−X1(t−)X2(t)γ2(t, z)}π(dt, dz)

+
∫

R
{[X1(t−) +X1(t)γ1(t, z)] [X2(t−) +X2(t)γ2(t, z)]−X1(t−)X2(t−)} µ̄(dt, dz).

Thus

dZt
Zt−

= [α1(t) + α2(t) + β1(t)β2(t)] dt+ [β1(t) + β2(t)] dWt +
∫

R
γ1(t, z)γ2(t, z)π(dt, dz)

+
∫

R
[γ1(t, z) + γ2(t, z) + γ1(t, z)γ2(t, z)] µ̄(dt, dz).
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Corollary 2.14. Let

dXi(t) = αi(t)dt+ βi(t)dWt +
∫

R
γi(t, z)µ̄(dt, dz); i = 1, 2

define two Itô-Lévy processes under the probability measure P with X2 strictly positive. Then the

process (Zt)t≥0 defined by Zt =
X1(t)
X2(t)

has P-dynamics:

dZt =
[
α1(t)
X2(t)

+ αY (t)X1(t)− β1(t)β2(t)
X2

2 (t)
+
∫

R
γ1(t, z)γY (t, z)ν(dz)

]
dt

+
[
β1(t)
X2(t)

− β2(t)
X1(t)
X2

2 (t)

]
dWt +

∫
R

[
γY (t, z)X1(t−) +

γ1(t, z)
X2(t−)

+ γ1(t, z)γY (t, z)
]
µ̄(dt, dz),

where

αY (t) = − 1
X2

2 (t)

[
α2(t)− β2

2(t)
1

X2(t)

]
+
∫
|z|<R

[
1

X2(t−) + γ2(t, z)
− 1
X2(t−)

+
1

X2
2 (t−)

γ2(t, z)
]
ν(dz);

γY (t, z) =
1

X2(t−) + γ2(t, z)
− 1
X2(t−)

.

Proof. By Corollary 2.8, considering Yt =
1

X2(t)

dYt =
{
− 1
X2

2 (t)

[
α2(t)− β2

2(t)
1

X2(t)

]
+
∫
|z|<R

[
1

X2(t−) + γ2(t, z)
− 1
X2(t−)

+
1

X2
2 (t−)

γ2(t, z)
]
ν(dz)

}
dt

− 1
X2

2 (t)
β2(t)dWt +

∫
R

[
1

X2(t−) + γ2(t, z)
− 1
X2(t−)

]
µ̄(dt, dz).

Applying Corollary 2.12 with Zt = X1(t)Yt

dZt =
[
α1(t)
X2(t)

+ αY (t)X1(t)− β1(t)β2(t)
X2

2 (t)
+
∫

R
γ1(t, z)γY (t, z)ν(dz)

]
dt

+
[
β1(t)
X2(t)

− β2(t)
X1(t)
X2

2 (t)

]
dWt

+
∫

R

[
γY (t, z)X1(t−) +

γ1(t, z)
X2(t−)

+ γ1(t, z)γY (t, z)
]
µ̄(dt, dz),

where

αY (t) = − 1
X2

2 (t)

[
α2(t)− β2

2(t)
1

X2(t)

]
+
∫
|z|<R

[
1

X2(t−) + γ2(t, z)
− 1
X2(t−)

+
1

X2
2 (t−)

γ2(t, z)
]
ν(dz);

γY (t, z) =
1

X2(t−) + γ2(t, z)
− 1
X2(t−)

.
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Corollary 2.15. Let

dXi(t)
Xi(t−)

= αi(t)dt+ βi(t)dWt +
∫

R
γi(t, z)µ̄(dt, dz); i = 1, 2

be two Itô-Lévy processes. Then the process (Zt)t≥0 defined by Zt =
X1(t)
X2(t)

has P-dynamics:

dZt
Zt−

=

[
α1(t)− α2(t) + β2

2(t) +
∫
|z|<R

γ2
2(t, z)

1 + γ2(t, z)
ν(dz)− β1(t)β2(t)

]
dt

+
∫

R
γ1(t, z)

γ2(t, z)
1 + γ2(t, z)

π(dt, dz) + [β1(t)− β2(t)] dWt

+
∫

R

[
γ1(t, z) +

γ2(t, z)
1 + γ2(t, z)

+ γ1(t, z)
γ2(t, z)

1 + γ2(t, z)

]
µ̄(dt, dz).

Proof. By Corollary 2.9, considering Yt =
1

X2(t)

dYt
Yt

=
[
−α2(t) + β2

2(t)
]
dt+

∫
|z|<R

γ2
2(t, z)

1 + γ2(t, z)
π(dt, dz)− β2(t)dWt −

∫
R

γ2(t, z)
1 + γ2(t, z)

µ̄(dt, dz)

=

[
−α2(t) + β2

2(t) +
∫
|z|<R

γ2
2(t, z)

1 + γ2(t, z)
ν(dz)

]
dt− β2(t)dWt −

∫
R

γ2(t, z)
1 + γ2(t, z)

µ̄(dt, dz).

Applying Corollary 2.13 with Z(t) = X1(t)Y (t)

dZt
Zt−

=

[
α1(t)− α2(t) + β2

2(t) +
∫
|z|<R

γ2
2(t, z)

1 + γ2(t, z)
ν(dz)− β1(t)β2(t)

]
dt

+
∫

R
γ1(t, z)

γ2(t, z)
1 + γ2(t, z)

π(dt, dz) + [β1(t)− β2(t)] dWt

+
∫

R

[
γ1(t, z) +

γ2(t, z)
1 + γ2(t, z)

+ γ1(t, z)
γ2(t, z)

1 + γ2(t, z)

]
µ̄(dt, dz).

Derivative securities are priced in the risk neutral probability measure, however the market prices

are valued in the statistical probability measure. The following Girsanov Theorem is used to move

from one measure to another.

Theorem 2.16 (Girsanov change of measure). Let (Ω,F ,F,P) be a filtered probability space satis-

fying the usual conditions. Let X1 and X2 be two real-valued adapted processes under the probability

measure P, with dynamics

dXi(t)
Xi(t−)

= βi(t)dWt +
∫

R
γi(t, z)µ̄(dt, dz), for i = 1, 2;

where Wt is a P-Brownian motion, π(dt, dz) is the compensator of the random measure of jumps

µ and the standard integrability conditions are verified. If γi(t, z) is deterministic for i = 1, 2 and
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γ2(t, z) > −1, then the process Y =
X1

X2
is a local martingale and has dynamics

dYt
Yt−

= −[β2(t)− β1(t)]dW̃t −
∫

R

γ2(t, z)− γ1(t, z)
1 + γ2(t, z)

(µ− π̃)(dt, dz)

under an equivalent measure P̃ ' P, where W̃t is a P̃-Brownian motion given by

dW̃t = dWt − β2(t)dt,

and π̃(dt, dz) is the P̃-compensator of µ given by

π̃(dt, dz) = θ(t, z)π(dt, dz)

with θ(t, z) = 1 + γ2(t, z).

The function θ(t, z) is a non-negative solution to the equation∫
R

γ2
2(t, z)− γ1(t, z)γ2(t, z)− γ1(t, z) + γ2(t, z)

1 + γ2(t, z)
π(dt, dz) +

∫
R

γ1(t, z)− γ2(t, z)
1 + γ2(t, z)

f(t, z)π(dt, dz) = 0.

Proof. By applying Corollaries 2.9 and 2.13

dYt
Yt−

= [β2
2(t)− β1(t)β2(t)]dt+

∫
R

γ2
2(t, z)

1 + γ2(t, z)
π(dt, dz)−

∫
R

γ1(t, z)γ2(t, z)
1 + γ2(t, z)

π(dt, dz)

−[β2(t)− β1(t)]dWt −
∫

R

γ2(t, z)− γ1(t, z)
1 + γ2(t, z)

(µ− π)(dt, dz). (2.4)

Since the continuous and discontinuous (jump) parts of a semimartingale do not interact [70], they

can be studied independently. The continuous part of the process Y is

[β2
2(t)− β1(t)β2(t)]dt− [β2(t)− β1(t)]dWt = −[β2(t)− β1(t)][dWt − β2(t)dt].

This implies that dW̃t = dWt − β2(t)dt [87, 15].

The discontinuous part of Y is∫
R

γ2
2(t, z)

1 + γ2(t, z)
π(dt, dz)−

∫
R

γ1(t, z)γ2(t, z)
1 + γ2(t, z)

π(dt, dz)−
∫

R

γ2(t, z)− γ1(t, z)
1 + γ2(t, z)

(µ− π)(dt, dz).

Following ∅ksendal and Sulem [88], the last expression can be written as:∫
R

γ1(t, z)− γ2(t, z)
1 + γ2(t, z)

(µ− π̃) (dt, dz) +
∫

R

γ2
2(t, z)− γ1(t, z)γ2(t, z)− γ1(t, z) + γ2(t, z)

1 + γ2(t, z)
π(dt, dz)

+
∫

R

γ1(t, z)− γ2(t, z)
1 + γ2(t, z)

f(t, z)π(dt, dz)

where π̃(dt, dz) = θ(t, z)π(t, z) for some θ ≥ 0 is the compensator of µ under some new probability

measure P̃ ' P. It is obvious from the last equation that for the process Y to be a martingale under

the new measure, it is required that∫
R

γ2
2(t, z)− γ1(t, z)γ2(t, z)− γ1(t, z) + γ2(t, z)

1 + γ2(t, z)
π(dt, dz) +

∫
R

γ1(t, z)− γ2(t, z)
1 + γ2(t, z)

f(t, z)π(dt, dz) = 0.

The solution to this equation is θ(t, z) = 1 + γ2(t, z) [87].
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2.3 Some Useful Results

In the 1930s, de Finetti and Kolmogorov obtained an explicit and simple expression which describes

an infinitely divisible distribution in terms of its characteristic function. This formula is known as

the Lévy-Khinchin formula.

Theorem 2.17 (Lévy-Khinchin Formula). (i) Let (Xt)t>0 be a Lévy process on Rd with charac-

teristic triplet (c, ν, α). Then
∫

Rd
(|z|2 ∧ 1)ν(dz) <∞ and

E[eiz·Xt ] = etψ(z), z ∈ Rd

where

ψ(z) = iα · z − 1
2
z · cz +

∫
Rd

(
eiz·x − 1− iz · xχ|x|≤1

)
ν(dx). (2.5)

(ii) Conversely, if c is a symmetric positive matrix, α ∈ Rd and ν is a positive measure on Rd \{0}

that satisfies
∫

Rd
(|z|2 ∧ 1)ν(dz) < ∞, then there exists a Lévy process on Rd (unique in law)

whose characteristic function is given by Equation 2.5.

Note that the characteristic function is the Fourier transform of the probability density function

f(x).

Definition 2.18. The Fourier transform of a function f ∈ L1(R) is the function f̂ = F(f) defined

by

f̂(z) =
∫

R
eixzf(x)dx.

Example 3. Let us consider two simple cases:

1. X follows a Brownian motion; its dynamics are given by dXt = αdt + σdWt and its Lévy

characteristics are (σ2, 0, α). Therefore

ψX(z) = iαz − 1
2
σ2z2

E[eizXt ] = exp
[
t

(
iαz − 1

2
σ2z2

)]
.

2. X is a Poisson process of intensity λ; its Lévy characteristics are (0, λ, 0). Therefore

ψX(z) =
∫

R

(
eiz·x − 1

)
ν(dx)

= λ
(
eiz·x − 1

)
.
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Since ν counts the average number of jumps which is λ. Hence,

E[eizXt ] = exp
[
λ
(
eiz·x − 1

)]
.

Theorem 2.19 (Exponential moments [35]). Let (Xt)t>0 be a Lévy process on R with characteristic

triplet (c, ν, α) and let u ∈ R. The exponential moment E[euXt ] is finite for some t or, equivalently,

for all t > 0 if and only if
∫
|x|>1

euxν(dx) <∞. In this case

E[euXt ] = etψX(−iu).

where ψX is the characteristic exponent of X given by Equation 2.5.

For a purely jump process, its exponential moment can be computed analytically. The next theorems

give these moments for a Poisson integral in the cases when it is compensated or not.

Theorem 2.20. Let A be bounded from below. Then,

(i) for each t ≥ 0,
∫
A

f(x)µ(t, dx) has compound Poisson distribution such that, for each u ∈ Rd,

E
(

exp
[
i

〈
u,

∫
A

f(x)µ(t, dx)
〉])

= exp
[
t

∫
A

(ei(u,x) − 1)πf (dx)
]

(ii)

E
(

exp
[
i

〈
u,

∫
A

f(x)(µ− π)(t, dx)
〉])

= exp
{
t

∫
A

[
ei(u,x) − 1− i(u, x)

]
πf (dx)

}

where πf = π ◦ f−1 and for x, y ∈ Rd such as x = (x1, x2, · · · , xd) and y = (y1, y2, · · · , yd),

〈x, y〉 =
d∑
i=1

xiyi.

Proof. See Theorem 2.3.8(1) and Equation (2.9) in Applebaum’s book [7].

Corollary 2.21. Working in R and taking u = −i, we have

E
(

exp
[∫

A

f(x)µ(t, dx)
])

= exp
[
t

∫
A

(ex − 1)πf (dx)
]

E
(

exp
[∫

A

f(x)(µ− π)(t, dx)
])

= exp
{
t

∫
A

[ex − 1− x]πf (dx)
}

where πf = π ◦ f−1.

The previous expectations can be simplified further when γ(t, z) is deterministic as shown in the

next theorem.
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Theorem 2.22. If γ(t, z) is deterministic, the exponential moment of a Poisson integral and a

compensated Poisson integral are respectively

E
[
exp

(∫ t

0

∫
R
γ(t, z)(µ− π)(dt, dz)

)]
= exp

{∫ t

0

∫
R

[
eγ(t,z) − 1− γ(t, z)

]
ν(dz)dt

}
;

E
[
exp

(∫ t

0

∫
R
γ(t, z)µ(dt, dz)

)]
= exp

{∫ t

0

∫
R

[
eγ(t,z) − 1

]
ν(dz)dt

}
.

Proof. This proof is based on Exercice 1.6 in ∅ksendal and Sulem’s book [88].

Using Corollary 2.10, the equation

dXt

Xt−
=

∫
R

(eγ(t,z) − 1)(µ− π)(dt, dz); X0 = 1 (2.6)

has solution

XT = exp

{∫ T

0

∫
R
γ(t, z)µ(dt, dz)−

∫ T

0

∫
R

(eγ(t,z) − 1)ν(dz)dt

}

= exp

{∫ T

0

∫
R
γ(t, z)(µ− π)(dt, dz)−

∫ T

0

∫
R

[
eγ(t,z) − 1− γ(t, z)

]
ν(dz)dt

}
.

Assuming that ∫ T

0

∫
R

(eγ(t,z) − 1)2ν(dz)dt < ∞,

from Equation (2.6), X is a martingale, i.e. E[Xt] = 1, hence

E

[
exp

{∫ T

0

∫
R
γ(t, z)(µ− π)(dt, dz)

}]
= exp

{∫ T

0

∫
R

[
eγ(t,z) − 1− γ(t, z)

]
ν(dz)dt

}
.

Note that

E

[
exp

{∫ T

0

∫
R
γ(t, z)(µ− π)(dt, dz)

}]
= E

[
exp

{∫ T

0

∫
R
γ(t, z)µ(dt, dz)

}]

E

[
exp

{
−
∫ T

0

∫
R
γ(t, z)ν(dz)dt

}]

= E

[
exp

{∫ T

0

∫
R
γ(t, z)µ(dt, dz)

}]

exp

{
−
∫ T

0

∫
R
γ(t, z)ν(dz)dt

}
,

thus

E

[
exp

{∫ T

0

∫
R
γ(t, z)µ(dt, dz)

}]
= exp

{∫ T

0

∫
R

[
eγ(t,z) − 1

]
ν(dz)dt

}

The next two results will be used when pricing IL securities using the martingale method in Chapter

3. The convexity correction allows to compute the expected value of the product of two martingales.
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Theorem 2.23. (Convexity correction) Let X1 and X2 be two P-martingales with dynamics given

by:

dXi(t)
Xi(t−)

= βi(t)dW (t) +
∫

R
γi(t, z)(µ− π)(dt, dz), for i = 1, 2,

where βi(t) and γi(t) are deterministic and
∫ T

0

∫
R
γ2
i (t, z)π(dt, dz) < ∞ for i = 1, 2. Then for all

t ∈ [0, T ]

EP
t [X1(T )X2(T )] = X1(t)X2(t) exp

[∫ T

t

β1(u)βτ2 (u)du+
∫

R
γ1(t, z)γ2(t, z)π(dt, dz)

]
(2.7)

where (·)τ denotes the transpose.

Remark The exponential factor in Equation (2.7) is sometimes referred to the as convexity correc-

tion term.

Proof. This proof is from [63] where it was proved in the case of finite jumps. The proof when

considering infinite jumps is similar.

Considering Zt = X1(t)X2(t), by Corollary 2.13

dZt
Zt−

= β1(t)β2(t)dt+
∫

R
γ1(t, z)γ2(t, z)π(dt, dz) + [β1(t) + β2(t)] dWt

+
∫

R
[γ1(t, z) + γ2(t, z) + γ1(t, z)γ2(t, z)] (µ− π)(dt, dz).

Since dW and (µ− π) are P-martingales, for every t ≤ T ,

EP
t [ZT ] = Zt + EP

t

[∫ T

t

ZuAudu

]
where

Au = α1(u) + α2(u) + β1(u)β2(u) +
∫

R
γ1(u, z)γ2(u, z)ν(dz)

is an integrable function of u.

Since A is a non stochastic process which is integrable, the expectation can be moved within the

integral sign. Assuming that Cs = EP
t [Zs] with s ≥ t yields

Cs = Zt +
∫ s

t

AuCudu.

Taking the derivative of this equation gives the the following ordinary differential equation Ċs = CsAs

Ct = Yt
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The solution to this differential equation is given by

CT = Yt exp

[∫ T

t

Audu

]
.

The Bayes theorem relates the conditional and marginal probabilities of two random events.

Theorem 2.24 (Bayes theorem). Let X = (Xt)t≥0 be a stochastic process on (Ω,F ,P), let Q be

another probability measure on (Ω,F), absolutely continuous with respect to P and with Radon-

Nikodym derivative

λ =
dQ
dP

on F .

Let G be a σ-algebra with G ⊆ F , then

EQ[X | G] =
EP[λ ·X | G]

EP[λ | G]
, Q− a.s.

2.4 Examples of Lévy Processes

Infinitely divisible distributions have been used for modelling financial data as early as 1980 [95] to

incorporate skewness and excess kurtosis. Examples of such distributions are the Variance Gamma

(VG), the Normal Inverse Gausssian (NIG), the Generalized Hyperbolic (GH) model, the GH skew

Student’s t distribution and the Hyperbolic model. The VG distribution was introduced by Madan

and Seneta [77, 78] to model stock returns in the late 1980s. In 1995, Eberlein and Keller [41]

used the Hyperbolic distribution and Barndorff-Nielsen [11] proposed the NIG Lévy process. All

the previous models were brought together as special cases of the GH model, which was developed

by Eberlein and co-workers in a series of papers [47, 42, 91]. This section presents these selected

Lévy processes and other useful results. A more detailed coverage of Lévy processes can be found

in [91, 95].

Note that throughout this section, the GH model refers to the univariable Generalized Hyperbolic

distribution.

2.4.1 The Generalized Hyperbolic Distribution

The name “Generalized Hyperbolic” is due to the fact that the GH distribution log-density is

hyperbolic while the Gaussian distribution log-density is a parabola. In 1977, Barndorff-Nielsen [10]
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introduced the Generalized Hyperbolic distribution to model grain size distributions of wind blown

sand. He was looking for a satisfactory explanation to some empirical laws in geology; later on, this

distribution was used in financial Mathematics [41, 91].

Definition 2.25 (Generalized Hyperbolic distribution). A univariate GH distribution is defined by

the following Lebesgue density

gh(x;λ, α, β, δ, µ) = a(λ, α, β, δ)[δ2 + (x− µ)2]
1
2 (λ− 1

2 )Kλ− 1
2

(
α
√
δ2 + (x− µ)2

)
eβ(x−µ)(2.8)

a(λ, α, β, δ) =
(α2 − β2)

λ
2

√
2παλ−

1
2 δλKλ(δ

√
α2 − β2)

(2.9)

where x ∈ R and Kλ is a modified Bessel function of the third kind (See Figure 2.1)

Kλ(z) =
1
2

∫ ∞
0

yλ−1 exp
[
−z

2

(
y +

1
y

)]
dy for z > 0. (2.10)

Figure 2.1 Modified Bessel function of the third kind.
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The domain of variation of the parameters is µ ∈ R and

δ ≥ 0, |β| < α if λ > 0;

δ > 0, |β| < α if λ = 0;

δ > 0, |β| ≤ α if λ < 0.

The parameters µ, δ, β and α affect respectively the location, the scale, the skewness and the

kurtosis.

Proposition 2.26 (Mean and Variance). The mean and variance of a generalized hyperbolic dis-

tributed random variate X are given by [91]

E[X] = µ+
βδ√
α2 − β2

Kλ+1(ζ)
Kλ(ζ)

;

V ar[X] = δ2

{
Kλ+1(ζ)
ζKλ(ζ)

+
β2

α2 − β2

[
Kλ+2(ζ)
Kλ(ζ)

−
(
Kλ+1(ζ)
Kλ(ζ)

)2
]}

,

where ζ = δ
√
α2 − β2.

Proposition 2.27. The characteristic function of the generalized hyperbolic distribution is given by

ϕGH(u) = eiµu
[

α2 − β2

α2 − (β + iu)2

]λ
2 Kλ(δ

√
α2 − (β + iu)2)

Kλ(δ
√
α2 − β2)

The GH can also be seen as a normal variance-mean mixture in the form

gh(x;λ, α, β, δ, µ) =
∫ ∞

0

N (x;µ+ βw,w) · gig(w;λ, δ2, α2 − β2)dw

where N (·) is the normal density function and gig(·) the density function of a generalized inverse

Gaussian(GIG).

Definition 2.28 (Generalized Inverse Gaussian distribution). A univariate GIG distribution is

defined by the following Lebesgue density

gig(x;λ, χ, ψ) =

(
χ

ψ

)λ
2

2Kλ

(√
ψχ
)xλ−1 exp

[
−1

2

(χ
x

+ ψx
)]

, for x > 0,

where Kλ is a modified Bessel function of the third kind and λ ∈ R and χ, ψ ∈ R+.

Remark The normal distribution is obtained from the GH distribution by considering the following

limit case: δ →∞ and
δ

α
→ σ2.
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Although the GH distribution is highly flexible, it is seldom used in practical applications. This

might be due to the fact that even for very large sample, it is hard to determine which subclass is

the most appropriate [91]. Instead, specific subclasses have been applied in various situations for

parameter estimation. The following subsections review some of these subclasses.

2.4.2 The Hyperbolic Distribution

A univariate hyperbolic (HYP) distribution is obtained from a GH distribution for λ = 1.

Definition 2.29 (Hyperbolic distribution). A univariate HYP distribution is defined by the follow-

ing Lebesgue density

hyp(x;α, β, δ, µ) =

√
α2 − β2

2δαK1(δ
√
α2 − β2)

exp
[
−α
√
δ2 + (x− µ)2 + β(x− µ)

]
,

where x, µ ∈ R, 0 ≤ δ and |β| < α.

The mean and variance of an HYP distribution can easily be computed from that of the GH distri-

bution.

2.4.3 The Normal Inverse Gaussian Distribution

The name “Normal Inverse Gaussian” (NIG) stems from the fact that the NIG distribution can be

represented as a mixture of a Generalized Inverse Gaussian with a Normal distribution. A univariate

NIG distribution is obtained from a GH distribution for λ = −1
2

.

Definition 2.30 (Normal Inverse Gaussian distribution). A univariate NIG distribution is defined

by the following Lebesgue density

nig(x;α, β, δ, µ) =
αδ

π
exp

[
δ
√
α2 − β2 + β(x− µ)

] K1[α
√
δ2 + (x− µ)2]√

δ2 + (x− µ)2
,

where x, µ ∈ R, 0 ≤ δ and 0 ≤ |β| ≤ α.

The NIG distribution is a lot easier to handle than the HYP distribution because it has a parameter

additivity property similar to that of the the normal distribution [92]. If (Xi)1≤i≤n are independent

NIG random variables with common parameters α and β but having individual parameters µi and

δi, then
n∑
i=1

Xi is NIG distributed with parameters

(
α, β,

n∑
i=1

µi,

n∑
i=1

δi

)
. Furthermore, if X ∼

nig(α, β, δ, µ) and Y = aX + b, then

Y ∼ nig

(
α

|a|
,
β

a
, |a|δ, aµ+ b

)
.
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The characteristic function of the NIG distribution is given by

ϕNIG(u) = exp
{
δ[
√
α2 − β2 −

√
α2 − (β + iu)2] + iuµ

}
.

(a) Probability density function (b) Sample paths for α = 100, β = 1, µ = 0 and

δ = 0.01

Figure 2.2 Probability density function and sample path for NIG.

2.4.4 The Variance Gamma Distribution

The Variance Gamma (VG) process can be expressed as the difference between two independent

Gamma processes [95]. The Gamma process X(Gamma) =
{
X

(Gamma)
t

}
t≥0

starts at zero and has

independent and stationary increments. The increments are Gamma distributed, i.e. X(Gamma)
t is

Gamma(at; b) distributed. So if X = (Xt)t≥0 and Y = (Yt)t≥0 are two Gamma processes, a VG

density function can be expressed in the following way,

fV G(x) = fX+(−Y )(x) =
∫ ∞
−∞

fX(x+ s)fY (s)ds

where fX and fY are Gamma density functions. The Gamma density function is given by

fG(x; a, b) =
ba

Γ(a)
xa−1 exp(−xb), x > 0.

The previous method is commonly used when simulating VG paths (See Figures 2.4(a) and 2.4(b)).

Alternatively, the representation of a VG process as a Brownian motion subordinated by a Gamma

process can also be used. A subordinated Lévy process is a time changing process for which the

time changes according to another “increasing” Lévy process. The latter process is referred to as
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the subordinator. In this situation, a VG process has three parameters: σ, θ and ν which are

respectively the volatility of the underlying Brownian motion, the drift of the Brownian motion and

the variance of the subordinator.

Figure 2.3 Probability density function of some VG processes.

Senata [96] introduced another approach whereby the probability density function of a VG distri-

bution with parameters (θ, σ, ν, µ) is

vg(x; θ, σ, ν, µ) =
2 exp

[
(x− µ) θ

σ2

]
σ
√

2πν
1
ν Γ( 1

ν )

[
(x− µ)2

θ2 + 2σ2/ν

] 1
2ν−

1
4

×K 1
ν−

1
2

(
|x− µ|
σ2

√
θ2 + 2σ2/ν

)
,

and its characteristic function is

ϕV G(x; θ, σ, ν, µ) = eiµx
(

1− iθνx+
σ2ν

2
x2

)−1/ν

.

2.4.5 The GH Skew Student’s t Distribution

The GH skew Student’s t-distribution is ideal for financial modelling. It is not only almost as

analytically tractable as the NIG distribution, but its parameter estimation using the maximum



2.5 Option Pricing Using the Fast Fourier Transform 43

(a) Subordinated VG (b) Difference of 2 Gamma

Figure 2.4 Sample paths of a VG process with σ = 0.2, ν = 0.5 and θ = 0.25.

likelihood method is quite straightforward [39]. Moreover, the GH skew Student’s t-distribution is

the only subclass of the GH distribution for which one tail has polynomial behaviour while the other

has exponential behaviour. This generalisation of the usual Student’s t distribution is obtained from

Equation (2.8) by letting λ = −ν2 , ν > 0 and α→ |β| > 0. Its probability density function is [1]

fSt(x;β, δ, µ, ν) =
2

1−ν
2 δν |β| ν+1

2 exp [β(x− µ)]

Γ
(
ν
2

)√
π
[√

δ2 + (x− µ)2
] ν+1

2

K ν+1
2

[
β2
√
δ2 + (x− µ)2

]
, β 6= 0;

fSt(x;β, δ, µ, ν) =
Γ
(
ν+1

2

)
√
πδΓ

(
ν
2

) [1 +
(x− µ)2

δ2

]− ν+1
2

, β = 0.

The mean and the variance of the skewed Student’s t distributed random variate X are

E(X) = µ+
βδ2

ν − 2
,

V ar(X) =
2β2δ4

(ν − 2)2(ν − 4)
+

δ2

ν − 2
.

The mean is finite only when ν > 2 and the same is true for the variance when1 ν > 4.

2.5 Option Pricing Using the Fast Fourier Transform

Under the assumption that prices follow a Lévy distribution or an exponential Lévy distribution,

option pricing using the fast Fourier transform is performed in two steps. First, the Fourier transform

of the contingent claim is computed, subsequently the Fourier inverse method gives the option price.
1See [21] for a detailed derivation and coverage of the mean and variance for all possible values of ν.
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This methodology was first proposed by Carr and Madan [26] to price equity derivatives driven

by variance gamma processes, but it has general applicability. The current section presents the

valuation of European call-like option since IL caplets, floorlets and swaptions (priced later) can be

viewed as particular European call options.

Let rt denote the market interest rate and Rt = ln rt. This section values an European call with

underlying rt and strike k. Throughout this section, the characteristic function of rt

ΦT (u) = E[exp(iurt)]

is considered known analytically. Since the returns’ distribution is easily deduced from the market’s

observation (See Chapter 6), this is not too far fetched. The previous characteristic function is also

defined by

ΦT (u) =
∫ ∞
−∞

eiuRqT (R)dR, ∀ u ∈ R

where qT (·) is the density of Rt under the risk neutral probability. The European call’s value is

cT (k) = pn(0, T )EQ[(rt − k)+]

= pn(0, T )
∫ ∞
k

(
eR − eK

)
qT (R)dR.

However, the cT function is not square integrable in K, i.e. cT does not decay as K → −∞ (or, i.e.

k → 0), thus its Fourier transform does not exist. Following Carr and Madan [26], the modified call

price is

CT (K) = exp(αk)cT (k),

with α > 0 chosen such that CT (K) is integrable in −∞.

The Fourier transform of CT (K) is

ΨT (v) =
∫ +∞

−∞
eivKCT (K)dK. (2.11)

The fact that

CT (K) ≈
K→−∞

r0 exp(αK),

ensures the integrability of the square of CT (K) at −∞. However, this might accentuate the problem

at +∞. For the moment, the assumption is made that Ψ(0) is defined and CT (K) is integrable at

+∞. The latter point will be taken care of in the paragraph containing Equation 2.12.
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The Fourier inversion formula gives

CT (K) =
1

2π

∫ +∞

−∞
e−ivKΨT (v)dv;

cT (K) =
1

2π
exp(−αK)

∫ +∞

−∞
e−ivKΨT (v)dv.

The price cT (K) is real, therefore ∀K ∈ R,

=
(∫ +∞

−∞
e−ivKΨT (v)dv

)
= 0.

Let a(v) and b(v) denote respectively the real and imaginary parts of ΨT (v). They are defined by

a : v −→
∫ +∞

−∞
cos(vK)cT (K)dK

b : v −→
∫ +∞

−∞
sin(vK)cT (K)dK

a is even and b is odd. Thus, ∀v ∈ R,

Ψ(−v) = a(v)− ib(v).

Let A and B be the functions defined for all K ∈ R by:

A(K) =
∫ 0

−∞
e−ivKΨT (v)dv

B(K) = 2π exp(αK)cT (K)−A(K)

=
∫ +∞

0

e−ivKΨT (v)dv.

With the change of variable v → −v,

A(K) =
∫ 0

+∞
−eivKΨT (−v)dv

=
∫ +∞

0

{cos(vK)a(v) + sin(vK)b(v) + i [sin(vK)a(v)− cos(vK)b(v)]} dv.

Comparing the last equation with:

B(K) =
∫ +∞

0

e−ivKΨT (v)dv

=
∫ +∞

0

{cos(vK)a(v) + sin(vK)b(v)− i [sin(vK)a(v)− cos(vK)b(v)]} dv,

notice that

<[A(K)] = <[B(K)];

=[A(K)] = −=[B(K)].
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Hence

2π exp(αK)cT (K) = 2<[B(K)],

and

cT (K) =
exp(−αK)

π
<
[∫ +∞

0

e−ivKΨT (v)dv
]
.

To get the call price as a function of the characteristic function ΦT , the first step is expressing ΨT

as function of ΦT . From Equation (2.11),

ΨT (v) = pn(0, T )
∫ +∞

−∞

∫ +∞

K

eαKeivK
(
eR − eK

)
qT (R)dRdK.

The integration domain is defined by the upper half plane defined by R = K. With the use of the

Fubini theorem,

ΨT (v) = pn(0, T )
∫ +∞

−∞

(∫ R

−∞
eαK+ivK+R − eαK+ivK+K

)
qT (R)dRdK

= pn(0, T )
∫ +∞

−∞
qT (R)

[
eαK+ivK+R

α+ iv
− eαK+ivK+K

α+ iv + 1

]R
−∞

dR

= pn(0, T )
∫ +∞

−∞
qT (R)

(
eαK+ivK+R

α+ iv
− eαK+ivK+K

α+ iv + 1

)
dR

= pn(0, T )
∫ +∞

−∞
qT (R)

[
e(α+iv+1)R

(α+ iv)(α+ iv + 1)

]
dR

=
pn(0, T )ΦT [v − i(1 + α)]
α2 + α− v2 + iv(2α+ 1)

.

The integrability condition at +∞ on α which was ΨT (0) <∞ becomes ΦT [0− i(1 +α)] <∞, then:∫ ∞
−∞

qT (R)e(1+α)RdR < +∞, (2.12)

i.e. EQ
[
rα+1
T

]
< +∞.

Hence

cT (K) =
pn(0, T )e−αK

π
<
{∫ +∞

0

e−ivKΦT [v − i(1 + α)]
α2 + α− v2 + iv(2α+ 1)

}
.

Notice that for α = 0, i.e. non modified price of the call, there is a valuation problem under the

integral sign in zero. The choice of a value of α is important for the convergence speed. Carr and

Madan [26] suggest close to 0.25 and Schoutens [95] 0.75 to price stock options, while Wu [110]

proposes 1 for currency and interest rate options.

Section 6.2 describes how to use Fast Fourrier Transform (FFT) to discretise and implement this

pricing scheme.



Chapter 3

Heath-Jarrow-Morton Model

In order to improve the match between model generated and market observed inflation linked (IL)

securities prices, this chapter assumes that the consumer price index’s log return, nominal and real

forward rates follow Lévy processes. This is an extension of the work of Hinnerich [63] where the

probability measure had only finite jump processes contrary to infinite jump processes that are used

in this chapter. Pricing formulas for swaps, swaptions, caps and floors are derived. Finally, an

example of calibration to market data with numerical details is performed.

Here is a summary of the content of this chapter. The first section is related to Björk, Di Masi,

Kabanov and Runggaldier [16], where a general semimartingale approach is used for modelling of the

inflation linked market in the Lévy setting. Having introduced some basic assumptions, the models

for nominal and IL bond prices are specified through the dynamics of inflation, domestic and real

instantaneous forward rates. We derive expressions for the real spot and forward inflation rates and

consider the problems of existence of nominal risk neutral martingale measures respectively. As a by

product we obtain HJM-type conditions on the coefficients for the IL market. Finally, we investigate

the question of absence of arbitrage in the international bond market.

The second section is motivated by Eberlein and Özkan [46], where a Lévy Libor model based on

a time-inhomogeneous Lévy processes has been introduced. After presentation of several technical

results concerning the properties of the driving time-inhomogeneous Lévy process, we translate a

few models from the semimartingale setting in the first section to the current Lévy setting. In

particular, we specify the models for domestic and foreign instantaneous forward rates, bond prices

and foreign spot and forward exchange rates. This allows us to proceed with the specification of

47
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the dynamics for domestic and foreign forward processes, followed by the models for domestic and

foreign forward Libor rates. Finally, we consider the relationship between domestic and foreign fixed

income markets in the discrete-tenor framework.

3.1 The Extended HJM Model

This section extends the HJM model to Itô-Lévy processes. Using the martingale approach, dynamics

are derived for nominal bonds, inflation linked bonds, real bonds and inflation under the risk neutral

measure. Contrary to previous work [71, 81, 82, 14], no initial assumption is made that the foreign

currency analogy holds. Instead, the foreign currency analogy is a result.

Assumption 1. The probability space carries both an n-dimensional Wiener process W P and a

Poisson random measure µ(dt, dz) over R+ × R with compensator πP(dt, dz) = νP(dz)dt. The

probability space’s filtration F = (Ft)t≥0 is generated both by W P and µ (i.e. Ft = FW P

t ∨Fµt ) which

are independent. The Lévy measure νP is on R and satisfies:

(i) νP(0) = 0;

(ii)
∫ T

0

∫
R
(z2 ∧ 1)νP(dz)dt <∞.

For a “smooth” yield curve to be deductible from the market bonds’ prices, the next initial assump-

tion is needed where IP stands for inflation protected.

Assumption 2. There exists a (nominal) market for T -bonds and T -IP-bonds for all maturities

T > 0. Furthermore, for every fixed t, the nominal bond pn(t, T ) and the inflation linked bond

pIP (t, T ) are differentiable with respect to the maturity T .

The corresponding real bond is defined by

pn(t, T ) =
pIL(t, T )
I(t)

.

Instantaneous forward rates, contracted at time t are defined by

fi(t, T ) = −∂ ln pi(t, T )
∂T

for i = r, n.

For i = n (resp. i = r), the forward rate is a nominal (resp. real) instantaneous forward rate. From

these forward rates, the instantaneous interest rates are deduced by

ri(t) = fi(t, t) for i = r, n.
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The money market accounts are given by

Bi(t) = e
∫ t
0 r

i(s)ds for i = r, n.

For i = n, Bn(t) is the nominal money market account at time t measured in dollars; while Br(t) is

the real money market account at time t measured in CPI basket.

Similarly to Jarrow and Yildirim, the next assumption first gives specifications for the dynamics of

the consumer price index, the nominal and real forward rates in the statistical probability measure.

Assumption 3. Under the objective probability measure P, the dynamics of fr and fn for every

fixed T > 0 and the dynamics of I are given by:

dfi(t, T ) = αi(t, T )dt+ βi(t, T )dW P
t +

∫
R
γi(t, z, T )µ̄(dt, dz) i = r, n (3.1)

dI(t) = I(t−)aI(t)dt+ I(t−)bI(t)dW P
t + I(t−)

∫
R
cI(t, z)µ̄(dt, dz),

with

µ̄(dt, dz) =

 µ(dt, dz)− ν(dz)dt, |z| < R

µ(dt, dz), |z| ≥ R

where αi(t, T ), βi(t, T ), γi(t, z, T ), aI(t), bI(t) and cI(t, z) are adapted processes with∫ T

0

∫ T

t

|αi(u, s)|dsdu <∞,
∫ T

0

∫ T

t

|βi(u, s)|2dsdu <∞,

for all finite t and T ≥ t; γi(t, z, T ) : Ω× R+ × R× R+ is a real valued function satisfying∫ T

0

∫
R

∫ T

t

|γi(u, z, s)|2dsπ(du, dz) <∞,

for finite t and T ≥ t. These conditions guarantee integrability of the coefficients and are satisfied

if the coefficients are bounded for t and T from a bounded set and π([0, t] × R) < ∞ for finite t.

Additionally, α(t, T ), β(t, T ) and γ(t, x, T ) equal zero for T < t.

The real world Brownian motion W P will sometime be noted W in short form.

Assumption 4. The market is arbitrage free.

In the current economy, the investor maintains his real value holdings in the form of real bonds

and the real money market account. In nominal currency these are respectively represented by

PIP (t, T ) = I(t)Pr(t, T ) and I(t)Br(t). Let BIP (t) denote the nominal value of the real money bank

account, i.e. BIP (t) = I(t)Br(t). Assumption 4 is equivalent to the existence of a (not necessary



3.1 The Extended HJM Model 50

unique) nominal risk neutral probability measure Qn. The probability measure Qn is such that
Pn(t, T )
Bn(t)

,
PIP (t, T )
Bn(t)

and
I(t)Br(t)
Bn(t)

are Qn-martingales [3, 71].

Proposition 3.1. If fn(t, T ), fr(t, T ) and I(t) satisfy the Assumption 3 then I(t), pn(t, T ), pIP (t, T )

and pr(t, T ) will under the nominal martingale measure Qn satisfy:

dI(t)
I(t−)

=

[
rn(t)− rr(t) +

∫
|z|≥R

cI(t, z)ν(dz)

]
dt+ bI(t)dWt +

∫
R
cI(t, z)µ̃(dt, dz);(3.2)

dpn(t, T )
pn(t, T )

= rn(t)dt+ σn(t, T )dWt +
∫

R
δn(t, z, T )µ̃(dt, dz); (3.3)

dpIP (t, T )
pIP (t−, T )

= rn(t)dt+ σIP (t, T )dWt +
∫

R
δIP (t, z, T )µ̃(dt, dz); (3.4)

dpr(t, T )
pr(t−, T )

= ar(t, T )dt+ σr(t, T )dWt +
∫

R
δr(t, z, T )µ̃(dt, dz), (3.5)

where

σi(t, T ) = −
∫ T

t

βi(t, u)du, for i = n, r;

δi(t, z, T ) = exp
[
Di(t, z, T )

]
− 1, for i = n, r;

σIP (t, T ) =
[
Sr(t, T ) + bI(t)

]
;

ar(t, T ) = rr(t)− Sr(t, T )bI(t)−
∫
|z|≥R

cI(t, z)ν(dz) +
∫
|z|<R

[
cI(t, z)

]2
1 + cI(t, z)

ν(dz)

−
∫

R

{
exp [Dr(t, z, T )]cI(t, z)− cI(t, z)

1 + cI(t, z)

}
ν(dz);

δIP (t, z, T ) = exp [Dr(t, z, T )][1 + cI(t, z)]− 1;

Si(t, T ) = −
∫ T

t

βi(t, u)du;

Di(t, z, T ) = −
∫ T

t

γi(t, z, u)du.

Proof. The process pi for i = r, n is defined by

pi(t, T ) = exp [X(t, T )] , i.e. ln pi(t, T ) = X(t, T ),

with X(t, T ) = −
∫ T

t

fi(t, u)du.

Integrating Equation 3.1 with respect to t on [0, t] gives

fi(t, u) = fi(0, u) +
∫ t

0

αi(s, u)ds+
∫ t

0

βi(s, u)dWs +
∫ t

0

∫
R
γi(s, z, u)µ̄(ds, dz).

In particular, for the instantaneous interest rate ri(t) = fi(t, t)

ri(t) = fi(0, t) +
∫ t

0

αi(s, t)ds+
∫ t

0

βi(s, t)dWs +
∫ t

0

∫
R
γi(s, z, t)µ̄(ds, dz).
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Splitting the integrals, then using Fubini theorem, we get

X(t, T ) = −
∫ T

t

fi(0, u)du−
∫ t

0

∫ T

t

αi(s, u)duds−
∫ t

0

∫ T

t

βi(s, u)dudWs

−
∫ t

0

∫ T

t

∫
R
γi(s, z, u)duµ̄(ds, dz)

= −
∫ T

0

fi(0, u)du−
∫ t

0

∫ T

s

αi(s, u)duds−
∫ t

0

∫ T

s

βi(s, u)dudWs

−
∫ t

0

∫ T

s

∫
R
γi(s, z, u)duµ̄(ds, dz) +

∫ t

0

fi(0, u)du+
∫ t

0

∫ t

s

αi(s, u)duds

+
∫ t

0

∫ t

s

βi(s, u)dudWs +
∫ t

0

∫ t

s

∫
R
γi(s, z, u)duµ̄(ds, dz)

= X(0, T )−
∫ t

0

∫ T

s

αi(s, u)duds−
∫ t

0

∫ T

s

βi(s, u)dudWs

−
∫ t

0

∫ T

s

∫
R
γi(s, z, u)duµ̄(ds, dz) +

∫ t

0

fi(0, u)du+
∫ t

0

∫ u

0

αi(s, u)dsdu

+
∫ t

0

∫ u

0

βi(s, u)dWsdu+
∫ t

0

∫ u

0

∫
R
γi(s, z, u)µ̄(ds, dz)du

Noticing that the four last terms are equal to
∫ t

0

ri(s)ds, we end up with

X(t, T ) = X(0, T ) +
∫ t

0

ri(s)ds−
∫ t

0

∫ T

s

αi(s, u)duds−
∫ t

0

∫ T

s

βi(s, u)dudWs

−
∫ t

0

∫ T

s

∫
R
γi(s, z, u)duµ̄(ds, dz)

Let us defineAi(t, T ) = −
∫ T

t

αi(t, u)du, Si(t, T ) = −
∫ T

t

βi(t, u)du andDi(t, z, T ) = −
∫ T

t

γi(t, z, u)du,

if differentiating the previous equation, we have

dX(t, T ) =
[
ri(t) +Ai(t, T )

]
dt+ Si(t, T )dWt +

∫
R
Di(t, z, T )µ̄(dt, dz).

Using the one-dimensional Itô formula with pi(t, T ) = f [X(t, T )] = exp [X(t, T )], α(t, T ) = ri(t) +

Ai(t, T ), β(t, T ) = Si(t, T ) and γ(t, z, T ) = Di(t, z, T )

dpi(t, T ) = pi(t, T ) [α(t, T )dt+ β(t, T )dWt] +
1
2
β2(t, T )pi(t, T )dt

+
∫
|z|<R

{pi(t−, T ) exp [γ(t, z, T )]− pi(t−, T )− pi(t−, T )γ(t, z, T )}π(dt, dz)

+
∫

R
{pi(t−, T ) exp [γ(t, z, T )]− pi(t−, T )} µ̄(dt, dz).
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Thus

dpi(t, T )
pi(t−, T )

=
[
α(t, T ) +

1
2
β2(t, T )

]
dt+ β(t, T )dWt +

∫
|z|<R

{exp [γ(t, z, T )]

−γ(t, z, T )− 1}π(dt, dz) +
∫

R
{exp [γ(t, z, T )]− 1} µ̄(dt, dz)

=
[
ri(t) +Ai(t, T ) +

1
2

∥∥Si(t, T )
∥∥2
]
dt+ Si(t, T )dWt +

∫
|z|<R

{
exp

[
Di(t, z, T )

]
−Di(t, z, T )− 1

}
π(dt, dz) +

∫
R

{
exp

[
Di(t, z, T )

]
− 1
}
µ̄(dt, dz)

=
[
ri(t) +Ai(t, T ) +

1
2

∥∥Si(t, T )
∥∥2
]
dt+ Si(t, T )dWt +

∫
|z|<R

{
exp

[
Di(t, z, T )

]
−Di(t, z, T )− 1

}
ν(dz)dt+

∫
R

{
exp

[
Di(t, z, T )

]
− 1
}
µ̄(dt, dz) (3.6)

with π(dt, dz) = ν(dz)dt.

Combining the P-dynamics of pr(t, T ) and I(t), the Corollary 2.13 applied to pIP (t, T ) = pr(t, T )I(t)

with

α1(t, T ) =
[
rr(t) +Ar(t, T ) +

1
2
‖Sr(t, T )‖2

]
+
∫
|z|<R

{exp [Dr(t, z, T )]−Dr(t, z, T )− 1} ν(dz);

β1(t, T ) = Sr(t, T );

γ1(t, z, T ) = {exp [Dr(t, z, T )]− 1} ;

α2(t) = aI(t); β2(t) = bI(t); γ2(t, z) = cI(t, z);

gives

dpIP (t, T )
pIP (t, T )

= [α1(t, T ) + α2(t) + β1(t, T )β2(t)] dt+
∫

R
γ1(t, z, T )γ2(t, z)π(dt, dz)

+ [β1(t, T ) + β2(t)] dWt +
∫

R
[γ1(t, z, T ) + γ2(t, z) + γ1(t, z, T )γ2(t, z)] (µ− π)(dt, dz)

=

{[
rr(t) +Ar(t, T ) +

1
2
‖Sr(t, T )‖2

]
+
∫
|z|<R

{exp [Dr(t, z, T )]−Dr(t, z, T )− 1} ν(dz)

+aI(t) + Sr(t, T )bI(t)
}
dt+

∫
R
{exp [Dr(t, z, T )]− 1} cI(t, z)π(dt, dz)

+
[
Sr(t, T ) + bI(t, T )

]
dWt + +

∫
R

{
[1 + cI(t, z)] exp [Dr(t, z, T )]− 1

}
(µ− π)(dt, dz).

Next, we would like to change measure from P to the equivalent (nominal) martingale measure Qn.

By the Girsanov change of measure, we know there is a P-adapted process ht and a P-predictable

process ρ(t, z) ≤ −1 ∀z ∈ R such that dLt = htLtdW
P +

∫
R
ρ(t, z)µ̃P(dt, dz) where LT =

dQn

dP
on

FT so that dW P
t = htdt+dWt and πt(dz) = πP

t (1 +ρ(t, z)). Here W denotes a Qn-Brownian motion
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and πt(dt, dz) it the compensator of µ under the Qn-measure. Furthermore µ̃(dt, dz) denotes the

compensated Poisson random measure under Qn, i.e.

µ̃(dt, dz) = µ(dt, dz)− π(dt, dz)

= µ̄(dt, dz)− πP
t (dz)ρ(t, z).

Hence the dynamics of I(t), pn(t, T ), pr(t, T ) and pIP (t, T ) under Qn are given by:

dI(t)
I(t−)

=
[
aI(t) + bI(t)ht +

∫
R
cI(t, z)ρ(t, z)νP(dz)

]
dt+ bI(t)dWt +

∫
R
cI(t, z)µ̃(dt, dz);(3.7)

dpi(t, T )
pi(t, T )

= ai(t, T )dt+ σi(t, T )dWt +
∫

R
δi(t, z, T )µ̃(dt, dz), i = n, r; (3.8)

dpIP (t, T )
pIP (t, T )

= aIP (t, T )dt+ σIP (t, T )dWt +
∫

R
δIP (t, z, T )µ̃(dt, dz); (3.9)

where

ai(t, T ) = ri(t) +Ai(t, T ) +
1
2

∥∥Si(t, T )
∥∥2

+ htS
i(t, T ) +

∫
|z|<R

{
exp

[
Di(t, z, T )

]
−Di(t, z, T )− 1

}
ν(dz) +

∫
R

{
exp

[
Di(t, z, T )

]
− 1
}
ρ(t, z)νP(dz); (3.10)

σi(t, T ) = Si(t, T );

δi(t, z, T ) = exp
[
Di(t, z, T )

]
− 1;

aIP (t, T ) = rr(t) +Ar(t, T ) +
1
2
‖Sr(t, T )‖2 +

∫
|z|<R

{exp [Dr(t, z, T )]−Dr(t, z, T )− 1} ν(dz)

+aI(t) + Sr(t, T )bI(t) +
∫

R
{exp [Dr(t, z, T )]− 1} cI(t, z)ν(dz)

+
∫

R

{
[1 + cI(t, z)] exp [Dr(t, z, T )]− 1

}
ρ(t, z)νP(dz) + ht

[
Sr(t, T ) + bI(t)

]
;(3.11)

σIP (t, T ) =
[
Sr(t, T ) + bI(t)

]
;

δIP (t, z, T ) = exp [Dr(t, z, T )][1 + cI(t, z)]− 1.

From Assumption 4,
Pn(t, T )
Bn(t)

and
PIP (t, T )
Bn(t)

are Qn-martingales, hence the drift of pn(t, T ) and

pIP (t, T ) must equal the nominal short rate, that is an(t, T ) = aIP (t) = rn(t). This, together with

Equations (3.8) and (3.9), implies Equations (3.3) and (3.4), respectively.
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If we insert the condition an(t, T ) = aIP (t, T ) = rn(t) into the drift Equations (3.10) and (3.11)

rn(t) = rn(t) +An(t, T ) +
1
2
‖Sn(t, T )‖2 + htS

n(t, T ) +
∫
|z|<R

{exp [Dn(t, z, T )]

−Dn(t, z, T )− 1} ν(dz) +
∫

R
{exp [Dn(t, z, T )]− 1} ρ(t, z)νP(dz)

= rr(t) +Ar(t, T ) +
1
2
‖Sr(t, T )‖2 +

∫
|z|<R

{exp [Dr(t, z, T )]

−Dr(t, z, T )− 1} ν(dz) + aI(t) + Sr(t, T )bI(t) +
∫

R
{exp [Dr(t, z, T )]− 1} cI(t, z)ν(dz)

+ht
[
Sr(t, T ) + bI(t)

]
+
∫

R

{
[1 + cI(t, z)] exp [Dr(t, z, T )]− 1

}
ρ(t, z)νP(dz).

Since these equations must hold for all T , we get Equations (3.12), (3.13), (3.14) and (3.16).

An(t, T ) = −1
2
‖Sn(t, T )‖2 − htSn(t, T )−

∫
|z|<R

{exp [Dn(t, z, T )]−Dn(t, z, T )} ν(dz)

−
∫

R
exp [Dn(t, z, T )]ρ(t, z)νP(dz); (3.12)∫

|z|<R
ν(dz) = −

∫
R
ρ(t, z)νP(dz) (3.13)

rn(t) = rr(t)−
∫
|z|<R

ν(dz) + aI(t)−
∫

R
cI(t, z)ν(dz) + htb

I(t)−
∫

R
ρ(t, z)νP(dz);

= rr(t) + aI(t)−
∫

R
cI(t, z)ν(dz) + htb

I(t) (3.14)

from Equation (3.13);

aI(t) = rn(t)− rr(t) +
∫

R
cI(t, z)ν(dz)− htbI(t); (3.15)

Ar(t, T ) = −1
2
‖Sr(t, T )‖2 −

∫
|z|<R

{exp [Dr(t, z, T )]−Dr(t, z, T )} ν(dz)− Sr(t, T )bI(t)− htSr(t, T )

−
∫

R
exp [Dr(t, z, T )]cI(t, z)ν(dz)−

∫
R

[1 + cI(t, z)] exp [Dr(t, z, T )]ρ(t, z)νP(dz). (3.16)

Inserting Equation (3.15) into Equation (3.7)

dI(t)
I(t−)

=
[
rn(t)− rr(t) +

∫
R
cI(t, z)ν(dz) +

∫
R
cI(t, z)ρ(t, z)νP(dz)

]
dt+ bI(t)dWt +

∫
R
cI(t, z)µ̃(dt, dz)

=

[
rn(t)− rr(t) +

∫
|z|≥R

cI(t, z)ν(dz)

]
dt+ bI(t)dWt +

∫
R
cI(t, z)µ̃(dt, dz) (3.17)

because of Equation (3.13). Furthermore,
∫
|z|≥R

cI(t, z)ν(dz) is finite by definition. Hence Equation

(3.2) is proved.
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Let us now find the dynamics of pr under Qn; by definition pr(t, T ) =
pIP (t, T )
I(t)

. Considering

Yt =
1
I(t)

, Equation (3.17) and Corollary 2.9 give

dYt
Yt

=

{
−rn(t) + rr(t)−

∫
|z|≥R

cI(t, z)ν(dz) +
[
bI(t)

]2}
dt+

∫
|z|<R

[
cI(t, z)

]2
1 + cI(t, z)

π(dt, dz)

−bI(t)dWt −
∫

R

cI(t, z)
1 + cI(t, z)

µ̃(dt, dz)

=

{
−rn(t) + rr(t)−

∫
|z|≥R

cI(t, z)ν(dz) +
[
bI(t)

]2
+
∫
|z|<R

[
cI(t, z)

]2
1 + cI(t, z)

ν(dz)

}
dt

−bI(t)dWt −
∫

R

cI(t, z)
1 + cI(t, z)

µ̃(dt, dz)

Applying Corollary 2.13 to pr(t, T ) = pIP (t, T )Yt

dpr(t, T )
pr(t−, T )

=

[
rn(t)− rn(t) + rr(t)−

∫
|z|≥R

cI(t, z)ν(dz) +
[
bI(t)

]2
+
∫
|z|<R

[
cI(t, z)

]2
1 + cI(t, z)

ν(dz)

−σIP (t, T )bI(t)
]
dt−

∫
R
δIP (t, z, T )

cI(t, z)
1 + cI(t, z)

π(dt, dz) +
[
σIP (t, T )t− bI(t)

]
dWt

+
∫

R

[
δIP (t, z, T )− cI(t, z)

1 + cI(t, z)
− δIP (t, z, T )

cI(t, z)
1 + cI(t, z)

]
µ̃(dt, dz)

=

[
rr(t) +

[
bI(t)

]2 − σIP (t, T )bI(t)−
∫
|z|≥R

cI(t, z)ν(dz) +
∫
|z|<R

[
cI(t, z)

]2
1 + cI(t, z)

ν(dz)

−
∫

R

δIP (t, z, T )cI(t, z)
1 + cI(t, z)

ν(dz)
]
dt+

[
σIP (t, T )− bI(t)

]
dWt

+
∫

R

[
δIP (t, z, T )− cI(t, z)

1 + cI(t, z)
− δIP (t, z, T )cI(t, z)

1 + cI(t, z)

]
µ̃(dt, dz)

dpr(t, T )
pr(t−, T )

=

[
rr(t) +

[
bI(t)

]2 − [Sr(t, T ) + bI(t)
]
bI(t)−

∫
|z|≥R

cI(t, z)ν(dz) +
∫
|z|<R

[
cI(t, z)

]2
1 + cI(t, z)

ν(dz)

−
∫

R

{
exp [Dr(t, z, T )][1 + cI(t, z)]− 1

} cI(t, z)
1 + cI(t, z)

ν(dz)
]
dt+

[
Sr(t, T ) + bI(t)− bI(t)

]
dWt

+
∫

R

[
exp [Dr(t, z, T )][1 + cI(t, z)]− 1− cI(t, z)

1 + cI(t, z)

−
{

exp [Dr(t, z, T )][1 + cI(t, z)]− 1
} cI(t, z)

1 + cI(t, z)

]
µ̃(dt, dz)

dpr(t, T )
pr(t−, T )

=

[
rr(t)− Sr(t, T )bI(t)−

∫
|z|≥R

cI(t, z)ν(dz) +
∫
|z|<R

[
cI(t, z)

]2
1 + cI(t, z)

ν(dz)

−
∫

R

{
exp [Dr(t, z, T )]cI(t, z)− cI(t, z)

1 + cI(t, z)

}
ν(dz)

]
dt

+Sr(t, T )dWt +
∫

R
{exp [Dr(t, z, T )]− 1} µ̃(dt, dz)

which proves Equation (3.5).
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By construction in the previous proof,
Pn(t, T )
Bn(t)

and
PIP (t, T )
Bn(t)

are Qn-martingales. For Qn to be

the sought nominal risk neutral probability measure,
I(t)Br(t)
Bn(t)

also has to be a Qn-martingale. The

next Lemma states a necessary condition for such a probability measure to exist.

Lemma 3.2. For the probability measure Qn to be a nominal risk neutral probability measure, the

integral
∫
|z|≥R

cI(t, z)ν(dz) has to be zero.

Proof. The definition of Br(t) and the Qn-dynamics of I(t) given in Equation (3.2) yield

dBIP (t)
BIP (t−)

=

[
rn(t) +

∫
|z|≥R

cI(t, z)ν(dz)

]
dt+ bI(t)dWt +

∫
R
cI(t, z)µ̃(dt, dz).

However BIP if a Qn-martingale is and only if the drift term in the previous equation is rn(t).

This necessary condition for the existence of a nominal risk neutral probability measure is not part

of the generalisation of the previously obtained conditions in more specific settings (See Hinnerich

[63], Corollary 2.1 and Jarrow and Yildrim [71], Proposition 2). This additional condition is a

restriction only on the inflation’s jumps. The fact that this condition is on a jump component was

predictable from the work of Jarrow and Yildrim [71], under some drift and volatility restrictions, a

unique equivalent risk neutral measure always exists under the normality assumption. However, after

introducing finite jumps in the probability measure, Hinnerich did not get this additional condition.

A sufficient condition for the previous condition to be met is the next assumption which is commonly

used with Lévy processes in Finance in different versions [43, 100, 45]. Before stating the assumption,

the general work setting needs to be redefined.

The nominal probability measure is endowed with a canonical filtration F = (Ft)t≥0, where the

driving process L = (Lt)t≥0 is a time inhomogeneous Lévy process, i.e. a process with indepen-

dent increments and absolutely continuous characteristics (PIIAC). The law of the process Lt with

characteristic triplet (c, ν, α) is given by the Lévy-Khinchin Formula (See Equation (2.5)) with the

standard integrability conditions, where

b =
∫ t

0

bsds, c =
∫ t

0

csds, ν(z) =
∫ t

0

νsds,

with the integrals being componentwise. Further assumption is made that∫ T

0

(
|αs|+ ‖cs‖+

∫
Rd

(|z2| ∧ 1)ν(dz)
)
ds <∞ , for T > 0,

where | · | is the norm corresponding to the Euclidian scalar product on Rd and ‖·‖ denotes any norm

on the d× d matrices. The following additional moment assumption is made
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Assumption 5. There are constant M , ε > 0, such that for every u ∈ [−(1 + ε)M, (1 + ε)M ]d∫ T

0

∫
|z|>R

exp 〈u, z〉 ν(dz)ds <∞ , for T > 0,

where 〈·, ·〉 is the Euclidian scalar product on Rd and R is a positive constant generally taken equal

to one.

The previous assumption is equivalent to E[exp 〈u, Lt〉] < ∞ for t ∈ [0, T ] and u ∈ Rd. This is a

natural assumption especially when using the Fast Fourier transform or Laplace transform for option

pricing. Recall that for these methods, the characteristic function is supposedly initially known and

needs to be finite for obvious reasons. Furthermore, in the HJM framework, the underlying processes

are always exponentials of stochastic integrals with respect to the driving processes L. In order to

allow the pricing of derivatives these underlying processes have to be martingales under the nominal

risk neutral measure and, therefore, a priori have to have finite expectations, which is exactly the

previous assumption.

In particular, under the previous assumption, the variable Lt itself has finite expectation and con-

sequently a truncation is not needed. In fact, now L is not only a semimartingale, but a special

semimartingale and Assumption 3 can be relaxed. Under the objective probability measure P, the

dynamics of fi (for every fixed T > 0 and i = n, r) and the dynamics of I are given by:

dfi(t, T ) = αi(t, T )dt+ βi(t, T )dW P
t +

∫
R
γi(t, z, T )(µ(dt, dz)− ν(dz)dt) i = r, n

dI(t) = I(t−)aI(t)dt+ I(t)bI(t−)dW P
t + I(t−)

∫
R
cI(t, z)[µ(dt, dz)− ν(dz)dt],

with the standard integrability conditions. The canonical representation of the process L is

Lt =
∫ t

0

αsds+
∫ t

0

√
csdWs +

∫ t

0

∫
Rd
z(µ− π)(ds, dz),

where
√
cs is a measurable version of the square root of cs.

Henceforth, Assumption 5 is supposed verified.

For a nominal risk-free probability measure to exist, additional restrictions on the drift terms in

Assumption 3 and some non-degeneracy conditions upon the volatilities are needed.

Corollary 3.3. The drift conditions that have to be satisfied in order for the market to be free of

arbitrage are:

αn(t, T ) = βn(t, T )

[∫ T

t

β(t, u)du− ht

]
−
∫
|z|<R

δn(t, z, T )γn(t, z, T )ν(dz)

−
∫

R
[δn(t, z, T ) + 1] γn(t, z, T )ρ(t, z)νP(dz);
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αr(t, T ) = βr(t, T )

[∫ T

t

βr(t, u)du− ht − bI(t)

]
−
∫
|z|<R

δr(t, z, T )γr(t, z, T )ν(dz)

−
∫

R
[δr(t, z, T ) + 1] γr(t, z, )cI(t, z)ν(dz)

−
∫

R
[1 + cI(t, z)] [δr(t, z, T ) + 1] γr(t, z, )ρ(t, z)νP(dz);∫

|z|<R
ν(dz) = −

∫
R
ρ(t, z)νP(dz);

aI(t) = rn(t)− rr(t) +
∫

R
cI(t, z)ν(dz)− htbI(t).

Hinnerich’s Corollary 2.1 in [63] and Jarrow and Yildrim’s Proposition 2 in [71] are just particular

cases of this corollary.

Proof. We use Equations (3.12), (3.14), (3.13) and (3.16) and take the T -derivative of the first

two equations.

An(t, T ) = −1
2
‖Sn(t, T )‖2 − htSn(t, T )−

∫
|z|<R

{exp [Dn(t, z, T )]

−Dn(t, z, T )} ν(dz)−
∫

R
exp [Dn(t, z, T )]ρ(t, z)νP(dz);

−αn(t, T ) = −βn(t, T )
∫ T

t

β(t, u)du+ htβ
n(t, T )−

∫
|z|<R

{−γn(t, z, T ) exp [Dn(t, z, T )]

+γn(t, z, T )} ν(dz) +
∫

R
exp [Dn(t, z, T )]γn(t, z, T )ρ(t, z)νP(dz);

αn(t, T ) = βn(t, T )

[∫ T

t

β(t, u)du− ht

]
+
∫
|z|<R

{1− exp [Dn(t, z, T )]} γn(t, z, T )ν(dz)

−
∫

R
exp [Dn(t, z, T )]γn(t, z, T )ρ(t, z)νP(dz)

= βn(t, T )

[∫ T

t

β(t, u)du− ht

]
−
∫
|z|<R

δn(t, z, T )γn(t, z, T )ν(dz)

−
∫

R
[δn(t, z, T ) + 1] γn(t, z, T )ρ(t, z)νP(dz);

Ar(t, T ) = −1
2
‖Sr(t, T )‖2 − Sr(t, T )bI(t)− htSr(t, T )−

∫
|z|<R

{exp [Dr(t, z, T )]

−Dr(t, z, T )} ν(dz)−
∫

R
exp [Dr(t, z, T )]cI(t, z)ν(dz)

−
∫

R
[1 + cI(t, z)] exp [Dr(t, z, T )]ρ(t, z)νP(dz);

−αr(t, T ) = −βr(t, T )

[∫ T

t

βr(t, u)du− ht − bI(t)

]
−
∫
|z|<R

{−γr(t, z, T ) exp [Dr(t, z, T )]

+γr(t, z, T )} ν(dz) +
∫

R
exp [Dr(t, z, T )]γr(t, z, )cI(t, z)ν(dz)

+
∫

R
[1 + cI(t, z)] exp [Dr(t, z, T )]γr(t, z, )ρ(t, z)νP(dz);
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αr(t, T ) = βr(t, T )

[∫ T

t

βr(t, u)du− ht − bI(t)

]
+
∫
|z|<R

{1− exp [Dr(t, z, T )]} γr(t, z, T )ν(dz)

−
∫

R
exp [Dr(t, z, T )]γr(t, z, )cI(t, z)ν(dz)

−
∫

R
[1 + cI(t, z)] exp [Dr(t, z, T )]γr(t, z, )ρ(t, z)νP(dz);

= βr(t, T )

[∫ T

t

βr(t, u)du− ht − bI(t)

]
−
∫
|z|<R

δr(t, z, T )γr(t, z, T )ν(dz)

−
∫

R
[δr(t, z, T ) + 1] γr(t, z, )cI(t, z)ν(dz)

−
∫

R
[1 + cI(t, z)] [δr(t, z, T ) + 1] γr(t, z, )ρ(t, z)νP(dz);∫

|z|<R
ν(dz) = −

∫
R
ρ(t, z)νP(dz);

aI(t) = rn(t)− rr(t) +
∫

R
cI(t, z)ν(dz)− htbI(t).

Under Assumption 5, the forward rates’ dynamics can be rewritten in the form

dfi(t, T ) = αi(t, T )dt− σi(t, T )dLt i = r, n (0 ≤ t ≤ T ), (3.18)

where αi and σi satisfy the usual integrability conditions (See [47, 44]).

In this setting, the stochastic differential equation (SDE) (3.6) can be rewritten [89] as

dpi(t, T )
pi(t−, T )

= [ri(t)−Ai(t, T )]dt+ Σi(t, T )dLt,

where Ai(t, T ) =
∫ T

t∧T
αi(t, u)du and Σi(t, T ) =

∫ T

t∧T
σi(t, u)du.

Therefore

pi(t, T ) = pi(0, T ) exp
{∫ t

0

[ri(s)−Ai(s, T )]ds+
∫ t

0

Σi(s, T )dLs

}
(3.19)

= pi(0, T )Bi(t) exp
{
−
∫ t

0

Ai(s, T )ds+
∫ t

0

Σi(s, T )dLs

}
By setting T = t, the risk free savings account can be written as

Bi(t) =
1

pi(0, t)
exp

[∫ t

0

Ai(s, t)ds−
∫ t

0

Σi(s, t)dLs

]
. (3.20)

Using the two previous equations, the bond prices can be rewritten as

pi(t, T ) =
pi(0, T )
pi(0, t)

exp
{∫ t

0

[
Ai(s, t)−Ai(s, T )

]
ds+

∫ t

0

[
Σi(s, T )− Σi(s, t)

]
dLs

}
=

pi(0, T )
pi(0, t)

exp
{
−
∫ t

0

Ai(s, t, T )ds+
∫ t

0

Σi(s, t, T )dLs

}
, (3.21)
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where

Ai(s, t, T ) = Ai(s, T )−Ai(s, t);

Σi(s, t, T ) = Σi(s, T )− Σi(s, t).

In the risk neutral measure, the nominal money market account is the numeraire, hence discounted

bond prices are martingales. The bond prices take the form [44]

pi(t, T ) = pi(0, T ) exp
{
ds

∫ t

0

[r(s)− θis(σi(s, T ))]ds+
∫ t

0

Σi(s, T )dLs

}
, (3.22)

where θ is the Laplace cumulant of L1, given by

θ(z) = ϕ1(−iz).

Comparison with Equation 3.19, yields

Ai(s, T ) = θis(Σ
i(s, T )). (3.23)

Note that the latter drift condition is only “part” of the conditions in Corollary 3.3 for a nominal

risk neutral probability measure to exist. The following sections assume that the latter conditions

are in force.

The next propositions and corollaries present some needed probability measures, change of proba-

bility measure and associated properties that will be used later for IL options’ pricing.

Proposition 3.4. Let QIP denote the probability measure defined by

dQIP

dQn
= ZT on FT

where

Zt =
BIP (t)
Bn(t)

Bn(0)
BIP (0)

,

then QIP is a martingale measure for the numeraire BIP .

The expression BIP (t)
Bn(t) is the discounted nominal value of the real money bank account.

Proof. Let Π be a stochastic process such that
Π(t)
Bn(t)

is a Qn-martingale, i.e. so that Π is an

arbitrage free price process. We have to show that the process
Π(t)
BIP (t)

is a QIP -martingale. Let

s ≤ t, then Bayes formula gives that

EIPs
[

Π(t)
BIP (t)

]
=

EQ
s

[
Zt

Π(t)
BIP (t)

]
Zs

=
EQ
s

[
BIP (t)
Bn(t)

Π(t)
BIP (t)

]
Bn(0)
BIP (0)

Zs

= EQ
s

[
Π(t)
Bn(t)

]
Bn(s)
BIP (s)

=
Π(s)
Bn(s)

Bn(s)
BIP (s)

=
Π(s)
BIP (s)
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Corollary 3.5. Define QT−IP by

dQT−IP

dQn
= ZT on FT

where

Zt =
pIP (t, T )
Bn(t)

Bn(0)
pIP (0, T )

then QT−IP is a martingale measure for the numeraire pIP (t, T ).

The expression pIP (t,T )
Bn(t) is the price at time t of the discounted real zero-coupon bond denominated

in nominal terms.

If one exchanges BIP (t) for pIP (t, T ) in the proof of Proposition 3.4 the corollary follows.

Proposition 3.6. Let Πn denote an arbitrage free price in the nominal economy. Define the process

Πr by Πr(t) =
Πn(t)
I(t)

. Define Qr by

dQr

dQn
= ZT on FT

where

Zt =
Br(t)I(t)
Bn(t)

Bn(0)
Br(0)I(0)

.

Then Qr is a martingale measure for the numeraire Br(t) and

Πr(t)
Br(t)

is a Qr-martingale.

Proof. From Proposition 3.4 it follows that
Πn(t)
BIP (t)

is a QIP -martingale and that Qr is equal

to QIP . Since

Πr(t)
Br(t)

=
Πr(t)I(t)
Br(t)I(t)

=
Πn(t)
BIP (t)

it follows that Πr(t)
Br(t) is a Qr-martingale.

Corollary 3.7. Define QT,r by

dQT,r

dQn
= ZT on FT

where

Zt =
pr(t, T )I(t)
Bn(t)

Bn(0)
pr(0, T )I(0)
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then QT,r is a martingale measure for the numeraire pr(t, T )and

Πr(t)
pr(t)

is a QT,r-martingale.

Corollary 3.8.

pr(t, T )
Br(t)

is a Qr-martingale

pr(t, S)
pr(t, T )

is a QT,r-martingale.

Assumption 6. We assume that βn, βr, γn, γr, cI , νP are deterministic. Under this assumption, for

1-dimensionnal processes, there is a single risk neutral measure and thus a unique fair price for IL

derivatives just as in the Black-Scholes pricing theory [47].

3.2 Inflation Linked Swaps

This section focuses on the pricing of the most commonly traded inflation linked (IL) swaps.

Zero coupons and year-on-year IL swaps are priced in the previously built HJM framework. Let

T0, T1, · · · , TM denote a fixed set of increasing times and τi be defined by

τi = Ti − Ti−1, for i = 1, · · · ,M.

A typical swap starts at time T0 with payments occurring at time T1, T2, · · · , TM . On each payment

date, Party A pays Party B the inflation rate over a predefined period while Party B pays Party

A a fixed rate. The inflation rate is computed as the percentage increase of the level of the price

index over a period of time. In the previous description, Party A has entered a receiver swap (i.e.

he receives a fixed amount) while Party B has entered a payer swap.

In what follows to lighten the formulas, Π[t, ·] is used to denote the price in nominal currency (e.g.

rands, dollars), of the payoff (·).

3.2.1 Zero Coupon Inflation Indexed Swap

Mercurio [81] showed that the fair price of a ZCIIS is model independent using martingale methods.

This fact can also be proved using a replicating argument as proved by Hinnerich [63]. Both proofs

are provided in this subsection, this result will be used afterwards to price year-on-year swaps.

A ZCIIS over the time interval [T0, T ] has only one payment at time T without any intermediary

payments. If Z0(T,K) denotes the corresponding payer ZCIIS with swap rate K and nominal N ,

then a fixed amount of
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N
[
(1 +K)T−T0 − 1

]
is paid out at time T and a floating amount of

N

[
I(T )
I(T0)

− 1
]

is received at time T . Henceforth, the nominal will be taken to be equal to one for simplification.

If Z0(t, T,K) denotes the price of Z0(T,K) at time t, then the its payoff is

Z0(T, T,K) =
I(T )
I(T0)

− (1 +K)T−T0

and

Z0(t, T,K) = En

{
exp

(
−
∫ T

t

rn(s)ds

)[
I(T )
I(T0)

− (1 +K)T−T0

]∣∣∣∣∣
Ft

}

for t ∈ [T0, T ], where Ft is the corresponding filtration. In particular

Z0(T0, T,K) = Π
[
T0,

I(T )
I(T0)

− (1 +K)T−T0

]
= Π

[
T0,

I(T )
I(T0)

]
−Π

[
T0, (1 +K)T−T0

]
. (3.24)

The inflation linked leg of the ZCIIS is

Π
[
T0,

I(T )
I(T0)

]
=

pn(T0, T )
I(T0)

ET,nT0
[I(T )]

=
pn(T0, T )
I(T0)

ET,nT0

[
I(T )pr(T, T )
pn(T, T )

]
= pr(T0, T )

since pr(T, T ) = pn(T, T ) = 1 and

I(t)pr(t, T )
pn(t, T )

=
pIP (t, T )
pn(t, T )

is a QT,n-martingale.

The fixed leg of the ZCIIS is

Π
[
T0, (1 +K)T−T0

]
= pn(T0, T )(1 +K)T−T0 .

Hence fair price of the payer ZCIIS becomes

Z0(T0, T,K) = pr(T0, T )− pn(T0, T )(1 +K)T−T0 .
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This price is not based on any assumption about the interest rate behaviour or assets’ dynamics,

but only on a no-arbitrage argument. The result was first stated in [81]. Its next simple replicating

argument counterpart was stated in [63].

To replicate the floating leg of the swap

(i) At time T0 buy
1

I(T0)
IL bonds with maturity date T .

(ii) At time T the dollar value of
1

I(T0)
CPI units will be received, that is

I(T )
I(T0)

.

(iii) The price at time T0 of
1

I(T0)
IL bonds is

1
I(T0)

I(T0)pr(T0, T ) = pr(T0, T ).

3.2.2 Year-on-Year Inflation Indexed Swaps

Contrary to the ZCIIS, the year-on-year IL swap’s fair price is model independent. In this subsection,

the year-on-year IL swap (YYIIS) is priced in the Lévy setting specified in Section 3.1.

A YYIIS has multiple payments dates. Let YMm (K) denote a payer YYIIS that starts at time Tm

with payment dates at Tm+1, Tm+2, · · · , TM . For each period [Ti, Ti+1] for i = m, · · · ,M −1 a fixed

amount of

τi+1K

is paid out at time Ti+1. For the same period a floating amount of

τi+1[Xi+1 − 1]

where

Xi+1 =
I(Ti+1)
I(Ti)

is received at time Ti+1.

Let YMm (t,K) denote the price of a YMm (K) at time t where t ≤ Tm, then

YMm (t,K) =
M−1∑
i=m

Π[t, τi+1(Xi+1 − 1)]−
M−1∑
i=m

Π[t, τi+1K]

=
M−1∑
i=m

Π[t, τi+1Xi+1]− (K + 1)
M−1∑
i=m

τi+1pn(t, Ti+1), (3.25)

by standard no-arbitrage pricing theory. Therefore the pricing of YMm comes back to the computation

of
M−1∑
i=m

[t, τi+1Xi+1], which is achieved through the forward swap rate. The forward swap rate of a
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YYIIS is the value of swap rate for which the fair price of the swap is zero. Let RMm (t) denote the

forward swap rate for the swap YMm (K). By definition, YMm [t, RMm (t)] = 0 and so RMm (t) is given by:

RMm (t) =

M−1∑
i=m

Π[t, τi+1(Xi+1 − 1)]−
M−1∑
i=m

τi+1pn(t, Ti+1)

M−1∑
i=m

τi+1pn(t, Ti+1)

. (3.26)

Now the computation of the model-dependent expression
M−1∑
i=m

Π[t, τi+1Xi+1] will provide explicit

formulas for both the swap price and the forward swap rate.

For m = 1 and t < T2, the first term of the summation is

Π[t, τ2X2] = pn(t, T2)ET2,n
t

[
τ2
I(T2)
I(T1)

]
= pn(t, T2)τ2ET2,n

t

[
1

I(T1)
ET2,n
T1

[I(T2)]
]

= pn(t, T2)τ2ET2,n
t

[
1

I(T1)
ET2,n
T1

[
I(T2)pr(T2, T2)
pn(T2, T2)

]]
= pn(t, T2)τ2ET2,n

t

[
pr(T1, T2)
pn(T1, T2)

]
. (3.27)

Because the numéraire of the expectation in Equation (3.27) is pn(T1, T2), the QT1,n-forward measure

is more appropriate for its valuation. The change of measure is done with the Bayes formula and

the Radon-Nikodým derivative ZT2,n/T1,n
t that satisfies for every t ∈ [0, T2]

Z
T2,n/T1,n
t =

dQT2,n

dQT1,n

∣∣∣∣
t

=
pn(t, T2)
pn(t, T1)

pn(0, T1)
pn(0, T2)

.

Hence

ET2,n
t

[
pr(T1, T2)
pn(T1, T2)

]
=

ET1,n
t

[
pr(T1,T2)
pn(T1,T2)Z

T2,n/T1,n
T1

]
Z
T2,n/T1,n
t

= ET1,n
t

[
pr(T1, T2)
pn(T1, T2)

pn(T1, T2)
pn(T1, T1)

]
pn(t, T1)
pn(t, T2)

=
pn(t, T1)
pn(t, T2)

ET1,n
t [pr(T1, T2)] (3.28)

The combination of Equations (3.27) and (3.28) yields

Π[t, τ2X2] = τ2pn(t, T1)ET1,n
t [pr(T1, T2)]. (3.29)

So far, no model assumption has been used. However, the expectation in Equation (3.29) is model

dependent. Mercurio use a diffusion model to computed it in an environment without jumps [81]
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while Hinnerich [63] used the martingale approach in a jump diffusion setting. The latter approach

will also be used in the Lévy setting.

Once more, the Bayes formula is used, but this time to change measure from QT1,n to QT1,r. The

expected value in equation (3.29) can thus be rewritten as

ET1,n
t [pr(T1, T2)] =

ET1,r
t

[
pr(T1,T2)
pr(T1,T1)Z

T1,n/T1,r
T1

]
Z
T1,n/T1,r
t

, (3.30)

where

Z
T1,n/T1,r
t =

dQT1,n

dQT1,r

∣∣∣∣
t

=
pn(t, T1)

pr(t, T1)I(t)
pr(0, T1)I(0)
pn(0, T1)

.

Under Qn we have the following dynamics

dI(t)
I(t−)

= [rn(t)− rr(t)] dt+ bI(t)dWt +
∫

R
cI(t, z)µ̃(dt, dz);

dpn(t, T1)
pn(t−, T1)

= rn(t)dt+ σn(t, T1)dWt +
∫

R
δn(t, z, T1)µ̃(dt, dz);

dpr(t, T1)
pr(t−, T1)

= ar(t, T )dt+ σr(t, T1)dWt +
∫

R
δr(t, z, T1)µ̃(dt, dz)

Using Corollary 2.13 with Z(t) = pr(t, T1)I(t)

dZ(t)
Z(t−)

=
[
ar(t, T ) + rn(t)− rr(t) + σr(t, T1)bI(t)

+
∫

R
δr(t, z, T1)cI(t, z)ν(dz)

]
dt+

[
σr(t, T1) + bI(t)

]
dWt

+
∫

R

[
δr(t, z, T1) + cI(t, z) + δr(t, z, T1)cI(t, z)

]
µ̃(dt, dz)

By Corollary 2.9 with Y (t) =
1

Z(t)

dY (t)
Y (t)

= α(t)dt− β(t)dWt −
∫

R

γ(t, z)
1 + γ(t, z)

µ̃(dt, dz)

where

α(t) = −ar(t, T )− rn(t) + rr(t)− σr(t, T1)bI(t)

−
∫

R
δr(t, z, T1)cI(t, z)ν(dz) + β2(t) +

∫
|z|<R

γ2(t, z)
1 + γ(t, z)

ν(dz)

β(t) = σr(t, T1) + bI(t)

γ(t, z) = δr(t, z, T1) + cI(t, z) + δr(t, z, T1)cI(t, z)
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Applying Corollary 2.13 to X(t) = pn(t, T1)Y (t)

dX(t)
X(t−)

= [rn(t) + α(t)− σn(t, T1)β(t)] dt−
∫

R
δn(t, z, T1)

γ(t, z)
1 + γ(t, z)

π(dt, dz)

+ [σn(t, T1)− β(t)] dWt

+
∫

R

[
δn(t, z, T1)− γ(t, z)

1 + γ(t, z)
− δn(t, z, T1)

γ(t, z)
1 + γ(t, z)

]
µ̃(dt, dz)

= [rn(t) + α(t)− σn(t, T1)β(t)] dt−
∫

R
δn(t, z, T1)

γ(t, z)
1 + γ(t, z)

π(dt, dz)

+ [σn(t, T1)− β(t)] dWt +
∫

R

δn(t, z, T1)− γ(t, z)
1 + γ(t, z)

µ̃(dt, dz)

Since
dX(t)
X(t−)

=
dZ

T1,n/T1,r
t

Z
T1,n/T1,r
t−

, ZT1,n/T1,r
t is a martingale under QT1,r and a change of measure does

not change either the volatility or the jump component; the dynamics of ZT1,n/T1,r
t under QT1,r are

given by:

dZ
T1,n/T1,r
t

Z
T1,n/T1,r
t−

=
[
σn(t, T1)− σr(t, T1)− bI(t)

]
dWT1,r(t)

+
∫

R

δn(t, z, T1)−
[
δr(t, z, T1) + cI(t, z) + δr(t, z, T1)cI(t, z)

]
1 + δr(t, z, T1) + cI(t, z) + δr(t, z, T1)cI(t, z)

µ̃T1,r(dt, dz)

Since both
pr(t, T2)
pr(t, T1)

and Z
T1,n/T1,r
t are QT1,r-martingales, Theorem 2.23 and Equation (3.30)give

that

ET1,n
t [pr(T1, T2] =

pr(t, T2)eC(t,T1,T2)

pr(t, T1)

where

C(t, T1, T2) =
∫ T1

t

{[
σn,1s − σr,1s − bIs

] [
σr,2s − σr,1s

]
+
∫

R
∆1,2
s πT1,r(ds, dz)

}
ds

with the notation σi,js = σi(s, Tj), δi,js = δi(s, Tj), bIs = bI(s), cIt = cI(t, z) and

∆1,2
s =

δr,2t − δ
r,1
t

1 + δr,1t

δn,1t −
[
δr,1t + cIt + δr,1t cIt

]
1 + δr,1t + cIt + δr,1t cIt

.

Inserting this into Equation (3.29) gives that

Π[t,XT2 ] = τ2
pn(t, T1)pr(t, T2)eC(t,T1,T2)

pr(t, T1)

Changing back to the general case with 1 = i and 2 = i+ 1 we have that

Π[t,XTi+1 ] = τi+1
pn(t, Ti)pr(t, Ti+1)eC(t,Ti,Ti+1)

pr(t, Ti)
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Hence the pricing Equation (3.25) is found to be

YMm (t,K) =
M−1∑
i=1

τi+1
pn(t, Ti)pr(t, Ti+1)eC(t,Ti,Ti+1)

pr(t, Ti)
− (K + 1)

M−1∑
i=1

τi+1pn(t, Ti+1) (3.31)

and the forward swap rate (3.26) is found to be

RMm (t) =

M−1∑
i=1

τi+1
pn(t, Ti)pr(t, Ti+1)eC(t,Ti,Ti+1)

pr(t, Ti)
−
M−1∑
i=1

τi+1pn(t, Ti+1)

M−1∑
i=1

τi+1pn(t, Ti+1)

For calibration purposes, it is more convenient to rewrite these formulas in function of the IL bond

using the relation pIP (t, T ) = pr(t, T ). The new formulas are

YMm (t,K) =
M−1∑
i=1

τi+1
pn(t, Ti)pIP (t, Ti+1)eC(t,Ti,Ti+1)

pIP (t, Ti)
− (K + 1)

M−1∑
i=1

τi+1pn(t, Ti+1)

RMm (t) =

M−1∑
i=1

τi+1
pn(t, Ti)pIP (t, Ti+1)eC(t,Ti,Ti+1)

pIP (t, Ti)
−
M−1∑
i=1

τi+1pn(t, Ti+1)

M−1∑
i=1

τi+1pn(t, Ti+1)

3.3 Inflation Linked Caplets/Floorlets

An inflation indexed (II) caplet (resp. floorlet) written at time t over the period [Ti−1, Ti] (i.e. with

maturity Ti) is a call (resp. put) on the inflation rate Xi =
I(Ti)
I(Ti−1)

implied by an CPI index. The

payoff at time Ti of such an option with strike k is

Nτi [ω(Xi − 1− k)]+ (3.32)

where N is the contract nominal, τi is the contract year fraction for the interval [Ti−1, Ti], and ω = 1

for a caplet and ω = −1 for a floorlet.

The no-arbitrage price at time t of the i-th caplet is

CFleti(t, k) = NτiEQ

{
Bn(t)
Bn(Ti)

[ω (Xi − 1− k)]+
∣∣∣∣
Ft

}

= Nτipn(t, Ti)Ei
{

[ω (Xi −K)]+
∣∣∣
Ft

}
, (3.33)

where K = k+ 1 and Ei is the short form of EQn
Ti

, which is the conditional expectation with respect

to the nominal risk neutral forward measure at time Ti.

The next sections investigate different paths for computing this price.
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3.3.1 Lognormally Distributed CPI

Throughout this section the next assumption is supposed true.

Assumption 7. The CPI is only driven by a Brownian motion without any jumps.

The previous assumption leads to the Jarrow-Yildrim framework where the CPI is lognormal under

Qn. The pricing formula given by Equation (3.33) becomes a simple Black and Scholes (BS) formula.

Just as with standard BS pricing the next theorem will be useful.

Theorem 3.9. Let X be a random variable that is lognormally distributed, and denote by M and

V the mean and standard deviation of Y = ln(X). Then

E
{

[ω(X −K)]+
}

= ωeM+ 1
2V

2
Φ
(
ω
M − lnK + V 2

V

)
− ωKΦ

(
ω
M − lnK

V

)
,

for each K > 0, ω ∈ {−1, 1}, where E denotes expectation with respect to X’s distribution and Φ

denotes the cumulative standard normal distribution function.

Under Assumption 7 (i.e. cI(t, z) = 0), and by Itô’s formula

d ln I(t) =
[
rn(s)− rr(s)−

1
2

(bI(t))2

]
dt+ bI(t)dWt

and the CPI is of the form

I(T ) = I(t) exp

{∫ T

t

[
rn(s)− rr(s)−

1
2

(bI(s))2

]
ds+

∫ T

t

bI(s)dWs

}
,

where t < T . Therefore, ln
I(T )
I(t)

∣∣∣∣
Ft

and ln
I(Ti)
I(Ti−1)

∣∣∣∣
Ft

are lognormal under QTi,n. From Theorem

3.9, if Xi is a lognormal random variable with mean E(X) = m and standard deviation of the

logarithm distribution Std[ln(X)] = v, then

E
{

[ω(Xi −K)]+
}

= ωmΦ
(
ω

ln m
K + 1

2v
2

v

)
− ωKΦ

(
ω

ln m
K −

1
2v

2

v

)
, (3.34)

with K = 1 + k. The conditional expectation of I(Ti)
I(Ti−1) is obtained from Equation (3.31)

ETi,nt [Xi] =
pn(t, Ti−1)
pn(t, Ti)

pr(t, Ti)
pr(t, Ti−1)

eC(t,Ti−1,Ti)

The variable v is given by the following corollary.

Corollary 3.10. The variance of the logarithm of the ratio I(Ti)
I(Ti−1) under the (nominal) risk neutral

measure is given by

V arTi,nt [lnXi] = V 2(t, Ti−1, Ti)
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where

V 2(t, Ti−1, Ti) =
σ2
n

2a3
n

[
1− e−an(Ti−Ti−1)

]2 [
1− e−2an(Ti−1−t)

]
+ (bI)2(Ti − Ti−1)

+
σ2
r

2a3
r

[
1− e−ar(Ti−Ti−1)

]2 [
1− e−2ar(Ti−1−t)

]
−2ρn,r

σnσr
anar(an + ar)

[
1− e−an(Ti−Ti−1)

] [
1− e−ar(Ti−Ti−1)

] [
1− e−(an+ar)(Ti−1−t)

]
+
σ2
n

a2
n

[
Ti − Ti−1 +

2
an
e−an(Ti−Ti−1) − 1

2an
e−2an(Ti−Ti−1) − 3

2an

]
+
σ2
r

a2
r

[
Ti − Ti−1 +

2
ar
e−ar(Ti−Ti−1) − 1

2ar
e−2ar(Ti−Ti−1) − 3

2ar

]
−2ρn,r

σnσr
anar

[
Ti − Ti−1 −

1− e−an(Ti−Ti−1)

an
− 1− e−ar(Ti−Ti−1)

ar

−1− e−(an+ar)(Ti−Ti−1)

an + ar

]
+ 2ρn,I

σnσI
an

[
Ti − Ti−1 −

1− e−an(Ti−Ti−1)

an

]
−2ρr,I

σrσI
ar

[
Ti − Ti−1 −

1− e−ar(Ti−Ti−1)

ar

]
Proof. See [81, 23]

Hence, by Equation (3.34)

ETi+1,n
t [Xi+1] = ωmΦ

(
ω

ln m
K + 1

2v
2

v

)
− ωKΦ

(
ω

ln m
K −

1
2v

2

v

)

= ω
pn(t, Ti)
pn(t, Ti+1)

pr(t, Ti+1)
pr(t, Ti)

eC(t,Ti,Ti+1)Φ

ω ln
(

pn(t,Ti)
Kpn(t,Ti+1)

pr(t,Ti+1)
pr(t,Ti)

eC(t,Ti,Ti+1)
)

+ 1
2v

2

v


−ωKΦ

ω ln
(

pn(t,Ti)
Kpn(t,Ti+1)

pr(t,Ti+1)
pr(t,Ti)

eC(t,Ti,Ti+1)
)
− 1

2v
2

v


= ω

pn(t, Ti)
pn(t, Ti+1)

pr(t, Ti+1)
pr(t, Ti)

eC(t,Ti,Ti+1)Φ

ω ln pn(t,Ti)pr(t,Ti+1)
Kpn(t,Ti+1)pr(t,Ti)

+ C(t, Ti, Ti+1) + 1
2v

2

v


−ωKΦ

ω ln pn(t,Ti)pr(t,Ti+1)
Kpn(t,Ti+1)pr(t,Ti)

+ C(t, Ti, Ti+1)− 1
2v

2

v

 .
Hence

CFlet(Ti+1) = τi+1pn(t, Ti+1)
{
ω
pn(t, Ti)
pn(t, Ti+1)

pr(t, Ti+1)
pr(t, Ti)

eC(t,Ti,Ti+1)

·Φ

ω ln pn(t,Ti)pr(t,Ti+1)
Kpn(t,Ti+1)pr(t,Ti)

+ C(t, Ti, Ti+1) + 1
2v

2

v


−ωKΦ

ω ln pn(t,Ti)pr(t,Ti+1)
Kpn(t,Ti+1)pr(t,Ti)

+ C(t, Ti, Ti+1)− 1
2v

2

v

 .
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Using the equality pIP (t, T ) = I(t)Pr(t, T ), the caplet/floorlet can be rewritten has

CFlet(Ti+1) = τi+1pn(t, Ti+1)
{
ω
pn(t, Ti)
pn(t, Ti+1)

pIP (t, Ti+1)
pIP (t, Ti)

eC(t,Ti,Ti+1)

·Φ

ω ln pn(t,Ti)pIP (t,Ti+1)
Kpn(t,Ti+1)pIP (t,Ti)

+ C(t, Ti, Ti+1) + 1
2v

2

v


−ωKΦ

ω ln pn(t,Ti)pIP (t,Ti+1)
Kpn(t,Ti+1)pIP (t,Ti)

+ C(t, Ti, Ti+1)− 1
2v

2

v

 .

3.3.2 Pricing with the Bilateral Laplace Transform

To price caplets and floorlets under the assumption of exponential Lévy distribution, the method-

ology proposed by Eberlein and Kluge in [44] will be followed. First of all, recall that the forward

rate dynamics in Assumption (3) can be rewritten as

dfi(t, T ) = αi(t, T )dt+ σi(t, T )dLt i = r, n (0 ≤ t ≤ T ), (3.35)

with some common integrability conditions. A cap (resp. floor) is a series of call (resp. put) options

on subsequent variable rates. These single options are called caplets (resp. floorlets). Each caplet

(resp. floorlet) is equivalent to a put (resp. call) option on the inflation rate. Thus, deriving suitable

formulas for calls and puts on the inflation rate immediately gives formulas for caps and floors.

As described previously, the discounted bond price process pi(·, T ) for i = n, r are martingales with

respect to the measure Q and the corresponding filtration for each T . However, this is not the case

for the inflation process and consequently the inflation rate. This difficulty can be avoided through

a change of probability measure. Moreover, because the “unwanted” term is the real interest rate

that can be evaluated from market data, the calibration process will still be possible. In this new

probability measure, which will be denoted by Qj,r, the pricing of a caplet can be achieved by taking

the conditional expectation of the discounted payoff. The time-t value of a caplet/floorlet with strike

k over the period [Tj−1, Tj ] is given by

CFletj(t; k) = Nτjpn(t, Tj)Ej
{

[ω (Xj −K)]+
∣∣∣
Ft

}
(t ≤ Tj)

where K = k+ 1. For simplification, henceforth w = 1, N = 1 and τj = 1. The caplet fair price can

be rewritten as

CFletj(t;K) = pn(t, Tj)Ej
[

(Xj −K)+
∣∣∣
Ft

]
(t ≤ Tj).
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Having a closer look at the inflation’s dynamics, through Corollary 2.10 and Equation (3.2)

dI(t)
I(t−)

= [rn(t)− rr(t)] dt+ bI(t)dWt +
∫

R
cI(t, z)µ̃(dt, dz);

d ln It =
[
rn(t)− rr(t)−

1
2

(bI(t))2

]
dt+

∫
|z|<R

{
ln[1 + cI(t, z)]− cI(t, z)

}
π(dt, dz)

+bI(t)dWt +
∫

R
ln[1 + cI(t, z)]µ̄(dt, dz)

ln
IT
It

=
∫ s=T

s=t

{[
rn(s)− rr(s)−

1
2

(bI(s))2

]
ds+

∫
|z|<R

{
ln[1 + cI(s, z)]− cI(s, z)

}
π(ds, dz)

}

+
∫ s=T

s=t

{
bI(s)dWs +

∫
R

ln[1 + cI(s, z)]µ̄(ds, dz)
}
.

Under Assumption 5, for the inflation process to be a Q-martingale, it has to be multiplied by1

exp
[∫ t

0

rr(s)ds
]

which is deterministic. The caplet price is now

CFletj(t;K) = pn(t, Tj)fjEj,r
[(
Xr
j −Kf−1

j

)+∣∣∣
Ft

]
(t ≤ Tj),

where

Xr
j = Xjf

−1
j ;

fj = exp

[
−
∫ Tj

Tj−1

rr(s)ds

]
and the expectation is under Qj,r and not the initial nominal risk forward probability measure.

A straightforward approach is to derive the joint (conditional) distribution of the random variables

pn(t, T ) and Xj . Although this can easily be done analytically [48], the numerical evaluation of

the resulting expression is extremely time consuming. Instead, the change-of-numeraire technique is

used here to circumvent the calculation of the joint probability law, that is as previously mentioned,

calculations are not conducted in the spot martingale measure Q, but in the “modified” forward

martingale measure for the settlement day Ti−1 Qj,r (see Geman, El Karoui, and Rochet (1995)

for details). More precisely, the measure Qj,r, equivalent to Q, is defined by its Radon-Nikodym

derivative

dQj,r

dQ
=

1

Bn(t)Xj exp

[∫ Tj

Tj−1

rr(s)ds

] .
The previous expression can be rewritten as

dQt

dQ
= exp

[
−
∫ t

0

AIP (s, t)ds+
∫ t

0

ΣIP (s, t)dLIPs

]
1Eventually scaled by a multiplicative constant.
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and, when restricted to the σ-field Fs,

dQt

dQ

∣∣∣∣
Fs

= exp
[
−
∫ s

0

AIP (u, t)du+
∫ s

0

ΣIP (u, t)dLIPu

]
.

Equation (3.22) leads to

CFletj(t;K) = pn(t, Tj)Ej
{

[D exp(Y )−K]+
∣∣∣
Ft

}
(t ≤ Tj).

where

D =
pn(t, Ti)
pn(t, Ti−1)

exp

{∫ Ti−1

t

[
AIP (s, Ti−1)−AIP (s, Ti)

]
ds−

∫ Tj

Tj−1

rr(s)ds

}
is deterministic and

Y =
∫ Ti−1

0

[
ΣIP (s, Ti)− ΣIP (s, Ti−1)

]
dLs

is Ft-measurable. Notice that the expectation is now in the forward risk neutral probability measure.

To calculate the option price, the distribution of Y under the measure Qt is required; and it can be

estimated. If this distribution is represented by the Lebesgue-density ϕ in R, then

CFletj(t;K) = pn(t, Tj)
∫

R
(Dey −K)+ϕ(y)dy.

To get a numerical estimate of the caplet price, either the Laplace transform method or the Fourier

transform method can be used. The Laplace technique was developed in [94] and used to derive

exact pricing formulas for pricing caps, floors and swaptions in [44]. The similar and rather simpler

technique was previously proposed by Carr and Madan [26] using Fourier transforms. First, the

option price is expressed as a convolution. The Laplace transform of this convolution equals the

product of the Laplace transforms of the convolution factors. These factors are easy to calculate in

this case. Then, to get the price of the option, an inverse Laplace transformation will be performed.

Theorem 3.11. Let MY
t denote the moment generating function of the random variable Y with

respect to the measure Qt. If R is chosen R < −1 such that MY
t (−R) <∞, then

CFletj(t;K) =
1

2π
Kpn(t, Tj)eRξ

∫ ∞
−∞

eiuξMY
t (−R− iu)

(R+ iu)(R+ 1 + iu)
du

with

ξ = ln
pn(t, Ti−1)
pn(t, Ti)

−
∫ Ti−1

t

{
AIP (s, Ti−1)−AIP (s, Ti)

}
ds+ lnK.

Proof. See [44] Theorem 12.
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Theorem 3.12. Considering R > 0 such that MY
t (−R) < ∞, the price of a floorlet with strike K

and exercise period [Ti−1, Ti]

CFletj(t;K)|ω=−1 =
1

2π
Kpn(t, Tj)eRξ

∫ ∞
−∞

eiuξMY
t (−R− iu)

(R+ iu)(R+ 1 + iu)
du

with

ξ = ln
pn(t, Ti−1)
pn(t, Ti)

−
∫ Ti−1

t

{
AIP (s, Ti−1)−AIP (s, Ti)

}
ds+ lnK.

Proof. See [44] Corollary 14.

The formulas to price the caplet and floorlet are similar except for the values for R. The accuracy

of the numerically estimated security price relies on the right choice of R, which has already been

discussed in Section 2.5.

3.4 Conclusion

This chapter has presented a non-trivial generalisation of the work by Hinnerich on pricing inflation

linked securities. It started with the extension of the HJM framework to Lévy processes, with

the underlying proof of the foreign exchange analogy. Afterwards, some inflation linked derivative

pricing formulas were derived in the new framework. Some calibration to market data is presented

in Chapter 6, where both South African and American market data are used. These results reinforce

the fact that Lévy distributions are more appropriate than the conventional normal (or log normal)

distribution, providing an improved accuracy and a more straightforward intuition when building

and tuning models. However, the main issue encountered was the lack of data necessary for the

calibration. This prevented the calibration process to be completed for some of the IL securities;

but results of this calibration will be provided in upcoming work.



Chapter 4

Stochastic Monetary Economy

Models

Virtually all asset pricing models are special cases of the fundamental equation [53]

Pt = Et[mt+1(Pt+1 +Dt+1)], (4.1)

where Pt is the value of an asset at time t, Dt+1 is the amount of any dividends, interest or other

cashflows received at time t + 1 and mt+1 is the stochastic discount factor (SDF) between time t

and time t + 1. Equation (4.1) implies that the price process is a martingale under an appropriate

measure.

If mt+1 is a strictly positive random variable, equation (4.1) becomes equivalent to the no-arbitrage

principle, which states that all portfolios of assets with non-negative payoffs and positive probability

of positive payoffs, must have positive prices. While the no-arbitrage principle places restrictions

on mt+1, other work explores the implications of equilibrium models for the SDF based on the

investor’ s utility optimization. A typical consumer/investor’s utility optimization involves the

Bellman equation:

J(Wt, st) ≡ max Et [U(Ct, ·) + J(Wt+1, st+1)] ,

where U(Ct, ·) is the utility of consumption expenditures at time t, and J(·, ·) is the indirect utility

of wealth [53].

In the case that an asset pays dividends on a continuous basis, the pricing formula is given by

75



76

[66, 68]:

Mt =
1
πt

Et

[
πTST +

∫ T

t

πsDsds

]
0 ≤ t ≤ T,

where (Mt)t≥0 is a martingale, (πt)t≥0 is the pricing kernel process, (St)t≥0 is the value of the

dividend-paying asset, and (Dt)t≥0 is the dividend process.

The stochastic monetary economy models built by Hughston and Macrina assume a positive nominal

interest rate that was advocated for by Flesaker and Hughston (FH) [54]. Flesaker and Hughston

were among the first to propose an entirely new approach to interest-rate modelling resulting in

concrete models that are not part of the short-rate world. Instead of modelling instantaneous

forward rates they model pricing kernels (also known as state-price densities or pricing operators).

Assuming Nt is the conventional numéraire, the corresponding pricing kernel is given by πt =
ρt
Nt

in

the real world probability measure, where (ρt)t≥0 denotes the Radon-Nikodym density martingale

transforming the real world measure into the risk neutral measure. The latter equation implies that

under the real probability measure the asset price process multiplied with the pricing kernel process

is a martingale. The process (πt)t≥0 is a decreasing and positive supermartingale (i.e. πt ≥ πt+h

with h > 0) thus ensures interest rate positivity.

Proof. Consider a standard filtered probability space (Ω,F ,F,P) where F = (Ft)t≥0 and P is

the real world measure with equivalent risk neutral measure Q.

With the standard numéraire approach the arbitrage-free price of a European contingent claim,

(Yt)t≥0, paying YT at its maturity T is given by:

Yt = BtEQ

[
YT
BT

∣∣∣∣
Ft

]
, (4.2)

where the numéraire is the money market account defined by:

Bt = exp
[∫ t

0

rsds

]
,

with rs denoting the short rate at time s.

The absence of arbitrage in a financial market is equivalent to the existence of a pricing kernel

(πt)t≥0. In fact, Equation (4.2) can be expressed in terms of a pricing kernel under the real world

measure as shown in the next paragraphs.

Let (ρt)t≥0 denote the Radon-Nikodym density martingale transforming the real world measure into

the risk neutral measure, i.e.

ρt =
dQ
dP

∣∣∣∣
Ft
.
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Application of Bayes’ formula shows that:

Yt = BtEQ

[
YT
BT

∣∣∣∣
Ft

]

= Bt

EP

[
YT
BT

ρT

∣∣∣∣
Ft

]
ρt

:=
EP [πTYT |Ft]

πt
,

where the pricing kernel is defined to be of form

πt =
ρt
Bt

=
dQ
dP

∣∣∣∣
Ft

exp
[
−
∫ t

0

rsds

]
.

The IL framework proposed by Hughston and Macrina is based on the assumption that inflation is

a purely monetary phenomenon. Thus the influence of fluctuations in wages, supply and demand,

foreign exchange and employment, etc. on inflation is not treated directly, but is rather reflected in

the change of the rates of consumption and money supply, and the liquidity benefit of money supply.

In a discrete time1 model, let the nominal money supply, the aggregate consumption and the nominal

liquidity benefit be denoted respectively by ({Mi}i≥0), ({ki}i≥1) and ({λi}i≥0). At time ti, the real

benefit (in units of goods and services) provided by the money supply is

li =
λiMi

Ci
for i ≥ 0.

Given that

J = E

[
N∑
n=0

e−rtnU(kn, ln)

]
,

W = E

[
N∑
n=0

πn(Cnkn + λnMn)

]
,

where U(·, ·) is a bivariate utility function. Two examples of utility functions are considered below:

the log-separable utility function and the separable power utility function.

Note that the formulas obtained are not directly functions of any IL derivative’s price; therefore this

novel framework could be a solution to pricing IL products despite the fact that they are illiquid.

Sections 4.1 (resp. 4.2) studies the performances of this framework when the macroeconomic factors

are Lévy (resp. exponential Lévy) processes.

1The formulas in continuous time have also been derived and are similar to those obtained in discrete time.



4.1 Lévy process distribution 78

4.1 Lévy process distribution

Given the high flexibility of Lévy distributions [7], it is reasonable to assume that the nominal money

supply, the aggregate consumption and the nominal liquidity benefit can be reproduced using Lévy

processes (Assumption 8). Under the previous assumption, this section deduces the dynamics of the

CPI, the pricing kernel and IL securities.

The next assumption holds throughout this section.

Assumption 8. Under the objective probability measure P, the dynamics of (Mt)t≥0, (kt)t≥0 and

(λt)t≥0 are given by:

dMt = αM (t)dt+ βM (t)dW P
t +

∫
R
γM (t, z)µ̄(dt, dz);

dkt = αk(t)dt+ βk(t)dW P
t +

∫
R
γk(t, z)µ̄(dt, dz);

dλt = αλ(t)dt+ βλ(t)dW P
t +

∫
R
γλ(t, z)µ̄(dt, dz),

with

µ̄(dt, dz) =

 (µ− π)(dt, dz), |z| < R

µ(dt, dz), |z| ≥ R

where αi(t), βi(t), γi(t), ai(t), bi(t) and ci(t) are adapted processes with∫ t

0

|αi(s)|ds <∞,
∫ t

0

|βi(s)|2ds <∞,

for all finite t; γi(t, z) : Ω× R+ × R→ R+ is a real valued function satisfying∫ t

0

∫
R
|γi(s, z)|2π(ds, dz) <∞,

for finite t. These conditions guarantee integrability of the coefficients and are satisfied if the coeffi-

cients are bounded for t from a bounded set and π([0, t]× R) <∞ for finite t.

The real world Brownian motion W P will be denoted by W when there is no ambiguity.

Section 4.1.1 (resp. 4.1.2) further assumes that the agent utility function is a log-separable (resp.

separable power) utility function; then computes the IL pricing formulas and explicit formulas for

the CPI and pricing kernel.

4.1.1 Log-separable utility function

Given two non-negative constants A and B, a log-separable utility function is of the form

U(x, y) = A ln (x) +B ln (y).
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In the current pricing framework [68], the pricing kernel, the CPI and the no-arbitrage value of a

contingent claim Ht, are respectively

Cn =
A

B

λnMn

kn
;

πn =
Be−rtn

κλnMn
;

H0 = λ0M0e
−rtjE

[
Hj

λjMj

]
where κ is an introduced Lagrange multiplier.

The following propositions compute the dynamics of the CPI and pricing kernel, and an explicit

formula for the value of the contingent.

Proposition 4.1. The dynamics of the CPI and pricing kernel are given by

dCt
A/B

= αC(t)dt+ βC(t)dWt +
∫

R
γC(t, z)µ̄(dt, dz);

dπt
B/κ

= απ(t)dt+ βπ(t)dWt +
∫

R
γπ(t, z)µ̄(dt, dz),

where

αC(t) =
1
kt

[
αλ(t)Mt + αM (t)λt + βλ(t)βM (t) +

∫
R
γλ(t, z)γM (t, z)ν(dz)

]
+αY (t)λtMt − [βλ(t)Mt + βM (t)λt]

βk(t)
k2
t

+
∫

R
[γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z)] γY (t, z)ν(dz);

βC(t) = [βλ(t)Mt + βM (t)λt]
1
kt
− βk(t)

λtMt

k2
t

;

γC(t, z) = γY (t, z)λt−Mt− + [γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z)]
1
kt−

+ [γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z)])γY (t, z);

απ(t) =
{
− r

λtMt
− 1
λ2
tM

2
t

[
α2(t)− (βλ(t)Mt + βM (t)λt)

2 1
λtMt

]
+
∫
|z|<R

[
1

λt−Mt− + γ2(t, z)
− 1
λt−Mt−

+
1

λ2
t−M

2
t−
γ2(t, z)

]
ν(dz)

}
e−rt;

βπ(t) = − [βλ(t)Mt + βM (t)λt]
e−rt

λ2
tM

2
t

;

γπ(t, z) =
[

1
λt−Mt− + γ2(t, z)

− 1
λt−Mt−

]
e−rt;
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αY (t) = − 1
k2
t

[
αk(t)− β2

k(t)
1
kt

]
+
∫
|z|<R

[
1

kt− + γk(t, z)
− 1
kt−

+
1
k2
t−
γk(t, z)

]
ν(dz);

γY (t, z) =
1

kt− + γk(t, z)
− 1
kt−

;

α2(t) = αλ(t)Mt + αM (t)λt + βλ(t)βM (t) +
∫

R
γλ(t, z)γM (t, z)ν(dz);

γ2(t, z) = γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z).

Proof. Applying Corollary 2.12 with Zt = λtMt

dZt =
[
αλ(t)Mt + αM (t)λt + βλ(t)βM (t) +

∫
R
γλ(t, z)γM (t, z)ν(dz)

]
dt+ [βλ(t)Mt + βM (t)λt] dWt

+
∫

R
[γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z)] µ̄(dt, dz).

Then applying Corollary 2.14

dCt
A/B

= αC(t)dt+ βC(t)dWt +
∫

R
γC(t, z)µ̄(dt, dz),

where

αC(t) =
1
kt

[
αλ(t)Mt + αM (t)λt + βλ(t)βM (t) +

∫
R
γλ(t, z)γM (t, z)ν(dz)

]
+αY (t)λtMt − [βλ(t)Mt + βM (t)λt]

βk(t)
k2
t

+
∫

R
[γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z)] γY (t, z)ν(dz);

βC(t) = [βλ(t)Mt + βM (t)λt]
1
kt
− βk(t)

λtMt

k2
t

;

γC(t, z) = γY (t, z)λt−Mt− + [γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z)]
1
kt−

+ [γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z)] γY (t, z);

αY (t) = − 1
k2
t

[
αk(t)− β2

k(t)
1
kt

]
+
∫
|z|<R

[
1

kt− + γk(t, z)
− 1
kt−

+
1
k2
t−
γk(t, z)

]
ν(dz);

γY (t, z) =
1

kt− + γk(t, z)
− 1
kt−

.

The deterministic process defined by Xt = e−rt, i.e. lnXt = −rt has dynamics given by

dXt = −re−rtdt.

Again applying Corollary 2.14

dπt
B/κ

=
[
−re−rt

λtMt
+ αX(t)e−rt

]
dt− β2(t)

e−rt

λ2
tM

2
t

dWt +
∫

R
γX(t, z)e−rtµ̄(dt, dz)

=
[
− r

λtMt
+ αX(t)

]
e−rtdt− β2(t)

e−rt

λ2
tM

2
t

dWt +
∫

R
γX(t, z)e−rtµ̄(dt, dz),
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where

αX(t) = − 1
λ2
tM

2
t

[
α2(t)− β2

2(t)
1

λtMt

]
+
∫
|z|<R

[
1

λt−Mt− + γ2(t, z)
− 1
λt−Mt−

+
1

λ2
t−M

2
t−
γ2(t, z)

]
ν(dz);

γX(t, z) =
1

λt−Mt− + γ2(t, z)
− 1
λt−Mt−

;

α2(t) = αλ(t)Mt + αM (t)λt + βλ(t)βM (t) +
∫

R
γλ(t, z)γM (t, z)ν(dz);

β2(t) = βλ(t)Mt + βM (t)λt;

γ2(t, z) = γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z).

Proposition 4.2. The fair price at t = 0 of a contingent claim Ht is

H0 = e−rt
[
1 + λ0M0

∫ t

0

αX(s)ds
]

E[Ht] + λ0M0e
−rtE

[
Ht

∫ t

0

βX(s)dWs

]
+λ0M0e

−rtE
[
Ht

∫ t

0

∫
R
γX(s, z)µ̄(ds, dz)

]
,

where

αX(t) = − 1
λ2
tM

2
t

[
αY (t)− (βλ(t)Mt + βM (t)λt)

2 1
λtMt

]
+
∫
|z|<R

[
1

λt−Mt− + γY (t, z)
− 1
λt−Mt−

+
1

λ2
t−M

2
t−
γY (t, z)

]
ν(dz);

βX(t) = − 1
λ2
tM

2
t

[βλ(t)Mt + βM (t)λt] ;

γX(t, z) =
1

λt−Mt− + γY (t, z)
− 1
λt−Mt−

;

αY (t) = αλ(t)Mt + αM (t)λt + βλ(t)βM (t) +
∫

R
γλ(t, z)γM (t, z)ν(dz);

γY (t, z) = γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z).

Proof. Using the dynamics of Zt (see previous proof) in Corollary 2.8 with Xt = 1
λtMt

dXt = αX(t)dt+ βX(t)dWt +
∫

R
γX(t, z)µ̄(dt, dz),
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where

αX(t) = − 1
λ2
tM

2
t

[
αY (t)− (βλ(t)Mt + βM (t)λt)

2 1
λtMt

]
+
∫
|z|<R

[
1

λt−Mt− + γY (t, z)
− 1
λt−Mt−

+
1

λ2
t−M

2
t−
γY (t, z)

]
ν(dz);

βX(t) = − 1
λ2
tM

2
t

[βλ(t)Mt + βM (t)λt] ;

γX(t, z) =
1

λt−Mt− + γY (t, z)
− 1
λt−Mt−

;

αY (t) = αλ(t)Mt + αM (t)λt + βλ(t)βM (t) +
∫

R
γλ(t, z)γM (t, z)ν(dz);

γY (t, z) = γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z).

Hence

Xt = X0 +
∫ t

0

αX(s)ds+
∫ t

0

βX(s)dWs +
∫ t

0

∫
R
γX(s)µ̄(ds, dz)

and

E[XtHt] = E
[(∫ t

0

αX(s)ds+
∫ t

0

βX(s)dWs +
∫ t

0

∫
R
γX(s)µ̄(ds, dz)

)
Ht

]
+ E[X0Ht].

Therefore

H0 = e−rtE[Ht] + λ0M0e
−rtE

[
Ht

(∫ t

0

αX(s)ds+
∫ t

0

βX(s)dWs +
∫ t

0

∫
R
γX(s)µ̄(ds, dz)

)]
.

If, additionally, the pricing kernel and the contingent claim are assumed to be independent, then

the expression of the fair price can easily be compared to the standard no-arbitrage pricing formula

as shown in the next proposition.

Proposition 4.3. If a further assumption is made that
1

λtMt
and Ht are independent (i.e. the

pricing kernel is independent of the contingent claim), the fair price at t = 0 of the contingent claim

becomes

H0 = e−rt

[
1 + λ0M0

(∫ t

0

αX(s)ds+
∫ t

0

∫
|z|≥R

γX(s, z)ν(ds, dz)

)]
E[Ht].
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where

αX(t) = − 1
λ2
tM

2
t

[
αY (t)− (βλ(t)Mt + βM (t)λt)

2 1
λtMt

]
+
∫
|z|<R

[
1

λt−Mt− + γY (t, z)
− 1
λt−Mt−

+
1

λ2
t−M

2
t−
γY (t, z)

]
ν(dz);

βX(t) = − 1
λ2
tM

2
t

[βλ(t)Mt + βM (t)λt] ;

γX(t, z) =
1

λt−Mt− + γY (t, z)
− 1
λt−Mt−

;

αY (t) = αλ(t)Mt + αM (t)λt + βλ(t)βM (t) +
∫

R
γλ(t, z)γM (t, z)ν(dz);

γY (t, z) = γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z).

The term e−rt

[
1 + λ0M0

(∫ t

0

αX(s)ds+
∫ t

0

∫
|z|≥R

γX(s, z)ν(ds, dz)

)]
acts as the conventional

discount factor e−rt. The additional term

At = e−rtλ0M0

(∫ t

0

αX(s)ds+
∫ t

0

∫
|z|≥R

γX(s, z)ν(ds, dz)

)
can be thought of as due to the inflation linkage of the underlying securities. Note, however,

that contrary to the standard pricing formula, the expectation is not computed in the risk neutral

probability measure, but in the statistical probability measure.

Proof. If Xt and Ht are independent, then

E[XtHt] = E[Xt]E[Ht], with

E[Xt] = X0 +
∫ t

0

αX(s)ds+ E
[∫ t

0

βX(s)dWs

]
+ E

[∫ t

0

∫
R
γX(s, z)µ̄(ds, dz)

]
= X0 +

∫ t

0

αX(s)ds+ E

[∫ t

0

∫
|z|≥R

γX(s, z)µ(ds, dz)

]
since

E
[∫ t

0

βX(s)dWs

]
= E

[∫ t

0

∫
|z|<R

γX(s, z)(µ− π)(ds, dz)

]
= 0.

Hence

E[Xt] = X0 +
∫ t

0

αX(s)ds+
∫ t

0

∫
|z|≥R

γX(s, z)ν(ds, dz).

Therefore

H0 = e−rt

[
1 + λ0M0

(∫ t

0

αX(s)ds+
∫ t

0

∫
|z|≥R

γX(s, z)ν(ds, dz)

)]
E[Ht].



4.1 Lévy process distribution 84

4.1.2 Separable power utility function

Given two non-negative constants A and B, a separable power utility function has the form

U(x, y) =
A

p
xp +

B

q
yq,

with p, q ∈]−∞, 1]\{0}.

Assuming that the previous utility function is the agent’s utility function in the market, the CPI,

the pricing kernel and the fair value of a contingent claim Ht are respectively [68]

Cn =
(
A

B

)1−q
λnMn

k
(1−q)/(1−p)
n

;

πn =
B

1
1−q

A
q

1−q

k
q

1−q (1−p)
n

κλnMn
;

H0 =
λ0M0

k
q(1−p)/(1−q)
0

e−γtjE

[
Hjk

q(1−p)/(1−q)
j

λjMj

]
,

where κ is a Lagrange multiplier.

Proposition 4.4. The dynamics of the CPI and the pricing kernel are given by

dCt

(A/B)1−q =
{
α1(t)
kat

+ αY (t)λtMt −
aka−1
t βk(t)
k2a
t

[βλ(t)Mt + βM (t)λt]

+
∫

R
γ1(t, z)γY (t, z)ν(dz)

}
dt+

[
βλ(t)Mt + βM (t)λt

kat
− aka−1

t βk(t)
λtMt

k2a
t

]
dWt

+
∫

R

[
γY (t, z)λt−Mt− +

γ1(t, z)
kat−

+ γ1(t, z)γY (t, z)
]
µ̄(dt, dz);

dπt
D

=

[
α2(t)
λtMt

+ αX(t)kbt −
bkb−1
t βk(t)
λ2
tM

2
t

[βλ(t)Mt + βM (t)λt] +
∫

R
γ2(t, z)γX(t, z)ν(dz)

]
dt

+

[
bkb−1
t βk(t)
λtMt

− [βλ(t)Mt + βM (t)λt]
kbt

λ2
tM

2
t

]
dWt

+
∫

R

[
γX(t, z)kbt− +

γ2(t, z)
λt−Mt−

+ γ2(t, z)γX(t, z)
]
µ̄(dt, dz),
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where

a =
1− q
1− p

; D =
B

1
1−q

κA
q

1−q
; b =

q(1− p)
1− q

;

α1(t) = αλ(t)Mt + αM (t)λt + βλ(t)βM (t) +
∫

R
γλ(t, z)γM (t, z)ν(dz);

γ1(t, z) = γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z);

γ2(t, z) = [kt− + γk(t, z)]a − kat−;

α2(t) = aka−1
t αk(t) +

1
2
a(a− 1)β2

k(t)ka−2
t +

∫
|z|<R

{
γ2(t, z)− aka−1

t− γk(t, z)
}
ν(dz);

γY (t, z) =
1

kat− + γ2(t, z)
− 1
kat−

;

αY (t) = − 1
k2a
t

[
α2(t)−

[
aka−1
t βk(t)

]2 1
kat

]
+
∫
|z|<R

[
γY (t, z) +

1
k2a
t−
γ2(t, z)

]
ν(dz);

γX(t, z) =
1

λt−Mt− + γ1(t, z)
− 1
λt−Mt−

;

αX(t) = − 1
λ2
tM

2
t

[
α1(t)− (βλ(t)Mt + βM (t)λt)

2 1
λtMt

]
+
∫
|z|<R

[
γX(t, z) +

1
λ2
t−M

2
t−
γ1(t, z)

]
ν(dz).

Proof. By the one-dimensional Itô formula (Theorem 2.7), considering

Yt(a) = f(t, kt) = kat

with a ∈ R.

Because ∂f
∂t = 0, ∂f

∂kt
= aka−1

t and ∂2f
∂2kt

= a(a− 1)ka−2
t ,

dYt = aka−1
t [αk(t)dt+ βk(t)dWt] +

1
2
a(a− 1) [βk(t)]2 ka−2

t dt

+
∫
|z|<R

{
[kt− + γk(t, z)]a − kat− − aka−1

t− γk(t, z)
}
π(dt, dz)

+
∫

R

{
[kt− + γk(t, z)]a − kat−

}
µ̄(dt, dz)

=
[
aka−1
t αk(t) +

1
2
a(a− 1)β2

k(t)ka−2
t

]
dt+ aka−1

t βk(t)dWt

+
∫
|z|<R

{
[kt− + γk(t, z)]a − kat− − aka−1

t− γk(t, z)
}
π(dt, dz)

+
∫

R

{
[kt− + γk(t, z)]a − kat−

}
µ̄(dt, dz).

Applying Corollary 2.14 with Xt =
Zt
kat

, a =
1− q
1− p

and the dynamics of Zt given in the proof of
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Proposition 4.1, gives

dCt

(A/B)1−q =
{
α1(t)
kat

+ αY (t)λtMt −
aka−1
t βk(t)
k2a
t

[βλ(t)Mt + βM (t)λt]

+
∫

R
γ1(t, z)γY (t, z)ν(dz)

}
dt+

[
βλ(t)Mt + βM (t)λt

kat
− aka−1

t βk(t)
λtMt

k2a
t

]
dWt

+
∫

R

[
γY (t, z)λt−Mt− +

γ1(t, z)
kat−

+ γ1(t, z)γY (t, z)
]
µ̄(dt, dz),

where

α1(t) = αλ(t)Mt + αM (t)λt + βλ(t)βM (t) +
∫

R
γλ(t, z)γM (t, z)ν(dz);

γ1(t, z) = γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z);

γ2(t, z) = [kt− + γk(t, z)]a − kat−;

α2(t) = aka−1
t αk(t) +

1
2
a(a− 1)β2

k(t)ka−2
t +

∫
|z|<R

{
γ2(t, z)− aka−1

t− γk(t, z)
}
ν(dz);

γY (t, z) =
1

kat− + γ2(t, z)
− 1
kat−

;

αY (t) = − 1
k2a
t

[
α2(t)−

(
aka−1
t βk(t)

)2 1
kat

]
+
∫
|z|<R

[
γY (t, z) +

1
k2a
t−
γ2(t, z)

]
ν(dz).

Applying again Corollary 2.14 with πt = D
kat
Zt

, D =
B

1
1−q

κA
q

1−q
and a = q(1−p)

1−q , yields

dπt
D

=
[
α1(t)
λtMt

+ αY (t)kat −
aka−1
t βk(t)
λ2
tM

2
t

[βλ(t)Mt + βM (t)λt] +
∫

R
γ1(t, z)γY (t, z)ν(dz)

]
dt

+
[
aka−1
t βk(t)
λtMt

− [βλ(t)Mt + βM (t)λt]
kat

λ2
tM

2
t

]
dWt

+
∫

R

[
γY (t, z)kat− +

γ1(t, z)
λt−Mt−

+ γ1(t, z)γY (t, z)
]
µ̄(dt, dz),

where

γ1(t, z) = [kt− + γk(t, z)]a − kat−;

α1(t) = aka−1
t αk(t) +

1
2
a(a− 1)β2

k(t)ka−2
t +

∫
|z|<R

{
γ1(t, z)− aka−1

t− γk(t, z)
}
ν(dz);

α2(t) = αλ(t)Mt + αM (t)λt + βλ(t)βM (t) +
∫

R
γλ(t, z)γM (t, z)ν(dz);

γ2(t, z) = γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z);

γY (t, z) =
1

λt−Mt− + γ2(t, z)
− 1
λt−Mt−

;

αY (t) = − 1
λ2
tM

2
t

[
α2(t)− [βλ(t)Mt + βM (t)λt]

2 1
λtMt

]
+
∫
|z|<R

[
γY (t, z) +

1
λ2
t−M

2
t−
γ2(t, z)

]
ν(dz).
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Proposition 4.5. The fair price at t = 0 of a contingent claim Ht is given by

H0 = e−rtE[Ht]
(

1 +
λ0M0

ka0

∫ t

0

αX(s)ds
)

+
λ0M0

ka0
e−rtE

[
Ht

∫ t

0

βX(s)dWs

]
+
λ0M0

ka0
e−rtE

[
Ht

∫ t

0

∫
R
γX(s)µ̄(ds, dz)

]
,

where

a =
q(1− p)

1− q
;

αX(t) =
α1(t)
λtMt

+ αY (t)kat −
aka−1
t βk(t)
λ2
tM

2
t

[βλ(t)Mt + βM (t)λt] +
∫

R
γ1(t, z)γY (t, z)ν(dz);

βX(t) =
aka−1
t βk(t)
λtMt

− [βλ(t)Mt + βM (t)λt]
kat

λ2
tM

2
t

;

γX(t, z) = γY (t, z)kat− +
γ1(t, z)
λt−Mt−

+ γ1(t, z)γY (t, z);

γY (t, z) =
1

λt−Mt− + γ2(t, z)
− 1
λt−Mt−

;

αY (t) = − 1
λ2
tM

2
t

[
α2(t)− [βλ(t)Mt + βM (t)λt]

2 1
λtMt

]
+
∫
|z|<R

[
γY (t, z) +

1
λ2
t−M

2
t−
γ2(t, z)

]
ν(dz);

α2(t) = αλ(t)Mt + αM (t)λt + βλβM +
∫

R
γλ(t, z)γM (t, z)ν(dz);

γ2(t, z) = γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z);

γ1(t, z) = [kt− + γk(t, z)]a − kat−;

α1(t) = aka−1
t αk(t) +

1
2
a(a− 1)β2

k(t)ka−2
t +

∫
|z|<R

{
γ1(t, z)− aka−1

t− γk(t, z)
}
ν(dz).

Proof. Similarly to πt in the previous proof, considering a = q(1−p)
1−q and Xt = kat

λtMt
, its dynamics

are given by

dXt = αX(t)dt+ βX(t)dWt +
∫

R
γX(t, z)µ̄(dt, dz),
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where

αX(t) =
α1(t)
λtMt

+ αY (t)kat −
aka−1
t βk(t)
λ2
tM

2
t

[βλ(t)Mt + βM (t)λt] +
∫

R
γ1(t, z)γY (t, z)ν(dz);

βX(t) =
aka−1
t βk(t)
λtMt

− [βλ(t)Mt + βM (t)λt]
kat

λ2
tM

2
t

;

γX(t, z) = γY (t, z)kat− +
γ1(t, z)
λt−Mt−

+ γ1(t, z)γY (t, z);

αY (t) = − 1
λ2
tM

2
t

[
α2(t)− [βλ(t)Mt + βM (t)λt]

2 1
λtMt

]
+
∫
|z|<R

[
γY (t, z) +

1
λ2
t−M

2
t−
γ2(t, z)

]
ν(dz);

γY (t, z) =
1

λt−Mt− + γ2(t, z)
− 1
λt−Mt−

;

α2(t) = αλ(t)Mt + αM (t)λt + βλβM +
∫

R
γλ(t, z)γM (t, z)ν(dz);

γ2(t, z) = γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z);

α1(t) = aka−1
t αk(t) +

1
2
a(a− 1)β2

k(t)ka−2
t +

∫
|z|<R

{
γ1(t, z)− aka−1

t− γk(t, z)
}
ν(dz);

γ1(t, z) = [kt− + γk(t, z)]a − kat−.

A reasoning similar to the one used in the proof of Proposition 4.2 yields

E[XtHt] = E
[(∫ t

0

αX(s)ds+
∫ t

0

βX(s)dWs +
∫ t

0

∫
R
γX(s)µ̄(ds, dz)

)
Ht

]
+ E[X0Ht].

Therefore

H0 = e−rtE[Ht] +
λ0M0

ka0
e−rtE

[
Ht

(∫ t

0

αX(s)ds+
∫ t

0

βX(s)dWs +
∫ t

0

∫
R
γX(s)µ̄(ds, dz)

)]
= e−rtE[Ht] +

λ0M0

ka0
e−rtE

[
Ht

∫ t

0

αX(s)ds
]

+
λ0M0

ka0
e−rtE

[
Ht

∫ t

0

βX(s)dWs

]
+
λ0M0

ka0
e−rtE

[
Ht

∫ t

0

∫
R
γX(s)µ̄(ds, dz)

]
= e−rtE[Ht]

(
1 +

λ0M0

ka0

∫ t

0

αX(s)ds
)

+
λ0M0

ka0
e−rtE

[
Ht

∫ t

0

βX(s)dWs

]
+
λ0M0

ka0
e−rtE

[
Ht

∫ t

0

∫
R
γX(s)µ̄(ds, dz)

]
.

An additional independence assumption similar to that made in Proposition 4.3 yields a similar

result.

Proposition 4.6. If an additional assumption is made that
kat
λtMt

and Ht are independent (i.e. the

pricing kernel is independent of the contingent claim), the fair price at t = 0 of the contingent claim

becomes

H0 = e−rt

[
1 +

λ0M0

ka0

(∫ t

0

αX(s)ds+
∫ t

0

∫
|z|≥R

γX(s, z)ν(ds, dz)

)]
E[Ht].
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where

a =
q(1− p)

1− q
;

αX(t) =
α1(t)
λtMt

+ αY (t)kat −
aka−1
t βk(t)
λ2
tM

2
t

[βλ(t)Mt + βM (t)λt] +
∫

R
γ1(t, z)γY (t, z)ν(dz);

βX(t) =
aka−1
t βk(t)
λtMt

− [βλ(t)Mt + βM (t)λt]
kat

λ2
tM

2
t

;

γX(t, z) = γY (t, z)kat− +
γ1(t, z)
λt−Mt−

+ γ1(t, z)γY (t, z);

αY (t) = − 1
λ2
tM

2
t

[
α2(t)− [βλ(t)Mt + βM (t)λt]

2 1
λtMt

]
+
∫
|z|<R

[
γY (t, z) +

1
λ2
t−M

2
t−
γ2(t, z)

]
ν(dz);

γY (t, z) =
1

λt−Mt− + γ2(t, z)
− 1
λt−Mt−

;

α2(t) = αλ(t)Mt + αM (t)λt + βλβM +
∫

R
γλ(t, z)γM (t, z)ν(dz);

γ2(t, z) = γM (t, z)λt− + γλ(t, z)Mt− + γλ(t, z)γM (t, z);

α1(t) = aka−1
t αk(t) +

1
2
a(a− 1)β2

k(t)ka−2
t +

∫
|z|<R

{
γ1(t, z)− aka−1

t− γk(t, z)
}
ν(dz);

γ1(t, z) = [kt− + γk(t, z)]a − kat−.

The additional term due to the inflation linkage is now

At = e−rt
λ0M0

ka0

(∫ t

0

αX(s)ds+
∫ t

0

∫
|z|≥R

γX(s, z)ν(ds, dz)

)
.

The fair price of a contingent claim Ht is of the form

H0 = e−rt (1 +At) E[Ht],

where At is function of the agent’s utility function considered.

Proof. Similar to that of Proposition 4.3.

4.1.3 Arithmetic Brownian distribution

Working in an environment without jumps and assuming that the nominal money supply, aggregate

consumption and nominal liquidity benefit are normally distributed, i.e. Assumption 8 with µ =

π = γM = γλ = γk = γ = 0 gives the following propositions, which are just particular cases of the

previous propositions.

Proposition 4.7. Considering a log-separable utility function, the dynamics of Ct, πt and the fair
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price at t = 0 of a contingent claim Ht are

dCt
A/B

= αC(t)dt+ βC(t)dWt;

dπt
B/µ

= απ(t)dt+ βπ(t)dWt;

H0 = e−rt
(

1 + λ0M0

∫ t

0

αX(s)ds
)

E[Ht] + λ0M0e
−rtE

[
Ht

∫ t

0

βX(s)dWs

]
,

where

αC(t) =
1
kt

[αλ(t)Mt + αM (t)λt + βλ(t)βM (t)] + αY (t)λtMt − [βλ(t)Mt + βM (t)λt]
βk(t)
k2
t

;

βC(t) = [βλ(t)Mt + βM (t)λt]
1
kt
− βk(t)

λtMt

k2
t

;

απ(t) =
{
− r

λtMt
− 1
λ2
tM

2
t

[
α2(t)− (βλ(t)Mt + βM (t)λt)

2 1
λtMt

]}
e−rt;

βπ(t) = − [βλ(t)Mt + βM (t)λt]
e−rt

λ2
tM

2
t

;

αX(t) = − 1
λ2
tM

2
t

[
αλ(t)Mt + αM (t)λt + βλ(t)βM (t)− (βλ(t)Mt + βM (t)λt)

2 1
λtMt

]
;

βX(t) = − 1
λ2
tM

2
t

[βλ(t)Mt + βM (t)λt] ;

αY (t) = − 1
k2
t

[
αk(t)− β2

k(t)
1
kt

]
;

α2(t) = αλ(t)Mt + αM (t)λt + βλ(t)βM (t);

β2(t) = βλ(t)Mt + βM (t)λt.

Proposition 4.8. Considering a log-separable utility function and assuming that the pricing kernel

is independent of the contingent claim, the fair price at t = 0 becomes

H0 = e−rt
(

1 + λ0M0

∫ t

0

αX(s)ds
)

E[Ht].

where

αX(t) = − 1
λ2
tM

2
t

[
αλ(t)Mt + αM (t)λt + βλ(t)βM (t)− (βλ(t)Mt + βM (t)λt)

2 1
λtMt

]
.
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Proposition 4.9. Considering a separable power utility function, the dynamics of Ct, πt and the

fair price at t = 0 of a contingent claim Ht are given by

dCt

(A/B)1−q =
{
α1(t)
kat

+ αY (t)λtMt −
aka−1
t βk(t)
k2a
t

[βλ(t)Mt + βM (t)λt]
}

dt+
[
βλ(t)Mt + βM (t)λt

kat
− aka−1

t βk(t)
λtMt

k2a
t

]
dWt;

dπt
D

=

[
α2(t)
λtMt

+ αX(t)kbt −
bkb−1
t βk(t)
λ2
tM

2
t

[βλ(t)Mt + βM (t)λt]

]
dt

+

[
bkb−1
t βk(t)
λtMt

− [βλ(t)Mt + βM (t)λt]
kbt

λ2
tM

2
t

]
dWt;

H0 = e−rt
(

1 +
λ0M0

ka0

∫ t

0

αZ(s)ds
)

E[Ht] +
λ0M0

ka0
e−rtE

[
Ht

∫ t

0

βZ(s)dWs

]
,

where

a =
1− q
1− p

; D =
B

1
1−q

κA
q

1−q
; b =

q(1− p)
1− q

;

αX(t) = − 1
λ2
tM

2
t

[
α1(t)− [βλ(t)Mt + βM (t)λt]

2 1
λtMt

]
;

αY (t) = − 1
k2a
t

[
α2(t)−

[
aka−1
t βk(t)

]2 1
kat

]
;

αZ(t) =
1

λtMt

[
bkb−1
t αk(t) +

1
2
b(b− 1)β2

k(t)kb−2
t

]
− bkb−1

t βk(t)
λ2
tM

2
t

[βλ(t)Mt + βM (t)λt]

− kbt
λ2
tM

2
t

[
αλ(t)Mt + αM (t)λt + βλ(t)βM (t)− [βλ(t)Mt + βM (t)λt]

2 1
λtMt

]
;

βZ(t) =
bkb−1
t βk(t)
λtMt

− [βλ(t)Mt + βM (t)λt]
kbt

λ2
tM

2
t

;

α2(t) = aka−1
t αk(t) +

1
2
a(a− 1)β2

k(t)ka−2
t ;

α1(t) = αλ(t)Mt + αM (t)λt + βλ(t)βM (t).

Proposition 4.10. Considering a separable separable power utility function and assuming that the

pricing kernel is independent of the contingent claim, the fair price at t = 0 becomes

H0 = e−rt
(

1 +
λ0M0

ka0

∫ t

0

αX(s)ds
)

E[Ht].

where

a =
1− q
1− p

;

αX(t) = − 1
λ2
tM

2
t

[
α1(t)− [βλ(t)Mt + βM (t)λt]

2 1
λtMt

]
.
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4.2 Exponential Lévy distribution

This section is similar to Section 4.1, but instead of following Lévy processes, the macroeconomic

factors are assumed to be exponential Lévy processes. Since the nominal money supply, the aggregate

consumption and the nominal liquidity benefit are always positive, this assumption is appropriate.

Moreover, formulas obtained under the assumption of exponential Lévy distribution are generally

highly tractable.

The following assumption is made throughout this section.

Assumption 9. Under the objective probability measure P, the dynamics of Mt, kt and λt for every

t > 0 are given by:

dMt

Mt
= αM (t)dt+ βM (t)dW P

t +
∫

R
γM (t, z)µ̄(dt, dz);

dkt
kt

= αk(t)dt+ βk(t)dW P
t +

∫
R
γk(t, z)µ̄(dt, dz);

dλt
λt

= αλ(t)dt+ βλ(t)dW P
t +

∫
R
γλ(t, z)µ̄(dt, dz),

with the standard integrability conditions (See Assumption 8).

4.2.1 Log-separable utility function

Recall that if the agent utility function is a log-separable utility function, then the pricing kernel,

the CPI and the fair price of a contingent claim are given by

Ct =
A

B

λtMt

kt
;

πt =
Be−rt

κλtMt
;

H0 = λ0M0e
−rtE

[
Ht

λtMt

]
,

where A and B are two non-negative constants that define the utility function.
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Proposition 4.11. The dynamics of CPI and the pricing kernel are

dCt
Ct−

=
{
αλ(t) + αM (t)− αk(t) + βλ(t)βM (t) +

∫
R
γλ(t, z)γM (t, z)ν(dz)

+β2
k(t) +

∫
|z|<R

γ2
k(t, z)

1 + γk(t, z)
ν(dz)− [βλ(t) + βM (t)]βk(t)

}
dt

+
∫

R
[γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z)]

γk(t, z)
1 + γk(t, z)

π(dt, dz)

+ [βλ(t) + βM (t)− βk(t)] dWt

+
∫

R

{
γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z) +

γk(t, z)
1 + γk(t, z)

+ [γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z)]
γk(t, z)

1 + γk(t, z)

}
µ̄(dt, dz);

dπt
πt−

=
[
−r − αλ(t)− αM (t)− βλ(t)βM (t)−

∫
R
γλ(t, z)γM (t, z)ν(dz) + [βλ(t) + βM (t)]2

+
∫
|z|<R

[γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z)]2

1 + γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z)
ν(dz)

]
dt− [βλ(t) + βM (t)] dWt

+
∫

R

[
γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z)

1 + γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z)

]
µ̄(dt, dz).

Proof. Applying Corollary 2.13 with Zt = λtMt

dZt
Zt−

=
[
αλ(t) + αM (t) + βλ(t)βM (t) +

∫
R
γλ(t, z)γM (t, z)ν(dz)

]
dt+ [βλ(t) + βM (t)] dWt

+
∫

R
[γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z)] µ̄(dt, dz).

Then applying Corollary 2.15

dCt
Ct−

=
{
αλ(t) + αM (t) + βλ(t)βM (t) +

∫
R
γλ(t, z)γM (t, z)ν(dz)− αk(t)

+β2
k(t) +

∫
|z|<R

γ2
k(t, z)

1 + γk(t, z)
ν(dz)− [βλ(t) + βM (t)]βk(t)

}
dt

+
∫

R
[γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z)]

γk(t, z)
1 + γk(t, z)

π(dt, dz)

+ [βλ(t) + βM (t)− βk(t)] dWt

+
∫

R

{
γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z) +

γk(t, z)
1 + γk(t, z)

+ [γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z)]
γk(t, z)

1 + γk(t, z)

}
µ̄(dt, dz).

The deterministic process Xt = e−rt has dynamics

dXt

Xt−
= −rdt.
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Applying again Corollary 2.15

dπt
πt−

=
[
−r − αλ(t)− αM (t)− βλ(t)βM (t)−

∫
R
γλ(t, z)γM (t, z)ν(dz) + [βλ(t) + βM (t)]2

+
∫
|z|<R

[γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z)]2

1 + γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z)
ν(dz)

]
dt− [βλ(t) + βM (t)] dWt

+
∫

R

[
γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z)

1 + γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z)

]
µ̄(dt, dz).

Proposition 4.12. The fair price at t = 0 of a contingent claim Ht is given by

H0 = e−rtE
[
Ht exp

(∫ t

0

αX(s)ds+
∫ t

0

βX(s)dWs +
∫ t

0

∫
R
γX(s, z)µ̄(ds, dz)

)]
,

where

αX(t) = −αλ(t)− αM (t)− βλ(t)βM (t)−
∫

R
γλ(t, z)γM (t, z)ν(dz) + [βλ(t) + βM (t)]2

+
∫
|z|<R

Γ2(t, z)
1 + Γ(t, z)

ν(dz);

βX(t) = −βλ(t)− βM (t);

γX(t, z) = − Γ(t, z)
1 + Γ(t, z)

;

Γ(t, z) = γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z).

Proof. Using the dynamics of Zt (see previous proof) in Corollary 2.9 with Xt =
1

λtMt
yields

dXt

Xt−
=

{
−αλ(t)− αM (t)− βλ(t)βM (t)−

∫
R
γλ(t, z)γM (t, z)ν(dz) + [βλ(t) + βM (t)]2

+
∫
|z|<R

Γ2(t, z)
1 + Γ(t, z)

ν(dz)

}
dt− [βλ(t) + βM (t)] dWt −

∫
R

Γ(t, z)
1 + Γ(t, z)

µ̄(dt, dz)

= αX(t)dt+ βX(t)dWt +
∫

R
γX(t, z)µ̄(dt, dz)

where

αX(t) = −αλ(t)− αM (t)− βλ(t)βM (t)−
∫

R
γλ(t, z)γM (t, z)ν(dz)

+ [βλ(t) + βM (t)]2 +
∫
|z|<R

Γ2(t, z)
1 + Γ(t, z)

ν(dz);

βX(t) = −βλ(t)− βM (t);

γX(t, z) = − Γ(t, z)
1 + Γ(t, z)

;

Γ(t, z) = γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z).
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Hence

Xt = X0 exp
(∫ t

0

αX(s)ds+
∫ t

0

βX(s)dWs +
∫ t

0

∫
R
γX(s, z)µ̄(ds, dz)

)
and

E[XtHt] = E
[
Ht

λ0M0
exp

(∫ t

0

αX(s)ds+
∫ t

0

βX(s)dWs +
∫ t

0

∫
R
γX(s, z)µ̄(ds, dz)

)]
.

Therefore

H0 = e−rtE
[
Ht exp

(∫ t

0

αX(s)ds+
∫ t

0

βX(s)dWs +
∫ t

0

∫
R
γX(s, z)µ̄(ds, dz)

)]
.

Proposition 4.13. Further, assuming that 1
λtMt

and Ht are independent (i.e. the pricing kernel is

independent of the priced security), the fair price at t = 0 of the contingent claim becomes

H0 = e−rt exp
{∫ t

0

αX(u)du− 1
2

∫ t

0

β2
X(u)du+

∫ t

0

∫
R

[
ez − 1− zχ|z|<R

]
πγX (dz)du

}
E[Ht],

where

αX(t) = −αλ(t)− αM (t)− βλ(t)βM (t)−
∫

R
γλ(t, z)γM (t, z)ν(dz) + [βλ(t) + βM (t)]2

+
∫
|z|<R

Γ2(t, z)
1 + Γ(t, z)

ν(dz);

βX(t) = −βλ(t)− βM (t);

γX(t, z) = − Γ(t, z)
1 + Γ(t, z)

;

Γ(t, z) = γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z).

Recall that the standard no-arbitrage price of a derivative is e−rtE[Ht], the term

Dt = exp
{∫ t

0

αX(u)du− 1
2

∫ t

0

β2
X(u)du+

∫ t

0

∫
R

[
ez − 1− zχ|z|<R

]
πγX (dz)du

}
in the previous equation can be interpreted as a correction factor due to inflation linkage. Note that

the standard expectation is computed under the risk neutral probability measure while here it is

computed under the statistical (i.e. real world) probability measure.

Proof. If Xt and Ht are independent, then

E[XtHt] = E[Xt]E[Ht], with
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E[Xt] = X0 exp
(∫ t

0

αX(s)ds
)

E
[
exp

(∫ t

0

βX(s)dWs +
∫ t

0

∫
R
γX(s, z)µ̄(ds, dz)

)]
= X0 exp

(∫ t

0

αX(s)ds
)

E
[
exp

(∫ t

0

βX(s)dWs

)]
E
[
exp

(∫ t

0

∫
R
γX(s, z)µ̄(ds, dz)

)]
since dWt and µ̄(dt, dz) are independent.

E
[
exp

(∫ t

0

∫
R
γX(u, z)µ̄(du, dz)

)]
= E

[
exp

(∫ t

0

∫
|z|<R

γX(u, z)(µ− π)(du, dz)

+
∫ t

0

∫
|z|≥R

γX(u, z)µ(du, dz)

)]

= E

[
exp

(∫ t

0

∫
|z|<R

γX(u, z)(µ− π)(du, dz)

)]

E

[
exp

(∫ t

0

∫
|z|≥R

γX(u, z)µ(du, dz)

)]
since {|z| < R} and {|z| ≥ R} are disjoint.

E
[
exp

(∫ t

0

∫
R
γX(u, z)µ̄(du, dz)

)]
= exp

{∫ t

0

∫
|z|<R

[ez − 1− z]πγX (dz)du

}

exp

[∫ t

0

∫
|z|≥R

(ez − 1)πγX (dz)du

]

= exp
{∫ t

0

∫
R

[
ez − 1− zχ|z|<R

]
πγX (dz)du

}
by Corollary 2.21 with πγX = π ◦ (γX)−1.

Recall that dWt ∼ N (0, dt), hence
∫ t

0

βX(u)dWu ∼ N
(

0,
∫ t

0

β2
X(u)du

)
. Let 〈·, ·〉 denote the

Euclidean distance, i.e. for x, y ∈ Rd such as x = (x1, x2, · · · , xd) and y = (y1, y2, · · · , yd), 〈x, y〉 =
d∑
i=1

xiyi. Let ψN (m,V ) denote the log-characteristic function of a normal distributed process with

mean m and variance V , defined by

ψN (m,V )(u) = i 〈m,u〉 − 1
2
〈u, V u〉

with m,u ∈ Rd. In particular

ψN (m,V )(u) = imu− 1
2
V u2 with m,u ∈ R.

Using Theorem 2.19

E
[
exp

(∫ t

0

βX(u)dWu

)]
= exp

[
−1

2

∫ t

0

β2
X(u)du

]
.

Combining these expectations yields

E[Xt] = X0 exp
{∫ t

0

αX(u)du− 1
2

∫ t

0

β2
X(u)du+

∫ t

0

∫
R

[
ez − 1− zχ|z|<R

]
πγX (dz)du

}
.
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Therefore

H0 = e−rt exp
{∫ t

0

αX(u)du− 1
2

∫ t

0

β2
X(u)du+

∫ t

0

∫
R

[
ez − 1− zχ|z|<R

]
πγX (dz)du

}
E[Ht].

For simplicity, the parameter estimation will always assume γ(t, z) to be deterministic. In this case,

the previous expression becomes more tractable as shown in the next proposition.

Proposition 4.14. If γ(t, z) is deterministic and 1
λtMt

and Ht are independent, the fair price at

t = 0 of the contingent claim is

H0 = e−rt exp
{∫ t

0

αX(u)du− 1
2

∫ t

0

β2
X(u)du+

∫ t

0

∫
R

[
eγX(t,z) − 1− γX(t, z)χ|z|<R

]
π(dz)du

}
E[Ht],

where the coefficients are given in Proposition 4.13.

4.2.2 Power utility function

Recall that if the agent utility function is a separable power utility function, the CPI, the pricing

kernel and the fair price of an IL security are respectively

Ct =
(
A

B

)1−q
λtMt

k
(1−q)/(1−p)
t

;

πt =
B

1
1−q

A
q

1−q

k
q

1−q (1−p)
t

κλtMt
;

H0 =
λ0M0

k
q(1−p)/(1−q)
0

e−rtE

[
Htk

q(1−p)/(1−q)
t

λtMt

]
,

where A and B are two non-negative constants; p, q ∈]−∞, 1]\{0} defining the utility function.

The next proposition computes the dynamics of the CPI and the pricing kernel assuming that the

macroeconomic factors are exponential Lévy processes.

Proposition 4.15. The dynamics of Ct and πt are given by

dCt
Ct−

= αC(t)dt+ βC(t)dWt +
∫

R
γC(t, z)µ̄(dt, dz);

dπt
πt−

= απ(t)dt+ βπ(t)dWt +
∫

R
γπ(t, z)µ̄(dt, dz),
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where

αC(t) = αλ(t) + αM (t) + βλ(t)βM (t) +
∫

R
γλ(t, z)γM (t, z)ν(dz) + a2βk(t)2

−aαk(t)− 1
2
a(a− 1)β2

k(t)−
∫
|z|<R

{[1 + γk(t, z)]a − 1− aγk(t, z)} ν(dz)

+
∫
|z|<R

γ2
2(t, z)

1 + γ2(t, z)
ν(dz)− a [βλ(t) + βM (t)]βk(t) +

∫
R
γ1(t, z)

γ2(t, z)
1 + γ2(t, z)

ν(dz);

βC(t) = βλ(t) + βM (t)− aβk(t);

γC(t, z) = γ2(t, z) +
γ1(t, z)

1 + γ1(t, z)
+ γ2(t, z)

γ1(t, z)
1 + γ1(t, z)

;

απ(t) = α1(t)− α2(t) + [βλ(t) + βM (t)]2 +
∫
|z|<R

γ2
2(t, z)

1 + γ2(t, z)
ν(dz)

−aβk(t) [βλ(t) + βM (t)] +
∫

R
{[1 + γk(t, z)]a − 1} γ2(t, z)

1 + γ2(t, z)
ν(dz);

βπ(t) = aβk(t)− βλ(t)− βM (t);

γπ(t, z) = [1 + γk(t, z)]a − 1 +
γ2(t, z)

1 + γ2(t, z)
+ {[1 + γk(t, z)]a − 1} γ2(t, z)

1 + γ2(t, z)
;

α1(t) = aαk(t) +
1
2
a(a− 1)β2

k(t) +
∫
|z|<R

{[1 + γk(t, z)]a − 1− aγk(t, z)} ν(dz);

α2(t) = αλ(t) + αM (t) + βλ(t)βM (t) +
∫

R
γλ(t, z)γM (t, z)ν(dz);

γ1(t, z) = [1 + γk(t, z)]a − 1;

γ2(t, z) = γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z).

Proof. Applying the one-dimensional Itô formula (Theorem 2.7) with Yt(a) = f(t, kt) = kat for

a ∈ R. We have
∂f

∂t
= 0,

∂f

∂kt
= aka−1

t and
∂2f

∂2kt
= a(a− 1)ka−2

t ,

dYt = aka−1
t [αk(t)kt−dt+ βk(t)kt−dWt] +

1
2
a(a− 1) [βk(t)kt−]2 ka−2

t dt

+
∫
|z|<R

{
[kt− + γk(t, z)kt−]a − kat− − aka−1

t− γk(t, z)kt−
}
π(dt, dz)

+
∫

R

{
[kt− + γk(t, z)kt−]a − kat−

}
µ̄(dt, dz)

= a [αk(t)dt+ βk(t)dWt] +
1
2
a(a− 1)β2

k(t)dt+
∫
|z|<R

{[1 + γk(t, z)]a − 1− aγk(t, z)}π(dt, dz)

+
∫

R
{[1 + γk(t, z)]a − 1} µ̄(dt, dz)

= a

[
αk(t) +

1
2

(a− 1)β2
k(t)

]
dt+ aβk(t)dWt +

∫
|z|<R

{[1 + γk(t, z)]a − 1− aγk(t, z)} ν(dz)dt

+
∫

R
{[1 + γk(t, z)]a − 1} µ̄(dt, dz).
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Hence

dYt
Yt−

=

{
aαk(t) +

1
2
a(a− 1)β2

k(t) +
∫
|z|<R

{[1 + γk(t, z)]a − 1− aγk(t, z)} ν(dz)

}
dt

+aβk(t)dWt +
∫

R
{[1 + γk(t, z)]a − 1} µ̄(dt, dz).

Applying Corollary 2.15 with Xt =
Zt
kat

and a =
1− q
1− p

(Zt from the proof of Proposition 4.11)

dCt
Ct−

=
{
αλ(t) + αM (t) + βλ(t)βM (t) +

∫
R
γλ(t, z)γM (t, z)ν(dz) + a2βk(t)2

−aαk(t)− 1
2
a(a− 1)β2

k(t)−
∫
|z|<R

{[1 + γk(t, z)]a − 1− aγk(t, z)} ν(dz)

+
∫
|z|<R

γ2
2(t, z)

1 + γ2(t, z)
ν(dz)− a [βλ(t) + βM (t)]βk(t)

}
dt

+
∫

R
γ1(t, z)

γ2(t, z)
1 + γ2(t, z)

π(dt, dz) + [βλ(t) + βM (t)− aβk(t)] dWt

+
∫

R

{
γ1(t, z) +

γ2(t, z)
1 + γ2(t, z)

+ γ1(t, z)
γ2(t, z)

1 + γ2(t, z)

}
µ̄(dt, dz)

where

γ1(t, z) = γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z);

γ2(t, z) = [1 + γk(t, z)]a − 1.

Again applying Corollary 2.15 with πt =
B

1
1−q

κA
q

1−q

kat
Zt

and a = q(1−p)
1−q yields

dπt
πt−

= απ(t)dt+ βπ(t)dWt +
∫

R
γπ(t, z)µ̄(dt, dz),

where

απ(t) = α1(t)− α2(t) + [βλ(t) + βM (t)]2 +
∫
|z|<R

γ2
2(t, z)

1 + γ2(t, z)
ν(dz)

−aβk(t) [βλ(t) + βM (t)] +
∫

R
{[1 + γk(t, z)]a − 1} γ2(t, z)

1 + γ2(t, z)
ν(dz);

βπ(t) = aβk(t)− βλ(t)− βM (t);

γπ(t, z) = [1 + γk(t, z)]a − 1 +
γ2(t, z)

1 + γ2(t, z)
+ {[1 + γk(t, z)]a − 1} γ2(t, z)

1 + γ2(t, z)
;

α1(t) = aαk(t) +
1
2
a(a− 1)β2

k(t) +
∫
|z|<R

{[1 + γk(t, z)]a − 1− aγk(t, z)} ν(dz);

α2(t) = αλ(t) + αM (t) + βλ(t)βM (t) +
∫

R
γλ(t, z)γM (t, z)ν(dz);

γ2(t, z) = γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z).
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The next proposition computes the fair price of an Il derivative under the current assumptions.

Proposition 4.16. The fair price at t = 0 of a contingent claim Ht is

H0 = e−rtE
[
Ht exp

(∫ t

0

αX(s)ds+
∫ t

0

βX(s)dWs +
∫ t

0

∫
R
γX(s, z)µ̄(ds, dz)

)]
,

where

αX(t) = α1(t)− α2(t) + [βλ(t) + βM (t)]2 +
∫
|z|<R

γ2
2(t, z)

1 + γ2(t, z)
ν(dz)

−aβk(t) [βλ(t) + βM (t)] +
∫

R
{[1 + γk(t, z)]a − 1} γ2(t, z)

1 + γ2(t, z)
ν(dz);

βX(t) = aβk(t)− βλ(t)− βM (t);

γX(t, z) = [1 + γk(t, z)]a − 1 +
γ2(t, z)

1 + γ2(t, z)
+ {[1 + γk(t, z)]a − 1} γ2(t, z)

1 + γ2(t, z)
;

α1(t) = aαk(t) +
1
2
a(a− 1)β2

k(t) +
∫
|z|<R

{[1 + γk(t, z)]a − 1− aγk(t, z)} ν(dz);

α2(t) = αλ(t) + αM (t) + βλ(t)βM (t) +
∫

R
γλ(t, z)γM (t, z)ν(dz);

γ2(t, z) = γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z).

Proof. Similarly to πt in the previous proof, the process defined byXt =
kat
λtMt

with a =
q(1− p)

1− q
has dynamics

dXt

Xt−
= αX(t)dt+ βX(t)dWt +

∫
R
γX(t, z)µ̄(dt, dz),

where

αX(t) = α1(t)− α2(t) + [βλ(t) + βM (t)]2 +
∫
|z|<R

γ2
2(t, z)

1 + γ2(t, z)
ν(dz)

−aβk(t) [βλ(t) + βM (t)] +
∫

R
{[1 + γk(t, z)]a − 1} γ2(t, z)

1 + γ2(t, z)
ν(dz);

βX(t) = aβk(t)− βλ(t)− βM (t);

γX(t, z) = [1 + γk(t, z)]a − 1 +
γ2(t, z)

1 + γ2(t, z)
+ {[1 + γk(t, z)]a − 1} γ2(t, z)

1 + γ2(t, z)
;

α1(t) = aαk(t) +
1
2
a(a− 1)β2

k(t) +
∫
|z|<R

{[1 + γk(t, z)]a − 1− aγk(t, z)} ν(dz);

α2(t) = αλ(t) + αM (t) + βλ(t)βM (t) +
∫

R
γλ(t, z)γM (t, z)ν(dz);

γ2(t, z) = γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z).

Thus

H0 = e−rtE
[
Ht exp

(∫ t

0

αX(s)ds+
∫ t

0

βX(s)dWs +
∫ t

0

∫
R
γX(s, z)µ̄(ds, dz)

)]
.
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When the pricing kernel is independent of the derivative security, a mapping can be done between

IL securities and nominal securities as shown in the next proposition.

Proposition 4.17. Further, assuming that kat
λtMt

and Ht are independent (i.e. the pricing kernel is

independent of the contingent claim), the fair price at t = 0 of a contingent claim Ht is

H0 = e−rt exp
{∫ t

0

αX(u)du− 1
2

∫ t

0

β2
X(u)du+

∫ t

0

∫
R

[
ez − 1− zχ|z|<R

]
πγX (dz)du

}
E[Ht],

where

αX(t) = α1(t)− α2(t) + [βλ(t) + βM (t)]2 +
∫
|z|<R

γ2
2(t, z)

1 + γ2(t, z)
ν(dz)

−aβk(t) [βλ(t) + βM (t)] +
∫

R
{[1 + γk(t, z)]a − 1} γ2(t, z)

1 + γ2(t, z)
ν(dz);

βX(t) = aβk(t)− βλ(t)− βM (t);

γX(t, z) = [1 + γk(t, z)]a − 1 +
γ2(t, z)

1 + γ2(t, z)
+ {[1 + γk(t, z)]a − 1} γ2(t, z)

1 + γ2(t, z)
;

α1(t) = aαk(t) +
1
2
a(a− 1)β2

k(t) +
∫
|z|<R

{[1 + γk(t, z)]a − 1− aγk(t, z)} ν(dz);

α2(t) = αλ(t) + αM (t) + βλ(t)βM (t) +
∫

R
γλ(t, z)γM (t, z)ν(dz);

γ2(t, z) = γλ(t, z) + γM (t, z) + γλ(t, z)γM (t, z).

The correction factor due to inflation linkage is

Dt = exp
{∫ t

0

αX(u)du− 1
2

∫ t

0

β2
X(u)du+

∫ t

0

∫
R

[
ez − 1− zχ|z|<R

]
πγX (dz)du

}
.

Note that the correction factor has the same form as with the log-separable utility function and can

readily be written as a function of Nt =
1
πt

which is the standard numéraire in Finance.

Proof. Similar to that of Proposition 4.13.

Proposition 4.18. If γ(t, z) is deterministic and kat
λtMt

and Ht are independent, the fair price at

t = 0 of a contingent claim Ht is

H0 = e−rt exp
{∫ t

0

αX(u)du− 1
2

∫ t

0

β2
X(u)du+

∫ t

0

∫
R

[
eγX(t,z) − 1− γX(t, z)χ|z|<R

]
π(dz)du

}
E[Ht],

where the coefficients are given in Proposition 4.17.

4.2.3 Geometric Brownian distribution

Working in an environment without jumps and assuming that the nominal money supply, aggregate

consumption and nominal liquidity benefit follow a geometric distribution, i.e. Assumption 9 with

µ = π = γM = γλ = γk = γ = 0 gives the following results.
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Proposition 4.19. Considering a log-separable utility function, the dynamics of Ct, πt and the fair

price at t = 0 of a contingent claim Ht are

dCt
Ct−

=
{
αλ(t) + αM (t)− αk(t) + βλ(t)βM (t) + β2

k(t)− [βλ(t) + βM (t)]βk(t)
}
dt

+ [βλ(t) + βM (t)− βk(t)] dWt;

dπt
πt−

=
{
−r − αλ(t)− αM (t)− βλ(t)βM (t) + [βλ(t) + βM (t)]2

}
dt

− [βλ(t) + βM (t)] dWt;

H0 = e−rtE
[
Ht exp

(∫ t

0

αX(s)ds+
∫ t

0

βX(s)dWs

)]
,

where

αX(t) = −αλ(t)− αM (t)− βλ(t)βM (t) + [βλ(t) + βM (t)]2 ;

βX(t) = −βλ(t)− βM (t).

Proposition 4.20. Considering a log-separable utility function and assuming that the pricing kernel

is independent of the contingent claims, the fair price at t = 0 becomes

H0 = e−rt exp
(∫ t

0

αX(u)du− 1
2

∫ t

0

β2
X(u)du

)
E[Ht],

where

αX(t) = −αλ(t)− αM (t)− βλ(t)βM (t) + [βλ(t) + βM (t)]2 ;

βX(t) = −βλ(t)− βM (t).

Proposition 4.21. Considering a separable power utility function, the dynamics of Ct, πt and the

fair price at t = 0 of a contingent claim Ht are

dCt
Ct−

= αC(t)dt+ βC(t)dWt;

dπt
πt−

= απ(t)dt+ βπ(t)dWt;

H0 = e−rtE
[
Ht exp

(∫ t

0

αX(s)ds+
∫ t

0

βX(s)dWs

)]
,

where

αC(t) = αλ(t) + αM (t) + βλ(t)βM (t)− aαk(t)− 1
2
a(a− 1)β2

k(t)− a [βλ(t) + βM (t)]βk(t);

βC(t) = βλ(t) + βM (t)− aβk(t);
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αX(t) = α1(t)− α2(t) + [βλ(t) + βM (t)]2 − aβk(t) [βλ(t) + βM (t)] ;

βX(t) = aβk(t)− βλ(t)− βM (t);

απ(t) = α1(t)− α2(t) + [βλ(t) + βM (t)]2 − aβk(t) [βλ(t) + βM (t)] ;

βπ(t) = aβk(t)− βλ(t)− βM (t);

α1(t) = aαk(t) +
1
2
a(a− 1)β2

k(t);

α2(t) = αλ(t) + αM (t) + βλ(t)βM (t).

Proposition 4.22. Considering a separable power utility function and assuming that the pricing

kernel is independent of the contingent claims the fair price at t = 0 becomes

H0 = e−rt exp
(∫ t

0

αX(u)du− 1
2

∫ t

0

β2
X(u)du

)
E[Ht]

where

αX(t) = α1(t)− α2(t) + [βλ(t) + βM (t)]2 − aβk(t) [βλ(t) + βM (t)] ;

βX(t) = aβk(t)− βλ(t)− βM (t);

α1(t) = aαk(t) +
1
2
a(a− 1)β2

k(t);

α2(t) = αλ(t) + αM (t) + βλ(t)βM (t).

4.3 Conclusion

In this chapter, pricing formulas for IL securities were successfully derived. As initially expected,

these formulas are mainly function of the selected macroeconomic factors and less function of the

observed market prices. One of the main advantage of this approach is that there is a unique pricing

formula for “every” IL derivatives. This fair price is not a function of the actual security being

priced and in theory might be applied even to customised and exotic IL securities.

The calibration process has been started in Chapter 6. However, it was not pushed as far as planned

because of the unavailability of the necessary market data. The preliminary study conducted justifies

our choice of Lévy distributions as the driving factor and source of randomness of all processes.



Chapter 5

Reverse Engineering

In this chapter, the real and nominal pricing kernels are modelled without the use of utility func-

tions. In 1994, Backus and Zin [8] developed the methodology of “Reverse engineering the yield

curve” with application to the nominal yield curve. In 2003, Craig and Haubrich [36] conducted

an implementation with the real term structure. Both studies were made in discrete time with un-

derlying AR and ARMA processes; whereas the framework built here is in continuous time and its

underlying processes follow Lévy and exponential Lévy distributions. The pricing kernels’ dynamics

are deduced from the market observed yield curves and the inflation. The obtained estimates of the

nominal and real pricing kernels (See Section 5.5) reflect their relatively complex dynamics and more

importantly the existing interaction between nominal economy and real economy. This provides a

new perspective on how the market yield curves reveals nominal and real influences.

5.1 Inflation Breakeven Rate

Despite the fact that the approach presented in this chapter can be applied to any contingent claim,

the current study only focuses on bonds (nominal and inflation linked). This sections briefly reviews

some standard concepts related to bonds in general and others specific to inflation linked (IL) bonds.

Among the latter is the less known inflation breakeven rate or inflation compensation, which is the

difference between the yield of nominal bonds and the real yield obtained from IL bonds with

same maturity. It has been widely used as a proxy of inflation expectation because of the Fischer

hypothesis that is recalled later.

104
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From now on, the subscript/exponent n (resp. r and IP ) stands for nominal (resp. real and inflation

protected).

For a “smooth” yield curve to be deductible from the market bonds, the following initial assumption

is made.

Assumption 10. There exists a market for nominal and IL bonds for all maturities T > 0 or at

least for T ∗ > T > 0 with T ∗ fixed. Furthermore, for every fixed t ∈ [0, T ], pn(t, T ) and pIP (t, T )

are differentiable with respect to the maturity T .

The instantaneous forward rates, contracted at time t are defined by

fi(t, T ) = −∂ ln pi(t, T )
∂T

for i = r, n;

and the instantaneous interest rates

ri(t) = fi(t, t) for i = r, n.

The continuously compounded yields yi for i = n, r are defined by

pi(t, T ) = exp [−yi(t, T ) · (T − t)] .

Therefore

yi(t, T ) = − ln pi(t, T )
T − t

.

The continuously compounded nominal yield can also be computed from the real bonds by [57]

yn(t, T ) = − 1
T − t

ln
pr(t, T )I(t)

I(T )
= − 1

T − t
ln
pIP (t, T )
I(T )

.

The previous equation can be decomposed as follow

yn(t, T ) = − 1
T − t

[
ln pr(t, T ) + ln

I(t)
I(T )

]
= yr(t, T ) +

1
T − t

ln
I(T )
I(t)

.

In the last equation, all the components except the I(T ) are known at time t; thus the last term is

random at time t and its expected value will be used instead. The expression

ie(t, T ) =
1

T − t
Et
[
ln
I(T )
I(t)

]
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is the standard expectation of the average inflation between t and T . Hence, the Fisher hypothesis

is retrieved

yn(t, T ) = yr(t, T ) + ie(t, T ).

Another relationship between the nominal and real yields can be computed using the nominal and

real pricing kernels. Let πi = (πi(t))t≥0 with i = n, r denote the pricing kernels; the shorthand

notation πit for πi(t) will also be used.

Considering t < T , the real pricing kernel is defined by [68, 37]

pr(t, T ) =
Et [πrT pr(T, T )]

πrt
,

where Et denotes the expectation conditional on the information available at time t.

Considering δ > 0 and s = t+ δ such that t < s < T , then

pr(t, T ) =
Et [πrspr(s, T )]

πrt
. (5.1)

However, real bond prices are not directly observable on the market. The only way to ensure

purchasing power is by taking a position in inflation protected securities (here IL bonds). At time

t, the real and inflation protected bonds with maturity T are related by

pr(t, T ) =
pIP (t, T )
I(t)

,

where I(t) is the inflation at time t. Substituting pr(t, T ) in equation (5.1), gives

pIP (t, T ) =
Et
[
πrspIP (s, T )

It
Is

]
πrt

=
Et
[
πrspIP (s, T )

1
Gs

]
πrt

, (5.2)

where Gs =
Is
Is−δ

is the gross inflation return over [s− δ, s].

Since the nominal pricing kernel πn is also given by

pIP (t, T ) =
Et [πns pIP (s, T )]

πnt
, (5.3)

because pIP (t, T ) is a nominal contingent claim. Identification between the last two equations breaks

the nominal pricing kernel into the real pricing kernel and another component1 due to inflation. The
1The term inflation is not directly used because of Equation (5.9) that will be used instead in our pricing framework.



5.1 Inflation Breakeven Rate 107

obtained no-arbitrage relationship between the pricing kernels is

πns =
πrs
Is

(5.4)

This relationship is model independent (i.e. satisfied without any assumption on the dynamics of

the pricing kernels and inflation) and has been stated in [37]. Combined with the inflation dynamics,

Equation (5.1) enables the partition of the nominal pricing kernel into real and nominal components

which can both be estimated.

A relationship similar to Equation (5.1) exists between the nominal bonds and the nominal pricing

kernel

pn(t, T ) =
Et [πns pn(s, T )]

πnt
. (5.5)

Using Equation (5.4), the previous expression can be rewritten has

pn(t, T ) = Et
[
πrs
πrt

1
Gs

pn(s, T )
]
.

Taking s = T yields

pn(t, s) = Et
[
πrs
πrt

1
Gs

]
= Et

[
πrs
πrt

]
Et
[

1
Gs

]
+ Cov

[
πrs
πrt
,

1
Gs

]
= pr(t, s)Et

[
1
Gs

]
+ Cov

[
πrs
πrt
,

1
Gs

]
by Equation (5.1). Taking the logarithm of the last equality, then taking the negation of its division

by the time to maturity gives

yn(t, T ) = yr(t, T ) + ie(t, T ) + pI(t, T ), (5.6)

where ie(t, T ) and pI(t, T ) are respectively the expected inflation and the inflation risk premium

over [t, T ]. The inflation risk premium is generally decomposed in two components: the Jensen’s

effect and the covariance effect [37] which are respectively defined by

J(t, T ) = −
ln Et

[
G−1
s

]
− Et

[
lnG−1

s

]
T − t

and

c(t, T ) = − 1
T − t

ln

1 +
Cov

[
πrs
πrt
, G−1

s

]
Et
[
G−1
s

]
 .
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If the inflation premium is zero, then the Fisher Hypothesis is recovered. However, recall from the

Subsection 1.1.1 that the existence of a “non-zero” inflation risk premium in nominal bonds was

one of the reasons for the issuance of IL bonds [38]. This suggest that the Fisher Hypothesis should

in “general” mis-estimate the expected inflation because it ignores the covariance between the real

pricing kernel and inflation. Nevertheless, the improvement is not without disadvantage; the pricing

kernel approach requires models for (i.e. assumptions on) the pricing kernels and the CPI, while the

Fisher hypothesis gives a simple (no models for yields) means to estimated inflation expectation.

The next section presents an assumption on the “information flow”, which simplifies the computation

of formulas and the calibration of the pricing kernel approach. Afterwards Sections 5.4 and 5.3 each

makes assumptions on the dynamics of the pricing kernels and inflation for data fitting.

5.2 Theoretical framework

The existence of a pricing kernel is synonymous to the well known no-arbitrage principle. In fact,

given a pricing kernel the price of any bond or derivative security can be computed. Here the reverse

operation is accomplished: from bond prices, the nominal and real pricing kernels are inferred.

Following Backus et al. [8], to simplify the current framework and the fitting process, the next

assumption will be made on the filtration.

Assumption 11. In Equations (5.1) and (5.3), the pricing kernels πi for i = n, r are contained in

Et, i.e. πrt is considered to be part of the information known at time t that is represented by Ft with

Et[·] = EFt [·].

Note that derivative pricing is generally conducted at t = 0, where πi0 = 1 for i = n, r. In which case

the previous assumption is satisfied, therefore this property has been extended to forward pricing,

i.e. pricing a security forward in time. Another interpretation of the previous assumption is that

instead of modelling the pricing kernels, the change in the pricing kernel (in these equations between

times t and s) is modelled. If t = 0, because πi0 = 1 for i = n, r, this comes back to modelling the

pricing kernels. Equation (5.1) becomes

pr(t, T ) = Et [πrspr(s, T )]

or similarly to [36]

Et [πrsR(t; s, T )] = 1, (5.7)
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where R(t; s, T ) =
pr(s, T )
pr(t, T )

is the gross real return over the period [t, s]. Inserting the IL bonds

gives

pIP (t, T ) = Et
[
πrspIP (s, T )

I(t)
I(s)

]
.

Equation (5.3) is now

pIP (t, T ) = Et [πns pIP (s, T )] . (5.8)

Identification of these two expressions of the IL bonds yields the new no-arbitrage relationship

between the pricing kernels

πns =
πrs
Gs

, (5.9)

which is still model independent.

The reverse engineering approach [8] then proceeds as follows. It first specifies processes for πrt and

Gt (or It); and then uses those to price the term structure, i.e. derive the yield on zero-coupon bonds

of different maturities. This contrasts with the consumption based view (see examples in Chapter

4), in which the asset pricing equation takes the form

pi(t, T ) = Et
[
B
U(Cs)
U(Ct)

pi(s, T )
]

for a time separable utility function U(·). In this case, the stochastic process for consumption and

the form of the utility function determine the pricing kernel.

Secondly, the time series and cross section properties implied by the theory are then matched with

the data to derive the parameters of the underlying process and to deduce the pricing kernel and

inflation. Once deduced, the two halves of the pricing kernel can function as a metric for assessing

asset pricing theories and as an engine for pricing securities.

The general asset pricing condition (5.7) becomes a theory of bond pricing once the pricing kernel

πr and the gross inflation rate G = (Gt)t≥0 are characterized.

The gross inflation return can be approximated as a function of the logarithm inflation rate in the

following way:

Gs =
Is
Is−δ

=
Is − Is−δ
Is−δ

+ 1 ≈ ln
(
Is − Is−δ
Is−δ

− 1
)

+ 1

= ln
(

Is
Is−δ

)
+ 1.
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The approximation holds because
Is − Is−δ
Is−δ

is assumed “small enough”. Note that the last line

expresses the gross return in terms of the absolute return on inflation that will be denoted by rIs .

So instead of studying the gross returns process Gs, the differenced log-price process rIs is studied.

Recall that taking the log returns of a data set is a standard procedure from time-series analysis,

which transforms a non stationary sequence to one that is plausibly modelled as stationary [24].

Sections 5.3 and 5.4 follow Craig et al. [36] by making assumptions on the distribution (of the

logarithm) of the inflation gross return. If the gross return has an exponential Lévy growth (Section

5.3), then inflation has an exponential of exponential of Lévy growth. This is rather unrealistic

especially given the “good” results other works [81, 82, 14, 71] obtained when pricing IL securities

under the hypothesis that inflation had an exponential growth. Furthermore, this fast growth

assumption might explain the fact that Craig et al. had good results on short maturities, but

worsening results the longer the maturity considered. The more “realistic” hypothesis of inflation

exponential growth is used in Section 5.4.

5.3 Exponential Lévy Gross return

The inflation gross return is a positive process, thus a reasonable choice of distribution is an ex-

ponential Lévy distribution. The following assumption extends the work of Craig et al. [36] by

assuming the logarithm of inflation gross return follows a Lévy process instead of an AR(ARMA)

process. Note that this makes the inflation an exponential of exponential of Lévy process.

Assumption 12. Under the objective probability measure P the inflation gross return G and the

real pricing kernel πr follow exponential Lévy processes. Their dynamics are given by

dπrt
πrt−

= αr(t)dt+ βr(t)dW P
t +

∫
R
γr(t, z)µ̄(dt, dz)

dGt
Gt−

= αG(t)dt+ βG(t)dW P
t +

∫
R
γG(t, z)µ̄(dt, dz).

with

µ̄(dt, dz) =

 (µ− π)(dt, dz), |z| < R

µ(dt, dz), |z| ≥ R

where the coefficients αi(t), βi(t) and γi(t, z) are adapted processes with∫ t

0

|αi(s)|ds <∞ and
∫ t

0

|βi(s)|2ds <∞
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for all finite t; γi(t, z) : Ω× R+ × R→ R is a real valued function satisfying∫ t

0

∫
R
|γi(s, z)|2π(ds, dz) <∞,

for finite t. These conditions guarantee integrability of the coefficients and are satisfied if the coeffi-

cients are bounded for t from a bounded set and π([0, t]× R) <∞ for finite t.

The following propositions compute the dynamics and analytic formulas for the pricing kernels and

forward rates.

Proposition 5.1. Under Assumption 12, the dynamics of the nominal pricing kernel are given by

dπnt
πnt−

= αn(t)dt+ βn(t)dW P
t +

∫
R
γn(t, z)µ̄(dt, dz),

where

αn(t) = αr(t)− αG(t) + [βG(t)]2 +
∫
|z|<R

[γG(t, z)]2

1 + γG(t, z)
ν(dz)− βr(t)βG(t)

+
∫

R
γr(t, z)

γG(t, z)
1 + γG(t, z)

ν(dz);

βn(t) = βr(t)− βG(t);

γn(t, z) = γr(t, z) +
γG(t, z)

1 + γG(t, z)
+ γr(t, z)

γG(t, z)
1 + γG(t, z)

.

Proof. Direct application of Corollary 2.15.

Under Assumption 11, the nominal and real bonds are given in terms of their corresponding pricing

kernels by

pi(t, T ) = Et
[
πispi(s, T )

]
for i = n, r.

For a maturity T = s, i.e. pn(s, T ) = 1

pi(t, T ) = Et
[
πiT
]

for i = n, r.

Hence, the time t price of a bond (nominal or real) is the expected value of its corresponding pricing

kernel at the bond’s maturity. Without Assumption 11, this expectation would have been multiplied

by the pricing kernel at time t to get the bond price. This simplified relationship is used in the next

proposition to compute the nominal and real bonds prices.
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Proposition 5.2. At time t, the nominal and real bonds with maturity T are worth

pi(t, T ) = exp

{∫ T

0

αi(u)du− 1
2

∫ T

t

[βi(u)]2du+
∫ T

t

∫
R

[
ez − 1− zχ|z|<R

]
πγi(dz)du

+
∫ t

0

βi(s)dW P
s +

∫ t

0

∫
R
γi(s, z)µ̄(ds, dz)

}
for i = n, r,

where πγi = π ◦ (γi)−1.

The dynamics of pi(t, T ) are

dpi(t, T )
pi(t−, T )

= ai(t)dt+ bi(t)dW P
t +

∫
R
ci(t, z)µ̄(dt, dz) for i = n, r,

where

ai(t) = [βi(t)]2 −
∫

R

[
ez − 1− zχ|z|<R

]
πγi(dz) +

∫
|z|<R

{
exp[γi(t, z)]− 1− γi(t, z)

}
ν(dz);

bi(t) = βi(t); ci(t, z) = exp[γi(t, z)]− 1;

with constraints∫ t

0

αn(u)du+
∫ t

0

βn(s)dW P
s +

∫ t

0

∫
R
γn(s, z)µ̄(ds, dz) = 0 ∀t ∈ R.

If the coefficient γi(t, z) is deterministic, then

ai(t) = [βi(t)]2 −
∫

R

[
eγ
i(t,z) − 1− γi(t, z)χ|z|<R

]
π(dz) +

∫
|z|<R

{
exp[γi(t, z)]− 1− γi(t, z)

}
ν(dz);

Proof. For i = n, r

Et[πiT ] = πit exp

(∫ T

t

αi(s)ds

)
Et

[
exp

(∫ T

t

βi(s)dWs +
∫ T

t

∫
R
γi(s, z)µ̄(ds, dz)

)]

= πit exp

(∫ T

t

αi(s)ds

)
Et

[
exp

(∫ T

t

βi(s)dWs

)]
Et

[
exp

(∫ T

t

∫
R
γi(s, z)µ̄(ds, dz)

)]

since dWt and µ̄(dt, dz) are independent.

Et

[
exp

(∫ T

t

∫
R
γi(u, z)µ̄(du, dz)

)]
= Et

[
exp

(∫ T

t

∫
|z|<R

γi(u, z)(µ− π)(du, dz)

+
∫ T

t

∫
|z|≥R

γi(u, z)µ(du, dz)

)]

= Et

[
exp

(∫ T

t

∫
|z|<R

γi(u, z)(µ− π)(du, dz)

)]

×Et

[
exp

(∫ T

t

∫
|z|≥R

γi(u, z)µ(du, dz)

)]
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since {|z| < R} and {|z| ≥ R} are disjoint. Using Corollary 2.21 for the first equality

E

[
exp

(∫ T

t

∫
R
γi(u, z)µ̄(du, dz)

)]
= exp

{∫ T

t

∫
|z|<R

[ez − 1− z]πγn(dz)du

}

× exp

[∫ T

t

∫
|z|≥R

(ez − 1)πγn(dz)du

]

= exp

{∫ T

t

∫
R

[
ez − 1− zχ|z|<R

]
πγn(dz)du

}

with πγi = π ◦ (γi)−1.

Recall that dWt ∼ N (0, dt), hence
∫ T

t

βi(u)dWu ∼ N

(
0,
∫ T

t

[βi(u)]2du

)
. Let 〈·, ·〉 be the inner

product, i.e. if x, y ∈ Rd such as x = (x1, x2, · · · , xd) and y = (y1, y2, · · · , yd), then 〈x, y〉 =
d∑
i=1

xiyi.

Let ψN (m,V ) denote the log-characteristic function of a normal distributed process with mean m and

variance V , defined by

ψN (m,V )(u) = i 〈m,u〉 − 1
2
〈u, V u〉 with m,u ∈ Rd.

In particular

ψN (m,V )(u) = imu− 1
2
V u2 with m,u ∈ R.

Using Theorem 2.19

Et

[
exp

(∫ T

t

βi(u)dWu

)]
= exp

{
−1

2

∫ T

t

[βi(u)]2du

}
.

Combining these expectations yields

Et[πiT ] = πit exp

{∫ T

t

αi(u)du− 1
2

∫ T

t

[βi(u)]2du+
∫ T

t

∫
R

[
ez − 1− zχ|z|<R

]
πγi(dz)du

}
.

Therefore

pi(t, T ) = exp

{∫ T

t

αi(u)du− 1
2

∫ T

t

[βi(u)]2du+
∫ T

t

∫
R

[
ez − 1− zχ|z|<R

]
πγi(dz)du

}

× exp
[∫ t

0

αi(s)ds+
∫ t

0

βi(s)dW P
s +

∫ t

0

∫
R
γi(s, z)µ̄(ds, dz)

]
= exp

{∫ T

0

αi(u)du− 1
2

∫ T

t

[βi(u)]2du+
∫ T

t

∫
R

[
ez − 1− zχ|z|<R

]
πγi(dz)du

+
∫ t

0

βi(s)dW P
s +

∫ t

0

∫
R
γi(s, z)µ̄(ds, dz)

}
.
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Thus

ln pi(t, T ) =
∫ T

0

αi(u)du− 1
2

∫ T

t

[βi(u)]2du+
∫ T

t

∫
R

[
ez − 1− zχ|z|<R

]
πγi(dz)du

+
∫ t

0

βi(s)dW P
s +

∫ t

0

∫
R
γi(s, z)µ̄(ds, dz).

Denoting ln pi(t, T ) by X(t, T )

dX(t, T ) =
1
2

[βi(t)]2dt−
∫

R

[
ez − 1− zχ|z|<R

]
πγi(dz)dt+ βi(t)dW P

t +
∫

R
γi(t, z)µ̄(dt, dz),

with constraints

X(t, t) =
∫ t

0

αi(u)du+
∫ t

0

βi(s)dW P
s +

∫ t

0

∫
R
γi(s, z)µ̄(ds, dz).

But, by definition of nominal and real bonds, ln pi(t, t) = 0; therefore, the constraint becomes∫ t

0

αi(u)du+
∫ t

0

βi(s)dW P
s +

∫ t

0

∫
R
γi(s, z)µ̄(ds, dz) = 0.

Using pi(t, T ) = f [X(t, T )] = exp[X(t, T )] in the one-dimensional Itô formula (Theorem 2.7), we

have
∂f

∂t
= 0 and

∂f

∂x
=
∂2f

∂2x
= pn(t, T ). Thus

dpi(t, T ) = pi(t, T )
{

1
2

[βi(t)]2dt−
∫

R

[
ez − 1− zχ|z|<R

]
πγi(dz)dt+ βi(t)dW P

t +
1
2

[βi(t)]2dt
}

+
∫
|z|<R

{
pi(t−, T ) exp[γi(t, z)]− pi(t−, T )− pi(t−, T )γi(t, z)

}
π(dt, dz)

+
∫

R

{
pi(t−, T ) exp[γi(t, z)]− pi(t−, T )

}
µ̄(dt, dz).

The dynamics of pi are given by

dpi(t, T )
pi(t−, T )

=
{

1
2

[βi(t)]2dt−
∫

R

[
ez − 1− zχ|z|<R

]
πγi(dz)dt+ βi(t)dW P

t +
1
2

[βi(t)]2dt
}

+
∫
|z|<R

{
exp[γi(t, z)]− 1− γi(t, z)

}
π(dt, dz) +

∫
R

{
exp[γi(t, z)]− 1

}
µ̄(dt, dz)

=
{

[βi(t)]2 −
∫

R

[
ez − 1− zχ|z|<R

]
πγi(dz) + βi(t)dW P

t

+
∫
|z|<R

{
exp[γi(t, z)]− 1− γi(t, z)

}
ν(dz)

}
dt+

∫
R

{
exp[γi(t, z)]− 1

}
µ̄(dt, dz),

with ∫ t

0

αi(u)du+
∫ t

0

βi(s)dW P
s +

∫ t

0

∫
R
γi(s, z)µ̄(ds, dz) = 0.

If γi(t, z) is assumed deterministic, then Theorem 2.22 is used.
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Proposition 5.3. The nominal and real forward rate are

fi(t, T ) = −αi(T ) +
1
2

[βi(T )]2 −
∫

R

[
ez − 1− zχ|z|<R

]
πγi(dz) for i = n, r.

If γi is assumed deterministic, then

fi(t, T ) = −αi(T ) +
1
2

[βi(T )]2 −
∫

R

[
eγ
i(t,z) − 1− γi(t, z)χ|z|<R

]
π(dz).

Proof. For i = r, n, the instantaneous forward rates contracted at time t are given by

fi(t, T ) = −∂ ln pi(t, T )
∂T

= −αi(T ) +
1
2

[βi(T )]2 −
∫

R

[
ez − 1− zχ|z|<R

]
πγi(dz).

If γi is deterministic, then Theorem 2.22 is again used.

5.4 Exponential Lévy Inflation

Many studies [81, 82, 14, 71] have used the assumption that inflation is lognormal, which implies an

exponential distribution for IL securities2 instead of the previously assumed exponential of exponen-

tial distribution. This suggests that although the CPI is fast growing, it does grow at an exponential

of exponential pace. The former is more realistic especially given that “most” can still afford daily

expenses. The already successful lognormal distribution is here extended to an exponential Lévy

process for the the inflation. By similitude, the pricing kernel is also assumed to be an exponential

Lévy process. The dynamics of inflation’s gross return will be implied by those of inflation as is

shown in the next assumption.

Assumption 13. Under the objective probability measure P the inflation It and the real pricing

kernel follow exponential Lévy processes. Their dynamics are given by

dπrt
πrt−

= αr(t)dt+ βr(t)dW P
t +

∫
R
γr(t, z)µ̄(dt, dz);

dIt
It−

= αI(t)dt+ βI(t)dW P
t +

∫
R
γI(t, z)µ̄(dt, dz).

with the standard integrability conditions imposed on the coefficients.

The log formulation is useful because yields and interest rates are easier to work with than bond

prices, and it allows us to exploit some property of exponential Lévy distributions. Furthermore, in
2See Chapter 3 for example.



5.4 Exponential Lévy Inflation 116

this form, πr and G are not independent, but they do not depend directly on one another. Splitting

inflation into nominal and real parts involves more than merely using more complicated distributions;

it requires explicit consideration of the interactions between real and nominal rates.

The nominal pricing kernel is given by

πnt =
πrt

rIt + 1
.

This, in conjunction with equation (5.7), prices assets. It describes how the pricing kernel evolves

over time, or equivalently, how the discount rate depends on both real and nominal shocks.

Proposition 5.4. The dynamics of the nominal pricing kernel are given by

dπnt
πnt−

= αn(t)dt+ βn(t)dW P
t +

∫
R
γn(t, z)µ̄(dt, dz),

where

αn(t) = αr(t)− Yt
[
αI(t)− [βI(t)]2Yt

]
− βr(t)YtβI(t)

+
∫
|z|<R

{
1

1 + γI(t, z)Yt−
− 1 + Yt−γ

I(t, z)
}
ν(dz)

+
∫

R
γr(t, z)

(
1

1 + Yt−γI(t, z)
− 1
)
ν(dz);

βn(t) = βr(t)− YtβI(t);

γn(t, z) =
γr(t, z) + 1

1 + Yt−γI(t, z)
− 1;

Yt =
1

rIt + 1
=

1
Gt
.

Proof.

Assuming that δ is small enough, from the inflation dynamics (Assumption 13), the absolute inflation

return

rIt = ln
(

It
It−δ

)
has dynamics

drIt = αI(t)dt+ βI(t)dW P
t +

∫
R
γI(t, z)µ̄(dt, dz).

Applying the one-dimensional Itô formula (Theorem 2.7) with Yt = f(t, rIt ) =
1

rIt + 1
whose deriva-
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tives are
∂f

∂t
= 0,

∂f

∂rIt
= − 1

(rIt + 1)2
and

∂2f

∂2rIt
=

2
(rIt + 1)3

; we have

dYt = − 1
(rIt + 1)2

[
αI(t)dt+ βI(t)dWt

]
+

1
2

[βI(t)]2
2

(rIt + 1)3
dt

+
∫
|z|<R

{
1

rIt− + γI(t, z) + 1
− 1
rIt− + 1

+
γI(t, z)

(rIt− + 1)2

}
π(dt, dz)

+
∫

R

{
1

rIt− + γI(t, z) + 1
− 1
rIt− + 1

}
µ̄(dt, dz)

= − 1
(rIt + 1)2

[
αI(t)− [βI(t)]2

1
rIt + 1

]
dt− 1

(rIt + 1)2
β(t)dWt

+
∫
|z|<R

{
1

rIt− + γI(t, z) + 1
− 1
rIt− + 1

+
γI(t, z)

(rIt− + 1)2

}
π(dt, dz)

+
∫

R

{
1

rIt− + γI(t, z) + 1
− 1
rIt− + 1

}
µ̄(dt, dz)

= −Y 2
t

[
αI(t)− [βI(t)]2Yt

]
dt− Y 2

t β
I(t)dWt

+
∫
|z|<R

{
Yt−

1 + γI(t, z)Yt−
− Yt− + Y 2

t−γ
I(t, z)

}
π(dt, dz) +

∫
R

{
Yt−

1 + Yt−γI(t, z)
− Yt−

}
µ̄(dt, dz).

Now applying the multidimensional Itô formula (Theorem 2.11) with f(t, πrt , Yt) = πrt Yt

dπnt =
[
πrt−α

r(t)Yt − Y 2
t

[
αI(t)− [βI(t)]2Yt

]
πrt − πrt−βr(t)Y 2

t β
I(t)

+
∫
|z|<R

{
Yt−

1 + γI(t, z)Yt−
− Yt− + Y 2

t−γ
I(t, z)

}
ν(dz)πrt

+
∫

R
πrt−γ

r(t, z)
(

Yt−
1 + Yt−γI(t, z)

− Yt−
)
ν(dz)

]
dt

+
[
πrt−β

r(t)Yt − Y 2
t β

I(t)πrt
]
dWt

+
∫

R

[
Yt−

1 + Yt−γI(t, z)
πrt− − Yt−πrt− + πrt−γ

r(t, z)Yt−

+πrt−γ
r(t, z)

Yt−
1 + Yt−γI(t, z)

− πrt−γr(t, z)Yt−
]
µ̄(dt, dz)

dπnt =
[
πnt−α

r(t)− Yt
[
αI(t)− [βI(t)]2Yt

]
πnt − πnt−βr(t)YtβI(t)

+
∫
|z|<R

{
πnt−

1 + γI(t, z)Yt−
− πnt− + πnt Yt−γ

I(t, z)
}
ν(dz)

+
∫

R
γr(t, z)

(
πnt−

1 + Yt−γI(t, z)
− πnt−

)
ν(dz)

]
dt

+
[
πnt−β

r(t)− YtβI(t)πnt
]
dWt

+
∫

R

[
πnt−

1 + Yt−γI(t, z)
− πnt− + γr(t, z)

πnt−
1 + Yt−γI(t, z)

]
µ̄(dt, dz).

From here on, a reasoning similar to that of Section 5.3 gives similar formulas for the IL bonds,

nominal and real forward instantaneous forward rates.
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5.5 Parameter estimation

At time t, the zero coupon bond price pi(t, T ) for i = n, r is known for a maturity T . To get the

entire yield curve, forward rates over the period [T, T ∗] are needed, where T ∗ is the maturity up to

which the yield curve is required. This comes back to estimating the unique driving process in the

nominal and real yield curves just as in Subsection 6.1.8. The methodology of parameter estimation

will not be repeated here.

Work in progress aims at first obtaining the historical real yield curve data for the South African

market. Afterward, the calibration and interpretation of results will be conducted.



Chapter 6

Empirical Study and Calibration

Chapters 3, 4 and 5 each presented a different framework to price inflation linked (IL) derivatives

taking into account the inflation market’s illiquidity. This chapter now performs parameter estima-

tion from market data for each of the previous models. The chapter is divided into two main sections.

The first section conducts an empirical study of historical data to highlight the shortcomings of the

normality assumption and the appropriateness of Lévy distributions. The second section deals with

the actual pricing of derivative securities (swaps, caps and floors).

6.1 Empirical study

Let (Xi)i∈N denote an observed macroeconomic factor and ∆t be the fixed time step between the

observations. Depending on the process being considered, ∆t will be a day, a week or even a month.

The observation Xi represents the value taken by the factor X at time i∆t and pX(xi) is the

probability that X has the value xi.

6.1.1 Data

The financial data used for parameter estimation is from both the Johannesburg Stocks Exchange

(JSE) securities exchange and the New York Stock Exchange (NYSE). The former is an emerging

(African) market while the latter is a developed (American) market. Thus the overall performances

of the models in both types of markets can be tested. A detailed description of the data is provided

in the Subsections 6.1.9 and 6.1.10.

119
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The statistical study is carried out on the log returns of the macroeconomical factors for two main

reasons. Firstly, financially, the log return corresponds to the continuously compounded return of

the factor. It is dimensionless and assumed smooth “enough”. Secondly, numerically, this is done to

constrain return values to be positive. Others arguments for this approach are the extensive evidence

of returns stationarity in the literature [34]; plus the direct transferability of return independence

and identical distribution to its logarithm. Considering a discrete process (Xi), with i = 1, 2, · · · ,

the corresponding log return process ri, with i = 1, 2, · · · , is defined by:

ri =
1

∆t
ln
(
Xi+1

Xi

)
.

The time interval ∆t is generally constant and equal to one time step and is thus ignored.

6.1.2 Statistics

This section briefly reviews some common descriptive statistics that will be used. A more de-

tailed coverage can be found in Hamilton (1994). For illustration, the South African (SA) monthly

Consumer Price Index (CPI) data between January 1965 and March 2008 (Figure 6.4(b)) is used.

Monthly SA CPI between January 1960 and December 1964 were mostly constant over periods of

at least six months and thus ignored because they do not provide any “useful” information for the

study.

Definition 6.1 (Mean). The (sample) mean or first moment of X is defined by

E[X] =
∑
i

xipX(xi),

where (xi)i∈I is the set of attainable values by X with I ⊂ N.

From here on, µ represents the mean of the distribution X.

Example 4. The sample mean of South African (SA) Consumer Price Index (CPI) monthly log

return between January 1965 and March 2008 is 0.74% which is rather low given that it is monthly

and South Africa’s target for monthly CPIX1 is about 0.8666%− 1.7321%, i.e. 3%− 6% annually.

Definition 6.2 (Variance). The (sample) variance or central second moment of X is defined by

V ar(X) = E[(X − µ)2] =
∑
i

(xi − µ)2pX(xi),

1See Subsection 6.1.9 for a definition.
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where (xi)i∈I is the set of attainable values by X with I ⊂ N.

The variance is characterized by

V ar(X) = E[X2]− (E[X])2

where E[X2] =
∑
i

x2
i pX(xi) is the second non-central moment of X.

The variance and its square root, the standard deviation or volatility, are measures of the uncertainty

of the return of a specific factor. In the market, a period of relatively low (resp. high) risk is generally

followed by periods of relatively low (resp. high) risk. This phenomenon is referred to as volatility

clustering [59].

From here on, σ represents the standard deviation of the distribution X.

Example 5. The standard deviation of SA CPI log returns over the period from January 1965 to

March 2008 is 0.70% which is only 4 basis points (bp) less than its mean. This can be explained by

the rather low average and the high volatility of the earliest CPI (Figure 6.4(b)). Unfortunately the

small amount of data (all recorded SA CPI) prevent the exclusion of the earliest data sample.

Definition 6.3 (Skewness). The (sample) skewness is a measure of the asymmetry of a distribution

with respect to (in short w.r.t.) its mean. It is defined by

S(X) =
E[(X − µ)3]

σ3
.

Note that for a normal distribution the skewness is zero. A distribution with positive skewness (right

skewed) has a fatter right tail, i.e. it is more likely to have its values above the mean value than

below. Likewise, a distribution with negative skewness (left skewed) has a fatter left tail, i.e. it is

more likely to have its values below the mean value than above.

Example 6. The skewness of the SA CPI log returns is 0.9163. Therefore, the CPI is asymmetric

(i.e. non-normal) and has mass concentrated on the right.

Definition 6.4 (Kurtosis). The (sample) Kurtosis is a measure of the peakedness (i.e. tail behavior)

of a distribution. It is defined by

K(X) =
E[(X − µ)4]

σ4
.

A normal distribution has a kurtosis of 3. A distribution with kurtosis greater than 3 is said to

have “fat tails” or to be leptokurtic, i.e. it is more peaked than a Gaussian around the mean. A

distribution with kurtosis less than 3 is said to be platykurtic.
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Some programs return the excess kurtosis which is the kurtosis minus 3 instead of the kurtosis.

Example 7. The kurtosis of the SA CPI log returns is 4.5877 > 3. Hence the log return innovations’

density function is more peaked than the normal density function.

A financial time series can be viewed as a sequence of random observations. This random sequence,

or stochastic process, may exhibit some degree of correlation from one observation to the next. This

correlation structure can be used to predict future values of the process based on past observations.

Exploiting the correlation structure, if any, allows the decomposition of the time series into a de-

terministic component (i.e. the forecast), and a random component (i.e. the error, or uncertainty,

associated with the forecast). Autocorrelation and partial autocorrelation are important tools for

studying stationary time series such as simple autoregressive (AR) models, moving-average (MA)

models, autoregressive moving-average (ARMA) models and seasonal models [59].

Definition 6.5 (Autocorrelation). The autocorrelation function (ACF) is a measure of cross-

dependence of a distribution with itself given a time lag. It is useful to find repeating patterns

in a distribution. The jth (sample) autocorrelation of the distribution X is defined by

ρj =
Cov(Xi, Xi+j)√
V ar(Xi)V ar(Xi+j)

,

where

Cov(X,Y ) = E[(X − µx)(Y − µy)]

represents the (sample) covariance of the distributions X and Y ; with µx (resp. µy) the average of

X (resp. Y ).

Example 8. Figures 6.1 show that the South African CPI log returns and its square are slightly

autocorrelated. The highest correlation (at lag 12) is due to annual seasonality of the CPI. This

translates to the fact that during festive periods (Christmas, end of year, etc) prices tend to increase

because of the higher demand; and (most of) agriculture follow an annual cycle and thus the prices

of related goods is seasonal, this annual seasonality is not surprising. Moreover, it is present in

most (if not all) CPIs worldwide. Notice the similar distribution of the spikes (of log returns) for

the subsets {1, 2, 3}, {4, 5, 6} and {10, 11, 12}. The spikes at lag 1, 4 and 10 (resp. 2, 5 and 11) are

almost (resp. perfectly) identical. The spike at lag 12 is surely greater than those at lags 3 and 6

just because of the annual seasonality. Strangely enough, log returns are more correlated than their

square this might be due to the small size of data.
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(a) Log returns (b) Squared returns

Figure 6.1 Monthly SA CPI correlograms.

Definition 6.6 (Partial autocorrelation). The partial autocorrelation function (PACF) is a mea-

sure of the conditional cross-dependence of a distribution with itself given a time lag. The PACF

removes the effect of shorter lag autocorrelation from the correlation estimate at longer lags. The

mth (sample) partial autocorrelation of the distribution X is defined by

ϕm,m =

ρm −
m−1∑
j=1

ϕm−1,jρm−1

1−
m−1∑
j=1

ϕm−1,jρj

,

where ρj is the autocorrelation with a time lag of j.

(a) Log returns (b) Squared returns

Figure 6.2 Monthly SA CPI partial correlograms.
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Example 9. In Figure 6.2, as expected the monthly SA CPI partial correlograms’ spikes are below

that of the correlograms. The log returns autocorrelation spikes are only maintained at lags 1,

2, 3, 5 and 6; meaning that the remaining higher-order autocorrelations are due to these initial

autocorrelations. Hence, when forecasting monthly CPI, it is not “necessary” to use data beyond

a year from the prediction date. This is a common and successful practise in the South African

market. However, this should only give “good” results for a year or less forecast. For a longer period

forecast and a more accurate forecasting framework, Lévy distributions should be used. Recall that

the normal distribution is a particular case of a Lévy distribution, a generalisation of the standard

forecast will thus be obtained by using Lévy processes.

The autocorrelations at lags 1 and 5 are “quite” small and can be ignored. Between the raw squared

returns ACF and PACF, the only significant autocorrelation maintained is the one at lag 12. This

corresponds to a year periodicity, i.e. the CPI seasonality. The non-existence of a high autocorre-

lation in the squared innovations might be due to data sparsity (granularity and size). This issue is

“solved” later by increasing the data size (See Subsection 6.1.6).

6.1.3 Hypothesis Tests

A hypothesis test is a procedure used to check if a certain criterion is satisfied by a given sample

distribution. This study conducts two families of hypothesis tests:

(i) Normality tests: Jarque-Bera test, Kolmogorov-Smirnov test, the Pearson’s Chi-squared test,

Normal Probability Plots and Quantile-Quantile Plots;

(ii) Heteroscedasticity tests: Ljung-Box-Pierce Q-test and Engle’s ARCH test.

Normality tests investigate if a sample data comes from a normal distribution. While heteroscedas-

ticity (i.e. ARCH/GARCH effects) tests investigate if the sample data’s variance is non-constant

(i.e. time varying). Heteroscedasticity tests are commonly used to quantify the correlation in a

sample data. Here is a brief description of the selected hypothesis tests.

Jarque-Bera test

The Jarque-Bera (JB) test examines whether a specific distribution is normal or not. The JB-value

is calculated as:

JB(X) =
n− l

6

{
S2(X) +

[K(X)− 3]2

4

}
,
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where n is the number of observations, S(·) the skewness function, K(·) the kurtosis function and l is

the number of estimated parameters. The intuition behind this test is that the larger the JB-value

is, the lower the probability is that the given series is drawn from a normal distribution. For large

sample size, the test statistic of the Jarque-Bera test is χ2-distributed with 2 degrees of freedom

under the null hypothesis that the series is normally distributed.

Example 10. The Jarque-Bera test of the monthly SA CPI log returns yields h = 1, p = 10−3. In

fact the p-value is less than 10−3, which is the smallest value returned by the Matlab function jbtest.

The p-value is below the default significance level of 5%, and the test rejects the null hypothesis that

the distribution is normal.

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) test is a goodness of fit test used to determine whether two underlying

one-dimensional probability distributions differ, or whether an underlying probability distribution

differs from a hypothesized distribution, in either case based on finite samples.

The one-sample KS test compares the empirical distribution function with the cumulative distri-

bution function specified by the null hypothesis. The main applications are testing goodness of fit

with the normal and uniform distributions. For normality testing, minor improvements made by

Lilliefors lead to the Lilliefors test. This test is sensitive to differences in both location and shape

of the empirical cumulative distribution functions of the two distributions.

The Anderson-Darling (AD) [99] is another modification of the KS test. It gives more weight to the

tails than does the KS test. Contrary to the KS test, the AD test’s critical values are functions of

the specific distribution being tested. This implies a more sensitive test, but critical values have to

be computed for each distribution.

Example 11. The Kolmogorov-Smirnov test of monthly SA CPI log returns yields h = 1, p =

4.5267·10−112 ≈ 0, k = 0.4970 and c = 0.0595 where k (resp. c) is the test statistic, i.e. the maximum

difference between the cumulative distribution functions (resp. the cutoff value for determining if

k is significant). Since h = 1, the test rejects the null hypothesis that the values come from a

normal distribution at the 5% significance level. A look at the Kolmogorov-Smirnov test in Figure

6.3 confirms the unsuitability of the normal distribution.

Henceforth, p-value as small as the previous will be assimilated to 0.

The Lilliefors test returns h = 1 and p = 0. This test also rejects the normality of the monthly SA
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Figure 6.3 SA CPI raw returns Kolmogorov-Smirnov test.

CPI log returns. The AD test also reject the normality of the monthly SA CPI log returns.

The Chi-squared Test

The χ2 test has as null hypothesis that the provided data comes from a specified distribution with

unknown parameters. If the considered distribution is a normal distribution, then the null hypothesis

is that the data sample is from a normal distribution with unknown mean and standard variance,

which are estimated from the sample data. The test counts the number of sample points falling into

certain intervals (referred to as bins) and compares these counts with the expected number in these

intervals under the null hypothesis. The χ2 statistic is given by

χ2 =
∑
i

(Oi − Ei)2

Ei
,

where Oi and Ei are respectively the observed and expected counts.

Normal Probability Plot

A normal probability plot (See Figure 6.11(a)) is a useful graph for assessing that a data sample comes

from a normal distribution. Many statistical procedures make the assumption that the underlying
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distribution of the data is normal, so this plot can provide some assurance that the assumption of

normality is not being violated, or provide an early warning of a problem.

Quantile-Quantile Plot

A quantile-quantile plot (See Figure 6.11(b)) is useful for determining whether two samples come

from the same distribution (the distribution can be normal or not).

Even though the parameters and sample sizes are different, the straight line relationship shows that

the two samples come from a similar kind of distribution. The set consisting of numerous pluses is

the quantiles of each sample. By default the number of pluses is the number of data values in the

smaller sample. The solid line joins the 25th and 75th percentiles of the samples. The dashed line

extends the solid line to the extent of the sample.

Ljung-Box-Pierce Q-test

The Ljung-Box-Pierce (LBP) Q-test is performed to test jointly whether several autocorrelations of

data series are significant or not. The LBP Q-value is calculated by:

Qk = n(n+ 2)
k∑
i=1

ρ2
i

n− i
,

where n is the sample size, k is the number of lags and ρi the ith autocorrelation. If Qk is large then

the probability that the process has uncorrelated data decreases. The null hypothesis for the test is

that there exists no correlation and under that hypothesis, Qk is χ2-distributed with k degrees of

freedom.

Example 12. The Ljung-Box-Pierce Q-test estimate of the autocorrelation present in the raw and

squared SA CPI returns when tested for up to 10, 15, and 20 lags at 0.05 level of significance gives

Raw return Squared Raw return

Lag H p Stat Crit H p Stat Crit

10 1 0 193.7546 18.3070 0 0.7479 6.7599 18.3070

15 1 0 321.7936 24.9958 1 0 65.5773 24.9958

20 1 0 405.1546 31.4104 1 0 69.8175 31.4104

Table 6.1 Ljung-Box-Pierce Q-test for SA CPI raw and squared returns.
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The column “Stat” (resp. “Crit”) is the vector of Q-statistics for each lag (resp. the vector of critical

values of the χ2 distribution for comparison with the corresponding element of “Stat”).

The correlation in the squared of raw returns translates the existing volatility clustering that will be

captured by the GARCH(1, 1) filter presented in Section 6.1.5.

Engle’s ARCH Tests

It is fairly easy to test whether the residuals from a regression have conditional heteroskedasticity

or not. The test is based on Ordinary Least Squares (OLS) regression, where the OLS residuals

ût from the regression are saved. The process û2
t is thereafter regressed on a constant and its own

m-lagged values. This is done for all samples t = 1, 2, · · · , n. This regression has a corresponding

R2-value. The distribution nR2 is then asymptotically χ2-distributed with m degrees of freedom

under the null hypothesis that ût is i.i.d. N (0, σ2) [50].

This ARCH-test can also be performed as a test for GARCH-effects. The ARCH-test for lag (p+ q)

is locally equivalent to a test for GARCH effects with lags (p; q). (MathWorks 2007)

The null hypothesis, H0, is that no ARCH effects exist.

Example 13. The Engle’s ARCH test (Table 6.2) confirms the existence of autocorrelation and

GARCH effects only for time lags of 15 and 20.

Raw return Squared Raw return

Lag H p Stat Crit H p Stat Crit

10 0 0.8166 5.9839 18.3070 0 1 0.5681 18.3070

15 1 0 56.4319 24.9958 1 0 48.8665 24.9958

20 1 0 59.2076 31.4104 1 0.0004 48.4818 31.4104

Table 6.2 Engle’s ARCH test results for SA CPI raw and squared returns.

6.1.4 Goodness of Fit

This section fits a wide variety of distributions to the empirical distribution of a data sample. To

evaluate the performance of each distribution, multiple goodness of fit assessment measures are also

used. The latter can be divided in two majors groups; visual assessment and quantitative assessment.
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The visual assessment indicators are the normal probability plots and quantile-quantile plots that

have already been introduced.

Similarly, most of the quantitative assessment indicators have already been presented. These are

Kolmogorov-Smirnov test, the Pearson’s Chi-squared test, which are not only restricted to the test

of normality. The log-likelihood estimate is a common measure generally associated to the maximum

likelihood estimator which is described in Section 6.2.1.

The Akaike information criterion (AIC) that comes with the ghyp package of R is also used. These

goodness-of-fit test will be used after the parameter estimation for the Lévy distributions in Sub-

section 6.1.7.

6.1.5 Data Filtering

The hypothesis of independent price returns is extremely important in financial modelling. So is

the time varying volatility which can be reproduced by Lévy models. To reinforce the observed

volatility clustering, a GARCH filter first captures the persistence in the volatility. Moreover,

McNeil et al [80] argued that a GARCH(1, 1) model with Student t innovations is enough to remove

the dependence in return series. This approach is used here to render the return series “more”

independent and identically distributed (i.i.d.). In this study, GARCH(1, 1) filters with normal and

student-t innovations are considered.

GARCH model

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) is a generalization of the

ordinary ARCH-model. The model structure was introduced by Bollerslev [22]. The generalization

with respect to ARCH model is similar to the extension of an AR(p) to an ARMA(p, q).

The intuitive introduction to GARCH models presented here is similar to that done by John Hull

in [69]. GARCH models are generally used to reproduce and forecast volatility and correlation. As

mentioned previously, the standard deviation σt or its square is a convenient measure of risk. The

continuously compounded interest rate yt of the asset price represented by Xt is defined by

yi = ln
(

Xi

Xi−1

)
.

In this section σi denotes the standard deviation of the rate yi at time i∆t. An estimate of σi using
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the m most recent observations is

σ2
i =

1
m− 1

m∑
j=1

(yi−j − ȳ)2
, (6.1)

where ȳ denotes the average of yi for i ∈ [i−m, i− 1]:

ȳ =
1
m

m∑
j=1

yi−j .

From Equation (6.1), the following approximations are made

(i) the rate yi is defined as the percentage change between time (i− 1)∆t and i∆t:

yi =
Xi −Xi−1

Xi−1
; (6.2)

(ii) the average ȳ is considered to be zero;

(iii) the denominator m− 1 is replaced by m.

These changes simplify the variance formula to

σ2
i =

1
m

m∑
j=1

y2
i−j ,

where yi is given by Equation (6.2). Moreover, they do not affect the variance estimates much.

However, the previous equation gives the same weight to all the used observations; because of

volatility clustering it is more reasonable to give higher weights to recent observations. This yields

σ2
i =

m∑
j=1

αjy
2
i−j ,

with
m∑
j=1

αj = 1. The weights are all positive and αj < αk for j > k translates the fact that less

weight is given to older observations.

Under the further assumption that there is a long-run average rate yL which should be given a

weight,

σ2
i = γyL +

m∑
j=1

αjy
2
i−j or

σ2
i = ω +

m∑
j=1

αjy
2
i−j ,

with ω = γyL and γ +
m∑
j=1

αj = 1.
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The latter model is known as an ARCH(m) model. A GARCH(m,n) model extends the ARCH(m)

model, by assuming that σi is not only a function of the long-run average rate and the last m

observed rates, but also of the last n variances. The model is defined by

σ2
i = γyL +

m∑
j=1

αjy
2
i−j +

n∑
j=1

βjσ
2
i−j or

σ2
i = ω +

m∑
j=1

αjy
2
i−j +

n∑
j=1

βjσ
2
i−j ,

with ω = γyL and γ +
m∑
j=1

αj +
n∑
j=1

βj = 1.

GARCH (1, 1)

In the case where m = n = 1, the model reduces to

σ2
i = γyL + αy2

i−1 + βσ2
i−1 or

σ2
i = ω + αy2

i−1 + βσ2
i−1,

with ω = γyL and γ + α+ β = 1.

When estimating the parameters, ω, α and β are first evaluated and γ deduced as 1 − α − β. A

stable GARCH(1, 1) model requires α + β < 1 for γ to be positive. Note that this model is mean

reverting since it assumes that the variance rate is always pulled back to the long-run average.

Parameter estimation

The GARCH(1, 1) filter is not directly applied to the log returns, but to the intermediate distribution

r̂i =
ri − r̄√
V ar(r)

. (6.3)

This distribution has an average of zero which agrees with the approximation (ii) made when building

the GARCH model. After the GARCH(1, 1) parameters for r̂i are estimated, the filtered interest

rate is obtained from the model generated r̂i through Equation (6.3).

Example 14. The presence of heteroscedasticity (GARCH effects), shown in the previous analysis,

indicates that GARCH modelling is appropriate. The Matlab function garchfit is used with Student t

innovations to estimate the GARCH(1, 1) parameters. After 19 iterations, the monthly SA CPI from

January 1965 to 2008 gives the following parameters: C = −0.095175, K = 0.010126, GARCH(1) =
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0.94397 and ARCH(1) = 0.045577. Hence, the constant conditional mean/GARCH(1, 1) conditional

variance model that best fits the observed data is

r̂t = −0.095175 + εt

σ̂2
t = 0.010126 + 0.94397 · σ̂2

t−1 + 0.045577 · ε2
t−1,

where σ̂t is the standard deviation of r̂t and εt represents the student t innovations.

(a) CPI (b) Log returns

Figure 6.4 Filtered vs raw SA CPI data series.

Figures 6.4 give plots of the raw vs filtered simulations for respectively the SA CPI and its log

return. The filtered data has kept the general behaviour of the initial data without the unwanted

trend at the beginning of the log returns.

(a) Log returns (b) Squared returns

Figure 6.5 Filtered monthly SA CPI correlograms.
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(a) Log returns (b) Squared returns

Figure 6.6 Filtered monthly SA CPI partial correlograms.

Figures 6.5 and 6.6 show that the ACF and PACF of both the filtered log return series of SA CPI and

its square have little serial correlation, thus the GARCH filter is “good”. Recall that by definition

the increments of Lévy distributions are independent, i.e. not correlated. Therefore, this filtered

series is better suited for Lévy distributions’ parameter estimation than the initial series.

6.1.6 Increasing the data size

A “good” empirical study, generally requires a large data sample for many reasons. Firstly, the

parameter estimation for most of the models used in this empirical study needs such a dataset. For

example, it is advised on the Willmot forum to have at least 700 to 800 data points in the empirical

series for a GARCH(1, 1) model fitting. Secondly, the bigger the sample data, the smoother the

QQ-plots and density plots obtained, which will be used to assess the distributions’ goodness of fit.

Thirdly, because there are a lot of data points, there is no need to run multiple simulations as is

commonly done with Monte Carlo simulations. However, for most of our South African data, the

available dataset has less than 700 elements. To remedy to this, two alternatives are considered:

(i) Linear interpolation is used to get a daily dataset from the monthly dataset. This is a common

practice when dealing with CPI or CPIX, therefore the obtained results are still relevant.

(ii) The GARCH(1, 1) filter is used to increase the size of the data. This is done in two steps:

first parameters of the GARCH model are estimated; then when generating the filtered data,

a bigger dataset is generated.
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With the two approaches, there is no added information in the filtered dataset. The first method

will only use the most recent information (CPI over the last 4 years for example), thus ignoring old

data whose behaviour is less likely to be related to today’s data behaviour. This is particularly true

for SA who is having high CPI hikes nowadays against almost constant CPI in 1965. In general,

the bigger the time span of the data, the more different the initial and final sub-data’s behaviour

are. One inconvenience of this approach, is that the change of granularity of data through linear

interpolation might generate more (positive) correlation.

The second approach focuses on maintaining general volatility behaviour of the dataset. But given

the small size of the data, the GARCH model used to increase the data’s size is not that “well”

fitted to the initial data. Therefore, the forecast (i.e. added data points) might tamper with the

results. However, because the primary goal of IL securities is to protect against inflation risk, it

seems reasonable to give priority to reproducing the inflation’s volatility.

Daily South African CPI

The descriptive statistics of the daily SA CPI between January 2005 (in fact the 31st December

2004 for interpolation purpose) and March 2008 are provided in Table 6.8. In total the data has

1187 data points. The SA CPI went from being more peaked than the normal density function for

the monthly dataset to less peaked than the normal density function. The daily dataset is also more

symmetric than its monthly counterpart. These changes suggest that assuming normal distribution

should give better results with the daily CPI as compared to monthly CPI.

As expected the only major change in the autocorrelation’s spikes compared to the monthly SA CPI

is the appearance of spikes at lags 1 − 30. These are due to the linear interpolation performed in

between the monthly (i.e. 30 days on average) CPI to get the daily CPI. The spikes for the monthly

lags should not have change much compared to Figures 6.1 and 6.2.

For daily CPI, the GARCH filter also successfully reduces data autocorrelation (See Figure 6.8).

The flat levels observed for the raw log returns in Figure 6.9(b) are due to the linear interpolation

(i.e. almost constant return over a month). The filtered simulations have a “quasi” zero volatility;

this is more obvious when looking at the simulated CPI (Figure 6.9(a)). The simulated daily SA

CPI are “perfectly” superposed and linear, thus the CPI is “fully” deterministic which is not wanted

in the model. Taking a bigger sample size (back up to 2001, i.e. 2648 data points) did not solve the

problem of linearity and non-zero volatility; however increasing the granularity of the data (weekly
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(a) Log returns ACF (b) Squared returns ACF

(c) Log returns PACF (d) Squared returns PACF

Figure 6.7 Daily SA CPI (partial) correlograms.

instead of daily) might reduce the effect of the linear interpolation. Taking weekly data should

preserve some of the volatility and increase the data size following common market practise.

The previous GARCH filter is using normal innovations instead of student-t innovations. As can

be seen in Figure 6.10, when using student-t innovations, the log returns are “almost” constant, i.e.

zero volatility. The fact that the daily CPI is deterministic is more true with student-t innovations

than with normal innovations. In the former case, it suffices to estimate the “constant” log return to

be able to forecast CPI. However, the observed log return of the CPI on the market is not constant.
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(a) Log returns ACF (b) Squared returns ACF

(c) Log returns PACF (d) Squared returns PACF

Figure 6.8 Daily filtered SA CPI (partial) correlograms.

(a) Raw vs Filtered CPI (b) Raw vs Filtered CPI log return

Figure 6.9 Daily raw vs filtered SA CPI (normal innovations).
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(a) Raw vs Filtered CPI (b) Raw vs Filtered CPI log return

Figure 6.10 Daily raw vs filtered SA CPI (student-t innovqtions).

6.1.7 Lévy Distributions’ Parameter Estimation

The calibration assumes that the Lévy characteristic triplet is not time dependent, i.e. α(t), β(t) and

γ(t) are constants over time. Under this assumption, for 1-dimensional processes, there is a single

risk neutral measure and thus a unique fair price for IL derivatives just as in the Black-Scholes pricing

theory [47]. The parameter estimation of all Lévy distributions was performed using the maximum

likelihood parameter estimation under R with the package ghyp. Parameters are estimated both for

the daily and the monthly South African consumer price index.

Monthly SA CPI

Figure 6.11 shows the empirical against the normal density functions of monthly SA CPI log returns

with the corresponding QQ plot. The sample normal data is generated from a normal distribution

with same mean and standard deviation as the empirical distribution. The plots indicates that

the normality assumption is “highly” questionable for monthly SA CPI log returns. The normal

distribution does not reproduce the peakedness of the market around its mean (Figure 6.11(a)),

neither does it match the upper and lower tails behaviour (Figure 6.11(b)). The fit with the lower

tail is worse than that with the upper tail and the peaks of the normality plots are not vertically

aligned. If normal innovations were used in the GARCH filter instead, then a better fit to the

empirical data is obtained (see Appendix A.1.1). In summary, the empirical density function is

taller than the corresponding normal density function, its peak is more to the left; however their

support is “quite” similar.
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(a) Probability plot (b) QQ plot

Figure 6.11 Monthly SA CPI probability and QQ plots: Empirical vs normal.

(a) Probability plot (b) QQ plot

Figure 6.12 Monthly SA CPI probability plots: Empirical vs Lévy.
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The normal density and QQ plots’ fit with Lévy distributions (Figures 6.12 and A.3) is in general

better than under the normality assumption. Despite the fact that the parameter estimation did

not converge for the GH and Student-t distributions, all the Lévy distributions did better than

the normal distribution is reproducing the empirical peakedness. The VG distribution has the

best performances in matching the empirical peak. However, it is not the best in reproducing the

empirical tail behaviour. With respect to the latter, the best fit is under the assumption of NIG

distribution. To accurately model the monthly SA CPI, the appropriate distribution in this case is

either the VG or the NIG distribution according to what is believed to be more important.

The Lévy distributions parameters for the SA CPI log returns are given in Table 6.3. Notice that

all the distributions agree on the “high” asymmetry (i.e. non-normality) since beta is non-zero.

They also agree on the value of the location parameter µ. Recall that the Student-t distribution

calibration did not converge, the corresponding results can thus be ignored.

Model α β δ(×105) µ λ LLH

NIG 32.01031 −24.13984 0.22725 22724.94 −0.5 773.7516

H 13.86566 −8.11529 3.31747 0.13085 1 803.5996

GH 15.04463 −8.36209 18.18795 0.13220 1.21520 806.6979

VG 15.04654 −8.35547 0 0.13224 1.21616 806.7002

Sk.Std. 1347687 −1347687 46.93758 0.70584 −22.10530 771.4530

Table 6.3 Monthly SA CPI Lévy distributions’ estimated parameters.

The AIC model selection returns the VG model as having the best fit to the empirical data among

all distributions (normal included). Unfortunately the KS test and Chi-squared goodness of fit test

available under Matlab (resp. kstest and chi2gof ) do not allow a two-samples goodness of fit test.

The corresponding functions under R (resp. ks.test and chisq.test) do perform a two samples plot,

but they keep returning a warning when performing the test. The Wafo [108] library for Matlab

was used instead for the Chi-squared goodness of fit test which is better suited than the KS test in

this settings. The results of the test are presented in Table 6.9. All the distributions have the same

p-value; the test was not decisive. Recall that the larger the p-value, the better the fit. However,

the smallest test value is obtained with the hyperbolic distribution, not the VG. This is not that

relevant since both distributions have the same p-value.
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Daily SA CPI

Because of the linearity of filtered daily SA CPI and their non-zero volatility, some will judge the

Lévy distributions’ parameter estimation useless. In fact, if the filtered SA CPI is linear, then a

“good” characteristic of its evolution is its slope. However, the parameter estimation might provide

a better insight into the evolution process.

Since the probability density function of the filtered daily SA CPI between 2005 and 2008 is not

“well behaved” (see the red and solid line in Figure 6.13(a)), the daily SA CPI is extended from

2001 to 2008. Contrary to the filtered daily SA CPI, the raw daily CPI is volatile, therefore it might

also be useful to estimate the Lévy distributions’ parameter estimation for the raw data.

(a) Empirical vs Normal (b) Empirical vs Lévy

Figure 6.13 Filtered daily SA CPI 2005− 2008 probability plots.

Even when the sample data is not well behaved as with the daily CPI, the fit with Lévy distributions

proves to be better than that achieved under the normality assumption. When performing model

calibration, monthly CPI will be preferred to daily CPI because of their previous behaviour. The

daily CPI will be obtained by interpolation as is the convention in the market.
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(a) Probability plot (b) QQ plot

Figure 6.14 Filtered daily SA CPI probability and QQ plots: Empirical vs normal.

(a) Probability plot (b) QQ plot

Figure 6.15 Filtered daily SA CPI probability plots: Empirical vs Lévy.
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6.1.8 Forward rates

The parameter estimation of the term structure is substantially more difficult than in the case of

macroeconomic factors. The difficulty is due to the fact that a number of different assets (in theory

an infinite number) are driven by only “one” process. Therefore, to extract the parameters of the

(unique) driving process from the assets (in this case log returns of “zero coupon” bond prices or

discount factors) is not straightforward.

For the real world study, the approach for Lévy forward rate model proposed by Eberlein and

Wolfgang [43] is used to deduce the unique Lévy driving process from market zero coupon bonds.

The methodology is first presented before providing the results obtained.

The initial assumptions and notations used in this subsection were introduced in Section 3.1. Con-

sidering the logarithm of the ratio between the bond price and its forward price on the day before,

i.e.

LRi(t, T ) = ln
pi(t+ 1; t+ T )
pi(t, t+ 1, t+ T )

,

for i = n, r, where the subscript n (resp. r) stands for nominal (resp. real). The forward price of

pi(t+ 1; t+ T ) at time t is

pi(t, t+ 1, t+ T ) =
pi(t, t+ T )
pi(t, t+ 1)

.

The variable LRi(t− 1, t) denotes the daily log return. Using Equation (3.21)

ln pi(t, T ) = ln pi(0, T )− ln pi(0, t)−
∫ t

0

Ai(s, t, T )ds+
∫ t

0

Σi(s, t, T )dLs.

Therefore

LRi(t, T ) = ln pi(t+ 1, t+ T )− ln pi(t, t+ T ) + ln pi(t, t+ 1)

= ln pi(0, t+ T )− ln pi(0, t+ 1)−
∫ t+1

0

Ai(s, t+ 1, t+ T )ds+
∫ t+1

0

Σi(s, t+ 1, t+ T )dLs

− ln pi(0, t+ T ) + ln pi(0, t) +
∫ t

0

Ai(s, t, t+ T )ds−
∫ t

0

Σi(s, t, t+ T )dLs

+ ln pi(0, t+ 1)− ln pi(0, t)−
∫ t

0

Ai(s, t, t+ 1)ds+
∫ t

0

Σi(s, t, t+ 1)dLs

= −
∫ t+1

0

Ai(s, t+ 1, t+ T )ds+
∫ t

0

Ai(s, t, t+ T )ds−
∫ t

0

Ai(s, t, t+ 1)ds

+
∫ t+1

0

Σi(s, t+ 1, t+ T )dLs −
∫ t

0

Σi(s, t, t+ T )dLs +
∫ t

0

Σi(s, t, t+ 1)dLs
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LRi(t, T ) = −
∫ t+1

0

Ai(s, t+ T )ds+
∫ t+1

0

Ai(s, t+ 1)ds+
∫ t

0

Ai(s, t+ T )ds

−
∫ t

0

Ai(s, t)ds−
∫ t

0

Ai(s, t+ 1)ds+
∫ t

0

Ai(s, t)ds

+
∫ t+1

0

Σi(s, t+ T )dLs −
∫ t+1

0

Σi(s, t+ 1)dLs −
∫ t

0

Σi(s, t+ T )dLs

+
∫ t

0

Σi(s, t)dLs +
∫ t

0

Σi(s, t+ 1)dLs −
∫ t

0

Σi(s, t)dLs

= −
∫ t+1

0

Ai(s, t+ T )ds+
∫ t+1

0

Ai(s, t+ 1)ds+
∫ t

0

Ai(s, t+ T )ds−
∫ t

0

Ai(s, t+ 1)ds

+
∫ t+1

0

Σi(s, t+ T )dLs −
∫ t+1

0

Σi(s, t+ 1)dLs −
∫ t

0

Σi(s, t+ T )dLs +
∫ t

0

Σi(s, t+ 1)dLs

= −
∫ t+1

t

Ai(s, t+ T )ds+
∫ t+1

t

Ai(s, t+ 1)ds+
∫ t+1

t

Σi(s, t+ T )dLs −
∫ t+1

t

Σi(s, t+ 1)dLs

= −
∫ t+1

t

Ai(s, t+ 1, t+ T )ds+
∫ t+1

t

Σi(s, t+ 1, t+ T )dLs.

The next “stationarity” assumptions allows to get rid of the cumbersome integrals.

Assumption 14. (i) The volatility structure is stationary, i.e. Σi(s, T ) depends only on (T − s)

for s < T .

(ii) Similarly, the drift term satisfy some stationarity condition, namely

A(s, T ) = A(0, T − s) for s < T.

Note that the second assumptions follows from the first assumption and Equation (3.23). It yields

−
∫ t+1

t

Ai(s, t+ 1, t+ T )ds = −
∫ 1

0

Ai(s, 1, T )ds := f(T ),

where “:=” means “denoted by” and is used to define the function f which is independent of t.

For the second integral, let’s consider the Ho-Lee volatility structure, i.e. Σi(s, T ) = σi × (T − s)

for constants σi, which will be set equal to one henceforth without loss of generality. The second

integral becomes∫ t+1

t

Σi(s, t+ 1, t+ T )dLs =
∫ t+1

t

Σi(s, t+ T )dLs −
∫ t+1

t

Σi(s, t+ 1)dLs

= (t+ T − s)
∫ t+1

t

dLs − (t+ 1− s)
∫ t+1

t

dLs

= (T − 1)
∫ t+1

t

dLs = (T − 1)(Lt+1 − Lt)

Hence

LRi(t, T ) = f(T ) + (T − 1)Yt+1 (6.4)
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where Yt+1 = Lt+1 − Lt ∼ L1 is Ft+1 measurable and does not depend on T .

Let D (resp. T) denote the set of days (resp. set of bonds’ maturity in years) for which data is

available. Considering d ∈ D and n ∈ T, the daily log returns are determined by

LR(d, d+ n) = lnB(d+ 1, d+ n) + ln
B(d, d+ 1)
B(d, d+ n)

.

Since B(d, d+ 1) and B(d+ 1, d+ n) are not provided (in the initial discount factors), the negative

of the logarithm of the bond prices is interpolated with a cubic spline to get those. That is because

bond prices decrease exponentially with the time to maturity, thus linear interpolation will generate

errors. On the other hand, the negative of the logarithm of the bond prices is linear in the time

to maturity for constant interest rates, therefore linear interpolation will introduce less error. The

transformation, then the interpolation, are conducted for each considered day (i.e. d ∈ D) separately.

For the South African nominal yield curve, daily market coupon bearing bonds between the 31st July

2000 and the 30th May 2008 (i.e. 1953 trading days) were initially used for computation. Hermite

polynomials were applied on the interest rates to get zero coupon interest rates with maturities

ranging from one to thirty years in steps of one year. This dataset was generously provided by

Nicolette Roussos from Standard Bank, South Africa.

Zero coupon interest rates at maturities 1, 3, 6 and 9 month(s) were also provided, but not used for

the calibration process. However, the discount factor of one for the zero year maturity was included

for the calibration. The short term (i.e. less than a year) interest rates were surely computed

from the money market (i.e. JIBAR and other) which is quite different from the bonds market.

Furthermore, the concern here, inflation, is more in the long term than in the short term. Figure

6.16(a) (resp. 6.16(b)) gives the South African nominal yield curve (resp. interpolated negative log

bond price) on the 30th May 2008.

Taking the expectation of Equation (6.4) gives

E[LRi(t, T )] = f(T ),

since E[L1] = 0. Therefore

LRi(t, T )− E[LRi(t, T )] = (T − 1)Yt+1.

Recall that Yt+1 for t ∈ D are independent and equal to L1 in distribution, thus the last equation

means that the centred log returns are affine linear in T .
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(a) Yield curve (b) interpolated “-ln”

Figure 6.16 Nominal yield and interpolated “-ln” on the 30th May 2008.

For a fixed n ∈ T, the sample value yd+1 corresponding to Yd+1 should be computed as

yd+1 =
LR(d, d+ n)− xn

n− 1
,

where

xn =
1
|D|
∑

D
LR(d, d+ n).

However, since the centred log returns are not exactly linear in n (See Figure 6.17), the sample

values yd+1 will depend on n. This is not the case of L1 which does not depend on the bonds’

maturity. Thus, a different approach is used: a linear regression through the origin and with the

points [n − 1, LRi(d, d + n) − xn] for n ∈ T is performed. The value of yd+1 is the gradient of the

straight line. Recall that in the expression n− 1, n is in years while 1 is in days. Figure 6.18 gives

the estimated values of L1 between the 31st July 2000 and the 29th May 2008.

The linear regression is conducted under Matlab with the function polyfit. For the 29th May 2008,

the linear regression of the centred empirical daily log return return the following model:

y = −0.002458x+ 0.003171.

The linear regression’s slope estimation is performed for each of trading days (except the last), then

the gradient are used for the parameter estimation of L1. The procedure is similar to that of the

macroeconomic factors where the gradients replace the log returns.
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Figure 6.17 SA centred empirical daily return and regression line 29th May 2008.

Model α β δ (×105) µ(×105) λ LLH

NIG 621.6958 24.04922 64.19035 −2.46877 −0.5 10974.58

H 1499.659 35.21145 9.70121 −3.19967 1 10934.69

GH 25.52232 19.69284 102.9604 −2.32664 −1.46109 10994.66

VG 1388.358 36.26896 0 −3.36557 0.90868 10934.82

Sk.Std. 19.03043 19.03043 103.2756 −2.32732 −1.46824 10994.69

Table 6.4 Estimated parameters for empirical L1 for SA nominal forward rate.

The log likelihood estimate and the AIC return the student-t as the distribution (normal included)

having the best fit with the sample data.
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Figure 6.18 SA estimated L1 between the 31st July 2000 and the 29th May 2008.

(a) Probability plot (b) QQ Plot

Figure 6.19 Estimated L1: Empirical vs normal.
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(a) Density (b) Log Density

Figure 6.20 Estimated L1 probability plots: Empirical vs Lévy.
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6.1.9 South African data

Monthly and daily South African consumer price index have already been studied in details and

thus will not be mentioned again. The other South African data investigated are the CPIX and the

money supply aggregates. The SA CPIX is the SA CPI without interest rates on mortgage bonds; it

is generally used interchangeably with the SA CPI. The money supply aggregates have had different

roles in monetary policy as their reliability as guides has changed. They are mainly indicators of

the monetary structure and flow of a given country. Here is a brief description of the main money

supply aggregates in South Africa:

1. M0: Deposit of banks, mutual banks with the South African Reserve Bank (SARB) and notes

and coins outside the SARB and SA mint.

2. M1A: Coins and banknotes in circulation outside the monetary sector, cheque and transmission

deposit with banking institutions and post office savings bank.

3. M1: M1A plus other demand deposit with banking institutions.

4. M2: M1 plus other short term deposits, and all medium term deposits (including savings

deposits) with the monetary banking institutions.

5. M3: M2 plus all long term deposit with monetary banking institutions.

The following subsections present each of these data series more in details. Most of the corresponding

plots and parameter estimates are provided in Appendix A.

Consumer Price Index (CPIX)

The monthly South African Consumer Price Index Metropolitan and urban areas excluding interest

rates on mortgage bonds (CPIX) time series data is obtained from the South African Reserve Bank

[97]. The data is from January 1997 to February 2008 normalised at 100 in 2000, which is 134 data

points. That is not enough data points for a “good” statistical study; the GARCH filter will be used

to increase the number of data points. The data series code is KBP7113J and its unit R millions.

In Figure 6.21, the only positive autocorrelations in the CPIX are at three months intervals, most

before the 12th month. Given that the spikes at lags 3 and 9 are “quite” small, there might be a semi

annual cycle in the CPIX instead of a clear annual seasonality as for the SA CPI. This possibility is

reinforced by Figure 6.22(a), where the spike at lag 6 is higher than that at lag 12. This suggest that
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(a) Log returns (b) Squared returns

Figure 6.21 Monthly SA CPIX (1997-2008) correlograms.

most of the previous 12 months’ lag autocorrelation was due to the 6 months’ lag autocorrelation.

However, this remark is not true for the squared log returns where the PACF spike at lag 12 is

higher than that at lag 6.

(a) Log returns (b) Squared returns

Figure 6.22 Monthly SA CPIX (1997-2008) partial correlograms.

The LBP Q-test identifies GARCH effects only in the raw returns and not in their square. However,

the Engle’s ARCH test finds GARCH effects neither in the log returns nor their square. It is the

reverse LBP Q-test’s results (i.e. no GARCH effects in log returns and some GARCH effects in their

square) that is more appropriate for a GARCH model calibration. The Engle’s ARCH test output

just confirms the fact that the sample’s volatility does not vary “much” with time. Nevertheless,

Lévy distributions’ parameter estimation will be performed to compare their fit with that of the
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Raw return Squared Raw return

Lag H p Stat Crit H p Stat. Crit.

10 1 0 41.8128 18.3070 0 0.8504 5.5649 18.3070

15 1 0 76.9280 24.9958 0 0.8661 9.2125 24.9958

20 1 0 104.7414 31.4104 0 0.8752 13.0499 31.4104

Table 6.5 Ljung-Box-Pierce Q-test for SA Monthly CPIX (1997-2008) raw and squared
returns.

Raw return Squared Raw return

Lag H p Stat Crit H p Stat. Crit.

10 0 0.7774 6.4354 18.3070 0 0.9992 1.4237 18.3070

15 0 0.8397 9.6740 24.9958 0 1.0000 1.8261 24.9958

20 0 0.8456 13.6963 31.4104 0 0.9991 5.8234 31.4104

Table 6.6 Engle’s ARCH test results for SA Monthly CPIX (1997-2008) raw and squared
returns.

normal distribution and the inflation index in the South African settings will always be the CPI and

not the CPIX.

(a) CPIX (b) CPIX Log returns

Figure 6.23 Filtered vs raw monthly SA CPIX (1997-2008) data series.

Figures 6.24 and 6.25 show that despite the small size of the sample, the GARCH filter has reduced

its autocorrelation.
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(a) Log returns (b) Squared returns

Figure 6.24 Filtered monthly SA CPIX (1997-2008) correlograms.

(a) Log returns (b) Squared returns

Figure 6.25 Filtered monthly SA CPIX (1997-2008) partial correlograms.

For the Lévy distributions’ parameter estimation, the GARCH filter is used to multiply the sample

size by 10.

Figures 6.26 and 6.27 give the normality plots and QQ-plots with the empirical distribution. Un-

fortunately, none of the parameter estimation for Lévy distributions did converge. However, the fit

with the Lévy distributions is still better than that with the normal distribution.

Money Supply aggregate M1A

The monthly South African Monetary aggregate M1(A) time series data is obtained from the South

African Reserve Bank [97]. The data is from March 1979 to December 2007 that is 346 data points

overall. That is not enough data points for a “good” statistical study; the GARCH filter will be used
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(a) Probability plot (b) QQ plot

Figure 6.26 Filtered monthly SA CPIX probability and QQ plots: Empirical vs normal.

(a) Probability plot (b) QQ plot

Figure 6.27 Filtered monthly SA CPIX probability plots: Empirical vs Lévy.
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Model α β δ µ λ LLH

NIG 4303.523 −4206.992 0.04419 0.20696 −0.5 2683.354

H 797.9752 −704.9338 0.08325 0.16626 1 2683.190

GH 1128.630 −1033.692 0.07289 0.17756 1.32246 2683.241

VG 1383.623 −1254.324 0 0.13672 18.34853 2683.819

Sk.Std. 3812.483 −3812.483 0.09803 0.26698 −70.0834 2682.768

Table 6.7 Estimated parameters for monthly SA CPIX log returns.

to triple the number of data points. The data series code is KBP1374M and its unit R millions.

Money Supply aggregate M1, M2 and M3

The monthly South African Monetary aggregates M1 (resp. M2, M3) time series data is obtained

from the South African Reserve Bank [97]. The data is from March 1965 to December 2007 that is

514 data points overall. The GARCH filter will be used to double the number of data points. The

data series code is KBP1373M (resp. KBP1372M , KBP1370M) and its unit R millions.

Series µ(%) σ(%) Skew. Kurt. Min.(%) Max.(%)

M1A 1.36 4.14 −0.1212 2.8675 −10.16 12.85

M1 1.21 3.40 −0.0826 3.4912 −9.07 13.28

M2 1.20 1.65 0.0645 3.2218 −3.41 6.44

M3 1.14 1.23 0.0815 3.4580 −2.74 5.44

CPI(Monthly) 0.74 0.70 0.9198 4.6009 −0.74 4.21

CPI(Daily) 0.017537 0.013374 0.2031 2.4956 −0.0052327 0.051089

CPIX 0.53 0.40 0.3912 3.1446 −0.37 1.75

Table 6.8 Descriptive statistics of S.A. Data series log returns.

Table 6.9 Chi squared Pearson’s test.

Normal GH H VG NIG Sk.t

p Test p Test P Test P Test P Test P Test

CPI 0 345.3730 0 211.4566 0 192.0096 0 231.0064 0 295.7781 0 320.7814
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6.1.10 United State of America data

The American data studied is similar to the South African data seen in the previous subsection.

However, although the US money aggregates are named identically to their South African counter-

part, they are not exactly identical. The following details their principal components [102]:

1. M0: The total of all physical currency, plus accounts at the central bank that can be exchanged

for physical currency.

2. M1: M0 minus those portions of M0 held as reserves or vault cash plus the amount in demand

accounts (“checking” or “current” accounts).

3. M2: M1 plus most savings accounts, money market accounts, and small denomination time

deposits (certificates of deposit of under $100, 000).

4. M3: M2 plus all other CDs (large time deposits, institutional money market mutual fund

balances), deposits of eurodollars and repurchase agreements.

The CPIX is particular to South Africa, therefore there is only one potential inflation index for US.

Table 6.10 (resp. 6.11) contains descriptive statistics (resp. hypothesis tests) of all our considered

data samples. For a brief overview of these descriptive statistics and hypothesis tests see Subsection

6.1.2.

Series µ(%) σ(%) Skew. Kurt. Min.(%) Max.(%)

CPI (186 yrs) 0.22 1.45 1.7607 70.1835 −16.83 19.72

CPI (70 yrs) 0.32 0.47 2.2667 24.2856 −1.40 5.72

M1 0.082719 2.08 −0.4315 4.1987 −9.22 10.81

M1 (Adj.) 0.085279 0.62 1.6958 63.5971 −6.84 10.14

M2 0.11 0.59 0.1760 3.2690 −2.56 3.02

M2 (Adj.) 0.11 0.19 2.4551 55.2031 −1.47 3.22

M3 0.12 0.43 0.0537 3.1615 −1.19 2.18

M3 (Adj.) 0.12 0.19 1.3564 18.6892 −0.88 2.31

Table 6.10 Descriptive statistics of USA Data series log returns.

In Table 6.10, the kurtosis is always larger than three, which would have been the kurtosis if the

sample data series were taken from normal distributions. This behaviour is commonly observed
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in the market [8, 27, 109, 55, 9]. In particular the money supply aggregates’s kurtosis increases

considerably when adjusting it for seasonality. However, the maximum-likelihood estimators (see

Subsection 6.2.1) used for Lévy distributions’ parameter estimation assumes that the data points

are independent identically distributed, i.e. no autocorrelation. Therefore the seasonally adjusted

data series, which are less normal, are more appropriate than their non-adjusted counterpart for the

parameter estimation.

The non-adjusted money aggregate M1 is the only one with a negative skewness. Its general be-

haviour might differ from that of the other money aggregates, therefore it will not be used later

when modelling the money aggregate as a macroeconomic factor.

Series JB K-S Lill. AD

H p H p H p H p

CPI (186 yrs) 1 10−3 1 0 1 10−3 1 10−3

CPI (70 yrs) 1 10−3 1 0 1 10−3 1 10−3

M1 1 10−3 1 0 1 10−3 1 10−3

M1 (Adj.) 1 10−3 1 0 1 10−3 1 10−3

M2 1 0.0054 1 0 1 10−3 1 10−3

M2 (Adj.) 1 10−3 1 0 1 10−3 1 10−3

M3 0 0.3464 1 0 0 0.5000 0 5%

M3 (Adj.) 1 10−3 1 0 1 10−3 1 10−3

Table 6.11 Hypothesis Tests of US Data series log returns.
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Money Supply aggregate M1 and M2 (Adjusted and unadjusted)

The weekly American Monetary aggregates M1, M2 (both adjusted and unadjusted) time series data

is obtained from the Federal Reserve System [103]. The data is from the 5th January 1981 to the

21st April 2008 that is 1425 data points overall. The data was obtained on the 1st May 2008 and is

measured in billions of US dollars.

Some of the results obtained with theses data series are presented in Appendix B.

Money Supply aggregate M3

The weekly seasonally adjusted and unadjusted American Monetary aggregates M3 time series data

were obtained from the Federal Reserve System [103]. The data is from the 5th January 1981 to the

13tH March 2006 that is 1315 data points overall. The data is for the 1st May 2008 and measured

in billions of US dollars.

The Federal Reserve ceased publishing M3 statistics in March 2006, claiming that M3 did not appear

to convey additional information about economic activity compared to M2, had not been used in

determining economic policy, and that the costs to collect M3 data outweighed the benefits. Some

of the data used to calculate M3 are still collected and published on a regular basis.

The results obtained with all the previous US macroeconomic factors confirms the better fit of Lévy

distributions compare to that of the conventional normal distribution. Only results obtained with

the real and nominal US yield curves are presented in this subsection.

Nominal and Real Yields

The nominal and real daily historical yield curves were downloaded from the U.S. treasury website

[107] from January 2003 to September 2008. The sample data has 1430 data points, with only

the trading days considered. The fit with the Lévy distributions are still better than that under

normality assumption (Figures 6.29 and 6.29). In both cases the best fit according to the AIC is

obtained with the Student-t distribution. This is also the case when using the log-likelihood estimate.

Further calibration results are provided in Appendix B.3.
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(a) Empirical vs Normal (b) Empirical vs Lévy

Figure 6.28 Nominal yield curve: Empirical vs model.

(a) Empirical vs Normal (b) Empirical vs Lévy

Figure 6.29 Real yield curve: Empirical vs model.
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Model α β δ(·105) µ λ LLH

NIG 2728.92 24.64427 53.96559 −4.83289 · 10−6 −0.5 9056.900

H 3938.503 26.19406 34.55043 −5.20755 · 10−6 1 9050.542

GH 73.83758 70.64118 91.40627 −1.40600 · 10−5 −3.19922 9072.226

VG 4437.195 3.61602 0 −6.79980 · 10−7 35 9046.039

Sk.Std. 67.62844 67.62844 91.2076 −1.36021 · 10−5 −3.18674 9072.230

Table 6.12 Estimated parameters for US nominal forward rate.

Model α β δ(·105) µ(·105) λ LLH

NIG 1890.162 −51.50919 60.56153 1.65484 −0.5 8725.085

H 2909.199 −54.34723 32.85109 1.68966 1 8720.764

GH 52.25032 −44.33243 93.34401 1.46063 −2.33771 8729.895

VG 3304.674 −45.19182 0 1.42259 1.72004 8717.872

Sk.Std. 39.62266 −39.62266 94.60124 1.28412 −2.38186 8729.890

Table 6.13 Estimated parameters for US real forward rate.

Table 6.14 Kolmogorov-Smirnov test.

(×103) Normal GH H VG NIG Sk.t

p D p D P D P D P D P D

US Nom. 2.423 68.5 43.45 51.7 693.6 26.6 537.6 30.1 840.9 23.1 86.63 46.9

US Real 43.45 51.7 866.4 22.4 840.9 23.1 240.8 38.5 240.8 38.5 813.7 23.8
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6.2 Option pricing

After the statistical study which was comparing the fit with the empirical data of normal distribution

against that of Lévy distributions, this section reviews some calibration tools for option pricing. It

begins by the maximum-likelihood parameter estimation method that was used in the previous

section without a specific description. Afterward, the discretisation (i.e. numerical implementation)

of the Fast Fourier Transform (FFT) is presented.

6.2.1 Maximum-Likelihood Estimator

Contrary to the normal distribution for which the parameters (sample’s average and variance) are

easily computed, there is no formula to estimated a Lévy distribution parameters. The maximum

likelihood estimator (MLE) method described in this subsection can be used for Lévy distributions’

parameter estimation. It is a common method in statistic for curve fitting and parameter estimation.

Considering independent and identically distributed (i.i.d.) observations x1, x2, · · · , xn, the likeli-

hood function of parameter θ is

lik(θ) = f(x1, x2, · · · , xn|θ),

where f is the frequency function. If the distribution is discrete, the likelihood function gives the

probability of observing the given data as function of the parameter θ. With maximum likelihood

estimator (MLE) a maximisation of the probability is performed. Since x1, x2, · · · , xn are assumed

i.i.d. and the natural logarithm is a monotonic function a maximisation is conducted on the log

likelihood function

l(θ) =
n∑
1

ln[f(xi|θ)].

The MLE also have good theoretical properties such as being asymptotically efficient according

to Cramer-Rao Inequality. Of course, this parameter estimation can also be used for a normal

distribution. In fact, this case yields unbiased estimations of µ and σ2.

For the GH distribution, the log likelihood function is

l(θ) = ln a(λ, α, β, δ) +
(
λ

2
− 1

4

) n∑
i=1

ln[δ2 + (x− µ)2]

+
n∑
i=1

[
lnKλ− 1

2
(α
√
δ2 + (xi − µ)2) + β(xi − µ)

]
,
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with a defined in Section 2.4.1. Simpler expressions are obtained for hyperbolic and NIG distributions

by taking respectively λ = 1 and λ = −1
2

.

6.2.2 Discretisation of the FFT

Recall from Section 2.5 that the formula to be numerically evaluated is

cT (K) =
exp(−αK)

π
<
[∫ +∞

0

e−ivKΨT (v)dv
]
.

First an approximation of ∞ is made. Let η represents the integration step and N ∈ N be a “large”

enough number, the previous equation can be approximated by

cT (K) ≈ exp(−αK)
π

<

[∫ Nη

0

e−ivKΨT (v)dv

]
.

The discretisation of the integral can be done using the Simpson’s weighting rule [26], the midpoint

rule, the trapeze method or any other common integral discretisation scheme. The trapeze method

will be used here. The call fair price is now

cT (K) ≈ exp(−αK)
π

<

 N∑
j=0

e−ivjKΨT (vj)ηθj

 ,
where

θj =

 0.5 for j = 0, N

1 otherwise.

The Fast Fourrier Transform (FFT) returns the call price for N + 1 strike price with a regular

interval. The FFT parameters (initial strike and strike step) are chosen such that the strike of the

options to be priced are in the range of the estimated. An interpolation will also eventually be used

to get the wanted option price(s).

6.3 Conclusion

An empirical study of the sample data from the South African and American markets was performed

in this chapter. The results for the developing and developed markets all agree on the fact that

market data is non-normal (and non-lognormal). This agrees with well documented stylised facts

highlighting the non-normality of markets.

It is shown here that a calibration using Lévy distributions and specifically Generalised Hyperbolic,

Hyperbolic, Variance Gamma, Normal Inverse Gaussian and Student-t prove to give better results
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in “every” case. Moreover, the calibration cost with Lévy distributions might eventually be “less”

expensive than under normality assumption. A number of test of normality and goodness of fit test

are also used to quantify how inappropriate the normal assumption is and how well each distribution

performed. In most of the cases, the best fit is obtained with the Student-t distribution.



Appendix A

Empirical Study SA

This Appendix is divided in two sections which gives parameters estimated and other results ob-

tained. Section A.1 (resp. A.2) presents results obtained from a GARCH filter with normal (resp.

student t) innovations.

A.1 Normal innovations

In this section a GARCH filter with normal innovations was used. Recall that the filter is meant to

reduce the autocorrelation in the sample data.

A.1.1 Monthly SA CPI

When using normal innovations, the fit with the lower tail is better than that with the upper tail

(Figure A.1(b)), i.e. the normality assumption will have more difficulties predicting high inflation

increases than low increases. But, an investor is more concerned about high inflation rates than low

rates, these “forecasting” performances are contrary to what is needed. In summary, the empirical

density function is taller than the corresponding normal density function, however their support and

skin’s shape are “quite” similar.

A.1.2 Consumer Price Index (CPIX)

Figures A.6 and A.7 show that despite the the small size of the sample, the GARCH filter has

reduced its autocorrelation.

163
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(a) Probability plot (b) QQ plot

Figure A.1 Monthly SA CPI probability and QQ plots: Empirical vs normal.

(a) Probability plot (b) QQ plot

Figure A.2 Monthly SA CPI probability plots: Empirical vs Lévy.
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(a) GH (b) H

(c) NIG (d) VG

(e) Skw. Std. (f) Normal

Figure A.3 Monthly SA CPI QQ plots (normality assumption).
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(a) GH (b) H

(c) NIG (d) VG

(e) Skw. Std. (f) Normal

Figure A.4 Filtered daily SA CPI QQ plots.
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(a) CPIX (b) CPIX Log returns

Figure A.5 Filtered vs raw monthly SA CPIX (1997-2008) data series.

(a) Log returns (b) Squared returns

Figure A.6 Filtered monthly SA CPIX (1997-2008) correlograms.

(a) Log returns (b) Squared returns

Figure A.7 Filtered monthly SA CPIX (1997-2008) partial correlograms.



A.1 Normal innovations 168

Model α β δ µ λ

NIG 342.72583 18.73317 0.020182 0.0062122 −0.5

H 369.70173 18.44541 0.017584 0.0062295 1

GH 465.85525 19.08309 1.90 · 10−5 0.0061911 6.38998

VG 465.93679 19.09688 0 0.0061914 6.39349

Sk.Std. 18.12631 18.12631 0.00423256 0.0062488 0.053276

Table A.1 Monthly SA CPI Lévy distributions’ estimated parameters.

For the Lévy distributions’ parameters estimation, the GARCH filter is used to multiply the sample

size by 10.

A.1.3 Money Supply aggregate M1A

(a) M1A (b) M1A Log returns

Figure A.8 Filtered vs raw monthly SA M1A (1979-2007) data series.

A.1.4 Money Supply aggregate M1

A.1.5 Money Supply aggregate M2
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(a) Log returns (b) Squared returns

Figure A.9 Filtered monthly SA M1A (1979-2007) correlograms.

(a) M1 (b) M1 Log returns

Figure A.10 Filtered vs raw monthly SA M1 (1965-2007) data series.

(a) Log returns (b) Squared returns

Figure A.11 Filtered monthly SA M1 (1965-2007) correlograms.
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(a) Log returns (b) Squared returns

Figure A.12 Monthly SA Money Supply M2 (1965-2007) correlograms.

(a) Log returns (b) Squared returns

Figure A.13 Monthly SA Money Supply M2 (1965-2007) partial correlograms.

Raw return Squared Raw return

Lag H p Stat Crit H p Stat. Crit.

10 1 0 87.7421 18.3070 0 0.6379 7.9071 18.3070

15 1 0 161.2922 24.9958 0 0.1300 21.2190 24.9958

20 1 0 188.6595 31.4104 0 0.1950 25.1705 31.4104

Table A.2 Ljung-Box-Pierce Q-test for SA Monthly M2 (1965-2007) raw and squared
returns.
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Raw return Squared Raw return

Lag H p Stat Crit H p Stat. Crit.

10 0 0.6974 7.2942 18.3070 0 0.7489 6.7487 18.3070

15 0 0.2219 18.8214 24.9958 0 0.6849 11.9225 24.9958

20 0 0.3202 22.3815 31.4104 0 0.8147 14.3047 31.4104

Table A.3 Engle’s ARCH test results for SA M2 (1965-2007) raw and squared returns.

The LBP Q-test identifies GARCH effects only in the raw returns and not in their square. However,

the Engle’s ARCH test finds GARCH effects neither in the log returns nor their square. The Engle’s

ARCH test output confirms the fact that the sample’s volatility does not vary “much” with time.

Nevertheless, Lévy distributions’ parameters estimation will be performed to compare their fit with

that of the normal distribution.

(a) M2 (b) M2 Log returns

Figure A.14 Filtered vs raw monthly SA M2 (1965-2007) data series.

Money Supply aggregate M3
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(a) Log returns (b) Squared returns

Figure A.15 Filtered monthly SA M2 (1965-2007) correlograms.

(a) Log returns (b) Squared returns

Figure A.16 Filtered monthly SA M2 (1965-2007) partial correlograms.

(a) Log returns (b) Squared returns

Figure A.17 Monthly SA Money Supply M3 (1965-2007) correlograms.
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(a) Log returns (b) Squared returns

Figure A.18 Monthly SA Money Supply M3 (1965-2007) partial correlograms.

Raw return Squared Raw return

Lag H p Stat Crit H p Stat. Crit.

10 1 0 98.2356 18.3070 0 0.3576 10.99907 18.3070

15 1 0 155.7858 24.9958 0 0.0545 24.6732 24.9958

20 1 0 178.4955 31.4104 1 0.0466 31.7032 31.4104

Table A.4 Ljung-Box-Pierce Q-test for SA Monthly M3 (1965-2007) raw and squared
returns.

Raw return Squared Raw return

Lag H p Stat Crit H p Stat. Crit.

10 0 0.3916 10.5742 18.3070 0 0.4477 9.9184 18.3070

15 0 0.1650 20.1843 24.9958 0 0.6191 12.7825 24.9958

20 0 0.1324 27.1015 31.4104 0 0.8047 14.4929 31.4104

Table A.5 Engle’s ARCH test results for SA M3 (1965-2007) raw and squared returns.
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(a) M3 (b) M3 Log returns

Figure A.19 Filtered vs raw monthly SA M3 (1965-2007) data series.

(a) Log returns (b) Squared returns

Figure A.20 Filtered monthly SA M3 (1965-2007) correlograms.

A.2 Student t innovations

A.2.1 SA CPIX

A.3 Forward estimates
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(a) Log returns (b) Squared returns

Figure A.21 Filtered monthly SA M3 (1965-2007) partial correlograms.

(a) Empirical vs Normal (b) Empirical vs Lévy

Figure A.22 Probability plots: Empirical vs model.
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(a) GH (b) H

(c) NIG (d) VG

(e) Skw. Std. (f) Normal

Figure A.23 Estimated L1 QQ plots.



Appendix B

Empirical Study US

B.1 Normal innovations

B.1.1 Consumer Price Index

The monthly United States of America Consumer Price Index is taken from the Bureau of Labor

Statistics’ (BLS) website [106]. The data is sampled from the 31rst December 1821 to the 30th

November 2007. The entire historical data covers a period of 186 years corresponding to 1649

observation points. The empirical study is first conducted on the entire data, then on the most

recent half. The latter coincide with the period going from the 31rst January 1937 to the 30th

November 2007, with 850 observations covering 70 years. The sample size is big enough for the

filtering using the GARCH(1, 1) to give “good” results and 70 years is big enough to cover the

investment of a particularly long lived client of a pension fund.

Figures B.2 and B.1 show that there is no annual seasonality (i.e. high spike at lag 12). This is

quite surprising, this might reflect the “success” of inflation targeting in US.

Figure B.6 (resp. B.7) shows the empirical density and log density functions of monthly log returns

of US CPI (1821-2007). Each graph also has the normal (resp. Lévy) probability density and log

density functions with parameters evaluated from the sample data and presented in Tables B.3

and 6.10. The plots indicate that the monthly US CPI is non-normal and the Lévy distributions

are more suited for the calibration. The empirical density and log density functions are more

peaked than the corresponding normal distribution, but Lévy distributions reproduce “fairly” well

the peakedness. The normal distribution’s density function also has fatter tails than its empirical

177
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(a) Log returns (b) Squared returns

Figure B.1 Monthly USA CPI (1821-2007) correlograms.

(a) Log returns (b) Squared returns

Figure B.2 Monthly USA CPI (1821-2007) partial correlograms.

(a) CPI (b) Log returns

Figure B.3 Filtered vs raw monthly USA CPI (1821-2007) data series .
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Raw return Squared Raw return

Lag H p Stat Crit H p Stat. Crit.

10 1 0 303.2123 18.3070 1 0 964.3 18.3

15 1 0 324.1402 24.9958 1 0 1570.2 25.0

20 1 0 400.5362 31.4104 1 0 1854.6 31.4

Table B.1 Ljung-Box-Pierce Q-test for USA CPI (1821-2007) raw and squared returns.

Raw return Squared Raw return

Lag H p Stat Crit H p Stat. Crit.

10 1 0 453.6761 18.3070 1 0 112.9745 18.3070

15 1 0 609.4648 24.9958 1 0 280.9518 24.9958

20 1 0 813.3873 31.4104 1 0 383.9034 31.4104

Table B.2 Engle’s ARCH test results for USA CPI (1821-2007) raw and squared returns.

(a) Log returns (b) Squared returns

Figure B.4 Filtered monthly USA CPI (1821-2007) correlograms.

counterpart; with a wider support. While Lévy distribution have a support “almost” identical to

that of the empirical density function. However, they do not perform so well in reproducing the tail

behaviour of the empirical sample. This is more obvious when looking at the QQ plots (Figures B.8

and B.9). In other words, the empirical density and log density functions are taller, skinnier, but

with a smaller support than their normal counterpart. While the Lévy distributions’ density and

log density functions have the same general structure as the corresponding empirical function, with
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(a) Log returns (b) Squared returns

Figure B.5 Filtered monthly USA CPI (1821-2007) partial correlograms.

(a) Density (b) Log Density

Figure B.6 Monthly USA CPI (1821-2007) probability plots: Empirical vs normal.



B.1 Normal innovations 181

(a) Density (b) Log Density

Figure B.7 Monthly USA CPI (1821-2007) probability plots: Empirical vs Lévy.

some mismatches on the tails.

Model α β δ µ λ LLH

NIG 28.00664 1.153026 0.00339 0.00248 −0.5 5805.90

H 169.93788 3.39996 1.77 · 10−6 0.00238 1 5669.98

GH 23.66755 1.06193 0.00362 0.00248 −0.56210 5805.17

VG 114.86472 2.85505 0 0.00239 0.54532 5726.15

Sk.Std. 0.09226 0.09226 N/A 0.00249 0.49989 5788.29

Table B.3 Estimated parameters for USA CPI (1821-2007).
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(a) Normal (b) Lévy

Figure B.8 Monthly US CPI QQ plots (individually).
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(a) GH (b) H

(c) NIG (d) VG

(e) Skw. Std. (f) Normal

Figure B.9 Monthly US CPI QQ plots.
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B.1.2 Consumer Price Index (End half)

(a) Log returns (b) Squared returns

Figure B.10 Monthly USA CPI (1937-2007) correlograms.

(a) Log returns (b) Squared returns

Figure B.11 Monthly USA CPI (1937-2007) partial correlograms.

Raw return Squared Raw return

Lag H p Stat Crit H p Stat. Crit.

10 1 0 647.9843 18.3070 1 0 55.6300 18.3070

15 1 0 816.7679 24.9958 1 0 72.3584 24.9958

20 1 0 853.6211 31.4104 1 0 78.5209 31.4104

Table B.4 Ljung-Box-Pierce Q-test for USA CPI (1937-2007) raw and squared returns.
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Raw return Squared Raw return

Lag H p Stat Crit H p Stat. Crit.

10 1 0 40.6426 18.3070 0 1 0.4588 18.3070

15 1 0 50.7111 24.9958 0 1 0.6084 24.9958

20 1 0.0001 51.7990 31.4104 0 1 0.6089 31.4104

Table B.5 Engle’s ARCH test results for USA CPI (1937-2007) raw and squared returns.

(a) CPI (b) Log returns

Figure B.12 Filtered vs raw monthly USA CPI (1937-2007) data series .

(a) Log returns (b) Squared returns

Figure B.13 Filtered monthly USA CPI (1937-2007) correlograms.
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(a) Log returns (b) Squared returns

Figure B.14 Filtered monthly USA CPI (1937-2007) partial correlograms.

(a) Density (b) Log Density

Figure B.15 Monthly USA CPI (1937-2007) probability plots: Empirical vs normal.

Model α β δ µ λ LLH

NIG 42.17912 −2.20823 0.00344 0.00278 −0.5 3055.83

H 190.76526 −1.44290 1.24 · 10−5 0.00268 1 3020.98

GH 55.97538 −2.35718 0.00287 0.00279 −0.32058 3056.39

VG 137.34979 0.10904 0 0.00264 0.60524 3038.41

Sk.Std. 0.51414 −0.51414 N/A 0.00272 0.49952 3047.13

Table B.6 Estimated parameters for USA CPI (1937-2007).



B.1 Normal innovations 187

(a) Density (b) Log Density

Figure B.16 Monthly USA CPI (1937-2007) probability plots: Empirical vs Lévy.

(a) Normal (b) Lévy

Figure B.17 Monthly US CPI QQ plots.
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(a) GH (b) H

(c) NIG (d) VG

(e) Skw. Std. (f) Normal

Figure B.18 Monthly US CPI QQ plots (individually).
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B.1.3 Money Supply aggregate M1

The weekly American Monetary aggregates M1 time series data is obtained from the Federal Reserve

System [103]. The data is from the 5th January 1981 to the 21st April 2008 that is 1425 data points

overall. That is more than enough data points for a “good” statistical study. The data is for the

1st May 2008 and measured in billions of US dollars.

(a) Log returns (b) Squared returns

Figure B.19 Weekly USA Money Supply M1 (1981-2008) correlograms.

(a) Log returns (b) Squared returns

Figure B.20 Weekly USA Money Supply M1 (1981-2008) partial correlograms.

The current estimated GARCH parameters might generate a highly volatile filtered sample data

(Figure B.21). This might be due to the high volatility of the money aggregate M1. Notice that in

Table 6.10, M1 has the highest volatility which is about three time that of the next most volatile

money aggregate. Therefore, for stability reasons, the other two aggregates M2 and M3 will be
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Raw return Squared Raw return

Lag H p Stat Crit H p Stat. Crit.

10 1 0 2583.8 18.3070 1 0 416.0 18.3070

15 1 0 4099.5 24.9958 1 0 892.9 24.9958

20 1 0 5456.4 31.4104 1 0 1096.8 31.4104

Table B.7 Ljung-Box-Pierce Q-test for USA Weekly M1 (1981-2008) raw and squared
returns.

Raw return Squared Raw return

Lag H p Stat Crit H p Stat. Crit.

10 1 0 265.9485 18.3070 1 0.0010 29.5679 18.3070

15 1 0 498.9969 24.9958 1 0 69.2088 24.9958

20 1 0 530.3411 31.4104 1 0 79.2994 31.4104

Table B.8 Engle’s ARCH test results for USA M1 (1981-2008) raw and squared returns.

(a) M1 (b) M1 Log returns

Figure B.21 Filtered vs raw weekly USA M1 (1981-2008) data series.
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preferred to M1 for our calibrations. In Table 6.10, M1 is also the only sample with negative

skewness, this might also be due to its high volatility.

(a) Log returns (b) Squared returns

Figure B.22 Filtered weekly USA M1 (1981-2008) correlograms.

(a) Log returns (b) Squared returns

Figure B.23 Filtered weekly USA M1 (1981-2008) partial correlograms.

Figures B.22 and B.23 show that the GARCH filter successfully reduced the autocorrelation in our

sample data. However, there is still a “slight” positive correlation in the squared returns. This might

be what is sometime translated by a highly volatile filtered sample data.
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(a) Density (b) Log Density

Figure B.24 Weekly USA M1 (1981-2008) probability plots: Empirical vs normal.

(a) Density (b) Log Density

Figure B.25 Weekly USA M1 (1981-2008) probability plots: Empirical vs Lévy.
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Model α β δ µ λ LLH

NIG 18.71749 0.86203 0.00567 0.00121 −0.5

H 105.69644 2.12448 6.61 · 10−6 0.00108 1 4222.08

GH 10.33677 0.79936 0.00682 0.00120 −0.69369 4340.19

VG 70.50968 4.08735 0 0.00041 0.55041 4261.61

Sk.Std. 0.02403 0.02403 N/A 0.00122 0.49993 4332.68

Table B.9 Estimated parameters for weekly USA M1 (1981-2008).

(a) Normal (b) Lévy

Figure B.26 Weekly US M1 QQ plots: Empirical vs normal.
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(a) GH (b) H

(c) NIG (d) VG

(e) Skw. Std. (f) Normal

Figure B.27 Weekly US M1 QQ plots.
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Money Supply aggregate M1: Seasonally adjusted

The weekly seasonally adjusted American Monetary aggregates M1 time series data is obtained from

the Federal Reserve System [103]. The data is from the 5th January 1981 to the 21st April 2008 that

is 1425 data points overall. That is more than enough data points for a “good” statistical study.

The data is for the 1st May 2008 and measured in billions of US dollars.

(a) Log returns (b) Squared returns

Figure B.28 Seasonally adjusted weekly USA Money Supply M1 (1981-2008) correlo-
grams.

(a) Log returns (b) Squared returns

Figure B.29 Seasonally adjusted weekly USA Money Supply M1 (1981-2008) partial
correlograms.

Figures B.31 and B.32 show that the GARCH filter was not that successful this time in reducing

the sample autocorrelation.

The normal distribution perform better with this sample (see Figure B.33) than with the previous
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Raw return Squared Raw return

Lag H p Stat Crit H p Stat. Crit.

10 1 0 210.6978 18.3070 1 0 242.8464 18.3070

15 1 0 343.8959 24.9958 1 0 242.8661 24.9958

20 1 0 392.7793 31.4104 1 0 242.9056 31.4104

Table B.10 Ljung-Box-Pierce Q-test for seasonally adjusted USA Weekly M2 (1981-2008)
raw and squared returns.

Raw return Squared Raw return

Lag H p Stat Crit H p Stat. Crit.

10 1 0 243.5764 18.3070 1 0 67.6032 18.3070

15 1 0 242.7911 24.9958 1 0 67.3666 24.9958

20 1 0 242.0485 31.4104 1 0 67.1300 31.4104

Table B.11 Engle’s ARCH test results for seasonally adjusted USA M1 (1981-2008) raw
and squared returns.

(a) M1 Adj. (b) M1 Adj. Log returns

Figure B.30 Filtered vs raw weekly USA M1 Adj. (1981-2008) data series.



B.1 Normal innovations 197

(a) Log returns (b) Squared returns

Figure B.31 Filtered weekly USA M1 Adj. (1981-2008) correlograms.

(a) Log returns (b) Squared returns

Figure B.32 Filtered weekly USA M1 Adj. (1981-2008) partial correlograms.

samples. For the first time, the fit under normality assumption is better than with one of the Lévy

distribution (see Figure B.34) that is the GH distribution.

The QQ plot in Figure B.35(a) confirms the fact that the match under normality assumption is

“good”.



B.1 Normal innovations 198

(a) Density (b) Log Density

Figure B.33 Weekly USA Adj. M1 (1981-2008) probability plots: Empirical vs normal.

(a) Density (b) Log Density

Figure B.34 Weekly USA Adj. M1 (1981-2008) probability plots: Empirical vs Lévy.
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Model α β δ µ λ LLH

NIG 13.87633 −0.34898 0.75585 0.03012 N/A 52.65

H 14.76969 −0.35021 0.70075 0.03019 N/A 52.65

GH 19.80023 −0.36612 0.00371 0.03105 10.67644 52.66

VG 19.8000 −0.36612 N/A 0.03105 0.04067 52.66

Sk.Std. 0.32700 −0.32700 N/A 0.02892 0.04067 52.62

Table B.12 Estimated parameters for USA Adj. M1 (1981-2008).

(a) Normal (b) Lévy

Figure B.35 Weekly US M1 Adj. QQ plots: Empirical vs normal.
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(a) GH (b) H

(c) NIG (d) VG

(e) Skw. Std. (f) Normal

Figure B.36 Weekly US M1 Adj. QQ plots.
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B.2 Student t innovations
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Money Supply aggregate M1

(a) M1 (b) M1 Log returns

Figure B.37 Filtered vs raw weekly USA M1 (1981-2008) data series.

(a) Density (b) Log Density

Figure B.38 Weekly USA M1 (1981-2008) probability plots: Empirical vs Lévy.
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(a) M1 Adj. (b) M1 Adj. Log returns

Figure B.39 Filtered vs raw weekly USA M1 Adj. (1981-2008) data series.

(a) Density (b) Log Density

Figure B.40 Weekly USA Adj. M1 (1981-2008) probability plots: Empirical vs normal.

Money Supply aggregate M1: Seasonally adjusted

Money Supply aggregate M2

B.3 Yield Curves

Nominal Yield Curve

The nominal and real daily historical yield curves were downloaded from the U.S. treasury website

[107] from January 2003 to September 2008. The sample data has 1430 data points, with only the
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(a) Density (b) Log Density

Figure B.41 Weekly USA Adj. M1 (1981-2008) probability plots: Empirical vs Lévy.

(a) M2 (b) M2 Log returns

Figure B.42 Filtered vs raw weekly USA M2 (1981-2008) data series.

trading days considered.

AIC best fit Student-t.
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(a) Probability plot (b) QQ Plot

Figure B.43 Estimated L1: Empirical vs normal.

(a) Density (b) Log Density

Figure B.44 Estimated L1 probability plots: Empirical vs Lévy.
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(a) GH (b) H

(c) NIG (d) VG

(e) Skw. Std. (f) Normal

Figure B.45 Estimated L1 QQ plots.
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Model α β δ(·105) µ λ LLH

NIG 2728.92 24.64427 53.96559 −4.83289 · 10−6 −0.5 9056.900

H 3938.503 26.19406 34.55043 −5.20755 · 10−6 1 9050.542

GH 73.83758 70.64118 91.40627 −1.40600 · 10−5 −3.19922 9072.226

VG 4437.195 3.61602 0 −6.79980 · 10−7 35 9046.039

Sk.Std. 67.62844 67.62844 91.2076 −1.36021 · 10−5 −3.18674 9072.230

Table B.13 Estimated parameters for empirical L1 for SA nominal forward rate.
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Real Yield Curve

(a) Probability plot (b) QQ Plot

Figure B.46 Estimated L1: Empirical vs normal.

(a) Density (b) Log Density

Figure B.47 Estimated L1 probability plots: Empirical vs Lévy.

AIC best fit Student-t.
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(a) GH (b) H

(c) NIG (d) VG

(e) Skw. Std. (f) Normal

Figure B.48 US real curve: Estimated L1 QQ plots.
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Model α β δ(·105) µ(·105) λ LLH

NIG 1890.162 −51.50919 60.56153 1.65484 −0.5 8725.085

H 2909.199 −54.34723 32.85109 1.68966 1 8720.764

GH 52.25032 −44.33243 93.34401 1.46063 −2.33771 8729.895

VG 3304.674 −45.19182 0 1.42259 1.72004 8717.872

Sk.Std. 39.62266 −39.62266 94.60124 1.28412 −2.38186 8729.890

Table B.14 Estimated parameters for empirical L1 for US real forward rate.
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[7] D. Applebaum. Lévy Processes and Stochastic Calculus. Number 93 in Cambridge Studies in

Advanced Mathematics. Cambridge University Press, 2004.

[8] D. Backus, S. Foresi, K. Li, and L. Wu. Accounting for biases in Black-Scholes. Working paper

series, August 2004.

[9] G. Bakshi, N. Kapadia, and D. Madan. Stock return characteristics, skew laws, and the

differential pricing of individual equity options. Review of Financial Studies, 16(1), 2003.

211



BIBLIOGRAPHY 212

[10] O. E. Barndorff-Nielsen. Exponentially Decreasing Distributions for the Logarithm of Particle

Size. Proceedings of the Royal Society of London, 353(1674):401–419, Mar. 1977.

[11] O. E. Barndorff-Nielsen. Normal inverse Gaussian distributions and the modeling of stock

returns. Scandinavian Journal of Statistics, 24(300), March 1997.

[12] T. Beletski. Inflation-Linked Products and Optimal Investment with Macro Derivatives. PhD

thesis, Fachbereich Mathematik der Technischen Universität Kaiserslautern, 2006.

[13] T. Beletski and R. Korn. Advances in Risk Management (Edited by Greg N. Gregoriou),

chapter 9, pages 170–190. Finance and Capital Markets. Palgrave-MacMillan, 2006. Chapter

title: Optimal Investment with Investment Inflation-Linked Products.

[14] N. Belgrade, E. Benhamou, and E. Koehler. A market model for inflation. Cahiers de la

Maison des Sciences Economiques, Université Panthéon-Sorbonne (Paris 1), 2004.
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