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Abstract

The eigenvalue problem y(4)(λ, x)− (gy′)′(λ, x) = λ2y(λ, x) with boundary conditions

y(λ, 0) = 0,

y′′(λ, 0) = 0,

y(λ, a) = 0,

y′′(λ, a) + iαλy′(λ, a) = 0,

where g ∈ C1[0, a] is a real valued function and α > 0, has an operator pencil L(λ) =

λ2 − iαλK − A realization with self-adjoint operators A, M and K. It was shown that the

spectrum for the above boundary eigenvalue problem is located in the upper-half plane and

on the imaginary axis. This is due to the fact that A, M and K are self-adjoint. We consider

the eigenvalue problem y(4)(λ, x) − (gy′)′(λ, x) = λ2y(λ, x) with more general λ-dependent

separated boundary conditions Bj(λ)y = 0 for j = 1, · · · , 4 where Bj(λ)y = y[pj ](aj) or

Bj(λ)y = y[pj ](aj) + iεjαλy[qj ](aj), aj = 0 for j = 1, 2 and aj = a for j = 3, 4, α > 0, εj = −1

or εj = 1. We assume that at least one of the B1(λ)y = 0, B2(λ)y = 0, B3(λ)y = 0, B4(λ)y = 0

is of the form y[p](0) + iεαλy[q](0) = 0 or y[p](a) + iεαλy[q](a) = 0 and we investigate classes of

boundary conditions for which the corresponding operator A is self-adjoint.
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Chapter 1

Introduction

An important area of Mathematics is the study of differential equations. Differential equa-

tions were introduced in the seventeenth century to describe fundamental laws in Physics [4].

Differential equations are used today in Physics, but also in many other areas such as Engi-

neering, Geophysics, Geography, Economics and others. Differential equations are used for

optimal design of ships, aircrafts and space shuttles. They are used in climatology for studying

climatic changes, to forecast population and economic trends. They also have applications in

Hydrodynamics, in Electricity and Mechanics.

One of the tools for studying differential equations is linear operators. Linear operators are

mostly studied in Hilbert or Banach spaces where notions such as resolvent sets, spectra,

discrete spectra, continuous spectra, eigenvalues and associated eigenfunctions or eigenvector

are discussed. The field of differential operators involves topics such as eigenvalues, eigen-

functions, boundary conditions, regularity, normality, minimality, maximality, boundedness,

compactness, operator graphs, closable and closed operators, symmetric operators, adjoint

operators, self-adjoint operators, operator extensions, operator pencils. We make use of many

of these terms in this research. Relevant terms are defined in Chapter 2.

Extensive research on linear operators exists. For example, Kato [8] has discussed perturbation
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CHAPTER 1. INTRODUCTION 2

theory of linear operators and Weidmann [19] has studied linear operators in Hilbert spaces.

Furthermore Naimark has discussed linear operators in [17] and [18]. Möller and Zettl have

presented semi-boundedness ordinary differential operators in [14] and symmetric differential

operators and their Friedrichs extension in [15]. Mennicken and Möller have presented their

study on non self-adjoint boundary eigenvalue problems in [12]. Other studies on boundary

eigenvalue problems have been conducted. We consider in this research an eigenvalue problem

with general λ-dependent boundary conditions and investigate classes of boundary conditions

which are self-adjoint. Following are summaries of some of the studies describing boundary

eigenvalue problems with λ-dependent boundary conditions.

1. Binding, Browne and Watson [1] have considered the Sturm-Liouville equation

ly := −y′′ + qy = λy on [0, 1], (1.1)

subject to the boundary conditions

y(0) cos α = y′(0) sin α, α in [0, π), (1.2)

f(λ) =
y′

y
(1) = aλ + b−

N∑

k=1

bk

λ− ck

, (1.3)

where all the coefficients are real and a ≥ 0, bk > 0 and c1 < c2 < · · · < cN , N ≥
0. They have investigated the existence of eigenvalues and the associated oscillation

theory of the problem (1.1) - (1.3). They have studied a transformation, with certain

eigenvalue-preserving properties, from a problem of the type (1.1) - (1.3) to a ‘simpler’

one with a new potential q̂ in place of q and with f(λ) replaced by F (λ) where F (λ) =

µ−λ
f(λ)−f(µ)

− f(µ) and µ is a constant less than c1. Some of the results they have obtained

are:

• The eigenvalues of (1.1) - (1.3) are real, simple and form a sequence λ0 < λ1 < · · ·
accumulating only at ∞ and with λ0 < c1.

• If b is decreased and ck is increased, then each positive λj > ck is increased.
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• If a > 0 is decreased and bk is increased, then each positive λj > ck is increased.

2. Binding, Browne and Watson have considered in [2], again, the Sturm-Liouville equation

subject to the boundary conditions (1.1) - (1.3) defined in [1]. Assuming that a > 0,

they have defined, in the Hilbert space H = L2(0, 1)⊕ CN+1, the inner product

〈Y, Z〉 =

∫ 1

0

yz̄ +
N∑

k=1

ykz̄k

bk

+ yN+1z̄N+1

and have posed the boundary value problem (1.1)− (1.3) by considering the operator

LY =




ly

c1y1 − b1y(1)
...

cNyn − bNy(1)

y′(1)− by(1)−
N∑

k=1

yk




where Y =




y

y1

...

yN+1




and the domain of L is

D(L) = {Y ∈ H : y, y′ ∈ AC, y, y′ ∈ L2(0, 1), y(0) cos α = y′(0) sin α, yN+1 = ay(1)} ,

where ly = −y′′ + qy, and AC denotes the space of absolutely continuous functions.

They have proved, with the above formulations, that:

• L is self-adjoint on H.

• The eigenvalues of (1.1)−(1.3) coincide with those of L, are real and (algebraically)

simple.

• L is bounded below and has compact resolvent on H.

• The eigenfunctions of (1.1)− (1.3) augmented to eigenvectors of L, form an ortho-

normal basis of H.

3. Kir, Bascanbaz-Tunga and Yanik [9] have considered the operator L(λ) generated in the

Hilbert space

L2(R+,C2) :=



f(x) : f(x) =


f1(x)

f2(x)


 ,

∫ ∞

0

(|f1(x)|2 + |f2(x)|2)dx < ∞






CHAPTER 1. INTRODUCTION 4

by the system 



iy′1 + q1(x)y2 = λy1,

−iy′2 + q2(x)y1 = λy2, x ∈ R+

and the spectral parameter dependent boundary condition

(a1λ + b1)y2(0)− (a2λ + b2)y1(0) = 0,

where qi i = 1, 2, are complex - valued functions, λ is a complex parameter, ai, bi are

complex constants, bi 6= 0, i = 1, 2, and |a1|2 + |a2|2 6= 0. They have studied the

spectrum of L(λ) and have proved that L(λ) has a finite number of eigenvalues and

spectral singularities with finite multiplicities under the conditions |qi(x)| ≤ ce−εx < ∞,

i = 1, 2, ε > 0, c > 0.

4. Hinton [5] has considered the eigenvalue problem:

ly =
1

r
(−(py′)′ + qy) = λy, (1.4)

cos αy(a) + sin α(py′)(a) = 0, α ∈ [0, π), (1.5)

−[β1y(b)− β2(py
′)(b)] = λ[β1y(b)− β2(py

′)(b)], (1.6)

where r, p, and q are real continuous functions on the interval [a, b] with r and p positive;

and the numbers β1, β2, β′1, and β′2 are real. Hinton has remarked that a self-adjoint

operator A can be associated with the problem defined in (1.4)− (1.6) if the condition

ρ = β′1β2 − β1β
′
2 > 0 (1.7)

holds. Hinton has defined in the Hilbert space H = L 2(a, b)⊕ C a inner product in H

by

〈(F1, F2), (G1, G2)〉 =

∫ b

a

rF1Ḡ1 +
1

ρ
F2Ḡ2,

the operator A acting on H by

A(F1, F2) = (lF1,−β1F1(b) + β2(p(F ′
1)(b))),
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where

D(A) =





(F1, F2) ∈ H : F1, pF ′
1 ∈ AC, lF1 ∈ L 2(r; a, b),

cos αF1(a) + sin α(pF ′
1)(a) = 0, F2 = β′1F1(b)− β′2(pF

′
1)(b)



 ,

AC is the space of absolutely continuous functions and L 2(r; a, b) is the complex Hilbert

space of Lebesgue measurable functions f satisfying

∫ b

a

r|f |2 < ∞.

Hinton has remarked that F1 satisfies (1.4) - (1.6) if and only if F = (F1, β
′
1F1(b) −

β′2(pF
′
1)(b)), F ∈ D(A) and AF = λF . Hinton has observed that A is a self-adjoint

operator and bounded below.

5. Marletta, Shkalikov and Tretter [11] have defined a problem of the form:

N(y) = λP (y), y = y(x), x ∈ [0, a], a > 0, (1.8)

B0
j (y) = λBa

j (y), j = 1, 2, . . . , n, (1.9)

where N and P are ordinary differential expressions of order n and p, respectively, with

coefficients, n > p, and B0
j (y), Ba

j (y) are linear forms containing the variables y(k)(0)

and y(k)(a) with k = 0, 1, . . . , n−1 in the Hilbert space L2(0, a)×Cr, where r ≤ n is the

number of λ-dependent boundary conditions after a suitable normalization. They have

used eigenvalue problems of fourth order differential operators and pencils of fourth order

differential operators with eigenvalue parameter in the boundary conditions associated

to the above (1.8) - (1.9) problem to investigate the following questions:

• The existence of a function space W densely embedded in L2(0, 1) such that the

system of eigenfunctions of problems associated to (1.8) − (1.9) is complete and

minimal simultaneously.

• The existence of a function space W and a linear operator T acting in W such

that the eigenvalue and the eigenfunctions of T coincide with those of problems

associated with (1.8)− (1.9).
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• The construction of pairs (W,T ), where W and T are as defined above, (or lin-

earization pair) for problems associated to (1.8)− (1.9).

6. Möller and Pivovarchik [13] have proved that the eigenvalues of the eigenvalue problem

(1.10) with boundary conditions (1.11) − (1.14) lie in the closed upper half-plane and

on the imaginary axis. They have derived a formula for the asymptotic distribution of

the eigenvalues and have investigated the spectral properties of the problem mentioned

above.

In their study, Möller and Pivovarchik [13] have considered the eigenvalue problem:

ly(λ, x) := y(4)(λ, x)− (gy′)′(λ, x) = λ2y(λ, x), (1.10)

with boundary conditions:

y(λ, 0) = 0, (1.11)

y′′(λ, 0) = 0, (1.12)

y(λ, a) = 0, (1.13)

y′′(λ, a) + iαλy′(λ, a) = 0, (1.14)

where g ∈ C1[0, a] is a real valued function and α > 0. They have stated that the boundary

conditions (1.11)− (1.14) are self-adjoint for the differential expression (1.10) and they have

derived a statement about the location of the spectrum of the eigenvalue problem (1.10)

- (1.14). While Möller and Pivovarckik [13] have been investigating the spectrum of the

eigenvalue problem (1.10) with boundary conditions (1.11) − (1.14), the eigenvalue problem

(1.10)− (1.14) leads to the quadratic operator pencil

L(λ) = λ2M − iαλK − A, (1.15)

where A is the differential operator acting in L2(0, a)⊕ C with domain

D(A) =



Y =


y(x)

y′(a)


 : y ∈ W 2

4 (0, a), y(0) = y′′(0) = y(a) = 0



 ,
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given by AY =


y(4) − (gy′)′

y′′(a)


 , K =


0 0

0 1


 and M =


I 0

0 0


 .

The spectrum of the operator pencil L(λ) can be quite arbitrary. However it has been shown,

in [13], that the spectrum for (1.10) − (1.14) is located in the upper-half plane and on the

imaginary axis. This is due to the fact that A, K and M are self-adjoint and K ≥ 0.

We, therefore, consider in this study the boundary eigenvalue problem (1.10) with more gen-

eral λ-dependent boundary conditions and decide to investigate existence of other classes of

boundary conditions for this boundary eigenvalue problem for which the corresponding op-

erator A in the corresponding operator pencil defined in (1.15) is self-adjoint. These classes

will, therefore, be classes of conditions corresponding to self-adjoint main operator.

The organization of this document is as follows: we give a presentation of basic definitions

and properties and also the notion of Sobolev spaces on intervals in Chapter 2. We present

in Chapter 3 the proof of the self-adjointness of the differential operator A defined in the

boundary eigenvalue problem (1.10) - (1.14). We give in Section 4.2 additional definitions and

properties of differential operators, which are used in the remainder of the document. Also in

Section 4.3 we give preliminaries that are needed for the study of conditions correponding to

a a self-adjoint main operator independent of λ for the differential expression (1.10). Second

order self-adjoint differential operators with boundary conditions independent of λ are widely

studied and well known. However there exists only a few studies on fourth order differential

operators, therefore we study conditions corresponding to a self-adjoint main operator inde-

pendent of λ for the differential expression (1.10) in Section 4.4. We give characterizations of

boundary conditions corresponding to a self-adjoint main operator in Section 4.5. In Section

5.2 we recall definitions and properties of closed symmetric operators. We start the discussion

of boundary conditions depending on λ corresponding to a self-adjoint main operator in Section

5.3. We study symmetric operators for boundary conditions dependent of λ for the differential

expression (1.10) in Subsection 5.3.1. We develop Theorem 5.23 which characterizes symmet-

ric operators, while we discuss the adjoint operators for boundary conditions dependent on λ
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for the differential expression (1.10) in Subsection 5.3.2. We give in this subsection the proof

of Theorem 5.41. Theorem 5.41 is derived from Theorem 5.23, for boundary conditions depen-

dent on λ corresponding to a self-adjoint main operator for the differential expression (1.10).

We use Theorem 5.41 to characterize classes of self-adjoint boundary conditions dependent on

λ for the differential expression (1.10). The document ends with Subsection 5.3.3 where we

develop, from Theorem 5.41, Theorem 5.46 which presents a characterization of self-adjoint

boundary conditions dependent on λ for the differential expression (1.10).

To obtain the main results of this study, we consider the differential operator associated

with the boundary value problem with differential expression (1.10) and boundary conditions

Bj(λ)y = 0 for j = 1, · · · , 4 where Bj(λ)y = y[pj ](aj) + iεjαλy[qj ](aj) or Bj(λ)y = y[pj ](aj),

aj = 0 for j = 1, 2 and aj = a for j = 3, 4, α > 0, εj = −1 or εj = 1. We assume that at least

one of B1(λ)y = 0, B2(λ)y = 0, B3(λ)y = 0, B4(λ)y = 0 is of the form y[p](0)+ iεαλy[q](0) = 0

or y[p](a)+ iεαλy[q](a) = 0. The maximal differential operator Amax is defined on L2(0, a)×Ck

by Amax =


MA0

A1


, with domain

D(Amax) =



Y =


 y

D0y


 , y ∈ W 2

4 (0, a)



 ,

where 1 ≤ k ≤ 4 is the number of the Bj(λ)y = 0 depending on λ, a > 0, g ∈ C1[0, a] is a

real value function, MA0y = y[4] = y(4) − (gy′)′. There exist two k × 8 matrices V0 and V1

such that V0YR = D0y and V1YR = A1y, see Section 5.3 where YR is given in Definition 4.12.

D0y and A1y are respectively the components independent of λ and the coefficients of λ of k

λ-dependent boundary conditions. We, then, define the differential operator T (U) by

D(T (U)) =



Y =


 y

D0y


 , y ∈ W 2

4 (0, a) and UYR = 0





and

T (U)Y = AmaxY (Y ∈ D(T (U))),
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where U is the l × 8 matrix defined in (5.16), (l = 4 − k), which represents the boundary

conditions independent of λ. We say that the boundary conditions Bj(λ)y = 0, j = 1, · · · , 4,

correspond to a self-adjoint main self-adjoint if the differential operator T (U) is self-adjoint.

Since T (U) ⊂ Amax then A∗
max ⊂ T (U)∗. If the differential operator T (U) is self-adjoint, that

is T (U)∗ = T (U), then A∗
max ⊂ T (U) ⊂ Amax. Hence a necessary condition for T (U) to be

self-adjoint is that A∗
max must be symmetric. It is shown that A∗

max is symmetric if and only

if rank(W ) = 8− 2k, see Theorem 5.38, where W = D + (V ∗
0 V1 − V ∗

1 V0) and D is the matrix

defined in (4.21) for n = 4. We assume that rank(W ) = 8 − 2k where 1 ≤ k ≤ 4 and we

denote by X the space (N(W ))⊥. We consider the matrices WX and UX as respectively the

restrictions of the matrices W and U to X. We prove that the differential operator T (U) is

self-adjoint if and only if UXWXU∗
X = 0.

From the above result we give explicit characterizations for boundary conditions corresponding

to a self-adjoint main operator depending on λ. We denote by P0 the set of p in y[p](0) = 0

for the λ-independent boundary conditions and by Pa the corresponding set for y[p](a) = 0.

Then we prove that the differential operator T (U) is self-adjoint if and only if p + q = 3 for

all boundary conditions of the form y[p](aj) + iαεjλy[q](aj) = 0 where εj = 1 if (q = 0 and

aj = 0) or (q = 2 and aj = 0) or (q = 1 and aj = a) or (q = 3 and aj = a), εj = −1 otherwise,

{0, 3} 6⊂ P0, {1, 2} 6⊂ P0, {0, 3} 6⊂ Pa and {1, 2} 6⊂ Pa.

An interesting extension to this study will be to investigate the spectral properties of the

differential expression (1.10). Möller and Pivovarchik [13] have shown that the spectrum for

(1.10) − (1.14) is located in the upper-half plane and on the imaginary axis due to the fact

that A, K and M are self-adjoint and K ≥ 0. Therefore, it will be interesting to investigate

the location of the classes of boundary conditions for the differential operator (1.10) for which

the corresponding operators A, K and M are self-adjoint and K ≥ 0.

In the remainder of the document, we call boundary conditions self-adjoint, if the correspond-

ing operator A is self-adjoint.



Chapter 2

Preliminaries

2.1 Introduction

In Section 2.2 we present basic definitions and properties of linear operators. Section 2.3 deals

with Sobolev spaces on intervals. We provide definitions and properties of test functions,

followed by definitions and properties of distributions in Subsection 2.3.1, while we give defi-

nitions and properties of Sobolev spaces in Subsection 2.3.2. These definitions and properties

are necessary for the comprehension of the content of this document. They are extensively

used to obtain the research results that we present. Other definitions and properties are

presented in subsequent chapters, where they are more relevant.

10
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2.2 Definitions

The following definition is taken from [17, page 3].

Definition 2.1. A linear differential expression is an expression of the form:

l(y) := p0(x)y(n) + p1(x)y(n−1) + · · ·+ pn(x)y

where 1
p0(x)

, p1(x), p2(x), . . . , pn(x) are continuous functions on a fixed, finite, interval [a, b]

and y ∈ Cn[a, b].

The following definition is taken from [17, page 3].

Definition 2.2. If linear combinations:

Bj(y) = αj
0y(a)+αj

1y
′(a)+· · ·+αj

n−1y
(n−1)(a)+βj

0y(b)+βj
1y
′(b)+· · ·+βj

n−1y
(n−1)(b), j = 1, . . . , m

of the values of the function y and its first n− 1 successive derivatives at the boundary points

a and b of the interval [a, b] have been specified and the conditions Bj(y) = 0, j = 1, . . . , m,

are imposed on the functions y ∈ Cn[a, b], these conditions which the functions y must satisfy

are called boundary conditions.

The following proposition is taken from [18, page 18].

Proposition 2.3. If the coefficients pk(x), k = 0, . . . , n of the differential expression l(y)

have continuous derivatives up to the order (n− k) inclusive on the interval [a, b], then there

exists a differential expression l∗(z), where z ∈ C(n)[a, b] such that
∫ b

a

l(y)z̄dx =

∫ b

a

yl∗(z)dx + [y, z]ba, (2.1)

where

1.

[y, z] =
n∑

k=1

(y[k−1]z̄[2n−k] − y[2n−k]z̄[k−1]) (2.2)

is Lagrange’s form,
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2.

[y, z]ba (2.3)

is the difference in the values for the function [y, z], defined in (2.2), for x = b and

x = a,

3. (2.1) is said to be Lagrange’s identity in integral form.

The following definition is taken from [17, page 7].

Definition 2.4. The differential expression l∗(z), defined in (2.1) is called the adjoint of the

differential expression l(y).

The following definition is taken from [18, page 50].

Definition 2.5. If l = l∗, then l(y) is said to be self-adjoint.

The following proposition is taken from [17, page 8].

Proposition 2.6. Any self-adjoint differential expression with real coefficients is necessarily

of even order and has the form

l(y) = (p0y
(µ))(µ) + (p1y

(µ−1))(µ−1) + · · ·+ (pµ−1y
′)′ + pµy

where p0, p1, . . . , pµ are real-valued functions.

The following remark is taken from [17, page 9].

Remark 2.7. Let B1, . . . , Bm be linearly independent forms in the variables ya, y
′
a, . . . , y

(n−1)
a ,

yb, y
′
b, . . . , y

(n−1)
b , where y

(j)
b = y(j)(b) and y

(j)
a = y(j)(a); if m < 2n, we shall supplement these

forms with other forms Bm+1, . . . , B2n to obtain a linearly independent system of 2n forms

B1, B2, . . . , B2n. Since B1, B2, . . . , B2n are linearly independent, the variables ya, y
′
a, . . . , y

(n−1)
a ,

yb, y
′
b, . . . , y

(n−1)
b can be expressed as linear combinations of the forms B1, B2, . . . , B2n.
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If we substitute these expressions in the expression (2.3) which occurred in (2.1), then (2.3)

becomes a linear, homogeneous form in the variable B1, B2, . . . , B2n, and its 2n coefficients are

themselves linear, homogeneous forms, which we denote by V2n, V2−1, . . . , V1, in the variables

za, z
′
a, . . . , z

(n−1)
a , zb, z

′
b, . . . , z

(n−1)
b . Then (2.1) takes the form

∫ b

a

l(y)z̄dx =

∫ b

a

yl∗(z)dx + B1V2n + B2V2n−1 + · · ·+ B2nV1. (2.4)

The forms V1, V2, . . . , V2n are linearly independent.

The following definition is taken from [17, page 10].

Definition 2.8. The boundary conditions

V1 = 0, V2 = 0, . . . , V2n−m = 0 (2.5)

(and all boundary conditions equivalent to them) are said to be the adjoint to the original

boundary conditions

B1 = 0, B2 = 0, . . . , Bm = 0 (2.6)

The following definition is taken from [17, page 10].

Definition 2.9. Let L be the operator generated by the expression l(y) and the boundary

conditions (2.6). Then the operator generated by l∗(z) and the boundary conditions (2.5) will

be denoted by L∗ and called the adjoint operator to L.

The following remark is taken from [17, page 10].

Remark 2.10. It follows from (2.4) and the boundary conditions (2.5) and (2.6) that the

equation ∫ b

a

(Ly)z̄dx =

∫ b

a

y(L∗z)dx (2.7)

holds for the operators L and L∗, for all y in the domain of definition of L and for all z in the

domain of definition of L∗.
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With the notation

(y, z) =

∫ b

a

y(x)z(x)dx,

(2.7) becomes

(Ly, z) = (y, L∗z). (2.8)

The following definition is taken from [17, page 13].

Definition 2.11. A complex number λ is called an eigenvalue of an operator L = L(λ),

generated by a differential expression l(y) = λy and the boundary conditions B1(y) =

0, . . . , Bn(y) = 0, if there exists in the domain of definition D(L) of the operator L a function

y not identically zero such that Ly = λy . The function y is called an eigenfunction, of the

operator L, for the eigenvalue λ .

The following definition is taken from [18, page 17].

Definition 2.12. Let L be an operator defined in a Hilbert space H .

1. A number λ is said to be in the resolvent set of the operator L if the inverse Rλ =

(L − λI)−1 exists and represents a bounded operator defined in the whole space H .

The operator Rλ is then called the resolvent of the operator L.

2. All points λ not in the resolvent set, are called points of the spectrum of the operator

L. The eigenvalues λ of an operator belong to its spectrum.

The following definition is taken from [10, pages 4, 5].

Definition 2.13. Let L (H, H) be the space of linear bounded operators fromH into H, where

H and H are Hilbert spaces and H is dense in H. An operator pencil is a polynomial A(λ) =
l∑

q=0

Al−qλ
q in λ ∈ C where Aq ∈ L (H, H). If the equation A(λ0)y = 0 has nontrivial

solutions, then λ0 is called an eigenvalue of the operator pencil A, and the corresponding

nontrivial solutions are called eigenvectors related to λ0.
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The following remark is taken from Section 1 of [11, page 894].

Remark 2.14. A problem of the form:

N(y) = λP (y), y = y(x), x ∈ [0, a], a > 0, (2.9)

B0
j (y) = λBa

j (y), j = 1, 2, . . . , n, (2.10)

where N and P are ordinary differential expressions of order n and p, respectively, with

n > p, and B0
j (y), Ba

j (y) are linear forms containing the variables y(k)(0) and y(k)(a) with

k = 0, 1, . . . , n− 1 can be viewed as a linear pencil in the Hilbert space L2(0, a)× Cr, where

r ≤ n is the number of λ-dependent boundary conditions after a suitable normalization.

The following definition is Definition 2.7.4 of [7, page 157].

Definition 2.15. If the domain D(L) of a linear operator L is dense in a Hilbert space H ,

then L is said to be densely defined. If L is densely defined and its range is contained in a

Hilbert space K , the mapping L∗, the adjoint of L has as domain D(L∗) = {z ∈ K : ∃ w ∈
H 〈y, w〉 = 〈Ly, z〉 ∀y ∈ D(L)}.

The following definitions are taken from [18, page 13].

Definition 2.16. Let L : H → H be a linear operator, where H is a Hilbert space. Then

• L is said to be Hermitian if for all y, z ∈ D(L) 〈Ly, z〉 = 〈y, Lz〉 holds.

• A Hermitian operator which is densely defined in a Hilbert space H is called symmetric

operator.

• A symmetric operator L in a Hilbert space H is said to be self-adjoint if L = L∗.

The following theorem is Theorem 5.32. of [19, page 115].
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Theorem 2.17. If L is a symmetric operator on the Hilbert space H such that

〈y, Ly〉 ≥ γ‖y‖2 with γ ∈ R (respectively ‖Ly‖ ≥ γ‖y‖) for all y ∈ D(L), then for each

k ∈ (−∞, γ) (respectively k ∈ (−γ, γ)), there exists a self-adjoint extension Tk of L such that

〈y, Tky〉 ≥ k‖y‖2 (respectively ‖Tky‖ ≥ k‖y‖) for all y ∈ D(Tk).

2.3 Sobolev Spaces on Intervals

We assume in this section that a and b are real numbers with a < b. Let 1 ≤ p ≤ ∞.

2.3.1 Test Functions and Distributions

The following definition is taken from [12, pages 53, 54].

Definition 2.18. Let I ⊂ R be an interval.

• C(I) = C0(I) denotes the space of all continuous functions on I to C. For a positive

integer k, Ck(I) denotes the space of k-times continuously differentiable functions on I.

• For f ∈ C(I) the set supp f := {x ∈ I : f(x) 6= 0} is called the support of f , where the

closure is taken with respect to I.

• Let I be open and let C∞(I) :=
∞⋂

k=1

Ck(I). A function f ∈ C∞(I) is called a test

function if its support is a compact subset of I. The space of all test functions on an

open interval I is denoted by C∞
0 (I).

Remark 2.19. Mennicken and Möller [12, page 54] identify C∞
0 (I) with a subset of C∞

0 (R) by

setting f = 0 outside of I for each f ∈ C∞
0 (I). And they denote C∞

0 (I) =
⋃

K⊂I, compact

C∞
0 (K),

where C∞
0 (K) := {f ∈ C∞

0 (R) : supp f ⊂ K}.

The following definition is taken from [12, page 54].
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Definition 2.20. Let I be an open interval. A linear functional u on C∞
0 (I) is called a

distribution on I if for each compact set K ⊂ I there are numbers k ∈ N and C ≥ 0 such that

|〈φ, u〉| ≤ C

k∑
j=0, x∈K

sup |φ(j)(x)| (φ ∈ C∞
0 (K)),

where 〈φ, u〉 := u(φ). The space of distribution is denoted by D ′(I).

The following definition is taken from [12, page 55].

Definition 2.21. For u ∈ D ′(I), where I is an open interval, the support of u, denoted

supp u, is the set of points x ∈ I such that for each neighborhood U ⊂ I of x there exists

φ ∈ C∞
0 (U) such that 〈φ, u〉 6= 0.

The following definition is taken from [12, page 55].

Definition 2.22. Let I be an open interval and let u ∈ D ′(I). Then

〈φ, u′〉 = −〈φ′, u〉 (φ ∈ C∞
0 (I))

defines a distribution u′ on I, called the derivative in the sense of distributions of u. Recursively

for k = 1, 2, · · ·
u(k+1) := u(k)′.

The following theorem is Theorem 3.1.4. of [6, page 57].

Theorem 2.23. If u ∈ D ′(X) where X is an open interval on R and if u′ = 0, then u is a

constant.

2.3.2 Definitions and Properties of Sobolev spaces

The following definition is Definition 2.1.1. of [12, page 55].
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Definition 2.24. Let I ⊂ R be an open interval, 1 ≤ p ≤ ∞ and k ∈ N. The space

W p
k (I) := {f ∈ Lp(I) : ∀j ∈ {1, . . . , k} f (j) ∈ Lp(I)}

is called a Sobolev space. Here the derivatives f (j) are the derivatives in sense of distributions.

For f ∈ W p
k (I) we set

|f |p,k :=
k∑

j=0

|f (j)|p.

Note that W p
0 (I) = Lp(I) and that L2(I) is a Hilbert space with respect to the inner product

(f, g) =

∫

I

f(x)ḡ(x)dx, f, g ∈ L2(I).

The following remark is Remark 2.1.2. of [12, page 55].

Remark 2.25. Let I be an open interval. Let AC loc(I) be the set of functions f on I such

that f |K is absolutely continuous for each compact subinterval K of I. Then for k > 0,

W p
k (I) = {f ∈ AC loc(I) : ∀j ∈ {1, . . . , k − 1} f (j) ∈ AC loc(I) ∩ Lp(I), f (k) ∈ Lp(I)}.

The following proposition is Proposition 2.1.3. of [12, page 56].

Proposition 2.26. Let I ⊂ R be an open interval, γ ∈ Ī and g ∈ Lp(I).Set

G(x) :=

∫ x

γ

g(t)dt (x ∈ Ī).

Then G is continuous on Ī and G′ = g in D ′(I).

The following corollary is Corollary 2.1.4. of [12, page 56].

Corollary 2.27. Let k ∈ N and u ∈ D ′(a, b) such that u′ ∈ W p
k (a, b). Then u ∈ W p

k+1(a, b).
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The following proposition is Proposition 2.1.5. of [12, page 56].

Proposition 2.28. Let I ⊂ R be an open interval and k ∈ N\{0}.

1. Let f ∈ Lp(I) and γ ∈ Ī. Then f ∈ W p
k (I) if and only if there are g ∈ W p

k−1(I) and

c ∈ C such that

f(x) = c +

∫ x

γ

g(t)dt (x ∈ I).

In this case, g = f ′, f has continuous extension to Ī, which we also denote by f , and

c = f(γ).

2. W p
k (I) ⊂ Ck−1(Ī).

The following proposition is Proposition 2.1.6. of [12, page 57].

Proposition 2.29. Let I ⊂ R be an open interval and k ∈ N. Then W p
k (I) is a Banach space

with respect to the norm | |p,k.

The following proposition is Proposition 2.1.7. of [12, page 57].

Proposition 2.30. For each k ∈ N and 1 ≤ p ≤ q ≤ ∞ we have

1. W q
k (a, b) ⊂ W p

k (a, b),

2. W p
k+1(0, a) ⊂ Ck[a, b],

3. Ck[a, b] ⊂ W p
k (a, b),

where the inclusions holds topologically, i.e., the corresponding inclusion maps are continuous.



Chapter 3

The self-adjointness of the differential

operator A

3.1 Introduction

We present in this chapter the proof of the self-adjointness of the differential operator A,

defined by Möller and Pivovarchick [13]. Definitions and properties that we present in Chapter

2 are extensively used in Section 3.2 where we prove that the operator A is self-adjoint.

We prove, first that A is densely defined, next that A is a symmetric operator. We, next,

characterize the domain of the adjoint A∗ of A. Finally we use the characterization of the

domain of A∗ and the symmetry of A to prove that A is self-adjoint.

20



CHAPTER 3. THE SELF-ADJOINTNESS OF THE DIFFERENTIAL OPERATOR A 21

3.2 The operator A

Let A be the operator acting in L2(0, a)⊕ C with domain

D(A) =



Y =


 y

y′(a)


 : y ∈ W 2

4 (0, a), y(0) = y′′(0) = y(a) = 0



 ,

given by AY =


y(4) − (gy′)′

y′′(a)


 , where a > 0 and g ∈ C1[0, a] is a real valued function.

Proposition 3.1. A is densely defined.

Proof. Let W =


w

c


 ∈ L2(0, a)⊕ C be such that 〈Y, W 〉 = 0 for all Y ∈ D(A), where

〈Y, W 〉 =

∫ a

0

y(x)w̄(x) dx + y′(a)c̄.

Let y ∈ C∞
0 (0, a). Then y′(a) = 0, and Y =


 y

y′(a)


 ∈ D(A), so

∫ a

0

y(x)w̄(x)dx = 0 for all y ∈ C∞
0 (0, a).

Thus w = 0. Let

y(x) = x3(x− a).

Then

y(0) = y(a) = y′′(0) = 0.

Hence

Y =


 y

y′(a)


 ∈ D(A).

Since

y′(x) = 4x3 − 3x2a,
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it follows that

y′(a) = a3 6= 0.

Since w = 0, then

〈Y,W 〉 = y′(a)c̄ = 0;

but

y′(a) = a3 6= 0,

thus

c = 0,

so

W =


0

0


 .

Hence

D(A)⊥ = {0}.

Therefore A is densely defined.

Proposition 3.2. A is a symmetric operator.

Proof. Let Y, Z ∈ D(A),

〈AY,Z〉 =

∫ a

0

[y(4)(x)− (gy′)′(x)]z̄(x)dx + y′′(a)z̄′(a)

=

∫ a

0

y(4)(x)z̄(x)dx−
∫ a

0

(g(x)y′(x))′z̄(x)dx + y′′(a)z̄′(a).

Recall that

(y(4), z) =

∫ a

0

y(4)(x)z̄(x)dx

and

((gy′)′, z) =

∫ a

0

(g(x)y′(x))′z̄(x)dx.
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Then,

(y(4), z) = [y(3)(x)z̄(x)]a0 −
∫ a

0

y(3)(x)z̄′(x)dx

= −[y′′(x)z̄′(x)]a0 +

∫ a

0

y′′(x)z̄′′(x)dx (since z(a) = z(0) = 0).

But the scalar product

∫ a

0

y′′(x)z̄′′(x)dx = (y(4), z) + [y′′(x)z̄′(x)]a0

is symmetric, so ∫ a

0

y′′(x)z̄′′(x)dx = (y, z(4)) + [y′(x)z̄′′(x)]a0.

Thus

(y(4), z) = (y, z(4))− [y′′(x)z̄′(x)]a0 + [y′(x)z̄′′(x)]a0.

Similarly

((gy′)′, z) = [g(x)y′(x)z̄(x)]a0 −
∫ a

0

y′(x)g(x)z̄′(x)dx

= −
∫ a

0

y′(x)g(x)z̄′(x)dx (since z(a) = z(0) = 0).

The scalar product ∫ a

0

y′(x)g(x)z̄′(x)dx = −((gy′)′, z)

is symmetric, so ∫ a

0

y′(x)g(x)z̄′(x)dx = −(y, (gz′)′).
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Hence

〈AY, Z〉 = (y(4), z)− ((gy′)′, z) + y′′(a)z̄′(a)

= (y, z(4))− [y′′(x)z̄′(x)]a0 + [y′(x)z̄′′(x)]a0 − (y, (gz′)′) + y′′(a)z̄′(a)

= (y, z(4))− (y, (gz′)′)− [y′′(x)z̄′(x)]a0 + [y′(x)z̄′′(x)]a0 + y′′(a)z̄′(a)

= (y, z(4) − (gz′)′)− [y′′(x)z̄′(x)]a0 + [y′(x)z̄′′(x)]a0 + y′′(a)z̄′(a)

= (y, z(4) − (gz′)′)− y′′(a)z̄′(a) + y′′(0)z̄′(0) + y′(a)z̄′′(a)− y′(0)z̄′′(0)

+ y′′(a)z̄′(a)

= (y, z(4) − (gz′)′)− y′′(a)z̄′(a) + y′(a)z̄′′(a) + y′′(a)z̄′(a)

(since y′′(0) = z′′(0) = 0)

= (y, (z(4) − (gz′)′) + y′(a)z̄′′(a)

=

∫ a

0

y(x)[z̄(4)(x)− (g(x)z̄′(x))′]dx + y′(a)z̄′′(a)

= 〈Y,AZ〉.

Since A is densely defined and 〈AY, Z〉 = 〈Y, AZ〉 for all Y, Z ∈ D(A), then according to

Definition 2.16 A is symmetric.

Remark 3.3. Let g ∈ C1[0, a] be a real valued function. Since the multiplication by g is a

continuous linear operator g· from C1[0, a] into itself, its adjoint (g·)∗ from (C1
0(0, a))′ into

itself is well-defined. Let (·, ·)C1
0 (0,a) be the sesquilinear form on C1

0(0, a) × (C1
0(0, a))′. Note

that for f ∈ L2(0, a) and φ ∈ C1
0(0, a),

(gφ, f)C1
0 (0,a) = (gφ, f)

= (φ, gf),

so that (g·)∗f = gf . Hence we write

gu = (g·)∗u (3.1)

for all u ∈ (C1
0(0, a))′.



CHAPTER 3. THE SELF-ADJOINTNESS OF THE DIFFERENTIAL OPERATOR A 25

Also note that we have the continuous embeddings with dense ranges

C∞
0 (0, a) ↪→ C1

0(0, a) ↪→ L2(0, a),

whence

L2(0, a) ↪→ (C1
0(0, a))′ ↪→ D ′(0, a).

In particular, gu ∈ D ′(0, a) for all u ∈ (C1
0(0, a))′.

Lemma 3.4. If z ∈ L2(0, a) and g ∈ C1[0, a], then gz′ ∈ D ′(0, a) and gz′ = (gz)′ − g′z.

Proof. Since z ∈ L2(0, a) ↪→ (C1
0(0, a))′ ↪→ D ′0, a) and g ∈ C1[0, a], then according to Remark

3.3

gz ∈ L2(0, a) ↪→ D ′(0, a). (3.2)

Since g ∈ C1[0, a], then g′ ∈ C[0, a]. And as z ∈ L2(0, a), then

g′z ∈ L2(0, a) ↪→ D ′(0, a). (3.3)

But according to Definition 2.22 (3.2) implies

(gz)′ ∈ D ′(0, a). (3.4)

Thus (3.3) and (3.4) give

(gz)′ − g′z ∈ D ′(0, a). (3.5)

According to (3.5), for all φ ∈ C∞
0 (0, a) we have

(φ, (gz)′ − g′z)C∞0 (0,a) = (φ, (gz)′)C∞0 (0,a) − (φ, g′z)C∞0 (0,a)

= −(φ′, gz)C∞0 (0,a) − (g′φ, z)C0(0,a)

= −(gφ′, z)C1
0 (0,a) − (g′φ, z)C0(0,a)

= −(gφ′ + g′φ, z)C0(0,a)

= −((gφ)′, z)C0(0,a)

= (gφ, z′)C1
0 (0,a)

= (φ, gz′)C∞0 (0,a).
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Since for all φ ∈ C∞
0 (0, a) (φ, (gz)′ − g′z)C∞0 (0,a) = (φ, gz′)C∞0 (0,a), then

g′z = (gz)′ − gz′. (3.6)

Hence (3.5) and (3.6) give gz′ ∈ D ′(0, a).

Proposition 3.5. If Z =


z

d


 ∈ D(A∗), then z ∈ W 2

4 (0, a) and there exists c ∈ C such that

A∗Z =


z(4) − (gz′)′

c


.

Proof. Since Z ∈ D(A∗), then according to Definition 2.15, there exists

W =


w

c


 ∈ L2(0, a)⊕ C

such that

〈AY, Z〉 = 〈Y, W 〉,

for all Y ∈ D(A).

Let Y =


y

0


 ∈ C∞

0 (0, a)⊕ {0}. Since y ∈ C∞
0 (0, a), thus y′′(a) = 0. Then Y ∈ D(A) and

〈AY,Z〉 = (y(4) − (gy′)′, z) + y′′(a)d̄

= (y(4) − (gy′)′, z) (3.7)

= (y(4), z)C∞0 (0,a) − ((gy′)′, z)L2(0,a).

Since z ∈ L2(0, a), then z ∈ D ′(0, a). Therefore

(y(4), z)C∞0 (0,a) = (−1)4(y, z(4))C∞0 (0,a).

So

(y(4), z)C∞0 (0,a) = (y, z(4))C∞0 (0,a).
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Since z ∈ L2(0, a), and g ∈ C1[0, a], then according to Lemma 3.4 gz′ ∈ D ′(0, a).

((gy′)′, z) = ((gy′)′, z)C0(0,a)

= −(gy′, z′)C1
0 (0,a)

= −(y′, gz′)C∞0 (0,a).

Hence

((gy′)′, z)L2(0,a) = −(y′, gz′)C∞0 (0,a)

= (−1)2(y, (gz′)′)C∞0 (0,a).

Thus

((gy′)′, z)L2(0,a) = (y, (gz′)′)C∞0 (0,a).

Therefore

〈AY,Z〉 = (y, z(4))C∞0 (0,a) − (y, (gz′)′)C∞0 (0,a)

= (y, z(4) − (gz′)′)C∞0 (0,a). (3.8)

But

〈AY, Z〉 = 〈Y,W 〉
=

∫ a

0

y(x)w̄(x)dx + y′(a)c̄.

Since

y ∈ C∞
0 (0, a), y′(a) = 0.

Then

〈AY, Z〉 = 〈Y, W 〉
=

∫ a

0

y(x)w̄(x)dx

= (y, w). (3.9)
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From (3.8) and (3.9) it follows that

〈AY, Z〉 = (y, z(4) − (gz′)′)C∞0 (0,a). (3.10)

So (3.7) and (3.10) give

(y(4) − (gy′)′, z) = (y, z(4) − (gz′)′)C∞0 (0,a). (3.11)

Thus

(y, z(4) − (gz′)′)C∞0 (0,a) = (y, w)C∞0 (0,a).

Then

z(4) − (gz′)′ = w ∈ L2(0, a). (3.12)

Let v = z(3) − gz′. Then according to (3.12)

v′ = z(4) − (gz′)′ = w ∈ L2(0, a). (3.13)

Let

u(x) =

∫ x

0

w(t)dt.

Then

u ∈ L2(0, a). (3.14)

Thus (3.14) gives

u ∈ W 2
1 (0, a). (3.15)

Then v′ − u′ = w − u′ = 0. And according to Theorem 2.23 v − u = c1, where c1 denotes a

constant. Thus v = u + c1. Whence (3.15) implies z(3) − gz′ = v ∈ W 2
1 (0, a). But by Lemma

3.4, gz′ = (gz)′ − g′z. Thus

z(3) − (gz)′ + g′z = v ∈ W 2
1 (0, a) ⊂ L2(0, a). (3.16)

Since L2(0, a) is a vector space, then (3.3) and (3.16) imply z(3) − (gz)′ ∈ L2(0, a).

Repeating the above reasoning,

z(3) − (gz)′ ∈ L2(0, a) =⇒ z(2) − gz ∈ W 2
1 (0, a) ⊂ L2(0, a).
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Then

z(2) − gz ∈ L2(0, a) and gz ∈ L2(0, a) =⇒ z(2) ∈ L2(0, a)

=⇒ z ∈ W 2
2 (0, a).

Since

z ∈ W 2
2 (0, a)

then,

z′ ∈ W 2
1 (0, a).

And since

g ∈ C1[0, a],

then

gz′ ∈ W 2
1 (0, a),

and thus

(gz′)′ ∈ W 2
0 [0, a] = L2(0, a).

Since

z(4) − (gz′)′ ∈ L2(0, a) and (gz′)′ ∈ W 2
0 [0, a],

then

z(4) ∈ W 2
0 [0, a].

As

z(4) ∈ W 2
0 [0, a],

then according to Corollary 2.27

z(3) ∈ W 2
1 (0, a),

z′′ ∈ W 2
2 (0, a),

z′ ∈ W 2
3 (0, a),

z ∈ W 2
4 (0, a). (3.17)
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Theorem 3.6. The operator A is self-adjoint.

Proof. Let Y ∈ D(A) and Z =


z

d


 ∈ D(A∗). Then

〈AY, Z〉 =

∫ a

0

[y(4)(x)− (g(x)y′(x))′]z̄(x)dx + y′′(a)d̄

=

∫ a

0

y(4)(x)z̄(x)dx−
∫ a

0

(g(x)y′(x))′z̄(x)dx + y′′(a)d̄.

Since

z ∈ W 2
4 (0, a) by Proposition 3.5,

then

(y(4), z) = [y(3)(x)z̄(x)]a0 −
∫ a

0

y(3)(x)z̄′(x)dx

= [y(3)(x)z̄(x)]a0 − [y′′(x)z̄′(x)]a0 +

∫ a

0

y′′(x)z̄′′(x)dx.

But the scalar product

∫ a

0

y′′(x)z̄′′(x)dx = (y(4), z)− [y(3)(x)z̄(x)]a0 + [y′′(x)z̄′(x)]a0

is symmetric, so

∫ a

0

y′′(x)z̄′′(x)dx = (y, z(4))− [y(x)z̄(3)(x)]a0 + [y′(x)z̄′′(x)]a0.

Then

(y(4), z) = (y, z(4)) + [y(3)(x)z̄(x)]a0 − [y′′(x)z̄′(x)]a0 − [y(x)z̄(3)(x)]a0 + [y′(x)z̄′′(x)]a0

= (y, z(4)) + y(3)(a)z̄(a)− y(3)(0)z̄(0)− y′′(a)z̄′(a) + y′(a)z̄′′(a)− y′(0)z̄′′(0)

= (y, z(4)) + y(3)(a)z̄(a)− y′′(a)z̄′(a) + y′(a)z̄′′(a)− y(3)(0)z̄(0)− y′(0)z̄′′(0)

since

y(a) = y′′(0) = y(0) = 0.
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Also,

((gy′)′, z) = [g(x)y′(x)z̄(x)]a0 −
∫ a

0

y′(x)g(x)z̄′(x)dx.

The scalar product

∫ a

0

y′(x)g(x)z̄′(x)dx = −((gy′)′, z) + [g(x)y′(x)z̄(x)]a0

is symmetric, so

∫ a

0

y′(x)g(x)z̄′(x)dx = −(y, (gz′)′) + [g(x)y(x)z̄′(x)]a0.

Then

((gy′)′, z) = [g(x)y′(x)z̄(x)]a0 − [g(x)y(x)z̄′(x)]a0 + (y, (gz′)′)

= g(a)y′(a)z̄(a)− g(0)y′(0)z̄(0) + (y, (gz′)′)

since

y(0) = y(a) = 0.

Thus

〈AY, Z〉 = (y(4), z)− ((gy′)′, z) + y′′(a)d̄

= (y, z(4))− (y, (gz′)′) + y(3)(a)z̄(a)− y′′(a)z̄′(a)

+ y′(a)z̄′′(a) + y′′(a)d̄− g(a)y′(a)z̄(a)− y(3)(0)z̄(0)− y′(0)z̄′′(0) + g(0)y′(0)z̄(0)

= (y, z(4) − (gz′)′) + y′(a)z̄′′(a) + (y(3)(a)− g(a)y′(a))z̄(a)− y′′(a)(z̄′(a)− d̄)

− y(3)(0)z̄(0) + y′(0)g(0)z̄(0)− y′(0)z̄′′(0).

But

〈AY, Z〉 = 〈Y, A∗Z〉 = 〈Y,W 〉 where W =


w

c


 ,

and according to Proposition 3.5

w = z(4) − (gz′)′.
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So

〈AY, Z〉 = 〈Y, A∗Z〉
= (y, z(4) − (gz′)′) + y′(a)c̄.

Then

y′(a)c̄ = y′(a)z̄′′(a) + (y(3)(a)− g(a)y′(a))z̄(a)− y′′(a)(z̄′(a)− d̄)− y(3)(0)z̄(0)

+ y′(0)g(0)z̄(0)− y′(0)z̄′′(0).

So

0 = (y(3)(a)− g(a)y′(a))z̄(a) + y′(a)(z̄′′(a)− c̄)− y′′(a)(z̄′(a)− d̄)

+ (y′(0)g(0)− y(3)(0))z̄(0)− y′(0)z̄′′(0). (3.18)

But there exists a polynomial y1 such that y1(0) = y′′1(0) = y1(a) = 0, y
(3)
1 (a) 6= 0 and

y′1(a) = y′′1(a) = y′1(0) = y
(3)
1 (0) = 0. Then


y1

0


 ∈ D(A) and

y
(3)
1 (a)z̄(a) = 0. (3.19)

Since y
(3)
1 (a) 6= 0, then z̄(a) = 0, so (3.19) gives

z(a) = 0, (3.20)

and (3.18) reduces to

y′(a)(z̄′′(a)− c̄)− y′′(a)(z̄′(a)− d̄) + (y′(0)g(0)− y(3)(0))z̄(0)− y′(0)z̄′′(0) = 0. (3.21)

Also there exists a polynomial y2 such that y2(0) = y′′2(0) = y2(a) = 0 and y′2(a) 6= 0,

y′′2(a) = y′2(0) = y
(3)
2 (0) = 0. Then


y2

0


 ∈ D(A) So

y′2(a)(z̄′′(a)− c̄) = 0. (3.22)
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since y′2(a) 6= 0 then (3.22) gives

c = z′′(a). (3.23)

And (3.21) reduces to

−y′′(a)(z̄′(a)− d̄) + (y′(0)g(0)− y(3)(0))z̄(0)− y′(0)z̄′′(0) = 0. (3.24)

There exists a polynomial y3 such that y3(0) = y′′3(0) = y3(a) = 0, y′3(0) = y
(3)
3 (0) = 0 and

y′′3(a) 6= 0. Then


y3

0


 ∈ D(A) and

y′′3(a)(z̄′(a)− d̄) = 0. (3.25)

Since y′′3(a) 6= 0, then (3.25) gives

z′(a) = d. (3.26)

Then (3.24) reduces to

(y′(0)g(0)− y(3)(0))z̄(0)− y′(0)z̄′′(0) = 0. (3.27)

There exists a polynomial y4, such that y4(0) = y′′4(0) = y4(a) = 0, y′4(0) = 0 and y
(3)
4 (0) 6= 0,

so


y4

0


 ∈ D(A). Then (3.27) reduces to

y
(3)
4 (0)z̄(0) = 0. (3.28)

Since y
(3)
4 (0) 6= 0, then (3.28) gives

z(0) = 0, (3.29)

and (3.27) reduces to

y′(0)z̄′′(0) = 0. (3.30)

There exists a polynomial y5, such that y5(0) = y′′5(0) = y5(a) = 0 and y′5(0) 6= 0. So
y5

0


 ∈ D(A). Since y′5(0) 6= 0, then (3.30) gives

z′′(0) = 0. (3.31)
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Hence, from (3.20), (3.23), (3.26), (3.29) and (3.31) we have

z(0) = z′′(0) = z(a) = 0, c = z′′(a) and d = z′(a).

Thus Z ∈ D(A), so D(A∗) ⊂ D(A). Since A is symmetric, see Proposition 3.2, then according

to Definition 2.16, it follows that A is self-adjoint.



Chapter 4

Self-adjoint Boundary Conditions

Independent of λ

4.1 Introduction

We present in this chapter characterizations of boundary conditions corresponding to a self-

adjoint main operator independent of λ. We present in Section 4.2 maximal and minimal

operators and quasi-differential expressions. We give in Section 4.4 a theorem which char-

acterizes boundary conditions corresponding to a self-adjoint main operator independent of

λ and in Section 4.5. We give examples of classes of boundary conditions, corresponding to

a self-adjoint main operator, independent of λ. The definitions and properties we present

in Section 4.2 are given in the general case with matrix coefficients from Mm(Lloc(0, a)), the

set of m ×m matrices with entries from Lloc(0, a). However for the study we present in this

document, we consider the case m = 1.

35
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4.2 Quasi-Differential Expressions and Maximal and

Minimal Operators

The following definition is taken from Section 2 [14, page 25].

Definition 4.1. Let I = (a, b) be an interval with −∞ ≤ a < b ≤ ∞ and let n, m be postive

integers. For a given set S, Mn,m(S) denotes the set of n ×m matrices with entries in S. If

n = m, we write also Mn(S), and if m = 1, we write Sn.

Let

Zn,m(I) := {A = (ars)
n
r,s=1 ∈ Mn(Mm(Lloc(I))),

ar,r+1 invertible a.e. for 1 ≤ r ≤ n− 1,

ars = 0 for 2 ≤ r + 1 < s ≤ n}. (4.1)

Let A ∈ Zn,m(I). We define

V0 := {y : I → Cm, y measurable} (4.2)

and

y[0] := y (y ∈ V0). (4.3)

Inductively, for r = 1, . . . , n, we define

Vr = {y ∈ Vr−1 : y[r−1] ∈ (ACloc(I))m}, (4.4)

y[r] = a−1
r,r+1(y

[r−1]′ −
r∑

s=1

arsy
[s−1]) (y ∈ Vr), (4.5)



CHAPTER 4. SELF-ADJOINT BOUNDARY CONDITIONS INDEPENDENT OF λ 37

where an,n+1 := Im, the m×m identity matrix; and ACloc(I) denotes the set of complex valued

functions which are absolutely continuous on all compact sub-intervals of I. Finally we set

My := iny[n] (y ∈ Vn). (4.6)

The expression M = MA is called the quasi-differential expression associated with A.

The following remark can be found in Section 2 [14, page 26].

Remark 4.2. For Vn we use also the notations D(A) and V (M).

The following proposition is Proposition 2.2 [14, page 26].

Proposition 4.3. Let A ∈ Zn,m(I) and f ∈ (Lloc(I))m. Set F =




0
...

0

f




.

(i) If Y ∈ (ACloc(I))nm is a solution of

Y ′ = AY + F, (4.7)

then there is a (unique) y ∈ D(A) such that

Y =




y[0]

y[1]

...

y[n−1]




(4.8)

and

y[n] = f. (4.9)

(ii) If y ∈ D(A) is a solution of

y[n] = f, (4.10)
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then

Y :=




y[0]

y[1]

...

y[n−1]



∈ (ACloc(I))nm (4.11)

and

Y ′ = AY + F. (4.12)

The following lemma is Lemma 3.1 [14, page 29].

Lemma 4.4. Let I be bounded. Let A,B be k × k complex matrix functions on I, such that

all components of A and B are in L(I). Let F, G be k ×m matrix functions on I, such that

all components of F and G are in L(I). If Y ′ = AY + F and Z ′ = BZ + G and C ∈ Mk(C),

then

(Z∗CY )′ = Z∗(B∗C + CA)Y + Z∗CF + G∗CY. (4.13)

The following corollary is Corollary 3.2 [14, page 30].

Corollary 4.5. Let the assumptions be as in Lemma 4.4. If, in addition, C is invertible and

B = −C−1∗A∗C∗, then

(Z∗CY )′ = Z∗CF + G∗CY. (4.14)

The following lemma is Lemma 3.3 [14, page 30].

Lemma 4.6. Let A ∈ Zn,m(I) and C := ((−1)rδr,n+1−sIm)n
r,s=1. Let B := −C−1A∗C. Then

B ∈ Zn,m(I) and for any y ∈ D(A) and z ∈ D(B) we have

z∗MAy − (MBz)∗y = [y, z]′ (4.15)

where

[y, z] = in
n−1∑
r=0

(−1)n+1−rz
[n−r−1]∗

B y
[r]
A . (4.16)
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Remark 4.7. The δ in Lemma 4.6 is the Kronecker delta.

The following definition can be found in Section 4 of [14, page 31].

Definition 4.8. Let A ∈ Zn,m(I).

1. The maximal operator T = TA associated with the matrix A ∈ Zn,m(I) is defined by

Ty = MAy (y ∈ D(T )), where

D(T ) = {y ∈ L2(I) : y ∈ D(A),MAy ∈ L2(I)}.

2. The pre-minimal operator T ′
0 = T ′

A,0 associated with A is defined by

D(T ′
0) = {y ∈ L2(I) : y has support compact},

T ′
0y = Ty (y ∈ D(T )).

3. The closure T0 of T ′
0 is a linear operator. It is called the minimal operator associated

with A.

Remark 4.9. The minimal operator T0 is also denoted TA,0.

The following proposition can be found in Section 2 [15, page 53].

Proposition 4.10. If TA,0 is symmetric, then T ∗
A,0 = TA and T ∗

A = TA,0.

The following proposition can be found in Section 2 [15, page 53].

Proposition 4.11. Let A ∈ Zn,m(I), T0 be the minimal operator and TA be the maximal

operator.

1. TA is a 2nm dimensional extension of T0.

2. T0 has self-adjoint extension and every self-adjoint extension of T0 is an nm dimensional

extension.
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3. Every nm dimensional symmetric extension of T0 is self-adjoint.

The following definition is from the proof of Lemma 1.1 [15, page 51].

Definition 4.12. Let A ∈ Zn,m(I). For y ∈ D(TA), Y =




y[0]

y[1]

...

y[n−1]




, YR =


Y (a)

Y (b)


.

The following definition is Definition 1.2 [15, page 51]. It is equivalent to Definition 2.2 and

is the definition we have used to conduct this study.

Definition 4.13. Let l be an integer with 0 ≤ l ≤ 2nm. Any l× 2nm matrix U ∈ Ml,2nm(C)

with rank l is called a boundary matrix and the equation

UYR = 0 (y ∈ D(TA)) (4.17)

is called a boundary condition. For any such U we define an operator T (U) from L2(I) into

itself by

D(T (U)) = {y ∈ D(TA) : UYR = 0}
T (U)y = TAy (y ∈ D(T (U))). (4.18)

When l = 0 we have U = 0 and T (U) = TA.

The following remark is taken from [15, page 52].

Remark 4.14. From (4.17) and (4.18) it is clear that

TA,0 ⊂ T (U) ⊂ TA (4.19)

The following theorem is Theorem 2.3 [15, page 54].
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Theorem 4.15. Let U be an l × 2nm matrix with rank l where nm ≤ l ≤ 2nm.

Then the operator T (U) is symmetric if and only if

N(U) ⊂ R(DU∗) (4.20)

where N(U) denotes the null space of U , R(DU∗) denotes the range of the matrix DU∗ and

D is the matrix

D = in


C 0

0 −C


 , C = ((−1)rδr,n+1−sIm)n

r,s=1. (4.21)

Note that

C−1 = (−1)n+1C = C∗. (4.22)

Remark 4.16. The δ in Theorem 4.15 is the Kronecker delta.

The following proposition can be found in Section 2 [15, page 54].

Proposition 4.17. T (U) is symmetric if and only if

Z∗
RDYR = 0 for all y, z ∈ D(T (U)) (4.23)

.

The following proposition is taken from Section 2 [15, page 54].

Proposition 4.18. The following equivalent statements are also equivalent to Proposition

4.17:

(i) c∗Dd = 0 for all c, d ∈ N(U)

(ii) N(U)⊥D(N(U))

(iii) D(N(U)) ⊂ (N(U))⊥ = R(U∗)
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(iv) N(U) ⊂ R(D−1U∗) = R(DU∗).

The following theorem is Theorem 2.4 [15, page 55].

Theorem 4.19. Let A,B be l × nm matrices of complex numbers and let U = (A : B) have

rank l. Then the operator T (U) is self-adjoint if and only if

l = nm and ACA∗ = BCB∗. (4.24)

4.3 Preliminaries

Let Amax be the maximal operator defined on W 2
4 (0, a) by for y ∈ W 2

4 (0, a), Amaxy = y(4) −
(gy′)′, where a > 0 and g ∈ C1[0, a] is a real value function.

For y ∈ W 2
4 (0, a), let

y[0] = y (4.25)

y[1] = y′ (4.26)

y[2] = y′′ (4.27)

y[3] = y(3) − gy′ (4.28)

y[4] = y(4) − (gy′)′ (4.29)

Then

y[0]′ = y′ = y[1] (4.30)

y[1]′ = y′′ = y[2] (4.31)

y[2]′ = y(3). (4.32)

But

y(3) = y[3] + gy′

= y[3] + gy[1]
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So

y[2]′ = y[3] + gy[1].

y[3]′ = (y(3) − gy′)′

= y(4) − (gy′)′

= y[4].

Therefore

y[0]′ = y[1] (4.33)

y[1]′ = y[2] (4.34)

y[2]′ = y[3] + gy[1] (4.35)

y[3]′ = y[4] (4.36)

So 


y[0]′

y[1]′

y[2]′

y[3]′




=




y[1]

y[2]

gy[1] + y[3]

y[4]




=




0 1 0 0

0 0 1 0

0 g 0 1

0 0 0 0







y[0]

y[1]

y[2]

y[3]




+




0

0

0

y[4]




.

Let

Z4(0, a) := {Q = (qrs)
4
r,s=1 ∈ M4(Lloc(0, a)),

qr,r+1 invertible a.e. for 1 ≤ r ≤ 3,

qr,s = 0 for 2 ≤ r + 1 < s ≤ 3}. (4.37)

Let

A0 =




0 1 0 0

0 0 1 0

0 g 0 1

0 0 0 0




.
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Then

A0 ∈ Z4(0, a).

Let C be the matrix defined by

C = ((−1)rδr,5−s)
4
r,s=1,

where δ is the Kronecker delta.

Then

C =




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0




.

Let

B(Y, Z) = 〈AY, Z〉 − 〈Y, AZ〉

where

Y =




y[0]

y[1]

y[2]

y[3]




, Z =




z[0]

z[1]

z[2]

z[3]




and y, z ∈ D(Amax).

Then according to Möller and Zettl [15]

B(Y, Z) = Z∗
RDYR, (4.38)

where

D = i4


C 0

0 −C


 , YR =


Y (0)

Y (a)


 and ZR =


Z(0)

Z(a)


 .
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4.4 The Self-adjoint Boundary Conditions

Let A1, E and B1 be the following 4× 4 matrices:

A1 =




a11 a12 a13 a14

a21 a22 a23 a24

0 0 0 0

0 0 0 0




, E =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




, and B1 =




0 0 0 0

0 0 0 0

b11 b12 b13 b14

b21 b22 b23 b24




,

where aij, bkl, i, k ∈ {1, 2}, j, l ∈ {1, 2, 3, 4}, are complex numbers.

Note that

E∗ = E, E2 = I and EB1 =




b11 b12 b13 b14

b21 b22 b23 b24

0 0 0 0

0 0 0 0




.

Then

A1CA∗
1 =




a11 a12 a13 a14

a21 a22 a23 a24

0 0 0 0

0 0 0 0







0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0







a11 a21 0 0

a12 a22 0 0

a13 a23 0 0

a14 a24 0 0




=




a14 −a13 a12 −a11

a24 −a23 a22 −a21

0 0 0 0

0 0 0 0







a11 a21 0 0

a12 a22 0 0

a13 a23 0 0

a14 a24 0 0




=




a14a11 − a13a12 + a12a13 − a11a14 a14a21 − a13a22 + a12a23 − a11a24 0 0

a24a11 − a23a12 + a22a13 − a21a14 a24a21 − a23a22 + a22a23 − a21a24 0 0

0 0 0 0

0 0 0 0




.
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Denoting

α11 = a14a11 − a13a12 + a12a13 − a11a14

α12 = a14a21 − a13a22 + a12a23 − a11a24

α21 = a24a11 − a23a12 + a22a13 − a21a14

α22 = a24a21 − a23a22 + a22a23 − a21a24,

we have

A1CA∗
1 =




α11 α12 0 0

α21 α22 0 0

0 0 0 0

0 0 0 0




. (4.39)

Defining

β11 = b14b11 − b13b12 + b12b13 − b11b14

β12 = b14b21 − b13b22 + b12b23 − b11b24

β21 = b24b11 − b23b12 + b22b13 − b21b14

β22 = b24b21 − b23b22 + b22b23 − b21b24,

we have accordingly

EB1C(EB1)
∗ =




β11 β12 0 0

β21 β22 0 0

0 0 0 0

0 0 0 0



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and therefore

B1CB∗
1 = E(EB1CB∗

1E
∗)E =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0







β11 β12 0 0

β21 β22 0 0

0 0 0 0

0 0 0 0







0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




=




0 0 0 0

0 0 0 0

β11 β12 0 0

β21 β22 0 0







0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




=




0 0 0 0

0 0 0 0

0 0 β11 β12

0 0 β21 β22




.

Proposition 4.20. A1CA∗
1 = B1CB∗

1 if and only if A1CA∗
1 = 0 and B1CB∗

1 = 0.

Proof.

A1CA∗
1 = B1CB∗

1 ⇐⇒ α11 = α12 = α21 = α22 = 0 and β11 = β12 = β21 = β22 = 0

⇐⇒ A1CA∗
1 = 0 and B1CB∗

1 = 0.

Theorem 4.21. Let U = (A1 : B1) have rank 4. Then the operator T (U), defined on W 2
4 (0, a)

by D(T (U)) = {y ∈ W 2
4 (0, a) : UYR = 0} and T (U)y = Amaxy (y ∈ D(T (U))), is self-adjoint

if and only if A1CA∗
1 = B1CB∗

1 .

Proof. According to Theorem 4.19 A1CA∗
1 = B1CB∗

1 and rank(U) = 4 if and only the operator

T (U) is self-adjoint.

Remark 4.22. U has rank 4 if and only if (a11, a12, a13, a14) and (a21, a22, a23, a24) are linearly

independent and (b11, b12, b13, b14) and (b21, b22, b23, b24) are linearly independent.
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4.5 Examples

4.5.1 Properties

Proposition 4.23. Let B1 be the matrix such that EB1 = A1 where A1 is the matrix defined

in Section 4.4. Then A1CA∗
1 = 0 if and only if B1CB∗

1 = 0.

Proof.

B1CB∗
1 = 0 ⇐⇒ EB1CB∗

1E
∗ = 0

⇐⇒ EB1C(EB1)
∗ = 0

⇐⇒ A1CA∗
1 = 0

Remark 4.24.

(A1CA∗
1)
∗ =




α11 α21 0 0

α12 α22 0 0

0 0 0 0

0 0 0 0




.

But

(A1CA∗
1)
∗ = A1C

∗A∗
1 = −A1CA∗

1.

So

α11 = −α11

α12 = −α21

α21 = −α12

α22 = −α22.

Proposition 4.25. Let αij, i, j ∈ {1, 2}, be the entries of matrix A1CA∗
1, see (4.39). Then
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1. α11 = ia and α22 = ib where a, b ∈ R.

2. α21 = −α12.

3. If there exist k, l ∈ R such that ((a14 = ka11 and a24 = ka21) or (a11 = ka14 and a21 =

ka24)) and ((a13 = la12 and a23 = la22) or (a12 = la13 and a22 = la23)), then A1CA∗
1 = 0.

4.5.2 Examples

Let Ai, Bi, i ∈ {1, 2, 3, 4, 5, 6} be the 4 × 4 matrices such that EBi = Ai where Ai, i ∈
{1, 2, 3, 4, 5, 6} are the following matrices:

A1 =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




, A2 =




1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0




, A3 =




1 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0




,

A4 =




0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0




, A5 =




0 1 0 0

0 0 0 1

0 0 0 0

0 0 0 0




, A6 =




0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0




.

As the entries of the matrices Ai, i ∈ {1, 2, 3, 4, 5, 6} are real numbers and α11, α22 are

imaginary pure numbers, then α11 = α22 = 0.

1. For A1CA∗
1,

α12 = 0× 0− 0× 1 + 0× 0− 1× 0 = 0.

Since

α21 = −α12 and α12 = 0 then α21 = 0.

So

A1CA∗
1 = 0 and according to Proposition 4.23 B1CB∗

1 = 0.



CHAPTER 4. SELF-ADJOINT BOUNDARY CONDITIONS INDEPENDENT OF λ 50

2. For A2CA∗
2,

α12 = 0× 0− 0× 0 + 0× 1− 1× 0 = 0.

Since

α21 = −α12 and α12 = 0 then α21 = 0.

So

A2CA∗
2 = 0 and according to Proposition 4.23 B2CB∗

2 = 0.

3. For A3CA∗
3,

α12 = 0× 0− 0× 0 + 0× 0− 1× 1 = −1.

Since

α21 = −α12 and α12 = −1 then α21 = 1.

So

A3CA∗
3 6= 0 and according to Proposition 4.23 B3CB∗

3 6= 0.

4. For A4CA∗
4,

α12 = 0× 0− 0× 0 + 1× 1− 0× 0 = 1.

Since

α21 = −α12 and α12 = 1 then α21 = −1.

So

A4CA∗
4 6= 0 and according to Proposition 4.23 B4CB∗

4 6= 0.

5. For A5CA∗
5,

α12 = 0× 0− 0× 0 + 1× 0− 0× 0 = 0.

Since

α21 = −α12 and α12 = 0 then α21 = 0.

So

A5CA∗
5 = 0 and according to Proposition 4.23 B5CB∗

5 = 0.
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6. For A6CA∗
6,

α12 = 0× 0− 1× 0 + 0× 0− 0× 1 = 0.

Since

α21 = −α12 and α12 = 0 then α21 = 0.

So

A6CA∗
6 = 0 and according to Proposition 4.23 B6CB∗

6 = 0.

Proposition 4.26. Let U be the 4×8 matrices U = (Ai : Bj), where for i, j ∈ {1, 2, 3, 4, 5, 6},
Ai and Bj are the matrices defined at the beginning of this subsection.

• For i, j ∈ {1, 2, 5, 6}, AiCA∗
i = BjCB∗

j = 0 and rank(U) = 4. Then the differential

operators T (U) are self-adjoint.

• For i, j ∈ {3, 4}, AiCA∗
i 6= 0, BjCB∗

j 6= 0. Then for U = (Ai : Bj) where i ∈ {3, 4} and

j ∈ {1, 2, 3, 4, 5, 6}, T (U) are not self-adjoint. This is also the case if U = (Al : Bk),

where l ∈ {1, 2, 3, 4, 5, 6} and k ∈ {3, 4}.



Chapter 5

Self-adjoint Boundary Conditions

Depending On λ

5.1 Introduction

We have presented in the previous chapter boundary conditions corresponding to a self-adjoint

main operator independent of the eigenvalue parameter λ. We present in this chapter a

characterization theorem (Theorem 5.41) for boundary conditions corresponding to a self-

adjoint main operator depending on λ. Boundary conditions depending on the parameter

λ are boundary conditions with at least one equation depending on the eigenvalue λ. We

consider the differential operator MA0 defined by

MA0y = y[4] = y(4) − (gy′)′, (5.1)

where a > 0, g ∈ C1[0, a] is a real value function. The boundary conditions considered in this

chapter are the following separated boundary conditions

B1(λ)y = 0, (5.2)

B2(λ)y = 0, (5.3)

52
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B3(λ)y = 0, (5.4)

B4(λ)y = 0, (5.5)

where the Bj(λ) are constant or depend on λ linearly, and where at least one of the B1(λ),

B2(λ), B3(λ), B4(λ) depends on λ linearly. That is at least one of the equations (5.2)− (5.5)

is of the form y[p](0) + iεαλy[q](0) = 0 or y[p](a) + iεαλy[q](a) = 0, where α > 0, ε = 1 or

ε = −1, 0 ≤ p ≤ 3 and 0 ≤ q ≤ 3. Those of the equations (5.2)− (5.5) which do not depend

on λ are of the form y[p](0) = 0 or y[p](a) = 0.

Here we assume for simplicity that the boundary conditions have a minimal number of terms.

More precisely we assume that either Bj(λ)y = y[pj ](aj) + iεjαλy[qj ](aj) or Bj(λ)y = y[pj ](aj),

where aj = 0 for j = 1, 2 and aj = a for j = 3, 4. Let Θ1 = {s ∈ {1, 2, 3, 4} : Bs(λ)y depends on λ}
and Θ0 = {1, 2, 3, 4}\Θ1. We know that Θ1 6= ∅. Let

k := |Θ1|. (5.6)

From the above assumption on λ-dependence of the boundary conditions it follows that 1 ≤
k ≤ 4. We assume that all the numbers p1, p2, q1 are different if 1 ∈ Θ1 and all the numbers

p1, p2, q1, q2 are different if 2 ∈ Θ1. Similarly, we assume that p3, p4, q3 are different if

3 ∈ Θ1 and p3, p4, q3 , q4 are different if 4 ∈ Θ1. Define

D0y = (εjy
[qj ](aj))j∈Θ1 and A1y = (y[pj ](aj))j∈Θ1 . (5.7)

Theorem 5.41 is used to investigate classes of boundary conditions corresponding to a self-

adjoint main operator with one equation depending on λ, two equations depending on λ, three

equations depending on λ and four equations depending on λ respectively. In Section 5.2, we

give definitions and properties of closed symmetric operators while in Section 5.3 we present

properties for boundary conditions, corresponding to a self-adjoint main operator, depending

on λ. We study in this section symmetric operators, adjoint operators and give characteriza-

tions of boundary conditions corresponding to a self-adjoint main operator depending on the

parameter λ.
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5.2 Closed Symmetric Operators

The following theorem is a part of Theorem 4.3 of [19, page 56].

Theorem 5.1. Let H1 and H2 be normed spaces. Let T be an operator from H1 into H2.

We have

sup {||Tf || : f ∈ D(T ), ||f || ≤ 1} = sup {||Tf || : f ∈ D(T ), ||f || = 1}
= sup {||Tf || : f ∈ D(T ), ||f || < 1}

(where the value ∞ is allowed). T is bounded if and only if one of these values is finite; if

one is finite, then the others are finite, also, and they are equal to ||T ||.

The following theorem is Theorem 4.15 of [19, page 70].

Theorem 5.2. Let H1 and H2 be Hilbert spaces. A subset G of H1 ×H2 is the graph of an

operator from H1 into H2 if and only if G is a subspace possessing the following property:

(0, g) ∈ G implies g = 0.

Each subspace of a graph is a graph.

The following definition can be found in Section 5.1 of [19, page 88].

Definition 5.3. Let H1 and H2 be Hilbert spaces. Let T be an operator from H1 into H2.

1. T is said to be closed if its graph G(T ) = {(f, Tf) : f ∈ D(T )} is closed in H1 ×H2.

2. T is said to be closable if G(T ) is a graph, where G(T ) is the closure of G(T ).

The following proposition can be found in Section 5.1 of [19, page 88].

Proposition 5.4. Let H1 and H2 be Hilbert spaces. Let T be an operator from H1 into H2.
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1. T is closed if and only if the following holds: If (fn) is a sequence in D(T ) that is

convergent in H1 and the sequence (Tfn) is convergent in H2, then we have lim fn ∈
D(T ) and T (lim fn) = lim Tfn.

2. T is closable if and only if the following holds: If (fn) is a sequence in D(T ) such that

fn → 0, and the sequence (Tfn) in H2 is convergent, then we have lim Tfn = 0.

3. If T is closable, then

D(T ) = {f ∈ H1 : there exists a sequence (fn) from D(T ) such that fn → f, for which

(Tfn) is convergent},

Tf = lim Tfn for f ∈ D(T ) defines a closed operator T , called the closure of the operator

T .

4. If T is closed, then N(T ) is closed.

5. If T is injective, then T is closed if and only if T−1 is closed.

The following theorem is Theorem 5.2. of Section 5.1 of [19, page 89].

Theorem 5.5. Every bounded operator is closable. A bounded operator T is closed if and

only if D(T ) is closed. If T is bounded, then we have D(T ) = D(T ); The closure T is the

bounded extension of T onto D(T ).

The following theorem is Theorem 5.3. of Section 5.1 of [19, page 89].

Theorem 5.6. Let H1 and H2 be Hilbert spaces. Let T be a densely defined operator from H1

into H2 and T ∗ be the adjoint operator of the operator T .

1. T ∗ is closed.

2. T is closable if and only T ∗ is densely defined; we then have T = T ∗∗.
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3. If T is closable, then (T )∗ = T ∗.

The following theorem is a part of Theorem 5.13. of [8, page 234].

Theorem 5.7. Let X, Y be two Banach spaces and T ∈ C (X, Y ) where C (X,Y ) is the set

of all closed linear operators from X to Y . Let us assume that T is densely defined so that

the adjoint operator T ∗ exists and belongs to C (Y ∗, X∗), where X∗ and Y ∗ are respectively the

adjoint spaces of X and Y . Then

• R(T )⊥ = N(T ∗).

• R(T ∗)⊥ = N(T ).

• If dim(X) < ∞, then R(T ∗) = (N(T ))⊥.

The following definition can be found in Section 8.1 of [19, page 230].

Definition 5.8. Let T be a closed symmetric operator on a complex Hilbert space H and

N+ = N(i− T ∗) = R(−i− T )⊥,

N− = N(−i− T ∗) = R(i− T )⊥.

Then N+ and N− are called the deficiency spaces of T and the numbers m+ = dim N+,

m− = dim N− are respectively called the defect index of T and −i, the defect index of T and

i.

The following theorem is Theorem 8.11. of [19, page 237].

Theorem 5.9. (The first formula of von Neumann). Let T be a closed symmetric operator

on a complex Hilbert space. Then

D(T ∗) = D(T )⊕N+ ⊕N−,

T ∗(f0 + g+ + g−) = Tf0 + ig+ − ig− for f0 ∈ D(T ), g+ ∈ N+, g− ∈ N−.
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The following theorem is Theorem 8.12. of [19, page 238].

Theorem 5.10. (The second formula of von Neumann). Let T be a closed symmetric operator

on a complex Hilbert space. Then

(i) S is a closed symmetric extension of T if and only if the following holds:

There are closed subspaces F+ of N+ and F− of N− and an isometric mapping V of F+

onto F− such that

D(S) = D(T ) + {g + V g : g ∈ F+}

and

S(f0 + g + V g) = Tf0 + ig − iV g

= T ∗(f0 + g + V g) forf0 ∈ D(T ), g ∈ F+.

(ii) S is self-adjoint if and only if F+ = N+ and F− = N−.

The following theorem is Theorem 8.13. of [19, page 239].

Theorem 5.11. Let T be a closed symmetric operator on a complex Hilbert space and let S

be a closed symmetric extension of T .

(i) S is an m-dimensional extension if and only if F+ is m-dimensional.

(ii) If T has defect indices (m,m), then a symmetric extension S of T is self-adjoint if and

only if S is an m-dimensional extension of T .

5.3 Self-adjoint Boundary Conditions Depending on λ

Recall that 1 ≤ k ≤ 4. Define

l = 4− k. (5.8)
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Clearly, 0 ≤ l ≤ 3.

Let Amax be the maximal differential operator associated with the boundary value problem

for (5.1) and those boundary conditions from (5.2) - (5.5) which depend on λ. The operator

Amax is defined on L2(0, a)× Ck by Amax =


MA0 0

A1 0


, with domain

D(Amax) =



Y =


 y

D0y


 , y ∈ W 2

4 (0, a)



 .

It follows from (5.7) that there are two k × 8 matrices V0 and V1 such that V0YR = D0y and

V1YR = A1y, where D0 and A1 are as defined in Section 5.1.

5.3.1 Symmetric Operators

For Y, Z ∈ D(Amax),

〈AmaxY, Z〉 = (MA0y, z) + (V1YR, V0ZR)

and

〈Y,AmaxZ〉 = (y, MA0z) + (V0YR, V1ZR),

where

(V1YR, V0ZR) = Z∗
RV ∗

0 V1YR

and

(V0YR, V1ZR) = Z∗
RV ∗

1 V0YR.

Then

B(Y, Z) = 〈AmaxY, Z〉 − 〈Y, AmaxZ〉
= (MA0y, z) + (V1YR, V0ZR)− (y, MA0z)− (V0YR, V1ZR)

= (MA0y, z)− (y,MA0z) + (V1YR, V0ZR)− (V0YR, V1ZR)
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= (MA0y, z)− (y,MA0z) + Z∗
RV ∗

0 V1YR − Z∗
RV ∗

1 V0YR

= (MA0y, z)− (y,MA0z) + Z∗
R(V ∗

0 V1 − V ∗
1 V0)YR.

But (MA0y, z)− (y, MA0z) = Z∗
RDYR, see (4.38), where

D = i4


C 0

0 −C


 , C = ((−1)rδr,5−s)

4
r,s=1,

and δ is the Kronecker delta. So

B(Y, Z) = Z∗
RDYR + Z∗

R(V ∗
0 V1 − V ∗

1 V0)YR.

= Z∗
R(D + (V ∗

0 V1 − V ∗
1 V0))YR.

Let

W = D + (V ∗
0 V1 − V ∗

1 V0). (5.9)

Then B(Y, Z) = Z∗
RWYR is the Lagrange identity.

Proposition 5.12. V0 and V1 are two k × 8 matrices of rank k, V ∗
0 and V ∗

1 are two 8 × k

matrices of rank k. Then V ∗
0 V1 and V ∗

1 V0 are two 8× 8 matrices of rank k, V ∗
0 V1 − V ∗

1 V0 is

an 8× 8 matrix of rank 2k and the matrix W is an 8× 8 matrix of rank at least 8− 2k.

Proof. Each non-zero entry of V0 is coefficient of a coordinate of YR which is factor of the

eigenvalue λ of a boundary condition, while each non-zero entry of V1 is a coordinate of YR

which is not a factor of the eigenvalue λ. Also the equations of the boundary conditions

depending on λ are such that y[p](0) + iεαλy[q](0) = 0 or y[p](a) + iεαλy[q](a) = 0, where

p 6= q. Therefore each of the positions of non-zero entries of the matrix V0 is different from the

positions of the non-zero entries of the matrix V1. As the number k is the number of boundary

conditions depending on λ, then each of the matrices V0 and V1 has exactly k non-zero entries.

Let

Θ1 = {θ1, · · · , θk}, p̃i =





pi + 1 if i = 1, 2

pi + 5 if i = 3, 4
and q̃i =





qi + 1 if i = 1, 2

qi + 5 if i = 3, 4
. (5.10)
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Then

V0 =
(
εθi

δj,eqθi

)
i=1,··· ,k; j=1,··· ,8

and V1 =
(
δj,epθi

)
i=1,··· ,k; j=1,··· ,8

, (5.11)

where δ is the Kronecker symbol.

Hence

V ∗
0 =

(
εθj

δi,eqθj

)
i=1,··· ,8; j=1,··· ,k

, V ∗
1 =

(
δi,epθj

)
i=1,··· ,8; j=1,··· ,k

, (5.12)

and

V ∗
0 V1 =

(
k∑

s=1

εθsδi,eqθs
δj,epθs

)8

i,j=1

=
k∑

s=1

(εθsδi,eqθs
δj,epθs

)8
i,j=1. (5.13)

The non-zero entries of the matrix V ∗
0 V1 are at positions row index q̃θs , column index p̃θs

with s = 1, · · · , k. All the numbers p1, p2, q1 if 1 ∈ Θ1 are different and all the numbers

p1, p2, q1, q2 if 2 ∈ Θ1 are different. Also all the numbers p3, p4, q3 if 3 ∈ Θ1 and q4 if 4 ∈ Θ1

are different. Thus the numbers p̃θs , q̃θs , s = 1, · · · , k are different. Therefore there are k

different row indices q̃θs and k different column indices p̃θs for the matrix V ∗
0 V1. As there are

k different row indices q̃θs and k different column indices p̃θs for the matrix V ∗
0 V1, then the

non-zero entries of the matrix V ∗
0 V1 are on k different rows and k different columns. Thus

rank V ∗
0 V1 = k. The matrix

V ∗
1 V0 =

(
k∑

s=1

εθsδi,epθs
δj,eqθs

)8

i,j=1

=
k∑

s=1

(εθsδi,epθs
δj,eqθs

)8
i,j=1

is the transposed of V ∗
0 V1, so the non-zero entries of the matrix V ∗

1 V0 are at positions row

index p̃θs , column index q̃θs with s = 1, · · · , k and rank V ∗
1 V0 = k.

Clearly,

V ∗
0 V1 − V ∗

1 V0 =
k∑

s=1

εθs(δi,eqθs
δj,epθs

)8
i,j=1 −

k∑
s=1

εθs(δi,epθs
δj,eqθs

)8
i,j=1

=
k∑

s=1

εθs(δi,eqθs
δj,epθs

− δi,epθs
δj,eqθs

)8
i,j=1. (5.14)

As the non-zero entries of V ∗
0 V1 are at the positions row indices q̃θs , column indices p̃θs and the

non-zero entries of V ∗
1 V0 are at the position indices p̃θs , column indices q̃θs , with s = 1, · · · , k,
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then the non-zero entries of the matrix V ∗
0 V1 − V ∗

1 V0 are at positions row index q̃θs , column

index p̃θs and row index p̃θs , column index q̃θs with s = 1, · · · , k. So the non-zero entries of

V ∗
0 V1 − V ∗

1 V0 are at positions row indices qθs + 1, column indices pθs + 1, row indices pθs + 1,

column indices qθs + 1 if θs = 1, 2 and row indices qθs + 5, column indices pθs + 5, row indices

pθs + 5, column indices qθs + 5 if θs = 3, 4 with s = 1, · · · , k. But all the numbers p1, p2, q1

if 1 ∈ Θ1 and q2 if 2 ∈ Θ1 are different, also all the numbers p3, p4, q3 if 3 ∈ Θ1 and q4 if

4 ∈ Θ1 are different, see Section 5.1. Thus all the numbers p̃θs , q̃θs , s = 1, · · · , k are different.

Hence the non-zero entries of V ∗
0 V1− V ∗

1 V0 are on 2k different rows and 2k different columns.

Therefore rank(V ∗
0 V1 − V ∗

1 V0) = 2k and

8− 2k ≤ rank W. (5.15)

Remark 5.13. Let Θ
(0)
1 = Θ1 ∩{1, 2} and Θ

(a)
1 = Θ1 ∩{3, 4}. The matrix V ∗

0 V1− V ∗
1 V0 can

be written

V ∗
0 V1 − V ∗

1 V0 =


V2 0

0 V3


 ,

where

V2 =
∑

θs∈Θ
(0)
1

εθs(δi,qθs+1δj,pθs+1 − δi,pθs+1δj,qθs+1)

and

V3 =
∑

θs∈Θ
(a)
1

εθs(δi,qθs+1δj,pθs+1 − δi,pθs+1δj,qθs+1).

Proposition 5.14. rank W = 8− 2k if and only if the following conditions hold:

1. for θs ∈ Θ1, pθs + qθs = 3,

2. for θs ∈ Θ
(0)
1 , εθs = (−1)qθs ,

3. for θs ∈ Θ
(a)
1 , εθs = (−1)qθs+1.
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Proof. By definition of W rank W = 8− 2k if and only if rank(D + (V ∗
0 V1− V ∗

1 V0)) = 8− 2k.

Since (V ∗
0 V1−V ∗

1 V0) has rank 2k, see Proposition 5.12 and D is invertible and both V ∗
0 V1−V ∗

1 V0

and D have at most one non-zero element in each row and each column, it follows that

rank W = 8 − 2k if and only if the 2k non-zero entries of V ∗
0 V1 − V ∗

1 V0 cancel 2k non-zero

entries of D at the corresponding positions row indices q̃θs , column indices p̃θs , and row indices

p̃θs column indices q̃θs , θs ∈ Θ1, see (5.10).

But

D =


C 0

0 −C


 and V ∗

0 V1 − V ∗
1 V0 =


V2 0

0 V3


 .

So rank W = 8 − 2k if and only if the non-zero entries of V2 cancel some non-zero entries of

C at the corresponding positions row indices qθs + 1, column indices pθs + 1, and row indices

pθs + 1 column indices qθs + 1, θs ∈ Θ
(0)
1 and the non-zero entries of V3 cancel some non-zero

entries of −C at the corresponding positions row indices qθs + 1, column indices pθs + 1, and

row indices pθs + 1 column indices qθs + 1, θs ∈ Θ
(a)
1 .

The non-zero entries of C and −C are on rows i and columns j such that i + j = 5. Then

rank W = 8− 2k if and only if





(pθs + 1) + (qθs + 1) = 5,

(−1)qθs+1δqθs+1,pθs+1 + εθsδi,qθs+1δj,pθs+1 = 0

(−1)pθs+1δpθs+1,qθs+1 − εθsδi,pθs+1δj,qθs+1 = 0

if θs ∈ Θ
(0)
1

and





(pθs + 1) + (qθs + 1) = 5,

−(−1)qθs+1δqθs+1,pθs+1 + εθsδi,qθs+1δj,pθs+1 = 0,

(−1)pθs+1δpθs+1,qθs+1 + εθsδi,pθs+1δj,qθs+1 = 0,

if θs ∈ Θ
(a)
1 .



CHAPTER 5. SELF-ADJOINT BOUNDARY CONDITIONS DEPENDING ON λ 63

So

rank W = 8− 2k if and only if





pθs + qθs = 3, if θs ∈ Θ1,

(−1)qθs+1 + εθs = 0, (−1)pθs+1 − εθs = 0, if θs ∈ Θ
(0)
1 ,

(−1)pθs+1 + εθs = 0, (−1)qθs + εθs = 0, if θs ∈ Θ
(a)
1 .

if and only if





pθs + qθs = 3, if θs ∈ Θ1,

εθs = (−1)qθs , εθs = (−1)pθs+1 = (−1)4−qθs = (−1)qθs

if θs ∈ Θ
(0)
1 ,

εθs = (−1)qθs+1, εθs = (−1)pθs = (−1)3−qθs = (−1)qθs+1

if θs ∈ Θ
(a)
1 ,

if and only if





pθs + qθs = 3, if θs ∈ Θ1,

εθs = (−1)qθs , if θs ∈ Θ
(0)
1 ,

εθs = (−1)qθs+1, if θs ∈ Θ
(a)
1 .

Remark 5.15. As

D =


C 0

0 −C


 then D∗ =


C∗ 0

0 −C∗


 ,

but

C∗ = (−1)4+1C = −C so D∗ =


−C 0

0 C


 = −D.

Then

W ∗ = (D + (V ∗
0 V1 − V ∗

1 V0))
∗

= D∗ + (V ∗
0 V1)

∗ − (V ∗
1 V0)

∗

= −D + V ∗
1 V0 − V ∗

0 V1

= −(D + (V ∗
0 V1 − V ∗

1 V0)) = −W.

Let

Θ0 = {σ1, · · · , σl}, p̃σi
=





pσi
+ 1 if i = 1, 2

pσi
+ 5 if i = 3, 4
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Then

U = (δepσi ,j
)i=1,··· ,l; j=1,··· ,8. (5.16)

The following system of equations

Bi(λ)y = 0 for i ∈ Θ0 (5.17)

can be written UYR = 0, where U is the l × 8 matrix with l = 4 − k defined in (5.16). Let

T (U) be the operator defined on D(Amax) such that

D(T (U)) =



Y =


 y

D0y


 , y ∈ W 2

4 (0, a) and UYR = 0





and

T (U)Y = AmaxY (Y ∈ D(T (U))).

It follows from Section 5.1 that

D(T (U)) =



Y =


 y

D0y


 , y ∈ W 2

4 (0, a), y[pj ](θj) = 0 for j ∈ Θ0



 (5.18)

and

(T (U))Y =


 y[4]

A1y


 where Y ∈ D(T (U)). (5.19)

The system (5.17) is a system of l linear equations indedependent of λ. The system (5.17)

is also linearly independent, since if y[pi](ai) = 0 and y[pj ](aj) = 0 are two equations of the

system (5.17), then either pi = pj and ai 6= aj or pi 6= pj. Therefore rank U = l.

Remark 5.16. Let Y ∈ D(Amax). Then Y ∈ D(T (U)) if and only if YR ∈ N(U), where

YR =


Y1(0)

Y1(a)


 and Y1 is as defined in (4.8).

Proposition 5.17. The differential operator T (U) is symmetric if and only if for all Y, Z ∈
D(T (U)), B(Y, Z) = Z∗

RWYR = 0.
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Proof. The differential operator T (U) is symmetric if and only if 〈T (U)Y, Z〉 = 〈Y, T (U)Z〉
for all Y, Z ∈ D(T (U)).

But 〈T (U)Y, Z〉 = 〈Y, T (U)Z〉 for all Y, Z ∈ D(T (U)) if and only if 〈T (U)Y, Z〉−〈Y, T (U)Z〉 =

0 for all Y, Z ∈ D(T (U)). Also B(Y, Z) = Z∗
RWYR. Since B(Y, Z) = 〈T (U)Y, Z〉−〈Y, T (U)Z〉

for all Y, Z ∈ D(T (U)), then T (U) is symmetric if and only if B(Y, Z) = 0 for Y, Z ∈
D(T (U)).

Thus T (U) is symmetric if and only if Z∗
RWYR = 0 for all Y, Z ∈ D(T (U)).

Theorem 5.18. The operator T (U) is symmetric if and only if

W (N(U)) ⊂ (N(U))⊥ = R(U∗).

Proof.

Z∗
RWYR = 0 for YR, ZR ∈ N(U) ⇐⇒ (WYR, ZR) = 0 for YR, ZR ∈ N(U)

⇐⇒ ZR⊥WYR for YR, ZR ∈ N(U)

⇐⇒ N(U)⊥W (N(U))

⇐⇒ W (N(U)) ⊂ (N(U))⊥.

But according to Theorem 5.7 (N(U))⊥ = R(U∗).

So Z∗
RWYR = 0 for YR, ZR ∈ N(U) ⇐⇒ W (N(U)) ⊂ (N(U))⊥ = R(U∗).

Corollary 5.19. If rank(U) = 4− k and T (U) is symmetric, then rank(W ) = 2(4− k).

Proof. Let rank(W ) = h.

Since

rank(U) = 4− k

then

dim(N(U)) = 8− (4− k) = 4 + k (5.20)
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and

dim(N(U))⊥ = 8− (4 + k) = 4− k. (5.21)

Since

W (N(U)) ⊂ N(U)⊥,

then

dim(W (N(U))) ≤ dim((N(U))⊥) = 4− k.

On the other hand, since dim N(W ) = 8− h, it follows that

dim(W (N(U))) ≥ 4 + k − (8− h) = −4 + k + h.

Thus

−4 + k + h ≤ dim(W (N(U))) ≤ 4− k. (5.22)

Hence

h = rank(W ) ≤ 2(4− k). (5.23)

It follows from (5.15) and (5.23) that if rank(U) = 4 − k and T (U) is symmetric, then

rank(W ) = 2(4− k).

Corollary 5.20. If rank(U) = 4−k and rank(W ) > 2(4−k) then T (U) cannot be symmetric.

Proof. If rank(U) = 4 − k and T (U) is symmetric then rank(W ) ≤ 2(4 − k). Therefore if

rank(U) = 4− k and rank(W ) > 2(4− k), then T (U) cannot be symmetric.

Proposition 5.21. Let rank W = 8 − 2k and rank U = 4 − k, where 1 ≤ k ≤ 4. Then

dim N(W ) ≤ dim N(U).

Proof. dim N(U) = 4 + k, see (5.20) and

dim N(W ) = 8− (8− 2k) = 2k. (5.24)

Since 1 ≤ k ≤ 4, then 2k ≤ 4 + k. Hence dim N(W ) ≤ dim N(U).
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Theorem 5.22. Let rank W = 8 − 2k and rank U = 4 − k. Then T (U) is symmetric if and

only if W (N(U)) = R(U∗).

Proof. Let h = 8− 2k.

1. If T (U) is symmetric, then according to Theorem 5.18

W (N(U)) ⊂ (N(U))⊥ = R(U∗). (5.25)

On the other hand (5.22) gives

dim W (N(U)) = 4− k. (5.26)

So it follows from (5.21), (5.25) and (5.26) that W (N(U)) = R(U∗).

2. Conversely if W (N(U)) = R(U∗), then W (N(U)) ⊂ R(U∗). And it follows from Theo-

rem 5.18 that T (U) is symmetric.

Recall that W is defined by (5.9) and that U has the representation defined in (5.16)

Theorem 5.23. Assume that rank(W ) = 2(4 − k) where 1 ≤ k ≤ 4, X = (N(W ))⊥,

WX = pXWiX where iX : X ↪→ C8 and pX : C8 → X are respectively the canonical injection

of X into C8 and the orthogonal projection of C8 onto X. Let U be the matrix of rank l = 4−k

defined in (5.16), and put UX = UiX . Then the differential operator T (U) is symmetric if and

only if UXWXU∗
X = 0.

Remark 5.24. Let 1 ≤ k ≤ 3. Then WX is the 2(4−k)×2(4−k) matrix derived from W by

removing the 2k 0’s rows q̃θs , p̃θs and the 2k 0’s columns p̃θs , q̃θs , s = 1, · · · , k of the matrix

W . Thus WX is the matrix obtained from D by removing the corresponding 2k rows q̃θs , p̃θs

and 2k columns p̃θs , q̃θs , s = 1, · · · , k. Therefore WX = pXDiX . And it follows that

WX = C0 or WX =


C1 0

0 −C2


 ,
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where

C0 ∈ {C1, C2} and C1, C2 ∈





0 −1

1 0


 ,


 0 1

−1 0


 , C



 .

For k = 4, we have WX = 0.

Proposition 5.25. Let X = (N(W ))⊥, where rank W = 8 − 2k with 1 ≤ k ≤ 4. Then

D(X) ⊂ X.

Proof. We know that X = N(W )⊥ = {x ∈ C8 : xi = 0 for i ∈ {p̃θs , q̃θs , s = 1, · · · , k}}. For

x ∈ C8, (Dx)i = ±xj, where i+ j = 5 for i = 1, · · · , 4 and i+ j = 13 for i = 5, · · · , 8. Now let

x ∈ X. If i = p̃θs and j = q̃θs , then (Dx)i = ±xj = 0, for s = 1, · · · , k. Similarly (Dx)i = 0

for i = q̃θs and j = p̃θs , s = 1, · · · , k. Therefore D(X) ⊂ X.

Proposition 5.26. Let 1 ≤ k ≤ 3 and rank(WX) = 8− 2k. Then

1. W ∗
X = −WX .

2. W ∗
X = W−1

X .

Proof. Let 1 ≤ k ≤ 3 and rank(WX) = 8− 2k. Then

1. WX = pXDiX .

So

W ∗
X = (pXDiX)∗ = i∗XD∗p∗X .

But

i∗X = pX , p∗X = iX and D∗ = −D.

Thus

W ∗
X = pX(−D)iX = −pXDiX = −WX .
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2. Let W̃X = pXD−1iX . Then

W̃X = pXD∗iX = i∗XD∗p∗X = (pXDiX)∗ = W ∗
X .

Let u ∈ X. Then

W̃XWX(u) = (pXD−1iXpXDiX)(u).

Since u ∈ X and iX : X ↪→ C8 is the canonical injection of X into C8, then iX(u) ∈
iX(X) ⊂ C8. As D(X) ⊂ X see (5.25), then D(iX(u)) ∈ iX(X). But for all v ∈
iX(X), iXpX(v) = v. So iXpXDiX(u) = DiX(u) for all u ∈ X. Then iXpXDiX = DiX .

Hence W̃XWX(u) = pXD−1DiX(u) = pXiX(u). As iX : X ↪→ C8 is the canonical

injection of X into C8 and pX : C8 → X is the canonical projection of C8 onto X,

then pX(iX(u)) = u. Thus W̃XWX(u) = u. Since this is true for all u ∈ X, then

W̃XWX = IX . Hence W−1
X = W̃X . As W̃X = W ∗

X , then W−1
X = W ∗

X .

Proposition 5.27. N(U) = N(UX)⊕N(W ), where U is the matrix defined in (5.16).

Proof. x ∈ N(UX) ⇐⇒ UiXx = 0 ⇐⇒ iXx ∈ N(U). So

N(U) ⊃ N(UX)⊕ {0}. (5.27)

But

N(W ) = {x ∈ C8 : xi = 0 for i /∈ {p̃θs , q̃θs , s = 1, · · · , k}} (5.28)

and

N(U) = {x ∈ C8 : xi = 0 : i ∈ {p̃σj
, j = 1, · · · , l}}. (5.29)

Let x ∈ N(W ) and i ∈ {1, · · · , 8} such that i = p̃σj
, where σj ∈ Θ0 for j ∈ {1, · · · , l}, see

(5.16). Since σj ∈ Θ0 for j ∈ {1, · · · , l}, then σj /∈ Θ1 for j ∈ {1, · · · , l}. Thus i = p̃σj
/∈

{p̃θs , q̃θs , s = 1, · · · , k}. As x ∈ N(W ) and i /∈ {p̃θs , q̃θs , s = 1, · · · , k}, then xi = 0. Thus

x ∈ N(U). Therefore

N(W ) ⊂ N(U). (5.30)
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It follows from (5.27) and (5.30) that

N(U) ⊃ N(UX)⊕N(W ). (5.31)

We know that dim N(U) = 4 + k, see (5.20), dim N(W ) = 2k, see (5.24). But

dim N(UX) = 8− 2k − l = 4− k. (5.32)

Then

dim N(UX) + dim N(W ) = 4 + k. (5.33)

It follows from (5.20), (5.31) and (5.33) that

N(U) = N(UX)⊕N(W ). (5.34)

Proposition 5.28. Let 1 ≤ k ≤ 3 and l = 4 − k. Then the differential operator T (U) is

symmetric if and only if WX(N(UX)) = R(U∗
X).

Proof. Since dim N(W ) = 2k, see (5.24), then

dim X = dim N(W )⊥ = 8− 2k. (5.35)

So

dim N(UX)⊥ = 8− 2k − (4− k) = 4− k. (5.36)

We know that dim N(UX) = 4− k, see (5.32). Since WX is invertible, then

dim WX(N(UX)) = dim N(UX) = 4− k. (5.37)

(=⇒) For y, z ∈ N(UX), we have (WXy, z) = (pXWiXy, z) = (WiXy, iXz). For all y, z ∈
N(UX), iXy, iXz ∈ N(U) and (WiXy, iXz) = 0, see Theorem 5.18. So

z∗WXy = 0 (5.38)
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for all y, z ∈ N(UX). Whence

WX(N(UX)) ⊂ N(UX)⊥. (5.39)

And it follows from (5.36), (5.37) and (5.39) that

WX(N(UX)) = N(UX)⊥. (5.40)

Therefore if T (U) is symmetric, then WX(N(UX)) = N(UX)⊥ = R(U∗
X).

(⇐=)

C8 = N(W )⊥ ⊕N(W ) = X ⊕N(W ).

From the definition of WX , W =


WX 0

0 0


, where the block decomposition is with respect

to X ⊕N(W ). By Proposition 5.27,

x, y ∈ N(U) =⇒





x =


 u

xW


 ∈ X ⊕N(W ), u ∈ N(UX)

y =


 v

yW


 ∈ X ⊕N(W ), v ∈ N(UX).

So for x, y ∈ N(U),

(Wx, y) = y∗Wx =
(
v∗ y∗W

)

WX 0

0 0





 u

xW




=
(
v∗ y∗W

)

WXu

0




= v∗WXu.

Since u, v ∈ N(UX), then v∗WXu = 0, see (5.38). So (Wx, y) = 0. Hence W (N(U)) ⊂
N(U)⊥ = R(U∗). Therefore T (U) is symmetric by Theorem 5.18.

Proof. ( of Theorem 5.23) We have l = 4− k.
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1. Let k = 4.

(i) Since k = 4, then l = 0, U = 0 and W = 0. So UX = 0 and WX = 0. Therefore

UXWXU∗
X = 0.

(ii) Let UXWXU∗
X = 0. Since k = 4, then rank W = rank U = 0 and so W = 0 and

U = 0. Thus Z∗
RWYR = 0. Therefore, according to Proposition 5.17, T (U) is

symmetric.

2. (i) (=⇒) As 1 ≤ k ≤ 3 and l = 4− k, then according to Proposition 5.28

T (U) is symmetric if and only if WX(N(UX)) = R(U∗
X).

But according to Proposition 5.26

W−1
X = W ∗

X = −WX .

Then as l = 4− k,

T (U) is symmetric if and only if W−1
X WX(N(UX)) = W−1

X R(U∗
X).

So

T (U) is symmetric if and only if N(UX) = W−1
X R(U∗

X). (5.41)

But

W−1
X R(UX) = R(−WXU∗

X) = R(WXU∗
X). (5.42)

Thus if follows from (5.41) and (5.42) that

T (U) is symmetric if and only if N(UX) = R(WXU∗
X). (5.43)

Therefore, if

T (U) is symmetric, then UXWXU∗
X = 0.

(ii) (⇐=) If UXWXU∗
X = 0, then

N(UX) ⊃ R(WXU∗
X). (5.44)
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dim N(UX)⊥ = 4− k see (5.36) and R(U∗
X) = N(UX)⊥ see Theorem 5.7. Then

dim R(U∗
X) = dim N(UX)⊥ = 4− k. (5.45)

Since WX is invertible, then it follows from (5.45) that

dim R(WXU∗
X) = dim R(U∗

X) = 4− k. (5.46)

But dim N(UX) = 4 − k see (5.32), thus it follows from (5.44) and (5.46) that

N(UX) = R(WXU∗
X). Therefore, according (5.43), T (U) is symmetric.

5.3.2 Adjoint Operators

The matrix U considered in this subsection is the matrix U defined in (5.16).

Theorem 5.29. Let A∗
max be the adjoint of the maximal operator Amax. Let Z =


z

d


 ,


u

v


 ∈

L2(0, a)× Ck. Then Z ∈ D(A∗
max) and A∗

maxZ =


u

v


 if and only if

1. z ∈ W 2
4 (0, a), u = MA0z.

2. D∗ZR + V ∗
1 d− V ∗

0 v = 0.

Proof. Let Z =


z

d


 ∈ D(A∗

max) and A∗
maxZ =


u

v


.

(=⇒)
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1.

Amax : L2(0, a)× Ck → L2(0, a)× Ck

W 2
4 (0, a)× Ck 3 Y =


 y

D0y


 →


MA0y

A1y




A∗
max : L2(0, a)× Ck → L2(0, a)× Ck

Z =


z

d


 → A∗

maxZ =


u

v




where u ∈ L2(0, a) and v ∈ Ck.

Let Y =


y

0


, where y ∈ C∞

0 (0, a), then Y ∈ D(Amax). Let Z =


z

d


 ∈ D(A∗

max).

Then

(MA0y, z) = 〈AmaxY, Z〉
= 〈Y, A∗

maxZ〉
= (y, u)C∞0 (0,a).

Since Z =


z

d


 ∈ D(A∗

max), then according to Proposition 3.5

z ∈ W 2
4 (0, a) and u = MA0z. (5.47)

Let Y =


 y

D0y


 ∈ D(Amax), then

〈AmaxY, Z〉 − 〈Y, A∗
maxZ〉 = (MA0y, z) + (V1YR, d)− (y,MA0z)− (V0YR, v)

= (MA0y, z)− (y,MA0z) + (V1YR, d)− (V0YR, v)

But (MA0y, z)− (y, MA0z) = Z∗
RDYR, see (4.38). So

〈AmaxY, Z〉 − 〈Y,A∗
maxZ〉 = Z∗

RDYR + d∗V1YR − v∗V0YR

= (Z∗
RD + d∗V1 − v∗V0)YR
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Since A∗
max is the adjoint of Amax, then 〈AmaxY, Z〉 − 〈Y,A∗

maxZ〉 = 0 for all Y ∈
D(Amax). So

(Z∗
RD + d∗V1 − v∗V0)YR = 0 for all Y ∈ D(Amax).

Then

Y ∗
R(D∗ZR + V ∗

1 d− V ∗
0 v) = 0 for all Y ∈ D(Amax). (5.48)

But, for all c ∈ C8, there exists a polynomial y ∈ W 2
4 (0, a), such that Y =


 y

D0y


 ∈

D(Amax) and

c = YR. (5.49)

Thus, it follows from (5.48) and (5.49) that

c∗(D∗ZR + V ∗
1 d− V ∗

0 v) = 0 for all c ∈ C8.

Therefore

D∗ZR + V ∗
1 d− V ∗

0 v = 0. (5.50)

(⇐=)

Let z ∈ W 2
4 (0, a), u = MA0z and D∗ZR + V ∗

1 d− V ∗
0 v = 0. Since D∗ZR + V ∗

1 d− V ∗
0 v = 0, then

Y ∗
R(D∗ZR + V ∗

1 d − V ∗
0 v) = 0 for all Y ∈ D(Amax). So (Z∗

RD + d∗V1 − v∗V0)YR = 0 for all

Y ∈ D(Amax).

But

(Z∗
RD + d∗V1 − v∗V0)YR = Z∗

RDYR + d∗V1YR − v∗V0YR

= (MA0y, z)− (y, MA0z) + (V1YR, d)− (V0YR, v)

= (MA0y, z) + (V1YR, d)− (y, MA0z)− (V0YR, v)

= (MA0y, z) + (V1YR, d)− (y, u)− (V0YR, v)

= 〈AmaxY, Z〉 − 〈Y, V 〉
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where

V =


u

v


 .

Since D∗ZR + V ∗
1 d − V ∗

0 v = 0, then 〈AmaxY, Z〉 − 〈Y, V 〉 = 0. Thus Z ∈ D(A∗
max) and

V = A∗
maxZ.

Proposition 5.30. Let V0 and V1 be two k × 8 matrices of rank k. Then

1. The maps

V ∗
0 : Ck → C8

v → V ∗
0 v

and

V ∗
1 : Ck → C8

d → V ∗
1 d

are injective.

2. R(V ∗
0 ) ∩R(V ∗

1 ) = {0}.

Proof. 1. Since V0 and V1 are two k × 8 matrices of rank k 6= 0, then V ∗
0 and V ∗

1 are two

8× k matrices of rank k 6= 0. The maps

V ∗
0 : Ck → C8

v → V ∗
0 v

and

V ∗
1 : Ck → C8

d → V ∗
1 d

are two linear maps. Since V ∗
0 and V ∗

1 are linear and rank V ∗
0 = rank V ∗

1 = k, then



CHAPTER 5. SELF-ADJOINT BOUNDARY CONDITIONS DEPENDING ON λ 77

dim R(V ∗
0 ) = dim R(V ∗

1 ) = k. (5.51)

Thus V ∗
0 and V ∗

1 are injective.

2. Since V0 and V1 are two k×8 matrices of rank k, then V ∗
0 and V ∗

1 are two 8×k matrices

of rank k. Thus dim(R(V ∗
0 ) + R(V ∗

1 )) ≤ 2k. But R(V ∗
0 V1 − V ∗

1 V0) ⊂ R(V ∗
0 ) + R(V ∗

1 ).

So dim R(V ∗
0 V1 − V ∗

1 V0) ≤ dim(R(V ∗
0 ) + R(V ∗

1 )) ≤ 2k. According to Proposition 5.12,

V ∗
0 V1 − V ∗

1 V0 is a 8 × 8 matrix of rank 2k, so dim R(V ∗
0 V1 − V ∗

1 V0) = 2k. Thus 2k ≤
dim(R(V ∗

0 ) + R(V ∗
1 )) ≤ 2k, then dim(R(V ∗

0 ) + R(V ∗
1 )) = dim R(V ∗

0 ) + dim R(V ∗
1 ) = 2k.

Hence R(V ∗
0 ) ∩R(V ∗

1 ) = {0}.

Proposition 5.31. For all v ∈ Ck and d ∈ Ck there is z ∈ W 2
4 (0, a) such that −DZR +V ∗

1 d−
V ∗

0 v = 0.

Proof. For all v ∈ Ck and d ∈ Ck, V ∗
0 v ∈ C8 and V ∗

1 d ∈ C8. So V ∗
0 v − V ∗

1 d ∈ C8. Since D is

an 8× 8 matrix, then D(V ∗
0 v− V ∗

1 d) ∈ C8. Thus there exists a polynomial z ∈ W 2
4 (0, a) such

that

ZR = D(V ∗
0 v − V ∗

1 d). (5.52)

Since D is invertible and D−1 = −D, it follows from (5.52) that

−DZR + V ∗
1 d− V ∗

0 v = 0. (5.53)

Proposition 5.32. Amax is densely defined.

Proof. Let W =


w

c


 ∈ L2(0, a) ⊕ Ck, such that 〈Y,W 〉 = 0, for all Y ∈ D(Amax). Let

y ∈ C∞
0 (0, a). Then Y =


y

0


 ∈ D(Amax) and 0 = 〈Y, W 〉 = (y, w)C∞0 (0,a). So w = 0.
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Let c = (ci)i∈Θ1 . There exists a polynomial yi such that y
[qi]
i (θi) 6= 0 and y

[qj ]
i (θj) = 0 for

j ∈ Θ1, j 6= i, where 0 ≤ qi ≤ 3 and 0 ≤ qj ≤ 3. Then Y ∈ D(Amax) and

〈Y, W 〉 = (V0YR, c)

= c∗V0YR

= ciy
[qi]
i (θi).

Since 〈Y, W 〉 = 0, then ciy
[qi]
i (θi) = 0. As y

[qi]
i (θi) 6= 0, then ci = 0. Since ci = 0 for all i ∈ Θ1,

then c = 0. As w = 0, then W =


w

c


 =


0

0


. So D(Amax)

⊥ = {0}. Therefore Amax is

densely defined.

Corollary 5.33. A∗
max is a closed operator.

Proof. Since Amax is densely defined, then according to Theorem 5.6 A∗
max is a closed operator.

Proposition 5.34. A∗
max is densely defined.

Proof. Let W =


w

c


 ∈ L2(0, a)⊕ Ck, such that 〈Z, W 〉 = 0 for all Z ∈ D(A∗

max).

Let z ∈ C∞
0 (0, a). Then Z =


z

0


 ∈ D(A∗

max) and 0 = 〈Z,W 〉 = (z, w)C∞0 (0,a). Therefore

w = 0. (5.54)

Let d ∈ Ck. Then according to Proposition 5.31, for all v ∈ Ck, there exists z ∈ W 2
4 (0, a) such

that D∗ZR + V ∗
1 d− V ∗

0 v = 0 since D∗ = −D.

In particular, for all d ∈ Ck and v = 0 there exists a polynomial z such that


z

d


 ∈ D(A∗

max).

Then 

d :


z

d


 ∈ D(A∗

max)



 = Ck. (5.55)
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But, since w = 0 see (5.54), then

0 = 〈Z,W 〉 = (c, d) = c∗d (5.56)

for all d ∈ Ck, such that there exists z and


z

d


 ∈ D(A∗

max).

Whence (5.55) and (5.56) imply

c∗d = 0 for all d ∈ Ck. (5.57)

Thus

c = 0. (5.58)

Then (5.54) and (5.58) give W = 0. Therefore A∗
max is densely defined.

Proposition 5.35. Let Z =


z

d


 ∈ D(A∗∗

max), then z ∈ W 2
4 (0, a) and there exists c ∈ Ck,

such that A∗∗
maxZ =


MA0z

c


.

Proof. Since Z =


z

d


 ∈ D(A∗∗

max), then according to Definition 2.15, there exists W =


w

c


 ∈ L2(0, a)⊕ Ck such that

〈A∗
maxY, Z〉 = 〈Y, W 〉 for all Y ∈ D(A∗

max). (5.59)

Let Y =


y

0


 ∈ C∞

0 (0, a)⊕ {0}. Then Y ∈ D(A∗
max), so

〈A∗
maxY, Z〉 = (MA0y, z)

= (y(4) − (gy′)′, z). (5.60)

Since z ∈ L2(0, a), then according to (3.11), (5.60) gives

(y(4) − (gy′)′, z) = (y, z(4) − (gz′)′)C∞0 (0,a). (5.61)
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As Y =


y

0


 ∈ C∞

0 (0, a), then

〈Y, W 〉 = (y, w)C∞0 (0,a). (5.62)

Thus (5.61) and (5.62) imply

z(4) − (gz′)′ = w ∈ L2(0, a). (5.63)

It follows from (3.12), (3.17) and (5.63) that z ∈ W 2
4 (0, a). Thus w = MA0z.

Proposition 5.36. The differential operator Amax is closed.

Proof. Let Z =


z

d


 ∈ D(A∗∗

max), such that A∗∗
maxZ =


p

q


. Then according to Proposition

5.35, z ∈ W 2
4 (0, a) and p = MA0z.

Let Y =


y

c


 ∈ D(A∗

max) such that A∗
maxY =


u

v


, then, according to Theorem 5.29,

u = MA0y and D∗YR + V ∗
1 c− V ∗

0 v = 0. (5.64)

So

〈A∗
maxY, Z〉 − 〈Y, A∗∗

maxZ〉 = (MA0y, z) + (v, d)− (y, MA0z)− (c, q)

= (MA0y, z)− (y, MA0z) + (v, d)− (c, q). (5.65)

But (MA0y, z)− (y, MA0z) = Z∗
RDYR, see (4.38). Thus (5.65) gives

〈A∗
maxY, Z〉 − 〈Y, A∗∗

maxZ〉 = Z∗
RDYR + d∗v − q∗c. (5.66)

Since A∗∗
max is the adjoint of A∗

max, then

〈A∗
maxY, Z〉 − 〈Y, A∗∗

maxZ〉 = 0.

Thus

Z∗
RDYR + d∗v − q∗c = 0. (5.67)
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But (5.64) gives

Z∗
RD∗YR + Z∗

RV ∗
1 c− Z∗

RV ∗
0 v = 0 ⇐⇒ −Z∗

RDYR + Z∗
RV ∗

1 c− Z∗
RV ∗

0 v = 0. (5.68)

Then (5.67) and (5.68) imply

(Z∗
RV ∗

1 − q∗)c− (Z∗
RV ∗

0 − d∗)v = 0. (5.69)

for all c, v ∈ Ck.

For v = 0, (5.69) gives

(Z∗
RV ∗

1 − q∗)c = 0 (5.70)

for all c ∈ Ck. Thus, it follows from (5.70) that

q = V1ZR. (5.71)

For c = 0, (5.69) gives

(Z∗
RV ∗

0 − d∗)v = 0 (5.72)

for all v ∈ Ck. Hence (5.72) gives

d = V0ZR (5.73)

It follows from (5.71) and (5.73) that

Z ∈ D(Amax) and A∗∗
maxZ = AmaxZ. (5.74)

Since (5.74) holds for all Z ∈ D(A∗∗
max), then

A∗∗
max ⊂ Amax. (5.75)

Since A∗
max is densely defined (see Propositon 5.34) and Amax is densely defined (see Propo-

sition 5.32), then according to Theorem 5.6 A∗∗
max is an extension of Amax. So

Amax ⊂ A∗∗
max. (5.76)
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Thus (5.75) and (5.76) give

Amax = A∗∗
max. (5.77)

Since A∗
max is densely defined (see Proposition 5.34), then according to Theorem 5.6 A∗∗

max is

closed. Therefore (5.77) imply that Amax is closed.

Proposition 5.37. Assume that D(A∗
max) ⊂ D(Amax). Then codimD(Amax) D(A∗

max) = 8−2k.

Proof. The map

V ∗
0 : Ck → C8

v → V ∗
0 v

is injective (see Proposition 5.30).

R(V ∗
0 ) ⊕ R(V ∗

0 )⊥ = C8. So dim R(V ∗
0 ) + dim R(V ∗

0 )⊥ = dimC8 = 8. Hence codim R(V ∗
0 ) =

dim R(V ∗
0 )⊥ = 8− dim R(V ∗

0 ) = 8− k.

According to Proposition 5.31, for all v ∈ Ck and d ∈ Ck, there is z ∈ W 2
4 (0, a) such that

−DZR + V ∗
1 d− V ∗

0 v = 0. So for all d ∈ Ck and for all v ∈ Ck, there exists z ∈ W 2
4 (0, a), such

that V ∗
0 v = −DZR + V ∗

1 d. Let h be the map such that

h : D(A∗
max) −→ C8

Z =


z

d


 → −DZR + V ∗

1 d.

Since D is invertible, then the map

D(A∗
max) −→ C8

Z =


z

d


 → −DZR

is surjective. Therefore h is surjective.

Whence

codimW 2
4 (0,a)×Ck D(A∗

max) = codimC8 R(V ∗
0 ) = 8− k. (5.78)



CHAPTER 5. SELF-ADJOINT BOUNDARY CONDITIONS DEPENDING ON λ 83

We recall that D(Amax) =



Y =


 y

D0y


 , y ∈ W 2

4 (0, a)



 where D0y = V0YR, with V0 a k×8

matrix and YR a 8× 1 matrix defined by YR =


Y (0)

Y (a)


, with

Y =




y[0]

y[1]

y[2]

y[3]




.

So D0y is a k×1 matrix defined only by y, where y ∈ W 2
4 (0, a). Thus D(Amax)⊕({0}×Ck) =

W 2
4 (0, a)× Ck. Therefore

codimW 2
4 (0,a)×Ck D(Amax) = dim({0} × Ck) = k. (5.79)

Then (5.78) and (5.79) give codimD(Amax) D(A∗
max) = 8− k − k = 8− 2k.

Theorem 5.38. Let A∗
max be the adjoint of the maximal operator Amax and W = (D+(V ∗

0 V1−
V ∗

1 V0)). Then the followings are equivalent

1. A∗
max is symmetric,

2. rank W = 8− 2k,

3. D(N(W )) ⊃ R(D −W ).

Proof. 1. (1 =⇒ 2) Let A∗
max be symmetric.

Let Z =


z

d


 ∈ D(Amax). Then according to Theorem5.29

Z ∈ D(A∗
max) if and only if D∗ZR + V ∗

1 d− V ∗
0 v = 0,
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where A∗
maxZ =


u

v


. Since A∗

max is symmetric, then D(A∗
max) ⊂ D(Amax) and

A∗
maxZ = AmaxZ. So d = V0ZR and v = V1ZR. Then

Z ∈ D(A∗
max) ⇐⇒ D∗ZR + V ∗

1 V0ZR − V ∗
0 V1ZR = 0

⇐⇒ (−D + V ∗
1 V0 − V ∗

0 V1)ZR = 0

⇐⇒ −WZR = 0

⇐⇒ ZR ∈ N(W ).

But according to Theorem 5.7 N(W ) = R(W )⊥. As R(W )⊥ ⊕ R(W ) = C8, then

N(W )⊕R(W ) = C8. As the map

D(Amax) −→ C8

Z −→ ZR

is surjective then codimC8 N(W ) = codimD(Amax) D(A∗
max) = 8 − 2k, see Proposition

5.37. But codimC8 N(W ) = rank W . Therefore rank W = 8 − 2k. Whence if A∗
max is

symmetric, then rank W = 8− 2k.

2. (2 =⇒ 3) Let rank W = 8− 2k.

Let B = D −W = −(V ∗
0 V1 − V ∗

1 V0). Write

B : R(B)⊕R(B)⊥ → R(B)⊕R(B)⊥,

where

B =


B11 B12

B21 B22




and

C8 = R(B)⊕R(B)⊥.

According to Theorem 5.7 R(B)⊥ = N(B∗). But B∗ = −(V ∗
0 V1 − V ∗

1 V0)
∗ = −(V ∗

0 V1 −
V ∗

1 V0) = −B. So R(B)⊥ = N(−B) = N(B). Let
(
u, v

)
∈ R(B) ⊕ R(B)⊥. Then
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B


0

v


 =


B12v

B22v


 . As v ∈ N(B), then B12v = 0 and B22v = 0, thus B12 = 0 and

B22 = 0. So B =


B11 0

B21 0


 . Therefore B


u

v


 =


B11u

B21u


. But B


u

v


 ∈ R(B),

so B21u ∈ R(B) ∩ R(B)⊥ = {0}. Thus B21u = 0. As u ∈ R(B) was arbitrary, then

B21 = 0. Therefore B =


B11 0

0 0


.

Let D =


D11 D12

D21 D22


. Then

WD−1 =





I 0

0 I


 +


B11 0

0 0





D11 D12

D21 D22







=


I + B11D11 B11D12

0 I


 ,

where I is the identity matrix in the corresponding spaces.

As rank W = 8− 2k and D is invertible, then rank WD−1 = 8− 2k. Since rank B = 2k,

then dim R(B)⊥ = 8 − 2k. Thus rank IR(B)⊥ = 8 − 2k. As rank WD−1 = 8 − 2k and

rank IR(B)⊥ = 8− 2k, then I + B11D11 = 0. So WD−1 =


0 B11D12

0 I


 . Thus

WD−1(D −W ) = WD−1B =


0 B11D12

0 I





B11 0

0 0




=


0 0

0 0


 .

Therefore WD−1(D −W ) = 0.
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But

WD−1(D −W ) = 0 ⇐⇒ N(W ) ⊃ R(D−1(D −W ))

⇐⇒ N(W ) ⊃ D−1R(D −W )

⇐⇒ D(N(W )) ⊃ R(D −W ).

Hence

D(N(W )) ⊃ R(D −W ).

3. (3 =⇒ 1)

Let Z =


z

d


 ∈ D(A∗

max) such A∗
maxZ =


u

v


 . Then according to Theorem 5.29,

z ∈ W 2
4 (0, a), u = MA0z and D∗ZR + V ∗

1 d− V ∗
0 v = 0. So

DZR = V ∗
1 d− V ∗

0 v since D∗ = −D. (5.80)

Let

B̂ : Ck ⊕ Ck → C8


x

y


 → B̂


x

y


 = V ∗

1 x− V ∗
0 y.

Since rank V ∗
0 = rank V ∗

1 = k, then

dim R(B̂) ≤ 2k. (5.81)

Let w ∈ C8, x = V0w and y = V1w. Then Bw = V ∗
1 V0w− V ∗

0 V1w = V ∗
1 x− V ∗

0 y ∈ R(B̂).

So

R(B) ⊂ R(B̂). (5.82)

As dim R(B) = 2k, it follows from (5.81) and (5.82) that R(B) = R(B̂). Since d, v ∈ Ck,

then

V ∗
0 v − V ∗

1 d ∈ R(B). (5.83)
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Whence (5.80) implies that

ZR = D(V ∗
0 v − V ∗

1 d) ∈ DR(B). (5.84)

Since D(N(W )) ⊃ R(B), then N(W ) ⊃ D−1R(B) = −DR(B). Thus

N(W ) ⊃ DR(B). (5.85)

Whence (5.84) and (5.85) imply that WZR = 0. So DZR +V ∗
0 V1ZR−V ∗

1 V0ZR = 0. Then

DZR = V ∗
1 V0ZR − V ∗

0 V1ZR. (5.86)

It follows from (5.80) and (5.86) that V ∗
1 d− V ∗

0 v = V ∗
1 V0ZR − V ∗

0 V1ZR. So

V ∗
1 (d− V0ZR) = V ∗

0 (v − V1ZR) ∈ R(V ∗
1 ) ∩R(V ∗

0 ) = {0} (5.87)

see (2) of Proposition 5.30. Thus

V ∗
1 (d− V1ZR) = 0 and V ∗

0 (v − V1ZR) = 0. (5.88)

As V ∗
1 and V ∗

0 are injective see (1) of Proposition 5.30, then

d = V0ZR and v = V1ZR. (5.89)

Since z ∈ W 2
4 (0, a) and u = MA0z, then Z =


z

d


 ∈ D(Amax) and A∗

maxZ = AmaxZ.

Therefore A∗
max is symmetric.

Corollary 5.39. Let A∗
max be the adjoint of the maximal operator Amax. If rank W = 8− 2k,

then A∗
max = Amin and A∗

min = Amax where Amin denotes the minimal operator.

Proof. If rank W = 8 − 2k, then according to Theorem 5.38 A∗
max is symmetric. Since A∗

max

is symmetric, then according to Proposition 4.10 A∗
max = Amin and Amax = A∗

min.
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Corollary 5.40. Let rank W = 8 − 2k and U be the matrix defined in (5.16). Then the

differential operator T (U) is closed.

Proof. A∗
max is a closed operator, see Proposition 5.36. Amax is a closed operator, see Corollary

5.33. Since rank W = 8−2k, then A∗
max is symmetric see Theorem 5.38. Then A∗

max ⊂ T (U) ⊂
Amax see (4.19) and Corollary 5.39. Thus codimD(T (U)) D(A∗

max) ≤ codimD(Amax) D(A∗
max).

But codimD(Amax) D(A∗
max) = 8−2k, see Proposition 5.37. So codimD(T (U)) D(A∗

max) ≤ 8−2k.

Then codimD(T (U)) D(A∗
max) < ∞. Since A∗

max is a closed operator and codimD(T (U)) D(A∗
max) <

∞, then T (U) is a closed operator.

Theorem 5.41. Assume that rank(W ) = 2(4 − k) where 1 ≤ k ≤ 4, X = (N(W ))⊥,

WX = pXWiX where iX : X ↪→ C8 and pX : C8 → X are respectively the canonical injection

of X into C8 and the orthogonal projection of C8 onto X. Let U be the matrix of rank l

defined in (5.16), UX = UiX . Then the differential operator T (U) is self-adjoint if and only

if and UXWXU∗
X = 0.

Proof. 1. Let k = 4. Then l = 0 and therefore T (U) is self-adjoint, see (1) of the proof of

Theorem 5.23.

2. Let 1 ≤ k ≤ 3. Since rank(W ) = 2(4 − k), then A∗
max = Amin, see Corollary 5.39.

Thus the differential operator T (U) is a closed operator with Amin ⊂ T (U) ⊂ Amax, see

Corollary 5.40.

As rank W = 8− 2k, then

codimD(Amax) D(Amin) = 8− 2k (5.90)

see Proposition 5.37.

(=⇒)

If T (U) is self-adjoint, then T (U) is an l = 4 − k dimensional extension of Amin, see

(2) of Proposition 4.11. Also T (U) is symmetric, so UXWXU∗
X = 0 see Theorem 5.23.

Therefore, if T (U) is self-adjoint, then UXWXU∗
X = 0.
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(⇐=) If UXWXU∗
X = 0, then, according to Theorem 5.23, T (U) is symmetric.

Note that for all Y ∈ D(Amax), Y ∈ D(T (U)) if and only if YR ∈ N(U), where

YR =


Y (0)

Y (a)


 ∈ C8, see Remark 5.16 . But dim N(U) = 4 + k, see (5.20). So

codimC8 N(U) = 8− (4 + k) = 4− k. As the map

D(Amax) −→ C8

Z −→ ZR

is surjective, then

codimD(Amax) D(T (U)) = codimC8 N(U)

= 4− k.

Hence it follows from (5.90) that codimD(Amax) D(T (U)) = 4 − k =
codimD(Amax) D(Amin)

2
.

Whence if l = 4− k and UXWXU∗
X = 0, then T (U) is an l = 4− k symmetric extension

of Amin. Therefore according to (3) of Proposition 4.11 T (U) is self-adjoint.

5.3.3 Characterization of self-adjoint boundary conditions depend-

ing on λ

Remark 5.42. It follows from (1) of the proof of Theorem 5.41 that if l = 0, then T (U) is

self-adjoint.

Remark 5.43. Let Ψ0 = {1, · · · , 8}\{p̃i, q̃i : i ∈ Θ1}. For i = 1, · · · , l, p̂σi
is the position

of p̃σi
in Ψ0 if Ψ0 is ordered in increasing order. Then UX = (δp̂σi ,j

) where i = 1, · · · , l and

j = 1, · · · , 2l. Thus

U∗
X = (δi,p̂σj

) where i = 1, · · · , 2l and j = 1, · · · , l (5.91)
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Recall that

WX =
l∑

s=1

(εσsδi,rsδts,j − εσsδi,tsδrs,j)
8−2k
i,j=1, (5.92)

where εσs is as defined in Proposition 5.14.

Then

UXWXU∗
X =

2l∑
i=1

2l∑
j=1

l∑
s=1

(εσs(δp̂σu ,i(δi,rsδts,j − δi,tsδrs,j)δj,p̂σv
))l

u,v=1

= (
2l∑

i=1

2l∑
j=1

l∑
s=1

εσsδp̂σu ,iδi,rsδts,jδj,p̂σv
−

2l∑
i=1

2l∑
j=1

l∑
s=1

εσsδp̂σu ,iδi,tsδrs,jδj,p̂σv
)l
u,v=1

= (
l∑

s=1

εσsδp̂σu ,rsδts,p̂σv
−

l∑
s=1

εσsδp̂σu ,tsδrs,p̂σv
)l
u,v=1

=
l∑

s=1

(εσs(δp̂σu ,rsδts,p̂σv
− δp̂σu ,tsδrs,p̂σv

))l
u,v=1 (5.93)

since
2l∑

i=1

δp̂σu ,iδi,rs = δp̂σu ,rs and
2l∑

j=1

δrs,jδj,p̂σv
= δrs,p̂σv

.

Corollary 5.44. Assume that rank(W ) = 2(4 − k) where 1 ≤ k ≤ 3, X = (N(W ))⊥,

WX = pXWiX where iX : X ↪→ C8 and pX : C8 → X are respectively the canonical injection

of X into C8 and the orthogonal projection of C8 onto X. Let U be the matrix of rank l

defined in (5.16), UX = UiX . Then the differential operator T (U) is self-adjoint if and only

if
l∑

s=1

(εσs(δp̂σu ,rsδts,p̂σv
− δp̂σu ,tsδrs,p̂σv

))l
u,v=1 = 0. (5.94)

Proof. It follows from (5.93) and Theorem 5.41 that T (U) is self-adjoint if and only if

l∑
s=1

(εσs(δp̂σu ,rsδts,p̂σv
− δp̂σu ,tsδrs,p̂σv

))l
u,v=1 = 0

.



CHAPTER 5. SELF-ADJOINT BOUNDARY CONDITIONS DEPENDING ON λ 91

Corollary 5.45. Assume that rank(W ) = 2(4 − k) where 1 ≤ k ≤ 3, X = (N(W ))⊥,

WX = pXWiX where iX : X ↪→ C8 and pX : C8 → X are respectively the canonical injection

of X into C8 and the orthogonal projection of C8 onto X. Let U be the matrix of rank l

defined in (5.16), UX = UiX . Then the differential operator T (U) is self-adjoint if and only

if for all i = 1, · · · , l

#({p̂σj
: j = 1, · · · , l} ∩ {ri, ti}) = 1. (5.95)

Proof. By assumption, rank U = l, see (5.16).

(=⇒) If
∑l

s=1(εσs(δp̂σu ,rsδts,p̂σv
− δp̂σu ,tsδrs,p̂σv

))l
u,v=1 = 0, then δp̂σu ,rsδts,p̂σv

− δp̂σu ,tsδrs,p̂σv
= 0

for all s = 1, · · · , l, u = 1, · · · , l and v = 1, · · · , l, where the 2l numbers rs, ts (s = 1, · · · , l)

are pairwise different. So if p̂σu = rs, then p̂σv 6= ts. Thus at most one of the number p̂σj
,

j = 1, · · · , l is in {ri, ti}, i = 1, · · · , l. Since there are l number of sets {ri, ti}, i = 1, · · · , l

and l number of p̂σj
, j = 1, · · · , l, then at leat one number p̂σj

, j = 1, · · · , l is in {ri, ti},
i = 1, · · · , l. Hence #({p̂σj

: j = 1, · · · , l} ∩ {ri, ti}) = 1.

(⇐=) If for all i = 1, · · · , l #({p̂σj
: j = 1, · · · , l}∩{ri, ti}) = 1, then δp̂σj ,ri

δti,p̂σj
−δp̂σj ,tiδri,p̂σj

=

0 for all i = 1, · · · , l and j = 1, · · · , l. So δp̂σu ,ri
δti,p̂σv

− δp̂σu ,tiδri,p̂σv
= 0 for all i = 1, · · · , l,

u = 1, · · · , l and v = 1, · · · , l. Whence

l∑
s=1

(εσs(δp̂σu ,rsδts,p̂σv
− δp̂σu ,tsδrs,p̂σv

))l
u,v=1 = 0.

Therefore it follows from Corollary 5.45 that T (U) is self-adjoint if and only if l = 4− k and

#({p̂σj
: j = 1, · · · , l} ∩ {ri, ti}) = 1.

Theorem 5.46. Assume that rank(W ) = 2(4 − k) where 1 ≤ k ≤ 3, X = (N(W ))⊥,

WX = pXWiX where iX : X ↪→ C8 and pX : C8 → X are respectively the canonical injection

of X into C8 and the orthogonal projection of C8 onto X. Let U be the matrix of rank l = 4−k

defined in (5.16), UX = UiX .

1. If l = 1, then T (U) is self-adjoint.
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2. If 2 ≤ l ≤ 3, then T (U) is self-adjoint if and only if the following are satisfied:

(i) #({pσj
: j ∈ Θ

(0)
0 } ∩ {0, 3}) ≤ 1 and #({pσj

: j ∈ Θ
(0)
0 } ∩ {1, 2}) ≤ 1

(ii) #({pσj
: j ∈ Θ

(a)
0 } ∩ {0, 3}) ≤ 1 and #({pσj

: j ∈ Θ
(a)
0 } ∩ {1, 2}) ≤ 1.

Proof. We know that l = 4− k with 1 ≤ k ≤ 3. Also note that

{0, 1, 2, 3}\{pθs , qθs , s ∈ Θ
(0)
1 } =: {rθs , tθs : s ∈ Θ

(0)
0 , rθs + tθs = 3} (5.96)

and

{0, 1, 2, 3}\{pθs , qθs , s ∈ Θ
(a)
1 } =: {rθs , tθs : s ∈ Θ

(a)
0 , rθs + tθs = 3}. (5.97)

It follows from (5.95), (5.96) and (5.97) that

#({pσj
: j = 1, · · · , l} ∩ {1, 2}) ≤ 1 and #({pσj

: j = 1, · · · , l} ∩ {0, 3}) ≤ 1. (5.98)

1. If l = 1, then pσ1 = 0 or pσ1 = 1 or pσ1 = 2 or pσ1 = 3. So #(pσ1 ∩ {0, 3}) = 1

or #(pσ1 ∩ {1, 2}) = 1. Whence if l = 1, then according to Corollary 5.45, T (U) is

self-adjoint.

2. If l = 2, then #Θ
(0)
0 = 2 or #Θ

(a)
0 = 2 or #Θ

(0)
0 = 1 and #Θ

(a)
0 = 1.

(2i) If #Θ
(0)
0 = 2, then it follows from Corollary 5.45 that if l = 2, then T (U) is

self-adjoint if and only if {Pi : i ∈ Θ
(0)
0 } 6= {0, 3} and {Pi : i ∈ Θ

(0)
0 } 6= {1, 2}.

Therefore, if #Θ
(0)
0 = 2 and l = 2, then T (U) is self-adjoint if and only if #({pσj

:

j ∈ Θ
(0)
0 } ∩ {0, 3}) ≤ 1 and #({pσj

: j ∈ Θ
(0)
0 } ∩ {1, 2}) ≤ 1.

(2ii) If #Θ
(a)
0 = 2, then it follows from Corollary 5.45 that if l = 2, then T (U)is self-

adjoint if and only if {Pi : i ∈ Θ
(a)
0 } 6= {0, 3} and {Pi : i ∈ Θ

(a)
0 } 6= {1, 2}.

Therefore, if #Θ
(a)
0 = 2 and l = 2, then T (U) is self-adjoint if and only if #({pσj

:

j ∈ Θ
(a)
0 } ∩ {0, 3}) ≤ 1 and #({pσj

: j ∈ Θ
(a)
0 } ∩ {1, 2}) ≤ 1.

(2iii) If #Θ
(0)
0 = 1 and #Θ

(a)
0 = 1, then {Pi : i ∈ Θ

(0)
0 } ∩ {1, 2} ≤ 1 and {Pi : i ∈

Θ
(0)
0 } ∩ {0, 3} ≤ 1, {Pi : i ∈ Θ

(a)
0 } ∩ {1, 2} ≤ 1 and {Pi : i ∈ Θ

(a)
0 } ∩ {0, 3} ≤ 1.
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So either {Pi : i ∈ Θ
(0)
0 } ∩ {1, 2} = 1 or {Pi : i ∈ Θ

(0)
0 } ∩ {0, 3} = 1 and either

{Pi : i ∈ Θ
(a)
0 } ∩ {1, 2} = 1 or {Pi : i ∈ Θ

(a)
0 } ∩ {0, 3} = 1. Thus it follows from

Corollary 5.45 that if l = 2, #Θ
(0)
0 = 1 and #Θ

(a)
0 = 1, then T (U) is self-adjoint.

3. If l = 3, then either #Θ
(0)
0 = 2 and #Θ

(a)
0 = 1 or #Θ

(0)
0 = 1 and #Θ

(a)
0 = 2 .

(3i) If #Θ
(0)
0 = 2 and #Θ

(a)
0 = 1 , then it follows from (1) and (2i) that T (U) is

self-adjoint if and only if #({pσj
: j ∈ Θ

(0)
0 } ∩ {0, 3}) ≤ 1 and #({pσj

: j ∈
Θ

(0)
0 } ∩ {1, 2}) ≤ 1.

(3ii) If #Θ
(0)
0 = 1 and #Θ

(a)
0 = 2, then it follows from (1) and (2ii) that T (U) is

self-adjoint if and only if #({pσj
: j ∈ Θ

(a)
0 } ∩ {0, 3}) ≤ 1 and #({pσj

: j ∈
Θ

(a)
0 } ∩ {1, 2}) ≤ 1.

Corollary 5.47. Let U be the matrix of rank l defined in (5.16) and denote by P0 the set

of p in y[p](0) = 0 for the λ-independent boundary conditions and by Pa the corresponding

set for y[p](a) = 0. Then the differential operator T (U) associated with this boundary value

problem is self-adjoint if and only if p+q = 3 for all boundary conditions of the form y[p](aj)+

iαεjλy[q](aj) = 0 where εj = 1 if (q = 0 and aj = 0) or (q = 2 and aj = 0) or (q = 1 and

aj = a) or (q = 3 and aj = a), εj = −1 otherwise, {0, 3} 6⊂ P0, {1, 2} 6⊂ P0, {0, 3} 6⊂ Pa and

{1, 2} 6⊂ Pa.

Proof. p + q = 3 for all boundary conditions of the form y[p](aj) + iαεjλy[q](aj) = 0 where

εj = 1 if (q = 0 and aj = 0) or (q = 2 and aj = 0) or (q = 1 and aj = a) or (q = 3 and aj = a),

εj = −1 otherwise, if and only if rank(W ) = 8− 2k, see Proposition 5.14.

The above is a necessary condition for T (U) to be self-adjoint. Under this condition, we have

the following two cases:
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1. Ifl = 0, then #({0, 3}∩P0) = 0, #({1, 2}∩P0) = 0, #({0, 3}∩Pa) = 0 and #({1, 2}∩
Pa) = 0 and the differential operator T (U) is self-adjoint, see Remark 5.42.

2. If 1 ≤ l ≤ 3, then it follows from Theorem 5.46 that the differential operator T (U) is

self-adjoint if and only if #({0, 3}∩P0) ≤ 1, #({1, 2}∩P0) ≤ 1, #({0, 3}∩Pa) ≤ 1 and

#({1, 2} ∩ Pa) ≤ 1.

Now the statement of this corollary easily follows.
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