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ABSTRACT

The aim of this dissertation is to determine numerical solutions to

fractional diffusion and fractional Cattaneo equations using finite

difference formula and other defined schemes. The spatial deriva-

tives and time derivatives of integer order are approximated by a

finite difference approximation. Spatial derivatives of fractional or-

der are approximated using the Grünwald formula. Fractional time

derivatives are approximated using the Grünwald-Letnikov defini-

tion of the Riemann-Liouville fractional derivative. The resulting

difference schemes are evaluated using Mathematica.

The results obtained show that the fractional Cattaneo equaions

have propagation and diffusive properties. When the fractional ex-

ponent is 0.1 with the diffusivity coefficient being greater than 0.1

one obtains numerical results that are unstable and display oscilla-

tory behaviour. For other combinations of values, numerical results

are stable and consistent with diffusive behaviour.
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1 Introduction

This chapter serves to provide an overview of anomalous diffusion.

It provides an introduction to the Cattaneo equations and looks

briefly at the application of fractional derivatives in finance.

1.1 Overview

Diffusion is the net movement of particles from an area of higher

concentration to an area of lower concentration, i.e. down a concen-

tration gradient. We say the net movement because the diffusing

particles move randomly between the areas of higher and lower con-

centration.

Since there are more particles present in the higher concentrated

area, more particles leave this area than the lower concentrated area

(Figure 1). The concentration gradient, which is rather high at first,

gradually decreases while the concentration difference reduces, i.e.

until the system reaches equilibrium.

This definition is based on the movement of particles. As an

example of demonstrating diffusion consider a drop of dye placed in

a glass of water (Figure 2). At first the drop is observed clearly as

a drop. We can say that the concentration of dye in that droplet is

higher compared to the surrounding water particles.
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Figure 1: Diffusion of particles down a concentration gradient; from an area of

higher concentration to an area of lower concentration.
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After a period of time has elapsed the whole glass of water is of a

uniform colour - that of the dye. The dye particles have diffused

throughout the medium (the water), until they are evenly dispersed

amongst the water molecules.

Figure 2: Example of the diffusion of dye particles in water.

This definition is analogous to the diffusion of heat. Consider a

thin circular rod of length L and cross-sectional area A (Figure 3).

We refer to the derivation presented by Zill and Cullen [14] of the

diffusion equation when we suppose the following:

• the rod coincides with the x-axis on the interval [0, L],
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• flow of heat within the rod takes place in the x-direction only,

• the lateral and curved surfaces of the rod are insulated,

• no heat is being generated within the rod, and

• the diffusion coefficient is constant.

Zill and Cullen [14] use two empirical laws of heat conduction

Q = γmu, (1.1)

the quantity of heat Q in an element of mass m where u is the

temperature and

Qt = −kAux, (1.2)

the rate of heat flow Qt through the cross-section is proportional to

the area A of the cross-section and the rod with respect to x of the

temperature where the “−” represents heat flow in the direction of

decreasing temperature.

If the cross-section of the rod between x and ∆x is very thin then

u(x, t) is the approximate temperature at each point in the inter-

val [0, L]. If the mass of the cross-section is m = ρ(A∆x), we can

substitute this into equation (1.1) to obtain

Q = γρA∆xu(x, t). (1.3)

Heat flows in the x-direction and builds up in the cross-section at a

net rate

−kAux(x, t)− [−kAux(x+ ∆x, t)] = kA[ux(x+ ∆x, t)− ux(x, t)]

(1.4)
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(energy is conserved). Differentiating equation (1.3) with respect to

t we obtain

Qt = γρA∆xut(x, t). (1.5)

Combining equations (1.2), (1.4) and (1.5) we obtain

γρA∆xut(x, t) = −kA(ux(x, t)− ux(x+ ∆x, t))

⇒ ut(x, t) = (k/γρ)(1/∆x))(ux(x+ ∆x, t)− ux(x, t)). (1.6)

We take the limit of (1.6) as ∆x approaches 0. This yields the

diffusion equation ut(x, t) = Duxx(x, t), where D = (k/γρ) is the

diffusivity constant. We fix the temperature at the end of the rod

giving the boundary condition u(−∞, t) = u(∞, t) = 0

Diffusion of heat is the flow of heat along the rod, from the end

where heat is being transferred, throughout the length of the rod.

The diffusion of heat occurs down a temperature gradient, i.e. heat

moves along the rod from an area of higher temperature to an area

of lower temperature.

When heat is transferred to the rod, energy is being transferred to

the particles of the rod. This excites the particles, causing them to

vibrate. The particles collide with each other, randomly transferring

energy to the next particle. In turn this particle vibrates and trans-

fers energy to the next. As energy is being transferred each particle

experiences a decrease in its energy. Heat energy can be transferred

randomly between the higher and lower temperature area but the

net movement down a temperature gradient is maintained.
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Figure 3: Example illustrating diffusion of heat along a thin rod of length L

and cross-sectional area A.

This random movement of particles is called anomalous (anomalous

meaning irregular) diffusion and is found in many real world systems

such as chemical processing, polymers, in financial modeling and in

the transport of fluids in porous media. This diffusion process can

be reduced to analysing solutions of the phenomenological diffusion

equation

∂tu(x, t) = Duxx(x, t), (1.7)

where u(x, t) denotes the concentration or temperature of the dif-

fusing material and D is the diffusivity constant. D depends on the

diffusing material and the medium it is diffusing through.
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The mechanism of diffusion is Brownian motion. Einstein and Brown

did extensive work on Brownian motion. In Einstein’s first paper on

Brownian motion [17] he predicts that the root mean squared dis-

placement (λx) of suspended particles is proportional to the square

root of time i.e. λx =
√

2Dt (D is the diffusivity coefficient).

Brownian motion is the simplest continuous-time stochastic process

and is also described as the random movement of particles. Each

particle collides with its neighbouring particles. Due to this the mo-

tion of a particle is characterised by a mean free path which tends

to confine the particle. However, the particle is not restored to its

original position [20] and is therefore still free to move about in the

diffusing medium.

The mathematical model for Brownian motion has real world appli-

cations such as the fluctuations in the stock market [24]. Brownian

motion has played an important role in the interpretation of statis-

tical physics.

Continuous time random walks can be coupled with Brownian mo-

tion and fractional calculus to provide an improved estimate in mod-

eling anomalous diffusion. A random walk is a stochastic process

defined as a mathematical formalization of a trajectory where suc-

cessive steps are taken in random directions. It represents the prob-

ability distribution function of the position of a particle at a certain

time which depends on the particles’ position at the previous time
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and a probability rule for its subsequent step length and direction.

The smaller the step size, the closer an approximation a random

walk (which is a discrete fractal) is to Brownian motion (which is a

true fractal) [5].

A continuous time random walk is a stochastic process involving

a particle taking a step or making a jump of random lengths sep-

arated by periods of rest of random lengths. It is characterised

by a probability distribution function to find a random walker at

a certain position and a certain time if it started from the origin

and at time equal to zero [5, 11]. Hence continuous time random

walks are random walks governed by two probability distribution

functions, one for the step length and the other for the waiting time

distribution [11, 21]. As mentioned by Lin and Xu [30], continuous

time random walk schemes are considered in the derivation of time-

fractional differential equations.

When it comes to modeling anomalous diffusion processes fractional

calculus is considered a powerful mathematical tool. Fractional dif-

ferential equations underlie random walks and fractional Brownian

motion and have many applications in finance, computational biol-

ogy and acoustics [10, 27].

If α is a fraction then ∂α/∂tα mirrors the anomalous waiting time

distribution and ∂α/∂xα mirrors a power-law step length distribu-

tion [35]. Lin and Xu [30] also note that the fractional derivative
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represents a degree of memory in the diffusing material. This is

because the whole information of the function is accumulated in a

weighted form. In simpler terms the solution of the probability dis-

tribution function u(x, t) at a certain time within its time interval

depends on the solutions of u(x, t) at all the previous time levels.

This is known as the memory effect.

Anomalous transport processes [42] are characterised by the mean-

square displacement (MSD) of the form〈
x2(t)

〉
∝ tγ. (1.8)

This is due to fractional equations predicting the non-linear increase

of the variance of the distance traveled at a time t [49]. From equa-

tion (1.8) γ is the anomalous diffusion exponent where if 0 < γ < 1

we have subdiffusion, if γ = 1 we have normal diffusion and if

1 < γ < 2 we have superdiffusion. The MSD gives us an idea

of the rate of diffusion of the random walker [5, 12, 44, 49].

In anomalous diffusion particles spread at a rate inconsistent with

the classical Brownian motion model [1, 34]. Lynch et al [44] state

that anomalous diffusion may be a consequence of particles being

trapped in certain positions along a trajectory; this is termed sub-

diffusion and is a process that is slower than normal diffusion. If it

is a case of jets of particles along a trajectory it is termed superdif-

fusion or enhanced diffusion, where in this process diffusion occurs

faster than what the classical model predicts.
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Fick’s law is equivalent to an equation of motion and the inertial

force that is required by Newton’s second law is neglected [32].

Brownian motion is used to approximate the movement of parti-

cles. This is an abstract concept since the length of the process

is infinite and no particle can move an infinite distance in a finite

space of time [17]. Mathematically speaking, the diffusion equation

(1.7) is a parabolic partial differential equation. These factors lead

to the anomalous properties typical of the phenomenological diffu-

sion equation. By this we mean that equation (1.7) models infinite

speeds of propagation.

As a simple example in the diffusion of heat, a sudden change in

temperature made at some point in a body will be felt instantly ev-

erywhere in the body. This is not physical as heat propagates in a

finite time in a finite domain. Joseph and Preziosi [22, 23] indicate

that the diffusion equation is correct only after a sufficiently long

time has passed [18, 19].

The diffusion equation has limited applicability to real systems,

[32] in which anomalous diffusion is present. Examples where it

is present are the percolation of gases, the standard solid-on-solid

model for surface growth and the propagation of thin liquid films

under gravity [27].
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1.2 The Cattaneo equations

Carlo Cattaneo [9] was the first to build an explicit mathematical

theory to correct the non-physical property of infinite propagation

of the Fourier and Fickian theory of the diffusion of heat [6].

In 1948 Cattaneo replaced the constitutive equation J(x, t) = −Dux(x, t)

by

J(x, t) + τ∂tJ(x, t) = −Dux(x, t) (1.9)

to correct the non-physical property of infinite speeds admitted by

parabolic diffusion equations. The change in the constitutive equa-

tion (1.9) yields a hyperbolic diffusion equation or Cattaneo’s equa-

tion:

∂tu(x, t) + τ∂2
t u(x, t) = Duxx(x, t), (1.10)

where τ is a characteristic relaxation time constant and τ � 1.

The definition of the relaxation time is given as the time required for

a system to respond to a change by well-defined external stimuli and

to reach equilibrium. For example until the dye particles have dif-

fused throughout the water, or the particles of the rod slowing down

as energy is passed on from the faster to the slower moving particles.

As a result of the change, equation (1.10) describes diffusion pro-

cesses with finite speeds of propagation. The Cattaneo equation

(1.10) is also known as a telegraph equation. The telegraph equation

is the simplest mathematical model combining waves and diffusion.
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Cattaneo’s equation has many applications and is used extensively

in the theory of viscoelastic fluids and solids, relaxing gas dynamics,

irreversible thermodynamics, cosmological models, finance model-

ing, and in the theory of diffusion in crystalline solids. However, the

Cattaneo equation lacks the ability to capture ballistic transport

processes [8, 9].

Compte and Metzler [12] generalise the Cattaneo equation (1.10)

by introducing fractional derivatives with a CTRW (continuous time

random walk) scheme. In doing so the generalised Cattaneo equa-

tion now describes anomalous transport processes. An introduction

of a fractional derivative and an ad hoc generalisation of the conti-

nuity equation ∂tu(x, t) = −Jx(x, t) relaxes the flux to give

∂γt u(x, t) = −Jx(x, t). (1.11)

Combining this with the modified constitutive equation

J(x, t) + τ γ∂γt J(x, t) = −Dux(x, t), (1.12)

we obtain one form of the generalised Cattaneo equation (GCE)

∂γt u(x, t) + τ γ∂2γ
t u(x, t) = Duxx(x, t) (GCE I), (1.13)

where the Riemann-Liouville definition of the fractional derivative

[40] is:

∂γt u(x, t) = 0D
γ
t u(x, t) =

1

Γ(1− γ)

∂

∂t

∫ t

0

dt′
u(x, t′)

(t− t′)γ
for 0 < γ < 1.

(1.14)

The introduction of τ γ in equation (1.13) keeps the dimensions in

order. The fractional derivative in equation (1.14) is described as a
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non-local operator as its value depends on the entire function u(x, t)

and is thus used in modeling path dependent phenomena. Other

references that may be consulted are [15, 16, 25, 31, 36, 40].

This is one generalisation. There are two other generalisations pro-

posed by Compte and Metzler [12] where their derivations are ex-

plained which have the form:

∂2−γ
t u(x, t) + τ γ∂2

t u(x, t) = Duxx(x, t), (GCE II) (1.15)

∂γt u(x, t) + τ∂1+γ
t u(x, t) = Duxx(x, t). (GCE III) (1.16)

In essence these generalisations are equivalent as they describe anoma-

lous diffusion processes with a finite velocity of propagation.

Exact analytical solutions cannot be found for most nonlinear frac-

tional differential equations. However, we refer to work that applies

the Adomian decomposition method [36, 38, 46] to obtain approx-

imate analytical solutions. The Adomian decomposition approach

adds the value of providing immediate and visible symbolic terms

of analytical solutions, where the solution takes the form of a con-

vergent series.

1.3 Application to finance

Financial markets trade a variety of securities such as foreign ex-

change, equities, bonds, swaps and forwards. These are a few exam-

ples of derivatives. Derivatives are financial instruments that derive

their value from an underlying asset or stock price St.
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When modeling trading derivatives, arbitrage possibilities need to

be taken into account. It also interesting to note that modeling the

prices requires modeling an entire curve over time. A common model

used is the classical Black-Scholes (BS) pricing model proposed by

Black, Scholes and Merton [33, 24, 43]. In this model there are two

assets being traded continuously over a time interval [0, T ].

The BS model:

d(lnSt) = (µ− 1

2
σ2)dt+ σdBt (1.17)

where lnSt follows a random walk, µ is the average compounded

growth of the stock St, dBt is the increment of Brownian motion

which has a Gaussian distribution and σ ≥ 0 is defined as the

volatility of the returns from holding St.

The BS model, being a geometric Brownian motion model for a

stock, is a volatile model and therefore not suitable for many mar-

kets. An improved approach to modeling is rather to make use of

fractional Brownian motion. The incorporation of a Lévy random

walk process into the stock price is another approach to overcome

the short-comings of the BS model. There are three main models

in this area: the LS (Lévy stable) model, the CGMY (CarrGeman-

MadanYor) model and the KoBoL (a Lévy process studied by Ko-

ponen, Boyarchenko, and Levendorskii) model. These models can

be rewritten using fractional derivative operators.

By making use of a Lévy process to derive a model we are actually
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using a combination of two independent processes, namely Brow-

nian motion (also considered as the stochastic component) and a

jump component.

Madan et al [39] introduce the term jump-diffusions to describe

asset returns. What is meant by this term is that diffusion and

jumps (from random walks performed by a random walker or par-

ticle or, in this case, stock price) are important in modeling asset

returns. The role played by diffusion is the capture of frequent but

small moves, whereas jumps capture the rare but large moves of the

random walker. In other words we can say that over a time step ∆t

the stock price St can diffuse or jump to values such as St+∆t which

may not necessarily be close to the initial value St.

Instead of looking at the localized information about the underly-

ing asset, fractional derivatives weigh the information over a range

of values of the underlying asset. In terms of the BS model (1.17)

the jump of a random walker represents the log-returns of the stock

price and the waiting time distributions measure the delay between

transactions.

The price of a European-style option (the simplest type of deriva-

tive) for the BS model satisfies a partial differentiation equation. If

r is the risk-free rate the equation is

∂V (S, t)

∂t
+

1

2
σ2S2∂

2V (S, t)

∂S2
+ rS

∂V (S, t)

∂S
= rV (S, t). (1.18)
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If we make the substitution x = lnSt equation (1.18) can be written

as the diffusion equation

∂V (x, t)

∂t
+

1

2
σ
∂2V (x, t)

∂x2
+ (r − 1

2
σ2)

∂V (x, t)

∂x
= rV (x, t). (1.19)

As previously mentioned this model has certain drawbacks which

are overcome by using a Lévy process and fractional derivatives.

Fractional partial differential equations are used extensively by stochas-

tic modelers because of their generality and the link their solutions

give to almost all stable distributions such as Lévy distributions.

Other references provide extensive detail [24, 26, 28, 29, 33, 43].

Álvaro Cartea and Diego del-Castillo-Negrete [2] explain how Lévy

processes are incorporated in derivative pricing and the use of frac-

tional derivative operators. They look at the three models men-

tioned namely LS, CGMY and KoBoL. However, the fractional par-

tial differential equations all have the standard form

∂V (x, t)

∂t
+ A(x)

∂V (x, t)

∂x
+B(x)

∂α(f(x)V (x, t))

∂+xα

+C(x)
∂α(h(x)V (x, t))

∂−xα
+D(x)V (x, t) = 0.

(1.20)

The left-shifted Grünwald formula

∂α(h(x)V (x, t))

∂−xα
=

1

Γ(−α)
lim
N→inf

1

hα

N∑
k=0

Γ(k − α)

k + 1
f(x+(k−1)h)V (x+(k−1)h, t)

can be used to approximate
∂α(h(x)V (x, t))

∂−xα
.
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The right-shifted Grünwald formula

∂α(h(x)V (x, t))

∂+xα
=

1

Γ(−α)
lim
N→inf

1

hα

N∑
k=0

Γ(k − α)

k + 1
f(x−(k−1)h)V (x−(k−1)h, t)

can be used to approximate
∂α(f(x)V (x, t))

∂+xα
.

This dissertation applies finite difference techniques to fractional

diffusion equations (where the fractional derivative operates on the

spatial variable) and fractional Cattaneo equations (where the frac-

tional derivative operates on the time variable). The numerical so-

lutions are presented graphically, displaying the behaviour of the

solutions over time.

This dissertation is set up as follows. Chapter 2 discusses the deriva-

tion of the phenomenological diffusion equation, as well as the Catta-

neo equations. The last section of Chapter 2 discusses the numerical

schemes for solving the fractional differential equations. Chapters

3 and 4 apply the discussed schemes to the different fractional dif-

fusion and fractional Cattaneo equations. Conclusions and possible

future work are given in Chapter 5.
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2 Derivation of equations and numerical schemes

through discretization

In this chapter we look at the derivations of the phenomenological

diffusion equation, the Cattaneo equation and the first (GCE I), sec-

ond (GCE II) and third (GCE III) generalised Cattaneo equations

[12]. These generalisations are supported by different schemes (con-

tinuous time random walks, non-local transport theory, and delayed

flux-force relation as described by Compte and Metzler [12]) and are

thus derived differently. The last section gives a brief description on

the discretization used in formulating the numerical schemes for the

equations we wish to solve. The definition of the initial condition is

also given.

2.1 The phenomenological diffusion equation

The phenomenological diffusion equation can be derived by substi-

tuting Fick’s first law [12, 13] (which describes steady-state diffu-

sion)

J(x, t) = −Dux(x, t), (2.1)

into the mass balance equation

∂tu(x, t) = −Jx(x, t). (2.2)

Differentiating (2.1) with respect to x we get

∂J(x, t)

∂x
= −D∂

2u(x, t)

∂x2
. (2.3)
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Substituting (2.3) into (2.2) yields

∂u(x, t)

∂x
= −

(
−D∂

2u(x, t)

∂x2

)
. (2.4)

Simplifying (2.4), we arrive at the phenomenological diffusion equa-

tion (also known as Fick’s second law or the heat equation)

∂tu(x, t) = Duxx(x, t).

J(x, t) denotes the flux of the diffusivity component, where flux is

defined as the net movement of the diffusing material per unit area.

u(x, t) denotes the concentration or temperature of the diffusing ma-

terial and D is the diffusivity constant. D depends on the diffusing

material and the medium it is diffusing through.

As mentioned earlier, the phenomenological diffusion equation is a

parabolic partial differential equation and models the non-physical

property of infinite speeds of propagation.

2.2 The Cattaneo equation

In 1948 Cattaneo replaced the constitutive equation (2.1) by

J(x, t) + τ∂tJ(x, t) = −Dux(x, t). (2.5)

This relaxes the flux.
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Differentiating (2.5) with respect to x

Jx(x, t) + τ∂tJx(x, t) = −Duxx(x, t) (2.6)

⇒ Jx(x, t) =
−Duxx(x, t)

(1 + τ∂t)
.

Now substitute (2.6) into the mass balance equation (2.2) to obtain

Cattaneo’s equation

∂tu(x, t) =
Duxx(x, t)

(1 + τ∂t)

⇒ ∂tu(x, t) + τ∂2
t u(x, t) = Duxx(x, t).

We note that, by extending the phenomenological diffusion equation

through the use of (2.11), the problem of infinite propagation is over-

come. The Cattaneo equation is a generalisation of the heat diffusion

and particle diffusion equations. However, the MSD (mean-square

displacement) is not manifested by the Cattaneo equation as is the

case for anomalous diffusion. This is the reason why Compte and

Metzler [12] investigated generalisations of the Cattaneo equation.

2.3 The generalised Cattaneo equation I

An introduction of a fractional derivative (to add memory to the

equation) and an ad hoc generalisation of the continuity equation

(2.2) relaxes the flux to give

∂γt u(x, t) = −Jx(x, t). (2.7)

Combining (2.7) with the modified constitutive equation (1.12) yields

the first generalised Cattaneo equation (1.13). Differentiating equa-
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tion (1.12) with respect to x we obtain

Jx(x, t) + τ γ∂γt Jx(x, t) = −Duxx(x, t) (2.8)

⇒ Jx(x, t) =
−Duxx(x, t)
(1 + τ γ∂γt )

.

Combining equation (2.8) with the generalised continuity equation

(2.7) we obtain GCE I (1.13)

∂γt u(x, t) =
Duxx(x, t)

(1 + τ γ∂γt )

⇒ ∂γt u(x, t) + τ γ∂2γ
t u(x, t) = Duxx(x, t). (GCE I)

Since there is an introduction of fractional derivatives based on

stochastic continuous time random walks, u(x, t) is redefined as the

probability distribution function of the diffusing material. It repre-

sents the probability or predicts the likelihood of finding a particle

being at a position x at a time t.

There is an alternate way of reaching GCE I that Compte and Met-

zler [12] mention through the combination of the mass balance equa-

tion (2.2) and the modified constitutive equation

J(x, t) + τ γ∂γt Jx(x, t) = −D∂1−γ
t ux(x, t). (2.9)

We differentiate this equation with respect to x

Jx(x, t) + τ γ∂γt Jx(x, t) = −D∂1−γ
t uxx(x, t) (2.10)

⇒ Jx(x, t) =
−D∂1−γ

t uxx(x, t)

(1 + τ γ∂γt )
.

Substituting equation (2.10) into the mass balance equation (2.2)

and applying the property of fractional derivatives ∂αt ∂
β
t = ∂α+β

t
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[12, 37] will yield GCE I

∂tu(x, t) =
D∂1−γ

t uxx(x, t)

(1 + τ γ∂γt )

⇒ ∂γ−1
t ∂tu(x, t) + τ γ∂γt ∂

γ−1
t ∂tu(x, t) = Duxx(x, t)

⇒ ∂γt u(x, t) + τ γ∂2γ
t u(x, t) = Duxx(x, t). (GCE I)

2.4 The generalised Cattaneo equation II

Another form of the modified constitutive equation is used for the

second generalisation

J(x, t) + τ γ∂γt J(x, t) = −D∂γ−1
t ux(x, t). (2.11)

Differentiating (2.11) with respect to x

Jx(x, t) + τ γ∂γt Jx(x, t) = −D∂γ−1
t uxx(x, t) (2.12)

⇒ Jx(x, t) =
−D∂γ−1

t uxx(x, t)

(1 + τ γ∂γt )
.

Substitute (2.12) into the mass balance equation (2.2) and again

making use of the property of fractional derivatives as mentioned

for the derivation of GCE I we obtain GCE II (1.15)

∂tu(x, t) =
D∂γ−1

t uxx(x, t)

(1 + τ γ∂γt )

⇒ ∂1−γ
t ∂tu(x, t) + τ γ∂t∂tu(x, t) = Duxx(x, t)

⇒ ∂2−γ
t u(x, t) + τ γ∂2

t u(x, t) = Duxx(x, t). (GCE II)
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2.5 The generalised Cattaneo equation III

The combination of the ad hoc generalised continuity equation given

by (2.7) with Cattaneo’s replaced equation (1.9) will yield the third

generalised Cattaneo equation (1.16). Differentiate equation (2.11)

with respect to x to obtain

Jx(x, t) + τ∂tJx(x, t) = −Duxx(x, t)

⇒ Jx(x, t) =
−Duxx(x, t)

(1 + τ∂t)
,

which can be substituted into (2.7) to get GCE III (1.16)

∂γt u(x, t) =
Duxx(x, t)

(1 + τ∂t)

⇒ ∂γt u(x, t) + τ∂t∂
γ
t u(x, t) = Duxx(x, t)

⇒ ∂γt u(x, t) + τ∂1+γ
t u(x, t) = Duxx(x, t). (GCE III)

Compte and Metzler [12] investigate the properties of the generalised

Cattaneo equations by recovering the corresponding MSD and phase

velocity equations. It is concluded that GCE I and GCE III show

an infinite propagation, as in standard Fickian diffusion. GCE II

is shown to describe pure ballistic transport and displays a finite

velocity of propagation. GCE I and GCE III models subdiffusion,

while GCE II models superdiffusion.

The explanation of these properties originates from their deriva-

tions. The derivation of GCE II is associated with long-tail waiting

times and is time reversible for sufficiently small times. GCE I and
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GCE III seem similar, however, the τ appearing in GCE I is as-

sociated with the waiting time distribution of fractal time random

walks. In GCE III, τ is just the delay time that was introduced in

the constitutive equation (1.9).

Compte and Metzler [12] use a standard Fourier-Laplace transform

technique to obtain (x, t)-space equations for each GCE. The obser-

vation is made from these that the solutions to the GCE’s lead to a

modified Gaussian behaviour.

2.6 Numerical schemes through discretization

We define the integration time as tj = j∆t where 0 ≤ tj ≤ T , T

being the termination time or the final time to which we run the

numerical scheme. We define the spatial grid size as ∆x =
xR − xL

n
,

with xi = xL + i∆x for i = 0, . . . , n; n is a positive integer ((n+1) is

the number of spatial points) and each grid point lies in the interval

xL < xi < xR. We use the notation uji as the numerical approxima-

tion of u at (xi, tj).

Finite difference methods are used to discretize our equations. Fi-

nite difference formulae for derivatives are derived using a Taylor

series expansion. It is well known that the Taylor series expansion

of a function about a given point includes all higher order terms.
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Normally most of these higher order terms are neglected [13] as the

error presented is negligible [41]. These errors terms are known as

the local truncation error. The difference methods are calculated

such that their local truncation errors are O(hp), with a high value

of p as possible [41] where h << 1 (i.e. if h << 1, where h is the

step-length, then O(hp) and error is very small). This explains why

the numerical solutions obtained (which are always stated to a finite

number of figures) introduce round off errors.

For our scheme we consider the diffusion of point sources for

u(x, 0) = δ(x), where δ(x) is defined as the Dirac delta function,

and the boundary condition u(±∞, t) = 0.

We approximate the Dirac delta function by

δ(x) =
1

η
√
π

exp

(
−x2

η2

)
, (2.13)

where η is a constant and we choose η = 1.

The analogy used in the introductory chapter of heat diffusion through

a rod represents a system that is acted upon by an external force of

large magnitude but that acts for a short period of time. The Dirac

delta function is a type of unit impulse that serves as a mathemat-

ical model for such a force [14].

Since we are discretizing each equation to have a spatial grid of finite

size n, applying the boundary condition as defined implies uj0 = 0

and ujn = 0 for all j. The boundary conditions for the physical
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problem are specified at infinity. For the computational application

we make the boundaries finite. We choose u(−10, t) = u(10, t) = 0

or u(−20, t) = u(20, t) = 0 or u(−30, t) = u(30, t) = 0 depending on

the equation we are solving.

Crank [13] describes a point source as “a single, identifiable localised

source of something and is approximated as a mathematical point

to simplify analysis”. When a change is introduced to a system,

as described by anomalous diffusion, we are delivering an impulse

to the system. If the source of change is at any point in the sys-

tem (other than a point of origin x0,), for example at x = s, then

the response of the system to the change shifts by an amount of

s. No matter where an impulse is delivered to the system, the im-

pulse will diffuse through and we can draw equivalent conclusions

about the particles of the system. Another way to think of it is that

any point in the system can be a source point. Thus, every u(xi, 0)

is an integral of point sources, the integral is
∫
δ(x−s)u(s−0)ds [13].

Thus at any point in the system, we can introduce an impulse of

dissipating energy through the system. This allows us to observe

how an impulse diffuses through a system and how the particles

are likely to respond to it. The Dirac delta function is useful for

approximating an impulse which is used to simplify equations and

calculations.

We compare solutions of the fractional diffusion equation and the
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fractional Cattaneo equation. We consider both fractional time and

spatial derivatives. The values for D, α and β are chosen across

the respective intervals (0 < α < 1, 1 < β ≤ 2) to investigate the

solutions for a range of different values chosen. For the case of this

study ∆x = 0.1 and ∆t = 0.01.
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3 Fractional diffusion equations

In this chapter we derive numerical schemes to determine approxi-

mate numerical solutions to fractional diffusion equations.

We consider a fractional time diffusion equation, where the frac-

tional derivative operates on time. Then we consider a fractional

diffusion equation where the fractional derivative operates on space.

3.1 Fractional time diffusion equation

Consider the time α-order fractional partial differential equation

∂αu

∂tα
= D

∂2u

∂x2
, (3.1)

where 0 < α < 1 and D is the diffusion constant.

If α = 1 the phenomenological diffusion equation (1.7) is recov-

ered.

The point source solution of the phenomenological diffusion equa-

tion, which is typically Gaussian, is

u(x, t) =
1

(4πDt)
1
2

exp

(
− x2

4Dt

)
. (3.2)
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We refer to the technique described by Yuste and Acedo [48] where

the fractional time derivative is approximated by the Grünwald-

Letnikov definition; we choose h = ∆t

0D
1−α
t u =

∂1−αu

∂t1−α
= lim

h→0

1

h(1−α)

n∑
k=0

w
(1−α)
k u(x, t− kh), (3.3)

where the weights are defined as

w
(γ)
k = (−1)k

(
γ

k

)
.

The following property of fractional calculus [12, 37]

∂α

∂tα
∂β

∂tβ
=

∂α+β

∂tα+β
,

allows us to multiply equation (3.1) by the operator
∂1−α

∂t1−α
to obtain

the following equation

∂u

∂t
= D

(
0D

1−α
t

∂2u

∂x2

)
.

A forward difference approximation is applied to the
∂u

∂t
term and a

central difference approximation is used to discretize the
∂2u

∂x2
term

to obtain the equation

uj+1
i − uji

∆t
=

D

∆x2 0D
1−α
t (uji+1 − 2uji + uji−1).

Employing the Grünwald-Letnikov definition and rearranging we ob-

tain the following scheme

uj+1
i = uji + λ

j∑
k=0

w
(1−α)
k (uj−ki+1 − 2uj−ki + uj−ki−1 ), (3.4)
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where, for convenience, λ =
D(∆t)α

(∆x)2
.

Note that we require values for u at the spatial points x−1 and xn+1

which lie outside of the interval of collocation points x0 ≤ xi ≤ xn.

Since we have defined the boundary condition as u(±∞, t) = 0, this

allows us to make the replacements: uj1 = uj−1 and ujn+1 = ujn−1.

We can start this scheme from j = 0 to calculate a value for u

at the next time-step j = 1. If j = 1, the scheme then calculates a

value for u at j = 2; and so on until we obtain a numerical solution

for u at the predefined final time T (j = n−1 to calculate u(xi, tn)).

Writing this out line by line, we obtain the following explicit scheme:

For j = 0 :

u1
i = u0

i + λw
(1−α)
0 (u0

i+1 − 2u0
i + u0

i−1)

For j = 1 :

u2
i = u1

i + λ
(
w

(1−α)
0 (u1

i+1 − 2u1
i + u1

i−1) + w
(1−α)
1 (u0

i+1 − 2u0
i + u0

i−1)
)

For j = 2:

u3
i = u2

i + λ(w
(1−α)
0 (u2

i+1 − 2u2
i + u2

i−1) + w
(1−α)
1 (u1

i+1 − 2u1
i + u1

i−1)

+w
(1−α)
2 (u0

i+1 − 2u0
i + u0

i−1))

...

...

...
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For j = n− 2:

un−1
i = un−2

i + λ(w
(1−α)
0 (un−2

i+1 − 2un−2
i + un−2

i−1 ) + w
(1−α)
1 (un−3

i+1 − 2un−3
i + un−3

i−1 )

+ · · ·+ w
(1−α)
n−2 (u0

i+1 − 2u0
i + u0

i−1))

For j = n− 1:

uni = un−1
i + λ(w

(1−α)
0 (un−1

i+1 − 2un−1
i + un−1

i−1 ) + w
(1−α)
1 (un−2

i+1 − 2un−2
i + un−2

i−1 )

+ · · ·+ w
(1−α)
n−1 (u0

i+1 − 2u0
i + u0

i−1)).

If, for each collocation point xi (i = 1, . . . , n) we fix the time-step tj

and examine the explicit system we see that for each new time-step

tj+1 the value u(xi, tj+1) depends on all the u(xi, tj) values calcu-

lated at all the previous time-steps. This represents the memory

effect mentioned earlier.

We use Mathematica to create a matrix where the first column rep-

resents the initial condition applied to each xi collocation point. The

rest of the columns represent the next time-step j+ 1 for ui and are

calculated using the scheme (3.4). We find numerical solutions for

different values of the diffusion coefficient D = 0.1, 0.5, 1, 1.5. For

each value of D we adjust the value of α as follows: α = 0.1, 0.5, 0.9.

We then plot the solutions found at t = 0, 0.1, 0.5, 1. The chosen

interval is [−30, 30] as this is large enough to satisfy the bound-

ary conditions. When running the scheme for larger values of t, it

becomes more memory intensive (caused by the memory effect ex-

plained earlier) and takes longer to run, though still with converging

results.

When numerical solutions are plotted for α = 0.1, α = 0.5 and
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Figure 4: Numerical solutions for fractional time diffusion equation (3.1) at

times t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green), where

α = 0.1 and D = 0.1. Diffusive behaviour is observed very slightly when final

time is 1.
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Figure 5: Numerical solutions for fractional time diffusion equation (3.1) where

α = 0.1 and D = 0.5, showing oscillatory behaviour.
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Figure 6: Numerical solutions for fractional time diffusion equation (3.1) where

α = 0.1 and D = 1, showing oscillatory behaviour.
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Figure 7: Numerical solutions for fractional time diffusion equation (3.1) where

α = 0.1 and D = 1.5, showing oscillatory behaviour.
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Figure 8: Numerical solutions for fractional time diffusion equation (3.1) where

α = 0.5 and D = 0.1, from t = 0 (black), t = 0.1 (red), t = 0.5 (blue), until

t = 1 (green). Solution shows that diffusion occurs very slowly over time.
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Figure 9: Numerical solutions for fractional time diffusion equation (3.1) where

α = 0.5 and D = 0.5. Solution had been been plotted for times t = 0 (black),

t = 0.1 (red), t = 0.5 (blue) and t = 1 (green). Diffusion occurs more visibly

than for D = 0.1 (Figure 8).
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Figure 10: Numerical solutions for fractional time diffusion equation (3.1) where

α = 0.5 and D = 1. Superdiffusion is observed over time (t = 0 (black), t = 0.1

(red), t = 0.5 (blue) and t = 1 (green)).

-30 -20 -10 0 10 20 30
x

0

0.1

0.2

0.3

0.4

0.5

u

t=1

t=0

t=0.1

t=0.5

Figure 11: Numerical solutions for fractional time diffusion equation (3.1) where

α = 0.5 and D = 1.5. Superdiffusion is observed, but at a faster pace than when

D = 1 (Figure 10). Times results are plotted at are t = 0 (black), t = 0.1 (red),

t = 0.5 (blue) and t = 1 (green).
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Figure 12: Numerical solutions for fractional time diffusion equation (3.1) where

α = 0.9 and D = 0.1. The diffusion process appears to have taken place, but

very slowly. Times results are plotted at are t = 0 (black), t = 0.1 (red), t = 0.5

(blue) and t = 1 (green).
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Figure 13: Numerical solutions for fractional time diffusion equation (3.1) where

α = 0.9 and D = 0.5. Diffusion occurs more rapidly and superdiffusion is

observed as final time t = 1 (green) is approached. Times results are plotted at

are t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green).
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Figure 14: Numerical solutions for fractional time diffusion equation (3.1) where

α = 0.9 and D = 1 over time t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and

t = 1 (green). Superdiffusion is observed.
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Figure 15: Numerical solutions for fractional time diffusion equation (3.1) where

α = 0.9 and D = 1.5. Over times t = 0 (black), t = 0.1 (red), t = 0.5 (blue)

and t = 1 (green) superdiffusion is observed.
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α = 0.9 with D = 0.1, diffusive behaviour is observed to only just

start taking place as shown by Figures 4, 8, 12. However when

D is changed to 0.5, 1 and 1.5 the solution oscillates for times t =

0.1, 0.5, 1 (Figures 5, 6, 7). As we increase the value of D for each

value of α, diffusion occurs much quicker and is more visible (Figures

9, 10, 13, 14). Figure 11 shows diffusion is much faster than for a

smaller α in Figure 15.

3.2 Fractional space diffusion equation

Consider the space β-order fractional partial differential equation

∂u

∂t
= D

∂βu

∂xβ
(3.5)

where 1 < β ≤ 2 and D is the diffusion coefficient.

For a fractional space derivative we refer to the technique described

by Tadjeran et al [7]. Here the fractional space derivative is ap-

proximated by the right-shifted Grünwald definition and a Crank-

Nicholson average over time.

The right-shifted Grünwald formula is given as

∂βu(x, t)

∂xβ
= lim

n→∞

1

(∆x)β

n∑
k=0

gβ,ku(x− (k − 1)h, t) (3.6)

where

gβ,k =
Γ(k − β)

Γ(−β)Γ(k + 1)
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are the normalized Grünwald weights and we choose h = ∆x.

Applying a forward difference approximation to the time derivative

and definition (3.6) we have the following scheme

1

∆t
(uj+1

i − uji ) =
D

2(∆x)β

(
i+1∑
k=0

gβ,ku
j+1
i−k+1 +

i+1∑
k=0

gβ,ku
j
i−k+1

)
. (3.7)

Rearranging (3.7)

uj+1
i −D ∆t

2(∆x)β

i+1∑
k=0

gβ,ku
j+1
i−k+1 = uij +D

∆t

2(∆x)β

i+1∑
k=0

gβ,ku
j
i−k+1,

(3.8)

where we let λ = D
∆t

2(∆x)β
.

The left-hand side of (3.8) can be expanded and simplified to obtain

−λgβ,kuj+1
i+1 + (1− λgβ,k)uj+1

i − λgβ,kuj+1
i−1 − · · · − λgβ,ku

j+1
0 .

Similarly the right-hand side of (3.8) can be expanded and simplified

to obtain

λgβ,ku
j
i+1 + (1 + λgβ,k)u

j
i + λgβ,ku

j
i−1 + · · ·+ λgβ,ku

j
0.

The problem in matrix form becomes

Luj+1 = Ruj.

Applying the boundary condition, the numerical solution can be

obtained at the time-step tj+1

uj+1 = L−1Ruj,

39



where

L =



1 0 . . . . . . . . . . . . 0

−λgβ,2 (1− λgβ,1) −λgβ,0 0 . . . . . . 0

−λgβ,3 −λgβ,2 (1− λgβ,1) −λgβ,0 0 . . . 0
...

. . . . . .
...

...
...

...
...

...
. . . . . .

...
...

...
...

...
...

. . . . . .
...

...

−λgβ,n −λgβ,n−1 . . . . . . −λgβ,2 (1− λgβ,1) −λgβ,0
0 0 . . . . . . . . . 0 1



,

R =



1 0 . . . . . . . . . . . . 0

λgβ,2 (1 + λgβ,1) λgβ,0 0 . . . . . . 0

λgβ,3 λgβ,2 (1 + λgβ,1) λgβ,0 0 . . . 0
...

. . . . . .
...

...
...

...
...

...
. . . . . .

...
...

...
...

...
...

. . . . . .
...

...

λgβ,n λgβ,n−1 . . . . . . λgβ,2 (1 + λgβ,1) λgβ,0

0 0 . . . . . . . . . 0 1


and

uj+1 = [uj+1
0 , uj+1

1 , . . . , uj+1
n−1, u

j+1
n ]T ,

uj = [uj0, u
j
1, . . . , u

j
n−1, u

j
n]T .

We use Mathematica to implement the scheme and plot the solu-

tions for different values of D: D = 0.1, 0.5, 1, 1.5 and adjusting
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the fractional order for each value of D: β = 1.2, 1.5, 1.9 at times

t = 0, 5, 10, 20 and over the interval [−50, 50] to show the behaviour

observed.
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Figure 16: Numerical solutions for fractional space diffusion equation (3.5) at

times t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green); where

β = 1.2 and D = 0.1. Normal diffusion is displayed.

If we refer to Figures 16 through to 27 and observe the results ob-

tained from D = 0.1, D = 0.5, D = 1 and D = 1.5 for each β we

chose, it is shown that with a higher value of D, diffusion occurs

much faster. When β is 1.2 and 1.5, results are distributed skewed

to the left, behaviour relating to the right-shifted Grünwald formula.

However, for a higher value of β, β = 1.9, the results (Figures 24, 25,

26, 27) show a more Gaussian behaviour, with a normal distribution.

In this chapter we have considered numerical solutions of the frac-
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Figure 17: Numerical solutions for fractional space diffusion equation (3.5)

where β = 1.2 and D = 0.5 for times t = 0 (black), t = 0.1 (red), t = 0.5

(blue) and t = 1 (green).

-40 -20 0 20 40
x

0

0.1

0.2

0.3

0.4

0.5

u

t=0

t=5
t=10

t=20

Figure 18: Numerical solutions for fractional space diffusion equation (3.5)

where β = 1.2 and D = 1. Results display superdiffusion, being skewed to

the left over times t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green).
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Figure 19: Numerical solutions for fractional space diffusion equation (3.5)

where β = 1.2 and D = 1.5. Diffusion occurs faster compared to when D = 1

for times t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green).

-40 -20 0 20 40
x

0

0.1

0.2

0.3

0.4

0.5

u

t=0

t=5

t=10

t=20

Figure 20: Numerical solutions for fractional space diffusion (3.5) equation

where β = 1.5 and D = 0.1. Normal diffusion behaviour is observed over

times t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green).
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Figure 21: Numerical solutions for fractional space diffusion (3.5) equation

where β = 1.5 and D = 0.5. Results display a faster diffusion process oc-

curring compared to β = 1.2 (t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and

t = 1 (green)).
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Figure 22: Numerical solutions for fractional space diffusion equation (3.5) for

t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green), where β = 1.5 and

D = 1. Diffusion appears to take place faster with increasing D.
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Figure 23: Numerical solutions for fractional space diffusion equation (3.5) for

t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green), where β = 1.5 and

D = 1.5. Diffusion appears to take place faster with increasing D.
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Figure 24: Numerical solutions for fractional space diffusion equation (3.5) for

t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green), where β = 1.9 and

D = 0.1. Diffusion takes place faster with a normal distribution when compared

to other values of β when D = 0.1.

45



-40 -20 0 20 40
x

0

0.1

0.2

0.3

0.4

0.5

u

t=0

t=5

t=10
t=20

Figure 25: Numerical solutions for fractional space diffusion equation (3.5) for

t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green), where β = 1.9 and

D = 0.5. Superdiffusion is observed with a normal distribution.
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Figure 26: Numerical solutions for fractional space diffusion equation (3.5) for

t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green), where β = 1.9 and

D = 1. Superdiffusion is observed with a normal distribution.
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Figure 27: Numerical solutions for fractional space diffusion equation (3.5) for

t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green), where β = 1.9

and D = 1.5. Superdiffusion is observed with a normal distribution, faster than

with D = 1.

tional time diffusion and fractional space diffusion equations. Nu-

merical results for D = 0.5, 1, 1.5 when α = 0.1 are unstable and

oscillatory behaviour is observed. The stable numerical results dis-

play very slight propagation when the fractional derivative operates

on the time dimension. Since
∂α

∂xα
mirrors a power-law step length

distribution, it is expected to have results showing properties of

propagation for the fractional space diffusion equation.
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4 Fractional Cattaneo equations

In the previous chapter we found schemes and approximate numeri-

cal solutions to fractional diffusion equations. In this chapter we do

the same for fractional Cattaneo equations, where we first consider

the fractional derivative operating on time. Thereafter we consider

the fractional derivative operating on space.

4.1 Fractional time Cattaneo equation

Consider the following fractional time Cattaneo equation with

0 < α < 1
∂αu

∂tα
= D

∂2u

∂x2
− τ ∂

α

∂tα

(
∂u

∂t

)
. (4.1)

The diffusivity constant is D and τ � 1.

If α = 1 we recover the normal Cattaneo equation (1.10). The

approximate solution for equation (1.10) is [18, 19]

u(x, t) =
1√
4πt

[
1 + τ

(
3

4t
− x4

16t3

)]
exp

(
−x

2

4t

)
. (4.2)

We make use of the same technique used for the fractional time

diffusion equation (3.4). We apply the Grünwald-Letnikov definition

for the time-fractional derivative; forward difference approximations

to discretize the integer-order time derivative and a central

difference approximations to discretize the second order spatial and

time derivatives. We take this approach after multiplying equation
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(4.1) by the operator
∂1−α

∂t1−α
,as was done for the fractional time

diffusion equation in Chapter 3.1. Thus, the system to discretize is

∂u

∂t
= D 0D

1−α
t

∂2u

∂x2
− τ ∂

2u

∂t2
.

The discretized scheme then obtained is given by

uj+1
i = c1u

j
i − c2u

j−1
i + c3

j∑
k=0

w1−α
k (uj−ki+1 − 2uj−ki + uj−ki−1 ), (4.3)

where we define the following c1 =
1 + 2δ

1 + δ
, c2 =

δ

1 + δ
, c3 =

λ

1 + δ
,

δ =
τ

∆t
and λ =

D∆tα

∆x2
. We employ the boundary conditions:

uj1 = uj−1 and ujn+1 = ujn−1.

We follow the same approach as in Chapter 4.1, and note that

for each new time-step tj+1 the value u(xi, tj+1) depends on all the

u(xi, tj) values calculated at all the previous time-steps.

Writing out the equation (4.3) line by line, the system is

For j = 0 :

u1
i = c1u

0
i + c3w

(1−α)
0 (u0

i+1 − 2u0
i + u0

i−1)

For j = 1 :

u2
i = c1u

1
i − c2u

0
i + c3

(
w

(1−α)
0 (u1

i+1 − 2u1
i + u1

i−1) + w
(1−α)
1 (u0

i+1 − 2u0
i + u0

i−1)
)

For j = 2:

u3
i = c1u

2
i − c2u

1
i + c3(w

(1−α)
0 (u2

i+1 − 2u2
i + u2

i−1) + w
(1−α)
1 (u1

i+1 − 2u1
i + u1

i−1)

+w
(1−α)
2 (u0

i+1 − 2u0
i + u0

i−1))
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...

...

...

For j = n− 2:

un−1
i = c1u

n−2
i − c2u

n−3
i + c3(w

(1−α)
0 (un−2

i+1 − 2un−2
i + un−2

i−1 )

+w
(1−α)
1 (un−3

i+1 − 2un−3
i + un−3

i−1 ) + · · ·+ w
(1−α)
n−2 (u0

i+1 − 2u0
i + u0

i−1))

For j = n− 1:

uni = c1u
n−1
i − c2u

n−2
i + c3(w

(1−α)
0 (un−1

i+1 − 2un−1
i + un−1

i−1 )

+w
(1−α)
1 (un−2

i+1 − 2un−2
i + un−2

i−1 ) + · · ·+ w
(1−α)
n−1 (u0

i+1 − 2u0
i + u0

i−1)).

We use Mathematica and the same approach applied previously to

solve the fractional time diffusion equation. The scheme is imple-

mented for D = 0.1, 0.5, 1, 1.5 and, for each D, α = 0.1, 0.5, 0.9. We

plot the solutions over the interval [−10, 10], as this is the small-

est interval that satisfies the boundary conditions, unless otherwise

stated. We note that due to the memory effect when running the

scheme for larger values of t, it becomes more memory intensive and

takes longer to run, but still converges.

Solutions for α = 0.1, D = 0.1 and α = 0.9, D = 1 (Figure 28, 38),

have been calculated using ∆t = 0.01 over times t = 0, 0.1, 0.25, 0.5.

This choice of parameters sufficiently shows diffusive behaviour, with

the solution in Figure 38 showing rapid diffusive behaviour. Solu-

tions for α = 0.5, D = 0.1; α = 0.5, D = 0.5; α = 0.9, D = 0.1 and

α = 0.9, D = 0.5 (Figure 32, 33, 36, 37) have been calculated using

∆t = 0.01 over times t = 0, 0.1, 0.5, 1 showing diffusive behaviour.
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Figure 28: Numerical solutions for fractional time Cattaneo equation (4.1) where

α = 0.1 and D = 0.1. Diffusion occurs overt the times t = 0.1 (red), t = 0.25

(blue) and t = 0.5 (green).
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Figure 29: Numerical solutions for fractional time Cattaneo equation (4.1) for

t = 0 (black), t = 0.1 (red), t = 0.25 (blue) and t = 0.5 (green), where α = 0.1

and D = 0.5. The system shows slow diffusive behaviour compared to when

D = 0.1.
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Figure 30: Numerical solutions for fractional time Cattaneo equation (4.1) for

t = 0 (black), t = 0.005 (red), t = 0.01 (blue) and t = 0.015 (green), where

α = 0.1 and D = 1. Numerical error creeps in when t = 0.01.
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Figure 31: Numerical solutions for fractional time Cattaneo equation (4.1) for

t = 0 (black), t = 0.005 (red), t = 0.01 (blue) and t = 0.015 (green), where

α = 0.1 and D = 1.5. The system is unstable due to numerical error.

52



t=1

t=0
t=0.1

t=0.5

-10 -5 0 5 10

0.0

0.1

0.2

0.3

0.4

0.5

x

u

Figure 32: Numerical solutions for fractional time Cattaneo equation (4.1) where

α = 0.5 and D = 0.1. Volume is not conserved from the behaviour over time

t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green).
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Figure 33: Numerical solutions for fractional time Cattaneo equation (4.1) over

times t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green), where α = 0.5

and D = 0.5. Diffusive behaviour is observed faster than when D = 0.1.
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Figure 34: Numerical solutions for fractional time Cattaneo equation (4.1) for

t = 0 (black), t = 0.1 (red), t = 0.25 (blue) and t = 0.5 (green), where α = 0.5

and D = 1. Solution shows diffusive behaviour.

t=0.5

t=0

t=0.1
t=0.25

-10 -5 0 5 10

0.0

0.1

0.2

0.3

0.4

0.5

x

u

Figure 35: Numerical solutions for fractional time Cattaneo equation (4.1) for

for t = 0 (black), t = 0.1 (red), t = 0.25 (blue) and t = 0.5 (green) where α = 0.5

and D = 1.5. Solution shows diffusive behaviour faster than when D = 1.
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Figure 36: Numerical solutions for fractional time Cattaneo equation (4.1) where

α = 0.9 and D = 0.1. The system reverts to diffusive behaviour after t = 0.1

(red), as shown at t = 0.5 (blue) and t = 1 (green)
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Figure 37: Numerical solutions for fractional time Cattaneo equation (4.1) where

α = 0.9 and D = 0.5. Diffusive behaviour is shown over times t = 0 (black),

t = 0.1 (red), with rapid diffusion at t = 0.5 (blue) and t = 1 (green).
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Figure 38: Numerical solutions for fractional time Cattaneo equation (4.1) where

α = 0.9 and D = 1. Diffusive behaviour is shown over times t = 0 (black),

t = 0.1 (red), with rapid diffusion at t = 0.5 (blue) and t = 1 (green).
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Figure 39: Numerical solutions for fractional time Cattaneo equation (4.1) where

α = 0.9 and D = 1.5. Diffusive behaviour is shown over times t = 0 (black),

t = 0.1 (red), with rapid diffusion at t = 0.5 (blue) and t = 1 (green).
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In the case of α = 0.5, D = 1; α = 0.5, D = 1.5 and α = 0.9,

D = 1.5 (Figure 34, 35, 39) solutions have been calculated using

∆t = 0.005 and plotted over times t = 0, 0.1, 0.25, 0.5 to show diffu-

sive behaviour. We observe in Figure 34 and 35 diffusive behaviour

occurs faster for lower values for D. In Figure 39 we observe rapid

diffusive behaviour when compared to solutions for lower values of

α. Solutions for α = 0.1, D = 0.5 were calculated with ∆t = 0.005

(Figure 29) and plotted over the interval [−20, 20], for smaller inter-

vals the boundary conditions are not satisfied. Diffusive behaviour

is observed to occur slower. Solutions for α = 0.1, D = 0.5 and

α = 0.1, D = 1.5 are observed as unstable with ∆ = 0.005, 0.01.

For t > 0.005 numerical error is large and the system becomes more

unstable (Figure 30, 31).

4.2 Fractional space Cattaneo equation

Consider the space β-order fractional partial differential equation

which is a combination of a fractional space derivative operating on

time
∂u

∂t
= D

∂βu

∂xβ
− τ ∂

β

∂xβ

(
∂u

∂t

)
, (4.4)

where 1 < β ≤ 2, D is the diffusion coefficient and τ � 1.

As previously carried out for the fractional space diffusion equation

we apply a forward difference approximation to the time deriva-

tive and the right-shifted Grünwald formula (3.6) with a Crank-
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Nicholson average over time to the β-order fractional derivative.

Thus

1

∆t
(uj+1

i − uji ) =
D

(2∆x)β

(
i+1∑
k=0

gβ,ku
j+1
i−k+1 +

i+1∑
k=0

gβ,ku
j
i−k+1

)

− τ

2∆t(∆x)β

(
i+1∑
k=0

gβ,ku
j+1
i−k+1 −

i+1∑
k=0

gβ,ku
j
i−k+1

)
.

(4.5)

We rearrange and simplify equation (4.5) to the following difference

equation to be solved

uj+1
i + (γ − λ)

i+1∑
k=0

gβ,ku
j+1
i−k+1 = uij + (γ + λ)

i+1∑
k=0

gβ,ku
j
i−k+1, (4.6)

where λ =
D∆t

2(∆x)β
and γ =

τ

2(∆x)β
.

We expand and simplify the left-hand side of (4.6)

(γ − λ)gβ,0u
j+1
i+1 + (1 + (γ − λ)gβ,1)uj+1

i + (γ − λ)gβ,2u
j+1
i−1 + · · ·+ (γ − λ)gβ,iu

j+1
1

+(γ − λ)gβ,i+1u
j+1
0 .

Similarly we expand and simplify the right-hand side of (4.6)

(γ+λ)gβ,0u
j
i+1+(1+(γ+λ)gβ,1)uji+(γ+λ)gβ,2u

j
i−1+· · ·+(γ+λ)gβ,iu

j
1+(γ+λ)gβ,i+1u

j
0.

After applying the boundary condition the matrix form of the prob-

lem to be solved at the time step tj+1 is

uj+1 = L−1Ruj,
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where

L =



1 0 . . . . . . . . . . . . . . . 0

(γ − λ)gβ,2 (1 + (γ − λ)gβ,1 (γ − λ)gβ,0 0 . . . . . . . . . 0

(γ − λ)gβ,3 (γ − λ)gβ,2 (1 + (γ − λ)gβ,1 (γ − λ)gβ,0 0 . . . . . . 0
...

. . . . . .
...

...
...

...
...

...
...

. . . . . .
...

...
...

...
...

...
...

. . . . . .
...

...
...

(γ − λ)gβ,n (γ − λ)gβ,n−1 . . . . . . . . . (γ − λ)gβ,2 (1 + (γ − λ)gβ,1) (γ − λ)gβ,0

0 0 . . . . . . . . . . . . 0 1



,
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R =



1 0 . . . . . . . . . . . . . . . 0

(γ + λ)gβ,2 (1 + (γ + λ)gβ,1) (γ + λ)gβ,0 0 . . . . . . . . . 0

(γ + λ)gβ,3 (γ + λ)gβ,2 (1 + (γ + λ)gβ,1) (γ + λ)gβ,0 0 . . . . . . 0
...

. . . . . .
...

...
...

...
...

...
...

. . . . . .
...

...
...

...
...

...
...

. . . . . .
...

...
...

(γ + λ)gβ,n (γ + λ)gβ,n−1 . . . . . . . . . (γ + λ)gβ,2 (1 + (γ + λ)gβ,1) (γ + λ)gβ,0

0 0 . . . . . . . . . . . . 0 1



,

with uj+1 and uj defined previously.

We determine solutions for D = 0.1, 0.5, 1, 1.5 and β = 1.2, 1.5, 1.9 for each value of D at times t = 0, 5, 10, 20,

over the interval [−50, 50] to sufficiently depict the behaviours observed.
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Figure 40: Numerical solutions for fractional space Cattaneo equation (4.4) for

t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green), where β = 1.2 and

D = 0.1. Results show normal diffusive behaviour.

Figures 40, 41, 42 and 43 depict the solution for the different values

of D when β = 1.2. With β = 1.5 Figures 44, 45, 46 and 47 show

the results for D = 0.1, 0.5, 1, 1.5 respectively. Similarly Figures 48,

49, 50 and 51 show results for β = 1.9. When D = 0.1 diffusion is

slow. With higher values of β and D diffusion becomes faster. We

observe similar results to those in Section 4.2. Results are skewed

to the left (behaviour relating to the right-shifted Grüwald formula)

for β = 1.2, 1.5 and display Gaussian normal distribution behaviour

for β = 1.9.

In this chapter we have considered the numerical solutions for the

fractional time Cattaneo and fractional space Cattaneo equations.

Results obtained for the fractional time Cattaneo equations dis-

played slight propagation properties with unstable results for
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Figure 41: Numerical solutions for fractional space Cattaneo equation (4.4)

where β = 1.2 and D = 0.5. Results are shown at t = 0 (black), t = 0.1 (red),

t = 0.5 (blue) and t = 1 (green), normal diffusive behaviour is observed, but

skewed to the left.
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Figure 42: Numerical solutions for fractional space Cattaneo equation (4.4)

where β = 1.2 and D = 1. Results are shown at t = 0 (black), t = 0.1 (red),

t = 0.5 (blue) and t = 1 (green), normal diffusive behaviour is observed faster

than in Figure 41, but skewed to the left.
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Figure 43: Numerical solutions for fractional space Cattaneo equation (4.4)

where β = 1.2 and D = 1.5. Results are shown at t = 0 (black), t = 0.1 (red),

t = 0.5 (blue) and t = 1 (green), normal diffusive behaviour is observed faster

than in Figures 41 and 42, but skewed to the left.
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Figure 44: Numerical solutions for fractional space Cattaneo equation (4.4) for

t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green), where β = 1.5 and

D = 0.1. Normal diffusive behaviour is observed.
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Figure 45: Numerical solutions for fractional space Cattaneo equation (4.4) for

t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green), where β = 1.5 and

D = 0.5. Diffusive behaviour is observed skewed to the left.
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Figure 46: Numerical solutions for fractional space Cattaneo equation (4.4)

where β = 1.5 and D = 1. Superdiffusive behaviour is observed skewed to the

left at times t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green).
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Figure 47: Numerical solutions for fractional space Cattaneo equation (4.4)

where β = 1.5 and D = 1.5. Superdiffusive behaviour is observed skewed to the

left at times t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green).
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Figure 48: Numerical solutions for fractional space Cattaneo equation (4.4) for

t = 0 (black), t = 0.1 (red), t = 0.5 (blue) and t = 1 (green), where β = 1.9 and

D = 0.1. Normal diffusive behaviour is observed with a normal distribution.
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Figure 49: Numerical solutions for fractional space Cattaneo equation (4.4)

where β = 1.9 and D = 0.5. Results are shown at times t = 0 (black), t = 0.1

(red), t = 0.5 (blue) and t = 1 (green) showing superdiffusive behaviour.
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Figure 50: Numerical solutions for fractional space Cattaneo equation (4.4)

where β = 1.9 and D = 1. Results are shown at times t = 0 (black), t = 0.1

(red), t = 0.5 (blue) and t = 1 (green) showing superdiffusive behaviour.
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Figure 51: Numerical solutions for fractional space Cattaneo equation (4.4)

where β = 1.9 and D = 1.5. Results are shown at times t = 0 (black), t = 0.1

(red), t = 0.5 (blue) and t = 1 (green) showing superdiffusive behaviour.

D = 1, 1.5 when α = 0.1. The results for the fractional space Cat-

taneo equation were all stable and displayed strong properties of

propagation, with the direction of propagation dependent on the

sign of the extra term that is multiplied by τ .
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5 Concluding remarks and possible future work

In this chapter we compare the numerical solutions for equations

(3.1), (3.2), (3.5), (4.1) and (4.4) at t = 0.5 where D = 0.5, α = 0.5

and β = 1.9 over the interval [−10, 10]. We compare where possible

(excluding oscillatory / unstable behaviour) the effects of the differ-

ent values of the order of our equations with the solutions obtained

(i.e. we compare the different results obtained when using different

α’s and β’s).

We also compare the effects of different diffusion coefficients on the

solutions. Numerical results are shown graphically. These plots

show the behaviour of the MSD and we interpret them as telling us

how the particles in the system behave, from which we make con-

clusions. This chapter concludes with a brief look at recent work

and possible future work.
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Figure 52: Numerical solutions for equations (3.1), (3.2), (3.5), (4.1) and (4.4)

at t = 0.5 where D = 0.5, α = 0.5 and β = 1.9. We observe similar behaviour

for the phenomenological diffusion (3.2) (dotted) and fractional time diffusion

equation (3.1) (blue). Fractional space Cattaneo (4.4) (red) and fractional space

diffusion (3.5) (green) solutions show faster diffusive behaviour, with fractional

time Cattaneo equation (4.1) (black) showing rapid diffusive behaviour.
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Figure 53: Numerical solutions for fractional time diffusion equation (3.1) at

t = 1 where α = 0.1. Solution is plotted for D = 0.1 (black), D = 0.5 (dotted

red), D = 1 (blue) and D = 1.5 (dashed green). Results are consistent for

D = 0.5, D = 1 and D = 1.5.
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Figure 54: Numerical solutions for fractional time diffusion equation (3.1) at

t = 1 where α = 0.5. Solution is plotted for D = 0.1 (black), D = 0.5 (dotted

red), D = 1 (blue) and D = 1.5 (dashed green). Results are consistent for

D = 0.5, D = 1 and D = 1.5.
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Figure 55: Numerical solutions for fractional time diffusion equation (3.1) at

t = 1 where α = 0.9. Solution is plotted for D = 0.1 (black), D = 0.5 (dotted

red), D = 1 (blue) and D = 1.5 (dashed green). Results are consistent for

D = 0.5, D = 1 and D = 1.5.
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Figure 56: Numerical solutions for fractional time diffusion equation (3.1) at

t = 1 where D = 0.1. Different values for α are shown where α = 0.1 (black),

α = 0.5 (dotted red) and α = 0.9 (blue). Results are consistent for α = 0.5 and

α = 0.9.
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Figure 57: Numerical solutions for the MSD of fractional time diffusion equation

(3.1) at t = 1 where D = 0.1 and α = 0.1 (black). Compare this to MSD of

the analytical diffusion equation (3.2) (dashed red) and the analytical Cattaneo

equation (4.2) (blue). Results are consistent to anomalous diffusive behaviour.
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Figure 58: Numerical solutions for the MSD of fractional time diffusion equation

(3.1) at t = 1 where D = 0.1 and α = 0.5 (black). Compare this to MSD of

the analytical diffusion equation (3.2) (dashed red) and the analytical Cattaneo

equation (4.2) (blue). Results are consistent to anomalous diffusive behaviour.
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Figure 59: Numerical solutions for the MSD of fractional time diffusion equation

(3.1) at t = 1 where D = 0.1 and α = 0.9 (black). Compare this to MSD of

the analytical Diffusion equation (3.2) (dashed red) and the analytical Cattaneo

equation (4.2) (blue). Results are consistent to anomalous diffusive behaviour.
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Figure 60: Numerical solutions for fractional time Cattaneo equation (4.1) at

t = 1 where α = 0.5. Different values for D are shown where D = 0.1 (black),

D = 0.5 (dotted red), D = 1 (blue) and D = 1.5 (dashed green). Results are

consistent for D = 1 and D = 1.5.
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Figure 61: Numerical solutions for fractional time Cattaneo equation (4.1) at

t = 1 where α = 0.9. Different values for D are shown where D = 0.1 (black),

D = 0.5 (red), D = 1 (blue) and D = 1.5 (green). Results show superdiffusion

( for D > 0.1.
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Figure 62: Numerical solutions for fractional time Cattaneo equation (4.1) at

t = 1 where D = 0.1. Different values for α are shown where α = 0.1 (black),

α = 0.5 (dotted red) and α = 0.9 (blue). Results are consistent for all values of

α.
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Figure 63: Numerical solutions for fractional time Cattaneo equation (4.1) at

t = 1 where D = 0.5. Different values for α are shown where α = 0.1 (black),

α = 0.5 (dotted red) and α = 0.9 (blue). Increasing α has a superdiffusive

effect.
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Figure 64: Numerical solutions for the MSD of fractional time Cattaneo equation

(4.1) at t = 1 where D = 0.1 and α = 0.1 (black). Compare this to MSD of

the analytical diffusion equation (3.2) (dashed red) and the analytical Cattaneo

equation (4.2) (blue). Results are consistent to anomalous diffusive behaviour.
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Figure 65: Numerical solutions for the MSD of fractional time Cattaneo equation

(4.1) at t = 1 where D = 0.1 and α = 0.5 (black). Compare this to MSD of

the analytical diffusion equation (3.2) (dashed red) and the analytical Cattaneo

equation (4.2) (blue). Results are consistent to anomalous diffusive behaviour.
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Figure 66: Numerical solutions for the MSD of fractional time Cattaneo equation

(4.1) at t = 1 where D = 0.1 and α = 0.9 (black). Compare this to MSD of

the analytical diffusion equation (3.2) (dashed red) and the analytical Cattaneo

equation (4.2) (blue). Results are consistent to anomalous diffusive behaviour.
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Figure 67: Numerical solutions for fractional space diffusion equation (3.5) at

t = 20 where β = 1.2. Solution is plotted for D = 0.1 (black), D = 0.5 (red),

D = 1 (blue) and D = 1.5 (green). Results are not consistent for different values

of D and are skewed to the left.
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Figure 68: Numerical solutions for fractional space diffusion equation (3.5) at

t = 20 where β = 1.5. Solution is plotted for D = 0.1 (black), D = 0.5 (red),

D = 1 (blue) and D = 1.5 (green). Results are not consistent for different values

of D and are skewed to the left.
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Figure 69: Numerical solutions for fractional space diffusion equation (3.5) at

t = 20 where β = 1.9. Solution is plotted for D = 0.1 (black), D = 0.5 (red),

D = 1 (blue) and D = 1.5 (green). Results are not consistent for different values

of D and show a normal distribution.

Plotting the solutions for the fractional diffusion equations (equa-

tions (3.1), (3.5)) and fractional Cattaneo equations (equations (4.1),

(4.4)) with the analytical solution of the phenomenological diffusion

equation (3.2), we observe the behaviour of each equation (Figure

52). The fractional time Cattaneo equation exhibits rapid (superdif-

fusive) diffusive behaviour. The solutions to the fractional space

diffusion and fractional space Cattaneo show diffusive behaviour

that is faster than normal diffusion. We observe that the fractional

time diffusion equation exhibits behaviour on par with normal diffu-

sion (subdiffusive behaviour compared to equations (4.1), (4.4) and

(3.5)).

In Figures 53, 54 and 55 we compare the results forD = 0.1, 0.5, 1, 1.5

for each α = 0.1, 0.5, 0.9 for the fractional time diffusion equation.
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Figure 70: Numerical solutions for fractional space diffusion equation (3.5) at

t = 20 where D = 0.1. Different values for β are shown where β = 1.2 (black),

β = 1.5 (red) and β = 1.9 (blue). Numerical results for a smaller D appear

almost consistent for different values of β.
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Figure 71: Numerical solutions for fractional space diffusion equation (3.5) at

t = 20 where D = 0.5. Different values for β are shown where β = 1.2 (black),

β = 1.5 (red) and β = 1.9 (blue). Results are not consistent for changing β

when D is increased to 0.5.
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Figure 72: Numerical solutions for fractional space diffusion equation (3.5) at

t = 20 where D = 1. Different values for β are shown where β = 1.2 (black),

β = 1.5 (red) and β = 1.9 (blue). Results are not consistent for changing β

when D is increased to 1.

For each α the results are consistent in showing that for a D = 0.1

the process of diffusion is faster, where the effects when D = 0.5, 1.5

are the same.

When these comparisons are made for the fractional time Catta-

neo equation we notice a significant difference in the results for the

different values of D when α = 0.5, 0.9. Refer to Figures 60 and

61. For a lower diffusion coefficient diffusion occurs slower, while for

higher values of the diffusion coefficient superdiffusion is observed.

These observations are consistent for α = 0.5, 0.9.

Comparing the effects of the different diffusion coefficients on the

fractional space equations (both diffusion and Cattaneo) we observe
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Figure 73: Numerical solutions for fractional space diffusion equation (3.5) at

t = 20 where D = 1.5. Different values for β are shown where β = 1.2 (black),

β = 1.5 (red) and β = 1.9 (blue). Results are not consistent for changing β

when D is increased to 1.5.
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Figure 74: Numerical solutions for the MSD of fractional space diffusion equa-

tion (3.5) (black) at t = 20 where D = 0.1 and β = 1.2. Compare this to

MSD of the analytical diffusion equation (3.2) (red dashed) and the analytical

Cattaneo equation (4.2) (blue). Results are consistent to anomalous diffusive

behaviour.

81



0 500 1000 1500 2000 2500

x2

-300

-250

-200

-150

-100

-50

0

log u

Figure 75: Numerical solutions for the MSD of fractional space diffusion equa-

tion (3.5) (black) at t = 20 where D = 0.1 and β = 1.5. Compare this to

MSD of the analytical diffusion equation (3.2) (red dashed) and the analytical

Cattaneo equation (4.2) (blue). Results are consistent to anomalous diffusive

behaviour.
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Figure 76: Numerical solutions for the MSD of fractional space diffusion equa-

tion (3.5) (black) at t = 20 where D = 0.1 and β = 1.9. Compare this to

MSD of the analytical diffusion equation (3.2) (red dashed) and the analytical

Cattaneo equation (4.2) (blue). Results are consistent to anomalous diffusive

behaviour.
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Figure 77: Numerical solutions for fractional space Cattaneo equation (4.4) at

t = 20 where β = 1.5. Solution is plotted for D = 0.1 (black), D = 0.5 (red),

D = 1 (blue) and D = 1.5 (green). Results show slightly skewed to the left and

superdiffusion is observed.
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Figure 78: Numerical solutions for fractional space Cattaneo equation (4.4) at

t = 20 where β = 1.9. Solution is plotted for D = 0.1 (black), D = 0.5 (red),

D = 1 (blue) and D = 1.5 (green). Results show as a normal distribution and

superdiffusion is observed.
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Figure 79: Numerical solutions for fractional space Cattaneo equation (4.4) at

t = 20 where D = 0.1. Different values for β are shown where β = 1.2 (black),

β = 1.5 (red) and β = 1.9 (blue). Numerical results for a smaller D appear

almost consistent for different values of β.

the same or similar behaviour (Figures 67, 68, 77). When D = 0.1

diffusion occurs very slowly (subdiffusion), when D = 0.5, 1, 1.5 su-

perdiffusion is observed. Results are displayed skewed to the left

when β = 1.2, 1.5 but for β = 1.9 results follow a Gaussian be-

haviour with a more normal distribution (Figures 69 and 78).

Looking at the fractional time diffusion equation results, Figure 56,

the results for the different values of α when D = 0.1, show superdif-

fusion for α = 0.1 and are consistent with the results obtained for

different diffusion coefficients.

Figures 62 and 63 compare the different values of α with D = 0.1, 0.5

for the fractional time Cattaneo equation. When D = 0.1 no change
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Figure 80: Numerical solutions for fractional space Cattaneo equation (4.4) at

t = 20 where D = 0.5. Different values for β are shown where β = 1.2 (black),

β = 1.5 (red) and β = 1.9 (blue). Results are not consistent for changing β

when D is increased to 0.5.
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Figure 81: Numerical solutions for fractional space Cattaneo equation (4.4) at

t = 20 where D = 1. Different values for β are shown where β = 1.2 (black),

β = 1.5 (red) and β = 1.9 (blue). Results are not consistent for changing β

when D is increased to 1.
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Figure 82: Numerical solutions for fractional space Cattaneo equation (4.4) at

t = 20 where D = 1.5. Different values for β are shown where β = 1.2 (black),

β = 1.5 (red) and β = 1.9 (blue). Results are not consistent for changing β

when D is increased to 1.5.
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Figure 83: Numerical solutions for the MSD of fractional space Cattaneo equa-

tion (4.4) (black) at t = 20 where D = 0.1 and β = 1.2. Compare this to

MSD of the analytical diffusion equation (3.2) (dashed red) and the analytical

Cattaneo equation (4.2) (blue). Results are consistent to anomalous diffusive

behaviour.
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Figure 84: Numerical solutions for the MSD of fractional space Cattaneo equa-

tion (4.4) (black) at t = 20 where D = 0.1 and β = 1.5. Compare this to

MSD of the analytical diffusion equation (3.2) (dashed red) and the analytical

Cattaneo equation (4.2) (blue). Results are consistent to anomalous diffusive

behaviour.
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Figure 85: Numerical solutions for the MSD of fractional space Cattaneo equa-

tion (4.4) (black) at t = 20 where D = 0.1 and β = 1.9. Compare this to

MSD of the analytical diffusion equation (3.2) (dashed red) and the analytical

Cattaneo equation (4.2) (blue). Results are consistent to anomalous diffusive

behaviour.
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occurs in the results but when D = 0.5 lower values of α reflect sub-

diffusion, while larger values of α show superdiffusion.

Results comparing the effects of different values of β are similar

for the fractional space diffusion equation and the fractional space

Cattaneo equation. When D = 0.1 the results for β = 1.2, 1.5, 1.9

are almost consistent (Figure 70, 79). A significant difference be-

tween the results is observed when D = 0.5, 1, 1.5 (Figures 71, 72,

73, 80, 81, 82). We observe that for all the comparisons of the dif-

fusion coefficients, when β = 1.9 results display Gaussian behaviour

with a normal distribution while for other values of β results are

skewed.

Figures 57, 58, 59, 64, 65 and 66 show the results when plotting the

log of our numerical solutions against x2 for the fractional time diffu-

sion and for the fractional time Cattaneo equations α = 0.1, 0.5, 0.9.

Figures 74, 75, 76, 83, 84 and 85 show the log of the numerical

solutions obtained for the fractional space diffusion and fractional

space Cattaneo equations, with different values of β. To check for

consistency each of these solutions is compared to the log of the

analytical solutions of the diffusion equation (3.2) and the Cattaneo

equation (4.2). All the figures show consistency to the log or MSD of

equations (3.2) and (4.2), exhibiting superdiffusive behaviour (the

slightly curved black lines as opposed to normal diffusive behaviour

represented by the linear straight lines) for all the fractional time

and space equations we have solved.
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We observed that numerical solutions are unstable for a small frac-

tional exponent (α = 0.1) operating on the time derivative combined

with larger values for the diffusivity coefficient (mainly D = 1, 1.5).

Results that are stable are consistent to diffusive behaviour. When

the fractional exponent is between 0 and 1 diffusion is slower, while

when it is between 1 and 2 diffusion is faster. However, when the

fractional exponent is combined with a lower diffusivity coefficient,

the effect is subdiffusion.

Extensive work continues to be undertaken on fractional differential

equations. Recent and common approaches for solving fractional

differential equations are presented by Atanackovic and Stankovic

[4], Momani and Odibat [37] and Erturk et al [45].

Atanackovic and Stankovic [4] take the approach of transforming a

fractional differential system and converting it to a system of first-

order ordinary differential equations. Yuan and Agrawal [47] have

also investigated this approach, but have based it on a different

definition of the fractional derivative. The results they obtain are

in good agreement with results from other methods.

Momani and Odibat [37], and Erturk et al [45] have recently ex-

plored the use of a generalised Taylor formula and the GDTM

(generalised differential transform method). They conclude that

the methods investigated are efficient and convenient. Other pa-

pers explore the additional use of the Crank-Nicholson method in
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discretizing fractional differential equations, which provides a stable

and convergent solution [3, 1].

We have modeled the generalised Cattaneo equations and shown

the numerical techniques used to solve these equations. These finite

difference techniques have been applied to fractional diffusion and

fractional Cattaneo equations. We have found that this approach

works best for the equations where the fractional derivative operates

on the spatial variable than for the equations where the fractional

derivative operates on time. The interval points at which

boundary conditions are imposed need to be chosen so that the fact

that “no heat escapes” is satisfied (i.e. the fact that the ends of

the rod mentioned in Section 1.1 are insulated). When the parame-

ter ∆t = 0.01 is halved, the fractional time Cattaneo scheme takes

longer periods of time to run, however with a smaller time step the

fractional time Cattaneo scheme can be run for a longer time pe-

riod. To conclude the techniques applied are memory intensive and

requires sufficient computational time with smaller spatial and time

step lengths. This could be resolved with improvements in technol-

ogy.

Possible work in the future includes investigating the Adomian ap-

proach for solving fractional differential equations as explored by

Wazwaz and El-Sayed [46], and Odibat and Momani [38]. The ad-

vantage of the Adomian decomposition method is that solutions are

provided in a rapid convergent series, with accuracy improving as
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more terms of the approximate solution are computed. The ac-

curacy, however, does depend on the fractional partial differential

equation being solved. We could also investigate converting the

partial differential equations to a system of first-order differential

equations as presented by Atanackovic and Stankovic [4].
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