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ABSTRACT 

 

The presence of endotoxin in animals and humans triggers a sequence of acute phase 

responses, which include the synthesis and release of pro-inflammatory cytokines from 

immune cells, followed by the development of various symptoms of sickness including 

fever and an array of behavioural responses, commonly referred to as sickness 

behaviours.  Most experimental investigations examining the mechanisms mediating 

fever and sickness behaviour responses have used purified lipopolysaccharide (LPS), the 

glycolipid pyrogenic moiety of the Gram-negative bacterial membrane, to trigger the 

innate immune system.  Results obtained from studies using specific antagonists to block 

the action of cytokines synthesized following systemic administration of LPS, have 

uncovered important roles for pro-inflammatory cytokines, such as interleukin (IL)-1β, 

IL-6, tumour necrosis factor-alpha (TNF-α) and leptin, in mediating fever.  Although it 

has been shown that administration of pro-inflammatory cytokines can induce sickness 

behaviour in experimental animals, no clear role has been identified for these cytokines 

as endogenous mediators of sickness behaviours induced following LPS administration. 

 

Using rats as experimental animals and endogenous cytokine antagonism, I therefore 

investigated whether endogenously released IL-1β, IL-6, TNF-α and leptin are 

physiologically active not only in the generation of fever, but also in the generation of 

two specific sickness behaviours, lethargy and anorexia, induced by subcutaneous (s.c.) 

administration of LPS.  Lethargy, anorexia and fever were measured as changes in 

voluntary wheel-running, food intake and body temperature respectively.  I antagonized 
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the biological action of these cytokines in the periphery following s.c. administration of 

LPS by injecting rats intraperitoneally (i.p.) with specific anti-rat sera to one of the 

following: TNF-α, IL-1β, IL-6 or leptin.  Peripherally-released leptin appeared to be an 

important mediator of both fever and anorexia, as the presence of leptin antibodies in the 

circulation abolished both the anorexia and fever induced by s.c. administration of LPS.  

In contrast though, whereas the presence of IL-6 antibodies in the circulation abolished 

the LPS-induced fever, suppression of voluntary activity was reversed by the presence of 

IL-6 antibodies only to the extent of 27%, and appetite also was not returned to normal 

levels in the presence of IL-6 antibodies.  Thus, IL-6 may be an essential component of 

LPS-induced fever, but an additional factor or factors, possibly working in parallel with 

IL-6, may be required to mediate the lethargy and anorexia induced by s.c. administration 

of LPS.  Injecting rats i.p. with TNF-α antiserum or IL-1β antiserum had no effect on 

LPS-induced lethargy and LPS-anorexia, indicating that if these cytokines are working 

with peripherally-released IL-6 to induce sickness behaviour, it is likely due to their 

synthesis in the brain. 

 

Injecting species-homologous rat IL-1β and IL-6 into the brains of conscious rats, I aimed 

to identify whether either of these two cytokines can act within the brain to induce 

lethargy and anorexia in the absence of an infection.  Intracerebroventricular (i.c.v.) 

administration of either IL-1β or IL-6 before the night-time active period decreased 

voluntary activity in the rats in a dose-dependent fashion, whereas only IL-1β decreased 

food intake and body mass of the rats.   It is possible therefore, that increased levels of 

IL-1β in the brain may be working in parallel with IL-6 released in the periphery to 

induce lethargy and anorexia following s.c. administration of LPS. 
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Thus I antagonized the biological action of these cytokines endogenously by 

administering species-specific antiserum to IL-6 (IL-6AS) i.p., and a caspase-1 inhibitor, 

which prevents the cleavage of pro-IL-1β to biologically active IL-1β, i.c.v. and 

monitored the symptoms of sickness induced by LPS until they ceased, so as to determine 

the cytokine involvement not only in the induction of these responses, but also in the 

resolution of these responses.  Pre-treating rats with either IL-6AS i.p. or a caspase-1 

inhibitor i.c.v. attenuated the magnitude and the duration of the anorexia and lethargy 

induced by LPS administration.  LPS-induced fever was completely abolished in rats pre-

treated i.p. with IL-6AS, while it was only partially attenuated in rats pre-treated i.c.v. 

with a caspase-1 inhibitor.   

 

In conclusion, there appears to be some distinct differences in the cytokine-mechanisms 

regulating fever and sickness behaviours induced by LPS.  Identifying the physiological 

mechanisms mediating fever and sickness behaviours during illness may provide 

clinicians with more insight into managing not only the thermal, but also the non-thermal 

responses to infections, responses which may become detrimental to the host if they 

continue for a prolonged period.  My observation that reducing either IL-6 in the 

circulation or IL-1β in the brain significantly enhances the resolution of anorexia and 

lethargy, but does not completely prevent them from occurring, appears to indicate that 

while individual cytokines are possible targets for therapies aimed at alleviating these 

sickness responses in patients with bacterial infections, to abolish them multiple 

cytokines may need to be targeted. 
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PREFACE 

 

Having cared for a sick child or animal caregivers recognize that most often it is the 

dramatic changes in behaviour that provide signs that their child or pet is ill.  Sick 

humans and animals often are “feverish”; they do not feel like eating food, have an 

increased sensitivity to pain and lose interest in their physical and social environments.  

They feel fatigued and are reluctant to engage in their normal daily activities.  Their sleep 

is also often fragmented and they develop a depressed mood.  Each of these sickness 

symptoms negatively impact on the sick individuals’ quality of life and are extremely 

uncomfortable, which is often what necessitates medical intervention.   

 

The discovery that these non-specific behavioural symptoms are not only particular to 

patients with a “common cold” or flu, but in fact also appear to occur in patients with 

some of the most harmful, costly and debilitating diseases currently experienced in the 

Western World: coronary heart disease, cancer, obesity, type II diabetes and 

neurodegenerative disorders associated with aging, has enhanced the effort of basic 

scientists and clinicians to identify the pathophysiological mechanisms causing these 

behavioural symptoms, with the view to developing treatment strategies aimed 

specifically at managing them. 

 

A major breakthrough in identifying the possible mechanisms involved in mediating 

illness-induced behavioural symptoms arose serendipitously from clinical studies in 

which proteins important for immune function, known as pro-inflammatory cytokines, 
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were used in the treatment of the immunosuppression present in cancer patients.  

Injecting cancer patients with these cytokines produced a suite of sickness responses, 

including fever, fatigue, malaise, headaches, anorexia and depression, similar to those 

noted during infection.  From these clinical studies showing that pro-inflammatory 

cytokines, molecules produced by immune cells of the host in response to a variety of 

disease-causing pathogens, can induce dramatic changes in behaviour resembling those 

seen during infection, the question has arisen as to whether these proteins are likely 

mediators of sickness responses.  The use of agents that specifically block the synthesis 

of cytokines in animal models of simulated Gram-negative bacterial infection has 

successfully been used to identify the involvement of cytokines in mediating fever 

induced by a variety of disease-causing pathogens.  In contrast to the important role 

established for cytokines as endogenous mediators of fever, no clear picture has emerged 

as yet regarding their involvement as endogenous mediators of anorexia and lethargy, two 

brain-controlled sickness behaviours, also known to be induced during an infection. 

 

The main aim of this thesis was therefore to systematically investigate the involvement of 

four principal cytokines, TNF-α, IL-1β, IL-6 and leptin in mediating not only fever, but 

two specific behavioural symptoms of sickness, namely lethargy and anorexia, in an 

animal model of simulated Gram-negative bacterial infection.  As sickness and recovery 

processes are ultimately governed/controlled by the brain, a secondary aim of this thesis 

was to investigate the action of cytokines within the brain, on voluntary activity and food 

intake in the absence of a simulated infection. 
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In Chapter 1 I review the studies which have thus far examined the contribution of the 

four principal pro-inflammatory cytokines, IL-1β, IL-6, TNF-α and leptin, in mediating 

fever and sickness behaviours, specifically anorexia and lethargy, induced by peripheral 

administration of LPS.  Chapters 2-4 contain publications that form the main body of the 

thesis.  In Chapter 2 I administered species-and cytokine-specific antisera to examine 

whether peripherally-released cytokines, IL-1β, IL-6, TNF-α and leptin are 

physiologically active in the generation of the lethargy, anorexia and fever induced by 

subcutaneous administration of LPS in rats.  To discern direct effects in the brain of IL-6 

and IL-1β in mediating sickness behaviours, I injected species-homologous rat IL-6 and 

IL-1β directly into the brains of conscious rats and examined the dose-response effects on 

their voluntary activity, food intake and body temperature in Chapter 3.  Chapter 3 also 

looks at whether IL-6 and IL-1β act synergistically within the brain to mediate changes in 

voluntary activity, food intake and body temperature.  In Chapter 4 I investigate the 

effects of inhibiting the action of peripherally-released IL-6 and IL-1β in the brain on 

lethargy, anorexia and fever induced by subcutaneous administration of LPS.  In Chapter 

5, the experimental results presented in the thesis are summarized, unresolved issues are 

discussed, and conclusions and recommendations are given. 
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Pathogenic microorganisms which succeed in overcoming the physical barriers to access 

the human body trigger a set of immune, physiological, metabolic and behavioural 

responses in the host, known collectively as the acute phase response (Dantzer, 2004).  Of 

these acute phase responses, fever is the most commonly recognized and it is identified 

by physicians and patients alike as an elevation of body temperature.  Not only will most, 

if not all patients have high body temperatures during infectious and inflammatory 

illness, but so too will they experience a cluster of non-specific behavioural changes such 

as lethargy, depression, increased sleepiness and pain, and suppression of appetite (Hart, 

1988; Dantzer, 2001; Johnson, 2002).  These behavioural changes, collectively referred to 

as “sickness behaviour” are now well-established responses to infection and together with 

fever constitute a highly organized and evolved strategy used by the host to fight 

infection (Hart, 1988).    

 

Part of the innate immune system’s response to infection includes the production of pro-

inflammatory cytokines, the involvement of which in the pathogenesis of fever was 

identified in the late 1970’s (Dinarello et al., 1977; Dinarello, 1999).  The pro-

inflammatory cytokines thought to have significant roles in fever include tumour necrosis 

factor (TNF), interleukin-1 (IL-1) and interleukin-6 (IL-6), synthesized by 

monocytes/macrophages and lymphocytes (Luheshi & Rothwell, 1996).  Approximately 

ten years after a role for cytokines in fever was uncovered, evidence began to emerge that 

cytokines also may be involved in the induction of the sickness behaviours accompanying 

fever.  The evidence came from clinical trials in which purified or recombinant cytokines 

were used in the treatment of patients with cancer and chronic viral infections such as 
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hepatitis B and C.  Administering cytokines to these patients produced a number of side-

effects which included lethargy, weakness, malaise, sleep changes as well as fever 

(Renault & Hoofnagle, 1989; Dinarello, 1997).  It quickly became apparent to clinicians 

and researchers that these effects observed with systemic administration of cytokines 

were akin to those experienced by sick animals and humans.  Since these observations 

obtained from clinical studies, experimental administration of pro-inflammatory 

cytokines to animals has confirmed that most components of sickness behaviour can 

indeed be induced by pro-inflammatory cytokines, in particular IL-1 (for review see 

Dantzer et al., 1998; Dantzer, 2004). 

 

Although exogenous administration of cytokines in animals and humans induced sickness 

behaviour, there nevertheless remained doubt as to whether cytokines synthesized 

endogenously during infection mediated sickness behaviour.  It was proposed that the 

injection of recombinant cytokines may be at pharmacological doses, inducing effects 

which are not necessarily representative of the true physiological effects occurring in an 

infected individual.  Moreover, during an actual or simulated infection not only one, but a 

number of different cytokines are synthesized and these cytokines can affect the synthesis 

and secretion of each other (Cartmell & Mitchell, 2005).  Thus it became clear that an 

understanding of the cytokine mechanisms mediating fever and sickness behaviour 

during an infection would need investigations into the contribution of each individual 

cytokine in mediating sickness responses.   
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The development of techniques which allowed specific antagonism of individual 

cytokines, such as receptor antagonists, neutralizing antibodies against cytokines and 

their receptor molecules, and gene knockout technology, assisted researchers in 

undertaking investigations into the respective roles of cytokines.  These techniques were 

combined with an established animal model of simulated infection induced by a powerful 

activator of the innate immune system, lipopolysaccharide (LPS), the glycolipid 

pyrogenic moiety of the Gram-negative bacterial membrane, injected into various animal 

species via various routes (Ulevitch & Tobias, 1995).  

 

This introductory chapter summarizes the current views on how the response of the innate 

immune system to administration of LPS leads to the synthesis of pro-inflammatory 

cytokines, and it reviews the literature on pro-inflammatory cytokines as mediators of 

fever and sickness behaviours, specifically anorexia and lethargy, induced by LPS.  The 

questions to be addressed in this thesis also are raised. 

 

1.1 Bacterial-host interactions 

 

A substantial portion of our knowledge on host defence responses and inflammatory 

mediators during an infectious episode has been derived from studies investigating host 

responses to LPS administration (Heumann & Roger, 2002).  The interest in this 

molecule and the mechanism of its biological action have significant clinical application, 

as Gram-negative sepsis in humans is caused by Enterobacteriaceae such as Escherichia 

coli and Klebsiella species (Bochud & Calandra, 2003).  LPS is composed of two 
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chemically dissimilar structural regions:  the hydrophilic repeating polysaccharides of the 

core and the O-antigen structures, and a hydrophobic domain known as lipid A.  Lipid A 

is the biologically active moiety of LPS (Heumann & Roger, 2002).  Of the different 

components (LPS, peptidoglycan, porins, pipoproteins, lipopeptides, lipid A-associated 

proteins, pili, flagellin, DNA (CpG motifs) and endotoxins) of Gram-negative bacteria 

known to induce inflammation, LPS is proposed to be the most potent (Heumann & 

Roger, 2002). 

 

1.1.1 Detection of Gram-negative bacteria through cellular receptors 

 

Once bacterial components have entered the host, the innate immune system recognizes 

the presence of a given pathogen by the so-called pathogen-associated molecular patterns 

(PAMPs) present on microbes, but not expressed by the host (Janeway & Medzhitov, 

2002; Kapetanovic & Cavaillon, 2007).  PAMPs are specific, structurally conserved 

components of certain broad groups of microorganisms (Romanovsky et al., 2006).  

Classical bacterial PAMPs include LPS of Gram-negative bacteria and lipoteichoic acid 

or peptidoglycans from Gram-positive bacteria.  Detection of PAMPs present on 

microbes is mediated by pattern recognition receptors expressed on the surface of innate 

immune cells of the host (Kapetanovic & Cavaillon, 2007).  The pattern recognition 

receptors for PAMPs are germ line encoded receptors known as Toll-like receptors 

(TLR), which are transmembrane proteins that relay PAMPs-induced signals across the 

cell-surface membrane (Kapetanovic & Cavaillon, 2007). 
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There is substantial evidence to indicate that LPS acts via the TLR-4 receptor subtype of 

the TLR family (Chow et al., 1999).  However, for LPS in plasma to confirm 

responsiveness via its TLR, its lipid A domain has to bind at least two non-signalling host 

accessory proteins: the constitutive serum protein LPS-binding protein (LBP), and 

soluble or membrane-bound CD14 (see below) (Cartmell & Mitchell, 2005).  LBP 

dissociates LPS aggregates to form LPS/LBP complexes which are transferred to CD14.  

The primary role of LBP is therefore to function as a lipid-transfer protein, increasing the 

rate at which LPS interacts with soluble or membrane bound CD14 (Pugin et al., 1993).  

CD14 exists as a protein anchored in the outer leaflet of the plasma membrane (mCD14) 

present on monocytic cells (CD14-positive cells).  It also exists in the form of a soluble 

plasma protein (sCD14) that attaches LPS to CD14-negative cells, such as endothelial 

cells present in blood and fluids (Heumann & Roger, 2002).  CD14 cannot induce 

activation without a transmembrane signal transducing co-receptor, identified as TLR-4 

for LPS (Kapetanovic & Cavaillon, 2007).  The membrane-bound CD14 which binds 

LPS, conveys it to MD-2, a key protein needed for the TLR-4 dependent intracellular 

signalling (Kapetanovic & Cavaillon, 2007).  As Figure 1 illustrates LPS therefore 

initiates its effects through a heteromeric receptor complex containing CD14, together 

with the transmembrane protein TLR-4 (Medzhitov & Janeway, 1997), and at least one 

other protein, MD-2, which is essential to confer LPS responsiveness via its TLR 

(Shimazu et al., 1999).   The importance of TLR-4 in mediating the immune response to 

LPS has been confirmed in vivo with the finding that TLR-4-deficient mice do not 

respond to LPS (Hoshino et al., 1999).  While TLR-4 appears to be the primary 

mechanism mediating LPS recognition, other receptors such as CD11/CD18 beta-2 
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integrin and cell-surface proteins known as scavenger receptors may also be involved 

(Romanovsky et al., 2005). 

 

Once LPS binds to TLR-4 present on the surface of leucocytes, this leads to signal 

transduction via receptor associated proteins, IL-1 receptor-associated kinase, myeloid 

differentiation factor 88 (MyD88) and TNF receptor-associated factor (TRAF6), resulting 

in the activation of transcription factors (nuclear factor-κB and activator protein 1) 

(Cartmell & Mitchell, 2005).  Although TLR-4 signalling can also occur through a 

MyD88 independent pathway, the MyD88 pathway depicted in Figure 1 is essential for 

the inflammatory response mediated by LPS.  The transcription factors control the 

expression of immune response genes, which ultimately leads to the synthesis and release 

of cytokines (Heumann & Roger, 2002; Cartmell & Mitchell, 2005; Kapetanovic & 

Cavaillon, 2007).   

 

The focus of the discussions of this review will be on the involvement of four principal 

cytokines (TNF-α, IL-1β, IL-6 and leptin) as endogenous mediators of fever, anorexia 

and lethargy induced by LPS.   
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Figure 1.  Lipopolysaccharide aggregates are dissociated by LBP to form LPS/LBP 
complexes which are transferred to CD14.  A small cysteine rich secreted glycoprotein, 
MD-2, is essential for TLR-4 signalling, which leads to signal transduction via receptor 
associated proteins, IRAK, MyD88 and TRAF6, resulting in the activation of 
transcription factors (NF-κB and AP-1).  The transcription factors control the expression 
of immune response genes, which ultimately leads to the synthesis and release of 
cytokines.  Abbreviations: Lipopolysaccharide (LPS), LPS-binding protein (LBP), Toll-
like receptor 4 (TLR4), IL-1 receptor-associated kinase (IRAK), myeloid differentiation 
factor 88 (MyD88), TNF receptor-associated factor 6 (TRAF 6), nuclear factor-κB (NF-
κB), and activator protein 1 (AP-1) (modified from Cartmell & Mitchell, 2005). 
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1.1.2 From LPS-induced synthesis to detection of cytokines through cellular receptors 

 

The experimental model of systemic infection, that is intravenous (i.v.) or intraperitoneal 

(i.p.) administration of LPS to laboratory animals, has been by far the most popular 

model used to investigate fever and sickness behaviour responses.  The rationale for 

administering LPS systemically is that it mimics responses induced by bacterial 

septicaemia, in which the exogenous pyrogen is present in the circulation.  Injection of 

LPS into a pre-formed subcutaneous airpouch is used as an experimental model of sterile 

localized infection.  In this experimental model the exogenous pyrogen remains at the site 

of administration, and so does not enter the circulation.  In response to i.v. or i.p. 

administration of LPS, TNF-α appears first in the circulation, followed by trace amounts 

of IL-1β and large amounts of IL-6 (Givalois et al., 1994).  Injection of LPS into a 

preformed subcutaneous airpouch induces a significant elevation in the concentration of 

TNF-α, IL-1β and IL-6 (in that sequence) at the site of infection (that is within the 

pouch), but IL-6 is the only cytokine detected in the circulation (Miller et al., 1997b; 

Cartmell et al., 2000).  Thus the pattern of cytokines induced in the circulation during 

experimental models of systemic and localized infection appears to differ. 

 

Not only have pro-inflammatory cytokines been detected in the circulation following 

systemic administration of LPS, but they also appear in the brain (Rivest et al., 2000).    It 

has been suggested that these cytokines in the brain could be derived from the periphery 

or they could be synthesized de novo within the brain following the systemic immune 

challenge.  Potential sources of cytokine synthesis in the brain include microglia, 
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astrocytes, neurones and endothelial cells (Rothwell et al., 1996).   Whether in the 

periphery or the brain, cytokines produce their selective biological effects by binding to 

specific membrane-bound receptors, thereby triggering a cascade of events, leading to 

signal transduction which promotes transcription and upregulation of expression of 

specific target genes, for example those for the synthesis of cyclooxygenase (COX) (a 

detailed description of the signal-transduction pathways for IL-1, TNF and IL-6, is 

provided in the review by Cartmell & Mitchell, 2005).   

 

The IL-1 cytokine family consists of two agonists, IL-1α and IL-1β, and a highly 

selective endogenous IL-1 receptor antagonist (IL-1ra) (Dinarello, 1991).  In vivo all 

three cytokines are synthesized initially as precursors, of which pro-IL-1α and pro-IL-1ra 

are biologically active.  Pro-IL-1β is inactive as it lacks a signalling peptide, and 

therefore remains inside the cell in which it was synthesized (Thornberry et al., 1992; 

Burns et al., 2003).  To be biologically active, pro-IL-1β requires proteolytic cleavage by 

an enzyme known as caspase-1 or interleukin-1-converting-enzyme to active mature IL-

1β, which is then secreted from the cell (Thornberry et al., 1992; Fantuzzi & Dinarello, 

1999; Burns et al., 2003).    There are no differences between the biological actions of IL-

1β and IL-1α (Dinarello, 2005b).   However, IL-1α is thought to remain mainly cell-

associated, while IL-1β is secreted and therefore, more likely to play a role in the 

physiological responses such as fever and sickness behaviour (Dinarello, 2005b).  IL-1α, 

IL-1β and IL-1ra all bind the same IL-1 receptors on target cells: type I (IL-1rI) and type 

II (IL-1rII) IL-1 receptors (Dinarello, 1991; Conti et al., 2004).  IL-1 exerts its biological 

effects through initial interaction with the IL-1rI receptor to form a functional signalling 
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receptor complex (Sims et al., 1993; Lang et al., 1998).  The IL-1rII receptor acts as a 

“decoy” molecule binding IL-1 with high affinity yet it fails to activate the signalling 

cascade (Lang et al., 1998). 

 

Like IL-1, TNF occurs in two forms, α and β (Cartmell & Mitchell, 2005).  Of the two 

different forms, TNF-α is proposed to be primarily involved in the physiological 

responses of fever and sickness behaviour.  There are two transmembrane signalling 

receptors, type I (TNFRI, p55) and type II (TNFRII, p75), by which TNF mediates its 

pleiotropic effects (Bazzoni & Beutler, 1996).  A third soluble receptor also exists that 

acts endogenously as an antagonist of TNF activity (Himmler et al., 1990).   

 

The biological effects of IL-6 are mediated by a specific receptor complex that consists of 

two functionally different subunits: a specific ligand-binding receptor (IL-6R), not 

capable of transducing activity; and a non-ligand binding signal transducing glycoprotein 

(gp 130) (Cartmell & Mitchell, 2005).   Together IL-6R and gp 130 form a high-affinity 

IL-6 binding site that triggers specific transduction signals (Kishimoto et al., 1995).  

Soluble forms of the ligand-binding IL-6 receptor subunit have also been discovered 

(Rivest et al., 2000; Roth et al., 2004b).  These soluble IL-6 receptors can bind IL-6 and 

associate with cellular gp130 to initiate signal transduction (Roth et al., 2004b). 

 

Leptin is a 16kDA pleitrophic protein encoded by the ob gene, which belongs to the long-

chain helical cytokine family that also includes IL-6 and is produced mainly by white 

adipose cells (Zhang et al., 1994).  The biological effects of leptin are induced by 
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signalling via the long isoform of the leptin receptor, ObRb (Bates et al., 2003; Bates et 

al., 2004).  The ObRb receptor has signalling activities similar to those of the IL-6 type 

cytokine receptors (Vaisse et al., 1996). 

 

Receptors for IL-1, IL-6, TNF and leptin have been identified on peripheral cells and they 

have been localized in the brain of rodents (Hopkins & Rothwell, 1995; Zabeau et al., 

2003).  Having discussed the interactions between LPS and immune cells, which lead to 

the synthesis of pro-inflammatory cytokines in response to systemic administration of 

LPS, the subsequent sections summarize the findings obtained from studies using genetic 

ablation or physiological antagonism of a particular cytokine or its receptor to investigate 

the action of specific cytokines, released in the periphery and the brain, in mediating the 

sickness responses of fever, anorexia and lethargy induced by peripheral administration 

of LPS.  These findings also are compared with those obtained from the more commonly 

used pharmacological approaches of cytokine administration. 

 

1.2 Cytokines as mediators of fever induced by LPS 

 

It is generally believed that the febrile response is mostly beneficial to the host acutely, as 

an increase in body temperature has been shown to potentiate specific immunological 

responses and inhibit the growth of at least some viral and bacterial pathogens (Hart, 

1988).  The increase of body core temperature that occurs during a fever appears to be 

due to a regulated elevation of the temperature set point resulting from changes in the 

firing rates of neurones localized in the preoptic area of the hypothalamus (Conti et al., 
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2004).  It has been suggested that during fever, pyrogenic molecules decrease firing rates 

of warm-sensitive neurones, and increase firing rates of cold-sensitive neurones (as a 

consequence of synaptic inhibition), thereby suppressing heat-loss responses and 

enhancing heat production and heat-retention responses (Mackowiak & Boulant, 1996).   

These changes in firing rates have been reported in studies using ex vivo protocols, which 

included administration of recombinant TNF-α, IL-1β and IL-6 to hypothalamic tissue 

slices, and are similar to the responses observed in conscious febrile animals (Shibata & 

Blatteis, 1991).  Thus it has been proposed that pro-inflammatory cytokines are the likely 

pyrogenic molecules acting within the hypothalamus to increase the temperature set-point 

during fever, which results in the relative changes in firing rates of thermo-sensitive 

neurones (Hori et al., 1988; Nakashima et al., 1989; Nakashima et al., 1991; Shibata & 

Blatteis, 1991; Xin & Blatteis, 1992).   

 

1.2.1 Interleukin-1β 

 

IL-1β was the first cytokine considered to be an endogenous pyrogen.  The initial 

evidence was based on the findings that peripheral and central injections of recombinant 

IL-1β into various laboratory animals induces fever (Dascombe et al., 1989; Murakami et 

al., 1990; Cao et al., 2001).  Although IL-1β may be a potent pyrogenic cytokine when 

injected systemically (Dascombe et al., 1989), there remains uncertainty concerning its 

involvement as an endogenous pyrogen mediating fever induced by systemic 

administration of LPS.  The uncertainty surrounding IL-1β as an endogenous pyrogen has 

arisen because of the poor correlation noted between the fever response and plasma IL-1β 
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concentrations (Kluger, 1991), the repeated failure of many studies to detect biologically 

active IL-1β in plasma during simulated infections (Hopkins & Humphreys, 1989, 1990) 

and the contradictory findings obtained from studies in which IL-1β antagonism was used 

to investigate the involvement of IL-1β in LPS-induced fevers.  In support of IL-1β 

acting as an endogenous pyrogen, are the reports that fever in response to peripheral LPS 

administration is inhibited by: (i) peripherally administered IL-1β antiserum or IL-1ra 

(Long et al., 1990b; Smith & Kluger, 1992; Luheshi et al., 1996; Miller et al., 1997a) and 

(ii) centrally administered IL-1β antiserum or IL-1ra (Klir et al., 1994; Luheshi et al., 

1996; Miller et al., 1997a; Cartmell et al., 1999).  Reports not in favour of IL-1β acting as 

an endogenous pyrogen are the findings that IL-1β knockout mice, mice which are 

deficient in IL-1β production, respond with only a slightly reduced (Kozak et al., 1995b) 

or even enhanced (Alheim et al., 1997) fever following LPS administration, and mice 

deficient in the IL-1 type I receptor respond with virtually the same fevers as wild-type 

mice (Leon et al., 1996; Labow et al., 1997).  Therefore, IL-1β appears to play a role, 

though perhaps not an essential role in fever induced by systemic and local administration 

of LPS. 

 

1.2.2 Interleukin-6 

 

In contrast to the minor role proposed for IL-1β in mediating LPS-induced fever, the role 

of IL-6 appears to be a major one.  The first pieces of evidence in support of IL-6 as an 

endogenous pyrogen in both humans and experimental animals came from the 

observations of excellent correlations between the magnitude and duration of the fever 
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response and plasma IL-6 concentrations (Nijsten et al., 1987; LeMay et al., 1990).  

Moreover, injecting recombinant IL-6 into the brains of rats (LeMay et al., 1990; 

Dinarello et al., 1991) and systemically in rabbits (Helle et al., 1988) induced fever.  

Since these early findings, a critical role for endogenous IL-6 in LPS-induced fever has 

been confirmed by the finding that IL-6 knockout mice, mice carrying a null mutation in 

the IL-6 gene and therefore defective IL-6 production, do not develop a fever when 

injected with a low dose of LPS (50 µg kg-1) (Chai et al., 1996; Kozak et al., 1998).  

Having established that IL-6 is indeed a critical endogenous pyrogen, the question arose 

as to whether the fever response induced by systemic and local administration of LPS 

required the central (brain-based) or peripheral pool of IL-6.  The finding that central and 

not peripheral administration of IL-6 induced fever in wild-type mice, lead to the 

speculation that it is the action of IL-6 within the brain which is important for fever.   

However, more recently the studies of Cartmell et al., (2000) and Rummel et al., (2006) 

have shown that neutralizing the action of IL-6 in the periphery using a species-specific 

IL-6 antiserum, completely prevented fever from occurring following localized 

administration of LPS.  Thus there is direct evidence that not only centrally released, but 

also peripherally-released IL-6 can act as an essential signal to the brain to induce fever.  

 

1.2.3 Tumour-necrosis factor 

 

The body temperature effects of IL-1β and IL-6 always are those of an increase in body 

temperature.  TNF-α on the other hand, has been reported to have both body temperature 

raising (pyrogenic) and body temperature lowering (antipyretic) actions.   In favour of a 
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pyrogenic action for peripherally-released TNF-α are reports that LPS-induced fever is 

attenuated in: (i) rabbits treated with monoclonal TNF-α antibodies (Kawasaki et al., 

1989), (ii) rolipram, a type-IV phosphodiesterase inhibitor that inhibits the production of 

TNF-α (Mabika & Laburn, 1999) and (iii) guinea-pigs treated with a TNF-binding 

protein known to be a potent inhibitor of TNF-α (Roth et al., 1998).   In contrast an 

antipyretic action of peripherally-released TNF-α is supported by reports that: (i) 

neutralizing the peripheral action of endogenously produced TNF-α using antiserum 

against TNF or soluble TNF receptors, enhanced the fever induced by LPS administration 

in rats (Long et al., 1990a; Klir et al., 1995), (ii) systemic administration of a low dose of 

TNF-α (which on its own has no effect on body temperature) attenuated LPS-induced 

fever in rats (Long et al., 1992; Klir et al., 1995; Kozak et al., 1995a) and (iii) mice 

lacking both the TNF p55 and p75 receptors developed larger fevers in response to LPS 

administration, than did wild-type mice (Leon et al., 1997). 

 

It has been proposed that the pyrogenic or antipyretic effects of TNF-α may depend on 

the species of experimental animal used, as closer examination of the results presented 

above show that TNF-α appears to be a pyrogenic molecule in rabbits and guinea-pigs, 

but not in rats and mice.  Moreover, the different actions of TNF-α in the fever pathway 

also may be related to the dose of the fever-inducing agent used, as injection of a low 

dose (50 µg kg-1 i.p.) of LPS produced similar fever responses between TNF p55/p75 

knockout mice and wild-type mice, while injection of a higher dose of LPS (2.5 mg kg-1 

i.p.) resulted in larger fevers in TNF p55/p75 knockout mice (Leon et al., 1997).  

Injecting rats with high, septic-like doses of LPS (2.5 mg kg-1) produces significantly 
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greater concentrations of TNF-α in serum compared to that measured when injecting 

lower doses of LPS (Long et al., 1990a; Sharma et al., 1992).  It is possible therefore, that 

feedback mechanisms exist which are activated by the concentration of the cytokine 

itself, whereby moderate increases in circulating TNF-α act to increase body temperature, 

while greater concentrations of circulating TNF-α act as a signal to reduce body 

temperature (Kluger et al., 1995; Conti et al., 2004).   

 

1.2.4 Leptin 

 

Following reports that circulating concentrations of leptin increase acutely with LPS 

administration (Sarraf et al., 1997; Faggioni et al., 1998; Finck et al., 1998) and in a 

similar fashion to known pyrogenic cytokines such as IL-6, a number of investigations 

examining the role of leptin in the fever pathway were undertaken.  Initial evidence in 

support for leptin as an endogenous pyrogen was based on the findings that the febrile 

response to systemic administration of LPS was largely attenuated in Zucker fa/fa rats, 

rats in which the receptor-mediated transport and intracellular signalling of leptin are 

defective (Rosenthal et al., 1996). Moreover, peripheral and central injection of 

recombinant leptin into rats induced fever (Luheshi et al., 1999).   

 

Studies undertaken subsequently have revealed that these early findings supporting the 

involvement of leptin in the fever pathway may however, be more complicated to 

interpret than was initially thought, as the febrile response of Zucker fa/fa rats varied 

depending on the ambient temperature at which the studies were conducted (Ivanov & 
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Romanovsky, 2002; Steiner et al., 2004).  Injecting these mutant rats systemically with a 

low dose of LPS resulted in a polyphasic fever in a thermally neutral environment, but an 

attenuated fever in a cool environment (Ivanov & Romanovsky, 2002; Steiner et al., 

2004).  It is known that in a cold environment rats depend on brown fat thermogenesis 

not only to regulate body temperature normally but also to produce a febrile response 

(Ivanov & Romanovsky, 2002).  Zucker fa/fa rats are not capable of activating brown fat 

thermogenesis however, as their brown fat is morphologically and functionally defective 

(Seydoux et al., 1990).  The attenuated fever response observed in Zucker fa/fa rats 

housed in a cool environment, may therefore be due to a lack of thermogenesis, rather 

than the absence of leptin signalling per se.  That these mutant rats responded with a 

polyphasic fever similar to that noted in non-mutant rats in a thermally neutral 

environment, suggested that leptin signalling is not required in the febrile response.  

These negative findings should be viewed with caution however; studies have shown that 

the fatty mutation in Zucker rats may in fact permit normal functioning of the leptin 

receptor in at least some experimental paradigms (Wang et al., 1998; Ivanov & 

Romanovsky, 2002).   

 

More substantial evidence in support of leptin as an endogenous pyrogen has emerged 

with the use of antibodies to antagonize circulating leptin following peripheral 

administration of LPS; LPS-induced fever was significantly attenuated (Sachot et al., 

2004).  Under some experimental conditions peripherally-released leptin therefore does 

appear to contribute to mediating the fever response induced by systemic administration 

of LPS. 
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1.2.5 The relative contributions of cytokines released in the periphery and the brain in                                                  

         mediating LPS-induced fever 

 

Table 1 summarizes the research findings discussed in the sections above where the roles 

of cytokines released in the periphery and the brain in mediating fever induced by 

systemic and local administration of various doses of LPS were investigated using 

techniques which allowed selective inhibition or blockade of cytokine actions or effects.  

To account for the involvement of cytokines in mediating fever being dependent on the 

magnitude of the fever response, the studies included in Table 1 administered LPS over a 

broad range of doses (10 µg kg−1 - 2500 µg kg−1).  In these studies the relative 

contribution of a particular cytokine is rated by whether the fever response is abolished, 

attenuated or not affected (-) when the cytokine effect is absent.  Clearly the findings of 

no effect, attenuation or abolition obtained from studies using techniques which allowed 

selective inhibition or blockade of cytokine actions or effects need to be interpreted in 

light of the fact that the results may depend on whether the dose of the antagonist used 

completely neutralized the action of a given cytokine within the specific compartment 

(peripheral or central) into which it is injected.  Of the findings presented in Table 1 the 

most prominent are the complete abolition of the fever response when the effect of IL-6 is 

absent.  The creditability of these findings are strengthened by the observations that: (i) 

the use of two different techniques to block the action of IL-6, genetic ablation and 

immunological antagonism, yielded similar finding, and (ii) the study of Cartmell et al., 

(2000) reported undetectable concentrations of IL-6 in the plasma of rats that received 

LPS and the IL-6 antiserum.   
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Table 1. The effect of antagonizing the action of cytokines released in the periphery and the brain on fever induced by LPS 
 
 Fever LPS dose and route Animal species References 

Interleukin-6     

Peripheral administration of:      
IL-6 antibodies Abolished 100 µg kg-1, i.po. Rats Cartmell et al., 2000  

Rummel et al., 2006 
     
Central administration of:     
IL-6 antibodies Attenuated 1000 µg kg-1, i.p. Rats Rothwell et al., 1991 
     
IL-6 knockout mice Abolished 50 µg kg-1, i.p. Mice Chai et al., 1996 
IL-6 knockout mice ▬ 2500 µg kg-1, i.p. Mice Kozak et al., 1998 
     
Interleukin-1β     

Peripheral administration of:     
IL-1ra Attenuated 100 µg kg-1, i.p. Rats Luheshi et al., 1996 
IL-1β antibodies Attenuated 10 µg kg-1, i.p. Rats Long et al., 1990b 
     
Central administration of:     
IL-1ra Attenuated 100 µg kg-1, i.p. Rats Luheshi et al., 1996 
IL-1ra Attenuated 100 µg kg-1, i.po. Rats Cartmell et al., 1999 
IL-1β antibodies Attenuated 50 µg kg-1, i.p. Rats Klir et al., 1994 
     
IL-1β knockout mice Attenuated 2500 µg kg-1, i.p. Mice Kozak et al., 1995b 
IL-1 type I knockout mice ▬ 50 µg kg-1, i.p. Mice Leon et al., 1996 
IL-1 type I knockout mice ▬ 2500 µg kg-1, i.p. Mice Leon et al., 1996 
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Table 1. continued 
 
 Fever LPS dose and route Animal species References 

Tumour necrosis factor-α     

Peripheral administration of:     
TNF-α antibodies Attenuated 0.625 µg kg-1, i.v. Rabbits Kawasaki et al., 1989 
TNF-binding protein Attenuated 10 µg kg-1, i.a. Guinea pigs Roth et al., 1998 
TNF-receptor antagonist ▬ 20 µg kg-1, i.m. Guinea pigs Roth et al., 1997 
TNF-α antibodies Enhanced 10 µg kg-1, i.p. Rats Long et al., 1990a 
TNF soluble receptors Enhanced 50 µg kg-1, i.p. Rats Klir et al., 1995 
     
TNF double-receptor knockout mice ▬ 50 µg kg-1, i.p. Mice Leon et al., 1997 
     
Leptin     

Peripheral administration of:     
Leptin antibodies Attenuated 100 µg kg-1, i.p. Rats Sachot et al., 2004 
     
Leptin receptor-deficient rats  
(Koletsky rats) 

▬ 10 µg kg-1, i.v. Rats Steiner et al., 2004 

Leptin receptor-deficient rats  
(Koletsky rats) 

▬ 100 µg kg-1, i.v. Rats Steiner et al., 2004 

Zucker (fa/fa) rats ▬ 10 µg kg-1, i.v. Rats Ivanov & Romanovsky, 2002 

 
i.po. = intrapouch, i.p. = intraperitoneal, i.v. = intravenous, i.a. = intra-arterial, i.m. = intramuscular 
▬ = no effect 
Studies of the present thesis are excluded from this table 
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The attenuated responses noted when the effect of IL-1β was absent appeared also to 

accurately reflect the contribution of IL-1β in mediating LPS-induced fever, as most of 

the studies reported that increasing the dose of the cytokine antagonizing agent did not 

produce a greater attenuation of the LPS-induced fever (Luheshi et al., 1996; Cartmell et 

al., 1999).  The role of TNF-α in mediating LPS-induced fever appears more complex 

and less clear than that of IL-6 and IL-1β, as findings obtained from studies in which 

complete neutralization of TNF-α was confirmed, found attenuated (Roth et al., 1998) or 

enhanced (Long et al., 1990a) fevers.  Not only is there uncertainty concerning the role of 

TNF-α in mediating LPS-induced fever but so too for leptin.  While peripheral 

administration of leptin antibodies attenuated LPS-induced fever no effect was noted in 

leptin receptor-deficient rats (Steiner et al., 2004) and Zucker rats (Ivanov & 

Romanovsky, 2002).   

 

From the findings presented in Table 1 it therefore appears that while other cytokines 

released in the periphery and the brain may play contributory roles, endogenous 

circulating IL-6 is likely to be the major endogenous pyrogen mediating fever in response 

to systemic and localized infection induced by LPS (50 and 100 µg kg-1).   Irrespective of 

the relative roles played by the various endogenous cytokines in fever, the question arises 

as to whether cytokines are the final mediators of fever and if not which other molecules 

are the most likely candidates for this function.   
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1.2.6 Brain mediators of cytokine effects on body temperature  

 

Exposure of the host to an exogenous pyrogen such as LPS not only results in the release 

of pro-inflammatory cytokines, but also results in the release of a number of enzymes that 

catalyse the formation of small signalling molecules such as prostaglandin E2 (PGE2).  

The formation of PGE2 depends on the activity of the cyclooxygenase (COX) enzyme, 

which exists in two isoforms, the constitutively expressed COX-1 and the inducible form 

COX-2 (Ivanov & Romanovsky, 2004).  The synthesis of PGE2 via the induction of 

COX-2 is a key event in the fever response, as it has been shown that mice which lack 

PGE2 synthesizing enzymes do not develop a fever in response to LPS administration (Li 

et al., 1999; Engblom et al., 2003).  It is likely that endogenous cytokines induce fever 

following peripheral administration of LPS via the generation of these PGE2 synthesizing 

enzymes, as neutralization of endogenous circulating IL-6 also attenuates COX-2 

upregulation in the cerebral microvasculature of rats (Rummel et al., 2006) and the 

changes in firing rates of thermoregulatory neurones induced with administration IL-1β 

and IL-6 to tissue slices obtained from guinea pigs and rats, is prevented by concurrent 

administration of COX inhibitors (Hori et al., 1988; Xin & Blatteis, 1992).  

 

1.3 Cytokines as mediators of the anorexia induced by LPS 

 

Loss of appetite and the concomitant decrease in food intake is frequently observed in 

sick humans and animals, and along with fever forms the most common sign of infection 

observed in both the clinical and experimental situation (Plata-Salaman, 1996a).  The 
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anorexia experienced during illness appears to be a robust phenomenon that occurs 

throughout a broad variety of species, as well as in response to various different 

infectious agents.  It is a valuable short-term response aimed at supporting the 

immunological response of the host to eliminate the pathogen (Murray & Murray, 1979; 

Hart, 1988; Exton, 1997) and it does not appear to be a consequence of fever, as it can 

occur in the absence of fever (McCarthy et al., 1985; O'Reilly et al., 1988).   

 

It is generally believed that illness-related anorexia results from the modulation of normal 

homeostatic processes that regulate feeding in healthy individuals (Langhans, 2007).  As 

such it has been proposed that the loss of appetite observed during infection must 

eventually result from signalling to a final pathway for appetite control that resides within 

the brain (Plata-Salaman, 1998a).  Injection of cytokines into the hypothalamus and 

cerebral ventricles of rats has been shown to inhibit feeding (Kent et al., 1994; Sonti et 

al., 1996).  It is likely therefore that cytokines could act as these signalling molecules 

within the brain to reduce food intake during infection.  A common and related effect of 

infection and cytokine administration is a decrease in body mass (Bluthé et al., 1992b; 

Bluthé et al., 1994a; Leon et al., 1996), which at least acutely, is thought to reflect the 

decreased food intake.  

 

1.3.1 Interleukin-1β 

 

Reports from numerous studies have compellingly demonstrated that IL-1β 

administration is particularly potent at reducing appetite in humans and experimental 
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animals (Plata-Salaman & Ffrench-Mullen, 1992; Langhans et al., 1993; Plata-Salaman, 

1996b; Sonti et al., 1996; Montkowski et al., 1997; Pecchi et al., 2006).  The loss of 

appetite is observed when IL-1β is injected into the periphery or the brain of experimental 

animals, indicating that IL-1β can act from both sites to induce anorexia (Kent et al., 

1996).  The anorexigenic responses induced with the administration of IL-1β are similar 

to those seen following LPS administration (Plata-Salaman et al., 1988).  Subsequent 

studies have shown however, that the anorexigenic responses observed with 

administration of IL-1β do not appear to reflect the pathophysiological mechanism by 

which systemic administration of LPS induces anorexia.  Administration of IL-1ra 

peripherally or centrally, failed to attenuate anorexia induced by systemic administration 

of LPS in rats (Kent et al., 1992b).  Moreover, mice genetically deficient in IL-1β or the 

IL-1 type I receptor demonstrated similar reductions in food intake and body mass 

following systemic administration of LPS as those of wild-type mice (Kozak et al., 

1995b; Leon et al., 1996).  Although IL-1β may be able to induce anorexia when 

injected, it appears to be of little importance in terms of mediating the decrease in food 

intake observed with systemic administration of LPS. 

 

There have been a few notable exceptions though, in which studies have identified some 

involvement of either peripherally-released or centrally released IL-1β in mediating the 

depressing effects of LPS on food intake and body mass.  Central administration of IL-

1ra attenuated the reduction in food intake induced by systemic administration of LPS in 

mice (Layé et al., 2000), peripheral administration of IL-1ra attenuated the reduction in 

body mass induced by systemic administration of LPS in rats (Bluthé et al., 1992b) and 
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the appetite suppressive effects of centrally, but not systemically, administered LPS were 

attenuated in IL-1β-converting enzyme-deficient mice, mice which do not produce active 

IL-1β (Burgess et al., 1998).  

 

Taken together, these findings are therefore not compatible with an exclusive role of 

endogenous IL-1β in mediating the effects of bacterial products on food intake and body 

mass.  The most likely explanation for the negative findings showing no or little 

involvement of IL-1β in mediating LPS-induced anorexia in the gene knockout mice 

studies (deficient IL-1β, IL-1 type I and IL-1β-converting enzyme) and the IL-1ra studies, 

is that one or several other pro-inflammatory cytokines compensate for the absence of IL-

1β.  An obvious candidate cytokine to compensate for the lack of IL-1β is TNF-α, as 

synergistic effects between IL-1β and TNF-α have been noted in inducing anorexia and 

decreasing body mass in rats and mice (Bluthé et al., 1994a; Sonti et al., 1996). 

 

1.3.2 Tumour-necrosis factor 

 

Although it has been shown that TNF-α can act directly within the brain to suppress food 

intake and decrease body mass in rats (Bluthé et al., 1994a; Sonti et al., 1996; Palin et al., 

2007), as with IL-1β, the evidence in support of an exclusive role for TNF-α in mediating 

anorexia induced by LPS is not convincing and moreover also contradictory.  TNF 

double-receptor knockout mice responded with a similar reduction in food intake and 

body mass as wild-type mice to systemic administration of LPS (Leon et al., 1997), 

whereas rats treated with specific TNF-α antagonists responded with attenuated anorectic 
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responses to systemic administration of LPS (Sharma et al., 1992; Porter et al., 2000; 

Töllner et al., 2000).   

 

Closer examination of the results from these studies reporting an attenuated anorectic 

response revealed two important points, which provide some insight into understanding 

the role of TNF-α in LPS-induced anorexia.  Firstly, it appears that the degree of 

attenuation depends on the dose of LPS administered, as treating rats with the nonspecific 

phosphodiesterase inhibitor pentoxifylline, which inhibits the production of TNF-α in 

vivo (Porter et al., 2000), completely abolished the anorectic effect of i.p. injected LPS 

(100 µg kg-1), but only attenuated the anorectic effect induced by a higher dose of i.p. 

injected LPS (250 µg kg-1) (Porter et al., 2000).  Secondly, following treatment with a 

TNF-binding protein, the attenuation of the anorexia and body mass loss was 

predominantly noted during days two and three after the LPS injection (Töllner et al., 

2000).  Similar findings of a gradual attenuation of the decrease in food intake and body 

mass have also been reported in rats pre-treated with TNF-α monoclonal antibodies 

(Sharma et al., 1992).  The attenuated responses noted in these two studies occurred 

however, during a period when TNF-α would not have been detectable in plasma (Kozak 

et al., 1997b).  Moreover, neutralizing the biological activity of TNF-α did not facilitate 

complete recovery of LPS-induced anorexia, as the food intake and body mass of rats 

injected with LPS and the TNF- binding protein never reached the values of the control 

rats injected with saline.  It is likely that peripherally-released TNF-α is therefore exerting 

its effect by inducing secondary endogenous mediators, which then participate in this 
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anorectic response.  One likely mediator is leptin, a hormone known to regulate feeding 

behaviour (Friedman & Halaas, 1998).   

 

1.3.3 Leptin 

 

Leptin, the product of the ob gene has been shown to be an important central nervous 

system signalling factor for the control of energy balance and body adiposity (Friedman 

& Halaas, 1998).  The concentration of leptin in the circulation primarily indicates the 

production of leptin by white adipocytes, and reflects both long-term (days) and short-

term (hours) changes in leptin production (Steiner & Romanovsky, 2007).  Changes in fat 

storage regulate long-term changes in leptin production and influences the quantity of 

food consumed relative to the amount of energy expended (Friedman & Halaas, 1998).  

The role of leptin and its receptors in the homeostasis of body mass is demonstrated by 

the observations that rodents that have mutations in either their signalling receptors (i.e. 

db/db mice or fa/fa Zucker rats) or in leptin production (i.e. ob/ob mice) are extremely 

obese (Campfield et al., 1995; Halaas et al., 1995).  Short-term changes in the 

concentration of leptin in the circulation can occur independently of body fat mass or loss 

(Steiner & Romanovsky, 2007).  Leptin production is decreased a few hours after the 

onset of fasting, and during conditions of negative energy balance acts as an anti-

starvation signal to suppress energy expenditure and stimulate appetite (Steiner & 

Romanovsky, 2007). 
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The observation that daily i.p. administration of leptin decreases food intake and body 

mass in both obese and non-obese mice (Halaas et al., 1995; Pelleymounter et al., 1995), 

together with the finding that LPS and pro-inflammatory cytokines increase the 

production of leptin in adipose tissue, prompted investigations into the possible role of 

leptin in mediating the appetite-and body mass-reducing effects of LPS (Grunfeld et al., 

1996; Faggioni et al., 1997; Finck et al., 1998).  These studies showed that the increase in 

leptin in the circulation and leptin mRNA in adipose tissue following LPS administration 

correlates with the decrease in food intake (Grunfeld et al., 1996), and leptin receptor-

deficient (db/db) mice are partially resistant to LPS-induced anorexia (Faggioni et al., 

1997).  In support of the findings noted in leptin receptor-deficient mice (db/db) 

suggesting some involvement of leptin in mediating LPS-induced anorexia, others found 

that neutralizing the biological activity of leptin in the circulation significantly attenuated 

the LPS-induced decrease in food intake and body mass in rats (Sachot et al., 2004).  Not 

only did reducing the biological activity of leptin in the circulation prevent LPS-induced 

anorexia, but it also attenuated the up-regulation of IL-1β in the hypothalamus of the rats 

(Sachot et al., 2004).  It is possible then that leptin could be acting in the hypothalamus to 

induce anorexia by increasing IL-1β there (Layé et al., 2000; Sachot et al., 2004).   

 

As noted with the studies investigating the role of leptin in mediating LPS-induced fever, 

the findings for LPS-induced anorexia in animals with genetic defects in the leptin system 

are not always in full agreement with those obtained from studies in which leptin 

antiserum was administered.  Leptin deficient (ob/ob) mice and obese (fa/fa) Zucker rats 

do not exhibit attenuated anorectic responses following LPS administration (Faggioni et 
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al., 1997; Lugarini et al., 2005).  It is unclear why discrepancies have been reported on 

leptin’s role in LPS-induced anorexia.  It has been proposed that humoral mediators, 

other than leptin such as IL-1β and TNF-α (Sachot et al., 2004), may compensate for the 

absence of leptin in animals with genetic defects in the leptin system.  Moreover, due to 

the importance of food intake for survival, the control of food intake is not solely 

dependent on a single pathway, but rather is regulated by different pathways involving 

mediators other than leptin, such as cholecystokinin, insulin and glucagon.  It is possible 

therefore that the absence of the leptin-mediated pathway occurring early on in 

development of mutant animals may merely result in other pathways involved in food 

intake homeostasis compensating.  These alternative pathways could be activated during 

pathological conditions like LPS stimulation, leading to the observed anorexia in db/db 

mice and fa/fa Zucker rats.  In general, while leptin may not be a necessary prerequisite 

or the final mediator of the anorectic response to systemic administration of LPS, it 

nonetheless appears to contribute to the response under some experimental conditions. 

 

1.3.4 Interleukin-6 

 

Of the pro-inflammatory cytokines investigated thus far as mediators of LPS-induced 

anorexia, IL-6 has emerged as the least likely cytokine to be involved.  It can decrease 

food intake in rats when injected peripherally or centrally, but less in comparison to the 

effects noted when other cytokines are administered (Schöbitz et al., 1995; Plata-

Salaman, 1996b; McCarthy, 2000a).  Moreover, IL-6 knockout mice responded with the 

same decrease in food intake as that noted for wild-type mice following systemic 
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administration of LPS (Fattori et al., 1994; Swiergiel & Dunn, 2006).  Interestingly 

though, it appears that peripherally-released IL-6 is involved in mediating the loss of 

body mass induced by systemic administration of LPS in rats (Strassmann et al., 1993; 

Bluthé et al., 2000b).  Whether the involvement of IL-6 in mediating the LPS-induced 

decrease in body mass reported in the studies by Strassman et al., (1993) and Bluthé et 

al., (2000b) was related to changes in food intake is uncertain, as food intake was not 

measured in these two studies.  Body mass loss is a complex variable however, that is 

dependent not only on food intake, but also on excretion of faeces and urine, and 

increased metabolism (Lennie, 1998).  It has been observed that patients infused with IL-

6 exhibit a number of the metabolic changes found in catabolic states (Stouthard et al., 

1995) and rats injected with IL-6 have reduced gastric emptying (McCarthy, 2000b).  IL-

6 may therefore contribute to the cachexia associated with chronic diseases, in which a 

significant part of the severe weight loss is due to the metabolic changes occurring during 

the illness (Strassmann & Kambayashi, 1995; Plata-Salaman, 1996a; Baltgalvis et al., 

2008). 

 

1.3.5 The relative contributions of cytokines released in the periphery and the brain in  

         mediating LPS-induced anorexia 

 

Table 2 summarizes the research findings discussed in the sections above where the roles 

of cytokines released in the periphery and the brain in mediating anorexia induced by 

systemic administration of LPS were investigated using techniques which allowed 

selective inhibition or blockade of cytokine actions or effects.  Studies investigating LPS-
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induced anorexia have assessed feeding responses in rats and mice by measuring either 

the amount of food pellet or sweetened milk consumed (Swiergiel & Dunn, 1999).  

Although milk and food pellet intake are both measures of feeding which are affected 

during infection, milk intake has been shown to be less susceptible to disruption by 

infection than food pellet intake (Swiergiel et al., 1997).  The findings reported in this 

review were therefore restricted to those in which food intake was used as a measure of 

feeding.  The attenuated responses noted when the effect of IL-1β in the brain and TNF-α 

in the periphery were absent appeared to accurately reflect the contribution of these 

cytokines in mediating anorexia induced by systemic administration of LPS, as the 

studies reported that the particular cytokine was not detected in the brain or plasma 

following administration of the respective cytokine or cytokine receptor antagonist 

(Sharma et al., 1992; Layé et al., 2000; Töllner et al., 2000).  The study of Sachot et al., 

(2004) in which leptin antiserum was administered peripherally, did not however provide 

any evidence of the degree of neutralization achieved with the dose of antiserum 

administered.   
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Table 2. The effect of antagonizing the action of cytokines released in the periphery and the brain on anorexia induced by LPS 
 
 Anorexia LPS dose and route Animal species References 

Interleukin-6     

IL-6 knockout mice ▬ 1000 µg kg-1, i.p. Mice Fattori et al., 1994 
IL-6 knockout mice ▬ 1 µg mouse-1, i.p. Mice Swiergiel & Dunn, 2006 
     
Interleukin-1β     

Peripheral administration of:     
IL-1ra ▬ 400 µg kg-1, i.p. Rats Kent et al., 1992b 
     
Central administration of:     
IL-1ra ▬ 400 µg kg-1, i.p. Rats Kent et al., 1992b 
IL-1ra Attenuated 5 µg mouse-1, i.p. Mice Layé et al., 2000 
     
IL-1β knockout mice ▬ 2500 µg kg-1, i.p. Mice Kozak et al., 1995b 
IL-1 type I knockout mice ▬ 2.5 µg mouse-1, i.p. Mice Bluthé et al., 2000a 
IL-1 type I knockout mice ▬ 50 µg kg-1, i.p. Mice Leon et al., 1996 
IL-1 type I knockout mice ▬ 2500 µg kg-1, i.p. Mice Leon et al., 1996 
IL-1β-converting enzyme-deficient mice ▬ 10 µg mouse-1, i.p. Mice Burgess et al., 1998 
     
Tumour necrosis factor-α     

Peripheral administration of:     
TNF-α antibodies Attenuated 3000 µg kg-1, i.p. Rats Sharma et al., 1992 
TNF-binding protein Attenuated 5000 µg kg-1, i.p. Rats Töllner et al., 2000 
TNF-binding protein ▬ 1 µg mouse-1, i.p. Mice Swiergiel & Dunn, 1999 
TNF-binding protein + IL-1ra ▬ 1 µg mouse-1, i.p. Mice Swiergiel & Dunn, 1999 
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Table 2. continued 
 
 Anorexia LPS dose and route Animal species References 

Central administration of:     

TNF-binding protein ▬ 1 µg mouse-1, i.p. Mice Bluthé et al., 2000a 
     
TNF double-receptor knockout mice ▬ 50 µg kg-1, i.p. Mice Leon et al., 1997 
TNF double-receptor knockout mice ▬ 2500 µg kg-1, i.p. Mice Leon et al., 1997 
     
Leptin     

Peripheral administration of:     
Leptin antibodies Attenuated 100 µg kg-1, i.p. Rats Sachot et al., 2004 
Leptin-receptor deficient mice (db/db) Attenuated 1 µg mouse-1, i.p. Mice Faggioni et al., 1997 
Leptin-deficient mice (ob/ob) ▬ 1 µg mouse-1, i.p. Mice Faggioni et al., 1997 

 
i.p. = intraperitoneal  
▬ = no effect 
Studies of the present thesis are excluded from this table 
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As such it is possible that the degree of attenuation noted in their study may not represent 

the complete contribution of peripherally-released leptin in mediating LPS-induced 

anorexia.  The research findings presented in Table 2 appear to reflect the complexity of 

the interactions between cytokines and/or other molecules in mediating food intake 

during illness, as anorexia induced by systemic administration of LPS is mostly not 

affected by the absence of individual cytokines and when it is affected, the response is 

attenuated only and not abolished.   

 

Whilst important, these studies, unlike those investigating LPS-induced fever, have only 

used an experimental animal model of systemic infection to investigate the role of 

cytokines in mediating LPS-induced anorexia.  Different patterns of cytokines have been 

shown to be induced during systemic and localized infection/inflammation (Fattori et al., 

1994).  Thus the role of cytokines in mediating anorexia may differ depending on the 

origin of the infection.  The involvement of cytokines in mediating anorexia induced 

during a localized Gram-negative bacterial infection has however, not been investigated. 

 

1.3.6 Brain mediators of cytokine effects on feeding  

 

Cytokines can directly (via neuronal mechanisms) or indirectly (via modulation of brain 

chemistry) change the activity of hypothalamic neurones involved in the control of food 

intake (Plata-Salaman & Ffrench-Mullen, 1994; Plata-Salaman, 1996a, 1998b).  The 

neurones are sensitive to changes in the concentration of glucose in the blood (Guyton & 

Hall, 2000).  An increase in the concentration of blood glucose increases the rate of firing 
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of glucose-sensitive neurones in the satiety centre in the ventromedial nuclei (VMN) of 

the hypothalamus (Guyton & Hall, 2000).  The same increase in blood glucose 

concentration simultaneously decreases the firing of glucose-sensitive neurones in the 

hunger centre of the lateral hypothalamic area (LHA) (Guyton & Hall, 2000).  These 

responses predict that inhibition of LHA and activation of VMH will result in anorexia.  

Injecting rats i.c.v. with IL-1-β or TNF-α specifically suppresses the neuronal activity of 

the glucose-sensitive neurons in the LHA (Plata-Salaman et al., 1988), whereas IL-1β 

excites the glucose-sensitive neurones in the VMH (Kuriyama et al., 1990).   

 

The control of feeding also is associated with various neurotransmitter and neuropeptide 

systems in the hypothalamus.  There is substantial data to show that cytokines can 

modulate hypothalamic chemistry by stimulating the synthesis of mediators such as 

prostaglandins, and interacting with various neurotransmitters and neuropeptides within 

the brain.  Although the exact contribution of these direct and indirect actions of cytokine 

mechanisms in mediating the decrease in feeding during infection is yet to be established, 

some of the proposed interactions are discussed below. 

 

1.3.6.1 Prostaglandins 

 

In rats the anorexia induced by systemic administration of LPS is significantly attenuated 

with selective pharmacological or genetic blockade of COX-2-generated prostaglandins 

(Johnson et al., 2002).  The partial, rather than complete, attenuation of food intake has 

lead to the suggestion, that unlike the fever response, prostaglandin-dependent pathways 
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do not seem to be crucially involved in mediating LPS-induced anorexia.  Consistent with 

this observation in laboratory animals, is the clinical observation that patients with 

infections/inflammation receiving antipyretic therapy still exhibit anorexia (Plata-

Salaman, 1996a).  In contrast, selective pharmacological or genetic blockade of COX-2 

generated prostaglandins are very effective antagonists of anorexia induced by 

administration of IL-1β and TNF-α (Bluthé et al., 1992a; Langhans et al., 1993; 

McCarthy, 2000a; Pecchi et al., 2006; Elander et al., 2007).  The differential importance 

of prostaglandins in mediating LPS versus cytokine induced anorexia, not only identifies 

distinct mechanisms of action, but also is consistent with the view that endogenous IL-1β 

and TNF-α are not exclusive mediators of the anorectic effects of LPS (Langhans, 1996). 

 

1.3.6.2 Neuropeptides 

 

The interaction between cytokines and neuropeptides in the regulation of feeding 

responses to microbial products such as LPS is not yet fully understood, but a number of 

cytokine-neuropeptide interactions have been proposed (Langhans, 2007).  IL-1β has 

been implicated in interactions with two specific neuropeptides, neuropeptide Y (NPY) 

and corticotrophin releasing factor (CRF).  NPY is a potent orexigenic or feeding-

stimulating neuropeptide (Sahu et al., 1988) and it has been suggested that IL-1β can 

modulate feeding by reducing hypothalamic NPY levels (Langhans & Hrupka, 1999).  In 

support of the involvement of CRF, a known anorexigenic neuropeptide (Uehara et al., 

1989), as a cytokine-induced mediator of anorexia during infection, are the findings that 

hypothalamic CRF mRNA was increased following i.p. injection of IL-1β (Suda et al., 
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1990) and anorexia induced by IL-1β was attenuated by i.c.v. administration of a CRF 

antagonist (Uehara et al., 1989).  

 

1.3.6.3 Neurotransmitters 

 

Serotonin and histamine are components of important neurotransmitter systems involved 

in the control of feeding.  Administration of IL-1β, TNF-α and IL-6 have been shown to 

increase central serotonergic (5-HT) activity known to decrease food intake (Gemma et 

al., 1991; Zalcman et al., 1994; Clement et al., 1997; Wang & Dunn, 1999) and 

pretreatment with a highly-specific 5-HT2C receptor antagonist blocked the anorexia 

induced by both peripheral and central injections of LPS or IL-1β in rats (von Meyenburg 

et al., 2003a, b; Asarian et al., 2007).   Unlike serotonin, the involvement of histamine as 

a downstream mediator of cytokines in LPS-induced anorexia has not yet been 

investigated.  The findings in rats that changes in neuronal histamine modulate feeding 

behaviour (Ookuma et al., 1993) and that peripheral administration of IL-1β increases the 

hypothalamic histamine turnover rate (Kang et al., 1995), has lead some to hypothesize 

that IL-1β could be inhibiting feeding during infection by increasing the synthesis and 

release of histamine in the hypothalamus (Plata-Salaman, 1998a). 

 

1.4 Cytokines as mediators of lethargy induced by LPS 

 

Not only may sick individuals experience a fever and have little interest in eating food 

but they also may feel lethargic.  Lethargy is a state of hypoactivity characterized by a 
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general feeling of fatigue and an unwillingness to perform normal daily routine activities 

(Hart, 1988).  As with the febrile and anorexic responses of the host to infection, it has 

been proposed that inactivity during infection may be a valuable response, which also is 

aimed at supporting the immunological response of the host to eliminate the pathogen 

(Hart, 1988).  By engaging in less muscular activity the energy reserves which are needed 

for the increased metabolic costs of fever are conserved (Hart, 1988).  Moreover, by 

resting and not moving around, less heat is lost via convection, which aids the heat 

production required for the fever response (Hart, 1988).  It is likely that cytokines could 

mediate the lethargy experienced during infection, as administration of cytokines 

increases the sensation of fatigue reported by healthy human subjects at rest (Spath-

Schwalbe et al., 1998) and reduces general locomotor activity in rats (Schöbitz et al., 

1995; Montkowski et al., 1997). 

 

1.4.1 Interleukin-1β and interleukin-6 

 

Although limited, there is some evidence which implicates IL-1β as a possible mediator 

of lethargy.  Central administration of IL-1β in rats decreases locomotor activity 

(Montkowski et al., 1997) and the time to fatigue during forced treadmill running 

(Carmichael et al., 2006).  In support of IL-6 as a mediator of lethargy are the findings 

that: (i) central administration of IL-6 decreases locomotor activity in rats (Schöbitz et 

al., 1995), (ii) administration of human recombinant IL-6 induces a sensation of fatigue 

in healthy humans at rest (Spath-Schwalbe et al., 1998), (iii) treatment with IL-6 

antibodies induces an immediate disappearance of previously debilitating fatigue reported 
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by patients with multicentric Castleman disease, a disease characterized by a 

dysregulated overproduction of IL-6 (Nishimoto et al., 2000; Nishimoto et al., 2005) and 

(iv) fatigue in patients with cancer is positively correlated with circulating levels of IL-6 

(Schubert et al., 2007).  Despite the above reports from studies showing that IL-1β and 

IL-6 can induce fatigue and decrease activity levels, there has been no evidence to 

support the involvement of either of these two cytokines in mediating the lethargy 

induced in response to microbial products such as LPS.  Mice genetically deficient in IL-

1β or the IL-1 type I receptor demonstrated similar reductions in locomotor activity 

following systemic administration of LPS as did wild-type mice (Kozak et al., 1995b; 

Leon et al., 1996). 

 

1.4.2 Tumour-necrosis factor 

 

In contrast to the lack of evidence in support of the involvement of IL-1β and IL-6 in 

mediating the lethargy induced in response LPS, there have been some, albeit 

contradictory, reports suggesting a role for peripherally-released TNF-α in mediating 

LPS-induced lethargy.  Pre-treating rats and mice with TNF-α inactivating agents 

(antiserum to TNF-α or a TNF soluble receptor) did not prevent the decrease in 

locomotor activity induced by LPS, but did seem to facilitate a faster recovery to normal 

activity levels (Kozak et al., 1995a).  In contrast, others have found that LPS-induced 

lethargy is not attenuated in rats treated with a TNF-binding protein (Töllner et al., 2000) 

or mice which lack functional TNF-α receptors (Leon et al., 1997). 
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1.4.3 The relative contributions of cytokines released in the periphery and the brain in  

         mediating LPS-induced lethargy 

 

Table 3 is a summary of the research findings discussed in the sections above where the 

role of cytokines in mediating lethargy induced by systemic administration of LPS were 

investigated using techniques which allowed selective inhibition or blockade of cytokine 

actions or effects.  These studies investigating LPS-induced lethargy have quantitatively 

assessed the hypoactivity, characteristic of a state of lethargy, in rats and mice by 

measuring general locomotor activity of the experimental animal in its home cage.  The 

research findings presented in Table 3 appear to reflect the complexity of the interactions 

between cytokines and/or other molecules in mediating lethargy during illness, lethargy 

induced by systemic administration of LPS is mostly not affected by the absence of IL-1β 

and TNF-α.  Whilst important, these studies, as with those investigating LPS-induced 

anorexia, have only used an experimental animal model of systemic infection to 

investigate the role of cytokines in mediating LPS-induced lethargy.  Moreover, the 

investigations have not comprehensively investigated all the likely cytokine mediators.  

IL-6 has been implicated as a putative mediator of lethargy in an animal model of 

localized inflammation induced by turpentine (Kozak et al., 1997a).  What, if any, 

involvement IL-6 may have in mediating lethargy induced during a localized Gram-

negative bacterial infection is unknown. 
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Table 3. The effect of antagonizing the action of cytokines released in the periphery and the brain on lethargy induced by LPS 
 
 Lethargy LPS dose and route Animal species References 

Interleukin-1β     

IL-1β knockout mice ▬ 2500 µg kg-1, i.p. Mice Kozak et al., 1995b 
IL-1 type I knockout mice ▬ 50 µg kg-1, i.p. Mice Leon et al., 1996 
IL-1 type I knockout mice ▬ 2500 µg kg-1, i.p. Mice Leon et al., 1996 
     
Tumour necrosis factor-α     

Peripheral administration of:     
TNF-α antibodies Attenuated  2500 µg kg-1, i.p. Mice Kozak et al., 1995a 
TNF-binding protein ▬ 5000 µg kg-1, i.p. Rats Töllner et al., 2000 
TNF-α soluble receptors Attenuated 2500 µg kg-1, i.p. Mice Kozak et al., 1995a 
     
TNF double-receptor knockout mice ▬ 50 µg kg-1, i.p. Mice Leon et al., 1997 
TNF double-receptor knockout mice ▬ 2500 µg kg-1, i.p. Mice Leon et al., 1997 

 
i.p. = intraperitoneal  
▬ = no effect 
Studies of the present thesis are excluded from this table 
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1.5 Mechanisms of action by which peripherally-released cytokines signal the brain 

 

From the discussions in the sections above there is significant evidence that cytokines 

present in the circulation can act as important humoral mediators of the brain-controlled 

fever mechanism.  Figure 2 below shows a schematic presentation of the three proposed 

humoral mechanisms by which signalling between cytokines present in the circulation 

and the brain can occur. 

 

 

 

Figure 2.  Schematic presentation of the three proposed humoral mechanisms by which 
circulating cytokines, synthesized in response to peripheral administration of LPS, can 
signal the brain: (A) carrier-mediated transport across the blood-brain barrier (BBB), (B) 
access through the circumventricular organs (CVOs), and (C) synthesis of prostaglandin-
E2 (PGE2) in cells forming the BBB.  Abbreviations: pro-inflammatory cytokines (▲), 
cyclooxygenase-2 (COX-2), cytokine receptor (  ), PGE2 (○). 
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On the one hand, there is experimental evidence which has identified distinct carrier-

mediated transport mechanisms to chaperone cytokines, including TNF-α (Osburg et al., 

2002), IL-1β (Banks et al., 1989; Banks et al., 1993), IL-6 (Banks et al., 1994) and leptin 

(Banks & Lebel, 2002), from the blood to the brain.  The physiological significance of 

carrier transport across the blood brain barrier (BBB) has however, been questioned due 

to the finding that this system transports less than 0.3% of the cytokines present in the 

blood into the central nervous system (Elmquist et al., 1997; Cartmell & Mitchell, 2005).  

The reason for this small proportion appears to be because these transport mechanisms 

are very slow and easily saturable (Conti et al., 2004).  The concentrations of TNF-α and 

IL-1β in the circulation do not usually exceed 100 pg mL-1 in patients during a nonfatal 

infectious episode (Rothwell et al., 1996).  In contrast plasma concentrations of IL-6 can 

often reach 10-20 µg mL-1 during fever in experimental animals and in humans (Rothwell 

et al., 1996).  Although it may allow significant quantities of IL-6 to enter the brain, it is 

unlikely that the carrier-mediated transport of peripherally-released TNF-α and IL-1β 

across the BBB is the primary mechanism by which these two cytokines signal the brain 

to evoke fever and sickness behaviour.  During chronic infection however, when 

endogenous cytokines are elevated for extended periods of time in the circulation or when 

the BBB is breached, direct entry of these circulating cytokines may be of greater 

physiological importance (Elmquist et al., 1997; Cartmell & Mitchell, 2005). 

 

An alternative humoral pathway is the access of cytokines through the circumventricular 

organs (CVOs), a specialized neural region along the margins of the ventricular system 

that has fenestrated capillaries and therefore no blood-brain barrier (BBB).  The absence 
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of a BBB for these CVOs enables cytokines in the circulation to come into contact with 

the cells of the CVOs (Quan & Banks, 2007).  It is possible that cytokines in the 

circulation may enter the perivascular space passively and interact with specific receptors 

located on the surface of glial cells, perivascular macrophages or endothelial cells.  These 

cells may produce additional pro-inflammatory cytokines or secondary mediators such as 

PGE2, which would act directly or indirectly on neurones that project to other brain 

structures or disseminate into adjacent brain parenchyma by volume diffusion (Komaki et 

al., 1992; Roth et al., 2004a; Rummel et al., 2005b).  In addition to cytokines in the 

circulation acting on the CVOs, the observation that endothelial cells in the CVOs also 

constitutively express CD14 and TLR4 means that it is possible that bacterial fragments 

themselves can induce the synthesis of pro-inflammatory cytokines at the level of the 

CVOs (Laflamme & Rivest, 2001).   

 

The two mechanisms discussed thus far, have mainly focused on cytokines present in the 

circulation having to gain access to the brain tissue itself to be able to signal 

thermoregulatory neurones.  Over the last ten years another mechanism whereby 

cytokines present in the circulation do not actually have to gain access to the brain tissue 

to signal thermoregulatory neurones, but rather they can mediate the induction of 

cytokine synthesis and other signalling molecules within cells of the BBB, which can 

then penetrate into the brain tissue, has gained prominence (Quan & Banks, 2007).  

Endothelial cells of cerebral microvasculature constitutively express receptors for TNF-α 

(Nadeau & Rivest, 1999) and IL-1 (Konsman et al., 2004), with the receptor for IL-6 

being expressed under inflammatory conditions (Vallieres & Rivest, 1997).  Peripheral 
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administration of LPS, IL-1β, TNF-α and IL-6 has been shown to induce genomic 

activation of the brain endothelium leading to the expression of COX-2, which is required 

for the formation of PGE2 (Cao et al., 1996; Yamagata et al., 2001; Nadjar et al., 2003; 

Rummel et al., 2005a; Rummel et al., 2006).  The notion that endothelial cells can 

interact with circulating cytokines to release additional cytokines, or secondary mediators 

such as PGE2, therefore not only applies to the sensory CVOs, but the entire brain 

endothelium (Roth et al., 2006). 

 

In addition to the three humoral pathways by which inflammatory challenges in the 

periphery can communicate with the brain, an alternative rapid signalling neural pathway, 

possibly involving cutaneous and vagal neural signals, which functions independently of 

circulating cytokines, has also been proposed (Bluthé et al., 1994b; Blatteis & Sehic, 

1997; Ross et al., 2000).  The role of the vagus nerve in the transmission of information 

from the periphery to the brain has been assessed by vagotomy experiments in which the 

vagus nerve is sectioned under the diaphragm.  Subdiaphragmatic vagotomy resulted in 

an attenuation of the fever response only when LPS was administered at a low dose 

(Romanovsky et al., 1997) and via the i.p. route (Goldbach et al., 1997).  In terms of 

mediating sickness behaviours, attenuated responses with subdiaphragmatic vagotomy 

also appeared to be specific to the abdominal cavity (an i.p. injection), because vagotomy 

did not attenuate the behavioural effects of IL-1β when this cytokine was injected by 

either the s.c. or i.v. routes (Bluthé et al., 1996).  When activated by peripheral cytokines 

the vagus appears to be able to activate specific neural pathways in the brain which are 
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involved in fever and sickness behaviour and to stimulate microglia in the brain to 

produce cytokines (Layé et al., 1995; Bluthé et al., 1996; Roth et al., 2006). 

 

Having established that vagal afferents may be involved in mediating the effects of 

peripheral cytokines under some experimental conditions, the question arose as to 

whether this response was specific to afferent neural signals from the viscera.  To block 

the signals of cutaneous afferents induced by LPS injection into an air pouch, an 

experimental model of localized subcutaneous inflammation, a local anaesthetic was co-

administered with the LPS.  Using this experimental approach it was found that 

cutaneous afferents, as with vagal afferents, contribute as a communication pathway to 

the brain, but again only when low (10 µg kg-1) and not high (100 µg kg-1) doses of LPS 

are administered (Ross et al., 2000).  A possible explanation for the apparent lack of 

involvement of neural signals when LPS is administered at high doses could be that these 

doses induce a greater increase in circulating cytokines, known humoral mediators, which 

can override the lack of a neuronal signal (Roth & De Souza, 2001). Although the relative 

importance of these different humoral and neural pathways by which peripherally-

released cytokines can communicate with the brain remains an area of much debate, it is 

accepted that cytokines synthesized in the periphery are an important pathway for 

communication to the brain during a peripheral immune challenge. 
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1.6 Thesis aims 

 

Having reviewed all the studies investigating the roles of endogenous IL-1β, IL-6, TNF-α 

and leptin in mediating fever induced by systemic and local administration of LPS in the 

sections above, it is evident that peripherally-released cytokines, in particular IL-6, are 

important endogenous mediators in the fever pathway.  In contrast, although it has been 

shown that systemic administration of pyrogenic cytokines can induce anorexia and 

lethargy in experimental animals, no clear role has been identified for these cytokines as 

endogenous mediators of anorexia and lethargy induced following systemic and local 

administration of LPS.  Using proven techniques and highly quantifiable measures of 

each response I therefore set out to try and clarify the role of endogenous pyrogenic 

cytokines in mediating anorexia and lethargy induced following local subcutaneous (s.c.) 

administration of LPS.  All the measurements were recorded concurrently, as not only did 

I investigate the contribution of cytokines in mediating each of the individual sickness 

responses (anorexia, lethargy and fever), but I also investigated if their involvement 

differed between responses.  Core body temperature was measured using temperature-

sensitive radiotransmitters which were implanted intra-abdominally and anorexia was 

assessed by measuring the quantity of food consumed over a specified time period.  

These are both proven measurements techniques which provide highly quantifiable 

measures of core body temperature and anorexia.  In terms of lethargy, researchers have 

traditionally measured changes in general locomotor activity of an experimental animal in 

its home cage to identify whether the animal is lethargic or not.  The lethargy 

accompanying illness, however, not only results in an unwillingness of the individual to 
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perform normal daily routine activities, but also to engage in physical exercise.  When 

running wheels are attached to the cages of experimental animals such as rats and mice, 

they willingly engage in spontaneous physical exercise.  Challenging mice with 

Corynebacterium parvum or Brucella abortus antigen has been shown to reduce 

voluntary wheel-running (Sheng et al., 1996; Ottenweller et al., 1998; Sheng et al., 

2001).  Voluntary-wheel running and general locomotor activity (measured as cage 

activity) are both therefore appropriate measures of lethargy during infection.  It has been 

noted however, that suppression of voluntary exercise is a more sensitive measure of 

fatigue and lethargy induced by LPS, than is suppression of cage activity.  Voluntary-

wheel running of rats, for example, is almost completely abolished by a single i.p. 

injection of LPS (75 µg kg-1) whereas cage activity is only decreased by ~50% (Hopwood 

and Harden unpublished observations).  I therefore chose to use voluntary wheel-running 

as a highly quantifiable and sensitive measure of lethargy for the studies presented in 

Chapters 2, 3, and 4. 

 

The findings presented in Tables 1, 2 and 3 from studies investigating the involvement of 

cytokines in mediating LPS-induced fever and anorexia, highlighted that acute 

pharmacological or immunological antagonism of cytokines has generally proven to be a 

more physiological and successful approach to use when investigating the contribution of 

individual cytokines in mediating specific sickness responses, rather than genetic ablation 

of a particular cytokine or its receptor.  The interpretation of the findings from knockout 

mice have often proven to be problematic, as for a particular gene knockout mouse to 

survive to adulthood it is likely that compensatory mechanisms would have had to 
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develop to enable the mouse to cope with the loss of the deleted cytokine’s action.  In the 

studies presented in Chapters 2 and 4 I therefore specifically chose to use 

pharmacological or immunological antagonism of cytokines to determine the relative 

involvement of individual cytokines in mediating the sickness responses induced 

following LPS administration. 

 

1.6.1 Aim 1 

 

Of the pro-inflammatory cytokines released by immune cells following systemic and 

local administration of LPS, IL-6 has emerged as an important circulating mediator of the 

fever response (Cartmell et al., 2000). Another cytokine-like hormone, leptin, also 

apparently plays a role in LPS-induced fever and anorexia in rats (Sachot et al., 2004).  

However, whether these or other peripherally-released cytokines are involved in the 

lethargy observed following s.c. administration of LPS remains uncertain.  The aim of 

the experiments presented in Chapter 2 was therefore to examine whether the LPS-

induced release of the cytokines, IL-1ββββ, IL-6, TNF-αααα and leptin in the periphery is 

involved in mediating lethargy, anorexia and fever in rats.  To determine the 

involvement of each of these cytokines I antagonized their action following LPS 

administration by administering species-specific antisera to each individual cytokine 

peripherally.  Lethargy, anorexia and fever were measured as changes in voluntary 

wheel-running, food intake and body temperature respectively.  I found, as have others, 

that the LPS-induced fever in rats was abolished if either IL-6 or leptin antisera were 

administered before LPS.  In addition, I showed for the first time that peripherally-
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released IL-6 plays a role in the suppression of voluntary activity, as well as in the 

suppression of food intake induced by s.c. administration of LPS.  The voluntary activity 

and food intake observed after the administration of the IL-6 antiserum was however, 

unlike the fever response, reduced but not abolished.  It would appear therefore, that 

while peripherally-released IL-6 has a critical role to play in the events regulating fever, 

an additional factor(s), possibly other cytokines, are working in parallel with IL-6 to 

regulate the lethargy and anorexia induced by LPS. 

 

1.6.2 Aim 2 

 

As shown in chapter 2 and by others (Kent et al., 1992b; Kozak et al., 1995b; Leon et al., 

1996; Leon et al., 1997; Swiergiel & Dunn, 1999; Töllner et al., 2000) antagonizing the 

action of other peripherally-released cytokines, TNF-α and IL-1β, has no effect on 

lethargy and anorexia in rats and mice during infection and inflammation.  Thus it 

appeared likely that if other cytokines are working in conjunction with peripherally-

released IL-6 to induced lethargy and anorexia it is primarily due to their action within 

the brain.  The first aim of the experiments presented in Chapter 3 was therefore to 

determine the direct effects of injecting IL-1β and IL-6 into the brain, on voluntary 

wheel-running, food intake and body temperature in rats.  The observation that no 

single cytokine appears to regulate the responses of anorexia and lethargy induced by 

LPS, has lead to the proposal that interactions between cytokines are required to affect 

food intake and voluntary activity following LPS administration.  In particular, cytokine 

interactions observed as physiological synergy, in which the effect of a combination of 
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substances exceeds the effect of the individual constituents, has been demonstrated in 

vivo (Bluthé et al., 1994a; Sonti et al., 1996; Lenczowski et al., 1999).  The second aim 

of the experiments presented in Chapter 3 was to assess whether IL-6 and IL-1β act 

synergistically within the brain to mediate changes in voluntary activity, food intake 

and body temperature.  I injected species-homologous rat IL-6 and IL-1β separately 

and in combination, into the brains of conscious rats and examined the dose-response 

effects.  I found that i.c.v. administration of species-homologous rat IL-6 and IL-1β on 

their own before the night-time active period decreases voluntary activity and also 

increases body temperature in rats in a dose-dependent fashion.   While i.c.v. 

administration of both IL-1β and IL-6 decreased voluntary activity, only IL-1β 

administration decreased food intake.  Moreover, I identified new findings regarding the 

synergistic relationship between IL-1β and IL-6 in the brain, by showing that central co-

administration of doses of IL-1β and IL-6 which, when injected on their own were non-

pyrogenic and did not affect food intake and body mass, induced fever and anorexia when 

they were co-injected centrally.  It would appear that the synergistic action of IL-1β and 

IL-6 in the brain is not inevitable however, as I did not observe a synergistic effect on the 

suppression of voluntary wheel-running when both cytokines were co-injected. 

 

1.6.3 Aim 3 

 

From the findings obtained in the studies presented in chapters 2 and 3, I hypothesized 

that endogenous brain IL-1β is the likely central cytokine, working in parallel with IL-6 

released in the periphery, to induce anorexia and lethargy following s.c. administration of 
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LPS.  The aim of the experiments presented in Chapter 4 was therefore to determine 

the relative contribution of both peripherally-released IL-6 and centrally released 

IL-1ββββ in mediating the lethargy, anorexia and fever induced by s.c. administration 

of LPS in rats.  To decrease the biological activity of IL-6 in the circulation and IL-1β in 

the brain I administered species-specific antiserum to IL-6 i.p. and a caspase-1 inhibitor, 

shown to prevent the cleavage of pro-IL-β to biologically active IL-1β, i.c.v.  I found that 

both peripherally-released IL-6 and IL-1β in the brain are involved in the induction and 

maintenance of LPS-induced lethargy and anorexia, and confirmed that circulating IL-6 

is the primary endogenous pyrogen mediating LPS-induced fever. 
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ABSTRACT 

Although fever, anorexia and lethargy may be beneficial sickness responses initially, they 

may become detrimental to the host if they continue for a prolonged period.  We 

therefore investigated whether antagonizing the biological action of putative mediators of 

these sickness responses, interleukin (IL)-6 and IL-1β, could affect the duration of 

anorexia, lethargy and fever, measured as changes in food intake, voluntary activity and 

body temperature, induced by subcutaneous (s.c.) administration of lipopolysaccharide 

(LPS).  Male Sprague-Dawley rats were randomly assigned to receive a caspase-1 

inhibitor to reduce the synthesis of IL-1β or vehicle intracerebroventricularly and 

antiserum to IL-6 (IL-6AS) or pre-immune serum intraperitoneally, before receiving an 

injection of LPS (250 µg/kg) or saline.  LPS administration induced a ~1.3 ± 0.2 ºC fever 

and reduced voluntary activity by 98.0 ± 2.4 %, food intake by 50.0 ± 9.8 % and body 

mass by 14.5 ± 2.7 g compared to rats injected with saline (P < 0.05, ANOVA).  

Increases in plasma IL-6 and IL-1β accompanied LPS administration on the day of 

injection.  Within 2 days the fever resolved, while lethargy and anorexia continued for at 

least 3 days.  Rats pre-treated with IL-6AS had reduced plasma levels of bioactive IL-6, 

no fever and attenuated sickness behaviors which resolved within 2 days.  Rats pre-

treated with the caspase-1 inhibitor exhibited attenuated fever and sickness behaviors 

which resolved within 2 days.  Thus antagonizing the biological action of IL-6 in the 

circulation or IL-1β in the brain significantly reduces the duration of anorexia, lethargy 

and fever induced by LPS administration. 

Keywords: Voluntary wheel-running; Anorexia; Pro-inflammatory cytokines 
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1. Introduction 

 

Fever and sickness behaviors, such as anorexia and lethargy, experienced during infection 

appear to be advantageous short-term responses intended to support the immunological 

response of the host to eliminate the pathogen [18].  Although the feeling of fatigue, loss 

of appetite and increase in body temperature may be beneficial responses acutely, 

experiencing these sickness responses on a daily basis for prolonged periods may 

negatively impact the quality of life of patients and even worsen their condition, 

ultimately delaying recovery [19, 55].  From a clinical point of view identifying the 

physiological mechanisms underlying the onset and maintenance of these sickness 

responses during illness is particularly relevant because it may enable the design of 

appropriate therapeutic interventions to oppose the detrimental effects of the prolonged 

duration of sickness responses [23]. 

 

Most experimental investigations examining the physiological mechanisms mediating 

fever and sickness behavior responses have used purified lipopolysaccharide (LPS), the 

glycolipid pyrogenic moiety of the Gram-negative bacterial membrane, to trigger the 

innate immune system [9].  Part of the innate immune systems response to the presence 

of endotoxin in animals and humans includes the synthesis and release of pro-

inflammatory cytokines from immune cells [13].  Results obtained from studies using 

specific antagonists to block the action of these cytokines released into the circulation 

following systemic administration of LPS, have uncovered a critical role for one 

particular cytokine, interleukin (IL)-6, in mediating the physiological response of fever 

[10, 16].  Although fever and sickness behavior both occur after systemic administration 
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of LPS, it has been established that these behavioral and febrile responses are not 

mediated via exactly the same cytokine-induced mechanisms [16, 24].  In particular, 

results from a study conducted within our laboratory showing that neutralizing the 

biological activity of IL-6 in the circulation completely abolishes fever, but only partially 

attenuates sickness behaviors, has identified one such distinct difference in the cytokine 

mechanisms mediating fever and sickness behavior [16].  It would appear therefore, that 

while IL-6 released in the periphery has a critical role to play in the events regulating 

fever, additional factors, possibly other cytokines, work in parallel with peripherally 

released IL-6 to regulate the sickness behavior responses induced by systemic 

administration of LPS.  There is evidence to suggest that if other cytokines are working 

with peripherally released IL-6 to induce sickness behaviors, and two likely candidates 

are IL-1β and TNF-α [22], it is due primarily to their synthesis in the brain and not in the 

periphery, because antagonizing the actions of IL-1β and TNF-α in the periphery has 

been shown to have no effect on lethargy and no or minimal effect on anorexia induced in 

rats and mice during infection and inflammation [6, 16, 25, 27, 31, 32, 35, 48, 56]. 

 

Several studies have demonstrated that rats and mice treated intracerebroventricularly 

(i.c.v.) with IL-1β and TNF-α exhibit symptoms similar to those of LPS-treated animals, 

suggesting that both cytokines may be important central mediators of LPS-induced 

sickness behaviors [5, 17].  There are several lines of evidence to however suggest, that 

IL-1β mediates the synthesis and behavioral effects of TNF-α in the brain, because 

injecting IL-1 receptor antagonist (IL-1ra) i.c.v. has been shown to: (i) abrogate the 

mRNA expression of not only IL-1β but also TNF-α in the hypothalamus of mice 

injected peripherally with LPS [30] and (ii) to inhibit the behavioral effects of centrally 
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administered TNF-α [5].  It is reasonable to hypothesize therefore that endogenous brain 

IL-1β is the likely central cytokine working in parallel with IL-6 released in the periphery 

to induce sickness behavior following systemic administration of LPS.  Although 

peripherally-released IL-6 has been implicated in mediating the development of LPS-

induced sickness behaviors [4, 53], the involvement of IL-1β in the brain in mediating the 

development of LPS-induced sickness behaviors has not yet clearly been established [3, 

25, 30].  Moreover the extent to which the absence of either of these cytokines affects the 

resolution of LPS-induced sickness behaviors has also not been established. 

 

Thus we have chosen to antagonize the biological action of peripherally-released IL-6 or 

IL-1β in the brain following subcutaneous injection of LPS, and to monitor the behavioral 

responses until the symptoms of sickness induced by LPS have ceased, so as to determine 

the cytokine involvement not only in the induction of these responses, but also in their 

resolution.  In particular we chose to decrease the biological activity of IL-6 in the 

circulation and IL-1β in the brain by administering species-specific antiserum to IL-6 (IL-

6AS) intraperitoneally and a caspase-1 inhibitor, which prevents the cleavage of pro-IL-β 

to biologically active IL-1β, intracerebroventricularly.  We monitored quantifiable 

behavioral responses known to be affected by systemic administration of LPS, such as 

food intake and voluntary wheel-running.  Moreover, we measured body temperature to 

assess whether differences exist between the involvement of IL-6 in the periphery and IL-

1β in the brain in mediating fever and sickness behavior.  Our results reveal that 

antagonizing the biological action of IL-6 in the circulation or IL-1β in the brain 

significantly reduces the duration of anorexia, lethargy and fever induced by s.c. LPS 

administration.  
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2. Methods 

 

2.1 Animals 

Male Sprague-Dawley rats (initial body mass 80 - 120 g) were housed individually in 

cages to which exercise-training wheels had been attached.  The rats were kept at an 

ambient temperature of 21 ± 2°C on a reversed 12 h:12 h light:dark cycle (lights on from 

22:30 - 10:30).  The light:dark cycle of the rats was reversed over a period of four weeks 

before the rats underwent surgery (described below).  That the rats’ circadian rhythm had 

been 12-h shifted, was confirmed before the start of the experimental interventions by 

evidence of a normal nychthemeral temperature rhythm for each rat.  Food (pelleted rat 

chow, Epol, Johannesburg, South Africa) and water were provided ad libitum.  All 

procedures were in accordance with the Animal Ethics and Control Committee of the 

University of the Witwatersrand animal care regulations and were approved by the 

Animal Ethics Screening Committee of the University of the Witwatersrand (ethics no 

2005/86/5). 

 

2.2 Surgery 

Rats selected for the study (body masses 280 - 320 g) were anesthetized with an 

intramuscular (i.m.) injection of 80 mg/kg ketamine hydrochloride (Anaket-V, Bayer, 

SA) and 20 mg/kg xylazine (Chanazine, Bayer, SA) and had a temperature-sensitive 

radiotransmitter (TA10TA-F40, Data Sciences, St. Paul, MN, USA) implanted 

intraperitoneally.  Thereafter the rats were placed in a stereotaxic frame (Stoelting, IL, 

USA), a heating pad was placed beneath the animal to maintain core body temperature 
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and they were given an injection (0.1 ml) of adrenaline (10 µg) (Merck, SA) and 

lignocaine hydrochloride (0.02 g) (Bayer, SA) subcutaneously over an area of skull.  An 

incision was made in the midline of the cranium to expose the skull.  A 23-gauge 

stainless steel guide cannula (Plastics One, Roanoke, VA, USA) was placed over the right 

lateral cerebral ventricle.  Coordinates for the guide cannula were 0.8 mm posterior to 

bregma,  1.5 mm lateral to the midline and 3.5 mm below the skull surface at the point of 

entry of the guide cannula [39].  The cannula was secured to the skull with three screws 

and dental cement.  After surgery each rat was given a subcutaneous injection of 0.3 mg 

buprenorphine hydrochloride (Temgesic, Schering-Plough, SA) and ringer lactate (1.5 

ml) (SABAX, Adcock, Ingram, SA). 

 

2.3 Body temperature 

Core body temperatures of rats were measured by remote biotelemetry using temperature 

-sensitive radiotransmitters which had been implanted intraperitoneally (see above). 

Transmitter output frequency (Hz) was monitored at five minute intervals, by a receiver 

plate (RTA 500, Mini-Mitter, Sunriver, OR, USA) situated beneath the cage of each 

animal.  The frequency received by each plate was fed into a peripheral processor (DP-24 

DataPort, VitalView, Minimitter, Sunriver, OR, USA) connected to a personal computer 

and the output expressed in degrees centigrade.  The telemeters were calibrated by water 

immersion against a high-accuracy thermometer (Quat 100, Heraeus, Germany) to an 

accuracy of 0.1°C. 
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2.4 Voluntary wheel-running 

The exercise-training wheels had a circumference of 1.06 m and each wheel was 

equipped with a magnet and a magnetic switch (VitalView, Minimitter, Sunriver, OR, 

USA).  Each time the wheel rotated the magnet within range of the magnetic switch, the 

switch closed and a turn was counted.  The magnetic switches were connected to an 

activity input module (QA-4, VitalView, Minimitter, Sunriver, OR, USA) which in turn 

was fed  into a peripheral processor (DP-24 DataPort, VitalView, Sunriver, OR, USA) 

connected to a personal computer which monitored the number of wheel turns at five 

minute intervals using VitalView software version 4.1 (Mini Mitter, Bend, OR, USA).   

 

2.5 Food intake and body mass 

Food intake and body mass were measured daily just before lights off.  Food containers 

were filled daily with 100 g of standardized pelleted rat chow.  Food intake was 

quantified by subtracting the food remaining in the food container and on the cage floor 

from the amount of food measured at the preceding time point.   

 

2.6 Pyrogens and cytokine antagonists 

Lipopolysaccharide injections 

Lipopolysaccharide (LPS) derived from Escherichia coli endotoxin (serotype 0111:B4, 

Sigma, St. Louis, MO, US) was reconstituted in saline (sterile, pyrogen-free 0.9% saline 

Sabax, Johannesburg, South Africa) and injected subcutaneously (s.c.) at a dose of 250 

µg/kg. 
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Cytokine antiserum injections 

We used a species-specific antiserum to IL-6 (IL-6AS, NIBSC, South Mimms, Potters 

Bar, Herts UK) and pre-immune (normal) sheep serum (PIS, lot 056K8408, Sigma, St. 

Louis, MO, US) for the control injections, all with an endotoxin content < 0.24 ng/ml (2.4 

IU).  The IL-6AS and the PIS were injected intraperitoneally (i.p.) in a volume of 1.5 ml.  

The antibodies were raised in sheep as previously described [42, 43].  The IL-6AS used 

recognizes both natural and recombinant (Escherichia coli-derived) rat IL-6, but does not 

cross-react with the following rat recombinant cytokines: (rr) TNF-α, IL-1β, IL-1α, IL-

1ra and IL-10 [42, 43]. 

 

Caspase-1 inhibitor injections 

We used a specific caspase-1 inhibitor Ac.YVAD-cmk (Ac-Tyr-Val-Ala-Asp-

chloromethylketone; lot B75699; Calbiochem, Darmstadt, Germany) to decrease the 

synthesis of IL-1β within the brain.  The caspase-1 inhibitor (300 ng/rat) and the vehicle 

for its injection (0.6% DMSO in sterile saline) were injected intracerebroventricularly 

(i.c.v.) in a volume of 5 µl.  This dose of caspase-1 inhibitor previously has been shown, 

when injected into the brain, to prevent the synthesis of brain IL-1β following i.p. 

administration of LPS [2]. 

 

2.7 Cytokine analysis  

To assess the efficacy of IL-6AS in decreasing the biological activity of IL-6 in the 

periphery, we measured the levels of bioactive IL-6 in plasma using a bioassay.  

Determination of IL-6 was achieved by a bioassay based on the dose-dependent growth 
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stimulation of IL-6 on the B9 hybridoma cell line [1].  The assay was performed in 

sterile, 96-well microtiter plates.  In each well, 5,000 B9 cells were incubated for 72 h 

with serial dilutions of biological samples or with different concentrations of a human IL-

6 standard (code 89/548, National Institute for Biological Standards and Control, South 

Mimms, UK).  The number of living cells after 72 h was measured by using the 

dimethylthiazoldiphenyl tetrazolium bromide (MTT) colorimetric assay [20].   Plasma 

samples were pre-diluted so that serial dilution of samples and standard dilution curves 

were parallel.  The detection limit of the assay, after considering the dilution of samples 

into the assays, was 3 IU of IL-6/ml.  As opposed to ELISA assays, use of the described 

bioassays does not exclude the possibility that some undiscovered substance might 

interfere in the assay by causing proliferation of the B9 cells.  Therefore, we will refer to 

the measured IL-6 as IL-6-like-activity.     

 

To exclude the possibility that trace amounts of the caspase-1 inhibitor injected i.c.v. 

entered the blood from the brain and attenuated the synthesis of IL-1β in the periphery 

following LPS administration, we measured the concentration IL-1β in plasma using a 

commercially available enzyme linked immunosorbent assay (ELISA) kit (R & D 

Systems, Minneapolis, MN).  The microplate used had been pre-coated with an affinity 

purified polyclonal antibody specific for rat IL-1β.  Fifty microliters of standard, control 

or sample was added to each well and incubated for 2 hours at room temperature.  Each 

sample was measured in duplicate.  After washing away any unbound substances, an 

enzyme-linked polyclonal antibody specific for rat IL-1β was added to each well (100 µl) 

and incubated for 2 hours at room temperature.  Following a wash to remove any 
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unbound antibody-enzyme reagent, a substrate solution was added to each well (100 µl) 

and incubated for 30 minutes at room temperature.  The enzyme reaction yielded a blue 

product that turned yellow when the reaction was terminated by addition of 100 µl of 

diluted HCl to each well.  The optical density was measured at 450 nm and 540 nm.  The 

readings obtained at 540 nm were subtracted from the readings obtained at 450 nm and 

the sample values were then read off the standard curve.  The subtraction was used to 

correct for optical imperfections in the plate.  The results were expressed as pg/ml.  The 

detection limit of the assay was 5 pg/ml.  Where the values obtained were below the 

detection limit, the detection limit of the assay was assigned. 

 

2.8 Experimental procedure 

We reversed the light/dark cycle of the rats so as to enable the collection of blood 

samples, describe below, during the day-time.  To ensure that rats used in the experiments 

were exposed to the same experimental conditions, we reversed the light/dark cycle for 

all the rats used in the study.  During the 4 week adaptation period required to reverse the 

light/dark cycle we monitored wheel-running of the rats.  Rats with an average voluntary 

running distance per day (24 h) of 1 km, monitored over this 4-week period were selected 

for experiments.  After surgery for implantation of the radiotransmitters and guide 

cannuale, all animals were returned to their cages and the running wheels were locked for 

a period of seven days so that animals could not exercise.  Thereafter, the wheels were 

unlocked and experimentation started 4 weeks post-surgery once rats had reached their 

pre-surgery daily running distances.  During this post-surgery period the rats were 

habituated to handling and injection procedures.  To confirm correct placement of the 
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guide cannula, two weeks before injections rats were injected i.c.v. with angiotensin II 

(10 ng/5µl; A-2900, Sigma, St. Louis, MO, USA) and then monitored for a drinking 

response for 30 min after the injection.  Rats with a positive drinking response (>10 ml of 

water in 30-min) were used in the study. 

 

For microinjections, a 30-gauge injection stylette (Plastics One, Roanoke, VA, USA), 

connected by polyethylene tubing (0.58 mm i.d., 1.27 mm o.d.) to a 50 µl Hamilton gas-

tight microlitre syringe (Hamilton, Switzerland) was lowered into the guide cannula so 

that it protruded 0.5 mm beyond the tip of the guide cannula into the ventricle.  Each 

microinjection was administered to freely moving rats over a period of 60 s.  The 

injection stylette was left in the guide cannula for an additional 5 min to ensure dispersion 

of the injected substance within the ventricle.  Separate groups of rats were used in 

experiment 1 and experiment 2 described below.  However, rats used in both experiments 

all underwent the same adaptations, surgical and experimental procedures described in 

the paragraphs above. 

 

Experiment 1: Analysis of physiological responses   

Rats received LPS or saline, together with IL-6AS or PIS, together with the caspase-1 

inhibitor or its vehicle.  They were randomly assigned to receive one of the following 

combinations of injections: LPS + PIS + vehicle (n = 8), LPS + IL-6AS + vehicle (n = 7), 

LPS + PIS + caspase-1 inhibitor (n = 8), saline + PIS + vehicle (n = 7), saline + IL-6AS + 

vehicle (n = 6) or saline + PIS + caspase-1 inhibitor (n = 6).  To control for any different 

effects the two control injections (vehicle i.c.v. and PIS i.p.) may have, we chose to 
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include both control injections for all experimental groups.  The caspase-1 

inhibitor/vehicle (i.c.v.) injections and IL-6AS/PIS (i.p.) injections were administered at 

08:00, 2 h before the injections of LPS or saline (s.c.) at 10:00, the latter being 30 min 

before the onset of the dark phase when rats are most active.  Wheel-running, food intake, 

body mass and body temperature were monitored for 72 h before and after the injections. 

 

Experiment 2: Circulating cytokine responses 

Rats were randomly assigned to receive one of the following combinations of injections: 

LPS + PIS + vehicle (n = 9), LPS + IL-6AS + vehicle (n = 8), LPS + PIS + caspase-1 

inhibitor (n = 7) or saline + PIS + vehicle (n = 10).  Having determined in experiment 1 

that neither injections of saline (s.c.) + IL-6AS (i.p.) or saline (s.c.) + caspase-1 inhibitor 

(i.c.v.) affected any of the physiological responses we measured, we chose to include 

only one control group, saline + PIS + vehicle, for experiment 2.  The caspase-1 

inhibitor/vehicle (i.c.v.) injections and IL-6AS/PIS (i.p.) injections were administered at 

08:00, 2 h before the injections of LPS or saline at 10:00, the latter being 30 min before 

the onset of the dark phase.  Based on the observations made by others [10, 33] that the 

increase in IL-6 concentration in plasma following LPS administration peaks at 

approximately the same time as does the increase in body temperature, and our 

observation on the course of fever from experiment 1, we chose to collect plasma samples 

5 h after the s.c. injection of LPS or saline.  Thus, blood was collected by cardiac 

puncture after the injections of LPS or saline from rats under terminal anaesthesia 

induced with an i.m. injection of 80 mg/kg ketamine hydrochloride (Anaket-V, Bayer, 

SA) and 20 mg/kg xylazine (Chanazine, Bayer, SA).  Blood was collected into sterile 
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tubes containing EDTA and centrifuged (5300 g, 4ºC, 10 min).  Following the cardiac 

puncture rats were euthanized by intracardiac injection of 1 ml sodium pentobarbital 

(Euthanase; Kyron, Johannesburg, South Africa).  Plasma was stored at -70ºC until 

assayed. 

 

Correct placement of guide cannulae was verified post mortem by infusion of 5 µl of blue 

dye (Kyro-quick stain, Kyron Laboratories, SA) through the guide cannula assembly.  

After 5 min the brain was removed and placed on ice and the distribution of the ink 

within the ventricles was visually inspected in approximately 1-mm sections of the brain. 

 

2.9 Data analysis 

All data are expressed as mean ± SD.  The body temperature responses were plotted as 

abdominal temperature-time curves in 60 minute intervals.  For statistical purposes, the 

original 5-minute temperature recordings of each rat were averaged over 2 h for the 12-h 

period of darkness (10:30 - 22:30) and 12-h period of light (22:30 - 10:30).  The two-

hourly means were analyzed using two-way analysis of variance with intervention and 

time as main effects.  A Student-Newman-Keul’s (SNK) post hoc test was used to detect 

differences within and between groups when the ANOVA detected significant main 

effects or interactions.  Running distance was determined from the number of wheel turns 

per 24-h period (10:30 - 10:30) and expressed as a percentage change from the mean 

running distance measured over 3 days before the injections.  Food intake was calculated 

as grams of food consumed in 24 h per 100 gram of rat body mass (measured daily) and 

expressed as a percentage change from the mean daily food intake measured over 3 days 
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before the injections.  Change in body mass was determined by subtracting the body mass 

measured on each of the 3 days after the injection from the body mass measured 

immediately prior to injection. The change in wheel-running, food consumption and body 

mass between experimental groups for each of the days after injection was analyzed using 

a one-way analysis of variance followed by a SNK post hoc test.  To determine whether 

the change in wheel-running, food intake and body mass on each of the 3 days post 

injection was significantly different from pre-injection values, a one sample t test was 

performed for each of the experimental groups.  Because the values for cytokine 

concentrations are not normally distributed, a log transformation of the cytokine values 

was performed before the data were analyzed using a one-way ANOVA followed by a 

SNK post hoc test. 
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3. Results 

 

3.1 Experiment 1: Three-day analysis of physiological responses 

In this experiment body temperature, voluntary-wheel running, food intake and body 

mass were monitored for 3 days after rats were treated according to the triple-injection 

protocol (i.p. and i.c.v. injections followed 2 h later with an s.c. injection) described in 

the methods section.  For the sake of brevity, the six different experimental conditions 

will be identified in the results section below as follows: 

LPS (250 µg/kg s.c.) + PIS (1.5 ml i.p.) + veh (5 µl i.c.v.) = LPS alone; 

LPS (250 µg/kg s.c.) + IL-6AS (1.5 ml i.p.) + veh (5 µl i.c.v.) = LPS + IL-6AS; 

LPS (250 µg/kg s.c.) + PIS (1.5 ml i.p.) + casp-inh (300 ng/5 µl i.c.v.) = LPS + casp-inh; 

Saline (s.c.) + PIS (1.5 ml i.p.) + veh (5 µl i.c.v.) = saline alone; 

Saline (s.c.) + IL-6AS (1.5 ml i.p.) + veh (5 µl i.c.v.) = saline + IL-6AS;  

Saline (s.c.) + PIS (1.5 ml i.p.) + casp-inh (300 ng/5 µl i.c.v.) = saline + casp-inh.  

 

Body temperature 

Fig. 1 shows that s.c. injection of LPS induced a significant rise in body temperature after 

a latent period of ~ 3 h.  The body temperature of rats injected with LPS peaked at 39.5 ± 

0.3°C between 5 and 7 h after the injection and remained significantly elevated for 8 h 

during the first lights off period after injection in comparison to rats injected with saline 

(the main effects of time (F(5,130)   =  39.2 , P < 0.0001), group (F(3,26)   =  19.2 , P < 

0.0001) and interaction (F(15,130)   =  5.1 , P < 0.0001)).   On day 1 the body temperature 

of rats injected with LPS remained elevated for the entire 12 h light period also, 
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compared to the body temperature of rats injected with saline (the main effects of time 

(F(5,130)   =  14.4 , P < 0.0001), group (F(3,26)   =  20.7 , P < 0.0001) and interaction 

(F(15,130)   =  0.9 , P  > 0.05)). With lights off at the end of day 1 the body temperatures of 

rats injected with LPS remained at a similar level to that during the lights on period on 

day 1, while the body temperatures of the rats that received saline continued to follow a 

circadian rhythm and increased sharply with lights off.  As such there was no significant 

difference between the body temperatures of rats injected with saline and LPS over the 

lights off period on day 2.  With lights on, on day 2, the body temperatures of rats 

injected with saline and LPS both decreased.  However, the body temperatures of rats 

injected with LPS remained slightly elevated for most of the lights on period (6 h) 

compared to the body temperatures of rats injected with saline (the main effects of time 

(F(5,130)   =  22.5 , P < 0.0001), group (F(3,26)   =  9.1 , P < 0.001) and interaction (F(15,130)   

=  1.9 , P < 0.05).  During day 3 after the injections the circadian rhythm of body 

temperature for rats injected with LPS and saline was similar. 

 

Fig. 2A shows that pre-treating rats i.p. with IL-6AS completely abolished the LPS-

induced fever (P < 0.01, SNK), such that the circadian rhythm of body temperature of 

rats injected with LPS + IL-6AS were similar to those of rats injected with saline alone 

over the entire 3 days after injection, with the exception of a tendency for body 

temperature to be slightly elevated during the lights on period on day 1 (P < 0.05, SNK).  

Fig. 2B shows that the presence of the IL-6AS on its own in the circulation had no effect 

on the circadian rhythm of body temperature of rats. 
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Fig. 3A shows that rats injected with LPS and i.c.v. with the caspase-1 inhibitor had 

significantly lower body temperatures compared to rats injected with LPS alone during 

the expected peak of the fever after injections (P < 0.01, SNK).  Pre-treating rats i.c.v. 

with a caspase-1 inhibitor before LPS did not completely abolish the LPS-induced fever, 

because the body temperatures of rats injected with LPS + caspase-1 inhibitor were still 

significantly elevated compared to the body temperatures of rats injected with saline 

alone during the entire first day after injection (P < 0.05, SNK).  Fig. 3B shows that the 

presence of the caspase-1 inhibitor on its own within the brain had no effect on the 

circadian rhythm of body temperature of rats. 

 

Voluntary wheel-running 

On average, rats ran between 1 and 4 km per day during the 3 days before the 

experimental interventions.  Fig. 4 shows that injection of LPS decreased running activity 

which was most reduced (by 98.1 ± 2.4 %) during day 1 after the LPS injection.  The 

suppression of running activity continued for at least 3 days, because rats injected with 

LPS remained less active on day 3 after the injection when compared to before they 

received LPS (t = 3.3, P < 0.05).  Rats injected with saline alone also decreased their 

running distance significantly on day 1 after injection, but only to the extent of 20.1 ± 

13.2 %, which was significantly less than the decrease in running activity observed in rats 

injected with LPS alone (one-way ANOVA, F(3,26) = 76.5, P < 0.0001).  From day 2 

onwards rats injected with saline ran similar distances to those before the injections.   

Figs. 4A and 4B show that pre-treating rats i.p. with IL-6AS or i.c.v. with a caspase-1 

inhibitor significantly attenuated the LPS-induced suppression of running activity on day 
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1 after the injections (P < 0.05, SNK).  Furthermore, reducing the biological activity of 

IL-6 in the circulation appeared to resolve the LPS-induced suppression of running 

activity faster, because from day 2 onwards rats injected with LPS + IL-6AS were 

running similar distances to their pre-injection values (t = 0.4, P > 0.05) and to rats 

injected with saline alone (P > 0.05, SNK).  The LPS-induced suppression of running 

activity also appeared to be resolved faster in rats injected i.c.v. with the caspase-1 

inhibitor, but only from day 3 onwards (t = 2.1, p > 0.05).  The presence of the IL-6AS on 

its own in the circulation or the caspase-1 inhibitor on its own within the brain had no 

effect on running activity of the rats. 

   

Food intake and body mass 

On average, the daily food intake of the rats was between 7 and 10 g of food per 100 g of 

body mass during the 3 days before the experimental interventions.  Figs. 5 and 6 show 

that the injection of LPS decreased food intake and body mass which was most reduced 

during day 1 after the LPS injection.  Following the initial decrease in food intake rats 

gradually began to eat more food and regain the body mass lost such that by the end of 

day 3 their body mass was similar to that before the injections (t = 1.3, P > 0.05).    

 

Figs. 5 and 6 show that pre-treating rats i.p. with IL-6AS or i.c.v. with the caspase-1 

inhibitor significantly attenuated the LPS-induced anorexia (one-way ANOVA, F(3,26) = 

42.2, P < 0.0001) and the LPS-induced decrease in body mass (one-way ANOVA, F(3,26) 

= 48.7, P < 0.001) on day 1 after the injections.  Furthermore, the presence of IL-6 

antibodies in the circulation or the caspase-1 inhibitor within the brain appeared to 
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resolve the LPS-induced anorexia faster, because from day 2 onwards rats injected with 

LPS + IL-6AS (t = 0.6, P > 0.05) or LPS + caspase-1 inhibitor (t = 0.9, P > 0.05) were 

consuming similar amounts of food to their pre-injection values and to rats injected with 

saline alone (P > 0.05, SNK).  In line with the increased food intake the LPS-induced 

stunting of growth also resolved faster, because rats injected with LPS + IL-6AS (t = 2.2, 

P > 0.05) or LPS + caspase-1 inhibitor (t = 3.6, P < 0.01) had regained the body mass lost 

on day 1 after injections by the end of day 2, and continued to gain weight similarly 

compared to rats injected with saline alone (P > 0.05, SNK).  The presence of the IL-6AS 

on its own in the circulation or the caspase-1 inhibitor on its own within the brain had no 

effect on food intake and growth of the rats. 

 

3.2 Experiment 2: Circulating cytokine responses 

In this experiment circulating levels of bioactive IL-6 and concentrations of IL-1β were 

measured in the plasma 5 h after rats were treated according to the triple-injection 

protocol (i.c.v. and i.p. injections followed 2 hours later with an s.c. injection) described 

in the methods section.  The different experimental conditions will be identified in the 

results section below as they were described for experiment 1 on page 18. 

 

Levels of bioactive IL-6 in plasma 

Fig. 7 shows that rats injected with LPS s.c. had a significant elevation in the biological 

activity of IL-6 in plasma compared to rats injected with saline alone (one-way ANOVA, 

F(3,31) = 119.0 , P < 0.0001).  Pre-treating rats i.p. with IL-6AS significantly attenuated 

the LPS-induced increase in biological activity of IL-6 in the plasma (P < 0.001, SNK).  
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However, it did not completely abolish the LPS-induced increase in plasma IL-6, because 

rats injected with LPS + IL-6AS had greater levels of plasma IL-6 than rats injected with 

saline alone (P < 0.001, SNK).  Pre-treating rats i.c.v. with the caspase-1 inhibitor had no 

significant effect on the biological activity of IL-6 in the plasma (P > 0.05, SNK). 

 

Concentration of IL-1β in plasma 

Fig. 8 shows that rats injected with LPS s.c. had a significant increase in plasma IL-1β 

concentration compared to rats injected with saline alone (one-way ANOVA, F(2,24) = 5.3 

, P < 0.05).  Pre-treating rats i.c.v. with the caspase-1 inhibitor had no effect on the LPS-

induced increase of IL-1β in plasma (P > 0.05, SNK). 
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4. Discussion 

 

We have shown that subcutaneous administration of the pyrogenic moiety of the Gram-

negative bacterial LPS (250 µg/kg), induces fever, lethargy and anorexia in rats.  The 

fever however, which resolved within 2 days (Fig. 1), is outlasted by both the period of 

lethargy and anorexia (Fig. 4 and 5 respectively).  In line with the LPS-induced anorexia 

continuing for at least 3 days, the growth of the rats also was significantly stunted (Fig. 

6).  Our study highlights several important findings regarding the role of cytokines 

released in the periphery and the brain in mediating the induction and duration of 

anorexia and lethargy induced in rats following subcutaneous administration of LPS.  

First, we have shown that endogenous antagonism of peripherally-released IL-6 or IL-1β 

in the brain significantly attenuated both the magnitude and the duration of anorexia 

induced by LPS administration (Figs. 5 and 6).  We further showed that endogenous 

antagonism of peripherally-released IL-6 or IL-1β in the brain significantly reduced 

primarily the duration of lethargy induced by LPS administration (Figs. 4).  Thus, we 

have identified that both peripherally-released IL-6 and IL-1β in the brain appear to be 

important mediators involved in the induction and maintenance of LPS-induced sickness 

behaviors.  Moreover, we also identified that the roles of these two cytokines in the 

anorexia and lethargy induced by LPS is however, different from the roles they appear to 

have in inducing fever irrespective of the degree to which each was antagonized or 

inhibited; fever as a result of systemic administration of LPS is completely abolished in 

rats pre-treated i.p. with IL-6AS (Fig. 2), while it is only partially attenuated in rats pre-

treated i.c.v. with a caspase-1 inhibitor (Fig. 3).   
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Our finding that reducing the biological activity of IL-6 in the circulation completely 

abolishes fever induced by LPS administration supports the consistent observations made 

within our own laboratory and in others, that while other cytokines may be involved, IL-6 

appears to be the primary endogenous pyrogen mediating the fever response [10, 11, 16, 

26].  We also have confirmed our previous finding that peripherally released IL-6 appears 

to contribute significantly to the mediation of LPS-induced anorexia [16].  The 

involvement of peripherally released IL-6 in mediating the anorexia induced by infectious 

agents has also been suggested previously following the finding that the decrease in food 

consumption observed in humans administered endotoxin is positively correlated with the 

secretion of IL-6 [44].  In the hands of others using a different experimental approach to 

investigate the involvement of IL-6 in sickness behavior, that being congenic IL-6 

knockout mice which are deficient in IL-6 production, it was demonstrated, as in our 

study, that the absence of IL-6 also attenuates the loss of body mass induced by LPS 

administration [4].  The absence of IL-6 therefore appears to enable rats and mice to 

resist the anorexia and accompanying loss of body mass induced by systemic and local 

administration of LPS.  

 

Our results showing that treating rats with serum containing IL-6 antibodies enables them 

to recover faster from the suppressive effects of LPS on voluntary activity, demonstrates 

that peripherally-released IL-6 is involved in mediating the duration of fatigue and 

lethargy induced in rats following LPS administration.  In support of the hypothesis that 

IL-6 drives fatigue experienced by patients during illness are the findings that 

administration of human recombinant IL-6 induces a sensation of fatigue in healthy 
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humans at rest [52] and fatigue in patients with cancer is positively correlated with 

circulating levels of IL-6 [47].  Moreover, in an intervention in patients similar to ours 

experimentally in rats, in which a group of patients with multicentric Castleman disease, 

a disease characterized by a dysregulated overproduction of IL-6, were treated with IL-6 

antibodies, the previously debilitating fatigue reported by these patients disappeared [36, 

37].  Fatigue experienced by patients during illness results in a decrease in daily activity, 

probably not unlike the decrease in voluntary activity in the rats of our study.   

 

Although we have identified that IL-6 released into the bloodstream from peripherally 

located immune cells appears to be involved in mediating lethargy, anorexia and fever 

during infection, our finding that reducing the biological activity of IL-6 in the circulation 

at most attenuates the behavioral responses to LPS but does not completely abolish them, 

highlights differences in the cytokine mechanisms mediating LPS-induced fever and 

LPS-induced anorexia and lethargy.  There are two possible explanations for the 

differences we observed in the initial degree of attenuation, complete for the fever 

response versus partial for the anorexia and lethargy.  Firstly, although we reduced the 

level of bioactive IL-6 in the circulation substantially (~ 80 %, see Fig 7) we did not 

completely neutralize it and there may have been sufficient IL-6 still to induce the 

anorexia and lethargy we observed on the first day after injection.  Secondly, a more 

likely possibility is that mediators in addition to IL-6, possibly other cytokines, are also 

involved in regulating the LPS-induced anorexia and lethargy.  Antagonizing the 

biological action of IL-1β in the brain by injecting a caspase-1 inhibitor, which prevents 

the cleavage of pro-IL-1β to biologically active IL-1β, we were able to identify that IL-1β 



 103 

in the brain also is likely to be involved in mediating the anorexia and lethargy induced 

by LPS administration. 

 

Our results showing that treating rats with a capsase-1 inhibitor enables them to recover 

faster from the suppressive effects of LPS on voluntary activity demonstrate a possible 

role for IL-1β within the brain in mediating the duration of fatigue and lethargy induced 

by LPS.  In support of this finding is a previously reported observation from our 

laboratory that centrally administered IL-1β induces a dose-dependent decrease in 

voluntary activity [17].  Moreover, there is some preliminary evidence that supports the 

involvement of IL-1β in mediating the fatigue experienced by patients during illness, 

because administering IL-1ra to patients with rheumatoid arthritis induces rapid and 

persistent improvements in fatigue scores [38].  Not only did treating rats centrally with a 

caspase-1 inhibitor enable them to recover faster from the suppressive effects of LPS on 

voluntary activity, but so too on food intake and growth.  Moreover, i.c.v. administration 

of the caspase-1 inhibitor attenuated the LPS-induced fever also.   

 

Using a different agent, IL-1ra, to antagonize the biological action of IL-1β in the brain, 

others also have investigated the involvement of endogenous brain IL-1β in mediating 

fever and sickness behavior induced by i.p. administration of LPS [3, 8, 25, 30, 33, 34].  

Although these studies have consistently shown that inhibition of endogenous brain IL-1β 

attenuates LPS-induced fever, unlike the findings in our study, they mostly have failed to 

show that it also can attenuate LPS-induced sickness behaviors.  The failure of i.c.v 

administration of IL-1ra to attenuate LPS-induced sickness behaviors may be related to 
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IL-1ra being active for a significantly shorter period of time (2 -4 h) [3] in comparison to 

the prolonged duration (8 – 24 h) for which endogenous IL-1β is elevated in the brain [2].  

The actions of brain-intrinsic cytokines, produced after the production of cytokines in the 

periphery, are generally believed to be more important in mediating sickness behaviors 

than fever during infection/inflammation [12].  Thus while the short duration of action of 

IL-1ra may be sufficient to inhibit the action of endogenous brain IL-1β in mediating 

fever, it may not be sufficient to significantly influence the prolonged sickness behaviors.  

The caspase-1 inhibitor used in our study is active for at least 24 h [41], therefore the 

longer period of brain IL-1β inhibition likely to be achieved with the caspase-1 inhibitor 

may have accounted for the reduction in the duration of the sickness behavior responses 

noted in our study.   

 

While it has been established that administration of a caspase-1 inhibitor effectively 

reduces IL-1β activity in vivo following systemic administration of LPS [2], we did not 

measure the concentration of IL-1β in the brain and therefore cannot confirm the extent to 

which i.c.v. administration of the caspase-1 inhibitor inhibited the synthesis of IL-1β in 

the brain.  It is therefore possible that if IL-1β was not completely inhibited by the dose 

of the caspase-1 inhibitor we injected, the contribution of endogenous brain IL-1β to 

mediating the anorexia and lethargy induced by s.c. administration of LPS we noted may 

be of a greater magnitude.  It also is possible that the responses we noted, particularly for 

food intake and body mass, following i.c.v. administration of the caspase-1 inhibitor may 

not be entirely specific to the action of IL-1β, but may also be related to reducing the 

action of other pro-inflammatory cytokines implicated as putative mediators of appetite 
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such as IL-18 [57], because the enzyme caspase-1 is not only involved in the processing 

of IL-1β, but is also involved in the processing of IL-18 and IL-33 [14].  Irrespective of 

whether the synthesis of other cytokines were affected within the brain, the established 

effectiveness of the caspase-1 inhibitor at reducing endogenous IL-1β [2], indicates that a 

significant portion of the responses we noted are related to inhibiting the action of IL-1β. 

 

How endogenous brain IL-1β influences the brain sites controlling appetite, activity and 

temperature during a systemic infection remains unclear however.  Studies investigating 

the interaction of IL-1β with hypothalamic mechanisms involved in the regulation of 

feeding [40] and temperature [7, 49] provide evidence for the possibility of both direct 

(via neuronal mechanisms) and indirect (via modulation of brain chemistry) actions.  In 

terms of the indirect actions, IL-1β can modulate hypothalamic chemistry by generating 

mediators such as prostaglandins, and by interacting with various neurotransmitters (e.g. 

serotonin) and peptides (e.g. neuropeptide Y) within the brain [9, 28].  The generation of 

proximal mediators such as prostaglandins and serotonin within the brain and the 

endothelial cells lining the vasculature throughout the brain, are also possible 

mechanisms by which IL-6 released into the bloodstream from peripherally located 

immune cells mediates fever and sickness behaviors during a systemic infection [15, 21, 

46, 50].  In addition to inducing these proximal mediators it also is likely that 

peripherally-released IL-6 could be mediating lethargy, anorexia and fever via the 

induction of IL-1β in the brain, as others have reported that in the absence of IL-6 i.p. 

administration of LPS failed to induce IL-1β in the brain [51].   
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Although the results from our study clearly identify IL-6 as an important humoral 

mediator by which inflammatory challenges in the periphery can communicate with the 

brain to induce lethargy, anorexia and fever, they may not hold true under some 

experimental conditions.  For example, injecting a lower does of LPS s.c. than the dose 

we used in our study (250 µg/kg) may induce a more localized response with 

significantly lower concentrations of IL-6 appearing in the blood.  Under these conditions 

other signaling pathways, possibly afferent neural pathways from the skin to the central 

nervous system, are likely to be more important than humoral pathways in mediating 

fever and sickness behavior [45].  As activation of neural pathways during a peripheral 

immune challenge has been related to increased expression of IL-1β mRNA in the brain 

of mice [29] it is likely that brain IL-1β may remain an important endogenous mediator 

of fever and sickness behaviors induced during localized infection/inflammation. 

 

In conclusion, we have shown that pre-treating rats with either antibodies to IL-6 i.p. or a 

caspase-1 inhibitor i.c.v. significantly enhanced the resolution of anorexia and lethargy 

by at least two days, but it did not completely prevent these sickness behaviors from 

occurring.  Our inability to abolish the anorexia and lethargy with antagonism of 

individual cytokines appears to indicate the complexity of the cytokine involvement in 

mediating these two sickness behaviors during a localized Gram-negative bacterial 

infection.  Using similar experimental tools, others [54] have also noted this trend of 

multiple cytokine involvement in mediating sickness behaviors during a systemic Gram-

negative bacterial infection.  Therefore while individual cytokines, such as IL-6 and IL-

1β, are possible targets for therapies aimed at alleviating the debilitating consequences of 
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anorexia and lethargy in patients with prolonged bacterial infections, it appears that to 

abolish the presence of sickness behaviors multiple cytokines may need to be targeted.  

Although inhibiting the action of cytokines may provide some relief for patients 

experiencing sickness symptoms, this action could possibly compromise the ability of the 

host to fight infection in the situation of a live, replicating pathogen, as pro-inflammatory 

cytokines also perform important immune functions which facilitate pathogen 

elimination.  Selectively inhibiting the downstream mediators by which cytokines induce 

sickness behaviors may prove to be a better tool therapeutically, as that could preserve 

the actions of pro-inflammatory mediators required for pathogen elimination yet improve 

the anorexia and fatigue in the patient.   
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Legends 
 

Figure 1.  Circadian rhythms of body temperature over approximately 3 days (separated 

by vertical ----) after rats were injected i.p. with pre-immune serum (PIS 1.5 ml) and i.c.v. 

with the vehicle 2 h before receiving the s.c. injections of LPS (250 µg/kg) or saline 30 

min before lights off on the first day.     *   Indicates the period during which the body 

temperature of rats injected with LPS was significantly greater than the body temperature 

of rats injected with saline (P < 0.01, SNK).  The results are represented as mean ± SD.  

The first arrow indicates the time of injection for the i.p. and i.c.v. injections and the 

second arrow indicates the time of injection for the s.c. injections.  The black bars 

indicate lights off (10:30 - 22:30 clock time). 

 

Figure 2.  Circadian rhythms of body temperature over approximately 3 days after rats 

were injected with: (A) IL-6AS (1.5 ml) or PIS (1.5 ml) i.p. and the vehicle for the 

caspase-1 injection i.c.v. 2 h before receiving s.c. injections of LPS (250 µg/kg); (B) IL-

6AS or PIS and the vehicle for the caspase-1 injection i.c.v. 2 h before receiving s.c. 

injections of saline.  In A the effects of saline + PIS + veh also is shown and is the same 

as the results shown in B.    *   Indicates the period during which the body temperature of 

rats injected with LPS + PIS + veh was significantly greater than the body temperature of 

rats injected with LPS + IL-6AS + veh (P < 0.01, SNK).    #   Indicates the period during 

which the body temperature of rats injected with LPS + IL-6AS + veh was significantly 

greater than the body temperature of rats injected with saline + PIS + veh (P < 0.05, 

SNK).  The results are represented as mean ± SD.  The first arrow indicates the time of 
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injection for the i.p. and i.c.v. injections and the second arrow indicates the time of 

injection for the s.c. injections.  The black bars indicate lights off (10:30 - 22:30 clock 

time). 

 

Figure 3.  Circadian rhythms of body temperature over approximately 3 days after rats 

were injected with: (A) PIS (1.5 ml) i.p. and the caspase-1 inhibitor (300 ng/5µl) or its 

vehicle i.c.v. 2 h before receiving s.c. injections of LPS (250 µg/kg); (B) PIS i.p. and the 

caspase-1 inhibitor (300 ng/5µl) or its vehicle i.c.v. 2 h before receiving s.c. injections of 

saline.  In A the effects of saline + PIS + veh also is shown and is the same as the results 

shown in B.     *   Indicates the period during which the body temperature of rats injected 

with LPS + PIS + veh was significantly greater than the body temperature of rats injected 

with LPS + PIS + casp-inh (P < 0.01, SNK).    #   Indicates the period during which the 

body temperature of rats injected with LPS + PIS + casp-inh was significantly greater 

than the body temperature of rats injected with saline + PIS + veh (P < 0.05, SNK).  The 

results are represented as mean ± SD.  The first arrow indicates the time of injection for 

the i.p. and i.c.v. injections and the second arrow indicates the time of injection for the 

s.c. injections.  The black bars indicate lights off (10:30 - 22:30 clock time). 

 

Figure 4.  Percentage change from pre-injection days, in daily wheel-running distance 

determined from the number of wheel turns measured during 3 days after rats were 

injected with: (A) PIS (1.5 ml) or IL-6AS (1.5 ml) i.p. and the vehicle for the caspase-1 

injection i.c.v. 2 h before receiving a s.c. injection of LPS (250 µg/kg) or saline; (B) PIS 

i.p. and the caspase-1 inhibitor (300 ng/5 µl) or its vehicle i.c.v. 2 h before receiving a s.c. 
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injection of LPS or saline.   *   Indicates percentage change in running distances are 

significantly different to pre-injection days’ running distances (P < 0.05).  # Indicates 

significant differences between rats injected with LPS + PIS + veh versus all other 

experimental groups (P < 0.05, SNK).  + Indicates significant differences between rats 

injected with saline + PIS + veh versus rats injected with LPS + IL-6AS + veh and LPS + 

PIS + casp-inh on the first day (P < 0.001, SNK).  There were no significant differences 

between rats injected with saline + PIS + veh, saline + IL-6AS + veh and saline + PIS + 

casp-inh.  The results are represented as mean ± SD.   

 

Figure 5.  Percentage change from pre-injection days, in daily food intake calculated as 

grams of food consumed in 24 h per 100 gram of rat body mass, during 3 days after rats 

were injected with: (A) PIS (1.5 ml) or IL-6AS (1.5 ml) i.p. and the vehicle for the 

caspase-1 injection i.c.v. 2 h before receiving a s.c. injection of LPS (250 µg/kg) or 

saline; (B) PIS i.p. and the caspase-1 inhibitor (300 ng/5 µl) or its vehicle i.c.v. and 2 h 

before receiving a s.c. injection of LPS or saline.    *   Indicates percentage change in food 

intake is significantly different to pre-injection food intake (P < 0.05).  # Indicates 

significant differences between rats injected with LPS + PIS + veh versus all other 

experimental groups (P < 0.05, SNK).  + Indicates significant differences between rats 

injected with saline + PIS + veh versus rats injected with LPS + IL-6AS + veh and LPS + 

PIS + casp-inh on the first day (P < 0.05, SNK).  There were no significant differences 

between rats injected with saline + PIS + veh, saline + IL-6AS + veh and saline + PIS + 

casp-inh.  The results are represented as mean ± SD.   
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Figure 6.  Change in body mass from pre-injection values on each of the 3 days after rats 

were injected with: (A) PIS (1.5 ml) or IL-6AS (1.5 ml) i.p. and the vehicle for the 

caspase-1 injection i.c.v. 2 h before receiving a s.c. injection of LPS (250 µg/kg) or 

saline; (B) PIS i.p. and the caspase-1 inhibitor (300 ng/5 µl) or its vehicle i.c.v. 2 h before 

receiving a s.c. injection of LPS or saline.    *   Indicates a significant change in body mass 

compared to pre-injection values (P < 0.05).  # Indicates significant differences between 

rats injected with LPS + PIS + veh versus all other experimental groups (P < 0.05, SNK).  

+ Indicates significant differences between rats injected with saline + PIS + veh versus 

rats injected with LPS + IL-6AS + veh and LPS + PIS + casp-inh on the first day (P < 

0.001, SNK).  There were no significant differences between rats injected with saline + 

PIS + veh, saline + IL-6AS + veh and saline + PIS + casp-inh.  The results are 

represented as mean ± SD.   

 

Figure 7.  Plasma concentrations of bioactive IL-6 for rats injected i.p. with PIS (1.5 ml) 

or IL-6AS (1.5 ml) and i.c.v. with a caspase-1 inhibitor (300 ng/5 µl) or its vehicle 2 h 

before receiving s.c. injections of LPS (250 µg/kg) or saline.  The plasma concentrations 

of bioactive IL-6 were measured 5 h after rats were injected with LPS or saline.  * 

Indicates significant differences between rats injected with LPS + IL-6AS + veh versus 

all other experimental groups (P < 0.001, SNK).  # Indicates significant differences 

between rats injected with saline + PIS + veh versus all other experimental groups (P < 

0.001, SNK).  The detection limit of the assay was 3 IU of IL6 ml-1.  The results are 

represented as mean ± SD.   
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Figure 8.  Plasma concentrations of IL-1β for rats injected with PIS (1.5 ml) i.p. and the 

caspase-1 inhibitor (300 ng/5 µl) or its vehicle 2 h before receiving s.c. injections of LPS 

(250 µg/kg) or saline.  The plasma concentrations of IL-1β were measured 5 h after rats 

were injected with LPS or saline.  * Indicates significant differences between rats injected 

with saline + PIS + veh versus all other experimental groups (P < 0.05, SNK).  The 

results are represented as mean ± SD.  Dashed line indicates level of detection of assay. 
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CONCLUSIONS 
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Peripherally-released cytokines have been strongly implicated as important endogenous 

mediators of the brain-controlled fever mechanism activated following systemic and local 

administration of LPS.  In contrast to the important role established for peripherally-

released cytokines in mediating LPS-induced fever, no clear role has emerged as yet for 

these cytokines as endogenous mediators of anorexia and lethargy, two brain-controlled 

sickness behaviours, also known to be induced following systemic and local 

administration of LPS.  Using endogenous antagonism of the biological action of 

cytokines as far as possible, and highly quantifiable measures of anorexia and lethargy, I 

therefore systematically investigated the contribution of endogenous pyrogenic cytokines 

in mediating anorexia and lethargy induced by local subcutaneous administration of LPS.  

I specifically chose to simulate infection using LPS (extracted from Escherichia coli) as it 

a powerful activator of the innate immune system and pro-inflammatory cytokine release, 

and understanding the physiological mechanism of its biological action has significant 

clinical application, as Gram-negative sepsis in humans is caused by Enterobacteriaceae 

such as Escherichia coli and Klebsiella species (Bochud & Calandra, 2003). The results 

obtained from the studies I undertook are summarized and discussed below in the context 

of the current literature.         
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5.1 The contribution of cytokines released in the periphery and the brain in   

      mediating anorexia and lethargy induced by subcutaneous administration of  

      LPS 

 

To establish a role for molecules, such as cytokines, as endogenous mediators of a given 

biological response it is imperative that inhibition of the biological action or synthesis of 

the molecule at a site that relates to its observed synthesis and action, is shown to inhibit 

or abolish the biological response in question (Kluger, 1991).  Injecting species-specific 

neutralizing antibodies to therefore effect endogenous antagonism, I investigated in 

chapter 2 whether peripherally-released IL-6, IL-1β, TNF-α and leptin, cytokines shown 

to be endogenous mediators of LPS-induced fever, also contribute in mediating two 

specific sickness behaviours, anorexia and lethargy in rats.  I used highly quantifiable and 

sensitive measures, quantity of food consumed and voluntary wheel-running, to assess 

anorexia and lethargy, in the rats.   

   

I found that injecting rats s.c. with LPS (250 µg kg-1) before the night-time active period, 

dramatically affected their activity levels, as most of the rats did not run at all on the 

night after injection.  Food intake was also affected following the LPS injection, but to a 

lesser extent than voluntary activity, with the rats reducing the quantity of food they 

normally consumed by about half (Chapter 2).  Treating rats peripherally with species-

specific IL-6 antiserum significantly attenuated the LPS-induced decrease in food intake 

and voluntary activity.  Thus I have identified that peripherally-released IL-6 plays a role 

in mediating the lethargy and anorexia induced by local administration of LPS.  The idea 
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that IL-6 is involved in mediating LPS-induced sickness behaviours has been mooted 

before by others (Bluthé et al., 2000b) studying the effect of systemic administration of 

LPS on body mass and social behaviour, another behavioural response affected during 

infection.  Bluthé et al., (2000) observed that IL-6 deficient mice (IL-6 -/-) were less 

sensitive than wild-type (IL-6 +/+) mice to the depressing effects of i.p. administration of 

LPS on social behaviour and body mass.  

 

While peripherally-released IL-6 appears unequivocally to be contributing to mediating 

LPS-induced sickness behaviours, it is important to note that the sickness behaviours are 

only attenuated and not abolished when the biological activity of IL-6 is inhibited.  There 

are two likely explanations for why these sickness behaviour responses were only 

attenuated.  Firstly, it is possible that not all peripherally-released IL-6 was neutralized by 

the dose of IL-6 antiserum I administered.  Secondly, additional endogenous mediators, 

possibly other cytokines, could be working in parallel with peripherally-released IL-6 to 

regulate anorexia and lethargy induced by s.c. administration of LPS.  As others 

(Cartmell et al., 2000) have demonstrated complete neutralization of the LPS-induced 

increase in circulating IL-6 in rats using an equivalent dose of IL-6 antiserum to the dose 

I used, the attenuated responses I noted appear to rather reflect the involvement of 

additional mediators.  To determine if these mediators were possibly other cytokines 

released in the periphery following LPS administration I injected rats i.p. with species-

specific antiserum to either TNF-α or IL-1β before administering LPS. 
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Treating rats peripherally with either TNF-α antiserum or IL-1β antiserum had no effect 

on the LPS-induced suppression of voluntary activity and food intake (chapter 2).  Thus I 

identified that peripherally-released IL-1β and TNF-α do not appear to be involved in 

mediating lethargy and anorexia induced by local administration of LPS. Although I do 

not provide in vivo evidence of neutralization of TNF-α and IL-1β in the circulation, it is 

unlikely that my failure to attenuate the LPS-induced anorexia and LPS-induced lethargy 

was due to the neutralization being incomplete, as I determined using an in vitro two-site 

sandwich ELISA that one hundred microlitres of the antiserum could neutralize up to 10, 

000 pg of rat recombinant TNF-α and IL-1β (unpublished observations).  From the results 

presented in later experiments (chapter 4), where I measured the concentration of IL-1β 

in the plasma, it would appear that the dose of IL-1β antiserum I administered (1.5 ml) 

should have been more than sufficient to neutralize the increase in plasma concentrations 

of IL-1β (~ 38 pg ml-1) induced by the dose of LPS I administered (250 µg kg-1).   

 

The increase in plasma concentrations of IL-1β I measured in my study following local 

LPS administration is substantially lower than the increase (~ 350 pg ml-1) measured by 

others, at the same time point, injecting a ten-fold lower dose of LPS (25 µg kg-1) 

systemically (Bilbo et al., 2005).  A similar difference also has been noted in the 

concentration of TNF-α measured in plasma when injecting LPS systemically versus 

locally into an air pouch.  Injecting LPS into an air pouch did not significantly increase 

TNF-α in the plasma, however injecting the same dose of LPS (100 µg kg-1) systemically 

did (peak concentration ~ 1636 pg ml-1) (Miller  et al., 1997b).  Injecting LPS s.c. as I did 

may therefore be a more representative model of localized infection, similar to injecting 
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LPS into a pre-formed subcutaneous airpouch.  In this experimental model of localized 

infection only IL-6 is significantly elevated in the circulation, with the increase in TNF-α 

and IL-1β mostly being confined to the local infection site (Miller  et al., 1997b).  From 

my findings that injecting rats peripherally with either TNF-α or IL-1β antiserum has no 

effect on the anorexia and lethargy induced by local administration of LPS, I 

hypothesized that if other cytokines are working with peripherally-released IL-6 to induce 

anorexia and lethargy, it is due primarily to their synthesis in the brain and not in the 

periphery.   

 

In chapter 3 I therefore investigated whether specific cytokines likely to fulfil this role, 

such as IL-1β and IL-6, could act within the brain to induce anorexia and lethargy.  I 

found that i.c.v. administration of either species-homologous rat IL-6 or IL-1β before the 

night-time active period decreased voluntary activity in rats in a dose-dependent fashion.  

These findings were the first to show that voluntary exercise, that is wheel-running, is 

suppressed by direct administration into the brain, of IL-6 and IL-1β.  While voluntary 

exercise was significantly reduced by i.c.v. administration of either IL-6 or IL-1β, food 

intake was only decreased by i.c.v. injection of IL-1β at the highest dose I used, but not 

IL-6 at any dose.  Having identified that IL-6 can act endogenously to induce anorexia 

and lethargy my finding that central administration of IL-6 affected voluntary exercise, 

but did not affect food intake was surprising.  Although it is yet to be established how IL-

6 released into the bloodstream from peripherally located immune cells influences the 

brain-mediated response of anorexia and lethargy during a peripheral immune challenge, 

my findings presented in chapter 3 identify that the direct action of IL-6 on the 
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hypothalamic neurones involved in the control of food intake may not be a prerequisite.  

Rather, the induction of anorexia may be more dependent on peripherally-released IL-6 

inducing other signalling molecules within cells of the BBB, which then penetrate into 

the brain to affect feeding.  Regardless of how peripherally-released IL-6 mediates 

anorexia and lethargy induced by s.c. administration of LPS it is evident that IL-6 is not 

the sole mediator of these responses.  Based on my finding that central administration of 

IL-1β decreased both voluntary exercise and food intake I hypothesized that endogenous 

brain IL-1β could possibly be involved in mediating lethargy and anorexia induced by 

local administration of LPS. 

 

To determine whether this indeed is the case, I specifically chose to antagonize the 

biological action of IL-1β in the brain by administering a caspase-1 inhibitor, which 

prevents the cleavage of pro-IL-β to biologically active IL-1β, i.c.v. (Chapter 4).  Others 

have reported that central administration of a caspase-1 inhibitor is an effective strategy 

to use for reducing IL-1β activity in the brain following systemic administration of LPS 

(Bilbo et al., 2005).  In my study I monitored the behavioural responses until the 

symptoms of sickness induced by LPS had ceased, so as to determine the cytokine 

involvement not only in the induction, but also in the resolution of these sickness 

responses.  I found that pre-treating rats with a caspase-1 inhibitor i.c.v. did not abolish 

the anorexia and lethargy induced by LPS, but it did significantly attenuate both the 

magnitude and the duration of the anorexia and lethargy induced by LPS.  Thus I have 

identified that endogenous brain IL-1β contributes to mediating lethargy and anorexia 

induced by local administration of LPS in rats.   



 136 

While it has been established that administration of a caspase-1 inhibitor effectively 

reduces IL-1β activity in vivo following systemic administration of LPS (Bilbo et al., 

2005), I did not measure the concentration of IL-1β in the brain and therefore cannot 

confirm the extent to which i.c.v. administration of the caspase-1 inhibitor inhibited the 

synthesis of IL-1β in the brain.  It is therefore possible that if IL-1β was not completely 

inhibited by the dose of the caspase-1 inhibitor I injected, the contribution of endogenous 

brain IL-1β to mediating the anorexia and lethargy induced by s.c. administration of LPS 

I noted may be of a greater magnitude.   

 

The results I obtained with peripheral and central antagonism of endogenous IL-1β 

presented in chapter 2 and 4 appear to identify that brain, but not peripherally-released 

IL-1β plays an important role in mediating sickness behaviours induced by local 

administration of LPS.  My finding that IL-1β in the brain, but not IL-1β released in the 

periphery, contributes to mediating sickness behaviours appears to be at odds with the 

findings of others (Bluthé et al., 1992b).  Bluthé et al., (1992b) found that pre-treating 

rats with IL-1ra peripherally, but not centrally, attenuated the decrease in body mass and 

social exploration induced by systemic administration of LPS. 

 

Differences in the experimental design between my study and that of Bluthé et al., 

(1992b) may explain these contradictory findings.  Firstly, the difference noted with 

antagonism of peripherally-released IL-1β may have been related to the different route by 

which LPS was administered.  While the same dose of LPS (250 µg kg-1) was 

administered in both studies, I administered the LPS s.c. in my studies while they 
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administered LPS i.p in their study.  Injecting LPS s.c. appears to be a more 

representative experimental model of localized infection, than a model of systemic 

infection.  The lack of involvement of peripherally-released IL-1β I noted in mediating 

LPS-sickness behaviours may be related to s.c. administration of LPS not inducing 

sufficient IL-1β in the circulation, unlike the significant increase noted following i.p. 

administration of LPS (Bilbo et al., 2005), to influence the areas of the brain regulating 

these behaviours.  Secondly, the differences noted with antagonism of IL-1β in the brain 

may be related to the use of different substances to antagonize the biological action of 

endogenous brain IL-1β.  The time course of action of these two substances differs quite 

substantially, with IL-1ra being active for about 2 to 4 h (Bluthé et al., 1992b), while the 

caspase-1 inhibitor is active for at least 24 h (Rabuffetti et al., 2000).  Brain IL-1β has 

been shown to remain significantly elevated for prolonged periods of between 8 - 24 h 

following i.p. administration of LPS (Bilbo et al., 2005).  Thus in terms of investigating 

the involvement of endogenous brain IL-1β in mediating LPS-induced sickness 

behaviours, the longer period of IL-1β neutralization likely to be achieved with the 

caspase-1 inhibitor may have prolonged the inhibition of IL-1β in the brain and therefore 

produced the attenuated sickness behaviour responses noted in my study.   

 

It is also possible that the effects I noted following i.c.v administration of the caspase-1 

inhibitor may not be entirely specific to the action of IL-1β, but may also be related to the 

action of other pro-inflammatory cytokines, as the enzyme caspase-1 is not only involved 

in the processing of IL-1β, but is also involved in the processing of IL-18 and IL-33 

(Dinarello, 2005a). Administration of the capase-1 inhibitor may therefore have reduced 
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the synthesis of these two cytokines in addition to the synthesis of IL-1β in the brain.  

Even though as of yet the involvement of IL-18 and IL-33 in LPS-induced lethargy has 

not been identified, IL-18 has been implicated as a putative mediator of energy 

homeostasis by suppressing appetite (Zorrilla et al., 2007).  Thus the participation of 

these two cytokines in the biological processes described in my study cannot be excluded.  

 

Due to the strong likelihood that the contradictory findings regarding the peripheral 

involvement of IL-1β in mediating LPS-induced sickness behaviours may be related to 

the experimental model of infection used, systemic versus local, investigating the effect 

of endogenous antagonism of peripherally-released IL-1β following LPS administration 

via different routes (s.c., i.p., i.v. and i.m.) may provide clarity on the role of peripherally-

released IL-1β in mediating LPS-induced sickness behaviours.  Moreover, to identify if 

the failure to inhibit sickness behaviours induced by local and systemic administration of 

LPS following i.c.v. injection of IL-1ra (Bluthé et al., 1992b; Kent et al., 1992b) is 

indeed related to the short half-life of IL-1ra, it would be useful to investigate the effect 

of antagonism of endogenous brain IL-1β using IL-1ra and the caspase-1 inhibitor in the 

same study. 

 

In chapter 4 I also investigated the effect of antagonizing the biological action of 

peripherally-released IL-6 on the duration of the anorexia and lethargy induced by s.c. 

administration of LPS, as although peripherally-released IL-6 had been implicated in 

mediating LPS-induced sickness behaviours (Chapter 2 and Bluthé et al., 2000b), the 

extent to which its absence could facilitate recovery from LPS-induced sickness 
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behaviours had not been established.  In addition to my initial findings in chapter 2 which 

showed that treating rats with serum containing IL-6 antibodies attenuated the magnitude 

of anorexia and lethargy induced by s.c. administration of LPS, I identified in chapter 4 

that treating rats with serum containing IL-6 antibodies also facilitated a significantly 

faster recovery of the rats (by at least 2 days) from the suppressive effects of LPS on 

voluntary activity, food intake and growth.  Moreover, in chapter 4 I was able to 

demonstrate that the species-specific antiserum I administered did indeed significantly 

neutralize the LPS-induced bioactive IL-6 (by ~ 80%) in the plasma of the rats injected 

with LPS and the IL-6 antiserum.  Although I reduced the level of bioactive IL-6 in the 

circulation by a substantial margin it is likely that had I achieved complete neutralization 

the degree of attenuation I noted may have been of a greater magnitude.   

 

Although peripherally-released IL-6 appears to be an important endogenous mediator of 

anorexia and lethargy, how IL-6 released into the bloodstream from peripherally located 

immune cells influences the brain-mediated responses of anorexia and lethargy during a 

peripheral immune challenge however, remains unclear.  Others have reported that 

injecting LPS i.p. induces an increase in IL-1β mRNA in the brains of wild-type mice, 

however in IL-6 knockout mice the LPS-induced increase in IL-1β is greatly attenuated 

or entirely absent (Sparkman et al., 2006).  Thus, in the absence of IL-6, systemic 

administration of LPS failed to induce IL-1β in the brain.  Having identified in chapter 4 

that brain IL-1β is involved in mediating anorexia and lethargy induced by local 

administration of LPS, one mechanism by which peripherally-released IL-6 could be 

mediating anorexia and lethargy is via the induction of IL-1β in the brain.  The possibility 
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that IL-6 can induce the synthesis of IL-1β is intriguing as the vast majority of the 

literature points towards IL-1β inducing IL-6 and not vice versa (Shalaby et al., 1989; 

Sironi et al., 1989; Schindler et al., 1990). 

 

Not only did I identify an important role for peripherally-released IL-6 in mediating 

anorexia induced by local administration of LPS in my thesis, but I confirmed the 

importance of another endogenous mediator, leptin (chapter 2).  Treating rats peripherally 

with leptin antiserum abolishes the anorexia induced by s.c. administration of LPS.  

Using the same species-specific leptin antiserum, but administered at a lower dose, others 

have demonstrated an attenuation of anorexia induced by i.p. administration of LPS in 

rats (Sachot et al., 2004).  In contrast, studies investigating the involvement of leptin in 

mediating LPS-induced anorexia using rats with defective receptor-mediated transport 

and intracellular signalling of leptin, have shown that leptin signalling does not appear to 

influence LPS-induced anorexia (Faggioni et al., 1997; Lugarini et al., 2005).  There are 

two likely explanations for the discrepancies noted between studies using rats with 

genetic defects in the leptin system and leptin antiserum.  Firstly, due to the importance 

of food intake for survival, the control of food intake is not solely dependent on a single 

pathway, but rather is regulated by different pathways involving mediators other than 

leptin, such as cholecystokinin, insulin and glucagon.  Thus it is possible that the absence 

of the leptin-mediated pathway occurring early on in the development of mutant animals 

may result in other pathways involved in food intake homeostasis compensating.  These 

alternative pathways could be activated during pathological conditions like LPS 

stimulation, leading to the observed anorexia in animals with genetic defects in the leptin 



 141 

system.  Secondly, systemic administration of LPS has been shown to induce comparable 

concentrations of IL-6 in the circulation of leptin-deficient (ob/ob) mice and their 

respective lean littermates (+/?ob mice) (Faggioni et al., 1999).  Thus humoral mediators 

other than leptin, such as IL-6 identified in this thesis, may compensate for the absence of 

leptin in animals with genetic defects in the leptin system (Sachot et al., 2004).  My 

finding that peripherally-released leptin and peripherally-released IL-6 appear to share 

the same biological effect of suppressing food intake following s.c. administration of 

LPS, may be related to them both: (i) belonging to the same long-chain helical cytokine 

family and sharing a common signal transducer among their receptors (Zhang et al., 

1994; Vaisse et al., 1996) or (ii) inducing the same important downstream mediator of 

food intake, IL-1β, in the brain (Sachot et al., 2004). 

 

Not only do leptin and IL-6 released in the periphery both appear to be involved in 

mediating the suppression of food intake following s.c. administration of LPS, but they 

also both appear to be involved in mediating the fever response, as treating rats 

peripherally with either leptin antiserum or IL-6 antiserum abolishes fever induced by s.c. 

administration of LPS (Chapter 2).  The involvement of both peripherally-released leptin 

and peripherally-released IL-6 in mediating LPS-induced fever may be related to 

similarities in the actions of the two cytokines, as they both have been shown to induce 

COX-2, an important downstream mediator of fever, in the brain (Rummel et al., 2006; 

Inoue et al., 2006).  The involvement of leptin in mediating LPS-induced fever may 

however not only be related to the induction of COX-2 in the brain, but it also may be 

related to the activation of thermoeffectors required for fever production, in particular the 
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activation of metabolic heat production.  Leptin raises metabolic heat production by 

increasing sympathetic outflow to brown adipose tissue (nonshivering thermogenesis) in 

small rodents (Collins et al., 1996).  It is unlikely however that the attenuated effects I 

noted on fever production following administration of leptin antiserum were related to 

blocking the thermogenic action of leptin, as leptin appears to have a critical role in 

chronic, but not acute activation of thermogenesis (Girardier et al., 1995; Steiner & 

Romanovsky, 2007) and fever is brought about by acute activation of thermoeffectors 

(Romanovsky et al., 2005).  Moreover, in a thermally neutral environment activation of 

thermogenesis may not be a prerequisite to increase core body temperature during fever, 

as the increase in core body temperature may be achieved by constriction of skin vessels 

alone (Romanovsky et al., 2002). It therefore appears that the participation of leptin in 

LPS-induced fever is mostly related to its inflammatory action in the brain. 

 

5.2 Differences in the cytokine-mechanisms mediating fever and sickness behaviour  

 

Not only did I investigate the contribution of endogenous cytokines in mediating LPS-

induced sickness behaviours in the studies presented in this thesis, but I also investigated 

their contribution in mediating fever induced by s.c. administration of LPS.  My rationale 

for concurrently investigating the contribution of endogenous cytokines in mediating 

sickness behaviours and fever was to identify possible differences in the cytokine-

mechanisms mediating these responses.  The observation I made in chapter 4 and which 

others have also made previously (Hübschle et al., 2006), that sickness behaviours 

continue for a longer period of time than does fever during infection/inflammation, has 
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lead to the speculation that the cytokine-mechanisms regulating fever and sickness 

behaviours may not be the same (Kent et al., 1992a; Dantzer, 2001). 

 

In the studies presented in this thesis I uncovered some distinct differences in the 

cytokine-mechanisms regulating fever and sickness behaviours.  For instance, LPS-

induced fever could be abolished by inhibiting the action of peripherally-released IL-6, 

while it appeared that LPS-induced lethargy and LPS-induced anorexia could be 

abolished only if both endogenous brain IL-1β and peripherally-released IL-6 were 

inhibited (chapter 4).  Moreover, central administration of the lowest dose of IL-1β or IL-

6 decreased voluntary activity in rats in the absence of fever (chapter 4).  These 

differences highlight that: (i) brain-intrinsic cytokines may be more important in 

mediating sickness behaviours and they are in mediating fever and (ii) the brain sites 

controlling sickness behaviours, in particular lethargy, may be more sensitive to the 

presence of cytokines than the brain sites controlling temperature.  Both of these 

differences are likely to account for the prolonged duration of the sickness behaviours 

during illness.  From a clinical point of view identifying the cause for the longer duration 

of sickness behaviours is particularly relevant, as it is the prolonged duration of the 

sickness behaviour responses that are most disabling and uncomfortable for patients to 

endure during illness (Bower et al., 2002; Hewlett et al., 2005).  Moreover, having a 

better understanding of the physiological mechanisms inducing both fever and sickness 

behaviours such as anorexia and lethargy, may provide clinicians with more insight into 

managing not only the thermal but also the non-thermal responses to infection. 
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5.3 Clinical implications and recommendations 

 

My finding in chapter 4 that reducing either the amount of biologically active IL-6 in the 

circulation or IL-1β in the brain significantly enhances the resolution of anorexia and 

lethargy by at least two days in rats, but does not completely prevent these sickness 

behaviours from occurring, appears to indicate the complexity of the cytokine 

involvement in mediating these two sickness behaviours during a localized Gram-

negative bacterial infection.  Using similar experimental tools, others (Swiergiel & Dunn, 

1999) have also noted this trend of multiple cytokine involvement in mediating sickness 

behaviours during a systemic Gram-negative bacterial infection.  Therefore while 

individual cytokines, such as IL-6 and IL-1β, are possible targets for therapies aimed at 

alleviating anorexia and lethargy in patients with bacterial infections, it appears that to 

abolish the presence of sickness behaviours multiple cytokines may need to be targeted.   

 

Pro-inflammatory cytokines also perform important immune functions, however which 

facilitate pathogen elimination.  They increase the microbial activity of phagocytic cells, 

activate adjacent epithelium tissues which result in the attraction of neutrophils and 

monocytes and induce the production of acute phase proteins by the liver (Kapetanovic & 

Cavaillon, 2007).  Therefore, while inhibiting the action of multiple cytokines may 

resolve the sickness responses quicker, this action could possibly compromise the ability 

of the host to fight infection in the situation of a live, replicating pathogen.  In instances 

of chronic infection where patients are placed on prolonged treatment regimens, 

inhibiting the action of cytokines may increase the prevalence of opportunistic infections.  
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Selectively inhibiting the downstream mediators by which cytokines induce sickness 

behaviours may prove to be a better tool therapeutically, as that could preserve the 

actions of pro-inflammatory mediators required for pathogen elimination yet improve the 

malaise and sense of sickness in the patient.  To therefore identify the most beneficial 

treatment strategy for sickness behaviours in patients, future pathophysiological 

mechanism-based assessment studies of sickness behaviours in animal models of 

infection/inflammation are needed which not only look at specific cytokines, but also the 

activation status of their intermediate signalling pathways and their downstream products 

(Dantzer et al., 2008).   

 

Although the results presented in this thesis have important implications for the treatment 

of patients with bacterial infections, they may not be directly transferable to medially ill 

patients in general, as the cytokine profiles induced by different pathogens is not 

necessarily the same.  The high prevalence of non-specific behavioural symptoms in 

medically ill patients not only with a “common cold” or flu, but also in patients with 

some of the most harmful, costly and debilitating diseases currently experienced in the 

Western World: coronary heart disease, cancer, obesity, type II diabetes and 

neurodegenerative disorders associated with aging (Dantzer et al., 2008) necessitates the 

continuation of preclinical studies, such as those presented in this thesis to be carried out 

using established animal models of disease, to identify possible therapies for these 

symptoms in patients. 
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Not only does the work I have presented in this thesis have value in terms of identifying 

possible targets for the treatment of symptoms of medically ill patients, but it also may be 

of value in improving our approach to identifying and monitoring infection/inflammation 

in patients.  From early on in the history of medicine, fever has been viewed by 

physicians and patients alike as the principal symptom of illness and thus decisions 

concerning the onset of and recovery from illness were primarily based on a patient’s 

body temperature.  The findings presented in this thesis showing that fever is outlasted by 

both the period of lethargy and anorexia in the presence of a simulated Gram-negative 

bacterial infection in rats, indicates that the behavioural symptoms associated with 

infection, such as lethargy and loss of appetite, should become part of the close 

monitoring of the condition of patients, as the presence of these sickness behaviours, may 

in fact be a more valuable clinical marker of illness and recovery in patients, than is body 

temperature alone. 
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