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ABSTRACT 

Increases in internal dimensions of the chambers of the heart (cardiac dilatation), 

mediated by right shifts in cardiac chamber diastolic pressure-volume (P-V) relations, 

predict mortality in patients with established heart failure. However, the mechanisms 

responsible for the transition from concentric cardiac hypertrophy to cardiac dilatation 

are unclear. Recent evidence suggests that decreases in the cross-linked properties of 

myocardial collagen may increase the propensity of collagen to cleavage and hence 

reduce cardiac myocyte tethering, thus promoting cardiac dilatation. However, decreases 

in myocardial collagen cross-linking may also reduce myocardial stiffness, thus 

explaining right shifts in cardiac diastolic P-V relations. In the present dissertation I 

evaluated whether right shifts in diastolic P-V relations produced by chronic β-

adrenoreceptor activation (isoproterenol, a β-adrenoreceptor agonist, 0.02 mg.kg
-1

.day) in 

spontaneously hypertensive rats (SHR) with compensated cardiac hypertrophy (12 

months of age), can be explained by adverse chamber remodelling or alterations in the 

myocardial material properties of the heart. 

After 7 months of daily isoproterenol administration, SHR had marked right shifts 

in left ventricular (LV) diastolic P-V relations as determined in isolated, perfused hearts, 

with increases in the volume intercept of these relations, a change that translated into 

increases in LV cavity diameters (echocardiography). LV dilatation was associated with 

reductions in LV pump function (decreases in LV endocardial fractional shortening and 

the slope of the LV systolic P-V relation [LV E]). The reductions in pump function were 

attributed to the LV dilatation rather than to alterations in intrinsic myocardial contractile 

properties as LV midwall fractional shortening and myocardial systolic elastance (LV 
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En) were unchanged. Although SHR not receiving isoproterenol had increases in the LV 

diastolic wall thickness-to-radius ratio, a change commensurate with compensatory 

concentric LV hypertrophy, LV wall thickness-to-radius ratio in SHR exposed to chronic 

β-adrenoreceptor activation was reduced to values similar to those noted in normotensive 

Wistar Kyoto (WKY) control rats, despite further increases in LV weight. SHR not 

receiving isoproterenol had a marked increase in myocardial stiffness (slope of the 

linearized LV diastolic stress-strain relationship) as compared to WKY rats, a change that 

was associated with an increased myocardial collagen of the cross-linked phenotype. 

Although SHR receiving daily isoproterenol had further increases in myocardial collagen, 

this did not translate into changes in LV diastolic myocardial stiffness, as the further 

increase in myocardial collagen was of the non cross-linked phenotype. However, 

through a susceptibility to digestion, this collagen phenotype could have contributed to 

LV dilatation. In conclusion, these data suggest that LV dilatation in SHR following 

chronic β-adrenoreceptor activation is attributed to adverse chamber remodelling rather 

than to alterations in myocardial material properties as indexed by diastolic stress-strain 

relations.   
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PREFACE 

 Although there is substantial evidence to suggest that enlargement in cardiac 

chamber dimensions is associated with an increased mortality and morbidity in chronic 

heart failure, the fundamental mechanisms responsible for cardiac dilatation have not 

been provided. The past decade has nevertheless heralded an impressive increase in the 

scientific literature suggesting some evidence in favour of the mechanisms involved. 

Although the original suggestion was that cardiac chamber dilatation occurred as a 

consequence of increases in cardiomyocyte lengthening, our group has provided evidence 

to indicate that this mechanism may not be critical for the development of cardiac 

dilatation. In contrast, most of the evidence in favour of the mechanisms responsible for 

cardiac dilatation has pointed toward side-to-side slippage of cardiomyocytes, a change 

that occurs because of disruption of the collagen tethers between cells. 

With respect to the mechanisms that may contribute toward disruption of collagen 

tethers between cardiomyocytes, two mechanisms may play a role in chronic cardiac 

disease. The first is activation of enzymes in the myocardium responsible for degrading 

myocardial collagen, and the second is an increased susceptibility of myocardial collagen 

to cleavage by these enzymes. The hypothesis that an increased susceptibility of 

myocardial collagen to cleavage by enzymes may play a role in cardiac dilatation arose as 

the myocardial collagen that accumulates in chronic cardiac disease associated with 

cardiac dilatation, is non-cross-linked (soluble to digestion) (Woodiwiss et al 2001). 

What has not been given due consideration however, is that this type of collagen may 

also contribute toward cardiac dilatation by modifying the material properties of the 

myocardium (decreasing myocardial stiffness), thus allowing the heart to accommodate 
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greater volumes of blood at lower filling pressures. In the present dissertation, using an 

animal model of cardiac dilatation, I tested the hypothesis that cardiac dilatation could 

occur as a consequence of alterations in the material properties of the heart. In support of 

this dissertation, the work described within has been published in a high impact peer-

reviewed journal (Gibbs M., Veliotes D.G.A., Anamourlis C., Badenhorst D., Osadchii 

O., Norton G.R, Woodiwiss A.J. Chronic β-adrenoreceptor activation increases cardiac 

cavity size through chamber remodeling and not via modifications in myocardial material 

properties. Am J Physiol 2004;287:H2762-H2767). 


