
 

 

The Construction and Phenotypic 

Characterization of 

Mycobacterial Mutants Deficient in 

DNA Glycosylases 

 

 

Vivianne Jacoba Goosens 

 

 

 

 

 

A dissertation submitted to the Faculty of Science, University of the 

Witwatersrand, in fulfilment of the requirements for the degree of Master 

of Science. 

Johannesburg, 2008 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/39665893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 ii 

 

 

 

 

 

 

 

 

‘Keep on swimming, swimming, swimming’ 

- Dory  

In Walt Disney’s Finding Nemo 



 iii 

Declaration 

 

 

I declare that this dissertation is my own, unaided work. It is being submitted for the 

degree of Masters of Science at the University of the Witwatersrand, Johannesburg. It 

has not been submitted before for any degree or examination at any other University. 

 

 

 

 

 

________________________________ 

(Vivianne J Goosens) 

 

 

______________ day of ___________ 2008 

 



 iv 

Abstract 

 

Mycobacterium tuberculosis is an exquisitely adapted intracellular pathogen that 

encounters hostile, host-derived reactive nitrogen and oxygen intermediates during 

the course of infection of its human host. These radicals cause DNA damage, which 

is repaired through various pathways to allow for the continued survival of the 

organism. Base excision repair (BER) is one such pathway, which depends on DNA 

glycosylases to identify and excise damaged DNA bases. Formamidopyrimidine 

DNA glycosylase (Fpg/ MutM/ FAPY) and Endonuclease VIII (Nei) are such 

enzymes, which both target oxidatively damaged DNA and together, form the Fpg 

family of DNA glycosylases. Bioinformatic analyses identified two copies each of 

Fpg and Nei-encoding genes in M. tuberculosis as well as in its non-pathogenic 

relative, Mycobacterium smegmatis. To understand the role of these multiple 

glycosylases in the maintenance of genomic integrity and survival of mycobacteria, 

the genes encoding the four Fpg/Nei glycosylases were individually deleted in M. 

smegmatis strain mc2155 by homologous recombination. In addition to the four single 

mutants, double and triple Fpg and Nei glycosylase knockout mutants were generated 

by sequential gene knockout. When compared to the parental strain, the single and 

double mutants showed no variation in growth kinetics, no increased sensitivity to 

hydrogen peroxide and no increase in spontaneous mutation rates. However, a slight 

increase in frequency of spontaneous C→T transition mutations was observed in 

double knockout mutants compared to the wild type and single mutant strains. These 

results suggest that these enzymes may be part of an extensive network of enzymes 

which collectively work to enhance the overall survival of M. smegmatis through the 

repair of oxidatively damaged DNA.  
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1. Introduction  

 

The bacillus shaped bacterium Mycobacterium tuberculosis, the causative agent of 

tuberculosis, was first identified in the late 19th century by Robert Koch. It has since 

been extensively researched, but has remained one of the most successful and 

arguably the most destructive human bacterial pathogen (Jacobs Jr, 2000). Despite the 

discovery of antibiotics, the implementation of the ‘directly observed therapy short-

course’ (DOTS) programmes and the considerable efforts made into the development 

of novel drugs and vaccines, little headway leading to the eradication of this disease 

has been made. In 1993, the World Health Organisation (WHO) declared tuberculosis 

an unprecedented global heath emergency (Maartens and Wilkinson, 2007; Meya and 

McAdam, 2007). However, 12 years later, in 2005, 8.8 million new cases and 1.6 

million deaths of tuberculosis were reported (WHO, 2007). The failure to eradicate 

this disease is in part due to the slow, out-dated methods of diagnosis, the occurrence 

of multi- (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the 

increased occurrence of HIV co-infections as well as the lack of a truly effective 

vaccine (Corbett et al., 2003; Maartens and Wilkinson, 2007; Meya and McAdam, 

2007). 

 

Both the incidence and death rates associated with this disease are astonishing when 

one considers that drug-susceptible tuberculosis is a fully treatable disease. Although 

treatment of M. tuberculosis infection has been complicated by its innate resistance to 

a range of drugs and its ability to exist in a poorly defined persistent state (Levin and 

Rozen, 2006; Nguyen and Thompson, 2006), an effective antibiotic regimen is 

available. The regimen, or the DOTS programme, comprises of a ‘short course’ 

treatment, which involves the administration of the four first-line drugs: rifampicin, 

isoniazid, pyrazinamide and ethambutol, for a 6-8 month period (Maartens and 

Wilkinson, 2007). However, due to the long duration of treatment and the potent drug 
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toxicity, patient non-compliance is common. This non-compliance, in combination 

with the lack of new drugs since the 1970s, has led to the emergence of MDR-TB and 

XDR-TB (Meya and McAdam, 2007).  

 

MDR-TB is defined as tuberculosis caused by strains of M. tuberculosis that are 

resistant to rifampicin and isoniazid and is treated with an array of second line drugs 

over an extended period of time. These drugs, however, have diminished efficacy and 

increased side effects (Meya and McAdam, 2007). The existence of strains of M. 

tuberculosis that are resistant to these two first-line drugs, combined with the 

difficulty in treating and diagnosing MDR-TB, has led to the emergence of XDR-TB. 

XDR-TB is a global phenomenon associated with strains resistant to rifampicin and 

isoniazid, as well as a fluoroquinolone and any one of the injectable drugs, amikacin, 

kanamycin (km) or capreomycin. This complicates and lengthens treatment time and 

results in diminished cure rates (Meya and McAdam, 2007). Recent observations of a 

possibly highly virulent strain/strain family of drug-resistant M. tuberculosis, which 

was responsible for an outbreak of XDR-TB at Tugela Ferry in the KwaZulu Natal 

province in South Africa (Gandhi et al., 2006), have alarmed the international 

community and has further underscored the need for novel drug therapies.  

 

Currently, the only available vaccine against tuberculosis is Bacillus Calmette and 

Guèrin (BCG). It was derived from an avirulent strain of Mycobacterium bovis in the 

early 20th century and has since been globally administered to four billion individuals 

(Jacobs Jr, 2000; Meya and McAdam, 2007). Although BCG shows variable efficacy 

against adult pulmonary disease, it is still administered due to its ability to control the 

disease in children (Fine, 1995; Jacobs Jr, 2000; Kaufmann, 2005; Young and Dye, 

2006). However, recent findings showing an the increased occurrence of 

disseminated BCG disease in HIV-infected infants have further highlighted the need 

for better vaccine alternatives (Hesseling et al., 2007; Hesseling et al., 2007). 
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Therefore, the development of novel drug therapies and new vaccines to treat 

tuberculosis is an important area of research. An increased understanding of specific 

genes, proteins and pathways associated with survival, virulence and cellular 

maintenance could lead to the identification of appropriate targets and ultimately lead 

to the design of novel drugs and vaccines.  

 

1.1 M. tuberculosis infection 

 

A tuberculosis infection is contracted by the inhalation of aerosolised M. tuberculosis 

bacilli. Once in the lung, these bacilli are engulfed by alveoli macrophage`s and are 

able to survive by preventing macrophage maturation. At this point the infection is 

considered a primary infection and, under normal conditions, the host’s immune 

response localises the infection by surrounding the bacilli with necrotic tissue and 

macrophages to form what is referred to as a granuloma (Glickman and Jacobs, 2001; 

Kaufmann, 2005; Kaufmann et al., 2005).  

 

The granuloma encompasses the bacilli and creates a hostile environment by 

maintaining a low pH, limiting nutrients and oxygen as well as becoming the site of 

constant immune attack (Russell, 2007). This effectively contains the bacilli 

indefinitely, thus preventing systemic spread as well as any further symptoms of 

disease. If the host becomes immuno-compromised, however, the granuloma 

undergoes changes that result in resuscitation of quiescent bacteria and re-infection of 

new tissues by M. tuberculosis - this is referred to as a secondary infection. It is at 

this point that the usual symptoms of tuberculosis present and, if untreated, results in 

host fatality (Glickman and Jacobs, 2001; Kaufmann, 2005).  
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The granuloma is the site of consistent immune attack. This attack is waged by 

macrophages and damage is caused by the action of reactive oxygen intermediates 

(ROI) and reactive nitrogen intermediates (RNI) (Nathan and Shiloh, 2000; Zahrt and 

Deretic, 2002). These reactive species attack cellular components damaging lipids, 

proteins and nucleic acids which ultimately result in irreparable damage and cellular 

death (Storz and Imlay, 1999).  

 

The bacterium can remain within the granuloma indefinitely with only 5%-10% 

lifetime risk of reactivation in healthy individuals (Toossi and Ellner, 1998). 

However, the likelihood of reactivation of latent TB infection is increased drastically 

by weakened immune systems, such as in the case of HIV positive individuals, where 

the risk approaches 10% per annum (Corbett et al., 2003). In order for M. 

tuberculosis to cause secondary infection, the bacterium must overcome the hostile 

environment under which it is suppressed. Hence, the response to oxidative stress and 

nitrosative stress must be important, not only to the survival of M. tuberculosis, but 

also to its re-emergence, re-growth and spread. 

 

1.2 Oxidative stress and the mycobacterial response   

 

ROI are normal by-products of aerobic growth; however, cells have designed 

mechanisms to effectively cope with a degree of oxidative stress. Apart from the 

normal cellular activities, oxidative stress is also generated by the immune system to 

limit infection (Storz and Imlay, 1999; Termini, 2000), and has been shown to be a 

major secondary mechanism of cellular death brought about by some antibiotics 

(Dwyer et al., 2007; Kohanski et al., 2007). Infectious agents have therefore 

developed additional mechanisms for dealing with oxidative stress in order to ensure 

their survival. These common response mechanisms operate at various levels and 

include: interfering with the synthesis of reactive species in macrophages, breaking 
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down of the ROI and repair of macromolecules that are damaged by such species, 

particularly DNA (Storz and Imlay, 1999; Zahrt and Deretic, 2002). 

 

The general oxidative stress response has been extensively characterised in 

Escherichia coli and the key regulators recognized as OxyR and SoxRS (Storz and 

Imlay, 1999). In mycobacteria, the overall regulation of this response is ambiguous, 

because not only are SoxRS-like proteins absent in all mycobacteria but the OxyR 

gene is often non-functional, as in M. tuberculosis and M. smegmatis (Zahrt and 

Deretic, 2002). Although the transcriptional regulation is poorly understood, enzymes 

involved in the degradation of ROI are present in mycobacteria and have been the 

subject of intense investigation. Catalase (KatG), superoxide dismutase (Sod) and 

alkylhydroperoxide reductase (AphC) have been generally conserved and shown to 

be involved in the mycobacterial oxidative stress response (Dussurget and Smith, 

1998; Manca et al., 1999; Edwards et al., 2001; Master et al., 2002). 

 

In addition to this, the mechanisms by which DNA is repaired are also unusual in 

mycobacteria. Although two classical pathways for DNA repair, namely nucleotide 

excision repair (NER) and base excision repair (BER), are present in mycobacteria 

(Mizrahi et al., 2000), the third universal mechanism of DNA repair, mismatch repair, 

is absent (Mizrahi and Andersen, 1998; Mizrahi et al., 2000). In spite of this heritable 

DNA repair deficiency, mycobacteria, however, show no signs of hypermutability 

when cultured in vitro under standard conditions (David and Newman, 1971). This 

study focused on one component of the BER system in mycobacteria. 
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1.3 Base excision repair (BER) 

 

BER is known to be the fundamental mechanism for the repair of oxidatively 

damaged DNA (Demple and Harrison, 1994). It is a multi-protein, multi-step repair 

pathway that involves the identification and excision of the damaged base by DNA 

glycosylases (Fig. 1a), the removal of the phosphate backbone by AP 

(apurinic/apyrmidinic) endonucleases (Fig. 1b) and the conversion of the 3′ termini to 

a hydroxyl group by a diesterase (dRpase) (Fig. 1c). These steps provide the substrate 

for DNA polymerases and ligases to re-insert new nucleotides (Fig. 1d), thereby 

repairing the damaged DNA (Demple and Harrison, 1994; Friedberg et al., 1995). 

 

Fig. 1. The universal base excision repair pathway.  

Figure modified from Friedberg et al, 1993. 
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The first step of BER utilizes the activity of specialised DNA glycosylases. There are 

three DNA glycosylases which are directly involved in the recognition and removal 

of oxidatively damaged DNA lesions: endonuclease III (Nth), endonuclease VIII 

(Nei) and formamidopyrimidine DNA glycosylase (Fpg/MutM/Fapy)(Krokan et al., 

1997). These three DNA glycosylases act on a plethora of oxidized lesions which, if 

not repaired, can be mutagenic, fatal or silent (Krokan et al., 1997). Oxidized thymine 

and adenine lesions are seldom pro-mutagenic; however, some can block replication 

and hence, are lethal. Examples of such lesions include the thymine derivatives 

thymine glycol and 5-formyluracil (Wallace, 2002). Oxidized cytosine lesions are 

predominantly pro-mutagenic and result most frequently in C→T transitions. 

Oxidized guanine lesions are known to cause both pro-mutagenic and lethal lesions 

(Wallace, 2002), where 2,6-diamino-5-formamidopyrimidine (FapyG) is an example 

of a lethal lesion while 8-oxoguanine (8oxoG) is a pro-mutagenic lesion. 8oxoG is the 

most well studied lesion caused by oxidative stress, and has been shown to cause G 

→ T transversions (Krokan et al., 1997; Wallace, 2002). 8oxoG can, however, be 

further oxidized to form other important pro-mutagenic lesions such as 

spiroiminodihydrantoin (Sp) and 5-guanidinohydantoin (Gh). Sp and Gh are both 

known to cause G → T and G → C transversions (Hazra et al., 2001; David et al., 

2007).    

 

The focus of this project is on the Fpg and Nei DNA glycosylases which make up the 

Fpg family of DNA glycosylases (Krokan et al., 1997; Zharkov et al., 2003). 

 

1.4 Fpg and Nei DNA glycosylases  

 

The Fpg family of DNA glycosylases is a family of structurally related DNA 

glycosylases made up of formamidopyrimidine DNA glycosylase (Fpg/MutM/Fapy) 

and endonuclease VIII (Nei) (Krokan et al., 1997; Wallace et al., 2003; Zharkov et 
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al., 2003; Fromme et al., 2004). Both types of glycosylases identify and excise 

oxidatively damaged DNA lesions. Homologues of this family have been identified in 

plants, bacteria, viruses and vertebrates. Fpg is generally found in bacteria and plants, 

with the lone example in the eukaryotes being in Candida albicans (Wallace et al., 

2003; Zharkov et al., 2003; Murphy and George, 2005; Bandaru et al., 2007; 

Scortecci et al., 2007). Nei homologues, though occasionally found in bacteria, have 

been identified in numerous vertebrates including humans (Wallace et al., 2003), and 

homologues have also been identified in the Mimivirus (Bandaru et al., 2007). Three 

human Nei homologous have been characterised and mutations in these genes have 

been implicated in numerous cancers as well as metabolic disorders (Wallace et al., 

2003; David et al., 2007). Since these DNA glycosylases show conservation 

throughout the domains of life it suggests that they are important in general cellular 

survival. 

 

The Fpg and Nei glycosylases are bi-functional enzymes that display both 

glycosylase and AP endonuclease activity (Krokan et al., 1997; Fromme et al., 2004) 

and excise the damaged base in a two-step process referred to as δ- β elimination 

(Wallace et al., 2003; Zharkov et al., 2003). Before the damaged base is excised, the 

DNA glycosylase binds the minor grove of the DNA and pushes the damaged base 

into its active site (Wallace et al., 2003; Zharkov et al., 2003). The damaged base is 

then removed by the cleavage of the N-glycosyl bond (δ elimination), after which the 

remaining deoxyribose group is nicked and the phosphodiester backbone removed (β 

elimination), resulting in both a 3′ and 5′ phosphate group. The 3′ phosphate group is 

replaced with a hydroxyl group by a 3′ diesterase to generate the substrate for a 

polymerase and ligase. The continuation of the BER process is discussed in section 

1.3 (Friedberg et al., 1995; Cunningham, 1997; Wilson III et al., 1998).  

 

Though structurally related, Fpg and Nei DNA glycosylases do not share the same 

primary substrate specificity (Krokan et al., 1997; Wallace et al., 2003). The main 
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substrates of Fpg are oxidized purines bases (guanine and adenine) while oxidized 

pyrimidines (thymine and cytosine) are recognised by Nei (Krokan et al., 1997; 

Blaisdell et al., 1999; Hazra et al., 2001; Wallace, 2002; Wiederholt et al., 2005; 

David et al., 2007). Substantial substrate overlap does, however, exist as over and 

above the primary targets, Fpg has been shown to repair 5-formyluracil (Zhang et al., 

2000) and other thymine and cytosine lesions (D'Ham et al., 1999), while Nei repairs  

Sp and Gh in addition to 8oxoG (Hazra et al., 2000; Hazra et al., 2001; Matsumoto et 

al., 2001; Wiederholt et al., 2005; David et al., 2007). It is important to note that Nei 

shares the same substrate specificity with another DNA glycosylase present in 

mycobacteria, namely endonuclease III (Nth) (Krokan et al., 1997; Mizrahi and 

Andersen, 1998; Wallace et al., 2003). This substrate overlap between the various 

glycosylases suggests a possible adaptation which allows for an increased survival of 

organisms during oxidative stress conditions. 

 

The pro-mutagenic guanine lesion 8oxoG is the target of a specifically evolved repair 

system, the 8oxoG or “GO” system. This system removes and repairs this pro-

mutagenic lesion at three levels (Krokan et al., 1997). The first level, performed by 

the enzyme MutT, a Nudix hydrolase, hydrolyses 8oxo-dGTP and 8oxo-GTP thereby 

ensuring that the dGTP in the nucleotide pool remains undamaged. The second level 

of protection is provided by Fpg as it repairs the damaged base once it has been 

incorporated into the DNA strand, and the third level is provided by MutY which 

removes the mis-incorporated adenine across from 8oxoG if replication has already 

occurred (Krokan et al., 1997; Horst et al., 1999; Fowler et al., 2003). All the 

components of the GO system, originally characterised in E. coli, have been 

identified in M. tuberculosis (Mizrahi and Andersen, 1998). Four copies of MutT 

have been identified in M. tuberculosis and M. smegmatis, of which two have been 

implicated as anti-mutators (Dos Vultos et al., 2006). The amplification of GO 

system genes and the substrate overlap of the glycosylases involved underscore the 
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potential importance of these genes in the overall maintenance of genome integrity in 

mycobacteria.  

 

The objective of this study was to gain further insights into the role(s) of the Fpg and 

Nei DNA glycosylases in the survival of mycobacteria. In order to achieve this, the 

fpg and nei genes in M. smegmatis were sequentially knocked-out by homologous 

recombination and mutant strains assessed under various in vitro conditions.  

 

1.5 Gene knockout by homologous recombination 

 

Phenotypic characterization performed on strains defective in specific genes allows 

for the elucidation of the gene’s importance, its function and its cellular associations. 

Targeted mutagenesis is achieved by allelic exchange which takes advantage of the 

cell’s intrinsic homologous recombination machinery.  

 

Homologous recombination is a biological process used in the repair of double 

stranded breaks during replication. This natural phenomenon occurs due to the ability 

of homologous regions of DNA to cross over one another and takes advantage of the 

occurrence of two copies of the genome directly after replication. If one of these 

genome copies is damaged, the second can act as a template for the re-synthesis of 

the affected strand, thereby removing the damage (Voet and Voet, 1995).  

 

This natural repair process has been successfully manipulated in the laboratory, 

where the template for re-synthesis (previously the second copy of the genome) is 

replaced with a suicide vector carrying an inactivated copy of the targeted gene and 

its flanking regions. This suicide vector lacks a mycobacterial origin of replication 

(ori) and therefore, is unable to replicate episomally or express genes within the 
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target organism unless it incorporated into the mycobacterial chromosome.  The 

suicide vector does, however, contain an E. coli ori to enable it to replicate and be 

manipulated in an E. coli host (Gordhan and Parish, 2001). Crossing over of the DNA 

from the vector onto the target chromosome occurs within the flanking regions of 

homology. A second cross-over event between the flanking sequence on the other 

side of the mutation and the chromosome results in expulsion of the vector sequence 

and replacement of the target gene on the chromosome by the inactivated copy to 

create a knockout mutant strain, which can be identified by a two-step selection 

process that relies on selectable and counter-selectable genetic markers carried on the 

suicide vector, as outlined below (Gordhan and Parish, 2001).  

 

Cross-over events between the suicide vector and the chromosome could occur on 

either one or on both sides of the disrupted gene. A single crossover event (SCO) is 

what occurs when the entire suicide vector is inserted on one side, next to the targeted 

gene on the chromosome, while a double crossover (DCO), occurs when the targeted 

gene is completely replaced with the inactivated allele. In the first step of this 

process, antibiotic markers are used to select for SCOs. In the second step, a SCO 

recombinant is grown to allow for the second recombination event to occur. This is 

then identified using a counter-selectable marker which selects against the SCO that 

carries the suicide vector backbone by conferring conditional lethality, thereby 

allowing rare products of a second crossover event – DCOs – to be identified 

(Gordhan and Parish, 2001).  

 

With the increased availability of sequenced genomes, targeted gene knockout based 

on homologous recombination has become a very widely applied tool for reverse 

genetic studies in both eukaryotes and prokaryotes (Griffiths et al., 2000; Gordhan 

and Parish, 2001; Strachan and Read, 2003). 
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1.6 Aim  

 

Mycobacterium smegmatis was used as a model organism to study the fpg and nei 

genes in mycobacteria as it has a relatively fast rate of replication and is non-

pathogenic (Jacobs Jr, 2000). The aim of this project was to inactivate the fpg and nei 

genes in M. smegmatis by homologous recombination, individually or in selected 

combinations, in order to assess their individual and collective roles in the 

maintenance of genome integrity and survival of M. smegmatis under conditions of 

oxidative stress. The findings in M. smegmatis could be useful for informing studies 

of the fpg and nei homologues in M. tuberculosis, which ultimately could lead to an 

increased understanding of mechanisms of pathogenesis, survival and mutagenesis of 

this pathogen in its intracellular habitat in a human host. 
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2. Materials and methods  

 

2.1 Bioinformatic tools 

 

Various bioinformatic tools were used to identify and analyze the glycosylases of the 

Fpg DNA glycosylase family in M. smegmatis and M. tuberculosis. These tools are 

listed below. 

2.1.1 Artemis and ACT 

(http://www.sanger.ac.uk/Software/Artemis/ ) 

Artemis and the Artemis comparison tool (ACT) are genome viewers created by the 

Wellcome Trust Sanger Institute. The DNA, amino acid and G+C content of the 

annotated sequences can be viewed and direct genome comparisons made between 

two or three genomes.  

2.1.2 BLAST searches  

(http://www.ncbi.nlm.nih.gov/BLAST/) 

Basic Local Alignment Search Tool (BLAST) is a program that compares DNA or 

protein sequences to genome sequences listed within the database, which allows for 

the identification of similar regions or proteins within other organisms (Altschul et 

al., 1990). A query sequence is inserted into the algorithm of the BLAST server, 

which results in a list of sequences that pair-up to the query sequence and an 

associated bit score and E-value. The bit score indicates the strength of the alignment, 

while the E-value indicates the statistical chance of an accidental alignment (Madden, 

2003). 
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There are different types of BLAST searches that allow for various combinations of 

DNA and Protein alignments. These include nucleotide to nucleotide (BLASTn), 

nucleotide to protein (BLASTx) and protein to protein BLAST searches (BLASTp).  

2.1.3 ClustalW 

(http://www.ebi.ac.uk/Tools/clustalw/)  

ClustalW is a program designed by the European Bioinformatics Institute that aligns 

multiple DNA or protein sequences. Multiple sequences are aligned according to 

similarities which allow for the identification of relationships and differences both 

visually and by pairwise score calculations. The pairwise score is a percentage 

identity score that values the strength alignments. 

2.1.4 Cluster of orthologous groups (COG) 

(http://www.ncbi.nhi.gov/COG/ ) 

Cluster of Orthologous Groups is a database of sequences (gene or protein) which 

have been grouped according to their evolutionary relatedness. It allows for 

comparisons between sequences from different species, suggesting possible common 

ancestral lineages and hence insinuating similar functions for the query sequence.  

2.1.5 GenoList  

(http://GenoList.pasteur.fr/ )  

GenoList is a server hosted by the Institut Pasteur that maintains various sequenced 

and annotated genomes, such as: Mycobacterium tuberculosis, Mycobacterium bovis, 

Mycobacterium leprae, Mycobacterium ulcerans, Mycobacterium bovis BCG and 

Mycobacterium marinum as well as other non-mycobacterial organisms such as 

Escherichia coli and Bacillus subtilis. It allows the user to easily identify genes, their 

corresponding DNA and amino acid sequences as well as their functional 

assignments.  
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2.1.6 InterPro 

(http://www.ebi.ac.uk/interpro/ ) 

InterPro is a database offered by the European Molecular Biology Laboratory- 

European Bioinformatics Institute (EMBL-EBI). It combines the information from 

protein related databases; Pfam, Prints, SMART, Prosite and PRODOM. This 

database retrieves information on protein families, domains and sequence repeats and 

thus allows one to predict biological function.  

2.1.7 Prosite 

(http://www.expasy.ch/prosite/ ) 

Prosite is a database of protein families and domains run by the Expert Protein 

Analysis Systems (ExPaSy). Prosite groups conserved protein sequences and the 

conservation of families and domains allows for predictions of protein structure as 

well as biological function.  

2.1.8 Pfam 

(http://www.sanger.ac.uk/Saftware/Pfam ) 

Pfam is a protein family database run by the Wellcome Trust Sanger Institute. It is a 

large collection of protein family domains i.e. functional regions previously identified 

in other proteins. Pfam allows the user to identify family domains in a given protein, 

thereby providing possible functions of the protein. Pfam provides two levels of 

search: A and B. Pfam-A gives high-quality, manually-checked results. While Pfam-

B, which is also referred to as PRODOM, gives automated results which are useful 

when no Pfam-A is identified. 

2.1.9 TIGR-CMR 

 (http://cmr.TIGR.org/TIGR-scripts/CMR/CmrHomePage.cgi) 

The Institute for Genomic Research (TIGR) is a non-profit, genomic-focused 

organization that recently merged with a number of similar organizations to form the 
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new J. Craig Venter Institute. This institute hosts a number of databases that allow 

users to look in detail at various, freely-available genomes, including the Central 

Microbial Resources (CMR). The CMR allows users to navigate between all the 

completed and available prokaryotic genomes. A number of analytical tools such as 

BLAST searches, protein motif searches and G+C content analyzers allow the user to 

identify specific genes within a genome and graphically display the genomic regions. 

It also allows for the comparisons of genomes based on sequence homology, gene 

attributions and genomic context.  

 

2.2 Bacterial strains, plasmids and maintenance of strains.  

 

For all solutions and reagents used in this section refer to Appendix A, section 5.1.1. 

 

2.2.1 Bacterial strains and culturing conditions 

 

Single E. coli colonies were grown in Luria-Bertani broth (LB) with shaking 

overnight at 37ºC (Labcon shaking incubator), while colonies transformed with large 

plasmids (>8kb) were grown with shaking at 30°C (New Brunswick Scientific Innova 

400 incubator shaker). Where appropriate, the media was supplemented with the 

following antibiotics: ampicillin (amp) (100 µg/ml), kanamycin (50 µg/ml) and/or 

hygromycin (hyg) (100 µg/ml).  

E. coli liquid cultures were plated onto Luria-Bertani agar plates (LA) and grown 

either at 37°C (Incotherm Labotec Incubator) or 30°C (Heraeus Instrument 

Incubator). Where appropriate, LA plates were supplemented with antibiotics (100 

µg/ml amp, 50 µg/ml km, 100 µg/ml hyg), 50 µl of 5-bromo-4-chloro-3-indolyl- β-

galactoside (X-gal), 50 µl of isopropyl-β-D-thiogalactopyranoside (IPTG), and/or 5% 

sucrose.  
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Single M. smegmatis colonies were grown shaking at 37ºC in LB, Sauton’s or 

minimal media (MM). To prevent clumping, 0.05-0.1% Tween 80 was added to 

liquid cultures and where appropriate, km (25 µg/ml) and/or hyg (50 µg/ml) was 

included in the culture medium. 

Liquid cultures were plated onto solid MM and incubated at 37ºC for 3 days. Where 

appropriate, agar media was supplemented with antibiotics km (25 µg/ml km), hyg 

(50 µg/ml), and rif (200 µg/ml), 50 µl X-gal and/or 2-5% sucrose. 

 

All bacterial strains used in this study are listed in Table 1 and were stored at -70ºC in 

30% glycerol (v/v).  

 

Table 1. Bacterial strains used in this study 

Strain Characteristics Origin 

Escherichia coli 

DH5α supE44 ∆lacU169 (Φ80 1acZ∆M15 hsdR17 recA1 
endA1 gyrA96 thi-1 relA1 

(Hanahan, 1983) 

Mycobacterium smegmatis 

mc2155 ept-1, efficient plasmid transformation mutant of mc26 (Snapper et al., 1990) 

∆fpgI Mutant of mc2155 carrying an internal 679bp deletion in 
MSMEG_2419  

This study 

∆fpgII Mutant of mc2155 carrying an internal 301bp deletion in 
MSMEG_5545 

This study 

∆fpgI∆fpgII Mutant of mc2155 carrying a internal 679bp and 301bp 
deletions in MSMEG_2419 and MSMEG_5545 
respectively 

This study 

∆neiI Mutant of mc2155 carrying an internal 486bp deletion in 
MSMEG_1756  

This study 

∆neiII Mutant of mc2155 carrying an internal 637bp a deletion 
in MSMEG_4683 

This study 

∆neiI∆neiII Mutant of mc2155 carrying internal 486bp and 637bp 
deletions in MSMEG_1756 and MSMEG_4683 
respectively 

This study 
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∆fpgI∆fpgII∆neiI Mutant of mc2155 carrying internal 679bp, 301bp and 
486bp deletions in MSMEG_2419, MSMEG_5545  and 
MSMEG_1756 respectively 

This study 

∆neiI∆neiII∆fpgI  Mutant of mc2155 carrying internal 486bp, 637bp and 
679bp deletions in MSMEG_1756, MSMEG_4683 and 
MSMEG_2419 respectively 

This study 

 

2.2.2 Cloning vectors  

 

All plasmids used and generated in this study are listed in Table 2. All corresponding 

maps are shown in Appendix C, Fig. 32-40. 

 

Table 2. Plasmids used in this study  

Plasmids Characteristics Size Source/reference 

pGEM-3Zf(+) E. coli cloning vector, ampR, lacZ-alpha, oriE 3 199bp Promega 

pcDNA3.1/V5-His-

Topo 

E. coli cloning vector, Topoisomerase Activity, oriE, 

ampR  

5 533bp Invitrogen 

P2NIL  E. coli cloning vector and mycobacterial suicide plasmid; 

kmR, oriE 

4 753bp (Parish and 

Stoker, 2000) 

pcrSMART™-HC Km E. coli cloning vector, kmR, oriE 1 788bp Lucigen 

pIJ963  Plasmid carrying hyg as a BglII cassette; ampR hygR
, oriE 4 403bp (Blondelet-

Rouault et al., 

1997) 

pGOAL17 Plasmid carrying lacZ and sacB genes as a PacI cassette; 

ampR
, oriE 

8 855bp (Parish and 

Stoker, 2000) 

pGOAL19 Plasmid carrying lacZ, hyg and sacB genes as a PacI 

cassette; ampR
, oriE 

10 435bp (Parish and 

Stoker, 2000) 

pOLYG Mycobacterial and E. coli shuttle vector; hygR
, oriE 5 315bp (Ó Gaora et al., 

1997) 
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pTOPO ∆fpgIus TOPO replication vector carrying deleted fpgI upstream 

region; oriE, ampR
 

6 581bp This study 

pTOPO ∆fpgIds TOPO replication vector carrying deleted fpgI 

downstream region; oriE, ampR   

6 581bp This study 

pcrSMART ∆fpgIds pcrSMART replicating vector carrying deleted fpgI 

downstream region; kmR, oriE   

2 836bp This study 

pcrSMART ∆fpgIIus pcrSMART replicating vector carrying deleted fpgII 

upstream region; kmR, oriE   

2 707bp This study 

pcrSMART ∆fpgIIds pcrSMART replicating vector carrying deleted fpgII 

downstream region; kmR, oriE 

2 770bp This study 

pcrSMART ∆neiIIus pcrSMART replicating vector carrying deleted neiII 

upstream region; kmR, oriE   

2 741bp This study 

pcrSMART ∆neiIIds pcrSMART replicating vector carrying deleted neiII 

downstream region; kmR, oriE 

2 768bp This study 

pGEM ∆fpgIus+ pGEM cloning vector carrying deleted fpgI upstream 

region and part of TOPO vector; ampR, lacZ-alpha, oriE  

5 436bp This study 

pGEM ∆fpgI pGEM cloning vector carrying deleted fpgI ; ampR, lacZ-

alpha, oriE 

5 244bp This study 

pGEM ∆neiIIds pGEM cloning vector carrying deleted neiII downstream 

region; ampR, lacZ-alpha, oriE 

5 006bp This study 

pGEM ∆neiII pGEM cloning vector carrying deleted neiII; ampR, lacZ-

alpha, oriE 

4 104bp This study 

p2NIL ∆fpgI p2NIL knockout vector carrying an unmarked deletion 

mutation in  fpgI;
 kmR

, oriE 

6 520bp This study 

p2NIL ∆fpgII p2NIL knockout vector carrying an unmarked deletion 

mutation in fpgII;
 kmR, oriE 

6 309bp This study 

p2NIL ∆neiI p2NIL knockout vector carrying an unmarked deletion 

mutation in  neiI;
 kmR, oriE 

6 644bp This study 

p2NIL ∆neiII  p2NIL knockout vector carrying an unmarked deletion 

mutation in  neiII; kmR, oriE 

6 282bp This study 
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p2NIL ∆fpgI::hyg p2NIL knockout vector carrying a hyg marked deletion 

mutation in fpgI;  hygR; kmR, oriE 

8 278bp This study 

p2NIL ∆neiI::hyg p2NIL knockout vector carrying a hyg marked deletion 

mutation in neiI;  hygR; kmR, oriE 

8 402bp This study 

p2NIL ∆neiII::hyg p2NIL knockout vector carrying a hyg marked deletion 

mutation in neiII; hygR; kmR, oriE 

8 034bp This study 

p2NIL ∆fpgI::hyg::p17 p2NIL ∆fpgI::hyg knockout vector carrying selectable 

and counter selectable markers; hygR kmR, lacZ, sacB, 

oriE 

14 637bp This study 

p2NIL ∆fpgI::p19  p2NIL ∆fpgI knockout vector carrying selectable and 

counter-selectable markers; kmR, hygR, lacZ, sacB, oriE 

14 459bp This study 

p2NIL ∆neiI::hyg::p17 p2NIL ∆neiI::hyg knockout vector carrying selectable 

and counter-selectable markers; hygR, kmR, lacZ, sacB, 

oriE 

14 761bp This study 

p2NIL ∆neiI::p19  p2NIL ∆neiI knockout vector carrying selectable and 

counter-selectable markers; hygR, kmR, lacZ, sacB, oriE 

14 583bp This study 

p2NIL ∆neiII::hyg::p17 p2NIL ∆neiII::hyg knockout vector carrying selectable 

and counter-selectable markers; hygR, kmR, lacZ, sacB, 

oriE 

14 393bp This study 

p2NIL ∆neiII::p19  p2NIL ∆neiII knockout vector carrying selectable and 

counter-selectable markers; hygR, kmR, lacZ, sacB, oriE 

14 221bp This study 

p2NIL ∆fpgII::p19  p2NIL ∆fpgII knockout vector carrying selectable and 

counter-selectable markers; kmR, hygR, lacZ, sacB, oriE 

16 744bp This study 
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2.2.3 Assessment of cell viability 

 

The growth of cultures in liquid media was assessed by measuring the optical density 

(OD) at 600 nm (OD600) using either a Shimadzu UV-1601 UV-visible 

spectrophotometer or a WPA Biowave C0800 cell density meter. Cultures with OD600 

above 0.8 were diluted 1:10 and the OD600 re-measured for accuracy.   

 

Viable cell counts were assessed by enumerating colony forming units (CFUs).  The 

cultures were serially diluted ten-fold (10-1 - 10-8), vortexed vigorously and 100 µl of 

the appropriate dilution was spread in duplicate onto solid media. The colonies on the 

plates were enumerated and viable cells per ml of culture were calculated as follows: 

 

CFU/ml = number of colonies on plate × dilution factor 

    volume plated 

 

2.2.4 Replica plating 

 

A single colony was resuspended in 30 µl sterile dH2O containing 0.05% Tween 80 

and 5 µl-10 µl of the suspension was spotted onto parallel plates with and without the 

appropriate supplementation. Once the liquid was absorbed into the media, the plates 

were incubated for 1-3 days at 37°C before scoring for growth or no growth. 
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2.2.5 Spotting assays 

 

Spotting assays were performed to compare growth between differentially treated 

cultures. Differentially treated parallel cultures were serially diluted (10-1-10-8) and 5 

µl -10 µl of each dilution was spotted consecutively onto plates. Once the liquid was 

absorbed into the media, the plates were incubated for 1-3 days at 37°C and then 

assessed for growth. 

 

2.3 DNA manipulation  

 

Various enzymatic reactions were used to amplify, clone and quantify the DNA.  For 

all solutions and reagents used in this section refer to Appendix A, sections 5.1.2 - 

5.1.5. 

 

2.3.1 DNA extraction  

 

2.3.1.1 Chromosomal DNA extraction from M. smegmatis  

 

2.3.1.1.1 Bulk chromosomal DNA extraction  

 

Chromosomal DNA was isolated using a modified cetyltrimethylammonium bromide 

(CTAB) extraction method (Larsen, 2000). Cells were collected, either by scraping a 

loop-full of cells from a plate or by harvesting 1ml of a log-phase culture on a bench 

top centrifuge (Eppendorf Centrifuge 5415D) and resuspended in 500 µl TE. The cell 
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suspension was heated at 95ºC for 5 min or 65ºC for 20 min before adding 50 µl of 

lysozyme (10 mg/ml) and incubating overnight at 37ºC. Seventy µl of 10% SDS and 

6 µl proteinase K (10 mg/ml) were added to the suspension, which was incubated at 

65ºC for 30 min to 2 h. The solution was then treated with 100 µl of 5 mM NaCl and 

mixed. Eighty µl of CTAB solution was then added and the mixture incubated at 

65ºC for 10 min. The DNA was purified by adding 400 µl chloroform: isoamyl 

alcohol (24:1 v/v) and centrifuging the solution for 10 min at 13 000 rpm. The 

aqueous phase containing the DNA was removed and precipitated with 2.5 volumes 

of 100% ethanol at 13 000 rpm for 20 min. The DNA pellet was washed with 70% 

ethanol, dried in a vacuum centrifuge (SpeedVac, Savant, Farmingdale NY, USA) 

and resuspended in 100-200 µl of sterile dH2O. 

 

2.3.1.2 Small-scale chromosomal DNA extraction  

 

Single M. smegmatis colonies were resuspended in 50 µl of water and boiled for 20 

min. Forty-five µl of chloroform: isoamyl alcohol (24:1 v/v) was added and the 

solution left to stand at room temperature for 20 min before centrifugation at 13 000 

rpm for 5 min. The aqueous phase containing the DNA was removed and used for 

further DNA manipulations such as PCR amplification. 

 

2.3.1.3 Plasmid extraction from E. coli  

 

2.3.1.3.1 Small-scale preparation of plasmids  

 

Two methods were used for small-scale isolation of plasmids, namely the TENS  and 

the Mini-prep methods, respectively (Sambrook et al., 1989; Zhou et al., 1990).  
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TENS method 

One ml of a log phase culture was harvested at 13 000 rpm for 5 min. The pellet was 

resuspended in 50-100 µl of the remaining supernatant and 300 µl of fresh TENS 

buffer was added. The solution was mixed by inversion before adding 1.5 µl RNase A 

(10 mg/ml) and incubated at 42° for 10 min. 150 µl 3 M sodium acetate (pH 5.5) was 

then added and the solution kept on ice for 5-30 min before centrifugation for 5 min 

at 13 000 rpm. The DNA was ethanol precipitated, dried in a vacuum centrifuge and 

resuspended in 50 µl sterile dH2O. 

 

Mini-prep method 

One ml of a log-phase culture was centrifuged at 13 000 rpm for 5 min and the cells 

resuspended in 100 µl solution I (solutions are detailed in Appendix A). Two hundred 

µl of solution II was added and the suspension mixed by inversion before adding 150 

µl of solution III. The mixture was incubated on ice for 5 min and centrifuged at 13 

000 rpm for 5 min. The supernatant was collected and treated with 1.5 µl RNase A 

(10 mg/ml) for 15 min at 42ºC. The DNA was precipitated with 350 ml isopropanol, 

the pellet rinsed with 70% ethanol and vacuum dried before resuspension in 20 µl 

sterile dH2O. 

 

2.3.1.3.2 Maxi-prep or large-scale preparation  

 

One hundred ml of a log-phase culture was harvested by centrifugation at 5000 rpm 

for 5 min (Beckman Coulter Allegra X-22R Centrifuge). The DNA extraction 

procedure was similar to the mini-prep method, except 10 times as much solution I, II 

and III was used. After addition of solution III, the suspension was centrifuged for 10 

min at 8 000 rpm. Seven hundred and twenty µl aliquots of supernatant were placed 
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in 1.5 µl Eppendorf tubes and incubated with 2 µl RNase A (10 mg/ml) for 15 min at 

42ºC. The DNA was precipitated with 800 µl isopropanol and vacuum dried before 

resuspension in 100 µl sterile dH2O. For certain procedures that required ultra pure 

DNA, the sample underwent an additional purification step. One tenth of the volume 

of 3 M sodium acetate (pH 5.5) and 350 µl phenol: chloroform (1:1 v/v) was added to 

the resuspended DNA and the solution centrifuged at 13 000 rpm for 10 min. The 

aqueous phase was removed, treated with 350 µl of chloroform: isoamyl alcohol 

(24:1 v/v) and centrifuged at 13 000 rpm for 10 min. The aqueous phase was once 

again removed and the DNA precipitated with 2.5 volumes of 100% ethanol. The 

DNA pellet was rinsed with 70% ethanol, vacuum dried and resuspended in 100-200 

µl of sterile dH2O. 

 

2.3.2 Enzymatic modification of DNA 

 

2.3.2.1 Polymerase Chain Reaction (PCR) amplification 

 

Oligonucleotides used in this study were designed using two bioinformatic programs. 

Primer3 (http://frodo.wi.mit.edu/) identified possible primers within the specified 

region, whilst Generunner 3.05 (http://www.genelink.com/tools/gl-downloads.asp) was 

used to confirm the stability of the primers and the absence of secondary structures. 

Primers were obtained from Inqaba Biotech Ltd. All primer sequences used in this 

study are detailed in Appendix B, Table 7 - Table 9. Taq DNA polymerase (Roche 

Biochemicals) was used to optimize PCR amplification before high fidelity 

polymerases, such as Expand High Fidelity Polymerase (Roche Biochemicals) or 

Phusion Polymerase (Finnzymes) were used to amplify genomic fragments. 
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The PCR reactions were set up in 20 µl final volume as follows: 10% - 20% PCR 

buffer as per the manufacturer recommendations, 10 mM dNTP (1.25 mM stock 

solutions), 10% G+C rich solution (Roche Biochemicals), 1 µM forward and reverse 

primers, 5-100  µg template DNA and 0.2 µl of the appropriate DNA polymerase. 

Three control reactions were included in all PCR experiments to rule out non-specific 

amplification, namely, a reaction lacking DNA, a reaction lacking the forward primer 

and a reaction lacking the reverse primer. 

 

PCR reactions with Taq and Expand DNA polymerases were carried out using the 

following conditions; 5 min denaturation (94°C), 25-30 cycles of 15 s of denaturation 

(94°C), 30 s of annealing (56-65°C) and 45 – 90 s elongation (72°C), with a final 

elongation step for 5-7 min. Standard conditions for the Phusion polymerase were as 

follows; 1 min denaturation (98°C), 25-30 cycles of denaturation (98°C) for 10 s , 15 

s of annealing (56-65°C) and 15-30 s elongation (72°C), with a final elongation cycle 

of 5-7 min.  

 

2.3.2.2 Restriction digestion 

 

Restriction enzymes were purchased from Roche Biochemicals, AEC Amersham 

Bioscience, and New England Biolabs. Restriction enzyme digestions were 

performed as per the manufacturer’s instructions using the specified buffers and when 

necessary bovine serum albumin (BSA) and/or triton X-100 was added. 

Approximately 1 µg plasmid DNA was digested in a total volume of 10-20 µl for 1 

hour at 37°C (unless otherwise instructed), while 5-10  µg of chromosomal DNA was 

digested overnight at 37°C in a total volumes of 30-100 µl. Double digests were 

performed in a single step if both the enzymes had identical buffer requirements. If 

the two enzymes had different buffer requirements, the enzyme with the lower salt 

buffer was used first to digest the DNA. After digestion the enzyme was heat 
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denatured at 65°C for 20 min, before addition of the second enzyme with the 

appropriate buffer. 

 

2.3.2.3 Ligation 

 

Fast-link™ ligation kit (Epicentre Technologies) was used as per the manufacturer’s 

instructions. Briefly, 1 µl ligase, 1.5 µl 10 mM ATP and 1.5 µl of the supplied 

ligation buffer was added to the vector and insert reaction in a total volume of 15 µl. 

The reaction was incubated at room temperature for 10-15 min and then stopped by 

heat denaturation at 65°C for 20 min. In order to optimize cloning events the vector to 

insert ratios of 1:1, 1:2 or 1:3 were calculated as follows.  

 

Concentration =   the size of the insert (bp) × concentration of vector (ng) 

of insert DNA (ng)   total size of the vector (bp) 

 

2.3.2.4 Phosphorylation 

 

A phosphate group at the 5′ end of the insert DNA is needed for ligation of the DNA 

into the vector. PCR products do not contain 5′ phosphate groups hence primers were 

phosphorylated prior to amplification. T4 polynucleotide kinase supplied in the 

pcrSMART kit (Lucigen) was used as per the manufacturer’s instructions. One µl of 

T4 polynucleotide kinase was added to the PCR primers, incubated at 37°C for 15 

min and then used directly in the PCR amplification reactions. The PCR cycling 

conditions do not completely denature the T4 polynucleotide kinase and therefore the 

PCR products were purified by gel electrophoresis before further manipulations. 

 



 28 

2.3.2.5 De-phosphorylation 

 

To prevent self re-ligation of digested vectors, the 5′ phosphate group was removed 

by de-phosphorylation using Calf Alkaline phosphatase (Roche Biochemicals), 

Shrimp Alkaline phosphatase (Roche Biochemicals) or Antarctic Alkaline 

phosphatase (New England Biolabs) as per the manufacturer’s instructions. One µl 

phosphatase and its appropriate buffer was added to linearised vector DNA and 

incubated for 1 hr at 37°C. The phosphatase was inactivated by either heat 

inactivation at 65°C for 20 min (Shrimp Alkaline phosphatase and Antarctic Alkaline 

phosphatase) or the vector DNA was purified by gel electrophoresis (Calf Alkaline 

phosphatase) before further cloning manipulations were carried out.   

 

2.3.3 DNA precipitation 

 

2.3.3.1 Isopropanol precipitation  

 

0.8 times volume of isopropanol was added to the DNA solution and incubated for 10 

min at room temperature. The DNA was pelleted at 13 000 rpm for 10-20 min, rinsed 

with 70% ethanol, vacuum dried and resuspended in an appropriate volume of sterile 

water.  

 

2.3.3.2 Ethanol precipitation  

 

0.1 times volume of 3 M sodium acetate (pH 5.5) and 2.5 volumes of chilled 100% 

ethanol were added to the DNA solution. The DNA was allowed to precipitate at -
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20°C for 5-30 min before pelleting at 13 000 rpm for 15-20 min. The pellet was 

washed with 70% ethanol, vacuum-dried and resuspended in sterile water. 

 

2.3.4 The separation of DNA fragments by agarose gel 

electrophoresis 

 

DNA was separated and analysed using general electrophoretic techniques 

(Sambrook et al., 1989). Agarose gels (0.8-1%) were prepared in TAE buffer to 

which 0.5 µg/ml of ethidium bromide was added. The DNA fragments were separated 

in TAE buffer at 80-100 volts and lambda DNA molecular weight markers (Roche 

Biochemicals) were used to assess fragment sizes of samples (Appendix A, Fig. 31). 

Gels were visualised under UV-light using either the GelDoc system (Bio-Rad) or G 

Box (Synergene). 

 

2.3.5 Recovery of DNA from agarose gel  

 

DNA was excised from agarose gels and purified using the Nucleospin kit 

(Macherey-Nagel) as per the manufacturer’s instructions. Briefly, gel fragments 

containing DNA were melted at 40°C and the suspension loaded onto a column 

which bound the DNA. The column was then washed before the DNA was eluted 

with 30-40 µl of sterile dH2O. 
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2.3.6 Quantification of DNA 

 

DNA was quantified on the Nanodrop ND-1000 Spectrophotometer and on agarose 

gels using lambda DNA molecular weight markers (Roche Biochemicals). The DNA 

bands of the lambda molecular weight markers have known concentrations 

(Appendix A, Fig. 31) therefore the band intensities of the DNA samples can be 

compared to the molecular marker concentration and approximate concentrations of 

the sample DNA can be estimated.  

 

2.3.7 Southern blot techniques 

 

Southern blotting allows for the identification of a DNA sequence of interest within a 

complex mixture of fragments. It involves the separation of digested DNA by agarose 

gel electrophoresis, the transfer of DNA onto a nitrocellulose membrane followed by 

hybridization of specifically-labelled probes to the DNA on the membrane. The 

probes are labelled using either radioactive isotopes or by the chemiluminescence 

techniques. Both techniques allow for the hybridized fragments to be visualized on 

X-ray film.  

 

2.3.7.1 Electro-blotting 

 

Between 4 and 8 µg of chromosomal DNA was digested overnight and separated by 

electrophoresis (section 2.3.4). The agarose gel was treated with depurination solution 

for 10-15 min, rinsed with dH2O, and then incubated in denaturation solution for 10-

15 min. The agarose was sandwiched together with nitrocellulose paper (HybondTM- 

N nylon membrane, Amersham Biosciences) between two layers of 3 mm Whatman 
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filter paper and sponges in a TE 22 Transfer cassette. The cassette was placed in a TE 

22 Mini Transphor unit (Hoefer) and the DNA transferred onto the nitrocellulose 

paper in TBE buffer at 0.5A for 2hr at 4°C. After the transfer the DNA was cross-

linked onto the nylon membrane at 1200 mJ/cm2 (UV Stratalinker 1800, Stratagene). 

 

2.3.7.2 Radioactive labelling and hybridization 

 

2.3.7.2.1 32P labelling of probes 

 

Specific DNA fragments were labelled with the radioactive isotope 32P as per the 

manufacturer’s instructions using the Random Primer Labelling Kit (Roche 

Biochemicals Bioscience). The reaction consisted of 100 µg template DNA, 2 µl 

random primer mix, 1 µl Klenow enzyme and 2 mM of each nucleotide, including 

radioactively labelled dCTP ([α32P]-CTP). The reaction was carried out for 30 min at 

37°C and stopped with 70 µl TE buffer (pH 8). Non-incorporated radioactive 

nucleotides were removed by eluting the labelled probe twice through G-25 Sephadex 

columns at 4400g for 3 min. The probe was used immediately or stored at -20°C for a 

short period of time till required. 

 

2.3.7.2.2 Hybridization 

 

The hybridization procedure with radioactive probes was followed as described by 

(Sambrook et al., 1989)). The nitrocellulose membrane with bound DNA was pre-

treated with hybridization solution containing 30 µl of heat-denatured fish sperm 

DNA (10mg/ml, Roche Biochemicals) in roller bottles (Techne Part No FHB II) at 

42°C for 1.5-2 h in a hybridization oven (Techne Hybridiser HB-1). The labelled 
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probe was heat-denatured at 95°C for 5 min, rapidly cooled on ice and added to the 

pre-hybridized membrane and hybridization carried out at 42°C overnight. Following 

hybridization, the nitrocellulose membrane was washed twice at 42°C for 15 min 

with solution I followed by washes with solution II and solution III at 42°C for 15 

min each. A final stringent wash was performed with solution IV at 65°C for 30 min. 

The blot was then placed in a cassette (3M Trimax T16 or Okamoto) and exposed to 

X-ray film (AGFA CP-G Plus Medical X-ray film) for 1 – 7 days at -70°C.  

 

2.3.7.3 Non-radioactive labelling and hybridization 

 

2.3.7.3.1 Chemiluminescence labelling of probes 

 

Chemiluminescence probes were generated using the PCR DIG Probe Synthesis kit 

(Roche Biochemicals) as per manufacturer’s instructions. The labelled probe was 

generated by replacing dTTP with digoxigenin-labelled dUTP (DIG- dUTP) in a PCR 

amplification reaction. To confirm DIG-dUTP incorporation both the DIG labelled 

PCR product (probe) and a non-labelled PCR product were analyzed on a 0.8% 

agarose gel. The DIG-dUTP labelled product (probe) migrates at a slower rate as it 

had a higher molecular weight than its non-labelled counterpart. 

 

2.3.7.3.2 Hybridization  

 

Membrane-probe hybridization was performed using the DNA High Prime DNA 

labelling and Detection Starter Kit II (Roche Biochemicals) as per manufacturer’s 

instructions. Pre-hybridization was performed in roller bottles (Hybaid HB-OV-BM) 

at 42°C for 30 min in a hybridization oven (Hybaid Micro-4) by incubating the 

membrane in 10 ml of DIG Easy Hyb solution. The probe was heat-denatured at 95°C 
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for 10 min, rapidly cooled on ice, added to the pre-hybridized membrane and 

incubated overnight at 42°C. After hybridization the membrane was washed twice at 

room temperature for 5 min with solution I and once at 65°C for 30 min in solution II.  

 

2.3.7.3.3 Chemiluminescence detection  

 

DIG-labelled DNA probes are immuno-detected by antibodies attached to an alkaline 

phosphatase. The substrate CSPD is then added and de-phosphorylated by the 

alkaline phosphatase. The de-phosphorylation of CSPD causes chemiluminescence at 

maximum wavelength of 477 nm which can be detected on X-ray film.  

 

Immunological detection of hybridized membranes was carried out by immersing the 

blot in 20 ml washing buffer for 5 min, followed by incubation for 30 min in 120 ml 

blocking solution at room temperature. The membrane was then incubated in 20 ml 

antibody solution for 30 min and excess antibody was removed with washing buffer 

for 30 min. The blot was then equilibrated in 20 ml detection buffer and immediately 

placed in a hybridization bag (Roche Biochemicals) with 1ml CSPD before 

incubation at 37°C for 15 min. Positively hybridized bands were detected by 

exposure of the blot to X-ray film (AGFA CP-G Plus Medical X-ray film) at room 

temperature for 30 min - 2 h.  

 

2.4 Transformation of bacteria 

 

For all reagents and solutions used in this section refer to Appendix A, section 5.1.6.  
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2.4.1 Chemical transformation in E. coli 

 

2.4.1.1 Preparation of chemically competent E. coli  

 

This procedure was obtained from Dr. P. Stolt (personal communication). One 

hundred ml of E. coli culture was grown in LB to mid-log phase and harvested at 4°C 

at 4000 rpm (Beckman Coulter Allegra™ X-22R centrifuge). The pellet was 

resuspended at 4°C in 33 ml ice-cold RF1 solution before centrifugation at 3000 rpm 

for 15 min at 4°C. The cells were resuspended in 8 ml ice-cold RF2 solution, 

incubated at 4°C for 30 min - 2h and snap-frozen in 500 µl aliquots at -70°C until 

required.  

 

2.4.1.2 Transformation of E. coli  

 

The transformation procedure was performed as previously described (Sambrook et 

al., 1989). Plasmid DNA was added to 200 µl chemically competent E. coli cells and 

incubated on ice for 15 min. The cells were heat shocked for 90 s at 42°C and 

allowed to recover in 1ml LB for 1 h at 37°C. Transformants were selected on media 

containing appropriate antibiotics. 
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2.4.2 Electroporation into M. smegmatis  

 

2.4.2.1 Preparation of electro-competent M. smegmatis 

 

Electroporations were performed as described previously (Larsen, 2000; Gordhan and 

Parish, 2001). 

 

One hundred ml of culture was grown to mid-log phase and cooled on ice. All further 

manipulations were performed at 4°C. The culture was pelleted twice at 4000 rpm for 

10 min (Beckman Coulter Allegra™ X-22R centrifuge) and resuspended in 10ml 

chilled 10% glycerol. The washed cells were re-pelleted at 4000 rpm for 10 min and 

resuspended in 2ml chilled 10% glycerol. Five hundred µl aliquots of cells were 

centrifuged for 30 s at 13 000 rpm, resuspended in 400 µl glycerol and stored on ice 

until needed. 

 

2.4.2.2 Electroporation 

 

Plasmid DNA (2-4 µg) was added to electro-competent cells and transferred to pre-

cooled 0.2cm electroporation cuvettes (Bio-Rad). Cells were pulsed in a 

GenePulser™ (Bio-Rad) with the following specifications; 2.5kV, 1000Ω and a 

capacitance of 25µF.  After pulsing the cells were rescued in 1ml 2×TY media and 

incubated at 37°C for 2-3 h. The cells were then plated onto appropriately 

supplemented media and incubated at 37°C for 5 days.  

 

Electroporation efficiency was assessed by electroporating 1ng of a replicating 

plasmid into electrocompetent cells. The efficiency was calculated as shown below 
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and cells were considered competent at a frequency of 104 transformants per 

nanogram of DNA. 

 

transformants/ng =      number of transformed cells 

concentration of DNA inserted 

 

2.5 DNA sequencing  

 

Plasmid DNA was isolated by the maxi-prep method (section 2.3.1.3.2), whilst 

chromosomal DNA from M. smegmatis was isolated by the small scale extraction 

procedure (section 2.3.1.2). 

 

All sequencing was outsourced to either Inqaba Biotech or to the Molecular Biology 

Department of the University of Cape Town. Sequencing data was analysed using the 

SeqManager module of the Lasergene suite of programs (DNAstar). Sequencing 

primers were designed using the bioinformatic programs Primer3 and Generunner. 

All sequencing primers used in this study are listed in Appendix B, Table 8. 

 

2.6 The construction and identification of site specific deletion 

mutants in M. smegmatis  

 

The knockout vectors and mutant strains of M. smegmatis were constructed as 

previously described (Gordhan and Parish, 2001). Maps of vectors created in this 

study are illustrated in Appendix C, Fig. 32 and Fig. 33. 
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2.6.1.1 Construction of knockout vectors 

 

The construction of deletion mutant alleles was initiated by the PCR amplification of 

the upstream (5′) and downstream (3′) regions flanking the targeted gene, as 

described in section 2.3.2.1. These fragments are approximately 1kb in size as this 

length of DNA flanking the deleted gene as sufficient for homologous recombination 

(Springer et al., 2004). The upstream and downstream homologous sequences were 

included to enable site-specific recombination between the suicide plasmid and the 

corresponding sequence on the chromosome. The PCR amplified products were then 

cloned separately into E. coli replicating vectors (TOPO or pcrSMART vectors). The 

PCR primers used to amplify the upstream and downstream fragments contained 

unique restriction enzyme sites engineered at the 3′ end to facilitate cloning of these 

fragments into the various vectors used to construct the knockout vectors. During 

PCR amplification there is a possibility that the DNA polymerase may introduce 

mutations in the amplicons. Mutations in the flanking DNA regions could have polar 

effects on genes downstream of the target with potential phenotypic consequences. 

To rule out this possibility, all amplicons were sequenced prior to use in allelic 

mutagenesis. 

 

Once the accuracy of the sequence was confirmed, the upstream and the downstream 

fragments were excised from their respective replicating vectors and ligated into the 

suicide vector p2NIL either as a single-step, three-way cloning or by consecutive 

ligation reactions to create the inactivated allele of the target gene. When consecutive 

ligations were carried out, the upstream and downstream fragments were first ligated 

into the pGEM vector before cloning the deleted allele into p2NIL.  

 

The gene knockout methodology employs a two-step strategy to select mutants using 

hyg, aph and lacZ selectable markers and the sacB counter-selectable marker. The 
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lacZ gene expresses ß-galactosidase, which hydrolyses the histological marker, X-

gal, to form a blue colour, thus facilitating the identification of SCO recombinants. 

The counter-selectable sacB gene expresses the enzyme levansucrase which converts 

sucrose to the toxin, levan, which causes cell death, and thus provides a means of 

counter-selecting against SCOs.  

 

These markers are carried as gene cassettes on plasmids pGOAL17, pGOAL19 and 

pIJ963 (Blondelet-Rouault et al., 1997; Parish and Stoker, 2000). The plasmid 

pGOAL17 contains the sacB and lacZ cassettes, whilst pGOAL19 contains sacB, hyg 

and lacZ. These pGOAL cassettes were excised with the PacI restriction enzyme and 

inserted into the unique PacI site in p2NIL in a one step cloning process (Parish and 

Stoker, 2000). The hyg cassette was excised as a BglII fragment from pIJ963 which 

was used to mark the knockout construct by cloning it at the junction of the ligated 

upstream and the downstream fragments of the disrupted gene. 

 

The marked and unmarked suicide vectors were verified by restriction analysis and 

tested in E. coli for levansucrase activity (sucrose sensitivity), ß-galactosidase activity 

(blue/white colour selection) as well as km and hyg resistance prior to use for 

targeted gene knockout in M. smegmatis. 

 

2.6.1.2 Identification of Single Cross Overs (SCOs) 

 

The suicide vector (2-4 µg) was electroporated into electro-competent M. smegmatis 

cells (section 2.4.2). A negative control containing no plasmid DNA and a positive 

control containing 1ng of a replicating vector (pOLYG) were used to assess 

electroporation efficiency (section 2.4.2.2). Electroporated cells were spread on plates 

containing km, hyg and X-gal and SCOs were identified as blue colonies after 5-7 
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days. Chromosomal DNA from several SCOs was extracted (section 2.3.1.1.1) and 

genotypically analysed by Southern blot analysis (section 2.3.7) to confirm the site-

specificity of recombination and to distinguish between products of upstream vs. 

downstream crossover events.  

 

2.6.1.3 Identification of Double Crossovers (DCOs) 

 

Once SCOs were genotypically confirmed they were passaged without selection (i.e. 

in the absence of km) to allow second crossover events to occur, which would result 

in vector loss from the chromosome. For the isolation of hyg-marked DCOs, hyg was 

maintained during all subsequent selection procedures. The log-phase culture was 

serially diluted (100-10-6) and dilutions 100 – 10-4 were plated onto LA plates 

containing X-gal and 5% sucrose whilst dilutions 10-4– 10-6 were plated on LA plates 

containing X-gal alone. In the presence of sucrose, sacB expression generates 

levansucrase resulting in ca. 104-fold killing. Hence, white colonies in the presence of 

sucrose indicated that these colonies had lost the vector backbone containing the sacB 

gene since they were unable to produce the toxin in the presence of sucrose. These 

white, sucrose-resistant colonies were replica plated (section 2.2.4) onto LA plates 

with and without km to distinguish between DCO events (i.e. loss of the aph-

containing vector backbone, km-sensitive) and sucrose-resistance through the 

generation of spontaneous sacB mutants (km-resistant). km-sensitive clones were 

confirmed as DCOs by PCR (section 2.3.2.1) and Southern blot (section 2.3.7) 

analysis. In the case of unmarked DCOs, the second crossover event can either restore 

the wild type allele when it occurs on the same side of the mutation as the first, or 

generate the mutant allele when it occurs on the opposite side of the mutation. 

Therefore, an initial PCR screen to distinguish between these possibilities was 

included to reduce the number of clones to be confirmed by Southern blot analysis. 

PCR primers flanking the deletion were used to identify smaller amplicons for the 
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deletion mutation allele compared to the wild type allele. For hyg-marked mutations, 

all white, hygromycin-resistant, km-sensitive colonies were expected to carry the 

mutated allele. Once possible DCOs were identified by PCR, Southern blot analysis 

was carried out to confirm the mutations and to ensure their site-specificity. Details of 

primers and amplification conditions used for PCR confirmation are shown in 

Appendix B, Table 9. 

 

2.7 Phenotypic characterization of mutant strains  

 

The parental strain together with the mutant strains generated in this study were 

phenotypically characterised by comparing their growth kinetics under normal culture 

conditions, sensitivity to oxidative stress (induced by hydrogen peroxide, H2O2) and 

their ability to repair DNA by measuring the frequency and spectrum of mutations 

leading to rifampicin resistance.  

 

2.7.1 Growth kinetics  

 

Single colonies of the mutant and wild type strains were inoculated in 10 ml of MM 

media and the cultures grown to log phase. One ml of this pre-culture was used to 

inoculate 100ml of MM to give a starting inoculum of ca. 2 x 106 CFU/ml (OD600 = 

0.01). The growth of each strain was monitored at regular intervals over a 36 h period 

both by optical density measurements at OD600 and by viable cell count assessments 

(section 2.2.3). Bacterial growth was represented graphically either as CFU/ml or 

OD600 vs. time. 
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2.7.2 Sensitivity to oxidative stress 

 

The sensitivity of the mutant strains to oxidative stress generated by H2O2 was 

assessed. H2O2 was stored in the dark at 4°C.  

 

2.7.2.1 Hydrogen peroxide susceptibility assays 

 

2.7.2.1.1 Assessment of cell viability post hydrogen peroxide treatment 

 

The growth phase of the cultures and the optimal H2O2 concentration at which this 

agent conferred toxicity on M. smegmatis was ascertained in the parental strain. 

Different concentrations of H2O2 (2.5 mM, 5 mM, 10 mM, 20 mM) was added to 

cultures in lag, log and stationary phase and growth monitored over a period of 6 h by 

spotting 5 µl-10 µl of serially diluted cultures (100 -10-8) onto plates. The plates were 

incubated at 37°C and growth measured after 3 days. 

 

Once conditions were optimized, the parental and mutant strains were grown in 

approximately 50 ml of LB, Sauton’s or MM medium to mid-log phase. Forty ml of 

this culture was removed and placed into a new flask to which 2.5 mM H2O2 added. 

The flasks were maintained shaking at 37°C for the remainder of the experiment and 

growth was recorded at regular intervals by plating 1ml and 100-10-6 dilutions onto 

MM plates. Cell viability post H2O2 treatment was represented graphically as CFU/ml 

vs. time. Paired Student’s t-tests were performed to assess the statistical significance 

between the parental and knockout mutant strains using GraphPad Prism Software 

(http://www.graphpad.com/quickcalcs/ttest2.cfm). 
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2.7.2.1.2 Assessment of cell outgrowth post hydrogen peroxide treatment 

 

Cell outgrowth was assessed in the manner described by Jain et al. (2007). Single 

colonies of the mutant strains and parental wild type were picked from MM plates 

and grown for 48 h. Five hundred µl of this culture was used to inoculate 50 ml of LB 

and allowed to grow for 6 h with shaking at 37°C. Forty five ml of this culture was 

removed, placed in a new flask and treated with 3 mM H2O2. The growth was 

measured by OD600 measurements at regular interval for 8 days. Cell outgrowth post 

H2O2 treatment was represented graphically as OD600 vs. time.  

 

2.7.3 Mutational assessments 

 

2.7.3.1 Mutation frequency 

 

Mutation frequencies are a measure of the fraction of mutants in a given culture. A 

single colony was inoculated into 10 ml of LB media and grown to an OD600 of 1 -

1.5. One ml of this culture was spread neat onto an MM plate supplemented with 200 

µg/ml rifampicin to select for rifampicin-resistant mutants whereas aliquots from a 

dilution series of the culture (10-4-10-6) were plated onto drug-free control plates to 

obtain the total number of cells per ml of culture. Plates were incubated at 37°C and 

CFUs were scored after 3 days on plates without supplementation. Colonies in the 

presence of rifampicin were scored after 5-7 days and the mutation frequency was 

calculated as shown below.  

 

Mutation frequency = number of rifampicin resistant colonies (CFU/ml) 

total number of cells (CFU/ml)  

 



 43 

2.7.3.2 Mutation rate 

 

The mutation rate of a cell is a measurement of the likelihood of it gaining a mutation 

during its lifetime. Luria-Delbrück fluctuation analysis is the most efficient method of 

measuring mutation rates (Rosche and Foster, 2000). Fluctuation assays compare the 

average mutation frequencies between parallel cultures inoculated from a common 

source. This analysis takes into account the variations between parallel cultures, 

considers the possibility of mutations arising early or late during growth and allows 

for the estimation of the number of mutational events or the m-value.  

 

All cultures are started from a common, low inoculum (N0) and are checked for any 

pre-existing mutants (r). The cultures are then aliquoted into several parallel tubes 

and allowed to grow for 5-7 days, thus giving each culture an equal chance of 

producing mutants. The estimation of the number of mutational events (m-value) and 

the approximate final size of the population (Nt) is then used to calculate the final 

mutation rate (µ) as discussed in section 2.7.3.2.2 (Rosche and Foster, 2000). 

 

2.7.3.2.1 Experimental procedure 

 

The experimental procedure for determining mutation rates in M. smegmatis was 

performed as previously described (Rosche and Foster, 2000; Machowski et al., 

2007). Single colonies were grown in MM to an OD600 of 1-1.5 (late log phase) 

which represents approximately 108 cells/ml.  A dilution series (10-5-10-8) of this pre-

culture was plated onto MM to measure N0 and a 1 ml aliquot was plated onto MM 

containing rifampicin to confirm the absence of pre-existing mutants (r). Following 

this a dilution series of the pre-culture was prepared, which reduced the cell density 

from ~108 to ~102 cells/ml. To prevent clumping, the cultures were vigorously mixed 
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at each dilution step. The final diluted culture (200 ml of a ~102 cells/ml) was stirred 

continuously with a magnetic stirrer (FMH Instruments Heat stirrer, Stuart heat stir 

SB162) to ensure homogeneity whilst 2.5 ml aliquots were dispensed in 25-30 

cultures tubes. The parallel culture tubes were grown shaking at 37°C for 5-7 days in 

covered beakers containing moist tissue to prevent excess evaporation. After 

incubation, 100 µl from each culture tube was sampled and a dilution series prepared 

to determine the Nt value. The entire remaining culture from each tube was plated 

onto an MM agar plate supplemented with 200 µg/ml rifampicin. The plates were 

incubated at 37°C and scored after 3 days for total cell count (Nt) or after 5-7 days for 

rifampicin resistant (rifR) mutants. Once consistent CFUs in parallel cultures were 

observed, Nt-values were determined from only 5 dedicated tubes so that sampling 

from the experimental tubes did not bias the mutation assessment (Rosche and Foster, 

2000).  

 

2.7.3.2.2 Statistical analysis 

 

The mutation rate was calculated by dividing the likely number of mutations per 

culture (m-value) by the number of cells in the culture (Nt value), as shown in 

Equation 5 (Rosche and Foster, 2000). The number of cells in the culture was 

estimated by the CFUs in the parallel cultures. The m-value is a measure of the 

probability of a cell sustaining a mutation in its lifetime and this is obtained by a 

combination of calculations resulting in a Luria-Delbrück distribution (Rosche and 

Foster, 2000). This distribution allows one to calculate the most probable m-value. 

Equation 1 and Equation 2 were used to estimate the m-value. There are various 

calculations used to estimate the m-value, but the Po method was used in this study as 

the number of rifR colonies arising from one or more of the parallel cultures equalled 

zero (Rosche and Foster, 2000). A Luria-Delbrück distribution was formulated using 

the two Ma-Sandri-Sarkar (MSS) Maximum-Likelihood algorithms, shown as 
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Equation 3 and Equation 4. The extrapolated results from Equation 3 correspond to 

all possible m-values, taking into account the estimated m-value. These m-values are 

plotted on the x-axis and the extrapolated results from Equation 4 correspond to all 

possible y-axis values. These probable x and y values are then plotted to give a Luria-

Delbrück distribution, an example of which is shown in Fig. 2. The peak of this 

distribution is the most probable m-value which is used to determine the mutation rate 

(Equation 5). 
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Fig. 2. An example of the results of a Luria-Delbrück distribution 

The table lists the results of Equation 3 and Equation 4, which when plotted onto a graph 
allows for the identification of the most probable m-value (the highest point indicated by the 
arrow). 
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These calculations were performed using Microsoft Office Excel spreadsheets 

developed by Dr. E. Machowski (MMRU). 

 

The calculations were as follows: 

 

Equation 1 - Po value estimation 

 

Equation 2 - Po m-value equation 

 

 

Equation 3  

 

Equation 4 

 

 

 

Equation 5 

 

Po = 
number tubes with zero 

total number of tubes 

po = e
-m 

m = -ln po 

Σ i=0 
po = e

-m
; pr =  

m 

r 

r-1 pi 

r – I + 1 

µ =  
m x ln2  

Nt  

f(r|m) = П f(ri|m)  

Where f(r|m) = pr from equation 3 
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3. Results 
 

3.1 Bioinformatics analysis 

 

3.1.1 Identification of DNA glycosylase-encoding fpg and nei genes 

in M. smegmatis 

 

A single fpg gene had been identified in the M. tuberculosis H37Rv genome (Mizrahi 

and Andersen, 1998). Since genome sequence data for both M. smegmatis 

(http://cmr.tigr.org) and M. tuberculosis (Cole et al., 1998) strains were available at 

the time that this study was initiated, it was important to scan these genomes for 

fpg/nei homologues using several bioinformatics tools. Using the M. tuberculosis 

genome database Tuberculist, the previously reported fpg gene was identified as 

Rv2924c and upon an extended analysis, a second fpg (Rv0944) and two nei 

glycosylases (Rv3297 and Rv2464c) were identified. Using the programmes ACT, 

BLAST and CMR, homologues of these genes were also identified in M. smegmatis, 

two of which were annotated as fpg glycosylases (MSMEG_2419 and 

MSMEG_5545) and two as nei glycosylases (MSMEG_1756 and MSMEG_4683). 

 

The proteins encoded by the M. tuberculosis and M. smegmatis fpg and nei 

homologues were classified within the same Clusters of Orthologous Groups (COG), 

namely: the formamidopyrimidine DNA glycosylase cluster, COG0266. Members of 

this COG were identified in 37 other genomes covering 5 phyla including 

Proteobacteria, Firmicutes, Deinococcus-Thermus, Cyanobacteria and 

Actinomycetes. In the majority of these genomes, only one copy of either fpg or nei 

was present and rarely both. However, within the Actinomycetes, several copies of 

both genes were identified. Additional searches using BLASTn (nucleotide-
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nucleotide), GenoList and CMR databases revealed similar fpg and nei glycosylase-

encoding genes in other mycobacterial species (M. ulcerans, M. avium, M. avium 

paratuberculosis, M. bovis and M. leprae). This extensive genome sequence analysis 

also uncovered a fifth possible fpg and nei glycosylase-encoding gene in M. avium 

and M. avium paratuberculosis (Appendix B, Table 10). In addition to this fifth 

putative fpg/nei gene, an extra gene encoding the DNA glycosylase Endonuclease III 

(Nth) was identified in M. avium.  

 

The general Fpg DNA glycosylase family structure consists of two domains separated 

by a flexible hinge (Wallace et al., 2003; Zharkov et al., 2003). The N-terminal 

domain contains the active site, while the C-terminal contains a four-cysteine zinc 

finger domain as well as a helix-two-turn-helix (H2TH), both of which are involved 

in binding the DNA (Gilboa et al., 2002; Zharkov et al., 2002; Wallace et al., 2003; 

Zharkov et al., 2003). Pfam, Prosite and InterPro scans were used to identify these 

domains within the M. smegmatis glycosylases. Differences in the results of these 

scans are caused by the individual algorithms of the programs used, cut-offs and 

whether the databases were based on curated (Pfam-A) or automatically generated 

results (Prosite and InterPro). 

 

The Pfam scans identified Pfam-A criteria for the N-terminal domain and the H2TH 

portion of the C-terminal domain in all four of the M. smegmatis glycosylases. 

However, Pfam-A criteria for the zinc finger domain was only identified in the 

proteins encoded by the fpg gene, MSMEG_2419, and the nei gene, MSMEG_1756. 

Therefore Prosite and InterPro scans were performed. Using Prosite and InterPro the 

predicted zinc finger domain was identified in both the proteins encoded by the 

second fpg gene (MSMEG_5545) and the second nei gene (MSMEG_4683). 

Therefore, bioinformatics analysis identified the necessary protein domains required 

for the classification of these predicted proteins in the Fpg family of DNA 

glycosylases.  
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BLASTp (protein-protein) searches were performed to compare M. smegmatis Fpg 

and Nei glycosylases to other Actinobacteria and structurally characterised Fpg and 

Nei proteins found in E. coli, Thermus thermophilus, Geobacillus stearothermophilus 

(previously named Bacillus stearothermophilus), and Lactococcous lactis  (Gilboa et 

al., 2002; Zharkov et al., 2003; Golan et al., 2005). The results indicated significant 

similarity (low E-values) between the M. smegmatis Fpg and Nei glycosylases and to 

those previously characterised (Appendix C, Table 11). The M. smegmatis Fpg and 

Nei proteins were further compared to other Fpg and Nei proteins by ClustalW 

alignments (Fig. 3) (Wallace et al., 2003; Zharkov et al., 2003). These alignments 

highlighted the strong resemblance between the Fpg and Nei proteins and also 

allowed one to distinguish between the Fpg and Nei glycosylases. Unique amino acid 

residues at positions 4, 155 and 172 distinguished the protein as either Fpg or  Nei  

(Wallace et al., 2003; Zharkov et al., 2003). At position 4, Fpg proteins have a 

conserved leucine residue whereas Nei proteins have a conserved glycine, while at 

position 155 a lysine was conserved in Fpg and either an alanine, glycine or serine 

residue was present in Nei. Greater variations were observed at position 172, where 

Fpg sequences had maintained a neutral alanine or valine residue, with the exception 

of MSMEG_5545 and Rv0944 where a serine is found, while the polar residues 

cysteine, arginine and serine were found in the Nei sequence as indicated in the third 

box in Fig. 3. These alignments clearly highlight similarities and differences between 

the Fpg and Nei glycosylases and confirmed the predicted annotations of these 

proteins listed in the CMR database. 
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Fig. 3. Alignments of the amino acid sequences of Fpg and Nei proteins from various 

micro organisms.  
Sequences were downloaded from CMR for E. coli, S. typhimurium, Xanthomonas campestris, T. 

thermophilus, L. lactis, M. tuberculosis and M. smegmatis. Differences between Fpg and Nei 
residues are highlighted in the red boxes, while the N-terminal domain is indicated in purple. The 
H2TH domain is indicated in green and the hairpin loop of the zinc finger domain indicated in 
orange. This figure is based on similar alignments performed by Wallace et al. (2003). 
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Interestingly, ClustalW protein alignments showed that the M. tuberculosis FpgII 

glycosylase is missing the entire N-terminal active site (Fig. 3) suggesting that this 

truncation is likely to abrogate FpgII glycosylase function in M. tuberculosis.  

 

In summary, the bioinformatic analysis identified two putative Fpg and two putative 

Nei DNA glycosylases in M. smegmatis and M. tuberculosis. These glycosylases had 

maintained the necessary domains for Fpg and Nei protein function and showed 

strong resemblances to each other as well as to previously characterised Fpg family 

glycosylases. These data support the annotation of the predicted M. smegmatis 

proteins as Fpg and Nei DNA glycosylases, respectively.  

 

3.1.2 Comparison of Fpg and Nei glycosylases in M. tuberculosis 

and M. smegmatis 

 

Preliminary bioinformatic analysis showed that M. smegmatis and M. tuberculosis 

have similar Fpg and Nei DNA glycosylase homologues. The homologues from both 

organisms were examined further to identify differences and similarities. 

 

M. tuberculosis and M. smegmatis Fpg and Nei glycosylase protein alignments were 

generated using ClustalW and their percentage pairwise scores, denoting protein 

resemblances, were calculated (Table 3). Scores above 30% were considered 

significant. 
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Table 3. The percent similarity between M. tuberculosis and M. smegmatis Fpg 

and Nei glycosylases 

 

 Rv2924c Rv0944 Rv3297 Rv2464c 
MSMEG 

_2419 

MSMEG 

_5545 

MSMEG 

_1756 

MSMEG 

_4683 

Rv2924c  17.5 28.67 25.09 76.12 29.15 25 23.67 

Rv0944 17.5  25.81 24.49 24.1 58 20.34 15.22 

Rv3297 28.67 25.81  32.35 27.4 25.81 37.5 33.7 

Rv2464c 25.09 24.49 32.35  24.28 15.22 28.3 73.51 

MSMEG_2419 76.12 24.1 27.4 24.28  29.15 20 24.28 

MSMEG_5545 29.15 58 25.81 15.22 29.15  66.73 29.75 

MSMEG_1756 25 20.34 37.5 28.3 20 66.67  24.53 

MSMEG_4683 23.67 15.22 33.7 73.51 24.28 29.75 24.53  

 

Percentages highlighted in red indicate the highest pairwise score. The homologous pairing of 
the M. smegmatis Nei-encoding protein MSMEG_1756, and the M. tuberculosis Nei-
encoding protein Rv3297, is indicated in yellow and is considered significant. 

 

Related genes from different organisms are found in similar genomic contexts 

suggesting that these genes are evolutionarily related. Genetic context comparisons 

for the fpg and nei genes of M. tuberculosis and M. smegmatis were carried out using 

CMR (Fig. 4). Analysis of genetic homology (Table 3) and gene synteny (Fig. 4) 

allowed for identification and pairing of the fpg/nei homologues in M. tuberculosis 

and M. smegmatis, thus the four othologues were annotated as: fpgI, fpgII, neiI and 

neiII (illustrated in Fig. 4). 
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Fig. 4. Genomic context comparisons of fpg and nei DNA glycosylases in M. 

tuberculosis and M. smegmatis.  
Block arrows in the same colour (other than white) denote homologous genes.  

 

The nei gene MSMEG_1756 showed a strong similarity to the fpg gene 

MSMEG_5545 (Table 3). Although this similarity could possibly indicate an 

increased functional overlap of these fpg and nei genes, they were not considered to 

be orthologues. The pairwise score for the nei glycosylases Rv3297 and 

MSMEG_1756 was significant at 37.5% (Table 3) and these genes shared similar 

genomic contexts (Fig. 4c) and were therefore considered orthologous. Interestingly, 
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neiI appeared to be operonic with a gene encoding a DNA helicase (Fig. 4c). This 

operonic relationship was confirmed by operonic predictions in M. tuberculosis 

(Roback et al., 2007). Since these genes are both involved in DNA repair, their 

coordinate expression suggests a possible interaction between Nei and the helicase 

during the repair of damaged DNA. 

 

Genomic comparisons of the genes encoding Fpg and Nei glycosylases in other 

mycobacteria showed that M. ulcerans, M. leprae, M. avium, M. avium 

paratuberculosis and M. bovis maintained all four fpg and nei genes in the same 

genomic context as M. tuberculosis and M. smegmatis. In contrast, in M. leprae, an 

organism with a highly degenerate genome (Young and Robertson, 2001), only one 

gene, fpgI, was functionally conserved. Interestingly, an additional glycosylase 

belonging to the Fpg family was identified in a conserved genomic context in both M. 

avium and M. avium paratuberculosis. M. bovis displays a truncation in the fpgII 

similar to the one observed in M. tuberculosis. This truncation of the  fpgII as well as 

the presence of the fifth glycosylase in some mycobacteria is consistent with the 

evolutionary history and relatedness of mycobacterial species, as predicted by 

phylogenetic analyses (Gey van Pittius et al., 2006).  

 

3.2 Construction of suicide vectors 

 

Once the putative glycosylase–encoding genes were identified, suicide vectors 

carrying inactivated copies of these genes were constructed. The plasmid maps and 

cloning strategies are listed in Appendix C, Fig. 34 to Fig. 37. 
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3.2.1 Construction of suicide vectors for the deletion of fpgI  

 

hyg-marked (p2NIL∆fpgI::hyg::p17) and unmarked (p2NIL∆fpgI::p19) vectors 

containing a deleted allele of fpgI was constructed by PCR amplification. Availability 

of the complete genome sequence of M. smegmatis mc2155 (http://cmr.tigr.org) 

allowed for the design of PCR primers which amplified both upstream and 

downstream flanking fragments, as shown in Fig. 5. The primer sequences, PCR 

reaction conditions and the resultant amplicons are detailed in Appendix B, Table 7.  

 

 

Fig. 5. PCR amplification strategy for the generation of the deleted fpgI gene 

fragment.  
Primers are annotated by arrows Appendix B, Table 7. 

 

Upstream and downstream fragments were amplified using Expand high fidelity 

polymerase (Roche Biochemicals) and cloned separately into the TOPO vector 

(Invitrogen) to the generate pTopo∆fpgIus and pTopo∆fpgIds replicating vectors. 

These plasmids were transformed into competent E. coli (DH5α) cells and 

transformants were selected on media containing ampicillin. The vectors containing 

the deletion fragments from the resultant transformants were confirmed by restriction 

enzyme analysis, and plasmids from the correct clones were sequenced to ensure no 

mutations were introduced during the PCR amplification. 
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Sequence analysis identified a mutation in pTopo∆fpgIds. Therefore, the PCR 

amplification of the downstream fpgI fragment was repeated using a different 

polymerase and cloning vector, namely, Phusion polymerase (Finnzymes) and 

pcrSMART (Lucigen) respectively. The primers were phosphorylated prior to 

amplification with Phusion polymerase, and amplification generated a blunt-ended 

PCR product that was cloned in the pcrSMART vector to produce the 

pcrSMART∆fpgIds plasmid. This plasmid was transformed into E.coli DH5α and the 

resultant transformants were screened by restriction analysis. The fragment was 

sequenced and no mutations were identified. 

 

The upstream fragment was then excised from pTopo∆fpgIus as an Asp718/SmaI 

fragment and cloned into Asp718/SmaI-digested pGEM-3Zf(+) to generate 

pGEM∆fpgIus. The downstream fragment was excised as a HindIII/BglII fragment 

from pcrSMART∆fpgIds and cloned into HindIII/BglII-digested pGEM∆fpgIus+ to 

generate pGEM∆fpgI. The pGEM∆fpgI plasmid therefore contained the mutant fpgI 

allele (∆fpgI) and its flanking regions (Appendix C, Fig. 34). The ∆fpgI region from 

pGEM∆fpgI was excised as an Asp718/HindIII fragment and cloned in Asp718/ 

HindIII-digested p2NIL to generate p2NIL∆fpgI. The integrity of this vector was 

confirmed by restriction enzyme analysis (Appendix C, Fig. 38). 

 

To generate a marked suicide vector, the hyg cassette from pIJ963 (Blondelet-Rouault 

et al., 1997) was inserted into p2NIL∆fpgI at the unique BglII site, after which the 

lacZ-sacB from pGOAL17 (Parish and Stoker, 2000) was cloned as a PacI cassette 

into the unique PacI site on the p2NIL vector backbone to generate 

p2NIL∆fpgI::hyg::p17. The unmarked suicide vector, p2NIL∆fpgI::p19, was 

constructed by inserting the lacZ-hyg-sacB cassette from pGOAL19 (Parish and 

Stoker, 2000) into the PacI restriction enzyme site of p2NIL∆fpgI.  
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Since insertion of these marker cassettes substantially increases the plasmid size, all 

further culturing was carried out at 30°C to minimise DNA rearrangements. All final 

constructs were thoroughly checked by restriction analysis to ensure that no 

rearrangements occurred during the cloning process (Fig. 6). The knockout vectors 

were confirmed to maintain km and hyg resistance as well as lacZ and sacB 

expression in E. coli. In the presence of β-galactosidase, the correct clones were blue 

and conferred 104-fold killing of E. coli when plated on media containing 5% sucrose.  

 

Fig. 6. Restriction analysis of p2NIL-based marked and unmarked fpgI suicide 

vectors digested with various restriction endonucleases.   
Marker sizes in bp are shown adjacent to the fragment. (a) Digestion confirming plasmid 
p2NIL∆fpgI::19; Lane 1, molecular weight marker λIII; lane 2, uncut p2NIL ∆fpgI::19; lane 
3, Asp718 digest (6520bp, 5197bp, 1580bp, 1132bp); lane 4, NruI (4954bp, 4179bp, 2961p, 
2365bp); lane 5, EcoRI digest (6122p, 4539bp, 1863bp, 766bp, 635bp, 534bp); lane 6, PstI 
digest (5696p, 3847bp, 2031bp, 1979bp, 539bp); lane 7, PvuI (4057bp, 3809bp, 1303bp, 
981bp, 762bp, 480bp, 453bp, 266bp); lane 8, PvuII digest (7300bp, 3276bp, 2557bp, 819bp). 
(b)  Digestion confirming plasmid p2NIL∆fpgI::hyg::p17; lane 1, molecular weight marker 
λIII; lane 2, uncut p2NIL∆fpgI::hyg::p17; lane 3, EcoRI digest (6083bp, 3594bp, 1863bp, 
1842bp, 766bp, 543bp); lane 4, NruI digest (5739bp, 4046bp, 2961bp, 1891bp); lane 5, PvuI 
digest (4057bp, 2739bp, 2384bp, 2229bp, 1303bp, 766bp, 480bp, 453bp); lane 6, SmaI digest 
(11556bp, 1620bp, 1227bp); lane 7, SalI digest (11473bp, 1520bp, 1463bp); lane 8, Asp718 
digest (7225bp, 5197bp, 1132bp, 1053bp). 

 

1  2  3  4  5  6  7  8  

5.1 – 
 
2.0 –  
1.3 – 
0.8 – 
0.5 – 

 

(a) 1  2  3  4  5  6  7  8  

5.1 – 
 
2.0 –  
1.3 – 
0.8 – 
0.5 – 

 

(b) 



 59 

3.2.2 Construction of suicide vectors for the deletion of fpgII  

 

The unmarked suicide vector containing the deleted fpgII gene was constructed using 

a similar approach as for the deletion construct of fpgI. The upstream and 

downstream fragments were PCR amplified using Phusion polymerase, as detailed in 

Fig. 7 and in Appendix B, Table 7. The fragments were then cloned separately into 

the pcrSMART vector to generate pcrSMART∆fpgIIus and pcrSMART∆fpgIIds. The 

resultant E. coli transformants were selected on km, the plasmids from positive clones 

were analysed by restriction endonucleases and the correct clones sequenced to 

exclude mutations during amplification of the deletion fragments.  

 

 

Fig. 7. PCR amplification strategy for generating the fpgII deletion gene 

fragment. 
Primers are annotated by arrows. 

 

Sequencing revealed no mutations in the upstream fragment; however, a single site 

mutation was present in the Asp718 restriction enzyme site (Appendix C, Fig. 42). 

The mutation, which abrogated the restriction site, occurred beyond the downstream 

homologous region and would therefore not affect the homologous recombination. 

Hence, it was not necessary to re-amplify the fragment and subsequent cloning of this 

fragment was performed using the unique EcoRI site in the pcrSMART vector 

together with the other restrictions sites incorporated into the primer sequences.   
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The fpgII deletion upstream and downstream fragments were excised from  

pcrSMART∆fpgIIus and pcrSMART∆fpgIIds as HindIII/BglII and EcoRI/BglII 

fragments as illustrated in Appendix C, Fig. 35. In a single three-way cloning step, 

the upstream and downstream ∆fpgII fragments were cloned into p2NIL at the EcoRI 

and HindIII sites, to generate the p2NIL∆fpgII vector. The integrity of the construct 

was confirmed by restriction enzyme digestion (Appendix C, Fig. 39). 

 

Finally, the hyg-lacZ-sacB cassette from pGOAL19 was cloned as a blunt-ended 

cassette into the XmnI site of p2NIL since the unique PacI site was lost during the 

cloning process. The stability of the final unmarked suicide vector, 

p2NIL∆fpgII::p19, was confirmed by restriction enzyme digests (Fig. 8) and positive 

clones were tested for sucrose sensitivity and β-galactosidase activity in E. coli, as 

described above. 

 

Fig. 8. Restriction digestion of the p2NIL based unmarked fpgII suicide vector 

digested with various restriction endonucleases.  

Marker sizes in bp are shown adjacent to the fragment. The digestion of p2NIL∆fpgII::p19: 
lane 1; molecular weight marker λIII, lane 2; uncut p2NIL∆fpgII::p19; lane 3, Asp718 digest 
(8835bp, 5197bp, 1580bp, 1132bp); lane 4, PstI digest (6309bp, 5696bp, 2031bp, 1800bp, 
908bp); lane 5, PvuI digest (4630bp, 4146bp, 3277bp, 2384bp, 726bp, 648bp, 480bp); lane 6, 
SmaI digest (6629bp, 5534bp, 4981bp); lane 7, HindIII/ BglII digest (7048bp, 5559bp, 
2336bp, 976bp, 739bp); lane 8, BglII/EcoRI digest (4539bp, 4529bp, 3343bp, 1863bp, 
919bp, 766bp, 607bp, 150bp). 
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3.2.3 Construction of suicide vectors for the deletion of neiI 

 

The first cloning step in the construction of a vector containing a deleted allele of neiI 

was carried out by Mr. S. Nathoo, a visiting student in the MMRU. The upstream and 

downstream regions flanking the neiI gene were amplified using primers engineered 

with unique restriction sites, as detailed in Fig. 9 and in Appendix B, Table 7. The 

resultant fragments were cloned into the TOPO vector and, in a single three-way 

cloning step, the upstream and downstream fragments were inserted into 

HindIII/Asp718 digested p2NIL to generate p2NIL∆neiI. My involvement was to 

verify the integrity of the p2NIL∆neiI vector by restriction enzyme digestion 

(Appendix C, Fig. 40) and sequence the constructs to ensure that the amplified 

fragments did not contain any mutations. 

 

 

Fig. 9. PCR amplification strategy for the generation of a deleted neiI gene 

fragment. 
Primers are annotated by arrows 

 

Once the p2NIL∆neiI vector was confirmed to be correct, the p2NIL∆neiI::hyg::p17 

vector was generated by cloning the hyg cassette (from pIJ963) and the lacZ-sacB 

cassette (from pGOAL17) into the unique BglII and PacI sites in p2NIL respectively. 

For the unmarked suicide vector, the hyg-lacZ-sacB cassette from pGOAL19 was 

inserted at the PacI site in p2NIL∆neiI to generate p2NIL∆neiI::p19 (Appendix C, 

Fig. 36).  
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The integrity of both the marked and unmarked neiI deletion constructs was 

confirmed by restriction enzyme digestions (Fig. 10), and E. coli clones carrying 

these vectors were shown to maintain sucrose sensitivity and β galactosidase activity. 

 

Fig. 10. Restriction digestion of the p2NIL based marked and unmarked suicide 

vectors for neiI digested with various restriction endonucleases. 
Marker sizes in bp are shown adjacent to the fragment. (a) Digestion of 
p2NIL∆neiI::hyg::p17; lane 1, molecular weight marker λIII; lane 2, uncut 
p2NIL∆neiI::hyg::p17; lane 3, Asp718 digest (7281bp, 5197bp, 1132bp, 1121bp); lane 4, 
BamHI digest (7911bp, 3072bp, 2044bp, 948bp, 786bp); lane 5, EcoRI digest (6094bp, 
5888bp, 1863bp, 766bp, 750bp); lane 6, PstI digest (5696bp, 3933bp, 2761bp, 1753bp); lane 
7, PvuI digest (5523bp, 3437bp, 2384bp, 1003bp, 755bp); lane 8, PvuII digest (9088bp, 
2557bp, 1790bp, 819bp, 363bp) (b) Digestion of p2NIL∆neiI::p19; lane 1, molecular weight 
marker λIII; lane 2, uncut p2NIL∆neiI::p19; lane 3, Asp718 digest (6644bp, 5197bp, 1580bp, 
1132bp); lane 4, BamHI digest (7911bp, 3072bp, 2366bp, 1234bp); lane 5, EcoRI digest 
(7265bp, 4539bp, 1863bp, 766bp); lane 6, PstI digest (5695bp, 3933bp, 2756bp, 2031bp); 
lane 7, PvuI digest (5523bp, 2583bp, 2384bp, 1679bp, 755bp, 726bp, 480bp, 453bp); lane 8, 
PvuII digest (7330bp, 3370bp, 2557bp, 819bp, 363bp). 

 

3.2.4 Construction of suicide vectors for the deletion of neiII 

 

The final deletion construct that was made targeted the neiII gene. The upstream and 

downstream region containing flanking homologous sequence were PCR amplified, 

as detailed in Fig. 11 and in Appendix B, Table 7. The resultant PCR products were 

cloned separately into the pcrSMART cloning vectors to generate 
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pcrSMART∆neiIIus and pcrSMART∆neiIIds. The insertion was confirmed by 

restriction digest and checked for mutations by sequence analysis. Primers for the 

amplification of the downstream fragment had unique restriction endonuclease sites 

incorporated, whilst only one restriction site had to be engineered into the reverse 

primer amplifying the upstream fragment since a BglII site was present about 58bp 

into the primer as shown in Fig. 11.  

 

 

Fig. 11. PCR amplification strategy for the generation of a deleted neiII gene 

fragment. 
Primers are annotated by arrows 

 

To generate the deleted ∆neiII fragment, the downstream fragment was excised from 

pcrSMART∆neiIIds by digestion with SalI and EcoRV resulting in one blunt 

(EcoRV) and one sticky end (SalI). This fragment was cloned into SalI/SmaI-digested 

pGEM-3Zf(+) to yield pGEM∆neiIIds. The upstream fragment was cloned into 

pcrSMART to create pcrSMART∆neiIIus. This fragment was then excised as an 

Asp718/BglII fragment and cloned into the Asp718/BglII-digested pGEM∆neiIIds to 

generate pGEM∆neiII. The deleted neiII fragment was excised from pGEM∆neiII 

with Asp718 and HindIII and cloned into the same sites of p2NIL to generate 

p2NIL∆neiII. The constructs were checked by restriction enzyme digests for integrity 

(Appendix C, Fig. 41). 
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sacB cassette from pGOAL17 was cloned into the unique PacI site of p2NIL∆neiII to 

generate p2NIL∆neiII::hyg::p17. The unmarked suicide vector, p2NIL∆fpgI::p19, 

was constructed by inserting the hyg-lacZ-sacB cassette from pGOAL19 into the 

PacI site of p2NIL∆fpgI. Both vectors were confirmed by restriction analysis (Fig. 

12) and E. coli strains harbouring these vectors were shown to maintain sucrose-

sensivity and β-galactosidase activity.  

 

Fig. 12. Restriction analysis of the p2NIL based marked and unmarked neiII 

suicide vectors cut neiII with various restriction endonucleases.  

Marker sizes in bp are shown adjacent to the fragment. (a) p2NIL∆neiII::hyg::p17 digestion; 
Lane 1, uncut p2NIL∆neiII::hyg; lane 2, molecular weight marker λIII; lane 3, Asp718 digest 
(7098bp, 5197bp, 1132bp, 936bp); lane 4, BamHI digest (7325bp, 3072bp, 2757bp, 2447bp, 
901bp); lane 5, EcoRI (5911bp, 3594bp, 2259bp, 1863bp, 766bp); lane 6, PstI digest 
(5696bp, 4298bp, 2829bp, 897bp, 673bp) (b) p2NIL∆neiII::p19 digestion; lane 1, molecular 
weight marker λIII; lane 2, uncut p2NIL∆neiII::p19; lane 3, Asp718/HindIII digest (5197bp, 
4436bp, 1846bp, 1580bp, 739bp); lane 4, BamHI digest (7331bp, 3072bp, 2228bp, 1590bp); 
lane 5, EcoRI digest (6903bp, 4539bp, 1863bp, 766bp); lane 6, PstI digest (5696bp, 3933bp, 
2021bp, 1882bp, 649bp); lane 7, PvuI digest (5523bp, 2503bp, 2384bp, 972bp, 726bp, 
724bp, 480bp, 455bp); lane 8, NruI digest (4954bp, 4353bp, 3741bp, 1170bp) 
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3.3 The generation of knockout mutants 

 

All knockout mutants were generated as discussed in section 2.6. Briefly, the relevant 

suicide vectors were electroporated into electrocompetent mc2155 and SCOs were 

identified as blue colonies on plates containing X-gal, km and hyg. SCO 

recombinants were passaged in the absence of antibiotics and putative DCOs were 

identified as white, sucrose-resistant colonies. These colonies were further confirmed 

to have lost the suicide vector backbone and its lacZ-sacB cassette by replica-plating 

the white, sucrose-resistant colonies in the presence and absence of km, an example 

of which is shown in Fig. 13. In this example, seven colonies showed no growth in 

the presence of km, suggesting that these colonies lost the vector backbone and were 

therefore considered as DCOs. However, a large majority of the colonies in this 

example were km resistant suggesting that these colonies must have maintained the 

p2NIL vector backbone, and that the sucrose resistance was acquired as a result of a 

mutation in the sacB gene. 

 

Fig. 13. Replica-plating of possible DCOs of the unmarked ∆fpgI knockout 

mutant.  
White sucrose resistant colonies were resuspended in 30 µl of sterile distilled water and 5 µl 
spotted on 7H10 plates with and without km (20 µg/ml) 

 

The white, sucrose-resistant, km-sensitive DCOs could either be a knockout mutant 

(if the second crossover event occurred on the opposite side of the deletion mutation 

compared to the first crossover event), or regenerated wild type (if the second 

crossover event occurred on the same side as the first). As an initial screen, clones 

km + km - 
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were examined by PCR using primers that amplified a smaller amplicon for the 

deleted allele compared to the wild type allele. PCR amplification was a useful means 

of screening for unmarked mutants since, in the absence of antibiotic selective 

pressure, the frequency of wild type revertants was generally high and as a result, 

many clones had to be screened to identify the DCO. As a final confirmation, the 

positive clones identified by PCR were genotyped by Southern blot analysis to ensure 

that the gene replacement was targeted and the upstream and downstream flanking 

regions did not undergo rearrangements.   

 

Fig. 14 shows an example of the PCR and Southern blot analysis for the ∆fpgI 

deletion mutant. PCR amplification of the fpgI deletion region resulted in a 2.4kb 

amplicon for the wild type allele (lane 2) and a 1.4kb fragment for the mutant allele 

(lane 9). In lane 6, both the wild type and the mutant alleles were amplified implying 

that the clone was a SCO. This SCO must have acquired mutations in the aph, sacB 

and lacZ genes to result in km sensitivity, sucrose resistance and white coloration in 

the presence of X-gal. The correct DCO was analyzed further by Southern blot 

analysis (Fig. 14 c).  
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Fig. 14. Genotypic characterisation of the ∆∆∆∆fpgI mutant of M. smegmatis 
(a) Schematic representation of allelic replacement by homologous recombination. Single 
recombination events between homologous regions shared between the homologous regions 
in the inactivated construct and the chromosome on either side of the inactivated gene will 
generate SCO1 or SCO2 strain and a second crossover event will result in a DCO 
recombinant. (b) PCR amplification of chromosomal DNA from the parental strain and 
possible ∆fpgI knockout mutants using primers detailed in Appendix B, Table 9. Lane 1, 
molecular weight marker λIII; lane 2, mc2155 (2.1kb); lane 3, forward primer only (negative 
control); lane 4, reverse primer only (negative control); lane 5, no DNA control; lanes 6-9, 
possible DCOs (1.4kb). (c) Southern blot analysis of the ∆fpgI knockout mutant. 
Chromosomal DNA from the parental strain, the SCO and the DCO was digested with EcoRI 
and BamHI and the fragments separated on an agarose gel. The digested DNA was probed 
with a 2kb fragment (shown as a red line in panel (a)). Lane 1, wild type (7308bp, 4029bp, 
1743bp); lane 2, ∆fpgI SCO (7308bp, 5058bp, 4029bp, 1743bp, 1064bp, 534bp); lane 3: 
∆fpgI DCOs (7308bp, 4029bp, 1064bp). 
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The marked and unmarked vectors, p2NIL∆fpgI::hyg, p2NIL∆fpgI, p2NIL∆neiI::hyg, 

p2NIL∆neiI, p2NIL∆neiII::hyg and p2NIL∆fpgII were electroporated into the 

parental mc2155 strain and the resultant transformants were screened by a two-step 

selection process to identify mutants lacking each of the four glycosylase-encoding 

genes. Deletion of the fpg and/or nei genes individually or in combination may have 

adverse effects or could be lethal in M. smegmatis thereby making selection of double 

crossover mutants difficult. The use of marked knockout constructs would facilate 

selection of mutants due to the presence of antibiotic.   

 
Single marked and unmarked fpg and nei knockout mutants were therefore generated, 

and the unmarked mutants used as hosts for the sequential inactivation of the 

remaining glycosylase encoding genes. In this manner, the double knockout mutants, 

∆fpgI∆fpgII and ∆neiI∆neiII, were generated. These were then used as background 

strains for the knockout of a third DNA glycosylase-encoding gene to generate the 

triple mutants, ∆fpgI∆fpgII∆neiI and ∆neiI∆neiII∆fpgI. The sequential deletion of the 

fpg and nei genes is illustrated in Fig. 15, and the confirmation by PCR and Southern 

blotting of the single, double and triple knockout mutants is illustrated in Fig. 16 - 

Fig. 22.  

 

Fig. 15. A schematic representation of the sequential deletion of fpg and nei in 

M. smegmatis. 
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Fig. 16. Genotypic characterization of the marked fpgI region of M. smegmatis  
(a) Schematic representation of allelic replacement by homologous recombination. (b) The 
Southern blot analysis of the ∆fpgI marked-knockout mutant. Chromosomal DNA from the 
parental strain, the SCO and the DCO was digested with BamHI and the fragments separated 
on an agarose gel. The digested DNA was probed with a 2kb fragment (shown as a red line in 
a). The expected sizes are as follows: lane 1, the wild type mc2155 (73008bp, 5772bp); lane 
2, ∆fpgI::hyg SCO 1 (7308bp, 5772bp, 5654bp, 3772bp, 2036bp); lane 3, ∆fpgI::hyg DCO 
(7308bp, 4715bp, 2036bp). 
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Fig. 17. Genotypic characterization of the fpgII region of M. smegmatis for the 

single ∆fpgII and double ∆fpgI∆fpgII mutants 
(a) Schematic representation of allelic replacement by homologous recombination. (b) PCR 
amplification of chromosomal DNA from the parental strain and possible ∆fpgII knockout 
mutants using primers detailed in Appendix B, Table 9. Lanes represent the following: lane 1, 
molecular weight marker λIII; lane 2, mc2155 (888bp); lane 3, forward primer only (negative 
control); lane 4, reverse primer only (negative control); lane 5, no DNA control; lane 6, 
possible DCO (627bp). (c) The Southern blot analysis of the ∆fpgII mutant. Chromosomal 
DNA from the parental strain, the SCO and the DCO was digested with SmaI (S) and the 
fragments separated on an agarose gel. The digested DNA was probed with a 0.9kb fragment 
(shown as a red line in a). The expected sizes are as follows: lane 1, wild type mc2155 
(2078bp); lane 2, ∆fpgII SCO 1 (3701bp, 1817bp); lane 3, ∆fpgII DCO (1817bp). (d) PCR 
amplification of chromosomal DNA from the parental strain and putative ∆fpgI∆fpgII 
mutants, the primers used are detailed in Appendix B, Table 9. Lanes represent the following: 
lanes 1 and 6; molecular weight marker λIII; lane 2, mc2155 (888bp); lane 3, forward primer 
only (negative control); lane 4, reverse primer only (negative control); lane 5, no DNA 
control; lane 8, DCO (627bp); and lane 9, SCO with mutant and wild type alleles (e) The 
Southern blot analysis of ∆fpgI∆fpgII mutants. The Chromosomal DNA was digested with 
SmaI and the DNA probed with a 0.9kb fragment. Lanes represent the following: lane 1, 
mc2155 (2078bp); lane 2, ∆fpgI∆fpgII SCO 2 (3701bp, 1817bp); lane 3, ∆fpgI∆fpgII 
(1817bp).
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Fig. 18. Genotypic characterization of the marked ∆neiI region of M. smegmatis 

for the ∆neiI::hyg mutant 
(a) Schematic representation of allelic replacement by homologous recombination. (b) The 
Southern blot analysis of the ∆neiI::hyg mutant. Chromosomal DNA from the parental strain, 
the SCO and the DCO was digested with BglII (B) and the fragments separated on an agarose 
gel. The digested DNA was probed with a 1.1kb fragment (shown as a red line in panel (a)). 
The expected sizes are as follows: lane 1, wild type mc2155 (6360bp); lane 2, ∆neiI::hyg 

SCO 1 (15 969bp, 3396bp); lane 3, ∆neiI::hyg DCO (3396bp, 2500bp).   
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Fig. 19: Genotypic characterization of the neiI region of M. smegmatis for the 

single ∆neiI and triple ∆fpgI∆fpgII∆neiI mutants 
(a) Schematic representation of allelic replacement by homologous recombination. (b) PCR 
amplification of chromosomal DNA from the parental strain and possible ∆neiI knockouts 
mutants using primers detailed in Appendix B, Table 9. Lanes represent the following: lane 1, 
molecular weight marker λIII; lane 2, mc2155 (1165bp); lane 3; forward primer only 
(negative control); lane 4, reverse primer only (negative control); lane 5, no DNA control; 
lane 6, DCO with wild type allele (1165bp); and lane 7, DCO with mutant allele (697bp). (c) 
The Southern blot analysis of the ∆neiI mutant. Chromosomal DNA from the parental strain, 
the SCO and the DCO was digested with Asp718 (A) and the fragments separated on an 
agarose gel. The digested DNA was probed with a 1.1kb fragment (shown as a red line in 
panel (a)). The expected sizes are as follows: lane 1, wild type mc2155 (4230bp, 2880bp); 
lane 2, ∆neiI SCO (9456bp, 2880bp, 1418bp); lane 3, ∆neiI DCOs (6643bp).(d) PCR 
amplification of chromosomal DNA from the parental strain and putative ∆fpgI∆fpgII∆neiI 
mutants, the primers used are detailed in Appendix B, Table 9. Lanes represent the following: 
lane 1: molecular weight marker λIII; lane 2, mc2155 (2.3kb); lane 3, forward primer only 
(negative control); lane 4, reverse primer only (negative control); lane 5, no DNA control; 
lane 6, DCO with mutant allele (1.8kb). (e) The Southern blot analysis of putative 
∆fpgI∆fpgII∆neiI mutants, Southern blot analysis were performed as detailed in (c). Lane 1, 
wild type mc2155; lane 2, ∆fpgI∆fpgII∆neiI SCO 1; lane 3, ∆fpgI∆fpgII∆neiI DCOs 
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Fig. 20. Genotypic characterization of the marked neiII region of M. smegmatis 

for the ∆neiII mutant 
(a) Schematic representation of allelic replacement by homologous recombination. (b) The 
Southern blot analysis of ∆neiII::hyg mutant. Chromosomal DNA from the parental strain, 
the SCO and the DCO was digested with Sph1 (S) and the fragments separated on an agarose 
gel. The digested DNA was probed with a 1.8kb fragment (shown as a red line in a). The 
expected sizes are as follows: lane 1, wild type mc2155 (3127bp, 1714bp); lane 2, 
∆neiII::hyg SCO 2 (14831bp, 3127bp, 1273bp); lane 3, ∆neiII::hyg DCO (4721bp, 1273bp).  
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Fig. 21. Genotypic characterization of neiII region of M. smegmatis for the 

double ∆neiI∆neiII mutant 
(a) Schematic representation of allelic replacement by homologous recombination. (b) PCR 
amplification of chromosomal DNA from the parental strain and putative DCOs using 
primers detailed in Appendix B, Table 9. Lane 1, molecular weight marker λIII; lane 2, 
mc2155 (1477bp); lane 3, forward primer only (negative control); lane 4, reverse primer only 
(negative control); lane 5, no DNA control; lanes 6 and 7, wild type DCO (1477bp); lane 8, 
mutant DCO (871bp). (c) Southern blot analysis of the ∆neiI∆neiII mutant. Chromosomal 
DNA from the parental, the SCO and the DCO was digested with NruI (N) and the fragments 
separated on an agarose gel. The digested DNA was probed with a 1.8kb fragment (shown as 
a red line in a). Lane 1, wild type mc2155 (3161bp, 1939bp); lane 2, ∆neiI ∆neiII SCO 2 
(4347bp, 3161bp, 1333bp 1170bp); lane 3, ∆neiI ∆neiII (3161bp, 1333bp) 
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Fig. 22. Genotypic characterization of unmarked fpgI region of M. smegmatis for 

the double ∆neiI∆neiII∆fpgI mutant 
(a) Schematic representation of allelic replacement by homologous recombination. (b) PCR 
amplification of chromosomal DNA from the parental strain and ∆neiI∆neiII∆fpgI mutants 
using primers detailed in Appendix B, Table 9. Lane 1: molecular weight Marker λIII, lane 2: 
mc2155 (2.1kb), lane 3: forward primer only (negative control), lane 4: reverse primer only 
(negative control), lane 5: no DNA control, lane 6: wild type revertant DCO (2.1kb), lane 7: 
mutant DCO (1.4kb). (c) The Southern blot analysis of the ∆neiI∆neiII∆fpgI mutant. 
Chromosomal DNA from the parental, SCO and DCO strains was digested with EcoRI and 
BamHI, and probed with a 2kb fragment (shown as a red line in a). Expected sizes: lane 1, 
wild type mc2155 (7308bp, 4029bp, 1743bp); lane 2, ∆neiI∆neiII∆fpgI SCO (7308bp, 
5058bp, 4029bp, 1743bp, 1064bp, 534bp); lane 3, ∆neiI∆neiII ∆fpgI DCOs (7308bp, 4029bp, 
1064bp). 
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3.4 Phenotypic characterisation of the single and double mutant 

strains 

 

The single and double mutants were phenotypically characterised alongside the 

parental strain by comparing the following: (1) growth kinetics under normal culture 

conditions, (2) sensitivity to oxidative stress generated by H2O2, and (3) ability to 

repair DNA by measuring the rate and spectrum of spontaneous mutation to 

rifampicin resistance.  

 

3.4.1 Growth kinetics under standard culture conditions 

 

M. smegmatis strains were inoculated in MM media and the growth of the cultures 

measured at regular intervals by optical density measurements and viable cell counts 

(Fig. 23) over a 36h period, as described in section 2.7.1. No differences in growth 

kinetics were observed between the parental, single and double knockout mutant 

strains.  
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Fig. 23. Comparative growth kinetics  
(a) Measurements by OD600 and (b) viable cells counts. Data represent averages and standard 
deviations from three independent experiments. The strains were represented as follows: 
mc2155 ( ); ∆fpgI::hyg ( ); ∆fpgII ( ); ∆neiI::hyg ( );  ∆neiII::hyg ( ), 
∆fpgI∆fpgII ( ); ∆neiI∆neiII( ).  
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3.4.2 Sensitivity to oxidative stress as generated by hydrogen 

peroxide  

 

In order to investigate the individual and combined roles of Fpg and Nei DNA 

glycosylases in the repair of oxidatively damaged DNA, the single and double 

mutants were assessed for cell viability and outgrowth under conditions of oxidative 

stress as generated by the addition of exogenous H2O2 to the various cultures.  

 

3.4.2.1 Effects of hydrogen peroxide on cell viability 

 

In order to observe whether the removal of one or more fpg and nei affected the 

strains ability to withstand oxidative stress generated by H2O2, the optimal 

concentration and growth point at which to add H2O2 was determined. In previous 

studies in mycobacteria, the concentration of H2O2 used and the growth stage at 

which H2O2 was added varied considerably (Rosner and Storz, 1994; Sherman et al., 

1995; Gordhan et al., 1996; Newton et al., 2005). In these studies, 1-10 mM H2O2 

was used to generate oxidative stress (Rosner and Storz, 1994; Sherman et al., 1995; 

Gordhan et al., 1996; Newton et al., 2005). It was also observed that the 

susceptibility of M. smegmatis to H2O2 varied in a growth phase dependent manner,  

(Sherman et al., 1995) suggesting that the optimal point at which to add H2O2 needed 

to be established. A concentration of 10 mM H2O2 was thus selected as a starting 

point for the present study. 

  



 79 

Cultures of the parental strain in lag, log or stationary phase were treated with 10 mM 

H2O2 and allowed to grow for a further 6 h.  At various time intervals over the 6 hour 

period, samples were removed from each culture and a dilution series was spotted 

onto MM to assess the killing caused by H2O2. This revealed that the lag-phase 

culture showed approximately 1 log10 killing after 10 min of treatment and after 1.5 h, 

complete killing was observed. The log-phase cultures showed a 3 log10 reduction in 

CFUs after 1.5 h, while the stationary phase cultures showed little killing over the 6 h 

period. Hence, for all further experiments, H2O2 was added to log phase cultures as 

during this phase of growth, the cells displayed sensitivity to H2O2 without rapid 

killing. 

 

Further experiments included establishing the optimal concentration of H2O2 for use 

in the study. Log-phase wild type cultures were treated with various concentrations of 

H2O2 and the cell viability measured over 2.5 h. The results showed that 

concentrations of 5 mM and higher caused 2.5 log killing within 2 h of treatment 

(Fig. 24) while cultures treated with 2.5 mM H2O2 resulted in CFUs which remained 

consistent for approximately 1.5 h before declining. Therefore, for the purpose of this 

study, H2O2 was used at a concentration of 2.5mM for all further experiments. 
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Fig. 24. Assessment of the wild type strain with various concentrations of 

hydrogen peroxide. 
Log phase cultures treated with 2.5 mM ( ), 5 mM ( ), 10 mM ( ) and 20 mM( ) 
H2O2 and viable cell counts assessed over a 2.5h period. 

 

The wild type, single and double mutants were tested under the optimised H2O2 

treatment conditions established as described above. The results from several 

experiments showed that there were no significant differences in growth or killing 

between the parental, single or double knockout mutants when exposed to oxidative 

stress as generated by treatment with H2O2 at a concentration of 2.5 mM (Fig. 25). 

However, there were variations in the overall killing rates between separate 

experiments performed on different days. To test whether this variation was due to 

the type of media employed or the batch of H2O2 used, the experiments were repeated 

using different types of growth media (LB, Sauton’s and MM) with different batches 

of H2O2 and all precautions were taken to keep conditions the same between 

experiments (temperature, initial concentrations, media, volumes, flasks). These 

experiments showed that the variation was independent of the type of media or the 

batch of H2O2 used (data not shown). Hence under conditions tested no increased 

sensitivity to H2O2 was observed in the fpg and nei knockout mutant strains when 

compared to the parental strain.  
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Fig. 25. The effect of 2.5 mM hydrogen peroxide on the cell viability of log-phase 

wild type, single and double knockout mutant strains grown in Sauton’s media 
The data represents a single experiment and error bars denote standard deviations between 
technical replicates. Students t-test analysis showed no significant differences between strains 
(P-values >0.1 for all points). Strains are represented as: mc2155 ( ), ∆fpgI::hyg ( ), 
∆fpgI ( ), ∆neiI::hyg ( ), ∆neiII::hyg ( ), ∆fpgI∆fpgII ( ), ∆neiI∆neiII( ). 

 

3.4.2.2 Effects of hydrogen peroxide on outgrowth 
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procedure (Jain et al., 2007), differed from the H2O2 assay described above (section 

3.4.2.1) as the H2O2 was added to the culture during the lag phase, a slightly higher 

concentration of H2O2 (3 mM) was used, and the growth was determined only by 

optical density.  

 

The results of this experiment (Fig. 31) showed that there was no recovery of either 

the wild type or the ∆fpgI::hyg mutant even after 8 days, suggesting that both cultures 

were completely killed by the 3 mM H2O2 treatment. 

 

Fig. 26. The ability of wild type and ∆fpgI::hyg to recover from hydrogen 

peroxide treatment  
Early log phase cultures of mc2155 ( ) and ∆fpgI::hyg ( ) were treated with H2O2 at the 
time point indicated by the arrow. The data are shown as averages and standard deviations 
from three independent experiments. 
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3.4.3 Effect of loss of fpg and/or nei gene function on mutational 

rates and spectra in M. smegmatis  

 

Fpg and Nei glycosylases are DNA repair enzymes with predicted anti-mutator roles 

(Horst et al., 1999). Therefore the effect of the loss of these glycosylases on 

spontaneous mutagenesis in M. smegmatis was assessed. The mutational target used 

for this study was resistance to the drug, rifampicin. A high level of rifampicin 

resistance in M. smegmatis results from mutations in a defined region of the rpoB 

gene, which encodes the β subunit of RNA polymerase – the  rifampicin resistance-

determining region (RRDR) (Musser, 1995; Telenti et al., 1997; Ramaswamy and 

Musser, 1998; Karunakaran and Davies, 2000; Morlock et al., 2000). Investigations 

analyzing the rate at which rifR mutants arose spontaneous during growth and the 

spectra of rpoB mutations found within the resistant mutants allowed comparisons to 

be made between the wild type and Fpg/ Nei glycosylase-deficient mutants.  

 

3.4.3.1 Mutation frequency 

 

Mutation frequencies are a measure of the average number of mutants generated in a 

single culture. In this study, mutation frequencies were calculated as the ratio of the 

number of rifampicin mutants to the total number of cells, as described in section 

2.7.3.1 (Martinez and Baquero, 2000; Rosche and Foster, 2000). Two separate 

experiments indicated that the ∆fpgI::hyg mutant had a higher mutation frequency 

compared to the wild type or the ∆neiI::hyg mutant (Fig. 27). The mutation 

frequencies showed variability between the two experiments (Fig. 27), but this was 

expected because mutations can occur randomly at any point during the growth of the 

cell. Hence, if a mutation occurs early during cell growth, after subsequent 

replications an increased number of that mutant will be represented on the plate, 

giving an apparently higher mutation frequency. Therefore, an apparently high 

mutation frequency might not, necessarily, be due to an increased number of 
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mutational events but, rather the result of an early mutational event. To accurately 

identify if a mutator phenotype is associated with the fpgI and neiI single and double 

knockout mutants, a more accurate mutation rate assessment was performed on the 

single and double knockout mutants.  

 

Fig. 27. The spontaneous mutation frequencies of wild type, single fpgI and neiI 

knockout mutants as measured by rifampicin resistance.  
The data represents the results of two separate experiments shown in (a) and (b). 

 

3.4.3.2 Mutation rate analyses 

 

Mutation rate is a measure of the probability that a mutational event would occur in 
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2.7.3.2.2. 
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The precision and reproducibility of the mutation rate between separate assays is 

related to the size of the m-value as well as the total number of parallel tubes used 

within the assay. This relationship can be mathematically correlated and is illustrated 

in Fig. 28 which shows that the lower the probability of a mutational event occurring 

(i.e. m-value) the larger the number of parallel tubes needed for statistical analysis 

(Rosche and Foster, 2000). Therefore, the sample size (number of parallel cultures) 

necessary to generate precise and reproducible results needed to be ascertained. In the 

first set of assays for the parental, single and double knockout mutant strains, 25 

parallel tubes were used to evaluate the m-values. The m-value ranged between 0.5 

and 1.1, therefore in further experiments the number of parallel tubes was increased 

to 30.  

 

Fig. 28. Graphical illustration of the number of cultures needed to ensure a 

precise mutation rate when using the MSS-likelihood algorithms.  
The m-value is represented on the x-axis with the corresponding number of parallel cultures 
needed on the y-axis (figure taken and adapted from Rosche and Foster, 2000).   

 

The final calculation used to estimate the mutation rate is dependent on an accurate 

Nt-value. In the first set of fluctuation assays the Nt–value was calculated by 

measuring CFUs from every parallel sample of the parental and mutant strains (Fig. 

29). Since the observed variation between the parallel samples was shown to be 

minimal (Fig. 29), for all further experiments, the Nt-values were calculated from 

only 5 cultures grown alongside the experimental cultures that were sampled for the 

presence of rifampicin-resistant mutants. 
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Fig. 29. Estimation of Nt-values by measuring the average CFU in individual 

parallel cultures. 
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Statistics allow for comparisons to be made between different strains and biological 

replicates, thereby giving a degree of confidence to the comparisons (e.g. standard 

deviations). However, due to the intrinsic sensitivity of the mutation rate to the Nt-

value and the extrapolations used to calculate the mutation rate, it is not possible to 

calculate the differences between mutation rates with a degree of statistical 

confidence (Rosche and Foster, 2000). Nonetheless, if mutation rates are drastically 

dissimilar (>10-fold) one could conclude that a difference in mutation rates between 

the strains examined exists. Hence, fluctuation assays measuring the mutation rates 

for the parental, single and double knockout mutant strains were performed, the 

results of which are shown in Table 4. 

 

Table 4. Spontaneous mutation rates resulting in rifampicin resistance of the 

parental, single and double knockout mutant strains as determined by 

fluctuation analysis. 

 
Mutation rates calculated after each 

fluctuation assay (×10 -10) Strain 

1 2 3 4 5 

Average 
Mutation 

Rate     
(×10 -10) 

Fold 
change 

relative to 
mc²155 

mc²155 9.8 5.9 1.3 1.2 N/P 4.5 1.00  

∆fpgI 23 3.2 0.8 10 7.2 8.9 2.0 

∆fpgII 1.0 13 0.6 N/P N/P 5.0 1.1 

∆fpgI∆fpgII 4.8 0.7 0.9 25 N/P 7.8 1.7 

∆neiI 5.1 0.8 5.0 N/P N/P 3.6 0.8 

∆neiII 4.3 2.3 6.0 7.5 N/P 5.1 1.1 

∆neiI∆neiII 13 11 3.0 N/P N/P 8.8 2.0 

 

* N/P Not performed 

 

In Table 4, the average mutation rates were calculated from three to five independent 

fluctuation assays for the parental and mutant strains. However, this analysis 

suggested that no significant differences in mutation rates were observed.  
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3.4.3.3 Mutation spectrum in M. smegmatis rpoB mutants 

 

The parallel cultures used in fluctuation assays minimize the probability of rifR 

colonies originating from a common source (Rosche and Foster, 2000). Therefore, 

genomic DNA from 13-14 rifR colonies isolated off several plates generated from a 

number of fluctuation assays conducted on the parental and mutants strains was PCR-

amplified across the RRDR region and the amplicon sequenced to identify the types 

of lesions that resulted in rifampicin resistance. To minimise the introduction of 

errors during PCR amplification, the high fidelity polymerase Expand (Roche 

Biochemicals) was used.  

 

Detailed sequence analysis of the specific types of DNA mutations in the RRDR 

region is shown in Table 5, while the resultant amino acid changes and deletions 

which occurred in the RRDR region is shown in Fig. 30. Table 5 shows that a 16% 

increase in C→T (or G→A) transitions in the ∆fpgI mutant was observed when 

compared to the parental strain. This increase was absent in the single ∆fpgII mutant, 

but the double fpg knockout mutant showed a 27% increase. Similarly a 22% increase 

in C→T transitions (or G→A) was observed in ∆neiI, which was further amplified to 

38% in the double nei knockout mutant. An increase of 17% in C→A transversions 

was observed for the ∆neiII mutant compared to the parental strain, however no 

additive increase in mutations was observed for the double nei knockout mutant.  
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Table 5. The different types of DNA mutations identified within the RRDR 

region 

Mutation Percentage (%) 

mc2155 ∆fpgI ∆fpgII 
∆fpgI 

∆fpgII 
∆neiI ∆neiII 

∆neiI 
∆neiII  

(12/13)a (12/13) a (13/14) a (14/14) a (14/14) a (14/14) a (11/14) a 

C→G/A→T 25 25 31 23 14 43 20 

C→G/T→A 42 58 46 69 64 28.5 80 

C→G/G→C 8 8 15 0 7 0 0 

A→T/G→C 25 0 0 8 14 28.5 0 

A→T/C→G 0 8 8 0 0 0 0 
 

aProportion of samples that had mutations in the RRDR region. 
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Fig. 30. Amino acid changes in the RRDR region of the rpoB gene in rifampicin resistant mutants isolated from wild 

type, single and double knockout mutants.  
(a) The codon and corresponding amino acid sequence of the RRDR region. Areas where mutations occurred are highlighted in the 
boxes and areas where deletions occurred are indicated by arrows and lines. (b) Table indicating the specific mutations, alterations and 
percentage frequency of the mutations for the single and double mutants compared to the parental strain. The numbers of mutants 
isolated from each of the mutant and parental strains are indicated in brackets and those mutations which did not map to the RRDR 
region are labelled as unknown.  

LeuAlaSerLeuArgArgLysHisThrLeuGlySerLeuProAsnAsnGlnAspMetPheGlnSerLeuGlnSerThrGly

ctggcgtcgcttcgtcgtaagcacaccctgggttcgctgccgaacAaccaggacatgttccagtgcctgcagagcaccggc

LeuAlaSerLeuArgArgLysHisThrLeuGlySerLeuProAsnAsnGlnAspMetPheGlnSerLeuGlnSerThrGly
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4. Discussion and Conclusion 
 

M. tuberculosis, the causative agent of tuberculosis, is exposed to considerable DNA-

damaging, oxidative stress during its infection cycle. However, it is still able to, not 

only cause primary infections but, is also, after indefinite periods of latency, able to 

re-emerge and cause secondary disease (Glickman and Jacobs, 2001; Kaufmann, 

2005; Russell, 2007). Hence, M. tuberculosis must have mechanisms that can repair 

oxidatively damaged DNA to allow for its survival and further infection.  

 

Fpg and Nei glycosylases are members of a structurally related family of DNA 

glycosylases involved in the identification, excision and repair of oxidatively-

damaged DNA. Genome analysis performed in this study allowed for the 

identification of four putative fpg and nei DNA glycosylase-encoding genes in M. 

tuberculosis and M. smegmatis. Bioinformatic analysis confirmed that these M. 

tuberculosis and M. smegmatis genes were homologues. Further, it was observed that 

the M. smegmatis fpg and nei encoded proteins had all maintained the domains 

necessary for protein function, and showed a strong resemblance to previously 

characterised Fpg and Nei DNA glycosylases in E. coli, T. thermophilus, G. 

stearothermophilus and L. lactis (Gilboa et al., 2002; Zharkov et al., 2003; Golan et 

al., 2005). Therefore, these glycosylases were considered to have a functional role in 

their host organism.  

 

The presence of homologues of functional glycosylases in mycobacteria, as well as 

the high level of substrate overlap between these fpg and nei encoding genes, 

indicates possible redundancy of these genes. Most organisms have maintained one 

member of this family but, rarely both. It has, therefore, been suggested that the 

retention and the redundancy of these BER enzymes in intracellular organisms, such 

as M. tuberculosis and S. typhimurium, might be a deliberate adaptation that has 
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allowed increased survival of these pathogens when exposed to oxidative stress 

(Suvarnapunya et al., 2003). 

 

In order to expand this hypothesis and to identify the individual and/or combined 

role(s) of the Fpg and Nei glycosylases in mycobacterial DNA repair, single, double 

and triple knockout mutant strains were generated in M. smegmatis by homologous 

recombination and phenotypically assessed.  No difference in growth kinetics was 

observed between the parental, single and double knockout mutant strains. These 

results concur with previously published data, where a single fpgI mutant of M. 

smegmatis, and fpg and nei knockout mutants of S. typhimurium showed no growth 

defects under normal culture conditions (Suvarnapunya et al., 2003; Suvarnapunya 

and Stein, 2005; Jain et al., 2007).  

 

When the parental, single and double knock-out mutants were treated with 2.5 mM 

H2O2 no difference in killing rates was observed, however, variations in killing rates 

between biological replicates was noted. This variation could be due to the 

decomposition of H2O2, since H2O2 spontaneously decomposes into water and 

oxygen, in a manner dependent on temperature, initial concentration and pH (Brown 

et al., 2000). Therefore, although attempts were made to ensure conditions between 

experiments remained the same, there might have been differences in the effective 

concentration of H2O2 that the cells were exposed to between biological replicates. 

However, since the single and double knockout mutants consistently behaved as the 

parental strain, the results reported in this study suggested that the loss of one or two 

fpg and nei genes did not affect the ability of M. smegmatis to recover from oxidative 

stress generated by 2.5 mM H2O2. Similarly, in E. coli and S. typhimurium, no 

increased sensitivity to H2O2 was observed in fpg and nei mutants (Asad et al., 1995; 

Saito et al., 1997; Alhama et al., 1998; Suvarnapunya et al., 2003) and a slight 

increase in sensitivity to H2O2 was observed, in E. coli only with the double nei nth 

mutant (Saito et al., 1997; Suvarnapunya et al., 2003). 
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The single fpgI mutant was tested for its ability to recover from oxidative stress as 

reported by Jain et al. (Jain et al., 2007). Their study showed that lag-phase wild type 

cultures took 12 h to recover after exposure to 3mM H2O2 before entering log phase, 

whereas the fpgI mutant entered log phase after 48 h (Jain et al., 2007). However, the 

∆fpgI::hyg mutant strain generated in this study together with the parental strain 

showed no recovery even after 8 days, suggesting that both cultures were unable to 

tolerate the oxidative stress generated by the H2O2. The reason for the differences 

between the findings reported in this study and those described by Jain et al. are 

currently unknown and warrants further investigation. Additional studies could 

include phenotypic analysis of the mutants under different sources of oxidative stress, 

for example ionizing radiation or the superoxide generator plumbagin. Ionizing 

radiation induces similar DNA damage to oxidative stress and the mechanisms used 

in DNA repair are the same as those used in oxidatively damaged DNA (Blaisdell and 

Wallace, 2001; Suvarnapunya et al., 2003; Suvarnapunya and Stein, 2005). The free-

radicals produced in this manner are of a consistent amount and do not spontaneously 

decompose (Henle and Linn, 1997). Plumbagin, on the other hand, releases a 

superoxide radical via a specific and controlled enzymatic interaction in a non-

spontaneous, reliable manner. Plumbagin has also been shown to cause oxidative 

stress capable of killing M. smegmatis (Farr et al., 1985; Walkup and Kogoma, 1989; 

Rawat et al., 2004). The resulting damage caused by ionizing radiation and 

plumbagin could be of a more consistent concentration as opposed to those generated 

by H2O2 and therefore may not show the variable killing rate as observed for H2O2. 

 

Two different methods were used in this study to assess spontaneous mutagenesis in 

the glycosylase-depleted strains: mutation frequencies and mutation rates. Limited 

mutation frequency analysis suggested an elevated mutation frequency for the fpgI 

mutant, which is concordant with the 3.8-fold increase observed by Jain et al. for an 

independently generated M. smegmatis mutant lacking the fpgI gene (Jain et al., 
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2007). However, mutation frequencies do not accurately reflect the number of 

mutations incurred by a specific cell. Therefore, fluctuation assays were performed to 

accurately ascertain changes in mutation rates between the parental and mutant 

strains. The fluctuations assays showed that there was no significant variation in 

mutation rates between the parental, single or double knock-out mutants.  

 

The mutation rates data reported in this study can be broadly compared to the 

mutation frequency data reported in several other studies. E. coli fpg and nei mutants 

and S. typhimurium nei knock-out mutants did not display any increase in the 

frequencies of rifampicin mutations (Jiang et al., 1997; Blaisdell et al., 1999; Fowler 

et al., 2003), and mutator phenotypes only became apparent in E. coli but not in S. 

typhimurium, when the nth and/or mutY encoding genes were inactivated in addition 

to the fpg and nei encoding genes (Jiang et al., 1997; Blaisdell et al., 1999; 

Suvarnapunya et al., 2003; Suvarnapunya and Stein, 2005).  

 

Although the glycosylase-deficient mutants analysed in this study did not show 

obvious mutator phenotypes, sequence analysis of the RRDR region of rifR colonies 

obtained from the parental, single and double mutants did suggest a trend towards an 

increased frequency of C→T transitions in the fpg and nei mutants. However, the 

sample size for this analysis was small suggesting that the data could be biased. 

Hence, any future study would need to include a larger sample set of rifR colonies 

before any significant conclusions can be made. The first sign of a weakened DNA 

repair network is an increase in C→T (G→A) transitions as these mutations are the 

most abundantly occurring mutations under normal conditions (Wang et al., 1998; 

Wallace, 2002). These transition mutations originate from lesions in cytosine on the 

sense, or lesions in guanine on the anti-sense strand (Wang et al., 1998; Wallace, 

2002). Since the primary pro-mutagenic substrates for Fpg and Nei are guanine and 

cytosine lesions respectively, the trend of an increased frequency of C→T transition 

mutations observed in the fpg and nei deletion mutants from the limited sample size 
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analysed in this study, was as predicted (Jiang et al., 1997; Krokan et al., 1997; Wang 

et al., 1998; Wallace, 2002; Wallace et al., 2003). 

 

In E. coli studies uniquely designed lac genes have been used as neutral mutational 

targets for recognising the types of mutations that occur in the absence of a wide 

range of DNA repair genes, including fpg and nei. The lac genes were altered at a 

unique glutamic acid codon, so that only a precise transversion or transition allowed 

for the reversion of a lac
-  phenotype to a  lac

+ phenotype (Cupples and Miller, 1989). 

Using this method E. coli fpg deletion mutants showed an increase in lac
+ reversions 

when the erroneous base needed to be altered from G→T, it however, did not 

increase G→C transversions (Cabrera et al., 1988; Michaels et al., 1991; Michaels et 

al., 1992; Matsumoto et al., 2001; Fowler et al., 2003). The nei deletion mutants 

showed no increase in reversion of  C→T,  nor G→C (Saito et al., 1997; Matsumoto 

et al., 2001). Therefore, the deletion of fpg and nei genes in M. smegmatis did not 

give comparable mutations as seen in E. coli fpg and nei deletion mutants. These 

differences could be due to the dissimilar systems used to assess mutations in E. coli 

and M. smegmatis, as mutations in the lac reporter system does not effect the survival 

of the organism while mutations in rpoB gene could. Further there might be slightly 

different functions between the DNA glycosylases in the two organisms, or possibly 

due to the different complement of back-up DNA repair enzymes in E. coli and M. 

smegmatis which could influence the recognition and repair of damaged bases.  

 

The sequencing data was extended to analyse the codon and amino acid changes in 

the RRDR region. Although the DNA from a few colonies showed deleted regions, 

mutations were predominantly single polymorphisms resulting in changes at His526 

(32.5%), Ser531 (32%) and Gln513 (23.9%), which corresponded to previously 

reported mutations in M. smegmatis  and M. tuberculosis (Musser, 1995; 

Karunakaran and Davies, 2000; Warner, 2005; Jain et al., 2007). Ninety four percent 

of the total rifR colonies sequenced in this study showed mutations in the RRDR 
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region, which was in agreement with previous studies (Musser, 1995; Ramaswamy 

and Musser, 1998; Warner, 2005). In contrast the M. smegmatis fpgI knockout mutant 

of (Jain et al., 2007) showed that only 30-50% of the rifR colonies had mutations 

within the RRDR region (Jain et al., 2007). The large differences in the percentages 

of rifR colonies could be due to the different concentrations of rifampicin used. The 

level of antibiotic resistance ranges from weakly to strongly resistant between 

individual resistors, and resistance can be caused not only by genotypic change but by 

phenotypic adaptations as well. The rifampicin MIC of M. smegmatis ranges between 

4-32 µg/ml (Hetherington et al., 1995; Alexander et al., 2003) therefore, by selecting 

on a concentration close to the MIC the chances of selecting non-genotypic resistors 

is increased. Jain et al. used 50 µg/ml rifampicin compared to 200 µg/ml used in this 

and other studies (Karunakaran and Davies, 2000; Boshoff et al., 2003; Warner, 

2005). Therefore, by selecting on 200µg/ml, even though the possibility of excluding 

relatively low-level resistant mutants is increased, and those selected are more likely 

to have mutations in the RRDR region. A low level of rifampicin resistance in M. 

smegmatis is associated with ADP-ribosyl transferase activity where rifampicin is 

inactivated by ribosylation (Quan et al., 1997). Although this was not established in 

the Jain et al. study, there was a chance that the rifR colonies that did not have 

mutations in the RRDR region could have their resistance associated with ADP-

ribosyl transferase activity. Furthermore, the 42 rifR colonies sequenced in the RRDR 

by Jain et al. showed that rifampicin resistance in 26% of the colonies was caused by 

C→T transitions as compared to 36% in the parental strain and that an increase (from 

24%-46%) in A→G (or T→C) transversion had occurred when fpgI was absent (Jain 

et al., 2007). The lack of correlation between the two studies could be attributed to 

the different concentrations of rifampicin used or possibly due to deviations in the 

methods of isolating mutants. In this study the colonies were picked after fluctuation 

assays whilst the colonies tested by Jain et al. were from rifampicin frequency assays.  
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Guanine lesions resulting in G→T transversion are known to occur at a high 

frequency, are highly mutagenic and the pro-mutagens generated are substrates 

recognized by both Fpg and Nei DNA glycosylases (Michaels and Miller, 1992; 

Hazra et al., 2001; David et al., 2007). Hence, one would expect an increase in this 

type of transversion in the M. smegmatis fpg and nei deletion mutants. However, this 

was not observed under the conditions tested, which is possibly due to the presence of 

other DNA repair enzymes able to prevent these transversions, such as Nth and 

components of the GO system (Krokan et al., 1997), or that these mutations in the 

RRDR were not well tolerated and therefore the resultant mutants were non viable. 

 

The absence of phenotypic variation in mutants missing one or two DNA 

glycosylases could be due to the functional redundancy among the Fpg and Nei 

homologues, as well as the presence of damage avoidance mechanisms, 

detoxification pathways and/or a number of other DNA repair mechanisms present in 

M. smegmatis. These repair enzymes share a large potential overlap in substrate 

specificities and hence have the possible ability to compensate for the loss of the 

glycosylases (Blaisdell et al., 1999; Hazra et al., 2000; Hazra et al., 2001; Matsumoto 

et al., 2001; Wallace et al., 2003; Wiederholt et al., 2005). It also suggests that an in 

vitro phenotype might only become apparent once all four fpg and nei glycosylases 

are inactivated and possibly only after removal of other DNA repair enzymes such as 

nth and/or mutY. Hence, this study will need to be extended by constructing a 

quadruple mutant lacking all four fpg/nei genes and phenotypically characterizing the 

triple and quadruple knockout mutants under identical conditions as for the single and 

double mutants.   

 

Expression data on each of the DNA repair genes could also be informative. The Jain 

et al. study suggested that fpgI was expressed under normal growth conditions (Jain 

et al., 2007), but not much is known about the expression of fpgII, the nei 

glycosylases, and the nth glycosylase in M. smegmatis. Therefore, the panel of 
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mutants generated in this study is a rich resource for assessing the expression levels 

of the remaining glycosylases by RT-PCR. Such studies could provide insight into 

the possible compensatory and or redundant role(s) of these genes thus broadening 

our understanding of the function of these glycosylases in the overall DNA repair 

network in M. smegmatis. Since M. tuberculosis has similar Fpg/Nei homologues, the 

observations and conclusions made in the non-pathogenic fast growing M. smegmatis, 

can ultimately be useful to inform and guide the investigation of these glycosylases in 

M. tuberculosis. 
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5. Appendices 

5.1 Appendix A 

 

5.1.1 Culture media, supplementation and antibiotic stock 

solutions  

 

All media was made in 1 litre of deionised water and sterilized by autoclaving at 

121ºC for 10-20 min. 

 

Luria-Bertani broth (LB) 10 g tryptone, 10 g NaCl, 5 g yeast 

Luria-Bertani agar plates (LA)  10 g tryptone, 10 g NaCl, 5 g yeast extract, 15 g agar 

2xTY media  16 g tryptone, 10 g yeast extract, 5 g NaCl 

Sauton’s media 4 g asparagines, 0.5 g magnesium sulphate, 2 g citric 

acid, 0.5 g potassium dihydrogen orthophosphate,  

0.05g ammonium ferric citrate, 48 ml glycerol, pH 7.2 

Middlebrook 7H10 minimal 

media plates (MM) 

19 g 7H10 powder, 5 ml glycerol, 1.1 M glucose,    

1.46 M salt  

Middlebrook 7H9 minimal 

media (MM) 

4.7 g 7H9 powder, 2 ml glycerol, 1.1 M glucose,     

1.46 M salt 
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Table 6. Antibiotic and supplement stock solution. 

 Stock solution  Solvent  

Antibiotic 

Ampicillin  100 mg/ml 50% dH2O 

50% ethanol  

Kanamycin 50 mg/ml dH2O (filter sterilized) 

Hygromycin 50 mg/ml dH2O (filter sterilized) 

Rifampicin 100 mg/ml dimethyl formamide 

Supplement 

X-gal 20 mg/ml  dimethyl formamide 

IPTG 200 mg/ml dH2O (filter sterilized) 

Sucrose 75% dH2O (autoclaved) 

Tween 80 25% dH2O (filter sterilized) 

H2O2  8 mM  

 

5.1.2 DNA extraction solutions  

 

TE buffer 10 mM tris-HCl , 1 mM EDTA, pH 8 

CTAB solution  10% CTAB, 0.7 M NaCl 

TENS buffer 

 

10 mM tris-HCl pH 7.5, 1 mM EDTA, 0.1 M NaOH, 

0.5% SDS 

Solution I  0.5 M glucose, 0.5 M EDTA, tris-HCl pH 8 

Solution II  10 M NaOH, 10% SDS 

Solution III  5 M potassium acetate, glacial acetic acid  
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5.1.3 Agarose gel electrophoresis solutions 

 

TAE buffer 1 mM EDTA, 40 mM tris-acetic acid pH 8.5 

 

5.1.4 DNA molecular weight marker 

 

 

Fig. 31. The DNA molecular weight marker λIII used in this study 
Supplied by Roche Biochemicals. 

 

Marker λIII 
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5.1.5 Southern blot solutions 

 

Electroblotting 

Depurination solution  0.25 M HCl 

Denaturation solution  0.5 M NaOH; 1.5 M NaCl 

TBE buffer  Tris-borate-EDTA pH 8.0, Sigma 

 

Hybridization and radioactive labelling solutions 

Pre-hybridization solution  

 

0.5% SDS; 6 × SSC; 5 × Denhardt’s solution; 50% de-

ionized formamide 

G-25 Sephadex columns 100 g of Sephadex in 500ml TAE buffer 

 

Radioactive wash solutions  

Solution I  2 × SSC, 0.1% SDS 

Solution II  0.5 × SSC, 0.1% SDS 

Solution III  0.1 × SSC, 0.1% SDS  

Solution IV  0.1x SSC, 1% SDS 

 

Non-radioactive washing solutions 

Solution I  2x SSC, 0.1% SDS 

Solution II  0.5x SSC, 0.1% SDS 
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Immuno-detection and chemiluminescence solutions  

CSPD Disodium 2-chloro-5-(4-methoxyspiro (2-dioxetane-

3,2 (2-dioxetane-3,2’-(5’-chloro)-tricyclo[3.3.1.1. 3, 7. 

]decan)-. 4-yl)-1-phenyl phosphate 

Washing buffer  0.01 M maleic acid, 0.015 M NaCl, 0.3% triton X-100, 

pH 7.5  

Blocking solution  0.01 M maleic acid, 0.015 M NaCl, 10 × blocking 

solution supplied, pH 7.5 

Antibody solution  25 ml blocking solution, 1 µl of anti-DIG-AP per plot 

Detection buffer  50 mM MgCl2, 0.1 M Tris·HCl  pH 9, 1 M NaCl  

 

5.1.6 Solutions for chemical transformation of E. coli  

 

RF1 solution  

 

100 mM RbCl2, 50 mM MnCl2, 30 mM potassium 

acetate, 10 mM CaCl2, 15% (v/v) glycerol pH 5.8 

RF2 solution  

 

10 mM MOPS, 10 mM RbCl2, 75 mM CaCl2, 15% 

(v/v) glycerol pH 6.8 
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5.2 Appendix B 

5.2.1 PCR and sequencing primers used in this study 

 

Table 7. Oligonucleotides used for PCR amplification in this study. 

 

Name of 
fragment 

Names of 
primers 

Oligonucleotide sequence a 

Annealing 
Temperature 

and DNA 
polymerase  

Properties of amplicons 

FpgIUSF1 
5′GGTACC 
ACACCGTCGACCTGGAAC 3′ 

fpgI 

Upstream 
FpgIUSR1 

5′AGATCT  
CACACCGGTGATCGTCTT 3′ 

Taq/Expand 
=58°C 

1048bp amplicon generated 
from wild type fpgI allele, 
retaining only 100bp of 5′ end 
of the fpg1 gene using 
FpgIUSF1and FpgIUSR1 
primers 

FpgIDSF1 
5′AGATCT  
ACCGCTCGTCGTTCTACT 3′ 

fpgI 

Downstream 
FpgIDSR1 

5′AAGCTT 
GTACGCTCAACCCAGAGA 3′ 

Taq/Expand 
=58°C 

1048bp amplicon generated 
from wild type fpgI allele, 
retaining only 100bp of 3′ end 
of the fpg1 gene and using  
FpgIDSF1and FpgIDSR1 
primers 

FpgIIUSF1 
5′ AGATCT                        
ACAGGTGCGTG ATGAGGT 3′ 

fpgII 

Upstream 
FpgIIUSR1 

5′ AAGCTT 

CTGATCGGGTTTCGGTTG 3′ 

Taq/Expand 
=55°C 

Phusion = 
56°C 

982bp amplicon generated 
from wild type fpgII allele, 
retaining only 317bp of 5′ end 
of the fpgII gene and using  
FpgIIUSF1and FpgIIUSR1 
primers 

FpgIIDSF1 
5′ GGTACC 
GGCCTTGCTCGCACAGTA 3′ 

fpgII 

Downstream 
FpgIIDSR1 

5′ AGATCT  
TGATCACCGACCAGAAGG 3′ 

Taq/Expand 
=55°C 

Phusion = 
56°C 

913bp amplicon generated 
from wild type fpgII allele, 
retaining only 317bp of 3′ end 
of the fpgII gene and using  
FpgIIDSF1and FpgIIDSR1 
primers 

NeiIUSF1 
5′ AAGCTT 

GTGGCGCGTATTTCTTCC 3′ 
neiI 

Upstream 
NeiIUSR1 

5′ AGATCT 
ATGAACAGATGTTTGCCG 3′ 

Taq/Expand 
=54°C 

1098bp amplicon generated 
from wild type neiI allele, 
retaining only 175bp of ’5 end 
of the neiI gene and using  
NeiIUSF1and NeiIUSR1 
primers 



Appendix B 
 
 

 105 

NeiIDSF1 
5′ AGATCT 

GCCAGCTGTGGGTGTACG 3′ 
neiI 

Downstream 
NeiDSR1 

5′ GGTACC 
GCATCCTGTGCGGTGTTG 3′ 

Taq/Expand 
=58°C 

1110bp amplicon generated 
from wild type neiI allele, 
retaining only 180bp of ’3 end 
of the neiI gene and using  
NeiIDSF1and NeiIDSR1 
primers 

NeiIIUSF1 
5′GGTACC 
ATCACCAGATCGTCGGGATA 
3′ neiII 

Upstream 
NeiIIUSFI 

5′ 
CCGTCGTAGTGGTGGAACAG
GTG 3′ 

Taq/Expand 
=55°C 

Phusion = 
56°C 

974bp amplicon generated 
from wild type neiII allele, 
retaining only 183bp of 5′ end 
of the neiII gene and using  
NeiIIUSF1and NeiIIUSR1 
primers 

NeiIIDSR1 
5′ GTCGAC 
GTTCCACACGTAGCGTTCCT 
3′ neiII 

Downstream 
NeiIIDSF1 

5′ AGATCT 
GTGGTACACCCGTACGAACC 
3′ 

Taq/Expand 
=55°C 

Phusion = 
56°C 

992bp amplicon generated 
from wild type neiII allele, 
retaining only 85 bp of 3′ end 
of the neiII gene and using  
NeIDSF1and NeiIDSR1 
primers 

MsmrpoBF1 
 

5′ 
GCAGACCCTGATCAACATCC 
3′ RRDR 

region 

of rpoB 
MsmrpoBR1 

5′ ACGTCGCGGACCTCGAGG 
3′ 

Expand = 
60°C 

184bp amplicon generated 
from wild type rpoB allele 
using MsmrpoBF1 and 
MsmrpoBR1primers 

 
a Restriction enzymes sites are indicated in italics 
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Table 8. Table of primers used to sequence knockout fragments 

 
Template Name of primer Sequence 

fpgI Upstream FpgISeqUF1 5′ ACACCGTCGACCTGGAAC 3′ 

 FpgISeqUF2 5′ CCACCGCAGCTATTCGTA 3′ 

 FpgISeqUF3 5′ AATCTATCTCGAACACGG 3′ 

 FpgISeqUR1 5′ CACACCGGTGATCGTCTT 3′ 

 FpgISeqUR2 5′ GCCGAACAGGCGCAGGAT 3′ 

 FpgISeqUR3 5′ CGCCGTTCTCATACGAAT 3′ 

fpgI Downstream FpgISeqDF1 5′ ACCGCTCGTCGTTCTACT 3′ 

 FpgISeqDF2 5′ CGACATGTCGAACAGGGC 3′ 

 FpgISeqDF3 5′ CTGCCCGTATTGCGGTTG 3′ 

 FpgISeqDR1 5′ GTACGCTCAACCCAGAGA 3′ 

 FpgISeqDR2 5′ CGCAGCCTGCTTACGGGG 3′ 

 FpgISeqDR3 5′ TACTTCTGTGCGGGCGAT 3′ 

fpgII Upstream FpgIIseqUR1 5′ GGGATTACCGACGGGTTC 3′ 

 FpgIISeqUF2 5′ GGAACCCGTCGGTAATCC 3′ 

 FpgIISeqUR2 5′ ATCGCGATCACGGTCACT 3′ 

 FpgIIseqUF3 5′ CCACAGTGACCGTGATCG 3′ 

fpgII Downstream FpgIISeqDR1 5′ ACGGATCGTCTGGAGGAG 3′ 

 FpgIISeqDF2 5′ GGCCACCTTGATGTACGG 3′ 

 FpgIISeqDR2 5′ TTCGCCGACAAGTCCTTC 3′ 

 FpgIISeqDF3 5′ CGGGCAGTACTGGAAGGA 3′ 

neiI Upstream NeiISeqUF1 5′ TCGCCACGCTGTACAAGG 3′ 

 NeiISeqUR1 5′ CCTTGTACAGCGTGGCGA 3′ 

 NeiISeqUF2 5′ GGATCCCGTCACTGCTCG 3′ 

 NeiISeqUR2 5′ CGAGCAGTGACGGGATCC 3′ 

 NeiIUExtraF 5′ CACTTCCAGGCCGAGTTG 3′ 

 NeiIIUExtraR 5′ CCAGCGACTCCACGAAGTA 3′ 

neiI Downstream NeiISeqDF3 5′ GAGGATCACCACAACCCG 3′ 

 NeiISeqDR3 5′ CGGGTTGTGGTGATCCTC 3′ 

 NeiISeqDF4 5′ AGTCCGATCCGTAATGCG 3′ 

 NeiISeqDR4 5′ CGCATTACGGATCGGACT 3′ 

 NeiISeqDF5 5′ ACCGTGCGCGCCCACTTC 3′ 
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neiII Upstream NeiIISeqUF 5′ ATCACCAGATCGTCGGGATA 3′ 

 NeiIISeqUF2 5′ TTAGGGTTAGCGCCATGC 3′ 

 NeiIISeqUF3 5′ CACAACAACGCGAACCTG 3′ 

 NeiIISeqUR2 5′ TCGTACTCGTAAGCCCCG 3′ 

 NeiIISeqUR3 5′ ACCACGGAGCAGACAGGA 3′ 

neiII Downstream NeiIISeqDF 5′ GTGGTACACCCGTACGAACC 3′ 

 NeiIISeqDF4 5′ CTCCCCGATTTCGAACCT 3′ 

 NeiIISeqDF5 5′ ATGATGGCGATCCTGACC 3′ 

 NeiIISeqDR1 5′ GTTCCACACGTAGCGTTCCT 3′ 

 NeiIISeqDR5 5′ GGTCAGGATCGCCATCAT 3′ 

 NeiIISeqDR6 5′ GAACGAGAAGTTCAGTGC 3′ 

 

Table 9. Primers and conditions used to confirm DCOs by PCR 
Template Name of primers Annealing temp Amplicon sizes 

fpgI 
FpgISeqUF2 and 
FpgISeqDR2 

56°C-57°C.  

 

mc2155 = 2142bp 

mutant = 1463bp 

fpgII 
FpgIISeqDF3 and 
FpgIISeqUR1 

58°C 

 

mc2155 = 888bp 

mutant = 627bp 

neiI 

NeiISeqDR3 and  

NeiISeqUF2 

0r 

NeiISeqDF4 and 
NeiIUSF1  

56°C-57°C. 

 

 

55°C 

mc2155 = 1165bp 

mutant = 697bp  

or 

mc2155 = 2312bp 

mutant = 1845bp 

neiII 
NeiIISeqDR5 and 
NeiIISeqUF3 

58°C.  
mc2155 = 1477bp 

mutant = 871bp 
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5.3 Appendix C 

 

5.3.1 Bioinformatic analysis of fpg and nei DNA glycosylases 

 

Table 10. Identification of fpg and nei DNA glycosylase homologues in other 

mycobacterial genomes while using GenoList and CMR genomic comparisons.  

 
Organism  Annotation  Homologue identified by genomic 

context analysis 

M. leprae ML1658 fpgI  

 ML0148 fpgII pseudogene 

 ML1483c neiII pseudogene 

M. bovis Mb2949c fpgI 

 Mb0969  fpgII similarly truncated as Rv0944 

 Mb3325 neiI 

 Mb2491c neiII 

M. ulcerans MUL_2031 fpgI 

 MUL_4418 fpgII 

 MUL_2650 neiI 

 MUL_3737 Possible neiII 

M. avium MAV_3782 fpgI 

 MAV_1066 fpgII  

 MAV_4269 neiI 

 MAV_1708 neiII 

 MAV_3149 Same as MAP_1328 

M. avium paratuberculosis MAP_2994c fpgI 

 MAP_0889 fpgII  

 MAP_3416 neiI 

 MAP_2284c neiII 

 MAP_1328 same as MAV_3149 
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Table 11. BLASTp searches of M. smegmatis Fpg and Nei proteins to other 

organisms. 

 

 
M. 

tuberculosis 

(H37Rv) 
Actinobacteria E. coli T. thermophilus G. stearothermopilus L. lactis 

MSMEG_2419 

(FpgI) 
4e-95 1e-122 – 1e-51 6e-29 9e-24 7e-23 1e-23 

MSMEG_5545  

(FpgII) 
7e-97 1e-132 – 1e-73 6e-29 6e-24 7e-23 1e-23 

MSMEG_1756 

(NeiI) 
1e-91 6e-100 – 1e-51 2e-18 N/R* N/R* N/R* 

MSMEG_4683  

(NeiII) 
8e-109 3e-119 – 1e-51 6e-16 1e-17 1e-21 – 1e-19 2e-13 –2e-11 

 

*not recognised 
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5.3.2 Vector maps and cloning strategies used to generate 

suicide vectors 

 

Fig. 32. The plasmid maps for pcrSMART and TOPO vector used. 
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Fig. 33. The plasmid maps for pGem3Zfp, p2NIL, pGOAL17 pGOAL19 and pIJ964 

The marker cassettes are highlighted on pGOAL17, pGOAL19 and pIJ963 
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Fig. 34. The plasmid maps of vectors generated during the construction of fpgI knockout suicide vectors 
The US and DS fragments are highlighted in the respective plasmid. (1) the insertion of the US fragment with part of the TOPO vector 
(shown in red) into pGEM (2) insertion of the DS fragment into pGEM∆fpgIUS (3) the insertion of the ∆fpgI region into p2NIL and 
(4) the insertion of marker cassettes. 
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Fig. 35. The plasmid maps of vectors generated during the construction of the fpgII knockout suicide vector. 
The US and DS fragments are highlighted on the respective plasmid (1) The insertion of the DS and US fragments into p2NIL. (2) 
The insertion of marker cassettes.
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Fig. 36. The plasmids maps of vectors generated in this study during the 

construction of neiI knockout suicide vectors 
The US and DS fragments are highlighted the respective plasmid. 
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Fig. 37. The plasmid maps of vectors generated during the construction of neiII knockout suicide vectors 
The upstream and downstream fragments are highlighted the respective plasmid (1) The insertion of the DS fragment into pGEM (2) 
insertion of the US fragment into pGEM∆neiIIDS (3) The insertion of the ∆neiII region into p2NIL and (4) the insertion of marker 
cassettes
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5.3.3 Confirmation of suicide vectors by restriction digests 

5.3.3.1 fpgI based suicide vectors  

 

Fig. 38. Restriction analysis of p2NIL∆fpgI with various restriction 

endonucleases. 
Marker sizes in bp are shown adjacent to the fragment. Lane 1, molecular weight marker λIII; 
lane 2, uncut p2NIL∆fpgI; lane 3, Asp718/HindIII digest (4436bp, 2084bp); lane 4, Asp718/ 
BglII digest (5478bp, 1042bp); lane 5, HindIII/BglII digest (5478bp, 1042bp); lane 6, NruI 
digest (4179bp, 2341bp); lane 7, PstI digest (4002bp, 1979bp, 539p); lane 8, SalI digest 
(5256bp, 1225p).  

 

5.3.3.2 fpgII based suicide vectors  

 

Fig. 39. Restriction analysis of p2NIL∆fpgII with various restriction 

endonucleases.  
Marker sizes in bp are shown adjacent to the fragment. The restriction digest of 
p2NIL∆fpgII; Lane 1, molecular weight marker λIII; lane 2, uncut p2NIL∆fpgII; lane 3, 
EcoRI/HindIII digest (4414bp, 1895bp); lane 4, EcoRI/ BglII digest (5390bp, 919bp); lane 5, 
HindIII/BglII digest (5333bp, 919bp); lane 6, PvuI digest (3277bp, 2384bp, 648bp); lane 7, 
XhoI digest (4220bp, 2089bp); lane 8, ScaI digest (4631bp, 1682bp) 
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5.3.3.3 neiI based suicide vectors  

 

Fig. 40. Restriction analysis of p2NIL∆neiI with various restriction 

endonucleases. 
Marker sizes in bp are shown adjacent to the fragment. Lane 1, molecular weight marker λIII; 
lane 2, uncut p2NIL∆neiI; lane 3, Asp718/HindIII digest (4436bp, 2208bp); lane 4, Asp718/ 
BglII digest (5534bp, 1110bp); lane 5, HindIII/BglII digest (5536bp, 1098bp); lane 6, 
BamHI digest (5410bp, 1234bp); lane 7, PstI digest (3888bp, 2756bp); lane 8, PvuI digest 
(2384bp, 1826bp, 1679bp, 755bp)  

 

5.3.3.4 neiII based suicide vectors  

 

 
Fig. 41. Restriction analysis of p2NIL∆neiII with various restriction 

endonucleases. 
Marker sizes in bp are shown adjacent to the fragment. lane 1, molecular weight marker λIII; 
lane 2, uncut p2NIL∆neiI; lane 3, Asp718/HindIII digest (4436bp, 1846bp); lane 4, Asp718/ 
BglII digest (5357bp, 925bp); lane 5, HindIII/BglII digest (5361bp, 921bp); lane 6, BamHI 
digest (4692bp, 1590bp); lane 7, PvuI digest (2384bp, 1747bp, 972bp, 724bp, 455bp); lane 8, 
XhoI digest (3467bp, 2309bp, 506bp).  
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5.3.3.5 Mutation identified the ∆fpgII downstream primer 

 
Fig. 42. An illustration of the mutation in the ∆fpgII downstream primer. 
The Asp718 restriction enzyme site is indicated by the line and the mutation which abrogates 
the restriction enzyme site is indicated in the box. (a) shows the expected sequence and (b) 
the actual sequence of the fragment.  

(b) 

(a) 
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