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ABSTRACT 
 

Malaria, which is caused by Plasmodium parasites, is responsible for the death of 

millions of humans every year in the tropical and subtropical regions of the world. 

Specifically P. falciparum, one of four malaria species infecting humans, is 

responsible for the greatest morbidity and mortality burden in African populations. 

The Anopheles mosquito transmits the parasite to the human host, where it infects 

and destroys human erythrocytes. The erythrocyte membrane therefore plays a 

vital role in all aspects of the pathogenic phase of the P. falciparum life cycle and 

protein-protein interactions between host and parasite are thus a key focus of 

research. The human erythrocyte maintains its shape with a structural network of 

proteins underneath the plasma membrane and the main protein component of this 

erythrocyte membrane skeleton is spectrin. To investigate host-parasite protein 

interactions, a novel application of phage display technology was developed, 

whereby purified human erythrocyte spectrin was biopanned against a P. 

falciparum phage-display library. The P. falciparum DNA inserts of interacting 

phage were compared to the PlasmoDB database and five interacting proteins 

were identified: a putative aminopeptidase (PfM18AAP); a putative Ebl-1 like 

protein, which is proposed to participate in erythrocyte invasion; and three 

hypothetical proteins. The interaction of the hypothetical proteins with spectrin is 

the first information available on the function of these proteins. The five gene 

sequences were cloned into the pET-15b or pGEX-4T-2 expression vectors for 

purification of the recombinant proteins from Escherichia coli. Only the 6His-

PfM18AAP fusion protein was expressed in soluble form and purified by affinity 

selection. PfM18AAP migrated as a 67 kDa peptide on SDS-PAGE and native gel 

analysis revealed multiple subunits of the enzyme, predominantly a tetramer and 

higher oligomers. Cleavage of the 6His-tag and subsequent IEF SDS-PAGE 

revealed three 65 kDa entities with pI ~6.6, ~6.7 and ~6.9. An in vitro coupled 

enzyme assay showed that PfM18AAP cleaved an N-terminal aspartate from a 

peptide substrate with a maximum activity at pH 7.5 and 37 ºC. Inhibitor studies 

confirmed that the enzyme is a metalloprotease. Blot overlay assays with 

PfM18AAP against spectrin and erythrocyte membrane proteins verified that 
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PfM18AAP binds strongly to β-spectrin, as well as protein 4.1, protein 4.2, actin 

and glyceraldehyde-3-phosphate dehydrogenase. Comparison of the PfM18AAP 

protein sequence to ten other M18 aminopeptidase sequences, including human 

and three other Plasmodium species, revealed that all the critical amino acids 

responsible for the binding of two catalytic metal ions, enzymatic catalysis and 

quaternary structure stabilisation are conserved. The peptide fragment, which 

initially bound to spectrin during phage display, is not found in other M18 

aminopeptidases, suggesting that the presence of this fragment is an evolutionary 

development of P. falciparum that allows the protease to bind to human spectrin. 

Analysis of four M18 aminopeptidase crystal structures revealed that the spectrin-

binding region forms an external loop on the protein and would thus be accessible 

to spectrin. Results from this study suggest that, apart from haemoglobin digestion, 

PfM18AAP performs additional functions in the parasite and infected erythrocyte 

by cleaving spectrin and other erythrocyte membrane proteins. This would 

destabilise and disrupt the erythrocyte membrane skeleton to facilitate entry or 

exit from the host cell, or the insertion of parasite proteins into the host cell 

membrane. Further analysis and characterisation of PfM18AAP and its 

interactions with the erythrocyte membrane proteins will shed more light on the 

multifunctional role of this parasite enzyme. Studies of this enzyme and the 

hypothetical proteins may also aid in the quest to discover new therapeutics to 

combat this killer disease. 
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The men of experiment are like the ant, they only collect and use; the 

reasoners resemble spiders, who make cobwebs out of their own substance. 

But the bee takes the middle course: it gathers its materials from the flowers 

of the garden and field, but transforms and digests it by a power of its own. 

Not unlike this is the true business of philosophy (science); for it neither 

relies solely or chiefly on the powers of the mind, nor does it take the matter 

which it gathers from natural history and mechanical experiments and lay 

upon its memory of whole, as it finds it, but lays it up in the understanding 

altered and digested. Therefore, from a closer and purer league between 

these two faculties, the experimental and the rational (such as has ever been 

made), much may be hoped.  

 

Francis Bacon (1561-1626) 
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Chapter 1: Introduction 

1.1 Malaria 
 

Malaria, caused by an Apicomplexan of the genus Plasmodium, is a disease 

affecting humans in most tropical and subtropical regions of the world (Figure 1). 

Yearly 300-660 million people are diagnosed with clinical malaria and two thirds 

of the global incidence occurs in Africa (Snow et al., 2005). The World Health 

Organisation estimates that annually 2.7 million deaths can be attributed to the 

disease (WHO, 2006). P. vivax, P. ovale, P. malariae, and P. falciparum are the 

four Plasmodium species infecting humans. P. falciparum causes the most severe 

and majority of malaria cases in Africa (Snow et al., 2005) and often manifests 

itself as cerebral malaria in infected people. The disease can also induce anaemia 

and this results in the death of 10-20 % of infected children (WHO, 2006). 

 

 
Figure 1: The global malaria distribution. 
Map showing the endemicity of malaria. The severity of malaria throughout the 
tropical and subtropical regions of the world is indicated in green. The endemicity 
increases with increasing colour intensity (Roll Back Malaria, 2005). 

 

The Plasmodia that cause malaria in humans, alternate their life cycle between the 

human and a mosquito host (reviewed in Miller et al., 2002). The parasites use the 

mosquito as their primary host, where they complete their sexual replication and 
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undergo asexual replication, termed sporogony. The secondary human host is used 

for asexual replication, classified as schizogony. This phase includes the initial 

development in the liver known as pre-erythrocytic or exo-erythrocytic 

schizogony and the main asexual replication cycle that occurs in the human red 

cells, known as erythrocytic schizogony. It is during erythrocytic schizogony that 

the pathological and clinical symptoms of malaria occur, which include repeated 

attacks of fever, headache, vomiting and other flu-like symptoms. If the disease is 

not treated, or the parasites build up a resistance to the treatment, the parasite can 

kill its human host by infecting and destroying erythrocytes and by obstructing the 

capillaries that carry blood to the brain or other vital organs. 

 

1.1.1 The P. falciparum life cycle 
 

The intricate P. falciparum life cycle (Figure 2) (reviewed in Tuteja, 2007) 

commences in the human host when a female Anopheles mosquito injects a small 

amount of anticoagulant-containing saliva with approximately 20 haploid 

sporozoites into human subcutaneous tissue, or less commonly directly into the 

bloodstream. Once parasites have entered the bloodstream they travel to the liver, 

where they traverse several host cells before a single sporozoite comes to rest in a 

hepatocyte and develops asexually to produce 30,000-50,000 merozoites in about 

5 to 7 days. Upon maturation the merozoites are released from the liver cells into 

the bloodstream, where they attach themselves to erythrocytes, which they 

subsequently invade. 

 

Inside the erythrocyte, the parasite begins to enlarge as a uninucleate ring form, 

and continues to develop into a young feeding stage, known as the ring or early 

trophozoite. Trophozoites continue to divide asexually to produce a schizont that 

has approximately 16-32 nuclei. Further parasite maturation results in 

mononucleated merozoites that rupture the erythrocytes, thereby releasing 

themselves into the bloodstream. Merozoites reinvade healthy erythrocytes, 

resulting in a replication cycle that repeats itself approximately every 48 hours 

during a P. falciparum infection. 
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Figure 2: The P. falciparum life cycle. 
Diagram showing the three distinct stages and the different parasite forms during 
the P. falciparum life cycle. The mosquito stage is labelled in purple; the exo-
erythrocytic liver stage is labelled in green; and the asexual erythrocytic stage is 
labelled in red (Bannister and Mitchell, 2003). 
 

Not all merozoites commit themselves to erythrocytic schizogony. Instead, 

parasites differentiate into macrogametocytes and microgametocytes (Fujioka and 

Aikawa, 1999) that are ingested by an Anopheles mosquito when it bites an 
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infected human host. The gametocytes develop into female (macro) and male 

(micro) gametes (Fujioka and Aikawa, 1999), which escape from the erythrocytes 

once they have entered the mosquito’s gut and fuse to form a diploid zygote called 

the ookinete. The ookinete penetrates the gut wall and forms an oocyst on its outer 

surface. The diploid oocyst undergoes meiosis and eventually ~8,000 haploid 

sporozoites erupt from the oocyst and migrate to the salivary glands of the 

mosquito (Sinden and Gilles, 2002). The sporozoites remain in the salivary glands 

until the mosquito bites a new human host and thereby releases the parasites into 

the human bloodstream. 

 

1.2 The human erythrocyte 
 

The human erythrocyte functions as the main oxygen carrier in the body. Varying 

from 7.5 to 7.8 µm in diameter, the cells contain no nucleus and lack intracellular 

organelles (Bull and Breton-Gorius, 1995). Haemoglobin makes up 90 % of the 

cellular composition and it is the haem moiety contained within the haemoglobin 

that binds oxygen. Due to a lack of mitochondria the cell generates its energy 

through direct glycolysis of glucose and the hexose monophosphate shunt.  

 

1.2.1 The erythrocyte membrane 
 

Erythrocytes need to be supple and at the same time robust to allow them to 

withstand large deformations during their passage through the capillaries and 

spleen. These characteristics are provided by the erythrocyte membrane which 

contains two structural elements made up of lipids and proteins (Figure 3). 
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Figure 3: The erythrocyte membrane. 
Diagram showing the structure of the erythrocyte membrane. The erythrocyte 
membrane consists of two structural components, the phospholipid bilayer and the 
membrane skeleton. The skeleton is attached to the integral proteins (band 3 and 
GPC) in the lipid bilayer via ankyrin and protein 4.1. GPA = glycophorin A; GPC 
= glycophorin C; 3 = band 3; 4.1 = protein 4.1; 4.2 = protein 4.2 (Walensky et al., 
2003). 

 

The first structural element is the lipid bilayer that forms the permeability barrier 

between the internal and external environment of the erythrocyte. It is composed 

of two phospholipid layers that are arranged in such a way, that the hydrophobic 

fatty acid chains form the core of the membrane and the polar heads face outwards 

towards the blood plasma (outer leaflet) and the erythrocyte cytoplasm (inner 

leaflet). The outer leaflet contains phosphatidylcholine and sphingomyelin and the 

inner leaflet consists of phosphatidylserine and phosphatidylethanolamine, thus 

showing an asymmetry in the phospholipid arrangement. The phospholipid bilayer 

is very rich in nonesterified cholesterol, the majority of which is associated with 

sphingolipids in structures called rafts. These rafts form detergent-resistant plasma 

membrane microdomains and function in sorting and signalling processes of the 

cell (Brown and London, 1998). Embedded within the erythrocyte lipid bilayer are 

the integral membrane proteins, the anion exchanger (band 3) and the 

glycophorins (reviewed in Walensky et al., 2003). 
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The second structural element is the membrane skeleton consisting of a protein 

scaffold that lies about 10 nm below the inner side of the lipid bilayer and it is this 

membrane skeleton that gives the erythrocyte its structural integrity. The 

erythrocyte membrane skeleton is anchored to the integral membrane proteins by 

linker proteins such as ankyrin and protein 4.1 (reviewed in Walensky et al., 

2003). 

 

1.2.2 Spectrin 
 

Making up 50-75 % of the total skeletal protein mass (Yu et al., 1973), spectrin is 

the predominant protein in the membrane skeleton. Spectrin occurs as an αβ-

heterodimer consisting of a 240 kDa alpha and 220 kDa beta chain (Marchesi, 

1979).  

 

Each chain is composed of multiple homologous 106 amino acid residue motifs 

(termed repeats) which fold into triple α-helical bundles with the first and third 

helices in parallel and the intervening second helix in an antiparallel arrangement 

(Speicher and Marchesi, 1984) (Figure 4). The amino acids in each α-helical 

bundle are arranged as a heptad motif with a seven-residue symmetry (Figure 5), 

where the first and fourth positions (a & d) are filled by hydrophobic and the fifth 

and seventh positions (e & g) are occupied by charged amino acids. The charged 

amino acids link the three bundles together and embed the hydrophobic amino 

acids in the repeat (Yan et al., 1993). Formation of the repeat leaves the outer 

polar uncharged, positively and negatively charged amino acids (b, c & f) of each 

α-helical bundle available for hydrogen and electrostatic bond formation with 

other molecules. 

 

The spectrin α and β chains self-associate in an antiparallel fashion starting at the 

dimer nucleation site, which forms at the amino terminus of β-spectrin and the 

carboxyl terminus of α-spectrin (Figure 6) (Ursitti et al., 1996). The rest of the αβ-

heterodimer then proceeds to associate side-by-side in a zipper-like fashion 

(Speicher et al., 1992), forming a supercoiled rope-like structure. 
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Overlap of adjacent 
repeats 

Figure 4: Triple helical repeats. 
Diagram showing two spectrin repeats. Three α-helical bundles, containing 106 
amino acids, fold with the first and third helices (A and C) in parallel and the 
intervening second helix (B) in an antiparallel arrangement to form a single 
spectrin repeat. Two repeats are stabilised by the interaction of the second helix of 
the first repeat (B4 and B5) with the third helix of the first repeat (C29) and the 
first helix of the second repeat (A2) (Walensky et al., 2003). 

 

 
Figure 5: The amino acid distribution of a spectrin repeat. 
Cross-section of a Drosophila α-spectrin repeat. Three heptad motif containing α-
helical bundles align in a parallel (A & C) and anti-parallel (B) fashion to form the 
repeat. Hydrophobic (a & d) and charged (e & g) amino acids stabilise repeat 
formation by ionic interactions. The remaining polar uncharged, negatively and 
positively charged (b, c & f) amino acids are available for interactions with the 
spectrin-binding peptides, via hydrogen bonds and ionic interactions. Ionic 
interactions are represented as dashed lines and amino acids are coloured 
according to class: blue = polar uncharged; black = nonpolar aliphatic and 
aromatic; red = positively charged; green = negatively charged (adapted from Yan 
et al., 1993). 
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The spectrin tetramer is the predominant form of spectrin found in the erythrocyte 

membrane skeleton (Ungewickell and Gratzer, 1978). A tetramer is formed when 

two dimers self-associate at the tetramerisation site (self-association site), which is 

at the opposite end to the dimer nucleation site in the spectrin molecule (Figure 6). 

At this tetramerisation site one N-terminal α-helix from the α-chain and two C-

terminal α-helices from the β-chain link together to form a complete triple helix 

repeat (Tse et al., 1990). Thus, spectrin tetramers are long flexible molecules 

arranged in a lattice framework, which lends stability and flexibility to the 

membrane skeleton.  

 

 

Self-association site 

4.1; 
Actin; 
Adducin 

Ankyrin
Lipids

α-Spectrin 

α-Spectrin

β-Spectrin

β-Spectrin
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Nucleation site
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Phosphorylation 
sites 

Lipids 

SH3
Lipids

Figure 6: The spectrin tetramer. 
Diagram showing the association of α- and β-spectrin triple helical repeats into 
dimers and a tetramer. The spectrin dimer, consisting of an α- and β-spectrin 
monomer, forms at the nucleation site. The tetramer is created when two spectrin 
dimers join at the self-association sites (inset). One N-terminal α-helix from α-
spectrin (C) and two C-terminal α-helices from β-spectrin (A and B) link together 
to form a complete repeat. Features of the α- and β-spectrin monomers are 
marked: Alpha-spectrin contains a src homology domain (SH3) and EF hands. 
Beta-spectrin contains 4.1, actin, adducin and ankyrin binding sites and the 
phosphorylation sites. Repeats involved in phosphatidylserine binding are labelled 
as ‘Lipids’ and the five α- and four β-spectrin tryptic digest domains are labelled 
‘αI-V’ and  ‘βI-IV’ respectively  (adapted from Walensky et al., 2003). 

 

Each spectrin monomer has additional functional domains (Figure 6). Alpha 

spectrin contains a src homology (SH3) domain in the 10th repeat, and two or 

three calcium-binding EF hands at the C-terminal end of the molecule. The SH3 

domain functions as a protein attachment site and it has been shown that tyrosine 

 

 

8



kinases interact with this domain (Ziemnicka-Kotula et al., 1998). The N-terminus 

of β-spectrin contains a region of 272 amino acids that binds protein 4.1, actin and 

adducin (Li and Bennett, 1996) and the 15th repeat binds ankyrin, which is part of 

the band 3 complex (Kennedy et al., 1991). The C-terminus of β-spectrin has an 

additional stretch of 52 amino acids that contains phosphorylated serines and 

threonines (Harris and Lux, 1980). Beta-spectrin also binds calmodulin, which, in 

the presence of calcium, regulates the interactions between spectrin, protein 4.1 

and actin (Anderson and Morrow, 1987). In addition, both spectrin molecules 

contain repeats that interact with the lipid bilayer (An et al., 2004). Finally, a 

limited tryptic digest of the αβ-heterodimer liberates five α-spectrin (αI = 80 kDa, 

αII = 46 kDa, αIII = 52 kDa, αIV = 41 kDa and αV = 41 kDa) and four β-spectrin 

(β I = 17 kDa, βII = 65 kDa, βIII = 33 kDa and βIV = 74 kDa) peptide domains 

(Speicher et al., 1992). 

 

1.2.3 The erythrocyte membrane skeleton 
 

The lattice framework of the membrane skeleton consists of a two-dimensional 

network of spectrin tetramers and junctional complexes (Figure 7A). The 

junctional complexes are found at the distal end of the spectrin tetramer. The N-

termini of six β-spectrin chains (Byers and Branton, 1985, Liu et al., 1987) link to 

two actin protofilaments (Brenner and Korn, 1979) via protein 4.1 (Ungewickell 

et al., 1979) and dematin (protein 4.9) (Siegel and Branton, 1985) (Figure 7b). 

The two actin filaments are stabilised and their length regulated by two 

tropomyosin molecules, that each bind six actin monomers (Fowler, 1996). The 

barbed ends of the actin filaments are capped by adducin and the tropomyosin 

molecules are capped at the opposite end by tropomodulin (Fowler, 1996). 
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 Figure 7: The two-dimensional network of the red cell membrane skeleton. 
Electron micrograph and diagram (a) depicting the two-dimensional network of 
the membrane skeleton and diagram (b) showing the junctional complex. 
Junctional complexes are found at the ends of the spectrin tetramer and band 3 
complexes are located along the spectrin tetramer. The spectrin tetramers are 
attached to actin protofilaments via protein 4.1 and dematin. The actin filaments 
are stabilised by tropomyosin molecules and capped by adducin. The tropomyosin 
molecules are capped by tropomodulin ((a) Liu et al., 1987, (b) adapted from 
Walensky et al., 2003). 

 

1.2.4 Integral membrane proteins 
 

The erythrocyte integral membrane proteins, namely band 3 and the glycophorins, 

penetrate or traverse the erythrocyte membrane by interacting with the 

hydrophobic lipid core of the phospholipid bilayer (Figure 3). 
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Band 3 is the major integral membrane protein of the red cell. It forms a 52 kDa 

transmembrane channel, which functions in the exchange of HCO3
- and Cl- and 

therefore actively participates in the exchange of CO2. The 43 kDa N-terminal 

cytoplasmic domain serves as an anchor point for the membrane skeleton by 

interacting with ankyrin, protein 4.1, and protein 4.2 (Bennett and Stenbuck, 

1980). Two complexes associate with band 3. The first is the Rh complex, which 

is linked to ankyrin and protein 4.2 via the Rh polypeptide and CD47 respectively 

(Bruce et al., 2003). The second is a glycolytic enzyme complex containing 

glyceraldehyde-3-phosphate dehydrogenase (Kant and Steck, 1973), 

phosphofructokinase and aldolase (Jenkins et al., 1984), haemoglobin (Walder et 

al., 1984), lactate dehydrogenase and pyruvate kinase (Campanella et al., 2005). 

This complex interacts with the cytoplasmic domain of band 3. 

 

The glycophorins have sialic acid moieties bound to domains that are exposed on 

the erythrocyte surface. These sialic acid chains code for blood group variants and 

also give the erythrocyte surface a net negative charge, which prevents the 

erythrocytes from adhering to each other and the vessel walls (reviewed in Chasis 

and Mohandas, 1992).  

 

1.2.5 Membrane skeleton linkage to the lipid bilayer 
 

The membrane skeleton is linked to the integral proteins of the lipid bilayer via 

primary and secondary attachment sites. Primary attachment occurs through the 

band 3 complex, where band 3 binds to the C-terminal end of β-spectrin via 

ankyrin (Bennett and Stenbuck, 1979, Byers and Branton, 1985). Protein 4.2 

further strengthens this membrane interaction by linking ankyrin and band 3 

(Korsgren and Cohen, 1988). In the secondary attachment site, protein 4.1 links 

the actin filaments in the junctional complex to glycophorin C (Anderson and 

Lovrien, 1984) and this interaction is stabilised by p55 (Figure 3) (Alloisio et al., 

1993).  
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The membrane skeleton linkage to the lipid bilayer is also strengthened by the 

direct interaction of the skeleton proteins with the phospholipids of the 

erythrocyte membrane. Alpha- and beta-spectrin have specific repeats (Figure 6) 

that bind phosphatidylserines (An et al., 2004) and the 30 kDa basic domain of 

protein 4.1 also interacts with phosphatidylserines (Cohen et al., 1988, Rybicki et 

al., 1988). 

 

1.3 The erythrocytic phase of the P. falciparum life cycle 
 

The malaria parasite spends the main part of its asexual life cycle in the human 

erythrocyte. To ensure its survival, the parasite has to enter an erythrocyte by 

disrupting the organisation of the erythrocyte membrane, and once inside, the site 

of invasion has to be repaired. During development and maturation the parasite 

depletes the nutrient resources available in the erythrocyte and therefore the 

parasite has to modify the host cell and host cell membrane to obtain additional 

nutrients and eliminate waste products. The parasite also needs to remain 

undetected by the host’s immune system and this is achieved by further 

modifications to the host cell and membrane. Finally, the parasite has to disrupt 

the erythrocyte membrane to ensure its release from the erythrocyte. 

 

1.3.1 Erythrocyte invasion 
 

The host cell invasion model suggests that the parasite merozoite goes through 

three phases to enter the erythrocyte (Figure 8) (reviewed in Topolska et al., 2004). 

These phases are: 1) an initial low-affinity interaction between any part of the 

merozoite and the host cell surface, followed by the reorientation of the merozoite 

to allow its apical prominence to contact the host cell; 2) irreversible attachment 

and formation of an electron-dense junction between the apical prominence and 

the host cell and finally; 3) invasion, in which the parasite propels itself forward 

into a membrane enclosed compartment called the parasitophorous vacuole, which 

eventually seals behind the parasite (Dvorak et al., 1975). 
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Figure 8: Erythrocyte invasion by P. falciparum. 
Diagram showing the three phases of invasion. The merozoite undergoes initial 
attachment and reorientation; followed by irreversible attachment and junction 
formation; and parasitophorous vacuole formation and invasion (Kats et al., 2006, 
originally adapted from Chitnis and Blackman, 2000). 

 

During each phase a specific set of proteins located either on the surface of, or in 

specific organelles and compartments of the merozoite, are used to recognise and 

disrupt the erythrocyte (Figure 9). The organelles involved in invasion are the 

rhoptries, which are made up of two, large, tear-shaped organelles terminating at 

the apex of the parasite, and the micronemes, which are small tube-shaped 

structures associated with the rhoptries. Additional proteins are released from the 

dense granules, which are intermediate in size, spherical, and denser than the 

micronemes and rhoptries (Langreth et al., 1978). 

 

The first phase of invasion occurs when the merozoite comes into contact with an 

uninfected erythrocyte. This contact is accidental in nature and results from the 

recognition of red cell receptors by the coat filaments of the merozoite. These 

filaments are made up of parasite proteins such as the merozoite surface proteins 

(MSP-1-10), serine-rich antigen (SERA/SERP) and S antigen. This initial 

interaction between parasite and host is weak, non-specific and reversible, and 

merozoites are often seen to dissociate from erythrocytes. 
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Figure 9: The P. falciparum merozoite. 
Diagram showing the structure and organelles of the P. falciparum merozoite. The 
merozoite contains secretory organelles involved in invasion, namely the 
micronemes, rhoptries and dense granules (Bannister et al., 2000). 

 

Invasion continues with the parasite reorientating itself so that its apical end 

comes into contact with the erythrocyte surface. This reorientation strengthens the 

interaction between the merozoite surface and the red cell surface and eventually 

becomes irreversible, and the parasite commits itself to erythrocyte invasion. 

After contact, intracellular stores of Ca2+ are released within the parasite (Lovett 

and Sibley, 2003) and this activates the discharge of parasite proteins, such as the 

erythrocyte binding antigens (EBA-175, EBA-140/BAEBL, EBA-181/JESEBL) 

and the apical membrane antigen 1 (AMA-1) from the micronemes. The 

erythrocyte binding antigens form a junction with the erythrocyte membrane 

receptors, such as Glycophorin A, B, and C/D (Hadley et al., 1987) and these 

interactions are to some degree redundant and interchangeable (Mayer et al., 

2002). The tight junction remains during invasion and is seen as a ring that moves 

backwards over the parasite surface as the parasite actively invades the 

erythrocyte (Aikawa et al., 1978). Shortly after junction formation the rhoptries 

release their parasite proteins, namely the rhoptry associated proteins (RAP-1, 

RAP-2, RAP-3), high molecular weight rhoptry proteins (RhopH-1, RhopH-2, 
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RhopH-3), and proteases (gp76), which aid in the invasion process. The rhoptries 

also discharge parasite lipids (Etzion et al., 1991). These rhoptry proteins and 

lipids, together with proteins and lipids from the host cell membrane, are used to 

form the parasitophorous vacuole membrane (Stewart et al., 1986). This 

membrane surrounds the parasitophorous vacuole which is a sack-like structure 

that provides a secure environment for the parasite to reside and grow in. The 

dense granules are the last organelles to discharge their protein content, such as 

the ring-infected erythrocyte surface antigen (RESA), ring membrane antigen 

(RIMA), and the subtilisin-like proteases (PfSUB-1, PfSUB-2). These proteins 

either integrate themselves into the parasitophorous vacuole or cross the 

parasitophorous vacuole membrane to interact with the erythrocyte membrane 

lipid bilayer and erythrocyte membrane skeleton proteins. PfSUB-2 has been 

implicated in the shedding of MSP-1 and AMA-1 from the parasite surface as it 

invades the erythrocyte (Howell et al., 2003). Another set of proteases, the 

rhomboids (PfROM-1 and PfROM-4), cleave AMA-1, thrombospondin-related 

anonymous protein (TRAP), circumsporozoite protein (CSP) and TRAP-related 

protein (CTRP), merozoite TRAP homologue (MTRAP), PFF0800c, EBA-175, 

EBA-140/BAEBL, EBA-181/JESEBL, MAEBL, and the reticulocyte-binding 

homologues (RH-1, RH-2a, RH-2b, and RH-4), and could therefore be involved 

in the shedding process (Baker et al., 2006). 

 

Invasion requires the use of an actin/myosin motor complex termed the 

glideosome (Figure 10) (Keeley and Soldati, 2004, reviewed in Cowman and 

Crabb, 2006). This complex is located in the parasite’s pellicle, between the 

parasite plasma membrane and the inner membrane complex (IMC). The IMC is 

constructed from a single large flattened vesicle that is joined at a single suture 

line running the length of the long axis of the parasite (Morrissette and Sibley, 

2002). The IMC is not found at the apical prominence (Bannister et al., 2000), 

thereby allowing the micronemes, rhoptries and dense granules to discharge their 

contents to the external environment. Within the glideosome, Plasmodium myosin 

(MyoA) (Pinder et al., 1998) attaches to the Myosin Tail Interacting Protein 

(MTIP) via its light chain and the other end of myosin interacts with actin (Webb 
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et al., 1996). MTIP in turn interacts with glideosome-associated protein 45 

(GAP45) and glideosome-associated protein 50 (GAP50) to link the glideosome 

to the IMC (Jones et al., 2006). The glideosome is also present in other invasive 

stages of Plasmodium, and in sporozoites it has been shown that the glideosome 

connects to the parasite plasma membrane via aldolase and the adhesin TRAP 

(Buscaglia et al., 2003). It is therefore thought that the link to the merozoite 

plasma membrane is formed by the secreted microneme or rhoptry ligands and 

possibly aldolase. The parasite gains entry into the host cell using the force that is 

generated by the actin-myosin motor. Because the motor is anchored to the IMC, 

the generated movement is highly directional and causes the parasite to be 

propelled forwards into the host cell. During invasion the adhesin-aldolase-actin 

complex moves towards the posterior end of the parasite and this complex is 

released from the host cell by proteases such as the subtilisin-like proteases and 

rhomboids mentioned previously. 
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Figure 10: The actin-myosin motor of P. falciparum. 
Diagram showing the actin-myosin motor found in the P. falciparum glideosome. 
The glideosome consists of glideosome-associated protein 50 (Gap50), Myosin 
Tail Interacting Protein (MTIP), glideosome-associated protein 45 (GAP45) and 
Plasmodium myosin (MyoA). It attaches to the inner membrane complex (IMC) 
via GAP50 and interacts with the actin filaments via MyoA. Aldolase and 
erythrocyte binding antigen-175 (EBA-175) could form the link between actin and 
the parasite plasma membrane. Myosin moves along the actin filaments and 
thereby moves the parasite into the host cell (adapted from Jones et al., 2006). 
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1.3.2 Erythrocyte remodelling 
Enhancing the permeability of the erythrocyte membrane 
 

Once the parasite has invaded the erythrocyte the ring stage parasite seems to be 

‘dormant’ within the parasitophorous vacuole until approximately 12-16 hours 

later when it develops into the trophozoite stage. This maturation is concomitant 

with a rapid increase in metabolic and biosynthetic activity, requiring an energy 

source for glycolysis (Roth, 1990) and other molecules for protein, RNA and 

DNA synthesis. The parasite’s main source of amino acids for protein synthesis 

comes from the degradation of haemoglobin in the food vacuole (Sherman, 1977), 

but the acquisition of the other essential components required for survival poses a 

problem for the parasite, because it resides in a host cell that is devoid of and 

lacks the ability to synthesise macromolecules. In addition to acquiring nutrients 

from the plasma external to the erythrocyte, the parasite needs to eliminate the 

excess amino acids from the digestion of haemoglobin (Krugliak et al., 2002), 

lactate from glycolysis (Kanaani and Ginsburg, 1991) and other toxic waste 

products produced during parasite growth. The parasite also needs to regulate the 

influx and efflux of ions and water as it matures within the erythrocyte. The 

parasite overcomes these obstacles by upregulating and activating transporters and 

channels within the erythrocyte plasma membrane via phosphorylation (Decherf 

et al., 2004). The parasite also incorporates its own transporters and channels into 

the erythrocyte membrane to obtain essential nutrients, such as the vitamin 

pantothenic acid (Saliba et al., 1998). All these transporters and channels have 

been collectively termed New Permeability Pathways (NPP) (Kirk, 2001). 

 

Modifying the erythrocyte to accommodate cellular trafficking 
 

As the parasite progresses to the late trophozoite stage it further modifies the 

erythrocyte to satisfy its own survival and growth requirements. The parasite 

shuttles parasite proteins, required for cytoadherence and rosetting, to the 

erythrocyte surface and incorporates them into structures termed ‘knobs’ 

(Atkinson and Aikawa, 1990). However, the transport of proteins to the 
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erythrocyte surface is not a straightforward procedure because the parasite resides 

within the parasitophorous vacuole that is surrounded by a membrane. This 

membrane does not contain any transporters or channels and is often referred to as 

a molecular sieve that allows the free exchange of nutrients and metabolites, but 

prevents the movement of proteins to and from the erythrocyte cytosol (Desai and 

Rosenberg, 1997). Underlying the transport of proteins from the parasite through 

the parasitophorous vacuole to the erythrocyte membrane and the transport of 

lipids from the erythrocyte membrane to the parasitophorous vacuole membrane 

are several transport mechanisms. 

 

Protein transport in eukaryotic cells is normally initiated through the classical 

secretory pathway and this is also the case in the parasite (Das et al., 1994). In this 

pathway proteins that contain a hydrophobic N-terminal signal sequence are 

transported into the endoplasmic reticulum (ER) after leaving the ribosome. From 

the ER the proteins move into the Golgi complex where they are sorted and 

subsequently transported in vesicles to the cellular organelles or to the plasma 

membrane of the cell. A classical Golgi complex containing cisternae has 

however not been visualised in the parasite (Aikawa, 1971), but components of 

the Golgi apparatus have been found and it has therefore been suggested that the 

parasite contains a highly modified ‘unstacked’ Golgi form, where the Golgi 

compartments are not located adjacent to one another (Van Wye et al., 1996). It 

should also be noted that not all exported parasite proteins contain an N-terminal 

signal sequence that determines transport via the ER and thus it seems that the 

parasite also relies on an ER-Golgi-independent secretory pathway (Mattei et al., 

1999) that has yet to be defined. 

 

Once the parasite proteins have been processed via the ER they have to traverse 

the parasitophorous vacuole. Parasite proteins can be either soluble or membrane-

bound and this defines if the protein is transported freely through the 

parasitophorous vacuole and erythrocyte cytosol, or if the protein has to be 

transported via vesicles either in a soluble form or attached to the membrane of 

the transport vesicles (Lingelbach and Przyborski, 2006). Vesicle transport is 
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thought to occur via a one-step or a two-step process (Figure 11) for membrane-

bound proteins. 
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Figure 11: P. falciparum protein transport to the erythrocyte cytosol. 
Diagram showing the transport of membrane-bound proteins across the 
parasitophorous vacuole via the two-step (a) or one-step (b) process. In the two-
step process the secretory vesicle containing the exported protein (grey dot) 
releases its contents into the parasitophorous vacuole via the parasite plasma 
membrane (1). The protein is transported in another vesicle across the 
parasitophorous vacuole (2) and released into the erythrocyte cytosol via the 
parasitophorous vacuole membrane (3). In the one-step process the secretory 
vesicle containing the exported protein joins to the parasite plasma membrane 
where it is in close contact with the parasitophorous vacuole membrane and 
releases the protein directly into the erythrocyte cytosol (4) (Lingelbach and 
Przyborski, 2006). 

 

In the one-step process secretory vesicles within the parasite join the parasite 

plasma membrane where it is in close contact with the parasitophorous vacuole 

membrane. The contents of these vesicles are thus released directly into the 

erythrocyte cytosol (Elmendorf and Haldar, 1993). The two-step process entails 

parasite secretory vesicles releasing their contents into the parasitophorous 

vacuole. The proteins are then transported across the vacuolar space in another 

secretory vesicle and are finally released into the erythrocyte cytosol through the 

parasitophorous vacuole membrane either by protein translocation complexes or 

by vesicle budding (Ansorge et al., 1996, Lingelbach and Przyborski, 2006). The 

two-step process seems to be the predominant form of trafficking utilised by the 
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parasite (Ansorge et al., 1996) and transport across the parasitophorous vacuolar 

membrane requires the presence of transport signal. A vacuolar transport signal 

(VTS) (Hiller et al., 2004) and a Plasmodium export element (PEXEL motif) 

(Marti et al., 2004) have been characterised to date, and are located downstream 

from the hydrophobic N-terminal signal sequence recognised by the endoplasmic 

reticulum. 

 

After the parasite proteins have reached the erythrocyte cytosol, they need to be 

transported to the erythrocyte membrane. This transport occurs via two proposed 

transport models (Figure 12). The first is the vesicular transport model (Taraschi 

et al., 2001), in which parasite proteins are transported in vesicles across the 

erythrocyte cytosol to the Maurer’s clefts. Maurer’s clefts are ‘secretory 

organelles’ (reviewed in Przyborski et al., 2003) that consist of stacks of flattened 

lamellae and are located just below the erythrocyte plasma membrane (Langreth et 

al., 1978). In the second model, termed the lateral diffusion model, the 

tubovesicular membrane network (TVN) is utilised to transport proteins to the 

Maurer’s clefts (Elmendorf and Haldar, 1994, Wickert et al., 2004). The TVN 

extends from the parasitophorous vacuolar membrane into the erythrocyte cytosol 

and consists of a collection of membranous structures. It is interesting to note that 

the P. falciparum Golgi proteins that have been identified to date, have been 

found to be associated with the TVN (Elmendorf and Haldar, 1994, Van Wye et 

al., 1996). 

 

The final transportation step in both models is the release of the parasite proteins 

from the Maurer’s clefts into the erythrocyte membrane and the incorporation of 

these proteins into the knobs, which are often seen to be closely associated with 

the Maurer’s clefts (Aikawa et al., 1986). 
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Figure 12: P. falciparum protein trafficking to the erythrocyte surface. 
Diagram showing the vesicular transport (a) and the lateral diffusion model (b). In 
the vesicular transport model parasite proteins are transported in vesicles across 
the erythrocyte cytosol to the Maurer’s clefts. In the lateral diffusion model 
proteins are transported via the tubovesicular membrane network (TVN) to the 
Maurer’s clefts. In both models the proteins are eventually transported in vesicles 
to the erythrocyte membrane and surface (adapted from Przyborski et al., 2003). 

 

1.3.3 Haemoglobin digestion 
 

Several P. falciparum proteases are involved in the degradation of haemoglobin 

inside the food vacuole (Figure 13). Digestion of haemoglobin commences at the 

hinge region of the α-globin chain and is mediated by the aspartic proteases 

plasmepsins-I, -II, and -IV (Gluzman et al., 1994, Banerjee et al., 2002, Wyatt and 

Berry, 2002). Further degradation of the globin chains is facilitated by the same 

enzymes, as well the histo-aspartic protease (HAP) (Banerjee et al., 2002), and 

three cysteine proteases, falcipain-2, -2’, and -3 (Shenai et al., 2000, Sijwali and 

Rosenthal, 2004, Sijwali et al., 2001). The M16 metalloprotease falcilysin 

converts short globin polypeptides into oligopeptides consisting of 2-10 amino 

acids (Eggleson et al., 1999). Finally, the calpain-like dipeptidyl peptidase I 

(DPAP1) hydrolyses the oligopeptides into 2-10 amino acid residues (Klemba et 

al., 2004) which are exported to the cytoplasm where they are cleaved into single 

amino acid units by the cytosolic neutral aminopeptidases (Curley et al., 1994). 
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Figure 13: Haemoglobin digestion. 
Haemoglobin digestion in the food vacuole is initiated by the aspartic proteases, 
plasmepsin -I, -II, and -IV. Further processing into dipeptides is performed by the 
cysteine proteases falcipain-2, -2’, and -3, followed by the metalloprotease 
falcilysin and finally the dipeptidyl peptidase DPAP1. Dipeptides are transported 
into the cytosol where they are digested by neutral aminopeptidases (adapted from 
Klemba et al., 2004). 

 

1.3.4 Parasite escape 
 

Approximately 40 hours after invasion the trophozoite develops into a schizont 

containing several daughter nuclei. These mature into merozoites which escape 

the host cell at approximately 48 hours after the parasite entered the erythrocyte. 

The two-step parasite exit process is initiated at the schizont stage when the 

parasite secretes proteases, probably a cysteine protease (Salmon et al., 2001), 

into the parasitophorous vacuole. Micrographs of P. falciparum schizont-infected 

erythrocytes have shown that the material on each side of the parasitophorous 

vacuole membrane has an equal density and structure, indicating that the 

parasitophorous vacuole membrane has become permeable to host cell proteins 

(Langreth et al., 1978). The proteases implicated in the second step of the two-

step parasite exit process are an aspartic protease and a cysteine or serine protease 

that degrade the membrane skeleton of the erythrocyte (Wickham et al., 2003).  

 

The degradation of the membranes and the conversion of the schizont into 

merozoites, give rise to the irregular schizont (Figure 14). Just before escape the 
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parasites rearrange themselves into a short-lived distinctive ‘flower’ shape (Trager, 

1956, Glushakova et al., 2005). This rearrangement is concomitant with an influx 

of fluid into the erythrocyte due to the excess colloid-osmotic pressure of 

intracellular proteins since most of the haemoglobin has been digested by the 

parasite (Lew, 2005). The build-up of osmotic pressure causes the parasitophorous 

vacuole membrane and the erythrocyte plasma membrane to blow apart, thereby 

scattering the merozoites (Trager, 1956, Glushakova et al., 2005). The force of the 

merozoite release is strong enough to bring the merozoites into contact with new 

erythrocytes even in places where the parasites have been sequestered. The 

parasite therefore does not need to be motile and only becomes motile when a host 

cell is encountered and the parasite has committed itself to invasion. 

 

 

(1) (2) (3) (4) (5) 

Figure 14: P. falciparum escape from the erythrocyte. 
Diagram showing the morphological changes parasite and erythrocyte undergo 
during P. falciparum escape. The irregular schizont surrounding the food vacuole 
(black), initiates the two-step escape process by first weakening the 
parasitophorous vacuole membrane (pink) and then the erythrocyte membrane 
(green) by enzymatic proteolysis (1). The schizont continues to develop into 
merozoites (orange) (2) and the influx of fluid through the damaged erythrocyte 
membrane results in the distinctive ‘flower’ shape (3). The build-up of osmotic 
pressure causes the parasitophorous vacuole membrane and erythrocyte 
membrane to rupture, ‘blowing’ the cell apart and scattering the mature 
merozoites (4). Vesiculation of the erythrocyte and parasitophorous vacuole 
membranes results from the violent and sudden rupture of the erythrocyte (5) 
(Glushakova et al., 2005). 

 

1.4 Parasite and erythrocyte membrane interactions 
 

Malaria proteins interact with the erythrocyte surface and the membrane skeleton 

proteins at several points during the erythrocytic life cycle. A summary of these 

interactions is listed in Table 1. 
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Table 1: P. falciparum proteins interacting with the erythrocyte membrane. 
Parasite protein EM protein Stage Possible function 

MSP-1 band 3; spectrin invasion initial erythrocyte contact and contact 
during active invasion 

MSP-9/ABRA band 3 invasion cleavage of band 3 
EBA-175 glycophorin A invasion contact during active invasion 
BAEBL/    
EBA-140 glycophorin C/D invasion contact during active invasion 

RH-1 receptor Y invasion contact during active invasion 
RH-2b receptor Z invasion contact during active invasion 

JESEBL/    
EBA-181 receptor E invasion contact during active invasion 

SERA erythrocyte and PVM 
phospholipids  

invasion; 
escape disrupts phospholipids 

RhopH complex erythrocyte 
phospholipids invasion disrupts phospholipids 

gp76 band 3, glycophorin A invasion 
membrane skeleton destabilisation by 
band 3 and glycophorin A cleavage;    

PV formation 

RESA β-spectrin invasion; 
growth 

chaperone in membrane skeleton 
repair; thermal stability; inhibits 

subsequent parasite invasion 

FEST EM skeleton growth possible role in phosphorylating 
protein 4.1 and spectrin 

MESA/   
PfEMP-2 protein 4.1 growth 

anchors knobs; membrane skeleton 
destabilisation by binding to protein 

4.1 where glycophorin C and p55 bind 
PfEMP-1 spectrin-actin junction growth anchors knobs 

PfEMP-3 EM skeleton growth transports PfEMP-1 from Maurer’s 
clefts to the erythrocyte surface 

Pf332 EM skeleton growth - 

KAHRP/ HRP-I 
α-spectrin; 

ankyrin 
growth anchors knobs by interacting with 

spectrin and PfEMP-1 

Pfsbp1 EM skeleton growth attaches Maurer’s clefts to membrane 
skeleton network 

RIFINs erythrocyte 
phospholipids growth rosetting and antigenic variation 

STEVOR erythrocyte 
phospholipids growth rosetting and antigenic variation 

plasmepsin-II α-spectrin; protein 
4.1; actin escape  disrupts membrane skeleton 

plasmepsin-IV spectrin escape disrupts membrane skeleton 
37 kDa acidic 

protease β-spectrin; protein 4.1 escape disrupts membrane skeleton 

falcipain-2 ankyrin; protein 4.1 escape disrupts membrane skeleton 
Abbreviations: ABRA = acidic-basic repeat antigen; EBA= erythrocyte binding antigen; EM = erythrocyte membrane; 
FEST = falciparum-exported serine/threonine kinase;  HRP = histidine-rich protein; KAHRP = knob-associated histidine-
rich protein; MESA = mature parasite-infected surface antigen; MSP = merozoite surface protein; PfEMP = P. falciparum 
erythrocyte membrane protein; Pfsbp1 = P. falciparum skeleton binding protein-1; PV = parasitophorous vacuole; PVM = 
parasitophorous vacuole membrane; RESA = ring-infected erythrocyte surface antigen; RH = reticulocyte-binding 
homologues; RhopH = high molecular weight rhoptry protein; RIFINs = repetitive interspersed family; SERA = serine-rich 
antigen; STEVOR = subtelomeric variant open reading frame family. 
References for each protein-protein interaction are given in the text. 

 

 

24



1.4.1 Protein interactions involved in erythrocyte invasion 
 

To initiate and commit to invasion several parasite ligands interact with the 

glycophorin moieties and band 3 on the erythrocyte surface. MSP-1 and MSP-

9/ABRA interact with band 3 (Goel et al., 2003, Kushwaha et al., 2002) and 

MSP-1 also interacts with spectrin (Herrera et al., 1993). EBA-175 binds to 

glycophorin A (Sim et al., 1994) and BAEBL/EBA-140 associates with 

glycophorin C/D (Mayer et al., 2001). Receptors Y, Z, and E are utilized by RH-1, 

RH-2b and JESEBL/EBA-181 respectively (Rayner et al., 2001, Duraisingh et al., 

2003, Gilberger et al., 2003) and the ligands of glycophorin B and receptor X 

have yet to be identified (Dolan et al., 1994). During invasion several proteases 

and phospholipases are released by the micronemes and rhoptries. These enzymes 

induce structural changes in the erythrocyte membrane, such as the stripping of 

the underlying erythrocyte membrane skeleton proteins from the area where the 

merozoite has attached itself to the erythrocyte surface. Interestingly Dluzewski et 

al. (1983) showed that immunological and chemical crosslinking of spectrin 

inhibited parasite invasion in resealed erythrocytes. The cysteine protease SERA 

and the rhoptry proteins of the RhopH complex associate with the phospholipids 

of the inner leaflet of the erythrocyte membrane and could thus facilitate the entry 

of the parasites into the host cell (Perkins and Ziefer, 1994). The protease, gp76, 

has been suggested to be involved in invasion by degrading band 3 and 

glycophorin A (Roggwiller et al., 1996). In addition, an erythrocyte cyclic 

adenosine monophosphate-independent kinase that phosphorylates spectrin is 

necessary for invasion (Rangachari et al., 1986) because phosphorylation of β-

spectrin decreases the rigidity and stability of the erythrocyte membrane (Manno 

et al., 1995). Finally RESA, which interacts with spectrin, is thought to act as a 

chaperone during the repair of the membrane skeleton after invasion has been 

completed (Foley and Tilley, 1995). The protein binds to β-spectrin, close to the 

self-association site where it stabilises the spectrin tetramer, thereby increasing the 

thermostability of the erythrocyte and preventing further invasion by other malaria 

parasites (Pei et al., 2007). 
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1.4.2 Protein interactions facilitating parasite growth 
 

As the parasite proliferates within the erythrocyte it causes striking structural and 

morphological changes to its host cell. These include the loss of the typical 

erythrocyte shape, alterations in the mechanical properties of the cell, and 

modifications in the phosphorylation state of erythrocyte membrane skeleton 

proteins. Phosphorylation of ankyrin in uninfected erythrocytes destabilises the 

interaction between ankyrin and spectrin tetramers (Lu et al., 1985) and the 

phosphorylation of protein 4.1 disrupts the interaction between protein 4.1, 

spectrin and actin (Ling et al., 1988), and destabilises the interaction between 

band 3 and the erythrocyte membrane skeleton (Manno et al., 2005). Thus an 

increased phosphorylation of protein 4.1 which is observed in P. falciparum 

infected erythrocytes (Chishti et al., 1994) could reduce the mechanical stability 

of the membrane skeleton and contribute significantly to the morphological 

changes observed in infected erythrocytes. To date the enzyme responsible for the 

phosphorylation of protein 4.1 has not been identified, but a falciparum-exported 

serine/threonine kinase (FEST) (Kun et al., 1997) could be one such candidate. 

 

Another striking change in the malaria-infected erythrocyte is the appearance of 

knobs on the host cell surface (Langreth et al., 1978). Parasite proteins cluster 

amongst host proteins in these knobs (Figure 15) and are responsible for altering 

the adhesive properties of the erythrocyte. Several of the parasite proteins, for 

example P. falciparum erythrocyte membrane protein 3 (PfEMP-3), RESA, 

mature parasite-infected surface antigen (MESA/PfEMP-2), FEST, and 

falciparum interspersed repeat antigen (FIRA), are distributed throughout the 

membrane skeleton, while others, such as the knob-associated histidine-rich 

protein (KAHRP/HRP-I) and PfEMP-1, are found with erythrocyte membrane 

skeleton proteins associated with the membrane knobs. Studies have shown that 

MESA/PfEMP-2 binds to protein 4.1 (Waller et al., 2003) and RESA interacts 

with spectrin (Foley et al., 1991). KAHRP/HRP-I interacts with repeat 4 on α-

spectrin (Pei et al., 2005), a phosphorylated region of ankyrin (Magowan et al., 

2000), and the cytoplasmic tail of PfEMP-1 (Waller et al., 1999). The cytoplasmic 
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domain of PfEMP-1 has also been shown to bind to the spectrin-actin junction of 

the membrane skeleton (Oh et al., 2000). The Maurer’s clefts are connected to the 

erythrocyte membrane skeleton network via P. falciparum skeleton binding 

protein 1 (Pfsbp1) (Blisnick et al., 2000). 

 

 
Figure 15: P. falciparum and erythrocyte membrane protein interactions. 
Diagram showing the P. falciparum proteins that interact with the erythrocyte 
plasma membrane and membrane skeleton proteins. Interactions between parasite 
proteins and membrane skeleton proteins disrupt the host protein interactions that 
stabilise the membrane skeleton. These interactions also facilitate the display of 
malaria proteins on the cell surface in structures called knobs. MESA: mature 
parasite-infected surface antigen; PfEMP: Plasmodium falciparum erythrocyte 
membrane protein; KAHRP: knob-associated histidine-rich protein; FEST: 
falciparum-exported serine/threonine kinase; RIFINs: products of the repetitive 
interspersed family; STEVOR: products of the subtelomeric variant open reading 
frame family (Cooke et al., 2004). 

 

Although the binding of malaria proteins to the membrane skeleton ensures and 

strengthens the display of malaria proteins on the cell surface, the binding also 

disrupts the host protein interactions that stabilise the membrane skeleton network. 

For example, the binding site of KAHRP/HRP-I on ankyrin coincides with the 

binding domains of band 3 and spectrin and the parasite therefore disrupts the 

connections in the band 3 complex (Magowan et al., 2000). MESA/PfEMP-2 

binds to protein 4.1 at the same domain as glycophorin C and p55. This could 
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influence the binding capacity of p55 (Waller et al., 2003), which would again 

destabilise the integrity of the membrane skeleton network. The precise function 

of MESA/PfEMP-2 in the erythrocyte skeleton is still unknown, but accumulation 

of MESA/PfEMP-2 in the cytosol of erythrocytes deficient in protein 4.1 leads to 

intracellular death of the parasite (Magowan et al., 1995). 

 

Parasite growth has also been shown to decrease the mobility of band 3 and 

glycophorin (Parker et al., 2004), as well as causing band 3 to cluster in the 

erythrocyte membrane (Winograd and Sherman, 2004). These alterations 

contribute to the decreased deformability of the erythrocyte membrane and have 

been observed during the ring stage of growth, before the parasite introduces the 

knobs into the erythrocyte surface. 

 

1.4.3 Protein interactions mediating parasite escape 
 

Sodium dodecylsulphate (SDS) polyacrylamide gel electrophoresis (PAGE) 

analysis and microscopic analysis of erythrocyte membranes revealed a decrease 

of α- and β-spectrin, as well as band 3 in Plasmodium-infected erythrocytes 

(Weidekamm et al., 1973, Konigk and Mirtsch, 1977, Sherman and Jones, 1979, 

Garcia et al., 1997) indicating that the parasite degrades the erythrocyte skeleton 

proteins during growth within the erythrocyte. The decrease of membrane 

skeleton proteins was seen at the end of the erythrocytic life cycle when late 

trophozoites and schizonts were present in the host cell. The parasite could 

therefore be weakening the erythrocyte membrane to enable it to escape. 

Wickham et al. (2003) showed that the use of protease inhibitors prevented the 

release of parasites from their erythrocyte host and proposed that parasite exit 

involved two stages of membrane lysis. In the first stage, the parasitophorous 

vacuole membrane is lysed and in the second stage the red cell membrane 

skeleton proteins are broken down. The first lysis stage is prevented by addition of 

E64 (Wickham et al., 2003), a cysteine protease inhibitor and the second lysis 

stage is inhibited by the addition of leupeptin and pepstatin (Lyon and Haynes, 

1986), which are cysteine/serine and aspartic protease inhibitors respectively. A 
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set of related papain-like proteases (papain is a cysteine protease), namely the 

SERAs and the serine stretch protein homologue (SERPH) have been implicated 

in the breakdown of the parasitophorous vacuole membrane, because inhibition of 

SERA prevented the release of schizonts from their erythrocyte host (Li et al., 

2002). Several parasite enzymes have been suggested to play role in the 

breakdown of the membrane skeleton. A 37 kDa acidic protease cleaves β-

spectrin and protein 4.1 (Deguercy et al., 1990). Although the primary function of 

the aspartic protease plasmepsin-II is to digest haemoglobin in the acidic parasite 

food vacuole, it is also the main enzyme found in a parasitic extract that cleaves 

spectrin, specifically the SH3 domain of α-spectrin, at a neutral pH. Plasmepsin-II 

also interacts with actin and protein 4.1 (Le Bonniec et al., 1999) and another 

aspartic protease, plasmepsin-IV, has been shown to degrade spectrin (Wyatt and 

Berry, 2002). Another food vacuole enzyme, the cysteine protease falcipain-2, 

cleaves ankyrin and protein 4.1 within the spectrin-actin-binding domain (Dua et 

al., 2001) and has been implicated in parasite release (Dhawan et al., 2003). 

 

1.5 Erythrocyte protein abnormalities that protect against 
malaria infections 
 

Several erythrocyte mutations and polymorphisms, that have arisen due to 

selective pressure of the malaria parasite (reviewed in Williams, 2006), protect 

against infection by either preventing invasion or hampering the growth of the 

parasite within the erythrocyte.  

 

The haemoglobinopathies, which are caused by a decrease in or incorrect folding 

of globin, were the first erythrocyte abnormalities to be implicated in malaria 

protection. They include the structural variants of haemoglobin (haemoglobins S, 

C or E) and the thalassaemias (α- and β-thalassaemia). Mutations in these globin 

coding genes are often homozygous lethal and tolerable only in the heterozygous 

state, when they protect against malaria (reviewed in Min-Oo and Gros, 2005). 

The haemoglobin S mutation has arisen several times in Africa (Chebloune et al., 

1988), indicating that the mutation was caused by the same selective pressure.  
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The enzymopathies, namely glucose-6-phosphate dehydrogenase (G6PD) and 

pyruvate kinase deficiency, are caused by mutations in the genes that code for 

these erythrocyte enzymes. The protective mechanisms of the enzyme deficiencies 

against malaria have not been well characterised, but it is thought that G6PD-

deficient erythrocytes are more susceptible to haemolysis due to the oxidative 

stress caused by the parasite (reviewed in Weatherall, 2008). Protection against 

malaria due to pyruvate kinase deficiency has been shown in the mouse model 

(Min-Oo et al., 2003) and recently also in humans in an in vitro study (Durand 

and Coetzer, 2008, Ayi et al., 2008). 

 

Mutations in the erythrocyte membrane skeleton proteins are responsible for 

hereditary spherocytosis (HS) and the spectrum of hereditary elliptocytosis (HE) 

disorders. In HS the attachment of the membrane skeleton to the phospholipid 

bilayer is disrupted due to mutations in spectrin, or band 3, or in the linker 

proteins, namely ankyrin and protein 4.2. HS cells with a decreased spectrin 

content inhibit malaria parasite growth in vitro, and the extent of growth 

inhibition is related to the extent of spectrin deficiency (Schulman et al., 1990). 

 

Hereditary pyropoikilocytosis (HPP) and some cases of HE are caused by spectrin 

mutations that prevent the self association of spectrin dimers into tetramers 

(Coetzer et al., 1990). In vitro studies demonstrated that these abnormal 

erythrocytes inhibited invasion by P. falciparum (Facer, 1989). Other cases of HE 

are caused by protein 4.1 or glycophorin C deficiency and these  erythrocytes also 

reduce parasite invasion, as well as retard the growth of parasites in vitro (Chishti 

et al., 1996, Schulman et al., 1990). 

 

Southeast Asian Ovalocytosis (SAO) is the only red cell membrane disorder that 

has been shown to have developed due to the malaria burden (Foo et al., 1992). It 

protects against the disease by preventing the development of cerebral malaria 

(Allen et al., 1999), as well as decreasing the parasitaemia by preventing 

erythrocyte invasion by the parasite (Cortes et al., 2004). SAO is caused by an in-

frame 27 nucleotide deletion in the band 3 gene (Jarolim et al., 1991). The mutant 
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protein loses its anion exchange function and binds more tightly to ankyrin, 

resulting in a rigid membrane (Mohandas et al., 1992), that presumably prevents 

the parasite from invading the red cell in vitro (Kidson et al., 1981). A rapid 

decline of adenosine triphosphate (ATP) levels within SAO erythrocytes has also 

been shown to prevent invasion by the parasite in vitro (Dluzewski et al., 1992). 

 

Finally, the polymorphic red cell receptors displayed on the erythrocyte surface 

have also been implicated in malaria resistance. P. falciparum uses several 

erythrocyte receptors during invasion and the lack of one receptor, such as 

Glycophorin A or B (Hadley et al., 1987) or the Gerbich blood group system 

(Maier et al., 2003), does therefore not provide complete protection against P. 

falciparum invasion. In contrast, P. vivax only uses the Duffy antigen as a 

receptor and the absence of this antigen in some West African populations has 

resulted in protection against P. vivax infections (Miller et al., 1976). 

 

1.6 P. falciparum proteins 
1.6.1 The P. falciparum genome and proteome 
 

The complete P. falciparum 3D7 nuclear genome sequence was published in 2002 

(Gardner et al., 2002) and contains 14 chromosomes, ranging in size from 0.643 

Mb (chromosome 1) to 3.290 Mb (chromosome 14). Two non-nuclear genomes, 

consisting of the 6 kb mitochondrial genome and the 35 kb apicoplast genome, are 

also present. The 22,853,764 bp nuclear genome encodes 5,268 predicted genes, 

implying an average frequency of one gene every 4,338 bp. Of these protein-

coding genes, 3,208 (60.9 %) have no assigned function or homology to genes of 

other organisms with known genome sequence and have been designated as 

‘hypothetical proteins’. Introns are found in 53.9 % of the genes and their AT- 

composition rises to 90 % when compared to the overall AT-content of the whole 

genome, which is 80.6 %. P. falciparum has the highest AT-content of all the 

organisms sequenced to date. The Homo sapiens genome, for example, only has a 

59 % AT-content (Lander et al., 2001).  
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The central chromosome regions encode ‘housekeeping’ genes and the highly 

variable end regions encode polymorphic antigens and surface-related molecules. 

The genome of this intracellular parasite encodes fewer enzymes and transporters 

when compared to the genomes of free-living eukaryotic microbes. Additionally, 

a large subset of the genes is responsible for immune evasion and host-parasite 

interactions (Gardner et al., 2002). 

 

The mean length of P. falciparum coding genes (excluding introns) is 2.28 kb. 

This is larger than in other organisms, for example the 1.34 kb mean length of the 

H. sapiens coding genes (Lander et al., 2001), and this can be attributed to the 

presence of numerous codons encoding low complexity regions found in 

Plasmodium proteins. These low complexity regions may be over several hundred 

amino acids in length and contain stretches of one or a few amino acids, 

particularly asparagine and lysine (Pizzi and Frontali, 2001). Low complexity 

regions generally occur between domains of a protein, but in P. falciparum 

proteins they are also found within the domains. They tend to be located on the 

outer surface of the folded protein, where they form unstructured soluble stretches 

that do not interfere with the functions of the domains or the rest of the protein 

(Aravind et al., 2003). No physical function has thus far been assigned to low 

complexity regions, but it has been thought that they may be employed as decoys 

for the human immune system (Anders, 1986). 

 

1.6.2 P. falciparum protein identification 
 

Before the 1970s, P. falciparum proteins were isolated directly from malaria 

infected patients. This research however had limited success and thus the 

establishment of parasites in continuous culture by Trager and Jensen (1976) 

provided a new source of parasite proteins in the laboratory. Purification of 

proteins directly from the parasite by conventional methods was difficult due to 

the presence of erythrocyte protein contaminants and insufficient quantities of 

parasite protein being isolated. Combinations of other methods were however 

successfully employed to isolate and identify parasite proteins. 
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Several parasite surface proteins, for example MSP-1 (Holder and Freeman, 1982), 

were isolated by immunoprecipitation from parasite culture supernatants with 

human sera containing parasite-specific antibodies. Hybridoma technology was 

also applied to produce antibodies that recognise specific parasite antigens, for 

example CSP (Nardin et al., 1982). The antibodies were subsequently used to 

purify parasite proteins by affinity chromatography and for immunolocalisation 

experiments to determine the exact location of the proteins, such as AMA-1 

(Peterson et al., 1989), in the parasite. 

 

Standard methods, such as SDS-PAGE, chromatography and centrifugation, were 

also applied to isolate P. falciparum proteins. For example, Kilejian (1979) 

compared the erythrocyte membrane protein composition of cultured parasitised 

and non-parasitised erythrocytes by SDS-PAGE and isolated KHARP/HRP-I, and 

Perkins (1984) used immobilised erythrocyte glycophorins to isolate RESA and 

glycophorin-binding protein from lysed parasites. Goldberg et al. (1990) isolated 

P. falciparum food vacuoles by applying a combination of saponin lysis and 

Percoll gradient centrifugation and this group subsequently used anion exchange 

chromatography and gel filtration to isolate plasmepsin-I and -II, falcipain-I and 

falcilysin from these food vacuoles (Gluzman et al., 1994, Eggleson et al., 1999). 

Sanders et al. (2005) used sucrose density centrifugation to isolate erythrocyte 

detergent-resistant membranes from cells that were infected with parasites. The 

amino acid sequence of the N-termini of some isolated proteins, for example 

falcipain-2 (Shenai et al., 2000) and MSP-6 (Trucco et al., 2001) were determined 

by Edman sequencing and the amino acid sequence of peptide fragments of other 

proteins, such as RhopH1 (Kaneko et al., 2001), were determined by tandem mass 

spectroscopy. 

 

The genes coding for several isolated malaria proteins, for example MSP-2 and 

the rhoptry associated membrane antigen (RAMA) (Smythe et al., 1988), were 

identified by screening a P. falciparum bacteriophage λ cDNA library with MSP-

2 and RAMA-specific antibodies. Some parasite genes, for example  MAEBL 

(Blair et al., 2002) and TRAP (Robson et al., 1988), were isolated by 
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hybridisation and polymerase chain reaction (PCR) experiments using specific or 

degenerate oligonucleotide primers designed from the DNA and amino acid 

sequences of previously identified related malaria proteins or other conserved 

protein motifs. Primers were also used to screen mRNA, genomic DNA, 

expressed sequence tag (EST) libraries and cDNA libraries to ultimately obtain 

the complete DNA sequences coding for malaria proteins. 

 

After the publication of the P. falciparum genome sequence in 2002 and the 

subsequent availability of the annotated genome at PlasmoDB 

(www.plasmodb.org) (Bahl et al., 2003), researchers probed the genomic and EST 

databases with conserved regions of known malaria proteins and motifs of non-

malaria proteins to identify several malaria protein families, for example the 

plasmepsins (Banerjee et al., 2002) and the rhomboids (Baker et al., 2006). 

 

While the above mentioned techniques are adequate to isolate and identify 

parasite proteins, other techniques need to be employed to study protein-protein 

interactions. Some of these include the yeast two-hybrid (LaCount et al., 2005) 

and the phage display system (Smith, 1985). Phage display has only been used to 

study antibody-antigen interactions, for example to identify epitopes that interact 

with AMA-1 antibodies (Coley et al., 2001). This study will use a novel 

application of phage display to identify malaria proteins that interact with human 

erythrocyte spectrin.  
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1.7 Objectives 
 

During the erythrocytic stage of the P. falciparum life cycle the parasite has to 

enter, grow within and escape from the erythrocyte. All three processes utilise 

protein-protein interactions between the parasite and the erythrocyte membrane 

skeleton. Particularly protein-protein interactions with erythrocyte spectrin are of 

interest because spectrin is the main component of the membrane skeleton. 

Therefore, the aim of this project is to use phage display to identify P. falciparum 

proteins that interact with human erythrocyte spectrin. 

 

This will be achieved by: 

• Constructing a P. falciparum phage-display library by inserting P. 

falciparum cDNA into the T7 bacteriophage genome. 

• Biopanning the P. falciparum phage-display library against immobilised 

erythrocyte spectrin. 

• Sequencing the P. falciparum cDNA inserts found in the spectrin-binding 

bacteriophage and identifying the P. falciparum genes that match the 

cDNA inserts in the PlasmoDB database. 

• Cloning the identified P. falciparum genes into expression vectors to 

produce recombinant proteins. 

• Studying the protein-protein interaction between spectrin and the P. 

falciparum proteins with blot overlays. 

• Performing functional and structural studies to further characterise the P. 

falciparum proteins that interact with spectrin. 
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Chapter 2: Phage display 

2.1 Introduction 
2.1.1 Identifying protein-protein interactions 
 

Many processes occurring within the cell depend on protein-protein interactions, 

and therefore the majority of modern life-science research is concerned with 

identifying natural interactions and then studying these interactions in finer detail. 

Protein-protein interactions can be identified by screening a protein against 

multiple compounds or cell and tissue extracts to identify an interacting protein or 

ligand. 

 

Protein-protein interactions rely on the contact between certain amino acids of 

each protein and these interacting amino acid segments can be arranged in two 

ways. Amino acid residues are either located next to each other as a stretch of 

amino acids in their primary protein sequence, or they can be located far apart 

from each other and are brought together by protein folding. An amino acid 

stretch can also form part of a binding site that has to fold into the correct 

conformation for a protein-protein interaction to occur. Binding sites are 

characterised according to their structural and functional characteristics. Structural 

characteristics are studied with x-ray crystallography and relate to the actual 

position of the interacting amino acids within the complete protein structure. 

Functional characteristics are studied by site-directed mutagenesis to determine 

the type of amino acid residues that are important for the protein-protein 

interactions. These amino acids can normally not be replaced by other amino acids 

within the protein sequence. Another type of binding site that can only be 

discovered in vitro has also been characterised. This site does not contain the 

same amino acid sequence as the native protein but still binds to ligands, since it 

mimics the native binding amino acid sequence (Sidhu et al., 2003). 

 

Over the years there has been an increase and improvement in the methods 

applied in elucidating protein-protein interactions. New methods, for example the 
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yeast two-hybrid system (Fields and Song, 1989), have been used, but they are 

very labour-intensive and often not suitable for high-throughput evaluation of 

multiple gene products. Phage display on the other hand, can be used to screen 

multiple molecules. 

 

2.1.2 Phage display technology 
 

Phage display is a combinatorial technology that was introduced to the scientific 

community by Smith in 1985, who inserted segments of the EcoRI endonuclease 

gene between the N-terminal and C-terminal segments of the pIII capsid gene of 

the filamentous bacteriophage f1 (Smith, 1985). Smith was able to isolate 

bacteriophage expressing the endonuclease protein fused to the bacteriophage 

capsid protein by affinity selection with an antibody specific to the endonuclease 

(Smith, 1985). Since then the technique has for example been used to identify 

ligands of peptide receptors (Cesareni, 1992), enzyme substrates (Maenaka et al., 

1996), antibodies against specific antigens (Huse et al., 1992) and to improve or 

modify the affinity of proteins for their binding partners (Lowman et al., 1991). 

 

The novelty of the technique relies on the expression of foreign peptides or 

proteins fused to one of the coat proteins of a bacteriophage, such as f1 (Smith, 

1985, de la Cruz et al., 1988), fd (Parmley and Smith, 1988), M13 (Makowski, 

1993, Devlin et al., 1990), MS2 (Mastico et al., 1993), P4 (Lindqvist and Naderi, 

1995), λ (Sternberg and Hoess, 1995), T4 (Jiang et al., 1997) or T7 (Houshmand 

et al., 1999). The protein fusions are created by inserting a DNA fragment into the 

bacteriophage genome, adjacent to, or in, the DNA sequence of one of the capsid 

proteins of the bacteriophage. Subsequent infection of a bacterial host with the 

modified phage results in the expression of the fusion peptide or protein on the 

capsid surface. If random sequences are inserted, it is possible to obtain a large 

library with 106-109 different peptide or protein sequences, each displayed on a 

different phage (Hoess, 1993, Parmley and Smith, 1988). The phenotype of the 

displayed peptide is physically linked to the DNA sequence inserted in the phage 
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genome and because the bacteriophage is infective it can be propagated either 

individually or as a library. 

 

To select for phage displaying peptide sequences, a procedure termed biopanning 

is used (Parmley and Smith, 1988). This process of affinity selection involves 

incubating the phage library with a target peptide or protein that has been 

immobilised on a solid support (Figure 16). Phage displaying the appropriate 

peptide or protein domain bind to the immobilised target protein, while non-

binding phage are removed by washing. Bound phage are eluted from the target 

protein and amplified in bacteria specific for the virus. Amplified viruses can be 

used for further rounds of biopanning, usually three to four times, to obtain phage 

with the strongest binding ability. The DNA of the phage from the final round of 

selection can be sequenced and inserted into an expression system to further 

characterise the peptide. 

 

The advantages of the phage display system are: (1) the creation of a library that 

contains millions of peptides, instead of having to clone each peptide individually; 

(2) the selection of high-affinity phage from a library, even if they are present at 

low levels; (3) the ability to amplify bacteriophage in bacteria, resulting in the 

enrichment of rare binding phage; and (4) the linkage of the displayed peptide 

with its encoding DNA sequence, which allows one to identify and further process 

binding sequences (Hoess, 1993, Sidhu et al., 2003). 

 

Many phage display libraries have been created over the last twenty years and can 

be classified into two categories based on the type of DNA inserted into the 

library. The first is the random peptide library (RPL). RPLs are created by 

inserting synthetic random degenerate oligonucleotides into the phage genome 

(Devlin et al., 1990). These types of libraries display peptides of a predetermined 

length on the bacteriophage surface and because the libraries are universal in 

nature, they can be used to select peptides that react with several different target 

proteins. The main disadvantage of RPLs is that one can isolate peptide mimics 

which have binding abilities similar to that of the native protein, but do not 
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contain the native amino acid sequence. Mimics can however be very useful in 

drug discovery. 

 

 
Figure 16: Biopanning of a phage display library. 
Diagram showing the biopanning process. A T7 phage display library is added to 
the protein of interest that has been immobilised via the streptavidin-biotin 
interaction on a solid surface. Non-binding phage are removed by washing. 
Binding phage are eluted and used for amplification in the bacterial host. After 
amplification the phage are isolated and used for another round of biopanning. 
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The second type of library is the native peptide library (NPL), which is 

constructed from randomly generated fragments of a specific genome (Jacobsson 

and Frykberg, 1998) or reverse transcribed mRNA (Jespers et al., 1995), thereby 

making the insert sizes in NPLs less uniform than those in a RPL. NPLs are gene 

or genome specific and therefore a new library needs to be created every time a 

new organism is studied. The major advantages of NPLs are that native proteins 

that are highly specific to an interaction can be isolated from a library, even if the 

library is relatively small. 

 

Successful selection of a peptide-binding bacteriophage from a phage display 

library depends on the affinity of the displayed peptide for the immobilised target 

protein. Peptide binding in phage display can be influenced by the number of 

peptides displayed on the bacteriophage surface (i.e. the copy number). A large 

copy number (multivalent or polyvalent display) is used to isolate low and high 

affinity binders from a library, whereas a single bacteriophage displayed peptide 

(monovalent display) is used to isolate only high affinity binders (Hoess, 2001). 

Multivalent display is therefore more appropriate for an NPL, because this type of 

library is likely to contain only a few high-affinity binders and a large number of 

low affinity peptides that interact with the target. RPLs on the other hand are often 

used to detect high affinity peptides and therefore monovalent display would be 

more applicable. 

 

2.1.3 Phage display technology in malaria research 
 

Phage display technology has been applied to malaria research, but only in the 

context of studying interactions between antigens and antibodies. These antigen-

antibody studies were performed in three ways.   

 

The first type of experimental approach used phage display to express fragments 

of specific P. falciparum proteins on the surface of the bacteriophage. The repeat 

region of CSP was expressed on the surface of f1 phage either linked to gene III 

or gene VIII and the recombinant phage were used to test the immunogenicity of 
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the displayed peptide fragments in rabbits (de la Cruz et al., 1988, Greenwood et 

al., 1991). Heal and co-workers used the same approach to test the 

immunogenicity of the P. falciparum liver stage antigen-1 (LSA-1) in mice (Heal 

et al., 1999). 

 

The second type of experimental approach used RPLs or fragments of a P. 

falciparum protein displayed on the bacteriophage surface to identify epitopes that 

interacted with specific P. falciparum antibodies. Adda et al. (1999) panned a 

random 15-mer and 17-mer peptide library against a monoclonal antibody which 

was raised against the C-terminal recombinant fragment of P. falciparum RESA. 

The group identified mimotopes which are similar to the peptide motif found in 

the 5’ and 3’ repeat sequences of RESA. Coley and co-workers displayed AMA-1 

fragments on the surface of M13 and panned them against two antibodies known 

to interact with AMA-1. The binding fragments were analysed and mapped to 

specific regions within the AMA-1 protein sequence. Further studies using mutant 

AMA-1 fragments and a random 15-mer fd library were used to identify the exact 

epitope that interacted with the AMA-1 antibody (Coley et al., 2001). Casey et al. 

used a 20-mer RPL to find peptide mimics that interact with a known AMA-1 

antibody. The peptide fragments were subsequently used to isolate other AMA-1 

antibodies from human sera and to create new AMA-1 antibodies in rabbits that 

inhibited parasite invasion (Casey et al., 2004). 

 

The third type of experimental approach used antibody display libraries to find 

antibody fragments that interact with specific P. falciparum proteins. Lundquist 

and co-workers created an antibody phage display library by inserting cDNA from 

human peripheral blood leukocytes from immune individuals into the M13 

genome. The library was biopanned against P. falciparum MSP-3 to isolate three 

antibody fragments that interacted with the parasite protein (Lundquist et al., 

2006). Similar approaches were used to identify human antibodies interacting with 

Pfs48/45  (Roeffen et al., 2001) and MSP-1 (Sowa et al., 2001). 
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RPL phage display was also used to study and identify peptides that interact with 

host cell surfaces. Eda et al. (2004) panned a 7-mer disulfide bond-constrained 

RPL against P. falciparum-infected human erythrocytes. The isolated peptide was 

coupled to a compound with moderate haemolytic activity and added to parasite-

infected erythrocytes. The peptide bound to the surface of the infected 

erythrocytes, which were subsequently lysed by the haemolytic compound, 

thereby inhibiting parasite growth. Ghosh and co-workers injected or fed a 12-mer 

random peptide library to mosquitoes and dissected them to obtain bacteriophage 

that had bound to the salivary glands and the luminal side of the midgut. The 

group isolated one peptide that specifically interacted with both these surfaces and 

inhibited both sporozoite invasion of the salivary glands as well as ookinete 

invasion of the midgut (Ghosh et al., 2001). 

 

This study used phage display to express random P. falciparum protein fragments 

on the surface of bacteriophage T7 by inserting P. falciparum cDNA into the 

bacteriophage genome using the T7Select® Phage Display System. This approach 

is novel because it created an NPL that is based on the P. falciparum genome, 

which was utilised to investigate the interaction of human erythrocyte spectrin 

with P. falciparum peptides. The library can also be used to identify malaria 

proteins involved in any protein-protein interactions. 

 

2.1.4 The T7Select® Phage Display System 
 

Filamentous bacteriophage are non-lytic viruses and assembly of the infective 

viral particle involves the secretion of the capsid protein through the bacterial 

plasma membrane (Smith and Petrenko, 1997). This secretion limits the type of 

proteins that can be expressed on the bacteriophage capsid because a signal 

sequence is required to direct the protein to the plasma membrane of the host 

bacteria. The use of lytic bacteriophage such as P4, T4, T7 and λ that assemble the 

viral particle within the cytoplasm of bacteria and subsequently lyse their host cell, 

has vastly increased the type and number of proteins expressed on phage capsids. 

The T7Select® System created by Novagen (Novagen, Inc., Madison, USA) 
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utilises the double-stranded DNA bacteriophage, T7, to display peptides on the 

bacteriophage surface (Rosenberg et al., 1996).  

 

The 40 kb T7 bacteriophage genome codes for approximately 50 genes. These 

include the early genes, the genes involved in DNA metabolism and the genes 

responsible for the assembly of the bacteriophage (genes 9-18) (van Regenmortel 

et al., 2000). The T7 capsid consists of 415 copies of the T7 capsid protein, which 

are arranged as 60 hexamers on the faces and 11 pentamers at the vertices of the 

shell to make up an icosahedron. The last vertex contains the head-tail connector 

and a short conical tail, that contains six tail fibres, which completes the rest of the 

phage particle (Figure 17) (Swanson, 1999). Phage assembly takes place within 

the Escherichia coli cytoplasm by the formation of a procapsid that contains 

scaffolding protein, capsid protein, the head-tail connector, and an internal protein 

structure. After the bacteriophage DNA has entered the procapsid, the scaffolding 

proteins are released and conformational changes lead to the formation of the 

mature bacteriophage particle to which the tail and tail fibres attach at the head-

tail connector (Cerritelli and Studier, 1996). 

 

 

Capsid proteins 

Head-tail connector 

Tail proteins 

Tail fibres 

Figure 17: The T7 bacteriophage. 
Schematic representation of the structure of the T7 bacteriophage. The 
bacteriophage capsid contains 415 copies of the capsid protein and is connected to 
the tail proteins by the head-tail connector. Six tail fibres extend from the 
bacteriophage tail (Swanson, 1999). 
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The capsid of wildtype T7 is made up of either one form or a mixture of two 

forms of the capsid protein (Rosenberg et al., 1996), protein 10A consisting of 

344 amino acids and protein 10B consisting of 397 amino acids. The 10B protein 

is produced because of a translational frameshift at codon 341 of the capsid gene 

and represents ~10 % of the capsid proteins (Condron et al., 1991). The T7Select® 

System utilises the 10B gene to express peptides on the surface of T7. The 

T7Select10-3 vector was created by removing the frameshift at codon 341 and 

introducing a multiple cloning cassette at codon 348 of the 10B gene (Rosenberg 

et al., 1996) (Figure 18). This modification leads to the production of only the 

10B protein with a fused peptide, and because the size and sequence of the 

attached peptide could have a negative effect on viral assembly, the virus particles 

are amplified in E. coli cells containing an additional plasmid expressing multiple 

copies of the 10A protein. The viral particles created in this system thus only 

express 5-15 fused capsid proteins with peptides of up to 1200 amino acids on 

their surface making it an ideal system to display larger P. falciparum peptide 

fragments with a medium copy number on the bacteriophage surface. 

 

 
Figure 18: The T7Select10-3 vector. 
Diagram showing the creation of the T7Select10-3 vector. The frameshift (codon 
341) responsible for the translation of the 10B capsid protein was removed and the 
nucleotide sequence (codon 348-397) coding for the additional amino acids of the 
10B capsid protein was replaced by a multiple cloning site (codon 348-369) to 
enable the insertion of foreign cDNA (adapted from Rosenberg et al., 1996). 

 

T7 has several propagation properties that make it an ideal phage display system. 

Bacteriophage plaques can be produced within 3 hours at 37 ºC and cultures 
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generally lyse 1-2 hours after infection, which decreases the turnaround time 

between several rounds of panning. The phage particles are extremely robust and 

can withstand the harsh experimental conditions employed in the panning and 

eluting procedure. The viral DNA is easy to isolate and therefore restriction and 

DNA sequence analysis of clones are simple to perform (Rosenberg et al., 1996). 

 

2.2 Methods 
2.2.1 Materials 
 

P. falciparum strain FCR-3 was a gift from the Department of Pharmacy and 

Pharmacology (University of the Witwatersrand, Johannesburg, South Africa). All 

chemical reagents were of analytical or molecular biology grade. Milli-Q water 

prepared with the Milli-QTM Water System (Millipore Corporation, Bedford, 

USA) was used for all experimental procedures. 

 

2.2.2 Spectrin isolation and biotinylation 
Isolation of human spectrin from erythrocytes 
 

Erythrocyte ghosts were obtained from whole human blood by rupturing the 

erythrocytes by hypotonic lysis (Dodge et al., 1963). Twelve 6ml ACD tubes (BD 

Vacutainer Systems, Plymouth, UK) containing human blood donated by 

volunteers, were centrifuged at 800 g for 10 minutes at 4 ºC using a Jouan BR 

3.11 centrifuge (Jouan Inc., Winchester, USA). The plasma and buffy coat were 

removed and the erythrocytes washed three times in cold 0.9 % sodium chloride. 

Erythrocytes were lysed with 30 volumes of cold erythrocyte lysis buffer (3 mM 

sodium phosphate buffer, pH 8, 0.1 mM Na2EDTA, 0.1 mM 

phenylmethanesulphonyl fluoride (PMSF; see Appendix A1 for stock solution; 

Roche Diagnostics Gmbh, Mannheim, Germany) and centrifuged at 25,000 g for 

15 minutes at 4 ºC using a Beckman® J2-21 centrifuge (Beckman Coulter, Inc., 

Fullerton, USA). The supernatant and the residual white cell pellet were removed 

and the ghosts washed a further three times with erythrocyte lysis buffer. Spectrin 
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was extracted from the erythrocyte ghosts by low ionic strength extraction 

(Coetzer and Palek, 1986). This was achieved by adding 30 volumes of fresh 

spectrin extraction buffer (0.1 mM sodium phosphate, pH 8, 0.1 mM Na2EDTA, 

and 0.1 mM 1,4-dithiothreitol (DTT; Roche Diagnostics Gmbh, Mannheim, 

Germany) and centrifuging at 30,000 g for 30 minutes at 4 ºC. DTT prevents 

disulphide bond formation and thereby inhibits the aggregation of spectrin.  The 

supernatant was aspirated until there was a 1:½ ratio of erythrocyte ghosts to 

buffer remaining in the tube. The suspension was incubated overnight at 4 ºC. 

Pefabloc SC (an irreversible protease inhibitor) (Roche Diagnostics Gmbh, 

Mannheim, Germany) was added to a concentration of 0.1 mM. The sample was 

centrifuged at 150,000 g for 30 minutes at 4 ºC, using a Beckman® L8-70M 

ultracentrifuge (Beckman Coulter, Inc., Fullerton, USA) and the supernatant 

containing the crude spectrin extract collected and pooled. 

 

Size exclusion chromatography and concentration of spectrin 
 

Spectrin tetramers and dimers were removed from high molecular weight 

complexes and band 4.1 by size exclusion chromatography (Zail and Coetzer, 

1984). The crude spectrin sample was incubated at 37 ºC for 30 minutes to 

dimerise the spectrin and loaded onto a 3 cm x 100 cm Sepharose® (CL) 4B 

column (kept at 4 ºC) (Pharmacia Fine Chemicals AB, Uppsala, Sweden) 

equilibrated with spectrin column buffer (10 mM sodium phosphate buffer, pH 

7.6, 130 mM KCl, 20 mM NaCl, 1 mM Na2EDTA, 1 mM DTT) at a flow rate of 

20 ml/hr. The elution profile of the collected fractions (2.5ml per tube) was 

plotted using a LKB Bromma 2238 Uvicord S II UV reader (Pharmacia Fine 

Chemicals AB, Uppsala, Sweden) (settings: 280 nm, absorbance 0.5) and a LKB 

Bromma 2210 Recorder (settings: 0.5mm/min, 500mV). Fractions containing only 

the spectrin dimers were pooled and the concentration of a 10 µl sample 

determined with the Coomassie Plus™ Protein Assay Reagent (Pierce 

Biotechnology Incorporated, Rockford, USA). Spectrin tetramers were not used 

for the biotinylation procedure because they eluted just after the high molecular 

weight complexes and contamination with other erythrocyte membrane proteins 
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was possible. The spectrin dimers were concentrated to 2.5 ml using an Amicon 

Stirred Ultrafiltration Cell kept on ice (Model 8050; Millipore Corporation, 

Bedford, USA) that contained an Ultracel Amicon YM 10 Disc Membrane 

(molecular weight exclusion limit of 100,000 Da; Millipore Corporation, Bedford, 

USA). The concentration procedure was performed with nitrogen (African 

Oxygen Limited, Johannesburg, South Africa) set at 0.7 atm. The sample was 

further concentrated to ~5 mg/ml with a 0.5-3 ml Slide-A-Lyzer® Dialysis cassette 

(Pierce Biotechnology Incorporated, Rockford, USA) and Polyethylene glycol 

2000 (PEG 2000) (Sigma-Aldrich Corporation, St. Louis, USA). 

 

Biotinylation of purified spectrin 
 

The concentrated spectrin sample was dialysed against phosphate buffered saline 

(PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.4 mM KH2PO4, pH 7.2) 

for 2-3 hours at 4 ºC using a 0.5-3 ml Slide-A-Lyzer® Dialysis cassette. The 

spectrin was biotinylated for 2-4 hrs at room temperature with continuous stirring 

in a reaction that contained a molar ratio of 1:10 of D-biotin-N-

hydroxysuccinimide ester (Roche Diagnostics Gmbh, Mannheim, Germany) to 

spectrin dimers (MW 460 kDa) (Figure 19). 

 

 
Figure 19: The biotinylation reaction. 
(adapted from Roche Applied Science, 1999) 
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The sample was dialysed overnight at 4 ºC against PBS to remove free biotin and 

centrifuged at 8,500 g for 10 minutes at room temperature using a Sorvall® RMC-

14 Refrigerated Microcentrifuge (Sorvall Products, L.P., Newtown, USA). The 

supernatant was diluted to a final concentration of 1 mg/ml with PBS. One 

hundred microlitre aliquots were stored at -20 ºC. 

 

Analysis of spectrin 
 

The biotinylated spectrin was electrophoresed on a Laemmli SDS-polyacrylamide 

gel (Laemmli, 1970) and a gradient Fairbanks SDS-polyacrylamide gel (Coetzer 

et al., 1988, Fairbanks et al., 1971) to analyse its purity. 

 

Ten micrograms spectrin and 45 µg erythrocyte membrane proteins were prepared 

by adding 5 x Suspension Solution (50 mM Tris-HCl, 5 mM Na2EDTA, 5 % SDS 

(w/v), 25 % sucrose (w/v), pH 8), 40 x sucrose/dye (2.5 % sucrose (w/v), 0.5 % 

bromophenol blue (w/v)) and 2 % β-mercaptoethanol (v/v) and heating the sample 

for 2 minutes in boiling water. A 14 cm x 16 cm x 1.5 mm Laemmli SDS-

polyacrylamide gel containing a stacking gel composed of 4 % polyacrylamide 

(29.2 % acrylamide/0.8 % bisacrylamide (w/v) stock solution) in lower gel buffer 

(375 mM Tris-HCl, pH 8.8) and 0.1 % SDS (w/v) and a resolving gel composed 

of 12 % polyacrylamide in upper gel buffer (125 mM Tris-HCl, pH 6.8) and 0.1 % 

SDS (w/v), was cast and the spectrin electrophoresed against the erythrocyte 

membrane proteins at 75 V for 17 hours with Laemmli running buffer (25 mM 

Tris, 192 mM glycine, 0.1 % SDS (w/v). The protein bands were stained with 

Coomassie Blue stain (0.05 % Coomassie Blue R-250 (w/v) (BDH Laboratory 

Supplies, Poole, UK), 25 % isopropanol (v/v), 10 % glacial acetic acid (v/v)). 

 

A 14 cm x 16 cm x 1.5 mm Fairbanks SDS-polyacrylamide gel was set up with an 

exponential polyacrylamide gradient of 3.5-17.5 % (40 % acrylamide/1.5 % 

bisacrylamide (w/v) stock solution) in Tris acetate buffer (40 mM Tris, 20 mM 

sodium acetate, 1 mM Na2EDTA, pH 7.4) and 0.2 % SDS (w/v). Protein samples 

were solubilised the same way as for the Laemmli SDS-polyacrylamide gel. Five 
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micrograms spectrin was electrophoresed against 20 µg erythrocyte membrane 

proteins at 45 V for 17 hours using Tris acetate buffer containing 0.1 % SDS 

(w/v). The protein bands were stained with Coomassie Blue stain. 

 

To test successful biotinylation of spectrin, one well from a Streptawell plate 

(transparent, 12x8-well strips; Roche Diagnostics Gmbh, Mannheim, Germany) 

was coated with 0.5 µg of biotinylated spectrin in 200 µl Tris buffered saline 

(TBS; 10 mM Tris-HCl, 150 mM NaCl, pH 8), by allowing the protein to bind for 

1 hour at 4 ºC. A second control well was incubated with 200 µl TBS. The wells 

were washed 3 times with 300 µl TBS-T (TBS with 0.12 % Tween®-20 (v/v) 

(Calbiochem®, San Diego, USA), blocked with 200 µl 3 % Bovine Serum 

Albumin Fraction V (w/v) (Roche Diagnostics Gmbh, Mannheim, Germany) in 

TBS and analysed with a 1:100 dilution of a rabbit anti-α-spectrin and rabbit anti-

β-spectrin primary polyclonal antibody mix (prepared at St. Elizabeth’s Medical 

Center, Boston, USA), followed by a 1:1000 dilution of goat anti-rabbit IgG 

peroxidase (Roche Diagnostics Gmbh, Mannheim, Germany). The secondary 

antibody was detected with 0.5 mg/ml 4-chloro-1-napthol (Sigma-Aldrich 

Corporation, St. Louis, USA) and 0.1 % hydrogen peroxide solution (Sigma-

Aldrich Corporation, St. Louis, USA). 

 

2.2.3 P. falciparum culturing 
 

P. falciparum cultures (~5 % parasitaemia and ~5 % haematocrit) were 

maintained in 175 cm3 culture flasks (Nunc™, Roskilde, Denmark) with 30 ml 

RPMI-1640 medium containing 25 mM HEPES (Invitrogen Ltd, Renfrewshire, 

UK) supplemented with 20 mM glucose (Saarchem (Pty) Ltd., Wadeville, South 

Africa), 44 mg hypoxanthine (Sigma-Aldrich Corporation, St. Louis, USA), 0.05 

mg/ml gentamycin (Sigma-Aldrich Corporation, St. Louis, USA), 0.2 % sodium 

bicarbonate (w/v) (adapted from Trager and Jensen, 1976). Before use, the filter 

sterilised medium (SterivexTM-GS 0.2 µm Filter unit, Millipore Corporation, 

Bedford, USA) was gassed with 100 % carbon dioxide (African Oxygen Ltd., 

Johannesburg, South Africa) until the pH indicator changed to a orange-yellow 
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colour, and 10 % heat inactivated AB plasma (v/v) was added to the medium. The 

cultures were examined daily by staining a blood smear with the Rapid 

Haematology Stain (Diagnostic Media Products, NHLS, Sandringham, South 

Africa). The culture medium was changed daily and the parasitaemia and 

haematocrit levels were controlled by removing a portion of parasitised cells from 

the flask and adding fresh human erythrocytes (donated by volunteers) that had 

been washed with sterile PBS. Cultures were grown in a 37 ºC Nuaire™ IR 

Autoflow incubator (Nuaire™, Plymouth, USA). 

 

2.2.4 P. falciparum mRNA isolation 
Total RNA isolation 
 

Total RNA was obtained from the parasites using the guanidinium isothiocyanate 

isolation method described by Chomczynski and Sacchi (1987). All RNA 

isolation experiments were performed in an RNase-free environment (as described 

in Ausubel et al., 1994). Parasite suspensions from four 175 cm3 culture flasks 

(mixed cultures with a 10-20 % parasitaemia) were centrifuged for 5 minutes at 

900 g using a Jouan BR 3.11 centrifuge. Thirty millilitres 0.05 % saponin (w/v, 

dissolved in PBS; USB Corporation, Cleveland, USA) was added to each tube to 

lyse the parasite-infected erythrocytes. The samples were incubated for 5 minutes 

at room temperature, followed by centrifugation at 900 g for 10 minutes. Parasite 

pellets were washed three times in PBS. The 100-200 µl parasite pellets were 

lysed with 5 ml 4 M guanidinium isothiocyanate (Sigma-Aldrich Corporation, St. 

Louis, USA) solution containing 25 mM sodium citrate, pH 7, 0.5 % lauryl 

sarcosine (w/v) (Sigma-Aldrich Corporation, St. Louis, USA), and 0.1 M β-

mercaptoethanol (Merck KGaA, Darmstadt, Germany). The total RNA was 

removed from the cellular debris by adding 1/10 volume 2 M sodium acetate, pH 

4, an equal volume phenol pH 4.2 (MP Biomedicals, LLC, Aurora, USA), and 1/5 

volume chloroform and centrifuging the mixed sample at 1,500 g for 15 minutes 

at 4 ºC. An equal volume of chloroform was added to the aqueous phase and the 

centrifugation step repeated. One millilitre aliquots of the supernatant were 

pipetted into RNaseZap® (Ambion Inc., Austin, USA) treated 2.0 ml Eppendorf 
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tubes (Eppendorf AG, Hamburg, Germany) and an equal volume of 100 % cold 

isopropanol added. The samples were incubated at -20 ºC for 1-2 hours and 

centrifuged at 16,000 g for 10 minutes at 4 ºC in a Sorvall® RMC-14 Refrigerated 

Microcentrifuge. The pellets were air dried for 1 hour at room temperature and 

resuspended in a total volume of 120 µl nuclease-free water (Promega 

Corporation, Madison, USA). A total of 10 µl of the sample was kept aside for 

spectrophotometric analysis at 260 and 280 nm (as described in Ausubel et al., 

1994) and visualisation on a 1 % agarose gel (containing 0.5 µg/ml ethidium 

bromide (Sigma-Aldrich Corporation, St. Louis, USA)) in Tris EDTA acetic acid 

buffer (TEA buffer; 40 mM Tris, 1 mM Na2EDTA, pH 8, 0.1 % glacial acetic acid 

(v/v)). 

 

mRNA isolation 
 

mRNA was separated from the total RNA using the Dynabeads® mRNA Direct™ 

Kit (Dynal A.S, Oslo, Norway), which uses magnetic Oligo (dT)25 beads that bind 

mRNA poly-A tails to extract mRNA directly from cells. The protocol was 

therefore modified to extract mRNA from total RNA. The 110 µl total RNA 

sample was made up to 1 ml with Binding/Lysis Buffer and added to the magnetic 

particles (250 µl Dynabeads® Oligo (dT)25 bead suspension from the stock, 

washed with 250 µl Binding/Lysis Buffer). The mRNA was allowed to bind to the 

beads for 5 minutes at room temperature while continuously inverting the tube by 

hand. The Binding/Lysis Buffer was removed by placing the tube on the Magnetic 

Particle Separator (Roche Diagnostics Gmbh, Mannheim, Germany) and 

aspirating the supernatant. Beads were washed twice by continuously inverting the 

sample for 5 minutes at room temperature using 1 ml Washing Buffer A and once 

with 1 ml Washing Buffer B. mRNA was eluted from the beads in 25 µl 10 mM 

Tris-HCl, pH 7.5 by heating the sample to 65 ºC for 2 minutes. The concentration 

and purity of the mRNA was determined by spectrophotometric analysis at 260 

and 280 nm and visualisation on a 1 % agarose gel in TEA buffer. 
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2.2.5 P. falciparum phage display library creation 
P. falciparum cDNA synthesis 
 

The OrientExpress™ cDNA Kit (Novagen, Inc., Madison, USA) was used to 

create the P. falciparum phage display library according to the protocol of the 

manufacturer. P. falciparum mRNA was reverse transcribed in the presence of 5-

methyl dCTP to protect internal EcoRI and HindIII restriction sites. The P. 

falciparum mRNA strand was digested by RNase H and double stranded DNA 

synthesised using the reverse transcribed DNA strand as the template. A single 

directional linker was added to both sides of the dsDNA (Figure 20). The linker 

has an internal EcoRI site and a HindIII site is created at the 3’ end of the 

construct by a combination of the poly-A tail and part of the linker. Digestion 

with EcoRI and HindIII thus facilitated directional cloning of the dsDNA into the 

T7Select®10-3b Vector (Figure 20 and vector map in Appendix A2). The protocol 

in the OrientExpress™ cDNA Manual (Novagen, 1999a) was modified by 

precipitating the DNA with ethanol instead of isopropanol. The library creation 

procedure was monitored by incorporating 5 µCi [α-32P]dATP (specific activity = 

3000 Ci/mmol; Amersham Biosciences, Ltd., Buckinghamshire, UK) into the first 

and second strand synthesis reaction and electrophoresing the P. falciparum 

dsDNA against size markers (Appendix A1) on a 8 % denaturing polyacrylamide 

gel. 

 

 
Figure 20: Double digestion of the linker and P. falciparum insert. 
Diagram showing the creation of the EcoRI/HindIII P. falciparum insert after 
addition and double digestion of a single linker. Red nucleotides = P. falciparum 
DNA; blue nucleotides = directional linker; green lines = EcoRI and HindIII 
restriction sites. 
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The P. falciparum library was created using 4 µg P. falciparum mRNA. The 

mRNA and 2 µg of a two-base anchored primer cocktail (P129, P130, P131, 

P132) (Integrated DNA Technologies, Inc., Coralville, USA) (reaction volume = 

20 µl) (Figure 21) were heated at 70 ºC for 10 minutes to reduce RNA secondary 

structure. The sample was cooled on ice and the mRNA subjected to first strand 

synthesis with 800 units MMLV Reverse Transcriptase in the presence of 1 x First 

Strand Buffer, 10 mM DTT and 0.5 x Methylated dNTP Mix for 1 hour at 37 ºC 

(reaction volume = 50 µl). The MMLV enzyme was subsequently inactivated by 

heating to 70 ºC for 10 minutes. Second strand synthesis entailed digesting the 

mRNA template with 1.6 units RNase H and completing the DNA synthesis with 

50 units DNA polymerase I in the presence of 1 x Second Strand Buffer, 2.4 mM 

DTT and 0.08 x Methylated dNTP Mix for 90 minutes at 15 ºC (reaction volume 

= 250 µl). 

 

 
Figure 21: Anchored 14-mer primers for P. falciparum cDNA synthesis. 
 

The dsDNA was purified by phenol (pH 7.9)/chloroform/ isoamyl alcohol 

(25:24:1) extraction. The dsDNA was precipitated for 20 minutes at -70 ºC with 

10 µg Glycogen, an equal volume of 4 M Ammonium Acetate, pH 4.8 and two 

and a half volumes 100 % cold ethanol, followed by centrifugation at 16,000 g for 

30 minutes at 4 ºC. The pellet was washed with 70 % ethanol and air dried for 20 

minutes before being resuspended in 20 µl TE Buffer. DNA ends were blunted 

with 1.5 units T4 DNA Polymerase, 1 x Flush Buffer, 5 mM DTT, and 3 mM 

dNTP Mix for 20 minutes at 11 ºC (reaction volume = 30 µl), followed by phenol-

chloroform extraction and ethanol precipitation as above. The pellet was 

resuspended in 10 µl TE Buffer. One hundred picomoles Directional 

EcoRI/HindIII Linkers and the DNA were phosphorylated in the presence of 5 

units T4 Polynucleotide Kinase, 1 x Ligation Buffer, 0.1 mM ATP, and 10 mM 
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DTT for 5 minutes at 37 ºC and then ligated to each other in the presence of 6-8 

Weiss units T4 DNA Ligase for 20 hours at 16 ºC (reaction volume = 20 µl). The 

ligase was heat inactivated at 70 ºC for 10 minutes, before the DNA was subjected 

to restriction digestion with 100 units HindIII in 1 x HindIII Buffer for 2 hours at 

37 ºC (reaction volume = 100 µl), followed by restriction digestion with 100 units 

EcoRI in 1 x EcoRI Adjustment Buffer for 4 hours at 37 ºC (reaction volume = 

115 µl). The DNA was purified with phenol-chloroform as above and fragments 

smaller than 300 bp removed by size exclusion chromatography through 1 ml Gel 

Filtration Resin (Sepharose® 4B) equilibrated with Column Buffer. The 250 µl 

eluate was subjected to ethanol precipitation as above with 1 µg Glycogen but no 

addition of 4 M Ammonium Acetate and resuspended in 20 µl TE Buffer. The 

concentration and purity of vector-ready DNA was determined by 

spectrophotometric analysis at 260 and 280 nm. 

 

Ligation and viral packaging 
 

P. falciparum DNA was inserted into the T7 vector using the T7Select® System 

(Novagen, Inc., Madison, USA) according to the instructions of the manufacturer. 

A molar ratio of 1500 bp DNA insert (estimation of the average length of the 

inserts after DNA synthesis) to vector of 1:1 to 3:1 should be used for the ligation 

reaction (Novagen, 2000b). Therefore, ~0.05 pmol P. falciparum DNA was 

ligated to 0.02 pmol T7Select® Vector Arms in the presence of 0.4-0.6 Weiss 

units T4 DNA Ligase, 1 mM ATP, 1 x Ligase Buffer, and 10 mM DTT for 16 

hours at 16 ºC (reaction volume = 5 µl). The 5 µl ligation reaction was packaged 

in 12.5 µl T7Select® Packaging Extract for 2 hours at room temperature and the 

reaction terminated with 132.5 µl sterile Luria broth (LB; 1 % Bacto™ Tryptone 

(w/v) (Becton, Dickinson and Co., Sparks, USA), 0.5 % Yeast Extract (w/v) 

(Oxoid Ltd., Basingstoke, UK), 1 % NaCl (w/v), 1 % 10 mM Tris-HCl, pH 7.5 

(v/v)) supplemented with 50 µg/ml ampicillin (Roche Diagnostics Gmbh, 

Mannheim, Germany). Ten microlitres of the packaged sample was kept aside for 

a 103-106 dilution assay. The remaining packaging mixture was added to a 50 ml 

log phase BLT5403 E. coli culture (bacterial cells provided in kit; Novagen, Inc., 
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Madison, USA) grown in M9LB medium (LB medium supplemented with 0.4 % 

glucose (w/v), 1 mM MgSO4, 1 x M9 salts (18.7 mM NH4Cl, 22 mM KH2PO4, 

22.5 mM Na2HPO4)) containing 50 µg/ml ampicillin and incubated at 37 ºC while 

shaking at 225 rpm in a Labotec® Orbital Shaker (Labotec, Midrand, South 

Africa) until lysis was observed (3-4 hours). Sodium chloride was added to a final 

concentration of 0.5 M and the suspension centrifuged at 8,000 g for 10 minutes 

using a Beckman® J2-21 centrifuge. Ten microlitres of the bacteriophage-

containing supernatant was kept aside for a 106-109 dilution assay to determine the 

bacteriophage concentration. The remainder of the supernatant was kept at 4 ºC 

for daily use, or stored long term at –70 ºC with an equal volume of 80 % glycerol 

(v/v) (Saarchem (Pty) Ltd., Wadeville, South Africa). 

 

Dilution assay 
 

The packaging efficiency and total plaque forming units were determined by a 

103-106 dilution assay. The bacteriophage concentration of an amplified culture 

was determined from a 106-109 dilution assay.  

 

The assay involved setting up the above mentioned serial dilutions in LB medium. 

One hundred microlitres of each dilution was added to 250 µl log phase BLT5403 

E. coli cells and 3 ml warm top agarose (1 % tryptone (w/v), 0.5 % yeast extract 

(w/v), 0.5 % NaCl (w/v), 0.6 % SeaKem LE agarose (w/v) (FMC® BioProducts, 

Rockland, USA)). The mixture was poured onto 20 ml agar plates (LB medium, 

1.5 % agar (w/v) (Oxoid Ltd., Basingstoke, UK) containing 50 µg/ml ampicillin. 

Inverted plates were incubated at 37 ºC until plaques formed (3-4 hours). The 

plaque forming units (pfu) per ml (phage titre), total number of pfu (library size), 

and packaging efficiency and concentration were determined from the following 

formulae (Novagen, 2000b): 

phage titre (pfu/ml) = (number of plaques on plate) x dilution x 10 

where 10 takes into account the 0.1 ml of the dilution plated 
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library size (pfu) = phage titer x total sample volume 

where total sample volume is the 0.15 ml final volume used during packaging reaction 

 

packaging efficiency (pfu/µg) = library size / amount vector DNA 

where 0.5 µg vector DNA was used in packaging reaction 

 

DNA insert analysis by polymerase chain reaction (PCR) 
 

Plaques were removed from agar plates and placed into 50 µl 10 mM Na2EDTA, 

pH 8. The samples were vortexed and incubated at 65 ºC for 10 minutes. After 

cooling, the tubes were centrifuged at 16,000 g for 3 minutes at 4 ºC using a 

Sorvall® RMC-14 Refrigerated Microcentrifuge. One microlitre phage lysate was 

mixed with 0.5 µl T7SelectUP Primer (5 pmol/µl) (Novagen, Inc., Madison, 

USA), 0.5 µl T7SelectDOWN Primer (5 pmol/µl) (Novagen, Inc., Madison, USA), 

12.5 µl PCR Master Mix (Promega Corporation, Madison, USA), and 10.5 µl H2O. 

The sample was placed in the Eppendorf Mastercycler® Gradient machine 

(Eppendorf AG, Hamburg, Germany) under the cycling conditions shown in 

Table 2 (Novagen, 2000b). Ten microlitres of the PCR product was visualised 

against the 100bp DNA Ladder (Promega Corporation, Madison, USA) on a 1% 

agarose gel in TEA buffer. 

 

Table 2: Cycling parameters for T7 insert amplification. 
Segment Cycles Temperature Time 

1 1 80 ºC 2 min 
2 1-35 94 ºC 50 sec 
  50 ºC 1 min 
  72 ºC 1 min 

3 1 72 ºC 6 min 
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2.2.6 P. falciparum phage display library biopanning 
Binding spectrin to Streptavidin Magnetic Particles 
 

Hundred microlitres biotinylated spectrin was bound to 50 µl Streptavidin 

Magnetic Particles (Roche Diagnostics Gmbh, Mannheim, Germany) at room 

temperature for 1 hour by continuous inversion by hand to prevent the beads from 

settling at the bottom of the tube. Unbound spectrin was removed by placing the 

beads on the Magnetic Particle Separator. The beads were washed four times with 

500 µl PBS containing 0.05 % Tween®-20 (v/v) and kept in 500 µl PBS at 4 ºC 

until further use. The PBS was removed before the use of the beads. 

 

Biopanning the P. falciparum library against spectrin 
 

The biopanning process entailed incubating the P. falciparum phage display 

library with spectrin bound to Streptavidin Magnetic Particles. Bacteriophage that 

did not interact with spectrin were washed away and bound bacteriophage eluted 

from the beads and amplified in E. coli. The biopanning was performed four times 

to ensure specific enrichment of bacteriophage interacting with spectrin. 

 

The multiplicity of infection (MOI) for the biopanning procedure can be 

calculated from the following formula: 

MOI = volume of phage used (ml) x phage titre (pfu/ml) / library size (pfu) 

 

Five hundred microlitres of the P. falciparum phage display library (1 x 107 

pfu/ml diluted in PBS) was bound to 100 µl Streptavidin Magnetic Particles for 1 

hour at room temperature by continuous inversion by hand. This background 

selection step was performed to eliminate bacteriophage that could bind to the 

streptavidin-coated beads. The suspension was placed on the Magnetic Particle 

Separator and the unbound bacteriophage removed and added to the spectrin-

coated beads. Bacteriophage were allowed to bind to the beads for 1 hour at room 

temperature while continuously inverting the tube by hand. Unbound 

bacteriophage were removed and the beads transferred to a 15 ml tube (Nunc™, 
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Roskilde, Denmark) and washed three times with 10 ml PBS containing 0.05 % 

Tween®-20 (v/v), for 10 minutes at room temperature. A final wash was 

performed with 10 ml PBS. Bound bacteriophage were eluted from the beads by 

incubating them in 250 µl PBS containing 1 % SDS (w/v) for 15 minutes at room 

temperature. The supernatant was added to a 50 ml log phase BLT5403 E. coli 

culture grown in M9LB medium supplemented with 50 µg/ml ampicillin and 

incubated overnight at 37 ºC using a Labotec® Orbital Shaker (225 rpm). Sodium 

chloride was added to a final concentration of 0.5 M and the suspension 

centrifuged at 8,000 g for 10 minutes using a Beckman® J2-21 centrifuge. A 106-

109 dilution assay was performed to determine the bacteriophage concentration 

and the biopanning procedure repeated three times. 

 

2.2.7 DNA sequencing of P. falciparum inserts 
 

The nucleotide sequence of the P. falciparum DNA fragments coding for the 

peptides that interact with spectrin was analysed by Sanger sequencing (Sanger et 

al., 1977). Sequencing was accomplished by first isolating the bacteriophage 

DNA from a plaque and then amplifying the P. falciparum DNA fragment by 

PCR using the T7SelectUP and T7SelectDOWN Primers. The remainder of the 

plaque was excised from the agar plate and placed into 500 µl phage extraction 

buffer (20 mM Tris-HCl, 100 mM NaCl, 6 mM MgSO4, pH 8) and stored at 4 ºC. 

The double stranded DNA product was prepared for the sequencing reaction with 

ExoSap-IT® (USB Corporation, Cleveland, USA). This enzyme cocktail contains 

exonuclease I, which digests residual primers, and shrimp alkaline phosphatase, 

which dephosphorylates unincorporated nucleotides. The prepared DNA was 

sequenced using the T7 Sequenase version 2.0 DNA sequencing kit (Amersham 

Biosciences, Ltd., Buckinghamshire, UK) in the presence of [α-32P]dATP and the 

T7SelectUP Primer. 
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2.2.8 Identification and analysis of P. falciparum inserts 
P. falciparum database gene search 
 

The sequence of each insert was compared to the PlasmoDB (Version 4.4, 

available at http://plasmodb.org) (Bahl et al., 2003) P. falciparum genomic 

sequence (nt) database and the P. falciparum annotated genes (nt) databases using 

the WashU-BLASTN 2.0 search algorithm (gapped alignment using a Blosum62 

matrix). P. falciparum genes showing a 95 % or higher identity to the query 

sequence were further analysed by establishing the reading frame of the DNA in 

the T7 bacteriophage. The nucleotide sequence was translated into the amino acid 

sequence using Gene Runner (version 3.05) (Hastings Software Inc., Hastings, 

USA) and compared to the PlasmoDB annotated protein database using the 

WashU-BLASTP 2.0 algorithm (using a gapped Blosum62 matrix). Identical 

results for the best matches from both queries, as well as a +1 reading frame in the 

amino acid sequence query, indicated that these P. falciparum genes code for 

proteins that interact with spectrin. 

 

Peptide alignment and motif scan 
 

The amino acid sequences of the peptides displayed on the bacteriophage surface 

were compared to each other with ClustalW (http://www.ebi.ac.uk/clustalw/) 

(Chenna et al., 2003) and analysed with Motif Scan (http://myhits.isb-sib.ch/cgi-

bin/motif_scan) (Pagni et al., 2004) to determine if there were any amino acid or 

motif similarities between all the spectrin-binding peptides. Motif Scan compared 

the peptide sequence to the Prosite and the Pfam peptide motif databases. 

 

2.3 Results 
2.3.1 Spectrin preparation 
 

SDS-PAGE analysis of the crude spectrin extract (Figure 22) showed that small 

amounts of protein 4.1, actin, and protein 4.9 had been co-extracted from the 
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erythrocyte ghosts, but no ankyrin contamination was evident. A Fairbanks SDS-

polyacrylamide gel was used to verify the absence of ankyrin, because ankyrin co-

migrates with β-spectrin on a Laemmli SDS-polyacrylamide gel. 

 

Size exclusion chromatography (Figure 23) was used to purify the spectrin dimers 

and tetramers from the contaminating erythrocyte membrane proteins. The small 

protein peak before the spectrin tetramers consisted of high molecular weight 

(HMW) spectrin/protein 4.1/actin complexes. The protein peak after the spectrin 

dimers contained the other contaminating membrane proteins seen in Figure 22. 

 

Purified spectrin dimers were concentrated and used for the biotinylation reaction. 

Tetramers were excluded because there was a risk of contamination with the 

HMW complexes. 

 

 
Figure 22: Spectrin isolation from human erythrocytes. 
Photographs of a Laemmli (a) and Fairbanks (b) gel showing spectrin and 
additional proteins isolated from erythrocytes after hypotonic lysis and low ionic 
strength extraction. Lane M contains 45 µg (a) and 20 µg (b) erythrocyte 
membrane proteins respectively and lane 1 contains 10 µg (a) and 5 µg (b) 
spectrin respectively. 
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Figure 23: Size exclusion chromatography of spectrin. 
Elution profile of crude spectrin passed through a Sepharose® (CL) 4B column. 
Spectrin tetramers (SpT; 920 kDa) elute before spectrin dimers (SpD; 460 kDa). 
The first small peak contains high molecular weight complexes (HMW: 
spectrin/protein 4.1/actin) and the last peak contains the low molecular weight 
proteins (LMW: actin and protein 4.1). 

 

The total amount and concentration of protein, as well as the percentage yield of 

spectrin dimers after each step of the procedure are listed in Table 3. The spectrin 

dimers obtained after biotinylation were only 23 % of the crude spectrin extract 

because the high molecular weight complexes, actin and protein 4.1 were removed 

during size exclusion and spectrin tetramers were also not included in the 

concentration and biotinylation procedure. Furthermore, only 39 % of the spectrin 

dimers (after size exclusion) were recovered at the end of the biotinylation 

procedure because a large amount of protein was lost during the concentration and 

particularly in the dialysis steps.  
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Table 3: Spectrin dimer yields during spectrin processing. 

 Total amount 
protein (mg) 

Protein 
concentration 

(mg/ml) 

Yield from total 
spectrin (%) 

Yield from 
spectrin 

dimers (%) 
Crude spectrin 

extract  18.5 1.85 100 - 

Spectrin tetramers 
after size exclusion 1.3 0.06 7.0 - 

Spectrin dimers after 
size exclusion 10.9 0.15 59 100 

Spectrin dimers after 
concentration 7.7 3.06 42 70 

Spectrin dimers after 
biotinylation 4.3 2.27 23 39 

 

Analysis of the biotinylated spectrin dimers on Laemmli and Fairbanks SDS-

polyacrylamide gels showed that the spectrin samples were >90 % pure (Figure 

24) and that the visible contaminant was actin. These gels seem to contain less 

spectrin than Figure 22 even though similar amounts were loaded and Bradford 

analysis was used to determine the spectrin concentration in the samples. 

However, the Bradford reagent contains Coomassie G-250 Dye which binds to 

basic and aromatic groups in amino acid side chains (Pierce, 2005). Biotin 

contains two NH-groups in its structure, which could bind additional Coomassie 

G-250 Dye, thereby overestimating the amount of protein present in the sample. 

The percentage yield of spectrin dimers after biotinylation would therefore also 

have been lower. 

 

The spectrin biotinylation was checked by coating a Streptawell with the 

biotinylated spectrin and then detecting the spectrin with α- and β- spectrin 

antibodies. The well containing spectrin turned light purple with 4-chloro-1-

napthol, while the well containing no spectrin remained clear (results not shown). 

This indicates that the spectrin was biotinylated successfully and would therefore 

bind to streptavidin. 
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Figure 24: Biotinylated spectrin. 
Photographs of a Laemmli (a) and Fairbanks (b) gel showing biotinylated 
spectrin. Spectrin was purified by size exclusion chromatography and 
subsequently biotinylated. Lane M contains 45 µg (a) and 20 µg (b) erythrocyte 
membrane proteins respectively and lane 1 contains 10 µg (a) and 5 µg (b) 
biotinylated spectrin respectively. 

 

2.3.2 P. falciparum phage display library construction 
 

Two mRNA isolations were performed from mixed P. falciparum cultures, 

depicted in Figure 25 and listed in Table 4. Four 175 cm3 culture flasks were used 

for each isolation. 

 

The isolated mRNA had a lower A260/A280 ratio than that of pure mRNA which is 

2 (as described in Ausubel et al., 1994) and was thus either contaminated with 

proteins, or the Dynabeads® Oligo (dT)25 beads that had not been completely 

removed from the mRNA sample (Dynal®, 2000). 
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1 
2

3

Figure 25: P. falciparum cultured in human erythrocytes. 
Photograph showing a P. falciparum culture at 1000x magnification. The 
parasite’s nuclear material is stained by the methylene blue component of the 
Rapid Haematology Stain. Early trophozoites (rings) (1) have the shape of a ring 
within the erythrocyte, the trophozoite (2) appears as a large circular body within 
the erythrocyte, and schizonts (3) are small ovoid bodies inside the erythrocytes. 

 

Table 4: P. falciparum mRNA isolation. 

mRNA 
isolation 

Culture 
parasitaemia and 

composition  
Total RNA mRNA 

Percentage mRNA 
isolated from total 

RNA 

1 
20 %; 

~2/3 R* 

~1/3 T/S#

403 µg 
(3.7 µg/µl) 

7.7 µg 
(0.31 µg/µl) 

A260/A280 = 1.5 
1.9 

2 
10 %; 
~2/3 R 

~1/3 T/S 

169 µg 
(1.5 µg/µl) 

3.8 µg 
(0.15 µg/µl) 

A260/A280 = 1.75 
2.3 

* R = rings 
# T/S = trophozoites and schizonts 

 

Figure 26 shows the P. falciparum total RNA containing the 28s (4104 bp), 18s 

(1384 bp) and 5s ribosomal RNA (rRNA) subunits (Daily et al., 2004), as well as 

mRNA. Visualisation of the P. falciparum mRNA on a 1 % agarose gel (result not 

shown) revealed mRNA as a faint smear with only traces of 18s and 28s rRNA 

subunits present. rRNA was a contaminant because the P. falciparum genome is 

AT-rich and Oligo (dT)25 beads were used for the isolation procedure. 
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Figure 26: P. falciparum total RNA. 
Agarose gel showing total RNA isolated from P. falciparum cultures. The 28s 
(4104 bp), 18s (1384 bp), and 5s rRNA subunits are the predominant forms of 
RNA. The faint mRNA smear can be seen in the region of the 28s and 18s rRNA.   

 

The phage display library was created with 4 µg P. falciparum mRNA from the 

second mRNA isolation. DNA synthesis was monitored by the addition of [α-
32P]dATP in the first and second strand synthesis reactions. The P. falciparum 

DNA generated during second strand synthesis is shown in Figure 27 as a smear. 

The majority of the P. falciparum DNA was greater than 722 bp. 

 

The [α-32P]dATP labelled P. falciparum DNA was also used to monitor the gel 

filtration procedure (Figure 28). The gel filtration column retains DNA smaller 

than 300 bp and therefore the initial fractions eluted from the column should 

contain the large DNA fragments. Fraction 3 contained the DNA that was greater 

than 722 bp and was used for the ligation reaction. This fraction contained 963 ng 

DNA at a concentration of 3.85 ng/µl with an A260/A280 absorbance ratio of 1.4. 

This ratio is lower than 1.8-1.9 which is the A260/A280 absorbance ratio of pure 

DNA (as described in Ausubel et al., 1994), indicating that the sample was 

contaminated with protein or aromatic substances, such as phenol. The size 

markers in Figure 28 show up as multiple bands due to non-specific amplification 

during the PCR reaction and the sensitivity of the radioisotope. 
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Figure 27: Second strand synthesis from P. falciparum cDNA. 
Autoradiograph of a denaturing polyacrylamide gel showing P. falciparum DNA 
synthesised in the presence of [α-32P]dATP. Lanes M1 and M2 contain 1 µl 
molecular weight markers, synthesized by PCR utilising primers specific for 
human erythrocyte α-spectrin (exon 2; 347 bp) and band 3 (exon 18 and 19; 722 
bp) respectively. Lane 1 contains 2 µl P. falciparum dsDNA, which migrates as a 
smear of >722 bp. 

 

 
Figure 28: Gel filtration of P. falciparum DNA. 
Autoradiograph of a denaturing polyacrylamide gel showing elution fractions of 
P. falciparum DNA after gel filtration. Lanes M1 and M2 contain 1 µl molecular 
weight markers, which were synthesized by PCR utilising primers specific for 
human erythrocyte α-spectrin (exon 2; 347 bp) and band 3 (exon 18 and 19; 722 
bp) respectively. Lanes 1-7 represent the following elution fractions: fraction 1 = 
0.1 ml; fraction 2 = 0.2 ml; fraction 3 = 0.25ml; and fractions 4-7 = 0.1ml each. 
Two microlitres of each DNA fraction was electrophoresed after it had been 
precipitated with ethanol and resuspended in 20 µl TE buffer. 
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One microlitre of this sample, containing 0.05 pmol of ~1500 bp DNA (size 

estimation based on OrientExpressTM cDNA Manual), was used for the ligation 

reaction. This gave an insert to vector ratio of 2.5:1, which is well within the 

recommended ratio range for the ligation reaction (Novagen, 2000b). The ligated 

fragments were packaged into viral particles to create the P. falciparum phage-

display library. The characteristics of this library were compared to those of a 

library created with the T7Select® Packaging Control DNA (Novagen, Inc., 

Madison, USA) (Table 5). The P. falciparum library was much smaller than the 

control library and had a much lower packaging efficiency. 

 

Table 5: P. falciparum phage display library characteristics. 

Library Phage titre 
(pfu/ml) 

Library size 
(pfu) 

Packaging efficiency 
(pfu/µg) 

P. falciparum 3.01 x 107 4.52 x 106 9.03 x 106

T7Select® Packaging Control 4.53 x 109 6.80 x 108 1.36 x 109

 

Amplification of randomly selected plaques from the P. falciparum phage-display 

library showed DNA inserts of mainly 50-200 bp in length (Figure 29) and the 

largest DNA fragment found to date was 1200 bp (result not shown). 

 

 
Figure 29: DNA inserts from the P. falciparum phage-display library. 
Agarose gel showing the PCR product of P. falciparum inserts in T7 
bacteriophage plaques. All fragments include 107 bp of the T7Select10-3b vector 
sequence. Lane M contains the Promega 100 bp DNA Ladder. Lanes 1-11 contain 
10 µl of the PCR product synthesised with the T7Up and T7Down Primers. 
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2.3.3 Biopanning 
 

Biopanning was initially performed in Streptawell plates before the method with 

the Streptavidin Magnetic Particles was established. One hundred microlitres of a 

P. falciparum phage display library that had a concentration of 4.5 x 107 pfu/ml 

was added to two wells containing immobilised spectrin. This gave the binding 

reaction a multiplicity of infection (MOI) of 1, which means that only one 

bacteriophage copy of each unique P. falciparum DNA insert was present in the 

sample.  A titering assay was performed on the binding phage in the first well to 

monitor enrichment and the second well was used for phage amplification for the 

next round of biopanning. Table 6 shows that the enrichment in the first two 

rounds of biopanning was within the 103-105 pfu range. The third and fourth 

round of biopanning however showed a decrease in binding indicating that 

sufficient enrichment had already been achieved in the second round of 

biopanning. 

 

Table 6: Bacteriophage enrichment. 
Biopanning round Number of binding phage (pfu) 

1st 4.5x104

2nd 4.5x105

3rd 2.1x105

4th 1.1x105

 

Once the method with the Streptavidin Magnetic Particles was established a 

mixture of two P. falciparum libraries was biopanned against purified spectrin. 

The first library was discussed in section 2.3.2 and the second library was 

provided by Roberto Lanzillotti and had a library size of 6.2 x 105 pfu. The new 

combined library had a size of 2.6 x 106 pfu and was used at a MOI of 2 for 

biopanning. This means that at least two copies of each phage were present in the 

500 µl sample of 1 x 107 pfu/ml bacteriophage used in the first round of 

biopanning. Biopanning with the Streptavidin Magnetic Particles resulted in a 

phage enrichment similar to that observed during biopanning with the Streptawell 

plates (results not shown). 
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After the fourth round of biopanning 80 plaques were selected for PCR 

amplification with the T7SelectUP and T7SelectDOWN Primers. Of these only 44 

were sequenced because the remaining PCR products were barely visible on a 1% 

agarose gel. The PCR amplification could have been poor for numerous reasons, 

such as impurities in the DNA template that prevented the Taq DNA polymerase 

from functioning properly, or insufficient DNA template or secondary structures 

within the DNA sequences that prevented the primers and Taq DNA polymerase 

from binding to the DNA template. The aim of this project was however not to 

isolate all possible parasite peptides that bind to spectrin and therefore the failed 

PCR amplifications were not repeated. Thirteen of the sequenced DNA inserts 

consisted of A-stretches (Figure 30a) and the remaining 31 DNA fragments 

showed 14 different DNA sequences rich in adenosines and thymidines which is 

typical for the P. falciparum genome. 

 

Four of the 14 P. falciparum DNA fragments did not have the linker region 

between the T7 vector DNA and the P. falciparum DNA (Figure 30b), indicating 

that the EcoRI enzyme had cleaved the P. falciparum DNA internally. First and 

second strand synthesis were performed in the presence of 5-methyl dCTP to 

protect the DNA from the restriction enzymes that are used during the linker 

digestion procedure, and EcoRI should not cleave methyl-protected DNA. It has 

however been shown that EcoRI sites that are flanked by a guanosine or cytidine 

can be cleaved by the enzyme when the DNA is fully and hemi-methylated 

(Tasseron-de Jong et al., 1988). 
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Figure 30: P. falciparum DNA insert sequences. 
Autoradiographs (a, b & c) showing DNA sequences that were isolated from 
plaques and diagram (d) showing the cloning procedure facilitated by directional 
linkers. The autoradiographs represent 8 % denaturing polyacrylamide gels of a P. 
falciparum A-stretch (a) and P. falciparum DNA sequences without (b) and with 
(c) the linker region. The linker region is absent in (b) because EcoRI cleaved the 
methyl-protected P. falciparum DNA internally. Red nucleotides = P. falciparum 
DNA; blue nucleotides = directional linker; black nucleotides = vector 
nucleotides; green line = EcoRI restriction site. 

 

2.3.4 Gene identification and peptide analysis 
 

All 14 sequences found after fourth round biopanning were identified in the 

PlasmoDB genomic sequence (nt) database (Table 7). However, only 12 of these 
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sequences were found in the annotated gene section of the database. Five of the 

genes were expressed in the correct frame (they had a +1 frame when compared to 

the PlasmoDB annotated protein database). One fragment was inserted backwards 

(-2 frame). This is surprising because the directional linker used for the cloning 

procedure, should only allow the fragment to be inserted into the +1, +2, or the +3 

frame. 

 

Table 7: P. falciparum genes identified after fourth round biopanning. 
PlasmoDB gene 

name or 
Chromosome 

number 

Insert 
size 
(bp) 

Percentage 
nucleotide 

identity 

Reading 
frame 

Special 
features 

Predicted 
PlasmoDB 

protein 

PFA0125c ~150 96 +1 - putative Ebl-1 
like protein 

PFE0980c ~250 97 +1 - hypothetical 
protein 

MAL8P1.104 ~400 100 +1 
no 5’ 

EcoRI/Hind III 
linker 

hypothetical 
protein 

MAL8P1.151 ~60 96 +1 - hypothetical 
protein 

PFI1570c ~100 97 +1 
no 5’ 

EcoRI/Hind III 
linker 

putative amino-
peptidase 

PF10_0232 ~1200 90 +2 - hypothetical 
protein 

MAL13P1.249 ~200 100 +2 - hypothetical 
protein 

PFC0135c ~100 97 +3 
no 5’ 

EcoRI/Hind III 
linker 

conserved 
protein 

PF08_0131 ~300 100 +3 - 1-cys 
peroxidoxin 

PFL2095w ~200 100 +3 - 
translation 

initiation factor 
SUI1, putative 

PFF0125c ~350 98 -2 inserted 
backwards 

hypothetical 
protein 

MAL7_5.8s ~100 98 - no translation 5.8s rRNA 

Chromosome 11 ~300 99 +2 intron of 
PF_0370 - 

Chromosome 13 ~200 97 - intergenic - 
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When the nucleotide sequences of the +2, +3 and -2 frame DNA inserts were 

translated with Gene Runner, it was found that the majority of the inserts were 

expressed as small peptides with four to eight amino acids since premature stop 

codons terminated translation. The +1 frame sequences were expressed as 

peptides with 20 or more amino acids (Figure 31). 

 

The majority of the expressed peptides contained numerous positively (mainly 

lysine) and negatively (mainly aspartate) charged amino acids (Figure 31), but no 

consistent charge pattern was observed. Two of the in-frame sequences 

(PFE0980c and MAL8P1.104) also contained stretches of polar uncharged 

asparagine residues and PFE0980c had two repetitive amino acid sequences, 

namely KDN and KENNNNKGN. 

 

A ClustalW alignment with all the peptide fragments showed no sequence 

similarities (results not shown), and motif and profile searches did not reveal any 

putative motif that was present in every sequence (Table 8). Two sequences 

(PFF0125c & MAL7_5.8s) contained no motif and the other sequences contained 

a mixture of N-glycosylation and N-myristoylation sites, as well as protein kinase 

C, casein kinase II, and cyclic adenosine monophosphate- and cyclic guanosine 

monophosphate-dependent protein kinase phosphorylation sites. These are all 

post-translational modification sites that could be used by the parasite to regulate 

its proteins. A putative bacterial immunoglobulin-like domain 1 (Big-1) was 

found in several of the shorter out-of-frame sequences. This domain is generally 

associated with several other domains in bacteria and phage surface proteins that 

mediate bacteria host-cell interactions (Finn et al., 2006). The complete domain is 

normally over 50 amino acids in length and only segments thereof were identified 

in the ≤8 amino acid spectrin-binding sequences. 
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Figure 31: Peptides isolated after fourth round biopanning. 
Diagram showing the amino acid sequences of the peptides isolated after fourth 
round biopanning against spectrin. The gene name as well as the expression frame 
is given. The amino acids are colour coded according to class and charges are 
shown above the amino acids. Red = polar uncharged; purple = nonpolar 
aliphatic; blue = aromatic; pink = positively charged; green = negatively charged. 
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Table 8: Motifs and profiles of the P. falciparum spectrin-binding peptides. 
Gene name Motif/Profile (amino acid sequence) 

1 N-glycosylation site (NSSI) Chromosome 11 
Big-1* domain profile (NSSI) 

1 N-glycosylation site (NQTS) 
Chromosome 13 

Big-1 domain profile (ANQT--SQTN) 
PF08_0131 Big-1 domain profile (MFLTFI) 
PFF0125c - 

1 Protein kinase C phosphorylation site (TLK) 
PFL0295w 

Big-1 domain profile (ETTLK-SF) 
Arginine-rich region profile 

PF10_0232 
Cysteine-rich region profile 

MAL7_5.8s - 

MAL8P1.151 1 cAMPP

**- and cGMP***-dependent protein kinase 
phosphorylation site (KK T) 

PFI1570c 1 Casein kinase II phosphorylation site (SXXD) 
1 N-glycosylation site (NMSD) 

3 Casein kinase II phosphorylation sites (SVVD; TNTE; SXXD) PFA0125c 
1 Protein kinase C phosphorylation site (SLK) 

2 N-glycosylation sites (NNTE) 
3 N-myristoylation sites (GNKENN; GNIENN) 

Asparagine-rich region profile 
PFE0980c 

Lysine-rich region profile 
6 N-glycosylation sites (NSTT; NNSG; NHTN; NTSI; NNTN; 

NNSS) 
1 Casein kinase II phosphorylation site (TSID) 

5 N-myristoylation sites (GNNIND; GNNSGK; GINHTN; 
GNWING; GNNKNS) 

4 Protein kinase C phosphorylation sites (SGK; SNK; SKK) 

MAL8P1.104 

Asparagine-rich region profile 
* Big-1 = bacterial immunoglobulin-like domain 1  
** cAMP = cyclic adenosine monophosphate  
*** cGMP = cyclic guanosine monophosphate 

 

2.4 Discussion 
 

A P. falciparum phage display library was created by inserting DNA fragments 

generated from P. falciparum mRNA into the T7Select10-3 vector. The library 

was used to isolate several P. falciparum peptides that interact with human 

erythrocyte spectrin. 
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2.4.1 Library creation and bacteriophage selection 
Characteristics of the P. falciparum phage display library 
 

The phage display library was created from mRNA that had been isolated from 

mixed P. falciparum cultures to ensure that transcripts from all the parasite stages 

of the erythrocytic phase were present. This P. falciparum phage display library 

was however not representative of all the P. falciparum mRNA transcripts. 

Several mRNA transcripts and especially rare mRNAs, which transcribe as low 

copy numbers in the parasite, were probably not present in the library because 

only a small amount of the isolated mRNA was used for reverse transcription and 

only a portion of the P. falciparum DNA was used for the ligation and packaging 

reaction. Some DNA was also lost during the multiple processing steps that 

involved phenol-chloroform extraction and ethanol precipitation. 

 

First strand synthesis was performed with anchored poly-T primers that should 

have bound to the poly-A tail at the 3’ end of each mRNA strand. However, most 

of the P. falciparum DNA inserts that were isolated after fourth round biopanning 

coded for an internal region of the respective P. falciparum gene. The primers 

would have bound within the mRNA sequences because the P. falciparum 

genome is 80% AT-rich (Gardner et al., 2002) and parasite genes contain 

adenosine-stretches that translate into the low complexity regions commonly 

found in P. falciparum proteins (Pizzi and Frontali, 2001). 

 

The size of the P. falciparum inserts of the phage display library was checked by 

PCR and it was found that most of the amplified inserts were between 50 and 200 

bp in length. This was surprising because the gel filtration step should have 

removed DNA fragments smaller than 300 bp prior to ligation to the 

bacteriophage DNA. This seemed to be the case since α-32P labelled dsDNA was 

>722 bp after gel filtration (Figure 28), although the incorporation of less [α-
32P]dATP into the smaller DNA fragments would have made them less visible. 

The EcoRI digestion prior to ligation could also have cleaved the P. falciparum 

DNA internally, thereby creating smaller DNA fragments, even though the EcoRI 
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sites should have been protected by methylation. This was confirmed by the 

isolation of several bacteriophage that contained P. falciparum DNA inserts 

without a 5’ linker region. Insert lengths could have been increased by reverse 

transcribing the mRNA at a higher temperature, such as 55 ºC. Elevated 

temperatures remove hairpin loops from the mRNA template, which can be 

responsible for early termination of the transcription reaction. However, higher 

temperatures can degrade the mRNA template, but this could be prevented with 

the addition of a RNA chaperone such as T4 bacteriophage gene 32 protein in the 

reaction, thereby stabilising the mRNA template (Piche and Schernthaner, 2005). 

Phage display insert sizes may also be increased by using a gel filtration resin 

with a higher molecular weight cut-off. The collection of smaller gel filtration 

fractions and subsequently using only those fractions with large cDNA could also 

improve the insert composition of the phage display library. 

 

The presence of DNA fragments smaller than 300 bp could have been responsible 

for the small library size and low packaging efficiency. The molar ratio of insert 

to vector that was used for the ligation reaction (2.5:1) was calculated on the 

assumption that the prepared P. falciparum DNA was approximately 1.5 kb in 

length (Novagen, 2000b). If most of the fragments were smaller, then the molar 

ratio would have been much higher.  

 

Biopanning against spectrin 
 

The biopanning procedure was initiated with a background binding step to 

eliminate bacteriophage binding to streptavidin. None of the spectrin-binding 

peptides contained the streptavidin binding motif HPQ or any of the weaker 

binding motifs HPN, HPM, and HPL (Devlin et al., 1990), indicating that the 

background binding step was sufficient to prevent any non-specific interactions. 

 

Biopanning with the first P. falciparum phage display library was performed with 

a MOI of 1 which should be sufficient to isolate high affinity bacteriophage 

(Novagen, 2000b). When the second P. falciparum phage display library was used 
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for biopanning, the MOI was raised to 2, to ensure that all the primary 

recombinants had a chance to bind to spectrin. Some bacteriophage replicate at a 

slower rate than others, because the DNA insert present in the bacteriophage 

interferes with replication (Wang and Yu, 2004) and therefore the other 

bacteriophage would outgrow the slower growing phage during each round of 

biopanning. Increasing the multiplicity of infection during biopanning ensures that 

the slow growing bacteriophage can also bind to spectrin. 

 

The number of phage recovered from the first and second round of biopanning 

should be in the range of 103–105 pfu, increasing to >106 pfu in the third and 

fourth rounds. When no further increase in phage number is observed, enrichment 

is unlikely to occur with additional rounds of biopanning (Novagen, 2000b). 

However, bacteriophage enrichment was only observed during the first two 

rounds of biopanning. This could be due to the small library size (small number of 

primary recombinants) of the P. falciparum phage display library, which enables 

most of the different spectrin binding bacteriophage to bind within the first two 

rounds of biopanning. 

 

Bacteriophage displaying small peptides were isolated more frequently during 

fourth round biopanning than those displaying larger peptides. The peptide-

binding regions on spectrin could have been more accessible to smaller peptides 

than to the larger ones. Identical small peptides were also isolated several times 

indicating that enrichment did occur during biopanning. 

 

2.4.2 Spectrin-binding bacteriophage 
Characteristics of the P. falciparum DNA inserts 
 

All the sequenced DNA inserts were identified in the PlasmoDB database. Two of 

the sequences did not match any of the annotated genes, one of which was located 

in the intron of PF11_0370 and the other between two genes on chromosome 13. 

Another sequence was identified as part of the 5.8s rRNA. This was surprising 

because P. falciparum mRNA was used to create the library and this should have 
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excluded introns, intergenic regions and rRNA. An explanation for isolating 

introns and intergenic regions is that the DNA fragments could be part of P. 

falciparum genes that have either not been correctly annotated, or belong to a 

gene that still has to be annotated in the PlasmoDB database. The other 

explanation for the presence of these three isolated sequences is that genomic 

DNA could have contaminated the total RNA isolated from the parasites, but this 

is highly unlikely since genomic DNA is double stranded and only single stranded 

DNA can bind to the beads. The most likely scenario is that rRNA and pre-mRNA 

containing introns were isolated from the total RNA with the Dynabeads® Oligo 

(dT)25 beads due to the AT-richness of the genome. 

 

The insert that was identified as part of PFF0125c was found in the -2 frame. The 

linkers that were used to insert the P. falciparum DNA into the T7 vector only 

allow the inserts to be cloned in the +1, +2 or +3 frame, thus indicating that the 

insert is part of a gene that is transcribed from the complementary strand of 

PFF0125c. PlasmoDB lists another gene (PFF0120w) on the complementary 

strand approximately 1000 nucleotides downstream from PFF0125c, so it is very 

unlikely that the insert is part of that gene. Therefore this P. falciparum insert 

could again be part of a gene that still has to be annotated in the PlasmoDB 

database.  

 

Characteristics of the bacteriophage-displayed peptides and the P. 
falciparum proteins that interact with spectrin 
 

The P. falciparum peptides that bound to spectrin showed no single common 

motif or profile when compared to each other. The peptides were composed of a 

variety of positively and negatively charged and polar uncharged amino acids, the 

most prevalent being lysine, aspartate and asparagine. The codons for these amino 

acids are AAA (lysine), GAU (aspartate) and AAU (asparagine) and are often 

found in P. falciparum proteins due to the A+T richness of the P. falciparum 

genome (Gardner et al., 2002). Asparagine and lysine are also very common in 
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the hydrophilic low complexity regions of P. falciparum proteins (Pizzi and 

Frontali, 2001) and will be discussed further in the following chapter.  

 

Three peptides contained only polar uncharged amino acids, while the rest of the 

peptides contained a variety of polar uncharged and charged amino acids. The 

polar uncharged amino acids presumably bound to the spectrin surface via 

hydrogen bonds and the charged amino acids bound to spectrin via hydrogen 

bonds and electrostatic interactions, since the outer amino acids of each triple 

helical bundle of spectrin are mainly positively and negatively charged (Figure 5). 

The biopanning procedure yielded five DNA inserts out of twelve that expressed 

the peptides in the +1 frame. This correlates well with the fact that only one in 

every three inserts will be in the +1 frame when an expression library is created 

with directional linkers (compared to one in six in-frame inserts when the library 

is created without directional linkers). Even though the other peptides were not in 

the correct frame, they could be peptide mimics. The study of these mimics could 

provide further information on the interactions between P. falciparum proteins 

and spectrin. 

 

The five in-frame peptides isolated after fourth round biopanning are part of P. 

falciparum proteins identified in the PlasmoDB database. Three of the proteins 

have been described as hypothetical and the other two as a putative Ebl-1 like 

protein and a putative aminopeptidase. Approximately 60.9 % of the P. 

falciparum genome contains genes that have no assigned function or homology to 

genes of other organisms (Gardner et al., 2002), which matches with three of the 

five spectrin-binding proteins being described as hypothetical proteins. 

 

2.4.3 Identifying protein-protein interactions with phage display 
 

The P. falciparum phage display library and the techniques employed here were 

successfully used to isolate peptides that interact with spectrin. The library 

creation was time-consuming and expensive, but once it was established, the 

biopanning procedure was rapid and cost effective.  
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A disadvantage of phage-display is that more than one library needs to be created 

to ensure a full representation of mRNA transcripts. This was however not a 

critical issue in this study because the aim was not to isolate all the P. falciparum 

spectrin-binding peptides. The chance of isolating more peptides was however 

increased by combining two P. falciparum phage display libraries for the 

biopanning procedure. 

 

An advantage specific to the T7Select® Phage Display System is the use of 

directional linkers during the cloning procedure. Directional linkers ensure that 

cDNA can only be inserted into the vector in one of three frames in contrast to all 

six frames when directional linkers are omitted from the cloning procedure. This 

decreases the risk of isolating false positives in a NPL, because at least one third 

of the isolated sequences should be expressed as in-frame peptides. 

 

Another major advantage of the phage display system is that once the libraries 

have been created, they can be used to identify peptides that interact with any 

immobilised ligand, thus making phage display a very powerful tool in the 

elucidation of parasite-host protein-protein interactions. 

 

In conclusion, five genes, namely PFI1570c, MAL8P1.151, MAL8P1.104, 

PFE0980c and PFA0125c, that code for P. falciparum proteins that interact with 

erythrocyte spectrin, were chosen for cloning and recombinant protein expression 

to further analyse and characterise these parasite proteins. 
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Chapter 3: Recombinant spectrin-binding P. 
falciparum proteins 

3.1 Introduction 
3.1.1 Expression of P. falciparum recombinant proteins 
 

The successful production of biologically active recombinant proteins depends on 

the expression micro-environment and the compatibility of the native gene 

sequence with the expression host. Over the years, E. coli has been the preferred 

expression host, because the bacterium is easy to manipulate genetically and very 

cost-effective to maintain in culture. Successful expression of proteins within E. 

coli is influenced by the structural features of the inserted gene, the transcription 

efficiency and stability of the transcribed mRNA, the correct and efficient 

translation, correct protein folding (i.e. solubility), toxicity of the protein and the 

degradation of the protein by proteases (Schumann and Ferreira, 2004). 

 

Recently, two large scale P. falciparum recombinant protein production studies 

attempted to define some of the factors that affect the expression and solubility of 

recombinant parasite proteins. In the first study Mehlin et al. (2006) attempted to 

express recombinant proteins that spanned several P. falciparum protein classes. 

Out of the 1000 genes, 337 recombinant proteins were expressed and only 63 of 

these were soluble. In the second study Vedadi et al. (2007) selected a set of 468 

P. falciparum genes, which coded for putative haemoglobin metabolism, 

biosynthesis, hypothetical, exported and apicoplast-targeted proteins. The group 

increased their sample size to 1008 genes, by selecting orthologues from six other 

Apicomplexan species, namely P. yoelii yoelii, P. vivax, P. berghei, P. knowlesi, 

Cryptosporidium parvum and Toxoplasma gondii. Only 304 proteins were 

expressed in soluble form and only 36 of these were successfully crystallised. The 

results from both studies highlight the difficulties and the low success rates that 

are often encountered when cloning and expressing P. falciparum recombinant 

proteins. They also indicate that a trial and error based approach, utilising several 

strategies, is generally necessary to express soluble parasite proteins (Figure 32). 
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These strategies reduce the problems associated with the physical characteristics 

of the recombinant protein, the gene and mRNA that code for the protein and the 

micro-environment of the expression host.   

 

 
Figure 32: Strategies to obtain soluble recombinant P. falciparum proteins 
from E. coli. 
Diagram showing the downstream applications that can be employed to obtain 
soluble recombinant proteins. Two strategies can be followed once a protein is 
produced in inclusion bodies. The first is to denature and subsequently refold the 
protein. The other strategy includes the modification of culture conditions and/or 
the protein, to aid the bacterial cell to produce soluble protein (Sorensen and 
Mortensen, 2005b). 

 

Protein modifications 
 

P. falciparum proteins are generally larger than their respective homologues in 

other species and often possess long, disordered loops within their structures 

(reviewed in Aravind et al., 2003). These features, as well as the presence of long 

repetitive amino acid stretches within the protein sequence (Singh et al., 2004), 

contribute to the insolubility of P. falciparum proteins when they are expressed in 

heterologous systems. The removal of these structures as well as the omission of 

transmembrane regions, signal peptides, transit peptides and export motifs from 
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the protein of interest should enhance the successful expression of soluble 

recombinant P. falciparum proteins (Vedadi et al., 2007). Mehlin et al. (2006) 

also found that protein size and pI were good predictors for P. falciparum protein 

expression and solubility. Larger proteins were more difficult to express, a high pI 

caused insolubility and a low pI decreased expression but increased solubility. In 

addition, proteins with a relatively high homology to E. coli proteins were more 

likely to express in soluble form. Vedadi et al. (2007) however found that protein 

size and pI could not be used to predict the successful expression of soluble 

Apicomplexan proteins. 

 

The solubility of some proteins can be enhanced by modifying the recombinant 

protein by tag-technology or by site-directed mutagenesis of protease-specific 

sites or other regions that destabilise the protein structure. Tag-technology 

attaches a reporter protein, for example the green fluorescent protein (Pedelacq et 

al., 2006), or a solubility tag, such as the maltose binding protein (MBP) (Kapust 

and Waugh, 1999), the N-utilising substance A (NusA) (Zheng et al., 2003), or 

glutathione-S-transferase (GST), to the recombinant protein. These tags may be 

used to purify the soluble fusion protein and it is assumed that a correctly folded 

tag suggests a correctly folded recombinant protein.  

 

DNA and mRNA modifications 
 

Fifty-four percent of P. falciparum genes contain introns (Gardner et al., 2002), 

requiring the use of cDNA for cloning the full length gene. Due to the 80.6 % AT-

richness of the genome (Gardner et al., 2002), parasite genes are characterised by 

long, continuous stretches of adenosines and thymidines, making error-free PCR 

amplification of the genes problematic. The use of a high fidelity DNA 

polymerase mix, which contains Tgo and Taq DNA polymerase can decrease the 

introduction of errors during amplification, because the Tgo DNA polymerase has 

a 3’-5’ exonuclease proofreading activity that increases the fidelity of DNA 

synthesis ~3-fold (Roche Applied Science, 2004) when compared to the fidelity of 
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Taq DNA polymerase, which has a total error rate of 1 x 10-4 to 2 x 10-5 errors per 

base pair (Tindall and Kunkel, 1988). 

 

The AT-richness of the P. falciparum genome also interferes with protein 

expression in E. coli in other ways. For example, AT-richness results in a different 

codon usage in the parasite when compared to the expression host (Appendix A3). 

Certain E. coli tRNAs, that correspond to amino acids that are abundant in P. 

falciparum proteins, may therefore only be available in limited amounts. This can 

cause ribosomal stalling, which leads to translational errors such as amino acid 

substitutions, frameshifts, and premature translation termination (Sorensen and 

Mortensen, 2005a). A high content of AT-repeats within the mRNA template can 

also cause the ribosomal unit to stall (Flick et al., 2004). E. coli sporadically 

substitutes amino acids located in the low-complexity regions of the P. falciparum 

sequence, resulting in expressed proteins which appear homogenous by SDS-

PAGE, but some molecules have the incorrect amino acid sequence (Schneider et 

al., 2005). However, both P. falciparum protein expression studies mentioned 

previously (Mehlin et al., 2006, Vedadi et al., 2007) stated that codon usage and 

AT-content had minimal effect on protein expression. 

 

Other factors may also complicate protein production. There is evidence that P. 

falciparum proteins bind their own mRNA (Zhang and Rathod, 2002), thereby 

inhibiting protein expression. Parasite genes also often contain cryptic E. coli start 

sites (Turgut-Balik et al., 2001) that cause the expression of truncated proteins. 

 

Several strategies can be used to overcome codon bias and ribosomal stalling. One 

strategy, termed codon optimisation, uses gene synthesis to create a P. falciparum 

sequence with codons reflecting the tRNA pool of the host E. coli system. This 

approach should theoretically increase expression levels and alleviate the 

occurrence of translational errors (Calderone et al., 1996). It can however also 

influence the stability of the mRNA, thereby reducing transcription levels (Wu et 

al., 2004). Mehlin et al. (2006) successfully used codon optimisation to express 

12 P. falciparum proteins that did not express in E. coli from their native genes, 

 

 

84



but all the proteins were insoluble. In contrast, codon harmonisation relies on the 

modification of the P. falciparum sequence by site-directed mutagenesis to match 

the codon usage of E. coli, but instead of replacing all the codons, only codons 

that interfere with protein translation (i.e. where the ribosomal unit stalls) and 

folding are replaced (Hillier et al., 2005). Substitution of only a few codons may 

enable translation in E. coli to occur in the same manner as translation in the 

parasite. Codon optimisation and harmonisation can be very time-consuming and 

expensive and therefore the use of other strategies is often preferred. For example, 

an E. coli host that has been co-transformed with a plasmid that contains the genes 

encoding the rare E. coli tRNAs can be used (Calderone et al., 1996). 

 

Manipulation of the expression host 
 

Expressed proteins will only be soluble when the correct structure is formed 

during the post-translational folding process. Newly synthesised polypeptides 

remain in an intermediate folded form within the bacterial cytoplasm until 

chaperones fold the proteins into their functional forms (reviewed in Mogk et al., 

2002). Incorrectly folded proteins accumulate as aggregates within the cell and 

tend to be toxic. To cope with this toxicity, E. coli stores the aggregates as 

confined structures termed inclusion bodies (reviewed in Mogk et al., 2002). In 

general, eukaryotic proteins are more prone to inclusion body formation within E. 

coli, because the bacterium does not possess the appropriate redox environment to 

introduce the correct disulphide bonds and post-translational modifications into 

the recombinant proteins (Weickert et al., 1996). 

  

Protein solubility within the E. coli host can be enhanced by co-expressing the 

protein with a plasmid encoding additional E. coli chaperones, some of which 

drive folding attempts and others that prevent protein aggregation (reviewed in 

Mogk et al., 2002). Inclusion body formation can also be inhibited or minimised 

by controlling the temperature and the expression rate of the host cell. Growing E. 

coli at 37 ºC has been shown to increase the formation of inclusion bodies, 

because the hydrophobic interactions causing protein aggregation are favoured at 
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these temperatures (Kiefhaber et al., 1991). Lowering the temperature on the other 

hand, favours the slower and correct folding of the protein, resulting in the 

formation of fewer inclusion bodies. The expression rate of the host cell can be 

controlled with promoters that tightly regulate transcription and prevent ‘leaky’ 

expression of the protein (Weickert et al., 1996). Gradually increasing the level of 

inducer, using a natural inducing agent, inducing the cultures at post-log phase 

(Flick et al., 2004), or slowly increasing the plasmid copy number during 

culturing (Trepod and Mott, 2002) can also be employed to control expression rate. 

These methods decrease the induction level, which in turn reduces the protein 

concentration within the cell, which favours correct protein folding to produce 

higher amounts of soluble protein (Weickert et al., 1996). 

 

However, if soluble recombinant protein expression in E. coli is not successful, 

another host, for example the yeast Pichia pistoria (Yokoyama, 2003), can be 

used. Expression from a baculovirus vector in insect or mammalian cells (Kost et 

al., 2005) provides another alternative. Mehlin et al. (2006), for example, used 17 

P. falciparum proteins, which expressed as insoluble proteins in E. coli and 

expressed them in the baculovirus-insect cell system. All these proteins were 

expressed as soluble recombinant proteins, but only one showed a high yield. 

Cell-free protein synthesis, based on the coupled transcription-translation system 

of E. coli or wheat embryos (Yokoyama, 2003), could also be used in an attempt 

to express soluble recombinant P. falciparum proteins. 

 

3.1.2 Chemical processing of inclusion bodies 
 

If none of the above mentioned strategies yield soluble recombinant P. falciparum 

proteins, the inclusion bodies can be processed directly to obtain soluble proteins. 

This method involves solubilising inclusion bodies with urea or guanidinium 

hydrochloride and subsequently refolding the denatured protein in vitro by 

dilution, dialysis or on-column refolding methods (reviewed in Mogk et al., 2002). 

Protein refolding is however time consuming and there is no guarantee that the 

protein has been refolded into its native state. In addition, protein refolding is not 
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always conducive to high product yields, and in the case of refolded enzymes the 

activity may also be lost. 

 

3.2 Methods 
3.2.1 The spectrin-binding P. falciparum proteins 
 

Table 9 lists the nucleotide regions of MAL8P1.104, MAL8P1.151, PFA0125c 

and PFE0980c that were used for cloning. The spectrin binding region lies in the 

middle of these ~1.5 kb fragments and because these genes are large, only one 

segment of each gene (excluding introns) was cloned. In contrast, most of the 

PFI1570c gene (lacks 2 & 8 amino acids at the N- & C-terminus respectively) was 

used for the cloning procedure, because it is fairly small and consists of one exon. 

 

Table 9: DNA fragments used for cloning. 

PlasmoDB gene name Size of gene (bp) 
Introns 

present in 
gene 

Spectrin 
binding 
region 

Cloning region 

PFI1570c 1713 no 646-771 7-1689 
MAL8P1.151 4092 yes 2751-2811 2578-4056 

PFA0125c 4704 yes 2914-3060 2182-3750 
MAL8P1.104 5325 no 3151-3561 2449-4155 

PFE0980c 7467 yes 1261-1521 1156-2670 

 

3.2.2 Cloning 
Isolation of P. falciparum genomic DNA 
 

DNA was isolated from P. falciparum FCR-3 cultures by a method adapted from 

Hang et al. (1995), which entails lysing the erythrocytes and subsequently 

rupturing the parasites by boiling. Two hundred microlitres whole parasite 

suspension (Section 2.2.3; removed after the parasites were resuspended in fresh 

medium) were combined with 400 µl lysis buffer (0.2 % NaCl (w/v), 1 % Triton® 

X-100 (v/v) (BDH Laboratory Supplies, Poole, UK), 1 mM EDTA) and vortexed 

to ensure complete lysis of the erythrocytes. The sample was centrifuged at 

13,000 g for 10 minutes at 4 ºC in an Eppendorf 5415 R Centrifuge (Eppendorf 
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AG, Hamburg, Germany). The supernatant was removed and the pellet washed 

twice by resuspension in 100 µl wash buffer (10 mM Tris-HCl, 50 mM KCl, pH 

8.3), brief vortexing and centrifugation at 16,000 g for 5 minutes at 4 ºC. One 

hundred microlitres of PCR buffer (10 mM Tris-HCl, 50 mM KCl, 1.5 mM MgCl2, 

pH 8.3) was added to the pellet and the sample boiled for 10 minutes. The 

concentration of the DNA was determined by spectrophotometric analysis at 260 

nm (as described in Ausubel et al., 1994). 

 

Amplification of P. falciparum gene fragments 
 

P. falciparum gene segments were amplified using primers containing appropriate 

restriction enzyme sites to facilitate cloning of the genes into the pET-15b 

(Novagen, Inc., Madison, USA) or pGEX-4T-2 (Amersham Biosciences, Ltd., 

Buckinghamshire, UK) expression vectors (vector maps in Appendix A2). The 

primers (Figure 33) contained 19-24 nucleotides matching the P. falciparum gene, 

6 nucleotides at the 5’ end matching the BamHI, NdeI or XhoI restriction sites, 

followed by 5-6 nucleotides 5’ to the BamHI and XhoI or ~11 nucleotides 5’ to the 

NdeI restriction site to ensure complete digestion by the restriction enzymes. All 

the downstream primers, except PFS16, contained an additional stop codon at the 

end of the P. falciparum sequence. PFI1570c was amplified with primers for both 

vectors, while MAL8P1.104 and PFA0125c were amplified with primers for pET-

15b, and MAL8P1.151 and PFE0980c were amplified with primers for pGEX-4-

T2. The four latter sequences could not be inserted into both vectors because they 

contained either XhoI or NdeI restriction sites within their gene sequence. 
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Figure 33: P. falciparum primers. 
Diagram showing the primers used to amplify the P. falciparum genes. The 
restriction sites and stop codon sites are marked. NdeI and BamHI sites were used 
to clone the DNA into pET-15b (primers PFS17/PFS20, PFS21/PFS22, 
PFS27/PFS28) and BamHI and XhoI were used to clone the DNA into pGEX-4T-
2 (primers PFS15/PFS16, PFS23/PFS24, PFS25/PFS26). 

 

 

89



Approximately 500 ng P. falciparum DNA was amplified with 300 nM of each 

primer (Inqaba Biotechnical Industries, Pretoria, South Africa) in the presence 1 x 

High Fidelity PCR Master (Roche Diagnostics Gmbh, Mannheim, Germany) 

under the conditions listed in Table 10 and Table 11 using the Eppendorf 

Mastercycler® Gradient machine (reaction volume = 50 µl). The amplification 

reaction was divided into two segments to allow initial annealing of the primer to 

the P. falciparum specific region in the first five cycles, followed by 30 cycles 

with a higher annealing temperature, which was determined from the lower Tm 

(given by the oligonucleotide manufacturer) of each primer pair. The extension 

step was performed at 68 ºC instead of 72 ºC to slow down the activity of the Taq 

DNA polymerase so that it can cope with the AT-richness of the P. falciparum 

gene sequences. Three microlitres of the amplicons were visualised against a 1 kb 

DNA Ladder (Promega Corporation, Madison, USA) on a 1 % agarose gel in 

TEA buffer. The remaining sample was subjected to phenol-chloroform extraction 

and ethanol precipitation (as described in Ausubel et al., 1994) and resuspended in 

45 µl nuclease-free water. 

 

Table 10: Annealing temperatures for P. falciparum gene specific primer sets. 
P. falciparum 

gene Primer set 1st Annealing 
temperature 

2nd Annealing 
temperature Vector 

PFI1570c PFS15/PFS16 57 ºC 68 ºC pGEX-4T-2 
PFI1570c PFS17/PFS20 57 ºC 68 ºC pET-15b 

MAL8P1.104 PFS21/PFS22 46 ºC 65 ºC pET-15b 
MAL8P1.151 PFS23/PFS24 58 ºC 65 ºC pGEX-4T-2 

PFE0980c PFS25/PFS26 54 ºC 65 ºC pGEX-4T-2 
PFA0125c PFS27/PFS28 47 ºC 65 ºC pET-15b 

 

Table 11: Cycling parameters for P. falciparum genomic DNA amplification. 
Segment Cycles Temperature Time 

1 1 94 ºC 2 min 
2 1-5 94 ºC 45 sec 
  1st annealing temp 1 min 
  68 ºC 2 min 

3 1-30 94 ºC 45 sec 
  2nd annealing temp 1 min 
  68 ºC 2 min 

4 1 68 ºC 7 min 
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Restriction enzyme digestion of the PCR products 
 

The 45 µl DNA samples were digested overnight at 37 ºC in the presence of 20 

units NdeI (Promega Corporation, Madison, USA) (for ligation into pET-15b) or 

XhoI (Promega Corporation, Madison, USA) (for ligation into pGEX-4T-2) with 1 

x Buffer D (Promega Corporation, Madison, USA) and 10 µg acetylated Bovine 

Serum Albumin (Promega Corporation, Madison, USA). The sample was 

subjected to phenol-chloroform extraction followed by ethanol precipitation and 

resuspension in 45 µl nuclease-free water. The sample was digested at 37 ºC for 4 

hours with 20 units BamHI (Promega Corporation, Madison, USA) in the 

presence of 1 x Buffer E (Promega Corporation, Madison, USA) and 10 µg 

acetylated bovine serum albumin (BSA). Phenol-chloroform extraction and 

ethanol precipitation were repeated and the DNA resuspended in 5 µl nuclease-

free water. 

 

Isolation and restriction enzyme digestion of the plasmid vector 
 

Plasmids were isolated from E. coli by alkaline lysis (as described in Ausubel et 

al., 1994). E. coli containing the pET-15b vector or pGEX-4T-2 vector were 

grown in 10 ml LB medium, containing 50 µg/ml ampicillin, overnight at 37 ºC in 

a Labotec® Orbital Shaker (225 rpm). Two millilitre aliquots of the cells were 

centrifuged at 16,000 g for 2 minutes at room temperature in an Eppendorf 5415 R 

Centrifuge. The pellets were resuspended in 100 µl cold 50 mM glucose, 10 mM 

Na2EDTA, 25 mM Tris-HCl, pH 8 and incubated at room temperature for 5 

minutes. The EDTA chelates divalent metal ions, primarily magnesium and 

calcium. Removal of these cations destabilises the cell membrane and also inhibits 

DNases. Glucose maintains the osmolarity and prevents the buffer from bursting 

the cells. Two hundred microlitres 0.2 M NaOH, 1 % SDS (w/v) (prepared on the 

day of use) was added to the suspension and mixed by carefully tapping the tube. 

The SDS detergent ruptures the E. coli plasma membrane, while the NaOH 

loosens the cell walls and denatures the bacterial and plasmid DNA. The bacterial 

DNA becomes linearised and the circular plasmid DNA remains topologically 
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constrained. One hundred and fifty microlitres 3.3 M acetic acid, 1.6 M potassium 

acetate (prepared on the day of use) was added, the sample vortexed and placed on 

ice for 15 minutes, followed by centrifugation at 16,000 g for 5 minutes at 4 ºC. 

Potassium acetate renatures the circular plasmid DNA, while the linear single 

stranded bacterial DNA precipitates in the high salt environment. SDS forms a 

precipitate with the potassium acetate, allowing it to be removed from the plasmid 

DNA. After phenol-chloroform extraction and ethanol precipitation (no addition 

of sodium acetate), the pellet was resuspended in 100 µl Tris EDTA buffer (TE 

buffer; 1 mM Na2EDTA, 10 mM Tris-HCl, pH 7.5) containing 5 µg DNase-free 

Ribonuclease A (Fermentas International Inc., Burlington, Canada) and incubated 

at 37 ºC for half an hour before addition of 40 µl 3.3 M acetic acid, 1.6 M 

potassium acetate. Ribonuclease A digests any remaining RNA in the plasmid 

DNA sample. The sample was subjected to phenol-chloroform extraction and 

ethanol precipitation after which the DNA pellets were pooled and resuspended in 

175 µl nuclease-free water. The pET-15b vector was digested with NdeI and 

BamHI and the pGEX-4T-2 vector was digested with XhoI and BamHI. A 1 hour 

incubation at 37 ºC in the presence of 5 units calf intestinal alkaline phosphatase 

(Roche Diagnostics Gmbh, Mannheim, Germany) was performed before the final 

phenol-chloroform extraction step to prevent religation of the vector. Both vectors 

were stored in a final volume of 200 µl nuclease-free water. 

 

Ligation of the PCR fragments into the expression vector 
 

The amplified DNA was inserted into the vector with the Rapid Ligation Kit 

(Roche Diagnostics Gmbh, Mannheim, Germany). One microlitre DNA and 0.5 µl 

vector were visualised against 10 µl MassRuler™ DNA Ladder, Mix (Fermentas 

International Inc., Burlington, Canada) on a 1 % agarose gel in TEA buffer to 

determine the concentration of both samples. A 1:4 molar ratio of vector to insert 

was diluted in 1 x DNA Dilution Buffer (Roche Diagnostics Gmbh, Mannheim, 

Germany) (volume = 10 µl; total amount of DNA ≤200 ng). Five units T4 DNA 

Ligase and 1 x DNA Ligation Buffer were added to the DNA and the mixture 

incubated at 16 ºC for 30 minutes in the Eppendorf Mastercycler® Gradient 
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machine (reaction volume = 21µl). A second ligation reaction without amplified 

DNA was set up as a control reaction. 

 

Transformation of DH5α™ E. coli or BL21-Codon Plus® (DE3)-
RIL E. coli cells 
 

DH5α™ E. coli cells (Invitrogen Ltd, Renfrewshire, UK) and BL21-Codon Plus® 

(DE3)-RIL E. coli cells (Stratagene, La Jolla, USA) were made competent with 

PIPES buffer. Ten millilitres LB medium (containing 50 µg/ml chloramphenicol 

(Sigma-Aldrich Corporation, St. Louis, USA) for the BL-21 cells)  was inoculated 

with either DH5α™ or BL21-Codon Plus® (DE3)-RIL E. coli cells and grown 

overnight at 37 ºC in a Labotec® Orbital Shaker (225 rpm). The 10 ml culture was 

used to inoculate 100 ml LB medium (containing 50 µg/ml chloramphenicol for 

the BL-21 cells) and grown for another further 90 minutes at 37 ºC with shaking. 

The cells were centrifuged at 4,000 g for 15 minutes at 4 ºC using the Beckman® 

J2-21 centrifuge and the spent medium removed. The pellet was resuspended in 

10 ml cold sterile PIPES buffer (10 mM 1,4-piperazinediethanesulphonic acid 

(Sigma-Aldrich Corporation, St. Louis, USA), 100 mM CaCl2,  15 % glycerol 

(v/v), pH 7) and incubated on ice for 20 minutes. The cells were centrifuged at 

4,000 g for 10 minutes at 4 ºC and the supernatant discarded. The pellet was 

resuspended in 2 ml PIPES buffer and the cells stored at -70 ºC as 100 µl aliquots. 

Competent DH5α™ E. coli cells were transformed with the ligation reaction. 

Plasmids with the correct DNA inserts were subsequently used to transform 

competent BL21-Codon Plus® (DE3)-RIL E. coli cells for the expression studies. 

This BL21 (DE3) strain was chosen because it contains the ColE1-compatible, 

pACYC-based plasmid with extra copies of the argU, ileY, and leuW tRNA genes 

(Stratagene, 2005).   

 

Five microlitres ligation reaction or 3 µl purified plasmid was added to 25 µl 

competent E. coli cells and mixed gently by tapping the tube. The sample was 

incubated on ice for 30 minutes and subsequently placed in a 42 ºC waterbath for 

1½ minutes, followed by a 5 minute incubation on ice. The cell suspension was 
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spread on agar plates containing either 50 µg/ml ampicillin for the DH5α™ E. coli 

cells, or 50 µg/ml ampicillin and 50 µg/ml chloramphenicol for the BL21-Codon 

Plus® (DE3)-RIL E. coli cells. The plates were inverted and incubated overnight 

at 37 ºC in a Heraeus incubator (Heraeus Instruments, Hanau, Germany). 

 

Restriction enzyme analysis of the plasmid constructs 
 

DH5α E. coli colonies containing plasmids were placed into 14 ml Falcon® tubes 

(Becton Dickinson Labware, Franklin Lakes, USA) containing 2 ml LB medium, 

supplemented with 50 µg/ml ampicillin, and grown at 37 ºC overnight in a 

Labotec® Orbital Shaker (225 rpm). The plasmids were extracted from the DH5α 

E. coli cells with the FastPlasmid™ Mini Kit (Eppendorf AG, Hamburg, 

Germany). This kit is based on the alkaline lysis method and isolates ~20 µg high-

copy plasmid DNA from a 1.5 ml E. coli culture. A single solution lyses bacterial 

cells, denatures and solubilises cellular components, degrades RNA, and traps 

DNA on a matrix. The resuspended cell mixture is transferred to a mini spin 

column that binds the plasmid DNA, which is subsequently washed with an 

alcohol-based solution to remove any remaining impurities. The plasmid DNA is 

eluted from the column with 50 µl low-salt elution buffer. Ten microlitres of the 

pET-15b-P. falciparum gene construct was digested with 10 units StyI (Fermentas 

International Inc., Burlington, Canada) and 10 units EcoRI (Fermentas 

International Inc., Burlington, Canada) in 2 x Tango™ Buffer (Fermentas 

International Inc., Burlington, Canada) for 1 hour at 37 ºC. Double digestion of 10 

µl pGEX-4T-2-P. falciparum was performed with 10 units EcoRV (Fermentas 

International Inc., Burlington, Canada) and 10 units EcoRI with the identical 

buffer and incubation conditions. Ten microlitres of the reactions were 

electrophoresed against the Promega 1 kb DNA Ladder and the Promega 100 bp 

Ladder on a 1 % agarose gel in TEA buffer. Constructs showing the correct 

digestion pattern were sequenced by Inqaba Biotechnical Industries (Pretoria, 

South Africa) and used for transformation of BL21-Codon Plus® (DE3)-RIL cells. 
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3.2.3 Protein expression 
 

Expression in pET-15b and pGEX-4T-2 is controlled by different promoters, 

namely the tac promoter in pGEX-4T-2 and the T7 promoter in pET-15b. 

Expression of the P. falciparum proteins from the pET-15b plasmid can therefore 

only occur in E. coli cells that have the T7 RNA polymerase gene inserted into 

their genome. BL21-Codon Plus® (DE3)-RIL E. coli cells containing the P. 

falciparum constructs were grown in 10 ml LB medium containing 200 µg/ml 

ampicillin and 200 µg/ml chloramphenicol overnight at 37 ºC using a Labotec® 

Orbital Shaker prior to induction with isopropylthiogalactoside (IPTG, a 

nonmetabolisable inducing agent; Promega Corporation, Madison, USA) or 

Overnight Express™ Instant TB Medium (Novagen, Inc., Madison, USA). 

Overnight Express™ medium is a modified terrific broth that allows the bacteria 

to autoinduce in the presence of lactose (secondary energy source) once the 

glucose (primary energy source) from the medium has been depleted by the 

bacteria. Induction with IPTG was performed by inoculating 48 ml LB broth with 

2 ml of the P. falciparum construct-containing culture and growing the cells for 4 

hours at 37 ºC with shaking. The culture was induced with 1 mM IPTG and grown 

for 15 hours at 37 ºC with shaking. Induction with Overnight Express™ Instant 

TB Medium was performed by inoculating 240 ml Overnight Express™ Instant 

TB Medium with the 10 ml P. falciparum construct-containing culture and 

growing the cells at room temperature for 24 hours using a Red Rotor PR70-230V 

shaker (Hoefer Scientific Instruments, San Francisco, USA). Whole cell extracts 

were analysed by separating the proteins on a 10 % Laemmli SDS-polyacrylamide 

gel, followed by western transfer with Towbin buffer  (25 mM Tris, 192 mM 

glycine, 20 % methanol (v/v), pH 8.3) (Towbin et al., 1979) onto Hybond™-C 

Extra Nitrocellulose membrane (Amersham Biosciences, Ltd., Buckinghamshire, 

UK). The fusion-tags were detected with 1:1,500 Penta•His HRP Conjugate 

antibody (Qiagen GmbH, Hilden, Germany) dilution or 1:120,000 Anti-GST HRP 

Conjugate antibody (Amersham Biosciences, Ltd., Buckinghamshire, UK) 

dilution and chemiluminescence with the SuperSignal® West Pico 
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Chemiluminescent Substrate (Pierce Biotechnology Incorporated, Rockford, 

USA). 

 

3.2.4 Recombinant P. falciparum aminopeptidase purification 
 

An E. coli culture expressing the P. falciparum aminopeptidase (PFI1570c) was 

lysed by sonication or chemical lysis with BugBuster™ HT (Novagen, Inc., 

Madison, USA) and the histidine-tagged protein isolated from the bacterial 

proteins by affinity selection with nickel coated HIS-Select™ Magnetic Agarose 

Beads (Sigma-Aldrich Corporation, St. Louis, USA). 

 

A 250 ml BL21-Codon Plus® (DE3)-RIL E. coli culture grown in Overnight 

Express™ Instant TB Medium was centrifuged at 10,000 g for 10 minutes at 4 ºC 

using a Beckman® J2-21 centrifuge. The cell pellet was frozen at -70 ºC for 5 

minutes and resuspended in 2 ml His-lysis/binding buffer (50 mM sodium 

phosphate buffer, pH 8, 150 mM NaCl) containing 1 µl Protein Inhibitor Cocktail 

Set III (100 mM 4-(2-Aminoethyl) benzenesulphonyl fluoride hydrochloride, 80 

µM Aprotinin, 5 mM Bestatin; 1.5 mM E-64; 2 mM Leupeptin, 1 mM Pepstatin 

A; Calbiochem®, San Diego, USA). The suspension was sonicated 6 times on ice 

water with a Bandelin Sonoplus UW 2070 sonicator (Bandelin Electronics, Berlin, 

Germany) set to 15 seconds with 6 x 10 % cycles at 75 % power. The suspension 

was allowed to cool for 45 seconds between each sonication. The suspension was 

centrifuged at 16,000 g for 10 minutes at 4 ºC, using an Eppendorf 5415 R 

Centrifuge and the supernatant containing the soluble protein collected. Imidazole 

(Sigma-Aldrich Corporation, St. Louis, USA) was added to the soluble fraction to 

a final concentration of 1 mM and the solution added to 30 µl packed HIS-

Select™ Magnetic Agarose Beads and allowed to bind for 1 hour at room 

temperature using the GFL® 3025 rotator (Gesellschaft für Labortechnik m.b.H. & 

Co., Burgwedel, Germany). The beads were placed on a magnetic separator and 

the supernatant removed. The beads were washed 5 times for 1 minute with 300 

µl His-wash buffer (50 mM sodium phosphate buffer, pH 8, 150 mM NaCl, 

20mM imidazole, 1 mM PMSF) and the protein eluted from the beads by 
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incubating them in 150µl His-elution buffer (50 mM sodium phosphate buffer, pH 

8, 150 mM NaCl, 200mM imidazole, 1 mM PMSF) for 15 min with occasional 

shaking by hand. A second elution was performed with 100 µl His-elution buffer. 

The supernatant containing the purified protein was collected and stored at 4 ºC 

until further use. Purification was monitored by separating the protein fractions on 

a 12 % Laemmli SDS-polyacrylamide gel, western transfer with Towbin buffer 

onto Hybond™-C Extra Nitrocellulose membrane and detection of the histidine-

tag with 1:1,500 Penta•His HRP Conjugate antibody dilution and 

chemiluminescence with the SuperSignal® West Pico Chemiluminescent 

Substrate. 

 

3.3 Results 
3.3.1 Cloning and expression of spectrin-binding P. falciparum 
proteins 
 

Segments of the genes coding for the five spectrin-binding peptides were used for 

the cloning and expression procedure. Figure 34 shows the linearised vector DNA 

and the PCR products prepared by double digestion with NdeI/BamHI (pET-15b) 

or XhoI/BamHI (pGEX-4T-2). PFI1570c was cloned into both vectors because the 

gene did not contain XhoI or NdeI digestion sites and there was a one base pair 

difference between the two PFI1570c amplicons because different primers were 

used for amplification. 
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Figure 34: Vectors and P. falciparum amplicons before ligation. 
Agarose gels showing (a) the NdeI/BamHI digestion of the pET-15b constructs 
and (b) the XhoI/BamHI digestion of the pGEX-4T-2 constructs. Lane M in both 
gels contains 10 µl Promega 1 kb Ladder. Gel (a) shows: 0.5 µl pET-15b plasmid 
(a1, 5696 bp); 1 µl of the P. falciparum genes in pET: PFI1570c (a2, 1691 bp), 
MAL8P1.104 (a3, 1715 bp), and PFA0125c (a4, 1577 bp). Gel (b) shows: 0.5 µl 
pGEX-4T-2 plasmid (b1, 4945 bp); 1 µl of the P. falciparum genes in pGEX: 
PFI1570c (b2, 1690 bp), MAL8P1.151 (b3, 1485 bp), and PFE0980c (b4, 1524 
bp). 
 

The presence of the correct inserts in the vector plasmids was confirmed by a 

double digestion of the plasmid constructs. The vector maps and the unique DNA 

patterns after the double digestion can be seen in Figure 35 and Figure 36. All the 

pET-15b clones (Figure 35b) digested with EcoRI and StyI, have three DNA 

bands in common, namely 246 bp (very faint on the gel), 2325 bp, and 2992 bp. 

The different P. falciparum DNA inserts give rise to the additional two DNA 

bands because they all contain an internal EcoRI site. The 145 bp fragment 

generated from pET-15b digestion is too small to be visible. The pGEX-4T-2 

clones (Figure 36b) digested with EcoRI and EcoRV do not have DNA fragments 

in common because the EcoRI restriction site located in the pGEX-4T-2 cloning 

cassette was removed from the vector when the P. falciparum amplicons were 

inserted into the plasmid. 
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Figure 35: pET-15b vector containing P. falciparum inserts. 
Vector maps (a) and an agarose gel showing (b) the EcoRI/StyI double digestion 
of pET-15b plasmid without and with the P. falciparum inserts. All the constructs 
share the 246, 2325 and 2992 bp fragments from pET-15b. The P. falciparum 
inserts have two DNA fragments that result from an internal EcoRI restriction site. 
Vector maps: red = P. falciparum gene; white = His-tag; green = ampicillin 
resistance gene; blue = lac repressor gene; purple = restriction enzyme sites. 
Agarose gel: lanes M1 and M2 = 10 µl Promega 1 kb and 100 bp Ladder; lanes 1-4 
= 10 µl of the double digests of each construct, namely: 1 = pET-15b; 2 = pET-
15b-PFI1570c (703 & 1123 bp); 3 = pET-15b-MAL8P1.104 (766 & 1084 bp); 4 = 
pET-15b-PFA0125c (796 & 916 bp). 
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Figure 36: pGEX-4T-2 vector containing P. falciparum inserts. 
Vector maps (a) and an agarose gel showing (b) the EcoRI/EcoRV double 
digestion of pGEX-4T-2 plasmid without and with the P. falciparum inserts. 
pGEX-4T-2 EcoRI-4949 is part of the cloning cassette and is therefore not present 
in the P. falciparum constructs. The P. falciparum constructs contain internal 
EcoRI and/or EcoRV sites. Vector maps: red = P. falciparum gene; white = 
glutathione-S-transferase; green = ampicillin resistance gene; blue = lac repressor 
gene; purple = restriction enzyme sites. Agarose gels: lanes M1 and M2 = 10 µl 
Promega 1 kb and 100 bp Ladder; lanes 1-4 = 10 µl of the double digests of each 
construct, namely: 1 = pGEX-4T-2 (1791 & 3179 bp); 2 = pGEX-4T-2-PFI1570c 
(2425 & 3973 bp); 3 = pGEX-4T-2-MAL8P1.151 (3040 & 3590 bp); 4 = pGEX-
4T-2-PFE0980c (816, 2461 & 3192 bp). 
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One colony of each construct was selected for automated sequencing and 

transformation into E. coli BL-21 (DE3) cells. The pGEX-4T-2-PFI1570c clone 

contained no Taq DNA polymerase errors. The pET-15b-PFI1570c clone 

contained one silent error (T1542C), which still coded for lysine (Appendix A4). 

pET-15b-PFA0125c had a 27 nucleotide insertion at base 595, resulting in the 

translation of 9 extra amino acids (QEQEEEKQE). This construct also had an 

A503G substitution that caused the translation of an arginine instead of a 

glutamine. pGEX-4T-2-MAL8P1.151 and pGEX-4T-2-PFE0980c contained a 

deletion in a stretch of adenosines (1205-1219 and 777-788 respectively). The 

deletions caused a frame shift in the sequences, resulting in the introduction of an 

early stop codon. The deletions could however also have been a sequencing 

artefact because the errors occurred in a stretch of adenosines. Sequencing of 

pET-15b-MAL8P1.104 was not successful. 

 

All the proteins were expressed in BL21 (DE3) E. coli cells by induction with 

IPTG. The tagged proteins could not be distinguished from the E. coli proteins 

when stained with Coomassie dye and could only be detected by probing with tag-

specific antibodies (Figure 37), indicating that the proteins were not expressed at 

high levels within E. coli. Only the histidine-tagged PFI1570c was expressed as 

one band at the correct molecular weight of 66.919 kDa (3a). The GST-tagged 

PFI1570c was expressed at the correct molecular weight of 91.463 kDa (b3), but it 

also contained two additional bands similar in size to GST (26 kDa). The 

remaining constructs expressed multiple recombinant proteins (except a5) that 

were smaller than expected (a4-5, b4-5). The Taq DNA polymerase errors should 

have caused PFA0125c (a5), MAL8P1.151 (b4) and PFE0980c (b5) to be 

expressed at 61.2, 53.6 and 35 kDa (due to premature stops in the sequence), but 

the immunoblot showed protein bands at 43, 43 and 28 kDa respectively. This 

indicates that expression of these P. falciparum proteins in E. coli causes 

ribosomal stalling and thus early termination of translation. There is however also 

a possibility that not all the tagged proteins were visualised on the immunoblots 

because of the low protein expression levels. 
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Figure 37: Expression of spectrin-binding P. falciparum proteins. 
Laemmli gels (left) and immunoblots with the Penta•His™ and anti-GST HRP 
Conjugate antibodies (right) showing the whole cell extracts from E. coli 
containing the pET-15b (a) and pGEX-4T-2 (b) plasmid constructs. The black 
arrows indicate where the tagged proteins should occur in the immunoblot. Lane 
M contains 3 µg erythrocyte membrane proteins. The remaining lanes contain 10 
µl BL21 (DE3) E. coli whole cell extracts from each construct. Lanes 1 = 
uninduced vector; 2 = induced vector (GST = 26 kDa); 3 = induced PFI1570c 
(66.9 kDa & 91.5 kDa); a4 = induced MAL8P1.104 (65.7 kDa); a5 = induced 
PFA0125c (60.1 kDa); b4 = induced MAL8P1.151 (86.6 kDa); b5 = PFE0980c 
(85.8 kDa). 

 

A small amount of GST was present in the uninduced pGEX-4T-2 protein sample 

(Figure 37b1) indicating that low level transcription of the tag occurs when the 

cells have not been induced. Leaky expression from the pGEX-4T-2 plasmids 

occurs because transcription of the gene of interest is performed by an inherent E. 

coli RNA polymerase and the transcription levels are controlled by only one 

promoter, namely the tac promoter. Expression from the pET plasmid is 

controlled by two T7 promoters. The first promoter controls the expression of T7 

RNA polymerase which has been cloned into the E. coli genome. This T7 RNA 

polymerase is required for the transcription of the gene from the pET-15b plasmid, 

which is controlled by the second T7 promoter (Novagen, 2003). The regulation 
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of expression in pET-15b is therefore much more controlled than that of pGEX-

4T-2. The histidine-tag of the pET-15b plasmid can not be seen on the 

polyacrylamide gel or the immunoblot, because it is very small and therefore runs 

off the gel. Leaky expression of this tag could therefore also occur in E. coli. 

 

3.3.2 Purification of the P. falciparum aminopeptidase 
 

Only the P. falciparum aminopeptidase (pET-15b-PFI1570c) was expressed as a 

single band at the correct molecular weight in the expression study and was 

therefore chosen for purification. Aminopeptidase expression was initially 

induced with 0.4 and 1 mM IPTG at 37 ºC or room temperature, but most of the 

protein formed inclusion bodies (Figure 38 lane IPTG 37 ºC IS and result not 

shown for room temperature experiment). Therefore Overnight Express™ Instant 

TB Medium was used instead of IPTG. The cultures were also grown at room 

temperature, which improved the solubility of the aminopeptidase as seen in 

Figure 38 (lane ON Exp RT S). 

 

Due to low expression levels and the large proportion of insoluble protein, large 

culture volumes had to be used to obtain sufficient amounts of soluble protein. In 

the expression, induction and solubility studies the E. coli cells were lysed by 

chemical lysis with BugBuster™ HT. This type of lysis only works effectively 

when the correct ratio of wet cell paste to chemical lysis reagent is used. This was 

not feasible for large scale expression of the aminopeptidase because the protein 

expressed at very low levels within the host cells and a large proportion of the 

protein was insoluble. Sonication, which lyses cells by shear force and cavitation, 

was thus applied to lyse the cells that had been resuspended in a small volume of 

His-lysis/binding buffer. 
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Figure 38: Induction and solubility study of recombinant P. falciparum 
aminopeptidase. 
Laemmli gel (left) and immunoblot with the Penta•His™ HRP Conjugate 
antibody (right) showing the whole cell, insoluble and soluble protein fractions 
obtained from E. coli pET-15b-PFI1570c cultures grown and induced under 
different culture conditions (listed above lanes). Lane M contains 3 µg erythrocyte 
membrane proteins and lane U contains 10 µl of the uninduced BL21 (DE3) E. 
coli whole cell extract. The remaining lanes each contain 10 µl E. coli whole cell 
extracts (W), 10 µl of the insoluble protein fraction (IS) and 10 µl of the soluble 
protein fraction (S) when the cells were either grown in LB and induced with 
IPTG at 37 ºC, or grown in Overnight Express™ Instant TB Medium at room 
temperature or 37 ºC. 

 

Figure 39 shows the progressive lysis of the BL21 (DE3) E. coli cells after each 

sonication step. BugBuster™ HT was used to completely lyse the whole cell 

extract and the insoluble pellets before electrophoresis on the polyacrylamide gel. 

The amount of aminopeptidase present in the soluble fractions increased with each 

sonication step. After the sixth sonication step a second band appeared below the 

aminopeptidase protein band (6 IS) in the insoluble fraction. Sonication generates 

heat, which in conjunction with the shear forces can damage the P. falciparum 

aminopeptidase as well as the protease inhibitors that were added to the His-

lysis/binding buffer prior to sonication. Inactivation of the protease inhibitors 

could therefore have caused the reactivation of a protease that cleaves the P. 

falciparum aminopeptidase, resulting in the additional protein band in the 

immunoblot. The fact that this band only occurs in the insoluble fractions can 

however not be explained. 
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Figure 39: Sonication study of recombinant P. falciparum aminopeptidase. 
Laemmli gels (left) and immunoblots with the Penta•His™ HRP Conjugate 
antibody (right) showing insoluble and soluble E. coli pET-15b-PFI1570c cell 
fractions obtained after sonication. Lane M = 3 µg erythrocyte membrane 
proteins; lane W = 10 µl E. coli whole cell extracts; the remaining lanes contain 
10 µl of soluble (S) and insoluble (IS) protein after each sonication step (listed 
above lanes). 

 

The aminopeptidase was isolated from the E. coli proteins by affinity selection 

with the HIS-Select™ Magnetic Agarose Beads (Figure 40). To prevent 

degradation of the aminopeptidase a protease inhibitor mix was added to the E. 

coli cells before lysis. Twenty mM imidazole was used to remove non-binding 

proteins from the beads and 200 mM imidazole eluted the aminopeptidase from 

the magnetic beads. 

 

Purification from a 250 ml E. coli culture yielded ~120 µg soluble aminopeptidase 

from the first elution and ~70 µg from the second elution. Only a small amount of 

protein was obtained at the end of the purification procedure because of the low 

protein expression and insolubility of the P. falciparum aminopeptidase. A 
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substantial amount of protein was also lost during the washing steps (Figure 40 1-

5), especially in the last two steps, which only removed a small amount of 

contaminants. These two washes were not omitted because pure P. falciparum 

aminopeptidase was required for enzymatic the activity studies (see Chapter 4). 

 

 
Figure 40: Affinity purification of recombinant P. falciparum 
aminopeptidase. 
Laemmli gel (left) and immunoblot with the Penta•His™ HRP Conjugate 
antibody (right) showing the purification of P. falciparum aminopeptidase. Lane 
M = 3 µg erythrocyte membrane proteins; U & W = 10 µl uninduced and induced 
whole cell extract of the 10 ml E. coli culture; S = 10 µl of the 2 ml soluble 
protein fraction after six sonication steps; Ub = 10 µl of the 2 ml protein fraction 
that did not bind to the HIS-Select™ Magnetic Agarose Beads; 1-5 = 20 µl of 
each 300 µl 20 mM imidazole wash; 1st = 1 µl of the first 150 µl 200 mM 
imidazole elution; 2nd = 1 µl of the 100 µl second 200 mM imidazole elution. 

 

3.3.3 P. falciparum spectrin-binding protein features 
 

Table 12 gives some of the information available on the PlasmoDB database for 

the five cloned P. falciparum proteins. The putative Ebl-1 like protein is involved 

in the invasion pathway and is the only one of the five proteins that contains 

transmembrane domains and a hydrophobic N-terminal signal sequence. This 

signal sequence ensures that the protein is processed via the endoplasmic 

reticulum. None of the proteins contain a VTS or PEXEL motif that codes for a 

vacuolar transport signal, which is responsible for the translocation of the protein 

across the parasitophorous vacuole into the erythrocyte. According to the 

PlasmoDB database the putative aminopeptidase is involved in haemoglobin 

 

 

106



digestion and one hypothetical protein, coded for by MAL8P1.104, forms part of 

the structure of the nuclear pore. The spectrin binding region of the putative 

aminopeptidase does not fall within a low complexity region in contrast to the 

four other proteins. 

 

Table 12: PlasmoDB data for the spectrin-binding P. falciparum proteins. 
Gene name PFA0125c MAL8P1.104 MAL8P1.151 PFE0980c PFI1570c 

Protein name 
putative 

Ebl-1 like 
protein 

hypothetical 
protein 

hypothetical 
protein 

hypothetical 
protein 

putative 
amino-

peptidase 

PlasmoDB 
putative pathways 

merozoite 
invasion 

structure of 
the nuclear 

pore 
none none 

haemo-
globin 

digestion 
Signal peptide yes no no no no 

Transmembrane 
domains yes no no no no 

Spectrin binding 
region in a low 

complexity region 
yes yes yes yes no 

 

Yeast two-hybrid data (Table 13) (LaCount et al., 2005) are only available for two 

hypothetical proteins (MAL8P1.104 & PFE0980c) and the putative Ebl-1 like 

protein (PFA0125c). The putative histone acetyltransferase Gcn5 (PF08_0034) 

interacted with two of the spectrin-binding proteins (PFA0125c & MAL8P1.104) 

and is involved in transcription or chromatin metabolism. The authors also 

categorised PFA0125c and MAL8P1.104 in protein networks involved in host cell 

invasion and transcription/chromatin metabolism respectively. 
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Table 13: Yeast two-hybrid data for the spectrin-binding P. falciparum 
proteins. 

Gene Interacting gene Interacting protein 

PF08_0034* putative histone acetyltransferase Gcn5 
PF10_0081* putative 26S proteasome regulatory subunit 4 
PF11_0278* hypothetical protein 
PF13_0228# putative 40S ribosomal subunit protein S6 
PF14_0100# cytidine triphosphate synthetase 
PF14_0241* putative basic transcription factor 3b 
PFC0465c* hypothetical protein 
PFI0975c# hypothetical protein 
PFI1090w* putative s-adenosylmethionine synthetase 
PFI1445w# RhopH2 
PFL0830w* hypothetical protein 

PFA0125c 

PFL2335w# hypothetical protein 
MAL7P1.171* hypothetical protein 
MAL8P1.104*# hypothetical protein 
MAL8P1.153# hypothetical protein 
PF08_0034* putative histone acetyltransferase Gcn5 
PF08_0060# asparagine-rich antigen 
PF11_0241# hypothetical protein 
PF14_0334* putative NAD(P)H-dependent glutamate synthase 
PFA0430c# hypothetical protein 
PFB0130w# putative polyprenyl synthetase 
PFE0130c# hypothetical protein 
PFE1590w# early transcribed membrane protein 
PFF0590c* homologue of human HSPC025 
PFI0225w*# hypothetical protein 
PFL0275w# hypothetical protein 
PFL0350c* hypothetical protein 

MAL8P1.104 

PFL0815w# putative DNA-binding chaperone 
PFE0980c PF11_0402# hypothetical protein 

* gene was prey and # gene was bait  
(Data were obtained from LaCount et al., 2005) 

 

Table 14 and Figure 41 give the mass spectroscopy (Florens et al., 2002, Florens 

et al., 2004) and microarray data (Le Roch et al., 2003) for the spectrin-binding P. 

falciparum proteins. The DeRisi Lab microarray results (Bozdech et al., 2003) 

were very similar and are not shown. Mass spectrometry analysis of the putative 

aminopeptidase detected the protein at the infected red blood cell membrane, 

which supports the fact that this protein interacts with spectrin. The proteomics 

data are not as extensive as the microarray data and therefore the mRNA and 

protein expression profiles do not always correlate. For example, the highest 
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mRNA levels for MAL8P1.104 occurred in early rings and merozoites (Figure 41), 

but the protein was only detected in gametocytes and sporozoites. The differences 

in the mRNA and protein expression profiles could also be due to post-

transcriptional regulation in the malaria parasite by unknown signals that delay the 

translation of mRNA into the protein (Le Roch et al., 2004). 

 

Table 14: Protein and mRNA expression data for the spectrin-binding P. 
falciparum proteins. 

Gene name Protein 
name 

Life cycle stage in which 
protein is expressed 

Life cycle stage in which mRNA 
is expressed at high levels 

merozoite merozoite 
sporozoite - PFA0125c 

putative 
Ebl-1 like 

protein - late schizont 
gametocyte - 
sporozoite - MAL8P1.104 hypothetical 

protein 
- merozoite 

sporozoite sporozoite 
MAL8P1.151 hypothetical 

protein - early and late schizont 
gametocyte - 
merozoite - 
sporozoite sporozoite 

- early and late trophozoite 
PFE0980c hypothetical 

protein 

- early schizont 
trophozoite & schizont early and late trophozoite 

gametocyte gametocyte 
iRBC membrane - 

merozoite - 
PFI1570c 

putative 
amino-

peptidase 

sporozoite - 
iRBC = infected red blood cell. 
Data sets are from P. falciparum strain 3D7 (Florens et al., 2002, Florens et al., 2004, Le Roch et al., 2003, Bozdech et al., 
2003). 

 

The levels of mRNA expression of the five spectrin-binding P. falciparum 

proteins varied considerably when compared to each other (Figure 41). For 

example, the putative aminopeptidase had very high mRNA expression levels, 

suggesting that the protein is required in large quantities and could therefore have 

many enzymatic functions to perform during the erythrocytic life cycle. In 

contrast, the PFE0980c gene expressed low levels of mRNA, suggesting that the 

hypothetical protein product may only have a single specific function. 
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PFI1570c (putative aminopeptidase)

MAL8P1.151 (hypothetical protein)

PFE0980c (hypothetical protein)

PFA0125c (putative Ebl-1 like protein)

MAL8P1.104 (hypothetical protein)

 

 
Figure 41: Absolute mRNA expression levels for the spectrin-binding P. 
falciparum proteins. 
Graphs showing the Winzeler Lab (Le Roch et al., 2003) microarray absolute 
expression profiles for the mRNA transcripts of the Ebl-1 like protein, putative 
aminopeptidase and the three hypothetical proteins. Colours and sampling points: 
blue = sorbitol synchronised cultures; pink = temperature synchronised cultures; 
grey = expression level less than 10 (too close to background); S = sporozoite; ER 
= early ring, LR = late ring; ET = early trophozoite; LT = late trophozoite; ES = 
early schizont; LS = late schizont; M = merozoite; and G = gametocyte. 
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3.4 Discussion 
3.4.1 Cloning and P. falciparum protein expression 
 

Automated sequencing revealed one silent mutation in the putative 

aminopeptidase sequence and insertions and deletions in the other P. falciparum 

constructs. Taq DNA polymerase has a total error rate of 1 x 10-4 to 2 x 10-5 errors 

per base pair (Tindall and Kunkel, 1988) and therefore a high fidelity mix, which 

also contained a DNA polymerase with a 3’-5’ exonuclease proofreading activity, 

was used for the amplification procedure. This Tgo DNA polymerase, however, 

only increases the fidelity of DNA synthesis ~3-fold and does not guarantee error-

free amplified DNA sequences. The AT-richness of the P. falciparum genome and 

the presence of adenosine and thymidine stretches within gene sequences could 

also have caused the DNA polymerases to slip, thereby creating deletions. In 

addition, the silent mutation and the 27 nucleotide (9 amino acids) insertion may 

not be true errors, but may reflect a discrepancy between the P. falciparum FCR-3 

and 3D7 genomes. The PlasmoDB database is based on the 3D7 genome and 

genes were amplified from FCR-3 genomic DNA. Finally, errors could have been 

introduced during the sequencing reaction or when the sequencing template was 

prepared by PCR from the bacterial colony. 

 

Low expression levels were exhibited by all the proteins and tag-specific 

antibodies had to be used to detect them in the BL21 (DE3) E. coli protein 

extracts. Large P. falciparum proteins (>60 kDa) are thought to be less stable in E. 

coli (Mehlin et al., 2006) and all the plasmid constructs were created from gene 

fragments that were ~1.5 kb in size, thus translating into proteins that would be 

larger than 60 kDa. Some P. falciparum proteins are also toxic to E. coli cells 

(Cinquin et al., 2001), which would slow the growth rate of the cells and less 

protein would be produced. To improve expression of recombinant proteins a 

different heterologous host may be used, for example, the baculovirus/insect cell 

system, yeast or mammalian cells. 
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Two P. falciparum constructs contained deletions responsible for frameshifts and 

the introduction of premature stop codons in the DNA sequences. Induction of E. 

coli cells containing these constructs, however, resulted in the expression of 

multiple smaller protein bands that did not match the expected truncated protein 

sizes. E. coli sometimes does not faithfully maintain the coding sequence of the 

inserted gene (Mehlin et al., 2006) and introduces mutations and frameshifts into 

the sequences during replication. The translated proteins are subsequently 

expressed as several differently sized proteins or as proteins with an incorrect 

amino acid sequence. The instability of the transcribed mRNA and the presence of 

secondary structures within the mRNA could also result in the translation of fewer 

and smaller proteins (Wu et al., 2004). 

 

Only the PFI1570c gene that was inserted in the pET-15b plasmid expressed a 

single protein of the correct size and was therefore chosen for protein purification. 

Induction with IPTG, however, produced only small amounts of the 

aminopeptidase, mainly as inclusion bodies. E. coli cultures were therefore grown 

in Overnight Express™ Instant TB Medium at room temperature. The medium 

and growth conditions ensured that the bacteria grew slowly to a post-log phase 

with glucose as their main nutrient source. Once the glucose was depleted, lactose 

was used as a substitute nutrient source and natural inducing agent when 

converted to allolactose by β-galactosidase in the bacterial cell (Lehninger et al., 

1993). These changed conditions decelerated the action of the translation 

machinery inside the host cell, which facilitated the smooth passage of the 

ribosomal unit along the mRNA template to allow it to produce a full-length 

polypeptide chain. Slower translation also allowed the recombinant protein to 

transfer from the unstable intermediate phase to the correctly folded protein (Flick 

et al., 2004) while the protein was still being translated, thereby decreasing the 

formation of inclusion bodies.  
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3.4.2 Characteristics of the P. falciparum spectrin-binding 
proteins 
 

One of the five analysed P. falciparum proteins, namely the Ebl-1 like protein, 

which is also known as EBA-181/JESEBL, had a hydrophobic signal peptide and 

transmembrane domains. This protein is a microneme protein and the signal 

sequence is responsible for transport of the protein to the endoplasmic reticulum, 

from where it will eventually be redirected, via other signals, to the microneme. 

EBA-181/JESEBL does not require a vacuolar localisation signal (Marti et al., 

2004, Hiller et al., 2004) for transport into the parasitophorous vacuole or the 

erythrocyte cytoplasm, because it is involved in erythrocyte invasion. None of the 

other proteins contained signal sequences or vacuolar localisation signals, but a 

lack of known signals does not exclude the relocation of these four proteins into 

the erythrocyte cytosol, because transport could be facilitated by signals and 

mechanisms that have as yet not been identified. The P. falciparum 

aminopeptidase was detected at the infected red blood cell membrane by mass 

spectroscopy (Florens et al., 2004) which correlates with findings from this study. 

 

The spectrin binding regions in four of the five proteins were located within low 

complexity regions. The exception was the binding region of the putative 

aminopeptidase. P. falciparum low complexity regions are composed of soluble 

unstructured amino acid loops (particularly lysine and asparagine) and are located 

between secondary structural elements of the protein. They are oriented toward 

the external surface of the protein and may not interfere with the function of the 

rest of the protein (Aravind et al., 2003). Low complexity regions are common in 

several Plasmodium species and therefore they have been thought to facilitate 

immune evasion by eliciting a non-productive antibody response against the 

repetitive amino acid stretches (Anders, 1986). These regions do however play a 

functional role in protein-protein interactions in other organisms (Liu et al., 2002), 

and the presence of spectrin-binding regions within the P. falciparum low 

complexity areas provides proof that the parasite also uses these sequences to 

interact with host proteins. 
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3.4.3 Possible functions of the spectrin-binding proteins in the 
erythrocytic phase of the P. falciparum life cycle 
 

The Ebl-1 like protein (EBA-181/JESEBL) has been found to interact with the 

trypsin-resistant receptor E on the erythrocyte surface (Gilberger et al., 2003) 

during invasion. The yeast two-hybrid data showed that EBA-181/JESEBL also 

interacted with several other P. falciparum proteins, one of them being RhopH2 

(PFI1445w) (LaCount et al., 2005), which is a component of the rhoptry high 

molecular weight complex (RhopH). In ring stage parasites, components of the 

RhopH complex are distributed throughout the erythrocyte and parasitophorous 

vacuolar membranes and are presumed to play a role in the establishment of the 

parasitophorous vacuole (Kaneko et al., 2005). EBA-181/JESEBL also interacts 

with the 10 kDa domain of protein 4.1. This domain stabilises the interaction 

between spectrin and actin in the junctional complex, and it is thought that 

binding of EBA-181/JESEBL to protein 4.1 blocks the repair of the erythrocyte 

membrane during invasion  (Lanzillotti and Coetzer, 2006). Additionally, 

simultaneous binding of EBA-181/JESEBL to protein 4.1 and spectrin could 

disrupt the structure of the junctional complex, thereby destabilising the 

erythrocyte membrane skeleton and allowing the parasite to pass into the 

erythrocyte. 

 

According to the PlasmoDB database, the hypothetical protein coded for by 

MAL8P1.104, is a structural component of the nuclear pore ring and the yeast 

two-hybrid data showed that this protein was involved in transcription and 

chromatin metabolism (LaCount et al., 2005). The nuclear pore is used to shuttle 

mRNA between the nucleus and the cytoplasm and therefore the MAL8P1.104 

mRNA should be transcribed throughout the parasite erythrocytic life cycle, 

which is confirmed by microarray data (Le Roch et al., 2003, Bozdech et al., 

2003). MAL8P1.104 could also be a structural component of the new transporters 

and channels of the NPP that are introduced into the erythrocyte membrane and 

the underlying skeleton as the parasite grows. The interaction between 
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MAL8P1.104 and spectrin could form an anchoring point for the transporters and 

channels. 

 

MAL8P1.151 and PFE0980c code for hypothetical proteins and have no assigned 

function in the PlasmoDB database. This study provides evidence that they 

interact with spectrin and could thus play a role in any of the processes requiring 

contact with the erythrocyte membrane. 

 

PFI1570c codes for an aminopeptidase which plays a role in haemoglobin 

digestion (Dalal and Klemba, 2007). However, the enzyme also interacts with the 

erythrocyte membrane as evidenced by mass spectrometry data (Florens et al., 

2004) and results from this study, indicating that it could therefore perform 

additional functions in the parasite and infected erythrocyte. These functions will 

be discussed further in Chapter 4. 
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Chapter 4: Characterisation of P. falciparum M18 
aspartyl aminopeptidase 

4.1 Introduction 
4.1.1 Enzymes and proteases 
 

Enzymes are the reaction catalysts of biological systems and are thus the 

functional units that degrade or synthesise macromolecules, transform chemical 

energy, or regulate other enzymes by activating or deactivating them. Proteases, 

or peptidases are enzymes that hydrolyse the amide bonds of the polypeptide 

backbone of proteins (Lehninger et al., 1993). 

 

Enzymes work by lowering the activation energy of a reaction, thereby allowing 

the reaction to occur a lot faster when compared to an uncatalysed reaction. 

Enzyme activity can be affected by inhibitors, or activators, as well as temperature, 

pH, and substrate concentration. Because enzymes are proteins, their activity 

depends upon the integrity of the native protein conformation, and denaturation of 

the protein, or the dissociation of the enzyme into subunits, therefore destroys the 

catalytic activity (Lehninger et al., 1993). 

 

4.1.2 Metalloproteases 
 

Proteases that bind metal ions in their active site are known as metalloproteases. 

In contrast to proteases that are only activated by metal ions, the metal ion in 

metalloproteases is normally tightly bound in the active site and is therefore 

retained in the enzyme during purification (Palmer, 1995). Metalloproteases can 

be distinguished from other enzymes by treatment with metal chelating agents 

such as EDTA or 1,10-phenanthroline, which remove the metal ion from the 

active site, thereby inactivating the enzyme (Bugg, 2004). 

 

Metal cofactors play either a structural or catalytic role in metalloenzymes. 

Structural cofactors are normally bound by four amino acids, which are generally 
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cysteines (Figure 42a). In contrast, catalytic metal ions are coordinated by three 

amino acids and an activated water molecule (Figure 42b) (Auld, 2001). 

Magnesium is probably the most commonly used catalytic cofactor and functions 

as a nucleophile or a Lewis acid in the active site. Zinc is often used to maintain 

the tertiary structure of the enzyme, but proteases do exist, that use zinc as a 

Lewis acid to either activate a water molecule and/or a carbonyl group of a 

substrate for subsequent base-catalysis or nucleophilic attack by an amino acid 

group in the active site. Some metalloproteases bind two cofactors in a co-

catalytic active site (Figure 42c). In this instance, the metal ions are held in place 

by five amino acids and one water molecule. One amino acid, usually an aspartate, 

coordinates both metal ions and the water molecule bridges them. Finally, 

enzymes also employ metal ions as redox reagents when none of the amino acid 

side groups in the active site can act in this capacity. 

 

 
Figure 42: Zinc binding in the active site of a metalloprotease. 
Diagram showing how zinc is coordinated by amino acids in a structural (a), 
catalytic (b) and co-catalytic (c) active site. The zinc atom in the structural site is 
bound by four amino acids, whereas the zinc ion in the catalytic site is only bound 
by three amino acids and a water molecule. The zinc ions in the co-catalytic site 
are bound by five amino acids and water. One of the amino acids coordinates both 
metal ions. Zn = zinc; H2O = water; C = cysteine; D = aspartate; E = glutamate;  
H = histidine (adapted from Auld, 2001). 
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4.1.3 P. falciparum metalloproteases 
 

Wu et al. (2003) identified 92 putative P. falciparum proteases, which is 59 more 

than those originally recognised by Gardner in the first genome publication 

(Gardner et al., 2002). Some of the new proteases include a calpain, a 

metacaspase and a signal peptidase that are essential for parasitic activity. 

 

Only a small number of Plasmodium proteases have been characterised in vitro 

and in vivo. As mentioned in the first chapter, Plasmodium proteases are involved 

in erythrocyte entry, the digestion of haemoglobin and exit from the erythrocyte. 

P. falciparum entry proteases include PfSUB-1 (Blackman et al., 1998), PfSUB-2 

(Hackett et al., 1999), gp76 (Roggwiller et al., 1996), and the rhomboids (Baker 

et al., 2006). Digestion proteases include the plasmepsins (Banerjee et al., 2002), 

falcipains (Shenai et al., 2000, Sijwali and Rosenthal, 2004, Sijwali et al., 2001) 

and falcilysin (Eggleson et al., 1999). Some of the digestion proteases as well as a 

37 kDa acidic protease (Deguercy et al., 1990) and the SERAs (Li et al., 2002) are 

responsible for parasite escape. 

 

When this study was initiated, only two Plasmodium metalloproteases had been 

characterised, namely PfA-M1, which belongs to the M1 family of zinc 

metallopeptidases (Florent et al., 1998) and falcilysin, a M16 metalloprotease 

(Eggleson et al., 1999). In January 2006, the M17 leucyl aminopeptidase 

(PfM17LAP) was characterised by Gardiner et al. (2006) and in August 2007, 

when this study had just been completed, Teuscher et al. (2007) released a 

publication describing the P. falciparum aspartyl aminopeptidase (PfM18AAP) 

encoded by PFI1570c, which is the subject of this study. All these 

metalloproteases are involved in haemoglobin digestion, but additional enzymatic 

roles have been described for PfA-M1 and falcilysin during erythrocyte reinvasion 

(Allary et al., 2002) and apicoplast transit peptide degradation (Ponpuak et al., 

2007), respectively. This study provides evidence for additional roles of 

PfM18AAP. 
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4.2 Methods 
4.2.1 Aminopeptidase sequence and structure analysis 
 

The PfM18AAP amino acid sequence was used to search the Protein Data Bank 

(PDB) (http://www.rcsb.org/pdb/home/home.do) (Berman et al., 2000) to identify 

crystal structures that could be used to predict the tertiary structure of PfM18AAP. 

The protein names of the identified crystal structures, PfM18AAP and the Homo 

sapiens aspartyl aminopeptidase were used to search the MEROPS database 

(http://merops.sanger.ac.uk/) (Rawlings et al., 2006) to identify the family and 

clan that each protease belongs to and the protease alignment. This, as well as 

alignments created with ClustalW (http://www.ebi.ac.uk/clustalw) (Chenna et al., 

2003), were used to compare the proteins with each other and to locate putative 

motifs in the homologues. Motifs and transmembrane domains were detected with 

ScanProsite (http://au.expasy.org/tools/scanprosite/) (Gattiker et al., 2002) and 

SOSUI (http://bp.nuap.nagoya-u.ac.jp/sosui/) (Hirokawa et al., 1998) respectively, 

and secondary structures were predicted with Jpred 

(http://www.compbio.dundee.ac.uk/~www-jpred/) (Cuff et al., 1998). Jpred was 

used, because the program gives the results of six secondary structure prediction 

algorithms and also integrates these results into one user-friendly output sequence. 

Crystal structures were viewed and manipulated with the DeepView Swiss-

PdbViewer, version 3.7 (SP5) (http://www.expasy.org/spdbv/) (Guex and Peitsch, 

1997). 

 

4.2.2 Characterisation of recombinant PfM18AAP 
His-tag removal and protein precipitation 
 

A one litre E. coli culture containing pET-15b-PFI1570c was grown and 

recombinant (r) PfM18AAP purified as described in section 3.2.4. Five hundred 

microlitres from the first elution and 250 µl from the second elution (both elutions 

performed without PMSF) were combined and dialysed for 15 minutes in seven 

100 µl Slide-A-Lyzer® Mini Dialysis Units (Pierce Biotechnology Incorporated, 

Rockford, USA) against Cleavage Buffer (50 mM Tris-HCl, 10 mM CaCl2, pH 
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8.0). Two hundred microlitres Thrombin-Agarose (Sigma-Aldrich Corporation, St. 

Louis, USA) (50% slurry) was centrifuged at 500 g for 5 minutes at 4 ºC using the 

Eppendorf 5415 R Centrifuge, the supernatant removed, the Thrombin-Agarose 

resuspended in 1 ml Cleavage Buffer and centrifuged for 5 minutes. The wash 

with 1 ml Cleavage Buffer was repeated and the Thrombin-Agarose finally 

resuspended in 75 µl 10 x Cleavage Buffer. The dialysed rPfM18AAP sample was 

added to the Thrombin-Agarose and placed on the Mini Labroller™ (Labnet 

International, Inc., Woodridge, USA) for 4 hours at room temperature to remove 

the 6His-tag. The sample was centrifuged for 5 minutes at 500 g and the 

supernatant collected. Residual protein was removed from the Thrombin-Agarose 

with 50 µl Cleavage Buffer and added to the first supernatant. PMSF was added to 

a final concentration of 1 mM to inhibit any secondary proteases and the 

thrombin-cleaved rPfM18AAP added to 30 µl HIS-Select™ Magnetic Agarose 

Beads for 15 minutes at room temperature. The beads were removed and 2 µl 

thrombin-cleaved rPfM18AAP kept aside to determine the amount of protein 

present by electrophoresing the sample through a Laemmli SDS-polyacrylamide 

gel against 1, 0.5 and 0.25 µg BSA and staining the gel with Coomassie Blue. 

Nine volumes cold 100 % ethanol were added to the remaining thrombin-cleaved 

rPfM18AAP sample and the mixture incubated overnight at -20 ºC, followed by 

centrifugation at 16,000 g for 20 minutes at 4 ºC. The ethanol was removed and 1 

ml cold 90 % ethanol (v/v) added to wash the pellet. The sample was centrifuged 

at 16,000 g for 5 minutes, the protein pellet air-dried for 30 minutes at room 

temperature and resuspended in isoelectric focusing (IEF) buffer (O'Farrell, 1975) 

(9.5 M urea, 2 % Nonidet P40 (NP-40) (w/v) (Roche Diagnostics Gmbh, 

Mannheim, Germany), 1.6 % Bio-Lyte® pH 5/8 Ampholyte (v/v) (Bio-Rad 

Laboratories, Hercules, USA), 0.4 % Bio-Lyte® pH 3/10 Ampholyte (v/v) (Bio-

Rad Laboratories, Hercules, USA), 5 % β-mercaptoethanol (v/v)) to give a final 

thrombin-cleaved rPfM18AAP concentration of ~ 1µg/µl. The volume of buffer 

required for resuspension was calculated from the amount of protein present in the 

thrombin-cleaved rPfM18AAP sample before precipitation. 
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Isoelectric focusing 
 

The pI of rPfM18AAP without the His-tag was determined by IEF using the 

O’Farrell method (O'Farrell, 1975). Glass tubes (15 cm x 3 mm) were soaked 

overnight in chromic acid (33 ml saturated potassium dichromate, 1 litre sulphuric 

acid) and rinsed thoroughly with distilled water and 70 % ethanol (v/v). The 

bottoms of the tubes were sealed with Parafilm® (Pechiney Plastic Packaging, 

Menasha, USA). A 3.5 % polyacrylamide mixture (2.75 g urea, 665 µl 28.4 % 

acrylamide/1.6 % bisacrylamide (w/v) mix, 250 µl Bio-Lyte® 3/10 Ampholyte, 1 

ml 10 % NP-40 (v/v) in a final volume of 5 ml) was prepared and degassed for 1 

minute. Twenty-three microlitres freshly prepared 10 % ammonium persulphate 

and 3.5 µl TEMED were added and the tubes filled up to 10 cm with the 

polyacrylamide mixture. The gel solution was overlaid with water and allowed to 

set for 2 hours. The water was removed and replaced with 20 µl IEF buffer and 

the gels allowed to set for another 2 hours. The IEF buffer was replaced with fresh 

20 µl IEF buffer. The lower chamber of the Shandon Vertical Electrophoresis 

Chamber (Shandon Scientific Company Ltd., London, UK) was filled with 0.01 

M phosphoric acid (Merck KGaA, Darmstadt, Germany). The IEF tube gel was 

placed in the system and the upper chamber filled with 0.02 M NaOH (degassed 

for 1 hour). The gel was prefocused at 200 V for 15 minutes, followed by 300 V 

for 30 minutes and finally 400 V for 30 minutes. The upper buffer was removed 

and 30 µl 2-D SDS-PAGE Standards (Bio-Rad Laboratories, Hercules, USA) 

mixed with 3-5 µg thrombin-cleaved rPfM18AAP (1 µg/µl) loaded onto the gel. 

The sample was overlaid with 10 µl sample overlay solution (9 M urea, 0.8 % 

Bio-Lyte® 5/8 Ampholyte (v/v), 0.2 % Bio-Lyte® 3/10 Ampholyte (v/v)) and the 

gel electrophoresed at 400 V for 16 hours followed by 500V for one hour. One 

microlitre of concentrated bromophenol blue (50 % glycerol (v/v), 0.01 mg/ml 

bromophenol blue (BDH Laboratory Supplies, Poole, UK) was added to the top of 

the gel and allowed to electrophorese into the gel for 3-5 minutes to be able to 

identify the top end of the gel after it has been extruded from the glass tube. The 

glass tube was removed from the apparatus and the gel carefully extruded with 

water into 10 ml equilibration buffer (124 mM Tris-HCl, 10 % glycerol (v/v), 2 % 
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SDS (w/v), 8.6 mM DTT, pH 6.8). The gel was soaked for 10 minutes and 

carefully loaded onto a 14 cm x 16 cm x 3 mm Laemmli SDS-polyacrylamide gel 

consisting of a resolving gel containing 13 % polyacrylamide and a stacking gel 

without wells containing 4 % polyacrylamide. The IEF gel was secured onto the 

second dimension gel and two wells formed with a single comb tooth at both ends 

of the IEF tube gel using 0.5 % agarose solution (0.5 % SeaKem LE agarose (w/v) 

in Laemmli running buffer). Fifteen microlitres denatured whole erythrocyte 

membrane marker and 15 µl Page Ruler™ Prestained Protein Ladder (Fermentas 

International Inc., Burlington, Canada) were loaded in the wells and the gel 

electrophoresed with Laemmli running buffer at 75 V for 18 hours. The gel was 

fixed overnight in one litre fixing solution (50 % isopropanol (v/v), 7 % glacial 

acetic acid (v/v)) on the Red Rotor PR70-230V shaker (set to 2) followed by 

several rinses in milli-Q water. The gel was incubated overnight in milli-Q water 

and silver stained (Hoefer Scientific Instruments, 1994) by incubating the gel in 

one litre 0.032 mM DTT for 1 hour with shaking using the Red Rotor PR70-230V 

shaker (set to 2). The solution was removed and replaced with 400 ml 0.1 % silver 

nitrate (w/v) (Sigma-Aldrich Corporation, St. Louis, USA) and the gel incubated 

for another hour. The silver nitrate was removed and the gel briefly rinsed with 

milli-Q water. The gel was rinsed twice with 200 ml developing solution (800 ml 

3 % Na2CO3 (w/v) with 400 µl 37 % formaldehyde (v/v) (Sigma-Aldrich 

Corporation, St. Louis, USA) added just before use). Finally, 400 ml developing 

solution was added to the gel, which was placed on a shaker for 5-10 minutes. As 

soon as protein spots appeared the developing solution was removed and the gel 

rinsed several times with milli-Q water and left overnight in milli-Q water. A dark 

background was destained (Gharahdaghi et al., 1999) by incubating the gel for 30 

seconds to 2 minutes in 400 ml destaining solution (100 mM sodium thiosulphate 

(Sigma-Aldrich Corporation, St. Louis, USA), 30 mM potassium ferricyanide 

(Sigma-Aldrich Corporation, St. Louis, USA), prepared separately and mixed in 

equal volumes prior to use), followed by several rinses in milli-Q water. The pI of 

thrombin-cleaved rPfM18AAP was estimated by comparing the rPfM18AAP 

protein spots in relation to those of the 2-D SDS-PAGE Standards. 
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Molecular weight determination by denaturing polyacrylamide 
electrophoresis 
 

The molecular weight of denatured rPfM18AAP was calculated from the relative 

mobility (Rm) values of the protein when 500 ng rPfM18AAP, 500 ng BSA and 

20 µg erythrocyte membrane proteins were electrophoresed through a Laemmli 

SDS-polyacrylamide gel containing a 12 % resolving gel and a 4 % stacking gel. 

A standard curve consisting of the relative mobility (Y-axis) and molecular weight 

(X-axis) of each standard was plotted on semi-log paper and used to determine the 

molecular weight of rPfM18AAP. 

 

Native oligomeric state determination using Ferguson plots 
 

The number of subunits present in the native form of rPfM18AAP was determined 

by Ferguson plots (Ferguson, 1964, Hedrick and Smith, 1968, Sigma-Aldrich, 

2005). The plots are constructed from the Rm values of standards and the protein 

of interest after the proteins have been electrophoresed through non-denaturing 

gels (Liu et al., 1982). Tube gels with varying polyacrylamide percentages were 

prepared the following way. Glass tubes (12 cm x 6 mm) were cleaned and 

prepared as in the isoelectric focusing section. A 1 % agarose solution was placed 

in a 43 ºC waterbath. The non-denaturing gel mixture containing the desired 

percentage polyacrylamide (from a 40 % acrylamide/1.5 % bisacrylamide stock 

(w/v)) and 1 x Tris acetate buffer (pH 7.4) in a final volume of 2.4 ml was placed 

in the 43 ºC waterbath. Two hundred microlitres 1.5 % ammonium persulphate, 

200 µl 0.5 % TEMED and 1.2 ml 1 % agarose were added and the glass tubes 

filled up to 11.5 cm with the gel mixture. The gel was overlaid with water and 

placed in ice water for 3 minutes. Gels were left to polymerise overnight at room 

temperature and placed in the Shandon Vertical Electrophoresis Chamber. Ten 

microlitres bromophenol tracking dye (50 % sucrose (w/v), 0.05 % bromophenol 

blue (w/v)) was added to 20 µg rPfM18AAP (containing 0.01 mM DTT), 10 µg 

BSA or 10 µg spectrin and the samples loaded onto the different percentage tube 

gels according to Table 15. The gels were electrophoresed in the cold room with 1 
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x Tris acetate buffer containing 0.008 % β-mercaptoethanol (v/v) at 4 mA per gel 

until the bromophenol blue tracking dye reached the end of the gels. The gels 

were carefully extruded from the glass tubes with water and stained with 

Coomassie Blue stain. 

 

Table 15: Polyacrylamide percentages for the native gels. 
Protein Percentage polyacrylamide 
Spectrin 2; 2.5; 3; 3.5 

BSA 6; 7; 8; 9 
rPfM18AAP 2; 3; 4; 5; 6; 7; 8; 9; 10 

 

The Rm values of each standard and rPfM18AAP were calculated by dividing the 

distance the protein travelled by the distance the bromophenol tracking dye 

travelled. The 100 [Log (Rm x 100)] values for each protein were plotted against 

the gel concentration and the retardation coefficient (KR) of each protein standard 

determined from the slope of each standard (Hedrick and Smith, 1968, Sigma-

Aldrich, 2005). The negative values of KR were plotted against the molecular 

weight of each standard on log-log paper and the approximate molecular weight 

of rPfM18AAP read from the second graph (Hedrick and Smith, 1968, Sigma-

Aldrich, 2005). 

 

Immunoblotting of non-denaturing gels 
 

Fifteen micrograms rPfM18AAP was electrophoresed on non-denaturing 

polyacrylamide gels as described in the previous section. The gels were cut in half 

length wise and one half stained with Coomassie Blue stain. The other half was 

incubated for 10 minutes in 48 mM Tris, 39 mM glycine, 0.0375 % SDS (w/v), 

20 % methanol (v/v), pH 9.2 (Bjerrum and Schafer-Nielsen, 1986) and the 

proteins transferred onto a Hybond™-C Extra Nitrocellulose membrane with the 

same buffer for 36 hours at 4 ºC. The histidine-tag of rPfM18AAP was detected 

with 1:1,500 dilution of the Penta•His™ HRP Conjugate antibody and 

chemiluminescence with the SuperSignal® West Pico Chemiluminescent 

Substrate. 
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4.2.3 Protein overlays 
 

Binding studies were performed by blot overlays of rPfM18AAP with spectrin, 

trypsin digested spectrin (Lawler et al., 1984) and erythrocyte membrane proteins. 

The proteins of interest were transferred or spotted onto nitrocellulose membranes 

in the following ways: 

 

Dot blot preparation: One hundred nanograms rPfM18AAP (Section 3.2.4), 100 

ng BSA, 2 µg spectrin tetramers and 2 µg spectrin dimers (Section 2.2.2) were 

spotted onto two strips of Hybond™-C Extra Nitrocellulose membrane and air 

dried. 

 

Slot blot preparation: One hundred nanograms rPfM18AAP, 100 ng BSA, 1 µg 

spectrin tetramers and 1 µg spectrin dimers were applied to two Hybond™-C 

Extra Nitrocellulose membranes in a Bio-Rad Bio-Dot® SF chamber (Bio-Rad 

Laboratories, Hercules, USA) connected to Millipore Vacuum Pump XF 54 230 

50 (Millipore Corporation, Bedford, USA). 

 

Erythrocyte membrane protein overlay: One hundred nanograms rPfM18AAP 

(positive control), 100 ng BSA (negative control) and 20 µg erythrocyte 

membrane proteins were electrophoresed on a 14 cm x 16 cm x 1.5 mm 9 % 

Laemmli and a 14 cm x 16 cm x 1.5 mm 3.5-17.5 % Fairbanks SDS-

polyacrylamide gel (Section 2.2.2) and the protein bands transferred onto a 

Hybond™-C Extra Nitrocellulose membrane (Section 4.2.2). Five hundred 

nanograms rPfM18AAP, 500 ng BSA and 20 µg erythrocyte membrane proteins 

were electrophoresed on a second Laemmli and Fairbanks SDS-polyacrylamide 

gel and stained with Coomassie Blue stain. 

 

Spectrin tryptic digest overlay: Spectrin was isolated from human erythrocytes as 

described in section 2.2.2. Four hundred micrograms spectrin was prepared for the 

digestion reaction by adding 10 x digestion buffer (10 x: 100 mM sodium 

phosphate buffer, pH 7.5, 1.5 M NaCl, 50 mM Na2EDTA, 50 mM β-
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mercaptoethanol) followed by 1 µg trypsin (0.2 µg/µl) (Sigma-Aldrich 

Corporation, St. Louis, USA) per 100 µg spectrin. The sample was incubated at 4 

ºC for 18 hours and the digest stopped by adding 1 % (v/v) 0.1 M Pefabloc SC. 

One hundred nanograms rPfM18AAP (positive control), 100 ng BSA (negative 

control) and three lanes containing 40 µg trypsin digested spectrin were 

electrophoresed on a 14 cm x 16 cm x 1.5 mm Laemmli SDS-polyacrylamide gel 

at 65 V for 18 hours. The Laemmli gel contained a 10 % separating gel (40 % 

acrylamide/1.5 % bisacrylamide stock (w/v) in lower gel buffer (375 mM Tris-

HCl, pH 8.3), 0.1 % SDS (w/v) and 2 mM EDTA (pH 7.4). The 2.66 % stacking 

gel contained upper gel buffer (125 mM Tris-HCl, pH 6.8), 0.1 % SDS (w/v) and 

2 mM EDTA (pH 7.4). The proteins were transferred onto a Hybond™-C Extra 

Nitrocellulose membrane (Section 4.2.2). Two of the lanes containing the trypsin 

digested spectrin were cut off from the nitrocellulose membrane and the spectrin 

fragments analysed with separate 1:500 α- and β-spectrin polyclonal antibodies, 

followed by a 1:20,000 goat anti-rabbit IgG peroxidase (Section 2.2.2) and 

detection by chemiluminescence with the SuperSignal® West Pico 

Chemiluminescent Substrate. Five hundred nanograms rPfM18AAP, 500 ng BSA 

and 40 µg trypsin digested spectrin were electrophoresed on a second Laemmli 

SDS-polyacrylamide gel and stained with Coomassie Blue stain. 

 

The overlays were performed as follows: All the membranes were blocked for 1 

hour at room temperature in 5 % BSA Fraction V (w/v) in TBS. One slot or dot 

blot membrane was placed in 2 ml 50 mM Tris-HCl buffer (pH 7.5) containing 

2.5 ng/µl rPfM18AAP, while the other slot or dot blot membrane was placed into 

2 ml 50 mM Tris-HCl buffer (pH 7.5) and incubated for 1 hour at room 

temperature on the Mini Labroller™. The membranes were then washed two 

times for 10 minutes in wash buffer A (20 mM Tris-HCl, 500 mM NaCl, 0.12 % 

Tween®-20 (v/v), 0.2 % Triton® X-100 (v/v), pH 7.5) and once for 10 minutes in 

HRP-TBS buffer (10 mM Tris-HCl, 150 mM NaCl, pH 7.5). The membranes 

containing the erythrocyte membrane proteins and the spectrin tryptic digest were 

incubated for 1 hour in 30 ml 50 mM Tris-HCl buffer (pH 7.5) containing 1.25 

ng/µl rPfM18AAP and subsequently washed 4 times for 10 minutes in wash 
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buffer A and once for 10 minutes in HRP-TBS buffer. All membranes were fixed 

for 20 minutes at room temperature with HRP-TBS buffer containing 0.5 % (v/v) 

formaldehyde, followed by incubation for 20 minutes in HRP-TBS buffer 

containing 2 % glycine. Glycine was used to inactivate remaining reactive 

aldehyde groups (Tisdale, 2002). The membranes were washed twice for 10 

minutes in Tween/Triton buffer (20 mM Tris-HCl, 500 mM NaCl, 0.05 % 

Tween®-20 (v/v), 0.2 % Triton® X-100 (v/v), pH 7.5) and once for 10 minutes 

with HRP-TBS buffer and subsequently incubated for 1 hour at room temperature 

with a 1:1,500 dilution of the Penta•His™ HRP Conjugate antibody. The 

membranes were washed twice for 10 minutes with Tween/Triton buffer and once 

for 10 minutes with HRP-TBS buffer and the antibody detected by 

chemiluminescence with the SuperSignal® West Pico Chemiluminescent 

Substrate. 

 

4.2.4 Enzyme activity assay 
 

The enzyme activity assay was based on a coupled enzyme reaction (Wilk et al., 

1998). If rPfM18AAP is active, it will cleave the aspartate from the Asp-Ala-Pro-

β-Napthylamide substrate, thereby liberating Ala-Pro-β-Napthylamide (Figure 

43a). This product becomes the substrate for dipeptidyl peptidase IV, which 

cleaves alanine-proline from the β-Napthylamine chromogen (Figure 43b). The 

chromogen is chemically converted to an azo dye, which can be quantitated with a 

spectrophotometer at 580 nm. Azo dye creation entails diazotising β-

Napthylamine with sodium nitrite under acidic conditions (Figure 43c). Excess 

nitrite is removed with ammonium sulphamate before N-1-

Naphthylethylenediamine is coupled to the diazotised β-Napthylamine to form the 

azo dye (Figure 43d) (Goldbarg and Rutenburg, 1958, Alur et al., 2001). 
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Figure 43: Substrate cleavage by rPfM18AAP, diazotisation and azo dye 
coupling reaction. 
Diagram showing the cleavage of aspartate from Asp-Ala-Pro-β-Napthylamide by 
rPfM18AAP (a) and the subsequent removal of alanine-proline from the 
chromogen by dipeptidyl peptidase IV (b). β-Napthylamine is diazotised by 
sodium nitrite under acidic conditions (c) and N-1-Naphthylethylenediamine is 
added to form the azo dye (b), which can be analysed with a spectrophotometer. 
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A 500 ml E. coli culture containing pET-15b-PFI1570c was grown, lysed and 

rPfM18AAP purified as described in section 3.2.4. The 250 µl 1st His elution (no 

PMSF added) was dialysed for 15 minutes against 50 mM Tris-HCl buffer (pH 

7.5) using three 100 µl Slide-A-Lyzer® Mini Dialysis Units and the concentration 

of a 10 µl sample determined with the Coomassie Plus™ Protein Assay Reagent. 

The desired concentration of H-Asp-Ala-Pro-β-Napthylamide (Peptides 

International, Louisville, USA) (10 or 100 mM stock dissolved in dimethyl 

sulphoxide (DMSO; BDH Laboratory Supplies, Poole, UK) in 50 mM Tris-HCl 

buffer, pH 7.5, containing 0.0025 U dipeptidyl peptidase IV from Porcine kidney 

(Sigma-Aldrich Corporation, St. Louis, USA), was equilibrated in a 37 ºC 

waterbath for 5 minutes. rPfM18AAP (2.5 µg) was added to give a final volume 

of 50 µl and the sample incubated at 37 ºC for 15 minutes in the waterbath. The 

enzymatic reaction was terminated with 50 µl 10 % trichloroacetic acid (w/v) 

(Sigma-Aldrich Corporation, St. Louis, USA). Hundred microlitres 0.1 % NaNO2 

(w/v) (Riedel de Haën A.G., Hannover, Germany) was added and the sample 

incubated at room temperature for 3 minutes, followed by the addition of 100 µl 

0.5 % ammonium sulphamate (w/v) (Sigma-Aldrich Corporation, St. Louis, USA) 

and incubation for 3 minutes at room temperature. The azo dye was created by 

adding 200 µl 0.05 % N-(1-napthyl)ethylenediamine dihydrochloride (w/v) 

(Sigma-Aldrich Corporation, St. Louis, USA) and incubating the solution at room 

temperature for 45 minutes. 

 

A standard curve containing 0.05, 0.1, 0.3, 0.5, 0.7, 0.8, 1, and 1.2 mM β-

Napthylamine was set up using a 2 mM β-Napthylamine solution (prepared from a 

100 mM β-Napthylamine stock solution dissolved in DMSO) (Sigma-Aldrich 

Corporation, St. Louis, USA). The 50 µl samples were treated with trichloroacetic 

acid, sodium nitrite, ammonium sulphamate and N-(1-Naphthyl)ethylenediamine 

dihydrochloride in the same way as the enzymatic reaction.  

 

All the samples were analysed at 580 nm using the Beckman DU®-65 

spectrophotometer (Beckman Coulter, Inc., Fullerton, USA) and the amount of 

product formed during the enzymatic reaction determined from the standard curve. 
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The velocity of the enzymatic reaction and the specific activity of the enzyme was 

calculated with the following formulae: 

velocity (nmol/min) = amount product / reaction time 

 

specific activity (nmol/min/mg) = velocity / amount of enzyme 

 

Enzymatic reactions were compared with each other by calculating the relative 

activity. 

 

pH and ionic strength study 
  

The pH study entailed setting up the enzyme assay containing 0.3 mM H-Asp-

Ala-Pro-β-Napthylamide in 50 mM Tris-HCl buffer at pH 6.8, 7.5, 8.0, 8.5 and 

9.0, or 0.1 M sodium citrate buffer at pH 5.3, 6.0 and 6.5. The relative activity of 

the enzymatic reactions was plotted against the pH. 

 

The ionic strength study was performed by setting up the enzyme assay with 0.3 

mM H-Asp-Ala-Pro-β-Napthylamide in 50 mM Tris-HCl buffer (pH 7.5) 

containing 50 or 150 mM NaCl. 

 

Temperature study 
 

The enzyme assay containing 0.3 mM H-Asp-Ala-Pro-β-Napthylamide in 50 mM 

Tris-HCl buffer (pH 7.5) (pH adjusted to each temperature) was performed at 25, 

30, 33, 37 and 39 ºC in the Eppendorf Mastercycler® Gradient machine. The 

relative activity of the enzymatic reactions was plotted against the temperature. 
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Metal ion study 
 

The cofactor study was performed by setting up the enzyme assay with 0.3 mM 

H-Asp-Ala-Pro-β-Napthylamide in 50 mM Tris-HCl buffer (pH 7.5) containing 1 

mM ZnSO4, MgCl2, MnCl2, or CaCl2. 

 

Inhibitor study 
 

The inhibitor study entailed setting up the enzyme assay with 0.3 mM H-Asp-Ala-

Pro-β-Napthylamide in 50 mM Tris-HCl buffer (pH 7.5) containing 1 mM 

Pefabloc SC, 10 mM EDTA, 1 mM PMSF, or 10 µM Bestatin (Sigma-Aldrich 

Corporation, St. Louis, USA). Samples were preincubated at 37 ºC for 10 minutes 

before the substrate was added. 

 

Maximum velocity and Michaelis constant determination 
 

The maximum velocity (Vmax) and Michaelis constant (Km) were determined from 

enzyme assays containing a range from 0.1-3 mM H-Asp-Ala-Pro-β-

Napthylamide in 50 mM Tris-HCl buffer (pH 7.5). The velocity of each reaction 

was calculated and plotted against the substrate amount used in each reaction and 

the graph used to read the values of Vmax and Km according to the Michaelis-

Menten equation: 

V0 = (Vmax x [S0]) / ([S0] + Km) 

where V0 = initial velocity and S0 = initial substrate concentration 

 

A Lineweaver-Burk plot was constructed by plotting the 1/V readings against the 

1/[S] values and Km and Vmax read from the x- and y-intercepts respectively.  
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4.3 Results 
4.3.1 PfM18AAP 
 

PfM18AAP is an exopeptidase classified with the enzyme commission (E.C.) 

number 3.4.11.21: where ‘3’ represents a hydrolase; ‘4’ indicates that the enzyme 

acts on a peptide bond; ‘11’ indicates that the enzyme cleaves at the amino 

terminus of the peptide and ‘21’ that the enzyme is an aspartyl aminopeptidase 

(International Union of Biochemistry, 1992). This enzyme is also classified in a 

separate system, available in the MEROPS database, that describes only 

peptidases (Rawlings and Barrett, 1993, Rawlings et al., 2006). The system 

applies a hierarchical, structure-based approach to assign each peptidase to a 

family on the basis of statistically significant similarities in amino acid sequence. 

Furthermore, families that are thought to be homologous are grouped into a clan. 

In this system PfM18AAP belongs to the MH clan of metallopeptidases and is 

part of the M18 family which currently contains 253 aminopeptidases (Rawlings 

et al., 2006). Yokoyama et al. (2006) suggested that the M18 family be further 

divided into two groups based on their substrate specificity. The first group, for 

example, contains aminopeptidase I from Saccharomyces cerevisiae (E.C. 

3.4.11.22) (Chang and Smith, 1989), which cleaves N-terminal hydrophobic 

amino acids from a peptide substrate. An example of an enzyme in the second 

group is the human aspartyl aminopeptidase (DAP) (E.C. 3.4.11.21) (Wilk et al., 

2002), which cleaves N-terminal aspartates or glutamates from a peptide substrate. 

PfM18AAP was initially categorised in the second group of M18 aminopeptidases, 

but recently this enzyme and the other Plasmodium M18 aspartyl aminopeptidase 

homologues, as well as the M18 aminopeptidases from Theileria and 

Cryptosporidium, were regrouped into a third group based on the amino acid 

sequence of PfM18AAP. 

 

4.3.2 M18 aminopeptidase family primary sequence features 
 

A search of the crystal structure Protein Data Bank with the PfM18AAP amino 

acid sequence revealed a similarity to four aminopeptidase protein structures, 
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namely Clostridium acetobutylicum, Thermotoga maritima, Borrelia burgdorferi 

and Pseudomonas aeruginosa. These four proteins, as well as the H. sapiens 

aspartyl aminopeptidase and PfM18AAP are found in the M18 peptidase family in 

the MEROPS database (Rawlings et al., 2006). C. acetobutylicum, T. maritima, 

and B. burgdorferi are listed in the first group of M18 aminopeptidases, which 

also contains aminopeptidase I from Saccharomyces cerevisiae, and P. aeruginosa 

is categorised in the second group of M18 aminopeptidases, which also contains 

the H. sapiens aspartyl aminopeptidase and another aspartyl aminopeptidase from 

S. cerevisiae (Yokoyama et al., 2006). As mentioned above, PfM18AAP and the 

other Plasmodium aspartyl aminopeptidase homologues are grouped into the third 

group. In addition, a search of the PlasmoDB database showed that PfM18AAP is 

the only M18 protease in P. falciparum. 

 

According to the PlasmoDB database, PfM18AAP has a 30.7 % sequence identity 

to the H. sapiens aspartyl aminopeptidase. This is lower than that obtained from a 

ClustalW alignment of PfM18AAP and the H. sapiens aspartyl aminopeptidase 

(Table 16). The highest identities are found amongst the Plasmodium species 

(rows 8-11), while other Apicomplexa (rows 12-16) showed only low identities. 

 

Table 16: Sequence comparison of M18 aminopeptidases to PfM18AAP. 
Organism Percentage sequence identity 

Saccharomyces cerevisiae (1) 22 
Clostridium acetobutylicum 18 

Borrelia burgdorferi 18 
Thermotoga maritima 16 

Homo sapiens 33 
Saccharomyces cerevisiae (2) 30 

Pseudomonas aeruginosa 30 
Plasmodium chabaudi chabaudi 74 

Plasmodium yoelii yoelii 73 
Plasmodium knowlesi 64 

Plasmodium vivax 64 
Cryptosporidium parvum 33 
Cryptosporidium hominis 33 

Theileria annulata 33 
Theileria parva 33 
Babesia bovis 34 
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The MEROPS sequence alignment of the two S. cerevisiae, C. acetobutylicum, B. 

burgdorferi, T. maritima, H. sapiens, P. aeruginosa and PfM18AAP is given in 

Figure 44. According to the MEROPS database, seven conserved amino acids are 

involved in the active site, namely two histidines, three aspartates and two 

glutamates (for clarification purposes the conserved amino acids are numbered 

according to the human aspartyl aminopeptidase (Wilk et al., 2002) and the amino 

acid numbers of PfM18AAP are given in brackets). Amongst the conserved amino 

acids, the two histidines, HsH94 and HsH440 (PfH86 and PfH534), the two 

aspartates, HsD264 and HsD346 (PfD324 and PfD434), and one glutamate, 

HsE302 (PfE380), are involved with cofactor or metal ligand binding (all labelled 

in red in Figure 44). The two remaining amino acids, one glutamate, HsE301 

(PfE379), and one aspartate, HsD96 (PfD88), are directly and indirectly involved 

in substrate cleavage (labelled in pink in Figure 44). A third histidine, HsH170 

(PfH160) (labelled in light blue in Figure 44), is conserved amongst all the 

sequences, and enzyme activity is abolished when it is replaced with 

phenylalanine in the H. sapiens aspartyl aminopeptidase (Wilk et al., 2002). In 

addition, Wilk et al. (2002) showed that substitution of another histidine, HsH352 

(PfH440) (labelled in dark blue in Figure 44), causes the subunits of the native H. 

sapiens aspartyl aminopeptidase to dissociate. This histidine is not found in the 

first group of M18 aminopeptidases and is therefore only present in H. sapiens, P. 

aeruginosa, PfM18AAP and the other Plasmodium homologues (Figure 44 and 

Figure 45). 

 

A motif scan revealed a putative protein kinase C (Pf535-537; light blue box) and 

a casein kinase II (Pf535-538; dark blue box) phosphorylation site located near the 

C-terminus of all the proteins (Figure 44 and Figure 45). The SOSUI 

transmembrane domain scan gave two transmembrane domains in the PfM18AAP 

sequence (Pf504-526 and Pf538-560) (labelled in green in Figure 44 and Figure 

45), suggesting that this protein is able to associate with membranes. None of the 

other aminopeptidases contained a transmembrane domain and were thus 

classified as soluble proteins. 
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Sc(1) EHNYEDIAQEFIDFIYKNPTTYHVVSFFAELLDKHNFKYLSEKSNWQDSIGEDGGK 101 
Ca -KEVFALGDRFKNFISNCKTERECVTELIKTAEKSGYRNIEDILAK-GETLKEGDK  75 
Bb    KNQILNFSESYKKFISKFKTEREVTAYALDKAKKLGFINAEEK-----KNLMPGDK  65 
Tm    ----EAFSKEYMEFMSKAKTERMTVKEIKRILDESGFVPLEDF-----AGDPMNMT  64 
Hs    KEAVQTAAKELLKFVNRSPSPFHAVAECRNRLLQAGFSELKETEKW---NIKPESK  63 
Sc(2) KTCKSDYPKEFVSFLNSSHSPYHTVHNIKKHLVSNGFKELSERDSW-AGHVAQKGK  66 
Pa    MRAEL--NQGLIDFLKASPTPFHATASLARRLEAAGYRRLDERDAW---HTETGGR  51 
Pf    DKKAREYAQDALKFIQRSGSNFLACKNLKERLENNGFINLSEGETW---NLNKNEG  54 
 
Sc(1) FYTIRNGTNLSAFILGKNWRAEK-GVGVIGSHVDALTVKLKPVSFKDTAEGYGRIA 156  
Ca    VYANNRGKGLIMFLIGKEPL-YT-GFKILGAHIDSPRLDLKQNPLYED-TDLAMLE 128 
Bb    IFYTCREKSVAFAIIGKNPI-ED-GMNFIVSHTDSPRLDAKPSPISEE-NELTFIK 118 
Tm    VYAVNRGKAIAAFRVVDDL--KR-GLNLVVAHIDSPRLDFKPNPLIED-EQIALFK 116 
Hs    YFMTRNSSTIIAFAVGGQYVPGN-GFSLIGAHTDSPCLRVKRRSRRSQ-VGFQQVG 117 
Sc(2) YFVTRNGSSIIAFAVGGKWEPGN-PIAITGAHTDSPALRIKPISKRVS-EKYLQVG 120 
Pa    YYVTRNDSSLIAIRLGRRSPLES-GFRLVGAHTDSPCLRVKPNPEIAR-NGFLQLG 105 
Pf    YVLCKENRNICGFFVGKNFNIDTGSILISIGHIDSCALKISPNNNVIK-KKIHQIN 109 
 
Sc(1) VAPYGGTLNELWLDRDLGIGGRLLYKKKGTNEIKSALVDSTPLPVCRIPSLAPHF- 211 
Ca    THYYGGIKKYQWVTLPLAIHGVIVKKDGT--IVNVCVGEDDNDPVFGVSDILVHLA 182  
Bb    TNYYGGIKKYQWLSTPLSIRGVVFLKNGE--KVEINIGDNENDPVFVIPDILPHLD 172 
Tm    THYYGGIKKYHWLSIPLEIHGVLFKNDGT--EIEIHIGDKPEDPVFTIPDLLPHLD 170  
Hs    VETYGGGIWSTWFDRDLTLAGRVIVKCPTSGRLEQQLVH-VERPILRIPHLAIHL- 171  
Sc(2) VETYGGAIWHSWFDKDLGVAGRVFVKDAKTGKSIARLVD-LNRPLLKIPTLAIHL- 174 
Pa    VEVYGGALFAPWFDRDLSLAGRVTFRA-N-GKLESRLVD-FRKAIAVIPNLAIHL- 157 
Pf    VECYGSGLWHTWFDRSLGLSGQVLYKKGN--KLVEKLIQ-INKSVLFLPSLAIHL- 161 
 
Sc(1) -GKPAEG---PFDKEDQTIPVIGFPTPDEEGN------------------------ 239 
Ca    SE-QLEKKASKVIEGEDLNILIGSIPL----------------------------- 208 
Bb    RKIQRNKKSDEIVEGENLKILIGSLPI----------------------------- 199 
Tm    KE---DAKISEKFKGENLMLIAGTIPL----------------------------- 194 
Hs    -QRNINE-NFGPNTEMHLVPILATAIQEELEK------------------------ 201 
Sc(2) -DRDVNQ-KFEFNRETQLLPIGGLQEDKTEAK------------------------ 204 
Pa    -NRAANE-GWPINAQNELPPIIAQLAPGEAAD------------------------ 187 
Pf    QNRTRYDFSVKINYENHIKPIISTTLFNQLNKCKRNNVHHDTILTTDTKFSHKENS 217 
 
Sc(1) -------------------------------------------EPPTDDEKKSPLF 252 
Ca    --------------------------------------------------KDGEEK 214 
Bb    ---------------------------------------------------ETKEK 204 
Tm    ---------------------------------------------------SGEEK 199 
Hs    --------------------------------------------GTPEPGPLNAVD 213 
Sc(2) ---------------------------------------TEKEINNGEFTSIKTIV 221 
Pa    -------------------------------------------------------- 187 
Pf    QNKRDDQMCHSFNDKDVSNHNLDKNTIEHLTNQQNEEKNKHTKDNPNSKDIVEHIN 273 
 
Sc(1) GKHCIHLLRYVAKLAGVE-VSELIQMDLDLFDVQKGTIGGIGKHFLFAPRLDDRLC 307 
Ca    QKVKHNIMKILNEKYDIS-EEDFVSAELEIVPAGKARDYGFDRSMVMGYGQDDRIC 269 
Bb    NKVKLATLQLIKEKYKIE-EEDFVSSEIEIVPAGTAKDVGFDKALIGAYGQDDKIC 259 
Tm    EAVKTNVLKILNEMYGIT-EEDFVSGEIEVVPAFSPREVGMDRSLIGAYGQDDRIC 254 
Hs    ERHHSVLMSLLCAHLGLS-PKDIVEMELCLADTQPAVLGGAYDEFIFAPRLDNLHS 268 
Sc(2) QRHHAELLGLIAKELAIDTIEDIEDFELILYDHNASTLGGFNDEFVFSGRLDNLTS 277 
Pa    --FRLLLDEQLLREHGIT-ADVVLDYELSFYDTQSAAVVGLNDEFIAGARLDNLLS 240 
Pf    TDNSYPLLYLLSKELNCK-EEDILDFELCLMDTQEPCFTGVYEEFIEGARFDNLLG 328 
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Sc(1) SFAAMIALICYAKDVN---------------------TEESDLFSTVTLYDNEEIG 342 
Ca    AYTSFEAMLEM-K------------------------NAKK--TCITILVDKEEVG 298 
Bb    VFTSLESIFDLEE------------------------TPNK--TAICFLVDKEEIG 289 
Tm    AYTALRALLSA--------------------------NPEK--SIGVIFFDKEEIG 282 
Hs    CFCALQALIDSCAGPGSLA------------------TEPH--VRMVTLYDNEEVG 304 
Sc(2) CFTSMHGLTLAADTEID--------------------RESG--IRLMACFDHEEIG 311 
Pa    CHAGLEALLNA--------------------------EGDE--NCILVCTDHEEVG 268 
Pf    SFCVFEGFIELVNSIKNHTSNENTNHTNNITNDINDNIHNN--LYISIGYDHEEIG 382 
 
Sc(1) SLTRQGAKGGLLESVVERSS-SAFTKKP---------VDLHTVWANSIILSADVNH 388 
Ca    SIGATGMQSKFFENTVADIM-SLCG-DYDE-------LKLRKALYNSEMLSSDVSA 345 
Bb    STGSTGLDSRYLEYFVSDMIFKIKKSEYNN-------LHVQKALWNSKSISADVCA 338 
Tm    SDGNTGAKARFYLKALRQIL-KMQGAKDSE-------FVLDEVLENTSVISGDVCA 330 
Hs    SESAQGAQSLLTELVLRRIS-ASCQHP----------TAFEEAIPKSFMISADMAH 349 
Sc(2) SSSAQGADSNFLPNILERLS-ILKGDGSDQTKPLFH-SAILETSAKSFFLSSDVAH 365 
Pa    SCSHCGADGPFLEQVLRRLL-PE------G-------DAFSRAIQRSLLVSADNAH 310 
Pf    SLSEVGARSYCTKNFIDRII-SSVFKKEIHEKNLSVQEIYGNLVNRSFILNVDMAH 437 
 
Sc(1) LYNPNFPEVYLKNHFPVPNVGITLS--LDPNGHMATDVVGTALVEEL------ARR 436 
Ca    AFDPNYPNVMEKRNSAYLGKGIVFNKYTGSRGKSGCNDANPEYIAELRRI---LSK 398 
Bb    AINPLFSSVHDEQNAPQLGYGIPIMKYTGHGGKSMASDADAELVSYIRQL---LNK 391 
Tm    AVNPPYKDVHDLHNAPKLGYGVALVKYTGARGKYSTNDAHAEFVARVRKV---LNE 383 
Hs    AVHPNYLDKHEENHRPLFHKGPVIK--VNSKQRYASNAVSEALIREV------ANK 397 
Sc(2) AVHPNYANKYESQHKPLLGGGPVIK--INANQRYMTNSPGLVLVKRL------AEA 413 
Pa    GVHPNYADRHDANHGPALNGGPVIK--INSNQRYATNSETAGFFRHL------CQD 358 
Pf    CSHPNYPETVQDNHQLFFHEGIAIK--YNTNKNYVTSPLHASLIKRTFELYYNKYK 491 
 
Sc(1) NGDKVQ-YFQIKNNSRSGGTIGPSLASQTGARTIDLGIAQLSMHSIRAATGSKDVG 491  
Ca    ESVNWQTAELGKVDQGGGGTIAYILA-EYGMQVIDCGVALLNMHAPWEISSKADIY 453 
Bb    NNIAWQVATLGKVEEGGGGTVAKFLA-GYGIRTIDMGPAVISMHSPMEITSKFDLY 446 
Tm    QGVIWQVATLGKVDQGGGGTIAKFFA-ERGSDVIDMGPALLGMHSPFEISSKADLF 438 
Hs    VKVPLQ-DLMVRNDTPCGTTIGPILASRLGLRVLDLGSPQLAMHSIREMACTTGVL 452 
Sc(2) AKVPLQ-LFVVANDSPCGSTIGPILASKTGIRTLDLGNPVLSMHSIRETGGSADLE 468 
Pa    SEVPVQ-SFVTRSDMGCGSTIGPITASQVGVRTVDIGLPTFAMHSIRELAGSHDLA 413 
Pf    QQIKYQ-NFMVKNDTPCGSTVGSMVAANLSMPGIDIGIPQLAMHSIREIAAVHDVF 546 
 
Sc(1) LGVKFFNGFFKHWRSVYDEFG 512  
Ca    ETKNGYSAFLNN--------- 465 
Bb    NAYLAYKAFYRE--------- 458 
Tm    ETYVAYRSLMEKL-------- 451 
Hs    QTLTLFKGFFELFPSLSHNLL 473 
Sc(2) FQIKLFKEFFERYTSIESEIV 489 
Pa    HLVKVLGAFYASSELP----- 429 
Pf    FLIKGVFAFYTYYNQVLSTCV 567 

Figure 44: MEROPS database sequence alignment of M18 aminopeptidases.  
Amino acid sequence alignments of S. cerevisiae (Sc 1 & 2), C. acetobutylicum 
(Ca), B. burgdorferi (Bb), T. maritima (Tm), H. sapiens (Hs), P. aeruginosa (Pa), 
and PfM18AAP (Pf). The N- and C-terminal amino acids of most of the 
sequences have been omitted by the creators of this alignment and therefore the 
first and last three amino acids are missing from the PfM18AAP sequence. Amino 
acid colours: red = metal binding sites; pink and light blue = active site residues; 
dark blue = quaternary structure residue; green = putative transmembrane 
domains; and underlined yellow = spectrin-binding region. Box colours: light blue 
= putative protein kinase C phosphorylation site; and dark blue = putative casein 
kinase II phosphorylation site. 
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Pc    ----------MDKKAREYAQEAIKFIQRSGSSFMACKNLREKLESHGLIHIKEGDQ  46 
Py    FVSVVILFKQMDKKAREYAQEALKFIQRSGSNFMACKNLREKLESHGLIHIKEGDQ  57 
Pk    ---MQPTDDTMEKKVRDYAQGAVKFIKKSGSNFLACKNLREKLEEKGFKRIQEGEK  53 
Pv    ----------MEKKAREYAQGAVRFIQKSGSNFLACKNLREKLEERGFKRIHEGEK  46 
Pf    ----------MDKKAREYAQDALKFIQRSGSNFLACKNLKERLENNGFINLSEGET  46 
                *:**.*:*** *::**::***.*:*****:*:**..*: .: **: 
 
Pc    WKLQKNQGYVLCKENRNICSFFVGKNFNINNGSILISIGHIDSCALKISPNNKVTK 102 
Py    WKLQKNQGYVLCKENRNICSFFIGKNFNINNGSILISIGHIDSCTLKISPNNKVTK 113 
Pk    WDLRKNEGYVFSKQNRNICGFFIGKDFNMEKGSILISIGHVDTCCLKISPNNNTVK 109 
Pv    WELRKNEGYVLSKQSRNICGFFIGKDFTIEKGSILISIGHIDSCCLKVSPNNNVVK 102 
Pf    WNLNKNEGYVLCKENRNICGFFVGKNFNIDTGSILISIGHIDSCALKISPNNNVIK 102 
      *.*.**:***:.*:.****.**:**:*.::.*********:*:* **:****:. * 
 
Pc    DQISQLNVECYGSGLWHTWFDRSLGLSGQVVYKKDNKLVEKIIQINKSVLFLPSLA 158 
Py    DQISQLNVECYGSGLWHTWFDRGLGLSGQVVYKKDNKLIEKIIQINKSVLFLPSLA 169 
Pk    SKVNQLNVECYGSGLWHTWFDRSLGLSGQVVYKKDDKLVEKLIQINRSIIFLPSLA 165 
Pv    SKLHQLNVECYGSGLWHTWFDRSLGLSGQVLYKKEGKLVERLIQINKSLLFLPSLA 158 
Pf    KKIHQINVECYGSGLWHTWFDRSLGLSGQVLYKKGNKLVEKLIQINKSVLFLPSLA 158 
      .:: *:****************.*******:*** .**:*::****:*::****** 
 
Pc    IHLQNRTRYDFSVKVNYENHLKPILSTVLYEKLIKG-------------------- 194 
Py    IHLQNRTRYDFSVKVNYENHLKPIISTLLYEKLIKG-------------------- 205 
Pk    IHLQNRTRFEFSVKVNFENHLKPIISTVLYDQLIKGK------------------- 202 
Pv    IHLQNRTRFEFSVKINYEAHLKPILSTLLYEHLVKG-------------------- 194 
Pf    IHLQNRTRYDFSVKINYENHIKPIISTTLFNQLNKCKRNNVHHDTILTTDTKFSHK 214 
      ********::****:*:* *:***:** *:::*  * 
 
Pc    ---------------------NENISEKNNS-----STDDEDKNSKN--------- 215 
Py    ---------------------NENILEKNISNIDDNNNDDDDMNSKN--------- 231 
Pk    --------------------EKQNTDAFTEDTLHAEKIQDKCLNGDD--ASPSCLS 236 
Pv    --------------------GKPGAASPTEDATDADNAQEKRLDAED--HSPSCHS 228 
Pf    ENSQNKRDDQMCHSFNDKDVSNHNLDKNTIEHLTNQQNEEKNKHTKDNPNSKDIVE 270 
                           : .    . .     . ::.  . .:          
 
Pc    ----INSSPLLYLLANELKCKEDDILDFELCLMDTNQPCFTGVYEEFIEGARFDNL 267 
Py    ----LNSSPLLYLLANELKCKEEDILDFELCLMDTNKPCFTGVYEEFIEGARFDNL 283 
Pk    HQENPNSSPLLYTLAKELQCEEKDILDFELCLMDVNEPCFTGAYEEFIEGARFDNL 292 
Pv    HQENPNSSPLLYTLAKELQCQEKDILDFELCLMDVNQPCFTGAYEEFIEGARFDNL 284 
Pf    HINTDNSYPLLYLLSKELNCKEEDILDFELCLMDTQEPCFTGVYEEFIEGARFDNL 326 
           ** **** *::**:*:*.***********.::*****.************* 
 
Pc    LGTFSVFEAYIELIKMIKSE--------------------------NNKNEPLENN 297 
Py    LGTFGVFEAYVELIKNLKNE--------------------------DNEN--LGNN 311 
Pk    LGSYCVFEAFAEMIDMLKG--------------------KTPPSDGAVLPPEAHAN 328 
Pv    LGSFCVFEAFAEMVDMLRGGAEAAAGAAAAAEGEASAAGAASAGAAAAPPPGAHAN 340 
Pf    LGSFCVFEGFIELVNSIKNHT-------------SNENTNHTNNITNDINDNIHNN 369 
      **:: ***.: *::. ::.                                    * 
 
Pc    LYICIGYDHEEIGSLSEIGAQSYFTKSFIERIIGNIFKNELKN------------- 340 
Py    LYICIGYDHEEIGSLSEIGAQSYFTKNFIERILGNIFKNELKN------------- 354 
Pk    LYICIGYDHEEIGSLSEVGAQSYFTQNFIKRILTAISSSQVGQNTHP--------S 376 
Pv    LYICIGYDHEEIGSLSEVGAQSYFTQNFIKRILAAVCSSHACDAASATTSSAATAS 396 
Pf    LYISIGYDHEEIGSLSEVGARSYCTKNFIDRIISSVFKKEIHE------------- 412 
      ***.*************:**:** *:.**.**:  : ...  : 
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Pc    NETTVDEIYGSLSSRSLILNVDMAHCGHPNYPETIQQSHHLRFHDGIAIKYNTNKN 396 
Py    NDITIDEIYGSLSNRSLILNVDMAHCGHPNYPETIQQNHHLRFHEGIAIKYNTNKN 410 
Pk    SPTSIDELYGSLMSRSLILNVDMAHCSHPNYPETVQANHQLFFHEGIAIKYNTNRN 432 
Pv    APPSIDELYGSLMSRSLLLNVDMAHCSHPNYPETVQASHQLFFHEGIAIKYNTNKN 452 
Pf    KNLSVQEIYGNLVNRSFILNVDMAHCSHPNYPETVQDNHQLFFHEGIAIKYNTNKN 468 
         :::*:**.* .**::********.*******:* .*:* **:*********:* 
 
Pc    YVTSPYYACLLKRTFELYQNQYNQKIKYQNFMIKNDTPCGSTVGSMVASNLSMPGM 452 
Py    YVTSPYYACLLKRTFELYQNQNNQKIKYQNFMIKNDTPCGSTVGSMVAANLSMPGM 466 
Pk    YATSPYYTCLLKRTFELFTSKFNEKIKYQNFMVKNDTPCGSTVGSMVASNLSMPGV 488 
Pv    YVTSPYYTCLLKRTFELFASNFNEKIKYQNFMVKNDTPCGSTVGSMVAANLSMPGI 508 
Pf    YVTSPLHASLIKRTFELYYNKYKQQIKYQNFMVKNDTPCGSTVGSMVAANLSMPGI 524 
      *.*** ::.*:******: .: :::*******:***************:******: 
 
Pc    DIGISQLAMHSIREIAAIHDIYYLIKGVFAFYAYYNQVLSTCVHDA 498 
Py    DIGIPQLAMHSIRELAAIHDIYYLVKGIFAFYAYYNQVLSSCVHDS 512 
Pk    DIGIPQLAMHSIREIAAVRDIYYLVKGILAFYTYYSHVHASCVPDE 534 
Pv    DIGIPQLAMHSIREIAAVRDVYYLVKGVLAFYAYYSHVLASCVPDA 554 
Pf    DIGIPQLAMHSIREIAAVHDVFFLIKGVFAFYTYYNQVLSTCVHDK 570 
      ****.*********:**::*:::*:**::***:**.:* ::** * 

Figure 45: Sequence alignment of the Plasmodium PfM18AAP homologues. 
ClustalW alignment of the P. chabaudi chabaudi (Pc), P. yoelii yoelii (Py), P. 
knowlesi (Pk), P. vivax (Pv) and PfM18AAP amino acid sequences. Amino acid 
colours: red = metal binding sites; pink and light blue = active site residues; dark 
blue = quaternary structure residue; green = putative transmembrane domains; and 
underlined yellow = spectrin-binding region. Box colours: light blue = putative 
protein kinase C phosphorylation site; and dark blue = putative casein kinase II 
phosphorylation site. Alignment annotation: ‘*’ = residues that are identical in all 
sequences; ‘:’ = conserved substitutions; and ‘.’ = semi-conserved substitutions. 

 

The spectrin-binding region (Pf216-257; labelled yellow in Figure 44 and Figure 

45) is located within an amino acid stretch that is not found in any of the other 

aminopeptidases and represents a unique sequence insertion in PfM18AAP. 

Despite this P. falciparum-specific insert (Pf195-234) and the larger size of the P. 

falciparum protein (16-72 amino acids longer), there is still a 64-74 % sequence 

identity (Table 16) between PfM18AAP and the Plasmodium homologues. 

 

4.3.3 PfM18AAP secondary structure 
 

The secondary structure of PfM18AAP was analysed to determine what structural 

elements are found in the unique spectrin-binding region. These data were 

obtained from the PlasmoDB database or by sequence analysis with the SOSUI or 

Jpred programme. The PlasmoDB secondary structure prediction for the 

PfM18AAP-specific spectrin-binding region (Pf216-257; orange box in Figure 
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46) showed that this region contains two alpha helices. This contrasts with the 

Jpred secondary structure prediction (labelled orange in Figure 47), which only 

revealed one alpha helix corresponding to the second peak in the PlasmoDB 

prediction. The SOSUI program predicted two transmembrane domains (Pf504-

526 and Pf538-560; labelled in green in Figure 47), but this was not substantiated 

by the Kyte-Doolittle hydropathy plot provided by PlasmoDB (green boxes in 

Figure 46). 

 

 
Figure 46: PlasmoDB hydropathy plot, secondary structure and low 
complexity regions for PFI1570c (PfM18AAP). 
Diagram showing the Kyte-Doolittle hydropathy plot, secondary structure and low 
complexity region prediction for the PfM18AAP amino acid sequence. Secondary 
structures: red = alpha helix; and blue = beta strand. Box colours: orange = 
spectrin-binding region (Pf216-257); and green = putative transmembrane 
domains (Pf504-526 and Pf538-560). 

 

Secondary structure predictions for the whole enzyme were performed with Jpred 

to ascertain if the different M18 aminopeptidases had a similar alpha helix, beta 

sheet and random coil pattern. Figure 47 shows the secondary structure alignment 

of the M18-family aminopeptidase 1 from T. maritima, the M18-family 

aminopeptidase 2 from P. aeruginosa and PfM18AAP. A similar helix and sheet 

pattern was predicted for all the M18 aminopeptidases, indicating that PfM18AAP 

could fold in a similar way to the other M18 aminopeptidases. 
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Tm    ----EAFSKEYMEFMSKAKTERMTVKEIKRILDESGFVPLEDF---AGDPMNMTVY  66 
Pa    MRAEL--NQGLIDFLKASPTPFHATASLARRLEAAGYRRLDERDAW-HTETGGRYY  53 
Pf    DKKAREYAQDALKFIQRSGSNFLACKNLKERLENNGFINLSEGETW-NLNKNEGYV  56 
 
Tm    ----HHHHHHHHHHH------HHHHHHHHHHHHH--------------------EE  66 
Pa    --HHH--HHHHHHHH------HHHHHHHHHHHHH----E--------------EEE  53 
Pf    ---HHHHHHHHHHHH------HHHHHHHHHHHHH----HHH------------EEE  56 
 
 
Tm    AVNRGKAIAAFRVVDDL--KR-GLNLVVAHIDSPRLDFKPNPLIEDEQIALFKTHY 119 
Pa    VTRNDSSLIAIRLGRRSPLES-GFRLVGAHTDSPCLRVKPNPEIARNGFLQLGVEV 108 
Pf    LCKENRNICGFFVGKNFNIDTGSILISIGHIDSCALKISPNNNVIKKKIHQINVEC 112 
 
Tm    EEE---EEEEEEE----------EEEEEE-------------------EEEEEEEE 119 
Pa    EEE---EEEEEEE----------EEEEEE-------E-----------EEEEEEEE 108 
Pf    EEE---EEEEEEE----------EEEEEE-------E-----------EEEEEEEE 112 
 
 
Tm    YGGIKKYHWLSIPLEIHGVLFKNDGT-EIEIHIGDKPEDPVFTIPDLLPHLDKE-- 172 
Pa    YGGALFAPWFDRDLSLAGRVTFRA-NGKLESRLVD-FRKAIAVIPNLAIHL--NRA 160 
Pf    YGSGLWHTWFDRSLGLSGQVLYKKGN-KLVEKLIQ-INKSVLFLPSLAIHL-QNRT 165 
 
Tm    ------------------EEEEE-----EEEEEEE------EE---HHHH------ 172 
Pa    ------------------EEEEE-----EEEEEE-------EE------------- 160 
Pf    -----EEEE---------EEEEE-----EEEEEEE--------------------- 165 
 
 
Tm    -DAKISEKFKGENLMLIAGTIPL--------------------------------- 194 
Pa    ANE-GWPINAQNELPPIIAQLAPGEAAD---------------------------- 187 
Pf    RYDFSVKINYENHIKPIISTTLFNQLNKCKRNNVHHDTILTTDTKFSHKENSQNKR 221 
 
Tm    ----------------EEE------------------------------------- 194 
Pa    --------------EEEE-------------------------------------- 187 
Pf    -----EEEEEEE----EEEEE---------EEEEE------EEEE----------- 221 
 
 
Tm    -----------------------------------------------SGEEKEAVK 203 
Pa    ------------------------------------------------------FR 189 
Pf    DDQMCHSFNDKDVSNHNLDKNTIEHLTNQQNEEKNKHTKDNPNSKDIVEHINTDNS 277 
 
Tm    -------------------------------------------------------H 203 
Pa    -------------------------------------------------------H 189 
Pf    ----------------------HHHHHHHHHHH----------------------- 277 
 
 
Tm    TNVLKILNEMYGITEEDFVSGEIEVVPAFSPREVGMDRSLIGAYGQDDRICAYTAL 259 
Pa    LLLDEQLLREHGITADVVLDYELSFYDTQSAAVVGLNDEFIAGARLDNLLSCHAGL 245 
Pf    YPLLYLLSKELNCKEEDILDFELCLMDTQEPCFTGVYEEFIEGARFDNLLGSFCVF 333 
 
Tm    HHHHHHHHHH------HHHHHEEEEE-----------HHHHH------HHHHHHHH 259 
Pa    HHHHHHHHHHH-----------EEE--------------HHH------HHHHHHHH 245 
Pf    HHHHHHHHHH---------EEEEEEE------------HHHH------HHHHHHHH 333 
 
 
Tm    RALLSA--------------------------NPEKSIGVIFFDKEEIGSDGNTGA 289 
Pa    EALLNA--------------------------EGDENCILVCTDHEEVGSCSHCGA 275 
Pf    EGFIELVNSIKNHTSNENTNHTNNITNDINDNIHNNLYISIGYDHEEIGSLSEVGA 389 
 
Tm    HHHH---------------------------------EEEEEE------------- 289 
Pa    HHHHH--------------------------------EEEEEE--EEE-------- 275 
Pf    HHHHH-------------------------------EEEEEE-------------- 389 
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Tm    KARFYLKALRQILKMQGAKDSE-------FVLDEVLENTSVISGDVCAAVNPPYKD 338 
Pa    DGPFLEQVLRRLLPE------G-------DAFSRAIQRSLLVSADNAHGVHPNYAD 318 
Pf    RSYCTKNFIDRIISSVFKKEIHEKNLSVQEIYGNLVNRSFILNVDMAHCSHPNYPE 445 
 
Tm    ---HHHHHHHHHHHH------H-------HHHHHHHHH-EEE-------------- 338 
Pa    ----HHHHHHHHHH-------H-------HHHHHHHH--HHHH------------- 318 
Pf    ---HHHHHHHHHHH--------------HHHHHHHHH---EEE------------- 445 
 
 
Tm    VHDLHNAPKLGYGVALVKYTGARGKYSTNDAHAEFVARVRKV---LNEQGVIWQVA 391 
Pa    RHDANHGPALNGGPVIK--INSNQRYATNSETAGFFRHL------CQDSEVPVQ-S 365 
Pf    TVQDNHQLFFHEGIAIK--YNTNKNYVTSPLHASLIKRTFELYYNKYKQQIKYQ-N 498 
 
Tm    -------------EEEEEE-----------HHHHHHHHHHHH---HH-----EEEE 391 
Pa    -------------EEEE--E---------HHHHHHHHHH------HHH----EE-E 365 
Pf    -------------EEEE--E----------HHHHHHHHHHHHHH--------EE-E 498 
 
 
Tm    TLGKVDQGGGGTIAKFFA-ERGSDVIDMGPALLGMHSPFEISSKADLFETYVAYRS 446 
Pa    FVTRSDMGCGSTIGPITASQVGVRTVDIGLPTFAMHSIRELAGSHDLAHLVKVLGA 421 
Pf    FMVKNDTPCGSTVGSMVAANLSMPGIDIGIPQLAMHSIREIAAVHDVFFLIKGVFA 554 
 
Tm    EEEE--------E-HHHH------EEE----------HHHH----HHHHHHHHHHH 446 
Pa    EEE---------HHHHHHHH----EEEE----E-----EEE---HHHHHHHHHHHH 421 
Pf    EEEE-----------HHH------EEE----------HHHH-----HHHHHHHHHH 554 
 
 
Tm    LMEKL-------- 451 
Pa    FYASSELP----- 429 
Pf    FYTYYNQVLSTCV 567 
 
Tm    HH----------- 451 
Pa    HHH---------- 429 
Pf    HHH-------EEE 567 

Figure 47: Jpred secondary structure prediction of PfM18AAP and its 
aminopeptidase homologues. 
Jpred secondary structure predictions and MEROPS sequence alignments of the T. 
maritima (Tm), P. aeruginosa (Pa), and PfM18AAP (Pf) aminopeptidases. Amino 
acid colours: red = metal binding sites; pink and light blue = active site residues; 
dark blue = quaternary structure residue; green = putative transmembrane 
domains; and underlined yellow = spectrin-binding region. Secondary structure 
predictions: H = alpha helix; E = beta-sheet or strand; ‘-‘ = random coil; and 
orange letters = predicted alpha-helix in spectrin-binding region. 

 

4.3.4 Molecular weight and isoelectric point of the rPfM18AAP 
monomer 
 

To determine some of the chemical characteristics of the PfM18AAP monomer, 

the molecular weight and the pI of the denatured enzyme was analysed by SDS-

polyacrylamide gel and two-dimensional polyacrylamide gel electrophoresis. 
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The rPfM18AAP monomer separated on a 12 % Laemmli SDS-polyacrylamide 

gel with a molecular weight of approximately 67 kDa. This value correlates well 

with the calculated molecular weight for rPfM18AAP of 66.919 kDa. Removal of 

the histidine-tag resulted in a molecular weight of ~65 kDa for the rPfM18AAP 

monomer (Figure 48). 

 

The histidine-tag was removed from rPfM18AAP by thrombin cleavage, so that it 

would not alter the pI of the aminopeptidase. Figure 48 shows that the His-tag was 

successfully removed from rPfM18AAP after 4 hours of thrombin cleavage at 

room temperature (Lane T) and that there was no significant degradation of the 

protein throughout the procedure. A loss of protein was however observed during 

the cleavage procedure, because double the volume of protein (Lane T and Tu) 

had to be electrophoresed through the gel to be visible after Coomassie staining. 

This was probably due to some of the protein-containing supernatant remaining 

on the agarose beads at the end of the cleavage procedure, because it was very 

difficult to remove all the supernatant from the beads.  

 

 
Figure 48: Thrombin cleavage of rPfM18AAP. 
Laemmli gel (left) and immunoblot with the Penta•His™ HRP Conjugate 
antibody (right) showing the purification and thrombin-cleavage of rPfM18AAP. 
Lane M = 3 µg erythrocyte membrane proteins; W = 10 µl of the 8 ml induced E. 
coli whole cell extract; S = 10 µl of the 8 ml soluble protein fraction after 
sonication; Ub = 10 µl of the 8 ml protein fraction that did not bind to the HIS-
Select™ Magnetic Agarose Beads; 1-5 = 20 µl of each 1.2 ml 20 mM imidazole 
wash; E = 1 µl of the 750 µl 200 mM imidazole elution; DE = 1 µl of 750 µl 
dialysed rPfM18AAP; T = 2 µl of 875 µl thrombin-cleaved rPfM18AAP; Tu = 2 
µl of 875 µl unbound thrombin-cleaved rPfM18AAP; P = 1 µl of precipitated 
rPfM18AAP resuspended in 100 µl IEF buffer after thrombin cleavage. 
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The isoelectric point of rPfM18AAP was determined by two-dimensional gel 

electrophoresis (Figure 49), where carrier ampholytes were used to set up the pH 

gradient. Rabbit muscle GAPDH (36 kDa), which has a pI of 8.3 and 8.5, was 

right at the edge of the gel, indicating that the pH gradient did not go up to pH 10. 

rPfM18AAP had been resuspended in IEF buffer that contained pH 5/8 

ampholytes, causing this segment of the pH gradient to spread over a greater 

distance of the gel and possibly causing the lower and higher pH ranges to be 

compacted at the gel ends. The spread of the pH gradient could also have been 

caused by a phenomenon called cathodic drift, in which the ampholytes 

responsible for the higher end of the pH gradient, are drawn out of the gel matrix 

into the upper chamber buffer (Westermeier, 1997). 

 

The approximate pI values of the three charge isomers of rPfM18AAP were 

estimated from the position of the standards and were found to be ~6.6, ~6.7, and 

~6.9. Apart from the standards, additional protein spots can be seen (not circled in 

Figure 49). These contaminants were also seen during purification (Figure 48) and 

when performing the purification procedure from E. coli cells that only contained 

the pET-15b plasmid (results not shown). A large amount of rPfM18AAP can also 

be seen at the edge of the pH gradient (at pH 8.5), indicating that some of the 

protein did not electrophorese into the IEF gel. This was surprising because 

rPfM18AAP was resuspended in IEF buffer that contained 9.5 M urea. Protein 

aggregation could have been due to the rPfM18AAP high protein concentration 

required for the IEF procedure. 
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Figure 49: Two-dimensional gel electrophoresis of rPfM18AAP. 
Second dimension silver stained Laemmli gel showing the Bio-Rad 2-D SDS-
PAGE Standards and rPfM18AAP after they had been separated by IEF. The three 
charge isomers (circled in white) of rPfM18AAP have a pI of ~6.6, ~6.7 and ~6.9 
respectively. Bio-Rad 2-D SDS-PAGE Standards (circled in yellow): Hen egg 
white conalbumin type 1 (MW = 76 kDa; pI = 6.0, 6.3, 6.6); BSA (MW = 66.2 
kDa; pI = 5.4 & 5.6); Bovine muscle actin (MW = 43 kDa; pI = 5.0 & 5.1); Rabbit 
muscle GAPDH (MW = 36 kDa; pI = 8.3 & 8.5); Bovine carbonic anhydrase 
(MW = 31 kDa; pI = 5.9 & 6.0); Soybean trypsin Inhibitor (MW = 21.5 kDa; pI = 
4.5); Equine myoglobin (MW = 17.5 kDa, pI = 7.0). Laemmli gel marker (M) = 
15 µl erythrocyte membrane proteins. 

 

4.3.5 The oligomeric state of native rPfM18AAP 
 

The four M18 aminopeptidase crystal structures show that these enzymes occur as 

multimers in their native state. rPfM18AAP was therefore electrophoresed 

through non-denaturing gels to determine the approximate molecular size and 

hence the number of subunits of the native protein. 

 

Figure 50 shows that several oligomeric forms of rPfM18AAP were separated on 

the native gels. As the percentage acrylamide increases, protein bands are 
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separated, which comigrate on the 2 and 3 % polyacrylamide native gels. The first 

and third band can be seen clearly on the gels and the second band is very faint. A 

large amount of protein can also be seen at the top of the gels. 

 

 
Figure 50: Non-denaturing gel electrophoresis of rPfM18AAP. 
Photograph of 2-10 % native tube gels showing the protein bands of rPfM18AAP. 
Twenty-five micrograms of recombinant rPfM18AAP was electrophoresed 
through each native gel and stained with Coomassie Blue stain. 

 

The Ferguson plot linear regression lines (Figure 51), which were calculated from 

the Rm values of each rPfM18AAP band, intersect between 3 and 4 % gel 

concentration, indicating that these bands are oligomers of rPfM18AAP (Hedrick 

and Smith, 1968, Rodbard et al., 1974). 

 

The approximate molecular weights of the rPfM18AAP subunits that were 

estimated from the standard curve (Figure 52) are listed in Table 17. The second 

band is approximately double the size of the rPfM18AAP monomer (band 1) and 

is therefore a dimer, and the third band is four times the size of the monomer and 

is therefore a tetramer of rPfM18AAP (Table 17). 
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Figure 51: Ferguson plot of the rPfM18AAP protein bands. 
Graph showing the log Rm of the rPfM18AAP monomer, dimer and tetramer at 
different polyacrylamide percentages. These proteins are oligomers of each other 
because the lines intersect above 3 % gel concentration (Hedrick and Smith, 1968, 
Rodbard et al., 1974). Squares = first rPfM18AAP band; triangles = second 
rPfM18AAP band; and crosses = third rPfM18AAP band 3. 

 

 
Figure 52: Non-denaturing gel electrophoresis standard curve. 
Double-log graph of the negative slopes (obtained from Ferguson plots) versus the 
molecular weight of each standard. The molecular weight of the three 
rPfM18AAP bands was read from this graph and found to be ~70, ~155, and ~290 
kDa respectively. Yellow crosses = BSA (66 and 132 kDa); blue crosses = 
spectrin (460, 920, and 1380 kDa); red crosses and numbers = rPfM18AAP. 
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Table 17: Approximate molecular weights of the rPfM18AAP subunits. 

Band Molecular weight from 
standard curve (kDa) Subunit 

1 ~70 monomer 
2 ~155 dimer 
3 ~290 tetramer 

 

The native gel protein bands were transferred onto nitrocellulose membrane and 

the presence of the histidine-tag in rPfM18AAP detected by chemiluminescence. 

The rPfM18AAP monomer was seen as a distinct band and the tetramer is part of 

the smear above the monomer (Figure 53). Several other protein bands were not 

visualised on the immunoblot indicating that these proteins are contaminants 

isolated during the purification procedure. 

 

The smear extends to the top of the gels indicating that even higher oligomeric 

forms of rPfM18AAP are present. These higher oligomers could include an 

octamer, which is the rPfM18AAP subunit composition that Teuscher et al. 

(2007) determined by assaying HPLC fractions for enzymatic activity. Octamers 

were also observed for the H. sapiens and S. cerevisiae aspartyl aminopeptidases 

(Wilk et al., 2002, Yokoyama et al., 2006). However, the smear could also 

include a dodecamer, which is the native subunit composition of the crystal 

structures of the T. maritima, C. acetobutylicum and P. aeruginosa M18 

aminopeptidases (Min and Shapiro, 2006). 
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Figure 53: Detection of rPfM18AAP in non-denaturing gels. 
Photograph of 5-8 % native tube gels (left) and immunoblot with the Penta•His™ 
HRP Conjugate antibody (right) showing the monomer and oligomers of 
rPfM18AAP. Fifteen to twenty-five micrograms of recombinant rPfM18AAP was 
electrophoresed through each native gel. The tetramer is seen as an intense protein 
band in the Coomassie Blue stained gels, but a large amount of rPfM18AAP 
remained at the top of each gel, indicating that higher oligomeric forms of 
rPfM18AAP are present. This is confirmed by the immunoblot, where the higher 
oligomeric forms are part of the smears. 

 

4.3.6 PfM18AAP tertiary structure 
 

The tertiary structures of four M18 aminopeptidases were studied to gain insight 

on the structure of PfM18AAP and to study the location and conformation of the 

active site and the spectrin-binding region. 

 

The monomers of the C. acetobutylicum, T. maritima, B. burgdorferi and P. 

aeruginosa M18 aminopeptidase crystal structures (Min and Shapiro, 2006) were 

compared with each other using the Swiss-PdbViewer and showed similar tertiary 

structures. The monomer of T. maritima was the most complete structure (i.e. no 

 

 

148



gaps were present in the amino acid sequence) and was therefore used for the 

structure analysis and comparisons with PfM18AAP. 

 

                   

                   

a) b) 

c) d) 

Figure 54: Crystal structures of the monomers of the M18 aminopeptidases. 
Diagram showing similar ribbon structures for the Pseudomonas aeruginosa (2ijz) 
(a), Clostridium acetobutylicum (2glj) (b), Borrelia burgdorferi (1y7e) (c) and 
Thermotoga maritima (2glf) (d) M18 aminopeptidases. Ribbon structures were 
created with DeepView Swiss-PdbViewer, version 3.7 (SP5). The PDB codes of 
the different proteins are listed in brackets. Blue = domain I and green = domain 
II. 
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The T. maritima aminopeptidase monomer contains two distinct structural regions 

that will be termed domain I and II (Figure 55a). Domain I is not contiguous and 

is formed by the N- and C-terminal amino acids of the enzyme. The active site lies 

at the edge of domain I, in close proximity to domain II, and forms a pocket in 

which the cofactor-binding amino acids, TmH93, TmD250, TmE280, TmD327 and 

TmH426 (PfH86, PfD324, PfE380, PfD434 and PfH534) and the two cofactors 

are located (Figure 55b inset). The two amino acids, TmE279 (PfE379) and 

TmD95 (PfD88), which are directly and indirectly involved in substrate cleavage 

are positioned at the edge of the active site. Domain II is formed by T. maritima 

amino acids Tm97-232 and is thus an internal section of the protein. The histidine, 

TmH168 (PfH160), that Wilk et al. (2002) found to be essential for enzyme 

activity in the H. sapiens aspartyl aminopeptidase, is located in an unstructured 

loop of domain II and faces in the opposite direction to the active site in domain I. 

When two monomers (A and B in Figure 55b) associate according to the 

parameters listed in the crystal structure file (Min and Shapiro, 2006), TmH168 of 

monomer B completes the active site in monomer A (Figure 55b inset) and vice 

versa. The histidine, HsH352 (PfH440), speculated to be involved in quaternary 

structure stabilisation in the H. sapiens aspartyl aminopeptidase (Wilk et al., 

2002), is not present in T. maritima and is therefore not shown in the crystal 

structure.  However, if this residue were present, it would be located on domain I 

of one monomer and could interact with domain II of the other monomer, thereby 

stabilising the quaternary structure. The putative protein kinase C and casein 

kinase II phosphorylation sites are located next to a histidine, TmH426 (PfH534), 

which forms part of the active site in domain I and therefore these two 

phosphorylation sites could be used to regulate enzymatic activity. The active 

sites are however located inside the native enzyme (Figure 56) and access to the 

phosphorylation sites by kinases could be limited. However, phosphorylation 

could also occur before the monomers are assembled into the quaternary structure. 

 

The T. maritima M18 aminopeptidase occurs as dodecamer in its native state and 

has the symmetry of a tetrahedron. Because the dimers lie along the edge of the 

triangles (Figure 56a), three domain Is, each containing an active site, form a 
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single vertex and three domain IIs form the flat surface of each triangle in the 

tetrahedron. Franzetti et al. (2002) described the crystal structure of a tetrahedral 

M42 aminopeptidase, which is also classified in the MH clan in the MEROPS 

database. In this enzyme, substrate access to the active sites located within the 

tetrahedron occurs via pores on the faces (21 Å) and in the vertices (17 Å) of the 

active enzyme. 

 

Secondary structure prediction showed that the T. maritima aminopeptidase is 

similar to rPfM18AAP (Figure 47), and therefore the quaternary structure of these 

two enzymes could be similar. If this is the case, then the amino acids, which form 

the spectrin-binding region in the PfM18AAP structure, would be located in 

domain II on the opposite side to domain I (asterisk in Figure 55a). When the 

transformation parameters of the T. maritima crystal structure file (Min and 

Shapiro, 2006) are applied to build a dimer and a dodecamer, the spectrin-binding 

region remains on the surface of these two structures (asterisks in Figure 55b and 

black amino acids on the surface of the ribbon structure in Figure 56a). If 

PfM18AAP is a dodecamer, then each triangle face of the tetrahedron would have 

three spectrin-binding regions extending as loops from its surface (white loops in 

Figure 56b) and the three active sites would be located on the inside of each 

vertex of the tetrahedron (red circles in the inset of Figure 56a). 

 

Finally, the putative transmembrane domains of PfM18AAP are found near the C-

terminus of the protein. Since the C-terminus of the T. maritima aminopeptidase is 

embedded in domain I (Figure 55) and contributes towards the tertiary structure of 

the domain (Min and Shapiro, 2006), it is unlikely that the putative 

transmembrane domains of PfM18AAP function as membrane anchors. 
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Figure 55: The T. maritima M18 aminopeptidase monomer and dimer. 
Diagram showing the ribbon structure of a monomer (a) and dimer (b) of T. 
maritima M18-family aminopeptidase 1 (PDB code: 2glf) (Min and Shapiro, 
2006). Domain I of monomer A and B are shown in blue and light blue 
respectively. Domain II of both monomers are depicted in green and light green 
respectively. The asterisk marks the predicted location of the PfM18AAP 
spectrin-binding region in the structure. The inset shows the active site with the 
two manganese atoms (black dots) surrounded by the metal binding amino acids 
(red residues: TmH93, TmD250, TmE280, TmD327 and TmH426) and the 
additional histidine involved in enzyme activity (lavender residue: TmH168). The 
two amino acids that are directly and indirectly involved in substrate cleavage are 
located at the edge of the active site (pink residues: TmE279 and TmD95). 
Structures were created with DeepView Swiss-PdbViewer, version 3.7 (SP5). 
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a) 

b) 

 
 

Figure 56: The M18 aminopeptidase dodecamer. 
Ribbon structure and diagram showing the quaternary structure of T. maritima 
M18-family aminopeptidase 1 (PDB code: 2glf) (a) (Min and Shapiro, 2006) and 
diagram of a possible structure outline of PfM18AAP (b). Dimers (yellow, green 
and blue) form the edges of the tetrahedron and each triangle face contains three 
domain IIs (dark blue ribbons in (a) and dark blue circles in (b)), on which the 
spectrin-binding region of PfM18AAP would be located (black amino acids in (a) 
or white loops in (b)). Three active sites (red amino acids in (a) and red circles in 
inset) lie within the vertices of the tetrahedron and the substrate can access these 
sites via pores located in the faces and vertices of the enzyme. The ribbon 
structure was created with DeepView Swiss-PdbViewer, version 3.7 (SP5). 
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4.3.7 rPfM18AAP enzyme activity 
 

PfM18AAP is described in the PlasmoDB database as an aminopeptidase that has 

homology to the human aspartyl aminopeptidase. The coupled enzyme assay 

designed to assay the human aminopeptidase was thus used to test if PfM18AAP 

is an active aminopeptidase and to establish the optimal cleavage conditions. 

 

rPfM18AAP was active as shown in Figure 57. The middle test tube shows the 

colour development after rPfM18AAP was allowed to cleave the substrate, in 

contrast to the blank reaction (left test tube) and one of the standard curve samples 

(right test tube). 

 
Figure 57: Colour reaction of the rPfM18AAP enzyme activity assay. 
Photograph of test tubes after completion of the substrate cleavage reaction and 
azo dye development. Left = blank; middle = rPfM18AAP incubated with 0.3 mM 
Asp-Ala-Pro-β-Napthylamide and dipeptidyl peptidase IV; right = 0.8 mM β-
Napthylamide (3rd highest standard). 

 

After it was established that rPfM18AAP cleaved Asp-Ala-Pro-β-Napthylamide, 

enzyme assay conditions were optimised (results not shown) so that product 

formation was linear with time and the substrate concentration exceeded enzyme 

concentration. These experimental conditions were used to determine the optimal 

pH, temperature and ionic strength for the enzyme reaction. Figure 58 shows that 

rPfM18AAP was most active at pH 7.5 and at 37 ºC and that the enzyme retained 

most of its enzymatic activity between pH 7-8.5 and 33-39 ºC. Varying the ionic 

strength of the 50 mM Tris buffer (50 or 150 mM NaCl) had no effect on 

enzymatic activity (results not shown). Even though overnight storage with 20 % 

glycerol at 4 ºC only decreased the enzymatic activity of rPfM18AAP by 2 %, all 

studies were performed directly after purification. 
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The enzymatic activity of rPfM18AAP was studied in the presence of metal ions 

(Table 18) and showed that none of the tested metal ions increased the activity of 

rPfM18AAP. Magnesium and manganese had no effect on substrate cleavage, 

indicating that these metal ions could be the actual or substitute cofactors of the 

enzyme. In contrast, zinc and calcium had a strong (>90 %) and moderate (~20 %) 

inhibitory effect on enzymatic activity, suggesting that these metal ions are not the 

cofactors of the enzyme. Cobalt was not tested, but Teuscher et al. (2007) showed 

that it increased the activity. 

 

 
Figure 58: pH and temperature optima of rPfM18AAP. 
Graphs showing the relative activity (%) of rPfM18AAP over a pH and 
temperature range. Left graph = 2.5 µg rPfM18AAP was incubated with 0.3 mM 
Asp-Ala-Pro-β-Napthylamide and 0.125 U dipeptidyl peptidase IV for 15 minutes 
at 37 ºC in different buffers. For pH 6.8, 7.5, 8, 8.5, and 9, 50 mM Tris-HCl buffer 
was used. For pH 5.3 and 6, 0.1 M sodium citrate buffer was used. Right graph = 
2.5 µg rPfM18AAP was incubated with 0.3 mM Asp-Ala-Pro-β-Napthylamide 
and 0.125 U dipeptidyl peptidase IV in 50 mM Tris-HCl buffer (pH 7.5) for 15 
minutes at 25, 30, 33, 37, and 39 ºC. The curves represent two independent 
experiments. 

 

Table 18: rPfM18AAP relative activity in the presence of metal ions. 
Cofactor Relative activity (%) ± SEM* 

no cofactor 100 
1 mM Zn2+ 7 ± 3 
1 mM Mg2+ 89 ± 6 
1 mM Mn2+ 89 ± 9 
1 mM Ca2+ 78 ± 8 

* sample size = 4 
SEM = standard error of the mean 
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Enzymatic assays in the presence of enzyme inhibitors (Table 19) showed that 

EDTA, which is a metal chelator and therefore affects metalloproteases, had the 

strongest effect on rPfM18AAP (46 % loss of activity). This effect was increased 

to 57 % when the enzyme was preincubated with EDTA for 10 minutes at 37 ºC. 

Bestatin, which specifically inhibits aminopeptidases, only inhibited rPfM18AAP 

by 20 %, but this effect was enhanced to 39 % when rPfM18AAP was 

preincubated with this competitive inhibitor for 10 minutes at 37 ºC. Presumably 

this allowed the dipeptide analogue, which cannot be processed by 

aminopeptidases, to bind in the rPfM18AAP active site.  

 

The serine protease inhibitor, Pefabloc SC, inhibited enzymatic activity, but 

another serine protease inhibitor, PMSF, showed only a slight inhibition. The 

difference could be attributed to the instability of PMSF at elevated temperatures 

and the insolubility of PMSF in aqueous solutions. PMSF stock solutions are 

prepared in DMSO and addition of this stock solution to the reaction buffer may 

cause precipitation of the inhibitor, resulting in a decreased amount of available 

inhibitor. The active site of rPfM18AAP has serine residues adjacent to two of the 

amino acids that are involved in cofactor binding and substrate cleavage (PfH534 

and PfD88). The serine protease inhibitors could have bound to these serine 

molecules and prevented the substrate from entering the active site, thereby 

reducing enzymatic activity. 

 

Table 19: rPfM18AAP relative activity in the presence of protease inhibitors. 
Inhibitor Relative activity (%) ± SEM* with no preincubation at 37 ºC 

no inhibitor 100 
10 mM EDTA 54 ± 13 

1mM Pefabloc SC 61 ± 8 
1 mM PMSF 90 ± 7 

10 µM Bestatin 79 ± 5 
* sample size = 4 
SEM = standard error of the mean 

 

It was problematic to determine a reliable value for Km and Vmax from all the 

experiments because a fresh enzyme preparation was used each time, with 

variable activity. In addition, slight substrate inhibition was observed at high 
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concentrations (>1.5 mM). Figure 59 shows velocity versus substrate curves for 

three experiments with a high, medium and low enzyme activity of rPfM18AAP 

and due to the inconsistent behaviour of the enzyme, Km and Vmax values were 

only determined from experiments showing medium and high enzymatic activity. 
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a) b)

c) 

Figure 59: Variation in rPfM18AAP enzymatic activity. 
Plots of velocity (V) against substrate (S) according to the Michaelis-Menten 
equation showing a high (a), medium (b) and low (c) enzymatic activity for 
different preparations of rPfM18AAP. 

 

The Michaelis-Menten calculation does not take substrate inhibition into 

consideration (Figure 60a) and therefore a Lineweaver-Burk plot (Figure 60b) was 

used to determine the following approximate Km and Vmax values for 

rPfM18AAP: 

Km = ~0.8 mM 

Vmax = ~2 nmol/min 
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Figure 60: Michaelis-Menten and Lineweaver-Burk plots for rPfM18AAP. 
Plot of velocity (V) against substrate (S) according to the Michaelis-Menten 
equation (a) and double-reciprocal plot of 1/V against 1/S (b) for rPfM18AAP. 
Substrate inhibition occurs at ~1.5 mM Asp-Ala-Pro-β-Napthylamide in the 
Michaelis-Menten graph and therefore the mean velocity of 1.5, 2, and 3 mM 
Asp-Ala-Pro-β-Napthylamide was not used for the Lineweaver-Burk plot. 
Michaelis-Menten plot: N = 3; error bars represent standard error of the mean. 
Lineweaver-Burk plot: Km = 0.83 mM; Vmax = 2.02 nmol/min. Graphs and 
transformation data were generated with GraphPad Prism® (Version 4.0.3). 

 

 

158



4.3.8 Binding studies 
 

The interaction of the PfM18AAP fragment with spectrin, which was identified by 

phage display, was confirmed by overlaying full length rPfM18AAP on a dot and 

slot blot containing spectrin dimers and tetramers (Figure 61). rPfM18AAP binds 

to both spectrin dimers and spectrin tetramers. 

 

 
Figure 61: Spectrin dimers and tetramers overlaid with rPfM18AAP. 
Photographs of dot (a) and slot (b) blots containing spectrin dimers and tetramers 
overlaid with 5 µg rPfM18AAP (+) and 50 mM Tris buffer (pH 7.5) (-). 
rPfM18AAP was detected with the Penta•His™ HRP Conjugate antibody. Dot 
blots: A1 = 100 ng rPfM18AAP; A2-4 = 2, 1.4 and 0.5 µg spectrin dimers; B1 = 
100 ng BSA; B2-4 = 2, 1.4 and 0.5 µg spectrin tetramers. Slot blots: A1 = 100 ng 
rPfM18AAP; A2 = 100 ng BSA; B1 = 1 µg spectrin dimers; B2 = 1 µg spectrin 
tetramers. 

 

The blot overlays were also used to determine if rPfM18AAP bound to other 

erythrocyte membrane proteins. Membrane proteins separated on Laemmli or 

Fairbanks SDS-polyacrylamide gels, transferred to nitrocellulose and overlaid 

with rPfM18AAP, showed that the enzyme interacted strongly with β-spectrin, 

protein 4.1, protein 4.2, actin and G3PD (Figure 62a and b). A weak interaction 

with band 3 (Laemmli blot) and α-spectrin (Fairbanks blot) was also observed. 

The transfer of large molecules such as α- and β-spectrin onto the nitrocellulose 

membrane from the low percentage Fairbanks gel was better than from the high 

percentage Laemmli gel, accounting for the signals on the Fairbanks blot overlay.  
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Figure 62: Erythrocyte membrane proteins overlaid with rPfM18AAP. 
Laemmli (a) and Fairbanks gel (b) (left) and the corresponding immunoblots with 
the Penta•His™ HRP Conjugate antibody (right) showing the erythrocyte 
membrane proteins bound by rPfM18AAP. The enzyme binds strongly to β-
spectrin, protein 4.1, protein 4.2, actin, and glyceraldehyde-3-phosphate 
dehydrogenase and weakly to α-spectrin and band 3. Lane 1 = 500 ng (gel) and 
100 ng (immunoblot) rPfM18AAP; Lane 2 = 500 ng (gel) and 100 ng 
(immunoblot) BSA; Lane 3 = 20 µg erythrocyte membrane proteins. 

 

A blot overlay was subsequently performed on trypsin-digested spectrin to 

determine which spectrin domains rPfM18AAP binds and to see if the enzyme 

interacts with the N-terminal α- and β-spectrin domains. The experiment (Figure 

63) did however not give clear results because of several factors. Firstly, the 

trypsin-digested α- and β-spectrin domains often comigrate (Figure 63 α- and β-

antibody immunoblot) making it difficult to delineate the domains. Secondly, α- 

and β-spectrin are composed of homologous repeats that could all bind 

rPfM18AAP. Thirdly, the tryptic digest could expose glutamates and aspartates at 

the N-termini of the spectrin protein fragments, because trypsin cleaves proteins 

on the C-terminal side of arginine and lysine residues. This results, for example, 

in the exposure of a glutamate and an aspartate on the 80 and 52 kDa α-spectrin 

domains respectively (Speicher and Marchesi, 1984), which could subsequently 

serve as substrates for rPfM18AAP. Fourthly, only a limited tryptic digest was 

performed with a low trypsin to spectrin ratio and digestion at 4 ºC, to prevent the 
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spectrin domains from being digested into smaller peptides. This however resulted 

in the presence of some incompletely digested spectrin molecules containing 

several domains, which are larger than the 80 kDa N-terminal α-spectrin domain 

(Figure 63) that still bound rPfM18AAP, thereby obscuring the results. Finally, 

the 74 kDa N-terminal domain of β-spectrin is often broken down into smaller 52, 

41 and 30 kDa protein fragments during the tryptic digest (Figure 63 α- and β-

antibody immunoblot), which could comigrate with the α-spectrin fragments and 

thereby making it impossible to distinguish between the α- and β-spectrin binding 

profile. The generation of the different spectrin domains as separate peptides with 

recombinant protein expression systems and subsequently allowing these peptides 

to interact with rPfM18AAP, could resolve the issues with mentioned above. 

 

 
Figure 63: Spectrin tryptic digest overlaid with rPfM18AAP. 
Immunoblot with the anti-α- and anti-β-spectrin antibodies (left) showing the α- 
and β-spectrin tryptic digest peptides, two exposures of the same immunoblot with 
the Penta•His™ HRP Conjugate antibody (middle) showing the spectrin tryptic 
digest peptides bound by rPfM18AAP, and Laemmli gel (right) showing the 
spectrin tryptic digest peptides. Alpha and beta-spectrin immunoblot: 40 µg 
trypsin digested with 0.4 µg trypsin for 18 hours at 4 ºC. Blot overlay 
immunoblots and gel: Lane 1 = 100 ng (immunoblot) and 500 ng (gel) BSA; Lane 
2 = 100 ng (immunoblot) and 500 ng (gel) rPfM18AAP; Lane 3 = 40 µg spectrin 
tryptic digest, Lane M = 20 µg erythrocyte membrane proteins. Red arrowheads = 
α-spectrin peptide domains; blue arrowheads = β-spectrin peptide domains. 
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4.4 Discussion 
4.4.1 The PfM18AAP active site 
 

Teuscher et al. (2007) showed that rPfM18AAP was activated by cobalt, which 

suggests that the active site contains cobalt as cofactors. It was therefore possible 

to draw a diagram of the inferred PfM18AAP active site based on the crystal 

structures of the other aspartyl aminopeptidases (Stamper et al., 2001, Schürer et 

al., 2004). The two Co2+ ions are each coordinated with one histidine (PfH86 and 

PfH534) and an aspartate or a glutamate (PfD434 or PfE380), while another 

aspartate (PfD324) and a water molecule bridge the two metal ions (Figure 64). A 

second glutamate residue (PfE379) is located near the active site and is hydrogen 

bonded to the bridging water molecule and another aspartate (PfD88) decreases 

the Lewis acidity of the second metal ion by binding to PfH86. 

 

 
Figure 64: The putative metal binding site of PfM18AAP. 
Diagram showing how the two metal ions of PfM18AAP could be bound in the 
active site of the enzyme. The metal ions, possibly cobalt, are bound by two 
histidines (PfH86 and PfH534), two aspartates (PfD434 and PfD324) and a 
glutamate (PfE380). A water molecule, or hydroxide ion, is hydrogen bonded to a 
second glutamate (PfE379) and bridges both cobalt ions. A third aspartate 
(PfD88) decreases the Lewis acidity of the second metal ion by binding to PfH86. 
The final histidine (PfH170), which is involved in enzymatic activity, is located 
between PfH534 and PfD324, but is too far away from these residues and the 
metal ions to form bonds with them (not shown).  
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Aminopeptidases that contain a co-catalytic active site, use a common reaction 

mechanism to cleave a substrate (Schürer et al., 2004), regardless of the type of 

metal ions present in the enzyme. The Aeromonas proteolytica aminopeptidase 

active site contains the same metal-binding amino acids as PfM18AAP to bind 

two zinc ions and therefore the reaction mechanism that is employed by this 

enzyme may be used to explain the substrate cleavage mechanism of PfM18AAP 

(Figure 65) (Stamper et al., 2001, Schürer et al., 2004). 

 

The enzymatic reaction is initiated when the substrate (a dipeptide with an N-

terminal aspartate) binds with its N-terminal amino group to the second Co2+ ion 

and with the carbonyl oxygen of the scissile peptide bond to the first Co2+ ion. 

The N-terminus (NH2) of the substrate also interacts with Asp434, which is bound 

to the second Co2+ ion. After substrate-binding, the bridging water molecule loses 

its coordination to the second Co2+ ion, leaving it bound to only the first Co2+ ion. 

This loss of coordination is enhanced by the hydrogen bond between His86 and 

Asp88, which reduces the Lewis acidity of the second Co2+ ion and therefore 

reduces the metal ion’s affinity for the water molecule. Substrate cleavage occurs 

after the water molecule is deprotonated by Glu379 (base catalysis), resulting in a 

nucleophilic hydroxide ion that acts on the substrate’s peptide bond. Finally, 

Glu379 may donate two protons to the peptide nitrogen to complete the separation 

of the substrate into two molecules (acid catalysis). 

 

Wilk et al. (2002) showed that an additional histidine (PfH170), which is not part 

of the conserved metal-binding amino acids, is also required for substrate 

cleavage. Histidines are generally used by metalloenzymes to coordinate the 

catalytic metal ion (Auld, 2001), but by analogy to the human enzyme, histidine 

PfH170 might be acting directly on the substrate as a nucleophile or base (Bugg, 

2004), or it may be involved in substrate-binding because it is located on the side 

of the active site where the substrate enters the pocket. 
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Figure 65: The putative substrate cleavage mechanism of PfM18AAP. 
Diagram showing the cleavage of a dipeptide substrate by PfM18AAP. The 
dipeptide, which has an N-terminal aspartate, binds to both cobalt ions, followed 
by deprotonation of the water molecule by the glutamate (PfE379). The 
nucleophilic hydroxide ion attacks the peptide bond in the substrate resulting in 
the release of two amino acids. The exact function of PfH170 in the cleavage 
mechanism is not known. PfH86, PfD88, PfH170, PfE380, and PfH534 have been 
omitted to simplify the diagram (adapted from Schürer et al., 2004, and Stamper 
et al., 2001). 

 

4.4.2 The PfM18AAP spectrin-binding site 
 

The spectrin-binding region (Pf216-257) is only found in PfM18AAP and could 

therefore represent a special evolutionary adaptation of P. falciparum. Secondary 

structure prediction and a comparison to the quaternary structures of the other 
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aspartyl aminopeptidases showed that the spectrin-binding region contains an 

alpha helix and occurs on the outer surface of the native enzyme. This alpha-

helical region (Pf243-254) lies within an unstructured region of amino acids on 

the outer surface of the enzyme and can therefore provide an anchoring point for 

PfM18AAP to the erythrocyte membrane skeleton, without interfering with the 

enzymatic function. The enzyme could, for example, bind to one of the proteins it 

interacts with and cleave any of the proteins of the erythrocyte membrane skeleton, 

since all these proteins are interlinked. The binding region could also guide 

spectrin, which has a diameter of 20 Å (Yan et al., 1993), or any of the other 

erythrocyte membrane proteins that PfM18AAP interacts with, into the pores 

towards the internal active sites of the enzyme. 

 

4.4.3 rPfM18AAP protein and enzyme characteristics 
 

Non-denaturing gel electrophoresis of rPfM18AAP indicated that the native 

enzyme consisted mainly of a tetramer and higher order oligomers, possibly 

octamers and dodecamers. Teuscher et al. (2007) showed that PfM18AAP 

occurred as an octamer in its active native state by assaying HPLC fractions for 

enzymatic activity. This is the same number of subunits as predicted for the H. 

sapiens and S. cerevisiae aspartyl aminopeptidases (Wilk et al., 2002, Yokoyama 

et al., 2006). However, the unpublished crystal structures of the P. aeruginosa, C. 

acetobutylicum, T. maritima and B. burgdorferi M18 aminopeptidases showed 

that these enzymes occurred as dodecamers. Crystallisation or velocity 

sedimentation of PfM18AAP could be performed to determine the exact number 

of monomers that are necessary to form the native enzyme. 

 

Enzyme activity assays showed that rPfM18AAP cleaved the N-terminal aspartate 

from the tripeptide Asp-Ala-Pro-β-Napthylamide. Teuscher et al. (2007) showed 

that rPfM18AAP also cleaved the N-terminal amino acids from the fluorogenic 

dipeptide substrates H-Asp-4-methyl-7-coumarinylamide (NHMec) and H-Glu-

NHMec and that rPfM18AAP was more active on N-terminal glutamates in 

comparison to N-terminal aspartates. Both these amino acids are acidic, indicating 
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that PfM18AAP only cleaves peptides and proteins that have an acidic N-terminus. 

This was confirmed by Teuscher et al. (2007), who also tested substrates 

containing hydrophobic, basic or neutral N-terminal amino acids and found no 

enzymatic activity. 

 

A pH study showed that rPfM18AAP was active from pH 7-8.5, with the highest 

activity at the physiological pH of 7.5. The enzyme had no activity at pH 5.3, 

which is close to the pH of the food vacuole (5.0-5.2 (Yayon et al., 1984)), 

indicating that it does not participate in the initial breakdown of host haemoglobin 

into 2-10 amino acid peptides (Klemba et al., 2004). These small peptides are 

subsequently exported from the food vacuole into the parasite cytosol where they 

are converted into amino acids by PfM18AAP and other aminopeptidases 

(Teuscher et al., 2007, Dalal and Klemba, 2007). This correlates well with the 

fluorescence microscopy findings of Dalal et al. (Dalal and Klemba, 2007) that 

PfM18AAP (PfDAP in their nomenclature) was excluded from the food vacuole. 

The parasite cytosol has a pH of 7.3-7.4, allowing PfM18AAP to be active in this 

parasite compartment. Even though PfM18AAP has no export signals, it has also 

been localised to the parasitophorous vacuole by immunoblot analysis (Teuscher 

et al., 2007) and the erythrocyte membrane by mass spectroscopy (Florens et al., 

2004), as well as by phage display interactions in this study. The enzyme could 

therefore also be active in the erythrocyte cytosol which has a neutral pH of 7.2-

7.3 (Funder and Wieth, 1966). 

 

The temperature study revealed that rPfM18AAP was active from 33-39 ºC with 

maximum activity at 37 ºC, which indicates that the enzyme is active when the 

parasite resides in the human host. rPfM18AAP had 90 % activity at 39 ºC, 

implying that the enzyme is still functional when the human host experiences 

fever (maximum temperature 42 ºC), which occurs after the erythrocytes rupture 

(Sinden and Gilles, 2002). PfM18AAP could therefore be active during the initial 

growth phase in new erythrocytes. The enzyme only had ~35 % activity at 25 ºC, 

which is the ambient body temperature of the mosquito (Oaks et al., 1991), 

suggesting that the enzyme is not fully functional during this stage of its lifecycle.  
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Studies utilising metal ions and protease inhibitors revealed some interesting 

features of rPfM18AAP. EDTA inhibited enzymatic activity confirming that 

rPfM18AAP is a metalloprotease and that the metal ions remained bound in the 

enzyme during the purification procedure. Bestatin, an aminopeptidase inhibitor, 

also inhibited the enzyme, but the effect was not as pronounced as it was with the 

metal chelator, EDTA. Teuscher et al. (2007) observed an 86 % inhibition of 

enzymatic activity when rPfM18AAP was preincubated with EDTA for 30 

minutes. This is higher than the 39 % inhibitory effect observed in this study, 

presumably because the enzyme was preincubated for 10 minutes only. The metal 

ion study revealed that zinc inhibited enzymatic activity and that calcium, 

magnesium and manganese had only a slight effect. The zinc ions could have 

displaced the natural cofactor of rPfM18AAP in the active site and therefore 

obliterated the enzymatic activity. The in vitro study performed by Teuscher et al. 

(2007) with pure enzyme and parasite extracts, showed that cobalt was the only 

metal ion that enhanced PfM18AAP enzymatic activity. They also confirmed the 

inhibitory effect of zinc. 

 

The substrate concentration versus velocity curve for rPfM18AAP showed that 

substrate inhibition occurred at ≥1.5 mM Asp-Ala-Pro-β-Napthylamide. Substrate 

inhibition is a form of uncompetitive inhibition, where two substrate molecules 

simultaneously bind in the active site, at the positions where only one substrate 

molecule would normally bind during enzymatic cleavage, thereby forming a 

dead-end complex. The second substrate molecule therefore becomes an inhibitor. 

In the case of rPfM18AAP, a second substrate molecule could for example bind to 

the cobalt ion that normally binds the carbonyl oxygen of the scissile peptide bond 

of the first substrate molecule, thereby preventing the nucleophilic attack on the 

peptide bond.  The presence of substrate inhibition made it difficult to determine 

accurate Km and Vmax values for rPfM18AAP using the non-linear least squares 

procedure based on the Michaelis-Menten equation and therefore Km and Vmax 

values were estimated from the Lineweaver-Burk plot. 
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Enzyme activity was very variable amongst different enzyme preparations. This 

could be due to numerous factors. Firstly, the proportion of contaminating 

proteins varied in the different purifications, which would decrease the amount of 

rPfM18AAP in the assay and yield lower activity. Secondly, folding of the protein 

could be different each time the protein is expressed in E. coli and this could 

compromise activity. Thirdly, manipulation of the enzyme during purification 

could inactivate some of the enzyme and the degree of inactivation could vary 

between preparations. Finally, the variable length of time from purification to 

assay could have caused a decrease in enzyme activity. 

 

4.4.4 rPfM18AAP-erythrocyte membrane protein interactions 
 

In the phage display studies (Chapter 2) an interaction between spectrin and a P. 

falciparum-specific 42 amino acid stretch of PfM18AAP was identified. To verify 

this association with the full length protein, blot overlays were performed. These 

demonstrated strong specific binding to spectrin dimers, spectrin tetramers and in 

the case of the spectrin monomers, marked preferential binding to β-spectrin 

compared to α-spectrin. In addition, rPfM18AAP interacted with protein 4.1, 

protein 4.2 and actin. All these erythrocyte membrane proteins contain one or 

more aspartates or glutamates within the first 10 N-terminal residues (Figure 66), 

making them putative substrates for rPfM18AAP. However, the host glycolytic 

enzyme, G3PD, which associates with the cytoplasmic domain of band 3, also 

showed a strong binding of rPfM18AAP on the blot overlays. The significance of 

this interaction between the parasite and the human enzyme is unclear, since 

G3PD does not have any aspartates or glutamates in the first 10 N-terminal 

residues (Figure 66).  

 

Actin or α-spectrin could be prime targets for PfM18AAP, because they have 

three aspartates (actin) and one glutamate (α-spectrin) after the N-terminal 

methionine (Figure 66), which would be cleaved from newly synthesised proteins 

by human methionine aminopeptidases (reviewed in Bradshaw et al., 1998). There 

is however a possibility that PfM18AAP does not cleave actin because it is 
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acetylated (Figure 66). Yeast aspartyl aminopeptidase, for example, cannot 

remove an N-acetylated aspartate from a N-terminally blocked substrate 

(Yokoyama et al., 2006). 

 

α-spectrin     MEQFPKETVV 
β-spectrin     MTSATEFENV 
protein 4.1     MTTEKSLVTE 
protein 4.2     MGQGEPSQRS 
actin      MDDDIAALVV 
G3PD      MGKVKVGVNG 

Figure 66: The first 10 amino acids of the rPfM18AAP-binding erythrocyte 
membrane proteins. 
Diagram showing the first ten N-terminal amino acids of α-spectrin, β-spectrin, 
protein 4.1, protein 4.2, actin, and glyceraldehyde-3-phosphate dehydrogenase 
(G3PD). Aspartates and glutamates are labelled in red. Post-translationally 
modified amino acids are boxed in blue: actin and β-spectrin = acetylated; and 
protein 4.2 = myristoylated. 

 

The N-termini of β-spectrin molecules are linked to actin and protein 4.1 in the 

junctional complex (Ungewickell et al., 1979) and protein 4.2 is part of the band 3 

complex of the erythrocyte membrane (Korsgren and Cohen, 1988). Cleavage of 

any of these proteins could therefore destabilise and disrupt the junctional 

complexes and the band 3 complexes. The N-termini of α-spectrin are located at 

the self-association sites of spectrin tetramers (Morrow et al., 1980) and since 

PfM18AAP shows a marked preferential binding to β-spectrin compared to α-

spectrin, the enzyme could bind to β-spectrin near the self-association site and 

cleave the N-termini of α-spectrin, thereby disrupting the spectrin tetramers. 

 

4.4.5 The function of PfM18AAP in the infected erythrocyte 
 

The primary function of PfM18AAP in P. falciparum is to cleave aspartates or 

glutamates from the oligopeptides that are exported from the food vacuole into the 

parasite cytosol after haemoglobin digestion (Teuscher et al., 2007, Dalal and 

Klemba, 2007). These and other free amino acids are utilised by the parasite for 

protein synthesis. In addition, 84 % of the amino acids derived from haemoglobin 
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digestion, are released from the cell and this regulates the colloid-osmotic 

pressure within the infected erythrocyte to prevent premature cell lysis and to 

establish a concentration gradient that facilitates the entry of rare amino acids into 

the infected erythrocyte (Lew et al., 2003). PfM18AAP is therefore indirectly 

involved in regulating the volume of the host cell to accommodate the increasing 

size of the growing parasite. 

 

Results from this study, as well as PfM18AAP mRNA and protein data from other 

laboratories, indicate that the enzyme could also perform additional functions in 

the parasitophorous vacuole, the erythrocyte cytosol and particularly at the 

infected erythrocyte membrane skeleton. Microarray data showed that PfM18AAP 

mRNA is expressed throughout the erythrocytic stages, with the highest 

expression levels in early and late trophozoites and in gametocytes (Le Roch et al., 

2003, Bozdech et al., 2003), whilst Northern blot analysis revealed predominant 

expression in rings (Teuscher et al., 2007). Protein data localised PfM18AAP in 

merozoites, trophozoites and schizonts (Florens et al., 2002) and at the infected 

erythrocyte membrane in trophozoite/schizont stage parasites (Florens et al., 

2004). Western blot analysis and immunolocalisation experiments, utilising anti-

PfM18AAP antiserum, also revealed the enzyme in rings, the parasite cytosol and 

the parasitophorous vacuole (Teuscher et al., 2007). PfM18AAP mRNA is 

therefore translated into the enzyme at several stages in the erythrocytic life cycle 

and the PfM18AAP protein is located in several compartments within the parasite-

infected erythrocyte. These data imply that PfM18AAP could play a role in 

parasite invasion, growth and/or exit from the host cell, since parasite proteins 

interact with the erythrocyte membrane and the underlying erythrocyte membrane 

skeleton during all phases of the erythrocytic stage of the parasite. Transfection of 

parasite-infected erythrocytes with a plasmid containing PfM18AAP fused to 

green fluorescent protein could shed more light on the location of the enzyme 

during the different stages of the parasite life cycle. 

 

Merozoites are the invasive form in erythrocytic schizogony and utilise proteases 

to gain entry into the new host cell. Inhibition studies with 1,10-phenanthroline 
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have shown that metalloproteases are involved in parasite invasion (Kitjaroentham 

et al., 2006) and hence PfM18AAP could be involved in this process. During 

invasion the red cell membrane and membrane skeleton are rearranged in 

localised areas to facilitate entry of the parasite (Bannister and Mitchell, 2003). 

PfM18AAP could weaken the spectrin skeleton and thus assist in invasion. 

 

The host experiences febrile paroxysms triggered by the release of toxins during 

parasitised erythrocyte rupture (Sinden and Gilles, 2002). Since PfM18AAP is 

functional at elevated temperatures, it could thus be responsible for regulating, 

processing and/or activating other parasite proteins within the early ring stage by 

removing their N-termini. 

 

During further growth the parasite introduces NPPs into the erythrocyte 

membrane to facilitate the import and export of nutrients and waste products from 

the red cell. PfM18AAP could aid in the insertion of these NPPs in the 

erythrocyte membrane by disrupting the membrane skeleton. The enzyme could 

also be responsible for altering the activity of erythrocyte membrane channels and 

transporters. Maturation of the parasite in the erythrocyte is also concomitant with 

the formation of knobs on the erythrocyte surface. Knobs are anchored in the 

erythrocyte membrane skeleton (Cooke et al., 2004) and therefore PfM18AAP 

could be responsible for weakening and disrupting the erythrocyte membrane 

skeleton to facilitate the insertion of these structures.  

 

Several parasite proteases, such as plasmepsin-II (Le Bonniec et al., 1999) and 

falcipain-2 (Dua et al., 2001), which are primarily involved in haemoglobin 

digestion inside the food vacuole, also facilitate the release of the parasite from its 

erythrocytic host by cleaving membrane skeleton proteins such as spectrin, protein 

4.1 and ankyrin. Studies with inhibitors have proven that parasite proteases first 

weaken the parasitophorous vacuole membrane and then the erythrocyte 

membrane prior to parasite release (Wickham et al., 2003), which is caused by an 

osmotic pressure build-up within the erythrocyte (Glushakova et al., 2005). 

Weakening of the erythrocyte membrane would involve disruption of the spectrin-
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junctional complex network below the plasma membrane and therefore 

PfM18AAP could also play a role in the release of the parasite from its 

erythrocyte host. 

 

4.4.6 PfM18AAP as a novel drug target 
 

A knockout experiment utilising a single-crossover strategy to integrate an 

episome into the PFI1570c open reading frame, was used by Dalal and Klemba 

(2007) to express PfM18AAP, which lacked 236 amino acids from its C-terminus. 

Parasites expressing the truncated enzyme showed less than 10 % enzymatic 

activity when compared to wild-type parasites, indicating that enzymatic activity 

was nearly completely abolished. Alteration of the PFI1570c gene did however 

not have deleterious effects on parasite replication, possibly because the small 

amount of active enzyme was enough to perform all the necessary PfM18AAP 

enzymatic reactions in the parasite. This interpretation may explain the contrasting 

findings from Teuscher et al. (2007), who performed knockdown experiments 

utilising a plasmid containing an antisense copy of the PFI1570c gene. They 

showed an 80-fold decrease in PfM18AAP enzyme activity in parasite extracts 

that resulted in a lethal phenotype due to significant morphological damage, 

which included rupture of the food vacuole and the accumulation of haemoglobin 

and lipid droplets in the parasite. The same group tested phosphorus-containing 

inhibitors on PfM18AAP and found that these compounds were only moderately 

effective in vitro and had no inhibitory effect on the growth of the parasite in 

culture (Teuscher et al., 2007).   

 

These experiments show that PfM18AAP is required for parasite survival and 

therefore further studies on the function of the enzyme and its reaction mechanism 

could lead to the development of new drugs that can be employed to fight malaria 

infections. 
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Chapter 5: Conclusion 
 

The malaria parasite depends on parasite-host protein interactions during invasion 

of, development in and exit from the human erythrocyte and interactions with 

human erythrocyte membrane proteins are of particular importance. The aim of 

this study was therefore to identify and characterise P. falciparum proteins that 

interact with human spectrin, which is the main structural component of the 

erythrocyte membrane skeleton. To achieve this goal, a novel approach based on 

the construction of a P. falciparum phage display library and subsequent 

biopanning of this library against immobilised spectrin, was applied to identify 

five spectrin-binding P. falciparum peptides. These results show that phage 

display is a very powerful tool to probe host-parasite interactions. In addition, this 

species-specific library can be used to identify other protein-protein interactions, 

provided a target protein can be purified and immobilised for the panning 

procedure. 

 

PfM18AAP is an aminopeptidase, which contains a P. falciparum-specific insert 

that interacts with spectrin, as evidenced by phage display studies. The full length 

protein was expressed as a 6His-recombinant protein in E. coli and characterised. 

The enzyme cleaves an N-terminal aspartate from a peptide substrate and 

participates in the final stages of haemoglobin digestion. Results from this study 

suggest that PfM18AAP performs additional functions in the parasite and infected 

erythrocyte, by acting on spectrin and other erythrocyte membrane proteins. 

Cleavage of spectrin could for example destabilise the erythrocyte membrane 

skeleton and facilitate parasite entry or exit, or it could allow for the insertion of 

NPPs into the erythrocyte membrane during parasite development. Further 

characterisation of this multifunctional enzyme could identify additional 

substrates of PfM18AAP in the parasite and the human host and could ultimately 

lead to the development of new therapeutics for malaria treatment. 
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APPENDICES 
 

A1: METHODS 
 

0.4 mM PMSF stock preparation and addition to erythrocyte lysis buffer 
(Section 2.2.2) 

A 0.4 mM PMSF stock solution was prepared in DMSO and slowly added to the 

erythrocyte lysis buffer with rapid stirring. PMSF is a serine and cysteine protease 

inhibitor that has a half-life of 110 minutes when incubated in phosphate buffer, 

pH 7 at 25 ºC. The hydrolysis of PMSF is accelerated with an increase in pH and 

temperature. 

 

PCR for radioactively labelled size markers 
Size markers were amplified using TaKaRa Taq™ (Takara Bio Inc., Otsu, Japan). 

The 347 bp fragment was amplified using the P2 and P3 primers (Inqaba 

Biotechnical Industries, Pretoria, South Africa), which are specific for human 

erythrocyte α-spectrin (exon 2). The 722 bp fragment was amplified with the P86 

and P87 primers (Inqaba Biotechnical Industries, Pretoria, South Africa) which 

are specific for human erythrocyte band 3 (exon 18 and 19). Approximately 250 

ng human DNA was amplified with 300 nM of each primer, 2.5 µl 10 x PCR 

Buffer, 2 µl dNTP Mixture (2.5 mM of each nucleotide), 2.5 µCi [α-32P]dATP 

(specific activity = 3000 Ci/mmol), and 0.625 U enzyme (reaction volume = 25 

µl) under the following conditions using the Eppendorf Mastercycler® Gradient 

machine: 

Hot start:  95 ºC for 1 min 

30 cycles:  94 ºC for 1 min 

    55 ºC (P2/P3) or 63 ºC (P86/P87) for 1 min 

    72 ºC for 1 min 
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A2: VECTOR MAPS 
 

 
Figure A1: pET-15b vector map (a) and multiple cloning cassette (b) 
(adapted from Novagen, 1999b). 
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Figure A2: pGEX-4T-2 vector map (a) and multiple cloning cassette (b) 
(adapted from GE Healthcare, 2007).  
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Figure A3: T7 bacteriophage vector map (a) and multiple cloning cassette (b) 
(adapted from Novagen, 2000a). 
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A3: CODON USAGE TABLES 
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A4: AUTOMATED SEQUENCING RESULTS OF PFI1570c 
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Automated sequencing results of pET-15b-PFI1570c. 
The PlasmoDB PFI1570c DNA and protein sequence is given above the automated sequencing DNA and protein sequence. The position of 
the A to G silent mutation, which translates into a lysine residue, is marked with a red arrow. Blue nucleotides = C; black nucleotides = G; 
red nucleotides = T; and green nucleotides = A. 
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