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ABSTRACT 

 

Predicting and manipulating materials macroscopic properties from the 

knowledge of their microstructure characteristics are attracting significant 

attention in the field of Materials Science and Engineering. Nowadays, 

Nanoscience and Nanotechnology are engaged in these studies. Nanomaterials 

constituents, called herein unambiguously microstructures, have inherently 

random features/characteristics. In the research reported in this thesis the tools of 

stochastic processes and stochastic differential equations theory have been used as 

they offer a sound approach to understanding and analysing microstructures 

characteristics. This research adopts the approach of first delineating the 

necessary mathematical formulations, followed by their applications. 

Substantial number of atoms at nanomaterial Grain Boundaries, GBs, lowers the 

material thermal stability leading to grain growth. The growth of individual grain 

size, d, in a nanomaterial is apprehended to be jointly caused by Grain Boundary 

Migration, GBM, and Grain Rotation-Coalescence, GRC, mechanisms. A model 

is established that includes the previously ignored GRC in the expression for 

increment of d and, further, considering the fact that the energy required to 

activate GBM increases during grain growth. The stochastic counterpart of the 

expression is obtained by adding two fluctuation terms; to account for the random 

fluctuations in d caused by GBM and GRC. Results show that nanomaterials low 

stabilities are also due to their grains’ high rotational mobilities at low grain size 

dispersion, CV(d). Using information about microstructure size evolution, its 

probability density function, pdf, is determined using the generalised Fokker-

Planck-Kolmogorov equation. Results demonstrate that the type of scaling state 

pdf depends on the nature of the fluctuation terms. Grain growth parameters are 

calibrated in such a way that the pdf evolves lognormally throughout.   

Microstructure-property dependence has for long been given by the Hall-Petch to 

Reverse Hall-Petch relationship, HP-RHPR, (a relationship between mechanical 

property and mean grain size, E(d), only). A modified model for this dependence 

is established using complete information about microstructure size distribution. 

Results suggest that both E(d) and CV(d) are central in designing materials with 
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required properties. Reasons for conventional, homologous and anomalous 

temperature dependences of yield stress are revealed. 

Thus, implementing desired stochastic “properties” of microstructures entails 

designing required materials mechanical properties. 
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REPORT FORMAT 

 

This report is made up of two major parts. The first part introduces the project that 

has to be carried out and the background knowledge necessary to comprehend and 

undertake the project. The second part deals with the applications of knowledge 

presented in the first part which is another effort aimed at the interpretation and 

manipulation of the materials properties.  
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1 MOTIVATIONS AND BACKGROUND 

 

From classical theories, small objects are considered to be smooth (homogeneous 

continuum) while big ones are rough and angular (heterogeneous). But the local 

observation of any material microstructures reveals fine details within infinitely 

small range of length scale. These details usually become increasingly apparent if 

the magnification of the observing microscope is ever-increasing. The details may 

vary with different materials under consideration. Within a single material, the 

variations may not be spatially uniform. Within infinitely small range of length 

scale (nanoscopic/mesoscopic range of length scales), but well above the discrete 

atomic levels present in any material, the internal constituents of a material 

(termed in this report as the material microstructures) usually possess 

characteristics which uniquely describe the particular material. These 

characteristics are, for example, measures, dimensions, the manner in which the 

constituents respond to strain rate, to strain hardening and to deformation 

mechanisms by Grain Boundary (GB) diffusion, by dislocation glide, by grain 

interior diffusion and by grain interior dislocation motion. These internal 

characteristics are termed “microstructure characteristics” in this report. Since the 

fine details reveal “random fine structure(s)” or “random microstructure(s)”, these 

characteristics are obviously random too; and hence, the name “characteristics of 

random microstructure(s) of nanomaterials.” 

 

Conventional engineers make use of macroscopic properties like energy, strain 

and stress. These macroscopic properties arise as a result of “averaging in some 

sense” of the characteristics or properties that are generated from structures at 

mesoscopic/nanoscopic range of length scales. To better understand and to 

interpret with some degree of certainty the macroscopic properties, one has to first 

understand the exact nature of these mesoscopic characteristics that generate the 

macroscopic properties. Another most important issue is “how to relate the 

various microstructure characteristics within any material so as to yield the 

observed macroscopic property”.  
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The overall mechanical properties of a material can be quite different due to the 

fact that the internal microstructures can be quite different at various ranges of 

length scales that these microstructures might be formed. For example, 

nanomaterials with finer sizes of constituent particles/grains possess more 

enhanced mechanical properties as compared to conventional materials with 

coarser particles/grains. Furthermore, nanomaterials produced through different 

processing routes to the same mean grain size may be different in their grain size 

dispersion and as such may exhibit different materials properties. And different 

nanomaterials having different mean grain sizes and grain size dispersions 

(different nanomaterials) may have the same materials properties.  Hence, 

understanding the microstructures and their distributions in materials should help 

in obtaining the (microstructure) characteristics that generate the (macroscopic) 

engineering properties. An important point is that these macroscopic properties 

are not only determined by the (physical, mechanical, etc) properties of the 

constituents, but also by the constituents' morphology, i.e. by their topological 

(concerning shape) and metric (concerning volume) properties.  

 

Since several observations have been made which reveal that the process of 

refining the sizes of the internal constituents of materials is accompanied by the 

instability of the materials' properties as the grains/constituents tend to grow more 

pronouncedly, a good knowledge of these grain growth processes should be 

crucial to the understanding of the evolution of the engineering properties. As 

such, microstructures evolutions and their impact on the evolution of the 

engineering properties will be dealt with. 

 

Central to the analysis of the microstructure-property relation in materials is the 

Hall-Petch relationship, HPR, that expresses the yield stress, σ, of a material as 

function of the size, r, of the constituent particles given for constant K as, [1,2] 

 

1/2r −K+σ=σ 0                     (1.1) 

 

The above expression indicates that as the sizes of the microstructures reduce the 
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strength of the material increases. But due to the fact that the material strength 

does not increase indefinitely as the grain sizes decrease and coupled with 

observations that refining the material beyond some refinement critical mean 

grain size leads to decreasing material property as the grain sizes decrease, the 

HPR relationship/expression is supposed to be modified. Zhao, [3], derived a 

single modified expression, HP-RHPR, that represents the size-property 

dependence (both HPR and Reverse-HPR) throughout the entire range of 

deformation to be 

 

32'

0 )()()( 1/21/21/2 rrrr −−− −−+= CBAσσ             (1.2) 

       

where tK+= 0

'

0 σσ  is the conventional yield stress, dKKA ==  is the Hall-Petch 

Relationship proportionality constant, [ ]rmt RThHKB /2= , [ ]rmd RThHKC /2= , Kt 

is a constant,  h is atomic diameter in the case of metal, Hm is the bulk melting 

enthalpy, R is ideal gas constant, Tr is the room temperature, td KK 100>  and 

tK100 >σ . Hence, since the materials properties depend on random 

microstructures that can correctly be described by some probability distribution, 

there are also similar needs to analyse the distribution of the materials properties 

in the materials. This distribution of the materials properties is dealt with in the 

later part of this report. 

 

In order to undertake experimental investigations on materials microstructures, 

cutting planes maybe made randomly through the materials, and the 

microstructures are then randomly sectioned. Observing particles or grains of 

similar shape in a material (in space) could produce quite heterogeneous shape 

profile while those of differing shapes could produce a homogeneous shape 

profile. Efforts to resolve such controversial observations thoroughly are being 

dealt with under stereology. Stereology deals with the process of reconstructing 

three-dimensional information from two-dimensional images. If the number of 

objects under study is very large, coupled with the fact that the microstructure 

sizes, shapes and orientations are random in nature, then statistical analysis makes 
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sense and is indeed necessary. But statistical analysis is limited as it is assumed in 

it that the statistics of a section of the material is the statistics of the entire 

material (i.e. it deals with representative Volume element or continuum theory). It 

therefore, makes sense to reformulate the problems within the stochastic 

framework that uses field variables and as such can handle spatial variations 

easily. Knowledge of stochastic theory is presented in the later part of this report.  

 

As it can be noticed, microstructures play important roles in this project. 

Thorough examination of a single microstructure (polyhedral tessellation) in 

material or space reveals that it is made up of some random features. The 

topological randomness of the microstructure of random polyhedral tessellations 

means that, [4,5], the number of the corners or vertices, C, the length  of edges, E, 

and the number of faces, F, are random variables satisfying the self-consistency 

relations. For an isolated polyhedron, the relationship between these variables 

may be given by the Euler’s formula, [4,5,6], as 

 

2=+− FEC                      (1.3) 

 

and for any subdivision of the material into a finite number, N, of polyhedrons 

(grains) and irrespective of the number of edges connected at each corner; it is 

stated [4-9] that:  

 

1=++− NFEC                     (1.4) 

 

It follows, then, that sizes and shapes are connected. Stoyan, [10], called this 

connection as form. Thus, shapes and sizes may be investigated simultaneously. 

In analysing this connection (in analysing form), it is desirable to have parameters 

that can be interpreted physically or biologically. Since in most cases one cannot 

expect that the form-parameters uniquely determine figure in the sense that 

reconstruction is possible, one cannot also expect that the microstructure 

characteristics obtained as a result of these form parameters should uniquely 

reveal macroscopic properties. It should be noted that the shape of figure X is 
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always independent of its location, orientation in a plane and scales changes do 

not change shape. Example of a shape parameter is a function f(x), [10] 

 

2
)X of (

X of 
)(

perimeter

area
Xf =                 (1.4) 

 

Recall that the effort of the present project is to interpret and/or manipulate 

materials properties from the knowledge of the internal microstructures. The 

knowledge of Geometric Measure Theory (or fractals) should also be helpful in 

the analysis of microstructure characteristics and material properties. Fractals are 

mathematical models for very irregular and very detailed sets with their 

topological dimensions smaller than the Hausdorff dimensions. Most macroscopic 

properties of materials are analysed by studying behaviours along the Grain 

Boundaries (GBs). The boundaries (coastlines) of irregular sets in R
2
 may be 

fractals, [10], and not the entire set as both the topological and fractal dimensions 

of the entire set are equal to 2. In nature, one often observes structures and 

phenomena with similar behaviour [11,12] like those of fractals. Adding to the list 

of examples given by Stoyan, [10], are the “boundaries” of rough and irregular 

objects such as the microscopic examinations of materials constituent structures. 

Of course, the behaviour of natural phenomena resembles that of mathematical 

fractal only up to a certain scale (i.e. infinite refinement is impossible in nature). 

But this should not create any difficulty in applications because frequently, what 

are of practical interests are just the scale and the accessibility to measurement in 

which the real objects have fractal-like behaviour, [10]. Hence, the theory of 

fractals (or geometric measure theorems), when applied with a lot of cautiousness, 

can help in the study and analysis of random microstructures (or form). For 

example, Lebesgue measure, a fractal characteristic, plays a useful role during the 

characterisation of microstructure. It is defined as the n-dimensional “volume”, 

where “n” is a positive number. The "measures" of random material 

microstructure features, e.g. grain size, are described by some probability 

distributions. Thus, the stochastic features of microstructures are related to 

measures through the probability distributions. 



 

 22 

2 MICROSTRUCTURE CHARACTERIZATIONS 

 

Since the inherent features of nanostructures/microstructures are random, this 

chapter is devoted to outlining the tools that can be used for the local 

characterization (description) of materials’ constituent structures, the 

corresponding properties or characteristics and the stochastic characterizations of 

these features. This should be the gateway into the analysis of practical results as 

different characterisation techniques offer different approaches to analysing the 

experimental data or the different characterisation techniques determine the 

extents to which data can be analysed. For example, if the local profile of a 

particle is reported by the Voronoi polygon of the particular particle or by the 

fractal measure of the particular particle, then a stochastic counterpart of this 

description has to be established before any further analysis. This is because 

different particles in the materials have different profiles, and as such the particle 

profile in the material is random. Thus, the analyst must always asks 

himself/herself of the characterisation techniques that were deployed during 

experimentations 

 

In order to develop "any" model of (heterogeneous) material microstructures such 

that it can be applicable to problems in solid mechanics, one must always base the 

approach on physical realities. These physical realities are the features and 

properties of the material microstructures that are obtainable from experiments. It 

is, without loss of generality, logical to develop models for composite and/or 

polycrystalline materials as these two classes encompass most materials 

commonly used today. 

 

2.1 Geometric Characterizations 

 

The characterisation of a particle is the act of communicating the description of 

the essential multidimensional features/properties of the particle or a collection of 

particles. This may start with the characterization of the local geometry in random 

parking of particles that describe the geometry of a group of particles that 
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surround a particular particle. The particles may have various sizes and shapes. A 

complete description of an irregular parking is given by specifying the location, 

size, shape and orientation of each particle. But since this is a tedious task which 

is time consuming and practically impossible, the applicable approach is to 

characterize the geometrical structure of the irregular parking stochastically. This 

can be done by stochastic description of the Voronoi polygons that surround each 

particle. The description of the shapes of the Voronoi polygons contains 

information that gives the radial distribution function for the particle’s neighbours 

and the geometric shapes formed by groups of neighbouring particles. 

 

2.1.1 Voronoi Polygon 

 

The Voronoi Polygon of a particle is that region of space which is closer to that 

particular particle centre than to any other particle centre, [5,13,Fig.2.1]. 

Mathematically, let a realisation of random point fields be given by a countable 

set of randomly distributed points 1,2,...i  ,}{ 3 =ℜ∈ir , and to each point ri assign 

a set Ai such that, [5]  

 

{ }jirrrrrA jzizzi ≠−≤−ℜ∈=   ,:3               (2.1) 

 

then the family of sets { }iA  is known as the Voronoi tessellation in R
3
 generated 

by the random points ri, i=1,2,… The Voronoi polygon in R
3
 is completed in such 

a way that it is bounded by planes that are perpendicular bisectors between 

neighbouring particles centres. It is stated that for a Voronoi polygon the edges 

are lines that are equidistant from three particles centres, the vertices are points 

that are equidistant from four particle centres and its number of faces gives the 

number of the particle’s neighbours, [13].  Note that the neighbouring grains 

might or might not touch each other. If the random point field {ri} is a 

homogeneous point field then the tessellation is the well known Poisson-Voronoi-

tessellation. 
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Figure 2.1 Simulation of planar Poisson Voronoi tessellation, [5] 

 

2.1.2 Communicating local description of a particle profile  

 

After describing the Voronoi polygon, the next issue is then the detailed local 

description of a particle profile that may be achieved mathematically. The 

representation of particle profile in polar coordinate has the form, [14], 

 

∑
∞

=

++=
0

0 )sincos()(
n

nn nbnaaR θθθ               (2.2) 

 

the representation of extended surface has the form 

 

∑∑
∞

=

∞

=

+=
0 0

,,, )()sincos(),(
n m v
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r
JnbnarG γθθθ          (2.3) 

 

and the representation of 3-D bulky particle is 

 

∑∑ += )(cos)sincos(),( ,, ϕθθϕθ m

nnmnm PmbmaR          (2.4) 

 

where the (an ,bn) are Fourier coefficients and not shape function because they 

vary anisotropically. The equivalent radius, R0, is defined as, [14], 
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∑
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where πR0
2
 is the area of the profile and a0 is the mean radius. Stoyan, [10], states 

that if the contour of a figure is represented by a radius-vector function rX(ϑ), then 

the area A(x) and perimeter U(x) are given by 

 

ϑϑϑ
π

drrXU

2/12

0

22 )](')([)( ∫ +=                 (2.7) 
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1
)( drXA                    (2.8) 

 

This leads to the following statistical relationship about the figure 
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where A is the area of the figure, r  is the mean radius and σ2
 is the variance. 

Thus, comparing (2.5) and (2.9), it follows that the variance is given by 
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Knowing that a particle profile may be represented in polar coordinate form as 

given above that can be easily manipulated mathematically; the next target is how 

to communicate the description of the measured particle profile. To communicate 

the local description of a particle profile, Beddow, [14], suggests the use of a set 

of mathematical descriptors and a corresponding set of verbal descriptors. 

Beddow, [14], further suggests that the features should be given as moment of 

distributions that can be represented in the form of the moment vector (or matrix). 

The result is matrix operation of the form, [14] 
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Vectorzation CharacteriSe  BasisVectort Measuremen

X
t

=           (2.11) 

 

The basis set should be made up of standard figures against which all other sizes 

or shapes of profiles could be compared, the feature or measurement vector is 

obtained from the experimental data and the characterisation vector is obtained as 

a result of the matrix operation (2.11) above. The basis set is compiled in such a 

way that succeeding columns are made up of standard figures such as circle (1
st
 

column), cardioids (2
nd

 column), lemniscates (3
rd

), equilateral triangle (4
th

), square 

(5
th

), pentagon, hexagon, etc. Each term in the characterisation vector describes 

the proportion to which the profile being analysed corresponds to the symmetry of 

a circle (a1), a cardioids (a2), and so on.  

 

2.1.3 Stereological procedure  

 

In order to conduct experimental investigations of microstructure features, 

observations are frequently made on the material surfaces after cutting the 

material randomly or on a probe line randomly placed on it. The same observation 

of an anisotropic material in space may produce different results depending on 

how the material is placed or on the orientation of the cross-section. Kanatani, 

[15], defines Stereology as the art of estimating "multidimensional" geometrical 

characteristics of microstructure from “partial observation” of the material, such 

as from observation of cross-sections or thin slices. Kanatani [15] then suggests 

that to engage in stereological project the individual undertaking the task should 

possess the ability to investigate average quantities; to estimate size distribution; 

and to estimate structural anisotropy due to internal distribution of line tissues and 

surfaces.  

 

Estimating averaging quantities  

 

The Average density quantities (average because they are given as per unit values) 

that can be estimated more easily are, [15],  

 Vv – volume of a specific phase per unit volume of material, 
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 Av – area of a specific internal surface structure per unit volume, 

 Lv – length of specific internal tissue per unit volume,  

 AA – area of specific phase per unit area, 

 LA – length of intersection with the internal surface structure per unit area, 

 NA – number of intersections with internal line tissue per unit area, 

 LL – length of intercept made by a specific phase per unit length, and 

 NL – number of intersections with the internal surface structure per unit length. 

 

The quantities are related to each other. For example, [15],  

 

L
A

VAV N2
L4

A  and  N2L ===
π

              (2.12) 

 

Estimating size distribution 

  

Most often the experiments report on the equivalent radius, and as such, one deals 

with the equivalent radius (i.e. spherical in shape) of particle. Since many of these 

particles with different sizes are randomly distributed in a material, it is necessary 

to know the distribution of their sizes. The “distribution density” F(R) may be 

defined such that F(R)dR is the number of randomly distributed spheres of radii 

between R and R+dR in a unit volume of material. From the observation of a 

random cross-section on the material, the observed distribution density f(r) may 

be defined such that f(r)dr is the number of cross-sections of radii between r and 

r+dr in unit area of the plane. Then, F(R) and f(r) are related through the integral 

equation, [15], 
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Their corresponding (cumulative) distribution functions are, [15], 
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where N is the number density and R  is the mean radius of  particles. 

 

Estimating structural anisotropy 

 

Since the microstructures features are random in nature, structural anisotropy may 

be characterised by the distribution density. The distribution density is expressed 

in terms of the “fabric tensor” and is also related to observed data by the “Buffon 

transform”. Thus, the determination of the distribution density reduces to 

inverting the Buffon Transform.  

 

a) Definite model of anisotropy in mathematical sense (estimation of 

distribution density f(n)) 

 

Internal line tissues or surfaces of differing shapes may be distributed in the 

materials. Let these line tissues (or surfaces) be hypothetically dissected into 

infinitesimal small line (or surface) segments that may be given by unit vectors n 

indicating their orientations. Note that n and –n both indicate the same 

orientation. As such one of them may be chosen randomly with the probability of 

½. Kanatani, [15], suggests that the “distribution density” f(n) should be defined 

such that f(n)dΩ(n) is the total length of those line segments ( or respectively the 

total area of those surface segments), in unit volume of the material, whose 

orientation are inside the differential solid angle dΩ(n) around n. If the 

distribution is isotropic then f(n)=const. Kanatani, [15], states that 

∫ Ω= )()( ndnfC  is the total density i.e. VLndnf =Ω∫ )()(  or respectively 

VAndnf =Ω∫ )()(   
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b) Determination of parameters of f(n) 

 

The “spherical harmonics” expansion of f(n) in the Cartesian tensor notation is 

given as, [15]  
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Define the moment tensor by 
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where the tensors Dij, Dijkl, … are “deviator tensors” and Nij, Nijkl,… are “fabric 

tensors” of the distribution f(n). Then, there exists relationships between Dij, Dijkl, 

…and the Nij, Nijkl,… through the Buffon transform.  

 

Buffon Transform: Let the material be randomly dissected by a cutting plane 

with unit surface normal m, and let N(m) be the number of intersections with line 

tissues per unit area of the cutting plane. Then, the Buffon Transform states that 

the relationship between N(m) and the distribution density f(n) of the line tissues 

is in the form, [15]  

 

)()()( ndnfnmmN Ω⋅= ∫                  (2.17) 

 

If N(m) is the length of intersections with surfaces per unit area of the cutting 

plane, then the expected value of N(m) is related to f(n) by Buffon Transform, 

[15], as 

 

)()()( ndnfnmmN Ω×= ∫                (2.18) 
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2.2 Geometric Measure Theory: Mesoscopic Characteristics or Properties 

 

The following section outlines some of the concepts and formulae of Geometric 

Measure Theory that are useful in analysing microstructures and their 

corresponding characteristics. It should be emphasized that under this major 

subsection the term "material" may stand for the entire nanomaterial and the term 

"microstructures" then represents the nanomaterial constituent particles. 

Furthermore, the name "material" may be used in the place of a nanomaterial 

constituent particle in which case the term "microstructures" then stands for the 

features on the constituent particle. Mathematically speaking, microstructures are 

subsets of a material, though a microstructure can still be made up of smaller 

subsets.   

 

Local observations of materials microstructures reveal fine details within an 

infinitely small range of length scale, but well above the discrete atomic level 

present in any material. The fine details become more and more apparent as the 

magnifications of the observing microscopes become ever increasing. It has been 

demonstrated in the previous section that the local detailed features/profiles of a 

microstructure can be communicated in the polar coordinate form. Another level 

of characterisation that deals with the complete description of the local profile of a 

microstructure, as well as combining these local profiles of different 

microstructures to obtain the profile/shape of the entire material involves the use 

of the knowledge from Geometric Measure Theory. To apply the theorems of the 

Geometric Measure Theory, in the report, the description of the particle profile is 

termed "measure" and the corresponding property of that particle (or that 

measure) is termed dimension. Both measure and dimension of a microstructure 

can furthermore be called the microstructure characteristics. It is thus necessary to 

present some of the knowledge about measure and dimension as conveyed from 

the Geometric Measure Theory point of view. 
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2.2.1 Mathematical measures of microstructures or the entire nanomaterials 

 

Mathematical measure of (nano)-material may be defined as a way of ascribing a 

numerical “size” to material, such that if the material is decomposed into a finite 

or countable number of pieces (the “pieces” are, for example, nano-sized grains or 

microstructures) in a reasonable way, then the size of the whole material is the 

sum of the sizes of the constituent microstructures, [derived from 11,12] i.e. 

 

 ( )i
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i AAA ∑≤







= µµµ U)(                   (2.19) 

 

with equality if the { }iA  do not overlap. The µ(A) is called the measure of the 

material A, and µ(A) is the size of the material A measured in some way. Note 

that similar definitions hold for individual microstructures. In the microstructure 

case and in 2-D for example, the equivalent radius ("size" of the microstructure) 

may be obtained from the sum of the length of the edges, and in 3-D for example, 

the sum of the "size" or area of the faces is related to the volume of the grain from 

which the equivalent radius can be obtained as well.  

 

The importance of both experimental findings and the mathematical 

interpretations/manipulations of those findings to advancements in sciences and 

technologies cannot be over emphasised. Since Lebesgue measure is easily 

obtainable from experiments and it is directly related to Hausdorff measure which 

is mathematically tractable, there is a need to present next, these two types of 

measures and the relationship between them. 

 

Lebesgue Measure, L
n
, is a natural extension to a large class of “n-dimensional 

volume”. As a definition [derived from 11,12], let  
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where { }iA  is a covering of A, iA  is parallelepiped or the Voronoi polygon and 

)(AL
n  is the Lebesgue measure of the material A. A collection of microstructures, 

{ }iA , is a cover (δ-cover) of the material A if A is the subset of the “countable” 

union of the iA  (with  iA ≤ δ for δ-cover). Saying that A is a subset of the 

countable union of the 
iA  means that the "size" of A is less than or equal to the 

size of the countable union (or combination) of the iA  

 

Hausdorff Measures, nH : Adopting from Stoyan's definition of fractals, [10], 

the n-dimensional Hausdorff measure of a material A may be defined, where the 

microstructures that are δ-covers are closed discs b(xi,ri) (i.e. the microstructures 

are spherical in nature), as 

 







<⊂




= ∑
↓

δω
δ

α ir)(A : inflim)(    ,, 
)()(0

irixbrAH
ii

n

in

n
U        (2.21) 

 

where πωωωπω ==== +Γ 210

2/     ,2   ,1            ;)1(
2

nn

n  

 

Relationship between Lebesgue, L
n
(a), and Hausdorff, H

n
(a), measures is 

given by, [11,12], 
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nc π  is the volume of n-dimensional spherical 

microstructure of diameter 1. Thus, the following interpretations are given to 

these n-dimensional Hausdorff measures, [11,12], 
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H
0
(A) = number of microstructures in A, 

H
1
(A) = length of smooth curve A, 

H
2
(A) =( ¼)*π* area(A), if A is a smooth surface, and 

H
3
(A) = (4/3*)π *Vol (A). 

 

 

2.2.2 Dimension of a microstructure/material 

 

Though “dimension” provides only limited information, it can be used to measure 

irregular microstructures/material. This is because it is mathematically tractable, it 

can also be estimated by experiments and it has been proven that the dimension of 

an object is related to other features of the objects. It is acknowledged that it is 

possible to define dimension of a (nano)-material in many ways. Different 

definitions may give different values of dimensions for the same material, and 

may also have very different properties. Two materials of the same dimensions 

may not be equal. Upper box-counting and Hausdorff dimensions are of interest 

because in practice all the definitions of dimensions take values between these 

two dimensions and if the two extreme values are equal, then all others will 

assume this common value. A similar fact that will be dealt with in detail in 

PART TWO of this report is that it is possible to produce nanomaterials through 

different processing routes. Different processing routes may result in the same 

mean grain size but with different grain size dispersion (i.e. results in different 

material) and hence different material property. Two different materials may 

possess the same property. Thus, it can be acknowledged that "the process of 

defining dimension of a material" is similar or related to "the fabrication of 

nanomaterials through different processing routes", and "the dimension of 

material" is related to "grain size distribution parameters such as mean grain size 

and grain size dispersion". The exact nature of the relationship or the correlation is 

opened to further research. 

 

The box counting dimension: Draw a mesh of side δ and count the number 

Nδ(A) that overlaps the material for various δ (hence the name “box-counting”). 
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The dimension is the logarithmic rate at which )A(Nδ  increases as δ→0, and may 

be estimated by the gradient of the graph of )A(logNδ  against -logδ as  

 

δ
δ

δ
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= →

AN
ADimB                 (2.23) 

 

The number of mesh or cubes of sides δ that intersect a material is an indication of 

how spread out or irregular the material is when examined at that scale δ.  Thus, 

dimension reflects how rapidly the irregularity develops as δ→0. Note that the 

mesh or cube of side δ is a rough approximation of a microstructure profile of 

"size" is δ. Thus, the box-counting dimension is the dimension of an approximated 

profile compared to the Hausdorff dimension which is that of a more detailed 

profile.  

 

Hausdorff dimension of a material A with Hausdorff measure H
s
(A) is defined 

as  
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Dimension of self-similar microstructures: If i

m

i

AA
1=

= U  where each iA  is 

geometrically similar to A but scaled by a factor ic  then provided that the iA  do 

not overlap “too much”, it follows that  
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For random fractals (i.e. randomly distributed self-similarity of the 

microstructures) and with the mean calculated according to the distribution of the 

similarities, then the Hausdorff dimension of the material A is “n” if the following 

condition adapted from Stoyan, [10],  holds, 
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2.2.3 Local properties of dimensions and measures; and dimension 

decompositions 

 

Much of the theories of Hausdorff and parking dimensions depend on the local 

properties of suitably defined measures. Thus, the so-called “lower local 

dimension” of measure is the basic working tool since it is closely related to the 

Hausdorff dimension of the measure by, [11,12], 

 

}  .for  )(dim:sup{ xaasxsDim locH −≥= µµµ           (2.26) 

 

The dimension of measures can be expressed as dimension of the material as, 

[11,12], 

 

}0)(set with  Borel a is  :inf{dim >= xAADim HH µµ        (2.28) 

 

The local dimension describes the power law behaviour of  r)}{B(x,µ for small r 

(i.e. the power law behaviour of the measure of the microstructure). Thus, if a 

measure µ has local dimension α, then µ can be expressed as αµ r r)}{B(x, = . To 

define the local dimension of a measure µ, let µ be finite Borel regular measure of 

nR , so that 0<µ ( nR )<∞. Then, the lower and upper local dimensions are 

respectively given by [11,12]: 

 

( ) ( )
   

log

),(log
inflimdim

0 r

rx
x

r
loc

Bµ
µ

→
=              (2.29) 

 

( ) ( )
  

log

),(log
suplimdim

0 r

rx
x

r
loc

Bµ
µ

→
=              (2.30) 



 

 36 

 

where B(x,r) is an open ball centred at x with radius r (i.e. it is the region of space 

occupied by a microstructure of equivalent radius r located at x). The local 

dimension exists if the values of equations (2.29) and (2.30) are equal. It should 

be noted that the local dimension of µ at a point x is small if µ is “highly 

concentrated” near x, it is infinite if x is outside the support of µ  i.e. 

 )(dim)(dim ∞== xx locloc µµ  0  somefor    0)),(( if >= rrxBµ  and it is zero if x is 

an atom of µ. 

 

Materials with some kind of self-similarity of the internal microstructures have 

constant local dimension and are said to have exact lower dimension, i.e. 

constant)(dim == sxloc µ for µ-a.a. x. Materials or measures that do not have 

exact lower dimension (i.e. do not have self-similar internal microstructures) can 

be decomposed into measures or representative volume elements that are of exact 

lower dimensions s for a range of s.  

 

Let })(dim:{ sxxE locs ≤=≤ µ   then   sEDim sH ≤≤ . Also let 
s  ≤

= Es µµ  then 

( ){ }sEDimEAA Hs ≤∩= set with   Borel a is E such that   sup)( µµ . Define µ)  by 

 )(]),0([ n

s Rs µµ =
)

)(]),0([     sEs ≤=⇒ µµ) , then µ)  is called the dimension 

measure of µ since )(Aµ)  records the µ-measure of the group of microstructures 

with (lower) local dimension in the set of real numbers A. Dimension 

disintegration formula, [11],   
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 is such that µ is decomposed into components tv concentrated on tE , tE  being 

the group of microstructures for which µ has local dimension t and tv are termed 

dimension derivate of µ. 
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The material or measure can also be decomposed into components of differing 

local dimensions. A number s is an atom of µ)  if µ) (s)>0. Let S be the set of 

atoms of µ) . The restriction of µ)  to S is called the atomic part of µ)  and the 

restriction of µ)  to [0,n]\S is the non- atomic part of µ) . 

  

If µ has the exact dimensional component, µs
, corresponding to the atoms of µ)  

and the diffuse dimension distribution component µD
 corresponding to the non-

atomic part of µ) , i.e. { }s  0)(: ∀== sxDimx
D

loc

D µµ , then we have the 

decomposition formula, [11], 

 

S,n],  s[X
Xs

Ds ∈⊂+=∑
∈

0  ,)( µµµ              (2.32) 

 

Summarising, let Aα be the group of microstructures x for which a given measure 

µ has local dimension α. Studying µ(Aα) gives information about “dimension 

decomposition” and looking at dimension of Aα leads to “multi-fractal spectrum” 

of µ. If this material consists of components (or microstructures) of different 

dimensions (called a “multi-fractal”) then )(dim xloc µ  may help to find and to 

describe the differences.  

 

 

2.3 Stochastic Models Of (Heterogeneous) Materials Microstructures 

 

The characterisations/analyses of random heterogeneous materials microstructures 

and properties in the stochastic sense entails: stochastic geometry/theory, 

homogenization theory, the development of governing stochastic differential 

equations and the use of stereology. Polycrystalline materials can be understood 

as being a collection of microstructures. These microstructures have random 

spatial and orientation distributions, the natures of which depend on the type of 

material under consideration. To better describe these heterogeneous and 

anisotropic arrangements with great degree of details, stochasticians use the 

knowledge of field variables. Thus, the term "random variable", when used in this 
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report might, without loss of generality, stand for "random field variables". These 

random field variables have the abilities to take values from the (positive), "real 

lines" thus making it possible to capture the highly detailed local properties. Thus, 

stochastic micromechanics possess the potential to predict based on the local 

response of the material. Random field variables for material microstructures 

depend on spatial and/or temporal parameters, and as such are called a random 

processes or stochastic processes.  

 

 

2.3.1 Some aspects of stochastic geometry/theory 

 

The physical features of a random material microstructure in nature may be 

discrete (such as the number of faces per grain, number of sides per grain, number 

of vertices/corners per grain), continuous (e.g. sizes of grain/microstructure during 

growth due to curvature driven grain boundary migration) or a combination of 

both discrete and continuous (e.g. change of grain size in polycrystalline 

nanomaterials due to simultaneous curvature driven grain boundary migration and 

misorientation-angle driven grain rotation coalescence mechanism). Some 

stochastic quantities that describe these field variables are given here. These notes 

are approached from the applied perspective targeting the scope of the present 

project and, hence, cannot be complete. Any one who is inquisitive for broader 

knowledge may read the numerous textbooks on probability, statistics and random 

processes.  

 

Most often a 2-D cross-section of a material is sampled and the analysis done on 

this cross section.  The statistical quantities are, thus, functions of the cross-

sections’ locations in space and the time of the analysis. The homogeneous 

continuum assumes these cross-section statistics to be the statistics of the entire 

material. Due to the heterogeneous nature of the material microstructures, 

stochasticians who apply field variables duel further than does statisticians. It is 

remarked, in this report, that the random processes and attainable values might be 

vector quantities, for example, the process ( ) ( ) ( ) ( )( ),tX,,,tX,,tX=ω,t n ωωω ...21X  
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and the value ( )ny,y,y= ...21y . It should also be remarked that the random feature 

of material microstructure cannot be negative e.g. the random size of a 

microstructure cannot be smaller than zero. 

 

If a random feature X(ω ,t) of a microstructure is discrete, then it is most 

convenient to specify the probability of the random process by a probability 

function. This is defined as the probability that the random process (or feature) 

X(ω,t) takes on discrete values at a cross section of the material located at ω and 

at some time point, t, given mathematically as 

 

( )( ) ( ) n

i ,t=P==ω,t ℜ∈ω  point    at  time  ,...    where Prob  a,a,ayyyX 321X   (2.33) 

 

When data are collected from experiments with corresponding frequencies, WX, 

then the probability of occurrence, PX(y), of each event can be obtained from 
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Another quantity that deals with either a discrete or continuous random process is 

the probability distribution function. This is the probability that the random 

process, from some cross-section at ω and at the time point t, takes values that are 

less than or equal to some value, represented mathematically as 

 

( )( ) ( )( ) ( )yyyX XiX
yy i

F=PΣ=ω,tProb
<

≤             (2.34) 

 

This probability distribution function has the properties that 

 

( ) 0lim 0 =Fω,t yX)X( →   and   ( ) ( ) 1lim =Fω,t yXX ∞→         (2.35) 

 

In most cases, it is convenient to deal with the probability density function fX(y) of 

the random feature, which is the derivative of the probability distribution function. 

It has the properties that 
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When the observation of a random feature is a combination of both discrete and 

continuous process, then a natural extension of the above formula is necessary. 

This can be interpreted as the probability that a continuous process, admitting a 

countable number of discrete values, takes values less than or equal to some 

values. This extended Probability density function is given as  
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where 

( )yX

*f = probability density disregarding the discrete components 

( )iX yp  = probability function evaluated at y = yi 

( )iyy −δ = Dirac delta function 

The extended probability density function has the properties that  
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2.3.2 Parameters of probability distributions 

 

Most probability distribution (or density) functions are completely characterised 

by some parameters. These parameters are also the natural quantities of 

characterising random microstructures of materials. These include: 

 

Mean Value: Given a probability density function, fX(y), of a “continuous” 

random process, X(ω,t), (or for g a Borel function of X(ω,t)) the mean value, 

µ(ω,t), is given by 
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For a discrete random process, it follows that  
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Variance and standard deviation are given respectively as 
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Dispersion or coefficient of variation is given as 
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Other levels of characterisation that handle the spatial variability (including 

variations from different cross-sections) and temporal variability of the 

microstructures (features) in a material are the “auto”- (or “cross”)-correlation 

function, “auto”- (or “cross”)-covariance function and the correlation coefficient 

function (normalized covariance function). Two different expressions are given 

here; one on spatial variability at constant time and the other one on temporal 

variability at constant cross-section. The number of expression can be extended by 

considering simultaneous spatial and temporal variability. Due to the inherent 

difficulty in preparing samples for experimentations so that data can be collected 

simultaneously (at an instant) at several cross-sections, not much data on spatial 

variations at different cross sections are available. Data on temporal variability 

(e.g. data on grain growth) are easily obtainable and are readily available. 
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Auto-correlation function is given as 

 

( )[ ]),(),(),;,(),;,( 212121 tXtXEtttt XXXX ωωωωωωµ =Φ=       (2.44a) 

 

( )[ ]),(),(),;,(),;,( 212121 tXtXEtttt XXXX ωωωωωωµ =Φ=       (2.44b) 

 

 

Auto-covariance function is given as 

 

( )( )[ ]),(),(),(),(),;,( 221121 ttXttXEttK XX ωµωωµωωω −−=      (2.45a) 

 

( )( )[ ]),(),(),(),(),;,( 221121 ttXttXEttK XX ωµωωµωωω −−=      (2.45b) 

 

 

Auto-correlation coefficient function is given as 
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As can be noticed, the “auto-functions”, e.g. auto correlation functions, give the 

relationships between a “particular” feature at different locations and/or at 

different time. If the relationships between “different” features are needed at 

different locations and/or at different times then “cross functions” are necessary. 

Slight modifications of the above expressions give their corresponding “cross-

functions”. For example, if X(wi,ti) stands for the “size of a grain” and Y(wj,tj) 

stands for the “number of faces on a grain” at the same (or different) location and 

at the same (or different) time t, then the cross-correlation function is defined as 
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Cross-correlation function is given as 

 

( )[ ]),(),(),;,(),;,( 212121 tYtXEtttt XYXY ωωωωωωµ =Φ=       (2.47a) 

 

( )[ ]),(),(),;,(),;,( 212121 tYtXEtttt XYXY ωωωωωωµ =Φ=       (2.47b) 

 

 

2.3.3 Temporal (time) evolution of the statistics or the stochastic differential 

equations 

 

The statistical properties/parameters given above are at some time point. This 

indicates that these properties vary as time changes. This is same with the 

mechanics of modern materials as the microstructures, for example in 

nanomaterials, are known to have low stability even at low temperatures or low 

dispersions in their sizes since they tend to grow more profoundly. It is therefore 

imperative to study the time evolution of these microstructures and properties. 

The backbone of this study is the Ito’s stochastic differential equations, 

(generalised) forward and backward Kolmogorov-Fokker-Planck Equations, the 

Ito’s differential rules and equations for moment functions. 

 

Ito’s stochastic differential equation  

 

It deals with the expression for the increment of the random process. For a 

random process, X(w,t), the general (general meaning that it includes both 

continuous and discrete change) expression for its increment is given as, [16-20] 

 

)()),(()()),(()),((),( tdVtXctdWtXbdttXatdX ωωωω ++=      (2.48) 

 

where )),(( tXa ω  is drift term, )),(( tXb ω  is diffusion term, )),(( tXc ω  is the 

jump term, dW(t) and dV(t) are, respectively, the increments of Weiner process 

(or Brownian Motion) and stochastic counting process within an infinitesimal 

time interval [t,t+dt], )()),(( tdWtZb ω  and  )()),(( tdVtXc ω  respectively account 



 

 44 

for the random fluctuation in ),( tX ω  due to the diffusion (continuous) process 

and the jump (discrete) process. 

 

Generalised Integro-Differential Fokker-Planck equations 

 

The development, with respect to forward time t, of the joint probability density 

function ),/,()),(/),(( 00}{00}{ tytyqtytyq XX =ωω , of the distribution of a random 

microstructure feature, X(ω,t), whose incremental change might be discrete or 

continuous or both is obtained from the Generalized Integro-differential Forward 

Fokker-Planck-Kolmogorov Equation, [16-20], given by 
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where C(r,t) and D(r,t) are the first and second derivate moments given from 

expression (2.48) as, [16], 
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and ),/(}{ txyJ X  is the conditional jump probability intensity function given, in 

accordance with [16], as 
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αp  is the α-component of the mark random variable. By different α-component of 

a generating source process, it means increment of different microstructure 

features. Since there exists a relationship between number of faces, number of 

sides and number corners per grains through the Euler's formula, jump increment 
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in these microstructure features is as the same component of the generating source 

process. Thus, the regularity condition holds without loss of generality.  

 

Ito’s Differential Rules 

 

Consider an arbitrary function h(X(ω,t),t)) of the microstructure feature, X(ω,t),t) 

and of time t. A jump of magnitude αp  in the α-component of )(tVα  of the 

generating source process at the time t results in jump of 

αptttd ),,(, )X(ωc)X(ω
α

=  of the microstructure feature which impart on the 

function h a jump of magnitude of, [16-20], 
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where dN(t) is the number of jump processes within the infinitesimal time interval 

[t,t+dt]. 

 

 

Equations for Moments 

 

The moments are obtained by taking the expectation of both sides of the 

expression of the Ito's Differential Rule above, [16-20], i.e. 
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2.3.4 Homogenization theory 

 

An issue of great importance during the applications of the theory of random 

processes is to estimate the characteristics of the material such as the mean and 

the correlation functions of a physical random process from measurements. The 

realization of a physical process might be, for example, the microstructure or the 

features per microstructure. When the ensemble is countably infinite or 

uncountable, the limited number of sample functions that can be recorded in 

experiments is generally inadequate to provide reliable estimates. Thus, the 

fundamental assumption in the stochastic literature is that the media (or cross 

section or entire materials) are ergodic. Thus, if it can be justified that a random 

process is stationary then its probabilistic structure is invariant with respect to 

shift of the origin. As such the mean function, the correlation function, and even 

higher-order statistical properties can be possibly estimated by the parametric 

averages using some record of a sample function.  

 

In order for a random measure X(t) to have essentially the same sample mean 

(Ergodic in the first moment) it is simply required that  
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should be a constant. To be Ergodic in correlation it is required that 
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should be a function of just τ. That is, E[X(t)] should be constant and 

E[X(t+τ)X(t)] a function of τ where T is the length of the record. The choice of T 
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must be such that further increase of T does not affect appreciably the values of 

the mean function, correlation function, etc. 
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3.0 AVERAGING TECHNIQUES 

 

Engineers make use of macroscopic properties. They arise as a result of 

“averaging in some sense” of the characteristics that are generated from structures 

at mesoscopic range of length scales. Hence, the most important issue is “how to 

relate the various mesoscopic characteristics within any material so as to yield the 

observed macroscopic property”.  

 

Different macroscopic quantities given by various measures may correspond to 

the same single macroscopic material. It has been demonstrated in section (2.2) 

that if the local dimensions of the measures within a material or the measures of 

the material microstructures are constant (i.e. exact dimensionality for spherical 

microstructures) then the dependencies of macroscopic properties of the material 

on the examined material microstructures characteristics are obtained in power 

form. However, such simple (or trivial) situations seldom occur in real systems. 

Typically, local dimensions vary in space and the resulting macroscopic 

dependencies arise as a result of some sort of spatial averaging.  

 

According to theorems of geometric measure theory, [11], any measure can be 

decomposed into a family of probability measures and the single measure 

constituting the spectral density of the currently examined quantity. This has been 

presented in section (2.2) as “dimension decomposition of measure”. The 

relationship between those probabilistic measures and the probability distributions 

should follow from the stochastic description of the microstructure. Thus, it is 

imperative to present the spectral density and some of the averaging techniques 

that further relate the microstructure characteristics to the macroscopic properties. 

 

 

3.1 Spectral Density 

 

The spectral density of a measure (or of a macroscopic property), X(t), is obtained 

from the Fourier Transform of the correlation function of the microscopic 
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characteristics. Consider the integral (or sum – use Dirac delta function for 

discrete random measures) 
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which exists in mean square if  
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is bounded for all values of “ω1” and “ω2”. The inverse of the above equation in 

the mean square sense is expressed as 

 

 0})exp()()({
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ωωω dtiXtXE               (3.3) 

 

which intuitively states that X(t) may be replaced in the mean square equivalence 

by a sum of harmonic components, and that ωω dX )(  is the random complex 

“amplitude” of the component with “frequency ω”. In analysis, the LHS of 

equation (3.2) is easy to determine (i.e. correlation of microscopic characteristics); 

and when the correlation function φXX(t1,t2) of the macroscopic property is 

required, it can be obtained from the inverse Fourier Transform given by 

 

 )(exp[)()(),( 2122112
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121 ωωωωωωφ ddttiXXEttXX ∫ ∫ −=        (3.4) 

 

If ω1=ω2, then the distribution of values of the sample functions over the 

ensemble of sample functions is the same at any time t. In this case, the 

correlation function of macroscopic measure (or property), RXX(τ), is obtainable 

from correlation function of the microscopic characteristics, ψXX(ω), through the 
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inversion formula 

 

ωωτωψτ diR XXXX )exp()()( ∫
∞

∞−

=                 (3.5) 

 

By letting τ = 0 in (3.5), the physical significance of the function ψXX(ω) is 

revealed. That is 

 

 )()0( ωωψ dR XXXX ∫=                    (3.7) 

 

But )]([)0( 2 tXRXX E=  is the mean-square value of the weakly stationary random 

process under consideration. The RHS of (3.7) is the same as the mean square 

value obtained as sum of the infinitesimal component ψXX(ω)dω. Hence ψXX(ω) 

describes the distribution of the total mean square value over the frequency 

domain, hence the name mean-square spectral density. E[X
2
(t)] is a measure of 

average energy. For example in vibration theory, if X(t) stands for random 

displacement of a single-degree-of-freedom mechanical system, then E[X
2
(t)] is 

proportional to the average potential energy in the system. If X(t) represents the 

random velocity, then E[X
2
(t)] is proportional to the average kinetic energy. In the 

present project or in micromechanics, if X(t) stands, for example, for the random 

increment of the microstructure size, then E[X
2
(t)] stands for the Gibbs Free 

energy stored in or released from the system during evolution.  

 

 

3.2 Poisson Counting Process 

 

When the random feature of a microstructure is discrete, then the Poisson random 

field is the simplest and most important representation of the point field. Some 

examples of such heterogeneity are the number of faces per grain, the number of 

vertices per grain and the number of edges per grain in a polyhedral grain filling 

aggregate (or in a material).   
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A random pattern N of number of faces, edges or vertices per grain in a material is 

a homogenous Poisson Field if: 

a) for any integer n and for different grains, A1, A2, A3, ..., An in that material, the 

random variables N(A1), N(A2), … N(An) characterizing the random number of 

faces, edges or corners per respective grains A1, A2, … , An are statistically 

independent, 

b) the number N(A) of faces, corners or edges possessed by any grain A of finite 

measure m(A) (Lebesgue measure) has the Poisson probability distribution with 

parameter λm(A), that is 

 

)](exp[
!

)]([
})({ Am

n

Am
nANP

n

λ
λ

−==              (3.8) 

 

where m(A) is the “volume” of  A for a 3-D space or microstructure,  “area” of A 

for a 2- D microstructure or “length” of edge for 1-D microstructure.  The 

parameter λ is called the intensity of field N and it characterizes the mean 

“density” of faces, edges or vertices possessed by the grain A. 

 

An inhomogeneous Poisson field is a construct that has a potential to characterize 

spatial random patterns with variable density defined as follows: N is an 

inhomogeneous Poisson field with mean measure µ if the number N(A)  has a 

Poisson distribution 
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with intensity measure represented as 

 

drr
A

∫= )(µ(A) λ                     (3.10) 

 

where λ(r) is called the intensity function. The function λ(r) is estimated from 
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empirical data. 

 

Poisson-Cox random field, [5], is a generalization of Poisson field obtained by 

randomising the intensity measure. The Poisson-Cox field originates from a two-

step random mechanism: the first, global, is governed by a Poisson-type 

distribution of microstructure features per grain whereas the second one is 

associated with randomness of the intensity measure. For more information on the 

Poisson-Cox random field and other stochastic point fields, the reader is advised 

to read the work by Sobczyk, [4,5]. 

 

 

3.3 Compound Counting Process 

 

This section relates to the definition of measure from geometric measure theory. 

For example, grains or microstructures in (nano)-materials do not overlap. Let 

N(R) be the number of microstructures in the (nano)-materials within a sphere of 

radius R. In modelling, it is logical to place the origin of the coordinate axes at the 

"edge" of the material in such a way that the rest of the material lies within the 

positive quadrants of the coordinate axes. Also let ( )iAµ  be a measure of the 

microstructure feature of the i
th

 grain such as the number of faces, number of 

sides, number of corners on that grain or even the "size" of that grain. The 

definition of measure, expression (2.19), can be written as, [16], 
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Here )(Aµ  is now called a compound process. Let dR)-N(R)N(RdN(R) +=  be the 

increment of the counting process (or number of grains) within the shell 

)00 ,RdR)\B(,RB( + , where B(0,R) is a ball or material of radius R centred at the 

origin, 0. If further, the shell )00 ,RdR)\B(,RB( +  is sub-divided into sub-domains, 

)00 ,rdr)\B(,rB( + , each of which corresponds to a single microstructure size, then 

dN(r) is the number of grains in the region of the space occupied by a grain. For 
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1-D system, ),0(\),0(],[],[00 rBdrrBdrrrdRRR,R)dR)\B(,RB( +=+=+=+ . Thus, 

the counting process, N(r), is regular while N(R) is not regular. N(r) is the same as 

number of microstructures in sphere or material of radius r such that 

)00 ,rdr)\B(,rB( +  is the size of a microstructure. Then it follows that the 

Riemann Stieltjes sum (3.11) can be represented as Riemann Stieltjes integral 

below, [16]: 
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It has been observed in most experimental findings that the measure of the 

features per microstructure is related to the number of microstructures in the 

material. But if both are assumed to be statistically independent, then the 

following statistical expressions are obtained 
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where v(r) is the mean arrival (or occurrence) rate or mean density of 

microstructures (or of events). In order to evaluate the higher order statistics of the 

compound process, the “modified” degeneracy property of higher-degree product 

density must be taken into account, which takes place within the integration 

domain, (see part two of this report for detailed examples). Note that the position 

vector r used above may be given by ),,( zyxr = in which case ),,( dzdydxdr = . 
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4 MODELLING OF DISPERSED-TYPE RANDOM  

MICROSTRUCTURE PATTERNS IN TERMS OF GENERAL  

STOCHASTIC POINT FIELDS 

 

A dispersed-type random microstructure pattern can be stress-free holes, pores, 

rigid inclusions, etc.  Methods of modelling of such random microstructure 

patterns in terms of Poisson random fields can be found in literature, [4,5,6].  The 

purpose of the present chapter is to characterise random microstructures using 

other random point fields. Modelling is done in terms of Erlang renewal fields. 

The corresponding statistical properties of the stochastic point fields presented are 

calculated. These statistical properties include the mean functions and the 

correlation functions of the number of points in a considered region. These 

statistical properties are expressed in terms of the product density functions 

characterising the underlying stochastic point fields.  From the stochastic 

characterisation of the number of points in a region, the contact distribution 

function and the corresponding probability density function are obtained. The 

contact distribution function represents the probability that there may be at least 

one point in the region. This function gives the cumulative distribution function of 

the radial distance from a reference point to the nearest point in the structure (i.e. 

this is the nearest neighbour distribution function). 

 

 

4.1 Characterisation In Terms Of Erlang Renewal Process 

 

To characterise the number of points, ) ,0( tBN , in a region B(0,t), the following fact 

is used  
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where B(0,t) = the ball centred at origin, O, with radius, t or Sr =  the region swept 

by the position vector of the r
th

 point. Regularity condition is assumed to hold i.e. 

probability that more than one microstructure have the same absolute value of 

position vectors or are found at the same location is negligible. Depending on the 

dimensionality of the vector space under consideration, we have that B(0,t) = 

“length” if t belongs to 1-dimensional space, B(0,t) = “area” if “t” belongs to 2-

D, B(0,t) = “volume” if “t” belongs to 3-D. Note that two points or 

microstructures with position vectors A
r

 and B
r

 is termed consecutive if there 

exists no microstructure with position vector C
r

 such that  

 

ACBBCA
rrrrrr

<<<< or              

 

It follows from equation (4.1), that  

 

)),0(()( ),0( tBSrN rtB ⊃=< PP                   (4.2) 

            )(1 tK r−=   ,     with  Ko(t)= 1.              (4.3) 

 

where Kr(t) = cumulative distribution function of Sr. 

 

If the Renewal Process is Poisson Process of rate ρ, then Sr has Special Erlang 

Distribution with r stages and ) ,0( tBN  has Poisson distribution of mean ρB(0,t). If 

it is supposed, next, that the Renewal Process is Ordinary Renewal Process 

with distribution of difference between absolute values of position vectors of two 

“consecutive ” points being of Special Erlangian type with “a” stages, then it 

follows that rN tB =) ,0(  if and only if the number of stages completed in the 

underlying Poisson Process has one of the following values, 

 

ra, ra+1, ra+2, … ra+a-1 

 

Hence, since the stages completed over a set of measure, B(0,t), follows a Poisson 
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distribution of mean ρB(0,t), it follows that 
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To converting equation (4.3) into an equation for the probability generating 

function of ),0( tBN , let 
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After applying Laplace Transformation to (4.5) it follows that 
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where 
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On substituting these specific values of )(* sK r  and taking Inverse Laplace 

transformation then  
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Or on taking coefficients of rξ  it follows that 
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If distribution of the difference of absolute values of the position vectors of two 

consecutive microstructures (location) is the special Erlangian distribution with 

“a” stages then we have to substitute (4.4) into (4.8) which leads to 
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The distribution of the difference in absolute values of the position vectors of the 

(k+1)
th

 and k
th

 microstructures (location), ),0(\),0( 1 kkk tBtB +=τ  (it should be 

noted that kτ  is a measure), that follows gamma distribution has probability 

density function given as 
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The mean measure rate of the k
th 

set or microstructure only asymptotically (i.e. as 

∞→kτ ) tends to kν . It should be noted that if k=1 then the Gamma (Erlang) 

distribution becomes Poisson distribution of the first (single) set that has rate υ. 
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To obtain the probability distribution of the number of point,
k

Nτ , in the k
th

 set 

that follows Erlang distribution, some important properties of Laplace transform 

is used which states that: the inverse of Laplace Transform is unique, and hence, 

two functions that have the same Laplace Transform are considered equivalent if, 

and only if, they differ only by a set of zero measure, [21]. Hence, the Erlang 

Distribution is the distribution of sum of independent random variables that have 

exponential (Poisson) distribution. Hence, the distribution of the number 

points,
k

Nτ , in the k
th

 set that has Erlangian distribution is given by equation 

(4.4). It follows that 
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where ρ is asymptotically related to ν  given in equation (4.12) i.e. 
k

ν
ρ ≈ , and n 

is the number of stages completed. From equation (4.13) it follows that  
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The contact spherical distribution function is given by 
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where l is the dimension of the space under consideration, and l

l qα  is the 
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Lebesgue measure equivalence of ),0( ktB  and 
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volume of n-dimensional ball of diameter 1. 
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Of course, the probability density function, p.d.f, hs(q), corresponding to equation 

(4.15) is  
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where =),0(
k

tmBN  number of points in the region B(0,tk) during the m
th

 stage. 

 

If Bk and Bl are disjoint sets (i.e. from different stages) and let  
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and changing Stieltjes sums to Riemann’s integral, we have 

 

{ }∫ ∫>=<
),0( ),0(

),0(),0(),(   2

itB jtB
ji jiji tBtBttfNN ddττ  

 

 



 

 62 

5 MODELLING OF THE MICROSTRUCTURAL FEATURES SUCH AS 

THE NUMBER OF FACES OF GRAINS IN AN AGGREGATE USING 

THE COMPOUND (MARKED) POINT FIELDS 

 

Most materials are built up by successive addition of inclusion (e.g. grain, pore, or 

crack) size and/or shape (distribution), [22]. These inclusions are, in general, 

termed the microstructures in this report.  

 

The characterisation of the overall materials properties, e.g. conductivity, 

elasticity, permeability, stress, strain, and/or energy from the examinations of the 

internal microstructures (i.e. establishing relationship between microstructure 

morphologies and material properties) has been for long a problem of interest and 

importance to a range of applications in engineering and sciences. A way out is to 

define a set of morphological (i.e. topological and metric ) measures from which 

one can optimally reconstruct model morphologies and then accurately predict 

material properties. 

 

Along this line of thought, the following efforts have been devoted. The 

distribution of microstructures within a material or an aggregate has been 

modelled using the random point fields, [4,5,6]. The reconstruction of the local 

stochastic model of microstructure features (e.g. distribution of number of faces 

per grain and/or sizes of grains) is now known, [4,5,23,24].  Knowledge of the 

distribution of microstructure features within a material and their cumulative 

effect(s) to the entire material and/or material’s properties remain(s) an issue of 

interest and importance. In the present chapter, the compound (marked) point 

process (field) is proposed and the corresponding statistics are determined that 

appropriately quantify and qualify the cumulative microstructure features within 

an aggregate. The mark random variable is here a discrete random variable which 

corresponds to the number of faces per grain and the space counting process, 

N(d), corresponds to the number of grains in an aggregate.   
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It should be noted that the distribution of microstructure features within an 

aggregate is strongly influenced by grain segregation, growth and coarsening 

mechanisms. The present chapter deals with another attempt to model spatial and 

temporal evolutions of complex microstructure features in metals that still remain 

as difficult problems. 

 

Comprehensive analysis and reports about grain growth is dealt with in the 

subsequent chapters. The facts about grain growth given under this subsection are 

those that should assist in the understanding of and analysis in the present chapter. 

Coarsening and grain growth both refer to parasitic surface energy driven 

evolution of a system of particles to larger mean sizes whereby larger particles 

absorb smaller ones or grains of with misorientation angles between them rotate 

and coalesce to eliminate the misorientation angle. In polycrystalline aggregate, in 

the first case, grains averaging to local mean size surround a particular grain. If 

the grain size is smaller than the local mean then it shrinks otherwise it grows. 

Hence, the growth of a grain is always examined by considering its relation to its 

neighbours (i.e. grain growth or coarsening mechanism), since grains do not grow 

in isolation.  

 

Scaling state of grains growth: A pattern in either two or three dimensions is in a 

scaling state if all of its distribution and correlation functions for all 

dimensionless quantities are constant in time. The power-law kinetics, [23,25], 

and several models exist to describe the temporal evolution of the microstructure 

sizes in the materials. Morhac et al, [26], observed that grain sizes predicted by 

existing laws and models of grain growth are often far greater than those observed 

in engineering alloys and even commercially pure materials. Russell, [25], 

conducted experiments from which it was observed that precipitate coarsening 

and grain growth in steels (austenite and ferrite) are limited by particle pinning 

and solute segregation at grain boundaries. Remarkably, Russell also observed 

that even in the unpinned alloy grain growth is much slower than that predicted 

by the simple theory, probably, due to solute drag on the grain boundaries. These 

lead to other investigations that revealed that the maximum attainable grain size R 
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during grain growth in a random dispersion of particles is given by the Zener 

equation. [27], as 

 

[ ]
rrRrrR

n
VVVAAArR rfB 375.3)5.1(25.2)5.1( ) 32

5.1 ./( ==⇔==⇔== β     (5.1) 

 

where f is volume fraction of particles, B and n are constants, β is a function of 

rR / and r is the mean grain size. From formulation due to Zener and Smith, [28], 

B=4/3, β=1 and n=1.  

 

    

Figure 5.1 Relationship between grain size and number of faces per grain by 

Glazier et al, [29] 

 

It has been found that the average grain growth rate depends linearly on the 

number of faces [30,31]. Saito, [23], and Glazier et al, [29], observed that the 

average size of f-faced grain is proportional to the number of faces, Fig.5.1. 

Morhac et al, [26], found that the effect of the number of faces, Fijk, on the 

average grain size of f-faced grains for a microstructure is time invariant. It can be 

concluded that both grain size distributions and distributions of the number of 

faces, Fijk, of the simulated microstructures become time invariant after a longer 

time. 
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Knowing the relationship between the average number of faces of grains adjacent 

to an f-faced grain (i.e. local critical mean number of faces per grain), n(Fijk), and 

the face number on that grain, Fijk , is important to the modelling of the spatial 

distribution of the number of faces per grain in the aggregate. This relationship is 

found to be similar to Aboav-Weaire relation in two dimensions, [23,26], 

 

ijkijk FCCFn /21)( +=                                                                   (5.2) 

 

where C1 and C2 are constants. 

 

5.1 Proposed Model and Stochastic Analysis 

 

The distribution of random microstructures in space (or in an aggregate) is 

described by random field variable N(d) that characterizes, in general, the number 

of points (centres of grains) in an aggregate up to a distance d from a reference 

point. The reference point (origin of coordinate axes) might correspond to the 

centre of mass of the entire structure or a well-chosen point at the edge of the 

structure such that a defined set of coordinate axes should enclose the aggregate 

within the positive sector of the axes. The random variable, Fijk, is used to 

characterise the distribution of number of faces of the grain in an aggregate 

located at a point with position vector 
ijk

d
r

 from the reference point. The 

characterisation of number of faces, V(d), of a collection of all grains in that 

aggregate is assumed to follow a compound (marked) stochastic point process, 

[16], given as  
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where zFijk is the number of faces on the z
th

 grain  and d is such that  
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Grain growth/coarsening in a polycrystalline aggregate differs fundamentally 

from the growth/coarsening of a size of separate particles. For the size of a grain 

in an aggregate to increase, it is necessary that another grain should decrease in 

size or disappear from the system [4,5,30,31,32]. Hence, an increase in the 

number of faces of an average grain (grain growth) brings about a reduction in 

number of grains in that aggregate since the volume of the entire aggregate is 

considered constant, [31], during coarsening. In fact, Glazier et al, [33], found that 

during the growth/coarsening mechanisms, the number of grains in an aggregate 

decrease as time increases as shown in Fig.5.2. 

 

 

Figure 5.2 Time evolution of number of grains per unit volume by Glazier J.A. 

and Weaire D., [33] 

 

As a result, in an aggregate, the number of grains per unit volume and the number 

of faces per grain are physically related. These two variables that play the central 

role in the present model are assumed to be statistically independent as 

substantiated by a similar fact that the steady-state displacement x and the velocity 

x&  response of an oscillator to a Gaussian white noise excitation are statistically 

independent but physically related as dtdxx /=& .  The additional assumptions that 

Pr{N(0)=0}=1  is made. It can be inferred from Aboav-Weaire relation that 

neither N(d) nor Fijk  random variables are necessarily independent nor identically 

distributed.  

 

To apply the theory of Stieltjes sum or Stieltjes integral, the aggregate is divided 

into contiguous sub-aggregates. It should be observed that there exists a set of 
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coordinate points ( kji xxx ,, ) and ( ''' ,, kji xxx ) with )',','(),,( kjikji ≠  such that ''' kjiijk dd =  

i.e. two or more grains in the aggregate are located at the same distance from the 

reference point. Hence, upon application of the theory of Stieltjes sum, the 

number of initial (radial) sub-regions would/might be lesser than the number of 

possible microstructure points. Thus, regularity condition does not hold in the 

usual sense, and hence, modification has to be done. This indicates that 

integration has to be done with respect to the Cartesian/spherical coordinate 

variables and not with respect to the radial distance. 

 

After division of the measure of the entire aggregate ),0( dB  onto disjoint, 

contiguous measures of sub-aggregates, ),0(\),0(),0( ijkijkijkijk dBddBdB ∆+=∆ ; and also 

upon division of the measure of sub-aggregate ),0( ijkdB∆  into another (but smaller) 

contiguous measures of sub-aggregates ),0(\),0( ''' ijkkji dBdB ∆∆  with )',','(),,( kjikji ≠  

describing coordinates of separate grain-points that have the same distance from 

the reference point, but which are closer to each other than to any other point as in 

Voronnoi Tessellations, it follows that V(d) in equation (5.3) can be written as the 

Riemann Stieltjes sum. The limit, in the mean square sense, of the sequence of 

such sums (5.3), is the mean-square Riemann Stieltjes integral with respect to the 

counting process N(d), [16], i.e. the stochastic integral 

 

),,(),,(),,(),,(),,(

1 2 3

0 0 0

)( trsdNtrsFtrsdVtrsdNtrsF

d d d

dV =⇔∫ ∫ ∫=      (5.4) 

 

This is the master expression that represents the random number faces of all the 

grains in an aggregate or sub-aggregate. The 0 and d limits in the above integral 

correspond to the situation where the origin of the coordinate axes is at the edge 

of the entire structure. If this origin were within the structure, then the limit of 

integration would be modified. Since )''' ,0(\),0(
jkidBdB kji ∆∆  represents measure of 

grain size or “grain volume”, regularity condition requires that  
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This means, obviously, that a grain measure or “grain volume” in an aggregate 

can only be occupied, with non-zero probability, by one grain or no grain at all. 

Obviously  
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where )( ijkddN  represents the number of grains in the sub-aggregate 

),0(\),0( ijkijkijk dBddB ∆+  and k’ is a fixed number . The two expressions in (5.6) state 

that within a sub-aggregate ),0(\),0( ijkijkijk dBddB ∆+ , there may be, with non-zero 

probability, more than one grain; and, there is a finite number of grains in that 

sub-aggregate. 

 

Since F(s,r,t) and  N(s,r,t) are independent, expression (5.4) gives 

 

dsdrdttrstrsFEtrsdNtrsFEtrsdVE ),,()},,({)},,(),,({)],,([ ν==          (5.7) 

 

And for an average microstructure, and using the regularity condition, then  

 

dsdrdttrstrsFEtrsdVE
nn

),,()]),,([(]),,([ ν=                                         (5.8) 

 

where ),,( trsν is the mean rate (sparseness or density) of microstructures/grains 

in an aggregate. These last two expressions state that the statistics of number of 

faces of all grains in a sub-aggregate is proportional to the size of the sub-region, 

the mean rate (or sparseness or density) of grains and the statistics of number of 

faces per grain in that sub-aggregate. From expression (5.4), it follows that 
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In order to evaluate this last expression the “modified” degeneracy property of 

second-degree product density must be taken into account, which takes place 

within the integration domain. This involves considering the following sets of 

conditions 
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If the second moment of V(d) is to be found, then the upper limits of integration in 

(5.12) with upper limits as the minimum of  “two” limits are changed to simple 

limits i.e. for example 12111111211 d   , ),min( ddddd ≤== . From expressions (5.9) and 

(5.12), it follows that auto-covariance function ),( 21 ddVVk  and the variance function 

2

)(dVσ  are obtained as 
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and 
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The n
th

 order moment is obtained with all possible degeneracies of the joint n
th
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degree product density taken into account.  

 

 5.2 Applications of Proposed Model 

 

The distribution of the number of faces per grain in the scaling state is reported to 

be of varying form e.g. Weibull, lognormal or Rayleigh, [34], (also see Fig.5.3).  It 

has been observed, [30,31], that during a Pott’s model run and on the scaling state 

the mean number of faces per grain is 48.150 ±=F . Analyzing data obtained in other 

research work, [23], resulted in the number of faces per grain in an aggregate to 

be between 4 and 36, the mean number of faces per grain in the aggregate of 

96.63 grains being 15.049 with a standard deviation of 5.7257, the second and 

third moments of the distribution of number of faces per grain being 259.26 and 

5002.11 respectively and the total number of faces in that aggregate being 

1454.19, i.e. 

 

[ ] [ ]     26.259     ,784.32}),,({      ,05.15),,(      ],36.4[),,(
222 ==−===∈ µµσµ trsFEtrsFEtrsF

19.1454)(    6396   , 11.5002])},,([{ and33 ==== dV.N(d)trsFEµ                   (5.15) 

 

           

Figure 5.3 The distribution of number of faces per grain by Saito, [23] 
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Since the total number of faces (1454.19) in the scaling state is the mean of the 

cumulative number of faces of all the grains in that aggregate, the other 

corresponding statistics of the cumulative random variable can then be obtained.  

If grain segregation, growth and coarsening were to occur then the total number of 

faces in the aggregate and the corresponding statistics would vary when analysed 

under different time conditions. Such analysis is a subject of future research 

project.  

 

The total size of the aggregate of grains is used to determine the limit of 

integrations in the integrals given above: di can be obtained from i

n

i
T damV )(

1=
= π , 

where VT is the Lebesgue measure (or volume) of the aggregate, m(a) is the 

Lebesgue constant, n is the order of the Lebesgue measure (i.e. n=1 for length,  

n=2 for area, n= 3 for volume, etc). The "decreasing" relationship between the 

rate of N(d) and <Fijk.> may be given by  

 

)],,([)],,([),,( trsFEtrsFE eetrsv βλβλ −− =′=                                (5.16) 

 

where λ` is the density (number per unit volume) of grains corresponding to the 

minimum mean number of faces per grain, and β is a constant that represents the 

rate at which v(s,r,t) decreases as E[F(s,r,t)] increases.  

 

Working with an aggregate where the statistical properties of the random variable, 

Fijk, (whose analytic expression for the probability density function is yet 

unknown) are not functions of location, it follows that the statistics of Fijk 

correspond to the statistics of the distribution of faces per grain Fn, Fig.5.3, (Fn is 

the random number of faces per grain not assigned to any particular location 

whose statistics have been obtained from other research works) i.e. for example 

][][ nijk FEFE =  
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Using expression (5.16), expression (5.7 becomes 
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Similarly 
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Applying experimental data to an aggregate where ( ) 3/1

321 )4(3 πTVdddd ==== and 

λ`=240 for the case where grain growth and coarsening are very slow as justified 

by Russell [25], equation (5.18) simplifies to 
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Expression (5.16) can now be written for the present aggregate as  

 

])[4(370.0
),,( n

FE
etrsv

−
=                                                                          (5.19) 

 

Obtaining other higher order statistics from experimental data are not trivial 

issues. However, from expression (5.14), it follows that  
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933.418       =⇔ V(d)σ                         (5.20) 

 

It should be remarked that at scaling state if the standard deviation of the number 

of faces per grain, which is 5.7527, is multiplied by the total number of grains, 

which is 96.63, then one might have the impression the standard deviation of the 

cumulative number of faces in the aggregate is 553.275 and not 418.93 as 

obtained in equation (5.20). The difference in value can be explained 

mathematically by the degeneracy property of product density of the counting 

process. Practically, this is due to the fact that, apart from the cumulative mean 

value, the other higher order cumulative statistics cannot be obtained by simply 

multiplying the marked random variable’s statistics by the total mean number of 

grain points in the aggregate. It can be clearly seen that if that were the case, then 

for example 

 

[ ] )]"([" ).( 2 dVVardN
ijkF =σ   

  [ ] [ ] [ ] [ ] 1)(      )( ).( 2222

)( =⇔=== dNdNdN
ijkijk FFdV σσσ    (5.21) 

 

which is true only when N(d)=1 and hence, leading to a contradiction. Hence, the 

statistics of the cumulative (compound) random variable should not be obtained 

by simple intuition but by utilising the proposed expressions. The spatial 

evolution of the total number of faces of grains in the aggregate at the scaling 

state is given by the spatial distribution of the grains (how the aggregate can be 

traced or covered) and the mean number of faces per grain as proposed by, for 

example, expressions (5.17) or (5.18). Recall that the mean number of faces per 

grain may be given as a function of the point of location of the grains and not as 

constant. 
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With grain growth being a common feature that affects the temporal distribution 

of microstructures features within any material, the next task is now to engage in 

the understanding and analyse of the grain growth processes or mechanisms.  
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6 STATISTICAL MODEL OF GRAIN GROWTH IN  

POLYCRYSTALLINE NANOMATERIALS 

 

It has taken about five decades to start apprehending the statement, “There is 

plenty of opportunities at the bottom”,  made by the American Nobel Prize 

winner, Prof. Richard  P. Feynman, in 1959. Feynman postulated that it would be 

very interesting if the grains/particles in materials could be reduced to very fine 

sizes (nano-sizes) whose properties/structures could be analysed and manipulated 

at atomistic scale to come up with new structures/materials that may exhibit 

enhanced properties or could lead to the understanding of the entire material itself. 

Nowadays, nanoscience and nanotechnology are engaged in these studies. Some 

of the different strategies involved in the production of nanomaterials are the 

bottom-up methods whereby very fine particles are combined to obtain nano-scale 

particles and the top-down methods in which case the sizes of coarse particles are 

reduced to smaller scale ones . 

 

This process of reduction to nano-sizes comes up with the challenges of the 

instability of the refined grains as they are more vulnerable to growth even at very 

low temperature which may thus limit their applications. Thus, an interest has 

been to analyse the grain growth phenomena in nano-crystalline metals. The 

growth of a single grain in a system of grains was postulated by Hillert in 1965, 

[35]. His model has always led to the parabolic growth law which holds more 

correctly for the isotropic case, like the soap froth since grain growth process is 

considered in his model to be isotropic grain boundary migration mechanism 

(GBM) only. Other experiments on polycrystalline materials have shown 

deviations from this parabolic law. Apart from Hillert’s model, abnormal grain 

growth has been reported. Recent theoretical and experimental investigations have 

proven that the growth in the (average) grain size in a system is not only 

accomplished by GBM. Other processes also involved include grain rotations-

coalescence (GRC) mechanism, [36,37,38], T2 events in which a small three-

sided grain disappears and T1 mechanisms whereby two grains which were 
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initially neighbours separate along a common grain boundary while, 

simultaneously, two grains which were initially not neighbours move towards 

each other to form a new common grain boundary. For more details on T1 and T2 

events, interested readers are referred to the original works by the authors in the 

references, [37,39,40].  Furthermore, there is report, [41], on the release of excess 

free volumes in the form of vacancies in which during grain growth the less dense 

GB ‘phase’ decreases in amount accompanied with the release of excess free 

volumes that are digested by the GI (or bulk of the materials) in the form of 

vacancies.  Significant efforts have been devoted in this report, [41], to 

substantiate that the kinematic necessity of the vacancy generation might have an 

inhibitive effect on grain growth. For more information about the release of 

excess free volumes in the form of vacancies and its effects on grain growth, one 

may read the publication by Estrin et al, [41].  Thus, predicting microstructure 

evolution in materials is important for materials design and processing.  

 

In the present chapter, a statistical model is proposed in order to study grain 

growth processes in nanomaterials. The effort in the present chapter is aimed at 

improving on the Hillert’s model to account for these new observations. Particular 

attention has been focused on GBM and GRC mechanisms since both T1 and T2 

events are processes that might initiate GBM, grain coalescence or GRC 

mechanisms. GBM is a process in which the grain size evolves continuously 

(diffusion based evolution) with time and GRC is a discrete (discontinuous) 

process that causes a change in the grain size at some instant when the 

misorientation angle between some adjacent grains becomes zero, [38] (see 

Appendixes A1 and A2 for schematics of GRC). Furthermore, the “stochastic” 

approach adopted in this report focuses attention on the “extent” to which the size 

of a grain will grow after some time interval, and not on how the atoms or groups 

of atoms in the materials interact to bring out grain growth. A terminology 

borrowed from Estrin, [41], is that such an approach is “thermodynamic” since the 

details mechanisms (or chemistry) of, for example, GBM processes and GRC 

processes are not dealt with.  Thus, the “phase mixture” approach of the release 

of excess free volume at the GB that is consumed by the GI is as such not also 
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dealt with here. 

 

The growth in sizes of individual grains observed in most polycrystalline 

materials where GBM and/or GRC mechanisms occur may be studied as per the 

following three cases below: 

1. Grain growth by boundary migration only - GBM 

2. Grain growth by rotation-coalescence only -GRC 

3. Grain growth by both GBM and GRC simultaneously - Simultaneous 

GBM and GRC (or Total Process). 

 

Simultaneous GBM and GRC, a linear combination of both cases 1 and 2, may be 

given as  

 

)(),,(),( 2211 tdNtrGadttrfadr θ+=                  (6.1) 

 

where the aii
s
 are the "compensation coefficients" that indicate the proportion in 

which the two growth mechanisms combine, f(r,t)=f(r,θ,t) is a curvature driven 

mechanism, ),,( trG θ  grain misorientation angle driven mechanism and dN(t) is 

the increment of the number coalescence mechanisms during an infinitesimal time 

interval. It is observed that GRC does not affect the curvature of the grain as the 

grain rotates and GBM does not change the misorientation between two grains 

while the boundary migrates. Thus, the coefficients, aii, are considered to be equal 

to one. Hence, the expression for f(r,t) is taken as an expression similar to that 

given previously by Hillert, 1965, [35]. To define ),,( trG θ , note that it reflects 

the change in the size of the grain, ∆r, as the misorientation angle between that 

grain and its neighbour becomes zero at some time instant t. At this instant two 

grains combine. So, ∆r=r. Thus, rtrG =),,( θ  (also see the appendix B for the 

alternative derivation of the expression of the GRC process). Hence, the improved 

expression for the change of an individual grain size is 
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                (6.2) 

 

where Mmig is the mobility constant for grain boundary migration and rc is the 

local critical grain size. The local critical grain size is the (exclusive) mean size of 

the grain surrounding the particular grain and, hence, is related to the global mean 

size. In fact, references [40,42] state that the ratio
crr µµ  is a constant for a given 

self-similar distribution as both 
Cr

µ   and rµ  scale with same characteristic length 

of the self-similar distribution. The importance of the local critical grain size is 

that the grain under consideration will grow if its size is larger than its local 

critical grain size or, otherwise, it will shrink. Hence, based on the fact that its 

local critical grain size changes continuously as grains grow, the particular grain 

may at an instant be seen growing while later it may be shrinking, then followed 

by growth and so on. This …/growth/shrinkage/growth/… process continues 

randomly during the growth process. Thus, the grain growth process is 

geometrically a complex phenomenon. This necessitates that the aggregate be 

analysed stochastically. The evolution of the grain size may be given by solving 

the differential expression (6.2). But this does not lead to statistical meaningful 

results. Hence, it is not pursued as such. Since expression (6.2) holds for 

individual grains and a grain size in an aggregate is random variable leading to the 

consequence that the effects of the many agents causing grain growth cannot be 

deterministic as long as the effects of these agents on each grain are not known 

separately, the stochastic counterpart of this expression is necessary which is 

given by the addition of fluctuation terms: 
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mig θθ ++

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


−+=         (6.3) 

 

where )(),,( tdWtra θ  accounts for the random fluctuation in r(t) due to GBM, 

)(),,( trdNtrb θ does for the random fluctuation in r(t) due to coalescence 

mechanism, atra =),,( θ  is the diffusion term, btrb =),,( θ  is the jump term and 
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dW(t) is the increment of the Wiener process. In fact, Zhao, [43], justified that the 

continuous fluctuation term is a Wiener process.  

 

Based on the stochastic equation, (6.3), the differential equations governing the 

evolution of the statistical moments of the distribution of the grain size in a 

system that contains as many grains as possible are derived. Considering the fact 

many other mechanisms bring about the variations in the grain size, the grain size 

in the system at any time, t, is independent of the number of coalescence 

mechanisms (stochastic counting processes) up to that time instant. It is known 

that E<adW(t)>=0 and [ ] [ ] dttvrbEtbrdNE ).(.)( =  where v(t) is the mean rate of 

coalescence events of grains. Since expectation and limit are interchangeable and 

writing µµ == rtrE )]([ , it follows that 
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Using expression (6.3) and the Ito’s differential rule [16], it follows on writing 

E[r
2
]=µ2 that  
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Practical insight is used here and verification is the subject of the next chapter. 

Many experimental investigations have proven that the distribution of grain size 

during growth can be approximated more closely by lognormal distribution, 

[44,45,46]. Thus, the expectations in expressions (6.4) and (6.5) are performed 

based on the properties of log normal distribution, [47]. Expressions (6.4) and 

(6.5) are coupled expressions which are then solved simultaneously. Solutions to 

these expressions reveal information about the evolution of the statistics of grain 

size during growth.  

 

The mean rate of coalescence of grains, v(t), is determined from the mean rate of 
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rotation of these grains. The number of coalescence between the a grain and its 

neighbour is given 

 

11

12)(
θ

θ
θ

θθ ∆
=

−
=tN                      (6.6) 

 

where 1θ  is the misorientation angle at the initial time, t=0, and 2θ  is the 

misorientation angle after time, t. Note that for these two grains, 1θ  is a constant, 

and if 02 =θ  at coalescence of the grains then 1)( −=tN . Therefore 

 

11

1)(

θ
ωθ

θ
==

dt

d

dt

tdN
                     (6.7) 

 

This is because )0()()( NtNtN −=  since 0)0( =N , where ω the angular velocity of 

a grain in the aggregate at the instant. Thus, for infinitely small time interval, 

∆t→0, and at coalescence it follows that θθ ≅1  and so  

[ ]






==

θ
ω

E
dt

tNdE
tv

)(
)(                     (6.8) 

 

Assuming that the force laws governing GRC processes are viscous rather than 

conservative by nature, the angular velocity of a rotating grain, ω, relative to its 

neighbouring grain with respect to an axis through its centre of mass is given by, 

[37,38] as  τω rotM= , where Mrot is the rotational mobility of the grain subject to 

a torque τ. Thus, an expression for the angular velocity between two grains 

contains information about their rotation mobility. And so the rate of coalescence 

of the grains has been established to be a function of the rotation mobility. It is 

then clear that our modified expression, (6.2), and of course (6.3), involve the 

rotational mobility function (or constant) of that grain. 
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6.1 Testing Proposed Model of Grain Growth 

 

Prolonged analysis was performed so as to capture the long run behaviour of the 

statistics. Three types of systems given by cases 1-3 above were analysed. The 

parameters employed are 6)( µHtv = , 100000=H , 5=migM , 9.1=
crr µµ , 

10 =rµ , rtrb =),,( θ  and rtra 1000),,( =θ .  

It was observed that most statistical properties were higher for the system where 

both GBM and GRC occur simultaneously. The (normalised) mean size increases 

faster for the system of simultaneous GBM and GRC mechanisms than for either 

of GBM or GRC alone as shown in Fig.6.1 
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Figure 6.1 Variation of mean grain size 

 

It is observed that though GRC had low initial contribution to the increase in 

mean grain size, its contribution becomes higher (about 85% depending on the 

initial dispersion of the grains in the polycrystalline material) after a short time 

while growth was activated. And evolution in the long run is highly dominated by 

GBM process. This fluctuation indicates an abnormal grain growth. This can be 

clearly seen if the percentage contributions to the mean size are analysed 

(Fig.6.2). The evolution of the mean grain area indicates that the inclusion of 

(different rate of) GRC mechanisms results in departures from the parabolic law 

of grain growth which has also been observed experimentally, especially in 

nanomaterials.  
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Figure 6.2 Percentage contributions to mean size 

 

The evolution of the dispersion of grains sizes are characterised by the 

coefficients of variation – CV - (Fig.6.3). It is observed that if grain growth is as a 

result of GBM driven process only, then CV will steadily decay exponentially and 

homogenises. But for a typical nanomaterial where both GBM and GRC occur 

simultaneously, it is observed that the CV initially rises steadily and then decays 

exponentially to homogeneity. This situation, of a less dispersed system becoming 

more dispersed due to grain growth, has also been reported, [37,38]. This can be 

explained to be due the fact that with initially no dispersion in grain size, grain 

growth would still takes place as GRC would trigger grain growth by starting up 

dispersion which then initiates GBM. We believe that the occurrence/presence of 

the GRC mechanism is also the reason while nanomaterials are more vulnerable to 

grain growth even at low temperature. The decay in the dispersion in the long run 

is due to the fact that as the sizes of the grains become larger, it becomes difficult 

for them to rotate and, hence, the growth process is dominated by GBM. 
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Figure 6.3 The evolution of the Coefficient of variation (dispersion) 

 

It can be concluded that the expression for the evolution of the dispersion of the 

system depends on the growth process under consideration. For GBM process 

only the CV evolves, [48] and Fig.6.3(b), as 
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( ) )exp(5.35.3 0 AtCVCV −−+=                (6.9) 

 

where A is constant. For simultaneous GBM and GRC processes, Fig.(6.3c)  
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where f(t) is a function that increases and attains a turning point at ta.  

 

Other parameters of grain growth can be predicted by the asymptotic time 

dependence (power law kinetics) given as, [23,49,50],   

 

n

dd tKt .)( 0 += µµ                    (6.11) 

 

 where )(tdµ  is the average diameter at time t, 0dµ  is the initial average diameter, 

K is a constant (or function) that is related to the average mobility constant and n 

is a constant which is termed the growth exponent.  
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Figure 6.4 Initial CV versus (a),(b) average mobility and (c) percentage 

contribution to average mobility 

 

In the cases where growth is GBM process only and a simultaneous GBM and 

GRC processes, it is observed (Fig.6.4) that the average mobility increases 

steadily with increase in the initial dispersion of grain size. The overall result 

indicates that nanomaterials with highly dispersed grains will grow faster than 

those with low dispersion. But it is observed that, for GRC only process, the 
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average rotation mobility is high for very low dispersion which decreases to a 

minimum and the rises steadily with increasing initial CV.  This very high average 

rotation mobility at very low dispersion also indicates a natural tendency for the 

grains in nanomaterials to be more vulnerable to growth even at low dispersion.  

The results also demonstrate that the average rotation mobility which is a 

consequence of the varying misorientation angle contributes up to about 50% of 

the overall average boundary mobility, Fig.6.4(c). 

 

Thus, the average mobility constant, K, depends on the initial dispersion of grain 

size and is given by an expression that depends on the growth process under 

consideration: for GBM, it is approximately by  

 

00 CVKKK grad+=                    (6.12) 

 

and for GRC only and simultaneous GBM and GRC, it can be given as 

 

( ) .
2

100 CVCVKKK grad −+′=                (6.13) 

 

where K0 is initial value, Kgrad is the slope of the curve and CV1 is the value of  

initial dispersion at which turning point is attained. CV1 =0 for simultaneous GBM 

and GRC. 

 

The variation in the growth exponent is shown in Fig.6.5. This varying growth 

exponent indicates deviations of results of the present model from the parabolic 

law (and any growth law) with varying initial CV. A steady decrease 

demonstrates an increase in the dimensional space where a linear growth law will 

be obtained. The varying growth exponent has also been experimentally, [49]. The 

growth exponent may also be assumed to be constant on an average as observed in 

Fig.6.5C since the variation of slope is small. This constant growth exponent has 

also been observed experimentally by Kurzydlowski et al [48]. 
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Figure 6.5 Initial CV versus growth exponent. 

 

A successful modification of the Hillert’s model by incorporating GRC 

mechanism in the expression for growth of a single grain size which was ignored 

in the previous model has been achieved and many salient features of grain 

growth in polycrystalline nanomaterials have thus been revealed. The stochastic 

counterpart of the improved expression accounts for the random fluctuation in the 

distribution of the grain size in “dispersed-typed” nanomaterials that have as 

many grains as possible. The evolution of the probability distribution of the grain 

size in the material, which is dealt with in the next chapter, can be obtained from 

information about the evolution of the grain sizes. We should then proceed with 

studying the time evolution of the probability distribution of the grain size 
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7 MODELLING OF THE GRAIN SIZE PROBABILITY DISTRIBUTION 

IN POLYCRYSTALLINE NANOMATERIALS 

 

Nanomaterials are solid materials in which the microstructure elements (such as 

grains, crystallites, blocks and layers) are refined to have dimensions less than 

100nm at least in one direction. This process of refinement comes up with the 

challenges of the instability of the microstructure elements as they are more 

vulnerable to growth even at low temperature. Recent investigation, [CHAPTER 

6], also indicates that another contributing factor to the low stability of 

nanomaterials is high rotational mobility of the fine grains more emphatically at 

low dispersion of grain size.  

 

Theoretical analyses have always resulted in nanomaterials’ grain size probability 

distribution being of varied form: approximately either lognormal, Rayleigh, 

normal, Weibull, etc. This is because the isotropic Hillert's model of grain growth, 

[35], which is more suitable for soap froth and which leads to a parabolic law of 

growth has been previously used to establish these distributions with the hope of 

approximating experimental observations. But due to deviations from this 

parabolic law of grain growth in many experimental observations, the model of 

grain growth developed in CHAPTER 6 which is a modification of the Hillert’s 

model, is used in the present chapter to establish the time evolution of the 

probability distribution of the grain size in nanomaterials that contains as many 

grains as possible.  

 

In the modified model, the growth in a grain size in an aggregate is considered to 

be caused by two mechanisms: curvature driven Grain Boundary Migration 

process, GBM, (a continuous process in which larger grains gradually consume 

smaller grains) and Grain Rotation Coalescence mechanism, GRC, (a 

discontinuous process whereby two grains instantaneously become one grain only 

when the misorientation angle between them becomes zero). The modified 

differential expression for the rate of change of individual grain size in the 

aggregate as given in CHAPTER 6 can be expressed as 
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where Mmig grain boundary mobility constant, rc is local critical grain size and 

)( ii ttr −δ  reflects the change in grain size as the misorientation angle becomes 

zero at some particular time point ti.  

 

Since the grain size in the aggregate is random, the stochastic counterpart of the 

expression governing the incremental change in individual grain size was obtained 

by the addition of two fluctuation terms, [CHAPTER 6], to be 
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where )(),,( tdWtra θ  accounts for the random fluctuation in r(t) due to grain 

boundary migration, )(),,( trdNtrb θ accounts for the random fluctuation in r(t) 

due to the coalescence mechanism, ),,( tra θ  is the diffusion term, [ ]rtrb ),,(1 θ+  is 

the total jump term, dW(t) is the increment of the Wiener process and 

)()()( tNdttNtdN −+=  is an increment of a stochastic counting process (i.e. the 

number of coalescence events) within an infinitesimal time interval. 

 

Based on the (general) stochastic equation, (7.2), the differential equations 

governing the evolution of the statistical moments of the grain size distribution in 

the material are derived. These expectations are performed based on the 

probability distribution that is the subject of the present paper. 

 

The development of the probability density function, ),/,( 00}{ trtrq r , of the grain 

size distribution with respect to the forward time, t, is obtained from the 

generalized integro-differential forward Fokker-Planck-Kolmogorov equation, 

[16-20], as 
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where C(r,t) and D(r,t) are the first and second derivate moments given from 

expression (7.2) as 
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and where ),/(}{ txrJ r  is the jump probability intensity function given, in 

accordance with [16], as 
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p

dNr  pdptpJxptxbxrtxrJ 1   , ),()),,(1(),/( }{}{ θδ    (7.5) 

 

The function b(x,θ,t) is assumed as b(x,θ,t)=x and, so, it is state dependent. A 

preliminary change of variable has to be performed in order to evaluate the 

integral in (7.5) with respect to x, [16]. Let [ ]xxxu ++= 1 , then ux +±−= 11 . 

Since x belongs to the set of grain sizes, it must be greater than or equal to zero. 

Thus, ux ++−= 11 ,  { }ududx += 12  and equation (7.3) becomes 
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Equation (7.6) is associated with the pertinent initial and boundary conditions 

which are determined by the type of material under consideration (i.e. the extent 

to which grains grow is determined by the type of material under consideration). 
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Let the domain St of the state variable (scalar for the present case- grain size) be 

confined to the interval ]0,d [ i.e. for grain growth to occur the size of the grain 

cannot be zero and indefinite growth is impossible. In general, it is assumed that 

the 1-dimensional state variable, r(t), is restricted to some domain St which may 

depend on time being influenced by factors affecting grain growth such as the 

strain hardening effects, impurities, particle pinning and/or solute drag 

segregations on grain boundaries, [25]. Thus, the necessary initial and boundary 

conditions are  

 

{ } )(),/,(  :  [,0] , 00000 rrtrtrqdrr r −=∈∀ δ                 (7.7) 

 

{ } 0),/,(   :  0    [,,0]    [,,] 0000 ==∈∈∀ trtrqrdrttt rf         (7.8) 

 

{ } 0),/,(   :      [,,0]    [,,] 0000 ==∈∈∀ trtrqdrdrttt rf          (7.9) 

 

Expression (7.7) states that at a time instant, the probability of a grain to possess 

two different sizes equals zero. Note, also, that at coalescence of grains due to 

GRC process, two grains combine to end up with a unique size at that instant. 

Expression (7.8) states that grains cannot “disappear” in the sense that “matter is 

destroyed”. And (7.9) implies that there is a limiting size to which grains grow 

(i.e. grains do not grow indefinitely or they grow asymptotically). 

 

Equations (7.6), (7.8) and (7.9) are multiplied by q(r0 ,t0) and integrated over r0. 

The jump process considered here is a counting process only, which means that all 

mark variables are equal to 1. Consequently, the property of jump probability 

intensity function is given as )(),(),1( }{}{ pftrvtJ pdN =  with )1()( ppf p −= δ , 

where v(r,t) is the mean rate of coalescence events of grains ( i.e. the rate at which 

the misorientation angle becomes zero). The evolution of the unconditional 

probability density function of grains sizes is then given from (7.6) as 
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with the initial and boundary conditions, (7.8) and (7.9), reducing to  

 

0),0(:  [,0]   }{ ===∀ trqdSdomain rt               (7.11) 
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However, from CHAPTER 6, [ ] [ ]θωEdttNdEtrv −== )(),(   and since in 

[37,38] it is proved that 4/ rD=ω , it is concluded that 4/),( rHtrv = . 

 

Using a Taylor series expansion for ),11(}{ trq r ++−  found in expression (7.10) 

given as  
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leads to the main expression in the present chapter which is  
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with the initial conditions (7.11), (7.12) and (7.13). Other authors call a reduced 

form of equation (7.14) the continuity equation, [45,49]. 

 

7.1 Discussions of Solutions of Integro-Differential Equation 

 

The solution of the main expression is obtained numerically. In this report the 

word "evolution" will stand for "time evolution". To ensure that truncation should 

be an acceptable operation, the equation (7.14) is multiplied through by r
4
 and the 

evolution in the grain size is normalised with respect to the minimum unattainable 

grain size, d, which can, without loss of generality, be the maximum attainable 

grain size (i.e. the upper bound). As a consequence, the boundary conditions 

(7.11)-(7.13) now become 
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Because of this normalisation, the coefficients of the partial derivatives of q{r}(r,t) 

term, ( )[ ] 




 +−+−++=
=

−− )32(! 11)1(2
1

411 irnrrrC
n

i

nnn

n π ,  in the 

last (summation) terms (4
th

, 5
th

, etc) in equation (7.14) attain the maxima given in 

the Table (7.1) below. It can be seen from the table that Cn decreases rapidly as n 

increases and, so, higher order terms can be neglected.  
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Table 7.1 Maximum values of coefficients of partial derivatives of q{r}(r,t) 

Values of n Maximum attainable value of Cn 

1 0.59 

2 0.72 

3 0.384 

4 0.02304 

5 0.00158 

6 7.02 X 10
-5 

7 2.19 X 10
-6 

 

Most experiments performed are based on initial microstructures that are either 

Voronoi cells [7,10] or of uniform size, [40]. But the initial probability 

distributions considered in those papers are either normal, [40], or Rayleigh, 

[40,50]. The initial grain size obviously has an effect on the evolving 

microstructure. The present model accounts for this varying initial microstructure 

by varying the initial dispersion of grain size employed. In this present chapter, 

the interest is in the initial probability distribution. So, starting with an initial 

lognormal or normal distribution of grain size in nanomaterials, the solution of the 

differential equation (7.14) that governs the evolution of the probability density 

function (pdf) of grain size is obtained and the results are plotted. Use is made of 

the equations (7.18-7.25) when solving the major equation, (7.14). This is because 

these parameters evolve continuously as the grain growth process progresses.  

 

Since the initial distribution of the grain size is assumed to be lognormal, the 

probability density function and properties are, [21,47], 
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1e(CV)  variationoft Coefficien −= α             (7.20) 
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The evolution of the mean grain size can be predicted by the asymptotic time 

dependence (power law kinetics) given as, [23,49,50] 

  

n

r Ktt += 0)( µµ                     (7.21) 

 

where )(trµ  is the mean grain size at time, t, 0µ  is the initial mean grain size, K 

is the average mobility constant and n is the growth exponent.  Plots of the 

evolution of the different parameters in expression (7.21) are found in CHAPTER 

6, and hence, will not be repeated here. The corresponding expressions of these 

parameters are repeated here to facilitate the follow up in the present chapter. 

 

The evolution of the dispersion of grain size depends on the growth process under 

consideration. For GBM process only the CV evolves as, [48],  

 

( ) )exp(5.35.3 0 AtCVCV −−+=               (7.22) 

 

where A is constant. For simultaneous GBM and GRC processes CV evolves as, 

[CHAPTER 6] 
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where f(t) is a function that increases and attains a turning point at ta.  

 

The growth exponent is assumed to be constant on an average in the present 

chapter, consistent with observations made by Kurzydlowski et al, [48] , though it 

may vary which is consistent with observations made in CHAPTER 6 and by [50]. 

 

The average mobility constant, K, given in expression (7.21) as found in 

CHAPTER 6 depends on the initial dispersion of the system and given by an 

expression that depends on the growth process under consideration: for GBM, it is 
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given as 

 

00 CVKKK grad+=                    (7.24) 

 

and for GRC only and simultaneous GBM and GRC, it can be given as 

 

( ) .
2

100 CVCVKKK grad −+′=                (7.25) 

 

where K0 is initial value, Kgrad is the slope of the curve and CV1 is the value of  

initial dispersion at which turning point is attained. CV1 =0 for simultaneous GBM 

and GRC. 

 

The following parameters Mmig=8X10
-4

, b(r,t)=r, )20(),( rtra =  and "/),(" 4rHtrv =  

are used. The Initial Coefficient of Variation (CV0) is varied to be consistent with 

experiments. Varying the parameters that are held fixed (e.g. GB mobility varies) 

as grains grow may surely have an effect on the way the pdf curves evolve, on the 

limiting distribution or indicate the relationship between the various parameters. 

Considering solutions for different cases of grain growth suggests how the 

dominance of each parameter affects the process (see “compared plots” below). 

  

The obtained numerical results are given in Figure (7.1)-(7.3). The plots represent 

the probability density curves obtained as solution of equation (7.14). The 

solution for the GBM case only is obtained when only the first two terms on the 

right hand side of the equation (7.14) are considered. For a simultaneous GBM-

GRC process, two more terms (3
rd

 and 4
th

 terms) are included.  It can be observed 

that results from analytical modelling of grain size probability distribution in 

polycrystalline nanomaterials are different if the effect of GRC mechanism on 

grain growth process is taken into account and, further, due to the addition of the 

fluctuation terms. Results also depend on the nature of the fluctuation term, which 

is a material property as the fluctuation in grain sizes varies from one material to 

another. 
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Figure 7.1 General 3-D view of the evolution of the pdf 

 

Since from the visual interpretation one cannot tell the exact difference between 

the curves representing the evolution of the pdf (e.g. between figure (7.2a) and 

(7.2b)) for different cases of grain growth (i.e. GBM or GBM-GRC), it is not 

necessary to show all the results for these cases of grain growth. Hence, only one 

of the corresponding plots is given and discussed. The differences between them 

are rather compared, (figure (7.3)). The 3-D view, figure (7.1), is not very 

informative. It only reveals the crest of the surface representation decreasing as 

time progresses. So, the 2-D views obtained as the intersection at different time 

instant of a 3-D plot are used to interpret the results. 
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Figure 7.2 2-D representation of the evolving pdf: (a) GBM only and (b) 

Simultaneous GBM-GRC 
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The plots in figure (7.2a) and figure (7.3a) correspond to the solution of the 

Fokker-Plank equation (714) when only two terms on the right hand side are 

considered. It can be seen from figure (7.2) that the true growth process has been 

revealed: some grains shrink while others grow.  This is portrayed by the fact that 

the curves flatten and the tails become heavier, indicating the creation of more 

smaller and larger grains at the expense of the initially highly frequent grains. It 

should be noted that this process of shrinkage-growth does not contradict the fact 

that the mean grain size increases continuously with time as confirmed by 

expression (7.21). The flattening of the curves also indicates that the volume of 

the system is conserved as the areas under the curves are equal. This is achieved 

by the normalisation of the pdf function. 

 

It can be observed that many of the major attributes of grain growth, such as self 

similarity (probability density approaching a stationary one), can be predicted by 

the solution of the Fokker-Planck-Kolmogorov equation. The self-similar 

behaviours of the system can be clearly seen as the pdf curves evolve. They 

become closer and closer as time progresses. The peaks decay and the evolution 

can be represented by a self-similar expression. 

 

The evolution of the pdf depends on the initial dispersion of grain size in the 

material. One can also see from figure (7.3a) that in nanomaterials, the grain size 

probability distributions that start with lower dispersion have pdf curves that are 

correspondingly narrower than those of system with high initial dispersion, figure 

(7.3a). This, then, reveals that the grain growth rate in such a system with low CV0 

is slower than for system with high CV0. This is clearly a true practical revelation 

as grain growth for such a low CV0 nanomaterials is dominated by GRC process 

accompanied by little GBM process (for GBM process, larger grains consume 

smaller grains). For higher initial CV, both mechanisms of growth are present, 

though GBM is highly favoured.  
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Comparing grain growth due to GBM mechanism only and a simultaneous GRC-

GBM mechanism, it can be observed that nanomaterials having the same initial 

dispersion in both cases have the pdf curves that are wider for the simultaneous 

system than for the only one system, figure (7.3b). The curve denoted as “total” 

represents the solution of the Fokker-Plank equation (7.14) when two more terms 

are added. 
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Figure 7.3 Comparing the evolution of pdf (a) low and high CV0 for GBM case, 

and (b) high CV0 for both GBM and simultaneous GBM & GRC 

 

 

7.1.1 GBM only at scaling state 

 

The drift and diffusion terms are not dependent explicitly on time. Since the grain 

growth due to GBM only homogenises (i.e. dynamical system is asymptotically 

stable) as t→∞, the probability density approaches a stationary one, with the 

stationary density function q
s
{r}(r) which is independent of time and of the initial 

density q
0

{r}(r). Hence, equation (7.14) reduces to  
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Thus, 
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Considering conditions (7.11) and (7.12), the solution to equation (7.27), which is 

first-order, ordinary non-homogeneous differential equation, is found by means of 

a standard method, [16], to be  
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where yc=Ky, C is obtained from the normalisation condition of pdf and a can be 

varied. If a
2
=r, then the pdf 
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is a Weibull distribution. But for constant diffusion term, the expression (7.27) 

results in a different distribution. Thus, the probability distributions are different 

as the functional form of "a" varies.  

 

Remarks: Starting with an initial lognormal distribution or normal distribution of 

grain size, the grain growth parameters have been calibrated such that the grain 

size pdf evolves as lognormal distribution till the scaling (steady) state. At this 

point, it cannot be stated that the initial probability distribution of grain size does 

not have an effect on the way the pdf evolves and, consequently, the asymptotic 

pdf. Also, these results are obtained from the specific diffusion and jump terms. 

This obviously has some influence on the results as it can be testified by the case 

above, “GBM only at steady state”. This, thus, necessitates research on the types 

of fluctuation terms that best reflect the result of the process of 

production/processing of nanomaterials. Also, neglecting higher order terms may, 
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obviously, have an effect on the results. It could not be stated how many terms 

have to be considered so that the solution should be accurate enough. Thus, 

instead of using a Taylor series expansion to simplify the jump probability term, a 

different approach which might not invoke infinite series and hence, truncation 

may be more beneficial.  

 

We now have some knowledge of the evolution of the microstructure/grain sizes 

in nanomaterials. As mentioned in preceding chapter, the grains sizes observed in 

most experimental works do not attain the sizes predicted by the existing model 

and laws. Establishing the relationship between the evolution of the internal 

microstructures and the material properties is an issue of interest in the present 

project as well as in Materials Science and Engineering.  To predict the materials 

properties more accurately, it is necessary to have a sound knowledge of the 

microstructure evolution. The next chapter presents another further effort to 

improve on the correlations between the modelled grain size statistics and 

experimentally observed data.  
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8 IMPROVING ON CORRELATIONS BETWEEN MODELLED GRAIN 

SIZE STATISTICS AND THEIR EXPERIMENTAL COUNTERPARTS 

DURING GRAIN GROWTH IN NANOMETALS 

 

Observed grains in polycrystalline nanomaterials do not grow to the sizes 

predicted by existing models. Some models even ignore other grain growth 

mechanisms that should have additive effects on the modelled grain sizes and, 

hence, imparting further departures to such models from the experimentally 

observed grain size evolutions. Isothermal grain growth in polycrystalline nano-

materials has been frequently analysed by using the isotropic Hillert’s model, 

[35], to predict the power law kinetics, [23,26]. It has been observed that grain 

sizes predicted by the power law interpretation of grain growth kinetics are often 

far greater than those observed in engineering alloys and even commercially pure 

materials, [23].  

 

These observed departures rationalize the need to modify the existing models. 

Amongst the modifications is the model developed in CHAPTER 6, which 

included misorientation angle driven Grain Rotation Coalescence mechanism 

(GRC). In this model of CHAPTER 6, while analysing isothermal grain growth 

by curvature driven Grain Boundary Migration (GBM), the GB mobility was 

considered to be constant. There are many evidences that the energy required to 

activate isothermal grain growth in polycrystalline nanomaterials increases with 

increasing grain size. Jiang et al, [51], proved that the dependence of the 

activation energy, Q, for the GBM process (GB mobility) on grain size is given by    
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−∞=

1/

1

3

)(2
exp)()(

0rrR

S
QrQ vib

            (8.1) 

 

where )(∞Q  is conventional activation energy, R is ideal gas (Boltzmann’s) 

constant, )(∞vibS  is vibration part of the over all (conventional) melting entropy 

mS , r is grain size and r0 is radius of a nanoparticle where almost all atoms are 
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located on the surface. It has been found that except for semiconductors 

mvib SS =∞)( , for nanostructured materials r0=6h0 and for nanometals h0 is the 

atomic diameter, [3 and ref. therein].  

 

Due to the Arrhenius type of relationship between the grain boundary mobility 

and activation energy, the grain boundary mobility decreases during isothermal 

grain growth i.e. the GB mobility is expressible as a function of Q by the 

Arrhenius relationship as, [36,51], 

 

[ ]RTrQMTrM )(exp),( '

0 −=                (8.2) 

 

where '

0M  is the pre-exponential mobility constant. According to Zhao, [3 and ref 

therein], )()( rRTrQ mα , )()( ∞∞ mRTQ α  and )()()( ∞∞=∞ mmm STH , where )(rTm  

is the melting temperature of the material with grain size r, )(∞mT  is the 

conventional melting temperature and )(∞mH  is the conventional melting 

enthalpy (enthalpy of fusion). 

 

In the present chapter, an extension of the previous model of CHAPTER 6, is 

proposed by studying isothermal grain growth in nanocrystalline aluminium 

taking into consideration the GB mobility varying with grain size. 

 

Substituting (8.1) into (8.2) will lead to a result that is cumbersome to analyse 

stochastically. Simplification can be achieved by using homogenisation theory. 

Since the melting temperatures of materials decrease with grain refinements, [3], 

nanostructured materials can, without loss of generality, be assumed to be made 

up of “large” grains. Let RSA vib 3)(2" ∞=  and RTQB )(" ∞= . By twice 

employing the Taylor series expansion of the exponentials in the result of the 

above substitution, it follows that  
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And expanding 
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 as function of 1/r using the 

Taylor series leads to 
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where  [ ]TTMTM m )(exp)( '

00 ∞−=  and RThC mH 04= . 

 

As such, the current modified model of grain growth is then proposed to be 
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where rc is the local critical grain size, A and B are constants, dW(t) and dN(t) are 

respectively the increments of the Weiner and the stochastic counting processes 

within an infinitesimal time interval. On the right hand side of (8.4), the first term 

is the drift, the second and third (last) terms account for the fluctuations in grain 

size due to GBM and GRC mechanisms respectively. 

 

The expressions governing the evolution of the statistical moments are then 

obtained from expression (8.4) using the Ito’s Differential Rule and Equations for 
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Moments, [16-20]. These give 
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where the symbol ...  stands for expected value, v(<r>,t) the rate of coalescence 

events of grains. In obtaining and analysing expressions (8.6) and (8.7), it should 

be noted that GB mobility is a function of the grain size but statistically 

independent of that grain size. This is because in an aggregate, a grain is 

surrounded by neighbours which impose restriction on its evolution (growth). The 

“effective” GB mobility depends on the “effective” interactions with, and hence, 

the “effective” size of the neighbours. This effective size of the neighbours is 

called local critical grain size which, in turn, is also statistically independent of 

the grain size, [CHAPTER 6]. The lognormal distribution of grain size, 

[44,CHAPTER 7], is used. 

 

 

8.1 Application of Proposed Model on Aluminium Sample 

 

The model proposed in this chapter is applied to nanocrystalline aluminium. The 

parameters employed in testing the model are those possessed by conventional 

materials. The rate of coalescence events of grains has been established in 

CHAPTER 6 to be 
m

rCCtrv 1),( =  where CC=constant and m depends, 

[38], on the type of accommodation under consideration (e.g. m=5 for 

accommodation by GB diffusion and m=4 for accommodation by dislocation 

motion or lattice diffusion). m=4 is used in the present work.  The properties of 

aluminium used in computing the simplified forms of expressions (8.6) and (8.7) 

are gas constant R=8.3145J-K
-1

-Mol
-1

, initial mean grain size nm 300 =>< r , 
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nm 25.00 =h , K 47.933)( =∞mT , -1KJmol 71.10)( =∞mH , 4.0)( 0 =rCV , 

-12'

0 snm 01.0=M , 90.0−=A , ><>=< rrc 95.1 , CC=12 and 410−=B  .  

 

In this report, 
iT  stands for the condition where the material sample is annealed at 

temperature "i" Kelvin and infT  for large annealing temperature, thus, leading to 

constant GB mobility as grains grows (i.e. infT  represents the previous model). 

Reports are made on different mechanisms of grain growth. The effect of 

changing the annealing temperature, but still maintaining isothermal conditions, 

on the grain growth parameters has been tested. It can be observed that the higher 

the annealing temperature the higher the growth rate, and hence, the maximum 

attainable grain size after some fixed time interval. In the present work, the 

annealing temperature has no effect on grain growth due to GRC only. The 

present results show remarkable departures (reductions) from results of the 

previous model, and hence justifying the observations made by Morhac et al, [26].   
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Figure 8.1 (a) Evolution of mean size, E[r]; (b) mean area, E[A]; (c) comparison 

with previous model 
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At comparatively low annealing temperature, T500, the ratio of “activation energy” 

– to – “temperature” (energy required to activate GBM) is high leading to low GB 

mobility. Under such condition, the evolution of the average grain size, E(r), due 

to GRC only is initially higher than that due to GBM only. Maintaining this low 

annealing temperature and allowing the grain growth process to continue for a 

very long period leads to a change of situation. The evolution of E(r) due to GBM 

only now becomes larger than that due to GRC only. The physical implication of 

this is that as the grains grow larger, it becomes difficult for them to rotate. Thus, 

GRC processes are tremendously slowed down making GBM process to be now 

dominant, Fig.8.1(a). The evolution of mean grain area, E(A), due to GRC is 

greater throughout than that due to GBM. This is attributed to the fact that the 

mean grain area is not given by the square of E(r), i.e. ( )22 )( ><>≠< rr .  The 

evolution of the E(r) due to simultaneous GBM and GRC (Total) is higher than 

that of any of the mechanisms alone throughout the period.  
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Figure 8.2 Evolution of grain boundary mobility, (a) at T500 and (b) at T900 

 

When annealing the nanocrystalline aluminium sample at as high as 900K which 

is much closer to the melting temperature of a conventional aluminium sample, 

the evolution of the mean grains size is still much smaller, for the present model 

than for the previous model. But the evolution of E(r) (as well as E(A)) due to 

GBM is now larger throughout the entire time range than that due to GRC. This is 

due to higher GB mobility coupled with the inherent difficulty for larger grains to 
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rotate when the grain sizes become larger. It is observed that as the grains grow, 

the GB mobility decreases under both temperature conditions though their values 

corresponding to the same time interval are different, Fig.8.2.  The results then 

show that for practical conditions, there is a great reduction of the extent to which 

grains grow. See Fig.8.1(c) where results from the present model are compared 

with those of the previous model. The percentage deviation of E(A) incurred is 

approximately twice that of E(r). The evolution of the E(A) is not linear for 

different temperatures. This indicates departure of results of the present model 

from the parabolic law or any law of grain growth with varying temperature, also 

see Fig.8.3(b). 

 

 

Fig.8.1(a) and Fig.8.1(b) indicate that the evolution of the grain size dispersion, 

CV(r), plays an important role in the characterisation of the microstructure 

evolution. As can be seen in Fig.8.3(a), overlaying the plots of CV(r) for all of the 

different mechanisms of grain growth is not quite informative since the range of 

values for the different mechanisms is wide and the rate of variation of the grain 

size due to the different mechanisms are not the same, thus, making some plots 

(Total at Tinf and GBM only at Tinf) to appear to be linear which are unrealistic, 

Fig.8.3(b). It can be observed from Fig.8.3(a) that when grain growth is due to 

GRC only; then CV(r) rises steadily to homogeneity. This steady increase in 

CV(r) due to GRC has also been observed practically, [37,38]. This is because in 

nanomaterials with little or no dispersion of grain size, the rotation-coalescence of 

grains can start off dispersion which will increase with more coalescence of 

grains. When grain growth is due to GBM only, the CV(r) decreases steadily to 

homogeneity. This is because for GBM only larger grains gradually consume 

smaller grains, thus, decreasing steadily the CV(r). This steady decrease is greater 

for higher annealing temperature due to the fact that the GBM process is more 

prominent at higher temperature. 
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Figure 8.3 Evolution of CV(r): (a) all mechanisms of grain growth, (b) and (c) 

Total and GBM only 

 

Due to the fact that both mechanisms of growth take place simultaneously, there is 

an initial increase in CV(r) of the Total process, followed by a steady decrease to 

homogeneity. The extent to which the CV(r) rises before decay depends on the 

amount of contribution made by each mechanism to the total grain size. At low 

annealing temperature where contribution is mostly due to GRC, there is a 

comparative greater rise in the CV(r) for the total process before decay. 

 

The characterisation of other grain growth parameters, such as grain growth 

mobility K and grain growth exponent, n, can be obtained from the power law 

kinetics which mostly reports on the time evolution of the E(r), with E(r)0 being 

the initial mean grain size, given as, [23,26] 

 

ntrErE K )( )( 0 +=                    (8.8) 
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In the case of GRC only process at constant CV(r)0, 
4.0nm.s20.0 −=K  and n=0.4. 

At constant CV(r)0, both K and n strongly depends on the annealing temperature 

when grain growth is due to GBM only and Total processes. For these two latter 

processes at low annealing temperature, there is a great difference between the 

values of the same parameter. They approach each other at high temperature. The 

variation of n with temperature shows departure of results of the present model 

from any law of grain growth e.g. parabolic law. It should be observed that as the 

annealing temperature gets larger, grain growth approaches the parabolic law i.e. 

n approaches the parabolic law value of 0.5 for both mechanisms of growth. Thus, 

the relationships between the annealing temperatures and the grain growth 

mobility as well as the grain growth exponent have been revealed.  
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Figure 8.4 Relationship between annealing temperatures and (a) grain growth 

mobility, K, (b) grain growth exponent, n  
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Figure 8.5 Evolution of material melting temperature, Tm, against (a) mean grain 

size, E(r) and (b) Time 
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A property of a material of interest in nanoscience and nanotechnology is that the 

melting temperature, )(rTm , of the material decreases as the grain sizes in the 

material decrease. From the relationship )()( rRTrQ mα  and expression (8.2), the 

evolution of )(rTm  is given in Fig.8.5(a) given by 
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Note that both the mean grain size and grains size dispersion play vital roles in the 

determination of the melting temperature of the material. This, thus, establishes 

the relationship between the melting temperature of the material and the evolving 

grain size. 

 

A model that reveals improved correlations between the modelled material 

properties and the experimental data has been proposed and tested. In the 

following chapters, the efforts of predicting material properties from the 

knowledge of the evolving microstructure are then be undertaken.                      



 

 111 

9 THE EFFECT OF GRAIN SIZE DISTRIBUTION ON MECHANICAL 

PROPERTIES OF NANOMETALS 

 

Predicting material properties from the knowledge of the internal microstructures 

is attracting significant interest in the fields of Materials Design and Engineering. 

The most commonly used expression known as Hall-Petch Relationship (HPR) 

reports on the relationship between flow stress and average grain size. On the 

other hand, there are many evidences that other statistical quantities of grain size 

distribution in materials may have impacts on the mechanical properties. These 

could even be more pronounced in the case of grains of the nanometer size, where 

the HPR is not valid anymore and the Reverse-HPR is applicable. The present 

chapter seeks to justify that both the mean grain size and grain size dispersion 

simultaneously play vital roles in the design of the required materials properties. 

 

The mechanisms and impacts of plastic deformation on materials properties are 

well documented in literature [52,53,54]. It has been observed, [52], that when 

operating under low strain rate, the initially coarse grains deform mostly by 

dislocation glide and the dependence of properties on microstructures follows so-

called Hall-Petch Relationship (HPR). Maintaining this low strain rate and 

refining the grains, in most cases, to the level of 10nm-50nm leads to Reverse-

HPR dependence of the properties with deformations being the “Coble Creep” 

grain boundary diffusion and “Nabarro-Herring Creep” grain interior diffusion 

and dislocation motion. It is observed that there is a smooth transition of the 

material properties from HPR to Reverse-HPR i.e. the property curve is a smooth 

one with no inflexion (sharp) point at the transition point. This can be explained 

by the fact that at the transition point, the properties become stationary with 

respect to varying grain sizes as contribution from deformation due to dislocation 

glide is equal to that from both Coble and Nabarro-Herring Creeps. 

 

As such, a mathematical expression representing this deformation-to-properties 

phenomenon should be a single continuous expression. It has been postulated that 

the HPR expression that is valid for coarser grains is not more valid for finer 
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grains because the constant of proportionality in the HPR that depends on the 

resistance of the grain boundary to dislocation movement is not constant anymore 

as refinement of the grain sizes continues, [3]. The paper, [3], then arrives at a 

single modified expression that represents the size-property dependence (both 

HPR and Reverse-HPR) throughout the entire range of deformation, given as 

 

32'

0 )()()( 1/21/21/2 dddd −−− −−+= CBAσσ             (9.1) 

 

where tK+= 0

'

0 σσ  is the conventional yield (proof) stress, dKA =  is the 

conventional (or HPR) proportionality constant, [ ]rmt RThHKB /2= , 

[ ]rmd RThHKC /2= ,  d is the grain size, Kt is a constant,  h is atomic diameter in 

the case of metal, Hm is the conventional melting enthalpy, R is ideal gas constant, 

Tr is the room temperature, td KK 100>  and tK100 >σ . 

 

These expressions for the dependence of material properties on microstructures 

(e.g. modified HPR) have previously been reported for average grain size only. 

However, the average value is not the only statistical quantity that fully represents 

the grain size distribution in any material, [CHAPTER 6, CHAPTER 7, 

CHAPTER 8]. The word, “mean”, is used on several occasions to indicate that a 

“change” should indicate an effective change of the statistics. This is because in 

nanomaterials, a particular grain, at an instant, can be seen to be growing while 

later it will be shrinking but the statistics of the entire material remains constant. 

So, it is necessary to extend microstructure-property relationship to take into 

account more and proper information about the grain size distribution. 

 

During experimentations, the mechanisms of deformations in materials are 

analysed by monitoring the behaviours along grain boundaries and grain interiors. 

It is found that nanostructured materials have larger “grain boundary layers”-to-

“grain sizes” ratio as compared to conventional materials. Working with a 3-D 

sample composed of a larger (possibly infinite) number of grains, it is time 

consuming and, of course, a tedious task to gather accurate information about all 
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the grains. Hence, it is, without loss of generality, logical to assume that the 

dependence of materials properties on microstructures holds for “local 

information about a grain” or for “individual grains”, and the knowledge about the 

grain size distribution then play a vital role. This assumption does not introduce 

any ambiguity about the microstructures-properties dependence since in 

polycrystalline nanomaterials the separations between particles/grains are 

relatively small compared to the case of small particles within a bulk matrix 

which may, in fact, exhibit different properties dependence where the separations 

between these grains are relatively large, [55].  The assumption introduces the 

need to assess the statistics of the materials properties within the materials. In the 

present chapter, a statistical model of the relationship between flow stress and 

grain size distribution is proposed. 

 

Expressions for the instantaneous values of the statistics of material properties are 

obtained from expression (9.1). For example 

 

/21/2 dddd 31'
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( )( ) 1)(
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where the symbol ...  stands for expectation, which are obtained based on the 

grain size probability distribution under consideration. Thus, knowing the 

moments of the “grain size”, the moments of the “material property” can be 

found. However, when analysing the time evolution of the statistical moments of 

the mechanical property, the derivations are different from that of expressions 

(9.2), (9.3) and (9.4). Analysing this time evolution is the subject of the next 

chapter. 
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The probability distribution of grain sizes in nano-crystalline metals is reported to 

be of varied form: approximately lognormal, normal, Weibull, Rayleigh and so 

on. The various distributions have different statistical properties. It is 

acknowledged that their effects on the modelled material properties may be 

different. The present chapter utilises the lognormal distribution of grain sizes in 

polycrystalline nanomaterials mostly reported from both theoretical and 

experimental findings, [45, 46, CHAPTER 7]. Let µn be the “n
th

 moment of grain 

size distribution”, ℜ∈n  i.e. µn= E[d
n
]. Then, for a lognormal distribution, 

expressions (9.2) and (9.3) can be simplified by using, (deduced from [47])   
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9.1 On the Design of the Required Materials Properties 

 

This proposed model was used to predict mechanical properties in aluminium and 

copper. The model considers different deformation mechanisms. Room 

Temperature value of 300K and Gas Constant value of 8.31J-K
-1

-mol
-1

 with the 

data of Table 9.1 were used during the analysis. As already remarked earlier, it is 

unambiguous to report in the present chapter on the variations of the statistical 

quantities such as mean value and dispersion. The results obtained with the model 

as indicated in Fig.9.2, Fig.9.3 and Fig.9.4 show that both the mean grain size, 

E(d), and grain size dispersion, CV(d), together play vital roles in the design of 

the required/desirable materials properties, σ.  

 

Table 9.1  Conventional material properties 

    Parameters 

Metals 

'

0σ  

(MPa), 

[55] 

Kd 

(MPa.nm
1/2

) 

tK  

 

0σ   

(MPa) 

h 

(nm),  

[56] 

Hm 

(KJ.mol
-1

) 

Aluminium, Al 16.7 1301.77 1.30 15.40 0.250 10.71 

Copper, Cu  33 4277.39 2.85 30.15 0.270 13.26 
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Figure 9.1  Dependence of mean yield stress on both CV(d) and E(d) 
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Figure 9.2 σ versus E(d) at some constant values of CV(d) - CV(r) and E(r) 

together play vital roles in designing required mechanical properties 
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Figure 9.3 σ versus CV(d) at some constant values of E(d) - CV(r) and E(r) 

together play vital roles in designing required mechanical properties  
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The dependence of materials properties (mean yield stress) on CV(d), (Fig.9.1 and 

Fig.9.2), is similar to the dependence on E(d), (Fig.9.1 and Fig.9.3), e.g. the 

evolution from HPR to Inverse-HPR equally holds for CV(d) as it does for E(d). 

Hence, it is logical to report, in this report, on the dependence of the property on 

just any one of the variable. It can be seen that for constant E(d), the material 

property increases with decreasing CV(d) up to a certain value of the CV(d) 

where the property starts decreasing while CV(d) continues to decrease, (Fig.9.1 

and Fig.9.3). It can also be seen from the figures that the values of the mean grain 

size at which turning point occurs is not the same for different materials (e.g. for 

CV(d)≤1.5, it is between 8.5nm-40nm for aluminium and 10nm-60nm for copper) 

and within a single material these values vary with the dispersion of grain size (in 

aluminium, for example, it is about 8.5nm at CV(d)≈0 to about 40nm at 

CV(d)≈1.5). 

 

 

 Figure 9.4 Compiled yield stress versus grain size plot for copper from various 

sources ranging from coarse to nanograin size by Meyers et al, [58]. 

 

It has, thus, been revealed in the present chapter that materials with 

simultaneously very low dispersion and very low mean grain size (but not too low 

beyond the region of the turning point with respect to E(r)) have much 
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better/enhanced mechanical properties. It can be observed from Fig.9.1 and 

Fig.9.3 that refining samples from the same material type to the same mean grain 

size by different deformation mechanisms (different mechanisms of deformation 

results in different, for example, grain size dispersion) can end up with different 

values for the property. This has been observed  experimentally, [52,58], where 

for a single material, such as copper, different data have been obtained for the 

dependence of mechanical property on mean size e.g. different fitting constants 

and differing maximum attainable mechanical properties, see Fig.9.4. These 

differences in the parameters are attributed to differing strain rates at which 

deformations take place, [52]; the use of single sample subjected to repeated 

annealing to change the grain size, [58], and so on. 

   

On the varying strain rate: No Reverse-HPR was observed while deforming 

copper at high strain rate throughout the entire range of deformation, [52]. It was 

further observed that the flow stress was larger for higher strain rate for all size 

ranges, [52]. Considering these two facts and Fig.9.1, one should be able to 

suggest the effect of strain rate on microstructure characteristics. Higher 

deformation strain rate has higher tendency to refine the microstructures to have 

mean size and dispersion values that are constantly located close to the point 

where the corresponding material yield stress has peak (higher) values, (also see 

Fig.9.5). It can be said, in other words, that high strain rate has the tendency of 

effecting larger changes (or reduction) in the grain size dispersion in the material 

compared to low strain rate. When (conventional) material with initially low 

dispersion is subjected to high deformation strain rate, the constituent size 

dispersion quickly rises to a maximum value which then decreases progressively 

as the refinement continues. This is then an open task to find out, both 

experimentally and theoretically, how the grains size dispersion evolves (varies) 

with different but specific deformation (strain rate). In the opposite direction of 

microstructure evolution, grain growth, the above suggestion of the nature of 

evolution of CV(d) was observed [CHAPTERS 6, CHAPTER 8] and was 

attributed to the rotation-coalescence mechanisms of grains. 
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The plot of Fig.9.5 may be represented mathematically as  
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Figure 9.5 Combination of CV(d) and E(d) values that produce material whose 

property follows the crest of the plots in Fig.9.1 

 

where for copper 90.9)( 0max, =dE , M=14.46, n=2.61 and for aluminium 

58.8)( 0max, =dE , M=9.70 and n=2.72. 
max)(dE  is the corresponding value of the 

mean grain size required to combine with the given grain size dispersion to 

produce materials with property on the peak of the surface in Fig.9.1. 0max,)(dE  is 

the minimum grain size below which the material property decreases with 

decrease in mean size irrespective of the grain size dispersion. Interpret Fig.9.5 as 

follows: for constant CV(d) and with decreasing mean grain size, the mechanical 

property increases above the curve while it decreases below the curve, and for 

constant E(d) and for decreasing CV(d), the property increases below the curve 

while it decreases above the curve. 

 

The present study shows that the departures of experimental data from the path 

predicted by a relationship are due to change of design strategies or inconsistent 

design procedures. Notice from the Fig.9.3, for example, that at a CV(d)≈2.5, a 

nanostructured copper with mean grain size 160nm has better mechanical property 

than the one with mean size 50nm. Maintaining the mean grain sizes in these two 

samples constant and reducing CV(d) to CV(d)≈0.5 now leads to a reverse 

situation; where the 50nm mean-grain-size-copper now has better property than 
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the 160nm one. This actually indicates that there is a crossing point, where the 

two different samples of Copper have the same mechanical property at the same 

CV(d). Thus, one can only decide on the fabrication procedure that produces a 

material with more enhanced property if, in the course of deformation using each 

procedure, reports are made on simultaneous evolutions of the mean grain size 

and grain size dispersion.  

 

It has, thus, been demonstrated that all the parameters of the grain size distribution 

play, generally, vital roles in the design of the desired materials mechanical 

properties. The next chapter deals with the study of how the material properties 

evolve with some specific/detailed nature of microstructure evolution.  



 

 120 

10 STATISTICAL APPROACH TO CHANGES IN MECHANICAL 

PROPERTIES OF NANO-CRYSTALLINE MATERIALS INDUCED 

BY GRAIN GROWTH 

 

Polycrystalline nanomaterials can be produced through different processing 

routes. The most popular classification of the fabrication methods are the “top-

down” and “bottom-up” techniques. Current development enables only the “top-

down” method to produce bulk materials. The main process dedicated to the 

fabrication of nanomaterials by “top-down” techniques is the strain refinement. 

However, the plastic deformation may be valid in many ways. The consequence 

of the different processing routes is that, nanomaterials having the same mean 

grain size may have different grain size dispersion and, hence, different material 

properties. The present chapter presents further efforts, the results of which will 

be necessary for use in Materials Science to deduce materials properties from the 

knowledge of the internal microstructures.  

 

Nano-materials have emerged recently as a new class of solids which are 

characterized by microstructures belonging to the length scale below 100 nano-

metres, called the nanomaterial range of length scale. An important group 

amongst these materials is nano-crystal. These reduced dimensions impart to 

nano-crystals special physical, mechanical and chemical properties. 

Nanocrystalline metals can be produced through different processing routes and 

conditions. These result in polycrystalline nanometals that have randomly 

distributed and orientated grains whose sizes are random too. The consequence of 

different processing routes is that different nanomaterials, in general, having the 

same mean grain size, E(r), may vary in their grain size dispersions, CV(r). There 

are many evidences to substantiate that nanomaterials with the same E(r) but 

having different CV(r) will have different mechanical properties, 

[52,59,CHAPTER 9]. It was further demonstrated in CHAPTER 9 that in the 

course of fabricating nanomaterials through different processing routes, there is a 

coincidental point (crossing over point) where the different samples having 

different  mean grain size but with the same grain size dispersion will possess the 
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same materials properties. It is thus imperative to study the impact of detailed 

microstructure evolutions (i.e. simultaneous evolutions of E(r) and the 

corresponding CV(r)) on the materials properties.  

 

The impacts of deformation strain rates on the microstructure evolution and 

mechanical properties are outlined in CHAPTER 9 and in [52].  Here, the 

summary of the dependence of some of the deformation mechanisms on 

microstructure sizes is presented. During experimentations, the mechanisms of 

deformations in materials are analysed by monitoring the activities along grain 

boundaries (GB) and in grain interiors (GI). A universally acceptable observation 

is that nanostructured materials have larger GB layer volume fractions whose 

values increase significantly as the grain sizes decrease through the nanometre 

range of length scale. Hence, in the nanocrystalline region, the microstructure may 

be regarded as a dual phase structure of GI and GB layer; and as such can be 

analysed with the aid of the phase-mixture model.  

 

Engineering materials (having coarse grains) contain large amounts of flaws such 

as dislocations and micro-cracks in the GI. When subjected to refinement (or 

loading), such as the Severe Plastic Deformation (SPD), the initially coarse grains 

deform mainly by motion of dislocation from the GI to the GB with very small 

diffusion of atoms at GB, [52]. There are further reports that there are dislocation 

pileups at the GB during the deformation processes as the GBs act as obstacles to 

dislocation glide, [59]. Dislocations require greater amounts of energy to 

overcome these barriers to motion. Since dislocations are carriers of plastic 

deformation, this mechanism manifests itself macroscopically as an increase in 

material strength as the grain sizes decrease or with increasing dislocation density 

at the GB and/or increasing opposition to dislocation motion, represented by the 

HPR. 

 

Further refinement of the materials beyond certain mean grain size, called 

refinement critical grain size, leads to dominant Coble-Creep GB diffusions of 

atoms or sliding of atomic planes and minor Nabarro-Herrings GI diffusion  with 
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very little dislocation motions. At very small grain sizes all deformations are 

accommodated at the GBs that now have larger volume of atoms. This brings 

about softening due to the weakening effect of the GB and the triple junctions, 

thus, imposing a limit on how strong the nanocrystalline metals may become. In 

this case, the material strength decreases with decreasing grain sizes, represented 

by Reverse-HPR. Others have ascribed the softening of materials with very fine 

grain sizes to poor sample quality (unrecognized pores in samples) and the 

suppression of dislocation pileups, [59]. Therefore, the strengthening of 

conventional engineering materials may be based on appropriate engineering of 

the microstructures that hinders the formations and propagation of flaws and 

minimises the GB diffusion/sliding by possibly reducing the GB volume fraction. 

It has been observed in CHAPTER 9 that this can be achieved by the processing 

routes that effect greater reductions in grain size dispersion during refinement.  

 

In the present chapter, the impact of detailed microstructure evolution on the 

mechanical properties of nanocrystalline materials is studied. This deals with 

microstructure-property relationship induced by grain growth whose driving force 

is high concentration of internal energy. It is assumed that such relationship 

(normal/abnormal HPR) holds for individual grains. The assumption rationalizes 

the need to assess the statistics of the materials properties within the materials. 

The assessment may lead to the understanding of some key facts about the 

modelled material properties. The phase mixture model is known that considers 

the microstructure to be a dual phase structure. Previously, in such a model, the 

iso-strain or iso-stress, [52], condition of the two phases is assumed, and the 

complete interactions between different grains are not dealt with. In reality, the 

hard and soft grains may react differently to the applied load and, furthermore, the 

larger softer grains might predominantly accommodate the plastic strain in the 

materials. The interactions between grains may be accounted for in this present 

approach since the expression governing the increment of the individual grain 

stress is made up of also local parameters such as local-critical grain size, 

curvature driven GB mobility function and misorientation angle driven grain 

rotation-coalescence mobility constant.  
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A modified expression representing the microstructure-to-properties relationship 

throughout the entire range of microstructure evolution has been established, [3], 

to be  

 

32'

0 )()()( 1/21/21/2 rrrr −−− −−+= CBAσσ             (10.1) 

 

where tK+= 0

'

0 σσ  is the starting yield (proof) stress for dislocation movement, 

dKA =  is the conventional (or HPR) proportionality constant, 

[ ]rmt RThHKB /2= , [ ]rmd RThHKC /2= ,  r is the grain size, Kt is a constant,  h 

is atomic diameter in the case of metal, Hm is the conventional melting enthalpy, R 

is ideal gas constant, Tr is the room temperature, 
td KK 100>  and 

tK100 >σ . 

 

In our recent model of grain growth developed in CHAPTER 8, a stochastic 

expression governing the incremental change of individual grain size in nano-

materials is given as: 
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In this expression, M(r,t) is the GB mobility function, rc is the local critical grain 

size, D is constant, a is a constant that is related to the size of the rotating grain, 

dW(t) is the increment of the Wiener process and )()()( tNdttNtdN −+=  is an 

increment of a stochastic counting process (i.e. the number of coalescence events) 

within an infinitesimal time interval.  

 

The present chapter, in turn, addresses the evolution of “mechanical” properties of 

nano-materials undergoing changes in their microstructure. The stochastic 

differential expressions governing the increment of individual grain yield stress of 

Nano-Poly-Crystal (NPC) due to grain growth are obtained from expressions 

(10.1) and (10.2) by the Ito’s differential rule [16-20]. It follows that 
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where ( )1−= bAE , ( )12 −= bBF , ( )13 −= bCG , ( ) 2/1
2

−+= ab  and dN(r,t) is 

the number of coalescence events of grains within an infinitesimal time interval. 

On the right hand side of expression (10.4), the first term accounts for the change 

of individual grain yield stress due to curvature driven grain boundary migration 

(GBM), the second term accounts for the random fluctuation in grain yield stress 

due to GBM and the last term accounts for the change in grain yield stress due to 

misorientation angle driven grain rotation coalescence (GRC). Expansions or 

simplifications of expressions (10.3)-(10.5) are found in appendix C. 

 

Assuming that the number of coalescence events of grains is independent of grain 

size, the evolutions of the statistical moments of grain size and grain yield stress 

are obtained from expressions (10.2) - (10.5). In deriving these results, one has to 
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take into consideration the fact that the size of a given grain is independent of the 

size of its neighbours.  Further simplification is made if one takes into account an 

experimental fact, that the probability distribution of grain size in polycrystalline 

materials, can be approximated by a lognormal distribution, [44,45,46,CHAPTER 

7].   

 

 

10.1 Salient Features of Mechanical Properties of Nanocrystalline 

Aluminium Samples 

 

The equations for statistical moment are solved simultaneously. The model was 

tested on samples of nanocrystalline aluminium with initial mean grain size, E(r)0, 

4nm and initial dispersion of grain size, CV(r)0, 0.3. The samples were annealed 

at the various temperatures as indicated on the plots. The parameters of grain 

growth and conventional Al sample employed are -1KJmol 71.10)( =∞mH , 

K 47.933)( =∞mT , K 300=rT ; R=8.31JK
-1

mol
-1

, 
m

r
CCtrv 1),( = , CC=12, 

m=4, nm 25.00 =h , -12'

0 snm 01.0=M , 90.0−=a , 410−=D , ><>=< rrc 95.1 , 

MPa7.16
'

0 =σ ,  3.1=tK  and 2/1
_77.1301 nmMPaKd = . 

 

Since it has been established that the different mechanisms of grain growth impart 

different and independent nature of evolutions to the mean grain size, E(r), and 

grain size dispersion, CV(r), [CHAPTER 6, CHAPTER 8], these different 

mechanisms are considered here to be different processing routes. Since at any 

instant, a material sample possesses a single value of E(r) as well as a 

corresponding single value of CV(r), 3-D plots are less informative (does not add 

any value to the results) and are not dealt with here. Rather, separate plots for the 

evolution of the mechanical property as functions of each of E(r), CV(r) or time 

are made, see Fig10.1, Fig.10.2 and Fig.10.3 On these figures σTot,T, σRot,T, σMig,T 

Mconst,T and Ti are respectively the material mechanical properties at temperature 

T Kelvin due to simultaneous GBM and GRC mechanisms, GRC mechanism 

only, GBM mechanism only, Total process if it considered that the GB mobility is 
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constant and Total process where the microstructure evolution is diffusive one 

only. The temporal evolutions of E(r) and CV(r) are not reported here as 

comprehensive analyses are found in CHAPTERS 6 & 8. The results obtained 

from the present model reveal many salient features of the mechanical properties 

of the aluminium samples. Different mechanisms of grain growth impart different 

nature of response on the material mechanical properties. The evolutions of the 

microstructures through different processing routes result in materials that have 

different properties whose nature of evolution are also different. Observe that the 

evolution of the material properties through different processing routes intersect 

each other as E(r), CV(r) or time progresses. Also observe that the value (e.g. of 

E(r), CV(r) or time) at which the maximum in material property occurs is not 

constant, and the maximum attainable material properties are not the same 

through different processing routes. In this project, these values are relatively 

closer to each other since the original samples had the same values of E(r)0, 

CV(r)0 and, hence, material property; and the turning points are quickly reached. 
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Figure 10.1 Temporal evolution of material mechanical properties: (a) short 

period, (b) long period and (c) different annealing temperature 
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Observe that the evolution of microstructures due to GRC mechanism results in 

material with much enhanced yield stress. One might be forced to wrongfully 

conclude that since the temporal evolution of the microstructure size due to GRC 

is smaller in most cases than that due to any of the mechanisms [CAHTPTER 6, 

CHAPTER 8], then it should impart higher value to the mechanical property. But 

from the evolution of the mechanical property as a function of E(r) or CV(r) 

(Fig.10.2 and Fig.10.3), one sees that at the same E(r) or CV(r) the material 

property due to GRC only is higher than that due to any of the mechanisms. It was 

observed in CHAPTER 8 that the GRC process effects greater changes in CV(r) 

than any of the mechanisms. Combining these facts and the observations made in 

CHAPTER 9 and in [52], the GRC process can be said to be as a result of high 

deformation strain rate. The Total process may be said to be as a result of 

relatively low deformation strain rate while the GBM process can be compared to 

the deformation at "varying" strain rate. The evolution of the yield stress due to 

GRC is higher throughout than that due to Total process, while that due to GBM 

is initially lower which rises to higher value before falling again to smaller value 

than those of the other mechanisms.  

 

The temperature dependence of the microstructure-property relationship follows 

different trends. This has also been observed and explained differently in 

literature. At higher temperatures, both the GBM and the total processes behave as 

if they are being operated at the same (low) deformation strain rate. 
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Figure 10.2 Variation of mechanical properties, σ, against mean grain size, E(r),  

(a) all grain growth mechanisms, (b) and (c) Total process and GBM only at 

varying temperatures 
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Figure 10.3 Relationship between σ and grain size dispersion, CV(r) 
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10.1.1 Normal temperature dependence of yield stress 

 

For a typical sample (Total process) at elevated temperature, the mechanisms 

responsible for the strengthening of the material become less fervent. This is 

because the diffusion activities and speed of dislocation motion are highly 

favoured. For such a sample, dislocations could cross-slip, and the strength 

increase observed at low temperatures due to dislocation pile-up would be 

defeated. It is also possible that the GBs and particle interfaces act as sinks for 

dislocations at high temperatures, further reducing the dislocation pile-ups. 

Another school of thought ascribed the decrease in yield stress to decrease in 

Hall-Petch coefficient which also has large strain rate dependence at elevated 

temperature, [61]. The conventional/normal temperature dependence occurs for 

Total process with decreasing GB mobility; see Fig. 10.2 (b) upper curves. 

 

10.1.2 Homologous temperature dependence of yield stress 

 

If the microstructure evolution is diffusive only, Ti, (e.g. deformations by GB and 

GI diffusions) with no GRC mechanism occurring, then it should be observed that 

an increase in the temperature leads to no change in the nature of the evolution of 

the mechanical property as a function of the grain size, see Fig.10.2(c) upper 

curve. This homologous temperature dependence/behaviour has also been 

observed by other researchers, [62,63], where at relatively high temperatures, the 

yield stresses of all their samples fall on the same value. The homologous 

temperature dependence is observed to occur for the total process where the grain 

growth is diffusive only and the GB mobility decreases with grain growth. 

 

10.1.3 Anomalous temperature dependence of yield stress 

 

It is observed that if the microstructure evolution is analysed based on the model 

where the GB mobility is constant with grain growth and at low strain rate, Mconst, 

then an increase in the annealing temperature results in an anomalous increase in 

material property; see Fig. 10.2 (b) lower curves. Several theoretical and 
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experimental works, [64-68], have been reported on this anomalous temperature 

dependence. A wide range of mechanisms and phenomena responsible for the 

anomalous temperature dependence of the yield stress is mentioned in the paper 

by Morris et al, [66].  The explanation given, [64], for such an anomalous 

behaviour is that an edge dislocation split into multiple dislocations, the edge 

dislocation immobilises and the immobilisation causes the mean free path of the 

edge dislocation to decrease with increasing temperature. Morris et al, [66], gave 

an explanation based on immobile vacancies with a prerequisite that the sample 

material be previously well annealed to "relax" any internal structure. It is 

explained, [65], that this is due to the removal of the thermally activated vacancy. 

The anomalous temperature dependence has been demonstrated to occur for the 

grain growth where the GB mobility is constant during growth. 

 

Thus, the conventional, homologous or anomalous temperature dependences of 

the yield stress have been revealed to be due to different nature of interactions of 

the microstructures during evolutions. A model of microstructure-property 

relationship based on the individual/local grain parameters has been established 

and verified. The evolution of the microstructure through different processing 

routes results in different materials (i.e. having, for example, the same mean grain 

size but different grain size dispersion) with different or the same mechanical 

properties. 
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11  DISCUSSIONS, LIMITATIONS AND CONCLUSIONS 

 

11.1 The Inherent Feature of Nanomaterials Microstructure is Random  

 

Topological randomness of the microstructure means that the number of faces per 

grain, the number of edges per grain and the number of corners (or vertices) per 

grain are random variables satisfying the self-consistency relationship. 

Furthermore, the microstructures in the materials have random spatial distribution. 

These imply that it is logical to characterise the microstructures and analyse their 

corresponding characteristics stochastically. The characterisations of the materials 

microstructures and the analysis of the microstructure characteristics in the 

stochastic sense entail the use of the random field variables that have the ability to 

handle continuous spatial variables, thus possessing the potential to capture the 

highly detailed local properties. Modelling using such an approach in the present 

project has revealed many prominent features of polycrystalline nanomaterials. 

 

 

11.2 Averaging Techniques  

 

In order to obtain the observed overall materials properties, the materials 

characteristics or features measured at the local level have to be averaged. The 

averaging technique used depends on the type of material property under 

consideration. When the overall material property is the one (e.g. stress) that is 

defined per unit value (e.g. per unit area), it has been logical to perform averaging 

based on the conventional (or first level) “averaging techniques” where, for 

example, the average of n numbers is obtained by the weighted sum of the n 

numbers followed by the division of the results by the sum of the weights (or 

frequencies). If the material property under consideration is such that its value is 

cumulative (e.g. total number of the faces of all the grain in the material or the 

total strain incurred during deformation), then higher level of averaging 

techniques has been employed, which involves the use of compound (marked) 

point fields. In the marked point field approach, each microstructure has been 
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assumed to possess some random feature (marked variable) which combines 

additively with those of the neighbours to form the property of the entire 

materials.  

 

It is acknowledged that there exists some sort of mathematical relationship 

between results due to first order averaging and those of higher order averaging 

e.g. relationship between the strain incurred by a material and the stress. In fact, 

during conventional experimentations, the strain incurred by the entire material 

may be measured by means of a strain gauge. The deformation of the strain gauge 

is then used to infer the strength of (stress in) the material. But in nanoscience and 

nanotechnology today, the stress applied to and the deformation incurred by each 

and every microstructure are being “measured”. The local strain (or local stress) 

can then be averaged to obtain the overall strain (or overall stress) by using the 

knowledge from compound point field (or conventionally).  

 

For example, for composite behaviour, the phase mixture model, [52], and the 

Shear Lag theory, [62], are known where load (or stress) is assumed to be 

transferred from one phase to the other through the GB i.e. specifically with the 

Shear Lag theory, load is assumed to be transferred between high aspect ratio 

reinforcement and the matrix by means of shear stresses at the particle-matrix 

interface. In this (and any other) case, the yield stress of the composite depends 

strongly on the volume fractions (conventional averaging quantity) of the phases 

which are aspects of the weighted average, and is given, in accordance with [62], 

as 
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where ymσ  is the yield stress of the unreinforced matrix, L is the length of the 

particle perpendicular to the applied stress, t is the length of the particle parallel to 

the applied stress, A is the particle-aspect ratio, and f is the particle-volume 
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fraction. 

 

The theorems of compound point processes have been used in this project to 

model the cumulative number of faces of the grains in the aggregate or material. 

The approach has proven that the statistics of the cumulative microstructure 

features cannot be obtained by intuitions by using the expressions that have been 

established under the chapter. Specifically, it has been found that these statistics 

of the overall features depend on the statistics of the number of microstructures 

(i.e. the density of the microstructures), the statistics of the features per 

microstructure (i.e. statistics of the marked random variable) and the size (i.e. 

Lebesgue Measure) of the aggregate or material. The result presented under the 

chapter has been at some time instant. If grain growth, that is a natural 

phenomenon in nanomaterials, were to occur, then the statistics of the feature per 

microstructure and consequently the density of the microstructure would evolve. 

This should lead to evolving cumulative features. Complete information about the 

evolution of the statistics of the cumulative feature can be obtained from the 

knowledge of grain growth defined as function of the feature per microstructure 

only, since the feature per microstructure has been proven to be mathematically 

related to the density of the microstructure. For example, the knowledge of grain 

growth depending on the number of faces per grain defined by Glazier et al [29-

31] may be used. This is subject to future task. 

 

 

11.3 Grain Growth Processes or Microstructure Evolutions 

 

Microstructure evolution and its impact on the material stability/property are 

playing central roles in the design and processing of materials. Knowing the exact 

nature of this microstructure evolution is thus imperative. Aspects of these 

evolutions whose mathematical models have been established are the grain growth 

processes. The detailed microstructure evolution (i.e. the detail evolution of the 

mean grain size and the corresponding grain size dispersion) due to grain growth 

is now being modelled.  
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In the present project, the previously/existing models of grain growth have been 

improved and tested on aluminium samples. The improvement entails including 

the Grain rotation Coalescence mechanism (GRC) in the grain growth models that 

has been previously neglected. The previous model has also been improved by 

incorporating the fact that, conventionally, the GB mobility is known to decrease 

with increase in grain sizes. Based on the fact that the grain size in “dispersed-

typed” nanomaterials is random, the stochastic counterparts of the improved 

expressions have been obtained by the addition of the fluctuation terms.  

 

The findings about grain growth, in the present project, reveal 

• improved correlations between the results of the proposed model and the 

experimental data,  

• that deviation from the parabolic law of growth may be due to varying initial 

coefficient of variation of the distribution of sizes of grains in the system, 

varying rate of rotation of the grains and the annealing temperature, 

• that grains in nanomaterials are more susceptible to growth at low 

temperature and even at low or no dispersion in size distribution as GRC 

mechanism has a higher mobility at low initial CV and, hence, a higher 

tendency to trigger growth and, hence, start up dispersion in size distribution, 

• that average rotation mobility contributes up to about 50% of the overall 

average mobility constant depending on the initial CV, 

• that for very high annealing temperature, grain growth approaches the 

parabolic law, 

• that the relationships between the annealing temperatures and the grain 

growth mobility as well as grain growth exponent 

• and that though the relationship between grain size and material melting 

temperature appears to be parabolic (or asymptotic), it should be modelled 

from the expression given in the project. 

 

Unfortunately, while testing the model proposed in this research project, the rate 

of coalescence events of the grains has been unaffected by changing the annealing 
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temperature. This has been due to the fact that two different, but contradictory 

reports were given in the literature, from the same group of researchers, about the 

dependence of the rate coalescence of the grains on the annealing temperature (i.e. 

about the parameter that depends on temperature). In one report, [38], it is stated 

that this dependence is given by 

 

  KTAC 1=                     (11.2) 

 

while in the other, [37], it is given by 

 

  
KT

A
C 2=                     (11.3) 

 

where the Ai are defined in the respective papers, K is the Boltzmann constant. 

The rotational mobility is defined as ( )n
rCrM =)( , where r is grain size and n is 

constant that depends on the type of GB accommodation mechanism under 

consideration. It is hoped that when a precise expression for the contradictory 

dependence (i.e. increasing in one and decreasing in the other) will be known, 

then further and better improvements will be achieved and more salient features 

may be revealed.  

 

It has been acknowledged in this report (chapter 6) that, in addition to GRC, other 

mechanisms of grain growth do take place. This includes the T2 event where a 

small three-sided grain disappears from the aggregate and the T1 event where 

grains translate to exchange neighbours. Though motivations have been given 

under that chapter for considering GBM only and/or GRC only, a careful 

consideration of other (neglected herein) mechanisms may reveal further useful 

information about grain growth. Such considerations are going to be subject the 

author’s planned future publications. 

 

The characterizing features of random microstructures such as the number of 

sides or number of triple junctions, s, per grain are mostly used when 
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undertaking 2-D space analyses; the number of faces, f, per grain are usually 

obtained from/for 3-D experimentations and analyses; and the size (radius) of a 

grain, r, is applicable for all the dimensional spaces i.e. 1-D, 2-D and/or 3-D 

analyses. The term, “size”, is used to represent Lebesgue measure which in 1-D 

size means length, it stands for area in 2-D and for volume in 3-D and so on. 

Though these random features are highly correlated, the neglect of the explicit 

expressions for the correlations has frequently resulted in discrepancy in results 

obtained from both theoretical and experimental investigations of grains’ 

structures and, hence, grains’ properties. It is thus important to investigate the 

correlations between these random features of nanoparticles. An applicable 

approach to resolving this problem is to study the correlations between these 

features during grain growth. 

 

Extensive research has been carried out for decades to analyse the grain growth 

mechanisms in nanomaterials. It is found in the literature that there are three 

fundamentally different ways of expressing grain growth phenomena using these 

three features. Firstly, the Von Neumann-Mullins law, [69-71], exists that 

expresses the evolution of the area of grain as a function of the triple junctions 

only (i.e. as a function of the number of sides of the grains only), given as 

 

)( 0ssJ
dt

dAs −=                     (11.4) 

 

where As is the area of an s-sided grain, s is the number of sides on the grain,  J is 

a diffusion constant or triple junction mobility constant and s0 is a critical 

constant. This von Neumann-Mullins relationship has been modified, [72],to  
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where Mb is the reduced grain boundary mobility which is a product of grain 

boundary mobility with grain boundary surface tension, Λ is the product of the 



 

 137 

triple junction mobility and the grain size divided by the grain boundary mobility 

and θ is the contact angle at a triple junction.  

 

Secondly, in 1965 Hillert suggested the model, [35], which is the expression that 

predicts how the radius (diameter) of an individual grain evolves with time as a 

function of the radius of the grain alone given as 
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 where M is the grain boundary mobility constant. This has been modified in the 

present project to 
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where  r is the grain radius, )(0 TM  is the temperature dependent part of the grain 

boundary mobility, C is a constant at constant temperature, rc is the local critical 

grain size that restricts the total volume of the sub-aggregate to remain constant 

during the growth process i.e. the local size of the grain that neither grows nor 

shrinks, A and B are constants, dW(t) and dN(t) are respectively the increments of 

the Weiner and the stochastic counting processes within an infinitesimal time 

interval. 

 

And thirdly, J.A. Glazier et al, [29-31], postulated a relationship between the 

evolutions of the grain volume as a function of the number of faces per grain 

alone, given as 
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where k is a diffusion constant, f is the number of faces of a grain, f0 is a constant, 

Vf  is the volume of grain having f faces. 

 

An observable fact is that none of the expressions (11.4-11.8) is expressible as a 

function more than one of the three random features of the nanoparticles or as a 

function of a feature other than the one it was originally stated. For example, the 

evolution of mean grain area has not yet been given as a function of the number of 

faces per grain, and the evolution of the mean grain volume has not yet been 

expressible as a function of the number of sides per grain. The issue is that if there 

exist strong mathematical relations between radius, area and volume, then why is 

it that one and only one random feature appears in each expression for the 

evolution of grain size; and that a feature cannot, as yet, be replaced by the other 

feature in an expression? Answers to this concern may explain the reasons why 

deviations have been encountered very often while verifying different models of 

grain growth from both simulations and experiments e.g. while verifying the Von 

Neumann- Law using the evolution of the mean grain size or evolution of number 

of faces per grain.  

 

Knowing that these three features of random microstructures (grain size, number 

of sides per grain and the number of faces per grain) are related by the Euler’s 

equation, we aim in one of our upcoming publications to come up with a unified 

expression for grain growth that incorporate the Von Neumann-Law, the Hillert’s 

model and the Glazier’s model. 

 

To the best of our efforts up to date, no model has been found in literature that 

predicts the evolution of microstructure sizes with grain refinement. Thus, an 

effort to predict the evolution of the material property starting with conventional 

material to nanomaterial was not dealt with. Similar effort has been attempted in 

the opposite direction of microstructure evolution (grain growth) i.e. the evolution 

of the material property from nanomaterials to conventional materials. 
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11.4 Neglecting Grain Size Distribution Parameters or the Probability 

Density Function, pdf, of Grain Size 

 

The grain size in material is known to be random. This random size can be 

represented by a probability distribution. From the knowledge of the evolution of 

the microstructure sizes, the time evolution of the probability density function has 

been established analytically using the generalised Fokker-Planck Kolmogorov 

Equation. Findings from the present project reveal that both the mean grain size 

and the grain size dispersion are vital in the characterisation of the microstructure 

evolution and consequently, the evolution of the materials properties. Neglecting 

other grain size distribution parameters during modelling in previous reports has 

led to loss of vital information about the microstructure characteristics and equally 

the material properties. The many different properties of "the same type of" 

material samples given in the literature have been accounted for in the present 

project where all the grain size distribution parameters have been considered. 

 

Furthermore, the following are some of the results that have been obtained from 

the analytic modelling of the probability density function, pdf. 

• Starting with an initial lognormal distribution or normal distribution of grain 

size, the grain growth parameters were calibrated such that the grain size pdf 

evolved as lognormal distribution till the scaling (steady) state. 

• Results are different when the GRC mechanism is taken into consideration, 

and further, due to the addition of the fluctuation terms. 

• Results also depend on the nature of the fluctuation terms which are 

determined by the type of material under study. 

• The evolution of the pdf depends on the initial dispersion of grain size in the 

material such that systems with higher initial CV of grain size evolve in such 

a way that the pdf curves are correspondingly broader than those for system 

with lower initial CV. 

• During grain growth some grains shrink while others get larger. 



 

 140 

• Grain growth imparts self-similar behaviour to parameters of grain size 

distribution.  

 

The following limitations have been encountered during the modelling of the pdf. 

• It cannot be stated whether the initial probability distribution of grain size 

does not have an effect on the way the pdf evolves and, consequently, the 

asymptotic pdf. 

• Also, these results are obtained from the specific diffusion and jump terms 

that may obviously have some influences on the results as can be testified by 

the case, “GBM only at steady state”. This, thus, necessitates research on the 

types of fluctuation terms that best reflect the result of the process of 

production/processing of nanomaterials. 

• Neglecting higher order terms might, obviously, have an effect on the results. 

It could not be stated how many terms had to be considered so that the 

solution could be accurate enough. Thus, instead of using a Taylor series 

expansion to simplify the jump probability term, a different approach which 

might not invoke infinite series and hence, truncation may be more 

beneficial.  

 

 

11.5 Fabricating or Processing Nanomaterials through Different Processing 

Routes 

 

The random nature of nanomaterials microstructures may be inherited from the 

fact that these materials can be produced through different processing routes. 

Thus, materials with the same mean grain size may differ in their grain size 

dispersion. It has been demonstrated in the project that the consequence of this is 

that "these" different materials samples can possess different properties whose 

nature of evolution can be quite different. It has also been found that different 

nanomaterial samples can possess the same properties. The basis of the argument 

is that both the mean grain size and grain size dispersion simultaneously play vital 

roles in the design of the required or desired material properties. Based on such 
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considerations and using the lognormal distribution of grain sizes, many salient 

features of the material properties listed below have been revealed. Letting 

µn=E(r
n
) be the "n

th
 moment of the grain size, r" and for lognormal distribution of 

the grain size, the expressions for the microstructure-property relationship are 

proposed to be modified so as to incorporate both the mean grain size and the 

grain size dispersion for the HPR to be 
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and for the HPR to Reverse-HPR to be 
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where the dispersion of grain size is given by 
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and tK+= 0

'

0 σσ  is the conventional yield stress, dKA =  is the conventional 

proportionality constant, [ ]rmt RThHKB /2= , [ ]rmd RThHKC /2= ,  Kt is a constant,  

h is atomic diameter in the case of metal, Hm is the conventional melting enthalpy, 

R is ideal gas constant, Tr is the room temperature, td KK 100>  and tK100 >σ . 

 

 

11.6 Salient Features of Nanocrystalline Aluminium Sample 

 

A model of microstructure-property relationship based on the individual/local 

grain parameters was established and verified. The following facts have been 

revealed from the proposed model. 
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• The fabrication method that results in a material with more enhanced 

property can only be decided if, in the course of deformation using each 

technique, reports are made on simultaneous variations of mean grain size 

and grain size dispersion.  

• The departures of experimental data from the path predicted by a relationship 

are due to change of (or inconsistent) design strategy. 

• The evolution of the microstructure through different processing routes 

results in materials with different mechanical properties. 

• Nanostructured materials with both low CV(r) and low E(r) have the most 

enhanced material properties. 

• The conventional/normal temperature dependence could occur for Total 

process with decreasing GB mobility.  

• The homologous temperature dependence would occur with the process 

where the grain growth is diffusive only and the GB mobility decreases with 

grain growth.  

• The anomalous temperature dependence has been shown to occur for the 

grain growth processes where the GB mobility is constant during growth. 

 

 

11.7 Fractal Theory or Geometric Measure Theory 

 

The theorems of Geometric measure theory could not be applied to analyse the 

characteristics of the random materials microstructures. This is because, up to 

date, the apparatus used in the characterisations of the materials microstructures 

reports on the equivalent radius of the grain sizes (and not the exact undulations). 

The mathematical characterisations of a random set (grain) necessary for use in 

the application of the theorems of geometric measure theory cannot, therefore, be 

achieved in this instant. It should be acknowledged that some detailed 

characterisations of the microstructure have been achieved and reported in the 

literature. This includes characterisations of, for example, orientation and 

elongation distributions.  
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APPENDIX A1 

 

SCHEMATICS OF GRAIN GROWTH DUE TO GRC PROCESS 

 

 

 

Figure A1 “Schematic representation of a grain-coalescence event. In (a), grains 

A and B sharing a common boundary (dotted line) rotate towards one another 

until the GB misorientation disappears, leading to the coalescence of the two grain 

sketched in (b). As can be seen in (b) the coalescence gives rise to topological 

discontinuity associated with the elimination of two triple junctions”, [38]. 
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APPENDIX A2 

SCHEMATIC OF THE ELIMINATION OF TWO TRIPLE JUNCTIONS 

BY A SINGLE ROTATION-COALESCENCE EVENT 

 

 

 

Figure A2 “Schematic of the elimination of two triple junctions by a single 

rotation-coalescence event: (a) topology before and (b) after coalescence of 

grains A and B”, [37] 
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APPENDIX B 

 

EXPRESSION FOR CHANGE IN GRAIN SIZE DUE TO GRC PROCESS 

 

If grain growth were due to Grain Rotation Coalescence mechanism only (GRC), 

then the grain size after a time interval, t, would be given by 

 

∑
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irtr                        (B.1) 

 

where N(t) is the number of coalescence of grains up to the time t. Since there are 

infinitely many grains in the aggregate, the entire time interval can be divided into 

disjoint contiguous infinitesimal time interval. It follows that r(t) can be written as 

the Riemann Stieltjes sum. The limit, in the mean square sense, of the sequence of 

such sums (B.1), is the mean-square Riemann Stieltjes integral with respect to the 

counting process N(d), [16], i.e. the stochastic integral 
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and since s is a dummy variable, it follows that 

 

)()()( tdNtrtdr =                      (B.3) 

                  



 

 156 

APPENDIX C 

 

INCREMENT OF THE INDIVIDUAL GRAIN SIZE AND GRAIN YIELD 

STRESS 

 

The modified expression for the HPR that represents the size-property dependence 

(both HPR and Reverse-HPR) throughout the entire range of deformation as, [3] 
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In our recently developed model of grain growth, [CHAPTERS 6, CHAPTER 8], 

a stochastic expression governing the incremental change of individual grain size 

in nano-materials is given as : 
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The stochastic differential expressions governing the increment of individual 

grain yield stress of Nano-Polycrystal due to grain growth are obtained from 

expressions (C.1) and (C.2) by the Ito’s differential rule [16-20]. It follows that 
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