
 i  

 

 

  

 

Incidence estimation and calibration from cross-

sectional data of acute infection HIV-1 

seroconvertors 
 

 

 

 
 

 

 

 

A Research Report Presented 

 

by 

 

Eustasius Musenge 

 

 

Submitted to the School of Public Health, Faculty of Health Sciences, University of the 

Witwatersrand, in partial fulfilment of the requirements for the degree of Masters of 

Science in Medicine in the Field of Biostatistics and Epidemiology. 

 

 

June 2007 

 

 

Johannesburg, South Africa

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/39665811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 ii  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Eustasius Musenge 2007 

 

All Rights Reserved 

 

 



 iii  

DECLARATION 

 

I, Eustasius Musenge declare that this research report is my own work. It is being 

submitted for the degree of Masters of Science in Medicine in the Field of Biostatistics 

and Epidemiology in the University of Witwatersrand , Johannesburg. It has not been 

submitted before for any degree or examination at this or any other University. 

 

 

Signature:……………………………… 

 

 

This 25
th
  Day of June 2007 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv  

Incidence estimation and calibration from cross-sectional data of acute 

infection HIV-1 seroconvertors 
 

 

A Research Report Presented 

 

by 

 

Eustasius Musenge 

 

 

 

 

 

 

Approved as to style and content by: 

 

 

  

 

__________________________________________ 

Supervisor:  Edmore Marinda 

 

 

__________________________________________ 

Supervisor:  Alexander Welte 

 

 

 

________________________________________  

Head School of Public Health : Sharon Fonn 



 v  

DEDICATION 

I dedicate this research report to my former Statistics students from the University of 

Botswana and all the people who encouraged me throughout the Msc Medicine  

(Biostatistics and Epidemiology) course. Sometimes I felt like giving up, but you stood 

with me spiritually, I just got more and more strength to go on and before I knew it was 

over. 

 

 



v 

ACKNOWLEDGMENTS 

Many thanks go to my supervisors Edmore Marinda and Alexander Welte for all the 

academic and personal motivation and inspiration. I also would like to thank SACEMA 

for the funding that enabled the writing and full completion this research report. I am 

also thankful to the CAPRISA study team for allowing me to use their data in the 

analysis. It is not by might nor by power but by God’s Holy Spirit, I praise you Lord 

Jesus Christ for divine enablement. 



vi 

ABSTRACT 

Incidence estimation and calibration from cross-sectional data of acute infection  

HIV-1 seroconvertors. 

 

May 2007 

Eustasius Musenge  

 

Masters in Medicine in the Field of Biostatistics and Epidemiology 

 

Supervised by: Mr E Marinda  and Dr A Welte  

 

Background:  The HIV-1 incidence (a very important measure used as a proxy for 

disease burden) can be estimated from a cross-sectional study. This incidence estimate 

has the advantage of reducing on costs and time, thus enabling more timely 

intervention; it is also ideal for developing nations. A common procedure used in 

making this estimate utilizes two antibody tests (Sensitive/Less sensitive tests). Due to 

the long window period of such tests (at least three months), persons classified as 

recently infected would have been infected more than three months prior to the test 

date. Detecting acute HIV-1 infection is very important since this is the most infectious 

stage of the disease. This research report explores a method of estimating incidence 

using an antibody test and a virological test, Polymerase Chain Reaction Ribonucleic 

Acid (PCR-RNA).The cross-sectional data used are from the Centre for the AIDS 

Programme of Research in South Africa (CAPRISA). 

 

Methods: Actual follow-up cohort data from CAPRISA acute infection cohort (AIC), 

comprised of 245 sex workers, were used to estimate the incidence of HIV-1 using a 

PCR-RNA ,virology test based, incidence formula. The result obtained was compared to 

the incidence estimate obtained by the classical method of estimating incidence 
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(prospective cohort follow-up). As a measure to reduce costs inherent in virological 

tests (PCR-RNA), multistage pooling was discussed and several pooling strategies 

simulations were proposed with their uncertainties. Point estimates and interval 

estimates of the window period, window period prevalence and incidence from cross-

sectional study of the AIC cohort were computed.  

 

Findings: The mean window period was 6.6 days 95% CI: (2.7 – 13.0). The monthly 

window period prevalence was 0.09423 percent 95 % CI: (0.0193 – 0.1865)%. The 

incidence from the prospective cohort follow-up was 5.43 percent  95% CI: (3.9 – 9.2) 

%. The incidence estimate from cross-sectional formulae was 5.21 percent 95% CI: 

(4.1– 4.6). It was also shown by use of simulations that an optimum pool sample size is 

obtained when at least half the samples are removed on every run. 

 

Interpretation and recommendations: The PCR-RNA test is very sensitive at 

detecting acute HIV-1 infected persons. The incidence estimate from the cross- 

sectional study formulae was very similar to that obtained from a follow-up study. The 

number of tests needed can be reduced and a good estimate of the incidence can still be 

obtained. The calibration was not accurate since the samples used were small and the 

window period duration was too short, hence, it was difficult to extrapolate to the whole 

population. Further work still needs to be done on the calibration of the proposed 

incidence formulae as it could be a very useful public health tool. 
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CHAPTER 1 : INTRODUCTION 

 

1.1 Introduction 

About 922 million people (11 percent of the world’s population) reside in Africa of 

which more than 25 million people are living with HIV/AIDS
1
. More than a fifth (5.5 

million) of these people are from South Africa.
2
 South Africa as a nation has the highest 

absolute number of HIV-infected persons in the world and a prevalence of 30.2%.
3
 The 

nation is divided into nine provinces, one of which is KwaZulu-Natal, which has the 

highest population and HIV prevalence of 39.1% for antenatal attendees. 

Several studies on HIV prevention are underway country-wide including studies 

evaluating the effect of male circumcision on HIV transmission and also studies 

evaluating the impact of microbicide gel use by women on HIV transmission. With 

millions of rands being spent towards HIV-related endeavours, the need for accurate 

statistics and greater understanding of the dynamics of the virus is critical. Prevalence 

(which is the number of cases of a disease that are present in a particular population at a 

given time) and incidence (which is the number of newly diagnosed cases during a 

specific time period) are two very important indicators of disease burden and spread, 

respectively. Another useful measure is the test-specific window period duration, which 

when accurately measured, will enable intervention early after infection (which is the 

most infectious period).
4
 Scientific evidence gathered from South Africa, the region 

with the highest absolute number of HIV-infected persons in the world, will be very 

useful if reliably collected and well validated. 
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1.2 Statement of the problem and rationale  

Acute HIV infection is the stage of disease progression during which HIV viral 

replication and shedding occur before detectable antibodies occur.
5
 This is also the time 

when the viral load peaks in the blood and genitals,
6
 which is also the most infectious 

period.
3
 Estimation of acute HIV-1 incidence is essential in HIV prevention. The public 

health benefits are that persons with acute HIV infection can be counselled about risk 

reduction behaviours such as abstinence and safer sex to reduce secondary infections.
7
 

This has great benefits such as reduction in transmission to uninfected sexual partners, 

channelling of resources towards this most infectious group and early treatment of the 

acute HIV infected.
8
 

The incidence estimates are important for the purposes of planning vaccine trials and 

disease monitoring and evaluation. The classical method of estimating the incidence 

within a research setting is based upon following an uninfected cohort over time until 

some are infected. This has several limitations, the most common are it is costly, the 

loss to follow-up and also difficulties with respect to distinguishing between those who 

were recently infected (HIV) and those long infected (AIDS). In order to strengthen the 

fight against HIV, there is need to detect places and persons with the highest levels of 

infectiousness in the right time period in order to implement public health interventions. 

A useful epidemiological indicator best suited for this purpose is the acute HIV-1 

incidence. 
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1.3 Study Objectives 

The aim of this study is to create a calibrating tool useful in estimating HIV incidence 

from recently infected persons in cross-sectional studies. The tool development will 

assess the estimation of the window period (duration between infection and testing 

antibody positive), window period prevalence and incidence estimation. The study will 

provide calibrated combinations of parameters (incidence, window period prevalence 

and window period). The 95% confidence intervals will also be given. The specific 

objectives are: 

1) Estimation of window period for the acute infection cohort. 

2) Computation of incidence from cross-sectional acute infection cohort (AIC) data 

from the Centre for the AIDS Programme of Research in South Africa 

(CAPRISA). 

3) Validation of optimal multistage pooling strategy using data simulations. 

 

1.4 Literature review of methods for measuring incidence 

Prevalence rates which are the most commonly reported statistic for HIV/AIDS include 

full-blown AIDS and recently infected individuals. This may not be very useful in 

tracking the progression of the disease or in providing an instantaneous state of the 

epidemic. Incidence rates which are integral in the design of vaccine efficacy studies, 

calculating sample sizes and allocation interventions are routinely measured from 

prospective follow-up cohort studies.
9
 The following are several ways in which the 

incidence rates are estimated. 
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1.4.1 Observing seroconversions in a prospective follow-up study 

Incidence can be defined as the proportion of seronegative individuals who seroconvert 

during a defined period of observation. Estimating incidence is done by enrolling an 

HIV-negative population in a longitudinal or prospective cohort study and testing the 

participants at regular intervals for new HIV infections, thereby deriving an incidence 

rate (number of new infections per total number of person-years of follow-up).
10
 Also, 

the proportion of positives identified in a cross-sectional study that has markers of 

recent infection is used for estimating incidence.  

1.4.2 Identifying recent seroconverters from a cross-sectional sample using two 

HIV antibody tests of differing sensitivity for HIV antibodies  

This method is described by the Centre for Disease Control (CDC) as the Serological 

Testing Algorithm for Recent HIV Seroconversion (STARHS).
11
 It is also known as the 

“detuned assay” or the “Sensitive Assay/Less Sensitive Assay”. This is a comparison of 

two tests on a single diagnostic specimen. The regular HIV antibody test that is used to 

diagnose HIV infection and a less sensitive version of the same test that only detects 

high levels of HIV antibodies. 

 

The first test indicates whether the person is infected with HIV. If infected, the second, 

less-sensitive test can indicate whether or not the patient has a high level of HIV 

antibodies. Since a person’s level of antibodies gradually increases in the early stages 

after infection, the result of the second test suggests whether they have been infected 

within a shorter (approximately 6 months or less) or longer time. However the 
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probability of identifying an infected individual within six months of infection is a 

function of how often they go for testing.
12
 

 

Figure 1-1.  STARHS method to estimate stage of infection using a single diagnostic specimen.
6
 

 

 

The STARHS approach uses the following formula to calculate the annual incidence 

rates (equation 1.2 is the tailor form of equation 1.1): 
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Where R: recent infection (antibody negative), Tw: window period, Nneg: number of HIV 

seronegative. This approach was used by Parekh et al.
13
  

In South Africa, another version of the formula was used in the annual survey for South 

African national HIV incidence, commissioned by the Nelson Mandela Foundation:
2
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 (respectively) are needed, but this 

is not always possible in these formulae, e.g., when the window period is very small 

(less than 7 days). The assumption made on application of these formulae is that the  

incidence is constant throughout the year preceding the calculation. The formulae are 

globally calibrated to estimate incidence only when antibody-based assays are used to 

identify recently infected HIV-1 persons.
2
  

1.4.3 Inferring incidence from serial cross-sectional surveys 

With this method, incidence is indirectly estimated by the slope of the seroprevalence 

against time, assuming the population being surveyed remains representative over 

time.
14
 

The figure below shows a two-state model of disease within a cohort. At a given age, a, 

x(a) is the number of people without the disease, y(a) is the number of people with the 

disease, i(a) is the incidence rate, and mx(a) and my(a) are the mortality rates among 
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those with and without the disease, and where i is the actual incidence rate based on the 

susceptible population. 

Figure 1-2.  Two state-deterministics model, source
15
 . 

 

 

 

 

 

 

 

The age-specific prevalence of a disease can be obtained from population surveys, 

either by interview or by examination. The mortality of people with the disease can be 

obtained from following up the survey subjects, demographic surveillance surveys or 

from cohort studies.
15
 

{ } { })()]()([)(1

)()(
)(

apamamap

aNap
ai

xy −+−
= …………….…………………Equation 1.5 

15 

Where p(a) is the prevalence and N(a)is the total of the susceptible population. 

The estimates of age-specific prevalence are usually ‘noisy’, it is necessary to smooth 

them, taking into account that p(a) must lie between 0 and 1 and, for most diseases, 

increases with age. To reduce the noise a suitable smoothing function is the logistic 

ln[p(a)/{1 - p(a)}]. Figure 1.4 shows the graphs obtained when this approach was used 

for a group of diabetic women in Canada. 
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Figure 1-3. Prevalence and incidence of diabetes in Canadian women, source
16
. 

 

 

 

The graph shows the effect of the smoothing technique and an increase in the estimated 

incidence with increasing age. 

1.4.4 Use of surrogate marker for recent (age specific) infection 

In this approach to estimate HIV incidence, the number of reported AIDS cases in the 

youngest age range of adult cases, ages 13-25, is used as a surrogate for recent trends in 

incidence. The justification for this approach is that the onset of sexual and drug-using 

risk behaviour in the teenage years (or later) leads to the inference of AIDS cases in this 

age group. Predominately those with a short incubation time from infection to AIDS 

reflect relatively recent infections (less than 5 years on average).
17
 Also the AIDS-

related mortality would be less significant in this younger cohort and however the 

incidence among the 18 year olds may differ from that of those in the fifties thus 

generalisability becomes an issue. 
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1.4.5 Back-calculation from reported AIDS cases 

This approach estimates incidence or prevalence by use of a mathematical model called 

‘back calculation’,
 
which combines the available data on the number of reported AIDS 

cases and the incubation period distribution of AIDS (the mathematical function that 

estimates the probability of developing AIDS for each year following HIV infection) to 

derive how many HIV infections occurred during years past.
18
 Back-calculation is done 

by use of the convolution equation: 

dssstFsIta
t

)|()()( −= ∫ ∞−
……………………………………………..Equation 1.6 

18 

Where a(t) is the expected cumulative number of AIDS cases diagnosed by time t , I(s) 

is the HIV infection rate at time s and F(t|s) is the probability of developing AIDS 

within t years of infection for those who were infected at time s. This approach uses 

information on a(t) and F(t|s) to estimate the infection rate I(s).
19
 

1.4.6 Using capture-recapture methods in serial surveys 

The sixth method is a variant of the cross-sectional survey approach that uses ‘capture-

recapture’, a method long used by biologists to study wildlife populations. It requires a 

unique identifier, of individuals included in repeated surveys, so that the seroconverters 

among those repeatedly tested can be identified.
20
  

1.5 Estimating the window period for HIV primary infection 

The window period is the interval during which an infected individual tests negative to 

an antibody test. Recently infected individuals may however be detected by virological 
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assays such as Polymerase Chain Reaction Ribonucleic Acid (PCR-RNA) which also 

has a window period. A procedure known as incidence window period (IWP) is used 

among blood donors. This is derived from an epidemiological relation, 

Prevalence=Incidence x Window period under a steady state assumption on the 

infection dynamics. The IWP estimates the window period by
21
 

w
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N
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N
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×
−

=×=
∑ = +1 1)1(

0

)(

ˆπ̂ ………………………………………..Equation 1.7 

 Where 0π̂ is the prevalence, Î is the incidence, w  is the average length (duration) of 

HIV window period for the blood bank of interest, N is the total number of repeat 

donors and )( 1)1( ini tt
i

−+ is time between the donors consecutive donations. 

 

1.6 Optimization of lab work in ‘recent infection’ prevalence studies 

Pooling is a strategy used on biological specimens. Individual serum samples are 

grouped and randomly selected specimens are tested in each group (pool). Based on the 

outcome, the whole pool is classified as positive or negative. Two objectives of pooling 

biological specimens are to identify infected individuals and to estimate the prevalence 

(when it is low) of infection in the population at a lower cost than testing individual 

samples.
22
 When the process is done several times, it is known as multistage pooling.  

In multistage pooling the cohort is divided into equal-numbered pools which are then 

tested. Each positive pool identified in each stage is subdivided to smaller pools in the 

following stage and this is repeated up to the last pool of size one.  

For the multistage pooling study after z stages of pooling algorithm, the incidence rate 

can be estimated by the following relation: 
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24 

Where N is the sample size, S1 is the size of the initial pool sample (thus SZ is the size of 

the z th  pool sample) and N1 the number in the first stage, that is,  N=N1.S1. 

This equation uses concepts discussed by Brookmeyer et al. (2000) in obtaining the 

optimal pooling size. The major aim of pooling blood samples is to identify the number 

of positive infections R in a group of N samples using as few tests as possible (PCR 

runs in the case of the HIV-RNA test). For this to be possible, at least half of the 

samples on every run (stage) must be eliminated and an optimal initial pool size s1. must 

be used (see appendix C). 

 

1.7 Forthcoming discussions 

Having discussed the different approaches of estimating incidence rates, there is still a 

gap to be filled for ideal methods applicable to developing countries and high-risk 

populations in which it is difficult to follow cohorts to identify seroconverters. This 

research report discusses a systematic approach to estimating the incidence and 

calibration, using results from an antibody test (ELISA) and a virological test (PCR-

RNA). The following section discusses the methods employed in the study, design and 

analysis. 
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CHAPTER  2 :  MATERIALS AND METHODS 

2.1 Study design and sample description 

The data which were used for this study were from the Centre for the AIDS Programme 

of Research in South Africa (CAPRISA) in their phase II Acute Infection Cohort (AIC). 

The study design was a prospective observational cohort study conducted at the Doris 

Duke Medical Research Institute (MRI) at the Nelson R. Mandela School of Medicine, 

University of KwaZulu-Natal, Durban, and the CAPRISA Vulindlela Research Facility. 

Study 

participants with acute HIV infection were identified among female sex workers in 

KwaZulu-Natal; from participants in a Phase II/IIb microbicide trial in Durban; and 

from research cohorts in Vulindlela. A diagrammatic illustration of the screening, 

recruitment and enrolment process is shown in Appendix E.
23 

 

A total of 775 participants were assessed from which a cohort of 245 uninfected high-

risk women was selected, where the prevalence among them was greater than 10% or 

incidence greater than 3%. The average age was 34.3 years (range 18-58) and the 

majority (78.8%, n=193) identified themselves as sex-workers. The loss-to-follow-up 

rate was 15.1%.
23 

 The 245 female sex workers were then  assessed monthly between September 2004 and 

July 2006. In this particular study the participants who became HIV infected were 

detected soon after the infection, which made the data suitable for greater in-depth 

observation of early viral and CD4+ T cell bio-dynamics. During the follow-up, two 
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tests were administered monthly: a virological test (HIV-RNA PCR) and the sensitive 

antibody test ‘ELISA’. This enabled the estimation of a hypothetical window period, the 

actual duration between the last ELISA negative and first ELISA positive, which has an 

unknown distribution. 

2.2 Testing protocol
 

The two tests administered were an antibody test (ELISA) and a virological test (RNA-

PCR) in individual samples and pools. The ELISA assay assessed for serum binding 

antibodies in blood reacting with purified HIV proteins or peptides from env and gag.
23
 

 

The COBAS AMPLICOR™  HIV-1 MONITOR Test, v1.5 (Standard or the 

Ultrasensitive, Roche Diagnostics) was used to measure viral loads. The test quantifies 

HIV-1 RNA over the range of 50-750 000 copies/ml and has a specificity greater than 

99.85% for quantification of HIV-1 Groups M subtypes A-G. A series of runs was 

performed to ensure reliability and reproducibility including inter-laboratory 

reproducibility.
23 

For detection of HIV-1 RNA in pooled samples, the AMPLISCREENTM HIV-1 Tests 

v1.5 (Roche Diagnostics) were used. A primary pool contained 24 or less samples and 

when found positive, was disaggregated into smaller secondary pools.
23
 

 

2.3  Data analysis concepts 

The incidence estimate from the CAPRISA longitudinal prospective follow-up cohort 

was computed and compared with the incidence estimate from a cross-sectional 

prevalence. Due to the expenses incurred in running PCR-RNA tests on individual 

samples, multistage pooling was used to reduce the number of laboratory tests and 
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costs. Three pooling options will be discussed for the multistage pooling strategy. The 

statistical analysis was done using STATA 9.0 and Excel. The programming of different 

algorithms was carried out using MATLAB. The following section discusses the 

concepts backing the methods utilized for each of the objectives. 

2.3.1 Inference of the window period duration 

The estimation of the PCR-RNA window period was done using the interval between 

the first RNA positive and last RNA negative (which we will call delta ∆), multiplied by 

the probability of seeing an individual in the window period.  

pTw
ˆ×∆= …………………………………………………………….Equation 2.1 

Where Tw is the estimate of the window period, ∆ is the average of the interval between 

visits and p̂ is the probability of seeing an individual in the window period. The 

window period can be estimated using either the individual deltas or average delta (as 

shown above). The latter approach is less involved and yields a very similar distribution 

to the former. Mwanga (2006)
24
 obtained the following distributions for the individual 

and the average delta and a window period of 6.8 days. 

Figure 2-1.  Posterior density window period for individual and average delta.
23 
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2.3.2 Modelling of relation between incidence and prevalence of ‘recent infections’ 

In the previous chapter different approaches of estimating the incidence were discussed. 

This section focuses on an approach of estimating incidence from the window period 

prevalence proposed by Mwanga (2006) 
25
, which will be validated in this research 

report. 

Consider an uninfected individual who has had an infectious contact (sexual or other), 

the following stages occur in the prognosis of HIV, namely:  

• Stage 1: infection, this occurs immediately (if contact with infected person was 

infectious).  

• Stage 2: entry into the ‘window state’ (infection is now detectable by a 

virological assay such as PCR-RNA). This occurs at the individual’s own time 

say t1 (which varies) and globally at  say T1 (which is fixed), after infection. In 

fact this test detects acute infection prior to seroconversion. HIV-PCR stands for 

HIV- Polymerase Chain Reaction and is also known as viral load testing because 

it detects the presence of the immuno-deficiency virus in blood  

• Stage 3: exit from the ‘window state’ (infection is now detectable by both 

assays- PCR and ELISA), when antibodies can now be detected. This happens at 

the individual’s time t2 (globally T2) after infection 

The biological distribution of the times t1 and t2 over the population is given by 

),( 21 ttρ which is unknown. Infected individuals can be grouped based on the outcome 

of the two tests as a proxy to indicate how far back from the day of testing they 

contracted the virus, that is t0. 
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Figure 2-2.  Schematic illustration of the PCR and ELISA test result.
8 

PCR Negative Positive Positive Negative 

ELISA Negative Negative Positive Positive 

Classification Negative (Nneg) Recently 

Infected ( R) 

Long infected 

(L ) 

Indeterminate 

 

Figure 2-3 below shows how individuals can be classified from a point in time t0=0 on 

the day when they come for testing. There are long-infected (L), recently infected (R) 

and susceptible individuals (Nneg). These classifications are relative to the time from the 

day of testing and when they contracted the HIV, for distant past (long-infected), recent 

past (recently infected) and less than a week (susceptible individuals). 

Figure 2-3. Classification of infected persons at time t0=0. 

 

The “window period” is the time it takes for a person who has been infected with HIV 

to seroconvert (test positive) for HIV antibodies. For simplicity the window period 

Tw=|T2-T1| when individuals enter the window period at a fixed time since infection T1 

and leave at fixed time T2. Hence ),( 21 ttρ , assuming both times to be independent, can 

be written as: 

)()(),( 221121 TtTttt −−= δδρ ……………………………………………...Equation 2.2 

In an infinitesimal cohort the probability of anyone being infected in the window period 

around time t in a period dt is given by: 
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∫ ∫
−
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=−>−<
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00
12210201 ),() and ( ρ ……………………......Equation 2.3 

∫ ∫
−

−
−−=−>−<

tt t

tt
dtdtTtTtttttttP

0
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2

00
1222110201 )()() and ( δδ …….……...Equation 2.4  

Where max2t is the individual’s maximum time from the test time 0t , when he or she was 

PCR positive and ELISA negative. The time max

20 ttt i −= is the earliest time that is 

considered, since all people infected before this time would have left the window period 

by the time they are observed. Consider a gross incidence I from a population ( sN ) 

which gets infected at an incidence rate i. Thus, in a period time dt, the number of new 

cases is given by dtNtidttI s .).()( = for a susceptible population sN . 

The number of persons infected between it and 0t is given by: 

dttNtidttIN
t

t
s

t

t
i

ii

)()()(
00

∫∫ == …………………………………….……..Equation 2.5 

Thus the expected number of persons in the window period is:  

∫ ∫ ∫
−

−
=
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sw dtdtdtTtTttNtiN δδ ……………...….Equation 2.7 

Since the expected number (Nw) of the recently infected is also given by the 

experimental value R, the above equations can be rewritten in terms of R: 

∫ ∫ ∫
−

−
−−=

0 

 

 

0 

 

 
122211

max
2

)()()()(
it

t t

t
s dtdtdtTtTttNtiR δδ …………….…….Equation 2.8 

In general, the incidence rate of the susceptible population can be modelled by a 

Taylor series, that is : 

+′′+′+= 2/)0()0()0()( 2titiiti ………………………………………..Equation 2.9 
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And:  

.....2/)0()0()0()( 2 +′′+′+= tNtNNtN ……………………………..Equation 2.10  

The incidence was estimated using the formula below whose derivation is discussed in 

appendix A : 

wnegTN

R
i =  …………………………………………………………..Equation 2.11 

Where i is the incidence rate, R the number of recently infected persons, Nneg are the 

susceptible persons and Tw is the window period. This incidence relation can also be 

written, in relation to window period prevalence and window period, where Pw is the 

window period prevalence (i.e., the number of people seen in the window period over 

susceptible Pw=R/Nneg) and Tw is the window period duration estimated from delta (∆), 

the difference between the two dates for RNA negative and positive: 

w

w

T

P
i = ………………………………………………………………….Equation 2.12 

2.3.3 Bayesian estimation 

Bayesian estimation draws inference about unobservable parameters or hypotheses by 

combining two sources of information: 

a) (Prior) beliefs about the parameters formed from past evidence, such as pilot 

studies or similar studies. 

b) Sample data that the study generates.      

The Bayesian approach estimates the probability of the hypothesis H conditional on the 

observed data, i.e., Prob(H | data). This probability is called the posterior. 

Bayes theorem calculates the posterior probability of H as follows: 
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)(

)()|(
)|(

dataP

HPHdataP
dataHP = ……………………………………Equation 2.13 

Where P(data | H) is the likelihood, that is, the probability of observing the data 

conditional on the hypothesis. P(H) is called the prior probability, which is a function 

which quantifies our prior knowledge or beliefs about H. P(data) is the normalizing 

constant, that is, the factor that makes the total probability equal to one.
 25
 

2.3.4 Computation of the incidence confidence interval 

Two main procedures were used to compute the confidence intervals for the estimates 

obtained from the data: the Wald interval estimation of binomial proportions and 

Bayesian likelihood estimation. 

 The Wald procedure is an approximate confidence interval estimation of a binomial 

proportion in finite population sampling, computed by: 

1ˆ

)ˆ1(ˆ
1ˆ%100)1(

2 +
−

−±=×−
n

pp
fzpCIWald αα ……………………Equation 2.14 

Where p is the prevalence, f is the sample fraction and 2

2
ˆ αznn += . This procedure was 

used in estimating the confidence interval of the ‘window period prevalence’, which 

was done using STATA 9.0.  

The Bayesian likelihood  procedure was used to estimate the incidence confidence 

interval. The likelihood function of obtaining the number of recent infections for a 

particular incidence with an associated window period is given as: 

∫

∫
><><

><><⋅><
=

ww

www

tdtprob

tdtprobitRL
iRL

)(

)(), |(
)|( …………………Equation 2.15 
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Where )| ()( ><=>< ww tdatadcallibrateLtprob . L is the likelihood and R are the 

recently infected. 

The denominator in equation 2.15 is for normalizing the likelihood. This procedure was 

performed in Excel by making use of small discrete intervals of time. It was used to 

estimate the confidence interval for the ‘window period’ as well as that for the 

‘incidence’. The procedure did not require any distributional assumptions of any 

distribution. The Bayesian approach also has the advantage of providing an the required 

estimate  and interval band(credibility interval), distribution (posterior) and graphical 

output. 

2.3.5 Multistage pooling incidence rate 

For the multistage pooling study after, e.g., z stages of pooling algorithm, the incidence 

rate will be estimated by the following relation after replacing Pw with p̂  from equation 

B6 in appendix B. 






















−=

ZS
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N

T
i
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11
1

………………………………………………….Equation 2.16
 24 

The error introduced by lack of sensitivity and specificity is known.
26
 The selection of 

the initial pool size is integral to the effect of minimizing the impact of false positives 

and false negatives.  
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2.3.6 Optimal pooling strategy  

The major aim of pooling blood samples is to identify the number of positive infections 

R in a group of N samples using as few tests as possible (PCR runs in the case of HIV-

RNA test). For this to be possible, at least half of the samples on every run (stage) needs 

to be eliminated (PCR runs in the case of HIV-RNA test), and optimal initial pool size 

s1 must be used. 

fpp
s

2ln

)1ln(

2ln

)1ln(

2ln
1 =

−
=

−
−

=   ………………………………………..……………Equation 2.17
 8 

The equation 2.17 derived in appendix C gives the optimal initial pool size where, f is 

the expected frequency of individual being in the window period. When, p = 1-ε (very 

high prevalence) where ε is a small nonnegative number, individual testing is 

preferable. 

The true value for disease prevalence (p) is not known in advance, and poor choice of p 

may lead to an imprecise estimate of initial pool size. The multistage pooling study 

allows one to adapt the pool size. This is done by observing the cost (variance) of 

reducing or adding of the pool size after each pooling stage. In practice, adapting the 

pool size after each stage is not pleasant and clinicians prefer having the pooling 

algorithm before starting to run the PCR in order to reduce time wastage. It has been  

observed that once one has a good estimate of the initial pool, positive pools that are 

broken into sub-pools of half the size provide an optimal pooling algorithm. 
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2.4 Ethical Clearance 

The study was granted ethical clearance from three universities including the University 

of the Witwatersrand, clearance number MM040202. The research report received 

ethical clearance from the University of the Witwatersrand, clearance number W-CJ-

070504-1. 

 

CHAPTER 3 : RESULTS 

 

3.1 Incidence from direct follow-up 

Two hundred and forty-five sex workers were followed up and 19 seroconverted 

observed in 350 person years (127 353 person-days). This yields an incidence of 5.43% 

per year with a 95 % confidence interval of  (3.9 - 9.2) % per year. 

3.2 The results of systematic estimation of incidence 

Table 3.1 below shows the interval between observations delta (∆), which is calculated 

by differencing the last PCR negative and first PCR positive. A participant was 

observed in the window period if the PCR status switched from negative to positive and 

antibody negative on the same day as the first PCR positive. The data had a total of 21 

participants who seroconverted and of these 2 did not have any follow-up information, 

and were thus removed from the analysis. The results show that out of the 19 persons 

who seroconverted, 4 of them were seen in the window period. 
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Table 3.1.  Seroconvertors and those seen in the window period. 

Participant 

id 

∆ 

(in days) 

seen in 

window 

100136 23 No 

100040 26 No 

100200 27 No 

100239 28 No 

100174 28 No 

100225 28 No 

100137 28 No 

100222 28 No 

100069 28 Yes 

100221 28 Yes 

100177 28 Yes 

100229 29 No 

100065 29 No 

100037 29 No 

100129 33 No 

100045 34 Yes 

100008 35 No 

100085 53 No 

100206 55 No 

Mean ∆ 31.42105      

 

The probability of seeing an individual in the window period was 4/19 and this was 

used to fit different models to estimate the likelihood probability of finding a 

seroconverter in the window period, namely Binomial and Poisson. The following were 

the corresponding probabilities together with their respective confidence intervals. 

Table 3.2. Fitted likelihood functions. 

Model Likelihood L Standard 

Error 

Confidence Interval (95%) 

Binomial 0.2105263     0.0935288         (0.0605245   ,   0.4556531) 

Poisson 0.2105263     0.1052632         (0.0573613   ,  0.539031) 

The window period is estimated by using the delta function, the likelihood function and 

the following: 

• Four participants were observed in the window period. 
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• There were 21 infections (seroconversions) of which 19 had enough information 

for the computation of the interval (∆) between consecutive observation times. 

• The average interval (∆) between observation times is 31.42 days. 

Thus yearsdaysTw 0181.061496.62105263.042105.31 ≈=×=  days with a 95% 

confidence interval of (1.90–14.32) days assuming a binomial likelihood using the 

Wald’s approximation. This was also computed directly (exact) using the cumulative  

95% confidence intervals and linear interpolation techniques yielding (2.69 – 13.01)%, 

which is narrower. The latter approach was more preferred than the former since the 

normal approximation is not ideal for expected mean less than 5 (in this instance mean 

np=4). 

Figure 3-1. Bayesian posterior likelihood for ‘window period’. 
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 25

The figure above gives the posterior likelihood function for the window period of 6.6 

days with a 95% confidence interval of (2.69 – 13.01) days using Excel. 

 

3.3  Incidence and mean window period prevalence estimation 

The window period prevalence was computed using: 

neg

w
N

R
P =  

From the four people seen in the window period over the 4245 person-months (350 

person-years), the window period prevalence estimate is 0.09423 % and a 95% 

confidence interval of (0.0193 – 0.1865)% using the Wald’s confidence interval 

approximation for finite populations. 

This yields an incidence: %21.5
0181.0

09423.0
==i  using the equation: 

 
w

w

T

P
i = …………………………………………………….. Equation 2.12. 

This has a 95% confidence interval of (4.144 – 14.564)%. 

3.4  Example of ‘ideal’ pooling strategy versus ‘practical’ pooling strategy 

The available data were not sufficient to test for the optimum pooling strategy, since 

this required a large sample to be divided into different pools. Mwanga (2006)
 25 

discussed  three pooling algorithms. The first has pool size of (100; 50; 10; 1), which 

was used in detection of acute HIV-1 infection in North Carolina
27
 and in South 

Africa.
28
 The second (Strategy 2) was computed with a prevalence p = 0.0109 and 

halving the positive pools at each stage pooling algorithm with pool a size of (64; 32; 
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16; 8; 4; 2; 1). The last pooling algorithm (25; 5; 1), given as strategy 3, is proposed as a 

practical pooling strategy proposed by local experts. 

Incidence estimates using the three pooling algorithms are shown in table 3.3 where î  

is the estimate of incidence using a multistage pooling procedure (equation 2.16) and i  

is the exact incidence from prospective cohort follow-up. In various studies 
20, 21
 as well 

as the simulations in this study, the window period duration was 28 days which was 

made from a sample of size N=6400. 

 
Table 3.3.  Incidence estimates using three pooling algorithms. 
Strategy 

1. Pool size 100 50 10 1 

 î % per year 8.67 8.61 8.56 8.56 

 610ˆ)( −×− ii  14.22 0.54 7.69 0 

2. Pool size 64 32 16 8 4 2 1 

 î % per year 8.62 8.58 8.57 8.56 8.56 8.56 8.56 

 610ˆ)( −×− ii  8.46 19.72 8.95 0.2 1.71 0.57 0 

3. Pool size 25 5 1 

 î % per year 8.57 8.56 8.56 

 610ˆ)( −×− ii  8.8 2.29 0 

 

Table 3.3 above shows by use of simulations that an optimum pool sample size is 

obtained when at least half of the samples are eliminated at every run. The results also 

show that in screening a large population using a multistage pooling algorithm for the 

purpose of estimating HIV incidence, it is not necessary to stop at pools of size one. 

Strategy 2 shows it suffices to stop at the pools of size 8, which will still give a good 

approximation of the incidence. Similarly, strategies 1 and 3 show that one can stop at 

the pools of size 10 and 5, respectively, and still produce a robust estimate of incidence. 
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Thus, applying a multistage pooling algorithm for estimating HIV incidence rate has the 

potential of dramatically reducing the cost of testing. 

 

3.5  Summary of results 

The mean window period was 6.6 days 95% CI: (2.7 – 13.0). The monthly window 

period prevalence was 0.09423 % 95 % CI: (0.0193 – 0.1865)%. The incidence from 

direct follow-up was 5.43 percent 95% CI: (3.9 – 9.2 )%. The incidence estimate from 

cross-sectional formulae was 5.21 percent 95% CI: (4.1 – 14.6 ). The cross-sectional 

incidence is about 4.05% lower than that obtained by direct follow-up of the cohort. It 

was also shown by use of simulations that an optimum pool sample size is obtained 

when at least half of the samples are eliminated at every run. The simulated data also 

showed that multistage pooling has great potential of reducing the cost of estimating 

incidence in a cross-sectional study. 
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CHAPTER 4 

CONCLUSIONS, LIMITATIONS & PROPOSAL FOR FURTHER WORK 

Epidemiological principles that govern a quality programme for accurate and 

representative prevalence estimates also apply to cross-sectional incident infections. 

These include the selection of the appropriate target population, the validation of it 

being representative, the identification of any selection, accrual or testing bias that may 

distort the representation, as well as programmatic issues such as enrolment, specimen 

handling, transport, testing, data management and quality assurance.
29
 

 

The estimation of incidence is the result of a calculation requiring three measurements: 

the number classified as incident; the window period; and the number of seronegative 

(at-risk) members of the population.
29
 The accuracy of the estimate is thus dependent on 

the accuracy of all three measurements. 

 

The window period for the HIV-PCR in this study was found to be 6.6 days for 

sensitivity of at least 50copies/ml. Fiebig et al. (2003) proposed six stages of primary 

(acute) HIV-1 infection with regards to blood samples being detected by RNA, p24 

antigen, enzyme immunoassays (EIA) and the Western Blot. Table 4.1 shows the results 

obtained together with the 95% confidence intervals. 
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Table 4.1. Laboratory stages of primary HIV infection, source
 30
. 

Stage RNA p24-

Antigen 

EIA -

not 

sensitive 

EIA -

sensitive 

Western 

Blot 

Duration in days 

(95% CI) 

I + - - - - 5.0 (3.1 , 8.1) 

II + + - - - 5.3 (3.7 , 7.7) 

III + + - + - 3.2 (2.1 , 4.8) 

IV + +/- - + | 5.6 (3.8 , 8.1) 

V + +/- +/- + + 69.5 (39.7 , 121.7) 

VI + +/- + + + Open ended 

 

This study showed that the PCR-RNA test was very sensitive and yielded a very similar 

result to that obtained with the lab results in table 4.1. The window period of 6.6 days 

95% CI: (2.69 – 13.01) is similar to the window period obtained from the same cohort a 

year before, i.e., 6.8 days 95% CI: (3 – 13). The latter yielded better point and incident 

estimates since more persons were tested (23, including others from other studies) 

compared to this year’s 19 (AIC only). The table also shows that HIV-RNA testing may 

still increase the sensitivity for HIV detection. It is also a worthwhile addition to HIV 

prevention efforts and useful in identifying persons with acute HIV infection, which 

should remain a public health priority. Hence the sensitivity also shows that the use of 

HIV RNA testing can readily identify persons with acute HIV infection (who are the 

most infectious and more likely to transmit the virus)
3
 and other acute sexually 

transmitted infections. It may be more useful to use a longer window period by detuning 

the antibody assay, in order to mimic the real life situation more practically. 

 

There are also issues regarding the sample size estimation (McDougal et al. 2005). If 

the prevalence (P) is known, the total population size needed is Nneg = (no. at risk)/(1 - 

P). A Sensitive/Less sensitive assay with a 150-day window period and an anticipated 



 

 30

incidence of 5% would require that 4642, 1168 or 519 seronegative specimens accrue 

throughout the follow-up to achieve a ±1%, 2%, or 3% CI, respectively. An assay with 

a 10-fold shorter window period, such as the viral assays, would require 10-fold higher 

numbers.
29 

 

The monthly window period prevalence for the study was found to be 0.09423 % and 

the 95% CI: (0.0193 – 0.1865)%, which is comparable to that found a year before 

0.15% and 95% CI: (0.06 – 0.34) %. The incidence from direct follow-up was 5.43 

percent 95% CI: (3.9 – 9.2)% .The incidence estimate from cross-sectional formulae 

was 5.21 percent 95% CI: (4.1 – 14.6 ). This interval is wider and other procedures such 

as Bootstrap estimations may also be used in further studies. 

  

It was also shown by use of simulations that an optimum pool sample size is obtained 

when at least half the samples are eliminated at every run. In screening a large 

population using a multistage pooling algorithm for the purpose of estimating HIV 

incidence, it is not mandatory to stop at pools of size one. Strategy 2 shows it suffices to 

stop at the pools of size 8, which will still give a good approximation of the incidence. 

Similarly, strategies 1 and 3 show that one can stop at the pools of size 10 and 5, 

respectively, and still produce a robust estimate of incidence. Thus, applying a 

multistage pooling algorithm for estimating HIV incidence rate can dramatically reduce 

the cost of testing. 

For the multistage pooling strategy, it was shown that an optimal pooling algorithm can 

be achieved by halving the pool size at each stage of executing the pooling algorithm. 
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This was done using strategy 2, yet this runs more tests until one pool is left. This 

showed less error (obtained by use of the mean and standard deviation of PCR runs) 

compared to the other two strategies (see appendix D). Where E[Npositive] is the 

expected number of positive specimens in the sample of 6400 specimens. Multistage 

pooling when used to run the PCR test in combination with a very sensitive assay can 

reduce the cost of estimating the incidence remarkably and the number of tests by over 

75% compared to p24 antigen testing.
31
 

In general, the issues surrounding the generalization or extrapolation of results from a 

sentinel population to the larger epidemic are the same for prevalence and incidence 

data. A unique feature of incidence that is relevant to extrapolation is a point estimate, 

whereas prevalence reflects cumulative experience with HIV-1. Prevalence reasonably 

reflects HIV-1 exposure before, during and after pregnancy for antenatal clinic data. 

Incidence reflects recent exposure shortly before or during pregnancy in the case of 

antenatal attendees. If there is a difference in risky behaviour and incidence before and 

during pregnancy, the extrapolation to non-pregnant women of the same age may not be 

valid.
29 

A more informative incidence estimate, a pooled estimate based on estimates from 

different provinces, may be more useful to generalize the incidence to the whole 

population. The actual number of persons in the window period is also very low and 

large data may need to be used to validate the formulae. The PCR-RNA test is very 

sensitive at detecting acute HIV-1 infected persons. The incidence estimate from the 

cross-sectional study formulae was very similar to that obtained from a follow-up study. 
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The number of tests needed can be reduced and a good estimate of the incidence can 

still be calculated. The calibration was not accurate since the samples used were small 

and the window period duration too short, hence it was difficult to extrapolate to the 

whole population. Further work still has to be done on the calibration of these incidence 

formulae as it can serve as a very useful public health tool.
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APPENDIX A: DERIVATION FOR ACUTE HIV-1 FORMULAE  

This is the derivation of an incidence for cross-sectional studies based on results 

obtained from and antibody test (ELISA) and virological test (RNA-PCR). This formula 

was proposed by Mwanga (2006) 
25
. 

If a linearly decreasing closed population (at rateλ ) is considered, the number 

susceptible can be written as:  

tNNtN sss λ)0()0()( −=  ………………………………………………..Equation A1 

At time t0, when participants appear for testing. Shifting the reference point to the date 

of the first PCR positive test, that is, time –t1, the susceptible population can be given as 

ttNtNtN sss λ)()()( 11 −−−=   and replacing λλ )( 1tN s −=′ : 

ttNtN ss λ ′−−= )()( 1 ……………………………..……………………...Equation A2 

Then the number of recently infected R (section 2.3.2) is given by: 
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Assuming a constant yearly incidence, that is, i(t) = i. 
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Series expansion of equation: 
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Assuming the population does not vary much over time, hence keeping only the first 

order term we obtain: 

wnegTN

R
i = ……………………………………………………………….Equation 2.11 

APPENDIX B : MULTISTAGE POOLING INCIDENCE  

In a one-stage pooling study, if there is a sample of N seronegative specimens (for HIV-

RNA test), the sample can be divided into n1 pools of size s1, thus N=n1.s1 given x1 of 

these pools are positive and y1 are negative such that n1 = x1+y1. In order to 

systematically determine the probability p that a person has the disease without error 

(assuming perfect sensitivity and specificity of the test), the maximum likelihood 

estimate (MLE) must be determined. The individual tests can be taken as Bernoulli 

trials, thus the likelihood would be a binomial distribution. 
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Finding the natural logarithm of both sides. 
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To find the maximum likelihood, 0/)( 1 =∂∂ pInL  
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Thus after some algebra, this yields the MLE of p: 
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For large n1 the variance of the MLE of p is estimated by 
10
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This is only applicable to the one stage pooling case, but one pooling is usually not 

sufficient, thus, there is a need for multistage pooling. It can similarly be shown that p 

yields a good estimate for a multistage study pooling study, which is the generalization 

of a single stage pooling study. 
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And the corresponding estimate of the variance.
10
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In order to estimate the incidence from cross-sectional prevalence, it should be assumed 

that R individuals in the sample of N seronegative individuals are found to be recently 

HIV infected. If the mean window period duration (Tw) of these individuals is known: 

NT

R

T

P
i

ww

w == …………………………………………………………..Equation 2.11 

Where Pw=R/N is the proportion of  individuals seen in the window period namely the 

window period prevalence. 

For the multistage pooling study after, e.g., z stages of pooling algorithm, the incidence 

rate will be estimated by the following relation after replacing Pw with p̂ from equation 

B6. 
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The error introduced by lack of sensitivity and specificity is known.
24
 The selection of 

the initial pool size is integral to the effect of minimizing the effect of false positives 

and false negatives.  
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APPENDIX C : DERIVATION OPTIMAL POOLING STRATEGY 

If there is a sample of N specimens that is pooled into np pools of size s1 (s1 being the 

initial pool size) and p is the prevalence of infected individuals in this sample, then the 

probability that in this pool of size s1 there are exactly k infected individuals can be 

modelled by the binomial distribution. 

ksk
pp

k

s
kXP

−−







== 11 )1()(

1
……………………….………………..Equation C1 

Where, X is a random variable and k ≤ R. Thus, the probability of a pool testing positive 

is P[X ≥1], i.e., at least one individual in the pool has infection. This can be written as: 

P(at least 1 positive) = 1- P(none positive) i.e. )0(1)1(1)1( =−=<−=≥ XPXPXP  

1)1(1)1( spXP −−=≥  

To minimize the number of PCR runs, at least half of the initial pools should test 

negative. If 

1)1(
2

1
)0(

s
pXP −===  and making s1the subject, the following equation is obtained: 

f

In

pIn

In

pIn

In
s

2
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2
1 =

−
=

−
−

=   ………………………………………..……………Equation 2.17 
8 

Equation 2.17 gives the optimal initial pool size where f is the expected frequency of 

individual being in the window period. When  p = 1-ε (very high prevalence),  where ε 

is a small nonnegative number, individual testing is preferable. 
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APPENDIX D: STRATEGIES MEASURES OF SPREAD AND LOCATION 
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APPENDIX E: STUDY DESIGN 
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APPENDIX F : SCREENING AND DIAGNOSTIC ALGORITHM 
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APPENDIX G : HIV DIAGNOSTIC ALGORITHM FOR PHASE I (HIV 

NEGATIVE FSW COHORT) 
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