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AbstractAbstractAbstractAbstract    

    

The ballistic phonon flux emanating from a point–like heat source in a crystal shows 

strong directional dependence. This effect is called phonon focusing and is measured 

using a technique called phonon imaging. In situations where long wavelength 

phonons are involved, the observations can be explained on the basis of classical 

continuum elasticity theory. Dispersion i.e. the variation of velocity with wavelength, 

sets in when the phonon wavelengths become comparable to the natural scale of 

length of the material, the lattice constant. This has a significant effect in the 

phonon focusing pattern and causes shorter wavelength phonons to lag behind longer 

wavelength ones and the dispersion relation i.e. the relation between angular 

frequency ω  and wave number k becomes non-linear. 

 

 A number of studies have used lattice dynamics models to explain the observed 

dispersive phonon images. Measured phonon images are not entirely satisfactorily 

reproduced by any of these lattice dynamics models and the different models tend to 

predict somewhat different focusing patterns. In this thesis, we set out to explain the 

observed dispersive phonon focusing patterns of cubic crystals by using a modification 

of continuum elasticity theory. This is done by including third and fourth order spatial 

derivatives of the displacement field in the wave equation. The coefficients of these 

higher order terms are the dispersive elastic constants. They are determined through 

optimized fitting to frequency versus wave vector data extracted from neutron 

scattering experiments for the acoustic modes in symmetry directions of a number of 

cubic crystals.  

 

Our approach is limited to the first onset of spatial dispersion and does not apply to 

near Brillouin zone boundary phonons. It is also applicable to crystals of any symmetry 



but in this thesis we focus on crystals of cubic symmetry. We report results on two 

crystals with a centre of inversion, Ge and Si, and two crystals without a centre of 

inversion, InSb and GaAs. 
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Chapter 1Chapter 1Chapter 1Chapter 1    

    IntroductionIntroductionIntroductionIntroduction    

 

A phonon is a quantum of elastic vibration analogous to a photon in an 

electromagnetic wave. Heat transport in insulators is largely due to the 

migration of phonons. They propagate uniformly in all directions in elastically 

isotropic media. However, in anisotropic materials the phonon flux is strongly 

directionally dependent (Maris, 1971). For cubic crystals, which are the 

concern of this thesis, this is not observed at normal temperatures where 

motion of phonons is diffusive but only at near absolute zero in temperature 

where they travel with minimal scattering. An image showing the directional 

dependence of the ballistic phonon flux emanating from a point source in a 

crystal is called a phonon image or a phonon focusing pattern.  

 

The propagation of phonons with wavelengths much larger than the lattice 

spacing of a crystal is well accounted for by continuum elasticity theory 

(Wolfe, 1998). Dispersion i.e. the variation of velocity with wavelength, sets in 

when the phonon wavelengths become comparable to the lattice parameter of 

the crystal (Every, 2005). Dispersion has a significant effect on the focusing 

patterns and commonly causes shorter wavelength phonons to lag behind 

longer wavelength ones, thus arriving later at the detector and the dispersion 

relation i.e. the relation between angular frequency ω  and wave number 

k becomes non-linear. In this dissertation, we are attempting to explain the 

observed changes in the phonon focusing patterns of a number of crystals by an 

extension of continuum theory developed by DiVincenzo in 1986.  

 

A brief explanation of the phonon imaging principle and dispersive phonons is 

given in this chapter. This is followed by an outline of continuum elasticity 

theory and its application to non-dispersive phonon imaging in the next 
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chapter. Chapter 3 deals with the extension of continuum elasticity theory to 

include the first onset of spatial dispersion. Calculated phonon images using 

modified continuum theory for two cubic crystals with a centre of inversion, Ge 

and Si, are given in chapter 4 and for two non-centrosymmetric cubic crystals, 

InSb and GaAs, in chapter 5. In chapter 6 we set out the conclusions.  

 

1.1 The phonon imaging principle 

 

The first experimental investigation of the ballistic heat pulse phenomenon at 

low temperatures was performed by von Gutfeld and Nethercot in 1964 on 

quartz and sapphire. It is found from such experiments, that phonons 

propagate for macroscopic distances through the crystal with minimal 

scattering, that is, they travel ballistically. Further investigations by Taylor, 

Maris and Elbaum (1969) revealed that the intensity or flux of acoustic phonons 

excited by this technique is dependent upon propagation direction. The 

enhancement of phonons in certain directions in anisotropic media was 

mathematically described by Maris in 1971. Experimental investigations by 

Northrop and Wolfe (1980) on germanium resulted in the first spatial images of 

ballistic heat pulses, for which they coined the name “phonon image”. A 

physical picture of the heat flux distribution arriving at the surface of a silicon 

crystal was produced by Eisenmenger (1980) using the fountain effect of liquid 

helium. 

 

 The heat pulse technique is the basis of phonon imaging in these experiments. 

A highly focused pulsed laser or electron beam is used to excite non-

equilibrium phonons in a crystal immersed in a liquid helium bath at about 2K 

by heating a small spot on one face of the crystal. The ballistic phonon flux 

emanating from the heated spot is detected on the opposite face of the crystal 

by a bolometric or a frequency selective tunnel junction detector, see Figure 

1.1. Small detector sizes are required, 10 to 30 µm2, for good angular 

resolution of ballistic phonon flux (Wolfe, 1998).   
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Figure 1.1 The phonon imaging principle 

 

Raster scanning the phonon source with the detector at a fixed position, which 

is easier done than the other way round, shows that the phonon flux is highly 

directional, mainly due to phonon focusing which will be explained in detail 

later. The two dimensional image showing the spatial anisotropy of heat flow in 

a crystal which is obtained is called a phonon image. 

 

The detected signal consists of a number of pulses corresponding to the arrival 

of phonons belonging to the fast transverse (FT), slow transverse (ST) and 

longitudinal (L) acoustic branches. The times of flight of the detected heat 

pulses are a measure of the phonon group velocities along a given propagation 

direction and the magnitudes of these pulses vary considerably with direction, 

which is mainly due to phonon focusing and to a lesser extent on geometrical 

factors, variation of the distance of travel and projection of the source and 

detector on the propagation direction. 

 

Figure 1.2 below shows examples of calculated phonon images for non-

dispersive phonons in a crystal of GaAs for the (100), (111) and (110) 

observation planes. The bright areas represent a high concentration of phonon 
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flux and caustics, the sharp bright lines, are regions where the phonon flux is 

mathematically infinite. 

 

             

 

 

Figure 1.2 Calculated non-dispersive phonon images of the FT and ST modes of 

GaAs in the (a) (100), (b) (110) and (c) (111) observation planes 

 

Figure 1.2a is centered on the 100  direction. The box structure around the 

100  direction labeled ST is due to slow transverse branch phonons whilst the 

structures labeled FT are due to fast transverse phonons. Longitudinal phonons 

are not included in the calculations for these and other images presented in 

this thesis, since they do not give rise to any caustic structures. The box 

structures in figure 1.2a show up as the diamond shaped structures in figure 

1.2b for the (110) plane, and are distorted because they are now projected 
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onto a different plane. In fact, the three images in figure 1.2 represent the 

same focusing pattern, and only look different because they are projected onto 

different imaging planes. The image in the (111) observation plane, figure 1.2c, 

is centered on the 111  direction. The structure at the centre and the three 

boxes are due to ST phonons whilst the ridges forming the triangular shape are 

due to FT phonons. 

 

1.2 Dispersive phonons 

 

A number of experimental and theoretical investigations of dispersive phonon 

images have been carried out by for example Dietsche et al (1981), Northrop 

(1982), Metzger and Huebener (1988), and Tamura (1982). In these 

experiments, frequency selective tunnel junction phonon detectors have been 

employed instead of the bolometric detectors used at non-dispersive 

frequencies. It is found that there are significant changes in the phonon 

focusing patterns of crystals at dispersive frequencies.  

 

Theoretical studies of dispersive phonon images in the past have made use of 

lattice dynamics models. These include the shell model, rigid ion model 

(Hebboul and Wolfe, 1986), and the bond charge model (Tamura, 1981). The 

parameters of these models are adjusted to obtain agreement with the full 

phonon dispersion relation for optical and acoustical branches obtained from 

neutron scattering data. The observed images are not entirely satisfactorily 

reproduced by these models and moreover, different models predict markedly 

different phonon focusing patterns. In this thesis, we are attempting to explain 

the measured images on the basis of continuum theory modified to take into 

account the first onset of spatial dispersion as formulated by DiVincenzo in 

1986. This is done through the inclusion of third and fourth order spatial 

derivatives of the displacement field in the wave equation. The coefficients of 

the higher order terms, the dispersive elastic constants are determined through 
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fitting to the near zone centre acoustic mode dispersion relations for the 

100 , 111  and 110  symmetry directions in cubic crystals obtained from 

neutron scattering experiments. Dispersive phonon images are then calculated 

using these dispersive elastic constants. With this approach, we investigate the 

phonon focusing patterns of Ge, Si, InSb and GaAs.    
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Chapter 2Chapter 2Chapter 2Chapter 2    

    

Elastic waves in crystalsElastic waves in crystalsElastic waves in crystalsElastic waves in crystals: : : :     

                                                                                                                                                TTTThe longhe longhe longhe long    wavelength limitwavelength limitwavelength limitwavelength limit     
 

The propagation of acoustic waves in a solid is associated with dynamic stresses 

and strains which are related through the elastic constants of the medium. The 

continuum approximation is valid when the wavelength is much larger than the 

natural scale of length of the medium. The characteristic scale of length in a 

crystal is the lattice parameter which is of the order of ∼10-3 µm. For phonons 

propagating with wavelengths much larger than the lattice spacing, phonon 

focusing patterns are independent of frequency.  Experimental investigations 

on these non-dispersive phonon images are usually carried out with a 

superconducting bolometric detector (Wolfe, 1998). It is sensitive to low 

frequency phonons, usually below about 100 GHz.  A brief outline of the non-

dispersive continuum elasticity theory explanation of non dispersive phonon 

images is given in this chapter.   

 

2.1 Stress, strain and Hooke’s law 

Strain describes the change in length, relative displacement in parallel layers 

and the changes in volume of a solid when a force is applied to it. If a material 

particle moves from a point ( )1 2 3, ,x = x x x  to a point ( )1 2 3, ,X X XX=  in 

Cartesian coordinates, then it has undergone a displacement u(x)=X(x) x− . The 

material is distorted in shape if the absolute distance between the particles 

changes.  This distortion can be described as formulated by Every (2001), by 

choosing two particles in the solid at points x  and x xδ+  which will be at X(x)  

and X(x+δx)  after the displacement.  If we let the original distance between 

the particles be lδ  and Lδ  be the distance after the displacement has taken 
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place then assuming that X(x+ x)δ  can be expanded in a Taylor series in ixδ , 

we can write, 

 2 ( ) - ( )X x x X x k k
l m

l m

X X
L x x

x x
δ δ δ δ

∂ ∂
= + =

∂ ∂
.  ( , 1,2,3)l m =  (2.1) 

The change in the square of the separation of the particles is thus given by 

 2 2 2 lm l mL l x xδ δ η δ δ− = , (2.2) 

 where  

 
1

2

k k
lm lm

l m

X X

x x
η δ

 ∂ ∂
= − ∂ ∂ 

, (2.3) 

 

is called the Lagrangian or Almansi tensor and δ lm is the Kronecker delta. The 

strain may also be expressed in terms of the displacement field gradients by   

 
1

2

l m k k
lm

m l l m

u u u u

x x x x
η

 ∂ ∂ ∂ ∂
= + + ∂ ∂ ∂ ∂ 

. (2.4) 

For infinitesimal displacements, lmη  is equal, to first order in l mu x∂ ∂ , to  the 

Cauchy strain tensor,   

 
1

2

l m
lm

m l

u u

x x
ε

 ∂ ∂
= + ∂ ∂ 

. (2.5) 

In this thesis, we will be considering infinitesimal elastic strains and as a result 

our discussion will refer to the Cauchy strain tensor . 

 Stress is the force divided by the area on which the force acts. If we consider 

an infinitesimal cube centered at a point x  in a medium (see figure 2.1), then 

the Cauchy stress tensor has the nine components (Every, 2001),  

 
0

lim
j

i
ij

A

F

Aδ

δ
σ

δ→
=    ( ), 1,2,3i j = , (2.6) 

 

where j

iFδ  is the 'i th  component of the force acting across the surface facing 

outwards along the jx  direction and Aδ is the area of that face.  The six off-
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diagonal components of the stress tensor are the shear components whilst the 

three diagonal components are the normal components of stress.  

 

 

 

Figure 2.1. The force per unit area, ijσ , transmitted across the faces pointing 

along the 1x , 2x  and 3x  Cartesian directions. 

 

We confine our attention to ideal solids which conform to Hooke’s law, 

according to which stress and strain are related by the equation 

  

 ij ijlm lmCσ ε= , (2.7) 

  

where ijlmC  is the fourth rank elastic modulus or stiffness tensor. The Einstein 

summation convention for repeated subscripts has been assumed.  

 

The stress and strain tensors are symmetric with respect to interchange of their 

indices. This is because the moment of forces acting on the cubic element 

should tend to zero in the stress tensor to avoid infinite angular acceleration 

(Every, 2001).  The strain tensor is symmetric by its definition (2.5). It follows 

that ijlmC  is invariant to interchange of i  and j  or l  andm , i.e. 

ijlm jilm ijml jimlC C C C= = = . From elastic energy considerations it can be shown that 

=ijlm lmijC C . The number of independent elastic constants in any crystal is thus 
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reduced from 81 to 21 by the above mentioned index symmetries of the elastic 

stiffness tensor. The symmetry of the ijlmC  , also allows us to abbreviate the 

pairs of indices ij and lm  into a single one running from 1 to 6. This is called 

Voigt contraction, in which the following association is made:   

 

               Original notation          11    22     33     23,32    31,13    12 , 21  

               Voigt contracted            1      2       3         4          5           6 

  

The stress and strain components can now be written with a single suffix and 

we can rewrite Hooke’s law in the form,  

                                                  

 I IJ JCσ ε=   ( , 1,2,...,6)I J = , (2.8) 

         

The presence of symmetry in the crystal can further reduce the number of 

independent IJC . In cubic crystals one ends up with only three independent 

constants, 11 22 33C C C= = , 44 55 66C C C= =  and 12 23 13 21 32 31C C C C C C= = = = = , all 

the others being zero. 

  

2.2 Christoffel’s equation  

 

The particles of a solid under the influence of a uniform stress field and in 

cases where there are no body forces or torques do not experience any 

acceleration. A stress gradient however, results in the accelerated motion of 

these particles (Every, 2001). The resultant force acting across each one of the 

two faces normal to the 1x , 2x  and 3x  directions of a cubic volume of side xδ  

is given by,   

 3ij

i

j

F x
x

σ
δ δ

∂
=
∂

. (2.9) 
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Applying Newton’s second law to equation (2.9), we obtain the equations of 

motion,  

 
2

2

ij i

j

u

x t

σ
ρ

∂ ∂
=

∂ ∂
, (2.10) 

where ρ  is the density of the volume element. Combining this equation with 

Hooke’s law, equation (2.7) we obtain, 

 
2

2
( )i

ijlm lm

j

u
C

t x
ρ ε
∂ ∂

=
∂ ∂

. (2.11) 

 

Assuming homogeneity of ijlmC  we obtain the elastic wave equation for a 

general anisotropic solid, 

 
2 2

2

i l
ijlm

j m

u u
C

t x x
ρ
∂ ∂

=
∂ ∂ ∂

. (2.12) 

 

Equation (2.12) admits plane wave solutions of the form, exp[ ( )]i iu U i tω•= −k r  

subject to,  

 2

i ijlm j m lU C k k Uρω = . (2.13) 

 

Equation (2.13) can be recast in the form, 

  

 2[ ] 0il il lv Uρ δΓ − = , (2.14) 

where 

  

 il ijlm j mC n nΓ =  , 

 

ilΓ  is the Christoffel matrix, n k k=  is the wave normal and ilδ   is the 

Kronecker delta. Equation (2.14) is a set of three equations for the components 

of the unit polarization vector lU , and is known as Christoffel’s equation. The 

eigenvalues, 2v , are the squares of the phase velocities, v kω= , of the three 

modes of polarization of the acoustic waves. This gives us the secular equation 

for an elastic wave with wave normal direction 1 2 3( , , )n n n  as 
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2

11 12 13

2

21 22 23

2

31 32 33

0

v

v

v

ρ
ρ

ρ

 Γ − Γ Γ
 

Γ Γ − Γ = 
 Γ Γ Γ − 

, (2.15) 

 

where the subscripts 1, 2 and 3 represent the Cartesian coordinate axes. This 

determinantal equation is a cubic equation in 2v and has roots corresponding to 

the longitudinal (L), slow transverse (ST) and fast transverse (FT) modes. The 

longitudinal mode generally has a higher velocity than the transverse modes 

because a compressional wave involves a local change of volume that gives a 

greater restoring force than the shear distortions of a transverse wave (Wolfe, 

1998).  For a general wave vector direction in an anisotropic solid we do not 

have pure longitudinal and transverse modes except along high symmetry 

directions. As a result, they are sometimes called quasi-longitudinal and quasi-

transverse modes but here we shall use the compact notation, L, ST, and FT.  

  

2.3 The slowness surface and group velocity 

  

The slowness or inverse phase velocity vector is defined as s k ω=  with 

direction along k .  A radial plot of the locus of the slowness vectors gives the 

slowness surface. This surface has the shape of a constant frequency surface in 

k  space. The above definition of the slowness vector allows Christoffel’s 

secular equation to be written in the form (Wolfe, 1998),  

 

 ( ) 0s ijlm j m ilS C s s ρδ= − = , (2.16) 

 

 which is an equation of degree six in s . 

 

There are three sheets to the slowness surface corresponding to the L, FT and 

ST modes of acoustic wave propagation. Figure 2.1 shows a cross-section of the 

slowness surface for Si in the (100) plane and figure 2.2a shows a (110) cross 



13 

 

section. The slow transverse phase velocity is smaller than the fast transverse 

velocity for any given k -vector direction, and hence the ST sheet of the 

slowness surface lies on the outside. The L sheet lies entirely on the inside. 

 

Figure. 2.2 . Cross section of the slowness surface for Si in the (010) plane. 

  

 

 

Figure. 2.3 . Cross section of the slowness surface of Si in the (110) plane.  

 

Along the four fold 100  axes and threefold 111  axes, the ST and FT modes 

are degenerate. Axes along which the slowness surfaces have contact are 

called acoustic axes. Degeneracy can be conical, tangential, sporadic, triple 

degeneracy or in the form of lines of wedge shaped degeneracy (Every, 1986). 

For cubic crystals there is always tangential degeneracy along the [100] 
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directions and conical degeneracy along the [111] directions. The two 

transverse sheets are completely degenerate for an isotropic medium. 

 

 

Figure. 2.4. Three dimensional ST sheet of the slowness surface for a Si 

crystal. Shaded regions are of saddle curvature and unshaded regions have 

convex or concave curvature (Calculated by A.G. Every).  

 

In three dimensions the transverse sheets of the slowness surfaces have regions 

of positive and negative Gaussian curvature, see figure 2.3.  The boundaries 

between such regions are parabolic lines of zero Gaussian curvature. It follows 

from the fact that the equation of the slowness surface is of degree six, that 

the inner longitudinal sheet is entirely convex. The significance of Gaussian 

curvature will become evident later.  

 

The velocity of the modulation envelope of a wave packet is its group velocity. 

This is also parallel to the energy flux of the elastic wave and is the velocity of 

energy transmission (Wolfe, 1998). The group velocity of phonons in an 

elastically anisotropic medium is given by the gradient of ( )ω k in k space, 

 
1 2 3

( ) , ,V kk
k k k

ω ω ω
ω

 ∂ ∂ ∂
= ∇ =  ∂ ∂ ∂ 

. (2.17) 

 

Equation (2.17) implies that phonon group velocity vectors are normal to their 

constant frequency or slowness surface. As shown by Every (2001), this is 

because for any two neighboring points k and k kδ+ on a constant frequency 
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surface, ( ) ( ) . ( ) 0
k

k k k k kω δ ω δ ω+ − = ∇ = . The collection of these group velocity 

vectors gives the group velocity or wave surface. The wave surface has a 

complex shape with folds corresponding to parabolic lines on the slowness 

surface as shown in figure 2.4 which shows a (100) section of the ST and FT 

sheets of the wave surface of Si.  

 

 

Figure. 2.5. Cross section of the ST and FT sheets of the wave surface for a Si 

crystal in the (100) plane. 

 

The cross sections of the transverse wave surfaces in figure 2.4 were calculated 

by generating a large number of wave vectors and then calculating their 

corresponding group velocity vectors. Then those lying within an angle of 1o of 

the sectioning plane are represented graphically by dots. The sectioned folds 

show up as cusps in this diagram. The wave surface gives the shape of the heat 

pulse distribution emanating from a pulsed point source at some time after the 

pulse.   

 

Folds on the wave surface originate from parabolic lines on the slowness 

surface where the Gaussian curvature is zero. This is because many of the wave 

vectors near the parabolic lines have nearly the same group velocity (Wolfe, 

1998) and wave vectors can be found on the two sides of the parabolic line that 

have the same group velocity direction.  The folds on the wave surface map 
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onto regions of infinite phonon focusing on the phonon image called caustics 

where the phonon flux is singular, as will be shown later. 

 

2.4 Maris phonon enhancement factor 

 

The focusing of phonons in crystals is due to the fact that waves with different 

wave vector directions can have almost the same group velocity vectors. We 

then have phonons tending to bunch up along certain directions (Wolfe, 1998).  

The Maris phonon enhancement factor is a useful measure for quantifying the 

angular variation in phonon intensity.   

 

Let a phonon detector subtend a solid angle VdΩ  in real space as viewed from 

a point source of phonons. In an elastically isotropic solid, waves leaving the 

source with wave vectors in the same solid angle will reach the detector. 

However, in an anisotropic solid because wave vectors are not collinear with 

the group velocity vectors, waves leaving the source with wave vectors in a 

different solid angle, kdΩ , whose group velocities lie within the solid angle 

VdΩ  reach the detector (Maris, 1970). The ratio of the solid angle in wave 

vector space to the solid angle in real space, 

    

 k

V

A=
d

d

Ω
Ω

, (2.18) 

is called the Maris phonon enhancement factor. 

 

When the enhancement factor is greater than unity then the there is focusing 

of phonon i.e. greater intensity than there would be in a comparable isotropic 

medium, whilst there is defocusing if this factor is less than unity. There is no 

focusing of phonons in isotropic crystals since the wave vectors and group 

velocity vectors are parallel and k Vd dΩ = Ω  resulting in 1A = . Calculations of 

the phonon enhancement factor along symmetry directions have been carried 
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out by Maris, 1971 and McCurdy, 1974. The Gaussian curvature of the slowness 

surface and the enhancement factor are related by (Every, 1981), 

 
1

3A s VK
−

= , (2.19) 

                                                    

where 1 2K L L=  is the Gaussian curvature and 1L  and 2L  are the two principal 

curvatures of the slowness surface and s is the magnitude of slowness. So, the 

smaller the Gaussian curvature, the greater is the focusing. At parabolic lines, 

where K  is zero, the phonon intensity is infinite and this maps onto a caustic 

in the phonon intensity. 

 

2.5 Phase velocity along symmetry directions 

 

There usually arises a need to check for the validity of phonon imaging and 

related calculations. This is because there is a possibility of obtaining 

reasonable results whilst the calculations have embedded errors. Expressions 

for the phase velocity along symmetry directions involve only the elastic 

constants and the density of the material and therefore one can obtain some 

expected results which can then be used to ascertain the validity of the 

calculations. Their derivation starts from the Christoffel matrix for a cubic 

crystal (Wolfe, 1998), 

 

 

2 2 2 2

11 44 12 44 12 44

2 2 2 2

12 44 11 44 12 44

2 2 2 2

12 44 12 44 11 44

( ) ( ) ( )

( ) ( ) ( ) 0

( ) ( ) ( )

x y z x y x z

y x y x z y z

z x z y z x y

C k C k k C C k k C C k k

C C k k C k C k k C C k k

C C k k C C k k C k C k k

ρω
ρω

ρω

+ + − + +

+ + + − + =

+ + + + −

,(2.20) 

 

or 
 

 

2 2 2 2

11 44 12 44 12 44

2 2 2 2

12 44 11 44 12 44

2 2 2 2

12 44 12 44 11 44

( ) ( ) ( )

( ) ( ) ( ) 0

( ) ( ) ( )

x y z x y x z

y x y x z y z

z x z y z x y

C n C n n v C C n n C C n n

C C n n C n C n n v C C n n

C C n n C C n n C n C n n v

ρ
ρ

ρ

+ + − + +

+ + + − + =

+ + + + −

.(2.21) 
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If one considers a wave normal directed along the [100] axis of a cubic crystal 

the wave normal components are 1xn =  and 0y zn n= = . The off diagonal 

elements in equation (2.21) are zero and this gives us,  

 

 2 2 2

11 44 44( )( )( ) 0C v C v C vρ ρ ρ− − − = . (2.22) 

 

The roots of this equation give us the velocity for the mode with longitudinal 

polarization, 

 11
L

C
v

ρ
= , (2.23) 

 

and the two degenerate transverse polarization modes, 

 

 44
T

C
v

ρ
= . (2.24) 

 

Along the [110] direction the wave normal components are 1 2x yn n= =  and 

0zn = . Again from (2.21) the expressions for the phase velocities are,  

 

 
( )11 12 442

2
L

C C C
v

ρ
+ +

= , (2.25) 

 

 44
1T

C
v

ρ
= , (2.26) 

  

 
( )11 12

2
2

T

C C
v

ρ
−

= . (2.27) 

 

Finally, for a wave normal directed along the [111] crystal axis, using the wave 

normal components 1 3x y zn n n= = =  we have,  
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 11 12 44( 2 4 )

3
L

C C C
v

ρ
+ +

= , (2.28) 

and  

 11 12 44( )

3
T

C C C
v

ρ
− +

= . (2.29) 

 

The condition among the elastic constants that corresponds to perfect isotropy 

is, 

 11 12 442 0C C C− − = . (2.30) 

 

The degree of anisotropy of a crystal can be characterized by a dimensionless 

anisotropy factor defined by 

 44

11 12

2

( )

C

C C
η =

−
, (2.31) 

or  

 11 12 44 44( 2 ) /C C C C∆ = − − . (2.32) 

 

For perfect isotropy, 1η =  and 0∆ = . For a given anisotropy factor, the ratios 

of [100], [110] and [111] velocities for the transverse modes are determined.  

 

2.6 Elastic parameter space 

 

The phonon focusing pattern of a crystal depends only on the ratios of the 

elastic constants and not on the numerical values of each ijC  or the density of 

the material (Every, 1981). When the Christoffel matrix is divided by 44C ρ  , 

the resulting matrix depends on two parameters, 

 11

44

C
a

C
= , (2.33) 

and   
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 12

44

C
b

C
= . (2.34) 

Using these ratios, one can plot an elastic parameter space of a  versus b  and 

map crystals according to the ratios of their elastic constants, see figure 2.6. A 

crystal must be located between the lines 2a b= −  and a b=  in order to satisfy 

the thermodynamic constraints 11 122 0C C+ > , 11 12C C>  and 44 0C >  (Nye, 1957).   

A crystal lying to the left of 2a b= −  will have a negative bulk modulus and a 

crystal lying to the right of the line a b=  will have a negative shear modulus in 

certain orientations. 

 

 

Figure. 2.6. Elastic parameter space for cubic crystals using elastic constants 

compiled by Every and McCurdy in the Landolt-Börnstein Series, (1992). 

 

11C  is less than 44C  in the region below the line 1a =  and for crystals satisfying 

this condition, the transverse phase velocities are higher than the longitudinal 
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velocity in the 100  directions. Transverse velocities again exceed the 

longitudinal phase velocities in the 111  directions in the area to the left of 

the line 1b = −  where 12C  is less than 44C− . Cases where the transverse 

velocities exceed the longitudinal velocities are rare and they have received 

relatively little attention as a result (Every and Stoddart, 1985). A line of points 

corresponding to the condition of elastic isotropy, 0∆ =  cuts across the region 

of stability. Along this line the three sheets of the slowness surface are 

spherical and the two transverse sheets are completely degenerate. Materials 

lying to the left of the isotropy line can be classified as positive-∆   and those 

to the right of this line as negative-∆  crystals.  Crystals lying on different sides 

of the isotropy line have different slowness surface topologies and phonon 

focusing patterns. The space below and above the isotropy line can be further 

divided into regions where different topologies appear on the slowness surfaces 

of the crystals. This has been done by Every, 1981 and Hurley and Wolfe, 1985. 

Figure 2.6 shows a cross section of the slowness surface of a positive-∆   

crystal, CaF2, in the (110) plane, while Si depicted in figures 2.1 – 2.4 is a 

negative-∆ crystal. 

 

Figure 2.7. Cross section of the slowness surface for a positive-∆ crystal, CaF2, 

in the (110) plane.  
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2.7 Non-dispersive phonon focusing 

 

In phonon imaging, phonon excitation is carried out in a crystal by heating a 

small spot on a metal film in transparent crystals or by heating the crystal 

surface of an opaque crystal directly using a pulsed laser or an electron beam.  

Investigations by Weis et al in 1969 and 1990 have shown that the frequency 

distribution of the non-equilibrium phonons can be modeled as Planckian. Long 

wavelength phonon focusing patterns of cubic crystals are calculated using a 

program written in the FORTRAN programming language. We first generate k  

vectors with an isotropic distribution of directions in  k  space. For each of 

these wave normals, we calculate the roots of the cubic equation in 2λ ρω= ,  

  

 3 2( ) ( ) ( ) 0k k kc d eλ λ λ− + + + = , (2.35) 

 

derived from (2.20) using a root finding procedure, Laguer, (Press et al, 1986). 

The coefficients of this equation are,  

 ( )kc Q T S= + + , 

 2 2 2( )kd T U V SQ SR QR= + + − − − , 

 ( ) 2 2 2 2ke QRS V U T S U R TUV= − − − + . 

,Q T  and S  are the diagonal components of equation (2.20) for a crystal with 

cubic symmetry  defined as,  

2 2 2

11 44 ( )x y zQ C k C k k= + + , 

  2 2 2

11 44 ( )z x yS C k C k k= + + , 

2 2 2

11 44 ( )y x zR C k C k k= + + , 

and the off-diagonal components ,T U  and S  are given by,  

 12 44( )x yT k k C C= + , 

 12 44( )x zU k k C C= + , 

 12 44( )y zV k k C C= + . 
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The roots of equation (2.35) give us the frequencies, ω , of each wave vector. 

We then compute the corresponding group velocity vectors, Vg , for each 

phonon wave vector. This is done by finding the gradient of (2.35) and we 

obtain the following expression for the group velocity,    

 

2

2

( ) ( ) ( )

1

3 2 ( ) ( ) 2
k

k k k

k k kV = (k)=
k k

g

e d c

c d

λ λ
ω

λ λ ρω

∂ ∂ ∂
+ +

∂ ∂ ∂∇ ×
− −

. (2.36) 

 

The points where the ray or group velocity vectors pass though the observation 

plane are sorted into a 500 × 500 array of bins. The number of vectors falling 

into each bin is counted and this is output in matrix form in a file that is saved 

in data format. A high density of the ray vectors in any direction represents 

strong phonon focusing. The data file is imported into the software Origin 6.1 

where we plot a gray scale image representing the phonon image. Phonon 

focusing patterns of a positive -∆   crystal, CaF2 are shown in figure 2.7. The 

phonon focusing structures in these images are due to slow transverse and fast 

transverse phonons only, we do not include L phonons in our calculations since 

they do not give rise to caustics for reasons touched on earlier. The images in 

the (100) and (110) planes span an angle of 90o whilst the image in the (111) 

plane spans an angle of 53.13o from left to right. The image in the (111) 

observation plane, figure 2.7a is centered around the 111  direction. Figure 

2.7b is centered around the 100  direction and figure 2.7c is centered around 

the 110  direction. Bright areas in these phonon images represent high phonon 

intensity. This is all we will have to say about positive-∆  crystals. Most of the 

experimental investigations on the dispersive phonon focusing patterns of 

crystals have pertained to negative-∆  crystals and for this reason, in the 

remainder of this thesis we study the phonon images of negative -∆  crystals.  
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Figure. 2.8. Non dispersive FT and ST phonon focusing pattern of CaF2, a 

positive-∆  crystal, in the (a) (111) with an angular width of 53.13o, (b) (100) 

and (c) (110) observation planes with angular widths of 90o from left to right.  

 

To calculate the phonon images in figure 2.7, we used a density of 3.21 × 103 

kg m-3  (Wolfe, 1998) and the elastic constants in units of kg m-1 s-2  are 

11

11 1.65 10C = × , 11

12 0.473 10C = ×  and 11

44 0.339 10C = ×  , tabulated by Every and 

McCurdy in the Landolt-Börnstein series in 1992.   
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Chapter 3Chapter 3Chapter 3Chapter 3    

    Dispersive pDispersive pDispersive pDispersive phononshononshononshonons    in cubic crystalsin cubic crystalsin cubic crystalsin cubic crystals 

 

Spatial dispersion is the variation of acoustic wave speed with wavelength 

(Mittal and Every, 2007). It sets in when the wavelength becomes comparable 

to the lattice parameter in a crystal. Various lattice dynamics models have 

been used to explain the changes in the phonon focusing patterns of crystals as 

a result of dispersion. These include the bond charge model (Rustagi and 

Weber, 1976), the shell model (Dolling and Waugh, 1965), the deformation 

dipole model (Kunc et al, 1975) and the valence force field model (Price et al, 

1971).  These models have had mixed success in accounting for the measured 

focusing patterns of a number of crystals (Wolfe, 1998).  

 

In this thesis, we attempt to explain the first onset of spatial dispersion within 

continuum elasticity theory by the inclusion of third and fourth order spatial 

derivatives of the displacement field in the elastic wave equation (DiVincenzo, 

1986). This adaptation of continuum elasticity gives us a formulation that 

applies to many types of solids and removes the need for one to construct a 

specific microscopic model for each medium (Every and Jakata, 2007). Our 

approach is applicable in principle to crystals of any symmetry, but the 

examples we treat are limited to crystals of cubic symmetry. For our 

investigations, we have chosen two crystals belonging to the crystal class (point 

symmetry group) hO  with a centre of inversion namely, germanium and silicon, 

and two crystals belonging to the crystal class dT  which lacks a centre of 

inversion namely, indium antimonide and gallium arsenide.  
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3.1 Extension of continuum elasticity theory to include 

dispersive effects 

 

Phonon imaging of long wavelength elastic waves has been explained by 

continuum elasticity theory in the previous chapter. Higher frequency phonons 

are sensitive to the discrete nature of the crystal and the dispersion relation is 

non-linear.  The classical wave equation given in section 2.2 can be modified 

within continuum elasticity theory to accommodate the effects of spatial 

dispersion as done by DiVincenzo in 1986. One starts from the elastodynamic 

Lagrangian density for a solid,  

  

 
2 3

11 1

2 2

i i i l i l i l
ijlm ijlmn ijlmnk

j m j m n j m n k

u u u u u u u u
L C D F

t t x x x x x x x x x
ρ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 

 
2 3

2 ...i l
ijlmnk

j m n k

u u
F

x x x x

∂ ∂
− −

∂ ∂ ∂ ∂
 (3.1) 

  

This assumes that L  is translationally invariant, time independent, and 

invariant under inversion and time reversal, and that the displacement field is 

infinitesimal so that L  is a quadratic function of the displacement derivatives. 

The first term on the right hand side represents the kinetic energy whilst the 

remaining terms represent the potential energy. The coefficients of the second 

term, ijlmC ,  are the non-dispersive elastic constants. The coefficients of the 

higher order terms, ijlmnD and ijlmnkF , are the dispersive elastic constants. For the 

action to be stationery (Goldstein, 1950),  

 ( ) 0xA Ld dtδ δ= =∫ . (3.2) 

As shown by DiVincenzo, the wave equation is obtained by integrating (3.2) by 

parts with the following result,  

 
2 2 3 4

2

i l l l
ijlm ijlmn ijklmn

j m j m n j m n k

u u u u
c d f

t x x x x x x x x x
ρ
∂ ∂ ∂ ∂

= + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

. (3.3) 
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The coefficients ijlmc , ijlmnd and ijklmnf  are related to the static constants ijlmC , 

ijlmnD  and ijklmnF  by symmetrisation’s or anti-symmetrisation’s of indices (Lax, 

1974), 

 ( , ) ( , )ijlm i l j m ijlmc sym sym C= , (3.4)  

 ( , ) ( , , )ijlmn i l j m n ijlmnd asym sym D= , (3.5)  

 1 2

( , ) ( , , , ) ( )ijklmn i l j k m n ijklmn ijklmnf sym sym F F= − . (3.6)  

  

The symmetrisation’s and anti-symmetrisation’s in the equations (3.4), (3.5) 

and (3.6) arise because of the terms generated through integration by parts 

(DiVincenzo, 1986).  

 

Assuming a plane wave solution to equation (3.3) of the form 

exp[ ( )]k ri iu U i tω•= − , we obtain the linear equations for the polarization 

vector kU , 

 { }2 0ijlm j m ijlmn j m n ijlmnk j m n k il lc k k id k k k f k k k k Uρω δ+ + − = , (3.7) 

 

and the secular equation,  

 2det 0ijlm j m ijlmn j m n ijlmnk j m n k ilc k k id k k k f k k k k ρω δ+ + − = , (3.8) 

 

that represents the dispersion relation ( , ) 0k ωΩ = .  

 

In chapter 2 it was pointed out that in crystals of cubic symmetry, the elastic 

tensor ijlmc  has three independent components which we take as 1111 11c C= , 

1122 12c C=  and 1212 44c C= .  The fifth rank tensor ijlmnd  is called the acoustic 

gyrotropic tensor and is implicated in the rotation of the plane of polarisation 

of a transverse acoustic wave along an acoustic axis. All components of this 

tensor vanish in crystals with a centre of inversion, whilst this is not the case 
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for non-centrosymmetric crystal classes like the point group  dT  (Portigal et al 

1968). 

    

Crystal symmetry and group theory considerations can be used to reduce the 

number of independent components in the d  and f  tensors. It is found that 

there is only one independent component of the ijlmnd  tensor for the point 

group dT , which is zero for the point group hO , and six independent 

components of the ijklmnf  tensor (DiVincenzo, 1986) for both point symmetry 

groups dT  and hO . We call the single component of the ijlmnd  tensor the 

dispersive elastic constant d  and the six independent components of the 

tensor ijklmnf  we call 1f , 2f , 3f , 4f , 5f , and 6f .  

 

If equation 3.7 is written in the form, 

 2

i il lU D Uρω = , 

 

 then the components of the dynamical matrix are given by (DiVincenzo, 1986), 

 

 2 2 4 4 4 4 2 2 2 2 2

11 44 1 2 3 4( ) ( ) 6 6 ( )ii i j k i j k j k i j kD C k C k k f k f k k f k k f k k k= + + + + + + + + , (3.9) 

and, 

 2 2 3 3 2

12 44 5 6( ) 3 ( ) 4 ( ) 12 ( )il i j i k j k i j i j i j kD C C k k id k k k k f k k k k f k k k= + + − + + + , i l≠ .(3.10) 

 

The subscripts ,i j and k  refer to the Cartesian directions and no summation is 

implied by repeated indices in these expressions and i j≠ , j k≠  and k i≠ .  

 

We can therefore write the dispersion relation in the form,   

 

 ( , ) 0k

Q T iT U iU

T iT R V iV

U iU V iV S

λ

ω λ
λ

′ ′− + −

′ ′Ω = − − + =

′ ′+ − −

 (3.11) 
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where again 2λ ρω=  and for the diagonal components are,  

 2 2 2 4 4 4 2 2 2 2 2

11 44 1 2 3 4( ) ( ) 6 6 ( )x y z x y z y z x y zQ C k C k k f k f k k f k k f k k k= + + + + + + + + , 

 2 2 2 4 4 4 2 2 2 2 2

11 44 1 2 3 4( ) ( ) 6 6 ( )y x z y x z x z y x zR C k C k k f k f k k f k k f k k k= + + + + + + + + , 

 2 2 2 4 4 4 2 2 2 2 2

11 44 1 2 3 4( ) ( ) 6 6 ( )z x y z x y x y z x yS C k C k k f k f k k f k k f k k k= + + + + + + + + , 

 

and the off-diagonal components, , , , ,T U V T U′ ′  and V ′  are given by, 

 3 3 2

12 44 5 6( ) 4 ( ) 12x y x y x y x y zT C C k k f k k k k f k k k= + + + + , 

 3 3 2

12 44 5 6( ) 4 ( ) 12x z x z x z x z yU C C k k f k k k k f k k k= + + + + , 

 3 3 2

12 44 5 6( ) 4 ( ) 12y z y z y z y z xV C C k k f k k k k f k k k= + + + + , 

 2 23 ( )z x yT dk k k′ = − , 

 2 23 ( )y z xU dk k k′ = − , 

 2 23 ( )x y zV dk k k′ = − . 

 

From equation (3.11) we come up with the cubic expression in 2λ ρω= ,  

 3 2( ) ( ) ( ) 0k k kc d eλ λ λ− + + + = , (3.12) 

 

where the coefficients ( ), ( )k kc d  and  ( )ke are given by, 

 ( )kc Q R S= + + , 

 2 2 2 2 2 2( )kd T T U U V V QR RS SQ′ ′ ′= + + + + + − − − , 

2 2 2 2 2 2( ) 2 2 2 2ke QRS T S T S U R U R V Q V Q TUV TU V T UV T U V′ ′ ′ ′ ′ ′ ′ ′ ′= − − − − − − + − − − . 

For a given wave vector, the gradient of (3.12) gives the group velocity.  

 

3.2 Dispersion relations along symmetry directions 

 

Using equations (3.9) and (3.10) we can derive analytical expressions relating 

the wave vector and the frequency in the 100  , 111  and 110  symmetry 

directions. For the 100  directions where the wave vector components are 
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xk k= ,  0yk =  and 0zk =  the dynamic matrix has only got components along 

the diagonal and is given by, 

 

 

2 4

11 1

2 4

44 2

2 4

44 2

0 0

0 0 0

0 0

C k f k

C k f k

C k f k

λ
λ

λ

+ −

+ − =

+ −

. (3.13) 

 

This gives us the dispersion relation for the longitudinal mode along the 100   

axis as  

 
2

2

11 12

L C f k
k

ρω
= + , (3.14) 

and for the two degenerate transverse modes we have,  

 
2

2

44 22

T C f k
k

ρω
= + . (3.15) 

 

The subscripts L  and T  denote longitudinal and transverse modes of wave 

propagation respectively.  Along the threefold 111  axis, where the wave 

vector components along the coordinate axes are equal, 3x y zk k k k= = =  , 

the diagonal components of the dynamic matrix are given by 

 

 
2 2 4 4 4 4

11 44 1 2 3 42 2 6 12
3 3 9 9 9 9

xx yy zz

k k k k k k
Q D D D C C f f f f= = = = + + + + + , (3.16) 

 

and the off diagonal components are given by, 

 
2 4 4

12 44 5 6( ) 8 12
3 9 9

ij

k k k
T D C C f f= = + + + , (3.17) 

 

where the subscripts i  and j represent Cartesian coordinates ,x y  and z  with 

i j≠ . Using this dynamical matrix we can derive the dispersion relation for the 

pure longitudinal mode from, 
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1 1

1 1

1 1

Q T T

T Q T

T T Q

λ
    
    =    
    
    

. (3.18) 

 

Equation (3.18) gives us the expression, 2Q Tλ = + , from which we obtain the 

dispersion relation for the L mode as,  

 

 
2 2

11 12 44 1 2 3 4 5 62

1
( 2 4 ) ( 2 6 12 16 24 )
3 9

L k
C C C f f f f f f

k

ρω
= + + + + + + + + . (3.19) 

 

We obtain the two degenerate transverse modes from, 

 

1 1

1 1

0 0

Q T T

T Q T

T T Q

λ
    
    − = −    
    
    

. (3.20) 

 

 This gives us the expression Q Tλ = − , and the dispersion relation for the T 

modes are,  

 
2 2

11 12 44 1 2 3 4 5 62

1
( ) ( 2 6 12 8 12 )
3 9

T k
C C C f f f f f f

k

ρω
= − + + + + + − − . (3.21) 

 

Along the 110  crystal axes where the wave vector components along the 

coordinate axis are 2x yk k k= =  and 0zk = ,  the dynamical matrix has the 

form,   

  

'

'

' '

Q T iU

T Q iU

iU iU S

 −
 

− 
 
 

, (3.22) 

 

where the , ,Q T U  and S components of this matrix are given by, 

 
2 4

11 44 1 2 4( ) ( 6 )
2 4

k k
Q C C f f f= + + + + , (3.23) 
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2 4

44 2 32 (2 6 )
2 4

k k
S C f f= + + , (3.24) 

 
2 4

12 44 5( ) 8
2 4

k k
T C C f= + + , (3.25) 

 
3

' 3

2 2

dk
U

−
= . (3.26) 

 

One of the transverse modes is mixed with the longitudinal mode along the 

110  direction. This leads to modes with elliptical polarization and so we 

derive dispersion relations for the two mixed modes along the 110  direction 

from,  

 

'

'

' '

Q T iU

T Q iU

iU iU S

α α
α λ α
β β

 −    
    − =    

        

. (3.27) 

This gives us the equation,  

 
( )

1
2 2 2

2
8( )

2 2

Q T S UQ T S
ρω

 ′+ − ++ +  = ± , (3.28) 

 

with the positive sign pertaining to the  longitudinal mode and the negative 

sign pertaining to the transverse mode. For crystals with a centre of inversion, 

for example Ge and Si, where 0d =  and so 0U ′ =  in (3.28) we obtain the 

expressions,  

 
2 4

2

11 12 44 1 2 4 5( 2 ) ( 6 8 )
2 4

L

k k
C C C f f f fρω = + + + + + + , (3.29) 

and 

 
4

2 2

1 44 2 3( 3 )
2

T

k
C k f fρω = + + . (3.30) 

In crystals without a centre of inversion where 0d ≠  one can only obtain simple 

expressions like (3.29) and (3.30) as an approximation and this does not give a 

good fit to the experimental data. We have used the exact expression, 
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equation (3.28), to fit the dispersion parameters to the neutron scattering data 

for InSb and GaAs which do not have a centre of inversion. 

 

We finally derive the expression for the other non-degenerate pure transverse 

mode along the 110  directions from,  

 

1 1

1 1

0 0

Q T iU

T Q iU

iU iU S

λ

−    
    − − = −    
    
    

. (3.31) 

 

Equation (3.31) gives us the dispersion relation,   

 
2 2

2
11 12 1 2 4 52

1
( ) ( 6 8 )
2 4

T k
C C f f f f

k

ρω
= − + + + − . (3.32) 

 

3.3 Determination of elastic constants and dispersion           

parameters of crystals with a centre of inversion 
 

Neutron scattering experiments provide frequency versus wave vector data 

along symmetry directions in crystals from which we can infer the elastic 

constants and dispersion parameters.  We have extracted wave vector k  up to 

0.4 in reduced wave vector coordinates versus frequency, ω , for germanium 

and silicon. Wave vector k  is in units of 2 aπ , where a  is the lattice 

parameter of the crystal. For germanium, data was obtained from Nilsson and 

Nelin (1971). We obtained data for silicon for the 100 , 111  directions and 

for the longitudinal and one of the transverse acoustic modes in the 110  

directions from Dolling (1963). Data for the remaining transverse acoustic mode 

in silicon was extracted from Nilsson and Nelin (1972).  

 

The extracted data gives us the origin plus two points on each acoustic 

dispersion curve along each symmetry direction for the limited range of k  we 

are considering. This data, frequency, ω , versus wave vector k , is then 
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inserted into the appropriate dispersion relation and solved for the relevant 

elastic constant (combination) and dispersion parameter (combination). In this 

way we obtain numerical values ih  for the following combinations of the non-

dispersive elastic constants:  

 

11 1

44 2

11 12 44 3

11 12 44 4

11 12 44 5

44 6

11 12 7

1
( 2 4 )
3

1
( )
3

1
( 2 )
2

1
( )
2

C h

C h

C C C h

C C C h

C C C h

C h

C C h

=

=

+ + =

− + =

+ + =

=

− =

 

 and numerical values ig for the following combinations of the dispersive elastic 

constants:  

 

1 1

2 2

1 2 3 4 5 6 3

1 2 3 4 5 6 4

1 2 4 5 5

2 3 6

1 2 4 5 7

1
( 2 6 12 16 24 )
9

1
( 2 6 12 8 12 )
9

1
( 6 8 )
4

1
( 3 )
2

1
( 6 8 )
4

f g

f g

f f f f f f g

f f f f f f g

f f f f g

f f g

f f f f g

=

=

+ + + + + =

+ + + − − =

+ + + =

+ =

+ + − =

 

These fourteen equations have nine parameters, three non-dispersive elastic 

constants and six dispersive elastic constants. This is an over determined 

problem which has been solved by optimization. We performed the 

optimisation of the non-dispersive elastic constants separately from that of the 

dispersive elastic constants because of the large numbers of parameters 

involved.   The tabulated values of the non-dispersive elastic constants of Ge in 
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units of kg m-1 s-2 are 11

11 1.29 10C = ×  , 11

12 0.48 10C = ×  and 11

44 0.671 10C = × . For Si 

they are 11

11 1.65 10C = ×  , 11

12 0.63 10C = ×  and 11

44 0.791 10C = ×  all in units of kg m-

1 s-2 (Every and McCurdy in Landolt-Börnstein Series, 1992). We used a chi-

square optimization technique where we varied the three non-dispersive elastic 

constants within ±40 of the tabulated values while calculating the 

“theoretical” values of ih  which we call iH  for each set of constants. We then 

summed the squares of the differences between the ih ’s and the iH ’s and 

obtain 2χ ,  

 ( )
7

22

1

i i

i

h Hχ
=

= −∑ . 

We adopt the set of elastic constants at the point where we obtained a 

minimum value of 2χ . These values for Ge and Si are listed in table 3.1 and 3.2 

respectively. 

 

We followed the same procedure for the dispersive elastic constants. In this 

case we started by varying the values of 1f , 2f , 3f , 4f , 5f  and 6f  between 

81 10−− × and 81 10−×  in units of kg m s-2. For each set of values of these 

dispersive parameters we obtained “theoretical” values of ig , which we call iG  

and calculated the sum of the difference between the ig  and iG  to obtain,  

 ( )
7

22

1

i i

i

g Gχ
=

= −∑ . 

We took the values of the dispersive elastic constants at the point where 2χ  

had its minimum value.  
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3.3.1 Elastic constants, dispersion parameters and dispersion 

curves of Ge          

 

Using the seven dispersion relations derived in section 3.2 we fitted the 

calculated dispersion curves to the neutron scattering data. We used a density 

of 5.34 × 103 kg m-3 (Wolfe, 1998) and a lattice parameter of 5.65Å (Kittel, 

1956) for calculations on germanium. Using this procedure, the non-dispersive 

and dispersive elastic constants of germanium obtained are shown in the left 

hand column of table 3.1. The non-dispersive elastic constants of Ge obtained 

using these procedures are all slightly larger than the tabulated values. 

However, it is the anisotropy factor, η , which determines the phonon focusing 

pattern. The value obtained from the tabulated values is 0.604 whilst the one 

obtained from the elastic constants extracted directly from neutron scattering 

data is 0.595 which is in good agreement with the one obtained from the 

tabulated values.  

 

Elastic constants of Ge have also been obtained by Maranganti et al (2007) 

through the intermediary of the shell lattice dynamics model. On the basis of 

this model they constructed the dynamical matrix whose parameters they 

adjusted to fit their full set of calculated dispersion curves for the entire 

Brillouin zone to the neutron scattering data of Dolling et al, 1963. From the 

dynamical matrix they then obtained the non-dispersive and dispersive elastic 

constants. The elastic constants and dispersion parameters of Ge obtained in 

this way are also shown in table 3.1, in the right hand column.   

 

The comparison of the acoustic mode dispersion curves obtained from 

continuum theory with parameters determined directly from experimental 

neutron scattering data is shown in figure 3.1 for germanium. The wave vector 

coordinates are in the reduced wave vector form. The data points in the 
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dispersion curves represent the experimental neutron scattering data extracted 

from Nilsson and Nelin (1971). 

 

Ge (neutron scattering) Ge (shell model) 

 

C11 = 1.3908 × 10
11  (kg m-1 s-2) 

C12 = 0.560 × 10
11  (kg m-1 s-2) 

C44 = 0.698 × 10
11  (kg m-1 s-2) 

 

f1  = -8.029 × 10
-10   (kg m s-2) 

f2  = -15.060 × 10
-10  (kg m s-2) 

f3  = -0.077 × 10
-10  (kg m s-2) 

f4  = -4.892 × 10
-10  (kg m s-2) 

f5  = -4.387 × 10
-10  (kg m s-2) 

f6  =  3.197 × 10
-10  (kg m s-2) 

 

C11 = 1.310 × 10
11  (kg m-1 s-2) 

C12 = 0.3000 × 10
11 (kg m-1 s-2) 

C44 = 0.6800 × 10
11  (kg m-1 s-2) 

 

f1  = -0.800 × 10
-10   (kg m s-2) 

f2  = -25.200 × 10
-10  (kg m s-2) 

f3  = -6.300 × 10
-10   (kg m s-2) 

f4  = -0.300 × 10
-10  (kg m s-2) 

f5  = -0.100 × 10
-10  (kg m s-2) 

f6  =  2.900 × 10
-10  (kg m s-2) 

 

Table 3.1. Non-dispersive and dispersive elastic constants of germanium 

obtained by fitting to neutron scattering data to the continuum model versus  a 

shell model. 

 

For Ge, continuum elasticity theory fits well the experimental dispersion 

relation data for the symmetry directions up to 0.4k =  but not much beyond 

that, particularly for the transverse modes. The breakdown beyond 0.4k =  is 

expected because the extension of continuum theory involves a truncated 

Taylor series expansion of the real microscopic lattice dynamics which must 

eventually fail (DiVincenzo, 1986 and Krumhansl, 1968).  This model is 

therefore limited to the first bending over of the dispersion relation as we have 

emphasised all along. It does not apply to near Brillouin zone boundary 

phonons. These do not in any case have a significant effect in phonon imaging 

because of their small group velocities and high scattering probabilities.  
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(a) (b) (c)  

 

Figure 3.1 Dispersion curves of Ge along the (a) 100 , (b) 111  and (c) 110    

directions using continuum theory with optimized values of the elastic 

constants. The data points represent neutron scattering data (Nilsson and 

Nelin, 1971).  

 

We have also plotted the dispersion curves of Ge in the 100 , 111  and 110  

symmetry directions using the elastic constants extracted by Maranganti et al 

(2007) in figure 3.2. These are compared with neutron scattering data 

represented by the data points in these curves (Nilsson and Nelin, 1971). 

 

The dispersion curves of Ge plotted using the dispersion relations of section 3.2 

and elastic constants extracted directly from neutron scattering data in figure 

3.1 give a better fit to neutron scattering dispersion relations for the near zone 

centre acoustic modes than the ones calculated using elastic constants derived 

from the shell model. This may be explained by the fact that the lattice 

dynamics model is simultaneously fitted to experimental data for all the optical 

and acoustic branches and is therefore in a sense a compromise. It should not 

therefore be expected to necessarily give the best possible fit to the acoustic 

branches near the zone centre. Another possible explanation is that the 

expressions used to evaluate the dynamical matrix are correct up to order 

4k (Maranganti and Sharma, 2007). The parameters of this model, the force 

constants, can therefore only give a good fit to the dispersion relation data for 

asymptotically small wave vector values, whereas our parameters have been 
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chosen to give a good fit to the neutron scattering data over a larger range of 

k . 

 

 (a) (b)  (c)  

 

Figure 3.2 Dispersion curves of Ge along the (a) 100 , (b) 110  and (c) 111  

directions using elastic constants extracted by Maranganti et al (2007). The 

data points represent neutron scattering data (Nilsson and Nelin, 1971).  

 

3.3.2 Elastic constants, dispersion parameters and dispersion 

curves of Si along symmetry directions    

    

For Si, we used the same procedures as for Ge to obtain the non-dispersive and 

dispersive elastic constants. We used a density of 2.33 × 103 kg m-3 and lattice 

parameter of 5.43Å was used for calculations on silicon (Kittel, 1956). The 

dispersive and non-dispersive elastic constants extracted from neutron 

scattering data of silicon obtained are shown in the left hand column of table 

3.2. The non-dispersive elastic constants give an anisotropy factor of 0.638 

which is in good agreement with the value of 0.645 obtained from the 

tabulated values of elastic constants, although as with Ge, the actual values of 

the elastic constants are larger than the tabulated values. 

 

The dispersive parameters of Si were also recently obtained from atomic 

displacement correlation functions in an NVT (constant number of particles N, 

constants volume V and constant temperature T) molecular dynamics ensemble 

by Maranganti and Sharma, (2007) and are shown in the right hand column of 
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table 3.2. They used a method based upon calculating the displacements of all 

atoms in an ensemble for wave vectors along symmetry directions. 

 

Si (neutron scattering) Si (molecular dynamics) 

 

C11 = 1.7750 × 10
11  (kg m-1 s-2) 

C12 = 0.745 × 10
11    (kg m-1 s-2) 

C44 = 0.807 × 10
11    (kg m-1 s-2) 

f1  = -7.515 × 10
-10   (kg m s-2) 

f2  = -12.500 × 10
-10  (kg m s-2) 

f3  = 0.126 × 10
-10   (kg m s-2) 

f4  = -5.243 × 10
-10  (kg m s-2) 

f5  = -3.775 × 10
-10  (kg m s-2) 

f6  =  1.250 × 10
-10  (kg m s-2) 

 

C11 = 1.450 × 10
11  (kg m-1 s-2) 

C12 = 0.840 × 10
11    (kg m-1 s-2) 

C44 = 0.700 × 10
11    (kg m-1 s-2) 

f1  = -3.700 × 10
-10   (kg m s-2) 

f2  = -2.700 × 10
-10  (kg m s-2) 

f3  = 1.900 × 10
-10   (kg m s-2) 

f4  = -3.400 × 10
-10  (kg m s-2) 

f5  = -3.200 × 10
-10  (kg m s-2) 

f6  =  1.000 × 10
-10  (kg m s-2) 

 

Table 3.2. Non-dispersive and dispersive elastic constants of silicon obtained 

by fitting neutron scattering data to the continuum model versus a molecular 

dynamics model. 

 

The dispersion curves of silicon plotted using the elastic constants extracted 

directly from neutron scattering data are shown in figure 3.3. The data points 

in the dispersion curves represent the experimental neutron scattering data 

extracted from Dolling (1963), Nilsson and Nelin (1972) for Si. Again the 

neutron scattering elastic constants give a good fit to the experimental data up 

to about 0.4k =  for all the acoustic branches in the three symmetry directions 

and they give a particularly accurate fit for the longitudinal modes.  
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(a) (b) (c)  

 

Figure 3.3 Dispersion curves of Si along the (a) 100 , (b) 110  and (c) 111  

directions using continuum theory with optimized elastic constants. The data 

points represent neutron scattering data (Dolling, 1963; Nilsson and Nelin, 

1972).  

 

We have also plotted dispersion curves of Si, figure 3.4, using non-dispersive 

and dispersive elastic constants extracted using the molecular dynamics (MD) 

approach by Maranganti et al (2007). These curves are compared with 

experimental dispersion relation data from neutron scattering experiments 

represented by the data points (Dolling, 1963; Nilsson and Nelin, 1972).  

 

(a) (b) (c)  

 

Figure 3.4 Dispersion curves of Si along the (a) 100 , (b) 110  and (c) 111  

directions using molecular dynamics elastic constants extracted by Maranganti 

et al (2007). The data points represent neutron scattering data (Dolling, 1963 

and Nilsson and Nelin, 1972).  

 

Dispersion curves obtained using MD elastic constants in figure 3.4 are not as 

consistent with neutron scattering data as the ones obtained using the elastic 
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constants derived directly from neutron scattering data in figure 3.3. A possible 

explanation is that the fitting of MD elastic constants is carried out for wave 

vector values near k = 0 (Maranganti, 2007) and as a result one obtains a good 

fit to experimental data for small wave vector values. At large wave vector 

values however, a small deviation resulting from the approximations may not 

give a good fit to the experimental data. 

 

We are only going to use wave vector data up to 0.3k =  in our phonon imaging 

calculations for germanium and silicon. In this region, all the dispersion curves 

are in very good agreement with experimental dispersion relation data. We 

note here that for k  values up to 0.4, the frequencies of the acoustic mode of 

Ge extend up to about 3500GHz while for Si they extend a bit beyond 6000GHz, 

which is almost twice as high. Thus, to observe a similar degree of dispersion, 

one must expect to go twice as high in frequency for Si as for Ge. 

 

3.4 Determination of elastic constants and dispersion           

parameters of InSb  
 

For indium antimonide and gallium arsenide, for which the parameter d  is not 

equal to zero and the dispersion relations for the quasi longitudinal and quasi 

transverse modes in the 110  direction take on the more complicated form,  

 
( )

1
2 2 2

2
8( )

2 2

Q T S UQ T S
ρω

 ′+ − ++ +  = ± , (3.33) 

 

while the dispersion relations for the 100  and 111  directions are the same 

as for Ge and Si, and do not depend on d . An attempt was made to 

approximate (3.33) by polynomial expressions of the same form as the other 

dispersion relations through power series expansion of the surd, but this was 

not successful in fitting the dispersion relations. The reason could be traced to 

the comparable magnitude of certain terms of different power in the 
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discriminant. For extracting the parameters if  and d from neutron scattering 

data it is convenient to work with polynomial expressions in k  and we have 

obtained these from (3.33) by combining the L and T1 expressions as follows, 
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 = + + + + − + − +  
. (3.35) 

  
For InSb we have not been able to exploit the dispersion relation for the pure T 

mode in the 110  direction since there is no neutron scattering data available 

for that particular branch for InSb.  

 
For the 100  direction, equations (3.14) and (3.15) apply while for the 111  

direction; equations (3.19) and (3.21) apply. To obtain the three elastic 

constants and the seven dispersion constants if  and d , we have fitted the 

above mentioned expressions to neutron scattering data reported by Price et al 

(1971).  

 

We first of all determined the non-dispersive elastic constants of InSb by fitting 

to the initial slopes of the measured dispersion relations. Our starting values 

where the tabulated values (Every and McCurdy, 1992) in the Landolt-Börnstein 

series, 11

11 0.662 10C = × , 11

12 0.359 10C = × and 11

44 0.302 10C = × , all in units of kg m-

1 s-2 . We made use of the same optimization technique as used for germanium 

and silicon in 3.3 and the values we obtained for the elastic constants are 

tabulated in table 3.3. 
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Extracting the values of the dispersive elastic constants is an underdetermined 

problem since these are obtained from the coefficients of 2k  in (3.14), (3.15), 

(3.19), (3.21), (3.34) and (3.35) and there are only six of these while there are 

seven dispersion coefficients. We have dealt with this problem as follows using 

the neutron scattering data of Price et al (1971). Taking the L and T branch 

data for reduced wave vector values up to 0.4 in the 100  direction and using 

(3.14) and (3.15) we have obtained the values of 1f  and 2f . From data for the 

111  direction we obtain the values of the combinations of the dispersive 

elastic constants 3g  and 4g . We consider these values as precisely determined 

and we now have these expressions for the [111] direction, 

 
 1 2 3 4 5 6 32 6 12 16 24 9f f f f f f g+ + + + + = , (3.36) 

 
 1 2 3 4 5 6 42 6 12 8 12 9f f f f f f g+ + + − − = . (3.37) 

 

By subtracting (3.36) from (3.37), 3f  and 4f  are eliminated and we can express 

5f  in terms of 6f  and the known quantities 1g , 2g , 3g  and 4g . Likewise by 

adding twice (3.36) to (3.37), 5f  and 6f  are eliminated and we can express 3f  

in terms of 4f  and the known quantities  1g , 2g , 3g  and 4g . In this way we 

obtain,  

 ( )5 3 4 6

1
3 3 12

8
f g g f= − − , 

 ( )3 3 4 1 2 4

1
3 6 2 12

6
f g g g g f= + − − − . 

 

We now replace 3f  and 5f  in equations (3.34) and (3.35) using the above 

expressions and substitute the values of the elastic constants 1f , 2f , 3g  and 

4g , and from the coefficients of the 2k  terms we obtain from neutron 

scattering data, we have two relations for the parameters 4f , 6f  and 
2d .  

There is thus a line of points in parameter space, all of which yield exactly the 
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same fit to the six measured dispersion relations. We have chosen to regard 2d  

as the free parameter. Its minimum value is zero and we have determined its 

maximum value to be 5.06  kg2 s-4 beyond which if  have unphysical complex 

values. To determine where on this line and for which 2d  in the desired 

interval the actual parameter set is likely to lie, we have calculated dispersion 

curves for the direction ( 32.0θ =  and 47.16φ = ) that lies near the centre of the 

symmetry irreducible sector bounded by the [001], [110] and [111] directions. 

A plausible assumption is that these curves should not lie outside the bounds 

set by the dispersion curves for the symmetry directions. We have gone further 

and assumed that these curves are as close as possible to being an average of 

the symmetry direction dispersion curves. In this way we have narrowed down 

the value of 2d  to 4.0 kg2  s-4. 

 

In our calculation we have used a density of 5.79 × 103 kg m-3 (Wolfe, 1998) and 

a lattice parameter of 6.48Å for InSb. The non-dispersive and dispersive elastic 

constants of InSb obtained using these procedures are shown in table 3.3. The 

anisotropy factor obtained from the non-dispersive elastic constants extracted 

directly from neutron scattering data is 0.512. This is in very good agreement 

with the value of 0.502 obtained from the tabulated elastic constants.   
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InSb (Non-dispersive constants) InSb (Dispersive constants) 

 

C11 = 0.707 × 10
11   (kg m-1 s-2) 

C12 = 0.449 × 10
11    (kg m-1 s-2) 

C44 = 0.252 × 10
11    (kg m-1 s-2) 

 

 

 

f1  = -4.162 × 10
-10   (kg m s-2) 

f2  = -6.181 × 10
-10  (kg m s-2) 

f3  = -2.103 × 10
-10  (kg m s-2) 

f4  = -2.964 × 10
-10  (kg m s-2) 

f5  = -2.258 × 10
-10  (kg m s-2) 

f6  =  0.924 × 10
-10  (kg m s-2) 

d = 2.000   (kg s-2)  

 

Table 3.3. Non-dispersive and dispersive elastic constants of indium 

antimonide obtained by fitting neutron scattering data to the continuum 

model. 

 

3.4.1 Dispersion curves of InSb along symmetry and Brillouin 

zone centre directions 

 

Figure 3.5 shows a comparison between the measured and calculated 

dispersion curves of indium antimonide along the [100], [111] and [110] 

symmetry directions and along the direction passing through the centre of the 

irreducible sector in figure 3.6. The data points in these plots are experimental 

neutron scattering data from Price et al (1971). The dispersion curves plotted 

using elastic constants extracted from neutron scattering data are in very good 

agreement with experimental data along all the symmetry directions. 

Experimental data for the slow transverse acoustic mode along the [110] 

direction could not be found.   
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(a)  (b) (c)  

 

Figure 3.5 Dispersion curves of InSb along the (a) 100 , (b) 110  and (c) 111  

directions using continuum theory with optimized values of elastic constants. 

The data points represent neutron scattering data (Price et al, 1971). 

 

For k  up to 0.4 the frequencies of the acoustic modes of InSb range up to 

about 2 THz which is less than that of Ge. We do not therefore expect to have 

to go as high in frequency for InSb as we do for Ge to observe a similar degree 

of dispersion.  

 

 

Figure 3.6 Dispersion curves of InSb along the direction through the centre of 

the irreducible sector.  
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3.5 Determination of elastic constants and dispersion           

parameters of GaAs  
 

Determination of the non-dispersive elastic constants and dispersive 

parameters if  and d from neutron scattering data for GaAs was carried out in a 

procedure similar to that of InSb in section 3.4. The non-dispersive elastic 

constants were determined by fitting to the initial slopes of experimental 

dispersion relations. We started with tabulated values (Every and McCurdy, 

1992) in the Landolt-Börnstein series, 11

11 1.180 10C = × , 11

12 0.535 10C = × and 

11

44 0.594 10C = × , all in units of kg m-1 s-2. The same optimisation technique used 

for Ge, Si and InSb was used and the elastic constants obtained are tabulated in 

Table 3.3. 

 

To determine the dispersive elastic constants of GaAs, we used neutron 

scattering data of Dolling and Waugh, (1965). We made use of data for reduced 

wave vector values up to 0.4 along the 100  directions and used (3.14) and 

(3.15) to obtain values of 1f  and 2f . Data for the 111  and 110  directions 

was used to determine the values of the combinations of the dispersive elastic 

constants 3g  , 4g  and 7g . These values are considered as precisely determined 

and we now have expressions (3.36) and (3.37) for the [111] direction and for 

the ST mode along the [110] direction we have, 

 

 1 2 4 5 76 8 4f f f f g+ + − = . (3.38) 

 

Using these expressions we can express 3f , 4f  and 6f  in terms of 5f  and the 

known quantities 1g ,  2g , 3g , 4g and 7g  in following way, 

 

 3 1 3 4 7 5

1
(3 2 6 48 )

18
f g g g g f= + + − − , (3.39) 
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 4 7 1 2 5

1
( 8 )
6

f g g g f= − − + , (3.40) 

 6 3 4 5

1
( 24 )

36
f g g f= − − . (3.41) 

  

We then substitute for 3f , 4f  and 6f  in equations (3.34) and (3.35) using the 

above expressions and obtain,  
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Equation (3.42) does not contain any of the two undetermined parameters, 5f  

or 2d  , and so we have a singular valued problem. This is solved by varying the 

values of the two undetermined parameters 5f  and 
2d  searching for the best 

fit to experimental dispersion relation data. At each point, we calculated 

dispersion curves for the direction that lies near the centre of the symmetry 

irreducible sector as done for InSb to verify that they were within acceptable 

bounds. The best fit to neutron scattering data was found for the values 

10

5 -2.80 10f −= ×  kg m s-2 and 2 6.25d =  kg s-2. 

 

In our calculations, a density of 5.34 × 103 kg m-3 (Wolfe, 1998) and a lattice 

parameter of 5.65 Å (Ashcroft, 1976) has been used. The non-dispersive and 

dispersive elastic constants of GaAs obtained using these procedures are shown 

in table 3.4. The anisotropy factor of 0.538 obtained from the non-dispersive 

elastic constants extracted directly from neutron scattering data is in good 
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agreement with the value of 0.543 obtained from the tabulated elastic 

constants.  

 

For GaAs, we also used the non-dispersive and dispersive elastic constants 

published by DiVincenzo in 1986. He obtained these through the intermediary 

of the shell lattice dynamics using the same procedure as already outlined for 

Ge by Maranganti et al (2007). DiVincenzo’s non-dispersive and dispersive 

elastic constants are also tabulated in table 3.4.   

 

GaAs (neutron scattering) GaAs (shell model) 

 

C11 = 1.200 × 10
11  (kg m-1 s-2) 

C12 = 0.576 × 10
11  (kg m-1 s-2) 

C44 = 0.580 × 10
11  (kg m-1 s-2) 

f1  = -4.000 × 10
-10   (kg m s-2) 

f2  = -9.000 × 10
-10  (kg m s-2) 

f3  = 0.933 × 10
-10  (kg m s-2) 

f4  = -3.567 × 10
-10  (kg m s-2) 

f5  = -2.800 × 10
-10  (kg m s-2) 

f6  = 1.997 × 10
-10  (kg m s-2) 

d = 2.500  (kg s-2) 

 

 

C11 = 1.200 × 10
11 (kg m-1 s-2) 

C12 = 0.540 × 10
11 (kg m-1 s-2) 

C44 = 0.600  × 10
11 (kg m-1 s-2) 

f1  = -2.600 × 10
-10  (kg m s-2) 

f2  = -20.40 × 10
-10  (kg m s-2) 

f3  = -4.800 × 10
-10  (kg m s-2) 

f4  = -2.400 × 10
-10  (kg m s-2) 

f5  = -1.600 × 10
-10  (kg m s-2) 

f6  =  1.900 × 10
-10  (kg m s-2) 

d = -1.8    (kg s-2) 

 
 
Table 3.4. Non-dispersive and dispersive elastic constants of Gallium Arsenide 

obtained by fitting neutron scattering data the continuum model versus the 

shell model. 
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3.5.1 Dispersion curves of GaAs along symmetry and Brillouin 

zone centre directions 

 

A comparison between the measured and calculated dispersion curves of 

gallium arsenide along the [100], [111] and [110] symmetry directions and 

along the direction passing through the centre of the irreducible sector are 

shown in figure 3.7 and 3.8. The data points in these plots are experimental 

neutron scattering data from Dolling et al (1963). The dispersion curves plotted 

using elastic constants derived directly from neutron scattering data are in very 

good agreement with experimental data along all the symmetry directions. The 

frequencies of the acoustic modes of GaAs extend up to about 3.7 THz which is 

a bit beyond the 3.5 THz for Ge. We therefore expect a similar degree of 

dispersion between GaAs and Ge.  

 

(a)  (b)  (c)  

 
Figure 3.7 Dispersion curves of GaAs along the (a) 100 , (b) 110  and (c) 111  

directions using continuum theory with optimised values of the elastic 

constants. The data points represent neutron scattering data (Dolling et al, 

1963). 
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Figure 3.8 Dispersion curves of GaAs along the direction through the centre of 

the irreducible sector.  

 

We have used DiVincenzo’s shell model elastic constants to plot dispersion 

curves in figure 3.9 and compare them to neutron scattering data.  The 

experimental data points in figure 3.9 have been obtained from Dolling and 

Waugh (1963). There is good agreement for k , up to 0.3 and then the 

transverse modes gradually drift away from the experimental data.  

 

(a)  (b) (c)  

 

Figure 3.9 Dispersion curves of GaAs along the (a) 100 , (b) 110  and (c) 111  

directions using the parameters of DiVincenzo (1986). The data points 

represent neutron scattering data (Dolling et al, 1963). 

 

The dispersion curves of GaAs obtained using elastic constants extracted 

directly from neutron scattering data in figure 3.7 are in good agreement with 
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neutron scattering data up to frequencies corresponding to about k = 0.5. The 

dispersion curves obtained using the DiVincenzo elastic constants in figure 3.9 

agree with experimental data for wave vector values up to k  = 0.3. The 

differences in agreement with experimental data between the two sets of 

elastic constants may be explained by reasons pointed out earlier in a similar 

discussion for Ge.   

 

3.6 Dispersive phonon imaging calculations 

 

We calculate the dispersive phonon images of cubic crystals using a program 

written in the FORTRAN programming language. In this program, we first 

generate a random distribution of wave vectors in three dimensional k - space 

out to a radial distance of 0.3k =  in reduced wave vector units.    

 

For each wave vector generated in the program, we find the roots of equation 

(3.12) using a subroutine zroots which in turn uses the subroutine Laguer to 

polish the roots. A detailed review of these subroutines can be found in the 

book Numerical Recipes in FORTRAN by William Press et al, (1986). At this 

point in our program we can plot dispersion curves of the crystal along any 

direction in the crystal. As a check for the consistency of our calculations, plots 

of the dispersion curves in the symmetry directions were compared to the 

previously calculated ones. These curves were found to be exactly the same as 

the ones in section 3.5 plotted using the symmetry direction dispersion 

relations and are therefore also consistent with experiment.  

 

We then calculate the corresponding group velocity vectors by finding the 

derivative of equation (3.12) with respect to wave vector thus, 
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For each group velocity vector, we find its point of intersection with the (100), 

(110) or (111) imaging planes. The imaging planes are divided into 500 by 500 

bins and the number of group velocity vectors falling into each bin is stored as 

a matrix. This matrix is then plotted on a grey scale image with high phonon 

intensity represented by bright areas whilst dark regions represent low phonon 

intensity. Using our program, we can simulate the phonon images for a chosen 

range of frequencies, wave vectors or we can simulate velocity-gated images. 

As an example, the differences between the phonon images calculated for the 

0.0-0.3 and 0.5-0.6 THz frequency ranges in the (110) observation plane for 

germanium can be seen in figure 3.10. The diamond structure around the 100  

directions for the higher frequency range has become rounded and the inner 

box has become smaller. The FT caustics connecting the 100  directions have 

become more widely separated at the higher frequencies. Changes in the 

regions surrounding the 111  directions are less pronounced, and so, in this 

thesis we do not place much emphasis on the dispersive images projected in 

the (111) observation plane.  

 

               

 

Figure 3.10.  Calculated dispersive phonon images of Ge in the (110) 

observation plane: (a) 0.0-0.3THz (b) 0.5-0.6THz. 
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Chapter 4Chapter 4Chapter 4Chapter 4    

    

    Phonon Focusing Patterns of Ge and SiPhonon Focusing Patterns of Ge and SiPhonon Focusing Patterns of Ge and SiPhonon Focusing Patterns of Ge and Si    

 

There have been a number of theoretical and experimental studies on the 

phonon focusing patterns of germanium and silicon. Notable are the 

investigations carried out by Northrop et al (1980), Northrop (1982), Metzger et 

al (1988), Tamura et al (1991) and Tamura (1982).   

 

Germanium and silicon which are of hO  symmetry have a centre of inversion 

and the acoustic gyrotropic tensor is zero in such crystals (Every, 1987).  These 

crystals do not therefore, exhibit first order spatial dispersion in their 

dynamical behavior (Portigal and Burstein, 1968) and no acoustical activity. 

There is however, second order dispersion, and it is characterized by the f  

tensor which has six independent components for  hO  symmetry. 

 

 In the first section of this chapter, the calculated phonon images of Ge are 

compared with corresponding experimental images. This is then followed by a 

section on the frequency dependence of the dispersive phonon images of 

germanium for higher frequency phonons. Then the measured focusing patterns 

of silicon are compared with continuum elasticity theory simulations. The 

frequency dependence of dispersive phonon images of silicon is then discussed 

in the last section of this chapter. 

 

4.1 Comparison of calculated images with those measured in Ge 

 

Low frequency phonon imaging is fully accounted for by classical continuum 

elasticity theory. Figure 4.1a shows a phonon image of germanium in the (110) 

observation plane that was measured with a bolometric detector. A 
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corresponding image, figure 4.1b, was calculated selecting phonons with 

frequencies ranging from 0.0THz to 0.3THz for which there is negligible 

dispersion. Phonon focusing structures labeled ST and FT are due to slow 

transverse and fast transverse phonons respectively. The variation in intensity 

in these phonon images is mainly due to phonon focusing and the sharp lines 

are caustics where the focusing is infinite. As pointed out earlier, these are 

associated with lines on the slowness surface where the Gaussian curvature is 

zero. 

 

The longitudinal sheet of the slowness surface is separated from the ST and FT 

slowness sheets and is entirely convex without any parabolic lines. The 

corresponding wave surface of the L mode does not have any folds and is also 

entirely convex which means that it does not produce any caustics in the 

phonon image (Every, 1981). We do not therefore include the longitudinal 

mode in our calculated phonon images in chapters 4 and 5.  

 

        

Figure 4.1. Phonon images of Ge in the (110) observation plane: (a) measured 

image using a bolometric detector by Dietsche et al, (1981), (b) calculated 

phonon image for essentially non-dispersive phonons in the 0.0 THz to 0.3THz 

frequency range. 
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Figure 4.2a shows an experimental image of Ge for the same geometry 

obtained with a tunnel junction detector sensitive to frequencies above 

0.7THz. There are changes in the focusing pattern due to phonon dispersion. 

The diamond shaped structures centered around the 100  directions near top 

and bottom centre have become rounded. The curved horizontal and vertical 

caustics due to fast transverse caustics have become more widely separated. 

The three-fold symmetric ST structure around the 111  directions is absent 

from the measured image at this frequency.  

 

A calculated phonon image of Ge for the 0.7 to 1.0 THz frequency range in the 

(110) plane is shown in figure 4.2b. The distance between the FT caustics in 

the calculated image has increased in conformity with the experimental image. 

Compared with the non-dispersive phonon image in figure 4.1b, the outer 

diamond has become rounded and the inner structure has become much 

smaller at the higher frequencies. The three fold symmetric ST structure 

around the 111  directions is conspicuously present in this image. 

 

Another image was calculated for frequencies around 0.85THz and selecting 

phonons with wave vector k  up to 0.15 rather than 0.3, figure 4.2c. This wave 

vector selection results in the exclusion of phonons with smaller wavelengths 

which are more susceptible to scattering, and this has the greatest effect on 

phonons near the slow 111  directions where the three fold structures are now 

totally absent. This may explain the absence of the ST phonon focusing 

structures around the 111  directions in the measured image of Dietsche et al 

(1981). 
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Figure 4.2. Phonon images of Ge in the (110) observation plane, (a) measured 

using a detector with 0.7THz onset frequency by Dietsche et al, (1981). 

Calculated images: (b) selecting wave vector k  up to 0.3 for phonons with 

frequencies between 0.7THz and 1.0 THz, (c) selecting wave vector k  up to 

0.15 for phonons with frequencies near 0.85THz.  

 

The experimental (100) observation plane phonon image of Ge in figure 4.3a 

was measured by Metzger and Huebener (1988) using a bolometric detector. 

The points A to F are a means of quantifying the geometric pattern of the 

focusing image of the ST phonons for comparison with calculated images. 

Metzger et al (1988) compared this image with classical continuum model 

simulations and suggested discrepancies between calculated and measured 

images were due to the fact that the phonons contributing to the image were 

in the frequency range 0.3-0.4THz, and therefore slightly dispersive.  

Investigations by Tamura (1982, 1983, and 1985) based on lattice dynamics 

models have shown that dispersive effects are already quite significant in the 

focusing patterns of Ge at 0.3THz. We have calculated the focusing pattern of 

germanium in the (100) observation plane for phonons in the same frequency 

range 0.3-0.4THz, and the results are shown in figure 4.3b. There is 

qualitatively excellent agreement between the measured image and 

calculations using elastic constants derived from neutron scattering data.   
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Figure 4.3. Phonon images of Ge in the (100) observation plane for the 

frequency range: 0.3 ≤ f ≤ 0.4 THz. (a) measured image by Metzger and 

Huebener (1988). (b) Calculated image. 

 

Metzger and Huebener (1988) have used the points marked in the experimental 

image to define the distance ratios u = CD/AB and v = EF/AB. The experimental 

image gives u = 0.67 and we obtain u = 0.69 for our continuum model 

calculation shown in figure 4.3b.  The ratio v in the experimental image is 1.22 

and 1.19 for our calculated image. Metzger et al attempted to account for their 

images using “effective” elastic constant ratios, 
11 44

a C C=  and 
12 44

b C C= . 

The best agreement between measurement and simulation was found for 

2.11a =  and 0.91b = . These may be compared with our values 1.99a =  and 

0.80b =  used in conjunction with the dispersive elastic constants tabulated in 

chapter 3.  

 

4.1.1 Comparison of phonon images calculated using shell model 

derived elastic constants with measured images in Ge 

 

We now compare the phonon images obtained using elastic constants derived 

from the shell model by Maranganti and Sharma, (2007) with observed phonon 
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images. Figure 4.4 and 4.5 shows images in the (110) and (100) observation 

planes. 

            

Figure 4.4. Phonon images of Ge in the (110) observation plane: (a) measured 

image using a bolometric detector by Dietsche et al, (1981), (b) calculated 

phonon image for essentially non-dispersive phonons in the 0.0 THz to 0.3THz 

frequency range using shell model elastic constants (Maranganti et al, 2007). 

 

        
b 

   

Figure 4.5. Phonon images of Ge in the (100) observation plane for the 

frequency range: 0.3 ≤ f ≤ 0.4 THz. (a) measured image by Metzger and 

Huebener (1988). (b) Calculated phonon image using shell model elastic 

constants (Maranganti et al, 2007). 
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For the non-dispersive experimental image in the (110) plane has a diamond 

shaped structure around the 100  directions whilst we obtain a rounded 

structure in the corresponding calculated image. This is also observed in figure 

4.5 for the (100) observation plane. The separation of the FT caustics is larger 

in the observed image than in the calculated image. Thus, phonon images of Ge 

obtained using elastic constants extracted directly from neutron scattering 

data gives much better agreement with measurement as compared with ones 

derived from the shell model elastic constants. This is expected since better 

agreement with neutron scattering dispersion relation data is obtained with 

elastic constants extracted directly from the neutron scattering data.   

 

 4.2 Further frequency dependent Ge dispersive phonon images 

 

           

           

Figure 4.6. Calculated dispersive phonon images of germanium in the (110) 

imaging plane for the frequency ranges: (a) 0.0 - 0.3 THz (b) 0.5 – 0.6 THz (c) 

0.7 – 0.8 THz (d) 0.9 – 1.0 THz.  
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The calculated phonon images in figure 4.6 display the changes in the phonon 

focusing pattern of Ge as the frequency increases. They were calculated using 

non-dispersive and dispersive elastic constants extracted directly from neutron 

scattering data. The diamond shaped box structures due to ST phonons around 

the 100  directions become more rounded and the separation of the FT 

caustics increases. 

 

The angle subtended by the FT ridge, FTθ ,  at the centre of the image has been 

measured and is shown as a function of frequency in figure 4.7.  The data 

points are the opening angles of the FT caustics for each frequency in the 

calculated images and they have been fitted to a polynomial represented by 

the solid line. This angle increases from 4.7o at 0.3THz to 11.7o at 1.0THz 

which is an increase by a factor of 2.49.  

 

Figure 4.7. The angle between FT caustics, FTθ , as a function of phonon 

frequency for Ge. 

 

Simulations of the dispersive phonon images in the (100) observation plane of 

germanium are shown in figure 4.8. They were also calculated using elastic 

constants extracted directly from neutron scattering data. These images are 
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rotated by 45o with respect to the images in figure 4.3. For the ST box 

structure around the 100  direction, the outer box becomes more rounded 

whilst the inner box becomes smaller as frequency is increased. The FT caustics 

become broader at higher frequencies for a given frequency spread and their 

opening angle becomes much larger. Thus, for the frequency range we have 

investigated, we do not observe new structures in the focusing pattern of Ge 

but the existing structures do become gradually modified.  

 

          

 

          

 

Figure 4.8. Calculated dispersive phonon images of germanium in the (100) 

imaging plane: (a) 0.0 - 0.3 THz (b) 0.5 – 0.6 THz (c) 0.7 – 0.8 THz (d) 0.9 – 1.0 

THz.  
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The ratio u defined in section 4.1 was measured as a function of frequency for 

the calculated images in the (100) observation plane. The results are shown in 

figure 4.9 as the data points which have been fitted to a polynomial 

represented by the solid line. There is a marked decrease in the ratio u which 

is 0.68 at 0.3THz and decreases by almost a half to 0.33 at 1.0THz.  

 

Figure 4.9. The ratio u as a function of phonon frequency.  

 

4.3 Comparison of calculated images with measurements for Si 

 

A comparison between an experimental image obtained with a silicon crystal 

and a calculation using elastic constants derived directly from neutron 

scattering data is shown in figure 4.10. These images are in the (100) 

observation plane of the crystal with the [100] direction at the centre of the 

image. The measured phonon image, figure 4.10a, was obtained with the use of 

a tunnel junction detector with an onset frequency of 0.44THz (Tamura et al, 

1991). A frequency range of 0.44 to 0.54THz was used in the calculation of the 

phonon image in figure 4.10b. The non-dispersive and dispersive elastic 

constants obtained directly from neutron scattering data where used to 

calculate this image. The experimental image has been well reproduced by the 

calculated image. The inner box structure in the calculated image is just about 

the same size as the one in the experimental image.    
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Figure 4.10. Phonon images of Si in the (100) observation plane (a) measured 

image by Tamura, Shields and Wolfe (1991) using a PbTI tunnel junction 

detector with an onset frequency of 0.44THz. (b) Calculated image for the 

frequency range: 0.44 ≤ f ≤ 0.54 THz.  

 

Figure 4.11 shows phonon images for Si for the same geometry as in figure 

4.10, but for higher frequencies. Figure 4.11a is an image measured by Tamura 

et al, (1991) using a tunnel junction detector with an onset frequency of 

0.7THz. The effects of dispersion at these frequencies are less than for Ge, 

because the Si vibrational spectrum is scaled up by about a factor of 2 

compared to that of Ge. Nevertheless there are noticeable changes to the 

image above 0.7THz. The outer box structure is slightly more rounded and the 

inner box slightly smaller. These effects are reproduced in figure 4.11b, which 

is a calculated image for the frequency range 0.7 ≤ f ≤ 0.9 THz.  
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Figure 4.11. Phonon images of Si in the (100) observation plane: (a) measured 

using a detector with onset frequency 0.7THz by Tamura, Shields and Wolfe 

(1991), (b) Calculated image for the frequency range: 0.7 ≤ f ≤ 0.9 THz. 
 

A phonon image measured in the (110) observation plane using a tunnel 

junction detector with an onset frequency of 0.82 THz (Shields et al, 1991) is 

shown in figure 4.12a.  A corresponding calculation using non-dispersive and 

dispersive elastic constants derived directly from neutron scattering data whilst 

selecting phonons with frequencies between 0.8THz and 0.9THz is shown in 

figure 4.12b. There is qualitatively good agreement between the experimental 

image and the calculated image. The ST box structures centered on the 100  

directions are rounded. The separation between the FT caustics connecting the 

100  directions is however somewhat larger in the experimental image than in 

the calculated image.  
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Figure 4.12. Phonon images of Si in the (110) observation plane: (a) measured 

using a detector with onset frequency 0.82THz by Shields et al (1991), (b) 

Calculated image for the frequency range: 0.82 ≤ f ≤ 1.02 THz. 
 

4.3.1 Comparison of images calculated using MD derived elastic 

constants with measurements for Si 

 

Phonon images calculated using MD derived elastic constants in the (100) 

observation plane are compared with experimental phonon images in figures 

4.13 and 4.14. The box structure in the image obtained using a detector with 

an onset frequency of 0.44THz is rounded whilst the corresponding calculation 

has the box structure. The same observation is made in figure 4.14 which 

corresponds to images at higher phonon frequencies. The separation of the FT 

caustics is also much wider in the calculated images than in the experimental 

images. 

 

The observed phonon images of Si are not well reproduced by calculations using 

MD elastic constants. We obtain much better agreement with experiment using 

elastic constants extracted directly from neutron scattering data. This may be 
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explained by the fact that a better fit to neutron scattering data was obtained 

using these elastic constants. The non-dispersive elastic constants obtained 

from MD elastic constants give an anisotropy factor of 0.436 whilst with the 

elastic constants extracted directly from neutron scattering data we obtain 

0.638. This accounts for the big difference in the phonon focusing patterns 

obtained using the different sets of elastic constants. 

 

           

Figure 4.13. Phonon images of Si in the (100) observation plane (a) measured 

image by Tamura, Shields and Wolfe (1991) using a PbTI tunnel junction 

detector with an onset frequency of 0.44THz. (b) Calculated image for the 

frequency range: 0.44 ≤ f ≤ 0.54 THz using MD derived elastic constants 

extracted by Maranganti et al (2007).  

             

b 

 

Figure 4.14. Phonon images of Si in the (100) observation plane: (a) measured 

using a detector with onset frequency 0.7THz by Tamura, Shields and Wolfe 

(1991), (b) Calculated phonon image for the frequency range: 0.7 ≤ f ≤ 0.9 THz 

using MD derived elastic constants extracted by Maranganti et al (2007). 
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4.4 Further frequency dependent dispersive phonon images of Si 

 

Silicon does not display a lot of dispersion in its phonon images for frequencies 

in the range of 0.0-1.0THz, see figure 4.11. This is expected because the 

vibrational frequencies of Si are about a factor of 1.8 higher than those of Ge 

at comparable points in the Brillouin zone. We have therefore calculated the 

phonon images of silicon for frequencies of up to 2.0THz using elastic constants 

extracted directly from neutron scattering data.  The simulated dispersive 

phonon images of silicon in the (110) observation plane for different 

frequencies are shown in figure 4.11.  

 

           

           

Figure 4.11. Calculated dispersive phonon images of silicon in the (110) 

imaging plane: (a) 0.0 - 0.3 THz (b) 0.9 – 1.0 THz (c) 1.5 – 1.6 THz (d) 1.9 – 2.0 

THz.  



70 

 

The evolution of the focusing patterns of silicon in the (100) observation plane 

are shown in figure 4.12. It is again noted that for the frequency range we have 

examined we have not observed any new phonon focusing structures of Si at 

the higher frequencies; the existing focusing patterns simply become modified. 

The box structure due to ST phonons around the 100  directions becomes more 

rounded and the inner box becomes smaller, and the FT caustics become more 

widely separated. 

 

      

 

      

 

Figure 4.12. Calculated dispersive phonon images of silicon in the (100) 

imaging plane: (a) 0.0 - 0.3 THz (b) 0.9 – 1.0 THz (c) 1.5 – 1.6 THz (d) 1.9 – 2.0 

THz.  
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Chapter 5Chapter 5Chapter 5Chapter 5    

    

    Phonon focusing pPhonon focusing pPhonon focusing pPhonon focusing patterns of InSbatterns of InSbatterns of InSbatterns of InSb    and GaAsand GaAsand GaAsand GaAs    

 

Crystals lacking a centre of inversion like InSb and GaAs, which are of dT  

symmetry and for which the acoustic gyrotropic tensor is not zero, exhibit the 

phenomenon of acoustical activity (Portigal and Burstein, 1968 and Every, 

1987). This is a fifth rank tensor for which the numbers of independent 

components for all point groups have been reduced by group theoretical 

methods by Kumaraswamy and Krishnamurthy in 1980.  There is only one 

independent component of the acoustic gyrotropic tensor in crystals like InSb 

and GaAs of point group  dT  
(DiVincenzo, 1986). There is in addition second 

order dispersion, which is characterized by the f tensor which has the same 6 

independent components as for hO  symmetry. 

 

The dispersive phonon focusing patterns of InSb and GaAs are investigated in 

this chapter. Calculations of the phonon images of InSb have been performed 

using non-dispersive and dispersive elastic constants obtained using modified 

continuum elasticity theory as discussed in chapter 3.   

 

5.1 Frequency dependence of dispersive phonon images of InSb 

in the (110) observation plane 

 

We now discuss the evolution of phonon images of InSb calculated using elastic 

constants extracted directly from neutron scattering data and compare them 

with measurements. There is no independent set of parameters derived from 

lattice dynamics models to compare with. Figure 5.1a shows a non-dispersive 

phonon image of indium antimonide measured with a bolometric detector. The 
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corresponding calculated image for the non-dispersive frequencies 0.0 - 0.2THz 

is shown in figures 5.1b. These images are for the (110) observation plane of 

the crystal with the [110] direction at the centre. The FT caustics in the 

calculated image are not quite as widely separated as the ones in the 

experimental image. However, all other calculated phonon focusing structures 

conform reasonably well to the measurements. The box structures around the 

100  directions for which the corners are rounded are in qualitatively good 

agreement.  

 

           

 

Figure 5.1. Non-dispersive phonon images of InSb in the (110) observation 

plane. (a) Measured image by Hebboul and Wolfe (1989). (b) Calculated image 

selecting phonons with frequencies between 0.0 – 0.2 THz.  

 

An image measured using a tunnel junction detector with an onset frequency of 

0.43THz is shown in figure 5.2a. In this image, the box structure around the 

100  directions has now become completely rounded. The FT caustics have 

become even more widely separated and the fast transverse ridge at the center 

shows relatively very high phonon intensity. A corresponding dispersive 



73 

 

continuum model calculation for the 0.43-0.50 THz frequency range is shown in 

figure 5.2b. The fast transverse caustics have also become more widely 

separated in this simulated image and the box structure is now rounded. The 

inner box is much smaller.  

 

            

 

Figure 5.2 Phonon images of InSb in the (110) observation (a) measured image 

using a tunnel junction detector with an onset frequency of 0.43 THz by 

Hebboul and Wolfe (1989) (b) Calculated image in the 0.43 – 0.50 THz 

frequency range.  

 

The image in figure 5.3a was measured with a tunnel junction detector with an 

onset frequency of 0.593 THz. Striking changes can be seen in the phonon 

focusing pattern. There is a very high concentration of phonons on the FT ridge 

connecting the 100  directions. There is an increase in the distance between 

the FT caustics. The box structures around the 100  directions have changed 

from the rounded shape to a squared shape. A corresponding simulation in the 

0.575-0.625THz frequency range is shown in figure 5.3b. In the calculated 

image, the box structure around the 100  directions has also become squared. 
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The inner box in the calculated image has become much smaller. The 

separation of the FT caustics has increased although by a magnitude that is not 

quite the same as in the experimental image. The faint focusing structures 

around the 111  directions have become larger to the extent that they are 

almost touching the FT structures near the 110  directions. 

 

          

 

Figure 5.3 Phonon images of InSb in the (110) observation plane (a) 

Experimental image using a tunnel junction detector with an onset frequency 

of 0.593THz by Hebboul and Wolfe (1989). (b) Calculated image in the 0.593-

0.650 THz frequency range. 

 

A comparison of an experimental phonon image obtained with a detector with 

onset frequency of 0.688 THz with a simulation in the 0.688 to 0.750 THz 

frequency range is shown in figures 5.4a and 5.4b. The focusing structure 

around the 111  directions is no longer visible in the experimental image 

whilst it is now touching the FT ridge close to the 110  directions in the 

calculated image. The opening angle of the FT caustics has increased in the 

calculated image as has the one in the experimental image though the 
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magnitudes are slightly different. The box structures around the 100  

directions are still squared in both images but the edges are slightly concave in 

the experimental image. The inner box structure has vanished in both the 

measured image and the calculated image. According to Hebboul and Wolfe 

(1989), a low frequency focusing pattern is superposed on the high frequency 

pattern in the measured image. This has been attributed to the tunnel junction 

detector simultaneously acting as a low and high frequency detector.  

 

           

 

Figure 5.4 Phonon images of InSb in the (110) observation plane (a) measured 

image using a tunnel junction detector with an onset frequency of 0.688 THz by 

Hebboul and Wolfe (1989) (b) Calculated image in the 0.688 – 0.750 THz 

frequency range.  

 

5.2 Evolution of dispersive phonon images of InSb in the (100) 

observation plane 

 

A discussion of the frequency dependence of the calculated phonon focusing 

patterns using elastic constants derived directly from neutron scattering data 
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in the (100) observation plane is carried out in this section. The image of figure 

5.5a was calculated for ballistic phonons within the 0.40 to 0.45 THz frequency 

ranges. The box structure due to ST phonons is completely rounded.  

 

        

 

        

 

Figure 5.5. Calculated phonon images of InSb in the (100) observation for the: 

(a) 0.40-0.45THz (b) 0.57-0.62THz (c) 0.66-0.70THz (d) 0.70-0.75THz, 

frequency ranges.  

 

This shape changes to a squared shape in the 0.57 to 0.62 THz frequency range 

in figure 5.5b. The inner box around the 100  directions has become much 
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smaller and the separation of the horizontal and vertical FT caustics has 

increased. In figure 5.5c corresponding to calculations selecting phonons with 

0.66 to 0.70 THz frequencies, the inner box has become even smaller. It is 

completely absent in the 0.70 to 0.75 THz phonon image. The FT caustics which 

are very sharp at 0.4-0.45THz become much broader at 0.7-0.75THz and their 

opening angle increases to the extent that the distance between them is about 

doubled. The box structure around the 100  directions has become almost 

completely squared. 

 

One may compare the calculated images in figure 5.5 with experimental images 

of InSb in figure 5.6. The projection plane of the experimental images is (110) 

which differs from the (100) plane of figure 5.5, but the angular range is 

similar, capturing the ST box structure (Hebboul and Wolfe, 1988). Figure 5.6a 

was measured with a frequency tunnel junction detector with an onset 

frequency of 430 GHz. The box structure around the [100] direction is rounded. 

This becomes squared in figure 5.6b obtained with a detector with an onset 

frequency of 593 GHz. The edges of this structure become slightly curved 

inwards in figures 5.6c and 5.6d obtained with detector onset frequencies of 

688GHz and 727GHz respectively.  

 

The inner box in these experimental images is discernible in the image 

measured using a detector with an onset frequency of 430 GHz. This structure 

is however, not observed at higher frequencies. The tunnel junction detectors 

used in these experiments are also sensitive to low frequency phonons and as 

result a low frequency caustic pattern is superimposed on the focusing pattern 

in figures 5.6b.  

 

Bearing in mind that the images in figure 5.6 are expanded views about the 

100  directions of images measured in the (110) observation which distorts the 

comparison with the images calculated in the (100) plane in figure 5.5, the 
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experimental images in figure 5.6 are reasonably well reproduced by the 

corresponding calculations in figure 5.5.    

 

              

   

           

 

Figure 5.6. Phonon images of InSb measured in the (110) plane with a smaller 

angular scan to record a magnified view of the focusing structures around the 

[100] direction. They have been obtained with tunnel junction detectors with 

onset frequencies of: (a) 430 GHz (b) 593 GHz (c) 688 GHz (d) 727 GHz.  
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5.3 Comparison of GaAs experimental images with calculated 

images 

 

Crystals of GaAs also lack a centre of inversion but the method used to extract 

its dispersive elastic constants from neutron scattering data was slightly 

different from the one used for InSb. As explained in more detail in chapter 3, 

this was because neutron scattering data is available for all branches of the 

dispersion relations of GaAs. 

 

A phonon image measured in the (110) observation plane of GaAs using a 

bolometric detector is shown in figure 5.7a (Northrop et al, 1985).  Phonon 

focusing structures due to slow transverse and fast transverse modes of 

propagation have been labeled ST and FT respectively. A corresponding 

calculated image using elastic constants derived directly from neutron 

scattering data whilst selecting phonons with frequencies less than 0.3 THz is 

shown in figure 5.7d. There is very good agreement between the measured and 

the calculated image. The fast transverse ridge is slightly broader in the 

experimental image than it is in the calculated image.  

 

In figure 5.7b, a time gate selecting phonons with velocities between 2.9 and 

3.1 µm/ns was used in the image measured with a tunnel junction detector 

with an onset frequency of 0.7 THz. At these higher frequencies, the diamond 

shaped structure around the 100  directions has become rounded and the 

separation between the FT caustics has increased. The time gate selection 

results in the absence of the ST phonon focusing structures near the 111  

directions. The changes in the experimental image are well reproduced by the 

calculated image in figure 5.7e. This image was calculated using the same time 

gate selection as in the experimental image whilst selecting phonons with 

frequencies between 0.7 – 1.0 THz.   
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Figure 5.7. Phonon images of GaAs. Measured images by Northrop et al (1985): 

(a) f < 0.3 THz, (b) f >0.7 THz, 2.9<V<3.9 µm/ns, (c) f >0.7 THz, 2.3<V<3.1 

µm/ns. Calculated images: (d) f < 0.3 THz, (e) 0.7< f <1.0 THz, 2.9 <V< 3.9 

µm/ns, (f) 0.7 < f <1.0 THz, 2.3<V<3.1 µm/ns. 
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Figure 5.7c shows an image measured with a time gate selecting phonons with 

velocities between 2.3 and 3.1 µm/ns using a tunnel junction detector with an 

onset frequency of 0.7 THz. A corresponding image was calculated, figure 5.7f, 

selecting phonons with frequencies between 0.7 and 1.0 THz whilst using the 

same time gate selection. The ST phonon focusing structures near the 111  

directions are no longer absent because of the time gate selection which 

emphasizes slower phonons. The calculated and measured phonon images are 

all in good agreement.  

 

5.3.1 Comparison of GaAs experimental images with images 

calculated using DiVincenzo elastic constants  

 

The elastic constants extracted by DiVincenzo (1986) were also used to 

simulate the focusing patterns of GaAs. A detailed explanation on how the 

elastic constants are extracted is given in the already named reference. 

  

The experimental phonon images shown in Figure 5.8a, b, and c are the same 

images shown in figure 5.7a, b and c. They are shown again for comparison 

with phonon images calculated using non-dispersive and dispersive elastic 

constants extracted by DiVincenzo (1986). The calculated non-dispersive 

phonon image in figure 5.8d is in good agreement with the observed non-

dispersive phonon image in figure 5.8a.  

 

An image calculated in the 0.7 to 1.0 THz frequency range with time gate 

selection of phonons with velocities between 2.9 to 3.9 µm/ns is shown in 

figure 5.8e.  The distance between the fast transverse caustics has increased in 

the both the simulated image and the experimental image although this is by 

different magnitudes. The corners of the box structure around the 100  

directions have become rounded. It has a diamond shape in the calculated 

image whilst it is more circular in the measured image.  
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f 

 

Figure 5.8. Phonon images of GaAs. Measured images by Northrop et al (1985): 

(a) f < 0.3 THz, (b) f >0.7 THz, 2.9<V<3.9 µm/ns, (c) f >0.7 THz, 2.3<V<3.1 

µm/ns. Calculated images: (d) f < 0.3 THz, (e) 0.7< f <1.0 THz, 2.9 <V< 3.9 

µm/ns, (f) 0.7 < f <1.0 THz, 2.3<V<3.1 µm/ns. 
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The inner box in the simulated image is now smaller than in the non-dispersive 

case. Time gate selection has also resulted in the absence of the focusing 

structures around the 111  directions.  

 

An image corresponding to figure 5.8c was calculated for the 0.7 to 1.0 THz 

frequency range, see figure 5.8f. A time gate selection of phonons with 

velocities between 2.3 and 3.1 µm/ns was used in this simulation. The focusing 

structures around the 111  directions are slightly faded in the calculated 

image and there is very high phonon intensity on the FT ridge connecting the 

100  directions. The experimental images have been qualitatively well 

reproduced by the calculations.   

 

For the long-wavelength limit images, the elastic constants derived from the 

shell model and the ones extracted directly from neutron scattering data give a 

phonon image that is in good agreement with measurements. At higher 

frequencies however, the measured image is better reproduced by the latter. 

This is expected since a better fit to experimental data at higher phonon 

frequencies in the dispersion curves was obtained with elastic constants 

derived from neutron scattering data. 

 

5.4 Frequency dependence of GaAs dispersive phonon images in 

the (100) plane 

 

The dispersive phonon images in the (100) observation plane of GaAs were 

calculated using non-dispersive and dispersive elastic constants which we 

obtained using the procedure explained in chapter 3. The horizontal and 

vertical FT caustics become more widely separated in figure 5.9b calculated for 

the 0.5-0.6THz frequency range when compared to the low frequency image 

calculated whilst selecting phonons with frequencies less than 0.3THz. The 
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corners of the box structure become slightly rounded and the inner box 

structure becomes smaller. 

            

        

 

        

Figure 5.9. Calculated phonon images of GaAs in the (100) plane: (a) f < 0.3 

THz, (b) 0.5< f <0.6 THz, (c) 1.0< f <1.1 THz, (d) 1.3 < f <1.4 THz.  

 

In the 1.0-1.1THz frequency range, see figure 5.9c, the box structure around 

the 100
 
directions acquires a rounded shape and the inner box has become 

smaller. The separation of the FT caustics has also increased and becomes even 

larger in figure 5.9d calculated for the 1.3-1.4 THz frequency range. The box 

structure around the [100] also changes to a squared shape whilst the inner box 

becomes even smaller.  
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Chapter 6Chapter 6Chapter 6Chapter 6    

    CCCConclusionsonclusionsonclusionsonclusions    

 

Dispersive phonon images of Ge, Si, InSb and GaAs have been calculated using 

modified continuum elasticity theory. The main aim was to determine if an extension 

to continuum elasticity theory to include third and fourth order spatial derivatives in 

the wave equation can be used to explain observed dispersive phonon images of these 

materials. Experimental neutron scattering data was used to determine the non-

dispersive and dispersive elastic constants of all of these crystals that were needed 

for the imaging calculations. 

 

One of the dispersive elastic constants, the component d  of the gyrotropic tensor, is 

zero in crystals with a centre of inversion such as germanium and silicon. For these 

two materials neutron scattering data was available for the dispersion curves for the 

longitudinal and transverse acoustic branches in the 100 , 110  and 111  symmetry 

directions. From these data non dispersive and dispersive elastic constants where 

obtained by means of optimized fitting to the experimental neutron scattering data 

along the symmetry directions.  

 

The single independent component of the fifth order elastic tensor is not zero in the 

two crystals without a centre of inversion, indium antimonide and gallium arsenide. 

One cannot therefore derive polynomial expressions of the same form as other 

dispersion relations along the 110  direction because a surd is involved which has to 

be solved exactly without approximations. Visual optimization and fitting to 

dispersion curves along symmetry directions was used to obtain the dispersive elastic 

constants.  
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The elastic constants were used in dispersive phonon imaging calculations with a 

program written in the FORTRAN programming language. In this program, a large 

number of phonon wave vectors with a random distribution of directions and 

magnitudes are generated. Then their corresponding group velocity vectors are 

calculated and projected onto the (100), (111) and (110) observation planes to 

generate density plots representing phonon images. Our calculation does not include 

the effects of scattering which may account for some of the disagreements with 

measurements.  

 

A comparison of the calculated phonon images of germanium with measurements was 

carried out. The phonon focusing structures in the experimental image are 

qualitatively well reproduced by the calculation. The box structures around the 100  

direction become rounded at higher frequencies. The separation of the fast transverse 

caustics also increases in the calculated images as in the experimental images in the 

(110) observation plane but by different magnitudes. The angle subtended by the FT 

ridge in the calculated image was measured for each frequency range. Phonon 

focusing patterns of Ge obtained using elastic constants extracted directly from 

neutron scattering data were compared to the ones obtained using the shell model by 

Maranganti and Sharma (2007). It was found that phonon images calculated using 

elastic constants derived directly from neutron scattering data of Ge give better 

agreement with experiment when compared to shell model phonon focusing patterns. 

This may be explained by the fact that the fitting of the shell model parameters to 

experimental data is carried out simultaneously for all the acoustic and optical modes 

over the full Brillouin zone. As a result, it is not surprising that it does not give an 

optimum fit to the acoustic modes near the zone centre. Among the lattice dynamics 

models, bond charge model calculations of phonon images give the best agreement 

with observed phonon images for group IV elements (Tamura et al, 1991). However, 

non-dispersive and dispersive elastic constants of covalently bonded crystals like Ge 

and Si derived through the medium of the bond charge model could not be found.  
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Calculated non-dispersive images in the (100) observation plane of silicon were in 

good agreement with measurements. The changes in the focusing patterns as a result 

of dispersion were well reproduced by calculations using elastic constants extracted 

directly from neutron scattering data. The inner box structure around the 100  

directions is smaller in the experimental image than in the calculated image in the 

0.7 to 0.8 THz frequency range. The distance between the fast transverse caustics 

becomes larger.  A comparison between phonon images of silicon calculated using 

elastic constants extracted from molecular dynamics (MD) simulations by Maranganti 

and Sharma (2007) and measurements was carried out. The MD phonon images did not 

agree as well with experimental observations as images calculated using elastic 

constants derived directly from neutron scattering data. A possible explanation is that 

the fitting of MD elastic constants is carried out for wave vector values near k = 0 

(Maranganti, 2007) and as a result one obtains a good fit to experimental data for 

small wave vector values. At large wave vector values however, a small deviation 

resulting from the approximations may not give a good fit to the experimental data. 

 

Experimental images of indium antimonide in the (110) plane were compared to 

calculations using elastic constants extracted directly from neutron scattering data. 

The effects of dispersion are very significant in the focusing patterns of indium 

antimonide. The box structure around the 100  directions changes from a square 

shape to a rounded one. It then becomes squared again with the edges slightly 

curved. The inner box becomes smaller as frequency is increased until it vanishes. 

The fast transverse caustics become much more separated at higher frequencies.  

 

Phonon focusing patterns of gallium arsenide were calculated using dispersive and 

non-dispersive elastic constants extracted directly from neutron scattering data and 

then the shell model by DiVincenzo (1986).  They were compared to phonon images 

measured by Northrop et al (1985).  The changes in the phonon images as result of 
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dispersion were well reproduced by the calculations. The images calculated using 

elastic constants extracted directly from neutron scattering data however, give 

slightly better agreement with the dispersive experimental phonon images.  

 

On the whole, the position of phonon focusing singularities predicted by continuum 

elasticity theory modified to incorporate dispersion and using parameters inferred 

from neutron scattering dispersion relations agrees well with experimental 

observations. The few discrepancies may be attributable to phonon scattering which 

was not taken into account in the calculations.  

 

Further investigations on this topic may include the effects of phonon scattering in 

the calculation of phonon images. An examination of several two and three parameter 

dispersion relations pertaining to one dimensional continuum elasticity models has 

just been reported by Mittal and Every (2007).  They found out that there is a 

reasonable fit to the dispersion relations over the entire Brillouin zone by the 

inclusion of up to the sixth order term of the spatial derivatives in the wave equation.  
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AppendixAppendixAppendixAppendix 

Dispersive phonon imaging program 

The FORTRAN program to calculate the dispersive phonon images is given below.  

Comments are written in italics preceded by a bold C. Units used are such that most 

quantities in phonon imaging are of the order unity. Lengths are in microns, µm, and 

time in nanoseconds, frequencies in gigahertz and mass in pico-gramms.  

     PROGRAM image 

C  This program calculates the dispersive phonon images of Ge .We start by defining the 

variables and the output files, disp100.dat, disp110.dat and disp111.dat for the images in the 

(100), (110) and (111) observation planes respectively.   

     Implicit Real*8 (a-h,o-z) 

     Real*8 w(3),Velx0(3),Vely0(3),Velz0(3) 

     Complex*16 roots(3), a(4),xi 

     Integer*2 Ins100(500,500),Irow0(500),Ins110(500,500),Irow1(500) 

     Integer*2 Ins111(500,500),Irow2(500) 

    

     OPEN (UNIT=60,FILE='D:\fortran\kuda\disp100d.dat',STATUS='NEW') 

     OPEN (UNIT=61,FILE='D:\fortran\kuda\disp110d.dat',STATUS='NEW') 

     OPEN (UNIT=62,FILE='D:\fortran\kuda\disp111d.dat',STATUS='NEW') 

                  

C   Elastic constants of germanium are defined. The non-dispersive elastic constants are c11, 

c12 and c44 and the dispersive elastic constants f1, f2, f3, f4, f5, f6 and d.  P is the density of 

germanium and wav is the lattice parameter. The non-dispersive elastic constants   

     c11 = 139.80d00 

     c12 = 56.00d00 

     c44 = 69.80d00 

      f1 = -8.028979900488998d-007 
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      f2 = -1.505796005572888d-006 

      f3 = -7.673999747267629d-009 

      f4 = -4.891560156042842d-007 

      f5 = -4.387499927815952d-007  

      f6 = 3.196740010480426d-007 

      d = 0.00d00 

       p  = 5.36d00 

       wav = 5.651d-04  

 

C   the constant pi  

       pi = 3.141592653589793d00 

        

C    defining numbers often encountered and square roots in double precision.  

       t2 = 2.00d0 

       t3 = 3.00d0 

       t4 = 4.00d0 

       t6 = 6.00d0 

       t12= 12.00d0 

       t24=24.00d0 

       sqr2=1.00d00/dsqrt(t2) 

       sqr3=1.00d00/dsqrt(t3) 

       sqr6=1.00d00/dsqrt(t6)    

                

C    Setting dimensions of imaging plane. The variable dstx is the length along the x axis and dsty 

is the length along the y axis. This is divided into 500 by 500 bins by dividing the x and y lengths 

by 500. The variable h is the distance from the phonon source to the centre of the imaging plane. 

       dstx = 10.00d03 

       dsty = 10.00d03       
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       dincx = dstx/500.0d00 

       dincy = dsty/500.0d00 

       h = 10.00d03 

C    Defining the wave vector, dK in reduced wave vectors.            

       dK= t2*pi/wav 

C    Arrays Ix, Iy and Iz to generate phonon wave vectors in the x, y and z directions. 

       DO 52 Ix = -120,120 

       DO 51 Iy = -120,120 

       DO 50 Iz = -120,120 

         

       dKx = (dfloat(Ix)+ rand())*0.300d0/120.0d0 

       dKy = (dfloat(Iy)+ rand())*0.300d0/120.0d0 

       dKz = (dfloat(Iz)+ rand())*0.300d0/120.0d0 

 

       dmodK = sqrt( dKx*dKx + dKy*dKy + dKz*dKz) 

 

C    Selecting wave vector magnitudes less than 0.3  

 

       IF(dmodK.gt.0.0d0.AND.dmodK.lt.0.3d0) THEN 

       x = dK*dKx  

       y = dK*dKy 

       z = dK*dKz 

C Having generated wave vectors, we now call a subroutine FREQ to calculate the group 

velocity vectors. We input the wave vectors components x, y, and z, the elastic constants, the 

density of the material and the lattice parameter. The output of the subroutine are the 

components of the group velocity vectors in the x, y and z directions and the phonon angular 

frequencies for the ST, FT and L modes w(j). The subroutine FREQ is written at the end of this 

program. 
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       CALL FREQ(x,y,z,c11,c12,c44,f1,f2,f3,f4,f5,f6,d1,p, 

1 Velx0,Vely0,Velz0,w) 

 

C    From the angular frequencies we calculate the phonon frequencies in gigahertz and then 

select the range of frequencies required in the phonon image. In this case, we are selecting 

phonon frequencies in the 500GHz to 600GHz range. As a method of checking for the 

consistency of these calculations, dispersion curves can be plotted and compared to neutron 

scattering data along the symmetry directions of the crystal.  

 

       DO 38 j=1,2 

        frq= w(j)/(t2*pi) 

        IF(frq.gt.500.00d00.AND.frq.lt.600.00d0) THEN  

 

C For the range of frequencies selected above, we now use the symmetry of the crystal for the 

group velocity vectors.  

 

         DO 23 mx = -1, 1, 2 

         DO 22 my = -1, 1, 2 

         DO 21 mz = -1, 1, 2 

         DO 20 mi = 1, 6 

                   

         IF (mi.eq.1) THEN 

           Velx = Velx0(j)*mx 

           Vely = Vely0(j)*my  

           Velz = Velz0(j)*mz 

         ELSE IF(mi.eq.2) THEN 

           Velx = Velx0(j)*mx 

           Vely = Velz0(j)*my  

           Velz = Vely0(j)*mz 

         ELSE IF(mi.eq.3) THEN 
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            Velx = Vely0(j)*mx 

            Vely = Velx0(j)*my 

            Velz = Velz0(j)*mz 

          ELSE IF(mi.eq.4) THEN 

             Velx = Vely0(j)*mx 

             Vely = Velz0(j)*my 

             Velz = Velx0(j)*mz 

         ELSE IF(mi.eq.5) THEN 

            Velx = Velz0(j)*mx 

            Vely = Velx0(j)*my  

            Velz = Vely0(j)*mz 

          ELSE IF (mi.eq.6) THEN 

            Velx = Velz0(j)*mx 

            Vely = Vely0(j)*my 

            Velz = Velx0(j)*mz 

          END IF 

 

C    We now find the number of group velocity vectors falling into each one of the 500 by 500 

bins on the imaging planes. For example, in the (100) plane, qx0 and qy0 are the x and y 

distances where the group velocity vectors intersect with the imaging plane. nx and ny are their 

coordinates on the observation plane. 

C  For the (100) observation plane    

        IF( Velz.gt.0.0d0) THEN 

        qx0 = h*Velx/Velz 

        qy0 = h*Vely/Velz 

 

        nx = IDINT(qx0/dincx) + 250                

        ny = IDINT(qy0/dincy) + 250 
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        IF(qx0.lt.0.0d0)nx=nx-1 

        IF(qy0.lt.0.0d0)ny=ny-1 

        IF (nx.lt.501.AND.nx.gt.0) THEN 

        IF(ny.lt.501.AND.ny.gt.0) THEN 

        Ins100(nx,ny) = Ins100(nx,ny)+1 

        END IF 

        END IF 

        END IF 

C     For the (110) observation plane 

        Vzp = (Velx-Vely)*sqr2 

        IF (Vzp.gt.0.0d0) THEN 

        Vxp = (Velx+Vely)*sqr2 

        Vyp = Velz 

        qx1 = h*Vxp/Vzp 

        qy1 = h*Vyp/Vzp  

 

        nx = IDINT(qx1/dincx) + 250                

        ny = IDINT(qy1/dincy) + 250 

        IF(qx1.lt.0.0d0)nx=nx-1 

        IF(qy1.lt.0.0d0)ny=ny-1                     

        IF (nx.lt.501.AND.nx.gt.0) THEN 

        IF(ny.lt.501.AND.ny.gt.0) THEN 

        Ins110(nx,ny) = Ins110(nx,ny)+1 

 

        END IF    

        END IF 

        END IF 
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C      For the (111) observation plane 

        Vzp1 = (Velx+Vely+Velz)*sqr3 

        IF (Vzp1.gt.0.0d0) THEN 

        Vxp1 = (Vely-Velx)*sqr2  

        Vyp1 = (-Velx-Vely+t2*Velz)*sqr6 

        qx2 = h*Vxp1/Vzp1 

        qy2 = h*Vyp1/Vzp1 

 

        nx = IDINT(qx2/dincx) + 250                

        ny = IDINT(qy2/dincy) + 250 

        IF(qx2.lt.0.0d0)nx=nx-1 

        IF(qy2.lt.0.0d0)ny=ny-1 

        IF (nx.lt.501.AND.nx.gt.0) THEN 

        IF(ny.lt.501.AND.ny.gt.0) THEN 

        Ins111(nx,ny) = Ins111(nx,ny)+1 

        END IF                                                                                    

        END IF 

        END IF 

   

20     CONTINUE 

21     CONTINUE 

22     CONTINUE 

23     CONTINUE    

         END IF 

38     CONTINUE 

         END IF 
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50      CONTINUE 

51      CONTINUE 

52      CONTINUE 

 

C  Writing to image files 

 

        DO 65 Iw=1,500 

        DO 60 Iv=1,500 

        IF(Ins100(Iw,Iv).gt.99) THEN 

        Ins100(Iw,Iv)=99 

        END IF 

        Ins100(Iw,Iv) = 99 - Ins100(Iw,Iv)  

        Irow0(Iv) = Ins100(Iw,Iv) 

 

        IF(Ins110(Iw,Iv).gt.99) THEN 

        Ins110(Iw,Iv)=99 

        END IF 

        Ins110(Iw,Iv) = 99 - Ins110(Iw,Iv)  

        Irow1(Iv) = Ins110(Iw,Iv) 

 

        IF(Ins111(Iw,Iv).gt.99) THEN 

        Ins111(Iw,Iv)=99 

        END IF 

        Ins111(Iw,Iv) = 99 - Ins111(Iw,Iv)  

        Irow2(Iv) = Ins111(Iw,Iv) 
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60    CONTINUE 

        Write(60,120)Irow0 

        Write(61,120)Irow1 

        Write(62,120)Irow2 

65    CONTINUE 

 

120  Format(1x,500I3) 

123  Format(1x,3F12.6) 

        END 

C    Subroutine FREQ 

C The wave vector components in the x, y and z Cartesian directions, the elastic constants, 

density of the material and the lattice parameter are input from the main program. This 

subroutine outputs the group velocity components Velx0, Vely0 and Velz0 and the phonon 

angular frequencies for the ST, FT and L modes, w(j). 

      SUBROUTINE  FREQ(x,y,z,c11,c12,c44,f1,f2,f3,f4,f5,f6,d1,p,Velx0,Vely0,Velz0,w) 

 

C    Defining variables 

       Implicit Real*8 (a-h,o-z) 

       Real*8 w(3),Velx0(3),Vely0(3), Velz0(3) 

       Complex*16 roots(3),a(4),xi 

 

C    Defining numbers used frequently in the program in double precision 

 

       t2=2.00d0 

       t3=3.00d0 

       t4=4.00d0 

       t6=6.00d0 

       t12=12.00d0 
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       t24=24.00d0 

 

C    Defining powers of variables used frequently  

       x2 = x**2 

       y2 = y**2 

       z2 = z**2 

       x3 = x**3 

       y3 = y**3 

       z3 = z**3                        

       x4 = x**4 

       y4 = y**4 

       z4 = z**4 

 

C  Calculating the components of the dynamical matrix for each phonon wave vector, see section 

3.1.  

 

       Q =  c11*x2 + c44*(y2+z2) + f1*x4 + f2*(y4 + z4)  

     1      + t6*f3*y2*z2 + t6*f4*x2*(y2 + z2) 

       R =  c11*y2 + c44*(x2+z2) + f1*y4 + f2*(x4 + z4) 

     1      + t6*f3*x2*z2 + t6*f4*y2*(x2 + z2) 

       S =  c11*z2 + c44*(x2+y2) + f1*z4 + f2*(x4 + y4)  

     1      + t6*f3*x2*y2 + t6*f4*z2*(x2 + y2) 

 

       T = (c12+c44)*x*y+ t4*f5*(x*y3 + x3*y) + t12*f6*x*y*z2 

       U = (c12+c44)*x*z+ t4*f5*(x*z3 + x3*z) + t12*f6*x*z*y2 

       V = (c12+c44)*y*z+ t4*f5*(y*z3 + y3*z) + t12*f6*y*z*x2 

       Tp=t3*d1*z*(x2 - y2) 

       Up=t3*d1*y*(z2 - x2) 
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       Vp=t3*d1*x*(y2 - z2)            

C    Calculating the four coefficients of the cubic equation in 2λ ρω= , see chapter 3,  equation (      

3.12). 

 

       b = -1.0d0 

       c =  Q + R + S 

       d = T*T + Tp*Tp + U*U + Up*Up + V*V + Vp*Vp - Q*R - R*S - S*Q 

           

       e =Q*R*S-T*T*S-Tp*Tp*S-U*U*R-Up*Up*R-V*V*Q-Vp*Vp*Q 

     1     + t2*T*U*V - t2*T*Up*Vp - t2*Tp*U*Vp - t2*Tp*Up*V 

 

C   The four coefficients of the cubic equation are put into an array a(4) 

 

       a(1) = e 

       a(2) = d 

       a(3) = c 

       a(4) = b 

        

C    The coefficients of the cubic equation are input into a subroutine ZROOTS together with the 

number of required roots, 3.  A detailed explanation of this root finding subroutine is found in 

the book Numerical Recipes in FORTRAN (Press et al, 1992). The output of this routine is are 

the roots of the polynomial which in this case are the angular frequencies of each on of the ST, 

FT and L modes, w(1), w(2) and w(3). The output frequencies are complex numbers so we take 

the real part only.                        

       CALL ZROOTS(a,3,roots,TRUE) 

   

       w(1) = dsqrt(dreal(roots(1))/p) 

       w(2) = dsqrt(dreal(roots(2))/p) 

       w(3) = dsqrt(dreal(roots(3))/p) 
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C   In order to calculate the group velocity vectors, the gradient of the cubic equation (3.12) was 

calculated in the way shown in equation (3.44). In this part of the program, we have the partial 

derivatives of the components of the dynamical matrix (3.11). For example, Qx refers to the 

partial derivative of Q with respect to wave vector component in the x direction. 

    

       DO  38 j=1,3 

  

       Qx = t2*c11*x + t4*f1*x3 + t12*f4*x*(y2 + z2) 

       Qy = t2*c44*y + t4*f2*y3 + t12*f3*y*z2 + t12*f4*x2*y  

       Qz = t2*c44*z + t4*f2*z3 + t12*f3*y2*z + t12*f4*x2*z 

          

       Rx = t2*c44*x + t4*f2*x3 + t12*f3*x*z2 + t12*f4*y2*x 

       Ry = t2*c11*y + t4*f1*y3 + t12*f4*y*(x2 + z2) 

       Rz = t2*c44*z + t4*f2*z3 + t12*f3*x2*z + t12*f4*y2*z 

  

       Sx = t2*c44*x + t4*f2*x3 + t12*f3*x*y2 + t12*f4*z2*x  

       Sy = t2*c44*y + t4*f2*y3 + t12*f3*x2*y + t12*f4*z2*y 

       Sz = t2*c11*z + t4*f1*z3 + t12*f4*z*(x2 + y2) 

                                   

       Tx = (c12 + c44)*y + t4*f5*(y3 + t3*x2*y) + t12*f6*y*z2 

       Ty = (c12 + c44)*x + t4*f5*(t3*x*y2 + x3) + t12*f6*x*z2 

       Tz = t24*f6*x*y*z 

         

       Tpx =  t6*d1*z*x 

       Tpy = -t6*d1*z*y 

       Tpz =  t3*d1*(x2 - y2) 
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       Ux = (c12 + c44)*z + t4*f5*(z3 + t3*x2*z) + t12*f6*z*y2 

       Uy = t24*f6*x*z*y 

       Uz = (c12 + c44)*x + t4*f5*(t3*x*z2 + x3) + t12*f6*x*y2 

 

       Upx = -t6*d1*y*x 

       Upy =  t3*d1*(z2 - x2) 

       Upz =  t6*d1*y*z 

                                               

       Vx = t24*f6*y*z*x 

       Vy = (c12 + c44)*z + t4*f5*(z3 + t3*y2*z) + t12*f6*z*x2 

       Vz = (c12 + c44)*y + t4*f5*(t3*y*z2 + y3) + t12*f6*y*x2 

 

       Vpx =  t3*d1*(y2 - z2) 

       Vpy =  t6*d1*x*y 

       Vpz = -t6*d1*x*z 

                                                            

       Cx = Qx + Rx + Sx 

       Cy = Qy + Ry + Sy 

       Cz = Qz + Rz + Sz 

 

C   The partial derivatives of the coefficients of the cubic equation are now calculated. Again dx 

stands for the derivative of d with respect to the component of the wave vector in the x direction.  

 

      dx = t2*T*Tx+ t2*Tp*Tpx+ t2*U*Ux+ t2*Up*Upx+ t2*V*Vx+ t2*Vp*Vpx 

     1    -Q*Rx-Qx*R-R*Sx-Rx*S-S*Qx-Sx*Q 

 

      dy= t2*T*Ty+ t2*Tp*Tpy+ t2*U*Uy+ t2*Up*Upy+ t2*V*Vy+ t2*Vp*Vpy 

     1    -Q*Ry-Qy*R-R*Sy-Ry*S-S*Qy- Sy*Q 
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      dz= t2*T*Tz+ t2*Tp*Tpz+ t2*U*Uz+ t2*Up*Upz+ t2*V*Vz+ t2*Vp*Vpz 

     1    -Q*Rz-Qz*R-R*Sz-Rz*S-S*Qz-Sz*Q 

 

      ex=Q*R*Sx+Q*Rx*S+Qx*R*S-t2*T*Tx*S-T*T*Sx-t2*Tp*Tpx*S 

     1    -Tp*Tp*Sx-t2*U*Ux*R-U*U*Rx-t2*Up*Upx*R-Up*Up*Rx  

     2    -t2*V*Vx*Q-V*V*Qx-t2*Vp*Vpx*Q-Vp*Vp*Qx+t2*T*U*Vx 

     3    +t2*T*Ux*V+t2*Tx*U*V-t2*T*Up*Vpx-t2*T*Upx*Vp-t2*Tx*Up*Vp  

     4    - t2*Tp*U*Vpx-t2*Tp*Ux*Vp-t2*Tpx*U*Vp-t2*Tp*Up*Vx-t2*Tp*Upx*V  

     5    - t2*Tpx*Up*V  

  

      ey=Q*R*Sy+Q*Ry*S+Qy*R*S-t2*T*Ty*S-T*T*Sy-t2*Tp*Tpy*S 

     1    -Tp*Tp*Sy-t2*U*Uy*R-U*U*Ry-t2*Up*Upy*R-Up*Up*Ry  

     2    -t2*V*Vy*Q-V*V*Qy-t2*Vp*Vpy*Q-Vp*Vp*Qy+t2*T*U*Vy 

     3    +t2*T*Uy*V+t2*Ty*U*V-t2*T*Up*Vpy-t2*T*Upy*Vp-t2*Ty*Up*Vp  

     4    -t2*Tp*U*Vpy-t2*Tp*Uy*Vp-t2*Tpy*U*Vp-t2*Tp*Up*Vy-t2*Tp*Upy*V  

     5    -t2*Tpy*Up*V   

 

      ez=Q*R*Sz+Q*Rz*S+Qz*R*S-t2*T*Tz*S-T*T*Sz-t2*Tp*Tpz*S 

     1    -Tp*Tp*Sz-t2*U*Uz*R-U*U*Rz-t2*Up*Upz*R-Up*Up*Rz  

     2    -t2*V*Vz*Q-V*V*Qz-t2*Vp*Vpz*Q-Vp*Vp*Qz+t2*T*U*Vz 

     3    +t2*T*Uz*V+t2*Tz*U*V-t2*T*Up*Vpz-t2*T*Upz*Vp-t2*Tz*Up*Vp  

     4    -t2*Tp*U*Vpz-t2*Tp*Uz*Vp-t2*Tpz*U*Vp-t2*Tp*Up*Vz-t2*Tp*Upz*V  

     5    -t2*Tpz*Up*V      

 

     

 C    The angular frequencies and group velocity vectors are now calculated. 
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        fr = p*w(j)*w(j) 

        wk = t2*p*w(j) * (t3*fr*fr-(t2*c*fr)-d) 

        Velx0(j) = (ex+fr*dx+fr*fr*Cx)/ wk 

        Vely0(j) = (ey+fr*dy+fr*fr*Cy)/ wk 

        Velz0(j) = (ez+fr*dz+fr*fr*Cz)/ wk 

38    CONTINUE 

        RETURN 

        END 
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