
A tree-structured index algorithm for Expressed
Sequence Tags clustering

Benjamin Kumwenda

0408046X

Supervisor: Professor Scott Hazelhurst

April 21, 2008

Declaration

I declare that this dissertation is my own, unaided work. It is being submitted for the degree of
Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submit-
ted before for any degree or examination in any other university.

Benjamin Kumwenda
21 April 2008

i

Abstract

Expressed sequence tags (ESTs) are complementary deoxyribonucleic acid (cDNA) fragments,
which are reverse transcribed from mature ribonucleic acid (mRNA), a direct gene transcript.
ESTs are a readily rich information source of complete expressed gene sequences. They reveal
the type and number of genes being expressed in an organism. Joining ESTs into complete gene
sequences is computationally expensive because they are numerous, erroneous, redundant and
mixed up. ESTs that originate from the same gene are grouped together. This enables efficient
consensus sequences generation, which reveals underlying gene sequences and their possible
alternative splicings. EST clustering enables efficient discovery of expressed genes based on
which several fields rely such as: disease diagnostics, drug discovery, genetic engineering, alter-
native splicing and many others. Most clustering algorithms developed so far are quadratic and
their running time is prohibitively high. A tree-structured index algorithm has been developed
to efficiently cluster ESTs with respect to running time and quality of generated clusters. The
algorithm clusters ESTs in a pseudometric space by recursively partitioning a data set of EST
windows into two disjointed sets. Performance of the algorithm was tested with respect to run-
ning time and quality of generated clusters. Further experiments were performed to investigate
the effectiveness of the triangle inequality, which was implemented to reduce distance computa-
tions during clustering. Experimental results show that the algorithm has a running time closer
to linear with a 100% specificity, but it fluctuates in sensitivity. Implementation of the triangle
inequality did not significantly improve the performance of the algorithm.

ii

Dedication

To my lovely wife, Grace.

iii

Acknowledgements

I am so grateful to my supervisor, Professor Scott Hazelhurst for all the time he has spent direct-
ing and guiding me throughout this research. I am thankful to my family for always supporting
and encouraging me in my studies. I would like to thank the University of Malawi, College of
Medicine and the National Bioinformatics Networks for sponsoring this work. The Wits Bioin-
formatics created such a great environment for me to work smoothly on this research for which
I am grateful.

iv

Contents

Declaration i

Abstract ii

Dedication iii

Acknowledgements iv

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Introduction . 1
1.2 Research Problem . 3
1.3 A Tree-Structured Index Algorithm . 4
1.4 Research Questions . 6
1.5 Results . 7
1.6 Importance of the Research . 7
1.7 Summary . 8

2 Background and Related Research 10
2.1 Introduction . 10
2.2 Biological Background . 11

2.2.1 DNA . 12
2.2.2 DNA Transcription . 13
2.2.3 Mature mRNA Translation . 15
2.2.4 DNA Sequencing . 15

v

2.2.5 Generating cDNA and Expressed Sequence Tags 17
2.3 EST Clustering . 17

2.3.1 What is EST Clustering? . 18
2.3.2 Processing ESTs . 18

2.4 Distance Functions . 19
2.4.1 Edit Distance . 20
2.4.2 The d2 Distance Function . 23
2.4.3 Threshold Distance Value . 24

2.5 Clustering in Metric Space . 25
2.6 Tree-Structured Indices . 28

2.6.1 Pivot Selection . 28
2.6.2 Sequence Search Tree . 30
2.6.3 Burkhard-Keller Trees (BKT) . 32

2.7 Related Work . 34
2.7.1 Clustering Techniques . 34
2.7.2 The d2 cluster Algorithm . 35
2.7.3 The wcd Algorithm . 36
2.7.4 CLU . 37
2.7.5 UIcluster . 38
2.7.6 Suffix Array Algorithm . 39
2.7.7 UniGene . 41
2.7.8 Parallel EST Clustering . 41

2.8 Summary . 42

3 A Tree-Structured Index Algorithm 45
3.1 Introduction . 45
3.2 Motivation . 46
3.3 Overview of the Algorithm . 47

3.3.1 The Clustering Process . 49
3.3.2 Distance Function . 52
3.3.3 Pivot Selection . 53
3.3.4 The Union-Find Data Structure . 54

3.4 Research Questions . 54
3.5 Answering the Research Questions . 56

3.5.1 Parameters of the Algorithm . 56

vi

3.5.2 The First Research Question . 56
3.5.3 The Second Research Question . 57
3.5.4 Memory Utilisation . 58

3.6 Summary . 58

4 Experiments 60
4.1 Introduction . 60
4.2 The Hardware . 60
4.3 Data Sets . 61
4.4 Experimental Setups . 61

4.4.1 Quality Performance of the Algorithm 61
4.4.2 Effects of Data Sets Used . 63
4.4.3 Triangle Inequality . 63

4.5 Preliminary Tests on Parameters Affecting Performance of the Algorithm 65
4.6 Summary . 66

5 Results 67
5.1 Introduction . 67

5.1.1 Distance Computations . 68
5.2 Computational Complexity . 68
5.3 Parameters Affecting the Performance of the Algorithm 70

5.3.1 The Size of a Window . 71
5.3.2 The Overlap Parameter . 73
5.3.3 The Threshold Value . 73
5.3.4 Pivot Selection . 74
5.3.5 Effects of Data Set Used . 78

5.4 Performance of the algorithm . 79
5.4.1 Specificity . 79
5.4.2 Sensitivity . 80
5.4.3 The Running Time . 80
5.4.4 Memory Utilisation of the Algorithm 81

5.5 The Triangle Inequality . 81
5.6 Summary . 82

vii

6 Discussion 88
6.1 Introduction . 88
6.2 Contribution of the Research . 88
6.3 Answering the Research Questions . 89

6.3.1 The First Research Question . 89
6.3.2 The Second Research Question . 90

6.4 The Fundamental Limitation of the Algorithm 90
6.5 Possible Solutions to the Limitation . 92
6.6 Summary . 95

7 Conclusion 96
7.1 Introduction . 96
7.2 Research Problem . 96
7.3 Prior Work . 97
7.4 The Algorithm . 98
7.5 Results and Limitations . 99
7.6 Research Contribution and Further Work . 100

References 104

Appendices 104

A Graph Line Fittings 105

B Running Time Results 106

C Running Time Data 108

viii

List of Tables

4.1 Data Sets Used . 62

5.1 Algorithm performance on a window of size 200 72
5.2 Algorithm performance on a window of size 100 72
5.3 Algorithm performance on a window of size 50 72
5.4 Effect of the threshold value on performance of the algorithm 74
5.5 Effect of pivot distance on the performance of the algorithm 77
5.6 Performance of the algorithm on the public cotton data set 78
5.7 Performance of the algorithm on the Drosophila melanogaster data set 78
5.8 The triangle inequality success proportions . 82

A.1 Regression standard errors . 105

B.1 Running times mean and standard deviation results 106
B.2 Running times mean and standard deviation results 107

ix

List of Figures

1.1 Diagrammatic description of the algorithm . 5

2.1 DNA at different levels of detail (figure from [National Health Museum 2006]) . 13
2.2 RNA at different levels of detail (figure from [National Health Museum 2006]) . 14
2.3 DNA transcription, splicing and translation process 16
2.4 An EST sequence in Fasta format . 20
2.5 An example of a Burkhard-Keller Tree . 33

3.1 Construction of a tree structure . 48
3.2 Construction of a tree-structured index . 50
3.3 Representation of windows in a partition . 51
3.4 Partitioning process . 53

4.1 Triangle inequality implementation . 64

5.1 Comparing running time and sensitivity of pivot selection techniques one and four 84
5.2 Comparing running time and sensitivity of pivot selection techniques one and two 85
5.3 An O(p log p) running time of the algorithm . 86
5.4 Memory utilisation of the algorithm . 86
5.5 Comparing running time and sensitivity of the triangle inequality implementation 87

6.1 First scenario of the limitation of the algorithm 90
6.2 Second scenario of the limitation of the algorithm 92
6.3 First possible solution to the limitation . 93
6.4 Second possible solution to the limitation . 94

x

Chapter 1

Introduction

1.1 Introduction

Livingthings are classified into two main groups. These are eukaryotes (multicellular) and
prokaryotes (unicellular) [Hunter 1991]. Viruses are livingthings but they are not part of the
two groups and they form their own group. Eukaryotes are further divided into five kingdoms.
Plants and animals are two examples of the five kingdoms. Bacteria are an example of prokary-
otes. This research focuses on eukaryotes.

Organs in multicellular organisms have different structures and functions. These organs col-
lectively work together in systems such as digestive, skeletal, circulatory and reproductive and
many others to achieve specific functions. The functions include: reproduction, locomotion, pro-
tection, sensation, digestion and excretion. Cells form building blocks of these organs and they
get specialised for such functions in their respective organs. In unicellular organisms, these tasks
are handled by a single cell. Genes found in deoxyribonucleic acid (DNA) regulate the biolog-
ical development, functionality and structure of cells, consequently the organs and systems in
multicellular organisms.

DNA is a nucleic acid with four molecules joined together to form double strands. They
encode instructions that specify biological development, functionality and structure of all cellular
forms of life. Genes are locations in DNA that encode these specific instructions. They determine
types of proteins that are produced in the body. Proteins carry out these specific instructions in
various ways. Some of the ways in which proteins carry out these instructions are: providing
structural support, providing mechanisms for acquiring and transferring energy and acting as
catalysts in chemical reactions [Yona 1999].

A gene is active when it gets transcribed into mRNA, which gets translated to proteins. And

1

the resulting protein carries out the functions encoded by the gene. Different genes are active
in different parts of the body at different times and rates. Genes that are active in the eye are
different from those that are active in the liver. Hence, functionality of cells in the eye is different
from cells in the liver. Active genes are generally referred to as expressed genes. Levels of gene
expression vary in different parts of the body. Problems in gene expression such as overexpres-
sion, underexpression and expression of a damaged gene may result in diseases. Identifying and
understanding expressed genes is very important for reasons such as disease diagnostics, drug
discovery, genetic engineering, phylogenetic studies, single nucleotide polymorphism studies
and many others. The need to identify and understand active genes has led to the production of
expressed sequence tags (ESTs) [Davison 2001]. The fact that ESTs are part of expressed genes
makes them so important and useful in identifying active genes.

The EST production process begins with DNA in the cell nucleus of multicellular organisms
being transcribed to mRNA. mRNA is either exported out of the cell nucleus to cytoplasm where
it is transcribed to proteins or, under special circumstances, it is naturally reverse transcribed
to cDNA, which may get reinserted into the original DNA strand [Marques et al. 2005]. For
purposes of gene sequencing, mRNA is artificially reverse transcribed into cDNA because unlike
mRNA, cDNA is double stranded and stable for experimental purposes. However, there are prob-
lems in the reverse transcription process. A full length cDNA cannot be reverse transcribed at
once due to limited capability of sequencing techniques available at present. Available techniques
sequence shorter pieces of cDNA at a time. The transcription process begins and ends at random
positions in mRNA. This causes overlapping and redundancy among the pieces. Different types
of mRNA transcribed from different genes are randomly selected from the cell cytoplasm. This
mixes up the different types of mRNA being reverse transcribed. The process gets even more
complicated with alternative splicing, where the same gene transcribes two or more different
mRNA. In addition to all these, different types of errors occur during the reverse transcription
process, which causes the mixed up and redundant pieces of cDNA to be erroneous. To achieve
meaningful and accurate results, ESTs are transcribed in large numbers, which contribute to the
complexity of the research problem.

ESTs are joined together to form consensus sequences that reveal complete expressed gene
sequences. Joining mixed up, redundant and erroneous ESTs to form complete expressed gene
sequences is computationally expensive. EST clustering is a technique that reduces this compu-
tational complexity by grouping ESTs originating from the same expressed gene into one cluster.
Grouped ESTs are efficiently joined to form consensus sequences to reveal the underlying com-
plete expressed gene sequences. Different ways of generating consensus sequences from ESTs

2

in the same cluster represent alternative splicings of the same expressed gene. This research fo-
cuses on the clustering problem and does not proceed to deal with consensus generation to reveal
underlying expressed genes.

The EST clustering problem is well known and has attracted research attention from various
fields and disciplines such as Bioinformatics, Molecular Biology, Statistics and Computer Sci-
ence. Several algorithms have been developed to cluster ESTs. Most of the algorithms developed
so far, are computationally expensive because of the way they perform clustering. Since EST are
erroneous and redundant, they are clustered in huge volumes in order to achieve meaningful clus-
ters. However, this causes the clustering problem to be even more complex. This has opened up
a research area that aims at finding efficient algorithms to cluster ESTs. This research is one of
such efforts and it has contributed to this field by developing an efficient EST clustering algo-
rithm based on a tree-structured index. The algorithm is introduced in section 1.3 and is detailed
in chapter three.

1.2 Research Problem

A large number of ESTs have been sequenced and are currently found in various public databases
such as NCBI’s dbEST, UniGene and TIGR. Joining ESTs into their original complete gene
sequences is a challenge because they are numerous, redundant, erroneous and mixed up as a
result of the reverse transcription process through which they are generated. ESTs originating
from the same gene overlap. This is a useful property in determining levels of similarity in order
to place them into one cluster [Hazelhurst 2003]. Clustering helps to reduce the computational
cost when joining overlapping ESTs into consensus sequences to reveal underlying genes.

Most prior algorithms cluster ESTs by performing pairwise comparison between pairs of
sequences to determine their levels of similarity. Sequences are divided into overlapping win-
dows, which are compared against each other using distance functions that measure their level
of similarity. A threshold value is placed on the level of similarity as a cut-off point at which
two windows and eventually sequences are considered similar. Such approaches take a quadratic
running time of O(p2) to complete the clustering process, where p = mn is the total number of
windows in a data set of n sequences and an average of m overlapping windows per sequence.

Distance is computed and compared for every window to all mn windows in a data set.
Such distance computation and comparison among sequence windows in a huge data set is pro-
hibitively expensive. This research has designed and implemented an EST clustering algorithm,
which successfully clusters ESTs with a reduced number of distance computations. The goal of

3

the research was to at least achieve a running time less than the quadratic running time.

1.3 A Tree-Structured Index Algorithm

This section briefly describes the tree-structured index algorithm developed in this research. Fig-
ure 1.1 aids in the description of the algorithm. The rectangles in the figure represent different
stages in the clustering process and numbers in the rectangles are used to show the order of
events. The algorithm starts by storing sequences into a data structure in linear time. The se-
quences are partitioned into overlapping windows, which are distributed in a metric space to
form clusters as shown in the rectangle labelled step 1. They are distributed with respect to their
level of similarity.

Two far apart windows are chosen as pivots and the rest of the windows are compared to them.
Windows closer to pivot one are placed in one partition and those that are closer to pivot two are
also placed in another partition. This divides the space into two as shown by the red circles
thereby creating partitions p1 and p2 in step 2. A rectangle on the right side of the diagram
shows the tree construction process on the left side of the diagram. The process recursively
continues and divides partition p2 into two more partitions p3 and p4 as shown by blue circles in
step 3. Partition p1 is also divided into two partitions, p5 and p6 in step 4. The process terminates
when a threshold point is reached or there are no more windows to partition. A threshold point
defines a cut-off at which two windows are considered similar.

This process eventually constructs a tree structure as shown by rectangles on the right side
of the figure. At step 2, the first two partitions, p1 and p2 are created. Partitions p3 and p4 are
created from p2 in step 3. A similar process continues on p1 as shown in step 4. Colours of the
created partitions match space partitioning shown by rectangles on the left side of the figure. The
algorithm constructs a tree-structured index in a pseudometric space by recursively selecting two
far apart windows as pivots and partitioning the remaining windows into two disjointed groups.
Windows are assigned to a group of a pivot to which they are relatively closer. When construction
of the tree-structured index is completed, windows from the same sequence are distributed among
several leaves (final partitions) of the tree. The algorithm then merges sequences with windows
in the same leaf, thereby generating clusters.

Merging is efficiently achieved by the union-find data structure, which has an amortised
running time of O(log∗ p). An advantage of using this data structure is that it does not increase
the overall complexity of the algorithm. The algorithm does 2p work per recursive call, where 2

is the number of pivots and p the total number of windows. When the resulting tree is balanced,

4

p0

p1p2

p0

p1p2

p0

p1
p2

p5p6p3p4

p0

p3p4

p1
p2

all windows belong to one partition

distribution of windows in a pseudometric space
step 1

step 3

step 4

step 2

pivots

a tree structure representation of step 2

of the partitioning of the pseudometric space

a tree structure representation of step 3

a tree structure representation of step 4

p3

p4

p1

p3

p4

p5

p6

Figure 1.1: Diagrammatic description of the algorithm

5

at most, it has a depth of log p and with O(p) work per level, it yields an overall complexity of
O(p log p). Experimental results have shown that the algorithm runs time closer to linear. The
mathematical analysis provides an upperbound on the running time of the algorithm.

The algorithm has been developed to improve memory usage in two ways. Firstly, it stores
sequences in one data structure. The algorithm only stores information that uniquely identifies
windows in their respective sequences. A window is identified by a sequence index position in
the input data structure and its starting position in a sequence. Secondly, the algorithm stores
only resulting leaves of the tree at each level and it does not create internal nodes. Internal nodes
are useful for purposes of searching but not clustering, hence storing them is a wastage of space.

Two main factors that affect the running time of the algorithm are pivot selection and the
distance function used to determine similarity among sequence windows. A distance function
with quadratic complexity forms a running time bottleneck and heavily slows down the algo-
rithm. The manners in which pivots are chosen in the algorithm have got a bigger effect on the
running time of the algorithm. Choosing pivots that are at the far ends of a partion is expensive
and comprises the running time of the algorithm.

1.4 Research Questions

The algorithm presented in the previous section is based on ideas and the work of Giladi et al.

[2002] and Chavez et al. [2001]. Giladi et al. [2002] developed successfully a Sequence Search
Tree algorithm for searching in metric space. Chavez et al. [2001] explored ideas and techniques
that could be applied in metric space for searching. Based on this work, it was conceived in
this research that the same ideas could be applied for clustering. Hence, the development of the
tree-structured index algorithm to cluster ESTs in metric space.

Two research questions arise from the implementation of the tree-structured index algorithm
described in section 1.3. The first question examines whether the clustering process is achievable
in the expected O(p log p) running time. The second one questions whether the tree-structured
index algorithm successfully clusters EST sequences. Successful clustering in this case implies
that better quality clusters in terms of sensitivity and specificity are generated. The research has
further investigated the extent to which the triangle inequality can be applied to reduce distance
computations and evaluations during clustering in order to improve running time.

Answering the first question involves finding the overall complexity of the algorithm from
the combined complexity of all modules of the algorithm. Running time of the algorithm has
been compared to that of a quadratic algorithm. Using average running times, the two algorithms

6

have been compared and contrasted. The second question has been answered by comparing
quality of clusters generated by this algorithm to those generated by a quadratic algorithm, wcd

with respect to sensitivity and specificity [Zhu et al. 2003]. Parameters that affect performance
of the algorithm with respect to running time and quality of clusters have been experimentally
deduced. These parameters include threshold value, overlap parameter, the minimum distance
between pivots, the nature of data set being clustered and pivot selection techniques.

1.5 Results

Experimental results have shown that the running time of the algorithm is closer to linear than to
the quadratic or logarithmic running times. Such a running time is a great achievement in EST
clustering because huge data sets can be efficiently clustered in a shorter time. Mathematical
analysis provides an upper bound on the running time and has shown that the algorithm has an
O(p log p) complexity. The algorithm achieves 100% specificity but fluctuates in its sensitivity.
This has been due to a major limitation arising from the technique employed by the algorithm.
Depending on data sets and sensitivity required, the algorithm can be used for direct clustering of
data sets or preclustering. Implementation of the triangle inequality increases running time of the
algorithm because in experiments it held only about 2% of all distance computations performed
by the algorithm.

1.6 Importance of the Research

Clustering separates mixed up, redundant and erroneous EST sequences derived from randomly
selected mRNA into different groups representing unique expressed genes. The clustering pro-
cess speeds up joining of ESTs into consensus sequences, which reveals complete expressed
gene sequences. Joining EST sequences from the same cluster in different ways reveal alterna-
tive splicing of the same gene. Hence, EST clustering is useful for expressed gene identification,
expression studies, SNP identification, micro-arrays design, genetic engineering, disease diag-
nostics and drug design [Kalyanaraman et al. 2003]. Gene identification helps in understanding
gene sequences and corresponding functions of proteins produced. Highly expressed genes yield
more mRNA from which ESTs are transcribed. Clustering such ESTs result into many clus-
ters. Clustering is, therefore, useful in estimating gene expression levels [Burke et al. 1999]. In
medicine this information helps in diagnosing diseases and prescribing drugs. Gene expression
varies in different parts of the body. EST clustering assists in identifying genes that are being ex-

7

pressed in different parts of the body [Davison 2001]. Clustering helps in designing micro-array
chips that are used in detecting gene expression levels [Kalyanaraman et al. 2003].

Through the developed algorithm, this research has contributed to the efficiency of EST clus-
tering. Given the biological reasons above, the importance of efficient EST clustering cannot
be underestimated. ESTs are transcribed in large numbers. There are about 8 million and 4.8
million ESTs for human and mouse respectively in the NCBI dbEST database [NCBI]. Hence,
they need to be clustered as efficiently as possible with the available limited resources. Efficient
clustering leads to quick gene identification, speeds up expression studies and SNP identification
among many others. This consequently contributes to the efficiency of disease diagnostics, drug
manufacturing and genetic engineering in agriculture. In general, efficient EST clustering can
speed up several fields that rely on understanding and determining the number, type and locations
of expressed genes. This is because information can be obtained within a quick and reasonable
time and put into the required use.

1.7 Summary

ESTs are cDNA fragments, which are reverse transcribed from mRNA found in the cell cyto-
plasm of cellular organisms. EST sequences are mixed up, numerous, erroneous and redundant.
This is a bigger challenge in efficiently generating EST consensus sequences to reveal underly-
ing gene sequences. Clustering reduces the computational complexity of generating consensus
sequences that represent complete gene sequences. Clustering assists in revealing the number
and types of genes being expressed at a time. Knowledge of number and types of genes is useful
for disease diagnostics, drug design, genetic engineering, gene expression studies, microarray
design and single nucleotide polymorphism studies. Previous approaches are computationally
expensive in clustering ESTs. This research aimed at finding an efficient algorithm for clus-
tering ESTs with respect to running time, space utilisation and quality of generated clusters.
A tree-structured index algorithm has been developed and implemented. Experimental results
have shown that the running time is closer to linear with a 100% specificity but fluctuates in
its sensitivity depending on the data set and parameters used. However, this running time is an
improvement over quadratic running time.

For the purpose of clarity, it is important to highlight some of the terminologies and ex-
pressions that have been used. The tree-structured index algorithm developed in this research is
called the tsi cluster algorithm. It is also referred to as the algorithm or the developed algorithm

unless stated otherwise. Gene sequencing is interchangeably used with DNA sequencing. How-

8

ever, DNA sequencing is much broader than gene sequencing. Assembling ESTs into consensus
sequences generally means joining all sequences in a cluster into one complete representative
sequence. The terms genes and expressed genes are interchangeably used, but this research is
focused on expressed genes, which are genes that are active.

This dissertation is organised in seven chapters. Chapter one has introduced the research
problem, its biological background, importance of the research, the developed algorithm and
consequent research questions.

Chapter two discusses the biological background of the research problem, the EST clustering
problem, prior work in various aspects of the algorithm and prior algorithms. The biological
background explores the role of DNA in living organisms, transcription of DNA, translation
of RNA, reverse transcription of mRNA and the production of ESTs. The chapter defines the
EST clustering problem and it further explores clustering processes and techniques. Various
techniques from prior work that have been employed in the algorithm such as: distance functions,
the metric space and tree-structured indices have been explored in the chapter. Prior clustering
algorithms such as d2 cluster, wcd, CLU and many others have been studied and discussed in the
same chapter.

A description of the developed tree-structured index algorithm is given in chapter three. It
covers the algorithm design, data structures used and functionality. The chapter further discusses
research questions and how they are answered. Chapter four describes experiments that have
been conducted to examine the performance of the algorithm with respect to running time, quality
of generated clusters, space utilisation and the effect of the triangle inequality. Results of this
research are presented in chapter five. Results are presented on running time, memory utilisation,
quality of generated clusters and the effect of the triangle inequality. Chapter six discusses the
major limitation of the algorithm that affects the quality of generated clusters. Major issues
discussed in all the six chapters are summarised in chapter seven.

9

Chapter 2

Background and Related Research

2.1 Introduction

This chapter builds on the biological background of the research problem briefly explored in
the previous chapter. The previous chapter covered the importance, methodology and results of
the research. This research aimed at coming up with an EST clustering algorithm that runs in
O(p log p), where n is the total number of sequences, m the average number of windows per
sequence and p = mn is the total number of windows in a data set. Such a running time is
a great improvement over a quadratic running time of O(p2). The algorithm reduces running
time by building a tree-structured index in a pseudometric space. The tree-structured index is
constructed by recursively selecting two far apart sequence windows as pivots and partitioning
the remaining sequence windows into two groups based on their proximity to either of the pivots.
The recursive process terminates when a defined threshold point is reached or there are no more
sequence windows.

This chapter further discusses the biological background of the research problem. It explores
the research problem and prior work done in various fields applied in the algorithm. Understand-
ing the biological complexity of the research problem will assist in appreciating implementation
of the algorithm.

The biological background is covered in section 2.2 with focus on the role of DNA in living
organisms as a blueprint of all their characteristics and functionality. The DNA transcription and
RNA translation processes are covered in the same section. These processes are discussed to link
the role of DNA to the functionality and structure of organisms. DNA functions are explored
when discussing the production of proteins and their consequent roles and functions in various
parts of the body. The need to understand the types and locations of DNA coding regions is

10

covered under DNA sequencing. This is followed by a discussion on the generation of cDNA
and expressed sequence tags. The section aims at placing the research problem in the biological
context where it is applied.

The research problem is further discussed in section 2.3 where the EST clustering problem,
processing of ESTs to remove errors incurred during the generation process are discussed. Dif-
ferent aspects of the algorithm such as distance functions, threshold distance value, clustering
in metric space, pivot selection and tree-structured indices as applied in prior research are ex-
plored. All these components collectively work together to reduce distance computations and
evaluations in the algorithm in order to improve running time and quality of generated clus-
ters. Distance functions are used to measure the level of similarity among sequence windows.
A threshold value is a cut-off point on the level of similarity among sequence windows. Edit
distance and d2 are the two distance functions explored with the aim of justifying the distance
function that has been finally implemented in the algorithm having examined both their strengths
and weaknesses. The two issues are covered in section 2.4.

Sequence windows are modelled as objects distributed in a metric space. The developed
algorithm is designed with the assumption that similar objects are distributed in metric space
to form clusters. The algorithm finds these clusters by measuring relative distances among the
objects to determine how close they are to each other. This subject is discussed in section 2.5.
The section also covers metric space properties, importance and queries that determine levels
of similarity. Under the same section, pivot selection and its effects on clustering are explored.
Application of tree-structured indices with respect to prior work and clustering techniques are
respectively covered in sections 2.6 and 2.7. Two examples of tree structures are explored with
regard to their implementation and functionality. The tree structures are Sequence Search Tree
(SST) as implemented by Giladi et al. [2002] and Burkhard-Keller Trees (BKT). Prior clustering
algorithms are covered in section 2.7 with the aim of showing how they work, their possible
limitations and relationship to the developed algorithm. A summary of the chapter is made in
section 2.8.

2.2 Biological Background

EST clustering is a biological problem but it has been solved by the tsi cluster algorithm us-
ing computational techniques. It is important, therefore, to place the EST clustering research
problem in its biological context in order to clarify sources of constraints and complexities of
the problem. In order to provide this clarification, this section discusses DNA in general in

11

subsection 2.2.1. Then it explores the relationship among DNA, expressed genes and ESTs by
discussing intermediate processes and their resulting products. The transcription process dis-
cussed in subsection 2.2.2 shows relationships among DNA, expressed genes, RNA, mRNA,
mature mRNA, proteins, ESTs and complementary DNA. The sections begins by provided the
biological overview in living things with focus on the role of DNA.

The diversity and complexity of cell structure, composition and functionality of living organ-
isms in both multicellular and unicellular organisms is determined by their DNA. In multicellular
organisms, DNA is found in the cell nucleus and special structures in the cell known as mito-
chondria. In unicellular organisms such as bacteria, DNA is found in the cell cytoplasm [Hunter
1991]. Special locations in DNA known as genes encode useful information about the physical
appearance, structure and functionality of an organism. Each gene is responsible for the pro-
duction of a specific protein in addition to other products. Proteins are used for specific tasks
in the body. Although the number, locations and functions of genes remain a mystery in most
organisms, it is important and worth uncovering. This is useful for reasons outlined such as dis-
ease diagnostics, drugs design and genetic engineering. In general, if a gene responsible for a
specific disease is known, the disease may be cured by suppressing expression of the responsible
gene, thereby controlling its effects. It should be noted however, that some diseases are genet-
ically caused by other reasons such as: damaged genes, expression failure or over-expression.
The following subsection briefly describes DNA with respect to its structure, composition and
functionality.

2.2.1 DNA

DNA is the root source of ESTs. ESTs are generated from cDNA, which is reverse transcribed
from mature mRNA, a direct expressed gene transcript encoded in a DNA strand. Hence, under-
standing DNA composition, structure and functionality assist in comprehending the complexity
of the EST clustering problem. DNA is found in the cell nucleus and mitochondria of multi-
cellular organisms. In unicellular organisms, it is found in the cell cytoplasm. DNA comprise
four nucleic acid molecules known as nucleotides, which are adenine (A), guanine (G), cytosine
(C) and thymine (T). These nucleotides are joined together to form a sequence [Cohen 2004].
For example; ACCCCGGTAGCGCTTTTAAAA is a sequence. Nucleotides are also known as
bases. A sequence consists of coding and non-coding regions respectively known as exons and
introns. Adjacent nucleotides in a DNA strand are joined by a sugar phosphate backbone.

DNA structure can be described as a twisted ladder where the rungs can be seen as joint
complements of the nucleotides (base pairs). Exclusive bonds are made between adenine and

12

(a) DNA (b) Detailed DNA

Figure 2.1: DNA at different levels of detail (figure from [National Health Museum 2006])

thymine, and between guanine and cytosine. DNA sequences are measured in thousands of
bases (kb). It is double stranded with one strand running in one direction (from 5′ to the 3′ DNA
end) and another complementary strand running in a reverse direction (from the 3′ to 5′ end).
For example, if the first strand running in one direction is AGGTCAC, its complementary strand
would be TCCAGTC. Figures 2.1(a) and 2.1(b) show DNA at two different levels of detail. DNA
is transcribed into RNA, which is then translated into proteins. The process is covered in the
subsection 2.2.2

2.2.2 DNA Transcription

The transcription process is discussed to show the relationship that exists between expressed
genes and mature mRNA, from which cDNA is reverse transcribed. The research problem is to
group these cDNA fragments (ESTs) to reveal expressed gene sequences.

The transcription process begins at the promoter region in DNA and continues through the

13

coding region ending at the terminator region. Transcription factors bind around promoter loca-
tions on the 5

′ side of DNA and RNA polymerase binds to these transcription factors, thereby
opening the DNA double strand. The RNA polymerase continue the process while generating
a single stranded premature mRNA (pre-mRNA) moving from 3

′ DNA side to 5
′ . This is ac-

complished by using basic nucleotide pairing rules. For example, a C nucleotide encounter on a
DNA strand results in a G insert on a pre-mRNA strand and an A encounter results in a T insert.
Pre-mRNA is single stranded and is composed of exons and introns. Introns are spliced out from
pre-mRNA to form mature RNA [Kalyanaraman et al. 2003]. This process takes place in the cell
nucleus from which mRNA is transported outside the nucleus into cytoplasm.

When DNA is transcribed into mRNA, thymine (T) is replaced by uracil (U). For exam-
ple, AGGTCAC transcribes into UCCAGUG. Non-overlapping triplets of these nucleotides form
codons, which correspond to a particular amino acid. Figures 2.2(a) and 2.2(b) show the struc-
ture and composition of RNA. The next step is to translate mature mRNA in the cell cytoplasm
into proteins and the process is discussed in subsection 2.2.3.

(a) RNA (b) Detailed RNA

Figure 2.2: RNA at different levels of detail (figure from [National Health Museum 2006])

14

2.2.3 Mature mRNA Translation

Mature mRNA either is translated into proteins or reverse transcribed into complementary DNA.
The translation process results in proteins through which genes carry out different functions they
encode. This section focuses on the translation process. Both the process and the resulting
protein structures are so complex such that it is easier to study and understand genes at an earlier
stage of cDNA than at the protein level.

Mature mRNA is transferred outside the cell nucleus into the cell cytoplasm where proteins
are produced in cell structures known as ribosomes. Mature mRNA codons are mapped into cor-
responding amino acids by transfer RNA (tRNA) forming peptide bonds. Translation of Mature
mRNA to form proteins is achieved through peptide bonding of mature mRNA and amino acids
using tRNA. Proteins are formed from twenty different amino acids and they fold into a three-
dimensional structure as they come out of ribosomes. Their unique three-dimensional structure
determines their specific biological role and the way they interact with chemical compounds.
Chemical groups bind to different locations of a protein through a post-translational modifica-
tion process. Binding of these chemical compounds further affect the behaviour and functions of
proteins [Yona 1999].

Proteins provide structural support, act as catalysts for chemical reactions, regulate genes,
provide mechanisms for acquiring and transferring energy and distinguishes body from what is
foreign in the immune system [Hunter 1991]. Figure 2.3 illustrates processes of DNA transcrip-
tion, exon splicing and mRNA translation. Since DNA is a blueprint for protein production in the
body, it is important to know and understand gene sequences in order to identify proteins that are
produced. Attempts to know nucleotide order in DNA, have led to DNA sequencing discussed
in subsection 2.2.4.

2.2.4 DNA Sequencing

Gene sequences is very important in predicting the type and function of the resulting proteins.
Techniques used in DNA sequencing broadly apply in cDNA sequencing as well which results in
generation of EST. This subsection explores DNA sequencing and problems that are encountered
in the process. Understanding DNA sequencing is important in order to appreciate sources of
errors and redundancy in ESTs, which contributes to the complexity of the research problem.

DNA sequencing refers to the process by which the precise order of nucleotides in a strand
is known. Available techniques are limited to sequence smaller pieces of DNA. To determine a
complete DNA or gene strand, several overlapping pieces of DNA are sequenced. To accomplish

15

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

coding sequence

Transcription

DNA

mRNA

pre−mRNA

Proteins

Translation

Intron Exon Intron Exon Intron Exon Intron

Intron splicing

Protein coding sequence (exons only)

Figure 2.3: DNA transcription, splicing and translation process

this, a long strand of DNA is divided into smaller manageable pieces whose order is known.
These pieces are further divided into much smaller overlapping pieces, which are then replicated.

There are several DNA replication techniques. One of the techniques uses vectors such as
cosmids. A cosmid is a type of bacteriophage, which is a virus that affects bacteria. It is able to
accept DNA base pair inserts. As the cosmid replicates, it duplicates the inserts DNA [Hunter
1991]. This is done to maintain and reproduce several DNA copies in order to have several pieces
to work with. Another technique for replicating DNA is Polymerase Chain Reaction (PCR). In
this technique, primers bind to a DNA sequence and they sequentially generate a DNA transcript,
which is complementary to the original DNA strand.

Gel electrophoresis is a technique used to determine nucleotides order in the transcript. DNA
transcripts resulting from cosmid replication or PCR are placed on a gel. Different sizes of
nucleotides affect the distance that they move under the gel when subjected to an electric charge.
When the gel is scanned, labels of the nucleotide movement and size are identified forming a
DNA sequence [Malde 2005].

It is difficult to directly identify a complete gene sequence from short pieces of DNA because
DNA sequences comprises both exons and introns. However, cDNA, which is mature mRNA
reverse transcript consists of exons only. cDNA, therefore, provides the required complete gene
sequence. Section 2.2.5 explores the reverse transcription process through which cDNA is gen-
erated.

16

2.2.5 Generating cDNA and Expressed Sequence Tags

One important feature of mature mRNA is that it comprises coding regions only (exons). Hence,
it codes for complete expressed gene sequences. Identification of mature mRNA in the cell cy-
toplasm is, therefore, important in determining the number and types of expressed genes. The
problem with sequencing mature mRNA is that it is single stranded, which causes it to be un-
stable for experimental purposes. The problem as reviewed by Hide et al. [1999] is solved
through reverse transcription of mature mRNA to generate cDNA. cDNA is double stranded and
therefore, stable for experimental purposes. Generating a full-length cDNA sequence at once is
time consuming, expensive and technically difficult because of the limited capability of available
techniques. The reverse transcription process starts and ends at random positions in the mature
mRNA strand. This results in overlapping pieces of cDNA. The cDNA is cloned and placed
in libraries from which ESTs are sequenced by single-pass reads. The length of ESTs range
from 300 to 500 base pairs. When the pieces are assembled and joined together into consensus
sequences, they reveal the underlying complete gene sequence.

ESTs are erroneous because they are generated from unedited, single pass reads of selected
cDNA. Some of the errors incurred during the generation process cause compression and base
scaling in the frame sheets. This causes errors in clone orientation, associated clone ID and
missing 3

′ and 5
′ [Ptitsyn 2000]. In spite of these errors, EST data remains a rich and readily

available information source for identifying complete expressed gene sequences. Hence, given
efficient techniques and appropriate tools, ESTs can be efficiently used for identifying expressed
genes. EST clustering is useful for gene prediction, gene discovery and genomic mapping [Hide
et al. 1999; Adams et al. 1991]. When clustered, ESTs provide useful information on particular
gene. The number of clusters generated represents the number and type of genes found from the
given EST data set [Davison 2001]. Clusters are assembled and processed to form consensus
sequences, which represent complete expressed gene sequences and their possible alternative
splices.

2.3 EST Clustering

A detailed biological background of the research problem has been provided in the previous
subsection. The relationship that exists between ESTs and respectively DNA, RNA, mRNA,
mature mRNA, cDNA and proteins has been explored. Biological processes that take place have
been discussed in order to show how they affect ESTs and eventually the EST clustering problem.
Having laid the biological foundation, this section proceeds to define the EST clustering problem.

17

ESTs are partial sequences of cDNA, which are experimentally derived from mature mRNA
in the cell cytoplasm of an organism. Mature mRNA in the cell cytoplasm represents genes
expressed at a particular point in time in an organism. Hence, EST clustering is important not
only because it results in discovery of complete gene sequences but it also reveals genes that are
active at a specific point in time [Malde 2005]. Such information is useful in determining types of
disease causing genes. Knowledge of such genes is used in designing and manufacturing drugs.
ESTs, therefore, encapsulate very useful information that needs to be extracted efficiently by
clustering and generating consensus sequences from which the number of expressed genes, their
type and complete sequences are deduced. EST clustering is also important in understanding
alternative splicing, a process in which a single gene transcribes into two or more mature mRNA.
The different mature mRNA translate into different proteins, which carry out different functions
in the body. By understanding alternative splicing these proteins and their respective functions
are mapped to the responsible expressed gene. ESTs generated from alternatively spliced mature
mRNA are grouped into the same cluster. They are joined together in different ways representing
alternative splicing of the same gene.

2.3.1 What is EST Clustering?

EST clustering is the grouping of ESTs using overlaps that exist among them such that those
that are from the same expressed gene are placed in one distinct cluster [Kalyanaraman et al.

2005]. The main challenge, however, is that ESTs are numerous, erroneous and redundant, which
causes the clustering problem to be more difficult and computationally expensive. The problem
is abstracted as a graph problem where vertices represent EST sequences and edges are distances
among them [Ranchod and Hazelhust 2005]. The EST clustering problem is, therefore, to find
components of a connected graph. Overlaps among sequences are determined by a distance
function that measures the level of similarity. Two sequences overlap if the distance between
them is less or equal to a defined distance threshold.

2.3.2 Processing ESTs

Since ESTs are generated by single-pass reads, they are processed before clustering to reduce
errors. Pre-processing involves screening out lower quality regions, contaminations, vector se-
quences, repeats and lower complexity sequences. This reduces overall noise and improves
efficacy [Carpenter et al. 2002]. It minimises chances of clustering unrelated sequences. Vector
fragments and contaminations remaining in sequences negatively affect clustering results. These

18

are, therefore, removed to improve clustering quality. Contaminations are external sources of
DNA nucleotides that get attached to sequences during cDNA cloning.

A bigger part of multicellular DNA comprise repeats and only a small proportion encodes
for genes [Adams et al. 1991]. Low complexity areas such as Poly A tracks and AT repeats are
masked out because they cause errors during clustering. Masking involves replacing the repeats
with special characters that are ignored during alignment. Softwares such as: RepeatMasker,
VecScreen and Lucy are used in this stage [Malde 2005]. A quality threshold and minimum
length is defined for sequences to be acceptable.

2.4 Distance Functions

Distance functions are used to determine the level of similarity among sequences based on which
sequences are clustered. This section explores the functionality and implementation of the edit
distance and d2 distance functions. The nature of the problem being solved determines the type
of distance to be used. Focus has been placed on the edit distance and d2 distance functions
because they have been implemented in the algorithm. However, d2 has been found to be more
suitable for the algorithm and is implemented in the final version. The discussion begins by
exploring in general the relevance of applying distance functions on ESTs.

ESTs are represented as strings over an alphabet Σ = {A, C,G, T} as shown in Figure 2.4.
Finding the level of similarity among EST sequences is, therefore, a string matching problem.
A string S is an ordered list of characters written contiguously from left to right. For any string
S, S[i . . . j] is a substring of S starting at position i and ending at j, where i < j. S[1 . . . i] is
a prefix ending at i and S[i . . . |S|] is a suffix and |S| is the length of S. The words string and
sequence are synonymously used in this research. The string matching problem is also known as
the pattern matching problem and there are two types. These are exact and approximate string
matching. Exact string matching finds a string pattern within another string or body of text.
Formally, given a pattern string P ∈ Σ∗, with length |P | = m and text string T ∈ Σ∗, with
length |T | = n, where 0 < m ≤ n and Σ∗ is the unordered concatenation of the alphabet Σ. In
exact string matching, character mismatches are not allowed in the string while in approximate
string matching they are allowed. These mismatches could be due to misspellings in real world
errors. In ESTs, they are caused by either errors during EST generation or may be due to real
biological causes such as mutation. The type of errors that are of concern in this research are
those that occur during EST generation and sequencing as covered in section 2.3.2. Since ESTs
are erroneous, approximate string matching is more ideal in finding the level of similarity as

19

opposed to exact string matching [Hazelhurst 2004]. The minimum number of changes made on
two unequal strings to make them similar defines approximate string matching. The number of
changes is known as edit distance and it is discussed in detail in section 2.4.1.

>T27784 g609882 | T27784 CLONE_LIB: Human Endothelial cells.
LEN:337 b.p. FILE gbest3_seq 5-PRIME DEFN:EST16067
Homo sapiens cDNA 5’ end
AAGACCCCCGTCTCTTTAAAATATATATTTTAAATATACTTAAATATATATTT
CTAATATCTTTAAATATATATATATATTTNAAAGACCAATTTATGGGAGANTTGC
ACACAGATGTGAAATGAATGTAATCTAATAGANGCCTAATCAGCCCACCATGTTC
TCCACTGAAAAATCCTCTTTCTTTGGGGTTTTTCTTCTTTCTTTTTGATTTTGCAC
TGGACGGTGACGTCAGCCATGTACAGGATCCACAGGGGTGGTGTCAAATGCTATT
GAAATTNTGTTGAATTGTATACTTTTTCACTTTTTGATAATTAACCATGTAAAAAA
TG

Figure 2.4: An EST sequence in Fasta format

Two strings are compared at a time by pairwise alignment. The strings are placed one above
the other such that for every character there is an opposite unique character or a gap. There
are two types of alignment: global and local alignment. In global alignment, the whole string
is aligned and compared against the other. Local alignment, however, aims at finding regions
or substrings that are approximately similar. The length and number of similar local regions or
substrings found between the two strings determine the similarity score.

Distance functions and threshold values are required in clustering. A distance function de-
termines the level of similarity among sequences. A threshold value defines a distance cut-off
point below which two EST sequences are considered similar. Distance computation is done
on overlapping windows and not on the entire sequence. The aim is to capture regions of local
similarity between two sequences, which indicate that the sequences overlap and are, therefore,
from the same gene.

2.4.1 Edit Distance

Edit distance is the minimum total number of edit operations made on one string to transform it
into another string [Gusfield 1997]. Edit operations performed on a string are deletions, inser-
tions and substitutions. In general, edit operations are made on both strings since an operation
on one string translates into another operation on the second string. For example, an insertion on
one string is considered as a deletion on the other. Edit distance is, therefore, generally defined

20

as the minimum total number of edit operations made on two strings to make them similar. It is a
direct product of global alignment as previously discussed. The two strings are aligned one above
the other with spaces inserted such that every character or space in both strings is opposite with
a character or space in the other string. For example, given two strings S1 and S2, where S1[1...i]

= ACGTTGCTTAAA and S2[1...j] = AGTTTTGACAT. They could be aligned as follows:

A C G T T G C T T - A - A A

A - G T T - - T T G A C A T

The edit distance D to character i in nonempty substring S1[1..i] and character j of nonempty
substring S2[1..j] is denoted D(i, j). Dynamic programming is a widely known technique for
computing edit distance [Gusfield 1997]. It has three main components in its computation, which
are the recurrence relation, the tabular computation and the trace back operation.

Recurrence Relation

The recurrence relation has two base conditions, which apply when either of the strings are
empty.

Base operations

• D(i, 0) = i, when string j is empty

• D(0, j) = j, when string i is empty

The recurrence relation

• D(i, j) = min[D(i− 1, j) + 1, D(i, j − 1) + 1, D(i− 1, j − 1) + t(t, j)],
where t(i, j) has a value of 1 when there is a mismatch and 0 otherwise.

Proof of correctness of this equation is beyond the scope of this discussion. However, the
recurrence equations cover all possible edit operations in the two strings as follows:

• An edit operation can be a deletion in either i or j, which is represented as D(i− 1, j) + 1

and D(i, j−1)+1 respectively. A deletion on one string can be considered as an insertion
in another string. Assuming that the last symbol to be edited (inserted) is S2(j) in order
to transform S2[1..j] into S1[1..i], then symbols before S2(j) must specify the minimum
number of edit operations to transform S1(1...i) to S2(1..j−1). This takes D(i, j−1) edit
operations plus the last one for S2(j), which is D(i, j − 1) + 1.

21

• Assuming that the last symbol to be edited (deleted) is S1(i) in order to transform S2[1..j]

into S1[1..i], then symbols before S1(i) specify the minimum number of edit operations to
transform S2(1...j) to S1(1..i− 1). This takes D(i− 1, j) edit operations plus the last one
for S1(i), which is D(i− 1, j) + 1.

• A match or mismatch is represented by D(i− 1, j − 1) plus a penalty of t(i, j). If there is
a match then character S1(i) will have to be replaced by character S2(j) and the symbols
to the left of i and j will specify the minimum number of edit operations to be done to
transform S1[1..i−1] to S2[1..j−1]. Hence this yields D(i−1, j−1) edit operations plus
one last edit operation, which becomes D(i, j) = D(i− 1, j − 1) + 1.

• When there is a match, S1(i) = S2(j), the cost on the last edit operation is zero. Hence,
a variable t(i, j) is introduced for both the match and mismatch. When there is a match
t(i, j) = 0 and t(i, j) = 1 when there is a mismatch. Hence, the two cases are combined
into one giving D(i, j) = D(i− 1, j − 1) + t(t, j)

Relationship between a pair of strings can be established by using alignment. Strings, which
are closer to each other, yield a smaller number of edit operations as compared to those, which
are far apart. For mathematical precision, costs are associated with the edit operations and the
total number of edit operations defines the distance between a pair of strings.

Tabular Computation and the Trace Back Operation

The recurrence relations and base conditions are easily coded as a recursive program using any
programming language. A procedure is called with m, n as input to give the correct answer.
Although this top down recursive approach is simple to implement, it is highly inefficient for
larger values of n and m because of numerous redundant recursive calls, which are made and
grow exponentially.

Hence, the tabular computation uses the recurrence relation to efficiently compute edit dis-
tance. An n × m matrix is built with the two strings, one running horizontally and the other
vertically. Characters in the horizontal and vertical strings represent rows and columns respec-
tively. By using a bottom-up approach, the matrix is filled with edit values in all position (i, j)

in a most efficient way [Gusfield 1997]. As the matrix is being computed, pointers that link cells
with a minimum number of edit operations are established. The minimal path of edit operations
is established by tracing back from cell (n, m) to cell (0, 0). Computing values in the matrix
takes a time complexity of O(nm) because each cell takes a constant amount of time and there

22

are nm cells in total. The trace back operation takes a time complexity of O(n+m). The overall
complexity of the algorithm in the worst case, therefore, is O(mn).

The discussion on distance functions proceeds in the sections that follow with focus on the
d2 distance function. This will help in comparing and contrasting the two distance functions so
that the distance function that is finally implemented in the algorithm can be justified.

2.4.2 The d2 Distance Function

The d2 is a distance function that determines the level of similarity between two strings by search-
ing for a specified number of similar words over a given window size [Burke et al. 1999]. It is
pronounced and referred to as d2 distance function. It is applied in many clustering algorithms
such as d2 Cluster, CLU algorithms, wcd and many others. The distance is found by computing
the sum of the squares of the differences of word frequencies over a given window. The following
notation is used to formally define the d2 distance function [Hazelhurst 2003].

d2
k =

∑
|w|=k(csx(w)− csy(w))2

Where sx and sy are sequences, w is a word, k is the length of w, csx(w) and csy(w) are the
number of times w appears in sx and sy respectively. The difference in the number of times a
word, w appears in sx and sy is squared. The squared values are summed for all occurring words
and this is the d2 distance value between the two strings. Comparison between two sequences is
done over a window of specified length. The idea is to find existence of highly similar windows
between two sequences. Hence, the d2 distance between two sequences is the minimum score
among all pairs of windows. Generally, a threshold is defined and all sequences below the given
threshold are considered to be in the same cluster.

In previous work, windows of size 100 and words of length 6 have been used and the same
sizes have been used in the developed algorithm. The d2 distance function has been success-
fully applied in d2 cluster and wcd algorithms by Burke et al. [1999] and Hazelhurst [2004]
respectively. The size of the window, the length of the word and threshold value determines the
performance of algorithms. The best performance of such algorithm could be found by incre-
menting the values until the optimal point is reached.

There are two main problems in implementing the d2 distance function in the algorithm. The
distance function unfortunately does not satisfy all metric space properties and it is expensive to
compute because it has a quadratic complexity. However, the square root of d2 obeys all metric
space properties except the strict positiveness property discussed in section 2.5. The square
root of d2, therefore, defines a pseudometric space and it is implemented in the algorithm. The

23

d2 distance function has a quadratic complexity when it searches for a pair of windows with
a minimum score between two sequences being compared. However, computing d2 on a pair
of windows globally takes linear time, which solves the second limitation of using the distance
function.

Edit distance also obeys metric space properties, which makes it more suitable for implemen-
tation in the algorithm. However, it has a quadratic complexity, which creates a bottleneck in the
running time of the algorithm. As a result, it was found reasonable to implement d2 distance
function in the algorithm. A threshold value is placed on distance as a cut-off point on the level
of similarity. This is further explored in the next section.

2.4.3 Threshold Distance Value

A threshold distance value determines a point from which two sequences Sx and Sy are con-
sidered similar to each other [Zimmermann 2003]. The value also defines a bound on the level
and depth of clustering that is achieved. The quality of clusters generated are greatly affected by
the threshold value. Hence, problems arise when a threshold value is not properly defined. The
threshold value requires to be carefully chosen through experimentation to establish an appro-
priate and reasonable value that does not lead to underclustering or overclustering. Prior work
has shown that bigger threshold values lead to overclustering. In this case, the clustering process
stops before fully clustering sequences due to insufficient stringency. A smaller threshold value
leads to underclustering where the clustering process continues after allocating sequences into
their appropriate clusters because of excessive stringency [Ptitsyn and Hide 2005]. Thresholds
are used in similarity functions and clustering algorithms. BLAST uses thresholds in order to de-
termine similarity among sequences [Cameron et al. 2004]. The d2 cluster algorithm developed
by Davison [2001] and the Sequence Search Tree algorithm developed by Giladi et al. [2002]
among other examples, use thresholds in determining cut-off points on the level of similarity
among sequences.

The choice of threshold value depends on the nature of the problem being solved. For exam-
ple in exact string matching, the need for a threshold value is irrelevant because the two strings
being compared have to completely match. The issue of the threshold value arises in approximate
string matching where the level of similarity varies.

The choice of distance functions and their respective thresholds in this research is made with
consideration to their complexity and whether they obey metric space properties. The metric
space, its properties are discussion in the next section.

24

2.5 Clustering in Metric Space

Research work done by Chavez et al. [2001] and Giladi et al. [2002] has shown that it is possible
use the metric space for searching. Searching in metric space has been successfully implemented
and achieved by Giladi et al. [2002] in the Sequence Search Tree algorithm. In his work, Chavez
et al. [2001] proposed ideas that could successfully implemented for searching. This research,
however, implements the metric space for clustering based on ideas from prior work. This sec-
tion discuses metric space properties and how the tsi cluster algorithm applies them in solving
the EST clustering problem. Clustering in metric space has been implemented to reduce the num-
ber of distance computations and evaluations made during clustering and consequently reduce
running time from quadratic to logarithmic running time.

A metric space (X, d) is formally defined as a set of objects X whose similarity is modelled
by a distance function d that satisfies its properties [Chavez et al. 2001]. Distances among ob-
jects are usually expensive to compute and the metric space approach reduces the number of
distance computations and evaluations by constructing a tree-structured index structure. Pivot
selection and compact partitioning are the two techniques used in constructing tree-structured
indices [Chavez et al. 2001]. In the tsi cluster algorithm, the two techniques work by choos-
ing two sequence windows as pivots in a data set and recursively partitioning the remaining
sequence windows into two groups depending on their proximity to either of the selected pivots
until a threshold point is reached or there are no more windows. Partitioning enables pivots to be
compared to sequence windows within their partition only instead of all windows in a data set,
which also reduces distance computations made.

This section formally introduces the metric space, its notations and the four basic properties
as outlined by Chavez et al. [2001] and Bustos et al. [2003]. The universe of valid objects is
denoted X, a finite subset of U ∈ X is known as a database or dictionary from which query
operations are made. The words database and data set are interchangeably used in this research.
The size of the database is denoted n = |U|. The measure of distance between two objects is
denoted d(sx, sy), where sx, sy ∈ U and the following properties apply in metric space.

• positiveness: ∀sx, sy ∈ X, d(sx, sy) ≥ 0.

This property enforces that given two windows x and y, the distance between
them must be strictly positive or equal to zero if the windows are equal, hence
prohibiting any negative values in the distance measure.

• symmetry: ∀sx, sy ∈ X, d(sx, sy) = d(sy, sx).

25

The distance from sx to sy and vice versa is equal.

• reflexive: ∀sx ∈ X, d(sx, sx) = 0.

This property enforces the fact that the distance from a window to itself has to
be zero.

• strict positiveness: ∀sx, sy ∈ X, sx 6= sy ⇒ d(sx, sy) > 0.

This property ensures the fact that for any two given windows, sx and sy, the
distance between them should be strictly greater than zero. When this property
does not hold, the space is known as a pseudometric space. The square root
of d2 distance function does not obey this property and it, therefore, defines a
pseudometric space. The developed algorithm consequently works in a pseudo-
metric space because it implements the d2 distance function.

In general the metric space, (X, d) has to satisfy the triangle inequality property:

• ∀sx, sy, sz ∈ X, d(sx, sy) ≤ d(sx, sz) + d(sz, sy).

The triangle inequality property is central in metric space clustering imple-
mented in the algorithm. The property states that the distance between the two
given sequence windows (pivots) sx and sy is less or equal to the sum of the
distances from the two windows sx and sy to the third window, sz.

Metric space properties are useful in handling three types of proximity queries: range queries,
nearest-neighbour queries and k-nearest neighbour queries. These queries are used in determin-
ing the proximity of sequence windows to pivots in order to partition a data set. Hence, un-
derstanding of these queries is necessary in order to comprehend how the developed algorithm
works.

Range Queries

The range query (q, r)d retrieves all elements u ∈ U within radius r from the query point q. It
retrieves all database elements u ∈ U within a radius of r from the query window q.

26

Near Neighbour Queries

The nearest neighbour query retrieves all elements u ∈ U closest to query q. The query is built
on top of the range queries but it varies the search radius until the desired number of elements
found. There are different variants of the near neighbour query such as: the increasing radius,
decreasing radius and priority backtracking [Chavez et al. 2001]. The increasing radius searches
for elements starting with the initial radius r and then increments it until the required number of
elements is found. The decreasing radius does the opposite. It starts from infinity and decreases
the radius until the required number of elements is found. In priority backtracking, a lower
bound on distance from pivot q to elements is known. When transversing the tree looking for
such elements, roots of subtrees are compared with the pivot q and subtrees with distances closer
to the lower bound are traversed first. Backtracking is done when subtrees with a greater distance
from pivot q is found. Hence, priority is made during transversing the search tree.

k-Nearest Neighbour Queries

The k-nearest neighbour query retrieves k-closest elements u ∈ U to a query element q. The
query is a variant of the near neighbour query only that it provides a bound on the number of
elements that require to be retrieved.

Importance of the Metric Space in the algorithm

The developed algorithm relies on these metric properties and range queries to work. The prop-
erties are required to apply on the distance function that defines similarity among sequence win-
dows. This enables meaningful comparison of sequences based on which the space is partitioned.
Queries discussed above apply only if the distance function used on sequence windows obeys
metric space properties. This is because application of these queries depends on the relative
distance between pairs of sequence windows in metric space, which enable identification of po-
sitions of sequences with respect to each other. For the purpose of this research, range queries are
used firstly, to identify pivots and secondly to find the proximity of sequence windows from the
pivots based on which they are partitioned. The resulting clusters comprise sequences windows
that lie within a specific radius, which is a predefined threshold value. Proper choice of pivots is
crucial in order to come up with meaningful clusters. This is the focus of the next subsection.

27

2.6 Tree-Structured Indices

The previous section discussed the metric space, its properties and queries that can be applied.
This section proceeds to discuss usage of pivots and partitioning techniques in building tree-
structured indices. The section explores a number of tree-structured indices with respect to their
construction, functionality and possible strengths and weaknesses so that a suitable tree-structure
index implemented in the algorithm can be appreciated. Pivoting and compact partitioning are
the two main techniques used in building tree-structured indices in a metric space [Chavez et

al. 2001]. Compact partitioning is the process by which the metric space is divided into smaller
regions with the aim of narrowing down the problem space. Pivots are used in the compact
partitioning process as decision making points for dividing the metric space. The tree-structured
index algorithm employs these two techniques in clustering ESTs.

A tree structure is useful in reducing the number of distance computations and evaluations
performed during clustering. Distance computations are reduced by recursively dividing a data
set into two partitions, thereby avoiding comparison of each sequence window to the rest of the
data set at each step. Instead, a window is only compared to the two pivots chosen in a partition.
Hence, at each step the partition reduces by half. This technique is central in improving efficiency
of the algorithm. There are different variations of tree structures depending on the number of
pivots used in constructing the tree. In the tsi cluster algorithm, two pivots are used per recursive
call. Examples of tree-structures are discussed as applied in various algorithms and presented in
prior work. Two types of tree-structured indices are explored. The first group works on discrete
distance functions and the second one works on continuous distance functions. The focus in this
discussion is placed on discrete distance function, in particular the Sequence Search Tree and
Burkard-Keller Tree. Their approach is similar to the one applied in the tsi cluster algorithm.
Pivot selection is explored in the next section before discussing the tree structures so that its
implementation can be compared and contrasted in tree structures.

2.6.1 Pivot Selection

The developed algorithm uses pivots to locate windows in a pseudometric space based on which
the data set is partitioned. The challenge is to choose pivots that facilitate efficient clustering.
Pivot selection heavily affects performance of an algorithm. Properly chosen pivots greatly re-
duce the search space, which is useful in constructing a tree-structured index [Bustos et al. 2003;
Chavez et al. 2001]. The search space is reduced by recursively dividing it into smaller partitions
at each run. This is achieved by grouping sequence windows closer to the first pivot, p1 together,

28

and those close to the second pivot, p2. The process recursively continues until a threshold point
is reached or there are no more windows to partition. Depending on how pivots are selected, the
algorithm produces a balanced or unbalanced tree. The desirable result is to have a balanced tree,
which is more likely achieved when far apart pivots are selected.

In general, there are two factors that affect performance of an algorithm because pivot selec-
tion and these are: pivot selection criteria and the number of pivots used [Bustos et al. 2003]. The
larger the number of pivots, the faster the clustering process. This is because the search space
becomes much smaller at each step as the number of pivots increase. The developed algorithm
uses two far apart pivots in an attempt to generate a balanced tree, which is crucial for achieving
efficient running time.

There are a number of heuristics that are used to choose pivots. Heuristics are explored
in subsections that follow in attempt to gain more understanding on pivot selecting techniques
from which improvements or modifications are applied in the algorithm. Most heuristics work in
metric space and they select far apart pivots [Bustos et al. 2003; Chavez et al. 2001]. Bus-
tos et al. [2003] developed an efficient searching algorithm based on pivots and three pivot
selection heuristics employed are explored with the aim of understanding their strengths and
weaknesses that are taken into consideration when developing a pivot selection technique in the
tree-structured index algorithm.

N -Random Groups Selection

The first pivot selection heuristic is the N -random groups selection. In this technique, N groups
of k pivots are randomly selected from database objects, U. Then, a mean µD of distance dis-
tribution in D is calculated for each group and a group with maximum µD is selected. An
estimation of a value of µD is obtained as follows. Pairs of objects are randomly chosen from
U, {(a1, a

′
1), (a2, a

′
2), ..., (aA, a

′
A)} result into a set of distances D1, D2, ..., DA, where A is the

total number of pairs in a group. Hence, an estimated value of µD = 1
A

∑
1≤i≤A Di. This is an

average distance of sum of distances between pairs divided by the number of pairs, A. Hence,
2k distance computations are made when selecting k pivots. The computational costs becomes
2kAN since the value of µD is estimated N times for N groups of pivots and there are A pairs
of objects from U database objects chosen at random.

Incremental Selection

The second heuristic for choosing pivots as outlined by Bustos et al. [2003] is incremental se-
lection. In this heuristic, a pivot p1 with maximum µD value is selected from N objects of U.

29

Then, the second pivot p2 is chosen from another sample of N objects of U such that {p1, p2}
has the maximum µD. The third pivot p3 is also chosen from another sample of N objects of U
such that p1, p2 and p3 have a maximum µD, where p1 and p2 are fixed. The process continues
for all k pivots. Distance computations for previous pivots are kept in the array of size A in order
to save computational time when finding subsequent pivots. Hence, 2NA distance computations
are required to estimate µD. For k pivots, the total computational time becomes 2kAN .

Local Optimum Selection

The third heuristic is local optimum selection. In this technique k pivots pi are randomly cho-
sen from objects u ∈ U, where 1 ≤ i ≤ k. Using A pairs of objects, a matrix M(r, j) =

Dpj(ar, a
′
r), 1 ≤ r ≤ A, 1 ≤ j ≤ k is computed. A parameter r in matrix M denotes the max-

imum distance of pivot j, (pj) to the other pairing object, a
′
r. Hence, for every r, it follows that

D(ar, a
′
r) = max1≤j≤kM(r, j). And this is used to estimate µD. The index in M of maximum

value of r, rmax and second maximum value, rmax2 are kept. Another pivot parameter contrib-

utor contr = M(r, rmax) − M(r, rmax2), if j = rmax is computed. The parameter determines
how much a pivot contributes to the increment of a value D(ar, a

′
r) of a row. A pivot with mini-

mal contribution (victim) is replaced by a better pivot selected from remaining database objects
denoted X . This computation is repeated for N

′ times. The matrix construction cost is 2Ak dis-
tance computations. The cost for searching for a victim is zero since there are no extra distance
computations. Finding better pivots costs 2AX distance computations done N

′ times giving a
total costs of 2A(k + N

′
X). Since kN = k + N

′
X the optimisation cost is 2AkN distance

computations. Values of N
′ and X can be exchanged during cost optimisation.

Results of comparison of these pivot selection revealed that incremental selection performs
relatively better as compared to the other two heuristics. The reason is that it takes advantage of
previous work done and more pivots are added without increasing the complexity of the optimi-
sation process. A pivot selection technique implemented in the tsi cluster algorithm is similar
to the incremental selection. It is discussed in detail in the next chapter. Pivots are useful in
building tree-structured indices as previously discussed. All other database elements are easily
identified and clustered with their reference. Their usage in compact partitioning in order to
building tree-structured indices is discussed in sections that follow.

2.6.2 Sequence Search Tree

Giladi et al. [2002] developed a Sequence Search Tree (SST) algorithm for searching in metric

30

space. This algorithm is of special interest in this research because its approach is similar to the
implementation of the developed algorithm. This discussion begins by showing how windows
are used to partition a data set and how they are mapped into a vector space. Finally, constructing
the sequence search tree using the windows is shown.

The Sequence Search Tree algorithm implements k-tuple encodings in order to define simi-
larity between pairs of windows in order to map them into a vector space. Giladi et al. [2002]
apply the method, as follows. Sequences in the database are partitioned into overlapping win-
dows of a fixed length (number of nucleotides) W . A parameter 4 in range 5 ≤ 4 ≤ W/2,
determines the size of the overlap among windows. Windows begin at position j×4 and end at
position j ×4+ W . The value of j = 0, 1, 2..., (W/4)− 1. A query involves finding database
windows similar to a query sequence. In order to achieve this, each window is mapped into a
vector space. Hence, a vector is created for each sequence for the occurrence of each k-tuple.
The size of k is chosen and usually ranges from 2 to 10. Assuming that k = 2, then a vector of
size 4k = 16 is created, where 4 is the number of DNA nucleotides. An example of such tuple
combination could be AA,AC,AG,AT....TG,TT. An integer I is associated with each of the tuples
of the nucleotides and the following formula is used.

I(a1, a2 . . . ak) =
k−1∑
l=0

4lM(al)

M(al) =

0 if al = A

1 if al = C

2 if al = G

3 if al = T

Invalid symbols resulting from repeat masking such as X are ignored. All database windows
are mapped into a vector R4k where the I th entry represents the occurrence of the I th tuple in that
window. For example given that k = 2, ai ∈ {A,C,G,T} and a window AACCGG. The following
mapping is achieved (1100011000100000) showing that there is an occurrence of AA, AC, CG,

... but not an TG and TT in the window. Since each window has a fixed number of k-tuples, the
number of k-tuples being shared by windows from the two sequences is deduced. It is a lower
bound on the edit distance between them. The number of k-tuples that occur in one window and
not the other, defines the Manhattan (L1) distance between the two windows. The Manhattan
distance is used together with the edit distance as a distance similarity measure on query window
sequences in a metric space. The sequence search tree is built as follows:

31

• Two windows, wA, wB are chosen as pivots from the database U . It is assumed that the
pivots are chosen randomly because the technique does not specify any criteria for pivot
selection.

• Then for every object wy in the database, an L1 distance function is computed to the pivots,
wA, wB.

• A window wy is assigned to a set A if the distance d(wA, wy) < d(wB, wy) and to set B

otherwise.

• New pivots are chosen from each set and windows are assigned to a set of pivots as de-
scribed above.

• The process is repeated until there are no more windows to partition or a threshold is
reached.

In a case where the resulting tree is balanced, O(n log n) amount of work is required to
construct the tree, where n is the total number of sequences. The number of windows is not
considered in the complexity because it is proportional to the number of sequences. Other com-
putational costs require to be reduced. Disk access for example, is reduced by performing a tree
construction on the subtree small enough to fit into a block of memory so that disc access occurs
once for each subtree. Tree construction is sped up by computing pivots from the same partition.
A sample estimate of 1000 windows was used during tests and proved to speed up the running
time.

The tsi cluster algorithm builds up from this design with several modifications because the
goals of the two algorithms are different. SST was developed for searching purposes while the
tsi cluster algorithm is for clustering. In the tsi cluster algorithm, internal nodes of the tree are
not created and only resulting leaves are maintained in an array data structure of records to save
space.

2.6.3 Burkhard-Keller Trees (BKT)

The second tree-structured index is the Burkhard-Keller Tree (BKT) [Chavez et al. 2001]. This
tree structure works with discrete distance functions and range queries. It is possibly the first tree
to be conceived for searching in metric space and it is constructed as follows.

• an element in a database p ∈ U is chosen arbitrarily and acts as a root of the tree.

32

• Ui is a set of elements u ∈ U at distance i > 0 from the root p and is denoted Ui = u ∈ U,
where the distance from the root p to an element u is i and is denoted, d(u, p) = i. This is
the set of all elements at distance i from the root.

• a BKT is recursively built at the child of p for any nonempty u ∈ Ui until there are no more
elements or a threshold point is reached as shown in Figure 2.5. The first part of the figure
shows the first step of the tree construction and the objects’ locations are shown in the
second part of the figure. Object u11 is the root and all objects at distance i1, i2, ...in > 0

are grouped together in one node. In each group, an object is randomly chosen as a child
of the root at that node from which the same process is repeated on the remaining objects
at that level. This is done for each level until there are no more objects left.

u11

u11

u4
u6

u14
u15

u7

u1

u3 u12

u13

u5

u2

u9

u8

u10

u4 u6 u7 u14 u15 u1 u10 u3 u5 u12 u13 u2 u9 u8

1 2 3 4 5

Figure 2.5: An example of a Burkhard-Keller Tree

The Burkhard-Keller Trees differs with the approach taken in the algorithm in several ways.
Firstly, the BKT uses one pivot per level while the algorithm uses two pivots. Secondly, the
BKT groups elements depending on their ranges from the root. This results in a tree, which is
not binary because it has more than two children per node. The BKT is applicable for searching
purposes but not clustering because elements that are grouped in nodes do not form clusters.
However, use of pivots and range queries provide a good example of how they are applied in
metric space for clustering purposes.

33

2.7 Related Work

Various aspects of the tsi cluster algorithm have been discussed. The aspects include: distance
functions, threshold distance value, pivot selection, clustering in metric space and tree-structured
indices. The section continues to explore some of the EST clustering algorithms that have pre-
viously been successfully implemented. The section begins with an exploration on techniques
employed by clustering algorithms. This section studies the weaknesses and strengths of these
algorithms with respect to their computational complexity, which is a major motivation for de-
veloping the tsi cluster algorithm. Strengths and weaknesses of these algorithms have been used
in evaluating the performance of tsi cluster algorithm. The following algorithms are explored:
d2 cluster, wcd, CLU, UIcluster, suffix array and UniGene. The last discussion is on parallel al-
gorithms implemented to improve efficiency of algorithms designed for stand-alone computers.
Development of parallel EST clustering algorithms shows the extent to which efforts are being
made to improve efficiency of EST clustering.

2.7.1 Clustering Techniques

Different approaches are taken by algorithms to solve the clustering problem in general. These
techniques are discussed in general before exploring specific EST clustering algorithm. The
algorithms fall under different categories of clustering techniques.

ESTs can be clustered in a loose or stringent way [Hide et al. 1999]. Stringent clustering
uses strict rules. It results in shorter consensus sequences and lower coverage of expressed gene.
Loose clustering, however, is less strict and results in longer consensus sequences with greater
coverage of expressed gene.

Both loose and strict clustering can be done in a supervised or unsupervised way. In the
supervised way, clustering is conducted with respect to known reference sequences. In an un-
supervised way, however, clustering is done without any prior knowledge [Hide et al. 1999].
UniGene performs supervised clustering because it uses known mRNA sequences to perform
clustering while algorithms such as d2 cluster and wcd perform unsupervised clustering.

Clustering techniques are categorised into two main groups: hierarchical and partitional [Jain
et al. 1999]. Hierarchical clustering provides a representation of nested grouping of patterns (se-
quences) and defines a similarity level at which the grouping changes. Single linkage and com-
plete linkage are the main variants of hierarchical algorithms. Single linkage uses the minimum
of distances between pairs of patterns in the two clusters. In complete linkage however, the dis-
tance between two clusters is the maximum distance of all pairwise distances between patterns

34

in the two clusters. Partitional clustering, however, produces a single set of clusters from a data
set and does not allow further changing of clusters. The technique is less computationally expen-
sive and ideal for clustering bigger data sets. The problem with the technique is that it requires
knowing the number of clusters before hand. Partitional clustering techniques are not discussed
in detail because they do not directly relate to the approach in the algorithm.

The different techniques above are generally affected by some crosscutting issues and some
of the issues relevant in this research are:

• whether the clustering is agglomerative or divisive. In agglomerative each pattern begins
in a distinct cluster and are merged until a stopping criteria is reached. In divisive however,
all patterns begin in one cluster and are split until a threshold is reached.

• whether the clustering is polythetic or monothetic. Distances between pairs of patterns are
computed based on which decisions are made. In monothetic, one pattern is used to divide
a given collection of patterns.

• whether the clustering is incremental or non-incremental. These issues arise where a data
set is very big and there are constraints on memory and execution time.

2.7.2 The d2 cluster Algorithm

The d2 cluster algorithm is discussed as presented by Burke et al. [1999]. In the d2 cluster
algorithm, every sequence Si begins in its own cluster Ci. Clustering is based on transitive
closure, which requires that two sequences be placed in the same cluster if they share a level of
similarity through another sequence. Two sequences SA and SB are placed in the same cluster
if there exists another sequence SY , which satisfies a similarity measure to both SA and SB. In
order to determine similarity among sequences, distance is computed using d2 distance function
and a threshold is defined as a cut-off point on the level of similarity. Details of d2 distance
function have been explored in section 2.4.2. The first sequence, S0 in the data set is selected as
a query and the remaining sequences in the data set denoted Si are targets. Cluster Ci is merged
with cluster C0 if the d2 distance, d2(S0, Si) is less than the threshold and this is done for all the
remaining sequences in the data set. The process continues with subsequent sequences as queries
if they were not merged into other clusters already. Clustering is completed after n iterations,
where n is total number of sequences in the database. During each iteration, all target sequences
are compared with the query sequence if they are not already clustered. In the worst case, the
running time for the algorithm is O(n2), since for every sequence Si in the database, there are

35

n iterations. The tsi cluster algorithm attempts to improve on this quadratic running time. The
outline of the algorithm is as follows:

1. Given that the total number of sequences is n

2. Assign every sequence Si to its own cluster Ci

3. for i = 1 to n

4. for j = i to n

5. if sequence Si and Sj do not belong to the same cluster then

6. if d2 score between sequence Si and Sj < threshold then

7. merge cluster Ci and cluster Cj

8. end if

9. end if

10. end for

11. end for

12. output

2.7.3 The wcd Algorithm

The second algorithm to be explored is wcd and it was developed by Hazelhurst [2003]. It
uses d2 distance function and works like d2 cluster. The type of clustering performed by wcd

is single linkage clustering where two sequences are put in the same cluster if they are close
to each other. Transitive relationship among sequences is taken into consideration, such that if
there exists a sequence SY close to both sequences SA and SB, then SA, SB and SY are placed
in the same cluster. In order to improve efficiency of running time, the algorithm employs a
heuristic before the d2 distance function is computed between pairs of sequences. This is based
on the assumption that for the d2 score between two sequences to be below a threshold, they
must share a specific number of similar words between them [Hazelhurst 2003]. The heuristic
avoids d2 distance computation if the number of similar words shared between two sequences is
below the specified value. The algorithm saves memory by compressing sequences. However,
the memory space saved is relevant only for more than 100k sequences. The heuristic and the
saving of memory differentiate the algorithm from the d2 cluster, however both algorithms run
in quadratic time in the worst case.

The quadratic running time achieved by wcd is still expensive for EST clustering. The need
remains, therefore, for more efficient algorithms in terms of running time and memory usage.
The wcd algorithm has improved memory utilisation and running time as compared to d2 cluster

36

algorithm.

2.7.4 CLU

CLU is an EST clustering algorithm developed by Ptitsyn and Hide [2005]. The algorithm works
for both EST and protein sequences although it is not sensitive enough to low similarities. The
algorithm works like the d2 cluster and wcd algorithm with some variations in the implementa-
tion. Similarity among sequences is found using a match detection algorithm, which works as
follows:

• Build a hash table H of words from the query sequence Sq.

• Slide a short frame by one word from sequence Sb and for each frame count the number of
similar words between the hash table H and the frame. A local similarity function, F (Wi)

is used to calculate the similarity function values and is defined as follows:

F (Wi) =
∑w

i=0,w Hwi. Where w is the width of frame W . Words are represented as
numbers in the hash table and have different weightings depending on whether the words
are repeats or appear rarely. The technique saves space by compressing sequences like
wcd.

• Similarity score is found by vector multiplication of F (W) by the precalculated weight
factors

−→
b . The weight index factors are linear coefficient in the equation of the line con-

necting centres of two contrasting sets of pairs of sequences with and without local simi-
larity. A projection of the categorised F (Wi) distribution (−→a) to a line stretched between
pairs of centroids of simulated classes is considered as a similarity index. Hence, a thresh-
old, |x| separating similar and dissimilar sequences is chosen such that:

|x| = (−→a)× (
−→
b); |x| > xthreshold.

• The resulting score is compared to the predefined threshold, xthreshold.

The algorithm implements a single linkage agglomerative clustering. In this type of cluster-
ing, initial clusters have one sequence and are compared to each other. In the algorithm, when a
match is found between a pair of clusters, the two clusters are merged, their members are con-
catenated and a consensus sequence is generated by pairwise alignment as a representation of all
the members. As the clusters get merged, the number of clusters reduces, which consequently
speeds up the clustering process. The outline of the algorithm is as follows:

37

1. Let the total number of sequences be n

2. Assign every sequence Si to its own cluster Ci

3. for i = 1 to n

4. for j = i to n

5. if sequence Si and sequence Sj match then

6. align consensi of sequence Si and sequence Sj

7. if alignment confirms a match then

8. merge cluster Ci and cluster Cj

9. end if

10. end if

11. end for

12. end for

13. output

Although CLU is similar to d2 cluster algorithm, it differs in several aspects. Firstly, CLU
does not use the d2 distance function to determine similarity among sequences. Instead it com-
putes that similarity score between pairs of sequences using the (−→a) and (

−→
b) as previously

discussed. Secondly, CLU generates consensus sequences within clusters and uses them for
inter-cluster comparison instead of individual sequences in the clusters. However, both algo-
rithms perform single linkage agglomerative clustering as and their running time is quadratic in
the worst case, O(n2).

2.7.5 UIcluster

UIcluster is another EST clustering algorithm developed by Trivedi et al. [2002]. It uses edit
distance as a measure of similarity among sequences. The measurement is made on words of
length M where N bases are required to be similar. Hence, the value of the error tolerance is
given by (M −N). The algorithm generally works as follows:

• It reads sequences from an input file one at a time.

• It compares each sequence against every existing cluster

• If a similarity measure is met, a sequence is assigned to an existing cluster or it becomes
the first member of a new cluster.

• The process is repeated until all sequences are examined and clustered.

38

There are three versions of the algorithm. The first version stores clusters in a two-dimensional
linked list. Sequences are read from the input file and compared against a representative sequence
in the cluster, which is the longest sequence. A hash table is used to keep words (M) of the rep-
resentative sequence to efficiently evaluate the similarity criteria against a query sequence. The
second version of the algorithm uses a global hashing table. Hashes are generated for the new
sequence being clustered. These hashes are then indexed into the global hashing table where
each element points to a linked list of clusters that contains one occurrence of the hash equal to
the index. A detailed comparison is then made between an input sequences and the candidate
clusters. The third version is parallelised, such that the computational and memory required are
divided across several computers. In this version, each cluster is stored on one computing node.
When an input sequence is read, it is distributed to the computing node and a search is made. A
sequence is assigned to a cluster with the best match otherwise, it is assigned to its own cluster
and to one of the computing nodes in a round robin manner.

All the three versions of the UIcluster algorithm run in quadratic time, O(n2), in the worst
case. Its implementation is similar to d2 cluster algorithm since sequences begin in their in-
dividual clusters and a single linkage agglomerative clustering technique is applied. UIcluster
differs from d2 cluster and wcd because it does not use d2 distance function to measure similarity
among sequences.

The four algorithms discussed above (d2 cluster, wcd, CLU and UIcluster) run in quadratic
time. The quadratic running time is what the tsi cluster algorithm attempts to avoid. The
d2 cluster algorithm and wcd use d2 distance function and CLU uses a hash table of words.
This is a major similarity between each of these algorithms and the tsi cluster algorithm.

2.7.6 Suffix Array Algorithm

Malde et al. [2003] developed the suffix array algorithm for EST clustering that runs in sub-
quadratic time complexity. A suffix array is a lexicographically ordered array of all suffixes of
a set of strings. The algorithm determines the level of similarity between pairs of sequences by
finding a matching block, which is a contiguous segment that matches exactly between the two
sequences. A parameter k specifies the length of the shortest matching block. A k-clique is a set
of all sequences with a specific matching block of length k. A similarity score between a pair of
sequences is the sum of matching block lengths that are non-overlapping and appear in the same
order. A minimal score is defined to be used as clustering threshold.

The algorithm works in three parts. The first part of the algorithm identifies pairs of se-
quences with matching blocks. The second part computes scores between the sequences and

39

lastly, hierarchical clusters are built. Details of the algorithm are as follows:

1. The first part identifies matching blocks of length k.

• From the data, construct suffixes and sort them into a suffix array.

• Suffixes that share a prefix of length k are grouped into cliques.

• Maximum matching blocks for each clique is generated between each pair of suffixes
in the clique.

2. The second part computes scores between pairs of sequences.

• Matching blocks are collected between pairs of sequences that share at least one
matching block.

• The largest contiguous set of matching block is computed for each pair and their
corresponding scores.

3. The third part of the algorithm does the clustering.

• Clusters are built hierarchically starting with the highest scoring pair.

• Clusters are split using the threshold. The result is a binary tree whose leaves are the
clustered sequences and the root is a cluster of a highest scoring pair.

The algorithm runs in sub-quadratic time. The suffix array is generated in linear time using
suffix tree and the sorting is done in O(n2) in the worst case. Generating pairs of a clique is done
in quadratic time in the size of the clique. The trade off between sensitivity and performance is
due to the size of the clique. Score calculation between pairs is done in linear time to the number
of pairs, p. To cluster an input sequence, the cost is logarithmic to the number of sequences stored
in the tree, such that for p pairs and c clusters, the clustering cost is O(pc log p). Sensitivity of the
suffix array algorithm using SANBI benchmarks data set was 94.7%, 85.4%, 56.0% and 50.3%
when its clusters were compared to d2 cluster, BLAST, UICluster and UniGene. In spite of this
higher sensitivity, the algorithm has relatively lower specificity, which needs to be improved.
The tsi cluster algorithm attempts to improve on specificity, which is one of the weaknesses of
the suffix array algorithm.

Although sorting and clique generation have not been factored into the overall complexity,
they form a bottleneck in the running time of the algorithm. In bigger data sets, they can dom-
inate the complexity and substantially compromise the running time. Although the suffix array

40

algorithm runs relatively faster, further improvement on the running time is required to avoid the
bottleneck created by sorting and generation of cliques. Further work is required on the algorithm
to improve its specificity.

2.7.7 UniGene

UniGene is a program for partitioning sequences such as ESTs from GenBank into gene-oriented
clusters [Wheeler et al. 2003]. It performs supervised clustering using previously grouped ESTs
and mRNAs to generate clusters. It starts by building mRNA clusters, which work as reference
for EST clustering. ESTs are compared to the existing mRNA clusters using BLAST to generate
their own clusters [Schuler 1997]. Clone identifiers are used to assign non-overlapping 5′ and 3′

ESTs that originate from the same gene to the one cluster. An authentic 3′ mRNA end recognis-
able by the algorithm, is used to anchor the clusters to avoid having multiple dis-joined clusters
for the same gene. Hence, clusters generated are known as anchored clusters. Clusters without
the 3′ mRNA terminals are discarded and their sequences are rechecked for clustering.

The use of mRNA and clone identifiers to generate anchored clusters distinguishes UniGene
from other clustering algorithms discussed before including the algorithm developed in this re-
search. An anchored cluster represents a fully transcribed gene with a 3′ end. Results from other
techniques represent portions of complete gene sequences only.

2.7.8 Parallel EST Clustering

In an attempt to improve efficiency, prior work has been done on clustering EST on parallel
computers. Findings show that running time generally improves from quadratic to linear. The
approach has an advantage of sharing resources such as memory and processor time from differ-
ent computers, which are the major constraints on stand alone computers.

Ranchod [2005] successfully parallelised the wcd algorithm on 101 processors and yielded
a linear running time. The approach utilised the master-slave paradigm. All sequences are sent
to slave computers, which perform comparison among sequences and notifies the master if two
sequences are close to each other. The master merges sequences that satisfy the similarity mea-
sure and maintains load balancing among the slaves by only assigning sequences to slaves with
smaller workloads.

PaCE (Parallel Clustering of EST) is another parallel EST clustering algorithm developed by
Kalyanaraman et al. [2003]. The algorithm uses a generalised suffix tree data structure, which
is built in parallel. It also employs the master-slave paradigm where the master is responsible

41

for maintaining and updating all the clusters. It receives pairs of sequences from slaves and
determines pairs to be subjected for further alignment. It dispatches pairs of sequences to slaves
in batches for alignment, gets back the results, and determines if clusters for the corresponding
sequences should be merged. The slaves generate potential pairs for pairwise alignment and also
perform alignment as assigned by the master.

Carpenter et al. [2002] parallelised d2 cluster algorithm using shared memory. Shared mem-
ory was chosen in the implementation because of the significant amount of shared data in the
algorithm. The d2 cluster main loop was split into pieces that perform a specific function and
distributed among processors. Merging of clusters was not parallelised because of its sequen-
tial execution nature. When 15876 sequences were clustered on a SGI 2000 multiprocessor
computer, running time dropped from 52 minutes achieved on a single processor computer to 2
minutes.

Another application of parallel clustering using UIcluster algorithm has been discussed in
section 2.7.5. In general, parallel clustering is implemented in order to improve running time by
sharing resources such as memory and processor time from different computers.

The parallel approaches are ideal when computer resources are available and can be easily
shared. However, there is still need to come up with an algorithm that efficiently runs on a single
processor computer with limited memory and processor speed. The developed algorithm in this
research is an example of such efforts.

2.8 Summary

The chapter has provided a detailed biological background of the EST clustering problem. It
has further explored aspects of the developed algorithm with respect to prior work with the
aim of exposing strengths and weakness of previous algorithms in order to make improvements
in implementing the tsi cluster algorithm. Aspects of the clustering algorithms discussed in-
clude: distance functions for measuring similarity among sequences, use of threshold values
in determining level of similarity cut-off points, clustering in metric space, pivot selection and
tree-structured indices.

Section 2.2 explored the biological background of the EST clustering problem. It specifically
discussed the structure, function and composition of DNA, RNA and proteins in organisms.
The section covered the transcription of DNA into RNA, translation of RNA into proteins, DNA
sequencing and generation of ESTs. ESTs are partial sequences of cDNA experimentally derived
from mRNA, which is found in the cell cytoplasm. ESTs are of interest because they represent

42

expressed genes. mRNA is transcribed from DNA in the cell nucleus of multicellular organisms
and it is transported into the cell cytoplasm. It represents expressed genes. This is useful for
understanding expressed genes and their alternative splicing. However, mRNA is single stranded
and, therefore, unstable for experimental purposes. It is reverse transcribed into cDNA, which
is double stranded. Sequencing complete cDNA is not possible due to the limited capability
of available techniques. Hence, bits and pieces of cDNA are generated starting and ending at
random positions in mRNA resulting in several redundant copies known as ESTs.

Section 2.3 explored the EST clustering problem. It further described the process and types
of clustering. The EST clustering problem is to group ESTs from the same gene into one cluster.
The only available information used to determine whether ESTs originated from the same gene
are overlaps that exist among them. The goal of EST clustering is to identify the number and
types of expressed genes and their alternative splicing. This is achieved by constructing consen-
sus sequences for each cluster, which represents a complete gene sequence. Computationally,
the EST clustering problem is modelled as a graph problem and clusters are found by finding
components of the connected graph.

The level of similarity among sequences is determined by distance functions discussed in
section 2.4. Shorter distances between pairs of sequences imply a higher level of similarity while
longer distances imply lower levels of similarity. Two distance functions were discussed and
these were edit distance and d2 distance function. Edit distance is the minimum total number
of insertions, deletions and substitutions made to make two different sequences similar. It is
mathematically modelled by the recurrence relation, which is computed by either a dynamic
programming technique or tabular computation. The tabular computation is more efficient and
is preferred over the dynamic programming. The d2 distance function is found by computing
difference of squares of the number of similar words found between a pair sequence windows.
Words of a given length are compared over a specified window that slides over the two sequences
by a specified number of characters.

Quadratic algorithms are inefficient because they perform prohibitively a large number of
distance computations and evaluations. The tsi cluster algorithm reduces the number of dis-
tance computations and evaluations by clustering sequence windows in a pseudometric space.
Similarity measure among sequence windows is modelled by a distance function that satisfies
pseudometric space properties. Clustering in a pseudometric space involves choosing pivots and
recursively partitioning sequence windows into two groups based on their proximity to either
of the two pivots. The section further discusses metric space properties such as: positiveness,
symmetry, reflexive, strict positiveness and the triangular inequality. Choice of pivots is crucial

43

on efficiency of clustering. A general principle of pivot selection heuristics is to select pivots that
are far apart. Three pivot selection heuristics discussed in the section were N -Random groups
selection, incremental selection and local optimum selection.

Section 2.6 explored two tree-structured indices. The two tree structures discussed were
Sequence Search Tree and Burkhard-Keller tree. The section aimed at exploring strengths and
weaknesses of construction techniques so that an efficient technique is implemented in the tsi cluster
algorithm. A tree structure is useful in reducing the number of distance computations and eval-
uations made during clustering. The algorithm recursively selects two pivots and partitions an
EST data set into two groups at each level.

Section 2.7 explored prior work done on EST clustering algorithms. The goal of the section
was to study EST clustering algorithms with reference to their strengths, which could be applied
in the algorithm and weaknesses, which required to be avoided or strengthened. The section
started by exploring different clustering techniques and approaches employed by clustering al-
gorithms. The following algorithms were explored: d2 cluster, wcd, CLU, UIcluster, suffix array
and UniGene. All algorithms explored run in quadratic time except for the suffix array algorithm,
which runs in sub-quadratic time.

The overall aim of the research is to efficiently cluster EST in a pseudometric space using
a tree-structured index. The clustering technique reduces the number of distance computations
and evaluations made to cluster ESTs in O(p log p) running time.

44

Chapter 3

A Tree-Structured Index Algorithm

3.1 Introduction

The previous chapter discussed the biological background of the research problem and various
areas relating to the tree-structured index algorithm developed in this research. Areas previously
discussed include: the EST clustering problem, distance functions for measuring the level of
similarity among sequences, use of the metric space in clustering, examples of tree-structured
indices and EST clustering algorithms previously developed. The exploration of these areas laid
a foundation for this chapter based on which various decisions and choices have been made in
designing and implementing the tsi cluster algorithm.

This chapter provides a detailed overview of a tree-structured index algorithm, its related
research questions, their motivation and how these questions have been answered. An overview
of the algorithm covers choices and justifications of data structures used and the overall imple-
mentation of the algorithm. Discussion on overall implementation involves input data handling,
space utilisation, distance functions, pivot selection techniques and the overall clustering pro-
cess. The overall implementation of the algorithm aims at achieving O(p log p) running time,
where p = mn is the total number of windows in a data set of n sequences and m is the average
number of windows per sequence.

This chapter is divided into six sections. Section 3.2 discusses motivations for the devel-
opment of the tsi cluster algorithms. The major motivation for developing this algorithm is the
prohibitive clustering running time achieved by quadratic algorithm. The specific technique em-
ployed by the tsi cluster algorithm is largely motivated by the work of Giladi et al. [2002] and
Chavez et al. [2001]. An overview of the tsi cluster algorithm is given in section 3.3. The
overview covers data structures used, design and implementation of the algorithm. A discussion

45

on research questions and how they are answered is made in section 3.4 and 3.5 respectively.
There are two main research questions. The first question asks whether the algorithm achieves
the O(p log p) running time. The second question examines the quality of clusters generated to
ensure that the results are biologically meaningful. Major issues discussed in chapter are sum-
marised in section 3.6.

3.2 Motivation

This research was largely motivated by a Sequence Search Tree (SST) algorithm developed by
Giladi et al. [2002] for the purpose of searching in metric space. The success of the SST algo-
rithm discussed in section 2.6.2 initiated the idea that ESTs can also be clustered in metric space
by construction of a tree structure. Although both algorithms work in metric space in general,
the goals and consequently implementation are very different. The SST algorithm use edit dis-
tance and k-tuple encoding to measure similarity between pairs of sequence windows. It was
implemented to work in metric space. This algorithm however, implements d2 distance function
to measure similarity among windows and it works in a pseudometric space. The work done by
Chavez et al. [2001] further motivated the idea of constructing a tree structure in metric space for
the purpose of clustering. Their work, however, was focused on searching. This research built
on the same principles to perform clustering.

The other major motivation for the development of this algorithm is the prohibitive running
time achieved by quadratic algorithms. Attempts such as parallelisation of quadratic algorithms
have being made in order to improve their running time. However, there is still need for clustering
algorithms that efficiently run on stand-alone computers. This need has led to the development
of the tsi cluster algorithm. Quadratic algorithms generally perform clustering by doing pairwise
comparison of sequences. A sequence is divided into overlapping windows. Distance is mea-
sured among the windows from two different sequences to determine their level of similarity.
The windows are compared a pair at a time, until a similar pair is found or there are no more
pairs. Similarity between a pair of windows implies that the two sequences from which the win-
dows originate are similar. Hence, the two sequences originate from the same gene. Pairs of
sequences, which have windows with distances below a specified threshold value, are placed in
the same cluster. Given a data set of n sequences, each sequence is indexed into m windows on
average, the entire data set generates a total of p = mn windows. Quadratic algorithms on such
data sets run in O(p2) complexity.

It was conceived in this research that ESTs could be clustered in a pseudometric space by

46

constructing a tree-structured index. A tree-structured index is constructed by selecting two
windows as pivots from a data set and partitioning the subsequent windows into two groups based
on their proximity to the selected pivots. Relative distances from the two pivots to all the windows
are computed consequently mapping the windows into a pseudometric space. Construction of
a tree-structured index in such a manner costs p amount of work per level and if the resulting
tree is balanced, it yields a depth of log p and an overall computational complexity of O(p log p).
Final partitions (leaves) in the tree are then merged to generate clusters. Figure 3.2 illustrates
this process. The tsi cluster algorithm is formally outlined in section 3.3 and diagrammatically
shown in Figure 3.1.

3.3 Overview of the Algorithm

This section explores components and details of the algorithm design and implementation as
shown in Figure 3.1.

• Given a data set of n sequences, the algorithm indexes overlapping windows wi,i′ of size
l equal to 100 in sequences. The number of windows generated per sequence, m depends
on the length of the sequence and size of the overlap, 4. Step A in Figure 3.1, represents
all windows, p = mn generated. Windows are denoted ri, where 0 ≤ i ≤ p is a position
in a partition.

• From a data set, two windows, p1 and p2 at pDistance ≥ 2θ apart are chosen as pivots.
pDistance is the minimum distance between a pair of selected pivots and θ is the threshold
value. In cases where pivots at pDistance apart are not found, a window with the longest
distance from the first window (first pivot) is selected as a second pivot. Pivot selection is
discussed in detail later in section 3.3.3. This is step B in Figure 3.1 of the algorithm.

• Each window in the partition is compared to the two pivots in step C and is partitioned with
the pivot to which it is closer. The threshold point is reached when no more pivots can be
found at a distance greater than the threshold value. The process recursively continues and
terminates when there are no more windows left or a threshold point is reached.

• At step E, final partitions are generated and merged in step F and stored in step G. These
final partitions contain windows from different sequences such that merging the windows
consequently merges sequences to generate clusters.

The pseudocode for the algorithm is as follows:

47

data set windows

choose pivots

(p1,p2)

d(p1,p2) <= threshold

final

partition

merge

windows

 clusters

initial/final stage

process

decision

data storage

data flow

A

C
D

E

F

G

D

B

p1
p2

Key

(ri)

d(p1,ri) < d(p2,ri) d(p2,ri) < d(p1,ri)

Figure 3.1: Construction of a tree structure

1. Let (X, d) be a pseudometric space with a distance function d that determines
the level of similarity between pairs of sequences and X a set of valid objects
(a data set of sequences).

2. Let θ be a distance threshold value that defines a cut-off point on the level of
similarity between pairs of sequences.

3. Given n sequences Si, where i = 0, 1, ..n.

4. Read the sequences into an input array, A.

5. Partition the sequences into windows w v Si ∈ X, which overlap with a
parameter4; where Si ∈ X means that Si is in the set X and w v Si mean that
w is a subsequence of sequence Si.

48

6. Index the windows with respect to their respective sequence position i in the
array A, and their starting positions i′, in the sequence. Hence the windows are
denoted wi,i′ .

7. Choose initial pivot windows, (wx,x′ ∈ X and wy,y′ ∈ X) ∈ Pj such that
d(wx,x′ , wy,y′) ≥ 2θ. Pj is a partition and 1 ≤ j ≤ mn.

8. While there are still more windows, partition window wi,i′ ∈ X in the following
way:

• If d(wx,x′ , wi,i′) < d(wy,y′ , wi,i′) then

• Assign wi,i′ to the partition of pivot wx,x′ or to the partition of wy,y′ other-
wise.

9. Recursively do steps 7 and 8 on resulting partitions, Pj until there are no more
windows to partition or a threshold value θ is reached.

10. For all the final partitions (Pj), generated in step 9, if they have windows from
different sequences, Six , Siy , place the sequences (Six , Siy) into the same clus-
ter Cx.

11. end.

3.3.1 The Clustering Process

The clustering process in the algorithm works as follows. Input sequences in a data set are
counted and sequentially read into a sequence array, A. Each sequence, Si is identified by an
index position in the array, i. Windows are indexed in each sequence and their identification
values are kept in an array of records, r. A record consists of three fields: an index position
of a sequence, i a starting position of a window in a sequence, i′ and the partition number, h.
A window is generally denoted wi,i′ , where i is the index position of a sequence and i′ is the
starting position in the sequence. The notation rj refers to the record that identifies a window
(wi,i′) at position j in the record array, r. The total number of windows in a data set is given by
n(m−l)

4 + 1, where n is the total number of sequences in the data set, m is the average length of
sequences, l is the size of a window and 4 is the overlap. Size of a window, l is usually equal to
100 nucleotides and overlaps range from 5 to 25 nucleotides.

The clustering process involves indexing overlapping windows in sequences, selecting pivots
and recursively partitioning the data set into two. The following example is used to illustrate
the process and Figure 3.2 aids the illustration. Consider a data set of 100 sequences, with each

49

w(43,100)

w(0,25) w(43,50)

w(17,100) w(77,200)
w(0,50)

w(200,0) w(59,200)

w(40,50)

w(55,0)
w(10,300) w(87,200)

w(67,0)w(43,0)

a window

work

2 mn

2 mn

2 mn

depth = log mn

Figure 3.2: Construction of a tree-structured index

sequence having an average length of 300 nucleotides. The sequences are read and stored in a
data structure where there are indexed from position 0 to 99. In each sequence, there are 300−100

25
+

1 = 9 windows, where 25 is the overlap, 100 is the size of the window and 300 is the length of
a sequence. The total number of windows generated is 9 ∗ 100 = 900. A sequence indexed at 0
has the following windows: w0,0, w0,25, w0,50, w0,75, w0,100, w,125, w0,150, w0,175, w0,200. Windows
from sequences 1 to 99 have the same starting positions but they have a different sequence index
number. Consider that in the first partition windows w0,25 and w43,50 are chosen as pivots. This
implies that the two windows are at a distance greater than twice the threshold value apart. It
further implies that w43,50 is the first window to be found at the specified pivot distance. The
remaining windows are compared to the two pivots. They are partitioned with the pivot to which
they are closer. Two partitions are created (partition 1 and partition 2) at the stage on which the
clustering process proceeds. In partition 1, windows w17,100 and w77,200 are selected as pivots
while in partition 2, windows w0,50 and w43,100 are selected as pivots. The rest of the windows
are compared to the pivots and partitioned accordingly in their respective partitions. This process
recursively continues until there are no more windows to partition or a threshold point is reached.

50

This process constructs a tree structure as shown in Figure 3.2. When the process termines, the
final partitions contain mixed up windows from different sequences. Sequences with windows in
the same final partition are merged forming final clusters.

Records that store indices of windows are kept in an array data structure denoted r. The
notation rj refers to the window record at poisition j, where 1 ≤ j ≤ mn is a position in the
array of window records. The record further stores a field, h that identifies a partition to which
a window belongs at any particular point in the recursive process. The relationship between the
representation of windows and records is shown in Figure 3.3.

i i’

. . .

h

i i’ h

rj

j = 0 j = 1 j = 2 . . . j = mn

sequence index
index of a window starting

window in the tree

partition number of the

position in a sequence

a window record

Figure 3.3: Representation of windows in a partition

When the two pivots are chosen in a partition, windows are labelled with the partition number
of the pivot to which they are closer. Partition numbers increment by one per recursive call.
Windows are sorted based on their partition numbers, hence, it is important that there should be
no redundancy in partition numbers. Figure 3.4 illustrates the partitioning process.

• The first grey rectangular box in the figure labelled 0, represents the first partition in the
clustering process. It contains all windows in a data set, which belong to the same partition.
The value of h for all windows is 0 at this point. The algorithm reuses the same space
during the partitioning process. Grey rectangles represent windows in a data set that are
not yet partitioned.

51

• Two pivots are selected and the value of h in windows closer to pivot is assigned to 1. In
windows closer to pivot two, the value of h is assigned to 2. Windows with h equal to 1 are
moved and placed at the beginning of the partition and those closer to pivot two (h = 2)

are placed at the end of the partition.

• The next recursive call is made on the first half (1). The algorithm randomly selects any
of the two partitions in the next recursive call. Windows in this partion are labelled with
partition numbers (h) 3 and 4 depending on the pivot to which they are closer and are
sorted accordingly.

• The next recursive call is made on partition 5 and windows in the two resulting partitions
are labelled 7 and 8. At this, point a threshold point is reached and no further recursion
takes place on partitions 7 and 8.

• Partition 6 divides into partitions 9 and 10 where a threshold point is also reached. The
same scenario occurs on partitions 11 and 12 and then the algorithm moves to partition 2.

• A similar process takes place on partition 2 until a threshold point is also reached or there
are no more windows left. As shown in the figure, memory utilisation is minimised by
reusing the same memory space throughout the execution of the algorithm. A tree is built
by shifting around windows with respect to pivots to which they are closer. Windows in
the final partitions are merged and the process is efficiently achieved by using a union-find
data structure discussed in section 3.3.4.

3.3.2 Distance Function

A distance function is used to determine the level of similarity among sequence windows. There
is an inverse relationship between the level of similarity and the distance among windows. A
bigger distance implies less similarity while a smaller distance implies bigger similarity. The
initial plan was to use edit distance but because of its quadratic complexity, the d2 distance
function has been implemented in the algorithm. The d2 distance function has been implemented
to compare sequence windows in linear time. This has been an advantage in improving the
running time of the algorithm. A distance threshold value θ has been defined as a cut-off point
on the level of similarity among windows. The level of similarity among sequence windows is
determined as follows:-

52

1

3 4

5 6

7 8

9 10

11 12

13 14

15 16

7 8 9 10 13 14 15 16

2

0

Figure 3.4: Partitioning process

Two windows wx,x′ and wy,y′ , where wx,x′ is a window in sequence Sx with length
m and wy,y′ is a window in sequence Sy also with length m, are regarded similar if
d(wx,x′ , wy,y′) ≤ θ.

3.3.3 Pivot Selection

Pivots are very critical in the construction of a well-balanced tree-structured index of the algo-
rithm. They affect the structure and skewness of the resulting tree and consequently the running
time of the algorithm. Pivots that are far apart are expected to yield a well-balanced tree structure
as opposed to those that are closer to each other. Selection of pivots that are far apart however, is
a big challenge. Random selection of pivots is easy to implement but does not guarantee choos-
ing pivots that are far apart. Far apart pivots are expensive to choose when they are positioned at
the far ends of a partition. To avoid this cost, the “far apart” in the algorithm is defined by ap-
proximating a parameter pDistance. A minimum distance between two pivots pDistance ≥ 2θ

is approximated.
In general, pivot selection takes a linear time of O(p). Experiments presented in chapter 4

have been conducted to determine an efficient pivot selection technique, which contributes to the
efficient running time of the algorithm and quality clusters. Several techniques were implemented

53

and tested and they generally had the following format:-

1. Select the first window ri, where 0 ≤ i ≤ p, in a partition of size p.

2. Sequentially search for another window ri′ such that d(ri, ri′) ≥ pDistance, where pDistance

is the minimum distance between the two pivots.

3. If such a window is not found, store a window, rmax with maximum distance from the
initial window ri and continue searching.

4. If there is no window found at a distance d(ri, ri′) ≥ pDistance from ri, choose rmax as
the second pivot. If d(ri, rmax) ≤ θ, the algorithm terminates.

3.3.4 The Union-Find Data Structure

The union-find data structure maintains and manages a collection of disjointed sets. The data
structure stores elements by using trees where each object points to another object except for
the root, which points to itself. It supports set operations such as creation, finding elements
and merging. In this research, it is used to merge final partitions in order to generate clusters.
The union operation merges final partitions using windows and consequently places sequences
together in clusters as shown in Figure 3.2. This process continues until there are no more
partitions to merge. The operation yields an amortised O(log∗ p) running time [Quinn 1987].
This running time has made the union-find data structure a favourable choice for the clustering
process because it does not increase the complexity of the algorithm.

3.4 Research Questions

The ultimate goal of this research is to design and implement an algorithm that clusters expressed
sequenced tags in O(p log p) running time in order to make an improvement over quadratic run-
ning time of O(p2). This reduced running time is achieved by reducing the number of pairwise
distance computations and evaluations made among sequence windows during the partitioning
process. Instead of comparing all windows to each other, windows are compared to two pivots
only per recursive call. Two research questions arise from this implementation:-

1. Can the tree-structured index algorithm cluster expressed sequence tags in O(p log p) run-
ning time?

54

2. Can the tree-structured index algorithm successfully cluster expressed sequence tags in
pseudometric space?

The first research question is more concerned with whether the mathematical model is cor-
rectly translated into the algorithm and that it runs accordingly. Hence, the complexity of the
algorithm is analysed both mathematically and empirically. Running time is very critical in EST
clustering because bigger data sets are required to achieve meaningful results. These bigger data
sets require to be clustered in a period that is as short as possible to enhance efficiency in all other
fields that rely upon EST clustering. The first research question, therefore, examines whether a
the tsi cluster algorithm clusters ESTs in O(p log p) running time. The algorithm has a number
of functions responsible for different computations. Some of the functions are: reading input,
generating windows, distance computation, pivot selection, partitioning windows and merging fi-
nal partitions. All these functions are analysed and examined whether their collective complexity
yield O(p log p).

It should be noted that a better complexity does not guarantee efficient running time in all data
set cases. Specifically, the O(p log p) complexity does not guarantee a faster execution time as
compared to the O(p2) in all data sets. In most cases, quadratic algorithms run faster on smaller
data sets as compared to algorithm with linear or logarithmic complexity. Their running time
become prohibitively slow where size of the data set gets larger. Answering the first research
question, therefore, requires determining constant factors that largely contributes to the running
time and complexity of the algorithm. In the presence of larger constant factors, the positive
impact of the logarithmic complexity is hindered. However, with smaller constant factors the
impact is remarkable in the efficiency of the algorithm.

The triangle inequality has been implemented and the extent to which it contributes to in-
creasing the efficiency of the algorithm is examined under the first research question. Tests were
conducted to examine the frequency of the occurrence of the triangle inequality among sequence
windows and the extent to which it reduces running time and improve the quality of resulting
clusters.

The second research question examines whether the algorithm solves the biological problem
correctly. This implies that the algorithm generates clusters that are biologically meaningful and
useful. It questions whether the tsi cluster algorithm successfully clusters EST sequences. This
is defined by sensitivity and specificity of generated clusters as discussed in section 3.5.3. It is
not useful to have a faster running time with wrong results. It is therefore important that correct
clusters that are biologically useful be achieved in the O(p log p) running time.

55

3.5 Answering the Research Questions

The research maps a biological problem to a mathematical model, which is translated into the
tsi cluster algorithm. Answering these research questions requires showing that the algorithm
correctly maps the mathematical model and that it solves the biological problem in question.
Tests have been conducted using different data sets to determine whether the algorithm solves
the research problem and consequently answers the research questions.

3.5.1 Parameters of the Algorithm

Before answering the research questions, parameters that enable the algorithm to yield optimal
results had to be experimentally determined. The parameters are: size of the window, overlap of
the window, threshold value, minimum pivot distance and a pivot section technique. A window
size that yield optimal results was deduced experimentally. Threshold values and overlap param-
eters were adjusted accordingly during experiments to come up with optimal values. The two
parameters have a direct impact on running time and quality of generated clusters. Larger values
improve running time, but they have a negative impact on the quality of generated clusters. Small
threshold and overlap values however, negatively increase running time but improves the quality
of resulting clusters. As such, both the threshold value and overlap parameter that balance run-
ning time and quality of clusters had to be experimentally determined and their results were used
in testing the performance of the algorithms.

Experiments were conducted to deduce a pivot selection technique that yields efficient clus-
tering with respect to running time and quality of clusters. The choice of pivots greatly affects
structure of the tree and consequently the performance of the algorithm and, therefore, its choice
requires proper experimentation. Poor choice of pivots results in skewed tree, which in the worst
case can be constructed in O(p2) complexity, which intends to be avoided.

3.5.2 The First Research Question

Both analytical and empirical tests were employed in answering the first research question. The
analytical approach involved analysing and showing that the overall running time of the algorithm
yields O(p log p) running time. Analysis was done on all functions of the algorithm in order to
determine whether they yield the predicted running time. The expected running time is achieved
when the resulting tree is balanced. This is highly affected firstly by the pivot selection technique
used and secondly, by the nature of a data set being clustered. Getting a balanced tree requires

56

special data sets, which may be difficult to obtain or simulate. In the worst case scenario, the
tree grows on one side only and at every level, there is one window up to the depth p. This case
implies an occurrence of a very unlikely situation where every window in the data set is unique.

Empirical tests have been performed to supplement answering the first research question. As
discussed in section 3.4, the logarithmic complexity deduced mathematically does not guarantee
that it runs relatively faster than quadratic algorithms because there are other constant factors
that may have significant impact on the running time. The mathematically deduced complexity
further relies on generation of a balanced tree. It is, therefore, important to show that empirical
results agree or disagree with analytical results. In cases of disagreement, investigate and un-
derstand the possible reasons. Hence, running time of this algorithm was compared to that of
wcd, a quadratic algorithm developed by Hazelhurst [2003]. The two algorithms were run and
timed on the same computer and data sets. Their running times were compared and contrasted to
determine whether the tsi cluster algorithm runs relatively faster. Such tests do not provide con-
clusive results, but do provide a real time indication of the difference in running time of the two
algorithms. Average running times were used to compare performance of the two algorithms. A
similar testing approach was done by Kalyanaraman et al. [2003] in which the running times of
PaCE algorithm was compared to CAP3.

3.5.3 The Second Research Question

The second research question has been answered by experimentally comparing resulting clus-
ters of the algorithm to those of wcd, a quadratic clustering algorithm developed by Hazelhurst
[2003]. The two algorithms were run on similar data sets and the number, size and contents of
the clusters were compared and contrasted. Comparing and contrasting clusters to the results of
other methods has been previously used by Ptitsyn and Hide [2005]; Burke et al. [1999]; Malde
et al. [2003] to determine the level of correctness. Ptitsyn and Hide [2005] compared results of
CLU algorithm with those of d2 cluster with respect to the number of generated clusters, their
size and contents. The d2 cluster results were also compared to those of UniGene in attempt to
establish the correctness of d2 cluster [Burke et al. 1999]. A similar approach has been adopted
in this research, however caution was taken in comparing and contrasting the results. The same
distance function and parameters values such as window size and threshold value were used in
both algorithms in order to meaningfully compare the results.

Clusters produced by the algorithm are compared to those generated by wcd using the Jaccard

index, which is an approach that measures quality with respect to sensitivity and selectivity of
generated clusters [Kalyanaraman et al. 2003; Malde et al. 2003; Trivedi et al. 2003]. To compute

57

the Jaccard index, the following parameter are used: true positives (TP) are pairs found in both
clusters, false positives (FP) are pairs found in the first cluster but not in the second one and
false negatives (FN) are pairs found in the second cluster but not in the first one. Using these
parameters, the following measurements are defined according to Kalyanaraman et al. [2003]:

• The Jaccard index also known as overlap quality (OQ), OQ = TP
TP+FP+FN

.

• Specificity (SP), SP = TP
TP+FP

. This is the fraction of correctly predicted pairs with
respect to total pairs.

• Sensitivity (SE), SE = TP
TP+FN

. This is the fraction of correctly predicted pairs.

It should be noted that results have been presented with respect to specificity and sensitivity
only. This was done to simplify the presentation and to avoid confusion in the interpretation of
the results. In most cases, however, the Jaccard index is always equal to sensitivity because the
value of false positives is usually negligible.

3.5.4 Memory Utilisation

The amount of memory required by the algorithm is very crucial because it affects the usability
of the algorithm. Larger memory requirements can make an algorithm unusable despite being
efficient in its running time and quality of clusters. It was previously argued that the tsi cluster
algorithm is able to cluster huge data sets efficiently with less amount of memory. This was
tested with the aim of investigating the extent to which the algorithm efficiently utilises memory
with respect to data set sizes.

The algorithm was run and tested under memory constraints because both the tree-structured
index and the data set had to fit in memory during execution. Memory usage was experimentally
tested under varied parameter values. This was done to study and deduce the memory usage
behaviour of the algorithm. Size of a window and overlap are the two main parameters that
affect the number of windows generated and consequently memory utilised by the algorithm.
When size of a window is fixed, the overlap parameter is the only major parameter that dictates
the level of memory utilisation of the algorithm.

3.6 Summary

This chapter presented design and implementation details of the tsi cluster algorithm. Aspects of
the algorithm implementation include: getting input data, distance function computation, pivot

58

selection and the clustering process. Input data for the algorithm are EST sequences in Fasta for-
mat, which are partitioned into overlapping windows. Windows are identified by sequence index
positions in the input array and their starting positions in their respective sequences. Similarity
among windows is determined by using a d2 distance function. The d2 distance function was
used because of its linear computational complexity, which does not create a bottleneck in the
running time of the algorithm. Pivots are chosen by selecting two windows with a minimum dis-
tance of 2θ apart. Windows are partitioned into two groups depending on how close they are to
the two pivots. The clustering process recursively continues on each generated partition until all
windows are partitioned or a threshold point is reached. The resulting final partitions are merged
to generate final clusters and the union-find data structure has been used to efficiently merge final
partitions into clusters.

The algorithm is examined through two main research questions. The first question math-
ematically examines whether the overall complexity of the algorithm yields O(p log p) running
time. All the components of the algorithm such as getting input data, distance computation, pivot
selection and merging clusters, were analysed and their combined complexity summed up to col-
lectively yield O(p log p) running time. Empirical tests were conducted to supplement answering
the research question. Tests involved comparing average running times of this algorithm to that
of wcd, another quadratic algorithm in order to determine whether the tsi cluster algorithm runs
relatively faster in real time.

The second question examined whether the algorithm successfully clusters ESTs in a pseu-
dometric space. The question is answered by comparing the quality of clusters generated by
the algorithm using wcd as a control algorithm. Specificity and sensitivity were used to deter-
mine the quality of generated clusters. Memory usage was also tested over varied parameters to
determine the memory utilisation levels of the algorithm.

59

Chapter 4

Experiments

4.1 Introduction

This chapter describes experiments conducted to test the performance of the algorithm. It also de-
scribes the experimental environment, setups and data sets used. The experimental environment
refers to the hardware specification used and the possible limitations. Hardware specification is
discussed in section 4.2. The data sets used are described in section 4.3 with reference to size and
other possible properties. Experimental setups are covered in section 4.4. The section describes
experiments that have been conducted and their justifications. Experiments were conducted were
on the running time, quality of clusters generated, space utilisation and the effect of the triangle
inequality. Preliminary experiments were conducted to come up with optimal parameters such
as window size, threshold value, overlap parameters and pivot selection technique. The optimal
values for parameters were used in the major experiments. Section 4.6 summarises the chapter.

4.2 The Hardware

Experiments to determine the performance of the algorithm with respect to running time and
quality of clustering were run on Juggernaut, an Intel Xeon, model 4, stepping 1, with 3 gigahertz
processor, 4 gigabytes of random access memory and 1 megabyte on processor cache memory.
A processor was always dedicated to an experiment throughout its execution.

Memory utilisation and all preliminary experiments were conducted on a 3 gigahertz proces-
sor desktop computer with 1 gigabyte of random access memory. The computer was dedicated
to these experiments.

60

4.3 Data Sets

Two main data sets were used in running time, quality of clustering, memory utilisation and all
preliminary experiments. These data sets were the human eye South African National Bioinfor-
matics Institute (SANBI) benchmark data set with ten thousand sequences and the C-series, a
simulated data set with 125719 sequences. The C-series was used on the running time experi-
ments while the benchmarks data set was used on quality of clustering, memory utilisation and
all preliminary experiments. The SANBI benchmarks data set comprised real 10000 ESTs from
cDNA of genes expressed in the human eye and it was obtained South African National Bioin-
formatics Institute. This is a real data set and it was proper to test the clustering quality using
such a data set.

The C-series data set was artificially generated from 2985 full-length cDNA downloaded
from the National Institute of Health web site [NIH 2007]. An ESTsim tool, developed by
Hazelhurst [2003] is used to simulate generation of ESTs. The tool is able to introduce variuos
errors that occur during EST generation into a data set. The tool introduced 1% of evenly dis-
tributed single base scaling errors into the C-series data set. The C-series data set was divided into
smaller data sets whose sizes increased progressively from 10%, 20% . . . 100% with a uniform
error distribution. The uniform error distribution in the data set makes it suitable for studying
the complexity of the algorithm. For the purpose of studying quality of clusters generated, the
SANBI benchmark data set was used.

In addition to these data sets, Drosophila melanogaster and public cotton data sets were used
to study the performance of the algorithm on different data types. The public cotton data set
comprised 29992 ESTs derived from RNA samples, harvested from 5 to 10 DPA tetraploid wild-
type upland cotton ovules [Shi et al. 2006]. Sizes, number of sequences and types of all these
data sets used in experiments are found in Table 4.1.

4.4 Experimental Setups

4.4.1 Quality Performance of the Algorithm

Overall performance was determined by the running time of the algorithm, quality of generated
clusters and memory utilisation. Quality of clusters is defined by the sensitivity and specificity.
These are determined by comparing clusters generated by this algorithm to those generated
by wcd algorithm version 0.2.3.4 Hazelhurst [2003], another clustering algorithm that runs in
quadratic time. The wcd algorithm has been chosen because it uses a similar distance function

61

data set size (Mb) number of type
sequences

SANBI 5.2 10000 real
Benchmarks
C01 5.8 12579 simulated
C02 11.6 25178 simulated
C03 17.4 37790 simulated
C04 23.2 50350 simulated
C05 29.1 62914 simulated
C06 34.8 75467 simulated
C07 40.6 88015 simulated
C08 46.4 100585 simulated
C10 58.0 125719 simulated
Drosophila 65.9 83545 real
melanogaster
Public cotton 17.0 29992 real

Table 4.1: Data Sets Used

and generates higher quality clusters. Hence, there can be confidence in tsi cluster algorithm
if it generates clusters that are better than or similar to those of wcd. In addition to measuring
the quality of clusters, the running times of the two algorithms have also been compared and
contrasted with the parameters in both algorithms being adjusted equally to achieve meaningful
comparison.

Further experiments were conducted to study effects of data sets used on the quality of clus-
tering and the impact of the triangle inequality on the performance of the algorithm. Both exper-
iments are discussed in this subsection.

• The Running Time

The Running time was experimented on Juggernaut with the C-series data set. System time
was used to capture the running time because it covers both program processor execution
and input/output time. Experiments were run ten times for each overlap. A graph was
plotted using average running time values to determine the complexity of the algorithm.
Standard deviation was used to show the deviation of the data from the mean. Graph fitting
using linear and multiple regression was used to find the functions that closely define graph
lines, consequently the complexity of the algorithm.

• Quality of Clusters

62

Clustering quality of the algorithm was experimented on Juggernaut computer. The SANBI
benchmarks data set with 10000 sequences was used on quality of clustering experiments.
The algorithm and wcd were alternatively run on the same computer with the same thresh-
old, window size settings and the data set. The wcd algorithm was used as a control to
which the results of the tsi cluster algorithm were compared. Quality of clusters was de-
duced with respect to specificity and sensitivity.

Specificity is a fraction of correctly predicted pairs of clustered sequences with respect
to the total number of predicted pairs. For example, if the algorithm generates 100 pairs,
specificity defines the number of pairs that correctly predicted out of 100. A specificity of
20% implies that both algorithms generated exactly the same 20 pairs out of 100.

Sensitivity on the other hand, is the fraction of correctly predicted pairs by the algorithm
out of all pairs generated by the control algorithm. If the control algorithm generates 200
pairs and the algorithm finds only 20 pairs, then the sensitivity of the algorithm is 10%.

• Memory Utilisation

Experiments on memory utilisation were conducted on Juggernaut computer. The algo-
rithm was run with the SANBI benchmarks data set. Memory utilised by the algorithm
for each size for different overlap values was recorded. Overlaps ranged from 5 to 25 with
all other optimal parameters being kept constant. Windows of size 100 were used with a
threshold of size 40 and initial minimum pivot distance of 144. The experiment was only
concerned with the size of the data set and the amount of space the algorithm used and not
the nature of the data being used. Memory utilisation of this algorithm was compared to
wcd to deduce the algorithm with lower memory utilisation.

4.4.2 Effects of Data Sets Used

Experiments were conducted to determine whether the algorithm performs equally on different
data sets. Three data sets were used, the SANBI benchmarks, Drosophila melanogaster and the
public cotton data set. Experiments were run on Juggernaut with optimal parameter values being
kept constant.

4.4.3 Triangle Inequality

The triangle inequality was implemented to reduce the number of distance computations and
evaluations that are made during clustering. This was one of the major motivations behind the

63

design and implementation of the algorithm. The experiment aimed at determining the extent to
which the triangle inequality holds and its effect on the performance of the algorithm. Triangle
inequality properties were used to deduce the nearest pivot to a window without the computing
distance. The implementation is explained with reference to Figure 4.1.

a

d(a,y)

yzx

d(a,z)

d(x,z) d(y,z)

d(a,x)

Figure 4.1: Triangle inequality implementation

Let a be the previous pivot to which both current pivots x and y and a window z were already
compared with distances d(a, x), d(a, y) and d(a, z) respectively.

The following triangle inequality properties can be applied.

• |d(a, z)− d(a, x)| ≤ d(x, z) ≤ d(a, z) + d(a, x).

• |d(a, z)− d(a, y)| ≤ d(y, z) ≤ d(a, z) + d(a, y).

If d(a, z) + d(a, y) ≤ |d(a, z) − d(a, x)| holds, then window z is closer to y. If d(a, z) +

d(a, x) ≤ |d(a, z)− d(a, y)| is true then, z is closer to x.
In general, before computing distance between pairs of windows, the triangle inequality prop-

erties were evaluated. If the properties did not hold, then distance was computed, otherwise
windows were partitioned based on the properties. Triangle inequality tests were made on Jug-
gernaut computer with the SANBI benchmarks and its subset sub set data set. Parameters used
were: windows of size 100, threshold distance of 40 and a minimum pivot distance of 144.

64

4.5 Preliminary Tests on Parameters Affecting Performance
of the Algorithm

Several tests were made prior to final experiments in order to deduce optimal parameter values.
Further experiments were conducted to deduce how their different values affect performance of
the algorithm. Parameters include: size of the window, window overlap, threshold value, min-
imum distance between a pair of pivots and the optimal pivot selection technique. Optimal pa-
rameter values were points where the algorithm yielded best performance with respect to running
time, sensitivity and specificity. All preliminary tests were run on Juggernaut with the SANBI
benchmarks data set. Each of the experimental setups is described in detail in this section.

• The SANBI benchmarks data set was used for all windows of different sizes. All the
other parameters such as threshold value, minimum distance between two pivots and pivot
selection technique were kept constant. The overlap parameter, however, was varied to
match size of the window being used. Experiments were conducted to deduce size of a
window on which the algorithm functions optimally and how different window sizes affect
performance of the algorithm. Sequences were divided into overlapping windows of sizes
of 200, 100 and 50 with different overlap sizes depending on the window.

• The optimal window size of 100 was found. From this window the optimal overlap param-
eters were deduced. Window overlap parameters were tested with the aim of determining a
size where the algorithm runs optimally with quality clusters. Overlap parameters ranging
from sizes 5 to 25 were used with the SANBI benchmarks data set. Window size, thresh-
old value, minimum pivot distance and pivot selection technique were kept constant in this
test at sizes of 100, 40 and 144 respectively. After deducing the optimal window size and
overlap parameter, the next step was to find the optimal threshold value that produces both
optimal running time and quality of clusters with all other parameters kept constant.

• Tests to determine minimum distance between a selected pair of pivots were made on
windows of size 100, with the optimal overlap and threshold value. The minimum pivot
distance was varied with all other parameters kept constant. The algorithm was run with
the SANBI benchmarks data set on Juggernaut.

• There were several pivot selection techniques proposed and the best technique was deduced
experimentally using all optimal values found. Pivot selection techniques were run on the
same computer with the same parameter settings at their optimal values. The technique

65

that yielded better performance with respect to running time, sensitivity and specificity
was selected to be implemented in the algorithm.

The code for the algorithm was implemented in the C programming language. C is a lower
level programming language. It was preferred because of its ability to directly manipulate mem-
ory. As a lower level language, it is generally faster and gives complete control to the program-
mer, which was important in developing the algorithm.

4.6 Summary

Major experiments conducted were on the running time of the algorithm, quality of clusters,
space utilisation, effect of different data sets and effect of the triangle inequality. The running
time experiments were run on Juggernaut, a 3 gigahertz processor and 4 gigabytes of random
access memory with 1 megabyte on processor cache memory using the C-series data set. The C-
series is a simulated data set with 1% evenly distributed base scaling errors. Memory utilisation
of the algorithm was tested on a 3 gigahertz processor with 1 gigabyte of random access memory
using the SANBI benchmarks data set and the C-series. Different computers were used because
experiments were independent of each other. Preliminary tests were made to deduce optimal size
of the window, overlap parameters, a threshold value, a minimum distance between two pivots
and a pivot selection technique. ESTs for Drosophila and public cotton were used to test the
effect of different data sets on the performance of the algorithm.

66

Chapter 5

Results

5.1 Introduction

This chapter presents the results and their interpretation of a series of experiments conducted
to determine computational complexity and performance of the algorithm as discussed in the
previous chapter. Performance of the algorithm was determined by testing memory utilisation,
the running time, sensitivity and specificity of generated clusters. Empirical results have shown
that the running time of the algorithm is closer to linear, which is less than the mathematically
deduced O(p log p). This is an improvement over quadratic time, which was one of the major
motivations for the development of this algorithm. The algorithm is 100% specific but it fluctu-
ates in its sensitivity due to the limitations discussed in chapter six.

A computational analysis of the algorithm is given in section 5.2. Main functions of the
algorithm are analysed from which an overall complexity is deduced. Section 5.3 discusses
some of the factors that affect the running time of the algorithm. The factors include window
size, threshold value, overlap size, pivot selection techniques and nature of the data set being
clustered. Performance of the algorithm with respect to running time, sensitivity and specificity
is discussed in section 5.4. One of the aims of this research was to determine the extent to which
the triangle inequality reduces distance computations during clustering. Results on the triangle
inequality are presented and discussed in section 5.5. A summary of the chapter is made in
section 5.6

67

5.1.1 Distance Computations

The algorithm was initially designed to implement edit distance to measure the level of similarity
among sequence windows. However, edit distance, was found to greatly slow down the running
time of the algorithm due to its quadratic complexity. Alternatively, d2 distance function was
implemented. When d2 is computed over sequences, it runs in quadratic time as windows slide
in the two sequences being compared in search for pairs of windows with a minimum d2 score.
In such cases d2 performs local alignment, where regions (windows) of higher similarity are
searched between the two sequences. Nonetheless, in this algorithm, d2 does not search for pairs
of windows with minimum scores between two sequences. It computes distance between pairs
of windows globally. This takes a linear time, which improves the running time of the algorithm.
In this case, global alignment of the windows is performed. Hence, the final implementation
of the algorithm has implemented d2 distance function as a measure of similarity between two
sequence windows.

5.2 Computational Complexity

This section provides a brief analysis of the complexity of functions of the algorithm from which
an overall complexity has been deduced. The complexity resulting from this mathematical anal-
ysis is expected to agree with the complexity obtained empirically.

• Getting Input

Getting input begins by counting the total number of sequences in a data set and this oper-
ation takes a linear time of O(n), where n is the total number of sequences. The function
counts lines that start with ′ >′ sign, which indicates the beginning of a sequence as pre-
viously shown in Figure 2.4. The counting function is called once in the algorithm. The
function that gets input sequences is called next and only once in the algorithm. Using
the total number of sequences, the algorithm dynamically allocates memory to which se-
quences are stored in linear time of O(n). Initialising and releasing memory is respectively
done once at the beginning and the end of execution in linear time of O(n).

• Indexing Windows

Indexing windows in sequences takes a linear time of O(p), where p = n(m−l)
4 + 1, l is

the size of a window, m is the length of a sequence and n the total number of sequences.
Windows are indexed in a sequence from position 0 and after every overlap 4, up to

68

m− l. Normal size of the window l = 100. Since l is very small, the number of windows
is computed over a full sequence length of m. With an overlap parameter of size 1, in the
worst case scenario, the total number of windows is approximately equal to p. This number
reduces as the size of the overlap increases. The function is called once in the algorithm.

• Distance Computation and Pivot Selection

Distance computation performed on a pair of windows is linear O(l) to the size of win-
dow, l. However, when reverse complement is computed, the running time is doubled, its
complexity remains linear.

A pivot selection function has O(p′) running time, where 1 ≤ p′ ≤ p. The largest size
of a partition is p = mn. Searching for the second pivot begins at the first position and
ends at the last position in a partition. In the worst case scenario, in a partition of size p,
the second pivot is at the last position in the partition, p. However, a partition of size p is
encountered at the beginning of the clustering process only and subsequent partitions are
of size p′.

• Partitioning Windows

Given a partition of size 0 ≤ p′ ≤ p, the cost of partitioning windows is the sum of the
following costs: pivot selection lp′, distance computations lp′, comparing windows to find
a pivot to which they are closer 2p′ and sorting windows p′ in a partition dividing them into
two groups. Windows are sorted in each partition in order to group them with the pivot to
which they are closer. Windows closer to pivot one are placed at one end and those closer
to pivot two are placed at the other end of the partition. In the worst case scenario, p′ − 1

windows in a partition belong to one partition, where p′ is the total number of windows
in a partition and 1 is a pivot of the other partition and this yields a cost of p′. There
are several constant operations in the function, which collectively cost c computations.
Operations with constant costs include comparison, increment and assignment. Therefore,
the partitioning process, costs c + lp′ + lp′ + 2p′ + p′. When constants, c, l and 2 are
dropped, the total work done on a partition is 4p′. When a tree has a depth of log p, the
algorithm yields an overall partitioning complexity of O(p log p).

• Merging Final Partitions

In the worst case scenario, there are p = mn total number of leaves. In this case every
window is unique and ends up in its own final partition. This case is practically unlikely to
occur. In such cases there is no merging work done by the union find data structure. The

69

reason is that merging is done if there are more than one window in a partition. When all
windows end up in one leaf, which is another unlikely event, the union-find data structure
does log p amount of work. However, situations that arise during clustering are average
cases between the two extreme cases. Analysis of this algorithm is based on the log p

scenario.

• Overall Time Complexity

There are several constant and linear operations in the algorithm. These operations have
been respectively discussed under getting input and indexing windows and they are: count-
ing sequences, initialisation of memory and other variables, releasing memory, reading se-
quences and indexing windows. The total cost of these operations is collectively assigned
the value, C. Added to the cost p log p from partitioning windows and log p from merging,
the overall complexity becomes C + log p + p log p. Experimental results have shown that
the log p depth is very small and in most cases less than 100. Hence, the dominating term
in complexity is p. Since log p is small, the running time is closer to linear as compared to
the expected logarithmic time.

• Space Complexity

Sequences take up an p = mn amount of space, which remains constant throughout the
algorithm. When p windows are indexed in the sequences, identification information of
the windows is kept in records. Each record has three integer values: sequence index
number, starting position of a window and the partition number to which each window
belongs during the clustering process. The first two values uniquely identify a window.
The amount of space needed to index a windows is 3p. The total space (4p) required is the
sum of space taken up by sequences (p) and space taken up by records, which uniquely
identifies windows (3p). When the constant 4 is dropped, it can be deduced that the space
complexity is linear in the order O(p)

5.3 Parameters Affecting the Performance of the Algorithm

This section discusses how optimal parameter values were experimentally deduced and their ef-
fect on the performance of the algorithm. A series of experiments were conducted to determine
how these factors affect performance of the algorithm with respect to running time, specificity
and sensitivity of generated clusters. Optimum parameter values are points where the algorithm

70

yields best performance. Effects of these parameters on performance are discussed in subsec-
tions that follow. The SANBI benchmarks data set was used to illustrate their effect on the
performance of the algorithm. This data set was chosen because of its highly skewed nature and
which would, therefore, reveal the worst case performance of the algorithm. The size of the data
set is larger enough to stress up the algorithm so that both its weaknesses and strengths can be
revealed and eventually studied.

Factors affecting the performance of the algorithm were identified and parameter values that
enable the algorithm to yield optimal performance were experimentally determined before con-
ducting the final experiments. The parameters identified were window size, overlap size, thresh-
old value, minimum pivot distance between a pair of pivots, pivot selection technique and the
nature of data set used. In addition to pivot selection techniques, the distance function that deter-
mines the level of similarity among sequence windows was found to affect the performance of
the algorithm. As previously discussed in section 5.1.1, the algorithm performs poorly with edit
distance as compared to d2 distance function.

5.3.1 The Size of a Window

The aim of this experiment was to deduce the optimal size of a window (w) and investigate the
effect of different window sizes (l) on performance of the algorithm. Windows of sizes 200, 100
and 50 were used in both the algorithms and wcd, the control algorithm. Threshold values and
pivot distances were adjusted with respect to size of windows. For each window size overlaps
were varied. Window sizes and threshold values were also adjusted in wcd to match those in the
algorithm.

Results show that the size of the window directly affects the running time and the sensitivity
of the algorithm. Larger window sizes improve both the running time and the sensitivity of the
algorithm. Tables 5.1, 5.2 and 5.3 illustrate the effects of size of the window on running time
and sensitivity of the algorithm. It can be deduced from these tables that the running time is
shorter in windows of size 200 as compared to windows of size 100 and 50. When a window
size is larger, a smaller number of windows is generated. Thus the algorithm, does less work and
runs relatively faster as compared to when window sizes are smaller. The sensitivity is improved
because a larger portion of sequences is compared thereby increasing the chance of finding sim-
ilarity between two sequences. Both running time and sensitivity are poorer in windows of size
50 as compared to the other sizes. There is, however, a consensus among researchers to use
windows of size 100 when measuring similarity among sequences [Burke et al. 1999]. Hence,
results that follow are presented and discussed based on windows of size 100. It is reasonable to

71

window size overlap pivot distance threshold running time sensitivity specificity
seconds % %

200 100 200 80 37.20 40 100
200 90 200 80 42.60 45 100
200 80 200 80 46.20 47 100
200 70 200 80 50.40 50 100
200 60 200 80 59.40 53 100
200 50 200 80 67.80 61 100
200 40 200 80 85.20 58 100
200 30 200 80 117.60 68 100
200 20 200 80 168.60 74 100
200 10 200 80 357.00 80 100
200 5 200 80 705.60 83 100

Table 5.1: Algorithm performance on a window of size 200

window size overlap pivot distance threshold running time sensitivity specificity
seconds % %

100 25 144 40 174.00 66 100
100 20 144 40 213.00 70 100
100 15 144 40 288.00 73 100
100 10 144 40 440.40 76 100
100 5 144 40 912.00 79 100

Table 5.2: Algorithm performance on a window of size 100

window size overlap pivot distance threshold running time sensitivity specificity
seconds % %

50 25 50 20 180.00 3 99
50 20 50 20 244.82 4 99
50 15 50 20 316.40 7 99
50 10 50 20 473.34 11 94
50 5 50 20 1003.98 3 89

Table 5.3: Algorithm performance on a window of size 50

use a window size of 100 because some sequences are shorter. Moreover, extending the window
size would have resulted in skipping a large number of sequences during the clustering process.

72

5.3.2 The Overlap Parameter

The aim of this experiment was to deduce the optimal size of the overlap parameter and its effect
on performance of the algorithm. Overlap parameters were varied in a 100 size window while
pivot distance and threshold values were kept constant. Window size and threshold values were
also adjusted to 100 and 40 in wcd to make a meaningful comparison.

As shown in Tables 5.1, 5.2 and 5.3 results reveal that overlap parameters have a great effect
on the performance of the algorithm with respect to the running time and quality of generated
clusters. Memory utilisation of the algorithm is also greatly affected by the size of the over-
lap. These three tables have shown that as the overlap parameter increases, the running time
improves as the sensitivity gets poorer. Larger overlaps result in generation of fewer number of
windows, hence less work is done in the clustering process resulting in shorter running times. A
smaller number of windows implies that fewer comparisons are made among sequences result-
ing in poorer sensitivity. Sensitivity also gets poorer because windows of the control algorithm,
wcd overlap by one. Hence, the algorithm works on less information to measure similarity of
windows, compromising the quality of generated clusters.

5.3.3 The Threshold Value

To determine the optimal threshold value and how it affects the performance of the algorithm, its
values were varied in windows of size 100. Optimal values of the overlap and minimum pivot
distance were kept constant. Window size and threshold values were adjusted in wcd at each run
to match values in the algorithm.

Experimental results have shown that threshold size directly affects the running time and
the sensitivity of the algorithm. It can be deduced that running time of the algorithm generally
reduces as the size of threshold increases as shown in Table 5.4. When threshold size is larger, the
algorithm stops partitioning windows much earlier resulting in premature clusters. This reduces
the amount of work done by the algorithm. However, sensitivity is poorer because the merging
of windows is performed on groups of windows that have not been fully compared. A smaller
threshold size results in overclustering. Legitimate clusters are divided further into smaller sizes,
which lead to the lower sensitivity. The running time increases because the algorithm does more
work. It can be deduced from Table 5.4 that both smaller and larger threshold values negatively
affect the sensitivity of the algorithm. A proper threshold value is required to efficiently cluster
sequences. For purposes of this research, a default threshold value of 40 is used because it is also
used as a default value in prior clustering algorithms such as wcd and d2 cluster algorithms. The

73

threshold value has also proved to produce consistently better results in this algorithm.

window size overlap pivot distance threshold running time sensitivity specificity
seconds % %

100 25 144 5 174.54 39 100
100 25 144 10 174.36 62 100
100 25 144 20 174.18 72 100
100 25 144 30 174.00 69 100
100 25 144 40 174.00 66 100
100 25 144 50 174.34 50 100
100 25 144 60 174.22 18 100
100 25 144 70 174.98 10 100
100 25 144 80 174.92 10 100
100 25 144 90 174.80 3 100

Table 5.4: Effect of the threshold value on performance of the algorithm

5.3.4 Pivot Selection

This experiment aimed at finding an efficient pivot selection technique and the optimal minimum
distance between a pair of selected pivots and how the two factors respectively affect the per-
formance of the algorithm. Pivot selection has a significant impact on the running time and the
sensitivity of the algorithm. Pivot selection affects performance of the algorithm in two ways:
pivot selection criteria and the minimum distance between the first and the second pivot.

Subsections that follow discuss results from the experiments conducted. The proposed pivot
selection techniques are described, then results on the performance of the algorithm are presented
from which the optimal technique is deduced. This is followed by an investigation on the optimal
minimum pivot selection technique and how distance between pairs of pivots affect performance
of the algorithm.

Pivot Selection Criteria

The algorithm works by recursively dividing a data set of sequence windows into two partitions.
Windows are grouped with the pivot to which they are closer. Results used in this section are
generated from a subset data set of the SANBI benchmark sequences. This subset data was found
to clearly illustrate the differences in effects of different pivot selection techniques. It was also
reasonable to run on a smaller data set because some of the pivot selection techniques run in

74

quadratic time, which takes longer on entire 10000 sequences. Windows size of 100 were used
with a threshold size of 40. The overlap parameter values used were 25, 20, 15, 10 and 5. A
minimum pivot distance of 144 was used in the experiment. The first pivot selection technique
was run and the rest were compared to it. The following are the pivot selection techniques
experimented:-

Given X partitions, for every partition Px of size mn, where 0 ≤ x ≤ X , there exists a
window ri ∈ Px, such that 0 ≤ i ≤ mn and mn, the total number of windows in X . Pivots were
chosen as follows:

1. The first pivot selection technique works as follows. Select the first window (ri = 0) ∈ Px

as the first pivot p1. The second pivot p2 is chosen at an interval 1 ≤ i ≤ mn. Pick any
window at this interval whose distance d(p1, ri) ≥ pDistance. Pivot distance (pDistance)

is the minimum value from which the choice of the second pivot begins. If there is no pivot
at a distance greater or equal to pDistance then pick a window with the longest distance in
the partition as p2.

2. In the second technique, select the last window ri = mn in a partition as the first pivot p1.
The second pivot p2 is selected as described in the first technique at an interval 0 ≤ i ≤
mn− 1 such that d(p1, ri) ≥ pDistance.

3. In the third technique, choose pivots as in the first technique. Repeat the process when
resulting partitions are not balanced, for example, when one partition is three times bigger
than the other.

4. In the fourth technique, choose x < mn pivots using technique 1. Pick the first window in
a partition as p1, then define a distance d′ = θ×f , where the threshold value θ is multiplied
by 1 ≤ f ≤ 5. This results in more than two partitions. All windows at distance ≤ d′

are clustered with p1. The process is repeated on the remaining unclustered windows until
there are no more windows left. The result is that all windows are grouped into their initial
clusters. The clustering and pivot selection proceed on the resulting initial clusters using
the first technique.

Experimental Results for Pivot Selection Techniques

Experimental results show that the first pivot selection technique (1) yields better results with
respect to both the running time and quality of clusters as compared to the second (2), third (3)
and fourth (4) techniques. Therefore, the first technique was implemented in the algorithm and

75

all results presented so far are based on it. Results from the other three techniques are presented
and contrasted to the first technique in the discussion that follows.

The second pivot selection technique yields poorer performance results as compared to the
first technique. The results are shown in Table 5.2. In this technique, both the first and second
pivots were randomly chosen. This contributes to the poorer performance achieved when the
technique is used. The reason is that when the choice of the first pivot is fixed, clusters build up
around the first pivot as the pivot distance reduces between subsequent selected pairs of pivots.
This process is scrambled when a different pivot, p1 is picked randomly. This affects the sen-
sitivity because the clusters that were building up around p1 break up and some of which may
never get merged again.

The third pivot selection technique has several shortcomings. It fails to yield results that are
better than those from the first technique. When unbalanced partitions are discovered using the
first technique, the process is repeated with the same technique. These trials are made three times
and the clustering proceeds regardless of whether the balanced partitions were found or not. The
algorithm does more work as it balances partitions, which consequently increases its running
time. However, in most cases the algorithm ends up choosing the same pivots picked in the three
previous attempts. Eventually, the algorithm reduces to the first technique, yet with increased
running time.

Results of the fourth technique are not any better as compared to the first technique. The
technique suffers several setbacks. A shorter distance, for example, d′ = θ × 2 between the two
initial pivots yields smaller clusters. The sizes of resulting clusters are less than ten on average.
In the worst case scenario, where every window is unique, each cluster has a size of one window.
For a larger number of windows, the running time of the algorithm turns to quadratic. On the
contrary, when d′ is large, the technique results in one huge cluster of windows in addition to few
others of sizes less than an average of ten. Further clustering continues using the first technique.

Both the running time and the sensitivity of the first and fourth pivot selection techniques
were compared and contrasted and results are presented in Tables 5.1(a) and 5.1(b). The label
tech.4a in Figure 5.1 represents the experiments using the fourth pivot selection technique where
initial pivots were selected and windows at a distance equal to or greater than twice the threshold
value were clustered. The label tech.4b refer to the experiments as described for label tech.4a

where windows were initially clustered to pivots at a distance three times the threshold value.
Since the distance for the initial pivots is larger, one big cluster and other smaller ones were
generated. This implementation eventually equates to the first pivot selection technique because
the clustering process proceeds on resulting clusters using the first technique. Therefore results

76

of tech.4b are similar to those of the first technique. The running time of tech.4a is close to
quadratic as shown in the graph in Figure 5.1(a) because many smaller clusters are generated on
which further clustering is done.

Pivot Distance

Experiments were conducted to determine the effect of the minimum distance between pairs
of pivots using the first pivot selection technique. Windows size of 100 were used, overlap
parameters took the following values: 25, 20, 15, 10 and 5. A threshold size of 40 was used
and the minimum distance at which pivots are chosen was varied for each overlap. Results
as indicated in Table 5.5 showed that pivot distance directly affects the running time of the
algorithm.

Smaller pivot distances enable the algorithm to choose pivots much quicker as opposed to
larger pivot distances. The algorithm does less work and consequently executes faster. In cases
where the pivot distance is larger, the worst case scenario in searching for pivots occurs. The
algorithm searches for the second pivot up to the last position in the partition. If it does not find
any, it selects a window with the largest distance as the second pivot. This is computationally
expensive. It was assumed that a good minimum pivot distance should be twice the threshold
value (pDistance = 2θ). This assumption was based on the fact that the nearest centre of the
next similarly sized cluster should be at a distance, which is at least twice the radius of the cluster.
The minimum pivot distance is calculated as follows. A square root of the default threshold value
of 40 is approximately 6. This value is multiplied by 2 and squared to get 144. The minimum
pivot distance has not been found to affect the sensitivity of the algorithm.

window size overlap pivot distance threshold running time sensitivity specificity
seconds % %

100 25 80 40 174.78 68 100
100 25 100 40 175.14 69 100
100 25 120 40 173.64 66 100
100 25 140 40 173.64 66 100
100 25 160 40 175.08 67 100
100 25 180 40 247.44 67 100
100 25 200 40 578.58 68 100

Table 5.5: Effect of pivot distance on the performance of the algorithm

77

5.3.5 Effects of Data Set Used

Experiments were conducted with the algorithm on three different data sets, the SANBI bench-
marks, public cotton and Drosophila melanogaster. The aim of the experiments was to deduce the
performance of the algorithm in different data sets. Details of these data sets are found in section
4.3. The type of data set used has a impact on the sensitivity of generated clusters. Similarity
among sequences in the data sets may vary from being balanced to highly skewed. Different
data sets have different proportions and distribution of different types of errors, which basically
define the nature of a data set and also affect performance of the algorithm. Results on the per-
formance of the algorithm with respect to the running time, the sensitivity and specificity on the
three different data sets are presented in Tables 5.2 (section 5.3.1, for the SANBI benchmarks
data set), 5.6 and 5.7.

window size overlap pivot distance threshold running time sensitivity specificity
seconds % %

100 25 144 40 829.20 83 100
100 20 144 40 1043.40 89 100
100 15 144 40 1408.80 83 100
100 10 144 40 2131.80 91 100
100 5 144 40 4525.80 92 100

Table 5.6: Performance of the algorithm on the public cotton data set

window size overlap pivot distance threshold running time sensitivity specificity
seconds % %

100 25 144 40 2332.80 40 100
100 20 144 40 3057.60 51 100
100 15 144 40 4108.20 47 100
100 10 144 40 6061.20 63 100
100 5 144 40 12453.60 65 100

Table 5.7: Performance of the algorithm on the Drosophila melanogaster data set

It can be deduced from the results presented in Tables 5.2, 5.6 and 5.7 that the sensitivity of
the algorithm differs from one data set to another. The algorithm generated clusters of higher
quality on the public cotton data set as compared to the SANBI benchmarks and Drosophila
melanogaster data sets. However, the nature and structure of data sets on which the algorithm

78

performs better has not been experimentally determined. Hence, the extent to which the nature
of a data set affects the running time remains not clear. Further work is recommended in this
area to deduce the nature of a data set on which the algorithm performs optimally with respect to
the running time and the sensitivity of generated clusters. Determining such a data set requires
simulating different types of errors and distributing them differently in data sets on which the
algorithm is tested.

When wcd was run on SANBI benchmarks, Drosophila melanogaster and public cotton data
sets, it took 237.60, 22220.22 and 3238.8 seconds of the running time respectively. Comparing
these running times with a smallest pivot of 5 used in the algorithm, wcd is faster on the SANBI
benchmarks and public cotton data set but slower on Drosophila melanogaster. On bigger data
sets, the algorithm is much faster as compared to wcd, which is one of the major achievements
of this research.

5.4 Performance of the algorithm

The overall performance was determined by the running time of the algorithm and the quality
of generated clusters. Quality of clusters is defined bythe sensitivity and specificity, which are
deduced by comparing clusters generated by the tsi cluster algorithm to those generated by wcd

version 0.2.3.4 algorithm [Hazelhurst 2003]. In addition to measuring quality of clusters, average
running times of the two algorithms were also compared and contrasted with parameters in both
algorithms equally adjusted to achieve a meaningful comparison.

5.4.1 Specificity

Experimental results have shown that specificity of the algorithm on windows of size 100 is
100%. This guarantees that the algorithm clusters together sequences that are part of the same
expressed gene. In other words, it never clusters sequences together that do not belong to the
same cluster. Results have shown that with windows of size 100, changes in sizes of the overlap
parameter, threshold value and pivot distance do not negatively affect specificity of the algorithm
as long as these parameters are equally adjusted in the control algorithm. Tables 5.1 and 5.2 show
a constant specificity of 100% on windows of sizes: 200 and 100, with varied overlap parameter
values. A variation is, however, observed in windows of size 50 as shown in Table 5.3. Since
the specificity of the algorithm is always 100%, in windows of size 100, focus on performance
assessment of the algorithm was placed on the sensitivity and not specificity.

79

5.4.2 Sensitivity

Experimental results have revealed that the sensitivity of the algorithm fluctuates depending on
a data set. This is due to the limitation of the algorithm implementation discussed in section 6.4.
The Sensitivity is highly affected by variations in size of the window, pivot distance, threshold
value and size of the overlap parameter as shown in Tables 5.1, 5.2, 5.3, 5.4 and 5.5.

5.4.3 The Running Time

The running time results captured in Figure 5.3 have shown that the complexity of tsi cluster
algorithm is closer to linear. The mathematically analysed complexity of O(p log p) provides an
upper bound on the running time. Experimental running time results for all overlap parameters
are found in Appendix C. Graph fitting was done using linear and multiple regression to deter-
mine the closest function that defines graph lines at different values of overlap parameters. Linear
regression is a statistical technique that attempts to model relationships between two variables
by fitting a linear equation on the observed data [Sheskin 2004]. Multiple regression is an ex-
tention of this technique where more than two variables are involved in defining the relationship
line. The regression line represents the best prediction of the observed value (the running time)
given the independent value (number of sequences). Standard errors are the standard deviations
of error margins between observed values and the regression line. Equations for graph lines for
the algorithm were closer to the linear function as compared to logarithmic and quadratic func-
tions. The regression standard error margin of linear equations were much smaller as compared
to quadratic and logarithmic equations as shown in Appendix A. The logarithmic function had
the second best graph fit and the quadratic function was last. This showed that the running time
of the algorithm is closer to linear.

A possible reason for the difference between the mathematical analysis and empirical results
is that the algorithm does not get log p depth. The mathematical analysis assumes that a balanced
tree is generated and at most it has a depth of log p. However, reaching this depth means that
each leaf contains exactly one window. This may not be the case because for clustering to
work, more than one window per leaf is required from different sequences. The windows in the
final partitions (leaves) enable the algorithm to successfully cluster sequences. In cases where
all sequences are not similar in a data set, there can still be more than one window from the
same sequence per leaf. Since there are more than one window in leaves of the tree, the depth
of the tree is less than log p. The mathematical analysis, therefore, provides an upper bound
on the running time of the algorithm and the two results do not necessarily contradict. Size

80

of the overlap parameter is found to have an effect on the slope of the graph. Smaller overlap
parameter sizes results in steeper slope while bigger overlap parameter sizes yield slopes, which
are relatively less steep.

5.4.4 Memory Utilisation of the Algorithm

Memory utilisation of the algorithm results as presented in Figure 5.4 shows that bigger over-
lap parameters yield lower memory utilisation while smaller overlap parameters result in higher
memory utilisation. The algorithm generally utilises less amount of memory on overlap param-
eters greater than 15 as compared to wcd. An overlap parameter of 1 is not used in the algorithm
because both the memory requirements and the running time are prohibitive. The difference in
the sensitivity between overlap parameter sizes of 1 and 5 is very small. With a window over-
lap parameter size of 1, the algorithm takes a running time of 60.99 minutes, sensitivity of 81%
and specificity of 100% to cluster the SANBI benchmarks data set. When an overlap parameter
size of 5 is used, the algorithm takes 15.20 minutes, 79% sensitivity and 100% specificity. The
increase of 2% in sensitivity is very small considering the difference of 45.79 minutes in the
running time. Memory requirements increase at a linear rate in both algorithms as the number of
sequences increases. However, the rate is higher in the algorithm as compared to wcd.

5.5 The Triangle Inequality

The triangle inequality was implemented in the algorithm to reduce the number of distance com-
putations and evaluations made during the clustering process. Instead of computing distance
between the two pivots being compared, distances already computed in the previous recursive
call was used to evaluate their level of similarity and partitioned accordingly. This helped to
reduce the number of distance computations made and eventually improve the performance of
the algorithm. This experiment aimed at investigating the extent to which the triangle inequality
holds and whether its application improves performance of the algorithm.

A 1% occurrence of the triangle inequality was found in the SANBI benchmarks, Drosophila
melanogaster, public cotton data sets. There was a 2% occurrence on a subset data set of the
SANBI benchmarks for all trials with different overlap parameter sizes. The SANBI bench-
marks subset data set provided a clear picture of the behaviour of the algorithm with the triangle
inequality implementation. Results of the implementation on the subset data set as shown in Fig-
ure 5.5 revealed an improvement in the sensitivity of the algorithm but an increase in the running

81

Overlap Windows Trials Successes Percentage
%

25 5193 239562 4863 2
20 6427 281642 5952 2
15 8493 416923 8004 2
10 12613 658806 12073 2
5 24987 1508501 24192 2
1 124006 6271853 134926 2

Table 5.8: The triangle inequality success proportions

time. A possible explanation for the increase in running time is that the triangle inequality com-
putation is an expensive operation. The number of times that it successfully holds is smaller as
compared to the total number of trials made. Hence, the cost of computing and deducing the tri-
angle inequality exceeds its benefits. Increase in sensitivity can be explained by the assumption
that the triangle inequality evades occurrence of the algorithm limitation as discussed in chapter
six in the few times that it holds. Table 5.8 illustrates the proportions that the triangle inequality
held on the subset data set of the SANBI benchmarks.

5.6 Summary

This chapter discussed the experimental results. Results on performance of the algorithm with
respect to the running time, memory utilisation, the sensitivity and specificity of generated clus-
ters have been presented in the chapter. Prior to major experiments, preliminary experiments
were conducted to determine parameters that affect performance of the algorithm.

Experimental results showed that the algorithm has a running time closer to linear, which
is less than the mathematically analysed O(p log p) running time. Initially, the algorithm was
designed to use edit distance in measuring levels of similarity among sequence windows. But
since edit distance has a quadratic complexity, it creates a bottleneck in the running time of the
algorithm. As a result, d2 distance function was implemented globally on windows to run in
linear time. To deduce quality of clustering, generated clusters were compared to those of wcd.

The following parameters were found to affect performance of the algorithm: window size,
overlap parameter, threshold value and the type of pivot selection technique used. Larger window
sizes were found to improve both the running time and sensitivity of the algorithm. Larger
overlap parameters yield shorter running times with poorer sensitivity while smaller overlap

82

parameters results in longer running time but improves sensitivity of the algorithm. Both bigger
and smaller threshold values result in shorter running time with poorer sensitivity. The type
of pivot selection technique used highly affects running time and quality of clustering of the
algorithm. The first pivot selection technique works by selecting the first window in a partition
as the first pivot and sequentially searches for the second pivot. The second pivot is a window
found at distance greater or equal to the minimum pivot distance from the first pivot. This
technique works more efficiently than all the other techniques attempted. The minimum distance
at which a second pivot is selected has a tremendous effect on the running time of the algorithm
but has been found to have no effect on the sensitivity of the algorithm.

The triangle inequality was tested in order to determine whether it holds and the extent to
which it can reduce the total number of distance computations and evaluations made during clus-
tering in order to improve running time of the algorithm. Results have revealed that its success
proportion over the total number of trials made is smaller. As such the cost of computation is
greater than the intended benefit resulting in increased running times. An improvement in sen-
sitivity was noted with the triangle inequality implementation. Possibly the triangle inequality
evades the algorithm limitation as discussed in chapter six.

83

25 20 15 10 5 1

overlaps

ru
nn

in
g

tim
e

(m
in

ut
es

)

0
10

20
30

40
50

tech.1

tech.4a

tech.4b

(a) Running Time

25 20 15 10 5 1

overlaps

se
ns

iti
vi

ty
 (

%
)

0
20

40
60

80
10

0
12

0 tech.1

tech.4a

tech.4b

(b) Sensitivity

Figure 5.1: Comparing running time and sensitivity of pivot selection techniques one and four

84

5 10 15 20 25

0
1

2
3

4

overlaps

ru
nn

in
g

tim
e

(m
in

ut
es

)

technique 1

technique 2

(a) Running Time

5 10 15 20 25

0
20

40
60

80
10

0

overlaps

se
ns

iti
vi

ty
 (

%
)

tech. 1

tech. 2

(b) Sensitivity

Figure 5.2: Comparing running time and sensitivity of pivot selection techniques one and two

85

20000 40000 60000 80000 100000 120000

0
10

0
20

0
30

0
40

0
50

0
60

0

sequences

ru
nn

in
g

tim
e

(m
in

ut
es

)

wcd

overlap 5

overlap 10

overlap 15

overlap 20

overlap 25

Figure 5.3: An O(p log p) running time of the algorithm

20000 40000 60000 80000 100000 120000

0
20

40
60

80
10

0

sequences

m
em

or
y

ut
ili

sa
tio

n
(%

 o
f 1

G
b)

wcd

overlap 5

overlap 10

overlap 15

overlap 20

overlap 25

overlap 1

Figure 5.4: Memory utilisation of the algorithm

86

5 10 15 20 25

0
5

10
15

20

overlaps

ru
nn

in
g

tim
e

(m
in

ut
es

)

normal

triangle inequality

(a) Running Time

25 20 15 10 5 1

overlaps

se
ns

iti
vi

ty
 (

%
)

0
20

40
60

80
10

0
12

0

normal

triangle inequality

(b) Sensitivity

Figure 5.5: Comparing running time and sensitivity of the triangle inequality implementation

87

Chapter 6

Discussion

6.1 Introduction

This chapter analyses the overall results with respect to the two research questions. Results
show that the algorithm achieves 100% specificity but fluctuates in its sensitivity. This is due
to the fundamental limitation in the design of the algorithm. The focus of this chapter is on the
fundamental limitation of the algorithm and various attempts made to solve it. It is hoped that
based on this discussion, further work can be done to solve the limitation.

In spite this fundamental limitation, the implementation of this algorithm positively con-
tributes to the EST clustering field as discussed in section 6.2. Overall findings with respect to
the research questions are presented in section 6.3. The fundamental limitation of the algorithm
is explored in section 6.4 and its possible solutions in section 6.5. The chapter is summarised in
section 6.6.

6.2 Contribution of the Research

An experimentally deduced running time closer to linear is one of the major contributions of
this research to the field of EST clustering. Although this running time does not make much
difference in smaller data sets, it does on bigger data sets where efficiency is crucial. Its running
time is much faster than what quadratic algorithms can achieve on bigger data sets. This is
important considering the increase in the number of ESTs being sequenced and deposited in
public databases. Efficient EST clustering of bigger data sets implies efficiency in identification
and discovery of expressed genes. Consequently, this will facilitate efficiency in gene expression
studies, disease diagnostics, drug discovery, genetic engineering and many other areas that rely

88

on the discovery of expressed genes.
The approach taken by this research in clustering ESTs, where EST sequence windows are

mapped into a pseudometric space and clustered by recursively partitioning the space into two
has never been applied in any research before. Therefore, this research opens up a new way of
clustering from which other techniques can be developed. Specific to clustering in pseudometric
space, the triangle inequality has been examined and results reveal that it holds in rare cases.
The cost-benefit analysis of implementing the triangle inequality in clustering is very low. This
is one of the contributions of this research since no work has been done before to investigate the
application of the triangle inequality in clustering.

6.3 Answering the Research Questions

The two research questions that rose from the implementation of the algorithm are:-

1. Can a tree-structured index algorithm cluster ESTs in O(p log p) running time?

2. Can a tree-structured index algorithm successfully cluster ESTs in a pseudometric space?

In addition to these two research questions, this work was set to investigate the extent to
which the triangle inequality holds during clustering. Usage of the triangle inequality properties
on sequence distance measures during clustering was expected to assist in reducing distance
computations made and hence, speed up the clustering process.

6.3.1 The First Research Question

The need to develop a new algorithm for EST clustering rose because of the prohibitive quadratic
running time. The tsi cluster algorithm was developed to run in O(p log p). Experimental results
have shown that the running time of the algorithm is closer to linear as shown in Figure 5.3. This
running time is an achievement in the EST clustering field especially with the increase in the
number of ESTs being sequenced and deposited in public databases. Although running time of
the algorithm is slower on smaller data sets as compared to wcd, there is a considerable difference
on bigger data sets for all window overlap parameter sizes. High quality clusters are achieved
on bigger data sets within a relatively shorter running time as compared to wcd even with the
smallest overlap parameter.

89

6.3.2 The Second Research Question

Results have shown that the tsi cluster algorithm successfully clusters ESTs in a running time
closer linear. To achieve optimal results during clustering, recommended parameter values have
to be used. The algorithm runs efficiently with windows of size 100, threshold distance of 40
and minimum pivot distance of 144. Window overlap parameter values can be varied over 25,
20, 15, 10 and 5 depending on the quality of clusters required.

All experiments revealed that the algorithm achieves 100% specificity but fluctuates in sensi-
tivity depending on the data set. This is an assurance that the algorithm always correctly clusters
pairs of sequences. However, the fluctuation in sensitivity suggests that the algorithm sometimes
fails to put together sequences that belong to the same cluster. This is explained by the major
limitation of the algorithm explored in the discussion that follows.

6.4 The Fundamental Limitation of the Algorithm

The principle based on which this algorithm is designed partly contributes to the fundamental
limitation of the algorithm. The algorithm divides sequences into overlapping windows. Two
pivots are selected from among the windows. All the windows are compared to the two pivots
and grouped with either of the pivots depending on their proximity. This process recursively
continues until a threshold point is reached or there are no more windows left. Two scenarios are
presented to illustrate the occurrence of the limitation during clustering. Consider the following
first scenario in Figure 6.1:-

x y

a b

200

10

115

95

120

130

Figure 6.1: First scenario of the limitation of the algorithm

90

Let x and y be pivots selected in a current partition, Pi. Let a and b, be windows at positions
j1 and j2 from two different sequences, where (j2 − j1) > 1. This implies that the two windows
are not adjacent to each other in the partition. If the windows have the following distances
for example: d(x, y) = 200, d(x, a) = 115, d(y, a) = 120, d(x, b) = 130, d(y, b) = 95,
d(a, b) = 10. Let the clustering threshold distance between windows, θ = 40. Notice that all
distances are greater than the threshold except for d(a, b).

Windows a and b are required to be partitioned with either pivot x or y. However, the distance
between the two windows is less than the threshold value, d(a, b) < θ. This implies that the two
windows are similar and require to be partitioned to the same pivot. However, since d(x, a) <

d(y, a), window a is partitioned with pivot x. Similarly, since d(y, b) < d(x, b), window b is
partitioned with pivot y. The two windows part and never get compared again throughout the
partitioning process. They eventually end up in two different clusters after merging if they are
the only related windows between the two respective sequences or clusters. The only way that
sequences for the two windows can get merged into the same cluster is when there exists another
window w in the same leaf with other windows from the two sequences. However, there are
situations when such a window does not exist, thereby leaving the two sequences not clustered
together. This is a bigger problem when transitivity of other sequences and clusters rely on the
relationship of the two windows. It is not only the two sequences that fail to get merged, but
many others that rely on the resulting transitivity.

The second scenario of the limitation is shown in Figure 6.2. Let x and y be pivots in the
current partition from two different sequences and a be a window to be partitioned with either
pivot x or y. Let the distances among the windows for example, be d(x, y) = 45, d(x, a) = 25

and d(y, a) = 30 where the threshold distance θ = 40. It can be observed from this picture that
distances d(x, a) and d(y, a) are less than the given threshold θ. Hence, all three windows be-
long to the same partition. However, since d(x, a) < d(y, a), window a is partitioned with pivot
x. Therefore, the two windows part instead of being eventually partitioned together. Other se-
quences or clusters cannot be merged if their relationship was based on the transitivity generated
by the two windows. The scenario in Figure 6.2 occurs when the minimum distance between
two pivots in a partition is much closer to the threshold value and in relatively smaller clusters.

With this limitation, a pair of sequences belonging to the same cluster may fail to get clustered
together if it encounters such a scenario. When two sequences have a number of similar pairs
of windows, this limitation can be avoided because there are several other chances of getting
windows from the two sequences compared and partitioned together in the clustering process.
However, when there is only one pair of similar windows between the two sequences, once

91

x y

a

45

25 30

Figure 6.2: Second scenario of the limitation of the algorithm

this scenario occurs, the two sequences do not have another chance of being clustered together.
Merging clusters based on transitivity obtained from the relationship of the two sequences fails.
This deteriorates the sensitivity of the algorithm as seen in the results. Several attempts have
been implemented to resolve this limitation and are discussed in the section that follows.

6.5 Possible Solutions to the Limitation

The first scenario of the limitation, shown in Figure 6.1, is difficult and computationally expen-
sive to detect and resolve. In a partition, one window is compared and grouped to either of the
two pivots at a time. Let such a window that is being partitioned be window a. The most feasible
way to detect this scenario is to compare all the remaining windows in a partition to window a

in order to find other similar windows. Then, compare window a to either of the two pivots and
partition all the windows similar to window a to the pivot to which window a is closer. This has
to be done for every window being partitioned. Hence, it is very expensive on larger partitions.

A second scenario of the limitation, shown in Figure 6.2, can be handled easily in smaller
partitions of sizes less than, or equal to three. The algorithm drops pivots x and y and picks a as
the only pivot, when the distance to both pivots x and y from a is less than, or equal to θ. Only
one pivot, a is used to avoid this situation reoccurring. This technique was implemented and has
several setbacks. The frequency and size of clusters in which this limitation occurs is not yet
known. This leads to two major problems when sizes of partitions where this scenario occurs
is greater than three. Transitivity is lost between windows that are partitioned with window
a and those which are not partitioned with window a. The algorithm is reduced to quadratic
when this scenario occurs frequently and in larger partitions, making the running time extremely

92

prohibitive.

x y

z

v

d(x,y)

d(z,v)

d(x,v)

d(y,v)

d(x,z)

Figure 6.3: First possible solution to the limitation

Two other possible techniques were attempted to resolve this limitation as shown in Figures
6.1 and 6.2. The first approach shown in Figure 6.3 is to choose more than two pivots, x, y, z

and v at distances greater than the pivot distance (pDistance), d(x, y), d(x, z), d(x, v), d(y, z),
d(y, v) and d(z, v) ≥ pDistance and recursively cluster from those pivots. It is feasible to
choose two pivots x and y at d(x, y) ≥ pDistance apart. However, to get a third pivot z, at
pDistance apart from both x and y is computationally expensive. Such a computation gets worse
if the number of pivots is greater than three. Choice of pivots and partitioning of windows become
computationally expensive because more distance computations are required. The approach of
having more than two pivots cannot resolve the limitation as shown in Figure 6.2, because when
there are three windows only, the problem returns to its initial state.

The second possible solution shown in Figure 6.4 uses more than one window to represent a
pivot. In this case, a pivot becomes an area instead of a single point. As previously discussed,
a window is denoted wx,x′ , where x is an index position for the sequence and x′ is the starting
position of a window. Indices of the window wx,x′ are stored in a record, which is denoted rj ,
where j is a position in the record array. During the clustering process, the algorithm sequentially
accesses the record from which it indexes the windows.

In this possible solution, more than two windows (in the records array) are selected from the
same sequence representing a pivot, p1 = {rj1 , rj2 , rj3} and the same number of windows from
another sequence representing pivot two, p2 = {rj10 , rj11 , rj12}, where j1, j2... are positions of
window records in a partition. In Figure 6.4, r100, r101, r102 and r103 are examples of windows
from different sequences. Windows in a pivot area are from the same sequence and they are
therefore members of the same cluster. A window to be partitioned is compared to all the win-

93

r1

r3r2

r4

r10

r11 r12

r13

r101

r100

r102

r103

p1 p2

windows to be

partitioned

pivot

area

pivot area

Figure 6.4: Second possible solution to the limitation

dows in p1 and p2. For each pivot, a minimum distance is used to determine where to partition
a window. For example, window r102 is compared to all windows in pivot p1. The distance be-
tween r102 and p1 is the minimum distance between r102 and any of the windows representing p1.
The same applies to p2. The two minimum distances to p1 and p2 are compared and window r102

is partitioned with the pivot whose minimum distance is smaller.
The approach, however, has setbacks. Partitioning of windows becomes expensive because

a window requiring to be partitioned is compared to more windows representing a pivot. In this
example, eight distance computations are made to partition r102, which is extremely expensive
in bigger data sets. The approach does not resolve the scenario in Figure 6.2 when only three
windows remain because the algorithm is forced to define only two pivots to partition the third
window.

Therefore, within these limitations, the algorithm successfully clusters expressed sequence
tags. The type of user needs and the levels of sensitivity required will dictate when to use this
algorithm. Nevertheless, further work is required to resolve this limitation so that the algorithm
can be efficiently and fully applied in all types of data sets.

94

6.6 Summary

This research has come up with a tree-structured index algorithm and it clusters ESTs in a running
time closer to linear. The running time has been analysed both mathematically and empirically.
The mathematical analysis showed that the algorithm has a logarithmic time complexity, which
is an upper bound on the running of the algorithm. The clustering quality of the algorithm is
100% specific but fluctuates in its sensitivity. The poorer sensitivity is explained by the funda-
mental limitation of the algorithm where the algorithm fails to place similar windows in the same
partition. Several attempts have been made to resolve this limitation. The limitation remains un-
resolved and further work is recommended to resolve it. A running time closer to linear of this
algorithm is a remarkable achievement contributed to the EST clustering field. The algorithm can
be used for preclustering, or related purposes depending on user requirements. Another impor-
tant outcome is the finding that the triangle inequality applies during clustering, but only in rare
cases. The propotion of its occurrence is very small. This negatively contributes to the running
time of the algorithm.

95

Chapter 7

Conclusion

7.1 Introduction

This chapter summarises the research work and it covers all major issues discussed in previous
chapters. Some of the major issues are the research problem, motivation and importance of the
research, research questions and how they have been answered, prior work in EST clustering,
the tsi cluster algorithm developed in this research, tests and results found, contribution of this
research and further work.

The chapter is divided into six sections. It begins with a summary on the research problem
in section 7.2. The same section summarises motivation and importance of the research. The
section is followed by a summary on prior work in section 7.3 where an outline of algorithms
previously developed is made. The algorithm is summarised in section 7.4 where research ques-
tions on the algorithm are also outlined. A summary on findings of this research and limitations
of the algorithm are made in section 7.5. Contribution of this research and further work is sum-
marised in the last section.

7.2 Research Problem

The aim of this research was to develop an algorithm that can efficiently cluster EST in O(p log p)

running time. The EST clustering problem is complex because ESTs from different mRNA are
mixed up, they are redundant and erroneous. They require to be clustered in huge amounts to
achieve meaningful results. The overall goal of solving this problem is to identify expressed gene
sequences in an organism. Knowledge of these expressed genes is useful for: disease diagnostics,
drug design, microarray design, genetic engineering and many others.

96

mRNA is a direct gene transcript. It comprises a complete gene coding sequence. It is reverse
transcribed into cDNA because cDNA is double stranded and stable for experimental studies.
The reverse transcription of mRNA into cDNA results in redundant, erroneous and mixed up bits
and pieces known as ESTs. The complete reverse transcribed cDNA represents expressed genes
in cells of an organism. The problem, however, is to put these bits and pieces back together in
their original order to form a complete cDNA, which eventually reveal expressed gene sequence.

The EST clustering problem is to group these mixed, erroneous and redundant cDNA frag-
ments into groups representing different genes from which they originate. After this step, grouped
ESTs are joined back into their original order to form full length cDNA more efficiently. Com-
putationally, EST clustering is a graph problem where ESTs are represented as nodes and the
level of similarity between pairs of ESTs are edges. The clustering problem is to find a path in a
connected graph that passes through nodes exactly once, where each edge in the graph is less or
equal to a defined threshold. Quadratic algorithms achieve this by pairwise distances computa-
tions for each node to all the nodes. This is computationally expensive and was one of the major
motivations for this research. The idea in this research was to come up with an algorithm that
could do the clustering more efficiently in a pseudometric space.

It is important that ESTs are clustered efficiently to speed up gene discovery and all areas that
rely on it such as genetic engineering, disease diagnostics, drug discovery and gene expression
studies.

7.3 Prior Work

A number of algorithms have been developed for the purpose of EST clustering. Most of the
algorithms developed so far run in quadratic time and just a few are outlined. Burke et al. [1999]
developed d2 cluster algorithm, which runs in quadratic time. Each sequence begins in its own
clusters. Then, each sequence is compared to the rest in a pairwise manner and merged if a level
of similarity is met. Hazelhurst [2003] developed another quadratic algorithm known as wcd.
The algorithm works like d2 cluster except that it employs heuristics to reduce distance compu-
tations and sequence compression techniques to reduce memory utilisation. The algorithm was
parallelised by Ranchod and Hazelhust [2005] to perform clustering on a number of computers
simultaneously to improve its running time. A suffix array algorithm for EST clustering that runs
in subquadratic time was developed by Malde et al. [2003]. All these algorithms were developed
in attempt to improve clustering efficiency and this research is part of the same initiative.

97

7.4 The Algorithm

The prohibitive quadratic clustering running time largely motivated this research and the devel-
opment of the tsi cluster algorithm. The algorithm was developed to efficiently cluster ESTs in
logarithmic running time in a pseudometric space. It is designed to cluster ESTs by dividing
them into overlapping windows. To evade the quadratic complexity, two windows are selected as
pivots and the rest of the windows are divided into two groups depending on how close they are
to either of the two pivots. This process recursively continues until a threshold point is reached
or there are no more windows to partition. Sequences that end up having windows in the same
partition are merged into clusters.

The algorithm performs optimally with windows of size 100 nucleotides, a threshold of size
40 and overlap parameter values varying between 5 to 25. A minimum pivot distance of 144 is
used which is approximately twice the root of threshold distance squared. The d2 distance func-
tion is used to measure the level of similarity among windows. The function was implemented
to run in linear time, which successfully contributes to the efficiency of the algorithm. Pivot
selection is another crucial factor that affects the performance of the algorithm. Pivots are recur-
sively selected by picking a window at the first position in a partition and the second window at
a distance less or equal to the minimum pivot distance from the first pivot. Implementation of
the algorithm in such a way initiated research questions, which were answered in determining
performance of the algorithm with respect to running time and quality of generated clusters.

The first question was whether the tsi cluster algorithm clusters ESTs in logarithmic running
time. This question was more concerned with time complexity and running time of the algorithm.
The question was important because one of the goals of the research was to improve the quadratic
complexity in clustering ESTs. The second question asked whether the algorithm successfully
clusters ESTs in a pseudometric space. This question focused on quality of generated clusters
with respect to sensitivity and specificity. Under this question best parameters that yield optimal
performance had to be experimentally defined. The research also investigated whether the tri-
angle inequality can be used to reduce distance computations and evaluations during clustering.
Answers to these questions are summarised in section 7.5 based on experiments conducted and
analysis of results found.

98

7.5 Results and Limitations

Experimental results showed that the algorithm has a running time closer to linear. The loga-
rithmic running time, which was deduced through the computational analysis provides an upper
bound on this running time. This is because the computational analysis provides an upper bound
on the running time. The slope of the running time graph varied depending on the size of the
overlap parameter. The running time of this algorithm was compared to wcd – a quadratic algo-
rithm and results showed that the quadratic algorithm runs relatively faster on smaller data sets
but slower on bigger data sets. The running time of the algorithm was highly affected by param-
eters such as window size, overlap parameter, threshold value and the minimum pivot distance.
The algorithm runs faster with larger window sizes, overlap parameters, threshold sizes and with
shorter minimum pivot distances. When window sizes and overlap parameters are larger, few
windows are generated which eventually causes the algorithm to do less work. Larger threshold
sizes enable the algorithm to run faster because the clustering process stops earlier as compared
to smaller threshold sizes. This is because the algorithm does less work and executes quicker.
Smaller minimum pivot distance allows the algorithm to choose pivots much quicker causing
the algorithm to do less work and execute faster. These parameters have different effects on the
quality of clustering, which is the next issue of the summary.

The algorithm achieves a 100% specificity on windows of size 100 for different threshold
values, overlap parameters and minimum pivot distance. Sensitivity of the algorithm highly de-
pends on these parameters. In most cases the algorithm fails to get a 100% sensitivity. However,
results have shown that sensitivity improves as window size and overlap parameter value de-
creases. The algorithms performs optimally with windows of size 100, a threshold size of 40
and a minimum pivot distance of 144. Overlaps can be varied over values: 25, 20, 15, 10 and 5.
Larger overlap parameters yield lower quality clusters with shorter running times while smaller
overlap parameters results in higher quality clusters with longer running time.

The algorithm guarantees that when sequences are clustered together, they indeed originated
from the same gene. However, it does not guarantee that two sequences are not similar when
they are not clustered together. This is a major limitation of the algorithm. The limitation occurs
when a pair of similar windows from two different sequences get partitioned to two different
pivots. Consequently transitivity is lost if the pair of windows is the only point of similarity
between two sequences, thereby compromising sensitivity of the algorithm.

The proportion of time that the triangle inequality holds in the algorithm is very small. The
triangle inequality holds about 1% only of the execution time on the SANBI benchmarks data
set. The running time costs of implementing the triangle inequality is very high as compared to

99

the improvement it achieves in the quality of generated clusters.

7.6 Research Contribution and Further Work

This research has successfully developed an EST clustering algorithm that runs in time closer
to linear. The algorithm is faster as compared to the quadratic running time on bigger data sets,
which was one of the main goals of this work and has been, therefore, successfully achieved. In
cases where the algorithm fails to achieve a 100% sensitivity, it is recommended that the algo-
rithm be used for preclustering purposes. This is beneficial on bigger data sets where quadratic
algorithms could take prohibitively longer time to cluster. This will eventually improve EST
clustering and speed up gene discovery and all areas dependent on it.

Groundbreaking work on the triangle inequality implementation has been done which is one
of the major contribution of the research since no studies have been done before in this area.
The research has found that implementation of the triangle inequality in EST clustering does not
remarkably improve performance of the algorithm.

More work is also recommended to investigate use of the triangle inequality properties in
EST clustering. In spite of the fact that the triangle inequality did not yield positive results, this
research does not rule out its possible use in clustering. It may work in other implementations.

Further work is recommended to resolve the limitation of the algorithm so that the efficient
running time of the algorithm is fully utilised in clustering different types of data sets.

Further work is recommended to determine the nature of data sets on which the algorithm
performs better with respect to running time and sensitivity. It has been deduced in this research
that the performance of the algorithm differs from one data set to another. Details of the nature of
a data set on which the algorithm performs optimally were not explored. It is important to have
such details in order to make informed decisions on what type of data sets to use this algorithm
in order to achieve quality results. This is also useful on improving the performance of the
algorithm on all types of data sets.

100

References

[Adams et al. 1991] M.D. Adams, J.M. Kelley, J.D. Gocayne, M. Dubnick, M.H. Polymeropou-
los, H. Xiao, C.R. Merril, A. Wu, B. Olde, R.F. Moreno, A.R. Kerlavage, W.R. McCombie,
and J.C. Venter. Complementary DNA Sequencing: Expressed Sequenced Tags and Hu-
man Genome Project. Science, pages 1651 – 1656, June 1991.

[Burke et al. 1999] J. Burke, D. Davison, and W. Hide. d2 cluster: A Validated Method for
Clustering EST and Full–Length cDNA Sequences. Genome Research, 9(11):1135 – 1142,
1999.

[Bustos et al. 2003] B. Bustos, G. Navarro, and E. Chavez. Pivot Selection for Proximity
Searching in Metric Spaces. submitted to Elsevier Science (unpublished), 18 March 2003.

[Cameron et al. 2004] M. Cameron, H.E. Williams, and A. Cannane. Improved Gapped Align-
ment in BLAST. IEEE Transactions on Computational Biology and Bioinformatics,
1(3):116 – 204, July – September 2004.

[Carpenter et al. 2002] J.E. Carpenter, A. Christoffels, Y. Weinbach, and W.A. Hide. Assess-
ment of the Parallelisation approach of d2-cluster for High-Performance Sequence Clus-
tering. Journal of Computational Chemistry, 23:1–3, 2002.

[Chavez et al. 2001] E. Chavez, G. Navarro, R. Baeza-Yates, and J.L. Marroquin. Searching in
Metric Spaces. ACM Computing Surveys, 33(3):273 – 321, 2001.

[Cohen 2004] J. Cohen. Bioinformatics – An Introduction for Computer Scientists. ACM Com-

puting Surveys, 36(2):122 – 158, June 2004.

[Davison 2001] D.B. Davison. Brute force estimation of the number of human genes using EST
clustering as a measure. IBM Journal, 45(3), May 2001.

101

[Giladi et al. 2002] E. Giladi, M.G. Walker, J.Z. Wang, and W. Volkmuth. SST: an algorithm for
finding near-exact sequence matches in time proportional to the logarithm of the database
size. Bioinformatics, 18(6):873–879, 2002.

[Gusfield 1997] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science

and Computational Biology. The Press Syndicate of the University of Cambridge, 1997.

[Hazelhurst 2003] S. Hazelhurst. The wcd manual: EST clustering using d2. The University of
the Witwatersrand, July 2003.

[Hazelhurst 2004] S. Hazelhurst. An efficient implementation of the d2 distance function for
EST clustering: preliminary investigations. Proceedings of SAICSIT 2004, pages 229 –
233, 2004.

[Hide et al. 1999] W. Hide, R. Miller, A. Ptitsyn, J. Kelso, C. Gopallakrishnan, and A. Christof-
fels. EST Clustering Tutorial. South African National Bioinformatics Institute, 1999.
Retrieved February 8, 2006, from http://www.sanbi.ac.za/stack

[Hunter 1991] L. Hunter. Artificial Intelligence and Molecular Biology. AI Magazine, 11(5):27
– 36, January 1991.

[Jain et al. 1999] A.K. Jain, M.N. Murty, and P.J. Flynn. Data Clustering: A Review. ACM

Computing Surveys, 31(3), September 1999.

[Kalyanaraman et al. 2003] A. Kalyanaraman, S. Aluru, and V. Bredel. Space and Time Effi-
ciency Parallel Algorithms and Software for EST Clustering. IEEE Transactions on Par-

allel and Distributed Systems, 14(12):1209 – 1221, December 2003.

[Kalyanaraman et al. 2005] A. Kalyanaraman, S. Aluru, and S. Kothari. Parallel EST Clustering
(unpublished). Computer Science, Iowa State University, 2005.

[Malde et al. 2003] K. Malde, E. Coward, and I. Johassen. Fast sequence clustering using a
suffix array algorithm. Bioinformatics, 19(10):1221 – 1226, January 2003.

[Malde 2005] K. Malde. Algorithms for the Analysis of Expressed Sequenced Tags. PhD thesis,
University of Bergen, Department of Informatics, 2005.

[Marques et al. 2005] A.C. Marques, I. Dupanloup, A. Vinckenbosch, N. Reymond, and
H. Kaessmann. Emergence of Young Human Genes after a Burst of Retroposition in
Primates. PLOS Biology, 3(11):1970–1979, November 2005.

102

http://www.sanbi.ac.za/stack

[National Health Museum 2006] National Health Museum. Graphics Gallery, National Health

Museum Resource Center, April 2006. Retrieved 21 April 2006, from http://www.

accessexcellence.org/RC/VL/GG

[NCBI] NCBI. dbEST: database of Expressed Sequenced Tags. Retrieved 16 Nov, 2007: 9.35
am, from http://www.ncbi.nlm.nih.gov/dbEST/dbEST summary.html

[NIH 2007] NIH. Mamalian Gene Collection. National Institute of Health Website, 2007. Re-
trieved November 5, 2007, from http://mgc.nci.nih.gov/

[Ptitsyn and Hide 2005] A. Ptitsyn and W. Hide. CLU: A new algorithm for EST clustering.
BMC Bioinformatics, 6(2), July 2005.

[Ptitsyn 2000] A. Ptitsyn. A New Algorithm for EST clustering. PhD thesis, University of the
Western Cape, April 2000.

[Quinn 1987] M.J. Quinn. Designing Efficient Algorithms for Parallel Processing, chapter 8,
pages 165–170. McGraw-Hill Computer Science Series, 1987.

[Ranchod and Hazelhust 2005] P. Ranchod and S. Hazelhust. A Distributed System for EST

Clustering. Technical report, School of Computer Science, University of the Witwater-
srand, 2005.

[Ranchod 2005] P. Ranchod. Parallelisation of EST Clustering. Master’s thesis, University of
the Witwatersrand, School of Computer Science, 2005.

[Schuler 1997] G.D. Schuler. Pieces of the puzzle: expressed sequence tags and the catalog of
human genes. Journal of Molecular Medicine, 75:694 – 698, 1997.

[Sheskin 2004] D.J. Sheskin. Handbook of Parametric and nonparametric statistical proce-

dures. Chapman and Hall/CRC, third edition, 2004.

[Shi et al. 2006] Y. Shi, S. Zhu, X. Mao, J. Feng, Y. Qin, L. Zhang, J. Cheng, Z. Wei, L. Wang,
and Y. Zhu. Transcriptome Profiling, Molecular Biological, and Physiological Studies
Reveal a Major Role for Ethylene in Cotton Fiber Cell Elongation. Plant Cell, 18:661–
664, February 2006.

[Trivedi et al. 2002] N. Trivedi, J. Bischof, S. Davis, K. Pedretti, T.E. Scheetz, T.A. Braun, C.A.
Roberts, N.L. Robinson, V.C. Sheffield, M.B. Soares, and T.L. Casavant. Parallel creation

103

http://www.accessexcellence.org/RC/VL/GG
http://www.accessexcellence.org/RC/VL/GG
http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html
http://mgc.nci.nih.gov/

of non-redundant gene indices from partial mRNA transcript. Future Generation Computer

Systems, 18:863 – 870, 2002.

[Trivedi et al. 2003] N. Trivedi, K.T. Pedretti, Braun T.A., T.E. Scheetz, and T.L. Casavant. Al-

ternative Parallelization Strategies in EST Clustering, volume 2763/9743, pages pp.384–
393. Springer-Verlag Berline Heidelberg, 2003.

[Wheeler et al. 2003] D.L. Wheeler, D.M. Church, S. Federhen, A.E. Lash, T.L. Madden, J.U.
Pontius, G.D. Schuler, L.M. Schriml, E. Sequeira, T.A. Tatusova, and L. Wagner. Database
resource of the National Center for Biotechnology. Nucleic Acids Research, 31(1), 2003.

[Yona 1999] G. Yona. Methods of global organisation of all known protein sequences. PhD
thesis, Computer Science, Hebrew University, May 1999.

[Zhu et al. 2003] W. Zhu, S.D. Schueter, and V. Brendel. Refined Annotation of the Arabidopsis
Genome by Complete Expressed Tag Mapping. Plant Physiology, 132:649 – 484, June
2003.

[Zimmermann 2003] J. Zimmermann. Suitability Comparison of String Distance Measures for

EST Clustering. Master’s thesis, ETH Zurich, Dept. of Computer Science, 2003.

104

Appendix A

Graph Line Fittings

Overlaps / Equations 5 10 15 20 25
linear error 7.08 2.42 1.12 0.61 0.49
logarithm errors 7.12 2.45 1.13 0.65 0.51
quadratic errors 7.52 2.57 1.08 0.66 0.32

Table A.1: Regression standard errors

105

Appendix B

Running Time Results

file name overlap 1 overlap 2 overlap 3 overlap 4 overlap 6
C01 5 10 15 20 25
mean 22.50 11.26 7.20 5.50 4.30
std 0.277 0.147 0.124 .08 0,043
C02
mean 47.79 24.50 16.55 11.98 9.127
std 0.492 0.232 0.007 0.053 0.101
C03
mean 76.36 36.685 22.848 17.700 14.77
std 0.511 0.502 0.197 0.0701 0.070
C04
mean 98.634 48.450 32.658 23.860 19.171
std 0.6837 0.557 0.360 0.268 0.261
C05
mean 124.51 62.080 42.217 31.977 23.982
std 1.4846 0.6940 0.5572 0.1675 0.2607

Table B.1: Running times mean and standard deviation results

106

Running Time Results (Continued)

file name overlap 1 overlap 2 overlap 3 overlap 4 overlap 6
C06
mean 156.140 74.430 49.561 36.462 29.410
std 1.930 0.9768 0.6361 0.3218 0.1585
C07
mean 178.243 85.849 57.273 43.113 34.476
std 1.531 0.887 0.5140 0.2461 0.3863
C08
mean 227.82 106.915 68.833 49.971 39.614
std 9.630 1.5641 0.7166 0.5232 0.4495
C10
mean 263.679 126.643 85.079 61.931 51.044
std 1.5079 1.7886 0.992 0.5301 0.704

Table B.2: Running times mean and standard deviation results

107

Appendix C

Running Time Data

These are running time results for ten experiments for different overlap parameter values. Mean
and standard deviation (std) are shown for each overlap parameter.

Data
set
c01 overlap5 overlap10 overlap15 overlap20 overlap25

22.7500 11.0600 7.1700 5.5900 4.3100
22.5100 11.2100 7.0600 5.4600 4.3100
22.7100 11.2100 7.0600 5.5600 4.2400
22.1900 11.4700 7.1500 5.3800 4.2900
22.2400 11.1700 7.1500 5.4500 4.3700
23.0000 11.2900 7.1800 5.3900 4.2500
22.8900 11.0300 7.4900 5.4700 4.3100
22.1800 11.3700 7.1700 5.6000 4.3500
22.5400 11.4700 7.2200 5.5500 4.2600
22.4100 11.3600 7.3500 5.3800 4.2400

mean 22.5000 11.2600 7.2000 5.5000 4.3000
std 0.2769 0.1473 0.1239 0.0820 0.0431

c02 47.4700 24.3600 16.2500 12.0600 9.3300
48.5400 24.3600 16.2500 11.9600 9.0900
47.2000 24.9400 16.2500 11.9500 9.0700
48.3400 24.3600 16.2500 11.9500 9.3300
48.4200 24.6300 15.2500 12.1100 9.0800
47.2700 24.9600 16.2600 11.9600 9.0700
47.4700 24.3700 16.2600 11.9600 9.0700
48.0100 24.3800 16.2600 11.9500 9.0700
47.2800 24.3900 16.2700 11.9600 9.0800
47.9400 24.3700 16.2500 11.9600 9.0800

108

mean 47.7900 24.5000 16.5500 11.9800 9.1270
std 0.4915 0.2323 0.0067 0.0529 0.1017

c03 76.0300 36.1900 23.0200 17.6800 14.7400
77.1900 36.1800 22.6700 17.6700 14.7700
77.1100 36.6300 23.1900 17.6900 14.7500
77.1200 37.2000 22.6800 17.6800 14.7600
76.0100 36.7200 22.9600 17.6800 14.9800
76.0600 36.1800 22.6600 17.9100 14.7600
76.0400 37.4700 22.8800 17.6700 14.7400
76.0100 36.1700 22.6600 17.6700 14.7400
76.0200 37.4700 22.6600 17.6700 14.7400
76.0100 36.6400 23.1000 17.6700 14.7500

mean 76.3600 36.6850 22.8480 17.6990 14.7730
std 0.5112 0.5024 0.1974 0.0706 0.0697

c04 99.0400 48.4100 32.4100 23.8400 19.0100
99.3100 49.2900 32.7600 23.9100 19.6900
99.0100 47.6600 32.4000 23.7700 19.0100
99.0300 49.3300 32.4400 24.3400 19.2700
97.8100 48.2100 32.4000 23.8000 19.6500
97.8100 48.9800 32.4300 23.5600 19.0300
99.2300 47.6800 32.4000 23.9000 19.0100
99.4700 48.3900 32.9800 23.5300 19.0100
97.8000 48.3400 33.5500 23.6100 19.0200
97.8300 48.2400 32.8100 24.3400 19.0100

mean 98.6340 48.4500 32.6580 23.8600 19.1710
std 0.6837 0.5565 0.3597 0.2682 0.2609

c05 123.3900 61.5700 41.7700 31.9000 24.1200
123.3400 63.7200 43.2200 31.8900 23.8700
125.6000 61.5500 41.7500 31.8800 23.8600
123.5000 61.6300 42.3500 32.3000 23.8900
127.7200 62.4100 41.7500 31.8800 23.8600
125.7500 61.6300 41.8100 31.9400 23.8900
123.4200 61.5500 42.2400 31.8800 23.9000
123.3600 61.5600 41.7600 31.9000 24.6900
125.7000 62.5600 42.2700 31.8800 23.8600
123.3100 61.6400 43.2500 32.3200 23.8800

mean 124.5100 62.0800 42.2170 31.9770 23.9820
std 1.4846 0.6940 0.5572 0.1675 0.2607

c06 155.1200 73.4700 50.5500 36.0800 29.3800
154.9600 74.9400 49.6600 36.3800 29.3300

109

155.0600 73.4500 50.2200 36.5300 29.4100
159.2900 74.8700 48.9700 36.1200 29.3600
160.6000 73.6700 48.8800 36.5300 29.3300
155.3700 75.9500 49.5400 36.1500 29.3700
155.3300 73.5200 48.9300 36.1000 29.3500
155.2000 73.6000 50.5800 36.5200 29.3600
155.0900 74.7100 49.0400 37.1100 29.3300
155.3700 76.0800 49.2400 36.8000 29.8800

mean 156.1400 74.4300 49.5610 36.4620 29.4100
std 1.9300 0.9768 0.6361 0.3218 0.1585

c07 177.4600 85.2300 57.6200 43.0200 35.3500
179.8600 85.2000 56.8400 43.0200 34.2100
177.4000 86.1200 56.8500 43.0200 34.9700
182.3200 86.2900 56.9100 43.8400 34.2100
177.4400 85.2400 57.5200 43.0100 34.6700
177.7400 85.3000 56.9500 43.0600 34.2100
177.7100 85.2800 56.9300 42.9900 34.5400
177.7100 88.1000 58.4200 43.1500 34.2300
177.4000 86.4700 57.8000 43.0100 34.1700
177.3900 85.2600 56.8900 43.0100 34.2000

mean 178.2430 85.8490 57.2730 43.1130 34.4760
std 1.5318 0.8870 0.5140 0.2461 0.3863

c08 223.0500 107.1000 70.0300 49.6500 39.8000
222.9800 104.8900 68.1700 49.6600 39.2100
222.8900 108.6400 69.0400 49.7300 39.2100
228.8500 106.0900 68.2300 49.6900 39.2400
224.2700 104.8700 69.1500 50.3600 39.2200
224.0200 106.6700 68.3000 51.3400 39.9300
230.5300 108.6300 68.1700 49.6300 40.5900
255.6600 108.6100 69.0200 49.7000 39.2300
222.9200 105.0200 70.0700 49.6700 39.7000
223.0300 108.6300 68.1500 50.2800 40.0100

mean 227.8200 106.9150 68.8330 49.9710 39.6140
std 9.6300 1.5641 0.7166 0.5232 0.4495

c10 263.5900 124.8300 84.5000 61.4000 50.6100
263.0700 126.1400 84.4900 61.4100 51.4100
263.0100 124.8800 84.4700 62.3500 50.3400
263.4400 128.2300 84.8000 62.3600 51.7500
263.0200 124.8400 84.8500 62.1500 50.4200
267.6600 125.2500 87.3800 62.6900 50.6100
263.0100 128.2900 84.4800 61.3800 51.7200
263.2700 129.0800 86.0300 62.2600 50.4000
263.0400 128.2500 84.7100 61.3800 52.1400

110

mean 263.6789 126.6433 85.0789 61.9311 51.0444
std 1.5079 1.7886 0.9923 0.5306 0.7042

111

	Declaration
	Abstract
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Introduction
	Research Problem
	A Tree-Structured Index Algorithm
	Research Questions
	Results
	Importance of the Research
	Summary

	Background and Related Research
	Introduction
	Biological Background
	DNA
	DNA Transcription
	Mature mRNA Translation
	DNA Sequencing
	Generating cDNA and Expressed Sequence Tags

	EST Clustering
	What is EST Clustering?
	Processing ESTs

	Distance Functions
	Edit Distance
	The d2 Distance Function
	Threshold Distance Value

	Clustering in Metric Space
	Tree-Structured Indices
	Pivot Selection
	Sequence Search Tree
	Burkhard-Keller Trees (BKT)

	Related Work
	Clustering Techniques
	The d2_cluster Algorithm
	The wcd Algorithm
	CLU
	UIcluster
	Suffix Array Algorithm
	UniGene
	Parallel EST Clustering

	Summary

	A Tree-Structured Index Algorithm
	Introduction
	Motivation
	Overview of the Algorithm
	The Clustering Process
	Distance Function
	Pivot Selection
	The Union-Find Data Structure

	Research Questions
	Answering the Research Questions
	Parameters of the Algorithm
	The First Research Question
	The Second Research Question
	Memory Utilisation

	Summary

	Experiments
	Introduction
	The Hardware
	Data Sets
	Experimental Setups
	Quality Performance of the Algorithm
	Effects of Data Sets Used
	Triangle Inequality

	Preliminary Tests on Parameters Affecting Performance of the Algorithm
	Summary

	Results
	Introduction
	Distance Computations

	Computational Complexity
	Parameters Affecting the Performance of the Algorithm
	The Size of a Window
	The Overlap Parameter
	The Threshold Value
	Pivot Selection
	Effects of Data Set Used

	Performance of the algorithm
	Specificity
	Sensitivity
	The Running Time
	Memory Utilisation of the Algorithm

	The Triangle Inequality
	Summary

	Discussion
	Introduction
	Contribution of the Research
	Answering the Research Questions
	The First Research Question
	The Second Research Question

	The Fundamental Limitation of the Algorithm
	Possible Solutions to the Limitation
	Summary

	Conclusion
	Introduction
	Research Problem
	Prior Work
	The Algorithm
	Results and Limitations
	Research Contribution and Further Work

	References
	Appendices
	Graph Line Fittings
	Running Time Results
	Running Time Data

