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ABSTRACT 
 

 

With increasing demands on limited water resources and unavailability of suitable 

dam sites, it is essential that available storage works be carefully planned and 

efficiently operated to meet the present and future water needs.This research 

report presents an attempt to: i) use Artificial Neural Networks (ANN) for the 

simulation of the Crocodile water resource system located in the Mpumalanga 

province of South Africa and ii) use the model to assess to what extent Kwena 

dam, the only major dam in the system could meet the required 0.9m3/s cross 

border flow to Mozambique. The modelling was confined to the low flow periods 

when the Kwena dam releases are significant. 

 

The form of ANN model developed in this study is the standard error 

backpropagation run on a daily time scale. It is comprised of 32 inputs being four 

irrigation abstractions at Montrose, Tenbosch, Riverside and Karino; current and 

average daily rainfall totals for the previous 4 days at the respective rainfall 

stations; average daily temperature at Karino and Nelspruit; daily releases from 

Kwena dam; daily streamflow from the tributaries of Kaap, Elands and Sand 

rivers and the previous day’s flow at Tenbosch. The single output was the current 

day’s flow at Tenbosch. To investigate the extent to which the 0.9m3/s flow 

requirement into Mozambique could be met, data from a representative dry year 

and four release scenarios were used. The scenarios assumed that Kwena dam was 

100%, 75%, 50% and 25% full at the beginning of the year. It was found as 

expected that increasing Kwena releases improved the cross border flows but the 

improvement in providing the 0.9m3/s cross border flow was minimal. For the 

scenario when the dam is initially full, the requirement was met with an 

improvement of 11% over the observed flows.  
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CHAPTER 1 

 

1. INTRODUCTION 
 
 
Activities associated with the planning and operation of the components of a 

water resource system require knowledge of expected future performance. In the 

hydrologic component of the water resource, there is a need to know how the 

system will behave in both the short and long term in order to optimise the system 

or to plan for future modification i.e. decommissioning of system components or 

expansion. Many of these water resource systems are large in spatial extent and 

therefore their hydrometric data collection network is also very sparse with the 

result that there is almost always a considerable uncertainty in the available 

hydrologic information. This problem is also compounded by the non-linearity 

among the hydrologic variables, which makes the required modelling difficult.  

 

The ability to simulate river flows quickly and accurately is of crucial importance 

in forecasting operations. Physically based hydrologic and hydraulic mathematical 

modelling approaches have been proposed for streamflow predictions, but there 

are complexities and difficulties in these modelling processes associated with 

obtaining the data they require. These have limited the scope and applicability of 

these traditional methods (Khalil et al., 2005). While conceptual models are 

important in understanding hydrologic processes, there are many practical 

situations such as streamflow forecasting where the main concern is making 

accurate predictions at specific watershed locations. In such a situation, a 

hydrologist may prefer not to expend the time and efforts required in developing 

and implementing a conceptual model or numerical model, but instead implement 

a simpler system theoretic model, such as Artificial Neural Networks (ANNs) 

(Eslami and Mohammadi, 2002; Dibike and Solomatine, 2001). There is 

therefore, a need to develop modelling approaches that capture the behaviour of 

the system using available data, are computationally robust, and could be used in 

real practical applications. Hydrodynamic models provide a good basis for this 
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since they have the capability to simulate a wide range of flow situations 

(Shrestha et al., 2005). However, these models require accurate geometry of the 

river which may not always be available or easy to obtain in many locations. The 

other problem is that with hydrodynamic models, it is not possible to integrate 

observed data directly at desired locations to improve model results (Shrestha et 

al., 2005). During recent years, new technologies and algorithms have arisen as 

powerful tools for modelling several problems in hydrology and water resources. 

Artificial Neural Networks (ANNs) is one of them. ANNs have been used to 

successfully solve many different kinds of hydrological problems. A recent review 

can be found in the ASCE Task Committee on Application of Artificial Neural 

Networks in Hydrology (2000). ANNs, being conceptually analogous to the 

biological neural network controlling the functions of the human brain, are highly 

interconnected networks of basic processing units, called neurons, and have 

weights associated with the links (or information pathways) between the neurons 

(Goswami and O’Connor, 2005). The ANN approach is essentially data driven 

and considered to be appropriate in situations where the overall transformation 

process and its sub-processes are not explicitly defined and satisfactory 

explanations of the physical relationships involved cannot be advanced (Coulibaly 

et al., 2000).  

 

ANNs are beginning to have an impact on water resources and hydrologic 

modelling. According to Maier and Dandy (1997), ANNs were first introduced to 

the water resources community by Daniell (1991) who used them to predict 

monthly water consumption and to estimate flood occurrence. Since then, ANNs 

have been used for a variety of water resource applications. These include time-

series prediction for rainfall forecasting (French et al., 1992), reservoir inflow 

time series forecasting (Raman and Sunilkumar, 1995; Coulibaly et al., 2000), and 

rainfall-runoff processes (Riad et al., 2004, Hsu et al., 1995 and Shamseldin, 

1997), watershed sediment loss prediction (Saraingi and Battacharya, 2005). 

Khalil et al., 2005 used ANNs for forecasting basin water management and 

developed a model for predicting a seasonal streamflow, daily-required reservoir 

releases and hourly streamflow in the Sevier River Basin in Utah. ANNs have also 
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been applied to areas such as deriving a general operating policy for reservoirs 

(Raman and Chandramouli, 1996), and prediction of water quality parameters 

(Maier and Dandy 1996). Odhiambo et al., 2001 used neural networks fused with 

fuzzy logic to estimate daily evapotranspiration. They reported that the results 

found were comparable to those obtained using the FAO Penman–Monteith 

equation. Goswami and O’Connor, (2005) used ANNs for river flow simulation 

and forecasting in three catchments in North-West France, compared its 

performance with five “system-theoretic” models and one conceptual model. The 

ANN model was found to be the best performing for those catchments. 

 

Eslami and Mohammadi (2002) applied ANNs for reservoir inflow forecasting in 

the Karaj river catchment in Iran. Using the results of the ANN model the inflow 

to the Amir Kabir reservoir was predicted fairly accurately. The other objective 

was to compare the ANN model with other two methods: Auto Regressive 

Integrated Moving Average (ARIMA) and regression analysis using forty years of 

data. Of the three methods the ANN performed best i.e. had smaller of errors than 

the others. 

 

Coulibaly et al., (2000) used ANNs for daily reservoir inflow forecasting of 

Chute-du-Diable in Canada and compared it with two other methods: Auto 

Regressive Moving Average with exogenous inputs (ARMAX) and a conceptual 

model called PREVIS. The comparison of the results of the methods showed that 

in general the proposed ANN model had substantially better prediction accuracy. 

Shrestha et al., (2005), Bazartseren et al., (2003) and Imrie et al., (2000) applied 

the ANNs for flood flow prediction. Dawson et al., (2006) extended the 

application of ANNs in water resources to flood estimation in 850 ungauged 

catchments in the UK. When compared with multiple regression models, ANNs 

provide improved flood estimates that can be used by engineers and hydrologists. 

ANNs are data dependent and therefore do not impose any functional relationship 

between the independent and dependent variables. Instead, the functional 

relationship is determined by the data in the training process. Neural Networks 

have been used in water resources systems because they are able to learn 
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relationships between input and output variables even when the underlying 

physical laws are unknown, use simple mathematical equations and easily adapt to 

solutions over time. When developing ANN models the statistical distribution 

need not be known (Zealand et al., 1999) and non-stationarities in the data such as 

trends and seasonal variations are implicitly accounted for by the internal structure 

of the ANNs (Maeir and Dandy, 1996).  ANNs also have the advantage of being 

able to determine which model inputs are critical so that there is no need for prior 

knowledge about the relationships amongst the variables being modelled. Once 

they have been trained, they are easy to use and work well even when the training 

sets are incomplete. A thorough and extensive review of ANN applications in 

water resources can be found in Maier and Dandy (2000). 

 

1.1 Problem Statement 

 
Kwena dam is the major storage dam on the Crocodile River catchment in South 

Africa. The dam is used to support water supply to mainly irrigation at the same 

time maintaining a portion of the cross-border flow to Mozambique. The 

historical firm yield for the dam is only 71 million cubic metres per annum against 

irrigation demand of 403.6million m3/annum mainly supplied from the run-of-

river (Knight Piesold Consulting, 2005). Releases from the Kwena dam have to be 

made to supplement incremental catchment flow shortfalls to meet both the 

Ecological Water Requirements (EWRs) and the cross border flow. 

 

The governments of South Africa and Mozambique have through the Inco-

Maputo Agreement 29 agreed on 2.0m3/s of flow at Komatipoort into 

Mozambique. 0.9m3/s (45%) of this flow is expected to be supplied from 

Crocodile River while 1.1m3/s (55%) is to be supplied from the Komati River.  

However, the Crocodile River does not meet its contribution of 0.9m3/s most of 

the time. The current operation of the Kwena Dam seems to be adhoc and based 

mostly on the dam operator’s experience. Several modelling approaches have 

been used for the Crocodile system such as the hydraulic routing and the Water 

Resources Yield Model (WRYM). The hydraulic model is both data and 
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computation intensive. While the WRYM obtains the long term yields working at 

a monthly time interval, the cross border requirement is specified at a daily time 

interval. This computational intensiveness coupled with the difficulty to integrate 

the WRYM with the hydraulic model for system operation optimization, has 

triggered the need to try some other modelling methods that could be less 

computation and data intensive and yet help as effectively in decision support.  

 

1.2 Objectives 

 
The main objective of this research project is to model the Crocodile River system 

using Artificial Neural Networks and to apply the developed model to investigate 

the extent to which Kwena Dam can be used to meet the 0.9m3/s required trans-

boundary flow to Mozambique at the downstream end of the Crocodile River.   

1.3 Methodology 

Chapter 4 presents the detailed methodology and only a brief description is 

presented here.  

 

The main steps followed were: 

• Identification of the hydrometric variables required to meet the objectives. 

These then became the input and output components of the ANN model. 

The identified variables were streamflow, rainfall, temperature, river 

abstractions, and release from the Kwena dam. 

 

• Development of the ANN model. This included the selection of the 

specific inputs, the number of hidden layers and the number of neurons in 

each hidden layer. As there are no fixed rules, the conceptual 

understanding of the system and consideration of how the ANN may be 

used in practice guided the development. There is no algorithm to use in 

selecting the number of hidden layers. Therefore, they were selected by a 

process of trial and error. One hidden layer has been found to be adequate 

in most situations. Several ANN topologies were experimented with 
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before deciding on the final one. The experimentation included training 

and testing in which the performance of each topology was evaluated.  

 

• Applying the model to evaluate the ability of Kwena dam in meeting the 

required 0.9 m3/s cross border flow to Mozambique. 
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CHAPTER 2 

 

2. STUDY AREA AND CURRENT OPERATING SYSTEM 

 
2.1 Description of the Study Area 

 
The Crocodile River catchment in Mpumalanga Province of South Africa is 

drained by the Crocodile River and its tributaries mainly Elands, Sand, White and 

Kaap rivers. The Crocodile River originates North of Dullstroom in the western 

parts of the catchment area and flows through mountainous terrain into the 

grasslands of the Lowveld. It then flows eastwards past Nelspruit and into the 

Komati River where it is called the Inkomati River at Komatipoort, just upstream 

of the Mozambique border. The Elands River on the other hand originates near 

Belfast. These two rivers join at Nelspruit, from where the Crocodile River flows 

further eastwards. The confluence of the Kaap and Crocodile Rivers is near 

Kaapmuiden in eastern Mpumalanga. Mountain ranges in the north and the south 

separate this sub region from the upper Komati River catchment and the Sabie 

River catchment.  

 
 
The Crocodile River catchment (Figure 2.1) covers an area of 10450 km2. Kwena 

dam, the only major storage in the catchment, commands about 10% of the 

catchment’s runoff (DWAF, 2004) with a storage capacity of 159 million cubic 

meters. The catchment is dominated by irrigation and forestry. There is an 

estimated 42300 hectares of irrigation in the catchment and an estimated 1 775 

km2 of exotic forests. These two activities are also the major users of water in the 

catchment. Industrial water use in the catchment is limited and consists mostly of 

the Sappi paper mill at Ngodwana and the sugar mills at Malelane and 

Komatipoort. The water requirements of the Ngodwana paper mill are supplied 

from the Ngodwana Dam, which is situated in the Elands catchment, while the 

water requirements of the Malelane sugar mill are abstracted from the Crocodile 
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River. The urban requirements of the Crocodile sub-area are also mostly supplied 

from direct abstractions from the Crocodile River.  

 

Rainfall varies from over 1 200 mm per annum to as low as 400 mm per annum in 

the lower eastern part of crocodile catchment (DWAF, 2004).  The major dams 

found within the catchment are the Kwena dam on the Crocodile River, Witklip 

on the Sand River, Klipkopjes, Longmere and Primkop dams on the White river. 

Table 2.1 shows these dams and their capacities. The water resources of the 

dammed tributaries i.e. Sand and White rivers are already fully utilised and have 

very little contribution to the flow in the Crocodile River (Knight Piesold 

Consulting, 2005; http://www.dwaf.gov.za/). The Kaap and the Elands Rivers 

therefore have a direct contribution to both the irrigation requirements in their 

respective sub-catchments and flow at Tenbosch.  
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Kwena Dam 

Tenbosch 

Ngodwana 

Crocodile 

Longmere 
Witklip 

Klipkoppie 

Main Crocodile River 
Tributaries 

Primkop 

Kaap 

Elands 

Figure 2.1: The Crocodile River catchment area 
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The development of water related infrastructure in the Crocodile River catchment 

has been dominated by agriculture while commercial afforestation has also had a 

significant indirect effect on the availability of water. Sugarcane and citrus and 

sub-tropical fruits are the main irrigated crops cultivated in the catchment.  

 

The Crocodile River drainage area is the most developed of the four sub-regions 

within the Inkomati Water Management Area (IWMA). Large residential areas, 

agricultural development and forestry are the main features of this sub region. The 

greater part of the Lowveld is undeveloped and is situated in the Kruger National 

Park. 

Table 2.1: Crocodile River Catchment dam and capacities 
Dam name Capacity (million m3) 

Kwena 159.00 
Klipkopjes 29.63 
Longmere 26.92 
Primkop 16.32 
Witklip 11.93 

 
 

2.1.1 Temperature 

The mean annual temperature in the Crocodile catchment area is approximately 17 

°C. Maximum temperatures are experienced in January and minimum 

temperatures usually occur in June.  

 

2.1.2 Rainfall 

Peak rainfall months are December through January. The average hail day 

frequency for the IWMA ranges from 5 per annum in the west to less than 1 per 

annum in the east (DWAF, 2004). The mean lightning flash density ranges from 8 

flashes per km2 per annum in the south-western parts to 2 flashes per km2 per 

annum in the eastern parts of the IWMA. 
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The highest annual rainfall occurs in the central parts, decreasing uniformly to the 

east and west. The maximum Mean Annual Precipitation (MAP) in the central 

parts is in excess of 1 200 mm, decreasing to a low of 600 mm in the west and 400 

mm in the eastern parts with a coefficient of variation for the MAP of 24 % 

(DWAF, 2004).  

 

2.1.3 Humidity 

Humidity is generally highest in January and February (the daily mean relative 

humidity for the area is 69.8 % for these months) and lowest in July with a daily 

mean relative humidity of 58.6 %. In accordance with the rainfall pattern, the 

relative humidity is higher in summer than in winter. 

 

2.1.4 Evaporation 

Average potential mean annual evaporation (as measured by A-pan) for the area 

ranges from 1 600 mm in the southwest to a high of 2 000 mm in the eastern parts, 

with a mean value of around 1 900 mm. The highest A-pan evaporation is in 

January (approximately 203 mm) and the lowest in June (101 mm). 

 

2.2 Catchment Water Demands  

 

Water use in the Crocodile catchment is mainly for irrigation which accounts for 

almost 90% of total water demand in the catchment (National Water Resource 

Strategy, 2004). The urban and industrial demands are small compared to the 

irrigation demands. Table 2.2 shows a summary of the estimated irrigation 

demand imposed on the main Crocodile River (Knight Piesold Consulting, 2004). 
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Table 2.2: Summary of irrigation demands for Crocodile Catchment 

Area Area (ha) Water allocation 
(million m3/a) 

Upstream Kwena dam - 9.64 

Montrose River Irrigation 12 000 95.71 

Crocodile Poort (Karino) 8 200 65.52 

Riverside Irrigation 14 600 116.85 

Tenbosch Irrigation 10 500 115.88 

 

Urban and industrial demands are summarised in Table 2.3. 

 

Table 2.3: Summary of Urban and Industrial demands for crocodile catchment 

Description Water allocation  
(million m3/a) 

Urban Demands upstream of Kwena Dam 0.85 

Nelspruit Municipality 10.10 

Tenbosch Urban Demands 0.716 

 

2.3 Current System Operation 

 
The irrigation demand within the crocodile catchment area is supplied from the 

run-of-river. Releases are made from Kwena dam to supplement the available 

water from the run-of-river to meet the irrigation demands. Due to the long lag 

times for releases to reach the main irrigators, problems have been experienced in 

determining the correct releases from the dam to ensure all requirements are met 

without excess water crossing the border. At present releases from the dam to 

supply users along the river are based on the experience of the dam operators. The 

current irrigation demand imposed on the Crocodile catchment is estimated to be 

403.6million m3/annum. The decisions on water supply to consumers in the 

Crocodile catchment are made in May of each year with operating decisions based 

on 99.5% assurance of supplying the allocation for the next year. 
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The historical firm yield from Kwena Dam is estimated to be about 71million 

m3/annum (Knight Piesold Consulting, 2005), which implies that farmers along 

the river are operating at a very low assurance of supply due to low tributary flows 

during times of drought. The Irrigation Board uses a spreadsheet mass balance 

model that determines the irrigation usage on a weekly basis. Irrigation allocation 

is based on the storage level in Kwena dam maintaining a minimum storage 

capacity in the reservoir. If the storage is low then there will be little or no 

irrigation allocation at all.  

 

When river flow is less than the maximum irrigation demand, farmers are 

restricted to a maximum pumping rate of 120 hours per week. The maximum 

abstraction is not determined by the rate of flow but by the maximum number of 

hours. This however has the disadvantage that it favours farmers with high 

capacity engines who would not feel the impacts of the restrictions as they can 

still abstract the same amount of water within the 120 hours. Depending on the 

river flow levels, the irrigation restrictions can be adjusted every one or three days 

to match the varying river flow. These restrictions are lifted when a storm event 

increases runoff to above the local irrigation demand so that farmers can use as 

much water as possible to minimise spillage over and above the minimum 

required for the system. The minimum requirement from the Crocodile River and 

Komati River at the border with Mozambique is 0.9m3/s and 1.1 m3/s respectively 

giving a combined minimum of 2.0m3/s. To obtain the required minimum flow at 

the border there is need to restrict irrigation and to increase water releases from 

Kwena Dam as the 0.9m3/s requirement is not met all the time. Currently, 

management of the system focuses more on adjusting the irrigation demands than 

on adjusting releases from the Kwena Dam.  
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CHAPTER 3 

 

 3. ARTIFICIAL NEURAL NETWORKS 
 

3.1 Introduction 

 

An Artificial neural network is a technique that ‘mimics’ the functioning of the 

human brain, which contains billions of neurons and their interconnections. 

Humans can quickly recognise patterns, process data and learn from past 

experiences. ANNs are adaptive models that can learn from the data and 

generalise things learned to produce meaningful solutions to problems even when 

input data contains errors or are incomplete. In the real world, ANNs have been 

applied in image processing, grouping similar patterns, and solving constrained 

optimisation problems. In water resources management, ANNs’ applications are 

gaining momentum because of their power and potential in modelling complex 

non-linear problems. ANNs are attractive to use because of the following 

advantages (Jain and Singh, 2003; Zealand, et al., 1999; Jain et al., 1999) 

 

a) They are able to learn relationships between input and output variables 

even when the underlying physical laws are unknown 

b) Use simple mathematical equations 

c) Adapt to solutions over time 

d) Once they have been trained, they are easy to use 

e) They work well even when the training sets are incomplete 
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3.2 History  

 

The first theories on ANN techniques were conceived in the 1940s, and various 

relatively successful neural computers were built during the following two 

decades. Minsky and Papert (1969) in Dawson et al., (2006) showed that 

networks of any practical size could not be trained effectively. Due to 

improvements on existing techniques in combination with the increase of 

computational resources, interest in the applications of ANN increased 

significantly in the late 1980s. ANNs became popular with researchers when 

Rumelhart and McClelland (1986) rediscovered a testing method that could be 

used to train networks of sufficient sizes and complexities to be of practical 

benefit (Dawson et al., 2006). Since then, the field of ANNs has grown quickly, 

and the widespread applications of ANNs prove that their potential has been 

recognised in many fields such as earth sciences, engineering, economics, and 

health sciences. 

 

3.3 Network Topology 

 
Network topology refers to the number and organisation of the computing units, 

the types of connections between neurons, and the direction of information flow in 

the network. The node is the basic organisational unit of a neural network, and 

nodes are arranged in a series of layers to create the ANN. According to their 

location and function within the network, nodes are classified as input, output, or 

hidden layer nodes. Input layer nodes receive information from sources external to 

the neural network, and output layer nodes transmit information out of the neural 

net. Hidden layer neurons act as the computational nodes in the neural network, 

communicating between input nodes and other hidden layer or output nodes. The 

number of nodes in the input layer is equal to the number of independent variables 

entered into the network. The number of output nodes corresponds to the number 

of variables to be predicted. 
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 3.4 Architecture of an Artificial Neural Network 

 
The architecture of a single node is shown in Figure3.1.  

 

 

                                     Figure3.1: Architecture of a single neuron 
 
A node can have n inputs, xi labelled from 1 through n. Each node has an input 

that is always equal to 1.0, called the bias (or threshold) and bj is the threshold for 

node j. Each node j receives the information from every node i in the previous 

layer. A weight (wji) is associated with each input (xi) to node j such that the 

effective incoming information (NETj) to node j is the weighted sum of all 

incoming information. This is known as the net input and is presented as: 
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where 0x and 0jw  are the bias term and bias weights respectively 

 

3.5 Transfer function 

 
The transfer function, or squashing function, is applied to the net node input and 

introduces a non-linearity that determines the output of the node. This is achieved 

by passing the net effective input through a transfer function to produce the 

outgoing value OUTj. The most commonly used activation functions are the 
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sigmoid and the hyperbolic tangent function. The sigmoid function ‘squashes’ and 

compresses the range of the NETi so that the OUTj lies between 1 and 0 whereas 

the hyperbolic function’s output is between -1 and 1. The logistic function which 

is common (Dibike and Solomatine, 2001; Zealand et al., 1999; Hsu et al., 1995) 

is expressed mathematically as (Jain and Singh, 2003): 

 

OUTj = )(1
1

jNETe −+
        (3.2) 

 

The value of the output is bounded between 0 and 1 whereas the value of NETj 

can vary from±∞. The hyperbolic tangent function on the other hand is expressed 

as: 
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An ANN is a network of parallel, distributed information processing system that 

relates an input vector to an output vector. Networks with large number of 

neurons are frequently used for practical problems. The way the neurons have 

been structured determines how computations proceed from the input layer 

through the hidden layers to the output layer. Depending on the number of layers, 

ANNs can be single layer, bi-layer or multi-layer. The most widely used network 

structure in water resources is the multi layer and the feed-forward networks 

(Figure 3.2) 
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Figure 3.2: A three-layer feed-forward ANN 
 

 

3.6 Feed-forward Artificial Neural Networks (FNN) 

 
A feed-forward ANN derives its name from its structural makeup. It has an input 

layer, hidden layer(s) and an output layer. Information passes one way from input 

to output. Each neuron in one layer is connected to all the neurons of the next 

layer. The neurons in one layer are only connected to the neurons of the 

immediate next layer. The information is received by the input layer and, 

processed and passed on to the hidden layer where it is further processed and 

passed on to the output layer.  

 

3.7 Error Back-propagation (BP) Algorithm 

 

The error back-propagation (BP) is a supervised learning algorithm which is used 

to find weights in multi-layer feed-forward networks that utilise non-linear 

transfer functions and is based on a gradient descent algorithm. The back-

propagation algorithm is the most practical and commonly used model for neural 

networks. The total weighted input at any neuron xj and its output activity OUTj 
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based on a selected transfer function is computed. The actual output is subtracted 

from the target output to find the output layer errors. The weights of all the 

neurons are adjusted by an amount that is proportional to the strength of the signal 

in the connection and the total measure of the error. The total error at the output 

layer is then redistributed backwards from the output layer through the hidden 

layer to the input layer.  This process is continued until some stopping criteria are 

met. The goal is to find the weights with the smallest sum of squared error. A 

typical error function can be given as: 

 

∑∑
= =

−=
N

p

m

n
npcalnpobs QQE

1 1

2
,,,, )(            (3.4) 

 

where npobsQ ,,  is the observed value of the nth neuron for the pth data set, n,p,calQ  is 

the calculated output value of the nth neuron for the pth data set, N is the total 

number of patterns (observations), and m is the total number of output neurons. In 

the BP training, minimisation of E is attempted using the steepest descent method 

and computing the gradient of the error function by applying the chain rule on the 

hidden layers of the ANN (Coulibaly, 2000). This algorithm updates the 

interconnection weights ∆wji using the derivative δj in the following manner: 

 

)()1( nwxnw jiijji ∆+−=+∆ αηδ   (3.5) 

 

where η = learning rate; α = momentum factor; n = epoch number; and derivative 

δ = a factor depending on whether neuron j is an output neuron or a hidden 

neuron. An epoch is defined as one cycle of training using the considered data set. 

For the jth neuron in the output layer, 
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in which Qj = observed response and Qj
(t) = output response from the neural 

network and f = transfer function. For the jth neuron in the hidden layer 
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where q = number of neurons in the output layer. 

 

The momentum factor controls the speed of training whereas the learning rate 

steps the weight change and can be adjusted to decrease the chance of the 

algorithm being trapped in a local minima. The standard error back-propagation, 

three-layered ANN is depicted in Figure 3.3. 

 

 

 

Figure 3.3: Simple error back-propagation ANN 
 

The learning process in the BP is done through sequential or batch mode. In the 

sequential mode the learning is governed by the error of each data set one by one 

while for the batch mode weights at each iteration are adjusted after all data sets 

have been processed.  
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3.8 Training an Artificial Neural Network 

 
ANNs are trained by applying an optimisation algorithm, which attempts to 

reduce the error in the network by adjusting the matrix of network weights and the 

neuron biases (De Vos and Rientjes, 2005). Once a network has been structured 

for a particular application, that network is ready to be trained. Training a network 

is a procedure during which an ANN processes a training set (input-output data 

pairs) repeatedly, changing the values of its weights, according to a predetermined 

algorithm, to improve its performance (Zealand et al., 1999). The objective of 

training is to determine the set of weights and thresholds such that for an input 

signal the ANN output is as close to the desired output as possible. To start this 

process, the initial weights are chosen randomly. Then, the training, or “learning”, 

is initiated. It is assumed that the neural network has no prior knowledge about the 

problem before being trained. When the network weights are changed, the data 

transfer through the ANN changes and the network performance changes. 

Multilayer feedforward neural networks, like other non-linear estimation methods 

can suffer from either underfitting (where too much hidden nodes fit the noise) or 

overfitting (insufficient hidden nodes failing to detect regularities in the data set). 

Underfitting produces excessive bias in the model outputs whereas overfitting 

produces excessive variance. To avoid overfitting and underfitting, a stop training 

approach is used.  The most popular stopping criterion involves a trade-off 

between training time and generalisation error (De Vos and Rientjes, 2005; 

Sivakumar et al., 2002, Coulibaly, 2000).   

 

The available data is split into three parts: 

a) a training set, used to determine the network weights ; 

b) a cross validation set, these are separate data sets used during the training 

process to estimate the network performance and decide when the 

training is to stop  

c) a testing data set, independent sets of data, not used in training or 

validation and are used to verify the effectiveness of the stopping 

criterion and to estimate the expected performance of the ANN.  
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During training, the output predicted by the network is compared with the actual 

(desired) output and the mean squared error (MSE) between the two is calculated. 

As more and more data are presented to the network, the results keep on 

improving until a suitable weight combination is found and the prediction error of 

the testing data is minimised. At this stage the ANN is considered trained. 

There are two approaches to training: supervised and unsupervised. Supervised 

training, which is common in water resources applications, involves a mechanism 

of providing the network with the desired output either by manually grading the 

network's performance or by providing the desired outputs with the inputs. 

Unsupervised training is where the network has to make sense of the inputs 

without outside help. Unsupervised training is used to perform some initial 

characterisation on inputs.  

 

3.9 Learning Parameters 
 

Learning rate –The learning rate determines the absolute size of the weight 

change during learning and limits or expands the extent of weight adjustments in a 

training cycle. A high learning rate reacts quickly to input changes, and can make 

networks unstable if the rate is too high-the changes can be too extreme and 

cripple the network’s prediction ability. However, if the learning rate is too low, 

the network training time is substantially increased. A high learning rate is useful 

to accelerate learning until the weight adjustments begin to plateau. However, the 

higher learning rate increases the risk that the weight search jumps over a 

minimum error condition, which could jeopardise the integrity of the network and 

cause back-propagation learning to fail. 

 

Momentum factor – The momentum factor describes the proportion of the weight 

change that is added to each subsequent weight change. Low momentum causes 

weight oscillation and instability, preventing the network from learning. High 

momentum factor cripples network adaptability. For stable back-propagation, the 

momentum factor should be kept less than unity. Momentum factors close to unity 
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are needed to smooth error oscillations when they occur. During the middle of 

training, when steep error slopes often occur, a small momentum factor is optimal, 

whereas towards the end of training a large momentum factor is desirable. 

 

Training Tolerance -This is the margin of error permitted when training target 

values are compared with the values generated by the network during supervised 

training. A training tolerance factor of zero is the most desired since it indicates 

that the network values exactly match the target values. The higher the training 

tolerance factor is, the more inaccurate the neural network will be. ANNs 

generally use more parameters than conventional statistical methods and are 

therefore susceptible to overtraining when too much data is presented to the 

network. The network is overtrained when the mean squared error increases as the 

network trains at predicting the test values. This indicates that the network’s 

ability to recognise new patterns and generalise unknown data sets is hampered. 

The simplest method of correction to the overtraining phenomenon is to train the 

model with only part of the data and use the rest to check the network’s 

performance. 

 

3.10 Summary of computational functions of ANN elements 

 

The computational functions of the neural network consist of the operations of the 

individual neurons and the way they are connected. Individual neurons calculate 

an output using the sum of inputs and a selected activation function. These nodes 

specifically perform the following functions: 

1. Signals are received from other neurons [x0, x1, x2, xi    xn] (Figure 3.3) 

2. The signals are multiplied by their corresponding weights [w0x0, w1x1, w2x2, 

wixi..  … wnxn] 

3. The weighted signals are summed [Sum=w0w0+w1x1+w2x2 +…+wixi+    wnxn] 

4. The calculated sum is transformed by an activation function [f(sum)] 

5. The transformed sum is sent to other neurons and steps 1-4 above are repeated 
for those neurons.  
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The input into a node or neuron is either the direct input from a source exterior to 

the network or the weighted sum of the outputs from nodes in the layer above. If 

weight (wji) is negative, the output from the node will generally decrease. A 

positive (wji) excites the neuron. OUTj (Eqn. 3.2) is an output from node j, and 

jb is the threshold for node j. The threshold term is the input to a node when no 

other input exists. The threshold term is also known as the bias term. 

 

3.11 Performance criteria 

 

A survey of recent literature describing ANNs applications to rainfall-runoff 

modelling exhibits a general lack of a modelling protocol (Dawson and Wilby, 

1999). There is no convention for the error measures that are employed (e.g. mean 

squared error, relative errors etc). The objective of training in the building of the 

ANNs is to produce a set of connection weights that cause the outputs to match 

themselves as closely as possible to the observed system outputs for every set of 

the training data sets. Achievement of this objective is measured in many different 

ways e.g. the Nash-Sutcliffe coefficient of efficiency (R2) (Nash and Sutcliffe, 

1970), which is formulated as: 
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where 0F  is the initial variance for the flows and F is the residual model variance. 

In the equations, N is the total number of data sets, obsQ and calQ  is the observed 
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and computed flows respectively at the nth interval, aveQ  is the mean value of the 

observed flows.  

 

The accuracy of the model simulation can also be evaluated using other error 

indicators such as: mean absolute error (MAE), defined as: 
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To quantify the errors in terms of the units of the variable, the Root Mean Square 

Error (RMSE) is used and is defined as: 
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and coefficient of correlation which is formulated as: 
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where Q
)

 is the mean of the simulated values. The correlation coefficient is not a 

measure of the predictive capabilities of the model since it is sensitive to outliers 

and spurious data. 

 

To overcome susceptibility to extreme values, the index of agreement, d, which is 

less sensitive to large values (Khalil et al., 2005), can also be used and is defined 

as: 
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The other physical performance measure used is the bias, which is the average of 

the differences between observed and predicted values. A complete assessment of 

the model should also include scatter plots. The magnitude of the scatter of 

observed versus simulated about a 45 degree line can be examined using error 

bounds to assess the deviation of simulated outputs from observed system 

behaviour. 

3.12 Advantages and Disadvantages of Artificial Neural Networks 

 

Advantages 

a) ANNs can learn similarities among patterns directly from input-output 

data sets presented to them and can modify their behaviour in response to 

the environment i.e. they self-adjust to produce consistent responses. 

b) They are good at abstracting essential characteristics from inputs 

containing irrelevant data 

c) They can easily derive solutions from data without prior knowledge of 

the regularities in the data; they extract the patterns empirically 

d) ANNs are non-linear and can solve some complex problems more 

accurately than linear techniques do 

e) ANNs can generalise from previous examples to new ones, a feature that 

is important since for many practical problems, data are noisy and often 

incomplete 

f) Due to their structural make up, they have relatively low computational 

demands and can easily be integrated with other techniques. They contain 

many identical, independent operations that can be executed at the same 

time thereby making them faster than alternative methods. 
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Disadvantages 

a) A disadvantage of ANNs is that the optimal form of most design 

parameters such as the number of processing elements in the hidden layer 

can differ for each application and cannot be theoretically defined. They 

are commonly found by a trial and error procedure. As a result they may 

fail to produce a satisfactory result, perhaps because there is no learnable 

function or the data sets are insufficient.  

b) The other problem is that at the training phase, the minimisation of the 

error does not necessarily imply good operational performance.   

c) ANNs cannot cope with major changes in the system for which they were 

not trained since they use historical data. If there are major changes in the 

system they will have to be adjusted for the new environment. 
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CHAPTER 4 

 

4. DATA ACQUISITION AND PROCESSING 
 
The Department of Water Affairs and Forestry (DWAF) is the custodian of all 

hydrological data in South Africa. In carrying out this research, available 

hydrological and meteorological data from the DWAF and South African Weather 

Service were used as inputs to the neural network model. The software used for 

this study is NeuroSolutions (version 5.0) developed by NeuroDimension, Inc. 

The particular version used to run the simulation is the NeuralExpert environment 

module.  

 

4.1 Relevant Data Sets  
 
In line with achieving the objectives, the following data were considered 
necessary 
 

4.1.1 Rainfall 

Daily rainfall measurements are available at different locations across the 

catchment. Within the whole catchment there are many rainfall measuring 

stations. However, some stations have been deserted and are closed and no longer 

used whereas some are not in the South African Weather Service database as they 

belong to individual farmers. They are available in the report to the Water 

Research Commission by Schultze and Maharaj (2004). For this study, only 

rainfall measurements at the stations shown in Table 4.1 and Figure 4.1 were 

used. These stations were selected on the basis of their good length of record and 

were considered representative of most of the catchment area. 
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Table 4:1: Rainfall stations used for investigation 
 

Station No. Place  Coordinates (E , S) 

0557710S Tenbosch -25.33°,31.90° 

0556178W Montrose -25.47°,31.07° 

0554682W Karino -25.37°,31.40° 

0557115W Riverside -25.42°,31.60° 

    

4.1.2 Streamflow 

Continuous daily historical streamflow data for different gauge stations within the 

catchment were obtained from the Department of Water Affairs and Forestry 

(DWAF).These stations are shown in Figure 4.1. A description of the station 

selection criteria is given in section 4.2. 

 

4.1.3 Temperature 

 
Temperature directly affects evaporation, which has a direct impact on 

streamflow. Its inclusion was to enhance the model performance. Daily minimum 

and maximum temperatures from Shultze and Maharaj, (2004) were available. 

These were averaged and their daily averages used as inputs to the model. 

Temperatures were used instead of evaporation as some stations did not have a 

complete record of evaporation records. The temperature does not vary much over 

the catchment and therefore a decision was taken to use only two stations as 

inputs. 

4.1.4 Irrigation Demands 

 
Irrigation demands represent the quantities of water that farmers abstract from the 

river. However, it was found that daily abstraction data for irrigation is not readily 

available from DWAF. Some irrigators had some data that may have been useful 

but were not willing to share it. After spending considerable effort searching for 
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the abstractions data, the only available data was for monthly abstractions for the 

year 2003/04 which was availed by Professor Basson of the University of 

Stellenbosch who had previously done hydraulic modelling of the Crocodile 

River. Although there are more abstraction points, the data was lumped for groups 

of abstractors and was available for four locations along the river as shown on 

Figure 4.1. Since the modelling required a daily time step, the monthly 

abstractions needed to be disaggregated into daily abstractions. A simple model 

was developed for this purpose (Appendix A). 
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This simple model, which is derived in Appendix A, assumes that on a day where 

the rainfall was more than a threshold, the farms were adequately wet and there 

was therefore no abstraction. This threshold was considered to depend on the daily 

crop irrigation demand. Sugarcane, the crop demanding the most water in the 

Crocodile catchment, has an annual water requirement of approximately 1200mm 

(Cartwright, 2005, pers. comm.), which translates into 3.28 mm of daily rainfall.  

A value of 4 mm was subjectively selected as a reasonable threshold. Equations 

4.1 to 4.3 describe the model. 
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 If iR = 0; then Absj = Ave*   
 
 If iR ≥ RT; then Absi = 0   

 

 Where Absi is the daily abstraction, iR is the catchment wetness for the ith 

day of the month; and TR  is the wetness threshold. 
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 where mT is the available total monthly abstraction; nr is the number of 

days in the month with catchment wetness greater than zero but less than 

the threshold TR , and nd is the number of days in the month where the 

catchment wetness is zero. 

 

The catchment wetness was obtained as 
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where Ri is the catchment wetness and ri is the rainfall on the ith day. Figure 4.2 

shows an example of the disaggregated Tenbosch abstraction for January 1988. 
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Figure 4.2: Modelled daily river abstractions for Tenbosch January, 1988 
 
 

4.2 Riverflow Analysis and Selection of Gauge Stations 
 
There are a number of rivers and streams within the Crocodile River Catchment. 

However, not all of them are gauged.  Only the streams and rivers that have gauge 

stations were used for the analysis. Daily stream flow measurements are available 

for the different river gauging stations in the respective rivers used in this 

research. The different river gauging stations have different start dates of flow 

measurement. Table 4.2 shows the gauging stations and their available records of 

streamflow measurement and Figure 4.1 shows their locations in the catchment. 

The stations used for this investigation are the station numbers X2H070 (Kwena 

Dam outflow), X2H006 at Karino, X2H013 at Montrose, X2H016 at Tenbosch in 

the Crocodile River, X2H015 at Landenau in the Elands River, X2H022 at Dalton 

in the Kaap River, X2H005 at Boschrand in the Sand River (X2H005).  These 
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stations were selected on the basis of their better records of streamflow 

measurement. In addition to that, stations X2H022, X2H005 and X2H015 were 

selected as they are at the confluence of the tributaries with the main river and 

therefore give the amount of contribution of these tributaries. 

 

Table 4.2: Streamflow measurement stations within the Crocodile River catchment 

 
Station No. 

 
Location 

Available 
Record 

X2H005 Sand River at 
Boschrand 1929 - 2004 

X2H006 Crocodile River at 
Karino 1929 - 2004 

X2H015 Elands River at 
Lendenau 1959 - 2004 

X2H016 Crocodile at Tenbosch 1960 - 2004 

X2H022 Kaap River at Dalton 1960 - 2004 

X2H046 Crocodile River at 
Riverside 1985 - 2004 

X2H070 Kwena Dam outflow 1979 - 2004 

 

Table 4.2 shows a staggered pattern in the start dates of the streamflow gauge 

stations. The Kwena dam, one of the main focus areas in this research project has 

records starting from 1979. Two other stations, Riverside (X2H046) and Goede 

Hoop (X2H059), have records starting after the year 1979. Even though some of 

the stations have long lengths of records, they are not free from what has become 

a part of streamflow measurement i.e. gaps of missing records. To overcome the 

problem of gaps, normally the data is patched to generate a good time series of the 

records. In this case the seasonal means over the considered data range were used 

to fill up the gaps. The daily runoffs of a particular day of a particular month over 

the period of interest were summed up and averaged by dividing by their number. 

The average was then filled into the gaps as flows for those particular days where 

there was missing data. 

 



 

The most important points within the catchment are the Kwena dam and the 

streamflow gauge station at Tenbosch (X2H016). The significance of the Kwena dam 

is that it is the main surface water storage within the catchment and is used to 

augment flow at Tenbosch to meet the international agreement with Mozambique.  

The releases from the dam can be controlled whereas flows from the tributaries 

cannot be easily controlled with a view to meeting the Tenbosch flow requirements. 

The Tenbosch station is the last streamflow monitoring station in the Crocodile River 

and is located approximately 5 kilometres from the confluence of the Komati River 

which is at the boundary between Mozambique and South Africa. Accurate flow 

measurements at this station are of critical importance for catchment management and 

operational purposes.  

 

In order to meet the international agreement with Mozambique, a minimum flow of 

0.9m3/s must be sustained at this station to ensure a sufficient contribution towards 

the cross border requirements. Flow measurements at the Kwena dam started in the 

year 1979 whereas for Tenbosch they started in 1960. The author, therefore, initially 

took a decision to use data points from 1979 to 2000 for all the gauging stations. 

Within this period, there was a very huge variation in terms of the low and the high 

flows, which is attributed to cycles of droughts and floods respectively. The 

maximum flow recorded for this station (Tenbosch) was 1169 m3/s whereas the 

minimum was 0.00m3/s. A preliminary ANN trial testing with these data did not bear 

any good results i.e. the ANN could not extract any meaningful patterns within them 

and tended to overestimate low flows. This range was then cut down further to 

include data series from 1985 to 1996 yielding 4015 data sets; a range that is between 

two high floods. The consideration was to ensure that all the input data sets start at 

the same time of record. Within this section of the data, the few gaps were filled with 

the seasonality means of the time period considered. Figure 4.3 shows flow time 

series for Tenbosch from 1980 to 1996.  
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Figure 4.3: Daily River flow series at Tenbosch from 1980 to 1996 
  

As can be seen from the graph, the river flow series exhibits significant variations 

although an annual cycle is evident.  A thorough inspection of the data for this station 

shows that there are gaps within the series some of them too long to be ignored. 

Artificial Neural Networks approaches belong to the so-called ‘black-box’ models, 

and depend primarily on good training and learning of the data sets to establish 

relationships between the input and output. As such it is imperative to select a very 

good training set from the available data series. The best way to do this is to include 

all or most of the extreme events (high and low flows) in the training sets. The 

inclusion of biased samples in the training sets is not recommended since these 

increase the training times without necessarily improving the results (Sivakumar et 

al., 2002).  

 

In so far as meeting the flow requirements at Tenbosch is concerned, Kwena dam 

only becomes significant in the dry seasons when flows are low and do not meet the 
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minimum flows of 0.9m3/s into Mozambique. During times of high flows this 

requirement is met most of the time and all demands are met. Figure 4.4 shows a 

portion of flow time series at Tenbosch for drought years between 1990 and 1996 and 

corresponding releases from Kwena dam clearly showing that Kwena releases are 

significant only in the low flow periods. 
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Figure 4-4: Flows at Tenbosch and Kwena dam releases (from 1990-1996) 
 
Based on the foregoing, the analysis considered only times of low flows. An arbitrary 

threshold flow value of 4m3/s at Tenbosch was selected.  The rationale behind this 

selection was such that the flows are not too high but at the same time their selection 

should be that they allowed for a good number of data sets to be used for training the 

network. Further more, the value of 4m3/s is reasonably higher than the 0.9 m3/s 

requirement. All the flows less than this value within the period from 1985 to 1996 

were used for analysis. A spreadsheet was set up in Excel that returned only values of 

flow less than the threshold of 4.0m3/s. However, in some cases values just over this 
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value were also considered and included in the analysis to avoid short discontinuities 

of the series. The result of this exercise was a flow time series consisting of 1956 data 

sets as shown in Figure 4.5. As can be seen from the graph, this is a complex 

discontinuous time series. The first one third of the series is reasonably less variable 

and in most cases meets the cross boundary requirement of 0.9 m3/s whereas the last 

two thirds contains very low flow values and in most cases below the flow 

requirement. It is at times like these that the Kwena dam becomes very important as 

some water has to be released from the dam to augment the low river flow. 

 

In view of the foregoing, it was then decided to divide the data sets in the following 

manner: of the 1956, 1272 data points which represent 65% were selected for 

training; 392 data points accounting for 20% were used for cross-validation whereas 

the remaining 15% were used for testing (Figure 4.6). Although the 4m3/s threshold 

was used, there were a few missing points in both the cross validation and testing 

series which for practical purposes were taken as a continuous series. The selection of 

these percentages of the data points in this manner was so that all the extreme points 

(high and low values) especially for training are covered. A training data that has only 

high values tends to drive the simulation towards high values and performs badly on 

low values whereas the one with very low values tends to drive the simulation 

towards very low values and performs badly on high values (Savikumar et al., 2002) 
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Figure 4.5 Time series flow at Tenbosch for dry periods 
 

Tenbosch Flows

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 350 700 1050 1400 1750

DATE

FL
O

W
 (m

3 /s
)

 

Figure 4.6: Flow time series indicating sections used for ANN training and testing  
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CHAPTER 5 
 
 

5. DEVELOPMENT AND APPLICATION OF ARTIFICIAL NEURAL 
NETWORK MODEL 

5.1 Development of the ANN Model 
 
Tenbosch station is far away on the downstream about 250 km from Kwena Dam. 

Because of these long distances, if any water released is to reach Tenbosch, it has to 

be of a considerable quantity. This is so because of losses arising from evaporation, 

irrigation abstraction and all the other users along the river. The long distance from 

Kwena to Tenbosch means that releases from the dam reach the station after a few 

days.  In order to carry out a meaningful analysis, a lag time of five days was 

assumed based on an assumed average streamflow velocity of 0.6m/s. For purposes 

of model development, the inputs into the ANN for flow at Tenbosch were shifted 

ahead by five days to account for this time lag. 

 

The development of an ANN model involves the following steps: i) selection of data 

set for training and testing of the model, ii) identification of the input-output 

variables, iii) selection of the network architecture, iv) determination of the optimum 

number of neurons in the hidden layer, v) training of the ANN model and vi) testing 

of the model using selected performance evaluation statistics. The ANN model 

developed in this study was a Multilayer Perceptron (MLP) consisting of three layers: 

an input layer, a hidden layer and an output layer consisting of one output neuron. 

Several researchers have shown that the hyperbolic tangent activation function 

produces good performance in terms of convergence and central processing time (e.g. 

Sahoo and Ray (2006)); hence it was chosen for the hidden layers. However, the 

output layer was provided with a linear activation function so that the output range 

was between -∞ and +∞. This avoided the remapping of outputs (de-normalisation). 

The NeuroSolutions software used in this study automatically scales the data such 
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that the training data lay within the range [-0.9-0.9]. The data is scaled to the range [-

1-1] to allow for values beyond the range for which the network was trained. The 

importance of scaling the data to this range, a process known as normalisation, was to 

avoid one predictor (input) dominating others since they are of different scale and 

units and cover different ranges.  

 

After trying out several configurations, the input layer illustrated in Figure 5.1 was 

eventually chosen. This consisted of the following:  

• four daily irrigation water abstraction points at Montrose, Riverside, 

Karino and Tenbosch river gauge stations 

• daily rainfall at  Montrose (MRt), Riverside (RRt), Karino (KRt) and 

Tenbosch (TTt)  

• average daily temperature at two stations; Karino and Nelspruit,  

• daily river flow of tributaries of Kaap, Sand, Elands rivers,  

• daily releases from Kwena dam,  

• the previous day’s flow at Tenbosch, and 

• average daily rainfall totals for the previous 4 days (MRt-1, MRt-2…     ) 

to represent antecedent catchment wetness.  

The only neuron in the output layer represented the current flow at Tenbosch, the 

required ANN model output. 

 

After all the input and output variables were selected, the ANN architecture of the 

form 32-N-1 was further explored for simulating the flows at Tenbosch. The next and 

most difficult step in the development of the ANN was to determine the ‘optimum’ 

number of neurons (N) in the hidden layer. These are the neurons that are responsible 

for mapping the complex relationship among the various input-output variables 

considered in the development of the ANN. 
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Figure 5.1: Inputs and output of the ANN model    
 
The objective of the training phase in building an ANN is to produce a set of 

connection weights that causes the outputs of the ANN to match as closely as 

possible the observed system outputs for every set of training data set. In order to 

come up with the ‘optimum’ network, the neurons (processing elements) in the 

hidden layer were varied from 2 to 12. During training, two stopping criteria, the 

cross-validation and the fixed number of iterations were adopted for this study. The 

maximum number of fixed iterations (epochs) was set at 1500 and the training 

continued for a further 100 iterations after reaching a minimum error in the validation 

set. The optimum network was one which yielded the lowest mean squared error on 

the training data sets. The training was carried out with a momentum factor of 0.7 and 

a learning rate of 0.1 in the hidden layer. The network with 8 neurons in the hidden 

layer was found to be the optimum as it had the lowest mean squared error reached 

after 1100 iterations. The optimum topology was then represented as 32-8-1. 
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5.2 Application of the Model 
 

After the model was developed and found satisfactory, it was applied  to a real 

problem situation. In the testing mode of the NeuralExpert, the data that was set aside 

for testing during training phase was introduced into the model. The objective being 

to investigate the impact of various release levels from Kwena Dam on the flow at 

Tenbosch the testing data set was selected for this analysis These data sets were of a 

typical dry year hence appropriate selection. Several release patterns were tried and 

their impact on flow at Tenbosch assessed. These patterns included scaling the 

historical release flows by factors of 1.5 to 4 in steps of 0.5. It was found that as the 

release was increased from the dam, there was corresponding increase of flow at 

Tenbosch as expected. Some of the releases obtained by the factoring were too high 

and unrealistic in comparison with the rest of the releases and this approach was 

therefore rejected. An attempt to find out how the daily releases from Kwena dam 

were obtained revealed that there was no strong correlation observed between 

historical Kwena dam releases and any other variables as shown in Table 5.1. No 

strong correlations were also found between these releases and rainfall. It was 

therefore not possible to create operating rule based on any of these variables. 

 

Table 5.1: Correlations between the different stream flows and irrigation abstractions 
  IrrMont IrrKar IrrRiv IrrTenb Kwena Elands Sand Kaap Tenbosch 

IrrMont 1.0000         
IrrKar 0.3731 1.0000        
IrrRiv 0.2775 0.4483 1.0000       
IrrTenb 0.2324 0.4331 0.4648 1.0000      
Kwena 0.0038 0.0743 0.0741 0.1014 1.0000     
Elands -0.1539 -0.2062 -0.1695 -0.1796 -0.2148 1.0000    
Sand -0.1590 -0.2018 -0.1894 -0.2645 -0.0849 0.3371 1.0000   
Kaap -0.0223 -0.0006 -0.0048 -0.0004 -0.0572 0.1237 0.0339 1.0000  
Tenbosch -0.0315 0.0163 -0.0042 -0.0083 0.2890 0.2307 0.1206 0.2150 1.0000 

 

The response of Tenbosch flows to releases from the dam were then investigated 

using four storage scenarios; with the dam starting 100% full, 75% full, 50% full and 
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25% full and running to the empty condition over a 12 months period at a constant 

rate of release throughout the year. These gave releases of 5.0, 3.778, 2.50, and 

1.26m3/s respectively. While it is recognised that the release is unlikely to be constant 

as assumed, there was no justification for trying anything more complex as the 

irrigation demands were more or less constant throughout the year (e.g. see Figure 5.2 

for Tenbosch area abstractions) and the modelling was for the dry or low flow 

periods. The other assumptions were that the year is dry and there are therefore 

negligible inflows into the dam during this time of release and all the other variables 

remain the same. Using the four storage and release scenarios was considered to be 

reasonably representative of what could be encountered in the actual system.  
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Figure 5.2: Abstractions at Tenbosch for the year 2003/04 
 
Because daily streamflows mostly have high lag 1 autocorrelations, the flow at 

Tenbosch was found, as expected, to be heavily influenced by the flow of the 
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previous day. Since the Tenbosch outflows were not known for any of the scenarios, 

it was necessary to use some starting series of the previous day’s flows as input. In 

the absence of any past flows, the historic observed flows were used as the initial 

input flows and the model run on those inputs. The results so obtained (simulated 

outputs) were then fed back into the model as inputs in an iterative process until some 

stopping criteria were met. In this case the coefficient of determination and visual 

inspection of the way the graphs of the output (Tenbosch flows) in consecutive 

iterations mapped themselves to each other were used as stopping criteria. This was 

applied to each of the four storage scenarios. The iteration process for the scenario 

where the release from the dam was at 75% full is illustrated in Figure 5.3. The 

graphs converged after four iterations although only the last of the iterations is 

shown.  
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The graph shows a very close fit which means a good model convergence. The same 

standard of fit was observed for the other three storage scenarios.  
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CHAPTER 6 

 

6. RESULTS ANALYSIS AND DISCUSSION 
 

6.1 Results from model development 

 

The results of the statistical performance evaluation measures are shown in Table 6.1 

The performance indices in the table are the most commonly used in literature hence 

they were selected in this study. 

 

Table 6.1: Statistical performance evaluation measures of ANN model 

Error indicator Training Data Testing Data 

Mean Absolute Error (m3/s) 0.0217 0.0168 
Mean Square Error (m3/s) 1.589 0.103 

Root Mean Square Error (m3/s) 1.261 0.321 
Maximum Absolute Error (m3/s) 4.036 3.705 
Minimum Absolute Error (m3/s) 0.075 0.085 

Correlation coefficient 0.9626 0.8574 
Coefficient of determination, cd 0.9266 0.7352 

Coefficient of efficiency, ce 0.9262 0.7173 

Bias (m3/s) 0.0216 0.0168 
 
 

From the table it can be seen, as expected, that the ANN model performed better on 

training data than on testing data. The correlation coefficient which is a commonly 

used statistic provides information on the strength of linear relationship between the 

observed and the simulated values. Imrie et al., 2000 suggest that the correlation 

coefficient of less than 0.7 is problematic else anything more than this is acceptable.  
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There are no strict rules for the acceptability or rejection of a model. The adequacy of 

the model for a particular application depends on the application for which the results 

are intended. However, Table 6.2 gives qualitative guidelines for assessing the 

adequacy of streamflow estimates as adapted from Chiew and McMahon (1993) 

based on the coefficient of determination and coefficient of efficiency. Based on these 

guidelines, the model performance is perfect on training data and acceptable in testing 

data. 

 

Table 6.2: Qualitative guidelines for assessing the adequacy of streamflow estimates 
(Adapted from Chiew and McMahon (1993c)) 

Level of Adequacy Range of performance coefficients 

 

Perfect 

ce ≥ 0.93 or 

cd ≥ 0.97 or 

cd ≥ 0.93 and bias ≤ 0.1 

 

Acceptable 

ce ≥ 0.80 or 

cd ≥ 0.90 or 

cd ≥ 0.77 and bias ≤ 0.1 

Generally Satisfactory ce ≥ 0.60 

 

 

Figure 6.1 illustrates the relationship between the model simulation and the actual 

observed data for the training set. The graph shows a very close fit between the two 

data sets. Figure 6.2 provides a scatter plot together with the 45 degree line, of model 

simulation versus the observed a data. The error plot of the same is shown in Figure 

6.3. Figure 6.4, Figure 6.5 and Figure 6.6 show respectively, observed versus 

simulated data for testing data, scatter plot of the observed versus simulated and the 
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error graph for the testing data set. It can be seen also that the maximum error for the 

training is 1.718m3/s whereas it is 2.443m3/s for the testing data set. In general, the 

model although performing better on training, is still good on testing data. This is a 

very important aspect of model performance as it shows a good generalisation 

capability. 

 

The correlation coefficient of the model for the training data is 0.9626 and the 

coefficient of determination of 0.9266 (Table 6.1). For the training data it can be seen 

that there is a very high correlation between these values which shows that the model 

did well especially on training data.  
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Figure 6.1: Observed flow versus simulated flow for the training data set 
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Figure 6.2: Scatter plot of the observed versus the simulated flows for training data set  
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Figure 6.3: Error Plot of training data 
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Figure 6.4: Observed and Simulated flows of the testing data sets 
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Figure 6.5: Scatter plot of the observed versus the simulated flows for the testing data set 
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Figure 6.6: Error Plot for testing data 

 

6.2 Results from model application  
 

Figure 6.7 shows flow duration curves for the four release scenarios and the observed 

flows analysis carried over a period of 12 months using the testing data. Also shown 

is a line representing the flow of 0.9m3/s. From the graph it can be seen that for a 

release scenario where the dam is 100% full, about 22% of the time the flow is 

greater than 0.9m3/s which is a great improvement from the 10% from the observed 

flows. When the dam is 75% full the percentage exceedence of 0.9 m3/s is 12 %. 
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Figure 6.7: Flow-Duration Curves for the Kwena dam release scenarios 
 
Figure 6.8 shows a plot of observed flows with the different scenarios of initial 

storage and release from Kwena dam. The graph shows that over a period of 12 

months to emptiness, if the storage in the dam is higher; there is a higher release and 

the flow rates at Tenbosch increase accordingly.  

 

It is also evident that there is a remarkable increase towards achieving the flow of 

0.9m3/s only when the dam is initially full and the release is 5m3/s. All the other 

storage scenarios, although improving on the historic flow, do not increase the flows 

substantially to reach this flow requirement.  
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Figure 6.8 Variation of observed flows at Tenbosch with the different scenarios of initial 
storage and release from Kwena dam. 

 

 

 

6.3 Discussion 
 

This discussion looks at both the model development and model application stages. 

The model worked very well even though it can be improved further. Several factors 

could have affected the results of this study. These will be discussed in the following 

section. The training data set as used in this study could be one of the reasons the 

ANN not performing to the expected levels especially with the testing data. There 

were some sections of the data that were unrealistic especially with regards to the 

Kwena dam releases as they remained constant over a long period of time. The other 

reason could be attributed to lack of sufficient data included in the ANN model to 



 55

fully represent the whole dynamics of the system both hydrologically and 

operationally.  

 

6.3.1 Use of Multi-Layer Perceptron (MLP) trained with Back Propagation 
Algorithm (BPA) 
 

The choice of the training algorithm affects the overall performance of the model. 

Some researchers, for example, Srinivasulu and Jain, (2005); Hsu et al., (1995) have 

reported that rainfall-runoff models trained using BPA do not perform well in 

predicting low magnitude flows. They however, do not try to define what constitutes 

low and high values. Use of some other or a combination of training algorithms could 

perhaps produce better results. Srinivasulu and Jain, 2005 found that the predictive 

capability of using the real-coded genetic algorithm (RGA) and the self-organising 

map (SOM) was superior to those trained using BPA. ANNs have been reported 

extensively as yielding very good simulation results of streamflow for a number of 

catchments e.g. Shrestha et al., (2005). ANNs are data-driven and normally use 

historical data observed over a certain period of time.  

 

 6.3.2 Selection of training data sets 
 

ANNs by their nature are data-driven. The more data is available to them, the better 

the performance. The data sets used in this report could have been inadequate in 

terms of number for the neural networks to extract meaningful patterns from them 

since only 1956 data sets were used for a total of 32 inputs. The selection of the 

training data set in the ANN approach may also contribute significantly to the overall 

results. Very high values in the training may drive the simulated values towards high 

values while very low values may drive the results towards the low values. As far as 

this study is concerned, which focuses on times of low river flows, the selection of 

training data sets could have played a significant role in influencing the results. This 



 56

is because the period concerned is a drought period with very low river flows 

especially in the later part of period of interest. In addition to this, some of the 

assumptions made could have distorted the end results e.g. the monthly abstractions 

have been assumed to remain constant over the entire period under investigation. This 

has not taken into consideration the cropping patterns of the irrigators and the type of 

crops planted and over what period these have not changed. This is a very difficult 

task that can only be overcome if the actual abstractions are recorded. There may be 

days when the irrigators did not irrigate at all but the model has assumed there was 

irrigation just because the selected threshold rainfall had been exceeded. The model 

disaggregating monthly abstractions to daily values assumed a catchment wetness 

threshold of 4mm. This was subjective, but due to time constraints other thresholds 

and their impacts on the general performance, have not been tried out.  

 
6.3.3 Selection of network topology and architecture 

 
The number of neurons in the hidden layer enhances the performance of the neural 

network. However, there is no algorithm to use for the determination of the 

appropriate number of the neurons in this layer and it is therefore achieved by a 

tedious trial and error process. This could affect the results of the model since it is 

then based on the level of experience of the modeller. Different modellers doing the 

modelling will come up with different best topologies. The other factor that could 

affect the results is the choice of the transfer function adopted. Different transfer 

functions produce different results.  

 

6.3.4 Practical Application of the model 

Although the developed model gives good results, it would need to be thoroughly 

investigated before it can be used in practical situations by subjecting it to different 

types of data. However, as it is, it has the advantage that for a single testing run it 
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only takes on average five minutes of running time. This makes it a very attractive 

tool as it is not too tedious, cumbersome or time consuming.  

 

The Kwena dam becomes significant in the dry season when there are low flows and 

the minimum flow is not met. However, it was observed that it is difficult to meet this 

flow requirement based only on the river flow.  
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CHAPTER 7 

 

7. CONCLUSIONS AND RECOMMENDATIONS 
 
The importance of proper water management cannot be overemphasised. With 

increasing demands on limited water resources, it is essential that the available 

limited water resources be carefully planned, managed and efficiently operated to 

meet the present and future water needs. To accomplish this, water managers need 

some form of tool to use to achieve the objective. This research has shown that 

Artificial Neural Networks have a great potential of being used as a decision support 

tool because of their advantages alluded to in this report and the successful 

development of an ANN model for the Crocodile River. The ability to simulate river 

flows quickly and accurately is of crucial importance in water resources management 

operations. Hydrodynamic models provide a good physical basis for this purpose. 

However, their river geometric data requirements which may not be available in 

many locations, makes their use as a decision support tool especially in real time, 

unsuitable. This study has developed and demonstrated an ANN model that can be 

very helpful as it can give a good estimate of the next day’s flow at Tenbosch given 

the present day’s flow, the measured rainfalls, temperatures, abstraction rates and 

releases from Kwena dam. As such, the model indicates that with further refinement, 

the ANN can be used to guide operators as to how much to release based on the 

storage status of the reservoir and measurements of the hydrometric variables. The 

developed ANN model relates the important components of the system: release from 

Kwena, irrigation abstractions, current and previous rainfalls and flow at Tenbosch 

reasonably well. It can therefore be tried out in place of a more complex data 

intensive and time consuming simulation model in optimisation studies of the system. 

Caution, however, would need to be taken and more thorough studies and testing 

required before this as the ANN is a black box model.  Furthermore, the model 
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developed here was for the low flow periods only and a modelling of the high flows 

would need to be developed and integrated to a low flow one for effective system 

optimization. 

 

A point worth-noting, however, is that it is very difficult to meet the water flow 

requirements of 0.9m3/s at least on a daily basis at Tenbosch especially during times 

of drought where there are very low flows. If there is no water in the hydrologic 

system there is very little that can be done to meet the requirement without emptying 

the Kwena Dam in the shortest time; a situation no water manager would like to 

experience. The model developed quantifies the relationship between the releases at 

Kwena to the flows obtained at Tenbosch and can therefore be used to help operate 

the system optimally within the inadequacies of the system.  

 

In conclusion, no study is complete in itself and there is always scope and room for 

improvement. This study just lays a foundation on which further research can be 

built. To the author’s knowledge no work on application of ANNs to river simulation 

has been undertaken in South Africa and this study should give enough motivation 

and impetus towards directing research in this direction. The findings of this study are 

therefore preliminary in nature and would need to be refined further before they can 

be used in a real life situation. 

 

7.1 Recommendations for data collection  
 

Although it was never an objective of this research to asses the practicality of the Inco 

Maputo agreement, it is worth-noting that as it is not very specific about the 0.9m3/s 

flow requirement from the Crocodile River. It does not state over what time period 

this flow is to be sustained as it is not possible to satisfy this condition during times 

of severe drought. If this condition were to be met every day of the year, then the 

Kwena dam would likely dry up in a short time as the tributaries cannot guarantee a 

daily flow that would meet this condition. The best option then would be to base the 
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flow into Mozambique on the naturalised flows in the Crocodile River at Tenbosch. 

The current flow needs to be shared between the two countries. The author is aware 

of the Tripartite Interim Agreement between the countries of the Republic of South 

Africa, Republic of Mozambique and the Kingdom of Swaziland of 2002 for 

Cooperation on the Protection and Sustainable Utilisation of the Water Resources of 

the Inkomati and Maputo Water Courses. However, this agreement is too general and 

does not direct itself specifically to the situation at Tenbosch and Komatipoort 

(border with Mozambique). 

 

It is very clear that the Crocodile River catchment is a catchment under stress. This 

can be attested by the fact that currently, its water demands far outweigh its firm 

yield. This, coupled with its obligation to the international agreement with 

Mozambique, makes it imperative for all water managers, to have a proper and up-to-

date readily available data. Difficult as it is to monitor irrigation abstractions 

especially if illegal abstractions happen, every effort needs to be put in place to 

overcome this problem. This is borne out of the fact that during data collection for 

this study, the author was in some cases referred to some independent irrigators for 

data who were not willing to share their data as the DWAF did not have their data. It 

is however gratifying that there is currently a multimillion Rand project to try and do 

this task. 

 

The importance of the international agreement calls for a thorough water management 

and auditing; therefore there needs to be a clear understanding of the catchment water 

use. If the ANN models were to be adopted and implemented for catchment water 

management, there is need to equip the rivers with telemetric equipment to capture all 

hydrologic variables and events. It would be desirable if this equipment could operate 

at real or almost real time.  
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7.2 Recommendations for Model Improvement 
 

The model presented in this study only lays a foundation for further and thorough 

research on the applicability of the ANNs to both modelling the rainfall-runoff 

process and operation of  the Crocodile system and incorporating it into a decision 

support tool for catchment water management. The model could be investigated 

further using other training algorithms and different topologies to assess the most 

suitable. There is new literature e.g. Dawson et al., 2006 that suggests that ANNs 

trained with the common error backpropagation tend to under estimate low flows. 

This therefore calls for a trial of some other error functions other than the one used in 

this research. 

 

The neurosolution used for this study was operated at the USER version level which 

has some limitations. Upgrading to the more powerful Consultant or Professional 

versions would provide a lot of options on operation of the model and possibly better 

results.   
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Model for disaggregating monthly abstractions 
 

Known: Total monthly abstraction, Tm 

  Daily rainfalls, ri; i is the ith day of the month 

 

Required: Daily irrigation abstractions 

 

Concept: If the catchment wetness on a given day Ri exceeds a threshold RT, 

then no abstractions happen as the farms are adequately wet. If 

catchment is dry, then the maximum abstraction, ave, is made on that 

day. 

 If the catchment wetness is between the dry state and the threshold, 

then the abstraction is directly proportional to the deficit RT-Ri. The 

Figure illustrates the model. 
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Figure A1: Modelled catchment wetness 
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Figure A2: Modelled abstractions for January 1988 

 

The total abstraction for the month = ave
R

RRnr

i T

iT∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

1

   0< Ri< RT 

 + nd*ave   Ri = 0 
 +0   Ri >= RT  
where: nr is the number of days when 0< Ri< RT 

            nd is the number of days when Ri = 0 
 
The total abstraction has to equal Tm 



 71

Therefore M

nr

i T

iT Tavenrave
R

RR
=+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −∑
=

*
1

 

 

Therefore

∑
=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

nr

i T

iT

m

nr
R

RR
T

ave

1

  

 
Knowing ave, the actual abstraction for each day can be computed. The catchment 

wetness was obtained as a weighted sum of the rainfall in the current and the previous 

three days according to: 

 

Ri = ri + 0.75ri-1 +0.5ri-2 + 0.25ri-3 

 

where ri is the rainfall in the ith day. 

 

 

 
 


