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Abstract

A non-supersymmetric γi-deformed AdS/CFT correspondence has recently been con-

jectured by Frolov. A detailed description of both sides of this proposed gauge/string

duality is presented. The analogy that exists between single trace gauge theory op-

erators in the SU(3) sector and γi-deformed SU(3) integrable spin chains is also

discussed. Frolov, Roiban and Tseytlin’s leading order comparison between the γi-

deformed spin chain coherent state action and γi-deformed string worldsheet action

in the semiclassical limit is reviewed. A particular Lax pair representation for the

first order semiclassical γi-deformed spin chain/string action is then constructed.
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Chapter 1

Introduction

The modern picture of physics involves a quantum field theoretical description of the

three non-gravitational forces (electromagnetism, the strong and the weak interac-

tions), with the gravitational interaction separately described by general relativity.

A quantum field theory is a framework consistent with both quantum mechanics and

special relativity in which point-like particles are the excitations of local quantized

operator fields. Attempts to quantize general relativity in the usual way and so unify

gravity with the other three interactions are beset with difficulties - one of the most

important is that the resulting quantum field theory is non-renormalizable. Other

suggestions for a unified theory including gravity have been made and, at present, the

most likely candidate appears to be string theory. Here the fundamental objects are

not point-like, but are rather one dimensional strings and multi-dimensional branes.

These strings are allowed to oscillate and the different modes correspond to various

particles with different masses.

An interesting suggestion [1] of t’Hooft, reviewed in [2], is the notion of gauge/string

duality. He examined a quantum field theory with SU(N) gauge invariance in the

t’Hooft limit

N −→∞, with λ = g2N = fixed, (1.1)

where the t’Hooft coupling λ is defined in terms of the gauge theory coupling constant

g and the order N of the SU(N) gauge group. Perturbative expansions in terms

of Feynman diagrams were written as expansions of two dimensional surfaces with

genus counting parameter 1
N

and loop parameter λ, and were hence identified with

string expansions in terms of the string coupling constant gs = 1
N

. This suggests
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that, despite their very different appearance, an SU(N) gauge theory and a string

theory may describe the same underlying physics. This gauge/string duality is of

great significance, not only because it may allow us to solve hitherto intractable

problems in string theory, but also because it may yield a string theory dual to

Quantum Chromodynamics (QCD). This is the quantum field theory with SU(3)

gauge invariance describing strong interactions, which remains, as yet, imperfectly

understood.

1.1 AdS/CFT Correspondence

In 1997, Maldacena proposed the first concrete example of a gauge/string duality,

which has become known as AdS/CFT correspondence [3]. This states that N = 4

Super Yang-Mills (SYM) conformal field theory with SU(N) gauge invariance in four

dimensional Minkowski spacetime is dual to type IIB string theory in an AdS5 × S5

background. We shall now briefly describe the arguments that led to the Maldacena

conjecture based on [2, 3, 4, 5]:

Consider a system of N evenly spaced parallel D3 branes, each of which forms a 3+1

dimensional hypervolume in 9+1 dimensional flat spacetime. We can describe this

system in two different ways in terms of a type IIB string theory in the low energy

limit

α′ −→ 0 with
α′

r
= fixed, (1.2)

in which the string tension ∼ 1
α′ becomes large and the spacing r between two consec-

utive D3 branes shrinks to zero. Firstly, we can view the D3 branes as the end-points

of open strings. Closed strings propagate in the empty space surrounding the D3

branes, which is known as the bulk. In the low energy limit (1.2), only massless

modes survive, and the open and closed string theories decouple. The closed strings

in the bulk become free, while the open strings are described by a 3+1 dimensional

U(N) N = 4 SYM gauge theory on the D3 branes. Note that the U(N) gauge group

can be split into an SU(N) gauge group plus some extra U(1) degrees of freedom.

Secondly, the D3 branes can be viewed as massive objects, which are stacked together

and warp the spacetime around them. An observer at infinity will see two main types

of low energy string modes - massless free closed string modes far from the D3 branes

and all the string modes in the near horizon region close to the D3 branes (which

are red-shifted to low energies). The near horizon geometry is that of an AdS5 × S5
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spacetime. Thus, comparing these two descriptions, we obtain the Maldacena con-

jecture that an SU(N) invariant N = 4 SYM gauge theory is dual to type IIB string

theory in an AdS5 × S5 background. The extra U(1) degrees of freedom from the

original U(N) gauge group correspond to modes in the space separating the near

horizon region from the region far from the D3 branes. These modes appear on the

boundary of the AdS5 × S5 spacetime and shall be omitted from our string theory

description.

Now AdS/CFT correspondence is a strong/weak coupling duality with respect to the

t’Hooft coupling, since the Maldacena conjecture identifies

√
λ =

√
g2N =

R2

α′
, (1.3)

where R is the radius of the AdS5 and S5 spaces (which is the same) [3]. Performing

perturbative gauge theory calculations is easiest when the t’Hooft coupling is small,

but string theory problems can most easily be solved when the strings are nearly

point-like in comparison to the background space, so that R2

α′ is large. Although

this makes testing the proposed gauge/string duality difficult, it also means that, if

established, AdS/CFT correspondence will be exceedingly useful in allowing us to

perform strong coupling gauge theory calculations in the dual string theory where

the coupling is weak and vice versa.

There has recently been great interest in finding string theories dual to less supersym-

metric deformations ofN = 4 SYM theory. Leigh and Strassler were able to construct

N = 1 supersymmetric marginal deformations of N = 4 SYM theory [6], which in-

clude the so-called β-deformations. The string theory dual to this β-deformed SYM

theory was described by Lunin and Maldacena [7]. Frolov showed [8] that, in the

case of a real deformation parameter β = γ, the classical string worldsheet action in

the Lunin-Maldacena background can be derived using a TsT-transformation, with

shift parameter γ̂ =
√
λγ. This insight allowed him to demonstrate the existence

of a Lax pair for strings moving on a γ-deformed five-sphere. Furthermore, Frolov

also constructed a γi-deformed string theory by performing a series of three TsT-

transformations, with shift parameters γ̂i =
√
λγi, on the original classical string

worldsheet action and showed that strings moving on a γi-deformed five-sphere also

admit a Lax pair representation. He conjectured a duality between this γi-deformed

string theory and a non-supersymmetric γi-deformed Yang-Mills (YM) theory, which

has been studied in more detail by Frolov, Roiban and Tseytlin [9]. We are espe-

cially interested in this proposed non-supersymmetric γi-deformed gauge/string du-
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ality because any agreement found cannot be the result of matching supersymmetric

structures on either side.

After Maldacena’s initial conjecture, further details of AdS/CFT correspondence

were described in [10, 11]. Specifically, it was established that string energies should

be dual to the conformal dimensions of the corresponding gauge theory operators.

Agreement was found between the energies of point-like strings and the conformal

dimensions of chiral primary (half-BPS) operators, which are preserved from quantum

corrections by supersymmetry. Berenstein, Maldacena and Nastase (BMN) extended

this result by matching the conformal dimensions of long ‘nearly BPS’ operators to

the energies of nearly point-like strings in a pp-wave background [12]. The R-charge

J of these BMN operators, which is dual to the total angular momentum of the

corresponding strings, was assumed to be large. More explicitly, they considered

these quantities in the BMN or semiclassical limit

J −→∞ with λ̃ ≡ λ

J2
= fixed � 1, (1.4)

in which it is possible to perform perturbative expansions in terms of the small

parameter λ̃. This semiclassical limit was further discussed in [13, 14, 15] and is

remarkably useful in allowing calculations to be performed in both the gauge and

string theories despite the difficulties associated with the strong/weak coupling nature

of the duality.

An interesting development on the gauge theory side was the realization of Minahan

and Zarembo [16] that single trace operators in the scalar sector of N = 4 SYM

theory are analogous to SO(6) spin chain states. They showed that the planar one-

loop matrix of anomalous dimensions in the scalar sector, the eigenvalues of which

should correspond to string excitation energies, is simply the Hamiltonian of an SO(6)

spin chain. Similar results apply to other sectors of N = 4 SYM theory as well as to

various sectors of the β-deformed SYM and γi-deformed YM theories. A semiclassical

limit of the relevant gauge theory operator corresponds to a continuum limit of the

analogous spin chain. It is thus possible to compare the coherent state effective action

of a spin chain in the continuum limit with the corresponding string worldsheet action

in the fast motion limit [9, 17, 18, 19, 20, 21, 22]. Special mention should be made

of Frolov, Roiban and Tseytlin’s leading order semiclassical comparison [9] between

γi-deformed SU(3) spin chains and strings in a γi-deformed R × S5 background at

the level of the action.
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1.2 Aim and Structure of Thesis

The aim of this thesis is to study the non-supersymmetric γi-deformed gauge/string

duality and to ultimately construct a Lax pair representation for the first order

semiclassical γi-deformed SU(3) spin chain/string action.

This thesis is arranged into six chapters. Chapter 2 contains a review of N = 4 SYM

conformal field theory. We discuss the derivation of the N = 4 SYM Lagrangian

by dimensional reduction, together with its supersymmetric and conformal nature.

Marginal deformations of N = 4 SYM theory are then described and special men-

tion is made of the N = 1 supersymmetric β-deformed and non-supersymmetric

γi-deformed YM theories. In chapter 3, we discuss the representation of the matrix

of anomalous dimensions corresponding to single trace operators in the SU(3) sec-

tor of our γi-deformed YM theory as the Hamiltonian of a γi-deformed SU(3) spin

chain. We also explain how this Hamiltonian can be diagonalized using an algebraic

Bethe ansatz. Chapter 4 involves a description of the γi-deformed string theory. We

construct the classical string worldsheet action for strings moving in an R×S5 back-

ground and, by performing various TsT-transformations, derive the γ-deformed and

γi-deformed string worldsheet actions. The Lax pair representations of these string

theories are also discussed. Chapter 5 contains a review of the first order semiclas-

sical comparison between the γi-deformed SU(3) spin chain coherent state action in

the continuum limit and the γi-deformed string worldsheet action in the fast motion

limit. Furthermore, we extend the calculation of the semiclassical γi-deformed string

worldsheet action to second order for the purpose of constructing the conserved U(1)

charge and current densities. Finally, we demonstrate that the γi-deformed semi-

classical spin chain/string action to leading order admits a Lax pair representation.

In other words, the γi-deformed spin chain and string systems remain integrable in

the semiclassical limit. This new result has been published [23]. A few concluding

remarks are presented in chapter 6.
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Chapter 2

Conformal Field Theory

2.1 N = 4 Super Yang-Mills Theory

2.1.1 Yang-Mills theory with SU(N) gauge invariance

The original YM theory [24] was developed in 1954 in an attempt to explain the

strong interaction in terms of pion exchange. Unlike the analogous theory of electro-

dynamics, which contains U(1) gauge invariance, this YM theory was invariant under

SU(2) isospin rotations. More recently, with the advent of the quark model, a more

correct description of the strong interaction in terms of gluon exchange was developed

using a YM theory with an SU(3) colour gauge group. The main difference between

these YM theories and electrodynamics is their non-abelian nature - the components

of the gauge field do not commute. This results in the self-interaction of the gauge

bosons and is responsible for much of the extra complexity inherent in the theory.

We are interested in a more general YM theory, which contains SU(N) gauge in-

variance (with N ≥ 2 an arbitrary integer, often taken to be large). We shall now

explain how to construct such a theory based on discussions in [25, 26]:

Let us start by considering some free field theory containing a complex scalar field

Φ(x) = (Φ1(x),Φ2(x), . . . ,ΦN(x)) with N components and a Dirac spinor field Ψ(x),

the four components of which are themselves N -component fields, so that Ψi(x) =

(Ψi1(x),Ψi2(x), . . . ,ΨiN(x)). This representation of the fields Φ(x) and Ψ(x) in terms
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of N -component vectors is called the fundamental representation. The free field

Lagrangian is then given by

L = ∂µΦ†∂µΦ−m2
bΦ

†Φ + Ψ̄ (iγµ∂µ −mf ) Ψ, (2.1)

with Ψ̄ ≡ Ψ†γ0. Here mb and mf are the masses of the scalar (boson) and spinor

(fermion) fields respectively, and γµ are the usual 4× 4 gamma matrices (A.11).

We would now like to include a gauge field in this description so as to obtain an

SU(N) invariant field theory. In other words, we would like our Lagrangian to

remain unchanged when

Φ(x) −→ U(x)Φ(x) and Ψi(x) −→ U(x)Ψi(x), (2.2)

where U(x) is an arbitrary element of SU(N). This is clearly not the case for the

Lagrangian (2.1) due to the extra derivative terms that arise as a result of the lo-

cal nature of the transformation U(x). We shall therefore introduce the covariant

derivative

Dµ ≡ ∂µ − igAµ(x), (2.3)

where Aµ(x) are realN×N gauge field matrices, chosen to be traceless and hermitean,

and g is the YM coupling constant. The Lagrangian then becomes

L = (DµΦ)†DµΦ− µ2Φ†Φ + Ψ̄(iγµDµ −m)Ψ, (2.4)

which remains invariant under any local SU(N) transformation U(x), if we insist

that the gauge field Aµ(x) must transform as follows:

Aµ(x) −→ U(x)Aµ(x)U †(x) +
i

g
U(x)∂µU

†(x). (2.5)

Finally, we would like to determine the field strength contribution to the YM La-

grangian, which contains the kinetic terms associated with the gauge field Aµ. Let

us first define the field strength as

Fµν ≡ ∂µAν − ∂µAν − ig [Aµ, Aν ] . (2.6)

Note that the last term in this expression, which is zero in electrodynamics, is now

present because the components Aµ and Aν of the YM gauge field do not commute.

Since the gauge field Aµ is a traceless hermitean N × N matrix, we can expand
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Aµ(x) =
∑
a

Aa
µ(x)T a in terms of the N2 − 1 generators T a of SU(N), where Aa

µ(x)

are real field coefficients. Hence the field strength can be written as

Fµν(x) =
∑

a

F a
µν(x)T

a with F a
µν = ∂µA

a
ν − ∂νA

a
µ +

∑
b,c

f bcaAb
µA

c
ν , (2.7)

where the structure constants fabc are defined such that
[
T a, T b

]
= i

∑
c

fabcT c and

are a property of the Lie algebra of SU(N). This field strength transforms under a

local SU(N) transformation U(x) as

Fµν(x) −→ U(x)Fµν(x)U
†(x), (2.8)

so that Tr {FµνF
µν} is SU(N) invariant. Thus we shall define the field strength or

pure YM Lagrangian as follows:

LY M ≡ −1

4
Tr {FµνF

µν} = −1

8

∑
a

F a
µνF

µν a, (2.9)

where we have made use of the conventional normalization Tr
{
T aT b

}
= 1

2
δab.

A full YM Lagrangian can, of course, contain terms other than just (2.4) and (2.9) -

further SU(N) invariant interaction terms can also be included. One possibility is a

scalar potential of the form V (Φ†Φ).

Now there is another possible representation for the fields Φ(x) and Ψ(x) in terms

of traceless hermitean N × N matrices rather than N -component vectors. This is

called the adjoint representation and is spanned by the generators of SU(N). The

Lagrangian (2.4) in this representation is given by

L =
1

2
Tr
{

(DµΦ)†DµΦ− µ2Φ†Φ + Ψ̄(iγµDµ −m)Ψ
}
, (2.10)

where the covariant derivatives of the fields Φ and Ψ are

DµΦ ≡ ∂µΦ− ig [Aµ,Φ] and DµΨ ≡ ∂µΨ− ig [Aµ,Ψ] . (2.11)

Notice that one must introduce a trace into this Lagrangian, due to the fact that the

fields are now matrices, and a commutator between the gauge field Aµ and the field

into the covariant derivative.

Lastly, we make a few general observations about this YM theory: The gauge field

matrix Aµ really consists of N2−1 different real fields Aa
µ. This is the reason that the

YM theory with SU(3) gauge invariance contains eight distinct gauge bosons called

gluons. Furthermore, the field strength term −1
8

∑
a

F a
µνF

µν a in the YM Lagrangian

contains cubic and quartic terms as well as the usual quadratic ones. This results in

the self-interaction of the gauge bosons.
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2.1.2 N = 4 SYM theory by dimensional reduction

N = 4 SYM theory was originally constructed [27] by dimensionally reducing a ten

dimensional N = 1 SYM theory to four dimensions. YM theories and dimensional

reductions thereof were further discussed in [28]. We shall now derive the N = 4

SYM Lagrangian by dimensional reduction following [27].

The relevant ten dimensional N = 1 SYM theory contains the gauge field BM

(
xN
)

and the massless Weyl-Majorana spinor field λ
(
xN
)
, chosen to be in the adjoint

representation of SU(N). Here the capital roman letters, which index the coordi-

nates in our ten dimensional Minkowski spacetime, run from 0 to 9. Hence the ten

dimensional SYM Lagrangian is given by [27]

L = Tr

{
−1

4
GMNG

MN − i

2
λ̄ΓMDMλ

}
, (2.12)

where GMN ≡ ∂MBN − ∂NBM − ig [BM , BN ] is the ten dimensional field strength

and ΓM are gamma matrices satisfying the Clifford algebra in ten dimensions.

In order to reduce this SYM Lagrangian to four spacetime dimensions, we shall split

up our ten coordinates xM into four reduced coordinates xµ and six extra coordinates

x3+m. Here the greek and small roman indices run from 0 to 3 and from 1 to 6

respectively. We shall assume that the extra six dimensions are very small and

compact, and take a zero slope limit, so that all dependence on these dimensions and

all derivatives with respect to the extra six spacetime coordinates vanish. We shall

also separate the ten gauge field matrices BM into four gauge field matrices Aµ and

six real scalar field matrices φm. Thus

Bµ

(
xN
)
−→ Aµ (xν) and Bm

(
xN
)
−→ φm (xν) , (2.13)

so that the components of the ten dimensional field strength can be written as

Gµν

(
xR
)

−→ Fµν (xρ) = ∂µAν (xρ)− ∂νAµ (xρ)− ig [Aµ (xρ) , Aν (xρ)] ,

Gµ 3+m

(
xR
)

−→ Dµφm (xρ) = ∂µφm (xρ)− ig [Aµ (xρ) , φm (xρ)] ,

G3+m µ

(
xR
)

−→ −Dµφm (xρ) = −∂µφm (xρ) + ig [Aµ (xρ) , φm (xρ)] ,

G3+m 3+n(xR) −→ −ig [φm (xρ) , φn (xρ)] . (2.14)

The SYM Lagrangian (2.12) therefore reduces to

L = −1

4
Tr {FµνF

µν} − 1

2
Tr {DµφmD

µφm}+
1

4
g2Tr {[φm, φn] [φm, φn]}

− i

2
Tr
{
λ̄ΓµDµλ

}
− 1

2
gTr

{
λ̄Γ3+m [φm, λ]

}
. (2.15)
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Further simplification of (2.15) requires us to choose an explicit representation for

the gamma matrices ΓM . This representation must be at least 32 dimensional1. Now,

as in [29], one can choose an off-diagonal block representation in terms of the 16×16

matrices ΣM and Σ̄M in analogy to (A.25). However, for the purposes of dimensional

reduction, we shall rather make use of the representation of [27], which involves a

tensor product of 8× 8 and 4× 4 matrices, as follows:

Γµ =

(
14 0

0 −14

)
⊗γµ, Γ3+j =

(
ρj 0

0 ρ′j

)
⊗(−iγ5), Γ6+j =

(
0 γj

γj 0

)
⊗14, (2.16)

where µ runs from 0 to 3, as usual, and j runs from 1 to 3. Here γµ are the usual

4 × 4 gamma matrices (A.11) in four spacetime dimensions, and ρ1 ≡ ρ′1 ≡ γ0,

ρ2 ≡ ρ′2 ≡ γ5 and ρ3 ≡ −ρ′3 ≡ −iγ0γ5. We can easily verify that this collection of

matrices satisfy the Clifford algebra in ten dimensions. Hence the chirality matrix is

given by

−iΓ11 = Γ0Γ1 . . .Γ9 = −i

(
0 ρ3

−ρ3 0

)
⊗ 14. (2.17)

Now λ is a 32-component Weyl-Majorana spinor satisfying both the Weyl or chirality

condition −iΓ11λ = λ and the Majorana condition λ = λC that the spinor must be

the same as its charge conjugate2. Let us define

λ ≡

(
λ1

λ2

)
, (2.18)

where λ1 and λ2 each consist of four 4-component Dirac spinors. The Weyl condition

then implies that λ2 = i(ρ3 ⊗ 14)λ1, which yields

λ =

(
λ1

i(ρ3 ⊗ 14)λ1

)
with λ1 =

1√
2


χ1

χ2

χ3

χ4

 . (2.19)

Furthermore, for λ to be Majorana, it was shown in [27] that the four Dirac spinors

χa must also be Majorana, so that

χa =

(
ψaα

ψ̄ α̇
a

)
, (2.20)

1The gamma matrices in D spacetime dimensions (with D even), which satisfy the Clifford
algebra, have a minimal representation of dimension 2D/2 [27].

2It turns out that ten dimensional spacetime is the lowest dimensional spacetime (aside from the
rather trivial D = 2 case) in which it is possible for a spinor to satisfy both the Weyl and Majorana
conditions [27].
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where ψaα are four 2-component Weyl spinors. (A more detailed discussion of Weyl

spinors, and dotted and undotted notation is available in appendix A.)

Therefore, using the expressions (2.16) and (2.19) for the gamma matrices ΓM and

the Weyl-Majorana spinor λ in our 32 dimensional representation, we can calculate

− i
2
Tr
{
λ̄ΓµDµλ

}
= −1

2

4∑
a=1

Tr {χ̄aγ
µDµχa} , (2.21)

−1

2
gTr

{
λ̄Γ3+j [φj, λ]

}
=
i

2
g

4∑
a,b=1

Tr
{
χ̄a(β

j)abγ
5 [φj, χb]

}
, (2.22)

−1

2
gTr

{
λ̄Γ6+j [φ3+j, λ]

}
=
i

2
g

4∑
a,b=1

Tr
{
χ̄a(α

j)ab [φ3+j, χb]
}
, (2.23)

where βj ≡ ρj and αj ≡ −ρ3γj, which are explicitly given by

β1 =

(
0 12

12 0

)
, β2 =

(
12 0

0 −12

)
, β3 =

(
0 i12

−i12 0

)
, (2.24)

α1 =

(
−iσ1 0

0 iσ1

)
, α2 =

(
−iσ2 0

0 iσ2

)
, α3 =

(
−iσ3 0

0 iσ3

)
. (2.25)

The N = 4 SYM Lagrangian in our reduced four dimensional Minkowski spacetime

is thus [27]

LSYM = −1

4
Tr {FµνF

µν} − 1

2
Tr {DµφmD

µφm}+
1

4
g2Tr {[φm, φn] [φm, φn]}

− 1

2

4∑
a=1

Tr {χ̄aγ
µDµχa}+

1

2
ig

4∑
a,b=1

Tr
{
χ̄a(β

j)abγ
5 [φj, χb]

}
+

1

2
ig

4∑
a,b=1

Tr
{
χ̄a(α

j)ab [φ3+j, χb]
}
. (2.26)

The six massless real scalar fields φm, four gauge fields Aµ and components of the four

massless Majorana spinor fields χa are allN×N matrices in the adjoint representation

of SU(N). The scalar fields φm are invariant under SO(6) rotations and this internal

symmetry is locally isomorphic to the internal SU(4) symmetry of the spinor fields

χa [29].

Finally, let us check that the number of bosonic and fermionic degrees of freedom

match (as one would expect for a supersymmetric theory). There are six degrees
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of freedom in the real scalar fields and two in the gauge boson fields (Aµ has two

polarization states). This yields a total of eight bosonic degrees of freedom. One

would expect each of the four Majorana spinors to contain two complex (four real)

degrees of freedom. These spinors must, however, satisfy the Dirac equation and this

complex constraint limits the number of real degrees of freedom associated with each

spinor to two. Thus there are also eight fermionic degrees of freedom.

2.1.3 The scalar potential

We shall now consider the scalar interaction term in the SYM Lagrangian (2.26) in

more detail. This scalar potential is given by

V =
1

4
g2Tr {[φm, φn][φm, φn]} =

1

4
g2Tr

{
[φm, φn]2

}
, (2.27)

where we note that φm = η3+m 3+nφn, with η3+m 3+n = −δmn the ten dimensional

Minkowski metric confined to the six compact dimensions, so that φm = −φm.

It is now possible [22] to rewrite this scalar potential in terms of three complex scalar

fields Φj ≡ φj + iφ3+j, with complex conjugates Φ∗
j = φj − iφ3+j, as follows:

V = −1

4
g2

{
Tr
[
|Φ1Φ2 − Φ2Φ1|2 + |Φ2Φ3 − Φ3Φ2|2 + |Φ3Φ1 − Φ1Φ3|2

]
− 1

4
Tr
[
([Φ1,Φ

∗
1] + [Φ2,Φ

∗
2] + [Φ3,Φ

∗
3])

2]} . (2.28)

The first term is known as the F -term and the second as the D-term. (The reason

for this will become apparent when we discuss supersymmetry). It is the F -term

that will be modified when we introduce the β-deformed N = 1 supersymmetric and

γi-deformed non-supersymmetric YM theories.

2.2 Supersymmetry

Supersymmetry (SUSY) is a hypothetical symmetry relating fermions and bosons. In

a supersymmetric theory every fermion (boson) should have a corresponding bosonic

(fermionic) superpartner. As yet no direct evidence for SUSY has been discovered,

although several high energy experiments, which search for these superpartners or
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signatures of their existence, are currently underway. Nevertheless, SUSY remains an

appealing concept within the theoretical community due to the comparatively simple

nature of supersymmetric theories.

Now SUSY transformations are generated by theN supercharges QI , with conjugates

Q̄I , contained within a supersymmetric theory. These supercharges are spinors and

satisfy a SUSY algebra. Our original ten dimensional N = 1 SYM theory contains

only one 16-component Weyl-Majorana spinor supercharge, while there are four 2-

component Weyl spinor supercharges with an internal SU(4) R-symmetry in the

reduced N = 4 SYM theory. This is the maximum number of supercharges possible

in a non-gravitational theory and hence N = 4 SYM theory is called ‘maximally

supersymmetric’.

The most convenient way of formulating a supersymmetric theory involves the in-

troduction of superspace, which is an extension of spacetime using non-commuting

spinor coordinates and was invented by Salam and Strathdee [30]. In this section, we

first explain how to rigorously describe a SUSY transformation in superspace. Chiral

superfields, vector superfields and the Wess-Zumino gauge are also discussed, and

we demonstrate that it is possible to construct a SUSY invariant action in N = 1

superspace using F -terms, D-terms and a field strength term. Finally, we show that

the original ten dimensional SYM action can be written in N = 1 superspace and

the implications for the reduced four dimensional SYM theory are mentioned. The

form of the N = 4 SYM action in N = 1 superspace is also stated. This review is

based on discussions in [25, 31, 32, 33, 34, 35, 36].

2.2.1 N = 1 superspace and superfields

SUSY transformations change fermions into bosons and vice versa. The generators

of N = 1 SUSY transformations in four spacetime dimensions are the supercharge

Q and its conjugate Q̄, which are 2-component Weyl spinors and satisfy the SUSY

algebra [25, 31]{
Qα, Q̄β̇

}
= 2(σµ)αβ̇Pµ, {Qα, Qβ} =

{
Q̄α̇, Q̄β̇

}
= 0, [Qα, Pµ] =

[
Q̄α̇, Pµ

]
= 0,

(2.29)

where Pµ = i∂µ is the momentum operator and σµ is defined just after (A.25).

In order to construct a SUSY transformation from these generators, we need to
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introduce a pair of Grassmannian3 2-component Weyl spinor coordinates θ and θ̄

upon which our supercharge and its conjugate can act. This leads us to define

the superfield Φ(x, θ, θ̄) as a field in the extended superspace (xµ, θα, θ̄α̇), where xµ

are the usual four dimensional Minkowski spacetime coordinates. A finite SUSY

transformation, which acts on this superfield, is then ei(ξQ+Q̄ξ̄), where ξ and ξ̄ are a

pair of finite spinor parameters. The SUSY variation of the superfield Φ is thus given

by

δΦ(x, θ, θ̄) = i(ξQ+ Q̄ξ̄) Φ(x, θ, θ̄), (2.30)

where ξ and ξ̄ are now infinitesimal spinor parameters.

The supercharges can be expressed in differential operator form in terms of the su-

perspace coordinates. Specifically we see that4

Qα ≡
∂

∂θα
− i(σµ)αβ̇ θ̄

β̇∂µ and Q̄α̇ ≡ −
∂

∂θ̄α̇
+ iθβ(σµ)βα̇∂µ, (2.31)

satisfy our supersymmetric algebra (2.29). Furthermore, we shall define a set of

covariant derivatives, which anticommute with the supercharges, as follows:

Dα ≡
∂

∂θα
+ i(σµ)αβ̇ θ̄

β̇∂µ and D̄α̇ ≡ −
∂

∂θ̄α̇
− iθβ(σµ)βα̇∂µ. (2.32)

The fact that these derivatives anticommute with Qβ and Q̄β̇ means that they will

commute with any SUSY variation.

2.2.2 Chiral superfields and F -terms

To construct the F -terms in a SUSY invariant Lagrangian, we must first introduce

the concept of a chiral superfield. If ΦL(x, θ, θ̄) and ΦR(x, θ, θ̄) are left-handed and

right-handed chiral superfields respectively, then [31, 32, 34]

D̄α̇ΦL

(
x, θ, θ̄

)
= 0 and DαΦR

(
x, θ, θ̄

)
= 0. (2.33)

3These spinor coordinates anticommute so that {θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄β̇} = 0.
4Differentiation in terms of Grassmannian coordinates is defined as follows:{

∂

∂θα
, θβ

}
= δβ

α,

{
∂

∂θ̄α̇
, θ̄β̇

}
= δβ̇

α̇,

{
∂

∂θα
, θ̄β̇

}
= 0,

{
∂

∂θ̄α̇
, θβ

}
= 0.

In other words, in the case of anticommuting coordinates, one must simply remember that derivatives
also anticommute. The product rule will therefore change slightly - when differentiating the 2nd,
4th, etc terms in a product, we pick up a minus sign.
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These names originate in the left-handed and right-handed chiral nature of the spinor

fields ψL(x) and ψR(x), which we shall observe to be contained in these superfields.

We shall concentrate for now on left-handed chiral superfields. Let us define a new

set of superspace coordinates y, θ, and θ̄, with yµ = xµ+iθσµθ̄, in which the covariant

derivatives are given by

Dα =
∂

∂θα
+ 2i(σµ)αβ̇ θ̄

β̇∂µ and D̄α̇ = − ∂

∂θ̄α̇
. (2.34)

Notice that any left-handed chiral superfield Φ(x, θ, θ̄) = Φ(y, θ) is now independent

of θ̄. Expanding Φ(y, θ) in a Taylor series in terms of θ yields

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y), (2.35)

where φ and F are scalar fields and ψ is a spinor field. (The factor
√

2 has been

included in front of ψ for convenience.) This is an exact expression - all terms higher

than second order vanish because θα and θβ anticommute. We can expand each of

the terms φ(y), ψ(y) and F (y) around y = x to obtain [25, 32]

Φ(x, θ, θ̄) = φ(x) + i(θσµθ̄)∂µφ(x)− 1

2
(θσµθ̄)(θσν θ̄)∂µ∂νφ(x)

+
√

2θψ(x) +
√

2iθ(θσµθ̄)∂µψ(x) + θθF (x), (2.36)

which is, again, an exact expansion.

Let us now calculate the SUSY variations of the fields φ, ψ and F . The SUSY

variation of the left-handed chiral superfield Φ(y, θ) can be expressed in terms of δφ,

δψ and δF as follows:

δΦ(y, θ) = δφ(y) +
√

2θδψ(y) + θθδF (y), (2.37)

but also, writing the supercharge Q and its conjugate Q̄ in (2.30) in terms of the

coordinates y, θ and θ̄, we find that

δΦ(y, θ) = i
(
ξQ+ Q̄ξ̄

)
Φ(y, θ)

= i

(
ξ
∂

∂θ
− ∂

∂θ̄
ξ̄ + 2iθσµξ̄

∂

∂yµ

)[
φ(y) +

√
2θψ(y) + θθF (y)

]
=
√

2iξψ(y) + 2iθξF (y)− 2θσµξ̄∂µφ(y) +
√

2θθ∂µψ(y)σµξ̄. (2.38)

Hence, equating different orders of θ, we obtain

δφ =
√

2iξψ, (2.39)

δψ =
√

2iξF −
√

2σµξ̄∂µφ, (2.40)

δF =
√

2∂µψσ
µξ̄. (2.41)
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Now, clearly, (2.41) indicates that the SUSY variation of the scalar field F is a total

derivative. This can also be seen simply using dimensional analysis [25]. Since the

momentum operator P µ has mass dimension5 +1, we observe, from the SUSY algebra

(2.29), that the supercharge Q and its conjugate Q̄ must have mass dimension +1
2
.

Furthermore, the coordinates θ and θ̄ must have mass dimension −1
2

for the term

in the exponential of our finite SUSY transformation to be dimensionless. Now,

assuming that the scalar field φ has mass dimension +1 (as is the case for any

physically meaningful scalar field in four spacetime dimensions), we see that ψ and

F must therefore have mass dimensions 3
2

and +2 respectively. Thus the only possible

object that can produce the required mass dimension of +2 for the SUSY variation

of the field F is the total derivative δF ∼ ∂µψσ
µξ̄. This argument is, perhaps, less

rigorous than the previous explicit calculation, but it has the advantage of being

more generally applicable.

The scalar field F (x) is therefore an ideal candidate for a SUSY invariant La-

grangian, since
∫
d4x F (x) is invariant under SUSY transformations (if we ignore

surface terms). This is the origin of the name ‘F -terms’. Furthermore, any function

of any number of left-handed chiral superfields Φi is also a left-handed chiral super-

field (it depends only on y and θ). Hence the F -terms in a SUSY invariant action

can be written as6 [31, 34]

SF = −
∫
d4x

{∫
d2θ f(Φi) +

∫
d2θ̄ f ∗(Φ†

i )

}
, (2.42)

where f is some function7 of the left-handed chiral superfields Φi. Here we have

included in our Lagrangian the hermitean conjugate of the relevant expression, which

is obviously also SUSY invariant. This can also be seen as the analogous F -term for

a function f ∗ of the right-handed chiral superfields Φ†
i . These F -terms result in the

mass terms in the Lagrangian as well as further interaction terms, but there are no

kinetic terms contained in this expression.

5The mass dimension x of a quantity Q is defined such that [Q] = Mx. Note also that we are
using units in which c ≡ ~ ≡ 1.

6Integration of Grassmannian coordinates is defined as follows [33]:∫
dθ1θ1 =

∫
dθ2θ2 = 1 and

∫
dθ11 =

∫
dθ21 = 0.

Note also that d2θ ≡ dθ1dθ2 and d2θ̄ ≡ dθ̄1dθ̄2.
7This function is usually a polynomial of maximum degree three - higher order superpotentials

lead to non-renormalizable theories [31].
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2.2.3 Vector superfields, the Wess-Zumino gauge and D-terms

Another possible contribution to a SUSY invariant action are the so-called D-terms.

These can be obtained from any vector superfield V (x, θ, θ̄), which is defined as a

self-conjugate superfield satisfying

V (x, θ, θ̄) = V †(x, θ, θ̄). (2.43)

A general vector superfield can be written as [31, 32]

V (x, θ, θ̄) = C(x) + θχ(x) + θ̄χ̄(x) + θθM(x) + θ̄θ̄M∗(x)

− θσµθ̄Aµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) + 1
2
θθθ̄θ̄D(x), (2.44)

where C(x) and D(x) are real scalar fields, M(x) is a complex scalar field, Aµ(x) is

a real vector field, and χ(x) and λ(x) are complex spinor fields.

We shall now demonstrate that the SUSY variation of the field D(x) is a total deriv-

ative. This is to be expected, since 1
2
D(x) is the coefficient of the highest order term

in the above expression and has the highest mass dimension. Its SUSY variation

should therefore be proportional to derivatives of the coefficients of the lower order

terms. More explicitly, we can calculate

δV = δC+θδχ+θ̄δχ̄+θθδM+θ̄θ̄δM∗−θσµθ̄δAµ+iθθθ̄δλ̄−iθ̄θ̄θδλ+ 1
2
θθθ̄θ̄δD, (2.45)

and also

δV = i

[
ξ
∂

∂θ
− ∂

∂θ̄
ξ̄ − i

(
ξσµθ̄ − θσµξ̄

)
∂µ

]
(2.46)

×
[
C + θχ+ θ̄χ̄+ θθM + θ̄θ̄M∗ − θσµθ̄Aµ + iθθθ̄λ̄− iθ̄θ̄θλ+ 1

2
θθθ̄θ̄D

]
.

We need only determine the highest order term in the last expression, which can be

equated to the corresponding term in the first equation as follows:

1
2
θθθ̄θ̄D(x) =

[
ξα(σµ)αβ̇ θ̄

β̇
] [
i (θθ) θ̄γ̇∂µλ̄

γ̇
]
−
[
θα(σµ)αβ̇ ξ̄

β̇
] [
−i
(
θ̄θ̄
)
θγ∂µλγ

]
= − i

2
θθθ̄θ̄

[
ξσµ∂µλ̄+ ∂µλσ

µξ̄
]
. (2.47)

Hence the SUSY variation of the real scalar field D(x) is given by

δD = −i∂µ

(
ξσµλ̄+ λσµξ̄

)
, (2.48)

which is a total derivative. The D-term
∫
d4x D(x) is therefore another possible

candidate for our action, since it is SUSY invariant.
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We shall now introduce the supersymmetric generalization of a non-abelian gauge

transformation, which acts on the vector superfield V (x, θ, θ̄) as follows:

egV −→ eigΛegV e−igΛ†
, (2.49)

where iΛ(x, θ, θ̄) is a left-handed chiral superfield and g is the gauge coupling con-

stant. The left-handed chiral superfield iΛ(x, θ, θ̄) contains two complex scalar fields

and one complex spinor field, which we are at liberty to choose. It turns out to be

possible to choose these fields so as to eliminate C(x), χ(x) and M(x) in the general

expression (2.44) - this is called the Wess-Zumino gauge8. There also remains one

unspecified degree of freedom, since C(x) is a real scalar field and both the scalar

fields in iΛ are complex. This last degree of freedom results in the usual gauge free-

dom of the vector field Aµ, which can be changed in such a way as to leave the field

strength Fµν invariant. Thus a general vector superfield in the Wess-Zumino gauge

is given by

VWZ(x, θ, θ̄) = −θσµθ̄Aµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) + 1
2
θθθ̄θ̄D(x), (2.50)

where the vector field Aµ still maintains its usual gauge freedom.

Now we can generally use any vector superfield or function of vector superfields to

construct the D-terms in our action. It is often convenient, however, to make use

of the Kähler potential K(Φi,Φ
†
i ), which is required to be a vector superfield and is

constructed from the left-handed chiral superfields Φi. The D-terms in the SUSY

invariant action can then be written as [33, 34]

SD =

∫
d4x

∫
d2θ d2θ̄ K(Φi,Φ

†
i ). (2.51)

These D-terms contain fermionic and bosonic kinetic terms as well as interaction

terms. There are no kinetic terms corresponding to the auxillary fields F and D,

which have purely algebraic equations of motion and can be eliminated from the

action.

8Choosing iΛ so as to obtain the Wess-Zumino gauge in the general non-abelian case, in which
our fields do not commute, is a highly non-linear problem and, as such, shall not be further dis-
cussed. There is a detailed description in [32] of the solution to the abelian problem, in which the
supersymmetric gauge transformation becomes V → V + i(Λ− Λ†).
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2.2.4 Field strength term

The last possible SUSY invariant term in our action is the field strength term. This

is constructed from the field strength superfield

Wα ≡
1

8

(
D̄D̄

)
e2gVDαe

−2gV , (2.52)

where D and D̄ are the covariant derivatives in superspace and V = VWZ is a vector

superfield in the Wess-Zumino gauge (2.50). The field strength superfield Wα is

clearly a spinor and, moreover, is also a left-handed chiral superfield (D̄β̇Wα = 0,

since D̄α̇ and D̄β̇ anticommute).

We shall now, as in [34], consider the action of the supersymmetric gauge transfor-

mation (2.49) on Wα. This field strength superfield transforms as

Wα −→ e2giΛWαe
−2giΛ, (2.53)

which can be shown as follows:

Wα −→
1

8

(
D̄D̄

) (
e2giΛe2gV e−2giΛ†

)
Dα

(
e2giΛ†

e−2gV e−2giΛ
)

=
1

8

(
D̄D̄

)
e2giΛe2gV

(
Dαe

−2gV
)
e−2giΛ +

1

8

(
D̄D̄

)
e2giΛDαe

−2giΛ

=
1

8
e2giΛ

[(
D̄D̄

)
e2gV

(
Dαe

−2gV
)]
e−2giΛ +

1

8
e2giΛ

(
D̄D̄

)
Dαe

−2giΛ. (2.54)

Notice that −iΛ† and Dα commute, since −iΛ† is a right-handed chiral superfield,

as do the left-handed chiral superfield iΛ and D̄α̇ . The last term in this expression

can be manipulated as follows:(
D̄D̄

)
Dαe

−2giΛ =
(
εβ̇γ̇D̄β̇D̄γ̇

)
Dαe

−2giΛ

= εβ̇γ̇D̄β̇

{
D̄γ̇, Dα

}
e−2giΛ

= −2εβ̇γ̇ (σµ)αγ̇ D̄β̇Pµ e
−2giΛ

= −2εβ̇γ̇ (σµ)αγ̇

[
D̄β̇, Pµ

]
e−2giΛ

= 0. (2.55)

Here we have used the fact that D̄α̇e
−2giΛ = 0, together with the identities

{
D̄α̇, Dβ

}
=

−2 (σµ)βα̇ Pµ and
[
D̄α̇, Pµ

]
= 0, which can easily be obtained from the definitions

(2.32) of the covariant derivatives Dα and D̄α̇. Thus, since the last term in (2.54)

vanishes, we obtain the result (2.53).
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This simple behaviour of the field strength superfieldWα under supersymmetric gauge

transformations immediately implies that Tr {WαWα} is gauge invariant. Moreover,

WαWα is also a left-handed chiral superfield from which one can construct SUSY

invariant F -terms. Hence we shall define the field strength term in our action as [34]

SW =
1

2g2

∫
d4x

∫
d2θ Tr {WαWα} , (2.56)

which is invariant under both supersymmetric gauge transformations and SUSY

transformations.

We would now like to rewrite this field strength term using the fields Aµ, λ, λ̄ and

D, which are contained in the vector superfield V = VWZ . We shall, following [34],

perform this calculation in the coordinates y, θ and θ̄, and therefore let us first rewrite

our vector superfield as follows:

V
(
y, θ, θ̄

)
= −

(
θσµθ̄

)
Aµ(y) + iθθθ̄λ̄(y)− iθ̄θ̄θλ(y) +

1

2
θθθ̄θ̄ [D(y) + i∂µAµ(y)] .

(2.57)

Here we have substituted xµ = yµ − iθσµθ̄ into the expression (2.50) and expanded

around xµ = yµ, making use of the identity
(
θσµθ̄

) (
θσν θ̄

)
= 1

2
ηµνθθθ̄θ̄. We can hence

calculate

e2gV = 1 + 2gV + 2g2V 2 (2.58)

= 1− 2g
(
θσµθ̄

)
Aµ + 2igθθθ̄λ̄− 2igθ̄θ̄θλ+ gθθθ̄θ̄ [D + i∂µAµ + gAµAµ] ,

and

e−2gV = 1+2g
(
θσµθ̄

)
Aµ−2igθθθ̄λ̄+2igθ̄θ̄θλ−gθθθ̄θ̄ [D + i∂µAµ − gAµAµ] . (2.59)

Notice that the Taylor series for the exponential has been truncated at second order

because higher order terms must be either higher than second order in θ or in θ̄, and

therefore vanish.

The above expressions, together with the covariant derivatives (2.34), imply that

e2gVDαe
−2gV = 2g (σµ)αβ̇ θ̄

β̇Aµ − 4igθαθ̄λ̄+ 2igθ̄θ̄λα − 2gθαθ̄θ̄ [D + i∂µAµ − gAµAµ]

− 2igθ̄θ̄θγεβ̇δ̇ (σν)αβ̇ (σµ)γδ̇ [∂νAµ + igAµAν ]

− 2gθθθ̄θ̄ (σµ)αβ̇

{
∂µλ

β̇ − ig[Aµ, λ̄
β̇]
}
, (2.60)

and, substituting this result into (2.52) and using the identity D̄D̄
(
θ̄θ̄
)

= −4, we
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obtain as explicit expression for the field strength as follows:

Wα = −igλα + gθα [D + i∂µAµ − gAµAµ]

+ igθγεβ̇δ̇ (σν)αβ̇ (σµ)γδ̇ [∂νAµ + igAµAν ]

+ gθθ (σµ)αβ̇

{
∂µλ

β̇ − ig[Aµ, λ̄
β̇]
}
. (2.61)

Raising the spinor index then yields

Wα = −igλα + gθα [D + i∂µAµ − gAµAµ]

+ igθγεαε (σν)εβ̇ ε
β̇δ̇ (σµ)γδ̇ [∂νAµ + igAµAν ]

+ gθθεαε (σµ)εβ̇ ε
β̇δ̇
{
∂µλδ̇ − ig

[
Aµ, λ̄δ̇

]}
, (2.62)

which can be simplified using the identity εαε (σµ)εβ̇ ε
β̇δ̇ = − (σ̄µ)δ̇α and hence also

θγεαε (σν)εβ̇ ε
β̇δ̇ (σµ)γδ̇ [∂νAµ + igAµAν ]

= θγ (σµν) α
γ {(∂µAν − ∂νAµ)− ig[Aµ, Aν ]} − θα [∂µAµ + igAµAµ] , (2.63)

where σµν is defined in (A.27). This last result was derived by separately manipu-

lating the parts of the original expression symmetric and anti-symmetric in µ and ν.

Thus we obtain

Wα = −igλα + gθαD + igθβ (σµν) α
β Fµν − gθθDµλ̄β̇ (σ̄µ)β̇α , (2.64)

where

Fµν ≡ ∂µAν − ∂νAµ − ig [Aµ, Aν ] and Dµλ̄β̇ ≡ ∂µλ̄β̇ − ig
[
Aµ, λ̄β̇

]
. (2.65)

This expression (2.64) shall now be used to calculate WαWα = εαβW
αW β and hence

the field strength term in the action. Actually, we only need to determine the coeffi-

cient of the θθ term in W αWα, which is given by

WαWα

∣∣∣∣θθ = −1

2
g2εαβ (σµν) α

γ εγδ (σρτ ) β
δ FµνFρτ + g2D2

− ig2λαDµλβ̇ (σµ)β̇α + ig2Dµλ̄β̇ (σ̄µ)β̇α λα. (2.66)

This result can be simplified using the identities εαβ (σµν) γ
β εγδ = − (σµν) α

δ and

(σµν) β
α (σρτ ) α

β = 1
2
(−ηµρηντ + ηµτηνρ + iεµνρτ ). Hence we obtain

1

g2
W αWα

∣∣∣∣
θθ

= −1

2
FµνF

µν +
i

4
εµνρτFµνFρτ +D2− iλαDµλβ̇ (σµ)β̇α + iDµλ̄β̇ (σ̄µ)β̇α λα,

(2.67)
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Substituting this expression into (2.56) yields the field strength term in our SUSY

invariant action, which is given by [34]

SW =

∫
d4x Tr

{
−1

4
FµνF

µν +
i

4
FµνF̃

µν +
1

2
D2 − i

2
λσµ

(
Dµλ̄

)
+
i

2

(
Dµλ̄

)
σ̄µλ

}
,

(2.68)

where F̃ µν ≡ 1
2
εµνρτFρτ is the dual of the field strength Fµν .

Let us now consider the term containing the dual field strength F̃ µν , which is pro-

portional to the topological charge [36]

Q ≡ − 1

16π2

∫
d4x Tr

{
FµνF̃

µν
}

=

∫
d4x ∂µJ

µ, (2.69)

where

Jµ ≡ − 1

8π2
εµνρσ Tr

{
Aν (∂ρAσ)− 2

3
igAνAρAσ

}
. (2.70)

This topological quantity is similar to a winding number and plays an important

role in the quantized theory. It does not, however, have any effect on the classical

equations of motion and is therefore sometimes neglected. To include this term

correctly, we must make a slight change to the original field strength action (2.56) in

superspace as follows [34]:

SW =
1

8π
Im

[
τ

∫
d4x

∫
d2θ Tr {WαWα}

]
, (2.71)

in terms of the complex coupling constant τ = 4πi
g2 + θY M

2π
. This yields the result

SW =

∫
d4x Tr

{
−1

4
FµνF

µν +
1

2
D2 − i

2
λσµ

(
Dµλ̄

)
+
i

2

(
Dµλ̄

)
σ̄µλ

}
− θY M

32π2
g2

∫
d4x Tr

{
FµνF̃

µν
}
, (2.72)

where the coefficient of the Yang-Mills theta term θY M is a topological quantity.

Neglecting the topological part of the field strength action and using the definition

(A.25) of the gamma matrices γµ in terms of the off-diagonal elements σµ and σ̄µ,

we find that

SW =
1

4

∫
d4x Tr

{
−1

4
FµνF

µν +
1

2
D2 − i

2
Ψ̄γµDµΨ

}
, (2.73)

where Ψ̄ ≡ Ψ†γ0 and DµΨα ≡ ∂µΨα − ig [Aµ,Ψα], with Ψ ≡

(
λα

λ̄α̇

)
a Majorana

spinor. This field strength term contains kinetic terms associated with the gauge

field Aµ and spinor field λ, as well as further interaction terms. We again notice that

there are no kinetic terms associated with the auxillary field D.
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2.2.5 Super Yang-Mills theories

We shall now argue that our original ten dimensional SYM action, corresponding to

the Lagrangian (2.12), can be written in N = 1 superspace. Only a field strength

term analogous to (2.71) is required and this yields a result similar to (2.73). There

is a slight complication in that we are now working in ten spacetime dimensions and

therefore our supercharges, and the coordinates θ and θ̄, are 16-component Weyl-

Majorana spinors. Furthermore, the gamma matrices ΓM must now be written in

the block form of [29] with off-diagonal components ΣM and Σ̄M . However, we can

see that this field strength term yields the correct two terms in the ten dimensional

SYM Lagrangian, since the auxillary field D is zero as a direct result of its algebraic

equation of motion.

Now let us consider the four dimensional reduced SYM theory described by the

Lagrangian (2.26). This must also be invariant under SUSY transformations and,

moreover, we can understand its N = 4 supersymmetric nature by considering the

ten dimensional SYM theory from which it was derived. (Writing the action inN = 4

superspace is not a viable option - even writing it in N = 1 superspace is somewhat

tricky.) The supercharge corresponding to our ten dimensional N = 1 SYM theory

is a 16-component Weyl-Majorana spinor consisting of four 4-component Majorana

spinors, which are equivalent to four 2-component Weyl spinors. There is an inherent

SU(4) symmetry amongst these Majorana spinors. Therefore, when we reduce our

ten dimensional SYM theory to four spacetime dimensions, we are left with four

supercharges, which are invariant under SU(4) R-symmetry transformations.

Finally, we shall mention the N = 1 superspace representation of the N = 4 SYM

action. The F -terms in this action are constructed from the superpotential

f(Φi) =
1

2
gTr (Φ1Φ2Φ3 − Φ1Φ3Φ2) , (2.74)

where Φ1, Φ2 and Φ3 are superfields in N = 1 superspace. This leads to the contri-

bution

−1

4
g2Tr

{
|Φ1Φ2 − Φ2Φ1|2 + |Φ2Φ3 − Φ3Φ2|2 + |Φ3Φ1 − Φ1Φ3|2

}
, (2.75)

in the N = 4 SYM scalar potential (after we have eliminated the auxillary fields

Fi using their algebraic equations of motion). Here the fields Φi now denote only

the zeroth order scalar fields in the corresponding superfields. The second term in
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this scalar potential (2.28) is the result of the D-terms in the N = 4 SYM action in

N = 1 superspace, which are constructed from a Kähler potential of the form

K(Φi,Φ
†
i ) = Tr

(
3∑

i=1

e2gV Φ†
ie
−2gV Φi

)
, (2.76)

where V = VWZ is a vector superfield in the Wess-Zumino gauge9. The field strength

term (2.71) also appears in this N = 1 superspace action.

2.3 Conformal Invariance and Marginal Deforma-

tions

A conformal field theory displays a symmetry known as conformal invariance. In

other words, the Lagrangian is invariant under the action of the conformal group,

which consists of all coordinate transformations x→ x′ that leave the metric invariant

up to an arbitrary scale factor Ω(x) as follows [37]:

gµν(x) −→ g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) = Ω(x)gµν(x). (2.77)

The Poincaré group is always a subgroup of the conformal group (with Ω(x) = 1) - any

reasonable metric is invariant under local Poincaré transformations. Furthermore, if

we consider a non-gravitational theory in flat d-dimensional Minkowski spacetime

with d > 2, then the conformal group consists of little more than the Poincaré group

together with a set of scale transformations. Thus, to verify the conformal nature of

any such non-gravitational field theory, we need to check for an exact scale invariance

[5, 37].

9Notice that, not only the field strength term in the superspace action, but also the F -terms
and D-terms, which are contructed from the superpotential (2.74) and Kähler potential (2.76), are
invariant under the supersymmetric gauge transformation

egV −→ eigΛegV e−igΛ†
,

if we assume that our superfields Φi in the adjoint representation of SU(N) transform as follows:

Φi −→ e2igΛΦie
−2igΛ and Φ†

i −→ e2igΛ†
Φ†

ie
−2igΛ†

.
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We shall now discuss the conformal nature of N = 4 SYM theory and review the

construction of marginal deformations thereof. Towards this end, we start by describ-

ing Wilson’s method of renormalizing a quantum field theory, based on discussions

in [5, 26]. Hence the β-function associated with a specific coupling is defined. We

mention, with reference to [26, 38, 39], the chiral and dilatation currents, and cor-

responding anomalies, which are associated with chiral and scale transformations

respectively. It turns out that the conservation of the dilatation current, which is

required for scale invariance, implies the vanishing of all the β-functions. Finally,

following [5, 6, 40, 41, 42, 43], we construct N = 1 supersymmetric marginal de-

formations of N = 4 SYM theory, which are described by the Leigh-Strassler su-

perpotential and include the so-called β-deformations [7]. The non-supersymmetric

γi-deformations of [8] are also mentioned.

2.3.1 Renormalization and β-functions

The process of renormalization eliminates the divergences, with usually cause serious

problems in quantum field theory. The idea behind renormalization is that the bare

masses and couplings in the original Lagrangian are not the measured values. It is

possible [38] to reformulate the theory in terms of the measured masses and couplings

by introducing conveniently chosen counterterms into the Lagrangian.

There is also another approach to renormalization, which was invented by Wilson

and shall now be described based on discussions in [5, 26]. This method requires

us to formulate our quantum field theory in terms of functionals and path integrals,

and, towards this end, we shall define the generating functional

Z[J ] ≡
∫
Dφ ei

R
d4x [L(φ)+Jφ], (2.78)

where
∫
Dφ denotes a path integral10 over all possible real fields φ(x) satisfying the

constraints φ(−T, ~x) = φ1(~x) and φ(T, ~x) = φ2(~x), with T →∞, which fix the initial

10The path integral measure can be expressed as [26]

Dφ =
∏

i

dφ(xi),

where we have discretized our spacetime into a large number of positions ~xi separated by equal
small time intervals ε. Our path integral then becomes the product of a large, but finite, number
of ordinary integrals.
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and final field configurations. Note that we have added a source term Jφ to the

Lagrangian. Hence correlations functions can be calculated as follows11:

〈0|T (φ(x1) ... φ(xN)) |0〉 =
1

Z0

(
−i δ

δJ(x1)

)
...

(
−i δ

δJ(xN)

)
Z[J ]

∣∣∣∣
J=0

, (2.79)

with Z0 ≡ Z[0] the generating functional without a source term.

In order to avoid ultraviolet divergences, we shall now introduce a cutoff Λ on the

momentum. The generating functional must first be written in terms of the Fourier

components φ(k) of the fields and, furthermore, we shall perform the Wick rotation

k0 → ik0 so that we can write the cutoff condition in Euclidean space. Thus we

obtain

Z[J ] =

∫
|k|<Λ

Dφ e−
R

d4x [L(φ)+Jφ], (2.80)

where we have imposed φ(k) = 0 for all |k| ≥ Λ. This cutoff condition sets to zero

the contribution to our generating functional from the high momentum modes.

Now the question is: how was our generating functional effected by the high mo-

mentum modes which we have just cut off? To answer this question, let us define a

slightly lower cutoff µ and rewrite (2.80) in terms of a new collection of low momen-

tum (|k| < µ) and high momentum (µ ≤ |k| < Λ) modes as follows:

Z[J ] =

∫
Dφ−

∫
Dφ+ e−

R
d4x [L(φ−+φ+)+J(φ−+φ+)], (2.81)

where the Fourier transforms of φ−(x) and φ+(x) are given by

φ−(k) =

{
φ(k) if |k| < µ

0 otherwise
and φ+(k) =

{
φ(k) if |k| ≥ µ

0 otherwise
. (2.82)

We now perform the integral
∫
Dφ+ over the high momentum modes to obtain

Z[J ] =

∫
Dφ− e−

R
d4x [Leff(φ−)+Jφ−], (2.83)

where Leff is the effective Lagrangian. In other words, by integrating out the high

momentum modes, we have traded our original Lagrangian L(φ) and cutoff Λ for a

11A functional derivative is defined as

δ

δJ(x)
J(y) = δ(4)(x− y) or

δ

δJ(x)

∫
d4y J(y)φ(y) = φ(x),

and derivatives of composite functionals are calculated using the chain and product rules [26].
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new effective Lagrangian Leff(φ) with a lower cutoff µ. It is therefore possible, by

continuously decreasing µ, to arrive at a low energy effective Lagrangian with masses

and couplings which might be totally different from those in the original theory12.

Now we usually rewrite the field φ(x) in the effective Lagrangian so that the coefficient

of the kinetic term ∂µφ(x)∂µφ(x) remains unchanged [5, 26]:

φ(x) −→ φ′(x) ≡
√
Z(µ) φ(x), (2.84)

where Z(µ) is known as the wave function renormalization. This is equivalent to

insisting that the field φ(x) should always create a particle with probability one. We

shall thus define the anomalous dimension of the field φ(x), as in [6], to be

γ ≡ −∂ lnZ(µ)

∂ lnµ
. (2.85)

It can be seen that γ is related to the dependence of Z(µ) on the length scale 1
µ

and

hence the term ‘dimension’. For example, if Z(µ) ∼ ( 1
µ
)n = µ−n, then γ = n.

The masses and couplings are generally also dependent on the energy scale µ, and are

effected by our redefinition (2.84), so that m(µ) → m′(µ) and g(µ) → g′(µ). Thus,

following [5, 6, 41], we shall define the β-function (or Gell-Mann-Low function) as

β(g) ≡ ∂g′(µ)

∂ lnµ
= µ

∂g′(µ)

∂µ
, (2.86)

which tells us how the redefined coupling changes as a function of the energy scale.

A conformal field theory has an exact scale invariance and therefore cannot contain

couplings which are dependent on an energy scale (energy ∼ 1/length). Hence it is

intuitively clear that all the β-functions must vanish. Often theories are only scale

invariant for certain specific values of the coupling g, corresponding to specific energy

scales µ, at which β(g) = 0. These are known as ‘fixed points’.

2.3.2 Conserved currents and anomalies

An important aspect of any quantum field theory are the symmetries inherent in

the system - we are especially interested in the symmetry of scale invariance. There

exists a Noether current jµ(x) corresponding to any such symmetry and, classically,

12This continuous collection of effective Lagrangians is called the ‘renormalization group’ [26].
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this current satisfies the conservation equation ∂µj
µ(x) = 0. When a field theory

is quantized we often find that this conservation equation is spoilt by an anomalous

term which appears on the right-hand side. This anomaly is usually an exact one-loop

expression.

Hereafter, following [26, 38, 39], we shall briefly discuss chiral and scale transfor-

mations, together with the corresponding chiral and dilatation currents, and their

associated anomalies. The dilatation current is of obvious importance, because it

must be conserved for a theory to be scale invariant and hence conformal. Further-

more, it turns out [40] that, in certain supersymmetric theories (such as N = 4 SYM

theory), the chiral and dilatation currents are related by a SUSY transformation.

Let us consider some general SU(N) gauge invariant field theory with Nf flavours of

massless fermions. A chiral transformation is then given by [26]

ψk(x) −→ eiαγ5

ψk(x), (2.87)

in terms of the real parameter α and the chirality matrix γ5 defined in (A.11). Here

ψk(x), where k runs from 1 to Nf , are Dirac spinor fields in the fundamental represen-

tation of SU(N). Note that we have taken our fermion fields to be massless because

any mass term in the Lagrangian automatically breaks chiral invariance. Now, if we

assume our field theory to be invariant under this chiral transformation, then there

exists a conserved chiral current jµ5(x) satisfying ∂µj
µ5(x) = 0. This conservation

equation is broken at the quantum level by the chiral or Adler-Bell-Jackiw anomaly.

A scale transformation acts by scaling any length by a factor of e−α, where α is a real

parameter. Therefore this scale transformation acts on some field φ(x), with mass

dimension D, as follows:

φ(x) −→ e−Dαφ(xe−α). (2.88)

Note that an identical transformation applies to spinor and vector fields. Let us,

again, consider a general field theory containing only massless fields and dimensionless

couplings gi. This theory will be classically scale invariant, with the corresponding

conserved dilatation current [26, 38]

Dµ = θµνxν , so that ∂µD
µ = θµ

µ = 0, (2.89)

where θµν is the symmetric and gauge invariant energy-momentum tensor13. At the

quantum level, a trace anomaly appears on the right-hand side of this conservation

13The usual energy-momentum tensor Tµν is not necessarily symmetric or gauge invariant. It
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equation to yield ∂µD
µ ∝

∑
i

βi(gj). Thus, as expected, we only obtain a scale

invariant quantum field theory when all the β-functions vanish.

2.3.3 N = 4 SYM theory and marginal deformations

N = 4 SYM theory is a finite quantum field theory - there is no dependence on

an energy scale at all and the theory is always conformal. This is a direct result

of its maximally supersymmetric nature [6, 43]. Marginal deformations of N = 4

SYM theory can be constructed by adding what [6] have referred to as an ‘exactly

marginal’ operator to the N = 4 SYM Lagrangian and this results in a theory, which

is non-finite, but contains a manifold of fixed points (fixed lines, planes, etc). We shall

now discuss the conformal nature of N = 4 SYM theory and marginal deformations

thereof based on [5, 6, 40, 41, 42, 43].

Let us begin by considering a slightly more general SYM theory out of which both

N = 4 SYM theory and marginal deformations can be constructed. We make use of

the following generalized N = 1 superpotential [6]:

f(Φi) =
1

2
Tr

{∑
s

hsfs(Φi)

}
, with fs(Φi) = Φi1Φi2 ...ΦiNs

. (2.90)

The Kähler potential and field strength term remain the same, except that we can

redefine the Wess-Zumino vector superfield gV → V for convenience, so that only the

field strength term contains the gauge coupling g. The N = 4 SYM superpotential

(2.74) is recovered when we consider two terms, Φ1Φ2Φ3 and Φ1Φ3Φ2 respectively,

and set h1 = g and h2 = −g.

We shall now construct the β-functions corresponding to the couplings g and hs in this

generalized SYM theory. It was shown in [40] that the there exists a supermultiplet

which contains the spinor current, the chiral vector current and the dilatation current.

(In other words, these currents are connected by a SUSY transformation.) We can

also write them in the form of a single supercurrent Jαα̇, which is not classically

is always possible, however, to construct a new energy-momentum tensor with these properties as
follows [26]:

θµν = Tµν + ∂ρΣµνρ,

where Σµνρ is anti-symmetric in µ and ρ. This new energy-momentum tensor satisfies the same
conservation equation ∂µθ

µν = 0 and produces the same momenta P ν =
∫
d3x θ0ν =

∫
d3x T 0ν .
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conserved, due to the presence of the superpotential, but satisfies the relation [6]

D̄α̇Jαα̇

∣∣
classical

=
1

3
Dα

(
3f −

Nd∑
i=1

Φi
∂f

∂Φi

)
, (2.91)

where Nd is the number of distinct superfields in the superpotential f(Φi). Notice

that this expression vanishes for the N = 4 SYM superpotential (2.74), so that

N = 4 SYM theory is classically scale invariant.

We now need to determine the anomalies that appear in this equation when we

quantize the theory. It was shown in [6] that the full quantum expression is

D̄α̇Jαα̇ = −1

3
Dα

[
N

32π2
WβW

β

(
3−Nd +

Nd∑
i=1

γi

)

+
∑

s

hs

(
(Ns − 3)fs +

1

2

Nd∑
i=1

γiΦi
∂fs

∂Φi

)]
, (2.92)

where γi is the anomalous dimension of the superfield Φi, which we have assumed to

be in the adjoint representation of SU(N). The coefficients of each of these terms

must be proportional to the corresponding β-function, so we obtain [6, 43]

βg ∝ 3−Nd +

Nd∑
i=1

γi and βhs ∝ Ns − 3 +
1

2

Nd∑
i=1

γi
∂ lnfs(Φi)

∂ lnΦi

. (2.93)

The expression ∂ lnfs(Φi)
∂ lnΦi

counts the number of times Φi appears in the sth term in the

superpotential. It is also possible [5, 44] to construct βhs based only on arguments

relating to the holomorphy of the superpotential.

We would now like to find manifolds of fixed points (fixed lines, planes, etc) for

the generalized SYM theory. We shall therefore look for a situation in which these

β-functions are linearly dependent, so that the number of conditions p is less than

the number of couplings n. In this case, if the conditions for zero β-functions are

satisfied, the result is an n − p dimensional manifold of fixed points [6]. With this

in mind, we shall consider a theory with three distinct superfields in the adjoint

representation of SU(N). Moreover, we shall specify a superpotential in which each

term is the product of three superfields, so that Ns = Nd = 3. This Leigh-Strassler

superpotential is given by

f(Φi) =
1

2
Tr
{
h1Φ1Φ2Φ3 + h2Φ1Φ3Φ2 + h3

(
Φ3

1 + Φ3
2 + Φ3

3

)}
, (2.94)

30



which contains an inherent Z3 symmetry - it is invariant under the transformation

Φ1 → Φ2, Φ2 → Φ3 and Φ3 → Φ1. This last property means that the anomalous

dimensions of the superfields must be the same [5, 6]. Hence we obtain

βhs ∝ βg ∝
3

2
γ, (2.95)

so that the β-functions vanish if γ(g, hs) = 0. This condition describes a three

dimensional manifold of fixed points in our four dimensional space of couplings.

Now, if we further specify that h2 = −h1 and h3 = 0, we find a fixed line correspond-

ing to γ(g, h1) = 0. It turns out that this fixed line in our coupling space is really at

h1 = g, which describes N = 4 SYM theory [43]. It is thus clear that at any energy

scale N = 4 SYM theory is a conformal field theory.

Furthermore, setting h1 = geiπβ, h2 = −ge−iπβ and h3 = 0, with β some complex

parameter, we obtain the β-deformed superpotential of Lunin and Maldacena [7]

f(Φi) =
1

2
gTr

(
eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2

)
, (2.96)

which results in the β-deformed scalar potential

V β = −1

4
g2

{
Tr
[∣∣Φ1Φ2 − e−2iπβΦ2Φ1

∣∣2 +
∣∣Φ2Φ3 − e−2iπβΦ3Φ2

∣∣2 +
∣∣Φ3Φ1 − e−2iπβΦ1Φ3

∣∣2]
− 1

4
Tr
[
([Φ1,Φ

∗
1] + [Φ2,Φ

∗
2] + [Φ3,Φ

∗
3])

2]} . (2.97)

Only the F -terms in this scalar potential have been β-deformed, which is clearly

what we should expect, as these are the terms arising from the superpotential.

Lastly, we should mention that there exists also another deformation of N = 4 SYM

theory, which was invented by Frolov [8] and upon which we shall concentrate in this

thesis. This γi-deformed theory is non-supersymmetric and thus cannot be described

by an N = 1 superpotential, but contains the γi-deformed scalar potential

V γi = −1

4
g2

{
Tr
[∣∣Φ1Φ2 − e−2iπγ3Φ2Φ1

∣∣2 +
∣∣Φ2Φ3 − e−2iπγ1Φ3Φ2

∣∣2 +
∣∣Φ3Φ1 − e−2iπγ2Φ1Φ3

∣∣2]
− 1

4
Tr
[
([Φ1,Φ

∗
1] + [Φ2,Φ

∗
2] + [Φ3,Φ

∗
3])

2]} . (2.98)

Here γi are three different real parameters - the case of equal γi is equivalent to the

case of real β = γ in the previous example. This γi-deformed non-supersymmetric

YM theory is conformally invariant in the large N limit [8].
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Chapter 3

Matrix of Anomalous Dimensions

and Spin Chains

3.1 SYM Matrix of Anomalous Dimensions

AdS/CFT correspondence matches the energy spectrum of string states with the

spectrum of dimensions of the corresponding gauge theory operators. In other words,

the excitation energies must correspond to the eigenvalues of the matrix of anomalous

dimensions. This conjecture was initially tested [11] for chiral primary (half-BPS)

operators of the form Tr
(
ΦJ

i

)
, which have conformal dimension ∆ = J protected by

supersymmetry and are dual to point-like strings. The string energies were calculated

in the large λ limit and matched to the (trivial) dimensions on the gauge theory side.

Due to the strong/weak coupling nature of the gauge/string duality, extending this

test non-protected operators and their string duals posed a serious problem. Recently,

a partial solution was proposed [12] by Berenstein, Maldacena and Nastase (BMN) for

operators with large quantum numbers (such as R-charge and spin). They considered

the specific case of ‘nearly BPS’ operators, which are obtained from ‘long’ chiral

primary operators by adding a small number of ‘impurities’ (other real scalar fields)

into the trace as follows:

no impurites Tr
(
ΦJ

i

)
, (3.1)

one impurity Tr
(
φjΦ

J
i

)
, (3.2)

32



two impurities
J∑

l=1

e2πiln/JTr
(
φjΦ

l
iφkΦ

J−l
i

)
, (3.3)

and so on. These BMN operators have large R-charge1 J . The deviations ∆− J of

the conformal dimensions of these BMN operators from the original conformal (and

bare) dimension J of our ‘long’ chiral primary operator were found to be finite in the

BMN limit

J →∞ with λ̃ =
λ

J2
= fixed � 1, (3.4)

and could be expanded as a function of λ̃. (Note that only planar diagrams were

included in this calculation.) Thus it is possible to perform calculations in the gauge

theory, even at large λ, by considering sufficiently ‘long’ operators. The dimensions

of these BMN operators were matched to the dimensions of nearly point-like strings

in a pp-wave background.

It is also possible [13] to extend this idea to operators with a large spin quantum

number S. These are single trace operators of the form Tr
(
Φi∇(µ1 ...∇µS)Φi

)
, which

contain a large number S of derivatives and have bare dimension S + 2. The dual

string configurations move with spin S in the AdS5 space. As before, there ex-

ists a similar large S BMN limit in which the anomalous dimensions are finite and

string/gauge theory comparisons can be performed.

Now, in this chapter, we are interested in ‘long’ single trace operators in the ‘scalar

sector’, which are constructed from our six real scalar fields (with no derivatives) and

take the form Tr (φi1φi2 ...φiJ ), where J is assumed to be large. These operators are

dual to extended closed strings rotating with total angular momentum J in the S5

space. It was shown in [16] that the one-loop planar2 matrix of anomalous dimensions

in the scalar sector of N = 4 SYM theory can be expressed as the Hamiltonian of a

closed integrable SO(6) spin chain. The Bethe ansatz technique can then be used to

diagonalize this anomalous dimension matrix.

1This R-charge is actually the charge with respect to only an SO(2) subgroup of the R-symmetry
group. We consider only transformations which rotate the real scalar field components of the
complex scalar field Φi out of which our original chiral primary operator was constructed.

2The effects of non-planar diagrams were not considered. It should be noted, however, that
[45, 46] showed that non-planar diagrams are not necessarily negligible in the BMN limit. It turns
out that a general non-planar diagram has both an effective coupling constant λ̃ = λ

J2 and a genus-

counting parameter g2
2 =

(
J2

N

)2

. Planar diagrams have genus zero so that the dependence on g2
2

disappears, but non-planar diagrams are suppressed by factors of this genus-counting parameter.
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In this section, we briefly review the identification of [16] of the matrix of anomalous

dimensions in the scalar sector with the Hamiltonian of an SO(6) spin chain. We then

restrict ourselves to the SU(3) sector, which corresponds to operators of the form

Tr (Φi1Φi2 ...ΦiJ ), constructed from our three complex scalar fields. This anomalous

dimension matrix corresponds to the Hamiltonian of an SU(3) spin chain, a formal

description of which is given in appendix B.

3.1.1 Matrix of anomalous dimensions

We shall now define the matrix of anomalous dimensions based on discussions in

[16]. Let us consider some collection of operators in a basis OA, which mix amongst

themselves under renormalization. The renormalized basis operators OA
ren are a linear

combination of the bare basis operators OA as follows:

OA
ren = ZA

BO
B, (3.5)

where ZA
B is a matrix of renormalization factors dependent on the energy scale

defined by our varying ultraviolet cutoff µ.

The matrix of anomalous dimensions is now defined as

ΓA
C =

∂ZA
B

∂ lnµ

(
Z−1

)B
C
. (3.6)

in the neighbourhood of the fixed point. The eigenvalues of this matrix of anomalous

dimensions correspond to the anomalous dimensions γn of the operator eigenstates

On, which are multiplicatively renormalizable.

3.1.2 Scalar sector operators as SO(6) spin chains

The scalar sector of N = 4 SYM theory is composed of single trace operators con-

structed from our six real scalar fields as follows:

O [ψ] = ψi1i2...iJ Tr (φi1φi2 . . . φiJ ) , (3.7)

where ψi1i2...iJ are real coefficients. These operators have bare dimension J and,

considering only planar diagrams, mix amongst themselves under renormalization.

The obvious basis of bare operators for the scalar sector is thus

Oi1i2...iJ = Tr (φi1φi2 . . . φiJ ) , (3.8)
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which, under renormalization, becomes

(Oren)j1j2...jJ
= Zi1i2...iJ

j1j2...jJ
Oi1i2...iJ . (3.9)

Here Zi1i2...iJ
j1j2...jJ

is the matrix of renormalization factors. The renormalized scalar sector

operator Oren [ψ] can now be constructed from these renormalized basis operators as

follows:

Oren [ψ] = ψj1j2...jJ Zi1i2...iJ
j1j2...jJ

Oi1i2...iJ = (ψren)
i1i2...iJ Oi1i2...iJ , (3.10)

with (ψren)
i1i2...iJ ≡ Zi1i2...iJ

j1j2...jJ
ψj1j2...jJ . Hence we see that it is possible to view the

renormalization of the scalar sector operator O [ψ] as the renormalization of the real

wavefunction ψi1i2...iJ (rather than of the basis operators).

We can already see the analogy to an SO(6) spin chain starting to appear. Our matrix

of renormalization factors (and thus also our matrix of anomalous dimensions) acts

on the real wavefunction ψi1i2...iJ , which is a state in the tensor product of J six

dimensional real R6 vector spaces. Furthermore, cyclic permutations of the indices

i1, i2, . . . , iJ should result in an equivalent state, due to the cyclicity of the trace in

our basis operators. Thus ψi1i2...iJ can be identified with a closed SO(6) spin chain.

Let us now briefly review the construction of the one-loop planar matrix of renor-

malization factors Zi1i2...iJ
j1j2...jJ

and the corresponding matrix of anomalous dimensions

Γi1i2...iJ
j1j2...jJ

based on discussions in [16]:

Figure 3.1: One-loop planar diagrams [16].

The bosonic part of the N = 4 SYM Lagrangian (2.26) leads to three one-loop planar

diagrams (see figure 3.1), which contribute to the matrix of anomalous dimensions.

Here the notation of [16, 47] has been used: the horizontal line represents the renor-

malized operator (Oren)i1i2...iJ
and the vertical lines link the real scalar fields φi to

lattice sites along this operator (at the same spacetime point). We can easily see that

the one-loop planar calculation involves only the mixing of fields at neighbouring lat-

tice sites (sometimes referred to as ‘nearest-neighbour interactions’). Diagrams (1)
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and (2) represent the mixing of operators due to gauge boson and scalar interactions

respectively, whereas diagram (3) is the result of the self-energy correction to the

scalar fields at each lattice site.

Thus, using these three diagrams, the matrix of renormalization factors corresponding

to the mixing of two fields φik and φik+1
at neighbouring lattice sites k and k+1 was

calculated in [16] to be

Zk,k+1 = 1 +
λ

16π2
lnµ (Kk,k+1 + 2− 2Pk,k+1) , (3.11)

where the trace and permutation matrices are defined as

(Kk,k+1)
ikik+1

jkjk+1
= δikik+1δjkjk+1

and (Pk,k+1)
ikik+1

jkjk+1
= δik

jk+1
δ

ik+1

jk
. (3.12)

where the indices ik, ik+1, jk and jk+1 run from 1 to 6. Here the action on the other

lattice sites has been suppressed, since it is trivial.

The total renormalization matrix can now be expressed as a sum over all possible

neighbouring lattice sites:

Z =
J∑

k=1

[
1 +

λ

16π2
lnµ (Kk,k+1 + 2− 2Pk,k+1)

]
, (3.13)

with J + 1 ≡ 1. (The basis operators involve a cyclic trace over the real scalar fields

and thus the first and last lattice sites are neighbours.)

Hence the one-loop planar matrix of anomalous dimensions in the scalar sector is

Γ =
λ

16π2

J∑
k=1

(Kk,k+1 + 2− 2Pk,k+1) , (3.14)

which is the Hamiltonian of an integrable SO(6) spin chain [16] acting on the closed

SO(6) spin chain state ψi1i2...iJ . Notice that Γ does not depend on the energy scale,

because it is calculated in the neighbourhood of the fixed point.

3.1.3 SU(3) sector operators as SU(3) spin chains

Let us now consider single trace operators of the form

O [Ψ] = Ψi1i2...iJ Tr (Φi1Φi2 . . .ΦiJ ) , (3.15)
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which are constructed from our complex scalar fields Φl = φl + iφl+3, where l runs

from 1 to 3, and span the SU(3) sector of N = 4 SYM theory. Here Ψi1i2...iJ is

a complex wave function, which lives in a tensor product of J three dimensional

complex C3 vector spaces. Our basis operators for this SU(3) sector are thus

Oi1i2...iJ = Tr (Φi1Φi2 . . .ΦiJ ) = Tr [(φi1 + iφi1+3) (φi2 + iφi2+3) . . . (φiJ + iφiJ+3)] ,

(3.16)

which can clearly be written in terms of the original basis scalar sector operators.

We would now like to understand the action of the trace and permutation matri-

ces (and hence the matrix of anomalous dimensions) on these new basis operators.

Firstly, we shall use the definitions (3.12) to write

(Kk,k+1)
ikik+1

jkjk+1
Tr
(
φi1 . . . φikφik+1

. . . φiJ

)
= δjkjk+1

6∑
l=1

Tr (φj1 . . . φlφl . . . φjJ
), (3.17)

(Pk,k+1)
ikik+1

jkjk+1
Tr
(
φi1 . . . φikφik+1

. . . φiJ

)
= Tr

(
φj1 . . . φjk+1

φjk
. . . φjJ

)
. (3.18)

Let us now calculate the action of the trace and permutation matrices on the new

basis operators by expanding them in terms of the old basis operators as follows:

(Kk,k+1)
ikik+1

jkjk+1
Tr
(
Φi1 . . .ΦikΦik+1

. . .ΦiJ

)
= (Kk,k+1)

ikik+1

jkjk+1
Tr
[
Φi1 . . . (φik + iφik+3)

(
φik+1

+ iφik+1+3

)
. . .ΦiJ

]
= (Kk,k+1)

ikik+1

jkjk+1
Tr
[
Φi1 . . .

(
φikφik+1

+ iφikφik+1+3 + iφik+3φik+1
− φik+3φik+1+3

)
. . .ΦiJ

]

=
(
δjkjk+1

+ 0 + 0− δjkjk+1

) 6∑
l=1

Tr (Φj1 . . . φlφl . . .ΦjJ
)

= 0, (3.19)

and, similarly,

(Pk,k+1)
ikik+1

jkjk+1
Tr
(
Φi1 . . .ΦikΦik+1

. . .ΦiJ

)
= Tr

(
Φj1 . . .Φjk+1

Φjk
. . .ΦjJ

)
. (3.20)

Thus we see that the trace matrix Kk,k+1 annihilates any operator in the SU(3) sector

of N = 4 SYM theory, whereas the permutation matrix Pk,k+1 simply permutes the

kth and (k + 1)th complex scalar fields in our single trace operator.
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Hence we can deduce from (3.14) that the one-loop planar matrix of anomalous

dimensions for the SU(3) sector of N = 4 SYM theory is

Γ =
λ

8π2

J∑
k=1

(1− Pk,k+1) , (3.21)

where we now define the permutation matrix as

(Pk,k+1)
ikik+1

jkjk+1
= δik

jk+1
δ

ik+1

jk
, with ik, ik+1, ik, jk+1 ε {1, 2, 3} . (3.22)

This is the Hamiltonian of a closed SU(3) spin chain, which is a 3J×3J matrix acting

on the SU(3) spin chain state Ψi1i2...iJ in the tensor product of J three dimensional

complex vector spaces. A detailed review of the formal description of an SU(3) spin

chain is given in appendix B.

3.2 γi-deformed YM Matrix of Anomalous Dimen-

sions

We would now like to extend the results of the previous section to deformations of

N = 4 SYM theory. An important question (studied in detail in [48]) is: for which

deformations does the one-loop planar matrix of anomalous dimensions result in the

Hamiltonian of an integrable spin chain? Our γi-deformed YM theory in the SU(3)

sector is one such example. The resulting γi-deformed SU(3) spin chain was discussed

in [9], while [49] extended these ideas to the SU(2|3) sector.

In this section, we very briefly describe how the one-loop planar matrix of anomalous

dimensions for the SU(3) sector of the γi-deformed YM theory can be written as the

Hamiltonian of a γi-deformed SU(3) spin chain. Furthermore, we discuss such aspects

of the γi-deformed SU(3) spin chain formalism as the R-matrix, the Yang-Baxter

equation, and the monodromy and transfer matrices. (Note that any integrable

spin chain always has an R-matrix, which satisfies the Yang-Baxter equation.) The

spin chain Hamiltonian and momentum operators are then written in terms of the

transfer matrix. We make use of an algebraic Bethe ansatz to diagonalize this transfer

matrix and hence the γi-deformed spin chain Hamiltonian. Finally, we discuss the

γi-deformed vacuum states.
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3.2.1 γi-deformed SU(3) sector operators as γi-deformed SU(3)

spin chains

The SU(3) sector of the γi-deformed YM theory is, again, composed of single trace

scalar operators of the form

O [Ψ] = Ψi1i2...iJ Tr (Φi1Φi2 . . .ΦiJ ) , (3.23)

as in our undeformed N = 4 SYM theory. Thus the Hilbert space, in which our

SU(3) spin chain state Ψi1i2...iJ lives, is unchanged by the γi-deformation.

The one-loop planar matrix of anomalous dimensions (or SU(3) spin chain Hamil-

tonian) does, however, depend on the deformation parameters. The same one-loop

planar diagrams (see figure 3.1) are relevant, but the scalar interactions in the F -

terms are now slightly different - when we exchange two fields Φi and Φj due to

F -term interactions, our renormalization matrix picks up a factor of e−2πiεijkγk . This

leads to the following one-loop expression of [9] for the planar matrix of anomalous

dimensions in the SU(3) sector of the γi-deformed YM theory:

Γγi =
λ

8π2

J∑
k=1

(
1− Pγi

k,k+1

)
, (3.24)

where the action of the γi-deformed permutation matrix on the kth and (k + 1)th

fields in our single trace basis operators (or, equivalently, on the kth and (k + 1)th

indices of our SU(3) spin chain state Ψi1,i2...iJ ) is given by(
Pγi

k,k+1

)ikik+1

jkjk+1
= e2πiαikik+1 δ

ik+1

jk
δik
jk+1

, with αij ≡ −εijkγk. (3.25)

This matrix of anomalous dimensions is the Hamiltonian of a closed γi-deformed

SU(3) spin chain and reduces to the one-loop planar SYM matrix of anomalous

dimensions (3.21), if we set the deformation parameters γi to zero.

3.2.2 γi-deformed SU(3) spin chain formalism

We now briefly discuss the formal description of the γi-deformed SU(3) spin chain

in analogy to the more extensive review of the undeformed case in appendix B. This

is based on the discussions in [9, 49].
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γi-deformed spin chain Hamiltonian

The basic description of our closed SU(3) spin chains states (see appendix B) does

not change when we consider γi-deformed spin chains. The deformation is visible

rather in the γi-deformed Hamiltonian

Hγi =
λ

8π2

J∑
k=1

Hγi

k,k+1 with Hγi

k,k+1 = 1k,k+1 − Pγi

k,k+1, (3.26)

where Pγi

k,k+1 is the γi-deformed permutation matrix (3.25), which is also given by

Pγi

k,k+1 =
3∑

m,n=1

e2πiαmnem
n (k)en

m(k + 1). (3.27)

Here em
n (k) are the basic observable states defined in (B.6) in terms of the matrices

em
n in the kth position of the tensor product. (The matrix em

n has a 1 in the mth row

and nth column, and all the other elements are zero.)

Therefore we can write the action of Hγi

k,k+1 on the kth and (k + 1)th complex vector

spaces as an explicit sum over tensor products of the matrices em
n as follows:

Hγi

k,k+1 = e11 ⊗ e22 + e22 ⊗ e11 − e2πiα12e12 ⊗ e21 − e2πiα21e21 ⊗ e12

+ e33 ⊗ e11 + e11 ⊗ e33 − e2πiα31e31 ⊗ e13 − e2πiα13e13 ⊗ e31

+ e22 ⊗ e33 + e33 ⊗ e22 − e2πiα23e23 ⊗ e32 − e2πiα32e32 ⊗ e23, (3.28)

or, more explicitly,

Hγi

k,k+1 =



0 0 0 0 0 0 0 0 0

0 1 0 −e2πiα12 0 0 0 0 0

0 0 1 0 0 0 −e2πiα13 0 0

0 −e2πiα21 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 −e2πiα23 0

0 0 −e2πiα31 0 0 0 1 0 0

0 0 0 0 0 −e2πiα32 0 1 0

0 0 0 0 0 0 0 0 0



.

(3.29)

Now Hγi

k,k+1 can also be expressed as follows:

Hγi

k,k+1 = Uk,k+1Hk,k+1U−1
k,k+1, with Uk,k+1 =

3∑
m,n=1

eiπαmnem
m(k)en

n(k + 1). (3.30)
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To prove this, we need to note that, since Uk,k+11k,k+1U−1
k,k+1 = 1k,k+1, it is equivalent

to show that Pγi

k,k+1 = Uk,k+1Pk,k+1U−1
k,k+1 and therefore we shall calculate

Uk,k+1Pk,k+1U−1
k,k+1

=
3∑

m,n=1

eiπαmnem
m(k)en

n(k + 1)
3∑

p,q=1

ep
q(k)e

q
p(k + 1)

3∑
r,s=1

e−iπαrser
r(k)e

s
s(k + 1)

=
3∑

m,n,p,q,r,s=1

eiπ(αmn−αrs)
[
em

m(k)ep
q(k)e

r
r(k)

] [
en

n(k + 1)eq
p(k + 1)es

s(k + 1)
]
. (3.31)

Since em
m(k)ep

q(k)e
r
r(k) = δr

qδ
p
me

m
r (k) and en

n(k + 1)eq
p(k + 1)es

s(k + 1) = δs
pδ

q
ne

n
s (k + 1),

we find that

Uk,k+1Pk,k+1U−1
k,k+1 =

3∑
m,n,p,q,r,s=1

eiπ(αmn−αrs) δr
qδ

p
mδ

s
pδ

q
n e

m
r (k)en

s (k + 1)

=
3∑

m,n=1

e2iπαmnem
n (k)en

m(k + 1) = Pγi

k,k+1, (3.32)

which is sufficient to prove the statement (3.30).

γi-deformed R-matrix and the Yang-Baxter equation

The R-matrix for this γi-deformed SU(3) spin chain is

Rγi

i,j(u) = u1γi

i,j + iPi,j, with
(
1γi

i,j

)i1i2

j1j2
= e2πiαi1i2δi1

j1
δi2
j2
, (3.33)

which, although it is defined over the auxillary and quantum spaces, acts non-trivially

only on the ith and jth complex vector spaces as follows:

Rγi

i,j(u) = (3.34)



u+ i 0 0 0 0 0 0 0 0

0 ue2πiα12 0 i 0 0 0 0 0

0 0 ue2πiα13 0 0 0 i 0 0

0 i 0 ue2πiα21 0 0 0 0 0

0 0 0 0 u+ i 0 0 0 0

0 0 0 0 0 ue2πiα23 0 i 0

0 0 i 0 0 0 ue2πiα31 0 0

0 0 0 0 0 i 0 ue2πiα32 0

0 0 0 0 0 0 0 0 u+ i



.
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This γi-deformed R-matrix satisfies the Yang-Baxter equation

Rγi

i,j(u− v)Rγi

i,k(u)R
γi

j,k(v) = Rγi

j,k(v)R
γi

i,k(u)R
γi

i,j(u− v), (3.35)

where i 6= j 6= k. The proof is similar to the undeformed case, which is discussed in

appendix B.

γi-deformed monodromy and transfer matrices

We shall now introduce the γi-deformed L-matrix Lγi

i,j (u) = Rγi

i,j

(
u− i

2

)
, which shall

be used to construct the γi-deformed monodromy matrix as follows:

T γi
0 (u) = Lγi

0,J(u) . . . Lγi
0,2(u)L

γi
0,1(u). (3.36)

This monodromy matrix can also be expressed as

T γi
0 (u) ≡

 (Aγi) (u) (Bγi)2 (u) (Bγi)3 (u)

(Cγi)2 (u) (Dγi)2
2 (u) (Dγi)2

3 (u)

(Cγi)3 (u) (Dγi)3
2 (u) (Dγi)3

3 (u)

 , (3.37)

which is a matrix in the auxillary space 0 with operators in the quantum spaces as

components. (The algebraic Bethe ansatz is constructed from these operators.)

This γi-deformed monodromy matrix satisfies

Rγi

a,b(u− v)T γi
a (u)T γi

b (v) = T γi

b (v)T γi
a (u)Rγi

a,b(u− v), (3.38)

where a and b are two different auxillary spaces. This is a direct result of the Yang-

Baxter equation (3.35) and can be derived as in appendix B.

The γi-deformed transfer matrix is now defined as

tγi(u) ≡ Tr0 [T γi
0 (u)] = (Aγi) (u) + (Dγi)l

l (u), (3.39)

which is an operator on the quantum spaces.

γi-deformed momentum and Hamiltonian operators in terms of the γi-

deformed transfer matrix

The momentum operator is given by

P γi =
1

i
log
[
i−J tγi

(
i
2

)]
. (3.40)
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As shown in appendix B for the momentum operator constructed from the unde-

formed transfer matrix, we find that eiP γi = P1,2P2,3...PJ−1,J and therefore P γi

generates translations along our spin chain. This verifies that P is, indeed, the

momentum operator.

Furthermore, the γi-deformed Hamiltonian operator can be written as

Hγi =
λ

8π2

[
J − i

d

du
log tγi(u)

∣∣∣∣
u= i

2

]
, (3.41)

and thus we see that diagonalizing the γi-deformed Hamiltonian is equivalent to

diagonalizing the γi-deformed transfer matrix.

3.2.3 γi-deformed algebraic Bethe ansatz

We now briefly discuss how to diagonlize the γi-deformed transfer matrix using the

algebraic Bethe ansatz. This algebraic Bethe ansatz state is dependent on two sets

of Bethe parameters, which must satisfy both the γi-deformed nested Bethe ansatz

equations and a cyclicity condition. (This cyclicity condition is due to the fact that

our spin chain is closed and thus any state should be invariant under cyclic permu-

tations of the component spin states.) We also construct the energy and momentum

eigenvalues in terms of the Bethe parameters. Note that a more extensive review of

all these results, complete with derivations, is available in appendix B for the case

of undeformed SU(3) spin chains. We have based our discussions on the reviews

[50, 51], which consider only SU(2) spin chains, as well as the results in [9, 49].

γi-deformed fundamental commutation relations

An indirect result of the Yang-Baxter equation is that the operator components of

the γi-deformed monodromy matrix T γi
0 (u) in the auxillary space must satisfy a set

of fundamental commutation relations:

(Aγi) (u) (Bγi)i1
(v)

= e2πiα1i1

[(
u− v − i

u− v

)
(Bγi)i1

(v) (Aγi) (u) +

(
i

u− v

)
(Bγi)i1

(u) (Aγi) (v)

]
,

(3.42)
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(Bγi)i1
(u) (Bγi)i2

(v) =

(
1

u− v + i

)(
R̃γi

)j1j2

i1i2
(u− v) (Bγi)j2

(v) (Bγi)j1
(u) , (3.43)

(Dγi)k1

i1
(u) (Bγi)i2

(v) = e2πiα1k1

[(
1

u− v

)(
R̃γi

)j1j2

i1i2
(u− v) (Bγi)j2

(v) (Dγi)k1

j1
(u)

+

(
−i
u− v

)
(Bγi)i1

(u) (Dγi)k1

i2
(v)

]
, (3.44)

where i1, i2, j1, j2, k1 ε {2, 3} and we define the γi-deformed SU(2) R-matrix as(
R̃γi

)i1i2

j1j2
(u) =

{
(u+ i) δi1

j1
δi2
j2

if i1 = i2

u e2πiαi1i2 δi1
j1
δi2
j2

+ i δi2
j1
δi1
j2

if i1 6= i2.
(3.45)

In matrix form, this R-matrix is given by

R̃γi(u) =


u+ i 0 0 0

0 u e2πiα23 i 0

0 i u e2πiα32 0

0 0 0 u+ i

 , (3.46)

which clearly acts on a tensor product of two C2 complex vector spaces.

γi-deformed algebraic Bethe ansatz and the eigenvalues of the γi-deformed

transfer matrix

Let us first define the ground state of our γi-deformed SU(3) spin chain as the state

of maximum J1 = J , consisting of a tensor product of J spin-up vectors

ω+ =

1

0

0

⊗ . . .⊗

1

0

0

 , (3.47)

which is clearly annihilated by the γi-deformed spin chain Hamiltonian. This ground

state is also an eigenstate of the operators (Aγi) (u) and (Dγi)i
j (u), and is annihilated

by (Cγi)i (u). Most interestingly, however, the (Bγi)i (u) operators act by lowering

the spin of one site in our ground state spin chain.

We shall now make the first part of the γi-deformed algebraic Bethe ansatz for the

eigenstates of the γi-deformed transfer matrix as follows:

Φγi (u1,1, . . . , u1,M) = (fγi)i1,...,iM (Bγi)i1
(u1,1) . . . (B

γi)iM
(u1,M)ω+, (3.48)
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where i1, . . . , iM ε {2, 3} and (fγi)i1,...,iM are, for now, arbitrary complex coefficients.

We have thus lowered the spin of M = J2 + J3 sites of our spin chain.

Let us consider the action of the γi-deformed transfer matrix tγi (u) = (Aγi) (u) +

(Dγi)l
l (u) on this algebraic Bethe ansatz state. The fundamental commutation re-

lations allow us to move the operators (Aγi) (u) and (Dγi)l
l (u) through the series

of (Bγi)i operators until they act on the ground state ω+. Remembering that the

ground state is an eigenstate of (Aγi) (u) and (Dγi)i
j (u), we see that it is possible

to obtain an explicit result for the action of the γi-deformed transfer matrix on the

algebraic Bethe ansatz state.

Thus, assuming that the first nested Bethe ansatz equation is satisfied, we find that

the algebraic Bethe ansatz state diagonalizes the γi-deformed transfer matrix if the

state (fγi)i1...iM in the basis (Bγi)i1
(u1,1) . . . (B

γi)iM
(u1,M) diagonlizes the matrix

e2πiJ1αl1

(
R̃γi

)lkM

jM−1iM

(
u− u1,M − i

2

)
. . .
(
R̃γi

)j2k2

j1i2

(
u− u1,2 − i

2

) (
R̃γi

)j1k1

li1

(
u− u1,1 − i

2

)
.

(3.49)

Note that we have made a redefinition u→ u− i
2
, for convenience, in this calculation.

This looks very much like the original transfer matrix, except that now the indices

run over only 2 and 3, our spin chain state (fγi)i1...iM is of length M , and there

is a dependence on both the deformation parameters γi and the first set of Bethe

parameters {u1,1 . . . u1,M}.

Therefore we have, in some sense, reduced the dimension of our problem by one

and must now solve an SU(2) spin chain problem. This SU(2) spin chain has

a γi-deformed R-matrix (3.45), which satisfies the Yang-Baxter equation, and a

γi-deformed SU(2) monodromy matrix, with component operators Ãγi(u), B̃γi(u),

C̃γi(u) and D̃γi(u). These component operators depend also on the first set of Bethe

parameters and satisfy a set of fundamental commutation relations. Our SU(2) spin

chain state (fγi)i1...iM must now diagonalize a weighted combination of the states

Ãγi(u) and D̃γi(u). We can, as before, define the ground state of our SU(2) spin

chain as a tensor product of M spin-up vectors

ω̃+ =

(
1

0

)
⊗ . . .⊗

(
1

0

)
, (3.50)

which is an eigenstate of the operators Ãγi(u) and D̃γi(u), and is, again, annihilated

by C̃γi(u). Our operator B̃γi(u) lowers the spin of one site of the ground state ω̃+.
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We shall hence make the second part of the γi-deformed algebraic Bethe ansatz as

follows:

(fγi)i1,...,iM ≡ Φ̃γi (u2,1, . . . , u2,L) = B̃γi (u2,1) . . . B̃
γi (u2,L) ω̃+. (3.51)

Here we have lowered the spin of L = J3 sites of our SU(2) spin chain.

We can now operate with the weighted combinations of the operators Ãγi(u) and

D̃γi(u) on our Bethe ansatz for (fγi)i1,...,iM and use the SU(2) fundemental commu-

tation relations to move these operators through the series of B̃γi operators until

they act on the SU(2) ground state ω̃+. We thus find that (3.49) is diagonalized if

the second nested Bethe ansatz equation is satisfied.

Therefore we finally determine that the algebraic Bethe ansatz state Φγi is an eigen-

state of the γi-deformed transfer matrix if and only if our two sets of Bethe parameters

satisfy the γi-deformed nested Bethe ansatz equations:

e−2πiJγ3

(
u1,j + i

2

u1,j − i
2

)J

= e−2πiJ3(γ1+γ2+γ3)

 M∏
k=1
k 6=j

(
u1,j − u1,k + i

u1,j − u1,k − i

)[ L∏
l=1

(
u1,j − u2,l − i

2

u1,j − u2,l + i
2

)]
,

(3.52)

for all j ε {1, . . . ,M}, and

e2πi(J2+J3)(γ1+γ2+γ3)

 L∏
k=1
k 6=j

(
u2,j − u2,k + i

u2,j − u2,k − i

)[ M∏
l=1

(
u1,l − u2,j + i

2

u1,l − u2,j − i
2

)]
= e2πiJ(γ2+γ3),

(3.53)

for every j ε {1, . . . , L}. These γi-deformed nested Bethe ansatz equations agree

with the results quoted in [9].

Furthermore, the eigenvalue of the γi-deformed transfer matrix tγi(u) corresponding

to the algebraic Bethe ansatz state Φγi is given by

Λγi(u) = e−2πi(J2γ3−J3γ2)

[
M∏

k=1

(
u− u1,k − 3i

2

u− u1,k − i
2

)]
uJ (3.54)

+

[
M∏

k=1

(
1

u− u1,k − i
2

)]
(u− i)J

{
e−2πi(J3γ1−J1γ3)

[
L∏

k=1

(
u− u2,k − i

u− uk

)][ M∏
l=1

(
u− u1,l + i

2

)]

+ e−2πi(J1γ2−J2γ1)

[
L∏

k=1

(
u− u2,k + i

u− uk

)][ M∏
l=1

(
u− u1,l − i

2

)]}
,

in terms of our two sets of Bethe parameters {u1,1, . . . , u1,M} and {u2,1, . . . , u2,L},
where L = J3 and M = J2 + J3.
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γi-deformed energy and momentum eigenvalues and the γi-deformed cyclic-

ity condition

Taking into account our redefinition of u→ u− i
2

and using equation (3.41), we find

that the energy eigenvalues are

Eγi =
λ

8π2

[
J − d

du
log Λγi(u)

∣∣∣∣
u=i

]
=

λ

8π2

[
J − i

d

du
log

{
e−2πi(J2γ3−J3γ2)

M∏
k=1

(
u− u1,k − 3i

2

u− u1,k − i
2

)
uJ

}∣∣∣∣∣
u=i

]

=
λ

8π2

[
J − i

d

du

{
M∑

k=1

[
log
(
u− u1,k − 3i

2

)
− log

(
u− u1,k − i

2

)]
+ J log u

}∣∣∣∣∣
u=i

]

=
λ

8π2
i

M∑
k=1

[
1

u1,k + i
2

− 1

u1,k − i
2

]
, (3.55)

which gives

Eγi =
λ

8π2

M∑
k=1

1

u2
1,k + 1

4

. (3.56)

This agrees with the result in [9]. These energy eigenvalues appear to be independent

of both the second set of Bethe parameters and our deformation parameters γi.

However, we should remember that the first and second sets of Bethe parameters

are related by the nested Bethe ansatz equations. Furthermore, these equations are

γi-deformed. Thus the γi-deformed energy eigenvalues are indirectly dependent on

both sets of Bethe parameters and the deformation parameters γi.

Finally, we shall derive the cyclicity condition using the γi-deformed momentum

eigenvalues, which can be obtained using equation (3.40) as follows:

P γi =
1

i
log

[
i−J Λγi(i)

]
=

1

i
log

[
e−2πi(J2γ3−J3γ2)

M∏
k=1

(
u1,k + i

2

u1,k − i
2

)]

= −2π(J2γ3 − J3γ2) +
1

i

M∑
k=1

log

(
u1,k + i

2

u1,k − i
2

)
. (3.57)

We must require that eiP γi = 1, so that a translation by one site along our closed
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spin chain results in no change. We thus obtain the γi-deformed cyclicity condition

e−2πi(J2γ3−J3γ2)

M∏
k=1

(
u1,k + i

2

u1,k − i
2

)
= 1, (3.58)

which agrees with the results in [9] and [49].

3.2.4 γi-deformed vacuum states

We shall now consider the ‘angular momenta’3 J1, J2 and J3, which describe the

γi-deformed vacuum states. These are the states with zero spin chain energy. The

discussion given hereafter closely follows [9].

Consider the expression (3.56) for the energy eigenvalues of our γi-deformed SU(3)

spin chain. There are two ways in which we can obtain zero energy. Firstly, the

energy of the spin chain is clearly zero if there are no excited modes (J2 + J3 = 0).

Secondly, the energy is zero if the term 1
u2
1,k+ 1

4

is zero for every parameter u1,k, which

occurs only when u1,k is infinite for all k. We shall then also assume that the difference

between these parameters |u1,j − u1,k| for j 6= k is also infinite.

Now, in the first case, we obtain the state (J, 0, 0), where J1 = J and J2 = J3 = 0.

However, there is no real difference between the three ‘angular momenta’ J1, J2 and

J3, so we could just as easily have chosen a state of maximum J2 or J3 to be the

ground state. Therefore we must also have vacuum states (0, J, 0), where J2 = J and

J1 = J3 = 0, and (0, 0, J), where J3 = J and J1 = J2 = 0. These vacuum states

are independent of the deformation parameters γi and are present in the undeformed

case.

The second case of infinite Bethe parameters u1,k is only possible if certain constraints

are satisfied by the ‘angular momenta’ J1, J2 and J3. These constraints are the result

of the first and second γi-deformed nested Bethe ansatz equations (3.52) and (3.53)

respectively, and the cyclicity condition (3.58).

3The term ‘angular momenta’ in reference to J1, J2 and J3 is, strictly speaking, inaccurate.
These parameters describe our algebraic Bethe ansatz state and represent the number of different
types of spin states in our tensor product. They are, however, dual to the angular momenta in the
γi-deformed S5 space of the corresponding string theory.
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Applying the assumption that u1,k →∞ to the cyclicity condition (3.58) yields

e−2πi(J2γ3−J3γ2) = 1, (3.59)

and thus we must have4

J2γ3 − J3γ2 = 0. (3.60)

Furthermore, the first nested Bethe ansatz equation (3.52) with u1,k →∞ implies

e−2πi(J1+J2+J3)γ3 = e−2πiJ3(γ1+γ2+γ3), (3.61)

and, making use of the condition (3.60), we obtain

e2πi(J3γ1−J1γ3) = 1, (3.62)

from which it follows that

J3γ1 − J1γ3 = 0. (3.63)

Lastly, let us consider the second nested Bethe ansatz equation (3.53). We have only

assumed that u1,k →∞, but, as yet, have placed no conditions on u2,k. Therefore we

first need to get rid of the product dependent only on the latter set of parameters.

We do this by taking the product of this equation for all values of j ε {1, . . . , L}. It

can be seen that(
u2,j − u2,k + i

u2,j − u2,k − i

)(
u2,k − u2,j + i

u2,k − u2,j − i

)
= 1 for any j 6= k, (3.64)

and thus, since each term in our product has a corresponding term with which it

cancels, when we assume that u1,k →∞ we obtain

e2πiJ3(J2+J3)(γ1+γ2+γ3) = e2πiJ3(J1+J2+J3)(γ2+γ3). (3.65)

This implies, using the constraint (3.63), that

e2πiJ3(J1γ2−J2γ1) = 1, (3.66)

and hence

J1γ2 − J2γ1 = 0. (3.67)

4One might expect to find that any integer on the right hand side of this equation would suffice.
At this point, however, we would like to consider solutions which exist for all real deformation
parameters γi (not necessarily rational). For irrational values of the γi, the only integer which will
provide a valid solution is zero.
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Thus, for the case of infinite Bethe parameters u1,k to be a valid vacuum state, the

‘angular momenta’ J1, J2 and J3 must satisfy

εijkJjγk = 0, (3.68)

which corresponds to (J1, J2, J3) ∼ (γ1, γ2, γ3). This vacuum state clearly has no

undeformed analogy, since the constraints disappear when we set all our deformation

parameters γi to zero.

Now in this derivation we have considered a general γi-deformed background in which

the deformation parameters γi are any real numbers. If we confine ourselves to the

case of rational deformation parameters, then our condition can be broadened into

εijkJjγk = ni, where ni ε Z for i ε {1, 2, 3} . (3.69)
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Chapter 4

String Theory

4.1 Classical String Worldsheet Action

A string is a one dimensional object with some fundamental constant string tension

T . Any such string traces out a two dimensional surface, known as a worldsheet

(analogous to the worldline of a point particle), in spacetime, which can be parame-

terized by the temporal and spatial coordinates τ and σ respectively. In other words,

this worldsheet is the image of an embedding Xµ (τ, σ) from the parameter space

(τ, σ) into the target space, which is some d dimensional spacetime described by the

coordinates xµ, where µ runs from 0 to d − 1 [4]. We are particularly interested in

the d = 10 dimensional AdS5 × S5 target space.

Figure 4.1: The worldsheets of open and closed strings.

The worldsheet of an open string is simply an open sheet, but a closed string must

have its end-points identified at any time τ and thus the worldsheet becomes a tube-
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like surface (see figure 4.1). The temporal coordinate τ can take on any real value,

but the spatial coordinate σ is generally confined to a finite interval [4]. We are

especially interested in closed strings and, following [8], shall hence make use of the

parameter space {(τ, σ) : τ ε R, σ ε [0, 2π]} and take the worldsheet to be periodic

in σ, so that Xµ (τ, σ) = Xµ (τ, σ + 2π).

The classical1 string worldsheet action is proportional to the proper area of the

string worldsheet. (This is analogous to the classical point particle action, which is

proportional to the length of the particle’s worldline.) It can immediately be seen that

this action is reparameterization invariant, since the area of a surface is independent

of the parameters used to describe it. The proportionality constant can be obtained

using dimensional arguments. In units of c ≡ 1 (so that L = T), the action must

have dimensions ML2

T
= ML and thus the proportionality constant has dimensions

[S]
[A]

= ML
L2 = M

L
. These are the units of the string tension. Thus we take the classical

string worldsheet action to be

S = − 1

2πα′
A = − 1

2πα′

∫
worldsheet

dA, (4.1)

where T = 1
2πα′ is the string tension [4, 52].

Now there are two common ways of expressing this classical worldsheet action in

terms of the embedding Xµ (τ, σ) and the metrics of the parameter and target spaces.

These are known as the Nambu-Goto and Polyakov string actions. In this section,

we describe the construction of these equivalent classical worldsheet actions.

4.1.1 The Nambu-Goto string action

Let us first derive an expression for the area of a surface in Euclidean space and then

extend this result to the proper area of a worldsheet in some d dimensional spacetime

following [4].

Consider an embedding ~X(ξi) from the parameter space (ξ1, ξ2) into d dimensional

Euclidean space, which defines a surface in this target space. An infinitesimal square

area, with side lengths dξ1 and dξ2, in the parameter space is mapped onto an

infinitesimal parallelogram in the target space (see figure 4.2). This parallelogram

1By classical we mean that quantum effects have been neglected.
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Figure 4.2: Infinitesimal area of the surface in Euclidean space [4].

has adjacent sides ~dv1 and ~dv2 as follows:

~dv1 = ~X
(
ξ1 + dξ1, ξ2

)
− ~X

(
ξ1, ξ2

)
=
∂ ~X

∂ξ1
dξ1, (4.2)

~dv2 = ~X
(
ξ1, ξ2 + dξ2

)
− ~X

(
ξ1, ξ2

)
=
∂ ~X

∂ξ2
dξ2. (4.3)

Now the area of this infinitesimal parallelogram is given by

dA =
∣∣∣ ~dv1

∣∣∣ ∣∣∣ ~dv2

∣∣∣ sin θ, (4.4)

where 0 ≤ θ ≤ π is the angle between ~dv1 and ~dv2. Thus, using the expressions (4.2)

and (4.3) for the adjacent sides of the parallelogram, we find that the infinitesimal

area in the target space is

dA =

∣∣∣∣∣∂ ~X∂ξ1
dξ1

∣∣∣∣∣
∣∣∣∣∣∂ ~X∂ξ2

dξ2

∣∣∣∣∣ sin θ
=

√√√√∣∣∣∣∣∂ ~X∂ξ1
dξ1

∣∣∣∣∣
2 ∣∣∣∣∣∂ ~X∂ξ2

dξ2

∣∣∣∣∣
2

−

∣∣∣∣∣∂ ~X∂ξ1
dξ1

∣∣∣∣∣
2 ∣∣∣∣∣∂ ~X∂ξ2

dξ2

∣∣∣∣∣
2

cos2 θ

=

√√√√(∂ ~X
∂ξ1

dξ1 · ∂
~X

∂ξ1
dξ1

)(
∂ ~X

∂ξ2
dξ2 · ∂

~X

∂ξ2
dξ2

)
−

(
∂ ~X

∂ξ1
dξ1 · ∂

~X

∂ξ2
dξ2

)2

= dξ1dξ2

√√√√det

[
∂ ~X

∂ξi
· ∂

~X

∂ξj

]
. (4.5)

Notice that the spatial interval along an infinitesimal vector d ~X on the surface is

ds2 = d ~X ·d ~X =

(
∂ ~X

∂ξ1
dξ1 +

∂ ~X

∂ξ2
dξ2

)
·

(
∂ ~X

∂ξ1
dξ1 +

∂ ~X

∂ξ2
dξ2

)
=

(
∂ ~X

∂ξi
· ∂

~X

∂ξj

)
dξidξj,

(4.6)
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so that gij ≡ ∂ ~X
∂ξi · ∂ ~X

∂ξj is the induced metric on our surface in d-dimensional Euclidean

space. Hence the infinitesimal area can be written as

dA = dξ1dξ2√g, (4.7)

in terms of the determinant g ≡ det (gij) of the induced metric gij. We can obtain

the area of the entire surface in the d dimensional target space by integrating this

infinitesimal area over the parameter space as follows:

A =

∫
dξ0dξ1

√√√√det

[
∂ ~X

∂ξj
· ∂

~X

∂ξj

]
=

∫
dξ0dξ1√g. (4.8)

We shall now extend this result to the proper area of the string worldsheet in some

d dimensional spacetime. Let us denote the full spacetime metric as Gµν , while the

induced metric on the worldsheet is γαβ, which has a Minkowski signature. The

spacetime interval on the worldsheet is then given by

ds2 = Gµνdx
µdxν

= γαβdσ
αdσβ, where σ0 = τ and σ1 = σ. (4.9)

Here γ ≡ det (γαβ) < 0 and we notice that the induced metric on the string worldsheet

must thus be given by

γαβ = ∂αx
µ∂βx

νGµν . (4.10)

Hence, in analogy to the previous result (4.8), the proper area of the string worldsheet

is

A =

∫
dσ0dσ1

√
−γ. (4.11)

Notice that this expression differs from the area of a surface in Euclidean space in

that the term in the square root is −γ. This is due to the Minkowski signature of

the induced worldsheet action γαβ. The classical string worldsheet action can thus

be obtained from (4.1) as follows:

S = − 1

α′

∫
dτ
dσ

2π

√
− det [∂αxµ∂βxνGµν ] = − 1

α′

∫
dτ
dσ

2π

√
−γ, (4.12)

which is known as the Nambu-Goto string action [4, 52].
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4.1.2 The Polyakov string action

Although the Nambu-Goto string action (4.12) has a reasonably simple form, it is

often convenient to work with an action which does not contain only a square root.

Thus we introduce the Polyakov string action

S = − 1

2α′

∫
dτ
dσ

2π

√
−hhαβ∂αx

µ∂βx
νGµν , (4.13)

where hαβ is some symmetric invertible 2×2 matrix with inverse hαβ and determinant

h ≡ det (hαβ). This Polyakov string action shall now be shown to be equivalent to

the Nambu-Goto string action following [4, 52].

Let us first vary the Polyakov string action (4.13) with respect to hαβ to obtain

δS = − 1

2α′

∫
dτ
dσ

2π

{√
−h ∂αx

µ∂βx
νGµνδh

αβ + hαβ∂αx
µ∂βx

νGµνδ
√
−h
}
. (4.14)

We shall now make use of the identity2 δ (detA) = (detA) Tr (A−1δA), which is valid

for any invertible 2× 2 matrix A, to calculate the variation of the determinant h as

follows:

δh = hhαβδhαβ = −hhαβδh
αβ, (4.15)

since δ(hαβhαβ) = δ(2) = 0, so that hαβδhαβ = −hαβδh
αβ. Thus we find that

δ
√
−h = −1

2

δh√
−h

= −1

2

1√
−h

(
−hhαβδh

αβ
)

= −1

2

√
−hhαβδh

αβ. (4.16)

The variation (4.14) of the Polyakov string action therefore becomes

δS = − 1

2α′

∫
dτ
dσ

2π

√
−h
{
∂αx

µ∂βx
νGµν −

1

2
hαβh

δε∂δx
µ∂εx

νGµν

}
δhαβ, (4.17)

2This identity can be proved as follows:

Consider some matrix A =

(
a11 a12

a21 a22

)
with inverse A−1 = 1

det A

(
a22 −a12

−a21 a11

)
. Hence

Tr
(
A−1δA

)
= Tr

[
1

detA

(
a22 −a12

−a21 a11

)(
δa11 δa12

δa21 δa22

)]
=

1
detA

(a22δa11 − a12δa21 + a11δa22 − a21δa12) ,

and thus it follows that

(detA) Tr
(
A−1δA

)
= (δa11) a22+a11 (δa22)−(δa12) a21−a12 (δa21) = δ (a11a22 − a12a21) = δ (detA) .
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and, setting this variation to zero, we obtain the equation of motion corresponding

to the matrix hαβ as follows:

∂αx
µ∂βx

νGµν =
1

2
hαβh

δε∂δx
µ∂εx

νGµν . (4.18)

Now this equation of motion implies that hαβ and the induced metric γαβ = ∂αx
µ∂βx

νGµν

are conformally related, so that

hαβ = f (τ, σ) γαβ, (4.19)

where f (τ, σ) is a proportionality constant, which is a function of the worldsheet

coordinates τ and σ, and is assumed to be positive at every point on the worldsheet.

Thus we find that3

√
−hhαβ =

√
−f 2γ

1

f
γαβ =

√
−γγαβ. (4.20)

The Polyakov string action (4.13) can therefore be written as

S = − 1

2α′

∫
dτ
dσ

2π

√
−γ γαβγαβ = − 1

α′

∫
dτ
dσ

2π

√
−γ, (4.21)

in terms of the induced metric γαβ, and is thus equivalent to the Nambu-Goto string

action (4.12). Notice that the Polyakov string action (4.13) is clearly invariant under

the Weyl transformation hαβ → Ω2(τ, σ)hαβ, where Ω(τ, σ) is some real function of

the worldsheet coordinates τ and σ.

4.2 Strings in an AdS5 × S5 Background

The string theory in our AdS/CFT correspondence involves an AdS5 × S5 target

space. This is the product of five dimensional anti-de Sitter spacetime with that of a

five-sphere. We are especially interested in strings stationary in the AdS5 spacetime

and therefore, after an initial description of both the AdS5 and S5 spaces, we shall

confine our discussion to strings moving in an R × S5 background. The Polyakov

string worldsheet action is constructed and the U(1) charges (angular momenta)

corresponding to rotations on the five-sphere are derived.

3Notice that, if we had not chosen a positive proportionality constant f (τ, σ), this equation
would contain a troublesome factor of sign (f).
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4.2.1 AdS5 × S5 Background

We now give a detailed description of anti-de Sitter spacetime and the five-sphere

space, which can be viewed as five dimensional surfaces embedded in six dimensional

flat spacetime and Euclidean space respectively. We define suitable sets of coordinates

for the higher dimensional spaces and hence construct the AdS5 and S5 spacetime

intervals confined to these surfaces. The anti-de Sitter and five-sphere metrics are

clearly visible from this construction.

Anti-de Sitter spacetime

Anti-de Sitter spacetime in D dimensions (AdSD) can be thought of as a hyperboloid

embedded in a flatD+1 dimensional spacetime with metric η = diag (−1,−1, 1, . . . , 1)

and coordinates X−1, X0, . . . , XD−1. This hyperboloid satisfies

−X2
−1 −X2

0 +X2
1 + . . .+X2

D−2 +X2
D−1 = −R2, (4.22)

where R is the ‘radius’ of the anti-de Sitter spacetime. We shall now calculate the

anti-de Sitter spacetime interval based on discussions in [3].

Let us first define a more convenient set of coordinates, which describe the higher

dimensional spacetime, as follows:

xα ≡
XαR

U
, U ≡ X−1 +XD−1, V ≡ X−1 −XD−1, (4.23)

where α runs from 0 to D − 2. The constraint equation (4.22) for the hyperboloid

can then be written as

−UV +
U2

R2
xαxα = −R2 =⇒ V =

U

R2
xαxα +

R2

U
. (4.24)

We shall now derive the spacetime interval confined to the hyperboloid in these new

coordinates (4.23). The spacetime interval of the flat D+ 1 dimensional background

in the original coordinates is given by

ds2 = −dX2
−1 + dX2

D−1 + dXαdXα, (4.25)

while we can also calculate

dXαdXα = d

(
Uxα

R

)
d

(
Uxα

R

)
=

1

R2

(
xαxαdU

2 + 2UdUxαdxα + U2dxαdxα

)
(4.26)
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and

−dX2
−1 + dX2

D−1 = −dUdV = −dUd
(
Uxαxα

R2
+
R2

U

)
= −x

αxαdU
2

R2
− 2UdUxαdxα

R2
+
R2dU2

U2
. (4.27)

Here we have made use of the hyperboloid constraint (4.24). The spacetime interval

on the hyperboloid is thus

ds2 = −U
2

R2

(
dx0
)2

+
U2

R2

(
dx1
)2

+ . . .+
U2

R2

(
dxD−2

)2
+
R2

U2
dU2. (4.28)

We now make one last redefinition Ũ = U
R2 , so that we can express the ‘radius’ R as

an overall scale factor as follows:

ds2 = R2

[
−Ũ2

(
dx0
)2

+ Ũ2
(
dx1
)2

+ . . .+ Ũ2
(
dxD−2

)2
+
dŨ2

Ũ2

]
, (4.29)

which is the spacetime interval of our D dimensional anti-de Sitter spacetime in terms

of the coordinates xα and Ũ . We are especially interested in the AdS5 spacetime

interval, which can be obtained by setting D = 5.

Lastly, we should mention that strings which are stationary in this AdS5 spacetime

are described only by a temporal coordinate t = Ũx0. The other four coordinates x1,

x2, x3 and Ũ are constant. The spacetime interval then becomes ds2 = −R2dt2.

Five-sphere space

The five-sphere (S5) space is that of a five dimensional sphere of radius R embedded

in six dimensional Euclidean space. Our Euclidean coordinates xi satisfy

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 = R2. (4.30)

We shall now write these six Euclidean coordinates as three sets of polar coordinates

(ri, φi) as follows:

xi = Rri cosφi, xi+3 = Rri sinφi, with i ε {1, 2, 3} . (4.31)

Thus we find that x2
i + x2

i+3 = R2r2
i , so that the constraint (4.30) can be written in

terms of the three radii ri as

r2
1 + r2

2 + r2
3 = 1. (4.32)
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The Euclidean spatial interval is now given by

ds2 =
6∑

i=1

dx2
i = R2

3∑
i=1

(
dr2

i + r2
i dφ

2
i

)
, (4.33)

and, when the constraint (4.32) is implemented, this also describes the spatial interval

of our five-sphere space.

4.2.2 String worldsheet action in an R× S5 background

We shall now construct the classical worldsheet action for a string in an R × S5

background, which is stationary in the AdS5 space and moves only on the five-sphere.

The only contribution to the worldsheet action from the AdS5 spacetime involves the

temporal variable t, since the other four coordinates have been assumed to be con-

stant. As previously mentioned, the AdS5 spacetime interval is then ds2 = −R2dt2.

The spacetime interval on the five-sphere is shown in (4.33). We should also note

that the radii of the AdS5 spacetime and five-sphere space are taken to be the same.

Substituting these results into the Polyakov action (4.13) then allows us to construct

the string worldsheet action as follows:

˜̃S = −
√
λ

2

∫
dτ

dσ

2π
(4.34)

×

{
√
−hhαβ

[
−∂αt∂βt+

3∑
i=1

(
∂αri∂βri + r2

i ∂α
˜̃φi∂β

˜̃φi

)]
+ Λ

(
3∑

i=1

r2
i − 1

)}
.

Here we have defined
√
λ ≡ R2

α′ as in [8]. We now also make use of the notation ˜̃φi of [8]

to describe the three angular coordinates, because it will later be useful to distinguish

between the angular coordinates in undeformed and deformed R× S5 backgrounds.

The last term is a constraint term with corresponding Lagrange multiplier Λ, which

ensures that the sum of the three S5 radii squared is equal to one, so that we remain

confined to the five-sphere.

4.2.3 U(1) charges or angular momenta

The string worldsheet action (4.34) is clearly invariant under constant shifts of the

angular coordinates ˜̃φi → ˜̃φi + εi, which describe U(1) transformations Rrie
i
˜̃
φi →
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eiεi

(
Rrie

i
˜̃
φi

)
or rotations on our five-sphere. We shall now calculate the correspond-

ing charge and current densities ˜̃pi and ˜̃ji respectively. We can hence integrate ˜̃pi

over the spatial worldsheet coordinate to obtain the U(1) charges ˜̃Ji, which are the

angular momenta of a string moving in the S5 space.

Consider an infinitesimal U(1) transformation ˜̃φi → ˜̃φi + εi of the ith angular coordi-

nate, with εi some small constant parameter. We see that

Di
˜̃L ≡ ∂ ˜̃L

∂εi

∣∣∣∣∣
εi=0

= 0 and Di
˜̃φj ≡

∂ ˜̃φj

∂εi

∣∣∣∣∣
εi=0

= δi
j, (4.35)

and thus, using the results of [38], we can calculate the ith conserved 2-current as

follows:

˜̃J α
i =

3∑
j=1

˜̃Πα
jDi

˜̃φj = ˜̃Πα
i , with ˜̃Πα

j ≡
∂ ˜̃L

∂
(
∂α

˜̃φi

) , (4.36)

so that
˜̃J α
i = −

√
λr2

i

√
−hhαβ∂β

˜̃φi. (4.37)

These three 2-currents satisfy the conservation equations ∂α
˜̃J α
i = 0. The ith charge

and current densities are ˜̃pi = ˜̃J 0
i and ˜̃ji = ˜̃J 1

i respectively. Hence we finally obtain

the U(1) charges or angular momenta

Ji ≡
∫
dσ

2π
˜̃pi = −

√
λ

∫
dσ

2π

(
r2
i

√
−hh0β∂β

˜̃φi

)
, (4.38)

where we have integrated the ith charge density over the spatial worldsheet coor-

dinate. The above results for the U(1) charge and current densities, and the U(1)

charges agree with the expressions given in [8].

4.3 Strings in the Lunin-Maldacena Background

The task of finding string theories dual to deformations of N = 4 SYM theory is

highly non-trivial. Lunin and Maldacena [7] showed this to be possible for certain

Leigh-Strassler deformations, in which the superpotential is deformed as follows:

1

2
gTr (Φ1Φ2Φ3 − Φ1Φ3Φ2) −→

1

2
gTr

(
eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2

)
, (4.39)

where β is a complex parameter. The gravity dual of this N = 1 SYM theory is

a string theory in a β-deformed Lunin-Maldacena background. We shall henceforth

consider only the case of a real deformation parameter β = γ.
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Let us first discuss how this γ-deformed string theory was originally constructed in

[7]. The superpotential (4.39) is invariant under the U(1) transformations:

U(1)1 : Φ1 → eiα1Φ1, Φ2 → eiα1Φ2, Φ3 → e−2iα1Φ3, (4.40)

U(1)2 : Φ1 → e−2iα2Φ1, Φ2 → eiα2Φ2, Φ3 → eiα2Φ3. (4.41)

On the string theory side, these U(1) transformations correspond to the transforma-

tions ˜̃ϕ1 → ˜̃ϕ1 + α1 and ˜̃ϕ2 → ˜̃ϕ2 + α2 of the angular coordinates

˜̃ϕ1 =
1

3

(
˜̃φ1 + ˜̃φ2 − 2 ˜̃φ3

)
and ˜̃ϕ2 =

1

3

(
−2 ˜̃φ1 + ˜̃φ2 + ˜̃φ3

)
, (4.42)

which, together with the total angular coordinate ˜̃ψ = 1
3

(
˜̃φ1 + ˜̃φ2 + ˜̃φ3

)
, form an

alternative set of angular coordinates describing our S5 space. We thus observe that

˜̃ϕ1 and ˜̃ϕ2 define a special 2-torus
(
˜̃ϕ1, ˜̃ϕ2

)
on our five-sphere.

Let us now define a parameter τ , which describes the structure of the torus, as follows:

τ = B12 + i
√
g, (4.43)

where g is the determinant of the metric confined to the torus (so that
√
g is the

torus volume), and B12 is the B-field or coefficient of the ∂α
˜̃φ1∂β

˜̃φ2 term in the string

action. The γ-deformation of the string theory is then implemented by making the

transformation

τ −→ τ ′ =
τ

1 + γ̂τ
, with γ =

γ̂√
λ
. (4.44)

This alters the volume of the torus and turns on a B-field in the string action.

It was shown by Frolov [8] that the γ-deformed worldsheet string action can also

be obtained by performing a TsT-transformation on the original string worldsheet

action (4.34). We discuss this perspective in detail in this section.

4.3.1 T-duality transformation

We shall begin by describing the notion of a T-duality transformation based on

discussions in [8, 53]. Let us consider a general string action of the form

S = −
√
λ

2

∫
dτ

dσ

2π

[√
−hhαβ∂αX

M∂βX
NGMN

(
X i
)
− εαβ∂αX

M∂βX
NBMN

(
X i
)]
,

(4.45)
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where M,N ε {1, 2, 3} and i, j ε {2, 3}, and εαβ is defined in (A.22). Here GMN is

the symmetric metric of the background spacetime and BMN is an anti-symmetric

matrix. We shall assume that both GMN and BMN are independent of X1.

Now this string action (4.45) turns out to be equivalent to a more complicated ex-

pression dependent on a new coordinate pα, which is given by

S = −
√
λ

∫
dτ

dσ

2π

[
pα

(
∂αX

MG1M

G11

− hαβ√
−h

εβρ∂ρX
MB1M

G11

)
− 1

2G11

hαβ√
−h

pαpβ +
1

2

√
−hhαβ∂αX

i∂βX
j

(
Gij −

G1iG1j −B1iB1j

G11

)
− 1

2
εαβ∂αX

i∂βX
j

(
Bij −

G1iB1j −B1iG1j

G11

)]
. (4.46)

This shall be demonstrated by varying the new action (4.46) with respect to pα to

obtain the equation of motion

pα =
√
−hhαβ∂βX

MG1M − εαβ∂βX
MB1M , (4.47)

from which it follows that

pα

(
∂αX

MG1M

G11

− hαβ√
−h

εβρ∂ρX
MB1M

G11

)

=
(√
−hhαδ∂δX

MG1M − εαδ∂δX
MB1M

)(
∂αX

NG1N

G11

− hαβ√
−h

εβρ∂ρX
NB1N

G11

)

=
√
−hhαβ∂αX

M∂βX
N

(
G1MG1N −B1MB1N

G11

)
− εαβ∂αX

M∂βX
N

(
G1MB1N −B1MG1N

G11

)
,

(4.48)

and also

1

2G11

hαβ√
−h

pαpβ

=
1

2G11

hαβ√
−h

(√
−hhαρ∂ρX

MG1M − εαρ∂ρX
MB1M

)(√
−hhβδ∂δX

NG1N − εβδ∂δX
NB1N

)
=
√
−hhαβ∂αX

M∂βX
N

(
G1MG1N −B1MB1N

2G11

)
− εαβ∂αX

M∂βX
N

(
G1MB1N −B1MG1N

2G11

)
.

(4.49)

Here we have used the identity εαβ hβρ√
−h

ερδ =
√
−hhαδ, which can be verified by

writing out each side of the equation explicitly for all combinations of α, δ ε {0, 1}.
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Substituting (4.48) and (4.49) into the new string action (4.46) now yields

S = −
√
λ

2

∫
dτ

dσ

2π

{√
−hhαβ

[(
G1MG1N −B1MB1N

G11

)
∂αX

M∂βX
N

+

(
Gij −

G1iG1j −B1iB1j

G11

)
∂αX

i∂βX
j

]
− εαβ

[(
G1MB1N −B1MG1N

G11

)
∂αX

M∂βX
N

+

(
Bij −

G1iB1j −B1iG1j

G11

)
∂αX

i∂βX
j

]}
, (4.50)

When M,N 6= 1 we see that each of the two expressions in square brackets simplify

to Gij∂αX
i∂βX

j and Bij∂αX
i∂βX

j respectively. The three cases M = N = 1, M = 1

and N = i, and M = i and N = 1 can then be considered separately and similar

results derived. We thus see that (4.46) reduces to the original string worldsheet

action (4.45).

Let us consider varying the action (4.46) with respect to the first coordinate X1.

Since we have assumed that GMN and BMN are independent of X1, so that there is

no hidden dependence on the first coordinate, the equation of motion is simply

∂αp
α = ∂α

(√
−hhαβ∂βX

MG1M − εαβ∂βX
MB1M

)
= 0. (4.51)

Thus we can generally write pα = εαβ∂βX̃
1, where X̃1 is the first T-dual coordinate.

The T-dual coordinates X̃M are therefore defined as follows:

εαβ∂βX̃
1 ≡

√
−hhαβ∂βX

MG1M − εαβ∂βX
MB1M , (4.52)

X̃ i ≡ X i. (4.53)

Substituting these T-dual coordinates into (4.46), we obtain

S̃ = −
√
λ

∫
dτ

dσ

2π

[(
εαδ∂δX̃

1
)(

∂αX
1 + ∂αX̃

iG1i

G11

− hαβ√
−h

εβρ∂ρX̃
iB1i

G11

)
− 1

2G11

hαβ√
−h

(
εαρ∂ρX̃

1
)(

εβδ∂δX̃
1
)

+
1

2

√
−hhαβ∂αX

i∂βX
j

(
Gij −

G1iG1j −B1iB1j

G11

)
− 1

2
εαβ∂αX

i∂βX
j

(
Bij −

G1iB1j −B1iG1j

G11

)]
, (4.54)

and, since εαδ∂δX̃
1∂αX

1 ∼ εαδ∂α∂δX̃
1X1 = 0 up to a total derivative, the above
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expression can be written as

S̃ = −
√
λ

2

∫
dτ

dσ

2π

{√
−hhαβ

[
∂αX̃

1∂βX̃
1 1

G11

+ 2∂αX̃
1∂βX̃

iB1i

G11

(4.55)

+ ∂αX̃
i∂βX̃

j

(
Gij −

G1iG1j −B1iB1j

G11

)]
− εαβ

[
2∂αX̃

1∂βX̃
iG1i

G11

+ ∂αX̃
i∂βX̃

j

(
Bij −

G1iB1j −B1iG1j

G11

)]}
,

up to surface terms. Thus we obtain the string worldsheet action in the T-dual space

S̃ = −
√
λ

2

∫
dτ

dσ

2π

[√
−hhαβ∂αX̃

M∂βX̃
NG̃MN − εαβ∂αX̃

M∂βX̃
N B̃MN

]
, (4.56)

where the symmetric and anti-symmetric matrices G̃MN and B̃MN respectively are

defined as follows:

G̃11 =
1

G11

, G̃1i =
B1i

G11

, G̃ij = Gij −
G1iG1j −B1iB1j

G11

,

B̃1i =
G1i

G11

, B̃ij = Bij −
G1iB1j −B1iG1j

G11

. (4.57)

4.3.2 Derivation of the γ-deformed string worldsheet action

via a TsT-transformation

We now show how to derive the γ-deformed string worldsheet action by performing

a TsT-transformation on the original string action following [8]. This involves a T-

duality transformation on the first angular coordinate ˜̃ϕ1, a shift ϕ̃2 → ϕ̃2+γ̂ϕ̃1 of the

second angular coordinate in the T-dual space and a further T-duality transformation

on the T-dual coordinate ϕ̃1. Since this deformation effects only the five-sphere space,

it is sufficient, for our purposes, to consider strings in an R× S5 background. Thus

we begin with the string action (4.34), which, making a change

˜̃φ1 = ˜̃ϕ3 − ˜̃ϕ2,
˜̃φ2 = ˜̃ϕ1 + ˜̃ϕ2 + ˜̃ϕ3,

˜̃φ3 = ˜̃ϕ3 − ˜̃ϕ1 (4.58)

to the new angular coordinates ˜̃ϕ1, ˜̃ϕ2 and ˜̃ϕ3 = ˜̃ψ (the coordinates of our torus,

together with the total angular coordinate), can be written as

˜̃S = −
√
λ

2

∫
dτ

dσ

2π
(4.59)

×

[
√
−hhαβ

(
−∂αt∂βt+

3∑
i=1

∂αri∂βri +
3∑

i,j=1

gij∂α
˜̃ϕi∂β

˜̃ϕj

)
+ Λ

(
3∑

i=1

r2
i − 1

)]
,
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where gij is defined as follows:

g2
11 = r2

2 + r2
3, g22 = r2

1 + r2
2, g33 = r2

1 + r2
2 + r2

3 = 1,

g12 = r2
2, g31 = r2

2 − r2
3, g23 = r2

2 − r2
1. (4.60)

Let us now perform a T-duality transformation on the angular coordinate ˜̃ϕ1. In

other words, we shall set X1 = ˜̃ϕ1, X2 = ˜̃ϕ2 and X3 = ˜̃ϕ3 in our previous discussion

of T-duality transformations. The metric gij is independent of ˜̃ϕ1 (and, indeed, of all

the angular coordinates ˜̃ϕi) as assumed in this discussion. We shall use ϕ̃1, ϕ̃2 and

ϕ̃3 to represent the T-dual coordinates, which must then satisfy

εαβ∂βϕ̃1 =
√
−hhαβ

3∑
i=1

∂β
˜̃ϕi g1i, ϕ̃2 = ˜̃ϕ2, ϕ̃3 = ˜̃ϕ3, (4.61)

and, using the results (4.56) and (4.57), the string action can hence be written in the

T-dual space as follows:

S̃ = −
√
λ

2

∫
dτ

dσ

2π

[
√
−hhαβ

(
−∂αt∂βt+

3∑
i=1

∂αri∂βri +
3∑

i,j=1

g̃ij∂αϕ̃i∂βϕ̃j

)

− εαβ

(
3∑

i,j=1

b̃ij∂αϕ̃i∂βϕ̃j

)
+ Λ

(
3∑

i=1

r2
i − 1

)]
, (4.62)

where the symmetric and anti-symmetric matrices g̃ij and b̃ij respectively are

g̃11 =
1

r2
2 + r2

3

, g̃22 =
r2
1r

2
2 + r2

3r
2
1 + r2

2r
2
3

r2
2 + r2

3

, g̃33 =
r2
1r

2
2 + r2

3r
2
1 + 4r2

2r
2
3

r2
2 + r2

3

,

g̃12 = 0, g̃31 = 0, g̃23 =
−r2

1r
2
2 − r2

3r
2
1 + 2r2

2r
2
3

r2
2 + r2

3

. (4.63)

and

b̃12 =
r2
2

r2
2 + r2

3

, b̃31 =
r2
2 − r2

3

r2
2 + r2

3

, b̃23 = 0. (4.64)

The real parameter γ̂ shall now be introduced by shifting the T-dual coordinates

ϕ̃1 −→ ϕ̃1, ϕ̃2 −→ ϕ̃2 + γ̂ϕ̃1, ϕ̃3 −→ ϕ̃3, (4.65)

which causes a change g̃ij −→ G̃ij in the T-dual metric as follows:

G̃11 = g̃11 + γ̂ (g̃12 + g̃21) + γ̂2g̃22, G̃22 = g̃22, G̃33 = g̃33,

G̃12 = g̃12 + γ̂g̃22, G̃31 = g̃31 + γ̂g̃23, G̃23 = g̃23, (4.66)
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The anti-symmetric matrix b̃ij can be seen to remain unchanged by this shift. Hence

we obtain the shifted string action in the T-dual space, which is given by

S̃γ = −
√
λ

2

∫
dτ

dσ

2π

[
√
−hhαβ

(
−∂αt∂βt+

3∑
i=1

∂αri∂βri +
3∑

i,j=1

G̃ij∂αϕ̃i∂βϕ̃j

)

− εαβ

(
3∑

i,j=1

B̃ij∂αϕ̃i∂βϕ̃j

)
+ Λ

(
3∑

i=1

r2
i − 1

)]
, (4.67)

where

G̃11 =
G−1

r2
2 + r2

3

, G̃22 =
r2
1r

2
2 + r2

3r
2
1 + r2

2r
2
3

r2
2 + r2

3

,

G̃33 =
r2
1r

2
2 + r2

3r
2
1 + 4r2

2r
2
3

r2
2 + r2

3

, G̃12 = γ̂
r2
1r

2
2 + r2

3r
2
1 + r2

2r
2
3

r2
2 + r2

3

,

G̃31 = γ̂
−r2

1r
2
2 − r2

3r
2
1 + 2r2

2r
2
3

r2
2 + r2

3

, G̃23 =
−r2

1r
2
2 − r2

3r
2
1 + 2r2

2r
2
3

r2
2 + r2

3

, (4.68)

with G−1 ≡ 1 + γ̂2 (r2
1r

2
2 + r2

3r
2
1 + r2

2r
2
3), and B̃ij = b̃ij as shown in (4.64).

Finally, we shall perform another T-duality transformation on the coordinate ϕ̃1, and

the new T-dual coordinates ϕ1, ϕ2 and ϕ3 satisfy

εαβ∂βϕ1 =
√
−hhαβ∂βϕ̃iG̃1i − εαβ∂βϕ̃iB̃1i, ϕ2 = ϕ̃2, ϕ3 = ϕ̃3. (4.69)

The string action in this new T-dual space is given by

Sγ = −
√
λ

2

∫
dτ

dσ

2π

[
√
−hhαβ

(
3∑

i=1

∂αri∂βri +
3∑

i,j=1

Gij∂αϕi∂βϕj

)

− εαβ

(
3∑

i,j=1

Bij∂αϕi∂βϕj

)
+ Λ

(
3∑

i=1

r2
i − 1

)]
, (4.70)

with

G11 = G
(
r2
2 + r2

3

)
, G22 = G

(
r2
1 + r2

2

)
, G33 = G+ 9γ̂2Gr2

1r
2
2r

2
3,

G12 = Gr2
2, G31 = G

(
r2
2 − r2

3

)
, G23 = G

(
r2
2 − r2

1

)
, (4.71)

and

B12 = γ̂ G
(
r2
1r

2
2 + r2

3r
2
1 + r2

2r
2
3

)
, B31 = γ̂ G

(
r2
1r

2
2 + r2

3r
2
1 − 2r2

2r
2
3

)
,

B23 = γ̂ G
(
−2r2

1r
2
2 + r2

3r
2
1 + r2

2r
2
3

)
. (4.72)

Switching back to the angular coordinates φi using the transformation

ϕ1 =
1

3
(φ1 + φ2 − 2φ3) , ϕ2 =

1

3
(−2φ1 + φ2 + φ3) , ϕ3 =

1

3
(φ1 + φ2 + φ3) (4.73)
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then yields the string worldsheet action in the γ-deformed Lunin-Maldacena back-

ground, which is given by [8]

Sγ = −
√
λ

2

∫
dτ

dσ

2π
(4.74)

×

{
√
−hhαβ

[
−∂αt∂βt+

3∑
i=1

(
∂αri∂βri +Gr2

i ∂αφi∂βφi

)
+ γ̂2Gr2

1r
2
2r

2
3

(
3∑

i=1

∂αφi

)(
3∑

j=1

∂βφj

)]

−2εαβ γ̂G
(
r2
1r

2
2∂αφ1∂βφ2 + r2

3r
2
1∂αφ3∂βφ1 + r2

2r
2
3∂αφ2∂βφ3

)
+ Λ

(
3∑

i=1

r2
i − 1

)}
,

where G−1 = 1+γ̂2 (r2
1r

2
2 + r2

3r
2
1 + r2

2r
2
3). This reproduces the Lunin-Maldacena string

worldsheet action of [7] in the case of a real deformation parameter.

Let us now derive a relation between the original and γ-deformed angular coordinates
˜̃φi and φi. The transformations (4.61), (4.65) and (4.69) can be used to relate the

alternative angular coordinates ˜̃ϕi and ϕi. Firstly, (4.61) implies that

∂α
˜̃ϕ1 =

hαβ√
−h

εβρ∂ρϕ̃1g̃11 −
3∑

i=1

∂αϕ̃ib̃1i, ∂α
˜̃ϕ2 = ∂αϕ̃2, ∂α

˜̃ϕ3 = ∂αϕ̃3, (4.75)

which, taking into account our shift by γ̂ shown in (4.65), becomes

∂α
˜̃ϕ1 =

hαβ√
−h

εβρ∂ρϕ̃1g̃11−
3∑

i=1

∂αϕ̃ib̃1i−γ̂∂αϕ̃1b̃12, ∂α
˜̃ϕ2 = ∂αϕ̃2+γ̂∂αϕ̃1, ∂α

˜̃ϕ3 = ∂αϕ̃3,

(4.76)

and also, from (4.69), it follows that

∂αϕ̃1 =
hαβ√
−h

εβρ

3∑
i=1

∂ρϕiG1i−
3∑

i=1

∂αϕiB1i, ∂αϕ̃2 = ∂αϕ2, ∂αϕ̃3 = ∂αϕ3. (4.77)

Thus, making use of the above relations (4.76) and (4.77), we obtain

∂α
˜̃ϕ1 =

3∑
i=1

(
G1ig̃11 + γ̂B1ib̃12 − b̃1i

)
∂αϕi −

3∑
i=1

(
B1ig̃11 + γ̂G1ib̃12

) hαβ√
−h

εβρ∂ρϕi,

∂α
˜̃ϕ2 = ∂αϕ2 + γ̂

3∑
i=1

(
−B1i∂αϕi +G1i

hαβ√
−h

εβρ∂ρϕi

)
,

∂α
˜̃ϕ3 = ∂αϕ3. (4.78)

Now, changing back to our original coordinates ˜̃φi and φi, and using the expressions

(4.63), (4.64), (4.71) and (4.72) for g̃ij, b̃ij, Gij and Bij respectively, the angular
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coordinates in the original and γ-deformed backgrounds can be related as follows [8]:

∂α
˜̃φ1 = G

[
∂αφ1 + γ̂2r2

2r
2
3

3∑
i=1

∂αφi − γ̂
hαβ√
−h

εβρ
(
r2
2∂ρφ2 − r2

3∂ρφ3

)]
,

∂α
˜̃φ2 = G

[
∂αφ2 + γ̂2r2

3r
2
1

3∑
i=1

∂αφi − γ̂
hαβ√
−h

εβρ
(
r2
3∂ρφ3 − r2

1∂ρφ1

)]
,

∂α
˜̃φ3 = G

[
∂αφ3 + γ̂2r2

1r
2
2

3∑
i=1

∂αφi − γ̂
hαβ√
−h

εβρ
(
r2
1∂ρφ1 − r2

2∂ρφ2

)]
. (4.79)

4.3.3 U(1) charges or angular momenta

We can again see that the string action (4.74) in the Lunin-Maldacena background

is invariant under shifts φi → φi + εi of the angular coordinates. The corresponding

γ-deformed conserved U(1) 2-currents are given by

J α
i =

∂Lγ

∂ (∂αφi)
, (4.80)

which can be explicitly calculated as

J α
1 = −

√
λr2

1

√
−hhαδG

[
∂δφ1 + γ̂2r2

2r
2
3

3∑
i=1

∂δφi − γ̂
hδβ√
−h

εβρ
(
r2
2∂ρφ2 − r2

3∂ρφ3

)]
,

J α
2 = −

√
λr2

2

√
−hhαδG

[
∂δφ2 + γ̂2r2

3r
2
1

3∑
i=1

∂δφi − γ̂
hδβ√
−h

εβρ
(
r2
3∂ρφ3 − r2

1∂ρφ1

)]
,

J α
3 = −

√
λr2

3

√
−hhαδG

[
∂δφ3 + γ̂2r2

1r
2
2

3∑
i=1

∂δφi − γ̂
hδβ√
−h

εβρ
(
r2
1∂ρφ1 − r2

2∂ρφ2

)]
.

(4.81)

These results agree with those quoted in [8]. The γ-deformed charge and current

densities are pi = J 0
i and ji = J 1

i respectively, and the γ-deformed U(1) charges or

angular momenta Ji =
∫

dσ
2π
pi are obtained by integrating the charge density pi over

the spatial worldsheet coordinate.

Now, comparing the γ-deformed conserved U(1) 2-currents with their undeformed

counterparts (4.37), we see that the relations (4.79) are simply a statement of the

fact that the conserved U(1) 2-currents are unaltered by the γ-deformation [8].
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4.3.4 Twisted boundary conditions

We shall now further consider the expressions pi = ˜̃pi and ji = ˜̃ji based on discussions

in [8]. It is possible to solve for
˙̃̃
φi and φ̇i in terms of the (equal) charge densities pi

and ˜̃pi, and hence eliminate any dependence on the time derivatives of the angular

coordinates in the current densities ˜̃ji and ji. Setting the current densities to be

equal then yields

˜̃φ′1 = φ′1 + γ (p2 − p3) ,
˜̃φ′2 = φ′2 + γ (p3 − p1) ,

˜̃φ′1 = φ′1 + γ (p1 − p2) , (4.82)

where we have defined γ ≡ γ̂√
λ
. This is the real gauge theory deformation parameter

β = γ, which appears in the deformed N = 1 superpotential (4.39).

Let us assume that there exists some physical closed string solution in the γ-deformed

background, the angular coordinates of which must satisfy the periodic boundary

conditions

φi (2π)− φi (0) = 2π

∫ 2π

0

dσ

2π
φ′i = 2πni, (4.83)

where the ni are integer winding numbers. These correspond to solutions in the

original undeformed background with angular coordinates with twisted boundary

conditions

˜̃φ1 (2π)− ˜̃φ1 (0) = 2π

∫ 2π

0

dσ

2π
˜̃φ′1 = 2π

∫ 2π

0

dσ

2π
[φ′1 + γ (p2 − p3)] = 2πn1 + 2πγ (J2 − J3) ,

˜̃φ2 (2π)− ˜̃φ2 (0) = 2π

∫ 2π

0

dσ

2π
˜̃φ′2 = 2π

∫ 2π

0

dσ

2π
[φ′2 + γ (p3 − p1)] = 2πn2 + 2πγ (J3 − J1) ,

˜̃φ3 (2π)− ˜̃φ3 (0) = 2π

∫ 2π

0

dσ

2π
˜̃φ′3 = 2π

∫ 2π

0

dσ

2π
[φ′1 + γ (p1 − p2)] = 2πn3 + 2πγ (J1 − J2) ,

(4.84)

in terms of the U(1) charges or angular momenta Ji.

Thus it is clear that solutions in the γ-deformed Lunin-Maldacena background cor-

respond to solutions in the original undeformed background with twisted boundary

conditions. These boundary conditions would usually be discarded as unphysical for

closed string configurations, but now we can interpret them as physical solutions in

a deformed background.
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4.4 Strings in the γi-deformed Background

The string theory proposed to be dual to our non-supersymmetric γi-deformed YM

theory was originally constructed by Frolov in [8]. A series of three TsT-transformations

involving the torii
(

˜̃φ1,
˜̃φ2

)
,
(

˜̃φ2,
˜̃φ3

)
and

(
˜̃φ3,

˜̃φ1

)
, and with distinct real shift para-

meters γ̂3, γ̂1 and γ̂2 respectively, were performed on the string worldsheet action to

obtain the action in the γi-deformed R × S5 background. In this section, we briefly

review the derivation and properties of this γi-deformed string theory.

4.4.1 Derivation of γi-deformed string worldsheet action via

three TsT-transformations

We shall now demonstrate how to construct the γi-deformed string worldsheet action

based on discussions in [8]. Consider first the undeformed string action (4.34) in

an R × S5 background. Our first TsT-transformation on the torus
(

˜̃φ1,
˜̃φ2

)
can be

represented as follows:

T ˜̃
φ1

Sφ̃2→φ̃2+γ̂3φ̃1
Tφ̃1

. (4.85)

In other words, we perform a T-duality transformation on the first angular coordinate
˜̃φ1, shift the second angular coordinate in the T-dual space φ̃2 → φ̃2 + γ̂3φ̃1 using

the parameter γ̂3 and then make another T-duality transformation on the T-dual

coordinate φ̃1. We thus obtain the intermediate string action

S = −
√
λ

2

∫
dτ

dσ

2π

×

{
√
−hhαβ

[
−∂αt∂βt+

3∑
i=1

(
∂αri∂βri + Ar2

i ∂αφi∂βφi

)
+ Aγ̂2

3r
2
1r

2
2r

2
3∂αφ3∂βφ3

]

− 2Aεαβ
(
γ̂3r

2
1r

2
2∂αφ1∂βφ2

)
+ Λ

(
3∑

i=1

r2
i − 1

)}
, (4.86)

with A−1 ≡ 1 + γ̂2
3r

2
1r

2
2.

Redefining φi → ˜̃φi, we now perform the second TsT-transformation on the torus(
˜̃φ2,

˜̃φ3

)
, which is given by

T ˜̃
φ2

Sφ̃3→φ̃3+γ̂1φ̃2
Tφ̃2

, (4.87)
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and yields the string action

S = −
√
λ

2

∫
dτ

dσ

2π

{
√
−h hαβ

[
− ∂αt∂βt+

3∑
i=1

(
∂αri∂βri + Cr2

i ∂αφi∂βφi

)
(4.88)

+ Cr2
1r

2
2r

2
3 (γ̂1∂αφ1 + γ̂3∂αφ3) (γ̂1∂βφ1 + γ̂3∂βφ3)

]
− 2Cεαβ

(
γ̂3r

2
1r

2
2∂αφ1∂βφ2 + γ̂1r

2
2r

2
3∂αφ2∂βφ3

)
+ Λ

(
3∑

i=1

r2
i − 1

)}
,

where C−1 ≡ 1 + γ̂2
3r

2
1r

2
2 + γ̂2

1r
2
2r

2
3.

Finally, we shall again redefine φi → ˜̃φi and perform the last TsT-transformation on

the torus
(

˜̃φ3,
˜̃φ1

)
as follows:

T ˜̃
φ3

Sφ̃1→φ̃1+γ̂2φ̃3
Tφ̃3

. (4.89)

Hence we obtain the γi-deformed string worldsheet action, which is dependent on the

three parameters γ̂i and is given by

Sγi = −
√
λ

2

∫
dτ

dσ

2π
(4.90)

×

{
√
−hhαβ

[
−∂αt∂βt+

3∑
i=1

(
∂αri∂βri +Gr2

i ∂αφi∂βφi

)
+Gr2

1r
2
2r

2
3

(
3∑

i=1

γ̂i∂αφi

)(
3∑

j=1

γ̂j∂βφj

)]

−2Gεαβ
(
γ̂3r

2
1r

2
2∂αφ1∂βφ2 + γ̂2r

2
3r

2
1∂αφ3∂βφ1 + γ̂1r

2
2r

2
3∂αφ2∂βφ3

)
+ Λ

(
3∑

i=1

r2
i − 1

)}
,

where G−1 ≡ 1+ γ̂2
3r

2
1r

2
2 + γ̂2

2r
2
3r

2
1 + γ̂2

1r
2
2r

2
3. This γi-deformed string action agrees with

the result quoted in [8]. Notice that, in the case of equal deformation parameters

γ̂i = γ̂, the γi-deformed string worldsheet action (4.90) simply reduces to the string

worldsheet action (4.74) in the Lunin-Maldacena background.

Lastly, we should mention that the angular coordinates in the original and γi-

deformed backgrounds can be related as follows:

∂α
˜̃φ1 = G

[
∂αφ1 + γ̂1r

2
2r

2
3

3∑
i=1

γ̂i∂αφi −
hαβ√
−h

εβρ
(
γ̂3r

2
2∂ρφ2 − γ̂2r

2
3∂ρφ3

)]
,

∂α
˜̃φ2 = G

[
∂αφ2 + γ̂2r

2
3r

2
1

3∑
i=1

γ̂i∂αφi −
hαβ√
−h

εβρ
(
γ̂1r

2
3∂ρφ3 − γ̂3r

2
1∂ρφ1

)]
,

∂α
˜̃φ3 = G

[
∂αφ3 + γ̂3r

2
1r

2
2

3∑
i=1

γ̂i∂αφi −
hαβ√
−h

εβρ
(
γ̂2r

2
1∂ρφ1 − γ̂1r

2
2∂ρφ2

)]
. (4.91)
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4.4.2 U(1) charges or angular momenta

We shall again consider the conserved U(1) 2-currents corresponding to the trans-

formations φi → φi + εi under which our γi-deformed string worldsheet action (4.90)

is invariant. These can be calculated by taking derivatives of our γi-deformed La-

grangian with respect to ∂αφi to obtain

J α
1 = −

√
λr2

1

√
−hhαδG

[
∂δφ1 + γ̂1r

2
2r

2
3

3∑
i=1

γ̂i∂δφi −
hδβ√
−h

εβρ
(
γ̂3r

2
2∂ρφ2 − γ̂2r

2
3∂ρφ3

)]
,

J α
2 = −

√
λr2

2

√
−hhαδG

[
∂δφ2 + γ̂2r

2
3r

2
1

3∑
i=1

γ̂i∂δφi −
hδβ√
−h

εβρ
(
γ̂1r

2
3∂ρφ3 − γ̂3r

2
1∂ρφ1

)]
,

J α
3 = −

√
λr2

3

√
−hhαδG

[
∂δφ3 + γ̂3r

2
1r

2
2

3∑
i=1

γ̂i∂δφi −
hδβ√
−h

εβρ
(
γ̂2r

2
1∂ρφ1 − γ̂1r

2
2∂ρφ2

)]
.

(4.92)

As before, the γi-deformed charge and current densities are given by pi = J 0
i and

ji = J 1
i respectively. The U(1) charges or angular momenta are thus Ji =

∫
dσ
2π
pi.

It again turns out that these conserved U(1) 2-currents remain unchanged by the

γi-deformation.

4.4.3 Twisted boundary conditions

Now, the equivalence of the U(1) 2-currents (4.37) and (4.92) in the undeformed and

γi-deformed backgrounds again leads to a set of conditions connecting the spatial

derivatives of the original and γi-deformed angular coordinates as follows:

˜̃φ′1 = φ′1 + γ3p2 − γ2p3,
˜̃φ′2 = φ′2 + γ1p3 − γ3p1,

˜̃φ′1 = φ′1 + γ2p1 − γ1p2, (4.93)

with γi ≡ γ̂i√
λ
. These are the deformation parameters in the non-supersymmetric

γi-deformed YM gauge theory.

A closed string solution in the γi-deformed background with angular coordinates φi

satisfying the periodic conditions

φi (2π)− φi (0) = 2π

∫ 2π

0

dσ

2π
φ′i = 2πni, (4.94)
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for the winding numbers ni, then corresponds to a solution in the original background

with twisted boundary conditions

˜̃φ1 (2π)− ˜̃φ1 (0) = 2π

∫ 2π

0

dσ

2π
˜̃φ′1 = 2π

∫ 2π

0

dσ

2π
(φ′1 + γ3p2 − γ2p3) = 2π (n1 + γ3J2 − γ2J3) ,

˜̃φ2 (2π)− ˜̃φ2 (0) = 2π

∫ 2π

0

dσ

2π
˜̃φ′2 = 2π

∫ 2π

0

dσ

2π
(φ′2 + γ1p3 − γ3p1) = 2π (n2 + γ1J3 − γ3J1) ,

˜̃φ3 (2π)− ˜̃φ3 (0) = 2π

∫ 2π

0

dσ

2π
˜̃φ′3 = 2π

∫ 2π

0

dσ

2π
(φ′1 + γ2p1 − γ1p2) = 2π (n3 + γ2J1 − γ1J2) .

(4.95)

These results can be proved in a similar way to those in the Lunin-Maldacena back-

ground and agree with the expressions in [8].

4.5 Lax Pairs for Strings Moving on Undeformed

and γi-deformed Five-spheres

The existence of a Lax pair in any theory is of great significance, as it is a demonstra-

tion of integrability. This Lax pair should satisfy a zero curvature condition, which

is equivalent to the equations of motion and allows for the construction of an infinite

number of conserved charges, which make the theory theoretically soluble. It was

shown in [8] that there exists such a Lax pair for strings moving on a five-sphere space

and, furthermore, that it is possible to extend this Lax pair to describe strings on

a γi-deformed five-sphere (and thus also a Lunin-Maldacena γ-deformed five-sphere)

by making use of the transformation between the original and γi-deformed angular

coordinates.

In this section, following [8], we rewrite the original string worldsheet action in an

R×S5 background in terms of anti-symmetric SU(4) matrices and hence calculate the

five-sphere equation of motion. We then introduce a Lax pair and the corresponding

zero curvature condition is shown to be equivalent to this equation of motion. Finally,

this Lax pair is certainly not unique and an equivalent gauged Lax pair is defined,

from which it is possible to construct a Lax pair for our γi-deformed string theory.
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4.5.1 String worldsheet action and equations of motion in

terms of anti-symmetric SU(4) matrices

The string worldsheet action (4.34) shall now be written in terms of an anti-symmetric

SU(4) matrix, following [8], as

S = −
√
λ

2

∫
dτ

dσ

2π

√
−hhαβ

[
−∂αt∂βt+

1

4
Tr
(
g−1∂αgg

−1∂βg
)]
, (4.96)

where we define

g ≡


0 X3 X1 X2

−X3 0 X∗
2 −X∗

1

−X1 −X∗
2 0 X∗

3

−X2 X∗
1 −X∗

3 0

 , with Xk ≡ rke
iφk , (4.97)

which must satisfy the constraint

det g =
(
|X1|2 + |X2|2 + |X3|2

)2
= 1. (4.98)

This can be verified by noticing that g−1 = −g∗ and also g−1 (∂βg) = − (∂βg
−1) g, so

that (4.96) becomes

S = −
√
λ

2

∫
dτ

dσ

2π

√
−hhαβ

[
−∂αt∂βt+

1

4
Tr (∂αg∂βg

∗)

]
, (4.99)

which can be reduced to (4.34) by simply substituting (4.97) into this expression and

multiplying out the matrices.

Now let us derive the equation describing the motion in the S5 space by varying

(4.99) with respect to g as follows:

S = −
√
λ

8

∫
dτ

dσ

2π

√
−hhαβ Tr {∂α (δg) ∂βg

∗ + ∂αg∂β (δg∗)} . (4.100)

We now make use of the identity δg∗ = g∗ (δg) g∗ to obtain

S = −
√
λ

8

∫
dτ

dσ

2π
Tr
{[
∂α

(√
−hhαβ∂βg

∗
)

+ g∗∂β

(√
−hhαβ∂αg

)
g∗
]
δg
}
,

(4.101)

where surface terms have been discarded. Setting this variation to zero4 and noting

that hαβ is symmetric then implies

∂α

(√
−hhαβ∂βg

∗
)

+ g∗∂α

(√
−hhαβ∂βg

)
g∗ = 0, (4.102)

4To be more rigorous, we should write this expression out explicitly in terms of components and
then set the variation with respect to gj

i to zero. This would yield an identical result.
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and right-multiplying by g gives

∂α

(√
−hhαβ∂βg

∗
)
g − g∗∂α

(√
−hhαβ∂βg

)
= 2∂α

{√
−hhαβg∗∂βg

}
= 0. (4.103)

Thus, again using g∗ = −g−1, we finally obtain the equation of motion

∂α

(√
−hhαβRβ

)
= 0, with Rβ ≡ g−1∂βg, (4.104)

which agrees with the result quoted in [8]. Note that the Rα is sometimes called the

right-current.

4.5.2 Undeformed Lax pair and zero curvature condition

We shall now introduce the Lax pair for strings in an undeformed five-sphere space,

based on discussions in [8], as follows:

Dα ≡ ∂α − Aα(x), with Aα(x) ≡ R+
α

2(x− 1)
− R−

α

2(x+ 1)
, (4.105)

where

R±
α ≡

(
δβ
α ∓

hαρ√
−h

ερβ

)
Rβ = Rα ∓

hαρ√
−h

ερβRβ. (4.106)

The new parameter x, which has been introduced in the above definition, takes on

an infinite number of values and is know as the spectral parameter. We can now

simply our undeformed Lax pair to the form

Dα(x) = ∂α −
Rα − x hαρ√

−h
ερβRβ

x2 − 1
. (4.107)

This Lax pair must satisfy the zero curvature condition

[Dα, Dβ] = ∂αAβ − ∂βAα − [Aα, Aβ] = 0. (4.108)

Substituting (4.107) into this expression and multiplying by (x2 − 1)
2

then yields

(
x2 − 1

)
∂α

(
Rβ − x

hβδ√
−h

εδλRλ

)
−
(
x2 − 1

)
∂β

(
Rα − x

hαρ√
−h

ερτRτ

)
−
[
Rα − x

hαρ√
−h

ερτRτ , Rβ − x
hβδ√
−h

εδλRλ

]
= 0, (4.109)
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which, equating different orders of the spectral parameter x, results in the following

four equations:

O(x0) : ∂βRα − ∂αRβ − [Rα, Rβ] = 0, (4.110)

O(x1) : ∂α

(
hβδ√
−h

εδλRλ

)
− ∂β

(
hαρ√
−h

ερτRτ

)
+

hαρ√
−h

ερτ [Rτ , Rβ] +
hβδ√
−h

εδλ [Rα, Rλ] = 0, (4.111)

O(x2) : ∂αRβ − ∂βRα −
hαρ√
−h

ερτ hβδ√
−h

εδλ [Rτ , Rλ] = 0, (4.112)

O(x3) : − ∂α

(
hβδ√
−h

εδλRλ

)
+ ∂β

(
hαρ√
−h

ερτRτ

)
= 0. (4.113)

Now it turns out, upon closer inspection, that the O (x0) and O (x2) equations are

equivalent and, furthermore, are trivially satisfied by the expression Rα = g−1∂αg.

The O (x1) and O (x3) equations are also equivalent and are satisfied if and only if

the equation of motion (4.104) is valid. Thus the zero curvature condition (4.108)

is equivalent to the equation of motion (4.104), so that (4.107) is, indeed, a suitable

Lax pair for the theory.

4.5.3 Gauged undeformed and γi-deformed Lax pairs

The Lax pair (4.107) for the theory describing strings moving in the undeformed S5

space is by no means unique. The transformation Dα → D̃α = MDαM
−1, with M

any invertible 4 × 4 matrix, results in an equivalent Lax pair, which also satisfies

the zero curvature condition, since [D̃α, D̃β] = M [Dα, Dβ]M−1 = 0. Now, while any

Lax pair is good enough to prove the integrability of the theory, for the purpose of

extending the Lax pair to the γi-deformed string theory, we shall choose (as in [8])

a specific gauged Lax pair, which depends only on the derivatives of the angular

coordinates and not on the angular coordinates themselves.

Let us begin by writing

g = M( ˜̃φi) ĝ(ri) M( ˜̃φi), with M( ˜̃φi) = ei ˜̃Φ, (4.114)
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where we have defined

ĝ(ri) ≡


0 r3 r1 r2

−r3 0 r2 −r1
−r1 −r2 0 r3

−r2 r1 −r3 0

 , (4.115)

and

˜̃Φ ≡ 1

2


˜̃φ1 + ˜̃φ2 + ˜̃φ3 0 0 0

0 − ˜̃φ1 − ˜̃φ2 + ˜̃φ3 0 0

0 0 ˜̃φ1 − ˜̃φ2 − ˜̃φ3 0

0 0 0 − ˜̃φ1 + ˜̃φ2 − ˜̃φ3

 .

(4.116)

This can be verified by multiplying out these matrices and noticing that the result

is identical to the definition of g given in (4.97).

Now, using the above redefinition of g in terms of ĝ(ri) and M( ˜̃φi), together with the

identities ĝ−1(ri) = −ĝ(ri) and M−1( ˜̃φi) = e−i ˜̃Φ, we find that

Rα(ri,
˜̃φi) =

[
M−1( ˜̃φi) ĝ

−1(ri) M
−1( ˜̃φi)

]
∂α

[
M( ˜̃φi) ĝ(ri) M( ˜̃φi)

]
= M−1( ˜̃φi)R̂α(ri, ∂

˜̃φi)M( ˜̃φi), (4.117)

where

R̂α(ri, ∂
˜̃φi) ≡ −ĝ(ri) ∂αĝ(ri)− ĝ(ri) ∂α

˜̃Φ ĝ(ri) + i∂α
˜̃Φ. (4.118)

This suggests a suitable gauge for our new Lax pair. We shall use the matrix M( ˜̃φi)

to define the gauged Lax pair, as in [8], as follows:

D̃α ≡M( ˜̃φi) Dα M
−1( ˜̃φi) = ∂α − Ãα(x), (4.119)

with

Ãα(x) ≡M( ˜̃φi)Aα(x)M−1( ˜̃φi)−M( ˜̃φi)∂αM
−1( ˜̃φi)

=
R̂α(ri, ∂

˜̃φi)− x hαρ√
−h

ερβR̂β(ri, ∂
˜̃φi)

x2 − 1
+ i∂α

˜̃Φ. (4.120)

This gauged Lax pair clearly depends only on the radii ri and derivatives thereof,

and the derivatives of the angular coordinates ∂α
˜̃φi.

Now, finally, we know that the derivatives of the angular coordinates in the original

and γi-deformed backgrounds are connected via the transformation (4.91) and that
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the radii are unchanged by the deformation. Thus it was observed in [8] that a Lax

pair for the γi-deformed string theory is

D̃γi
α ≡ ∂α − Ãγi

α (x), (4.121)

where Ãγi
α is obtained by simply replacing all the undeformed derivative terms ∂α

˜̃φi

in (4.120) with the corresponding expressions in (4.91), which are written in terms

of the γi-deformed derivatives ∂αφi. This demonstrates that the theory describing

strings moving in a γi-deformed five-sphere space (and hence also a γ-deformed Lunin-

Maldacena five-sphere space) is integrable.
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Chapter 5

γi-deformed Strings and Spin

Chains in a Semiclassical Limit

5.1 Coherent State Action for γi-deformed SU(3)

Spin Chains in the Continuum Limit

It is our aim, in this chapter, to compare the γi-deformed gauge and string theories in

a semiclassical limit at the level of the action. We shall first concentrate on the gauge

theory or spin chain side of this comparison. The relevant semiclassical limit in which

to consider our gauge theory operators is simply the BMN limit discussed in chapter

3. This corresponds to a continuum limit of our spin chain system: the length of the

spin chain J becomes large and thus the ratio of the site spacing to the spin chain

length becomes small, so that the spin chain forms a one dimensional continuum.

We can hence perform expansions in terms of the small parameter λ̃ = λ
J2 , which is

taken to be fixed when J becomes large.

We are interested in the coherent state action describing a γi-deformed SU(3) spin

chain. We therefore review, based on discussions in [9, 20], the construction of

the coherent state for an SU(3) spin chain system. Hence, using an equivalent γi-

deformed spin chain Hamiltonian, we derive the γi-deformed coherent state effective

action in the continuum limit to leading order in λ̃ following [9].
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5.1.1 Coherent state description

The coherent state |α〉 of a harmonic oscillator is an eigenstate of the annihilation

operator â with eigenvalue α. The expectation values of operators with respect to

this coherent state can be viewed as a classical limit of the system. Now it is possible

to extend these ideas to a finite spin-S system by introducing an analogous coherent

state |µ〉 such that, in the limit as S → ∞, this coherent state is an eigenstate of

the raising operator Ŝ+ with eigenvalue µ. The analogy to a harmonic oscillator

then becomes an exact correspondence with the identifications Ŝ+ → (2S)1/2â and

µ → α
(2S)1/2 . (A detailed description of the construction of this analogous spin-S

coherent state is available in [54].)

We can also consider a more complicated spin-S chain, which consists of a number of

these spin-S systems. It is possible [55] to construct a coherent state for this spin-S

chain by simply taking a tensor product of the individual spin-S coherent states.

The coherent state description of this system in the continuum limit, in which the

number of sites in the spin-S chain becomes large, was discussed in [56].

Now the Hamiltonian of a spin-S system is invariant under SU(2) transformations.

The construction of a coherent state for a general spin system, the Hamiltonian of

which is invariant under the action of some arbitrary Lie group, was discussed in

[20, 57, 58]. The general case of an SU(3) Lie group, in which we are particularly

interested, was mentioned in [57] and described in more detail in [9, 20].

We now briefly review the description of a general coherent state and construct the

SU(3) coherent state in detail. Lastly, we take a tensor product of these SU(3)

coherent states to form a coherent state describing an SU(3) spin chain system.

General coherent state

We shall first, following [20, 57, 58], define a general coherent state corresponding

to some Lie group G with Cartan basis [Hi, Eα, E−α], where Hi are elements of the

commuting Cartan algebra, and Eα and E−α represent the αth raising and lower

operators respectively. This group is the symmetry group of some Hamiltonian.

Consider an irreducible representation of this group G with elements Λ(g), where
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g ε G, which act on the vector space VΛ. We shall also make use of the ground state

|0〉, which is generally chosen as a state annihilated by all the raising operators (the

maximum spin state). The maximum stability group is the subgroup H, the elements

of which leave the ground state invariant up to a phase, so that

Λ(h)|0〉 = eiφ(h)|0〉, for all h ε H. (5.1)

The coherent state is then defined as

Λ(g)|0〉 = Λ(ω)Λ(h)|0〉 ∼ Λ(ω)|0〉, with ω ε G/H, (5.2)

up to a phase, since all the elements of G can be expressed as g = ωh and Λ(g)

is a homomorphism so that Λ(ωh) = Λ(ω)Λ(h). The general coherent state is thus

parameterized by elements of the coset group ω ε G/H.

SU(3) coherent state

We shall now construct the SU(3) coherent state, which corresponds to the coherent

state for one site of our spin chain, based on [20]. In other words, we shall set

G = SU(3) in the above discussion. Any element of SU(3) can be expressed as

Λ = e
i
P
k

akλk

, with k ε {1, . . . , 8}, where the ak are real parameters and the generators

λk are the eight traceless Hermitean Gell-Mann matrices

λ1 =
1

2

 0 0 0

0 0 1

0 1 0

 , λ2 =
1

2

 0 0 0

0 0 i

0 −i 0

 , λ3 =
1

2

 0 0 0

0 1 0

0 0 −1

 ,

λ4 =
1

2

 0 1 0

1 0 0

0 0 0

 , λ5 =
1

2

 0 i 0

−i 0 0

0 0 0

 , λ6 =
1

2

 0 0 1

0 0 0

1 0 0

 ,

λ7 =
1

2

 0 0 i

0 0 0

−i 0 0

 , λ8 =
1

2
√

3

 −2 0 0

0 1 0

0 0 1

 . (5.3)

The Cartan algebra consists of the two commuting Gell-Mann matrices λ3 and λ8.

There are also three SU(2) subgroups, {λ1, λ2, λ3},
{
λ4, λ5,−1

2

(
λ3 +

√
3λ8

)}
and{

λ6, λ7,
1
2

(
λ3 −

√
3λ8

)}
, each of which results in a raising and lowering operator.
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The ground state will now be chosen as the maximum spin state 1

|0〉 =

1

0

0

 , (5.4)

which is annihilated by all the raising operators. This ground state is also an

eigenstate of both elements of the Cartan algebra, specifically λ3|0〉 = 0|0〉 and

λ8|0〉 = − 1√
3
|0〉, and is annihilated by λ1 and λ2. The subgroup H, which leaves the

ground state |0〉 invariant up to a phase, is thus generated by the four Gell-Mann

matrices λ1, λ2, λ3 and λ8. The coset group G/H is generated by the remaining four

Gell-Mann matrices λ4, λ5, λ6 and λ7. Hence the coherent state is given by

|N〉 = ei(aλ4+bλ5+cλ6+dλ7)|0〉, (5.5)

where a, b, c and d are real parameters.

Let us now calculate the coherent state more explicitely in terms of these parameters.

We first find, using the definition (5.3) of the Gell-Mann matrices, that

L ≡ aλ4 + bλ5 + cλ6 + dλ7 =
1

2

 0 a+ ib c+ id

a− ib 0 0

c− id 0 0

 , (5.6)

L2 =
1

4

a
2 + b2 + c2 + d2 0 0

0 a2 + b2 (ac+ bd) + i(ad− bc)

0 (ac+ bd)− i(ad− bc) c2 + d2

 ,

(5.7)

and

L3 =

(
∆

2

)2

L, with ∆2 ≡ a2 + b2 + c2 + d2. (5.8)

Expressing the exponential eiL in a Taylor series and using the above results then

gives

eiL = 1 +
2i

∆

[
sin

(
∆

2

)]
L+

(
2

∆

)2 [
cos

(
∆

2

)
− 1

]
L2, (5.9)

1Note that this choice of ground state for each site is consistent with the SU(3) spin chain
formalism described in appendix B.
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which yields the coherent state

|N〉 =

 1

0

0

+
i

∆
sin

(
∆

2

) 0 a+ ib c+ id

a− ib 0 0

c− id 0 0


 1

0

0

 (5.10)

+
1

∆2

[
cos

(
∆

2

)
− 1

] ∆2 0 0

0 a2 + b2 (ac+ bd) + i(ad− bc)

0 (ac+ bd)− i(ad− bc) c2 + d2


 1

0

0

 .

Thus, finally, the SU(3) coherent state |N〉 is given by

|N〉 =

 cos ∆
i
∆

sin
(

∆
2

)
(a− ib)

i
∆

sin
(

∆
2

)
(c− id)

 , (5.11)

which is a function of the four real parameters a, b, c and d.

We shall now introduce a reparameterization of this state. The radial coordinates

mi are defined as

m1 = cos

(
∆

2

)
, m2 = sin

(
∆

2

)√
a2 + b2

∆
, m3 = sin

(
∆

2

)√
c2 + d2

∆
, (5.12)

whereas the angular coordinates hi must satisfy

tan (h2 − h1) = −a
b
, tan (h3 − h1) = − c

d
, h1 + h2 + h3 = 0. (5.13)

Notice that
3∑

i=1

m2
i = 1 and

3∑
i=1

hi = 0 from these definitions. The SU(3) coherent

state can hence be expressed as follows:

|N〉 =

 m1

m2e
i(h2−h1)

m3e
i(h3−h1)

 =

m1e
ih1

m2e
ih2

m3e
ih3

 e−ih1 ∼

m1e
ih1

m2e
ih2

m3e
ih3

 , (5.14)

where this last equivalence is up to the phase e−ih1 . This reparameterization yields

the CP2 representation2 of the SU(3) coherent state used in [9].

2The complex projective space CP2 is defined as C3/C∗, where C∗ = C−{0}. More simply put,
it is a three dimensional complex vector space in which the elements (z1, z2, z3) and λ(z1, z2, z3)
are equivalent, for any non-zero complex number λ. Now any complex 3-vector can be written as
(z1, z2, z3) = MeiH(m1e

−h1 ,m2e
−h2 ,m3e

−h3), where we have pulled out the magnitudeM and total
phase H. The equivalence class of this vector can be represented by (m1e

−h1 ,m2e
−h2 ,m3e

−h3), for

which
3∑

i=1

m2
i = 1 and

3∑
i=1

hi = 0. Thus we can see that our reparameterized SU(3) coherent state

is, indeed, an element of CP2.
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SU(3) spin chain coherent state

We can now construct the full SU(3) spin chain coherent state as a tensor product

of the SU(3) coherent states corresponding to each site. Thus, as in [9], we obtain

|n〉〉 = |n1〉 ⊗ |n2〉 ⊗ ...⊗ |nJ〉, (5.15)

where the kth coherent state in the spin chain is given by

|nk〉 = m1(k)e
ih1(k)|1〉+m2(k)e

ih2(k)|2〉+m3(k)e
ih3|3〉. (5.16)

with |1〉 ≡

1

0

0

, |2〉 ≡

0

1

0

 and |3〉 ≡

0

0

1

. The radial and angular coordinates

mi(k) and hi(k) satisfy the constraints
3∑

i=1

mi(k)
2 = 1 and

3∑
i=1

hi(k) = 0 respectively.

5.1.2 Equivalent Hamiltonian

An important step in the derivation of the γi-deformed coherent state effective action

is the construction of the coherent state Hamiltonian for our γi-deformed spin chain

system. It would initially appear that this γi-deformed coherent state Hamiltonian

can be calculated by simply taking the expectation value 〈〈n|Hγi|n〉〉 with respect

to the coherent state (5.15) of the γi-deformed Hamiltonian, which, from (3.26) and

(3.30), is given by

Hγi =
λ

8π2

J∑
k=1

Hγi

k,k+1 with Hγi

k,k+1 = Uk,k+1Hk,k+1U−1
k,k+1, (5.17)

where Hk,k+1 = 1k,k+1 − Pk,k+1 and the unitary operator Uk,k+1 is defined as

Uk,k+1 ≡
3∑

m,n=1

eiπαmnem
m(k)en

n(k + 1). (5.18)

Taking a continuum limit of this γi-deformed coherent state Hamiltonian then yields

an effective Hamiltonian, which contains kinetic terms (involving derivatives with

respect to the now continuous spatial variable) as well as a ‘potential’ for the system.

The zeros of this potential should correspond to the vacuum states of the γi-deformed

spin chain.
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Now it turns out [9] that the γi-deformed potential obtained in this way does not

result in the correct vacuum states described in section 3.2.4 - the vacuum state

(J1, J2, J3) ∼ (γ1, γ2, γ3) is absent. This is an indication that we may not use the

SU(3) coherent state (5.15) for the γi-deformed SU(3) spin chain system.

It was, however, also pointed out in [9] that, instead of changing the coherent state

basis, it is equivalent to alter the γi-deformed Hamiltonian by some unitary trans-

formation U(ξ) as follows:

Hγi −→ H̃γi = U−1(ξ)HγiU(ξ) (5.19)

This transformed Hamiltonian should have an energy spectrum equivalent to that of

the original Hamiltonian, but, as shall later be seen, will result in a different coherent

state Hamiltonian.

Let us now construct this equivalent γi-deformed Hamiltonian, based on discussions

in [9], making use of the following ansatz for the unitary operators U(ξ):

U(ξ) =
J∏

k=1

Uk,k+1(ξ) with Uk,k+1(ξ) =
3∑

m,n=1

eiπξαmnem
m(k)en

n(k + 1), (5.20)

where the complex parameter ξ shall be specified later so as to obtain the correct

γi-deformed vacuum states.

We should first notice that this unitary transformation has the properties

1. U−1
k,k+1(ξ) = Uk,k+1(−ξ),

2. Uk,k+1(1) = Uk,k+1,

3. Uk,k+1(ξ)Uk,k+1(λ) = Uk,k+1(ξ + λ),

4. Uk,k+1(ξ) and Uq,q+1(λ) commute for all k, q ε {1, 2, ..., J} and ξ, λ ε C,

which are a direct result of the definition. These properties shall be used to rewrite

the equivalent γi-deformed Hamiltonian as follows:

H̃γi =
λ

8π2

J∑
k=1

U−1(ξ)Hγi

k,k+1U(ξ) (5.21)

=
λ

8π2

J∑
k=1

[U1,2(−ξ) . . . Uk−1,k(−ξ)Uk,k+1(−ξ)Uk+1,k+2(−ξ) . . . UJ,1(−ξ)]

×Hγi

k,k+1 [U1,2(ξ) . . . Uk−1,k(ξ)Uk,k+1(ξ)Uk+1,k+2(ξ) . . . UJ,1(ξ)] (5.22)

=
λ

8π2

J∑
k=1

[Uk−1,k(−ξ)Uk,k+1(−ξ)Uk+1,k+2(−ξ)]Hγi

k,k+1 [Uk−1,k(ξ)Uk,k+1(ξ)Uk+1,k+2(ξ)] ,
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since the Ul,l+1(ξ) terms on the right commute with Hγi

k,k+1, for all l 6= k− 1, k, k+1,

and then cancel with the corresponding term Ul,l+1(−ξ) on the left. Hence, using

Hγi

k,k+1 = Uk,k+1Hk,k+1U−1
k,k+1 = Uk,k+1(1)Hk,k+1Uk,k+1(−1), we find that the equiva-

lent γi-deformed Hamiltonian is given by

H̃γi =
λ

8π2

J∑
k=1

[Uk−1,k(−ξ)Uk,k+1(−ξ + 1)Uk+1,k+2(−ξ)]Hk,k+1

× [Uk−1,k(ξ)Uk,k+1(ξ − 1)Uk+1,k+2(ξ)] , (5.23)

and, substituting the definition (5.20) of Uk,k+1(ξ) into this expression, we obtain

H̃γi =
λ

8π2

J∑
k=1

3∑
m,n,l,p,u,t,
w,r,a,q,c,d=1

{
e−iπξαmne−iπ(ξ−1)αlpe−iπξαuteiπξαwreiπ(ξ−1)αaqeiπξαcd

× [em
m(k − 1)ew

w(k − 1)]
[
et

t(k + 2)ed
d(k + 2)

]
(5.24)

×
[
en

n(k)el
l(k)
] [
ep

p(k + 1)eu
u(k + 1)

]
Hk,k+1 [er

r(k)e
a
a(k)]

[
eq

q(k + 1)ec
c(k + 1)

]}
.

We shall now make use of the identity em
me

n
n = δn

me
m
m to derive the final expression for

the equivalent γi-deformed Hamiltonian as follows:

H̃γi =
λ

8π2

J∑
k=1

H̃γi

[k], (5.25)

where we define

H̃γi

[k] ≡
3∑

m,n,p,r,q,t=1

eiπξ(αmr−αmn)eiπξ(αqt−αpt)eiπ(ξ−1)(αrq−αnp) (5.26)

× em
m(k − 1)

[
en

n(k)ep
p(k + 1) Hk,k+1 e

r
r(k)e

q
q(k + 1)

]
et

t(k + 2).

5.1.3 Derivation of the coherent state action in the contin-

uum limit to O(λ̃)

The coherent state effective action for our γi-deformed SU(3) spin chain is

Sγi =

∫
dτ
{
〈〈n|i∂τ |n〉〉 − 〈〈n|H̃γi|n〉〉

}
, (5.27)

where H̃γi is the equivalent γi-deformed Hamiltonian (5.25). We must, furthermore,

consider the above expression in the continuum limit, in which the number of states
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in our spin chain becomes large. This γi-deformed coherent state effective action

shall now be derived closely following [9].

Let us first calculate the expression 〈〈n|i∂τ |n〉〉, which is known as the Wess-Zumino

(WZ) term, as follows:

〈〈n|i∂τ |n〉〉 =
J∑

k=1

〈nk|i∂τ |nk〉

= i
J∑

k=1

{
3∑

i=1

mi(k)e
−ihi(k) ∂τ

[
mi(k)e

ihi(k)
]}

= −
J∑

k=1

{
3∑

i=1

m2
i (k)ḣi(k)

}
, (5.28)

since
3∑

i=1

miṁi = 1
2
∂τ

(
3∑

i=1

m2
i

)
= 1

2
∂τ (1) = 0.

We shall now determine the continuum limit of this expression by taking the length

of the spin chain J to be large. In other words, if we label the sites with the variable

0 ≤ σ ≤ 2π, the site spacing a ≡ 2π
J
→ 0 and the spatial variable σ becomes

continuous. Our discrete summation then becomes an integral
J∑

k=1

→
∫

dσ
a

= J
∫

dσ
2π

.

Hence Wess-Zumino term in the continuum limit is given by

〈〈n|i∂τ |n〉〉 −→ −J
∫
dσ

2π

3∑
i=1

mi(σ)2ḣi(σ). (5.29)

Let us now calculate the γi-deformed coherent state Hamiltonian 〈〈n|H̃γi|n〉〉. Making

use of the γi-deformed equivalent Hamiltonian (5.25), together with the coherent state

(5.15), we find that

〈〈n|H̃γi|n〉〉 =
λ

8π2

J∑
k=1

〈〈n|H̃γi

[k]|n〉〉, (5.30)

where

〈〈n|H̃γi

[k]|n〉〉 = 〈nk+2| ⊗ 〈nk+1| ⊗ 〈nk| ⊗ 〈nk−1| H̃γi

k |nk−1〉 ⊗ |nk〉 ⊗ |nk+1〉 ⊗ |nk+2〉

=
3∑

m,n,p,r,q,t=1

eiπξ(αmr−αmn)eiπξ(αqt−αpt)eiπ(ξ−1)(αrq−αnp) (5.31)

× 〈nk−1|em
m(k − 1)|nk−1〉 〈nk+2|et

t(k + 2)|nk+2〉

× 〈nk+1| ⊗ 〈nk|en
n(k)ep

p(k + 1) Hk,k+1 e
r
r(k)e

q
q(k + 1)|nk〉 ⊗ |nk+1〉.
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This expression can be simplified using the following identities

〈nk−1|em
m(k − 1)|nk−1〉 = m2

m(k − 1), (5.32)

〈nk+1| ⊗ 〈nk|en
n(k)ep

p(k + 1) Hk,k+1 e
r
r(k)e

q
q(k + 1)|nk〉 ⊗ |nk+1〉

= m2
n(k)m2

p(k + 1)δr
nδ

q
p −mn(k)mp(k)mn(k + 1)mp(k + 1)δq

nδ
r
pe
−ihn(k)eihn(k+1)eihp(k)e−ihp(k+1),

(5.33)

〈nk+2|et
t(k + 2)|nk+2〉 = m2

t (k + 2). (5.34)

Here we have made use of the components (Hk,k+1)
rq
np = δr

nδ
q
p−δq

nδ
r
p of the undeformed

Hk,k+1 matrix. Thus we obtain

〈〈n|H̃γi

[k]|n〉〉 =
3∑

m,n,p,r,q,t=1

eiπξ(αmr−αmn)eiπξ(αqt−αpt)eiπ(ξ−1)(αrq−αnp)m2
m(k − 1)m2

t (k + 2)

×
{
m2

n(k)m2
p(k + 1)δr

nδ
q
p

−mn(k)mp(k)mn(k + 1)mp(k + 1)ei[hn(k+1)−hn(k)−hp(k+1)+hp(k)]δq
nδ

r
p

}

=
3∑

m,n,p,t=1

m2
m(k − 1)m2

n(k)m2
p(k + 1)m2

t (k + 2)

−
3∑

m,n,p,t=1

eiπξ(αmp−αmn)eiπξ(αnr−αpr)e−2iπ(ξ−1)αnpm2
m(k − 1)m2

t (k + 2)

×mn(k)mp(k)mn(k + 1)mp(k + 1)ei[hn(k+1)−hn(k)−hp(k+1)+hp(k)]. (5.35)

Changing m → q and t → r, and noting that
3∑

q=1

mq(k − 1)2 =
3∑

r=1

mr(k + 2)2 = 1,

we find that

〈〈n|H̃γi

[k]|n〉〉 =
3∑

n,p=1

m2
n(k)m2

p(k + 1) (5.36)

−
3∑

n,p,q,r=1

m2
q(k − 1)eiπξ(αqp−αqn)m2

r(k + 2)eiπξ(αnr−αpr)e−2iπ(ξ−1)αnp

×mn(k)mp(k)mn(k + 1)mp(k + 1)ei[hn(k+1)−hn(k)−hp(k+1)+hp(k)].

We would now like to calculate the continuum limit of the γi-deformed coherent state

Hamiltonian. Towards this end, we shall expand 〈〈n|H̃γi

[k]|n〉〉 to 2nd order in αij and

the site spacing a, which are both taken to be of O( 1
J
). We shall also make use of

the definitions

∂mi(k) ≡
mi(k + 1)−mi(k)

a
and ∂hi ≡

hi(k + 1)− hi(k)

a
, (5.37)
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which are the discrete versions of the spatial derivatives of mi and hi respectively.

Thus we find that

〈〈n|H̃γi

[k]|n〉〉 =
3∑

n,p=1

m2
n(k)m2

p(k + 1)

−
3∑

n,p,q,r=1

m2
q(k − 1)m2

r(k + 2)mn(k)mp(k)mn(k + 1)mp(k + 1)

×
[
1 + iπξ(αqp − αqn)− 1

2
π2ξ2(αqp − αqn)2

]
×
[
1 + iπξ(αnr − αpr)−

1

2
π2ξ2(αnr − αpr)

2

]
×
[
1− 2iπ(ξ − 1)αnp − 2π2(ξ − 1)2α2

np

]
×
[
1 + ia (∂hn(k)− ∂hn(k))− 1

2
a2 (∂hn(k)− ∂hp(k))

2

]
. (5.38)

Multiplying out the brackets, keeping only terms up to 2nd order, and noticing that

all the 1st order terms vanish, since they involve the contraction of a symmetric

expression with an anti-symmetric one, gives

〈〈n|H̃γi

[k]|n〉〉 =
3∑

n,p=1

{
m2

n(k)m2
p(k + 1)−mn(k)mp(k)mn(k + 1)mp(k + 1)

}
−

3∑
n,p,q,r=1

m2
q(k − 1)m2

r(k + 2)mn(k)mp(k)mn(k + 1)mp(k + 1)

×
{
−1

2
π2ξ2(αqp − αqn)2 − 1

2
π2ξ2(αnr − αpr)

2 − 2π2(ξ − 1)2α2
np

− 1

2
a2 (∂hn(k)− ∂hp(k))

2 − π2ξ2(αqp − αqn)(αnr − αpr)

+ 2π2ξ(ξ − 1)αnp(αqp − αqn)− πξa(αqp − αqn) (∂hn(k)− ∂hp(k))

+ 2π2ξ(ξ − 1)αnp(αnr − αpr)− πξa(αnr − αpr) (∂hn(k)− ∂hp(k))

+2π(ξ − 1)aαnp (∂hn(k)− ∂hp(k))} , (5.39)

which can be written in the simplified form

〈〈n|H̃γi

[k]|n〉〉 = a2

{
3∑

i=1

[∂mi(k)]
2 +

1

2

3∑
i,j=1

mi(k)
2mj(k)

2

[
∂hi(k)− ∂hj(k) +

2π

a
αij

]2

−
(

2π

a

)2

2ξ(1− ξ) m1(k)
2m2(k)

2m3(k)
2(α12 + α31 + α23)

2

}
. (5.40)
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We can thus determine the γi-deformed coherent state Hamiltonian in the continuum

limit by, again, labelling our spin chain sites with the continuous variable 0 ≤ σ ≤ 2π

and changing
J∑

k=1

→
∫

dσ
a

, where a = 2π
J

is the site spacing, as follows:

〈〈n|H̃γi|n〉〉 =
λ

8π2

J∑
k=1

〈〈n|H̃γi

[k]|n〉〉 −→
λ

8π2

∫
dσ

a
〈〈n|H̃γi

[k]|n〉〉. (5.41)

Hence, in the continuum limit, the coherent state Hamiltonian is given by

〈〈n|H̃γi|n〉〉 =
1

2
λ̃J

∫
dσ

2π

×


3∑

i=1

m′
i(σ)2 +

1

2

3∑
i,j=1

mi(σ)2mj(σ)2

[
h′i(σ)− h′j(σ)−

3∑
k=1

εijkJγk

]2

− 2ξ(1− ξ) m1(σ)2m2(σ)2m3(σ)2

(
3∑

i=1

Jγi

)2
 , (5.42)

where we have set λ̃ = λ
J2 and noted that α12 = −γ3, α31 = −γ2 and α23 = −γ1.

We shall now choose the parameter ξ, as in [9], such that we recover the correct

γi-deformed vacuum states from the γi-deformed potential. This potential, which is

now a function of the parameter ξ, can be derived from the γi-deformed coherent

state effective Hamiltonian (5.42) and is given by

V γi(ξ) ∼ m2
1m

2
2γ

2
3 +m2

3m
2
1γ

2
2 +m2

2m
2
3γ

2
1 −2ξ (1− ξ)m2

1m
2
2m

2
3 (γ1 + γ2 + γ3)

2 . (5.43)

Firstly, the three vacuum states with Ji = J correspond to setting mj = δij, which

automatically results in the γi-deformed potential vanishing for all values of ξ. The

vacuum state (J1, J2, J3) ∼ (γ1, γ2, γ3), however, does place a constraint on the para-

meter ξ. This state corresponds to mi =
√

γi

γ1+γ2+γ3
and, for this to yield V γi(ξ) = 0,

we must require that 2ξ(1− ξ) = 1.

Therefore the coherent state Hamiltonian to leading order in λ̃, with the parameter

ξ chosen so as to give the correct γi-deformed vacuum states, is

〈〈n|H̃γi|n〉〉 =
1

2
λ̃J

∫
dσ

2π


3∑

i=1

(m′
i)

2
+

1

2

3∑
i,j=1

m2
im

2
j

[
h′i − h′j −

3∑
k=1

εijkγ̄k

]2

− γ̄2m2
1m

2
2m

2
3

 ,

(5.44)

where we have defined γ̄i ≡ γi

J
and γ̄ ≡

3∑
i=1

γ̄i.
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Finally, we can determine the coherent state effective action by substituting the

results (5.28) and (5.44) into the expression (5.27). Hence we obtain

Sγi = −J
∫
dτ

dσ

2π

[
Lγi +O

(
λ̃2
)]
, (5.45)

where the Lagrangian to leading order in λ̃ is given by

Lγi =
3∑

i=1

m2
i ḣi+

1

2
λ̃


3∑

i=1

(m′
i)

2
+

1

2

3∑
i,j=1

m2
im

2
j

[
h′i − h′j −

3∑
k=1

εijkγ̄k

]2

− γ̄2m2
1m

2
2m

2
3

 .

(5.46)

5.2 γi-deformed String Worldsheet Action for Ro-

tating Strings in the Fast Motion Limit

We would now like to construct the γi-deformed string worldsheet action in the

relevant semiclassical limit and compare this with the coherent state effective action

of a γi-deformed SU(3) spin chain following [9]. This semiclassical or fast motion

limit is obtained by considering strings in a γi-deformed R× S5 background moving

with a large total angular momentum J . Furthermore, we shall assume that the

time derivatives of the radii ri and ‘slow’ angular coordinates ϕ1 and ϕ2, and the

deformation parameters γ̂i are of O(λ̃) and O(
√
λ̃) respectively, where λ̃ = λ

J
is a

small fixed parameter. For comparison purposes, the string worldsheet metric shall

be specified using the non-diagonal uniform gauge of [18], in which the total angular

momentum is taken to be spread evenly along the string (as it is along the spin

chain). It was shown in [21] that this gauge can be more easily implemented in the

T-dual space of the ‘fast’ or total angular coordinate ψ = ϕ3.

In this section, we construct the γi-deformed string worldsheet action in the fast

motion limit to O(λ̃2). The U(1) charge and current densities pi and ji corresponding

to the angular coordinate φi shall also be derived to O(λ̃) from this action. The

requirement that these charge and current densities should remain unchanged by the

γi-deformation, even in the fast motion limit, then results in a relation between the

differences of the undeformed and γi-deformed angular coordinates.
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5.2.1 Derivation of the γi-deformed string worldsheet action

in the fast motion limit to O(λ̃2)

We shall begin by considering the action (4.90) describing strings moving in a γi-

deformed R×S5 background. Let us now rewrite this γi-deformed string worldsheet

action in terms of the coordinates ϕ1, ϕ2 and ϕ3, which satisfy

φ1 = ϕ3 − ϕ2, φ2 = ϕ1 + ϕ2 + ϕ3, φ3 = ϕ3 − ϕ1, (5.47)

where ψ = ϕ3 is the ‘fast’ or total angular coordinate, as follows:

Sγi = −
√
λ

2

∫
dτ

dσ

2π
(5.48)

×

{
√
−hhαβ

[
−∂αt∂βt+

3∑
i=1

∂αri∂βri +
3∑

i,j=1

Gij∂αϕi∂βϕj

]
− εαβ

[
3∑

i,j=1

Bij∂αϕi∂βϕj

]}
.

Here Gij is a symmetric metric with components

G11 = G
[
(r2

2 + r2
3) + r2

1r
2
2r

2
3 (γ̂2 − γ̂3)

2] ,
G22 = G

[
(r2

1 + r2
2) + r2

1r
2
2r

2
3 (γ̂2 − γ̂1)

2] ,
G33 = G

[
1 + r2

1r
2
2r

2
3 (γ̂1 + γ̂2 + γ̂3)

2] ,
G12 = G

[
r2
2 + r2

1r
2
2r

2
3 (γ̂2 − γ̂3) (γ̂2 − γ̂1)

]
,

G31 = G
[
(r2

2 − r2
3) + r2

1r
2
2r

2
3 (γ̂1 + γ̂2 + γ̂3) (γ̂2 − γ̂3)

]
,

G23 = G
[
(r2

2 − r2
1) + r2

1r
2
2r

2
3 (γ̂1 + γ̂2 + γ̂3) (γ̂2 − γ̂1)

]
, (5.49)

and Bij is anti-symmetric matrix with

B12 = G
(
γ̂3r

2
1r

2
2 + γ̂2r

2
3r

2
1 + γ̂1r

2
2r

2
3

)
,

B31 = G
(
γ̂3r

2
1r

2
2 + γ̂2r

2
3r

2
1 − 2γ̂1r

2
2r

2
3

)
,

B23 = G
(
−2γ̂3r

2
1r

2
2 + γ̂2r

2
3r

2
1 + γ̂1r

2
2r

2
3

)
. (5.50)

Note also that, in the above action, we have neglected to mention the constraint

term, which ensures that the square of the radii ri sum to one. This term is of no

importance in the present discussion and thus, for convenience, has been left out.

Now, at this point, it is necessary for us to make a specific choice for the string

worldsheet metric hαβ. One possibility is to simply use the diagonal conformal gauge

in which
√
−hhαβ = diag (−1, 1). It was noted in [18], however, that, if one wants

to compare the resulting string action to the coherent state effective action of a spin
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chain, one must rather use a non-diagonal uniform gauge in which the total angular

momentum is spread evenly along the string. A procedure for implementing this

gauge was described in [21] and involves first performing a T-duality transformation

on the ‘fast’ angular coordinate ψ = ϕ3. Hence we obtain

Sγi = −
√
λ

2

∫
dτ

dσ

2π

{√
−hhαβ

[
− ∂αt∂βt+ ∂αri∂βri (5.51)

+ G̃11∂αϕ1∂βϕ1 + G̃22∂αϕ2∂βϕ2 + G̃33∂αϕ̃3∂βϕ̃3

+ G̃12∂αϕ1∂βϕ2 + G̃21∂αϕ2∂βϕ1 + G̃31∂αϕ̃3∂βϕ1

+ G̃13∂αϕ1∂βϕ̃3 + G̃23∂αϕ2∂βϕ̃3 + G̃32∂αϕ̃3∂βϕ2

]
− 2εαβ

[
B̃12∂αϕ1∂βϕ2 + B̃31∂αϕ̃3∂βϕ1 + B̃23∂αϕ2∂βϕ̃3

]}
,

where we have used ϕ̃1 = ϕ1 and ϕ̃2 = ϕ2, together with the definitions

G̃11 = G11 −
G2

31 −B2
31

G33

G̃22 = G22 −
G2

23 −B2
23

G33

, G̃33 =
1

G33

,

G̃12 = G12 −
G31G23 +B31B23

G33

, G̃31 =
B31

G33

, G̃23 = −B23

G33

, (5.52)

and

B̃12 = B12 +
G31B23 +B31G23

G33

, B̃31 =
G31

G33

, B̃23 = −G23

G33

. (5.53)

We shall now convert to the Nambu-Goto form of this γi-deformed string worldsheet

action in the T-dual space, which is given by

Sγi = −
√
λ

∫
dτ

dσ

2π

{√
−h− εαβ

[
B̃12∂αϕ1∂βϕ2 + B̃31∂αϕ̃3∂βϕ1 + B̃23∂αϕ2∂βϕ̃3

]}
,

(5.54)

where

hαβ = −∂αt∂βt+ ∂αri∂βri + G̃11∂αϕ1∂βϕ1 + G̃22∂αϕ2∂βϕ2 + G̃33∂αϕ̃3∂βϕ̃3

+ G̃12∂αϕ1∂βϕ2 + G̃21∂αϕ2∂βϕ1 + G̃31∂αϕ̃3∂βϕ1 + G̃13∂αϕ1∂βϕ̃3

+ G̃23∂αϕ2∂βϕ̃3 + G̃32∂αϕ̃3∂βϕ2. (5.55)

The original Polyakov action (5.51) can be proved to be equivalent to this Nambu-

Goto action (5.54) in exactly the same way discussed in section 4.1.2. Since this

derivation relies upon the equation of motion corresponding to hαβ, the extra term

εαβ [. . .], which is independent of hαβ, is largely unimportant.
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Let us now note that the total angular momentum 2-current, which corresponds to

the ‘fast’ angular coordinate ψ = ϕ3, is given by

pα = εαβ∂βψ̃, (5.56)

and thus the total angular momentum charge density is p0 = ∂1ψ̃. The non-diagonal

uniform gauge, in which p0 = J is constant along the string (in the spatial worldsheet

coordinate σ), can be obtained by setting ψ̃ = ϕ̃3 = J σ. We shall also take t to be

simply the temporal worldsheet coordinate or proper time τ .

Thus the components of the string worldsheet metric in the non-diagonal uniform

gauge can be calculated from (5.55) to be

h00 = −1 + ṙ2
i + G̃11ϕ̇

2
1 + G̃22ϕ̇

2
2 + 2G̃12ϕ̇1ϕ̇2,

h11 = (r′i)
2 + G̃11(ϕ

′
1)

2 + G̃22(ϕ
′
2)

2 + J 2G̃33 + 2G̃12ϕ
′
1ϕ

′
2 + 2J G̃31ϕ

′
1 + 2J G̃23ϕ

′
2,

h01 = h01 = ṙir
′
i + G̃11ϕ̇1ϕ

′
1 + G̃22ϕ̇2ϕ

′
2 + G̃12(ϕ̇1ϕ

′
2 + ϕ′1ϕ̇2) + J G̃31ϕ̇1 + J G̃23ϕ̇2,

(5.57)

The γi-deformed string worldsheet action can hence be written as

Sγi = −
√
λ

∫
dτ

dσ

2π

{√
−h− εαβ

[
B̃12 (ϕ̇1ϕ

′
2 − ϕ′1ϕ̇2)− B̃31J ϕ̇1 + B̃23J ϕ̇2

]}
,

(5.58)

in terms of the determinant h = h00h11 − (h01)
2.

We shall now define the small parameter λ̃ ≡ λ
J2 = 1

J 2 , since our total angular

momentum is J =
√
λ
∫ 2π

0
dσ
2π
J =

√
λJ , and construct a semiclassical expansion

of the action (5.58) to O(λ̃2). We shall assume that the radii and ‘slow’ angular

coordinate ϕ1 and ϕ2 vary slowly with time. More specifically, we shall make the

redefinition τ → 1
λ̃
τ , so that ∂

∂τ
→ λ̃ ∂

∂τ
and therefore all the time derivatives of the

remaining coordinates (the ‘fast’ angular coordinate has been eliminated) become of

O(λ̃). We shall also assume the deformation parameters γ̂i to be of O(
√
λ̃) and define

the λ̃-independent parameters γ̄i ≡ J γ̂i = Jγi. (This is consistent with the earlier

definition in section 5.1.3 of γ̄i in terms of the gauge theory deformation parameters

γi.) Hence we obtain the γi-deformed string worldsheet action

Sγi = −J
∫
dτ

dσ

2π

{√
− 1

J 2
h− 1

J 3
εαβ
[
B̃12 (ϕ̇1ϕ

′
2 − ϕ′1ϕ̇2)− B̃31J ϕ̇1 + B̃23J ϕ̇2

]}
,

(5.59)
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where

h =

[
−1 +

1

J 4

(
ṙ2
i + G̃11ϕ̇

2
1 + G̃22ϕ̇

2
2 + 2G̃12ϕ̇1ϕ̇2

)]
(5.60)

×
[
(r′i)

2
+ G̃11 (ϕ′1)

2
+ G̃22 (ϕ′2)

2
+ J 2G̃33 + 2G̃12ϕ

′
1ϕ

′
2 + 2J G̃31ϕ

′
1 + 2J G̃23ϕ

′
2

]
− 1

J 4

[
ṙir

′
i + G̃11ϕ̇1ϕ

′
1 + G̃22ϕ̇2ϕ

′
2 + G̃12 (ϕ̇1ϕ

′
2 + ϕ′1ϕ̇2) + J G̃31ϕ̇1 + J G̃23ϕ̇2

]2
.

We only want to consider terms up to O( 1
J 4 ) in our Lagrangian and thus, neglecting

higher order terms, we find that

− 1

J 2
h = G̃33 +

1

J 2

[
(r′i)

2 + G̃11(ϕ
′
1)

2 + G̃22(ϕ
′
2)

2 + 2G̃12ϕ
′
1ϕ

′
2 + 2J G̃31ϕ

′
1 + 2J G̃23ϕ

′
2

]
− 1

J 4
G̃33

(
ṙ2
i + G̃11ϕ̇

2
1 + G̃22ϕ̇

2
2 + 2G̃12ϕ̇1ϕ̇2

)
+O

(
1

J 6

)
. (5.61)

Now we need to calculate G̃ij and B̃ij explicitly using the definitions (5.52) and

(5.53), which are given in terms of the expressions (5.49) and (5.50). Keeping only

the necessary orders in 1
J , we obtain

G̃11 =
(
r2
1r

2
2 + r2

3r
2
1 + 4r2

2r
2
3

)
− 1

J 2
r2
1r

2
2r

2
3γ̄

2
(
r2
1r

2
2 + r2

3r
2
1 + 4r2

2r
2
3

)
+O

(
1

J 4

)
,

G̃22 =
(
4r2

1r
2
2 + r2

3r
2
1 + r2

2r
2
3

)
− 1

J 2
r2
1r

2
2r

2
3γ̄

2
(
4r2

1r
2
2 + r2

3r
2
1 + r2

2r
2
3

)
+O

(
1

J 4

)
,

G̃33 = 1 +
1

J 2

(
γ̄2

3r
2
1r

2
2 + γ̄2

2r
2
3r

2
1 + γ̄2

1r
2
2r

2
3 − γ̄2r2

1r
2
2r

2
3

)
− 1

J 4
r2
1r

2
2r

2
3γ̄

2
(
γ̄2

3r
2
1r

2
2 + γ̄2

2r
2
3r

2
1 + γ̄2

1r
2
2r

2
3 − γ̄2r2

1r
2
2r

2
3

)
+O

(
1

J 6

)
,

G̃12 =
(
2r2

1r
2
2 − r2

3r
2
1 + 2r2

2r
2
3

)
− 1

J 2
r2
1r

2
2r

2
3γ̄

2
(
2r2

1r
2
2 − r2

3r
2
1 + 2r2

2r
2
3

)
+O

(
1

J 4

)
,

G̃31 =
1

J
(
γ̄3r

2
1r

2
2 + γ̄2r

2
3r

2
1 − 2γ̄1r

2
2r

2
3

)
− 1

J 3
r2
1r

2
2r

2
3γ̄

2
(
γ̄3r

2
1r

2
2 + γ̄2r

2
3r

2
1 − 2γ̄1r

2
2r

2
3

)
+O

(
1

J 5

)
,

G̃23 =
1

J
(
2γ̄3r

2
1r

2
2 − γ̄2r

2
3r

2
1 − γ̄1r

2
2r

2
3

)
− 1

J 3
r2
1r

2
2r

2
3γ̄

2
(
2γ̄3r

2
1r

2
2 − γ̄2r

2
3r

2
1 − γ̄1r

2
2r

2
3

)
+O

(
1

J 5

)
,

(5.62)

and

B̃12 =
1

J
(
3r2

1r
2
2r

2
3γ̄
)

+O

(
1

J 3

)
,

B̃31 =
(
r2
2 − r2

3

)
+

1

J 2
r2
1r

2
2r

2
3γ̄
[
(γ̄2 − γ̄3)− γ̄

(
r2
2 − r2

3

)]
+O

(
1

J 4

)
,

B̃23 =
(
r2
1 − r2

2

)
+

1

J 2
r2
1r

2
2r

2
3γ̄
[
(γ̄1 − γ̄2)− γ̄(r2

1 − r2
2)
]
+O

(
1

J 4

)
. (5.63)
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with γ̄ ≡
3∑

i=1

γ̄i. Hence, substituting these expressions into (5.61), we determine

− 1

J 2
h = 1 + λ̃a+ λ̃2b+O(λ̃3), (5.64)

where we define a and b explicitly as

a ≡
(
γ̄2

3r
2
1r

2
2 + γ̄2

2r
2
3r

2
1 + γ̄2

1r
2
2r

2
3 − γ̄2r2

1r
2
2r

2
3

)
+

3∑
i=1

(r′i)
2

+
(
r2
1r

2
2 + r2

3r
2
1 + 4r2

2r
2
3

)
(ϕ′1)

2
+
(
4r2

1r
2
2 + r2

3r
2
1 + r2

2r
2
3

)
(ϕ′2)

2

+ 2
(
2r2

1r
2
2 − r2

3r
2
1 + 2r2

2r
2
3

)
ϕ′1ϕ

′
2 + 2

(
γ̄3r

2
1r

2
2 + γ̄2r

2
3r

2
1 − 2γ̄1r

2
2r

2
3

)
ϕ′1

+ 2
(
2γ̄3r

2
1r

2
2 − γ̄2r

2
3r

2
1 − γ̄1r

2
2r

2
3

)
ϕ′2, (5.65)

b ≡ −r2
1r

2
2r

2
3γ̄

2
[(
γ̄2

3r
2
1r

2
2 + γ̄2

2r
2
3r

2
1 + γ̄2

1r
2
2r

2
3 − γ̄2r2

1r
2
2r

2
3

)
+
(
r2
1r

2
2 + r2

3r
2
1 + 4r2

2r
2
3

)
(ϕ′1)

2
+
(
4r2

1r
2
2 + r2

3r
2
1 + r2

2r
2
3

)
(ϕ′2)

2

+ 2
(
2r2

1r
2
2 − r2

3r
2
1 + 2r2

2r
2
3

)
ϕ′1ϕ

′
2 + 2

(
γ̄3r

2
1r

2
2 + γ̄2r

2
3r

2
1 − 2γ̄1r

2
2r

2
3

)
ϕ′1

+2
(
2γ̄3r

2
1r

2
2 − γ̄2r

2
3r

2
1 − γ̄1r

2
2r

2
3

)
ϕ′2 ]

− ṙ2
i −

(
r2
1r

2
2 + r2

3r
2
1 + 4r2

2r
2
3

)
ϕ̇2

1 −
(
4r2

1r
2
2 + r2

3r
2
1 + r2

2r
2
3

)
ϕ̇2

2

− 2
(
2r2

1r
2
2 − r2

3r
2
1 + 2r2

2r
2
3

)
ϕ̇1ϕ̇2. (5.66)

A binomial expansion of the square root then finally yields√
− 1

J 2
h = 1 +

1

2
λ̃a+ λ̃2

(
1

2
b− 1

8
a2

)
+O

(
λ̃3
)
. (5.67)

Now, using (5.63), we calculate the second term in the Lagrangian to O
(

1
J 4

)
to be

B̃12 (ϕ̇1ϕ
′
2 − ϕ′1ϕ̇2)− B̃31J ϕ̇1 + B̃23J ϕ̇2 = λ̃c+ λ̃2d+O

(
λ̃3
)
, (5.68)

with

c ≡ −
(
r2
2 − r2

3

)
ϕ̇1 +

(
r2
1 − r2

2

)
ϕ̇2, (5.69)

d ≡ −r2
1r

2
2r

2
3γ̄
{
γ̄
[
(γ̄2 − γ̄3)− γ̄

(
r2
2 − r2

3

)]
ϕ̇1 + γ̄

[
(γ̄1 − γ̄2)− γ̄

(
r2
1 − r2

2

)]
ϕ̇2

+ 3 (ϕ̇1ϕ
′
2 − ϕ′1ϕ̇2)} . (5.70)

The γi-deformed string worldsheet action to O(λ̃2) can thus be written as

Sγi = −J
∫
dτ
dσ

2π

{
1 + λ̃

(
1

2
a− c

)
+ λ̃2

(
1

2
b− 1

8
a2 − d

)
+O

(
λ̃3
)}

, (5.71)
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where we now express the new variables a, b, c and d in terms of the original angular

coordinates φi by substituting

ϕ1 =
1

3
(φ1 + φ2 − 2φ3) and ϕ2 =

1

3
(−2φ1 + φ2 + φ3) (5.72)

into the expressions (5.65), (5.66), (5.69) and (5.70) so as to obtain

a =
3∑

i=1

(r′i)
2
+

1

2

3∑
i,j=1

r2
i r

2
j

(
φ′i − φ′j −

3∑
k=1

εijkγ̄k

)2

− γ̄2r2
1r

2
2r

2
3, (5.73)

b = −
3∑

i=1

ṙ2
i −

1

2

3∑
i,j=1

r2
i r

2
j

(
φ̇i − φ̇j

)2

− r2
1r

2
2r

2
3γ̄

2

1

2

3∑
i,j=1

r2
i r

2
j

(
φ′i − φ′j −

3∑
k=1

εijkγ̄k

)2

− γ̄2r2
1r

2
2r

2
3

 , (5.74)

c =
1

3

3∑
i=1

φ̇i −
3∑

i=1

r2
i φ̇i, (5.75)

d = r2
1r

2
2r

2
3γ̄

2

3∑
i=1

r2
i φ̇− r2

1r
2
2r

2
3γ̄

3∑
i=1

γ̄iφ̇i +
1

2
r2
1r

2
2r

2
3γ̄

3∑
i,j,k=1

εijk

(
φ̇iφ

′
j − φ′iφ̇j

)
. (5.76)

Hence, changing back τ → λ̃τ , and neglecting the total derivative term in the variable

c and the constant 1 at the beginning of the Lagrangian, we obtain the γi-deformed

string worldsheet action to O(λ̃2) in the fast motion limit

Sγi = −J
∫
dτ

dσ

2π

[
Lγi +O

(
λ̃3
)]
, (5.77)

where

Lγi =
(
1− λ̃r2

1r
2
2r

2
3γ̄

2
)

×


3∑

i=1

r2
i φ̇i +

λ̃

2

 3∑
i=1

(r′i)
2
+

1

2

3∑
i,j=1

r2
i r

2
j

(
φ′i − φ′j −

3∑
k=1

εijkγ̄k

)2

− γ̄2r2
1r

2
2r

2
3


− 1

2

3∑
i=1

ṙ2
i −

1

4

3∑
i,j=1

r2
i r

2
j

(
φ̇i − φ̇j

)2

− λ̃2

8

 3∑
i=1

(r′i)
2
+

1

2

3∑
i,j=1

r2
i r

2
j

(
φ′i − φ′j −

3∑
k=1

εijkγ̄k

)2

− γ̄2r2
1r

2
2r

2
3

2

+ λ̃r2
1r

2
2r

2
3γ̄

3∑
i=1

γ̄iφ̇i −
1

2
λ̃r2

1r
2
2r

2
3γ̄

3∑
i,j,k=1

εijk

(
φ̇iφ

′
j − φ′iφ̇j

)
(5.78)
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Notice that the O(λ̃) part of this γi-deformed string worldsheet action, which involves

simply the expression in curly brackets {. . .}, agrees with the coherent state effective

action (5.45) for a γi-deformed spin chain, if we make the identifications ri → mi

and φi → hi. This agreement between the γi-deformed spin chain/string first order

semiclassical actions was first observed in [9]3.

5.2.2 U(1) charges densities and currents to O(λ̃)

This γi-deformed Lagrangian, which describes semiclassical strings moving in a fast

motion limit, can be seen to still be invariant under rotations on our γi-deformed five-

sphere. Let us now calculate the corresponding U(1) charge and current densities to

O(λ̃) as follows:

pi =
∂Lγi

∂φ̇i

=
(
1− r2

1r
2
2r

2
3γ̄

2λ̃
)
r2
i − λ̃r2

i

3∑
j=1

r2
j

(
φ̇i − φ̇j

)
+ λ̃r2

1r
2
2r

2
3γ̄γ̄i − λ̃r2

1r
2
2r

2
3γ̄

3∑
j,k=1

εijkφ
′
j, (5.79)

and also

ji =
∂Lγi

∂φ′i
= λ̃r2

i

3∑
j=1

r2
j

(
φ′i − φ′j −

3∑
k=1

εijkγ̄k

)
. (5.80)

Note that, in the case of the current densities ji, we have kept only the O(λ̃) terms,

but no higher order terms have been neglected when calculating the charge densities

pi. The reason for this is that we need to take a time derivative to obtain the charge

densities and thus we are implicitly reducing the order of the expression by one. In

other words, the O(λ̃2) Lagrangian automatically results in O(λ̃) charge densities.

Furthermore, we can determine the U(1) charge and current densities to O(λ̃) for

similar semiclassical strings in an undeformed R× S5 background by simply setting

γ̄i = 0. We thus obtain

˜̃pi = r2
i − λ̃r2

i

3∑
j=1

(
˙̃̃
φi −

˙̃̃
φj

)
and ˜̃ji = λ̃r2

i

3∑
j=1

r2
j

(
˜̃φ′i −

˜̃φ′j

)
. (5.81)

3Note that the expressions obtained in [9] for both the leading order string and spin chain actions
differ from those derived above in that the time derivative term appears with an extra negative sign.
This is equivalent to a redefinition of time τ → −τ or, alternatively, to a redefinition of both the
angular coordinates φi → −φi and the deformations parameters γi → −γi.
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Now we demonstrated in chapter 4 (based on discussions in [9]) that the U(1) charge

and current densities remain unchanged by the γi-deformation. This should still be

true in the fast motion limit. Thus, setting ˜̃pi = pi and ˜̃ji = ji, it is possible to obtain

the following expressions:

˙̃̃
φ1 −

˙̃̃
φ2 = φ̇1 − φ̇2 − r2

1r
2
3γ̄ (φ′3 − φ′1 − γ̄2) + r2

2r
2
3γ̄ (φ′2 − φ′3 − γ̄1)

˙̃̃
φ3 −

˙̃̃
φ1 = φ̇3 − φ̇1 − r2

2r
2
3γ̄ (φ′2 − φ′3 − γ̄1) + r2

1r
2
2γ̄ (φ′1 − φ′2 − γ̄3)

˙̃̃
φ2 −

˙̃̃
φ3 = φ̇2 − φ̇3 − r2

1r
2
2γ̄ (φ′1 − φ′2 − γ̄3) + r2

1r
2
3γ̄ (φ′3 − φ′1 − γ̄2) , (5.82)

and

˜̃φ′1 −
˜̃φ′2 = φ′1 − φ′2 + γ̄r2

3 − γ̄3

˜̃φ′3 −
˜̃φ′1 = φ′3 − φ′1 + γ̄r2

2 − γ̄2

˜̃φ′2 −
˜̃φ′3 = φ′2 − φ′3 + γ̄r2

1 − γ̄1. (5.83)

These equations describe the connection between the undeformed and γi-deformed

angular coordinates ˜̃φi and φi respectively to O(λ̃) in the fast motion limit.

5.3 Lax Pair for the γi-deformed Spin Chain/String

Semiclassical Action to O(λ̃)

We shall now demonstrate that the γi-deformed semiclassical spin chain/string action

to leading order in λ̃ admits a Lax pair representation. In other words, the γi-

deformed string worldsheet action remains integrable in the fast motion limit. This

new result was published in [23] and is presented with minimal changes.

We begin by considering an undeformed semiclassical spin chain/string system and

show, following [9, 20], that the equations of motion are equivalent to a Landau-

Lifshitz equation for which there is a known Lax pair. We then derive the γi-deformed

equations of motion and construct a transformation on the angular coordinates that

takes the undeformed equations of motion into the γi-deformed equations of motion.

A γi-deformed Lax pair is hence constructed and the corresponding zero curvature

condition is shown to be equivalent to the γi-deformed equations of motion. Further

details of these calculations are presented in appendix C.
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5.3.1 Undeformed semiclassical Lax pair representation

Undeformed equations of motion

Let us consider the undeformed semiclassical spin chain/string action to leading order

in λ̃, which can be obtained from (5.77) or, alternatively, from (5.45) by setting γ̄i = 0.

We shall now make explicit mention of the constraint term, and redefine τ → − 1
λ̃
τ

and L → 1
λ̃
L, so as to obtain

S = −J
∫
dτ

dσ

2π

[
λ̃L+O

(
λ̃2
)]
, (5.84)

where the undeformed first order Lagrangian is given by

L = −
3∑

i=1

r2
i

˙̃̃
φi +

1

2

3∑
i=1

(r′i)
2
+

1

4

3∑
i,j=1

r2
i r

2
j

(
˜̃φ′i −

˜̃φ′j

)2

+
1

2
Λ

(
3∑

i=1

r2
i − 1

)
. (5.85)

We can now derive the undeformed equations of motion by varying with respect to

the radial and angular coordinates ri and ˜̃φi respectively to obtain

r′′i = −2ri

˙̃̃
φi + ri

3∑
k=1

r2
k

(
˜̃φ′i −

˜̃φ′k

)2

+ Λri, (5.86)

ṙi =
3∑

k=1

rk (rirk)
′
(

˜̃φ′i −
˜̃φ′k

)
+

1

2
ri

3∑
k=1

r2
k

(
˜̃φ′′i −

˜̃φ′′k

)
, (5.87)

while varying with respect to the Lagrange multiplier Λ yields the constraint equation
3∑

i=1

r2
i = 1. Now, assuming this constraint is satisfied, the equations of motion (5.86)

and (5.87) are equivalent to

rjr
′′
i − rir

′′
j = 2rirj

(
˙̃̃
φj −

˙̃̃
φi

)
+ rirj

3∑
k=1

r2
k

(
˜̃φ′i −

˜̃φ′k

)2

− rirj

3∑
k=1

r2
k

(
˜̃φ′j −

˜̃φ′k

)2

,

(5.88)

ṙirj + riṙj = rj

3∑
k=1

rk (rirk)
′
(

˜̃φ′i −
˜̃φ′k

)
+ ri

3∑
k=1

rk (rjrk)
′
(

˜̃φ′j −
˜̃φ′k

)
+

1

2
rirj

3∑
k=1

r2
k

(
˜̃φ′′i −

˜̃φ′′k

)
+

1

2
rirj

3∑
k=1

r2
k

(
˜̃φ′′j −

˜̃φ′′k

)
. (5.89)

Notice that the constraint term cancels out of equation (5.88).
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Undeformed Lax Pair

The Landau-Lifshitz Lax pair, which is a function of the spectral parameter x, is

Dα = ∂α − Aα, with α = 0, 1, (5.90)

where

A0 =
1

6
[N, ∂1N ]x+

3i

2
Nx2, (5.91)

A1 = iNx, (5.92)

and we have defined Nij = 3U∗
i Uj − δij, where Ui = rie

i
˜̃
φi and

3∑
i=1

r2
i = 1 [9].

This satisfies the zero curvature condition [Dα,Dβ] = 0, which is equivalent to

∂0A1 − ∂1A0 − [A0, A1] = 0, (5.93)

since the only non-trivial independent equation comes from setting α = 0 and β = 1.

This condition results in the Landau-Lifshitz equation of motion [9, 20]

i∂0N =
1

6

[
N, ∂2

1N
]
, (5.94)

and, upon substitution of Nij = 3U∗
i Uj − δij = 3rirje

i
�

˜̃
φj− ˜̃

φi

�
− δij into this equation,

one obtains (5.88) and (5.89), which are equivalent to the undeformed equations of

motion (see appendix C.1 for details).

In terms of ri and ˜̃φi, the undeformed Lax pair is Dα = ∂α − Aα, where

(Aα)ij = (Bα)ij e
i
�

˜̃
φj− ˜̃

φi

�
, with α = 0, 1, (5.95)

and we define

(B0)ij =

[
3

2

(
rir

′
j − r′irj

)
+

3i

2
rirj

(
˜̃φ′i + ˜̃φ′j

)
− 3irirj

3∑
k=1

r2
k
˜̃φ′k

]
x

+
3i

2
(3rirj − δij)x

2, (5.96)

(B1)ij = i (3rirj − δij)x. (5.97)
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5.3.2 γi-deformed semiclassical Lax pair representation

γi-deformed equations of motion

We shall now consider the more general γi-deformed semiclassical spin chain/string

action, which, from (5.77) or (5.45), is given by

Sγi = −J
∫
dτ

dσ

2π

[
λ̃Lγi +O

(
λ̃2
)]
. (5.98)

Here we have again redefined τ → − 1
λ̃
τ and Lγi → 1

λ̃
Lγi , and included the constraint

term in the γi-deformed Lagrangian, which to first order in λ̃ is

Lγi = −
3∑

i=1

r2
i φ̇i +

1

2

3∑
i=1

(r′i)
2
+

1

4

3∑
i,j=1

r2
i r

2
j

(
φ′i − φ′j −

3∑
k=1

εijkγ̄k

)2

− 1

2
γ̄2r2

1r
2
2r

2
3 +

1

2
Λ

(
3∑

i=1

r2
i − 1

)
. (5.99)

This expression can be rewritten using the constraint
3∑

i=1

r2
i = 1 as follows:

Lγi = −
3∑

i=1

r2
i φ̇i +

1

2

3∑
i=1

(r′i)
2
+

1

2
Λ

(
3∑

i=1

r2
i − 1

)

+
1

4

3∑
i,j=1

r2
i r

2
j

[(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
−

(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)]2

. (5.100)

Varying the above Lagrangian with respect to the radial and angular coordinates

ri and φi respectively, and using the constraint equation
3∑

i=1

r2
i = 1, which can be

obtained by varying with respect to Λ, yields the γi-deformed equations of motion

r′′i = −2ri

{
φ̇i +

3∑
l,m=1

εilmr
2
i r

2
l γ̄m (φ′i − φ′l − εilmγ̄m)

− 1

2

3∑
l,m=1

εilmr
2
l r

2
m (γ̄l + γ̄m) (φ′l − φ′m − εilmγ̄i)

}

+ ri

3∑
k=1

r2
k

[(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
−

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)]2

+ Λri, (5.101)
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ṙi =
3∑

k=1

rk (rirk)
′

[(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
−

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)]
(5.102)

+
1

2
ri

3∑
k=1

r2
k

[(
φ′′i + 2

3∑
l,m=1

εilmγ̄lrmr
′
m

)
−

(
φ′′k + 2

3∑
l,m=1

εklmγ̄lrmr
′
m

)]
.

Now, assuming the constraint is satisfied, the above equations of motion (5.101) and

(5.102) are equivalent to

rjr
′′
i − rir

′′
j = 2rirj

(
φ̇j − φ̇i

)

−2rirj

{
3∑

l,m=1

εilmr
2
i r

2
l γ̄m (φ′i − φ′l − εilmγ̄m)− 1

2

3∑
l,m=1

εilmr
2
l r

2
m (γ̄l + γ̄m) (φ′l − φ′m − εilmγ̄i)

}

+2rirj

{
3∑

l,m=1

εjlmr
2
j r

2
l γ̄m

(
φ′j − φ′l − εjlmγ̄m

)
− 1

2

3∑
l,m=1

εjlmr
2
l r

2
m (γ̄l + γ̄m) (φ′l − φ′m − εjlmγ̄j)

}

+rirj

3∑
k=1

r2
k

[(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
−

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)]2

−rirj

3∑
k=1

r2
k

[(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)
−

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)]2

, (5.103)

ṙirj + riṙj = rj

3∑
k=1

rk (rirk)
′

[(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
−

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)]

+ ri

3∑
k=1

rk (rjrk)
′

[(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)
−

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)]

+
1

2
rirj

3∑
k=1

r2
k

[(
φ′′i + 2

3∑
l,m=1

εilmγ̄lrmr
′
m

)
−

(
φ′′k + 2

3∑
l,m=1

εklmγ̄lrmr
′
m

)]

+
1

2
rirj

3∑
k=1

r2
k

[(
φ′′j + 2

3∑
l,m=1

εjlmγ̄lrmr
′
m

)
−

(
φ′′k + 2

3∑
l,m=1

εklmγ̄lrmr
′
m

)]
. (5.104)
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Transformation from the undeformed equations of motion to the γi-deformed

equations of motion

We now observe that a transformation which takes the undeformed equations of

motion into the γi-deformed equations of motion is

˙̃̃
φi = φ̇i +

3∑
l,m=1

εilmr
2
i r

2
l γ̄m (φ′i − φ′l − εilmγ̄m)− 1

2

3∑
l,m=1

εilmr
2
l r

2
m (γ̄l + γ̄m) (φ′l − φ′m − εilmγ̄i),

(5.105)

˜̃φ′i = φ′i +
3∑

l,m=1

εilmγ̄lr
2
m. (5.106)

Taking into account our redefinition of τ , this transformation satisfies the equations

(5.82) and (5.83), which were derived by equating the undeformed and γi-deformed

U(1) charge and current densities. Thus the relation we have observed between the

undeformed and γi-deformed angular coordinates is simply the result of the U(1)

charge and current densities remaining unaltered by the γi-deformation (as observed

in [8] for the general string theory before the fast motion limit was taken). Notice

also that this transformation is only one of an entire set of possible transformations,

because it is only the difference of the angular coordinates which effects both (5.82)

and (5.83), and the undeformed and γi-deformed equations of motion.

Now, for this transformation to be valid, we must have (
˙̃̃
φi)

′ = ( ˜̃φ′i)̇. Therefore the

compatibility condition, which must be satisfied, is

2
3∑

l,m=1

εilmγ̄lrmṙm = ∂1

{
3∑

l,m=1

εilmr
2
i r

2
l γ̄m (φ′i − φ′l − εilmγ̄m)

−1

2

3∑
l,m=1

εilmr
2
l r

2
m (γ̄l + γ̄m) (φ′l − φ′m − εilmγ̄i)

}
. (5.107)

However, from the equation of motion (5.102), we know that

riṙi =
1

2
∂1

{
3∑

k=1

r2
i r

2
k

[(
φ′i +

3∑
n,s=1

εinsγ̄nr
2
s

)
−

(
φ′k +

3∑
n,s=1

εknsγ̄nr
2
s

)]}
, (5.108)

and thus

2
3∑

l,m=1

εilmγ̄lrmṙm

= ∂1

{
3∑

k,l,m=1

εilmγ̄lr
2
mr

2
k

[(
φ′m +

3∑
n,s=1

εmnsγ̄nr
2
s

)
−

(
φ′k +

3∑
n,s=1

εknsγ̄nr
2
s

)]}
. (5.109)
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By setting i = 1, 2 and 3, and evaluating equations (5.107) and (5.109) separately (see

appendix C.2), these equations can be shown to be the same. Thus the compatibility

condition is automatically satisfied if the γi-deformed equations of motion (and the

constraint equation) are valid.

γi-deformed Lax Pair

The γi-deformed Lax pair shall now be derived from the undeformed one following a

similar procedure to that discussed in section 4.5.3.

First the ˜̃φi-dependence of the undeformed Lax pair will be gauged away. More

specifically, we shall now change to an equivalent Lax pair as follows:

Dα −→ D̃α = MDαM
−1 = ∂α−Rα, with Rα = MAαM

−1−M∂αM
−1, (5.110)

where M ≡ iei
˜̃
φiδij and thus M−1 = −ie−i

˜̃
φiδij.

Now we can make use of the definition (5.95) of the undeformed Lax pair, in which

the dependence on the angular coordinates is entirely in the exponential, to derive

the gauged undeformed Lax pair as follows:

D̃α = ∂α −Rα, where (Rα)ij = (Bα)ij + i∂α
˜̃φi δij, (5.111)

and thus, substituting the definitions of (B0)ij and (B1)ij into the above equation,

we obtain the explicit expressions

(R0)ij =

[
3

2

(
rir

′
j − r′irj

)
+

3i

2
rirj

(
˜̃φ′i + ˜̃φ′j

)
− 3irirj

3∑
k=1

r2
k
˜̃φ′k

]
x

+
3i

2
(3rirj − δij)x

2 + i
˙̃̃
φi δij (5.112)

(R1)ij = i (3rirj − δij)x+ i ˜̃φ′i δij. (5.113)

This undeformed gauged Lax pair depends only on the radii and the derivatives

thereof, and the derivatives of the undeformed angular coordinates. It can therefore

be expressed in terms of the γi-deformed angular coordinates using the transformation

(5.105) and (5.106). Hence we can construct the γi-deformed gauged Lax pair

D̃γi
α = ∂α −Rγi

α , (5.114)
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where

(Rγi
0 )ij =

3

2

(
rir

′
j − r′irj

)
x+

3i

2
rirj

[(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
+

(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)]
x

− 3irirj

3∑
k=1

r2
k

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)
x+

3i

2
(3rirj − δij)x

2

+ i

{
φ̇i +

3∑
l,m=1

εilmr
2
i r

2
l γ̄m (φ′i − φ′l − εilmγ̄m)

− 1

2

3∑
l,m=1

εilmr
2
l r

2
m (γ̄l + γ̄m) (φ′l − φ′m − εilmγ̄i)

}
δij, (5.115)

(Rγi
1 )ij = i (3rirj − δij)x+ i

(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
δij. (5.116)

Now the zero curvature condition
[
D̃γi

α , D̃
γi

β

]
= 0 is equivalent to

∂0Rγi
1 − ∂1Rγi

0 − [Rγi
0 ,R

γi
1 ] = 0, (5.117)

and the equations thus obtained from this gauged γi-deformed Lax pair (see appendix

C.3) are equations (5.103) and (5.104), which are equivalent to the γi-deformed equa-

tions of motion, and the compatibility condition, which follows directly from these

equations motion. Thus D̃γi
α is a valid Lax pair representation for our γi-deformed

semiclassical spin chain/string system. We have therefore shown that the γi-deformed

spin chain/string action is integrable to leading order in the semiclassical limit.
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Chapter 6

Summary and Conclusion

A non-supersymmetric γi-deformed extension of AdS/CFT correspondence, which

was originally conjectured by Frolov, has been studied. Both sides of this proposed

γi-deformed gauge/string duality were described.

On the gauge theory side, the original maximally supersymmetric N = 4 SYM con-

formal field theory was discussed in detail. N = 1 supersymmetric marginal defor-

mations of N = 4 SYM theory were then constructed and the non-supersymmetric

γi-deformed YM theory was mentioned. We reviewed the identification of the γi-

deformed matrix of anomalous dimensions in the SU(3) sector with the Hamiltonian

of an integrable γi-deformed SU(3) spin chain.

We then turned our attention to the string theory side of the proposed duality.

Due consideration was given to AdS5 × S5 spacetime before we confined our dis-

cussion to strings moving only in the five-sphere space. The γi-deformed string

worldsheet action was constructed by performing three TsT-transformations on the

original string worldsheet action. Frolov’s Lax pair representation for strings moving

on a γi-deformed five-sphere was also mentioned.

We then reviewed Frolov, Roiban and Tseytlin’s semiclassical leading order com-

parison between the γi-deformed spin chain and string actions. The coherent state

effective action for a γi-deformed SU(3) spin chain was constructed to first order in

the continuum limit. The string worldsheet action describing strings moving in a

γi-deformed R × S5 background was calculated to second order in the fast motion
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limit, together with the first order conserved γi-deformed U(1) charges or angular

momentua. Agreement was thus shown at leading order between the γi-deformed

gauge and string theories in the semiclassical limit.

Furthermore, we demonstrated that there exists a Lax pair representation for the

leading order semiclassical γi-deformed spin chain/string action, so that both systems

remain integrable in the semiclassical limit. This result relied upon a transformation

relating the undeformed and γi-deformed angular coordinates, which was seen to

arise from the requirement that the first order semiclassical conserved U(1) charges

remain unchanged by the γi-deformation.

Possible extensions to this thesis include the construction of the conserved quantities

associated with this Lax pair. Specifically, one could attempt to calculate the mon-

odromy matrix and conserved quasi-momenta as a function of the spectral parameter

for this γi-deformed semiclassical system.
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Appendix A

Representations of the Lorentz

Group

A.1 The Lorentz Group

The Lorentz group is a group of rotations and boosts under which any reasonable

relativistic Lagrangian should be locally invariant. In this section, we begin by writing

the generators of the Lorentz group as differential operators and hence construct the

Lorentz algebra. The standard representation of the Lorentz group, in which the

generators take the form of 4 × 4 matrices, is then described, together with more

general n dimensional representations. This review is based on discussions in [26].

A.1.1 The Lorentz algebra

The group of Lorentz transformations describing rotations and boosts in four dimen-

sional Minkowski spacetime can be viewed as an extension of the group of rotations

in three dimensional Euclidean space. Therefore, let us first consider the generators

of the rotation group, which are simply the three components of the angular mo-

mentum vector ~J = ~x × ~p. Since the momentum can be written as ~p = −i~∇, the

generators of the rotation group in differential operator form are given by

J jk = −i
(
xj∇k − xk∇j

)
. (A.1)
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It is now possible to extend this result to the generators of the Lorentz group by

simply changing the spatial derivatives to spacetime derivatives as follows:

Jµν = i (xµ∂ν − xν∂µ) . (A.2)

There are six generators of the Lorentz group corresponding to the six independent

components of the anti-symmetric tensor Jµν . While J jk still describe rotations, the

new generators J0k with temporal indices describe boosts. Finally, we find that these

generators Jµν satisfy the Lorentz algebra

[Jµν , Jρσ] = i (ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ) , (A.3)

where ηµν = diag (+1,−1,−1,−1) is the Minkowski metric.

A.1.2 Standard representation of the Lorentz group

The standard representation of the Lorentz group is four dimensional: the Lorentz

transformations are 4× 4 matrices acting on the 4-vectors in Minkowski spacetime.

The generators of the Lorentz group in this representation are given by

(J µν)α
β = i

(
ηαµδν

β − ηανδµ
β

)
, (A.4)

which satisfy the Lorentz algebra (A.3). These generators yield the finite Lorentz

transformation Λ = e−
i
2

ωµνJ µν
, where ωµν is an anti-symmetric matrix of coefficients.

We can now derive the familiar Lorentz transformation matrices by making specific

choices for the coefficients ωµν . For example, a rotation by an angle θ around the

z-axis corresponds to all the components of ωµν being zero, except ω12 = −ω21 = θ.

Thus we obtain

Λ =


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

 , (A.5)

which is obviously a rotation in the xy-plane. Rotation matrices in the xz and yz-

planes can similarly be determined by setting ω31 = −ω13 = θ and ω23 = −ω32 = θ

respectively.
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Furthermore, a boost of rapidity y in the x-direction corresponds to ω01 = −ω10 = y

as the non-zero coefficients. Hence

Λ =


cosh y sinh y 0 0

sinh y cosh y 0 0

0 0 1 0

0 0 0 1

 , (A.6)

which is the usual Lorentz transformation in terms of the rapidity. We can similarly

obtain the boosts in the y and z-directions using ω02 = −ω20 = y and ω03 = −ω30 = y

respectively.

A.1.3 General representations of the Lorentz group

A general n dimensional representation M(Λ) of the Lorentz group is an n×n matrix,

which is a homomorphism of the Lorentz transformations Λ in four dimensional

Minkowski spacetime. In other words, M(Λ) has the following property:

M(Λ)M(Λ′) = M(ΛΛ′). (A.7)

Since this homomorphism maps the identity 14 onto the identity 1n, the generators

of the Lorentz group in this representation can be obtained by considering the image

of an infinitesimal Lorentz transformation.

A.2 The Dirac Equation and Spin-1
2 Representa-

tion of the Lorentz Group

We shall now describe the spin-1
2

representation of the Lorentz group following [25,

26]. It is first necessary to mention the Dirac equation and the gamma matrices, with

their corresponding Clifford algebra. The generators of the spin-1
2

representation are

then constructed from these gamma matrices and it turns out that the Lorentz algebra

is a direct result of the Clifford algebra. Lastly, the Dirac equation and corresponding

Dirac action are shown to be Lorentz invariant.
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A.2.1 The Dirac equation and Clifford algebra

The Dirac equation was developed by Dirac in 1928 as a relativistic and linear wave

equation, which also contains the second order Klein-Gordon equation. He realized

that one could obtain such a linear equation within a non-commutative framework.

This Dirac equation is given by

(iγµ∂µ −m)Ψ = 0, (A.8)

where the gamma matrices γµ satisfy the Clifford algebra

{γµ, γν} = 2ηµν . (A.9)

This last condition is necessary for the Dirac equation to automatically contain the

Klein-Gordon equation. In other words, if Ψ(x) is a solution to the Dirac equation

then it also satisfies (∂µ∂µ +m2) Ψ = 0.

Now there are many possible representations of this Clifford algebra. The most

common is the lowest dimensional representation in terms of 4× 4 matrices, which,

in the Dirac basis, is

γ0 =

(
12 0

0 −12

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 12

12 0

)
, (A.10)

where σi are the usual Pauli matrices and the chirality matrix, defined as γ5 ≡
iγ0γ1γ2γ3, has been included for convenience. This is the only distinct four dimen-

sional representation of the Clifford Algebra. In other words, if there exist any other

4 × 4 matrices γµ satisfying (A.9), then they are equivalent to the above gamma

matrices by a change of basis.

It is also common, however, to write these matrices in the Weyl or chiral basis, in

which the chirality matrix γ5 is diagonal, as follows:

γ0 =

(
0 12

12 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
−12 0

0 12

)
. (A.11)

It is especially convenient to work in this Weyl basis when one is dealing with rela-

tivistic or massless particles (which is the case in N = 4 SYM theory). For massless

particles, it turns out that solutions to the Dirac equation are also eigenstates of

the chirality operator (since the gamma matrices γµ anti-commute with the chirality

matrix γ5).
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A.2.2 The spin-1
2 representation of the Lorentz group

Now, if we choose γµ so as to satisfy the Clifford algebra (A.9), then it turns out that

we automatically obtain a spinor representation of the Lorentz group with generators

Sµν =
i

4
[γµ, γν ] . (A.12)

It can easily be shown that Sµν satisfies the Lorentz algebra (A.3). More explicitly,

the generators of the spin-1
2

representation of the Lorentz group are given by

S0i = − i
2

(
σi 0

0 −σi

)
, Sij =

1

2
εijk

(
σk 0

0 σk

)
, (A.13)

using the 4 × 4 gamma matrices (A.11) in the Weyl basis. A finite Lorentz trans-

formation in this spin-1
2

representation is Λ 1
2

= e−
i
2

ωµνSµν
, where ωµν is, again, an

anti-symmetric matrix of coefficients.

Let us now demonstrate, as in [26], that the Dirac equation is Lorentz invariant by

showing that the matrices γµ are invariant under a simultaneous Lorentz transfor-

mation of both their spinor and spacetime indices. We first make use of the Clifford

algebra (A.9) to calculate

[γρ, Sµν ] =
i

4
[γρ, [γµ, γν ]] =

i

2
[γρ, γµγν ] = i (ηρµδν

σ − ηρνδν
σ) γσ = (J µν)ρ

σ γ
σ,

(A.14)

and hence(
1 + i

2
ωµνS

µν
)
γρ
(
1− i

2
ωλσS

λσ
)
≈ γρ − i

2
ωµν [γρ, Sµν ] =

(
1− i

2
ωµνJ µν

)ρ
σ
γσ,

(A.15)

which is the infinitesimal form of Λ−1
1
2

γµΛ 1
2

= Λµ
νγ

ν . In other words, under a Lorentz

transformation of the spinor and spacetime indices γµ → Λµ
νΛ 1

2
γνΛ−1

1
2

= γµ. The

Dirac equation therefore transforms under a Lorentz transformation as follows:

[iγµ∂µ −m] Ψ(x) −→
[
iγµ
(
Λ−1

)ν
µ
∂′ν −m

]
Λ 1

2
Ψ(x′)

= Λ 1
2

[
iΛ−1

1
2

γµΛ 1
2

(
Λ−1

)ν
µ
∂′ν −m

]
Ψ(x′)

= Λ 1
2

[
iΛµ

ρ

(
Λ−1

)ν
µ
γρ∂′ν −m

]
Ψ(x′)

= Λ 1
2

[
iγµ∂′µ −m

]
Ψ(x′)

= 0, (A.16)

where we define x′ = Λ−1x and ∂′µ = ∂
∂x′µ

. The Dirac equation is thus invariant under

Lorentz transformations.
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Finally, we should mention that the Dirac action is given by

SDirac =

∫
d4x LDirac(x), where LDirac = Ψ̄(x) [iγµ∂µ −m] Ψ(x) (A.17)

is the Dirac Lagrangian and we define Ψ̄ ≡ Ψ†γ0. We must be careful to make use of

Ψ̄ rather than Ψ† because the S0i are anti-hermitean and therefore Λ 1
2

is not unitary.

One can show, as mentioned in [26], that this action is Lorentz invariant making use

of the identity Λ†
1
2

γ0 = γ0Λ−1
1
2

, which implies that

Ψ̄(x) = Ψ†(x)γ0 −→ Ψ†(x′)Λ†
1
2

γ0 = Ψ†(x′)γ0Λ−1
1
2

= Ψ̄(x′)Λ−1
1
2

, where x′ = Λ−1x,

(A.18)

under the action of a Lorentz transformation Λ. Thus, noting from (A.16) that

[iγµ∂µ −m] Ψ(x) −→ Λ 1
2

[
iγµ∂′µ −m

]
Ψ(x′), (A.19)

we obtain LDirac(x) → LDirac(x
′). Since the Jacobian of the coordinate transformation

x→ x′ is one (Λ−1 has determinant one), we therefore observe that the Dirac action

is Lorentz invariant.

A.3 Weyl Spinors

We now discuss the reducible nature of the four dimensional spin-1
2

representation of

the Lorentz group based on [25]. It turns out to be possible to write this representa-

tion as the product of two SU(2) groups by splitting the Dirac spinor into two Weyl

spinors. The dotted and undotted notation, which can be used to describe these Weyl

spinors, is also discussed. These ideas are especially important as a background for

the understanding of supersymmetry.

A.3.1 Reducibility and Weyl spinors

The block diagonal form (A.13) of the generators of the four dimensional spin-1
2

representation of the Lorentz group is a clear indication of reducibility. Furthermore,

since the block diagonal components are simply multiples of the Pauli matrices, which

are the generators of SU(2), this spin-1
2

representation is equivalent to SU(2)×SU(2).

Hence we can split up any 4-component Dirac spinor as follows:

Ψ =

(
ψα

χ̄α̇

)
, (A.20)
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with ψα and χ̄α̇ two 2-component Weyl spinors1, where α and α̇ take on the values

1 and 2. Each of these Weyl spinors lives in a different SU(2).

A.3.2 Dotted and undotted notation

Let us now briefly discuss the dotted and undotted notation describing these two

Weyl spinors. The idea is simply to distinguish between the two SU(2)’s in the spin-
1
2

representation of the Lorentz group. Weyl spinors with undotted indices live in the

first SU(2), whereas Weyl spinors with dotted indices live in the second SU(2).

The Weyl spinors ψα and χ̄α̇ were introduced when we rewrote the Dirac spinor Ψ

in a reducible form (A.20). We shall also define

ψ̄α̇ ≡ (ψα)∗ and χα ≡
(
χ̄α̇
)∗
, (A.21)

and note that we can raise and lower indices using the anti-symmetric matrices

εαβ = εα̇β̇ =

(
0 −1

1 0

)
and εαβ = εα̇β̇ =

(
0 1

−1 0

)
. (A.22)

Hence ψα = εαβψ
β and ψα = εαβψβ, and similarly for the dotted coordinates.

Now, at this point, we should notice that, due to the anti-symmetric nature of the

above matrices, the contraction of two spinors ψχ is ambiguous because ψαχα =

εαβψβχα = −εβαψβχα = −ψβχ
β. Thus we define

ψχ ≡ ψαχα and ψ̄χ̄ ≡ ψ̄α̇χ̄
α̇. (A.23)

If the components of the spinors are simply commuting complex numbers, then ψχ =

−χψ and ψ̄χ̄ = −χ̄ψ̄. However, if these components are Grassmannian numbers

which anti-commute (for example, when we are working with spinor supercharges or

the coordinates in superspace), then the two effects cancel and we find that ψχ = χψ

and ψ̄χ̄ = χ̄ψ̄.

1Technically, it is not quite accurate to call ψα and χ̄α̇ Weyl spinors, although it appears to be
common jargon. A Weyl spinor is an eigenstate of the chirality operator γ5, which is diagonal in
the Weyl basis. Therefore, in this basis, we find that left-handed and right-handed Weyl spinors

take the form

(
ψα

0

)
and

(
0
χ̄α̇

)
respectively.
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We shall now briefly mention the idea of a Majorana spinor, which is a Dirac spinor

Ψ equal to its charge conjugate ΨC ≡ −iγ0γ2Ψ̄T . Any Majorana spinor takes the

form

ΨM =

(
ψα

ψ̄α̇

)
, (A.24)

where ψα is a 2-component Weyl spinor. Therefore any Weyl spinor can be used to

construct a Majorana spinor and vice versa.

Let us consider the gamma matrices in the Weyl basis, which can be rewritten as

γµ =

(
0 σµ

σ̄µ 0

)
, (A.25)

where σµ = (12, ~σ) and σ̄µ = (12,−~σ). These matrices σµ and σ̄µ carry mixed dotted

and undotted indices because they take a spinor in one SU(2) to a spinor in the other

SU(2). More explicitly, σµ and σ̄µ carry the indices (σµ)αβ̇ and (σ̄µ)α̇β.

The generators Sµν of the four dimensional spin-1
2

representation of the Lorentz group

can also be rewritten as follows:

Sµν = i

(
σµν 0

0 σ̄µν

)
, (A.26)

in terms of the matrices

σµν ≡ 1

4
(σµσ̄ν − σν σ̄µ) and σ̄µν ≡ 1

4
(σ̄µσν − σ̄νσµ) , (A.27)

which carry the unmixed indices (σµν) β
α and (σ̄µν)α̇

β̇ respectively.
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Appendix B

SU(3) Spin Chains and the

Algebraic Bethe Ansatz

B.1 SU(3) Spin Chain Formalism

It is our aim, in this section, to review the formal description of a closed SU(3)

spin chain based on discussions in [9, 16, 48, 49, 50, 51]. We shall first construct

the Hilbert space in which such a spin chain lives, together with the relevant Hamil-

tonian. The R-matrix shall then be introduced and shown to satisfy the Yang-Baxter

equation (which results in the integrability of the system). We shall hence define the

monodromy and transfer matrices. The Hamiltonian and momentum operators can

be written in terms of this transfer matrix and thus all three operators can be simul-

taneously diagonalized.

B.1.1 Hilbert space and observables

A spin chain of length J is an ordered collection of J vector spin states. We are

especially interested in the case of an SU(3) spin chain1, which consists of a collection

of 3-component complex vectors (spin-1 states). A natural way in which to rigorously

1The Hamiltonian is invariant under SU(3) transformations of the component spin states.
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describe such a spin chain is in terms of a tensor product

x1 ⊗ x2 ⊗ . . .⊗ xJ , with xi ε C3. (B.1)

For example, the tensor product of two vectors x and y is defined as (x⊗ y)i1i2 =

xi1yi2 , where the first index indicates the block row and the second the row within

the block. More explicitly,

x⊗ y =

 x1

x2

x3

⊗
 y1

y2

y3

 =



x1y1

x1y2

x1y3

x2y1

x2y2

x2y3

x3y1

x3y2

x3y3



. (B.2)

This definition can be generalized in the obvious way to tensor products of an arbi-

trary number of 3-component complex vectors.

Thus an SU(3) spin chain can be represented by a state in the Hilbert space C3 ⊗
C3 ⊗ . . . ⊗ C3, which consists of a tensor product of J three dimensional complex

vector spaces. Each of these C3 vector spaces represents a site in the spin chain.

For a closed spin chain, the identification of the first site is arbitrary and thus cyclic

permutations of our vectors should result in an equivalent state.

We usually work in a basis made up of tensor products of different numbers, J1, J2

and J3 respectively, and different combinations of the C3 basis states
1

0

0

 ,

0

1

0

 ,

0

0

1


 . (B.3)

The total spin chain length is J = J1 + J2 + J3. We shall find that the eigenstates

of the spin chain Hamiltonian (the algebraic Bethe ansatz states) have well-defined

J1, J2 and J3. In other words, they consist of combinations of states, each of which

involves a tensor product containing a fixed number of each basis state.

Operators acting on any spin chain state can be represented by a tensor product of

3× 3 matrices. For example, the tensor product of two matrices M and N is defined
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as (M ⊗N)i1i2
j1j2

= M i1
j1
N i2

j2
, so that

M ⊗N =

 M1
1 M1

2 M1
3

M2
1 M2

2 M2
3

M3
1 M3

2 M3
3

⊗
 N1

1 N1
2 N1

3

N2
1 N2

2 N2
3

N3
1 N3

2 N3
3



=



M1
1N

1
1 M1

1N
1
2 M1

1N
1
3 M1

2N
1
1 M1

2N
1
2 M1

2N
1
3 M1

3N
1
1 M1

3N
1
2 M1

3N
1
3

M1
1N

2
1 M1

1N
2
2 M1

1N
2
3 M1

2N
2
1 M1

2N
2
2 M1

2N
2
3 M1

3N
2
1 M1

3N
2
2 M1

3N
2
3

M1
1N

3
1 M1

1N
3
2 M1

1N
3
3 M1

2N
3
1 M1

2N
3
2 M1

2N
3
3 M1

3N
3
1 M1

3N
3
2 M1

3N
3
3

M2
1N

1
1 M2

1N
1
2 M2

1N
1
3 M2

2N
1
1 M2

2N
1
2 M2

2N
1
3 M2

3N
1
1 M2

3N
1
2 M2

3N
1
3

M2
1N

2
1 M2

1N
2
2 M2

1N
2
3 M2

2N
2
1 M2

2N
2
2 M2

2N
2
3 M2

3N
2
1 M2

3N
2
2 M2

3N
2
3

M2
1N

3
1 M2

1N
3
2 M2

1N
3
3 M2

2N
3
1 M2

2N
3
2 M2

2N
3
3 M2

3N
3
1 M2

3N
3
2 M2

3N
3
3

M3
1N

1
1 M3

1N
1
2 M3

1N
1
3 M3

2N
1
1 M3

2N
1
2 M3

2N
1
3 M3

3N
1
1 M3

3N
1
2 M3

3N
1
3

M3
1N

2
1 M3

1N
2
2 M3

1N
2
3 M3

2N
2
1 M3

2N
2
2 M3

2N
2
3 M3

3N
2
1 M3

3N
2
2 M3

3N
2
3

M3
1N

3
1 M3

1N
3
2 M3

1N
3
3 M3

2N
3
1 M3

2N
3
2 M3

2N
3
3 M3

3N
3
1 M3

3N
3
2 M3

3N
3
3



.

(B.4)

Again, for each pair of indices, the first index is a block index and the second is the

index within the block.

A basic set of observables consists of the identity matrix, together with

λi
n = 1⊗ . . .⊗ λi ⊗ . . .⊗ 1. (B.5)

1st nth J th

Here λi is the ith Gell-Mann matrix in the nth position, with i ε {1, . . . , 8} and

n ε {1, . . . , J}. The Gell-Mann matrices are the generators of SU(3). The spin chain

Hamiltonian can be constructed out of these basic observables. For convenience,

however, and following [9], we shall rather make use of the states em
n (k) to describe

the system. These are given by

em
n (k) = 1⊗ . . .⊗ em

n ⊗ . . .⊗ 1, (B.6)

1st kth J th

where (em
n )i

j = δmiδnj, with m,n ε {1, 2, 3}, is a 3× 3 matrix with a 1 in the mth row

and nth column as its only non-zero component.
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B.1.2 Hamiltonian

The Hamiltonian of our closed SU(3) spin chain is

H =
λ

8π2

J∑
k=1

Hk,k+1 with Hk,k+1 = 1k,k+1 − Pk,k+1, (B.7)

where J+1 ≡ 1 (since our spin chain is closed), and 1k,k+1 and Pk,k+1 are the identity

and permutation matrices respectively2. These can be written in terms of our basic

observables em
n (k) and em

n (k + 1) as follows:

1k,k+1 =
3∑

n,m=1

em
m(k)en

n(k + 1) and Pk,k+1 =
3∑

n,m=1

em
n (k)en

m(k + 1). (B.8)

Thus, using the definition (B.6), each part of our spin chain Hamiltonian can be

written as

Hk,k+1 = e11 ⊗ e22 + e22 ⊗ e11 − e12 ⊗ e21 − e21 ⊗ e12

+ e33 ⊗ e11 + e11 ⊗ e33 − e31 ⊗ e13 − e13 ⊗ e31

+ e22 ⊗ e33 + e33 ⊗ e22 − e23 ⊗ e32 − e32 ⊗ e23, (B.9)

which, explicitly, gives

Hk,k+1 =



0 0 0 0 0 0 0 0 0

0 1 0 -1 0 0 0 0 0

0 0 1 0 0 0 -1 0 0

0 -1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 -1 0

0 0 -1 0 0 0 1 0 0

0 0 0 0 0 -1 0 1 0

0 0 0 0 0 0 0 0 0



, (B.10)

where the action on all but the kth and (k + 1)th spaces has been suppressed (since

it is trivial). The components of this matrix are (Hk,k+1)
ikik+1

jkjk+1
= δik

jk
δ

ik+1

jk+1
− δik+1

jk
δik
jk+1

.

2The components of these identity and permutation matrices in the kth and (k+ 1)th spaces are
(1k,k+1)

ikik+1
jkjk+1

= δik
jk
δ

ik+1
jk+1

and (Pk,k+1)
ikik+1
jkjk+1

= δ
ik+1
jk

δik
jk+1

respectively.
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B.1.3 R-matrix and the Yang-Baxter equation

We shall now discuss the R-matrix, which is given by

Ri,j (u) ≡ u1i,j + iPi,j, (B.11)

where u is a complex parameter and i, j ε 0, 1, . . . , J . This matrix is defined on the

tensor product C3⊗C3⊗ . . .⊗C3 of J + 1 three dimensional complex vector spaces.

The 0th space is called the auxillary space and is an extra C3 vector space that we

have included in our tensor product. The other J vector spaces are called quantum

spaces. The R-matrix acts non-trivially only on the sites i and j.

More explicitly, the action of the R-matrix on the ith and jth spaces is

Ri,j (λ) =



u+ i 0 0 0 0 0 0 0 0

0 u 0 i 0 0 0 0 0

0 0 u 0 0 0 i 0 0

0 i 0 u 0 0 0 0 0

0 0 0 0 u+ i 0 0 0 0

0 0 0 0 0 u 0 i 0

0 0 i 0 0 0 u 0 0

0 0 0 0 0 i 0 u 0

0 0 0 0 0 0 0 0 u+ i



. (B.12)

Furthermore, it satisfies the Yang-Baxter equation

Ri,j (u− v)Ri,k (u)Rj,k (v) = Rj,k (v)Ri,k (u)Ri,j (u− v) , (B.13)

where i 6= j 6= k. This can be proved as follows:

Ri,j (u− v)Ri,k (u)Rj,k (v)

= [(u− v) 1i,j + iPi,j] [u1i,k + iPi,k] [v1j,k + iPj,k]

= (u− v)uv1 + iuvPi,j + i (u− v) vPi,k + i (u− v)uPj,k − vPi,jPi,k

− uPi,jPj,k − (u− v)Pi,kPj,k − iPi,jPi,kPj,k. (B.14)

Rj,k (v)Ri,k (u)Ri,j (u− v)

= [v1j,k + iPj,k] [u1i,k + iPi,k] [(u− v) 1i,j + iPi,j]

= vu (u− v) 1 + iu (u− v)Pj,k + iv (u− v)Pi,k + ivuPi,j − (u− v)Pj,kPi,k

− uPj,kPi,j − vPi,kPi,j − iPj,kPi,kPi,j. (B.15)

121



Looking at the terms depending on u and v, and also at the constant term, one finds

that the above expressions are identically equal if and only if the following three

equations are satisfied:

Pi,jPj,k + Pi,kPj,k = Pj,kPi,k + Pj,kPi,j, (B.16)

Pi,jPi,k − Pi,kPj,k = Pi,kPi,j − Pj,kPi,k, (B.17)

Pi,jPi,kPj,k = Pj,kPi,kPi,j. (B.18)

We can easily check these equations are valid by considering their action on an

arbitrary state x0 ⊗ x1 ⊗ ... ⊗ xJ , which, using short-hand similar to the notation

of the S3 permutation group, we shall call our base state (ijk)3. The permutation

operators act on this state by permuting xi, xj and xk (or i, j and k in our short-

hand). Either side of the first equation becomes (kij) + (jki), the right-hand side

and left-hand side of the second equation are both zero, and the last equation results

in the state (kji) on both sides.

B.1.4 Monodromy and transfer matrices

We shall now introduce the L-matrix, which is defined as Li,j (u) = Ri,j

(
u− i

2

)
.

We are particularly interested in those L-matrices which act non-trivially on the

auxillary space and one of the quantum spaces. (It is these L-matrices which will be

used to construct the monodromy matrix.) Thus, setting i = 0 and j = n, where

n ε {1, . . . , J}, we can write

L0,n(u) = R0,n

(
u− i

2

)
≡

 (αn) (u) (βn)2 (u) (βn)3 (u)

(γn)2 (u) (χn)2
2 (u) (χn)2

3 (u)

(γn)3 (u) (χn)3
2 (u) (χn)3

3 (u)

 , (B.19)

which is a matrix in the auxillary space 0. The components are operators in the

quantum spaces and are given by

(αn) (u) = 1⊗ . . .⊗ α(u)⊗ . . .⊗ 1,

(βn)i (u) = 1⊗ . . .⊗ βi(u)⊗ . . .⊗ 1,

(γn)i (u) = 1⊗ . . .⊗ γi(u)⊗ . . .⊗ 1,

(χn)i
j (u) = 1⊗ . . .⊗ χi

j(u)⊗ . . .⊗ 1, (B.20)

1st nth J th

3Elements of the permutation group are usually written in terms of 1, 2 and 3, instead of i, j
and k.
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where

α(u) =

u+ i
2

0 0

0 u− i
2

0

0 0 u− i
2

 , (B.21)

β2(u) =

0 0 0

i 0 0

0 0 0

 , β3(u) =

0 0 0

0 0 0

i 0 0

 , (B.22)

γ2(u) =

0 i 0

0 0 0

0 0 0

 , γ3(u) =

0 0 i

0 0 0

0 0 0

 , (B.23)

χ2
2(u) =

u−
i
2

0 0

0 u+ i
2

0

0 0 u− i
2

 , χ2
3(u) =

0 0 0

0 0 0

0 i 0

 ,

χ3
2(u) =

0 0 0

0 0 i

0 0 0

 , χ3
3(u) =

u−
i
2

0 0

0 u− i
2

0

0 0 u+ i
2

 . (B.24)

Now let us consider two L-matrices La,n and Lb,n, which act on different auxillary

spaces a and b4. Setting i = a, j = b and k = n in the Yang-Baxter equation, and

changing u→ u− i
2

and v → v − i
2
, we obtain

Ra,b(u− v)La,n(u)Lb,n(v) = Lb,n(v)La,n(u)Ra,b(u− v). (B.25)

The monodromy matrix is now defined as

T0(u) = L0,J(u) . . . L0,2(u)L0,1(u), (B.26)

and thus, using our previous results for L0,n(u), we find that

T0(u) ≡

A(u) B2(u) B3(u)

C2(u) D2
2(u) D2

3(u)

C3(u) D3
2(u) D3

3(u)

 (B.27)

=

 (αJ) (u) (βJ)2 (u) (βJ)3 (u)

(γJ)2 (u) (χJ)2
2 (u) (χJ)2

3 (u)

(γJ)3 (u) (χJ)3
2 (u) (χJ)3

3 (u)

 . . .

 (α1) (u) (β1)2 (u) (β1)3 (u)

(γ1)
2 (u) (χ1)

2
2 (u) (χ1)

2
3 (u)

(γ1)
3 (u) (χ1)

3
2 (u) (χ1)

3
3 (u)

 .

4We extend the space on which they act to a tensor product over both auxillary spaces a and b,
and the quantum spaces i.e. a tensor product of J + 2 C3 vector spaces.

123



This monodromy matrix satisfies

Ra,b(u− v)Ta(u)Tb(v) = Tb(v)Ta(u)Ra,b(u− v), (B.28)

where a and b are again two different auxillary spaces. This can be proved using

the Yang-Baxter equation (B.25) for the L-matrix and the fact that two L-matrices

commute if the subscripts are distinct. The proof is as follows:

Ra,b(u− v)Ta(u)Tb(v)

= Ra,b(u− v)La,J(u) . . . La,2(u)La,1(u)Lb,J(v) . . . Lb,2(v)Lb,1(v)

= Ra,b(u− v)La,J(u)Lb,J(v) . . . La,2(u)Lb,2(v)La,1(u)Lb,1(v)

= Lb,J(v)La,J(u)Ra,b(u− v)La,J−1(u)Lb,J−1(v) . . . La,1(u)Lb,1(v)

= Lb,J(v)La,J(u)Lb,J−1(v)La,J−1(u)Ra,b(u− v)La,J−2(u)Lb,J−2(v) . . . La,1(u)Lb,1(v)

= . . .

= Lb,J(v)La,J(u) . . . Lb,2(v)La,2(u)Lb,1(v)La,1(u)Ra,b(u− v)

= Lb,J(v) . . . Lb,2(v)Lb,1(v)La,J(u) . . . La,2(u)La,1(u)Ra,b(u− v)

= Tb(v)Ta(u)Ra,b(u− v). (B.29)

The transfer matrix is finally defined by taking the trace of the monodromy matrix

over the auxillary space as follows:

t(u) ≡ Tr0 [T0(u)] = A(u) +Dl
l(u), (B.30)

to obtain an operator, which acts only on the quantum spaces.

B.1.5 Momentum and Hamiltonian operators in terms of the

transfer matrix

The momentum operator can be written in terms of the transfer matrix as

P =
1

i
log
[
i−J t

(
i
2

)]
, (B.31)

which shall be checked as follows:

eiP = i−J t
(

i
2

)
= Tr0 [P0,J . . .P0,2P0,1]

= Tr0 [P1,2P2,3 . . .PJ−1,JPJ,0]

= P1,2P2,3 . . .PJ−1,J , (B.32)
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since P0,J . . .P0,2P0,1 = P1,2P2,3 . . .PJ−1,JPJ,0 and Tr0 (P0,J) = 1. The first result

can be verified simply by looking at the action of either side of the expression on an

arbitrary state x0⊗x1⊗ . . .⊗xJ , which in our short-hand we shall call (0, 1, . . . , J −
1, J). Both sides of the equation change this state into (1, 2, . . . , J, 0). The last result

can be trivially checked by writing the action of the permutation operator on the 0th

and J th spaces in matrix form.

We see that eiP = P12P23 . . .PJ−1,J is a translation by one site along the (closed)

spin chain. Thus P generates translations and is, indeed, the momentum operator.

The Hamiltonian operator can also be written in terms of the transfer matrix as

H =
λ

8π2

[
J − i

d

du
log t(u)

∣∣∣∣
u= i

2

]
, (B.33)

which is proved as follows:

First let us calculate[
t
(

i
2

)]−1
=
{
iJ Tr0[P0,J . . .P0,2P0,1]

}−1

= i−J {Tr0 [P1,2P2,3 . . .PJ−1,JPJ,0]}−1

= i−J {P1,2P2,3 . . .PJ−1,J}−1

= i−J PJ,J−1 . . .P3,2P2,1, (B.34)

and also

i
dt(u)

du

∣∣∣∣
u= i

2

= i
d

du

[
Tr0

{[(
u− i

2

)
10,J + iP0,J

]
. . .
[(
u− i

2

)
10,1 + iP0,1

]}]∣∣∣∣
u= i

2

= i
J∑

n=1

Tr0

{[(
u− i

2

)
10,J + iP0,J

]
. . . ̂[(

u− i
2

)
10,n + iP0,n

]
. . .
[(
u− i

2

)
10,1 + iP0,1

]}∣∣
u= i

2

= iJ
J∑

n=1

Tr0

[
P0,J . . . P̂0,n . . .P0,2P0,1

]
= iJ [P2,3P3,4 . . .PJ−1,J ] + iJ

J−1∑
n=2

[P1,2P2,3 . . .Pn−1,n+1 . . .PJ−1,J ]

+ iJ [P1,2P23 . . .PJ−2,J−1] . (B.35)
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Hence we obtain

i
d

du
log t(u)

∣∣∣∣
u= i

2

= i
dt(u)

du

∣∣∣∣
u= i

2

[
t
(

i
2

)]−1

= [P2,3P3,4 . . .PJ−1,J ] [PJ,J−1 . . .P3,2P2,1]

+
J−1∑
n=2

[P1,2P2,3 . . .Pn−1,n+1 . . .PJ−1,J ] [PJ,J−1 . . .P3,2P2,1]

+ [P1,2P2,3 . . .PJ−2,J−1] [PJ,J−1 . . .P3,2P2,1]

= P1,2 + PJ,1 +
J−1∑
n=2

Pn,n+1 =
J∑

n=1

Pn,n+1, (B.36)

where we define J + 1 ≡ 1 (since our spin chain is closed). In moving from line

2 to line 3, we check the first and last terms explicitly (by considering their action

on an arbitrary state), and then notice that Pn−1,n+1Pn+1,nPn,n−1 = Pn,n+1 for n =

2, . . . , J − 1 and the other terms commute around this expression and cancel.

Therefore (B.33) implies that

H =
λ

8π2

{
J −

J∑
n=1

Pn,n+1

}
=

λ

8π2

{
J∑

n=1

[1n,n+1 − Pn,n+1]

}
, (B.37)

which agrees with our original expression (B.7) for the spin chain Hamiltonian.

B.2 Algebraic Bethe ansatz

In this section, we construct states which diagonalize the transfer matrix (and thus

also the Hamiltonian and momentum operators) using the so-called algebraic Bethe

ansatz. These states are dependent, as shall be seen, on two sets of parameters

{u1,1, . . . , u1,M} and {u2,1, . . . , u2,L}, where M = J2 + J3 and L = J3. It is demon-

strated that these Bethe parameters must satisfy the nested Bethe ansatz equations.

Furthermore, we construct the momentum and energy eigenvalues, and also show

that there is a cyclicity condition, which is due to the fact that a translation by one

site along our closed spin chain must be equivalent to the identity. These ideas are

described in the excellent reviews [50, 51] for SU(2) spin chains. We have extended

these concepts to SU(3) spin chains, with the aid of the more terse results in [9, 49].
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B.2.1 Fundamental commutation relations

The fundamental commutation relations are a set of constraints satisfied by the

operator components A(u), Bi(u), C
i(u) and Di

j(u) of the monodromy matrix (B.27),

and are an indirect result of the Yang-Baxter equation. Let us now briefly review

the derivation of these relations:

Our monodromy matrix (B.27) must satisfy (B.28). The R-matrix Ra,b (u− v) can

be written out in matrix form over the spaces a and b, together with the expressions

Ta(u)Tb(v) and Tb(v)Ta(u). Plugging these matrices into (B.28) yields a number

of constraints on A(u), Bi(u), C
i(u) and Di

j(u), among which are the fundamental

commutation relations

A(u)Bi1(v) =

(
u− v − i

u− v

)
Bi1(v)A(u) +

(
i

u− v

)
Bi1(u)A(v), (B.38)

Bi1(u)Bi2(v) =

{ (
u−v

u−v+i

)
Bi1(v)Bi2(u) +

(
i

u−v+i

)
Bi2(u)Bi1(v) if i1 6= i2

Bi2(v)Bi1(u) if i1 = i2,
(B.39)

Dk1
i1

(u)Bi2(v) =

{
Bi2(v)D

k1
i1

(u) +
(

i
u−v

) [
Bi1(v)D

k1
i2

(u)−Bi1(u)D
k1
i2

(v)
]

if i1 6= i2(
u−v+i
u−v

)
Bi2(v)D

k1
i1

(u) +
( −i

u−v

)
Bi2(u)D

k1
i1

(v) if i1 = i2,

(B.40)

where our indices may take on the possible values 2 and 3.

We shall now define the matrix R̃i1i2
j1j2

(u), which acts on a tensor product of two

complex two dimensional C2 vector spaces, as follows:

R̃i1i2
j1j2

(u) =

{
(u+ i) δi1

j1
δi2
j2

if i1 = i2

u δi1
j1
δi2
j2

+ i δi2
j1
δi1
j2

if i1 6= i2,
(B.41)

or, alternatively, in matrix form

R̃(u) =


u+ i 0 0 0

0 u i 0

0 i u 0

0 0 0 u+ i

 . (B.42)

This can be written as R̃(u) = u1 + iP and is thus, by analogy, the R-matrix of an

SU(2) spin chain (confined to the two spaces on which it acts non-trivially).
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Hence the fundamental commutation relations can be written as

A(u)Bi1(v) =

(
u− v − i

u− v

)
Bi1(v)A(u) +

(
i

u− v

)
Bi1(u)A(v), (B.43)

Bi1(u)Bi2(v) =

(
1

u− v + i

)
R̃j1j2

i1i2
(u− v)Bj2(v)Bj1(u), (B.44)

Dk1
i1

(u)Bi2(v) =

(
1

u− v

)
R̃j1j2

i1i2
(u− v)Bj2(v)D

k1
j1

(u) +

(
−i
u− v

)
Bi1(u)D

k1
i2

(v),

(B.45)

with i1, i2, j1, j2, k1 ε {2, 3}.

B.2.2 Algebraic Bethe ansatz and the eigenvalues of the

transfer matrix

Let us first define the ground state of our SU(3) spin chain. This consists of a chain

of J spin-up vectors as follows:

ω+ =

1

0

0

⊗ . . .⊗

1

0

0

 . (B.46)

This is an eigenstate of the spin chain Hamiltonian (B.7) with eigenvalue zero. In

fact, this is true for any combination of J identical states, but we have specifically

chosen this ground state ω+ from which to construct our algebraic Bethe ansatz.

We would now like to establish the action of the operator components of the mon-

odromy matrix on this ground state. Thus let us write

T0 (u)ω+ =

A(u) B1(u) B1(u)

C1(u) D2
2(u) D2

3(u)

C2(u) D3
2(u) D3

3(u)

ω+ (B.47)

=

 (αJ) (u) (βJ)2 (u) (βJ)3 (u)

(γJ)2 (u) (χJ)2
2 (u) (χJ)2

3 (u)

(γJ)3 (u) (χJ)3
2 (u) (χJ)3

3 (u)

 . . .

 (α1) (u) (β1)2 (u) (β1)3 (u)

(γ1)
2 (u) (χ1)

2
2 (u) (χ1)

2
3 (u)

(γ1)
3 (u) (χ1)

3
2 (u) (χ1)

3
3 (u)

ω+.

We can see from the definition (B.20) that (αn) (u), (βn)i (u), (γn)i (u) and (χn)i
j (u)

act non-trivially only on the nth quantum space and we shall thus look at the action
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of α(u), βi(u), γ
i(u) and χi

j(u), shown explicitly in (B.21)-(B.24), on the nth site of

the ground state:

α(u)

1

0

0

 =
(
u+ i

2

)1

0

0

 , (B.48)

β2(u)

1

0

0

 = i

0

1

0

 , β3(u)

1

0

0

 = i

0

0

1

 , (B.49)

γi(u)

1

0

0

 = 0 (B.50)

χi
j(u)

1

0

0

 =
(
u− i

2

)
δi
j

1

0

0

 . (B.51)

Multiplying out the matrices in equation (B.47) and applying the result to the ground

state, we therefore find that

A (u)ω+ =
(
u+ i

2

)J
ω+, (B.52)

Ci (u)ω+ = 0, (B.53)

Di
j (u)ω+ =

(
u− i

2

)J
δi
j ω+, (B.54)

and Bi (u) act by lowering the spin of one site in our ground state. In other words,

B2 (u)ω+ and B3 (u)ω+ are combinations of states involving the tensor product of

one

0

1

0

 vector and J−1

1

0

0

 vectors, and one

0

0

1

 vector and J−1

1

0

0

 vectors

respectively.

These results now lead us to introduce the first part of the algebraic Bethe ansatz for

the eigenstates of the transfer matrix as follows:

Φ (u1,1, . . . , u1,M) = f i1,...,iMBi1 (u1,1) . . . BiM (u1,M)ω+, (B.55)

where f i1,...,iM are complex coefficients and {u1,1, . . . , u1,M} is the first set of Bethe

parameters. Here we have used our operators Bi (u) to lower the spin of M sites in

the ground state and thus M = J2 + J3.
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Now let us apply each part of the transfer matrix t(u) = A(u)+Dl
l(u) to this algebraic

Bethe ansatz state:

Firstly,

A (u) Φ (u1,1, . . . , u1,M) = f i1,...,iMA (u)Bi1 (u1,1) . . . BiM (u1,M)ω+, (B.56)

and hence, using the fundamental commutation relation (B.43), we find that

A (u) Φ (u1,1, . . . , u1,M)

= f i1,...,iM

(
u− u1,1 − i

u− u1,1

)
Bi1 (u1,1)A (u)Bi2 (u1,2) . . . BiM (u1,M)ω+

+f i1,...,iM

(
i

u− u1,1

)
Bi1 (u)A (u1,1)Bi2 (u1,2) . . . BiM (u1,M)ω+

= f i1,...,iM

(
u− u1,1 − i

u− u1,1

)(
u− u1,2 − i

u− u1,2

)
Bi1(u1,1)Bi2 (u1,2)A (u) . . . BiM (u1,M)ω+

+f i1,...,iM

(
i

u− u1,1

)(
u1,1 − u1,2 − i

u1,1 − u1,2

)
Bi1 (u)Bi2 (u1,2)A (u1,1) . . . BiM (u1,M)ω+

+f i1,...,iM

(
u− u1,1 − i

u− u1,1

)(
i

u− u1,2

)
Bi1 (u1,1)Bi2 (u)A (u1,2) . . . BiM (u1,M)ω+

+f i1,...,iM

(
i

u− u1,1

)(
i

u1,1 − u1,2

)
Bi1 (u)Bi2 (u1,1)A (u1,2) . . . BiM (u1,M)ω+.

(B.57)

In this way, we can continue to move A through the Bi operators until it is the

right-most operator and we can use the expression (B.52) to determine its action on

the ground state ω+. This gives the following result

A (u) Φ (u1,1, . . . , u1,M)

= f i1,...,iM

[
M∏

k=1

(
u− u1,k − i

u− u1,k

)](
u+ i

2

)J
Bi1 (u1,1) . . . BiM (u1,M)ω+

+f i1,...,iM

[
M∏

k=2

(
u1,1 − u1,k − i

u1,1 − u1,k

)](
i

u− u1,1

)(
u1,1 + i

2

)J
Bi1 (u)Bi2 (u1,2) . . . BiM (u1,M)ω+

130



+f i1,...,iM

[
M∏

k=3

(
u1,2 − u1,k − i

u1,2 − u1,k

)](
u1,2 + i

2

)J
×
{(

u− u1,1 − i

u− u1,1

)(
i

u− u1,2

)
Bi1 (u1,1)Bi2 (u)Bi3 (u1,3) . . . BiM (u1,M)ω+

+

(
i

u− u1,1

)(
i

u1,1 − u1,2

)
Bi1 (u)Bi2 (u1,1)Bi3 (u1,3) . . . BiM (u1,M)ω+

}
+ . . . . (B.58)

The other terms involve the operators A(u1,3), A(u1,4), . . . , A(u1,M) acting on the

ground state ω+.

Secondly,

Dl
l (u) Φ (u1,1, . . . , u1,M) = f i1,...,iMDl

l (u)Bi1 (u1,1) . . . BiM (u1,M)ω+, (B.59)

and hence, using the fundamental commutation relation (B.45), it follows that

Dl
l (u) Φ (u1,1, . . . , u1,M)

= f i1,...,iM

(
1

u− u1,1

)
R̃j1k1

li1
(u− u1,1)

×Bk1 (u1,1)D
l
j1

(u)Bi2 (u1,2) . . . BiM (u1,M)ω+

+ f i1,...,iM

(
−i

u− u1,1

)
Bl (u)D

l
i1

(u1,1)Bi2 (u1,2) . . . BiM (u1,M)ω+

= f i1,...,iM

(
1

u− u1,1

)(
1

u− u1,2

)
R̃j2k2

j1i2
(u− u1,2) R̃

j1k1

li1
(u− u1,1)

×Bk1 (u1,1)Bk2 (u1,2)D
l
j2

(u)Bi3 (u1,3) . . . BiM (u1,M)ω+

+ f i1,...,iM

(
−i

u− u1,1

)(
1

u1,1 − u1,2

)
R̃j1k2

i1i2
(u1,1 − u1,2)

×Bl (u)Bk2 (u1,2)D
l
j1

(u1,1)Bi3 (u1,3) . . . BiM (u1,M)ω+

+ f i1,...,iM

(
1

u− u1,1

)(
−i

u− u1,2

)
R̃j1k1

li1
(u− u1,1)

×Bk1 (u1,1)Bj1 (u)Dl
i2

(u1,2)Bi3 (u1,3) . . . BiM (u1,M)ω+

+ f i1,...,iM

(
−i

u− u1,1

)(
−i

u1,1 − u1,2

)
×Bl (u)Bi1 (u1,1)D

l
i2

(u1,2)Bi3 (u1,3) . . . BiM (u1,M)ω+, (B.60)
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and so on. Again we move the Dl
l operator through all the Bi operators in our

algebraic Bethe ansatz state and then use equation (B.54) to determine how it acts

on the ground state ω+. Thus we find that

Dl
l (u) Φ (u1,1, . . . , u1,M)

= f i1,...,iM

[
M∏

k=1

(
1

u− u1,k

)](
u− i

2

)J
× R̃lkM

jM−1iM
(u− u1,M) . . . R̃j2k2

j1i2
(u− u1,2) R̃

j1k1

li1
(u− u1,1)

×Bk1 (u1,1)Bk2 (u1,2) . . . BkM
(u1,M)ω+

+ f i1,...,iM

[
M∏

k=2

(
1

u1,1 − u1,k

)](
u1,1 − i

2

)J ( −i
u− u1,1

)
× R̃lkM

jM−1iM
(u1,1 − u1,M) . . . R̃j3k3

j2i3
(u1,1 − u1,3) R̃

j2k2

i1i2
(u1,1 − u1,2)

×Bl (u)Bk2 (u1,2)Bk3 (u1,3) . . . BkM
(u1,M)ω+

+ f i1,...,iM

[
M∏

k=3

(
1

u1,2 − u1,k

)](
u1,2 − i

2

)J
×
{(

1

u− u1,1

)(
−i

u− u1,2

)
× R̃lkM

jM−1iM
(u1,2 − u1,M) . . . R̃j4k4

j3i4
(u1,2 − u1,4) R̃

j3k3

i2i3
(u1,2 − u1,3) R̃

j1k1

li1
(u− u1,1)

×Bk1 (u1,1)Bj1 (u)Bk3 (u1,3)Bk4 (u1,4) . . . BkM
. . . (u1,M)ω+

+

(
−i

u− u1,1

)(
−i

u1,1 − u1,2

)
× R̃lkM

jM−1iM
(u1,2 − u1,M) . . . R̃j4k4

j3i4
(u1,2 − u1,4) R̃

j3k3

i2i3
(u1,2 − u1,3)

× Bl (u)Bi1 (u1,1)Bk3 (u1,3)Bk4 (u1,4) . . . BkM
(u1,M)ω+}

+ . . . . (B.61)

The first terms in the expressions forA(u)Φ (u1,1, . . . , u1,M) andDl
l(u)Φ (u1,1, . . . , u1,M)

will be used to derive the eigenvalues of the transfer matrix t(u) = A(u) + Dl
l(u).

The requirement that the sum of all the other terms should cancel will give us the

first nested Bethe ansatz equation. This is really a collection of M equations, which

will be discussed in detail later and will ensure that each two corresponding ‘extra

terms’ sum to zero.
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For now, let us assume that only the first terms are relevant and try to determine

the eigenvalues Λ (u) of the transfer matrix. We shall also redefine u→ u− i
2

at this

point for convenience. Thus we obtain

t (u) Φ(u1,1, . . . , u1,M) =
[
A(u) +Dl

l(u)
]
Φ (u1,1, . . . , u1,M)

= f i1,...,iM

[
M∏

k=1

u− u1,k − 3i
2

u− u1,k − i
2

]
uJ Bi1 (u1,1)Bi2 (u1,2) . . . BiM (u1,M)ω+

+ f i1,...,iM

[
M∏

k=1

1

u− u1,k − i
2

]
(u− i)J

× R̃lkM
jM−1iM

(
u− u1,M − i

2

)
. . . R̃j2k2

j1i2

(
u− u1,2 − i

2

)
R̃j1k1

li1

(
u− u1,1 − i

2

)
×Bk1 (u1,1)Bk2 (u1,2) . . . BkM

(u1,M)ω+. (B.62)

We can see immediately that for the right-hand side of this equation to be propor-

tional to Φ (u1,1, . . . , u1,M), we must require that

R̃lkM
jM−1iM

(
u− u1,M − i

2

)
. . . R̃j2k2

j1i2

(
u− u1,2 − i

2

)
R̃j1k1

li1

(
u− u1,1 − i

2

)
×f i1,...,iMBk1 (u1,1)Bk2 (u1,2) . . . BkM

(u1,M)ω+

= Λ̃ (u) f i1,...,iMBi1 (u1,1)Bi2 (u1,2) . . . BiM (u1,M)ω+, (B.63)

where Λ̃ (u) is some complex function.

The trick is to think of f i1,...,iM (in the basis Bi1 (u1,1)Bi2 (u1,2) . . . BiM (u1,M)ω+) as

an SU(2) spin chain state of length M on the tensor product C2 ⊗ C2 ⊗ . . . ⊗ C2

of M two dimensional complex vector spaces. The kth site of the SU(2) spin chain

is represented by the index ik, so that ik = 2 and 3 represent spin-up and spin-

down states. The number of spin-up and spin-down states in the SU(2) spin chain

correspond to J2 and J3 respectively. Our problem now becomes to diagonalize

t̃(u) = Tr0

[
R̃0,M

(
u− u1,M − i

2

)
. . . R̃0,2

(
u− u1,2 − i

2

)
R̃0,1

(
u− u1,1 − i

2

)]
, (B.64)

where R̃0,n(u) is the R-matrix on C2 ⊗ C2 ⊗ . . . ⊗ C2 acting non-trivially on the

auxillary space 0 and the quantum space n. We have thus reduced our problem by

one dimension and must deal with almost the same equation now on a tensor product

of C2 complex vector spaces.

As in the SU(3) case, we find that t̃(u) is the trace of the SU(2) monodromy matrix,
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which can be written as a matrix over the auxillary space as follows:

T̃ (u) =

(
Ã(u) B̃(u)

C̃(u) D̃(u)

)
(B.65)

=

(
α̃M(u− u1,M) β̃M(u− u1,M)

γ̃M(u− u1,M) δ̃M(u− u1,M)

)
. . .

(
α̃1(u− u1,1) β̃1(u− u1,1)

γ̃1(u− u1,1) χ̃1(u− u1,1)

)
,

where

α̃n(u) = 1⊗ . . .⊗ α̃(u)⊗ . . .⊗ 1,

β̃n(u) = 1⊗ . . .⊗ β̃(u)⊗ . . .⊗ 1,

γ̃n(u) = 1⊗ . . .⊗ γ̃(u)⊗ . . .⊗ 1,

χ̃n(u) = 1⊗ . . .⊗ χ̃(u)⊗ . . .⊗ 1, (B.66)

1st nth M th

and we define

α̃(u) =

(
u+ i

2
0

0 u− i
2

)
, β̃(u) =

(
0 0

i 0

)
,

γ̃(u) =

(
0 i

0 0

)
, χ̃(u) =

(
u− i

2
0

0 u+ i
2

)
. (B.67)

Now, as before, we shall define the ground state of our SU(2) spin chain to consist

entirely of spin-up states as follows:

ω̃+ =

(
1

0

)
⊗ . . .⊗

(
1

0

)
. (B.68)

Thus we obtain

Ã (u) ω̃+ =
M∏

k=1

(
u− u1,k +

i

2

)
ω̃+, (B.69)

C̃ (u) ω̃+ = 0, (B.70)

D̃ (u) ω̃+ =
M∏

k=1

(
u− u1,k −

i

2

)
ω̃+, (B.71)

and B̃ (u) ω̃+ gives a combination of states with one spin-down vector.

We shall again use the B̃ operator to construct the second part of the algebraic Bethe

ansatz for the eigenstates f i1,...,iM of our SU(2) transfer matrix as follows:

f i1,...,iM ≡ Φ̃ (u2,1, . . . , u2,L) = B̃ (u2,1) . . . B̃ (u2,L) ω̃+, (B.72)
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where {u2,1, u2,2, . . . , u2,L} is the second set of Bethe parameters. Here we have

lowered the spin of L sites in our SU(2) spin chain so that L = J3.

The fundamental commutation relations in this SU(2) case are

Ã (u) B̃ (v) =

(
u− v − i

u− v

)
B̃ (v) Ã (u) +

(
i

u− v

)
B̃ (u) Ã (v) , (B.73)

B̃ (u) B̃ (v) = B̃ (v) B̃ (u) , (B.74)

D̃ (u) B̃ (v) =

(
u− v + i

u− v

)
B̃ (v) D̃ (u) +

(
−i
u− v

)
B̃ (u) D̃ (v) . (B.75)

The derivation of the above relations for SU(2) spin chains is identical to the deriva-

tion in the SU(3) case. We have a similar R-matrix, which satisfies an identical

Yang-Baxter equation and so on.

The action of each part of the SU(2) transfer matrix t̃(u) = Ã(u)+D̃(u) on the state

Φ̃(u2,1, . . . , u2,L) shall now be determined:

We first find that

Ã (u) Φ̃ (u2,1, . . . , u2,L) = Ã (u) B̃ (u2,1) . . . B̃ (u2,L) ω̃+, (B.76)

and thus, using the fundamental commutation relation (B.73),

Ã (u) Φ̃ (u2,1, . . . , u2,L)

=

(
u− u2,1 − i

u− u2,1

)
B̃ (u2,1) Ã (u) B̃ (u2,2) . . . B̃ (u2,L) ω̃+

+

(
i

u− u2,1

)
B̃ (u) Ã (u2,1) B̃ (u2,2) . . . B̃ (u2,L) ω̃+

=

(
u− u2,1 − i

u− u2,1

)(
u− u2,2 − i

u− u2,2

)
B̃ (u2,1) B̃ (u2,2) Ã (u) B̃ (u2,3) . . . B̃ (u2,L) ω̃+

+

(
i

u− u2,1

)(
u2,1 − u2,2 − i

u2,1 − u2,2

)
B̃ (u) B̃ (u2,2) Ã (u2,1) B̃ (u2,3) . . . B̃ (u2,L) ω̃+

+

(
i

u− u2,2

)(
u2,2 − u2,1 − i

u2,2 − u2,1

)
B̃ (u) B̃ (u2,2) Ã (u2,1) B̃ (u2,3) . . . B̃ (u2,L) ω̃+.

(B.77)
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Continuing in this way and finally using (B.69), we obtain

Ã(u)Φ̃ (u2,1, . . . , u2,L)

=

[
L∏

k=1

(
u− u2,k − i

u− u2,k

)][ M∏
l=1

(
u− u1,l + i

2

)]
Φ̃ (u2,1, . . . , u2,L)

+
L∑

j=1

(
i

u− u2,j

) L∏
k=1
k 6=j

(
u2,j − u2,k − i

u2,j − u2,k

)[ M∏
l=1

(
u2,j − u1,l + i

2

)]

× B̃ (u2,L) . . . ̂̃B (u2,j) . . . B̃ (u2,1) B̃ (u) ω̃+. (B.78)

We can similarly determine, using the fundamental commutation relation (B.75) and

(B.71) for the action of the operator D̃(u) on the ground state ω̃+, that

D̃ (u) Φ̃ (u2,1, . . . , u2,L)

=

[
L∏

k=1

(
u− u2,k + i

u− u2,k

)][ M∏
l=1

(
u− u1,l − i

2

)]
Φ̃ (u2,1, . . . , u2,L)

+
L∑

j=1

(
−i

u− u2,j

) L∏
k=1
k 6=j

(
u2,j − u2,k + i

u2,j − u2,k

)[ M∏
l=1

(
u2,j − u1,l − i

2

)]

× B̃ (u2,L) . . . ̂̃B (u2,j) . . . B̃(u2,1)B̃ (u) ω̃+. (B.79)

Again it is only the first terms in equations (B.78) and (B.79) that are relevant when

calculating the eigenvalue of our SU(2) transfer matrix, which is given by

Λ̃(u) =

[
L∏

k=1

(
u− u2,k − i

u− u2,k

)][ M∏
l=1

(
u− u1,l + i

2

)]

+

[
L∏

k=1

(
u− u2,k + i

u− u2,k

)][ M∏
l=1

(
u− u1,l − i

2

)]
. (B.80)

We shall ensure that the other terms not proportional to Φ̃ (u2,1, . . . , u2,L) cancel out

by enforcing the second nested Bethe ansatz equation (which is actually a collection

of L equations - one for each unwanted pair of terms in our sum).

Now, substituting this expression into (B.62), we find that the eigenvalues of the
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SU(3) transfer matrix are

Λ (u) =

[
M∏

k=1

(
u− u1,k − 3i

2

u− u1,k − i
2

)]
uJ (B.81)

+

[
M∏

k=1

(
1

u− u1,k − i
2

)]
(u− i)J

{[
L∏

k=1

(
u− u2,k − i

u− uk

)][ M∏
l=1

(
u− u1,l + i

2

)]

+

[
L∏

k=1

(
u− u2,k + i

u− uk

)][ M∏
l=1

(
u− u1,l − i

2

)]}
,

in terms of the two sets of Bethe parameters {u1,1, . . . , u1,M} and {u1,2, . . . , u1,L},
which define our algebraic Bethe ansatz state.

B.2.3 Energy and momentum eigenvalues and the cyclicity

condition

We find, using (B.33) for the Hamiltonian in terms of the transfer matrix and taking

into account our previous redefinition of u, that the energy eigenvalues are

E =
λ

8π2

[
J − i

d

du
log Λ(u)

∣∣∣∣
u=i

]
=

λ

8π2

[
J − i

d

du
log

{
M∏

k=1

(
u− u1,k − 3i

2

u− u1,k − i
2

)
uJ

}∣∣∣∣∣
u=i

]

=
λ

8π2

[
J + J log u− i

d

du

{[
M∑

k=1

log
(
u− u1,k − 3i

2

)
− log

(
u− u1,k − i

2

)]}∣∣∣∣∣
u=i

]

=
λ

8π2
i

M∑
k=1

[
1

u1,k + i
2

− 1

u1,k − i
2

]
, (B.82)

which finally gives

E =
λ

8π2

M∑
k=1

1

u2
1,k + 1

4

. (B.83)

The energy eigenvalues corresponding to our algebraic Bethe ansatz states are thus

directly dependent only on the first set of Bethe parameters. Indirectly, however, the

two sets of Bethe parameters are interdependent, as shall be seen, due to the nested

Bethe ansatz equations.
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Lastly, we should mention that there exists also a cyclicity condition. This can be

explained by considering the eigenvalues of the momentum operator (B.31), which

are given by

P =
1

i
log
[
i−J Λ (i)

]
=

1

i

M∑
k=1

log

(
u1,k + i

2

u1,k − i
2

)
. (B.84)

We must insist that there should be no change to any spin chain state when we

translate by one site along our closed spin chain. Therefore we shall require that

eiP = 1, which implies the cyclicity condition

M∏
k=1

(
u1,k + i

2

u1,k − i
2

)
= 1, (B.85)

on our first set of Bethe parameters {u1,1, . . . , u1,M}.

B.2.4 Nested Bethe ansatz equations

The two Bethe ansatz equations shall now be derived by requiring that the sum of the

‘extra terms’ in (B.58) and (B.61), and (B.78) and (B.79), which are not proportional

to Φ (u1,1, . . . , u1,M) and Φ̃ (u2,1, . . . , u2,L) respectively, cancel out.

The first nested Bethe ansatz equation comes from looking at (B.58) and (B.61). Let

us consider the j = 1 equation, which corresponds to our first pair of ‘extra terms’.

For these first terms to cancel out, we must require that[
M∏

k=2

(
u1,1 − u1,k − i

u1,1 − u1,k

)](
i

u− u1,1 − i
2

)(
u1,1 + i

2

)J
× f i1,...,iMBi1

(
u− i

2

)
Bi2(u1,2) . . . BiM (u1,M)

+

[
M∏

k=2

(
1

u1,1 − u1,k

)](
u1,1 − i

2

)J ( −i
u− u1,1 − i

2

)
× R̃lkM

jM−1iM
(u1,1 − u1,M) . . . R̃j3k3

j2i3
(u1,1 − u1,2) R̃

j2k2

i1i2
(u1,1 − u1,2)

× f i1,...,iMBl

(
u− i

2

)
Bk2 (u1,2)Bk3 (u1,3) . . . BkM

(u1,M)ω+ = 0, (B.86)

where we have taken into account our redefinition of u. To calculate the last term in

this expression we need to determine

R̃1,M (u1,1 − u1,M) . . . R̃1,3 (u1,1 − u1,3) R̃1,2 (u1,1 − u1,2) Φ̃ (u2,1, . . . , u2,L)
∣∣∣
u=u1,1+ i

2

.

(B.87)
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With this in mind, let us consider us consider the SU(2) transfer matrix evaluated

at u = u1,1 + i
2

as follows:

(−i) t̃
(
u1,1 + i

2

)
= −i Tr0

{
R̃0,M (u1,1 − u1,M) . . . R̃0,2 (u1,1 − u1,2) R̃0,1 (0)

}
= Tr0 {[(u1,1 − u1,M) 10,M + iP0,M ] . . . [(u1,1 − u1,2) 10,2 + iP0,2]P0,1}

= Tr0 {(u1,1 − u1,M) . . . (u1,1 − u1,2)P0,1

+
M∑

k=2

(u1,1 − u1,M) . . . ̂(u1,1 − u1,k) . . . (u1,1 − u1,2)P0,kP0,1 + . . .}

= (u1,1 − u1,M) . . . (u1,1 − u1,2)

+
M∑

k=2

(u1,1 − u1,M) . . . ̂(u1,1 − u1,k) . . . (u1,1 − u1,2)P1,k + . . .

= [(u1,1 − u1,M) 11,M + iP1,M ] . . . [(u1,1 − u1,3) 11,3 + iP1,3] [(u1,1 − u1,2) 11,2 + iP1,2]

= R̃1,M (u1,1 − u1,M) . . . R̃1,3 (u1,1 − u1,3) R̃1,2 (u1,1 − u1,2) . (B.88)

Thus we see that the expression (B.87) can be written as

R̃1,M (u1,1 − u1,M) . . . R̃1,3 (u1,1 − u1,3) R̃1,2 (u1,1 − u1,2) Φ̃ (u2,1, . . . , u2,L)
∣∣∣
u=u1,1+ i

2

=
{

(−i) t̃
(
u1,1 + i

2

)
Φ̃ (u2,1, . . . , u2,L)

}∣∣∣
u=u1,1+ i

2

= (−i) Λ̃
(
u1,1 + i

2

)
Φ̃ (u2,1, . . . , u2,L)

∣∣∣
u=u1,1+ i

2

, (B.89)

so that both sides of (B.86) are proportional to the SU(2) algebraic Bethe ansatz

state Φ̃ (u2,1, . . . , u2,L) evaluated at u = u1,1 + i
2

and thus we need only equate the

coefficients of this state. Therefore, substituting the eigenvalues of the SU(2) transfer

matrix (B.80) into our constraint (B.86), we obtain[
M∏

k=2

(u1,1 − u1,k − i)

] (
u1,1 + i

2

)J
=
(
u1,1 − i

2

)J
(−i) Λ̃

(
u1,1 + i

2

)

=
(
u1,1 − i

2

)J [ L∏
l=1

(
u1,1 − u2,l − i

2

u1,1 − u2,l + i
2

)][ M∏
k=2

(u1,1 − u1,k + i)

]
. (B.90)
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Hence the first Bethe ansatz equation for j = 1 is(
u1,1 + i

2

u1,1 − i
2

)J

=

[
M∏

k=2

(
u1,1 − u1,k + i

u1,1 − u1,k − i

)][ L∏
l=1

(
u1,1 − u2,l − i

2

u1,1 − u2,l + i
2

)]
. (B.91)

I shall not prove this equation for the other j = 2, . . . ,M values, since the expressions

get more and more complicated. However, a similar equation can be obtained in these

cases. The first nested Bethe ansatz equation, for every j ε {1, . . . ,M}, is thus given

by

(
u1,j + i

2

u1,j − i
2

)J

=

 M∏
k=1
k 6=j

(
u1,j − u1,k + i

u1,j − u1,k − i

)[ L∏
l=1

(
u1,j − u2,l − i

2

u1,j − u2,l + i
2

)]
. (B.92)

The second nested Bethe ansatz equation shall now be derived from (B.78) and (B.79).

For the ‘extra terms’ to be zero, we must require that, for all j ε {1, . . . , L},

(
i

u− u2,j

) L∏
k=1
k 6=j

(
u2,j − u2,k − i

u2,j − u2,k

)[ M∏
l=1

(
u2,j − u1,l + i

2

)]

× B̃ (u2,1) . . .
̂̃B (u2,j) . . . B̃ (u2,L) B̃ (u) ω̃+

+

(
−i

u− u2,j

) L∏
k=1
k 6=j

(
u2,j − u2,k + i

u2,j − u2,k

)[ M∏
l=1

(
u2,j − u1,l − i

2

)]

× B̃ (u2,1) . . .
̂̃B (u2,j) . . . B̃ (u2,L) B̃ (u) ω̃+ = 0, (B.93)

We can now equate the coefficients of the states in the above set of equations to zero.

This leads to the second nested Bethe ansatz equation, which is given by L∏
k=1
k 6=j

(
u2,j − u2,k + i

u2,j − u2,k − i

)[ M∏
l=1

(
u1,l − u2,j + i

2

u1,l − u2,j − i
2

)]
= 1, (B.94)

for every j ε {1, . . . , L}.

These nested Bethe ansatz equations, together with the cyclicity condition, are the

constraints which must be satisfied by the two sets of Bethe parameters for our

algebraic Bethe ansatz state to be an eigenstate of the closed SU(3) spin chain

Hamiltonian.
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Appendix C

Details of Calculations for

Semiclassical Lax Pairs

C.1 Derivation of the Undeformed Equations of

Motion from the Landau-Lifshitz Lax Pair

C.1.1 Derivation of the Landau-Lifshitz equation

We shall now derive the Landau-Lifshitz equation from the relevant Lax pair rep-

resentation based on discussions in [9, 20]. The Landau-Lifshitz Lax pair is given

by

Dα = ∂α − Aα, (C.1)

where

A0 =
1

6
[N, ∂1N ]x+

3i

2
Nx2, (C.2)

A1 = iNx. (C.3)

The zero curvature condition, which must now be satisfied, is

∂0A1 − ∂1A0 − [A0, A1] = 0. (C.4)

Note also that N satisfies the constraints Tr(N) = 0 and N2 = N + 2, due to the

definition Nij = 3U∗
i Uj − δij, where Ui = rie

i
˜̃
φi , and the constraint

3∑
i=1

r2
i = 1.
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Now this equation (C.4) can be written in terms of N as follows:

i∂0Nx−
1

6
∂1 [N, ∂1N ]x− 3i

2
∂1Nx

2 − i

6
[[N, ∂1N ] , N ]x2 = 0, (C.5)

and thus, equating different orders in x,

i∂0N =
1

6
∂1 [N, ∂1N ] , (C.6)

3

2
∂1N = −1

6
[[N, ∂1N ] , N ] . (C.7)

Equation (C.7) follows from the constraint N2 = N + 2, whereas (C.6) is equivalent

to the Landau-Lifshitz equation of motion

i∂0N =
1

6

[
N, ∂2

1N
]
. (C.8)

C.1.2 Derivation of the undeformed equations of motion from

the Landau-Lifshitz equation

Let us now express this Landau-Lifshitz equation in terms of the undeformed radial

and angular coordinates ri and ˜̃φi respectively. The definition of N in component

form is

Nij = 3rirje
i
�

˜̃
φj− ˜̃

φi

�
− δij. (C.9)

Thus we obtain

∂0Nij = 3

[
(ṙirj + riṙj) + irirj

(
˙̃̃
φj −

˙̃̃
φi

)]
e

i
�

˜̃
φj− ˜̃

φi

�
, (C.10)

∂1Nij = 3
[(
r′irj + rir

′
j

)
+ irirj

(
˜̃φ′j −

˜̃φ′i

)]
e

i
�

˜̃
φj− ˜̃

φi

�
, (C.11)

and hence also

∂2
1Nij = 3e

i
�

˜̃
φj− ˜̃

φi

� [(
r′′i rj + 2r′ir

′
j + rir

′′
j

)
+ 2i (rirj)

′
(

˜̃φ′j −
˜̃φ′i

)
+ irirj

(
˜̃φ′′j −

˜̃φ′′i

)
− rirj

(
˜̃φ′j −

˜̃φ′i

)2
]
. (C.12)

Therefore, using the explicit expression

[
N, ∂2

1N
]
ij

=
3∑

k=1

Nik∂
2
1Nkj −

3∑
k=1

∂2
1NikNkj, (C.13)
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it follows that[
N, ∂2

1N
]
ij

= 9e
i
�

˜̃
φj− ˜̃

φi

�{[
rir

′′
j − rjr

′′
i

]
+ 2i

[
ri

3∑
k=1

rk (rkrj)
′
(

˜̃φ′j −
˜̃φ′k

)
− rj

3∑
k=1

rk (rirk)
′
(

˜̃φ′k −
˜̃φ′i

)]

+ i

[
rirj

3∑
k=1

r2
k

(
˜̃φ′′j −

˜̃φ′′k

)
− rirj

3∑
k=1

r2
k

(
˜̃φ′′k −

˜̃φ′′i

)]

−

[
rirj

3∑
k=1

r2
k

(
˜̃φ′j −

˜̃φ′k

)2

− rirj

3∑
k=1

r2
k

(
˜̃φ′k −

˜̃φ′i

)2
]}

. (C.14)

We can now substitute the definition of N , together with (C.10) and (C.14), into the

Landau-Lifshitz equation (C.8) to obtain

i (ṙirj + riṙj)− rirj

(
˙̃̃
φj −

˙̃̃
φi

)

=
1

2

{[
rir

′′
j − rjr

′′
i

]
+ 2i

[
ri

3∑
k=1

rk (rkrj)
′
(

˜̃φ′j −
˜̃φ′k

)
− rj

3∑
k=1

rk (rirk)
′
(

˜̃φ′k −
˜̃φ′i

)]

+ i

[
rirj

3∑
k=1

r2
k

(
˜̃φ′′j −

˜̃φ′′k

)
− rirj

3∑
k=1

r2
k

(
˜̃φ′′k −

˜̃φ′′i

)]

−

[
rirj

3∑
k=1

r2
k

(
˜̃φ′j −

˜̃φ′k

)2

− rirj

3∑
k=1

r2
k

(
˜̃φ′k −

˜̃φ′i

)2
]}

. (C.15)

Therefore, separating the real and imaginary parts of the above expression,

Re: rjr
′′
i − rir

′′
j = 2rirj

(
˙̃̃
φj −

˙̃̃
φi

)
+ rirj

3∑
k=1

r2
k

(
˜̃φ′i −

˜̃φ′k

)2

− rirj

3∑
k=1

r2
k(

˜̃φ′j −
˜̃φ′k)

2,

(C.16)

Im: ṙirj + riṙj = rj

3∑
k=1

rk (rirk)
′
(

˜̃φ′i −
˜̃φ′k

)
+ ri

3∑
k=1

rk (rjrk)
′
(

˜̃φ′j −
˜̃φ′k

)
+

1

2
rirj

3∑
k=1

r2
k

(
˜̃φ′′i −

˜̃φ′′k

)
+

1

2
rirj

3∑
k=1

r2
k

(
˜̃φ′′j −

˜̃φ′′k

)
, (C.17)

which can be compared with equations (5.88) and (5.89), and seen to be equivalent

to the undeformed equations of motion.
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C.2 Compatibility Condition

The compatibility condition for the transformation (5.105) and (5.106) relating the

undeformed and γi-deformed angular coordinates φi and ˜̃φi respectively is

2
3∑

l,m=1

εilmγ̄lrmṙm = ∂1

{
3∑

l,m=1

εilmr
2
i r

2
l γ̄m (φ′i − φ′l − εilmγ̄m) (C.18)

− 1

2

3∑
l,m=1

εilmr
2
l r

2
m (γ̄l + γ̄m) (φ′l − φ′m − εilmγ̄i)

}
,

whereas the γi-deformed equation of motion (5.102) gives

2
3∑

l,m=1

εilmγ̄lrmṙm

= ∂1

{
3∑

k,l,m=1

εilmγ̄lr
2
mr

2
k

[(
φ′m +

3∑
n,s=1

εmnsγ̄nr
2
s

)
−

(
φ′k +

3∑
n,s=1

εknsγ̄nr
2
s

)]}
. (C.19)

First we shall evaluate

{1} ≡

{
3∑

l,m=1

εilmr
2
i r

2
l γ̄m (φ′i − φ′l − εilmγ̄m)− 1

2

3∑
l,m=1

εilmr
2
l r

2
m(γ̄l + γ̄m)(φ′l − φ′m − εilmγ̄i)

}
,

(C.20)

for i = 1, 2 and 3 as follows:

{1}i=1 = r2
1r

2
2γ̄3 (φ′1 − φ′2 − γ̄3) + r2

1r
2
3γ̄2 (φ′3 − φ′1 − γ̄2)− r2

2r
2
3 (γ̄2 + γ̄3)(φ

′
2 − φ′3 − γ̄1) ,

(C.21)

{1}i=2 = r2
1r

2
2γ̄3 (φ′1 − φ′2 − γ̄3) + r2

2r
2
3γ̄1 (φ′2 − φ′3 − γ̄1)− r2

1r
2
3 (γ̄1 + γ̄3) (φ′3 − φ′1 − γ̄2) ,

(C.22)

{1}i=3 = r2
1r

2
3γ̄2 (φ′3 − φ′1 − γ̄2) + r2

2r
2
3γ̄1 (φ′2 − φ′3 − γ̄1)− r2

1r
2
2 (γ̄1 + γ̄2) (φ′1 − φ′2 − γ̄3) .

(C.23)

We shall now determine

{2} ≡

{
3∑

k,l,m=1

εilmγ̄lr
2
mr

2
k

[(
φ′m +

3∑
n,s=1

εmnsγ̄nr
2
s

)
−

(
φ′k +

3∑
n,s=1

εknsγ̄nr
2
s

)]}
,

(C.24)
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for i = 1, 2 and 3 as follows:

{2}i=1 = γ̄2r
2
3

(
φ′3 + γ̄1r

2
2 − γ̄2r

2
1

)
− γ̄3r

2
2

(
φ′2 + γ̄3r

2
1 − γ̄1r

2
3

)
− γ̄2r

2
3

(
r2
1φ

′
1 + r2

2φ
′
2 + r2

3φ
′
3

)
+ γ̄3r

2
2

(
r2
1φ

′
1 + r2

2φ
′
2 + r2

3φ
′
3

)
= γ̄2r

2
3

[(
r2
1 + r2

2 + r2
3

)
φ′3 + γ̄1r

2
2 − γ̄2r

2
1

]
− γ̄3r

2
2

[(
r2
1 + r2

2 + r2
3

)
φ′2 + γ̄3r

2
1 − γ̄1r

2
3

]
− γ̄2r

2
3

(
r2
1φ

′
1 + r2

2φ
′
2 + r2

3φ
′
3

)
+ γ̄3r

2
2

(
r2
1φ

′
1 + r2

2φ
′
2 + r2

3φ
′
3

)
= r2

1r
2
2γ̄3 (φ′1 − φ′2 − γ̄3) + r2

1r
2
3γ̄2 (φ′3 − φ′1 − γ̄2)− r2

2r
2
3 (γ̄2 + γ̄3)(φ

′
2 − φ′3 − γ̄1) ,

(C.25)

{2}i=2 = γ̄3r
2
1

(
φ′1 + γ̄2r

2
3 − γ̄3r

2
2

)
− γ̄1r

2
3

(
φ′3 + γ̄1r

2
2 − γ̄2r

2
1

)
− γ̄3r

2
1

(
r2
1φ

′
1 + r2

2φ
′
2 + r2

3φ
′
3

)
+ γ̄1r

2
3

(
r2
1φ

′
1 + r2

2φ
′
2 + r2

3φ
′
3

)
= γ̄3r

2
1

[(
r2
1 + r2

2 + r2
3

)
φ′1 + γ̄2r

2
3 − γ̄3r

2
2

]
− γ̄1r

2
3

[(
r2
1 + r2

2 + r2
3

)
φ′3 + γ̄1r

2
2 − γ̄2r

2
1

]
− γ̄3r

2
1

(
r2
1φ

′
1 + r2

2φ
′
2 + r2

3φ
′
3

)
+ γ̄1r

2
3

(
r2
1φ

′
1 + r2

2φ
′
2 + r2

3φ
′
3

)
= r2

1r
2
2γ̄3 (φ′1 − φ′2 − γ̄3) + r2

2r
2
3γ̄1 (φ′2 − φ′3 − γ̄1)− r2

1r
2
3 (γ̄1 + γ̄3) (φ′3 − φ′1 − γ̄2) ,

(C.26)

{2}i=3 = γ̄1r
2
2

(
φ′2 + γ̄3r

2
1 − γ̄1r

2
3

)
− γ̄2r

2
1

(
φ′1 + γ̄2r

2
3 − γ̄3r

2
2

)
− γ̄1r

2
2

(
r2
1φ

′
1 + r2

2φ
′
2 + r2

3φ
′
3

)
+ γ̄2r

2
1

(
r2
1φ

′
1 + r2

2φ
′
2 + r2

3φ
′
3

)
= γ̄1r

2
2

[(
r2
1 + r2

2 + r2
3

)
φ′2 + γ̄3r

2
1 − γ̄1r

2
3

]
− γ̄2r

2
1

[(
r2
1 + r2

2 + r2
3

)
φ′1 + γ̄2r

2
3 − γ̄3r

2
2

]
− γ̄1r

2
2

(
r2
1φ

′
1 + r2

2φ
′
2 + r2

3φ
′
3

)
+ γ̄2r

2
1

(
r2
1φ

′
1 + r2

2φ
′
2 + r2

3φ
′
3

)
= r2

1r
2
3γ̄2 (φ′3 − φ′1 − γ̄2) + r2

2r
2
3γ̄1 (φ′2 − φ′3 − γ̄1)− r2

1r
2
2 (γ̄1 + γ̄2) (φ′1 − φ′2 − γ̄3) ,

(C.27)

using the constraint
3∑

i=1

r2
i = 1. We have thus show that {1} = {2} and therefore the

compatibility condition follows from the γi-deformed equations of motion.
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C.3 Derivation of the γi-deformed Equations of

Motion from the γi-deformed Lax Pair

The gauged γi-deformed Lax pair is given by

D̃γi
α = ∂α −Rγi

α , (C.28)

where

(Rγi
0 )ij =

3

2

(
rir

′
j − r′irj

)
x+

3i

2
rirj

[(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
+

(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)]
x

− 3irirj

3∑
k=1

r2
k

(
φ′k +

3∑
l,m=1

εklmγlr
2
m

)
x+

3i

2
(3rirj − δij)x

2

+ i

{
φ̇i +

3∑
l,m=1

εilmr
2
i r

2
l γ̄m (φ′i − φ′l − εilmγ̄m)

− 1

2

3∑
l,m=1

εilmr
2
l r

2
m (γ̄l + γ̄m) (φ′l − φ′m − εilmγ̄i)

}
δij, (C.29)

(Rγi
1 )ij = i (3rirj − δij)x+ i

(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
δij. (C.30)

We must now insist that the zero curvature condition

∂0Rγi
1 − ∂1Rγi

0 − [Rγi
0 ,R

γi
1 ] = 0 (C.31)

is satisfied. Let us substitute (C.29) and (C.30) into this condition and equate dif-

ferent orders of the spectral parameter x as follows:

O(x0) : At zeroth order in the spectral parameter we obtain

i∂0

(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
δij − i∂1

{
φ̇i +

3∑
l,m=1

εilmr
2
i r

2
l γ̄m (φ′i − φ′l − εilmγ̄m)

−1

2

3∑
l,m=1

εilmr
2
l r

2
m (γ̄l + γ̄m) (φ′l − φ′m − εilmγ̄i)

}
δij = 0 (C.32)
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and therefore

∂0

(
3∑

l,m=1

εilmγ̄lr
2
m

)
= ∂1

{
3∑

l,m=1

εilmr
2
i r

2
l γ̄m (φ′i − φ′l − εilmγ̄m)

− 1

2

3∑
l,m=1

εilmr
2
l r

2
m (γ̄l + γ̄m) (φ′l − φ′m − εilmγ̄i)

}
. (C.33)

This is just the compatibility condition for the transformation from the undeformed

equations of motion to the γi-deformed equations of motion.

O(x1) : At first order in the spectral parameter we find that

3i (ṙirj + riṙj)−
3

2

(
rir

′′
j − r′′i rj

)

−3i

2
∂1

{
rirj

[(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
+

(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)]}

+3i∂1

{
rirj

3∑
k=1

r2
k

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)}
+ 3rirj

(
φ̇i − φ̇j

)

+3rirj

{
3∑

l,m=1

εilmr
2
i r

2
l γ̄m (φ′i − φ′l − εilmγ̄m)− 1

2

3∑
l,m=1

εilmr
2
l r

2
m (γ̄l + γ̄m) (φ′l − φ′m − εilmγ̄i)

}

−3rirj

{
3∑

l,m=1

εjlmr
2
j r

2
l γ̄m

(
φ′j − φ′l − εjlmγ̄m

)
− 1

2

3∑
l,m=1

εjlmr
2
l r

2
m (γ̄l + γ̄m) (φ′l − φ′m − εjlmγ̄j)

}

+
3i

2

(
rir

′
j − r′irj

) [(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
−

(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)]

−3

2
rirj

[(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
+

(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)]

×

[(
φ′i +

3∑
n,s=1

εinsγ̄nr
2
s

)
−

(
φ′j +

3∑
n,s=1

εjnsγ̄nr
2
s

)]

+3rirj

3∑
k=1

r2
k

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)[(
φ′i +

3∑
n,s=1

εinsγ̄nr
2
s

)
−

(
φ′j +

3∑
n,s=1

εjnsγ̄nr
2
s

)]

= 0. (C.34)

Thus, considering the real and imaginary parts of the above expression separately,
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we obtain

Re: r′′i rj − rir
′′
j = 2rirj

(
φ̇j − φ̇i

)

−2rirj

{
3∑

l,m=1

εilmr
2
i r

2
l γ̄m (φ′i − φ′l − εilmγ̄m)− 1

2

3∑
l,m=1

εilmr
2
l r

2
m (γ̄l + γ̄m) (φ′l − φ′m − εilmγ̄i)

}

+2rirj

{
3∑

l,m=1

εjlmr
2
j r

2
l γ̄m

(
φ′j − φ′l − εjlmγ̄m

)
− 1

2

3∑
l,m=1

εjlmr
2
l r

2
m(γ̄l + γ̄m) (φ′l − φ′m − εjlmγ̄j)

}

+rirj

(φ′i +
3∑

l,m=1

εilmγ̄lr
2
m

)2

−

(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)2


−2rirj

3∑
k=1

r2
k

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)[(
φ′i +

3∑
n,s=1

εinsγ̄nr
2
s

)
−

(
φ′j +

3∑
n,s=1

εjnsγ̄nr
2
s

)]
, (C.35)

Im: ṙirj + riṙj =
1

2
∂1

{
rirj

[(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
+

(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)]}

− ∂1

{
rirj

3∑
k=1

r2
k

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)}

− 1

2

(
rir

′
j − r′irj

) [(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
−

(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)]
. (C.36)

Now the real equation (C.35) is equivalent to

rjr
′′
i − rir

′′
j = 2rirj

(
φ̇j − φ̇i

)

−2rirj

{
3∑

l,m=1

εilmr
2
i r

2
l γ̄m (φ′i − φ′l − εilmγ̄m)− 1

2

3∑
l,m=1

εilmr
2
l r

2
m (γ̄l + γ̄m) (φ′l − φ′m − εilmγ̄i)

}

+2rirj

{
3∑

l,m=1

εjlmr
2
j r

2
l γ̄m

(
φ′j − φ′l − εjlmγ̄m

)
− 1

2

3∑
l,m=1

εjlmr
2
l r

2
m (γ̄l + γ̄m) (φ′l − φ′m − εjlmγ̄j)

}

+rirj

3∑
k=1

r2
k

[(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
−

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)]2

−rirj

3∑
k=1

r2
k

[(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)
−

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)]2

, (C.37)
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which can be seen by multiplying out the last two squared terms and making use of

the constraint
3∑

i=1

r2
i = 1. Furthermore, the imaginary equation (C.36) can be written

as

ṙirj + riṙj =
1

2

(
rir

′
j + r′irj

) [(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
+

(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)]

+
1

2
rirj

[(
φ′′i + 2

3∑
l,m=1

εilmγ̄lrmr
′
m

)
+

(
φ′′j + 2

3∑
l,m=1

εjlmγ̄lrmr
′
m

)]

−
(
rir

′
j + r′irj

) 3∑
k=1

r2
k

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)

− 2rirj

3∑
k=1

rkr
′
k

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)
− rirj

3∑
k=1

r2
k

(
φ′′k + 2

3∑
l,m=1

εklmγ̄lrmr
′
m

)

− 1

2

(
rir

′
j − r′irj

) [(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
−

(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)]
(C.38)

= r′irj

(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
+ rir

′
j

(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)

− 2rirj

3∑
k=1

rkr
′
k

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)
− r′irj

3∑
k=1

r2
k

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)

− rir
′
j

3∑
k=1

r2
k

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)
+

1

2
rirj

(
φ′′i + 2

3∑
l,m=1

εilmγ̄lrmr
′
m

)

+
1

2
rirj

(
φ′′j + 2

3∑
l,m=1

εjlmγ̄lrmr
′
m

)
− rirj

3∑
k=1

r2
k

(
φ′′k + 2

3∑
l,m=1

εklmγ̄lrmr
′
m

)
, (C.39)

which implies, if one uses the constraint
3∑

i=1

r2
i = 1 and thus

3∑
i=1

rir
′
i = 0, that

ṙirj + riṙj = rj

3∑
k=1

rk (rirk)
′

[(
φ′i +

3∑
l,m=1

εilmγ̄lr
2
m

)
−

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)]

+ ri

3∑
k=1

rk (rjrk)
′

[(
φ′j +

3∑
l,m=1

εjlmγ̄lr
2
m

)
−

(
φ′k +

3∑
l,m=1

εklmγ̄lr
2
m

)]

+
1

2
rirj

3∑
k=1

r2
k

[(
φ′′i + 2

3∑
l,m=1

εilmγ̄lrmr
′
m

)
−

(
φ′′k + 2

3∑
l,m=1

εklmγ̄lrmr
′
m

)]

+
1

2
rirj

3∑
k=1

r2
k

[(
φ′′j + 2

3∑
l,m=1

εjlmγ̄lrmr
′
m

)
−

(
φ′′k + 2

3∑
l,m=1

εklmγ̄lrmr
′
m

)]
. (C.40)
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Finally, we notice that equations (C.37) and (C.40) are the same as (5.103) and

(5.104), and are thus equivalent to the γi-deformed equations of motion.

O(x2) : At second order in the spectral parameter, one obtains an equation which

is trivially satisfied, again using the constraint
3∑

i=1

r2
i = 1 and hence that

3∑
i=1

rir
′
i = 0.
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