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Abstract

A non-supersymmetric ;-deformed AdS/CFT correspondence has recently been con-
jectured by Frolov. A detailed description of both sides of this proposed gauge/string
duality is presented. The analogy that exists between single trace gauge theory op-
erators in the SU(3) sector and ~;-deformed SU(3) integrable spin chains is also
discussed. Frolov, Roiban and Tseytlin’s leading order comparison between the ;-
deformed spin chain coherent state action and ~;-deformed string worldsheet action
in the semiclassical limit is reviewed. A particular Lax pair representation for the

first order semiclassical 7;-deformed spin chain/string action is then constructed.
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Chapter 1

Introduction

The modern picture of physics involves a quantum field theoretical description of the
three non-gravitational forces (electromagnetism, the strong and the weak interac-
tions), with the gravitational interaction separately described by general relativity.
A quantum field theory is a framework consistent with both quantum mechanics and
special relativity in which point-like particles are the excitations of local quantized
operator fields. Attempts to quantize general relativity in the usual way and so unify
gravity with the other three interactions are beset with difficulties - one of the most
important is that the resulting quantum field theory is non-renormalizable. Other
suggestions for a unified theory including gravity have been made and, at present, the
most likely candidate appears to be string theory. Here the fundamental objects are
not point-like, but are rather one dimensional strings and multi-dimensional branes.
These strings are allowed to oscillate and the different modes correspond to various

particles with different masses.

An interesting suggestion [1] of t'Hooft, reviewed in [2], is the notion of gauge/string
duality. He examined a quantum field theory with SU(N) gauge invariance in the
t’Hooft limit

N — oo, with A\ = ¢®?N = fixed, (1.1)

where the t'Hooft coupling A is defined in terms of the gauge theory coupling constant
g and the order N of the SU(N) gauge group. Perturbative expansions in terms

of Feynman diagrams were written as expansions of two dimensional surfaces with
1
N

string expansions in terms of the string coupling constant g = % This suggests

genus counting parameter ~ and loop parameter A\, and were hence identified with



that, despite their very different appearance, an SU(N) gauge theory and a string
theory may describe the same underlying physics. This gauge/string duality is of
great significance, not only because it may allow us to solve hitherto intractable
problems in string theory, but also because it may yield a string theory dual to
Quantum Chromodynamics (QCD). This is the quantum field theory with SU(3)
gauge invariance describing strong interactions, which remains, as yet, imperfectly

understood.

1.1 AdS/CFT Correspondence

In 1997, Maldacena proposed the first concrete example of a gauge/string duality,
which has become known as AdS/CFT correspondence [3]. This states that N' = 4
Super Yang-Mills (SYM) conformal field theory with SU(N) gauge invariance in four
dimensional Minkowski spacetime is dual to type IIB string theory in an AdSs x S°
background. We shall now briefly describe the arguments that led to the Maldacena

conjecture based on [2, 3, 4, 5]:

Consider a system of N evenly spaced parallel D3 branes, each of which forms a 3+1
dimensional hypervolume in 9+1 dimensional flat spacetime. We can describe this
system in two different ways in terms of a type IIB string theory in the low energy
limit ,

o —0 with & = fixed, (1.2)
r

in which the string tension ~ é becomes large and the spacing r between two consec-
utive D3 branes shrinks to zero. Firstly, we can view the D3 branes as the end-points
of open strings. Closed strings propagate in the empty space surrounding the D3
branes, which is known as the bulk. In the low energy limit (1.2), only massless
modes survive, and the open and closed string theories decouple. The closed strings
in the bulk become free, while the open strings are described by a 3+1 dimensional
U(N) N =4 SYM gauge theory on the D3 branes. Note that the U(N) gauge group
can be split into an SU(N) gauge group plus some extra U(1) degrees of freedom.
Secondly, the D3 branes can be viewed as massive objects, which are stacked together
and warp the spacetime around them. An observer at infinity will see two main types
of low energy string modes - massless free closed string modes far from the D3 branes
and all the string modes in the near horizon region close to the D3 branes (which

are red-shifted to low energies). The near horizon geometry is that of an AdSs x S°
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spacetime. Thus, comparing these two descriptions, we obtain the Maldacena con-
jecture that an SU(N) invariant N” = 4 SYM gauge theory is dual to type IIB string
theory in an AdSs x S® background. The extra U(1) degrees of freedom from the
original U(N) gauge group correspond to modes in the space separating the near
horizon region from the region far from the D3 branes. These modes appear on the
boundary of the AdSs x S® spacetime and shall be omitted from our string theory

description.

Now AdS/CFT correspondence is a strong/weak coupling duality with respect to the

t’Hooft coupling, since the Maldacena conjecture identifies

Vi= VN =2 (13)

where R is the radius of the AdS5 and S® spaces (which is the same) [3]. Performing
perturbative gauge theory calculations is easiest when the t’Hooft coupling is small,

but string theory problems can most easily be solved when the strings are nearly
R?

a/

this makes testing the proposed gauge/string duality difficult, it also means that, if

point-like in comparison to the background space, so that is large. Although
established, AdS/CFT correspondence will be exceedingly useful in allowing us to
perform strong coupling gauge theory calculations in the dual string theory where

the coupling is weak and vice versa.

There has recently been great interest in finding string theories dual to less supersym-
metric deformations of N’ = 4 SYM theory. Leigh and Strassler were able to construct
N = 1 supersymmetric marginal deformations of N' =4 SYM theory [6], which in-
clude the so-called (3-deformations. The string theory dual to this S-deformed SYM
theory was described by Lunin and Maldacena [7]. Frolov showed [8] that, in the
case of a real deformation parameter 5 = v, the classical string worldsheet action in
the Lunin-Maldacena background can be derived using a TsT-transformation, with
shift parameter 4 = v/Ay. This insight allowed him to demonstrate the existence
of a Lax pair for strings moving on a y-deformed five-sphere. Furthermore, Frolov
also constructed a ~;-deformed string theory by performing a series of three TsT-
transformations, with shift parameters 4, = v/Ay;, on the original classical string
worldsheet action and showed that strings moving on a v;-deformed five-sphere also
admit a Lax pair representation. He conjectured a duality between this v;-deformed
string theory and a non-supersymmetric 7;-deformed Yang-Mills (YM) theory, which
has been studied in more detail by Frolov, Roiban and Tseytlin [9]. We are espe-

cially interested in this proposed non-supersymmetric 7;-deformed gauge/string du-
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ality because any agreement found cannot be the result of matching supersymmetric

structures on either side.

After Maldacena’s initial conjecture, further details of AdS/CFT correspondence
were described in [10, 11]. Specifically, it was established that string energies should
be dual to the conformal dimensions of the corresponding gauge theory operators.
Agreement was found between the energies of point-like strings and the conformal
dimensions of chiral primary (half-BPS) operators, which are preserved from quantum
corrections by supersymmetry. Berenstein, Maldacena and Nastase (BMN) extended
this result by matching the conformal dimensions of long ‘nearly BPS’ operators to
the energies of nearly point-like strings in a pp-wave background [12]. The R-charge
J of these BMN operators, which is dual to the total angular momentum of the
corresponding strings, was assumed to be large. More explicitly, they considered

these quantities in the BMN or semiclassical limit

| >~

J — o0 with A= = = fixed < 1, (1.4)

2

<

in which it is possible to perform perturbative expansions in terms of the small
parameter . This semiclassical limit was further discussed in [13, 14, 15] and is
remarkably useful in allowing calculations to be performed in both the gauge and
string theories despite the difficulties associated with the strong/weak coupling nature
of the duality.

An interesting development on the gauge theory side was the realization of Minahan
and Zarembo [16] that single trace operators in the scalar sector of N' = 4 SYM
theory are analogous to SO(6) spin chain states. They showed that the planar one-
loop matrix of anomalous dimensions in the scalar sector, the eigenvalues of which
should correspond to string excitation energies, is simply the Hamiltonian of an SO(6)
spin chain. Similar results apply to other sectors of NV =4 SYM theory as well as to
various sectors of the S-deformed SYM and v;-deformed YM theories. A semiclassical
limit of the relevant gauge theory operator corresponds to a continuum limit of the
analogous spin chain. It is thus possible to compare the coherent state effective action
of a spin chain in the continuum limit with the corresponding string worldsheet action
in the fast motion limit [9, 17, 18, 19, 20, 21, 22]. Special mention should be made
of Frolov, Roiban and Tseytlin’s leading order semiclassical comparison [9] between
yi-deformed SU(3) spin chains and strings in a ~;-deformed R x S® background at

the level of the action.



1.2 Aim and Structure of Thesis

The aim of this thesis is to study the non-supersymmetric 7;-deformed gauge/string
duality and to ultimately construct a Lax pair representation for the first order

semiclassical v;-deformed SU(3) spin chain/string action.

This thesis is arranged into six chapters. Chapter 2 contains a review of N' =4 SYM
conformal field theory. We discuss the derivation of the A/ = 4 SYM Lagrangian
by dimensional reduction, together with its supersymmetric and conformal nature.
Marginal deformations of N' = 4 SYM theory are then described and special men-
tion is made of the N/ = 1 supersymmetric 3-deformed and non-supersymmetric
v;-deformed YM theories. In chapter 3, we discuss the representation of the matrix
of anomalous dimensions corresponding to single trace operators in the SU(3) sec-
tor of our 7;-deformed YM theory as the Hamiltonian of a v;-deformed SU(3) spin
chain. We also explain how this Hamiltonian can be diagonalized using an algebraic
Bethe ansatz. Chapter 4 involves a description of the v;-deformed string theory. We
construct the classical string worldsheet action for strings moving in an R x S® back-
ground and, by performing various TsT-transformations, derive the y-deformed and
~v;-deformed string worldsheet actions. The Lax pair representations of these string
theories are also discussed. Chapter 5 contains a review of the first order semiclas-
sical comparison between the ;-deformed SU(3) spin chain coherent state action in
the continuum limit and the 7;-deformed string worldsheet action in the fast motion
limit. Furthermore, we extend the calculation of the semiclassical v;-deformed string
worldsheet action to second order for the purpose of constructing the conserved U (1)
charge and current densities. Finally, we demonstrate that the v;-deformed semi-
classical spin chain/string action to leading order admits a Lax pair representation.
In other words, the v;-deformed spin chain and string systems remain integrable in
the semiclassical limit. This new result has been published [23]. A few concluding

remarks are presented in chapter 6.



Chapter 2

Conformal Field Theory

2.1 N =4 Super Yang-Mills Theory

2.1.1 Yang-Mills theory with SU(N) gauge invariance

The original YM theory [24] was developed in 1954 in an attempt to explain the
strong interaction in terms of pion exchange. Unlike the analogous theory of electro-
dynamics, which contains U(1) gauge invariance, this YM theory was invariant under
SU(2) isospin rotations. More recently, with the advent of the quark model, a more
correct description of the strong interaction in terms of gluon exchange was developed
using a YM theory with an SU(3) colour gauge group. The main difference between
these YM theories and electrodynamics is their non-abelian nature - the components
of the gauge field do not commute. This results in the self-interaction of the gauge

bosons and is responsible for much of the extra complexity inherent in the theory.

We are interested in a more general YM theory, which contains SU(N) gauge in-
variance (with NV > 2 an arbitrary integer, often taken to be large). We shall now

explain how to construct such a theory based on discussions in [25, 26]:

Let us start by considering some free field theory containing a complex scalar field
O(z) = (P1(x), Po(z), ..., Pn(x)) with N components and a Dirac spinor field ¥(z),
the four components of which are themselves N-component fields, so that ¥;(x) =
(Vi (z), Uin(x),...,¥;n(z)). This representation of the fields ®(z) and ¥(z) in terms



of N-component vectors is called the fundamental representation. The free field

Lagrangian is then given by
L=0"e10,0 — midId + U (iv"0, — my) ¥, (2.1)

with ¥ = Ui0 Here m; and m; are the masses of the scalar (boson) and spinor

(fermion) fields respectively, and 7#* are the usual 4 x 4 gamma matrices (A.11).

We would now like to include a gauge field in this description so as to obtain an
SU(N) invariant field theory. In other words, we would like our Lagrangian to

remain unchanged when
O(z) — U(z)P(x) and U, (x) — U(x)¥;(x), (2.2)

where U(z) is an arbitrary element of SU(N). This is clearly not the case for the
Lagrangian (2.1) due to the extra derivative terms that arise as a result of the lo-
cal nature of the transformation U(x). We shall therefore introduce the covariant
derivative

Dy =0, —igAu(x), (2.3)

where A, () are real N x N gauge field matrices, chosen to be traceless and hermitean,

and g is the YM coupling constant. The Lagrangian then becomes
L= (D"®) D, ® — 20T + V(i D, — m)T, (2.4)

which remains invariant under any local SU(N) transformation U(x), if we insist

that the gauge field A, (z) must transform as follows:

Au(z) — U(2)A,(2)UT () + éU(a:)@HUT(x). (2.5)

Finally, we would like to determine the field strength contribution to the YM La-
grangian, which contains the kinetic terms associated with the gauge field A,. Let
us first define the field strength as

Fo = 0,4, — 0,A, —ig[A,, A)]. (2.6)

Note that the last term in this expression, which is zero in electrodynamics, is now
present because the components A, and A, of the YM gauge field do not commute.

Since the gauge field A, is a traceless hermitean N x N matrix, we can expand



Ay(x) = 37 A%(x)T* in terms of the N* — 1 generators T of SU(N), where A% (x)
are real ﬁgld coefficients. Hence the field strength can be written as

Fo(z) =Y FS ()T with F, = 0,A% — 9,A% + ) frrALAC(2.7)

wivo
b,c

where the structure constants f*° are defined such that [T“, Tb] =iy foTe and
are a property of the Lie algebra of SU(N). This field strength transf(frms under a
local SU(N) transformation U(x) as

Flx) — U(@) Fu (@)U (@), 2.5)
so that Tr {F,, F*} is SU(N) invariant. Thus we shall define the field strength or

pure YM Lagrangian as follows:

1 17 1 a VvV a
Ly = = Tr{Fu "} = —2 2@: Fo, F e (2.9)
where we have made use of the conventional normalization Tr {T“Tb} = %6‘”).

A full YM Lagrangian can, of course, contain terms other than just (2.4) and (2.9) -
further SU(N) invariant interaction terms can also be included. One possibility is a
scalar potential of the form V (®T®).

Now there is another possible representation for the fields ®(x) and ¥(z) in terms
of traceless hermitean N x N matrices rather than N-component vectors. This is
called the adjoint representation and is spanned by the generators of SU(N). The

Lagrangian (2.4) in this representation is given by
1 _
L=3T {(D“cb)T D,® — 1201 + (in" D, — m)\ll} , (2.10)
where the covariant derivatives of the fields ® and W are
D,®=0,2—ig[A,, P and DV =0,V —ig[A,V¥]. (2.11)

Notice that one must introduce a trace into this Lagrangian, due to the fact that the
fields are now matrices, and a commutator between the gauge field A, and the field

into the covariant derivative.

Lastly, we make a few general observations about this YM theory: The gauge field
matrix A, really consists of N2 —1 different real fields Af,. This is the reason that the
YM theory with SU(3) gauge invariance contains eight distinct gauge bosons called
gluons. Furthermore, the field strength term —% Y F u M ¢ in the YM Lagrangian

a
contains cubic and quartic terms as well as the usual quadratic ones. This results in

the self-interaction of the gauge bosons.



2.1.2 N =4 SYM theory by dimensional reduction

N =4 SYM theory was originally constructed [27] by dimensionally reducing a ten
dimensional N' = 1 SYM theory to four dimensions. YM theories and dimensional
reductions thereof were further discussed in [28]. We shall now derive the N’ = 4

SYM Lagrangian by dimensional reduction following [27].

The relevant ten dimensional AV =1 SYM theory contains the gauge field By, (xN )
and the massless Weyl-Majorana spinor field A (xN ), chosen to be in the adjoint
representation of SU(N). Here the capital roman letters, which index the coordi-
nates in our ten dimensional Minkowski spacetime, run from 0 to 9. Hence the ten

dimensional SYM Lagrangian is given by [27]
1 ) —
L=Tr {—ZGMNGMN - %/\FMDM)\} , (2.12)

where Gy = Oy By — OnBay — ig [Buy, By] is the ten dimensional field strength

and I'M are gamma matrices satisfying the Clifford algebra in ten dimensions.

In order to reduce this SYM Lagrangian to four spacetime dimensions, we shall split

up our ten coordinates £ into four reduced coordinates z* and six extra coordinates

3+m

x Here the greek and small roman indices run from 0 to 3 and from 1 to 6

respectively. We shall assume that the extra six dimensions are very small and
compact, and take a zero slope limit, so that all dependence on these dimensions and
all derivatives with respect to the extra six spacetime coordinates vanish. We shall
also separate the ten gauge field matrices B); into four gauge field matrices A, and

six real scalar field matrices ¢,,. Thus
B, (2V) — A, (2") and B (zV) — ¢ (2), (2.13)
so that the components of the ten dimensional field strength can be written as
G (%) — Flu (2) = 0,A, (27) = 0,4, (2°) —ig[A, (a°) , A, (2")],
Gusem (2%)  — Dy () = 0o ( ) ig [Au (2°) ; o (27)]
Gaim u (27)  — —Dyd (2°) = =04 (2°) +ig [Ay (27) , dm (27)],
Gapm 34n(2")  — —ig[dm (27) , dn (27)] . (2.14)
The SYM Lagrangian (2.12) therefore reduces to
L= TR P — STe{D,6,D"6™) + 16T {60, 6,1 (67 671}

— %Tr {Ar*D,\} — %gTr {AD*™ [§, A} (2.15)

9



Further simplification of (2.15) requires us to choose an explicit representation for
the gamma matrices I'™. This representation must be at least 32 dimensional'. Now,
as in [29], one can choose an off-diagonal block representation in terms of the 16 x 16
matrices ¥ and £ in analogy to (A.25). However, for the purposes of dimensional
reduction, we shall rather make use of the representation of [27], which involves a

tensor product of 8 x 8 and 4 x 4 matrices, as follows:

1 0 0l 0 : 0
FM — 4 ®fy#’ F5+] — pj B ®(_7/_)/5>7 F6+] — A g ®14’ (216)
0 —14 0 p” v 0

where g runs from 0 to 3, as usual, and j runs from 1 to 3. Here «* are the usual

4 x 4 gamma matrices (A.11) in four spacetime dimensions, and p! = p'' = 7°,

p*=p
matrices satisfy the Clifford algebra in ten dimensions. Hence the chirality matrix is

/2 — 13 —

v? and p? = —p —i7°y%. We can easily verify that this collection of

given by
3

0
T =TT 9 = < ; ’;) ® 1. (2.17)
—p

Now A is a 32-component Weyl-Majorana spinor satisfying both the Weyl or chirality
condition —i'"X\ = X and the Majorana condition A = A® that the spinor must be

the same as its charge conjugate?. Let us define

_ (i:) , (2.18)

where A\; and A\ each consist of four 4-component Dirac spinors. The Weyl condition
then implies that Ay = i(p3 ® 14)A;, which yields

X1
A 1
A= ™ with A = — | . (2.19)
i(ps @ 14) N\ \/5 X3
X4

Furthermore, for A to be Majorana, it was shown in [27] that the four Dirac spinors

X« Must also be Majorana, so that

Vaa
=1, 2.20
X < %") (2.20)

!The gamma matrices in D spacetime dimensions (with D even), which satisfy the Clifford

algebra, have a minimal representation of dimension 2°/2 [27].
2It turns out that ten dimensional spacetime is the lowest dimensional spacetime (aside from the

rather trivial D = 2 case) in which it is possible for a spinor to satisfy both the Weyl and Majorana

conditions [27].
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where )4, are four 2-component Weyl spinors. (A more detailed discussion of Weyl

spinors, and dotted and undotted notation is available in appendix A.)

Therefore, using the expressions (2.16) and (2.19) for the gamma matrices '™ and

the Weyl-Majorana spinor A in our 32 dimensional representation, we can calculate

. 4
—%Tr {AT*D, A} = —% S Te {%a" Dyxal (2.21)
a=1
1 .
—§gTI' {)\FBJF] [¢j7 = _g Z Tr {Xa ab’Y ¢]7 Xb]} (222)
a,b=1
1 L
—§gTI‘ {)\F6+j [¢3+j, = —g Z Tr {Xa ab ¢3+]7 Xb]} (223)
a,b=1

where (7 = p? and o/ = —p3+7, which are explicitly given by

0 1, 15 O 0 ily
ﬁl:(1 o)’ ﬁz:(o 1)’ ﬁsz(ﬂ 0)’ (2.24)
2 —1y —tlo
. . 9 . 3
1 —1i0 0 9 —i0 0 3 —1i0 0
o = , o = , = . 2.25
( 0 2'01) ( 0 iaQ) ( 0 io3 ( )

The N =4 SYM Lagrangian in our reduced four dimensional Minkowski spacetime
is thus [27]

Loni = T {FuF*} = STe (D6, D™} 4 20T ([0, 6] (67, 671)

_ _ZTI" {Xﬂ DMXG} —+ Zg Z Tr {Xa ab’)/ ¢anb]}

a,b=1

_Zg Z Tr {Xa ab ¢3+J7 Xb]} (226)

a,b=1

The six massless real scalar fields ¢,,, four gauge fields A, and components of the four
massless Majorana spinor fields x, are all N x N matrices in the adjoint representation
of SU(N). The scalar fields ¢, are invariant under SO(6) rotations and this internal
symmetry is locally isomorphic to the internal SU(4) symmetry of the spinor fields
Xa [29].

Finally, let us check that the number of bosonic and fermionic degrees of freedom

match (as one would expect for a supersymmetric theory). There are six degrees
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of freedom in the real scalar fields and two in the gauge boson fields (A4, has two
polarization states). This yields a total of eight bosonic degrees of freedom. One
would expect each of the four Majorana spinors to contain two complex (four real)
degrees of freedom. These spinors must, however, satisfy the Dirac equation and this
complex constraint limits the number of real degrees of freedom associated with each

spinor to two. Thus there are also eight fermionic degrees of freedom.

2.1.3 The scalar potential

We shall now consider the scalar interaction term in the SYM Lagrangian (2.26) in

more detail. This scalar potential is given by

1 1
V= Zngr {[¢m’ gb”] [¢m7 ¢n]} = Zngr {[gbmv ¢n]2} ) (2'27)
where we note that ¢™ = n>*™ 3tng, = with p3T™ 3t" = —§™" the ten dimensional
Minkowski metric confined to the six compact dimensions, so that ¢ = —¢,,.

It is now possible [22] to rewrite this scalar potential in terms of three complex scalar

fields ®; = ¢; + i¢34;, with complex conjugates O = ¢; — ig34;, as follows:
1
V= _192{ Tr [[@102 — $o®1|? + [Bo®s — D3Dy|” + |D3dy — B 5]
1
- T [0, ) + 02,5 + 20, 25)7] | 2.28)

The first term is known as the F-term and the second as the D-term. (The reason
for this will become apparent when we discuss supersymmetry). It is the F-term
that will be modified when we introduce the 3-deformed N = 1 supersymmetric and

v;-deformed non-supersymmetric YM theories.

2.2 Supersymmetry

Supersymmetry (SUSY) is a hypothetical symmetry relating fermions and bosons. In
a supersymmetric theory every fermion (boson) should have a corresponding bosonic
(fermionic) superpartner. As yet no direct evidence for SUSY has been discovered,

although several high energy experiments, which search for these superpartners or
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signatures of their existence, are currently underway. Nevertheless, SUSY remains an
appealing concept within the theoretical community due to the comparatively simple

nature of supersymmetric theories.

Now SUSY transformations are generated by the A supercharges Q!, with conjugates
@', contained within a supersymmetric theory. These supercharges are spinors and
satisfy a SUSY algebra. Our original ten dimensional NV =1 SYM theory contains
only one 16-component Weyl-Majorana spinor supercharge, while there are four 2-
component Weyl spinor supercharges with an internal SU(4) R-symmetry in the
reduced N/ = 4 SYM theory. This is the maximum number of supercharges possible
in a non-gravitational theory and hence N' = 4 SYM theory is called ‘maximally

supersymmetric’.

The most convenient way of formulating a supersymmetric theory involves the in-
troduction of superspace, which is an extension of spacetime using non-commuting
spinor coordinates and was invented by Salam and Strathdee [30]. In this section, we
first explain how to rigorously describe a SUSY transformation in superspace. Chiral
superfields, vector superfields and the Wess-Zumino gauge are also discussed, and
we demonstrate that it is possible to construct a SUSY invariant action in NV = 1
superspace using F-terms, D-terms and a field strength term. Finally, we show that
the original ten dimensional SYM action can be written in N/ = 1 superspace and
the implications for the reduced four dimensional SYM theory are mentioned. The
form of the N' =4 SYM action in N = 1 superspace is also stated. This review is
based on discussions in [25, 31, 32, 33, 34, 35, 36].

2.2.1 N =1 superspace and superfields

SUSY transformations change fermions into bosons and vice versa. The generators
of N =1 SUSY transformations in four spacetime dimensions are the supercharge
@ and its conjugate @, which are 2-component Weyl spinors and satisfy the SUSY
algebra [25, 31]

{Qaa Qﬁ} = 2(0#)045'})#7 {Qm@,@} = {Qo’n@ﬁ'} =0, [Qaa P,u] = [Qc‘w P,u} =0,
(2.29)

where P, = 10, is the momentum operator and o* is defined just after (A.25).

In order to construct a SUSY transformation from these generators, we need to
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introduce a pair of Grassmannian® 2-component Weyl spinor coordinates 8 and 6
upon which our supercharge and its conjugate can act. This leads us to define
the superfield ®(x,6,0) as a field in the extended superspace (z*,0%,6%), where x*
are the usual four dimensional Minkowski spacetime coordinates. A finite SUSY
transformation, which acts on this superfield, is then ei(fQJng), where ¢ and € are a
pair of finite spinor parameters. The SUSY variation of the superfield ® is thus given
by

50 (z,0,0) = i(€Q + QE) ®(x,0,0), (2.30)

where ¢ and £ are now infinitesimal spinor parameters.

The supercharges can be expressed in differential operator form in terms of the su-

perspace coordinates. Specifically we see that?

o . . 0 :
Qa = % — Z(Oﬂu)aﬁ’eﬂa,u and Qd - _% + 106(0-“)50.(8#7 (231)

satisfy our supersymmetric algebra (2.29). Furthermore, we shall define a set of

covariant derivatives, which anticommute with the supercharges, as follows:

a 7 . o _.
Da = % + Z(Uu)aﬂ'eﬂa,u, a‘nd Dd _% - eﬁ(au)ﬁaau (232)

The fact that these derivatives anticommute with )z and QB means that they will

commute with any SUSY variation.

2.2.2 Chiral superfields and F-terms

To construct the F-terms in a SUSY invariant Lagrangian, we must first introduce
the concept of a chiral superfield. If ®;(x,0,0) and ®g(x,0, ) are left-handed and
right-handed chiral superfields respectively, then [31, 32, 34]

Ds®p (2,0,0) =0 and  Do®p(z,60,0) = 0. (2.33)

3These spinor coordinates anticommute so that {#%,0°} = {6, g;‘a} = {6, éﬁ} =0.
4Differentiation in terms of Grassmannian coordinates is defined as follows:

0 0 =5 : 0 =5 0
{aea’9 } b {aed’e } % {aoa’e } " {aad’e } o

In other words, in the case of anticommuting coordinates, one must simply remember that derivatives
also anticommute. The product rule will therefore change slightly - when differentiating the 279,

41 etc terms in a product, we pick up a minus sign.
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These names originate in the left-handed and right-handed chiral nature of the spinor

fields ¥ (z) and 1 g(x), which we shall observe to be contained in these superfields.

We shall concentrate for now on left-handed chiral superfields. Let us define a new
set of superspace coordinates v, 0, and 8, with y* = 2*+ifc"0, in which the covariant
derivatives are given by

0 - - 0
= — +2i(c") :0° = ——
D, 509 +2i(0"),30°0,  and Dy 555 (2.34)

Notice that any left-handed chiral superfield ®(x, 8, 0) = ®(y, #) is now independent
of #. Expanding ®(y, #) in a Taylor series in terms of 6 yields

Oy, 0) = d(y) + V200 (y) + 00F (y), (2.35)
where ¢ and F are scalar fields and v is a spinor field. (The factor v/2 has been

included in front of ¢ for convenience.) This is an exact expression - all terms higher
than second order vanish because #% and 6° anticommute. We can expand each of
the terms ¢(y), ¥ (y) and F(y) around y = x to obtain [25, 32]

_ _ 1 _ _
O(z,0,0) = ¢p(x) +i(005"8)0,0(x) — 5(90“0)(90”0)@@@5(1)
+V204(x) + V2i0(05"0)d, ) () + BOF (z), (2.36)
which is, again, an exact expansion.
Let us now calculate the SUSY variations of the fields ¢, ¥ and F. The SUSY

variation of the left-handed chiral superfield ®(y, #) can be expressed in terms of d¢,
01 and 0 F as follows:

0B (y,0) = do(y) + V205(y) + 005 F (y), (2.37)

but also, writing the supercharge @ and its conjugate @ in (2.30) in terms of the
coordinates y, 6 and 6, we find that

0P(y,0) =i (£Q + Q€) (y,0)
—ifel 2y gipare ? V20 00F
— (6 g €+ 280 [o) + VBB + 0610)
= V2i€(y) + 2006 F (y) — 200"€0,6(y) + V2000,(y)o"E.  (2.38)

Hence, equating different orders of #, we obtain

06 = V/2i€), (2.39)
0 = V2iEF — V/20"€0,¢, (2.40)
OF = V/20,10"E. (2.41)
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Now, clearly, (2.41) indicates that the SUSY variation of the scalar field F is a total
derivative. This can also be seen simply using dimensional analysis [25]. Since the
momentum operator P* has mass dimension® 41, we observe, from the SUSY algebra
(2.29), that the supercharge @ and its conjugate () must have mass dimension +%.
Furthermore, the coordinates # and § must have mass dimension —% for the term
in the exponential of our finite SUSY transformation to be dimensionless. Now,
assuming that the scalar field ¢ has mass dimension +1 (as is the case for any
physically meaningful scalar field in four spacetime dimensions), we see that 1) and
F must therefore have mass dimensions % and +2 respectively. Thus the only possible
object that can produce the required mass dimension of +2 for the SUSY variation
of the field F is the total derivative 0 F ~ auwaué . This argument is, perhaps, less
rigorous than the previous explicit calculation, but it has the advantage of being

more generally applicable.

The scalar field F(x) is therefore an ideal candidate for a SUSY invariant La-
grangian, since [d*z F(z) is invariant under SUSY transformations (if we ignore
surface terms). This is the origin of the name ‘F-terms’. Furthermore, any function
of any number of left-handed chiral superfields ®; is also a left-handed chiral super-
field (it depends only on y and ). Hence the F-terms in a SUSY invariant action

can be written as® [31, 34]

Sp=— / d%{ / d*0 f(®;) + / d*0 f*(cbj)}, (2.42)

where f is some function” of the left-handed chiral superfields ®;. Here we have
included in our Lagrangian the hermitean conjugate of the relevant expression, which
is obviously also SUSY invariant. This can also be seen as the analogous F-term for
a function f* of the right-handed chiral superfields CDZT. These F-terms result in the
mass terms in the Lagrangian as well as further interaction terms, but there are no

kinetic terms contained in this expression.

®The mass dimension = of a quantity Q is defined such that [Q] = M®. Note also that we are
using units in which c=h = 1.
SIntegration of Grassmannian coordinates is defined as follows [33]:

/d9101 = /d9202 =1 and /d911 = /d921 =0.

Note also that d?0 = df8'd6? and d%60 = d6'd6>.
“This function is usually a polynomial of maximum degree three - higher order superpotentials

lead to non-renormalizable theories [31].
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2.2.3 Vector superfields, the Wess-Zumino gauge and D-terms

Another possible contribution to a SUSY invariant action are the so-called D-terms.
These can be obtained from any vector superfield V(z,6,0), which is defined as a

self-conjugate superfield satisfying
V(x,0,0) =V(x,0,0). (2.43)
A general vector superfield can be written as [31, 32]
V(z,0,0) = C(z) + 0x(x) + 0x(x) + 00M (z) + 00 M*(z)
00t GA,(2) + 1000 (x) — 000A(x) + 10000D(x),  (2.44)

where C(z) and D(z) are real scalar fields, M (x) is a complex scalar field, A,(z) is

a real vector field, and y(z) and A\(x) are complex spinor fields.

We shall now demonstrate that the SUSY variation of the field D(z) is a total deriv-
ative. This is to be expected, since %D(x) is the coefficient of the highest order term
in the above expression and has the highest mass dimension. Its SUSY variation
should therefore be proportional to derivatives of the coefficients of the lower order

terms. More explicitly, we can calculate
§V = 6C+05x+05x+005M~+005M* —00"05 A, +i0005 A —i0005A+300005 D, (2.45)

and also

0 0 .
—ile X, BO _ Ot 4
% z{ 50 805 i (£0"0 — bo 5)8”1 (2.46)
x [C + 0x + 0x + 00M + 00M* — 00" A, + 060X — 060\ + 10666D)] .

We need only determine the highest order term in the last expression, which can be

equated to the corresponding term in the first equation as follows:

10000 D(z) = [g%—u)aﬁ.éﬂ'] [i (00) 0:0,37] — [eaw)aﬁ.gﬂ'] [—i (00) 079,
= —10000 [£o" 0\ + 0, N0"E] . (2.47)

Hence the SUSY variation of the real scalar field D(z) is given by
6D = —id), (€A + Ao"§) (2.48)

which is a total derivative. The D-term [ d*x D(x) is therefore another possible

candidate for our action, since it is SUSY invariant.
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We shall now introduce the supersymmetric generalization of a non-abelian gauge

transformation, which acts on the vector superfield V (z, 6, 6) as follows:
eV — 9heIVemigh (2.49)

where iA(z,0,0) is a left-handed chiral superfield and g is the gauge coupling con-
stant. The left-handed chiral superfield iA(z, 6, 6) contains two complex scalar fields
and one complex spinor field, which we are at liberty to choose. It turns out to be
possible to choose these fields so as to eliminate C'(z), x(x) and M (x) in the general
expression (2.44) - this is called the Wess-Zumino gauge®. There also remains one
unspecified degree of freedom, since C(x) is a real scalar field and both the scalar
fields in A are complex. This last degree of freedom results in the usual gauge free-
dom of the vector field A,, which can be changed in such a way as to leave the field
strength F),, invariant. Thus a general vector superfield in the Wess-Zumino gauge

is given by
Vivz(x,0,0) = —00"0A,(x) + i000X(x) — i6ON(x) + 16000 D(x), (2.50)
where the vector field A, still maintains its usual gauge freedom.

Now we can generally use any vector superfield or function of vector superfields to
construct the D-terms in our action. It is often convenient, however, to make use
of the Kéhler potential K (®;, (IDZT), which is required to be a vector superfield and is
constructed from the left-handed chiral superfields ®;. The D-terms in the SUSY

invariant action can then be written as [33, 34]
Sp = /d4x/d20 d*0 K(®;, ®). (2.51)

These D-terms contain fermionic and bosonic kinetic terms as well as interaction
terms. There are no kinetic terms corresponding to the auxillary fields F' and D,
which have purely algebraic equations of motion and can be eliminated from the

action.

8Choosing iA so as to obtain the Wess-Zumino gauge in the general non-abelian case, in which
our fields do not commute, is a highly non-linear problem and, as such, shall not be further dis-
cussed. There is a detailed description in [32] of the solution to the abelian problem, in which the

supersymmetric gauge transformation becomes V — V +i(A — AT).
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2.2.4 Field strength term

The last possible SUSY invariant term in our action is the field strength term. This
is constructed from the field strength superfield

1, _
Wa =g (DD) e*Y Doe ", (2.52)

where D and D are the covariant derivatives in superspace and V = Vjy# is a vector
superfield in the Wess-Zumino gauge (2.50). The field strength superfield W, is
clearly a spinor and, moreover, is also a left-handed chiral superfield (Dﬁ-Wa =0,

since Dg and DB anticommute).

We shall now, as in [34], consider the action of the supersymmetric gauge transfor-

mation (2.49) on W,. This field strength superfield transforms as
W, — AW, 729 (2.53)
which can be shown as follows:
W, — é (DD) <e2giA€2gv€—2giAT> D, <62giATe—29V€—QgiA>
= £ (DD) A (Dye V) 0% 4 £ (DD) 0 Dy

= LN [(DD) Y (Dye V)] ™ 4 L™ (DD) Doe % (254)

Notice that —iAT and D, commute, since —iAT is a right-handed chiral superfield,
as do the left-handed chiral superfield iA and D, . The last term in this expression

can be manipulated as follows:
(DD) Dae=2i% — (¥1D;Ds ) Dye™20

= 5’3"7[)/@ {D,y, Da} e~ 2910

= 2PV (0") s DgyP, e~ 29t

= —2¢% (0) 0 [DB, p,] et

= 0. (2.55)
Here we have used the fact that Dae 2" = 0, together with the identities { D4, Dg} =
—2(0") g4 Py and [Dd, P,J = 0, which can easily be obtained from the definitions
(2.32) of the covariant derivatives D, and D4. Thus, since the last term in (2.54)

vanishes, we obtain the result (2.53).
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This simple behaviour of the field strength superfield W,, under supersymmetric gauge
transformations immediately implies that Tr {W*W,} is gauge invariant. Moreover,
WeW, is also a left-handed chiral superfield from which one can construct SUSY

invariant F-terms. Hence we shall define the field strength term in our action as [34]

1

Sw = —

d'x / d*0 Tr {W*W,}, (2.56)

which is invariant under both supersymmetric gauge transformations and SUSY

transformations.

We would now like to rewrite this field strength term using the fields A,, A, A and
D, which are contained in the vector superfield V' = Vi z. We shall, following [34],
perform this calculation in the coordinates v, 6 and 6, and therefore let us first rewrite

our vector superfield as follows:

V (4,0,8) = — (6078) A, (y) + i099A(y) — i6BOA(y) + %eeee D(y) +i0" A, ()]
(2.57)
Here we have substituted z# = y* — ifa"f into the expression (2.50) and expanded
around z* = y*, making use of the identity (90“@) (90”@) = %77‘“’99@@ We can hence

calculate

eV =14 29V +24°V? (2.58)
=1—2g (00"0) A, + 2igfOX — 2ighooX + 0680 [D + i0" A, + gA* A,]

and
e 29V = 142¢g (00"0) A, —2ig000N+2ighION— g0 [D + io" A, — gA*A,] . (2.59)

Notice that the Taylor series for the exponential has been truncated at second order
because higher order terms must be either higher than second order in 6 or in 6, and

therefore vanish.

The above expressions, together with the covariant derivatives (2.34), imply that

€2V Doe 2V = 2g (o), 5 0° A, — 4igh.0N + 2ighIN, — 290,00 [D + i0" A, — gA*A,]
— 2090007 ()5 (") 5 [0, A + ig AL A
— 290606 ("), {aﬂAﬁ' —iglA,, V’]} , (2.60)

and, substituting this result into (2.52) and using the identity DD (08) = —4, we
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obtain as explicit expression for the field strength as follows:

Wy = —igha + g0o [D +i0" A, — gA' A,
+ig0e® ()5 ("), 5 [0, Ay +igALAL)
+ 900 (0") . {aMAB —iglA,, Xﬁ]} . (2.61)

Raising the spinor index then yields

W = —igh® + g6 [D + i0" A, — gA*A,]
+igh7e% (0”) 5% (o) 5 [0, A, +igA,A)
+ 900 (01) 57 {8, Ms —ig [Au As] ) (2.62)

da

which can be simplified using the identity £ (o) 4 % = — (5")°* and hence also

072 (07),5% (), 5 [00 Au + ig A, A
=07 (JW)W H(0uAr — 0, AL) —ig[Au, AL} — 0% [0" Ay +igA" ALl (2.63)

where o is defined in (A.27). This last result was derived by separately manipu-
lating the parts of the original expression symmetric and anti-symmetric in p and v.

Thus we obtain
W = —igh\® + g0°D +igb” (6") 4 * Fu — 00D, A CRLE (2.64)
where
F.,=0,A, —-—0,A,—ig[A,,A)] and DN;‘B = (9,}[5 — 19 [Au, 5\5] . (2.65)
This expression (2.64) shall now be used to calculate W*W,, = 5Q5WC“WB and hence

the field strength term in the action. Actually, we only need to determine the coeffi-
cient of the 6 term in WW,, which is given by

1
WeWa oo = =50°€as ("), “ € (077); © Fyu Fpr + gD
__a 2 . s BOC . 2 N . (=M Ba
19" AaDpAy (0")™ +ig”DyAs (04)7 Ao (2.66)
This result can be simplified using the identities e’ (0/),7 .5 = — (0#), * and

(U“V)aﬁ (UPT)g ¢ = % (—nHPn¥T 4+ nPTn"P 4 ietPT). Hence we obtain

X . . ) .
= ZF, P ig“”pTFWFPT +D? —iXa DA (0")* +iD, A5 ()7 A,

1
—WeW,
2

06
(2.67)

9
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Substituting this expression into (2.56) yields the field strength term in our SUSY

invariant action, which is given by [34]
1 _ 1 , ) : )
Sy = / d*z Tr {—ZFWFW + TP + 2D = ao* (D)) + 5 (D) a“)\} ,

2
(2.68)
where W = % etPTF,. is the dual of the field strength F),, .

Let us now consider the term containing the dual field strength F**, which is pro-

portional to the topological charge [36]

- 1 4 oy | 4 H
== /d 2 Tr{FWF }_ /d z 9, J", (2.69)
where | 5
JH = ~52 etvP? Tr {A,, (0,A,) — gigA,,ApAa} ) (2.70)

This topological quantity is similar to a winding number and plays an important
role in the quantized theory. It does not, however, have any effect on the classical
equations of motion and is therefore sometimes neglected. To include this term
correctly, we must make a slight change to the original field strength action (2.56) in

superspace as follows [34]:

1

S = < Im {T/d4$/d2@ Tr{WO‘Wa}] , (2.71)
™

in terms of the complex coupling constant 7 = % + e‘g—WM. This yields the result
1 1 : ) : )
Sw = /d4x Tr {_ZFWFW + §D2 — %)\o—” (D”/\) + % (D#)\) 6'”>\}
QYM 2 4 [V
-5 /d . Tr{FWF“ } (2.72)

where the coefficient of the Yang-Mills theta term 6y, is a topological quantity.

Neglecting the topological part of the field strength action and using the definition
(A.25) of the gamma matrices 4" in terms of the off-diagonal elements o# and ",
we find that

1 1 L1 i
SW = Z__L /d4l' Tr {—ZFHVF“ + §D2 - i\IIFYHD,u\II} ) (273)

_ Ay
where ¥ = ¥'4% and D, ¥, = 9,¥, —ig[A,, ¥,], with ¥ = T a Majorana

spinor. This field strength term contains kinetic terms associated with the gauge
field A, and spinor field A, as well as further interaction terms. We again notice that

there are no kinetic terms associated with the auxillary field D.
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2.2.5 Super Yang-Mills theories

We shall now argue that our original ten dimensional SYM action, corresponding to
the Lagrangian (2.12), can be written in N’ = 1 superspace. Only a field strength
term analogous to (2.71) is required and this yields a result similar to (2.73). There
is a slight complication in that we are now working in ten spacetime dimensions and
therefore our supercharges, and the coordinates 6 and 6, are 16-component Weyl-
Majorana spinors. Furthermore, the gamma matrices I' must now be written in
the block form of [29] with off-diagonal components ¥ and M. However, we can
see that this field strength term yields the correct two terms in the ten dimensional
SYM Lagrangian, since the auxillary field D is zero as a direct result of its algebraic

equation of motion.

Now let us consider the four dimensional reduced SYM theory described by the
Lagrangian (2.26). This must also be invariant under SUSY transformations and,
moreover, we can understand its N’ = 4 supersymmetric nature by considering the
ten dimensional SYM theory from which it was derived. (Writing the action in N’ = 4
superspace is not a viable option - even writing it in A/ = 1 superspace is somewhat
tricky.) The supercharge corresponding to our ten dimensional N =1 SYM theory
is a 16-component Weyl-Majorana spinor consisting of four 4-component Majorana
spinors, which are equivalent to four 2-component Weyl spinors. There is an inherent
SU(4) symmetry amongst these Majorana spinors. Therefore, when we reduce our
ten dimensional SYM theory to four spacetime dimensions, we are left with four

supercharges, which are invariant under SU(4) R-symmetry transformations.

Finally, we shall mention the A/ = 1 superspace representation of the A" = 4 SYM

action. The F-terms in this action are constructed from the superpotential

1
f(®:) = Jg1r (P1DoP3 — ©1P3P), (2.74)

where @, ®, and ®5 are superfields in N' = 1 superspace. This leads to the contri-

bution
1
_ng {|@1Ds — 0o [” + |Bo®y — P3®y|” + | D3Py — D1 D5)%}, (2.75)

in the NV = 4 SYM scalar potential (after we have eliminated the auxillary fields
F; using their algebraic equations of motion). Here the fields ®; now denote only

the zeroth order scalar fields in the corresponding superfields. The second term in
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this scalar potential (2.28) is the result of the D-terms in the A" =4 SYM action in

N = 1 superspace, which are constructed from a Kahler potential of the form

3
K(®;, @) = Tr <Z 629V<1>je—29v<1>i> , (2.76)
i=1
where V' = Viy 4 is a vector superfield in the Wess-Zumino gauge®. The field strength

term (2.71) also appears in this A/ = 1 superspace action.

2.3 Conformal Invariance and Marginal Deforma-

tions

A conformal field theory displays a symmetry known as conformal invariance. In
other words, the Lagrangian is invariant under the action of the conformal group,
which consists of all coordinate transformations x — z’ that leave the metric invariant
up to an arbitrary scale factor Q(z) as follows [37]:
;o Oz 92

) — Gu0') = 5o S () = ) (). (2.77)
The Poincaré group is always a subgroup of the conformal group (with Q(z) = 1) - any
reasonable metric is invariant under local Poincaré transformations. Furthermore, if
we consider a non-gravitational theory in flat d-dimensional Minkowski spacetime
with d > 2, then the conformal group consists of little more than the Poincaré group
together with a set of scale transformations. Thus, to verify the conformal nature of

any such non-gravitational field theory, we need to check for an exact scale invariance
[5, 37].

9Notice that, not only the field strength term in the superspace action, but also the F-terms
and D-terms, which are contructed from the superpotential (2.74) and Kéhler potential (2.76), are

invariant under the supersymmetric gauge transformation

; —igAt
egV engegve igA\ ’

if we assume that our superfields ®; in the adjoint representation of SU(N) transform as follows:

CI)i _ e?ng(I)ie 2igA and @I _ e2ng (I);re 2igA )
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We shall now discuss the conformal nature of NV = 4 SYM theory and review the
construction of marginal deformations thereof. Towards this end, we start by describ-
ing Wilson’s method of renormalizing a quantum field theory, based on discussions
in [5, 26]. Hence the §-function associated with a specific coupling is defined. We
mention, with reference to [26, 38, 39|, the chiral and dilatation currents, and cor-
responding anomalies, which are associated with chiral and scale transformations
respectively. It turns out that the conservation of the dilatation current, which is
required for scale invariance, implies the vanishing of all the (-functions. Finally,
following [5, 6, 40, 41, 42, 43|, we construct N/ = 1 supersymmetric marginal de-
formations of N' = 4 SYM theory, which are described by the Leigh-Strassler su-
perpotential and include the so-called S-deformations [7]. The non-supersymmetric

vi-deformations of [8] are also mentioned.

2.3.1 Renormalization and g-functions

The process of renormalization eliminates the divergences, with usually cause serious
problems in quantum field theory. The idea behind renormalization is that the bare
masses and couplings in the original Lagrangian are not the measured values. It is
possible [38] to reformulate the theory in terms of the measured masses and couplings

by introducing conveniently chosen counterterms into the Lagrangian.

There is also another approach to renormalization, which was invented by Wilson
and shall now be described based on discussions in [5, 26]. This method requires
us to formulate our quantum field theory in terms of functionals and path integrals,

and, towards this end, we shall define the generating functional
Z|J) = / D e J d'v [E@+T0] (2.78)

where [ D¢ denotes a path integral®® over all possible real fields ¢(z) satisfying the
constraints ¢(—1, %) = ¢1(Z) and ¢(T,Z) = ¢o(Z), with T" — oo, which fix the initial

10The path integral measure can be expressed as [26]
Do = [ [ do (=),

where we have discretized our spacetime into a large number of positions Z; separated by equal
small time intervals e. Our path integral then becomes the product of a large, but finite, number

of ordinary integrals.
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and final field configurations. Note that we have added a source term J¢ to the

Lagrangian. Hence correlations functions can be calculated as follows!!:

0T (0(01) . 6 0) = 5 (i) oo (~igge—) 210

with Zy = Z][0] the generating functional without a source term.

. (2.79)
J=0

In order to avoid ultraviolet divergences, we shall now introduce a cutoff A on the
momentum. The generating functional must first be written in terms of the Fourier
components ¢(k) of the fields and, furthermore, we shall perform the Wick rotation
E° — ik® so that we can write the cutoff condition in Euclidean space. Thus we
obtain

Z[J] = / Do = ¢'w [£@+I9] (2.80)

[k|<A

where we have imposed ¢(k) = 0 for all |k| > A. This cutoff condition sets to zero

the contribution to our generating functional from the high momentum modes.

Now the question is: how was our generating functional effected by the high mo-
mentum modes which we have just cut off? To answer this question, let us define a
slightly lower cutoff 1 and rewrite (2.80) in terms of a new collection of low momen-

tum (|k| < ) and high momentum (p < |k| < A) modes as follows:
ZlJ) = /ng_ /ng+ e~ AT [L(G—+d4)+T(6-+04)] (2.81)

where the Fourier transforms of ¢_(x) and ¢ (x) are given by

¢(@:{¢@> itk <p ¢4m:{¢“) k20 e

0 otherwise 0 otherwise

We now perform the integral [ D¢, over the high momentum modes to obtain
Z[J] = /D¢_ e~ [ d'z [Len(6-)+To-] (2.83)

where L.g is the effective Lagrangian. In other words, by integrating out the high

momentum modes, we have traded our original Lagrangian £(¢) and cutoff A for a

1A functional derivative is defined as

J)=6D(@—y) o / d'y T(y)d(y) = b(x),

5J(z) 6J(z)

and derivatives of composite functionals are calculated using the chain and product rules [26].
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new effective Lagrangian L.g(¢) with a lower cutoff p. It is therefore possible, by
continuously decreasing u, to arrive at a low energy effective Lagrangian with masses

and couplings which might be totally different from those in the original theory!?2.

Now we usually rewrite the field ¢(x) in the effective Lagrangian so that the coefficient
of the kinetic term 0"¢(z)0,¢(x) remains unchanged [5, 26]:

¢(x) — ¢'(x) = vV Z(n) ¢(x), (2.84)

where Z(u) is known as the wave function renormalization. This is equivalent to
insisting that the field ¢(z) should always create a particle with probability one. We
shall thus define the anomalous dimension of the field ¢(z), as in [6], to be

_ 0z

s (2.85)

It can be seen that ~ is related to the dependence of Z(u) on the length scale ﬁ and
hence the term ‘dimension’. For example, if Z(u) ~ (l%)” = ", then v =n.

The masses and couplings are generally also dependent on the energy scale i, and are
effected by our redefinition (2.84), so that m(u) — m/(n) and g(u) — ¢'(p). Thus,
following [5, 6, 41], we shall define the S-function (or Gell-Mann-Low function) as

99' (1) _ Mag’(u)
Olnp ou '

Blg) = (2.86)

which tells us how the redefined coupling changes as a function of the energy scale.
A conformal field theory has an exact scale invariance and therefore cannot contain
couplings which are dependent on an energy scale (energy ~ 1/length). Hence it is
intuitively clear that all the S-functions must vanish. Often theories are only scale
invariant for certain specific values of the coupling g, corresponding to specific energy

scales i, at which 3(g) = 0. These are known as ‘fixed points’.

2.3.2 Conserved currents and anomalies

An important aspect of any quantum field theory are the symmetries inherent in
the system - we are especially interested in the symmetry of scale invariance. There

exists a Noether current j*(x) corresponding to any such symmetry and, classically,

12This continuous collection of effective Lagrangians is called the ‘renormalization group’ [26].
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this current satisfies the conservation equation 0,j*(xz) = 0. When a field theory
is quantized we often find that this conservation equation is spoilt by an anomalous
term which appears on the right-hand side. This anomaly is usually an exact one-loop

expression.

Hereafter, following [26, 38, 39], we shall briefly discuss chiral and scale transfor-
mations, together with the corresponding chiral and dilatation currents, and their
associated anomalies. The dilatation current is of obvious importance, because it
must be conserved for a theory to be scale invariant and hence conformal. Further-
more, it turns out [40] that, in certain supersymmetric theories (such as N' =4 SYM

theory), the chiral and dilatation currents are related by a SUSY transformation.

Let us consider some general SU(N) gauge invariant field theory with N; flavours of

massless fermions. A chiral transformation is then given by [26]
Yi(x) — e Py (2), (2.87)

in terms of the real parameter a and the chirality matrix 7° defined in (A.11). Here
Vi (x), where k runs from 1 to Ny, are Dirac spinor fields in the fundamental represen-
tation of SU(N). Note that we have taken our fermion fields to be massless because
any mass term in the Lagrangian automatically breaks chiral invariance. Now, if we
assume our field theory to be invariant under this chiral transformation, then there
exists a conserved chiral current j*°(x) satisfying 9,j#°(x) = 0. This conservation

equation is broken at the quantum level by the chiral or Adler-Bell-Jackiw anomaly.

@ where « is a real

A scale transformation acts by scaling any length by a factor of e~
parameter. Therefore this scale transformation acts on some field ¢(z), with mass
dimension D, as follows:

o(z) — e Pp(xe™). (2.88)

Note that an identical transformation applies to spinor and vector fields. Let us,
again, consider a general field theory containing only massless fields and dimensionless
couplings ¢;. This theory will be classically scale invariant, with the corresponding

conserved dilatation current [26, 38]
DV = 6"z, so that 0,D" = 0", =0, (2.89)

where 0¥ is the symmetric and gauge invariant energy-momentum tensor®. At the

quantum level, a trace anomaly appears on the right-hand side of this conservation

13The usual energy-momentum tensor 7" is not necessarily symmetric or gauge invariant. It
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equation to yield d,D* o ) fBi(g;). Thus, as expected, we only obtain a scale

(3
invariant quantum field theory when all the g-functions vanish.

2.3.3 N =4 SYM theory and marginal deformations

N = 4 SYM theory is a finite quantum field theory - there is no dependence on
an energy scale at all and the theory is always conformal. This is a direct result
of its maximally supersymmetric nature [6, 43]. Marginal deformations of N' = 4
SYM theory can be constructed by adding what [6] have referred to as an ‘exactly
marginal’ operator to the N’ = 4 SYM Lagrangian and this results in a theory, which
is non-finite, but contains a manifold of fixed points (fixed lines, planes, etc). We shall

now discuss the conformal nature of A" =4 SYM theory and marginal deformations
thereof based on [5, 6, 40, 41, 42, 43].

Let us begin by considering a slightly more general SYM theory out of which both
N =4 SYM theory and marginal deformations can be constructed. We make use of

the following generalized N = 1 superpotential [6]:

f(®;) = %Tr{z hsfs(cbi)}, with f,(D;) = ®;, ;... D, . (2.90)

The Kahler potential and field strength term remain the same, except that we can
redefine the Wess-Zumino vector superfield gV — V for convenience, so that only the
field strength term contains the gauge coupling g. The N = 4 SYM superpotential
(2.74) is recovered when we consider two terms, ®;P,®P3 and & P3P, respectively,

and set hy = g and hy = —g.

We shall now construct the S-functions corresponding to the couplings g and hy in this
generalized SYM theory. It was shown in [40] that the there exists a supermultiplet
which contains the spinor current, the chiral vector current and the dilatation current.
(In other words, these currents are connected by a SUSY transformation.) We can

also write them in the form of a single supercurrent J,4, which is not classically

is always possible, however, to construct a new energy-momentum tensor with these properties as
follows [26]:
QHrv — THV =+ apz/tl/p7

where YX*”P is anti-symmetric in g and p. This new energy-momentum tensor satisfies the same

conservation equation 9,0"" = 0 and produces the same momenta P” = [ d3x 0% = i d3x T,
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conserved, due to the presence of the superpotential, but satisfies the relation [6]
_ 1 af
D Jpq ==D.|3f — d,— 1, 2.91
‘ classical 3 < f ; aq% ) ( )

where N, is the number of distinct superfields in the superpotential f(®;). Notice
that this expression vanishes for the N/ = 4 SYM superpotential (2.74), so that
N =4 SYM theory is classically scale invariant.

We now need to determine the anomalies that appear in this equation when we

quantize the theory. It was shown in [6] that the full quantum expression is

N d
”fﬁ §
3272 (3 ~ Nat %)

+Zh5< s 3) o+ i% f%)], (2.92)

where ~; is the anomalous dimension of the superfield ®;, which we have assumed to

_ . 1
DaJao’c = __Da
3

be in the adjoint representation of SU(NN). The coefficients of each of these terms

must be proportional to the corresponding S-function, so we obtain [6, 43]

d 1% O Infy(®)
ﬁgo<3—Nd+;% and S, x Ny — 3+ = Z o, (2.93)
3 Infy(®;)

The expression counts the number of times ®; appears in the s term in the

8 ln‘bl
superpotential. It is also possible [5, 44] to construct (3, based only on arguments

relating to the holomorphy of the superpotential.

We would now like to find manifolds of fixed points (fixed lines, planes, etc) for
the generalized SYM theory. We shall therefore look for a situation in which these
[-functions are linearly dependent, so that the number of conditions p is less than
the number of couplings n. In this case, if the conditions for zero (g-functions are
satisfied, the result is an n — p dimensional manifold of fixed points [6]. With this
in mind, we shall consider a theory with three distinct superfields in the adjoint
representation of SU(N). Moreover, we shall specify a superpotential in which each
term is the product of three superfields, so that Ny, = Ny = 3. This Leigh-Strassler

superpotential is given by

1
[(@) =T {1 @1 D@3 + ho®1 D3Py + hy (BF + 3 + ©F) |, (2.94)
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which contains an inherent Z3 symmetry - it is invariant under the transformation
¢, — &y, Py — P53 and 3 — P;. This last property means that the anomalous

dimensions of the superfields must be the same [5, 6]. Hence we obtain

3

B, o< By o< 57, (2.95)

so that the [-functions vanish if v(g,hs) = 0. This condition describes a three

dimensional manifold of fixed points in our four dimensional space of couplings.

Now, if we further specify that hy = —h; and hy = 0, we find a fixed line correspond-
ing to y(g, h1) = 0. It turns out that this fixed line in our coupling space is really at
hy = g, which describes N’ = 4 SYM theory [43]. It is thus clear that at any energy
scale N' =4 SYM theory is a conformal field theory.

Furthermore, setting hy = ge™?, hy = —ge™™" and hsy = 0, with 8 some complex

parameter, we obtain the -deformed superpotential of Lunin and Maldacena [7]
f(®;) = %gTr (e 01Dy 03 — e D1 D3 D,) (2.96)
which results in the g-deformed scalar potential
Vo = —%g2{ Te [[01@; = € 27020 |* + [ 020 — 270y, " 4 [0 — ¢ 2700, 0|
T [, B] 4 [, @3] + [y, @) } ‘ (2.97)

Only the F-terms in this scalar potential have been (-deformed, which is clearly

what we should expect, as these are the terms arising from the superpotential.

Lastly, we should mention that there exists also another deformation of N' =4 SYM
theory, which was invented by Frolov [8] and upon which we shall concentrate in this
thesis. This 7;-deformed theory is non-supersymmetric and thus cannot be described

by an N = 1 superpotential, but contains the ~;-deformed scalar potential
1 , , .
V7= _Z_lg2{ Tr |:|(I)1(I)2 - 672“”/3(1)2(1)1‘2 + ‘(I)Q(I);; - 672m71(133q)2‘2 + |(I)3(I)1 - 672W72(I)1(I)3|2:|
1
- T [0, 0] + 02,85 + 20, 25)7] | (2.9%)

Here ~; are three different real parameters - the case of equal v; is equivalent to the
case of real § = ~ in the previous example. This v;-deformed non-supersymmetric

YM theory is conformally invariant in the large N limit [8].
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Chapter 3

Matrix of Anomalous Dimensions

and Spin Chains

3.1 SYM Matrix of Anomalous Dimensions

AdS/CFT correspondence matches the energy spectrum of string states with the
spectrum of dimensions of the corresponding gauge theory operators. In other words,
the excitation energies must correspond to the eigenvalues of the matrix of anomalous
dimensions. This conjecture was initially tested [11] for chiral primary (half-BPS)
operators of the form Tr (CID;] ), which have conformal dimension A = .J protected by
supersymmetry and are dual to point-like strings. The string energies were calculated

in the large A limit and matched to the (trivial) dimensions on the gauge theory side.

Due to the strong/weak coupling nature of the gauge/string duality, extending this
test non-protected operators and their string duals posed a serious problem. Recently,
a partial solution was proposed [12] by Berenstein, Maldacena and Nastase (BMN) for
operators with large quantum numbers (such as R-charge and spin). They considered
the specific case of ‘nearly BPS’ operators, which are obtained from ‘long’ chiral
primary operators by adding a small number of ‘impurities’ (other real scalar fields)

into the trace as follows:

no impurites Tr (@], (3.1)
one impurity Tr (¢;®)) , (3.2)
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J
two impurities Z i/ Iy (qﬁj@iqbkq):{’l) , (3.3)
1=1
and so on. These BMN operators have large R-charge! J. The deviations A — .J of
the conformal dimensions of these BMN operators from the original conformal (and
bare) dimension J of our ‘long’ chiral primary operator were found to be finite in the
BMN limit \
J — o0 with X = = fixed < 1, (3.4)

and could be expanded as a function of . (Note that only planar diagrams were
included in this calculation.) Thus it is possible to perform calculations in the gauge
theory, even at large A\, by considering sufficiently ‘long’ operators. The dimensions
of these BMN operators were matched to the dimensions of nearly point-like strings

in a pp-wave background.

It is also possible [13] to extend this idea to operators with a large spin quantum
number S. These are single trace operators of the form Tr ((I)iv(mmvus)q)i)? which
contain a large number S of derivatives and have bare dimension S + 2. The dual
string configurations move with spin S in the AdSj5 space. As before, there ex-
ists a similar large S BMN limit in which the anomalous dimensions are finite and

string/gauge theory comparisons can be performed.

Now, in this chapter, we are interested in ‘long’ single trace operators in the ‘scalar
sector’, which are constructed from our six real scalar fields (with no derivatives) and
take the form Tr (¢;, ¢i,...¢;,), where J is assumed to be large. These operators are
dual to extended closed strings rotating with total angular momentum J in the S°
space. It was shown in [16] that the one-loop planar? matrix of anomalous dimensions
in the scalar sector of N'=4 SYM theory can be expressed as the Hamiltonian of a
closed integrable SO(6) spin chain. The Bethe ansatz technique can then be used to

diagonalize this anomalous dimension matrix.

1This R-charge is actually the charge with respect to only an SO(2) subgroup of the R-symmetry
group. We consider only transformations which rotate the real scalar field components of the

complex scalar field ®; out of which our original chiral primary operator was constructed.
2The effects of non-planar diagrams were not considered. It should be noted, however, that
[45, 46] showed that non-planar diagrams are not necessarily negligible in the BMN limit. It turns
out that a general non-planar diagram has both an effective coupling constant A= % and a genus-
J2

2
counting parameter g3 = (W) . Planar diagrams have genus zero so that the dependence on g3

disappears, but non-planar diagrams are suppressed by factors of this genus-counting parameter.
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In this section, we briefly review the identification of [16] of the matrix of anomalous
dimensions in the scalar sector with the Hamiltonian of an SO(6) spin chain. We then
restrict ourselves to the SU(3) sector, which corresponds to operators of the form
Tr (®;, ®y,...P;, ), constructed from our three complex scalar fields. This anomalous
dimension matrix corresponds to the Hamiltonian of an SU(3) spin chain, a formal

description of which is given in appendix B.

3.1.1 Matrix of anomalous dimensions

We shall now define the matrix of anomalous dimensions based on discussions in

[16]. Let us consider some collection of operators in a basis O, which mix amongst
A

ren

themselves under renormalization. The renormalized basis operators O are a linear

combination of the bare basis operators O as follows:

o4 = 74,05, (3.5)

ren

where Z4, is a matrix of renormalization factors dependent on the energy scale

defined by our varying ultraviolet cutoff p.

The matriz of anomalous dimensions is now defined as

0z4 _\B
Moo= @) e

(3.6)

in the neighbourhood of the fixed point. The eigenvalues of this matrix of anomalous
dimensions correspond to the anomalous dimensions -, of the operator eigenstates

O,,, which are multiplicatively renormalizable.

3.1.2 Scalar sector operators as SO(6) spin chains

The scalar sector of N' = 4 SYM theory is composed of single trace operators con-

structed from our six real scalar fields as follows:

) W] = wiliQ..'iJTr (¢i1¢i2 s ¢ZJ) ) (37)

where 91124 are real coefficients. These operators have bare dimension J and,
considering only planar diagrams, mix amongst themselves under renormalization.

The obvious basis of bare operators for the scalar sector is thus
O’iﬂ'z...’iJ == Tr <¢i1¢i2 oo ¢l]) ) (38)
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which, under renormalization, becomes

(Oren)jljZ---jJ = Zl:liQ.“iJ Oil?:Q...Z‘J‘ (39)

Jije--gg

Here Z37> %/ is the matrix of renormalization factors. The renormalized scalar sector
operator Oy, [1] can now be constructed from these renormalized basis operators as
follows:

Oren [¥] = Wm'"j" Zyzts Oiviy.iy = (@/Jren)im'"i”’ Oivig..iys (3.10)

J1j2--jg
With (Yyen) 2" = Zﬁg;‘; YI17237 - Hence we see that it is possible to view the
renormalization of the scalar sector operator O [¢)] as the renormalization of the real

wavefunction 1% (rather than of the basis operators).

We can already see the analogy to an SO(6) spin chain starting to appear. Our matrix
of renormalization factors (and thus also our matrix of anomalous dimensions) acts
on the real wavefunction %%+ which is a state in the tensor product of J six
dimensional real R® vector spaces. Furthermore, cyclic permutations of the indices
11,19, ...,1y should result in an equivalent state, due to the cyclicity of the trace in

our basis operators. Thus 1%/ can be identified with a closed SO(6) spin chain.

Let us now briefly review the construction of the one-loop planar matrix of renor-

malization factors Zj 2>/ and the corresponding matrix of anomalous dimensions

[%2"/ based on discussions in [16]:

(1) (2) (3)

Figure 3.1: One-loop planar diagrams [16].

The bosonic part of the N/ = 4 SYM Lagrangian (2.26) leads to three one-loop planar
diagrams (see figure 3.1), which contribute to the matrix of anomalous dimensions.
Here the notation of [16, 47] has been used: the horizontal line represents the renor-

malized operator (Oyen) and the vertical lines link the real scalar fields ¢; to

1112...17
lattice sites along this operator (at the same spacetime point). We can easily see that
the one-loop planar calculation involves only the mixing of fields at neighbouring lat-

tice sites (sometimes referred to as ‘nearest-neighbour interactions’). Diagrams (1)
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and (2) represent the mixing of operators due to gauge boson and scalar interactions
respectively, whereas diagram (3) is the result of the self-energy correction to the

scalar fields at each lattice site.

Thus, using these three diagrams, the matrix of renormalization factors corresponding
to the mixing of two fields ¢;, and ¢;, ,, at neighbouring lattice sites & and &+ 1 was
calculated in [16] to be

A

Z =1
kk+1 1672

(Kkgt+1 + 2 — 2Prjt1) (3.11)

where the trace and permutation matrices are defined as

Iglk Tt
(Kk k—l-l) T — HRUt1 .

JkJk+1 TkJk+1

and (Pkk 1)%%“ = (5% 5Zk+1. (312)

JkJk+1 Jk+1 " Jk

where the indices i, ixy1, Jx and jgiq run from 1 to 6. Here the action on the other

lattice sites has been suppressed, since it is trivial.

The total renormalization matrix can now be expressed as a sum over all possible

neighbouring lattice sites:

J
A
Z= Z [ 1672 (Krger1 +2 = 2Pppi1) | (3.13)

with J +1 = 1. (The basis operators involve a cyclic trace over the real scalar fields

and thus the first and last lattice sites are neighbours.)

Hence the one-loop planar matrix of anomalous dimensions in the scalar sector is

J
> (Kikr +2 = 2Prsia) (3.14)

k=1

A
= 1672

which is the Hamiltonian of an integrable SO(6) spin chain [16] acting on the closed
SO(6) spin chain state 1)1/, Notice that I does not depend on the energy scale,

because it is calculated in the neighbourhood of the fixed point.

3.1.3 SU(3) sector operators as SU(3) spin chains

Let us now consider single trace operators of the form
O 0] = U2 Ty (B Dy, ... Dy ), (3.15)
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which are constructed from our complex scalar fields ®; = ¢; + ¢, 3, where [ runs
from 1 to 3, and span the SU(3) sector of N' = 4 SYM theory. Here W27 ig
a complex wave function, which lives in a tensor product of J three dimensional

complex C? vector spaces. Our basis operators for this SU(3) sector are thus

O =Tr ((I)ilq)iz Tt <I>1J) =Tr [(¢21 + i¢i1+3) (Csz + i¢i2+3) Tt (¢'LJ + i¢w+3)] )
(3.16)

which can clearly be written in terms of the original basis scalar sector operators.

i1ig..iy

We would now like to understand the action of the trace and permutation matri-
ces (and hence the matrix of anomalous dimensions) on these new basis operators.
Firstly, we shall use the definitions (3.12) to write

JkIk+1

6
(Kk’k+1)ikik+1 Tr ((bh e ¢ik¢ik+l Ce (ﬁ”) = 5jkjk+1 Z Tr ((bjl Ce ¢l¢l e (ij), (317)
=1

(Pk7k+1)ikik+l Tr (¢“ Ce ¢’ik¢’ik+1 R ¢1J) =Tr (¢Jl c ¢jk+1¢jk c ¢]J) . (318)

JkJk+1
Let us now calculate the action of the trace and permutation matrices on the new
basis operators by expanding them in terms of the old basis operators as follows:

(Kppn) 5 T (B . @y, Dy, - D)

JkJk+1

== (Kk,k-f-l)ikikJrl Tr [cbll cee (¢lk + i¢ik+3) (¢ik+1 + i¢ik+1+3) s ®ZJ:|

JkIk+1
= (Kk7k+1);lz;lz:_11 Tr [(pll e (¢lk ¢ik+1 + Z¢lk ¢ik+1+3 + i¢ik+3¢ik+1 - ¢ik+3¢ik+l+3) e ®ij|

6
= (g T O+ 0= 05500) DT (R, ...y ... B;))

=1
=0, (3.19)
and, similarly,

(Prprt) E5 0 T (B, Dy, By ®y,) =T (D, @

JkJk+1

®j, ... 9;,).  (3.20)

Jk+1

Thus we see that the trace matrix Kj 1 annihilates any operator in the SU(3) sector
of N'=4 SYM theory, whereas the permutation matrix Py ;41 simply permutes the

k™ and (k + 1)™® complex scalar fields in our single trace operator.
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Hence we can deduce from (3.14) that the one-loop planar matrix of anomalous
dimensions for the SU(3) sector of N'=4 SYM theory is

J

A

=53 > (1= Pras) (3.21)
k=1

where we now define the permutation matrix as

(,P]f,kJrl)lklkJrl = 5Zk (SZkJrl, with ik, ik+1, ik,jk+1 € {1, 2, 3} . (322)

JkJk+1 Jk+1 " Jk

This is the Hamiltonian of a closed SU(3) spin chain, which is a 3’ x 37 matrix acting
on the SU(3) spin chain state W%+ in the tensor product of J three dimensional
complex vector spaces. A detailed review of the formal description of an SU(3) spin

chain is given in appendix B.

3.2 ~;-deformed YM Matrix of Anomalous Dimen-

sions

We would now like to extend the results of the previous section to deformations of
N =4 SYM theory. An important question (studied in detail in [48]) is: for which
deformations does the one-loop planar matrix of anomalous dimensions result in the
Hamiltonian of an integrable spin chain? Our ~;-deformed YM theory in the SU(3)
sector is one such example. The resulting 7;-deformed SU (3) spin chain was discussed
in [9], while [49] extended these ideas to the SU(2|3) sector.

In this section, we very briefly describe how the one-loop planar matrix of anomalous
dimensions for the SU(3) sector of the ;-deformed YM theory can be written as the
Hamiltonian of a y;-deformed SU(3) spin chain. Furthermore, we discuss such aspects
of the v;-deformed SU(3) spin chain formalism as the R-matrix, the Yang-Baxter
equation, and the monodromy and transfer matrices. (Note that any integrable
spin chain always has an R-matrix, which satisfies the Yang-Baxter equation.) The
spin chain Hamiltonian and momentum operators are then written in terms of the
transfer matrix. We make use of an algebraic Bethe ansatz to diagonalize this transfer
matrix and hence the 7;-deformed spin chain Hamiltonian. Finally, we discuss the

v;-deformed vacuum states.
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3.2.1 ~;-deformed SU(3) sector operators as y;,-deformed SU(3)

spin chains

The SU(3) sector of the y;-deformed YM theory is, again, composed of single trace

scalar operators of the form

O [\If] = \Ililizmi‘]TI' ((I)ll q)ig . (I)ZJ) , (323)

as in our undeformed N' = 4 SYM theory. Thus the Hilbert space, in which our
SU(3) spin chain state W% lives, is unchanged by the v;-deformation.

The one-loop planar matrix of anomalous dimensions (or SU(3) spin chain Hamil-
tonian) does, however, depend on the deformation parameters. The same one-loop
planar diagrams (see figure 3.1) are relevant, but the scalar interactions in the F-
terms are now slightly different - when we exchange two fields ®; and ®; due to
F-term interactions, our renormalization matrix picks up a factor of e 27k This
leads to the following one-loop expression of [9] for the planar matrix of anomalous
dimensions in the SU(3) sector of the 7;-deformed YM theory:

J
. A .
M= > (1-Pli). (3.24)
k=1
where the action of the v;-deformed permutation matrix on the k" and (k + 1)
fields in our single trace basis operators (or, equivalently, on the k™ and (k + 1)
indices of our SU(3) spin chain state W27} is given by

¥i ikl 2mici, g, STRL STk ; L= ..
(Pk,k+1)jkjk+1 = - 5]79 6jk+1’ with Qi = —EijkVk- (325>

This matrix of anomalous dimensions is the Hamiltonian of a closed ~;-deformed
SU(3) spin chain and reduces to the one-loop planar SYM matrix of anomalous

dimensions (3.21), if we set the deformation parameters 7; to zero.

3.2.2 ~;-deformed SU(3) spin chain formalism

We now briefly discuss the formal description of the v;-deformed SU(3) spin chain
in analogy to the more extensive review of the undeformed case in appendix B. This

is based on the discussions in [9, 49].
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~v;-~deformed spin chain Hamiltonian

The basic description of our closed SU(3) spin chains states (see appendix B) does
not change when we consider 7;-deformed spin chains. The deformation is visible
rather in the v;-deformed Hamiltonian
P
HYi = = 2 HkaH with Hszﬂ = lpp+1 — 7’ka+1, (3.26)
where P,Zk 41 is the y;-deformed permutation matrix (3.25), which is also given by

3
Pl = emmmen(k)en, (k+1). (3.27)

m,n=1
Here e]'(k) are the basic observable states defined in (B.6) in terms of the matrices
e™ in the k™ position of the tensor product. (The matrix e™ has a 1 in the m'™ row

and n'" column, and all the other elements are zero.)

Therefore we can write the action of H}, ., on the ™ and (k + 1)* complex vector
spaces as an explicit sum over tensor products of the matrices e as follows:
i 1o 2 2o 1 2miaie 1 o 2 2miaz 2 o 1
Hz7k+l =e, ®e;+e;Qe —eMMe,®e] — e el ® ey

3ol 1 o 3 2mias 3 o o1 _ 2miais 1 o 3
+es®e;+e;®e; —e M Mel ey — e My ® e

+es®es+eh ey — XMl @ ey — el ®e;,  (3.28)
or, more explicitly,
0 0 0 0 0 0 0 0 0
0 1 0 —ePmierz () 0 0 0 0
0 0 1 0 0 0 —e2miats 0 0
0 —e?rion 0 1 0 0 0 0 0
Hiva=| 0 0 0 0o 0 0 0 0 0
0 0 0 0 0 1 0 —e2miaz ()
0 0 —e2miasy 0 0 0 1 0 0
0 0 0 0 0 —e?mias 0 1 0
0 0 0 0 0 0 0 0 0

—
w
[\)
Nej

N

Now H}’, 41 can also be expressed as follows:

3
HZ?k:—&-l = Uk7k+1Hk,k+1u,;;+1, with uk,k—i—l = Z eiﬁamne%(k)ez(k -+ 1) (330)

m,n=1
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To prove this, we need to note that, since Uj, j41 1k7k+1Z/{,;,1+1 = 1y k+1, it is equivalent

to show that P,Zk +1 = Uk o1 Py, ,1 .1 and therefore we shall calculate

Uk,kﬂpk,kﬂuﬁﬂ
3 3 3
= Z emamne™ (ke (k + 1) Z en(k)el(k+1) Z e~ morsel (k)es(k + 1)
m,n=1 p,q=1 r,s=1
3 .
= Y ememnmen) [em(k)el(k)er (k)] [en(k + 1)el(k + Dei(k +1)] . (3.31)
m,n,p,q,r,s=1
Since ey, (k)eb(k)ey (k) = 6,0h,e" (k) and ey (k + L)ef(k + 1)eg(k + 1) = d;07ex (k + 1),

we find that

3
UnprrPerillppn = 3 ™o 807 5360 e (k)ef (k + 1)
m,n,p,q,r,s=1
3
= Y emmmen(k)en(k+1) = Pl (3.32)
m,n=1

which is sufficient to prove the statement (3.30).

~v;-deformed R-matrix and the Yang-Baxter equation

The R-matrix for this ;-deformed SU(3) spin chain is

Rl (u) = ulls +iP;j, with (1Zi»)i1i2 = iz §l1 512 (3.33)

17 j172 J177J27

which, although it is defined over the auxillary and quantum spaces, acts non-trivially

only on the i** and ;' complex vector spaces as follows:

RZ] (u) = (3.34)
u+1 0 0 0 0 0 0 0 0
0 ue?mion 0 { 0 0 0 0 0
0 0 ue?mios 0 0 0 { 0 0
0 ? 0 ue?mioz 0 0 0 0 0
0 0 0 0 u—+1 0 0 0 0
0 0 0 0 0 ue’miozs 0 ? 0
0 0 0 0 0 ue?miast 0 0
0 0 0 0 0 ue>mios? 0
0 0 0 0 0 0 0 u+1

N
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This v;-deformed R-matrix satisfies the Yang-Baxter equation
Rzg(u — v)RZ’k(u)R;hk(v) = R]Zk(v)RZZk(u)RZ}(u —0), (3.35)

where ¢ # j # k. The proof is similar to the undeformed case, which is discussed in

appendix B.

~v;-~deformed monodromy and transfer matrices

We shall now introduce the v;-deformed L-matriz L’ (u) = R (u — %), which shall

be used to construct the vy;-deformed monodromy matriz as follows:
TG (u) = Ly’ (u) - . L'y (u) Lo (u). (3.36)
This monodromy matrix can also be expressed as

(A7) (u) - (B™), (u)  (B™)g (u)
Tg'(w) = | () (w) (DY), (u) (D7);(u) | (3.37)
(C7) (w) (D) (w) (D)5 (u)

which is a matrix in the auxillary space 0 with operators in the quantum spaces as

components. (The algebraic Bethe ansatz is constructed from these operators.)
This ~v;-deformed monodromy matrix satisfies
Ry (u = o) T (w) T (v) = Ty (0) T3 (w) Ryl (u = v), (3.38)

where a and b are two different auxillary spaces. This is a direct result of the Yang-

Baxter equation (3.35) and can be derived as in appendix B.

The v;-deformed transfer matriz is now defined as
£ (u) = Tro [Tg" (w)] = (A™) (u) + (D), (u), (3.39)

which is an operator on the quantum spaces.

v;-~deformed momentum and Hamiltonian operators in terms of the ~;-

deformed transfer matrix

The momentum operator is given by

P = % log [i 7 7 ()] . (3.40)
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As shown in appendix B for the momentum operator constructed from the unde-
formed transfer matrix, we find that e = Py ,Py3...P;_1; and therefore P7
generates translations along our spin chain. This verifies that P is, indeed, the

momentum operator.

Furthermore, the v;-deformed Hamiltonian operator can be written as

A d
H = . — log tYi
82[J ) uogt(u)

] : (3.41)

_i
U=z

and thus we see that diagonalizing the v;-deformed Hamiltonian is equivalent to

diagonalizing the v;-deformed transfer matrix.

3.2.3 r;-deformed algebraic Bethe ansatz

We now briefly discuss how to diagonlize the v;-deformed transfer matrix using the
algebraic Bethe ansatz. This algebraic Bethe ansatz state is dependent on two sets
of Bethe parameters, which must satisfy both the 7;-deformed nested Bethe ansatz
equations and a cyclicity condition. (This cyclicity condition is due to the fact that
our spin chain is closed and thus any state should be invariant under cyclic permu-
tations of the component spin states.) We also construct the energy and momentum
eigenvalues in terms of the Bethe parameters. Note that a more extensive review of
all these results, complete with derivations, is available in appendix B for the case
of undeformed SU(3) spin chains. We have based our discussions on the reviews
[50, 51], which consider only SU(2) spin chains, as well as the results in [9, 49].

~v;-deformed fundamental commutation relations

An indirect result of the Yang-Baxter equation is that the operator components of
the ~;-deformed monodromy matrix 7" (u) in the auxillary space must satisfy a set

of fundamental commutation relations:

(A7) (u) (B™);, (v)

= e [ (2020 (5, 0 () 0+ () (B, 0 (47 ).
(3.42)
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(), ) (87), ) = (s ) () (=) (87,0 (B7),, () (349

U—v-+1 ivio

Jijz

(D) ) (87, (0) = e | () ()

u—v

(u—v) (BY),, (v) (D)} (u)

112

*(uifv)<3”%1@0<lﬂﬂg<v>, (3.44)

where 1,19, j1, J2, k1 € {2,3} and we define the 7;-deformed SU(2) R-matrix as

(R%)MQ (u) _ (u + Z) 5;15;3 if iy = i (3 45)
iz w iz G612 i 6260 if iy # iy, '

In matrix form, this R-matrix is given by

(e 0 0 0
- 0 ue’mons l 0
Vi(q)) —
Ri(u) = 0 ; P TT— : (3.46)
0 0 0 U+

which clearly acts on a tensor product of two C? complex vector spaces.

v;-~deformed algebraic Bethe ansatz and the eigenvalues of the ~;-deformed

transfer matrix

Let us first define the ground state of our v;-deformed SU(3) spin chain as the state

of maximum .J; = J, consisting of a tensor product of J spin-up vectors

1
wi=|0]l®...®
0

(3.47)

o O =

which is clearly annihilated by the v;-deformed spin chain Hamiltonian. This ground
state is also an eigenstate of the operators (A") (u) and (D%); (u), and is annihilated
by (C7)" (u). Most interestingly, however, the (B), (u) operators act by lowering

the spin of one site in our ground state spin chain.

We shall now make the first part of the ~;-deformed algebraic Bethe ansatz for the

eigenstates of the v;-deformed transfer matrix as follows:

P (U’l,17 ce ,ULM) = (f%)il 7777 i (B%>i1 (ul,l) .. <B%)iM (ul,M) Wy, (348)
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where i1,..., iy € {2,3} and (f7)""™ are, for now, arbitrary complex coefficients.

We have thus lowered the spin of M = J, + J3 sites of our spin chain.

Let us consider the action of the ~;-deformed transfer matrix 7 (u) = (AY) (u) +
(D). (u) on this algebraic Bethe ansatz state. The fundamental commutation re-
lations allow us to move the operators (A%) (u) and (D*)! (u) through the series
of (B"), operators until they act on the ground state w;. Remembering that the
ground state is an eigenstate of (A%) (u) and (DV); (u), we see that it is possible
to obtain an explicit result for the action of the ~;-deformed transfer matrix on the

algebraic Bethe ansatz state.

Thus, assuming that the first nested Bethe ansatz equation is satisfied, we find that
the algebraic Bethe ansatz state diagonalizes the v;-deformed transfer matrix if the

state (f%)"" in the basis (BY);, (w11) . (BY),  (u1) diagonlizes the matrix

, RN , AL NYESAL
6271'2.]10111 <R’Y¢> M (u — Uy — %) . <R’Yi>j2i2 (u — U2 — %) <R%>Z: 1 (U — U1 —
(3.49)

Note that we have made a redefinition u — u— 5, for convenience, in this calculation.

JM—1iMm

This looks very much like the original transfer matrix, except that now the indices
run over only 2 and 3, our spin chain state (f7)""*™ is of length M, and there
is a dependence on both the deformation parameters +; and the first set of Bethe

parameters {uy ... upar}-

Therefore we have, in some sense, reduced the dimension of our problem by one
and must now solve an SU(2) spin chain problem. This SU(2) spin chain has
a ~y;-deformed R-matrix (3.45), which satisfies the Yang-Baxter equation, and a
vi-deformed SU(2) monodromy matrix, with component operators A% (u), B (u),
C(u) and DY (u). These component operators depend also on the first set of Bethe
parameters and satisfy a set of fundamental commutation relations. Our SU(2) spin
chain state ( f%')il“'iM must now diagonalize a weighted combination of the states
A%(u) and D (u). We can, as before, define the ground state of our SU(2) spin

chain as a tensor product of M spin-up vectors

N 1 1
(oo ) v

which is an eigenstate of the operators A% (u) and D (u), and is, again, annihilated

by C7(u). Our operator B (u) lowers the spin of one site of the ground state @,

45
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We shall hence make the second part of the ~;-deformed algebraic Bethe ansatz as

follows:
(f’yi)il’m’iM = &)% (UQJ, Ce 7u2,L) = B% (U2,1) ce B% (UZL) (.:)Jr. (351)

Here we have lowered the spin of L = J; sites of our SU(2) spin chain.

We can now operate with the weighted combinations of the operators A% (u) and
D" (u) on our Bethe ansatz for (f%)"" and use the SU(2) fundemental commu-
tation relations to move these operators through the series of B operators until
they act on the SU(2) ground state @,. We thus find that (3.49) is diagonalized if

the second nested Bethe ansatz equation is satisfied.

Therefore we finally determine that the algebraic Bethe ansatz state 7 is an eigen-
state of the y;-deformed transfer matrix if and only if our two sets of Bethe parameters

satisfy the v;-deformed nested Bethe ansatz equations:

4 iN 7 M L _ 1’
—2mid s Uy 2 _ - 2mids(m+ras) H Upj — U g + 0 H Uj — Uzl — 3
! Upj — U g — 1 u2l—|—

Urj =3 Pl L1\ —
NEj
(3.52)
forall j e {1,..., M}, and
L . o i
éﬁmmwmm)ﬂ(%:&&ﬂ) H(&iﬂﬂj)zgmmm)
k=1 U5 — Uk — 7 ) Uy — Uz j — %
NEj
(3.53)
for every j € {1,...,L}. These v;-deformed nested Bethe ansatz equations agree

with the results quoted in [9].

Furthermore, the eigenvalue of the v;-deformed transfer matrix ¢ (u) corresponding

to the algebraic Bethe ansatz state " is given by

M 3i
A7 (u) — o 2mi(J213—J372) [H (—u — Yk T ?)] u’ (3.54)
U— U — 3

IMI 1 U— Ugp — 1T M
N\ J —27i(J3y1—J173) 2,k i
- u—1 e - & u i
1 (U_Ul,k_%)] ( ) { [ ( U — U )] [l | ( Ui, 2)

=1
4 e 2rihn ) X
U — Uk

b
Il ™~
—

=

Ll@_uu—%ﬂ},

in terms of our two sets of Bethe parameters {uy1,...,u;a} and {ugq, ..., usr},
where L = J; and M = Jy + Js.

b
II: ™~
—_
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~v;-~deformed energy and momentum eigenvalues and the v;-deformed cyclic-

ity condition

Taking into account our redefinition of © — u — % and using equation (3.41), we find

y

_ )\ _J . d 1 —ZWi(JQ’yg—Jg’yz) ﬁ U — ulvk B % J
= ) Zdu og 4 € w— g — — | u

2
k=1 2

that the energy eigenvalues are

A d
EYi — — = oo AV
82 [J du 8 ()

A d

[ M
:@ J—z@{Z[IOg(U—ulk—%) log(U—ulk—-)}—i-Jlogu}
k=1

§

:é%izj{ 1i_ L J, (3.55)

i LUkt 5 Uik — 3

which gives

A . 1
EW:—EE:;——< (3.56)

This agrees with the result in [9]. These energy eigenvalues appear to be independent
of both the second set of Bethe parameters and our deformation parameters -;.
However, we should remember that the first and second sets of Bethe parameters
are related by the nested Bethe ansatz equations. Furthermore, these equations are
v;-deformed. Thus the v;-deformed energy eigenvalues are indirectly dependent on

both sets of Bethe parameters and the deformation parameters ;.

Finally, we shall derive the cyclicity condition using the v;-deformed momentum

eigenvalues, which can be obtained using equation (3.40) as follows:

Pﬁ:lbgvdmmﬂ

S =

M Uk + 5
log —27i(Jayz—J372) H ( Lk )
el Uik — 5

_'_
= =27 (a3 — J372) + Z log (ul . ) (3.57)

Ulk_‘

We must require that e = 1, so that a translation by one site along our closed
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spin chain results in no change. We thus obtain the v;-deformed cyclicity condition

Utk — 5

M +_1
6—27Ti(J2’YS—J372) H (ul’k—3> =1, (358)
k=1

which agrees with the results in [9] and [49].

3.2.4 ~;-deformed vacuum states

We shall now consider the ‘angular momenta J;, J, and J3, which describe the
v;-deformed vacuum states. These are the states with zero spin chain energy. The

discussion given hereafter closely follows [9].

Consider the expression (3.56) for the energy eigenvalues of our 7;-deformed SU (3)
spin chain. There are two ways in which we can obtain zero energy. Firstly, the

energy of the spin chain is clearly zero if there are no excited modes (Jy + J3 = 0).

Secondly, the energy is zero if the term ——= T is zero for every parameter u; ,, which

Ul kT2
occurs only when w; j, is infinite for all . We shall then also assume that the difference

between these parameters |uy ; — uq | for j # k is also infinite.

Now, in the first case, we obtain the state (J,0,0), where J; = J and J, = J3 = 0.
However, there is no real difference between the three ‘angular momenta’ J;, J, and
J3, so we could just as easily have chosen a state of maximum Js or J3 to be the
ground state. Therefore we must also have vacuum states (0, J,0), where Jo = J and
Ji = J3 =0, and (0,0, J), where J3 = J and J; = Jo = 0. These vacuum states
are independent of the deformation parameters 7; and are present in the undeformed

case.

The second case of infinite Bethe parameters u, j, is only possible if certain constraints
are satisfied by the ‘angular momenta’ J;, Jo and J5. These constraints are the result
of the first and second ~;-deformed nested Bethe ansatz equations (3.52) and (3.53)
respectively, and the cyclicity condition (3.58).

3The term ‘angular momenta’ in reference to Jy, Jo and Js is, strictly speaking, inaccurate.
These parameters describe our algebraic Bethe ansatz state and represent the number of different
types of spin states in our tensor product. They are, however, dual to the angular momenta in the

7i-deformed S® space of the corresponding string theory.
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Applying the assumption that u; ; — oo to the cyclicity condition (3.58) yields

e 2mi(2vs=Js72) — q

, (3.59)

and thus we must have*
JQ’Yg - Jg’)/g =0. (360)

Furthermore, the first nested Bethe ansatz equation (3.52) with u; ; — oo implies

6—27ri(J1+J2+J3)73 _ 6—27TiJ3(’Y1+“/2+73)’ (361)

and, making use of the condition (3.60), we obtain
2mi(Jam—J1v3) 1, (3.62)

from which it follows that
Jg")/l — Jl’}/g =0. (363)

Lastly, let us consider the second nested Bethe ansatz equation (3.53). We have only
assumed that u; ;, — 00, but, as yet, have placed no conditions on uy ;. Therefore we
first need to get rid of the product dependent only on the latter set of parameters.
We do this by taking the product of this equation for all values of j ¢ {1,...,L}. It
can be seen that

<U2,j — U + Z) <u2=k Uy T Z) =1 for any j # k, (3.64)

’LLQ’]‘ — U — 1 Uk — UQJ' — 1

and thus, since each term in our product has a corresponding term with which it

cancels, when we assume that u; , — 0o we obtain

e2mid3(J24J3)(ntr2+73) — 2mida(Ji+J2+3)(v2+73) (3.65)

This implies, using the constraint (3.63), that

e2mis(Jine=lom) — 1 (3.66)

and hence
J1’72 — J2’71 =0. (367)

4One might expect to find that any integer on the right hand side of this equation would suffice.
At this point, however, we would like to consider solutions which exist for all real deformation
parameters 7; (not necessarily rational). For irrational values of the ~;, the only integer which will

provide a valid solution is zero.
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Thus, for the case of infinite Bethe parameters u; ; to be a valid vacuum state, the

‘angular momenta’ Jy, Jo and J3 must satisfy
51‘ijij =0, (3-68)

which corresponds to (Ji,Jo, J3) ~ (71,72,73). This vacuum state clearly has no
undeformed analogy, since the constraints disappear when we set all our deformation

parameters «y; to zero.

Now in this derivation we have considered a general v;-deformed background in which
the deformation parameters ; are any real numbers. If we confine ourselves to the

case of rational deformation parameters, then our condition can be broadened into

EijkJiVe = N, where n; € Z for ie {1,2,3}. (3.69)
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Chapter 4

String Theory

4.1 Classical String Worldsheet Action

A string is a one dimensional object with some fundamental constant string tension

T. Any such string traces out a two dimensional surface, known as a worldsheet

(analogous to the worldline of a point particle), in spacetime, which can be parame-

terized by the temporal and spatial coordinates 7 and o respectively. In other words,

this worldsheet is the image of an embedding X* (7,0) from the parameter space

(7,0) into the target space, which is some d dimensional spacetime described by the

coordinates z#, where p runs from 0 to d — 1 [4]. We are particularly interested in

the d = 10 dimensional AdSs x S° target space.

e
d dimensional spacetime

open string
worldsheet

m']

@2

mz‘/

d dimensional spacetime

closed string

worldsheet

!

—

o

Figure 4.1: The worldsheets of open and closed strings.

The worldsheet of an open string is simply an open sheet, but a closed string must

have its end-points identified at any time 7 and thus the worldsheet becomes a tube-
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like surface (see figure 4.1). The temporal coordinate 7 can take on any real value,
but the spatial coordinate o is generally confined to a finite interval [4]. We are
especially interested in closed strings and, following [8], shall hence make use of the
parameter space {(7,0) : 7€ R, o€ [0,27]} and take the worldsheet to be periodic
in o, so that X* (1,0) = X* (1,0 + 27).

The classical! string worldsheet action is proportional to the proper area of the
string worldsheet. (This is analogous to the classical point particle action, which is
proportional to the length of the particle’s worldline.) It can immediately be seen that
this action is reparameterization invariant, since the area of a surface is independent
of the parameters used to describe it. The proportionality constant can be obtained
using dimensional arguments. In units of ¢ = 1 (so that L = T), the action must

have dimensions £ = ML and thus the proportionality constant has dimensions

T
% = % = % These are the units of the string tension. Thus we take the classical

string worldsheet action to be

1 1
gL o, 1 / dA, (4.1)
2o 2w’ [ yorldsheet
1

where T = 5— is the string tension [4, 52].

2mra’

Now there are two common ways of expressing this classical worldsheet action in
terms of the embedding X* (7,0) and the metrics of the parameter and target spaces.
These are known as the Nambu-Goto and Polyakov string actions. In this section,

we describe the construction of these equivalent classical worldsheet actions.

4.1.1 The Nambu-Goto string action

Let us first derive an expression for the area of a surface in Euclidean space and then
extend this result to the proper area of a worldsheet in some d dimensional spacetime

following [4].

Consider an embedding X (¢") from the parameter space (£',&?) into d dimensional
Euclidean space, which defines a surface in this target space. An infinitesimal square
area, with side lengths d¢! and d€2, in the parameter space is mapped onto an

infinitesimal parallelogram in the target space (see figure 4.2). This parallelogram

!By classical we mean that quantum effects have been neglected.
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Figure 4.2: Infinitesimal area of the surface in Euclidean space [4].

has adjacent sides d%l and d_'l’JQ as follows:

- o . X
oy = X (¢ + 4" €0) - X (¢, = 5 de' (4.2
7 v (1 2 2 v (¢l ¢2 3)? 2
dvy = X (€',¢ +d€)_X(§7€):a_§2d§' (4.3)
Now the area of this infinitesimal parallelogram is given by
dA = |dvy | |dv,|sin, (4.4)

where 0 < 6 < 7 is the angle between d_i)Jl and d7)2. Thus, using the expressions (4.2)
and (4.3) for the adjacent sides of the parallelogram, we find that the infinitesimal

area in the target space is

dA = 851 d¢? (%2 § sin 6
0X 0X ’ 0X 8X ’
_ 1 2| _ 1 2 2
\ c%ldé ‘a£2dg agldﬁ 8§2d€ cos? 6

. . 2
0X 0X 0X 0X 0X 0X
— 22 ger . 22 get de2 . 22 ge2 | — del . 22 ge2
(G G ) (B G - (e S0
X 0X

e 1 2 [

= d§ d§ Jdet [8@ (951] : (4.5)
Notice that the spatial interval along an infinitesimal vector dX on the surface is

S X X oX\ ...
ds2:dX-dX:<a§1d§ %ng) <a§1d§ +a§2d§> (a& @> dé'de?,
(4.6)
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space. Hence the infinitesimal area can be written as

is the induced metric on our surface in d-dimensional Euclidean

so that g;; =

dA = d¢tde* /g, (4.7)

in terms of the determinant g = det (g;;) of the induced metric g;;. We can obtain
the area of the entire surface in the d dimensional target space by integrating this

infinitesimal area over the parameter space as follows:

S N e B P (18)

We shall now extend this result to the proper area of the string worldsheet in some
while the

induced metric on the worldsheet is 7,4, which has a Minkowski signature. The

d dimensional spacetime. Let us denote the full spacetime metric as G,

spacetime interval on the worldsheet is then given by

ds* = G dxtdz”

0

= Yopdo®do”, where 0° = 7 and o' = 0. (4.9)

Here v = det (745) < 0 and we notice that the induced metric on the string worldsheet
must thus be given by
Yo = Oax" 032" G, (4.10)

Hence, in analogy to the previous result (4.8), the proper area of the string worldsheet
is
A= / do’do’\/—7. (4.11)

Notice that this expression differs from the area of a surface in Euclidean space in
that the term in the square root is —y. This is due to the Minkowski signature of
the induced worldsheet action 7,3. The classical string worldsheet action can thus

be obtained from (4.1) as follows:

= ——/dT— \/ det [Oq 2t 0px? G| = ——/ (4.12)

which is known as the Nambu-Goto string action [4, 52].
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4.1.2 The Polyakov string action

Although the Nambu-Goto string action (4.12) has a reasonably simple form, it is
often convenient to work with an action which does not contain only a square root.

Thus we introduce the Polyakov string action

1 (e}
S = —5 d’/‘—\/ hh*P 02" D" G, (4.13)

where h,g is some symmetric invertible 2 x 2 matrix with inverse h* and determinant
h = det (hap). This Polyakov string action shall now be shown to be equivalent to
the Nambu-Goto string action following [4, 52].

Let us first vary the Polyakov string action (4.13) with respect to A%’ to obtain

1 - A/
08 =~ 20/ dT_{ h 0 x”aﬁxVGuu(Shaﬁ haﬁaax“aﬂxyGW(s _h}‘ (4.14)

We shall now make use of the identity? ¢ (det A) = (det A) Tr (A~1§ A), which is valid
for any invertible 2 x 2 matrix A, to calculate the variation of the determinant h as

follows:
6h = hh*?6haps = —hhas6h, (4.15)

since 0(h*Phag) = §(2) = 0, so that h**6h,s = —hasdh®®. Thus we find that

— 1 o0h 1 1
5 - = - ="
2v/—h 2v/—h

The variation (4.14) of the Polyakov string action therefore becomes

1
(~hhapoh*®) = =2V =hhassh®”. (4.16)

1 do

S = dr=2/~h {aax#aﬁx”(;w, !

- oe i v af 4.1
204 o 2hagh 851’ 883: Gw,}dh s ( 7)

2This identity can be proved as follows:

. . a1l Q12 L _ a2  —ai2
Consider some matrix A = with inverse A~ = dei = . Hence
a1 a2 —asz; ai1

Tr (A7164) =

1 azx  —ai2 dain daz\| 1
det A <a21 ail ) (5(121 §a22>] T det A (az20a11 — 0120021 + 6110022 — 6210012)

and thus it follows that

(det A) Tr (Ail(sA) = ((50,11) (l22+(111 (5&22)7(5&12) a21—0Aa12 (5@21) = 5 (a11a22 — a12a21) = (5 (d€t A) .
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and, setting this variation to zero, we obtain the equation of motion corresponding

to the matrix h*® as follows:

1

Out" 01" Gy = éhagh‘;ea(;x”asx”GW. (4.18)

Now this equation of motion implies that h,g and the induced metric y,5 = 042" 02" G,

are conformally related, so that

haﬂ = f (7_7 g) Yaps (4'19)

where f (7,0) is a proportionality constant, which is a function of the worldsheet
coordinates 7 and o, and is assumed to be positive at every point on the worldsheet.
Thus we find that?

VIR = /=Py 7 = (4.20)

The Polyakov string action (4.13) can therefore be written as

1
2a/

d 1 d
S =g [ 452V s = = [ a5tV (4.21)
2w o 2m
in terms of the induced metric v,4, and is thus equivalent to the Nambu-Goto string
action (4.12). Notice that the Polyakov string action (4.13) is clearly invariant under
the Weyl transformation h,s — Q*(7,0)hag, where Q(7,0) is some real function of

the worldsheet coordinates 7 and o.

4.2 Strings in an AdSs; x S° Background

The string theory in our AdS/CFT correspondence involves an AdSs x S° target
space. This is the product of five dimensional anti-de Sitter spacetime with that of a
five-sphere. We are especially interested in strings stationary in the AdSs spacetime
and therefore, after an initial description of both the AdSs and S® spaces, we shall
confine our discussion to strings moving in an R x S® background. The Polyakov
string worldsheet action is constructed and the U(1) charges (angular momenta)

corresponding to rotations on the five-sphere are derived.

3Notice that, if we had not chosen a positive proportionality constant f (7,c), this equation

would contain a troublesome factor of sign (f).

o6



4.2.1 AdSs x S° Background

We now give a detailed description of anti-de Sitter spacetime and the five-sphere
space, which can be viewed as five dimensional surfaces embedded in six dimensional
flat spacetime and Euclidean space respectively. We define suitable sets of coordinates
for the higher dimensional spaces and hence construct the AdSs and S° spacetime
intervals confined to these surfaces. The anti-de Sitter and five-sphere metrics are

clearly visible from this construction.

Anti-de Sitter spacetime

Anti-de Sitter spacetime in D dimensions (AdSp) can be thought of as a hyperboloid
embedded in a flat D+1 dimensional spacetime with metric n = diag (=1, —1,1,...,1)
and coordinates X 1, Xg,..., Xp_1. This hyperboloid satisfies

X2, - X0+ X+ X, X =R (4.22)

where R is the ‘radius’ of the anti-de Sitter spacetime. We shall now calculate the

anti-de Sitter spacetime interval based on discussions in [3].

Let us first define a more convenient set of coordinates, which describe the higher

dimensional spacetime, as follows:

X.R
U

where « runs from 0 to D — 2. The constraint equation (4.22) for the hyperboloid

UEX,1+XD,1, VEX,1 —XDfl, (423)

can then be written as
U 9 u . R?
—Uv+ﬁxxa:—R — Vzﬁxxa—l—ﬁ. (4.24)
We shall now derive the spacetime interval confined to the hyperboloid in these new
coordinates (4.23). The spacetime interval of the flat D + 1 dimensional background

in the original coordinates is given by
ds® = —dX?*, +dX3} | +dX*dX,, (4.25)

while we can also calculate

o Uzx® Uz, 1 o 9 o P
dX an:d< 7 )d( 7 ):_R2 (Jc ro,dU* +2UdUx%dz, + U“dx dxa)
(4.26)

o7



and

Uzz R?
—dX? dX? . = —dUdV = —dUd =
2 1 dX2_ | = —dUdV = —dU ( = +U)
2, dU?  2UdUz%dx,  R*dU?
= m I + o (4.27)

Here we have made use of the hyperboloid constraint (4.24). The spacetime interval

on the hyperboloid is thus

U? 2 U? 2 U, 5.2 R?
ds* = — 5= (dz”)" + ¥ (dz')"+ ...+ V2 (dz”~2)" + i dU”. (4.28)
We now make one last redefinition U = %, so that we can express the ‘radius’ R as

an overall scale factor as follows:

ds? = R? | -U? (dmO)Q—i—[]Q (da:l)2+...+U2 (de_2)2+ : (4.29)

72
which is the spacetime interval of our D dimensional anti-de Sitter spacetime in terms

of the coordinates z® and U. We are especially interested in the AdSs spacetime

interval, which can be obtained by setting D = 5.

Lastly, we should mention that strings which are stationary in this AdS5 spacetime
are described only by a temporal coordinate t = Uz°. The other four coordinates z?,

22, 2* and U are constant. The spacetime interval then becomes ds? = —R2d¢2.

Five-sphere space
The five-sphere (S®) space is that of a five dimensional sphere of radius R embedded
in six dimensional Euclidean space. Our Euclidean coordinates x; satisfy

a2} + x5 + a5 +x] + 23 + 25 = R (4.30)

We shall now write these six Euclidean coordinates as three sets of polar coordinates

(r;, ¢i) as follows:
x; = Rr; cos ¢, Tiys = Rr;sin ¢, with 7€ {1,2,3}. (4.31)

Thus we find that z7 + 27, ; = R?r?, so that the constraint (4.30) can be written in

terms of the three radii r; as
ri+ry ;=1 (4.32)
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The Euclidean spatial interval is now given by

6 3
ds’ =Y da} =R*Y_ (dr} +r}de}) (4.33)
=1 1

and, when the constraint (4.32) is implemented, this also describes the spatial interval

of our five-sphere space.

4.2.2 String worldsheet action in an R x S° background

We shall now construct the classical worldsheet action for a string in an R x S°

background, which is stationary in the AdSs space and moves only on the five-sphere.

The only contribution to the worldsheet action from the AdSs spacetime involves the
temporal variable ¢, since the other four coordinates have been assumed to be con-
stant. As previously mentioned, the AdS5 spacetime interval is then ds? = —R?dt?.
The spacetime interval on the five-sphere is shown in (4.33). We should also note
that the radii of the AdS5 spacetime and five-sphere space are taken to be the same.
Substituting these results into the Polyakov action (4.13) then allows us to construct

the string worldsheet action as follows:

§=-Y2 [4 Y (4.34)

(S0}

Here we have defined v/A = £ as in [8]. We now also make use of the notation gzl of [§]

C!l

i=1

3 .
X {\/—_hhaﬁ [—&J@gt + Z (3047’1%7“1 + 7“?%@%@)

to describe the three angular coordinates, because it will later be useful to distinguish
between the angular coordinates in undeformed and deformed R x S® backgrounds.
The last term is a constraint term with corresponding Lagrange multiplier A, which
ensures that the sum of the three S° radii squared is equal to one, so that we remain

confined to the five-sphere.

4.2.3 U(1) charges or angular momenta

The string worldsheet action (4.34) is clearly invariant under constant shifts of the

angular coordinates (5@ — ggz + &;, which describe U(1) transformations Rriei‘gi —
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et (Rriei‘?’i> or rotations on our five-sphere. We shall now calculate the correspond-

ing charge and current densities p; and j; respectively. We can hence integrate p;
over the spatial worldsheet coordinate to obtain the U(1) charges .J;, which are the

angular momenta of a string moving in the S® space.

Consider an infinitesimal U(1) transformation ¢; — &; +¢&; of the i™ angular coordi-
nate, with ; some small constant parameter. We see that
oL s 96,

=0 and D;p, = 2
aei ¢] 8€i

;=0

n

D;

=4, (4.35)

;=0

and thus, using the results of [38], we can calculate the i conserved 2-current as
follows: N
oL

m, (4.36)

~ 3 ~ ~ ~ ~
J =Y TDi¢; =107, with II? =
j=1

so that 3
T = =V ArA=hh®®9¢;. (4.37)
These three 2-currents satisfy the conservation equations 00“2»0‘ = (. The i*® charge

and current densities are p; = jio and J; = jl-l respectively. Hence we finally obtain

the U(1) charges or angular momenta

P - / g—;‘r (rfﬂhoﬁaﬂéi), (4.38)

2m b=
where we have integrated the i*" charge density over the spatial worldsheet coor-
dinate. The above results for the U(1) charge and current densities, and the U(1)

charges agree with the expressions given in [8].

4.3 Strings in the Lunin-Maldacena Background

The task of finding string theories dual to deformations of N' = 4 SYM theory is
highly non-trivial. Lunin and Maldacena [7] showed this to be possible for certain

Leigh-Strassler deformations, in which the superpotential is deformed as follows:
1 1 A A
S9Tr (B DDy — O D3Py) — 9Tr (e D Dy®5 — e D D3D,) (4.39)

where [ is a complex parameter. The gravity dual of this N' = 1 SYM theory is
a string theory in a (-deformed Lunin-Maldacena background. We shall henceforth

consider only the case of a real deformation parameter 5 = ~.
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Let us first discuss how this y-deformed string theory was originally constructed in

[7]. The superpotential (4.39) is invariant under the U(1) transformations:

U(l)l . (I)l — €ialq)1, (I)Q — €ialq)2, (I)g — 6—2@'041(1)3’ (440)
U(l)g : q)l — 6721'0‘2(1)1, @2 — eio‘Qq)g, (I)g — eiQQ(I)g. (441)

On the string theory side, these U(1) transformations correspond to the transforma-

tions gz:)l — gzl + o and 452 — 52 + as of the angular coordinates
~ 1 /= b~ = ~ 1 B~ b~ x
=3 (cbl + ¢2 — 2¢>3) and  @p = 3 (—2¢1 + ¢ + ¢3> : (4.42)

which, together with the total angular coordinate 1) = % <g§1 + o + qz~53>, form an
alternative set of angular coordinates describing our S® space. We thus observe that

¢, and @, define a special 2-torus ((ﬁl, 952) on our five-sphere.

Let us now define a parameter 7, which describes the structure of the torus, as follows:
T = Bia + /9, (4.43)

where g is the determinant of the metric confined to the torus (so that /g is the
torus volume), and Bjs is the B-field or coefficient of the aaqgl@gq;z term in the string
action. The vy-deformation of the string theory is then implemented by making the
transformation X
T Y
—, with = —
1+AT 1= VA

This alters the volume of the torus and turns on a B-field in the string action.

T— 7 =

(4.44)

It was shown by Frolov [8] that the vy-deformed worldsheet string action can also
be obtained by performing a TsT-transformation on the original string worldsheet

action (4.34). We discuss this perspective in detail in this section.

4.3.1 T-duality transformation

We shall begin by describing the notion of a T-duality transformation based on

discussions in [8, 53]. Let us consider a general string action of the form

s A [y do 2 VIR0, XM 9, X N Gy (X7) = e270, XM 0,X Y By (X))

9 2
(4.45)
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where M, N € {1,2,3} and i,j € {2,3}, and €% is defined in (A.22). Here Gy is
the symmetric metric of the background spacetime and Bj;y is an anti-symmetric

matrix. We shall assume that both G,y and By are independent of X*.

Now this string action (4.45) turns out to be equivalent to a more complicated ex-

pression dependent on a new coordinate p®, which is given by

G h B
\/_/d —{a(aaXM L B ey, XM 1M>
! G11 vV —h G

_hag o ( GGy — BBy
P+ 5 \/ hh*P 9, X 05X ( Gy s J)
2Gn V- h 7 G

1 , , Bi. — B1.G.
-5 €00, X 03X (Bij _ GubBy e “G“H : (4.46)
11

This shall be demonstrated by varying the new action (4.46) with respect to p* to

obtain the equation of motion
p* = V—hh*P0sXMG 1y — P03 XM By, (4.47)

from which it follows that

GlM hag BlM
o 9. XM — 2 g XM )
b ( Gn v —h P Gn

G h B
_ /1 pald M -7 Mp NY1N aB  _pp N 21N
( hh &;X GlM 15 &;X 1M> (6 X Gll —\/—_h g apX _Gll

= V=hh*P 9, XM X (GlMG“V G_ b 1MB“V) — 9B, XMy x N (GIMBING_ BlMGlN) |
11 11

(4.48)

and also

2G11 v/ —h pp
1 hag
2G11 va

= V=hh*Po, XMy XN (GIMGU;(; BIMBIN) — e, XMy XN (GIMBU;C; BlMGlN)
11 11

(\/ hh®P0 XMGlM — eapa X BlM> (\/ —hhm&;XNGlN — EﬁéagXNBlN>

(4.49)

Here we have used the identity £° %5”5 = /—hh?®, which can be verified by

writing out each side of the equation explicitly for all combinations of a,d € {0,1}.
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Substituting (4.48) and (4.49) into the new string action (4.46) now yields

g — \/_ dr _{ /_—hha’g |:(G1MG1N - BlMBlN) aaXMaﬁXN

2 2T Gn
+ (Gz‘j Gl - BMBU) (%X’OQXJ]
Gn
. 50‘5 |:(G1MBIN - BlMG1N> OQXM%XN
Gn
N (Bij B GuBuG— BuGu) aaXiaﬁXj:| } . (4.50)
11

When M, N # 1 we see that each of the two expressions in square brackets simplify
t0 G0, X"05 X7 and B;;0,X'03X7 respectively. The three cases M = N =1, M =1
and N =4, and M = ¢ and N = 1 can then be considered separately and similar
results derived. We thus see that (4.46) reduces to the original string worldsheet
action (4.45).

Let us consider varying the action (4.46) with respect to the first coordinate X!.
Since we have assumed that G,y and By are independent of X, so that there is

no hidden dependence on the first coordinate, the equation of motion is simply
Bop® = O (\/—hhaﬁaBXMalM - eo‘ﬂaﬁXMBlM> —0. (4.51)

Thus we can generally write p® = ¢ 05)~( 1 where X! is the first T-dual coordinate.

The T-dual coordinates XM are therefore defined as follows:

P95 X" =V =hh*POsXMG 1y — P03 XM By, (4.52)
X=X (4.53)

Substituting these T-dual coordinates into (4.46), we obtain

- G h By;
= \/_/d —[ aéaxl (8X1+8X’ L ey, XTI )
! ° ) Gii  v—h G

1 hap <€apapX1> (655655(1)

- 2Gn vV—h
+ %\/—hhaﬂaaxiaﬁxj (Gij - G”G”G_ BuBu)
11

g a0 (, - G EGY] 1y
11

and, since 9, X109, X! ~ 29,0, X' X! = 0 up to a total derivative, the above
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expression can be written as

S = _VA ir {\/_Wﬁ {aaf(laﬂf(lGi + 28@?%@@% (4.55)

2 2 11 11
~ o~ G1,G1; — B1;Bq;
+ 8aX28,8Xj (GZ] it IJG 1 1J>:|

11

~ ~ .G N~ G1;B1; — BG4,

’ {QaaXlaﬁXl—l + 0, X' 05X’ (Bz‘j - U)] },
Gu G
up to surface terms. Thus we obtain the string worldsheet action in the T-dual space

\2_ dr _W [\/—_hhaﬁaaXMagXNéMN - 6“ﬁ5aXM3ﬁXNBMN] , (4.56)

S

where the symmetric and anti-symmetric matrices G MmN and B MmN respectively are

defined as follows:

~ 1 ~ By; ~ G1:G1j — B1iByj
G - = Gz: Gz:Gz_ J J,
eny "Gy 7o Gn
. G ~ G1iBj — B1iGh;j
By = 2k B, = B — . 4.57
1 Gll J J Gll ( )

4.3.2 Derivation of the y-deformed string worldsheet action

via a TsT-transformation

We now show how to derive the vy-deformed string worldsheet action by performing
a TsT-transformation on the original string action following [8]. This involves a T-
duality transformation on the first angular coordinate @1, a shift (py — @o+4¢; of the
second angular coordinate in the T-dual space and a further T-duality transformation
on the T-dual coordinate ¢;. Since this deformation effects only the five-sphere space,
it is sufficient, for our purposes, to consider strings in an R x S® background. Thus

we begin with the string action (4.34), which, making a change

¢~51 = &3 — &o, ¢2 &1+ @ + &, <;~53 = @3 — ¢ (4.58)

to the new angular coordinates ¢1, P, and @3 = 1 (the coordinates of our torus,

together with the total angular coordinate), can be written as

G VA [y (4.59)
2 27

3 3 3
X [\/ —hha’g (—8atagt + Z 8am-85ri + Z gij6a$i855j> + A (Z 7”1-2 — 1)] R

i=1 i,j=1 i=1
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where g;; is defined as follows:

2 _ 2 2 .2 2 .2 2 2 __

G1a =73, g3 =15 — 13, Go3 =715 — 17 (4.60)

Let us now perform a T-duality transformation on the angular coordinate @;. In
other words, we shall set X; = &1, Xo = ¢ and X3 = (3 in our previous discussion
of T-duality transformations. The metric g;; is independent of @1 (and, indeed, of all
the angular coordinates ¢;) as assumed in this discussion. We shall use @y, p; and

3 to represent the T-dual coordinates, which must then satisfy
3
e05p1 = V=hh®> " 0sfi g1,  P2=@2,  $3 =P, (4.61)
i=1

and, using the results (4.56) and (4.57), the string action can hence be written in the

T-dual space as follows:

~ do o ’ L
S=—— dr % [\/ —hh g <—6atagt + ;(%ri@@n + Z gijﬁagaﬁ@gpj)

,5=1

- €aﬁ (Z Eijaagbﬁggbj) + A (Z 7“1-2 — 1)] s (462)

i,j=1 i=1

where the symmetric and anti-symmetric matrices g;; and l;ij respectively are

5 1 . 7’%7’% + 7“%7“% + r%r% . T%T% + r%r% + 47“%1“%
guii = 53, g2 = 5 D) y 933 = B) B )
Ty + 13 Ty + 13 ry + 173

2,2 2,2 2,2
—rirs —rirs + 2ror
~ ~ ~ 172 377 27’3
T3 + 13
and
2 2 2
~ T’ ~ T‘ —_ 7" ~
2 2
bio = —5—— b3y = =———5 bz = 0. (4.64)
2 27 2 27
rs + r3 r5 + r3

The real parameter 4 shall now be introduced by shifting the T-dual coordinates
$1 — $1, P2 — P2 + VP, 3 — P3, (4.65)
which causes a change g;; — @ij in the T-dual metric as follows:

G =gu+7% (G12 + Go1) + A2 Fo2, G2 = Gaa, Gl3z = 33,
Gha = G12 + a2, G = Gs1 + Aoz, Gas = Gos, (4.66)
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The anti-symmetric matrix Bij can be seen to remain unchanged by this shift. Hence

we obtain the shifted string action in the T-dual space, which is given by

~ \/X do 3 & - ~ 7 b,
ST =—=—= [ dr — |V—=hh* | —0,tdst + Z Oari0pTi + Z Gj0api0p;
i=1

2 2

ij=1
3 3
« ® ~ ~ 2
— & 4 E Bijé)agoiag@j +A ry — 1 , (467)
ij=1 i=1
where
—1 2,2 2,2 2.2
G G G rir; +ryry +rars
11 = 5 o 22 — 2 2 ’
ry + 173 ry + 73
2.2 2,2 2.2 2.2 2,2 2,2
G — riry +ryri +4ryr; G s rirs +r3ri +1rirs
33 — 2 2 ) 12 =7 2 2 )
ry + 13 ry + 13
- o —rir? — 2l 4 2022 . —rirs —rir + 2rir’
G31 =7 B} 2 ; G23 = 2 D) ) (468)
ry 13 ry 3

with G = 1442 (r2r} + r2r3 + r2r2), and By; = b;; as shown in (4.64).

Finally, we shall perform another T-duality transformation on the coordinate ¢, and

the new T-dual coordinates 1, @ and 3 satisfy
eP0pp1 = V=hhP03,Gri — €035 Bri,  o2=F2, w3 =@s  (4.69)

The string action in this new T-dual space is given by

NG\ do & :
7= =5 [ dr o (VIR Y dariri+ Y Gigdapide,
i=1 1,j=1

— g% <i Bijﬁa@iﬁggpj> +A (i r? — 1)] ,  (4.70)

ij=1 i=1

with

GH:G(T’%—f—T’g), GQQZG(T%"i_Tg), G33:G+9’?2GT%T’§T’§,

GlngTg, G31:G(7’§—7’§), G23:G(T§_T%)’ (471)
and

Bio =4 G (ri+13ri +73r3), Ba =4 G (rird +rir? - 2r3rd)

By =4 G (—27‘%7‘% + r%r% + 7’%7’%) . (4~72)

Switching back to the angular coordinates ¢; using the transformation

9012%(¢1+¢2—2¢3)7 902:%(—2¢1+¢2+¢3)7 @3:%(¢1+¢2+¢3) (4.73)
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then yields the string worldsheet action in the y-deformed Lunin-Maldacena back-

ground, which is given by [§]

ST = —\/—X dr d_a (4.74)
2 2

3 3 3
X {\/—hh‘w [—(%tagt + Y (OariOgri + GridaiOsg:) +4°Grivirs (Z aad)i) (Z aﬂ@)]
i=1 j=1

i=1

3
_250!5'7(; (T%T%8a¢1aﬁ¢2 + T%T%aa¢3aﬁ¢1 + T;T%@,ﬁ%&g(b:;) + A <Z Tiz — 1) } s
=1

where G = 1442 (r#r3 + r3r? + r2r2). This reproduces the Lunin-Maldacena string

worldsheet action of [7] in the case of a real deformation parameter.

Let us now derive a relation between the original and y-deformed angular coordinates
¢; and ¢;. The transformations (4.61), (4.65) and (4.69) can be used to relate the

alternative angular coordinates ; and ;. Firstly, (4.61) implies that

= ha ~ ~ i ~ 7 et ~ = ~
Onp1 = —ﬁﬁﬁpap%gn - Zaa%blz‘, Oap2 = Oup2, OaP3 = OaP3, (4-75)
i=1

vV—h
which, taking into account our shift by 4 shown in (4.65), becomes

3
= h'a ~ ~ ~ 7 N ~ 7 = ~ ~ ~ = ~
Oatpr = figﬁpap%gll—z 0aPib1i—Y0aP1b12,  0aP2 = OaPo+70aP1, 0O0aP3 = OuPs,

i=1

(4.76)
and also, from (4.69), it follows that

) he 3 3 i i
Oap1 = fﬁheﬁp Z@p%Gu—Z OapiBii,  OaP2 = Oap2,  OaP3 = Oups. (4-77)

i=1 i=1
Thus, making use of the above relations (4.76) and (4.77), we obtain
3

3
= ~ ~ 7 7 ~ ~ 7 ha
Oap1 = Z <G1i911 + yByibiz — bu) Oatpi — Z (Bu'gn + 7G1i512> \/_—2 5[3’]8,0%01',
i=1 =1

3
~ haﬂ

OaP2 = Oatpa +7 Z (—Buaa%' +Gli—— €Bp3p%’) ,
=1 _h

aaSZS = 8a<ﬂ3- (478)

Now, changing back to our original coordinates ¢; and ¢;, and using the expressions

(4.63), (4.64), (4.71) and (4.72) for g;;, b;;, G;; and B,; respectively, the angular
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coordinates in the original and y-deformed backgrounds can be related as follows [8]:

Oupr = G |Ou1 +
Oa2 = G |Oup2 +

a3 = G | Datds + 47113 Z(m

Arars Z Duthi —

APrirt Z Dathi —

ﬂﬁp

" h

ﬂﬁp

\/__

ﬂﬁp

\/__

4.3.3 U(1) charges or angular momenta

(r30p¢2 — 130,¢3) | .
(7“28p¢3 T%ap¢l) )
(r20p¢1 rga,,@) . (4.79)

We can again see that the string action (4.74) in the Lunin-Maldacena background

is invariant under shifts ¢; — ¢; + €; of the angular coordinates. The corresponding

~-deformed conserved U(1) 2-currents are given by

oL”
e =

which can be explicitly calculated as

T = VNG

VARV TRRG

—\/X’r’g V—hh®G

These results agree with those quoted in [8].

i 3
Dsdn + 471575 Y D5 —
=1

i 3
Dsds +4°rirs Y sy — A—=e
i=1 —h

sz + 471317 Z Ds i — 4
=1

8 (aa(bi)’

~

h(;g

v

h(gﬂ

—€
=h

hgg

P ( 3p¢2

o (Tgap¢3

o (r%apqﬁl

- T%apqsl) )

- Tgap¢2)

(4.80)

Tg ap¢3) )

(4.81)

The ~-deformed charge and current

densities are p; = J and j; = J! respectively, and the y-deformed U(1) charges or

angular momenta J; =

the spatial worldsheet coordinate.

g—; p; are obtained by integrating the charge density p; over

Now, comparing the ~-deformed conserved U(1) 2-currents with their undeformed

counterparts (4.37), we see that the relations (4.79) are simply a statement of the

fact that the conserved U(1) 2-currents are unaltered by the y-deformation [8].
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4.3.4 Twisted boundary conditions

We shall now further consider the expressions p; = ﬁz and j; = ;l based on discussions
in [8]. It is possible to solve for gzl and ¢; in terms of the (equal) charge densities p;
and p;, and hence eliminate any dependence on the time derivatives of the angular
coordinates in the current densities 31 and j;. Setting the current densities to be

equal then yields

S =&t y(m—ps), Sh=dytv(ps—p1), S =+ (p—ps), (4.82)

where we have defined v = % This is the real gauge theory deformation parameter

3 = ~, which appears in the deformed N = 1 superpotential (4.39).

Let us assume that there exists some physical closed string solution in the v-deformed
background, the angular coordinates of which must satisfy the periodic boundary

conditions )
Td
& (27m) — ¢ (0) = 2 / = ¢ = 2mn,, (4.83)
0
where the n; are integer winding numbers. These correspond to solutions in the

original undeformed background with angular coordinates with twisted boundary

conditions

51(277) _27T/ 2—0$ = / ;l— (@) + 7 (p2 — p3)] = 27ny + 27y (J2 — J3),
6o (27) — = / 2—0 & = / 2—0 [0 + 7 (ps — p1)] = 2mny + 27y (J5 — J1),
53 (2m) — = / 2—0 gzZS = / 2—0 (91 + v (p1 — p2)] = 270y + 27y (Jy — Ja),

(4.84)

in terms of the U(1) charges or angular momenta .J;.

Thus it is clear that solutions in the y-deformed Lunin-Maldacena background cor-
respond to solutions in the original undeformed background with twisted boundary
conditions. These boundary conditions would usually be discarded as unphysical for
closed string configurations, but now we can interpret them as physical solutions in

a deformed background.
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4.4 Strings in the ~;-deformed Background

The string theory proposed to be dual to our non-supersymmetric ~;-deformed YM
theory was originally constructed by Frolov in [8]. A series of three TsT-transformations
involving the torii (q:bl, (Zg), ((ZQ, <;:53> and <<;:53, 51), and with distinct real shift para-
meters 73, 41 and 4, respectively, were performed on the string worldsheet action to
obtain the action in the ~y;-deformed R x S° background. In this section, we briefly

review the derivation and properties of this ~;-deformed string theory.

4.4.1 Derivation of y,-deformed string worldsheet action via

three TsT-transformations

We shall now demonstrate how to construct the v;-deformed string worldsheet action
based on discussions in [8]. Consider first the undeformed string action (4.34) in
an R x S background. Our first TsT-transformation on the torus ((Zl, gzzﬁg) can be
represented as follows:

T S, T;,. (4.85)

bo—da+izd
In other words, we perform a T—duahty transformation on the first angular coordinate
(Zl, shift the second angular coordinate in the T-dual space gz~§2 — (132 + %QNSI using
the parameter 43 and then make another T-duality transformation on the T-dual

coordinate gz~51. We thus obtain the intermediate string action

S:—\/—X de—U
2 2w

X {\/— hhoP [ OuntOst + Z 6 W 7i0a71; + Ar; 80@185@) + A’y3r1r2r38agb385gb3

=1

3
— 24 (A3r7r30.010502) + A (Z r? — 1) } , (4.86)

i=1
with A=l =1 + ’?gr%rg

Redefining ¢; — ¢;, we now perform the second TsT-transformation on the torus
<<z~52, (;33), which is given by

T: S;

by Dbz—d3 9102 T<2327 (4'87)
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and yields the string action

3
S = \2_ {\/ ho‘ﬁ |: — 6at05t + Z (8ari8/gri -+ Crfaagbzaﬁﬁbz) (488)
i=1

+ Criryrs (310a¢1 + A30a03) (110501 + Y30303)]

3
— 20 (43r1r30a610502 + 175730a¢20805) + A (Z r?— 1) } :

i=1
where O~ = 1+ 42r3r? + 43rirs.

Finally, we shall again redefine ¢; — ¢; and perform the last TsT-transformation on
the torus <gz~53, qz~51> as follows:

T: S;

by D11 +9203 T<733' (4-89)

Hence we obtain the ~;-deformed string worldsheet action, which is dependent on the
three parameters 4; and is given by
VA do

v _ Y2 - 4.
S 5 dr o (4.90)

3
X {\/—hhaﬁ [ DutOat + Z (OuriOprs + GridatiOsds) + Gririr (Z A a@) (Z %agd)j)]
= j=1

=1

3
—2Ge" (431375000103¢2 + 21377 0ad30301 + N1151306002050s) + A (Z ry — 1) } ;

=1

where G = 1+42r2r2 +43r2r? +43r2r2. This y;-deformed string action agrees with
the result quoted in [8]. Notice that, in the case of equal deformation parameters
qi = 4, the ~;-deformed string worldsheet action (4.90) simply reduces to the string
worldsheet action (4.74) in the Lunin-Maldacena background.

Lastly, we should mention that the angular coordinates in the original and ~;-

deformed backgrounds can be related as follows:

8a¢1 =G ¢1 + '717"27"3 Z’Yz a¢z \/i—i 50 (73T§8p¢2 - 727"32)(3,,%) )

aa¢2 =G ¢2 + '727"37"1 Z’% a¢z \/j—ﬁh 59 (’717”3 p¢3 3T1 pgbl) )

Oatds = G | Datps + Jar775 Z% Oati — \/j—i eh® (727“1 Oph1 — %@ap%) . (491)
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4.4.2 U(1) charges or angular momenta

We shall again consider the conserved U(1) 2-currents corresponding to the trans-

formations ¢; — ¢; + &; under which our 7;-deformed string worldsheet action (4.90)

is invariant. These can be calculated by taking derivatives of our 7;-deformed La-

grangian with respect to d,¢; to obtain

I 3

Ti = —VX=RhG |51+ A1rard Y 4idsi —
i=1

hs . .
_eh0 (35128, — Aa720,03) |

V=

r 3
A . h
T = —VNEV=RIOG | 0565 + o3t S s — —2
i=1 —h

% (130,03 — Y3r10,61) |

r 3
. . h . .
T = —\/Xr?%\/ —hh*G Osp3 + 737“%7“5 g Yi0spi — jﬁh ehr (727”%3;@1 — 717‘3(9/)@)
i=1 4

(4.92)

As before, the 7;-deformed charge and current densities are given by p; = J° and
ji = J;* respectively. The U(1) charges or angular momenta are thus J; = [ 42 p;.
It again turns out that these conserved U(1) 2-currents remain unchanged by the

v;-deformation.

4.4.3 Twisted boundary conditions

Now, the equivalence of the U(1) 2-currents (4.37) and (4.92) in the undeformed and
~v;-deformed backgrounds again leads to a set of conditions connecting the spatial

derivatives of the original and ~;-deformed angular coordinates as follows:

(5/1 = ¢} + V3p2 — VaPs, lez = ¢y + V1P3s — V31, &1 = ¢} + y2p1 — 11p2, (4.93)

with ~; = \}_ZX These are the deformation parameters in the non-supersymmetric

v;-deformed YM gauge theory.
A closed string solution in the 7;-deformed background with angular coordinates ¢;
satisfying the periodic conditions

¢; (2m) — ¢; (0) = 27 /2” ;Z—Z ¢, = 2mn;, (4.94)

0
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for the winding numbers n;, then corresponds to a solution in the original background

with twisted boundary conditions

= " do z, 7 do
o3} ( ) ¢1 ( ) = 27?/ - ¢1 = 27T/ 2— (¢1 + Y3p2 — ’szg) =2 (n1 + 3o — ’YQJS) )
0 0

~ 27
— ¢y = 27T/ o (5 +71ps — y3p1) = 2 (n2 + 1 Js — y3J1)
0

z T do = ™ do
¢z (2m) — ¢3 (0) =27 — ¢y = 27T/ (@1 + Y201 — Mp2) = 27 (ng + y2J1 — 11 )2) -
0

These results can be proved in a similar way to those in the Lunin-Maldacena back-

ground and agree with the expressions in [8].

4.5 Lax Pairs for Strings Moving on Undeformed

and ~v,-deformed Five-spheres

The existence of a Lax pair in any theory is of great significance, as it is a demonstra-
tion of integrability. This Lax pair should satisfy a zero curvature condition, which
is equivalent to the equations of motion and allows for the construction of an infinite
number of conserved charges, which make the theory theoretically soluble. It was
shown in [8] that there exists such a Lax pair for strings moving on a five-sphere space
and, furthermore, that it is possible to extend this Lax pair to describe strings on
a 7y;-deformed five-sphere (and thus also a Lunin-Maldacena ~-deformed five-sphere)
by making use of the transformation between the original and ~;-deformed angular

coordinates.

In this section, following [8], we rewrite the original string worldsheet action in an
R x S° background in terms of anti-symmetric SU(4) matrices and hence calculate the
five-sphere equation of motion. We then introduce a Lax pair and the corresponding
zero curvature condition is shown to be equivalent to this equation of motion. Finally,
this Lax pair is certainly not unique and an equivalent gauged Lax pair is defined,

from which it is possible to construct a Lax pair for our 7;-deformed string theory.

73
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4.5.1 String worldsheet action and equations of motion in

terms of anti-symmetric SU(4) matrices

The string worldsheet action (4.34) shall now be written in terms of an anti-symmetric

SU(4) matrix, following [8], as

S =— \/2— dr —\/ W{ aatagt—i-iTr(gl@aggl@gg), (4.96)

where we define
0 X3 X X,
—X; 0 X5 —=X7

= , with X = rpe'x, 4.97
= —x, -x; 0 X3 R (4.97)
-Xo Xy X3 0
which must satisfy the constraint
detg = (|X1)? + | Xaf? + |X5]?)° = 1. (4.98)

1

This can be verified by noticing that g=* = —g¢* and also g~! (93g) = — (9597 ") g, s0

that (4.96) becomes

S =— \2_ dr —\/ ho‘ﬁ[ 8at8ﬁt+%Tr(8ag(9gg*) , (4.99)

which can be reduced to (4.34) by simply substituting (4.97) into this expression and

multiplying out the matrices.

Now let us derive the equation describing the motion in the S° space by varying

(4.99) with respect to g as follows:

S = —g dr ;Z—U\/—hho‘ﬁ Tr {0, (69) 039" + 0903 (6g")} . (4.100)
T
We now make use of the identity dg* = ¢* (dg) g* to obtain
\/_ af * * af *
5= [ar % Tr { [aa (x/—hh a9 ) + "85 (x/—hh 8ag> g } 59},

(4.101)
where surface terms have been discarded. Setting this variation to zero* and noting

that h*? is symmetric then implies
D, (x/—hhaﬁaﬁg*) ¥ g*0a (\/—hh“ﬁaﬂg) g =0, (4.102)

4To be more rigorous, we should write this expression out explicitly in terms of components and

then set the variation with respect to gf to zero. This would yield an identical result.
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and right-multiplying by ¢ gives
Ba (\/—_hhaﬁaﬂg*) g— "0, (\/—_hhaﬁﬁgg> — 20, {\/—_hhaﬁg*agg} —0. (4.103)
Thus, again using ¢* = —¢g~!, we finally obtain the equation of motion
0n (V=RR"'Ry) =0, with Ry =g '0u9, (4.104)

which agrees with the result quoted in [8]. Note that the R, is sometimes called the

right-current.

4.5.2 Undeformed Lax pair and zero curvature condition

We shall now introduce the Lax pair for strings in an undeformed five-sphere space,

based on discussions in [8], as follows:

Do = 8 — Au(2) with Ay(z)= 2o _Fa (4.105)
o AN @ 2 —1) 2(x+1) '
where h h
RE= (6" igﬂﬂ) Rs =R, P _PPR,. 4.106
@ < o T \/—_h 6 + \/—_h 6 ( )

The new parameter x, which has been introduced in the above definition, takes on
an infinite number of values and is know as the spectral parameter. We can now

simply our undeformed Lax pair to the form

Ry — w52 Ry

D,(x) =0, — 4.107
(x) e (1107)
This Lax pair must satisfy the zero curvature condition

Dy, Dg] = 0 Ag — 03A0 — [Aa, Ag] = 0. (4.108)

Substituting (4.107) into this expression and multiplying by (z* — 1)2 then yields

2 -1, R —xﬂs‘”‘b} —(z2=1)0 Ra—xhngT
T oh o V—h

he h
- [Ra - xﬁémRT, Rs — x%a‘”m] =0, (4.109)
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which, equating different orders of the spectral parameter z, results in the following

four equations:

O(l‘o) . 85Ra — 8QR5 — [Ra, Rﬁ] = O, (4110)

O(Il) . 8a < hﬁé €6AR)\) — 65 (% EpTRT)

o h
+ —22 o [R,, Rg| + \/_ﬁ_‘; e [Ra, Ry =0, (4.111)

o h
—\/__;lsf”\/_ﬂ_‘;l MR R =0,  (4.112)

O : — 0, (%s‘”&) + 03 (%e”&) = 0. (4.113)
Now it turns out, upon closer inspection, that the O (2°) and O (2?) equations are
equivalent and, furthermore, are trivially satisfied by the expression R, = ¢ '0.g.
The O (z') and O (23) equations are also equivalent and are satisfied if and only if
the equation of motion (4.104) is valid. Thus the zero curvature condition (4.108)
is equivalent to the equation of motion (4.104), so that (4.107) is, indeed, a suitable
Lax pair for the theory.

4.5.3 Gauged undeformed and v;,-deformed Lax pairs

The Lax pair (4.107) for the theory describing strings moving in the undeformed S°
space is by no means unique. The transformation D, — D, = MD, M, with M
any invertible 4 x 4 matrix, results in an equivalent Lax pair, which also satisfies
the zero curvature condition, since [Dg, Dg] = M[Dy, Dg)M~" = 0. Now, while any
Lax pair is good enough to prove the integrability of the theory, for the purpose of
extending the Lax pair to the 7;-deformed string theory, we shall choose (as in [8])
a specific gauged Lax pair, which depends only on the derivatives of the angular

coordinates and not on the angular coordinates themselves.

Let us begin by writing

g = M(d:) §(r:) M(n), with  M(dy) = e, (4.114)
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where we have defined

0 T3 1 T2
_ 0 _
gy =1 " T (4.115)
—T1 —T9 0 T3
—T9 ™ —T3 O
and
451 + &2 + <Z~53 . ON . 0 0
&) _1 0 —¢1 — @2 + @3 ) 9 ) 0
2 0 0 pr—¢a—¢3 0
0 0 0 —¢1+ @2 — @3

(4.116)
This can be verified by multiplying out these matrices and noticing that the result

is identical to the definition of ¢ given in (4.97).

Now, using the above redefinition of g in terms of §(r;) and M (¢:), together with the
identities §7'(r;) = —g(r;) and M~Y(¢;) = e~®, we find that

Ralris6s) = [M7(6) 57 (rs) M71(6)| 0 | M(@1) 3(rs) M(6)
= M (1) Ra(r:, 06,) M (), (4.117)
where
Ru(rs, 060) = (1) Duii(ri) — 4(rs) Bad §(r:) + i, (4.118)

This suggests a suitable gauge for our new Lax pair. We shall use the matrix M ((52)

to define the gauged Lax pair, as in [8], as follows:

D= M($3) Do M~Y(é3) = 8, — Au(z), (4.119)
with

Aalx) = M(0)Aala) M7 (3) = M(6)0 M (6)
f%a(r,-,f)gz;i) — l‘;j—; €pﬁR/@(’f’i,a§5i)
x?—1

This gauged Lax pair clearly depends only on the radii r; and derivatives thereof,

4 i0,®. (4.120)

and the derivatives of the angular coordinates 9, ¢;.

Now, finally, we know that the derivatives of the angular coordinates in the original

and ~;-deformed backgrounds are connected via the transformation (4.91) and that
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the radii are unchanged by the deformation. Thus it was observed in [8] that a Lax

pair for the v;-deformed string theory is
DY =9, — Ali(z), (4.121)

where Ag; is obtained by simply replacing all the undeformed derivative terms Gagz:Si
in (4.120) with the corresponding expressions in (4.91), which are written in terms
of the ~;-deformed derivatives 0,¢;. This demonstrates that the theory describing
strings moving in a 7;-deformed five-sphere space (and hence also a y-deformed Lunin-

Maldacena five-sphere space) is integrable.
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Chapter 5

v;,-deformed Strings and Spin

Chains in a Semiclassical Limit

5.1 Coherent State Action for v;-deformed SU(3)

Spin Chains in the Continuum Limit

It is our aim, in this chapter, to compare the ~;-deformed gauge and string theories in
a semiclassical limit at the level of the action. We shall first concentrate on the gauge
theory or spin chain side of this comparison. The relevant semiclassical limit in which
to consider our gauge theory operators is simply the BMN limit discussed in chapter
3. This corresponds to a continuum limit of our spin chain system: the length of the
spin chain J becomes large and thus the ratio of the site spacing to the spin chain

length becomes small, so that the spin chain forms a one dimensional continuum.

A

We can hence perform expansions in terms of the small parameter A = £, which is

taken to be fixed when J becomes large.

We are interested in the coherent state action describing a v;-deformed SU(3) spin
chain. We therefore review, based on discussions in [9, 20], the construction of
the coherent state for an SU(3) spin chain system. Hence, using an equivalent ;-
deformed spin chain Hamiltonian, we derive the v;-deformed coherent state effective

action in the continuum limit to leading order in A following [9].
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5.1.1 Coherent state description

The coherent state |«) of a harmonic oscillator is an eigenstate of the annihilation
operator a with eigenvalue a. The expectation values of operators with respect to
this coherent state can be viewed as a classical limit of the system. Now it is possible
to extend these ideas to a finite spin-S system by introducing an analogous coherent
state |p) such that, in the limit as S — oo, this coherent state is an eigenstate of
the raising operator §+ with eigenvalue . The analogy to a harmonic oscillator
then becomes an exact correspondence with the identifications S, — (25)"/2a and
o o— W (A detailed description of the construction of this analogous spin-S

coherent state is available in [54].)

We can also consider a more complicated spin-S chain, which consists of a number of
these spin-S systems. It is possible [55] to construct a coherent state for this spin-S
chain by simply taking a tensor product of the individual spin-S coherent states.
The coherent state description of this system in the continuum limit, in which the

number of sites in the spin-S chain becomes large, was discussed in [56].

Now the Hamiltonian of a spin-S system is invariant under SU(2) transformations.
The construction of a coherent state for a general spin system, the Hamiltonian of
which is invariant under the action of some arbitrary Lie group, was discussed in
[20, 57, 58]. The general case of an SU(3) Lie group, in which we are particularly

interested, was mentioned in [57] and described in more detail in [9, 20].

We now briefly review the description of a general coherent state and construct the
SU(3) coherent state in detail. Lastly, we take a tensor product of these SU(3)

coherent states to form a coherent state describing an SU(3) spin chain system.

General coherent state

We shall first, following [20, 57, 58], define a general coherent state corresponding
to some Lie group G with Cartan basis [H;, E,, E_,], where H; are elements of the
commuting Cartan algebra, and E, and E_, represent the a'" raising and lower

operators respectively. This group is the symmetry group of some Hamiltonian.

Consider an irreducible representation of this group G with elements A(g), where
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g € G, which act on the vector space V,. We shall also make use of the ground state
|0), which is generally chosen as a state annihilated by all the raising operators (the
maximum spin state). The maximum stability group is the subgroup H, the elements

of which leave the ground state invariant up to a phase, so that
A(R)|0) = €®™|0),  for all h e H. (5.1)
The coherent state is then defined as
A(9)]|0) = A(w)A(h)]0) ~ A(w)]0), with w € G/H, (5.2)

up to a phase, since all the elements of G can be expressed as g = wh and A(g)
is a homomorphism so that A(wh) = A(w)A(h). The general coherent state is thus

parameterized by elements of the coset group w e G/H.

SU(3) coherent state

We shall now construct the SU(3) coherent state, which corresponds to the coherent
state for one site of our spin chain, based on [20]. In other words, we shall set
G = SU(3) in the above discussion. Any element of SU(3) can be expressed as
A= ez% ak/\k, with k€ {1,...,8}, where the a; are real parameters and the generators

A are the eight traceless Hermitean Gell-Mann matrices

) 0 0 0 ) 0 0 O ) 0 0
)\125 0 0 1|, )\225 0 0 1 , >\3=§ 01 O ,
0 1 0 0 — 0 0 0 -1
) 0 ) 0 ¢+ O ) 0
M= = | — Ao = =
4 9 ; 5 9 t 0 0 ) 6 2 ;
0 0 0 O
0 =2 -2 0 0
M=1 0 0 Mo = —— 10 (5.3)
7 9 . ) 8 2\/5 . .
— 0 0 1

The Cartan algebra consists of the two commuting Gell-Mann matrices A3 and As.
There are also three SU(2) subgroups, {1, A2, A3}, {)\4,)\5, —% ()\3 + \/3)\8)} and
{ A6, A7, % ()\3 — \/§)\8) }, each of which results in a raising and lowering operator.
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The ground state will now be chosen as the maximum spin state *

0) = (5.4)

o O =

which is annihilated by all the raising operators. This ground state is also an
eigenstate of both elements of the Cartan algebra, specifically A3|/0) = 0|0) and
As]0) = _\/L§|()>, and is annihilated by A\; and Ay. The subgroup H, which leaves the
ground state |0) invariant up to a phase, is thus generated by the four Gell-Mann
matrices Aj, A2, A3 and Ag. The coset group G/H is generated by the remaining four

Gell-Mann matrices Ay, A5, A\ and \;. Hence the coherent state is given by
IN) = ei(a)\4+b)\5+0)\6+d)\7)|0> (5.5)
where a, b, ¢ and d are real parameters.

Let us now calculate the coherent state more explicitely in terms of these parameters.
We first find, using the definition (5.3) of the Gell-Mann matrices, that

0 at+ib c+id

1
L= CL/\4 + b/\5 + C)\ﬁ + d/\7 = 5 a—1b 0 0 y (56)
c—id 0 0
. a4+ 0* 4+ & 4 d? 0 0
L* = 2 0 a? 4 b? (ac + bd) + i(ad — be) |,
0 (ac + bd) — i(ad — be) 2+ d?
(5.7)
and
AN 2

L} = (E) L, with A?=a? +b* + ¢ + d°. (5.8)

Expressing the exponential e in a Taylor series and using the above results then

et =1+ % {sin (%)} L+ (%)2 {cos (%) - 1} L? (5.9)

Note that this choice of ground state for each site is consistent with the SU(3) spin chain

gives

formalism described in appendix B.
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which yields the coherent state

, A 0 a—+ib c+id 1
Ny =] 0 +£sin(§> a—ib 0 0 0
c—1d 0 0 0
A2 0 0
1 A 2 2 Y
1z |cos 5 -1 0 a*+b (ac + bd) + i(ad — be)
0 (ac+bd) —i(ad — be) ? + d?

Thus, finally, the SU(3) coherent state |N) is given by

cos A

IN) = [ Zsin (&) (a—ad) |, (5.11)

Lsin (5)(c —id)

2

which is a function of the four real parameters a, b, ¢ and d.

We shall now introduce a reparameterization of this state. The radial coordinates

m; are defined as

A . (A Va®+b? . (A Ve + d?
my=cos|— ), mg=sin|—|———, mg=sin|—=|—— (5.12)
A A
whereas the angular coordinates h; must satisfy
tan(hg—hl) = —%, tan(hg—hl) = —2, h1+h2+h3 =0. (513)

3 3

Notice that Y>> m? = 1 and > h; = 0 from these definitions. The SU(3) coherent
i=1 i=1

state can hence be expressed as follows:

my mle““ mleihl
INY = | moeilz=h) | = [ myeihe | e7 ~ [ imgeitz | (5.14)
msez(hg—hl) msezhg mgezhg

where this last equivalence is up to the phase e~#1. This reparameterization yields

the CPP? representation? of the SU(3) coherent state used in [9].

2The complex projective space CP? is defined as C3/C*, where C* = C — {0}. More simply put,
it is a three dimensional complex vector space in which the elements (z1, 22, 23) and A(z1, 22, 23)
are equivalent, for any non-zero complex number A\. Now any complex 3-vector can be written as
(21, 22, 23) = Me (mie™ ™ moe™"2 mge"), where we have pulled out the magnitude M and total
phase H. The equivalence class of this vector can be represented by (mie~" moe™"2 msze="3), for
3 3
which Y m? =1 and Y h; = 0. Thus we can see that our reparameterized SU(3) coherent state
i=1 i=1
is, indeed, an element of CP?.
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SU(3) spin chain coherent state

We can now construct the full SU(3) spin chain coherent state as a tensor product

of the SU(3) coherent states corresponding to each site. Thus, as in [9], we obtain
n)) = |m) @ [n2) ® ... ® [ng), (5.15)

where the k" coherent state in the spin chain is given by

Ing) = my(k)e™® 1) + mo(k)e™2®)|2) + mg(k)e(3). (5.16)
1 0 0

with [1) = | 0], [2) = | 1| and |3) = | 0 |. The radial and angular coordinates
0 0 1

3 3
m;(k) and h;(k) satisfy the constraints > m;(k)?> =1 and >_ h;(k) = 0 respectively.

i=1 =1
5.1.2 Equivalent Hamiltonian

An important step in the derivation of the ~;-deformed coherent state effective action
is the construction of the coherent state Hamiltonian for our v;-deformed spin chain
system. It would initially appear that this ~;-deformed coherent state Hamiltonian
can be calculated by simply taking the expectation value ((n|H"|n)) with respect
to the coherent state (5.15) of the v;-deformed Hamiltonian, which, from (3.26) and
(3.30), is given by

J
, A : . . _
k=1

57 2-

where Hy, 41 = lpk+1 — Prr+1 and the unitary operator Uy 41 is defined as

3
Uppin = Y e mmen(k)en(k + 1), (5.18)

mn=1
Taking a continuum limit of this ~;-deformed coherent state Hamiltonian then yields
an effective Hamiltonian, which contains kinetic terms (involving derivatives with
respect to the now continuous spatial variable) as well as a ‘potential’ for the system.
The zeros of this potential should correspond to the vacuum states of the ~;-deformed

spin chain.
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Now it turns out [9] that the 7,-deformed potential obtained in this way does not
result in the correct vacuum states described in section 3.2.4 - the vacuum state
(J1, J2, J3) ~ (71,72,73) is absent. This is an indication that we may not use the
SU(3) coherent state (5.15) for the 7;-deformed SU(3) spin chain system.

It was, however, also pointed out in [9] that, instead of changing the coherent state
basis, it is equivalent to alter the v;-deformed Hamiltonian by some unitary trans-

formation U(&) as follows:
HY — HY = U Y& H"U(€) (5.19)

This transformed Hamiltonian should have an energy spectrum equivalent to that of
the original Hamiltonian, but, as shall later be seen, will result in a different coherent

state Hamiltonian.

Let us now construct this equivalent v;-deformed Hamiltonian, based on discussions

in [9], making use of the following ansatz for the unitary operators U (§):

3
= [[Ukkn(®)  with Uppa(§) = D ™ men(k)en(k+1),  (5.20)
k=1

m,n=1
where the complex parameter £ shall be specified later so as to obtain the correct

v;-deformed vacuum states.

We should first notice that this unitary transformation has the properties

L. Ulc_,li—l—l(g) U t1(—=6),

2. Up g1 (1) = U o1,

3. Up 1§ Uk pr1(A) = U1 (§ + N),

4. Ugp41(€) and Uy g4+1(A) commute for all k,q e {1,2,...,J} and {, X € C,

which are a direct result of the definition. These properties shall be used to rewrite

the equivalent 7;-deformed Hamiltonian as follows:

N A |
" =5 > UM OHE U ) (5.21)
k=1
\ J
= 532 [012(=6) - Ukt (Ui (=) Unsrsa(—€) - Una (=6)]
k=1
X Hylpin [012(8) -+ Up1 4k (§) U1 (§) Ukapr2(€) - - - Usa(§)] (5.22)

I
I
[\
(]~

[Uk-1,6 (=) Uk k1 (=€) Ukt 42 (=] Hyl oyt [Uk=1,5(E) Uk p1 () Uk e2(€)]

1

i
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since the Uj41(€) terms on the right commute with HkaH, forall | £k —1,k k+1,
and then cancel with the corresponding term Uj;41(—¢€) on the left. Hence, using
Hka+1 = Uk7k+1Hk,k+1L{,;,i+l = Uk,k+1(1>Hk,k+1Uk,k+1(_1)7 we find that the equiva—

lent v;-deformed Hamiltonian is given by

A

82

7
H" = Z Uk—1.6 (=) Uk g1 (=€ + D) Upy1 g42(—8)] Hi ket
k=1

X Up=1,6(&) Uk e+1(§ = D)Ukg1,1+2(8)] (5.23)

and, substituting the definition (5.20) of Uy x+1(€) into this expression, we obtain
\ 3
F['yi _ Z Z {e—iﬂfamne—iﬂ(f—l)azpe—iﬂ'faut eiﬂ'&awr eiﬂ'(é—l)aaq eiﬂ"facd

Yk —1)] [ef(k+ 2)ed(k +2)] (5.24)
leb(k 4+ Dey(k +1)] Hipra [en(k)eq(R)] [el(k + D)ec(k+1)] } .

We shall now make use of the identity ee” = ¢, e to derive the final expression for

the equivalent v;-deformed Hamiltonian as follows:

P
H = = 5> HE, (5.25)
k=1
where we define
3
7:[[)]/;] = Z eiﬂf(amr—Oémn)eiﬂg(aqt_apt)eiﬂ—(g_l)(o‘rq_anp) (526)

m,n,p,r,q,t=1

x ek —1) [er(k)eb(k + 1) Hypir el(k)ed(k + 1)] el(k +2).

5.1.3 Derivation of the coherent state action in the contin-
uum limit to O()\)

The coherent state effective action for our ~;-deformed SU(3) spin chain is
57 = [ar {{lidsfe)) ~ (@l )} (5.27)

where H" is the equivalent 7;-deformed Hamiltonian (5.25). We must, furthermore,

consider the above expression in the continuum limit, in which the number of states
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in our spin chain becomes large. This v;-deformed coherent state effective action

shall now be derived closely following [9].

Let us first calculate the expression ((n|id;|n)), which is known as the Wess-Zumino
(WZ) term, as follows:

S {Z m?(k:)hi(k)} : (5.28)

3 3
since Y my1h; = 10, (Z mf) =10-(1) =0.

i=1

We shall now determine the continuum limit of this expression by taking the length

of the spin chain J to be large. In other words, if we label the sites with the variable

0 < o < 27, the site spacing a = 27” — 0 and the spatial variable o becomes

J
continuous. Our discrete summation then becomes an integral > — [ 92 =] [ 42

k=1
Hence Wess-Zumino term in the continuum limit is given by

((n]id;|n)) — —J / d—UZmi(U)th(U). (5.29)

n)). Making
use of the 7;-deformed equivalent Hamiltonian (5.25), together with the coherent state
(5.15), we find that

Let us now calculate the ~;-deformed coherent state Hamiltonian ((n|H

J
. A

k=1

where

((nIHn)) = (nirel @ (nisa| @ (el @ (| HY Jg1) © [ne) © [ngsn) @ [nggs)

3
=S el gintlon =) ginte—(ary—an) (5.31)
m,n,p,r,q,t=1

X (n—1lem (k= Dlne-1) (nii2les(k + 2)[ng2)
X (| @ (nwlen (k)ep(k + 1) Hypia en(k)eg(k + 1)[ng) @ [ngia).
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This expression can be simplified using the following identities

(ni—ileqs(k — 1)[ng—1) = my, (k — 1), (5.32)

(1| @ (nglen (k)eb(k + 1) Hi 1 en(k)ed(k + 1)[ng) @ [ngg)

_ mi(k)mﬁ(/ﬂ + 1)577;52 . mn(k;)mp(k)mn(k 4 1)mp(/€ + 1)5?]/5;67ihn(k)eihn(k+1)€ihp(k)e*’ihp(k+1)’
(5.33)

(npsleb(h + 2)nies) = mi(k +2). (5.3

Here we have made use of the components (Hk7k+1):; = 0,00 — 0410, of the undeformed

H} k+1 matrix. Thus we obtain

3
n>> — Z eiﬂ-g(amr—amn)eiwg(aqt—am)eiw(ﬁ—l)(arq—anp)m (k _ 1)m§(kj _|_ 2)

2
m

i
((n] H[k]
m,n,p,r,q,t=1

x {mi(k)ym2(k + 1)07,6¢
— my (k)my (k)ma (k + 1)my, (k + 1)/ (=R =hp (D) ho (R)] 50 571

3
= > m (k= Dm(kymp(k + 1)m; (k + 2)
m,n,p,t=1
3
_ Z eiw{(amp—ocmn)eiwg(anr—am«)6—2i7r(§—1)anpm72n(k _ l)m?(k + 2)
m,n,p,t=1

x 1, (k)my (k)Yma, (k + 1)my(k + 1)l D=k =hp (kD) +hp (K] (5 35)

3 3
Changing m — ¢ and ¢ — r, and noting that > my(k —1)? = > m,(k +2)* =1,
= r=1

qg=1
we find that
. 3
((nIHgIn)) = > m2(k)mp(k +1) (5.36)
n,p=1
3
_ Z mZ(k _ 1)€iﬂg(aqp*aqn)m12n<k + 2>€i775(anr*apr)6*2”’(5*1)0471;0
n,p,q,r=1

X M (k)Ymy (k)m, (k + 1)my(k 4 1)eilhn D =hn k) —hpket D+hy (k)]

We would now like to calculate the continuum limit of the ~;-deformed coherent state

n)) to 2" order in a;; and

Hamiltonian. Towards this end, we shall expand ((n|7jlf;€]
the site spacing a, which are both taken to be of O(%) We shall also make use of
the definitions

om(k) = — ' and oh; = — A (5.37)
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which are the discrete versions of the spatial derivatives of m; and h; respectively.
Thus we find that

3

ny) = Y ma(kymp(k+1)

n,p=1

{{n[Hy

S™ m20k — Vym2(k + 2)m (k) (k) (k + Ly (k + 1)

n,

[ 1
X |1 +im€ (g — gn) — §7T2§2(oqu - aqn)ﬂ

2
X [1 — 2@71'(6 - 1)anp - 271'2(5 - 1)2a721p]

« |1 + ia (Ohy, (k) — Ohy(k)) — %a2 (Ohy (k) — (’)hp(k))g] . (5.38)

[ 1
X |1+ iﬂ-f(arw - apr) - _7T2£2(anr - apr)2:|

Multiplying out the brackets, keeping only terms up to 2°¢ order, and noticing that

all the 1% order terms vanish, since they involve the contraction of a symmetric

expression with an anti-symmetric one, gives

(Y = Y {mi(kymp(k + 1) = mp (k)my(k)ma, (k + )my,(k + 1)}

— Y m2(k = Dym?(k + 2)my, (k)my (k)ma, (k + 1)my,(k + 1)

q

n,p,q,r=1
1 1
X {_57252(0@0 - O‘qn)2 - 577252(0%7' - apr)2 - 27T2(§ - 1)20434:
1
- 5‘12 (Ohy(k) — ahp<k))2 - 7r2£2<04qp — Qg ) (Qnr — Qpy)

+ 27725(5 — Danp(ag — agn) — méalag, — ag) (Oh, (k) — Ohy(k))
+ 27T2§(§ — Danp(anr — apr) = méalan, — ayy) (Ohn(k) — Ohy(k))
+27(€ — 1)aa,, (Oh, (k) — Oh,(k))}, (5.39)

which can be written in the simplified form

([P ln)) = o® {Z (R + 5 3 Py 17 O (8) = 0y k) + 2o
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We can thus determine the v;-deformed coherent state Hamiltonian in the continuum

limit by, again, labelling our spin chain sites with the continuous variable 0 < o < 27
J

27 is the site spacing, as follows:

T
A do
— oz [ 2 (i

Hence, in the continuum limit, the coherent state Hamiltonian is given by

and changing Y- — [ 92, where a =
k=1

\ J

o 2
s
8 k::l

((n[H"|n)

n))- (5.41)

v - do
((n| F*|n)) = —)\J o
Zm2(0>2+é§ " mi(0)’m;(0)? [h’( Z%kJ%]

— 26(1 =€) ma(0)*ma(0)*ms(0)? (Z J%) : (5.42)

where we have set A = % and noted that a9 = —73, az; = —2 and agg = —7;.

We shall now choose the parameter £, as in [9], such that we recover the correct
v;-deformed vacuum states from the 7;-deformed potential. This potential, which is
now a function of the parameter £, can be derived from the ~;-deformed coherent

state effective Hamiltonian (5.42) and is given by
V(€) ~ mimis +miming +mamiyt — 26 (1 — &) mimam3 (1 + 72 +73)° . (5.43)

Firstly, the three vacuum states with .J; = J correspond to setting m; = ¢;;, which
automatically results in the 7;-deformed potential vanishing for all values of £. The

vacuum state (Jy, Ja, J3) ~ (71,72,73), however, does place a constraint on the para-

meter £. This state corresponds to m; = , /'n r—— and, for this to yield V7 (£) =0,
we must require that 2£(1 — &) = 1.

Therefore the coherent state Hamiltonian to leading order in 5\, with the parameter

¢ chosen so as to give the correct 7;-deformed vacuum states, is

3

2
— _)\J/ — Z Z m TTL [h/ h/ Zgzjk’)/k] -9 mlmgm?) )

i=1 1,j=1

((n[ " |n)

(5.44)
where we have defined 7; = % and 7 = Z ;-
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Finally, we can determine the coherent state effective action by substituting the
results (5.28) and (5.44) into the expression (5.27). Hence we obtain

S = —J/dT ;Z—Z [m‘ +0 (Pﬂ , (5.45)

where the Lagrangian to leading order in A\ is given by

3 3 3 ?
R 1
Lr=> mhit5 A > (m)* + 3 > mim; [h; — = :Eiﬂﬂk] = y'mimm;
- k=1

i=1 i=1 i,j=1

(5.46)

5.2 ~,-deformed String Worldsheet Action for Ro-
tating Strings in the Fast Motion Limit

We would now like to construct the 7;-deformed string worldsheet action in the
relevant semiclassical limit and compare this with the coherent state effective action
of a v;-deformed SU(3) spin chain following [9]. This semiclassical or fast motion
limit is obtained by considering strings in a ;-deformed R x S® background moving
with a large total angular momentum J. Furthermore, we shall assume that the
time derivatives of the radii r; and ‘slow’” angular coordinates ¢; and o, and the

deformation parameters 4; are of O(A) and O(\/X) respectively, where A = Jis a
small fixed parameter. For comparison purposes, the string worldsheet metric shall
be specified using the non-diagonal uniform gauge of [18], in which the total angular
momentum is taken to be spread evenly along the string (as it is along the spin
chain). It was shown in [21] that this gauge can be more easily implemented in the

T-dual space of the ‘fast” or total angular coordinate ¥ = 3.

In this section, we construct the 7;,-deformed string worldsheet action in the fast
motion limit to O(A2). The U(1) charge and current densities p; and j; corresponding
to the angular coordinate ¢; shall also be derived to 0(5\) from this action. The
requirement that these charge and current densities should remain unchanged by the
v;-deformation, even in the fast motion limit, then results in a relation between the

differences of the undeformed and ~;-deformed angular coordinates.
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5.2.1 Derivation of the v;-deformed string worldsheet action
in the fast motion limit to O(\?)

We shall begin by considering the action (4.90) describing strings moving in a ;-
deformed R x S5 background. Let us now rewrite this 7;-deformed string worldsheet

action in terms of the coordinates 1, o and 3, which satisfy

O1 = P3 — P2, P2 = p1 + Qa2+ p3, ¢3 = P3 — Q1, (5.47)

where ) = 3 is the ‘fast’ or total angular coordinate, as follows:

g — _Q dr do (5.48)

2 2m
3 3 3
X {\/ —hha’B [—8ataﬁt + Z 3a7“¢85n~ + Z Gijﬁa%@ggpj] — Eaﬁ Z Bij(?a(piaﬁgoj] } .
ij=1

i=1 ij=1

Here G;; is a symmetric metric with components

Gll -
G22 —

G [(ry +73) +riryrs (2 — ”?3)2} )

[(7’1 + 7’2 + 7"17"37"3 (Y2 — %)2] )

Gaz = G [L+riryr] (51 + A2 + 93) } :

Gia =G [ry +riryrs (52 — 43) (2 — )] ,

Gs1 = [ r3) 4+ rirars (1 + A2 +93) (G2 — ’AYB)} ’
Gas = G [( )

)+ rirsrs (i + A2+ s) (2 — 1)) (5.49)

2
Ty —

2
(r3 —

and B;; is anti-symmetric matrix with

B, =G (@37“%743 + Aarari + %7’57’3)
Bsy = G (3srirs + Jorir — 251r3r3)
By =G (—2737"17"2 + 727“37“1 + 717”27”3) . (5-50)

Note also that, in the above action, we have neglected to mention the constraint
term, which ensures that the square of the radii r; sum to one. This term is of no

importance in the present discussion and thus, for convenience, has been left out.

Now, at this point, it is necessary for us to make a specific choice for the string
worldsheet metric ho3. One possibility is to simply use the diagonal conformal gauge
in which v/—hh*? = diag (—1,1). It was noted in [18], however, that, if one wants

to compare the resulting string action to the coherent state effective action of a spin
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chain, one must rather use a non-diagonal uniform gauge in which the total angular
momentum is spread evenly along the string. A procedure for implementing this
gauge was described in [21] and involves first performing a T-duality transformation

on the ‘fast’ angular coordinate 1) = ¢3. Hence we obtain

S = \/2— dr % {\/ —hh8 [ — 0at0st + 0,1;087; (5.51)

+ G110a9103901 + G220a020302 + G300 3033
+ é128a<ﬂ186<ﬂ2 + é2laa<ﬂ235901 + 6'31(%95385@1
+ élsaa%@ﬁ@?) =+ é2saa¢2aﬁ¢3 + 632aa9538ﬁ902:|

— 2¢%8 [3128a9018,3902 + Bn0a@sdspr + 3236“90285@3] } ’

where we have used ¢, = ¢; and @9 = o, together with the definitions

~ G2, — B2 ~ G2, — B? ~ 1
G = Gy — 31 31 Goy = Goy — 23 23 Gan =
11 11 —G33 22 22 —G33 ) 33 _G33 )
~ G31Gas + B3y Bog ~ Bsy ~ Bas
G =Gy — , Gz = —, Goz = ———, 5.52
12 12 G 31 Cos 23 Cos ( )
and
~ G31Ba3 + B31Gas ~ G ~ Goas
BB By= 23 Byy= 2B 5.53
12 12 + G ) 31 G’ 23 G ( )

We shall now convert to the Nambu-Goto form of this ~;-deformed string worldsheet

action in the T-dual space, which is given by

ST = \/_/dT — sV —h — e [Blzaa%aBSOz + B310a 33081 + B233a90255953] } ,
(5.54)

where

ha,@ = —aatagt + aoﬂ”iaﬁﬁ + énaa%a,@% + 622(9&9028/3902 + 0338049538/3@3
+ G1200010502 + Go100020501 + G31060P30501 + G13060105P3
+ é23aag0235953 + G3zaa95385902- (5.55)

The original Polyakov action (5.51) can be proved to be equivalent to this Nambu-
Goto action (5.54) in exactly the same way discussed in section 4.1.2. Since this
derivation relies upon the equation of motion corresponding to h.g, the extra term

e*?[...], which is independent of h,g, is largely unimportant.
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Let us now note that the total angular momentum 2-current, which corresponds to

the ‘fast’ angular coordinate 1) = (3, is given by
Pt = e o, (5.56)

and thus the total angular momentum charge density is p° = (9115. The non-diagonal
uniform gauge, in which p® = 7 is constant along the string (in the spatial worldsheet
coordinate o), can be obtained by setting ) = p3 = Jo. We shall also take ¢ to be

simply the temporal worldsheet coordinate or proper time 7.

Thus the components of the string worldsheet metric in the non-diagonal uniform

gauge can be calculated from (5.55) to be

hoo = —1 + 72 + én@% + 622953 + 26:12951@?

hir = (r})* + G11(¢))? + Goa(h)? + T*Gaz + 2G99 + 2T G0y + 2T Gosph,

hor = hor = 77 + Gugrph + Gaapawhy + Gra(o105 + 1 2) + TGarpr + T Gagn,
(5.57)

The 7,;-deformed string worldsheet action can hence be written as

_ d ~ . ;. ~ . ~ .
ST = —\/X/ dr % {\/ —h — [312 (P15 — @1$2) — Bsr T o1 + Bg3jS02] } )
(5.58)

in terms of the determinant h = hooh11 — (h01)2.

Ao 1
7z = 72

™ . . .
g—;‘rj = VAJ, and construct a semiclassical expansion

We shall now define the small parameter A = since our total angular

2

momentum is J = VA [;
of the action (5.58) to O(A\?). We shall assume that the radii and ‘slow’ angular
coordinate (¢, and @y vary slowly with time. More specifically, we shall make the
redefinition 7 — %7‘, so that % — :\% and therefore all the time derivatives of the
remaining coordinates (the ‘fast’ angular coordinate has been eliminated) become of
O()). We shall also assume the deformation parameters 4; to be of O(\/X) and define
the A-independent parameters i = Jvi = Jvi. (This is consistent with the earlier
definition in section 5.1.3 of 7; in terms of the gauge theory deformation parameters

7i.) Hence we obtain the ~;-deformed string worldsheet action

. do /1 1 575 . ) ~ ) ~ )
ST = —J/dT o { —ﬁ h — Fé A [312 (V105 — P1p2) — Bs1 T o1 + B23J<P2] } ,

(5.59)
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where
1 .9 = .9 = .9 = .o
h = |—1 + ﬁ (Ti + G11g01 -+ GQQQOQ + 2G12Q01<,02> (560)
X [(7’2’-)2 + Gi1 (91) + Goa (95)° + T2Giag + 2G 120y + 2T Gy + 27@23%0'2]

I 5 5 5 . 5 = .12
i [7"1'7”4 + Grg1p] + Gaapahy + Gra (P15 + @ 2) + TG + jGQi&‘ﬂQ} :
We only want to consider terms up to O(%) in our Lagrangian and thus, neglecting
higher order terms, we find that

1 ~ 1 ! ~ / A / ~ VA A / A /
~ 7 h = Gss + 7 [(7"1')2 + G11())? + Gaa(9h)? + 2G 120, 5 + 2T G0 + 2.7G23902}
1 5 7. . = = L. 1
— ﬁ G33 <7“Z2 + Gng&% + GQQQO% + 2G12<,01§02> + O (ﬁ) . (561)

Now we need to calculate Gy; and By; explicitly using the definitions (5.52) and
(5.53), which are given in terms of the expressions (5.49) and (5.50). Keeping only

the necessary orders in <, we obtain

J
A 2.2 .22 2,2 L oooo 920 29 2.2 1
Gy = (7’17"2 +r3r] + 47“27“3) — ﬁT‘1T2T3’y (7‘17‘2 + 73] + 47’27“3) +0 7i)
~ 1 _ 1
G = (40303 4 4 732) — g (4303 030 +3) 40 (ﬁ) |

- 1
Gy = 14 = (33rirs +%rsri +Airars — 7'rirars)

1 2/~ _ _ _ 1
— s i (i e+ st - ) + 0 (5.

~ 1 1
Gra = (23 — 1308+ 20303) = yr o3 (21303 — v+ 23) + 0 (_) |

j4
-1 _ _ 1 2 (5 Y y 1
Gz = g (Yarirs 4+ Farsri — 29arary) — g3 rirgrsd” (Jarirs + Jarsri — 27rars) + O (ﬁ) 7
-1, , _ 1 22 (27 5 y 1
Gas = J (27957113 — Forsri — Jiryrs) — ﬁrir%r%f (arirs = 2arsm = rars) + O (ﬁ> ’
(5.62)
and
B — l (37“27’27“2_) +0 i
12 = =7 (9172 £ g3 )’
3 1 . 1
By = (1 —73) + 75 riririy (G —3) =7 (5 = )] + 0 77 ).
7 J
) 1 =
By = (=) + 5 i [ =) =30 =] 40 (). G
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3
with 4 = >~ 4;. Hence, substituting these expressions into (5.61), we determine
i=1
1 3 12 13
where we define a and b explicitly as
3
a = (Varirs + arsrl +3ir3rs — 37rirgrs) + ) ()’
i=1
+ (rrs i 4 drird) (91)” + (4rir3 + it ) ()
+ 2 (2rfry — it + 2r3r3) Pih + 2 (Jarirs + Forirt — 21r313) )

+ 2 (2737"%7"3 — 727"92)7"% — 717"37"%) s, (5.65)
b= et (3 + 7t + st — 7t

+ (rr3 4 3 4ried) (01)” + (drind + o3l +r3) ()
+2/(2riry — v} 4 2rg15) 1¢h + 2 (Fariry + Farsri — 201m3r3) ¢
+2 (293r{r3 — Forir — 17373) ]

Z-Q — (r%r% + rgrf + 47‘%7“%) gpf — (47‘%7“% + rgrf + r%r%) gpg

— 2(2rfr3 — rary + 2r5r3) 9160 (5.66)

-7

A binomial expansion of the square root then finally yields

RSN S R CF TR 33
~ 3 h=1+gha+ ] (2b 8a)+0<)\>. (5.67)

Now, using (5.63), we calculate the second term in the Lagrangian to O (%) to be
Bz (9105 — 1 ¢2) — BsrT o1 + Bas T o = Ae+ N2d + O (5\3> : (5.68)
with
c=—(ry—13) ¢+ (17 —13) @, (5.69)
d=—rirsryy{7[(2 = 3) =7 (5 =) o1 +7 [(h = %) =7 (11 = 73) | &5
+3 (91005 — Pia)}- (5.70)

The 7;-deformed string worldsheet action to O(A?) can thus be written as

do ~ (1 ~ 1 1 ~
v ao i 2Ly L 2 3
S J/df% {1+)\(2a c) + A (2b S d) +O<>\ )} (5.71)
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where we now express the new variables a, b, ¢ and d in terms of the original angular
coordinates ¢; by substituting

—%(¢1+¢2—2¢3) and @22} -

3( 201 + ¢2 + ¢3)
into the expressions (5.65), (5.66), (5.69) and (5.70) so as to obtain

3 2
5 1
a= Z (r))” + 5 Z rfr? ¢; — ¢ — Z ek | — APrirars,
=1 1,7=1

(5.72)

(5.73)

(5.74)

2.2,.2

(5.75)
= 1715137 Z rig — rirsryy Z Viths + 7”%7”%7”?%

Y (60— ¢14). (5.76)
1,5,k=1

Hence, changing back 7 — A7, and neglecting the total derivative term in the variable

¢ and the constant 1 at the beginning of the Lagrangian, we obtain the ~;-deformed
string worldsheet action to O(X2) in the fast motion limit

S = —J/d g" oo (W],
where

L7 = <1 — Ar%r%r%*ﬁ)

3

(5.77)

<[ s
ercﬁz —i—% Z (7]
i=1 ;

3 3 3 2
1
3 § (r))* + 3 E rirs <¢; — ¢ — E :Ez‘jka) Vriryrs
i=1 ij=1 k=1

3 3

. 1. . . ,

+ )\7’%7"57"372 Yipi — 5)\7“%7’%7’:37 Z Eijk <¢i¢;‘ - ¢;¢j> (5.78)
i=1 k=1
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Notice that the O()\) part of this v;-deformed string worldsheet action, which involves
simply the expression in curly brackets {...}, agrees with the coherent state effective
action (5.45) for a v;-deformed spin chain, if we make the identifications r; — m;
and ¢; — h;. This agreement between the 7;-deformed spin chain/string first order

semiclassical actions was first observed in [9].

5.2.2 U(1) charges densities and currents to O()\)

This v;-deformed Lagrangian, which describes semiclassical strings moving in a fast
motion limit, can be seen to still be invariant under rotations on our ~;-deformed five-
sphere. Let us now calculate the corresponding U(1) charge and current densities to
O(X) as follows:

p; = a(‘fgz: = (1 — T%T%T?*VQS\) 7"22 — 5\7“22;7”]2 ((bl — ¢]>

3
+ AP — Arirarsy Z eijkgzﬁ;, (5.79)
k=1

and also

A
e Ve Z r’ (@. — = gijw,f) : (5.80)
j=1 k=1
Note that, in the case of the current densities j;, we have kept only the O(S\) terms,
but no higher order terms have been neglected when calculating the charge densities
p;. The reason for this is that we need to take a time derivative to obtain the charge
densities and thus we are implicitly reducing the order of the expression by one. In

other words, the O(A2?) Lagrangian automatically results in O()) charge densities.

Furthermore, we can determine the U(1) charge and current densities to O()) for
similar semiclassical strings in an undeformed R x S® background by simply setting
~; = 0. We thus obtain

3 - 3 ~ 3 ~ ~
Fo=rt 2y (qs - @) wd 5= (-d). (68
j=1

J=1

3Note that the expressions obtained in [9] for both the leading order string and spin chain actions
differ from those derived above in that the time derivative term appears with an extra negative sign.
This is equivalent to a redefinition of time 7 — —7 or, alternatively, to a redefinition of both the

angular coordinates ¢; — —¢; and the deformations parameters v; — —v;.
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Now we demonstrated in chapter 4 (based on discussions in [9]) that the U(1) charge
and current densities remain unchanged by the ~;-deformation. This should still be
true in the fast motion limit. Thus, setting p; = p; and j; = j;, it is possible to obtain

the following expressions:

(;1 —sz = $1 — o — TIr3Y (B — &) — o) + 13Ty (D — B — 1)
</T53 — %1 = 3 — Oy — rarsy (¢ — ¢ — 1) + 1iray (¢ — ¢ — 7a)
Gy — 3 = by — 3 — iy (@) — ¢ — 73) + 1irsy (¥ — &) — 72) | (5.82)

and

O — Gy = @ — Gy + T3 — 73
Oy — ¢ = ¢ — B + 15 — e
Oy — Oy = ¢ — B + 17 — 1. (5.83)

These equations describe the connection between the undeformed and ~;-deformed

angular coordinates ¢; and ¢; respectively to O(:\) in the fast motion limit.

5.3 Lax Pair for the v;-deformed Spin Chain/String

Semiclassical Action to O(\)

We shall now demonstrate that the ;-deformed semiclassical spin chain/string action
to leading order in A admits a Lax pair representation. In other words, the ;-
deformed string worldsheet action remains integrable in the fast motion limit. This

new result was published in [23] and is presented with minimal changes.

We begin by considering an undeformed semiclassical spin chain/string system and
show, following [9, 20], that the equations of motion are equivalent to a Landau-
Lifshitz equation for which there is a known Lax pair. We then derive the ~;-deformed
equations of motion and construct a transformation on the angular coordinates that
takes the undeformed equations of motion into the ~;-deformed equations of motion.
A ~;-deformed Lax pair is hence constructed and the corresponding zero curvature
condition is shown to be equivalent to the v;-deformed equations of motion. Further

details of these calculations are presented in appendix C.
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5.3.1 Undeformed semiclassical Lax pair representation
Undeformed equations of motion

Let us consider the undeformed semiclassical spin chain/string action to leading order
in \, which can be obtained from (5.77) or, alternatively, from (5.45) by setting 7; = 0.
We shall now make explicit mention of the constraint term, and redefine 7 — —%7’

and £ — %E, so as to obtain

S = —J/dT ;z_; [5\5 40 (P)], (5.84)

where the undeformed first order Lagrangian is given by

3 z 1 3 / 1 3 = > 9 1 3
L= —;r?@ + 5;(73-)2 + 5 D Tirs <¢i - ¢j) + A (er - 1) . (5.85)

ij=1 i=1

We can now derive the undeformed equations of motion by varying with respect to

the radial and angular coordinates r; and 952 respectively to obtain

~ 3 ~ ~
Tél = —27“1'@2;7; + 7 ZTZ <Q~52 - qg;€>2 + A”f’i, (586)
k=1
3 = = 3 = =
fo= ol (S -d) +gn o (B ). s
k=1 k=1

while varying with respect to the Lagrange multiplier A yields the constraint equation
3

S~ r? = 1. Now, assuming this constraint is satisfied, the equations of motion (5.86)
i=1

and (5.87) are equivalent to

< < 3 x 2 \2 3 x ~\2
Tj?"::/ _ 7"7;’]"‘;., — 27"1'7”]‘ (gb] — gbz) + Tl‘rj Z T]% <¢; — ¢;€> — T’iTj Z Tz (¢; - qb;f) ;
k=1 k=1
(5.88)
3 = = 3 z z
7"1'7']' + Ti?gj = 7“j Zrk (T’i?"k)/ <¢; — (b;) —+ 7 Z TL (TjT'k)/ (¢; — ¢;€>
k=1 k=1
1 3 = = 1 3 b~ b~
+ §rirj Z 7“]% ((ﬁ;’ — ¢/k/) + §Ti7"j ZT]% (¢;’ — ¢/k/> (589)

k=1 k=1

Notice that the constraint term cancels out of equation (5.88).
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Undeformed Lax Pair

The Landau-Lifshitz Lax pair, which is a function of the spectral parameter x, is

D, = 0y — Aq, with a =0,1, (5.90)
where
1 3i
Ay zamumwx+§Nﬁ, (5.91)

- 3
and we have defined N;; = 3U;U; — ;;, where U; = r;e"® and Y rZ =1[9].
i=1

This satisfies the zero curvature condition [D,, Ds] = 0, which is equivalent to
80A1 - (31A0 - [A(), Al] = 0, (593)

since the only non-trivial independent equation comes from setting « = 0 and § = 1.

This condition results in the Landau-Lifshitz equation of motion [9, 20]
1
@N:ﬂmﬁm, (5.94)

{(5-4)

one obtains (5.88) and (5.89), which are equivalent to the undeformed equations of

and, upon substitution of N;; = 3U;U; — 6;; = 3r;rje — 0;5 into this equation,

motion (see appendix C.1 for details).
In terms of r; and <Zi, the undeformed Lax pair is D, = 0, — A,, where
(Aa)ij = (Ba); ei(@-—dh)’ with o= 0,1, (5.95)

and we define

. 3
3 3 = = =
(Bo)ij = 3 (mr} — rgrj) + %nrj (gzﬁ; + ;) — 3irr; Zﬁ% ;g] x

k=1
+ % (37“1'7“j - (51) .%2, (596)
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5.3.2 ~;-deformed semiclassical Lax pair representation
~v;-~deformed equations of motion

We shall now consider the more general v;-deformed semiclassical spin chain/string

action, which, from (5.77) or (5.45), is given by

SH=_J / dr ‘21—; [Xmi +0 (P)] (5.98)

Here we have again redefined 7 — —%7‘ and L7 — %CW, and included the constraint

term in the v;-deformed Lagrangian, which to first order in A is

3

3 3 3 ?
_ . 1 1 _
oY Y Ly <¢; S kw)
=1 k=1

i=1 j ij=1

3
1 1
— 572?"%7"57"5 + EA (Z r — 1) . (5.99)

i=1

3
This expression can be rewritten using the constraint > 72 = 1 as follows:
i=1

3 L3 1 3
L = —ergbz + EZ(T;)z + §A (er - 1)
i=1

=1 i=1
1 3 3 3 2
+ i <¢§ + Y 5ilm'7lT,2n> - (gb;. + 3 eﬂmwfn)] . (5.100)
1,7=1

I,m=1 Il,m=1
Varying the above Lagrangian with respect to the radial and angular coordinates

3
r; and ¢; respectively, and using the constraint equation _ r? = 1, which can be
i=1
obtained by varying with respect to A, yields the v;-deformed equations of motion

3
—— {¢ Y cunt?riin (6~ 61— Eantin)

I,m=1

3

1 B _ _

—3 E EitmTi T (V1 + m) (0] — &1y — é?um%)}
l,m=1

3 2

—f‘TZ‘ZT]%

k=1

+ Ay, (5.101)

3 3
<¢;; + Z €ilm7ﬂ}2n> - (Qb;g + Z €kzm7ﬂ“72n>

I,m=1 I,m=1
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(

3
G+ Y CumUrn,

3
QS;/ + 2 Z Eilmﬁlrmr;n

I,m=1

I,m=1

)
)-

3
o + Z S

)] (5.102)

)

3
1 § : -
k +2 EklmVITmT

I,m=1

Now, assuming the constraint is satisfied, the above equations of motion (5.101) and

(5.102) are equivalent to

Ty — 7“,7“” = 21,1 <¢J ¢Z)

—27”Z'Tj {
—|—2T’Z‘T’j {

3

—}—Tﬂ”j Z

k=1

3
—TZ'T]' E 7’,3
k=1

Il,m=1

3

i
(

Firy iy =1y ) e (i)

2
Tk

l,m=1

I,m=1

k=1
3
+ 7 Z Tk (TJTk
k=1
1 L
+ §Tirj Zr,% (
k=1 L
1 L
+ §TZ'TJ' Z 7’2 (
k=1 L

3
Z 5ilmrz‘2rl2’7m (gbi -
2, 2=
Z 6jlmrjrl Tm (¢; -
3
¢; + Z Eilm T

3
¢ + Z Ejtm V1T,

QZSE - 8ilm’ym - Z Z':zlmrl ,Vl + Wm) (¢l ¢ 8zlm’%)}
lm 1
& — EjtmTm) — Z EtmT T (V1 + ) (9] — O %m)}
lm 1
3 2
7271) - (% + Z Eklm%ﬁn)]
I,m=1

)

Qb + Z 5zlm’yl7ﬂ

I,m=1

[
(

¢ + Z 5]lm717ﬂ

l,m=1

3
G +2 D CimNrmT,

l,m=1

3
& +2D AT,

I,m=1
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3
¢ + Z EklmNIT

Im=

(5.103)

3
O + Z ERm T,

I,m=1

1

)
)
)
)

)
)

/! —
e T2 E Eklm N Tm?
l,m=1

3
O + Z EklmNT

Il,m=1

)
)} o

3
/! — /
k + 2 E ErtmNTmT

I,m=1



Transformation from the undeformed equations of motion to the v;-deformed

equations of motion

We now observe that a transformation which takes the undeformed equations of

motion into the 7;-deformed equations of motion is

. 3 3

= . _ B 1 _ _ _

G =i+ D> Eumirm (¢ — ¢ — EitmTm) — 3 > cumtirE (it Am) (6 — S — Eim Vi),
Il,m=1 Il,m=1

(5.105)

~ 3
&=+ Y cumirs,. (5.106)

l;m=1
Taking into account our redefinition of 7, this transformation satisfies the equations
(5.82) and (5.83), which were derived by equating the undeformed and ~;-deformed
U(1) charge and current densities. Thus the relation we have observed between the
undeformed and 7;-deformed angular coordinates is simply the result of the U(1)
charge and current densities remaining unaltered by the 7;-deformation (as observed
in [8] for the general string theory before the fast motion limit was taken). Notice
also that this transformation is only one of an entire set of possible transformations,
because it is only the difference of the angular coordinates which effects both (5.82)

and (5.83), and the undeformed and ~;-deformed equations of motion.

Now, for this transformation to be valid, we must have (gz:éz)’ = (5;) Therefore the

compatibility condition, which must be satisfied, is

3 3
2 Z EitmVTmTm = O1 { Z EitmTi T Ym () — &) — EitmTm)

I,m=1 l,m=1

3
1
-3 > camriri, i+ Ym) (8 — b — Eum%)} . (5.107)

I,;m=1

However, from the equation of motion (5.102), we know that

3 3 3
) 1 _ _
Tt = 5 01 {; r?r,z ((ﬁi + Z smswﬁ) — (qﬁ% + Z Eknsfynrf>] } , (5.108)

n,s=1 n,s=1

and thus

3
2 Z gz‘lTrL'T/le?;m
lym=1
3 3 3
=0 { Z €um7ﬂ’,2;ﬂ“;% (qb'm + Z emm'ynrg> - (gb; + Z 5kns%r§>] } . (5.109)
k,l,m=1 n,s=1 n,s=1
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By setting ¢ = 1, 2 and 3, and evaluating equations (5.107) and (5.109) separately (see
appendix C.2), these equations can be shown to be the same. Thus the compatibility
condition is automatically satisfied if the v;-deformed equations of motion (and the

constraint equation) are valid.

v;-~deformed Lax Pair

The v;-deformed Lax pair shall now be derived from the undeformed one following a

similar procedure to that discussed in section 4.5.3.

First the gzi—dependence of the undeformed Lax pair will be gauged away. More

specifically, we shall now change to an equivalent Lax pair as follows:
Dy —> Do = MD M ™' =0, — Ry,  with Ry = MAM ™' — MO M, (5.110)

where M = ie"‘i’iéz’j and thus M~ = —ie‘iéiéij.

Now we can make use of the definition (5.95) of the undeformed Lax pair, in which
the dependence on the angular coordinates is entirely in the exponential, to derive

the gauged undeformed Lax pair as follows:

Dy = 0o —Ra,  where (Ra)y; = (Ba)y +i0ati 83, (5.111)

ij
and thus, substituting the definitions of (By);; and (B),; into the above equation,

we obtain the explicit expressions

. 3
3 3 x z x
(Ro)ij = 3 (rir —rir;) + EZTZ‘TJ' (qzﬁ; + qb;) — 3irr; Zr,%gzﬁ;] x

k=1
3 z

+ 51 (3rirj — 0i) @® + iy 0 (5.112)

(Rl)ij =i (3rir; — i) T + 252 ij. (5.113)

This undeformed gauged Lax pair depends only on the radii and the derivatives
thereof, and the derivatives of the undeformed angular coordinates. It can therefore
be expressed in terms of the v;-deformed angular coordinates using the transformation

(5.105) and (5.106). Hence we can construct the ;-deformed gauged Lax pair
D) =9, — R, (5.114)
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where

(Rgi)ij - g (7”2‘7”;- — 7";7"]) T+ 5 TZTJ (gb; + 23: €izm%7”,2n> + ((ﬁg + 23: Ejlm'YZT?n)] x
Il,m=1 Il,m=1
— 3irr; Zrk <¢k + Z Eltm VT o ) +?; (3rir; — 045) 2
I,m=1
+ { {¢z + Z 5ilmrz‘2rl2’7m (Qb; - ¢; - Eilm’j/m)
I,m=1

- = Z €zzm7"g Vi + Am) (91 — &, — 5z‘lm’_¥i)} ds, (5.115)

lm 1

3
(R1);; =i (3riry — 0yj) &+ (gb; + Z eﬂm%rfn> dij- (5.116)
I,m=1

Now the zero curvature condition [f)gi,f)gi] = 0 is equivalent to
QRY' — Ry — [Rg, RY'] = 0, (5.117)

and the equations thus obtained from this gauged 7;-deformed Lax pair (see appendix
C.3) are equations (5.103) and (5.104), which are equivalent to the v;-deformed equa-
tions of motion, and the compatibility condition, which follows directly from these
equations motion. Thus f)gi is a valid Lax pair representation for our ~;-deformed
semiclassical spin chain/string system. We have therefore shown that the ~;-deformed

spin chain/string action is integrable to leading order in the semiclassical limit.
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Chapter 6

Summary and Conclusion

A non-supersymmetric 7;-deformed extension of AdS/CFT correspondence, which
was originally conjectured by Frolov, has been studied. Both sides of this proposed
~i-deformed gauge/string duality were described.

On the gauge theory side, the original maximally supersymmetric N' =4 SYM con-
formal field theory was discussed in detail. N = 1 supersymmetric marginal defor-
mations of AV = 4 SYM theory were then constructed and the non-supersymmetric
v;-deformed YM theory was mentioned. We reviewed the identification of the ;-
deformed matrix of anomalous dimensions in the SU(3) sector with the Hamiltonian

of an integrable 7;-deformed SU(3) spin chain.

We then turned our attention to the string theory side of the proposed duality.
Due consideration was given to AdSs x S® spacetime before we confined our dis-
cussion to strings moving only in the five-sphere space. The ~;-deformed string
worldsheet action was constructed by performing three TsT-transformations on the
original string worldsheet action. Frolov’s Lax pair representation for strings moving

on a 7;-deformed five-sphere was also mentioned.

We then reviewed Frolov, Roiban and Tseytlin’s semiclassical leading order com-
parison between the ~;-deformed spin chain and string actions. The coherent state
effective action for a ~;-deformed SU(3) spin chain was constructed to first order in
the continuum limit. The string worldsheet action describing strings moving in a

vi-deformed R x S® background was calculated to second order in the fast motion
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limit, together with the first order conserved ~;-deformed U(1) charges or angular
momentua. Agreement was thus shown at leading order between the ~;-deformed

gauge and string theories in the semiclassical limit.

Furthermore, we demonstrated that there exists a Lax pair representation for the
leading order semiclassical 7;-deformed spin chain/string action, so that both systems
remain integrable in the semiclassical limit. This result relied upon a transformation
relating the undeformed and ~;-deformed angular coordinates, which was seen to
arise from the requirement that the first order semiclassical conserved U(1) charges

remain unchanged by the 7;-deformation.

Possible extensions to this thesis include the construction of the conserved quantities
associated with this Lax pair. Specifically, one could attempt to calculate the mon-
odromy matrix and conserved quasi-momenta as a function of the spectral parameter

for this ~;-deformed semiclassical system.
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Appendix A

Representations of the Lorentz

Group

A.1 The Lorentz Group

The Lorentz group is a group of rotations and boosts under which any reasonable
relativistic Lagrangian should be locally invariant. In this section, we begin by writing
the generators of the Lorentz group as differential operators and hence construct the
Lorentz algebra. The standard representation of the Lorentz group, in which the
generators take the form of 4 x 4 matrices, is then described, together with more

general n dimensional representations. This review is based on discussions in [26].

A.1.1 The Lorentz algebra

The group of Lorentz transformations describing rotations and boosts in four dimen-
sional Minkowski spacetime can be viewed as an extension of the group of rotations
in three dimensional Euclidean space. Therefore, let us first consider the generators
of the rotation group, which are simply the three components of the angular mo-
mentum vector J = F x p. Since the momentum can be written as p' = —iﬁ, the

generators of the rotation group in differential operator form are given by

S = —i (2IVF — 2FVT) . (A1)
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It is now possible to extend this result to the generators of the Lorentz group by

simply changing the spatial derivatives to spacetime derivatives as follows:
JH =g (zh0” — " OM). (A.2)

There are six generators of the Lorentz group corresponding to the six independent
components of the anti-symmetric tensor J#**. While J7* still describe rotations, the
new generators J° with temporal indices describe boosts. Finally, we find that these

generators J" satisfy the Lorentz algebra
[JHY TP =i (P JHT — P JVT — "o JHP 4 h? JVP) | (A.3)

where n*¥ = diag (+1,—1, —1,—1) is the Minkowski metric.

A.1.2 Standard representation of the Lorentz group

The standard representation of the Lorentz group is four dimensional: the Lorentz
transformations are 4 x 4 matrices acting on the 4-vectors in Minkowski spacetime.

The generators of the Lorentz group in this representation are given by
(j#l/)ocﬁ — (nau(guﬂ . naué#ﬁ) 7 (A4)

which satisfy the Lorentz algebra (A.3). These generators yield the finite Lorentz

Lo THY

transformation A = e~ 2 , where w,,,, is an anti-symmetric matrix of coefficients.

We can now derive the familiar Lorentz transformation matrices by making specific
choices for the coefficients w,,. For example, a rotation by an angle 6 around the
z-axis corresponds to all the components of w,, being zero, except wis = —wq = 6.

Thus we obtain

1 0 0 0
A= 0 cosf —sinf O | (A5)
0 sinf cosf O
0 0 0 1
which is obviously a rotation in the xy-plane. Rotation matrices in the xz and yz-
planes can similarly be determined by setting w3; = —wi3 = 0 and wog = —w3e = 0
respectively.
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Furthermore, a boost of rapidity y in the z-direction corresponds to wg; = —wip =y

as the non-zero coefficients. Hence

coshy sinhy
sinhy coshy
0 0
0 0

A= , (A.6)

O = O O
_ o O O

which is the usual Lorentz transformation in terms of the rapidity. We can similarly
obtain the boosts in the y and z-directions using wp; = —w9p = y and wys = —wsp =y

respectively.

A.1.3 General representations of the Lorentz group

A general n dimensional representation M (A) of the Lorentz group is an n X n matrix,
which is a homomorphism of the Lorentz transformations A in four dimensional

Minkowski spacetime. In other words, M(A) has the following property:
M(AN)M(A') = M(AN). (A.7)

Since this homomorphism maps the identity 1, onto the identity 1,,, the generators
of the Lorentz group in this representation can be obtained by considering the image

of an infinitesimal Lorentz transformation.

A.2 The Dirac Equation and Spin—% Representa-

tion of the Lorentz Group

We shall now describe the spin—% representation of the Lorentz group following [25,
26]. It is first necessary to mention the Dirac equation and the gamma matrices, with
their corresponding Clifford algebra. The generators of the spin—% representation are
then constructed from these gamma matrices and it turns out that the Lorentz algebra
is a direct result of the Clifford algebra. Lastly, the Dirac equation and corresponding

Dirac action are shown to be Lorentz invariant.
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A.2.1 The Dirac equation and Clifford algebra

The Dirac equation was developed by Dirac in 1928 as a relativistic and linear wave
equation, which also contains the second order Klein-Gordon equation. He realized
that one could obtain such a linear equation within a non-commutative framework.

This Dirac equation is given by
(iv*0, —m)¥ =0, (A.8)
where the gamma matrices v* satisfy the Clifford algebra

{7 =2 (A.9)

This last condition is necessary for the Dirac equation to automatically contain the
Klein-Gordon equation. In other words, if W(x) is a solution to the Dirac equation
then it also satisfies ("9, + m?) ¥ = 0.

Now there are many possible representations of this Clifford algebra. The most
common is the lowest dimensional representation in terms of 4 x 4 matrices, which,

in the Dirac basis, is

1, 0 . 0 o 0 1
0= , i , 5 = : A.10

where o' are the usual Pauli matrices and the chirality matrix, defined as +° =
Z',.)/O,yl,y2,.)/3
sional representation of the Clifford Algebra. In other words, if there exist any other

, has been included for convenience. This is the only distinct four dimen-

4 x 4 matrices v* satisfying (A.9), then they are equivalent to the above gamma

matrices by a change of basis.

It is also common, however, to write these matrices in the Weyl or chiral basis, in

which the chirality matrix 7% is diagonal, as follows:

0 12 . 0 O'i —12 0
0_ ’ i ' 7 5 — ) A1l

It is especially convenient to work in this Weyl basis when one is dealing with rela-
tivistic or massless particles (which is the case in N' =4 SYM theory). For massless
particles, it turns out that solutions to the Dirac equation are also eigenstates of
the chirality operator (since the gamma matrices v* anti-commute with the chirality

matrix 7°).
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A.2.2 The spin—% representation of the Lorentz group

Now, if we choose v so as to satisfy the Clifford algebra (A.9), then it turns out that

we automatically obtain a spinor representation of the Lorentz group with generators
l

FRERAE (A.12)

It can easily be shown that S* satisfies the Lorentz algebra (A.3). More explicitly,

SHY

the generators of the spin—% representation of the Lorentz group are given by

Oi__i a0 ij_lijk; o 0
SV = 2<0 —ai>7 S —25 0 o) (A.13)

using the 4 x 4 gamma matrices (A.11) in the Weyl basis. A finite Lorentz trans-

L w9

formation in this spin—% representation is A1 = e72 , where w,,, is, again, an
2

anti-symmetric matrix of coefficients.

Let us now demonstrate, as in [26], that the Dirac equation is Lorentz invariant by
showing that the matrices v* are invariant under a simultaneous Lorentz transfor-
mation of both their spinor and spacetime indices. We first make use of the Clifford
algebra (A.9) to calculate

l

b7 5" = 7 0 "l = 5 A = d e — 0 8) 2 = (T 7

(A.14)

| .

and hence

(14 §09) 19 (1~ Jng ) %9 = i 57, 9] = (1= §ug T, 7"
(A.15)
which is the infinitesimal form of AgW“A% = A" ~¥. In other words, under a Lorentz
transformation of the spinor and SZpacetime indices yv* — A" A 1 VVA; = vy*. The

Dirac equation therefore transforms under a Lorentz transformation as follows:
[iv"0, — m]¥(z) — [iv“ (A_I)VM d, — m} A%\I/(x')
[@'A;w\% (A", 9, - m] U(2')

A

= A, [w (A" 27, — m] U(2')
A
0

: (A.16)

o)
ox'®”

where we define ' = A~z and 0, = The Dirac equation is thus invariant under

Lorentz transformations.
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Finally, we should mention that the Dirac action is given by
SDirac = /d4x Lpirac (), where  Lpirae = ¥(2) [iv*0, — m] ¥(z) (A.17)

is the Dirac Lagrangian and we define ¥ = ¥T~%. We must be careful to make use of
U rather than ¥' because the S” are anti-hermitean and therefore A 1 is not unitary.
One can show, as mentioned in [26], that this action is Lorentz invariant making use
of the identity AT%VO = WOA;, which implies that

U(z) = U(2)y" — Ul(a)ALH® = Ui (2 )7 PAT! = U(2)ATY, where 2’ = A"z,
(A.18)

under the action of a Lorentz transformation A. Thus, noting from (A.16) that
[iv/0, — m] W(x) — Ay [in" 8, —m] U (2'), (A.19)

we obtain Lpirac() — Lpirac(2”). Since the Jacobian of the coordinate transformation
x — 2’ is one (A~! has determinant one), we therefore observe that the Dirac action

is Lorentz invariant.

A.3 Weyl Spinors

We now discuss the reducible nature of the four dimensional spin—% representation of
the Lorentz group based on [25]. It turns out to be possible to write this representa-
tion as the product of two SU(2) groups by splitting the Dirac spinor into two Weyl
spinors. The dotted and undotted notation, which can be used to describe these Weyl
spinors, is also discussed. These ideas are especially important as a background for

the understanding of supersymmetry.

A.3.1 Reducibility and Weyl spinors

The block diagonal form (A.13) of the generators of the four dimensional spin—%
representation of the Lorentz group is a clear indication of reducibility. Furthermore,
since the block diagonal components are simply multiples of the Pauli matrices, which
are the generators of SU(2), this spin-3 representation is equivalent to SU(2) x SU(2).

Hence we can split up any 4-component Dirac spinor as follows:

U — (ﬁ) , (A.20)
X
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with 1, and ¥ two 2-component Weyl spinors!, where o and ¢ take on the values
1 and 2. Each of these Weyl spinors lives in a different SU(2).

A.3.2 Dotted and undotted notation

Let us now briefly discuss the dotted and undotted notation describing these two
Weyl spinors. The idea is simply to distinguish between the two SU(2)’s in the spin-
% representation of the Lorentz group. Weyl spinors with undotted indices live in the
first SU(2), whereas Weyl spinors with dotted indices live in the second SU(2).

The Weyl spinors v, and y¢ were introduced when we rewrote the Dirac spinor ¥
in a reducible form (A.20). We shall also define

Yo = (Ya)” and =Y, (A.21)

and note that we can raise and lower indices using the anti-symmetric matrices

0 -1 - 0 1
Eaf = Egp = (1 0 ) and & =% = (_1 O> . (A.22)

Hence 1, = 450" and ¢ = £*P1)5, and similarly for the dotted coordinates.

Now, at this point, we should notice that, due to the anti-symmetric nature of the
above matrices, the contraction of two spinors ¥y is ambiguous because Y%y, =
€O‘%g><a = —8’6anga = —ngﬁ. Thus we define

X = YV Xa and Y = Yax’. (A.23)

If the components of the spinors are simply commuting complex numbers, then 1y =
—xt and ¥y = —xt. However, if these components are Grassmannian numbers
which anti-commute (for example, when we are working with spinor supercharges or
the coordinates in superspace), then the two effects cancel and we find that ¢y = x9
and Py = X

!Technically, it is not quite accurate to call ¥, and Y& Weyl spinors, although it appears to be

common jargon. A Weyl spinor is an eigenstate of the chirality operator v°, which is diagonal in
the Weyl basis. Therefore, in this basis, we find that left-handed and right-handed Weyl spinors

o 0
take the form (1/()) > and () respectively.
XOt
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We shall now briefly mention the idea of a Majorana spinor, which is a Dirac spinor

U equal to its charge conjugate ¥¢ = —iy%2U7”. Any Majorana spinor takes the

_(Va
Uy = (&d> : (A.24)

where v, is a 2-component Weyl spinor. Therefore any Weyl spinor can be used to

form

construct a Majorana spinor and vice versa.

Let us consider the gamma matrices in the Weyl basis, which can be rewritten as

0 o#
" , A25
gl (U# 0 ) (A.25)

where o# = (13,5) and 6 = (13, —0d). These matrices o and " carry mixed dotted
and undotted indices because they take a spinor in one SU(2) to a spinor in the other
SU(2). More explicitly, o and 6" carry the indices (%), 5 and (5#)%°.

The generators S* of the four dimensional Spin—% representation of the Lorentz group

can also be rewritten as follows:

N
S = (0 X ) , (A.26)

0 ot
in terms of the matrices

1
o == (ota” — o"a") and o = 1 (cto” —a"a"), (A.27)

>~ =

which carry the unmixed indices (o) 7 and (5)* ; respectively.
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Appendix B

SU(3) Spin Chains and the
Algebraic Bethe Ansatz

B.1 SU(3) Spin Chain Formalism

It is our aim, in this section, to review the formal description of a closed SU(3)
spin chain based on discussions in [9, 16, 48, 49, 50, 51]. We shall first construct
the Hilbert space in which such a spin chain lives, together with the relevant Hamil-
tonian. The R-matrix shall then be introduced and shown to satisfy the Yang-Baxter
equation (which results in the integrability of the system). We shall hence define the
monodromy and transfer matrices. The Hamiltonian and momentum operators can
be written in terms of this transfer matrix and thus all three operators can be simul-

taneously diagonalized.

B.1.1 Hilbert space and observables

A spin chain of length J is an ordered collection of J vector spin states. We are
especially interested in the case of an SU(3) spin chain!, which consists of a collection

of 3-component complex vectors (spin-1 states). A natural way in which to rigorously

!The Hamiltonian is invariant under SU(3) transformations of the component spin states.
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describe such a spin chain is in terms of a tensor product

TIRI® ... Ty, with x; e C. (B.1)
For example, the tensor product of two vectors z and y is defined as (z ® y)m2 =
'y where the first index indicates the block row and the second the row within
the block. More explicitly,
2yt
2ly?

xlyB

$2y1
r@y=| 22 |@| * | =] 2%* |. (B.2)
Y 2y’
$3y1

$3y2

23yP
This definition can be generalized in the obvious way to tensor products of an arbi-

trary number of 3-component complex vectors.

Thus an SU(3) spin chain can be represented by a state in the Hilbert space C* ®
C?* ® ... ® C3, which consists of a tensor product of J three dimensional complex
vector spaces. Each of these C? vector spaces represents a site in the spin chain.
For a closed spin chain, the identification of the first site is arbitrary and thus cyclic

permutations of our vectors should result in an equivalent state.

We usually work in a basis made up of tensor products of different numbers, J;, Jo

and Js respectively, and different combinations of the C? basis states

1\ [0\ /0
ol.{1].]o]?}. (B.3)
o/ \o/ \1

The total spin chain length is J = J; + Js + J3. We shall find that the eigenstates
of the spin chain Hamiltonian (the algebraic Bethe ansatz states) have well-defined
J1, Jo and J3. In other words, they consist of combinations of states, each of which

involves a tensor product containing a fixed number of each basis state.

Operators acting on any spin chain state can be represented by a tensor product of

3 x 3 matrices. For example, the tensor product of two matrices M and N is defined
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as (M @ N)"2 = M;;N?Q so that

Jijz J2?

M} M} M N; N} N}
MeoN=| M2 M2 M2 || N2 N2 N2

MP M5 M3 N} N3 N}

M{N{ MiN; M;iN; | MyN{ MyNy, MyN; | M;N{ MzN, M;N;
MIN2 MINZ MINZ| MIN? MINZ MIN2| MIN2 MINZ MIN?
MIN3 MING MIN? | MIN? MINZ MIN3 | MIND MIN? MIN?
MEN{ M{Ny MPNg | MZN{ MZN; MZN; | M{N{ MiN; MFN;
= | Mevz NG MENG | MENE OMENG MINE | MENP MIN AN
MZN?  MENP M2N? | MZN? MZNP MZND | MZNP  M2NP  M2N?
MPN{ MPNy MPNj | MJN{ MZN, M3N; | MJN{ MZN; M3N;
MPN} MPNF MPNG | MJN? MZN3 MZN3 | M§N?  MZN3  M3N;
MEND  MEND MIND | MINP MEND MEND | MNP MNP MIND

(B.4)

Again, for each pair of indices, the first index is a block index and the second is the
index within the block.

A basic set of observables consists of the identity matrix, together with

No=1®..9X®...0 1. (B.5)
1st nth Jth
Here X\’ is the i*" Gell-Mann matrix in the n'® position, with i ¢ {1,...,8} and

ne {1,...,J}. The Gell-Mann matrices are the generators of SU(3). The spin chain
Hamiltonian can be constructed out of these basic observables. For convenience,
however, and following [9], we shall rather make use of the states e"(k) to describe

the system. These are given by

emk) =1®..0e"®...01, (B.6)
1st kth Jth

where (e]})! = 6™ 8,5, with m,n e {1,2,3}, is a 3 x 3 matrix with a 1 in the m* row

and n'" column as its only non-zero component.
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B.1.2 Hamiltonian

The Hamiltonian of our closed SU(3) spin chain is

J
A .
H = 3.2 321 Hi k1 with  Hi g1 = Ligs1 — Prgtr, (B.7)

where J41 = 1 (since our spin chain is closed), and 1y y4+1 and Py 11 are the identity
and permutation matrices respectively?. These can be written in terms of our basic

observables (k) and e"(k + 1) as follows:

3 3
legt1 = Z em(k)en(k+1) and Prpyr = Z er(k)er (k+1). (B.8)
n,m=1 n,m=1

Thus, using the definition (B.6), each part of our spin chain Hamiltonian can be

written as

1 2 2 1 1 2 2 1
Hk;7k+1:€1®62+62®61_62®61_61®62

31, 1o.3 3.1 1o.3
Tes®e te ey —e ey — ez e

+es®estes®Rer —esQes —es ® el (B.9)
which, explicitly, gives
0O 0 0jO0O O O[O O O
0O 1 0}|-1 0 O[O0 O O
0O 0 1/]0 0 Of-1 0 O
0O -1 01 0 O[O0 O O
Hik+r1=] 0 0O 0,0 O O[O0 O O |, (B.10)
o 0 0j0 O 1[0 -1 O
0O 0 -1{0 O O1 0 O
0 0 0 0 -1{0 1 0
0 0 0 0 00 O O

where the action on all but the k™ and (k + 1)™ spaces has been suppressed (since
Wikl _ 5Zk51k+1 - 5Zk+15zk

it is trivial). The components of this matrix are (Hk’k+1)jkjk+1 w05 =05, 05

2The components of these identity and permutation matrices in the &** and (k4 1)*" spaces are

Ghlk41 _ gig Slht1 IRilt1 _ k41 ik .
(Lke1)jy 7,0 = 050657 and (Prgqr ), 5, = 05,7105 | respectively.
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B.1.3 R-matrix and the Yang-Baxter equation

We shall now discuss the R-matriz, which is given by
Ri; (u) = uly; +1P; 5, (B.11)

where u is a complex parameter and 7,7 € 0,1,...,J. This matrix is defined on the
tensor product C? @ C* ® ... ® C3 of J + 1 three dimensional complex vector spaces.
The 0" space is called the auwillary space and is an extra C? vector space that we
have included in our tensor product. The other J vector spaces are called quantum

spaces. The R-matrix acts non-trivially only on the sites ¢ and j.

More explicitly, the action of the R-matrix on the i*" and ;" spaces is

u+i 0 00 0 00 O 0
0 u 0|1 0 010 O 0
0 0 w0 0 0|z O 0
0 i 0] u 0 010 O 0
R;;(\) = 0 0 00 u+4+¢ 0|0 O 0 (B.12)
0 0 00 0 ul0 1 0
0 0 7210 0 0Olu O 0
0 0 00 0 |0 u 0
0 0 00 0 00 0 wu+:
Furthermore, it satisfies the Yang-Bazter equation
Ri,j (U - U) Rz’,k (u) fngC (U) = Rj,k (U) R@k (u) Ri,j (U — U) s (Bl?))
where ¢ # 7 # k. This can be proved as follows:
Rij (u—v) Ry (u) Ry (v)
= [(U — U) 11',]' + Z"Pm'] [uli,k + Z'Puk] [Ulj,k + Z',Pj’k]
= (u—v)wl +wvP;; +i(u—v)vPig + 1 (u—v)uPjr — vP;;Pik
— uPi7ij7k - (u — ’U) ’PZ‘J{P]‘,]C - Z"Pi,j,PZ‘,k'P%k. (B14)

Ry (v) Rig (u) R; j (u—v)
= [v1; 5 + PP [ulig + iPig| [(w—v) 1, ; +iP; ]
=vu(u—v) 14+ (u—v)Pj,+iv(u—v) P+ ivuP;j; — (u—v) PjxPir
— uP;pPij — VPikPi; — 1Pk PixPi;- (B.15)
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Looking at the terms depending on u and v, and also at the constant term, one finds
that the above expressions are identically equal if and only if the following three

equations are satisfied:

'Pi,j'Png + 'P@k’Png = Pj,kpi,k + 'Pj,k'Pi,j, (B.16)
PiiPik — PikPix = PixPij — PixPik, (B.17)

We can easily check these equations are valid by considering their action on an
arbitrary state g ® r; ® ... ® x;, which, using short-hand similar to the notation
of the S? permutation group, we shall call our base state (ijk)3. The permutation
operators act on this state by permuting z;, x; and z; (or ¢, j and k in our short-
hand). Either side of the first equation becomes (kij) + (jki), the right-hand side
and left-hand side of the second equation are both zero, and the last equation results
in the state (kji) on both sides.

B.1.4 Monodromy and transfer matrices

We shall now introduce the L-matriz, which is defined as L;; (u) = R;; (u — %)
We are particularly interested in those L-matrices which act non-trivially on the
auxillary space and one of the quantum spaces. (It is these L-matrices which will be
used to construct the monodromy matrix.) Thus, setting ¢ = 0 and j = n, where

ne {1,...,J}, we can write

| (o) () (Bn)y (w)  (Bn) (u)
Lon(u) = Ron (u=13) = | ()" () (xa)s (@) (xa); () | (B.19)
() (1) (xa)z (1) (xa)s ()

which is a matrix in the auxillary space 0. The components are operators in the

quantum spaces and are given by

L®1,

®
(Bo), () =1®...@3ue.. o1,
() (1) =1®...0+W®...01,
()i (w) =1®...0xiWe...01, (B.20)
15 ntt Jth

3Elements of the permutation group are usually written in terms of 1, 2 and 3, instead of i, j
and k.
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u+% 0 0
aw=| 0 w-%it 0o |, (B.21)
0 u—1%
000 000
Bo(u)=1i 0 0], Bs(u)y=10 0 0], (B.22)
000 i 00
0 i 0 00 3
Y@ =100 0], Y@ =100 0], (B.23)
000 000
u—=% 0 0 000
X5 (u) = ut+i 0 |, XBw=[oo0 0],
0 0 u—1% 0 i 0
000 u—=% 0 0
xsw)y=1[0 o0 il, Xw=| 0 wu-% 0 |.(B24)
000 0 0 u+i

Now let us consider two L-matrices L,, and Lj,, which act on different auxillary
spaces a and b*. Setting i = a, j = b and k = n in the Yang-Baxter equation, and

changing v — u — 5 and v — v — 3, we obtain

Rop(u—v)Lon(u)Lpn(v) = Lppn(v)Lan(u) Rap(u — v). (B.25)

The monodromy matriz is now defined as
TO (U) = L(]’J(U) e LO,Q (U)Lo’l (U), (B26)

and thus, using our previous results for Ly, (u), we find that

A(u)  Ba(u) Bs(u)
To(u) = | C2(w) D2(u) D2(u) (B.27)
C%(u) D3(u) D3(u)
(ag) (w)  (Br)y(w) (Bs)s (w) (a1) (u)  (B1)y (u) (B1);(u)
= | () (W) (xa); () ()3 @) |- | () (@) () (u) (xa); (w)
(1) () (xa)s (W) (xa)s (u) (m)* (W) ()3 () (x1)s (w)

4We extend the space on which they act to a tensor product over both auxillary spaces a and b,

and the quantum spaces i.e. a tensor product of J + 2 C3 vector spaces.
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This monodromy matrix satisfies
Rop(u—0)T(w)Th(v) = Th(v)To(uw) Rep(u — v), (B.28)

where a and b are again two different auxillary spaces. This can be proved using
the Yang-Baxter equation (B.25) for the L-matrix and the fact that two L-matrices

commute if the subscripts are distinct. The proof is as follows:
Rop(u—v)T,(uw)Ty(v)

Rop(u—v)La(w) ... Laz(w)Loi(w)Le(v)... Lo2(v)Lpi(v)

Rap(u—=0)Las(u) Lo (v) - La2(uw) Ly (v) Lo (u )Lb,l(v)
Ly, (0) La,s () Rap(u — v) La,g—1 () Lo,y -1 (v) - . . Loy (u) Ly (v)

= Ly, s (v) La,s(w) Ly, s-1(v) Lag—1(uw) Rap(u — v) Lag—2(u) Ly g—2(v) - . - La () Loy (v)

Q

= Ly j(0) L g(u) ... Lyo(v)La2(w)Lp1(v) Lo (u)Rep(u —v)
= Ly j(v) ... Lyo(v)Lp1(v)Laj(w) ... Loo(t)La1(u)Rep(u —v)
= Ty(v)To(u) Ry p(u — v). (B.29)

The transfer matriz is finally defined by taking the trace of the monodromy matrix

over the auxillary space as follows:
t(u) = Trg [To(u)] = A(u) + Di(u), (B.30)

to obtain an operator, which acts only on the quantum spaces.

B.1.5 Momentum and Hamiltonian operators in terms of the

transfer matrix

The momentum operator can be written in terms of the transfer matrix as
P==log i t(3)], (B31)
which shall be checked as follows:
o)
= Tro [Po.s- .. Po2Pol

= Trg [P12P2s .- Ps-1.Po
=Pi12Pas... Pi_1, (B.32)

124



since Py y...Po2Po1r = Pi2Pas... Psj_1.sPso and Tro(Pys) = 1. The first result
can be verified simply by looking at the action of either side of the expression on an
arbitrary state o ® z1 ® ... ® x s, which in our short-hand we shall call (0,1,...,J—
1,J). Both sides of the equation change this state into (1,2, ..., .J,0). The last result
can be trivially checked by writing the action of the permutation operator on the 0"

and J™ spaces in matrix form.

We see that e’ = P1oPas . . .Py_1.7 is a translation by one site along the (closed)

spin chain. Thus P generates translations and is, indeed, the momentum operator.

The Hamiltonian operator can also be written in terms of the transfer matrix as

A

d
H="|J7—i %1
= [J i o log t(u)

] : (B.33)

_i
u=3

which is proved as follows:

First let us calculate

[t ()] = {7 Tro[Po... PosPor]}
=i {Tro [P12Pas .. -,PJ—l,J,PJ,O}}il
=7 {P172P273 .. .Pj_l’J}_l

=i’ 'PJ,J,1 .. .7)3’27D271, (B34)
and also
_dt(u) o d ; ) i .
1 aw | . =1 T [Tro { [(u — 5) o7 + ZPOJ} o [(u — 5) loa + 1730,1] }] .
2 2

—

J
=i Tro {[(w—§) Los +iPos] - [(w—3) Lo+ Po]
n=1

[ =35) Loa +iPoa] },._,

J
=7 Z Tro [POJ .. .Po,n .. .7307273071]
n=1

J-1
=i [PasPsa... Proig] +i7 > [PraPas. .. Pacimgr - Pror]
n=2
+i7 [P1oPas. .. Pray-1]. (B.35)
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Hence we obtain

d
i ™ log t(u)

= [PasPsa-..Pr_1.4][Pry-1...P32Pai]
J-1
+ Z (P12Pos ... Pooins1---Py_1,g] [Pry—1...Ps2Pai]

n=2

+ [P12Pos ... Proay-1] [Prj-1-..P32Pai]

J-1 J
= P2+ P+ Z Prn+1 = an,n+la (B.36)
n=2 n=1

where we define J + 1 = 1 (since our spin chain is closed). In moving from line
2 to line 3, we check the first and last terms explicitly (by considering their action
on an arbitrary state), and then notice that Pp,—11+1Pnt1.0Prn-1 = Pant1 for n =

2,...,J — 1 and the other terms commute around this expression and cancel.

Therefore (B.33) implies that

A d LS
H = @ {J — ;Pn,n—kl} = @ {Z [1n,n+1 - Pn,n—i—l]} ’ (B37)

n=1

which agrees with our original expression (B.7) for the spin chain Hamiltonian.

B.2 Algebraic Bethe ansatz

In this section, we construct states which diagonalize the transfer matrix (and thus
also the Hamiltonian and momentum operators) using the so-called algebraic Bethe
ansatz. These states are dependent, as shall be seen, on two sets of parameters
{uig,...,usm} and {usq,...,ug}, where M = Jo + J3 and L = Js. It is demon-
strated that these Bethe parameters must satisfy the nested Bethe ansatz equations.
Furthermore, we construct the momentum and energy eigenvalues, and also show
that there is a cyclicity condition, which is due to the fact that a translation by one
site along our closed spin chain must be equivalent to the identity. These ideas are
described in the excellent reviews [50, 51] for SU(2) spin chains. We have extended
these concepts to SU(3) spin chains, with the aid of the more terse results in [9, 49].
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B.2.1 Fundamental commutation relations

The fundamental commutation relations are a set of constraints satisfied by the
operator components A(u), B;(u), C*(u) and D(u) of the monodromy matrix (B.27),
and are an indirect result of the Yang-Baxter equation. Let us now briefly review

the derivation of these relations:

Our monodromy matrix (B.27) must satisfy (B.28). The R-matrix R, (u — v) can
be written out in matrix form over the spaces a and b, together with the expressions
To(w)Ty(v) and Ty(v)T,(u). Plugging these matrices into (B.28) yields a number
of constraints on A(u), Bj(u), C*(u) and D’(u), among which are the fundamental
commutation relations

A(w)Bi, (v) = (u) Bi, () Au) + ( ! )Bl-l (W) A(), (B.38)

u—v u—v

B, (W B.(v) :{ (=) By, (0) By, (u) + (5=553) Biy(w) Biy (v) if iy # i (B.39)

BZ'2 (U)Bil (U) if Z'1 = i?a

Biy(v) D} (u) + (5) [Bi (v) Df () — By (w) D) (v)] - if iy # i

(1=vt) B, (U)Dfll (u) + (=) B,é(u)Dfl1 (v) if i1 =19,

Dj (u)Biy (v) = {
u—v u—v <£3J10>

where our indices may take on the possible values 2 and 3.

We shall now define the matrix R (u), which acts on a tensor product of two

J1J2
complex two dimensional C? vector spaces, as follows:
o ) i if 4, =1
Rypy=q oo o n = (B.41)
U (5j15j2 + 1 5j15j; if 11 # 1o,
or, alternatively, in matrix form
u+: 01]0 0
- 0 (T 0
R(u) = . B.42
() 0 T u 0 ( )
0 010 wu+:

This can be written as I%(u) = ul + 4P and is thus, by analogy, the R-matrix of an

SU(2) spin chain (confined to the two spaces on which it acts non-trivially).
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Hence the fundamental commutation relations can be written as

A(u)By, (v) = (%) By, (v)A(u) + (u ! @) By, (u)A(v), (B.43)
Bu(0Bu0) = (7 ) R (1= 0) B(0) B ), (B.44)

—1

D B0 = (2 ) il 0= 0) B0 () + (=) Bu@l o),

(B.45)

u—v

Wlth il, ig,jl,jg, k’l € {27 3}

B.2.2 Algebraic Bethe ansatz and the eigenvalues of the

transfer matrix

Let us first define the ground state of our SU(3) spin chain. This consists of a chain

of J spin-up vectors as follows:

(B.46)

&

+

I
o O =

&

X
o O =

This is an eigenstate of the spin chain Hamiltonian (B.7) with eigenvalue zero. In
fact, this is true for any combination of .J identical states, but we have specifically

chosen this ground state w, from which to construct our algebraic Bethe ansatz.

We would now like to establish the action of the operator components of the mon-

odromy matrix on this ground state. Thus let us write

A(u)  By(u) Bi(u)
Ty (w)wy = | CY(u) D3(u) D3(u) | wy (B.47)
C*(u) D3(u) Di(u)
(as) (W) (Br)y () (By)s (u) (1) () (Br)y () (Br)g (u
= [ ()P ) ()3 w) ()@ || () () (s () () (u) | wy
(v)* () ()3 (u) (xa)3 (w) y)* () (xa)y () (xa)j (u

We can see from the definition (B.20) that () (u), (8a); (w), (v2)" (u) and (x,)" (u)

J
act non-trivially only on the n'* quantum space and we shall thus look at the action
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of a(u), Bi(u), v*(u) and x*(u), shown explicitly in (B.21)-(B.24), on the n'" site of
the ground state:

1 1

a(u) 0)(u+§) 0f, (B.48)
0 0
1 0 1 0

Go(w) |0 =i|1], Bsw)|0]=i]|0], (B.49)
0 0 0 1
1

7(u) 0] =0 (B.50)
0
1 1

(@) | 0| = (u=73)3 (B.51)

=}

Multiplying out the matrices in equation (B.47) and applying the result to the ground
state, we therefore find that

Aw)wy = (u+ 1) wy, (B.52)
C'(u)wy =0, (B.53)
D; (W) wy = (u— %)J5; Wy, (B.54)

and B; (u) act by lowering the spin of one site in our ground state. In other words,

By (u)wy and Bs (u)w, are combinations of states involving the tensor product of

0 1 0 1
one | 1| vectorand J—1 | 0 | vectors, and one | 0 | vector and J—1 | 0 | vectors
0 0 1 0
respectively.

These results now lead us to introduce the first part of the algebraic Bethe ansatz for

the eigenstates of the transfer matrix as follows:

) (Ul,la .. 7u1,M) = fil """ Z'MBZ'I (um) Ce BiM (ul,M) Wy, (B55)

where fiM are complex coefficients and {uy1,...,u1p} is the first set of Bethe
parameters. Here we have used our operators B; (u) to lower the spin of M sites in
the ground state and thus M = J; + Js.
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Now let us apply each part of the transfer matrix ¢(u) = A(u)+ D} (u) to this algebraic
Bethe ansatz state:

Firstly,
A (U) (0] <U1,17 . ,ULM) = fil """ iMA (U) Bi1 (ul,l) . BiM (UI,M) W, (B56)
and hence, using the fundamental commutation relation (B.43), we find that

A(u) @(um, Ce ,ULM)

o fu—ug—1
= f“ """ tm (A) Bi1 (ul,l) A <U) BiQ (U1’2> Ce BiM (ULM) Wy

U — Uil

) By, (u) A(u1,1) Biy (u12) - - - Biy (ua,nr) wa

(B.57)

In this way, we can continue to move A through the B; operators until it is the
right-most operator and we can use the expression (B.52) to determine its action on

the ground state w,. This gives the following result

A(U) q) (U1,1, Ce 7u1,M)

M .
:fil ----- M H U—uyk —1
U — Uk

iJ
(u+3)" Biy (waa) ... Biy (wiar) we

k=1
M Uu U 1 1
150y 17 Uk T i/
+f 1o [ ( 116111_1;1'% )] <u_u11) (U171+§) B’il (u) BZ'2 (ul,g)...BiM (’LLLM)CU_‘_
k=2 ) ) )
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M )
- [H (u1,2 — Uik —2)] (U1,2 n %)J

b3 Ur2 — Uk
uU—1uyl — ) 1
x { ( fT— ) (u - Uu) B, (u11) B, (u) By (w13) - - - Biy, (wi,nr) wy
l 1
B;, (u) B; B, ...B;

The other terms involve the operators A(ui3), A(u14), ..., A(ug ) acting on the

ground state w,.

Secondly,
Df (U) d (ul,h e 7ul,M) = fil """ ZMD% ('U,) Bi1 (U1,1> ce BiM (UI,M> Wy, (B59)
and hence, using the fundamental commutation relation (B.45), it follows that

Dll ('Ll,) 0] (ul,h e 7u1,M)

o 1 .
= froo ( ) R (u—uyy)

U— Uy
X Bk1 (ul,l) Dél (U) Big (ULQ) . BiM (ul,M) W

+ frtu < > By (u) D}, (u1,1) By, (u12) ... Biy, (ur,) wy

) . 1 1 oy -
= e (Y () R ) B (0 )

U— Uy U— U2
X Bk1 (ulyl) Bkg (ULQ) DéQ <U) Bis (ulvg) . BZM (ULM) Wy

01y —1 1 [J1k2 .
- <u —uy1) \uig —uip/) " (14 = 2)
X Bl (U) Bkz (ULZ) Dgl (ul,l) Bi3 (ul,g) Ce BiM (ULM) Wy

o 1 i .
+ f@l ..... i ( > < ¢ ) R{z‘llkl (U - ul,l)
uU—1uyl U— U2
X By, (u11) By, (u) D}, (u12) Bi, (u13) - .. Biy, (unr) wy

. . —1 —1
+ fll 77777 /LM ( > < )
U — Uyl Uyl — U2

X Bl (’LL) B’L'1 (ul,l) Di2 (’U,Lg) Big (ULg) e BiM (ul,M) Wy, (B60)

131



and so on. Again we move the D! operator through all the B; operators in our
algebraic Bethe ansatz state and then use equation (B.54) to determine how it acts

on the ground state w,. Thus we find that

D; (u) (I) (ul,h e ,U17M>

il 1
= frtu [H <—u . ) u— %)J
k=1 1,]6
le‘M ( _ ) Rij’Q ( _ )lek’l ( . )
iy W T UL ) e LU (U — U g) fyy o (U — U

X Bk1 (uljl) Bk2 (ULQ) e BkM (ul,M) Wy

I e
Ull_U1kz)] (U1’1 2> (u—ml)

U1 — U M) R;Zf; (U1 1 — U 3) Rifzf (U1 1 — U 2)

k=2

-
(

DLk
X R]M 1M

x By (u) By, (u1,2) Brs (u1,3) - - - Bry, (u1,0r) wy

e M () o0

Upo — U
s \U1,2 1k

A6 )

X Ré’ff vin (U1,2 - UI,M) R;izf (U1 2 — U 4) Riszf (Ul 2 — U 3) le ! (U - Ul,l)

X Bkl (ul,l) le (u) Bk3 (U,Lg) Bk4 (u174) Ce BkM Ce (ul’M) Wy

—1 —1
() )
U— Uy Uyl — U2

leM (U1,2 - Ul,M) R]4k4 (Ul 2 — U 4) RJB ’ (Ul 2 — U 3)

JM—1%M 7314 1213
X By (u) Bi, (u11) By (u1,3) Bry (u1,4) - -« Bry, (un,0r) wi
+ ... (B.61)
The first terms in the expressions for A(u)® (uy 1, ..., u1 ) and D} (u)® (uyq, ..., usar)

will be used to derive the eigenvalues of the transfer matrix t(u) = A(u) + D!(u).
The requirement that the sum of all the other terms should cancel will give us the
first nested Bethe ansatz equation. This is really a collection of M equations, which
will be discussed in detail later and will ensure that each two corresponding ‘extra

terms’ sum to zero.
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For now, let us assume that only the first terms are relevant and try to determine
the eigenvalues A (u) of the transfer matrix. We shall also redefine u — u — % at this

point for convenience. Thus we obtain

t (U) @(ULl, e 7U17M) = [A(U) + Df(u)} d (ul,la Ce 7UI,M)

M
i U—Ukg— 5
— f“’""ZM [H —3 UJ Bi1 (u171) BiQ (U,Lg) o BiM (ul,M) w4
U—Urk — 5
k=1 ’ 2
il 1
+ fil,..,,iM H i (u B Z)J
et YT Wk T
X R?Eilizw (u — UM — %) e éﬁfj (u —U12 — %) R{z'l1k1 (u — Uil — %)
X Blﬂ (uu) BkQ (Ul,g) Ce BkM (ULM) W (B62)

We can see immediately that for the right-hand side of this equation to be propor-

tional to ® (uy 1, ..., us ), we must require that

RéZA{1i1v[ (U — UM T %) e éﬁf; (U e %) R{izkl (u S %)

X fr ™ By (1) B, (u12) - - - By (wn,n) wiy

= ]\ (U) fil""’iMBil (u1,1> Big (ULQ) C BiM (UI,M) Wy, (BGS)

where A (u) is some complex function.

The trick is to think of f®- (in the basis By, (u1.1) By, (u12) ... By, (u1.0) wy) as
an SU(2) spin chain state of length M on the tensor product C?* ® C* ® ... @ C?
of M two dimensional complex vector spaces. The k' site of the SU(2) spin chain
is represented by the index 7, so that ¢, = 2 and 3 represent spin-up and spin-
down states. The number of spin-up and spin-down states in the SU(2) spin chain

correspond to J, and J3 respectively. Our problem now becomes to diagonalize

E('LL) = TI'O |:R07M (U —UiM — %) R Royg (U — U2 — %) RO,l (U — U1 — %):| s (B64)

where Ry, (u) is the R-matrix on C*> ® C? ® ... ® C? acting non-trivially on the
auxillary space 0 and the quantum space n. We have thus reduced our problem by
one dimension and must deal with almost the same equation now on a tensor product

of C? complex vector spaces.

As in the SU(3) case, we find that (u) is the trace of the SU(2) monodromy matrix,
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which can be written as a matrix over the auxillary space as follows:

T(u) = (fl(“) ig;) (B.65)

_ (dM(U - U1,M) BM(U - U1,M)> o (541(10 - Ul,l) Bl(u - U1,1))

(u —urg) Xi(uw—uiy)

where
ap(u) =1®..0au) ®...01,
Ga(u) =1® ... 00w .. .01,
) =1®...0%(u)®...®1,
Xn(u)=1®...0x(u)®...®1, (B.66)
1 nh M™

and we define

N (I o fu=i 0
7(@—(0 0): X(U)—< 0 u+%>- (B.67)

Now, as before, we shall define the ground state of our SU(2) spin chain to consist

entirely of spin-up states as follows:

- 1 1
e ()ee () .

ﬁ (u—u1k+ ) WOy, (B.69)

1

()5 15, (8.70)
L= H (u — Uy — %) @y, (B.71)

and B (u) @, gives a combination of states with one spin-down vector.

Thus we obtain

Ez

Au

Qz

&

We shall again use the B operator to construct the second part of the algebraic Bethe

ansatz for the eigenstates f%™ of our SU(2) transfer matrix as follows:

fil """ im = (i (U2,1, e ,IU/Q’L) = B (uQ,l) e B (U'2,L) (,<~J+, (B72)
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where {ug1,u29,...,us} is the second set of Bethe parameters. Here we have

lowered the spin of L sites in our SU(2) spin chain so that L = Js.

The fundamental commutation relations in this SU(2) case are

A(@B(v):(“_—m)é(v)ﬁ(uw( i >B(u)jx(v), (B.73)

B(w) B(v) =B B[, (B.74)

uU—v+1

)B@)D(u)+< ! )B@)D(v). (B.75)

u—v

D(u)B(U):(

u—v
The derivation of the above relations for SU(2) spin chains is identical to the deriva-
tion in the SU(3) case. We have a similar R-matrix, which satisfies an identical

Yang-Baxter equation and so on.

The action of each part of the SU(2) transfer matrix £(u) = A(u)+ D(u) on the state

®(ugq, ..., us,) shall now be determined:

We first find that

Aw)® (ugy, ... usp) = Au)B(ugy) ... B(ugp) @y, (B.76)

and thus, using the fundamental commutation relation (B.73),

A(u) Ci) (Ug’l, e 7U2,L)

_ (“ U1~ Z) (“ U2 = Z) B (unt) B (u2) A (u) B (uns) .. B () &s

i ( ! ) (“2’1 — Y22 7 Z) B (u) B (uz) A (u21) B (us3) ... B (up ) @+

U1 — U2

* ( : ) (ui;;i@uz:l) B (u) B (uzz) A (ug,1) B (ug3) ... B (uzp) @y
(B.77)
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Continuing in this way and finally using (B.69), we obtain

A(U)&) (U2,1, C.e 7u2,L)

. L . M
() i) s

=1

X B(ugy)...B(ug;)...B(ugy) B (u) @y (B.78)

We can similarly determine, using the fundamental commutation relation (B.75) and

(B.71) for the action of the operator D(u) on the ground state w,, that

D (u) &D(um, Ce 7u2,L)

M i ~
[H (u — Uig — %) P (ug1,...,usL)

k=1 =1 |
{ Lo ru Usr + i 11 Mm
— Ugj — Ugp T 1 o
' Z; <“ - U2,j) H ( Ugj — U ) Llj[ (UQJ Uy 2)]
” k%] | Li=1
x B (ug,r) ... B (U2,j) o B(u21)B (u) @y (B.79)

Again it is only the first terms in equations (B.78) and (B.79) that are relevant when

calculating the eigenvalue of our SU(2) transfer matrix, which is given by

L . r M
~ U— Upp — 1 .
A = | | R L — i
(®) ( U — Uy )] (u=i+3)
k=1 ’ Li=1
L U— Ugp + 1 1[4
— Uy, .
+ _— — — ). B.
H( = ) [ (=, 2)] (B.80)
k=1 ’ 1 Li=1
We shall ensure that the other terms not proportional to P (ugq,...,us ) cancel out

by enforcing the second nested Bethe ansatz equation (which is actually a collection

of L equations - one for each unwanted pair of terms in our sum).

Now, substituting this expression into (B.62), we find that the eigenvalues of the
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SU(3) transfer matrix are
M U — Uy — 3
A(u) = —2) u’ B.81
=TT (A= ] (B51)

[t o s

Lk=1 k=1 1=1
L U— Ug g + 2 M
— Ug
+ U—Uy — 5 )
[T ("5 [H( ' >]}
k=1 =1
in terms of the two sets of Bethe parameters {u1,...,un} and {uyo, ..., u1 1},

which define our algebraic Bethe ansatz state.

B.2.3 Energy and momentum eigenvalues and the cyclicity

condition

We find, using (B.33) for the Hamiltonian in terms of the transfer matrix and taking

into account our previous redefinition of u, that the energy eigenvalues are
A d
E=— [J—i— log A(u)

82 du u:i:|
A d Mou— g —
= — —7— 1 . r 2 J
872 [J " du Og{H<u—u1k—%)u B
)\ 2
= 52 J+Jlogu—z— Zlog u—ulk——) log(u—ulk——)

k=1
M
A 1 1
-0y __ | B.82
sr2 ' {Ul,lﬂr% Z} (B-82)

k=1 Uk = 3

which finally gives

E:ii L (B.83)

The energy eigenvalues corresponding to our algebraic Bethe ansatz states are thus
directly dependent only on the first set of Bethe parameters. Indirectly, however, the

two sets of Bethe parameters are interdependent, as shall be seen, due to the nested

Bethe ansatz equations.
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Lastly, we should mention that there exists also a cyclicity condition. This can be
explained by considering the eigenvalues of the momentum operator (B.31), which

are given by

Ulk_‘

p= % log [i~7 A Z lo (“1“ > (B.84)

We must insist that there should be no change to any spin chain state when we
translate by one site along our closed spin chain. Therefore we shall require that
e'” = 1, which implies the cyclicity condition
M .
Uy + =
H( Lk Ty 3) _q (B.85)
k=1 \NULE T 3

on our first set of Bethe parameters {uy 1, ..., u1 0}

B.2.4 Nested Bethe ansatz equations

The two Bethe ansatz equations shall now be derived by requiring that the sum of the
‘extra terms’ in (B.58) and (B.61), and (B.78) and (B.79), which are not proportional

to @ (uyq,...,us ) and P (ugq, ..., usr) respectively, cancel out.

The first nested Bethe ansatz equation comes from looking at (B.58) and (B.61). Let
us consider the j = 1 equation, which corresponds to our first pair of ‘extra terms’.

For these first terms to cancel out, we must require that

M U U 7 7

1,1 — Ul g — i\
||< 1 —u ) (u—u _g)(“171+§>
o 1,1 1,k 1,1~ 3

X f“""7ZMB7;1 (U — 5) BZ'2 (U,ljg) Ce BiM (ul,M)

M .
H 1 N —1
Pl 1,1 1,k U— Uyl B

X R;’Z],M ving (w11 — uinr) - - RJ;;’ (ur1 — u12) Rffz; (u11 — u12)

+

X frotM B (u — 5) By, (u12) Biy (w13) - - - Bry, (wi,nr) wy =0, (B.86)

where we have taken into account our redefinition of u. To calculate the last term in

this expression we need to determine

RLM (w11 —urnr) - Rl,:} (w11 — u13) R1,2 (ur1 — w1 2) ¢ (u2,1s. . u2L) i
u=u1,1+z5

(B.87)
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With this in mind, let us consider us consider the SU(2) transfer matrix evaluated

at u=uy; + % as follows:

(—Z) g (Ul,l + %) = —1 Tl“o {RO’M (ul,l — uLM) e RO,Q (ul,l — U1,2> ROJ (0)}
=Ty {[(Um - U1,M) 10,M + ’ipo,M] . [(Uu - U1,2) 10,2 + iPo,z] 770,1}

= Try {(Ul,l - Ul,M) . (Ul,l - U1,2) 7)0,1

+ Z (U1,1 —uinm) - (U —urg) - (Ui — ur2) PoxPos + - 3

= (U1,1 - Ul,M) ce (U1,1 - Ul,z)

+ Z (um — uLM) e (Ul,l — uLk) Ce (Ul,l — U/LQ) Pl,k —+ ...
= (w11 —urnm) Lo +iPra] - [(urn —urs) Lig +iPrs] (w1 — ure) 1o + P o)

= Rl,M (Ul,l - Ul,M) e R1,3 (U1,1 - U1,3) é1,2 (Ul,l - U1,2) . (B-88>
Thus we see that the expression (B.87) can be written as

Rl,M (U1,1 - Ul,M) Rl )3 (Ul 1— U1 3) R (Ul 1 — Uy 2) ‘i) (U2,17 e 7U2,L) ;
U:Ul,1+§

= {0 T (s + ) B (w21, )}

u=u1,1+35

= (—Z) /N\ (um —+ %) (f (u271, Ce 7u2,L)

, (B.89)

u=u1,1+5

so that both sides of (B.86) are proportional to the SU(2) algebraic Bethe ansatz
state @ (ug1,...,us ) evaluated at u = wuy 1 + % and thus we need only equate the
coefficients of this state. Therefore, substituting the eigenvalues of the SU(2) transfer

matrix (B.80) into our constraint (B.86), we obtain

[H (ur) — urp — 2)] (U1,1 + %)J = (U1,1 - %)J (—i) A (U1,1 + %)

L i
u J H<U11_U2Z_ )
= 11—-
Uy — Uy + 5

=1

(B.90)

[H (u171 — U1k + Z)

k=2

139



Hence the first Bethe ansatz equation for j =1 is

N M . L -
Uyl -+ L U1 — Uk +1 Uyl — U2y — 5
() [ff (mmmes Y] [ (et 2)]
Uy — 3 oo \ULL — Ul — 0 g \Ur1 —ugpt g
I shall not prove this equation for the other 7 = 2, ..., M values, since the expressions

get more and more complicated. However, a similar equation can be obtained in these

cases. The first nested Bethe ansatz equation, for every j e {1,..., M}, is thus given

by
(Ul,g ) H (ULJ Uk + Z) H <U1,j — Uz — %)
Uyj — o \ULj — Ui — 1 oy \u1y — g+ 5
k#j

The second nested Bethe ansatz equation shall now be derived from (B.78) and (B.79).

(B.92)

For the ‘extra terms’ to be zero, we must require that, for all j € {1,..., L},
1 Ll U
2,5 — W2k —
— - U5 — U] +
() () s
K#j

x B(us1) ... Busy) ... Blusy) B (u) oy

)

. L ' "
! U j — U + z) i
\u T, Y U — U1 — &
<u B u271> g < Ug,j — Uk Ll} (12 = s 2)]
=%
X B (uza).. B(uzg)... B (uz1) B (u) &y =0, (B.93)

We can now equate the coefficients of the states in the above set of equations to zero.

This leads to the second nested Bethe ansatz equation, which is given by

1 (u — e+ ) [ﬁ (u Tty

oy \U2, — U2 — 1 =1 \U1p — Uz
k#j

(B.94)

SIS
N———
| I—
I
—_

for every j e {1,...,L}.

These nested Bethe ansatz equations, together with the cyclicity condition, are the
constraints which must be satisfied by the two sets of Bethe parameters for our
algebraic Bethe ansatz state to be an eigenstate of the closed SU(3) spin chain

Hamiltonian.
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Appendix C

Details of Calculations for

Semiclassical Lax Pairs

C.1 Derivation of the Undeformed Equations of
Motion from the Landau-Lifshitz Lax Pair

C.1.1 Derivation of the Landau-Lifshitz equation

We shall now derive the Landau-Lifshitz equation from the relevant Lax pair rep-
resentation based on discussions in [9, 20]. The Landau-Lifshitz Lax pair is given

by

D, = 04 — Aq, (C.1)

where
Ay = é[N,alN]x—i—%NxQ, (C.2)
Ay =iNz. (C.3)

The zero curvature condition, which must now be satisfied, is
80A1 - 81A0 - [Ao, Al] = O (04)
Note also that N satisfies the constraints Tr(N) = 0 and N? = N + 2, due to the

- 3
definition N;; = 3U;U; — 6;;, where U; = r;¢'%, and the constraint > r? = 1.
i=1
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Now this equation (C.4) can be written in terms of N as follows:
, 1 i, i ,
z@ON:U—E(?l[N,@lN]x—Eﬁle —6[[N,81N],N]$ :0, (05)

and thus, equating different orders in z,

7,80N - %81 [N, 81]\7] 5 (C6)
SN =~ [N, 0N], N]. (©.7)

Equation (C.7) follows from the constraint N* = N + 2, whereas (C.6) is equivalent

to the Landau-Lifshitz equation of motion

0N = é [N,0;N] . (C.8)

C.1.2 Derivation of the undeformed equations of motion from

the Landau-Lifshitz equation

Let us now express this Landau-Lifshitz equation in terms of the undeformed radial

and angular coordinates r; and ¢; respectively. The definition of N in component

form is o
Nij = 37’1'7’]'61'(%7@) - (Sz] (Cg)
Thus we obtain
aoNZ‘j = 3 |:(T‘l7”] + ’I"ﬂ'"j) + 'i?"ﬂ"j (Qgg — ng):| ei((;jid:)i), (ClO)
alNij =3 [(ré?‘j + 7”1'7’;) + Z"r'ﬂ"j (:; — 52):| €i<(;j_(;i)7 (Cll)

and hence also

OIN;; = Sei((;j_gi) [(rg'rj + 211’ 4 i ) + 2i (rir) (
vinr; (3 g;/) ey (3-3)] (o

Therefore, using the explicit expression

[N, 9iNT,. ZNzka Ny, — Za N Ny, (C.13)

k=1 k=1
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it follows that

[N, 07 N] = Qei@j_éi) { [rar? — 1]

+2i|r; 23: ry. (1) (gb; ~;€> - 23: T (Ti7%) (Qf:)k - g;)]
k=1 k=1

+ 1| 23:7“2 (qz;’ — Q:yk'> — Tl 23:7“1% (glkl - gz:%')]
k=1 k=1

e E-a) (- ay] ) e
k=1 k=1

We can now substitute the definition of N, together with (C.10) and (C.14), into the
Landau-Lifshitz equation (C.8) to obtain

1 (T“ﬂ“j + T’Z‘T.’j> — TiTj (gzj - Q;)

k=1 k=1
i Yo (5 ) e 30t (- )
k=1 k=1
| G- a) -y (i) | 13
k=1 k=1

Therefore, separating the real and imaginary parts of the above expression,
3 = ~\2 3 = =
Re: rjri — rlr = 211} (qﬁj ) + 1Ty ZT <<Z5; - %) — T4l Zri@; — )%
k=1 k=1
(C.16)
3

Im: 7y +rify =15 Zrk (rir) (gb gbk) + 7 23:7% (rjre)’ (CZE; - &2)

—1
+ % TiT; Zrﬁ <ng' — 5;;) — i1 Zrk ( ) (C.17)
k=1

which can be compared with equations (5.88) and (5.89), and seen to be equivalent

to the undeformed equations of motion.
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C.2 Compatibility Condition

The compatibility condition for the transformation (5.105) and (5.106) relating the

undeformed and v;-deformed angular coordinates ¢; and ¢; respectively is

3 3
2 Z gilmﬁlrm'f’m = a1 { Z 5ilm7’i2r12f7m <¢; - Q% - 5ilm’7m) (018)

Il,m=1 I,m=1

3

1 o _

3 Z EimT T (T + Fm) (9] — &)y — &‘lm%‘)} ;
I,m=1

whereas the 7;-deformed equation of motion (5.102) gives

3
2 E Eilmﬁlrmfm

I,m=1

3
— 2 2
281{ g Eilm T T

k,l,m=1

3 3

n,s=1 n,s=1

First we shall evaluate

3 3
_ _ 1 _ _
{1} = { Z EitmT i1 m (0 — &) — EitmVm) — 3 Z EitmT T (T + T ) (0] = Dy — Eitm Vi)

I,m=1 Il,m=1

(C.20)

for i = 1,2 and 3 as follows:

{1}, = rir3ys (¢ — ¢ — 73) + rir3ye (¢ — ¢y — F2) — r3r5 (o + Fs)(dh — &5 — 7).,

(C.21)
{1}, = rir37s (¢} — &b — 73) 4+ r3rim (¢ — & — 1) — rirs (n + 73) (0 — & — 72),
(C.22)
{1}, = ririye (¢ — &) — 32) + r3r3m (¢ — ¢ — F1) — rirs (T + Y2) (¢) — ¢ — 73) -
(C.23)

We shall now determine

3
{2} E{ Z ailmﬁlrﬁlr,%

k,l,m=1

3 3
<¢;n + Z gmnsﬁn",g) - <¢;§ + Z gknsﬁnr?,)] } 3

n,s=1 n,s=1
(C.24)
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for i = 1,2 and 3 as follows:

{2},2; = %213 (¢§, + Ny — ’727“%) — Y573 (¢12 + J5ri — ’717’:3) — Yor} (7’%¢/1 + 304 + 7“32>¢f3)
+ a1 (11 + righ + r3dh)

=013 [(r] + 75 +713) & + 3y — Fart] — Ysr3 [(r] + 5 4+ 13) & + Y51t — ar3]

— 775 (101 + 130 + r5dh) + Yars (11 + r3dh + ridh)

2 2~ / / — 2 2 / / — 2.2 (= — / !/ —

=TiTry73 (le - ¢2 - 73) + rir37v2 (¢3 - ¢1 - 72) — Ty (72 + ’73)<¢2 - ¢3 - ”Yl) 5

(C.25)

{2}, = 317 (&) + 72rs — 73r3) — v (5 + T1rs — Fori) — Yari (r30) + r3¢h + ridh)

+ Y175 (ridh 4+ r3dh + r3¢h)

=735 [(r} + 73 +13) &) +Yors — s3] — ars [(r + 15 4 13) ¢ + iry — Yori]

= Yo (r10h 15+ ridy) + ury (ridh + radh + r3dh)

= rir37s (@) — ¢ — 73) + 7”57”3%71 (05 — 3 —71) — 7’%7’3% (71 + 73) (5 — &) — F2)
(C.26)

{2},_5 =713 (915,2 + a1} — 717"3) — Yor? (¢/1 + Ao — 737“5) — rs (Tfﬁbﬁ + r30h + T§¢§)
+ 3217 (17 + righ + ridh)
= qury [(r7 4+ 75 4+ 73) ¢ + Yari — rs] — Fer? [(r] + 73 +73) @) + Yars — Fsr3]
— g (161 + radh + r3ey) + Yort (116 +rodh + ridh)
2,2 / / — 22— / / — 2.2 (= — ! / —
=Tr372 (¢3 — ¢ — 72) +1rarsm (¢2 — @3 — 71) — Ty (’71 + 72) (Cbl — ¢y — '73) )
(C.27)

3
using the constraint Y 72 = 1. We have thus show that {1} = {2} and therefore the
=1

compatibility condition follows from the v;-deformed equations of motion.
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C.3 Derivation of the ~;-deformed Equations of

Motion from the v,-deformed Lax Pair

The gauged ~;-deformed Lax pair is given by

D) =0, — R, (C.28)
where
3 2 3 3
(RY),; = 3 (rir;. —rirj) @+ 5Tl (gb; + Z 6ilm’)/ﬂ’31> + ((b; + Z 5jlm7ﬂ“fn)] x
l,m=1 Il,m=1
3
— Jiryr; Zrk (qﬁk + Z Eklm YT ) 0} (3rir; — 5ij)i€2
I,m=1
+i {ez'z- + Z EimTi T m (9 — B = Eitmm)
I,m=1
. Z Ezlmrl 7[ + ")/m) (¢l ¢ Ezlmfh)} 51']'7 (C29)
lm 1
3
(R'lyl)” =71 (37"1‘7"]' - 51]) T+ (gb; + Z eilmwr?ﬂ> 61] (C30)
I,m=1

We must now insist that the zero curvature condition
ORI — AR — [RIF,RY] =0 (C.31)

is satisfied. Let us substitute (C.29) and (C.30) into this condition and equate dif-

ferent orders of the spectral parameter x as follows:

O(x°) : At zeroth order in the spectral parameter we obtain

3 3
10y ((b; + Z 5ilm7lr31> 0ij — 101 {¢i + Z EitmT T Ym (0 — &) — EitmAm)

I,m=1 I,m=1

lml

- Z 5zlmrl /71 + 'Ym) (d) - Qb;n - 5ilm/7i>} (5@' - 0 (032)
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and therefore

3 3
o8 ( Z €ilm’n7"72n) =0 { Z €ilm7“i27“12’7m (6; — & — €itmVm)

I,m=1 I,;m=1

9 Z gllmrl ryl + fym> <¢l ¢ 5zlm71)} . (C?)S)

lml

This is just the compatibility condition for the transformation from the undeformed

equations of motion to the ~;-deformed equations of motion.

O(z'): At first order in the spectral parameter we find that

[\CR V]

< (. i " 2
3i (rirj + rity) — = (ror) — ;)

. 3 3
3 / — / —
—51(91 {rirj (@; + Z é?ilszTfn) + ((15]- + Z &?jzm”YzTi)] }
I,;m=1 l;m=1
+3i0, {nrj Zrk ((bk + Z ERmNTm > } + 3rir; (@ - <Z5;)

I,m=1

3
+3r1; { > CimrriTm (0 — ¢ — €imTm) — 5 Z EitmT T (F1 4 Fm) (6] — ), 8zzm%)}

I,m=1 lm 1

3
=377 { Z 5ﬂm7ﬂj2'7ﬂl2f7m (¢; — ¢ — Ejlmfym - Z Ejlmrl (% + Ym) (&1 — ¢, gjlmVJ)}

I,m=1 lm 1

. 3 3
3i =2 =2
+ (riry — rir;) (gb; + Z Eilm’)/lrm> - ((b; + Z ejlmfylrm>
I,m=1 I,m=1
3 3
—5TiT <¢2 + ) @-m”‘ﬂ?‘i) + (¢} + ) Ejlm;ylr?n>]
I,m=1 I,m=1
3 3
<¢; + Z 5ins’7n71§> - ¢; + Z 5jns’7nr§>]
n,s=1 n,s=1
3 3 I 3 3
+3rim; Y 1} (gzb; + ) aklm7,r3n> <¢; + 3 emswf) - (gzﬁ; + > ajns%rg)]
k=1 l,m=1 L n,s=1 n,s=1
=0. (C.34)

Thus, considering the real and imaginary parts of the above expression separately,
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we obtain

. " "o ] ]
Re: rirj —mrr; = 2rr; <¢j — ¢i)

3 3
_ _ 1 o
—2Tirj { Z 5ilm7ni27112'7m (¢; - (b; - 5ilm7m) - 5 Z 5ilm71127172n (’Yl + ’Ym) (¢l ¢ gzlm71>}

I,m=1 I,m=1

I,m=1 lm 1

3 2 3 2
+riT; (Qﬁi + Z €um7ﬂ",2n> - (Qb; + Z €jzm7ﬂ“fn>

l,m:1 l7m:1

3 3 3 3
—2T’Z'Tj ZT]% <¢;§ + Z 5klm’71T7271> <¢; + Z €ms%7”§> - <¢; + Z 5jns’7n7ﬂ§>] ) (C35>

k=1 I,m=1 n,s=1 n,s=1

3 3
(¢; iy mvm) + <¢; iy mvmm
l;m=1 l,m=1

3 3
— 0 {m"j AT €kzm"nrfn) }
k=1

3
+2rir; { > it m (8 — &) — €jimTm) — Z Egm T T (T + ) (1 — Py — €jlm7j)}

1
Im: 7;1'7}' + 7”1'7‘“j = 581 {Tﬂ"j

I,m=1
1 i 3 3
~ 3 (riry — rir;) ((b; + Z eilm*_ylrfn> - <¢; + Z ajlmﬁlrzl)] . (C.36)
L I,m=1 I,m=1

Now the real equation (C.35) is equivalent to

" "no__ ] ]
T =TTy = 21 (gbj — gbz)

3
_2rirj { Z 5ilm71i27112f7m (Cb; - QZS; - 6ilm’)/m - Z 5zlmrl % + f)/m> (le ¢ 5zlm’71)}

I,m=1 lm 1

3
+2r;r; { Z EjimT 37 Ym (& — &) — EjimVm) — Z EtmT T (0 m) (9 — 0 — 5jlm7j)}

Il,m=1

lm 1
3 I 3 3 2
+riry Y (Cb; + ) Silm%T?n) - <¢§g + ) €klm%7"72n>]
k’:l L l,m:l l,m:l

3 i 3 3 2
_7“1'7“]'27"]% <¢; + Z €jlm'}/l7“3n> — <¢;€ + Z 5klm7l7“72n>] , (037)

I,m=1 I,m=1
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which can be seen by multiplying out the last two squared terms and making use of
3
the constraint _ r? = 1. Furthermore, the imaginary equation (C.36) can be written

=1
as

3 3
(Qb; + Z 5ilm'7l7a72n> + (Qb; + Z Eﬂm%rfn>]

I,m=1 I,m=1

3 3
(@l +2 Z €izm’_Yl7’m7’,/n> + (G%-’ +2 Z &‘jlm’_Yﬂ’mT,/n)]

l,m=1 Il,m=1

3 3
rzr + rir; Zr (gb;; + Z 5klm7ﬂ“3n)

k=1 Il,m=1

3 3 3
— 211 Zrkrk <<b + Z Erm VT o ) — T ZT,% ( L2 Z sklm’_yl'r’mr,’n>
k=1 k=1

. . 1 / /
Ty Ty = B (m-rj + rirj)

1
+ §TiTj

I,m=1 Il,m=1

3
<¢i + Z sz-lmw?;) - <¢; + > sﬂmwfn)] (C.38)

1
’
— 5 (T,‘T’j — T’Z-T’j
I,m=1 I,m=1

3
= T;Tj <¢; + Z gilmf?quzn> +Tir; <¢ + Z gjlmf)/lr )

I,m=1 Il,m=1

3 3 3 3
— 211 Zﬁcr;ﬂ (% + Z 5klm’7lr:1> — 7Ty Zﬁi (% + Z €klm%7“72n)

k=1 I,m=1 k=1 I,m=1

3
1
— 1T Zrk (cbk + Z Extm T m ) +STiT <<z5§’ +2 ) eum%rmrin>

I,m=1 I,m=1

3 3 3
1
+ T <¢;’ +2 Z 5jlmwrmr;n> - TierT,% ( vt 2 Z 5klm7n"m7“;n), (C.39)

l,m:l k=1 l7m:]_

3 3
which implies, if one uses the constraint Y r? = 1 and thus Y_ ;7! = 0, that
i=1 i=1

3 -
<¢ + Z gzlm’ylr ) - (qﬁ;g + Z 6klm’717ﬂ3n>

Firy iy =1y ) v (rare)
I,m=1 I,m=1

k=1
3
<¢} + > ejzmwfn) - ( Z Ehtm VT m >

3
!
+r; E Tk (Tj’l”k)
k=1 I,m=1 I,m=1

3 i 3 3 7
1
+ 57"1'7”]' Z T]% <¢;’ + 2 Z 5ilm'7l7’m7“;n) — ( /k/ + 2 Z €klm’7ﬂ‘m7“;n>

k=1 I,m=1 l,m=1

3T 3 3 T
1
+ T Zrﬁ (qﬁ;' +2 Z Ejlm'ylrmrfn> — ( w2 Z sklm%rmr;n> . (C.40)
=1 L 1

Il,m=1 I,m=1

3
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Finally, we notice that equations (C.37) and (C.40) are the same as (5.103) and

(5.104), and are thus equivalent to the v;-deformed equations of motion.

O(x?): At second order in the spectral parameter, one obtains an equation which
3 3

is trivially satisfied, again using the constraint > r? = 1 and hence that > r;r} = 0.
i=1 i=1
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