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Abstract

This dissertation considers an American put option written on a single underlying
which does not pay dividends, for which no closed form solution exists. As a conse-
quence, numerical techniques have been developed to estimate the value of the Amer-
ican put option. These include analytical approximations, tree or lattice methods,
finite difference methods, Monte Carlo simulation and integral representations. We
first present the mathematical descriptions underlying these numerical techniques.
We then provide an examination of a selection of algorithms from each technique,
including implementation details, possible enhancements and a description of the
convergence behaviour. Finally, we compare the estimates and the execution times
of each of the algorithms considered.
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Chapter 1

Introduction

The American put pricing problem is one of the most important open problems
in mathematical finance. The statement of the problem is deceptively simple, but
it is almost certainly true that a closed form solution will remain undiscovered.
Numerous articles have been written in which claims to exact solutions have been
made. Almost all of these claims have merely reduced the problem to some form of
quadrature, which ultimately entails one or more numerical approximations.

With rapidly increasing computational power, numerical approximations have
become more convenient. This dissertation will enumerate and elucidate the various
numerical techniques that have been proposed whereby this quadrature is either
performed or avoided.

The valuation of American-style derivatives is difficult when the early exercise
opportunity (opportunities) exists and adds value to the option premium. Simply
put, an early exercise opportunity occurs when the value of holding the option
is worth less than immediately exercising it, and receiving the intrinsic value. In
practise, the problem is further complicated by the fact that even making the optimal
decision is extremely difficult.

This dissertation will consider an American put option written on a single un-
derlying stock which does not pay dividends over the life of the option. In this case,
the value of an American call option is exactly equal to the corresponding European
call option, because there are no optimal early exercise opportunities. However, the
equivalent American put option may have early exercise opportunities. In this case,
the corresponding European put option price is merely a lower bound for the value
of the American put option.

The need for an analytical solution has resulted in quasi-analytical solutions or
analytical approximations. (MacMillan 1986) and (Barone-Adesi and Whaley 1987)
developed a quadratic approximation, which is an analytical solution formed by
solving an approximate equation for the true value of the American put option.
(Geske and Johnson 1984) treated the American put option as an infinite sum of a
series of compound options. The consequential “analytical” solution is only exact
in the infinite limit. Another drawback of the approximation is that it requires the
calculation of n-variate standard normal cumulative distribution functions. These
functions are computationally expensive and almost impossible to compute for n > 4.
Another approximation was presented in (Bjerksund and Stensland 2002), where the
American option is treated as a knock-out barrier option with a rebate equal to the
intrinsic value at the barrier.
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Unfortunately, in general, these analytical approximations yield poor estimates.
As a consequence, more sophisticated numerical techniques have been explored.
(Brennan and Schwartz 1977) introduced a finite difference method. Finite dif-
ference methods estimate the solution of a partial differential equation (PDE) by
discretising the solution space into a grid and then solving the PDE by recursion.
(Cox, Ross, and Rubinstein 1979) estimated the value of the American put option
using a binomial tree method. This was later extended by (Hull and White 1993)
into a trinomial method. Tree methods also discretise the solution space, although
the discretisation is chosen to represent the distribution of the underlying stock
price process, instead of the entire solution space. Finite difference methods and
tree methods are attractive techniques for estimating the value of the American put
option because they easily incorporate the early exercise feature. Unfortunately, if
the number of sources of uncertainty increases, they become intractable. This is
known as “the curse of dimensionality”.

(Boyle 1977) first introduced simulation, or Monte Carlo methods, to math-
ematical finance. In Monte Carlo methods, sample paths for the state variables
are simulated, which makes it difficult to incorporate the early exercise feature of
American-style derivatives. In general, the early exercise feature is usually solved
by using a backward recursion, such as dynamic programming. (Tilley 1993a) first
applied a Monte Carlo method to estimate the value of the American put option.
Although the method is crude, it demonstrated that Monte Carlo methods could
be applied to value American-style derivatives. Later, adaptations of the Monte
Carlo technique to the American put problem were introduced in (Grant, Vora, and
Weeks 1996), (Longstaff and Schwartz 2001), amongst others. (Boyle, Broadie, and
Glasserman 1997) and (Fu, Laprise, Madan, Su, and Wu 2001) provided a summary
of the Monte Carlo methods available for pricing American-style options.

The value of the American put option can also be represented as an integral
equation. (Chiarella, Kucera, and Ziogas 2004) provides a survey of the various
integral representations for American options. One representation decomposes the
value of the American put option into a linear combination of the equivalent Eu-
ropean put option value and an early exercise premium (see (Carr, Jarrow, and
Myneni 1992), (Jacka 1991) and (Kim 1990)). The early exercise premium appears
as an integral whose value can be estimated by combining a quadrature scheme with
a search method for locating optimal early exercise.

This dissertation first introduces the mathematical theory underlying these nu-
merical techniques. Each subsequent chapter will focus on a different numerical
approach used in the pricing of American options, including: analytical approxima-
tions, tree or lattice methods, Monte Carlo methods, finite difference methods, and
integral approximations. Each chapter will discuss a selection of the algorithms for
each approach. This will include details on implementation, possible enhancements
and convergence characteristics. The concluding chapter provides a comparison of
the estimates produced by the methods examined.



Chapter 2

The Mathematical Description
of the American Put Pricing
Problem

2.1 Preliminaries

We start by defining a filtered probability space (Ω,FT ,F,P) over a time horizon
T ∈ (0,∞). We assume that the filtration F = {Ft | t ∈ [0, T ]} satisfies the usual
conditions (see (Karatzas and Shreve 1988, p.10)). Furthermore, we specify that F0

is trivial, i.e.
F0 =

{
A ∈ FT

∣∣ P[A] = 0 or P[A] = 1
}
.

A consequence of this assumption is that any process adapted to F is a.s. degenerate
at time zero. Unless stated otherwise, it will be assumed that all processes are
adapted to this filtration and all stopping times are defined with respect to it.

Our intention is to describe a complete market (Elliott and Kopp 1999, Ch. 4)
consisting of two assets and driven by one source of uncertainty, namely a Brownian
motion, W = {Wt | t ∈ [0, T ]}. The first asset is a riskless savings account, B =
{Bt | t ∈ [0, T ]} given by the deterministic equation

Bt = exp{rt},

for all t ∈ [0, T ]. Here r ∈ (0,∞) is a constant riskfree short rate. The second asset
is a stock, S = {St | t ∈ [0, T ]}, whose price process is determined by the stochastic
differential equation (SDE)

dSt = rSt dt + σSt dWt (2.1)

for all t ∈ [0, T ], with an initial value S0 ∈ (0,∞) and volatility σ ∈ (0,∞). The
SDE (2.1) admits the following solution

St = S0 exp
{(

r − 1
2
σ2

)
t + σWt

}
(2.2)

for all t ∈ [0, T ], as can be confirmed by a straightforward application of Itô’s
formula. This process is a geometric Brownian motion.
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Notice that the drift rate in equation (2.1) is the riskfree short rate r. This
means that we have implicitly assumed that the probability measure P is, in fact,
the risk-neutral probability measure. Under the real-world measure, S will have a
different drift rate. However, according to the standard martingale theory (Harrison
and Pliska 1981), completeness and no-arbitrage guarantee the existence of a unique
risk-neutral measure1. As is well known, under these conditions, one can perform a
change of measure by a straightforward application of Girsanov’s theorem (Karatzas
and Shreve 1988).

We are interested in the pricing of contingent claims on the underlying S. If g
is some function such that g : R+ −→ R, then a European contingent claim written
on S with payoff g and expiry T can be regarded as a financial instrument which
pays the holder g(ST ) at T . It is called a European call option, with strike price
K ∈ (0,∞), if the payoff is given by

g(S) := (S −K)+,

for all S ∈ R+. The corresponding European put option, has the payoff

g(S) := (K − S)+,

for all S ∈ R+. The price of a European contingent claim is equal to the discounted
expected value of its payoff (under the risk-neutral measure) at expiry (Elliott and
Kopp 1999, Ch. 7). As a consequence, the European call option price at any time
t ∈ [0, T ] is

c(t, T ; K) = exp{−r(T − t)}E[
(ST −K)+

∣∣Ft

]
, (2.3)

while the corresponding European put option price is

p(t, T ; K) = exp{−r(T − t)}E[
(K − ST )+

∣∣Ft

]
. (2.4)

The conditional expectations in equations (2.3) and (2.4) can be evaluated using
the transition density function for geometric Brownian motion, yielding the Black-
Scholes (Black and Scholes 1973) formulae for the European call and put prices

c(t, T ; K) = SΦ(d1)−K exp {−r(T − t)}Φ(d2), (2.5)
p(t, T ; K) = K exp {−r(T − t)}Φ(−d2)− SΦ(−d1). (2.6)

Here, Φ(x) :=
(
1/
√

2π
) ∫ x

−∞ exp{−z2/2} dz, is the standard cumulative normal
distribution function for x ∈ R, and

d1 :=
log(St/K) + (r + 1

2σ2)(T − t)
σ
√

T − t
, d2 := d1 − σ

√
T − t.

An American option with payoff g : R2
+ −→ R+ and expiry T , pays g(t, St) when

exercised at time t ∈ [0, T ]. An American call option, with strike price K ∈ R+, has
a payoff

g(t, S) := (S −K)+,

1 Recall that a risk-neutral measure is a probability measure under which the discounted stock
price process is a martingale.
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for all S ∈ R+ at all times t ∈ [0, T ], while the payoff of the corresponding American
put option is

g(t, S) := (K − S)+, (2.7)

for all S ∈ R+ at all times t ∈ [0, T ]. It was shown in (Merton 1973) that the price
of an American call option, C(t, T ; K), written on a stock that pays no dividends
is equivalent to the price of the corresponding European call option, c(t, T ; K).
However, due to a positive probability of early exercise, the prices of a European
put option and the corresponding American put option are not equal. The exercise
time t ∈ [0, T ] can be chosen by the holder to be any time up to and including
the expiry T . The evolution of the underlying stock determines the optimal exercise
time for any particular put option. No-arbitrage considerations impose the following
lower bound on the price of an American put option

P (t, T ; K) ≥ p(t, T ; K), (2.8)

where P (t, T ; K) denotes the price of the American put option.
No closed form solutions for the price of the American put option exist and

consequently numerical methods are needed to approximate the price. The numer-
ical methods examined in this dissertation are: lattice or tree methods, analytical
approximations, finite difference methods, Monte Carlo methods, and integral rep-
resentation approximations. The remainder of this chapter is devoted to the theory
underlying these numerical methods. Initially the Snell’s envelope representation is
presented and then reformulated as a free boundary problem and subsequently as
an integral representation.

2.2 The Snell’s Envelope Representation

The Snell’s envelope representation is used in tree and Monte Carlo methods. It ex-
amines the stochastic process which majorises the discounted expected value process.

Definition 2.2.1. A random variable τ ∈ [0, T ] is a stopping time if, for every
t ∈ [0, T ], {τ ≤ t} ∈ Ft.

Notation 2.2.2. Let Mu,t denote the collection of stopping times τ such that
u ≤ τ ≤ t a.s. for all u ≤ t ∈ [0, T ].

We need to find a process, Yt, called the essential supremum, which represents
the expected maximum exercise value over all stopping times until expiry.

Proposition 2.2.3. For every family F of real-valued measurable functions f :
Ω → R defined on (Ω, FT ,F,P), there exists, one and, up to equivalence, only one
measurable function g : Ω → R such that

1. g ≥ f a.s. for all f ∈ F ;

2. if h is a measurable function such that h ≥ f a.s. for all f ∈ F , then h ≥ g a.s.

Proof. See (Neveu 1975).
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The function g, which is the least upper bound on the family of curves F , is
called the essential supremum of F .

Notation 2.2.4. The essential supremum,
{
Yt|t ∈ [0, T ]

}
, is written as

Yt := ess sup
τ∈Mt,T

E
[
g(τ, Sτ )

∣∣Ft

]
, (2.9)

for all t ∈ [0, T ].

Definition 2.2.5. A real-valued stochastic process {Mt|t ∈ [0, T ]} is called a super-
martingale with respect to the filtration Ft, if

1. E
[|Mt|

]
< ∞ for all t ∈ [0, T ]; and

2. E
[
Mt

∣∣Fu

] ≤ Mu for all u ≤ t ∈ [0, T ].

The definitions of the essential supremum and the supermartingale lead to the
following specification of a process {Yt} which is called Snell’s envelope. The initial
value of this process gives the price of the American put option at time T (Karatzas
1988).

Theorem 2.2.6. The no-arbitrage price of an American put option at time t is
equal to the intial value Yt of the Snell’s envelope given by

Yt = ess sup
τ∈Mt,T

E
[
exp{−r(τ − t)} (K − Sτ )

+
∣∣Ft

]
(2.10)

Proof. See (Musiela and Rutkowski 1998, Th. 8.1.1).

The Snell’s envelope representation (2.10) is used for tree and Monte Carlo meth-
ods, by applying Bellman’s principle of dynamic programming. This is achieved in
a discrete setting by using backward recursion to construct a new adapted process,
Z =

{
Zti

∣∣0 = t0 ≤ t1 ≤ · · · ≤ tn = T
}
, where

Ztn = g(tn, Stn), (2.11)
Zti = g(ti−1, Sti−1) ∨ E

[
e−r∆tg(ti, Sti)

∣∣Fti−1

]
, (2.12)

where i = n − 1, . . . , 1 and ∆t = ti − ti−1. Consequently, the process is computed
by backward recursion — each successive value of Zti is set to the maximum of the
intrisic value of the option or the discounted expected value one time step ahead,
Zti+1 , conditional on the information at time ti.

2.3 The Free Boundary Problem

In this exposition, we primarily follow the account of (Elliott and Kopp 1999).
The solution to the Snell’s envelope representation (2.10) yields a stochastic process
whose initial value, Y0, is the price of the American put option. This initial value is
often determined numerically using the Bellman equation.

In contrast, the solution of the free boundary problem is the initial cost of a
portfolio which replicates the price of the American put option. A large variety of
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finite difference methods used in mathematical finance employ the free boundary
representation. The approach is to numerically approximate the solution of the cor-
responding partial differential equation (PDE) subject to a free boundary condition.

The price of the American put option, P (t, St) at time t ∈ [0, T ], with initial
stock price S0 ∈ R+, is expressed as the maximum, over all stopping times, of
expected discounted early exercise values,

P (t, S) = sup
τ∈Mt,T

Et,S0

[
exp{−r(τ − t)} (K − Sτ )

+]
,

which is equivalent to the Snell’s envelope representation in equation (2.10) (proved
in (Jaillet, Lamberton, and Lapeyre 1990)).

The positive probability of early exercise means that there exists a time de-
pendent function, b(t), called the early exercise boundary, which can be used to
determine if early exercise is optimal or not. If the stock price coincides with b(t)
at any time t ∈ [0, T ], it is optimal to exercise the option. Then,

P (t, b(t)) = K − b(t). (2.13)

The early exercise boundary is defined by a continuous set of stock prices. Then, b(t)
partitions the time-space domain (here, space is equivalent to stock price) [0, T )×R+

into a continuation region, C, where exercise is not optimal,

C =
{
(t, S) ∈ [0, T )× R+ | P (t, S) > (K − S)+

}
, (2.14)

and a stopping region, S, where exercise is optimal,

S =
{
(t, S) ∈ [0, T )× R+ | P (t, S) = (K − S)+

}
.

Hence, the value of the American put option is exactly equal to the value of exercising
the option (called the intrinsic value) in the stopping region. We now provide a
theorem which proves that the value of the American put option obeys the Black-
Scholes PDE (Black and Scholes 1973) in the continuation region.

Theorem 2.3.1. P (t, S), the price of the American put option, satisfies the Black-
Scholes PDE

∂P

∂t
+ rS

∂P

∂S
+

1
2
σ2S2 ∂2P

∂S2
− rP = 0 (2.15)

in the continuation region, C.



2.3 The Free Boundary Problem 8

Proof. Initially, apply Itô’s formula to {e−rtP (t, St)} to obtain the SDE

d
(
e−rtP (t, St)

)
=

∂

∂t

(
e−rtP (t, St)

)
dt +

∂

∂S

(
e−rtP (t, St)

)
dSt

+
1
2

∂2

∂S2

(
e−rtP (t, St)

)
d〈S, S〉t

= e−rt

[
− rP (t, St) dt +

∂P

∂t
(t, St) dt +

∂P

∂S
(t, St) (rSt dt + σSt dWt)

+
1
2
σ2S2

t

∂2P

∂S2
(t, St) dt

]

= e−rt

(
∂P

∂t
(t, St) + rSt

∂P

∂S
(t, St) +

1
2
σ2S2

t

∂2P

∂S2
(t, St)− rP (t, St)

)
dt

+e−rtσSt
∂P

∂S
(t, St) dWt.

where S = E[St|Ft]. In the continuation region, all discounted tradeable securities
are martingales. Consequently the drift term vanishes. Then the following PDE for
P (t, St) is satisfied for all (t, St) ∈ C

∂P

∂t
(t, St) + rSt

∂P

∂S
(t, St) +

1
2
σ2S2

t

∂2P

∂S2
(t, St)− rP (t, St) = 0.

Notation 2.3.2. The operator LBS given by

LBS =
∂

∂t
+ rSt

∂

∂S
+

1
2
σ2S2

t

∂2

∂S2
− r

may be used to represent the Black-Scholes PDE (2.15).

Unfortunately, the early exercise boundary is unknown a priori and as a conse-
quence, the stopping region and continuous region are also unknown a priori. The
solution P (t, St) of the Black-Scholes PDE (2.15) and the early exercise boundary
make up our free boundary problem. The following Dirichlet and Neumann condi-
tions complete the specification of the free boundary problem2.

No-arbitrage arguments dictate that the value of the American put option must
be at least equal to its intrinsic value,

P (t, S) ≥ (K − S)+, (t, S) ∈ [0, T )× R+. (2.16)

Also, P (t, S) tends to zero as the stock price tends towards infinity,

lim
S→∞

P (t, S) = 0, t ∈ [0, T ). (2.17)

The last possible time for exercise occurs at expiry, T , where the value of the option
is exactly equal to the maximum of its intrinsic value and zero. To ensure continuity
P (t, S) must meet the intrinsic value smoothly,

lim
t→T

P (t, S) = (K − S)+ , S ≥ 0. (2.18)

2 Dirichlet conditions specify the value of the solution, P (t, S), at the boundaries. Neumann
conditions specify the value of the first derivative, ∂P/∂S, at the boundaries.
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The final two boundary conditions describe the behaviour of P (t, S) around the
early exercise boundary, b(t). At the early exercise boundary,

lim
S↓b(t)

P (t, S) = K − b(t), t ∈ [0, T ). (2.19)

The smooth pasting condition requires the derivative ∂P/∂S to be continuous across
the exercise boundary,

lim
S↓b

∂P (t, S)
∂S

= −1. (2.20)

The derivative ∂P/∂S below the boundary is ∂/∂S(K − S) = −1. To approximate
a solution, the free boundary problem requires reformulation. One common method
is to rewrite it as a variational inequality, which is an approach used for solving
equilibrium problems.

2.3.1 Variational Inequality

Formulating the free boundary problem as a variational inequality removes the ex-
plicit calculation of b(t). Theorem 2.3.1 shows that P (t, S) satisfies

LBS(P (t, S)) = 0, (2.21)

in the continuation region, C. However, P (t, S) = K − S does not satisfy this PDE
in the stopping region, S,

LBS(K − S) = rs(−1)− r(K − S)
= −rK

< 0.

Thus, over the entire domain, P (t, S) satisfies,

LBS(P (t, S)) ≤ 0. (2.22)

Also, rearranging equation (2.16) gives the following inequality for P (t, S) in C,

P (t, S)− (K − S)+ ≥ 0, (2.23)

while the following equality holds in S

P (t, S)− (K − S)+ = 0. (2.24)

Combining equations (2.21) to (2.24) gives the variational inequality representation
for P (t, S):

LBS(P (t, S))
(
P (t, S)− (K − S)+

)
= 0 (2.25)

LBS(P (t, S)) ≤ 0 (2.26)
P (t, S)− (K − S)+ ≥ 0, (2.27)

for all (t, S) ∈ [0, T ]× R+.
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2.4 The Integral Representation

The integral representation of (Kim 1990, Jacka 1991, Carr, Jarrow, and Myneni
1992) decomposed the price of the American put option into a linear combination
of the corresponding European put option and an early exercise premium. This
early exercise premium may be written as an integral involving the early exercise
boundary. The solution of the integral requires backward recursion in order to arrive
at a value using condition (2.19). The value of the integral may be estimated using
some quadrature scheme.

Theorem 2.4.1. The value of an American put option, P (t, S) may be represented
as

P (t, S) = p(t, S) + e(t, S), (2.28)

where p(t, S) is the Black-Scholes price for the corresponding European put option,
and the early exercise premium, e(t, S), is given by

e(t, S) = Et,S

[∫ T

t
exp{−r(T − u)}rKI{Su<b(u)}du

]
(2.29)

Proof. See (Elliott and Kopp 1999, Th. 8.5.3)



Chapter 3

Analytical Approximations

3.1 Introduction

The different mathematical approaches described in Chapter 2 cannot be solved
analytically. They all rely on a numerical method to approximate the solution. In
fact, no closed form solution for the American put option exists, except in the case
of the perpetual American put option (McKean 1965).

One of the drawbacks of numerical methods is that they often require a large
number of calculations and converge slowly. With the acceleration of computing
power, these drawbacks are less significant. In the early 1970s, these numerical
methods were computationally infeasible, so the first approximations examined were
analytical. These approximations are correspondingly quick to solve, but yield poor
estimates for the price of the American put option.

There have been many different analytical approximations developed (see (Broadie
and Detemple 1996) for a detailed comparison of approximations). We will dis-
cuss a selection of these methods: the regression method of (Johnson 1983), the
quadratic approximations of (MacMillan 1986, Barone-Adesi and Whaley 1987), the
(Geske and Johnson 1984) compound option approximation and the (Bjerksund and
Stensland 1993) method.

3.2 Bounds on the American Put Option

The solution to the perpetual American put option problem provides two pieces
of useful information. The problem was separately solved by (McKean 1965) and
(Merton 1973). The option has no expiry date and, consequently, the solution,
P∞(S), does not depend on time. The early exercise boundary is pre-computable
and is constant,

b∞ =
Kγ

1 + γ
.

Which, in turn, yields the analytical solution,

P∞(S) =
K(

1 + γ
)(

b∞/S)γ

where γ = 2r/σ2. These two results provide an initial estimate for the early exercise
boundary, and an upper bound for the value of the American put option with finite
expiry.
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Another useful bound on the value of the American put option was developed
in (Margrabe 1978). An upper bound on the price, P (t, S, K), is given by the
corresponding European put option price, p(t, S,KerT ), with a strike that grows at
the riskless interest rate, KerT . Then,

P (t, S, K) ≤ p
(
t, S, K exp

{
rT

})
. (3.1)

3.3 Johnson’s Regression Formula

The rather crude regression formula developed in (Johnson 1983) uses an upper and
lower bound for the price to obtain a quasi-analytical expression. Using the lower
bound (2.8) and the upper bound (3.1) we can derive the following expression,

P (t, S, K) = αp
(
t, S, K exp

{
rT

})
+ (1− α)p(t, S, K), 0 ≤ α ≤ 1

since
p(t, S, K) ≤ P (t, S, K) ≤ p

(
t, S, K exp

{
rT

})
.

The value of α depends on the ratio S/K, and the products rT and σ2T . In order
to implement the approximation we assume a functional form for α in terms of these
three factors and regress this against option prices in the market.

3.4 Quadratic Approximations

(MacMillan 1986) examined a quadratic approximation of the put price for non-
dividend paying stocks. (Barone-Adesi and Whaley 1987) extended this work and
obtained an additional approximation for commodity options. The quadratic ap-
proximation is an analytical solution, which is the result of solving an approximate
problem.

In equation (2.28), the American put option price is decomposed into the sum of
the corresponding European price, p(t, S), and an early exercise premium, e(t, S).
Because both the European and the American put option satisfy the Black-Scholes
PDE in the continuation region, (Barone-Adesi and Whaley 1987) concluded that
the early exercise premium must also satisfy the Black-Scholes PDE in this region.

A new PDE for the early exercise premium can be derived. This PDE contains
a term which tends to zero for short and long dated contracts. If this term is set to
zero, the resulting ordinary differential equation (ODE) can be solved in terms of a
critical stock price. This critical stock price can be found using an iterative search
technique such as the Newton-Rhapson method (Press, Teukolsky, Vetterling, and
Flannery 1999). No further enhancements of the quadratic approximation can be
made, because it is an exact solution of an approximation to the Black-Scholes PDE.
Although it is computationally efficient, the resulting estimate is poor.

3.4.1 The Barone-Adesi Whaley Approximation

The (Barone-Adesi and Whaley 1987) method involves the solution of an ODE in
terms of a critical stock price, S∗. This critical stock price is the solution of,

K − S∗ = p(t, S)−
(
1− Φ

(−d1(S∗)
))

S∗/q1,
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where Φ is the standard cumulative normal distribution function, and

q1 =
(
1−

√
1 + 8r/(Kσ2)

)
/2,

d1(S) =
ln(S/K) + (r + 1

2σ2)T

σ
√

T
.

S∗ may be calculated using the iterative procedure described in Section 3.4.2. Once
it has been calculated, the quadratic approximation for the American put option is
given by,

P (t, S) =

{
p(t, S) + A1

(
S
S∗

)q1 S > S∗

K − S∗ S ≤ S∗

where
A1 = −(

1− Φ(−d1(S∗))
)
S∗/q1.

and p(t, S) is then calculated using the Black-Scholes formula (2.6).

3.4.2 Solving for the Critical Stock Price

S∗ may be found using the Newton-Rhapson method. The Newton-Rhapson method
is a basic iterative method for finding the zero of a function. From an inital estimate,
S0, the method calculates successive values, Si, using

Si+1 = Si − f(Si)/f ′(Si),

until a specific estimation tolerance, ε, is reached. The relative error between func-
tion values of successive estimates should be less than ε,

∣∣f(Si)− f(Si−1)
∣∣ < ε.

We estimate the value of S∗ by using the Newton-Rhapson method to find the zero
of,

f(S) =
(
K − S

)− (
p(t, S)− (

1− Φ(−d1(S))
)
S/q1

)
. (3.2)

Note that

f ′(S) = −1 + Φ(−d1(S))(1− 1/q1) +
(
1− φ(−d1(S))/(σ

√
T )

)
/q1.

where φ(x) := exp{−x2/2}/√2π, for all x ∈ R is the standard normal density
function.

One possible initial estimate for S∗ is the constant early exercise boundary, b∞,
of an identical but perpetual American put option given by equation (3.1). The
initial estimate used in (Barone-Adesi and Whaley 1987) is,

S∗0 = K + (b∞ −K)

(
1− exp

{
−(rT + 2σ

√
T )K

b∞ −K

})
.
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3.5 The Geske and Johnson Compound Option
Approximation

In (Geske 1977), a compound option formula to price risky coupon bonds was de-
rived. This formula was later extended to pricing the American put option in (Geske
and Johnson 1984) by treating the American put option as an infinite sum of a se-
ries of compound options. As a result, they did not solve the Black-Scholes equation
(2.20) subject to the free boundary condition.

The “analytical” solution that the authors presented is exact in the infinite limit.
However, the approximation requires the calculation of an n-variate standard normal
cumulative distribution function as n tends to infinity. These functions are compu-
tationally expensive and almost impossible to compute when n > 4. Consequently,
(Geske and Johnson 1984) suggested a Richardson’s extrapolation technique to ob-
tain a closed form solution. The solution extrapolates the value from three otherwise
identical put options: P1 which is exercisable only at T ; P2 which exercisable at T/2
and T ; and P3 which is exercisable at T/3, 2T/3, and T . It is not necessary that
these exercise points be equally spaced. As a extension of this result, (Bunch and
Johnson 1992) derived an adaptation to this approximation by picking the exercise
nodes in an optimal fashion in order to maximise the estimate.

However, (Omberg 1987) criticised the validity of their extrapolation method
because an extrapolation method only improves convergence when the convergence
is uniform. The set of early exercise times for P3, [T/3, 2T/3, T ] does not include
the set of early exercise times for P2, [T/2, T ]. As a consequence, the estimate
for P3 may be less than the estimate for P2. (Omberg 1987) suggested using a
geometric sequence of estimates, P1, P2, P4, . . . , to ensure that the early exercise set
in successive approximations always includes those of the previous approximation.
As a result, each successive estimate should be worth at least as much as the previous.

3.5.1 The Geske and Johnson Analytical Equation

The price of a contingent claim can be expressed as the discounted sum of ex-
pected future cashflows, provided a riskless hedge can be constructed (Cox, Ross,
and Rubinstein 1979). In a discrete time setting, an American put option can be
exercised at n intervals, t = t0 < t1 < · · · < tn = T . However, once the option
has been exercised at a particular time, it cannot be exercised at any later time.
As a consequence we can treat the American put option as a series of potential
cashflows, contingent on the option having not been exercised at all previous time
steps. This requires the calculation of multivariate standard normal cumulative
distribution functions because we need to calculate the joint probabilities of the
option ending below the exercise boundary and remaining above the early exercise
boundary at all prior exercise times.

Without loss of generality, we can assume that t0 = 0. The solution derived in
(Geske and Johnson 1984) is expressed as a series of options dependent on a discrete
early exercise boundary: bi ≡ b(ti) : i = 1, . . . , n. Each option with a expiry of ti is
exercised, provided it is in-the-money (S(ti) < bi), and that it was not previously
exercised. As a consequence, we need to use the joint probabilities that the stock
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price is above the early exercise boundary at all prior exercise times and is below
the early exercise boundary at the considered early exercise time. The correlations
of overlapping Brownian motion increments, ∆zi and ∆zj for i < j is,

ρij =
Cov(∆zi,∆zj)√
Var(∆zi)Var(∆zj)

=
√

ti/tj .

The value of an option that is exercised at t1, is the discounted strike price
multiplied by the probability that S(t1) is less than the early exercise boundary
value, b1,

K exp
{−rt1

}
Φ

(−d2(b1, t1)
)− SΦ

(−d1(b1, t1)
)
,

where

d1(b1, t1) =
ln(b1/S(t1)) + (r + σ2/2)t1

σ
√

t1
,

d2(b1, t1) = d1(b1, t1)− σ
√

t1.

The value of an option that is exercised at t2, is the discounted strike price
multiplied by the joint probability that S(t2) is less than the early exercise boundary
value, b2; and that S(t1) is greater than the early exercise boundary value, b1,

K exp
{−rt2

}
Φ2

(−d2(b2, t2), d2(b1, t1), ρ
)− SΦ2

(−d1(b2, t2), d1(b1, t1), ρ
)
,

where ρ is the correlation between the two events. Inductively, this leads to the
Geske-Johnson expression for the price of the American put option (using the nota-
tion of (Bunch and Johnson 1992)),

P (0, S) = K
∞∑

i=1

exp
{−rti

}
Φi

(
d∗i2, R

∗
i

)− S
∞∑

i=1

Φi

(
d∗i1, R

∗
i

)
(3.3)

where Φi is the i-th variate standard normal cumulative distribution function, and

d∗i1 = (d11, d21, . . . , di1)′

d∗i2 = d∗i1 − (σ
√

t1, . . . , σ
√

ti)′

dj1 =
ln(bj/S(tj)) + (r + σ2/2)tj

σ
√

tj

where j = 1, . . . , i, and R∗
i = DiRiDi, where Ri is the correlation matrix and

Di = diag(1, . . . , 1,−1). Evaluation of equation (3.3) requires calculation of the
n-variate standard cumulative normal distribution functions. The univariate and
bivariate standard cumulative normal algorithms are given in Appendix B. An
algorithm for the trivariate standard cumulative normal function can be found in
(West 2005). However, algorithms for higher orders are unknown.
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3.5.2 Solving for the Early Exercise Boundary

The discrete early exercise boundary is found recursively using the Newton-Rhapson
method (see Section 3.4.2). Truncating equation (3.3) gives an expression for an
estimate of the put price, P̂ k(0, S),

P̂ k(0, S) = K
k∑

i=1

exp
{−rti

}
Φi

(
d∗i2, R

∗
i

)− S
k∑

i=1

Φi

(
d∗i1, R

∗
i

)
. (3.4)

The estimate has k discrete exercise times and tk coincides with T . In contrast to
many of the methods for estimating the value of the American put option, we move
forward in time to estimate the discrete early exercise boundary, b̂i : i = 1, . . . , n.
On each iteration, we use the known estimates that have already been calculated.
Therefore, at ti we calculate b̂i by finding the zero of the function,

f(S) = (K − S)− P̂ i(0, S), (3.5)

for i = 1, . . . , n, using the Newton-Rhapson method.

3.5.3 Geske-Johnson Richardson’s Extrapolation

Richardson’s extrapolation is a technique to combine different numerical approxima-
tions in such a manner that a better estimate is obtained (Johnson and Riess 1982).
Geske and Johnson apply the Richardson’s extrapolation to a finite sum of American
put options. For each i : 1, . . . , n, the corresponding option, P̂ i(0, S), is exercisable
at i equally spaced time steps, T/i, 2T/i, . . . , T . The two point-, P̂ 2

RE(0, S); three
point-,P̂ 3

RE(0, S); and four point-, P̂ 4
RE(0, S) Richardson’s extrapolation estimates

are given by (where P̂ i := P̂ i(0, S)):

P̂ 2
RE = 2P̂ 2 − P̂ 1,

P̂ 3
RE = P̂ 3 + 7/2

(
P̂ 3 − P̂ 2

)− 1/2
(
P̂ 2 − P̂ 1

)
,

P̂ 4
RE = P̂ 4 + 29/3

(
P̂ 4 − P̂ 3

)− 23/6
(
P̂ 3 − P̂ 2

)
+ 1/6

(
P̂ 2 − P̂ 1

)
.

3.5.4 The Modified Geske-Johnson Method

The Geske-Johnson Richardson’s extrapolation uses evenly spaced exercise points,
even though there is nothing about the function in equation (3.3) which requires
this. (Bunch and Johnson 1992) examined a technique to pick these exercise points
optimally in such a way that maximises the premium.

As an example, in the two-point Geske-Johnson approximation, one of the op-
timal points is chosen to be the expiry of the option, T . The maximisation pro-
cedure is then simplified to locating the second optimal exercise time. Quite ar-
bitrarily, (Bunch and Johnson 1992) picked seven possible early exercise times,
T/8, 2T/8, . . . , 7T/8, and then chose that time which maximised the value of P̂ 2.
The two point extrapolation formula, P̂ 2

RE , is then employed to yield an improved
approximation.
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3.6 The Bjerksund and Stensland Method

Another interesting approach to pricing the American put option was suggested in
(Bjerksund and Stensland 1993). An analytical approximation for the American call
option is calculated by considering the American call option as a European up-and-
out barrier option with knock-out barrier, B, strike price, K, expiry date, T , and a
rebate, B −K. The parity result in Appendix A allows the value of the American
put option to be estimated using this method.

3.6.1 Bjerksund and Stensland Approximation for the American
Call Option

Using a constant early exercise boundary, B, the following approximation may be
derived for the price of the American call option,

C(t, S) =α(B)Sβ − α(B)ϕ(S, T |β, B,B) + ϕ(S, T |1, B, B)−
ϕ(S, T |1,K, B)−Kϕ(S, T |0, B, B) + Kϕ(S, T |0,K,B),

where

α(B) ≡ (B −K)B−β,

β ≡ (
1/2− δ/σ2

)
+

√
(δ/σ2 − 1/2)2 + 2r/σ2,

σ is the volatility, δ is the cost of carry. The function ϕ is given by

ϕ(S, T |γ,H, B) = exp
{
λT

}
Sγ

[
Φ

(
−(

log(S/H) + (δ + (γ − 1/2)σ2)T
)
/σ
√

T
)

− (B/S)κΦ
(
−(

log(B2/xH) + (δ + (γ − 1/2)σ2)T
)
/σ
√

T
)]

,

where

λ = −r + γδ + γ(γ − 1)σ2/2,

κ ≡ 2δ/σ2 + (2γ − 1).

(Bjerksund and Stensland 2002) used a combination of the strike price and the
early exercise boundary for the perpetual American put option, b∞, to calculate the
constant early exercise boundary, B,

B = b0 +
(
b∞ − b0

)(
1− exp

{
h(T )

})

where

h(T ) = −(
δT + 2σ

√
T

)(
K2/(b∞ − b0)b0

)

b0 ≡ max
(
K, (r/r − δ)K

)
.



Chapter 4

Tree or Lattice Methods

4.1 Introduction

Lattice methods are flexible and robust techniques for approximating the value of
many derivatives, especially when no analytical solution exists. This is achieved
by discretising the true behaviour of the underlying stochastic process (2.1) (in a
deterministic manner) and choosing a number of representative paths over which to
perform expectations (pricing). Both lattice methods and Monte Carlo methods (to
be explored in Chapter 5) employ dynamic programming techniques. In contrast,
Monte Carlo methods use a finite number of randomly chosen sample paths to value
the option (Hull and White 1988).

The time-state space is discretised, which results in a number of nodes with
associated transition probabilities1. The initial node is the parent of all subsequent
nodes and the number of future nodes increases. The exact number of future nodes
will depend on the type of tree and whether or not it is recombining. Different
lattice methods produce different node values and transition probabilities. The
general approach is to match the moments (usually the means and variances) of the
discrete lattice with those of the lognormal distribution of the underlying stochastic
process. An application of the central limit theorem provides convergence to the
true process as the number of time steps tends towards infinity (Cox, Ross, and
Rubinstein 1979).

The binomial option pricing method (so called because they have two transitions
at each node) was introduced simultaneously by (Cox, Ross, and Rubinstein 1979)
and (Rendleman and Bartter 1979). (Cox, Ross, and Rubinstein 1979) used no-
arbitrage arguments and a replicating portfolio technique to calculate the node val-
ues and transition probabilities. Later models used different formulations of node
values and transition probabilities in order to improve convergence rates. Trinomial
trees (so called because they have three transitions at each node) were first intro-
duced to mathematical finance by (Boyle 1986). This approach provides increased
flexibility and an improvement in the convergence rate.

Other work on lattice methods explored numerical techniques to improve the
convergence rate, instead of altering the parameter values of the lattice structure
itself (see (Leisen and Reimer 1996) for a thorough investigation of the convergence of
various binomial trees). (Hull and White 1988) applied a control variate technique

1 These are the probabilities of moving between nodes in the lattice.
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developed for Monte Carlo methods to binomial trees. The accelerated binomial
option pricing model (Breen 1991) used extrapolation to improve the convergence.
Lattice methods are sensitive to the non-linearity of the option payoff, and perform
poorly if the strike price does not coincide with a node in the lattice. Consequently,
a large non-linearity error is introduced one time step before expiry. The Black-
Scholes modification (Broadie and Detemple 1996) attempted to remove this error
by calculating Black-Scholes prices for all the nodes one time step before expiry.
Another approach to solving this problem is the adaptive mesh model developed in
(Figlewski and Gao 1999) which alters the resolution of the lattice. Initially a coarse
mesh is created and then a finer mesh is inserted around the strike price one time
step before expiry.

The remainder of this chapter will compare the convergence rates of some of the
binomial trees (Cox, Ross, and Rubinstein 1979, Rendleman and Bartter 1979) and
trinomial trees (Hull 2000, Figlewski and Gao 1999), as well as various enhancements
that have been developed (Broadie and Detemple 1996, Hull and White 1988, Breen
1991, Figlewski and Gao 1999) .

4.2 The Generalised Lattice

In this section, the underlying state variable is chosen to be a stock price paying no
dividends over the life of the option, i.e. St. A generalised lattice divides the life of
the option [0, T ] into n equal time steps of size ∆t = T/n. The values for the state
variable are also discretised, with the number of states or nodes, mi : i = 0, . . . , n,
being dependent on time. The number and values of the mi’s are dependent on the
lattice method used. The time-state space is thus divided into

∑n
i=0 mi nodes,

S(i,j),

where i = 0, . . . , n, and j = 1, . . . , mi. The initial stock price node S(0,1) is set equal
to the initial stock price, S0. Subsequent nodes are calculated using a multiplicative
factor which is determined within the choice of lattice method. The remaining
required inputs are the transition probabilities,

qi,jk

where i = 0, . . . , n, j = 1, . . . , mi, and k = 1, . . . ,mi+1. The transition probability
qi,jk is the probability of moving from the parent node S(i,j) to node S(i+1,k) in the
lattice and must satisfy the following properties,

mi+1∑

k=1

qi,jk = 1, for all i, j, (4.1)

0 ≤ qi,jk ≤ 1, for all i, j, k. (4.2)

This particular form of numbering for the nodes is chosen so that the lattice can be
easily coded in Matlab. The lattice is stored in a sparse matrix, since there is no
natural tree structure in Matlab architecture (Figure 4.1 is an example of the lattice
numbering).
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S
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S
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(1,1)

q
1,12

S
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q
1,11

q
1,13

Fig. 4.1: A single time step trinomial tree (lattice) showing node values and tran-
sition probabilities.

4.2.1 Dynamic Programming for Lattice Methods

Dynamic programming is a central feature of computer science. It refers to the de-
cisions that are made while solving a particular problem. A dynamic programming
approach ensures that decisions are based on the current state rather than making
predefined state independent choices (Baase and Van Gelder 2000). In the context
of the pricing of the American put option, dynamic programming refers to the cal-
culation of node values by using previously calculated node values. This is achieved
by backward recursion.

The value of the American put option nodes at expiry is equal to the intrinsic
value (since this is the last possible chance for exercise)

P(n,j) =
(
K − S(n,j)

)+
, (4.3)

where j = 1, . . . , mn. At each internal node, (i, j), two values are calculated: the
intrinsic value of the option, P Int

(i,j), and the continuation value, PCont
(i,j) . The intrinsic

value is equal to
(
K − S(i,j)

)
, while the continuation value is calculated using the

previously calculated nodes (l, k), where l > i and k = 1, . . . , ml. The option node
value, P(i,j), is set to the maximum of the two,

P(i,j) = max
{
P Int

(i,j), P
Cont
(i,j)

}
,

where i = 0, . . . , n− 1 and j = 1, . . . ,mi.

Calculating the Continuation Value

The chosen lattice method is parameterised such that the mean of the lattice matches
the mean of the underlying stochastic process under the risk neutral measure. Con-
squently the value at each node in the lattice must be the discounted expected value
under the risk neutral measure,

St = exp
{−r∆t

}
E

[
St+1

∣∣St

]
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where i = 0, . . . , n− 1, j = 1, . . . , mi and k = 1, . . . ,mi+1. Which implies that,

S(i,j) = exp
{−r∆t

} mi+1∑

k=1

qi,jkS(i+1,k)

where i = 0, . . . , n− 1 and j = 1, . . . ,mi.
This formulation permits the risk-neutral valuation of contingent claims on this

tree. The transition probabilities that apply to the stock price lattice also apply at
the same nodes for any contingent claim. Consequently, the continuation value for
the American put option can be calculated at each node in the tree as,

PCont
(i,j) = exp

{−r∆t
} mi+1∑

k=1

qi,jkP(i+1,k), (4.4)

where i = 0, . . . , n− 1 and j = 1, . . . ,mi.

4.2.2 Implementation Issues for Lattice Methods

Log-price Lattice or Stock Price Lattice?

Some of the lattice methods construct a tree of the log-price process (the stochastic
process of X = ln S),

X(i,j),

where i = 0, . . . , n and j = 1, . . . ,mi. The multiplicative factor in the stock price
tree formulation now translates into an additive factor in the log-price tree. This has
the effect of producing a more regular tree. The stock price lattice is then created
using

S(i,j) = exp
{
X(i,j)

}
,

where i = 0, . . . , n and j = 1, . . . , mi. These two trees are obviously conformally
equivalent, although it is often easier to work with the log-price tree.

4.2.3 Convergence Behaviour of Lattice Methods

The most important criterion for deciding on a lattice method is the convergence
rate. The convergence rate is the rate at which the absolute difference between the
lattice price and the “actual” price decreases over each iteration. (Omberg 1987)
remarked that for an acceleration technique to be successful, the convergence of the
lattice must be uniform.

The approximation error caused by lattice methods can be split into two com-
ponents: distribution error and non-linearity error (Figlewski and Gao 1999). The
distribution error arises since we are approximating the continuous lognormal distri-
bution of the underlying stock price by the discrete distribution of the lattice. The
non-linearity error is caused by non-linear behaviour of the option value, which is
exaggerated when the underlying has a value near the strike price. This non-linearity
cannot be captured by a discrete lattice. The distribution and non-linearity errors
occur for both European and American options.

A third error, caused by the approximation of the correct early exercise decision,
is common to all numerical approximation techniques for pricing American options.
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Fig. 4.2: A four time step trinomial lattice. The lattice on the left is the log-price
lattice.

Non-linearity Errors for Lattice Methods

The non-linearity errors in the lattice methods cause a peculiar even-odd convergence
(see Figure 4.5 and Figure 4.6). This oscillatory convergence is most noticeable
in binomial trees although it also occurs in trinomial trees. The adaptive mesh
model (Figlewski and Gao 1999) and the Black-Scholes modification (Broadie and
Detemple 1996) are attempts at smoothing this convergence.

Distribution Errors for Lattice Methods

The distribution error can be reduced by matching higher moments of the underlying
distribution. The (Figlewski and Gao 1999) trinomial tree (Section 4.4.2) matches
the kurtosis of the trinomial tree with that of the lognormal distribution in order to
decrease the distribution error.

4.3 Binomial Trees

In the binomial tree method, the stock price may make one of two moves (either
up or down) at each time step. The magnitude of an upward additive move for
the log-price process is ui while a downward additive movement has magnitude di.
Consequently, successive nodes may be calculated by,

X(i,j) =

{
X(i−1,j−1) + ui−1 for an upward movement
X(i−1,j) + di−1 for a downward movement.

The magnitude of an upward (resp. downward) multiplicative movement for the
stock price process is Ui = exp

{
ui

}
(resp. Di = exp

{
di

}
). Then,

S(i,j) =

{
Ui−1S(i−1,j−1) for an upward movement
Di−1S(i−1,j) for a downward movement.
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From the above it is seen that the binomial option pricing model has three free
parameters: Ui, Di, and the transition probability qi. These parameters are chosen
such that the mean and standard deviation of the tree matches that of the underlying
stochastic process (r and σ respectively). The system is underdetermined since
there are two constraints and three unknowns. This implies an additional degree of
freedom in the limit, and more than one degree of freedom when a finite number
of steps is used (Omberg 1987). Assuming that the tree is recombining reduces the
number of nodes in the binomial tree and leads to the the following restriction on
Ui and Di,

UiDi+1 = DiUi+1. (4.5)

Consequently, an upward movement followed by a downward movement arrives at the
same node as a downward movement followed by an upward movement, throughout
the tree. The number of nodes at each point in time is mi = i + 1 : i = 0, . . . , n (see
Figure 4.3 for an illustration of the binomial lattice). The transition probabilities
are given by,

qi,jk =





qi if k = j i.e. upward move
1− qi if k = j + 1 i.e. downward move
0 otherwise.
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Fig. 4.3: A three step binomial tree.

This property of being able to arbitrarily choose one of the parameters leads to
various formulations of the binomial pricing model. The rest of this section compares
the different formulations that have been proposed.

4.3.1 The Cox, Ross and Rubinstein Binomial Tree (CRR)

The first binomial tree to appear in print applied the principle of perfect replication
using a portfolio containing the underlying and a simple bank account in order
to calculate the lattice parameters (Cox, Ross, and Rubinstein 1979). The CRR
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model parameters match the mean of the binomial tree to that of the continuous
distribution exactly for any step size. However, the variance is only matched in the
limit (Omberg 1987). The movements and probabilities are identical for each time
step, although they are dependent on the size of the time step,

U = exp
{
σ
√

∆t
}

D = exp
{−σ

√
∆t

}

q =
exp

{
r∆t

}−D

U −D
.

These parameters ensure that the stock price tree is centred around the initial stock
price, S0 (see Figure 4.4). This greatly aids calculation, because the entire stock price
tree does not need to be calculated. The upward deterministic drift is incorporated
in the probabilities and consequently the stock price tree appears driftless. Only the
stock price node values at expiry, and one time step before expiry, need to be stored
because all other internal stock price node values correspond to these.

4.3.2 The Jarrow and Rudd Binomial Tree (JR)

The JR binomial tree reduces to the model of (Rendleman and Bartter 1979). Both
these models differ from the CRR model in that the mean and variance of the
binomial tree matches that of the underlying process over any time step. A constant
risk neutral probability of 1/2 is chosen (this restricts the free degree of freedom),
while the up and down factors are functions of the the mean and variance. Then,

U = exp
{(

r − σ2/2
)
∆t + σ

√
∆t

}

D = exp
{(

r − σ2/2
)
∆t− σ

√
∆t

}

q =
1
2
.

The binomial tree with symmetrical probabilities grows asymmetrically (see Figure
4.4 below).
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Fig. 4.4: The CRR binomial tree (left) is centred around S(0,1). The JR binomial
tree (right) is centred around S(0,1) exp

{(
r − σ2/2

)
i∆t

}
, i = 0, . . . , n.
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4.3.3 Calculating Option Values Using a Binomial Tree

The node values of the option at expiry are calculated using equation (4.3). The
continuation value at each node is then calculated using equation (4.4) applied to
binomial trees,

PCont
(i,j) = exp

{−r∆t
} [

qiP(i+1,j) + (1− qi)P(i+1,j+1)

]

where i = 0, . . . , n−1 and j = 1, . . . ,mi. Note that the values used in the calculation
of the continuation value may be intrinsic values.

4.3.4 Convergence of Binomial Trees

The convergence of binomial trees is oscillatory. However, this convergence is regular
for the CRR model when the option is at-the-money (see Figure 4.5). This is because
the tree is centred around the initial stock price S(0,1) which is equal to the strike
price. Consequently, the strike price coincides with a node. In general this is not
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Fig. 4.5: The convergence of CRR binomial trees for in-the-money, out-the-money
and at-the-money American put options.

the case for the JR model because the stock price tree is not centred around the
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initial stock price (see Figure 4.6). Consequently, the strike price does not fall on a
node, unless by coincidence.
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Fig. 4.6: The convergence of JR binomial tree for in-the-money, out-the-money and
at-the-money American put options.

4.4 Trinomial Trees

In the trinomial tree method, the stock price may make one of three moves (up, down
or remain the “same”) at each time step. The magnitude of an upward additive
movement for the log-price process is ui with probability qu

i and for a downward
additive move is di with probability qd

i . It remains the “same” with probability qm
i

(the tree may incorporate a deterministic drift). Then,

X(i,j) =





X(i−1,j) + ui−1 for an upward movement
X(i−1,j−1) + r for no random movement
X(i−1,j−2) + di−1 for a downward movement,

where r is the deterministic drift of the trinomial tree. The magnitude of an
upward (resp. downward) multiplicative movement for the stock price process is
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Ui = exp
{
ui

}
(resp. Di = exp

{
di

}
). Then,

S(i,j) =





Ui−1S(i−1,j) for an upward movement
exp

{
r∆t

}
S(i−1,j−1) for no random movement

Di−1S(i−1,j−2) for a downward movement.

The trinomial tree must ensure conservation of probability and consequently the
sum of the three probabilities is one. Therefore, the trinomial option pricing model
has four free parameters: Ui, Di, qu

i and qm
i (since qd

i = 1 − qu
i − qm

i ). As was
the case with binomial trees, these parameters are chosen such that the mean and
standard deviation of the tree matches that of the underlying stochastic process
(r and σ respectively). This system is underdetermined because there are three
constraints with four unknowns. This implies an additional degree of freedom in the
limit, and more than one degree of freedom when a finite number of steps is used
(Omberg 1987). One of these degrees of freedom can be restricted by assuming that
the tree is recombining, and equation (4.5) still holds. The number of nodes at each
time step is mi = 2i + 1, i = 0, . . . , n (see Figure 4.7 for an example of a trinomial
tree). The transition probabilities are given by,

qi,jk =





qu
i if k = j for an upward movement

qm
i if k = j + 1 for no random movement

qd
i if k = j + 2 for a downward movement

0 otherwise
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Fig. 4.7: A three step trinomial tree.

This freedom to choose one of the parameters leads to a variety of trinomial tree
models.

4.4.1 Hull-White Trinomial Tree (HW)

One commonly used parametrisation is described in (Hull and White 1993). This
formulation relies on embedding the drift in the risk neutral probabilities and con-
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sequently is slightly different from the general form above. The parametrisation
appears to be dependent on the original methodology of (Boyle 1986).

The Hull-White model is fully described by,

U = exp{σ
√

3∆t}
M = 1
D = exp{−σ

√
3∆t}

qu = −
√

∆t

12σ2
(r − σ2/2) + 1/6

qm = 2/3

qd =

√
∆t

12σ2
(r − σ2/2) + 1/6. (4.6)

4.4.2 Figlewski and Gao Trinomial Tree (FG)

The additional degree of freedom is used to match the kurtosis of the lattice with
that of the lognormal distribution of the underlying continuous time process. The
Figlewski and Gao model is fully described by,

U = exp{(r − σ2/2
)
∆t + σ

√
3∆t}

M = exp{(r − σ2/2
)
∆t}

D = exp{(r − σ2/2
)
∆t− σ

√
3∆t}

qu = 1/6
qm = 2/3
qd = 1/6. (4.7)

4.4.3 Calculating Option Values Using a Trinomial Tree

The node values of the option at expiry are calculated using equation (4.3). The
continuation value at each node is then calculated using equation (4.4) applied to
trinomial trees,

PCont
(i,j) = exp

{−r∆t
} [

quP(i+1,j) + qmP(i+1,j+1) + qdP(i+1,j+2)

]

where i = 0, . . . , n− 1 and j = 1, . . . ,mi.

4.4.4 Convergence of Trinomial Trees

The convergence of the trinomial trees does not display the same oscillatory conver-
gence as the binomial trees. Although the convergence is improved, it is not uniform
(see Figure 4.8).

4.5 The Black-Scholes Modification

The Black-Scholes modification of the binomial tree model was first suggested in
(Broadie and Detemple 1996). The inspiration for the modification comes from the
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Fig. 4.8: The convergence of a Hull-White trinomial tree for an in-the-money, out-
the-money and at-the-money American put option.

observation that the continuation value of the American put option, one time step
before expiry, is equivalent to the value of an identical European put option with
an expiry of ∆t. (This holds because the time step before expiry is the last possible
early exercise time).

This value can be calculated using the Black-Scholes option pricing formula (2.6).
This simple trick leads to an improved convergence speed and, more importantly,
a smoother convergence of the implemented binomial tree method. The simple
reason for this is that the non-linearity of the option payoff is removed and no
longer propagated through the tree. This does not result in completely uniform
convergence, but the large oscillations are removed (see Figure 4.9).

The continuation value at the n− 1 time step, PCont
(n−1, j) is set equal to the Black-

Scholes price,

PCont
(n−1, j) = K exp {−r(∆t)}Φ(−d2,j)− S(n−1,j)Φ(−d1,j),
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where j = 1, . . . , mn−1, and

d1,j :=
log(S(n−1,j)/K) + (r + 1

2σ2)∆t

σ
√

∆t
, d2,j := d1,j − σ

√
∆t.
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Fig. 4.9: The convergence of a CRR binomial tree with the Black-Scholes modifica-
tion and without the modification for an at-the-money and out-the-money
American put option.
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Fig. 4.10: The convergence of a Hull-White trinomial tree with the Black-Scholes
modification and without the modification for an at-the-money and out-
the-money American put option.

4.6 The Accelerated Binomial Option Pricing Model

The Richardson’s extrapolation approach used in (Geske 1977) (see Section 3.5)
was adapted for binomial trees in (Breen 1991). The accelerated binomial option
pricing model uses the extrapolation equations from Section 3.5.3 on three types of
options: P1, P2, and P3. Again, P1 which can be exercised only at expiry T (i.e. a
European option); P2 which can be exercised at times T/2 and T ; and P3 which can
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be exercised at times T/3, 2T/3, and T . These option values are estimated using a
binomial tree.

The convergence acceleration of the extrapolation method only works well when
the convergence of the approximating sequence is uniform (Omberg 1987). For many
binomial tree formulations, the convergence of the approximating sequence is highly
oscillatory (Section 4.2.3). The Black-Scholes modification (Section 4.5) removes
this oscillation and the accelerated binomial option pricing method can be applied
successfully.

4.6.1 Calculating Option Values Using the Accelerated Binomial
Option Pricing Method

The accelerated binomial option pricing method computes the American put op-
tion price by decomposing the option into a weighted sum of Bermudan options2.
This sum is analogous to the extrapolation formulae in Section 3.5.3. Each of the
Bermudan options are estimated using a standard binomial tree. The Bermudan
options can only be exercised at certain times and are European in nature between
possible exercise times. As a consequence, we can employ the closed form solution
of the (Cox, Ross, and Rubinstein 1979) binomial tree for the European put option,
p(t, s),

p(t, s) = exp
{−r(T − t)

} n∑

i=0

(
n

i

)
qn−i

(
1− q

)i(
K − sUn−iDi

)+
. (4.8)

between the exercise times. This reduces the number of calculations and hence a
large tree can be built with only a few possible exercise times.

Consider an option that can be exercised at m equally spaced times on the
tree: t1 = T/m, t2 = 2T/m, . . . , tm = T . To ensure that the exercise times fall
on specific nodes on the tree, the number of time steps must be divisible by the
number of exercise times i.e. n/m ∈ Z. The exercise times on the tree are given by
n/m, 2n/m, ..., n. The only nodes at which exercise is possible are

S(i,j) i = n/m, 2n/m, . . . , n, j = 1, . . . , mi.

Modifying equation (4.8) gives the following expression for the continuation value
at each relevant node,

PCont
(i,j) = exp{−r(T − t)/m}

n/m∑

k=0

(
n/m

k

)
qn/m−i(1− q)iP((i+1)n/m,j+k)

where i = n/m, 2n/m, . . . , (m− 1)n/m, n and j = 1, . . . , mi. Then the value of the
American put option at each relevant node is given by,

P(i,j) = max
(
PCont

(i,j) , P Int
(i,j)

)

where i = n/m, 2n/m, . . . , n and j = 1, . . . , mi.
2 Bermudan options are options which have a fixed number of possible exercise times during the

life of the option.
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Fig. 4.11: A binomial tree with six time steps (n = 6). The Bermudan option P3 is
exerciseable at m = 3 points in time: t1 = T/3, t2 = 2T/3 and t3 = T .
The continuation value for node (2, 1) is calculated from values at nodes
(4, 1), (4, 2), and (4, 3) (i.e. the continuation value for node (n/m, 1) is
calculated from nodes (2n/m, 1 + k), where k = 0, . . . , n/m).

4.6.2 Convergence of the Accelerated Binomial Option Pricing
Model

The convergence performance of this method is shown in Figure 4.12. The graph
on the left shows the individual option values for P1, P2 and P3 as a function of
the number of time steps in the binomial tree. The American put option price
using the standard CRR binomial tree is then compared to the approximation of
the accelerated binomial tree. As can be seen, the convergence of the method is
oscillatory about the binomial price and does not appear to converge with increasing
number of time steps. Following the logic of (Omberg 1987) it would appear that
this is probably due to the non-coincidence of the exercise dates of P2 and P3. This
oscillatory behaviour may be mitigated if the extrapolation is performed on P1,P2,
P4 (which can be exercised at times T/4, T/2, 3T/4, and T ), where the exercise
dates of P1 and P2 are a subset of P4.
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Fig. 4.12: The graph on the left shows the individual option values for P1, P2 and
P3 as a function of the number of time steps in the binomial tree. It also
shows the standard CRR binomial put price approximation compared
with the accelerated CRR binomial put price. The graph on the right
shows that the runtime of the standard CRR binomial method is con-
siderably higher for increasing time steps than that of the accelerated
CRR binomial tree method.

4.7 Adaptive Mesh Models

The adaptive mesh model was developed in (Figlewski and Gao 1999). The mesh is
designed to reduce the non-linearity errors that arise in lattice methods. (Reminder:
the non-linearity error results from the propagation of the non-linear payoff function
above and below the strike price, into the lattice by backward induction.) The
method increases the resolution of the lattice in the critical areas where the price is
most non-linear. The method can be used for a wide range of exotic options. For
European options this non-linearity only occurs around the strike price at expiry.
Therefore, the nodes that are most affected by the non-linearity are those nodes one
time step before expiry in the region of the strike price.

This non-linearity error is amplified when the strike price does not coincide with a
node. To address this issue, a finer lattice than the initial pricing tree is constructed
one time step before expiry around the strike price (AMM-1). It is possible to
iterate this approach a second time. A second level of refinement closer to the strike
price can be constructed to improve the convergence rate further (this is called the
adaptive mesh model with two levels of refinement (AMM-2)).

(Figlewski and Gao 1999) pointed out, that for American options, the non-
linearity may be propagated at any time step because of the possibility of early
exercise. The smooth-pasting condition may be used to reduce the non-linearity.
However, the adaptive mesh model may also be used to reduce the error around the
early exercise boundary. Consequently, an improvement in the approximation of the
American put option price may be achieved if a fine lattice is created at each time
step in the region around the early exercise boundary.
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4.7.1 The Adaptive Mesh Model with One Level of Refinement
(AMM-1)

We have applied AMM-1 to the non-linearity at expiry and not to the non-linearity
near the early exercise boundary.

Initially we need to locate the closest node, k, to the strike price, K, at expiry.
This node occurs within the initial lattice and not the adapted mesh. Node k is
chosen such that,

S(n,j) ≥ K, j ≥ k.

K lies between these nodes
S

(n,k)
         

S
(n,k−1)

           

S
(n−1,k)

           

S
(n−1,k−1)

             

S
(n−1,k−2)

             

S
(n−1,k−3)

             

} 
∆ t
        

∆ S
        

(∆ t)/4
            } (∆ S)/2

          

Fig. 4.13: A schematic of the adaptive mesh model for a standard trinomial tree.
The schematic details the area around the strike price one time step
before expiry. The strike price occurs between S(n,k−1) and S(n,k). The
parent nodes connected to these two values are: S(n−1,k−3), S(n−1,k−2),
S(n−1,k−1) and S(n−1,k).

The strike price is located between S(n,k−1) and S(n,k). By backward recursion
the only nodes which are directly affected by these two are: S(n−1,k−3), S(n−1,k−2),
S(n−1,k−1) and S(n−1,k). A fine mesh is constructed around these points. The size
of the time step for the new mesh is ∆∗t = ∆t/4, which leads immediately to a new
set of node values in the fine mesh.

Depending on the trinomial scheme used, new parameter values for the fine mesh
are calculated, viz. U∗, D∗, p∗u, p∗m and p∗d. Using these parameter values, a new
lattice S∗(i,j) (where i = 0, . . . , 4 and j = 1, . . . , m∗

i ) is created. In the new lattice



4.7 Adaptive Mesh Models 35

m∗
0 = 7, m∗

1 = 9, m∗
2 = 11, m∗

3 = 13, and m∗
4 = 15. The fine lattice lies on top of

the coarse lattice ensuring that

S(n−1,k−3) = S∗(0,1)

S(n−1,k−2) = S∗(0,3)

S(n−1,k−1) = S∗(0,5)

S(n−1,k) = S∗(0,7).

Option valuation on the fine lattice is then completed to create the option values
P ∗

(0,j), j = 1, . . . , 7. The four option values on the coarse grid are set equal to the
corresponding values on the fine lattice

P(n−1,k−3) = P ∗
(0,1)

P(n−1,k−2) = P ∗
(0,3)

P(n−1,k−1) = P ∗
(0,5)

P(n−1,k) = P ∗
(0,7).
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Fig. 4.14: The adaptive mesh model for a four time step trinomial tree. The strike
price is located between nodes (4, 5) and (4, 6). The fine lattice is con-
structed emanating from nodes (3, 3), (3, 4), (3, 5) and (3, 6).
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4.7.2 The Adaptive Mesh Model with Two Levels of Refinement
(AMM-2)

A second level of refinement can be added to the last time step of the first adaptive
mesh. The procedure for doing this is exactly the same as for the first level of
refinement except that of course the new time step jump is now ∆∗∗t = ∆∗t/4, with
a consequentially new set of value nodes.

4.7.3 Convergence of Adaptive Mesh Models

The effect that the adaptive mesh model has on the convergence rate is similar
to that of the Black-Scholes modification. It is interesting to note that using the
adaptive mesh on a trinomial tree only alters the rate at which the American put
option price converges to a solution, and not the manner in which the American
put price converges to a solution (see Figure 4.15). Thus the amplitude of the
convergence of the American put option price estimate (as the number of time steps
is increased) using the first level adaptive mesh model is less than the amplitude
of the convergence of the American put option price estimate calculated using the
standard Hull-White trinomial tree. This amplitude is reduced further when the
second adaptive mesh is added.
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Fig. 4.15: The convergence of Hull-White trinomial tree with adaptive mesh model
with one and two levels of refinement for an out-the-money and an at-
the-money American put option.



Chapter 5

Monte Carlo Methods

5.1 Introduction

5.1.1 Mathematical Foundations

Numerical integration schemes typically approximate the value of an integral by
partitioning the integration region into a set of discrete areas or volumes with as-
sociated weights e.g. quadrature methods (Abramowitz and Stegun 1970, Press,
Teukolsky, Vetterling, and Flannery 1999). A sum of weighted function values,
form an estimate of the total integral value. The specific quadrature scheme deter-
mines both the spacing of the areas (volumes) and their associated weights. Monte
Carlo integration uses a similar approach to this, except that the weights are chosen
to be equal and the terminal discrete points/areas/volumes are sampled randomly
from the distribution associated with the integration region (see (Glasserman 2005)
for a comprehensive treatment of Monte Carlo methods.) Under certain technical
conditions the law of large numbers may be invoked to ensure that the integral
approximation tends towards the correct value as the number of random terminal
values increases to infinity.

The integral of a function f(x) with an associated probability density function
h(x), such that

∫
A h(x)dx = 1,

IA =
∫

A
f(x)h(x)dx,

is approximated by randomly sampling numbers X1, . . . , Xn from the density func-
tion h(x) over the integration region A. The Monte Carlo estimate1, Î

(M)
A is then

the arithmetic mean of the function values,

Î
(M)
A =

1
M

M∑

i=1

f(Xi).

The convergence of the Monte Carlo method is of order O(1/M1/2) where M is
the number of samples used. In the one-dimensional case this convergence is slow,
even when compared to the simple quadrature techniques such as the trapezoidal

1 All Monte Carlo estimates are denoted by a hat, where (M) denotes the number of samples used
to generate the estimate.
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rule which has a convergence rate in one dimension of O(1/M2). However, the
convergence rates of most numerical integration schemes suffer from the “curse of
dimensionality”, i.e. the convergence rates decrease as the dimension of the problem
increases. The advantage of Monte Carlo methods is that the convergence rate
remains constant even as the dimension of the problem increases (Glasserman 2005).

5.1.2 Monte Carlo Methods for the European Put

(Cox, Ross, and Rubinstein 1979) showed, amongst other things, that the existence
of a replicating portfolio for a European option implies that the value of the option
can be expressed as the discounted expected value of its terminal payoff. They ap-
proximate the value process of the stock price by constructing a lattice with the price
distribution embedded therein. The option payoff is calculated from the terminal
lattice values and the expectations from the lattice construct. A discounted expec-
tation follows trivially (see Chapter 4). The application of Monte Carlo methods to
calculate this expected value was first introduced in (Boyle 1977). The value of a
European put option p(t, S) can be estimated by simulating the distribution of the
terminal option values. Trivially, this translates into simulating the terminal stock
price distribution.

The lognormal distribution of terminal stock prices can be simulated using the
solution St (equation (2.2)) of the SDE of geometric Brownian (equation (2.1)).
The solution is in terms of the Brownian motion WT−t. Under a given measure,
Brownian motion increments are normally distributed with a mean of zero and a
variance equal to the time increment,

Wt −Ws ∼ N (0, t− s), t > s,

and so the Brownian motion can be simulated using WT−t =
√

(T − t) Z where
Z ∼ N (0, 1). We can simulate M terminal stock prices, S

(m)
T ,m = 1, . . . , M from

M simulated Brownian motions, W
(m)
T−t,m = 1, . . . , M . The Monte Carlo estimate,

p̂(t), of the European option price is given by,

p̂(t) = exp
{−r(T − t)

} 1
M

M∑

m=1

(
K − S

(m)
T

)+

where r is the riskless rate of return over (T − t). The closed form solution (2.6) for
the European put option suggests that the Monte Carlo technique should converge.
When considering American put options, we are no longer concerned with terminal
stock prices, because early exercise is a possibility. In order to value the American
put, we need to generate a large number of discrete time stock price paths and
dynamically program rules to determine whether early exercise is optimal at any
stage during the path.

5.1.3 Generating Monte Carlo Sample Paths

We discretise the life of the option , T−t into n equal intervals of size ∆t = (T−t)/n,
with associated time steps, t = t0 < t1 < · · · < tn = T . Monte Carlo sample paths
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are created by simulating the geometric Brownian motion process (2.1) exactly at
each of these discrete times. This is achieved by using the solution (2.2) adapted
to each time step. This automatically forms a Markov chain. Consequently, the
percentage increments,

St1 − St0

St0

,
St2 − St1

St1

, . . . ,
Stn − Stn−1

Stn

are independent and solution (2.2) can be written in terms of Brownian motions
{Wi} ≡ {Wti}, i = 1, . . . , n as,

Si = Si−1 exp
{(

r − σ2/2
)
(ti − ti−1) + σ

(
Wi −Wi−1

)}
, (5.1)

where i = 1, . . . , n and Si ≡ Sti . Wi − Wi−1 is simulated using
√

(ti − ti−1) Zi,
where Zi ∼ N (0, 1) for all i = 1, . . . , n. Solving equation (5.1) recursively, creates
a stock price path, {Si}i=0,...,n whose marginal distributions matches the lognormal
distribution of the geometric Brownian process (2.1). For optimal implementation
in Matlab we define the vector of values,

Si = S0 exp
{(

r − σ2/2
)
(ti − t0) + σ

i∑

j=1

√
(tj − tj−1) Zj

}

where i = 1, . . . , n. This creates one sample path of the stock price. We need
to simulate many stock price paths to approximate the lognormal distribution at
each time step. This is achieved by sampling n ×M independent standard normal
random numbers Zm

i , where Zm
i ∼ N (0, 1) for all i = 1, . . . , n and m = 1, . . . ,M .

These numbers can then be used to generate M stock price paths {S(m)
i }.

In order to price an American put option we need to determine whether the
sample path has crossed the early exercise boundary. Of course, the early exercise
boundary is unknown and also needs to be estimated. This is difficult to do, however,
because we need to implement a backward recursion method using Monte Carlo,
which is forward looking.

5.1.4 Difficulties Encountered Using Monte Carlo Methods for
Pricing American Put Options

The right to exercise the option at any time prior to expiry implies that we are no
longer just estimating the discounted expected value of the terminal payoff. The
Snell’s envelope representation (2.9) defines the price of the American put option as
the maximum value over all possible stopping times τ ∈ [t, T ]. But stopping times
are Ft-measurable, i.e. an exercise decision is made at τ using information only
known at τ . This results in a non-trivial maximisation problem.

A naive method (Tilley 1993a) can be implemented by replacing the optimal
stopping time for each sample path, τ∗(m),m = 1, . . . , M , with a time τ∗(m) such
that this time maximises the discounted exercised value for each stock price path.
This is no longer a stopping time and since it uses the information inherent in the
entire sample path,

{
S

(m)
i : i = 0, . . . , n

}
, for all m = 1, . . . ,M , in order to determine
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its value. We generate sample paths,
{
S

(m)
i

}
, each with n time steps and then use

equation (5.1.2) to determine τ∗(m). Then a naive estimate of the American put
option price is given by,

P̂M
naive(t) =

1
M

M∑

m=1

e−r(τ∗(m)−t)
(
K − Sm

τ∗(m)

)+
.

This exercise strategy results in a systematic upward bias in the premium estimate
since the exercise time is chosen to yield the maximum payoff per path and no other
strategy can yield a higher premium estimate.

A common approach to evaluating stopping times is to use Bellman’s principle.
In this case, the price of the American put option, P (t) is approximated as a discrete
dynamic programming problem which is then solved using backward recursion. The
difficulty with using this approach in a Monte Carlo environment is that the Monte
Carlo technique is forward recursive. Using Bellman’s principle, we move backwards
from expiry making exercise decisions at each time step for each sample stock price
path by comparing the intrinsic value with the continuation value.

An important consideration when implementing a Monte Carlo method for Amer-
ican option pricing is understanding the bias which is introduced by the method.
Some methods have a upward bias, a downward bias, or a mix of both biases. A
upward bias usually results from the use of information about the future to make
early exercise decisions (an example of this is the naive method above). Backward
recursion algorithms often have this type of bias. A downward bias is often intro-
duced by making suboptimal early exercise decisions. By separating methods which
introduce opposing biases we may calculate an upper and a lower estimate for the
option premium.

5.1.5 Dynamic Programming for Monte Carlo Methods

The Snell’s envelope representation is solved as the dynamic programming problem
given by equations (2.11) and (2.12). The value at expiry is the intrinsic value or
payoff function g(T, ST )+ where g(·) is the payoff function (2.7). Prior to expiry,
at each time step we have two choices: exercise the option or hold onto the option.
We calculate successive option value estimates by backward recursion. Unlike the
European option estimation we are required to make exercise decisions at each point
in time. The estimates are given by, P̂i(S) : i = n− 1, . . . , 0.

The value of exercising the option at each time step is the intrinsic value,
g(ti, Si) : i = 0, . . . , n where g(·) is the payoff function (2.7) . Monte Carlo al-
lows calculation in more than one dimension. The individual discount factors for
each time period may depend on a stochastic interest rate which could be state and
time dependent. In the Black-Scholes environment the interest rate, r, is a constant
riskless rate of return. Consequently, the standardised discount factor between ti to
ti+1 is dependent only on the time step size,

di = exp
{−r(ti+1 − ti)}, (5.2)
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Fig. 5.1: Once the sample paths have been constructed, the recursive option esti-
mates, P̂i(S), i = n− 1, . . . , 0 are evaluated using both the option values
one time step ahead P̂i+1(S) and the intrinsic value.

where i = 0, . . . , n − 1. The total discount factor, Di, discounts any value at time
ti, from ti to an earlier time t0 such that Di =

∏i
j=1 dj . Then,

Di = exp
{−r(ti − t0)},

where i = 1, . . . , n. The discrete dynamic programming problem (equations (2.11)
and (2.12)) for the American put option, Pi(S) reduces to,

Pn(S) = g(t, S) (5.3)
Pi−1(S) = max

{
g(t, S), Hi(S)

}
, i = n, . . . , 1. (5.4)

where the continuation value, Hi(S) ≡ di−1E
[
Pi(Si)

∣∣S = Si−1

]
: i = 0, . . . , n − 1,

is the value of the option if it is unexercised at ti−1. Estimating the continuation
value is not straightforward. The Monte Carlo methods discussed below use dif-
ferent approaches to estimate this value and it can be used to either approximate
the early exercise boundary (Grant, Vora, and Weeks 1996), or to backward propa-
gate the option value by approximating the optimal exercise time (Barraquand and
Martineau 1995, Carriere 1996, Longstaff and Schwartz 2001, Tilley 1993a, Tsitsiklis
and Van Roy 2001).

5.1.6 The Early Exercise Boundary and Optimal Stopping for
Monte Carlo Methods

A majority of the methods do not explicitly calculate the early exercise boundary.
The option values are calculated recursively without mention of the early exercise
boundary. In these methods, exercise occurs when the continuation value drops
below the intrinsic value. The optimal stopping time, tτ∗(m) is chosen as the earliest
time step that this occurs,

τ∗(m) = min
{
ti ≤ tn

∣∣Ĥi

(
S

(m)
i

) ≤ g
(
ti, S

(m)
i

)}
,
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where Ĥi(·) is estimated using Monte Carlo. Once all the stopping times have been
calculated, the Monte Carlo estimate, P̂ (t) is calculated using,

P̂ (t) =
1
M

M∑

i=1

Dτ∗(m)

(
K − S

(m)
τ∗(m)

)+
.2 (5.5)

The method of (Grant, Vora, and Weeks 1996) used Monte Carlo simulation to
explicitly approximate the early exercise boundary. The discrete approximation
of the early exercise boundary,

{
b̂i

}
i=0,...,n−1

, is calculated by comparing intrinsic
values with approximate continuation values at each time step for a variety of values
of the underlying. The exercise boundary at expiry is equal to the strike price, bn =
K. At each preceding time step an approximation of the early exercise boundary
value is found by searching for the stock price which makes the intrinsic value equal
to the continuation value,

{
b̂i = S

∣∣g(t, S) = Ĥi(S)
}
. (5.6)

Each continuation value, Ĥj(·), is calculated using Monte Carlo methods and the
already calculated portion of the early exercise boundary,

{
b̂i

}
i=j+1,...,n

. Once the
entire boundary has been calculated, independent stock price paths are generated
using standard Monte Carlo. The optimal stopping times for these new sample
paths are evaluated with respect to the early exercise boundary,

{
b̂i

}
(see Figure

5.2). These optimal stopping times, τ∗(m) for all m = 1, . . . , M , are defined by,
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Early Exercise Boundary
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Exercise occurs at the earliest time            
the stock price hits the early                  
exercise boundary b(τ*(m))                   

Optimal stopping time τ*(m)          

Fig. 5.2: The continuation region is separated from the exercise region by the early
exercise boundary.

τ∗(m) = min
{
ti ≤ tn

∣∣S(m)
i ≤ b̂i

}
.

The Monte Carlo estimate, P̂ (t) is then calculated using equation (5.5).

2 Here, S
(m)

τ∗(m) = S
(m)
i where τ∗(m) = ti.
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5.2 Tilley’s Bundling Algorithm

The first application of Monte Carlo techniques to the estimation of the American
put option price was in (Tilley 1993a). The Monte Carlo estimate P̂ (t) uses the
dynamic programming algorithm equations (5.3) and (5.4). The continuation values,
Ĥi(S) : i = 1, . . . , n, are estimated by applying a crude regression technique at each
time step to the M sample paths

{
S

(m)
i

}
i=0,...,n

where m = 1, . . . , M .
The terminal values, P (T ) are calculated in the usual fashion using equation (5.3).

At each preceding time step, ti : i = n − 1, . . . , 1, we order the stock prices
S

(m)
i : m = 1, . . . , M . Once in descending order, the stock prices are divided into

distinct bundles each containing r stock prices. If there are a such distinct bundles,
Aj : j = 1, . . . , a, then a× r = M . An average continuation value, Ĥi(Aj), is asso-
ciated with each distinct bundle, at each time step ti. This is calculated by taking
the average of the discounted option values one time step ahead for each stock price
in the bundle,

Ĥi

(
Aj

)
=

1
r

M∑

m=1

diP̂i+1

(
S

(m)
i+1

)
I{S(m)

i ∈Aj}. (5.7)

These average continuation values are used to make exercise decisions for each indi-
vidual sample path in each bundle. The associated average being compared with the
intrinsic value at each stock price, S

(m)
i , only. Hence the option values are calculated

using,

P̂i

(
S

(m)
i

)
=

{
g
(
ti, S

(m)
i

)
if g

(
ti, S

(m)
i

) ≥ Ĥi

(
Aj

)

diP̂i+1

(
S

(m)
i+1

)
if g

(
ti, S

(m)
i

)
< Ĥi

(
Aj

) , (5.8)

for each S
(m)
i ∈ Aj , and where m = 1, . . . , M .

Using the average continuation value for each bundle to make exercise decisions
introduces a transition zone instead of an exact early exercise boundary. Each
transition zone is a subset of the ordered stock prices. There may be contradicting
exercise decisions between stock paths in neighbouring bundles, e.g. consider two
stock prices S

(m1)
i < S

(m2)
i , each in a separate bundle. Due to the average nature of

the exercise decision, exercise may be calculated to be optimal at stock price S
(m2)
i

but not at S
(m1)
i , even though the intrinsic value at S

(m1)
i is obviously greater than

the intrinsic value at S
(m2)
i . This is because the intrinsic value is being compared

with an average calculated continuation value.
The effect of the transition zone can be ameliorated by introducing a sharp

boundary which increases the convergence rate of the method and places fewer re-
strictions on the choice of the bundling parameters a and r. Methods for choosing
the sharp boundary were discussed in (Tilley 1993b). The initial idea was to pick the
first stock price below which decisions to exercise dominate decisions not to exercise.
The sharp boundaries can then be used to make exercise decisions to calculate the
option estimates, P̂i(S) : i = n−1, . . . , 1. The final approximation P̂ (t) is calculated
by taking the discounted arithmetic mean of the approximate option values one time
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step in the future,

P̂ (t) =
1
M

M∑

m=1

d0P̂1

(
S

(m)
1

)
. (5.9)

Analysing the different sources of bias for this method is difficult due to the manner
in which exercise decisions are made. It is unclear exactly how the calculation of
average continuation values over each bundle affects the bias of the estimate. The
rest of this section details the algorithm, and a comprehensive discussion of the bias.

5.2.1 Calculating Exercise-or-Continue Indicator Values

In (Tilley 1993a) an exercise-or-continue indicator function, zi(S), was introduced
which gave the early exercise time for each stock price path. The indicator function
takes the value one at only one time, and is zero everywhere else. Once the indicator
function has been evaluated for each path, the option is approximated by,

P̂ (t) =
1
M

M∑

m=1

n∑

i=1

Dizi(S
(m)
i )g(ti, S

(m)
i ).

This indicator function approach is, however, unnecessarily time consuming because
we store the option values, P̂i(S), through the backward recursion process. Conse-
quently, the final option value can be calculated using equation (5.9).

The option values at expiry are equal to the intrinsic value, P̂n(S(m)
n ) = g(tn, S

(m)
n )

for all m = 1, . . . , M . The ensuing dynamic programming problem (5.4) is evaluated
using eight steps at each point in time ti : i = n− 1, . . . , 1. At each point in time,

Step 1: Reorder the stock prices S
(m)
i : m = 1, . . . , M , from highest to lowest.

Step 2: Compute the intrinsic value for each stock price, g(ti, S
(m)
i ) : m = 1, . . . , M .

Step 3: Partition the M ordered stock prices into a distinct bundles, Aj : j =
1, . . . , a containing r paths in each bundle. Define the bundling parameter, α, such
that,

a = Mα, r = M1−α.

Then M = ar. The value of the bundling parameter α influences the convergence
of the algorithm and is discussed in the next section.

Step 4: Calculate the continuation value for each bundle, Ĥi(Aj) : j = 1, . . . , r,
using equation (5.7). The continuation value for each stock price path is then the
continuation value of the bundle it belongs to.

Step 5: Calculate a temporary indicator variable, yi(·), for each stock price,

yi

(
S

(m)
i

)
=

{
1 g

(
ti, S

(m)
i

) ≥ Ĥi

(
S

(m)
i

)
Exercise

0 g
(
ti, S

(m)
i

)
< Ĥi

(
S

(m)
i

)
Continue

(5.10)

where m = 1, . . . , M .
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Step 6: Exercise decisions are given by sequences of zeros and ones generated by
the temporary indicator variable. The transition zone begins with the first “Exer-
cise” indication and ends with the last “Continue” indication, e.g.

0 . . . ‖000001‖001111‖000111‖011111‖1 . . . 1

Ak Ak+1 Ak+2 Ak+3

↓ Transition zone ↓
yi

(
S

(m)
i

)

Eliminating this transition zone can improve the convergence. It therefore makes
sense to replace the transition zone with a sharp boundary, b̂i, which is an approx-
imation of the early exercise boundary at each time ti. Notice that the transition
zone contains a number of false indicators. In the example above the first “1” which
marks the beginning of the transition zone is a false exercise indicator. The final “0”
is also a false continue indicator. The first string of “1”s which is longer than any
subsequent string of “0”s is effectively the true early exercise boundary indicator.
The method for calculating b̂i (Tilley 1993a) is to choose the unique value of m, say
k∗, which corresponds to the position of the first temporary indicator value of “1”
in this particular sequence, e.g.

0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 .
?

Sharp Boundary, k∗

yi

(
S

(m)
i

)

This method of determining the sharp boundary is both time consuming and a little
arbitrary. The value of the option within this method is relatively insensitive to the
exact position of the early exercise boundary. An alternative method suggested in
(Tilley 1993b) is to move all the zeros to the left and all the ones to the right. Then
k∗ is the number of zeros in the temporary indicator variable,

k∗ =
M∑

m=1

I
yi

(
S

(m)
i

)
=0

.

Either method yields a value for k∗. The stock price which corresponds to m = k∗,
Sk∗

i , is an approximation for the early exercise boundary at any time ti.

Step 7: Decide which sharp boundary method to use. Then, define a new exercise-
or-continue indicator variable, ȳi(·)

ȳi

(
S

(m)
i

)
=

{
1 for m ≥ k∗

0 for m < k∗.

Using the original method of (Tilley 1993a) and the same example as above,

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .
?

Sharp Boundary, k∗

ȳi

(
S

(m)
i

)
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Step 8: The approximate option value at ti, P̂i(·), is given by

P̂i

(
S

(m)
i

)
=

{
g
(
ti, S

(m)
i

)
if ȳi

(
S

(m)
i

)
= 1

diP̂i+1

(
S

(m)
i+1

)
if ȳi

(
S

(m)
i

)
= 0.

The final approximate option value, P̂ (t), is calculated using (5.9).

5.2.2 Bias of Tilley’s method

We introduce a hypothetical estimate, P̂M
Exact, for the price of the American put

option which uses M sample paths but makes the correct early exercise decisions.
This leads to an unbiased estimate, by definition. In Section 5.1.4 we defined a
naive estimate, P̂M

Naive, in equation (5.3). Because the naive estimate is computed
with perfect hindsight it always returns the maximal estimate. The naive estimate
dominates both the hypothetical estimate and Tilley’s estimate

P̂M
Exact ≤ P̂M

Naive, P̂M
Tilley ≤ P̂M

Naive,

although it is unclear how the bias of P̂M
Tilley compares with P̂M

Exact. Tilley’s method
contains two sources of bias: one upward and one downward (Tilley 1993b).

The use, at each point in time, of the complete information set, up to expiry,
produces an upward bias in the estimate. This bias is common to all techniques
using dynamic programming because the continuation value is calculated from values
one time step in the future. The downward bias in Tilley’s method results from
using an imprecise rule to select the sharp boundary. Suboptimal exercise decisions
invariably result in an estimate which is downward biased. The exact position of
the sharp boundary does not, however, have a significant impact on the option
premium (Tilley 1993b). Although this bias cannot easily be measured, it has a
slight cancelling effect which improves the convergence of the estimate.

5.2.3 Convergence of Tilley’s method

Tilley’s method produces an estimate for the American put option price which con-
verges as the number of time steps, n, tends towards infinity. In general it is unclear
whether this estimate has an upward or downward bias. We will instead investigate
the factors which influence the convergence rate of this method: the number of time
steps n, the number of stock price sample paths M , the bundling parameter α and
the choice of definition of the sharp early exercise boundary.

Sample Size Convergence

The dominant bias in any Monte Carlo methods will determine whether it converges
from above or below as the number of stock price paths increases. Tilley’s method
has offsetting biases, which make the nature of the convergence unclear. Figure 5.3
shows no discernable convergence bias. Hence, all we can say is that the estimate
should tend toward the true value as the number of sample paths increases.
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Fig. 5.3: Convergence behaviour of Tilley’s estimates as the number of sample
paths, M , increases. There is a fixed number of time steps (n = 75)
for each sample path and a fixed bundling parameter (α = 0.5). The
Crandall-Douglas finite difference value is assumed to be the true value
of the option.

Time step Convergence

The majority of numerical methods used for pricing the American put option con-
verge to the true value from below, as the number of time steps increases. The limit
of any numerical method will be the continuous time process which, in the case of
the American put option, triggers exercise as soon as the sample path hits the early
exercise boundary. Any discrete approximation of the continuous time process has
an infinite number of continuous paths between each discrete realisation point which
could have hit the boundary. This results in (theoretically) an infinite number of
missed early exercise opportunities (see Figure 5.4). From Figure 5.5 we can see
that the convergence in Tilley’s method is from below.

Bundling Parameter α and the Transition Zone

The bundling parameter α dictates the number of bundles, where this number lies
between 1 and M . A choice of α = 0 coincides with one bundle containing M sample
stock paths, while α = 1 produces M bundles each containing one sample stock price
path. A choice of α may introduce one of two errors:

1. A small α (which produces a small number of bundles) results in an over-
averaging of the continuation value. There are too many sample paths in each
bundle which results in an over-aggregation error.

2. A large α (which produces a large number of bundles) reduces the accuracy of
the mathematical expectation, because too few samples are used.

A balance must be found when deciding on a value for α. If the number of sample
stock price paths is increased, the effect of the bundling parameter is mitigated. For
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Fig. 5.5: The convergence behaviour for Tilley’s estimates as the number of time
steps, n, is increased. There is a fixed number of sample paths (M =
100000) for each estimate and a fixed bundling parameter (α = 0.5). The
Crandall-Douglas finite difference value is again assumed to be the true
value of the option.

a large number of sample paths, the Tilley estimate converges to the true value of
the option. Figure 5.6 shows that, empirically, an α ≈ 0.5 yields the most stable
results.

Removal of the transition zone by introducing a sharp boundary improves the
convergence behaviour of the method. It, simultaneously, also allows for a larger
stable range of the bundling parameter. The presence of a transition zone forces
α into a range of [0.45, 0.55], while replacing this with a sharp boundary increases
this range to [0.4, 0.9] (see Figure 5.6). The lower the choice of α, the faster the
approximation. Consequently, a sharp boundary with α = 0.5 is optimal.
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Fig. 5.6: The option estimates have been calculated using the same set of random
numbers. When a transition zone exists, the estimate is far more sensitive
to a choice of α.

5.3 The Grant, Vora and Weeks Method

The algorithm suggested by Grant, Vora and Weeks in (Grant, Vora, and Weeks
1996) (GVW) uses an adaptation of equations (5.5) and (5.6). The algorithm is used
to produces a discrete estimate of the early exercise boundary, {b̂i}i=1,...,n, instead of
calculating explicit continuation values, Ĥi(S

(m)
i ), at each time step. Independent

sample paths {S(m)
i }i=0,...,n : m = 1, . . . , M are subsequently generated once the

early exercise boundary has been estimated. A value for the put price corresponding
to each sample path is calculated using the early exercise boundary and a Monte
Carlo estimate, P̂ (t), is the average of these estimates over M .

One advantage GVW has over Tilley’s bundling algorithm is that it can be easily
applied to higher dimensions. There is no straightforward extension of Tilley to
higher dimensions. The GVW method, however, reduces to a search for the specific
state at each time step where early exercise is optimal. The rest of this section
details the algorithm to locate the early exercise boundary, and then discusses the
bias and convergence characteristics of the method.

5.3.1 The Early Exercise Boundary at Each Time step

The early exercise boundary b̂i at time ti is defined be equation (5.6). The GVW
algorithm is backward recursive. The boundary is known at tn : bn = K and the
algorithm then calculates earlier estimates recursively by solving for the root of the
function f(b),

f(b) = g(ti, b)− P̂i(b).

P̂i(·) is an independent Monte Carlo estimate, calculated at ti, originating at some
Si, and using the existing estimate of the early exercise boundary, {b̂j}j=i+1,...,n.

For each Monte Carlo estimate P̂i(b), we need to generate M ′ stock price sample
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paths
{
S

(m)
j

}
j=i,...,n

: m = 1, . . . , M ′ conditional on S
(m)
i = b for all m,

S
(m)
j = b exp

{(
r − σ2/2

)
(tj − ti) + σ

j∑

k=i+1

√
tk − tk−1 Z

(m)
k

}
,

where j = i+1, . . . , n and Z
(m)
k ∼ N (0, 1). The same set of random numbers is used

for each successive value of S
(m)
j .

The payoffs are decided by calculating an optimal exercise index τ(m) where,

τ(m) = min
{
ti+1 ≤ tj ≤ tn

∣∣S(m)
j ≤ b̂j

}
,

where {b̂j}j=i+1,...,n are the early exercise boundary estimates calculated using Monte
Carlo in previous steps. Then,

f(b) = g(ti, b)− 1
M ′

M ′∑

m=1

exp
{−r(τ(m)− ti)

}
g
(
τ(m), S(m)

τ(m)

)
. (5.11)

Equation (5.11) does not really simplify the process. The estimation of the expec-
tation using Monte Carlo creates a numerically induced instability. Any bracketing
method requires smoothness in the estimate. The Monte Carlo estimate affects the
monotonicity of the early exercise boundary. This critically excludes using the cal-
culated value one time step ahead as an upper bound. A crude, but in this case
effective, root finding technique is suggested in (Grant, Vora, and Weeks 1996).

The globally admissible early exercise domain is [0,K]. Divide this domain into
Q possible values, βq : q = 1, . . . , Q. Evaluate f(βq) using equation (5.11) for each
βq. At some value, q∗, this value will change sign. This gives an interval (βq∗−1, βq∗ ]
in which the root of the equation must lie. A final approximation for the early
exercise boundary value b̂i is linearly interpolated from (βq∗−1, βq∗ ]. This proce-
dure is completed at each ti to estimate the entire discrete early exercise boundary
{b̂i}i=1,...,n (see Figure 5.7).

(Fu, Laprise, Madan, Su, and Wu 2001) suggest using a bisection or a secant
method to calculate the zero of equation (5.11). Any bisection method in this
context requires monotonicity in the function that is being estimated. The instability
caused by the Monte Carlo estimation of the expectation often means that bisection
methods do not converge. Consequently, the suggested technique does not improve
on the previous crude root finding technique.

Once the early exercise boundary,
{
b̂i

}
i=1,...,n

, has been approximated, M inde-
pendent stock price paths are generated. Early exercise times are evaluated and the
final approximate option value, P̂ (t), is calculated using equation (5.5).

5.3.2 Bias of the GVW Algorithm

The upward bias of Tilley’s method (and most dynamic programming methods)
is not present in the GVW algorithm because future information is not used to
make early exercise decisions. The approximate early exercise boundary is calcu-
lated using samples which are deliberately independent of the samples used for the
approximation of the premium.
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Fig. 5.7: The surface, f(b) for stock prices in [0,K], and time in [0, T ]. The early
exercise boundary occurs at the root which corresponds to equality be-
tween the exercise value and the continuation value. The figure on the
right is the estimated early exercise boundary.

However a downward bias is introduced because of the approximate nature of
the early exercise boundary. Almost any method which makes suboptimal exercise
decisions reduces the value of the option estimate. Increasing the accuracy of the
approximate boundary is difficult because of the instability of equation (5.11). It is
not possible to specify the precision of the approximation. Small instabilities in the
early exercise boundary value, however, do not have a large impact on the value of
the option. Consequently, even though the boundary is just a rough approximation,
a good estimate for the premium is obtained.

5.3.3 Convergence of the GVW Algorithm

The GVW algorithm produces an estimate for the American put option price which
converges as the number of time steps n tends towards infinity. Again, there are
various factors which influence the convergence rate: the number of time steps n,
the number of sample stock price paths M and the number of stock prices M ′ used
to calculate the early exercise boundary.

Sample Size for Boundary Estimation M ′

Similarly to Tilley’s method, the value of the option is relatively insensitive to the
early exercise boundary. Therefore, increasing the number of samples used in esti-
mating the boundary, b̂(t), does not necessarily have a large effect. Figure 5.8 shows
the convergence behaviour of the GVW estimate as we increase M ′. For each esti-
mate of the boundary, the same set of sample stock paths is then used to estimate
the price of the American put option, P̂ (t). These estimates seem to converge from
below, although it is not a strictly increasing sequence because the early exercise
boundary is unstable.
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Fig. 5.8: The figure on the left shows the convergence behaviour of GVW esti-
mates as the number of sample paths used to estimate the early exercise
boundary, M ′, increases. There is a fixed number of time steps (n = 75)
for each sample stock path and a fixed number of samples, M = 50000.
For each boundary estimate, the same sample paths are used to estimate
P̂ (t). In all cases Q = 15. The Crandall-Douglas finite difference value is
assumed to be the true value of the option.
The figure on the right shows the convergence behaviour of the early
exercise boundary estimates as M ′ increases.

Sample Size Convergence

The early exercise boundary, b̂(t) is estimated independently of the sample stock
prices that are used to estimate the price of the American put option, P̂ (t). A
convergence from below is noticed when the same early exercise boundary is used
for estimates calculated using an increasing number of sample stock price paths for
the option estimate. The downward bias implies that the GVW estimate tends
towards the correct price from below as the number of sample paths increases (see
Figure 5.9).

Time step Convergence

The GVW method has the same time step convergence behaviour from below as
Tilley’s method (see Figure 5.10), i.e. the estimate converges to the true value from
below.

5.4 State Space Partitioning

The state space partitioning algorithm (SSAP) for the approximation of the Amer-
ican put option price (Barraquand and Martineau 1995) uses a similar dynamic
programming technique to Tilley’s method (Tilley 1993a). Instead of organising
the stock prices into bundles at each time step, however, we partition the stock
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Fig. 5.9: Convergence behaviour of GVW estimates as the number of sample paths,
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early exercise boundary. The same estimated early exercise boundary,
b̂(t) is used for all estimates. The Crandall-Douglas finite difference value
is assumed to be the true value of the option.
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Fig. 5.10: The convergence behaviour of GVW estimates as the number of time
steps, n, is increased. There is a fixed number of sample paths for each
estimate with M = 100000 and Q = 15. The Crandall-Douglas finite
difference value is again assumed to be the true value of the option.

price domain (state space) into a tractable number of states. These states are time
dependent and are chosen from a subset of the state space. We use Monte Carlo
simulation to estimate the continuation value associated with each state by calculat-
ing the conditional probabilities of moving between states. Dynamic programming
techniques are then used to estimate the price of the American put option, P̂ (t).

In Tilley’s method we use average continuation values for each stock price path.
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In contrast, in the state space partitioning method we estimate continuation values
for each state and not for each stock price path.

We first need to decide a partitioning of the state space. The average intrinsic
value of each state must then be calculated. We then calculate the transition prob-
abilities, and conclude by applying dynamic programming techniques to estimate
P̂ (t).

5.4.1 Partitioning the State Space

Given n equal time steps such that 0 = t0 < t1 < · · · < tn = T , at each ti, the state
space [0,∞) is partitioned into ai disjoint states, Aj

i : j = 1, . . . , ai. The number of
partitions varies with i. These partitions are chosen a priori in order to encompass
the majority of the simulated stock price paths. In other words, the partitioning is
over the expected densest region of paths and consigns the outliers to one of two
marginal regions. The runtime of the algorithm is highly dependent on the number
of partitions. Consequently, we should partition the sample space carefully to ensure
that an accurate estimate is obtained from the smallest number of partitions.

(Barraquand and Martineau 1995) use a real valued function to partition a region
of interest bounded by an upper and lower value, Smin and Smax. At t0, this region
of interest is the initial stock price, S0. There is only one state a0 = 1, so A1

0 = {S0}.
At all future times, ti, the partitioning is chosen using,

Aj
i =

(
αi exp{βi(j − 2)}, αi exp{βi(j − 1)}

]
, (5.12)

where j = 2, . . . , ai−1 and αi, βi are determined by restricting the region of interest
to the set of values where simulated stock price paths are most likely to occur. This
region is [Smin, Smax] with Smin and Smax chosen such that

P(St < Smin) ≈ P(St > Smax) ≈ 0.01. (5.13)

The probability that a sample stock price path lies outside the region of interest
is small, but not impossible. Consequently, we define the first and last states to
make allowance for these events: A1

i = [0, Smin] and Aai
i = [Smax,∞). Using the

partitioning (5.12) gives

αi = Smin

Smin exp{βi(ai − 2)} = Smax,

at each time, ti.
Values for Smin and Smax are chosen using the inverse cumulative normal func-

tion3, Φ−1(x) on the log price process of St which is distributed normally with a
mean, µ = log(S0) + (r − σ2/2)t, and a standard deviation, σ

√
t. This gives the

following expressions for αi and βi,

αi = exp
{
µ̄i − Φ−1(0.01)σ̄i

}

βi =
(
µ̄i − Φ−1(0.99)σ̄i

)
/
(
log(αi)/(ai − 2)

)

3 y = Φ−1(x) solves P(X ≤ y) = x for a standard normal random variable X ∼ N (0, 1).
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Fig. 5.11: An example of a partitioning of the state space with n = 10 time intervals
and ai = 20 for all i > 0.

where µ̄i = log(S0) + (r − σ2/2)i∆t and σ̄i = σ
√

i∆t. The remaining partitions
are then calculated using equation (5.12) (see Figure 5.11). At each time step, a
fixed number (ai = a, for all i > 0) of partitions is decided upon a priori. This
number can be varied to optimise the accuracy and convergence rate of the resulting
estimate.

5.4.2 Calculating the Average Intrinsic Value for Each State

For each state we define an average intrinsic value, ĝ(Aj
i ), where i = 0, . . . , n and

j = 1, . . . , ai. These intrinsic values are calculated from a set of Monte Carlo sample
stock price paths. We first generate M sample stock price paths, {S(m)

0 }i=0,...,n :
m = 1 . . . , M . We use these paths to calculate the average intrinsic value for each
state, at each point in time. We do this by averaging the intrinsic value over the
number of stock prices in a particular state. There is no specific number of stock
prices which will automatically fall in any one state (in fact, there may be states
which contain no stock prices). The average intrinsic values are calculated as the
arithmetic mean of the intrinsic values of sample stock price paths which lie in the
particular state,

ĝ(Aj
i ) =

1

N j
i

M∑

m=1

(
K − S

(m)
i

)+I
S

(m)
i ∈Aj

i

,

where i = 1, . . . , n, j = 1, . . . , ai and N j
i =

∑M
m=1 IS(m)

i ∈Aj
i

is the number of sample

stock price paths that belong to each state Aj
i (see Figure 5.12).

5.4.3 Calculating Transition Probabilities

The SSAP algorithm uses the dynamic programming algorithm equations (5.3) and
(5.4) applied to each of the states Aj

i . The continuation value associated with each
state is calculated as the discounted expected value of the option one time step in
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Fig. 5.12: The state intrinsic values are equal to the mean of the Monte Carlo stock
price path intrinsic values.

the future, conditional on the originating stock price being in this state. In order
to calculate this, we require the transition probabilities, qj,k

i . These represent the
probability of moving from state Aj

i , at ti, to state Ak
i+1, at ti+1. To calculate these

probabilities we require the solution of

qj,k
i = P

(
Si+1 ∈ Ak

i+1

∣∣Si ∈ Aj
i

)
,

where i = 1, . . . , n−1, j = 1, . . . , ai and k = 1, . . . , ai+1. We can estimate these prob-
abilities by using the same sample stock price paths used to estimate the intrinsic
values of each state. Let this estimate be q̂j,k

i , where,

q̂j,k
i = N j,k

i /N j
i

where N j,k
i is the number of stock price paths that originate in state Aj

i and subse-
quently pass through state Ak

i+1, and N j
i is as previously defined.

Once the transition probabilities have been estimated, the final task is simply
to calculate the continuation values for each state, and compare them with their
intrinsic values.

5.4.4 Estimating the Put Option Price

The sample stock price paths {S(m)
0 } are only used to calculate the average intrinsic

values ĝ(Aj
i ) and to estimate the transition probabilities q̂j,k

i . Thereafter, only state
option values are calculated at each time step.

The continuation values, Ĥi(A
j
i ), are calculated for each state at each time step,

Ĥi(A
j
i ) = exp

{−r∆t
} ai+1∑

k=1

qj,k
i P̂i+1(Ak

i+1),
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where i = 1, . . . , n− 1 and j = 1, . . . , ai. The dynamic programming problem then
becomes,

P̂n(Aj
n) = ĝn(Aj

n), j = 1, . . . , an

P̂i−1(A
j
i−1) = max

{
ĝi−1(A

j
i−1), Ĥi−1(A

j
i−1)

}
,

where i = n, . . . , 1 and j = 1, . . . , ai. The final estimated option value, P̂ (t), is set
equal to the initial state value P̂ (A1

0).

5.4.5 Bias of the SSAP Algorithm

In a similar fashion to the convergence behaviour of Tilley’s method, the regression-
based algorithms display a combination of an upward and a downward bias. The
upward bias results from the use, at each point in time, of the complete future infor-
mation set. Early exercise decisions based on an estimated early exercise boundary
cause the downward bias. Although neither bias can easily be measured, the fact that
they counteract each other ensures a more accurate estimate. Part of the upward
bias can be eliminated by using one set of sample stock price paths to estimate the
functional form of the continuation values, and another independent set of sample
stock price paths to estimate the premium (see Figure 5.17).

5.4.6 Convergence of the SSAP Algorithm

The SSAP algorithm produce an estimate for the American put option price which
converges as the number of time steps n tends towards infinity. Again, there are
various factors which influence the convergence rate: the number of time steps, n,
the number of sample stock price paths, M and the number of states, a, used to
calculate the estimate for the American put option.

Sample Size Convergence

Figure 5.13 shows that the SSAP estimates seem to converge to the correct solution
from above. Although this convergence is not uniform, the estimate should tend to
the true value as the number of sample stock price paths increases.

Time step Convergence

The time step convergence is difficult to examine. There is a relationship between
the number of states and the number of time steps. As a consequence, keeping all
the other parameters fixed results in a convergence which is difficult to interpret.
Figure 5.14 shows that with few time steps the estimate is undervalued.

Number of States a

The number of states, a, has a significant impact on both the quality of the estimated
option value and the computational time of the algorithm. As we increase the
number of states, the option estimate converges from above the true value (see
Figure 5.15). Our results suggest that the number of states needed is proportional
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Fig. 5.13: Convergence behaviour of SSAP estimates as the number of sample
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Crandall-Douglas finite difference value is assumed to be the true value
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Fig. 5.14: Convergence behaviour of SSAP estimates as the number of time steps,
n, is increased. There is a fixed number of sample paths (M = 50000)
for each estimate and a fixed number of states (a = 200). The Crandall-
Douglas finite difference value is again assumed to be the true value of
the option.

to the number of time steps, n, used for the approximation. Experiments show that
a value of a = 2n is an optimal balance between precision and computational time.
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Fig. 5.15: The convergence behaviour of SSAP estimates as the number of states,
a, increases. There is a fixed number of time steps (n = 100) for each
sample stock path and a fixed number of samples (M = 50000). The
Crandall-Douglas finite difference value is assumed to be the true value
of the option.

5.5 Regression-Based Methods

It was first noted in (Carriere 1996) that the bundling algorithm of (Tilley 1993a)
is simply a crude regression technique to estimate the continuation values, Ĥi(S) :
i = 1, . . . , n− 1 at each time step, ti. Consequently, (Carriere 1996) introduced the
first Monte Carlo method to estimate the price of the American put option using
nonparametric regression. One drawback of the nonparametric regression method is
that it is extremely time consuming. Subsequently, (Longstaff and Schwartz 2001,
Tsitsiklis and Van Roy 2001) introduced a parametric regression method which
improves the speed of the algorithm. The increase in speed is achieved by fitting a
predetermined functional form to the continuation value at each time step. This is
done by regressing the function against the discounted option values from one time
step ahead. This is in contrast to smoothing the data by local regression.

The Monte Carlo estimate P̂ (t) uses the dynamic programming algorithm equa-
tions (5.3) and (5.4). The continuation values, Ĥi(S) : i = 1, . . . , n, are estimated
by applying some regression technique at each time step to the M sample paths{
S

(m)
i

}
i=0,...,n

: m = 1, . . . , M . The terminal values, P (S(m)
n ), are set equal to the

payoff function in the usual fashion using equation (5.3). At each preceding time
step we estimate the continuation values, Ĥi(S

(m)
i ) : m = 1, . . . , M , by performing

a regression of discounted option values against the stock prices. Thus at time ti,
the independent (explanatory) variables are the stock prices S

(m)
i : m = 1, . . . , M ,

and the dependent (explained) variables are the discounted ti+1 option values,
diP̂i+1(S

(m)
i+1 ) : m = 1, . . . ,M .

The continuation value for each sample stock price path is then compared to the
intrinsic value in order to determine an option estimate, P̂i(S

(m)
i ) : m = 1, . . . , M .
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In (Longstaff and Schwartz 2001, Carriere 1996) the continuation values are used to
make exercise decisions only. As a consequence, the dynamic programming equa-
tion (5.6) becomes,

P̂i−1(S) =

{
g(t, S) if Ĥi−1(S) ≤ g(t, S)
di−1P̂i(S) if Ĥi−1(S) > g(t, S)

,

where i = n, . . . , 2. Alternatively, (Tsitsiklis and Van Roy 2001) use the estimated
continuation value as an approximation for the option price if early exercise is not
optimal. As a consequence, the dynamic programming equation (5.6) becomes,

P̂i−1(S) = max
{
g(t, S), Ĥi−1(S)

}
,

where i = n, . . . , 2. The final approximate option value, P̂ (t), is then calculated
using (5.9).

5.5.1 Nonparametric Regression

The continuation values are estimated in (Carriere 1996) using nonparametric local
regression techniques. Nonparametric regression allows a data set to be smoothed
without specifying any functional form for the smoothed relationship.

Local regression techniques are applied to data sets to smooth the set, one data
point at a time. The locally weighted regression (loess) technique (Cleveland and
Devlin 1988) smoothes the dependent data using the local data around each inde-
pendent point. The procedure is similar in principle to calculating a moving average
for a time series4. Figure 5.16 was created using the loess function.

In general, the benefit of local fitting is that a large class of data can be smoothed.
Parametric regression is constrained to a certain class of data. The drawback of
nonparametric regression is that the technique is computationally intensive.

5.5.2 Parametric Regression

The kind of data that results from option pricing lends itself to parametric regression.
We decide a priori on a functional form and perform a least-squares regression on the
data to calculate the coefficients of the function. The benefit of parametric regression
is that it improves the computational time. Least squares regression only requires
a small number of matrix calculations at each time step. This compares favourably
to the large number of calculations required for the nonparametric regression to
smooth each data point.

The function can be a linear combination of more complex functions (linear-in-
the-parameters regression) which can improve the fit if these functions are chosen
appropriately. We can approximate the continuation values, Ĥi−1(S) : i − 1 =
n, . . . , 1, by fitting a function consisting of linear combination of Fti-measurable
functions (i.e. functions depending on Si) to the set of discounted option values,
di−1P̂i(Sm

i ) : m = 1, . . . , M .

4 The loess method is implemented in Matlab using the smooth function with the method variable
set to ′loess′.
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Fig. 5.16: At ti, the continuation values are estimated by regressing the stock
prices, Si =

(
S1

i , . . . , SM
i

)T , against the discounted option values,
diP̂i+1 = di

(
P̂ 1

i+1, . . . , P̂
M
i+1

)T .

A functional form for the continuation values is created by choosing a set of basis
functions, F j(S), with associated coefficients, βj ,

Hi(S) =
∞∑

j=0

βjF j(S). (5.14)

An approximation for the continuation value is obtained by truncating this series.
The coefficients βj : j = 0, . . . , n′ are unknown and must be estimated using least
squares regression.

A technique to increase the rate of convergence of this method is suggested in
(Longstaff and Schwartz 2001). Here they consider only those paths which are in-
the-money. The estimated continuation values are used to make exercise decisions
at each time step. Hence, if the option is out-of-the-money, there is no possibility
of exercise and consequently the estimated continuation value is redundant. Con-
sidering only in-the-money paths reduces the number of basis functions needed to
estimate the conditional expectation.

Another benefit of using parametric regression is that two sets of sample stock
price paths can be used. One sample is used to estimate the functional form for the
continuation value at each time step, while another set of independent sample paths
is used to estimate the price of the American put option. This removes some of the
upward bias inherent in dynamic programming methods. It also allows us to test
the quality of the estimator. A good estimator will give accurate values when we
use an independent set of sample stock price paths.

Various functional forms which are linear-in-the-parameters are suggested in
(Longstaff and Schwartz 2001), but are not investigated in (Tsitsiklis and Van
Roy 2001). Here, the functional form will be investigated simultaneously for both
approaches. The rest of the section details the linear-in-the-parameters regression
and then examines the convergence and bias of the methods.
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The Functional Form of the Continuation Value

The definition of the continuation value in terms of a linear combination of basis
functions is given by equation (5.14). Clearly, we need to truncate this definition
at some value, n′. Consequently, we need to decide on the type of basis functions
to be used, and the truncation value, n′. In (Longstaff and Schwartz 2001), the
continuation value is expressed as,

Ĥi(S) =
n′∑

j=0

β̂j
i F

j(S), (5.15)

where i = n− 1, . . . , 1 and F j(S) : j = 0, . . . , n′ is a set of orthogonal polynomials.
(Longstaff and Schwartz 2001) suggested the use of Laguerre, Hermite, Legendre,
Chebyshev, Gegenbauer, or Jacobi polynomials. It is possible to calculate numerical
approximations of these polynomials for relatively high values of n′. (For a full
definition of the numerical approximations for these polynomials, see (Abramowitz
and Stegun 1970).) Using a small number of basis functions improves computational
speed.

(Longstaff and Schwartz 2001) used weighted Laguerre polynomials with a damp-
ening factor exp

{−x/2
}
. They give no justification or explanation for this additional

factor. Empirically this dampening factor has a negative effect on the functional fit.
In all future calculations, we omit this factor altogether.

Linear-in-the-Parameters Regression

Consider a single sample stock price path, S
(m)
i : m ∈ [1, . . . ,M ]. The function

(5.15) relates the stock price at time ti with the corresponding option value at
ti+1, for each sample stock price path. Algorithmically, at time ti, we regress stock
prices, Si =

(
S1

i , . . . , SM
i

)T , against their corresponding discounted option values,
diP̂i+1 = di

(
P̂ 1

i+1, . . . , P̂
M
i+1

)T . This regression is performed at each time step ti :
i = n − 1, . . . , 1 to obtain the coefficients, β̂j

i : j = 0, . . . , n′, of the continuation
value in equation (5.15).

As a modification, the regression should be performed only for in-the-money
values, S′

i =
(
S1

i , . . . , SM ′
i

)T , where Sm
i ∈ S′

i if Sm
i < K. S′

i is an (M ′ × 1)-
column vector containing only those stock prices at time ti which correspond to the
option being in-the-money at ti. The least squares regression used, returns the set
{β̂j

i } : j = 1, . . . , n′ which minimises

min
{bβj

i }

M∑

m=1

(
diP̂i+1(Sm

i+1)−
n′∑

j=0

β̂j
i F

j(Sm
i )

)2
. (5.16)

It should be clear that the regression procedure is identical (merely replacing M
with M ′ in equation (5.16)) if only the in-the-money paths are used. The contin-
uation values, Ĥi(S), are then calculated using the estimated coefficients, {β̂j

i }, in
equation (5.15).
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(Longstaff and Schwartz 2001) (LSM) use the estimated continuation values for
early exercise decisions, but do not use the estimated values from the regression for
the option value at ti. The discounted ti+1 value is used instead. (Tsitsiklis and
Van Roy 2001) (TVR) do not make this distinction and use the regression estimates
for exercise decisions and as the option value at ti. However, this results in a large
upward bias (see Figure 5.18 and Figure 5.19). Consequently, we only examine the
convergence and bias results of the LSM algorithm.

5.5.3 Bias of the Regression-Based Algorithms

In a similar fashion to the convergence behaviour of Tilley’s method, the regression-
based algorithms display a combination of upward and downward bias and as before
they counteract each other. The upward bias is produced by the use at each point
in time of the complete future information set. The downward bias is produced by
making early exercise decisions based on an estimated early exercise boundary. We
can reduce the upward bias by using one set of sample stock price paths to estimate
the functional form of the continuation values, and an independent set of sample
stock price paths to estimate the premium (see Figure 5.17).
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Fig. 5.17: The convergence of the LSM algorithm comparing estimates calculated
using in and out-of-sample stock price paths. The figure on the left
shows the convergence as the number of time steps, n, is increased. The
figure on the right shows the convergence as the number of sample stock
price paths, M , is increased.

5.5.4 Convergence of the Regression-Based Algorithms

The regression-based algorithms produce an estimate for the American put option
price which converges as the number of time steps n tends towards infinity. Again,
there are various factors which influence the convergence rate: the number of time
steps, n, the number of sample stock price paths, M and the choice of basis functions.
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Sample Size Convergence

The regression-based algorithms have a similar convergence behaviour with increas-
ing sample size to that of Tilley’s method. Figure 5.18 shows no discernable conver-
gence bias, which is a result of the offsetting bias mentioned earlier. The estimate
does not converge from above or below the true value. The estimate should tend to
the true value, however, as the number of sample stock price paths increases.
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Fig. 5.18: The convergence behaviour for LSM and TVR estimates as the number
of sample stock price paths, M , is increased. There is a fixed number
of time steps (n = 100) for each estimate. Only in-the-money sample
stock price paths are used in the regression for the LSM estimates (which
uses the first six Hermite polynomials). The Crandall-Douglas finite
difference value is assumed to be the true value of the option.

Time step Convergence

The time step convergence is also similar to that of Tilley’s method. It initially
converges from below as the number of time steps increases. This downward bias
is gradually counteracted, however, by the upward bias resulting from the use of
the complete information set. This, coupled with the random behaviour of Monte
Carlo estimation, results in a convergence behaviour which is not uniform (see Figure
5.19).

Choice of Basis Function

When considering the convergence of the parametric regression methods, we exam-
ine the type of orthogonal polynomial used for the basis functions, as well as the
truncation value, n′. The choice of polynomial does not seem to have a significant
impact on the estimate (see Figure 5.20). The truncation value does, however, have
a significant impact on the quality of the estimated option value. Using a small
number of basis functions does not allow for an accurate approximation of the con-
tinuation value. An improvement occurs by increasing n′ up to a certain threshold.
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Fig. 5.19: The convergence behaviour for LSM and TVR estimates as the number
of time steps, n, is increased. There is a fixed number of sample paths
(M = 50000) for each estimate. Only in-the-money sample stock price
paths are used in the regression for the LSM estimates (which uses the
first six Hermite polynomials). The Crandall-Douglas finite difference
value is assumed to be the true value of the option.
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Fig. 5.20: The figure on the left shows the convergence behaviour as the number
of time steps is increased for different basis functions. The figure on the
right shows the effect of increasing the number of basis functions.

Thereafter, increasing the number of basis functions increases the computation time,
but with a diminishing improvement in the option estimate. Hence, we should con-
sider an optimal balance of precision and speed when choosing the number of basis
functions. Our results suggest that using five basis functions is usually sufficient
(see Figure 5.20).



5.5 Regression-Based Methods 66

Sample Paths Used for the Regression

Using the entire set of sample stock price paths at each ti to perform the regression
has an adverse effect on the estimated option value. This results because the func-
tional form of only in-the-money samples is easier to fit than the functional form of
the entire set of sample stock price paths.
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Fig. 5.21: The estimated continuation values one time step from expiry. The figure
on the left (right) uses all the stock price paths (only in-the-money
paths). Regression is done using the first six Laguerre polynomials.
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Fig. 5.22: The convergence of the LSM algorithm comparing the estimates calcu-
lated using regression on all the sample stock price paths and on only
in-the-money paths. The figure on the left shows the convergence as the
number of time steps, n is increased. The figure on the right shows the
convergence as the number of sample stock price paths, M , is increased.



Chapter 6

Finite Difference Methods

6.1 Introduction

Finite difference methods are a set of numerical techniques which may be used to
approximate the solution of a partial differential equation (PDE). In applications
of the technique, the PDE is transformed into a series of algebraic finite difference
equations which are then solved iteratively. The American put option price, P (t, S)
satisfies the Black-Scholes PDE,

∂P

∂t
+ rS

∂P

∂S
+

1
2
σ2S2 ∂2P

∂S2
− rP = 0 (6.1)

over the region t ∈ [0, T ] and S ∈ [0,∞). This continuous region, [0,∞)× [0, T ], is
approximated within the scheme by a two dimensional discrete grid. The boundary
condition (2.17) for the American put is an asymptotic condition. The grid must be
truncated at some finite value, Smax, where Smax is sufficiently large for the value
of the option to be near zero. Consequently, we seek a solution over the region
t ∈ [0, T ] and S ∈ [0, Smax] :
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Fig. 6.1: A finite difference grid.

Once the grid has been defined, the PDE is approximated as a set of finite
difference equations taking values at each node on the grid. Initially, the only values
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on the grid that are known are the boundary values,

P (t, Smax) and P (t, 0) for all t ∈ [0, T ]
and P (T, S) for all S ∈ [0, Smax].

The finite difference equations propagate the terminal boundary condition through
the grid by approximating the dynamic effect of the PDE. This is achieved in a
backwardly recursive fashion. At each time step prior to T , an option value is
calculated at each grid point by using the grid points previously calculated.

Finite difference techniques are extremely straightforward for calculating an ap-
proximation of a European put option price. However, an application of these tech-
niques to American option pricing is less straightforward (see (Wilmott 2000) for an
explanation of these difficulties). The major problem is caused by the free bound-
ary (early exercise boundary) which divides the solution space into a region where
the price obeys the Black-Scholes PDE (the continuation region, C) and the stop-
ping region, S. In keeping with other numerical techniques the primary problem
becomes one of estimating the early exercise boundary in order to determine where
the continuation region is.

6.2 Finite Difference Methods for the American Put

Discretise [0, T ] into n equal time steps, 0 = t0 < t1 < · · · < tn = T , where
ti = i∆t for all i = 0, . . . , n and ∆t = T/n. The truncated domain [0, Smax) is
discretised into m equal stock price steps, 0 = S0 < · · · < Sm = Smax, where
Sj = j∆S for all j = 0, . . . ,m and ∆S = Smax/m.

Next, choose a finite difference scheme to approximate the Black Scholes PDE
(6.1). It can be shown that this PDE may be reduced, with a suitable change of
variables, to the heat equation,

∂u

∂τ
=

∂2u

∂ξ2
.

The heat equation contains one first order temporal derivative and one second or-
der spatial derivative. Solving the heat equation using finite difference schemes
is simpler than solving an untransformed Black-Scholes PDE. The remainder of
this section presents the transformation to the heat equation; the explicit, implicit,
Crank-Nicolson and Crandall-Douglas finite difference schemes are proved; followed
by an examination of the technique.

6.2.1 Transforming the Black-Scholes PDE into the Heat equation

Transforming the Black-Scholes PDE into the heat equation reduces the number
of finite difference approximations needed to calculate the option value. The heat
equation only has two derivative terms, while the Black-Scholes PDE has four deriv-
ative terms which need to be approximated. To transform the Black-Scholes PDE
into the heat equation requires a new spatial variable, ξ, a new temporal variable,
τ and a scaled option price, P̃ (τ, ξ).
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Let, ξ = ln(S/K) and τ = 1
2σ2(T − t), with corresponding transformed limits,

ξ ∈ (−∞, ln(Smax/K)) and τ ∈ [0, Tσ2/2]. Note that the new temporal variable has
reversed the direction of time (τ = 0 corresponds to t = T ). The following scaled
transformation of the solution,

P (t, S) = K exp
{−ξ(κ− 1)/2− τ(κ + 1)2/4

}
P̃ (τ, ξ), (6.2)

where κ = 2r/σ2, reduces the Black-Scholes PDE to the heat equation

∂P̃

∂τ
=

∂2P̃

∂ξ2
. (6.3)

What remains is to transform both the intrinsic values and the boundary conditions.
The transformed intrinsic value for the American put option, g̃(τ, ξ), is,

g̃(τ, ξ) =
(
exp

{
ξ
(
κ + 1

)
/2

}− exp
{
ξ
(
κ− 1

)
/2

})+
. (6.4)

The Dirichlet conditions become:

lim
ξ→∞

P̃ (τ, ξ) = 0 (6.5)

lim
ξ→−∞

P̃ (τ, ξ) = g̃(τ, ξ) (6.6)

P̃ (0, ξ) = g̃(0, ξ). (6.7)

From equation (6.2), the final option price P (t, S) is,

P (t, S) = K(κ+1)/2S(1−κ)/2 exp
{−σ2 (κ + 1)2 (T − t)/8

}
P̃ (τ, ξ). (6.8)

6.2.2 Building a Mesh for the Heat Equation

Discretise [0, T ] into n equal temporal steps, 0 = τ0 < τ1 < · · · < τn = T , where
τi = i∆τ for all i = 0, . . . , n and ∆τ = σ2T/2n. The truncated spatial domain
[ξmin, ξmax], where ξmax = ln(Smax/K), is discretised into m equal spatial steps,
ξmin = ξ0 < · · · < ξm = ξmax, where ξj = ξmin + j∆ξ for all j = 0, . . . , m and
∆ξ = (ξmax − ξmin)/m. This discretisation results in grid values, (τi, ξj) : i =
0, . . . , n, j = 0, . . . , m (see Figure 6.2).

The grid is constructed to ensure that the initial transformed stock price, ln(S0/K),
falls on a grid point, say (τn, ξk). Once we have calculated the option values at all
the grid points, we can read off the value at (τn, ξk) and calculate the approximate
American put option price using equation (6.8). If it is inconvenient to ensure that
the initial transformed stock price falls on a grid point, we interpolate between
the transformed option values at neighbouring grid points and then calculate the
approximate American put option price using equation (6.8).

6.2.3 Estimating Partial Derivatives from the Grid

Estimations of the partial derivatives are calculated using finite difference approxi-
mations. We estimate first derivatives using either backward or forward differences,
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Fig. 6.2: The finite difference grid for the transformed heat equation with spatial
variable ξ and temporal variable τ .

and second derivatives using central differences (see Figure 6.3),

Forward differences
∂P̃ (τi, ξj)

∂τ
≈ P̃ (τi+1, ξj)− P̃ (τi, ξj)

∆τ

Backward differences
∂P̃ (τi, ξj)

∂τ
≈ P̃ (τi, ξj)− P̃ (τi−1, ξj)

∆τ

Central differences
∂2P̃ (τi, ξj)

∂ξ2
≈ P̃ (τi, ξj+1)− 2P̃ (τi, ξj) + P̃ (τi, ξj−1)
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Fig. 6.3: The forward difference (left) and backward difference (middle) approxima-
tion for ∂P̃/∂τ , and the central difference (right) approximation ∂2P̃ /∂ξ2.

6.2.4 The Explicit Method

The explicit method is implemented by replacing ∂P̃ /∂τ with the forward difference
approximation, and ∂2P̃ /∂ξ2 with the central difference approximation. Define P̃ j

i ≡
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P̃ (τi, ξj). Then,

P̃ j
i+1 − P̃ j

i

∆τ
+ O(∆τ) =

P̃ j+1
i − 2P̃ j

i + P̃ j−1
i

(∆ξ)2
+ O

(
(∆ξ)2

)
. (6.9)

Rearranging equation (6.9) gives the explicit finite difference scheme at each time
step, τi : i = 1, . . . , n,

P̃ j
i = αP̃ j+1

i−1 + (1− 2α)P̃ j
i−1 + αP̃ j−1

i−1 , (6.10)

where j = 1, . . . , m− 1 and
α = ∆τ/(∆ξ)2. (6.11)

The recurrence scheme equation (6.10) may be represented as a matrix calculation
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Fig. 6.4: The explicit method.

in order to speed up computation. At each time step the matrix system for the
explicit method is given by,




P̃ 1
i

P̃ 2
i
...

P̃m−2
i

P̃m−1
i




=




1− 2α α 0 . . . 0

α
. . . α

. . .
...

0
. . . . . . . . . 0

...
. . . α 1− 2α α

0 . . . 0 α 1− 2α







P̃ 1
i−1

P̃ 2
i−1
...

P̃m−2
i−1

P̃m−1
i−1




+ α




P̃ 0
i−1

0
...
0

P̃m
i−1




which can be written as,
P̃ i = NEP̃ i−1 + αβi−1, (6.12)

where i = 1, . . . , n and P̃ i = (P̃ 1
i , . . . , P̃m−1

i ) is the vector of option prices, βi =
(P̃ 0

i , 0, . . . , 0, P̃m
i ) is the vector of boundary values and NE is an (m− 1)× (m− 1)

tridiagonal matrix.
The advantage of this method is that the system (6.12) can be solved explicitly

at each time step. As a consequence, it is computationally the fastest method,
because the solution is found using simple matrix multiplication. The drawback to
this method, however, is that the choice of step sizes ∆τ and ∆ξ has a large impact
on the convergence of the scheme. In fact, the method is only stable when α < 1/2
(Morton and Mayers 1994).
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6.2.5 The Implicit Method

The implicit method is implemented by replacing ∂P̃/∂τ with the backward differ-
ence approximation, and ∂2P̃ /∂ξ2 with the central difference approximation. Again,
define P̃ j

i ≡ P̃ (τi, ξj)). Then,

P̃ j
i − P̃ j

i−1

∆τ
+ O(∆τ) =

P̃ j+1
i − 2P̃ j

i + P̃ j−1
i

(∆ξ)2
+ O

(
(∆ξ)2

)
. (6.13)

Rearranging equation (6.13) gives the implicit finite difference scheme at each time
step, τi : i = 1, . . . , n,

αP̃ j+1
i + (1− 2α)P̃ j

i + αP̃ j−1
i = P̃ j

i−1, (6.14)

where j = 1, . . . , m− 1 and α is defined in equation (6.11). The recurrence scheme
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Fig. 6.5: The implicit method.

equation (6.14) can also be represented as a matrix calculation in order to facilitate
fast computation. At each time step, the matrix system for the implicit method is
given by,




1− 2α α 0 . . . 0

α
. . . α

. . .
...

0
. . . . . . . . . 0

...
. . . α 1− 2α α

0 . . . 0 α 1− 2α







P̃ 1
i

P̃ 2
i
...

P̃m−2
i

P̃m−1
i




+ α




P̃ 0
i

0
...
0

P̃m
i




=




P̃ 1
i−1

P̃ 2
i−1
...

P̃m−2
i−1

P̃m−1
i−1




which can be written as,
MIP̃ i + αβi = P̃ i−1, (6.15)

where i = 1, . . . , n, P̃ i = (P̃ 1
i , . . . , P̃m−1

i ) is the vector of option prices, βi =
(P̃ 0

i , 0, . . . , 0, P̃m
i ) is the vector of boundary values and MI is an (m− 1)× (m− 1)

tridiagonal matrix.
The solution of equation (6.15) can be found either by using an LU-decomposition

or an iterative scheme known as the successive over relaxation (SOR) technique. The
implicit method is computationally slower than the explicit method but it is more
stable. In fact, the method is stable for all positive values of α (Wilmott, Howison,
and Dewynne 1995). As a consequence there is no restriction on step size or time
step size.
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6.2.6 The Crank-Nicolson Method

The explicit finite difference method uses three grid points at τi−1 to generate one
point at τi. The implicit finite difference method inverts this and uses one grid
point at τi−1 to generate three points at τi. A generalisation of these two methods
would be to employ all six grid points together (Morton and Mayers 1994). The
Crank-Nicolson method averages the explicit and implicit finite difference schemes
(equations (6.10) and (6.14)) to produce,

P̃ j
i − P̃ j

i−1

∆τ
+ O((∆τ)2) =

1
2

(
P̃ j+1

i − 2P̃ j
i + P̃ j−1

i

(∆ξ)2
+

P̃ j+1
i−1 − 2P̃ j

i−1 + P̃ j−1
i−1

(∆ξ)2

)
+ O

(
(∆ξ)2

)
. (6.16)

The truncation error for this scheme is O((∆τ)2), which is an improvement on the
first order error found in both the implicit and explicit schemes. This improvement
is a result of a cancelation of errors in the averaging process.

Rearranging equation (6.16) gives the Crank-Nicolson finite difference scheme at
each time step, τi : i = 1, . . . , n,

−(α/2)P̃ j+1
i +(1+α)P̃ j

i −(α/2)P̃ j−1
i = (α/2)P̃ j+1

i−1 +(1−α)P̃ j
i−1+(α/2)P̃ j−1

i−1 , (6.17)

where j = 1, . . . , m− 1 and α is defined in equation (6.11). The recurrence scheme
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Fig. 6.6: The Crank-Nicolson method and the Crandall-Douglas method.

equation (6.17) may be represented as a matrix calculation in order to increase
computational efficiency. At each time step, the matrix system for the Crank-
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Nicolson method is given by,




1 + α −α/2 0 . . . 0

−α/2
. . . −α/2

. . .
...

0
. . . . . . . . . 0

...
. . . −α/2 1 + α −α/2

0 . . . 0 −α/2 1 + α







P̃ 1
i

P̃ 2
i
...

P̃m−2
i

P̃m−1
i



− α/2




P̃ 0
i

0
...
0

P̃m
i




=




1− α α/2 0 . . . 0

α/2
. . . α/2

. . .
...

0
. . . . . . . . . 0

...
. . . α/2 1− α α/2

0 . . . 0 α/2 1− α







P̃ 1
i−1

P̃ 2
i−1
...

P̃m−2
i−1

P̃m−1
i−1




+ α/2




P̃ 0
i−1

0
...
0

P̃m
i−1




(6.18)

which can be written as,

MCNP̃ i − (α/2)βi = NCNP̃ i−1 + (α/2)βi−1,

where i = 1, . . . , n, P̃ i = (P̃ 1
i , . . . , P̃m−1

i ) is the vector of option prices, βi =
(P̃ 0

i , 0, . . . , 0, P̃m
i ) is the vector of boundary values and MCN,NCN are both (m −

1)× (m− 1) tridiagonal matrices.
The Crank-Nicolson method is more accurate than both the implicit and the

explicit schemes because the truncation error is smaller. It also inherits the stability
of the implicit scheme for positive values of α (Wilmott, Howison, and Dewynne
1995).

6.2.7 The Crandall-Douglas Method

The Crandall-Douglas finite difference method is an error reducing optimisation of
the Crank-Nicolson method. The scheme further reduces the local error by using
six grid points in a recurrence relation (see (Ames 1969) for a derivation). The
Crandall-Douglas finite difference scheme at each time step, τi : i = 1, . . . , n, is
given by,

(1− 6α)P̃ j+1
i + (10 + 12α)P̃ j

i + (1− 6α)P̃ j−1
i =

(1 + 6α)P̃ j+1
i−1 + (10− 12α)P̃ j

i−1 + (1 + 6α)P̃ j−1
i−1 , (6.19)

where j = 1, . . . ,m − 1 and α is defined in equation (6.11). The recurrence equa-
tion (6.19) may also be represented as a matrix calculation to increase computational
efficiency. At each time step, the matrix system for the Crandall-Douglas method



6.2 Finite Difference Methods for the American Put 75

is given by,




10 + 12α 1− 6α 0 . . . 0

1− 6α
. . . 1− 6α

. . .
...

0
. . . . . . . . . 0

...
. . . 1− 6α 10 + 12α 1− 6α

0 . . . 0 1− 6α 10 + 12α
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i
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i
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i
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i
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...
0

P̃m
i
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10− 12α 1 + 6α 0 . . . 0
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0
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. . . 1 + 6α 10− 12α 1 + 6α

0 . . . 0 1 + 6α 10− 12α







P̃ 1
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...

P̃m−2
i−1

P̃m−1
i−1




+(1+6α)




P̃ 0
i−1

0
...
0

P̃m
i−1




(6.20)

which can be written as,

MCDP̃ i + (1− 6α)βi = NCDP̃ i−1 + (1− 6α)βi−1, (6.21)

where i = 1, . . . , n, P̃ i = (P̃ 1
i , . . . , P̃m−1

i ) is the vector of option prices, βi =
(P̃ 0

i , 0, . . . , 0, P̃m
i ) is the vector of boundary values and MCD,NCD are both (m −

1)× (m− 1) tridiagonal matrices.
The method is stable when α > 1/6 (McCartin and Labadie 2003).

6.2.8 Difficulties Encountered Using Finite Difference Methods
for Pricing American Put Options

The European put option price satisfies the Black-Scholes PDE over the entire do-
main. Hence it is straightforward to calculate option values at each grid point in the
truncated domain. In contrast to this, the American put option value satisfies the
Black-Scholes PDE only in the continuation region (C), and must be set equal to
intrinsic value in the stopping region (S). In order to implement this condition, we
need to estimate the location of the early exercise boundary which separates these
two regions.

In (Brennan and Schwartz 1977) a simple technique estimates the early exer-
cise boundary at each time step. Unfortunately, this technique can only be used in
conjunction with the explicit finite difference scheme, which has the stability con-
dition α < 1/2. This places a severe restriction on the choices of ∆τ and ∆ξ. In
order to define the early exercise boundary accurately, a small value of ∆ξ is re-
quired. This, in turn, requires a small value of ∆τ , which results in a large number
of computations.

Consequently, it would be beneficial to implement a similar technique for the
implicit finite difference scheme, which does not have any restriction on the choice
of step size. The implicit finite difference method calculates three option values at
the same time step. As a consequence, a system of equations must be solved at
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each time step, which complicates the estimation of the early exercise boundary.
The projected successive over-relaxation (PSOR) method developed in (Wilmott,
Howison, and Dewynne 1995) iteratively calculates the solution of this system of
equations. The possibility of early exercise is incorporated as part of the solution
and hence the value of the early exercise boundary is estimated implicitly.

In (McCartin and Labadie 2003) the solution domain is extended to the entire
region. The Black-Scholes PDE with an early exercise boundary is transformed into
the variational inequality system, equations (2.25) to (2.27). This system can be
solved over the entire domain using the Elliot-Ockendon algorithm. This solution
also contains an implicit approximation of the early exercise boundary.

6.3 Brennan and Schwartz Method

(Brennan and Schwartz 1977) were the first to use finite difference methods to ap-
proximate the price of the American put option, P (t, S). They implemented an
explicit finite difference scheme (Section 6.2.5). The solution of the option pric-
ing problem, in general, requires backward recursion. Consequently, the use of the
explicit finite difference method is preferable in that it is complementary to this
process.

At each time step, the Brennan and Schwartz method calculates explicit prices
as though it were pricing a European put option. However, these values need to
be compared to the intrinsic value. At each node, we set the option value to the
maximum of the calculated explicit value and the intrinsic value. Note that the cal-
culated value is not trivially the Black-Scholes value because, near the early exercise
boundary, the calculation will include a value (or values) from beyond the boundary.

The compatibility of the explicit scheme with the early exercise decision is re-
vealed in the implementation of the algorithm. At each time step, τi, a single option
value is calculated from three earlier option values. It is then trivial to compare this
value with the intrinsic value without requiring any recalculation. At each τi, there
exists a value k such that

P̃ j
i ≤ gj

i , j ≤ k

P̃ j
i > gj

i , j > k.

This implies that the early exercise boundary, b̃(τi) ∈ [ξk, ξk+1]. The exact value of
b̃(τi) is irrelevant. Once k has been found, the option values for P̃ j

i , j = 1, . . . , k are
set equal to intrinsic value.

6.3.1 The Brennan and Schwartz Algorithm

The elements of the initial transformed value vector, P̃ 0, are set equal to the trans-
formed initial value (equation (6.4)),

P̃ j
0 = g̃(0, ξj),

where j = 1, . . . ,m − 1. Note that the definition of the intrinsic value in equa-
tion (6.4) explicitly defines a positive payoff. The following recursion is implemented
for each subsequent time step, τi : i = 1, . . . , n:



6.4 Projected Successive Over-Relaxation 77

1. Equations (6.5) and (6.6) give the boundary values Pm
i and P 0

i which are the
non-zero elements of the boundary value vector, βi.

2. The remaining values of the vector P̃i for j = 1, . . . ,m−1 are calculated using
the explicit finite difference matrix scheme (6.12).

3. Each element in P̃i is compared with the transformed intrinsic value g̃(τi, ξj)
and a new vector P̃i is calculated by,

P̃ j
i = max

{
P̃ j

i , g̃(τi, ξj)
}
,

where j = 1, . . . , m− 1.

The final vector of transformed values, P̃n, can be used to produce a vector of initial
values for the American put using equation (6.8). If the transformed initial stock
price does not lie on a node, interpolation can be used to obtain an estimate at that
point (see Section 6.2.2).

6.3.2 Convergence of Brennan and Schwartz Algorithm

The Brennan-Schwartz algorithm produces an estimate, PBS(t, S), for the American
put option price which converges as the number of time steps, n, and the number
of spatial steps, m, tends towards infinity. Thus, the estimate converges to the true
solution as the grid is made finer. However, the restriction, α < 1/2, limits the
choice of grid parameters.

Spatial Step Convergence

The Brennan-Schwartz estimates converge uniformly from below to the American
option price as the number of spatial steps, m, is increased. See Figure 6.7.

Time step Convergence

The Brennan-Schwartz estimates converge uniformly from below to the American
option price as the number of time steps, n, is increased. See Figure 6.8.

6.4 Projected Successive Over-Relaxation

The algorithm of Brennan and Schwartz (Brennan and Schwartz 1977) is simple
and fast but unfortunately works only for the explicit scheme. This is problematic
because of the attendant restriction on α. On the other hand, the implicit nature of
the other schemes (implicit, Crank-Nicolson and Crandall-Douglas scheme) do not
allow the option values to be changed once the matrix system has been solved. As a
consequence, comparing the calculated value with the intrinsic value is tedious and
may affect all the option values at each time step.

For European options, implicit schemes are usually solved using a direct method
such as LU decomposition or matrix inversion. However, they can also be solved
using an iterative scheme called the successive over-relaxation (SOR) method, which
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Fig. 6.7: The convergence behaviour for Brennan-Schwartz estimates as the num-
ber of spatial steps, m, is increased. There is a fixed number of time steps
(n = 100). The trinomial tree value using 5000 time steps is assumed to
be the true value of the option.
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Fig. 6.8: The convergence behaviour for Brennan-Schwartz estimates as the num-
ber of time steps, n, is increased. There is a fixed number of spatial steps
(M = 50000). The trinomial tree value using 5000 time steps is assumed
to be the true value of the option.

is derived from the Jacobi numerical method (Wilmott, Howison, and Dewynne
1995, Wilmott 2000). These iterative schemes are used to solve the general matrix
equation,

AS = y. (6.22)

The SOR method begins with an initial estimate for the solution, S0, and follows
some iteration scheme until a convergence criteria is met, e.g. |Sk+1−Sk| < ε where
ε is some predefined tolerance. This iterative scheme can be adapted to implicit
methods for the American put option, where it is called the projected successive
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over-relaxation (PSOR) method.

6.4.1 Jacobi Method

The Jacobi method is a simple iterative scheme to solve matrix equations of the form
(6.22). The Jacobi method works for all invertible matrices. We will restrict atten-
tion here to (m×m) tridiagonal matrices, since all the implicit schemes mentioned
above result in tridiagonal matrices. The iterative scheme recursively calculates es-
timates xk = (x1

k, . . . , x
m
k ), beginning with an initial vector x0. It is possible to

rewrite equation (6.22) componentwise as,

a11x
1 + a12x

2 = y1

a21x
1 + a22x

2 + a23x
3 = y1

. . .

am−1,mxm−1 + am,mxm = ym.

Which, can then be rewritten as,

a11x
1 = y1 − (

a12x
2
)

a22x
2 = y1 − (

a21x
1 + a23x

3
)

. . .

am,mxm = ym − (
am−1,mxm−1

)
.

The iteration scheme is obvious. We use previous estimates, x1
k, . . . , x

m
k , on the right

of the system of equations to calculate new estimates, x1
k+1, . . . , x

m
k+1, on the left.

The Jacobi method for this system is,

x1
k+1 =

(
y1 − (

a12x
2
k

))
/a11

x2
k+1 =

(
y1 − (

a21x
1
k + a23x

3
k

))
/a22

. . .

xm
k+1 =

(
ym − (

am−1,mxm−1
k

))
/am,m.

We will iterate on k until we converge to some desired tolerance, |xk+1 − xk| < ε.
Some of the values on the right may have been calculated, i.e. xj−1

k+1 is already
known when we calculate xj

k+1. Using this updated value leads to the Gauss-Seidel
technique with an attendant improved convergence.

6.4.2 SOR Method

The successive over-relaxation method is a further adaptation on the original Jacobi
method which improves the speed of convergence (Wilmott 2000). An improved
convergence is achieved by using a weight factor, ω, called the relaxation parameter.
The system for this method is given by,

x1
k+1 = x1

k + ω
(
y1 − (

a12x
2
k

))
/a11

x2
k+1 = x2

k + ω
(
y1 − (

a21x
1
k+1 + a23x

3
k

))
/a22

. . .

xm
k+1 = xm

k + ω
(
ym − (

am−1,mxm−1
k+1

))
/am,m.
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The value of ω depends on the convergence behaviour. If convergence is monotonic
then 1 < ω < 2, otherwise ω < 1. Note that the Gauss-Seidel technique has also
been implemented. All of the implicit methods can be solved using the SOR method
by choosing the relevant form for A, x, and y.

Implicit Scheme

x = P̃i (6.23)
A = MI

y = P̃i−1 − αβi

Crank-Nicolson Scheme

x = P̃i (6.24)
A = MCN

y = NCNP̃i−1 + (α/2)(βi−1 + βi)

Crandall-Douglas

x = P̃i (6.25)
A = MCD

y = NCDP̃i−1 + (1− 6α)(βi−1 − βi)

6.4.3 The PSOR Method for the American Put Option

The SOR method is a popular method for solving the matrix systems that are
formed in finite difference schemes. It is relatively simple to implement and, in this
application, can also be applied to American options. As previously noted, implicit
schemes have the following drawback: it is not possible to replace a calculated
grid value which is less than intrinsic value at that point, with the intrinsic value
as an integral part of the calculation. The iterative nature of the SOR method
sidesteps this issue. On each iteration we are free to assign the value at each node
to be the maximum of the intrinsic value and the calculated value using one of
the systems: (6.23), (6.24) or (6.25). This method is called the projected successive
over-relaxation method and an application of it to the American put option problem
can be found in (Wilmott, Howison, and Dewynne 1995, Wilmott 2000). In applying
PSOR, we modify our system of equations to,

P̃ 1
i,k+1 = max

{
g̃(τi, ξ1), P̃ 1

i,k + ω
(
y1 − (

a12P̃
2
i,k

))
/a11

}

P̃ 2
i,k+1 = max

{
g̃(τi, ξ2), P̃ 2

i,k + ω
(
y1 − (

a21P̃
1
i,k+1 + a23P̃

3
i,k

))
/a22

}

. . .

P̃m
i,k+1 = max

{
g̃(τi, ξm), P̃m

i,k + ω
(
ym − (

am−1,mP̃m−1
i,k+1

))
/am,m

}
,

where x = P̃i, and y, A are chosen from (6.23),(6.24) and (6.25).
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The initial vector, P̃ 0, is set equal to the transformed intrinsic value,

P̃ j
0 = g̃(0, ξj),

where j = 1, . . . , m−1. The following recursion is followed for each subsequent time
step, τi : i = 1, . . . , n:

1. Calculate the boundary vector βi from equations (6.5) and (6.6).

2. Implement the PSOR method to recursively calculate estimates, P̃
k

i , until the

convergence criterion, |P̃ k

i − P̃
k−1

i | ≤ ε, is met. Use the final estimate from
the preceding time step as the initial guess, i.e. P̃

0

i = P̃ i−1. The transformed

option premium vector is set equal to the final iteration, P̃ i = P̃
k

i .

The final vector of transformed values, P̃n, can be used to produce a vector of initial
values for the American put using equation (6.8). If the transformed initial stock
price does not lie on a node interpolation can be used to obtain an estimate at that
point (see Section 6.2.2).

6.4.4 Convergence of the PSOR Method

The PSOR algorithm produces an estimate, PPSOR(t, S), for the American put op-
tion price which converges as the number of time steps, n, and the number of spatial
steps, m, tends towards infinity. Thus, the estimate converges to the true solution
as the grid is made finer.

Spatial Step Convergence

The PSOR estimates converge uniformly from below to the American option price
as the number of spatial steps, m, is increased. See Figure 6.9.

Time step Convergence

The PSOR estimates converge uniformly from below to the American option price
as the number of time steps, n, is increased. See Figure 6.10.

6.5 Variational Inequality

The finite difference methods discussed in this chapter estimate the value of the
American put option by explicitly calculating where exercise is optimal. In essence,
the position of the early exercise boundary value can be found at each time step.
This free boundary is unknown a priori and it may be useful to reformulate the
problem in order to eliminate the explicit dependence on it (Wilmott, Howison,
and Dewynne 1995). Independence can be achieved by rewriting the free boundary
problem as a variational inequality (equations (2.25) to (2.27)).

The variational inequality formulation is a framework for solving a class of equi-
librium problems in mathematics. Solving the variational inequality makes no ex-
plicit reference to the free boundary. Instead, the embedded free boundary is implicit
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Fig. 6.9: The convergence behaviour for PSOR estimates as the number of spatial
steps, m, is increased. There is a fixed number of time steps (n = 100).
The trinomial tree value using 5000 time steps is assumed to be the true
value of the option.
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Fig. 6.10: The convergence behaviour for PSOR estimates as the number of time
steps, n, is increased. There is a fixed number of spatial steps (m =
2000). The trinomial tree value using 5000 time steps is assumed to be
the true value of the option.

in the conditions that are simultaneously satisfied in the continuation region and the
stopping region. In Chapter 2 we showed that,

∂P

∂t
+ rS

∂P

∂S
+

1
2
σ2S2 ∂2P

∂S2
− rP ≤ 0, (6.26)

over the entire domain. The value of the American put option also semi-dominates
the intrinsic value, giving a second inequality,

P (t, S)− g(t, S) ≥ 0.
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The final equation (2.25) combines the behaviour of the option in the continuation
region and the stopping region:

1. In the continuation region the Black-Scholes equation is identically equal to
zero.

2. In the stopping region the value of the American put option is identically equal
to the intrinsic value, P (t, S)− g(t, S) = 0.

Thus, (∂P

∂t
+

1
2
σ2S2 ∂2P

∂S2
+ rS

∂P

∂S
− rP

)(
P (t, S)− g(t, S)

)
= 0,

over the entire domain. We can solve the variational inequality by discretising
the PDE and converting the resulting system into a set of linear complementarity
problems.

6.5.1 The American Put as a Linear Complementarity Problem

The linear complementarity problem (LCP) is a specific type of optimisation problem
in which a system with a set of constraints but no objective function is considered.
In this instance, we seek two vectors, w and z, which satisfy,

q = w −Az (6.27)
w ≥ 0 (6.28)
z ≥ 0 (6.29)

wTz = 0, (6.30)

where q and A are known. The American put option pricing problem can be repre-
sented as an LCP. After reducing the Black-Scholes equation to the heat equation,
we first discretise it and then choose one of the finite difference schemes from this
chapter. Once we have chosen a scheme, an LCP must be constructed at each time
step,

z := P̃ i − g̃i

q := Mg̃i −NP̃ i−1

w := Mz + q (6.31)
A := M,

where M, N, are chosen based on the finite difference method used:

Implicit M = MI, N = I

Crank-Nicolson M = MCN, N = NCN

Crandall-Douglas M = MCD, N = NCD.

When estimating the value of the American put option, we rewrite the finite
difference scheme as an LCP at each time step. As a result, we will estimate the price
of an American put option by solving n LCPs. We must therefore find the fastest



6.5 Variational Inequality 84

method available to solve the LCPs. Many are available to solve the LCP (Cottle
and Pang 1992), although most of these are time consuming. Cryer’s algorithm
(Cryer 1983) is an efficient method that has been developed to solve the LCP for
tridiagonal Minkowski matrices. A tridiagonal matrix, M, is a Minkowski matrix if
it satisfies,

• mij = 0, if |i− j| > 1

• mij ≤ 0, if i 6= j

• M has positive principal minors (Strictly diagonally dominant with positive
diagonals).

This method has a convergence of O(n2), which is faster than most algorithms.
However, there is a special property of the American put option which allows the
LCP to be solved with linear convergence O(n) (McCartin and Labadie 2003) using
the Elliot-Ockendon algorithm (Elliot and Ockendon 1982).

6.5.2 Elliot-Ockendon Algorithm

The (Elliot and Ockendon 1982) algorithm is an efficient method which was devel-
oped to solve a specific type of LCP. (McCartin and Labadie 2003) showed that the
LCP resulting from the finite difference scheme for an American put option obeys the
conditions required for application of the Elliot-Ockendon algorithm. The solution
algorithm follows from the proof of the properties of the problem,

Proposition 6.5.1. Consider the linear complementarity problem,

w = q +Az ≥ 0, z ≥ 0, wTz = 0, (6.32)

Let q ∈ Rm, and A ∈ Rm×m be a tridiagonal matrix with diagonal elements ai >
0 : i = 1, . . . , m, super-diagonal elements ci < 0 : i = 1, . . . , m− 1, and sub-diagonal
elements bi < 0 : i = 2, . . . , m which satisfy,

a1 > −c1, am > −bm, aj ≥ −(bj + cj),

where j = 2, . . . , m− 1. Then

1. There exists a unique solution to problem.

2. If qi < 0 : i = 1, . . . , k0, and qi ≥ 0 : i = k0 + 1, . . . , n, then ∃k > k0 such that
zi = 0 : i > k and zi > 0 : i ≤ k.

Proof. See (Elliot and Ockendon 1982, p. 115).

If these conditions are satisfied, we can simplify the form of the LCP. Then there
exists k such that zi > 0 : i ≤ k which implies that wi = 0 : i ≤ k. We can rewrite
(6.32) as,

a1z1 + c1z2 + q1 = 0
bizi−1 + aizi + cizi+1 + qi = 0, i = 2, . . . , k − 1

bkzk−1 + akzk + qk = 0.
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This value of k relates to the position of the early exercise boundary, b(t).
The resulting set of equations can be solved easily using standard Gaussian

elimination to find the zi : i = 1, . . . , k. The remaining zi = 0 : i > k which implies
that wi ≥ 0 : i > k. This results in a set of equations for the the remaining
inequalities (6.32),

bk+1zk + qk+1 = wk+1 ≥ 0
qi = wi,

where i > k + 1. Thus the LCP is reduced to a set of simple equations. The only
difficulty is locating k, which is found when bzk + qk+1 ≥ 0.

The Algorithm

Decomposition:

i = 1, α1 = a1, f1 = −q1/a1

Step: i = i + 1
γi−1 = ci−1/αi−1

αi = ai − biγi−1

fi = −(qi + bifi−1)/αi

If fi > −qi+1/bi+1 then go to Step.

Backsolving:

k = i

zk = fk

Step: i = i− 1
zi = fi − γizi+1

If i > 1 then go to Step.

6.5.3 Convergence of the Elliot-Ockendon Method

The Elliot-Ockendon algorithm produces an estimate, PEO(t, S), for the American
put option price, which converges as the number of time steps, n, and the number
of spatial steps, m, tends towards infinity. Thus, the estimate converges to the true
solution as the grid is made finer.

Spatial Step Convergence

The Elliot-Ockendon estimates converge uniformly from below to the American op-
tion price as the number of spatial steps, m, is increased. See Figure 6.11.

Time step Convergence

The Elliot-Ockendon estimates converge uniformly from below to the American op-
tion price as the number of time steps, n, is increased. See Figure 6.12.



6.5 Variational Inequality 86

500 1000 1500 2000 2500 3000
4.804

4.806

4.808

4.81

4.812

4.814

4.816

Convergence of the Elliot−Ockendon Method (S
0
=100,r=0.1,σ=0.2,T=1,K=1,n=100)

Number of Spatial Steps (m)

A
m

er
ic

an
 O

pt
io

n 
E

st
im

at
e

Elliot−Ockendon Estimates
Lattice Method Estimate (5000 steps)

Fig. 6.11: The convergence behaviour for Elliot-Ockendon estimates as the number
of spatial steps, m, is increased. There is a fixed number of time steps
(n = 100). The trinomial tree value using 5000 time steps is assumed to
be the true value of the option.
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Chapter 7

The Early Exercise Premium

7.1 Introduction

Semi-analytical solutions to the American put pricing problem invariably contain an
integral representation of all or part of the value. Examples of this can be found in
(Carr, Jarrow, and Myneni 1992), (Jacka 1991) and (Kim 1990), amongst others. In
all three approaches, the American put option value, P (t, S), is decomposed into a
linear combination of the equivalent European put option value, p(t, S), and an early
exercise premium, e(t, S), as in equation (2.28). The discounted expected interest
earned while the stock price is below the early exercise boundary, b(t), is equivalent in
value to the early exercise premium. (Huang, Subrahmanyam, and Yu 1996) detailed
a method to approximate the early exercise premium using numerical integration.

The early exercise premium can be expressed as an integral containing the cu-
mulative standard normal distribution function,

e(t, S) = rK

∫ T

t
exp

{−r(T − τ)
}
N

(
ln(b(τ)/S)− (r − σ2/2)(T − τ)

σ
√

T − τ

)
dτ. (7.1)

Clearly, estimation of the integral requires the functional form of the early exercise
boundary over the life of the option. Once the early exercise boundary is calculated,
numerical integration can be used to calculate an estimate of the early exercise
premium, ẽ(t, S)1. An estimate for the American put option value follows from
equation (2.28).

We may calculate an estimation of the early exercise boundary by employing
the dynamic programming techniques of Chapter 4 and Chapter 5. However, we
use numerical integration estimates, P̃ (t), rather than Monte Carlo estimates, P̂ (t).
Consequently, we discretise the life of the option into n intervals, t = t0 < t1 < · · · <
tn = T , and use backward recursion to calculate b̃(ti). The algorithm employed is
similar to that of the GVW method (Chapter 5.3), which solves the smooth pasting
condition (2.19) for the early exercise boundary value.

The algorithm to estimate the early exercise premium can be divided into two
related procedures,

1. Estimation of the early exercise boundary,
{
b̃(ti)

}
i=0,...,n

, using numerical in-
tegration.

1 All integral approximation estimates are denoted by a tilde.



7.2 Estimation of the Early Exercise Boundary 88

2. Estimation of the early exercise premium, ẽ(t, S), using numerical integration
and the previously estimated early exercise boundary,

{
b̃(ti)

}
i=0,...,n

.

When estimating the early exercise boundary we must locate the largest stock price
where the value of the American put option is equal to its intrinsic value. As a con-
sequence, we need a method to estimate the value of the American put option for a
variety of stock prices. This is achieved using numerical integration of equation (7.1).

7.2 Estimation of the Early Exercise Boundary

We use backward recursion, in a similar manner to the GVW algorithm, to calculate
a discrete estimation, b̃i ≡ b̃(ti), of the early exercise boundary at each time step
ti : i = 0, . . . , n. This estimate is calculated recursively using the the smooth
pasting condition (2.19). As usual, we start by using the boundary value at expiry,
tn : bn = K, which is known. We then recursively calculate earlier estimates,
b̃i : i = n− 1, . . . , 0. The recursion process examines the function, f(b), where

f(b) = g(b)− P̃i(b). (7.2)

The function, g(b), is the payoff of the option given by equation (2.7) and P̃i(·) is
the numerical estimate for the American put option value. The put option value is
calculated using numerical integration at time ti, and the already calculated por-
tion of the early exercise boundary,

{
b̂j

}
j=i+1,...,n

. In estimating the early exercise
boundary, we solve for the largest value, b∗ : f(b∗) = 0.

7.2.1 Difficulties Encountered in Locating the Early Exercise
Boundary

The initial difficulty encountered is that the first derivative of f(b) cannot be calcu-
lated analytically for all values of b. In particular,

∂f

∂S
→ −∞ for all S > b∗ as t → T (7.3)

∂f

∂S
= 0 for all S < b∗ for all t ∈ [0, T ]. (7.4)

In addition, the first derivative of the early exercise boundary itself tends to
infinity as T − t tends to zero. This excludes many sophisticated and commonly
used root finding techniques such as Newton-Rhapson for estimating f(b∗) = 0. We
are compelled to use techniques that do not employ the first derivative.

Some of the root finding techniques employ an interpolation method to fit a
curve between successive guesses. This usually identifies the root more quickly than
the bisection method. These techniques only work well on functions that are well
behaved. Unfortunately, equation (7.2) is not well behaved.

The difficulty arises as the accuracy of our approximation increases (see Fig 7.2).
For all values below the early exercise boundary the function f is close to zero. As
the approximation improves, this function rapidly tends towards zero,

lim
eP (S,t)→P (S,t)

f(b) = 0, 0 ≤ b ≤ b∗,
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Fig. 7.1: The function f(b) at one time step before expiry. The slope increases as
time to expiry decreases.

where f(b) is defined by equation (7.2). When searching for the root of equa-
tion (7.2), we are in effect looking for the largest value, b∗ : f(b∗) = 0. The function
decreases rapidly after this value and its slope tends to negative infinity with alarm-
ing rapidity when close to expiry. This is the primary source of difficulty when trying
to solve for the root of equation (7.2).
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Fig. 7.2: The function f(b) with an increasing number of time steps n.

In many of the methods which we will discuss, the current best approximation
to the root is used as a decision-making tool. Below the early exercise boundary,
the function f(b) is close to zero. This complicates the decision making, and often
results in increased iterations to find the root. The decision making process and the
poor characteristics of f(b) lead to slow performance for interpolation techniques.

7.2.2 Root Finding Techniques for Estimating the Early Exercise
Boundary

When searching for the early exercise boundary, the convergence speed can be im-
proved by reducing the search domain, [0,K]. (Merton 1973) showed that the early
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exercise boundary of a perpetual American put option is,

B∞ = K
2 r

σ2

2 r
σ2 + 1

.

The “perpetual early exercise boundary” is a lower bound for the corresponding
American put option with finite expiry T , and, as a consequence, we can apply a
root finding technique on the interval [B∞, K] to find the zero of equation (7.2). We
must then decide which root finding technique to use on the interval. Bracketing
methods produce a sequence of intervals {[αn, βn]} such that,

[αn+1, βn+1] ⊆ [αn, βn], f(αn)f(βn) ≤ 0, n = 1, . . . .

Other commonly used methods use the derivative of the function to enhance the
performance of the root finding technique, although we will not employ these types
of methods because of the difficulties mentioned above. As a consequence, we will
first consider the following standard bracketing methods: bisection method, secant
method, and the false position method (Press, Teukolsky, Vetterling, and Flannery
1999). We then examine the bracketing methods of (Bus and Dekker 1975) and
(Brent 1973). (The details of these algorithms can be found in Appendix D.)

Bisection Method

The bisection method is the simplest technique for finding the root of a function
(Press, Teukolsky, Vetterling, and Flannery 1999). It always locates the zero pro-
vided the initial interval contains the zero. Thus, to find the zero of f(b) in equa-
tion (7.2) we require an interval, [α, β], such that

f(α)f(β) ≤ 0 (7.5)

At each step the function of the midpoint is calculated and a new interval is chosen
so that equation (7.5) holds. The successive halving of intervals leads to convergence
in a fixed number of steps, log2

(
α−β

ε

)
, where ε is the desired tolerance.

Secant Method and False Position Method

The secant method also requires an interval [α, β], where α is less than β and the ini-
tial condition (7.5) holds. The tacit assumption is that the function is approximately
linear between the two points (Press, Teukolsky, Vetterling, and Flannery 1999). We
proceed by fitting a straight line between the two points and then choose the next
lower bound of the interval to be the intercept of this straight line. This is in con-
trast with choosing the midpoint of the interval, as in the bisection method. This
results in a new value γ between α and β,

γ = β − β − α

f(β)− f(α)
f(β).

We then evaluate f(γ) and terminate the procedure when it is sufficiently close to
zero.
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The secant method does not preserve the bracketing property, although the false
position method is a modification which ensures that the root is bracketed. However,
the difficulty with both methods is that convergence can take very long if the function
is not well behaved. In our case, the function in equation (7.2) is just such an example
(see Figure 7.3). As a consequence we should not use either of these root finding
methods.
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b)

o 

o 

o o 

Convergence very slow 

Fig. 7.3: Convergence of the Secant method for finding the early exercise bound-
ary. The function f(b) is not well behaved which drastically reduces the
convergence speed.

Dekker’s Algorithm

Dekker’s algorithm (Bus and Dekker 1975) combines the “speed” of the secant
method with the guaranteed convergence of the bisection method (the algorithm
is detailed in Appendix D.1). The method performs secant steps (linear interpola-
tion) unless a bisection step (halving the interval) leads to enhanced convergence.

Bus-Dekker’s Algorithm M

Algorithm M is very similar to Dekker’s method although it uses rational interpola-
tion instead of linear interpolation (the algorithm is detailed in Appendix D.2). In
the worst case, the rate of convergence is four times as slow as the bisection method.
This is a result of the algorithm reverting to a bisection method if the interval has
not been halved within four steps.

Brent’s Method

Brent’s method (Brent 1973) extends Dekker’s algorithm by using inverse quadratic
interpolation at the interpolation step (the algorithm is detailed in Appendix D.3).
It also includes a few minor alterations to improve the efficiency of the method.

7.2.3 Choosing a Root Finding Technique

When examining the hybrid bisection-interpolation methods, we need to decide
whether the calculation overhead using the interpolation is offset by an improved
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rate of convergence in comparison to the bisection method. The Bus-Dekker algo-
rithm M guarantees a bisection step if four interpolation steps has not halved the
search interval. There are, however, far more calculations involved with the algo-
rithm M than with the bisection method. Figure 7.4 shows that although there
are, on average, fewer iterations for the algorithm M in comparison to the bisection
method, the method has a longer runtime. As a consequence, we would use the
bisection method in preference to any of the hybrid algorithms.
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Fig. 7.4: Comparison of the bisection method and Bus-Dekker’s algorithm M. The
figure on the left compares the average number of iterations to locate
the early exercise boundary. The figure on the right compares the actual
method runtimes when calculating the estimate for the American put
option.

7.3 Integral Approximation Techniques

In (Carr, Jarrow, and Myneni 1992, Jacka 1991, Kim 1990), the early exercise pre-
mium (2.29) was expressed as an integral containing the cumulative standard normal
distribution function,

e(t, S) =
∫ T

t
f(τ, S, b) dτ (7.6)

where

f(τ, S, b) = rK exp
{−r(T − τ)

}
N

(
ln(b(τ)/S)− (r − σ2/2)(T − τ)

σ
√

T − τ

)
. (7.7)

The integral (7.6) cannot be solved analytically, but we can calculate a numerical
estimate, ẽ(t, S), using quadrature techniques (see (Davis and Rabinowitz 1984) for a
comprehensive study of numerical integration). In numerical quadrature an integral
approximation may be calculated using a linear combination of the integrand,

∫ b

a
f(t)dt ≈ w0f(t0) + w1f(t1) + · · ·+ wnf(tn) =

n∑

i=0

wif(ti),
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where t0, . . . , tn are points in the interval [a, b], and w0, . . . , wn are some associated
weights. We discretise the remaining life of the option, T − t, into n intervals:
t = t0 < t1 < · · · < tn = T . The weights and, in some instances, the location of the
integration points are specific to the quadrature method.

When calculating ẽ(t, S), at an arbitrary time ti, we will require the value of the
integrand (7.7) at all times tj : i ≤ j ≤ n. Consequently, we need the estimated
values of the early exercise boundary, b̂(tj) : j = i, . . . , n (Section 7.2 details this
procedure). Hence, the partitioning of the integration region is determined by the
partitioning used in the estimation of the early exercise region, unless interpolation
is performed.

When performing numerical quadrature, the main factors influencing the choice
of method are: computational speed and accuracy. Thus, in general, we would select
the method with the fastest execution, but whose estimate lies within our desired
tolerance.

The simplest quadrature methods are the closed Newton-Cotes quadrature for-
mulae such as the Trapezoidal rule and the Simpson’s rule. They are called closed
methods because the endpoints of the interval are included in the selection of the
integration points. One drawback of the Newton-Cotes formulae is that only a few
integration points are used in the calculation of the estimate. Composite (extended)
rules can, however, be formed from the Newton-Cotes formulae by partitioning the
integration region and combining the approximations for each partition piecewise.

Another drawback of Newton-Cotes formulae is that the integration points must
be equally spaced. In particular, it may be advantageous to place more integration
points over regions with a large functional variation, and fewer integration points
over regions with smaller functional variation. Adaptive methods use information
about the function to decide on the density of integration points in a particular
region. Thus, over a particular interval, we increase the number of steps until a
desired convergence tolerance is reached. In Gaussian quadrature, both the position
of the integration points, as well as the weights, are determined by the method. The
estimate for the integral is calculated by choosing optimal integration points for the
function. For all quadrature coefficients see (Abramowitz and Stegun 1970).

The following analysis does not consider the use of interpolation. Consequently,
we are excluding adaptive methods and Gaussian quadrature. The reason for this
is that the error that is introduced into the early exercise premium is dominated
by the European approximation over each time step for the American put option,
rather than the quadrature method itself. This error is a consequence of estimating
the early exercise boundary, b̂(ti) : i = 0, . . . , n. As a consequence, once the early
exercise boundary has been estimated, there is little benefit in using interpolation
to obtain a greater number of time steps in the integral. For completeness we have
included a discussion of closed formulae in Appendix E.

7.3.1 Choosing a Quadrature Scheme

As shown in Appendix E, using equal spacing for the extended formulae results in
better estimates in comparison to the non-equal spacing. Consequently we only need
to decide between the extended Trapezoidal rule and the extended Simpson’s rule.
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Figure 7.5 shows that the estimate of the early exercise boundary calculated using
Simpson’s rule is highly oscillatory. As mentioned in Appendix E, these oscillations
are regular and can be removed by considering their midpoints. The convergence
results in the next section show that there is a marginal benefit in convergence
speed when using Simpson’s rule. Hence, there is little to choose between the two
methods. Of course, the Trapezoidal rule is simpler to implement and this could be
the deciding factor.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
86

88

90

92

94

96

98

100

Time

E
ar

ly
 E

xe
rc

is
e 

B
ou

nd
ar

y

Bisection and Extended Trapezoidal
Bisection and Extended Simpson’s

0.4 0.42 0.44 0.46 0.48 0.5

87

87.2

87.4

87.6

87.8

88

88.2

88.4

88.6

Time

E
ar

ly
 E

xe
rc

is
e 

B
ou

nd
ar

y

Bisection and Extended Trapezoidal
Bisection and Extended Simpson’s

Fig. 7.5: The early exercise boundary estimate, b̂, calculated using the bisection
method along with the extended Trapezoidal rule and the extended Simp-
son’s rule.

7.4 Convergence Results Using the Bisection Method

We have only examined the convergence results of the bisection method because
it is the preferred root finding method. The choice of quadrature method does
not have a significant impact on the convergence results and here we focus on the
extended Trapezoidal and extended Simpson’s quadrature techniques with equal
spacing. The convergence of the early exercise boundary estimates is only examined
for the Trapezoidal rule. This is because of the oscillatory nature of the early exercise
boundary estimate calculated using the Simpson’s extended rule. We then compare
the convergence results of the American put option estimate for the Trapezoidal rule
and the Simpson’s rule.

The first step of the algorithm is to estimate the early exercise boundary, b̂(ti) :
i = 0, . . . , n. As we increase the number of time steps the early exercise boundary
converges to the “true” early exercise boundary from above. We then use this
estimated early exercise boundary to estimate the early exercise premium, ê(t, S).
The sum of this and the equivalent corresponding European option, p(t, S), results
in an estimate for the American put option, P̂ (t, S). This estimate also converges to
the true solution from above, which is a direct result of the early exercise boundary
b̂(ti) converging from above. The early exercise premium is the interest earned while
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the stock price is below the early exercise boundary. As a consequence, since the
early exercise boundary is too high, the early exercise premium is an overestimate.

7.4.1 Convergence of the Early Exercise Boundary

The early exercise boundary estimate, b̂(ti) : i = 0, . . . , n, converges to the true
boundary, b(t), from above as the number of time steps tends towards infinity (see
Figure 7.6).
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Fig. 7.6: The convergence behaviour of the early exercise boundary, as the num-
ber of time steps is increased. The bisection method has been used in
conjunction with the extended Trapezoidal rule.

7.4.2 Convergence of the American Put Option Estimate

The American put option estimate, PEEP(t, S), calculated using the early exercise
premium, converges from above as the number of time steps tends towards infinity
(see Figure 7.7).
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the early exercise premium, as the number of time steps is increased.
The bisection method has been used in conjunction with the extended
Trapezoidal rule and the extended Simpson’s rule.



Chapter 8

Comparison of Results and
Conclusions

We used the following initial stock price, S0 = 100 and a constant riskless con-
tinuously compounded rate of return, r = 10%. Thereafter we implemented each
type of method with two volatilities, σ = 20% and σ = 40%. For each table of
comparisons, we varied the strike price across at-the-money by 10% and 20%, i.e.
K ∈ {80, 90, 100, 110, 120}. Finally, we did all the calculations for a variety of matu-
rities, T ∈ {0.25, 0.5, 1, 2} years. The estimates were calculated using Matlab 6.5 on
Windows XP on a Pentium 4 PC with a 2.60 GHz processor and 1 GB of memory.

8.1 Analytical Approximations

In Chapter 3, we examined a selection of analytical approximations that have been
developed to estimate the value of the American put option. When comparing
the results, we focused on the Barone-Adesi and Whaley quadratic approximation
method (Section 3.4.1), the Geske-Johnson compound option formula with Richard-
son’s extrapolation on P1 and P2 (Section 3.5), and the Bjerksund and Stensland
approximation (Section 3.6). In each table, the values are compared to an esti-
mate of the price calculated using a binomial tree with 5000 time steps (assuming,
obviously, that this value is relatively accurate).

Tables 8.1 and 8.2 show that, under certain circumstances, the analytical ap-
proximations are relatively good. However, there is a lack of consistency in terms
of which of the methods is best and under which circumstances they are best. This
makes it difficult, if not impossible, to recommend any of the methods for general
use. The ease and speed of use does not provide any benefit over accuracy. Conse-
quently, using more developed numerical methods would be sensible.

8.2 Lattice or Tree Methods

In Chapter 4, we examined lattice or tree methods that have been developed to
estimate the price of the American put option. These include modifications to the
general lattice methods, which are designed to improve the convergence rate. When
comparing results, we confine our attention to binomial and trinomial lattices with
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5000 time steps, using the Black-Scholes modification (Section 4.5), and the adaptive
mesh model (Section 4.7.1) for the trinomial tree.

Tables 8.3 and 8.4 show that, with 5000 time steps, the binomial and trinomial
trees produce very similar results. However, the trinomial tree takes longer to exe-
cute. This may be as a result of using a matrix structure in Matlab, rather than a
tree-type structure. Consequently, the binomial tree provides the quickest solution
and should be regarded as preferable.

8.3 Monte Carlo Methods

In Chapter 5, we examined a selection of Monte Carlo methods that have been
developed to estimate the price of the American put option. When comparing
results, we used the following parameters for each method:

• Tilley’s bundling algorithm (Section 5.2): number of sample paths M = 50000,
number of time steps n = 100, and the number of bundles a = 250 (α ≈ 0.5).

• Grant, Vora and Weeks algorithm (Section 5.3): number of sample paths M =
50000, number of time steps n = 100, number of sample paths to calculate the
early exercise boundary M ′ = 10000.

• Stratified Space Partitioning (Section 5.4): number of sample paths M =
50000, number of time steps n = 100, and the number of partitions a = 200.

• Longstaff and Schwartz regression method (Section 5.5.2): number of sample
paths M = 50000, number of time steps n = 100, number of basis functions
n′ = 6. Hermite polynomials were used to construct the functional form
of the continuation values. Only in-the-money sample paths were used and
continuation values were used to make exercise decisions only.

Tables 8.5 and 8.6 show quite a large variation in the values that the Monte Carlo
methods produce. It can be shown that increasing the number of sample stock price
paths will produce less variation. A significantly larger number of sample paths will
increase the runtime of the algorithms and may incur memory difficulties. Although
there is no consistent criticism that can be applied across the methods, it is clear that
the SSAP method tends to overestimate the value of the option. In some instances,
quite dramatically. Since this is a significantly slower method, it is not the preferred
solution. The Longstaff and Schwartz method is the fastest and, in contrast with
Tilley’s method, it can be extended to include multiple sources of uncertainty.

8.4 Finite Difference Methods

In Chapter 6, we examined a selection of the finite difference methods that have
been developed to estimate the price of the American put option. We have used the
Crandall-Douglas finite difference scheme for all methods. When comparing results,
we used the following parameters for each method:
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• Brennan and Schwartz method (Section 6.3): The number of spatial and time
steps varied depending on the volatility. This is because of the restriction,
α < 0.5, which ensures convergence. When the volatility σ = 20%: the
number of spatial steps m = 2000, and the number of time steps n = 1400.
When the volatility σ = 40%: the number of spatial steps m = 2000, and the
number of time steps n = 7000.

• The Projected Successive Over-Relaxation (PSOR) algorithm (Section 6.4):
the number of spatial steps m = 2000, and the number of time steps n = 250.

• Elliot and Ockendon method (Section 6.5.2): the number of spatial steps m =
2000, and the number of time steps n = 250.

Tables 8.7 and 8.8 show that the finite difference methods give relatively similar
estimates for the price of the American put option. Because of the restriction on
α, the Brennan and Schwartz method is not preferable. The PSOR and Elliot
and Ockendon methods give similar results. The Elliot and Ockendon algorithm,
however, is significantly faster, which would make it the preferred finite difference
method.

8.5 The Early Exercise Premium

In Chapter 7, we decomposed the value of the American put option into a linear
combination of the equivalent European put option value and an early exercise pre-
mium. We compared the two suggested quadrature schemes: the extended Trape-
zoidal rule and the extended Simpson’s rule. The bisection method is employed, for
both quadratures schemes, to locate the early exercise boundary.

Tables 8.9 and 8.10 show that estimates calculated using the early exercise pre-
mium are similar in both value and runtime. As a consequence, either quadrature
scheme can be used.

8.6 Conclusions

Tables 8.11 and 8.12 provide a summary of all of the results discussed above. They
compare the preferred method from each numerical technique, excluding the ana-
lytical approximations1:

• The binomial tree with 5000 timesteps and the Black-Scholes enhancement.

• The Longstaff and Schwartz regression Monte Carlo method with M = 50000
sample stock price paths, n = 100 time steps, and the first 6 Hermite poly-
nomials. Only in-the-money sample paths were used and continuation values
were used to make exercise decisions only.

• The Elliot and Ockendon algorithm using the Crandall-Douglas finite differ-
ence scheme with m = 2000 spatial steps and n = 250 time steps.

1 Because they are so inaccurate.
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• Estimation of the early exercise premium using the extended Simpson’s rule as
the quadrature method, and the bisection method to locate the early exercise
boundary.

When deciding on which numerical technique to implement for a specific problem
there are two overriding factors which should be considered: speed of convergence
and flexibility. The speed of the solution is often specific to the problem considered.
Some techniques are more applicable to certain problems. Techniques which are
broad in application tend to be time consuming. The comparison of methods in this
dissertation bear testament to this.

The (quasi-)analytical solutions give a quick but crude estimate for the price
of the American put option. This price is too approximate to be useful and the
methodology is unsuitable for hedging.

The finite difference methods provide the fastest estimates within a desired ac-
curacy. One drawback of these methods is that they are not easily adapted to
incorporate idiosyncratic features. They do not perform well in higher dimensions
either.

The tree or lattice methods also provide a quick and accurate estimate. Although
they are slower than the finite difference methods, they do have the ability to model
idiosyncratic features, e.g. vesting periods. They are, however, also not easily
extended to higher dimensions.

The integral representation of the early exercise premium is an interesting es-
timation technique. However, this particular approach is specific to the American
put problem and has no obvious extension to any other derivatives. The calculation
technique is extremely slow.

Not surprisingly, the slowest of the methods examined were the Monte Carlo
methods. These methods are attractive because they are, in general, relatively
intuitive. Monte Carlo methods have the added attraction that they are invariant
in their convergence rate with respect to the number of dimensions of the problem.
This means that increasing the number of stochastic factors driving the price of
the derivative does not slow down the calculations. This makes them attractive
for complex derivatives. However, even though they have the ability to model the
early exercise feature of American-style derivatives, they are not well suited to the
American put option problem, in comparison to the other methods.

In final conclusion, this dissertation suggests that the Elliot-Ockendon algorithm
should be the preferred numerical method for solving the standard American put
option problem.
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S0 = 100 Ave T = 0.25 T = 0.5 T = 1 T = 2
r = 10% Method CPU (s) Price Price Price Price
σ = 20%
K = 80

Bar-Ade & Wha 0.03 0.02373 0.15214 0.48268 0.97288
Geske-Johnson 0.02 0.01875 0.12705 0.40691 0.85072
Bje & Sten 0.01 0.01883 0.12929 0.42231 0.88202
Binomial 30 0.01932 0.13405 0.43647 0.89791

K = 90
Bar-Ade & Wha 0.03 0.46161 1.02742 1.77960 2.55333
Geske-Johnson 0.02 0.43059 0.95823 1.67904 2.45540
Bje & Sten 0.01 0.43193 0.96026 1.67818 2.45289
Binomial 30 0.44470 0.99054 1.71688 2.47936

K = 100
Bar-Ade & Wha 0.03 3.06755 3.92344 4.83079 5.65141
Geske-Johnson 0.02 3.07293 3.94670 4.87336 5.63708
Bje & Sten 0.01 3.00549 3.84595 4.75903 5.61275
Binomial 30 3.07018 3.91857 4.81628 5.64344

K = 110
Bar-Ade & Wha 0.03 10.01811 10.23896 10.65142 11.11797
Geske-Johnson 0.02 10.08393 10.35888 10.69454 10.76979
Bje & Sten 0.01 10.01652 10.25300 10.68406 11.16913
Binomial 30 10.04575 10.29659 10.71909 11.19463

K = 120
Bar-Ade & Wha 0.03 23.02968 21.49557 20.62214 20.20574
Geske-Johnson 0.02 20.00000 20.00000 20.00000 20.00000
Bje & Sten 0.01 21.70227 20.97639 20.39836 20.08360
Binomial 30 20.00000 20.00000 20.00000 20.00000

Tab. 8.1: Comparison of analytical approximations with σ = 20%. The table com-
pares the prices for varying strike prices and maturities.
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S0 = 100 Ave T = 0.25 T = 0.5 T = 1 T = 2
r = 10% Method CPU (s) Price Price Price Price
σ = 40%
K = 80

Bar-Ade & Wha 0.03 0.94310 2.31151 4.41045 7.07488
Geske-Johnson 0.02 0.91160 2.21860 4.21436 6.77293
Bje & Sten 0.01 0.91335 2.22390 4.21688 6.73277
Binomial 30 0.92650 2.26626 4.29963 6.83239

K = 90
Bar-Ade & Wha 0.03 2.98718 5.03762 7.66111 10.68234
Geske-Johnson 0.02 2.93339 4.93494 7.50570 10.49699
Bje & Sten 0.01 2.92942 4.91354 7.43733 10.32522
Binomial 30 2.97136 4.99677 7.55743 10.44591

K = 100
Bar-Ade & Wha 0.03 6.91438 9.22754 12.02439 15.14502
Geske-Johnson 0.02 6.89467 9.20675 12.01736 15.16176
Bje & Sten 0.01 6.83954 9.09515 11.81074 14.81371
Binomial 30 6.92317 9.21910 11.95858 14.94706

K = 110
Bar-Ade & Wha 0.03 12.88435 14.91645 17.50423 20.46673
Geske-Johnson 0.02 13.01184 15.08729 17.73270 20.72388
Bje & Sten 0.01 12.83697 14.82428 17.34654 20.19855
Binomial 30 12.94427 14.96740 17.50368 20.33536

K = 120
Bar-Ade & Wha 0.03 20.68289 22.01910 24.07271 26.64601
Geske-Johnson 0.02 20.96501 22.40189 24.54209 27.10585
Bje & Sten 0.01 20.70245 22.00704 24.00384 26.46558
Binomial 30 20.78280 22.13261 24.14868 26.59815

Tab. 8.2: Comparison of analytical approximations with σ = 40%. The table com-
pares the prices for varying strike prices and maturities.
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S0 = 100 Ave T = 0.25 T = 0.5 T = 1 T = 2
r = 10% Method CPU (s) Price Price Price Price
σ = 20%
K = 80

Binomial 30 0.01932 0.13405 0.43647 0.89791
Trinomial 70 0.01933 0.13405 0.43645 0.89786

K = 90
Binomial 30 0.44470 0.99054 1.71688 2.47936
Trinomial 70 0.44467 0.99047 1.71676 2.47922

K = 100
Binomial 30 3.07018 3.91857 4.81628 5.64344
Trinomial 70 3.07004 3.91839 4.81604 5.64317

K = 110
Binomial 30 10.04575 10.29659 10.71909 11.19463
Trinomial 70 10.04569 10.29637 10.71860 11.19404

K = 120
Binomial 30 20.00000 20.00000 20.00000 20.00000
Trinomial 70 20.00000 20.00000 20.00000 20.00000

Tab. 8.3: Comparison of tree methods with σ = 20%. The table compares the
prices for varying strike prices and maturities.

S0 = 100 Ave T = 0.25 T = 0.5 T = 1 T = 2
r = 10% Method CPU (s) Price Price Price Price
σ = 40%
K = 80

Binomial 30 0.92650 2.26626 4.29963 6.83239
Trinomial 70 0.92648 2.26613 4.29937 6.83199

K = 90
Binomial 30 2.97136 4.99677 7.55743 10.44591
Trinomial 70 2.97121 4.99650 7.55703 10.44538

K = 100
Binomial 30 6.92317 9.21910 11.95858 14.94706
Trinomial 70 6.92291 9.21874 11.95808 14.94642

K = 110
Binomial 30 12.94427 14.96740 17.50368 20.33536
Trinomial 70 12.94401 14.96701 17.50313 20.33462

K = 120
Binomial 30 20.78280 22.13261 24.14868 26.59815
Trinomial 70 20.78262 22.13225 24.14810 26.59729

Tab. 8.4: Comparison of tree methods with σ = 40%. The table compares the
prices for varying strike prices and maturities.
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S0 = 100 Ave T = 0.25 T = 0.5 T = 1 T = 2
r = 10% Method CPU (s) Price Price Price Price
σ = 20%
K = 80

Tilley’s Algorithm 20 0.01816 0.12737 0.40249 0.82381
Grant, Vora, and Weeks 24 0.02001 0.13535 0.42984 0.90006
SSAP 96 0.02297 0.15961 0.49369 0.96820
Longstaff-Schwartz 17 0.02020 0.12892 0.44016 0.89342

K = 90
Tilley’s Algorithm 20 0.43561 0.97127 1.67237 2.47037
Grant, Vora, and Weeks 24 0.45230 0.97071 1.68724 2.46762
SSAP 96 0.48568 1.02437 1.77044 2.56818
Longstaff-Schwartz 17 0.43009 0.98318 1.72707 2.50399

K = 100
Tilley’s Algorithm 20 3.06599 3.92728 4.81745 5.65319
Grant, Vora, and Weeks 24 3.05122 3.90456 4.78941 5.58849
SSAP 96 3.14663 3.95839 4.86520 5.64970
Longstaff-Schwartz 17 3.06975 3.91593 4.80755 5.61290

K = 110
Tilley’s Algorithm 20 10.08125 10.37458 10.77623 11.26335
Grant, Vora, and Weeks 24 10.00278 10.26154 10.66579 11.12460
SSAP 96 10.06145 10.32546 10.73167 11.21029
Longstaff-Schwartz 17 10.03977 10.29696 10.69444 11.19186

K = 120
Tilley’s Algorithm 20 20.02559 20.02870 20.02716 20.02664
Grant, Vora, and Weeks 24 20.00000 20.00000 20.00000 20.00000
SSAP 96 20.00000 20.00000 20.00000 20.00000
Longstaff-Schwartz 17 20.00000 20.00000 20.00000 20.00000

Tab. 8.5: Comparison of Monte Carlo methods with σ = 20%. The table compares
the prices for varying strike prices and maturities.
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S0 = 100 Ave T = 0.25 T = 0.5 T = 1 T = 2
r = 10% Method CPU (s) Price Price Price Price
σ = 40%
K = 80

Tilley’s Algorithm 20 0.92760 2.27764 4.29814 6.87401
Grant, Vora, and Weeks 24 0.92579 2.25171 4.29104 6.79899
SSAP 96 1.00861 2.34028 4.35260 6.88136
Longstaff-Schwartz 17 0.90096 2.25177 4.24447 6.84385

K = 90
Tilley’s Algorithm 20 2.99079 5.00938 7.58482 10.53429
Grant, Vora, and Weeks 24 2.95383 4.99253 7.53679 10.40500
SSAP 96 3.06677 5.08616 7.65285 10.60052
Longstaff-Schwartz 17 2.93842 4.98815 7.57601 10.47224

K = 100
Tilley’s Algorithm 20 6.95376 9.26785 12.03877 15.02084
Grant, Vora, and Weeks 24 6.90205 9.18810 11.91771 14.91187
SSAP 96 7.05748 9.33075 12.08429 15.15727
Longstaff-Schwartz 17 6.94872 9.15635 11.98370 14.94516

K = 110
Tilley’s Algorithm 20 12.99613 15.02708 17.55129 20.42396
Grant, Vora, and Weeks 24 12.92895 14.92863 17.44465 20.24687
SSAP 96 13.04329 15.18300 17.64147 20.31177
Longstaff-Schwartz 17 13.02635 14.91235 17.28420 20.36189

K = 120
Tilley’s Algorithm 20 20.83941 22.26088 24.27206 26.72368
Grant, Vora, and Weeks 24 20.75720 22.10186 24.09454 26.49393
SSAP 96 20.87945 22.23077 24.21324 26.62986
Longstaff-Schwartz 17 20.79422 22.04040 24.09341 26.50654

Tab. 8.6: Comparison of Monte Carlo methods with σ = 40%. The table compares
the prices for varying strike prices and maturities.
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S0 = 100 Ave T = 0.25 T = 0.5 T = 1 T = 2
r = 10% Method CPU (s) Price Price Price Price
σ = 20%
K = 80

Brennan-Schwartz 27 0.01931 0.13400 0.43652 0.89799
PSOR 38 0.01934 0.13401 0.43638 0.89782
Elliot-Ockendon 20 0.01936 0.13408 0.43641 0.89788

K = 90
Brennan-Schwartz 27 0.44466 0.99048 1.71696 2.47940
PSOR 38 0.44443 0.99023 1.71659 2.47920
Elliot-Ockendon 20 0.44457 0.99042 1.71676 2.47932

K = 100
Brennan-Schwartz 27 3.06839 3.91766 4.81597 5.64330
PSOR 38 3.06904 3.91788 4.81578 5.64325
Elliot-Ockendon 20 3.06921 3.91795 4.81598 5.64340

K = 110
Brennan-Schwartz 27 10.04513 10.29603 10.71880 11.19440
PSOR 38 10.04533 10.29612 10.71870 11.19430
Elliot-Ockendon 20 10.04548 10.29618 10.71887 11.19450

K = 120
Brennan-Schwartz 27 20.00000 20.00000 20.00000 20.00000
PSOR 38 20.00000 20.00000 20.00000 20.00000
Elliot-Ockendon 20 20.00000 20.00000 20.00000 20.00000

Tab. 8.7: Comparison of finite difference approximations with σ = 20%. The table
compares the prices for varying strike prices and maturities.
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S0 = 100 Ave T = 0.25 T = 0.5 T = 1 T = 2
r = 10% Method CPU (s) Price Price Price Price
σ = 40%
K = 80

Brennan-Schwartz 120 0.92656 2.26624 4.29966 6.83240
PSOR 38 0.92635 2.26590 4.29907 6.83176
Elliot-Ockendon 20 0.92641 2.26582 4.29913 6.83191

K = 90
Brennan-Schwartz 120 2.97070 4.99626 7.55710 10.44584
PSOR 38 2.97087 4.99617 7.55669 10.44520
Elliot-Ockendon 20 2.97119 4.99649 7.55700 10.44549

K = 100
Brennan-Schwartz 120 6.92159 9.21807 11.95800 14.94690
PSOR 38 6.92228 9.21828 11.95769 14.94628
Elliot-Ockendon 20 6.92265 9.21807 11.95772 14.94643

K = 110
Brennan-Schwartz 120 12.94372 14.96698 17.50345 20.33540
PSOR 38 12.94363 14.96672 17.50290 20.33469
Elliot-Ockendon 20 12.94400 14.96699 17.50317 20.33495

K = 120
Brennan-Schwartz 120 20.78186 22.13178 24.14816 26.59803
PSOR 38 20.78244 22.13212 24.14804 26.59760
Elliot-Ockendon 20 20.78264 22.13220 24.14819 26.59779

Tab. 8.8: Comparison of finite difference approximations with σ = 40%. The table
compares the prices for varying strike prices and maturities.



8.6 Conclusions 108

S0 = 100 Ave T = 0.25 T = 0.5 T = 1 T = 2
r = 10% Method CPU (s) Price Price Price Price
σ = 20%
K = 80

Ext. Trapezoidal 79 0.01936 0.13414 0.43666 0.89838
Ext. Simpson’s 80 0.01936 0.13413 0.43666 0.89837

K = 90
Ext. Trapezoidal 79 0.44475 0.99066 1.71719 2.48014
Ext. Simpson’s 80 0.44474 0.99065 1.71718 2.48011

K = 100
Ext. Trapezoidal 79 3.07027 3.91883 4.81690 5.64482
Ext. Simpson’s 80 3.07026 3.91882 4.81687 5.64477

K = 110
Ext. Trapezoidal 79 10.04610 10.29721 10.72027 11.19687
Ext. Simpson’s 80 10.04608 10.29718 10.72022 11.19678

K = 120
Ext. Trapezoidal 79 20.00000 20.00000 20.00000 20.00000
Ext. Simpson’s 80 20.00000 20.00000 20.00000 20.00000

Tab. 8.9: Comparison of approximations calculated using the early exercise pre-
mium with σ = 20%. The table compares the prices for varying strike
prices and maturities.

S0 = 100 Ave T = 0.25 T = 0.5 T = 1 T = 2
r = 10% Method CPU (s) Price Price Price Price
σ = 40%
K = 80

Ext. Trapezoidal 79 0.92655 2.26633 4.29986 6.83309
Ext. Simpson’s 80 0.92655 2.26632 4.29984 6.83305

K = 90
Ext. Trapezoidal 79 2.97135 4.99683 7.55774 10.44686
Ext. Simpson’s 80 2.97134 4.99682 7.55771 10.44680

K = 100
Ext. Trapezoidal 79 6.92316 9.21923 11.95905 14.94834
Ext. Simpson’s 80 6.92315 9.21921 11.95901 14.94826

K = 110
Ext. Trapezoidal 79 12.94438 14.96768 17.50439 20.33704
Ext. Simpson’s 80 12.94436 14.96765 17.50434 20.33695

K = 120
Ext. Trapezoidal 79 20.78309 22.13311 24.14969 26.60030
Ext. Simpson’s 80 20.78307 22.13308 24.14963 26.60019

Tab. 8.10: Comparison of approximations calculated using the early exercise pre-
mium with σ = 40%. The table compares the prices for varying strike
prices and maturities.
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S0 = 100 Ave T = 0.25 T = 0.5 T = 1 T = 2
r = 10% Method CPU (s) Price Price Price Price
σ = 20%
K = 80

Binomial 30 0.01932 0.13405 0.43647 0.89791
Elliot-Ockendon 20 0.01936 0.13408 0.43641 0.89788
Longstaff-Schwartz 30 0.02034 0.13751 0.44198 0.89933
Ext. Simpson’s 80 0.01936 0.13413 0.43666 0.89837

K = 90
Binomial 30 0.44470 0.99054 1.71688 2.47936
Elliot-Ockendon 20 0.44457 0.99042 1.71676 2.47932
Longstaff-Schwartz 30 0.41551 1.00227 1.71041 2.46960
Ext. Simpson’s 80 0.44474 0.99065 1.71718 2.48011

K = 100
Binomial 30 3.07018 3.91857 4.81628 5.64344
Elliot-Ockendon 20 3.06921 3.91795 4.81598 5.64340
Longstaff-Schwartz 30 3.05110 3.75582 4.82682 5.70316
Ext. Simpson’s 80 3.07026 3.91882 4.81687 5.64477

K = 110
Binomial 30 10.04575 10.29659 10.71909 11.19463
Elliot-Ockendon 20 10.04548 10.29618 10.71887 11.19450
Longstaff-Schwartz 30 9.99125 10.29446 10.70681 10.74765
Ext. Simpson’s 80 10.04608 10.29718 10.72022 11.19678

K = 120
Binomial 30 20.00000 20.00000 20.00000 20.00000
Elliot-Ockendon 20 20.00000 20.00000 20.00000 20.00000
Longstaff-Schwartz 30 20.00000 20.00000 20.00000 20.00000
Ext. Simpson’s 80 20.00000 20.00000 20.00000 20.00000

Tab. 8.11: A summary of numerical methods with σ = 20%. The table compares
the prices for varying strike prices and maturities.
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S0 = 100 Ave T = 0.25 T = 0.5 T = 1 T = 2
r = 10% Method CPU (s) Price Price Price Price
σ = 40%
K = 80

Binomial 30 0.92650 2.26626 4.29963 6.83239
Elliot-Ockendon 20 0.92641 2.26582 4.29913 6.83191
Longstaff-Schwartz 30 0.93535 2.27757 4.27521 6.81552
Ext. Simpson’s 80 0.92655 2.26632 4.29984 6.83305

K = 90
Binomial 30 2.97136 4.99677 7.55743 10.44591
Elliot-Ockendon 20 2.97119 4.99649 7.55700 10.44549
Longstaff-Schwartz 30 2.98213 4.99134 7.56784 10.51660
Ext. Simpson’s 80 2.97134 4.99682 7.55771 10.44680

K = 100
Binomial 30 6.92317 9.21910 11.95858 14.94706
Elliot-Ockendon 20 6.92265 9.21807 11.95772 14.94643
Longstaff-Schwartz 30 6.91119 9.23024 11.96895 14.81716
Ext. Simpson’s 80 6.92315 9.21921 11.95901 14.94826

K = 110
Binomial 30 12.94427 14.96740 17.50368 20.33536
Elliot-Ockendon 20 12.94400 14.96699 17.50317 20.33495
Longstaff-Schwartz 30 12.93204 14.92766 17.62815 20.35684
Ext. Simpson’s 80 12.94436 14.96765 17.50434 20.33695

K = 120
Binomial 30 20.78280 22.13261 24.14868 26.59815
Elliot-Ockendon 20 20.78264 22.13220 24.14819 26.59779
Longstaff-Schwartz 30 20.80440 22.07077 24.14623 26.51720
Ext. Simpson’s 80 20.78307 22.13308 24.14963 26.60019

Tab. 8.12: A summary of numerical methods with σ = 40%. The table compares
the prices for varying strike prices and maturities.



Appendix A

A Parity Result for American
Put and American Call options

A parity relationship for both American and European options was derived in
(McDonald and Schroder 1998). As a result, the price of an American call op-
tion with strike price K, maturity T , initial stock price S, riskfree interest rate r,
volatility σ, and cost of carry1 δ is equal to the price of an American put option
with strike price S, maturity T , initial stock price K, riskfree interest rate r − δ,
volatility σ, and cost of carry −δ.

If the underlying asset is driven by geometric Brownian motion, the following
parity result holds,

C(t, S, K, r, δ, T, σ) = P (t,K, S, δ, r, T, σ).

1 The cost of carry can be obtained from the forward price relationship, F (t, T, S) = S exp
�
δT
	
.

For our purposes δ = r.



Appendix B

Standard Normal Cumulative
Distribution Functions

B.1 The Univariate Standard Normal Cumulative
Normal Function

The univariate standard normal cumulative normal function, Φ(S) can easily be
calculated. In Matlab the following command will give Φ(S)

0.5+erf(S/sqrt(2))/2

B.2 The Bivariate Standard Normal Cumulative
Normal Function

An algorithm to calculate the bivariate standard normal cumulative normal function,
Φ2(a, b, ρ), is presented in (Hull 2000). If a ≤ 0, b ≤ 0, ρ ≤ 0, then

Φ2(a, b, ρ) =
√

1− ρ2/π
4∑

i,j=1

AiAjf(Bi, Bj),

where
f(S, y) = exp

{
a′(2S − a′) + b′(2y − b′) + 2ρ(S − a′)(y − b′)

}
,

a′ = a/
√

2(1− ρ2), b/
√

2(1− ρ2),

A1 = 0.3253030, A2 = 0.4211071, A3 = 0.1334425, A4 = 0.006374323
B1 = 0.1337764, B2 = 0.6243247, B3 = 1.3425378, B4 = 2.2626645

If the conditions on a, b, and ρ are not satisfied the following identity can be used,

Φ(a, b, ρ) = Φ(a, 0, ρ1) + Φ(b, 0, ρ2)− δ
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where

ρ1 = sign(a)(ρa− b)/
√

a2 − 2ρab + b2,

ρ2 = sign(b)(ρb− a)/
√

a2 − 2ρab + b2,

δ = (1− sign(a)sign(b))/4,

sign(S) =

{
+1 if S ≥ 0
−1 if S < 0



Appendix C

Basis Functions

Laguerre Polynomials

F0 =1 (C.1)
F1 =1−X (C.2)

F2 =1− 2X + 1/2X2 (C.3)

F3 =1− 3X + 3/2X2 −X3/6 (C.4)

F4 =1− 4X + 3X2 − 2/3X3 + X4/24 (C.5)

F5 =1− 5X + 5X2 − 4/3X3 + 5/24X4 − 1/120X5 (C.6)

F6 =1− 6X + 15/2X2 − 10/3X3 + 5/8X4 − 1/20X5 + 1/720X6 (C.7)

Hermite Polynomials

F0 =1 (C.8)
F1 =X (C.9)

F2 =X2 − 1 (C.10)

F3 =X3 − 3X (C.11)

F4 =X4 − 6X2 + 3 (C.12)

F5 =X5 − 10X3 + 15X (C.13)

F6 =X6 − 15X4 + 45X2 − 15 (C.14)



Appendix C. Basis Functions 115

Chebyshev of First Kind Polynomials

F0 =1 (C.15)
F1 =X (C.16)

F2 =2X2 − 1 (C.17)

F3 =4X3 − 3X (C.18)

F4 =8X4 − 8X2 + 1 (C.19)

F5 =16X5 − 20X3 + 5X (C.20)

F6 =32X6 − 48X4 + 18X2 − 1 (C.21)

F7 =64X7 − 112X5 + 56X3 − 7X (C.22)

F8 =128X8 − 256X6 + 160X4 − 32X2 + 1 (C.23)

F9 =256X9 − 576X7 + 432X5 − 120X3 + 9X (C.24)

Chebyshev of Second Kind Polynomials

F0 =1 (C.25)
F1 =2X (C.26)

F2 =4X2 − 1 (C.27)

F3 =8X3 − 4X (C.28)

F4 =16X4 − 12X2 + 1 (C.29)

F5 =32X5 − 32X3 + 6X (C.30)

F6 =64X6 − 80X4 + 24X2 − 1 (C.31)
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Root Finding Algorithms

D.1 Dekker’s Algorithm

Dekker’s algorithm (Bus and Dekker 1975) combines the “speed” of the secant
method with the guaranteed convergence of the bisection method. The method
performs secant steps (linear interpolation) unless a bisection step (halving the in-
terval) leads to better convergence.

β represents the best guess for the root
γ represents the latest guess such that f(β)f(γ) ≤ 0
α represents represents the previous value of β

Given points x0 and x1, such that

f(x0)f(x1) ≤ 0 (D.1)
|f(x0)| ≤ |f(x1)|.

Then set
β = x0, α = x1, γ = α. (D.2)

At each step three values are calculated: an interpolation value, a bisection or
midpoint value, and a minimal move value. The linear interpolation value l, is

l(β, γ) =





β − f(β)(β − γ)/(f(β)− f(γ)) iff(β) 6= f(γ)
∞ iff(β) = f(γ) 6= 0
β iff(β) = f(γ) = 0.

The bisection value, m, is

m(β, γ) =
1
2

[β + γ] .

A third value, h, is
h(β, γ) = β + sign(γ − β)× δ(β),

which represents the methods smallest possible move. Here, δ(β) is a relative toler-
ance,

δ(β) = α|β|+ ε,
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where ε is an absolute tolerance and α is a number like the floating point precision
of the computer. The new iterate variable, xi is calculated using,

xi =





l(βi−1, γi−1) if l lies between h(βi−1, γi−1) and m(βi−1, γi−1)
h(βi−1, γi−1) if |l − βi−1| ≤ δ(β)
m(βi−1, γi−1) otherwise.

To keep the bracketing property, the latest values x+
j such that f(x+

j ) > 0 and x−j

0

x

f(
x) o 

o 

|f(β)| ≤ |f(γ)| 
f(β)f(γ) ≤ 0    

o o 
l(β,γ) m(β,γ) 

o 

h(β,γ) 

Therefore x
i
=l(β,γ) 

β

γ

γβ
0 K

0

b

f(
b)

o 

o 

o o 
m(β,γ) 

l(β,γ) 
o 

h(β,γ) 

Therefore x
i
=m(β,γ) 

|f(β)| ≤ |f(γ)| 
f(bβ)f(γ) ≤ 0    

β 

γ 

Fig. D.1: Dekker’s method. A couple of situations showing how the new iterate
point, xi is chosen.

such that f(x−j ) < 0 need to be stored. Let k be the largest integer values such that

f(xi)f(xk) ≤ 0.

The values βi, γi and αi are then found using,

βi = xi, γi = xk, αi = βi−1 if |f(xi)| ≤ |f(xk)|
βi = xk, γi = xi, αi = xi otherwise.

The algorithm terminates at step n when

|βn − γn| ≤ 2δ(βn).

The proceeding algorithms are slight modifications of Dekker’s method. They em-
ploy different types of interpolation to get “improved” guesses.

D.2 Bus-Dekker’s Algorithm M

Algorithm M is very similar to Dekker’s method although it uses rational interpola-
tion instead of linear interpolation. In the worst case the rate of convergence is four
times as slow as the bisection method. This is achieved by reverting to a bisection
step if the interval has not been halved in four steps.

β represents the best guess for the root
γ represents the latest guess such that f(β)f(γ) ≤ 0
α represents the previous value of β
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The algorithm is setup as in step (D.1) and step (D.2). At each step a value j = ji

is updated. It represents the last time that the root bracketing interval was halved,

|βj − γj | ≤ 1
2
|βj−1 − γj−1|.

The algorithm then performs normal interpolation until the interval has not been
halved in three steps. It then performs a rational interpolation step. If that does not
reduce the interval size sufficiently, a bisection step is performed. Each interpolation
step is checked to be within the bounds as in Dekker’s algorithm (here λ represents
the interpolated value),

w = w(λ, β, γ) =





λ(βi−1, γi−1) if λ lies between h(βi−1, γi−1) and m(βi−1, γi−1)
h(βi−1, γi−1) if |λ− βi−1| ≤ δ(β)
m(βi−1, γi−1) otherwise.

The new iterate, xi is calculated using

xi =





w(l(βi−1, γi−1), βi−1, γi−1) if ji ≥ i− 2
w(ρ(βi−1, γi−1), βi−1, γi−1) if ji = i− 3
m(βi−1, γi−1) otherwise,

where l is calculated as in (D.1) and ρ is the rational interpolation step,

ρi = ρ(βi−1, αi−1, di−1) =





β − beta(β − α)/(β − α) ifβ 6= α

∞ ifβ = α 6= 0
0 ifβ = α = 0,

where,

α = f(α)
f(β)− f(d)

β − d
β = f(β)

f(α)− f(d)
α− d

.

Let k be the largest integer values such that

f(xi)f(xk) ≤ 0.

The new values for αi, βi, γi and di are calculated

βi = xi, γi = xk, αi = βi−1 if |f(xi)| ≤ |f(xk)|
βi = xk, γi = xi, αi = xi otherwise

di = αi−1 if βi = xi or βi = βi−1

di = βi−1 otherwise.

D.3 Brent’s Method

Brent’s algorithm (Brent 1973) extends Dekker’s algorithm by using inverse quadratic
interpolation for the interpolation step. It also includes a few minor alterations to
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improve the efficiency of the method.

β represents the best guess for the root
γ represents the latest guess such that f(β)f(γ) ≤ 0
α represents the previous value of β

d represents the latest interval size
e represents the previous interval size

The algorithm is again setup as in (D.1-D.2). The bisection increment, m

m(β, γ) =
1
2

(γ − β) ,

is a slight modification of Dekker’s algorithm. It will return β if |m| ≤ δ(β) since β
is probably a better approximation to the root than β + m ≡ 1

2(β + γ).
The inverse quadratic interpolation is chosen over normal quadratic interpolation

because the normal quadratic interpolation would yield two roots. Fitting x as a
quadratic in y yields a distinct root. The interpolation formula (Press, Teukolsky,
Vetterling, and Flannery 1999) for points [α, f(α)],[β, f(β)],[γ, f(γ)] is

x =
[y − f(α)][y − f(β)]γ

[f(γ)− f(α)][f(γ)− f(β)]
+

[y − f(β)][y − f(γ)]α
[f(α)− f(β)][f(α)− f(γ)]

+
[y − f(γ)][y − f(α)]β

[f(β)− f(γ)][f(β)− f(α)]
.

The quadratic interpolation value, φ(α, β, γ) is calculated using,

r1 =
f(α)
f(γ)

r2 =
f(β)
f(γ)

r3 =
f(β)
f(α)

p(α, β, γ) = ±r3 [(γ − β) r1 (r1 − r2)− (β − α) (r2 − 1)]
q(α, β, γ) = ∓(r1 − 1)(r2 − 1)(r3 − 1)

φ(α, β, γ) = β +
p(α, β, γ)
q(α, β, γ)

.

Here, δ(β) is a slightly different relative tolerance,

δ(β) = 2α|β|+ ε

where ε is an absolute tolerance and α is a number like the floating point precision
of the computer.

Brent’s method ensures that a bisection step will be performed every two steps,
if the size of the interval has not been halved. The variable, e stores the size of the
interval at the previous step. The interpolation can only be a good approximation if
it is single valued between (β, f(β)) and (γ, f(γ)) (Brent 1973, p. 51). Therefore an
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interpolation step can only be chosen if it lies between β and γ, up to three quarters
from β to γ. Consequently, a bisection step is chosen if,

∣∣∣∣
p

q

∣∣∣∣ ≥
3
2
|m| ≡ 3

4
|γ − β| .

These conditions are imposed to find the new iterate xi. An intermediate iterate x′′i
is found,

x′′i =

{
x′i if |βi−1 − x′i| > δ(βi)
βi−1 + δ(βi−1)sign(m(βi−1, γi−1)) otherwise (step of δ).

where

x′i =

{
φ(αi−1, βi−1, γi−1) if

∣∣∣p
q

∣∣∣ < 3
2 |m| (interpolation)

βi−1 + m(βi−1, γi−1) otherwise (bisection).

The new iterate xi is then calculated,

xi =

{
βi−1 + m(βi−1, γi−1) if p

q > e
2

x′′i otherwise.

The new values for αi, βi, γi, di and ei can then be found,

βi = xi, γi = xk, αi = βi−1 if |f(xi)| ≤ |f(xk)|
βi = xk, γi = xi, αi = xi otherwise

di = βi − γi

ei = di−1.

The algorithm terminates when the size of the interval is smaller than the tolerance,
or when f(βi) = 0.
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Closed Newton-Cotes Formulae

The closed Newton-Cotes formulae are derived using the Lagrange interpolating
polynomials, Pn

Pn(S) =
n∑

i=0

f(Si)
n∏

k=0
k 6=i

S − Sk

Si − Sk

The formulae use a natural, uniform discretisation of the closed interval [a, b] : Si =
a + ih, i = 0, . . . , n where h := b−a

n . The methods are called closed because they
include the interval boundary function values in the approximation. This is useful
for combining estimates piecewise over an interval to form composite rules.

No. Points Name Formula

2 Points Trapezoidal Rule
∫ t1

t0

f(t)dt ≈ h

2
[f0 + f1]

3 Points Simpson’s 1/3 Rule
∫ t2

t0

f(t)dt ≈ h

3
[f0 + 4f1 + f2]

4 Points Simpson’s 3/8 Rule
∫ t3

t0

f(t)dt ≈ 3h

8
[f0 + 3f1 + 3f2 + f3]

5 Points Bode’s Rule
∫ t4

t0

f(t)dt ≈ 2h

45
[7f0 + 32f1 + 12f2 + 32f3 + 7f4)]

Tab. E.1: Newton-Cotes Closed Formulae. Here fi ≡ f(ti).

E.1 Composite (Extended) Newton-Cotes Formulae

We obtain composite Newton-Cotes formulae by partitioning the integration region
and applying one of the Newton-Cotes formulae from Table E.1 to each partition.
The time intervals are determined a priori. Thus, we begin by choosing n+1 times,
t = t0 < t1 < · · · < tn = T . These time steps do not have to be equally spaced, as
long as we incorporate size of the time step into the composite formula. We can also
combine different quadrature methods to form mixed composite formulae. However,
the order of these estimates will always be equal to the worst order of the included
quadrature method.
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E.1.1 Composite Formulae with Equal Spacing

We consider the estimate for the integral over the integration region, [t, T ]. We
discretise the integration region into n equally spaced intervals of size ∆t = (T −
t)/n with associated time steps, t = t0 < t1 < · · · < tn = T . The extended
trapezoidal rule for n + 1 time steps (where there is no restriction on the size of
n + 1) is obtained by applying the trapezoidal rule from Table E.1 to intervals
(t0, t1), (t1, t2), . . . , (tn−1, tn). The extended Simpson’s rule for n + 1 time steps is
obtained in a similar fashion on intervals (t0, t1, t2), (t2, t3, t4), . . . , (tn−2, tn−1, tn).
However, the number of time steps must be strictly odd.

No Points Name Formula

Any Comp. Trapezoidal
∫ tn

t0

f(t)dt ≈ ∆t

2

[f0

2
+

n∑

i=1

fi +
fN

2

]

Odd Comp. Simpson’s
∫ tn

t0

f(t)dt ≈ ∆t

3

[
f0 + 4

N−1∑

i=1
i odd

fi + 2
N−2∑

i=2
i even

fi + fN

]

Tab. E.2: Composite Newton-Cotes Formulae with equal spacing. Here fi ≡ f(ti).

E.1.2 Composite Formulae with Unequal Spacing

Equal spacing is not a necessary restriction for a composite formulae. Incorporating
a time dependent step size into the formulae allows for composite formulae to be
formed that use unequal spacing (See Table E.3). However, we must be careful when
using an n-point rule when n > 2, because every n points need to be equally spaced.
However, empirically there is no benefit to using unequal spacing when estimating

No Points Name Formula

Any Comp. Trapezoidal
∫ tN

t0

f(t)dt ≈ ∆1

2
f0 +

N−1∑

i=1

∆i + ∆i+1

2
fi +

∆N

2
fN

Odd Comp. Simpson’s
∫ tn

t0

f(t)dt ≈ 1
3

[∆2f0 + ∆NfN ] +
4
3

n−1∑

i=1
i odd

∆ifi

+
1
3

n−2∑

i=2
i even

[∆i + ∆i+2] fi

Tab. E.3: Composite Newton-Cotes Formulae with unequal spacing. Here fi ≡
f(ti) and ∆i = ti − ti−1.

the value of the early exercise premium. The error that is introduced is due to the
European approximation over each time step for the American put option. As a
consequence, the best approximation is calculated when the intervals are equally
spaced (See Figure E.1).
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Fig. E.1: Non-equal spacing exercise boundary compared with an equal spacing
exercise boundary using the same number of points

E.1.3 Applying Extended formulae

When estimating the value of the early exercise boundary at the first time step
we only have two points to perform the quadrature. As a consequence, any early
exercise boundary estimate that we calculate must use the Trapezoidal rule at the
first time step. As a result, the quadrature will have the same order of error as the
Trapezoidal rule. Consequently, all the extended formulae will never have a better
order of convergence than that of the Trapezoidal rule.

Another problem with using mixed formulae is that the estimated early exercise
boundary oscillates (see Figure E.2). These oscillations are a result of combining odd

0 T

K

Time

S
to

ck
 P

ric
e

Simpsons Boundary
Midpoint Boundary

Fig. E.2: Exercise boundary of the extended Trapezoidal rule and the extended
Simpson’s rule for odd and even points showing the oscillatory behaviour.

and even quadrature rules. However, the oscillations are regular and the boundary
can be “smoothed” by using the geometric midpoint of each successive midpoint
(see Figure E.3).

Even though the oscillations can be smoothed once the early exercise bound-
ary has been estimated, the major drawback is that the monotonicity is affected
during the calculation. As a consequence, when calculating a boundary value, b̂i,
we cannot use the boundary value, b̂i+1, as the upper bound of the bracketed root
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Fig. E.3: Using midpoints to smooth the exercise boundary generated by the ex-
tended Simpson’s rule for odd and even points.

finding method. Hence, the initial bracket for the extended Simpson’s rule should
remain [B∞,K] to ensure convergence. For the extended Trapezoidal rule we can
use [B∞, b̂i+1], which increases the convergence speed.
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