
HIGH FREQUENCY CURRENT

DISTRIBUTION IN A STRUCTURE

WITH APPLICATION TO LIGHTNING

PROTECTION SYSTEMS

Andrew Graham Swanson

A research report submitted to the faculty of Engineering and the Built

Environment, University of the Witwatersrand, in fulfilment of the

requirements for the degree of Master of Science of Engineering

Johannesburg, August 2, 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Wits Institutional Repository on DSPACE

https://core.ac.uk/display/39665544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

In concrete reinforced buildings, the steel framework is required to be bonded and is often

used as a cost effective method of lightning protection. In defining lightning protection

zones, it is essential to understand where the lightning current due to a direct strike will

flow. A number of models exist to evaluate the current distribution, but are often applied

to relatively simple structures.

Using Maxwell’s equations, an approximate skin effect model is proposed and used to eval-

uate the lightning current distribution in a complex structure. A reduced scale model of

a structure, consisting of conductors arranged in rings, is developed to verify the model.

Particular attention is given to the return path of the current, ensuring an even distrib-

ution of the current in the structure.

The equivalent circuit showed an even distribution of current across each conductor at

dc and low frequencies and a distribution that concentrated in the outer conductors for

higher frequencies. The measurements from the structure confirmed that the current con-

centrates in the outer conductors at high frequencies. Applying a reduced scale lightning

impulse, it is shown that the majority of the current flows on the outermost conductors.

Any current on the inner conductors is not only greatly decreased in magnitude, but

significantly slower in time than the applied impulse.
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Preface

This research report presents the work in the form of a short paper, followed by a number

of appendices. The paper proposes the current distribution model and presents a discus-

sion on the results obtained. The appendices provide a more in depth explanation of the

work covered, where each appendix is referenced seperately. A short description of the

appendices follows.

Appendix A - Lightning Stroke Parameters - defines the lightning short stroke

parameters as given in the IEC Standard 62305-1.

Appendix B - Lightning Protection - presents an overview of lightning protection,

with emphasis on internal lightning protection and the definition of lightning protection

zones. The empirical current distribution and its limitations are also presented.

Appendix C - Geometric Modelling - presents a review of studies on the reduced

scale modelling of structures and reviews the use of scale factors in reduced scale labora-

tory experiments.

Appendix D - Modelling - provides an overview of proposed models to simulate

the response of structures to a direct lightning strike. The partial element equivalent

(PEEC) model and the skin effect model for a circular conductor. The latter is extended

to include non-conductive layers.

Appendix E - Experimental Setup - presents the reduced scale model of a structure

used to verify the results from the skin effect equivalent circuit.

Appendix F - Measurement System - presents the measurement system with em-

phasis on Rogowski coils and their use for measurement of time-varying currents.

Appendix G - Results - presents the equivalent circuit of the proposed model and

the results of the simulation, including the magnitude response and phase angle of each

conductor ring. A lightning impulse is applied to the circuit and the results are presented.

The response of each conductor ring of the physical structure is measured and the results

presented.

xii



HIGH FREQUENCY CURRENT DISTRIBUTION IN A

STRUCTURE WITH APPLICATION TO LIGHTNING

PROTECTION SYSTEMS

Andrew Graham Swanson
School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg,

South Africa.

Abstract: A number of models to evaluate the current distribution in a structure exist. Based on
the fact that these models are not used on complex structuressuch as reinforced concrete structures,
an equivalent circuit, based on Maxwell’s equations, is proposed. A lightning impulse is applied to
the circuit and it is shown that the majority of current flows in the outer conductor ring, due to the
high frequency nature of lightning.

Keywords: Lightning protection, skin effect equivalent circuit, conductor rings, scale modelling

1 Introduction

The purpose of lightning protection is to pre-
vent or reduce the risk of damage to equip-
ment, loss of service or loss of life [1]. As
part of effective and safe grounding, all metal
objects are required to be bonded and elec-
trically grounded [2]. In complex reinforced
concrete structures, the steel re-bars provide
additional down conductors [3].

Lightning protection zones are volumes of suc-
cessively increasing protection against light-
ning electromagnetic waves and surges on in-
coming lines [1, 4]. In defining these zones
the current distribution throughout the struc-
ture must be known.

A number of models are proposed to deter-
mine the distribution of current within the
structure [5, 6, 7, 8]. These proposed mod-
els are, however, applied to simple systems
without any justification into the exclusion
of internal down conductors, as in the case
of complex reinforced concrete structures.

A skin effect model for a coaxial line is ex-
tended to include non conducting layers and
an equivalent circuit proposed. A structure
to verify the model is constructed with par-
ticular attention given to the return path of
the current, ensuring the even distribution of
current within the conductor rings.

2 Skin Effect Model

The skin effect is the tendency for time vary-
ing currents to concentrate on the surface of
the conductor. Skin depth is dependent on
the frequency of the applied waveform and
the electrical characteristics of the conduc-
tor [9]. Skin depth is given by [9]:

δ =
1√

2πfµ0µrσ
(1)

Where:
f = frequency [Hz]
µ0 = permeability of free space [H.m−1]
µr = relative permeability
σ = conductivity [S.m−1]

Yen, Fazarinc and Wheeler propose an equiv-
alent circuit to model the skin effect based on
Maxwell’s equations [10]. The model is de-
veloped for time domain analysis of transmis-
sion lines, which makes it suitable for light-
ning impulse analysis [10]. A conductor is
divided into M concentric rings and a cir-
cuit model consisting of M partial resistors
and M−1 partial inductors is developed [10].
The model is extended here to include non-
conductive layers.

Faraday’s law states that a changing mag-
netic field induces an electric field. In differ-
ential form, Faraday’s law is given by [11]:
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Figure 1: Concentric rings of a conductor

∇× E = −µ
∂H

∂t
(2)

The line integral of the magnetic field is equal
to the enclosed current [11]:

I(r, t) = 2πrH(r, t) (3)

By substituting Equation 3, Faraday’s law is
rewritten:

∂E(r, t)

∂r
= − µ

2πr

∂I

∂t
(4)

By dividing the conductor into M rings as
shown in Figure 1, where i = 1 is the outer-
most ring and i = M is the innermost ring,
an approximate equation is given by:

Ei−1 − Ei =
µ(ri−1 − ri)

2πri

dIi

dt
(5)

The electric field at a point in a conductor is
related to the current density by [11]:

Ei =
Ji

σ
(6)

For a non conductive ring the displacement
currents is related to the electric field by [11]:

Ei =
Ji

jωǫ
(7)

Assuming the current density between rings
is constant, the current density is equal to
the difference between the enclosed currents

divided by the area [10]:

Ji =
Ii − Ii+1

Ai
(8)

The partial elements for the equivalent cir-
cuit shown in Figure 2 are given by [10]:

Ri =
1

Aiσ
(9)

Li =
µ(ri−1 − ri)

2πri
(10)

Ci =
1

ǫAi
(11)

R1i1

L2

i2

C2i2 − i3

L3

i3

R3i3 − i4

Figure 2: Skin effect equivalent circuit

These partial elements form parallel paths,
approximating a solution for Equation 4. For
direct current or low frequencies the current
distribution is uniform, and the impedance
reduces to the parallel combination of the
resistors. At higher frequencies, the partial
inductance causes the current to concentrate
toward the outer rings. At very high frequen-
cies, the current is limited to the resistance
of the outermost ring, as there is no internal
flux [10, 12].

For effective analysis over the full frequency
domain the number of concentric rings must
approach infinity, where ∆r is smaller than
the skin depth δ.
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3 Experimental Setup

3.1 Test Structure

The test structure consists of a number of
conductor rings arranged as shown in Fig-

ure 3. Copper plates provide equipotential
platforms for the conductors at the top and
on the base. The structure is constructed
from non-ferrous materials to avoid the non
linearities associated with the saturation and
permeability of ferrous materials. The struc-
ture is intended as a 1:20 reduced scale model
of a full scale structure.

Figure 3: Down conductor ring arrange-
ment

Table 1: Dimensions of the structure
Parameter Value

Outer radius 14 cm
Inner radius 8.5 cm
Rod radius 3 mm

In high frequency applications, inductance is
highly influential on the path of the current.
For this reason aluminium mesh is used as
the return path, as illustrated in Figure 4, as
it provides an even distribution of current in
the conductor rings [3, 13].

3.2 Measurement System

The measurement system consists of current
probes in the form of Rogowski coils, which
are connected to an oscilloscope by means of

Figure 4: Aluminium mesh used as the
return path for the current

coaxial lines. All signal processing is done in
MATLAB.

The voltage output of a Rogowski coil is pro-
portional to the rate of a change of current [14]:

v = −µ0NA

l

di

dt
(12)

The coils are sensitive to small currents, pro-
vided the frequency is sufficiently high. The
coils and coaxial lines are not shielded and
are subjected to electrostatic interference, be-
cause of the high dV

dt
. Additional resonance

is evident at 12.5 MHz.

4 Results

4.1 Measured results

Due to the even distribution of current within
each conductor ring, a single conductor mea-
surement from the outer and inner conductor
rings represents 1

8 of the total of each conduc-
tor ring current. Thus only four measure-
ments are required the input current (Iin),
the outer conductor current (I1), the inner
conductor current (I2) and the centre con-
ductor current (I3).

The signals are filtered in MATLAB and are
referenced to the input current such that:

Iin = sin(2πf0t) (13)
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Figure 5: Current distribution in the time
domain where f0 = 1.25 MHz

100 kHz50 kHz 500 kHz200 kHz 1 MHz
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Frequency

N
or

m
al

is
ed

 C
ur

re
nt

 (
A

)

Outer conductor
Inner conductor
Centre conductor

Figure 6: Magnitude response of the con-
ductors in the frequency domain from
f0 = 50 kHz to f0 = 1.25 MHz

4.2 Simulated results

A model consisting of 5 concentric rings is
used to evaluate the current distribution in
the structure. The equivalent circuit, shown
in Figure 7, consists of:

• R1, R3 and R5 representing the partial
resistances of the conductor rings

• C2 and C4 representing the partial ca-
pacitances of the gaps between the con-
ductor rings

• L2 to L4 representing the partial in-
ductances of each ring.

0.11 mΩ

75 nF

0.11 mΩ

42.5 nF

0.88 mΩ 1.275 nH

3.8 nH

28.75 nH

2.24 nH

Figure 7: Approximate skin effect equiv-
alent circuit

The magnitude response and phase angle of
the 3 conductor rings are shown in Figures 8
and 9.
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Figure 8: Magnitude response of the con-
ductor rings
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Figure 9: Phase angle of the conductor
rings
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The equivalent circuit model is a 1:20 re-
duced scale model of a structure; thus when
applying a lightning current impulse, the im-
pulse must be scaled accordingly [15]. The
standard 5.5/75 µs lightning current impulse
becomes a 0.3/3.75 µs impulse. A 100 A im-
pulse is applied to the the circuit.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Time (µs)

C
ur

re
nt

 (
A

)

Input current
Outer conductor current

Figure 10: Impulse response of the outer
conductor ring
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Figure 11: Impulse response of the inner
conductor ring
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Figure 12: Impulse response of the centre
conductor

5 Discussion

The measured results in Figures 5 and 6 con-
firm that the current concentrates on the out-
ermost conductors and that the least current
is found at the centre of the structure.

As discussed previously the outer and inner
conductor currents represent 1

8 of the total
current in the conductor ring. The sum of
the outer conductor rings currents is greater
than that of the input current. This can be
attributed to manufacturing differences be-
tween the coils and noise in the form of elec-
trostatic coupling due to the high rate of rise
of voltage. The inner and centre conductor
currents are subjected to similar manufactur-
ing differences and electrostatic coupling.

The simulated magnitude response in Fig-

ure 8 shows that at low frequencies the cur-
rent is evenly distributed, where the outer
and inner conductor currents are eight times
greater than the current in the centre con-
ductor. As the frequency increases the cur-
rent tends toward the outer conductors until
all the current flows in the outer conductor.

The equivalent circuit, where the current con-
centrates on the outer conductor ring at high
frequencies, is verified, when comparing the
measured magnitude in Figure 6 with the
simulated magnitude in Figure 8.
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The phase angles for the conductor rings are
shown in Figure 9. At low frequencies the
currents are in phase as the resistance is the
dominant feature. As the frequency increases,
the inductance becomes more dominant and
a phase delay on the inner and centre con-
ductor currents is noticeable. At high fre-
quencies the current is limited to the outer
resistance and is in phase with the input cur-
rent.

The lightning impulse response of the con-
ductor rings is shown in Figures 10, 11 and
12. It can be seen that the time scales dif-
fer considerably. The majority of the cur-
rent stays on the outer conductor ring, this
is due to the high frequency nature of light-
ning. The currents on the inner conductor
ring and the centre conductor are substan-
tially smaller in magnitude and have a delay
in time.

In application to LPSs, the current will flow
in the down conductors at the outermost part
(generally the corners) of a building. Thus
the volume enclosed can be considered as the
first lightning protection zone (LPZ1). In ad-
dition cables run in the centre of a building
will experience the least interference from a
lightning strike.

6 Conclusion

A skin effect model based on Maxwell’s is
proposed for the evaluation of the current
distribution in a structure. The response of
the equivalent circuit is verified by experi-
mental measurements, where it can be seen
that the current is concentrated in the outer
conductor ring.

A lightning impulse is applied to the circuit
and it is seen that the majority of current
will flow in the outer conductor ring, with
significantly smaller and slower currents on
the inner conductor ring and centre conduc-
tor.
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A Lightning Stroke Parameters

The lightning short stroke parameters are defined in Figure A.1 [1]. The rise time τ1 is

the time from 10 % to 90 % peak value, the stroke duration τ2 is the time for the pulse to

fall to 50 % of its peak value [1]. The values for 50 % occurence of a number of different

lightning strokes are listed in Table A.1 [1].

Figure A.1: Lightning short stroke parameters

Table A.1: Lightning short stroke parameters from IEC 61305-1
Parameter First negative Subsequent negative First positive

I (kA) 20 11.8 35
di/dt (kA/µs) 24.3 39.9 2.4
τ1 (µs) 5.5 1.1 22
τ2 (µs) 75 32 230
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B Lightning Protection

Lightning protection is required to reduce the risk of damage to equipment or valuables,

loss of service and loss of life. The need for lightning protection and the level of protection

is determined where these risks are greater than the acceptable risks [1].

Four lightning protection levels are defined according to the acceptable risk (or acceptable

number of strikes to a building). A minimum and maximum value is described for each

level. The minimum value is used in defining the rolling sphere radius in order to define

lightning protection zones [1].

The lightning protection system (LPS) consists of both external and internal lightning

protection [1, 2].

B.1 External lightning protection system

The external LPS consists of [1, 2]:

• air termination, which has the purpose of intercepting the lightning strike and

preventing damage to the building.

• down conductors, which conduct the intercepted lightning current to the earth

termination.

• earth termination, which has the purpose of dissipating the lightning current into

the earth.

The external LPS alone does not provide sufficient protection. Additional protection in

the form of screens, wiring routing, equipotential bonding and surge protection are used

and make up the internal lightning protection system [1, 2, 3].

B.2 Internal lightning protection system

Equipotential bonding, as part of the internal lightning protection system, is used to

prevent damage to sensitive electrical and electronic equipment due to differential volt-

ages [1, 2, 4].
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Equipotential bonding is implemented by means of bonding bars, cables or reference grids.

Due to the transient nature of lightning, the inductance between equipment presents the

threat of high differential voltages. Where equipment is close together short individual

cables may be used. However multiple parallel paths are required where the equipment

is further apart. The multiple paths reduce the impedance between the equipment and

reduce the differential voltage between the equipment [1, 4].

A zero signal reference grid (ZSRG) is a metallic grid on which all equipment is bonded.

The grid provides an equal voltage across the platform. The impedance between any two

points on the grid is small enough that any surge currents are diverted without any ill

effect on the equipment [1, 4]

As part of effective and safe grounding, all metallic objects are required to be bonded to-

gether and electrically grounded. These objects include pipework, staircases, ventilation,

heating and air conditioning ducts and equipment frames. Additionally the external

lightning protection system and the metal framework of the building must be bonded

together [1, 4]. Where any items cannot be directly bonded, they must be a specified

safety distance from any other objects, or must be connected through surge protection

devices [1].

The concept of lightning protection zones (LPZ) is defined as successively increasing

protection against surges on incoming lines and electromagnetic waves [1, 2]. By imple-

menting screens, bonding of incoming lines and SPD’s on incoming lines for each defined

zone, an optimal lightning protection solution is found [3].

Figure B.1: Lightning protection zones
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The zones illustrated in Figure B.1 are defined [1]:

• LPZ0A - Zone where a direct lightning flash can take place and is exposed to the

full electromagnetic field.

• LPZ0B - Zone protected against direct lightning, but is exposed to the full elec-

tromagnetic field.

• LPZ1 - Zone where surge currents on incoming lines are limited by bonding and

SPD’s, and a screen provides attenuation of the electromagnetic field.

• LPZn - Zones where further protection on incoming lines and further attenuation

of the electromagnetic field take place.

Lightning protection zones are related to lightning protection levels, where LPZ0B is

defined by the rolling sphere radius, which differs according to the level of protection [1].
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B.3 Empirical current distribution in a structure

A current partitioning coefficient is defined as [1]:

kc =
Ik

It

(B.1)

The IEC standard provides an empirical relationship for current distribution coefficient

in the structure [1]. For a single level building with a mesh air termination and a type B

earth electrode, the relationship is given by [1]:

k1 =
1

2n
+ 0.1 + 0.2 3

√

c

h
(B.2)

Where:
c = number of down conductors

c = distance to closest adjacent down conductor [m]

h = height of the down conductor [m]

Figure B.2: Current partioning coefficient

It can be seen that the equation is only dependent on the total number of down conduc-

tors, and the distance to the closest down conductors. It is independent of the position

of the down conductor within the structure, which means it cannot be used to model the

current distribution through the entire structure.
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C Geometric Modelling

A number of studies relating to lightning protection of full scale buildings [1, 2] and

reduced scale buildings [3, 4, 5, 6] have been done. The areas of study include current

and voltage distribution in a building [1, 2, 6] and the shielding effect of buildings [3, 4, 5].

These simple structures use only the outer down conductors and do not take into account

any down conductors inside the structure.

C.1 Scale factor

The similarity theory is an applied scientific method employed in experimental analy-

sis [7]. Frentzel applies the fundamental principles of the theory to the transient phe-

nomena of lightning [7].

Using the scale factor, q; results from a scaled laboratory experiment are converted to

full scale values [7]. A geometric similarity exists where all lengths of the model have the

same relation [7]:

q =
l

l′
(C.1)

Scale factors for various physical parameters are derived and tabulated [7, 8, 9]:

Table C.1: Scale values applied to model
Physical Quantity Scale Factor

Voltage qV = q
Current qI = q
Time qT = q

C.2 Geometric model

Zischank et al. apply a lightning impulse to a 1:6 scale model, in order to evaluate the

concept of lightning protection zones [3, 8, 9]. The model is developed to investigate

the shielding effect of single and double layer reinforced concrete buildings. The model

consists of only steel rods and steel mesh, and not of concrete as it has no significant

effect on shielding [3]. The building model is setup at 90◦ to normal and surrounded by

eight copper return conductors. The symmetrical arrangement of the conductors cancels

the the magnetic field at the centre, allowing for an even distribution of current in the

structure [3].
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Three current impulses are applied to the structure, representing the positive strike, the

first negative strike and the subsequent negative strike [3]. The impulses are additionally

applied at different strike points; the corner, the mid edge and the middle of the cage [3].

The experiment yields that the strike point at the centre produces a higher voltage due to

the even distribution of current through the structure and a strike in the corner gives the

highest magnetic fields and derivatives [3]. With the double cage, a shielding improve-

ment from 9.5 to 12 dB for magnetic field derivatives and from 3 to 7 dB for magnetic

fields is found [3].
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D Modelling

A number of models have been developed to predict the performance of lightning pro-

tection systems. A number of these studies use a circuital approach [1, 2, 3, 4]. These

models are largely based on the inductance equations found in Grover [5]. An alternative

approach is the field model approach [6, 7, 8]. Both of these approaches are used to model

simple structures, generally consisting only of outer down conductors. A model based on

the geometry of the structure must be used to correctly define the distribution of current

in the structure.

D.1 Skin effect

The skin effect is the tendency of time-varying currents to crowd or penetrate only the

surface of a conductor. Skin, or penetration, depth is dependent on the frequency of the

applied waveform and on the parameters of the conductor [9].

Current density in a conductor due to skin effect can be derived from Maxwell’s equations

and is given by [9, 10]:

J = J0e
−(1+j)x

δ (D.1)

and skin depth, δ, is given by [9, 10]:

δ =
1√

2πfµrµ0σ
(D.2)

Where:
f = frequency [Hz]

µ0 = permeability of free space [H.m−1]

µr = relative permeability

σ = conductivity [S.m−1]

The internal inductance is the part of the total inductance which is caused by the mag-

netic flux within the conductive medium [9]. Wheeler proposes that internal impedance

can be represented by distributed circuit elements, consisting of conductances and induc-

tances [9].

At low frequencies, the current flowing in a conductor is distributed uniformly across

the cross sectional area of the conductor. The resistance and internal inductance will be
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constant [9, 11].

At higher frequencies, the current is concentrated near the surface of the conductor. The

resistance of the conductor increases by
√

f , whereas the internal inductance decreases

by 1√
f

[11].

D.2 Partial element equivalent circuit

Ruehli developed an approach to calculate the inductances of complex circuit environ-

ments, based on partial inductances [12]. Weeks et al. use a similar approach to account

for the skin effect in rectangular conductors [13].

Ruehli extended the partial inductance approach to 3 dimensional multiconductor lines,

developing the partial element equivalent circuit (PEEC) model [14].

The integral equation approach begins by summing all sources of electric field within a

conductor [14]:

E(r, ω) =
J(r, ω)

σ
+ jωA(r, ω) + ∇Φ(r, ω) (D.3)

The vector potential relates the inductance to geometry [12]. For M conductors the vector

potential is given by [14]:

A(r, ω) =
M

∑

m=1

µ

4π

∫

v′

m

J(r, ω)

|r − r′|dv′ (D.4)

The scalar potential for M conductors is given by [14]:

Φ(r, ω) =
M

∑

m=1

1

4πǫ

∫

v′

m

ρ(r, ω)

|r − r′|dv′ (D.5)

By substituting equations D.4 and D.5 into equation D.3, where the applied field E0 is 0

[14]:

0 =
M

∑

m=1

σE +
M

∑

m=1

µ

4π

∫

v′

J(r, ω)

|r − r′|dv′ +
M

∑

m=1

1

4πǫ

∫

v′

ρ(r, ω)

|r − r′|dv′ (D.6)

Where the terms are resistive, inductive and capacitive voltage drops respectively [14].

18



Antonini et al. propose the use of these equations in the development of a PEEC model

of a lightning protection system, where each conductive part of the LPS is divided into

cells whose length is far less than the wavelength of the highest frequency applied to the

system. Each branch takes into account the mutual magnetic and electric coupling [15].

The equivalent circuit for M inductive segments is given by [15]:

Vj − Vk − (Rn + jωLpnn)ILn −
M

∑

m=1

jωLpnmILm = Vsn (D.7)

Where:
Vj − Vk = voltage across branch [V]

Rn = resistance [Ω ]

Lpnn = self inductance of branch n [H]

ILn = current in branch n [A]

Lpn = mutual inductance of branch m [H]

ILm = current in branch m [A]

The partial inductances are given by [15]:

Lpmk =
Lpskk − jβµ0

2π
l2k k = m

Lpsmke
−jβ|rk−rm| k 6= m

(D.8)

Where:
lk = length of cell k [m]

Lpsmk = the static partial inductance

β = the propagation constant

This model is applied to a four downconductor structure; more complex models have not

been verified with this model [15].
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D.3 Skin effect in a circular conductor

Yen, Fazarinc and Wheeler describe a model for skin effect in a coaxial cable based on

Maxwell’s equations [16]. The conductor is divided into M concentric rings (Figure D.1)

and a circuit model (Figure D.2) consisting of M partial resistors and M − 1 partial

inductors is developed [16].

Figure D.1: Concentric rings of a conductor

R1i1

L2

i2

R2i2 − i3

L3

i3

R3i3 − i4

Figure D.2: Skin effect equivalent circuit model

In a the conductor the conductivity is sufficiently high that the displacement current

density can be ignored. Faraday’s law is given by [16, 17]:

∇× J = −µσ
∂H

∂t
(D.9)

Ampere’s law is given by [16, 17]:

∇× H = J (D.10)

The line integral of the magnetic field is equal to the enclosed current [16]:

I(r, t) = 2πrH(r, t) (D.11)
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Combining the previous equations [16]:

∂J(r, t)

∂r
=

µσ

2πr

∂I(r, t)

∂t
(D.12)

Dividing the conductor into M rings as shown in figure Figure D.1, where i = 1 is the

outermost ring and i = M is the innermost ring, an approximated equation is given by

[16]:

Ji−1 − Ji

ri−1 − ri

=
µσ

2πri

dIi(t)

dt
, i = 2, 3...,M (D.13)

The current density in a ring is equal to the difference in the enclosed current divided by

the area and is given by [16]:

Ji =
Ii − Ii+1

Ai

, i = 1, 2, ...,M (D.14)

Substituting equation D.14 into equation D.13 and solving, the resulting equation is given

by [16]:

Ri−1(Ii−1 − Ii) − Ri(Ii − Ii+1) = Li

dIi

dt
, i = 2, 3, ...,M (D.15)

The partial resistances and partial inductances are given by [16]:

Ri =
1

Aiσ
(D.16)

Li =
µ(ri−1 − ri)

2πri

(D.17)

The partial elements are related to the conductivity and permeability [16]. The partial

elements form parallel paths, approximating a solution of the skin effect differential equa-

tions [18]. For direct current, the impedance reduces to the parallel combination of the

resistors, the current distribution is uniform. At higher frequencies the transient current

distribution is biased toward the outer rings, due to the presence of partial inductance

[16]. The resistance at very high frequencies is limited to the resistance of the outermost

ring, since there is no internal flux [18].
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A similar approach is taken to include non conductive rings. Faraday’s law is given

by [17]:

∇× E = −µ
∂H

∂t
(D.18)

As before:

∂E(r, t)

∂r
= − µ

2πr

∂I

∂t
(D.19)

which can be approximated by:

Ei−1 − Ei =
µ(ri−1 − ri)

2πri

dIi

dt
(D.20)

From Ohm’s law at a point the electric field in a conductor is related to the current

density by [17]:

Ei =
Ji

σ

=
Ii − Ii+1

σAi

= Ri(Ii − Ii+1) (D.21)

For a non-conductive ring the electric field is related to the displacement current density

by [17]:

Ei =
Ji

jωǫ

=
Ii − Ii+1

jωǫAi

= −jXc(Ii − Ii+1) (D.22)

R1

C2

R3

C4

R5 L4

L3

L2

L1

Figure D.3: Skin effect equivalent circuit for a conductor with non conducting layers
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The partial resistance and capacitance are derived from equations D.21 and D.22, and the

partial inductance is as before (equation D.17). A conductor with alternating conducting

and non conducting layers is representing by the equivalent circuit in Figure D.3.
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E Experimental Setup

The structure consists of a number of brass rods arranged in circular rings as illustrated in

Figure E.1. The outer and inner conductor rings consist of 8 conductors each and there is

a single conductor in the centre of the structure. The rings are connected together at the

top and the base by copper plates. The copper plate provides an equipotential platform

for the down conductors.

The structure is intended to be a reduced scale model of a full scale structure for labora-

tory experiments. The model is effectively a 1:20 scale model of a real structure.

Figure E.1: Conductor ring arrangement

In high frequency applications the return path of the current has an influence on the

distribution of the current in the structure. A return path in the form of aluminium

mesh surrounds the conductor arrangement, as illustrated in Figure E.2, and provides for

even distribution of the input current throughout the structure [1, 2].

The structure is constructed from non-ferrous materials to avoid the non linearities asso-

ciated with the saturation and permeability of ferrous materials. The dimensions of the

structure and the radii of the rings are found in both Figure E.2 and Table E.1.
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Table E.1: Dimensions of the structure
Parameter Value

Outer radius 14 cm
Inner radius 8.5 cm
Rod radius 3 mm
Rod length 25 cm
Plate width 30 cm

Figure E.2: Test structure setup at an angle of 90◦ to normal

(a) Base view of the structure (b) Side view of the structure

Figure E.3: Pictures of the structure
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F Measurement System

Rogowski coils together with an oscilloscope and MATLAB form the basis of the mea-

surement system. All signal analysis takes place within MATLAB.

Rogowski coils are air cored current sensing devices. The magnetic field produced by a

current carrying conductor results in a voltage across the terminals. Due to the air core,

the coil does not suffer from the disadvantages of hysteresis or saturation, additionally

the bandwidth is dependent on the electrical characteristics of the coil [1, 2, 3].

Physically, Rogowski coils are an application of Ampere’s law, given by [2]:

i =

∮

H.dl (F.1)

Where:
H = magnetic field [A/m]

dl = small element along the path [m]

The total magnetic flux linkage is given by [2]:

λ = µ0nAi (F.2)

Where:
µ0 = permeability of free space [H.m−1]

n = number of turns per metre

A = area [m2]

The voltage generated across the terminals is given by Faraday’s law [2]:

v = −∂λ

∂l

= −µ0NA

l

di

dt
(F.3)

From the equations above, it is evident that voltage output is proportional to the rate of

change of current. The output must be integrated to provide an accurate representation

of the current. An active filter requires an op amp and is not suitable due to the high

currents and fast waveforms required to be measured. A passive filter consisting of a

capacitor and a resistor provides a better solution [1, 2, 3].
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The stray capacitance present in Rogowski coils leads to unwanted resonances and may

cause large oscillations in the output of the coil. By resistively winding the coil, these

resonances are reduced [3]. Resistive wire in the form of nichrome wire is used to wind

the coils [1]. For a greater analysis of the coil, an approximate circuit can be developed

with the parameters in Table F.1 [2, 3].

Table F.1: Approximate Rogowski coil parameters
Parameter Value

Area, A 1.96 × 10−3 m2

Number of turns, N 117
Length, l 77 mm

A large rate of rise of voltage (dV
dt

) may cause electrostatic interference. This interference

can be reduced by means of shielding, however, the electrostatic shielding increases coil

capacitance, which reduces the high frequency bandwidth of the coil [4].

Each rogowski coil is connected to an oscilloscope by means of a coaxial cable. Each

rogowski coil will have manufacturing differences and the coaxial cable will not have the

same length. These differences are compensated for by means of a transfer function [1].

Tk(ω) =
Fk(ω)

F1(ω)
(F.4)

Where:
Fk = frequency response of measurement coil

F1 = frequency response of reference coil
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G Results

G.1 Simulated results

A model consisting of 5 concentric rings is used to simulate the current distribution in

the structure. The 5-stage equivalent circuit (Figure G.1) is developed and implemented

in ATP, where:

• R1 represents the outer conductor ring

• C2 represents the gap between the outer and inner conductor ring

• R3 represents the inner conductor ring

• C4 represents the gap between the inner conductor ring and the centre conductor

• R5 represents the centre conductor

• L2 to L4 represent the partial inductances of each ring.

0.11 mΩ

75 nF

0.11 mΩ

42.5 nF

0.88 mΩ 1.275 nH

3.8 nH

28.75 nH

2.24 nH

Figure G.1: Approximate skin effect equivalent circuit

The magnitude and phase angle for the different is are shown in Figures G.2 and G.3 for

the frequency range of 0 Hz to 1 MHz, where the input current is given by:

Iin = 100sin(2πf0t) (G.1)
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Figure G.2: Magnitude response of the different conductors of the structure
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Figure G.3: Phase angle of the different conductors of the structure
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A lightning impulse is simulated by means of a Heidler source given by [1]:

I = Ipeak

(

t
τf

)n

(

1 +
(

t
τf

)n) exp

(

t

τf

)

(G.2)

Where:
Ipeak = peak current [A]

τf = front time [µs]

τt = tail time [µs]

n = factor influencing the rate of rise

Since the structure is a 1:20 scale representation of a real structure, the front time and

tail time of the impulse must be scaled accordingly [2]. The impulse has the parameters

found in the Table G.1 and the resulting impulse waveforms are found in Figures G.4 to

G.7. It must be noted that the time scales differ in each figure.

Table G.1: Heidler source parameters
Parameter Value

Ipeak 100 A
τf 0.3 µs
τt 3.75 µs
n 2
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Figure G.4: Voltage impulse
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Figure G.5: Impulse response for the outer conductor ring
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Figure G.6: Impulse response for the inner conductor ring
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Figure G.7: Impulse response for the centre conductor
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G.2 Experimental results

For high frequency measurements the return path of the current has an major influence

on the current distribution in the structure due to the inductance. For this reason the

return path takes the form of a mesh completely surrounding the structure, this allows

for the even distribution of current within each conductor ring [3, 4].

Four current measurements are taken:

• Input current

• Outer conductor current (representing 1
8

of the total current of the outer conductor

ring)

• Inner conductor current (representing 1
8

of the total current of the inner conductor

ring)

• Centre conductor current

Each conductor current is referenced to the input current such that:

Iin = sin(2πf0t) (G.3)

The output voltage of the Rogowski coil increases with increasing frequency, since this

voltage is proportional to the rate of change of current [5]. The ability to measure small

currents becomes possible at high frequencies. The measurements are limited to a fre-

quency range from 50 kHz to 1.25 MHz.

The Rogowski coils and coaxial lines are not shielded and are subjected to noise. Ad-

ditional noise in the form of resonance in the coils is evident at 12.5 MHz. Filters are

applied in MATLAB to remove the unwanted noise.

36



0 1 2 3 4 5 6 7 8
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (µs)

N
or

m
al

is
ed

 C
ur

re
nt

 (
A

)
Outer conductor
Inner conductor
Centre conductor

Figure G.8: Measured distribution in the time domain where f0 = 1.25 MHz
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Figure G.9: Measured distribution in the frequency domain where f0 = 1.25 MHz
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Figure G.10: Measured magnitude of the structure in the frequency domain from
f0 = 50 kHz to f0 = 1.25 Mhz
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