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Abstract

The quantitative study of conflict management is concerned with finding models

which are accurate and also capable of providing a causal interpretation of results.

This dissertation applies computational intelligence methods to study interstate dis-

putes. Both multilayer perceptron neural networks and Takagi-Sugeno neuro-fuzzy

models are used to model interstate interactions. The multilayer perceptron neural

network is trained in the Bayesian framework, using the Hybrid Monte Carlo method

to sample from the posterior probabilities. It is found that the network is able to

forecast conflict with an accuracy of 77.3%. A hybrid machine learning method us-

ing the neural network and the genetic algorithm is then presented as a method of

suggesting how conflict can be brought under control. The automatic relevance de-

termination approach and the sensitivity analysis are used as methods of extracting

causal information from the neural network. The Takagi-Sugeno neuro-fuzzy model

is optimised, using the Gustafson-Kessel clustering algorithm to partion the input

space. It is found that the neuro-fuzzy model predicts conflict with an accuracy of

80.1%. The neuro-fuzzy model is also incorporated into the hybrid machine learn-

ing method to suggest how the identified conflict cases can be avoided. The casual

interpretation is then formulated by a linguistic approximation of the fuzzy rules

extracted from the neuro-fuzzy model. The major finding in this work is that the

interpretations drawn from both the neural network and the neuro-fuzzy model are

consistent.
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Chapter 1

The Quantitative Study of Conflict

Management

1.1 Introduction

History has recorded many cases of war between groups of people sparking an interest

in political and international studies as to the reasons why states go to war. Over

the years measures have been used to quantify the different interactions between

states. These offer information as to whether state interactions are likely to result

in war or not. This has led to a research field referred to as the quantitative study of

conflict management. The quantitative study of conflict management is concerned

with finding models which can accurately forecast conflict as well as provide a causal

interpretation of the results [1]. This is because predicting the onset of war is just as

significant as understanding the reasons why states go to war. This understanding

can provide better insight into how disputes can be avoided as well as insight into

how disputes can be resolved.

Recent improvements in conflict management have been on two fronts. On the one

hand, there has been effort to improve the collected data measures which are used

to study interstate interactions. On the other hand, there have been improvements

on the forecasting side. An important step forward has been in the definition of
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1.1. INTRODUCTION

Militarised Interstate Disputes (MID) as a set of interactions between or among

states that can result in the actual use, display, or threat of using military force in

an explicit way [2]. A further contribution that has seen advances in the quantitative

study of interstate conflict has been the adoption of the generic term of “conflict”

rather than “war” or “dispute”. This has led to collection of MID data which

allows us, not only to concentrate on intense state interactions, but also on sub war

interactions, where militarised behaviour occurs without escalation to war, as these

may be very important in exploring mediation issues.

On the forecasting side, statistical methods have been used for a long time to pre-

dict conflict and it has been found that no statistical model can predict international

conflict with a probability of more than 0.5 [1]. The use of statistical models has led

to fragmentary conclusions and results that are not in unison. An example of this

can be found in the investigation of the relationship between democracy and peace.

In their work, Thompson and Tucker [3] conclude that if the explanatory variables

indicate that countries are democratic, the chances of war are then reduced. How-

ever, Mansfield and Snyder [4] oppose this notion and suggest that democratization

increases the likelihood of war. Another example of contradictory findings is on

the role of trade in preventing conflict as shown in Oneal and Russet [5], Barbieri

[6] and Beck et al [7]. Lagazio and Russet [8] point out that the reason for the

failure of statistical methods might be attributed to the fact that the interstate vari-

ables related to MID are non-linear, highly interdependent and context dependent.

This means conflict modelling requires more suitable techniques. Neural networks,

particularly multilayer perceptrons (MLPs), have been applied to the modelling of

interstate conflict [1, 9]. The main advantage of using neural network models is that

they are able to capture complex input-output relationships without the need for a

priori knowledge or assumptions about the problem domain. In this work the neural

network and neuro-fuzzy models will be explored.

2



1.2. MID DATA

1.2 MID Data

Militarised Interstate Dispute (MID) is defined as a set of interactions between or

among states that can result in the actual use, display or threat of using military

force in an explicit way [2]. Projects such as the Correlates of war (COW) facilitate

the collection, dissemination and use of accurate and reliable quantitative data in

international relations [10]. The collected data, called interstate variables, are used

to study the conditions associated with MID. The measures used in MID studies

are Democracy, Dependency, Capability, Alliance, Contiguity, Distance and Major

Power. Any set of measures describing a particular context has a dispute outcome

attached to it. The dispute outcome is either a peace or conflict situation. A brief

discussion of the variables is given below, the details are described extensively by

Russet and Oneal [11].

1.2.1 Data

As previously mentioned, interstate interactions are described using seven explana-

tory variables often called dyadic variables. This is because each instance in the MID

data describes interactions between two countries. For example the variable Democ-

racy describes the democratic level of two countries with respect to one another.

The variables are further described below.

Democracy. This variable quantifies the democratic level of two countries with

respect to one another. The democratic level of countries is given a value in the

range [−10, 10]. The value −10 is assigned to a totally autocratic state, while the

value 10 is assigned to a completely democratic state. The joint democracy level is

then calculated as a minimum of both states’ democracy scores.

Dependency. This variable defines the economic interdependence of two countries

with respect to one another. The variable is calculated as the minimum bilateral

trade-to-GDP ratio between the two countries. The variable is therefore a measure

of the economic interdependence of the less economically dependent state.

3



1.2. MID DATA

Capability. This variable is a ratio which is best described as the power parity

between two states. The variable is calculated as the logarithm to the base 10

of the ratio of the total population, plus the number of people in urban areas,

plus industrial energy consumption, plus iron and steel production, plus number of

military personnel in active duty, plus military expenditure in dollars in the last 5

years measured on stronger country to weaker country.

Alliance. This variable measures the degree of alliance between two states. Two

countries are assigned a value of 1 if they have any mutual defence treaty or neutrality

pact, and 0 if not.

Contiguity. This variable indicates whether two countries share a border or not.

A value of 1 is assigned if two countries share a border, and 0 if not.

Distance. This variable is simply the distance between two countries. It is cal-

culated as the natural logarithm of the distance in kilometres between the capital

cities of two states. The distance between major ports can also be used.

Major Power. A country is considered a major power if it has substantial relative

global destructive power based on a consensus of historians. If either one of two

countries is a major power, the variable is assigned a value of 1, and if not a 0 is

assigned.

A summary of the above variables is given in Table 1.1.

Table 1.1: A table giving a summary of the dyadic variables.
Variable Description Values

u1 Democracy [−10, 10]
u2 Dependency Continuous
u3 Capability Continuous
u4 Alliance 0 or 1
u5 Contiguity 0 or 1
u6 Distance Continuous
u7 Major Power 0 or 1

4



1.2. MID DATA

1.2.2 Data Exploration

The autocorrelation on 1000 random instances of the MID has been performed to

give an improved understanding of the data. The correlation checks if any of the

variables are correlated in a such a way that a change in one of them accords with

a corresponding change in the other [12]. The correlation is expressed in terms of

a coefficient, r, in the range [−1, 1]. The most important information is extracted

from the absolute value of the correlation coefficient. The greater the absolute value

of the coefficient, i.e. |r| → 1, the more the two variable under consideration are

correlated. If |r| → 0, the variables are not correlated. The (+) indicates a positive

correlation and (−) indicates negative correlation.

The covariance between two columns of variables x = (xi) and y = (yi), i ∈ I can

be defined as [13]:

cov(x, y) =
1
N

∑
iεI

(xi − x̄i)(yi − ȳi) (1.1)

where x̄ and ȳ are the average values of x and y, respectively. The correlation

coefficient is a scale-variant version of the covariance coefficient. It is defined by the

covariance coefficient normalised by the standard deviations as shown:

r(x, y) =
cov(x, y)
(s(x)s(y))

(1.2)

where s(x) and s(y) are the variances of the variables x and y, respectively. The

correlation coefficients of all the variables with respect to each other are calculated

and the results are shown in Table 1.2. The parameter u8 represents the dispute

outcome.

The above results show that the variables are not linearly correlated to any large

degree. Also the linear correlation between the individual inputs and the output is

very small. In this work, computational intelligence methods which are capable of

5



1.3. MODELLING INTERSTATE CONFLICT

Table 1.2: The correlation coefficients of all the variables with respect to each other.
u1 u2 u3 u4 u5 u6 u7 u8

u1 1.0000 0.1605 -0.0069 -0.0314 -0.0753 0.2850 0.0935 -0.0518
u2 0.1605 1.0000 0.4509 -0.4490 -0.3142 0.1192 -0.4061 0.0079
u3 -0.0069 0.4509 1.0000 -0.6801 -0.5032 0.0174 -0.8055 0.1604
u4 -0.0314 -0.4490 -0.6801 1.0000 0.4891 -0.0918 0.6799 -0.1480
u5 -0.0753 -0.3142 -0.5032 0.4891 1.0000 -0.2577 0.5253 -0.1154
u6 0.2850 0.1192 0.0174 -0.0918 -0.2577 1.0000 0.0481 -0.0528
u7 0.0935 -0.4061 -0.8055 0.6799 0.5253 0.0481 1.0000 -0.1410
u8 -0.0518 0.0079 0.1604 -0.1480 -0.1154 -0.0528 -0.1410 1.0000

modelling complex non-linear relationships will be employed.

1.3 Modelling Interstate Conflict

This dissertation presents a Computational Intelligence (CI) approach to the quan-

titative study of international conflict. The aim of the work done is to present a

variety of CI methods to advance the study of conflict management. The focus of

the methods presented is not only with regard to accuracy but attention is also

given to the causal interpretation of obtained results. The CI tools used are Neural

networks, Fuzzy models and the Genetic Algorithm. A brief introduction to these

tools is given below.

1.3.1 Neural Networks

Artificial Neural Network (ANN), which at a low-level mimic biological neural sys-

tems, have become the most widely used CI method for modelling input-output

relationships. Neural network learning methods are among the most effective meth-

ods and provide a robust approach to approximating real-valued, discrete-valued and

vector valued target function [14]. Some of the different types of neural networks

that exist are: Multilayer Perceptron (MLP), Radial Basis Function (RBF), Recur-

rent Neural Network (RNN), Self-Organising Maps (SOMs) etc. Neural networks have

been applied across a diverse number of fields. Some of these are: control [15], fi-

nance [16, 17] and Bioinformatics [18], and as previously mentioned, they have been

6



1.3. MODELLING INTERSTATE CONFLICT

applied to the field of conflict management [9, 19].

1.3.2 Fuzzy Models and Neuro-fuzzy models

Fuzzy models. Fuzzy logic provides a method of modelling imprecise models of

reasoning, such as common sense reasoning, for uncertain and complex processes

[20]. Fuzzy set theory approximates human reasoning in its use of approximate

information and uncertainty to determine outputs. Systems can be represented by

a modelling framework which describes the input-output relationship by means of

if-then rules. For example, when modelling conflict we would expect fuzzy rules of

the form:

If Alliance is Strong and Dependency is weak and . . .THEN . . .

There are three types of rule-based fuzzy models: Linguistic fuzzy model, Fuzzy

relational model and the Takagi-Sugeno (TS) fuzzy model. The TS fuzzy model is

popular for data-driven identification and will be used in this research. Some of the

applications of Fuzzy models have been in the studies of fault identification [21] and

non-linear control [22]. It is worth noting that current literature does not document

any applications of neuro-fuzzy modelling to conflict management. Neuro-Fuzzy

modelling is therefore applied for the first time to the Quantitative study of conflict

management.

Neuro-fuzzy models. Fuzzy logic and neural networks have been combined in

a variety of ways. Hybrid systems of neural networks and fuzzy logic are usually

referred to as fuzzy neural networks [23]. Examples of these hybrid schemes are

listed below:

• Fuzzy rule-based systems with learning ability

• Fuzzy rule-based systems represented by network architectures.

• Neural networks for fuzzy reasoning.

7



1.4. OUTLINE OF DISSERTATION

• Fuzzified neural networks.

The Fuzzy rule-based systems with learning ability, also known as neuro-fuzzy net-

works [24], will be considered in this work. This system will be referred to as a

neuro-fuzzy system (model) from here onwards.

1.3.3 Genetic Algorithms

The Genetic Algorithm (GA) is an optimisation method which finds its roots in the

principles of genetics and natural selection [25]. The genetic algorithm searches the

solution space of a function through the use of a ‘survival of the fittest strategy’.

The fitness, which ultimately determines how the population evolves, is defined by

a fitness (or cost) function. Some of the advantages of the GA include [25]:

• Optimising continuous or discrete variables.

• Searches the solution space without the use of gradient information.

• Able to optimise a large number of variables.

The genetic algorithm has found uses in a variety of fields e.g. biological control [26]

and missing data [27].

1.4 Outline of Dissertation

As mentioned previously, a successful interstate conflict tool is one which is able to

accurately forecast conflict and at the same time provide a causal interpretation of

the results. The dissertation aims to investigate the neural network and fuzzy models

in order to determine the extent to which they fit this profile. Neural networks have

been able to forecast conflict with good accuracy [9], it is therefore expected that

the fuzzy model would be able to forecast equally well. The major contribution of

8



1.4. OUTLINE OF DISSERTATION

this thesis is found in Chapter 5 which investigates the transparency of both these

models. A brief outline of the dissertation is given below:

Chapter 2 provides a background to the quantitative study of conflict management.

A literature survey of the applied methods is given. A theoretical background to

neural network and fuzzy modelling and the genetic algorithm is then given.

Chapter 3 presents a neural network approach to modelling interstate conflict.

In this chapter, a neural network model is trained to forecast interstate conflict.

Also presented is a hybrid machine learning method based on control theory, which

suggests how conflict can be avoided. The hybrid machine learning method makes

use of neural networks and the genetic algorithm.

Chapter 4 presents, for the first time, a neuro-fuzzy approach to modelling inter-

state conflict. As in Chapter 2, the TS neuro-fuzzy model is trained to forecast

interstate conflict. The model is also used together with the genetic algorithm to

suggest how conflict situations can be avoided. The conclusions drawn from the

hybrid control scheme are then compared to those found in Chapter 3.

Chapter 5 compares the transparency of both the neural network and fuzzy models.

The models are assessed based on their ability to provide causal interpretations.

Chapter 6 summarises the findings of the research and presents suggestion for

future work.

Appendix A is a description of the Hybrid Monte Carlo (HMC) algorithm which is

used in the training of the Bayesian neural network.

Appendix B is the description of the Gustafson-Kessel (GK) clustering algorithm

which partitions the data in order to build a fuzzy model.

Appendix C lists the papers and book chapters that have been published based

on the work performed in this thesis.

9



Chapter 2

Computational Intelligence

Background

2.1 Introduction

As previously mentioned, the quantitative study of conflict management is not only

concerned with the forecasting of interstate conflict but also the causal interpretation

of results. Computational intelligence methods, such as neural network and support

vector machines, have previously been applied to the problem of modelling interstate

conflict [9, 28]. The computational intelligence methods have had varying degrees of

success. In this chapter, a brief literature survey of all the methods that have been

applied to the quantitative study of conflict management is presented. A background

theory to neural networks and neuro-fuzzy models will also be given as these models

are explored in later chapters. However, more emphasis will be given to neuro-fuzzy

models as they have not previously been applied to the quantitative study of conflict

management.

10



2.2. LITERATURE SURVEY

2.2 Literature Survey

Statistical models such as logit and probit [1] have been amongst the first models

used in the analysis of interstate variables. However, it has been found that these

methods have several shortcomings [1]. Some of the problems associated with the

use of logit and probit is that they require the use of a priori knowledge usually

obtained from the analyst. A problem then arises when the analyst pushes their

data analyses extremely hard in search of effects they believe exist but are difficult

to discover [1]. The consequence of this is that the results vary from researcher to

researcher and are therefore not exactly repeatable.

The other problem, as one might expect, is that conflict cases occur far less fre-

quently than peace cases. Interstate conflict is therefore a rare event and the pro-

cesses which drive it, in one particular instance, are likely to be different from those

found elsewhere. This has led quantitative researchers to conclude that the relation-

ship between the interstate variables and dispute outcomes is highly non-linear and

highly correlated [1]. The conclusion is further confirmed by the studies performed

by Lagazio and Russet [29]. This means that statistical techniques, linear-normal

models in particular, would perform poorly at modelling the relationship between

interstate disputes and their outcomes.

The neural network has also been applied to interstate conflict modelling and fore-

casting. The neural network was first introduced by Schrodt [30] in 1995 and by Zeng

[19] in 1999 as a method of analysing conflict without the need for the researcher to

incorporate qualitative a priori knowledge or make assumptions about the problem

space. The neural network was presented as a function approximator which is able

to model highly nonlinear and interdependent relationships. However the neural

network itself suffers from problems similar to those of statistical methods, in that a

model selection technique must be considered. In recent studies, Beck et al [1] made

use of a neural network, which is trained using the Bayesian framework outlined

in [31]. The Bayesian training of neural networks involves the use of the Bayesian

framework to identify the optimal weights and biases in a neural network model.
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It is found that the use of neural networks yields results expressed in the form of

classification accuracy. This interpretation of the results is found to be unambigu-

ous compared to previous methods. However, the resulting neural network model is

regarded as a black box due to the fact that it does not provide a way of obtaining

a causal interpretation of dispute outcomes. The weights extracted from the neural

network offer no understanding as to why countries go to war.

In [9], Marwala and Lagazio propose the use of Automatic Relevance Detection

(ARD) as a means to making the neural network more transparent. The result of

ARD reveals that the importance of the interstate variables in predicting dispute

outcomes is as follows (listed in decreasing relavance): Democracy, Capability, De-

pendency, Allies, Contiguity, Distance and Major power. From this work on neural

networks we can conclude that neural network models have a fairly strong forecasting

ability but only a limited amount of knowledge can be extracted.

In [28], Habtemariam and Marwala introduce Support Vector Machines (SVM) to the

study of conflict management. It is found that SVMs offer an improved forecasting

ability over neural networks. However, a sensitivity analysis which aims to determine

the influence of each variable on a dispute outcome reveals that results obtained

from neural networks are much more intuitive. Therefore, while SVMs offer better

forecasting ability they lack the ability to give an intuitive causal interpretation of

the results.

As stated earlier on in the chapter, the main focus of quantitative studies in inter-

national conflict has been on the ability of a model to accurately forecast dispute

outcomes while at the same time allow the analyst to extract knowledge from the

model. Subsequent chapters will focus on the ability of computational intelligence

models to forecast dispute outcomes while at the same time allowing the quanti-

tative analyst to extract knowledge from the model. The models that have been

chosen for investigation are the neural network model and the neuro-fuzzy model.

The theory of neural networks and neuro-fuzzy modelling is given in the following

sections.
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2.3 Neural Networks

This section gives an overview of neural networks and their practical implementation.

Neural networks are most commonly used as function approximators which map the

inputs of a process to the outputs. The reason for their wide spread use is that,

assuming no restriction on the architecture, neural networks are able to approximate

any continuous function of arbitrary complexity [32]. A diagram of a generalised

neural network model is shown in Figure 2.1.

Figure 2.1: A diagram of a generalised neural network model

The mapping of the inputs to the outputs using an MLP neural network can be

expressed as follows:

yk = fouter

 M∑
j=1

w
(2)
kj

(
d∑

i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

 (2.1)

In Eq. 2.1, w
(1)
ji and w

(2)
jk indicate the weights in the first and second layers, respec-

tively, going from input i to hidden unit j, M is the number of hidden units, d is

the number of output units while w
(1)
j0 indicates the bias for the hidden unit j and

w
(2)
k0 indicates the bias for the output unit k. For simplicity the biases have been

omitted from diagram in Figure 2.1.

The weights of the neural network are optimised via backpropagation training using,
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most commonly, scaled conjugate gradient training [33]. The cost function repre-

senting the objective of the training of the neural network can be defined. The

objective of the problem is to obtain the optimal weights which accurately map the

inputs of a process to the outputs. If the training set D = {xk, yk}Nk=1 is used, the

cost function, E, may be written using the cross-entropy cost function as follows

[33]:

E = −β
N∑
n

K∑
k

ζ ln(ynk) + (1− tnk) ln(1− ynk) +
w∑
j

αj

2
w2

j (2.2)

This cross entropy function has been chosen because it has been found to be more

suited to classification problems than the sum-of-square of error cost function [33].

In Eq. 2.2, n is the index for the training pattern, hyperparameter β is the data

contribution to the error, k is the index for the output units, tnk is the target output

corresponding to the nth training pattern and kth output unit and ynk is the corre-

sponding predicted output. The second term in the expression is the regularisation

parameter which penalises weights of large magnitudes. The regularisation param-

eter coefficient, α, determines the relative contribution of the regularisation term

on the training error. The presence of the regularisation parameter gives significant

improvements in the generalisation ability of the network [33].

The problem of identifying the weights and biases of the neural network can be

posed in the Bayesian framework as shown in Eq. 2.3 [33].

P (w|D) =
P (D|w)P (w)

P (D)
(2.3)

In Eq. 2.3, P (w) is the probability distribution function of the weight-space in

the absence of any data, also known as the prior distribution function and D ≡

(y1, . . . , yN ) is a matrix containing the data. The quantity P (w|D) is the poste-

rior distribution function after the network weights have been exposed to the data,

P (D|w)) is the likelihood function and P (D) is the normalization function also
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known as the “evidence” [34]. For the MLP Eq. 2.3 may be expanded using the

cross-entropy error function in Eq. 2.2 to give [33]:

P (w|D) =
1
Zs

exp

β

N∑
n

K∑
k

ζ ln(ynk) + (1− tnk) ln(1− ynk)−
w∑
j

αj

2
w2

j

 (2.4)

The parameter Zs is a function described by Eq. 2.5.

Zs(α, β) =
∫

exp(−βED−αEw) =
(

2π

β

)N
2

+
(

2π

α

)w
2

(2.5)

From Eq. 2.4 we can see that training the neural network in the Bayesian framework

automatically penalises overly complex models without the need for cross-validation

sets. This is especially an advantage if there are limited training examples.

Equation 2.4 can be solved in two ways. The first way is by using Taylor expansion

and approximating it by a Gaussian distribution and applying the evidence frame-

work [31]. The second way, which is used in this work, is by numerically sampling the

posterior probability using the Hybrid Monte Carlo method (HMC) [35]. The HMC

method is a combination of the stochastic dynamics model adopted from statistical

mechanics with the Metropolis algorithm. The HMC works by taking a series of tra-

jectories from an initial state, i.e. ‘position’ and ‘momentum’, and moving in some

direction in the state space for a given length of time and accepting the final state

using the Metropolis algorithm. The algorithm makes use of gradient information

to follow trajectories, which move in the direction of high probabilities, resulting in

the improved probability that the resulting state is accepted. Further details of the

HMC method are included in Appendix A of this thesis.
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2.4 Neuro-fuzzy Models

The concepts of fuzzy models and neural network models can be combined in various

ways. This section covers the theory of fuzzy models and shows how their combina-

tion with neural network concepts gives what is called the neuro-fuzzy model. The

most popular neuro-fuzzy model is the Takagi-Sugeno model which is very popular

in data driven modelling [36]. This model which is used in this work is described in

the following subsections.

2.4.1 Fuzzy Systems

Fuzzy logic concepts provide a method of modelling imprecise models of reasoning,

such as common sense reasoning, for uncertain and complex processes [20]. Fuzzy

set theory resembles human reasoning in its use of approximate information and

uncertainty to generate decisions. The ability of fuzzy logic to approximate human

reasoning is a motivation for considering fuzzy systems in this work. In fuzzy sys-

tems, the evaluation of the output is performed by a computing framework called

the fuzzy inference system. The fuzzy inference system maps fuzzy or crisp inputs

to the output - which is usually a fuzzy set [37]. The fuzzy inference system per-

forms a composition of the inputs using fuzzy set theory, fuzzy if-then rules and

fuzzy reasoning to arrive at the output. More specifically, the fuzzy inference in-

volves the fuzzification of the input variables (i.e. partitioning of the input data

into fuzzy sets), evaluation of rules, aggregation of the rule outputs and finally the

defuzzification (i.e. extraction of a crisp value which best represents a fuzzy set) of

the result. There are two popular fuzzy models: the Mamdani model and the TS

model. The TS model is more popular when it comes to data-driven identification

and has been proven to be a universal approximator [37]. The TS model has the

ability to approximate any nonlinear function arbitrarily well given that the number

of rules is not limited. It is for these reasons that it is used in this study. The most

common form of the TS model is the first order one. A diagram of a two-input and

single output TS fuzzy model is shown in Figure 2.4.1 [36]:
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Figure 2.2: A two-input first order Takagi-Sugeno fuzzy model.

In the TS model, the antecedent part of the rule is a fuzzy proposition and the

consequent function is an affine linear function of the input variables as shown in

Eq. 2.6:

Ri : If x is Ai then yi = aT
i x + bi (2.6)

where Ri is the ith fuzzy rule, x is the input vector, Ai is a fuzzy set, ai is the con-

sequence parameter vector, bi is a scalar offset and i = 1, 2, . . . ,K. The parameter

K is the number of rules in the fuzzy model. If there are too few rules in the fuzzy

model, it may not be possible to accurately model a process. Too many rules may

lead to an overly complex model with redundant fuzzy rules which compromises the

integrity of the model [38]. In this work the optimum number of rules is empirically

determined as will be seen in Chapter 4. The antecedents in the model describe the

fuzzy regions in the input space in which the consequent functions are valid.

The first step in any inference procedure is the partitioning of the input space in

order to form the antecedents of the fuzzy rules. The shapes of the membership func-

tions of the antecedents can be chosen to be Gaussian or triangular. The Gaussian

17



2.4. NEURO-FUZZY MODELS

Figure 2.3: A typical Gaussian membership function which can be used to describe
a fuzzy set.

membership function of the form shown in Eq. 2.7 is used in this work.

µi(x) =
n∏

j=1

e
−

(xj−ci
j)2

(bi
j
)2 (2.7)

In Eq. 2.7, µi is the combined antecedent value for the ith rule, n is the number of

antecedents belonging to the ith rule, c is the center of the Gaussian function and

b describes the variance of the Gaussian membership function. Figure 2.3 shows a

typical Gaussian membership function.

The consequent function in the TS model can either be constant or linear. In our

work, it is found that the linear consequent function gives a more accurate result.

The form of the linear consequent function is shown in Eq. 2.8:

yi =
n∑

j=1

pijxj + pi0 (2.8)

where pij is the j th parameter of the ith fuzzy rule. If a constant is used as the
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consequent function, i.e. yi = pi, the zero-order TS model becomes a special case

of the Mamdani inference system [36]. The output y of the entire inference system

is computed by taking a weighted average of the individual rules’ contributions as

shown in Eq. 2.9:

y =
∑K

i=1 βi(x)yi∑K
i=1 βi(x)

=
∑K

i=1 βi(x)(aT
i x + bi)∑K

i=1 βi(x)
(2.9)

where βi(x) is the activation of the ith rule. The βi(x) can be a complicated expres-

sion but in our work it will be equivalent to the degree of fulfilment of the ith rule.

The parameters ai are then approximate models of the system under consideration

[39].

2.4.2 Neuro-fuzzy Modelling

When setting up a fuzzy rule-based system, we are required to optimise parameters

such as membership functions and consequent parameters. In order to optimise these

parameters, the fuzzy system relies on training algorithms inherited from artificial

neural networks such as gradient descent-based learning. It is for this reason that

they are referred to as neuro-fuzzy models. There are two approaches to training

neuro-fuzzy models [36]:

1. Fuzzy rules may be extracted from expert knowledge and used to create an

initial model. The parameters of the model can then be fine tuned using data

collected from the operational system being modelled.

2. The number of rules can be determined from collected numerical data using

a model selection technique. The parameters of the model are also optimised

using the existing data. The Takagi-Sugeno model is most popular when it

comes to this identification technique.
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The major motivation for using a neuro-fuzzy model in this work is that not only is

it suitable for data-driven identification, it is also considered to be a gray box [39].

Unlike other computational intelligence methods, once optimised, it is possible to

extract information which allows one to understand the process being modelled.

In the next chapter we explore the interpretability of this model to see what kind

of information can be explored. Later on in the work, the fuzzy model is proposed

as a way of obtaining accurate forecasts and at the same time obtaining causal

interpretations which are intuitive. The added advantage of this is that it is then

easy to validate the model qualitatively using expert knowledge.

2.5 Conclusion

In this chapter, a brief literature review of the quantitative study of conflict man-

agement has been given. The literature survey has highlighted some of the problems

that have been experienced in this field and some of the existing shortfalls. While

the forecasting of interstate disputes has been accurate, there has been a necessity

to obtain a model or method which allows an analyst to obtain a causal interpre-

tation of a dispute outcome. Neural networks trained in the Bayesian framework

have provided a step forward in this direction. It has been found that certain causal

interpretations can be drawn from the model by using an automatic relevance de-

termination method and performing a sensitivity analysis.
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Chapter 3

A Bayesian Neural Network Approach

to Modelling Interstate Conflict

3.1 Introduction

The previous chapter has given a background to Artificial Neural Networks (ANNs).

In this chapter, a Bayesian trained Multilayer Perceptron (MLP) ANN is used to

model interstate conflict using militarised interstate dispute (MID) data as discussed

in chapter one. The seven dyadic variables are considered the inputs into the neural

network and the dispute outcome is considered the output of the neural network.

Therefore the ability of the MLP neural network to map the inputs to the output

is a reflection of how it is able to capture the underlying interstate interactions.

Once training is complete, the MLP is combined with the Genetic Algorithm (GA)

to form a hybrid control scheme which can be used to suggest how conflict can be

brought back under control. The GA has become a popular evolutionary algorithm

which is most commonly applied to non-continuous problems or problems that are

not well defined [40]. A brief description of the GA will be followed by an overview

of the proposed control scheme.
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3.2 Neural Network Modelling

While training the MLP using the Bayesian framework offers advantages, there are

however other problems which need to be addressed in the optimisation of the MLP.

The first problem lies in the selection of the appropriate MLP architecture. The

number of inputs and outputs in the dataset dictates the number of input and output

nodes of the MLP neural networks. The next step in training the neural network

model is to determine the number of hidden layers and nodes in the hidden layers to

use. Other design choices include the activation functions, training algorithm etc.

The following section will give a brief description of all the design choices made.

3.3 Model Selection

As mentioned in the previous section, there are several design choices to be made

when optimising an MLP neural network architecture. The optimum number of

nodes in the hidden layer has to be chosen. Too few nodes in the hidden layer limits

the approximation capabilities of the network [33]. On the other hand too many

nodes makes the network susceptible to over-fitting the training data. In this work

the number of nodes is empirically determined by training networks with nodes be-

tween 2 and 20 nodes. It is found that the network with 9 nodes in the hidden layer

gives a low validation error. The hyperbolic tangent function has been chosen as an

activation function for the hidden layer because it is found to be less prone to satu-

ration during training [41]. The linear output activation function has been chosen at

the output of the neural network because training in the Bayesian framework allows

the output to be probabilities in the range [0, 1], similar to regression problems. The

linear output activation has been found to be suitable for regression type problems

[33]. A summary of the network parameters is given in Table 3.1.
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Table 3.1: A summary of the MLP parameters.
Parameter Value

Output Function Linear
Activation Function tanh

Input nodes 7
Hidden nodes 9
Output nodes 1

3.4 Data Preprocessing

As mentioned in Chapter 1, the MID data used in this study contains 27737 in-

stances, each having seven (7) measures and an associated dispute outcome. The

data contains 26845 peace examples and 892 conflict examples. Before the data is

separated into a training and testing sets, it needs to be normalised to make sure

that the training of the network is not biased towards the larger inputs values. The

min-max normalisation shown below in Eq. 3.1 is used [12].

X̄ =
X −Xmin

Xmax −Xmin
(3.1)

In Eq. 3.1, X̄ is the normalised dataset, Xmin and Xmax are the minimum and

maximum values of each of the variables, respectively. In order to avoid rare-event

prediction problems, which are obtained when training models with skewed data, a

balanced training set containing 500 conflict and 500 peace cases is created. The bal-

anced set consist of randomly chosen instance from the original MID data. Because

the network is trained in the Bayesian framework, there is no need for a separate

validation and test set. The remaining data is simply used to test the performance

of the network on out-of-sample data.

3.5 Results

The neural network is trained in the Bayesian framework and the classification

output is expressed as a decision value which lies between 0 and 1. The Receiver
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Operating Characteristic (ROC) curve is chosen as a method of representing the

classification results. The ROC curve allows the performance of the classifier to

be evaluated based on how well they predict both the classes. The Area Under

Curve (AUC) of the ROC curve is used as a performance criterion.

The optimal threshold for each of the classifications has been determined by the

process of evaluating the accuracy of each point on the ROC curve checking for the

highest accuracy. The accuracy of each point on the ROC is determined by applying

Equation 3.2.

Acc = pos · tpr + neg(1− fpr) =
tpr + c · (1− fpr)

c + 1
(3.2)

where tpr is the true positive rate, otherwise known as the sensitivity, given by

Equation 3.3:

tpr =
TP

TP + FN
(3.3)

where fpr is the false positive rate, also known as the specificity and is given by

Equation 3.4.

fpr =
FP

FP + TN
(3.4)

The variable True positive (TP), False negative (FN), False positive (FP) and True

negative (TN) are all derived from the confusion matrix.

Parameter c is the relative importance of negatives to positives in the prediction, as

shown in Equation 3.5.

c =
neg

pos
(3.5)
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Figure 3.1: A receiver operating characteristic (ROC) curve showing the forecasting
capabilities of the MLP neural network. The area under curve (AUC) is found to
be 0.8141.

In this study the peace and conflict cases have been given equal importance meaning

c = 1.

The ROC curve for the neural network forecast is shown in Figure 3.1. The curve

has a AUC of 0.8141 which according to [42] is considered good classification ability.

The results can be shown in the form of a confusion matrix as shown in Table 3.2.

The confusion matrix shows that the MLP neural network forecasts conflict cases

with an accuracy of 77.3% and peace cases with 73.64%.

Table 3.2: The confusion matrix for the MLP neural network model.
Conflict cases Peace cases

Correctly predicted 303 19400
Incorrectly predicted 89 6945

The ability of the MLP to forecast conflict cases becomes important in the next

section. In the next section the neural network is used together with the Genetic

Algorithm (GA) as a tool which suggests how conflict situations can be brought

under control. A detailed description of this hybrid method is given in the next
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section.

3.6 A Hybrid Machine Learning Method for Control-

ling Conflict

In this section a hybrid learning method is proposed which makes use of a process

model and an optimisation method as shown in Figure 3.2. In this study the pro-

cess being modelled is a set of interstate interactions or MIDs. The trained neural

network from the previous section will be employed as it sufficiently models the sys-

tem we are studying i.e. MID. The optimisation to be used in our hybrid learning

method is the GA. There is no real reason why the GA must be used over other

optimisation method such as Particle Swarm Optimisation (PSO) and Golden Sec-

tion Search (GSS) as these algorithms have been proven to converge [43, 44]. A brief

background to GA is given in the following section.

Figure 3.2: A diagram of a hybrid learning method which is used to suggest how
conflict situation can be brought under control. The hybrid system makes use of a
process model and an optimisation method which optimises the inputs based on the
output.

3.6.1 Genetic Algorithm

The Genetic algorithm (GA) is part of a set of methods used to search a large, finite

solution space without relying on derivatives of cost functions [25]. This property
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makes them suitable for optimising discrete variables and non-continuous cost func-

tions. Genetic algorithms are inspired by Charles Darwin’s theory of evolution and

make use of the principles of gene crossover, reproduction and natural selection in

evolutionary biology [37]. When applying genetic algorithms to a problem, the first

step involves choosing a chromosome representation to best describe the individuals

in the population. The encoding can be chosen to be binary or floating point. The

GA then evaluates the “fitness” of the candidate solutions within the existing gen-

eration. The fitness is dependant on the cost function of the problem being solved.

The GA then seeks to maximise the fitness of the generations that follow by applying

mutation, crossover and selection operations to the individuals in the population.

These operations allow the GA to iteratively explore all promising regions within

the solution space [24]. Pseudo-code of a typical GA is shown below [14]:

• Initialise population: P ← Generate p hypotheses at random

• Evaluate: For each h in P , compute Fitness

• While [ maxh Fitness(h) ] < Fitnessthreshold do

Create a new generation, Ps:

1. Select : Probabilistically select (1− r)p members of P to add to Ps. The

probability Pr(hi) of selecting hypothesis hi from P is given by:

Pr(hi) =
Fitness(hi)∑p

j=1 Fitness(hj)

2. Crossover : Probabilistically select r · p
2 pairs of hypotheses from P , ac-

cording to Pr(hi) given above. For each pair, 〈h1, h2〉, produce two off-

spring by applying the Crossover operator. Add all offspring to Ps.

3. Mutate: Choose m percent of the members of Ps with uniform probability.

For each, invert one randomly selected bit in its representation.

4. Update: P ← Ps

5. Evaluate: for each h in P , compute Fitness(h)

• Return hypothesis from P that has the highest fitness.
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Parameters p, r and m are the number of individuals (hypotheses), the fraction of

individuals to be replaced by crossover and the mutation rate, respectively. On each

iteration, the successor population Ps is formed by probabilistically selecting current

hypotheses according to their fitness and by adding new hypotheses. New hypotheses

are created by applying a crossover operator to pairs of most fit hypotheses and

by creating single point mutations in the resulting generation of hypotheses. The

process iterates until a sufficiently fit individual is found. The flow chart for the GA

using a continuous representation of chromosomes is shown in Figure 3.3.

When implementing the GA, several parameters need to be initialised. Among

these are the population size, the terminating threshold, the mutation and crossover

probabilities etc. The next section will mention some of the important parameters

together with a brief description of how they were selected.

3.6.2 Method Description and Results

Within the context of MID, the GA can be used to optimise the input variables

and suggest how a conflict situation can be resolved. From a practical stand point,

not all the interstate variables can be controlled. For instance it is known that the

countries which share borders have a higher chance of being involved in a conflict

situation. Therefore a solution to this problem would be to increase the distance

between the countries, but this is obviously not possible. In applying GA to the

problem of controlling interstate disputes the variables to be optimised must be

carefully chosen. In this study the variables Democracy, Allies, Capability, and

Dependency have been chosen, as it is possible to influence them. To control these

variables, the control scheme in Figure 3.2 is used.

This control scheme makes use of the neural network model of interstate disputes

and the GA has been used to optimise the changeable variables. The benefit of this

scheme is that it is able to suggest what needs to be done in order to avoid identified

conflicts. The major limitation to this scheme is that it is only able to correct

conflicts which have been correctly classified. Therefore the better the interstate
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Figure 3.3: A flowchart illustrating the execution of the Genetic Algorithm
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dispute model, the more effective the GA will be in avoiding conflict

Some of the parameters of the GA were empirically determined and others were

simply set to recommended values. Experimentation results showed that the opti-

mum number of individuals in the population is 20 and the GA is able to find the

optimal solution in 15 generations or iterations. The chromosomes have been given

a floating point representation as it has been found to be superior to the binary rep-

resentation [40]. The crossover operation is applied to some of the pairs that have

been selected, typically with a probability of between 0.6 and 1.0 [45]. The mutation

probability is usually allowed to contribute a small amount to the diversity of the

population, typically 0.001 [45]. A fitness function which the GA aims to minimise

is given below:

Fitness = |Yout − Ydesired| (3.6)

In Eq. 3.6, Yout is the output of the neural network and Ydesired is the desired output

i.e. a peaceful outcome in our case. In the above equation, the optimum fitness value

is zero as it means the desired output matches the actual output.

Results. After presenting the conflict variables to the proposed control scheme it is

found that all of the 303 conflict cases correctly classified by the neural network were

avoided, i.e. 100% of the identified conflict cases have been avoided. This means

that of all the 392 conflict cases that exist, 77.3% of them can be avoided using

the control scheme which incorporates the neural network. Figure 3.4 shows that

the control scheme has changed the original variables in order to achieve a peaceful

outcome. From Fig. 3.4 we can draw the following conclusions:

• The more democratic countries are, the higher the likelihood of peace.

• If two countries are allies the likelihood of them going to war is decreased.

• An increase in the capabilities of two countries decreases the chance that they

will engage in war.
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Figure 3.4: Results showing the original dyadic variables that collectively give con-
flict outcome in a specific case and how the variables are collectively changed to
produce peace.

• If two countries are more dependent on each other, the likelihood of them

going to war is decreased.

The above conclusions are sound and are in line with what one would expect. Im-

portantly, the optimisation suggest that the more democratic two countries are, the

lower the probability that they would find themselves in a conflict situation. This

agrees with the findings of Thompson and Tucker [3] on the debate of whether on

not democratic peace exists. The importance of this result is that it arises without

the need for a priori assumptions.

3.7 Conclusion

An MLP neural network has been trained using the Bayesian framework to map the

relationship between interstate variables and their respective outcome. The resulting

neural network predicts peace cases with an accuracy of 73.64% and conflict cases

with an accuracy of 77.3%. The network is then used in hybrid machine learning

scheme to suggest how conflict situations can be controlled. It is found that out of

the 303 conflict cases identified, the control scheme is able to suggest how to bring

them to a peaceful result. From the suggestion that the control scheme gives it is

found that several conclusions can be drawn which shed light on previously unclear

areas in the quantitative study of conflict management, as detailed in Chapter 1.
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3.7. CONCLUSION

The most important finding is that there is such a thing as democratic peace. This

result is a step in settling some of the confusion that has been created by using

statistical analyses to study MID.
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Chapter 4

A Neuro-Fuzzy Approach to Modelling

Interstate Conflict

4.1 Introduction

In this chapter neuro-fuzzy modelling is applied to the study of conflict management.

The aim of the exercise is to obtain a model that has good forecasting ability as

well as interpretability. As in the previous chapter, the seven dyadic variables are

used as inputs to the neural network, with the dispute outcome being used as the

output. After optimising the neuro-fuzzy model, the input-output relationship is

coded as fuzzy statements, which can then be interpreted. The optimisation of the

neuro-fuzzy model using MID data is a trade off between good forecast ability and

readability. Most of the design choices made, sacrifice the final accuracy of the

model in order to get an interpretable end result. Once the optimum neuro-fuzzy

model has been obtained it is then used in the hybrid control scheme, introduced in

the previous chapter, to control conflict. The GA and its parameters are setup in a

similar way to Chapter 3. The results of the hybrid scheme will simply be presented.
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4.2 Neuro-fuzzy Modelling

The steps taken when setting up an neuro-fuzzy model include: data collection and

preprocessing, clustering of the data, model selection and model validation. Each of

these steps require one or more design decisions. The following sections give details

of the steps taken when optimising the neuro-fuzzy model.

4.2.1 Data Collection and Preprocessing

The same MID data [10] used to train the neural network in the previous chapter is

also used to optimise the neuro-fuzzy model. The data has been normalised to lie

in the range, X̄ε[−1, 1]. This type of normalisation is commonly used when training

neuro-fuzzy models [46] and is shown in Eq. 4.1 below. The type of normalisation is

not important as the clustering method used in this work does not exhibit sensitivity

to different ways of normalisation.

X̄ =
X −Xave

Xmax −Xmin
(4.1)

In Eq. 4.1, X̄ is the normalised data, Xave, Xmax and Xmin are the average value,

maximum value and minimum value of each of the variables, respectively.

4.2.2 Clustering of the Data

The building of a fuzzy model requires the clustering of the data. There are several

clustering algorithms which obtain partitions suitable for generating fuzzy models.

Some criteria have been established which can be used to choose the appropriate

algorithm [39]. The criteria are listed below:

• The algorithm should be able to reveal clusters of different sizes.
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• The algorithm should be robust with respect to the initialisation, and should

not converge to local optima representing unsatisfactory solutions of the ap-

proximation problem.

• The algorithm should ensure that the number of chosen clusters should be able

to represent local linear models of the function approximated.

The two different clustering algorithms that were considered in this work are the

GK algorithm and the fuzzy maximum likelihood estimates (FMLE) algorithm. The

advantages of using the GK algorithm are listed below:

• The resulting fuzzy sets induced by the partition matrix are compact and are

therefore easy to interpret.

• In comparison to other clustering algorithms, the GK algorithm is relatively

insensitive to the initialisations of the partition matrix.

• The algorithm is based on an adaptive distance measure and is therefore less

sensitive to the normalisation of the data.

• The GK algorithm can detect clusters of different shapes, i.e., not only linear

subspaces.

The main drawbacks of the GK algorithm are:

• The algorithm has a high computational load which is evident when using data

with large dimensions.

• When only a small number of data samples are available, or when the data

are linearly dependent, numerical problems may occur when the covariance

matrix becomes close to singular.

• Without any prior knowledge, the size of the clusters are set equal to each

other. The GK algorithm is then not able to detect clusters that differ largely

in their volumes.
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Unlike the GK algorithm, the FMLE is able to automatically detect clusters of

varying volumes. However, its major drawback is it is sensitive to the scaling of the

inputs and more sensitive than the GK algorithm to initial conditions in time series

modelling [39].

GK algorithm. The GK algorithm is an extension of the standard fuzzy c-means

algorithm by employing an adaptive distance norm in order to detect clusters of dif-

ferent geometric shapes in one data set. The GK algorithm basically contains four

steps. The first step of the algorithm involves the computation of cluster prototypes

or means. The second step then calculates the cluster covariance matrices. Step 3

then calculates the cluster distances. The partition matrix is then updated in Step

4. The algorithm then iterates through these steps until the change in member-

ship degrees is less than a given tolerance. For a more detailed explanation of the

algorithm refer to Appendix B.

4.2.3 Model Selection

Selection of the type of model. As mentioned in Chapter 1, there are three types

of models: Linguistic fuzzy models, Fuzzy relational models and TS fuzzy models.

The TS fuzzy model, which is most commonly used for data-driven identification

[36], is used in this work. The reasons for the use of the TS fuzzy model is that our

work involves formulating input-output relationships using collected data and also

the TS neuro-fuzzy model has been found to be most suitable for the approximation

of a large class of systems [39].

Selection of the number of fuzzy rules. The selection of the number of fuzzy

rules to be contained in the model is an important part in forming a fuzzy model.

The determination of the number of fuzzy rules is trivial when the model is being

formulated from expert knowledge. However, the process is less trivial when the

model is to be formulated from collected data. To obtain the number of rules, a

set of ten fuzzy models containing one to ten rules is formed. Each of the models

are evaluated on the training dataset using a ten-fold cross-validation method. The
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4.2. NEURO-FUZZY MODELLING

Figure 4.1: An error bar graph showing the model selection results. The graph
shows that the model with the lowest validation error and a reasonable standard
deviation has two rules.

cross-validation method is found to be a better measure of performance as it is able

to give an average error and the deviation measure of the model [47].

With 10-fold cross-validation, the training dataset is divided into 10 approximately

equal sets. The holdout method is then performed 10 times, where each time one

of the unique 10 sets are held back as a testing set and the model is optimised

using the combined, remaining 9 sets. The error estimate is then given as the

average error of each model over all the 10 sets. The cross-validation technique,

though computationally expensive, is useful in this work as the data is limited.

The optimum number of rules is chosen from the model with the lowest error and

standard deviation. The results are shown in Fig. 4.1.

As can be be seen from Fig. 4.1, the optimum number of rules for the fuzzy model

is two. This is because two rules give a model which has a low error and a relatively

small standard deviation.
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Selection of the granularity. The granularity of a model refers to the number of

fuzzy sets the input variables will be divided into [39]. In practice, the granularity of

the model is a trade-off between the approximation error and the desired complexity

of the model. The granularity is also determined by the number of linguistic terms

defined for each variable. In this work the granularity of the variables has been

restricted to two in order to simplify the linguistic approximation and interpretation

of the fuzzy rules.

Model validation. Once the appropriate model has been chosen and optimised,

the generalisation ability of that model can then be tested. To measure the gen-

eralisation ability, the model is given the inputs to the reserved test set containing

26737 instances. The error of the model is then evaluated against the actual outputs

contained in the test set. The results are presented in the following section.

4.3 Classification Results

The model is validated using the test set which contains 26345 peace examples and

392 conflict examples. The prediction accuracy of the TS neuro-fuzzy model can

be inferred from Fig. 4.2. The ROC curve obtained from the prediction of the TS

neuro-fuzzy model yields an AUC of 0.8135. Similar to the neural network, this

AUC is considered to be a good value for a classifier [42].

The process of evaluating the optimal thresholds for each of the classification has

been determined by the process of evaluating the accuracy of each point on the

ROC curve, checking for the highest accuracy. A review of this method is found

in Chapter 3. The confusion matrix obtained is shown in Table 4.1. The results

therefore show that the TS neuro-fuzzy model predicts conflict with an accuracy of

80.1% and peace cases with an accuracy of 69.9%. The TS neuro-fuzzy model is able

to predict conflict cases with a better accuracy than the neural network model. The

neural network is only able to predict conflict with an accuracy of 77.3% i.e. out of

392 conflict cases, the neural network identified 303. Because the TS neuro-fuzzy
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Figure 4.2: A receiver operating characteristic (ROC) curve showing the forecasting
capabilities of the TS neuro-fuzzy model. The area under curve (AUC) is found to
be 0.8135.

model is able to identify 314, which is 11 more cases than the neural network, it

means that the neuro-fuzzy model would be in a position to bring under control

more conflict cases than the neural network.

Table 4.1: The confusion matrix for the TS neuro-fuzzy model.
Conflict cases Peace cases

Correctly predicted 314 17967
Incorrectly predicted 77 8378

4.4 Controlling Conflict

After presenting the conflict variables to the proposed control scheme it is found

that all 314 conflict cases were avoided, i.e. 100% of the identified conflicts have

been avoided. This means of all the 392 conflict cases that exist 80.1% of them

can be avoided by using the control system containing the neuro-fuzzy model. It is

possible to try avoiding conflict situations using a single variable, the results of such

an investigation is presented by Lagazio and Marwala [9].
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Figure 4.3: The four graphs show how the control scheme has modified the variables
in order to avoid conflict. The average change of each of the variables is superimposed
on the graphs using a dotted line. It can be seen that in a lot of cases that increasing
the level of the variables reduces the likelihood of war.

Figure 4.3 shows the simultaneous changes that are made in an attempt to restore

peace. The variable changes for first 100 conflict cases have been plotted together

with the average change that has been made for that particular variable over all the

conflict cases. The average changes for all the variables are above zero indicating

that an increase in the variables increases the chance of conflict cases being resolved.

The conclusion can be stated formally as:

• An increase in the democracy level of interacting states reduces the chances of

a conflict situation.

• If interacting states become allies the chance of conflict situation arising is

reduced.

• An increase in the capability of the interacting states reduces the chances of

conflict.

• An increase in the dependency of interacting states reduces the chance of

conflict.
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The above mentioned conclusions are logical and confirm what one might have sus-

pected. Furthermore, they are in line with the conclusions drawn when using the

neural network in Chapter 3.

4.5 Conclusion

A TS neuro-fuzzy model has been used for the first time to model the relationship

between interstate variables and the consequent outcome. It is found that a model

containing two membership functions gives an prediction accuracy of 80.1% on the

peace cases and 69.9% on the conflict cases. The TS neuro-fuzzy model has also

been combined with the GA in a hybrid machine learning scheme that is aimed at

controlling interstate disputes. It is found that out of the 314 correctly identified

dispute cases, the control scheme is able to provide a suggestion as to how all of

the cases can be avoided. Furthermore, it is found that the peace strategy given by

the control scheme, on how to resolve disputes, are in agreement with the strategy

employed when using the neural network.
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Chapter 5

Causal Interpretations using Bayesian

Neural Network and Neuro-fuzzy

Models

5.1 Introduction

As mentioned in previous chapters, the quantitative study of conflict management

is not only concerned with accurate forecasts of conflict but also obtaining causal

interpretation of results [1]. A transparent model which allows us to obtain a causal

interpretation of results has several advantages. One advantage is that the model can

be qualitatively validated. Qualitative validation allows the model to be validated

against an expert’s knowledge of the process or relationship being modelled. If

the model compares well with expert knowledge it means that the model can be

applied to out-of-context problems with a fair amount of confidence. Once we have

an understanding of how much confidence we can put in the model, we can then use

the model for hypothesis testing. Hypothesis testing will allow predictions about

scenarios to be examined. The greater the transparency of the model the more

suitable it will be for use in conflict management studies as it will allow for both

quantitative and qualitative validation, and also for hypothesis testing. We have

seen in the previous chapters that both the neural network and neuro-fuzzy models
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Figure 5.1: A ROC curve comparing the classification abilities of the neural network
and the neuro-fuzzy model. The neural network has an AUC of 0.8141 and the
neuro-fuzzy model has an AUC of 0.8135

forecast conflict with good accuracy. A comparison of the ROC curves of both these

models is shown in Figure 5.1.

In this chapter, the transparency of neural network and neuro-fuzzy models is in-

vestigated with respect to conflict management. The following sections focus on

the type of knowledge that can be extracted from each of these models. Knowl-

edge from the neuro-fuzzy model is extracted by interpreting the rules of the model.

Knowledge from the neural network model is extracted using Automatic Relevance

Determination (ARD) and by performing a sensitivity analysis.

5.2 Transparency of Computational Intelligence Models

When modelling real world systems it is possible to identify two main approaches:

“White Box” and “Black Box” modelling. White Box modelling refers to the deriva-

tion of an expression describing a system using physical laws, i.e., from first principles
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[39]. On the other hand black box modelling, which is more common to computa-

tional intelligence, refers to the approximation of an unknown complex function

using a structure which is not in anyway related to the system being modelled. An

example of black box modelling is the use of a neural network architecture to model

the input-output relationship of some complex process.

Much has been written about the lack of transparency of the neural network when it

comes to modelling systems. The first criticism lies in that the use of neural networks

has been found to be limited in some applications [48]. For most applications, the

neural network is required to use the inputs to a given process in order to arrive

at the corresponding output. In some applications, an inverse neural network has

been used, where the network is trained to provide the inputs to a process given the

outputs [49, 50]. The major shortcoming which has been identified is that the neural

network is able to give output results without offering the chance for one to obtain

a causal interpretation of the results [51]. The lack of transparency of the model

restricts the confidence in applying neural networks to problems. The sole reason

for this is that the lack of transparency does not allow the model to be validated

against human expert knowledge.

Neuro-fuzzy models have been viewed as an alternative to bridging the gap between

white box and black box modeling. This is because of the neuro-fuzzy model’s ability

to combine available knowledge of a process with data obtained from the process.

The advantage of these types of neuro-fuzzy models is that not only do they facilitate

the incorporation of expert knowledge into the modelling process but they also

allow for knowledge discovery, which makes it possible for previously unavailable

knowledge to be extracted by training the neuro-fuzzy model with data collected

from the actual physical process. The Takagi-Sugeno (TS) fuzzy model is a universal

approximator [37] and has found widespread use in data-driven identification and is

considered to be a gray box modelling approach [36]. The TS fuzzy model together

with the MLP neural network will be considered in this work.
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5.3 Neuro-fuzzy Rule Extraction

The TS neuro-fuzzy model used for forecasting can also be used for rule extraction.

The optimisation of the TS neuro-fuzzy model involves tuning the parameters of

the membership functions (i.e. the bases and centres of the Gaussian membership

function) and the tuning of the consequent parameters and offsets. Once these have

been tuned fuzzy statements can then be formulated and the membership functions

can be plotted. Two fuzzy rules can be extracted from the model optimised in chap-

ter 4 and they are shown below.

1. If u1 is A11 and u2 is A12 and u3 is A13 and u4 is A14 and u5 is A15 and u6

is A16 and u7 is A17 then

y1 = −1.86 · 10−1u1−1.33 · 10−1u2+0.00 · 100u3−6.05 · 10−1u4−1.26 · 10−1u5−

1.33 · 100u6 + 4.71 · 10−1u7 + 8.95 · 10−1

2. If u1 is A21 and u2 is A22 and u3 is A23 and u4 is A24 and u5 is A25 and u6

is A26 and u7 is A27 then

y2 = −2.79 · 10−1u1+6.26 · 10−2u2+2.47 · 10−1u3−7.56 · 10−1u4−8.85 · 10−1u5−

9.04 · 100u6 + 0.00 · 100u7 + 3.73 · 10−1

The symbols from u1 to u7 are the input vector which consists of Democracy, De-

pendancy, Capability, Alliance, Contiguity, Distance and Major power. The rest of

the symbols were defined in Chapter 2.

It is clear that the rules are quite complex and need to be simplified in order to

obtain a didactic interpretation. In fact it is often found that when automated

techniques are applied to obtaining fuzzy models, unnecessary complexity is often

present [38].
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In our case the TS fuzzy model contains only two fuzzy rules. The removal of

a fuzzy set similar to the universal set leaves only one remaining fuzzy set. This

results in the input being partitioned into only one fuzzy set and therefore introduces

difficulty when expressing the premise in linguistic terms. To simplify the fuzzy rules

and avoid the redundant fuzzy sets the number of inputs into the TS neuro-fuzzy

model have been pruned down to four variables. These variables are Democracy,

Dependancy, Alliance and Contiguity. These variables are prefered as they can

naturally be described using fuzzy sets. The omitted variables tend to represent

crisp concepts and their description in fuzzy terms is not ideal. For example, the

variable Alliance represents a crisp concept i.e. two countries are either allies or not.

Fig 5.2 illustrates how the output deteriorates when three of the inputs are pruned.

The ROC curve shows that the performance degradation is minimal as the previous

AUC with all the variables was 0.8135 and the new AUC is now 0.74.

Figure 5.2: A ROC curve illustrating the performance degradation of the neuro-fuzzy
model when several inputs are pruned. The new AUC is now 0.74.

Once again the model complexity of the neuro-fuzzy model is two rules. The mem-

bership functions for the input sets are shown in Figure 5.3.
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Figure 5.3: The graphs illustrate how the input variables have been partitioned. The
membership functions for dependency have not been partitioned effectively since the
one set is seen to be a subset of the other. This allows us to remove this variable
and therefore reduce the complexity of the resulting fuzzy statements.

It is clear that the partitioning of the input variable Dependency (u2) yields two

similar fuzzy sets: one similar to the universal set. According to [38], this necessi-

tates the removal of that particular input variable from the analysis. The two rules

which can be extracted from this neuro-fuzzy model are shown below.

1. If u1 is A11 and u3 is A13 and u4 is A14 then

y1 = −3.87 · 10−1u1 − 9.19 · 10−1u3 − 7.95 · 10−1u4 + 3.90 · 10−1

2. If u1 is A21 and u3 is A23 and u4 is A24 then

y2 = −1.25 · 10−1u1 − 5.62 · 10−1u3 − 2.35 · 10−1u4 + 4.23 · 10−1

The rules extracted can then be converted so that they are represented in the com-

monly used linguistic terms. However, it is only possible to translate the antecedent

of the fuzzy statement into English. The consequent part together with the firing

strength of the rule are still expressed mathematically. The translated fuzzy rules
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with the firing strengths omitted can be written as shown below.

1. If Democracy level is low and Alliance is strong and Contiguity is true then

y1 = −3.87 · 10−1u1 − 9.19 · 10−1u3 − 7.95 · 10−1u4 + 3.90 · 10−1

2. If Democracy level is high and Alliance is weak and Contiguity is false then

y2 = −1.25 · 10−1u1 − 5.62 · 10−1u3 − 2.35 · 10−1u4 + 4.23 · 10−1

From observing the above rules, it is clear to see that the model is not quite as

transparent as we would like it to be. This is because the consequent of each of the

rules is still a mathematical expression. To validate the model we can then apply

expert knowledge of the problem domain. For instance if the level of Democracy of

two countries is low, they have a weak alliance and they share a border there is a

reasonable chance that the countries can find themselves in a conflict situation. If we

find values of Democracy, Alliance and Contiguity which have a membership value

of one, we can then use these as inputs to the model to see if it confirms our existing

knowledge. It is found that by using these values and an arbitrary Dependency

value the model gives an output decision value of y = 0.6743. The output of the

neuro-fuzzy model is determined as shown below:

If y > Ts ⇒ conflict

If y ≤ Ts ⇒ peace
(5.1)

The conflict threshold Ts is calculated from the ROC curve and is found to be

0.5360. By validating the model with similar statements, we can get a feel for how

much confidence we can put in the system. The model can further be used to

test hypothetical scenarios in a similar way to which it is validated. The neuro-

fuzzy model therefore offers a method of forecasting international conflict while also

catering for the cases where causal interpretations are required.
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5.4 Neural Network Interpretability

The problem of mapping an input-output relationship with neural networks involves

the optimisation of the weights. Once the relationship has been encoded into the

weights, it is not directly possible to make sense of the weights contained in the

neural network structure. However, there are other methods that can be used to

better understand the process being modelled. The methods that will be explored in

this section are Automatic Relevance Determination (ARD) and sensitivity analysis.

5.4.1 Automatic Relevance Determination

Mapping an input-output relationship using a multilayer perceptron (MLP) neural

network requires a training process which exposes the network to example data. The

training process aims to find the optimal set of network weights by applying a weight

update rule and a suitable learning algorithm. The error during the training process

usually gives an indication that the optimal set of network weights has been obtained.

However without some form of cross validation set it is not usually possible to have

an idea how the network will perform on unseen data. However, if the problem

of finding the optimal network weights is posed in the Bayesian framework several

advantages can be obtained. The Bayesian framework avoids over-fitting of the

training data eliminating the need for a cross validation set. Another advantage of

using the framework is that we can extend the evidence framework such that we can

extract information about how relevant the inputs are with respect to the output.

This method is termed ARD and is discussed further.

ARD Background

Inferences in Bayesian Neural Networks (BNNs) can be drawn on several levels [48].

The first level inference considers the elements of the weight matrix of the MLP

random variables which are characterised by a joint distribution. We state the prior

distribution, P (w|α, Hi), as the probability of a weight matrix (w) belonging to an
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MLP model (Hi). The hyperparameter, α, controls the prior distribution, which is

obtained using a Gaussian distribution with zero mean and a variance given by 1/α.

The initial weights of the MLP are sampled from this distribution. Once the MLP

network has been exposed to the training data, and the weights updated according

to a weight update rule, the prior distribution becomes the posterior distribution

using the Bayesian rule as shown:

P (w|D,α, β, Hi) =
P (D|w, β,Hi)P (w|α, Hi)

P (D|α, β, Hi)
(5.2)

In Equation 5.2, P (D|w, β,Hi) is the likelihood function which gives the probability

of the training data given the weight set and the MLP model. The Gaussian noise

of the data set is assumed to be 1/β. The normalisation factor, P (D|α, β, Hi), is

added to the denominator to ensure that Equation 5.2 integrates to one over the

weight space. The posterior distribution of the weights, w, can be written as follows

[34]:

P (w|D,α, β, Hi) =
1
Zs

exp−S(w) (5.3)

where S(w) is the cost function with a weight decay regularisation term as shown in

Equation 5.4,

S(w) = βED + αEw (5.4)

and Zs is a normalising constant given by:

Zs = −
∫

S(w)dw (5.5)

In Equation 5.4, ED quantifies the prediction error of the network and Ew the
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magnitude of the weights.

For a two-layer network, we often introduce the hyperparameters αw1, αb1, αw2, and

αb2, whose purpose is to control the magnitude of input-layer weights, input-layer

biases, hidden-layer weights and hidden-layer biases, respectively. When performing

an ARD analysis we further note that on the input layer of the MLP one hyper-

parameter αw1j for each of the input neurons (j = 1, ..., n). Therefore, there are

n+3 hyperparameters which control the corresponding weight group. The evidence

framework is therefore applied to optimise all n+3 hyperparameters and β by find-

ing their most probable value. The most probable weights are therefore found by

minimising the modified error function as shown in Equation 5.6.

S(w) = βED +
n+3∑
k=1

αkEw(k) (5.6)

where

Ew(k) =
1
2

∑
i(k)w2

i(k) (5.7)

and i(k) is the number of weights in weight group k.

After the MLP is trained with the ARD approach, the inputs can then be ranked

according to the magnitudes of their optimised αw1j values. Small hyperparame-

ter values imply that the weight associated with that particular input neuron has

a large variance and therefore weights associated with this neuron have the pos-

sibility of having large magnitudes. This means that particular input variable is

significant. Conversely, large hyperparameter values correspond to small variance

and constrain weights to small magnitude. Therefore that particular input variable

is less significant. Further details of the ARD method can be found in [51].
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ARD Results

In this paper, the ARD is used to rank the 7 variables used in the analysis with regard

to their relative influence on the MIDs. The ARD method uses the hyperparame-

ters which control the magnitude of the weights assigned at the input layer of the

neural network. The ARD was implemented, the hyperparameters calculated and

then the inverse of the hyperparameters was calculated and the results are in Figure

5.4, where the posterior value is the relative importance of the variable. Figure 5.4

indicates that Dependency has the highest influence, followed by Capability, Democ-

racy and then Allies. The remaining three variables, i.e. Contiguity, Distance and

Major Power, have similar impact although it is smaller in comparison with other

four variables. The results in Fig. 5.4 indicate that the two variables, Democracy

and Dependency, have a strong impact on conflict and peace outcomes. However,

Capability and Allies cannot be ignored. Once again this confirms recent positions,

which see the Capability and Allies as mediating the influence of Democracy and

Dependency by providing constraints or opportunities for state action [1, 8].

Figure 5.4: A graph showing the relevance of each variable with regards to the
classification of MIDs.
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5.4.2 Sensitivity Analysis

In sensitivity analysis we compare the model output with a new output produced by a

modified form of the input pattern. When analyzing the causal relationships between

input and output variables, the neural network shows that when the Democracy

variable is increased from a minimum to a maximum, while the remaining variables

are set to a minimum, then the outcome moves from conflict to peace. This is an

indication that although interactions exist, democracy also exerts a direct influence

on peace. When all the variables were set to a maximum then the outcome was

peace. When all the parameters were set to a minimum then the possibility of

conflicts was 52%. These results are quite as expected and indicate that all the

inputs are quite important. When one of the variables was set to a minimum and

the rest set to a maximum, then it was observed that the outcome was always peace.

When each variable was set to a maximum and the remaining variables set to a

minimum then the outcome was always conflict, with the exception of Democracy

and Dependency where the outcome was peace. The first result stresses that strong

interactions exist in relation to dispute patterns since no single low value can produce

a dispute outcome. The second result indicates that more additive relationships than

interactive ones are in place for peaceful patterns since one single maximum value

for Democracy or Dependency can maintain peace. These results support recent

findings by Lagazio and Russett [8], but also reveal new insights. Democracy and

Dependency emerge as having a strong additive impact on peace. This means that

these two variables alone could contribute significantly to peace, even without the

positive influence of the others.

5.5 Conclusion

The transparency of both the neuro-fuzzy and neural network models has been inves-

tigated in this chapter. The models have been applied to the modelling of interstate

conflict, an application in which obtaining causal interpretation of interstate inter-
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actions is just as important as forecasting dispute outcomes. The neural network,

trained using the Bayesian framework, is found to offer some form of transparency.

Knowledge can be extracted using Automatic Relevance Determination and also in-

directly by performing a sensitivity analysis. The Takagi-Sugeno neuro-fuzzy model

is also used to model interstate interactions. It is found that the model does of-

fer some transparency, however it is limited due to the fact that the consequent of

the fuzzy rules is expressed as a mathematical statement. In spite of this, the TS

neuro-fuzzy model seems more suitable for hypothesis testing. A hypothesis stated

linguistically can easily be verified using this model. In conclusion, both models

do offer transparency but the TS neuro-fuzzy model may be preferred as it easily

verifies hypothetical scenarios expressed as linguistic statements.
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Chapter 6

Conclusion

6.1 Summary of Findings

Quantitative investigations into interstate conflict have been presented using com-

putational intelligence tools. The MLP neural network and TS neuro-fuzzy model

have been used to forecast international conflict. The MLP is trained in the Bayesian

framework with the HMC method used to sample from the posterior probabilities.

The MLP is trained using a balanced number of peace and conflict examples sum-

ming to 1000. This is due to the fact that conflict is not a phenomenon that occurs

frequently. Training on the balanced set allows the rare-event to be given equal em-

phasis during the training phase. The out-of-sample testing of the network was then

performed on an unbalanced set to assess how the network performs on a ‘normal

set’. The MLP neural network was found to predict peace cases with an accuracy

of 77.3% and conflict cases with an accuracy of 73.64%.

The trained MLP was then used as part of a hybrid machine learning scheme which

uses the Genetic Algorithm to find the optimal solution for the conflict cases identi-

fied. The Genetic Algorithm take the inputs which lead to a conflict situation and

modifies them till the output on the neural network suggests a peace outcome. By

analysing the new variables, it is then possible to view what suggestions are proposed

by the hybrid control scheme. It was found that out of all the 303 conflict cases
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identified by the control scheme, all can be successfully avoided by simultaneously

modifying four parameters i.e. Democracy, Allies, Capability and Dependency.

The TS neuro-fuzzy model is also trained and validated with the same training

and test set used on the neural network. The Gustafson-Kessel (GK) clustering

algorithm is used to partition the data and build the fuzzy model. A ten fold cross-

validation process is used to select the appropriate model complexity. A two-rule

neuro-fuzzy model is found to be optimal with a peace forecast accuracy of 69.9%

and conflict cases with an accuracy of 80.1%. This model is then used to provide

recommendations that will give peaceful outcomes out of conflict outcomes identified

by incorporating it in the same hybrid control scheme used on the neural network.

It is found that out of the 314 conflict cases identified, the control scheme is able

to suggest how the input parameters can be adjusted in order to obtain a peaceful

outcome.

When comparing the suggestions that are obtained from both the MLP neural net-

work and the TS neuro-fuzzy model, there are similarities which can be seen. Results

from both control schemes suggest:

• There is such a thing as democratic peace. Both models show that the more

democratic two countries are, the less likely they are to go to war.

• Countries that are allies have a reduced chance of going to war.

• The more industrially capable countries are, the less likely they are to go to

war.

• The more dependent two countries are on each other, the smaller the chance

that they will go to war.

In Chapter 5, both the models were compared for transparency. The main aim of

the investigation was to determine whether any form of ‘expert knowledge’ can be

deduced from the model. A highly interpretable model is very useful in conflict

management studies as it allows for the testing of causal hypotheses. The fact that
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knowledge could be extracted from the model also means that it is easier to val-

idate the model by comparing to human expert knowledge. Knowledge from the

neural network model was extracted via automatic relevance determination and by

performing a sensitivity analysis. Knowledge from the TS neuro-fuzzy model was

extracted via the linguistic approximation of fuzzy rules. The results, though sub-

jective, showed that it is possible to extract information from both models, however

the TS neuro-fuzzy model might be preferred over the MLP network for the test-

ing of hypothetical scenarios. This is because it is straight forward to express the

scenarios as fuzzy linguistic statements.

6.2 Recommendations for Further Work

The work performed shows that the TS neuro-fuzzy model can be successfully used to

study international conflict. The forecasting accuracy and the ability of the model to

give causal interpretations make it suitable to this type of application. The linguistic

fuzzy statements also make it simple and intuitive to test causal hypotheses. The

research shows that to pursue this type of a model some improvements will have

to be made to the MID dataset that is used. The suggestion involves collecting

measures which are more suitable to fuzzy model i.e. variables which are suitable

for fuzzy representation rather than crisp set representation. For example, if the

Alliance measure could give the degree to which two countries cooperate, it would

be more natural to use fuzzy sets to describe this. The second recommendation

that can be made for future work is that model should be tested in conjunction

with experts in international conflict. Rules that govern international conflict can

be used to test the model. This test would be able determine how much confidence

can be put in the model and is a step towards user acceptance if the model is to be

used as a decision support tool. The third recommendation is the application of GA

evolved conflict management rules. This method, similar to the one discussed by

Dempster et al [52], would use the GA or any other suitable optimisation method

to update the rules of the GA as more MID data from the COW project is made
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available. This would therefore lead to a system which is capable for self-adjusting

to modern scenarios.
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Appendix A

The Hybrid Monte Carlo Method

In this chapter a method of sampling through a posterior distribution of weights

called the Hybrid Monte Carlo method is reviewed. Problems with the distribution

nature seen in Eq 2.4 have been studied extensively in statistical mechanics. In sta-

tistical mechanics the macroscopic thermodynamic properties are derived from the

state space, i.e. position and momentum, of microscopic objects such as molecules.

The number of degrees of freedom that these microscopic objects have is enormous,

so the only way to solve this problem is to formulate it in a probabilistic framework.

In Chapter 3, Hybrid Monte Carlo method is used to identify the posterior proba-

bility of weights. The use of gradient ensures that the simulation samples through

the regions of higher probabilities. This technique is viewed as a form of a Markov

chain with transitions between states achieved by alternating the ‘stochastic’ and

‘dynamic moves’. The ‘stochastic’ moves allow the algorithm to explore states with

different total energy. The ‘dynamics’ moves are achieved by using Hamilton dy-

namics and allows the algorithm to explore states with appoximately constant total

energy.
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A.1 Stochastic Dynamic Model

As mentioned before, in statistical mechanics the positions and the momentum of

all molecules at a given time in a physical system define the state space of the

system at that time. The positions of the molecules define the potential energy

of a system and the momentum defines the kinetic energy of the system. In this

chapter, what is referred to in statistical mechanics as the canonical distribution of

the ‘potential energy’ is the posterior distribution in Eq. 2.4 of Chapter 3. The

canonical distribution of the system’s kinetic energy is:

P (p) =
1

ZK
exp−K(p) = (2π)−

n
2 exp−1

2

∑
i

p2
i (A.1)

In molecular dynamics pi is the momentum of the ith molecule. Here p is not to be

mistaken with P, which indicates probability. In neural networks, pi is a fictitious

parameter that is used to give the procedure a molecular dynamics structure. It

should be noted that the weight vector, w, and the momentum vector, p, are of the

same size. The combined kinetic and potential energy is called the Hamiltonian of

the system and can be written as follows:

H(w, p) = −β

N∑ K∑
k

(ln(ynk) + (1− tnk)(1− ynk)) +
α

2

W∑
j=1

w2
j +

1
2

2∑
i

(A.2)

In Eq. A.2, the first two terms are the potential energy of the system, which is

the exponent of the posterior distribution in Chapter 3, and the last term is the

kinetic energy. The canonical distribution over the phase space, i.e. position and

momentum, can be written as follows:

P (w, p) =
1
Z

exp (−H(w, p)) = P (w|D)P (p) (A.3)
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By sampling though the distribution in Eq. A.3, the posterior distribution of weight

is obtained by ignoring the distribution of the momentum vector, p.

The dynamics in the phase space may be specified in terms of Hamiltonian dynamics

by expressing the derivative of the ‘position’ and ‘momentum’ in terms of fictitious

time τ . It should be recalled here that the work ‘position’ used here is synonymous

to network weights. The dynamics of the system may thus be written by using

Hamilton dynamics as follows:

dwi

dτ
= +

∂H

∂pi
= pi (A.4)

dpi

dτ
= +

∂H

∂wi
=

∂E

∂pi
(A.5)

The dynamics specified in Eqs. A.4 and A.5 cannot be followed exactly and as

a result these equations are discretised using a ‘leapfrog’ method. The leapfrog

discretisation of Eqs. A.4 and A.5 may be written as follows:

p̂i(τ +
ε

2
= p̂i(τ)− ε

2
∂E

∂wi
(ŵ(τ)) (A.6)

ŵi(τ + ε) = ŵi(τ) + εp̂i(τ +
ε

2
) (A.7)

p̂i(τ + ε) = p̂i(τ +
ε

2
)− ε

2
∂E

∂wi
(ŵ(τ + ε)) (A.8)

Using Eq. A.6, the leapfrog takes a little half step for the momentum, p, and using

Eq. A.7 takes a full step for the ‘position’, w, and using Eq. A.8 takes a half step

for the momentum, p. The combination of these three steps form a single leapfrog

iteration calculates the ‘position’ and ‘momentum’ of a system at time τ + ε from
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the network weight vector and ‘momentum’ at time τ . The above discretisation is

reversible in time, it almost conserves the Hamiltonian (representing the total en-

ergy) and preserves the volume in the phase space, as required by Lioville’s theorum

[35]. The volume preservation is achieved because the moves the leapfrog steps are

shear transformations.

One issue that should be noted is that following Hamiltonian dynamics does not

sample through the canonical distribution ergodically because the total energy re-

mains constant, but rather at most samples through the microcanonical distribution

for a given energy. One way used to ensure that the simulation is ergodic, introduc-

ing ‘stochastic’ moves by changing the Hamiltonian, H, during simulation and this

is achieved by replacing the ‘momentum’, p, before the next leapfrog iteration is

performed. In this chapter is normally distributed vector with a zero-mean replaces

the ‘momentum’ vector.

The dynamic steps introduced in this section make use of the gradient of the error

with respect to the ‘position’ (network weights) as shown in Eq. A.6. In this

subsection a procedure on how to move from one state to another is described. This

procedure uses Hamilton dynamics to achieve dynamic moves and randomly changes

the ‘momentum’ vector to achieve stochastic moves. The next subsection describes

how the states visited are either accepted or rejected.

A.2 Metropolis Algorithm

An algorithm due to Metropolis et al [53] has been used extensively to solve problems

of statistical mechanics. In Metropolis algorithm on sampling a stochastic process

X1, X2, . . . , Xn consisting of random variables, random changes to X are considered

and are either accepted or rejected according to the following criterion:

If Hnew < Hold accept state (wnew, pnew) else accept (wnew, pnew) with probability

exp−(Hnew −Hold)
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In this chapter we view this procedure as a way of generating a Markov chain with

the transition from one state to another conducted using the above criterion. By

investigating carefully the above criterion, it may be observed that states with high

probability form the majority of the Markov chain, and those with low probability

form the minority of the Markov chain. However, simulating a distribution by

perturbing a single vector, X, and in the context of neural networks a single weight

vector, w, is infeasible due to high dimensional nature of the state space and the

variation of the posterior probability of weight vector. A method that exploits the

gradient of the Hamiltonian with respect to the weight vector, w, is used to improve

the Metropolis algorithm described in this section and is the subject of the next

section.

A.3 Hybrid Monte Carlo

Hybrid Monte Carlo combines the stochastic dynamics model with the Metropolis

algorithm and by so doing the bias introduced by using a non-zero step size (see

Eqs. A.6 - A.8) is eliminated. Hybrid Monte Carlo method works by taking a series

of trajectories from an initial state, i.e. ‘positions’ and ‘momentum’, and moving in

some direction in the state space for a given length of time and accepting the final

state using Metropolis algorithm. The validity of the hybrid Monte Carlo rests on

three properties of Hamiltonian dynamics and these are:

1. Time reversibility: it is invariant under t→ −t, p→ −p.

2. Conservation of energy: the H(w, p) is the same at all times.

3. Conservation of state space volumes due to Liouville’s theorem [35].

For a given leapfrog step size, 0, and the number of leapfrog steps, L, the dynamic

transition of the hybrid Monte Carlo procedure is conducted as follows:
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1. Randomly choose the direction of the trajectory, , to be either −1 for backward

trajectory and +1 for forward trajectory.

2. Starting from the initial state, (w, p), perform L leapfrog steps (equations 17 to

19) with the step size resulting in state (w∗, p∗). Here 0 is a chosen fixed step

size and k is the number chosen from a uniform distribution and lies between

0 and 1. The reason why this step size is used is explained later in the chapter.

3. Reject or accept (w∗, p∗) using Metropolis criterion. If the state is accepted

then the new state becomes (w∗, p∗). If rejected the old state, (w, p), is retained

as a new state.

After implementing step (3) the momentum vector is reinitialised before moving

on to generate the subsequent state. In this chapter, the momentum vector is

sampled from a Gaussian distribution before starting to generate the subsequent

state. This ensures that the stochastic dynamics model samples are not restricted to

the microcanonical ensemble. By replacing the momenta the total energy is allowed

to vary because the momenta of particles are refreshed. This idea of replacing the

momentum was introduced by Anderson [54].

One remark that should be noted about the Hybrid Monte Carlo method is that

it makes use of the gradient information in step (2) above via the leapfrog steps

in Eq. A.6. The advantages of using this gradient information is that the hybrid

Monte Carlo trajectories move in the direction of high probabilities resulting in

the improved probability that the resulting state is accepted and that the accepted

states are not highly correlated. In neural networks the gradient is calculated using

back-propagation [33]. The number of leapfrog steps, L, must be significantly larger

than one to allow a faster exploration of the state space. The choice of ε0 and L

affects the speed at which the simulation converges to a stationary distribution and

the correlation between the states accepted. The leapfrog discretisation does not

introduce systematic errors due to occasional rejection of states, which result, with

the increase of the Hamiltonian.
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In step (2) of the implementation of the Hybrid Monte Carlo method, the step size

ε = ε0(1+0.1k) where k is uniformly distributed between 0 and 1, is not fixed. This

in effect ensures that the actual step size for each trajectory is varied so that the

accepted states do not have a high correlation [55]. The same effect can be achieved

by varying the leapfrog steps. In this work only the step size is varied.

One problem with the Hybrid Monte Carlo method is that the simulation may spend

a great deal of time in the region of relatively high Hamiltonian corresponding to

local minimum in the error function. A technique that could be implemented to deal

with this problem is simulated annealing [56]. However, preliminary investigation of

the use of this technique has found that this method is not essential for the problem

being tackled in this work.
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The Gustafson-Kessel algorithm

Gustafson and Kessel [57] extended the standard fuzzy c-means algorithm by em-

ploying an adaptive distance norm, in order to detect clusters of different geometrical

shapes in one data set. Each cluster has its own norm-inducing matrix Ai, which

yields the following inner-product norm:

D2
ikAi

= (zk − vi)T Ai(zk − vi) (B.1)

The matrices Ai are used as optimization variables in the c-means functional, thus

allowing each cluster to adapt the distance norm to the local topological struc-

ture of the data. Let A denote a c-tuple of the norm-inducing matrices: A =

(A1, A2, . . . , Ac). The objective functional of the GK algorithm is defined by:

J(Z;U, V,A) =
c∑

i=1

N∑
k=1

(µik)mD2
ikAi

(B.2)

where U ∈Mfc, vi ∈ <n and m > 1. The solutions,

(U, V, A) = argmin
Mfc×Rn×c×PDn

J(Z;U, V,A) (B.3)
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are the stationary points of J , where PDn denotes a space of n×n positive definite

matrices. The objective function B.2 cannot be directly minimized with respect to

Ai, since it is linear in Ai. This means that J can be made as small as desired

by simply making Ai less positive definite. To obtain a feasible solution, Ai must

be constrained is some way. The usual way is to constraint the determinant of Ai.

Allowing the matrix Ai to vary with its determinant fixed, corresponds to optimizing

the cluster’s shape while its volume remains constant:

|Ai| = ρi, ρ > 0 (B.4)

where ρi is fixed for each cluster. Using the Lagrange multiplier method, the follow-

ing expression for Ai is obtained:

Ai = [ρidet(Fi)]1/nF−1
i (B.5)

where Fi is the fuzzy covariance matrix fo the ith cluster defined by:

Fi =
∑N

k=1(µik)m(zk − vi)T Ai(zk − vi)T∑N
k=1(µik)m

(B.6)

The GK algorithm is given below:

Given the data set Z, choose the number of clusters 1 < c < N , the weighting

exponent m > 1 and the termination tolerance ε > 0. Initialise the partition matrix

randomly, such that U (0) ∈Mfc

Repeat for l = 1, 2, . . .
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Step 1: Compute cluster prototypes (means):

v
(l)
i =

∑N
k=1(µ

l−1
ik )mzk∑N

k=1(µ
l−1
ik )m

, 1 ≤ i ≤ c. (B.7)

Step 2: Compute the cluster covariance matrices:

Fi =
∑N

k=1(µ
(l−1)
ik )m(zk − v

(l)
i )T Ai(zk − v

(l)
i )T∑N

k=1(µ
(l−1)
ik )m

, 1 ≤ i ≤ c. (B.8)

Step 3: Compute the distance

D2
ikAi

= (zk − v
(l)
i )T [ρidet(Fi)1/nF−1

i ](zk − v
(l)
i ), 1 ≤ i ≤ c, 1 ≤ k ≤ N. (B.9)

Step 4: Update the partition matrix

if DikAi
> 0 for 1 ≤ i ≤ c, 1 ≤ k ≤ N ,

µ
(l)
ik =

1∑c
ikAi

(DikAi
/DjkAi

)2/(m−1)
(B.10)

otherwise

µ
(l)
ik = 0 if DikAi

> 0 and µ
(l)
ik ∈ [0, 1] with

∑c
i=1 µ

(l)
ik = 1.

until ||U (l) − U (l−1)|| < ε.

68



Appendix C

Published Papers

The following papers were published based on the work contained in this dissertation.

• T. Tettey and T. Marwala, “Controlling Interstate Conflict using Neuro-fuzzy

Modeling and Genetic Algorithms.”, In Proceeding of the 10th International

Conference on Intelligent Engineering Systems 2006, London, England, IEEE,

June 2006, pp 30-34.

• T. Tettey and T. Marwala, “Neuro-fuzzy modeling and Fuzzy rule extraction

applied to Conflict Management,” Lecture Notes in Computer Science, In Neu-

ral Information Processing, Springer Berlin / Heidelberg, Volume 4234, 2006,

pp. 1087-1094.

Both these publications have been attached to the back of this dissertation.
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Glossary

ANN An Artificial Neural Network is an interconnected group of artificial neu-

rons that uses a mathematical model or computational model for information

processing based on a connectionist approach to computation.

MLP The perceptron is a type of artificial neural network made up of simple pro-

cessing units called perceptrons.

GA A genetic algorithm is a search technique used in computing to find true or

approximate solutions to optimization and search problems.

MID Militarized Interstate Disputes are conflicts between states that do not nec-

essarily involve a full scale war.

COW The Correlates of War project is an academic study of the history of warfare.

The project has collected data on many attributes of international politics and

national capabilities over time.

RNN A recurrent neural network is a neural network where the connections be-

tween the units form a directed cycle. Recurrent neural networks must be ap-

proached differently from feedforward neural networks, both when analysing

their behaviour and training them. Recurrent neural networks can also behave

chaotically. Usually, dynamical systems theory is used to model and analyse

them.
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