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ABSTRACT 

 

Most of the available tools and methods applied in the design of chemical 

processes are not effective at the critical early stages of design when the process 

data is very limited. Businesses are often under pressure to deliver products in 

shorter times and this in turn prevents the evaluation of options. Early 

identification of options will allow for the development of an experimental 

program that will support the design process. 

 

The main objective of this work is to apply the Process Synthesis approach to 

develop a structured method of designing a process using mostly qualitative 

information based on limited experimental data, prior experience, literature and 

assumptions. Fischer-Tropsch (FT) synthesis of hydrocarbons from syngas 

generated by reforming natural gas and/or coal has been used as a case study to 

illustrate this method. Simple calculations based on experimental data and  basic 

thermodynamics have been used to generate some FT Synthesis flowsheet 

models. The evaluation of different flowsheet models was done using carbon 

efficiency as a measure of process efficiency.  

 

It was established that when choosing the optimal region for the operation and 

design of an FT Synthesis process, the influence of the system parameters must be 

well understood. This is only possible if the kinetics, reactor, and process design 

are done iteratively.  It was recommend not to optimize the reactor independent of 

the process in which it is going to be used without understanding the impact of its 

operating conditions on the entire process. Operating an FT Synthesis process at 

low CO per-pass conversions was found to be more beneficial as this will avoid 

the generation of high amounts of methane which normally results in large 

recycles and compression costs.  

 

Whether the process is run as a once-through or recycle process, the trend should 

be to minimize the formation of lighter gases by obtaining high � values because 
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carbon efficiency increases with the increase in � value. Experiments should be 

performed to obtain process operating conditions that will yield high � values.  

 

However, if the aim is to maximize diesel production by hydrocracking long chain 

hydrocarbons (waxes), then an optimal � value should be targeted to avoid the 

cost of hydrocracking these very heavy waxes. The choice of the syngas 

generation technology has a direct impact on the carbon efficiency of an FT 

synthesis plant. This study has established that running an FT synthesis process 

with syngas obtained by steam reforming of natural gas with CO2 addition can 

yield high carbon efficiencies especially in situations were CO2 is readily 

available. In FT synthesis, CO2 is normally produced during energy generation 

and its emission into the environment can be minimized by using it as feed during 

the steam reforming of natural gas to produce syngas. 
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1 
 
INTRODUCTION 
 
 
1.1 MOTIVATION 
 
 
Process development usually takes place in an evolutionary way, in which the process 

flowsheet is developed based on experience and proven best practice rather than on a 

systematic framework that can generate process alternatives. Although this approach 

yields useful designs quickly and reliably, it does not promote the use of novel 

approaches, nor does it allow for the comparison of alternative designs. Since most 

important decisions regarding product and process development are made early in the 

life of a project – in the absence of detailed data, the danger of using the traditional 

approach is that of jumping to a solution before the problem is really understood. 

 

The main objective of this work is to apply the Process Synthesis approach to develop 

a structured method of designing a process using mostly qualitative information 

based on limited experimental data, prior experience, literature and assumptions. The 

generation of simple qualitative models in the early stages of design can help in the 

identification of alternatives and also help to steer future experimental and process 

development programs. The identification of a potential process alternative is not in 

itself a guarantee that it can be made to work, but that experimental work will be 

required to support the suggested alternatives.  

 

During process design the designer makes a selection of the various process units and 

how to interconnect them to create a flowsheet. Process Synthesis it an act of 

determining the optimal interconnections of these process units as well as the optimal 

type and design of the units within a process system of interest. Although some 

publications existed earlier, Process Synthesis was largely ignored as a research area 

until the late 1960’s when Rudd and his students sought to create a computer program 
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called AIDES, which could, with limited information, develop almost automatically 

the structure of a preliminary process flowsheet (Rudd, 1968). Early reviews on the 

field of process synthesis can be found in Hendry et al., 1973), Westerberg (1980), 

Nishida et al., 1981, Umeda (1983) and Stephanopoulos and Townsend (1986).  

 

Fischer-Tropsch (FT) Synthesis has been used as a case study to demonstrate how 

this proposed method can be used to synthesize alternative process configurations. 

The FT Synthesis reaction produces environmentally clean fuels and chemicals from 

a gas mixture of carbon monoxide and hydrogen commonly called synthesis gas 

using various process configurations and operating conditions. Synthesis gas is 

normally obtained by reforming coal and/or natural gas. Although fairly standard, the 

main process steps can vary depending on the feed stock, syngas synthesis methods 

and desired products. Depending on their objective functions, each process will have 

its own constraints and drivers. One way of evaluating the viability of a process under 

development is by costing its energy, work, and material (feedstock) requirements.  

The methodology adopted in this study which mostly relies on basic mass and energy 

relations, thermodynamic principles and available rate and process data, has been 

developed in our research group (COMPS) and it has been applied before in the 

optimization of ammonia and methanol production. The rate data used in this study 

was obtained in our laboratory by a previous postgraduate student (Themba 

Ngwenya).  

 

1.2 THESIS OUTLINE 

 

Chapter 2 is a study that examined the effects of various reaction conditions such as 

flow rates, temperatures and CO/H2 feed ratios on the performance of a Fischer –

Tropsch Synthesis process using a cobalt-based catalyst. Process Synthesis concepts 

were used to investigate the interaction between the optimum regions for reactor 

operation and experimental results. The effect of various objectives on the optimal 
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operating regions was also investigated, and its implication for the process design and 

further experimental program was considered. 

A method of synthesizing a FT Synthesis process from experimental results is 

presented in Chapter 3. The impact of the various unit operations on the entire FT 

Synthesis process has been studied by turning all their material, energy, and work 

requirements into one variable, namely carbon efficiency. This will enable us to 

identify which among the process operations has the biggest impact on plant carbon 

efficiency. In doing so, bad options will be identified and alternatives developed. 

 

The effect of designing an FT Synthesis process targeting a particular value of the 

probability of chain growth (also referred to as � value) has been studied in Chapter 4 

using simplified FT flowsheet models. This study allows for the screening of the 

process carbon efficiencies at various � values. Two process configurations –namely, 

the once-through and recycle processes - have been compared.  

 

In Chapter 5, minimum information has been used to synthesize and compare two 

possible FT synthesis processes, one based on the coal feed and the other one based 

on natural gas feed. The carbon efficiencies of the two processes have been compared 

at the same � values.  

 

An investigation on the effect of water on the catalytic activity of an FT synthesis 

cobalt catalyst was done experimentally. If suitable process operating conditions and 

product selectivity are to be obtained to yield high � values, then it is important to 

know the effects of by-products such as water on the catalytic activity. Since the 

developed methodology of process synthesis was not applied to this study, it was 

decided to include it in this thesis as Appendix I. 
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2 
 

FISCHER-TROPSCH RESULTS AND THEIR ANALYSIS  
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Abstract 

The rate of Fischer-Tropsch reaction was studied for various flow rates, temperatures 

and H2/CO feed ratios using a cobalt-based catalyst. Process synthesis concepts were 

used to investigate the interaction between the optimum regions for reactor operation 

and the experimental results. The effect of various objectives on the optimal 

operating region was also investigated and the implication of this for the process 

design and further experimental program was considered. 

 

2.1   INTRODUCTION 

Fischer-Tropsch Synthesis is a process in which synthesis gas (H2 and CO) is 

converted into a complex multi-component mixture consisting of linear and branched 

hydrocarbons and oxygenated products. These products are produced in the presence 

of an iron-based or cobalt-based catalyst. 

A literature survey revealed a large volume of literature available on the subject of 

Fischer-Tropsch Synthesis. In most of the literature, emphasis is placed on reaction 

and catalysts optimisation (preparation, pre-treatment, metal dispersion, active sites 
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and support) while the effect of reaction conditions and reactor design has received 

less attention.  

In this paper, the effect of various reaction conditions such as flow rates, reaction 

temperatures and H2: CO feed ratios on a cobalt based catalyst were studied in a stirred 

basket reactor. The data collected from the kinetic studies was used to study the 

optimum region for the operation of a Fischer-Tropsch reactor. Furthermore, the 

influence of various objectives on the optimal regions for reactor operation and design 

was also investigated. The approach used in this study is from the ideas of a new 

approach to process synthesis (Glasser et al. (1999). 

2.2    EXPERIMENTAL   

2.2.1     Catalyst preparation 

 

A 0.25 wt %Ru/10 wt % Co/TiO2 catalyst was prepared by incipient wetness 

impregnation of a TiO2 support with cobalt nitrate and a ruthenium complex 

(Richardson, 1989). The ruthenium source was loaded as 

[Ru3O(OCOCH3)6(H2O)3][OCOCH3], which was prepared according to the method 

described by Spencer & Wilkinson (1972). The catalyst was then dried at 120oC for 

an hour and thereafter calcined at 400 oC and atmospheric pressure for 16 h. For 

convenience, 0.25 wt % Ru/10 wt % Co/TiO2 will be referred to as the Ru/Co/TiO2 

catalyst. 

 

2.2.2  Experimental set-up and procedure 

 

The kinetic studies of the Ru/Co/TiO2 catalyst were performed on an experimental 

set-up consisting of feed, reactor and analysis section. A schematic diagram for the 

experimental set-up is shown in Figure 2.1. 
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Feed gases were ultra high purity H2, CO and N2, which were supplied from 

individual cylinders. These gases were mixed to a required feed composition of H2, 

CO and N2. The H2 and CO ratio was varied from 1:1 to 4:1, while the N2 was kept 

constant at a composition of 10 vol %. The total gas flow rates for each feed 

composition were also varied. For the H2:CO feed ratio of 4:1, the total gas flow 

rates were varied from 0.31 to 0.95 mL/s, while the total flow rates for the feed ratios 

of H2:CO = 2:1 and 1:1 were varied from 0.19 to 0.95 mL/s and 0.12  to 0.95 mL/s, 

respectively. The N2 gas was used for mass balance purposes. The reaction 

temperatures used for the reaction were 220 °C and 250 °C.  

 

A continuously stirred basket (CSB) reactor whose design is similar to the Berty 

reactor (Berty, 1974) was used. A detailed description of this reactor is available in 

the work of Price (1994). The baskets of the CSB reactor were loaded with 3.58 g of 

Ru/Co/TIO2 (calcined) catalyst, with a particle sizes ranging from 850 to 1180 �m. 
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Figure 2.1 Schematic diagram of the experimental setup. 

 

Catalyst reduction was performed at 250ºC under atmospheric pressure using an ultra 

high purity H2 with a space velocity of 500 h –1 for a period of 16 h. After the 

catalyst reduction was completed, the synthesis gas was introduced to the reactor at 

the desired flow rate and composition. The reactor, at standard conditions, was 

operated at 8 bar and an impeller speed of 900 rpm. A residence distribution time test 
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had been performed by Chronis (1999), which indicated that at impeller speed of 700 

rpm and above there were no gas phase mass transfer limitations.  

 

Wax products were collected in the wax pot located at the bottom of the reactor, and 

the remaining condensables (oil and water) were collected in the oil trap. The wax 

trap and all the down stream lines were heated to 150 ºC while the oil trap was kept 

at ambient temperature. At the beginning of the experimental run, wax and oil pots 

were emptied and the total gas flow rate was re-measured. Each experimental run 

was performed for at least 48 h. A mass balance was also performed at the end of 

each run to test for accuracy and consistency.  

 

2.2.3  Product analysis  

 

The product stream is split into gas, oil, wax and water. The gaseous products and 

reactants were analyzed online using flame ionization detector (FID) and thermal 

conductivity detector (TCD) gas chromatographs (GCs), respectively. These analyses 

were carried out regularly using solenoid valves, which were programmed to 

autosample these gasses at a specific time. The TCD GC was fitted with a carbosieve 

S-ll packed column (2 m x 1/8 in. stainless steel), which was used for separating H2, 

CO (reactants) and N2 (tracer). Ultra high purity argon gas was used as a carrier gas 

in this GC. The FID GC was fitted with a Zebron ZB-1 capillary column, which was 

able to separate paraffins and olefins in the range of C1-C17. This capillary column is 

a 30 m x 0.53mm i.d. 5�m film thickness, which uses 100% methylpolysiloxane 

stationary phase. Ultra high purity nitrogen gas was used as a carrier gas in this 

column. A single integrator connected to both TCD and FID was able to pick up the 

desired signals. An offline FID GC was fitted with a BP-5 capillary column (30 m x 

0.25 mm i.d.), which was used for analyzing oil and wax products.  
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2.3.   RESULTS AND DISCUSSION 

 

The experimental data was used to calculate the rates of CO consumption, CH4 

production and hydrocarbon production at various experimental conditions and the 

results are reported below. 

 

2.3.1  Influence of Partial Pressures and Feed Ratios of H2/CO on the Rate of 

 CO Consumption. 

 

To illustrate the application of process synthesis to optimizing the reactor design, we 

will initially consider a simple objective (which is possibly quite unrealistic). We 

consider that we wish to react a given amount of CO in the smallest possible reactor. 

In order to do this, we need to consider the rate of CO consumption and what it 

depends on.  

 

The partial pressures of H2 and CO represent those in the reactor, and were 

calculated from the exit stream conditions. The rate of CO consumption was 

determined from:  

catoutCOinCOCO gNNr /)( ,, −=−         (2.1) 

 

where COr− is the rate of CO consumption (µmol/ gcat
.s), inCON ,  and outCON ,  are the 

CO molar flow-rates (µmol/ gcat
.s), in the reactor feed and exit stream, respectively 

and gcat is the catalyst mass (g).  

 

The set of outputs for a fixed feed composition and varying residence time are given 

in Figures 2.2A and B for the reaction temperatures of 220 oC and 250 oC 
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respectively. The points with the same fixed feed composition are indicated by a line 

that has no other significance to help group them for ease of interpretation. The 

composition of the feed gas is shown for each set. The measured rate of CO 

consumption at the associated outlet partial pressures are the numbers indicated on 

the graph. The values of the outlet partial pressures of H2 and CO are the result of 

varying the feed flow rates and hence the conversion in the reactor. The total 

pressure is constant for all points in Figures 2.2A and B and was not considered as a 

variable in this paper.  However, the ideas described below could be extended to 

investigate the effect of total pressure on the reactor design if experimental data at 

other pressures was measured.   

Figure 2.2A: The rate of CO consumption at 220 ºC at various partial pressures 

of CO and H2 for 3 different feed ratios. The numbers indicate the rate of CO 

consumption in µmoles CO/gcat
.s. The feed ratio for each set of experiments is 

indicated on the associated line. 
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We observed that by increasing the feed flow rates, the rate of CO consumption 

increases. A similar trend in the increase of the rate of CO consumption with the 

increase in flow rates was observed by Henrice-Olive & Olive (1984). The variation 

in the rate of CO consumption at various flow rates is associated with the 

concentration effect of CO and H2 on the catalyst surface (Levenspiel, O., 1972) as 

the Fischer-Tropsch reactions are known to be surface reactions. At low CO 

conversion (high flow-rates), the concentration of the bulk H2 and CO on the catalyst 

surface is high, hence the overall rate of CO consumption is high. In contrast, high 

conversion (low flow-rates) will result in a low concentration of the bulk H2 and CO 

on the catalyst surface, hence a low overall rate of CO consumption will be obtained. 

Figure 2.2B: The rate of CO consumption at 250 ºC at various partial pressures 

of CO and H2 for 3 different feed ratios. The numbers indicate the rate of CO 

consumption in µmoles CO/gcat
.s. The feed ratio for each set of experiments is 

indicated on the associated line. 

 

PCO(bar) 

PH2(bar) 
0 1 2 3 4 5 6 7 8 

0 

1 

2 

3 

4 

5 

6 

7 

8 

0.54 

0.51 
0.49 

0.45 0.42 
0.39 

0.68 
0.64 

0.61 

0.56 
0.52 

0.50 
1.07 

1.05 
0.96 

0.86 
1.02 0.84 

0.35 

0.26 

H2:CO=1:1 

H2:CO=2:1 

H2:CO=4:1 

0.44 



 14 

The trend shown in Figures 2.2A and B is that for each set of experiments with a 

fixed H2/CO feed ratio, the rate of CO consumption decreases monotonically as the 

partial pressures of H2 and CO decreases. Furthermore, an increase in the partial 

pressures of H2 and a decrease in the partial pressure of CO favor high rates of CO 

consumption.  

 

Wojciechowski (1988) also reported a similar trend. A proposed explanation for this 

is that the CO is more strongly adsorbed on the catalyst surface than H2 

(Wojciechowski, 1988; Dry, 1981). At lower ratios of H2/CO the CO saturates the 

catalyst surface excluding the H2, and hence the rate of CO consumption decreases.  

 

When comparing the rates of CO consumption from Figures 2.2A and B it can be 

seen that the rate has increased as the reaction temperatures was increased from 220 

to 250 °C. In the work of Keyser et al. (2000), Chronis (1999) and Niemell et al. 

(1997) a similar behaviour for similar cobalt Fischer-Tropsch catalyst was observed. 

 

If we now consider the objective function that we proposed, namely to react a given 

amount of CO in the smallest reactor, we can see that this would be equivalent to 

operating the reactor at the highest rate of CO consumption. The highest rates of CO 

consumption for a fixed feed composition are obtained at high partial pressures of H2 

and CO and high temperatures. The reactor should thus be operated at low 

conversions and higher reaction temperatures. If the above objective is applied in a 

situation where there is flexibility of changing the H2/CO feed ratios, the reactor 

should rather be operated in a region of high H2/CO feed ratios. For the data shown 

this would correspond to a H2/CO feed ratio of 4:1.  
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The optimal reactor structure for the implementation of the above objective can be 

obtained from a Levenspiel plot (Levenspiel, 1972). The best reactor is chosen from a 

plot of the reciprocal rate (1/rate) versus concentration. For the purpose of answering 

the question of how to convert a given amount CO in the smallest possible reactor, 

we plotted the reciprocal rate of CO consumption ( COr−/1 ) at various partial 

pressures of H2 and at different H2/CO feed ratios and reaction temperatures as 

indicated in Figures 2.3A and B.  

 

Figure 2.3A: A plot of (1/rCO) versus partial pressure of H2 at 220 ºC. Each curve 

corresponds to a different feed ratio of H2/CO as indicated in the legend. The 

dimensions of the rate of CO consumption are µmoles CO/gcat
.s. 
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Figure 2.3B: A plot of (1/rCO) versus partial pressure of H2 at 250ºC. Each curve 

corresponds to a different feed ratio of H2/CO as indicated in the legend. The 

dimensions of the rate of CO consumption are µmoles CO/gcat
.s. 
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Table 2.1A: Operating conditions for the optimal reactor and the resulting process for 

converting a given amount of CO in the smallest possible reactor. 

 

Objective :  Convert a given amount of CO in smallest possible reactor 

Optimal Reactor Structure :  Plug flow reactor with a H2 rich feed, Low per pass 

conversion, High temperature 

Process Implementation 

 

 

 

 

 

 

 

There are two factors that we need to consider at this stage. At first sight it seems we 

would need to do further experiments at even higher H2/CO feed ratios, lower 

conversions and higher reaction temperatures in order to see if the trend of the 

reaction rate continues increasing and where the highest rates occur. Hence we can 

see that we should design an experimental program so that the interpretation of the 

experimental results and implications on design are incorporated into the planning. 

However, the objective of minimizing the reactor volume is going to result in a 

process with a large recycle. The recycle stream would be a H2 rich stream as 

described in Table 2.1A. Its implication on the process is that, because of the large 

recycle stream, the recycle compression costs would be large leading to 

correspondingly large operating costs. Thus, although the reactor volume may be 
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minimized, it is at the expense of the process itself. At this stage we would need to 

do calculations to examine the trade off between reducing the reactor volume and 

increasing the process operating and capital costs due to compression and separator 

costs. The results of these calculations could modify the decision as to where to 

perform further experiments. However, rather than continue with this objective, we 

shall rather consider the effect on the reactor design, experimental program and 

process design when we change the objective function.  

 

2.3.2  The effect of Partial Pressures and Feed Ratios of H2 to CO on the 

 Rate of CH4 production. 

Let us assume that we change the objective and now wish to minimize the production 

of methane. To consider this new objective, we need to consider the rate of CH4 

production and in particular, what it depends on. The numbers on Figures 2.4A and B 

show the measured rate of methane production at various partial pressures of CO and 

H2 for different H2/CO feed ratios and reaction temperatures. Again the only 

significance of the lines in the Figures 2.4A and B is to group the reactor outputs 

together which correspond to the same feed composition. The trend shown in Figures 

2.4A and B is that the rate of CH4 production increases as the partial pressures of H2 

and CO decreases for all H2/CO feed ratios. Dry, M. E (1981) found that a high 

linear gas velocity (low residence time) decreases the temperature rise in the fixed 

bed reactor, with the benefit of increasing wax selectivity. This agrees with the 

findings in this work, as low residence times would correspond to low conversions 

and hence high partial pressures of H2 and CO. As the H2/CO feed ratio is decreased 

from 4:1 to 1:1, a considerable decrease in the rate of CH4 production is observed. 

Generally, it is accepted that high H2/CO feed ratios favors high rates of CH4 

production (Dry, M.E (1981), Iglesia, E (1997), Bartholomew & Lee (2000), Bertole 

& Mims (1999)). Price, J.G (1994) and Chronis, T (1999) observed a similar trend 

when they used the same (Ru/CO/TiO2) catalyst. 
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Figure 2.4A: The rate of CH4 production at 220 ºC at various partial pressures of CO 

and H2 for 3 different feed ratios. The numbers indicate the rate of CH4 production in 

µmoles CH4/gcat
.s. The feed ratio for each set of experiments is indicated on the 

associated line. 

When comparing the results in Figures 2.4A and B, we notice that, at a reaction 

temperature of 250 oC, the rate of CH4 production increased significantly relative to 

that measured at 220 oC. Higher reaction temperatures have always been found to 

favor higher rates of CH4 production and a decrease in the probability of chain growth 

(Iglesia, E (1997), Iglesia, E (1992), Dry, M.E (1996)). The increase in the rate of CH4 

production at higher reaction temperatures is thought to be due to the increase in the 

hydrogenation rate of the individual -CH2- units available on the catalyst surface, and 
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hence leads to lower chain growth (Dry, M. E., 1996). Consequently, higher rates of 

CH4 production and low rates of production of long chain hydrocarbon result. 

 

Figure 2.4B: The rate of CH4 production at 250 ºC at various partial pressures of CO 

and H2 for 3 different feed ratios. The numbers indicate the rate of CH4 production in 

µmoles CH4/gcat
.s. The feed ratio for each set of experiments is indicated on the 

associated line. 

When the results (Figures 2.4A and B) are looked at from a process synthesis view, it 

can be seen that if we wish to minimize the production of CH4 for a given H2/CO 

feed ratio, we would design the reactor to incorporate regions where the rates of CH4 

production are low. Hence, we would operate the reactor at low conversions and 

reaction temperatures. If there is flexibility in choosing the H2/CO feed ratios, we 

would rather operate the reactor at low H2/CO feed ratios as well as low conversions. 
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If we were to consider the implications of these reactor design decisions on the 

process itself, we would see that we would implement the desired operating 

conditions by having a process with a large CO rich recycle. We would again need to 

consider the compressor and separation costs when deciding on the trade offs on how 

low the reactor conversion should be and how much excess CO we should feed to the 

reactor. The implications on the experimental program is that one might need to do 

further experiments at even lower H2/CO feed ratios and reaction temperatures in 

order to decide on the trade offs between reduced CH4 production and increased 

plant costs. 

 

For this new objective of minimising the rate of CH4 production, the optimum 

reactor structure was also determined from the Levenspiel plot (Levenspiel, O., 

1972). Figure 2.5A and B show the plots of the inverse rate of CH4 production 

(
4

/1 CHr ) at various partial pressures of H2 for each set of H2/CO feed ratios and 

reaction temperatures. It can be seen that (
4

/1 CHr ) increases monotonically as the 

partial pressures of H2 increases for each of the H2/CO feed ratios.  

 

The trend shown by the 
4

/1 CHr plot is an indication that a continuously stirred tank 

reactor would be optimal for the maximization of CH4 production but because our 

objective is to minimize the production of CH4, the optimal structure will be that of a 

plug flow reactor (Doraiswamy & Sharma, 1984; Levenspiel, O., 1979). As we 

previously discussed, the optimal operating region for suppressing the production of 

CH4 requires high partial pressures of CO and low partial pressures of H2. Thus, to 

implement these results would require a process as shown in Table 2B with a plug-

flow reactor and a (large) CO-rich recycle stream. 
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Figure 2.5A: A plot of (
4

/1 CHr ) versus partial pressure of H2 at 220 ºC. Each curve 

corresponds to a different feed ratio of H2/CO as indicated in the legend. The 

dimensions of the rate of CH4 consumption are µmoles CH4/gcat s. 
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Figure 2.5B: A plot of (
4

/1 CHr ) versus partial pressure of H2 at 250 ºC. Each 

curve corresponds to a different feed ratio of H2/CO as indicated in the 

legend. The dimensions of the rate of CH4 consumption are µmoles CH4/gcats. 
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Table 2.1B: Operating conditions for the optimal reactor and the resulting process for 

minimizing the production of CH4 for a given amount of CO converted. 

 

Objective :  Minimize the production of CH4 for a given amount of CO converted 

Optimal Reactor Structure : Plug flow reactor with a CO rich feed , Low per pass 

conversion, Low temperature 

 

Process 

Implementati
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2.3.3  The Effect of the Partial Pressures and Feed Ratios of H2/CO on the 

 Rate of Hydrocarbon Production per mole of CO consumed. 

If we wish to maximize the selectivity towards hydrocarbons other than CH4 we would 

look at maximizing the rate of hydrocarbon production relative to the rate of CO 

consumption. The rate of hydrocarbon production per mole of CO consumed 

(hydrocarbon selectivity) is defined by 
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where, 
2CHr  is the rate of hydrocarbon formation (µmol/(gCat s)) excluding 

4CHr (the 

rate of methane formation (µmol/(gCat s)). This will allow us to discriminate between 

a decrease in the production of CH4 and an increase in a rate of CO consumption. The 

values of the hydrocarbon selectivity were calculated from the experimental data and 

the results in Figures 2.6A and B show the values of the hydrocarbon selectivity at 

various partial pressures of H2 and CO and at different H2/CO feed ratios and reaction 

temperatures. Again the lines in Figure 2.6A and B group the reactor outputs together 

which correspond to the same feed composition.  

Figure 2.6A: Effect of the partial pressures and feed ratios of H2 and CO on 

hydrocarbon selectivity at 220 °C. The numbers on the graph indicate hydrocarbon 

selectivity = 100)/)(
4

×− COCHCO rrr . 
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As the partial pressures of H2 and CO decreases for a given amount of H2 and CO in 

the feed, the hydrocarbon selectivity decreases substantially. Furthermore, high 

hydrocarbon selectivity is favored in the region of high partial pressures of CO and 

low partial pressures of H2. This trend of increase in the hydrocarbon selectivity with 

a decrease in the H2/CO feed ratios agrees with the hypothesis that the probability of 

the formation of long chain hydrocarbon products is favored at low ratios of H2/CO 

(Dry, M. E., 1981). However this is said to be dependent on a catalyst type, reaction 

conditions and type of reactor. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6B: Effect of the partial pressures and feed ratios of H2 and CO on 

hydrocarbon selectivity at 250 °C. The numbers on the graph indicate hydrocarbon 

selectivity = 100)/)(
4

×− COCHCO rrr . 
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When comparing the results in both Figures 2.6A and B, we can see that as the 

reaction temperature increases the hydrocarbon selectivity decreases. This decrease 

in the hydrocarbon selectivity at higher temperatures is expected, since higher 

temperatures have been observed to favour high rates of CH4 production (section 

2.3.2). 

 

If we now consider an objective function in which we wish to produce the most 

hydrocarbons per mole of CO consumed for a given amount of H2 and CO in the feed, 

we would wish to operate the reactor in the region of high hydrocarbon selectivity. Thus 

the reactor would be operated at low conversion and reaction temperatures. If there is 

flexibility in changing the H2/CO feed ratios, the reactor will be operated at low H2/CO 

feed ratios. However, one needs to do further experiments at even lower H2/CO feed 

ratios and lower conversions to see if the trend in the increase in the hydrocarbon 

selectivity continues and where the highest hydrocarbon selectivity occurs. These 

experiments might also be performed at even lower reaction temperatures in order to see 

how the temperature will influence the hydrocarbon selectivity.  

 

The optimum reactor structure for maximisation of hydrocarbon selectivity is also 

determined from the Levenspiel plot (Levenspiel, O., 1972). Figures 2.7A and B show 

the inverse of hydrocarbon selectivity )/(
2CHCO rr  at various partial pressures of H2 and 

at different H2/CO feed ratios and reaction temperatures. It can be seen that )/(
2CHCO rr  

decreases monotonically as the partial pressures of H2 increases. This trend shown by 

)/(
2CHCO rr  is an indication that a plug flow reactor would be required for maximising 

the hydrocarbon selectivity.  
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Figure 2.7A: A plot of )/(
2CHCO rr−  vs partial pressure of H2 at 220 oC. Each 

curve corresponds to a different feed ratio of H2/CO as indicated in the 

legend. 
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Figure 2.7B: A plot of  )/(
2CHCO rr−  vs partial pressure of H2 at 250 oC. Each 

curve corresponds to a different feed ratio of H2/CO as indicated in the 

legend. 

Thus, if we consider the process that has a reactor operating at high hydrocarbon 

selectivity, we can see that this would be achieved if the partial pressures of CO in the 

reactor feed was high and the partial pressure of H2 low (Figures 2.6A and B). One can 

conclude that a plug flow reactor with a CO rich recycle stream (Table 2.1C) operating 

at low temperature should be used to achieve the above objective. 
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Table 2.1C: Operating conditions for the optimal reactor and the resulting process for 

maximizing hydrocarbon selectivity. 

 

Objective :  Maximum hydrocarbon selectivity 

Optimal Reactor Structure :  Plug flow reactor with a CO rich feed , Low per pass 

conversion, Low temperature 

 

Process 

Implementation 

 

 

 

 

 

 

 

2.4  CONCLUSION 

The results presented in this study have shown how the Ru/Co/TiO2 catalyst 

behaves under various reaction conditions when used in a stirred basket 

reactor.  

The general trends observed indicate that high partial pressures of H2 and 

CO, which correspond to short residence times, give highest rates of CO 

consumption, lowest rates of CH4 production and highest selectivity towards 

hydrocarbons. As the H2/CO feed ratio is increased, the rate of CO 

consumption and the rate of CH4 production increases while the hydrocarbon 

selectivity decreases. High reaction temperatures favour high rates of CO 

H2:CO=1:1 

 

H2: CO ratio 
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PF  
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consumption and CH4 production and low selectivity towards hydrocarbon. 

Interestingly, all of these conclusions can be arrived at without modelling any 

of the kinetics. 

Choosing the optimal region for the operation and design of a Fischer-

Tropsch reactor differs for different objectives. Therefore one need to be sure 

about what one is trying to optimise and set as system parameters. In order to 

be able to do this, one needs to choose the operational objectives and system 

parameters carefully. Furthermore, the influence of the system parameters on 

the optimal operating region needs to be understood. This can only be done if 

the kinetics, reactor and process design is done iteratively. This suggests that 

it would be desirable to integrate the experimental program with the process 

design. This is one of the important aspects of what we call process synthesis.  

Probably one of the most important results is that in all cases implementing 

the optimal reactor operating conditions resulted in processes with large 

recycles and hence large operating and capital costs.  This shows that one 

should not optimise the reactor independently of the process in which the 

reactor is going to be used. This point will be addressed in a subsequent 

paper where it will be shown why it is desirable for the process design and 

laboratory programme to be done interactively.  Furthermore we will look at 

quick, simple calculations that can be used to optimise the process at the 

earliest design stages. 
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Abstract 

 

When industrial laboratory experiments are done, it is important to keep in mind the 

objectives of the study. This is because the experiments that will be required are 

critically dependent on these objectives. In order to decide what these objectives are 

one need to have a rudimentary design for the process that highlights the key issues 

and drivers for the economics of the process. We address this by doing a case study 

on a Fischer-Tropsch (FT) Process. 

 

A method of synthesizing an FT flowsheet incorporating syngas generation, air 

separation, hydrocarbon synthesis, product workup, recycling and reforming is 

presented. The impact of these unit operations on the entire FT synthesis process has 

been studied by turning all their material, energy and work requirements into one 

variable namely carbon efficiency. Preliminary experimental data on an FT catalyst is 

used to demonstrate the method.  From this analysis the effect of the H2: CO ratios, 

space velocities and the feed partial pressures in the FT synthesis loop on the overall 

plant carbon efficiency are investigated.  The implication of the results on further 

flowsheet development and experimental program is considered. 
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3.1 INTRODUCTION 

 

When performing experiments in an industrial laboratory program, we believe it is 

important to have realistic objectives in mind. Often when doing these experiments 

the laboratory personnel try to maximize properties such as yield and selectivity 

because they are not given very clear directions of what to look for. We believe that 

based on minimal information one may actually devise the outline of a process. Once 

this has been done, one is then in a position to do simple calculations to see what the 

important drivers for the process are. By this we mean which of the process unit 

operations have the biggest effect on the efficiency of the process. It is difficult to 

explain these in words and so we have rather chosen to demonstrate the methods 

using an example based on an experimental program.  The example chosen relates to 

the Fischer-Tropsch synthesis of hydrocarbons from synthesis gas. In particular we 

will examine the influence of all the unit operations on the efficiency of the proposed 

plant and in so doing actually synthesize an overall flowsheet. 

 

 

Results from a recent study and analysis of Fischer-Tropsch (FT) synthesis 

experimental data for reactor synthesis using cobalt-based catalysts showed that 

choosing the optimal reactor conditions for the design and operation of an FT plant is 

subject to the designer’s objective function. Each objective function shifts the 

operating regions and sets its own system parameters. There is nothing wrong with 

optimizing the reactor design conditions and parameters, the problem is that 

optimizing the reactor alone independent of the process in which the reactor is going 

to be used may not be very useful since each optimized reactor configuration has an 

effect on the efficiency of the rest of the process (Ngwenya et al., 2005). In a multi-

step process such as FT synthesis, one cannot afford to take a narrow view and look 

only at the process of hydrocarbon production (reactor alone).  There is a need to 

consider the impact that the other steps such as syngas generation, compression, 

recycling, separation and reforming have on the production of the desired product. 
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This needs to be done at the earliest stages of the process design and if possible 

before and during the experimental program so that insights into the reactor design 

and catalyst performance and how they influence the overall process efficiency can 

be incorporated into the experimental program. 

 

 

At the early stages of the synthesis of a process and in particular, during the 

experimental program, it is important to be able to set up simple models of the major 

process units and the interconnections between them.  These models must 

characterize the inherent or target efficiencies of the units so that a wide range of 

operating parameters and flow sheets can be scanned quickly and efficiently. A 

method of developing a preliminary process flow sheet and the analysis of this 

process incorporating syngas production, FT synthesis, product separation and 

recycling/reforming of methane and unconverted syngas is presented in this paper. 

This method makes it possible for process designers to have a feel for the process and 

the implications of its operating regions and parameters of the reactor and catalyst on 

the entire plant. Since most of the information for process design purposes is obtained 

from the laboratory, the designer will be able to identify the experiments that need to 

be done that facilitate a better understanding of the plant. Espinoza et al. (1999) 

advised that, due to the complexity of FT synthesis and the variety of rate expressions 

found in the literature, kinetic studies for design purposes should be performed on the 

specific catalyst under consideration covering the envisaged commercial operating 

conditions. This has the effect of minimizing the experimental program and getting 

the results necessary to do the subsequent design as quickly and efficiently as 

possible. 

 

 3.2  RATIONALE 

 

When planning and performing experiments for developing a chemical process, there 

is a need to have the objectives for the system clearly in mind. These objectives will 
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clearly be different from those normally used when only trying to understand the 

chemistry and the mechanisms. Furthermore, if the program is to produce results 

quickly and efficiently the objectives of the program need to be known and 

understood very early in the program when there is minimum information at hand. In 

this paper, we will develop a methodology to do this. We will illustrate it by looking 

at results from the Fischer-Tropsch (FT) reaction system. 

 

In an earlier paper on this topic we looked at results from an experimental program on 

FT Synthesis (FTS) on a cobalt catalyst and showed that the continuation of the 

program would be very different depending on the objective that was chosen in order 

to optimize the reactor. Furthermore we showed that at that stage, if we only looked 

at the reactor, we were not in a position to choose the objective rationally. We 

therefore made the case that one could only really define the objective if we took the 

whole plant into account. The problem at that stage is that one is not in a position nor 

is it desirable, to try to do too detailed a costing exercise as we only require 

semiquantitative information about where to perform the next set of experiments 

(Ngwenya et al., 2005). 

 

It is the purpose of this paper to illustrate how one can use simple concepts and 

calculations to synthesize the process and thereby identify the main issues and drivers 

that will determine the economics and the environmental impact of the process. The 

purpose is to be able to do the calculations at the earliest stage of the program in order 

to drive it to get the required results as quickly and cheaply as possible. Thus the 

purpose is not to get an accurate costing but to make sure that at the completion of the 

experimental programme, if the decision to go ahead is made, the designers have the 

required information to the required accuracy to do the more detailed design and 

costing. Clearly, as many more programs will be undertaken than are actually 

commercialized, it is important that one gets to this stage as efficiently as possible.  
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To do this efficiently, we propose that the process design (synthesis) be done 

interactively with the experimental program so that as experimental results become 

available the synthesized process flowsheet can be upgraded and these results are 

then used to inform the decisions of how the experimental program is to proceed. If 

this is to be possible then the process models need to be simple and perhaps more 

difficult the laboratory and the design teams need to work together!    

 

Various process configurations and operating conditions can be used in the 

conversion of syngas to hydrocarbon products using FTS technology. Although fairly 

standard, the main process steps can vary depending on the feed stock, syngas 

synthesis methods and desired products. As a proven technology capable of 

producing hydrocarbon fuels and chemicals, FT synthesis can be coal-based, natural 

gas-based and even biomass-based (Larson & Jin, 1999). Depending on their 

objective functions, each process will have its own constraints and drivers. One way 

of evaluating the viability of a process under development is by costing its energy, 

work, and material (i.e., feedstock) requirements. An FT synthesis plant can be made 

up a number of unit operations (to be referred to as processes), and each of these 

processes can employ a variety of equipment in order to accomplish a particular 

operation. All of these processes have been developed and optimized individually and 

predicting the efficiency of their combined application in the most cost-effective 

manner is a big challenge to process designers (Vosloo, 2004). In this paper, a 

method of developing a process and then systematically evaluating it with a view of 

identifying the major economic drivers is presented. 

 

3.3  METHODOLOGY 

 

A method of combining major processes in a plant and then collectively costing them 

has been developed in this work. This is an exercise that needs to be done at an early 

stage of process development using only basic information. This should be done 

without taking into account detailed capital expenditure and operating costs. We have 
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decided for this particular process to turn all the various process activities into one 

common variable and therefore, the economic drivers will be evaluated in terms of 

the plant carbon efficiency. Although the concept of carbon efficiency is commonly 

used in evaluating the efficiency of a process in terms of turning feed stocks into 

desired products, it is applied differently in this paper. The various pieces of process 

equipment will be added to the flowsheet as the process develops (is synthesized) and 

their impact on the overall carbon efficiency of the plant will be evaluated. This will 

enable us to identify which among the process operations has the biggest impact on 

plant carbon efficiency. By so doing, bad options will be identified and alternatives 

developed and insights and understanding gained.  

 

 

We call this new approach to process design “process synthesis” and it has been 

applied to develop the flow sheet using basic information about the raw materials, the 

desired products, and the reaction route. Process synthesis is a tool that process 

designers can use to develop better and cheaper process concepts quickly. It helps in 

the selection of cost-effective alternatives from a wide variety of options and these 

can be integrated in a technically feasible and low cost process concept (PDC, 2004). 

 

 

3.4  SYSTEM DESCRIPTION 

The FT reaction produces hydrocarbons of various chain lengths from a gas mixture 

of carbon monoxide and hydrogen commonly called synthesis gas. Synthesis gas is 

normally obtained by the reforming of coal and/ or natural gas. The FT synthesis can 

be summarized by the following reactions: 

CO + 2H2    �   -CH2- + H2O;   ∆Ho = -152 kJ/mol    (3.1) 

CO + 3H2   ⇔  CH4 + H2O;       ∆Ho = -206 kJ/mol    (3.2) 
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CO + H2O  ⇔   CO2 + H2;         ∆Ho = -41 kJ/mol     (3.3) 

Equations 3.1 and 3.2 describe the formation of higher hydrocarbons and methane, 

respectively. Carbon monoxide can also react with water vapor formed in eqs 3.1 and 

3.2 to form Carbon dioxide and hydrogen via the water-gas-shift (WGS) reaction. 

Note that for simplicity we have chosen to lump together all hydrocarbons of longer 

chain length than methane as a single entity. 

The -CH2- is the building block for longer hydrocarbons. One of the most significant 

performance parameters of the FT synthesis is the product selectivity of the process. 

The product selectivity is determined by the so-called “chain growth probability”. 

This is the probability that a hydrocarbon chain grows with another -CH2- group, 

instead of terminating. For instance, a high C5+ selectivity is necessary to obtain a 

maximum amount of long hydrocarbon chains as the product yield in the C1–C4 range 

decreases with increasing C5+ selectivity. 

Product selectivity is influenced by a number of factors. These factors can be either 

catalyst dependent or noncatalyst dependent. The catalyst dependent factors are: type 

of catalyst metal (iron or cobalt), support, preparation (technique, loading, dispersion, 

promoters, etc) pre-conditioning and age of catalyst. The noncatalyst dependent 

factors are: H2/CO ratio of the feed gas, temperature, pressure, and reactor type. The 

rate of FT synthesis for iron catalysts is more related to the absolute pressure of the 

reactants while for cobalt catalysts, it is more dependent on the ratio of the partial 

pressures of H2/CO (Espinoza et al., 1999).  

For optimal FT reactor design purposes, the type of catalyst to be used must be taken 

into consideration. The rate of reaction decreases with conversion for reaction 

systems catalyzed by iron. While this may be explained by the consumption of the 

reactants in the reactor, one of the main reasons is the formation of reaction products, 

water and CO2 (from the water gas shift reaction). Water and/or CO2 has an inhibiting 

effect on the FT kinetics of iron based catalysts. Generally speaking, water has no 
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negative effect on the kinetics of cobalt based catalysts. Therefore, from a kinetic 

point of view, by using cobalt catalysts there is a likelihood of achieving a higher per 

pass conversion than by using iron catalysts (Jager & Espinoza, 1995).  

In his publication, Vosloo (2004), emphasized that in the design of hydro-processing 

unit, a balance must be struck between the per-pass conversion in the reactor and the 

product properties. The higher the per-pass conversion, the smaller the processing 

unit will be. This is due to the fact that there will be less recycle of material back to 

the unit. Generally speaking, if the per-pass conversion is low, there will be a cost 

associated with recycling the unconverted material back to the reactor.   

3.5.  PROCESS MODELING (FLOW SHEET DEVELOPMENT) 

As we want to perform the calculations for the purposes of process synthesis at a very 

early stage of the process development, we will be using the simplest methods 

available to perform the calculations. These will generally be thermodynamic 

calculations based on heat engines. If we wished to refine these calculations with 

extra information at a later stage this would of course be possible. However, until we 

have determined the magnitudes of the contributions of the various sub-processes we 

are adding, this is not justified. 

3.5.1  Air separation and Synthesis gas generation 

A number of synthesis gas reforming technologies have been developed. These are: 

steam reforming, autothermal reforming, and catalytic and noncatalytic partial 

oxidation. It has been reported that synthesis gas generation may account for 

approximately 60% of the required investments in large scale gas conversion plants 

based on natural gas (Rostrup-Nielsen, 2002). The choice of the syngas generation 

technology and the size of the syngas plant will have a direct impact on the carbon 

efficiency of the entire plant. It is, therefore, important that the choice of the syngas 
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reforming technology be made by taking into consideration the effect it will have on 

the rest of this multi-step operation.    

The FT synthesis studies in this paper are based on cobalt catalysts. In this low-

temperature FT synthesis the cobalt catalyst is taken not to be active for the water-gas 

shift reaction and as such, apart from H2, CO is the only reactant. The desirable 

composition of the syngas from a mass balance point of view for this low-

temperature FT synthesis corresponds to a ratio H2/CO ratio of approximately 2. This 

can be achieved by the catalytic partial oxidation (CPO) of methane through reaction 

3.4. It has been shown that by CPO, high H2 and CO selectivity above 90% can be 

obtained from CH4 at a conversion above 90% (Bodke et al., 1998).  

CH4 + 0.5O2   →   CO + 2H2                      (3.4)  

38298 −=∆ oH  kJ/mol;                      5.86298 −=∆ oG  kJ/mol                                                                      

 

Up to 40% of the main costs of a syngas plant based on partial oxidation are related 

to the oxygen plant. There have been suggestions of using air directly for syngas 

generation thereby eliminating the cryogenic air separation plant. The use of air in the 

process stream is only feasible in once-through synthesis schemes in order to avoid 

the accumulation of nitrogen (the syngas will contain about 50 vol % N2). The use of 

air instead of oxygen will result in big reformer volumes and consequently big 

feed/effluent heat exchangers and compressors. This may also result in big purge gas 

streams leading to energy and material waste (Jess et al., 1999). Synthesis gas 

generation in our studies will be by partial oxidation and oxygen will be supplied 

from an air separation unit. Other alternatives could be considered using the same 

approach. However, as the aim of this paper is to demonstrate the process synthesis 

methodology, at this stage it is not necessary to compare syngas production 
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alternatives. Figure 3.1 shows the flow sheet of syngas generation with oxygen from 

the air separaton unit. 

 

 

 

 

 

Figure 3.1 Flowsheet for syngas production and air separation. 

As in any commercial cryogenic Air Separation Units (ASUs), separation of O2 from 

N2 is achieved by distillation because these gases have different boiling points. While 

we do not dispute the values of the minimum work of separation used for ASUs that 

exist in the literature, we have decided to look at a typical distillation process and 

determine the minimum separation work using a fundamental approach based on 

thermodynamics. Since distillation is a separation process driven by heat input (King, 

1971), Carnot engines have been used to perform heat interactions with the 

surroundings to determine the minimum work (Figure 3.2). This is because all our 

other calculations will be done in a similar way, and we are looking for not absolute 

values but relative ones. 

Taking heat from the surroundings, the distillation column has been modeled as a 

heat pump while the refrigeration process that has to provide condensation has been 

modeled as a Carnot heat engine.  The work of refrigeration will be provided through 

the normal steam cycle, which converts heat generated by the burning of methane 

into work. The minimum work of separation is the net result of all the maximum 

possible work output delivered by Carnot heat engines and the maximum possible 

work input required by the Carnot heat pumps. This type of analysis has been done 
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before to determine the minimum work requirement for distillation processes (Cerci, 

2002).  

This minimum work of separation represents a lower bound on the energy that must 

be consumed by a separation process. This is very important at the early stages of 

process design because it gives an indication of the relative difficulties of the 

separation. In some processes the separation must be carried out with energy 

consumption close to the minimum work of separation in order to be economical. 

 

Figure 3.2 Distillation process modeled as a set of heat engines. 

 

For a fixed production rate of hydrocarbons per day, the daily oxygen requirements 

will be calculated from the following overall reaction: 

CH4 + 0.5O2 → - CH2 - + H2O                (3.5)  

The boiling points for oxygen and nitrogen at atmospheric pressure are 90 and 78 K, 

respectively. We could of course look at the air separation process in more detail such 
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as considering doing it at higher pressure. The effect of this would be that we would 

have to take into account the work that is put in by compression relative to the fact 

that we would run the Carnot engines between different temperatures. This however 

is a separate exercise and we will not be doing it in the present paper. For the 

distillation process, we shall supply heat to the reboiler of the column at 90 K and 

then removed it from the condenser at 78 K. Heat could be supplied to the rebolier by 

the surroundings, but we need to consider how heat could be rejected in the 

condenser. 

The removal of heat from the condenser at 78 K will need to be done via refrigeration 

which will absorb the heat from the condenser at 78 K and reject it to the atmosphere 

at 298 K. However, for the refrigeration process to proceed, we need to provide 

energy to the system. It is proposed that we relate this energy requirement to the 

amount of methane that would need to be combusted to generate the heat that is 

required (eq 2.6).  

CH4 + 2O2 → 2H2O + CO2,     31.802298 −=∆ oH  kJ/mol           (3.6) 

This heat will be converted to work using a normal steam power cycle. The heat from 

combustion will be assumed to be absorbed as steam at 573 K and the steam will be 

run through a turbine to generate the work for the refrigeration process. This turbine 

(modeled as a heat engine) will take in heat at 573 K and release it to the atmosphere 

at 298 K. The three processes (Distillation, Refrigeration and Power generation) 

needed for air separation have all been modeled as thermodynamic heat engines and 

this is shown in an integrated flow sheet in Figure 3.3. 
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Figure 3.3 Detailed flowsheet for air separation modeled as thermodynamic engines. 

 

The minimum isothermal work of separation is also equal to the increase in Gibbs 

free energy (G) of the products over the feed. The Gibbs free energy is defined as  

G = H – TS. Therefore 

STHWG T ∆−∆==∆ min,                  (3.7) 

 

Where T = the absolute temperature, H∆ = the enthalpy of the products minus the 

enthalpy of the feed and S∆  = the entropy of the products minus the entropy of the 

feed. For the isothermal separation of a mixture of ideal gases H∆ = 0 and therefore 

the minimum work for a reversible separation process separating products at the same 

temperature and pressure as the feed is: 

)ln(
1

min, i

N

i
iT xxRTSTW �

=

−=∆−=                       (3.8) 

where, TWmin,  is the reversible work of separation (kJ/(K mol)) at temperature T, R is 

the gas constant (kJ/(K mol)), T is the ambient temperature (K), and xi is the mole 

fraction of component i in the mixture (in this case O2 and N2 only). 
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The work of separation (Wseparation in unit of kJ/day) was determined by multiplying 

Wmin by the daily flow rate of the air. 

 

Wseparation = Wmin x NAir flow rate                (3.9) 

 

It is known that Air Separation Units (ASUs) are highly inefficient and as such the 

actual work of separation is much higher than the minimum work, but what we have 

done here suffices for our purposes at this stage. At a later stage when more accurate 

calculations become necessary these factors could be taken into account. 

 

Calculations of the efficiencies of the thermodynamic engines required for the 

separation i.e., the Carnot and Refrigeration engines are given in  appendix II. A 

process flow sheet incorporating air separation and syngas generation is shown in 

Figure 3.4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Process flowsheet showing air separation and syngas 
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Note that we have not tried to take into account the real efficiency of the processes as 

we are really first looking for those that have the major impact on the overall process. 

Once we have identified these drivers we could try to refine the calculations, but this 

is not justified at this stage of the process synthesis. 

 

There is enough evidence in the literature that apart from reducing the partial 

pressures of the feed gas to the reactor, CO2 which is produced during the syngas 

synthesis does not have any inhibiting effect on the rate of FT synthesis for cobalt 

catalysts that are not active for the water gas shift reaction (Espinoza et al. (1999), 

and for this reason, it was decided not to include the CO2 removal section in this 

analysis.  

 

 

3.5.2  Fischer-Tropsch Synthesis 

 

The FT synthesis was modelled on the basis of the experimental data obtained from 

the laboratory.The experiments were conducted in a continuously stirred basket 

(CSB) reactor on a cobalt-based catalyst. The total reactor pressure was 8 bar, and the 

reactions were run at 220 and 250 oC. The main objectives of these runs were to 

obtain basic information on the activity and selectivity of the catalyst as a function of 

space velocity and H2 to CO feed ratio. Space velocity was used as a variable because 

it is known to have an impact on the degree of CO conversion. CO conversion is also 

a good indicator of catalyst activity and can easily be measured. The more active the 

catalyst is, the higher the CO conversion at constant temperature and space velocity 

(Cerci, 2002). The variation in temperature and H2 to CO feed ratio were also 

expected to have an effect on product selectivity. The partial pressures of H2 and CO 

in the exit stream and the rate of methane formation were therefore also measured. 

 

While it is clear in the literature that pressure drop constraints are a reality in fixed 

bed operations for catalysts with larger particle sizes ( d > 1 mm) and that for 
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particles of this size, intraparticle diffusion can be a limiting factor for the overall 

reaction rate (Sie & Krishna, 1998), the cobalt-based catalyst that was used in this 

study was chosen to obtain kinetic data to be used for design purposes only. For this 

reason, the analysis was not done with respect to kinetic expressions and intraparticle 

diffusion limitations that are inherent. The objective was, to use this laboratory data 

to develop a simple flowsheet model for FT synthesis that includes major process 

units so as to identify the major drivers in the process. Thus, for the purpose of this 

study, the results obtained from the laboratory using the chosen catalyst are real and 

the design of the process will depend on them. This is in accordance with 

recommendations in the literature that kinetic studies for design purposes should be 

performed on the specific catalyst under consideration for use for commercial 

purposes (Espinoza et al. (1999). 

 

The trend of increasing CO conversion with decreasing space velocity was in line 

with results that have been reported in the literature (Lampert et al., 1983; Kuipers et 

al., 1996). As expected, it was observed that the highest rates of CO conversion, 

lowest rates of methane formation and highest selectivity toward hydrocarbons were 

obtained in the regions of high partial pressures of H2 and CO. The measured rates of 

CO conversion and CH4 formation, and as the CSB is essentially a CSTR, the partial 

pressures of H2 and CO in the exit stream will be used in the calculations.  

To obtain sufficient information for the process synthesis, simple calculations were 

done using the data from the laboratory. No model was fitted to the kinetic data so the 

results obtained are essentially model-free. Equations 2.1 and 2.2 will be expressed in 

terms of reaction extents 1 (�1) and 2 (�2), respectively.  

Assuming that the above reactions are taking place simultaneously and using the 

reaction extents (�i), we can calculate the flow rates of various components in the exit 

streams. 
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The molar flow rates of the hydrocarbon and methane formed will be equal to �1 and 

�2, respectively. The molar flow rate of water formed is OHN
2

= �1 + �2. The molar 

flow rate of CO converted is COoutCO
o NN − = �1 + �2, while that of H2 converted will 

be outHH
o NN

22 − = 2�1 + 3�2.  

Using the reaction rates of CO conversion ( COr ) and methane formation (
4CHr ) 

measured in the laboratory, the rate of hydrocarbon formation (
2CHr ) was calculated 

as 

2CHr (mol/s*g) = COr -
4CHr                (3.10) 

To get a value of
2CHN , an assumption of the mean molecular mass of the 

hydrocarbons   produced (other than methane) had to be made. A value of 6 carbon 

chain length was used. It was however, shown that the results were very insensitive to 

this value. If the product distribution was measured this value could be calculated.  

Since the amount of hydrocarbons to be formed is fixed (the plant’s production rate), 

the rate of their formation can be calculated from eq 3.10. The mass of catalyst 

required for this reaction will be: 

catm (g) =
2

2

CH

CH

r

N
                  (3.11) 

and using the same amount of catalyst calculated in eq 2.11, the molar flow rate of 

methane formed is 

catCHCH mrN
44

= = �2                (3.12) 

The amount of CO converted can also be calculated using the amount of catalyst for 

the reaction:  



 52 

CON  (mol/s) = =catCO mr  COoutCO
o NN − = �1 + �2             (3.13) 

The compositions of CO and H2 in the exit stream were measured in the laboratory 

and since the total reactor pressure ( TotalP ) is known and in this study 8 bar was used, 

the partial pressures of CH4, CH2 and H2O will be calculated taking into account the 

10% inert gas in the feed and exit streams, using the following equation:  

+++= 22 NHCOTotal PPPP ( +)2
Total

Total

CH P
N
N

( +)4
Total

Total

CH P
N
N

( )2
Total

Total

OH P
N
N

         (3.14) 

The total molar flow rate and the volumetric flow rate in the exit stream are: 

)(

)(

22

242

NHCOTotal

TotalOHCHCH
Total PPPP

PNNN
N

++−
++

=              and         
Total

Total
Total P

RTN
Q =  , respectively.  

 

R is the gas constant (kJ/K mol) and T is the reactor temperature (K). Using the value 

of totalQ  in the exit stream, the molar flow rates of CO, H2 and N2 in the exit streams 

were calculated from the expression 
RT

PQ
N out

out

xTotal
x = ,  and the flow rates in the feed 

stream COinN  = �1 + �2 + COoutN  for CO and inHN 2  = 2�1 + 3�2 + outHN 2  for H2. 

(Assuming that outNinN NN 22 = ). 

 

Using the information on the rates of CO conversion and CH4 formation and also the 

exit partial pressures of CO and H2, the flow rates of the products formed CH2, CH4, 

H2O and the unreacted CO and H2 were calculated. The above calculations were 

repeated for the various space velocities and H2 to CO feed ratios considered in this 

study. Figure 3.5 shows the revised flowsheet with the FTS reactor incorporated in it.   
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   Figure 3.5 Flowsheet with air separation, syngas synthesis, and FTS reactor. 

 

 

The rates of CO conversion at various space velocities for experiments done at 8 bar 

and T = 220 oC using different feed ratios of H2/CO are shown in Figure 3.6. 
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Figure 3.6 Rates of CO conversion measured at various space velocities  for P= 8 bar 

and T=220 oC (The lines on the graphs have no significance other than to group the 

points together that have the same feed concentration). 

 

 

Figure 3.7 shows the molar flow rates of -CH2-, CH4, and H2O calculated for each 

amount of CO converted for the three H2: CO ratios (1:1; 2:1; 4:1) and various space 

velocities investigated at 220 oC and 8 bar. According to eqs 3.1 and 3.2, for all three 

cases of H2: CO ratios, the amount of hydrocarbon formed was fixed while the 

amount of water formed was equal to the amount of hydrocarbon and methane put 

together. The rate of methane formation was lowest at the lowest CO conversions. 

Both CH4 and H2O formation increased with CO conversion.  
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Figure 3.7 Product molar flow rates at various CO conversions for the reaction at 220 
oC and 8 bar. 

 

The same trend is observed in Figure3.8 where the reaction took place at 250 oC and 
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operating temperature depends on whether the catalyst used is cobalt or iron based, 

but usually it is below 250 oC in order to minimize unwanted methane production and 

to maximize wax selectivity (Madon et al., 1991). 
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been lumped with methane.  Assuming that the process employs the use of an ideal 

separator separating hydrocarbons from the unreacted CO and H2, methane, and H2O 

and that all the methane formed will have to be recycled and reformed with a 

stoichiometric amount of H2O, a new flow sheet shown in Figure 3.9 was developed 

taking into account the separation and reforming. For the purpose of illustration, the 

second reforming unit has been used to reform methane using steam while the first 

reforming unit for syngas production used partial oxidation without any steam. The 

amount of recycled methane and water will determine the composition of the syngas 

leaving the reformer.  

 

 

Again, in order to convert all the heat requirements back to one variable, it will be 

assumed that methane combustion will be used as the only source of energy for those 

processes that require energy. The quantity of methane required to produce energy 

Qcombustion is given by the following expression:  

H
Q

N combustion
CH ∆

=
4

                (3.15) 

Where ∆ H  is the enthalpy of methane combustion (802.31 kJ/mol). 

 

Energy for running the air separation plant is obtained from the combustion of 

methane and so is the energy for the reforming process.  
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Figure 3.8 Product molar flow rates at various CO conversions for the reaction at 

250oC and 8 bar. 

 

 

The flowsheet in Figure 3.9 shows that the carbon required for the process will be in 

the methane feed to reformer 1 and methane used for supplying energy for air 

separation and reformer 2.  
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Figure 3.9 Flowsheet with ideal separation and perfect reforming. 

 

 

It is stated in the methodology section that all the various activities in the process will 

be turned into one common variable called “carbon efficiency”. As a key measure of 

the plant’s operating economics, carbon efficiency (CE) is calculated as follows: 

 

CE = 

 
  ______________________________________________ 
              Carbon fed to process including C in any necessary fuel 
 

Carbon efficiency was calculated for all the runs at various space velocities and 

plotted in the CO and H2 partial pressure space shown in Figure 3.10. 
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Figure 3.10. Carbon Efficiency for the process assuming Perfect Reforming and Ideal 

Separation at 220 oC.  

 

 

Figure 3.10 shows that the carbon efficiency is higher at lower rates of CH4 

formation, lower CO conversion and shorter residence times. In all the three ratios of 

CO: H2 investigated, carbon efficiency increases with the increase in CO and H2 

partial pressures. The highest value of carbon efficiency was obtained in the 

experiment running with a CO rich feed, i.e., H2: CO = 1:1 at the lowest residence 

time. Carbon efficiency was also calculated for the experiments done at 250 oC and it 

was found that Carbon Efficiency was slightly lower than that obtained at 220 oC by 

about 5% on average. This is because of the higher production rates of methane at 

250 oC. Hence as the suppression of methane production is a key driver. We can see 

that to increase carbon efficiency we need to run the process at low rates of methane 

formation which corresponds to low temperature.   
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If we choose to run the process in the region of higher carbon efficiency the result 

will be a process with large recycles because these are also regions of low 

conversions. Because it is important to take into consideration these recycles, a 

compressor will be introduced to compress the recycled CH4, CO and H2 to the 

reformer. A 10% pressure drop in the loop has been assumed. This process drop is 

actually in the hands of the designer of the equipment. The value chosen is a typical 

value. If this proves to be an important assumption then calculations can be repeated 

for other values. Two other compressors will be considered. One compressor will be 

used to compress the methane feed to reformer 1 while the other one will compress 

syngas feed to the FT reactor. The new flow sheet developed with the three 

compressors in it is shown in Figure 3.11. The three compressors will require energy 

by way of compressor work and this will be provided for by burning methane. 

Carbon efficiency will be calculated for this new flow sheet in order to see the effect 

of compressors on the overall carbon efficiency of the process. 

 

The compression work ( sW ) was calculated by assuming that the compressor work 

isothermally (eq 3.16) and the energy for this compression work was obtained from 

combustion of methane (reaction 3.6). Equation 3.17 shows how the quantity of 

methane needed to provide this energy for compression work was calculated. 
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Where SW  = adiabatic work [kW], 1T = compressor feed temperature (K), 1P  = feed 

pressure to compressor, 2P  = exit pressure from compressor, M  = molar flow rate of 

the gas to the compressor [kmol/s], vp CC /=γ  = 1.4 ( pC  is heat capacity at constant 

pressure and vC  is heat capacity at constant volume).  

 



 61 

combustion

S
CH H

W
CompN

∆
=

η
)(

4
,  η = 0.48            (3.17) 

Where, 
4CHN  is the number of moles of methane required for compression, sW  is the 

work of compression calculated in eq 3.16, η= 0.48 is the compression efficiency and 

combustionH∆  is the enthalpy of methane combustion in reaction 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Flowsheet developed by assuming ideal separation, Perfect Reforming 

and Compression of the recycle stream. 
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Instead of assuming perfect separation, distillation will be assumed to be used in 

separating the liquid hydrocarbons from other gaseous products and this unit will be 

incorporated in the flowsheet. The calculations will be based on separating the 

average hydrocarbon products from methane. The distillation process has again been 

modelled as a set of heat engines. The energy for refrigeration in the distillation unit 

will be provided for by the combustion of methane. A new flow sheet that includes 

syngas generation, air separation, FT synthesis, product separation, compression and 

reforming has been developed in Figure 3.13.  

 

 

Results of the carbon efficiency analysis for this modified flowsheet are shown in 

Figure 3.14. Addition of a separation unit did not have any impact on the overall 

carbon efficiency of the plant.  The results are virtually the same as those in Figure 

3.12. 
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Figure 3.12 Carbon Efficiency for the process assuming Perfect Reforming, Ideal 

Separation and Compression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 Flowsheet with CH4/-CH2- separation, compression, air separation and 

reforming. 
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Figure 3.14 Carbon efficiency for the process with the incorporation of the  

CH4/-CH2- separation unit.  

 

Figure 3.15 indicates the percentage energy requirements for the various operations 

which have been considered in the development of the alternative flow sheets. The 

flow sheet consisting of compression, air separation, ideal reforming and 
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conversions most of the energy required goes to the steam reforming process and as 
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seen from the graph. 
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Figure 3.15 Percentage energy demands for the various operations at various space 

velocities, CO conversions and H2: CO =1:1 at 220 oC. 

 

The carbon efficiency of the process declines with the increase in the amount of 

methane formed as can be seen in Figure 3.16. This is purely on the basis of the 

amount of energy consumed for reforming of the methane formed. As the system 

forms more and more methane, there will be a greater demand on the amount of 

methane to be burnt for the reforming process to take place. 
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Figure 3.16 Carbon efficiency as a function of methane formation. 
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3.6  CONCLUSION 

 

A method of developing an FT process flowsheet using experimental data has been 

presented. A systematic method of evaluating the flowsheet with a view of 

identifying the major drivers using carbon efficiency as a measure of plant 

performance has been developed. The method is quite general and can be used on 

other processes such as methanol and ammonia syntheses. The major purpose of the 

paper has been to show how a flowsheet can be synthesized in a systematic way using 

simple calculations and concepts (mainly thermodynamics). The purpose of the 

flowsheet, in the first instance, is to derive a meaningful objective, so that the 

laboratory experiments can be done under the “best” conditions. For this purpose it is 

not necessary to try and do sophisticated and complicated capital costing. The whole 

idea is to look for direction and factors that are the main drivers for the process. As 

the process of evaluating the results develops more accurate models can be applied. 

The time and effort to increase the accuracy at this early stage are however, not 

justified. 

This approach allows for the identification of further laboratory experiments that need 

to be done and thus, making sure that the experimental results are useful for the 

design of an energy efficient process. 

The analysis of the obtained experimental data for the process synthesis of an FT 

flowsheet has led to the conclusion that, for this catalyst, running an FT process at 

low conversions per pass (high recycle ratios) will give the highest carbon efficiency. 

This, interestingly enough, is typical of fixed-bed processes where low conversions 

per pass are used to control the highly exothermic FT reaction. In contrast, modern 

gas-to-liquid (GTL) processes are designed to operate at high conversions per pass 

using slurry reactors that have more favourable heat transfer properties. From our 

point of view, it would be interesting in future to identify the factors that have current 

GTL technology to run in an apparently reduced regime of carbon efficiency. 
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Unlike in other processes (for example, methanol synthesis) where a purge stream has 

a big impact on the process, it has been found in this study that this is not the case 

here. Carbon efficiency calculations with a 5% and 10% purge stream showed no 

tangible effect on the carbon efficiency of the entire process. This is on account of the 

low amount of carbon lost in the purge.  
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Abstract  

 

To evaluate a process at the early stage of its development, one needs to be able to do 

simple calculations in order to compare all the alternatives. This must be done on a 

reasonably realistic basis, so that one can make credible decisions; however, the 

process should not be so detailed and laborious that it becomes too “expensive” to 

perform for alternatives that can ultimately be discarded.  A methodology for 

performing these calculations has been developed and this will be illustrated with a 

case study on Fischer-Tropsch Synthesis. 

  

The effect of designing a Fischer-Tropsch (FT) process targeting a particular value of 

the probability of chain growth (�) on the overall carbon efficiency has been studied 

using simplified FT synthesis flow sheet models. Two process configurations- 

namely; the once-through and recycle processes - have been compared and it is 

observed that, for a fixed production rate of liquid fuels at 100% CO conversion, the 

carbon efficiency for the process with a recycle stream is higher than the once-

through process for all values of �.. However, if the aim is to maximize diesel 

production by hydrocracking the waxes, it has been determined that an optimal � 

value should be sought to reduce the cost of hydrocracking very heavy waxes. The 
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incorporation of wax hydrocracking in the two processes reduces the carbon 

efficiency at all � values beyond 0.7, thereby making it uneconomical to produce very 

long chain hydrocarbons.  

 

4.1 INTRODUCTION 

 

Fischer-Tropsch Synthesis (FTS) is a process that produces liquid hydrocarbons from 

synthesis gas (CO, H2) and is a promising option for the production of 

environmentally friendly chemicals and fuels from coal and natural gas.  

 

Presently, Fischer-Tropsch (FT) catalyst/process technology suffers from the 

following limitations: (i) limited selectivity for premium products (e.g. light olefins, 

gasoline or diesel); (ii) catalyst deactivation; (iii) high capital cost; (iv) heat removal 

as reaction is highly exothermic; and (v) less than optimum thermal efficiency (Mills, 

G. A., 1988). 

 

Several factors have led to renewed interest in the use of Fischer-Tropsch technology 

for the conversion of natural gas and coal to liquid fuels. Some of the major factors 

influencing this renewed interest include (i) an increase in the known reserves of 

natural gas; (ii) the need to monetize remote or stranded natural gas; (iii) 

environmental pressure to minimize the flaring of associated gas; and (iv) the need to 

reduce dependence on crude oil 

 

Because of this renewed interest, more FT plants are likely to be built. Existing FT 

plants are very capital-intensive processes, so it is anticipated that future plants will 

be designed based on the available raw materials (coal or natural gas) and the specific 

needs of a particular economy. For this reason, it is appropriate to make a process 

evaluation by examining alternative process configurations at the early stage of 

design. Jess et al. (1999), in their paper, advocated the use of low-cost technology for 

countries in remote areas where the cost of natural gas is low as the only economical 
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solution for the conversion of natural gas to higher hydrocarbons using FT-Synthesis. 

This technology may not be highly efficient but it will bring benefits to the economy.  

This concept of a low-cost FT process is based on the use of a nitrogen-rich syngas 

which does not utilize a recycle loop (once-through process) to avoid any nitrogen 

build-up in the system. 

 

To achieve a reasonable efficiency in a once through FT process of the type proposed 

by Jess et al. (1999), a reasonably high per pass CO conversion should be achieved.   

A possibility for achieving this is the use a number of reactors in series (Rage et al., 

1997).   

 

 In contrast, the objective of the recycle process is to achieve higher reactor 

productivity using higher syngas flow rates because of the recycle and low single-

pass CO conversion.  

 

It is possible that, for the same reactor volume and catalyst loading, the recycle 

process could have a higher production rate of hydrocarbons than a single-pass 

operation. The drawback to the recycle process is the level of investment, which is 

likely to be higher due to the separation of hydrocarbon products, CO2 and H2O from 

the exit stream before syngas and the lighter gases can be recycled.  The second 

choice of using reactors in series (especially if the same volume reactors are to be 

used) is complicated by the fact that additional fresh syngas might have to be added 

to the syngas leaving the previous reactor in order to obtain the required feed rate. 

However, in the case where catalyst activity is such that effectively 100% conversion 

can be achieved in a single per pass conversion, the once-through process should be 

the configuration of choice because it will not require any compression and reforming 

of the recycle stream and no air separation. This is especially true if the cost of 

methane and or coal is low. Even if 100% conversion is not achieved, if the reactor 

costs relative to the rest of the plant are relatively low, it may still be preferable to 

conduct a once-through process. 
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The FT process is also very interesting from the process synthesis point of view.   

The reaction produces a range of products and the product distribution is determined 

by the catalyst, operating conditions and reactor structure.    In a recent paper 

(Ngwenya et al., 2005), the question of the optimal reactor structure and operating 

conditions for an FT reactor was considered. The rate of CO conversions and 

selectivity were measured at various CO/H2 ratios at two different temperatures for a 

given catalyst.  The question that was asked was, how could these data be used to 

determine the optimal reactor design and the optimal reactor configuration?  In 

particular, the interaction between the experimental program and the process design 

was considered. It was shown that the optimal reactor design and operating 

conditions for Fischer-Tropsch reactor was dependent on the objective set, and the 

resulting reactor and operating conditions could be quite different for seemingly 

similar and reasonable objectives. An important insight was that the process in which 

the “optimal” reactor  was embedded was far from optimal, in that the processes had 

large recycle flow rates and very low per pass conversions in common.   

 

A subsequent paper then examined the use of a small set of experimental data to 

determine the reactor structure and operating conditions when optimizing the process 

(Mukoma et al., (2006).  This was again done with the objective of understanding the 

interactions between the experimental program, the reactor structure, the process 

configuration and operating conditions.  The concept of carbon efficiency was 

introduced, which will also be used in this work.   Carbon efficiency is directly 

related to the running costs of the plant and indirectly to the capital costs of the plant. 

The carbon efficiency of a process is also directly related to the environmental impact 

that the process has on the environment and, as such, is a very powerful variable 

which incorporates aspects of running costs, capital costs and environmental impact.   

It was shown how simple calculations could be performed to evaluate various 

alternatives and how the outcomes from these calculations could be drivers for 

deciding plant operating conditions and, hence, guide the experimental program.  It 
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was determined that, to maximize the carbon efficiency of the process, the methane 

production rate in the reactor had to be minimized   

 

In the previous paper (Ngwenya et al., 2005), all hydrocarbon products, with the 

exception of methane, were considered to be equally valuable.   In this paper, we 

extend the ideas to take into account the fact that not all products are equally 

desirable. In particular, we will investigate the effect of the probability of chain 

growth (�) on the production of diesel fuel. This study will not rely on experimental 

data, but rather ask the question backwards so to speak:  What is the optimal � value 

for an FTS system that is producing diesel? Once we understand what range of � 

value we are targeting, we can decide on a suitable catalyst and operating conditions 

to achieve this. 

 

Of all the products produced by the FT reactor, only a certain percentage of these will 

be in the diesel fraction.  The longer-chain products must be cracked to produce 

diesel.  Preciously, we found that the optimal FT reactor did not necessarily translate 

into the optimal FT synthesis process; in other words, the optimization must consider 

the entire system.  With this in mind, optimal � values for two different systems, 

namely the syngas production and the FT synthesis section as opposed to the system 

that includes the syngas production, the FT synthesis and the hydro cracking section, 

were compared. It is, again, determined that the optimal alpha is different for the two 

systems, and therefore, it is concluded that the latter system, which incorporates the 

hydrocracking units, gives the fuller description of the process and hence the more 

realistic optimal alpha value. 

 

Another question that we can ask at the earliest stage of the process synthesis is what 

the effect of process configuration is on the objective function, namely achieving the 

highest carbon efficiency.  Again, this can be done before laboratory data is available 

or, indeed, before a catalyst has been chosen.  This furthermore can be done with 

relatively little effort using very simple models at the very earliest stage of the 
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process design. We will illustrate this by considering both a recycle and once-through 

process, as proposed by Jess et al., (1999).   

 

An important parameter in determining the carbon efficiency of especially the once 

through process is the CO per pass conversion.  The effect of varying this on the 

carbon efficiency of the process and the optimal level of the CO will also be 

considered. 

 

We propose that process synthesis be used at the earliest possible stage of the design, 

to guide the experimental program. We claim that by using this approach, we are, in 

effect able to scan all possible catalysts and operating conditions to determine what 

the target carbon efficiency is and how sensitive it is to factors such as product 

selectivity and CO conversion.  We are furthermore examining how the structure or 

configuration of the flowsheet interacts with the choice of catalyst and operating 

conditions.  Lastly, we are able to set targets for the various process configurations, 

which are upper bounds on the carbon efficiency.   Thus, one is able to determine 

quantitatively what the effect of structure and operating conditions is on the target 

carbon efficiency.   This allows one to understand the impact of the configuration on 

the plant and, hence, to make decisions in this regard at the earliest possible stage of 

the process design.     

  

 Since the process will be set to maximize diesel production, the process will be 

evaluated from syngas synthesis right through to hydrocracking of the waxes to 

maximize diesel yield. The differences between the two processes, in terms of their 

chemical feedstock and energy requirements, and how these affect the carbon 

efficiencies will be analyzed. It is hoped that this study will show how a designer can 

identify major drivers in the two process options without performing any experiments 

or doing detailed process simulations.  In particular, we believe that these simple 

calculations give insights that can inform both the design and the experimental 

program.  
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4.2 PRODUCT SELECTIVITY 

 

The FTS produces a wide range of hydrocarbons, from light gases to heavy wax. By 

plotting the logarithms of the mole fractions of the various hydrocarbons against the 

number of carbon atoms, a straight line is often obtained representing the Anderson-

Schulz-Flory (ASF) reaction mechanism. In some cases, more than one straight line 

may be found but we will not consider these cases in this paper. However the 

methods employed in this paper would be as applicable in these cases.  

The slope of this straight line, which is called α, describes the product selectivity (this 

is also referenced as the probability of chain growth). A high � value implies a high 

yield of heavy hydrocarbons, whereas a low � value means greater production of 

lighter hydrocarbons. A current viewpoint seems to be that it is desirable to have a 

catalyst with selectivity towards high � values (Mills, G. A., 1988). The higher 

amounts of heavy hydrocarbons produced can be subsequently processed in a 

hydrocracking unit to produce diesel-range hydrocarbons as has been demonstrated in 

the Shell Middle Distillate Synthesis (SMDS) process (Eilers et al., 1990). The diesel 

yield is of high quality, bearing in mind the ever increasing demand for less noxious 

engine exhaust emissions.  

 

The range of α is dependent on the reaction conditions and catalyst type. Typical 

ranges of α reported in the literature for ruthenium, cobalt, and iron are 0.85-0.95, 

0.70-0.80, and 0.50-0.70, respectively (Dry, M. E., 1982). Figure 3.1 shows the 

distribution of hydrocarbons (in terms of wt %), as a function of probability of chain 

growth (α).   
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Figure 4.1 Probability of chain growth (α) as a function of the weight factor. 

 

 

Using the current commercial catalysts available for FT, there are many factors that 

affect product selectivity. However, the overall product selectivity is controlled by the 

process operating temperature, reactant partial pressures, and, in the case of iron 

catalysts, the higher the alkali content, the greater the shift to higher carbon number 

products. For both Cobalt and iron catalysts targeting wax production at lower 

temperatures, the H2: CO ratio is a key factor. The operating pressure does not affect 

product selectivity for iron catalysts, whereas for Cobalt, there is a shift toward 

higher- molecular- mass products as the total pressure increases (Dry, M. E., 1982). It 

has been reported that, for FT Synthesis operating at high temperature, especially 

using iron catalyst, the situation is more complicated. Apart from the total pressure, 

product selectivity is also dependent on the partial pressures of H2, CO, H2O and CO2
 

(Dry, M. E., 2004). 
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Figure 4.1 shows that there is a great range of � value that is achievable.   The 

product selectivity is dependent on the � value.  Thus, once the optimal product 

selectivity and, hence, the desired � value has been decided, the catalyst and 

operating conditions would need to be chosen to achieve this value. 

 

4.3 CO CONVERSION 

 

It is important in every chemical reaction process to maximize the conversion of feed 

material into the desired product.  In catalytic reactions such as FT, CO conversion 

rate is an easily measured indicator of catalyst activity, since the more active the 

catalyst, the higher the CO conversion at constant temperature and space velocity. To 

achieve a higher CO conversion, the space velocity has to be decreased, or 

equivalently, residence time increased.  As the residence time increases, the 

probability of a CO molecule adsorbing on the catalyst surface and reacting increases 

as well and this results in higher conversions of CO (Lampert et al., 1983). There are 

practical limitations to achieving 100% CO conversion in FT processes, however, 

from a designer’s point of view,  a process could, in principle, be designed to operate 

at almost 100% conversion, because the reaction is not equilibrium limited. This 

assumption is made in this study. Possible process key drivers for such a process will 

be identified either in terms of material or energy consumption.  

 

4.4 DESIGN BASIS 

 

The basis for this process design and analysis is the production of a fixed amount of 

hydrocarbons from syngas obtained from natural gas (modeled as methane) in a once-

through and recycles process. We assume a low-temperature FT synthesis process 

with no or very minimal CO2 production. 

The approach used in this work differs from that used traditionally for design, in that 

we are using simple models, which incorporate the major effects such as mass, energy 
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and entropy balances.  We do this as we wish to compare the intrinsic target 

efficiencies of the processes.  We do not wish, at this stage, to incorporate more 

complex models which look at the practical limitations (i.e. heat transfer, materials of 

construction etc.); however, this can be done in the next phase, if required, to 

compare the sensitivity of the processes to equipment inefficiencies.  In effect, our 

underlying assumption at this stage is that the processes have similar sensitivities to 

inefficiencies as they mostly use similar equipment such as reformers, hydrocracking 

etc.  Thus, the assumption at this stage is that, although more detailed models that 

incorporate equipment inefficiencies will reduce the target carbon efficiency of the 

processes, the ranking of the processes, in terms of carbon efficiency, will not be 

changed.  This assumption is more likely to be valid if the carbon efficiencies of the 

processes are very different.  If the processes have similar carbon efficiencies, then, 

the ranking of the process may be sensitive to equipment inefficiencies.  

4.4.1 Reforming Model 

All the models below reform the natural gas, which we assume to be methane.  We 

have assumed that the composition of the syngas entering the FT section is 

stoichiometric, which corresponds to a H2/CO ratio of ~2. To illustrate the 

methodology, we will use a somewhat novel system with steam reforming of methane 

with the addition of CO2 to obtain syngas of the required H2 to CO ratio (reaction 

3.1). This approach is possible with the stranded natural gas containing CO2 or if a 

stream of pure CO2 is available.  The more conventional processes can be analyzed by 

a similar approach if required. 

2224 2
4
1

2
1

4
3

HCOCOOHCH +→++  ( 90.164298 =∆ oH  kJ/mol)     (4.1)   

Reaction (4.1) is endothermic and the energy for syngas production will be derived 

from methane combustion shown in reaction (4.2):   
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OHCOOCH 2224 22 +→+    31.802298 −=∆ oH  kJ/mol            (4.2) 

 

We have, in this simple model, decoupled the reforming process and the energy 

providing step.  The two reactions (eqs 4.1 and 4.2) may be conducted in one or more 

pieces of equipment; however, the overall process must be, at best, adiabatic.  All the 

energy and work requirements for recycling and reforming of the lighter gases in the 

recycle process will be similarly obtained from the combustion of methane.  

 

The quantity of methane to be combusted to meet the energy requirements for the 

reaction was calculated using the following equation: 

 

combustion

combustion
CH H

Q
N

∆
=4                                                                     (4.3)  

 

Where 4CHN  is the number of moles of methane that are required to be combusted to 

provide the combustion energy combustionQ . combustionH∆  is the enthalpy of methane 

combustion (802.31 kJ/mol) as calculated in eq 4.2. 

 

4.5 CARBON EFFICIENCY 

 

Figure 4.2 is a simple model that is used to help understand the definition of carbon 

efficiency as it is applied in this work. 

 

 

 

 

 

Figure 4.2 Simple model showing variables considered in carbon efficiency 

calculations. 

[A] C in Chemical feedstock   C in desired Product [C] 

 Waste [D] [B] C in CH4 combusted to    
       provide energy 
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We differentiate between process streams that provide chemical feedstock (stream A), 

and those that supply energy (stream B).  We, in particular, determined the number of 

moles of carbon in these streams.  Stream C refers to the desired product (for example 

diesel or C5+) whereas stream D is the waste or unwanted products as unconverted 

syngas, CO2 and flared gases. The main energy supply that we consider for Stream B 

is to the reformers as the previous work (Mukoma et al., 2006) showed that these 

were, by far, the largest energy costs in the process.  

 

 Therefore, Carbon Efficiency (η) is defined as: 

 

 

 

In all cases, we fixed the amount of the desired product, namely the quantity of 

stream C. To produce this fixed amount of desired product, different amounts of CH4, 

were consumed (stream A), depending on the alpha values, configuration, etc., and, 

hence, different amounts of C1–C4 and other waste streams (Stream D) were 

produced. 

 

The carbon efficiency takes the chemical feedstocks and energy streams into account.  

Thus, it is a good measure of plant operating economics, because the higher the 

carbon efficiency, the higher the usage of feed material and energy for the production 

of the desired product.   It is also related to the capital costs, because the lower the 

carbon efficiency, the more material must be processed to produce the same quantity 

of products.  Thus, the process equipment will be larger with correspondingly higher 

capital costs. It is also a good tool for evaluating the environmental impact that the 

process has. High carbon efficiency means that the process is environmental friendly, 

because its emission of CO2 into the environment is low. 

 

The design of modern chemical processes embraces the concept that decisions to 

protect human health and the environment can have the greatest impact and cost 

η =  Moles of carbon in [C]  
Moles of carbon in [A] + Moles of carbon in [B] 
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effectiveness when applied early to the design and development phase of a process or 

product.  

 

By tracking carbon efficiency in the early stages of process design, we will, in fact, 

be measuring the efficiency of the plant, in terms of its utilization of the raw material 

and energy and, at the same time, evaluate its likely impact on the environment. This 

allows for major process drivers influencing carbon efficiency to be identified earlier 

on and suggest modifications to traditional engineering practices and processes, the 

development of new catalytic processes and the use of sustainable resources (Keiski, 

R., 2004).  

 

4.6  RESULTS 

 

We will now examine the effect of the flowsheet configuration as well as the system 

definition on the carbon efficiency by examining various processes where we change 

both the configuration and system. 

 

4.6.1  The Once Through Process consisting of reforming and FT synthesis    

  Sections 

 

In the once-through process, at each � value, the various fractions of liquid 

hydrocarbons and waxes produced were regarded as the desired products and the 

lighter gases (C1-C4) were regarded as waste. Notice that, in principle, the (C1 –C4) 

products could be burnt to supply energy and the components such as C2-C4 are 

potentially valuable chemical feedstocks.  We did not incorporate this feature at this 

stage, and hence, the target carbon efficiency we are calculating for the once through 

process is fairly conservative.  

 

The once through process consists of the reformer (syngas synthesis section) and the 

FT Synthesis section as shown in Figure 4.3.    We first examine the effect of varying 
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the � value on the carbon efficiency of the overall process.  We will also assume that, 

in this case, the desired product is the C5
+ hydrocarbon products. We initially assume 

that the CO conversion in the FT reactor is 100 %; however, at a later stage, we will 

examine the effect of conversion on the overall carbon efficiency.   

 

 

 

 

 

 

 

 

 

Figure 4.3 Fischer-Tropsch Synthesis (FTS) flowsheet in a once-through process with 

100% conversion. 

 

The results in Figure 4.4 show that there is an increase in carbon efficiency with an 

increase in �. The amount of lighter gases formed decreases with an increase in the � 

value and, because this is a once-through process operating at 100% CO conversion, 

the loss in terms of the amount of carbon wasted is therefore less at higher � values.   

Thus, as can be seen from Figure 4.4, the maximum possible carbon efficiency is 

85% and corresponds to a value � =1.  The 15% loss in carbon efficiency is due to the 

methane that is used to supply heat to the reformers only, and, under these conditions, 

there is no loss of carbon due to flaring of the C1-C4 products.    
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Figure 4.4 Carbon Efficiency and moles of lighter gases formed as a function of alpha 

for the once through process, 100 % overall carbon efficiency. 

 

4.6.2 The Recycle Process 

 

Standard FT plants operate with recycle streams; this is normally done to increase the 

overall syngas conversion, because the plants operate at low per-pass conversions. 

For the purpose of this study, it is assumed that the recycle stream will be composed 

of the lighter gases (C1-C4) and unconverted syngas (Figure 4.5). In principle, the 

recycled gases can be sent to a second reformer; however, in this study only one 

reformer has been used, since methane is being used as the primary feed stock.  
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Figure 4.5 FTS flowsheet with a lighter gas recycle stream. 

 

 

The results in Figure 4.6 show that, at intermediate � values, there is a big advantage 

in operating a process with a recycle stream as the recycled and reformed gases 

improve overall carbon efficiency through the utilization of the lighter gases, which 

are flared in the once-through process.  

 

These results also show that the maximum carbon efficiency for both processes is the 

same at 85%, because at the highest alpha value of 1, there are no lighter gases 

produced. It is thus possible to achieve the same carbon efficiency by using either of 

the two processes; however, carbon efficiency values achieved in the process with a 

recycle stream at lower � values will only be achievable at higher � values in a once-

through process.   At � = 0.35 - 0.85, there is a big difference in the value of carbon 

efficiency obtained in the two processes at the same � values. However, at � = 0.95 -

1, it is apparent that it does not matter what process configuration is used to achieve 

this value of alpha because very similar carbon efficiencies can be achieved either 

way.   
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Figure 4.6 Comparison of carbon efficiencies at different � values in once-through 

and recycle processes at 100% conversion. 

 

Any decrease in the rate of CO conversion affects the carbon efficiency of the once 

through process negatively. Since this analysis is based on production of a fixed 

amount of hydrocarbons, in a once-through process, any amount of carbon (moles) 

lost through unconverted syngas that was produced at great material and energy costs 

has to be compensated for by an increase in the feed materials required to maintain 

the production rate. In a recycled process, the unreacted syngas in the recycle loop 

that joins the feed stream improves and, hence, does not affect the overall conversion 

and carbon efficiency. Although there is an energy cost to recycling and reforming, 

this is smaller, compared to the cost of material lost in the once-through process.   
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We note that if we regard all C5
+ products equally valuable, we would like to run both 

the once through and the recycle process at the highest possible � value.  In this 

mode, the processes would be producing primarily waxes.  We might now ask the 

question: if our desired product was diesel and gasoline, how would this change our 

answer?  We would need to upgrade the products from the FT section by cracking 

them and we would need to look at the effect of this on the overall carbon efficiency 

of the process.    

 

We will briefly look at the hydrocracking and a simple model that would incorporate 

the carbon efficiency.  

 

4.7  WAX HYDROCRACKING 

 

To increase the amount of diesel to be obtained from an FT synthesis process, the 

waxes (C19+) must be hydrocracked into the diesel fraction at high temperatures and 

hydrogen pressure.  This process has now been well established (SASOL as well as 

Shell, apply this hydrocracking technology in their processes to obtain diesel from 

coal and or natural gas).  In the 1970s, SASOL investigated the selective 

hydrocracking of FT wax. The wax was cracked to extinction under mild conditions 

and recycling of the products heavier than diesel. The product distribution achieved 

was ~80% diesel, ~15% naphtha and ~5% C1-C2 gas. Shell implemented the 

hydrocracking of FT wax to kerosene and diesel fuel at their plant in Malaysia in the 

1990s, whereas EXXON also has now a process for hydrocracking/hydroisomerizing 

FT wax to liquid oils (Dry, M. E., 2001).  

 

It has been observed from the results obtained so far that high carbon efficiencies are 

attained at high � values. At high � values, product selectivity favors the production 

of waxes and other heavier hydrocarbons. In this portion of the study, a simple model 

has been used to compute the cost of hydrocracking waxes into diesel. 
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Hydrocracking is a catalytic process that utilizes hydrogen at high pressure and 

temperature. The hydrogen reacts with the cracked products, thereby suppressing the 

formation of heavier compounds and increasing the diesel yield. In practice, since the 

conversion of syngas is not 100%, H2 can be obtained from the unreacted syngas. 

However, in this study, hydrogen for hydrocracking was obtained externally using 

reaction 3.4 and then compressed from atmospheric pressure to 100 bars. Since every 

� value has its own inherent product distribution, this means that the quantities of 

wax obtained at different � will vary. These amounts of wax obtained are then 

cracked to diesel.   

 

CH4 + 2H2O � CO2 + 4H2                 986.164298 =∆ oH  kJ/mol                  (4.4) 

 

The energy for reaction 4.4 is supplied by the combustion of methane as described by 

eq 4.2. The compression work ( SW ) was calculated by assuming that the compressor 

worked adiabatically (eq 4.5) and the energy for this compression work was obtained 

from combustion of methane (reaction 4.2). Equation 4.6 shows how the quantity of 

methane needed to provide this energy for compression work was calculated. 
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where SW  is the adiabatic work (kW), 1T  is the compressor feed temperature (K), 1P  

is the feed pressure to compressor, 2P is the exit pressure from compressor, M is the 

molar flow rate of the gas to the compressor (kmol/s), 4.1/ == VP CCγ  (where PC  

is heat capacity at constant pressure and VC  is heat capacity at constant volume).  

 

The amount of methane needed for compression (cost of compression) is calculated 

in eq 4.6, which takes into consideration the maximum possible efficiency that can be 
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achieved when thermal energy is converted into mechanical 

energy )/)((( HCH TTT −=η . Thus, for a steam cycle, 573=HT  K and 298=CT K, 

48.0=η . 

 

combustion

S
CH H

W
CompN

∆
=

η
)(

4
, η = 0.48              (4.6) 

 

where, 4CHN  is the number of moles of methane required for compression, SW  is the 

work of compression calculated in eq 4.5, η  is the compression efficiency ( 48.0=η ) 

and combustionH∆  is the enthalpy of methane combustion in reaction 4.2.  

 

The average carbon number of the waxes used for calculations was 40; this number 

was determined from the assumption that the hydrocarbons to be formed will be up to 

C60. It was assumed that these hydrocarbons were paraffins and that they will all be 

cracked to C10s; therefore, the correct amount of H2 required for this process was 

calculated based on the quantity of the C40 formed at that particular � value. This 

assumption will give us the lower bound on carbon efficiency in an FT synthesis 

process that incorporates hydrocracking because, in practice, during hydrocracking, 

some gases are formed. For this simple model, reaction 4.7 shows the hydrocracking 

reaction used in this study: 

 

C40H82 + 3H2 � 4C10H22                (4.7) 

 

 

4.7.1 Carbon efficiency of the once trough and recycle FT processes with 

Hydrocracking of heavier products to diesel. 

 

To try and answer the question of what the penalty on process carbon efficiency for 

hydrocracking waxes to diesel will be, a simple process model is shown in Figure 4.7, 
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which incorporates product work-up, and hydrocracking of the waxes (C19+) has been 

presented. 

 

 

Figure 4.7 FTS flowsheet with a lighter gas recycle stream and wax (C19+) 

hydrocracking. 

 

The flowsheet for the once-through process will appear similar to Figure 4.7, except 

that the lighter gases (C1-C4) and unconverted syngas will be flared (regarded as 

waste, see Figure 4.3). 

 

The effect of the � value of the FT process on the carbon efficiency of both the 

recycle and once through process is shown in Figure 4.8.  In the once-through 

process, hydrocracking of waxes into diesel decreases the maximum carbon 

efficiency to 60%, and this correspond to an optimal value of � = 0.82. In the recycle 

process the maximum carbon efficiency decreases to 75%, which occurs at an optimal 

value of � � 0.75. This loss in carbon efficiency is purely due the increased 

requirement of methane for H2 production and compression to process the heavier 

hydrocarbons to liquid fuels.   The more waxes are formed, the more H2 is needed to 

hydrocrack them. Because H2 is produced from CH4, there will be an increase in C 

feedstock to the reactor for H2 production.  
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Figure 4.8 Carbon efficiency as a function of � in a once-through and recycle process.  

 

 

The recycle process has 15 % higher maximum carbon efficiency than that of the 

once through process. The recycle process also achieves higher carbon efficiencies 

than the once-through process at the same � values. For example, at � = 0.7, the 

carbon efficiency for the recycle process with hydrocracking is ~73% compared to 

~46% obtained in the once-through process with hydrocracking.  

 

The analysis of the two process configurations in this study has shown that the 

recycle process is more efficient at all � values. For as long as the CO conversion is 

the same for both process configurations, the amount of waxes produced in both the 
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once-through and recycle processes are the same at similar � values and, therefore, 

the energy and material requirements for both hydrocracking and H2 production are 

the same. However, the difference in their carbon efficiencies arises mainly because 

of the fact that the carbon moles lost in the lighter gases flared in the once-through 

process are recovered in the recycle process and reformed to syngas. This syngas is 

fed to the FTS reactor and therefore improving on material utilization of the process 

 

4.8 CONCLUSION 

 

From the results in this study and what is already known about Fischer-Tropsch 

Synthesis (FTS) product distribution, we can conclude the following: 

 

Using the process synthesis approach, a method of comparing two probable process 

configurations for FTS has been developed without any experimental data or any 

detailed and complicated modelling. Using the probability of chain growth (�) as a 

variable and the resultant carbon efficiency, we have established a basis for 

comparing the two operations. 

 

This type of analysis has enabled us to examine with the issue of designing an 

environmentally friendly process that is, at the same time economically feasible, at 

least, from the material and energy utilization point of view, at an early stage of 

process design. 

 

Designing an FTS process with recycling and reforming of the lighter gases, is very 

beneficial, especially if the reaction products are described by  low to middle  � 

values, because higher values of carbon efficiency (�) values are obtained and the 

amount of overall CO conversion is enhanced. 
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In both the once-through process and the recycle process, the trend should be to 

reduce the formation of lighter gases by increasing the � value because � increases as 

� increases. 

 

Because CO conversion is a measure of catalyst activity, which is also closely linked 

to reaction residence time, experiments using different catalysts at various space 

velocities and other process conditions should be performed until the targeted CO 

conversion and higher � values are achieved. Laboratory experiments should be 

performed to obtain process operating conditions that will yield high � values at high 

conversion. The activity of the catalyst under different operating conditions and the 

effect of by-products such as water on product selectivity should be investigated.  

 

However, if the aim is to maximize diesel production by hydrocracking the waxes, 

then an optimal alpha value should be sought, to reduce the cost of hydrocracking 

very heavy waxes. Compared with the processes without hydrocracking, the 

incorporation of wax hydrocracking in the two processes decreases the carbon 

efficiency � for � > 0.7, thereby making it uneconomical to produce very long chain 

hydrocarbons.  

 

The design and operating conditions for the two processes will be different. From the 

temperature point of view, the once-through process will be better-off as a low 

temperature FT process, whereas the recycle process will be a high temperature FT 

process. This is because the mean chain length, and, therefore, the hydrocarbon 

distribution of FT synthesis changes with temperature. At higher temperatures, the 

mean chain length is smaller, more methane and lighter hydrocarbons and less diesel 

and waxes are formed. A Cobalt-based catalyst that is used as a low temperature FT 

catalyst will be suited for the once-through process to maximize wax production, 

whereas the iron catalyst will be ideal for the high temperature process with a recycle 

stream.  
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This study has shown that it is possible to evaluate a process and its efficiency with a 

relatively small amount of information. From the calculations that are performed, it is 

possible to decide what the key drivers for the processes are and choose among 

various alternatives. Even though many simplifying assumptions are made, the results 

bear sufficient resemblance to the real situation to make valid comparisons between 

the different situations. In particular, as the same assumptions are made for the 

different alternatives, the accuracy of the assumptions is not particularly important. 
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Abstract 

 

A method of analyzing a process at a conceptual stage using simple models has been 

developed using minimal information. . This procedure allows one to investigate the 

impact of design drivers at the early stage of process development. Fischer-Tropsch 

Synthesis processes based on two different feed stocks (coal and natural gas) have 

been studied. Carbon efficiency at various values of the probability of chain growth 

has been used to compare the two processes. Simple process flow sheet models were 

synthesized and analyzed.  

 

The recycle of lighter hydrocarbons and wax hydrocracking was used to increase 

diesel yields and maximize the usage of the feed synthesis gas. Generally speaking, 

processes based on natural gas were found to be more carbon efficient than the coal-

based ones.  
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5.1  INTRODUCTION 

 

The conversion of synthesis gas (syngas) via Fischer-Tropsch (FT) synthesis to liquid 

fuels and chemicals is attracting a lot of interests mainly because of unstable prices of 

crude oil and environmental concerns with regard to the use of fuels obtained from 

crude oil. Stringent environmental regulations is  pushing conventional refineries to 

use more costly deep hydrogenation technologies to remove impurities that cause 

environmental pollution from the feed (crude oil) in order to improve fuel quality. 

This is more so for diesel fuels, which has successfully been combined with modern 

diesel engine technology, gaining benefits from both high energy efficiency and 

improved environmental effects.  

 

Syngas can be produced from a variety of carbon-bearing feedstocks such as coal, 

natural gas and biomass and the resulting high-quality crude oil can be further 

processed to specific boiling-point fractions. In an FT production complex the 

production of purified syngas normally accounts for 60-70% of the capital and 

running costs of the entire plant. The selection of the right syngas production process 

is based on the available raw material and the desire to ensure the correct CO: H2 

ratio while simultaneously minimizing certain inherent inefficiencies of the selected 

technology. Natural gas is preferred to coal for syngas production because the capital 

cost is normally about 30% lower and the process is more efficient. In natural gas 

reforming, about 20% of the carbon is converted to CO2 compared to coal 

gasification where it is about 50% due to coal’s much lower hydrogen content 

(Higman, C., 1990).  

 

Since the cost of syngas is high, it is important that its downstream conversion to 

liquid fuels and chemicals is as efficient as possible. It goes without saying, therefore, 

that, depending on the source of syngas, the efficiencies of the FT processes are likely 

to be different. It is important for process developers to be able to assess the 

efficiencies of these processes earlier on using very little information available to 
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them without doing very detailed, time, and money consuming studies. The aim of 

such an assessment is not to find the best option but to eliminate bad alternatives. By 

so doing, key process drivers will be identified and then a more detailed analysis can 

be done. To allow for a comparison of these processes, it is very important that this 

comparison is done on the same basis.  

 

 

In this study, a comparison has been made between two FT Synthesis processes, one 

based on the coal feed and the one based on natural gas feed. The products made by 

the FT reaction are hydrocarbons of different chain length. The FT reaction follows a 

chain-growth mechanism in which the product spectrum adheres to an Anderson-

Schulz-Flory (ASF) distribution characterized by the probability of chain growth (�). 

The ASF distribution describes the molar yield in carbon number as: 

 

)1(1 αα −= −n
nC              (5.1)  

 

where α  is the chain growth probability and n  the length of the hydrocarbon, 

making α−1  the chance that the chain growth will terminate.  

 

The Carbon Efficiency (CE) of the processes has been compared at the same values 

of chain growth probability (�). It has been assumed that the entire range of � values 

can be achieved. No particular catalyst was chosen for this study. Some researchers 

have recommend the use of iron-based catalysts for both natural gas and coal feed 

stocks while cobalt-based catalysts are recommended for natural gas feed (Tijm, P. J. 

A., 2001).  

 

The issue at hand is to develop a method of screening � values in FT synthesis 

processes based on two different feed stocks. The study will examine how the two 

processes compare if production of a fixed amount of hydrocarbons with a certain � 

value is targeted and whether it matters if the process is coal or natural gas based. 
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From an FT synthesis point of view, it doesn’t really matter the source of syngas as 

long as the syngas coming to the FT reactor is clean and in the right CO: H2 

proportion, the end products will depend on the catalyst used, type of reactor and 

operating conditions. This method will also enable us to determine possible regions 

of optimal energy efficiencies where the plant should operate. 

 

The two processes will be compared on the basis of their carbon conversion 

efficiency (�) which is defined as: 

 

 
The carbon efficiency takes the chemical feedstocks and energy streams into account.  

Thus, it is a good measure of plant operating economics because the higher the 

carbon efficiency the higher the usage of feed material and energy for the production 

of the desired product.   It is also related to the capital costs, as the lower the carbon 

efficiency the more material needs to be processed in order to produce the same 

quantity of products.  Thus, the process equipment will be larger with 

correspondingly higher capital costs. It is also a good tool for evaluating 

environmental impact that the process has. High carbon efficiency means that the 

process is environmental friendly as its emission of CO2 into the environment is low. 

 

The design of modern chemical processes embraces the concept that decisions to 

protect human health and the environment can have the greatest impact and cost 

effectiveness when applied early to the design and development phase of a process or 

product.  

 

Carbon                         Carbon (moles) in product produced 
Conversion = ----------------------------------------------------------------------------------- 
Efficiency       Carbon (moles) fed to process + carbon (moles) used for equivalent energy 
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By tracking carbon efficiency in the early stages of process design, we will, in fact, 

be measuring the efficiency of the plant in terms of its utilization of the raw material 

and energy and at the same time evaluate its likely impact on the environment. This 

allows for major process drivers influencing carbon efficiency to be identified earlier 

on and suggest modifications to traditional engineering practices and processes, the 

development of new catalytic processes and the use of sustainable resources (Keiski, 

R., 2004).  

 

This kind of an analysis is particularly necessary in the early stages of plant design 

and can be very beneficial in the choice of technology. Some people may not agree 

that an analysis of the plant based on its carbon conversion efficiency is a good 

measure of plant economics, more emphasis is put on the Capital/Project costs, 

however, from a process design point of view, especially in the early stages, 

Capital/Project cost may not be the most economic sensitive parameter over the life 

of a project. However, the Capital and Operating costs can always be included as the 

design develops. Issues of accessibility to raw materials (most of the natural gas is 

stranded in remote areas) and proximity to the market for the targeted product will 

have to be considered once the decision on what process to go with has been made.  

 

5.2  PROCESS FLOWSHEET DESCRIPTION  

 

The two design options described in the preceding sections are based on simplified 

generic models. No specific choice of technology is made, apart from what is 

generally known about the Fischer-Tropsch Synthesis. The material balance data 

based on the production of a fixed amount of hydrocarbons and maximizing diesel 

production has been used to generate the resource consumption and yield data 

presented here. The basis for these calculations is the feedstock and energy to be 

consumed for the production of 1 ton per day of liquid fuels (gasoline and diesel) and 

hydrocracking of all the waxes to maximize diesel production. While the design for 

the two options may differ slightly in detail, they can all be broken down into three 
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main process sections, namely; the Syngas Generation section, which depends on the 

nature of the feedstock, the FT Conversion (in practice, this may vary depending on 

the nature of the catalyst and operating conditions) and the FT Product Upgrading 

area targeting a fixed amount of liquid hydrocarbons and wax hydrocracking to 

maximize diesel  production (this in practice may depend on the nature of the final 

products desired).  

 

In this study, the design options will be based on the generation of syngas from coal 

and natural gas. Comparisons will be made between running a once-through process 

and a recycle process. The FT Conversion area will have the same details in both 

cases. The desired final products will be diesel and so the Product Upgrade area will 

constitute of the wax hydrocracking unit with a hydrogen feed from outside. In the 

designs without recycle (once-through), the lighter gases produced will be flared and 

considered as a waste (in practice, this may be used to meet the energy needs of the 

plant by generating power).  

 

5.2.1  Natural gas based Design 

 

Synthesis gas derived from natural gas typically has a much higher H2: CO ratio than 

that produced from coal and biomass; this is because of the higher hydrogen content 

of methane (CH4), the primary component of natural gas. Natural gas is converted to 

syngas either by partial oxidation, steam reforming, or a combination of both called 

autothermal reforming. In this study, the process with a natural gas feed has been 

studied using two syngas production processes. The first one is a steam reforming 

process with an addition of CO2 to the feed (equation 4.1). This process is particularly 

important if a source of CO2 is available (or for a CO2 rich natural gas). 

2224 4
1

2
1

4
3

HCOCOOHCH +→++           �H = 164.90 kJ/mol           (5.1)   
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The reaction shown in eq 5.1 is endothermic and the energy for syngas production 

will be derived from methane combustion.  All the energy and work requirements for 

recycling and reforming of the lighter gases in the recycle process will also be 

obtained from the combustion of methane shown in equation 5.2: 

 

OHCOOCH 2224 22 +→+     �H = -802.31 kJ/mol                   (5.2) 

 

The second syngas production process is the partial oxidation of methane (equation 

5.3). This is non-catalytic exothermic reaction with the desirable composition of the 

syngas from a mass balance point of view, corresponding to a ratio H2: CO of ~ 2. 

 

224 2
2
1

HCOOCH +→+                     �H = -38 kJ/mol            (5.3)                                                                     

 

We know that CO2 is produced in this technology, but we are separating the energy 

production step from the syngas production step, however, this will be included in the 

energy balance. The reaction in eq 5.2 takes place either with enriched air or pure 

oxygen supplied from an air separation unit (ASU). The two options have been 

studied and compared. The effect of air separation and compression of air on the 

carbon efficiency of the whole process based on eq 5.3 has also been studied.  

 

The syngas production process with air has been studied as a once-through process to 

avoid the accumulation of nitrogen in the loop and reduce compression costs of the 

large recycles whilst the processes in eqs 5.1 and 5.3 have been studied in both the 

once-through and recycle processes. Figure 5.1 is a simple process flowsheet with 

syngas obtained from the process represented by eq 5.1. Natural gas (CH4) is feed to 

the reactor together with CO2 and steam. Since the reaction is not spontaneous, 

energy to drive the reaction is provided for by methane combustion.  
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Figure 5.1 A once-through FT Process flowsheet utilizing syngas from steam 

reforming of natural gas with a CO2 feed without wax hydrocracking. 

   

The process in Figure 5.1 focuses on the recovery of liquid hydrocarbons, flaring of 

all gaseous product including unreacted CO and H2.  

 

The process in Figure 5.2 is based on the syngas obtained by the partial oxidation of 

the natural gas using compressed air. Both syngas production processes (eqs 5.1 and 

5.3) give the H2/CO ratio of 2.  

Figure 5.2 A once-through FT process model based on syngas obtained from the 

partial oxidation (POX) of natural gas using compressed air with out wax 

hydrocracking. 
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Just like in chapters 3 & 4, the work of air compression (Wcomp) has been calculated 

using equation 5.4 by assuming that the compressor worked adiabatically and the 

energy to provide this work was obtained from natural gas combustion:  
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where compW  is the adiabatic work of compression (kW), 1T  is the compressor feed 

temperature (K), 1P  is the feed pressure to compressor, 2P is the exit pressure from 

compressor, M is the molar flow rate of the gas to the compressor (kmol/s), 

4.1/ == VP CCγ  (where PC  is heat capacity at constant pressure and VC  is heat 

capacity at constant volume). The exit pressure from the compressor ( 2P ) depends, 

among other things, on the operating pressure of the reformer, which in this case was 

taken to be 25 bar. 

 

The amount of methane needed for compression (cost of compression) is calculated 

in eq 5.5, which takes into consideration the maximum possible efficiency that can be 

achieved when thermal energy is converted into mechanical 

energy )/)((( HCH TTT −=η . Thus, for a steam cycle, 573=HT  K and 298=CT K, 

48.0=η . 

 

combustion

S
CH H

W
CompN

∆
=

η
)(

4
, η = 0.48              (5.5) 

 

where, 4CHN  is the number of moles of methane required for compression, SW  is the 

work of compression calculated in eq 4.4, η  is the compression efficiency ( 48.0=η ) 

and combustionH∆  is the enthalpy of methane combustion in reaction 5.2.  
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The carbon efficiencies for the two processes (Figures 5.1 and 5.2) at various � values 

were calculated by taking into account all the carbon that has gone into the process 

against the liquid hydrocarbon products and waxes.  

 

Figure 5.3 Carbon efficiencies at various � values in a once-through FT process based 

on syngas production from natural gas using two different processes at 100% CO 

conversion. 

 

The results in Figure 5.3 clearly favor the production of syngas using steam 

reforming with the addition of CO2 to the reformer. At all the � values where the 

amount of liquid hydrocarbons and waxes are more than the lighter gases (C1-C4), 

carbon efficiency for the process utilizing CO2 and steam is higher than the process 

utilizing compressed air for syngas production. 
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If the main objective for the above described processes was to maximize diesel 

production by product upgrading (wax hydrocracking), the process models 

(flowsheets) will look very similar to Figures 5.1 and 5.2 except that there will be an 

addition of the wax hydrocracker and a source of compressed hydrogen. Product 

upgrading has been simplified to wax hydrocracking only. No other refining process 

is used to upgrade the products. This design is indicative of a situation that might 

arise where the size of the plant and the economy of the country where the plant is 

located do not warrant the addition of capital intensive refinery processing. In this 

section, the FT wax stream from the recovery plant will be cracked at high pressure 

and temperature in the presence of hydrogen. In practice, catalytic hydrocracking is 

used in the petroleum refinery industry to produce a wide variety of products that 

includes light hydrocarbon gases, naphtha, distillates and lubricating oils. This 

process converts the high molecular weight components in heavy petroleum 

distillates by a complicated sequence of reactions involving hydrogenation and 

carbon-carbon bond cleavage. Sulphur, nitrogen and oxygen compounds are removed 

at the same time, and olefins are saturated. Parameters of a hydrocracking process can 

be optimized to give a 100% conversion of the feedstock to a certain product, for 

example, diesel fuel. In this study, an assumption has been taken that the average 

chain length of the wax feedstock to the hydrocracker is 40 and this is hydrocracked 

to C10 in a ‘once through’ hydrocracking unit using an external hydrogen source.   

 

Figure 5.4 shows a simplified once-through FT process flowsheet with hydrocracking 

based on steam reforming of natural gas with CO2 as a source of syngas.  The results 

shown in Figure 5.5 show a substantial decrease in the carbon efficiencies of both 

processes resulting from the addition of hydrocracking units, this is even more 

pronounced in the process utilizing CO2 and steam for syngas synthesis whose carbon 

efficiency decreased from ~ 84% to 61% at � = 0.95. It is interesting to note that both 

cases have maximum � values beyond which the processes start to become less 

efficient. Carbon efficiency for the process utilizing steam and CO2 for syngas 
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production reaches its maximum at � = 0.85 (� = 61) and then drops to ~ 51% at � = 

0.95.  

 

Figure 5.4 A once – through FT Synthesis process flowsheet with wax (C19+) 

hydrocracking. 
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Figure 5.5 Carbon efficiencies at various � values in a once-through FT process based 

on the two syngas production processes at 100% CO conversion. 

 

Up to 40% of the main costs of a syngas plant based on partial oxidation (POX) and 

autothermal (ATR) are related to the oxygen plant. There have been suggestions of 

using air directly for syngas generation thereby eliminating the cryogenic air 

separation plant, however, the use of air in the process stream is only feasible in once-

through synthesis schemes in order to avoid the accumulation of nitrogen. The use of 

air instead of oxygen will result in big reformer volumes and consequently big 

feed/effluent heat exchangers and compressors. This may also result in big purge gas 

streams leading to energy and material waste (Jess et al., 1999). Since this study is 

comparing the efficiencies of two FT process configurations (once-through and 
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recycle process), the use of an Air separation Unit (ASU) to obtain oxygen for syngas 

synthesis in the partial oxidation process has to be considered.  

 

In spite of the information on the work of air separation and its efficiency being 

readily available in public domain, we have decided to apply the thermodynamic 

principles used in chapter 3, to obtain the minimum work of separation. This 

minimum work of separation represents a lower bound on the energy that must be 

consumed by a separation process. This is very important at the early stages of 

process design because it gives an indication of the relative difficulties of the 

separation. In some processes the separation must be carried out with energy 

consumption close to the minimum work of separation in order to be economical. 

 

As in any commercial cryogenic Air Separation Units (ASU), separation of O2 from 

N2 is achieved by distillation because these gases have different boiling points. In this 

study, we propose to thermodynamically model distillation as a set of heat engines 

because distillation is a separation process driven by heat input (King, C. J., 1971). 

Often the energy to drive a separation process is supplied in the form of heat rather 

than mechanical work.  

 

To illustrate this further, a separation process shown in Figure 4.6 will be discussed 

as a reversible heat engine driven by heat HQ  entering the system at a 

temperature HT . An amount of heat CQ  leaves the system at a temperature CT . If 

HQ was supplied to a reversible heat engine rejecting heat at T0, an amount of work 

equal to 
H

H
H T

TT
Q 0−

, could be obtained. Similarly an amount of work equal to 

C

C
C T

TT
Q 0−

, could be obtained from QC.  
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Figure 5.6 A separation process driven by heat input 
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In an ordinary distillation process, an amount of heat equal to RQ  enters at the 

reboiler at temperature RT  and heat CQ  is removed in the condenser at a temperature 

CT . If no mechanical work is involved in the separation process and the enthalpy 

difference between feed and product is negligible compared to the heat input, then 

QQQ CH == . For RH TT =  and CL TT = , the net work of consumption for the 

separation process will be: 
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�
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In this study, this separation principle has been applied.  

 

The minimum isothermal work of separation is also equal to the increase in Gibbs 
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Therefore, 

STHWG T ∆−∆==∆ min,                 (5.7) 

 

Where T  is the absolute temperature, H∆ is the enthalpy of the products less the 

enthalpy of the feed and S∆ is the entropy of the products less the entropy of the feed. 

For the isothermal separation of a mixture of ideal gases �H = 0 and therefore the 

minimum work for a reversible separation process separating products at the same 

temperature and pressure as the feed is: 

)ln(
1

min, i

N

i
iT xxRTSTW �

=
−=∆−=                      (5.8) 

 

Where, TWmin,  is the reversible work of separation (kJ/Kmol) at temperature T , R  is 

the gas constant (kJ/Kmol),T  is the ambient temperature (K) and ix  is the mol 

fraction of component i in the mixture (in this case O2 and N2 only). 

 

For a fixed production rate of hydrocarbons per day, the daily oxygen requirements 

will be calculated from the following overall reaction: 

→+ 24 2
1

OCH - 2CH - OH 2+                (5.9)  

The boiling points for oxygen and nitrogen are 90 and 78 K, respectively. Therefore, 

for the distillation process, heat will be supplied to the reboiler of the column at 90 K 

and then removed from the condenser at 78 K. The removal of heat from the 

condenser at 78 K will be done by refrigeration and reject it to the atmosphere at 298 

K.  
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Figure 5.7 A distillation process modelled as a heat engine. 

For the refrigeration purposes, work will be supplied by a Carnot engine which burns 

methane (natural gas) to supply heat and rejects heat to the surroundings (eq 5.2). The 

heat will be converted to work using a normal steam power cycle. 

Steam that will be generated in a turbine at 573 K will generate energy for 

refrigeration work. This turbine (modelled as a heat engine) will take in heat at 573 K 

and release it to the atmosphere at 298 K. The three processes (Distillation, 

Refrigeration and Power generation) needed for air separation have been modelled as 

thermodynamic engines.  

 

A comparison of the carbon efficiencies obtained in the process using O2 from an 

ASU instead of compressed air show that air separation is a cost that affects carbon 

efficiency of the plant. This is shown in Figure 5.8. 
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Figure 5.8 Carbon efficiency at various � values for a once-through FT process with 

wax hydrocracking at 100% CO conversion. 

 

For as long as there is no inert in the feed gas the most sensible thing to do is to 

recycle the gaseous products and the unconverted syngas. Therefore, the next process 

to be considered will be a recycle process. The unreacted syngas is recycled to the FT 

reactor and the tail gas is reformed in reformer 2 to syngas and fed to the FT reactor. 

Reformer 2 is assumed to be a perfect reformer. This is a steam reformer making use 

of the water produced during the FT synthesis reactions. Figure 5.9 gives a flowsheet 

for a recycle process with syngas obtained from steam reforming of natural gas with 

CO2 addition.  
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Figure 5.9 An FT synthesis process flowsheet for a recycle process with syngas 

obtained from steam reforming of natural gas with CO2.  

 

Carbon efficiency of the process shown in Figure 5.9 has been compared with the 

carbon efficiency obtained from a recycle process with syngas obtained via partial 

oxidation of natural gas using O2 obtained from an ASU (Figure 5.10) and the results 

of the recycle process without hydrocracking are shown in Figure 5.11.  
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Figure 5.10 FT synthesis process flow model for a recycle process with syngas 

obtained by partial oxidation of natural gas using oxygen obtained from an oxygen 

plant. 
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Figure 5.11 Carbon efficiency at various � values for the recycle FT process without 

hydrocracking. 

 

From Figure 5.11, it can be seen that the carbon efficiency of the recycle FT process 

based on syngas obtained from steam reforming with an addition of CO2 increases 

with � values without wax hydrocracking and this was also observed in the once-

through process (Figure 5.3). The major difference is that in the recycle process, the 

process using syngas obtained by partial oxidation with oxygen obtained from an 

ASU has a much improved carbon efficiency  of ~81% at � = 0.95 compared to 53% 

at the same � value in the once-through process. This shows that there are huge 

benefits in using a recycle stream. We shall see what effect wax hydrocracking has on 

the carbon efficiency has on the recycle process (Figure 5.12).  
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Figure 5.12 Carbon efficiency at various � values in the recycle process with wax 

hydrocracking at 100% CO conversion.  

 

The recycle process with wax hydrocracking drops carbon efficiency at all alpha 

values in all the processes under consideration; this is, on account of the energy 

consumed in the wax hydrocracking process. Carbon efficiency reaches a maximum 

in both processes at � = 0.75 beyond which the energy for hydrocracking the longer 

chain hydrocarbons start having a major impact on the overall carbon efficiency 

reducing it by ~30% in both cases at � = 0.95.  
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5.2.2  Coal based Design 

 

Synthesis gas is obtained from coal through gasification. Coal gasification is a 

process where coal is reacted with water and an oxidant (air or O2). In gasification, 

the oxidant is used for partial oxidation rather than complete combustion with 

synthesis gas (H2 and CO) as the main products. The products of complete coal 

combustion are mainly H2O and CO2 instead of syngas.  

 

The three main reactions of coal gasification are (William, R. H., 2001): 

COOC →+ 22
1

         ∆H = -110.52 kJ/mol                   (5.10) 

Reaction 5.10 is a partial oxidation reaction which is highly exothermic, it provides 

heat for coal devolatilization and various endothermic reactions involved in 

gasification.  

 

22 HCOOHC +→+                             ∆H = 175.32 kJ/mol                 (5.11) 

Reaction 5.11 is a water gas reaction which is highly endothermic. 

 

222 COHOHCO +→+                        ∆H = -41.163 kJ/mol                  (5.12) 

Reaction 5.12 is a water-gas-shift reaction which is mildly exothermic.  

 

The overall endothermic reaction for coal gasification is: 

2222 2
2
1

22 COHCOOOHC ++→++              ∆H = 67.64 kJ/mol           (5.13) 

 

The analysis of carbon efficiency in coal-based FT processes has be done in the once-

through processes utilizing compressed air and then compared to processes utilizing 

oxygen obtained from an Air Separation Unit (ASU) with and without wax 

hydrocracking. Air separation has been achieved by distillation as described in the 
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natural gas based processes (section 5.2.1). The amount of oxygen for the process has 

been worked out from the following overall reaction: 

 

2C + H2O +½O2 � -CH2- + CO2                                   (5.14) 

 

All the heat, energy and work requirements for this process are met by coal 

combustion shown in reaction 5.15 as: 

 

22 COOC →+                                 �H = -393.514 kJ/mol                      (5.15) 

 

Figure 5.13 is a simple once-through process flow model of a coal-based FT synthesis 

process utilizing compressed air as the source of the oxidant. Just like with the once-

through process based on natural gas, the unreacted syngas and the light hydrocarbon 

gases (tail gas) from the FT reactor are flared and considered as waste. The light and 

heavy waxes are hydrocracked to diesel at high temperature and pressure using 

hydrogen from an outside source. 

 

 

 

 

 

 

 

 

 

Figure 5.13 Process flow model for a once-through FT synthesis process based on 
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The process flowsheet for a recycle process based on coal gasification is very similar 

to Figure 5.10. The only difference is that coal instead of natural gas has been the 

feed with water and oxygen. This is shown here in Figure 5.14. 

 

Figure 5.14 FT synthesis process flowsheet for a recycle process with syngas 

obtained by steam reforming of coal using oxygen obtained from an oxygen plant. 
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is worthy noting that the process based on steam reforming of natural gas with the 

addition of CO2 is by far the most efficient process (�max ~84%) at the highest value 

of � = 0.95 whereas, the most inefficient process (�max ~29%) is the coal-based 

process that utilizes water and oxygen obtained from an air separation unit. It is also 

important to mention that both processes that incorporated oxygen plants had their 

carbon efficiencies decreasing by ~ 6% compared to those utilizing compressed air.   

 

Figure 5.15 A comparison of carbon efficiencies at various � values in the once-

through FT process based on coal and natural gas reforming without wax 

hydrocracking. 
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Wax hydrocracking has been incorporated in the once-through process and again a 

comparison has been done between the various FT synthesis processes with sources 

of syngas based on coal and natural gas in Figure 5.16.  

 

Figure 5.16 A comparison of carbon efficiencies at various alpha values in the once-

through FT process based on coal and natural gas reforming with wax hydrocracking. 

 

The carbon efficiency in the process based on steam reforming of natural gas with 

CO2 is still the highest. The same observation made in other cases where wax 

hydrocracking was incorporated in the processes and optimum carbon efficiency was 

reached at some alpha values, has also been made here.  
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For all the various FT processes shown in Figure 5.16, the highest carbon efficiency 

is achieved at alpha value � ~ 0.85, thereafter, the hydrocracking processes become 

very energy intensive. This is more prominent in processes based on natural gas. At � 

~0.85, the carbon efficiency reduces from ~72% in Figure 5.15 for the process with 

the highest carbon efficiency to ~ 61% in Figure 5.16. This 11% drop is attributed to 

the energy consumption of the wax hydrocracking.  The process with the lowest 

carbon efficiency in Figure 5.15 (without hydrocracking) had the lowest drop in 

carbon efficiency at � = 0.85 after the incorporation of a wax hydrocracking unit 

(~3%). This is the coal-based process featuring an air separation unit. 

 

The recycling of the tail gas that has been regarded as waste in the once-through 

processes is, however, only feasible if pure oxygen is used instead of compressed air 

in the syngas generation section to avoid the build up of the inert N2 in the recycle 

loop.  

 

The carbon efficiencies of three recycle processes that uses oxygen plants without 

wax hydrocracking have been shown in Figure 5.17. It can be seen from the results 

that carbon efficiency for the process based on natural gas with an air separation and 

compression as a source of syngas has greatly improved from ~47% at � =0.95 in 

Figure 5.16 to 81% at the same � value in Figure 5.17. Marginal increases in the 

carbon efficiency of the other two processes have been noticed. The carbon efficiency 

for the recycle process based on natural gas with CO2 and steam is ~86% at � = 0.95 

compared to ~84% at the same � value in the process shown in Figure 5.15. The 

recycling of the tail gas in the process based on coal gasification with air separation 

and compression has only increased carbon efficiency by ~4% compared with the 

once-through process based on the same source of syngas.  

 

 Between the two processes based on natural gas the difference in the recycle process 

without hydrocracking is very small. At the maximum α = 0.95, the carbon efficiency 

for the process based on natural gas with air separation and compression is 86% 
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compared to the process based on natural gas with CO2 and steam of 81%. Therefore, 

in this process it does not matter how syngas is obtained from natural gas.  

Figure 5.17 A comparison of carbon efficiencies at various � values in the recycle FT 

process based on coal and natural gas reforming without wax hydrocracking. 
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efficiency by ~31% (from 81% to ~50%). The coal based process had the least carbon 

efficiency drop at α = 0.95 by the addition of hydrocracking (from ~29% in the 

process without hydrocracking to almost 20% by the addition of the hydrocracking 

process). The highest carbon efficiency for the natural gas based processes was 

attained at α = 0.75. The process based on natural gas steam reforming with CO2 had 

carbon efficiency ~ 75% at α = 0.75 while the other one based on natural gas with air 

separation and compression had carbon efficiency ~ 68% at α = 0.75. In the coal 

based process the highest carbon efficiency ~23.8% was attained at α = 0.8.  

 

Figure 5.18 A comparison of CE at various alpha values in the recycle FT process 

based on coal and natural gas reforming with wax hydrocracking. 
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5.3  CONCLUSION 

 

It has been reported that synthesis gas generation may account for approximately 

60% of the required investments in large scale gas conversion plants based on natural 

gas. The choice of the syngas generation technology and the size of the syngas plant 

will have a direct impact on the carbon efficiency of the entire plant. It is, therefore, 

important that the choice of the syngas reforming technology be made by taking into 

consideration the effect it will have on the rest of this multi-step operation.   For this 

purpose, it is important for the economics of an individual project to tailor the syngas 

synthesis process to the needs of subsequent processes. 

 

Through out this study, it has been established that processes based on steam 

reforming of natural gas with CO2 addition give the highest carbon efficiencies and so 

it can be a technology of choice especially in situations where CO2 is readily 

available. It has been well established in literature and this study has also shown that 

natural gas based processes are more efficient that coal based ones (Benham & Bohn, 

1999). 

 

There are many possible options for the usage of FT tail gas comprising of the 

unconverted syngas, CO2, and light hydrocarbons produced from the FT reactor. The 

optimum usage will depend on the process scheme and the desired products, which 

can also vary with locations. In this study, it is evident that recycling the tail gas 

allows for increased conversion and liquid hydrocarbon production, thereby 

increasing the overall carbon efficiency of the process. 

 

FT synthesis technology flexibility allows for the choice of the most efficient 

conversion of the available feedstock into target products. 
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6 
 

OVERALL CONCLUSION 

 

This work has shown that it is possible to use the Process Synthesis approach and 

limited experimental data and simple calculations to quickly synthesize a process 

flowsheet and investigate various alternatives at an early stage of process 

development.  Using carbon efficiency as a measure of process efficiency, the 

methodology presented here identifies the key areas of further experimentation and 

other process development efforts away from dead-ends. 

 

It has been established that when choosing the optimal region for the operation and 

design of an FT Synthesis process, the influence of the system parameters must be 

well understood. This is only possible if the kinetics, reactor, and process design are 

done iteratively.  It is recommend not optimizing the reactor independent of the 

process in which it is going to be used without understanding the impact of its 

operating conditions on the entire plant. 

 

Using data from an FT experiment and literature, various process configurations have 

been developed. The results were evaluated with a view of identifying major process 

drivers and it was observed that it is beneficial to run an FT reactor at low CO 

conversion to avoid higher methane formation. Whether the process is run as a once-

through or recycle process, the trend should be to minimize the formation of lighter 

gases by obtaining high � values because carbon efficiency increases as � values 

increase. It is recommended that experiments should be performed to obtain operating 

conditions that will yield high � values. However, if the aim is to maximize diesel 

production by hydrocracking the waxes, then an optimal � value should be targeted to 

avoid the hydrocracking very heavy waxes.  
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The choice of the syngas generation technology has a direct impact on the carbon 

efficiency of an FT synthesis plant. Processes based on natural gas feed are more 

efficient than coal based ones. This study has established that running an FT synthesis 

process with syngas obtained by steam reforming of natural gas with CO2 addition 

can yield high carbon efficiencies especially in situations were CO2 is readily 

available. It is known that CO2 is produced in FT synthesis, especially during energy 

production and in this study, the reaction that incorporates the use of CO2 was aimed 

at showing that CO2 can be used as a reactant and by so doing help in the reduction of 

CO2 emission into the environment. If the addition of CO2 to methane steam 

reforming is to be considered as one of the alternate ways of syngas gas production 

and CO2 sequestration then I recommend that the question of the break even point in 

CO2 production and usage can be investigated in a future process integration study.  
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Fischer-Tropsch synthesis: A study of the effect of water on the 

catalytic activity of a cobalt-alumina catalyst  
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University of the Witwatersrand, P/bag 3, WITS 2050. 
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Abstract 

 

Degussa C 	-alumina has been modified (wetted, dried, calcined) and used as a wide 

pore (d � 25.5 nm) support to prepare a 12% Co/Al2O3 catalyst. The influence of 

water on this alumina-supported cobalt catalyst during Fischer-Tropsch synthesis was 

investigated in a continuously stirred tank reactor (CSTR) at 493 K and 20 atm by 

adding water to the synthesis gas feed, the added water replaced an equivalent 

amount of inert gas leaving all the other reaction conditions the same before, during 

and after water addition.  Water addition had a negative effect on the catalytic 

activity. The extent of loss in catalytic activity depends on the amount of water feed. 

The addition of water amounts <25 vol. % decreased CO conversion slightly and the 

effect was mostly reversible, suggesting a kinetic effect of water, possibly due to 

adsorption of inhibition. However, the catalytic loss observed after the addition of 25 

vol. % water was more permanent. The steady increase in CO2 selectivity indicated 

that an oxidized type of cobalt species (e.g., cobalt oxide or cobalt support 
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compounds like cobalt aluminate) active for the water-gas shift reaction was formed 

under high water partial pressure. C5+ selectivity was mostly unchanged at about 

86%. 

 

1 INTRODUCTION 

 

Supported Fischer-Tropsch synthesis (FTS) cobalt catalysts have been found to be 

well suited for the conversion of high H2: CO ratio syngas derived from natural gas to 

liquid fuels. This is mainly due to their low water-gas shift rates, good activity and 

selectivity towards high molecular weight hydrocarbons. Various supports such as 

SiO2, TiO2, Al2O3, etc have been used to prepare these catalysts. It has been found 

that the support has a significant influence on the catalyst reducibility, activity, and 

selectivity properties of the active phase (Reuel & Bartholomew, 1984), thereby, 

making the choice of catalyst support very important.  

 

Among the supports used in the preparation of cobalt-based catalysts, alumina 

(Al2O3) is known to have high resistance to attrition in slurry reactors (Espinoza et 

al., 1998). It has been reported that in cobalt-alumina catalysts, there is a strong 

interaction between the support and the cobalt oxide phase (Chin & Hercules, 1982).  

Therefore, the activity and selectivity of the Fischer-Tropsch synthesis are influenced 

by the surface properties of the Al2O3 support and the nature of the species formed 

after preparation.   

 

Oxygen is mainly removed as water during cobalt catalyzed FTS. In fixed bed 

reactors this tends to create high partial pressures of water at the reactor exit. Ideally, 

in slurry reactors or CSTRs high water concentrations and low reactant 

concentrations will exist throughout the entire reactor as a result of extensive back 

mixing. The use of cobalt-based catalysts in Fischer-Tropsch synthesis on a 

commercial basis requires that the catalysts withstand long-term use at high CO 

conversions. High CO conversions are feasible in slurry reactors because of their 
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favourable heat transfer properties (Fox, 1993). High CO conversions result in high 

water production.  Condensation of water in the pores of the catalyst support may 

occur when this high water concentration reaches saturation levels. In spite of the 

many studies that have been conducted on the effect of water on the activity of the 

cobalt-based FTS catalysts, there has been little consensus on the findings. This is 

probably due to the different support materials, promoters, cobalt precursors and 

preparation methods that are used by various researchers (van Berg et al., 2000; 

Hilmen et al., 1999; Li et al., 2002; Jacobs et al., 2004). Although the effect is not 

very well understood, it is evident that Al2O3-supported cobalt catalysts deactivate 

faster with water addition. Analysis of the reaction products indicates that this 

deactivation was most likely due to the oxidation of the cobalt metal clusters. The 

studies conducted by Bolt (1994) on the formation of metal-alumina spinel at high 

temperatures found that water increased the rate of metal-aluminates formation. He 

also found that the reaction rate for aluminate formation increased in the order 

Fe<Ni<Co<Cu. It is also understood that the extent of deactivation depends on water 

partial pressure in the reactor. Low water partial pressures are associated with 

temporal catalyst activity loss and high water partial pressures are associated with 

more permanent catalyst activity loss. 

 

Schulz et al (1995) did not find any changes in the activity of a Co/Zr/aerosol catalyst 

even when it was exposed to high water partial pressures; however, he reported a 

decrease in methane selectivity and an increase in C5+ selectivity with a high content 

of olefins in the products. Model studies carried out by Schanke et al (1995) on 

Co/Al2O3 catalysts using H2O/H2 feeds in conjunction with XPS and gravimetry 

showed that reoxidation of cobalt can occur in H2O containing mixtures and that the 

extent of reoxidation depends on the partial pressure of water and the H2O/H2 ratio. 

Based on SSITKA results, Rothaemel and co-workers (1977) reported a decrease in 

catalyst activity after exposing both Co/Al2O3 and Co/Re/Al2O3 catalysts to water. 

They concluded that the catalyst surface available for methane formation and 

reversible CO adsorption decreased after water addition. They proposed that the 
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water treatment of the Co catalyst leads to an oxidation of exposed Co atoms, thus 

decreasing the available active surface.   

 

This study was undertaken to ascertain the effect of water on a cobalt catalyst 

supported on modified Degussa C- Alumina. This support has not been widely 

studied. The catalyst was characterized using standard techniques (BET, TPR, H2 

Chemisorption by TPD, XRD).  The study was more focused on the effect of water 

on the activity and product selectivity of the catalyst.  

 

2  EXPERIMENTAL 

 

2.1  Catalyst preparation 

 

Two alumina supported catalysts were prepared and characterized. Cobalt nitrate was 

used as the precursor while modified Degussa C γ- Alumina was used as support. 

Degussa C γ– Alumina is a narrow particle size material with a high surface area. 

When wetted by water to the incipient wetness point, dried in air at 375 K for 24 

hours and calcined at 623 K for 5 hours, the material is transformed. The particles 

agglomerate into small “clusters” and this result in a sponge-like structure 

characterized by cages with an average diameter of 25.5 nm.  

 

A novel slurry phase impregnation method based on a Sasol patent (Espinoza et al., 

1998) was used to prepare the catalysts.  Two catalysts with different metal loadings 

(12% and 25%) were prepared.  For the slurry phase method, the ratio of the volume 

of loading solution used to the weight of alumina was 1:1, such that approximately 

2.5 times the pore volume of solution was used to prepare the catalyst.  Multiple 

impregnation steps were used to load the total weight % cobalt metal to the support.  

Between each step the catalyst was dried under vacuum in a rotary evaporator at 

333K and the temperature was slowly increased to 373K.  After the final 

impregnation/drying step, the catalyst was calcined at 623K. 
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2.2 Catalyst characterization 

 

The structural studies of the prepared alumina-supported cobalt catalysts were studied 

by using the following techniques: BET, Temperature Programmed Reduction (TPR), 

H2 Chemisorption by Temperature Programmed Desorption (TPD) with O2 Pulse 

reoxidation, and X-ray Diffraction. 

 

2.2.1 Surface areas and pore size measurements 

 

Surface area and pore size measurements were carried out by N2 adsorption on a 

Micromeritics Tri-Star system on both the supports and the calcined catalysts.  Prior 

to measurements, the samples were evacuated at 433 K to approximately 50 mTorr 

for 4 hours. The surface area was calculated as the Brunauer-Emmet-Teller (BET) 

surface area. Total pore volume and pore size distribution were calculated from the 

nitrogen desorption curve using the Barrett-Joyner-Halenda (BHJ) method. 

 

2.2.2 Temperature Programmed Reduction 

 

Temperature programmed reduction (TPR) of catalysts was conducted utilizing a 

Zeton-Altamira AMI-200 unit.  First, calcined samples were purged in flowing Ar to 

remove traces of water.  A liquid nitrogen trap was used to prevent water generated 

by reduction from interfering with the signal of the thermal conductivity detector 

(TCD).  TPR was performed using a 10% H2/Ar mixture at a flowrate of 30 cm3/min 

using Ar as the reference to maximize the signal to noise ratio.  The sample was 

heated from 323 K to 1073 K using a heating ramp of 10 K/min. 

 

2.2.3 H2 Chemisorption by TPD  

 

Chemisorbed hydrogen was quantified using the Zeton-Altamira AMI-200 unit.  The 

sample weight was kept at 0.220 g.  Catalysts were reduced using hydrogen at 623 K 
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for 10 hours and cooled under flowing hydrogen to 373 K.  The sample was held at 

373 K under flowing argon to remove weakly bound species, prior to increasing the 

temperature slowly to 623 K.  The catalyst was held at 623 K under flowing argon to 

desorb the remaining chemisorbed hydrogen until the TCD signal returned to the 

baseline condition.  The TPD spectrum was integrated and number of moles of 

desorbed hydrogen determined by comparing to the areas of calibrated pulses of 

hydrogen in argon.  The sample loop was previously calibrated with pulses of 

nitrogen in helium flow and compared against a calibration line produced from using 

gas tight syringe injections of nitrogen into helium flow. Assumptions of a spherical 

cobalt cluster morphology and a 1:1 H: Co stochiometric ratio were made. 

 

2.2.4 Pulse oxidation 

 

The extent of reduction was determined by pulse oxidation with O2 of reduced 

samples at 623 K. After TPD of hydrogen, the samples were reoxidized at 623 K by 

sending pulses of pure O2 in helium carrier.  Complete oxidation of the cobalt metal 

clusters was the condition whereby the entire O2 pulse was observed by the TCD.  

After reoxidation, the number of moles of O2 consumed was determined, and the 

extent of reduction calculated assuming that the Co0 reoxidized to Co3O4 (Jacobs, et 

al., 2000; Vada et al., 1995). 

 

2.2.5 X-Ray Diffraction (XRD) 

 

Powder diffractograms on calcined catalysts were recorded using a Philips X’Pert 

diffractometer.  Long scans were made over the intense peak at 36.8o corresponding 

to (311) so that estimates of Co3O4 cluster size could be assessed from line 

broadening analysis.  
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2.3 Reaction system and procedure 

 

Prior to loading into the reactor (CSTR), the calcined catalyst (ca. 12 g) was reduced 

ex-situ in a fixed bed reactor at 623 K for 10 hours in hydrogen at a flow rate of 

1L/min. The catalyst was then transferred to the CSTR under the protection of helium 

to mix with Ethylflow 164 Oil (C30 oil) as a start up media. To facilitate the transfer, 

the fixed bed reactor was connected to the CSTR using a transfer tube with a ball 

valve. The fixed bed reactor was pressurized with argon forcing the catalyst powder 

out of the reactor through the valve. The reactor was weighed before and after the 

transfer of the catalyst to ensure that all the catalyst powder was transferred to the 

CSTR. The catalyst was then reduced in situ with hydrogen at a flow rate of 59 SL/h 

at atmospheric pressure. With the temperature controller in a ramp/soak mode, the 

reactor temperature was ramped up to 553 K at a rate of 2 K/min and held at 553 K 

for 24 hours.  

 

The reactor system used for the slurry FTS reaction was a 1 liter CSTR. Separate 

mass flow controllers were used to deliver hydrogen, carbon monoxide and the inert 

gas at the calculated rate to a mixing vessel. Carbon monoxide passed through a 

vessel containing lead oxide-alumina to remove iron carbonyls. The mixed gases 

entered the CSTR below the stirrer which was operated at 750 rpm.  

 

After the activation period, the reactor temperature was decreased to 453 K, synthesis 

gas (H2: CO = 2:1) was introduced to the reactor and the pressure was increased to 

20.7 atm (2.03 MPa). The reactor temperature was increased to 493 K at a rate of 1 

K/min and the space velocity was maintained at 5 SL/h/gcat. 

 

The reaction liquid products were continuously removed from the vapor and passed 

through two traps, a warm trap maintained at 373 K and a cold trap held at 273 K. 

The uncondensed vapour stream was reduced to atmospheric pressure through a 

letdown valve. The gas flow was measured using a wet test meter and analyzed in an 
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online GC. The accumulated reactor liquid products were removed every 24 hours by 

passing through a 2 �m sintered metal filter located below the liquid level in the 

CSTR. The contents of the 273 and 373 K traps were combined; the hydrocarbon and 

water fractions were separated and then analyzed using a GC. The reactor wax, which 

was collected in a third trap maintained at 473 K, was analyzed using a high-

temperature GC to obtain a carbon number distribution of high molecular weight 

hydrocarbons.  

 

In all experiments, the pressure of CO and H2 in the feed remained constant at 70 % 

of the total pressure, while argon was used to make up the balance before, during, and 

after H2O addition experiments. Therefore, when water was added, a fraction of the 

argon was replaced by water. The amount of water added was calculated based on the 

amount of argon to be replaced, thus ensuring that the sum of the water and argon 

partial pressures remained at 30 % of the total pressure. Water addition was done 

using a high precision, high pressure ISCO syringe pump.  The added water, together 

with the water produced by the reaction was collected in the warm and cold traps and 

the fractions were combined to ensure an accurate water balance.  

 

 

3  RESULTS AND DISCUSSION 

 

3.1.  Characterization  

 

To determine if there was any structure modification to the Degussa C 	-Al2O3 

support after wetting and drying, adsorption/desorption isotherms obtained before and 

after modifications were compared. The results in Figure 1 are in agreement with 

previous reports in the literature (Brenner et al., 1995). That is, the as-received 

Degussa C 	-Al2O3 yields a type II Brunauer’s adsorption isotherm without leveling 

off. The wetted/dried/calcined Degussa C 	-Al2O3, on the other hand, yields a type IV 

adsorption isotherm indicating a porous structure. 
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Figure 1. N2 adsorption isotherms for the as-received and modified Degussa C 	-

Al2O3 support. 

 

The results of the BET surface area, pore volume and diameter measurements are 

shown in Table 1. The average pore volume of the modified Degussa C 	-Al2O3 is 

twice that of the as-received material and this is also shown in Figure 2. 

 

 Table 1: BET surface area and BHJ pore size measurements of the Degussa C 	-

Al2O3 supports and the supported catalysts calcined at 623 K.  

Material description Measured BET 
surface area 
(m2/g) 

BHJ Des Pore 
Vol (cm3/g) 

BHJ Des Ave 
Pore Diam (nm) 

Degussa C γ–Al2O3  Dried, 
Calcined 

103.4 0.3835 15.68 

Degussa C γ–Al2O3, Wetted, 
Dried, Calcined 

116.9 0.7966 25.50 

12% Co/Al2O3 Degussa C γ-
Al2O3, Wetted, Dried, Calcined  

89.1 0.4212 
 

15.32 

25% Co/Al2O3 Degussa C γ-
Al2O3, Wetted, Dried, Calcined 

76.9 
 

0.3939 19.43 
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Figure 2. Pore size distributions by BHJ adsorption of nitrogen for the modified 

alumina supports and catalysts. 

 

 

Cobalt catalysts supported on alumina have limited reducibility due to a strong 

interaction between the support and cobalt oxides. Calcined Co/Al2O3 catalysts have a 

complicated composition on the surface of the support and this can be a mixture of 

Co3O4 and cobalt-support complexes such as cobalt aluminates (Wang & Chen, 

1991). To calculate the cluster size and the degree of reduction by chemisorption, a 

method in which the amount of oxygen consumed by the metallic component to be 

reoxidized after a reduction procedure, has been employed to estimate the metallic 

fraction of the cobalt (Jacobs et al., 2000). The extent of reduction is included in the 

denominator of the dispersion equation so that a much more accurate estimate of the 

true dispersion of the metallic fraction (and therefore, cluster size) can be obtained. 
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After calcination, the catalysts were scanned by XRD to give another estimate of the 

cobalt metal cluster size. The XRD was able to detect the spinel crystalline phase of 

Co3O4. From Table 2, it can be seen that results from XRD are not very different 

from those obtained through calculations from chemisorption after taking into 

account percentage reduction. The average cluster diameter for the 25% Co/Al2O3 is 

almost double that of the 12% metal loaded catalyst. It can be assumed therefore, that 

for the 12% Co/Al2O3, nearly all of the cobalt metal particles are present in the pores 

of the support. 

 

 

Table 2: Co0 particle size and dispersion from H2 chemisorption, and Co3O4 particle 

size from XRD.  

Catalyst Dispersion  

(H2-

ads.)(%)a 

Reduction  

(H2- ads.) 

(%)b 

Co0 particle size 

(H2-ads.) (%)c 

Co3O4 particle 

size (H2-ads.) 

(%)d 

12%Co/Al2O3 

(Degussa C) 

 

8.4 

 

67.8 

 

12.2 

 

13.3 

25%Co/Al2O3 

(Degussa C) 

 

5.3 

 

60.1 

 

19.5 

 

23.2 
a Co0 dispersion from H2 chemisorption, assuming adsorption on Co atoms only. 
b The reduction of Co3O4  to Co0 by TPR. 

c Co0 particle size calculated from H2 chemisorption.  
d Co3O4 particle size calculated from XRD of calcined catalysts using the most    

intense peak located at 2
 = 36.8o. 
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3.2  Effect of water addition on catalyst activity 

 

The experiments to determine the effect of water on the activity and selectivity of the 

12% Co/Al2O3 Fischer-Tropsch catalyst were carried out in the reaction system 

described in section 2.3. Different amounts of water (5 - 25 vol. %) were added to the 

feed gas replacing argon by the same amount to maintain constant syngas partial 

pressure and space velocity. The partial pressures of the inlet H2 and CO were kept 

unchanged during all the runs. After each run with water addition, the conditions 

were adjusted by switching off the water so as to obtain conditions similar to those 

obtained before water addition. The results in Figures 3 and 4 show the effect of 

water on CO conversion and FTS rate as a result of catalyst deactivation.  

 

Figure 3 Effect of water on CO conversion for 12% Co/Al2O3 catalyst. 
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Figure 4. The effect of water addition on the rate of 12% Co/Al2O3 catalyst 

deactivation. 

 

 

Whenever water was added to the feed, there was a loss in catalyst activity which was 

more temporal in the 5 – 20 vol. % range. The catalyst activity recovered after water 

addition was terminated. With 25 vol. % water addition, the loss in catalyst activity 

was severe and this was not fully recovered after the termination of water addition, an 

indication that the deactivation was more permanent. Although, it is evident from 

thermodynamic calculations that the oxidation of bulk phase metallic cobalt to either 

CoO or Co3O4 is unlikely (Van Berg et al., 2000), previous investigators (Hilmen et 

al., 1999; Jacobs et al., 2004; Schanke et al., 1995) found that the irreversible 

deactivation of Fischer-Tropsch cobalt catalyst was likely to be a result of an 

oxidative process caused by the presence of a high partial pressure of water, and may 

be attributed to cobalt-support complex formation.  

 

 



 146 

Figure 5 shows the effect of water addition on CO2 and CH4 selectivity. It is seen that 

CO2 selectivity increased steadily with the increase in the vol. % water added to the 

feed. This is a further confirmation that some surface cobalt atoms were re-oxidized 

to form cobalt oxide or some other oxidized form of cobalt (i.e., cobalt-support 

complex) active for water-gas shift reaction. Some studies found unreduced Co-

Pt/Al2O3 catalyst to be active for water-gas shift reaction when a feed of CO/H2O in 

the ratio 1:1 (without hydrogen) was introduced in the reactor at FTS conditions (Li 

et al., 2002). 

Figure 5. The effect of water addition on the CH4 and CO2 selectivity using Co/Al2O3 

catalyst.  
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Although it has been reported by other researchers (Hilmen et al., 1999; Bertole et al., 

2002; Krishnamoorthy et al., 2002; Shulz et al., 1994) that water increases C5+ 

selectivity and reduces CH4 selectivity for all Co catalysts, the results presented in 

Table 3 show that when 5 – 20 vol.% water was added to the feed, C5+ selectivity 

remained almost unchanged, it increased slightly when 25 vol. % water was added. 

Results shown in Figure 6.5 indicate no change in CH4 selectivity for 5- 20 vol. % 

addition. An increase in water addition to 25 vol. % saw a reduction in CH4 

selectivity. 

 

 

The PH2/PH2O ratios shown in Table 3 are higher than the thermodynamic equilibrium 

constants for Co + H2O � CoO + H2 and 3Co + 4H2O � Co3O4 + 4H2 under FTS 

conditions (Van Berg et al., 2000) and since these are supposed to be the reactions 

between cobalt and water resulting in an oxidized form of cobalt, it can be assumed 

that the reduction of either CoO or Co3O4 by hydrogen are spontaneous during the 

slurry phase FTS under realistic conditions. However, the oxidation of bulk phase 

metallic cobalt to either CoO or Co3O4 does not happen. 

 

 

Table 3: Effect of water on C5+ selectivity for 12% Co/Al2O3 catalyst (reaction 
condition: T = 220oC, P = 20 atm, H2/CO = 2 with 30% Ar, SV = 5 SL/h/gcat) 
H2O added 
(vol.%) 

TOS (h) CO conv. 
(%) 

PH2O 

(atm) 
PH2O/PH2 C5+ sel. (%) 

            0   498      24.2   1.6   0.249       85.7 
            5    616      21.2   2.0   0.314       85.0 
           10   716      16.5   2.7   0.400       86.1 
           15   857      15.6   3.9   0.562       85.7 
           20   980       9.9   4.6   0.617       85.1 
           25  1124       8.2   5.1   0.682       87.4 
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4  CONCLUSION 

 

Wetting and drying transforms the non-porous Degussa C 	-Al2O3 into a porous 

alumina support. This is evidenced from the N2 adsorption results. The modified 

Degussa C 	–Al2O3 has been used as support to prepare a 12% Co/Al2O3 catalyst and 

the catalyst showed good stability.  

 

The results from water addition experiments are consistent with results of the other 

alumina-supported Fischer-Tropsch cobalt catalysts tested and reported in literature 

(Hilmen et al., 1999; Li et al., 2002; Jacobs et al., 2004; Schanke et al., 1995; Jacobs 

et al., 2000; Krishnamoorthy et al., 2002). The addition of water to the feed has a 

negative effect on the activity of the catalyst. Catalyst deactivation increased from 

0.3% per day without water to 0.45% per day with water addition. The decrease in 

catalytic activity that was noticed when water below 25 vol. % was added, was 

mostly recovered after water addition was stopped, consistent with kinetic effect of 

water, probably due to adsorption inhibition. Very little catalyst activity was 

recovered after 25 vol.  % water was added indicating that the high extents of Co 

oxidation were related to high water partial pressures.  

 

CH4 and C5+ selectivities remained almost unchanged until 25 vol. % was added 

when there was an increase in C5+ selectivity and a reduction in CH4 selectivity 

because of the irreversible effect on CO conversion. CO2 selectivity increased 

steadily with the increase in the amount of water addition. This indicated that there 

maybe the formation of oxidized from of cobalt, which most likely involves the 

formation of an irreducible cobalt-support compound causing a decrease in the active 

metallic surface.  
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APPENDIX II 

 
 

Efficiencies of the Thermodynamic Engines 
 

The separation of air can be modelled as a heat engine with a heat input at 90 K 

and heat removal at 78 K. Substituting these temperature values in eq 1 gives the 

separation work with a Carnot engine efficiency of 0.13. 

 

2

22

)(
O

NO

H

CH
sepwork T

TT

T
TT −

=
−

=η       (1) 

 

A refrigeration process is required to remove energy from the reboiler. The 

process must remove energy at 78 K and reject it to the atmosphere at 298 K. 

 

2

2

Nambient

N

CH

C
ionrefrigerat TT

T

TT
T

−
=

−
=η       (2)  

The amount of heat required in the hot reservoir, QH is given by 

 

separation

separation
H

W
Q

η
=         (3) 

 

The energy rejected from the engine QC is given by 

 

separationHC WQQ −=         (4) 

 

For the refrigeration system, the energy required for the process (Wrefrigeration ) is 

given by 

 

ionrefrigerat

C
ionrefrigerat

Q
W

η
=        (5) 
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For the power cycle, the energy required to provide the separation work, Qcombustion 

is given by 

 

generation

ionrefrigerat
combustion

W
Q

η
=        (6) 

 

Where   

 

steam

ambientsteam

H

CH
generation T

TT
T

TT −
=

−
=η       (7) 

 

The efficiency of the power cycle was calculated to be 0.66. 

 

The quantity of methane required to produce energy Qcombustion is given by  

 

H
Q

N combustion
CH ∆

=
4

         (8) 

 

Where H∆  is enthalpy of the combustion reaction of methane. The value is -

802.3kJ/mol.   
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